TY - THES AB - Ziel der vorliegenden Dissertation ist die Steigerung der Messgenauigkeit und Performance der zerstorungsfreien Charakterisierung von Materialien anhand des Reflexionsverhaltens. Die Arbeit beschreibt die Entwicklung eines analytischen Verfahrens zur Separation derjenigen spektralen Bänder, die eine hohe Informationsdichte aufweisen. Basis für die Charakterisierung ist das von einem Material reflektierte bzw. absorbierte Licht, das dadurch eine eindeutige spektrale Signatur erhält. Durch die analytische Separation ist es moglich, mit einer minimalen Anzahl an spektralen Bändern vergleichbare Messergebnisse zu erzielen, wie bei den komplexeren hyperspektralen Verfahren. Bei den hyperspektralen Verfahren werden für jede Messung immer mehrere Hundert Bänder aufgenommen, da die Merkmalsextraktion erst nach der Messung auf der Basis von empirisch und probabilistisch gewonnener Informationen erfolgt. Die Arbeit dokumentiert die verschiedenen Entwicklungsstufen, in denen Parameter definiert und ein Algorithmus zur automatischen Separation implementiert wurde. Den Ausgangspunkt bilden die am Institut entwickelten spannungsgesteuert durchstimmbaren multispektralen Photodioden mit einer dynamisch veränderbaren Informationsdichte pro Pixel. Die mit diesem Detektortyp erzielbaren Ergebnisse lassen sich in Bezug auf die Anzahl der realisierbaren spektralen Bänder nicht mehr mit den gängigen trichromatischen Methoden aus der Farbmetrik analysieren. Ausgehend von der allgemeinen Anforderung an die externe Separation eines Sensors wurde der Parameter ΔCL definiert. Für einen Sensor mit einer beliebigen Anzahl an spektralen Bändern bei einer gegebenen Stoffdatenbank unter einer Beleuchtungsart liefert die Funktion für ΔCL einen Wert zurück, der dimensionsunabhängig ein Maß für die externe Separation ist. Da aber eine hohe externe Separation noch keine Aussage darüber liefert, mit welcher Zuverlässigkeit die Messung erfolgte, wurde in Anlehnung an die Zugehorigkeitsfunktion aus dem Bereich der Fuzzy Mengen der zweite Parameter μ(P) definiert. Über μ(P) kann bestimmt werden, mit welcher Wahrscheinlichkeit es sich bei der gemessenen Probe P um ein Material aus der Stoffdatenbank handelt oder ob die Probe unbekannt ist. Die Entwicklung der Parameter und dem daraus resultierenden analytischen Verfahren wurde begleitet von experimentellen Messungen zur Unterscheidbarkeit von weißlichen Pulverproben. Ein besonderes Augenmerk wurde dabei auf den Aufbau einer Datenbank gelegt, die neben den spektralen Reflexionskurven der Pulverproben auch die spektrale Bestrahlungsstärke diverser realer und Norm-Lichtquellen sowie die spektrale Empfindlichkeit diverser Sensoren beinhaltet. Damit wurde die Moglichkeit eroffnet, neben real gemessenen Werten auch auf simulierte Werte zurückgreifen zu konnen, welche als Basis für eine breit angelegte multivariate Analyse für das Reengineering der Dioden betrachtet werden sollen. Besondere Bedeutung erhält die Entwicklung solcher vollständig in Planartechnik gefertigten und durch eine intelligente Auswahl der Bänder optimierten Multispektral-Dioden im Hinblick auf die hyperspektrale Bildgebung für die Fernerkundung, auf das Umweltmonitoring und auf die berührungslose und zerstorungsfreie Analyse von Materialien. Bei den etablierten hyperspektralen Systemen führt die dem Sensor vorgeschaltete Optik zur spektralen Aufteilung des einfallenden Lichts oft zu unhandlichen und teuren Geräten. Dieser Umstand verhinderte bislang die Verbreitung solcher Meßsysteme. Mit der Implementierung eines analytischen Verfahrens zur Separation derjenigen spektralen Bänder, die eine hohe Informationsdichte aufweisen, konnte ein Verfahren realisiert werden, das ohne weiteres Expertenwissen als Output die beste Kombination an spektralen Bändern liefert. Nicht zuletzt diese Eigenschaft belegt, dass die Reduzierung der spektralen Bänder durch eine intelligente Auswahl den Weg für eine neue Generation von hyperspektralen Systemen mit vielfältigen Anwendungsfeldern ebnet. AU - Merfort, Christian DA - 2013 KW - Farbmetrik KW - Multivariat KW - Multispektral LA - ger PY - 2013 TI - Performance-Steigerung multispektraler Systeme durch eine analytische Auswahl der Spektralbänder am Beispiel von a-Si:H Photodioden TT - Increasing performance of multispectral systems by an analytical selection of spectral bands using an example of a-Si:H photodiodes UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-7617 Y2 - 2024-12-26T21:24:11 ER -