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Chapter 1

Introduction

Lossless data compression is a classic research area of computer science, both
from a theoretic and from a practical point of view [Say06, Sal07]. The classic
algorithms known as LZ77 and LZ78 by A. Lempel and J. Ziv [ZL77, ZL78],
are probably the most famous lossless compression techniques. The purpose
of data compression is manifold: While oftentimes the aim is to reduce the
amount of space needed on the disk, data compression may also be used to find
patterns (this is done for example in bioinformatics [ZHCT15]) or to accelerate
computations [FS87], see also Chapter 9.

When searching or manipulating the compressed data, it is advantageous
to be able to execute the desired operations directly on the compressed data
instead of performing a prior decompression and subsequent re-compression. A
popular compression paradigm that enables this goal is so-called grammar-based
compression [KY00].

The idea of grammar-based compression is to replace the data d by a context-
free grammar A that generates the data d. If the data is a string, these grammars
are called straight-line programs (SLP). By repeated doubling, an SLP may
generate a string which is exponentially larger than the grammar. Thus SLPs
may be exponentially more succinct than their string counterpart.

Since computing a smallest grammar for a given string in polynomial time
is not possible unless P = NP [CLL™05], the research focus on grammar-based
compression lies on polynomial-time algorithms with a good approzimation ratio
(see page 17 below for a formal definition). There are several algorithms that
achieve an approximation ratio of O(log(n/g)), where n = |s| is the size of the
input string s and g is the size of a smallest grammar for s [Jezl4, CLLT05,
Ryt03]. Other grammar-based string compressors that work well in practice are
Re-Pair [LM99], Sequitur [NW97] and BiSection [KYNCO00].

Grammar-based compression can be generalized from strings to tree-struc-
tured data. Trees are a central object in computer science which are used in
many different contexts. We focus on rooted, ordered, labelled trees, i.e., every
tree has a distinguished root node, there is an ordering among the children of a
node and each node carries a label from a finite alphabet. If the label of a node
determines the number of the node’s children, we call the tree ranked, otherwise
unranked. An important subclass of ranked trees are full binary trees, in which
every node has zero or two successors.

In this thesis we treat different aspects on grammar-based tree compression.



Here one seeks to compress a tree ¢t by exploiting repeated tree patterns to
construct a context-free tree grammar that produces only ¢ (see [CDGT07] for
a background in tree grammars). These grammars are called tree straight-line
programs (TSLPs) (sometimes SLCF tree grammar [BLMOS8]). A tree pattern
is any connected subgraph of a tree, and a repeated tree pattern is an identical
(both in structure and in labels) occurrence of a tree pattern in the tree.

If one restricts the tree patterns to subtrees, i.e. to subgraphs consisting
of a node and all its descendants, the tree grammars become regular and the
resulting formalism is in strong correspondence with tree compression by so-
called directed acyclic graphs (see below).

A different approach to grammar-based tree compression is to compress the
depth-first left-to-right traversal of the node labels by an SLP. This is possible
if the tree is ranked, since in that case this word determines the tree uniquely.
This way non-connected tree patterns may also be compressed.

In this thesis we discuss different aspects of grammar-based tree compression.
Since the subject is rather broad, we focus on three aspects therein, namely (i)
the minimal directed acyclic graph of a tree, (ii) using straight-line programs in
tree compression and (iii) algorithmics on compressed data. We now introduce
these subjects in more detail.

The minimal directed acyclic graph. The (minimal) directed acyclic graph
[Ers58] (or DAG) is a very widely used tree compression technique. The method
is rather simple: Repeated occurrences of subtrees are saved only once and
further occurrences of the tree are replaced by a link to the first one. This
results in a unique minimal directed acyclic graph, which can be computed in
linear time [DST80]. The DAG of a tree can very naturally be identified with
a regular tree grammar, which means that DAGs can be seen as an important
subclass of grammar-based tree compression.

Among many different uses, DAGs are used to compress the tree structure
of XML documents [BGKO03], to find common subexpressions in compiler con-
struction [ASU86, Muc97], to optimize binary decision diagrams [MT98], or to
reduce the average time and space complexity of automatic differentiation from
O(n®/?) to O(n) [FS87].

While the size of the DAG of a tree of size n may range from O(logn) to
O(n) (consider a perfect binary tree and a tree in which every node has at most
one non-leaf successor, respectively), it is certainly interesting to know what the
asymptotic average size of the DAG of a tree is. In [FSS90] it is stated that the
average size of the DAG of an unlabelled full binary tree is

n 1
Cr—m—(14+0 | —
fflogn( " (bgn))’

with Cr = 24/In4/m. Regrettably [FSS90] lacks a full proof of the statement.
We fill this gap in Chapter 3 of this work and provide a rigorous proof for this
case. We then generalize the result to different classes of trees, namely unranked
trees, binary trees (trees in which every node has zero successors, or a left child
only, or a right child only, or two children) and to a labelled setting.

The proof is an example from the mathematical discipline of Analytic Com-
binatorics, the foundations of which have been set in the monumental book with
the same title by P. Flajolet and R. Sedgewick [FS09]. Here, given a class C of
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CHAPTER 1. INTRODUCTION 7

objects such as trees, one is interested in the asymptotic growth order of the
number of those objects of size n. The first step is then to use a certain set
of constructors to define a combinatorial specification of the class investigated,
which directly transfers to a generating function for the objects of interest. The
(ordinary) generating function of a class C is defined as the formal power series
C(z) =3 ,50|Cn|2™, where C,, = {c € C | |c| = n}. This step is called the sym-
bolic transfer and is followed by an analytic transfer: The generating function
C(z) is investigated as a function of the complex plane. Knowing the position
and the type of the function’s dominant singularity® (in some cases, dominant
singularities), one can oftentimes directly state the asymptotic growth order of
the coefficients of the generating function. For some generating functions it
might not be possible to derive the type of the singularity directly (this will be
the case for the generating function investigated here). In this case one uses the
methods described in [FO90]: If the investigated function can be approximated
by a reference function with known coefficient asymptotics in a neighborhood
of the dominant singularity, then the coefficient asymptotic of the reference
function transfers to the coefficient asymptotics of the investigated function.

Apart from a rigorous proof of the asymptotic growth order of the average
size of a tree’s DAG, Chapter 3 also provides some theorems from analytic
combinatoric that are necessary to understand the proof.

The hybrid DAG and worst-case size differences between the DAG and the
binary DAG. Oftentimes unranked trees like the tree structures defined by XML-
documents are represented via binary trees using the so-called first-child/next-
sibling encoding [Koc03] (called rotation correspondence in [Knu68]). The first-
child/next-sibling (Fcns) encoding of a tree replaces the tree’s edge set by a
new one in which we add from every node an edge to its first child and an edge
to its next sibling (both in left-to-right order). Given an unranked tree ¢, we
define the DAG of its FCNS-encoding as bdag(t). It was observed in [BLMO8]
that the size of bdag(t) and dag(t) may differ in both directions for a tree ¢t. In
Chapter 4 we define a third structure, which we call HDAG for Hybrid DAG.
The HDAG is generated from the DAG of a tree by first viewing the DAG as
a regular tree grammar and then sharing the repeated sibling sequences that
occur in the FCNS-encoding of the grammar’s right-hand sides. We first prove
that the HDAG of a tree has less edges than each of the DAG and the BDAG
of a tree (Theorem 4.7). Using this, we prove that (Corollary 4.11)

1 1
5Ibdag(t)] < |dag(t)|s < §|bdag(t)\2};,

where | - |g denotes the number of edges of the structure. In Chapter 7 we
perform experiments to evaluate the HDAG as a tree compressor on real data.

Related work. Famous tree related average-case analyses are the average
height of unranked trees [dBKR72] (called plane planted trees by the authors)
and the average height of binary trees [FO82]. The latter paper also spawns
much of the transfer techniques described in [FO90] that are central to our
proof.

As mentioned before, we assume that the input distribution is uniform,
i.e. every tree is equally likely. The papers [Dev98, FGM97] treat the aver-

LGiven a function f, a point 2 is called singularity of f if f is not analytically continuable
at zo (e.g. because f or its derivative is infinite at zg), see [FS09, p. 239 ff.]. A singularity is
called dominant if it is a singularity of smallest modulus.

7



age size of the DAG in a non-uniform case, namely if the input tree distribution
is induced by binary search trees. Here, one starts with the uniform distribution
of permutations, builds for every permutation its binary search tree by insert-
ing the nodes from left-to-right and deleting the node labels afterwards. The
average size of the DAG turns out to be O(n/logn) in that case.

Combining string compression and tree compression. In the Chapters 5
and 6 we discuss the use of SLPs for the compression of trees and their relation
to TSLPs. In Chapter 5 we compress the child sequences of the DAG grammar
(the grammar defined by the DAG of a tree) by SLPs, which we call SLP-
compressed DAGs. The HDAG of Chapter 4 is a particular SLP-compressed
DAG. We prove that SLP-compressed DAGs can be converted in linear time to
TSLPs with only a moderate size increase (Theorem 5.5). Thus, while SLP-
compressed DAGs are not tree grammars, they can easily be transformed into
TSLPs. One advantage of this approach versus “normal” TSLP construction is
that string compression is somewhat easier, as we do not need to build expensive
pointer structures.

In Chapter 6 we investigate the compression of the depth-first left-to-right-
traversal of a tree by SLPs, which we call traversal SLPs. We show that traversal
SLPs may be exponentially more succinct than TSLPs (Theorem 6.6) and prove
that they can be converted to TSLPs, where both the size increase and the
runtime of the conversion depend on the maximal rank, the depth of the tree
and the size of the grammar (Theorem 6.7). Note that for a given TSLP A
for a tree t one can efficiently construct a traversal SLPs of size O(]A| - r) for
t, where r is the maximal rank among nodes occurring in ¢ [BLMO08]. Thus
a TSLP cannot be exponentially more succinct than a traversal SLP. We also
prove that the traversal SLP of an unlabelled tree may be exponentially more
succinct than its balanced parenthesis representation (Theorem 6.9).

In Chapter 7 we evaluate the different introduced tree compression tech-
niques experimentally. We use three different corpora of XML-documents and
compare the sizes of their DAG, BDAG and HDAG. We also evaluate their
sizes as SLP-compressed DAG or as traversal SLP, using Re-Pair as the string
COMPressor.

Related work. Several grammar-based tree compressors have been devel-
oped. While the compressor TreeRePair [LMM13] performs well in practice
(see e.g. [HR15]), there exists a family of (binary) trees (¢,)n>1 such that (i)
t, has size O(n), (ii) there exists a grammar for ¢, of size O(logn) and (iii)
TreeRePair produces a grammar of size Q(n) for ¢, [LMM13]. In contrast,
TTOG by [JL14] produces for every tree t with maximal rank r a grammar of
size O(r?glog|t|), where g is the size of a smallest grammar for ¢. The method
from [HLN14] produces for every tree ¢ over a ranked alphabet with o different

t
logl “ tl)' Other grammar-based tree compres-

sors are in [Akul0, BLMO0S], where the work from [Akul0] is based on another
type of tree grammars (elementary ordered tree grammars).

Tree compression by top DAGs [BGLW15] is a tree compression scheme
related to tree grammars. It is based on the hierarchical decomposition of the
tree into clusters via top trees [AHALTO05]. The top DAG of a tree may be
exponentially smaller than the DAG, but is never more than logarithmically

larger. The worst-case size of the top DAG of a tree is O (M) [HR15],

log, n

symbols a grammar of size O (|t\
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CHAPTER 1. INTRODUCTION 9

and navigation queries can be supported in logarithmic time.

Succinct data structures for trees are also used to represent trees in a com-
pact way. Here, the goal is to represent a tree in a number of bits that asymptoti-
cally matches the information-theoretic lower bound, while at the same time pro-
viding efficient querying. For unlabelled (resp., node-labelled) unranked trees of
size N there exist representations with 2N +o0(N) bits (resp., (2+logo)-N+o(N)
bits, where ¢ is the number of node labels) that support navigation and some
other tree queries in time O(1) [BDM*05, FLMMO09, JSS12, MRO1].

Algorithms on compressed trees and accelerated computation by com-
pression. As mentioned before, one reason to compress a tree by a tree gram-
mar (as opposed to, say, treating the tree as a binary file) is that it allows tree
operations directly on the compressed tree. In Chapter 8 we treat the primitive
subtree equality check, which is very efficient for the DAG, BDAG and HDAG.
We also discuss the uniform membership problem for compressed trees. Here,
one is given a tree automaton A and a tree ¢ in compressed form (e.g. a grammar
A that unfolds to t) and one wants to know whether A accepts t. We prove that
the uniform membership problem is PSPACE-complete if the tree is given by an
SLP for its preorder traversal (as in Chapter 6) and it is in P (polynomial time)
for the other compressed tree representations we have treated. Last we discuss
navigation on compressed trees.

In Chapter 9 we show an example on how compression may accelerate com-
putation: A term rewriting system (TRS) consists of a set of rules on how terms
may be rewritten and the question of interest is whether the TRS terminates
for all possible inputs or not. While the general problem is undecidable, termi-
nation (and non-termination) may be proven in some instances. This is done as
follows: From the rewrite rules of the TRS a boolean expression in conjunctive
normal form is generated, which is then given to a SAT-solver. A satisfying as-
signment of that boolean expression leads to a proof that the TRS is terminating
(if no such assignment exists, then the TRS may or may not be terminating).
These boolean expressions are typically huge (typically about 10,000 variables
and 100,000 clauses) and the SAT-solver is a lot more costly than the conver-
sion of the TRS to a boolean expression. Thus one may try to compress the
TRS before the conversion step in order to obtain a smaller boolean expression,
which then may lead to a faster overall runtime.

We show how TreeRePair may be modified to achieve exactly that goal (it
will become clear in Chapter 9 why the modification is necessary). We show
in experiments that this approach indeed leads to smaller boolean expressions,
which then lead to smaller runtimes for automatic termination proving.

Related work. In [BLR'15] the authors treat the random access problem
for grammar-compressed strings and trees. The authors provide a data struc-
ture, that, after processing time linear in the grammar size, random access time
logarithmic in the size of compressed string resp. tree. In [EWZ08] the authors
introduce the so-called matrixz interpretations of term rewriting systems that we
use to generate the boolean expressions. Already in that paper TreeRePair is
used to compress the terms prior, albeit in an unoptimized way.

First Appearances of the contributions. Most of the results from the
Chapters 3, 4, 5 and 7 were first presented in [BLMN15]. Chapter 6 is from
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[GHLN15] and Chapter 9 is taken from [BLNW13]. Chapter 8 carries material
from [BLMN15] and [GHLN15].
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Chapter 2

Preliminaries

In this chapter we gather most of the necessary definitions for the remainder of
this thesis. Prerequisites that only affect certain parts of the thesis are stated
directly in the respective chapter. This is true especially for the mathematical
background in combinatorics and analysis in Chapter 3, but also for the basics
of term rewriting systems used in Chapter 9.

Let ¥ be a finite alphabet. For a string w = ay - - - a,, € ¥* we define |w| = n,
wli] = a; and w[i : j] = a; - --a; where w[i : j] = ¢, if ¢ > j. Let w[: 1] = w[1 : 4]
and w[i ;] = w[i : |w|]. [1..n] denotes the set of numbers {1,2,...,n}. For an
integer k, [k..] denotes the infinite set {k,k + 1,...}.

2.1 Trees

As mentioned in the introduction, we define trees in many different ways. In
Chapter 3 we take a more combinatorial view, namely we define an unranked tree
(or plane tree, as they oftentimes called in combinatorics) as a singleton node
or a node with a sequence of trees attached and a full binary tree as a singleton
node or a node with two trees attached. For Chapter 4 it will be useful to define
trees as special acyclic graphs, since we want to discuss the minimal acyclic
graph of a tree. In Chapter 6 we equate trees with their depth-first left-to-right
traversal string. In Chapter 9 we define trees as a prefix-closed set.

Unless otherwise noted we stipulate that all trees are rooted and ordered,
i.e. every tree has a distinguished root node with no predecessors, and that
there is an ordering upon a node’s child nodes.

Furthermore the trees we consider are labelled, meaning that every node in
the tree carries a label from a finite alphabet ¥. The function A : V' — ¥ denotes
the labeling function. If the label A(v) of a node v determines the number of v’s
children uniquely, then we call the alphabet ranked and thus we speak of ranked
trees, otherwise of unranked trees. Usually we denote unranked alphabets by
3 and ranked alphabets by F. The set of all trees over X resp. F is denoted
by T(X) resp. T(F). By F; we denote the set of all symbols from F of rank
i (we sometimes use arity instead of rank). Nodes labelled by symbols of rank
0, 1 and 2 are called leaves, unary nodes and binary nodes, respectively. The
function rank : F — N denotes the function that returns the rank of a symbol.
We always assume that Fq # (). We denote trees by their usual term notation,

11



12 2.1. TREES

e.g. f(a,a) stands for a tree consisting of a root node labelled by f that has two
a-labelled children.
We gather the points above in the following definition.

Definition 2.1. Let F be a ranked alphabet and let ¥ be an unranked alphabet.
The set T(F) of all ranked trees over F is defined inductively as follows: If
feF, withn>0andty,...,t, € T(F), then f(t1,...,tn) € T(F).

The set 7(X) of all unranked trees over ¥ is defined inductively as follows:
If feX,n>0andt,...,t, € T(X), then f(t1,...,t,) € T(X).

If a ranked alphabet F contains symbols of rank zero and two only, we speak
of full binary trees.

By binary trees we denote trees which have leaf nodes, binary nodes and
two different types of unary nodes: Those with a left child and those with a
right child. These trees are sometimes called pruned binary trees, as they can be
obtained by pruning the leaf nodes of a full binary tree. Edges to left resp. right
children are called left edges resp. right edges.

Let ¢t be a (ranked or unranked) tree. By |t|g we denote the number of
edges in t and by |t|xy we denote the number of nodes in t. We trivially have
|t|n = |t|g + 1 for every tree t. Unless otherwise noted, when we speak of the
size of a tree we mean the number of edges the tree contains.

A node v € t can be addressed in many different ways, and we will use two
different possibilities. On the one hand, one may simply refer to its appearance
in a preorder traversal of the tree, thus enumerating the n nodes of ¢ by the
integers from [1..n]. We will use this point of view when we discuss the string
that is defined by the (preorder) traversal of a tree (Chapter 6). Note that this
string defines the tree only uniquely if the alphabet is ranked.

A different possibility is to address nodes by words w € {1,...,k}*, where
k € N is the maximal rank of a node in ¢t. These words can be read as a
navigation path through the tree: The first symbol in w tells us which child of
the root we go to (the root node itself is addressed by ), thus a 1 means the
first child etc., and the second symbol in w tells us where to go to from there
and so forth. For example the string “2 3” denotes the third child of the second
child of the root. This notation also conveniently allows to define the depth of
a node as the length of the word that addresses it and the height of a tree ¢ as
the maximal depth among nodes in t.

Alternatively one may define the depth of a node v or the height of a tree ¢
via the graph-theoretic interpretation of a tree, namely by the number of edges
from the root node to v respectively by the maximal depth of a node in the tree.

For a node v in a tree ¢ we denote by ¢/v the subtree of ¢ that is rooted at v.

2.1.1 The FCNS-encoding

For many tree-processing formalism like tree automata it is useful to deal with
ranked trees, even if the input data itself is unranked, see [Sch07] for a discussion.
Thus unranked trees are often represented by binary trees. A common encoding
is the so-called first child/next sibling encoding (FCNS-encoding), which is called
the rotation correspondence in Knuth’s first book [Knu68] and is also known
as Rabin encoding. The encoding fens(t) of an unranked tree ¢ is obtained
by replacing all edges in ¢ by an edge set in which every node gets an edge
pointing to its first child (if existent) and an edge which points to the node’s next

12



CHAPTER 2. PRELIMINARIES 13
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Figure 2.1: An unranked tree and its FCNS-encoding. The subscript b stands
for binary, l for left, r for right and 0 for leaf.

sibling (if existent). The prior are called left edges, while the latter are called
right edges. This illustrates the name rotation correspondence: By redrawing
the edges and rotating the tree by 45 degrees one obtains the desired FCNS-
encoding. Formally:

Definition 2.2. Let X be an unranked alphabet. We define a ranked alphabet
FZ as follows: For each f € ¥ we define four symbols, fo € F5°, fi, fr € Fr
and f, € Fy. Finally we set F* := F3' UFy U Fs.

The mapping fens : T(X)* — T(F¥) is defined as follows: We map the
empty word to the empty tree. If n > 1,¢1,...,t, € T(X)and t1 = f(u1,...,um)
with m > 0, then

fo(fens(uq . .. upm), fens(ta . . . t,)) ifm>1

fCHS(tl tn) B {f’r(fCHS(t2...tn)) ifm =0

The encoding is bijective, hence the inverse fens ™ : T(F¥) — T()* is de-
fined. For clarity (e.g. if a node label already carries a subscript), we sometimes
use f(a,0) and f(0O,a) to denote a unary f-labelled node with an a-labelled
left resp. right child.

2.2 The minimal directed acyclic graph

In this section we define the minimal directed acyclic graph of a tree in a general
context, which will be useful for later chapters.

Definition 2.3. Let X be a finite unranked alphabet and let F be a finite
ranked alphabet. An ordered X-labelled (resp. F-labelled) multigraph is a tuple
M = (V,~, ), where

e V is a finite set of nodes

e v :V — V* (the successor function) assigns to each node a finite word
over the set of nodes, and

e \:V — Yresp. A: V — F (the labeling function) assigns to each node a
label from X resp. F.

13



14 2.2. THE MINIMAL DIRECTED ACYCLIC GRAPH

o If the alphabet is ranked, we additionally assume that |y(v)| = rank(\(v))
for every node v.

In other words, an ordered labelled multigraph is a graph in which
e there is an ordering among the edges of a node,

o the nodes are labelled and

e multiple edges may point from one node to another.

The underlying graph is the directed graph Gy = (V, E), where (u,v) € E iff v
occurs in y(u). The node size |M|y is defined as |M|xy = |V| and the edge size
is defined as [M|g = >, oy |7(v)|. When we simply refer to the size of M we
speak of the edge size; see below for a justification of this.

Two ordered ¥-labelled or F-labelled multigraphs M; = (V1,71, A1) and
My = (Va,72, A2) are isomorphic if there exists a bijection f : V3 — V5 such
that for all v € Vi: % (f(v)) = f(y1(v)) and A (f(v)) = f(A1(v)) (here we
implicitly extend f to a morphism f : Vi* — V). We do not distinguish
between isomorphic multigraphs.

An ordered ¥-labelled (resp. F-labelled) DAG is an ordered X /F labelled
multigraph d = (V,v, ) such that the underlying graph G, is acyclic. The
nodes r € V for which there are no v € V such that (v,r) is an edge in G4 are
called the roots of d. If the root is unique, we call the DAG a ordered X-labelled
(resp. F-labelled) rooted DAG. The nodes | € V such that y(I) = € are called
the leaves of d, nodes m € V such that |y(m)| = 1 are called monadic nodes
and nodes m € V such that |y(m)| = 2 are called binary nodes.

This offers an alternate definition of unranked trees (recall that our trees are
rooted and ordered): An unranked tree over ¥ is an ordered X-labelled ordered
rooted DAG t = (V,~, ) such that the underlying graph G, is a rooted tree,
i.e., if, in the concatenation of all strings v(v) for v € V| the root node does not
occur and every other node occurs exactly once. Analogously ranked trees may
also be defined this way.

Let d = (V,~,\) be an ordered ¥/F-labelled DAG. With every node v € V
we associate a tree evaly(v) € T(X) resp. T (F) inductively as follows: If A(v) =
f and y(v) = v1 ... v,, then

evaly(v) = f(evalg(v1),...evalg(vy)).

Intuitively, evalg(v) is the tree obtained by unfolding d starting at the node v.
If t = (V,~,\) is an unranked tree and v € V, then eval;(v) = t/v is the subtree
of t rooted at v.

An ordered tree can be compacted by representing occurrences of repeated
subtrees only once. Several edges then point to the same subtree, which we call
a repeated subtree, thus making the tree an ordered DAG. It is known that the
minimal DAG of a tree is unique and can be constructed in linear time [DSTS80].
Formally, we define the minimal DAG dag(d) for every X/F-labelled ordered
DAG.

Definition 2.4. Let d = (V,v,A) be a ¥ or F-labelled ordered DAG. The
minimal DAG of d, dag(d) is defined as

dag(d) = ({evalg(v) | v € V},9/, X)

14
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and their DAGs and their BDAGs

Figure 2.2: A DAG and a BDAG-example

where X (f(t1,...,fn)) = f and v'(f(t1,...,tn)) = t1,...,tn. Thus the nodes
of dag(d) are the different trees represented by the unfoldings of the nodes of d.

Unless otherwise specified, when we speak of the DAG of a tree we mean
the minimal DAG.

The internal structure of the nodes of dag(d) (which are trees in our defi-
nition) has no influence on the size of dag(d), which is still defined to be the
number of its edges. In general we cannot recover d from dag(d): For instance
if d is the disjoint union of two copies of the same tree ¢, then dag(d) = dag(t),
but this will not be a problem. Indeed, we use DAGs only for the compression
of forests consisting of different trees. Such a forest can be reconstructed from
its minimal DAG. Note also that if d is a rooted DAG, then dag(d) is also rooted
and we have eval(dag(d)) = eval(d).

As mentioned before, for many tree-processing formalisms it is useful to
deal with ranked trees instead of unranked trees. Thus we define the (minimal)
binary DAG (BDAG) of an unranked tree as follows:

Definition 2.5. Let t = (V,7, A) be an unranked tree. The (minimal) BDAG
of ¢, bdag(t) is defined as

bdag(t) = dag(fens(t)).

Chapter 4 discusses the worst-case comparison between the sizes of the DAG
and the BDAG of an unranked tree.

On the definition of the size of the (B)DAG.

Example 2.6. Consider the tree family ¢, = f(a,...,a) over the unranked
alphabet ¥ = {f,a}, where the n'!' tree has n a-labelled children. Then the
minimal DAG of t,, has n edges, while it only has two nodes (note that a DAG
with m edges has at most m + 1 nodes).

Thus there exists a tree family in which the difference between the number
of nodes and the number of edges in the DAG becomes maximal (constant

15



16 2.2. THE MINIMAL DIRECTED ACYCLIC GRAPH

vs. linear in the input size), whereas the reverse is not possible. Hence we will
be mainly interested in the number of edges a DAG contains, especially when
dealing with worst-case sizes. On the other hand, as we will see in Chapter 3,
the average number of edges and the average number of nodes in the DAG of a
tree are only apart by a constant factor. Because the mathematical equations
are somewhat simpler when counting nodes, we choose to deal with the number
of nodes in a DAG when evaluating the average case.

