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Zusammenfassung

Es seien X1, ...,Xn unabhängig und identisch verteilte Zufallsvektoren mit Werten inRd

sowie f : Rd
→ [0,∞) eine geeignete, die Rolle einer Verlustfunktion spielende Abbil-

dung. Zudem sei k(n) = argmaxk=1,...,n f (Xk). Entsprechend [SchSt14, Definition 4.1] ist
ein Rd-wertiger Zufallsvektor X f -implizit max-stabil, wenn zu jedem n ≥ 1 Zahlen
an > 0 existieren, sodass für unabhängige Kopien X1, ...,Xn von X die Zufallsvektoren
a−1

n Xk(n) und X dieselbe Verteilung besitzen. Unser Ziel ist es nun an dieses Konzept
anzuknüpfen und es auf zwei spezielle Arten zu verallgemeinern. Dazu entwickeln
wir eine neue Theorie, die wir f -implizite Extremwerttheorie nennen. Diese ähnelt stark
der klassischen Extremwerttheorie, ist jedoch hinsichtlich des konkreten Blickwinkels
auf die Analyse extremer Ereignisse von grundlegendem Unterschied. Genauer gesagt
handelt es sich um die bereits in [SchSt14] vorgeschlagene Alternative zur klassis-
chen Extremwerttheorie, die sich weniger der Analyse von Ausreißern, d.h. maximalen
Werten einer Stichprobe widmet, sondern vielmehr der Analyse von Ereignissen, die
zu extremen Verlustszenarien führen.
Im ersten Teil der Arbeit stellen wir einige, für den weiteren Inhalt essentielle Grund-
lagen zusammen. Im Einzelnen handelt es sich um die f -implizite max-Operation,
einer speziellen inneren zweistelligen Verknüpfung auf Rd, die f -implizite max-Faltung
sowie die f -implizite max-Ordnung. Außerdem studieren wir hier die Verteilung des
f -impliziten Maximums Xk(n) von X1, ...,Xn.
Darauf aufbauend führen wir im zweiten Teil der Arbeit das Konzept f -implizit max-
unendlich teilbarer Verteilungen ein und erweitern dadurch die Klasse der f -implizit
max-stabilen Verteilungen. In diesem Kontext beweisen wir die Zugehörigkeit zweier
spezieller Klassen von Verteilungen zur Klasse der f -implizit max-unendlich teilbaren
Verteilungen. Ein wichtiges Hilfsmittel, neben den vorab genannten Grundlagen,
stellt dabei das Konzept der f -impliziten max-Faltungshalbgruppe dar. Zunächst offen
bleibt die Frage, ob tatsächlich sogar alle Verteilungen aufRd f -implizit max-unendlich
teilbar sind. In diesem Zusammenhang könnten die sogenannten f -impliziten max-
zusammengesetzten Poissonverteilungen eine entscheidende Rolle spielen.
Im dritten Teil der Arbeit wenden wir uns den f -implizit max-stabilen Prozessen zu. Diese
stellen das Analogon zu den max-stabilen Prozessen aus der klassischen Extremwertthe-
orie dar. Durch die Frage nach geeigneten Beispiele solcher Prozesse motiviert, führen
wir die Konzepte der f -impliziten sup-Maße und f -impliziten Extremwertintegrale ein.
Wir beweisen die Existenz solcher f -impliziten sup-Maße, um dann die f -impliziten
Extremwertintegrale einführen zu können, d.h. Integrale von deterministischen Funk-
tionen bezüglich eines f -impliziten sup-Maßes. Dies liefert uns letztlich, wie gewün-
scht, eine Vielzahl von Beispielen f -implizit max-stabiler Prozesse.
Zum Abschluss sprechen wir einige Inhalte an, die über jene dieser Arbeit hinausgehen
und das Gebiet der f -impliziten Extremwerttheorie weiter vorantreiben könnten.
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Abstract

Let X1, ...,Xn be independent and identically distributed random vectors in Rd and
f : Rd

→ [0,∞) a suitable function being referred to as the loss function. Further, let
k(n) = argmaxk=1,...,n f (Xk). Referring to [SchSt14, Definition 4.1], we recall that a random
vector X inRd is f -implicit max-stable if for all n ≥ 1 there exist an > 0 such that a−1

n Xk(n)
and X are equal in distribution, with X1, ...,Xn being independent copies of X. Now,
our aim is to expand on this notion and to advance it. To this end, we develop a new
mathematical framework called f -implicit extreme value theory, which is closely related
to multivariate extreme value theory but yet different as to the study of extremes. More
precisely, adopting the approach suggested in [SchSt14], we pursue the idea of focusing
on extreme loss events rather than extreme values. Actually, the motivation behind this
stems from some kind of inverse problem where one wants to determine the extremal
behavior of anRd-valued random vector X when only explicitly observing the extremal
loss f (X).
In the first part of the thesis, we provide some basics constituting the fundament of our
further deliberations. In particular, we establish a specific (inner) binary operation onRd

called f -implicit max-operation. Based on this, we introduce an astute convolution con-
cept as well as a distinctive partial order being referred to as f -implicit max-convolution
and f -implicit max-order, respectively. Finally, we also provide various possibilities to
estimate the distribution of the f -implicit maximum Xk(n) of X1, ...,Xn.
Equipped with these aspects, we develop the notion of f -implicit max-infinite divisibility
in the second part of this thesis, thus extending the class of f -implicit max-stable distri-
butions. Here, we are able to prove that all random vectors coming under one of two
specific classes of random vectors are f -implicit max-infinitely divisible. To this end, we
apply the notion of f -implicit max-convolution semigroups in addition to the preliminar-
ies. The question whether all distributions on Rd are f -implicit max-infinitely divisible
remains unsolved for the time being. For logical reasons, however, we propose working
with f -implicit max-compound Poisson distributions to answer this question.
Abandoning the studies on f -implicit max-infinitely divisible distributions, we intro-
duce the class of f -implicit max-stable processes in the third and last part of the thesis.
These processes are the analogue of max-stable processes occurring in the context of
multivariate extreme value theory. In order to provide non-trivial examples of such pro-
cesses, we apply the ingenious concepts of f -implicit sup-measures and f -implicit extremal
integrals. To be more precise, we firstly prove the existence of an f -implicit sup-measure
and then secondly establish the notion of f -implicit extremal integrals, that is, integrals
of non-random functions with respect to an f -implicit sup-measures. This ultimately
gives plenty of applicable examples of f -implicit max-stable processes.
We conclude the thesis with several suggestions for additional research possibilities
which might refine the novel field of f -implicit extreme value theory.
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Introduction and Motivation

As the title already presages, the present thesis approaches a basically new mathemat-
ical framework being closely related to multivariate extreme value theory and being
referred to as f -implicit extreme value theory. More precisely, we will address two spe-
cific issues constituting different branches of f -implicit extreme value theory. On the
one hand, we will introduce the notion of f -implicit max-infinite divisibility, and on the
other hand we will concern ourselves with the notion of f -implicit max-stable processes.
The underlying motivation and fundamental idea of approaching exactly these topics
stems from [SchSt14].
The latter dealing with implicit extremes and implicit max-stable laws is a pioneering re-
search work in the field of modern probability proposing a seminal, innovative and, in
particular, entirely new approach to the study and evaluation of extremes. Occasioned
by certain practical observations in, for example, actuarial science, the authors promote
the idea of focusing on extreme loss events rather than extreme values and thus develop
theory that helps to understand and model the joint behavior of those factors leading
to extreme losses. To be more precise, the idea proposed in [SchSt14] is to study implicit
extremes or also implicit losses, the actual loss being measured by some appropriate loss
function f . The motivation behind this stems from some kind of inverse problem where
one wants to determine the extremal behavior of an Rd-valued random vector X when
only explicitly observing the extremal loss f (X).
In conclusion, the latter strategy caught our attention since it yields a new method
of studying and estimating extremal events which is similar to the method pursued
in multivariate extreme value theory but materially different as to the basic approach.
Moreover, it provides plenty of further research possibilities as will definitely become
apparent in the course of this thesis.
Similar ideas to the ones in [SchSt14] and thus to ours are seized in the recent work of
Clemént Dombry and Mathieu Ribatet [DoRi12] on `-Pareto processes. Whereas our
concern is to work on implicit extremes, Dombry and Ribatet study implicit exceedances.
Conceptually, implicit extremes correspond to the study of implicit maxima, while
implicit exceedances go with the study of implicit peaks-over-treshold. Hence, our
targeted viewpoint of a suitable f -implicit extreme value theory is the (implicit) coun-
terpart of the framework of the annual maxima method. On the contrary the approach
in [DoRi12] constitutes the (implicit) counterpart of the common peak-over-treshold
method.

Extreme value theory is an elegant and mathematically fascinating theory pervading an
enormous variety of applications. Consequently, it is used widely in many disciplines,
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Introduction and Motivation

such as structural engineering, finance, earth sciences, traffic prediction and geologi-
cal engineering. Historically, first attempts in extreme value theory date back to the
beginnings of the 20th century. Especially to be emphasized in this context are the
seminal works of Fisher and Tippett [FiTi 28], Gnedenko [Gn43] and finally Gumbel
[Gu58], all of which provide asymptotic results of the distribution of suitably normal-
ized maxima of independent and identically distributed random variables. However,
only the PhD thesis by Laurens de Haan entitled On regular variation and its applications
to the weak convergence of sample extremes [deHa70] ultimately popularized these results
and motivated to expand on them. Consequently, well-known mathematicians such as
R. Davis, M.R.Leadbetter, T. Mikosch, S.I. Resnick, H. Rootzén, just to mention a few,
refined the ideas considered in [FiTi 28], [Gn43], [Gu58] and [deHa70] and contributed
to such an extensive, profound and popular theory as extreme value theory is today.
Nevertheless, the possibilities still do not seem to be exhausted here. For example, the
notion of max-stable processes constitutes a particular branch of extreme value theory
supplying many issues that still need to be considered.
Max-stable processes are important models in spatial extreme value theory since they
arise as the only possible nondegenerate limits of suitably normalized maxima of inde-
pendent and identically distributed processes and can indeed be used to assess environ-
mental risks. And even though the theory of max-stable processes has been developing
rapidly over the last decades - thanks to a careful analysis of spectral representations
of max-stable processes - there are still many questions to be solved, for example, as to
ergodic and mixing properties. First studies on these issues can be found in [St08] and
[St10]. An even more profound insight into the structure of max-stable processes, how-
ever, might be derived by using a method proposed in [StTa05], [Ka09] and [StWa10]. In
these works there is talk of the notion of association of stable and max-stable processes
revealing close connections between these two classes of processes. As it will turn out
throughout this thesis, we will unsurprisingly also gain from the notion of stable pro-
cesses when considering f -implicit max-stable processes.
At this point it would clearly be unfair to ignore all other scientists having contributed
to the development of extreme value theory. Nevertheless, we do neither intend to give
a thorough survey of the historical development of extreme value theory nor to provide
an entire exposition of recent results in this field. Instead, we rather strive for concretiz-
ing the idea of a coequal f -implicit extreme value theory by developing the notion of
f -implicit max-infinite divisibility and f -implicit max-stable processes. For the sake
of completeness, we refer to the theoretical monographs [Re06], [Re07], [LeLiRo83],
[deHaFe06], [EmKlMi12] and [FaHüRe11] as well as to the more statistically oriented
works [BeGoSeTe04], [Co04] and [Gu58] constituting an account of the state-of-the-art
of extreme value theory.
Coming to a first interim conclusion, we state that our purpose of establishing the frame-
work of f -implicit extreme value theory is, except from the pioneering considerations
in [SchSt14], new in literature. Furthermore, we underline that the resulting theory is
closely related to both extreme value theory and the corresponding theory in which
the maximum operation is exchanged by the summation operation (see for example
[SaTa94] or [MeSch01]).
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Introduction and Motivation

To motivate and concretize our idea of this different viewpoint, consider the follow-
ing scenario carried over from [SchSt14, Section 1].
On January 21 in 1959, Ohio went through an extreme flood that claimed 16 lives and
caused extensive damage. The root cause for that was not entirely due to extreme pre-
cipitation but rather due to a rare combination of different factors, only one of which
is actually intensive rainfall. Not only in such but also in many other applications,
extreme loss events are caused by an unusual combination of factors, all of which may
or may not be extreme but their coordinated effect is extreme. This ultimately prompted
us to develop and consider f -implicit extreme value theory, to incorporate the issues of
[SchSt14] into our deliberations and to finally extend them.
In concrete terms, let f be a Borel measurable non-negative function on Rd modeling
the loss f (x1, ..., xd) accompanied by the values x1, ..., xd ∈ R. As an example related
to the previously mentioned application, let d = 4. Further, let x1, x2, x3 and x4 be the
values of ground saturation, snow-melt, precipitation intensity and precipitation dura-
tion, respectively. Then f (x1, x2, x3, x4) stands for the degree of flooding caused by the
specific combination of the factors x1, x2, x3 and x4. Consequently, it is sensible to take
the decision of whether a particular event is extreme only by means of f (x1, x2, x3, x4). In
other words, whether or not some of the individual factors are extreme, it is exclusively
the coordinated effect of the factors that is crucial. In this particular example as well
as in many other applications, however, the individual factors are anything but deter-
ministic and, in general, stochastically dependent. Hence, it is necessary to establish a
statistical model enabling us to determine the behavior of the factors of interest when
only explicitly observing the corresponding loss. These considerations ultimately yield
to the following construction which initiated the studies on implicit extremes and im-
plicit max-stable laws in [SchSt14], and thus provided the basis for the issues and ideas
considered in this thesis. Actually, it is even the underlying idea of f -implicit extreme
value theory.
Let X = (X(1), ...,X(d)) be a random vector in Rd modeling the joint behavior of the
factors x1, ..., xd. Suppose further that X1, ...,Xn are independent copies of X. Unlike in
multivariate extreme value theory in which the focus is on the behavior of the random
vector Mn = max(X1, ...,Xn), the maximum here being taken componentwise, we are
rather interested in the structure and behavior of the random vector Xk(n) with

k(n) := argmaxk=1,...,n f (Xk) := argmax( f (X1), ..., f (Xn)).

In the case of ties k(n) is taken as the smallest index yielding the maximum. To be more
precise, k(n) = i1 if f (Xi1) = ... = f (Xi` ) for 1 ≤ i1 < ... < i` ≤ n and f (X j) < f (Xi1) for
j ∈ {1, ..., n} \ {i1, ..., i`}, where 1 ≤ ` ≤ n. Note that Xk(n) is actually the random vector
leading to maximal loss, that is,

f (Xk(n)) = max
k=1,...,n

f (Xk) = max( f (X1), ..., f (Xn)).

Note further that Xk(n) is indeed part of the given sample set in contrast to Mn.
As illustrated earlier, the events leading to extreme losses f (X) are of vital importance
in practice. Therefore, the focus in [SchSt14] is mainly on the asymptotic behavior of
the f -implicit maximum Xk(n) of X1, ...,Xn under appropriate normalization. The purpose
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in this thesis, however, is to draw in particular on the notion of f -implicit max-stability,
which occurs naturally in the context of studies on implicit extremes, and to extend
the class of f -implicit max-stable distributions in two different ways. This eventually
yields first concrete branches of f -implicit extreme value theory that are based on the
pioneering considerations in [SchSt14]. Here, in accordance with Definition 4.1 in
[SchSt14] a random vector X in Rd is referred to as f -implicit max-stable if for all n ≥ 1
there exist an > 0 such that

a−1
n Xk(n)

d
= X.

The significance of such distributions, which caught our particular attention, becomes
clear due to Theorem 4.2 in [SchSt14]. Namely, analogous to common results in extreme
value theory, the class of f -implicit max-stable distributions coincides under some mild
assumptions with the class of f -implicit extreme value distributions, that is, they arise
as the only possible limits of Xk(n) under appropriate normalization (see for example
[SchSt14, Theorem 4.4]). In addition, a similar analogy does also exist in the context
of stable distributions, where stable distributions can be viewed as the counterpart of
max-stable distributions by just exchanging the maximum operation for the summa-
tion operation. These analogies now raise the question whether even more concepts
occurring in, for example, extreme value theory can be transferred into the f -implicit
context. Consequently, the idea of considering f -implicit max-infinitely divisible distri-
butions as well as f -implicit max-stable processes is mainly based on these observations.

Now, let the (loss) function f : Rd
→ [0,∞) be fixed for the remainder of this the-

sis. Being guided by [SchSt14], we will henceforward make three standing assumptions
on f . For convenience, we require f to be continuous and 1-homogeneous with f (x) = 0
if and only if x = 0. In view of conceivable applications these assumptions on f are not
particularly restrictive but quite reasonable. Nevertheless, observe that certain results
stated in [SchSt14] can even be derived under slightly relaxed assumptions on f . In this
thesis, however, we will only concern that aspect marginally when proposing several
extensions in Section 2.4, Section 3.3 and Chapter 4.

Specially geared to the preceding introductory deliberations and the resultant objec-
tives, the present thesis is structured as follows.
As regards content, it is primarily composed of two main parts constituting Chapter
2 and 3. In particular, we refer to the notion of f -implicit max-infinitely divisible dis-
tributions on the one hand and f -implicit max-stable processes on the other, both of
which will indeed extend the notion of f -implicit max-stable distributions in a certain
way. Before attending to both these topics, we establish a profound basis in Chapter 1.
We both prepare the content of Chapter 2 and 3 by providing tailor-made essentials and
introduce some convenient notation. In addition, we also incorporate the contents of
[SchSt14] here. Some new light is especially shed on the notion of f -implicit max-stable
distributions.
The primary focus in Chapter 1 is on an operation ∨ f : Rd

×Rd
→ Rd being referred to

as f -implicit max-operation. This specific operation depending on f : Rd
→ [0,∞) can

be viewed as a suitably chosen counterpart of the summation and maximum operation
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which in turn play a pivotal role in the context of stable and max-stable distributions,
respectively. Actually, ∨ f (x1, x2) := x1 ∨ f x2 coincides with the f -implicit maximum
of x1 and x2, that is, with xk(2) for k(2) = argmax( f (x1), f (x2)). Having established this
operation, we supply several properties. Inter alia, we show that Rd equipped with
∨ f is in general a non-commutative, non-topological semigroup with identity element
e = 0. Based on the f -implicit max-operation, we further establish a proper notion of
convolution on the space of bounded measures as well as a distinctive partial order
on Rd. The conclusion of Chapter 1 is finally intended to provide a clearer insight
into the structure of the f -implicit maximum Xk(n). This is basically achieved by de-
termining the distribution of Xk(n). In fact, we derive several possibilities to compute
P(Xk(n) ∈ A),A ∈ B(Rd), explicitly.
In Chapter 2 we apply the acquired basics of Chapter 1 to address the notion of f -
implicit max-infinite divisibility. Considering the common classes of infinitely and
max-infinitely divisible distributions, we observe that they arose from certain issues in
probability theory and extended the already existing classes of stable and max-stable
distributions, respectively. Analogously, this is the case with f -implicit max-stable and
f -implicit max-infinitely divisible distribution. Here, the f -implicit max-convolution
appears to be particularly relevant. Namely, recall that a probability measure µ on Rd

is, for instance, referred to as infinitely divisible if for all n ≥ 1 there exist probability
measures µn on Rd such that

µ = (µn)∗n.

Consequently, transferring the previous definition into the f -implicit context, we rec-
ognize that defining the notion of f -implicit max-infinite divisibility by means of the
f -implicit max-convolution is indeed an appropriate approach. Next, we consider the
main question in Chapter 2. More precisely, we investigate whether the class of f -
implicit max-infinitely divisible distributions can be characterized as is the case with
infinitely and max-infinitely divisible distributions (see [MeSch01, Theorem 3.1.11] and
[Re07, Proposition 5.8]). As to that, we present two results. First, we prove that all
random vectors X in Rd such that x 7→ P( f (X) ≤ x) is continuous on (`,∞), ` ≥ 0
here being the left endpoint of f (X), are f -implicit max-infinitely divisible. Second,
we show that all random vectors X in Rd such that the mass of P f (X) is concentrated
on a countable subset of [0,∞) are also f -implicit max-infinitely divisible. Apart from
certain substitution rules for Stieltjes integrals, a beneficial tool in this context is the
notion of f -implicit max-convolution semigroups. At the end of Chapter 2, we finally
make an assertion yielding an open question that remains unsolved for the time being.
We suggest that probably all distributions on Rd are f -implicit max-infinitely divisible.
In Chapter 3 we eventually attend to f -implicit max-stable processes. As before, we
profit immensely from the preparations of Chapter 1. Whereas the f -implicit max-order
is not relevant in Chapter 2, it is actually important here. Gaining intuition from the no-
tion of α-stable and max-stable processes, we first provide a proper notion of f -implicit
max-stable processes. Motivated by the fact that each f -implicit max-stable process
supplies automatically a max-stable process with α-Fréchet marginals, we formulate
our overarching goal which consists of constructing non-trivial examples of f -implicit
max-stable processes. In order to meet this challenge, we develop an ingenious tech-
nique. We firstly establish the notion of f -implicit sup-measures and then secondly that

5



Introduction and Motivation

of f -implicit extremal integrals, that is, integrals of non-random functions with respect
to an f -implicit sup-measure. Actually, this idea originates from [SaTa94] and [StTa05]
in which appropriate counterparts of f -implicit sup-measures and f -implicit extremal
integrals have been introduced in order to study α-stable and max-stable processes, re-
spectively. In particular, this refers to α-stable random measures and α-stable stochastic
integrals as well as to random α-Fréchet sup-measures and extremal stochastic inte-
grals. In conclusion, both the notion of f -implicit sup-measures and f -implicit extremal
integrals turn out to be an efficient tool to supply plenty of examples of f -implicit
max-stable processes. Moreover, both these concepts are ultimately also a sophisticated
construct of independent interest in f -implicit extreme value theory.
In the last and fourth chapter we summarize our findings particularly from the view-
point of an applicable f -implicit extreme value theory. We also give a final outlook
in which we propose considering primarily two promising issues in addition to the
ones constituting Section 2.4 and Section 3.3. In doing so, we highlight the still existing
possibilities in f -implicit extreme value theory and thus point out that this fairly new
field is not exhausted at all.
In addition to an extensive list of symbols, one can also find a complete bibliography
consisting of all used literature at the end of this thesis.
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1 Preliminaries

In the preceding and detailed introduction we proposed considering two attractive
topics in this thesis which refine the idea of an f -implicit extreme value theory and con-
stitute two fundamental branches in this field. In particular, there is talk of f -implicit
max-infinitely divisible distributions and f -implicit max-stable processes. Here, the
first will be addressed in Chapter 2 to extend the notion of f -implicit max-stable distri-
butions which has first been studied in [SchSt14, Section 4] as part of a new approach
to multivariate extreme value theory. The latter, on the contrary, will be studied in
Chapter 3. In preparation for this ambitious scheme, Chapter 1 is intended to provide
the theoretical basics. In addition, some specific and repeatedly used notation is intro-
duced. Accordingly, Chapter 1 laying the groundwork for the content of Chapter 2 and
3 is structured as follows.
In Section 1.1 we concern ourselves with the study of a distinctive (inner) binary oper-
ation on Rd constituting the basis of all subsequent examinations. As it will turn out,
this operation depends considerably on our fixed loss function f : Rd

→ [0,∞).
Equipped with the notion introduced in Section 1.1, we proceed with an appropriate
convolution concept depending on f as well. This constitutes the content of Section 1.2.
In Section 1.3 we attend to another theoretical aspect. Here, the focus is on the study
of a specific binary relation between Rd and Rd gaining center stage in Chapter 3. This
relation turns out to be a partial order on Rd, thus providing Rd with a supplemental
structure in addition to the operation introduced in Section 1.1.
In Section 1.4 we finally address ourselves to a detailed study of the distribution of the
particular Rd-valued random vector Xk(n). This will be hugely useful in Chapter 2.
Before proceeding with Section 1.1, we recall that f : Rd

→ [0,∞) is assumed to be
continuous and 1-homogeneous with f (x) = 0 if and only if x = 0. Here, a function
g : Rd

→ C is referred to as 1-homogenous if g(λx) = λg(x) for every λ > 0 and x , 0.
It should once be mentioned that some of the results in the subsequent deliberations
are even valid under weaker assumptions on f . This, however, will not be considered
in detail but will merely be mentioned on occasion.
For a deeper discussion on the role of the loss function f occurring in the context of an
f -implicit extreme value theory, we refer to [SchSt14].

1.1 The f -implicit max-operation

As we are permanently guided by two securely established theories of statistics and
probability theory, it seems reasonable to consider them in more detail. On the hand
hand, there is, inter alia, the notion of stable distributions on Rd originating in exami-
nations concerning limit theorems for sums of independent and identically distributed
random vectors. One the other hand, there is the elaborately investigated extreme val-

7



The f -implicit max-operation

ue theory and, in particular, the notion of max-stable distributions onRd. The notion of
max-stable distributions on Rd is also engendered by considerations of limit theorems.
This time, however, there is talk of limit theorems for the (componentwise) maxima of
independent and identically distributed random vectors. For a recent account of these
issues we refer to either [MeSch01] and [SaTa94] or to [deHaFe06] and [Re07].
Having a closer look at these concepts, we recognize that they share striking parallels
and pursue similar ideas. In addition, several further connections between these two
branches have been established during the last decades (see for example [StTa05] and
[Ka09]). Nevertheless, the fundamental difference between the notion of stable and max-
stable distributions on Rd is actually the underlying operation. Stable distributions are
defined by means of the summation operation

+ : Rd
×Rd

→ Rd, (x1, x2) 7→ x1 + x2,

whereas max-stable distribution are defined by means of the componentwise maximum
operation

max : Rd
×Rd

→ Rd, (x1, x2) 7→ max(x1, x2) := x1 ∨ x2,

both being continuous and commutative. Considering the concepts from this particular
point of view, we are encouraged to introduce the notion of an appropriate operation
substituting the two latter ones in the setting of f -implicit extreme value theory. Com-
plying with this task, we obtain what will be referred to as the f -implicit max-operation.

Definition 1.1.1
The (inner) binary operation ∨ f : Rd

×Rd
→ Rd on Rd, defined by

∨ f (x1, x2) := x1 ∨ f x2 :=

x1, if f (x2) ≤ f (x1)

x2, if f (x2) > f (x1),

is called f -implicit max-operation. Inductively, for all n ≥ 2, we define

nh∨
f

i=1h

xi := (x1 ∨ f ... ∨ f xn−1) ∨ f xn

and further use the sensible convention
1h∨

f
i=1h

xi = x1.

Remark 1.1.2. Note, the notion of f -implicit max-stable distributions (see [SchSt14, Sec-
tion 4]), which has already been recalled in the introduction and will be taken up again
in Chapter 2 and 3, can now be rewritten by using the f -implicit max-operation. Indeed,
a random vector X inRd is f -implicit max-stable in accordance with [SchSt14, Definition
4.1] if for all n ≥ 1 there exist an > 0 such that

a−1
n

nh∨
f

i=1h

Xi
d
= X,

8
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the random vectors X1, ...,Xn being independent copies of X. This is actually because of
the fact that

nh∨
f

i=1h

Xi = Xk(n)

for all n ≥ 1 which in turn follows immediately from Definition 1.1.1 and from the
definition of the random variable k(n). Note that the latter equation is still true even if
we dispense with the particular assumptions on the random vectors X1, ...,Xn.

Remark 1.1.3. The algebraic structure (Rd,∨ f ) consisting of the set Rd together with the
binary f -implicit max-operation ∨ f is a semigroup with identity element e = 0, that is,
we have

(1) x1 ∨ f (x2 ∨ f x3) = (x1 ∨ f x2) ∨ f x3 (1.1.1)

(2) x ∨ f 0 = 0 ∨ f x = x (1.1.2)

for all x, x1, x2, x3 ∈ Rd. The first property is clear by Definition 1.1.1. The second one
follows from { f = 0} = {0}. Thus, for all n ≥ 2, we may henceforth unambiguously write
(x1 ∨ f ... ∨ f xn−1) ∨ f xn = x1 ∨ f ... ∨ f xn−1 ∨ f xn.

Whereas the summation and maximum operation are continuous and commutative,
the f -implicit max-operation is in general both discontinuous and non-commutative.
Thus, (Rd,∨ f ) is neither a topological semigroup nor a commutative one. This involves
the most aspects since continuity and, of course, commutativity are desirable properties.
The f -implicit max-operation being non-commutative follows directly from Definition
1.1.1 as f does not need to be injective. The fact that the mapping ∨ f : Rd

×Rd
→ Rd is

in general discontinuous is illustrated by the subsequent example.

Example 1.1.4
Suppose that f : Rd

→ [0,∞) is explicitly given by f (x) = ‖x‖2, the norm ‖ · ‖2 here
being the common Euclidean norm. This is clearly a suitable choice for a loss function.
Further, let (x(m))m≥1 denote the particular sequence inRd

×Rd given by x(m) = (x(m)
1 , x(m)

2 )
with

x(m)
1 =

(
−

1
√

d
+

1
m
, ...,−

1
√

d
+

1
m

)
and x(m)

2 =

(
1
√

d
−

1
m2 , ...,

1
√

d
−

1
m2

)
for all m ≥ 1. Then

x(m)
−−−−−→
(m→∞)

x = (x1, x2),

where

x1 =

(
−

1
√

d
, ...,−

1
√

d

)
and x2 =

(
1
√

d
, ...,

1
√

d

)
.

Consequently, we obtain
x1 ∨ f x2 = x1

as f (x1) = 1 = f (x2). Conversely, however, we have

x(m)
1 ∨ f x(m)

2 = x(m)
2

9
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for all m sufficiently large (depending on the dimension d ≥ 1), thus implying

x(m)
1 ∨ f x(m)

2 −−−−−→
(m→∞)

x2 , x1.

Note, however, that the mapping∨ f : Rd
×Rd

→ Rd is clearly continuous at all points
(x1, x2) ∈ Rd

×Rd with f (x1) , f (x2).
Having investigated the structure of the f -implicit max-operation by Remark 1.1.3 and
Example 1.1.4 and having connected the f -implicit max-operation with the concept
of f -implicit max-stable distributions by Remark 1.1.2, we proceed to elaborate on
these observations in order to get an even better understanding of the f -implicit max-
operation. To start with, we provide several properties of the f -implicit max-operation
that will gain in interest in Chapter 2 and Chapter 3.

Lemma 1.1.5
Fix x, x1, x2 ∈ Rd.

(a) For all a, b, c ≥ 0, we have

(i) (a ∨ b) x = ax ∨ f bx (1.1.3)

(ii) c (x1 ∨ f x2) = cx1 ∨ f cx2 (1.1.4)

(b) If f (x1) , f (x2), then x1 ∨ f x2 = x2 ∨ f x1.

Proof. (a) Fix a, b, c ≥ 0. We begin by proving (1.1.3). Clearly, (1.1.3) is true if x = 0.
Hence, assume x , 0. If a = b = 0, a = 0 < b or b = 0 < a, then (1.1.3) is an easy
consequence of Definition 1.1.1 and the assumption on the null set of f . Otherwise, if
a, b > 0, then the 1-homogeneity of f yields the desired conclusion. Indeed, by assuming
0 < a < b, we get f (ax) = a f (x) < b f (x) = f (bx) as well as a ∨ b = b and thus (1.1.3). The
case 0 < b ≤ a can be treated similarly. To prove (1.1.4), we may assume both c > 0 and
x1, x2 , 0, for if not, the asserted claim is again already clear by the fact that f (x) = 0
if and only if x = 0. Let f (x1) ≥ f (x2) and hence x1 ∨ f x2 = x1. Then we deduce, by
1-homogeneity of f , that cx1 ∨ f cx2 = cx1 yielding (1.1.4). The case f (x1) < f (x2) can be
handled similarly, and the proof of part (a) is complete.
(b) This is clear by Definition 1.1.1. �

Note, the second part of Lemma 1.1.5 shows that f (x1) , f (x2) is a sufficient condition
for x1, x2 to commute under the in general non-commutative f -implicit max-operation.
This will be crucial in particular with regard to the deliberations in Chapter 3.
The next lemma may first seem dispensable. However, it will prove necessary for
Chapter 2, especially for the notion of f -implicit max-convolution.

Lemma 1.1.6
For all n ≥ 1, the mapping T(n)

f := T(n) : (Rd)n
→ Rd, defined by

T(n)(x1, ..., xn) :=
nh∨

f
i=1h

xi,

is B(Rd)⊗n-B(Rd)-measurable.

10
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Proof. The proof is by induction on n ≥ 2. To show the asserted claim for n = 2, let
pri : Rd

×Rd
→ Rd, i=1,2, denote the canonical projections on the ith coordinate, that is,

pr1(x1, x2) = x1 and pr2(x1, x2) = x2.

Further, let g : Rd
×Rd

→ R denote the mapping defined by

g(x1, x2) := f (x1) − f (x2) = f (pr1(x1, x2)) − f (pr2(x1, x2)).

Then g is continuous and hence particularly measurable as it is a composition of con-
tinuous functions. Referring to Definition 1.1.1, we finally deduce that

T(2)(x1, x2) = x1 ∨ f x2 = pr1(x1, x2) · 1g−1([0,∞)) (x1, x2) + pr2(x1, x2) · 1g−1((−∞,0)) (x1, x2) ,

thus yielding the desired measurability of T(2). Now, let T(n) : (Rd)n
→ Rd be measurable

for some n ≥ 2. In order to show measurability of

T(n+1)(x1, ..., xn+1) = (x1 ∨ f ... ∨ f xn) ∨ f xn+1 = T(n)(x1, ..., xn) ∨ f xn+1,

we define the mappings

pr1,...,n : (Rd)n+1
→ (Rd)n, (x1, ..., xn+1) 7→ (x1, ..., xn)

and

prn+1 : (Rd)n+1
→ Rd, (x1, ..., xn+1) 7→ xn+1.

These mappings are continuous and hence measurable. By induction hypothesis, we
therefore conclude that the mapping

h : (Rd)n+1
→ Rd

×Rd, (x1, ..., xn+1) 7→
(
T(n)
◦ pr1,...,n(x1, ..., xn+1),prn+1(x1, ..., xn+1)

)
is measurable as well. Consequently, applying the induction basis and the relation

T(n+1) = T(2)
◦ h,

we get the measurability of T(n+1). In addition, T(1) coinciding with the identity function
is clearly measurable, which completes the proof. �

With view to Proposition 3.2.4 providing some properties of the f -implicit extremal
stochastic integral we additionally require the following statement which is actually the
result of the measurability of T(n).

Corollary 1.1.7
Fix n ≥ 2. Let X1, ...,Xn be independent random vectors in Rd defined on some proba-
bility space (Ω,A,P). Suppose that K1 and K2 are two disjoint and non-empty subsets
of {1, ...,n}, that is, K1 = {i1, ..., ik1} and K2 = { j1, ..., jk2} for pairwise distinct indices
i1, ..., ik1 , j1, ..., jk2 ∈ {1, ...,n} with 1 ≤ k1, k2 ≤ n − 1. Then the random vectors Z1 and Z2,
defined by

Z1 =

k1h∨
f

m=1h

Xim and Z2 =

k2h∨
f

m=1h

X jm

are independent.
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Proof. Lemma 1.1.6 shows that the mappings

T(kp) : (Rd)kp → Rd, (x1, ..., xkp) 7→
kph∨

f
m=1h

xm,

p=1,2, are measurable. Therefore, we can apply [Ba91, Theorem 9.6] to conclude that
the random vectors

Z1 = T(k1)(Xi1 , ...,Xik1
) and Z2 = T(k2)(X j1 , ...,X jk2

)

are independent. �

Remark 1.1.8. Note that the assertion of Corollary 1.1.7 does not depend on the specific
choice of order of the indices i1, ..., ik1 , j1, ..., jk2 of the sets K1 and K2, but the random
vectors Z1 and Z2 actually do. By this we mean that

Z̃1 =

k1h∨
f

m=1h

Xiπ1(m) and Z̃2 =

k2h∨
f

m=1h

X jπ2(m)

are also independent, π1 and π2 here being permutations of {1, ..., k1} and {1, ..., k2}, re-
spectively. The random vectors Z̃1 and Z̃2, however, will in general not coincide with Z1
and Z2, respectively, as the f -implicit max-operation is usually non-commutative. If the
random vectors X1, ...,Xn commute almost surely under the f -implicit max-operation,
as it will be the case in Proposition 3.2.4, then we even have Z1 = Z̃1 and Z2 = Z̃2 almost
surely.

In addition, we finally need the subsequent, inconspicuous lemma that will particu-
larly gain in interest in Chapter 3.

Lemma 1.1.9
If (xn)n≥1 and (yn)n≥1 are two Rd-valued sequences such that

xn −−−−−→
(n→∞)

x and yn −−−−−→
(n→∞)

0

for some x ∈ Rd, then
xn ∨ f yn −−−−−→

(n→∞)
x.

Proof. The proof is straightforward but will, however, strongly depend on the assump-
tion that one of the involved sequences tends to zero.
We start by assuming x = 0. Fix ε > 0. By assumption, there exist integers N1 ≥ 1 and
N2 ≥ 1 such that |xn| < ε for all n ≥ N1 and |yn| < ε for all n ≥ N2. Since each element
xn ∨ f yn of the sequence (xn ∨ f yn)n≥1 is either xn or yn, we conclude that |xn ∨ f yn| < ε
for all n ≥ max(N1,N2). This is precisely the assertion of the lemma, provided x = 0.
We proceed with the remaining case, the real number x being nonzero. Let δ := ‖x‖ > 0,
where ‖ · ‖ denotes some norm onRd. Applying the assumption on the sequence (xn)n≥1,
we may find an integer N3 ≥ 1, depending on δ > 0, such that

xn ∈ K δ
2
(x)

12
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for all n ≥ N3, where Kδ/2(x) denotes the open ball in Rd with radius δ
2 and center x.

Accordingly, we deduce that ‖xn‖ > δ
2 for all n ≥ N3 and hence xn , 0 for all n ≥ N3.

Now, let c denote the infimum of f on the sphere S1 := {x ∈ Rd : ‖x‖ = 1}. Since
S1 is compact and f continuous, this infimum is actually a minimum. Applying the
assumption on the null set of f , we see that c > 0. Then, f being 1-homogeneous, we
eventually deduce that

f (xn) = ‖xn‖ · f
( xn

‖xn‖

)
≥
δ
2

c

for all n ≥ N3. Since f is continuous with f (0) = 0 and (yn)n≥1 is a null sequence, there
exists another integer N4 ≥ 1, depending on δ

2 c > 0, such that f (yn) < δ
2 c for all n ≥ N4.

Consequently, we conclude that
f (yn) < f (xn)

for all n ≥ max(N3,N4). Thus, the sequence (xn ∨ f yn)n≥1 actually coincides with the
sequence (xn)n≥1 for almost all n ≥ 1, which completes the proof. �

Remark 1.1.10. Obviously, the assertion of Lemma 1.1.9 remains true if (xn)n≥1 is the null
sequence and (yn)n≥1 converges to some x ∈ Rd.

Now, we proceed with a more detailed study of an appropriate convolution concept.
In this context, the significance of the f -implicit max-operation becomes apparent and
thus the importance of this precursory section.

1.2 The f -implicit max-convolution

In preparation for the notion of f -implicit max-infinitely divisible distributions, which
will extend the already tremendously investigated class of f -implicit max-stable dis-
tributions [SchSt14, Section 4] in an appropriate way, we need to establish a suitable
convolution concept. This approach seems to be sensible as it originates from the no-
tion of infinitely and max-infinitely divisible distributions. We will expand on these
concepts and its close connections to the notion of f -implicit max-infinitely divisible
distributions in Chapter 2. In doing so, we will also propose considering the infinite
divisibility concept from a more abstract point of view (see [BeChRe84]).
To start with, let Mb(Rd) denote the set of all bounded measures on Rd equipped with
the Borel σ-Algebra B(Rd) and M1(Rd) denote the set of all probability measures on Rd.

