TY - THES AB - The diagnosis of certain spine pathologies, such as scoliosis, spondylolisthesis and vertebral fractures, are part of the daily clinical routine. Very frequently, MRI data are used to diagnose these kinds of pathologies in order to avoid exposing patients to harmful radiation, like X-ray. Developing a segmentation system for an array of vertebrae is complex, so the method was first tested on brain tumors of types glioblastoma multiforme and pituitary adenoma. A small triangular surface mesh at the approximate center of the tumor is inflated towards the boundary using balloon force, keeping it approximately star-shaped. The boundary is implicitly binarized by the inflation rules, based on the minimum and maximum intensity from the initialization step. After the segmentation is finished, the tumor volume is calculated. The spine segmentation system uses a bottom-up approach for detecting vertebral bodies based on just one manual initialization. A subdivision surface hierarchy is introduced as an efficient global-to-local smoothness constraint, which can be thought of as an internal force. Together with intensities, low-high (LH) values were initially used to ease boundary finding, but the boundary estimation evolved into a multi-feature combiner. The final system utilizes a Viola-Jones detector to determine centers and approximate sizes of vertebral bodies. This gives the user a chance to manually correct detections, enables parallel feature calculation and segmentation, and is a basis for reliable diagnosis established at the end. The system was evaluated on 26 lumbar datasets containing 234 reference vertebrae. Vertebra detection has 7.1% false negatives and 1.3% false positives. The average Dice coefficient to manual reference is 79.3% and mean distance error is 1.77 mm. No severe case of the three addressed illnesses was missed, and false alarms occurred rarely – 0% for scoliosis, 3.9% for spondylolisthesis and 2.6% for vertebral fractures. The main advantages of this system are high speed, robust handling of a large variety of routine clinical images, and simple and minimal user interaction. AU - Zukić, Dženan DA - 2015 KW - Kernspintomografie KW - MRT KW - Segmentation KW - image analysis KW - spine KW - graphics KW - MRI LA - eng PY - 2015 TI - An efficient inflation method for segmentation of medical 3D images UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-9365 Y2 - 2024-11-21T23:44:39 ER -