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ABSTRACT

The main aim of this thesis is to develop an accurate and efficient numerical tool
based on the radial basis function collocation method (RBFCM) for the band structure
calculations of elastic and acoustic waves in one-dimensional (1D) and
two-dimensional (2D) phononic crystals. Some new numerical techniques are
proposed to accurately deal with the derivative computations of the field quantities
near/on the boundaries/interfaces required by the boundary conditions and the
continuity conditions on the interfaces. By using these novel numerical techniques,
the stability of the RBFCM can be significantly improved, which leads to an enhanced
accuracy and efficiency. Both the global RBFCM (GRBFCM) and the local RBFCM
(LRBFCM) are presented and discussed in the thesis. Then, the accuracy and the
efficiency of the RBFCM are verified by the numerical results obtained by the finite
element method (FEM), and applied to the band structure computations of 1D and 2D
solid/solid as well as 2D solid/fluid and fluid/solid phononic crystals with different
acoustic impedance mismatches, material combinations, scatterer shapes, and lattice
forms. The effects of the key geometrical and material parameters on the band
structures especially the bandgaps of 1D and 2D phononic crystals are also

investigated and discussed.
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Kurzfassung

Das Hauptziel dieser Arbeit ist es, ein genaues und effizientes numerisches Programm
zu entwickeln, welches auf der Basis der radialen Basisfunktions-Kollokations
methode (RBFCM) die Bandstrukturberechnung von elastischen und akustischen
Wellen in eindimensionalen (1D) und zweidimensionalen (2D) phononischen
Kristallen ermoglicht. Es werden einige neue numerische Techniken vorgeschlagen,
um die Ableitungsberechnungen der FeldgroBen in der Ndhe von oder auf den
Réndern/Grenzflichen, = welche  fiir die  Randbedingungen @ und  die
Kontinuititsbedingungen an den Grenzfldchen erforderlich sind, genau zu behandeln.
Durch die Verwendung dieser neuartigen numerischen Techniken kann die Stabilitét
der RBFCM wesentlich gesteigert werden, was zu einer verbesserten Genauigkeit und
Effizienz fiihrt. Sowohl die globale RBFCM (GRBFCM) als auch die lokale RBFCM
(LRBFCM) werden in der Arbeit vorgestellt und diskutiert. AnschlieBend werden die
Genauigkeit und die Effizienz der RBFCM durch die mit der
Finite-Elemente-Methode (FEM) erhaltenen numerischen Ergebnisse verifiziert, und
die entwickelten RBFCM werden auf die Bandstrukturberechnung von 1D und 2D
fest-festen sowie 2D fest-fliissigen und fliissig-festen phononischen Kristallen mit
verschiedenen akustischen Impedanzunterschieden, Materialkombi- nationen,
Streuerformen und Gitterformen angewandt. Die Auswirkungen der wichtigsten
geometrischen und materiellen Parameter auf die Bandstrukturen, insbesondere auf
die Bandliicken von 1D und 2D phononischen Kristallen werden ebenfalls untersucht

und diskutiert.
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Chapter 1

Introduction

1.1 Current state of research on phononic crystals

Phononic crystals are synthetic composite materials which are formed by a periodic
arrangement of different materials, either in one-dimensional (1D), two-dimensional
(2D) or three-dimensional (3D) as shown in Fig. 1.1 [1]. The constituent materials
could be gas, solid or fluid. The periodic structure of such materials has a great
influence on the wave propagation characteristics, and the Bloch waves are usually
formed in phononic crystals. One of the main properties of the Bloch waves is the
possible existence of phononic bandgaps, which represents the frequency ranges in
which the waves are forbidden to propagate through the periodic composite structures
[2]. In 1987, the term "Photonic Crystals" (PhCs) has been firstly used to describe the
periodic dielectric structures that prevent certain wavelengths of the electromagnetic
wave propagation [3, 4]. Later on, Ho and Yablonovitch respectively proved the
existence of the bandgaps in the photonic crystals numerically and experimentally
[5-7]. Since then, the photonic crystals have been manufactured and applied to many

problems in engineering and sciences.

v s

Fig. 1.1 1D, 2D and 3D phononic crystals [1].

(The arrows indicate the wave propagation directions).

The acoustic and elastic analogy of the photonic crystals is termed as phononic

crystals, which may possess passbands and bandgaps for the acoustic or elastic wave
1



propagation in the acoustic/elastic periodic materials. The first known experimental
mvestigation of phononic crystals was in 1979, although they were not referred to as
as phononic crystals [8]. As for theoretical works, Kushwaha was the first to calculate
the complete band structures for periodic elastic composites in 1993 [9], as shown in
Fig. 1.2. In 1995, Martinez-Sala has made a sound attenuation experiment in a
sculpture, and firstly reported the bandgaps experimentally [10], as shown in Fig. 1.3.
However, the first complete phononic bandgap was only observed in the frequency
range between 1000 and 1120 kHz in 1998 by Montero de Espinosa [11]. In recent
years, different types of materials (elastic, piezoelectric, piezomagnetic, fluid, soft
materials, etc.) and material combinations (solid/solid, fluid/fluid, solid/fluid, and
fluid/solid) are used in the fabrication of phononic devices, which allows significant

improvements on the reachable frequencies for the bandgaps [12, 13].
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Fig. 1.2 The band structures of Ni-Al composite: Ni/Al system with
the filling fraction f=0.1 (left), and AI/N1 system with the filling fraction /'=0.75

(right) for transverse waves. The hatched areas designate bandgaps [14].
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Fig. 1.3 A phononic sculpture consisting of periodic steel cylinders (left),

and the sound attenuation results (right) [10].

In phononic crystal structures, complete bandgaps may appear which are
independent of the direction of the acoustic or elastic wave propagation. In contrast,
when bandgaps are only for certain directions of the wave propagation, they are
referred to as directional bandgaps. Within the bandgaps, the phononic crystal
behaves as a perfect non-absorbing acoustic mirror of the incident waves at the
corresponding frequencies. The central frequency of the bandgap is determined by the
size, periodicity, filling and arrangement of the scatterers or inclusions. There are two
main physical mechanisms to explain the bandgap phenomena in phononic crystals.
One is based on the Bragg-scattering theory, which describes the diffraction of the
acoustic or elastic waves by the scatterers or inclusions [15]. However, according to
the Bragg-scattering theory, the periodicity of the phononic crystal structures must be
strictly preserved, which may limit their practical applications. The second
mechanism was introduced later in 2000 by [16], who proposed a new type of
periodic phononic structures with three material components, which are often termed
as the locally resonant phononic structures. When such periodic structures are excited
by the incident acoustic or elastic waves at certain frequencies, the scatterers resonant
and interact with the incident waves stops the wave propagation and thus results in the
bandgaps. In comparison to the Bragg-scattering mechanism, the locally resonant
mechanism has two essential advantages: 1.) The wave-length related to the bandgaps

could be much larger than the lattice constant, and 2.) the scatterers could be not

3



strictly periodically distributed. The band structure of the locally resonant phononic
crystals is mainly dependent on the resonant structures of the scatterers rather than the
lattice constant [17]. Further works on locally resonant phononic crystals can be
found for instance in [18-21].

