TY - THES A3 - Fleck, Ivor AB - The detection of higher energetic gamma rays (≥ 1 MeV) is of increasing importance in medical imaging and nuclear medicine. Especially proton therapy treatment could benefit from the ability to measure prompt gammas emitted subsequent to the irradiation of the patient with high-energetic sub-atomic particles like protons. Such an imaging modality would help monitor the treatment process and ensure correct particle range and optimal dose delivery to the tumor while sparing surrounding healthy tissue. One potential gamma detector for medical applications is the Compton camera – a two-layer detection system, where an incoming gamma scatters in a first detection layer and is absorbed in a second layer. In the first layer, a Compton electron is created, which carries a large part of the momentum information about the incoming gamma. A coincidence measurement of energy and position of both the electron and the absorbed gamma enables to reconstruct the gamma source location to lie on the surface of a cone. Knowledge of the electron momentum direction enables to confine the origin to an arc. The real reconstructed source position is obtained by the measurement and superposition of many of these cones or arcs, respectively. In this work, a novel detection concept for the Compton scattered electron is presented and investigated, which is based on the coincident measurement of Cherenkov photons created by that electron in an optically transparent radiator material. The photons are emitted along the surface of a cone with a characteristic opening angle that mainly depends on the refractive index of the material and the velocity of the electron. The intersection of this Cherenkov cone with a photon sensitive detector area forms a ring or an ellipse, which can be used to reconstruct the cone and the momentum direction of the electron. The number of emitted photons yields information on the electron energy, while the size of the ellipse contains information on the scattering vertex position. A first proof of this concept is provided in this thesis. In a first test set-up, a successful coincident measurement of Cherenkov photons on an array of Silicon-Photomultipliers (SiPMs) was performed. The photons were created by electrons from a Sr-90 source inside radiator materials of different types and thicknesses. A coincidence time resolution of 242 ps could be achieved using signal read-out based on an application specific integrated circuit (ASIC). The number of detected photons could be counted with a charge integrating measurement and analysis method using an oscilloscope. The width of the distribution of the measured patterns was quantified and was in good agreement with predictions. All results were compared with calculations, which were performed under consideration of electron energy and range, detection efficiency of the SiPM, detector geometry and absorption properties of the radiator. A sensitivity of the measured pattern to the thickness of the sample and to the position of the electron source was observed from accumulated coincident events. These patterns also allowed for a reconstruction of the electron source position with an accuracy better than 1 mm. In the scope of the development of the set-up and measurement method, all detector components were investigated to find the optimal parameter settings and the most suited radiator materials. With an improved set-up with a different ASIC and cooled detectors a coincident light detection on single photon level was possible. An extensive correction algorithm allowed for a compensation of time walk effects and inherent time differences between individual ASIC channels. The ability to count the number of detected Cherenkov photons per event and per Silicon Photomultiplier (SiPM) channel was implemented using the Time over Threshold (TOT) information of the SiPM signals. The average number of detected photons per event was measured for various sample thicknesses and the results were compared to calculations and simulations performed with Geant4. After these first successful coincidence measurements, the detection principle was applied to the detection of Compton scattered electrons and photo electrons created by 511 keV photons from a Na-22 source in UV transparent Polymethyl Metacrylate (PMMA). A detection efficiency on the order of 0.001 was found. Simulations indicate a strong increase in the efficiency to about 3 % for higher gamma energies. The number of detected Cherenkov photons from Compton electrons was counted and compared with simulation results. The measured coincidence pattern from accumulated events showed response to a shift of the gamma source position. The ability to detect Cherenkov photons from Compton electrons in coincidence could be successfully demonstrated. In future works, the patterns of individual events need to be used to reconstruct the Cherenkov cone and the electron momentum direction. The achievements in this thesis constitute a vital step towards an application of this electron detection principle for medical purposes and could help realize prompt gamma detection in particle therapy treatment using a Compton camera. AU - Bayerlein, Reimund DA - 2020 DO - 10.25819/ubsi/4298 KW - Compton-Kamera KW - Cherenkov Light KW - Medical Imaging KW - Silicon-Photomultiplier KW - Photon Detection KW - Detector Physics KW - Compton Camera LA - eng PY - 2020 TI - Coincident detection of Cherenkov photons for medical applications TT - Koinzidente Detektion von Cherenkov Photonen für medizinische Anwendungen UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-16853 Y2 - 2024-11-22T09:57:04 ER -