Definition 1.2.1
For µ1, µ2 ∈ Mb(Rd), we refer to the convolution induced by T(2) as f -implicit max-
convolution being denoted by µ1 ∗ f µ2 for the remainder of this thesis. More precisely,

µ1 ∗ f µ2 = T(2)(µ1 ⊗ µ2). (1.2.1)

For µ1, ..., µn ∈ Mb(Rd), we further define the multiple f -implicit max-convolution in-
ductively by

µ1 ∗ f ... ∗ f µn := (µ1 ∗ f ... ∗ f µn−1) ∗ f µn = T(n)(µ1 ⊗ ... ⊗ µn) (1.2.2)

for all n ≥ 2.

13
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Remark 1.2.2. (i) Note that the f -implicit max-convolution is well-defined since T(2)

is measurable by Lemma 1.1.6.

(ii) The operator F : Mb(Rd) ×Mb(Rd)→Mb(Rd), defined by

F (µ1, µ2) = µ1 ∗ f µ2,

is called f -implicit max-convolution operator.

(iii) Clearly, the f -implicit max-convolution inherits the properties of being associative
but generally non-commutative from the f -implicit max-operation. However,
Lemma 1.1.5 (b) provides a sufficient condition for two bounded measures µ1 and
µ2 to commute under the f -implicit max-convolution.

(iv) For convenience, let µ∗ f n denote the n-fold f -implicit max-convolution of µ ∈
Mb(Rd) for all n ≥ 1 with the sensible convention µ∗ f 1 = µ.

Remark 1.2.3. Note, Definition 1.2.1 can be used to establish a third possible definition
of an f -implicit max-stable random vector X in Rd. In fact, X is f -implicit max-stable
in accordance with [SchSt14, Definition 4.1] or equivalently in accordance with Remark
1.1.2 if for all n ≥ 1 there exist an > 0 such that

(anµ) = µ∗ f n, (1.2.3)

where µ denotes the distribution of X. The easy calculations yielding (1.2.3) will be
skipped.

Having established the f -implicit max-convolution of bounded measures on Rd,
we now attend to a more detailed study of this particular convolution. To be more
precise, we will consider the question whether the f -implicit max-convolution µ1 ∗ f µ2

of µ1, µ2 ∈Mb(Rd) has an explicit representation. Similar to classical results concerning
the common convolution, the next lemma provides such a representation.

Lemma 1.2.4 (a) Suppose that µ1, µ2 ∈Mb(Rd) and fix B ∈ B(Rd). Then we have

µ1 ∗ f µ2(B) =

∫
B

f (µ2)
(
[0, f (x)]

)
µ1(dx) +

∫
B

f (µ1)
(
[0, f (x))

)
µ2(dx). (1.2.4)

(b) If X,Y are independent random vectors in Rd, then

PX ∗ f PY = PX∨ f Y. (1.2.5)

Proof. (a) Fix B ∈ B(Rd). Applying Definition 1.2.1, subsequently the classical change
of variables formula and finally Definition 1.1.1, we conclude that

µ1 ∗ f µ2(B) =

∫
Rd

1B (z) T(2)(µ1 ⊗ µ2)(dz)hhhhhhhhhhhhhhhhhhhhh
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hhhhhhhhhhhhhhhhhh =

∫
Rd×Rd

1B
(
x ∨ f y

)
(µ1 ⊗ µ2)(dx, dy)

=

∫
{(x,y)∈Rd×Rd: f (x)≥ f (y)}

1B (x) (µ1 ⊗ µ2)(dx, dy)

+

∫
{(x,y)∈Rd×Rd: f (x)< f (y)}

1B
(
y
)

(µ1 ⊗ µ2)(dx, dy)

=

∫
Rd

1B (x)
∫
Rd

1 f−1([0, f (x)])
(
y
)
µ2(dy)µ1(dx)

+

∫
Rd

1B
(
y
) ∫
Rd

1 f−1([0, f (y))) (x)µ1(dx)µ2(dy)

=

∫
B

f (µ2)
(
[0, f (x)]

)
µ1(dx) +

∫
B

f (µ1)
(
[0, f (x))

)
µ2(dx).

for any two bounded measures µ1, µ2, which establishes (1.2.4).
(b) Equation (1.2.5) follows immediately from Definition 1.2.1 together with the assumed
independence of X,Y. Indeed,

PX ∗ f PY = T(2) (PX ⊗ PY) = T(2)
(
P(X,Y)

)
= PT(2)(X,Y) = PX∨ f Y.

�

The subsequent remarks concerning Lemma 1.2.4 will eventually complete Section
1.2. Having established them, we will then proceed with Section 1.3 and thus with the
f -implicit max-order.

Remark 1.2.5. Equation (1.2.4) especially yields

µ ∗ f ε0 = ε0 ∗ f µ = µ (1.2.6)

for all µ ∈Mb(Rd) being in accord with equation (1.1.2).

Remark 1.2.6. Clearly, (1.2.5) can be iterated, that is,

PX1 ∗ f ... ∗ f PXn = PX1∨ f ...∨ f Xn (1.2.7)

for all n ≥ 1, where X1, ...,Xn are independent. This follows from Definition 1.1.1 and
Corollary 1.1.7 by using induction on n, or can directly be deduced from (1.2.2).

1.3 The f -implicit max-order

This section is intended to establish an interesting binary relation between Rd and Rd,
which heavily depends on our fixed loss function f : Rd

→ [0,∞) and will therefore
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referred to as the f -implicit max-order. The latter term indicates that this relation is not
merely any binary relation between Rd and Rd but actually a relation that possesses
additional properties and will thus turn out to be a partial order. We elaborate on this
in Proposition 1.3.2. Before doing so, we first introduce the f -implicit max-order in
Definition 1.3.1. To this end, we adopt the common terms of the theory of relations,
especially those of binary relations and order relations. However, we dispense with
going into detail here altogether since we pursue another goal.

Definition 1.3.1
The binary relation ≤ f between Rd (the set of departure) and Rd (the set of destination
or codomain) specified by its graph G≤ f ⊂ Rd

× Rd is called f -implicit max-order if by
definition x is ≤ f -related to y if and only if f (x) < f (y) or x = y. This will formally be
expressed by

(x, y) ∈ G≤ f :⇔ x ≤ f y :⇔

 f (x) < f (y)

or x = y,

thus following the notation of the classical theory of relations.

In a departure from convention, we will not distinguish between the two different
definitions of a binary relation - the first one that defines ≤ f by its graph G≤ f , the second
one that defines ≤ f to be the triple (Rd,Rd,G≤ f ) - since it will not be important for our
purpose. We rather concern ourselves with a more detailed analysis of the f -implicit
max-order and begin proving that ≤ f is a partial order on Rd. Note, we simply say ≤ f

is a binary relation on Rd instead of ≤ f is a binary relation between Rd and Rd since the set
of departure and the codomain are the same.

Proposition 1.3.2
The binary relation ≤ f on Rd is reflexive, antisymmetric and transitive. To be more
precise, we have

(1) x ≤ f x (reflexivity)

(2) if x ≤ f y and y ≤ f x, then x = y (antisymmetry)

(3) if x ≤ f y and y ≤ f z, then x ≤ f z (transitivity)

for all x, y, z ∈ Rd. Hence, the relation ≤ f is a partial order on Rd. However, ≤ f does not
have the additional property of being total, that is,

x ≤ f y or y ≤ f x

for all x, y ∈ Rd.

Proof. The reflexivity of ≤ f is evident by Definition 1.3.1. In order to show the antisym-
metry of≤ f , fix x, y ∈ Rd such that x ≤ f y and y ≤ f x. From x ≤ f y it follows by definition
that either f (x) < f (y) or x = y. In the second case, we are done. Therefore, it remains to
show that the first case can not occur. This will be done by contradiction. If it were true
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that f (x) < f (y), we would have x , y. The additional condition y ≤ f x, however, yields
f (y) < f (x) or y = x, the latter being impossible because of our assumption. Hence, we
would have f (x) < f (y) and f (y) < f (x) that is a contradiction. Finally, to prove the
transitivity of ≤ f , fix x, y, z ∈ Rd such that x ≤ f y and y ≤ f z. From x ≤ f y we have either
f (x) < f (y) or x = y. Additionally, y ≤ f z yields f (y) < f (z) or y = z. Thus, the proof of
transitivity is completed by showing that either f (x) < f (z) or x = z results from each of
the disjoint cases

(i) x = y and y = z,

(ii) f (x) < f (y) and f (y) < f (z),

(iii) x = y and f (y) < f (z),

(iv) f (x) < f (y) and y = z.

To this end, we clearly need only consider the latter two cases in more detail. If x = y
and f (y) < f (z), we see that f (x) = f (y) < f (z), thus obtaining the desired conclusion.
Similarly, f (x) < f (y) and y = z imply f (x) < f (y) = f (z), and the asserted transitivity is
proved. As a consequence, ≤ f turns out to be a partial order.
What is left is to show that the property of being total does not apply to≤ f . Fix x, y ∈ Rd.
We start by assuming that x � f y and have to show that this does not necessarily imply
y ≤ f x. Indeed, the fact that f does not need to be injective yields an applicable
argument. To be more precise, x � f y gives both f (x) ≥ f (y) and x , y. Since f may not
be injective, it is possible that both f (x) = f (y) and x , y. Consequently, y � f x, which
is our claim. �

Apart from the preceding proposition, we do well to establish the following lemma
that will gain in importance in Chapter 3 as it provides some useful properties.

Lemma 1.3.3
For all x, y ∈ Rd, we have

(a) 0 ≤ f x, (1.3.1)

(b) x ≤ f y ⇒ f (x) ≤ f (y), (1.3.2)

(c) x ≤ f x ∨ f y, (1.3.3)

(d) x ≤ f y ⇒ y = x ∨ f y. (1.3.4)

Proof. Fix x, y ∈ Rd. Assertion (a) is an easy consequence of the assumption f (x) = 0
if and only if x = 0. If x = 0, the claim follows due to the already proven reflexivity.
Otherwise, we have f (x) > 0 = f (0) and hence 0 ≤ f x. The property asserted under
(b) is valid due to Definition 1.3.1 as x ≤ f y implies either f (x) < f (y) or x = y and
therefore actually f (x) ≤ f (y). To verify (c), namely x ≤ f x ∨ f y, we refer to Definition
1.1.1. On account of this, we have to distinguish between the two cases f (x) ≥ f (y) and
f (x) < f (y). In the first case, we have x ∨ f y = x. Applying the reflexivity of ≤ f , we
conclude that x ≤ f x = x∨ f y. In the second case, we deduce that x∨ f y = y. Because of
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Definition 1.3.1, we obtain x ≤ f y = x ∨ f y, which establishes (c). Finally, it remains
to prove (d). By assumption, we have either f (x) < f (y) or x = y. If f (x) < f (y), then
y = x ∨ f y. Otherwise, we have y = x = x ∨ f y. Consequently, we obtain the desired
conclusion in both cases, and the proof is complete. �

Particularly with regard to Section 3.1 we further require the next definition that is
intended to introduce some helpful terminology.

Definition 1.3.4
An Rd-valued sequence (xn)n≥1 is said to be

(a) ≤ f -increasing if xn ≤ f xn+1 for all n ≥ 1.

(b) ≤ f -decreasing if xn+1 ≤ f xn for all n ≥ 1.

For convenience, we will write xn ↑ f and xn ↓ f , respectively.

Lemma 1.3.5
Suppose that (xn)n≥1 is an ≤ f -increasing (≤ f -decreasing) sequence. Then ( f (xn))n≥1 is an
increasing (decreasing) sequence of non-negative real numbers.

Proof. The assertion results directly from Definition 1.3.1 and Definition 1.3.4. �

With the preceding lemma we want to complete our considerations concerning the
f -implicit max-order. The next and last section of the preliminaries pursues another aim
than providing the basic structures that we are consistently benefiting from. Actually,
we will rather be concerned with the study of the distribution of the random vector

Xk(n) =

nh∨
f

i=1h

Xi

occurring in the introduction as well as in Remark 1.1.2.

1.4 Distribution of Xk(n)

As previously said, this section is devoted to a detailed investigation of the distribution
of the random vector Xk(n). This is especially necessary with regard to Chapter 2 in
which we will introduce the notion of f -implicit max-infinitely divisible distributions,
thus extending the concept of f -implicit max-stable distributions in an appropriate
way.
To start with, fix n ≥ 1. Furthermore, let X1, ...,Xn be independent and identically
distributed random vector inRd. Recall from the introduction that the random variable
k(n) depending on the loss function f is given by

k(n) = argmax( f (X1), ..., f (Xn)),

where in the case of ties k(n) is taken as the smallest index yielding the maximum.
Then the random vector Xk(n) referred to as the f -implicit maximum of X1, ...,Xn is the
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subject of interest. In Remark 1.1.2 we mentioned that Xk(n) can be expressed in term
of the f -implicit max-operation. However, following the procedure of [SchSt14], we
conveniently use the notation Xk(n) for the remainder of this section.
In order to establish the central lemma of this section gaining in importance in Chapter 2,
we first introduce some convenient notation. Given an arbitrary cumulative distribution
function H : R→ [0, 1], we define the sets C f (H),D f (H) ⊂ Rd by

C f (H) := C(H) := {x ∈ Rd : H( f (x)−) = H( f (x))}

and

D f (H) := D(H) := {x ∈ Rd : H( f (x)−) < H( f (x))},

respectively. Here, H( f (x)−) denotes the one-sided limit from below of H at f (x) ≥ 0,
that is,

H( f (x)−) := lim
t↑ f (x)

H(t).

Clearly, C(H) and D(H) constitute a disjoint partition of Rd. Equipped with this no-
tation, we can proceed to establish the already announced lemma providing different
representations of the distribution of the random vector Xk(n).

Lemma 1.4.1
Let G : R → R+ denote the cumulative distribution function of f (X), where X d

= X1.
Then the subsequent assertions hold.

(a) For all x ∈ R, we have
P( f (Xk(n)) ≤ x) = Gn(x). (1.4.1)

(b) For all A ∈ B(Rd), we have

P(Xk(n) ∈ A) =

n∑
`=1

(
n
`

) ∫
A

P( f (X) = f (x))`−1P( f (X) < f (x))n−` PX(dx) (1.4.2)

and

P(Xk(n) ∈ A) =

n∑
`=1

∫
A

P( f (X) < f (x))`−1P( f (X) ≤ f (x))n−` PX(dx) (1.4.3)

and finally in addition

P(Xk(n) ∈ A) = n
∫

A∩C(G)

P( f (X) ≤ f (x))n−1PX(dx)

+

∫
A∩D(G)

(
P( f (X) ≤ f (x))n

− P( f (X) < f (x))n

P( f (X) = f (x))

)
PX(dx), (1.4.4)
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(c) For all A ∈ B(Rd), we have

n
∫
A

P( f (X) < f (x))n−1P(X ∈ dx) ≤ P(Xk(n) ∈ A) ≤ n
∫
A

P( f (X) ≤ f (x))n−1PX(dx).

(1.4.5)

(d) If the cumulative distribution function G of f (X) is continuous, we have

P(Xk(n) ∈ A) = n
∫
A

P( f (X) ≤ f (x))n−1PX(dx). (1.4.6)

Remark 1.4.2. (i) Clearly, Lemma 1.4.1 is still true if it is just assumed that the loss
function f is measurable as none of the required assumptions on f were necessary
for the proof.

(ii) Both assertion (c) and (d) have already been proved in [SchSt14, Lemma 2.1],
(1.4.6) being an easy consequence of (1.4.5). However, Lemma 1.4.1 expands (c)
and (d) by the assertions (a) and (b). This is especially necessary with regard to
Chapter 2. In the subsequent proof we will see that (1.4.5) can also be deduced
directly from (1.4.2).

Proof of Lemma 1.4.1. (a) For all x ∈ Rd, equation (1.4.1) is obvious by definition of k(n)
since

f (Xk(n)) =

n∨
i=1

f (Xi).

(b) Fix A ∈ B(Rd). By assumptions on X1, ...,Xn, we get

P(Xk(n) ∈ A)

=

n∑
`=1

P

(
Xk(n) ∈ A,∃ 1 ≤ i1 < ... < i` ≤ n∀ 1 ≤ j ≤ ` : f

(
Xi j

)
=

n∨
m=1

f (Xm) and

f (Xi) <
n∨

m=1

f (Xm)∀ i ∈ {1, ...,n} \ {i1, ..., i`}
)

=

n∑
`=1

(
n
`

)
P(X1 ∈ A, f (X1) = ... = f (X`), f (Xi) < f (X1)∀ i = ` + 1, ...,n)

=

n∑
`=1

(
n
`

) ∫
A

P( f (X1) = ... = f (X`), f (Xi) < f (X1)∀ i = ` + 1, ...,n | X1 = x)PX1(dx)

=

n∑
`=1

(
n
`

) ∫
A

P( f (x) = f (X2) = ... = f (X`), f (Xi) < f (x)∀ i = ` + 1, ...,n)PX1(dx)

=

n∑
`=1

(
n
`

) ∫
A

∏̀
i=2

P( f (Xi) = f (x))
n∏

i=`+1

P( f (Xi) < f (x))

PX1(dx)
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=

n∑
`=1

(
n
`

) ∫
A

P( f (X) = f (x))`−1P( f (X) < f (x))n−` PX(dx),

and (1.4.2) is proved. In addition to X1, ...,Xn being independent, the second step of
the previous calculation follows from the fact that there are exactly

(n
`

)
ways to choose

` indices, disregarding their order, from {1, ...,n}. Now, we proceed to prove (1.4.3). To
this end, we consider the subsequent computation yielding the desired claim. Here, we
gain from the definition of k(n) in addition to the assumptions on X1, ...,Xn.

P(Xk(n) ∈ A) =

n∑
`=1

P(Xk(n) ∈ A, k(n) = `)

=

n∑
`=1

P(X` ∈ A, f (Xi) < f (X`)∀ i = 1, ..., ` − 1, f (Xi) ≤ f (X`)∀ i = ` + 1, ...,n)

=

n∑
`=1

∫
A

P
(

f (Xi) < f (X`)∀ i = 1, ..., ` − 1,

f (Xi) ≤ f (X`)∀ i = ` + 1, ...,n | X` = x
)
PX` (dx)

=

n∑
`=1

∫
A

P( f (X) < f (x))`−1P( f (X) ≤ f (x))n−` PX(dx).

Finally, (1.4.4) can be deduced directly from (1.4.2). Indeed, we have

P(Xk(n) ∈ A)

=

n∑
`=1

(
n
`

) ∫
A

P( f (X) = f (x))`−1P( f (X) < f (x))n−` PX(dx)

=

n∑
`=1

(
n
`

) ∫
A∩C(G)

P( f (X) = f (x))`−1P( f (X) < f (x))n−` PX(dx)

+

n∑
`=1

(
n
`

) ∫
A∩D(G)

P( f (X) = f (x))`−1P( f (X) < f (x))n−` PX(dx)

=

(
n
1

) ∫
A∩C(G)

P( f (X) ≤ f (x))n−1PX(dx)

+

∫
A∩D(G)

( n∑
`=0

(
n
`

)
P( f (X) = f (x))`−1P( f (X) < f (x))n−`

−
P( f (X) < f (x))n

P( f (X) = f (x))

)
PX(dx)

= n
∫

A∩C(G)

P( f (X) ≤ f (x))n−1PX(dx)
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+

∫
A∩D(G)

(
P( f (X) ≤ f (x))n

P( f (X) = f (x))
−
P( f (X) < f (x))n

P( f (X) = f (x))

)
PX(dx)

= n
∫

A∩C(G)

P( f (X) ≤ f (x))n−1PX(dx)

+

∫
A∩D(G)

(
P( f (X) ≤ f (x))n

− P( f (X) < f (x))n

P( f (X) = f (x))

)
PX(dx),

the fourth step being due to the classical binomial theorem.
(c) Both inequalities in (1.4.5) are easy consequences of (1.4.2) and will be proved
separately. First, we establish the lower bound in (1.4.5).

P(Xk(n) ∈ A) =

n∑
`=1

(
n
`

) ∫
A

P( f (X) = f (x))`−1P( f (X) < f (x))n−` PX(dx)

= n
∫
A

P( f (X) < f (x))n−1PX(dx)

+

n∑
`=2

(
n
`

) ∫
A

P( f (X) = f (x))`−1P( f (X) < f (x))n−` PX(dx)

︸                                                                 ︷︷                                                                 ︸
≥0

≥ n
∫
A

P( f (X) < f (x))n−1PX(dx).

Applying the elementary inequality(
n

l + 1

)
≤ n

(
n − 1

l

)
,

which is true for all 0 ≤ ` ≤ n − 1, we further deduce that

P(Xk(n) ∈ A) =

n∑
`=1

(
n
`

) ∫
A

P( f (X) = f (x))`−1P( f (X) < f (x))n−` PX(dx)

=

∫
A

n−1∑
`=0

(
n

` + 1

)
P( f (X) = f (x))`P( f (X) < f (x))n−(`+1)PX(dx)

≤ n
∫
A

n−1∑
`=0

(
n − 1
`

)
P( f (X) = f (x))`P( f (X) < f (x))(n−1)−` PX(dx)

= n
∫
A

P( f (X) ≤ f (x))n−1PX(dx),
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which completes the proof of part (c). The last step of the preceding estimation is once
again due to the classical binomial theorem.
(d) Clearly, (1.4.6) follows from each of the already proved claims (1.4.2), (1.4.3), (1.4.4)
or (1.4.5). �

In addition to the previous lemma, the subsequent one provides another possibility to
represent the distribution of Xk(n), thus yielding a still better insight into the structure of
PXk(n) . In contrast to Lemma 1.4.1, however, we will not apply this statement explicitly.
Nevertheless, it clearly constitutes an additional result of independent interest in f -
implicit extreme value theory.

Lemma 1.4.3
Let µ ∈M1(R) denote the distribution of f (X), X d

= X1. Furthermore, set

ρu(A) = P(X ∈ A | f (X) = u) (1.4.7)

for arbitrary A ∈ B(Rd) and u ≥ 0. Then, for all A ∈ B(Rd), we have

P(Xk(n) ∈ A) =

n∑
`=1

∫
[0,∞)

. . .

∫
[0,∞)

ρu`

(
A ∩ f−1((max(u1, ...,u`−1),∞))

∩ f−1([max(u`+1, ...,un),∞))
)
µ(du1) . . . µ(dun). (1.4.8)

Especially, if n = 2, then

P(X1 ∨ f X2 ∈ A) =

∫
[0,∞)

ρu2(A)µ({u2}) + 2
∫

(u2,∞)

ρu1(A)µ(du1)

µ(du2). (1.4.9)

Remark 1.4.4. (i) Instead of delving into the common field of regular conditional
probability here, we refer to [Al07] for a deeper discussion of such expressions
as given in (1.4.7). We shall further point out that we have also already tacitly
applied the notion of regular conditional probability in the proof of Lemma 1.4.1
and will further do so in the proof of Proposition 3.1.20.

(ii) Observe that the expression f−1((max(u1, ...,u`−1),∞)) does actually not exist and
is therefore not part of the intersection occurring in (1.4.8) if ` = 1. Similarly,
f−1([max(u`+1, ...,un),∞)) does actually not exist and is thus not part of the inter-
section occurring in (1.4.8) if ` = n.

Proof of Lemma 1.4.3. Fix A ∈ B(Rd). Then

P(Xk(n) ∈ A) =

n∑
`=1

P(Xk(n) ∈ A, k(n) = `)

=

n∑
`=1

P(X` ∈ A, f (Xi) < f (X`)∀ i = 1, ..., ` − 1, f (Xi) ≤ f (X`)∀ i = ` + 1, ...,n),
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the last step being an easy consequence of the definition of k(n). Note further that

f (Xi) < f (X`)∀ i = 1, ..., ` − 1 ⇔ X` ∈ f−1(( f (Xi),∞))∀ i = 1, ..., ` − 1

⇔ X` ∈

`−1⋂
i=1

f−1(( f (Xi),∞))

⇔ X` ∈ f−1

`−1⋂
i=1

( f (Xi),∞)


⇔ X` ∈ f−1((max( f (X1), ..., f (X`−1)),∞)),

and similarly that

f (Xi) ≤ f (X`)∀ i = ` + 1, ...,n ⇔ X` ∈ f−1([max( f (X`+1), ..., f (Xn)),∞)).

Accordingly, we conclude, by referring to the assumptions on the random vectors
X1, ...,Xn, that

P(Xk(n) ∈ A)

=

n∑
`=1

P(X` ∈ A,X` ∈ f−1((max( f (X1), ..., f (X`−1)),∞)),

X` ∈ f−1([max( f (X`+1), ..., f (Xn)),∞)))

=

n∑
`=1

P(X` ∈ A ∩ f−1((max( f (X1), ..., f (X`−1)),∞))

∩ f−1([max( f (X`+1), ..., f (Xn)),∞)))

=

n∑
`=1

∫
[0,∞)n−1

P
(
X` ∈ A ∩ f−1((max(u1, ...,u`−1),∞))

∩ f−1([max(u`+1, ...,un),∞))
)
µ⊗(n−1)(du1, ..., du j−1, du j+1, ..., dun)

=

n∑
`=1

∫
[0,∞)n−1

∫
[0,∞)

ρu`

(
A ∩ f−1((max(u1, ...,u`−1),∞))

∩ f−1([max(u`+1, ...,un),∞))
)
µ(du`)µ⊗(n−1)(du1, ..., du j−1, du j+1, ..., dun)

=

n∑
`=1

∫
[0,∞)

. . .

∫
[0,∞)

ρu`

(
A ∩ f−1((max(u1, ...,u`−1),∞))

∩ f−1([max(u`+1, ...,un),∞))
)
µ(du1) . . . µ(dun),

and (1.4.8) is proved. To deduce (1.4.9) from (1.4.8), we first refer to Remark 1.4.4 (ii).
In doing so, we get

P(X1 ∨ f X2 ∈ A) =

∫
[0,∞)

∫
[0,∞)

ρu1

(
A ∩ f−1([u2,∞))

)
µ(du1)µ(du2)
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+

∫
[0,∞)

∫
[0,∞)

ρu2

(
A ∩ f−1((u1,∞))

)
µ(du1)µ(du2)

=

∫
[0,∞)

∫
[0,∞)

ρu1

(
A ∩ f−1([u2,∞))

)
µ(du1)µ(du2)

+

∫
[0,∞)

∫
[0,∞)

ρu1

(
A ∩ f−1((u2,∞))

)
µ(du1)µ(du2),

where the last equality is merely due to a change of designation. Now, observe that

ρu1

(
A ∩ f−1([u2,∞))

)
= 0

for all u1 < u2 and also
ρu1

(
A ∩ f−1((u2,∞))

)
= 0

for all u1 ≤ u2. This can be seen easily by just applying (1.4.7) as well as the assumptions
on f . In addition, we have

ρu1

(
A ∩ f−1([u2,∞))

)
= ρu1(A)

for all u1 ≥ u2 and
ρu1

(
A ∩ f−1((u2,∞))

)
= ρu1(A)

for all u1 > u2, both being again an easy consequence of the definition of ρu1 given in
(1.4.7). Therefore, we conclude immediately that

P(X1 ∨ f X2 ∈ A) =

∫
[0,∞)

∫
[u2,∞)

ρu1

(
A ∩ f−1([u2,∞))

)
µ(du1)µ(du2)

+

∫
[0,∞)

∫
(u2,∞)

ρu1

(
A ∩ f−1((u2,∞))

)
µ(du1)µ(du2)

=

∫
[0,∞)

∫
[u2,∞)

ρu1(A)µ(du1)µ(du2) +

∫
[0,∞)

∫
(u2,∞)

ρu1(A)µ(du1)µ(du2)

=

∫
[0,∞)

ρu2(A)µ({u2}) + 2
∫

(u2,∞)

ρu1(A)µ(du1)

µ(du2),

which establishes (1.4.9). �

Having investigated the distribution of the random vector Xk(n) extensively, we com-
plete this chapter as we are eventually prepared to proceed with the detailed study
of f -implicit max-infinitely divisible distributions and subsequently with the study of
f -implicit max-stable processes. Starting with an appropriate approach to f -implicit
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max-infinitely divisible distributions, we will be guided by the two theories of infinitely
divisible and max-infinitely divisible distributions. The probably best general refer-
ences on these concepts are [MeSch01, Chapter 3] or [Sat99, Chapter 2] for the first and
[Re07, Chapter 5] for the latter. As it will turn out, there exist striking parallels between
these concepts and the one that we are about to establish within a short time. In addi-
tion to the latest observations concerning the distribution of the random vector Xk(n),
the examinations of Section 1.1 as well as of Section 1.2. will gain in importance here
as well. Indeed, the next chapter will reveal the particular relevance of the f -implicit
max-operation for our purpose. Considering the theories of infinitely divisible and
max-infinitely divisible distributions from a more abstract point of view, we recognize
that the summation and maximum operation constitute the underlying basis. In our
context these operations have to be substituted by another appropriate operation. Un-
surprisingly, this will be the f -implicit max-operation. Therefore, the detailed study
of the f -implicit max-operation has been a necessary assignment in order to be able
to establish a more profound insight into the two branches of f -implicit extreme value
theory that will be approached in Chapter 2 and Chapter 3. In the deliberations of
Chapter 3 we will have recourse to the results of Section 1.3.
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2 f -implicit max-infinitely divisible
distributions

While the first chapter was intended to provide the necessary fundamentals including
the essential f -implicit max-operation, the f -implicit max-convolution, the f -implicit
max-order and finally also several different representations of the distribution of the
random vector Xk(n), the present Chapter is devoted to the notion of f -implicit max-
infinitely divisible distributions. Here, we are considerably guided by the two theories
of infinitely divisible and max-infinitely divisible distributions.
Chapter 2 is structured as follows. In Section 2.1, we begin by introducing the central
notion of f -implicit max-infinitely divisible distributions. In particular, we establish
two equivalent definitions, the first one using the notion of measures and the second
one the notion of random vectors. Subsequently, we illustrate this new concept with
basic examples, one of them incorporating the notion of f -implicit max-stable distribu-
tions.
Section 2.2 is devoted to a more detailed study of the class of f -implicit max-infinitely
divisible distributions. As infinitely divisible distributions can be characterized in terms
of its Lévy-Khintchine triplet and max-infinitely divisible distributions in terms of its
spectral measure, it seems reasonable to ask whether similar characterizations exist for
f -implicit max-infinitely divisible distributions. Unfortunately, we are not able to pro-
vide a complete solution as to this question. Nevertheless, we show that all random
vectors in Rd coming under one of two specific classes of random vectors are f -implicit
max-infinitely divisible distributions.
In Section 2.3, we introduce the notion of f -implicit max-compound Poisson distri-
butions and subsequently the notion of f -implicit max-compound Poisson processes.
Here, the idea originates from the class of generalized Poisson distributions which have
been studied in [MeSch01, Chapter 3].
Finally, Section 2.4 consists of an extensive outlook providing several ideas and unsolved
problems for further research projects. In particular, we formulate the hypothesis that
all distributions on Rd are f -implicit max-infinitely divisible and demonstrate its rea-
sonableness.

2.1 The f -implicit max-infinite divisibility

As recently proposed, we do well to take the theories of infinitely and max-infinitely di-
visible distributions into account while establishing an appropriate notion of f -implicit
max-infinite divisibility. The idea here is actually to provide an analogous concept
sharing striking parallels to the initially mentioned ones.
Considering the historical development during the 20th century, we recognize that first
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stable and max-stable distributions and only then infinitely divisible and max-infinitely
divisible distributions occurred in literature. The notion of stable distributions first
arose from investigations of limit theorems for sums of independent and identically
distributed random vectors, whereas the notion of max-stable distributions grew out
of studies concerning limit theorems for the componentwise maxima of such random
vectors. Besides, this is exactly the same with f -implicit stable distributions as can
be seen in [SchSt14]. Motivated by further problems, such as convergence criteria for
triangular arrays (see for example [MeSch01, Section 3.2]) or Lévy processes (see for
example [Sat99]), it was then necessary to develop a more general class of distributions.
Accordingly, the notion of infinitely divisible distributions was developed extending the
class of stable distributions. Similar circumstances gave occasion to the introduction
of the class of max-infinitely divisible distributions enlarging the class of max-stable
distributions. From the historical point of view it is therefore reasonable to take the
class of f -implicit max-stable distribution as a starting point for our studies regarding
f -implicit max-infinitely divisible distributions.
In addition to the latter observations, the mathematical definition of infinitely and max-
infinitely divisible distributions is useful as well. Indeed, it turns out to be the right
approach to adopt a slight modification of the respective definitions. We just have to
apply the f -implicit max-operation instead of the summation or maximum operation,
and we have to substitute the classical convolution concepts induced by the summation
or maximum operation with the f -implicit max-convolution. This is again an evidence
of the necessity of the extensive groundwork addressed in Chapter 1.
Summarizing the previous aspects, we will thus establish a notion of f -implicit max-
infinite divisibility which extends the class of f -implicit max-stable distributions and
emerges from just a slight modification of the classical concepts. This will definitely be
achieved by Definition 2.1.1.
Furthermore, it is worth to emphasize that the general concept of infinite divisibility
can be considered from an even more technical point of view. This exciting but very
theoretical aspect occurs in considerations concerning harmonic analysis on semigroups
(see [BeChRe84]). However, we do not go into detail here. Instead, we proceed to
establish the pivotal concept supplying the title of Chapter 2.

Definition 2.1.1 (a) A probability measureµ ∈M1(Rd) is called f -implicit max-infinitely
divisible if for all n ≥ 1 there exist probability measures µn ∈M1(Rd) such that

µ = (µn)∗ f n. (2.1.1)

Henceforth, µn will be referred to as nth root of µ.

(b) A random vector X in Rd is meant to be f -implicit max-infinitely divisible if its
distribution PX ∈M1(Rd) is f -implicit max-infinitely divisible in accordance with
(a).

With regard to the upcoming deliberations, the following reformulation of Definition
2.1.1 (b) is most convenient as Lemma 1.4.1 provides several explicit representations of
the right hand-side of (2.1.2).
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Lemma 2.1.2
A random vector X in Rd is f -implicit max-infinitely divisible if and only if for all n ≥ 1
there exist independent and identically distributed random vectors X(n)

1 , ...,X(n)
n in Rd

such that

X d
=

nh∨
f

i=1h

X(n)
i = X(n)

k(n), (2.1.2)

the random variable k(n) here being defined as

k(n) = argmax
(

f
(
X(n)

1

)
, ..., f

(
X(n)

n

))
(2.1.3)

with the common convention that in the case of ties k(n) is taken as the smallest index
yielding the maximum.

Proof of Lemma 2.1.2. Both implication are easy consequences of (1.2.7). �

Using the same notation for two slightly different objects - on the one hand at the
beginning of Section 1.4 and on the other hand in (2.1.3) - shall cause no misunderstand-
ings since unless k(n) is explicitly defined the concrete definition of k(n) will always be
clear from context.

Remark 2.1.3. (i) With regard to Definition 2.1.1 (a), it is reasonable to refer to the
random vector X(n)

1 as nth root of X, thus being consistent in our terminology.

(ii) Having introduced Definition 2.1.1 as well as the equivalent formulation of the
notion of f -implicit max-infinite divisibility in terms of random vectors, we must
confess that one crucial aspect remained unconsidered. So far, we have not con-
cerned ourselves with the question whether the roots µn or X(n)

1 are unique. Un-
fortunately, this remains as an open question for the time being. Typically, consid-
erations concerning the notion of infinite divisibility on non-commutative (semi-)
groups deal with the same open problem as non-commutativity involves things a
lot. Although uniqueness is clearly a desirable property, this open question will
not constrain the further deliberations.

In order to illustrate Definition 2.1.1 and Lemma 2.1.2, we do well to proceed with an
easy example. Throughout this section we will, however, derive a much broader class
of distributions coming under the class of f -implicit max-infinitely divisible distribu-
tions. Similar to the fact that all distributions on R are max-infinitely divisible (see for
example [Re07, Chapter 5]), we will even state the reasonable conjecture that probably
all distributions on Rd are f -implicit max-infinitely divisible distributions.

Example 2.1.4
Fix `0 ≥ 0 and let L`0 denote the set {x ∈ Rd : f (x) = `0}. Then every random vector
X such that supp PX ⊂ L`0 is f -implicit max-infinitely divisible. Broadly speaking,
every random vector with support being a subset of some level set of f is f -implicit
max-infinitely divisible. Indeed, let X(n)

1 , ...,X(n)
n be independent copies of X. Then

k(n) = argmax
(

f
(
X(n)

1

)
, ..., f

(
X(n)

n

))
= 1
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almost surely showing that X d
= X(n)

1
d
= X(n)

k(n). Clearly, the latter shows that X is actually
even f -implicit max-stable (see also Lemma 2.1.5).

Having established Definition 2.1.1, subsequently Lemma 2.1.2 and finally Example
2.1.4, it is reasonable to ask whether there exist more examples of distributions on Rd

being f -implicit max-infinitely divisible. The subsequent lemma shows that there are in
fact quite a lot of such distributions. In addition, it makes the technical definition of f -
implicit max-infinitely divisible distributions more tangible as it establishes a connection
between the already extensively studied class of f -implicit max-stable distributions and
the class of f -implicit max-infinitely divisible distributions.

Lemma 2.1.5
All f -implicit max-stable distributions are f -implicit max-infinitely divisible.

Proof. Fix n ≥ 1 and let X be some f -implicit max-stable random vector in Rd, that is,

X d
= a−1

n Xk(n)

for some constant an > 0 and

k(n) = argmax
(

f (X1), ..., f (Xn)
)
,

the random vectors X1, ...,Xn here being independent copies of X. Now, let X(n)
1 , ...,X(n)

n
be defined as

X(n)
i = a−1

n Xi (2.1.4)

for each i = 1, ...,n which are clearly independent and identically distributed. Moreover,
we have

k(n) = argmax
(

f
(
X(n)

1

)
, ..., f

(
X(n)

n

))
,

being an easy consequence of the 1-homogeneity of f and the positivity of an. Thus, we
conclude that

X(n)
k(n) = a−1

n Xk(n)
d
= X.

�

In what follows, we expand on the notion of f -implicit max-infinitely divisible distri-
bution. Considering infinitely and max-infinitely divisible distributions, we recall that
both these types of distributions can fully be characterized. Indeed, infinitely divisible
distributions can be characterized by means of their unique Lévy-Khintchine triplet
occurring in the context of the well-known Lévy-Khintchine representation (see for
example [MeSch01, Theorem 3.1.11]). Max-infinitely divisible distributions, on the con-
trary, are characterized by means of their unique exponent measure. In particular, in the
univariate case all distributions are max-infinitely divisible (see for instance [Re07, Sec-
tion 5.1]). Accordingly, the legitimate question arises whether the previously introduced
class of f -implicit max-infinitely divisible distributions allows a similar characteriza-
tion. At present, this question is far from being solved. However, we prove that two
particular classes of distributions on Rd pertain to the class of f -implicit max-infinitely
divisible distributions, thus providing first attractive theorems concerning the notion
of f -implicit max-infinitely divisible distributions.
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2.2 Main results

As already announced, this section deals with two specific classes of distributions on
Rd which will turn out to be part of the class of f -implicit max-infinitely divisible
distributions. In order to be able to introduce these two particular classes in more
detail, we first establish the notion of the so called left end point of the distribution of a
random variable Z in R.

Definition 2.2.1
Suppose that Z is an arbitrary random variable inR. We refer to ` ∈ R as the left endpoint
of the distribution of Z if

P(Z ≤ x)

= 0, if x < `

> 0, if x > `,

whether or not Z has an atom in ` ∈ R.