It is difficult to realize a perfect periodicity in the engineering applications, this
difficulty in the real engineering may lead to the defect or disordered states and the
localizations of the acoustic or elastic waves in phononic crystals [22-31]. Phononic
crystal structures with a quasi-periodicity or random disorders were investigated in
[32-35]. Previous works have shown that the acoustic or elastic waves could be
trapped inside the point or line defect and therefore cannot propagate through the
phononic crystals. Based on this fact, a directional tuning and a localization could be
achieved to guide the propagation of the acoustic or elastic waves by introducing
certain kinds of defects, such as by replacing or removing some of the scatterers in a
phononic crystal, or by changing their periodic arrangement irregular. Control and
manipulation of the acoustic and elastic wave propagation by intentionally imposing
some kinds of the defects into the periodic structures is an important research topic of
phononic crystals.

Besides the wave localization by defects, the surface localization of the acoustic
and elastic waves is another important characteristic of the phononic crystals. When
the Bloch waves propagate near the surface, the wave energy can be localized near the
surface under certain conditions. The amplitude of the surface waves decreases as the
distance from an interior observation point to the surface increases. Surface acoustic
waves (SAWs) have many important applications in the engineering and and sciences
[36-41]. Hence, it is still a top research subject of phononic crystals.

According to the aforementioned facts, there are many promising and innovative
applications of the phononic crystals in engineering and sciences. The bandgap theory
has already been applied to the fish school structure, trees planting distribution,
acoustic rectifier and so on [42-45]. The wave tuning and localization by defects can
be utilized in the design of acoustic filters, wave guides, wave couplers and wave

splitters [46-49]. The band structures of phononic crystals may also lead to negative
4



refractions, negative effective mass density, negative effective elastic moduli, which
can be applied to focusing and directional control of the acoustic and elastic waves,

and so on [50-53].

1.2 Numerical methods for band structure computations

Due to the wide-range and promising applications of the phononic crystals, different
numerical methods have been developed to calculate the band structures of the
phononic crystals, such as the plane wave expansion (PWE) method, the multiple
scattering theory (MST), the wavelet method, the finite difference time domain
(FDTD) method, the finite element method (FEM) the boundary element method
(BEM), the Dirichlet-to-Neumann map (DtN-map) method, the spectral element
method (SEM), the radial basis function collocation methods (RBFCM) and so on.
However, each of these numerical methods has its advantages and disadvantages,
which are briefly reviewed in the following.

The plane wave expansion (PWE) method is one of the most popular methods in
phononic band structure calculations [54-58]. It considers the periodic composite
structure as an inhomogeneous continuous medium, and takes the displacements, the
elastic constants and the mass density as periodic functions in the space. By
considering the Bloch-theorem and using Fourier-series, the inhomogeneous wave
equations are expanded into an infinite series form in the first Brillouin zone. The
PWE method has already been applied to many cases of phononic crystals [59-63].
However, the PWE method is inaccurate in dealing with phononic crystals with large
acoustic impedance mismatches between the scatterers and the matrix, especially for
the solid/fluid and fluid/solid phononic band structure calculations, which requires
some special techniques [64, 65].

The finite element method (FEM) is an important and general-purpose numerical
technique in almost every field of engineering and sciences, and it has been indeed
applied to the phononic band structure calculations [66-70]. However, the FEM is not
quite suitable for handling the imperfect interfaces, because different unit-cell must be

adopted according to the interface conditions. When dealing with those phononic
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crystals with a high acoustic impedance ratio, such as solid/fluid or fluid/solid
phononic crystals [71], a large number of elements must be used, which may reduce
the efficiency of the FEM.

The finite difference time domain method (FDTD) is also very common in the
band structure analysis of the phononic crystals [72-75]. When evaluating the wave
band structures, the FDTD always considers the time- and the space-dependences of
the problems together, and then the eigenvalues will be obtained by using the Fast
Fourier-transform (FFT) from the time-domain to the frequency-domain. This
procedure is quite time consuming, and also a large number of girds are needed when
dealing with the solid/fluid or fluid/solid phononic systems by the FDTD method.

The Dirichlet-to-Neumann (DtN) map method uses too many small matrices and
is only suitable for simple scatterer shapes such as circular and spherical scatterers
[76-81]. The complicated fundamental solutions and the singularity problems in the
boundary element method (BEM) could limit its wide applications, especially in 3D
cases [82-88].

The meshless methods have been developed and applied to many problems of
engineering and sciences in the past two decades, including fluid dynamics, solid
mechanics, and so on [89-93]. Due to their wide-range applications, many application
examples of various kinds can be found in the literature [94-97]. Among several types
of the meshless methods, one of them is based on the radial basis functions (RBFs)
and especially useful [98]. In 1990s, Kansa first utilized the RBFs to deal with the
multivariate data for the solution of the partial differential equations (PDEs), which is
known as the Kansa’s method or the RBF collocation method (RBFCM) [99, 100].
The advantages of the RBFCM for solving PDEs lie in its simplicity, broad
applicability to various kinds of problems, high accuracy and effectiveness in dealing
with complicated geometries. Different from the general idea of the RBFCM, many
other variants of the meshless methods have been also proposed and developed, such
as the finite point method (FPM) [101], the meshless local Petrov-Galerkin method
(MLPGM) [102], the method of fundamental solution (MFS) [103], the boundary

knot method (BKM) [104], and so on [105-107]. The existence, uniqueness and
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convergence of the RBFCM have been extensively studied [108, 109]. However, in
the RBFCM simulation process, an asymmetric and fully populated matrix of a
system of the linear equations will be generated, which may cause a high condition
number and affect the stability of the method. In order to deal with the asymmetric
matrix, some methods have been proposed and developed to avoid the difficulties
associated with the asymmetric matrix, such as the RBF Hermite-collocation method
[110], the modified Kansa’s method (MKM) [111]. However, the matrix generated in
both symmetric and asymmetric RBFCM still remains a fully populated matrix, thus
the computational cost and the condition number are becoming large as the number of
the nodes increases. For the above mentioned reasons, the applications of the
conventional global RBFCM (GRBFCM) are limited to small-scale problems. Many
techniques have been suggested to reduce the computational cost and the condition
number of the system matrix in the RBFCM, such as the domain decomposition
method [112, 113], the multi-grid approach [114], the improved truncated singular
valued decomposition (SVD) method [115], the compactly supported RBFs [116], the
greedy algorithm [117, 118], the extended precision arithmetic [119], and so on [114,
115, 120, 121]. All these techniques bring a substantial complication of the original
GRBFCM. However, one of the significant improvements is the local RBF
collocation method (LRBFCM) or RBF finite difference method (RBF-FD) [121].
The key feature of the LRBFCM is that the collocation takes place on overlapping
local domains, which could reduce the size of the collocation matrix without a
remarkable loss of the accuracy. As the efficiency of the LRBFCM becomes improved
in comparison with its global version, it has been applied to many complicated
problems, including large-scale industrial problems [122-124]. Another numerical
trouble in both the GRBFCM and the LRBFCM is the existence of the unbalanced
errors between the approximated quantities near or on the boundaries and in the
interior domain, which limits the applications of the RBFCM [125]. To overcome this
difficulty, the technique of the weighted boundary conditions has been suggested to
keep the errors in the interior domain and near or on the boundaries almost on the

same level [126]. However, how to weight the boundary conditions and the interface
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continuity conditions in multi-domain composite structures and in elastodynamics still
remains an unresolved problem, and only few works can be found in the literature[127,
128]. In particular, the formulations and the applications of the GRBFCM and
LRBFCM for band structure computations of the acoustic and elastic waves in
phononic crystals or periodic structures have been very rarely reported so far.

