TY - THES AB - Strukturen und Bauteile sind in zahlreichen praktischen Fällen zyklischen Beanspruchungen mit hohen Lastspielzahlen ausgesetzt, unter denen ihre Lebensdauer vom mikrostrukturellen Wachstum kurzer Ermüdungsrisse bestimmt wird. Eine wichtige Grundlage, um die Resistenz von Werkstoffen gegenüber der Rissausbreitung zu steigern, ist das Verständnis ihrer Mechanismen. Hierzu stellt die vorliegende Arbeit ein neues zweidimensionales Modell zur Beschreibung des Kurzrisswachstums in einem metastabilen austenitischen Edelstahl vor, das durch lokale Phasenumwandlung beeinflusst wird. Sie tritt an der Rissspitze auf, wenn zwei sich kreuzende Gleitsysteme an ihr aktiv sind. Durch das größere Volumen des umgewandelten Werkstoffs ist der Riss gegenüber transformationsfreiem Wachstum für einen größeren Teil des Beanspruchungszyklus geschlossen. Dies verlängert die Lebensdauer von Bauteilen, da die zyklische Rissspitzenabgleitung reduziert wird, die die Rissausbreitungsgeschwindigkeit bestimmt. Basierend auf experimentellen Untersuchungen liegen dem Rissfortschritt und der ihm überlagerten Phasentransformation die folgenden wesentlichen Modellschritte zugrunde: •Während eines Lastzyklus wird das Spannungsfeld an der Rissspitze ausgewertet. Reicht es zur Aktivierung zweier Gleitsysteme aus, werden an der Spitze Gleitebenen mit entsprechender Orientierung und elastisch ideal-plastischem Verhalten angesetzt. •Auf ihnen werden die Abgleitungen berechnet und daraus der Rissfortschritt sowie die Zunahme der Phasentransformationszone an der Rissspitze bestimmt. •Die Rissverlängerung und die Vergrößerung der Umwandlungszone werden in das Modell einbezogen und anschließend ein neuer Beanspruchungszyklus durchlaufen. Die numerische Lösung des Modells erfolgt durch eine Randelementemethode, bei der Elemente mit Absolut- und Relativverschiebungsansätzen gekoppelt werden. Erstere beranden die Martensitbereiche, was das Aufbringen der Volumenzunahme ermöglicht. Zweitere diskretisieren den Riss und die Gleitebenen. Das Modell wird zur Simulation des mikrostrukturbestimmten Kurzrisswachstums angewendet, wobei neben der Phasentransformation auch die Barrierewirkung von Korngrenzen und individuelle isotrope Steifigkeiten der Gefügekörner einbezogen werden. Hieraus resultierende Effekte des Kurzrisswachstums werden herausgestellt und Parameterstudien durchgeführt. Neben anderen Ergebnissen wird die Verringerung der zyklischen Rissspitzenabgleitung durch die Phasentransformation nachvollzogen. Die exemplarische Simulation des Wachstums eines realen Risses zeigt gute Übereinstimmung mit dem zugehörigen Experiment. AU - Kübbeler, Martin DA - 2017 KW - Rissausbreitung KW - mikrostrukturbestimmte Kurzrissausbreitung KW - short crack propagation KW - boundary element method LA - ger PY - 2017 TI - Simulation der mikrostrukturbestimmten Kurzrissausbreitung unter dem Einfluss lokaler Phasenumwandlung UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-11229 Y2 - 2024-11-22T06:30:53 ER -