Um die Handhabung von feinen Pulvern in industriellen Anwendungen zu optimieren, ist ein Verständnis der Wechselwirkungen zwischen einzelnen Pulverteilchen eine fundamentale Voraussetzung. Die Kräfte zwischen kolloidalen Teilchen bestimmen das Verhalten einer Reihe von Materialien wie Farben, Papier, Erdreich und eine Vielzahl industrieller Prozesse. Mit der Erfindung des Rasterkraftmikroskops (Atomic force microscope, AFM) wurde die direkte Messung der Wechselwirkung zwischen mikrometer-großen Teilchen möglich. Der adhäsive Kontakt zwischen einem Teilchen und einer Oberfläche ist ein wesentlicher Parameter für die Analyse von Haftkraftmessungen mit dem AFM. Ziel dieser Studie war es, die Oberflächenkräfte zwischen feinen Pulverteilchen besser zu verstehen. Ich habe die Haftkraft zwischen AFM-Spitzen oder Pulverteilchen, die an AFM-Federbalken befestigt waren, und verschiedenen Festkörperoberflächen gemessen. Es wurden sowohl glatte und homogene Oberflächen wie Siliziumwafer, Glimmer, kristallinem Graphit (HOPG) als auch rauere und heterogene Oberflächen wie Eisenteilchen oder regelmäßige Anordnungen von TiO2 Nanoteilchen auf einem Siliziumwafer verwendet. Im ersten Teil habe ich mich mit der wohlbekannten Tatsache auseinander gesetzt, dass bei Haftkraftmessungen mit dem AFM nicht ein fester Wert, sondern recht breite Verteilungen der Haftkraft beobachtet werden. Meine experimentellen Resultate zeigen, dass sich die Schwankungen der Haftkraft zusammensetzen aus schnellen, zufälligen Fluktuation, die von einem Kraftmessung zur nächsten auftreten, und langsameren Schwankungen, die über einige zehn bis hundert aufeinaderfolgenden Messungen hinweg erfolgen. Diese langsamen Fluktuationen können nicht auf Schwankungen externer Einflussgrößen wie Kontaktposition, Temperatur, Luftfeuchte etc. zurückgeführt werden, da diese konstant gehalten wurden. Selbst wenn zwei Festkörper unter genau den gleichen Bedingungen (gleiche Stelle, Andruckkraft, Richtung usw.) in Kontakt gebracht werden, ist das Resultat für aufeinander folgende Messungen oft unterschiedlich. Die Messung selbst induziert strukturelle Veränderungen im Kontaktbereich, die zu einem geänderten Wert der Haftkraft in der nächsten Messung führen.
Im zweiten Teil dieser Arbeit untersuchte ich den Einfluss der Luftfeuchte auf die Haftkraft von Nanokontakten. Die Luftfeuchte wurde möglichst schnell variiert, um Verschleiß der AFM-Spitzen während einer Messreihe zu minimieren. Für hydrophobe Oberflächen wurde keine signifikante Änderung der Haftkraft mit zunehmender Luftfeuchte beobachtet. Für hydrophile Oberflächen ergab die Auftragung von Haftkraft gegen Luftfeuchte entweder ein Maximum oder einen kontinuierlichen Anstieg mit zunehmender Luftfeuchte. Dies kann mit einem einfachen Kontinuumsmodell der Kapillarkraft erklärt werden, das Rauhigkeit der Oberflächen berücksichtigt und verschiedene AFM-Spitzengeometrien oder Teilchenformen durch Überlagerung zweier Kugeln modelliert. Experimentelle Ergebnisse und Modellrechnungen zeigen, dass die genaue Kontaktgeometrie einen entscheidenden Einfluss auf die Abhängigkeit der Haftkraft von der Luftfeuchte hat. Änderungen der Spitzengeometrie auf der sub10 nm Längenskala können zu einer vollständigen Veränderung des Zusammenhangs zwischen Haftkraft und Luftfeuchte führen. Unser Modell erklärt somit auch die großen Diskrepanzen zwischen verschiedenen früheren AFM-Studien zur Abhängigkeit der Haftkraft von der Luftfeuchte.