TY - THES A3 - Fritzen, Claus-Peter AB - Der Fokus dieser Forschungsarbeit liegt auf der Analyse inverser Probleme der schwingungsbasierten Strukturüberwachung. Strukturüberwachungssysteme helfen u.a. dabei die Integrität einer Struktur beurteilen zu können oder eine Vorhersage der Restlebensdauer zu treffen. Im Rahmen dieser Arbeit werden neuartige Überwachungsstrategien entwickelt und untersucht. Die Ergebnisse zeigen das große Potential von Lösungsansätzen für dünnbesetzte inverse Probleme in diesem Bereich. Von dünnbesetzten Problemen spricht man, falls ein Lösungsvektor existiert, welcher nur sehr wenig Elemente ungleich null besitzt. Solche Lösungsstrategien helfen dabei die benötigte Messinformation zu reduzieren und die Rekonstruktionsqualität zu steigern bzw. beizubehalten. Für eine kontinuierliche Strukturüberwachung werden Sensoren permanent an der mechanischen Struktur angebracht. So könnnen die mechanischen Schwingungen dauerhaft gemessen werden. Geeignete Algorithmen müssen dann diese Messdaten verarbeiten, um das gewünschte Überwachungsergebnis zu erzielen. Allerdings spiegeln die Schwingungsmessungen lediglich die Wirkung einer meist unbekannten Ursache wider. Zur Überwachung ist daher eine Invertierung des Ursache-Wirkungsprinzips erforderlich. Das bedeutet, dass die Überwachungsalgorithmen in der Lage sein müssen diese inverse Problemstellung zu lösen. Zur Lösung inverser Probleme ist es zweckmäßig Vorkenntnisse der gesuchten Größen zu berücksichtigen, um mechanisch sinnvolle Ergebnisse zu erhalten. Die charakteristischen Eigenschaften der Strukturanregung und der Schädensmuster können dazu genutzt werden, die jeweils auftretende inverse Problemstellung in ein dünnbesetztes Gleichungssystem zu überführen. Die Lösung solcher Gleichungssysteme kann mittels der L1-Regularisierung sehr effizient generiert werden. Speziell für Lastrekonstruktionsverfahren ist durch die Anwendung von L1-minimierenden Algorithmen eine Lokalisation und eine Kraftverlaufsrekonstruktion mit einer deutlich geringeren Anzahl an Sensoren als bislang möglich. Die Stabilität der Rekonstruktionsalgorithmen ist auch bei verrauschten Messdaten und Modellabweichungen gegeben. Für Schadensidentifikationsalgorithmen sind Lösungsstrategien für dünnbesetzte Probleme ebenfalls gewinnbringend im Hinblick auf die benötigte Messinformation und die erreichbare Schadensidentifikationsqualität. Dies gilt sowohl für Verfahren im Frequenzbereich, als auch für Methoden im Zeitbereich. Mit Hilfe von Lösungsstrategien für dünnbesetzte inverse Probleme ist es außerdem möglich Ansätze für die kombinierte Identifikation von Strukturschäden und externen Lasten zu realisieren. Alle untersuchten Rekonstruktionsalgorithmen erreichen eine Reduktion der benötigten Messinformation, wodurch u.a. ein Beitrag zur günstigeren und praxistauglicheren Anwendung von Strukturüberwachungssystemen geleistet werden kann. AU - Ginsberg, Daniel DA - 2019 DO - 10.25819/ubsi/489 KW - Strukturüberwachung KW - Inverse Probleme KW - Lösungsstrategien für dünnbesetzte Probleme KW - Lastüberwachung KW - Schadenserkennung LA - ger PY - 2019 TI - Lösungsstrategien für dünnbesetzte inverse Probleme im Bereich der Strukturüberwachung UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-15289 Y2 - 2024-11-22T07:43:56 ER -