Example 2.7. Consider the tree families (¢,)n>0 and (sy,)n>0 from Figure 2.2.
The following table provides an overview over the tree size, the DAG size and
the BDAG size of the families.

(tn)nZO (Sn)nZO

Tree size 2n n?
DAG size n+1 n?
BDAG size 2n 3n—2

This example shows that (i) the size of the DAG can be half the size of the
BDAG, and that (ii) the size of the BDAG can be quadratically smaller than
the size of the DAG.

DAGs share repeated trees, BDAGs repeated subtree sequences. The
minimal DAG of a tree ¢ contains every subtree exactly once. As a consequence,
the number of nodes in dag(t) equals the number of different subtrees ¢/v of ¢.

On the other hand, BDAGs share repeated subtree sequences: For a node
v of a (ranked or unranked) tree ¢ € T(X) define sibseq(v) € T(X)* as the
sequence of subtrees rooted at v and all its right siblings. More formally, if v is
the root of ¢, then sibseq(v) = t. Otherwise, let u be the parent node of v and
let wy ... w,vvy ... v, be the sequence of child nodes of u. Then

sibseq(v) = (t/v)(t/v1) ... (t/vy).
The next lemma follows directly from the definitions of the BDAG and sibseq:

Lemma 2.8. The number of nodes of bdag(t) is equal to the number of different
sibling sequences sibseq(v), for allv € V.

We treat the number of edges in dag(t) and bdag(¢) in more detail in Sec-
tion 3.5 and in Chapter 4.

The reverse binary DAG. Analogously to the first-child /next-sibling en-
coding of a tree t one may also define the last-child/previous-sibling (LCPS) of
t, in which we replace the edge set of ¢ by (right) edges pointing from each node
to its last child and (left) edges pointing from each node to its previous sibling.
Using this encoding, one may also define the reverse binary DAG (RBDAG)
of ¢ as dag(lcps(t)). Though it is clear that in general the RBDAG shares the
same worst-case and average-case size as the BDAG, the encoding may never-
theless be advantageous if the nodes share “sibling prefixes”. Take for instance
an XML-specification, in which every book is required to carry certain informa-
tion (e.g. author, title, year etc.), but may also require additional information
(e.g. edition or run). Typically those optional data will come last, in which case

16
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it is better to use the reverse binary DAG. This was actually true for test data
used in [BLMN15]: The reverse binary DAGs were on average smaller than the
BDAGS of the trees contained in the test data.

2.3 Grammars

Formal grammars and their generalization to trees are widely used in computer
science. For a general introduction to tree grammars we refer to [CDG107].

2.3.1 SLP grammars

A straight-line program (SLP) is a context-free string grammar that produces
exactly one string. Formally, it is a tuple A = (N, X, P, S), where N is a finite
set of nonterminals, ¥ is a finite set of terminal symbols (NNX =), S € N
is the start nonterminal and P is a finite set of productions of the form A — w
with A € N, w € (N UX)* such that

e for every nonterminal A there exists exactly one rule in P with left-hand
side A and

e the binary relation {(4,B) € N x N | (A — w) € P, B occurs in w} is
acyclic.

Every nonterminal A € N produces a unique string valy(A) € ¥*. The string
defined by A is val(A) = valg(S). We omit the subscript A when it is clear
from the context. The size of the SLP A is [A] = }Z4_,,)ep [w|- An SLP is
in Chomsky normal form if every production is either of the form A — a with
a €Y or A— BC, where B,C € N. The Chomsky normal form of a grammar
may be computed in linear time, see e.g. [Loh14].

Example 2.9. Let Ay = (N,X,P,S) with N = {S,Ay,...,4¢}, & = {a}
and P = {S — AgAg, Ag — AgAs, ... A; — aa}. Then val(S) = a!%?* and
[A| = 20.

Example 2.10. For n > 3, let A,, = (N,X, P, A,,) with N = {Ay,...,A,},
¥ ={a,b} and

P = {An — AnflAnf% An,1 — An72An73a - 7A2 — a, A1 — b}

For example val(Ag) = abaababa. The words a, b, val(A3), val(A4), ... are known
as Fibonacci words. While |A,,| = 2n — 2, the lengths of the Fibonacci words
are enumerated by the well-known Fibonacci numbers (series A000045 in the
Online Encyclopedia of Integer Sequences, OEIS), which grow exponentially.

It is NP-complete to check for a given string s and an integer k whether
there exists an SLP A of size at most k such that val(A) = s [CLLT05]. Thus,
unless P = NP, there is no polynomial-time algorithm that, given a string s,
outputs a smallest grammar A for s. Hence the focus of grammar-based com-
pression algorithms lies on algorithms with good approximation ratios, where
the approximation ratio of a grammar-based compressor G is defined as the

function
size of SLP produced by G for s
ag(n) = max

s size of smallest SLP for s

17
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where the maximum is taken over all strings of size n over an arbitrary alphabet.
The currently best-known approximation ratio of a polynomial-time compres-
sion algorithm is O(log(|s|/g)), where g is the size of a smallest grammar for
s. There are several linear-time compressors that achieve this approximation
ratio, among them [Jez14, CLL 05, Ryt03].

While not having the best approximation ratio, the compression algorithm
Re-Pair [LM99] shows good heuristic results. We briefly discuss the algorithm,
as it is the base for the tree compression algorithm TreeRePair. For a longer
treatment we refer to the aforementioned paper or to [CLL*05].

Re-Pair. Let s € ¥* be a string over an alphabet . Re-Pair recursively
searches s for a maximal set M of non-overlapping occurrences of a factor (or
pair) af of length two (these could be from the terminal alphabet or nontermi-
nals) in s and replaces each occurrence of a8 from M in s by a new nonterminal.
This is done until no pair has a frequency greater than 1. While a naive im-
plementation naturally needs quadratic time, N. Larsson and A. Moffat show
in [LM99] how Re-Pair can be implemented in linear time.

Example 2.11. Consider the string s = a'2*. Using Re-Pair to compress this

string produces the grammar A from Example 2.9 of size 20.

2.3.2 TSLP grammars

Like its string counterpart, a tree straight-line program (TSLP) is a tree gram-
mar that produces exactly one tree.

In the following, let N and F be ranked alphabets, let ¥ be an unranked
alphabet and let X = {z1,x2, ...} be a countably infinite set, which we treat as
symbols of rank 0. We assume that all alphabets are pairwise disjunct. Symbols
from N are called monterminals, elements from F and ¥ are called terminals
and elements from X are called parameters.

Depending on whether we treat ranked or unranked trees, we consider trees
from T(NUFUX) or T(NUZXUX), respectively.

A ranked tree straight-line program is a tuple

A=(N,F,PS),

where N and F are as above, S € Ny is the start nonterminal and P is a finite
set of productions of the form A(zy,...,z,) — t (which is also briefly written
as A —t), wheren >0, A€ N, and t € T(NUF U {x1,...,2,}) is a tree in
which every parameter x; (1 < i < n) occurs at most oncel7 such that

e For every A € N, there exists exactly one production of the form
A(Il,...,l'n) —t
and

e the binary relation {(A,B) € N x N | (A — t) € P,B is a label in t} is
acyclic.

1 If this restriction is dropped, one speaks of nonlinear TSLP. These can achieve doubly
exponential compression, but have the disadvantage that many algorithmic problems become
intractable, see e.g. [LMO06]. We will not further consider nonlinear TSLPs.

18
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We define unranked tree straight-line programs A = (N, 3, P, S) accordingly.

As with SLPs, these conditions ensure that every nonterminal A € N,, de-
rives to exactly one tree valy (A) =t € T(NUFU{x1,...,x,}) by using the pro-
ductions in P as rewriting rules. Without loss of generality, we assume that the
parameters 1y, ..., x, appear in depth-first left-to-right ordering, e.g. f(z1, z2)
rather than f(z2,21). We define val(A) = valy (S) as the tree that is derived by
the grammar. Again we omit the subscript A when it is clear from the context.

We call a TSLP monadic if every nonterminal has rank at most one. A TSLP
may be converted to a monadic one in polynomial time with a size (see below
for the size of a tree grammar) increase of r [LMS12], where r is the maximal
rank of a nonterminal appearing in the grammar.

We call a TSLP regular if every nonterminal has rank zero (since it represents
a regular tree grammar). In such grammars nonterminals only appear as leaves
in the right-hand sides of the productions.

Example 2.12. Let A = (N,X, P, S),
where N = {S, A, B}, ¥ = {f,a,b}, and f <N f
P contains the productions 7N\ AN
f a f a
S — f(B(A(b), B(B(a)))), f/ N, f/ N,
B(z) — A(A(x)), N f/ \
b a a
A(z) = f(z,a). AN
a a

The tree val(A) is depicted on the right-

hand side. .
Figure 2.3: The tree val(A)

Let t be a tree and let d be its minimal DAG. We can identify d with a
regular tree grammar G4 = (N, F, P, S) as follows: Let V = {v1,...,v,} be the
set of nodes in the DAG. For every node v; € V we create a nonterminal N; of
rank 0. Let w;,,...,u;, denote the successor nodes of v;, let R;,,..., R;, be
the nonterminals we created for the nodes w;,, ..., u;, andlet f; = A(v;) be the
label of v;. Then we add for each v; the production

N; — .fi(Ri17"'7Rim)

m

to P. This defines a unique TSLP (up to renaming of the nonterminals).

Example 2.13. Consider the DAG d,, of the tree ¢,, from Example 2.7. Then
a regular TSLP grammar for d,, is
S — f(Al, .. .,Al), A1 — f(A2), Ag — Q.
———
n many
Note that the height of every right-hand side of a rule in G4 is either 0 or

1. As it is sometimes useful to consider rules of height 1 only, we may instead
define the production for each v; as

Ni = filai, ... i)
where
R;; if u;; has a successor node
Qij = .
A(u;j) otherwise.

19



20 2.3. GRAMMARS

Thus we eliminate all rules of the form A — a and all rules have height 1. We
call such a grammar reduced. Note that a tree that consists of a root node only
cannot have a reduced grammar; because such trees represent an uninteresting
corner case we simply exclude them from our further discussion.

Definition 2.14. Let ¢ be a tree with at least two nodes. By the DAG grammar
Gaag(t) of t we refer to the reduced regular TSLP that corresponds to the
minimal DAG of t.

As in the SLP case, a smallest TSLP for a given tree cannot be computed
in polynomial time unless P = NP (this is trivial since we can encode a string
w = wy...w, by a monadic tree t = wi(...(wy))). Thus the focus is once
again on finding good approximation algorithms, either from a theoretical point
of view (i.e. a good approximation ratio) or from a practical point of view. The
algorithm TTOG from [JL14] is an example for the prior, having an approxi-
mation ratio of O(log|t|) for a tree t, while TreeRePair [LMM13] is an example
for the latter.

Next we briefly introduce TreeRePair. Though we will discuss the algorithm
in more detail in Section 9.2, we include a brief description here to provide an
example of a grammar-based tree compressor.

TreeRePair. Lett € T(F) be aranked tree? of size n. TreeRePair recursively
replaces the most frequent digram in t by a new symbol until every digram
appears only once. Here, a digram is for trees what a pair is for strings: It is
defined as the triple [«, i, 3], where i € N is an integer and o, € F U N are
either terminal symbols or nonterminals that have been introduced in a previous
replacement step. Care must be taken for digrams of the form [«,, a], as they
could be overlapping. An occurrence of a digram d = [«, 1, 5] is a node v € ¢
such that A\(v) = @ and A(v') = 3, where v’ is the i*? child of v.

One replacement step is done as follows: Let rank(a) = n and rank(8) = m
and assume that d = [a, 4, 8] is a most frequent digram, i.e., the maximal set of
non-overlapping occurrences of d is maximal among the set of non-overlapping
digram occurrence sets.

We introduce a new nonterminal A of rank n + m — 1 together with the
associated rule

A(II?l, e ,In+m_1) — 05(1‘1, ey L1, ﬂ(iﬂz, e ,Im_H‘_l),l‘m_H', e azn—Hn—l)-

Then every occurrence of [«, i, 3] is replaced by A. E.g. if at one digram occur-
rence the children of « are labelled g1,...,¢;—1, 3, gi+1,-- -, gn and the children
of 8 are labelled hq, ..., h,,, we now have the pattern

A(gh - 9i—-1, hla R hmvgi+17 cee 7gn)

Again a naive implementation takes quadratic time, but TreeRePair can be
implemented in linear time [LMM13]. In Chapter 9 we use a modified version of
TreeRePair to show a surprising application of compression, namely accelerated
computation by compression. Here, we use TreeRePair (with a modified digram
counter) to compress term rewriting systems before transforming it to a formula
in propositional logic, which is then attempted to be solved by a SAT solver.
With the help of this intermediate step the resulting Boolean formula is smaller,
and thus a SAT solver can find a solution faster.

2For unranked trees, one can conveniently consider the FCNS-encoding of ¢ or introduce
for every symbol f € ¥ a new symbol for every different number of children f has.
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On the size of the grammar. Following the argumentation in [JL14], con-
sider a rule of the form A(Xy,...,X,) = f(X1,Xi-1,a,X;,... X,,). If this rule
is part of a ranked TSLP, we may conveniently encode the right-hand side as
(f,(i,a)). On the remaining positions we simply list the n parameters (recall
that we assume the ordering of the parameters to be generic, i.e. small to large).
In general, we may encode each right-hand side of a production by specifying
for each node the non-parameter children together with their positions. Since
these are bounded, we may define the size |A| of a grammar as the total number
of non-parameter nodes in all right-hand sides.

On the other hand, such a characterization is not possible when the rule is
part of an unranked TSLP because a every terminal may appear with a different
number of children. Thus, for unranked TSLPs we count the parameter nodes
as well.

This bears a simple problem: Let t be a unranked tree and ¢’ = fens(¢).
Then a grammar for ¢ counts parameter nodes, whereas a grammar for ¢’ does
not. Because this can be confusing, we will always specify whether a grammar
size considers parameter nodes or not.

Note that the DAG and the BDAG grammar of a tree are regular, hence
they both do not have any parameter nodes in the first place.
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Chapter 3

The average-case size of the

DAG

In this chapter we analyze the average sizes (both node and edge size) of the
DAG of unranked trees and of full binary trees.

To ease the discussion, we first concentrate solely on the average node size
of full binary DAGs over a unary alphabet. Later we show how to extend the
result to larger alphabets, to unranked trees as well as to the average edge sizes.
This has the advantage that the amount of notation stays slim and we can focus
on the main difficulties of the proof.

The proof method we use is best described in the book Analytic Combina-
torics [FS09]: We first derive the so-called generating function N(z) that counts
the total number of nodes of all DAGs of trees of size n. We then analyze the
dominant singularity zo of N(z) in the complex plane: We show that close to zg,
N(z) can be approximated by a function with known coefficient asymptotics.
We use this to prove the main theorem of this chapter:

Theorem 3.1. The average number of nodes in the minimal DAG of a full
binary tree of size n satisfies

_ N, n 1 . In4
N, = — =2 1 —_— th =4/ —.
"= B, ”m(*o(lnn» withm =\ =

The rest of this chapter is structured as follows. In Section 3.1 we explain
background from the book Analytic Combinatorics [FS09] necessary to derive
the generating function N(z) that we are interested in, which we derive in Sec-
tion 3.2. Then we switch again to a background section (Section 3.3), this time
devoted to singular analysis and the central transfer theorem. After that we
prove the main result (Section 3.4). Then we extend the results to larger alpha-
bets, unranked trees and edge sizes (Section 3.5). Finally we discuss alternative
proof strategies and open problems (Sections 3.6 and 3.7).

The results from this chapter are mostly an extension of [FSS90], where the
authors sketched a proof for the case of full binary trees over a unary alphabet.
We first provide a full proof of the result and then show extensions of it. These
were first presented in [BLMN15].
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3.1 Generating functions and the Catalan num-
bers

Definition 3.2. Let C be a countable set and let || : C — N be a size function. If
the number of objects of every given size is finite, we call (C, |-|) a combinatorial
class. The sequence C,, := {c € C | |¢| = n} is called the counting sequence of

C.

Let (Cp)n>0 be the counting sequence of a combinatorial class C. Then we
define its (ordinary) generating function C(z) as

C(z) = Z Cpz".

n>0

We further denote [2"]C(z) := C,. Let W denote the disjoint union operator.
For combinatorial classes B and C with their respective generating functions
B(z) and C(z), we have the following constructors:

1. Disjoint Union: If A = BwC, then A(z) = B(z) + C(z).
2. Cartesian Product: If A = B x C, then A(z) = B(z) - C(z).

3. Sequence Construction: If By =0 and A= {f} wBWB x BW..., then

The proofs and other constructors can be found in [FS09].

Binary trees and the Catalan numbers. Full binary trees, i.e. trees in
which every node has zero or two successors, are conveniently counted by the
number of internal nodes. We denote by F the combinatorial class of such trees.
By simply removing all leaf nodes and defining the size as the total number of
nodes, one gets a bijection to binary trees (also called pruned binary trees),
which we denote by B. It follows that the DAG of a full binary tree has as
many (internal) nodes as the DAG of its pruned version. This is not true for
the number of edges; while the DAG of a full binary tree trivially has twice as
many edges as internal nodes, it is not as simple for binary trees (we discuss the
edge size of the latter in Section 3.5).

Because of this bijection, the counting sequences and the associated gener-
ating functions for F and B are the same.

Following the constructors from above, a full binary tree is a single node of
size 0 or an internal node with two full binary trees attached. This yields the
following equation for the generating function B(z) of the class of full binary
trees:

B(z) = 1+ 2B*(2)

Solving this equation for B(z) yields the following lemma.

Lemma 3.3. The generating function B(z) of (full) binary trees is

1—+1—4z

B(z) = 2z

(3.1)
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FEquivalently, the number of full binary trees of size p is

By = —— <2p). (3.2)

p+1\p
Equation (3.2) can be derived by Taylor analysis from Equation (3.1). The
numbers (Bp),>o are the well-known Catalan numbers (series A000108 in the
Online Encyclopedia of Integer Sequences, OEIS) that count many different
combinatorial classes, e.g. Dyck paths, polygon triangulations or the number of

well-formed bracket expressions. See [Sta99] for many other interpretations of
the Catalan numbers.

3.2 Exact counting

The goal of this section is to obtain the generating function

N(z) = Z Npz"

n>0

where N, := ), |dag(t)|n is the accumulated number of nodes of the DAGs
of full binary trees. The expected size of the DAG of a tree of size n is then
obtained by dividing N,, by B,,. We denote this quantity by

Because the minimal DAG of a tree contains every different subtree exactly
once, the size of the DAG of a tree can equivalently be defined as the number
of different subtrees it contains. Hence, instead of summing over the sizes of
DAGs of trees of size n, we may also count how often trees ¢t € B occur in B5,,.
Thus, with

1 if uw is a subtree of ¢
]lu t = .
0 otherwise

we get

N, = Z |dag(t)|n = Z Zﬂu,t~

teBy teB, ueB

Define C,, ,, as the number of full binary trees of size n that contain a given tree

u. Then
Nn = Z Cn,w
ueB

Now let uw,v € B be two trees of equal size p. Then C,, = C, , for every n,
because there is a bijection between the two sets, which replaces each occurrence
of u by an occurrence of v, and vice versa. Hence we will also write C), ;, instead
of Cy, . (with p = |u]). Thus we get for N,:

No= " |dag(t)lx = Cow = B,Cay (3:3)

teBy u€B p>0
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Equation (3.3) can easily be generalized to other tree classes: For a tree class
T with generating function T'(z), let C]_ p be the number of trees from 7T of size
n that contain a given tree t € T of size p. Then

N, =Y T,Cl.. (3.4)

p=>0

Lemma 3.4. The generating function Cp(2) of full binary trees that contain a
given tree u € B of size p is

Cp(z) = i (\/1 Az + At — T 4z> . (3.5)

Proof. We first determine the generating function A,(z) counting full binary
trees that do not contain (or avoid) a given tree u of size p. Much like with
the generating function B(z), a full binary tree ¢ that avoids a given full binary
tree u of size p is either a single node or a root node to which two u-avoiding
full binary trees are attached. However, we must still exclude the tree t = u,
which is included in the above recursive description. We thus get the following
equation:
Ap(z) =1+ zAf,(z) — 2P,

which yields
1—+1—4z 4 4zpt!
2z '
Using C,(z) = B(z) — Ap(2), this proves the lemma. O

Ap(z) =

Theorem 3.5. The generating function of the accumulated number of nodes of
minimal DAGSs of full binary trees is

N(z) = Zan"
n>0
1
=Y. B, (Vi—az+artl - VT 12)
z
p=>0

where the numbers B, are given by (3.2).
Proof. As shown in equation (3.3), we have N, = >_ -, B,Ch . Hence
N(z) =Y Npz" =Y B,Cyp(2).
n>0 p>0

O

Remark. Exact numbers can now be derived using a Taylor analysis of the
power series N(z). This way we know that

N(z) =1+ 2z +42% +142% + 502" + 1802° + 6602° + O(27).

Using e.g. Bg = 132, this shows that the average DAG size of full binary trees
of size 6 is 5. In [FSS90] the authors also provide a closed formula for N,, via
an Inclusion-Exclusion argument.
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CHAPTER 3. THE AVERAGE-CASE SIZE OF THE DAG 27

3.3 Complex analysis and singularity analysis

Now that we know the generating function N(z), we want to use it to understand
the asymptotic behavior of the sequence (Ny,)n>0.

The crucial point here is to understand N(z) not only as a formal power
series, but as a function in the complex plane. If it has a radius of convergence
greater than zero, we can treat it as an analytic function in its domain. It turns
out that there is a general correspondence between

e the behavior of a power series close to its dominant singularities and
e the asymptotic growth of its coefficients.

We call a singularity dominant if it is a singularity with the smallest modulus
among all singularities of the function. A generating function may have several
dominant singularities on its radius of convergence; since this is not the case
for the functions we are interested in, we restrict our discussion to generating
functions with a unique dominant singularity. Furthermore, Pringsheim’s The-
orem [FS09, p. 240] states that a power series with non-negative coefficients
and radius of convergence p has a singularity at z = p. So, for the generating
functions discussed here, if the generating function has a radius of convergence
p, we may assume that z = p is the (unique) dominant singularity.

Let A(z) =),,>0 Anz" be a generating function with radius of convergence
p. In [FS09, p. 227] the correspondence from above is enunciated in two general
principles:

First principle of coefficient analysis. The location of a function’s singu-
larity dictates the exponential growth of its coefficients.
In other words, by setting A,, = K"©(n) with ©(n) a subexponential func-
tion, we have
limsup |©(n)[Y/™ = 1.

n—oo

The intuition behind this principle is that, if A(z) has a singularity at z = p,

then
Alp) =D Anp”

n>0

does not converge. Hence A,, ~ p~".
Note that the rescaling rule

2" A(z) = p~"["] A(p2)

allows us to restrict our discussion to functions that have a radius of convergence
equal to 1.

Second principle of coefficient analysis. The nature of a function’s sin-
gularity determines the subexponential factor ©(n) of its coefficients.

To get an intuition for this principle, it is helpful to consider some functions
singular at z = 1.

As is visible from Table 3.1 and Figure 3.1, faster growing functions cor-
respond to faster growing coefficients and square roots or logarithms in the
functions induce such terms in the coefficients.
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28 3.3. COMPLEX ANALYSIS AND SINGULARITY ANALYSIS

Function  Coefficients (asympt.)

fl 1iz log 1iz logn
f2 1iz 1
fi 1-yV1-z e

Table 3.1: Some functions with a singularity at z = 1. Table adapted
from [FS09, p. 377].

25 F

20 |

15

10 |-

0.4 0.6 0.8 1 2 3 4 )

Figure 3.1: The left image plots the behavior of the functions fi1, f2, f3 close
to their dominant singularity and the right image plots the growth of their
coefficients.

For some functions, these two principles suffice for a complete asymptotic
expansion. For example, by knowing the behavior of f(z) = /1 — z close to
p =1, we can expand the Catalan numbers as [FS09, p. 388|

B, = 1 I S ROy (2
" (n+ 1)y 8n  128n2  1024n3 nt) )’

Yet for some functions the nature of the singularity might not be precisely
known. This might be the case if the generating function is merely given by an
infinite sum (as is the case for N(z)) or by an implicit equation. In those cases
one can perform a so-called singularity transfer, in which one tries to transfer
an approximation of a function near its dominant singularity into an asymptotic
approximation of its coefficients:

Close to the singularity zo, one splits the function f(z) one wishes to analyze
into two parts,

f(2) = o(z)+0(r(2)
zZ—2zQ

where o, 7 are functions with known asymptotic coefficient behavior (and 7 €
o(0)), to obtain an estimate of the form

fn = 0n+O(Tn)

n— oo

Theorem 3.12 below states under which circumstances such a split is permissible.
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3.3.1 Complex analysis

A region in the complex plane C is defined as an open, connected subset of C.
Definition 3.6. Let G C C be a region and let f(z) be defined over G.

1. We say that f(z) is analytic or holomorphic at a point zg € G if there
exists an open disc D C G centered at zy such that f(z) can be written

f(Z) = Z fn(z - ZO)n

n>0

for all z € D. We say that f(2) is analytic or holomorphic in G if it is
analytic at every point of G.

2. We say that a function g(z) is meromorphic at a point zo, if, for z in a
neighborhood of zy, z # zg, g(z) can be represented as the quotient of two
holomorphic functions. In that case, g(z) admits near zo an expansion of

the form
g(z) = Z gn(z — 20)™.
n>—M

If f_pr #0 and M > 1, then we say that f(z) has a pole of order M in
zo. The coefficient f_ is called residuum of f at z = zp and is denoted
by

Res[f(z); z = 20].

Again, if g(z) is meromorphic for every point in G, we say that g(z) is
meromorphic in G.

A famous property of holomorphic functions is the so-called null integral
property. It states that for holomorphic functions, integrals over simple loops in
a region are zero (a loop is a curve that can continuously be rectified to a single
point within the region; it is called simple if the path is non-crossing). The next
theorem is known as Cauchy’s residue theorem.

Theorem 3.7 (Cauchy’s residue theorem). Let f(z) be meromorphic in G and
let v be a positively oriented simple loop in G, on which f(z) is holomorphic.