There are also several other methods, such as the transfer matrix method [32-34],
the lumped-mass method [129], the variational method [130] and so on [2, 39,
131-134], but they are rather limited to special geometrical configurations or material
combinations. It should be mentioned here that none of the above mentioned methods
is perfect for every case of the phononic crystals. Thus, there is still a great demand
on developing more efficient and accurate numerical methods to simulate the wave

propagation phenomena in phononic crystals.

1.3 Objectives of the thesis

Motivated by the above mentioned facts, the present thesis is devoted to the

development and applications of the RBFCMs for band structure computations of the

acoustic and elastic waves in one-dimensional (1D) and two-dimensional (2D)
phononic crystals or periodic structures. The primary objectives of the thesis are:

* Formulation and numerical implementation of a global RBFCM or GRBFCM for
the band structure computations of the elastic waves in 1D solid/solid phononic
crystals.

* Formulation and numerical implementation of a local RBFCM or LRBFCM for the
band structure computations of the anti-plane elastic waves in 2D solid/solid
phonon crystals.

* Formulation and numerical implementation of a LRBFCM for the band structure
computations of the in-plane elastic waves in 2D solid/solid phononic crystals.

* Formulation and numerical implementation of a LRBFCM for band structure
computations of the elastic/acoustic waves in 2D solid/fluid phononic crytsals
(solid scatterers embedded in a fluid matrix) and fluid/solid phononic crystals

(fluid scatterers embedded in a solid matrix).
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* Development of novel techniques for computing the derivatives of the field
quantities near or on the boundaries and the interfaces between the scatterer and
the matrix, to improve the stability and the accuracy of the RBFCM.

* Verification and applications of the developed RBFCM for band structure
computations of elastic/acoustic waves in 1D and 2D phononic crystals for
different acoustic impedance ratios (small to large), material combinations
(solid/fluid or fluid/solid), scatterers’ shapes (rectangular, circular or triangular)
and lattice forms (square and triangular).

* Investigation of the wave propagation phenomena, especially the passbands and

the bandgaps, in 1D and 2D phononic crystals.

1.4 Outline of the thesis

In this introductory chapter, the concept and the applications of the phononic crystals
are described, and the numerical techniques especially the RBFCM for the band
structure computations of phononic crystals are briefly reviewed and discussed.

In Chapter 2, the governing equations, the periodic boundary conditions, and the
interface continuity conditions for elastic and wave propagation problems in
one-dimensional (1D) and two-dimensional (2D) periodic structures are formulated.
In particular, the wave propagation problems of 1D elastic waves, 2D anti-plane
elastic waves, 2D in-plane elastic waves and 2D mixed elastic/acoustic waves in
periodicn structures are described and discussed.

In Chapter 3, the key steps of the global RBFCM and local RBFCM (LRBFCM)
are presented and discussed in details. Special numerical techniques are proposed to
accurately compute the spatial derivatives of the field quantities near or on the
boundaries and interfaces, which are required for the treatments of the interface and
boundary conditions. The suggested special numerical techniques improve the
stability of the RBFCM significantly.

Chapter 4 is devoted to the global RBFCM and its applications to the band
structure calculations of 1D solid/solid phononic crystals. The stability of the global

RBFCM for 1D solid/solid phononic crystals is tested by using three types of the
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RBFs. The numerical results obtained with different node distributions and shape
parameters are verified by comparing them with the exact solutions. Some useful
relationships between the shape parameter and the node distribution are established
and suggested.

In Chapter 5, the LRBFCM is presented and applied to the band structure
computations of the 2D anti-plane elastic waves propagating in 2D solid/solid
phononic crystals. The LRBFCM formulation to discretize the governing equation of
the anti-plane elastic waves, the periodic boundary conditions and the interface
continuity conditions in 2D solid/solid phononic crystals is derived, which results in
an eigenvalue problem for computing the elastic wave band structures. The direct
method, indirect method and fictitious nodes method are applied and compared to
deal with the boundary and interface continuity conditions. The numerical efficiency
of the developed LRBFCM in comparison with the FEM is investigated and discussed
in details.

Chapter 6 presents the LRBFCM and its applications to the band structure
calculations of the in-plane elastic waves in 2D solid/solid phononic crystals. The
corresponding eigenvalue problem is formulated by using the discretized equations of
the elastic wave motion, the periodic boundary conditions of the unit-cell and the
interface continuity conditions between the scatterer and the matrix, based on
LRBFCM for the in-plane elastic waves propagating in 2D solid/solid phononic
crystals. For different acoustic mismatches, scatterer shapes and lattice forms,
numerical results are presented and compared with the FEM results. The efficiency of
the present LRBFCM is analysed and discussed by comparing the numerical results
with those of the FEM.

In Chapter 7, the LRBFCM is developed and applied to the band structure
calculations of the mixed elastic/acoustic wave propagation problems in 2D
solid/fluid and fluid/solid phononic crystals. Here, both the elastic solid scatterers
embedded into a fluid matrix and the fluid scatterers embedded into an elastic solid
matrix are considered. The LRBFCM is developed to discretize the governing

equations of the wave motion, the periodic boundary conditions of the unit-cell and
10



the continuity conditions on the interface between the scatterer and the matrix, which
results in an eigenvalue problem for computing the band structures of the
elastic-acoustic wave propagating in 2D solid/fluid and fluid/solid phononic crystals.
The stability, accuracy and efficiency of the developed LRBFCM are verified by
comparing the numerical results with those obtained by the FEM. The effects of the
materials combination (solid elastic scatterers in a fluid matrix or fluid scatterers in an
elastic solid matrix), the scatterer shapes (square and circular) and the lattice forms
(square and triangular) on the band structures of the elastic/acoustic waves in 2D
solid/fluid and fluid/solid phoninc crystals are also revealed and discussed.

In the last chapter, the essential conclusions from this thesis are given and some

related future works are pointed out.
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Chapter 2
Governing equations of elastic and acoustic wave propagation in

phononic crystals

2.1 1D elastic wave propagation

2.1.1 1D elastic wave equation

a, a,

Fig. 2.1 One-dimensional (1D) phononic crystal.

Fig. 2.1 depicts an infinite periodic composite structure or one-dimensional phononic
crystal that consists of the material 1 and the material 2. In this case, the

time-harmonic elastic wave propagation can be described by

d*u’ o
—=——=u’. j=1,2, (2.1.1)
dx c;

where
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z9

u!, anti-plane transverse wave

; {u;, longitudinal wave,
u’ =
denotes the longitudinal or the anti-plane displacement of the material j (j=1,2), @

is the circular frequency,

\ /E P longitudinal wave,

. f u;/ p;, anti-plane transverse wave

Cj=

# G4 +2u))
At 1y

denotes the longitudinal and the transverse wave speed, E, = is the

Young's modulus with ﬂj and H; being Lame’s constants, 0, is the mass density,
and j=1, 2 represents the material 1 and 2. For the sake of brevity, the common term

iot

e in all field quantities is omitted throughout the thesis, where i is the imaginary

unit.

2.1.2 Interface continuity conditions

Due to the periodicity of the 1D phononic crystal structure and based on the

Bloch-theorem, only a unit-cell has to be considered as shown in Fig. 2.2. Here, T,
and T, are the boundaries of the unit-cell, T, is the interface between the two

neighbouring sub-layers p, and p, denote the domains of the two materials,

a=a, +a, is the 1D lattice constant or the length of a unit-cell of the 1D phononic

crystal.

Fig. 2.2 A unit-cell of the 1D phononic crystal.
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On the interface x eT",, the displacement and stress continuity conditions are given

by
1 2
w(xp, ) =u(xp, ), (2.1.2)
1 2
o (xro):a (xro)’ (2.1.3)
where
du’ Ny
E; u“‘, longitudinal wave,
ol =1 dx
du! :
K, I anti-plane transverse wave,
x

represents the stress component in the material j (7=1,2).

