TY - THES AB - Die Entwicklung neuartiger optischer Komponenten für harte Röntgenstrahlung hat es in den letzten Jahren ermöglicht, hoch intensive, kohärente Röntgenstrahlen mit Durchmessern von 100nm und darunter zu erzeugen. Zusammen mit der Entwicklung neuer experimenteller Aufbauten sind so nun zerstörungsfreie Röntgenbeugungsexperimente an einzelnen Nanoobjekten möglich. In der vorliegenden Arbeit werden eine Reihe von Aspekten beim epitaktischen Wachstum von Halbleiter-Nanodrähten mittels Röntgenbeugung untersucht. Besonderes Augenmerk liegt dabei auf der Anwendung neuartiger Methoden der "Nanobeugung", um einzelne Nanodrähte zu untersuchen. In einem ersten Schritt wird die Methode der kohhärenten Röntgenbeugung benutzt, um gleichzeitig die Gitterparameter und die 3-dimensionale Form einzelner Galliumarsenid Nanodrähte zu bestimmen, die mittels metallorganischer Gasphasenepitaxie gewachsen wurden. Auf Grund einer hohen Dichte von Rotationszwillingen in der Zinkblende-Struktur des Kristallgitters kommt es zu einer systematischen Abweichung der Gitterparameter im Vergleich zu GaAs Volumenkristallen. In einem zweiten Beispiel wird insbesondere das Anfangsstadium im selbstassistierten Wachstum von GaAs Nanodrähten auf Silizium (1 1 1) Oberflächen untersucht. Diese mittels Molekularstrahlepitaxie erzeugten GaAs Drähte wachsen vorwiegend in der kubischen Zinkblende-Struktur. Jedoch finden sich Abschnitte der hexagonalen Wurtzit-Struktur kurz oberhalb der Grenzfläche der Drähte zum Substrat, deren exakte Position mittels Nanobeugung bestimmt werden konnte. Da das Kristallgitter von GaAs einen um 4% größeren Gitterparameter besitzt als Silizium, kommt es zu Verspannungen an der Grenzfläche, welche durch den Einschluss von Versetzungen an der Grenzfläche abgebaut werden. Während bei Nanodrähten mit Durchmessern über 100nm der Abbau der Verspannung komplett durch diese Versetzungen erfolgt, verhindert eine raue Grenzfläche zum Substrat bei Drahtdurchmessern oberhalb von 100nm eine vollständige Relaxation, so dass ein Teil der Verspannung elastisch entlang der Wachstumsrichtung abgebaut wird. Zuletzt werden erste experimentelle Ergebnisse zur Relaxation in GaAs - InAs "core-shell" Nanodraht Heterostrukturen dargestellt und behandelt. In diesem System führt ein unvollständiger plastischer Abbau der Verspannung an der Grenzfläche zu einer elastischen Wechselwirkung zwischen GaAs Kern und InAs Hülle, welche eine signifikante Verzerrung des Kristallgitters im GaAs Kern mit ansteigender Dicke der InAs Hülle hervorruft. AU - Biermanns, Andreas DA - 2012 KW - Galliumarsenid KW - III-V semiconductor KW - nanodiffraction KW - NW KW - metal-organic vapor phase epitaxy KW - molecular beam epitaxy LA - eng PY - 2012 TI - X-ray diffraction from single GaAs nanowires UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-6751 Y2 - 2024-12-26T23:01:13 ER -