TY - THES AB - Das TerraSAR-X/PAMIR Experiment ist ein Raum- und Luftfahrt basiertes bistatisches Synthetisches-Apertur-Radar (SAR) Experiment, in welchem der deutsche Erdbeobachtungssatellit TerraSAR-X als Sender und das Fraunhofer-FHR Flugradarsystem PAMIR als Empfänger fungieren. Durch den unabhängigen Betrieb von Sender und Empfänger bildet die hochgenaue Bestimmung der Position, Geschwindigkeit und Lage insbesondere des Empfängers auf dem Flugzeug eine zwingend notwendige Vorraussetzung für die Synchronisierung, als auch für die nachfolgende Radarbildererstellung. Die genannten Parameter können unter Nutzung von GPS (Global Positioning System) bestimmt werden. Diese Dissertation beschäftigt sich mit der Lagebestimmung durch ein GPS-Mehrantennensystem unter der zusätzlichen Verwendung eines konstanten Drehratenmodells. Die trägerphasenbasierte differenzielle Positionierung stellt ein typisches Verfahren zur hochgenauen Positionierung dar. Eine Vorraussetzung für die Verwendung von Trägerphasendaten ist die Erkennung und Korrektur von Cycle-Slips. Basierend auf einer Analyse von traditionellen Zweifrequenz-Ansätzen wurde in dieser Arbeit ein neuartiger Algorithmus für die Cycle-Slip Erkennung, Bestimmung und Validierung für ein Dreifrequenz-GPS entwickelt. Die differentielle Positionierung kann für die Lagebestimmung mit einem GPS-Mehrantennensystem erweitert werden. Hierfür wurde eine Software für die Postprozessierung von GPS Rohdaten entwickelt. Um die, aufgrund eines relativ kleinen Antennenabstandes auf dem Flugzeugrumpf, eingeschränkte Genauigkeit zu erhöhen, kann das GPS Mehrantennensystem zusammen mit einem konstanten Drehratenmodell innerhalb eines Kalman-Filters integriert werden. Nach Vergleich unterschiedlicher nichtlinearer Kalman-Filter in Bezug auf Genauigkeit und Rechenlast, wurde das erweiterte Kalman-Filter als geeignete Methode für diese Anwendung ausgewählt. Allerdings kann die Approximation der realen Dynamik durch ein konstantes Drehratenmodell zu Fehlern führen. Daher wird ein adaptiver Interaktiv-Multiple-Modell-Ansatz vorgeschlagen, um die von Modellübergängen verursachten Fehler zu reduzieren und das Prozessrauschen autonom zu optimieren. Die Genauigkeit der Positions-, Lage- und Geschwindigkeitsparameter aus GPS wird bestimmt, um die Fortpflanzung dieser Fehler auf die Parameter der Radar-Bewegungskompensation zu analysieren. Basierend auf einer geometrischen Darstellung des Radar-Antennen-Phasenzentrum (APC) in Bewegungs-/ und Querrichtungen wurde eine Reihe von Fehleranalysen durchgeführt, um die potentiellen Fehler der Dopplermittelfrequenz und des APC Positionsfehler abzuleiten. AU - Dai, Zhen DA - 2013 KW - GPS KW - Lagebestimmung KW - Kalman-Filter KW - Mehrantennensystem KW - Global positioning system KW - attitude determination KW - Kalman filter KW - multi-antenne system LA - eng PY - 2013 TI - On GPS based attitude determination UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-7248 Y2 - 2024-11-22T06:23:08 ER -