TY - THES A3 - Gühne, Otfried AB - In this thesis, we strive to advance the knowledge of relations between convex optimization and the quantum phenomena entanglement and coherence. The main research areas we explore are rank-constrained semidefinite programming, the quantum pure-state marginal problem and the existence of AME states as well as quantum codes, entanglement detection, and the certification of quantum memories with coherence. First, we start with real and complex rank-constraint semidefinite optimization problems and rephrase them as an optimization over separable two-copy states. This reformulation allows to approach the problem through a hierarchy of efficiently solvable semidefinite programs that provide better and better certified bounds. We apply the new technique to various problems in quantum information theory and beyond, such as the optimization over pure states or unitary channels and the well-known maximum cut problem. Furthermore, we describe an inherent symmetry in our formulation that significantly improves the performance. Second, we consider the application of our method to the quantum pure-state marginal problem. In particular, we prove that the existence of n-partite absolutely maximally entangled states with local dimension d is equivalent to the bipartite separability of a certain state of 2n particles, and we compute that state explicitly. This application is a striking example of how symmetries can simplify semidefinite programs and we use them to compute high orders of our hierarchy despite the rapidly increasing dimension. Moreover, we rewrite the existence problem of quantum error-correcting codes as a marginal problem making our method also applicable to this area of research. Third, since entanglement is not only a theoretically interesting phenomenon, but also a vital resource for quantum information protocols, we investigate entanglement detection in practical experiments. We examine scrambled data, a scenario in which the mapping between outcomes and their respective probabilities is lost. Furthermore, we use the joint numerical range of observables to find measurements that allow entanglement detection even when the confidence region due to statistical and systematic errors is large. Finally, we introduce a quality measure for quantum memories that quantifies the performance based on the memory’s ability to preserve coherence. Remarkably, this measure also distinguishes entanglement-breaking channels from genuine quantum memories. For the case of single-qubit channels, we find various theoretical bounds and a simple measurement scheme to approximate our performance measure. AU - Simnacher, Timo Yannick DA - 2021 DO - 10.25819/ubsi/9981 KW - Quanteninformation KW - Quantum information KW - Entanglement KW - Convex optimization KW - Semidefinite programming KW - Coherence LA - eng PY - 2021 TI - The interplay between quantum entanglement, coherence, and convex optimization TT - The Das Zusammenspiel zwischen Quantenverschränkung, Kohärenz und konvexer Optimierung UR - https://nbn-resolving.org/urn:nbn:de:hbz:467-19677 Y2 - 2024-11-22T09:16:00 ER -