2.1.3 Periodic boundary conditions
According to the Bloch-theorem, the general displacement solution in the 1D
phononic crystal can be written as

u(x+a)=u(x)e™, (2.1.4)
where £ is the wave vector. With Eq. (2.1.4), the periodic boundary conditions of the

unit-cell can be stated as follows
u'(xp)=e"u’ (xp), (2.1.5)
1 —ika 2
o (xrl e =0 (xr2 ), (2.1.6)
where Ml(xrl) , uz(xrz) , O l(xrl) and O ’ (xrz) denote the displacement and the

stress component located on the boundaries T", and T, respectively.

2.2 2D anti-plane elastic wave propagation

2.2.1 2D anti-plane elastic wave equation
A 2D phononic crystal is composed of straight and infinite cylinders of a square or
triangular array with the lattice constant a, as shown in Fig. 2.3. The cross-sections of

the inner domains or scatterers might be arbitrary. If the propagation of the elastic
14



wave is in the transverse plane (x—y plane) normal to the cylinder axis (z-axis), then
we have the anti-plane transverse wave mode with the displacement perpendicular to
the cylinders. The governing equation describing the anti-plane transverse wave

motion can be expressed as

i Au (X)) + pja)zuj (x)=0, G=0,1), (2.2.1)
where A is the Laplace operator, u is the displacement along the z-direction,
is the circular frequency, © and g are the mass density and the shear modulus,

respectively. The quantities with the subscript “0” are referred to the matrix, while

those with the subscript “1” are to the scatterers.

) l—a —
y r
g | "
SQgQ . N e
D,
U f
x
I, Li2ﬂ/a———>
al a2 a3
X
4
M
4r/3a
4
b1 b2 b3

Fig. 2.3 The considered phononic crystal structures: (al), (a2) and (a3) are the square
lattice, its corresponding square unit-cell and the first Brillouin zone; (bl), (b2) and
(b3) are the triangular lattice, its corresponding hexagonal unit-cell and the first
Brillouin zone.

2.2.2 Interface continuity conditions
According to the Bloch theorem, the elastic wave field are expressed as a periodic
function in the phononic crystal structure. In this thesis, the periodic conditions are

only applied to the boundaries in a unit-cell. The continuity conditions at the interface
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between the matrix and the scatterer are employed as follows

w, (xr, ) = (X, ), x, €L, (2.2.2)

7;(3‘71"0):7;)("‘71"0 ), Xr, €Ty, (2.2.3)
where T,(x) and T,(x) are the traction vectors. T(x) in the anti-plane elastic

problems can be expressed as
ou(x)

224
on ( )

T(x)=u

where 5 = (nx, n, )T is the unit normal vector perpendicular to the interface.

2.2.3 Periodic boundary conditions

By using the Bloch theorem, the displacement of anti-plane elastic wave can be

expressed as
u(x+a)=e*""u(x), (2.2.5)
T(x+a)=e""T(x), (2.2.6)
where k :(kx,ky) is the Bloch wave vector composed from the reciprocal lattice
vectors b, (al, ‘b, =275, ), u(x) and T(x) are the displacement and the traction
satisfying the Bloch periodicity conditions. ;=—1 , 4= ma, +m,a, With
m= (m1 ,mz) eZ%, a, and a, are the fundamental translation vectors of the lattices.

On the boundary of the unit-cell, the Bloch periodic condition (2.2.5) and (2.2.6)

apply.
2.3 2D in-plane elastic wave propagation

2.3.1 2D in-plane elastic wave equations
Let us consider time-harmonic in-plane elastic waves propagating in 2D phononic
crystals as shown in Fig. 2.3. The elastic waves are propagating in the xy-plane, and

the corresponding elastodynamic governing equations in the absence of body forces
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are given by

o*ul (x o*u’ (x o'u! (x) :

(4 200) Dy T M(&ﬁuﬂwbmwzu;(m 23.1)
o%u’ (x) o%u’ (x) o*u’l (x ,

Oy +20) =1y +(ﬂj+u,.>T3(y)=—pjwzu;(x> (232)

where /1,- . P and p, are the Lame’s constant, mass density and shear modulus,
u/ and u}f are the displacements in the x- and y-directions, @ 1is the circular

frequency, and ; =0, 1 denotes domain D,

2.3.2 Interface continuity conditions
On the interface i, the displacement continuity conditions and the traction
equilibrium conditions of in-plain elastic problem can be written as

() =u(x),  u(x)=u(x), xel, (2.3.3)

T!(x)=T/(x), T,(x)=T'(x), xel,, (2.3.4)

y

where 4 (x) and u, (x) are the displacement components in x- and y-directions,

respectively. 7 (x) and T(x) are the traction components in x- and y-directions.

2.3.3 Periodic boundary conditions
According to the Bloch theory, the displacements and the tractions of the in-plain

elastic wave can be expressed as
u(x+a)=e""u(x), wu,(x+a)=e""u (x), (2.3.5)
T(x+a)=e""T(x), T,(x+a)=¢""T (x), (2.3.6)
where T.=o.n +o,n, and T,=o,n +o,n, are the traction components of the

in-plain elastic wave, & o and 4 are the stress components, and
xx Xy yy

n(x) = [”x (x),7,( x)]T is the unit normal vector. On the boundaries of the unit-cell,

the Bloch periodic conditions (2.3.5) and (2.3.6) can be applied.
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2.4 2D mixed elastic and acoustic wave propagation

2.4.1 Elastic wave equations and acoustic wave equation
The governing equation of elastic waves in solid are given the same as (2.3.1) and

(2.3.2), which can be written as

ou (x ou (x &%u,,(x)
(o2 2 p D e ) L = p o, (),
0%u. (x) 0%u. (x) 0’u_(x)
y y x - 2
(o 20 2 i 2 e 1) e =, ),

where A, p,  and 4 are the Lame’s constant, mass density and shear modulus of

the solid, »’/ and uy’ are the displacements in the x- and y-directions in the solid.

The governing equation of water pressure waves in the ideal fluid field are expressed

as

o’p 0
_1274__]27:—&(0219, (2.4.1)
ox~ Oy K

where p, 0, and K are respectively the pressure, density and the bulk modulus of the

fluid.

2.4.2 Interface continuity conditions

The continuity conditions on the interface ", of the fluid/solid or solid/fluid systems

are the same. The acceleration in the normal direction perpendicular to the interface

should be continuous, which can be expressed as

op ..
—+p.un=0, 2.4.2
on Pr ( )

T T . . . .
where ii=(iix,iiy) =’ (ux,uy) is the acceleration vector of the elastic solid on

the interface. The equilibrium conditions of the tractions on the solid/fluid interface in
the direction perpendicular to the interface can be expressed as
T.=pn., T,=pn, (2.4.3)
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where the traction 7,=o.n +o n, and T, =o n +o,n, are the traction

components of the in-plain elastic wave in the solid.

2.4.3 Periodic boundary conditions
The periodic boundary conditions of the mixed elastic and acoustic waves for
“fluid/solid” and “‘solid/fluid” systems are different, which are described separately

in the following.