Now, we proceed to introduce some notation in addition to Definition 2.2.1. In account
with the notation of Section 1.4, let G : R → R denote the cumulative distribution
function of f (X) and ` ≥ 0 denote the left end point of the distribution of f (X), where X
is a random vector in Rd. Furthermore, let L`0 ,Γ`0 ⊂ R

d be defined by

L`0 = {x ∈ Rd : f (x) = `0} (2.2.1)

and
Γ`0 = {x ∈ Rd : f (x) > `0}, (2.2.2)

the non-negative real number `0 here being arbitrary. Note that the set L`0 is actually
nothing but the level set of our homogeneous loss function f to the level `0. From a more
geometrical or topological point of view, the set L`0 is the boundary of a star-shaped set
inRd including the origin. The set Γ`0 , however, is the complement of the closure of this
star-shaped set. For convenience, we will moreover simply write L and Γ if `0 = `, that
is, we refrain from the index if we consider specifically the left end point. Clearly,

Γ`0 = Γ`0 ∪ ∂Γ`0 = Γ`0 ∪ L`0 = {x ∈ Rd : f (x) ≥ `0},

as f is continuous. Moreover,
Γ`1 ⊃ Γ`2

for all 0 ≤ `1 ≤ `2 and
L`1 ∩ L`2 = ∅

for all `1 , `2. Finally, note that
supp PX ⊂ Γ (2.2.3)

whether or not f (X) has an atom in its left end point `. This is an easy consequence of
the definitions of `, L and Γ and of the assumptions on f .
The next figure is intended to illustrate the geometrical structure of the recently intro-
duced sets for the special case d = 2. Note that the considered example actually reflects
the fact that R2

\ Γ`0 can be even more general than just convex.
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x2

x11 2-1-2

1

2

-1

-2

x2

x11 2-1-2

1

2

-1

-2 L`0 = {x ∈ R2 : f (x) = `0}

Γ`0 = {x ∈ R2 : f (x) > `0}

Figure 2.1: An example of possible sets L`0 and Γ`0 in R2

Having completed these preliminary studies, we are now able to specify the two
already mentioned classes of random vectors in Rd that will be investigated in this
section. In particular, we will focus on the two subsequent ones.

(1.) X is a random vector in Rd such that the cumulative distribution function G of
f (X) is continuous on (`,∞) whether or not f (X) has an atom in `.

(2.) X is a random vector in Rd such that the mass of P f (X) is concentrated on a
countable subset of [0,∞).

Remark 2.2.2. Concerning the second class of random vectors we underline that the
expression countable set is understood as either a finite or a countably infinite set.

For the rest of this section we devote ourselves to proving that all random vectors X
in Rd coming under the first or the second class are f -implicit max-infinitely divisible.
To this end, we first need to provide some auxiliary tools. More precisely, we begin
by establishing specific substitution rules for the Riemann-Stieltjes integral which will
prove extremely beneficial. In doing so, we will be guided by [DuNo11, Chapter 2]
providing an extensive amount of results concerning this particular issue. Without
going into great detail here, we will derive some formulas being specially geared to our
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further course of action.
Starting point of the next deliberations is the following, fairly general result making an
assertion about the representation of a full Stieltjes integral with respect to the composi-
tion V ◦ v of functions V : Rd

→ R and v : [a, b] → Rd,−∞ < a ≤ b < ∞, where v has
bounded variation and V is a C1-function.

Theorem 2.2.3 ([DuNo11, Theorem 2.87])
Let v : [a, b]→ Rd be of bounded variation, let V be a real-valued C1 function onRd and
let h ∈ R[a, b]. Then the composition V ◦ v is of bounded variation and

(S)

b∫
a

h d(V ◦ v) = (S)

b∫
a

〈h (∇V ◦ v), dv〉 +
∑
(a,b]

h
(
∆−(V ◦ v) − 〈∇V ◦ v,∆−v〉

)
+

∑
[a,b)

h
(
∆+(V ◦ v) − 〈∇V ◦ v,∆+v〉

)
, (2.2.4)

where the two sums converge absolutely if a < b and equal 0 if a = b.

Remark 2.2.4. At this point we clearly need to clarify some notation. Following [DuNo11],
we mean by C1 the class of all real-valued, continuously differentiable functions on Rd.
The space R[a, b] is defined as the set of all functions h : [a, b] → R being regulated in
accordance with [DuNo11, Part 1 of Section 2.1]. Furthermore,

(∆−F)(t) := F(t) − F(t−) with F(t−) := lim
s↑t

F(s)

for all t ∈ (a, b] and

(∆+F)(t) := F(t+) − F(t) with F(t+) := lim
s↓t

F(s),

for all t ∈ [a, b), where F is a regulated function on [a, b] with values in some Banach
space B. Finally, the general notion of full Stieltjes integrals of two regulated functions
h and g on [a, b] with values in some Banach spaces B1 and B2, respectively, denoted by

(S)

b∫
a

h ·dg,

can be found in [DuNo11, Definition 2.41]. Note that (2.2.4) differs slightly from Equa-
tion (2.91) in [DuNo11] since we used an easier formulation which is based on the
fact that the involved functions are invariably R- or Rd-valued. However, we skip the
technical details here.

Since we will apply the latter and quite technical result for a particular setting only,
(2.2.4) simplifies significantly. To be more precise, if d = 1 and if v : [a, b] → R is
continuous as well as of bounded variation and if finally h ≡ 1, then (2.2.4) reduces to

b∫
a

d(V ◦ v) =

b∫
a

(V′ ◦ v) dv, (2.2.5)
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where both integrals are understood as classical Riemann-Stieltjes integrals. Note that
the full Stieltjes integral coinciding with the common Riemann-Stieltjes integral follows
from a combination of various results in [DuNo11, Chapter 2] and the particular as-
sumptions on v, h and V. Indeed, applying Theorem 2.17, subsequently Theorem 2.18
as well as Theorem 2.42, and finally Definition 2.41, we can deduce that both integrals
in (2.2.5) exist and can either be understood as full Stieltjes or Riemann-Stieltjes inte-
grals. Here, we shall also refer to Corollary 2.43 in [DuNo11] which combines the latter
arguments once again.
In what follows, we concern specific improper integrals and thus need a slight extension
of the common Riemann-Stieltjes integral. Adopting the classical proceeding, we obtain
the subsequent definition.

Definition 2.2.5 (a) Let −∞ < a < b ≤ ∞ and let g, h : [a, b)→ R be two functions such
that the Riemann-Stieltjes integral

b∗∫
a

h dg

exists for all a ≤ b∗ < b. Then we define the improper Riemann-Stieltjes integral
on [a, b) by

b∫
a

h dg =

b−∫
a

h dg = lim
b∗↑b

b∗∫
a

h dg,

provided the limit exists.

(b) Let −∞ ≤ a < b < ∞ and let g, h : (a, b] → R be two functions such that the
Riemann-Stieltjes integral

b∫
a∗

h dg

exists for all a < a∗ ≤ b. Then we define the improper Riemann-Stieltjes integral
on (a, b] by

b∫
a

h dg =

b∫
a+

h dg = lim
a∗↓a

b∫
a∗

h dg,

provided the limit exists.

(c) Let −∞ ≤ a < b ≤ ∞ and let g, h : (a, b) → R be two functions such that the
improper Riemann-Stieltjes integrals

c∫
a

h dg and

b∫
c

h dg
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exist for some a < c < b. Then we define the improper Riemann-Stieltjes integral
on (a, b) by

b∫
a

h dg =

b−∫
a+

h dg = lim
a∗↓a

c∫
a∗

h dg + lim
b∗↑b

b∗∫
c

h dg.

The latter is well-defined as it does not depend on c.

Remark 2.2.6. More details concerning the notion of improper Riemann-Stieltjes integrals
can be found in [BuBu70, Section 6.3] or in [Ho72, Paragraph 29].

Remark 2.2.7. Note that (2.2.5) can actually be extended to improper Riemann-Stieltjes
integrals. For a particular setting, this will be explained in Corollary 2.2.8 complet-
ing the preparatory considerations concerning substitution rules for Riemann-Stieltjes
integrals.

Corollary 2.2.8
Let X be a random vector in Rd. Referring to the notation introduced at the beginning
of Section 2.2, we obtain the subsequent claims.

(a) If G is continuous on (`,∞), we have
∞∫

s

1
G

dG =

∞∫
s

d(ln ◦G) (2.2.6)

for all s > `.

(b) If ρ is a measure on Γ being finite on regions bounded away from L such that the
mapping Vρ : (`,∞)→ R+, defined by

Vρ(u) = f (ρ)
(
(u,∞)

)
:= f (ρ)(u,∞),

is continuous, then we have

−κ

f (x)∫
`

e−κVρ dVρ =

f (x)∫
`

d
(
e−κVρ

)
(2.2.7)

for all κ ≥ 0 and x ∈ Γ. In addition, we even have

−κ

∞∫
`

e−κVρ dVρ =

∞∫
`

d
(
e−κVρ

)
(2.2.8)

for all κ ≥ 0.

Proof. (a) Fix s > `. Since G > 0 on [s,∞), the continuity of G and (2.2.5) ensure that both

b∗∫
s

1
G

dG and

b∗∫
s

d(ln ◦G)
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exist for all ` < s ≤ b∗ < ∞ and that the integrals are equal. Note that G being a
cumulative distribution function implies that G is non-decreasing and hence of bounded
variation. Furthermore,

b∗∫
s

d(ln ◦G) = ln(G(b∗)) − ln(G(s)) −−−−−→
(b∗→∞)

− ln(G(s)) < ∞.

Thus, by Definition 2.2.5 (a), we have

∞∫
s

d(ln ◦G) = lim
b∗→∞

b∗∫
s

d(ln ◦G)

showing that the improper Riemann-Stieltjes integral on the right-hand side in (2.2.6)
exists. Moreover, since

b∗∫
s

1
G

dG =

b∗∫
s

d(ln ◦G)

for all ` < s ≤ b∗ < ∞, the limit

lim
b∗→∞

b∗∫
s

1
G

dG

exists as well and hence the improper Riemann-Stieltjes integral on the left-hand side in
(2.2.6). Combining the recent findings and taking into account Definition 2.2.5 (a) once
again, we conclude that

∞∫
s

1
G

dG = lim
b∗→∞

b∗∫
s

1
G

dG = lim
b∗→∞

b∗∫
s

d(ln ◦G) =

∞∫
s

d(ln ◦G),

and (2.2.6) is proved.
(b) We start by proving (2.2.7). To this end, fix κ ≥ 0 and x ∈ Γ. Without loss of generality,
we can certainly assume that κ > 0, for if not, (2.2.7) is evident. Similar to the proof of
(a), the continuity of Vρ on (`,∞) and (2.2.5) imply that both

−κ

f (x)∫
a∗

e−κVρ dVρ and

f (x)∫
a∗

d
(
e−κVρ

)
exist for all ` < a∗ ≤ f (x) < ∞ and that the integrals are equal. Furthermore,

f (x)∫
a∗

d
(
e−κVρ

)
= e−κVρ( f (x))

− e−κVρ(a∗)
−−−−→
(a∗ ↓ `)

e−κVρ( f (x))
− e−κρ(Γ) < ∞.
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Applying Definition 2.2.5 (b), we hence obtain

f (x)∫
`

d
(
e−κVρ

)
= lim

a∗↓`

f (x)∫
a∗

d
(
e−κVρ

)
,

so the improper Riemann-Stieltjes integral on the right-hand side in (2.2.7) exists. Since

−κ

f (x)∫
a∗

e−κVρ dVρ =

f (x)∫
a∗

d
(
e−κVρ

)
for all ` < a∗ ≤ f (x) < ∞, the limit

lim
a∗↓`

−κ
f (x)∫

a∗

e−κVρ dVρ


exists as well and therefore the improper Riemann-Stieltjes integral on the left-hand
side in (2.2.7). As before, we deduce that

−κ

f (x)∫
`

e−κVρ dVρ = lim
a∗↓`

−κ
f (x)∫

a∗

e−κVρ dVρ

 = lim
a∗↓`

f (x)∫
a∗

d
(
e−κVρ

)
=

f (x)∫
`

d
(
e−κVρ

)
,

which establishes (2.2.7).
In order to prove (2.2.8), let c ∈ (`,∞) be fixed. Again, we see that both

−κ

b∗∫
c

e−κVρ dVρ and

b∗∫
c

d
(
e−κVρ

)
exist for all c ≤ b∗ < ∞ and that the integrals are equal. We further have

b∗∫
c

d
(
e−κVρ

)
= e−κVρ(b∗)

− e−κVρ(c)
−−−−−→
(b∗→∞)

1 − e−κVρ(c) < ∞

showing that
∞∫

c

d
(
e−κVρ

)
= lim

b∗→∞

b∗∫
c

d
(
e−κVρ

)
.

Analogous to the proof of (a), we therefore get

−κ

∞∫
c

e−κVρ dVρ = lim
b∗→∞

−κ
b∗∫

c

e−κVρ dVρ

 = lim
b∗→∞

b∗∫
c

d
(
e−κVρ

)
=

∞∫
c

d
(
e−κVρ

)
,
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and consequently

−κ

∞∫
`

e−κVρ dVρ = −κ

c∫
`

e−κVρ dVρ +

−κ
∞∫

c

e−κVρ dVρ


=

c∫
`

d
(
e−κVρ

)
+

∞∫
c

d
(
e−κVρ

)

=

∞∫
`

d
(
e−κVρ

)
,

the latter following from Definition 2.2.5 (c) and from equation (2.2.7). �

In addition to the recently established substitution formulas, the subsequent lemma
is also of great importance with regard to the upcoming main results.

Lemma 2.2.9
Let X be a random vector inRd such that G is continuous on (`,∞). Further, let ν denote
the measure on Γ defined as

ν(dx) = P( f (X) ≤ f (x))−1PX(dx) = G( f (x))−1PX(dx).

Then the subsequent properties apply.

(a) For all s > `,
Vν(s) = f (ν)(s,∞) = − ln G(s).

(b) ν ∈Mb(Γ) if and only if P( f (X) = `) = G(`) > 0.

(c) The measure ν is finite on regions bounded away from L, that is, ν(A) < ∞ for all
A ∈ B(Γ) with dist(L,A) := inf{d(x, y) : x ∈ L, y ∈ A} > 0.

(d) The measure ν is σ-finite on Γ.

Remark 2.2.10. Note thatP( f (X) ≤ f (x)) = G( f (x)) > 0 for all x ∈ Γ following immediately
from the definition of the set Γ. Therefore, the measure ν is actually well-defined.

Proof of Lemma 2.2.1. (a) To start with, fix s > `. Accordingly, f−1((s,∞)) ⊂ Γ. Applying
the common change of variables formula and subsequently (2.2.6), we hence obtain

Vν(s) = f (ν)(s,∞)

=

∫
f−1((s,∞))

G( f (x))−1PX(dx)

=

∞∫
s

1
G(u)

dG(u)
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=

∞∫
s

d(ln ◦G)(u)

= − ln G(s).

(b) The asserted equivalence follows immediately from the previously proven claim.
Indeed, we have

ν(Γ) = f (ν)(`,∞) = lim
s↓`

f (ν)(s,∞) = −lim
s↓`

ln G(s) = − ln G(`) = − lnP( f (X) = `),

where the second step is due to the fact that f (ν) is continuous from below, the forth
step due to the right-continuity of G and the last step finally due to the definition of
` ≥ 0. Clearly, the latter equation yields the desired conclusion.
(c) In order to prove this part of the lemma, we need to consider the cases ` > 0 and
` = 0 separately. Fix ε > 0. To begin with, let ` > 0. We have to show that ν(Aε) < ∞,
the set Aε ⊂ Γ being defined by

Aε = {λx ∈ Rd : x ∈ L, λ > 1 + ε}.

To this end, let y ∈ Aε be arbitrary. Accordingly, y = λ0x0 for some λ0 > 1 + ε and some
x0 ∈ L. Then we have

P( f (X) ≤ f (y)) = G(λ0 f (x0)) = G(λ0`) ≥ G((1 + ε)`) > 0

following from the 1-homogeneity of f . Therefore, we deduce that

inf
y∈Aε

P( f (X) ≤ f (y)) = inf
y∈Aε

G( f (y)) > 0,

and consequently
sup
y∈Aε

P( f (X) ≤ f (y))−1 = sup
y∈Aε

G( f (y))−1 < ∞.

Applying the latter, we finally conclude that

ν(Aε) =

∫
Aε

G( f (x))−1PX(dx) ≤ sup
y∈Aε

G( f (y))−1PX(Aε) < ∞,

which is the desired claim, provided ` > 0. Now, let ` = 0. As L = {0}, we only need to
show that ν(Ãε) < ∞, the set Ãε ⊂ Γ here being defined by

Ãε = {λx ∈ Rd : ‖x‖ = 1, λ > ε}

with some norm ‖ · ‖ on Rd. Using similar ideas as in the case ` > 0 as well as the
assumption on the null set of f , we get

sup
y∈Ãε

P( f (X) ≤ f (y))−1 = sup
y∈Ãε

G( f (y))−1 < ∞
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and hence
ν(Ãε) < ∞.

This finishes the proof of (c), the details in the case ` = 0 being skipped.
(d) Showing σ-finiteness of ν on Γ is straightforward. Indeed, let (An)n≥1 be the countable
sequence of sets An ∈ B(Γ) defined by

An = f−1
((
` +

1
n
,∞

))
.

Then we have An ↑ f−1((`,∞)) = Γ and, by part (c), ν(An) < ∞ for all n ≥ 1. This is
precisely the assertion. �

Remark 2.2.11. Clearly, assertion (b) is equivalent to saying ν(Γ) = ∞ if and only if
P( f (X) = `) = G(`) = 0.

Finally, we are prepared to elaborate on the two above-mentioned classes of random
vectors and to prove that all such random vectors are f -implicit max-infinitely divisible.
We begin by focusing on the first class of random vectors. Our investigations concerning
the second class of random vectors are postponed for the time being.
The first step is to show that the distribution of all such random vectors X satisfies a
particular representation. Following this, we establish the notion of f -implicit max-
convolution semigroups on Rd that eventually enables us to prove that X is in fact
f -implicit max-infinitely divisible.

Theorem 2.2.12
Let X be a random vector in Rd coming under the first class of random vectors, that is,
the cumulative distribution function G : R→ R of f (X) is continuous on (`,∞). Further,
let ν be the corresponding measure occurring in Lemma 2.2.9.

(a) If ν(Γ) = ∞, the mass of PX is concentrated on Γ and we have

PX(dx) = e− f (ν)( f (x),∞)ν(dx), (2.2.9)

that is,

P(X ∈ A) =

∫
A∩Γ

e− f (ν)( f (x),∞) ν(dx) (2.2.10)

for all A ∈ B(Rd).

(b) If ν(Γ) < ∞, there exists a measure ρL ∈M1(Rd) with supp ρL ⊂ L such that

PX(dx) = e−ν(Γ)ρL(dx) + e− f (ν)( f (x),∞)ν(dx), (2.2.11)

that is,

P(X ∈ A) = e−ν(Γ)ρL(A) +

∫
A∩Γ

e− f (ν)( f (x),∞) ν(dx) (2.2.12)

for all A ∈ B(Rd).
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Proof. (a) Fix A ∈ B(Rd) and let ν(Γ) = ∞. First, we deduce that P( f (X) = `) = 0
following immediately from Remark 2.2.11. By (2.2.3), this yields P(X ∈ Γ) = 1, thus
showing that the mass of PX is indeed concentrated on Γ. Moreover, we have

G( f (x)) = e−Vν( f (x)) = e− f (ν)( f (x),∞)

for all x ∈ Γ which is an easy consequence of Lemma 2.2.9 (a). Hence, we can conclude
that

P(X ∈ A) =

∫
A∩Γ

PX(dx) =

∫
A∩Γ

G( f (x)) ν(dx) =

∫
A∩Γ

e− f (ν)( f (x),∞) ν(dx),

and (2.2.10) is proved.
(b) Now, fix A ∈ B(Rd) and let ν(Γ) < ∞. Referring to (2.2.3) once again, we see that the
mass of PX is concentrated on Γ. Therefore, we have

P(X ∈ A) = P
(
X ∈ A ∩ Γ

)
= P(X ∈ A ∩ L) +

∫
A∩Γ

PX(dx)

= P(X ∈ A ∩ L) +

∫
A∩Γ

e− f (ν)( f (x),∞) ν(dx). (2.2.13)

The proof is completed by showing that

P(X ∈ A ∩ L) = e−ν(Γ)ρL(A) (2.2.14)

for some probability measure ρL with supp ρL ⊂ L. This is straightforward. Indeed,
applying (2.2.13), subsequently common properties of the theory of Lebesgue- and
Riemann-Stieltjes integration and finally (2.2.8) for κ = 1 and ρ = ν, we get

P(X ∈ Rd) = P(X ∈ L) +

∫
Γ

e− f (ν)( f (x),∞) ν(dx)

= P(X ∈ L) +

∞∫
`

e− f (ν)(u,∞) f (ν)(du)

= P(X ∈ L) −

∞∫
`

e−Vν(u) dVν(u)

= P(X ∈ L) +

∞∫
`

d
(
e−Vν(u)

)
= P(X ∈ L) + 1 − e−ν(Γ).
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Equivalently, we have
P(X ∈ L) = e−ν(Γ).

Therefore, the measure ρL on Rd, defined by

ρL(A) = eν(Γ)P(X ∈ A ∩ L),

is actually a probability measure with supp ρL ⊂ L. This proves (2.2.14), and the desired
conclusion follows. �

Remark 2.2.13. Having proved Theorem 2.2.12, we do well to elaborate on one argument
used in its proof. In particular, we need to clarify the applicability of (2.2.8) in the
preceding computations. To this end, just note that Vν : (`,∞) → R+ is continuous,
so that the assumptions of Corollary 2.2.8 (b) are fulfilled for the particular case ρ = ν.
The continuity of Vν is clear by Lemma 2.2.9 (a) and the fact that G is continuous. In
addition, Lemma 2.2.9 (c) shows that ν is finite on regions bounded away from L.

Remark 2.2.14. As a test, we can actually convince ourselves, by using similar calcula-
tions as in the preceding proof, that both the right-hand side in (2.2.9) and the right-hand
side in (2.2.11) constitute appropriate probability distributions.

The next proposition is intended to extend the assertions of Theorem 2.2.12 in a
particular way. Actually, we can prove that there cannot exist another measure ν′ on Γ
with the property of being finite on regions bounded away from L and with Vν′ being
continuous such that (2.2.9) holds, provided ν′(Γ) = ∞. In addition, we can show that
there cannot exist another measure ν′ ∈ Mb(Γ) with Vν′ being continuous such that
(2.2.11) holds. In this case even the probability measure ρL on Rd occurring in (2.2.11)
turns out to be unique.

Proposition 2.2.15
Differing the two relevant cases, we obtain the subsequent statements.

(a) Suppose that X is a random vector with P(X ∈ Γ) = 1 and

e− f (ν1)( f (x),∞)ν1(dx) = PX(dx) = e− f (ν2)( f (x),∞)ν2(dx)

for two unbounded measures ν1 and ν2 on Γ, which are finite on regions bounded
away from L such that Vν1 and Vν2 are continuous. Then we obtain ν1 = ν2.

(b) Suppose that X is a random vector with

e−ν1(Γ)ρL,1(dx) + e− f (ν1)( f (x),∞)ν1(dx) = PX(dx) = e−ν2(Γ)ρL,2(dx) + e− f (ν2)( f (x),∞)ν2(dx)

for two measures ν1, ν2 ∈ Mb(Γ) such that Vν1 and Vν2 are continuous and for
two measures ρL,1, ρL,2 ∈ M1(Rd) such that supp ρL,1 ⊂ L and supp ρL,2 ⊂ L,
respectively. Then we obtain ρL,1 = ρL,2 and ν1 = ν2.

Proof. To start with, we remark that both equation (2.2.7) and equation (2.2.8) can clearly
be generalized. Indeed, by repeating the argumentation in the corresponding proofs,
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we obtain

−κ

f (x)∫
y

e−κVρ dVρ =

f (x)∫
y

d
(
e−κVρ

)
(2.2.15)

for all κ ≥ 0, all x ∈ Γ and all ` ≤ y ≤ f (x) as well as

−κ

∞∫
y

e−κVρ dVρ =

∞∫
y

d
(
e−κVρ

)
(2.2.16)

for all κ ≥ 0 and all ` ≤ y < ∞. Remember that ρ was assumed to be a measure on Γ
such that Vρ is continuous and such that ρ is finite on regions bounded away from L.
Therefore, both (2.2.15) and (2.2.16) can be applied to both ν1 and ν2. Especially, we will
benefit from (2.2.16).
(a) For the rest of the proof of part (a), we shall consider PX as a probability measure on
Γ leading to no loss of generality. Fix ` ≤ y < ∞ and let Ay ⊂ Γ be the Borel set defined
by

Ay = f−1((y,∞)).

Applying the assumed representation ofPX and subsequently equation (2.2.16) for κ = 1
and ρ = ν1, we get

P(X ∈ Ay) =

∫
f−1((y,∞))

e− f (ν1)( f (x),∞) ν1(dx)

=

∞∫
y

e− f (ν1)(u,∞) f (ν1)(du)

= −

∞∫
y

e−Vν1 (u) dVν1(u)

=

∞∫
y

d
(
e−Vν1 (u)

)
= 1 − e−ν1( f−1((y,∞))). (2.2.17)

Similarly, we have
P(X ∈ Ay) = 1 − e−ν2( f−1((y,∞))). (2.2.18)

Combining (2.2.17) and (2.2.18), we deduce immediately that

ν1

(
f−1((y,∞))

)
= ν2

(
f−1((y,∞))

)
. (2.2.19)

In other words, we have proved that ν1 and ν2 already coincide on the set of Borel sets{
Ay = f−1((y,∞)) : ` ≤ y < ∞

}
.
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Thus, we can conclude that∫
A

e− f (ν1)( f (x),∞) ν1(dx) = P(X ∈ A) =

∫
A

e− f (ν2)( f (x),∞) ν2(dx)

=

∫
A

e−ν2( f−1(( f (x),∞))) ν2(dx)

=

∫
A

e−ν1( f−1(( f (x),∞))) ν2(dx)

=

∫
A

e− f (ν1)( f (x),∞) ν2(dx)

for all A ∈ B(Γ). Consequently, we obtain

PX(dx) = h(x)ν1(dx) and PX(dx) = h(x)ν2(dx), (2.2.20)

where the function h : Γ→ (0,∞) is given by

h(x) = e− f (ν1)( f (x),∞).

Since h is positive, (2.2.20) yields ν1 � PX and ν2 � PX which in turn ensures the
existence of a Radon-Nikodým derivate g : Γ → (0,∞) of ν1 with respect to PX and of
ν2 with respect to PX. Applying common properties concerning the classical Radon-
Nikodým theorem, we actually have g = h−1. As a consequence, we get

ν1(A) =

∫
A

h−1(x)PX(dx) =

∫
A

h−1(x)h(x) ν2(dx) = ν2(A) (2.2.21)

for all A ∈ B(Γ).
(b) To start with, note that (2.2.17), (2.2.18) and (2.2.19) clearly also apply in the setting
of part (b) as Ay ⊂ Γ for all ` ≤ y < ∞. Since (2.2.19) implies in particular that

ν1(Γ) = ν2(Γ),

we deduce that

e−ν1(Γ)ρL,1(B) = P(X ∈ B) = e−ν2(Γ)ρL,2(B) = e−ν1(Γ)ρL,2(B)

and thus
ρL,1(B) = ρL,2(B)

for all Borel sets B ⊂ L. The latter, however, shows that ρL,1 = ρL,2 as supp ρL,1 ⊂ L and
supp ρL,2 ⊂ L. Actually, this completes the proof of part (b). Indeed, ν1 = ν2 can be
established similar to the way of proceeding in part (a). Applying (2.2.19), we obtain

PX
∣∣∣
Γ
(dx) = h(x)ν1(dx) and PX

∣∣∣
Γ
(dx) = h(x)ν2(dx)

Therefore, (2.2.21) follows instantly by using an analogous argumentation as above. �
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Remark 2.2.16. Combining Theorem 2.2.12 and the latter proposition, we can finally
deduce that the assertion stated before Proposition 2.2.15 holds. In other words, for all
X in Rd coming under the first class of random vectors, the measure ν on Γ introduced
in Lemma 2.2.9 is the only unbounded measure on Γ with the property of being finite
on regions bounded away from L and with Vν being continuous such that (2.2.9) holds,
provided f (X) has no atom in ` ≥ 0. If f (X) has an atom in ` ≥ 0, however, then the
measure ν on Γ introduced in Lemma 2.2.9 is the only bounded measure on Γ with
Vν being continuous such that (2.2.11) holds. In this case, the probability measure ρL
occurring in (2.2.11) is also unique and moreover explicitly given by

ρL(A) = eν(Γ)P(X ∈ A ∩ L)

as can be deduced from the proof of Theorem 2.2.12.

The latter remark decides us to establish the following, convenient notation. Let X
be a random vector in Rd coming under the first class of random vectors, that is, the
cumulative distribution function G of f (X) is continuous on (`,∞). Then we write

X ∼

[ν] f , if G(`) = 0,

[ρL, ν] f , if G(`) > 0.
(2.2.22)

Having investigated the structure of all random vectors X in Rd, which come under
the first class of random vectors, we proceed to introduce the notion of f -implicit max-
convolution semigroups. In doing so, we will be guided by the general and commonly
known notion of classical convolution semigroups (see for example [Kl08, Definition
14.46]). However, we need to formulate the definition in a slightly different form
since the f -implicit max-convolution does not have the same structure as the common
convolution.

Definition 2.2.17
Let I be either (0,∞) or [0,∞) and let (µt)t∈I be a family of probability measures onRd. If

µs+t = µs ∗ f µt (2.2.23)

for all s, t ∈ I, we refer to (µt)t∈I as f -implicit max-convolution semigroup of probability
measures on Rd. Moreover, an f -implicit max-convolution semigroup of probability
measures on Rd is said to be continuous if the mapping ι : I → M1(Rd), defined by
ι(t) = µt, is (weakly) continuous. That is,∫

Rd

h(x)µs(dx) −−−−→
(s→t)

∫
Rd

h(x)µt(dx)

for all bounded and continuous functions h on Rd.

Remark 2.2.18. (i) Unlike in the theory of classical convolution semigroups (see for
example [Ba91, Definition 29.5]) we do not necessarily have µ0 = ε0, provided
I = [0,∞). A suitable counterexample will be given in Theorem 2.2.19 (b).
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(ii) Clearly, each probability measure µt of an f -implicit max-convolution semigroup
(µt)t∈I is f -implicit max-infinitely divisible being an easy consequence of (2.2.23).
In Remark 3.1.5 we will have recourse to this aspect when considering a particular
f -implicit max-convolution semigroup.

(iii) Note that property (2.2.23) actually yields µs ∗ f µt = µt ∗ f µs for all s, t ∈ I.

Theorem 2.2.19
Fix `0 ≥ 0.

(a) Let ν0 be an unbounded measure on Γ`0 such that ν0 is finite on regions bounded
away from L`0 and such that the mapping Vν0 : (`0,∞)→ R+, defined by

Vν0(s) = f (ν0)
(
(s,∞)

)
:= f (ν0)(s,∞),

is continuous. Then the family (µt)t>0 of probability measures µt on Rd, defined
by

µt(dx) = te−t f (ν0)( f (x),∞)ν0(dx) = te−tVν0 ( f (x))ν0(dx) (2.2.24)

for all t > 0, is an f -implicit max-convolution semigroup.

(b) Let ν0 ∈ Mb(Γ`0) such that Vν0 is continuous. Further, let ρ0 := ρL`0
∈ M1(Rd)

such that supp ρ0 ⊂ L`0 . Then the family (µt)t≥0 of probability measures µt on Rd,
defined by

µt(dx) = e−tν0(Γ`0 )ρ0(dx) + te−t f (ν0)( f (x),∞)ν0(dx)

= e−tν0(Γ`0 )ρ0(dx) + te−tVν0 ( f (x))ν0(dx) (2.2.25)

for all t ≥ 0, is a continuous f -implicit max-convolution semigroup.

Remark 2.2.20. (i) As before, the formal notation used in (2.2.24) and in (2.2.25) is a
convenient abbreviation for

µt(A) =

∫
A∩Γ`0

te−tVν0 ( f (x)) ν0(dx)

and

µt(A) = e−tν0(Γ`0 )ρ0(A) +

∫
A∩Γ`0

te−tVν0 ( f (x)) ν0(dx),

respectively. In particular, this involves µt(Γ`0) = 1 and µt(Γ`0) = 1, respectively.

(ii) Note that part (b) of Theorem 2.2.19 yields µ0 = ρ0, the measure ρ0 here being
an arbitrary probability measure on Rd with supp ρ0 ⊂ L`0 . If `0 > 0 and thus
L`0 , {0}, this provides a suitable counterexample for the issue stated in Remark
2.2.18.
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Proof of Theorem 2.2.19. As already mentioned in Remark 2.2.14, simple calculations
yield immediately that both the family (µt)t>0 given in part (a) and the family (µt)t≥0
given in part (b) are families of probability measures on Rd. An essential tool helping
to verify these facts is in particular given by Corollary 2.2.8. However, it must be un-
derlined that this is just ensured due to the required assumptions on ν0 and ρ0.
(a) Fix s, t > 0 and A ∈ B(Rd). Observe, by applying similar arguments as in Theorem
2.2.12 or in Proposition 2.2.15 and by using a slight modification of Corollary 2.2.8 with
`,L,Γ replaced by `0,L`0 ,Γ`0 , that

f (µt)
(
[0, f (x)]

)
= µt

(
f−1([0, `0])

)
︸            ︷︷            ︸

=0

+µt
(

f−1((`0, f (x)])
)

= t
∫

f−1((`0, f (x)])

e−t f (ν0)( f (y),∞) ν0(dy)

= t

f (x)∫
`0

e−t f (ν0)(u,∞) f (ν0)(du)

= −t

f (x)∫
`0

e−tVν0 (u) dVν0(u)

=

f (x)∫
`0

d
(
e−tVν0 (u)

)
= e−tVν0 ( f (x))

− e−tν0(Γ`0 )

= e−t f (ν0)( f (x),∞)

for all x ∈ Γ`0 . Similarly, we have

f (µs)
(
[0, f (x))

)
= e−s f (ν0)( f (x),∞)

for all x ∈ Γ`0 since Vν0 is left-continuous in f (x). Using (1.2.4) and (2.2.24), we can hence
conclude that

µs ∗ f µt(A) =

∫
A

f (µt)
(
[0, f (x)]

)
µs(dx) +

∫
A

f (µs)
(
[0, f (x))

)
µt(dx)

= s
∫

A∩Γ`0

e−t f (ν0)( f (x),∞)e−s f (ν0)( f (x),∞) ν0(dx)

+ t
∫

A∩Γ`0

e−t f (ν0)( f (x),∞)e−s f (ν0)( f (x),∞) ν0(dx)
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= (s + t)
∫

A∩Γ`0

e−(s+t) f (ν0)( f (x),∞) ν0(dx)

= µs+t(A).

(b) Now, fix s, t ≥ 0 and A ∈ B(Rd). Similar as before, we first observe that

f (µt)
(
[0, f (x)]

)
= µt

(
f−1([0, `0])

)
+ µt

(
f−1((`0, f (x)])

)
= e−tν0(Γ`0 ) ρ0(Rd

\ Γ`0)︸        ︷︷        ︸
=1

+

(
e−tVν0 ( f (x))

− e−tν0(Γ`0 )
)

= e−t f (ν0)( f (x),∞)

for all x ∈ Γ`0 . Note, however, that ν0 being a finite measure is actually important here.
For all x ∈ Γ`0 , we also have

f (µs)
(
[0, f (x))

)
= e−s f (ν0)( f (x),∞)

once again following in exactly the same way as above. Therefore, we can deduce, by
applying (1.2.4) and (2.2.25), that

µs ∗ f µt(A) =

∫
A

f (µt)
(
[0, f (x)]

)
µs(dx) +

∫
A

f (µs)
(
[0, f (x))

)
µt(dx)

=

∫
A∩L`0

f (µt)
(
[0, f (x)]

)
µs(dx) +

∫
A∩Γ`0

f (µt)
(
[0, f (x)]

)
µs(dx)

+

∫
A∩L`0

f (µs)
(
[0, f (x))

)
µt(dx) +

∫
A∩Γ`0

f (µs)
(
[0, f (x))

)
µt(dx)

= e−sν0(Γ`0 )ρ0(A) f (µt)
(
[0, `0]

)
︸         ︷︷         ︸

=e
−tν0(Γ`0

)

+s
∫

A∩Γ`0

f (µt)
(
[0, f (x)]

)
e−s f (ν0)( f (x),∞) ν0(dx)

+ e−tν0(Γ`0 )ρ0(A) f (µs)
(
[0, `0)

)
︸         ︷︷         ︸

=0

+t
∫

A∩Γ`0

f (µs)
(
[0, f (x))

)
e−t f (ν0)( f (x),∞) ν0(dx)

= e−(s+t)ν0(Γ`0 )ρ0(A) + s
∫

A∩Γ`0

e−t f (ν0)( f (x),∞) e−s f (ν0)( f (x),∞) ν0(dx)

+ t
∫

A∩Γ`0

e−s f (ν0)( f (x),∞) e−t f (ν0)( f (x),∞) ν0(dx)
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= e−(s+t)ν0(Γ`0 )ρ0(A) + (s + t)
∫

A∩Γ`0

e−(s+t) f (ν0)( f (x),∞) ν0(dx)

= µs+t(A).

The continuity of (µt)t≥0 is an easy consequence of Lebesgue’s dominated convergence
theorem since∫

Rd

h(x)µs(dx) = e−sν0(Γ`0 )
∫
L`0

h(x)ρ0(dx) + s
∫
Γ`0

h(x)e−s f (ν0)( f (x),∞) ν0(dx)

−−−−→
(s→t)

e−tν0(Γ`0 )
∫
L`0

h(x)ρ0(dx) + t
∫
Γ`0

h(x)e−t f (ν0)( f (x),∞) ν0(dx)

=

∫
Rd

h(x)µt(dx)

for all bounded and continuous functions h on Rd. This completes the proof of part
(b). �

Finally, Theorem 2.2.12 in combination with Theorem 2.2.19 yields immediately that
all X in Rd coming under the first class of random vectors are f -implicit max-infinitely
divisible. Note that we adopt the notation introduced in Theorem 2.2.19.

Corollary 2.2.21
Suppose that X is a random vector inRd coming under the first class of random vectors.

(a) If X ∼ [ν] f , then X is f -implicit max-infinitely divisible. Moreover, for all n ≥ 1,

PX(n)
1

(dx) := µ 1
n
(dx) =

1
n

e−
1
n f (ν)( f (x),∞)ν(dx) =

1
n

e−
1
n Vν( f (x))ν(dx) (2.2.26)

is a suitable nth root of X.

(b) If X ∼ [ρL, ν] f , then X is f -implicit max-infinitely divisible. Furthermore, for all
n ≥ 1,

PX(n)
1

(dx) := µ 1
n
(dx) = e−

1
n ν(Γ)ρL(dx) +

1
n

e−
1
n f (ν)( f (x),∞)ν(dx)

= e−
1
n ν(Γ)ρL(dx) +

1
n

e−
1
n Vν( f (x))ν(dx) (2.2.27)

is a a suitable nth root of X.

