System-on-a-Chips mit mehreren Prozessoren (MPSoC) werden zu einer bevorzugten Option für die Entwicklung eingebetteter Systemanwendungen. Sie bieten die Möglichkeit, unterschiedliche Softwarekomponenten auf unterschiedlichen Kernen parallel auszuführen. In den letzten Jahren wurden mehrere MPSoC-Architekturen für bestimmte Anwendungsbereiche (z.B., Intel, PowerPC usw.) entwickelt. Kommerzielle MPSoCs geben den Zertifizierungsstellen jedoch Anlass zu großer Sorge. Das Paradigma der nachrichtenbasierten Netzwerke auf einem Chip (NoC) bietet signifikante Vorteile hinsichtlich der zeitlichen Vorhersagbarkeit, der Fehlerisolierung und der Energieeffizienz im Vergleich zu den für die Entwicklung von Multicore-Systemen implementierten gemeinsamen Speicheransätzen. Daher stellen vorhersagbare Multi-Core-Plattformen (z.B., COMPSOC, GENESYS MPSoC) nachrichtenbasierte On-Chip-Netzwerke als Lösung bereit.
Zur Zeit werden im Automobilbereich Multicore-Prozessoren eingesetzt, die das Paradigma des gemeinsamen Speichers für die Interaktion zwischen den Kernen verwenden. Mit dem AUTOSAR-Standard (Automotive Open System Architecture) wird seit Version 4 eine Multi-Core-Version der ECU-Softwarearchitektur eingeführt, die ein Multi-Core-Betriebssystem definiert, das die Ausführung der zugewiesenen AUTOSARSoftwarekomponenten (SWCs) steuert und verschiedene Kerne mit einem gemeinsamen Speicher unterstützt. AUTOSAR bietet jedoch keinen Ansatz für die Zuordnung seiner ECU-Softwarearchitektur zu einem NoC-basierten MPSoC.
Um die Vorteile von NoC-basierten MPSoCs mit dem AUTOSAR-Standard zu kombinieren, wird in dieser Dissertation eine neuartige Systemarchitektur vorgestellt, die die AUTOSAR-Einkern-ECU-Softwarearchitektur auf eine nachrichtenbasierte Multi-Core- Plattform abbildet. Die sogenannte TIMEA (TIme-triggered MEssage-based Multi-Core- Plattform für AUTOSAR) definiert ein nachrichtenbasiertes NoC als einziges physikalisches Medium für die Kommunikation zwischen den Kernen und führt autonome Anwendungskerne auf dem MPSoC ein, die als AUTOSAR Micro-ECUs (μECUs) funktionieren. Jede μECU fungiert als Abstraktionseinheit, bei der die SWCs mit einer Laufzeitumgebung (RTE) und einer einfachen Implementierung der AUTOSAR Basis Software (BSW) ausgestattet sind, wobei die Vorteile von nachrichtenbasiertem NoC im Gegensatz zu einem gemeinsamen Speicheransatz genutzt werden (z.B., Fehlerisolation, zeitliche Vorhersagbarkeit).
Darüber hinaus wird die rechenintensive Funktionalität der Basis Software an Systemkerne delegiert, die als Hardwarebeschleuniger für die Anwendungskerne dienen. TIMEA unterstützt Fehlertoleranzmechanismen durch die Integration neuer BSW-Module für Health Monitoring Services und Proxy-Funktionalitäten für den Zugriff auf die dedizierten Systemkerne, die SWC-Redundanz auf Kerne-Ebene und auf MPSoC-Ebene bieten.
TIMEA wurde prototypisch implementiert und mit einem Simulationsframework evaluiert. Das Simulationsframework besteht aus einem AUTOSAR-Simulator und einem On-Chip-Simulator zur Implementierung der Modelle und Algorithmen. Zur Auswertung dienten Automotive Use Cases auf Basis eines Antiblockiersystems und eines Lichtanzeigesystems. Die erhaltenen Ergebnisse zeigen eine bessere Fehlerisolierung für das AUTOSARSystem aufgrund der Verwendung eines On-Chip-Netzwerks für die Inter-Core-Kommunikation. TIMEA unterstützt strenge zeitliche Garantien für die SWC-Interaktion zwischen verschiedenen Kernen. Darüber hinaus wurde die Zuverlässigkeit des AUTOSARMulticore-Systems erheblich verbessert. Fehler auf der SWC-Ebene und auf der Kerne-Ebene werden erkannt und Wiederherstellungslösungen basierend auf der SWC-Redundanz werden ausgenutzt. Schließlich unterstützt die vorgeschlagene Architektur erstmals eine AUTOSARMulticore-Plattform mit SWC-Kommunikation über ein nachrichtenbasiertes NoC.