2.4.3.1 Fluid scatterers embedded in an elastic matrix

In the fluid/solid system, the periodic boundary conditions are applied to the elastic
wave field in the solid matrix. According to the Bloch theorem, the elastic wave field
in the phononic crystal is expressed as periodic functions. Hence the displacements

and the tractions of the elastic waves can be written as

u(x+a)=e“"u (x) u/(x+a)=e""u,(x) (2.4.4)

T.(x+a)=e""T.(x), T(x+a)=e""T, (x)- (2.4.5)

2.4.3.2 Elastic scatterers embedded in a fluid matrix

In the solid/fluid system, the periodic boundary conditions are only applied to the

pressure wave field of fluid scatterers, which can be expressed as

% p(x), (2.4.6)

p(x+a)=e

0 oa O
—p(x +a)=e"" —p(x) , (2.4.7)
on on



Chapter 3

Radial basis function collocation methods (RBFCM)

The radial basis function collocation method (RBFCM) or the Kansa’s Method is a
well-known strong-form meshfree or meshless method. The key features of the
RBFCM are the high-order accuracy, and the flexibility with respect to geometry. The
RBFCM does not require a mesh or grid and only utilize the distance between
distributed nodes in the computational domain. Thus, its extensions to higher
dimensions do not increase the difficulty of the method. Due to its simplicity and
effectiveness, the RBFCM is becoming more and more popular in different areas of
engineering and sciences. In this chapter, the general idea of the RBFCM will be
described and discussed for both the global and the local RBFCM. Three special
numerical techniques for the spatial derivative calculations, which are required by the

treatments of the boundary conditions, are presented.

3.1 Global radial basis function collocation method (GRBFCM)

In the RBFCM, the general solution u(x) is assumed as

u(x)=Zgo(||x—xn ), , (3.1.1)

where N is the total number of all used nodes, ¢ is the RBF that we choose and «,

are the unknown coefficients that we need to compute, |x—xn is the Euclidean

distance between x and x, . In Table 3.1, some frequently used RBFs are

summarized, where & 1is the shape parameter and 7 :”x—xn . How to choose the

optimal shape parameter is still a top issue in the scientific community. For simplicity,

we take the following boundary value problem as an example

Lu(x)= f(x), xeQ, (3.1.2)

Bu(x)=h(x), xeT,, (3.1.3)
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u(x)=g(x), xel,, (3.1.4)

where ) is the problem domain considered, I, is the Neumann boundary, I, is

the Dirichlet boundary, L and B are the differential operators in €2 and on T,

respectively, and fix), & (x) and g (x) are the given functions. With the RBF
approximation in (3.1.1), the boundary value problem defined by Egs. (3.1.2) to (3.1.4)

can be recast into the following discretized form:

iL(p(”x—xn )a, = f(x), xeQl, (3.1.5)
Zng(“x —x,|Dex, = h(x), xel,, (3.1.6)
> o(|x—x, e, = g(x), xel,, (3.1.7)

n=1
after the unknown coefficients have been evaluated from Eqs. (3.1.5) to (3.1.7), other

information could be obtained by using (3.1.1).

Linear r
Cubic r
Polyharmonic "' neN
Polyharmonic P Inr,neN
Thin-plate spline (TPS) rInr
Multiquadric (MQ) 0= [ Pz
Inverse multiquadric ~ (inverse MQ) o= 1
P+ &

Gaussian 7’

p=exp _?

Table 3.1 Radial basis functions of various kinds [98].
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3.2 Local radial basis function collocation method (LRBFCM)

In this section, a brief introduction of the local RBFCM (LRBFCM) is given. Unlike
the global RBFCM as described in section 3.1, the LRBFCM approximates the field
quantity with only a small number of local nodes in the neighbourhood of the

considered node by using

u(x)= Z(o(”x -X,

)a, (3.2.1)

where N, is the total number of the involved local nodes, n denotes the nth local
node, ¢ is the RBF, and «, are the unknown coefficients related to the field
quantities #(x,), which can be expressed as follows

a, =9 'u. (3.2.2)
In Eq. 3.2.2), u =[u(xl),...,u(xNX )" is the vector of the field quantities with the

size of N,, @, =[¢, 2Oy 5o Ay " is the vector of the unknown coefficients with

the size of N,, and @ =[¢’(||xm =X, )]lgm,nSN is the RBF interpolation matrix with

the size of N, xN,.According to Eq. (3.2.2), Eq. (3.2.1) can be expressed as

u(x) = 2(p(||x -x, ), =®p'u, (3.2.3)

n=l1

where

0= |:¢(||x —X

) (e =x . (3.2.4)
In Eq. (3.2.3), ®¢ ' is a vector with the size of N, related to the local field
quantities. For convenience, the following definition is introduced

P(x)=0(x)p, (3.2.5)
then the field quantity given in Eq. (3.2.3) can be expressed as follows

u(x) = @(x)i . (3.2.6)
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It is straightforward to reformulate the vector @(x) to a global vector by
inserting zeros at the proper positions. For simplicity, we define the global vector
®(x) with the size of N mapped from the local one with the size of N,, where N

is the total number of the global nodes, and u is the global field vector. Then we can

obtain

local @(x) = global @(x),
? () s ?( ) (3.2.7)
local u = global u,

where @ =[u(x,),u(x,),....u(x,)] is the vector of the field quantity in the global

domain with the size of N . The global vector @(x)=[@ (x),P,(x),...,Py(x)] with
the size of N is a sparse vector related to the local vector. When X is not located
on the local nodes, then @(x) =0 By using the relationship of (3.2.7), the Eq. (3.2.6)

can be expressed as
u(x) =@(x)u =p(x)u, (3.2.8)
where the unknown vector # in Eq. (3.2.8) can be determined by using the

governing partial differential equation and the boundary conditions. It should be noted

here that the partial derivative of @(x) is related to the partial differentiation of
O(x), while @' is a constant matrix, i.e.,

global 90(x) = local 0p(x) _ 00(x) @
ox, ox. Ox.

1 1 1

. (3.2.9)

while otherwise the partial derivative of @(x) is a Dirac-delta function which

results in

X=X,

u
=@ ~:5 = n?
u(x)=@(x)u=o,, u, { 0, xtx, (3.2.10)

where the subscript n denotes the nth element of a vector, i.e., the corresponding field

quantity at the nth node x = x . By substituting Eq. (3.2.8) back to Egs. (3.1.2)
-(3.1.4) we obtain
Lu(x) = Li = f(x)° (3.2.11)
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Bu(x) = B@ii = h(x) " (3.2.12)

u(x)=@u=g(x)" (3.2.13)

By using Egs. (3.2.11)-(3.2.13), the LRBFCM calculates the unknown field quantity

vector u instead of the unknown coefficient vector < .

3.3 Treatments of the boundary and interface continuity conditions

One critical issue of the strong-form LRBFCM is its stability, which is closely related
to the numerical approximation of the boundary conditions, especially in the analysis
of dynamic problems. In this section, we give some detailed discussions on the
numerical treatments of the Dirichlet and Neumann boundary conditions separately.
In particular, we present our new special techniques for the treatments of the
Neumann boundary conditions. We will show that the new special techniques

proposed in this thesis can greatly improve the stability of the RBFCM.

