TY - THES AB - Aufgrund der tendenziell zunehmenden Nachfrage an Systemen zur Unterstützung des alltäglichen Lebens gibt es derzeit ein großes Interesse an autonomen Systemen. Autonome Systeme werden in Häusern, Büros, Museen sowie in Fabriken eingesetzt. Sie können verschiedene Aufgaben erledigen, beispielsweise beim Reinigen, als Helfer im Haushalt, im Bereich der Sicherheit und Bildung, im Supermarkt sowie im Empfang als Auskunft, weil sie dazu verwendet werden können, die Verarbeitungszeit zu kontrollieren und präzise, zuverlässige Ergebnisse zu liefern. Ein Forschungsgebiet autonomer Systeme ist die Navigation und Kartenerstellung. Das heißt, mobile Roboter sollen selbständig ihre Aufgaben erledigen und zugleich eine Karte der Umgebung erstellen, um navigieren zu können. Das Hauptproblem besteht darin, dass der mobile Roboter in einer unbekannten Umgebung, in der keine zusätzlichen Bezugsinformationen vorhanden sind, das Gelände erkunden und eine dreidimensionale Karte davon erstellen muss. Der Roboter muss seine Positionen innerhalb der Karte bestimmen. Es ist notwendig, ein unterscheidbares Objekt zu finden. Daher spielen die ausgewählten Sensoren und der Register-Algorithmus eine relevante Rolle. Die Sensoren, die sowohl Tiefen- als auch Bilddaten liefern können, sind noch unzureichend. Der neue 3D-Sensor, nämlich der "Photonic Mixer Device" (PMD), erzeugt mit hoher Bildwiederholfrequenz eine Echtzeitvolumenerfassung des umliegenden Szenarios und liefert Tiefen- und Graustufendaten. Allerdings erfordert die höhere Qualität der dreidimensionalen Erkundung der Umgebung Details und Strukturen der Oberflächen, die man nur mit einer hochauflösenden CCD-Kamera erhalten kann. Die vorliegende Arbeit präsentiert somit eine Exploration eines mobilen Roboters mit Hilfe der Kombination einer CCD- und PMD-Kamera, um eine dreidimensionale Karte der Umgebung zu erstellen. Außerdem wird ein Hochleistungsalgorithmus zur Erstellung von 3D Karten und zur Poseschätzung in Echtzeit unter Verwendung des "Simultaneous Localization and Mapping" (SLAM) Verfahrens präsentiert. Der autonom arbeitende, mobile Roboter soll ferner Aufgaben übernehmen, wie z.B. die Erkennung von Objekten in ihrer Umgebung, um verschiedene praktische Aufgaben zu lösen. Die visuellen Daten der CCD-Kamera liefern nicht nur eine hohe Auflösung der Textur-Daten für die Tiefendaten, sondern werden auch für die Objekterkennung verwendet. Der "Iterative Closest Point" (ICP) Algorithmus benutzt zwei Punktwolken, um den Bewegungsvektor zu bestimmen. Schließlich sind die Auswertung der Korrespondenzen und die Rekonstruktion der Karte, um die reale Umgebung abzubilden, in dieser Arbeit enthalten. AU - Joochim, Chanin DA - 2011 KW - Robotik LA - eng PY - 2011 TI - Autonomous navigation and mapping of mobile robots based on 2D/3D cameras combination UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-5332 Y2 - 2024-12-26T20:03:02 ER -