Proof. The proof is straightforward after having already established the previous results.
(a) Applying Theorem 2.2.19 for `0 = ` and ν0 = ν as well as using the representation of
the distribution of X, we deduce immediately that(

PX(n)
1

)∗ f n
= µ 1

n
∗ f ... ∗ f µ 1

n
= µ1 = PX
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for all n ≥ 1, which is precisely the asserted claim.
(b) This is once again an easy consequence of Theorem 2.2.19 in combination with the
representation of the distribution of X. �

Remark 2.2.22. Note that both Example 2.1.4 and Lemma 2.1.5 are special cases of
Corollary 2.2.21.
Clearly, any random vector X in Rd with a distribution as described in Example 2.1.4
comes under the first class of random vectors. Actually, we have X ∼ [ρL, 0] f so that
(2.2.27) reduces to

PX(n)
1

(dx) = ρL(dx)

which coincides with the findings in Example 2.1.4 since X ∼ ρL.
Moreover, even all f -implicit max-stable distributions come under the first class of
distributions. Indeed, X being f -implicit max-stable implies immediately that f (X) is
α-Fréchet, provided the support of PX is not confined to L`0 for some `0 ≥ 0 (see for
example [SchSt14, Theorem 4.2]). Accordingly, the cumulative distribution function G
of f (X) is continuous on (0,∞) proving that X comes under the first class of distributions
and is therefore f -implicit max-infinitely divisible. For all n ≥ 1, both (2.1.4) and (2.2.26)
can be chosen as nth root of X. In this case, they even actually coincide.
Although Example 2.1.4 and Lemma 2.1.5 now appear to be redundant, we did well to
include them at the beginning of Chapter 2 in order to illustrate Definition 2.1.1 as well
as the assertion of Lemma 2.1.2. In addition, this underlines the verisimilitude of our
recent findings.
More aspects concerning the notion of α-Fréchet random variables and its connection
to f -implicit max-stable distributions will be given in Chapter 3 or can also be found in
[SchSt14].

Remark 2.2.23. The assertion that all random vectors X inRd coming under the first class
of random vectors are f -implicit max-infinitely divisible could have also been proved
in a different way. In fact, for all n ≥ 1,

PX(n)
1

(dx) =

(1 − P(X ∈ Γ))
1
nρL(dx) + 1

nP( f (X) ≤ f (x))
1
n−1PX

∣∣∣
Γ
(dx), if G(`) > 0,

1
nP( f (X) ≤ f (x))

1
n−1PX(dx), if G(`) = 0

serves as an nth root of X which can be seen by applying Lemma 1.4.1 as well as the well-
established substitution rules for Riemann-Stieltjes integrals. Here, ρL is an appropriate
probability measure on Rd with supp ρL ⊂ L. We will pick up on this aspect in Section
2.4. Note, even in the case G(`) = 0 the distribution of the nth root is indeed well-defined
since P(X ∈ Γ) = 1 and hence PX can be considered as a measure on Γ. The function
x 7→ P( f (X) ≤ f (x))1/n−1 is de facto just relevant if x ∈ Γ. Clearly, the formal notation
used above shall involve this observation. A similar consideration will occur in Remark
2.4.2.

Having proved the latter corollary and thus having completed our considerations
concerning the first class of distributions, we can now proceed to focus on the second
one. In addition to the previous findings concerning the first class of random vectors,
it is our aim to show that all X in Rd coming under the second class of random vectors
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are f -implicit max-infinitely divisible. Here, however, we will pursue a completely
different approach as before. To be more precise, Lemma 1.4.1 and especially (1.4.4) will
gain in importance as can be seen in the subsequent Theorem.
For convenience and in a break from tradition, let `1 ≥ 0 denote the left end point of
f (X) in the upcoming theorem.

Theorem 2.2.24
Let X be a random vector in Rd coming under the second class of random vectors, that
is, the mass of P f (X) is concentrated on a countable subset of [0,∞) and hence

P f (X)(dx) =

∞∑
i=1

pi ε`i(dx) (2.2.28)

for a suitable sequence (pi)i≥1 ⊂ [0, 1] with

∞∑
i=1

pi = 1

and for an appropriate, strictly increasing sequence (`i)i≥1 of non-negative real numbers.
Then X is f -implicit max-infinitely divisible. Moreover, for all n ≥ 1,

µn(dx) =

∞∑
i=1


 i∑

j=1

p j


1
n

−

 i−1∑
j=1

p j


1
n
ρL`i

(dx) (2.2.29)

is a suitable choice for the corresponding nth root of X, where ρL`i
∈ M1(Rd) such that

supp ρL`i
⊂ L`i for all i ≥ 1.

Proof. To start with, we observe that (2.2.28) actually yields

PX(dx) =

∞∑
i=1

pi ρL`i
(dx) (2.2.30)

for suitable probability measures ρL`i
on Rd with supp ρL`i

⊂ L`i . For convenience,
assume that pi > 0 for all i ≥ 1. Now, fix n ≥ 1 and let X1, ...,Xn be independent copies
of X. Then we deduce, by applying (1.4.4), (2.2.30) and finally (2.2.28), that

P(Xk(n) ∈ A) = n
∫

A∩C(G)

P( f (X) ≤ f (x))n−1PX(dx)

+

∫
A∩D(G)

(
P( f (X) ≤ f (x))n

− P( f (X) < f (x))n

P( f (X) = f (x))

)
PX(dx)

=

∫
A∩

(⋃
∞

i=1 L`i
)
(
P( f (X) ≤ f (x))n

− P( f (X) < f (x))n

P( f (X) = f (x))

)
PX(dx)
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=

∞∑
i=1

∫
A∩L`i

(
P( f (X) ≤ f (x))n

− P( f (X) < f (x))n

P( f (X) = f (x))

)
PX(dx)

=

∞∑
i=1

piρL`i
(A)

(
P( f (X) ≤ `i)n

− P( f (X) < `i)n

P( f (X) = `i)

)

=

∞∑
i=1


 i∑

j=1

p j


n

−

 i−1∑
j=1

p j


nρL`i

(A)

for all A ∈ B(Rd). Using the latter calculation, we can eventually complete the proof.
Indeed, let X(n)

1 , ...,X(n)
n be independent and identically distributed random vectors in

Rd with
PX(n)

1
(dx) = µn(dx).

Then

P
(
X(n)

k(n) ∈ A
)

=

∞∑
i=1




i∑
j=1




j∑
k=1

pk


1
n

−


j−1∑
k=1

pk


1
n



n

−


i−1∑
j=1




j∑
k=1

pk


1
n

−


j−1∑
k=1

pk


1
n



nρL`i
(A)

=

∞∑
i=1



 i∑

k=1

pk


1
n


n

−


 i−1∑

k=1

pk


1
n


nρL`i
(A)

=

∞∑
i=1

pi ρL`i
(A)

= P(X ∈ A)

for all A ∈ B(Rd). Note that the second equality is due to the method of differences
which typically occurs in the context of telescoping series. According to Lemma 2.1.2,
the latter is precisely the assertion of the theorem. �

Remark 2.2.25. Similar to Remark 2.2.22, Example 2.1.4 also rates as a special case of
Theorem 2.2.24. In fact, the mass of P f (X) is concentrated on the single point ` ≥ 0,
thus showing that X comes under the second class of distributions and is therefore
f -implicit max-infinitely divisible. Adjusting the different notations used in Example
2.1.4 and in Theorem 2.2.24, we moreover conclude that (2.2.29) actually coincides with
the representation of the nth root given in Example 2.1.4.

Eventually, Corollary 2.2.21 and Theorem 2.2.24 supplied two tremendous classes of
f -implicit max-infinitely divisible distributions. Nevertheless, there clearly exist much
more distributions on Rd that do not come under one of these two classes. Therefore,
those distributions have to be considered separately. Our expectation is that all those
distributions are also f -implicit max-infinitely divisible which will be considered in
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more detail in Section 2.4. However, as we have already confessed, this hypothesis
remains unproven for the time being and is therefore an exciting object of study for future
research projects. For all that, we can provide satisfactory indications substantiating the
fact that all distributions on Rd might be f -implicit max-infinitely divisible. In concrete
terms, this will be achieved with the aid of the subsequent proposition as it supplies
several examples of distributions which do not come under one of the previously studied
classes of distributions but yet are f -implicit max-infinitely divisible. In addition to this,
Remark 2.2.23 and Section 2.4 are also intended to comply with the latter purpose.

Proposition 2.2.26
Let 0 ≤ ` < r and p, p1, p2 > 0. Then any random vector X in Rd with either

P f (X)(dx) = 1[`,r) (x) h(x)λ1(dx) + pεr(dx)

or

P f (X)(dx) = p1ε`(dx) + 1(`,r) (x) h(x)λ1(dx) + p2εr(dx)

or even

P f (X)(dx) = 1[`,r) (x) h(x)λ1(dx) + pεr(dx) + 1(r,∞) (x) h(x)λ1(dx)

is f -implicit max-infinitely divisible. Here, h denotes a suitable, non-negative and
measurable function on R. Moreover, in any of the above cases, we assume that ` ≥ 0
is really the left endpoint of f (X) in conformity with our convention established at the
beginning of this section. That is, P f (X)([`, ` + ε)) > 0 for all ε > 0.

Remark 2.2.27. Clearly, each of the random vectors X considered in Proposition 2.2.26
does neither come under the first nor under the second class of distributions, provided
the function h is appropriately chosen. Of course, there are many more of such distribu-
tions. However, those can be handled in much the same manner so that we can restrict
ourselves to the consideration of the three above ones.

Proof of Proposition 2.2.26. In what follows, we apply slight extensions of Corollary 2.2.8
which are straightforward and do not need to be considered in more detail. Moreover,
we repeatedly avail ourselves of the notation introduced during the preceding deliber-
ations.
In order to be brief, we give the proof only for the first case and do not carry out every
detail here. As to the other cases, one may proceed similarly.
We begin by estimating the distribution of the random vector X. To this end, fix
A ∈ B(Rd). Then we obtain

P(X ∈ A) = P(X ∈ A ∩ {x ∈ Rd : ` ≤ f (x) ≤ r})

= P(X ∈ A ∩ {x ∈ Rd : ` < f (x) < r}) + P(X ∈ A ∩ {x ∈ Rd : f (x) = r})

=

∫
A∩{x∈Rd: `< f (x)<r}

P( f (X) ≤ f (x))P( f (X) ≤ f (x))−1PX(dx) + pρLr(A)
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:=
∫

A∩{x∈Rd: `< f (x)<r}

P( f (X) ≤ f (x)) η(dx) + pρLr(A)

for an appropriate probability measure ρLr on Rd with supp ρLr ⊂ Lr. Note that η is
a measure being similar to the specific one introduced in Lemma 2.2.9. In the present
context, however, η is understood as a measure on {x ∈ Rd : ` < f (x) < r} = Γ \ (Γr ∪ Lr).
Note that

f (η)(s, r) = ln G(r−) − ln G(s) = ln(1 − p) − ln G(s) (2.2.31)

for all ` < s < r and, as a consequence, η(Γ \ (Γr ∪ Lr)) = ∞. This can be seen similar to
Lemma 2.2.9 (a) by using a slight modification of Corollary 2.2.8 (a). Accordingly, we
have actually proved

P(X ∈ A) = (1 − p)
∫

A∩{x∈Rd: `< f (x)<r}

e− f (η)( f (x),r) η(dx) + pρLr(A). (2.2.32)

Now, fix n ≥ 1 and let X1, ...,Xn be independent copies of X. Applying (1.4.4), (2.2.31)
and (2.2.32), we deduce immediately that

P(Xk(n) ∈ A) = n
∫

A∩C(G)

P( f (X) ≤ f (x))n−1PX(dx)

+

∫
A∩D(G)

(
P( f (X) ≤ f (x))n

− P( f (X) < f (x))n

P( f (X) = f (x))

)
PX(dx)

= n
∫

A∩(Γ\(Γr∪Lr))

P( f (X) ≤ f (x))n−1PX(dx)

+

∫
A∩Lr

(
P( f (X) ≤ f (x))n

− P( f (X) < f (x))n

P( f (X) = f (x))

)
PX(dx)

= n
∫

A∩(Γ\(Γr∪Lr))

(1 − p)n−1
(
e− f (η)( f (x),r)

)n−1
(1 − p) e− f (η)( f (x),r) η(dx)

+ pρLr(A)
P( f (X) ≤ r)n

− P( f (X) < r)n

P( f (X) = r)

= n (1 − p)n
∫

A∩(Γ\(Γr∪Lr))

e−n f (η)( f (x),r) η(dx) +
(
1 − (1 − p)n) ρLr(A).

This finding eventually enables us to make an educated guess of how to choose a suitable
nth root of X. Indeed, let X(n)

1 , ...,X(n)
n be independent and identically distributed random

vectors in Rd with

PX(n)
1

(dx) =
1
n

(1 − p)
1
n e−

1
n f (η)( f (x),r)η(dx) +

(
1 − (1 − p)

1
n
)
ρLr(dx). (2.2.33)
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Applying the latter computation to X(n)
1 instead of X we conclude, by simple calculations,

that

P
(
X(n)

k(n) ∈ A
)

= (1 − p)
∫

A∩{x∈Rd: `< f (x)<r}

e− f (η)( f (x),r) η(dx) + pρLr(A) = P(X ∈ A).

Here, the details can be skipped as the corresponding computations closely resemble
the previous ones. Taking into account Lemma 2.1.2, we have thus proved that X is
f -implicit max-infinitely divisible. �

Remark 2.2.28. Similar to (2.2.33), we can estimate possible nth roots for the two remain-
ing distributions of Proposition 2.2.26. In particular,

PX(n)
1

(dx) = p
1
n
1 ρL(dx) +

1
n

(1 − p2)
1
n e−

1
n f (η)( f (x),r)η(dx) +

(
1 − (1 − p2)

1
n
)
ρLr(dx)

serves as an nth root for the second distribution, ρLr being an appropriate probability
measure onRd with supp ρLr ⊂ Lr, η ∈Mb(Γ\ (Γr∪Lr)) being defined as in the preceding
proof and ρL being a suitable probability measure on Rd with supp ρL ⊂ L. In contrast,

PX(n)
1

(dx) =
1
n

p
1
n
0 e−

1
n f (η1)( f (x),r)η1(dx) +

(
(p0 + p)

1
n − p

1
n
0

)
ρLr(dx) +

1
n

e−
1
n f (η2)( f (x),∞)η2(dx)

serves as an nth root for the third distribution. Here, the positive constant p0 is given by

p0 = G(r−) = P( f (X) < r),

the unbounded measure η1 on Γ \ (Γr ∪ Lr) by

η1(dx) = P( f (X) ≤ f (x))−1PX(dx)

and finally the measure η2 ∈Mb(Γr) by

η2(dx) = P( f (X) ≤ f (x))−1PX(dx)

as well.

These observations shall finally complete Section 2.2. We will now proceed with a
new issue, the notion of f -implicit max-compound Poisson distributions and the notion
of f -implicit max-compound Poisson processes.

2.3 The f -implicit max-compound Poisson process

During our previous deliberations we frequently broached the notion of f -implicit max-
compound Poisson distributions and the notion of f -implicit max-compound Poisson
process. Now, we eventually concretize these concepts. In particular, we are concerned
with an accurate introduction of f -implicit max-compound Poisson distributions and
f -implicit max-compound Poisson processes. Building upon this, we derive certain
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properties providing a more profound insight into the structure of f -implicit max-
compound Poisson processes.
The idea here is to approach a field that might be beneficial within the context of a
possible proof of the still unsolved conjecture that all distributions on Rd are f -implicit
max-infinitely divisible. This strategy originates from the notion of generalized Poisson
distributions specified in [MeSch01, Chapter 3] as these distributions are the analogue
of f -implicit max-compound Poisson distributions and as they essentially contribute to
a successful proof of the common Lévy-Khintchine formula.
To start with, we give the following Proposition which subsequently enables us to
introduce the central concepts of this section in terms of Definition 2.3.2 and Definition
2.3.4.

Proposition 2.3.1
Let c ≥ 0, ρ1 ∈M1(Rd) and ρ2 ∈Mb(Rd). Then the measure Π f (c, ρ1, ρ2), defined by

Π f (c, ρ1, ρ2)(dx) = e−cρ2(Rd)ρ1(dx) + e−cρ2(Rd)
∞∑

n=1

cn

n!
(ρ2)∗ f n(dx), (2.3.1)

is a probability measure on Rd.

Proof. From (1.2.2) we have
(ρ2)∗ f n(Rd) = (ρ2(Rd))n

proving that

Π f (c, ρ1, ρ2)(Rd) = e−cρ2(Rd)ρ1(Rd) + e−cρ2(Rd)
∞∑

n=1

(
cρ2(Rd)

)n

n!

= e−cρ2(Rd) + e−cρ2(Rd)
(
ecρ2(Rd)

− 1
)

= 1.

�

The latter proposition gives occasion to the following definition.

Definition 2.3.2
The class {Π f (c, ρ1, ρ2) : c ≥ 0, ρ1 ∈ M1(Rd), ρ2 ∈ Mb(Rd)} of probability measures on
Rd defined by (2.3.1) is called the class of f -implicit max-compound Poisson distributions.
Any random vector having a distribution of the form (2.3.1) is referred to as f -implicit
max-compound Poisson distributed with parameters c, ρ1, ρ2.

Remark 2.3.3. At this point it should be underlined that the recently introduced class
of f -implicit max-compound Poisson distributions shares striking parallels to the par-
ticular class of generalized Poisson distributions introduced in [MeSch01, Definition
3.1.7]. This is no coincidence but accounted for by the repeatedly mentioned, close
connections between the underlying theories of infinite divisibility on the one hand
and f -implicit max-infinite divisibility on the other. Similar to the theory of infinitely
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divisible distributions (see for example [MeSch01, Chapter 3]), the notion of f -implicit
max-compound Poisson distributions as well as the notion of f -implicit max-compound
Poisson processes might therefore contribute to further achievements in the field of f -
implicit max-infinite divisibility. We will expand on these observations in the context
of Conjecture 2.4.1.

Having supplied the notion of f -implicit max-compound Poisson distributions, we
proceed to establish the notion of f -implicit max-compound Poisson processes. This
is actually the central object of study here as the corresponding headline of Section 2.3
already anticipates.

Definition 2.3.4
Let (Nt)t≥0 be a homogeneous Poisson process with rate λ > 0 and suppose that X0
is random vector in Rd being independent of (Nt)t≥0. Furthermore, let X,X1,X2, ... be
independent and identically distributed random vectors in Rd being independent of
(Nt)t≥0 as well. Then the process Y = (Yt)t≥0, defined by

Yt =


X0, if Nt = 0,
Nth∨

f
i=1h

Xi, if Nt ≥ 1,

is referred to as f -implicit max-compound Poisson process.

Remark 2.3.5. Note that the random variable Nt has a Poisson distribution with param-
eter λt for all t ≥ 0 since (Nt)t≥0 is assumed to be a homogeneous Poisson process with
rate λ > 0.

In the remainder of this section we exclusively concern ourselves with a detailed
investigation of f -implicit max-compound Poisson processes. We establish, inter alia, a
connection between those processes and the notion of f -implicit max-infinite divisibility.
To start with, we provide a more profound insight into the structure of f -implicit max-
compound Poisson processes by calculating the distribution of the marginals Yt for all
t ≥ 0.

Lemma 2.3.6
LetY = (Yt)t≥0 be an f -implicit max-compound Poisson process with X0 ∼ µ0 and X ∼ µ.
Then, for all t ≥ 0, we obtain

PYt(dx) = e−λtµ0(dx) + e−λt
∞∑

n=1

(λt)n

n!
µ∗ f n(dx) (2.3.2)

Proof. Fix A ∈ B(Rd) and t ≥ 0. Referring to the fundamental law of total probability
and observing the required assumptions on µ0 and µ, we obtain

P(Yt ∈ A) =

∞∑
n=0

P(Yt ∈ A |Nt = n)P(Nt = n)
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= e−λtP(X0 ∈ A) + e−λt
∞∑

n=1

(λt)n

n!
P

 Nth∨
f

i=1h

Xi ∈ A
∣∣∣ Nt = n


= e−λtµ0(A) + e−λt

∞∑
n=1

(λt)n

n!
P

 nh∨
f

i=1h

Xi ∈ A


= e−λtµ0(A) + e−λt

∞∑
n=1

(λt)n

n!
µ∗ f n(A).

The latter equality follows instantly from (1.2.7). In the third step we further benefited
from Lemma 1.1.6. �

Corollary 2.3.7
LetY = (Yt)t≥0 be an f -implicit max-compound Poisson process with X0 ∼ µ0 and X ∼ µ.
Then, for all t ≥ 0, Yt is f-implicit max-compound Poisson distributed with parameters
λt, µ0 and µ. That is,

Yt ∼ Π f (λt, µ0, µ)

for all t ≥ 0. �

Having proved the latter representation of the distribution of the marginals Yt of an
f -implicit max-compound Poisson process Y = (Yt)t≥0 with X0 ∼ µ0 and X ∼ µ, we may
now proceed to refine this result considerably. To this end, recall from Section 1.4 that
the sets C(G) andD(G) are given by

C(G) = {x ∈ Rd : G( f (x)−) = G( f (x))} = {x ∈ Rd : f (µ)({ f (x)}) = 0}

and
D(G) = {x ∈ Rd : G( f (x)−) < G( f (x))} = {x ∈ Rd : f (µ)({ f (x)}) > 0},

the function G here being the cumulative distribution function of f (X). For convenience,
let further

f (µ)
(
[0, f (x)]

)
:= f (µ)[0, f (x)]

as well as
f (µ)

(
[0, f (x))

)
:= f (µ)[0, f (x))

and finally also
f (µ)

(
[ f (x),∞)

)
:= f (µ)[ f (x),∞)

as well as
f (µ)

(
{ f (x)}

)
:= f (µ){ f (x)}

in compliance with the notational convention introduced in Corollary 2.2.8 (b).

Theorem 2.3.8
Let A denote some Borel set in Rd. Further, suppose that Y = (Yt)t≥0 an f -implicit
max-compound Poisson process with X0 ∼ µ0 and X ∼ µ. Then we have

P(Yt ∈ A) = e−λtµ0(A) + λt
∫

A∩C(G)

e−λt f (µ)( f (x),∞) µ(dx)
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+

∫
A∩D(G)

(
e−λt f (µ)( f (x),∞)

− e−λt f (µ)[ f (x),∞)

f (µ){ f (x)}

)
µ(dx) (2.3.3)

for all t ≥ 0.

Proof. The proof is straightforward. To start with, let A ∈ B(Rd) and t ≥ 0 be fixed. Then
a combination of (1.2.7), Lemma 1.4.1 and (2.3.2) yields immediately

P(Yt ∈ A) = e−λtµ0(A) + e−λt
∞∑

n=1

(λt)n

n!
µ∗ f n(A)

= e−λtµ0(A) + e−λt
∞∑

n=1

(λt)n

n!
n

∫
A∩C(G)

(
f (µ)[0, f (x)]

)n−1
µ(dx)

+ e−λt
∞∑

n=1

(λt)n

n!

∫
A∩D(G)


(

f (µ)[0, f (x)]
)n
−

(
f (µ)[0, f (x))

)n

f (µ){ f (x)}

µ(dx)

= e−λtµ0(A) + λt e−λt
∫

A∩C(G)

∞∑
n=1

(
λt f (µ)[0, f (x)]

)n−1

(n − 1)!
µ(dx)

+ e−λt
∫

A∩D(G)

1
f (µ){ f (x)}


∞∑

n=1

(
λt f (µ)[0, f (x)]

)n

n!
−

∞∑
n=1

(
λt f (µ)[0, f (x))

)n

n!

µ(dx)

= e−λtµ0(A) + λt e−λt
∫

A∩C(G)

eλt f (µ)[0, f (x)] µ(dx)

+ e−λt
∫

A∩D(G)

(
eλt f (µ)[0, f (x)]

− eλt f (µ)[0, f (x))

f (µ){ f (x)}

)
µ(dx)

= e−λtµ0(A) + λt
∫

A∩C(G)

e−λt(1− f (µ)[0, f (x)]) µ(dx)

+

∫
A∩D(G)

(
e−λt(1− f (µ)[0, f (x)])

− e−λt(1− f (µ)[0, f (x)))

f (µ){ f (x)}

)
µ(dx)

= e−λtµ0(A) + λt
∫

A∩C(G)

e−λt f (µ)( f (x),∞) µ(dx)

+

∫
A∩D(G)

(
e−λt f (µ)( f (x),∞)

− e−λt f (µ)[ f (x),∞)

f (µ){ f (x)}

)
µ(dx).

This is precisely the desired claim. Note that the latter equality in the previous calcula-
tion is due to the fact that f (µ) is a probability measure on R having support confined
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to the non-negative real numbers. �

Under some additional assumptions on the two probability measures µ0 and µ the as-
sertion of the latter theorem, especially formula (2.3.3), simplifies significantly. Indeed,
complying with the notation introduced in Section 2.2, we obtain the next result.

Corollary 2.3.9
Fix ` ≥ 0 and suppose that supp µ0 ⊂ L and µ(Γ) = 1. Furthermore, let Vµ be continuous.
Then, for all t ≥ 0, we have

PYt(dx) = e−λtµ0(dx) + λte−λt f (µ)( f (x),∞)µ(dx). (2.3.4)

Especially, Yt ∼ [µ0, νt] f for all t ≥ 0, the finite measure νt on Γ here being defined by

νt(dx) = λtµ(dx). (2.3.5)

Moreover, every random vector Yt, t ≥ 0, is f -implicit max-infinitely divisible.

Proof. The proof follows immediately from Theorem 2.3.8. To start with, fix t ≥ 0. Then
the required assumptions on µ give C(G) = Rd which yields (2.3.4). Furthermore, (2.3.4)
in combination with the assumptions on µ0 and µ actually shows that the random vector
Yt comes under the first class of f -implicit max-infinitely divisible random vectors. We
skip the details here as the corresponding calculations are similar to the ones that
repeatedly occurred in Section 2.2. On account of Proposition 2.2.15, this observation
proves that Yt ∼ [µ0, νt] f with νt being defined by (2.3.5). Applying Corollary 2.2.21 (b),
we eventually see that Yt is f -implicit max-infinitely divisible. �

Remark 2.3.10. Referring to Remark 2.2.16, we also obtain another possibility to represent
µ0 and νt. We can convince ourselves of the fact that the different representations for
both µ0 and νt coincide, thus revealing the validity of our deliberations once again.

Instead of amplifying the latter aspects, we will now conclude our brief consider-
ations concerning the notion of f -implicit max-compound Poisson distributions and
f -implicit max-compound Poisson processes. As we could see, however, this partic-
ular branch of f -implicit extreme value theory seems to hold a lot of promise as to
further research possibilities. Especially, we might benefit from the notion of f -implicit
max-compound Poisson distributions and from the notion of f -implicit max-compound
Poisson processes in the context of further studies on f -implicit max-infinitely divisible
distributions. In addition to several suggestions for possible and attractive extension of
the content of Chapter 2, elaborating on this hypothesis will be part of the next Section.

2.4 Outlook

Up to this point, we concentrated on pioneering the idea of an f -implicit extreme value
theory motivated by the seminal studies on implicit extremes and f -implicit max-stable
laws in [SchSt14]. In particular, in Chapter 1 we established a profound, mathematical
basis consisting of the f -implicit max-operation, the f -implicit max-convolution and the
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f -implicit max-order. Following this, we proceeded to introduce the notion of f -implicit
max-infinitely divisible distributions extending the class of f -implicit max-stable dis-
tributions. In this context, we have already been able to prove attractive results. With
regard to Conjecture 2.4.1, we then also introduced f -implicit max-compound Poisson
distributions as well as f -implicit max-compound Poisson processes. Finally, the next
chapter will be devoted to the notion of f -implicit max-stable processes being another
attractive branch of f -implicit extreme value theory and constituting the second part
of the present thesis. Prior to this, we both return to some open problems and, sub-
sequently, give suggestions for additional research possibilities extending the content
of Chapter 2. In doing so, we mainly concentrate on alleging sensible reasons for the
conjecture that probably all random vectors inRd are f -implicit max-infinitely divisible.
To start with, we underline that the class of f -implicit max-infinitely divisible distribu-
tions still needs to be studied in more detail. In fact, in the context of investigations of
f -implicit max-infinitely divisible distributions the legitimate question arises whether
there exist results going beyond our preliminary findings. In particular, there is talk of
a potential result that improves the assertions of Corollary 2.2.21, Theorem 2.2.24 and
Proposition 2.2.26 and that characterizes the class of f -implicit max-infinitely divisible
distributions in more detail. Our educated guess regarding this issue is actually that all
distributions on Rd are f -implicit max-infinitely divisible. More precisely, we consider
the subsequent hypothesis possible.

Conjecture 2.4.1
Every random vector X in Rd is f -implicit max-infinitely divisible. Moreover, for all
n ≥ 1, a suitable nth root is given by

PX(n)
1

(dx) = gn(x)PX(dx) (2.4.1)

with

gn(x) =


P( f (X)≤ f (x))

1
n −P( f (X)< f (x))

1
n

P( f (X)= f (x)) , if P( f (X) = f (x)) > 0,

1
nP( f (X) ≤ f (x))

1
n−1, if P( f (X) = f (x)) = 0.

Remark 2.4.2. According to (2.2.3), we have supp PX ⊂ Γ. If G(`) = 0, we even have
P(X ∈ Γ) = 1. Therefore, the function gn is in effect just relevant if x ∈ Γ or if x ∈ Γ
depending on whether G(`) > 0 or G(`) = 0. Note that this observations is important
to assure that the nth root is well-defined. Actually, the function gn is just relevant for
those x ∈ Rd pertaining to the set on which the mass of PX is concentrated. Hence, we
shall expressly underline that the definition of the distribution of the nth root naturally
involves these observations. This is similar to the considerations stated in Remark
2.2.23.

As already mentioned, the assertion of Conjecture 2.4.1 is yet unproved and there-
fore a possible starting point for further promising research projects. Up to this point,
however, we can at least notice that both the claim that all distributions are f -implicit
max-infinitely divisible and (2.4.1) seem quite sensible. Indeed, Conjecture 2.4.1 is
grounded on several cogent reasons.
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First, the assumption that all random vectors X in Rd are f -implicit max-infinitely di-
visible stems from the fact that we have not been able to find any counterexample so far.
Instead, we rather provided a wealth of examples of f -implicit max-infinitely divisible
distributions as can be seen from Corollary 2.2.21, Theorem 2.2.24 and Proposition 2.2.26
in combination with Remark 2.2.27. Furthermore, for all random vectors X in Rd, the
non-negative random variable f (X) is max-infinitely divisible since all distributions on
R are max-infinitely divisible (see for instance [Re07, Section 5.1]). So, the frequently
mentioned close connection between the theories of max-infinitely divisible distribu-
tions and f -implicit max-infinitely divisible distributions makes the suggestion that all
random vectors X in Rd might be f -implicit max-infinitely divisible appear even more
reasonable.
Second, Remark 2.2.23, (2.2.29), (2.2.33) and finally Remark 2.2.28 suggest the verisimil-
itude of (2.4.1). Indeed, all nth roots occurring therein coincide with the one in (2.4.1),
provided the respective assumptions on X are fulfilled. For example, if X is a random
vector such that (2.2.28) holds, we actually have

P
(
X(n)

1 ∈ A
)

=

∫
A

gn(x)PX(dx) =

∞∑
i=1


 i∑

j=1

p j


n

−

 i−1∑
j=1

p j


nρL`i

(A)

for all A ∈ B(Rd). As a side note, the outer sum on the right-hand side is actually only
taken over those i ≥ 1 with pi > 0 as can be seen by following the proof of Theorem
2.2.24 once again.
Since all the latter reasonable arguments do clearly not serve as proof for Conjecture
2.4.1, its assertion remains as an open problem for the time being. Finding a proper
proof for Conjecture 2.4.1 is therefore an ambitious project for future studies in the
novel field of f -implicit extreme value theory. In this context, the notion of f -implicit
max-compound Poisson distributions and f -implicit max-compound Poisson processes
introduced in Section 2.3 might become important as we have already suggested. This
suggestion is especially based on Corollary 3.1.8, Remark 3.1.9 and Theorem 3.1.11 in
[MeSch01]. Therefore, the notion of f -implicit max-compound Poisson distributions
and f -implicit max-compound Poisson processes constitutes another exciting possi-
bility for future research projects as a more profound insight of the latter might be
indispensable. In compliance with [MeSch01, Corollary 3.1.8], an important question
to be answered is whether all distributions on Rd can be realized as a weak limit of an
appropriate sequence of f -implicit max-compound Poisson distributions. In fact, this is
for example true for all random vectors X coming under the first class of distributions
with X ∼ [ρL, ν] which can easily be seen by applying the constant sequence(

Π f

(
ν(Γ), ρL,

ν
ν(Γ)

))
n≥1

of f -implicit max-compound Poisson distributions. We shall note that ν should here be
viewed as a finite measure in Rd with ν(Rd

\ Γ) = 0 rather than a finite measure on Γ as
in Section 2.2.
Another approach to proving Conjecture 2.4.1 could be to investigate whether the class
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of f -implicit max-infinitely divisible distributions is closed with respect to weak conver-
gence and, subsequently, whether the second class of f -implicit max-infinitely divisible
distributions can be applied to approximate any distribution on Rd.
In addition to the latter open problem, the yet unsolved question of uniqueness of the
nth roots needs to be answered as well. Here, it seems easily conceivable that the
nth roots are at least unique if f (X) has a continuous cumulative distribution function.
Furthermore, it appears reasonable to postulate that the nth roots are unique modulo
transformations which leave f (X) unchanged, that is, modulo transformations preserv-
ing the level sets of the loss function f .
Having considered the previous open problems concerning the notion of f -implicit
max-infinitely divisibility, we further would like to broach some issues for additional
research possibilities extending the content of Chapter 2. To start with, potential conver-
gence criteria for triangular arrays in an analogous manner as in [MeSch01, Section 3.2]
might be a promising aspect. To be more precise, transferring the results in [MeSch01,
Section 3.2] into results coming under the field of f -implicit extreme value theory are a
challenging assignment. However, we should keep in mind that this is just an idea for
a possible research subject and it is not clear whether this might work. Nevertheless,
the notion of f -implicit max-compound Poisson distributions as well as the notion of
f -implicit max-compound Poisson processes could gain in interest here again.
Moreover, extensions concerning the assumptions on the loss function f are also con-
ceivable. It is an attractive question whether the preliminary findings can be extended
under more relaxed assumptions on f . For example, the continuity of f could be
replaced by some weaker condition. Moreover, the null set of f could be chosen non-
trivially. That is, we could admit the case D := { f = 0} , {0}, where D would then be
a closed cone in Rd which does not coincide with the trivial cone {0}. Finally, the 1-
homogeneity of f could be substituted by a more general condition such as the concept
of E-homogeneity, E here being some suitable matrix (for a deeper discussion of this
suggestion we refer to Section 4.2). Since our deliberations in Chapter 1 depend on the
loss function f as well, we would therefore also need to check the correctness of the
theoretical framework established there. Potentially, a complete new basis extending
the already existing one would have to be formed.
On a final note, it might hold promise to investigate to what extent the underlying
space Rd matters in the results obtained so far. In particular, can Rd be replaced by a
metric space (E, d) equipped with a suitable scalar multiplication operation? What are
the involved key challenges here? Ultimately, this could be a formidable extension of
the present results being worthy of another doctoral dissertation.
Instead of amplifying these consideration, we proceed with the next chapter dealing
with the notion of f -implicit max-stable processes and thus with the second main part
of the present thesis. More on feasible extensions will be given in Chapter 4. At this
point, however, we can already conclude that the possibilities for further studies in the
field of f -implicit extreme value theory are not exhausted at all. This fact becomes even
more obvious in Chapter 3.
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3 f -implicit max-stable processes

While the first Chapter was intended to provide a theoretical base frame and the second
one to establish the notion of f -implicit infinitely divisible distributions, we are now
concerned with the second main part of the this thesis being the notion of f -implicit
max-stable processes.
As already mentioned in the introduction, it is of interest to know whether there exists
an extension of f -implicit max-stable distributions to f -implicit max-stable processes as
is the case with stable and max-stable distributions, respectively. Our purpose in this
chapter is to develop theory as to those processes by drawing on the current studies on
f -implicit max-stable distributions (see [SchSt14]) and by using the extensively studied
theories of stable and max-stable processes as an aid. Instead of giving a brief exposition
of these theories, which can be reviewed in the extensive monograph of Samorodnitsky
and Taqqu [SaTa94] as well as in numerous papers (see for instance [DaMi08], [de-
HaFe06], [EmKlMi12], [Ka09], [StTa05] or [StWa10]) resulting from the seminal work
on max-stable processes by Laurens de Haan [deHa84], we proceed with the central
definition. Before doing so, it is worth to mention that not all different definitions of
stable or max-stable processes can be adopted.
Recall that a stochastic process X := (Xt)t∈T is said to be stable if all finite dimensional
distributions (Xt1 , ...,Xtn), t1, ..., tn ∈ T,n ≥ 1, are stable in accordance with Definition
2.1.1 in [SaTa94]. Here, T is an arbitrary and non-empty index set. Under the restriction
α ≥ 1 on the stability index α ∈ (0, 2] this is equivalent to the condition that all linear
combinations

n∑
i=1

αiXti , t1, ..., tn ∈ T, α1, ..., αn ∈ R,n ≥ 1,

are α-stable (see for instance [SaTa94, Theorem 3.1.2]). Similarly, a stochastic process
X := (Xt)t∈T is said to be max-stable if all finite dimensional distributions (Xt1 , ...,Xtn),
t1, ..., tn ∈ T,n ≥ 1, are max-stable in accordance with identity (1.1) in [StTa05]. If, for
some α > 0, all marginals are α-Fréchet (with in general different scale parameters),
this is equivalent to the condition that X is an α-Fréchet process meaning that all linear
combinations

n∨
i=1

αiXti , t1, ..., tn ∈ T, α1, ..., αn ≥ 0,n ≥ 1,

areα-Fréchet (see [StTa05, Definition 1.2 and Proposition 6.1]). Remember that a random
variable Z in R is said to be α-Fréchet with scale parameter κ > 0 if

P(Z ≤ x) =

exp(−καx−α), x > 0

0, x ≤ 0.
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Adopting the common notation, we write Z ∼ Φα(κ). If κ = 1, then Z is commonly
called standard α-Fréchet and we simply write Z ∼ Φα instead of Z ∼ Φα(1). For our
purpose it is convenient to extend the notion of α-Fréchet random variables by allowing
κ = 0. More precisely, we set PZ = ε0 if κ = 0. For a more detailed treatment of the
latter concepts we refer to [SaTa94] and [deHaFe06].
Taking into account the above-mentioned definitions of stable and max-stable processes,
we get an idea of how to formulate an appropriate definition for the f -implicit setting.
Namely, the definitions using the notion of linear combinations seem suitable to be
adopted.

Definition 3.0.1
Let T be an arbitrary, non-empty index set and X := (Xt)t∈T a stochastic process with
values in Rd. We call X f -implicit max-stable if for all n ≥ 1, α1, ..., αn ≥ 0 and t1, ..., tn ∈ T
the random vector

ξ :=
nh∨

f
i=1h

αiXti

is f -implicit max-stable.

Note that in general every choice of indices t1, ..., tn ∈ T has to be considered as the
f -implicit max-operation is non-commutative. To be more precise, the equation

α1Xt1 ∨ f α2Xt2 ∨ f α3Xt1 = α1Xt1 ∨ f α3Xt1 ∨ f α2Xt2

(1.1.3)
= (α1 ∨ α3)Xt1 ∨ f α2Xt2

does not need to hold almost surely. With regard to Lemma 1.1.5, this would only be
the case if f (α2Xt2) , f (α3Xt1) almost surely. Accordingly, we cannot assume the indices
t1, ..., tn ∈ T to be pairwise distinct as could be done in the case of linear combinations
with respect to commutative operations. However, equation (1.1.2) assures that we can
restrict our choice of real numbers α1, ..., αn ≥ 0 to real positive ones.
Having established the notion of f -implicit max-stable processes, the crucial question
arises whether there exist non-trivial examples which can be applied to other scientific
areas. In addition, it is of great interest to make an effort in finding examples of f -implicit
max-stable processes as motivated by the following remark.