Then
1

2mi

[ 1erds =3 Res(a)iz =),

where the sum is extended to all poles of f(z) encircled by . Furthermore we
have

b= ) = 5 [ T (36)

Equation (3.6) is known as Cauchy’s coefficient formula. Basically, setting
y(t) = €', t € [0,2n] and p € Z the proof of Theorem 3.7 is a vast generalization

of
2 . . _
%z”dz:/ ﬂepitieit dt — 2mi ifp= fl
K 0 0 otherwise.

One first shows the theorem for isolated singularities. The general case then
follows because the region can be decomposed into cells, each containing one
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30 3.3. COMPLEX ANALYSIS AND SINGULARITY ANALYSIS

singularity only. This integral also explains the importance of the coefficient h_4
of a meromorphic function h(z). Another property of holomorphic functions is
that the number of zeros is invariant under small perturbations. This is formally
stated by Rouché’s Theorem (see [FS09, p. 270] or [FB93, p. 173]):

Theorem 3.8 (Rouché’s Theorem). Let v be a simple closed curve in a region
G C C and let f(2) and g(z) be two functions holomorphic in G.

If |g(2)| < |f(2)| on the curve v, then f(z) and f(z) + g(z) have the same
number of zeros inside the interior domain delimited by ~y.

As stated before, the aim of the transfer theorem is to show that the func-
tion to be analyzed is ”similar” to a certain elementary function with known
coefficient estimates. Now we introduce such a family of elementary functions.

3.3.2 The standard function scale

Theorem 3.9 (Standard Function Scale). Let o € C\ {Z<¢o} and g € C. The
coefficient of z" in the function

P& = (1= 2 (L1og (lf))ﬁ

admits for large n an asymptotic expansion in descending powers of logn,

a—1

o =15 ~ s town)? (140 (1)),

The proof of Theorem 3.9 can be found, first for § = 0 and then in the
general case, in [FS09, pp. 381-385]. One first expresses the coefficient of [2"]
by means of Cauchy’s coefficient formula (Equation (3.6)), starting with the
integration contour {|z| = 1/2}. Then one deforms the integration contour into
a so-called Hankel contour (depicted in Figure 3.2 below). This contour is then
split into many parts. One evaluates the dominant ones and bounds the others.
The proof of Theorem 3.1 closely follows these lines.

Remark. The coefficient 27! is introduced in front of the logarithm because
log(1/(1 — 2)) = 2z + O(2%). This way f(z) is a power series in z, even when
[ is not an integer. This factor does not affect the asymptotic expansion in a
logarithmic scale near z = 1.

3.3.3 Singularity transfer

Definition 3.10 (A-Region). Let ¢, R € R with R > 1 and 0 < ¢ < §. Define
a A—domain as follows:

AG,R) = {2 | |2l < R,z # 1, Jarg(z — 1)| > 6}
A function is A—analytic if it is analytic for a A—domain.

We start with a transfer theorem for the error terms.
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Theorem 3.11. Let «, 5 be real numbers, and let f(z) be a function that is
A—analytic. Assume that f(z) satisfies in the intersection of a neighborhood of
1 with its A—domain the condition

fz)=0 <(1 —z)e (log - i Z)ﬁ> .

[2"]f(2) = O(n"~! (log n)”).

Theorem 3.12. Let f(z) be a function analytic at 0 and with a singularity at C,
such that f(z) can be continued to a domain of the form (- Ag for a A-domain
Ag, where ¢ - Ag is the image of Ay under the mapping z — (z. Assume that
there exist two functions o(z) and 7(z) with 7(z) € o(o(2)),

- ()
-t ()

f(z) =0(2/¢) + O(7(2/C)) asz— (in (- Ao.
Then the coefficients of f(z) satisfy the asymptotic estimate

Then one has

and

such that

fn = C_"no“’_l(log n)B” + (’)(C_”naT_l(log n)B*).

Theorem 3.11 can be found in [FS09, Theorem VI.3] and Theorem 3.12 has
been adapted from [FS09, Theorem VI.4]. We briefly summarize the process of
singularity analysis.

1. Preparation. First we locate the dominant singularity ¢ of f(z) and make
sure that the function is analytic in an appropriate A-domain.

2. Ezpansion. We find functions o, 7 with known coefficient asymptotics
such that, as z — 1

f(z) = a(2/¢) + O(7(2/Q))-

3. Transfer. With the known coefficient asymptotics of ¢ and 7 we conclude
that

fn = C_nan + O(C_TLTn)

for n — oo.

3.4 Proof of the main theorem

We now prove Theorem 3.1, which we re-enunciate for better readability.
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32 3.4. PROOF OF THE MAIN THEOREM

Theorem 3.1. The average number of nodes in the minimal DAG of a full
binary tree of size n satisfies

_ N, n 1 . In4
Ny ==t =2n— (1 — th r=1/—.
B, m( +O<lnn>) with 5=\~

The proof of this theorem follows the three basic steps stated above. We
thus provide the singular expansion of N(z) close to its dominant singularity

¢=1/4

Proposition 3.13. The generating function N(z) is analytic in the domain D

defined by |z| < § and z ¢ [+, 3]. As z tends to § in D, one has

2 1
N(z) = r + 0O ,

VI —42)In((T - 42)7) V(- 42 (1 - 42)71)

where K is defined as in Theorem 3.1.

Using this proposition, we use estimates of the coefficients of the standard
function scale (Theorem 3.9) and the transfer theorem (Theorem 3.12) to obtain
the asymptotic behavior of the accumulated node size of minimal DAGs of full
binary trees of size n:

N, = "N (z) = %\/% (1 4o (mln» .

Since the Catalan numbers B,, satisfy

this proves Theorem 3.1.

Proof. We first show that the function N(z) is analytic in D. Then we split
N(z) into three parts. The splitting depends on a threshold integer n = n(z).
Using a suitable choice for n(z) and

o(2) = 2k (1-2) 712 (lnl1 >_1/2 and 7(z) = (1—z)"1/2 <ln11 )‘3/2

-z —Z

we show that one part behaves like o(2/4) as z — 1/4 and the other two parts
behave like 7(z/4).

Step 1: N(z) is analytic in D. The analyticity of C,(z) (Equation (3.5)) in
D is implied by the following lemma. Recall that

Cp(z):% (\/1—4z+4z1’+1—\/1—4z).
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Lemma 3.14. Let
dp(2) =1 — 4z + 42PHL,

For p > 2, this polynomial has exactly one root of modulus less than 1/2. This
root is real and larger than 1/4. The polynomial do(z) = 1 — 4z has a root at
2z = 1/4. The polynomial di(z) = (1—22)? has a double root at 1/2. Furthermore
dy(z) does not vanish in D.

More generally, the rational function u, := 4zPT! /(1 —4z) does not take any
value from (—oo,—1] for z € D.

Proof. To prove the existence of a unique root of modulus less than 1/2, we
apply Rouché’s theorem (Theorem 3.8), using

gp(2) = 42211 f(z)=1—-42 and ~={|z| =1/2}.

Then |g,(2)] <1 < |f(2)| on v, hence d,(z) = f(2) + g(2) has exactly one root
in D. Because the coefficients of d,, are real, and d,(1/4) > 0 and d,(1/2) < 0,
the intermediate value theorem yields that the root of dy(z) is in [1/4,1/2].
The proof of the final statement is similar, upon comparing the polynomials
c(1 —42) +42PT! and ¢(1 — 42), for ¢ > 1. O

In order to prove that N(z) itself is analytic in the domain D, we rewrite it
as follows, denoting u, = 42P™!/(1 — 4z) and

V1—4z
N(Z) = TZBp(\/l‘i‘up—l)
p=>0
V1—-4z Up Up
= S B (VTR -1-7)
p>0
1 V1—4z u
=~ _Npryp Y% B(,/1 —1—l)
\/1—47;;) Pt ,;) p\VEH U 2

1 Vv1—4z Up
= g BE+ Y YB (VIFu—1- ?), (3.7)

p2>0

Since /1 — 4z and B(z) are analytic in D, it suffices to study the convergence
of the sum over p in (3.7).

Lemma 3.15. For allu € C\ (—o0, —1], we have

2
\/1+u—1—% g%.

Proof. Write z = /1 + u, so that ®(z) > 0. Then |u| = |22 — 1| = |z — 1|z + 1|,
so that the above inequality reads

|z — 112 |z — 112z + 1)
< ;
2 2

or equivalently 1 < |z + 1|, which is true since R(z) > 0. O
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34 3.4. PROOF OF THE MAIN THEOREM

Recall that all points of D have modulus less than 1/2. Consider a disk
included in D. For z in this disk, the quantity

16z|?P+2
|up‘2 =

1 — 422

is uniformly bounded by cr?, for constants ¢ and r < 1/4. Because u, does not
take any value from (—o0,1] in D (Lemma 3.14), we can apply Lemma 3.15 to
u,. Hence

B,

p=>0

U 1 c
\/1—|—up—1—7p‘ < §ZBP|UP|2 < §ZBP7“”.
p>0

p=>0

Since B(z) is analytic in D, this proves that the series occurring in (3.7) con-
verges uniformly in the disk, and that N(z) is analytic in D. This finishes the
first step of the proof: namely, that the generating function N(z) is analytic in
a A-domain.

Step 2: splitting N(z). We split the sum in N(z) into three parts, namely
one for a finite sum up to n, one for an infinite sum for p > n, and a third sum
for the residual terms. The splitting depends on a threshold integer n(z), to be
defined later. We set

N(z):Nl(n,z)+N2(n,z)—|—N3(n,z), (38)

where

Ni(n,z) = 7V12;4ZZBP (V1+u,—1),

p=0

No(n,z) = ﬁ <B(z) - Zszp> , (3.9)
p=0

\/?, > B, (Vitu -1 ). (3.10)

p>n

Ns(n, z)

One readily checks that (3.8) indeed holds. Moreover, each N;(n, z) is analytic
in D for any ¢ and n.

Step 3: an upper bound on N;.
Lemma 3.16. For any u € C\ (—o0, —1], we have [T+ u — 1| < /|u].

Proof. The proof is similar to the proof of Lemma 3.15. Write x = /1 + u, so
that R(x) > 0. Then the inequality we want to prove reads |z — 1] < |z + 1],
which is clearly true. O

Lemma 3.17. Let z > 0 and define
n
a(n,z) = Zszp.
p=0
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For any ¢ > i, there exists a neighborhood of ¢ such that
a(n,z) =0 ((42)”1173/2)

uniformly in n and z in the neighborhood of c.

The proof of this lemma is inspired from Theorem VI.1 in [FS09] (which
is also the base of the proof of Theorem 3.9), where the authors provide the
asymptotic expansion of the coefficient of z™ in f(z) = (1 — z)~® for any « €
(C \ ZSO'

Proof. We first form the generating function of the numbers a(n, z) for a fixed z,
then evaluate the n'" coefficient via Cauchy’s coefficient formula (Equation (3.6)
in Theorem 3.7). We have

Z a(n,z)z™ = Z Z BpzPx™ = B(z2)a® + B(zz)2z' + B(xz)x® + ...
n>0 n>0 p=0

B(xz) 1—+/1—4xz

1—2  2zz2(l—2)

Thus
. 1 o V1 —daz
aln,z) = [z ]m—[x ]m
R p R
:gf[x ]m*g(lfl(naz))a
where

VvV1—4
I(n, 2) = [a" ) Yo 222
1—-=z
We now estimate I(n,y) using Cauchy’s coefficient formula:

L/ V1—dzz dx
O

I = —_—
(n,2) 2 1—g gnt2’

where the integral is over a small circle around the origin. The dominant sin-
gularity of the integrand is at « = 1/(4z). A second singularity occurs later
at © = 1 (recall that z is taken in a small neighborhood of ¢ > 1/4). Writing
x = u/(4z) gives

Z)nt2 VvV1—u du
I(n,z) = (4217r /Q 1 :

1w a2 (3.11)

the integral being again over a small circle around the origin. We now deform
the integration contour into a Hankel contour, as illustrated in Figure 3.2:

H=H (n) UHT(n) UH"(n)
where
H (n)={z=w—1i/n,w>1}
Ht(n)={z=w+i/n, w>1}

e'?

Ho(n)z{zzl— . ,¢e[—g,g}}.
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36 3.4. PROOF OF THE MAIN THEOREM

2/n

Figure 3.2: Changing the integration contour into a Hankel contour. We start
with a positively oriented curve around 0, then let R — oo, while always keeping
a distance of 1/n from the line [1,00). The integral along the circle vanishes.
Adapted from [FS09, p. 381].

A change of variable

in the integral (3.11) leads to

I(n,z) = 4" vt <1 + t) T

©2imn3/2 Jy, 4z —1—t/n

Note that the new Hankel contour H’ is now independent of n. It winds around
0, being at distance 1 from the positive real axis. The lemma will be proven if
we can show that the remaining integral is bounded by a constant. As in [FS09,
p. 382], we split the integral into two parts, depending on whether R(t) < In*t
or R(t) > In*t. On the first part, 4z — 1 — t/n remains uniformly away from
0. This means it remains to show that, setting G = H N {R(t) < In*n}, the

integral
J

is bounded. Using the Taylor expansion of In(1 + z) and exp(x), one can show
that (1+t/n)" "2 = e~ () +t/n) — o~t(] 4 O(n~1)). Because |t| < In’n,
this proves that the integral over G is in O(1).

On the second part, 4z — 1 — ¢/n reaches its minimal value 1/n when R(¢t) =
n(4z — 1). Writing ¢ = s + 4, we can bound the modulus of the second part by

—n—2
V-t (1 + t) dt
n

oo —n—2 e -2
2n \V2s (1 + f) ds <2n 671“2(”) V2s (1 + E) ds
n n

In?n In?n
<P/ = () / V2u(l +u) 2du
0
=o(n™%)
for any real «. This completes the proof. O
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Combining Lemmas 3.17 and 3.16 (with ¢ = 1/2) gives, for z in D close
enough to 1/4:

[N1(n, 2)]

IN

\/|21 2|4z ZB \/@

ZBPM(?*?)/?
p=0

- 0 (4"|z\”/2n—3/2) : (3.12)

IN

uniformly in n and z.

Step 4: an upper bound on N3. We combine the estimate in Lemma 3.15
with the expression (3.10) of N5(n, ).

4z
N3(n,z) < mZBﬂZW
p>n

4z o .
< m Z By, 4P~ 2| (since Bpy1 < 4B))
p>n

16|z[27+3

—n—1)_12(p—n—1)
< ey el

p>n

Y (R iy (3.13)
11— 452

uniformly in n and z, for z in D close enough to 1/4.

Step 5: an estimate of N;. We determine the generating function of the
numbers Na(n, z) (given by (3.9)) for z fixed. We find:

1 B(z) — B(zz)
ZNQ(n, z)z" =
o V1—4z 1-=x
1 4z
- - (Vi“dz-1+ .
2xz\/1—4z( : \/1—4xz+\/1—4z)
Thus
2
Na(n,z) = ﬁl(naz)
where

I, 2) = [mnﬂ]\/l —dxz++1—4z

Using the same principles as in the proof of Lemma 3.17, we now estimate I(n, z)

using Cauchy’s coefficient formula (Equation (3.6)):

1 dx

I = —
(n,2) 271 Joo V1 —daz + /1 — 4z ant2
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38 3.4. PROOF OF THE MAIN THEOREM

where the integral is over a small circle around the origin. The unique singularity
of the integrand is at © = 1/(4z). Substituting = u/(4z) gives

S S
YT % o VI —u+ 1 —dzurt?

Changing the integration contour into a Hankel contour and substituting u =
1+ t/n gives, as in Lemma 3.17,

 (4z)nt 1 A
I(n,z) = Sindn H\/jt+\/m(l+n) dt.

Again, we split the integral into two parts, depending on whether R(¢) < In?n
or R(t) > In? n. We assume moreover that

n—oo and n(l-—4z)—0. (3.14)

We define again G = H N {R(t) < In®n}. As shown in [FS09, p. 382ff], we have

t>_n_2dt— 2mi

1
/Q\/jt'f‘ V(1 —4z) (1+" I'(1/2)

Thus the first part of I(n, 2) is then

(4Z)n+1
T(1/2)v/n

while the second part is found to be smaller than (4z)"n~%, for any real «.
Hence

(1 +O0(v/n(l —42)) + O(”_l)) ;

I(n,2) = (f/?f/; (1 +O(/n(l = 42)) + O(n—l)) ,
so that
2(4z)"*1 -1
Na(n,z) = NN (1 +O(v/n(1 —4z)) + O(n )) . (3.15)

Step 6: the threshold function n(z). We finally want to correlate n = n(z)
and z so that, as z tends to 1/4 (in the domain D), the function N(z) is
dominated by Na(n,z). Given the bounds (3.12) and (3.13) on Ni(n,z) and
N3(n, z), the estimate B,, ~ 4"n~3/2 (up to a multiplicative constant), and the
estimate (3.15) of N3, we want

= 0 —_—
n3/2 V1—4zyn

4n|z|2n _ (42)”
n3/2[1 —4z3/2 " \V1—4zyn /)’

We also want (3.14) to hold. These four conditions are met for

and

n=n(s) = [P

In|z|
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Indeed, for this choice of n, we have
2[" =0(1 —42) and (42)" =1+ O(|1 —4z|In|1 — 4z|),

so that

1
Ni(n,z) = O ((1 — 42)" /2 n~3/2 14z> 7

1
Ni(n,z) = O ((1 —4z)" 12 In3/2 = 42) ,

No(n,z) = 2vind (1+O<1n1 ! ))

ﬁs/1—4z,/lnﬁ 1 —4z]

Finally, since

1
In|1—4z| =In(1 —4z) (1+O(ln1 |1—4z|)>’

and because z is close to i, we have at last obtained

N(z) = ﬁ%j}hlﬁ (1 e (ml 1_14Z>) ,

as stated in Proposition 3.13.

3.5 Extensions

In this section we extend Theorem 3.1 to rooted, ordered, labelled unranked
trees, as are common e.g. in XML-processing. Unlike for full binary trees, the
number of edges in the DAG of an unranked tree is not simply twice the number
of nodes. This calls for a separate treatment of the number of edges in the DAG
of an unranked tree.

Because unranked trees are often encoded by the FCNS-encoding, we also
treat the average edge size of binary trees. As discussed in Section 3.1, the node
size for binary trees is the same as the node size for full binary trees.

Most of terminology is completely analogous to the previous case. For con-
venience, we quickly gather all definitions. We use the terminology m-labelled
tree for trees composed over an alphabet of size m. With 7, we denote the set
m-labelled unranked trees and with 5,, we denote the set of m-labelled binary
trees. We set T,,, , = |{t € T, | |t| = p}| and B, ;, accordingly. Let U € {B, T }.
By Cifr, resp. C,va"}'; we define the number of trees from U,, that contain a given
tree u € U, of size p. The according generating function is denoted by Cgm (2).

The number of edges. For a tree ¢, we define by |dag(t)|g the number of
edges in the DAG of ¢. Similarly as for the numbers N,, and their associated
generating function N(z), we want to obtain an expression for the accumulated
number of edges EYm and their associated generating function E¥=(z). Let
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U € {B,T}. We denote by U,(,f,)n the number of trees from U, , that have root
degree d (i.e. the root has d children) and by sub(t) the set of subtrees of t.
Then, in the same spirit as in Section 3.2, we get for the number of edges:

EUm — Z |[dag(t)|lg = Z Z deg(root(u))

te€Um n tEUm, n u€sub(t)
= E deg(root(u Cum = E dUéi)pC’rzsz.
UEU, p,d>0

The associated generating function is

2) =Y EYmzm =" dUlh CHn(2). (3.16)

n>0 p,d>1

3.5.1 Exact counting

Binary Trees. First we generalize the Catalan numbers to carry labels over
an m-ary alphabet. Binary trees are combinatorially equivalent to full binary
trees, in which the leaf nodes don’t carry a label. Extending Lemma 3.3, an
m-labelled full binary tree is either a single node or an internal node with two
full binary trees attached. This yields the equation B,,(z) = 1 + mzB2(2),
which proves the following lemma.

Lemma 3.18. The generating function By, (z) of m-labelled full binary trees is

By(z) = Lo V1= dmz V21m;4mz. (3.17)

Equivalently, the number of m-labelled full binary trees of size p is

1 (2
By =——T7)mer. (3.18)
p+1\p

Again Equation (3.18) follows by a Taylor expansion of (3.17). It can also
easily be derived from Equation (3.2), since there are m? different ways to color
a full binary tree with m colors. Note that B,,(z) = B(mz).

Analogous to Lemma 3.4, we get

Lemma 3.19. The generating function CEm(z) of m-labelled full binary trees
that contain a given tree u € By, of size p is

CBm(z) = (\/174mz+4mzp+1 f\/174mz> .

2mz

We now obtain expressions for the generating functions N5» (z) and EPm (2).

Theorem 3.20. The generating function of the accumulated number of nodes
of minimal DAGs of m-labelled (full) binary trees is

1
NBm(2) = Cw— Byp (\/1 —4dmz + 4mzPtl — /1 — 4mz) .
mz
p=0
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The generating function of the accumulated number of edges of DAGs of m-
labelled binary trees is
3 p—1

ﬁBm,p (\/1 —4mz + 4dmzrtl — /1 — 4mz) .
D —

B (2) = 2mz
p>1

Proof. The proof for N5m(z) follows from Lemma 3.19 and Equation (3.4).
To express the series EBm(z), we first need to determine (according to Equa-

tion (3.16)) the number B,(,'f,)p of m-labelled binary trees of size p > 1 with root
degree d. Note that d can only be 1 or 2. Clearly, B,(,%,)p = 2mBy, p—1, and thus
By(,%?p = B p — 2mB,, p—1. Hence, for p > 1,

Zd'Bf(v;i?p

2mBum,p-1+ 2(Bm,p — 2mBp p—1)

d>1

= 2(Bmp —mDBpp-1)
5 p( 1 (2p> 1<2p—2)2p(2p—1) p+1 )

= m — —_ -

p+1\p/) p\p=1/) plp+1) 2(2p 1)

3p—3

= By, p-
p—1""P

The expression for EZ (2) now follows, using (3.16) and Lemma 3.4. O

Unranked trees. An m-labelled unranked tree is a node to which a sequence
of m-labelled unranked trees is attached. This yields the equation

mz

Tn(z) = -T2

for the combinatorial class 7T,,. Accordingly

1—+v1—4mz

Tn(z2) = 5

and the numbers
Tonp = Bp_1m?P (3.19)
are given by shifted Catalan numbers multiplied by the number of nodes.

Lemma 3.21. The generating function of m-labelled unranked trees that contain
a given tree u of size p is

2P+ V1 —4dmz+ 22P 4+ 22 — /1T — dmz
5 )

Gy () =

Proof. As in Lemma 3.4, we first determine the generating function A[m (z) of
m-labelled unranked trees that avoid a given tree u of size p. A u-avoiding tree
is a root node to which a sequence of u-avoiding trees is attached. As before,
we may not count u itself and thus subtract zP. This yields
zm
AT (2) = ———— — 2P,
R T

which can be solved for AZ;’” (2). Using CZm(z) =Tm(z) — AZ;’”(Z), this proves
the lemma. O
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Lemma 3.22. Let the numbers T,,, , be given as in formula (3.19). The gen-
erating function of the accumulated node size of minimal DAGs of m-labelled
unranked trees is

NTm(2) =Y T pClm(2)

p>0
1
=5 Z Tonp (zp + V1 —dmz+ 220 + 220 — /1 — 4mz) . (3.20)
»=>0

The generating function of the accumulated edge size of minimal DAGs of m-
labelled unranked trees is

ETm(z)= Y dT{",Clm (2)

d,p>0

:72 +1 (p+\/1—4mz+221’+z2p—\/1—4mz).
p
p>0

Proof. As for binary trees, we have

NTm(z)= > dag(t)l = Y Cln = T,,Cln,

te€Tm,n UETm p=0

from which the generating function N7 (z) follows.

To express the generating function E7m(z), we must first determine (accord-
ing to (3.16)) the number of m-labelled unranked trees of size p and root degree
d, or, more precisely, the sum

> 4T

d>1

for any p > 1. This is done in [DZ80, Corollary 4.1] for the case m = 1 (the
index needs to be shifted, since the authors count unranked trees by the number
of edges). It suffices to multiply by mP to obtain the general case:

ST = 3(p—DTmp
m,p +1 .
d>1 p

O

It may be worth noting that the numbers Tl(p) are known as ballot numbers,

as they appear in certain combinatorial election problems. In [DZ80, Theorem 4]
it is shown that T(d) —d_ (2p _3_d) (with the index shifted appropriately). See

p—1 p—2
also [F'S09, p. 68].

3.5.2 Asymptotic results

We now provide asymptotic results for the average node and edge size of m-
ary binary trees, as well as the corresponding results for unranked trees. The
proofs of these results all work very much like the proof of Theorem 3.1, where
we proved the asymptotic average node size for full binary trees over a unary
alphabet. We hence only show the modifications that must be made.
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Binary Trees.

Theorem 3.23. The average number Nf’” of modes in the minimal DAG of an
m-labelled binary tree of size n satisfies

B, n i
N 2”’Wm7<”o<lnn>)

Indm
- .
T

with

Proof. As in the proof of Theorem 3.1, we show that the Transfer Theorem can
be applied to the series

|
= 5—> Buy (\/1 —dmz + dmertt — 1 4mz)
mz

p=>0

Npn(2) := NP7 (2)

close to its dominant singularity z = 1/(4m) with the approximation

Nop(2) = v 1?% (1 +0 <1n—1 1_14m>> L @321

Thus we first prove that the series N,,(z) is analytic in the domain defined
by |z] < 1/(2m) and z ¢ [1/(4m),1/(2m)].

The counterpart of Lemma 3.14 states that 1 — 4mz + 4mzP*! has exactly
one root of modulus less than 1/(2m), and that this root is larger than 1/(4m).
This now holds for any p > 0 (provided m > 2). Hence each series C’f"" (2)
is analytic in D. We can also prove that u, := 4mzP*!/(1 — 4mz) avoids the
half-line (—o0, —1] for z € D.

The proof that N,,(z) is also analytic in D transfers verbatim, once we have
written

1 V1—4dmz u
N, = ——B, _— B, /1 —1--2).
(2) Vv1—4mz (2) + 2mz ngo P ( tup 2 )

In Step 2, we split N,,,(2) into the three following parts:

VI—dmz —
N’Enl)(nvz) = 2mz ZBm,p (\/1+Up71),

p=0

1 n
N@ (n, ———— | Bu(2) = Y Bmpa” |,
m (1, %) T ( (2) 2 Ve )

V1—4mz U
NP n2) = Y By (VIF = 1= ).