3.3.1 Dirichlet boundary conditions

In the case of the Dirichlet boundary conditions, the quantity u is known on the

Dirichlet boundary. Then the governing Eq. (3.1.2) can be expressed as follows

Lu(x)=Lpu= L@Qur, 'f’Qur1 +L¢~’r2 '[’1‘2 = f(x), (3.3.1)
where #:, and ¥, r, are the vectorson I', and in QUT,, Lp= I:L¢QU1“] Loy, ],

T . ~ . . ~ ~
and u:[ugurl,un] . Since #r, is already given, L@ -#-, can be evaluated

2 2

analytically and moved to the right-hand side. Then Eq. (3.3.1) is converted to
L@QUF] 'f‘QurI =f(x)-f"(x), xeQ, (3.3.2)
where f7(x)= L@ -u; . From Eq. (3.3.2), only the nodes in QT are needed for

the calculation of the unknown quantities, and in this manner a smaller matrix is
formed. We should notice here that the Eq. (3.3.2) has already taken the Dirichlet
boundary conditions into account exactly. By giving the same consideration to the Eq.
(3.1.3), the unknown field quantity # can be evaluated, where the Dirichlet

boundary conditions are taken into account exactly.
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3.3.2 Neumann boundary conditions

In the case of the Neumann boundary conditions, the situation is much more
complicated, because it requires the computation of the normal derivatives Ou/on
of the field quantity. For this purpose, we propose three special methods to compute

the normal derivatives.

Fig. 3.1 Schematic sketch for the direct method.

Method 1: Direct method

As shown in Fig. 3.1, let us consider a boundary node whose normal derivative should
be calculated. Instead of using the information of the nearby nodes, we use the
information of some adjacent nodes only in the n direction. Then Ou/Om can be
easily evaluated. Our own numerical experiences show that this method greatly
increases the stability of the RBFCM, because the calculation of the normal
derivatives of the boundary nodes for 2D or 3D case is actually reduced to a 1D case
inthe » direction. However, this method needs some interior nodes exactly in the n
direction, which limits the applicability of the method. To overcome this difficulty, we

propose two other special methods in the following.
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Fig. 3.2 Schematic sketch for the indirect method.

Method 2: Indirect method
Fig. 3.2 shows the schematic sketch for the indirect method. If we need to evaluate the

normal derivative Ou/oOm without a sufficient number of available nodes in the =
direction, but with some nodes in other two directions m, and m,, then we can first
compute the two directional derivatives ou/om, and ou/om, . By using the

following geometrical relationship, we obtain for the normal derivative Ou/0On as

ou _ a—ucos(m,,x) +%cos(m,,y), =12,
om, 0Ox oy

where (m,,x) and (m,,y) are the angles between the vector m, and the x-axis as
well as the vector m, and the y-axis. Then the spatial derivatives ou/dx and

Ou/dy can be expressed by using ou/om, (I=1,2) as follows

ou oOu Ou
— =—cos(n,x)+—cos(n, y),
on oy

where (m,x) and (m,y) are the angles between the vector n and the x-axis as well
as the vector n and the y-axis. This method can overcome the difficulty in finding

26



some sufficient nodes in the normal direction and is thus more flexible in the node

distribution. However, as shown in Fig. 3.2, the indirect method still needs some

nodes that are located on the two lines in the m, and m, directions. In order to

solve this problem, we suggest a third method in the following.

Method 3: Fictitious nodes method

® real nodes

D O fictitious nodes

Fig. 3.3 Schematic sketch for the fictitious nodes method.

In the fictitious nodes method as illustrated in the Fig. 3.3, some fictitious nodes or
ghost nodes are introduced in the normal direction, which are in reality not exist. Then
the normal derivate Ou/On is calculated in two steps. First, the field quantity values
on the fictitious nodes are expressed by using the information of the real nodes nearby

as shown by the circular area in Fig. 3.3. Hence we have

Ja, =Op'a, (33.3)

NY
u(®) =2 (% -x,
where i =[u(x,),..u(x, )] contains the values at the real nodes, ¥ is located on

):Ilﬁm,nSNS ’

),____’(p(”g_ Xy, H)} and  are the unknown coefficients that are

the fictitious node that does not exist in the reality, ¢=[(p(||xm_ X,

0= [qo(”fc - X,
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related to the real nodes. Then the second step is to calculate the normal derivative of

the boundary nodes by using the direct method, which results in

a”(x) Z a _ Py (334)

on

where ]\~[S 1s the local node number of the fictitious nodes that we introduced in the

n direction as shown in Fig. 3.3, G, are the coefficients related to the fictitious

nodes, and

~ 9
1<m,n<N,

@=[ (s

o pl|%= 5 D

= [u(X,),..u(%,)]".
By substituting Eq. (3.3.3) into Eq. (3.3.4) we obtain

Gu(x) oD
on on

—Y¥YOp i (3.3.5)

In the fictitious nodes method, the requirement on the node distribution is much
more flexible than the methods 1 and 2. However, the accuracy of the method could
be a little lost due to the additional RBF interpolation by using the local nodes nearby,

and also the distance of the fictitious nodes should be considered carefully.

3.3.3 Interface continuity conditions

In the multi-domain problems as considered in this thesis, the field quantities must be
continuous on the interface. This can be analytically considered by adding or
subtracting the corresponding columns in the formulated matrix. The traction or other
continuous conditions can be well treated by using our proposed three numerical

techniques for dealing with the derivative calculations.

3.4 Summary
The instability of the RBFCM stems from the numerical error of the boundary
conditions, especially the Neumann boundary conditions. The three special techniques

for the treatments of the Neumann boundary conditions proposed in this chapter are
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very important to the stability of the RBFCM. The direct method possesses the
highest stability but the lowest flexibility. The indirect method is more flexible in the
node distribution but less stable than the direct method. The fictitious nodes method
has the greatest flexibility in the node distribution but the lowest stability compared to
the direct and indirect methods due to the introduction and intermediate
approximation of the fictitious nodes. The essential advantages and disadvantages of

the three special techniques are summarized in Table 3.2.

Ficticious nodes

Techniques Direct method Indirect method method
Distribution ’ A,/i{;".‘\. S
7 0o _® e o
(e Q \ N
of nodes Fiessic= t\;i o |
\ "..‘ \@ i
® Real nodes. \ '\\}‘_ﬁ ../\‘
O Fictitious nodes. ‘ °.
* Very accurate * More flexible node ¢ Arbitrary node
Advantages | * Very stable distribution distribution

* Accurate and stable * Very flexible

¢ Strict node distribu- * Special node distri- * Less accurate
. tion required bution * Less stable
Disadvantages :
* Not flexible * Less accurate and
stable

Table 3.2 Special techniques used for computing the normal derivatives of

the primary field quantity.

From Table 3.2, it can be concluded that the indirect method or the direct method
is more stable than the fictitious nodes method. How to generate a node distribution
for which the direct method and the indirect method can be directly employed is an
interesting topic. Here we propose a new way to apply the indirect method to

calculate the spatial derivatives of the field quantity on a circular boundary.
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Let us consider the node distribution as shown in Fig. 3. 4. For nodes located on
the circular boundary in Fig. 3. 4, one can always find some interior nodes in the x- or
y- direction. However, the indirect method can be employed only when sufficient
nodes along another direction exist. Fortunately, the radius of the circular boundary is
fixed, and the Cartesian coordinates can be transformed into the polar coordinates.

Thus, the derivative in the tangential direction can be expressed as

ou _ou, (3.3.12)
on, 00
where n, is the tangential vector, r is the radius of the circular boundary, and @ is

the polar angle of the considered node. The derivative oy /0@ 1is first evaluated in

the circumferential direction, from which du /On, can be subsequently evaluated

by using Eq. (3.3.12). Thereafter, the indirect method can be employed for computing

the normal derivatives of the field quantity on the boundary nodes.