Remark 3.0.2. Suppose thatX := (Xt)t∈T is an f -implicit max-stable process such that, for
all t ∈ T, the support of PXt is not confined to L`0 for some `0 ≥ 0. Define Y := (Yt)t∈T by

Yt := f (Xt), t ∈ T.

Then it is easy to check that Y is an α-Fréchet process. Indeed, following ideas used in
[SchSt14, Theorem 4.2] and applying the subsequent equation

n∨
i=1

αiYti =

n∨
i=1

αi f
(
Xti

)
= f

 nh∨
f

i=1h

αiXti

 ,
we obtain the desired conclusion.
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In other words, Remark 3.0.2 proves that each f -implicit max-stable process yields
automatically a max-stable process with α-Fréchet marginals.
Consequently, the remainder of this chapter is devoted to the construction of non-trivial
examples of f -implicit max-stable processes. For that reason, following the idea of stable
processes (see for instance [SaTa94, Chapter 3]) or the idea of max-stable processes (see
for example [StTa05]), we introduce the concept of f -implicit, α-Fréchet, random sup-
measures which turn out to be an efficient approach. For convenience, we just use the
term f -implicit sup-measure in the remainder of this chapter.
Following this, we introduce the notion of f -implicit extremal stochastic integrals, that
is to say, integrals of non-random functions with respect to an f -implicit sup-measure.
Here, we pursue a way sharing striking parallels to the common constructions of α-
stable stochastic integrals (see for instance [SaTa94, Chapter 3]) and extremal stochastic
integrals (see for instance [StTa05]), respectively.
As the overarching goal is to construct non-trivial examples of f -implicit max-stable
processes, we concern ourselves both in Section 3.1 and in Section 3.2 with an attractive
one resulting from the previously mentioned concepts, thus re-emphasizing the strength
and benefit of f -implicit sup-measures and f -implicit extremal stochastic integrals,
respectively.
Finally, we finish this chapter with an extensive outlook suggesting some ideas for
additional research work. This points out the wealth of possibilities existing in the field
of f -implicit extreme value theory.
Following this way of proceeding, we start with Section 3.1 being devoted to the study
of f -implicit sup-measure.

3.1 The concept of f -implicit, α-Fréchet, random
sup-measures

As previously said, this section provides a detailed exposition of the concept of f -implicit
sup-measures which brings us closer to the accomplishment of our initial purpose, that
is, to the construction of non-trivial examples of f -implicit max-stable processes.
Before introducing the notion of f -implicit sup-measures, we remark that the studies
on f -implicit max-stable distributions in [SchSt14] and the theories of α-stable random
measures as well as random α-Fréchet sup-measures (see [SaTa94] and [StTa05]) are
central to our next steps. Hence, we recall the relevant aspects about f -implicit max-
stable distributions, thus making our exposition self-contained. This also includes some
basic facts about generalized polar coordinates in Rd

\ {0}. However, we do not review
the concepts of α-stable random measures and random α-Fréchet sup-measures.
We start by introducing the notion of generalized polar coordinates inRd

\ {0} following
[SchSt14, Definition 3.4] in a slightly different way. Namely, we neither use the notion
of compactification nor that of closed cones D ⊂ [−∞,∞]d distinguishing from D = {0}.
Suppose that τ : Rd

→ [0,∞) is continuous and 1-homogeneous with τ(x) = 0⇔ x = 0.
For x ∈ Rd

\ {0}, its generalized polar coordinates in terms of τ can be defined as

(τ, θ) := (τ(x), θ(x)) :=
(
τ(x),

x
τ(x)

)
. (3.1.1)
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Here, τ is referred to as the radial part and θ as the angular part of x = τθ. Observe that
θ heavily depends on τ. Defining the unit sphere

S := Sτ := {x ∈ Rd
\ {0} : τ(x) = 1},

which is bounded and closed and hence compact, we readily obtain a homeomorphism

T := Tτ : Rd
\ {0} → (0,∞) × S, x 7→ (τ(x), θ(x)) = (τ, θ).

Indeed, T is one-to-one and onto, and both T and its inverse

T−1 : (0,∞) × S→ Rd
\ {0}, (τ, θ) 7→ τθ

are continuous which is merely clear by definition. This observation can be used to
derive an efficient disintegration formula for all non-trivial measures ν on Rd

\ {0} that
are finite on regions bounded away from zero and that have the scaling property

ν(λ·) = λ−αν(·) ∀λ > 0 (3.1.2)

for some α > 0. We skip the details here and refer to [SchSt14, Fact 3.5]. Anyhow, it
is important to mention that the disintegration formula yields a non-trivial measure
σ := σS ∈ Mb(S) depending on ν. This turns out to be crucial in the subsequent deliber-
ations concerning f -implicit max-stable distributions and f -implicit sup-measures. In
literature σ is commonly referred to as spectral measure of ν with respect to some fixed polar
coordinates. For a somewhat different treatment of generalized polar coordinates and its
applications to operator-scaling limit theorems we refer to [MeSch01, Chapter 6].
Now, we set our focus on f -implicit max-stable distributions, our notion differring from
the one used in [SchSt14]. Namely, we take the spaceRd

\{0} equipped with the topology
introduced in [MeSch01, Definition 1.2.17] as a basis rather than [−∞,∞]d

\D together
with the topology of vague convergence. Nevertheless, these approaches are equivalent
both in the classical case D = {0}, which can be found in [Sch02, Chapter 2], and in the
more general case in which we observe Rd

\D equipped with the topology introduced
in [LiReRo14, Chapter 2].
Although we have already recalled the definition of f -implicit max-stable distributions,
we address this concept once again in order to initiate the central Definition 3.1.2. Re-
member that a random vector X with values inRd is f -implicit max-stable if for all n ≥ 1
there exist an > 0 such that

a−1
n Xk(n) = a−1

n

nh∨
f

i=1h

Xi =

nh∨
f

i=1h

a−1
n Xi

d
= X,

the random vectors X1, ...,Xn being independent copies of X. Referring to Example
2.1.4, we can clearly exclude the tedious case of random vectors X with P(X ∈ L`0) = 1
for some `0 ≥ 0. Using classical results from extreme value theory we obtain an = n1/α

for some α > 0. Referring to Theorem 4.2 in [SchSt14], we further point out that these
distributions can be characterized completely. Indeed, under the assumptions on f a
distribution is f -implicit max-stable if and only if it is an ( f , ν)-implicit extreme value
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distribution. As usual in the context of ( f , ν)-implicit extreme value distributions, we
point out that ν is a non-trivial measure on Rd

\ {0} being finite on regions bounded
away from zero and satisfying the scaling property (3.1.2) for some α > 0 (see [SchSt14,
Definition 3.2 and Definition 3.17]). More general and at the same time more detailed
considerations concerning the notion of ( f , ν)-implicit extreme value distributions and
its significance in the context of limit theorems for implicit extremes can be found in
[SchSt14].
Now, fix some generalized polar coordinates as in (3.1.1). In order to motivate the basic
definition of f -implicit-Fréchet distributions, which is intended to prepare the notion
of f -implicit sup-measure, we use Proposition 3.18 of [SchSt14]. To be more precise, the
latter provides a probabilistic characterization of ( f , ν)-implicit extreme value distribu-
tions. Referring especially to the only if-part as well as to [SchSt14, Equation (3.21)], we
get the next proposition.

Proposition 3.1.1
Any random vector Y inRd

\ {0} having an ( f , ν)-implicit extreme value distribution can
be represented as

Y d
= Z

Θ

g(Θ)
,

where σ denotes the spectral measure of ν with respect to the given polar coordinates,
g : S → [0,∞) is measurable with

∫
S gα(θ)σ(dθ) = 1, Z is standard α-Fréchet and Θ is a

random vector, being independent of Z, taking values in S and having the distribution
PΘ(dθ) := gα(θ)σ(dθ). In addition, g is actually given by

g(θ) = ν({ f > 1})−
1
α f (θ)

σ-almost surely.

Combining parts of the preceding observations and referring to some additional
aspects considered in [SchSt14], especially to the notion of regular varying measures
on Rd

\ {0}, we conclude that every f -implicit max-stable distribution Y in Rd can be
expressed by

Y d
= C

1
αZ

Θ

f (Θ)
(3.1.3)

with some constant 0 < C < ∞ and Z, Θ as specified above. Conversely, every such
random vector Y is f -implicit max-stable which can be seen easily by just following
the proof of the if-part of Proposition 3.18 in [SchSt14]. Here, we refer specifically to
equation (3.32).
In view of our purpose it is sufficient and convenient at the same time to consider a
special class of distributions given by (3.1.3). To be more precise, we will henceforth
consider in particular the generalized polar coordinates (τ, θ) in terms of f . Clearly,
( f (x), x

f (x) ) can serve as generalized polar coordinates because of our assumptions on f .
Thus, we fix the following notation for the remainder of this chapter:

(τ, θ) =

(
f (x),

x
f (x)

)
, S = { f = 1} = {x ∈ Rd

\ {0} : f (x) = 1}.
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Referring to (3.7) in [SchSt14], we deduce that C now actually coincides with σ(S).
Accordingly, (3.1.3) results in

Y d
= σ(S)

1
αZΘ,

where Z is standard α-Fréchet andPΘ(dθ) := σ(S)−1σ(dθ). If we finally even assume σ to
be a probability measure (see [SchSt14, Remark 3.21]), we get exactly those distributions
which are of interest for our purpose. As this class of distributions will definitely be
crucial for our considerations, we dedicate the following definition to them.

Definition 3.1.2
Let α > 0 and σ ∈M1(S) be fixed.

(a) A random vector X in Rd is said to have a standard f -implicit α-Fréchet distribution
with angular part σ ∈M1(S) if

X d
= ZΘ, (3.1.4)

where Z is standard α-Fréchet and Θ a random vector with values in S, being
independent of Z and having distribution PΘ := σ. For abbreviation, X is referred
to as f -implicit α-Fréchet with angular part σ ∈ M1(S) if it has a standard f -implicit
α-Fréchet distribution with angular part σ ∈M1(S). In this case, we write X ∼ Φ

f
α,σ.

(b) More generally, a random vector X in Rd is said to have an f -implicit α-Fréchet
distribution with scale κ > 0 and angular part σ ∈M1(S) if

X d
= κZΘ, (3.1.5)

with Z, Θ as above. If X has an f -implicit α-Fréchet distribution with scale κ > 0
and angular part σ ∈ M1(S), we simply call X f -implicit α-Fréchet with scale κ > 0
and angular part σ ∈M1(S) and write X ∼ Φ

f
α,σ(κ). Hence, we have Φ

f
α,σ(1) = Φ

f
α,σ.

By convention, let X have distribution PX = ε0 if X ∼ Φ
f
α,σ(0). This extends the notion

of f -implicit α-Fréchet distributions with scale κ > 0 and angular part σ ∈ M1(S). In
fact, the scale κ = 0 is now permitted which is definitely necessary for our upcoming
considerations.

Remark 3.1.3. (i) For all κ > 0, equation (3.1.5) means nothing but

X d
= ZκΘ

with Zκ ∼ Φα(κ). By convention, this is even true if κ = 0. Consequently, we
deduce that f (X) ∼ Φα(κ) for all κ ≥ 0, provided X ∼ Φ

f
α,σ(κ). This conclusion

follows directly from the assumptions on f . Thus, our terminology regarding the
distributions introduced in Definition 3.1.2 becomes more reasonable.

(ii) Observe that P(X = 0) = 0 for all κ > 0, provided X ∼ Φ
f
α,σ(κ). In fact, we have

P(X = 0) = P( f (X) = 0). Taking into account both the assumed 1-homogeneity of f
and (3.1.5), we conclude that P(X = 0) = P(κZ = 0) = 0. Actually, the distribution
of all such random vectors is therefore completely determined on Rd

\ {0}.
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(iii) Note that the distributions introduced in Definition 3.1.2 (a) are closely related
to the standard max-stable distributions derived at the beginning of Section 6 in
[SchSt14].

Equipped with this important definition, we are now interested in first properties of
these distributions serving as a preparation for our further course of action. Lemma
3.1.4 is intended to meet this purpose. It provides some formulas proving extremely
useful in the following considerations. Especially, the proof of existence of an f -implicit
sup-measure benefits from these results. In addition, it assures the existence of two
families of sets which are π-systems generating the Borel σ-algebra B(Rd

\ {0}). To be
more precise, fix r > 0 as well as F ∈ B(S) and consider the cylinder sets defined by

D(r,F) := {x = τθ ∈ Rd
\ {0} : τ ≤ r, θ ∈ F} ⊂ Rd

\ {0}

D∗(r,F) := {x = τθ ∈ Rd
\ {0} : τ > r, θ ∈ F} ⊂ Rd

\ {0}.

Furthermore, set

E1 := {D(r,F) : r > 0,F ∈ B(S)}
E2 := {D∗(r,F) : r > 0,F ∈ B(S)}.

Lemma 3.1.4
Fix α > 0 and σ ∈M1(S).

(a) Both E1 and E2 are π-systems generating the Borel σ-algebra B(Rd
\ {0}), that

is, A(E1) = A(E2) = B(Rd
\ {0}). Hence, two probability measures µ1, µ2 on

(Rd
\ {0},B(Rd

\ {0})) coincide if µ1(A) = µ2(A) for all A ∈ E1 or all A ∈ E2.

(b) If X ∼ Φ
f
α,σ

(
κ1/α

)
with κ > 0, then

PX(A) =

∫
S

∞∫
0

1A (τθ)
κα

τα+1
e−κτ

−α
dτ σ(dθ). (3.1.6)

for all A ∈ B(Rd
\ {0}). For convenience, we shortly write

PX(dτ, dθ) =
κα

τα+1
e−κτ

−α
dτ σ(dθ). (3.1.7)

(c) Let (µt)t≥0 be the family of probability measures on Rd defined by

µt = Φ
f
α,σ

(
t

1
α

)
, t ≥ 0.

Then (µt)t≥0 is an f -implicit max-convolution semigroup, that is,

µs ∗ f µt = µs+t, ∀ s, t ≥ 0 (3.1.8)
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Proof. (a) Let us start with the following observation. Choose A ∈ E2. The definition of
E2 yields A = D∗(r,F) for some r > 0 and F ∈ B(S). Therefore,

Ac = D∗(r,F)c

= (Rd
\ {0}) \D∗(r,F)

= D(r,F) ∪ {x = τθ ∈ Rd
\ {0} : τ < ∞, θ ∈ Fc

}

= D(r,F) ∪
⋃
n≥1

D(n,Fc).

Since D(r,F) ∈ E1 for all r > 0 and all F ∈ B(S), we conclude that Ac
∈ A(E1). Hence, A ∈

A(E1) showing E2 ⊂ A(E1) and finally A(E2) ⊂ A(E1). Applying analogous arguments,
we also verify A(E1) ⊂ A(E2). Thus, it suffices to proof A(E1) = B(Rd

\ {0}). In order to
do so, let us introduce the family of sets

E
′ := {(0, r] × F : r > 0,F ∈ B(S)}.

It is commonly known that {(0, r] : r > 0} generates the Borel σ-algebra B((0,∞)) and
therefore

A(E′) = B((0,∞)) ⊗ B(S) = B((0,∞) × S).

The first equality is due to [Kl08, Theorem 14.12(i)] and the second due to [Kl08, Theorem
14.8]. Moreover, we have E1 = T−1(E′) := {E1 ∈ R

d
\ {0} : E1 = T−1(E′),E′ ∈ E′}. With

O1 := {O ∈ (0,∞) × S : O open}

O2 := {O ∈ Rd
\ {0} : O open}

and by applying [Sc11, Theorem 2.3.2] twice, we obtain

A(E1) = A
(
T−1(E′)

)
= T−1(A(E′))

= T−1(B((0,∞) × S))

= T−1(A(O1))

= A
(
T−1(O1)

)
= A(O2)

= B(Rd
\ {0}).

As usual, (0,∞)× S is equipped with the product topology. Observe that we essentially
gain from the fact that T : Rd

\ {0} → (0,∞)× S, x 7→ (τ, θ) is a homeomorphism. Taking
into account [MeSch01, Theorem 1.1.3], we get immediately the additional statement.
(b) Applying (a), we conclude that it is sufficient to verify (3.1.6) for all A ∈ E1. In doing
so, fix an arbitrary A ∈ E1, that is, A = D(r,F) for some r > 0 and F ∈ B(S). Then the
estimation of the right-hand side yields∫

S

∞∫
0

1D(r,F) (τθ)
κα

τα+1
e−κτ

−α
dτ σ(dθ) =

∫
F

r∫
0

κα

τα+1
e−κτ

−α
dτ σ(dθ)
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= σ(F)

r∫
0

κα

τα+1
e−κτ

−α
dτ

= σ(F) e−κr−α

= P(Θ ∈ F)P(κ
1
αZ ≤ r)

= P(κ
1
αZ ≤ r,Θ ∈ F)

= P(κ
1
αZΘ ∈ D(r,F))

= P(X ∈ D(r,F)),

which proves the assertion.
(c) In order to prove the asserted equality (3.1.8), fix s, t ≥ 0. On account of (1.2.6), we
recognize that the proof is already completed by showing the desired equality (3.1.8)
for s, t > 0. To this end, fix s, t > 0 and write

µs = P
s

1
α Z1Θ1

and µt = P
t

1
α Z2Θ2

with Z1,Z2 ∼ Φα and Θ1,Θ2 ∼ σ ∈ M1(S) such that Z1 and Θ1 as well as Z2 and Θ2 are
independent. Applying the independence of Z1 and Θ1 as well as of Z2 and Θ2, we may
assume that

µs = P
s

1
α ZΘ

and µt = P
t

1
α ZΘ

for Z,Θ as stated in Definition 3.1.2 (b). Since µt({0}) = 0 for all t > 0, we can use the
result of (a) once again to see that it remains to show that

µs ∗ f µt(D(r,F)) = µs+t(D(r,F))

for an arbitrary r > 0 and any F ∈ B(S). For that purpose, we apply (1.2.4) and (3.1.6) to
conclude that

µs ∗ f µt(D(r,F)) =

∫
D(r,F)

f (µt)([0, f (x)])µs(dx) +

∫
D(r,F)

f (µs)([0, f (x)))µt(dx)

=

∫
D(r,F)

P
(

f
(
t

1
αZΘ

)
∈ [0, f (x)]

)
P

s
1
α ZΘ

(dx)

+

∫
D(r,F)

P
(

f
(
s

1
αZΘ

)
∈ [0, f (x))

)
P

t
1
α ZΘ

(dx)

=

∫
D(r,F)

P
(
t

1
αZ ∈ [0, f (x)]

)
P

s
1
α ZΘ

(dx)

+

∫
D(r,F)

P
(
s

1
αZ ∈ [0, f (x))

)
P

t
1
α ZΘ

(dx)
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=

∫
F

r∫
0

P
(
t

1
αZ ≤ τ

)
︸        ︷︷        ︸

=e−tτ−α

sα
τα+1

e−sτ−α dτ σ(dθ)

+

∫
F

r∫
0

P
(
s

1
αZ < τ

)
︸        ︷︷        ︸

=e−sτ−α

tα
τα+1

e−tτ−α dτ σ(dθ)

= σ(F)

r∫
0

sα
τα+1

e−(s+t)τ−α dτ + σ(F)

r∫
0

tα
τα+1

e−(s+t)τ−α dτ

= σ(F)
( s
s + t

e−(s+t)τ−α
∣∣∣∣r
0

+
t

s + t
e−(s+t)τ−α

∣∣∣∣r
0

)
= σ(F)e−(s+t)r−α .

Considering the proof of (b), we finally get

= P
(
(s + t)

1
αZΘ ∈ D(r,F)

)
= µs+t(D(r,F)),

which is the desired conclusion. �

Remark 3.1.5. (i) Note that the claim of Lemma 3.1.4 (a) also holds if we replace the
generalized polar coordinates in terms of f by other ones.

(ii) A result being similar to the one stated in (b) has already been formulated in
[SchSt14, Fact 3.5]. As there was only given a rough sketch of the proof, we
included a detailed one here, thus making our exposition self-contained. Note
further that there clearly exist other suitable ways to prove (b) and even (c).

(iii) Referring to Remark 2.2.18 (iii), we observe that (3.1.8) yields the commutativity
of µs and µt under the f -implicit max-convolution.

(iv) Fix t ≥ 0. Iterating (3.1.8), we obtain

µ t
n
∗ f ... ∗ f µ t

n
=

(
µ t

n

)∗ f n
= µt

for all n ≥ 1 showing that µt is f -implicit max-infinitely divisible with nth root
µt/n. The property of being f -implicit max-infinitely divisible is already clear by
Lemma 2.1.5 as µt is f -implicit max-stable. Moreover, this has also already been
asserted in Remark 2.2.18 (ii). In addition, we even have an explicit formula for
the corresponding nth root.

(v) On a final note, we shall mention that the class of probability measures on Rd

introduced in Lemma 3.1.4 (c) is even a continuous f -implicit max-convolution
semigroup. Clearly, without loss of generality, we may assume once again that

µs = P
s

1
α ZΘ

and µt = P
t

1
α ZΘ
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for Z,Θ as stated in Definition 3.1.2 (b) and s, t ≥ 0. Since s1/αZΘ converges
pointwise to t1/αZΘ as s tends to t, the desired claim follows.

Adopting the previously introduced notation µt = Φ
f
α,σ

(
t1/α

)
for all t ≥ 0, we obtain

the ensuing statements that are indispensable for the upcoming studies on f -implicit
sup-measures. In particular, statement (a) turns out to be extremely beneficial. On the
contrary, statement (b) is less essential but an observation that is of independent interest.

Corollary 3.1.6
Fix α > 0 and σ ∈M1(S).

(a) If X,Y are random vectors in Rd with X ∼ µs and Y ∼ µt for s, t > 0, then

PX ⊗ PY

({
(x, y) ∈ Rd

×Rd : f (x) = f (y)
})

= 0.

In particular, if X and Y are in addition independent, then

X ∨ f Y = Y ∨ f X (3.1.9)

almost surely. That is, X and Y commute almost surely under the f -implicit
max-operation.

(b) Let h : Rd
→ [0,∞) be measurable and ρ1, ρ2 ∈Mb(Rd) such that ρ1 ∗ f ρ2 = ρ2 ∗ f ρ1.

Then we have∫
Rd

∫
Rd

h(x ∨ f y)ρ1(dx)ρ2(dy) =

∫
Rd

∫
Rd

h(y ∨ f x)ρ1(dx)ρ2(dy), (3.1.10)

In particular, if ρ1 = µs and ρ2 = µt for some s, t ≥ 0, then∫
Rd

∫
Rd

h(x ∨ f y)µs(dx)µt(dy) =

∫
Rd

∫
Rd

h(y ∨ f x)µs(dx)µt(dy). (3.1.11)

Proof. (a) Let s, t > 0 be fixed. By Remark 3.1.3 (i), f (X) ∼ Φα

(
s1/α

)
and f (Y) ∼ Φα

(
t1/α

)
.

Hence,

P f (X)(dx) = gs(x)λ1(dx)

= αsx−α−1e−sx−α1(0,∞) (x)λ1(dx)

and

P f (Y)(dx) = gt(x)λ1(dx)

= αtx−α−1e−tx−α1(0,∞) (x)λ1(dx).

Therefore, we get
P f (X) ⊗ P f (Y)(dx, dy) = gs(x)gt(y)λ2(dx, dy)
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and conclude that

PX ⊗ PY

({
(x, y) ∈ Rd

×Rd : f (x) = f (y)
})

=

∫
Rd×Rd

1
{(x,y)∈Rd×Rd: f (x)= f (y)}

(
x, y

)
(PX ⊗ PY) (dx, dy)

=

∫
Rd

∫
Rd

1
{(u,v)∈R2: u=v}

(
f (x), f (y)

)
PY(dy)PX(dx)

=

∫
Rd

∫
(0,∞)

1
{(u,v)∈R2: u=v}

(
f (x), z2

)
P f (Y)(dz2)PX(dx)

=

∫
(0,∞)

∫
Rd

1
{(u,v)∈R2: u=v}

(
f (x), z2

)
PX(dx)P f (Y)(dz2)

=

∫
(0,∞)

∫
(0,∞)

1
{(u,v)∈R2: u=v} (z1, z2)P f (X)(dz1)P f (Y)(dz2)

=

∫
R2

1
{(u,v)∈R2: u=v} (z1, z2) gs(z1)gt(z2)λ2(dz1, dz2)

= 0.

The last equality is due to the fact that {(u, v) ∈ R2 : u = v} is a null set inR2 with respect
to Lebesgue measure on R2.
Now, we deduce (3.1.9) from the preceding result. By Lemma 1.1.5 (b) it is sufficient to
show that f (X) , f (Y) almost surely which in turn follows from

0 = PX ⊗ PY

({
(x, y) ∈ Rd

×Rd : f (x) = f (y)
})

= P(X,Y)

({
(x, y) ∈ Rd

×Rd : f (x) = f (y)
})

= P( f (X) = f (Y)).

(b) We begin by proving (3.1.10). Applying the classical change of variables formula,
Definition 1.2.1 and the assumed requirements, we conclude that∫

Rd

∫
Rd

h(x ∨ f y)ρ1(dx)ρ2(dy) =

∫
Rd×Rd

h
(
T(2)(x, y)

)
(ρ1 ⊗ ρ2)(dx, dy)

=

∫
Rd

h(z) T(2)(ρ1 ⊗ ρ2)(dz)

=

∫
Rd

h(z) (ρ1 ∗ f ρ2)(dz)
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=

∫
Rd

h(z) (ρ2 ∗ f ρ1)(dz)

=

∫
Rd

∫
Rd

h(y ∨ f x)ρ1(dx)ρ2(dy).

Finally, (3.1.11) is a consequence of (3.1.10) and Remark 3.1.5 (iii). Indeed, the latter
provides the commutativity of the f -implicit max-convolution applied to µs and µt. �

Remark 3.1.7. (i) Once more, we shall point out that conclusion (a) of Corollary 3.1.6
will essentially contribute to the proof of existence of an f -implicit sup-measure.

(ii) The first assertion in part (a) is obviously also true if we let s ≥ 0 and t > 0 or
vice versa. Thus, s = t = 0 is the only case for which the assertion does not hold.
However, (3.1.9) is valid for all s, t ≥ 0.

(iii) Clearly, (3.1.9) implies

X ∨ f Y d
= Y ∨ f X.

However, the latter equation is even true under less restrictive assumptions. We
only need to require that both X,Y are independent and that the f -implicit max-
convolution applied to PX and PY is commutative. Indeed, using Lemma 1.2.4
(b), we get

PX∨ f Y = PX ∗ f PY = PY ∗ f PX = PY∨ f X.

Conversely, if X,Y are independent with X ∨ f Y d
= Y ∨ f X, then the f -implicit

max-convolution applied to PX and PY is commutative.

After all these elaborate preparations, we can finally proceed to establish the notion
of f -implicit sup-measures. For convenience, we shall fix α > 0 and σ ∈ M1(S) for the
remainder of this chapter. To simplify notation, we further write

µκ := Φ
f
j

(
κ

1
α

)
:= Φ

f
α,σ

(
κ

1
α

)
for all κ ≥ 0. Moreover, we call X ∼ µκ simply f -implicit α-Fréchet with scale κ1/α

≥ 0,
that is, we neglect the angular part in our way of speaking. In this way, we follow the
preassigned notation of Lemma 3.1.4 and Corollary 3.1.6.
Let (E,E,m) be an arbitrary measure space, m being a measure on the σ-algebra E.
Following the ideas of [SaTa94, Chapter 3.3], let E0 denote the set of all measurable sets
A ⊂ E for which m(A) is finite, that is,

E0 := {A ∈ E : m(A) < ∞}.

Furthermore, define

Ld
0 := Ld

0(Ω,A) := {X : Ω→ Rd
|X is a random vector}

for an appropriate probability space (Ω,A,P).
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Definition 3.1.8 ( f -implicit, α-Fréchet, random sup-measure)
An f -implicit, α-Fréchet, random sup-measure or just f -implicit sup-measure is a mapping

M f
α,σ := M : E0 → Ld

0

with the following properties:

(i) (independently scattered)
For any collection of disjoint sets A1, ...,An ∈ E0,n ≥ 1, the random vectors
M(A1), ...,M(An) are independent.

(ii) ( f -implicit α-Fréchet)
For every A ∈ E0, we have

M(A) ∼ µm(A) := µA. (3.1.12)

(iii) ( f -max σ-sup-additive)
For any collection of disjoint sets An,n ≥ 1, such that An ∈ E0 for all n ≥ 1 and⋃

n≥1 An ∈ E0, we have

M

⋃
n≥1

An

 =

∞h∨
f

n=1h

M(An) = M
(
An0

)
(3.1.13)

almost surely, where n0 is a random index.

The measure m is referred to as the control measure.

Definition 3.1.8 instantly raises the crucial question regarding the existence of an f -
implicit sup-measure. Finding an answer to this issue occupies center stage in Chapter 3.
Before elaborating on this problem, we shall first note the following remarks concerning
Definition 3.1.8.

Remark 3.1.9. (i) Equation (3.1.12) means nothing else but

M(A) d
= m(A)

1
αZΘ

for all A ∈ E0, where Z and Θ are defined as in Definition 3.1.2. In other words,
M(A) is f -implicit α-Fréchet with scale m(A)1/α

≥ 0 for every A ∈ E0.

(ii) Applying equation (3.1.8), we have

µA ∗ f µB = µA∪B (3.1.14)

for any choice of disjoint sets A,B ∈ E0 as m(A) + m(B) = m(A ∪ B).

(iii) The assumption
⋃

n≥1 An ∈ E0 in property (iii) of Definition 3.1.8 is certainly
anything but superfluous and cannot be dropped since E0 is in general no σ-
algebra.
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(iv) For reasons of clarity and comprehensibility, we point out once again that in-
dependent f -implicit α-Fréchet random vectors commute under the f -implicit
max-operation.

Remark 3.1.10. Even more important and necessary to be clarified is the expression

∞h∨
f

n=1h

M(An)

of an infinite f -implicit maximum occuring in (3.1.13). Briefly speaking, the legitimate
question arises why the infinite f -implicit maximum in (3.1.13) exists almost surely and
why it equals M(An0) for some random index n0. On that point, we firstly focus on
deterministic infinite sequences (xn)n≥1 ⊂ R

d. Clearly, the infinite f -implicit maximum

∞h∨
f

n=1h

xn

does not make sense unless supn≥1 f (xn) is attained, that is, unless there exists an n0 ≥ 1
such that

f (xn0) = sup
n≥1

f (xn).

Thus, it does not make sense defining the infinite f -implicit maximum for general
sequences. Even the class of bounded sequences is unsuitable to apply the infinite
f -implicit maximum. An appropriate counterexample showing the latter is given by
the sequences (xn)n≥1 with

xn :=
(
1 −

1
n

)
θ,n ≥ 1,

for some θ ∈ S. However, the infinite f -implicit maximum is obviously well defined for
the class of sequences

χ
f
0 :=

{
(xn)n≥1 ⊂ R

d : lim
n→∞

f (xn) = 0
}
.

In fact, it is defined for an even larger class of sequences, but it will be sufficient for our
purpose to consider χ f

0 . Besides, in view of Lemma 3.1.14 χ f
0 coincides with the set of

all null sequences in Rd. However, this does not need to be the case for more general
loss functions f .
Coming back to equation (3.1.13), we turn our attention in particular to the sequence
(M(An))n≥1 of random vectors M(An) in Rd. On account of the previous deliberations,
we only need to ensure that

(M(An))n≥1 ∈ χ
f
0 (3.1.15)

almost surely, thus obtaining

∞h∨
f

n=1h

M(An) = M
(
An0

)
almost surely for some random index n0 ≥ 1.
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The next lemma is intended to verify (3.1.15).

Lemma 3.1.11
For any collection of disjoint sets A1,A2, ... belonging to E0 such that

⋃
n≥1 An ∈ E0,

the sequence of corresponding random vectors (M(An))n≥1 with M(An) ∼ µAn ,n ≥ 1,
belongs to χ f

0 almost surely. That is,

f (M(An)) −−−−−→
(n→∞)

0

almost surely.

Proof. First, note that

P
(

f (M(An)) > ε
)

= P
(
m(An)

1
αZ > ε

)
= 1 − e−m(An)ε−α

≤ m(An)ε−α

for all ε > 0. Since the sets A1,A2, ... are disjoint with
⋃

n≥1 An ∈ E0, we further have

∞∑
n=1

P
(

f (M(An)) > ε
)
≤ ε−α

∞∑
n=1

m(An) = ε−αm

⋃
n≥1

An

 < ∞
for all ε > 0. Thus, applying the Borel-Cantelli lemma, we conclude that

P

(
lim sup

n→∞

{
f (M(An)) > ε

})
= 0

for all ε > 0. Referring to [Bi12, Theorem 5.2 (i)], we obtain the desired conclusion. �

Remark 3.1.10 and Lemma 3.1.11 in combination justify the reasonableness of Def-
inition 3.1.8. Accordingly, we can proceed to investigate the fundamental question
whether an f -implicit sup-measure exists. To this end, we establish the next theorem
ensuring the existence of an f -implicit sup-measure.

Theorem 3.1.12
Let (E,E,m) be an arbitrary measure space. Then there exists an f -implicit sup-measure
M with control measure m defined over an appropriate probability space (Ω,A,P). In
other words, there exists a probability space (Ω,A,P) and a mapping M : E0 → Ld

0 such
that it fulfills the properties (i)-(iii) listed in Definition 3.1.8.

In order to prove Theorem 3.1.12, we shall first establish the following lemmas since
their assertions will essentially contribute to our argumentation.

Lemma 3.1.13
If X,Y : Ω → Rd are two random vectors on an appropriate probability space (Ω,A,P)
such that

P(X ∈ D) = P(Y ∈ D) = P(X ∈ D,Y ∈ D)

for all D ∈ B(Rd), then X = Y almost surely.

79



The concept of f -implicit, α-Fréchet, random sup-measures

Proof. The proof is straightforward and falls into two parts. We first show the assertion
for d = 1 and then infer the general case by applying the case d = 1. Therefore, let X,Y
be real-valued random variables on an appropriate probability space (Ω,A,P) such that

P(X ∈ D) = P(Y ∈ D) = P(X ∈ D,Y ∈ D)

for all D ∈ B(R). Using this assumption particularly for the Borel sets D = (−∞, x], x ∈ R,
we get

P(X ≤ x,Y ≤ x) = P(X ≤ x) = P(X ≤ x,Y ≤ x) + P(X ≤ x,Y > x)

and hence conclude that
P(X ≤ x,Y > x) = 0

for all x ∈ R. Proceeding similarly, we further have

P(X > x,Y ≤ x) = 0

for all x ∈ R, thus obtaining

supp P(X,Y) ⊂ {(x, x) : x ∈ R}.

In other words, the support of P(X,Y) ∈M1(R2) is a subset of the diagonal in R2 proving
that X = Y almost surely.
The more general case is an easy consequence of the recently proved assertion. To
see this, fix d > 1. Further, write X = (X1, ...,Xd) and Y = (Y1, ...,Yd). Applying the
assumption specially for the Borel sets D1 ×R × · · · ×R, D1 ∈ B(R), we deduce that

P(X1 ∈ D1) = P(Y1 ∈ D1) = P(X1 ∈ D1,Y1 ∈ D1)

for all D1 ∈ B(R) and hence X1 = Y1 almost surely. Likewise, we get Xi = Yi almost
surely for all i = 2, ..., d, which completes the proof. �

Lemma 3.1.14
Let (xn)n≥1 be a sequence in Rd. If ( f (xn))n≥1 is a null sequence, then so is (xn)n≥1, that is,

f (xn) −−−−−→
(n→∞)

0 ⇒ xn −−−−−→
(n→∞)

0.

Proof. Note, (xn)n≥1 being a null sequence implies ( f (xn))n≥1 is a null sequence. This
follows from the continuity of f . However, even the converse is true. The simple proof
is done by contradiction. Suppose, contrary to our claim, that (xn)n≥1 is not a null
sequence. Consequently, there exist ε0 > 0 and a subsequence (xnk)k≥1 of (xn)n≥1 such
that

‖xnk‖ ≥ ε0 > 0

for all k ≥ 1, where ‖ · ‖ denotes some norm on Rd. Therefore, f being 1-homogeneous,
we conclude that

f
(
xnk

)
= f

(
‖xnk‖

xnk

‖xnk‖

)
= ‖xnk‖ f

(
xnk

‖xnk‖

)
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for all k ≥ 1. Similarly to the proof of Lemma 1.1.9, the assumptions on f and the
compactness of the sphere S1 = {x ∈ Rd : ‖x‖ = 1} yield

f
(

xnk

‖xnk‖

)
≥ c > 0

for all k ≥ 1, the positive real number c denoting the minimum of f on S1. Accordingly,
we obtain

f
(
xnk

)
≥ ε0 · c > 0

for all k ≥ 1 contradicting the assumption that ( f (xn))n≥1 is a null sequence. �

Proof of Theorem 3.1.12. Since proving the assertion is quite involved, we do well to
outline the proof first. To this end, we refer to [StTa05, Proposition 2.1] or to [SaTa94,
Chapter 3] as the principal idea originates from the considerations given there. Indeed, it
is most convenient to view an f -implicit sup-measure as a stochastic process indexed by
the sets A ∈ E0, that is, as a family (M(A))A∈E0 ofRd-valued random vectors M(A),A ∈ E0,
defined on an appropriate probability space (Ω,A,P). More precisely, the basic idea is
to define a consistent family of probability measures{

ρA1,...,Am ∈M1
(
(Rd)m

)
: A1, ...,Am ∈ E0,m ≥ 1

}
(3.1.16)

and then to apply Kolmogorov’s extension theorem that guarantees the existence of a
probability space (Ω,A,P) together with a stochastic process (M(A))A∈E0 on (Ω,A,P)
such that its finite dimensional distributions are given by (3.1.16). Finally, it remains
to show that the latter process fulfills the properties (i), (ii) and (iii) of Definition 3.1.8.
(M(A))A∈E0 can actually be viewed as a mapping

M : E0 → Ld
0,

thus yielding the desired conclusion.
Having formulated this brief sketch of the proof, which is intended to provide a clearer
comprehension of the subsequent explanations, we now expand on the latter delibera-
tions. First, we remark that the proof falls naturally into 5 parts.

Part 1: (Construction of a consistent family of finite dimensional distributions)
We begin by choosing any finite collection A1, ...,Am ∈ E0 of not necessarily disjoint sets
A1, ...,Am for some m ≥ 1. It is always possible to find disjoint sets B1, ...,Bn ∈ E0 such
that

A j =
⋃

i∈a( j)

Bi

for all j = 1, ...,m with suitable index sets a( j) ⊂ {1, ...,n}, j = 1, ...,m. For all j = 1, ...,m,
a( j) is consequently the set of indices {i1, ..., il} ⊂ {1, ...,n} depending on j ∈ {1, ...,m}
for which Bik , k = 1, ..., l, 1 ≤ l ≤ n is part of the disjoint partition of A j. Using this
construction as well as the notation introduced in (3.1.12), we define a probability
measure ρA1,...,Am on (Rd)m � Rmd by

ρA1,...,Am(D) :=
∫

Rd×···×Rd

1D

 ∨ f
i∈a(1)

xi, ..., ∨ f
i∈a(m)

xi

 (µB1 ⊗ · · · ⊗ µBn

)
(dx1, ..., dxn)
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=

∫
Rd

. . .

