TY - THES A3 - Weinberg, Kerstin AB - Additive Fertigung, umgangssprachlich als 3D-Druck bezeichnet, hat sich zu einer etablierten Produktionsmethode in vielen Anwendungsbereichen entwickelt. Gerade für die Produktion kleinerer Serien oder individueller Komponenten ist es die bevorzugte Technik. Sollen diese gedruckten Teile konventionell hergestellte Teile ersetzen, so müssen die mechanischen Eigenschaften mindestens vergleichbar sein. Wünschenswert wären sogar verbesserte Eigenschaften. Die vorliegende Arbeit beschäftigt sich mit den hyperelastischen und viskoelastischen Eigenschaften verschiedener flexibler Materialien, die in der additiven Fertigung eingesetzt werden. Ergänzt wird dies durch eine Untersuchung des Einflusses von Unsicherheiten im Material, z.B. hervorgerufen durch Einschlüsse. Generell werden zwei verschiedene Druckverfahren untersucht, zum einen die Schmelzschichtung (FDM), zum anderen das Verfahren der Stereolithografie (SLA). Während das FDM-Verfahren einen schmelzfähigen Kunststoff als Ausgangsmaterial verwendet, basiert das SLA-Verfahren auf dem Aushärten eines harzförmigen Photopolymers. Zur Untersuchung des hyperelastischen Materialverhaltens werden uniaxiale Zugversuche bis zum Versagen durchgeführt und ausgewertet. Bei den verwendeten Proben werden verschiedene Druckparameter variiert. Für die Bestimmung der viskoelastischen Eigenschaften dienen uniaxiale Spannungsrelaxationsversuche. Die Ermittlung der Parameter verschiedener hyper- und viskoelastischer Materialmodelle erfolgt mittels nichtlinearer Regression unter Nebenbedingungen. In FEM-Simulationen werden die gewonnenen Materialparameter validiert. Abschließend erfolgt eine Untersuchung des Einflusses von unsicheren Parametern auf verschiedene Materialeigenschaften. Dazu wird zum einen die Größenverteilung kugelförmiger Einschlüsse in geschlossenzelligen Materialien bestimmt, gefolgt von einer statistische Analyse der Verteilung der Kugelradien. Zum anderen wird der Einfluss unsicherer Materialparameter auf eine Ausgangsgröße am Beispiel eines Euler-Bernoulli-Balkens untersucht. AU - Reppel, Thomas DA - 2019 DO - 10.25819/ubsi/1477 KW - Additive Fertigung KW - Hyperelastizität KW - Viskoelastizität LA - ger PY - 2019 TI - Flexible Materialien für die additive Fertigung: hyperelastische, viskoelastische Eigenschaften und der Einfluss unsicherer Materialparameter UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-15868 Y2 - 2024-11-22T03:07:27 ER -