2
p>n

Now combining Lemmas 3.15 and 3.17 gives an upper bound for Nf,% ).
NP (n, 2) = O ((dm)"|z]"/2n/2)
uniformly in n and z taken in some neighborhood of 1/(4m).
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The upper bound on fo) is found to be

2n
N =0 LBM .
m (H,Z) |1 —4mz\3/2 )

Finally, since N2 (n,z) is simply Na(n,mz) (with Nz defined by (3.9)), we
derive from (3.15) that

2(4mz)"

Vvl —dmzy/n

The threshold function is now

NP (n,z) = (1 + O(y/n(l —4mz)) + O(n_l)) . (3.22)

ey = ||

In|z|

and the rest of the proof follows verbatim, leading to Equation (3.21), which
concludes the proof of Theorem 3.23. O

Theorem 3.24. The average number of edges in the minimal DAG of an m-
labelled binary tree of size n satisfies

_ 1
BB = 3k, —— (1 —
Bn 35 hm( +O(lnn)>

with k., as in Theorem 3.23.

Proof. In the series EB(z) given by Theorem 3.20, we replace the numbers
Bim,p by
= 3(p—1
5 .31

m,p T 2p _ 1 Bm,p

with the generating function

By (2) = 1—32—(12—7:)\/1—42.

One can then adapt the proof of Theorem 3.1 without any difficulty. The
only significant change is in the estimate (3.15) (and more generally (3.22)) of

fo)(n,z), which is multiplied by a factor 3/2. This leads to the factor 3 in
Theorem 3.24.
O

Unranked Trees.

Theorem 3.25. The average number of nodes in the minimal DAG of an m-
labelled unranked tree of size n satisfies

VT n 1
N = tom (lw(lnn))’

with K., as in Theorem 3.23.
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Proof. The proof is again a variation on the proof of Theorem 3.1. Our first
objective is to obtain the following counterpart of Proposition 3.13: The gen-
erating function N7m(z) is analytic in the domain D defined by |z| < 5= and
2 ¢ |1, 5=]. As z tends to 72— in D, one has

MK 1

+0 , o (3.23)

NTm(z) =
\/(1 —4mz)In 71_imz \/(1 — 4mz) In® ﬁ

where Ky, is defined as in Theorem 3.23.
Using Theorem 3.12 we get

T n T Fom 4nmn+1 1

Since the number of m-labelled unranked trees of size n is
4nmn+1

Tm,n ~ T =75

NCEDE

this gives for the average number of nodes the expression of Theorem 3.25.
So let us focus on the proof of Equation (3.23), which will mimic the proof
of Proposition 3.13. We start from Equation (3.20), given in Lemma 3.22:

(1+0(n™h),

Nin(2) = NT(2) = > T, O (2)

p=>0

where

2P 41 —dmz+ 220 + 220 — /1 — dmz
5 .

T’V‘V‘L —_—
Cp (Z) -

and T}, , = B,_1mP.

Step 1: N,,(z) is analytic in D. With Rouché’s theorem (Theorem. 3.8) we
can prove that, just as Cf(z), CZ”” (z) is analytic in the domain D, defined by

|2| < 5= and z ¢ [, 51-]. We then define

2m 4m>’ 2m

2P(2 + zP)
1—4mz

up =
and prove that u, does not meet the half-line (—oo, —1] for z € D. Writing

~ T(2) Tin(2) T (2?)
2 2v1 -4z 41 —4mz

e Y M (Vierm )

p=0

we conclude with the arguments from Section 3.4 that N,,(z) is also analytic in
D.
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46 3.5. EXTENSIONS

Step 2: splitting N,,(z). We fix an integer n and write
Ni(2) = NP (n,2) + NP (n, 2) + NP (n, 2) + N (n, 2), (3.24)

where

NO(n,z) = 7”_24”12 ZT’W’ (VI4u,—1),
p=0

1 n
(2) - - _ E
Ny (n,z) = = dma (Tm(z) p_OTm,pr> )

. 1—-4
NPz = YIS g (T -1 ),
p>n

1 1 "
N(nz) = 5Tn(@) + e (Tm(’Z?)_ZT’”””Z%)’
p=0

One readily checks that (3.24) indeed holds. Moreover, each N (n, z) is ana-
lytic in D for any ¢ and n.

Step 3: an upper bound on NT(,}). Using the same ingredients as before,
we find that, as in the binary case,

NO(n,z) =0 ((4m)”|z|”/2n*3/2)

uniformly in n and z taken in a neighborhood of 1/(4m).

Step 4: an upper bound on Ng’). Again, the behavior remains the same
as in the binary case:

n|.|2n
N®(n,z)=0 <m|ZT ) ’

11— 4mz|3/27"

uniformly in n and z, for z in D close enough to 1/(4m).

Step 5: an estimate of NP, With B(z) and B,_; defined by Equa-
tions (3.1) and (3.2) respectively, we have

Tm(2) = zB(mz) and T p = Bp_1mP,

thus
NP (n,z) = %Ng(n —1,m2)

with Na(n, z) defined by (3.9). Hence the estimate (3.15) gives

NP (n,z) = (4m2)" 7 14+0(/n(1 —4mz2))+0(n~ 1)) . (3.25)
V1 —4dmz/n
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Step 6: an upper bound of NP, Given that m|z|? < 1/(4m) < 1/4, we
can write

m
— |T(m
2 |

IN

NSO (n, 2)|

ng »
44/]1 4mz p>n p|z|
T 22™
= 0|14+ =7
< +\/|1—4mz|>

for z in a neighborhood of 1/(4m). The argument is the same as for the
bound (3.13).

Step 7: the threshold n(z). Using the same threshold function as in the

binary case, we see that N,,,(n, z) is dominated by N(Q)(

that (3.23) holds.

z), and more precisely,
O

Thus, on average, the DAG of a full binary tree of size n has twice as many
nodes as the DAG of an unranked tree of size n. Note that the same ratio holds
between the heights of these trees: The average height of an unranked tree of
size n is /mn [dABKR72], whereas the average height of a binary tree of size n

is 2¢/mn [FO82].

Theorem 3.26. The average number of edges in the minimal DAG of an m-
labelled unranked tree of size n satisfies

T _ n 1
B = S (”O(mn))?

with K., as in Theorem 3.23.

Proof. Comparing the two series of Lemma 3.22 shows that it suffices to replace
the numbers T}, by
_ 3p
Ty, = ——=Tp,
p+2

with generating function

ZTZP* 1-3z2—(1—-2)V/1—-4z
P 2z ’

p=0

to go from N7 (2) to E7m(z). One can then adapt the proof of Proposition 3.25
without any difficulty. The only significant change is in the estimate (3.25) of
Ny(,f) (n,z), which is multiplied by a factor 3. This leads to the factor 3 in
Theorem 3.26. ]

While unranked trees and binary trees have the same asymptotic average
number of edges in their respective DAGs, we show in Chapter 4 that the
BDAG of an unranked tree ¢ (i.e. the DAG of the FCNS-encoding of ¢) can be
quadratically smaller than the tree’s DAG. On the other hand, bdag(t) is at
most twice the size of dag(t).

47



48  3.6. ON PROVING THE MAIN RESULT BY MELLIN TRANSFORM

Table 3.2: Overview over the different asymptotics. Recall that x,,, = 4/ lnﬂﬂ.

Overview of the results. Table 3.2 contains an overview of the results of
this chapter.

3.6 On proving the main result by Mellin trans-
form

In this section we discuss the possibility of an alternative proof of Theorem 3.1
(and the theorems from Section 3.5) via the Mellin transform. While we surely
cannot prove that such a proof can’t exist, we provide arguments why it is
unlikely to be significantly easier than the existing proof (if it is possible at all).

The Mellin transform of a function sometimes provides an alternative way
to derive an asymptotic of a function. Let f(z) be a function defined over the
positive reals. The transform of f(z) is defined as the complex function f*(s),
where

MIf(2);s) = f7(s) = /0 " F)de,

See [FGD95] and [Szp01, Chapter 9] for treatments of the Mellin transform in
the context of generating functions.

The importance of the Mellin transform relies on the fact that it provides a
correspondence between the behavior of a function at zero and infinity and the
singularities of the transformed function. In other words, to understand how
f(2) behaves as z — 0 resp. z — 00, we may also analyze the singularities of
£ (2).

It follows directly from the linearity of the integral that

M [Z Ak f (b Z);Sl = <Z Aku;f) f*(s) (3.26)

kel kex

whenever the index set K is finite. For infinite sums, Chapter 3 in [FGD95]
shows which conditions must be met for Equation (3.26) to still be applicable.
Sums of the form F(z) =Y, Arg(prz) are there called harmonic sums, with Ay
being the amplitudes, py the frequencies and g(z) the base function.

It now becomes clear how Mellin transforms may be useful for the gener-
ating function N(z) = 5= > p>0 By (V1 =4z + 427FT — \/T—4z) of the DAG:
Though N(z) is not of the form (3.26) (due to the term 2P*! in the first square
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root), it may be possible to find an approximation N(z) of N(z) such that N(z)
may be factored into a base function and a sum of frequencies and amplitudes
(the sum is called Dirichlet series in [FGD95]).

Indeed [Dis12] offers an analysis of a very similar generating function via
Mellin transform: There, the function®

U(z) = ;kzx(\/1—4z+2k+1z’f+1—\/1—4z)

is first approximated by a function U(z) of the form (3.26), after which the
Mellin transform conveniently provides the desired asymptotic behavior of U (z)
and its coefficients. Yet despite the similarities of the functions U(z) and N(z),
it does not seem to be possible to follow the approach from [Dis12] for our
function. To approximate U(z), the author from [Disl2] substitutes the term
V1 — 4z + 2FH12E+1 close to the singularity z = 1/4 by the corresponding root
V1 —4z 4+ 2-k=1 and shows that the induced error, up to first order, is finite.
This form can then be used to factor the Mellin transform of the generating
function into a Dirichlet series. Yet this step is not possible for N(z). By
substituting V1 — 4z + 42P+! by /1 — 4z + 4-P, the effect of the substitution
is, up to first order,

S BVl -4z 4420t =Y BT — 4z + 477 ~ [z —1/4] Y 4B, (p+1)277,

p=0 p=0 p>0

which does not converge. It remains open whether there is a different applicable
substitution or a different way to use the Mellin transform for an alternative
proof of Theorem 3.1.

We now briefly describe other open problems related to the topic of this
chapter.

3.7 Open problems related to DAGs

3.7.1 Variance

While this chapter answers the question on what the average size of the DAG
of a binary or unranked tree is, we do not know the variances of these sizes. To
postulate a variance distribution for the average size of the DAG, we generated
1,000, 000 unranked trees of size 10,000 using an algorithm described in [AS92]
and built the DAG and the BDAG for the trees. Let n be the number of data
points. We consider the following well-established parameters that describe the
goodness of a particular fitting:

1. The sum of squared error of prediction (SSE), is given by

SSE = "(yi — fla:))*.
i=1

1U(z) is the generating function for the accumulated size of the largest caterpillar subtree
of binary trees, where a caterpillar tree is defined as a tree in which every node has no more
than one non-leaf successor.
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2. Let § = >_"" | y; and let SST =", (y; — 7:)? be the total sum of squares.
The Coefficient of determination (R-squared) is the proportion of the total
sum of squares explained by the model and is defined as

| _SSE
SST

3. The root-mean-square error (RMSE) is an estimate of the standard devi-
ation of the random component in the data, and is defined as

SSE

n—m

RMSE =

where m is the number of fitted coefficients (in our case, m = 1).

All data sets clearly suggest a normal distribution. Thus the following table
shows the coefficients and goodness if we fit the different variances according to
the normal distribution

F(z) = a-exp ( (x - b>2> . (3.27)

‘ a, b, c ‘ SSE ‘ R square ‘ RMSE
Nodes BDAG | 8,486, 4,286, 66.5 | 1.04-10° | 0.9997 47.66
Edges BDAG 810, 6,247, 69.6 8.27-10* | 0.9976 13.62
Nodes DAG 10,089, 2,228, 51.8 | 8.99-10° | 0.9998 49.63
Edges DAG 7,393, 6,045, 76.2 | 8.57-10° | 0.9998 26.98

Table 3.3: The variance

We remark that the average node size of the DAG is very close to the value
predicted by Theorem 3.25, namely 2,228 vs. 2, 188 (the asymptotic value being
off by about 2%), whereas the difference is more for the average edge size of the
DAG is larger (6,045 vs. 6,567, or about 9%). This is probably due to a larger
error term in the asymptotic edge size (recall that the order of convergence
O(log(n)~1!) is rather slow).

Finally, Figure 3.3 plots the distribution of the node sizes of the DAGs of
the 1,000,000 binary trees generated plus the fitted distribution according to
the normal distribution (3.27) with values a,b and ¢ from Table 3.3.

3.7.2 Unordered trees

It is unknown what the average DAG size of unordered binary trees are. These
trees are enumerated by the so-called Wedderburn-Etherington numbers.

3.7.3 The average size of the DAG of regular tree lan-
guages

We define regular tree languages as in the book [CDG107]. It would be interest-
ing to generalize the presented results to all regular tree languages, in particular
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Figure 3.3: The distribution of the number of nodes in the DAG of 1,000,000
binary trees of size 10, 000.

to have a method that, given the grammar of a regular tree language L, calcu-
lates the average size of DAGs of trees of size n. Note that we assume that, for
each n, the probability distribution of trees of size n is uniform.

As an example, consider the grammars G; and G5 with productions defined
by

S — a(A, B) S — a(A, B)
Gi: A—a(b)]a Go: A—ai(A)|ax(A)|a
B — b(B,B) |b. B — b(B,B) | b.

Because for a random tree from L(Gp) of size n the average number of
nodes labelled by a is negligible, the average DAG size of a tree from L(Gy) is
O( \/1:@)

On the other hand, on average more than half of the nodes in a tree from
L(G5) are labelled by a; or ay. Since the height of a tree is a trivial lower bound
on the size of its DAG, it follows that the average DAG size of a tree from L(G>)
is linear in the size of the tree.

So far, no regular tree language is known which has an average DAG size of
neither O( \/lgﬂ) nor ©(n). This leads to the following conjecture.

Conjecture 3.27. Let A be a regular tree language. Then the average size of

the DAG of a tree of size n from A is either 6(\/1:@) or O(n).

Remark 1. In [FSS90], Theorem 4 offers a generalization of Theorem 3.1
to a set of tree classes that contain an intersection with regular tree languages
(L(G1) and L(G2) are not covered by [FSS90]). Yet the theorem also lacks a
proof, and the derivation of the result remains unclear.

Remark 2. Binary trees with probability distribution induced by binary
search trees have average DAG size @(%), see [Dev98, FGM97], yet this tree
class is not regular.

On the average height. For every tree classes A we considered when inves-
tigating the average DAG size of regular tree languages, the average size of the
DAG of a tree from A was in O( \/lgﬂ) if and only if the average height of a
tree from A was in ©(y/n). Trivially, tree classes with average height in O(n)
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also have an average DAG size in ©(n), but also no tree class with average DAG
size in ©(n) was found that did not have an average height in ©(n).

This is plausible, since DAG compression is better for shallow trees and
because the height of a tree t is a lower bound on |dag(t)|. Thus we generalize
Conjecture 3.27:

Conjecture 3.28. Let A be a reqular tree language. Then the average size of
the DAG of a tree of size n from A is either ©( \/L) or ©(n). In the first case

logn
the average height of a tree from A is ©(y/n) and in the second case the average
height of a tree from A is ©(n).
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Chapter 4

The hybrid DAG and
worst-case sizes

In this chapter we introduce the so-called hybrid DAG (HDAG) of a tree, which
shares features of both the DAG and the binary DAG: While the DAG of a tree
shares repeated subtrees and the binary DAG shares repeated subtree sequences,
the hybrid DAG achieves both. The HDAG is interesting from both a theoretical
and a practical point of view: First of all, we show in Section 4.2 that the HDAG
is smaller than both the DAG and the BDAG of a tree. This, among other
inequalities will be used to show that the following holds for every unranked
tree t of size at least two:

1 1
Sbdag(t)l < ldag(t)] s < 5 [bdag(t)l3

Secondly, we use it in practice as a light-weight compressor for (XML)-tree
data and perform some experiments on real-world data, which we discuss in
Chapter 7. While the compression rates of the HDAG are not as good as
TreeRePair, the HDAG has the advantage that some algorithmic problems may
be solved easier for trees represented by HDAGs. We show such instances in
Chapter 8. Furthermore, as we show in Chapter 7, heuristically the HDAG
can be constructed a lot faster than other grammar-based compressors while
only needing little more runtime than a DAG or BDAG compression, but is,
guaranteed to be smaller than both.

The trees in this chapter are unranked, yet the HDAG may be defined for
ranked trees as well.

4.1 The construction

Our starting point is the DAG grammar G = Ggag(t) of an unranked tree t €
T(X). We now want to share the repeated sibling end sequences in G. As an
example, consider the DAG grammar G = ({S, A, B,C},{f,g,a}, P, S) where
P contains the rules

S % f(A7B7 C7 B)?

A — f(C, B),

B — g(a,a), (4.1)
C — g(a,a,a).
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Figure 4.1: The tree ¢ and its DAG grammar Ggag(t).

The corresponding tree val(G) is depicted in Figure 4.1. We now apply the
FCNS-encoding to the right-hand sides of the productions to obtain

s - Eo§ )()( o)),
- .

B~ glar(ao)). (4.2)
C = ala(a(a))).

As is, this is not a correct binary tree grammar since we would need to define
two different versions for B, one as rank 0, one as rank 1 nonterminal. But
for now we simply view it as a binary encoding of the rules from P. We now
construct the minimal DAG of the forest obtained by taking the disjoint union
of the right-hand sides of (4.2), which yields

FABL(D))).
flgg))7

g1 5

a(ar(E)), (4:3)
Cr( 0)7

ar(ag).

HTQT =,
R A A

These rules constitute the hybrid DAG (or HDAG for short). The total number
of edges in its right-hand sides is 9, as opposed to 11 in both the DAG and the
BDAG of t.

In general, the hybrid DAG of a tree ¢ is produced by first constructing the
minimal DAG grammar Gqag(t) of ¢ and then building the minimal DAG of the
FCNS-encoding of the forest of right-hand sides of Ggag(t). Formally, assume
that the DAG grammar Ggag(t) contains the rules Ay — ¢1,..., A, — t,. Recall
that every tree t; has height 1 (the grammar is reduced), and that the trees are
pairwise different, and that it is also possible to construct the DAG of a forest of
trees. Let ¢} be the tree that is obtained from ¢; by adding A, as an additional
label to the root of ¢;. Then

hdag(t) = dag(fens(ty), . . ., fens(ty,)).

The HDAG is unique up to isomorphism (re-ordering of the nonterminals). Its
size is defined as the number of edges it contains. Instead of adding an additional
label to the root nodes, one could also assume that the root nodes t1,...,t, are
ordered.

The HDAG construction may also be viewed as sharing the repeated suffixes
that appear in the FCNS-encoding of the right-hand sides of the DAG grammar.
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CHAPTER 4. THE HYBRID DAG AND WORST-CASE SIZES 55

We will generalize this approach in Chapter 5, where we use other compression
techniques on the right-hand sides of the DAG grammar. Though these may
result in smaller grammars, the HDAG has the advantage of sharing properties
of the BDAG and DAG, and can thus be used to show inequalities involving the
worst-case sizes of those, which we will do in the next section.

Building a TSLP from an HDAG. Unfolding an HDAG, i.e. given an
HDAG h, find the tree ¢t such that hdag(t) = h, can be done in a two-step way:
First we expand all rules that were introduced in the HDAG step. Then we
reverse the fcns-encoding of the forest, which yields the DAG grammar Gaag (%)
of t.

On the other hand, the HDAG can also be converted easily to a monadic
TSLP with only a modest size increase. We show this in a more general context
in Theorem 5.5 of Chapter 5.

The reverse hybrid DAG. Just like the reverse binary DAG (see Sec-
tion 2.2), one may also define the reverse hybrid DAG of a tree t as the DAG
of the last-child-previous-sibling encoding of the forest of right-hand sides of
Gdag(t). Again, while worst-case and average-case discussions are symmetrical
to the HDAG case, this representation may be beneficial if has more repeated
prefixes than suffixes. As with the reverse binary DAG, the reverse hybrid DAG
performs better than the hybrid DAG on “real” data [BLMN15].

4.2 Comparison of the worst-case sizes of DAG,
BDAG and HDAG

We compare the worst-case node size and the worst-case edge size of the DAG,
the BDAG and the HDAG for an unranked tree ¢.

4.2.1 The number of nodes
Lemma 4.1. Let t be an unranked tree. Then |dag(t)|ny < |bdag(t)|n.

Proof. The lemma follows from Lemma 2.8 and the obvious fact that the number
of different subtrees of ¢ (i.e., |dag(t)|n) is at most the number of different sibling
sequences in t: sibseq(u) = sibseq(v) implies t/u = t/v. O

Example 4.2. Consider the tree ¢, = f(a,a,...,a) consisting of n nodes (one

labelled f and the rest labelled a), where n > 2. Then |dag(t)|y = 2 and

[bdag(t)|y = n, while |dag(t)|g = |bdag(t)|g =n — 1.

Lemma 4.3. There exists a family of trees (tn)n>2 such that |dag(t)|n = 2 and

[tn|n = |bdag(t)|n = n.

Proof. Take the family of trees t,, from Example 4.2. O
Let us remark that the node size of the HDAG can be larger than the node

size of the BDAG and of the DAG. The reason is that in Gqag(t) there is a

nonterminal for each node of the DAG (and hence the height of each right-hand

side is at most one). This can be done differently of course; it was chosen so to
simplify proofs and because our main goal is the reduction of the edge size.
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56 4.2. WORST-CASE SIZES

4.2.2 The number of edges

We have just seen that the number of nodes of the minimal DAG is always at
most the number of nodes of the BDAG, and that the gap can be maximal (O(1)
versus [t]). For the number of edges, the situation is different. We show that

1 1
SIbdag()]s < |dag(t)| < 5 [bdag(t)l:

for |t| > 2 and that these bounds are sharp up to the constant factor 1/2 in the
second inequality. In fact, for |t| > 2 we show the following three inequalities

hdag(t)lp < min(|dag(®)|m, [bdag(t)| ),
|bdag(t)|lzg < 2|hdag(t)|g, and

1
dsg(t)r < 5ihdae(o)}

which imply
1 1
2 bdag(t) s < |dag(t)| < 1 [bdag(t)}.

Before we prove these bounds we need some definitions. Recall that the nodes
of bdag(t) are in one-to-one-correspondence with the different sibling sequences
of t. In the following, let

sib(t) = {sibseq(v) | v is a node of t}

be the set of all sibling sequences of t. To count the number of edges of bdag(t),
we have to count for each sibling sequence w € sib(¢) the number of outgoing
edges in bdag(t). We denote this number by e(w); it can be computed as follows,
where w = s182 -+ 8, (m > 1) and the s; are trees:

e e(w)=0if m =1 and |s;| =0,

e e(w) =1 if either m = 1 and |s1] > 1 (then w only has a left child) or if
m > 2 and |s1| = 0 (then w only has a right child),

e e(w) = 2 otherwise.
With this definition we obtain:

Lemma 4.4. For every t € T(X) we have

bdag®)ls = 3 e(w).

we sib(t)

The size of the HDAG can be computed similarly: Consider the reduced
DAG grammar G = Gaag(t) = (N, X, P, S) of t. Recall that every right-hand
side of G has the form f(ai,..., o), where a; € U N for every i. Let sib(G)
be the set of all sibling sequences that occur in the right-hand sides of G. Thus,
for every right-hand side f(aq,...,a,) of G, the sibling sequences f(aq, ..., ay)
(a sibling sequence of length 1) and «;a;11 -+ ay, (1 <14 < n) belong to sib(G).
For such a sibling sequence w we define e(w) as above. Here, every «; is viewed
as a tree with a single node, i.e., |a;| = 0. Thus:
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CHAPTER 4. THE HYBRID DAG AND WORST-CASE SIZES 57

Lemma 4.5. For every t € T(X), we have

hdag) = 3" e(w).

wesib(G)

For w = s1 -+ - 8, € sib(t) let w be the string that results from w by replacing
every non-singleton tree s; ¢ ¥ by the unique nonterminal of G that derives to
s;.5 Here are a few simple statements:

e For every w € sib(t), the sibling sequence @ belongs to sib(G), except
for the sequence w = S of length 1 that is obtained from the sequence
w =t € sib(¢).

e For every w € sib(t), w € (N UX)*.

e For every w € sib(t), e(w) < e(w).

e The mapping w +— @ is an injective mapping from sib(t) \ {¢} to sib(G).
Using this mapping, the sums in Lemma 4.4 and 4.5 can be related as follows:

Lemma 4.6. For everyt € T(X), we have

|hdag(t)lp = Y e(w)= N[+ Y e(@).

wesib(G) wesib(t)

Proof. The first equality was shown in Lemma 4.5. The only sibling sequences
in sib(G) that are not of the form @ for w € sib(¢) are the sequences (of length

1) that consist of the whole right-hand side f(aq,...,am,) of a nonterminal
A € N. For such a sibling sequence u we have e(u) = 1 (since it has length 1
and f(aq,..., Q) is not a single symbol). Thus
Yo oew)=INl+ D e(@)
wesib(G) wesib(t)\{t}
=N+ > e(@),
wesib(t)
where the last equality follows from e(f) = e(S) = 0. O

Theorem 4.7. For every t € T(X), we have
|hdag(t)| 5 < min(|dag(t) e, |bdag(t)|k)-

Proof. Since hdag(t) is obtained from dag(t) by sharing repeated suffixes of
child sequences, we immediately get |hdag(t)|r < |dag(t)|x.

It remains to show that |hdag(t)|g < |bdag(t)|g. Thus by Lemma 4.4 and
Lemma 4.6 we have to prove that

N+ 3 @) < Y efw),

wesib(t) wesib(t)

I Formally, @ depends on t and thus it should be denoted by ;. Since the context is
unambiguous we omit the subscript.
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58 4.2. WORST-CASE SIZES

where N is the set of nonterminals of the DAG grammar. For every nonterminal
A € N there exists a sibling sequence w € sib(t) such that @ starts with A. For
this sequence we have e(w) = e(w) + 1 (note that the right-hand side of A is
a non-singleton tree, hence w starts with a tree of size at least 1). Recall that
e(w) < e(w) for all w € sib(t).

