TY - THES AB - The present work is centered at understanding the mechanistic details of the coenzyme B 12 dependent enzymes such as diol and glycerol dehydratase that are known to involve radical and radical ionic intermediates in transforming vicinal diols to carbonyl compounds. The work aims on translating such reactive intermediates to relatively long lived ones (making use of beta cleavage leading to persistent radical or electron transfer processes) thereby enabling their spectroscopic detection. A number of modified enzyme substrates attached with groups such as ferrocene, quinone and 2,2,6,6-tetramethylpiperidinoxy were synthesised and were investigated. The efficacies of electrophores to probe radical ions at the active site of the enzyme inherently rely on the electron transfer process. Modulation of the oxidising/reducing property of radical cation/radical anion formed at the active site invariably effects the trapping efficiency of the electrophore. Cyclic voltammetry investigations on the model compounds based on Fuson enols revealed that hydrogen bonding can indeed alter oxidation potentials of enols by up to 500 mV Fc cathodically. The concept was also tested in solution by generating and trapping radical cations in solution via inter as well as intramolecular electron transfer from ferrocene as a donor to enol/enol ether radical cation. Use of stable and reversible redox systems can set a precedent to the development of not only radical ion clocks, they can additionally prove pivotal in areas of nano-technology requiring transfer of small volumes (nano litre range) of solutes in a well defined manner. Thus a couple of redox active compounds were synthesised and investigated for their surfactant property, electrochemical and chemical stability. AU - Lal, Mukul DA - 2004 KW - Coenzyme B 12 KW - Diol Dehydratase KW - Pyrazinium tetrafluoroborate LA - eng PY - 2004 TI - Design, synthesis and studies of radical and radical ion probes : from enzyme investigations to electroactive surfactants UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-1954 Y2 - 2024-11-24T02:36:35 ER -