TY - THES AB - This research work is a contribution to develop a framework for cooperative simultaneous localization and mapping with multiple heterogeneous mobile robots. The presented research work contributes in two aspects of a team of heterogeneous mobile robots for cooperative map building. First it provides a mathematical framework for cooperative localization and geometric features based map building. Secondly it proposes a software framework for controlling, configuring and managing a team of heterogeneous mobile robots. Since mapping and pose estimation are very closely related to each other, therefore, two novel sensor data fusion techniques are also presented, furthermore, various state of the art localization and mapping techniques and mobile robot software frameworks are discussed for an overview of the current development in this research area. The mathematical cooperative SLAM formulation probabilistically solves the problem of estimating the robots state and the environment features using Kalman filter. The software framework is an effort toward the ongoing standardization process of the cooperative mobile robotics systems. To enhance the efficiency of a cooperative mobile robot system the proposed software framework addresses various issues such as different communication protocol structure for mobile robots, different sets of sensors for mobile robots, sensor data organization from different robots, monitoring and controlling robots from a single interface. The present work can be applied to number of applications in various domains where a priori map of the environment is not available and it is not possible to use global positioning devices to find the accurate position of the mobile robot. Therefore the mobile robot(s) has to rely on building the map of its environment and using the same map to find its position and orientation relative to the environment. The exemplary areas for applying the proposed SLAM technique are Indoor environments such as warehouse management, factory floors for parts assembly line, mapping abandoned tunnels, disaster struck environment which are missing maps, under see pipeline inspection, ocean surveying, military applications, planet exploration and many others. These applications are some of many and are only limited by the imagination. AU - Nasir, Ahmad Kamal DA - 2014 KW - SLAM-Verfahren KW - Simultane Lokalisierung und Kartenherstellung KW - kooperatives mobiles Robotersystem KW - Extended Kalman Filter KW - SLAM KW - EKF KW - Cooperative Mobile Robotics LA - eng PY - 2014 TI - Cooperative simultaneous localization and mapping framework UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-7944 Y2 - 2024-11-22T10:49:50 ER -