TY - THES AB - Die vorliegende Arbeit beschäftigt sich mit folgendem stochastischen dynamischen Optimierungsproblem. Ein Entscheider, der seinen erwarteten Nutzen maximiert, soll eine gegebene Kapazität unter Restriktionen über einen endlichen Zeitraum verbrauchen. Zu jedem Entscheidungszeitpunkt liegt ein Angebot vor und der Ent scheider bekommt einen Gewinn in Abhängigkeit von der Höhe des Angebotes und der verbrauchten Menge. Ziel ist es, den erwarteten Nutzen des Gesamtgewinns zu maximieren. Im Rahmen dieser Problemstellung werden sowohl multiple optimale Stoppprobleme als auch Swing Optionen, die beispielsweise in der Energiewirtschaft eine wichtige Rolle spielen, untersucht. Das Entscheidungsproblem wird für lineare und exponentielle Nutzenfunktionen mit Hilfe der Theorie Markovscher Entscheidungsprozesse betrachtet. Für einen risikoneutralen Entscheider mit linearer Nutzenfunktion werden Bedingungen an die Folge der Angebote gefunden, so dass es Schwellenwerte gibt, die die optimale Strategie bestimmen. Zudem wird das Verhalten der Schwellenwerte betrachtet, wenn die Laufzeit gegen unendlich geht. Im Fall eines risikoaversen Entscheiders mit exponentieller Nutzenfunktion ergibt sich eine andere Struktur der Lösung. Die Randpunkte der zulässigen Menge sind z.B. nicht mehr notwendigerweise optimal. Außerdem wird untersucht, welchen Einfluss die Risikoneigung des Entscheiders auf die optimale Strategie hat. Die Resultate werden anhand von einigen Beispielen illustriert. AU - Bagus, Florian DA - 2012 KW - Optimales Stoppen KW - Swing Optionen KW - Optimal stopping KW - Markov Decision Process KW - Dynamic Programming KW - Expected utility theory KW - Swing Options LA - ger PY - 2012 TI - Strukturaussagen für die optimalen Ausübungsstrategien bei multiplen Stoppproblemen und Swing Optionen TT - Properties of the optimal decision rules for multiple stopping problems and swing options UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-6474 Y2 - 2024-11-22T12:40:40 ER -