Choose for every A € N a sibling sequence w4 € sib(t) such that w4 starts
with A. Let R = sib(¢) \ {wa | A € N} be the set of all other sibling sequences.
We get

NI+ D el@) = [N+ D e(d@a) + ) e(@)

wesib(t) AeN weR

= D (e(@a) + 1)+ Y e(d)
AeN weER

< Z e(wa) + Z e(w)
AEN wER

- Y w
wesib(t)

This proves the theorem. O

Theorem 4.8. For every t € T(X) with |t| > 2, we have
1 2
dag(t)|e < 3 ndag()f3

Proof. Let fi(®i,...,q;n,) for 1 < i < k be the right-hand sides of Gqag(t)
with o; ; € U N for all ¢,j. Recall that all the trees f;(a;1,...,qin,) are
pairwise different, thus |dag(t)|p = Zle n;. W.l.o.g. assume that 1 < n; <
ng < - < ny.

If ny = 1, then every internal node in ¢ is unary. In this case, we get

1 1
dag(t)]p = [t] < 31t = S [hdag(t)%

since |t| > 2. Let us now assume that ny > 2. Recall that we compute hdag(t) by
taking the minimal DAG of the forest consisting of the binary encodings of the
trees fi(a;1,...,Qn,). The binary encoding of f;(a; 1,..., ;) has the form?
fi(t;,0), where t; is a chain of n; — 1 many right pointers. Let d be the minimal
DAG of the forest consisting of all chains ¢;. Since all the trees fi(a;1,...,in;)
are pairwise distinct, we have |hdag(t)| = k + |d|. Since the chain ¢; consists of
n; many nodes, we have |d| > max{n; | 1 <1i < k} —1 = n; — 1. Hence, we
have to show that Zle n; < 2(k+ ny, —1)%. We have

k
1 1 1
Zm <k-np<(k—1ng+ inﬁ = 5(2(1@7 Dng +n3) < §(k —1+n)?
i=1

which concludes the proof. For the second inequality note that n; < %ni, since
N Z 2. O

2We use f(a, ) to denote fi(a) to avoid confusion when f already has a subscript itself.
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CHAPTER 4. THE HYBRID DAG AND WORST-CASE SIZES 59

Consider the tree s, from Example 2.7 in Chapter 2: The tree s,, is generated
by the grammar with the productions

Ai—>f(Ai_1,a,...,a) fOTQSiSTL,
——
n—1 many

Ay — f(f,a,...,a),

where A, is the start nonterminal (the tree is depicted in Figure 2.2). We have
|dag(s,)|e = |sn| = n? and |hdag(s,)|r = |bdag(s,)|r = 3n — 2. Hence we get

1 1
|dag(sn)|g = n?* > 5(3n — 2)* = s[hdag(sn)[5-

This shows that up to a constant factor, the bound in Theorem 4.8 is sharp.
The constant 1/9 can be slightly improved:

Theorem 4.9. There ezists a family of trees (sp)n>1 such that

1
(dag(sa)|i > bdag(s,)[3-

Proof. We specify s, by the DAG grammar Ggag(sn). Let Gqag(sy) contain the
following productions for 0 < i < n:

Ai—>f(Ai+1,...,An,a7...,a).
——

n many

This is indeed the grammar obtained from the minimal DAG of a tree s, (of
size exponential in n). We have

2n n
. . nn+1) 3nn+1)

The hybrid DAG of s,, consists of the child sequence A;As--- A,a™ together
with n 4+ 1 many left pointers into this sequence. Hence we have

|hdag(sp)|g =2n—1+n+1=3n.

‘We obtain

1 1 3 3n(n+1
! dag(s.)l3 = $on® = on? < 2D jgag(a ) .

This proves the theorem. O
Theorem 4.10. For everyt € T(X), we have

|bdag(t)| i +n < 2|hdag(t)|s,
where n is the number of internal nodes of dag(t).

Proof. We use the notations introduced before. In particular, Ggag(t) is the
DAG grammar of the tree ¢, N the set of nonterminals in Ggag(t), and @ refers
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60 4.3. THE AVERAGE SIZE OF THE HDAG

to the word that is derived from the sibling sequence w € sib(t) by replacing
every non-singleton tree s € w by the nonterminal that derives to s.

By Lemma 4.4 we have |bdag(t)|g = >_, ey €(w). By Lemma 4.6 we have
lhdag(t)|e = |N|+ >, csin(r) €(@). Hence we have to show that

N+ Y e@) =g Y etw)+ 5INL

wesib(t) wesib(t)

In order to prove this, we show the following for every sibling sequence w €
sib(t): Either e(w) > Se(w) or e(w) = 0 and e(w) = 1. In the latter case, the
sibling sequence w counsists of a single tree s of size at least one (i.e., s does not
consist of a single node), and @ consists of a single nonterminal A € N. So let
w =ty ty, € sib(t) and let & = a1 - -, with a; € XU N. We consider the

following four cases:

Case 1. m > 1 and t; = oy € . We have e(w) = e(w) = 1.

1.

Case 2. m > 1 and [t1] > 1. We have e(w) = 2 and e(w)

e

Case 3. m =1 and t; = ay € . We have e(w) = e(w) =

Case 4. m =1 and |t;] > 1. We have e(w) = 1, e(w) = 0, and @ consists of a
single nonterminal A € N.

O

For the tree t,, from Figure 2.2 we have n = |N| = 2, |bdag(t,,)| = |tm| = 2m
and |hdag(s),,| = |dag(t),,| = m + 1. Hence Theorem 4.10 is optimal.
From the Theorems 4.7, 4.8, and 4.10 we immediately get:

Corollary 4.11. For every t € T(X) with |t| > 2, we have

1 1
§|bdag(t)|E < |dag(t)|p < §|bda9(t)|?3-

4.3 The average size of the HDAG

Define
hn = > |hdag(t)|g

teT1,n

as the accumulated (edge) size of the HDAGs of all unranked trees of size n
over a unary alphabet and let h,, = h, /Cy be the corresponding average size.
A closed formula for the generating function H(z) = ., hn2™ is not known.
To postulate an asymptotic for the average size h,, we built the HDAG of for
each of 50 trees chosen at random (using a method from [AS92]) for tree sizes
100, 200, 300, . . ., 100, 000 and fitted the data with the software MATLAB, using
different custom functions®. Thus a total of 50,000 trees were generated.

3 This means that the software is given different functions c - f(z) and uses curve fitting
algorithms to find the optimal ¢ such that ¢ - f(x) fits the data as good as possible.
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CHAPTER 4. THE HYBRID DAG AND WORST-CASE SIZES 61

The models we consider are

fl (J,‘) _ Cx Cx

Jogz’

f?)(m) = ﬁ, f4($) =cx.8

Even though the asymptotic average size of the HDAG is surely not a linear
function (the HDAG is always smaller than the DAG) we included this function
to test the quality of the fitting for that case, too.

The functions f1(x) and fo(z) are likely the most reasonable candidates, as
an asymptotic of type fi(z) would mean that the asymptotic average size of the
DAG and the HDAG of a tree are only apart by a constant factor and because
an asymptotic of type fa(z) is the information-theoretic minimum.

Function type ‘ Coeff. and bounds ‘ SSE ‘ R square ‘ RMSE
NTT 1.628(1.628,1.628) 4.20 - 10° 1 20.49
lochw 5.438(5.432, 5.444) 2.20-10% | 0.9988 469.3
W 2.434(2.433,2.435) 2.66 - 107 | 0.9999 163.2
cx 0.4871(0.4867,0.4876) | 1.85- 108 0.999 430

Table 4.1: Fitting the average HDAG size with different models. The bounds
in the second column are within the 95% confidence intervals. See Section 3.7.1
for a description of the parameters SSE, R square and RMSE.

Though the results are best for the model fi(z) = %7 the other mod-
els are too good to be reasonably excluded from the statistical data alone
(which demonstrates the limit of conjecturing an average size alone from sta-
tistical data). Yet fo(z) and fi(x) have a slightly worse fitting (f2(x) grows to
slow while f4(z) grows too fast) than the models fi(z) and f5(z). Note that
log(100,000)%/3 = 5.10, while log(100,000)'/? ~ 3.39, so it is natural that the
models fi(z) and f3(x) both offer a similarly good fitting. Figure 4.2 plots the
average HDAG size as evaluated in the experiment together with the models
fi(x) and fa(z). The lines for fi(z) and the average HDAG size are indistin-
guishable, whereas the line for fo(z) is above the HDAG line up to n ~ 70,000
and below that line afterwards. Figure 4.3 plots the residuals of the models
fi(x) and fa(z). Note that the y-axis are scaled differently. Recall that the

average edge size of the DAG of an unranked tree of size n is ¢; - ﬁ with

c1 = 3y/log4/m ~ 1.99. Assuming that the average HDAG size is also of the

form c - N the experimentally evaluated ¢ = 1.628 would imply that the
HDAG is on average about 18.3 percent smaller.
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Figure 4.2: Comparing the experimentally evaluated average size of the HDAG
with the functions fi(x) = \/@ and fa(2) = 557
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Figure 4.3: Residual plots of fi(x) and fs(x).
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Chapter 5

DAG compression using
string grammars

Let t be a tree and consider its DAG grammar Ggag(t). The HDAG shares
repeated suffixes of child sequences among the binary encodings of the right-
hand sides of Ggag(t). These child sequences can easily be encoded by strings
and so the HDAG can be viewed as sharing repeated string suffixes that are
generated by the child sequences!.

In this chapter we want to generalize the sharing of suffixes to other sharing

schemes.

Definition 5.1. An SLP-compressed DAG grammar is a tuple
D= (NtaNsaEaPt;PSaS)

where IV; is a set of tree nonterminals, N is a set of string nonterminals, 3 is a
finite alphabet of unranked symbols, P; is a set of tree productions, P is a set
of string productions and finally S € P, is the start nonterminal.

The productions in P; are of the form

Ny — T(XUNUNy)
and the productions in N, are of the form
N; — (XU N, U Ng)*.

Both production sets are straight-line, meaning that there is at most one pro-
duction per nonterminal (as usual, we assume without loss of generality that
there is exactly one such production) and that the binary relation

{(A,B) € (NJUN,) x (N;UN,) | (A —t, B € ths(A)}

is acyclic. Without loss of generality, we assume that the right-hand sides of
the productions in P; to have height 1.

We apply a rule p € Ps to a tree t € T(N; U Ng U X) as follows: Let p =
(A— Ay---A,) and let t = f(aq,...,q;—1, 4,41, ..,q,). Then applying p

1 Note that we implicitly used this view in Chapter 4.
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to t yields ¢ = f(aq,...,;—1,A1, ..., An, @ix1,...,a,) (thus we replace A by
the n nonterminals Ay, ..., A,, effectively increasing the number of f’s children
by n—1). The size of such an SLP-compressed DAG grammar is defined as the
sum of the production sizes in P; plus the sum of the production sizes in P;.

Note that the tuple A = (N, (XU Ny), Ps) is an SLP without a start rule (it
may be viewed as a grammar which generates a finite set of strings) and that
expanding all string productions yields a regular tree grammar.

Lemma 5.2. Let D = (N, Ny, 2, Py, Ps, S) be an SLP-compressed DAG. For a
production p € Py, denote by p’ the production in which every string nonterminal
in rhs(p) has been expanded and define P’ := UpePt p' Then D' = (Ny, 2, P, S")
is a reqular tree grammar.

Using these definitions, the HDAG of a tree may be viewed as an SLP-
compressed DAG in which the set of string productions has been generated by

suffix sharing among the child sequences of the right-hand sides of the tree’s
DAG.

Example 5.3. Consider the tree depicted in Figure 4.1 and its HDAG grammar
in Equation (4.3) (which produces the FCNS-encoding of the tree t):

S — fi(A(B-(D))), A— fo(D), B— q(FE),
C = gi(ar-(E)), D — Cy(By), E — a.(ag).

An SLP-compressed DAG grammar for ¢ is (Ni, Ns, 3, P;, Ps,S) with Ny =
{D,E}, N; ={S, A, B,C} and

S —= f(A,B,D), D — CB,
A — f(D), E — aa,
B — g(B),
C - g¢g(a,E)

Example 5.4. Let t = f(a,...,a) with rank(f) = n. Then a smallest SLP-
compressed DAG for ¢ has size O(logn), while a TSLP for ¢ necessarily has size
n.

Example 5.4 shows that a transformation of an SLP-compressed DAG to a
TSLP grammar may induce an exponential size blow-up when the maximal rank
of a terminal is unbounded. This may be avoided if we choose to transform it
to a grammar for the FCNS-encoding of the tree instead. Next we show how to
convert an SLP-compressed DAG for a tree ¢ to a monadic grammar for fens(t)
with only a moderate size increase.

Transforming to a monadic grammar.

Theorem 5.5. An SLP-compressed DAG D = (N, Ng, %, P, Ps,S) can be
transformed in time O(|D|) into a monadic TSLP G such that eval(G) =
fens(eval(D)) and |G| < |D] + 2(Ny + Ng).

Before we prove Theorem 5.5, we first show our procedure with a small
example. Assume that the SLP-compressed DAG which we would like to convert
contains the (tree) productions

A, — f(B,0) and Ay — f(C,B),
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where B and C' are arbitrary nonterminals. In the FCNS-encoding of f(B,C)
and f(C, B), the nonterminals B and C' now each appear once as rank-1 non-
terminal and once as rank-0 nonterminal. If we simply duplicated the rules for
B and C', we would double the size of the grammar in the worst-case. The same
situation arises for string productions. Here, with 4y — BC and A, — CB,
the last child of eval(B) (resp. eval(C')) has a right child in one case (namely
the first child of eval(C'), resp. the first child of eval(B)) and does not in the
other.

Instead of duplicating the complete rules, we split the productions into parts
that are the same for both productions and parts that need to be duplicated.

Proof. Let D = (N¢, Ng, X, P;, Ps, S) be an SLP-compressed DAG grammar.
We create of each N; and Ny two disjoint copies,
N, ={X|XeN}, R ={X/|XeN},
N,={X|XeN,}, R,={X,|XeN,}
Nontgrminals in Ny, Ny and R; have rank 0, while the nonter{ninals in R, NS
and N; have rank 1. The set of nonterminals in G is Ny UN/UN;UN;UN,U Nj;.
Let o € N U Ng be a tree nonterminal or a string nonterminal. The idea is
that & will appear at positions in which the FCNS-encoding has exactly one
child (a right child), whereas the original « will appear when « is at a leaf
position. Nonterminals in R; U R, are used to keep the grammar small (they
are nonterminals for the rest of the production).

The productions in G are defined as follows. For every tree production
X € Ny with X — f(aq,...,a,) (>0, aq,...,a, € Ny UN;) we set

e If n =0, then:

X = fo and X(y) — fr(y). X; is not needed in this case.

o Otherwise:

X = fi(Xy), X(y) = fo(Xe,y) and  X; — (G2l - o1 (on)).

Note that the total size of these productions is at most n + 2.
For every string production X € Ny with X — f1---8, (n > 2 (wlog),
B, 8n € Nt UN,) we set

X = XS(Bn)v X(y) — XS(Bn(y)) and Xs(y) — Bl( - (Bn—l(y)))

These rules have total size n + 2. Hence the size of the grammar G is |D| +
2(|N¢| + |Ng|) and the time needed to construct the grammar is bounded by
O(IG[) = o(|DI). .

Note that all rules in G that have a parameter are of the form
Aly) = f(t,y)

where f € ¥ and t € T(XUN). Thus parameters may only appear as the right
child of the root node. The HDAG can be seen as a particular SLP-compressed
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DAG D = (N, Ny, %, Py, P,, S) where the SLP A = (N, (XU Ny), Ps)? is right
reqular, thus for every X € Ns we have rhs(X) € NN, U N and similarly
for every V€ N; we have v(V) € NXN; U N*. When transforming such an
SLP-compressed DAG into a monadic TSLP following the proof above, we do
not need the sets ]\73 and R, because the nonterminals from Ny always produce
suffixes of child sequences in the DAG. This implies the following:

Lemma 5.6. An HDAG that is represented as an SLP-compressed DAG D =
(N¢, N, %, Py, Ps, S) can be transformed in time O(|D]) into a monadic tree
grammar G such that eval(G) = fens(eval(D)) and |G| < |D| + 2| Ny|.

SLP-compressed DAG grammar construction. In this section we present
a possible algorithm to construct an SLP-compressed DAG in linear time (as-
suming the string compression algorithm needs linear time). To construct an
SLP-compressed DAG for a tree t, we first construct Gaag(t). Then we apply
a grammar-based string compressor (e.g. Re-Pair [LM99] or Sequitur [NW97])
to the child sequences of the DAG (which we view as strings). Since we want
to compress a set of strings instead of a single string, we concatenate all child
sequences separated by unique symbols. Thus if the child sequences of ¢ are
given by s1, S2,...,S, we compress

51815282 .. $n—15na

where $; ¢ X for i € [1..n— 1] with a grammar-based string compressor, yielding
an SLP A. Since the symbols $; are unique, they do not appear twice in the
right-hand sides of the rules in A and thus the start production of A can be
transformed without size increase to the form

S — A1$1A2$2 A $n_1An

where A; —} s1,...,4, =% sn. Then the productions associated with the
nonterminals Ay, ..., A, and the other productions introduced by the grammar
compressor yield the string grammar of the SLP-compressed DAG.

Algorithm 1 summarizes the procedure described above using an arbitrary
grammar-based string compressor.

input: tree t

let (A1 — f1(s1)),-.., (An — fn(sn))) be the rules in Gaag(t);

let s = 81$182$2 e $n—15n§

compress s, yielding SLP A;

add rules By, ..., B, to A such that s is of form B1$1B2$5...$,_1Bn;
return ((4; — f1(B1)),...,(An = fu(Bn)) | A);

Algorithm 1: DAG-and-String-Repair

Example 5.7. Consider the DAG grammar Gaag(t) = ({5, 4, B}, {g,a}, P, S)
where the productions in P are given by

S—g(A,B,A A B,A), A—g(a,a,a) and B — g(a,a,a,a,a,a).

2 As mentioned before, A may be treated as an SLP despite not having a start rule.
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We then use a string compressor on the string
ABAABAS$ aaa$2aaaaaa
which may yield the string grammar S with the productions
S’ — CC$:D$;DD, C — ABA and D — aaa.

Using S, we find that D = ({S, 4, B},{C, D},{g,a}, P;, Ps,S) is an SLP-com-
pressed DAG for ¢, where
P.={S—yg(C,C), A— g(D), B— g(D,D)} and
P, ={C — ABA, D — aaa}.
With Theorem 5.5 we get a monadic grammar G with F = {91, 9v, ar, a0} and
N={5,5,A,A B,B,,C,C,Cs,D,D, Dy} such that eval(G) = fens(eval(D)):
S = gi(Sr), St — C’(C’),
A= (D),  Aly) = g(D,y),
B(y) %gb(Bsay)a Bs %D(D)a
C—Cy(4),  Cly) = Cul(Ay), Culy) = AB(y)),
D = Dy(a),  D(y) = Dy(ar(y)); Ds(y) = ar(ar(y)).

Note that we omitted unused productions and productions of the form F — G.
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Chapter 6

Tree compression using
string grammars

In the previous chapter we investigated mixing string grammar and tree gram-
mar formalisms to compress a tree t. Given a tree t, Algorithm 1 first computes
the DAG grammar G of ¢, then calculates a string s from G, which is then
compressed by a grammar-based string compressor.

In this chapter we drop the intermediate step of constructing the DAG gram-
mar and examine the compression of the string given by the preorder traver-
sal. This necessitates that trees are ranked, since otherwise a tree cannot be
uniquely reconstructed from its traversal. As always, we may make an unranked
tree ranked by introducing ranked symbols or by using the FCNS-encoding.

At first it might seem that this approach is equivalent to an SLP-compressed
DAG in which the tree compression is trivial (i.e. every tree nonterminal occurs
on exactly one right-hand side), but this is not the case. Consider for exam-
ple the occurrence of ba in the preorder traversal of the tree f(f(a,b),a): This
pattern cannot be shared in an SLP-compressed DAG. Thus, on the one hand,
compressing the traversal pattern directly has the advantage that we can com-
press additional patterns, namely such patterns that are divided among different
subtrees. On the other hand, the grammar introduced contains less information
about the structure of the tree and thus certain algorithmic problems that are
easier for TSLPs might be significantly more complicated for SLP-compressed
traversals (like the evaluation of tree automata, which we show in Section 8.2).

6.1 Trees as preorder traversals

For the purpose of this section, we choose to define trees as particular strings
over the alphabet F, namely as those that represent preorder traversals: We
define the set T (F) as the subset of 7* defined inductively as follows: If f,, € F,,
withn > 0and ¢,...,t, € T(F), then also f,t1---t, € T(F). We will also use
the usual term notation of a tree if it improves readability. We address nodes
by their position in the tree’s preorder traversal, thus the root node is addressed
by 1, its first child by 2 and so forth.

We call a string s € F* a fragment if there exists a tree t € T(F) and a
non-empty string x € FT such that sz = t. Note that the empty string ¢ is a
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f f f f
/N N /N N
a a f a a a f
/ N / N
f a f
/ \ // \\
a a

Figure 6.1: The tree ¢ from Example 6.3 and the tree fragment corresponding
to the fragment ffaafff.

fragment. The number of gaps of a fragment s € F* is defined as the number
n of trees ti,...,t, € T(F) such that st;---t, € T(F), and is denoted by
gaps(s). The number of gaps of the empty string is defined as 0. Intuitively,
gaps(s) denotes the number of trees that are missing in order to make s a tree.
The following lemma shows that gaps(s) is indeed well-defined.

Lemma 6.1. The following statements hold:
o The set T(F) is prefiz-free, i.e. t € T(F) and tv € T(F) imply v =c.

o Ift € T(F), then every suffix of t factors uniquely into a concatenation
of trees from T (F).

e For every fragment s € F+ there is a unique n > 1 such that

{r e F*|sx e T(F)} =(T(F))".

Since T (F) is prefix-free we immediately get:

Lemma 6.2. For every w € F* there exist unique n > 0, t1,...,t, € T(F)
and a unique fragment s such that w =1ty ---t,s.

Let w € F* and let w = t1 ---t,s be as in Lemma 6.2. We define ¢(w) =
(n,gaps(s)). The number n counts the number of complete trees in w and
gaps(s) is the number of trees missing to make the fragment s a tree, too.

Example 6.3. Let t = ffaafffaaaa = f(f(a,a), f(f(f(a,a),a),a)) be the
tree depicted in Figure 6.1 with f € F» and a € Fy. Its height is 4. All

prefixes (including the empty word, excluding the full word) of ¢ are fragments.
The fragment s = ffaafff is also depicted in Figure 6.1 in a graphical way,
with dashed edges visualizing the gaps. We have gaps(s) = 4. For the factor
u = aafffa of t we have ¢(u) = (2,3). The children of node 5 (the third
f-labelled node) are the nodes 6 and 11.

6.2 Checking whether an SLP produces a tree

Let F be a ranked alphabet and let A be an SLP. We show that we can verify in
time O(|A|) whether val(A) € T(F). In other words, we present a linear-time
algorithm for the compressed membership problem for the language 7(F) C
F*. We remark that 7(F) is a context-free language, which can be seen by
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considering the grammar with productions S — fS™ for all symbols f € F,,. In
general the compressed membership problem for context-free languages can be
solved in PSPACE and there exists a deterministic context-free language with a
PSPACE-complete compressed membership problem [CMTV98, Lohl1].

Theorem 6.4. Given an SLP A, one can check whether val(A) € T (F) in time
O(|A]).

Proof. Let A = (N, F,P,S) be an SLP in Chomsky normal form (recall that
we can construct the Chomsky normal form of an arbitrary SLP in linear time)
and let A € N. Due to Lemma 6.2, we know that val(A4) is the concatenation
of trees and a (possibly empty) fragment. Define ¢(A) := c(val(4)). Then
val(A) € T(F) if and only if ¢(S) = (1,0). Hence, it suffices to compute ¢(A)
for all nonterminals A € N, which we do bottom-up:

If (A — f) € Pwith f € F,, then we have

o(4) = {(1,0) ifn=0

(0,m) otherwise.

Now consider a nonterminal A with the rule (A — BC) € P, with val(B) =
ty-- -ty s and val(C) =t} -, s, where t1,...,ty,,th,...,t. € T(F)and s, s’

are fragments with gaps(s) = by and gaps(s’) = co. Thus CEB) = (b1, b2) and
¢(C) = (e1,c¢2). We claim that

c(A) = {(b1 +ep —max{l,bo} +1,¢3) ifby<cy

(b1,c2 + b2 —c; —min{l,ca}) otherwise.
We distinguish two cases:

Case by < cy: If by > 1, then the string st} - -, is a tree, and thus val(A)
contains by + 1+ (¢; —be) complete trees and the fragment s’ with ¢y many
gaps. On the other hand, if by = 0, then val(A) contains b; + ¢; many
complete trees.

Case by < c;: The trees ti,...,t, fill ¢; many gaps of s, and if s’ # ¢, then
the fragment s’ fills one more gap, while creating another ¢y gaps. In total
there are ba — (¢1 + 1) + ¢ gaps if ¢3 > 0 and by — ¢1 gaps if co = 0.

O

We define a traversal SLP to be an SLP that evaluates to the traversal of a
tree.

6.3 Comparison with other grammar-based tree
representations

In this section we compare the worst-case size of traversal SLPs with the fol-
lowing two grammar-based tree representations:

e TSLPs, and

e SLPs for balanced parenthesis representation [BLRT15].
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6.3.1 Traversal SLPs versus TSLPs

In [BLMOS] it is shown that a TSLP A producing a tree t € T (F) can always be
transformed into a traversal SLP of size O(|A| - r) for ¢, where r is the maximal
rank of a label occurring in ¢ (thus for binary trees the size at most doubles).
We discuss the other direction in this section, i.e. transforming a traversal SLP
into a TSLP.

As shown already in Example 5.4, the gap between traversal SLPs and
TSLPs can trivially become exponential if the maximal rank of symbols is un-
bounded (we considered the tree family (f,a™)n>0, where f,, is a symbol of rank
n and a is a symbol of rank 0). It is less obvious that such an exponential gap
can be also realized with trees of bounded rank. In the following we construct
a family of binary trees (t,)ncn where a smallest TSLP for ¢, is exponentially
larger than the size of a smallest traversal SLP for ¢,,. Afterwards we show that
it is always possible to transform a traversal SLP A for ¢ into a TSLP of size
O(|A| - h-r) for t, where h is the height of ¢ and r is the maximal rank of a label
occurring in t.