∫
Rd

1D

 ∨ f
i∈a(1)

xi, ..., ∨ f
i∈a(m)

xi

µBn(dxn) . . . µB1(dx1) (3.1.17)

with D ∈ B
(
(Rd)m

)
= B(Rd)⊗m. Consequently, any collection A1, ...,Am ∈ E0 yields a

probability measure ρA1,...,Am on
(
(Rd)m,B(Rd)⊗m

)
. Indeed, both the property

ρA1,...,Am

(
(Rd)m

)
= 1

and the countable additivity ofρA1,...,Am are evident and do not need further explanations.
It is worth to mention that in some parts of the proof it will be most convenient to rewrite
the definition of ρA1,...,Am as

ρA1,...,Am(D) =

∫
Rd

. . .

∫
Rd

ε ∨ f
i∈a(1)

xi,..., ∨ f
i∈a(m)

xi

(D)µBn(dxn) . . . µB1(dx1)

=

∫
Rd

. . .

∫
Rd

ε ∨ f
i∈a(1)

xi ⊗ · · · ⊗ ε ∨ f
i∈a(m)

xi

 (D)µBn(dxn) . . . µB1(dx1).

We refer to this particularly in Part 5. Further note that a combination of (1.1.2) and
Corollary 3.1.6 (a) ensures that the variables x1, ..., xn, occurring in (3.1.17), commute
under the in general non-commutative f -implicit max-operation. This becomes more
evident in the subsequent deliberations. In addition, the latter observation justifies the
above-mentioned expressions

∨ f
i∈a( j)

xi

for all j = 1, ...,m .
The next important step is to show that our definition of ρA1,...,Am in (3.1.17) does not
depend on the choice of a representation of the sets A1, ...,Am in terms of disjoint
sets B1, ...,Bn, thus ensuring that the definition of ρA1,...,Am in (3.1.17) is unambiguous.
Suppose that

(A) B1, ...,Bn1 ∈ E0 such that
A j =

⋃
i∈a( j)

Bi

for all j = 1, ...,m with suitable index sets a( j) ⊂ {1, ...,n1}, j = 1, ...,m

and

(B) B̃1, ..., B̃n2 ∈ E0 such that
A j =

⋃
`∈b( j)

B̃`

for all j = 1, ...,m with suitable index sets b( j) ⊂ {1, ...,n2}, j = 1, ...,m
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are two arbitrary representations of the sets A1, ...,Am ∈ E0 in terms of disjoint sets
B1, ...,Bn1 ∈ E0 and B̃1, ..., B̃n2 ∈ E0, respectively. In order to show that the definition of
ρA1,...,Am in (3.1.17) is well-defined, we have to prove that∫

Rd

. . .

∫
Rd

1D

 ∨ f
i∈a(1)

xi, ..., ∨ f
i∈a(m)

xi

µBn1
(dxn1) . . . µB1(dx1)

=

∫
Rd

. . .

∫
Rd

1D

 ∨ f
`∈b(1)

x`, ..., ∨ f
`∈b(m)

x`

µB̃n2
(dxn2) . . . µB̃1

(dx1)

for all D ∈ B(Rd)⊗m. Since {D1×· · ·×Dm : Di ∈ B(Rd), 1 ≤ i ≤ m} is aπ-system generating
the Borel σ-algebra B(Rd)⊗m, the only point remaining is to check∫

Rd

. . .

∫
Rd

1D1×···×Dm

 ∨ f
i∈a(1)

xi, ..., ∨ f
i∈a(m)

xi

µBn1
(dxn1) . . . µB1(dx1)

=

∫
Rd

. . .

∫
Rd

1D1×···×Dm

 ∨ f
`∈b(1)

x`, ..., ∨ f
`∈b(m)

x`

µB̃n2
(dxn2) . . . µB̃1

(dx1),

that is, ∫
Rd

. . .

∫
Rd

m∏
j=1

1D j

 ∨ f
i∈a( j)

xi

µBn1
(dxn1) . . . µB1(dx1)

=

∫
Rd

. . .

∫
Rd

m∏
j=1

1D j

 ∨ f
`∈b( j)

x`

µB̃n2
(dxn2) . . . µB̃1

(dx1) (3.1.18)

for any choice of sets D1, ...,Dm ∈ B(Rd). To this end, we define the disjoint sets

Ci,` := Bi ∩ B̃`

for all 1 ≤ i ≤ n1 and 1 ≤ ` ≤ n2. Observe that

Bi =

n2⋃
`=1

Ci,` and B̃` =

n1⋃
i=1

Ci,`

for all 1 ≤ i ≤ n1 and 1 ≤ ` ≤ n2, respectively, and therefore

A j =
⋃

i∈a( j)

Bi =
⋃

i∈a( j)

n2⋃
`=1

Ci,` =
⋃

i∈a( j)
`∈{1,...,n2}

Ci,` (3.1.19)

A j =
⋃
`∈b( j)

B̃` =
⋃
`∈b( j)

n1⋃
i=1

Ci,` =
⋃
`∈b( j)

i∈{1,...,n1}

Ci,` (3.1.20)
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for all j=1,...,m. Accordingly, we obtain another representation of the sets A1, ...,Am ∈ E0
in terms of disjoint sets Ci,` ∈ E0, 1 ≤ i ≤ n1, 1 ≤ ` ≤ n2. Here, (3.1.19) and (3.1.20)
are just two different ways to write down the disjoint unions in terms of the sets
Ci,` ∈ E0, 1 ≤ i ≤ n1, 1 ≤ ` ≤ n2 which represent A j for all j = 1, ...,m. This is exactly the
principal aspect enabling us to bridge the gap between the two prespecified choices of
representations of the sets A1, ...,Am given in (A) and (B).
Fix arbitrary sets D1, ...,Dm ∈ B(Rd). Applying the definition of ρA1,...,Am given in (3.1.17)
specifically to (3.1.19) and to (3.1.20), we get with D = D1 × · · · ×Dm∫

Rd

. . .

∫
Rd︸      ︷︷      ︸

(n1·n2)-times

m∏
j=1

1D j

 ∨ f
i∈a( j)

 ∨ f
`∈{1,...,n2}

xi,`


 µCn1 ,n2

(dxn1,n2) . . . µC1,1(dx1,1) (I)

and ∫
Rd

. . .

∫
Rd︸      ︷︷      ︸

(n1·n2)-times

m∏
j=1

1D j

 ∨ f
`∈b( j)

 ∨ f
i∈{1,...,n1}

xi,`


 µCn1 ,n2

(dxn1,n2) . . . µC1,1(dx1,1), (II)

respectively. Note, generally most of the sets Ci,` are empty. For those sets, integrating
with respect to µCi,` means integrating with respect to ε0 as µCi,` = µm(Ci,`) = µ0 = ε0.
Referring to (1.1.2), we are therefore actually dealing with considerably less than n1 · n2
integrals in (I) and (II). This observation together with Corollary 3.1.6 (a) implies (I)=(II).
Now, we show that

(I) =

∫
Rd

. . .

∫
Rd

m∏
j=1

1D j

 ∨ f
i∈a( j)

xi

µBn1
(dxn1) . . . µB1(dx1)

and

(II) =

∫
Rd

. . .

∫
Rd

m∏
j=1

1D j

 ∨ f
`∈b( j)

x`

µB̃n2
(dxn2) . . . µB̃1

(dx1),

thus obtaining (3.1.18) and thereby the desired conclusion. To this end, we need only
consider the first equality since the second can be handled in much the same way.
From the mathematical point of view, we are dealing with just a few arguments in
order to obtain the first equation. Apart from the common change of variables formula
and equation (3.1.14), we benefit from only two more aspects. First, we gain from the
already mentioned commutativity of the f -implicit max-operation which is valid in our
concrete context and guarantees that the specific order in the expressions

∨ f
i∈a( j)

 ∨ f
`∈{1,...,n2}

xi,`

 j = 1, ...,m

is negligible. Besides, this justifies other ways of notation such as

∨ f
i∈a( j)

`∈{1,...,n2}

xi,`
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for all j = 1, ...,m disregarding the special order of the variables xi,`. Second, we profit
from both (A) and the construction of the sets Ci,`, 1 ≤ i ≤ n1, 1 ≤ ` ≤ n2.
To be more accurate, we first collect all a( j), j = 1, ...,m, such that 1 ∈ a( j). In other
words, we start to collect all sets A j of our initial choice of not necessary disjoint sets
A1, ...,Am,m ≥ 1,which include the set B1 in their disjoint partition. Taking into account
the construction of the sets Ci,`, we obtain the crucial property that either all sets C1,` , ∅
are part of the disjoint partition of A j in terms of Ci,`, 1 ≤ i ≤ n1, 1 ≤ ` ≤ n2, or none
of them. Thus, the invariably applicable associativity of the f -implicit max-operation
and the already justified aspect that we are de facto dealing with considerably less than
n1 · n2 integrals in (I) yield

(I) =

∫
Rd

. . .

∫
Rd

m∏
j=1

1D j

 ∨ f
i∈a( j)

 ∨ f
`∈{1,...,n2}

xi,`


 µCn1 ,n2

(dxn1,n2) . . . µC1,1(dx1,1)

=

∫
Rd

. . .

∫
Rd

m∏
j=1

1D j

 ∨ f
i∈a( j)

`∈{1,...,n2}

xi,`

 µCn1 ,n2
(dxn1,n2) . . . µC1,1(dx1,1)

=

∫
Rd

. . .

∫
Rd


∫
Rd

. . .

∫
Rd

∏
j=1,...,m:

1∈a( j)

1D j


 ∨ f
`∈{1,...,n2}

x1,`

 ∨ f

 ∨ f
i∈a( j)\{1}
`∈{1,...,n2}

xi,`




·

∏
j=1,...,m:

1<a( j)

1D j

 ∨ f
i∈a( j)

`∈{1,...,n2}

xi,`

 µC1,n2
(dx1,n2) . . . µC1,1(dx1,1)


∏
i≥2

`∈{1,...,n2}

µCi,` (dxi,`).

Observe that we used the convenient notation∏
i≥2

`∈{1,...,n2}

µCi,` (dxi,`)

= µCn1 ,n2
(dxn1,n2) . . . µCn1 ,1

(dxn1,1)µCn1−1,n2
(dxn1−1,n2) . . . µC2,n2

(dx2,n2) . . . µC2,1(dx2,1).

Note further that we include all integrals in our notation, even those which can be
neglected. Nevertheless, they have no effect, thus allowing us to apply Corollary 3.1.6
over and over again. To benefit from the change of variables formula, we recollect the
mapping T(n2) : (Rd)n2 → Rd defined by

T(n2)(x1, ..., xn2) :=
n2h∨

f
`=1h

x`

and proceed as follows

(I) =

∫
Rd

. . .

∫
Rd


∫

Rd×···×Rd

∏
j=1,...,m:

1∈a( j)

1D j

Tn2(x1,1, ..., x1,n2) ∨ f

 ∨ f
i∈a( j)\{1}
`∈{1,...,n2}

xi,`
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·

∏
j=1,...,m:

1<a( j)

1D j

 ∨ f
i∈a( j)

`∈{1,...,n2}

xi,`


n2⊗
`=1

µC1,` (dx1,1, ..., dx1,n2)


∏
i≥2

`∈{1,...,n2}

µCi,` (dxi,`)

=

∫
Rd

. . .

∫
Rd


∫
Rd

∏
j=1,...,m:

1∈a( j)

1D j

z1 ∨ f

 ∨ f
i∈a( j)\{1}
`∈{1,...,n2}

xi,`




·

∏
j=1,...,m:

1<a( j)

1D j

 ∨ f
i∈a( j)

`∈{1,...,n2}

xi,`

 Tn2

 n2⊗
`=1

µC1,`

 (dz1)


∏
i≥2

`∈{1,...,n2}

µCi,` (dxi,`).

Referring to (3.1.14), we may rewrite the latter expression as

=

∫
Rd


∫
Rd

. . .

∫
Rd

∏
j=1,...,m:

1∈a( j)

1D j

z1 ∨ f

 ∨ f
i∈a( j)\{1}
`∈{1,...,n2}

xi,`




·

∏
j=1,...,m:

1<a( j)

1D j

 ∨ f
i∈a( j)

`∈{1,...,n2}

xi,`


∏
i≥2

`∈{1,...,n2}

µCi,` (dxi,`)

µB1(dz1)

since

Tn2

 n2⊗
l=1

µC1,l

 = µC1,1 ∗ f · · · ∗ f µC1,n2
= µ⋃n2

`=1 C1,`
= µB1 .

After this computation, we proceed in the same manner as before. That is, we continue
to collect all a( j), j = 1, ...,m, such that 2 ∈ a( j). Using the same notation and similar
arguments as in the preceding calculations, we get

(I) =

∫
Rd

∫
Rd


∫
Rd

. . .

∫
Rd

∏
j=1,...,m:
1,2∈a( j)

1D j

z1 ∨ f z2 ∨ f

 ∨ f
i∈a( j)\{1,2}
`∈{1,...,n2}

xi,`




·

∏
j=1,...,m:

1∈a( j),2<a( j)

1D j

z1 ∨ f

 ∨ f
i∈a( j)\{1}
`∈{1,...,n2}

xi,`


 ·

∏
j=1,...,m:

1<a( j),2∈a( j)

1D j

z2 ∨ f

 ∨ f
i∈a( j)\{2}
`∈{1,...,n2}

xi,`




·

∏
j=1,...,m:
1,2<a( j)

1D j

 ∨ f
i∈a( j)

`∈{1,...,n2}

xi,`


∏
i≥3

`∈{1,...,n2}

µCi,` (dxi,`)

µB2(dz2)µB1(dz1).
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At this point we do well to point out that some of the products occurring in the last
expression might be empty. Then we adopt the common convention∏

∅

≡ 1.

Iterating the previous procedure concerning the sets B1,B2 and omitting the details once
again, we finally conclude that

(I) =

∫
Rd

. . .

∫
Rd︸      ︷︷      ︸

n1-times

(∗)
n1∏
i=1

µBi(dzi),

where the integrand is given by

(∗) =


∏

j=1,...,m:
1,...,n1∈a( j)

1D j

 ∨ f
i=1,...n1

zi


 ·


n1∏

p=1

∏
j=1,...,m:

p<a( j)
{1,...,n1}\{p}⊂a( j)

1D j

 ∨ f
i=1,...,n1:

i,p

zi




·


∏

p1,p2∈{1,...,n1}
p1,p2

∏
j=1,...,m:

p1,p2<a( j)
{1,...,.n1}\{p1,p2}⊂a( j)

1D j

 ∨ f
i=1,...,n1:
i<{p1,p2}

zi




· . . .

·


∏

p1,...,pq∈{1,...,n1}

pr,pk ∀ r,k

∏
j=1,...,m:

p1,...,pq<a( j)
{1,...,n1}\{p1,...,pq}⊂a( j)

1D j

 ∨ f
i=1,...,n1:

i<{p1,...,pq}

zi




· . . .

·


∏

p1,...,pn1−1∈{1,...,n1}

pr,pk ∀ r,k

∏
j=1,...,m:

p1,...,pn1−1<a( j)
{1,...,n1}\{p1,...,pn1−1}⊂a( j)

1D j

 ∨ f
i=1,...,n1:

i<{p1,...,pn1−1}

zi




.

Fortunately, the last representation of (∗) is anything but complicated. Most of the
products are empty and hence equal to one. The only non-trivial product remaining is
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actually
m∏

j=1

1D j

 ∨ f
i∈a( j)

xi


being an easy consequence of the interaction of the definitions and constructions con-
cerning the sets A1, ...,Am, the sets B1, ...,Bn and the set Ci,`, 1 ≤ i ≤ n1, 1 ≤ ` ≤ n2. To
apprehend this conclusion, it is worthwhile to study an easier situation first. Indeed, it
is extremely recommendable to assure oneself of the latter conclusion by studying an
elucidatory example providing an idea of how the general case works. Summarizing
all aspects, we have

(I) =

∫
Rd

. . .

∫
Rd

m∏
j=1

1D j

 ∨ f
i∈a( j)

xi

µBn1
(dxn1) . . . µB1(dx1).

Concluding the observations of Part 1, we obtain the family{
ρA1,...,Am ∈M1

(
(Rd)m

)
: A1, ...,Am ∈ E0,m ≥ 1

}
of well-defined probability measures.

Part 2: (Consistency)
In this part of the proof we show that the previously constructed family{

ρA1,...,Am ∈M1
(
(Rd)m

)
: A1, ...,Am ∈ E0,m ≥ 1

}
of well-defined probability measures is consistent. Referring to [Bi95, Theorem 36.2],
we need to prove that this family satisfies the two consistency conditions:

(i) For all m ≥ 1, any collection of sets A1, ...,Am ∈ E0, any choice of sets D1, ...,Dm ∈

B(Rd) and any permutation π of {1, ...,m}, we have

ρA1,...,Am(D1 × · · · ×Dm) = ρAπ(1),...,Aπ(m)(Dπ(1) × · · · ×Dπ(m)). (3.1.21.a)

(ii) For all m ≥ 1, any collection of sets A1, ...,Am ∈ E0 and any choice of sets D1, ...,Dm ∈

B(Rd), we have

ρA1,...,Am(D1 × · · · ×Dm−1 ×R
d) = ρA1,...,Am−1(D1 × · · · ×Dm−1). (3.1.21.b)

To this end, we first remark that condition (3.1.21.a) is already clear because of Part 1.
It follows immediately from the definition of ρA1,...Am and the fact that this definition is
independent of the specific representation of the sets A1, ...,Am in terms of appropriate
disjoint sets. Similar considerations as to (3.1.21.a) can be found in the proof of Propo-
sition 2.1 in [StTa05] and can therefore be skipped.
In order to prove (3.1.21.b), we start by fixing m ≥ 1, a collection of sets A1, ...,Am ∈ E0
and a collection of sets D1, ...,Dm ∈ B(Rd). Moreover, let B1, ...,Bn ∈ E0 be disjoint sets
constituting an appropriate representation of the sets A1, ...,Am, that is to say,

A j =
⋃

i∈a( j)

Bi
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for all j = 1, ...,m and for suitable index sets a( j). Following the definition of ρA1,...,Am in
(3.1.17), we obtain

ρA1,...,Am(D1 × · · · ×Dm−1 ×R
d)

=

∫
Rd

. . .

∫
Rd

1Rd

 ∨ f
i∈a(m)

xi

︸         ︷︷         ︸
=1

·

m−1∏
j=1

1D j

 ∨ f
i∈a( j)

xi

 µBn(dxn) . . . µB1(dx1)

=

∫
Rd

. . .

∫
Rd

m−1∏
j=1

1D j

 ∨ f
i∈a( j)

xi

 µBn(dxn) . . . µB1(dx1)

= ρA1,...,Am−1(D1 × · · · ×Dm−1),

which already completes the proof of the second consistency condition (3.1.21.b). The
last equality in the previous calculation follows immediately from the already proven
fact that ρA1,...,Am−1 is independent of the specific representation of the sets A1, ...,Am−1
in terms of appropriate disjoint sets. Indeed, since the sets B1, ...,Bn constitute a repre-
sentation of the sets A1, ...,Am, they also constitute an appropriate representation of the
sets A1, ...,Am−1.
Kolmogorov’s extension theorem now guarantees the existence of a probability space
(Ω,A,P) together with a stochastic process (M(A))A∈E0 on (Ω,A,P) such that

P(M(A1),...,M(Am)) = ρA1,...,Am

for any m ≥ 1 and any choice of sets A1, ...,Am ∈ E0. This process can actually be viewed
as a mapping

M : E0 → Ld
0.

The remainder of the proof is intended to verify that (M(A))A∈E0 fulfills the properties
(i), (ii) and (iii) in Definition 3.1.8, thus completing the proof of Theorem 3.1.12.

Part 3: (independently scattered)
For any n ≥ 1 and any collection of disjoint sets A1, ...,An ∈ E0 we have to show that the
corresponding random vectors M(A1), ...,M(An) are independent. To this end, fix n ≥ 1
and a collection of disjoint sets A1, ...,An. Then we obtain the desired independency of
the random vectors M(A1), ...,M(An) by proving

P(M(A1),...,M(An)) =

n⊗
i=1

PM(Ai). (3.1.22)

Here, we substantially benefit from Part 1 and from the definition of ρA1,...An . To be more
precise, we point out that the sets A1, ...,An are for their part already disjoint and hence
a suitable choice for a representation in terms of disjoint sets such as described in Part
1. That is,

B j = A j and a( j) = { j}
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for all j = 1, ...,n. Thus, applying the definition in (3.1.17) to this simple situation, we
conclude that

P(M(A1),...,M(An))(D1 × · · · ×Dn) = ρA1,...An(D1 × · · · ×Dn)

=

∫
Rd

. . .

∫
Rd

n∏
j=1

1D j

(
x j

)
µAn(dxn) . . . µA1(dx1)

=

∫
Rd×···×Rd

1D1×···×Dn (x1, ..., xn)
n⊗

j=1

µA j(dx1, ..., dxn)

=

n⊗
j=1

µA j (D1 × · · · ×Dn)

=

n⊗
j=1

PM(A j) (D1 × · · · ×Dn)

with D1, ...,Dn ∈ B(Rd). The last equality is due to (3.1.12), which will subsequently be
established in Part 4. Since {D1 × · · · ×Dn : D1, ...,Dn ∈ B(Rd)} is a π-system generating
the Borel σ-algebra B(Rd)⊗n = B(Rd

× · · · ×Rd), (3.1.22) follows.

Part 4: ( f -implicit α-Fréchet)
Property (3.1.12) is an easy consequence of the fact that we have PM(A) = ρA for all
A ∈ E0. Indeed, the simple choice B = A being a suitable representation of A in terms of
disjoint sets yields immediately

PM(A)(D) = ρA(D) =

∫
Rd

1D (x)µA(dx) = µA(D)

for all D ∈ B(Rd). This is precisely property (3.1.12).

Part 5: ( f -max σ-sup-additive)
Undoubtedly, the proof of property (3.1.13) requires considerable efforts. Thus, we start
to outline the further course of action. First, we prove that

M(A1 ∪ A2) = M(A1) ∨ f M(A2) (3.1.23)

almost surely for any collection of two disjoint sets A1,A2 ∈ E0 and consequently, by
induction, that

M

 n⋃
j=1

A j

 =

nh∨
f

j=1h

M(A j) (3.1.24)

almost surely for any n ≥ 1 and any collection of disjoint sets A1, ...,An ∈ E0. To this
end, we need only show that

P(M(A1 ∪ A2) ∈ D) = P(M(A1) ∨ f M(A2) ∈ D)
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= P(M(A1 ∪ A2) ∈ D,M(A1) ∨ f M(A2) ∈ D) (3.1.25)

for all D ∈ B(Rd) and arbitrary disjoint sets A1,A2 ∈ E0 as shown in Lemma 3.1.13.
Having established (3.1.23) and as a consequence thereof (3.1.24), we secondly deduce
(3.1.13) from this property by applying the considerations of Section 1.1 and 1.3.
Now, we begin to prove (3.1.23) by verifying (3.1.25). Let A1,A2 denote arbitrary
disjoint subsets of E0. The first equality of (3.1.25) is an easy consequence of Part 3
and 4. Indeed, M(A1),M(A2) being independent and having the distinctive f -implicit
α-Fréchet distributions µA1 and µA2 , respectively, gives

PM(A1)∨ f M(A2) = PM(A1) ∗ f PM(A2) = µA1 ∗ f µA2 = µA1∪A2 = PM(A1∪A2).

Note that the first equality is due to Lemma 1.2.4 (b), the third due to (3.1.14) and the
last once again due to Part 4. Thus, the proof of (3.1.25) is completed by showing that

P(M(A1) ∨ f M(A2) ∈ D) = P(M(A1 ∪ A2) ∈ D,M(A1) ∨ f M(A2) ∈ D)

for all D ∈ B(Rd). For this purpose, it turns out to be helpful to evaluate the measure

P(M(A1),M(A2),M(A1∪A2)) = ρA1,A2,A1∪A2 .

Applying B1 = A1 and B2 = A2 as the most reasonable representation of the sets
A1,A2,A1 ∪ A2, we obtain

ρA1,A2,A1∪A2(D̃) =

∫
Rd

∫
Rd

1D̃

(
x1, x2, x1 ∨ f x2

)
µA2(dx2)µA1(dx1)

for D̃ ∈ B(Rd)⊗3. This is due to the definition of ρA1,A2,A1∪A2 and its independency of the
particular representation of A1,A2,A1 ∪ A2 in terms of disjoint sets. The fact that the
latter equation can be rewritten as

ρA1,A2,A1∪A2(D̃) =

∫
Rd

∫
Rd

(
εx1 ⊗ εx2 ⊗ εx1∨ f x2

)
(D̃)µA2(dx2)µA1(dx1)

implies instantly

P(M(A1 ∪ A2) ∈ D,M(A1) ∨ f M(A2) ∈ D)

= P(M(A1),M(A2),M(A1∪A2))({(x, y, z) ∈ Rd
×Rd

×Rd : x ∨ f y ∈ D, z ∈ D})

= ρA1,A2,A1∪A2({(x, y, z) ∈ Rd
×Rd

×Rd : x ∨ f y ∈ D, z ∈ D})

=

∫
Rd

∫
Rd

(
εx1 ⊗ εx2 ⊗ εx1∨ f x2

) ((
T(2)

)−1
(D) ×D

)
µA2(dx2)µA1(dx1)

=

∫
Rd

∫
Rd

(
εx1 ⊗ εx2

) ((
T(2)

)−1
(D)

)
· εx1∨ f x2(D)µA2(dx2)µA1(dx1)
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=

∫
Rd

∫
Rd

1D
(
x1 ∨ f x2

)
· 1D

(
x1 ∨ f x2

)
µA2(dx2)µA1(dx1)

=

∫
Rd

∫
Rd

1D
(
x1 ∨ f x2

)
µA2(dx2)µA1(dx1)

=

∫
Rd

∫
Rd

1(T(2))−1
(D)

(x1, x2)µA2(dx2)µA1(dx1)

= ρA1,A2

((
T(2)

)−1
(D)

)
= P(M(A1),M(A2))

((
T(2)

)−1
(D)

)
= P(M(A1) ∨ f M(A2) ∈ D)

for all D ∈ B(Rd). Note that T(2) : Rd
× Rd

→ Rd is defined as usual. Observe further
that we benefited from the definition of ρA1,A2 and its independency of the particular
representation of A1,A2 in terms of disjoint sets. In conclusion, the proof of (3.1.25) and
hence of (3.1.23) is completed.
Now, we proceed to prove (3.1.13). Accordingly, we have to show, for any collection
An,n ≥ 1, of disjoint subsets of E0 with

⋃
n≥1 An ∈ E0, that

M

⋃
n≥1

An

 =

∞h∨
f

n=1h

M(An) = M
(
An0

)
almost surely, where n0 is a random index. To this end, we shall also refer to the
considerations of Remark 3.1.10 and Lemma 3.1.11. To start with, fix any collection
An,n ≥ 1, of disjoint subsets of E0 with A :=

⋃
n≥1 An ∈ E0. If m(An) = 0 for all n ≥ 1,

we have M(An) = 0 almost surely for all n ≥ 1 as well as M(A) = 0 almost surely. This
observation and the fact that countable unions of null sets are null sets yield

M

⋃
n≥1

An

 = 0 = M(A1) =

∞h∨
f

n=1h

M(An)

almost surely and as a result the desired conclusion. Therefore, there is no loss of
generality in assuming that there exists an n1 ≥ 1 with m(An1) > 0. Fix F1,F2 ∈ E0 such
that F1 ⊂ F2. Since F2 = F1 ∪ (F2 \ F1), (1.3.3) and (3.1.23) give

M(F1) ≤ f M(F1) ∨ f M(F2 \ F1) = M(F1 ∪ (F2 \ F1)) = M(F2)

almost surely. Consequently, we have proved that

∀F1,F2 ∈ E0 such that F1 ⊂ F2 ⇒ M(F1) ≤ f M(F2) almost surely. (3.1.26)

To complete the proof of Part 5, we now establish diverse properties resulting from
(3.1.23), (3.1.24) and (3.1.26). Applying (3.1.23), we obtain

M(A) = M


 n⋃

j=1

A j

 ∪
 ∞⋃

j=n+1

A j


 = M

 n⋃
j=1

A j

 ∨ f M

 ∞⋃
j=n+1

A j

 := ξn ∨ f ηn
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almost surely for all n ≥ 1. From (3.1.26) it may further be concluded that

ξn = M

 n⋃
j=1

A j

 ≤ f M

n+1⋃
j=1

A j

 = ξn+1

and

ηn+1 = M

 ∞⋃
j=n+2

A j

 ≤ f M

 ∞⋃
j=n+1

A j

 = ηn

almost surely for all n ≥ 1. In addition to this, we have

ξn = M

 n⋃
j=1

A j

 =

nh∨
f

j=1h

M(A j)

almost surely for all n ≥ 1 being due to (3.1.24). By assumption, we can finally also find
an n1 ≥ 1 with m(An1) > 0. Since

M(An1) d
= m(An1)

1
αZΘ

with Z and Θ defined as in Definition 3.1.2, Remark 3.1.3 (ii) implies

P
(
M(An1) = 0

)
= 0.

Accordingly, we have M(An1) , 0 almost surely. Summarizing the previous observations
and taking into account that countable unions of null sets are null sets, we conclude
that there exists a null set N1 ∈ A such that for every ω in Ω \N1

(1.) M(A)(ω) = ξn(ω) ∨ f ηn(ω) ∀n ≥ 1 (3.1.27)

(2.) (ξn(ω))n≥1 is ≤ f -increasing (3.1.28)

(3.) (ηn(ω))n≥1 is ≤ f -decreasing (3.1.29)

(4.) ξn(ω) =
nh∨

f
j=1h

M(A j)(ω) ∀n ≥ 1 (3.1.30)

(5.) M(An1)(ω) , 0 (3.1.31)

(6.) f (M(An)(ω)) −−−−−→
(n→∞)

0. (3.1.32)

Here, (3.1.32) is nothing but the assertion of Lemma 3.1.11. This list of properties finally
enables us to complete the proof of (3.1.13). Indeed, fixω ∈ Ω\N1. For convenience, we
both revert to the previous notation excluding the letter ω and refrain from including
the term almost surely into our argumentation. From (3.1.28) and Lemma 1.3.5 it follows
that ( f (ξn))n≥1 is an increasing sequence of non-negative real numbers. By applying f
to both sides of (3.1.30), we further get

f (ξn) = max
(

f (M(A1)) , ..., f (M(An))
)

(3.1.33)
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for all n ≥ 1 showing again that ( f (ξn))n≥1 is increasing. Moreover, (3.1.31) yields the
existence of a positive real number δ with

f
(
M(An1)

)
= δ > 0,

where δ actually depends on ω ∈ Ω \ N1. Taking into account (3.1.32), we eventually
obtain the existence of an integer N ≥ n1 depending on δ > 0 such that for all n > N we
have

f (M(An)) < δ.

As a result, we conclude that

f (ξN) = max
(

f (M(A1)) , ..., f (M(AN))
)

= max
(

f (M(A1)) , ..., f (M(AN)) , f (M(AN+1)) , ..., f (M(AN+`))
)

= f (ξN+`) (3.1.34)

for any ` ≥ 1, the first and third equality being consequences of (3.1.33). Consequently,
the fact that (ξn)n≥1 is ≤ f -increasing gives

ξN = ξN+`

for all ` ≥ 1, for if not, we would have f (ξN) < f (ξN+l) for at least one ` ≥ 1 contradicting
the latter observation. Including the well-defined integer

n0 := min
{
i ∈ {1, ...,N} : f (ξi) = max

(
f (ξ1), ..., f (ξN)

)}
(3.1.35)

into our considerations and applying the fact that ( f (ξn))n≥1 is an increasing sequence,
we deduce that

f (ξ1) ≤ f (ξ2) ≤ ... ≤ f (ξn0−1) < f (ξn0) = f (ξn0+1) = ... = f (ξN). (3.1.36)

In the event of n0 = N, it is self-evident that (3.1.36) will henceforth be understood as

f (ξ1) ≤ f (ξ2) ≤ ... ≤ f (ξN−1) < f (ξN).

Note that f (ξn0), ..., f (ξN) being equal follows from f (ξn0) ≥ f (ξn0+`) for all ` ∈ {1, ...,N −
n0} and f (ξn0) ≤ f (ξn0+`) for all ` ∈ {1, ...,N − n0}. The first assertion is an immediate
consequence of (3.1.35), whereas the second one is due to the fact that ( f (ξn))n≥1 is an
increasing sequence. Taking into account that ξN = ξN+` for all ` ≥ 1 and applying the
fact that (ξn)n≥1 is ≤ f -increasing, we get

ξn0 = ξn0+`

for all ` ≥ 1. In other words, the sequence (ξn)n≥1 is constant for almost all n ≥ 1 and
hence convergent. In fact, we obtain

lim
n→∞

ξn = ξn0
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and may therefore conclude that

ξn −−−−−→
(n→∞)

ξn0 =

n0h∨
f

j=1h

M(A j) = M(An0) =

∞h∨
f

j=1h

M(A j) (3.1.37)

by first applying (3.1.30), then (3.1.35), and finally (3.1.34) together with (3.1.36). Having
established (3.1.37), we proceed to focus on the sequences (ηn)n≥1. Assertion (3.1.29)
shows that (ηn)n≥1 is ≤ f -decreasing. Thus, by applying Lemma 1.3.5, ( f (ηn))n≥1 is
a decreasing sequence of non-negative real numbers. Since ( f (ηn))n≥1 is in addition
bounded below by zero, we deduce that ( f (ηn))n≥1 converges. Accordingly, there must
exist a non-negative real number η such that

f (ηn) −−−−−→
(n→∞)

η.

Now, before proceeding with the proof of (3.1.13), we do well to summarize our prelim-
inary findings, thus making our deliberations clearer. Up to this point, we have proved
the existence of a null set N1 ⊂ Ω such that for all ω ∈ Ω \N1

M

⋃
j≥1

A j

 (ω) = ξn(ω) ∨ f ηn(ω)

for all n ≥ 1,

ξn(ω) −−−−−→
(n→∞)

M(An0(ω))(ω) =

∞h∨
f

j=1h

M(A j)(ω)

and finally also
f (ηn(ω)) −−−−−→

(n→∞)
η(ω).

In order to complete the proof of (3.1.13), we are consequently left with the task of
proving that

η(ω) = 0 (3.1.38)

for almost allω ∈ Ω\N1. In fact, provided (3.1.38) were true, Lemma 3.1.14 would yield

ηn(ω) −−−−−→
(n→∞)

0

for almost all ω ∈ Ω \N1. Referring to Lemma 1.1.9, we could eventually conclude that

M

⋃
j≥1

A j

 (ω) = lim
n→∞

ξn(ω) ∨ f ηn(ω) = M(An0(ω))(ω) =

∞h∨
f

j=1h

M(A j)(ω)

for almost all ω ∈ Ω \ N1, and (3.1.13) would be proved. In order to show (3.1.38), we
proceed as follows. First note that the assumption

⋃
n≥1 An ∈ E0 implies in particular⋃

j≥n+1 A j ∈ E0 for all n ≥ 1. Applying Part 4, we hence have

ηn
d
= m

 ∞⋃
j=n+1

A j


1
α

ZΘ
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for all n ≥ 1, the random variable Z and the random vector Θ being defined as in
Definition 3.1.2. Thus, the 1-homogeneity of f gives

f (ηn) = f

M

 ∞⋃
j=n+1

A j


 d

= f

m

 ∞⋃
j=n+1

A j


1
α

ZΘ

 = m

 ∞⋃
j=n+1

A j


1
α

Z.

Since

m

⋃
n≥1

An

 =

∞∑
n=1

m(An) < ∞,

we obtain
∞∑

j=n+1

m(A j) −−−−−→
(n→∞)

0.

Combining these recent findings, we conclude that

P( f (ηn) ≤ x) −−−−−→
(n→∞)

1

for all x > 0, that is,

∀ x > 0∀ ε > 0∃N0(x, ε) := N0 ≥ 1∀n ≥ N0 : P( f (ηn) ≤ x) > 1 − ε. (3.1.39)

Either (3.1.39) follows from the evident fact that

P( f (ηn) ≤ x) = 1

for almost all n ≥ 1, provided there exists an ñ ≥ 1 such that m
(⋃

j≥ñ+1 A j

)
= 0, or it

follows from

P( f (ηn) ≤ x) = exp

−m

 ∞⋃
j=n+1

A j

 x−α
 −−−−−→(n→∞)

1.

Referring to (3.1.39), we can finally deduce (3.1.38) by contradiction. To this end, let
N∗ := {η > 0} ⊂ Ω \N1. Suppose, contrary to (3.1.38), that P(N∗) := p > 0. Since N∗ may
be written as

N∗ =
⋃
n≥1

{
η >

1
n

}
,

{η > 1
n } here being a subset of Ω \N1, continuity from below yields

lim
n→∞

P
(
η >

1
n

)
= P(N∗) = p > 0.

Consequently, there must exist an integer Ñ0 ≥ 1 depending on p
2 > 0 such that

P
(
η >

1
n

)
≥

p
2

(3.1.40)
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for all n ≥ Ñ0. Evaluating (3.1.39) specifically for x = 1
Ñ0
> 0 and ε =

p
2 > 0, we further

obtain

P

(
f (ηn) ≤

1
Ñ0

)
> 1 −

p
2

for all n ≥ N0

(
1

Ñ0
,

p
2

)
. Since ( f (ηn))n≥1 is decreasing, we have{

f (ηn) ≤
1

Ñ0

}
⊂

{
η ≤

1
Ñ0

}
for all n ≥ 1 and hence particularly

P

(
η ≤

1
Ñ0

)
> 1 −

p
2
.

This, however, contradicts the claim (3.1.40) that was deduced from the assumption
P(N∗) := p > 0, and the proof is complete. �

In order to illustrate the strength and benefit of the notion of f -implicit sup-measures,
we proceed with a first insightful example.

Example 3.1.15
Let the measure space (E,E,m) be specifically chosen as (R+,B(R+), λ1). Then there
exists an f -implicit sup-measure (M(A))A∈E0 with control measure m defined on an
appropriate probability space, where

E0 = {B ∈ B(R+) : λ1(B) < ∞}.

This f -implicit sup-measure actually provides a non-trivial example of an f -implicit
max-stable process X := (Xt)t≥0 by defining

Xt := M([0, t])

for all t ≥ 0. The detailed verification of this claim is skipped for the moment and
postponed to Section 3.2, thus connecting the two main concepts of Chapter 3.

Having proved the existence of an f -implicit sup-measure, we proceed with an at-
tractive consequence. Actually, Theorem 3.1.12 guarantees the existence of a random
α-Fréchet sup-measure Mα with control measure m according to Definition 2.1 in [StTa05]
as an easy byproduct. This indicates that the field of f -implicit extreme value extending
parts of the ideas given in [SchSt14] and [StTa05] is worth to be considered. In Section
3.3 we will expand on this by suggesting and motivating further ideas for additional
research work concerning f -implicit sup-measures and f -implicit extremal integrals.
Although the concept, and particularly the existence, of a random α-Fréchet sup-
measure Mα with control measure m has extensively been studied in [StTa05], we ought
to include the next corollary here as it reveals the strength and power of the notion of
f -implicit sup-measures. However, it has to be emphasized that the subsequent claim
is already well known in literature.
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Corollary 3.1.16 ([StTa05, Proposition 2.1])
Let (E,E,m) be an arbitrary measure space and E0 as before. For any α > 0, there exists a
random α-Fréchet sup-measure Mα with control measure m defined over an appropriate
probability space (Ω,A,P). In other words, there exists a probability space (Ω,A,P) and
a mapping

Mα : E0 → L0 := L0(Ω,A) := {X : Ω→ R |X is a random variable}

such that the following properties are fulfilled:

(i) (independently scattered)
For any collection of disjoint sets A1, ...,An ∈ E0,n ≥ 1, the random variables
Mα(A1), ...,Mα(An) are independent.