°

®
oo
oo

é

Fig. 3. 4 Special node distribution for a circular boundary.
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Chapter 4

Global RBFCM for 1D solid/solid phononic crystals

In this chapter, the GRBFCM is employed to deal with the one-dimensional (1D)
phononic crystals. The governing wave equation, the periodic boundary conditions of
the unit-cell and the interface continuity conditions as presented in section 2.1 are
discretized by the GRBFCM method. The stability of the RBFCM with different types
of the RBFs is analyzed and compared in details. The basic discretized equations and
the GRBFCM formulation of the eigenvalue problem for 1D phononic crystal are
given in section 4.1. The influence of different RBFs on the stability of the RBFCM is
discussed by investigating the numerical results in section 4.2. Then, some remarks

are given in section 4.3.

4.1 GRBFCM formulation for 1D solid/solid phononic crystals
By applying the RBF formulation from Egs. (3.1.5) to (3.1.7), we can obtain the

general eigenvalue equation of the GRBFCM for the 1D phononic crystal structure as

follows
dp(x)) 0
dx*
0 d2¢)(2xz) p(x) 0]
dx 0 02
, P(x,)
p(x)  —plx)e™ || o o |®
= —’ 4.1.1
E dg(x,) do(xy) “I o o S
E, dx dx * 0 0 %
p(x,) —(xr,) 0 0 |
E dp(x)  de(xp,)
| E, dx dx |

where x, eD,, x,eD,, x. €', j=0, 1, 2, N, and N, are the number of the

nodes distributed in the domains D, and D,, respectively. The size of the matrix on
both the left- and right-hand sides in Eq. (4.1.1) is the same. The generalised
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eigenvalue equation (4.1.1) can be solved by MATLAB directly, and the bandgap
structure can be obtained by sweeping the wave vector at the boundary in the first

irreducible Brillouin zone.

4.2 Numerical results and discussions
In this section, we present some numerical tests of different RBFs by using an

example of a 1D phononic crystal. The numerical results are compared with the exact

solution in the work of [135]. The layer thicknesses are taken as o, =a, =0.5m as

shown in Fig. 2.2. The used material parameters are given as follows:
Epoxy:

p, =1180kg /m’, c, =1161 m/s,
Aurum:

P, =19500kg / m’, ¢, =1239 m/s.

The relative error used in this section is defined as follows

2w —E,)
Z Eexact ’

where N is the total number of the used nodes, E, and E represent the

exact

Error =

numerical result and the exact solution respectively. We compare the numerical results
from the first to the fourth band with the exact solution to reveal the effects of the
type of the used RBFs, the shape parameter and the total node number or the nodal

distance on the accuracy of the GRBFCM.

4.2.1 Numerical results of the inverse MQ RBF

Effects of the shape parameter

In this subsection, only the inverse MQ RBF is considered. The computed band
structures for different values of the shape parameter are shown in Fig. 4.1 to Fig. 4.3,
and Table 4.1 shows the relative errors of the lowest four bands of the corresponding

figures.
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o RBFCM results
+ Exact solution
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Fig. 4.1 Band structure obtained by using inverse MQ RBF with N=19 and £=0.8

N=19 £=0.8 £=09 £=15
1%t 2.36x10™ 1.16x10% | 3.47x107
ond 9.48x107 7.92x107 | 4.58x10
3rd 1.09x107 5.94x10° | 2.27x107
4™t 2.71x107 420x10° | 1.48x107

Table 4.1 Relative errors by using inverse MQ RBF with fixed N=19.
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o  RBFCM results
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Fig. 4.2 Band structure obtained by using inverse MQ RBF with N=19 and &=0.9.
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Fig. 4.3 Band structure obtained by using inverse MQ RBF with N=19 and £=1.5.

Fig. 4.1 to Fig. 4.3 show that, as the shape parameter increases from &=0.8 to

& =1.5, the band structures obtained by the inverse MQ are becoming more stable,
but the relative error as given in Table 4.1 is getting worse. It is easy to conclude that
with a fixed number of the used nodes, a larger shape parameter & leads to a more
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stable but less accurate band structure. On the other hand, a smaller shape parameter
& gives rise to a less stable but more accurate band structure. Our own experiences
show that, when N=19, the shape parameter of the inverse MQ RBF in the range of

£=0.9 to £=1.5 always works well in the present GRBFCM.

Effects of the total node number

In order to reveal the influences of the total node number or the nodal distance, the

shape parameter is fixed now as &=1,, while different total node numbers are

employed to obtain the band structures in Fig. 4.4 to Fig. 4.6.

£=1 N=9 N=19 N=29
1 2.05x10"! 1.33x107° | 4.08x1072
ond 2.33x107 7.56x107 | 2.93x102
3rd 6.88x1072 2.63x10° | 6.75x107
4t 1.79x10! 1.35x10* | 1.09x10!

Table 4.2 Relative errors by using inverse MQ RBF with fixed &=1

o RBFCM results

+ Exact solution
35 T T T T T T T T

R bk R o o o R S SRR Rl
304

'9999QQ@@@@@@ea@ea@@amm@ma@@@@@@@o@@@ww@?—
25—++++++++++++++++++++++++++++++++++++++++5

N
o
1

e b bt i ot 2 S A TIPS

15_OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

®a/(2nc,)

I e S S T T e Frttrtttitbtbtdt
5888585888888 88888888888888888858885858888
10

PODDPIDDDPPDPPDDIPDDDIDPPDPDPPPDOODDDDIDODDPDDD |

0| 2PeOOOC00000000mnnnnnnnhnhbdbE00000000000

T T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0
kina

Fig. 4.4 Band structure obtained by using inverse MQ RBF with N=9 and &=1.
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Fig. 4.5 Band structure obtained by using inverse MQ RBF with N=19 and &=1.
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Fig. 4.6 Band structure obtained by using inverse MQ RBF with N=29 and ¢ =1.

Fig. 4.4 to Fig. 4.6 show the computed band structures obtained by using N=9,
N=19 and N=29, while Table 4.2 shows the relative errors of the lowest four bands
accordingly. From Fig. 4.4 to Fig. 4.6, we can see that, an increasing total node
number may lead to an unstable band structure for a fixed shape parameter. However,

if the shape parameter of the inverse MQ also increases with the total node number,
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the results become much better as shown in Fig. 4.7.

o RBFCM results
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Fig. 4.7 Band structure obtained by using inverse MQ RBF with N=29 and £ =2.

4.2.2 Numerical results of the Gaussian RBF

Effects of the shape parameter
In this subsection, the Gaussian RBF is considered. The computed band structures for
different values of the shape parameter are presented in Fig. 4.8 to Fig. 4.10, while

Table 4.3 gives the relative errors of the lowest four bands of the corresponding

figures.

N=19 £=02 £=03 £=04 £=0.6
1% 1 2.26x10" | 2.45x10% | 5.95x10™
2nd 9.57x10™ 4.09x10° | 4.06x10° | 2.31x10”
31 2.19x10™ 4.06x10° | 6.17x10° | 4.25x107
4t 1.54x107 6.04x10* | 1.13x107° | 5.56x107

Table 4.3 Relative errors by using Gaussian RBF with fixed N=19.
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Fig. 4.8 Band structure obtained by using Gaussian RBF with N=19 and £=0.2
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Fig. 4.9 Band structure obtained by using Gaussian RBF with N=19 and &£=0.3.
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Fig. 4.10 Band structure obtained by using Gaussian RBF with N=19 and & =04,
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Fig. 4.11 Band structure obtained by using Gaussian RBF with N=19 and £=0.6.

From Fig. 4.8 to Fig. 4.11, we can observe that with the shape parameter

increasing from £=0.2 to &£=0.6, the band structures obtained by the Gaussian

RBF become less stable, but the relative error as given in Table 4.3 is getting better.