Worst-case comparison of SLPs and TSLPs. Letw € ¥*. Withrev(w) =
an -+ +a1; we denote w reversed. Given two strings u,v € X*, the convolution
u®uv € (X x X)* is the string of length min{|ul,|v|} defined by (u ® v)[i] =
(u[d], v[i]) for 1 <4 < min{|ul, |v|}.

We use the following result from [BCRO8] for the previously mentioned worst-
case construction of a family of binary trees:

Theorem 6.5 (Theorem 2 from [BCROS8]). For every n > 0, there exist words
Up, Uy € {0, 1} with |u,| = |va| such that u, and v, have SLPs of size n®),
but the smallest SLP for the convolution u, ® v, has size Q(2"/2).!

For two given words u = iy -4, € {0,1}* and v = j; ---j, € {0,1}* we
define the comb tree

t(”?“) = f’ll(f’b2( .- f1n<$7jn) .- ~j2)7j1)

over the ranked alphabet { fo, f1,0, 1, $} where fo, f1 have rank 2 and 0, 1, $ have
rank 0. See Figure 6.2 for an illustration.

fir 1
RN VAN
fiz J1 0
f : 7N
in J2
- ~ RN
$ Jn $ 1

0

Figure 6.2: The comb tree t(u,v) for u = iy - in, v = j1---J, (left) and for
s =101, r = 011 (right).

1 Actually, in [BCROS8] the result is not stated for the convolution u, ® vy, but for the
literal shuffle of u, and v, which is un[l]vn[l]un[2]vn[2] - - un[m]von[m]. But this makes
no difference, since the sizes of the smallest SLPs for the convolution and literal shuffle,
respectively, of two words differ only by multiplicative constants.
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Theorem 6.6. For every n > 0 there exists a tree t,, such that the size of a
smallest traversal SLP for t,, is polynomial in n, but the size of a smallest TSLP
for t,, is in Q(27/2).

Proof. Let us fix an n and let u,, and v, be the aforementioned strings from
Theorem 6.5. Let |u,| = |vn| = m. Consider the comb tree ¢, = t(uy,vy).
Note that t,, = fi, - -~ fi, $rev(vy,), where u, =iy -+ ip,. By Theorem 6.5 there
exist SLPs of size n®®) for u,, and v,,, and these SLPs easily yield a traversal
SLP of size n®® for t,,.

Next, we show that a TSLP A for t,, yields an SLP of size O(]A|) for the
string u, Av,. Since a smallest SLP for u,, Av,, has size Q(Q”/z) by Theorem 6.5,
the same bound must hold for the size of a smallest TSLP for ¢,,.

Let A be a TSLP for t,. By [LMS12] we can transform A into a monadic
TSLP A’ for t,, of size O(]A]), which then can be transformed into an SLP S
for u, ® vy, also of size O(|A|) (using [BLMO0S]).

We can assume that every nonterminal in S except for the start nonterminal
S occurs in a right-hand side and in the derivation starting from S. At first we
delete all rules of the form A — j (5 € {0,1}) and replace the occurrences of
A by j in all right-hand sides. Now every nonterminal A # S of rank 0 derives
to a subtree of t,, that contains the unique $-leaf of ¢,,. Hence, ¢, contains a
unique subtree val(A4). This implies that A occurs exactly once in a right-hand
side. We can therefore, without size increase, replace this occurrence of A by
the right-hand side of A. After this step, S is the only rank-0 nonterminal in
the TSLP. With the same argument, we can also eliminate rank-1 nonterminals
that derive to a tree containing the unique leaf $. After this step, every rank-
1 nonterminal A(z) derives a tree of the form g¢1(ga(... (gx(x,jr) .- ), J2),j1)
(9: € {fo, f1} and j; € {0,1}).

Now, if a right-hand side contains a subtree f;(s1,s2), then sy must be either
0 or 1. Similarly, for every occurrence of ¢ € {0,1} in a right-hand side, the
parent node of that occurrence must be either labelled by fo or by fi (note
that the parent node exists and cannot be a nonterminal). Therefore we can
obtain an SLP for u, ® v, by replacing every production A(z) — t¢(z) by
A — A(t(x)), where A(t(z)) is the string obtained inductively by A(z) = ¢,
A(B(s(x)) = BA(s(x)) for nonterminals B, and A(fi(s(x),7)) = (4,5)A(s(x)).
The production for S must be of the form S — ¢($) for a term ¢(z) and we
replace it by S — A(t(x))$.

O

Conversion of traversal SLPs to TSLPs. Note that the height of the tree
t, in Theorem 6.6 is linear in the size of ¢,,. By the following result, large height
or rank are always responsible for the exponential succinctness gap between
traversal SLPs and TSLPs.

Theorem 6.7. Let t € T(F) be a tree of height h and mazximal rank r, and
let A be a traversal SLP for t with |A| = m. Then there exists a TSLP B
with val(B) =t such that |B| € O(m - h - 1), which can be constructed in time
O(m-h-r).

Proof. Without loss of generality we assume that A is in Chomsky normal form.
For every rule of the form A — f with f € F,, we add to B the TSLP-rule A; —
fifn=0or A(x1,...,2,) = f(z1,...,2,) if n > 1. For every nonterminal
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A of A with ¢(A) = (a1, a2) we introduce a; nonterminals A;, ..., A,, of rank
0 (these produce one tree each) and, if az > 0, one nonterminal A’ of rank as
for the fragment encoded by A. Now consider a rule of the form A — BC with
¢(B) = (b1,b2) and ¢(C) = (e1,¢2).

Case 1: If by = 0 we add the following rules to B:

A'L_>Bz fOrlSiSbl,
Ab1+i — Cz forl1 <i< Cc1,
Al(z1,. . ) = Cl(T1,y .o Tey) i ca >0,

Case 2: If 0 < by < ¢; we add the following rules to B:

A;, — B; for 1 <i < by,
App1 — B'(Ch,...,Ch)
Ap 4145 = Oy for 1 <i<ep —bo,
A1, Tey) = O (21, ..., e,)  if cg > 0.

Case 3: If by > ¢; we add the following rules to B, where d = by — ¢1:
Ai_>Bi fOI‘lSZSbl
and, depending on whether c¢5 = 0 or not, either

A(x1,...,2q) = B (Cy,...,Cs,21,...,24) o

A’(xl, e ,.T02+d_1) — BI(Cl, .. .,Ccl,cl(l‘l, e ,x62),x02+1, R 7x02+d—1)-

Chain productions, where the right-hand side consists of a single nonterminal,
can be eliminated without size increase. Then, only one of the above produc-
tions remains and its size is bounded by ¢; 4+ 2 (recall that we do not count
parameters). Recall that ¢; is the number of complete trees produced by C. It
therefore suffices to show that the number of complete trees of a factor s of ¢
is bounded by h - r, where h is the height of ¢ and r is the maximal rank of a
label in ¢. Assume that s = t[i : j] = t;---t,s, where t; € T(F) and ¢ is a
fragment. Let k be the lowest common ancestor of ¢ and j. If k =i (i.e., i is an
ancestor of j) then either s = t; or s = s’. Otherwise, the root of every tree ¢,
(1 <1< n)is achild of a node on the path from i to k. The length of the path
from i to k is bounded by h, hence n < h - r. O

Example 6.8. Let F = {a, f} with rank(a) = 0, rank(f) = 2 and consider the
tree t = fafafafafaa. A traversal SLP for ¢ is given by

S — A2A2A1a7 A2 — A1A17 Al — fa.
We obtain an TSLP with the following rules:

S = A5(A5(41(a)))), As(w) = AL (AL(2)), Ai(z) = f(a, ).
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Figure 6.3: An example tree for the proof of Theorem 6.9

6.3.2 Traversal SLPs versus balanced parenthesis repre-
sentation

Balanced parenthesis sequences are widely used as a succinct representation of
ordered unranked unlabelled trees [MRO1]. One defines the balanced parenthesis
representation bp(t) of such a tree ¢ inductively as follows: If ¢ consists of a single
node, then bp(t) = (). If the root of ¢ has n children in which the subtrees
t1,...,t, are rooted (from left to right), then bp(t) = (bp(#1) - - - bp(¢,)). Hence,
a tree with n nodes is represented by 2n bits, which is optimal in the information-
theoretic sense. On the other hand, an unlabelled full binary tree ¢ (i.e., a tree
where every non-leaf node has exactly two children) of size n can be represented
with n bits by viewing ¢ as a ranked tree over F = {a, f}, where f has rank two
and a has rank zero.

Theorem 6.9. For every n > 0 there exists an unlabelled full binary tree t,
such that the size of a smallest traversal SLP for t, is polynomial in n, but the
size of a smallest SLP for bp(t,) is in Q(2"/?).

Proof. Let us fix an n and let u,, v, € {0,1}* be the strings from Theorem 6.5.
Let |u,| = |v,| = m. We define ¢,, by
tn = @1(rev(un)) apa(vn)

where @1, 2 : {0,1}* — {a, f}* are the homomorphisms defined as follows:

¢1(0) = f, ©2(0) = a,
v1(1) = faf, v2(1) = faa.

It is easy to see that ¢, is indeed a tree: gaps(¢1(rev(uy,))) = m+1 and @3 (vy,) is
a sequence of m many trees. From the SLPs for u,, and v,, we obtain a traversal
SLP for t,, of size polynomial in n. It remains to show that the smallest traversal
SLP for bp(t,,) has size Q(2"/2). To do so, we show that from an SLP for bp(t,)
we can obtain with a linear size increase an SLP for the convolution of u,, and
v,. In fact, we show the following claim:
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Claim. The convolution w, ® v, can be obtained from a suffix of bp(¢,) by a
fixed rational transformation (i.e., a deterministic finite automaton that outputs
along every transition a finite word over some output alphabet).

This claim proves the theorem using the following two facts:

e Let A be an SLP. An SLP for a suffix of val(A) can be produced by an
SLP of size O(|A|) [Loh14].

e For every fixed rational transformation p, an SLP for p(val(A)) can be
produced by an SLP of size O(]A|) [BCR08, Theorem 1] (the O-constant
depends on the rational transformation).

To see why the above claim holds, it is the best to look at an example. Assume
that u,, = 10100 and v,, = 10010. Hence, we have

t, = p1(revi(uy))aps(vy,) = f f faf f faf a faaa a faa a.

This tree is shown in Figure 6.3. We have

bp(tn) = (C (OC € (OC O (00) 0) 0)) (00)) 0) .
00~ 0~ a \m)—’ N~~~ \(T)S/ ~—

1 1 (0,0) (1,0) (0,0)

=~ o«

the correspondence 0 = “(” and 1 = “(()(”, followed by “()” (which encodes
the single a between ¢1(rev(u,)) and @a(v,) in t,), followed by the desired
encoding of the convolution u, ® v,. The latter is encoded by the following
correspondence:

Indeed, bp(t,) starts with an encoding of the string rev(u,) (here 00101) via
(

0,00 = 0
(1,0) = 0)),
0,1) = (00)),
(L1 = (00

Thus a “0” (resp. a “1”) in the second component is encoded by “()” (resp. by
“(000)"), which corresponds to the tree a (resp., faa). A “0” (resp. a “17) in
the first component is encoded by one (resp. two) closing parenthesis.

Note that the strings

0); 0)), (001, (OON)

form a prefix code. This allows to replace these strings by the convoluted
symbols (0,0), (1,0), (0,1), and (1,1), respectively, by a deterministic rational
transducer. This shows the above claim. O

The depth-first-unary-degree-sequence (DFUDS) of an unlabelled tree ¢ is
defined as follows [BDMT05]: Traverse the tree in preorder and write down for
every node with d children the string ”(¢)” (d opening parenthesis followed by
a closing parenthesis). Finally, add an additional opening parenthesis at the
beginning of the string, which yields a well-balanced bracket expression. For
instance, for the tree g(f(a,a),a,h(a)) we obtain the DFUDS-representation

((0€0)))0)-
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Theorem 6.9 can be also interpreted as follows: For every n > 0 there exists
a full binary tree t,, such that the size of the smallest SLP for the DFUDS of ¢,
is polynomial in n, but the size of the smallest SLP for the balanced parenthesis
representation of t,, is in ©(2"/2). It remains open whether there is also a tree
family where the opposite situation arises.
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Chapter 7

Experiments

In this chapter we empirically compare the sizes of the different compression
schemes discussed so far. We include

e the DAG, BDAG and HDAG,

e the SLP-compressed DAG as described in Algorithm 1 of Chapter 5 us-
ing RePair as string compressor (abbreviated DAG-RP for DAG and Re-
Pair),

e traversal SLPs as described in Chapter 6, again using Re-Pair as string
compressor (abbreviated TravRP for traversal and Re-Pair), and finally

o TreeRePair [LMM13], where we set mazrank=1 since the other formalisms
return one-parameter grammars when transformed to a TSLP (abbrevi-
ated TreeRP).

As noted in Chapter 6, TravRP may only be used for ranked trees. Since the
trees in our corpora are unranked, we compress the traversals of the FCNS-
encoding of the trees in that case.

7.1 Corpora

We use three corpora of XML files for our tests. For each XML document we
consider the unranked tree of its element nodes; we ignore all other nodes such
as texts, attributes, etc. One corpus (Corpus I) consists of XML documents
that have been collected from the web, and which have often been used in the
context of XML compression research, e.g. in [BGK03, BLM08, LMM13]. Each
of these files is listed in Table 7.4 and the compressed sizes are listed in Table 7.4
and in Table 7.5. Precise references to the origin of these files can be found
in [LMM13]. The second corpus (Corpus IT) consists of all well-formed XML
document trees with more than 10,000 edges and a depth of at least four from
the University of Amsterdam XML Web Collection'. We decided on fixing a
minimum size because there is no necessity to compress documents of very small
size, and we chose a minimum depth because our subject is tree compression
rather than list compression. Note that out of the over 180,000 documents

Thttp://data.politicalmashup.nl/xmlweb/, last visited 11 June 2016
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Corpus Edges Depth Ch. p. Node

I 1748169 4.0 5.4
I 79465 7.9 6.0
11 1531 18 1.5

Table 7.1: Average document characteristics: Average number of edges, aver-
age depth and the average number of nodes per child. The latter two values are
unweighted.

Corpus Parse DAG HDAG DAG-RP TravRP TreeRP

I 35 43 46 48 91 175
I 85 105 120 117 247 310
111 6.9 8.7 9.2 10.0 8.0 14.8

Table 7.2: Cumulative Running times (in seconds).

of the collection, only 1,100 fit our criteria and are part of Corpus II (more
than 27,000 were ill-formed and more than 140,000 had less than 10,000 edges).
The documents in this corpus are somewhat smaller than those in Corpus 1,
but otherwise have similar characteristics (such as average depth and average
number of children), as can be seen in Table 7.1. The third corpus (Corpus
IIT) consists of term rewriting systems? (see Chapter 9). Here we compress the
entire XML-document tree structure (which also contains meta-information),
not just the term rewriting system contained within it. We chose to add this
third set of documents because its characteristics are atypical: While most
XML-documents are typically very shallow (but wide), files from the TPDB
can be quite the opposite (as the characteristics in Table 7.1 show).

7.2 Experiment Setup

For the DAG, BDAG and HDAG we built our own implementation. It is
written in C++ (g++ version 4.9.2 with O3-switch) and uses Libxml 2.6 for
XML parsing. For the Re-Pair-compressed DAG and traversal we use Gonzalo
Navarro’s implementation of Re-Pair®, which is written in C. For TreeRePair
we use Roy Mennicke’s implementation? (which is written in C++) and run
with maz_rank=1, which produces monadic TSLP grammars. Since the imple-
mentations were written by different teams the accuracy of the running times
is certainly limited.

Our test machine features an Intel Core i5 with 2.5Ghz and 4GB of RAM.

7.3 Comparison

On the DAG, BDAG and HDAG. Consider the accumulated numbers for
the three corpora in Table 7.3. For the corpora I & II the HDAG is about

2http://www.termination-portal.org/wiki/TPDB
Shttp://www.dcc.uchile.cl/~gnavarro/software/
4http://code.google.com/p/treerepair/
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Corpus Input Dag BDAG HDAG DAG-RP TravRP TreeRP

I 36712 5769 7161 4607 2095 1256 1267
IT 90036 13510 15950 10884 5162 3872 3957
III 2095 354 391 319 324 327 310

Table 7.3: Accumulated sizes (in thousand edges).

25% smaller than the DAG. The transformation to a monadic grammar (as in
Theorem 5.5) is very inexpensive: Corpus I increases to 4657 edges (an increase
of 1%) and Corpus IT increases to 11109 edges. On the other hand Corpus III
behaves differently: Here the improvement is only about 10%, and after trans-
forming the HDAG to a monadic grammar the grammar size is larger than the
DAG (362 vs. 354). This might be explained by the small number of average
children in Corpus III: Not only is the additional child suffix compression inef-
ficient, but also the transformation to a monadic grammar is rather expensive.
Note that also DAG-RP, TravRP TreeRP do not perform much better than the
DAG for Corpus III.

On DAG-RP, TravRP and TreeRP. The compression ratios of TravRP
and TreeRP are very similar. While the prior is (slightly) smaller for Corpus I
& TI, the latter is (slightly) smaller for Corpus III. Yet the differences never
exceed 5%. This is probably not too surprising: Consider the tree pattern
f(f(a,b),a). Opposed to TreeRP, TravRP may share the pattern ba but fails
to share (f,2,b). In other words, TravRP can find patterns that are scattered
across different trees but may fail to find a pattern from a node to a non-first
child.

Concerning runtimes, TravRP is significantly faster for all three corpora
(TravRP is between about 20% and 50% faster). The reason for this is most
likely that TreeRP needs to keep track of an expensive tree pointer data struc-
ture.

The larger difference is between DAG-RP and the other RePair-variants.
While the size of DAG-RP structures is significantly larger for Corpora I and II
(around 67% for Corpus I and about 33% resp. 30% in Corpus II), the runtime
is also equally better (about twice as fast as TravRP and three times as fast
as TreeRP). A possible explanation is that Re-Pair (both in its tree and in its
string version) is more expensive than a DAG construction, so when runtime is
important it is advantageous to construct the DAG before applying Re-Pair.
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File Edges DAG BDAG HDAG
1998statistics 28305 1377 2403 1292
catalog-01 225193 8554 6990 4555
catalog-02 2240230 32394 52392 27457
dictionary-01 277071 58391 77554 47418
dictionary-02 2731763 545286 681130 414356
EnWikiNew 404651 35075 70038 35074
EnWikiQuote 262954 23904 47710 23903

EnWikiVersity 495838 43693 87276 43691
EnWikTionary 8385133 726221 1452298 726219

EXI-Array 226521 95584 128009 95563
EXI-factbook 55452 4477 5081 3847
EXI-Invoice 15074 1073 2071 1072
EXI-Telecomp 177633 9933 19808 9933
EXI-weblog 93434 8504 16997 8504
JSTgene 216400 9176 14606 7901
JSTsnp 655945 23520 40663 22684
medline 2866079 653604 740630 466108
NCBIgene 360349 16038 14356 11466
NCBIsnp 3642224 404704 809394 404704
sprot39.dat 10903567 1751929 1437445 1000376
treebank 2447726 1315644 1454520 1250741

Table 7.4: The XML documents in Corpus I and their compressed sizes, part 1

File Edges DAG-RP TravRP TreeRP
1998statistics 28305 561 486 501
catalog-01 225193 4372 4113 3965
catalog-02 2240230 27242 29038 26746
dictionary-01 277071 32139 21541 22375
dictionary-02 2731763 267944 162658 167927
EnWikiNew 404651 9249 9394 9632
EnWikiQuote 262954 6328 6366 6608
EnWikiVersity 495838 7055 7067 7455
EnWikTionary 8385133 81781 81396 84107
EXI-Array 226521 905 908 1000
EXI-factbook 55452 1808 1417 1392
EXI-Invoice 15074 96 117 108
EXI-Telecomp 177633 110 132 140
EXI-weblog 93434 44 54 58
JSTgene 216400 3943 3691 4208
JSTsnp 655945 9809 10263 10327
medline 2866079 177638 119581 123817
NCBIgene 360349 6283 5108 5166
NCBIsnp 3642224 61 69 83
sprot39.dat 10903567 335756 268404 262964
treebank 2447726 1121566 524630 528372

Table 7.5: The XML documents in Corpus I and their compressed sizes, part 2
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Chapter 8

Algorithmic Problems

In the previous chapters we have discussed different formalisms for the compact
representation of (unranked) trees, namely the DAG, the BDAG, the HDAG,
the SLP-compressed DAG representation, TSLPs and traversal SLP. In this
section we want to discuss some algorithmic problems on these compressed tree
representations.

We identify the nodes of a tree ¢ with the positions 1,. .., |¢| in the traversal
of t. For a tree t and an integer m, t/m denotes the subtree of ¢ that is rooted
at the m'" node of t. Recall that (v) returns the list of children of a node v.

8.1 Subtree equality check

We start with the following processing primitive, called subtree equality check:
Given a tree ¢t and two nodes p, g, is t/p =t/q?

Theorem 8.1. Let t be an unranked tree with N nodes. Given g = dag(t)
or g = bdag(t) or an SLP-compressed DAG representation g (this includes the
HDAG) with eval(g) = t, one can, after O(|g|) time preprocessing, check for
given p,q whether t/p =t/q in time O(log N).

Proof. Let t € T(X). We first consider g = dag(t). For 1 < p < N let y, be
the unique node of g such that eval(y,) = t/p. Then t/p = t/q if and only if
Yp = yq- Hence it suffices to show that y, can be computed in time O(log N)
after O(|g|) time preprocessing. For this we use techniques from [BLR'15]: We
construct in time O(|g|) an SLP G for the word y1y2...yny € {1,..., N}*: We
introduce for every node v € g a nonterminal o. If y(v) = v1...,v,, then we
set O = vuy ... v,. Indeed we have eval(G) = y1y2...yn and |G| = |g|.

It now suffices to show that for a given number p € [1..N] the p'" symbol of
G can be computed in time O(log N) after O(|g|) = O(|G|) time preprocessing.
This is possible by [BLR'15, Theorem 1.1] (actually, G must be in Chomsky
normal form in order to apply this result, but that can also be done in time
Ollg)).

For an SLP-compressed DAG D = (N, Ng, X, Py, Py, S) for t, essentially the
same procedure as for the DAG applies. The set of nonterminals for the SLP
Gis {G | u € N¢} UNs. For u € Ny with v(u) = ag ..., (with oy € Ny U Ny)
we set 4 — udy ...d,, where d; = 0 if a; = v € N; and @; = «; otherwise.
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84 8.1. SUBTREE EQUALITY CHECK

The right-hand sides for the G-nonterminals from N are simply copied from
the string productions with every occurrence of a symbol u € N; replaced by .

Finally, for g = bdag(t) we proceed similarly. Let U be the set of the nodes
of g. Again we construct in time O(|g|) an SLP G. The set of G’s nonterminals
is {@ | w € U}. For every u € U with y(u) = ujus we set & — uayag, where
a; = ¢ if u does not have an ' child and «; = @; otherwise. Note that for given
preorder numbers 1 < p,q < N, the p'" symbol of eval(G) is equal to the ¢**
symbol of eval(G) if and only if the sibling sequences at the nodes p and ¢ are
equal, yet we want to check whether the subtrees rooted at p and ¢ are equal.
For this, assume that we have computed the p*® and the ¢* symbol y, and y,
of eval(G) as above. Then t/p = t/q if the following two conditions hold: (i)
Ayp) = A(y,) (rvecall that A(i) returns the label of the i*" node) and (ii) either
yp and y, do not have left children in g or the left children coincide. Since these
checks only require constant time, we obtain the desired time complexity. [

Note that the proof for the BDAG implies that we can check whether sibling
sequences coincide in BDAGs. Lemma 8.2 below shows that we can do this for
the DAG and the HDAG as well.

We observe that for TSLPs and for traversal SLPs a result such as the one
of Theorem 8.1 is not known. To our knowledge, the fastest way of checking
t/p =t/q for a given TSLP G for ¢ works as follows: Assume that the subtree
of t rooted at p (resp. q) consists of m (resp. n) nodes. Then we have to check
whether the substring of eval(G) from position p to position p +m — 1 is equal
to the substring from position g to position ¢+n —1. Using Plandowski’s result
[Pla94], this can be checked in time polynomial in the size of G.

Note that more efficient alternatives than Plandowski’s algorithm exist (see
[Loh12] for a survey), but all of them require at least quadratic time in the size
of the SLP grammar.

As mentioned before, one can compute a traversal SLP for a tree t from a
TSLP for ¢, thus subtree equality checking can be done for TSLPs in polynomial
time as well.

For DAGs, BDAGs and HDAGs we even have a stronger result, namely that
we can check equivalence of sibling sequences:

Lemma 8.2. Let t be an unranked tree with N nodes. Given g = dag(t) or
g = bdag(t) or g = hdag(t) we can, after O(|g|) time preprocessing, check for
given 1 < p,q < N, whether sibseq(p) = sibseq(q) in time O(log N).

Proof. The result for the DAG follows from the HDAG-case, since the HDAG
can be constructed from the DAG in time linear in the DAG’s size. The BDAG
case has already been proven in Theorem 8.1. Hence it remains to consider the
HDAG g. For this we assume that g is given as a SLP-compressed DAG g =
(Ny, Ng, X, Py, Ps, S) which is right reqular (see page 66 for a short discussion),
meaning that for every nonterminal X € Ny, ths(X) € N} N;UN_, and similarly
for every Y € N, we have v(Y) € N;N; U N;. After introducing additional
nonterminals, we can assume that for every X € N, we have rhs(X) € Ny N,UN,
and for every Y € N; we have y(Y) € NyU{e} (this transformation can be done
in time O(|g])). Then the elements of sib(t) \ ¢ correspond to the elements of N
(recall that sib(t) is defined as the set of all sibling sequences of ¢, see Chapter 4).

We now construct an SLP G as follows: The set of nonterminals of G is
{X | X € Ny} UN; and the set of terminals is Ny. The start nonterminal is the
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root r € N; of the HDAG. For every Y € N; we set

v 1€ ify(Y)=e,
X ify(Y)=X eN..

For every X € N, we set

v XvY if ths(X) = vY,v € N, Y € N,
Xv if rths(X) = X € N,.
Then sibseq(p) = sibseq(q) holds for 1 < p,q < N if and only if p = ¢ =1 or if
p>1,¢>1and the (p—1)5 symbol of eval(G) is equal to the (¢ — 1)5* symbol
of eval(G). We deal with the case p = ¢ = 1 separately because the sibling
sequence ¢ corresponding to the root of ¢ is not represented in eval(G).
O

8.2 Tree Automata

Tree automata are a generalization of the ubiquitous string automata to trees.
They play an important role in applications in which trees need to be processed
automatically. In this context the wuniform membership problem is of special
interest: It asks whether a given tree automaton A and accepts a given tree

teT(F).