(ii) (α-Fréchet)
For every A ∈ E0, we have

P(Mα(A) ≤ x) =

exp (−m(A)x−α) , x > 0

0, x ≤ 0.

(iii) (σ-sup-additive)
For any collection of disjoint sets An ∈ E0,n ≥ 1, such that

⋃
n≥1 An ∈ E0, we have

Mα

⋃
n≥1

An

 =
∨
n≥1

Mα(An)

almost surely.

Proof. Letα > 0 be fixed. Now, Theorem 3.1.12 ensures the existence of both a probability
space (Ω,A,P) and a mapping M : E0 → Ld

0 having the properties (i)-(iii) in Definition
3.1.8. The mapping Mα := f ◦M : E0 → L0 is then the desired random α-Fréchet sup-
measure with control measure m defined over (Ω,A,P). Clearly, the mapping Mα fulfills
the first two properties. Being independently scattered follows immediately from the
common result that measurable transformations of independent random vectors are
again independent, whereas the second property is an easy consequence of Remark
3.1.3 (i). The third and last property can finally be obtained by referring to (3.1.35) and
(3.1.37). Indeed, we have proved that

∞h∨
f

n=1h

M(An) = M(An0)

almost surely, n0 being random. Moreover, (3.1.35) and the choice of the integer N
specified therein show that

∞∨
n=1

f (M(An)) = f (M(An0))
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almost surely. Combining the latter equations, we conclude

Mα

⋃
n≥1

An

 = f

M

⋃
n≥1

An


 = f

 ∞h∨
f

n=1h

M(An)

 =

∞∨
n=1

f (M(An)) =
∨
n≥1

Mα(An)

almost surely. �

Our next concern is to establish connections between the aspects of Chapter 2 and the
recently introduced notion of f -implicit sup measures, thus making the content of the
present thesis self-contained. In doing so, we confine ourselves to only one attractive
aspect. Drawing further connections might be an appealing task of future research
work.
In Lemma 2.1.5 we saw that every f -implicit max-stable distribution onRd is f -implicit
max-infinitely divisible. For an arbitrary measure space (E,E,m) and E0 as before,
each M(A) is therefore f -implicit max-infinitely divisible, provided (M(A))A∈E0 is an
f -implicit sup-measure with control measure m defined on an appropriate probability
space (Ω,A,P). Consequently, for all n ≥ 1, there exist independent and identically
distributed random vectors M(A)(n)

1 , ...,M(A)(n)
n such that

M(A) d
=

nh∨
f

j=1h

M(A)(n)
j .

We expand this observation by an explicit computation of a suitable nth root

µ(A)
n := PM(A)(n)

1
.

To this end, we incorporate our preliminary findings into our argumentation. Here,
especially (3.1.7) gains in importance. Moreover, we may restrict our attention to the
case m(A) > 0, for if not, we have M(A) = 0 almost surely. Hence, the particular case
` = 0 in Example 2.1.4 shows that the nth root is equal to zero almost surely for all n ≥ 1.

Proposition 3.1.17
Let (E,E,m) be an arbitrary measure space and E0 as before. Further, suppose that
(M(A))A∈E0 is an f -implicit sup-measure with control measure m defined on an appro-
priate probability space (Ω,A,P). Then each M(A) is f -implicit max-infinitely divisible.
Moreover, for each n ≥ 1,

µ(A)
n (dτ, dθ) =

1
n

e−
1
n m(A)τ−α αm(A)

τα+1
dτ σ(dθ),

serves as an nth root, provided m(A) > 0.

Proof. Fix A ∈ E0 such that m(A) > 0 and note that f (M(A)) ∼ Φα

(
m(A)1/α

)
. Conse-

quently, the distribution of f (M(A)) is continuous on (0,∞). Since zero is actually the
left end point of f (M(A)) with P( f (M(A)) = 0) = 0, we can apply Theorem 2.2.12 (a) to
deduce that

PM(A)(dx) = µA(dx) = e− f (ν)( f (x),∞)ν(dx)
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with ν being the measure on Rd
\ {0} which is explicitly given by

ν(dx) = P( f (M(A)) ≤ f (x))−1µA(dx). (3.1.41)

Referring to Corollary 2.2.21, we further see that (2.2.26) yields a suitable representation
for an nth root of M(A). More precisely, we have

µ(A)
n (dx) =

1
n

e−
1
n f (ν)( f (x),∞)ν(dx) (3.1.42)

for each n ≥ 1. The two latter equations combined are finally the basis to complete the
proof. Indeed, (3.1.7) and (3.1.41) first give

ν(dτ, dθ) = P( f (M(A)) ≤ f (τθ))−1µA(dτ, dθ)

= P
(
Z ≤ m(A)−

1
ατ

)−1
·
αm(A)
τα+1

e−m(A)τ−αdτ σ(dθ)

=
(
e−m(A)τ−α

)−1
·
αm(A)
τα+1

e−m(A)τ−αdτ σ(dθ)

=
αm(A)
τα+1

dτ σ(dθ).

Then we can further conclude that

µ(A)
n (dτ, dθ) =

1
n

e−
1
n f (ν)( f (τθ),∞)ν(dτ, dθ)

=
1
n

e−
1
n f (ν)( f (τθ),∞)αm(A)

τα+1
dτ σ(dθ)

=
1
n

e−
1
n ν( f−1(τ,∞))αm(A)

τα+1
dτ σ(dθ)

=
1
n

exp

−1
n

∫
f−1(τ,∞)

ν(dx)

 αm(A)
τα+1

dτ σ(dθ)

=
1
n

exp

−1
n

∫
S

∞∫
τ

αm(A)
rα+1

dr σ(dθ)

 αm(A)
τα+1

dτ σ(dθ)

=
1
n

e−
1
n m(A)τ−α αm(A)

τα+1
dτ σ(dθ),

and this is precisely the assertion of the proposition. �

Before we proceed with the notion of f -implicit extremal stochastic integrals in Section
3.2, we address one last aspect concerning the recently introduced concept of f -implicit
sup-measures. In particular, the rest of this section deals with a more detailed consider-
ation of Definition 3.1.8. More precisely, we are concerned with the legitimate question
whether there exist possible generalizations of Definition 3.1.8. The yet unanswered
question is whether our assumptions on the mapping M : E0 → Ld

0 can be relaxed
without endangering the existence of this more general f -implicit sup-measure. Apart
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from many other attractive possibilities, we focus on only two potential ways of a gen-
eralization. On the one hand, we consider the case in which Z and Θ occurring both
in Definition 3.1.2 and in Definition 3.1.8 are not assumed to be independent. On the
other hand, we attend to the case in which we extend condition (ii) in Definition 3.1.8 to
the effect that the angular part Θ is allowed to depend on A ∈ E0. From an application-
oriented point of view this might prove itself valuable as much more problems could be
handled with these enhancements. Of course, other manifold opportunities of gener-
alizations are still waiting to be investigated. Studying these might be an exciting task
for the future.
We start to point out that we elaborate on the second mentioned extension only. The
case in which Z and Θ are allowed to be dependent is skipped for the time being. We
will come back to this issue in Section 3.3. Hence, in the remainder of this section we
devote ourselves to the question whether our assumption on Θ of being independent
of A ∈ E0 can be relaxed in an appropriate way, thus obtaining a more flexible notion
of an f -implicit sup-measure. To this end, we first point out that this question is not
completely solved yet and therefore constitutes an attractive starting point for future
research work. However, under reasonable and quite mild assumptions we can show
the most surprising claim that Θ must necessarily be independent of E0, thus revealing
that our construction is in some sense the most general one. This is very satisfying and
stresses out the strength of our notion. In order to prove this illuminating assertion, we
do well to do some preparatory work first.
To start with, recall that (E,E,m) denotes some arbitrary measure space. As before, let
α > 0 be fixed.

Definition 3.1.18
A modified f -implicit sup-measure is an Rd-valued stochastic process (M̃ f

α(A))A∈E0 :=
(M̃(A))A∈E0 with the subsequent properties:

(i) For any collection of disjoint sets A1, ...,An ∈ E0,n ≥ 1, the random vectors
M̃(A1), ..., M̃(An) are independent.

(ii) For every A ∈ E0, we have

M̃(A) d
= m(A)

1
αZΘ(A), (3.1.42)

where Z ∼ Φα and the random vector Θ(A) ∼ σA ∈M1(S) are independent.

(iii) For any two disjoint sets A1,A2 ∈ E0, we have

M̃(A1 ∪ A2) d
= M̃(A1) ∨ f M̃(A2). (3.1.43)

Remark 3.1.19. (i) Note, the concepts introduced in Definition 3.1.8 and Definition
3.1.18 are quite similar. There are only two significant differences. Equation
(3.1.42) expresses that M̃(A) has an f -implicit α-Fréchet distribution with scale
m(A)1/α and angular part σA ∈ M1(S). The crucial difference to an f -implicit sup-
measure is therefore that we assume M̃(A) to have a distribution according to
Definition 3.1.2, where the angular part can depend on the set A ∈ E0. However,
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this dependency is only relevant in the case m(A) > 0 since otherwise we have
M̃(A) = 0 almost surely and the random vector M̃(A) does therefore not know
anything about a radial part or an angular part.
Concerning the third property there also exists a difference between Definition
3.1.8 and Definition 3.1.18. Obviously, (3.1.13) implies (3.1.43).

(ii) We do not investigate the legitimate question whether a modified f -implicit sup-
measure exists. For our purpose, this is not needed. Indeed, Definition 3.1.18
is just meant to be some kind of auxiliary definition providing the option of a
more convenient presentation of the subsequent proposition and its principal
consequence.

In deviation from the former situation it is now stipulated that the underlying measure
space (E,E,m) is specifically chosen as (R+,B(R+), λ1). Hence, E0 consists of all Borel
sets B ⊂ R+ having finite (Lebesgue-) measure, that is, E0 = {B ∈ B(R+) : λ1(B) <
∞}. Applying Definition 3.1.18, we may now establish the desired proposition. Note,
however, that we are actually more interested in its immediate consequence given in
Remark 3.1.21 (ii).

Proposition 3.1.20
Suppose that (M̃(A))A∈E0 is a modified f -implicit sup-measure such that

PΘ(A) = σλ1(A)

for all A ∈ E0. For the resulting family of probability measures {σa : a ≥ 0} on S we
further assume that a 7→ σa is (weakly) continuous. Then there exists a probability
measure σ on S such that

σa = σ

for all a ≥ 0. That is, the distribution of Θ(A) does not depend on A.

Remark 3.1.21. (i) Recall from Definition 2.2.17 that the mapping ι : [0,∞) → M1(S),
defined by ι(a) = σa, is said to be (weakly) continuous if

an −−−−−→
(n→∞)

a ⇒

∫
S

h(θ) σan(dθ) −−−−−→
(n→∞)

∫
S

h(θ) σa(dθ)

for all bounded and continuous functions h on S.

(ii) Proposition 3.1.20 is ultimately the answer to our previously formulated question.
Indeed, it shows that under mild and reasonable assumptions there cannot exist
an f -implicit sup-measure such that the distribution of Θ depends on A ∈ E0 and
thus reveals that our notion of f -implicit sup-measures is in some sense the most
general one.

Proof of Proposition 3.1.20. We start to exclude all sets A ∈ E0 with λ1(A) = 0 for the time
being. Since

M̃(A) ∼ Φ
f
α,σλ1(A)

(
λ1(A)

1
α

)
,
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we can apply Lemma 3.1.4 (b) to deduce that

P
(
M̃(A) ∈ D(r,F)

)
= e−λ

1(A)r−α
· σλ1(A)(F)

for all r > 0, F ∈ B(S) and A ∈ E0 with λ1(A) > 0. Next, fix any collection of two disjoint
sets B1,B2 ∈ E0 with λ1(B1) > 0 and λ1(B2) > 0. By assumption, we have

M̃(B1) d
= λ1(B1)

1
αZ1Θ(B1) and M̃(B2) d

= λ1(B2)
1
αZ2Θ(B2),

where Z1 ∼ Φα and Θ(B1) ∼ σλ1(B1) ∈ M1(S) as well as Z2 ∼ Φα and Θ(B2) ∼ σλ1(B2) ∈

M1(S) are independent. Referring to the first property of Definition 3.1.17, we conclude
that Z1, Z2, Θ(B1) and Θ(B2) are independent since

P(Z1 ≤ r1,Z2 ≤ r2,Θ(B1) ∈ F1,Θ(B2) ∈ F2)

= P
(
M̃(B1) ∈ D

(
λ1(B1)

1
α r1,F1

)
, M̃(B2) ∈ D

(
λ1(B2)

1
α r2,F2

))
= P

(
M̃(B1) ∈ D

(
λ1(B1)

1
α r1,F1

))
· P

(
M̃(B2) ∈ D

(
λ1(B2)

1
α r2,F2

))
= P(Z1 ≤ r1,Θ(B1) ∈ F1) · P(Z2 ≤ r2,Θ(B2) ∈ F2)
= P(Z1 ≤ r1) · P(Θ(B1) ∈ F1) · P(Z2 ≤ r2) · P(Θ(B2) ∈ F2)

for all r1, r2 > 0 and F1,F2 ∈ B(S). Combining the last deliberations and applying our
assumptions, we get

e−(λ1(B1)+λ1(B2))r−α
· σλ1(B1)+λ1(B2)(F)

= e−λ
1(B1∪B2)r−α

· σλ1(B1∪B2)(F)

= P(M̃(B1 ∪ B2) ∈ D(r,F))
= P(M̃(B1) ∨ f M̃(B2) ∈ D(r,F))

= P(M̃(B1) ∨ f M̃(B2) ∈ D(r,F), f (M̃(B1)) ≥ f (M̃(B2)))

+ P(M̃(B1) ∨ f M̃(B2) ∈ D(r,F), f (M̃(B1)) < f (M̃(B2)))

= P(M̃(B1) ∈ D(r,F), f (M̃(B1)) ≥ f (M̃(B2)))
+ P(M̃(B2) ∈ D(r,F), f (M̃(B1)) < f (M̃(B2)))

= P
(
λ1(B1)

1
αZ1 ≤ r,Θ(B1) ∈ F, λ1(B1)

1
αZ1 ≥ λ

1(B2)
1
αZ2

)
+ P

(
λ1(B2)

1
αZ2 ≤ r,Θ(B2) ∈ F, λ1(B1)

1
αZ1 < λ

1(B2)
1
αZ2

)
= P(Θ(B1) ∈ F) · P

(
λ1(B1)

1
αZ1 ≤ r, λ1(B1)

1
αZ1 ≥ λ

1(B2)
1
αZ2

)
+ P(Θ(B2) ∈ F) · P

(
λ1(B2)

1
αZ2 ≤ r, λ1(B1)

1
αZ1 < λ

1(B2)
1
αZ2

)
= σλ1(B1)(F) ·

∫
(0,r]

P
(
λ1(B2)

1
αZ2 ≤ u

)
︸                 ︷︷                 ︸

=e−λ1(B2)u−α

P
λ1(B1)

1
α Z1︸     ︷︷     ︸

=Φα

(
λ1(B1)

1
α

)
(du)
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+ σλ1(B2)(F) ·
∫

(0,r]

P
(
λ1(B1)

1
αZ1 < u

)
︸                 ︷︷                 ︸

=e−λ1(B1)u−α

P
λ1(B2)

1
α Z2︸     ︷︷     ︸

=Φα

(
λ1(B2)

1
α

)
(du)

= σλ1(B1)(F) ·

r∫
0

e−λ
1(B2)u−α αλ

1(B1)
uα+1

e−λ
1(B1)u−α du

+ σλ1(B2)(F) ·

r∫
0

e−λ
1(B1)u−α αλ

1(B2)
uα+1

e−λ
1(B2)u−α du

= σλ1(B1)(F) ·

r∫
0

αλ1(B1)
uα+1

e−(λ1(B1)+λ1(B2))u−α du

+ σλ1(B2)(F) ·

r∫
0

αλ1(B2)
uα+1

e−(λ1(B1)+λ1(B2))u−α du

= σλ1(B1)(F) ·
λ1(B1)

λ1(B1) + λ1(B2)
e−(λ1(B1)+λ1(B2))r−α

+ σλ1(B2)(F) ·
λ1(B2)

λ1(B1) + λ1(B2)
e−(λ1(B1)+λ1(B2))r−α

= e−(λ1(B1)+λ1(B2))r−α
·

(
σλ1(B1)(F) ·

λ1(B1)
λ1(B1) + λ1(B2)

+ σλ1(B2)(F) ·
λ1(B2)

λ1(B1) + λ1(B2)

)
for all r > 0 and F ∈ B(S). Equivalently, we have

σλ1(B1)+λ1(B2)(F) = σλ1(B1)(F) ·
λ1(B1)

λ1(B1) + λ1(B2)
+ σλ1(B2)(F) ·

λ1(B2)
λ1(B1) + λ1(B2)

.

In other words, we therefore actually proved that

σa+b = σa ·
a

a + b
+ σb ·

b
a + b

(3.1.44)

for all a, b > 0. Note, the latter conclusion follows from the fact that the underlying
measure space is specifically chosen as (R+,B(R+), λ1). Equation (3.1.44) can now be
used to complete the proof. To this end, let n,m ≥ 1. Iterating (3.1.44), we obtain

σa1+...+an

= σ(a1+...+an−1)+an

= σa1+...+an−1 ·
a1 + ... + an−1

a1 + ... + an
+ σan ·

an

a1 + ... + an

=
(
σa1+...+an−2 ·

a1 + ... + an−2

a1 + ... + an−1
+ σan−1 ·

an−1

a1 + ... + an−1

)
·

a1 + ... + an−1

a1 + ... + an
+ σan ·

an

a1 + ... + an

= σa1+...+an−2 ·
a1 + ... + an−2

a1 + ... + an
+ σan−1 ·

an−1

a1 + ... + an
+ σan ·

an

a1 + ... + an
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...

=

n∑
i=1

ai

a1 + ... + an
σai (3.1.45)

for all a1, ..., an > 0. Applying (3.1.45) to the specific choice of positive real numbers
a1 = ... = an = 1

n , we deduce that
σ1 = σ 1

n
.

Applying (3.1.45) once again - but this time to the specific choice of positive real numbers
a1 = ... = am = 1

n - further gives

σm
n

=

m∑
i=1

1
n
m
n
σ 1

n
= σ 1

n
.

Hence, the two latter equations combined show that

σ1 = σm
n

for all n,m ≥ 1 and therefore actually

σ1 = σq (3.1.46)

for all q ∈ Q>0 := {q ∈ Q : q > 0}. Since for all non-negative real numbers a ≥ 0 there
exists a sequence (an)n≥1 ⊂ Q>0 such that

lim
n→∞

an = a,

we conclude, by assumption and (3.1.46), that∫
S

h(θ) σ1(dθ) = lim
n→∞

∫
S

h(θ) σ1(dθ) = lim
n→∞

∫
S

h(θ) σan(dθ) =

∫
S

h(θ) σa(dθ)

for all bounded and continuous functions h on S. Applying common results of proba-
bility and measure theory (see for example Corollary 2.6 in [Els10, Chapter 8]), we get
σa = σ1 which is ultimately a consequence of Riesz-Markov-Kakutani’s representation
theorem. At any rate, this completes the proof by defining σ := σ1. �

Equipped with the concept of f -implicit sup-measures, we may now proceed to
establish an exciting integration concept. This idea originates from [SaTa94, Chapter 3]
and [StTa05] who first used the notion of random measures in order to provide a new
integral of non-random functions with respect to those measures. Although they were
actually motivated by different questions, both concepts share striking parallels to each
other. Hence, it is not really surprising that our notion of f-implicit extremal stochastic
integrals also has many similarities to both of the latter ones.
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3.2 The concept of f -implicit extremal stochastic integrals

As mentioned several times and as the heading of this section already reveals, this
part of the thesis is devoted to a detailed study of the notion of f -implicit extremal
stochastic integrals. The concrete motivation behind this section is the very same as in
[SaTa94, Chapter 3] or [StTa05]. Whereas Samorodnitsky and Taqqu tried to generate
non-trivial α-stable processes and Stoev and Taqqu non-trivial max-stable processes,
we are interested in non-trivial examples of f -implicit max-stable processes. Using the
notion of f -implicit extremal stochastic integrals will in fact turn out to be a productive
approach and thus, in addition to f -implicit sup-measures, yields a second suitable way
to advance towards the construction of f -implicit max-stable processes.
In the introduction of this chapter we stressed out that every f -implicit max-stable pro-
cess provides an α-Fréchet process. This underlines the signifying benefit of f -implicit
max-stable processes and the importance of our purpose. Having justified our inten-
tion, we start to introduce the notion of f -implicit extremal stochastic integral. Here,
we are guided by the constructions pursued in [SaTa94, Chapter 3] and [StTa05].
Broadly speaking, an f -implicit extremal stochastic integral is an integral of a non-
random function g : E→ R with respect to an f -implicit sup-measure M := (M(A))A∈E0 .
Note that this integral being random and depending on f justifies the specific terminol-
ogy f -implicit extremal stochastic integral. At this point it must be emphasized that we
actually give a well-defined definition of such an integral for simple functions only. Of
course, this might be unsatisfactorily in some sense. Nevertheless, this first attempt to
the notion of f -implicit extremal stochastic integrals is definitely worth it. Suggestions
of an appropriate extension will be considered in Section 3.3.
To start with, let (E,E,m) denote some arbitrary measure space. Furthermore, let E0 be
defined as in the previous section.

Definition 3.2.1
A function g : E→ R is said to be simple if

g(u) =

n∑
i=1

αi 1Ai (u) (3.2.1)

for some n ≥ 1, real numbers α1, ..., αn ≥ 0 and disjoint sets A1, ...,An ∈ E0.

Now, let M := (M(A))A∈E0 be an f -implicit sup-measure with control measure m
defined on an appropriate probability space (Ω,A,P).

Definition 3.2.2
Suppose that g : E → R is simple. The f -implicit extremal stochastic integral of g with
respect to M is defined by

e, f∫
E

g(u) M(du) :=
∫
E

g(u) M(du) :=
nh∨

f
i=1h

αi M(Ai). (3.2.2)

This integral is henceforth shortly referred to as f -implicit extremal integral.
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Definition 3.2.2 is the natural analogue of the definitions occurring in [SaTa94, Chapter
3] and [StTa05]. However, we still need to prove that this definition is well-defined, that
is, (3.2.2) does not depend on the specific representation of the simple function g. To
this end, we use similar arguments and ideas as in the proof of Theorem 3.1.12. After
having proved this crucial aspect, we proceed with some first desirable properties of
the f -implicit extremal integral which ultimately result in Proposition 3.2.6 and Remark
3.2.7.

Proposition 3.2.3
Suppose that

g(u) =

n1∑
i=1

αi 1Ai (u) and g(u) =

n2∑
`=1

β` 1B` (u)

are two different representations for the same simple function g, where n1,n2 ≥ 1 are
suitable integers, α1, ..., αn1 , β1, ..., βn2 ≥ 0 appropriate non-negative real numbers and
A1, ...,An1 ∈ E0 as well as B1, ...,Bn2 ∈ E0 collections of disjoint sets. Then we have

n1h∨
f

i=1h

αi M(Ai) =

n2h∨
f

`=1h

β` M(B`)

almost surely showing that (3.2.2) is well-defined.

Proof. Without loss of generality, we may assume that α1, ..., αn1 , β1, ..., βn2 > 0. Similar to
the principal idea in the proof of Theorem 3.1.12 we first construct a third representation
for g bridging the gap between the two prespecified representations. Namely, define

Ci,` := Ai ∩ B` ∈ E0

for all i = 1, ...,n1 and ` = 1, ...,n2. Obviously, these sets are disjoint and can therefore
serve as suitable sets for a representation of g. In fact, we see immediately that

g(u) =
∑

i=1,...,n1
`=1,...,n2

γi,` 1Ci,` (u) ,

the non-negative real numbers γi,` being defined as

γi,` :=

αi, if Ci,` , ∅

0, if Ci,` = ∅
=

β`, if Ci,` , ∅

0, if Ci,` = ∅.

Applying (3.2.2) to this specific representation for g, taking into account the fact that
most of the sets Ci,`, 1 ≤ i ≤ n1, 1 ≤ ` ≤ n2 are empty, which can therefore be ignored, and
using the essential fact that the random vectors M(Ci,`), 1 ≤ i ≤ n1, 1 ≤ ` ≤ n2 commute
under the f -implicit max-operation, which is due to (3.1.9), we deduce that∫

E

g(u) M(du) =

h∨
f

i=1,...,n1
`=1,...,n2

h

γi,` M(Ci,`)
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=


n2h∨

f
`=1h

γ1,`︸︷︷︸
=α1

M(C1,`)

 ∨ f ... ∨ f


n2h∨

f
`=1h

γn1,`︸︷︷︸
=αn1

M(Cn1,`)


= α1

 n2h∨
f

`=1h

M(C1,`)

 ∨ f ... ∨ f αn1

 n2h∨
f

`=1h

M(Cn1,`)


= α1 M

 n2⋃
`=1

C1,`

 ∨ f ... ∨ f αn1 M

 n2⋃
`=1

Cn1,`


= α1 M (A1) ∨ f ... ∨ f αn1 M

(
An1

)
=

n1h∨
f

i=1h

αi M (Ai)

almost surely. Note that we gained from both (1.1.4) and property (iii) in Definition
3.1.8. Similarly, we get

h∨
f

i=1,...,n1
`=1,...,n2

h

γi,` M(Ci,`) =

n2h∨
f

`=1h

β` M (B`)

almost surely, and this is precisely the assertion of the proposition. �

Now, that we have justified the key aspect of well-definedness of the f -implicit
extremal integral we concern ourselves with some first useful properties of this integral.
As the next proposition reveals, there are several of them being closely related to the
properties of extremal stochastic integrals (see for instance [StTa05, Proposition 2.2 and
Proposition 2.3]) and α-stable stochastic integrals (see for example [SaTa94, Section 3.5]).

Proposition 3.2.4
Let g1 and g2 be simple functions defined as in (3.2.1). Then the following properties
hold.

(i) ( f -implicit max-linearity)
For any pair of non-negative real numbers a, b ≥ 0, we have∫

E

(a g1(u) ∨ b g2(u)) M(du) =

a
∫
E

g1(u) M(du)

 ∨ f

b
∫
E

g2(u) M(du)

 (3.2.3)

almost surely.

(ii) ( f -implicit α-Fréchet)
The f -implicit extremal integral is f -implicit α-Fréchet. More precisely, we have

∫
E

g1(u) M(du) d
=


∫
E

gα1 (u) m(du)


1
α

ZΘ, (3.2.4)
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the random variable Z and the random vector Θ being defined as usual (see for
instance Definition 3.1.2 or Definition 3.1.8).

(iii) ( f -implicit monotonicity)
We have g1 ≤ g2 m-almost everywhere if and only if∫

E

g1(u) M(du) ≤ f

∫
E

g2(u) M(du) (3.2.5)

almost surely.

(iv) ( f -implicit independence)
We have g1g2 = 0 m-almost everywhere if and only if the random vectors

ξ1 :=
∫
E

g1(u) M(du) and ξ2 :=
∫
E

g2(u) M(du)

are independent.

Proof. The four properties will be proved successively. Here, we gain from some ideas
which have already been used in the proof of Proposition 2.2 in [StTa05], from the
crucial fact that the random vectors M(A1), ...,M(An) commute under the f -implicit
max-operation, provided A1, ...,An ∈ E0 are disjoint sets, and finally from Lemma 1.1.5.
(i) Fix a, b ≥ 0. By rearranging the representations of g1 and g2 appropriately, we may
assume that

g1(u) =

n∑
i=1

αi 1Ai (u) and g2(u) =

n∑
i=1

βi 1Ai (u)

for some n ≥ 1, α1, ..., αn, β1, ..., βn ≥ 0 and A1, ...,An ∈ E0 (disjoint). Accordingly, we
have

a g1(u) ∨ b g2(u) =

n∑
i=1

(aαi ∨ b βi)1Ai (u)

and therefore∫
E

(a g1(u) ∨ b g2(u)) M(du) =

nh∨
f

i=1h

(aαi ∨ b βi) M(Ai)

=

nh∨
f

i=1h

(aαi M(Ai) ∨ f b βi M(Ai))

=

 nh∨
f

i=1h

aαi M(Ai)

 ∨ f

 nh∨
f

i=1h

b βi M(Ai)


=

a
nh∨

f
i=1h

αi M(Ai)

 ∨ f

b
nh∨

f
i=1h

βi M(Ai)
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=

a
∫
E

g1(u) M(du)

 ∨ f

b
∫
E

g2(u) M(du)


almost surely showing (3.2.3).
(ii) Adopting the label of the representation for g1 from the previous part of the proof,
using the second property of an f -implicit sup-measure and finally applying (1.2.7) as
well as Lemma 3.1.4 (c), we see immediately that

P


∫
E

g1(u) M(du) ∈ A

 = P

 nh∨
f

i=1h

αi M(Ai) ∈ A


= Pα1 M(A1) ∗ f ... ∗ f Pαn M(An)(A)

= P
(αα1 m(A1))

1
α ZΘ
∗ f ... ∗ f P(ααn m(An))

1
α ZΘ

(A)

= P


 n∑

i=1

ααi m(Ai)


1
α

ZΘ ∈ A


= P



∫
E

gα1 (u) m(du)


1
α

ZΘ ∈ A


for all A ∈ B(Rd), and (3.2.4) is proved. Here, we shall also refer to the considerations
in the proof of Lemma 3.1.4 (c) and Remark 3.1.5 (v).
(iii) We start by proving the only if-part. Accordingly, there exists a set E0 ∈ E such
that g1(u) ≤ g2(u) for all u ∈ E0 and m(E \ E0) = 0. Applying Lemma 1.3.3 (c) and
subsequently (3.2.3), we deduce that

∫
E

g1(u) M(du) ≤ f


∫
E

g1(u) M(du)

 ∨ f


∫
E

g2(u) M(du)

 =

∫
E

(g1(u) ∨ g2(u)) M(du)

almost surely. Similar to the proof of (i) we may further assume that

g1(u) =

n∑
i=1

αi 1Ai (u) and g2(u) =

n∑
i=1

βi 1Ai (u)

for some n ≥ 1, α1, ..., αn, β1, ..., βn ≥ 0 and A1, ...,An ∈ E0 (disjoint). This assumption
proves of use in the following computation. Indeed, we have

g1(u) ∨ g2(u) = (g1(u) ∨ g2(u))1E0 (u) + (g1(u) ∨ g2(u))1E\E0 (u)

= g2(u)1E0 (u) + g1(u)1E\E0 (u)

=

n∑
i=1

βi 1Ai∩E0 (u) +

n∑
i=1

αi 1Ai∩(E\E0) (u)
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:=
2n∑
i=1

γi1Ci (u)

:= g̃(u),

where

γi :=

βi, if i = 1, ...,n

αi−n, if i = n + 1, ..., 2n
and Ci :=

Ai ∩ E0, if i = 1, ...,n

Ai−n ∩ (E \ E0), if i = n + 1, ..., 2n.

Consequently, the function g̃ coincides with g1 ∨ g2. The difference is in the repre-
sentations only. Thus, Proposition 3.2.3, the fact that M(C1), ...,M(C2n) commute under
the f -implicit max-operation, the f -max σ-sup-additivity of M and finally the case that
M(Cn+1), ...,M(C2n) are equal to zero almost surely yield∫

E

(g1(u) ∨ g2(u)) M(du) =

∫
E

g̃(u) M(du)

=

2nh∨
f

i=1h

γi M(Ci)

=

 nh∨
f

i=1h

βi M(Ai ∩ E0)

 ∨ f

 2nh∨
f

i=n+1h

αi−n M(Ai−n ∩ (E \ E0))


=

 nh∨
f

i=1h

βi M(Ai ∩ E0)

 ∨ f

 2nh∨
f

i=n+1h

βi−n M(Ai−n ∩ (E \ E0))


=

nh∨
f

i=1h

βi (M(Ai ∩ E0) ∨ f M(Ai ∩ (E \ E0)))

=

nh∨
f

i=1h

βi M(Ai)

=

∫
E

g2(u) M(du)

almost surely. Combing all previous observations, we obtain (3.2.5). Hence, we can
proceed with the if-part of the proof. By assumption,∫

E

g1(u) M(du) ≤ f

∫
E

g2(u) M(du)

almost surely. Applying both Lemma (1.3.4) and (3.2.3), we see immediately that∫
E

g2(u) M(du) =


∫
E

g1(u) M(du)

 ∨ f


∫
E

g2(u) M(du)

 =

∫
E

(g1(u) ∨ g2(u)) M(du)
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almost surely. From (3.2.4) it further follows that

exp

−

∫
E

gα2 (u) m(du)

 · x−α
 = exp

−

∫
E

(g1(u) ∨ g2(u))α m(du)

 · x−α


for all x > 0. Thus, we have∫
E

gα2 (u) m(du) =

∫
E

(g1(u) ∨ g2(u)α m(du). (3.2.6)

Since g2 ≤ g1 ∨ g2 and hence 0 ≤ (g1 ∨ g2)α − gα2 , (3.2.6) actually yields

(g1 ∨ g2)α − gα2 = 0

m-almost everywhere implying g1 ≤ g2 m-almost everywhere, and the proof is complete.
(iv) Once again, we start by proving the only if-part. Consequently, there exists a set
E1 ∈ E such that g1(u)g2(u) = 0 for all u ∈ E1 and m(E \ E1) = 0. Following the approach
pursued in (i) or (iii), we may assume that

g1(u) =

n∑
i=1

αi 1Ai (u) and g2(u) =

n∑
i=1

βi 1Ai (u)

for some n ≥ 1, α1, ..., αn, β1, ..., βn ≥ 0 and A1, ...,An ∈ E0 (disjoint). Therefore, we get

g1(u) =

n∑
i=1

αi 1Ai∩E1 (u) +

n∑
i=1

αi 1Ai∩(E\E1) (u)

and

g2(u) =

n∑
i=1

βi 1Ai∩E1 (u) +

n∑
i=1

βi 1Ai∩(E\E1) (u) ,

respectively. Note that the sets Ai ∩ (E \ E1) ∈ E0 being null sets for all i = 1, ...,n yields

ξ1 =

∫
E

g1(u) M(du) =

nh∨
f

i=1h

αi M(Ai ∩ E1)

and

ξ2 =

∫
E

g2(u) M(du) =

nh∨
f

i=1h

βi M(Ai ∩ E1)

almost surely. Since g1(u)g2(u) = 0 for all u ∈ E1, we finally conclude that

ξ1 =

h∨
f

i∈Ih

αi M(Ai ∩ E1)
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and

ξ2 =

h∨
f

j=Jh

βi M(Ai ∩ E1)

almost surely, the index sets I, J ⊂ {1, ...,n} being disjoint. Thus, the random vectors ξ1
and ξ2 are almost surely composed of weighted f -implicit maxima of random vectors
M(Ai ∩E1) over disjoint sets of indices i. The random vectors M(A1 ∩E1), ...,M(An ∩E1)
being independent shows, by applying Corollary 1.1.7, that ξ1 and ξ2 are independent.
We now focus on proving the if-part of (iv). To this end, we apply (i) and (ii) of the
present proposition as well as Lemma 3.1.4 (b) and (c). Without loss of generality, we
may first exclude the case ξ1 = 0 or ξ2 = 0 almost surely, resulting from (3.2.4). Thus,
both ξ1 and ξ2 are f -implicit α-Fréchet with positive scales. By assumption, we have

Pξ1∨ fξ2 = Pξ1 ∗ f Pξ2 .

Furthermore, we have

P(ξ1 ∨ f ξ2 ∈ D(r,S)) = exp

−

∫
E

(g1(u) ∨ g2(u))α m(du)

 r−α


for all r > 0 being a consequence of (i), (ii) and Lemma 3.1.4 (b). Applying Lemma 3.1.4
(c), we additionally obtain

Pξ1 ∗ f Pξ2(D(r,S)) = exp

−

∫
E

gα1 (u) m(du) +

∫
E

gα2 (u) m(du)

 r−α


= exp

−

∫
E

(gα1 (u) + gα2 (u)) m(du)

 r−α


for all r > 0 showing that∫

E

(g1(u) ∨ g2(u))α m(du) =

∫
E

(gα1 (u) + gα2 (u)) m(du). (3.2.7)

Since g1 and g2 are non-negative, we deduce that

gα1 (u) ∨ gα2 (u) ≤ gα1 (u) + gα2 (u)

for all u ∈ E. Consequently, (3.2.7) yields

gα1 (u) ∨ gα2 (u) = gα1 (u) + gα2 (u)

m-almost surely. This, however, is only possible if g1g2 = 0 m-almost surely, and the
proof is complete. �
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Referring to the third property stated in Proposition 3.2.4, we obtain immediately the
following natural and desirable property of the f -implicit extremal integral.

Corollary 3.2.5
For any two simple functions g1 and g2 we have g1 = g2 m-almost surely if and only if∫

E

g1(u) M(du) =

∫
E

g2(u) M(du)

almost surely.

Proof. This is an easy consequence of the f -implicit monotonicity. Indeed, the if-part
of the assertion follows from Definition 1.3.1 and from the if-part of Proposition 3.2.4
(iii), whereas the only if-part can be deduced from the antisymmetry of the f -implicit
max-order and the only if-part of Proposition 3.2.4 (iii). �

The conclusion of this short section, which raises no claim to completeness and is
rather intended to initiate extensive research projects for the future by providing a solid
basis, is devoted to the following proposition.

Proposition 3.2.6
Let T denote a non-empty index set. Further, suppose that (gt)t∈T is a family of simple
functions. Then the resultant family X := (Xt)t∈T of Rd-valued random vectors, defined
by

Xt :=
∫
E

gt(u) M(du),

has the subsequent property. For all n ≥ 1, α1, ..., αn ≥ 0 and t1, ..., tn ∈ T, we have

nh∨
f

i=1h

αi Xti =

∫
E

 n∨
i=1

αi gti(u)

 M(du) (3.2.8)

almost surely.

Proof. The proof is straightforward and an easy consequence of (3.2.3). �

Remark 3.2.7. The principal significance of the preceding proposition is in the resultant
deduction that the processX is actually f -implicit max-stable in accordance with Defini-
tion 3.0.1. Indeed, (3.2.4) shows that the right-hand side in (3.2.8) is f -implicit α-Fréchet
with scale

κ =


∫
E

n∨
i=1

ααi gαti
(u) m(du)


1
α

≥ 0

and hence particularly f -implicit max-stable.
Combining Proposition 3.2.6 and Remark 3.2.7, we obtain many examples of f -

implicit max-stable processes at one go, thus complying with the initially formulated
aim of Chapter 3. Since all these examples are essentially based on the concept of f -imp-
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licit sup-measures, the importance and great benefit of this notion is once again illus-
trated explicitly. Besides, Remark 3.2.7 yields the verification of the assertion formulated
in Example 3.1.15 as the process X := (Xt)t≥0 specified therein can equivalently be writ-
ten as

Xt := M([0, t]) =

∫
R+

1[0,t] (u) M(du), t ≥ 0.

Moreover, the latter equation reveals the close connection between the concepts inves-
tigated in Section 3.1 and Section 3.2.
With this statement we want to complete Section 3.2. The rest of this chapter, in form
of Section 3.3, deals with an extensive outlook concerning several suggestions for im-
provements and extensions of the aspects investigated and considered in the preceding
deliberations. Actually, this is some kind of promotion for the gripping f -implicit
extreme value theory.

