TY - THES AB - In the present Thesis, various annelated derivatives of the quinolizinium ion, i.e. polycyclic compounds with a bridgehead quaternary nitrogen atom, were synthesized and investigated as fluorescent probes for the detection of biomacromolecules and as ligands for triple-helical DNA and abasic DNA structures. Along these lines, 9-donor-substituted acridizinium (benzo[ b ]- quinolizinium) derivatives represent a versatile construct for the development of fluorescent probes. Especially promising are the substituted N -aryl-9-aminoacridizinium salts, the fluorescence of which is susceptible to the microviscosity of the medium. Such compounds may be used for the fluorimetric detection of biomacromolecules, like DNA and proteins. A series of unsubstituted and methyl-substituted diazoniapenthaphenes, as well as the isomeric diazoniaanthra[1,2- α ]anthracenes and diazoniahexaphene were prepared by the cyclodehydration synthesis. These extended derivatives diazoniapolycyclic salts represent novel lead structures, in which preferential, high-affinity binding to the triple-helical DNA may be achieved in the absence of an additional alkaline side chains. Two isomeric acridizinium-adenine conjugates, as well as three acridizinium-9-carboxamides, were prepared. Their affinity towards regular and abasic-site containing DNA structures was investigated by thermal denaturation experiments with synthetic oligodeoxyribonucleotides. Acridizinium- adenine conjugates and aminoalkyl-substituted acridizinium-9-carboxamides are capable of selective binding to abasic DNA sites. They readily induce the photo-damage of plasmid DNA, however, without selectivity towards abasic DNA structures. AU - Granzhan, Anton DA - 2006 KW - nitrogen heterocycles KW - fluorescent probes KW - detection of biomacromolecules LA - eng PY - 2006 TI - Synthesis and studies of annelated quinolizinium derivatives as versatile constructs for fluorescent probes and ligands for triple-helical and abasic DNA structures UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-2403 Y2 - 2024-11-22T03:25:59 ER -