Definition 8.3 ([CDG107]). A nondeterministic (bottom-up) tree automaton
is a tuple A = (Q,F,Qr,A) where @ is a finite set of states, F is a ranked
alphabet, Qr C @ is a set of final states and A is a set of transition rules of the
form f(q1,...,qn) — g, where f € F,, and q1,...,¢n,q € Q. A tree t € T(F)
is accepted by A if t =% ¢ for some ¢ € QF.

In [Loh01] it is shown that the uniform membership problem is complete
for LogCFL, which is contained in P: It is the closure of context-free languages
under logspace reductions. If the input tree is given by a TSLP, the uniform
membership problem is P-complete [LMO6].

Together with Theorem 5.5 we immediately get the following lemma:

Lemma 8.4. Given a tree automaton A and an SLP-compressed DAG grammar
D for a tree t, we can decide in polynomial time whether A accepts t.

In contrast, the problem is PSPACE-complete for traversal SLPs.

Theorem 8.5. Given a tree automaton A and an SLP A for a treet € T (F), it
is PSPACE-complete to decide whether A acceptst. Moreover, PSPACE-hardness
already holds for a fized tree automaton.

Proof. For the upper bound we use the following lemma from [LM13]: If a func-
tion f : ©* — I'* is PSPACE-computable and L C T'* is in NSPACE (log"(n)) for
some constant k, then f~1(L) belongs to PSPACE. Given an SLP A for the tree
t = val(A), one can compute the tree ¢t by a PSPACE-transducer by computing
the symbol ¢[i] for every position ¢ € {1,...,|t|}. The current position can be
stored in polynomial space and every query can be performed in polynomial
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time. As remarked above the uniform membership problem for explicitly given
trees can be solved in DSPACE(log?(n)).

For the lower bound we use a fixed regular language L C ({0,1}?)* from
[Loh11] such that the following problem is PSPACE-complete: Given two SLPs
A and B over {0, 1} with |val(A)| = |val(B)|, is val(A) ® val(B) € L?!

Let A= (Q,{0,1}%, A, qo, F) be a finite word automaton for L. Let A, B be
two SLPs over {0, 1} with |val(A)| = |val(B)| and let T be an SLP for the comb
tree t(u,v) where u = rev(val(A)) and v = rev(val(B)). We transform A into a
tree automaton At over {fo, f1,0,1,$} with the state set Q W {po,p1}, the set
of final states F' and the following transitions:

$ — qo,
i—p; forie{0,1},
fl((Lp]) — q/ for (Q7 (17])7q/) € A.

The automaton A accepts the convolution val(A) ® val(B) if and only if the tree
automaton Ar accepts t(u,v). O

It may be worth noting that the uniform membership problem is PSPACE-
complete for nonlinear TSLPs [LMO06].

8.3 Tree Navigation

In [BLR'15] it is shown that for a given SLP A of size n that produces the
balanced parenthesis representation (see Section 6.3.2) of an unranked tree ¢
of size N, one can produce in time O(n) a data structure of size O(n) that
supports navigation as well as other important tree queries (e.g. lowest common
ancestors queries) in time O(log N). An analogous result is known for top
DAGs [BGLW15], see also [HR15]. Both results use the word RAM model?,
where memory cells can store numbers with log N bits and arithmetic operations
on log N-bit numbers can be carried out in constant time. Here we show the
same result for traversal SLPs.

Theorem 8.6. Given a traversal SLP A of size n for a tree t € T(F) of size
N, one can produce in time O(n) a data structure of size O(n) that allows to
do the following computations in time O(log N) < O(n) on a word RAM, where
i,5,k € Nwith 1 <i,7 <N are given in binary notation:

1. Compute the parent node of the node i > 1 in t.
Compute the k** child of the node i in t, if it exists.
Compute the number k such that i > 1 is the k' child of its parent node.

Compute the size of the subtree rooted at the node i.

Svo e e

Compute the lowest common ancestor of the nodes i and j in t.

IRecall that v ® u denotes the convolution of the strings u and v, see page 72.
2Also known as transdichotomous model [FW93].
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Recall that in [BLMOS] it is shown that a TSLP A producing a ranked tree
t € T(F) can always be transformed into a traversal SLP of size O(|A] - r)
for t, where r is the maximal rank of a label occurring in ¢t. Thus, by prior
transforming an TSLP to a traversal SLP, Theorem 8.6 also applies to TSLPs
for ranked trees.

Proof. In [BLR*15] it is shown that for an SLP A of size n that produces a
well-parenthesized string w € {(,)}* of length N, one can produce in time O(n)
a data structure of size O(n) that allows to do the following computations in
time O(log N) on a word RAM, where 1 < k, j < N are given in binary notation
and b e {(,)}:

e Compute the number of positions 1 < ¢ < k such that w[i] = b (rank,(k)).
e Compute the position of the k*® occurrence of b in w if it exists (select,(k)).

e Compute the position of the matching closing (resp., opening) parenthesis
for an opening (resp., closing) parenthesis at position & (findclose(k) and
findopen(k)).

e Compute the left-most position i € [k, j] having the smallest excess value
in the interval [k, j], where the excess value at a position i is rank(i) —

ranky (i) (rmqi(k, j)).

Let us now take a traversal SLP A of size n for a tree t € T(F) of size N and
let s be the corresponding unlabelled tree.

Recall the definition of DFUDS-representation [BDMT05] of a tree s (from
page 76): Walk over the tree in preorder and write down for every node with
d children the string “(?)”. Finally add an additional opening parenthesis at
the beginning of the resulting string. Clearly, from the traversal SLP A we can
produce an SLP B for the DFUDS-representation of the tree s: Simply replace
in the right-hand sides every occurrence of a symbol f of rank d by (¢), and add
an opening parenthesis in front of the right-hand side of the start nonterminal.

The starting position of the encoding of anode i € {1,..., N} in the DFUDS-
representation can be found as selecty(i — 1) 4+ 1 for i > 1, and for ¢ = 1 it is 2.
Vice versa if k is the starting position of the encoding of a node in the DFUDS-
representation, then the preorder number of that node is rank(k — 1) + 1.

In [BDMT05, JSS12], it is shown that the tree navigation operations from
the theorem can be implemented on the DFUDS-representation using a constant
number of rank, select, findclose(k), findopen(k) and rmqi-operations. Together
with the above mentioned results from [BLR'15] this shows the theorem. [

The data structure of [BLR*15] allows to compute the depth and height of
a given tree node in time O(log N) as well. It is not clear, whether this result
can be extended to our setting as well. In [JSS12] it is shown that the depth of
a given node can be computed in constant time on the DFUDS-representation.
But this uses an extra data structure, and it is not clear whether this extra
data structure can be adapted so that it works for an SLP-compressed DFUDS-
representation. On the other hand, in [GHLN15] it is shown that the height
of the tree and the depth of a given node of a traversal SLP be computed in
polynomial time.

87



88

8.3. TREE NAVIGATION

88



Chapter 9

Accelerated computation by
compression in term
rewriting

In the last chapter we treated algorithms on compressed data. In this chapter
we show an example on how compression can lead to faster runtimes. The appli-
cation we highlight is automatic termination proving of term rewriting systems
(TRS) and the results were first presented in [BLNW13]. Here one is given a
term rewriting system, which consists of a set of rules on how terms can be
manipulated (a precise definition is given below) and the question of interest is
whether the given system terminates for every input. This question also arises
in applied settings, e.g. compiler construction. Other important questions in
this context are whether a given TRS is normalizing, meaning that every term
has a unique normal form, or whether a given system is confluent, meaning
that terms can be rewritten differently, yet yielding the same result. We do not
address these properties in this chapter.

Term rewriting systems are Turing-complete, and thus it is clearly not sur-
prising that the general question (whether a given TRS is terminating) is unde-
cidable. Nevertheless, in some cases termination can be proven automatically.

Example 9.1. As a first example, consider the string rewriting system S over
Y = {a, b} with the rules {(abb — b), (ba — a)}. Since both rules reduce the
length of the string, it is clear that the rules can only be applied a finite number
of times for every string s, and thus this system is terminating.

Example 9.2. Let P = Z[x] be the set of all integer polynomials, let a,b € Z,
f+g € Z]z] and let R be given by

R ={d.c— 0, dy(az” + bz™) = dyax™ + d bz™,
dpa" — na" ", do(f-9) = dof g+ f-dug}.

Then applying rules from R act as symbolic differentiation on P. Since every
rule either reduces the number of d, -symbols or the number of brackets, this
system is also terminating.
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For both examples we proved termination by a monotone embedding of the
rules set into (N, >).

Other embedding options are polynomials [Lan79] and matrices [EWZ08].
We focus on matrix interpretations. Here, one interprets the function symbols
of the term rewriting system as linear mappings represented by matrices. This
way termination can be proven e.g. if every application of a rule lessens a (set
of) parameter(s), much like every rule application from Example 9.1 makes the
parameter size smaller.

The conditions of monotonicity and compatibility with the given rewriting
system result in a constraint system for the coefficients of the matrix interpre-
tation. Constraint solvers are used to obtain an actual interpretation. The aim
of the compression here is to minimize the number of involved matrix multipli-
cations in the interpretation. Our experiments show that this leads to smaller
constraint systems, which result in faster runtimes for the constraint solvers.
Since our focus here is on minimizing the number of matrix multiplications, we
will treat the constraint system solver as a black box.

The rest of this chapter is structured as follows. In Section 9.1 we provide
some context on term rewriting and termination proving, including the matrix
interpretation we use here. In Section 9.2 we first recall the algorithm TreeRe-
Pair from [LMM13] and then show how TreeRePair can be adjusted to minimize
the matriz multiplication cost of a term rewriting system. We call the new al-
gorithm MCTreeRePair (MC for matriz cost). In Section 9.3 we discuss using
MCTreeRePair together with the dependency pairs transformation. Section 9.4
shows the results of the experiments we made. Finally Section 9.5 poses some
open problems.

9.1 Term Rewriting

In this section we provide the necessary background from term rewriting. For
a detailed discussion we refer to [BN98]. Let F be a ranked alphabet (also
called signature in the context of term rewriting) and let & be maximal such
that Fj # 0. In this section we will refer to elements from 7 (F') as terms rather
than trees and view terms as prefix-closed sets:

Definition 9.3. A term over F is a pair t = (D, \) where D is a finite prefix-
closed and non-empty subset of {1,...,k}* and X is a function from D to F
such that for all p€ D and 1 <d < k: pd € D iff 1 <d < rank(A(p)).

Elements from D are also called nodes or positions. The size of a tree is
defined as the number of nodes it contains. Let V be a set of variables. We
define T(F,V) = T(FUV). For a term t € T(F,V), let Var(t) be the set of
all variables in ¢ that occur at least once in t.

Definition 9.4. A term rewriting system (TRS) over the signature F is a finite
set R € T(F,V) x T(F,V) of rules such that for every rule (I — ) € R we
have | ¢ V and Var(r) C Var(l). The one-step rewriting relation is defined as
usual.
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CHAPTER 9. ACCELERATED COMPUTATION BY COMPRESSION 91

9.1.1 Termination and matrix interpretations

Definition 9.5 ([Zan94]). Let F be a ranked alphabet. A well-founded mono-
tone F-algebra (S, >) is defined as an F-algebra S, such that the underlying set
is equipped with a well-founded order > and each algebra operation is strictly
monotone on all of its coordinates.

Next we define our matrix interpretations. We fix a semiring S (the ring of
matrix coefficients) and a dimension n. For a set of variables U C V' we denote
by (S™)Y the set of all mappings from U to S™.

We want to interpret a term ¢ with m different variables as an m-ary function
(S™)™ — S™. Moreover, we fix for every symbol f € F,, matrices Fi,...,F, €
S™*™ and a vector Fy € S™. This allows us to define the linear function [f] by

[f}(xlv"'vx’m.):F0+F1xl+"'+mem, (91)

where x1,..., 2, € S™. Now let t € T(F,V) be a term with U = Var(t). The
interpretation [t] : (S™)V — S™ is computed by composing the interpretations
for the ranked symbols in the natural way: Let t = f(¢1,...,t). Then [t](Z) =
[F1([t1](Z1), - - -, [te)(Zk)), where € (S™)V and Z; is the restriction of Z to
Var(t;) CU.

We say that a non-empty well-founded monotone F-algebra S is compatible
with a TRS if [ >4 r for every rule [ — r in the term rewriting system.

Theorem 9.6 ([Zan94], Prop. 1). A TRS is terminating if and only if it admits
a compatible non-empty well-founded monotone algebra.

Define > as follows:
(al,...,an) > (bl,...,bn) S ap >bi Nap > bifori:2,...,n.
Theorem 9.6 and the above definitions show a way to prove termination: If the
TRS allows a compatible interpretation to (N, >) for a suitable dimension n,

then it is terminating.
The following example is from the termination database [TPD].

Example 9.7. Consider the TRS R consisting of the rules

f(@,c(y) = Sz, s(f(y,9))),
fs(x),s(y)) = f(z,s(

o)
—

@
—
<
=
N
=
Nt

The matrix interpretations



92 9.1. TERM REWRITING

[Term Rewriting System}
Matrix Int;rpretation
[Constrairit system]
Constraillt solver
[Formula in proipositional logic]
SAT lsolver

yes/no/maybe

Figure 9.1: Automatic Termination proving
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Thus, given a TRS, a termination prover sets up a constraint system for
the coefficients of the matrix interpretation. Typically, the dimensions of these
matrices are small (e.g. n < 5, see Section 9.4). Note that this still results in a
huge search space. Then the unknown coefficients are represented by sequences
of boolean unknowns and the constraints are transformed to a formula in propo-
sitional logic, after which a SAT solver is used to find a satisfying assignment,
from which the interpretation may be reconstructed. Figure 9.1 visualizes the
process of automatic termination proving.

9.1.2 Cost of terms

We next define a cost measure for terms that approximates the amount of com-
putation that is needed to calculate the coefficients of the linear function that
is represented by the term. We are mainly interested in the number of neces-
sary matrix-matrix multiplications. This is justified by the higher asymptotic
runtime (O(n?)) of matrix multiplication as opposed to matrix-vector multipli-
cation or matrix addition (O(n?)). Since the dimension of the chosen matrices
is typically small (as mentioned before), matrix multiplication algorithms with
asymptotic runtime better than O(n3) (e.g. Strassen’s algorithm) are not of
interest here.

Let t = f(t1,...,tm) € T(F,V) and U = Var(t) = {z1,...,zr}. Recall
that t represents a linear function [t] : (S™)Y — S™, which can be written as
To+Tix1+ -+ Tgay with Ty € S™and Th, ..., T, € S™*™. Define coeff,, (t) = T;
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CHAPTER 9. ACCELERATED COMPUTATION BY COMPRESSION 93

and assume that all the coefficient matrices of ¢, coeff,(¢1),...,coeff,(¢,,), are
already known. Then we can compute coeff, (t) by

coeff . (t) = ZFl - coeff ;. (t;),
i=1

where F; is from (9.1), and we set coeff,(t;) = 0 if = ¢ Var(¢;). Note that the
multiplication is trivial if x = ¢;. This motivates the following definition:

Definition 9.8. The (matriz multiplication) cost of a term t = (D,)\) €
T(F, V) is

cost(t) = > |Var(t/p)|. (9.2)

peD\{e},A(p)¢V

The cost of a tuple (¢1,...,t,) of terms is Y ;- cost(¢;).

Note that this definition models a bottom-up evaluation where we do not
use any caching, memoization, etc.

Example 9.9. Continuing Example 9.7, we have

cost(f(z,c(y))) =1, 2
cost(f(s(x),5(y))) =2, cost(f(z,s(c(s(y))))) = 3.
and rank(0) = 0 and consider the TRS

Wz, f(y, z)) = h(f(s(y), ©), 2),
h(f(s(x), f(s(0),9)),2) = h(y, f(s(0), f(z, 2)))-

Then we have

cost(h(z, f(y,2))) = 2, cost(h(f(s(y),x), z))
cost(h(f(s(z), f(s(0),y)),2)) =4,  cost(h(y, f(s(0), f(,2))))
Figure 9.2 shows a detailed computation of the coefficients of the interpretation

of the term h(f(s(z), f(s(0),y)), z). This example has been taken from [EWZ08]
and also appears in [BLNW13].

3,
4.

9.2 Term Compression with TreeRePair

9.2.1 TreeRePair

We first provide a detailed description of the TreeRePair-algorithm [LMM13]
(see also Section 2.3.2). Let F be a ranked alphabet.

Definition 9.11. A digram over F is a triple d = [f, 1, g], where f,g € F and
i € [1..rank(f)]. The rank rank(d) of a digram is rank(f) + rank(g — 1).

We regard a digram d as a new symbol of rank rank(d).
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t = @ coefficients of variables:

Hy, H1 H, coeff,(t1) = Fy - S1
1 »/1; o @ coeﬁy(tl) = F2 . F2
' . coeff,(t) = Hy - coeff;(t1)
Fy, F Fy coeffy (t) = Hy - coeff, (t1)
1 @ tQZ\QJQ absolute parts:
So S Fr F F coeff1(t3) = S1 - 0p

1/ @ 1 /t3 — @ @ Coeﬁl(tg) = FO + F1 . coeffl(tg)

coeﬁl(tl) = FO + F1 . SO
, + Fy - coeffy(t2)
1/ @ coeffl(t) =Hy+ Hy - coeffl(tl)

Figure 9.2: Bottom-up computation of the coefficient matrices of the term

h(f(s(x), f(5(0),9)), 2).

Definition 9.12. To the digram d = [f, 4, g] with rank(d) = n and rank(g) =
we associate the rewriting rule

rule(d) = (d(xl, .. .an) — f(xl, R xi_l,g(aji, R 7xi+l—1)7xi+l7 .. ..Z‘n)).

With rule(d) ™! we denote the reverse rule

flar,.cxim1, 9(Tiy o Tigio1), Tigds - - - Tp)) = d(T1, ... Ty

The right-hand side of the rule rule(d) can be seen as the tree pattern rep-
resented by the digram d.

Definition 9.13. A compressed term list is alist (¢1,...,ty | d1,...,d,), where

e for each 1 < i < n, d; is a digram over the signature F U {dy,...,d;_1},
and

e foreach 1 <i<m,t, € T(FU{dy,...,d,},V).

The idea is that a compressed term list (¢1,...,tm | di,...,d,) represents
the term list (si,...,8,) that is obtained by replacing nodes labelled with
digram symbols by the corresponding tree patterns (of size 2). This motivates
the following definition:

Definition 9.14. Let (t | d) = (t1,...,tm | di,...,d,) be a compressed term
list. The expansion of (¢ | d) is the list (s1,. .., $m) where s; is the unique normal
form of ¢; with respect to the (confluent and terminating) term rewriting system

{rule(dy),...,rule(d,)}.
Example 9.15. As in Example 9.10, let rank(h) = rank(f) = 2, rank(s) = 1,
rank(0) = 0, and consider the following compressed term list:

([0 2, fI(2, 9, 2), [[2s1, f], 18]y, @, 2),

(7, 1, £1,1, 8](x, f(5(0),9), 2), [7:2, F1(y, 5(0), f (2, 2)) |
[h, L f], [h, 2, £, (TR, 1, £, 1, 8]).
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CHAPTER 9. ACCELERATED COMPUTATION BY COMPRESSION 95

[[h, 1, f],1, 5]

Figure 9.3: The replaced digrams from Example 9.15.

The expansion of this list is the following term list consisting of the terms from
Example 9.10:

(h(z, f(y,2)), h(f(s(y), ), 2), h(f(s(x), f(5(0),9)), 2), h(y, f(s(0), f (=, Z)()g))g-)
Figure 9.3 shows the replaced digrams of two terms from the above list. '

In our applications, a term list will be a list of all left-hand and right-hand
sides of a TRS. If term (list) compression is the main objective, then the goal is
to compute a small compressed term list whose expansion is the input term list.
For this let us define the size of a compressed term list (¢1,...,tm | di,...,dy)
as Y .-, |[t;| + n. This definition is justified by the fact that a digram can be
stored by two symbols (either symbols from the initial signature or references
to previously defined digrams) and an integer, which needs constant space in
a uniform cost model. In Example 9.10 the compressed term list has size 25,
whereas the expanded term list has size 28.

Let d = [f,i,9] be a digram and let ¢ = (t1,...t,) be a term list with
try = (Dg, i) for k € [1.n]. An occurrence of d in ¢ is a pair (j,p), where
j € [1..n] and p is a position where d occurs, i.e. p € D;, A(p) = f and A(pi) = g.
A set Occy(t) of occurrences of d in t is non-overlapping if for every (j,p) €
Occq(t) : (4,pi) ¢ Occq(t). If f # g then every occurrence set is trivially
non-overlapping. For non-overlapping occurrence sets we can apply the rewrite
rule rule ' (d) at every occurrence of d in Occy(f) simultaneously. Let t’ with
J € [L..n] be the resulting terms. We write (t1,...,%n) —0ccy(®) (t15---»tn)-

Let maxy(t) be the maximal size among all non-overlapping sets of occur-
rences of d in t. We can easily determine a set maxOccy(¢) of non-overlapping
occurrences of d with |maxOccy(t)| = max,(?):

If f # g, we simply set maxOccy(f) = Occq(f). Otherwise we obtain
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96 9.2. TERM COMPRESSION WITH TREEREPAIR

maxOccy(t) as follows. For every maximal chain p,pi,...pi* of positions in
D; such that \(pi') = f for every f € [1..k], we do the following: If k is odd,
we add the pairs (4,p), (4,pi%), ..., (j, pi* 1) to maxOccy(f). Otherwise we add
(7,p), (4,pi%), ..., (j,pi* %) to maxOccy(f). In the even-sized case we could
have added (j,pi), (j,pi®), ..., (j,pi* ') to maxOccy(t) instead and also obtain
a set of size max(d,t). We chose the first option instead because it is the better
choice for our adaption of TreeRePair, as will become clear in the next section.
Setting t = (t1,...,t,) and d as a set of digrams, a high-level description of the
TreeRePair algorithm looks as follows:

input: term list ¢ = (t1,...,tn);

d=10;

while 3d : max4(t) > 1 do
let d be a digram such that maxy(f) > maxy (t) for all digrams d’;
let @ be such that # —naxoce, (7) U

Algorithm 2: TreeRePair

Bounding the maximal rank and self-overlapping digrams. In the im-
plementation of TreeRePair from [LMM13] the user can specify a parameter r
which bounds the maximal rank of the digrams considered (i.e. only digrams d
with rank(d) < r are replaced). This has two advantages:

1. This may lead to better compression rates, and actually did so for the test
data in [LMM13] (which are large tree structures defined by XML files).

2. Bounding the maximal rank of digrams improves the runtime drastically.

Though the first point may seem surprising at first, it does make sense from a
statistical point of view: By bounding the maximal rank of the digrams con-
sidered, we keep the ranks of the tree nodes smaller. In return this reduces the
number of possible different digrams, which increases the probability that some
digrams occur more frequently. See [LMM13] for a further explanation and
a tree family where bounding the maximal rank leads to exponentially better
compression.

Regarding the second point, recall that a naive implementation of TreeRe-
Pair, which counts the digram frequencies anew at the beginning of each itera-
tion of the while-loop, takes quadratic time. To achieve linear runtime instead,
the implementation of [LMM13] chooses a pointer structure that only needs a
constant amount of updating per while-iteration, yet possibly loses some oc-
currences of self-overlapping digrams. Since our adaption of TreeRePair uses
the same principles, we elaborate on the respective implementation details.

The input terms of # are represented as pointer structures, where every
node stores a pointer to its parent node and a list of pointers to its children.
An occurrence d = (j,p) of a digram in t is represented by a pointer to p in
t;. Initially we save for each digram d every occurrence from maxOccy(t) in a
doubly linked list, one for every digram and the size of maxOccy(f) is counted.
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This can be done in a single pass over the term list . Each time an occurrence
(4, p) of a digram is replaced, the following steps are done:

1. We delete the node pi of ¢}, set the parent pointer for every child pik (with
k € [1..rank(g)]) to p and insert the list of pi’s children into the child list
of p. Finally we change the label of p to d.

2. We remove digrams d’ that overlap with the replaced occurrence of d from
their respective digram lists and decrement the count values accordingly.

3. We create new digram lists for digrams that are introduced by the replace-
ment step (i.e. digrams of the form [f, k, d] or [d, k, f]) and set their count
values accordingly.

Assume that rank(f) = m and rank(g) = n. Then at most m + n digram
occurrences overlap the replaced occurrence d at position p. The rank of d is
n 4+ m — 1. Hence, if we replace only digram occurrences of rank at most 7,
then at most r 4+ 1 digram occurrences overlap the replaced occurrence of d at
position p. Thus only a constant number of updates is necessary per digram
replacement. This way the runtime of TreeRePair stays linear.

A problem arises with self-overlapping digrams of the form [f,i, f]. As an
example, consider a term list ¢ including the term f(a, f(b, f(c,d))). The oc-
currence of dy = [f,2, f] at the root position e would belong to maxOccq, (1),
whereas the second occurrence of dy at position 2 would not. Now assume that
we replace the digram [f,1,a] in ¢, obtaining A;(f(b, f(c,d))). If we would
recompute the set maxOccy, (f) anew from scratch, the occurrence of dy at po-
sition 1 would be inserted into the list maxOccy, (f). Yet in the implementation
above that occurrence is lost.

9.2.2 Minimizing the matrix multiplication cost

We now present our adaption of TreeRePair, MCTreeRePair (for matriz cost
TreeRePair), which aims at reducing the matrix multiplication cost of a given
term list. First we define the (matrix multiplication) cost of a digram and of a
compressed term list:

Definition 9.16. The (matriz multiplication) cost of a digram d is cost(d) =
rank(d).