3.3 Outlook

In Section 3.1 and Section 3.2 we engaged ourselves in basic mathematical research
concerning two attractive branches of f -implicit extreme value theory. We introduced
both the fundamental notion of f -implicit sup-measures and the concept of f -implicit
extremal integrals. This was designed for the construction of f -implicit max-stable
processes. Although we have already proved some exciting aspects, such as the exis-
tence of f -implicit sup-measures, and although we have established first connections
to the common theories of α-stable processes (see [SaTa94]) and max-stable processes
(see [DaMi08], [deHaFe06, Chapter 9], [EmKlMi12, Chapter 3 and Chapter 5], [Ka09],
[StTa05] or [StWa10]), we point out that there are several further issues that need to be
investigated. Therefore, this final section attends to a detailed presentation of attractive
themes going beyond the ones considered in Section 3.1 and Section 3.2. Here, we gain
intuition from the recently mentioned theories as they provide worthwhile ideas for
possible and sensible extensions.
Rather than statistical or computational observations concerning the contents of Section
3.1 and Section 3.2, we are concerned with theoretical ones. Namely, we suggest some
ideas pertaining to more general notions of f -implicit sup-measures. Moreover, we pro-
pose a possible way of a generalization of f -implicit extremal stochastic integrals being
necessary with regard to the construction of further attractive examples of f -implicit
max-stable processes. Finally, we consider whether there exist suitable conditions un-
der which f -implicit max-stable processes allow representations in terms of f -implicit
extremal stochastic integrals.

1. More general dependence structure in the notion of f -implicit sup-measures.
Considering the notion of f -implicit sup-measures introduced in Section 3.1, we need
to confess that we have required independence of the radial part Z and the angular part
Θ. That is, we have yet to consider conceivable dependence structures that might exist
between the radial and the angular part since without the assumption of independence
we would have not been able to prove Theorem 3.1.12 in the manner used in this thesis.
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From an applied point of view, however, it would be advantageous to get rid of the
assumption of independence. This raises the exciting question whether there exists a
more general notion of f -implicit sup-measures including specific dependence struc-
tures between Z and Θ, or whether the properties (i)-(iii) in Definition 3.1.8 imply that
Z and Θ are necessarily independent. To consider this question, we do well to observe
an exemplary situation.
As usual, let σ ∈ M1(S) denote the distribution of the angular part Θ of an arbitrary
f -implicit sup-measure. In order to keep it simple, we may assume σ to be independent
of the sets A ∈ E0, although even more general and complex settings are cogitable. Let Z
denote the radial part of the f -implicit sup-measure, where its distribution is not merely
α-Fréchet but implicitly given by

P(Z ≤ x |Θ = ϑ) := FZ |Θ=ϑ(x) := Fϑ(x) := e−ς(ϑ)x−α , x > 0. (3.3.1)

Here, the function ς : S→ (0,∞) is nice. The expression nice signifies some unspecified
conditions on ς such as continuity, differentiability or other conceivable smoothness
properties. In other words, (3.3.1) means that the conditional distribution of Z given the
occurrence of the value ϑ of Θ is an α-Fréchet distribution with scale ς(ϑ)1/α. Clearly, Z
and Θ are dependent. Note that the setting of Section 3.1 can be recovered by the choice
ς ≡ 1. To investigate the recently formulated question, it seems wise to compute the
distribution of the Rd-valued random vector X := κ1/αZΘ, κ > 0. We see at once that

P(X ∈ D(r,F)) =

∫
F

e−ς(ϑ)κr−α σ(dϑ)

for all r > 0 and F ∈ B(S). As usual, the distribution of X equals ε0 if κ = 0. Having
established this formula, we can study the consequences of the condition

M(A1) ∨ f M(A2) d
= M(A1 ∪ A2),

following from property (iii) of an f -implicit sup-measure as it might imply that ς is
constant. This would indicate that Z and Θ must necessarily be independent and that
Z has an α-Fréchet distribution, thus revealing that our definition of an f -implicit sup-
measure is in some sense the most general one. If it proves otherwise, that is, if ς is
not necessarily constant, we could take this as evidence that there exists a more general
notion of f -implicit sup-measures. However, this assertion would still be subject to
review. As a side note, observe that the random variable f (X) = κ1/αZ having a contin-
uous cumulative distribution function on (0,∞) implies X is f -implicit max-infinitely
divisible. Hence, it might be a challenging task to evaluate a possible nth root of X for
all n ≥ 1. We do not address ourselves to this task but proceed with a more detailed con-
sideration of a possible extension of the notion of f -implicit extremal stochastic integrals.

2. Extension of the f -implicit extremal stochastic integrals. Taking the concept of
f -implicit sup-measures as a basis, we established the notion of f -implicit extremal
stochastic integrals in Section 3.2. For the time being, we confined ourselves to par-
ticular non-random integrands. Namely, we considered simple functions as suitable
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integrands only. This inevitably leads to the question of whether we can extend the
class of possible integrands. Investigating this question is particularly worthwhile with
regard to the construction of further examples of f -implicit max-stable processes. A
more extensive class of feasible integrands definitely yields further f -implicit max-
stable processes by adopting the construction used in Proposition 3.2.6. In addition,
an extension of the class of non-random integrands provides a more general notion of
f -implicit extremal stochastic integrals being convenient for the study of closer con-
nections between our theory and those introduced in [SaTa94, Chapter 3] and [StTa05],
respectively. Finally, it might be beneficial to extend the notion of f -implicit extremal
stochastic integrals to establish representations of f -implicit max-stable processes in
terms of f -implicit extremal stochastic integrals (see point 3).
Conforming to the respective statements of [SaTa94, Chapter 3] and [StTa05], we sensibly
suppose that a possible class of non-random integrands might consist of all measurable,
non-negative functions g : E→ R such that∫

E

gα(u) m(du) < ∞.

However, this is just a conjecture that still needs to be proved. Other classes of possible
integrands could also be conceivable. Having an idea of a suitable class of integrands,
we proceed with the plan of how to realize the f -implicit extremal stochastic integral
of a non-simple function g. Here, we can only conjecture whether it is better to adopt
the approach of [SaTa94, Chapter 3] or of [StTa05], or whether it is prudent to contrive
a new method. Both [SaTa94] and [StTa05] pursue efficient but quite different ways in
their extensions to more general integrands. Unfortunately, both of them have their
disadvantages in the f -implicit context. Whereas the approach in [SaTa94], that is, real-
izing the α-stable stochastic integral as a limit in probability (see [SaTa94, Section 3.4]),
tremendously gains from the structure of the corresponding characteristic functions,
the approach in [StTa05] essentially takes advantage of a monotonicity structure. Both
the concept of characteristic functions and the monotonicity cannot be applied in our
setting. Consequently, we cannot adopt one of the approaches one-to-one. Yet, the
conspicuous connection between our f -implicit setting and the issues considered in
[StTa05] and [SaTa94] suggests that we can profit from at least some ingenious ideas.
On the one hand, the notion of α-Fréchet spaces studied in [StTa05] seems promising
in this context. As we cannot use Lemma 2.2 of [StTa05], a different strategy has to be
developed. Here, the notion of f -implicit α-Fréchet spaces and a clearer comprehen-
sion of the f -implicit max-order could be helpful. We refer to a setM f

α := M ⊂ Ld
0 as

f -implicit α-Fréchet space if it is closed under taking f -implicit max-linear combinations
and consists of jointly f -implicit α-Fréchet random vectors. That is, if:

(i) ( f -implicit max-linear space)
For all n ≥ 1, any choice of random vectors ξ1, ..., ξn ∈ M and any choice of real
numbers α1, ..., αn ≥ 0, the random vector

ξ :=
nh∨

f
i=1h

αi ξi
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belongs toM.

(ii) (jointly f -implicit α-Fréchet)
Any f -implicit max-linear combination of elements ofM is f -implicit α-Fréchet.

In particular, the space of all f -implicit extremal stochastic integral of simple functions
is an f -implicit α-Fréchet space being an easy consequence of Proposition 3.2.6.
On the other hand, the approach pursued in [SaTa94, Chapter 3] could be effective even
though we cannot apply the notion of characteristic functions. This is because of the fact
that Proposition 3.2.4 yields the explicit distribution of the f -implicit extremal stochastic
integrals and thus provides a useful substitute for characteristic functions. Following
the approach in [SaTa94, Chapter 3], we may therefore realize the (general) f -implicit
extremal stochastic integral as a limit in probability.
Further considerations concerning the recently discussed purpose are skipped for the
time being. Anyhow, this seems to be an attractive research project with good prospects.

3. More detailed considerations of f -implicit max-stable processes. Fix an arbitrary
and non-empty index set T and let (Xt)t∈T be an f -implicit max-stable process. If we are
now interested in sample path properties of such processes, it might be convenient to
study them via an integral representation of the type

Xt =

∫
E

gt(u) M(du), t ∈ T, (3.3.2)

the process (M(A))A∈E0 being some f -implicit sup-measure and the functions gt, t ∈ T,
being suitable non-random integrands. In other words, it seems advantageous to have
a representation of an f -implicit max-stable process (Xt)t∈T in terms of an f -implicit ex-
tremal stochastic integral in combination with a suitable family of non-random functions
(gt)t∈T. Besides, this underlines the tremendous benefit of an appropriate extension of
the notion of f -implicit extremal stochastic integrals as described in the previous point.
The idea of studying path properties of f -implicit max-stable processes via (3.3.2) origi-
nates from [SaTa94, Chapters 9-12] where sample path properties of α-stable processes,
such as separability, continuity, boundedness or oscillation properties, have extensively
been investigated by using this method. Moreover, it has been used in [St10, Section
3] in order to facilitate the study of ergodic properties of α-Fréchet processes. To put
it straight, the crucial question arises of whether it is possible to realize an f -implicit
max-stable process via (3.3.2). This question is not novel but has already been consid-
ered both in [SaTa94, Section 3.11 and Chapter 13] for α-stable processes and in [StTa05,
Proposition 3.2] for α-Fréchet processes. At this point it should be emphasized that first
attempts regarding this question originate from [BrDaKr66], [Schi70], [Schr72], [Kue73]
and [Ha84] for the α-stable setting and from [deHa84] for the max-stable one. Some
further recent studies concerning this issue are also given in [St08], [St10] and [Ka09].
Instead of going into detail here, we shall only point out that both in the α-stable and
in the max-stable case there exists a condition assuring suitable integral representations
so that (E,E,m) can be chosen as ((0, 1),B((0, 1)), λ1). More precise expositions can be
found, for example, in [SaTa94, Theorem 13.2.1] and in [StTa05, Proposition 3.2]. It is
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even possible to find integral representations for all symmetric α-stable (see [SaTa94,
Theorem 13.2.2]) and all α-Fréchet processes (see [Ka09, Theorem 1]), if the underlying
measure space is allowed to be more general. The latter deliberations suggest that it
might also be possible to achieve similar results for f -implicit max-stable processes.
This, however, is not pursued in the present thesis. Nevertheless, corresponding results
could reveal the structure of f -implicit max-stable processes immensely.

To come to a conclusion of this section, we shall finally mention some other suggestions
for extensions going beyond the previous ones.
First, it might be beneficial to provide a more flexible notion of f -implicit sup-measures
by letting the distribution of the angular part Θ be dependent on the sets A ∈ E0. How-
ever, this is only possible if we dispense with the assumptions of Proposition 3.1.20
since otherwise PΘ is necessarily independent of A ∈ E0. Nevertheless, in more gen-
eral settings there could exist some intricacies allowing specific dependence structures
between the angular part of an f -implicit sup-measure and the sets A ∈ E0. Answer-
ing the question of whether the recent suggestion can actually occur seems extremely
interesting since possible dependences open up further possibilities. In particular, the
resultant angular process (Θ(A))A∈E0 would be a good object of research. Furthermore,
mathematical modeling of such processes could be an attractive point as it would be
important in statistical investigations.
Second, in consideration of Theorem 3.1.12 we recognize that the existence of an f -
implicit sup-measure is a consequence of the seminal Kolmogorov’s extension theorem.
Therefore, it might be worthwhile to examine whether an f -implicit sup-measure can
also be derived constructively. In other words, a more detailed investigation of the struc-
ture of f -implicit sup-measures in view of feasible and explicit representations could be
an exciting object of study. In this context it seems conceivable to construct an f -implicit
sup-measure by combining the notions of Rd-valued α-stable random measures and
random α-Fréchet sup-measures. This is reasonable because of the close connections
existing between the three theories. A sensible approach is to define M(A) for all A ∈ E0
as the product of Mα(A) and a measurable transformation of ξ(A), the real-valued pro-
cess (Mα(A))A∈E0 here being a random α-Fréchet sup-measure and (ξ(A))A∈E0 being an
Rd-valued α-stable random measure. Of course, the measurable transformation should
depend on the loss function f . In this particular case (Mα(A))A∈E0 represents the radial
part of (M(A))A∈E0 and the transformation of (ξ(A))A∈E0 its angular part. The depen-
dence structure of (M(A))A∈E0 is then heavily related to the one between (Mα(A))A∈E0 and
(ξ(A))A∈E0 . This suggestion is definitely significant as it provides a clearer insight into
the theories of Rd-valued α-stable random measures, random α-Fréchet sup-measures
and f -implicit sup-measures.
Third and finally, conceivable extensions can be derived by relaxing the assumptions
on f as has already been noted in Section 2.4. Instead of itemizing the respective
possibilities once again, we conclude with Chapter 3 and proceed with the last chapter.
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4 Concluding remarks

This chapter is designed to bring the present thesis to an appropriate conclusion, two
specific goals being pursued in detail. On the one hand, we recapitulate our findings of
the present thesis and point out the significance of these results in the context of an f -
implicit extreme value theory pioneered by [SchSt14]. In addition, we define our results
against the backdrop of research that has already been published. On the other hand,
we revisit the open problems that appeared in the course of the preceding chapters
and give several suggestions for additional research possibilities exceeding the ones
considered in Section 2.4 and 3.3. In this context, we stress the promising future of the
f -implicit extreme value theory as there are various open problems and many further
interesting issues to be solved.

4.1 Summary

My original interest of research was to extend the seminal findings in [SchSt14]. In
particular, my main concern was to achieve proper results on implicit extremes and f -
implicit max-stable laws under relaxed assumptions on the loss function f . At the center
of my studies was the question whether it would be possible to prove corresponding
results if f were assumed to be E-homogeneous instead of 1-homogeneous. Here, E
denotes some suitable matrix. At the early stages of this project I realized that this might
be a promising field, especially since there existed a supportive body of literature. As to
that, see for example [LiReRo14] and [MeSch01] to just name a few. During my research
work on this issue I noticed, however, that there were even more promising aspects to
be considered, which eventually led to the current form of this thesis.
As regards content, we can divide the present thesis into two main parts. It refers to the
notion of f -implicit max-infinitely divisible distributions on the one hand and f -implicit
max-stable processes on the other. Both the idea of f -implicit max-infinitely divisible
distributions and the idea of f -implicit max-stable processes actually stem from the
ambitious goal to extend the theory of f -implicit max-stable distributions considered in
[SchSt14].

The first step of an expedient approach to the notion of f -implicit max-infinitely di-
visible distributions and f -implicit max-stable processes, however, was to establish a
profound and theoretical basis. This was for the most part done in the first chapter. In
particular, we introduced a new binary operation on Rd being referred to as f -implicit
max-operation. Availing ourselves of this specific operation, we subsequently estab-
lished both the notion of f -implicit max-convolution and the f -implicit max-order. In
addition to these concepts, we finally studied the distribution of the random vector Xk(n)
in more detail. Here, we supplied many possibilities to compute P(Xk(n) ∈ A) explicitly.
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The idea of considering all these aspects in Chapter 1 arose at the very beginning of our
studies on f -implicit max-infinitely divisible distributions and f -implicit max-stable
processes. It was motivated by strategies having already been used in extreme value
theory as well as by studies on infinitely divisible distributions and α-stable processes.
At this point it is worth to underline that Chapter 1 does not only prepare the results
of the subsequent chapters, but contains many observations that are of independent in-
terest. Therefore, these topics being novel and having never been considered in earlier
research work, except for some parts of Lemma 1.4.1, do not only serve as a suitable
basis for our specific purpose, but might rather gain in interest in the context of a much
broader theoretical framework.

Equipped with the findings in Chapter 1, we delved into the notion of f -implicit max-
infinitely divisible distributions and thus into the first main part of the present thesis.
Here, we were strongly guided by the well-established and historically important con-
cepts of infinitely and max-infinitely divisible distributions. In fact, we realized that
these concepts are quite similar and depend significantly on the underlying summation
and maximum operation. This ultimately led, by replacing the respective operations
with the f -implicit max-operation, to the existing notion of f -implicit max-infinitely
divisible distributions.
Having established the notion of f -implicit max-infinitely divisible distributions in Def-
inition 2.1.1, we then proceeded to consider the question whether there exists a potential
characterization of the class of f -implicit max-infinitely divisible distributions. Regard-
ing this concern, we essentially presented two basic results. We proved that both all
random vectors X in Rd such that x 7→ P( f (X) ≤ x) is continuous on (`,∞), the non-
negative real number ` here being the left endpoint of P f (X), and all random vectors
X in Rd such that the mass of P f (X) is concentrated on a countable subset of [0,∞) are
f -implicit max-infinitely divisible. In this context, we gained from the notion of f -
implicit max-convolution semigroups as well as from some beneficial and tailor-made
substitution rules for Riemann-Stieltjes integrals that had been provided in advance. In
addition, we also profited enormously from Lemma 1.4.1.
After having devoted ourselves to the previously mentioned aspects, we gave fur-
ther examples of f -implicit max-infinitely divisible distributions which are not counted
among the classes of distributions considered in Corollary 2.2.21 and Theorem 2.2.24,
respectively. Among other indicators, these examples finally gave occasion to the asser-
tion stated in Conjecture 2.4.1. Alleging reasons for the verisimilitude of that conjecture
as well as suggesting a possible approach to a proper proof eventually constituted the
remainder of Chapter 2. Here, we also broached the notion of f -implicit max-compound
Poisson distributions and f -implicit max-compound Poisson processes for the first time
as these two closely linked concepts seem to be indispensable for deeper considerations
on Conjecture 2.4.1. The idea to use the notion of f -implicit max-compound Poisson
distributions and f -implicit max-compound Poisson processes as a promising technique
actually originates from [MeSch01, Chapter 3]. In fact, there exists a remarkably close
connection between f -implicit max-compound Poisson distributions and generalized
Poisson distributions, the latter being an essential tool in the proof of the common
Lévy-Khintchine representation for infinitely divisible distributions (see for example
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[MeSch01, Chapter 3]). In addition, this close connection indicates an abundance of
further research possibilities in this particular field which has already been amplified
in Section 2.4.

In the second part we devoted ourselves to another extension of the notion of f -implicit
max-stable distributions. We attempted an appropriate approach to the notion of f -
implicit max-stable processes by following fundamental ideas and techniques of the
theories of max- and α-stable processes, respectively. Here, the theory of max-stable
processes was especially conducive to our targeted purpose. Indeed, the main parts of
the existing form of Chapter 3 were obtained with the use of [SchSt14] and [StTa05].
Our first step was to establish a clear definition of an f -implicit max-stable process.
Motivated by the fact that each f -implicit max-stable process automatically yields a
max-stable process with α-Fréchet marginals, that is, an α-Fréchet processes, we even-
tually formulated our main goal: the construction of non-trivial examples of f -implicit
max-stable processes. To achieve this ambitious aim, we availed ourselves of an inge-
nious technique that had already been applied analogously in [StTa05] in the context of
studies on α-Fréchet processes. There is talk of the notion of f -implicit sup-measures
and f -implicit extremal integrals bearing strong resemblance to the ones of random
α-Fréchet sup-measures and extremal stochastic integrals. Moreover, there also exists
an analogy between the latter and the notion of α-stable random measures and α-stable
stochastic integrals which occur in [SaTa94] and yield a more profound comprehension
of α-stable processes.
Having had the idea of f -implicit sup-measures and f -implicit extremal integrals in
mind, we proceeded to put them into concrete terms. In doing so, we focused on
the notion of f -implicit sup-measures first. To this end, we began by studying f -
implicit max-stable distributions in more detail which in turn induced us to institute
the notion of f -implicit α-Fréchet distributions. These distributions constitute a spe-
cific subclass of f -implicit max-stable distributions and rate within the framework
of f -implicit extreme value theory as some kind of counterpart of α-Fréchet distri-
butions. Equipped with these distributions, we established the notion of f -implicit
sup-measures defined on an appropriate probability space (Ω,A,P) and succeeded in
proving the existence of such objects. Basically, for any measure space (E,E,m), the
idea was to consider an f -implicit sup-measure M : E0 → Ld

0 as a stochastic processes
(M(A))E0 on (Ω,A,P), the sets E0 and Ld

0 being defined by E0 = {A ∈ E : m(A) < ∞}
and Ld

0 = {X : Ω→ R : X is a random vector}, respectively. Without doubt, the latter is
one of the basic results in Chapter 3 and should be appreciated particularly. Using the
notion of f -implicit sup-measures, we were then actually able to provide a first example
of an f -implicit max-stable process. Moreover, we supplied a far less complicated proof
of the existence of a random α-Fréchet sup-measure compared to that one proposed
in [StTa05, Proof of Proposition 2.1]. Namely, each f -implicit sup-measure (M(A))A∈E0

yields immediately a random α-Fréchet sup-measure by ( f (M(A)))A∈E0 . Despite the
latter aspects, our notion of an f -implicit sup-measure was still not entirely satisfactory
as we assumed the angular part of (M(A))A∈E0 to be independent of A ∈ E0. It was
only when we presented Proposition 3.1.20 that our specific notion of an f -implicit
sup-measure turned out to be highly prudent and fairly general. In conclusion, our no-
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tion of f -implicit sup-measures did not only prove to be a suitable approach to find
examples of f -implicit max-stable processes but is ultimately also a sophisticated con-
struct of independent interest in f -implicit extreme value theory.
After having concerned ourselves with the preceding aspects, we approached the last
part of Chapter 3 and thus the last part of the content of the present thesis. We es-
tablished the notion of f -implicit extremal integrals, that is, integrals of non-random
functions with respect to an f -implicit sup-measure. Here, the way of proceeding was
considerably guided by [StTa05] and [SaTa94]. To come straight to the point, however,
we considered simple integrands only, that is, we introduced the f -implicit extremal
integral only for non-random integrands being simple. A generalization to a more ex-
tensive class of integrands was postponed and thus remains unsolved for the time being.
For all that, we succeeded in providing several desirable properties of our f -implicit
extremal integral which in turn resulted in Proposition 3.2.6 and Remark 3.2.7. The
latter eventually revealed the real practical usefulness of f -implicit extremal integrals.
Namely, similar to [StTa05] and [SaTa94], the notion of f -implicit extremal integrals is
likewise perfectly suited to construct f -implicit max-stable processes.

In conclusion, it is to say that we were indeed able to provide a new theoretical
framework. This field of f -implicit extreme value theory is based on the pioneer-
ing achievements in [SchSt14], whereas the idea of the particular contents examined
here does primarily originate from quite similar and already well-established branches
of probability theory. Of course, the concepts of f -implicit max-infinitely divisible dis-
tributions and f -implicit max-stable processes are just the beginning of an appropriate
establishment of f -implicit extreme value theory. As to that aspect, Section 2.4 and
Section 3.3 have already demonstrated the wealth of possible issues that still need to
be investigated. In addition, Section 4.2 will provide further proposals of interesting
topics that might be worth to be considered in more detail.

4.2 Final outlook

The field of f -implicit extreme value theory introduced in this thesis is still in its initial
stages. The specific contents based on the pioneering achievements in [SchSt14] are
therefore just a small part of a considerably larger theoretical framework that yet needs
to be refined in the next years. As regards that matter, we have already supplied many
suggestions for conceivable refinements and extensions. Of particular significance are
surely two aspects occurring in Section 2.4 and 3.3, respectively. On the one hand, there
is talk of fixing the still unsolved assertion stated in Conjecture 2.4.1. On the other
hand, there is talk of extending the notion of f -implicit extremal integrals in such a way
that even certain non-simple functions can be integrated. But as we have already dwelt
upon these topics, we will now rather proceed to expand them by two further ideas that
have not been broached so far and can neither be allocated entirely to Chapter 2 nor to
Chapter 3.

1. Operator norming limit theorems for implicit extremes. As mentioned previously,
my initial concern was to achieve proper results on implicit extremes and f -implicit
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max-stable laws under relaxed assumptions on the loss function f . Yet, I abandoned
this particular objective target and addressed myself to the contents given in this paper.
Nevertheless, requiring f to be E-homogeneous instead of just simply 1-homogeneous
is still an existing and desirable modification of the assumptions on the loss function f .
Actually, the purpose to extend the results stated in [SchSt14] under this more general
setting bears a great challenge. To be more accurate, let E = (ei j)1≤i, j≤d ∈ R

d×d denote
some matrix. For convenience, we assume that all eigenvalues of E have positive real
part. Then we are particularly interested in the following issues. Which assumptions
are sufficient to ensure the existence of a sequences (an)n≥1 ⊂ (0,∞) such that

a−E
n Xk(n) =⇒

(n→∞)
Y (4.2.1)

for some suitable limit Y? Moreover, what can be said about the limits arising in (4.2.1)?
Are there any representations for the distribution of Y? Does there possibly exist a
complete characterization of the class of suitable limits? And finally, can the f -implicit
(maximum) domain of attraction of a random vector Y be characterized, the latter being
understood analogously to Definition 4.3 in [SchSt14]? All these questions come within
the field of operator norming limit theorems for implicit extremes and indeed extend
the contents in [SchSt14], provided they would be answered.
As already proposed in [SchSt14, Section 3], it is natural to work in the context of reg-
ular variation here. However, the classical notion of regular variation is not suitable.
Since we are dealing with operator norming limit theorems for implicit extremes, we
need to apply the notion of operator regular variation which was developed and used
extensively for the study of sums of independent random vectors whose tail index can
vary with direction (see [MeSch01, Chapter 5-6]). This notion involves the spaceRd

\ {0}
and the topology of M∗-convergence of Borel measures on Rd

\ {0} which are finite on
regions bounded away from the origin. A precise definition of M∗-convergence can be
found, for example, in [MeSch01] or in [HuLi06].
On top of that, however, the previously mentioned notion of operator regular variation
is still not suitable. Instead, we need to work in the context of an even more general no-
tion involving arbitrary metric spaces. This stems from observations that have already
been made in [SchSt14], where the space Rd

\ { f = 0} evidently looms large. Since f is
E-homogeneous, { f = 0} is an E-cone inRd meaning that λE

{ f = 0} ⊂ { f = 0} for all λ > 0.
Therefore, we conclude that both a more detailed study of closed E-cones in Rd and the
establishment of a sensible notion of regular variation on E-cones are necessary in order
to be able to approach the above questions. Succeeding with the purpose of providing
operator norming limit theorems for implicit extremes thus depends on a profound
theoretical groundwork. Here, both [MeSch01] and [LiReRo14] might be quite useful.
In conclusion, the preceding deliberations reveal that the topic of operator norming
limit theorems for implicit extremes is indeed a challenging and still unconsidered is-
sue that serves well as an object of study in the context of f -implicit extreme value theory.

2. f -implicit extremal processes. Let X1,X2, ... be independent and identically dis-
tributed random variables in R with cumulative distribution function F. Suppose fur-
ther that F is in the (maximum) domain of attraction of a nondegenerate limit function
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H, that is, there exist sequences (an)n≥1 ⊂ (0,∞) and (bn)n≥1 ⊂ R such that

Fn(anx + bn) −−−−−→
(n→∞)

H(x) (4.2.2)

for all continuity points x of H. From classical extreme value theory we infer that H
is necessarily of the same type of one of the extreme value distributions which are in
particular given by the α-Fréchet distribution, the Weibull distribution and the Gumbel
distribution. Hence, the convergence in (4.2.2) is nothing but pointwise convergence.
Now, define the sequence (Y(n))n≥1 of stochastic processes Y(n) =

(
Y(n)

t

)
t>0

by

Y(n)
t =

a−1
n (Mbntc − bn), if t ≥ n−1

a−1
n (X1 − bn), if 0 < t < n−1,

where b·c : R → R denotes the floor function and Mn the maximum of the random
variables X1, ...,Xn for all n ≥ 1. Then

Y(n) J1
−−−−−→
(n→∞)

Y, (4.2.3)

where the limiting processes Y = (Yt)t>0 is an extremal process generated by H, that is, Y
has the following finite dimensional distributions

P
(
Yt1 ≤ x1, ...,Ytk ≤ xk

)
= Ht1

 k∧
i=1

xi

 Ht2−t1

 k∧
i=2

xi

 · · ·Htk−tk−1(xk) (4.2.4)

for k ≥ 1, 0 < t1 < ... < tk and x1, ..., xk ∈ R. In deference to a common usage,
the expression a ∧ b stands for the minimum of a, b ∈ R. The convergence in (4.2.3)
has first been proved in [La64, Theorem 3.2], whereas a thorough treatment of the
limiting process Y can be found in [Dw64]. For an even deeper discussion of the
notion of extremal processes and the Skorohod space equipped with the topology of
J1-convergence we refer to [Re07, Chapter 4]. Especially, Proposition 4.20 stated therein
plays a decisive role as it refines the assertion given above. Here, the author works in
the context of point processes that turn out to be a powerful tool.
As remarked in [Dw64], extremal processes generated by some extremal distribution
H bear a natural analogy with stable processes. That is, the latter observations apply
similarly if we exchange the maximum operation for the summation operation. Instead
of extremal processes generated by some extremal distribution H, however, the limiting
processes Y = (Yt)t>0 are stable ones. Since we recently elaborated on these aspects in
the case of the maximum operation, we will not go into detail here once again but refer
to [MeSch01] and the references given therein. Nevertheless, the previous deliberations
raise the idea to consider the following issues.
Let X,X1,X2, ...be independent and identically distributed random vectors inRd. Define
the sequence (

Y(n)
f

)
n≥1

=
((

Y(n)
f (t)

)
t>0

)
n≥1
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of stochastic processes by

Y(n)
f (t) =

a−1
n Xk(bntc), if t ≥ n−1

a−1
n X1, if 0 < t < n−1,

(4.2.5)

(an)n≥1 here being some suitable sequence of positive real numbers. Do there exist
sufficient and necessary conditions ensuring the existence of a sequence (an)n≥1 ⊂ (0,∞)
such that

Y(n)
f

fdd
=⇒

(n→∞)
Y f (4.2.6)

for an appropriate limiting process Y f = (Y f (t))t>0, where fdd
=⇒means weak convergence

of finite dimensional distributions? Do there maybe even exist sufficient and necessary
conditions ensuring the existence of a sequence (an)n≥1 ⊂ (0,∞) such that

Y(n)
f

J1
−−−−−→
(n→∞)

Y f (4.2.7)

for a limiting processY f = (Y f (t))t>0? Moreover, provided (4.2.6) or (4.2.7) were fulfilled,
what can be said about the limiting process being referred to as f -implicit extremal pro-
cess? What properties can be derived and what can be said about the finite dimensional
distributions of Y f ?
On account of corresponding results in the context of extremal processes, we may sen-
sibly suggest that X being in the f -implicit (maximum) domain of attraction of a neces-
sarily f -implicit max-stable random vector Y is a reasonable and sufficient assumption
for (4.2.6) or (4.2.7) to hold. Finally, as to the structure of an f -implicit extremal process
Y f it is crucial to consider the question whether the process can be expressed in terms
of an appropriate f -implicit sup-measure or an f -implicit extremal integral. All these
questions and first suggestions provide starting points for further possible objects of
research. In this way, the common notion of extremal processes generated by some
extremal distribution H could be translated into the context of f -implicit extreme value
theory.

Indeed, there are plenty of further conceivable possibilities to refine the field of f -
implicit extreme value theory. Primarily, this concerns statistical and computational
extensions which have been disregarded completely in the present thesis. Neverthe-
less, we will not go into detail here but rather conclude our deliberations.
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List of symbols

Numbers

N set of all positive integers

N0 set of all non-negative integers

Q set of all rational numbers

Q>0 set of all positive rational numbers

R set of all real numbers

R+ set of all non-negative real numbers

Rd real coordinate space of d ≥ 1 dimensions

C set of all complex numbers

hhhhhhhhhhhhhh minimum of x, y ∈ R

Norms

| · | absolute value of a real number

‖ · ‖, ‖ · ‖2 reference norm on Rd, Euclidean norm on Rd

hhhhhhhhhhhhhh minimum of x, y ∈ R

Functions

exp, ln exponential function, natural logarithm

pri canonical projection on the ith coordinate

pr1,...,n canonical projection on the first n coordinates

1A indicator function of the set A

f fixed loss function

G cumulative distribution function of f (X)

hhhhhhhhhhhhhh minimum of x, y ∈ R
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List of symbols

T(n) = T(n)
f mapping defined by T(n)(x1, ..., xn) =

nh∨
f

i=1h

xi, n ≥ 1 fixed

Vρ tail function of f (ρ), where ρ is a suitable measure

g−1 inverse function of a bijection g

hhhhhhhhhhhhhh minimum of x, y ∈ R

Generalized polar coordinates in Rd
\ {0}

(τ, θ) generalized polar coordinates in Rd
\ {0}

S = Sτ unit sphere with respect to τ

T = Tτ homeomorphism assigning to x ∈ Rd
\ {0} its polar coords.

hhhhhhhhhhhhhh minimum of x, y ∈ R
Note that we specifically apply f to τ in this thesis.

Measure and probability theory

Ω,A,P sample space, σ-algebra, probability law

(Ω,A,P) arbitrary probability space

(E,E,m) arbitrary measure space

E0 set of subsets of E having finite mass with respect to m

A(E) σ-algebra generated by the family of sets E

B(E) Borel σ-algebra on a topological space E

A1 ⊗ A2 product of the σ-algebras A1 and A1

A⊗n n-fold product of the σ-algebra A

M1(E), Mb(E) set of probability and bounded measures on E, respectively

µ1 ⊗ µ2 product measure of µ1 and µ2⊗n
i=1 µi product measure of µ1, ..., µn

µ⊗n n-fold product measure of µ

PX distribution of the random vector X

hhhhhhhhhhhhhh minimum of x, y ∈ R
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List of symbols

X ∼ µ X has distribution µ

µ1 � µ2 µ1 is absolutely continuous with respect to µ2

µ
∣∣∣
A restriction of µ to the set A

suppµ support of the measure µ

µ1 ∗ f µ2 f -implicit max-convolution of µ1, µ2 ∈Mb(Rd)

µ∗ f n n-fold f -implicit max-convolution of µ ∈Mb(Rd)

d
= equality in distribution

=⇒,
J1
−→ convergence in distribution, J1-convergence

fdd
=⇒ weak convergence of finite dimensional distributions

hhhhhhhhhhhhhh minimum of x, y ∈ R

Sets

T, I arbitrary (index) set, non-empty (real) interval

∂A, A◦, A, Ac boundary, interior, closure and complement of the set A

g−1(A) preimage of the set A under g

S1 unit sphere in Rd with respect to ‖ · ‖

Kε(x) open ball in Rd with radius ε > 0 and center x

D(r,F) subset of Rd
\ {0} defined by {x : τ ≤ r, θ ∈ F}, r > 0,F ∈ B(S)

D∗(r,F) subset of Rd
\ {0} defined by {x : τ > r, θ ∈ F}, r > 0,F ∈ B(S)

L, Γ { f = `} and { f > `}, respectively, ` left end point of f (X)

L`0 , Γ`0 { f = `0} and { f > `0}, respectively, `0 ≥ 0 arbitrary

C(H) = C f (H) set of all x ∈ Rd such that H(f(x)-)=H(f(x))

D(H) = D f (H) set of all x ∈ Rd such that H(f(x)-)<H(f(x))

hhhhhhhhhhhhhh minimum of x, y ∈ R

Sets of functions, random variables, random vectors and sequences

L0 = L0(Ω,A) set of all random variables X : Ω→ R

hhhhhhhhhhhhhh minimum of x, y ∈ R
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List of symbols

Ld
0 = Ld

0(Ω,A) set of all random vectors X : Ω→ Rd

χ
f
0 set of all sequences (xn)n≥1 ⊂ R

d with lim
n→∞

f (xn) = 0

M =M
f
α f -implicit α-Fréchet space

C
k = Ck(Rn,Rm) differentiability class of order k ∈N0 ∪ {∞} of f : Rn

→ Rm

R[a, b] set of all regulated functions g : [a, b]→ R

hhhhhhhhhhhhhh minimum of x, y ∈ R

Special distributions

εa Dirac measure centered on a ∈ Rd

Φ
f
α,σ, α > 0 standard f -implicit α-Fréchet distribution, σ ∈M1(S)

Φ
f
α,σ(κ), α > 0 f -implicit α-Fréchet distribution with scale κ ≥ 0, σ ∈M1(S)

Φα, α > 0 standard α-Fréchet distribution

Φα(κ), α > 0 α-Fréchet distribution with scale κ ≥ 0

X ∼ [ν] f PX comes under the 1st class of distributions with G(`) = 0

X ∼ [ρL, ν] f PX comes under the 1st class of distributions with G(`) > 0

Π f (c, ρ1, ρ2) f -implicit max-compound Poisson distribution

hhhhhhhhhhhhhh minimum of x, y ∈ R

Operations and operators

〈·, ·〉 standard scalar product on Rd

b·c largest previous integer of a real number (floor function)

∇ nabla operator

x ∧ y = min(x, y) minimum of x, y ∈ R

x ∨ y = max(x, y) maximum of x, y ∈ R

∨ f f -implicit maximum∨n
i=1 xi maximum of x1, ..., xn ∈ R∧n
i=1 xi minimum of x1, ..., xn ∈ R

hhhhhhhhhhhhhh minimum of x, y ∈ R
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List of symbols

xk(n) =
nh∨

f
i=1h

xi f -implicit maximum of x1, ..., xn ∈ Rd

F f -implicit max-convolution operator

hhhhhhhhhhhhhh minimum of x, y ∈ R

Stochastic processes and sup-measures

Mα random α-Fréchet sup-measure

M = M f
α,σ f -implicit, α-Fréchet, random sup-measure

M̃ = M̃ f
α modified f -implicit sup-measure

X,Y arbitrary stochastic processes X = (Xt)t∈T, Y = (Yt)t∈T

(Nt)t≥0 homogeneous Poisson process with rate λ > 0

hhhhhhhhhhhhhh minimum of x, y ∈ R

Integrals
b∫

a

g1 dg2 Stieltjes integral of g1 with respect to g2

(S)

b∫
a

g1 dg2 full Stieltjes integral of g1 with respect to g2∫
E

g(u) M(du) f -implicit extremal stochastic integral of g with respect to M

hhhhhhhhhhhhhh minimum of x, y ∈ R

Miscellaneous

inf, sup infimum, supremum

argmax arguments of the maxima

h ◦ g function composition of h and g

g(t−) = lim
s↑t

g(s) left-sided limit of g at t

g(t+) = lim
s↓t

g(s) right-sided limit of g at t

(∆−g)(t) left jump of g at t

hhhhhhhhhhhhhh minimum of x, y ∈ R
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List of symbols

(∆+g)(t) right jump of g at t

dist(x,A) distance between the point x and the set A

dist(A,B) distance between the two sets A and B

(Rd,∨ f ) non-commutative semigroup with identity element e = 0

≤ f f -implicit max-order on Rd

x � f y x ≤ f y does not apply

G≤ f graph of the binary relation ≤ f between Rd and Rd

xn ↑ f the sequence (xn)n≥1 is ≤ f -increasing

xn ↓ f the sequence (xn)n≥1 is ≤ f -decreasing

λE exponential of the matrix logλ · E

k(n) = k f (n),n ≥ 1 smallest element in argmaxk=1,...,n f (xk), x1, ..., xn ∈ Rd

hhhhhhhhhhhhhh minimum of x, y ∈ R
Observe the significant relation between k(n) and the f -implicit maximum of x1, ..., xn ∈

Rd. Note further that in the present thesis k(n) is mainly used for independent and
identically distributed random vectors X1, ...,Xn in Rd and is therefore also random.
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