Gegenstand dieser Arbeit ist die experimentelle Untersuchung von halbleiterbasierten Strahlungsdetektoren, die auf dem Konzept des DEPFETs aufbauen. Der DEPFET ist das zentrale aktive Element eines Detektorsystems, mit dem geringste Ladungsmengen indirekt und sehr rauscharm gemessen werden können. Die Analyse der physikalischen Mechanismen im dynamischen Detektorbetrieb stellt dabei den Forschungsschwerpunkt dar. Beispiele dieser Mechanismen sind z.B. die Abläufe bei der Ladungsmessung, die Abhängigkeiten der detektorintrinsischen Verstärkung oder das Einsetzten von Stoß-Ionisation.
Der Hauptteil der Arbeit befasst sich mit Simulationen und Messungen an DEPFET-RNDR-Strukturen. Bei dieser neuartigen DEPFET-Variante wird die Möglichkeit der indirekten Auslese ausgenutzt, um eine gesammelte Ladungsmenge beliebig oft auszulesen. Durch eine Mittelwertbildung der dabei gewonnenen Messwerte wird die statistische Unsicherheit der Ladungsmessung verringert. Mit dieser Methode ist eine Reduzierung des
Rauschens bis in den Sub-Elektronen-Bereich möglich, wodurch der Nachweis diskreter Elektronenanzahlen erreicht wird. Die Stärke dieses Auslesekonzepts zeigt sich in der Verwendung als optischer Photonendetektor. Hierbei kann die Menge einzelner Photonen, die den Detektor erreicht, derart präzise bestimmt werden, dass damit eine exakte Messung der tatsächlichen Anzahl möglich ist. Experimentell kann dies für eine Menge bis ca. 500 Photonen gezeigt werden.