The (matriz multiplication) cost of a compressed term list (t1,...,¢m |
dl,--~7dn) is
m n
cost(ty, ..., tm | di,...,dp) = Z cost(t;) + Z cost(d;). (9.4)
i=1 i=1

Let (s1,...,5m) be the expansion of (t | d) = (t1,...,tm | d1,...,d,). We

can compute the coefficients of the linear functions [s1], ..., [sy,] with cost(t | d)
many matrix multiplications.
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98 9.2. TERM COMPRESSION WITH TREEREPAIR

Example 9.17. Let us compute the cost of the compressed term list from
Example 9.15. We have:

cost([h, 2, fl(x,y, 2)) =0, cost([h, 1, f]) = 2,

cost([[h, 1, f], 1,5](y,x,z)) 0, cost([h, 2, f]) = 2,

cost([[h 1, f1, 1, 8]z, £(5(0), ), 2) =1, cost([[h, 1, f],1,8]) = 1,
cost([h,2, f](y, 5(0), [z, 2))) =2

Hence, the total cost is 8. In contrast, the cost of the expanded term list in (9.3)
is 13.

Definition 9.18. Let d = [f,i,9] be a digram and let £ = (¢1,...,%,) be a
term list with ¢; = (Dj, A;). The savings of a non-overlapping set of occurrences
Occy(t), briefly save(Occy(?)), is defined as follows:

save(Occy(t)) = —cost(d) + Z |Var(t;/pi)|. (9.5)
(j,p)€Occq(t)

Thus we add to the negative cost of d for each digram occurrence (j,p) €
Occ,(f) the number of different variables below the i*® child of the node p (which
is the lower digram node). By the following lemma, save(Occy(?)) is exactly the
cost-reduction obtained by replacing all digram occurrences from Occy(?).

Lemma 9.19. Let (f | d) be a compressed term list with t = (t1,...,tn), let
d=f,1,g] be a digram, and let Occy(t) be a non-overlapping set of occurrences
ofdint. Let (t) =occ,@ (t1,---,ty,). Then we have

cost(th, ..., t., | d,d) = cost(t | d) — save(Occq(t)). (9.6)

Proof. Let Occjq(t) = {p | (4,p) € Occq(t)}. Using (9.4) and (9.5), it follows
that (9.6) is equivalent to

Z cost(t Z cost(t Z [Var(t;/pi)|.

(Jm)EOCCd(f)

This follows from

cost(t;) = cost(t;-) + Z |Var(t;/pi)|

p€0cc;, a(f)

for all 1 < 5 < m. But this is a consequence of (9.2). Applying the rule
rule(d)~! at all positions p € Occ;4(f) in ¢; means that we remove all nodes
pi with p € Occ; 4(t) from ¢;. Moreover, for all other nodes of ¢; the number
of different variables below the node does not change. Also note that for all
p € Occj 4(t), the node pi of ¢; is not labelled with a variable. O

By Lemma 9.19, in order to reduce the cost of a (compressed) term list
maximally, we have to find a non-overlapping set of occurrences (of some digram
d) with maximal savings.

Definition 9.20. Let d = [f,1,g] be a digram, let ¢ = (¢1,...,t,) be a term
list. Define maxsave,(¢) as the maximum of save(Occy(t)), where we maximize
over all non-overlapping sets of occurrences Occy(Z).
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Recall the definition of the non-overlapping occurrence set maxOcc,y(f) from
Section 9.2.

Lemma 9.21. We have save(maxOccy()) = maxsavey(?).

Proof. Let d = [f,i,g]. The case f # g is clear, since then maxOccy(?) is the
set of all occurrences of d in . Now assume that f = g. Recall that we obtain
maxOcc,(#) by considering all maximal chains of positions p, pi, pii, .. ., pi* € D;
in a term t; = (D;, \;) from our list such that \;(pi®) = f forall 0 < ¢ < k. If k
is odd, we put the occurrences (j,p), (§, pi%), ..., (j,pi*~!) into maxOccy(f). If
k is even, we put the occurrences (4, p), (4, pi?), ..., (4,pi*2) into maxOccy(?).
Note that for even k, the set of occurrences {(j,pi), (4,pi%), ..., (4, pi*~1)} has
the same size as the chosen set of occurrences {(j,p), (j,pi?), ..., (j,pi*~2)}.
But the latter gives a larger (or the same) savings according to (9.5), since
Var(t;/pi*!) C Var(t;/pi‘) and thus |Var(t;/pi*t1)| < |Var(t;/pi*)| for all
0<l<k-1 O

We include a high-level description of MCTreeRePair.

input: term list ¢t = (¢1,...,t,);
d = 0;
while 3d : maxsavey(t) > 1 do
let d be a digram s. th. maxsavey(t) > maxsavey (t) for all digrams d';
let @ be s. th. t —max0ceq(®) U
t:=u;
d:= (d,d);
end
return (Z | d);
Algorithm 3: MCTreeRePair

Here is a complete example run of MCTreeRePair.

Example 9.22. Let rank(h) = rank(f) = 2, rank(s) = 1 and rank(0) = 0.
Consider the following term rewriting system (which consists of the terms from
Example 9.10):

Wz, £y, 2)) = h(f(s(y), ©), 2),
h(f(s(x), £(s(0),9)), 2) = h(y, f(s(0), f (=, 2))).

The matrix multiplication cost of this TRS is 13, see Example 9.10. The
maxsave-values of the digrams in this system are (we omit the second parameter
in maxsave for the term list):

maxsave(h, 1, f) =2, maxsave(f,1,s) =1, maxsave(s,1,0) =0,
maxsave(h, 2, f) =2, maxsave(f,2, f) = 1.

Let us decide to replace the digram d := (h, 1, f) (we could also choose (h,2, f)).
We obtain the following system:

Wz, fy,2)) = d(s(y), =, 2),  d(s(x), [(5(0),y),2) = h(y, f(s(0), f(x, 2))).
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The new maxsave-values are:

maxsave(h, 2, f) =2, maxsave(f,2, f) =0, maxsave(f,1,s)=—1,
maxsave(d, 1,s) =1, maxsave(d,2, f) = —1.

Next we replace the digram e := (h, 2, f) and obtain the system:

e(@,y,2) = d(s(y),x,2),  d(s(x), [(5(0),9),2) = ey, s(0), f(,2)).

At this point, f := (d, 1, s) is the only digram with a strictly positive maxsave-
value, namely 1. Hence, we replace this digram and get the final compressed
system

e(@,y,2) > fly,x,2), [z, f(s5(0),9),2) = e(y, 5(0), f(x, 2)).

Our implementation of MCTreeRePair follows the same principles as TreeRe-
Pair. First we compute for every node p in a tree ¢; € ¢ the number [Var(t;/p)|
of different variables in the subtree rooted at p. These numbers are necessary to
compute the savings of a digram according to (9.5). Then we insert for every di-
gram d every element from the set maxOccy(?) into a doubly-linked list, one for
each digram. We compute thereby also maxsave,(t) = save(maxOcc,(?)), again
using (9.5). Note that we do not need to recompute the numbers |Var(t;/q)|
for all the nodes ¢ in the new tree t;: In a digram replacement we remove the
node pi from the pointer structure representing ¢;. The new parent node of pik
(for k € [1..rank(g)]) becomes the node p. Therefore the number of different
variables below a certain node does not change.

9.3 Compression and the DP-transformation

The dependency pairs transformation (short: DP) [AG00] is another technique
used for automated termination proofs. We first briefly explain the dependency
pairs transformation, following [HMO04].

The main idea of the DP is to compare left-hand sides of rules only with
those subterms of the right-hand sides that may spawn a new reduction. Thus
we introduce the notion of a defined symbol:

Definition 9.23. Let R be a TRS over a signature F. We call a symbol f € F
a defined symbol if it is the root symbol of a left-hand side in R.

Using this definition, we define the dependency pairs transformation as fol-
lows:

Definition 9.24 ([HMO04]). Let R be a TRS over a signature F. Let F#
denote the union of F and {f# | f is a defined symbol in R}, where f# is a
fresh function symbol with the same arity as f. We call these new symbols
dependency pair symbols. Given a term t = f(t1,...,t,) € T(F,V) with f a
defined symbol, we write t# for the term f#(t1,...,t,). If (I = r) € R and if u
is a subterm of r with defined root symbol such that u is not a proper subterm
of [, then the rewrite rule (I — r#) is called a dependency pair of R. The set
of all dependency pairs of R is denoted by DP(R).
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Since h is the only defined symbol in the TRS from Example 9.1 and that
symbol only appears as a root symbol on right-hand sides of rules, DP(R) = ) for
Example 9.1. We provide a different TRS with a non-trivial set of dependency
pairs.

Example 9.25. Let =, V and A be defined as usual and consider the term
rewriting system
——x = T, —(zVy) = -z Ay,
—(zAy) = -z V -y, zA(yVz)—= (xAy)V(zAz),
(yVz)Ahe = (zAy)V (zAz).

The defined symbols are —=# and A#. Thus the dependency pairs are:

=7 (@ V y) = —ant -y,
“F(zVy) = e, ~H(xvy) = Ty,
“Fazny) = T ~#(x ny) = Ty,
sAF(yVz) = anfy, AT (yVz) = anFz,

(yV )Nz = 2 Ty, (yV2)AFz = anT 2.

Let R be a TRS. If R is non-terminating, then there must exist a minimal
non-terminating term s, minimal in the sense that every subterm of s is termi-
nating. We denote the set of all minimal non-terminating subterms by 7... It
is clear that every term in 75, has a defined root symbol.

Lemma 9.26 ([HMO04]). For every term s € T, there exist terms t,u € T
such that
S# _>*R t# —DP(R) ’LL#.

A consequence of Lemma 9.26 is that for every non-terminating TRS R there
exists an infinite rewrite sequence of the form

t1 =k t2 —pP(R) R t3 —DP(R) t4" "~

where the root symbol of ¢; is defined for every ¢ > 1. Hence, to prove termi-
nation of a TRS R it is sufficient to show that R U DP(R) does not admit such
an infinite sequence. Thus the dependency pairs transformation converts the
full termination problem of R over F into the relative termination problem of
DP(R), relative to R over the signature F U F#.

When using monotone matrix interpretations to prove relative termination,
one uses two-sorted interpretations. For this we define weakly monotone F-
algebras.

Definition 9.27 ([EWZ08]). A weakly monotone F-algebra (A,[],>,<) is an
F-algebra (A, >) equipped with two F-sorted relations >, < on A such that

e > is well-founded,
o > . SC>

e For every f € F the operation [f] is monotone with respect to <.
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An m-ary marked symbol f# is interpreted by a linear function [f#] :
(8™)™ — S, whereas an m-ary unmarked symbol f is interpreted by a linear
function [f#]: (S™)™ — S™.

We now discuss how two-sortedness affects compression. We observe that
the cost model that just counts matrix multiplications is wrong for computing
interpretations for DP(R), and consequently MCTreeRePair produces inefficient
results. This is shown in the following example.

Example 9.28. Let f# be a marked binary symbol and let g, h be unmarked
unary symbols. The interpretation of f# has coefficient matrices Fl# ,FQ# of
dimension 1 x n, and the interpretation of g (resp., h) has a coefficient matrix
G (resp., Hy) of dimension n x n. Consider the computation of the coefficient
for variable z in the term

t = f*(g(h(x)), g(h(x))).

It is tempting to first replace the two occurrences of the digram e = (g,1, h).
Thus we compute E; = G; - H; with n® elementary multiplications. Then we
compute the coefficient of = in ¢ as Fl# E + F2# Ey, which needs another 2n?
elementary multiplications. Hence, in total we need n3 + 2n? multiplications.

But there is a better way: Compute (Fl#Gl)Hl, that is, first multiply F1#
by G1 and then the result by H;, and similarly (FQ# G1)H;, which needs in
total only 4n? multiplications. In terms of digrams, this means that we replace
the following digrams (which occur only once) in this order: ¢ := (f#,1,g),
d:=(c,1,h), e:=(d,2,9), f:=(e,2,h).

The example shows that the computation of the interpretation is best done
top-down, as this can avoid expensive (n x n)-multiplications. Thus when com-
pressing, only R and not DP(R) shall be compressed.

Nevertheless terms in DP(R) may be compressed as a side effect of the
compression that takes place in R. Note that all terms in DP(R) are of the form
f#(t1,..., fn), where each t; is a subterm of a term in R. This implies that
we may be able to extract a compressed version of ¢;. We compress R over F,
obtaining a system R, over the extended alphabet F., which consists of F and
the introduced digrams. We then compute the compressed version of DP(R)
by applying a modified operation DP. on R.. This operation DP.(R.) has two
ingredients:

e computation of the set of all subterms (in compressed form) of a com-
pressed term, and

e marking of the top symbol of a compressed term.

In both cases the output term(s) should be compressed, and be obtained without
completely unpacking the input term. These operations can be realized in a
straightforward manner by expanding digrams as needed. We make no attempts
at constructing fresh digrams.

Example 9.29. Let f be a unary symbol and t = f8(z). Consider the com-
pressed term t. = dz(x) with digrams ds = (da,1,ds),ds = (d1,1,d1),d1 =
(f,1, f). The proper subterms of ¢ in compressed form are fdyds(z), dida(z),
fdy(x), da(x), fdi(2), di(@), f(2), z, and ds(2)™ is f# fdida(x).
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To compute the interpretations of marked terms efficiently, we work from the
top, i.e., left-to-right. This can be modeled by the introduction of digrams e; =
(f#,1,f), ea = (e1,1,dy), e3 = (e2,1,ds). The interpretations of these digrams
are linear functions from S™ to S. For the computation of the coefficients of
these linear functions we have to multiply a (1 X n)-matrix with a (n X n)-
matrix (but never two (n X m)-matrices). We therefore compress DP.(R.) by
repeatedly replacing digrams that occur at the root of some term from DP.(R,).
The algorithm stops when all children of all top symbols are variables.

We summarize the DP-MCTreeRePair algorithm:

input: term list £ = (¢1,...,,)

R, := MCTreeRePair(R)

D, :=DP.(R.)

d = 0;

while 3d which occurs at the top of a rule in D. do

| D. := replace every occurrence of d in lhs and rhs of D,

end

return (D, R.);
Algorithm 4: DP-MCTreeRePair. Note that expand(D.) = DP(R) and
expand(R.) = R.

Example 9.30. For the symbolic evaluation of an n-dimensional matrix in-
terpretation for the rewriting system from Example 9.10, Table 9.1 contains in
column (p, ¢,r) the number of multiplications of a (p x ¢)-matrix by a (g x r)-
matrix.

method (I,n,1) (1,n,m) (n,n,1) (n,n,n)
uncompressed (DP(R) U R) 4 8 20 18
MCTreeRePair(DP(R) U R) 4 8 13 12
DP-MCTreeRePair(R) 9 11 9 8

Table 9.1: Number of matrix multiplications for the rewriting system from
Example 9.10.

By applying algorithm DP-MCTreeRePair, the number of matrix-by-matrix
multiplications is lowest—in fact it is equal to the number of matrix-by-matrix
multiplications of MCTreeRePair(R).

9.4 Experiments

We implemented a version of MCTreeRePair as described in Sections 9.2 and 9.3,
and we evaluated our implementation in two settings:

e We evaluated how compression reduces the size of constraint systems for
rewrite systems from the Termination Problems Data Base (more pre-
cisely, the SRS/TRS standard/relative subsets of TPDB version 8), which
consists of 3027 files.
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e We determined the influence of compression on the power of an actual
termination prover.

Links to the source code! and the logfiles? are provided in the footnotes.

To measure the “compressibility” of the TRS problems provided by the
TPDB, we used the matrix multiplication cost from (9.2) as well as the ac-
tual size of the resulting SAT constraint system with fixed parameters for the
matrix dimension and the bit width of the matrix entries. We compared these
measures for the settings with and without compression, for both the original
systems and for their DP-transformed versions. Table 9.2 shows the results.
Column cost shows the accumulated costs of all terms from the corpus. Column
CNF-size shows the accumulated number of variables and clauses of the Boolean
expression that the constraint solver generates and which are then given to the
SAT-solver.

For no compression and compression we use (3 X 3)-matrices with 3-bit
entries, for DP and DP and compression we use (3 X 3)-matrices with 5-bit
entries. We obtain an overall compression ratio of about 3 for both the matrix
multiplication cost and the actual CNF size (number of clauses). For DP, these
ratios are 3.44 and 1.71, respectively. We conclude that our cost model gives,
on average, a very good approximation of the real cost.

method cost -10°  CNF-size (v, c), both -108
no compression 16.1 4.0,32.3
compression 5.2 1.3,10.4
dependency pairs (DP) 15.1 19.2,62.2
DP and compression 4.4 11.1,36.3

Table 9.2: Total cost and CNF-size (variables and clauses) with and without
compression, for 3027 TRS from the termination problem data base.

For estimating the effect of compression on the performance of a termination
prover, we used a restricted version of matchbox. It optionally applies the de-
pendency pairs transformation and then repeats the following steps until there
are no more strict rules:

o If the system is linear, remove rules by additive weights (linear polynomials
of slope 1 with absolute coefficients computed by the GLPK? solver for
linear inequalities).

e For increasing matrix dimensions, try to remove rules by natural matrix in-
terpretations for original systems [EWZ08] (solved by binary bit-blasting)
and matrix interpretations for DP-transformed systems [KW09] (solved
by unary bit-blasting [CFF12]). In both cases, MINISAT [EBO05] is used
as the backend solver.

We apply the “cheap” method (additive weights) first so that the remaining
constraint systems are non-trivial. We isolate the effect of compression by using
matrix interpretations as the only non-cheap method.

! https://github.com/jwaldmann/matchbox
2 http://www.eti.uni-siegen.de/ti/mitarbeiter/noeth/
3GNU Linear Programming Kit, https://www.gnu.org/software/glpk/
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Our experiment then consists of a comparison between the performances of
an implementation with and without compression. The following parameters
are fixed at the beginning:

e the boolean encoding of numbers (in particular their bit width),

e the matrix dimensions that are being used,

e the compiler settings,

e the runtime settings and

e the resources of the execution platform (timeout, memory size, cores).

We choose “sensible” values for these parameters, but make no particular at-
tempt to optimize them.

We also use parallelism: We search for matrix interpretations in dimensions
1,2,...,D in parallel (for some parameter D that is fixed in advance), i.e.,
we generate constraint systems C1,Cs,...,Cp and submit each of them to a
separate instance of the SAT solver. As soon as one Cj is solved, we stop the
other computations, remove some rules from the input problem (according to
the interpretation that was obtained as the solution of C;), and start anew. This
way we only measure the time that the constraint solver needs in the positive
case(s). Compare this with a sequential implementation, where we would have
to wait for C; to be recognized as unsolvable before attempting to solve C;1:
In this case the total time would include several unsuccessful attempts as well.
But when proving termination automatically we are not interested in unsolvable
C;, because they do not contain information on the termination problem. (We
cannot distinguish between unsatisfiability due to non-termination, or due to
insufficient bit width.)

Table 9.3 shows the results of our experiments. The column “# yes in-
stances” shows the number of rewrite systems for which termination is success-
fully proven within one minute (the time-out). The column “average time yes”
is the average time needed to prove termination for all yes instances. It shall be
noted that the “yes instances” include the systems for which termination could
be proven by “cheap” methods, as described above (there were 50 such cases
without using the dependency pairs method, and 250 with it). As can be seen,
the number of systems which can be proven to be terminating increases by about
™% (3,5% for DP) when using MCTreeRePair-compression. We conclude that
compression of rewriting systems using MCTreeRePair does improve the power
of a termination prover that uses a constraint solver to find interpretations.

Table 9.3 also shows our results when “naive” compression based on TreeRe-
Pair (as outlined in Section 9.2.1) instead of MCTreeRePair is used in the ter-
mination prover. Surprisingly, the number of systems for which termination
can be proven is less than without any compression. Here is a possible ex-
planation: When computing the interpretation of a term ¢ without variables
bottom-up, only cheap matrix-by-vector multiplications are needed; expensive
matrix-by-matrix multiplications do not occur. But compression based on ordi-
nary TreeRePair only tries to reduce the size of ¢ and therefore may introduce
digrams which lead to expensive matrix-by-matrix multiplications when evalu-
ating the digrams.
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method average time yes # yes instances
no compression 11.9 584
MCTreeRePair 12.2 628
TreeRePair 11.9 571
Dependency pairs (DP) 1.85 681
DP and MCTreeRePair 4.10 709

Table 9.3: Influence of compression on the matchbox termination prover.

All values in Table 9.3 were obtained for an unlimited maximal rank for di-
grams. We also experimented with bounded maximal ranks, and it turned out
that the optimal value (w.r.t. resulting number of termination proofs for Match-
box using DP-MCTreeRePair) seems to be r = 4 (which is also the optimal value
for XML-compression based on TreeRePair in [LMM13]): The number of proofs
is slightly larger than with unbounded rank, and we have no explanation for
that at the moment.

9.5 Discussion

Does compression really preserve semantics? For any given interpreta-
tion of function symbols, the interpretation of a compressed term is equivalent
to the interpretation of the original term. The underlying reason is that matrix
multiplication is associative: digrams correspond to sub-multiplications.

When solving matrix constraints by bit-blasting, the range for matrix ele-
ments is a finite set, prescribed by the bit width of the encoding. This implies
that arithmetical operations may overflow, so they are partial functions. These
partial functions are no longer associative: For instance, consider the integer
product abc for three bit integers a,b and ¢. For a =7, b =7, ¢ = 0 the product
a(bc) is representable, while the product (ab)c is not. Now, (ab) could be a
digram that occurs during compression, while (bc) could correspond to an eval-
uation of the uncompressed term. Then the constraint system generated from
the compressed terms may be unsatisfiable, while the original system is satisfi-
able. Take the bit width w as a parameter. It can be shown that the original
system O and the compressed system C' are equivalent in the sense that for
each satisfying assignment s of O(w), there is some w’ > w such that a padded
version s’ of s satisfies C'(w').

Does compression work with more advanced termination methods?
The basic dependency pairs method has many refinements [HM04, GTSF06],
which we ignore here since they appear orthogonal to the topic of compression.
For instance, by using (estimated) dependency graphs, one obtains termination
subproblems that refer to subsets of DP(R). The “usable rules” method creates
subproblems that contain subsets of R. In both cases, compression can be
obtained by the methods shown in Section 9.3.

Is the data base sufficient? We ran experiments on problems contained
in the Termination Problems Data Base (TPDB). It may be argued that most
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of the problems in TPDB are small, and do not need compression. Yet our
experiments show that even for small problems, compression may help.

Another point is that TPDB problems might not be typical “real life” termi-
nation problems. It appears that most of the TPDB problems are hand-crafted:
They are taken from publications, where they serve to illustrate certain isolated
points. So, they tend to be small but hard (and trivial only when one applies a
specific, advanced method). Application problems, on the other hand, may be
large but “easy”, and appear hard only because of their size, and compression
can reduce the size.

Extensions. The method given in the paper counts matrix-by-matrix multi-
plications only. Our experiments confirm that this is a reasonable simplification.
For still better compression, we additionally need to take into account the cost
of vector-by-matrix multiplications at the top of DP-transformed rules, and also
the matrix-by-vector multiplications for evaluating absolute parts. This implies
extensions in the definition of the savings of a digram, and in the algorithm to
incrementally update the savings information. In full generality, this includes
the “matrix chain multiplication” optimization problem—and goes beyond it,
since it is not just about parenthesizing matrix chains, but also about re-using
subexpressions. We leave that as possible direction for future work.

107



108 9.5. DISCUSSION

108



Chapter 10

Conclusion and final
remarks

In this thesis we discussed different aspects of grammar-based tree compression.
In Chapter 3 we provided a full proof that the asymptotic average number of
nodes in the minimal dag of a full binary tree is

nd_n 1+0 L
7 /Iogn logn /)"

This proof has only been sketched previously in the literature. We presented a
short take on the mathematical discipline of Analytic Combinatorics, which is
necessary to understand the proof. We extended the result to the asymptotic
average number of nodes and edges in dags of unranked trees and to a labelled
setting.

In Chapter 4 we introduced a new data structure, which we called the hybrid
dag. The hybrid dag of a tree ¢ is built by sharing common child end sequences
from dag(t). We used it to show that the bdag of an unranked tree may be
quadratically smaller than the dag of that tree, while it is never more than
twice the size of the dag (Corollary 4.11).

In Chapter 5 we generalized the hybrid dag from Chapter 4. Instead of
sharing only common child end sequences, we showed how existing grammar-
based string compression algorithms can be used to share arbitrary patterns
among the child sequences of the dag. We proved that these structures can
be transformed to a tree straight-line program with only little size increase
(Theorem 5.5).

In Chapter 6 we investigated the use of straight-line programs to compress
the traversal string of a tree. The traversal string of a tree t is given by the
label sequence when traversing the tree (depth-first, left to right). We showed
that there exist trees such that this representation is exponentially more succinct
than the smallest tree straight-line program (Theorem 6.6). Similarly we showed
that there exist trees such that a smallest traversal SLP for those trees may
be exponentially smaller than the smallest SLP for their balanced parenthesis
representation (Theorem 6.9).

In Chapter 7 we used the tree compression formalism from the previous
chapters as compression algorithms on real-world tree data.
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In Chapter 8 we discussed two examples of algorithms on compressed trees.
We introduced subtree equality check, which is particularly easy for DAG-com-
pressed trees. We proved that it is PSPACE-hard to check whether a tree given
by a traversal SLP is accepted by a tree automaton (Theorem 8.5). This is
in strong contrast to trees that are given by tree straight-line programs, where
membership is decidable in polynomial time.

In Chapter 9 we discussed at length an example where compression (heuris-
tically) accelerates computation. We modified the tree compression algorithm
TreeRePair [LMM13] to minimize the number of multiplications in the matrix
interpretation of a given set of rewrite rules. We provided data that show that
this approach indeed improves the running time of an automatic termination
prover.

Open problems. While the asymptotic average size of a full binary tree’s
DAG has been fully discussed, the variance of that value is unknown. Simple
experiments strongly suggest that the distribution is normal, see Section 3.7.1.
Another interesting open problem is a full classification of the average DAG
size for all regular tree languages. We conjectured (Conjecture 3.27) that every
regular tree language has an asymptotic average DAG size which is either linear
in the size of the tree or of the form O(n/y/logn). Conjecture 3.28 states that
all tree classes in the prior case have an average height that is also linear in the
size of the tree while the other tree classes have an average height of ©(y/n).

The average size of the HDAG remains an open problem, as it has not been
possible to use the methods from Chapter 3 on the HDAG.

While there exists a tree family such that their traversal SLP is exponentially
more succinct than their smallest SLP-compressed balanced parenthesis, there
is no tree family known where the opposite situation arises.

There are several open problems related to the use of TreeRePair for accel-
erated termination proving, see Section 9.5. Among other problems, it remains
open whether the compression algorithm may be combined with more advanced
termination methods or whether a more precise cost model that also considers
matrix-vector multiplications instead of only matrix-matrix multiplications may
improve the algorithm.
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