TY - THES AB - Finite Elemente Simulationen spanabhebender Fertigungsprozesse ermöglichen eine anforderungsgerechte Werkzeug- und Prozessgestaltung. Simulationsmethoden werden eingesetzt, um Zerspanversuche an Werkzeugmaschinen zu reduzieren, Entwicklungszeiten zu verkürzen und Kosten einzusparen. Den physikalischen Eingangsdaten der Simulation kommt eine besondere Bedeutung zu, da sie die Abbildungsgüte maßgeblich beeinflussen. Insbesondere das Materialgesetz und die Materialkennwerte zur Approximation der Fließspannung sind entscheidende Größen. In der vorliegenden Arbeit wird eine neue Methodik für die Kennwertbestimmung entwickelt, die auf linear-orthogonalen Zerspanversuchen basiert. Durch die Anwendung optischer Hochgeschwindigkeitsmessungen in der Zone der Spanbildung werden die Scherdehnraten im Werkstoff auf Basis eines digitalen Bildkorrelationsverfahrens (DIC) bestimmt. Zusammen mit den Prozesskräften werden die Daten genutzt, um Materialkennwerte invers zu bestimmen. Durch Split-Hopkinson- und Zylinderstauchversuche werden ergänzende Kennwertsätze bestimmt sowie das Werkstoffverhalten bei höheren Dehnraten und Temperaturen bewertet. Auf Basis der Ergebnisse wird ein modifiziertes Materialgesetz entwickelt, das Besonderheiten in den thermischen Entfestigungsverläufen der untersuchten Stahlwerkstoffe berücksichtigt. Die Kennwertsätze und Modelle werden in Simulationen eingesetzt und mit den Ergebnissen aus Zerspanversuchen verglichen. AU - Thimm, Benedikt DA - 2018 KW - Materialmodell KW - Constitutive Model KW - Simulation KW - Machining KW - Material Data LA - ger PY - 2018 TI - Werkstoffmodellierung und Kennwertermittlung für die Simulation spanabhebender Fertigungsprozesse UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-14319 Y2 - 2024-11-22T16:16:15 ER -