Thus, it can be concluded that with a fixed number of the used nodes, a smaller shape

parameter & leads to a more stable but less accurate band structure. In contrast, a
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larger shape parameter & results in a less stable but more accurate band structure.

According to our own experiences that for N=19 the shape parameter of the Gaussian

RBF in the range of £=0.3 to £=0.6 always works well in the present GRBFCM.

This conclusion is just opposite to the inverse MQ RBF.

Effects of the total node number

To investigate the influences of the total node number or the nodal distance, the shape

parameter is fixed now as & = 0.4, while different total node numbers are employed

to obtain the band structures given in Fig. 4.12 to Fig. 4.14.

=04 N=9 N=19
1% 1 2.45%107
2nd 1.34x107 4.06x10°
31 4.19x107 6.17x10°°
4t 1.46x10™ 1.13x107

Table 4.4 Relative errors by using Gaussian RBF with fixed £=0.4
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Fig. 4.12 Band structure obtained by using Gaussian RBF with N=9 and & =04,
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Fig. 4.13 Band structure obtained by using Gaussian RBF with N=19 and &=0.4,
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Fig. 4.14 Band structure obtained by using Gaussian RBF with N=29 and &£ =0.4.

In Fig. 4.12 to Fig. 4.14, the computed band structures obtained by using N=9,
N=19 and N=29 are presented, while the corresponding relative errors of the lowest
four bands are given in Table 4.4. Fig. 4.12 to Fig. 4.14 illustrate that an increasing
total node number may lead to an unstable band structure for a fixed shape parameter.
However, if the shape parameter of the Gaussian RBF decreases with the total node

number, the results will become improved as shown in Fig. 4.15. This is also opposite
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to the inverse MQ RBF.
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Fig. 4. 15 Band structure obtained by using Gaussian RBF with N=29 and &=0.2,

By comparing the properties of the Gaussian RBF and the inverse MQ RBF, one

can find that the absolute value of the Gaussian RBF ¢(&)monotonically increases
with & while the absolute value of the inverse MQ RBF ¢(£) monotonically
decreases with &£. When the absolute value of ¢(&) in the GRBFCM monotonically
increases with &, a larger shape parameter £ leads to more accurate but less stable
results, while a smaller shape parameter & in a certain range gives rise to a less
accurate but more stable band structure. If the absolute value of @(&) in the

GRBFCM monotonically decreases with &, the situation is just opposite. This

conclusion is almost the same as that of our previous work [136]. In order to verify

this conclusion, the MQ RBEF is tested in the next subsection.
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4.2.3 Numerical results of the MQ RBF

Effects of the shape parameter
In this subsection, the MQ RBF is investigated. Figures 4.16 to 4.19 show the
computed band structures for different values of the shape parameter, while the

corresponding relative errors of the lowest four bands are given in Table 4.5.

N=19 £=04 £=0.5 E=1 E=12
1t 2.56x107! 8.24x1072 1.31x10° | 4.51x10™
ond 2.30x107 4.49x107 1.23x10°% | 1.22x10°
3 7.39%x10™ 1.90x10™ 1.42x107° | 1.34x107°
4t 2.35x107 5.59x10™ 1.11x10° | 3.43x10°

Table 4.5 Relative errors by using MQ RBF with fixed N=19.
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Fig. 4.16 Band structure obtained by using MQ RBF with N=19 and & =0.4,
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o  RBFCM results
+ Exact solution

40 . ; . ; ' ; . ; .
I o b o b b i e e T S R
351 00000000000000000000000000000000000000000 ]
| PR RRP09000222202292022R22020922922222%
30
.8$$®@$eeee$e$$$e$$e$$eee$e$$®e&ee@$$@®$$%.
25 PPPP02000090000090900000PPRPPPPRIPY |
/\(\I 1
Q 204 1
& PPOEEPIPPDODDIPPPOPDPVODOODOODOPOPIPDPDD
s .
3 15
IELLEELEEELEEREE L L LR L L EEEEE LT L
104
5-eeeeeee@eee@eeeeeeee$eee@eeeeeeeeeeeeeeee
0 @@$@@$@@@@?@@@@@@@am@m@@@@@@@@?@%@@@@@$ee

T
-1.0 -0.5 0.0 0.5 1.0
kima

Fig. 4.17 Band structure obtained by using MQ RBF with N=19 and £=0.5.
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Fig. 4.18 Band structure obtained by using MQ RBF with N=19 and & =1.
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Fig. 4.19 Band structure obtained by using MQ RBF with N=19 and &=1.2.

In contrast to the inverse MQ RBF but similar to the Gaussian RBF, the absolute
value of the MQ RBF ¢(&) monotonically increases with the shape parameter ¢&.

From Fig. 4.16 to Fig. 4.19 one can find that, as the shape parameter increases from

£=04 to £=1.2, the band structures obtained by the MQ RBF are becoming less
stable, but the relative error as given in Table 4.5 is getting better. Also here, it can be
concluded that for a fixed total node number, a smaller shape parameter & leads to a
more stable but less accurate band structure. On the contrary, a larger shape parameter
¢ yields a less stable but more accurate band structure. Our own numerical
experiences show that for N=19 the shape parameter of the MQ RBF in the range of

£=0.4 to £=1.2 always works well in the present GRBFCM.

Effects of the total node number

In order to analyse the influences of the total node number or nodal distance,, the

shape parameter is fixed now as &£ =0.7, while different total node numbers are used

to compute the band structures in Fig. 4.20 to Fig. 4.22.
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=07 N=9 N=19 N=29

1° 4.32x10™ 1.12x107 7.09x10™

ond 3.92x107 1.00x107 1.09x10”

3 6.41x10 8.20x107 2.40x10®

4t 1.65x10! 1.92x107 1.29x10!

Table 4.6 Relative errors by using MQ RBF with fixed £=0.7
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Fig. 4.20 Band structure obtained by using MQ RBF with N=9 and & =0.7.
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Fig. 4.21 Band structure obtained by using MQ RBF with N=19 and £=0.7.
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Fig. 4.22 Band structure obtained by using MQ RBF with N=29 and & =0.7.

Fig. 4.20 to Fig. 4.22 show the computed band structures obtained by using N=9,
N=19 and N=29, while Table 4.6 shows the relative errors of the lowest four bands
accordingly. From Fig. 4.20 to Fig. 4.22, we can see that, an increasing total node
number may lead to an unstable band structure for a fixed shape parameter. However,
if the shape parameter of the MQ decreases with the total node number, the results

become much better as shown in Fig. 4.23.
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Fig. 4.23 Band structure obtained by using MQ RBF with N=29 and & =0.5.
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4.3 Summary

The numerical results presented in the previous sections show the effects of the shape
parameter and the total node number or the nodal distance on the numerical accuracy
of the RBFCM for band structure calculations of 1D phononic crystals. One can find
that the shape parameter should also be changed accordingly when more nodes are
employed because of the decreasing nodal distance. How to change the shape

parameter depends on the property of the used RBF. When the absolute value of the

RBF ¢(&) monotonically increases with &, then with a smaller shape parameter &
we can obtain more stable band structures. If the absolute value of the RBF ¢(&)

monotonically decreases with &, then a larger shape parameter &£ is suggested to

obtain more stable band structures. The effects of the shape parameter and the total

node number are summarized in Table 4.7

RBF ¢(¢)
RBF |§0(§)| monotonically |(0(§)| monotonically
property . . .
decreases with & increases with &
i More stable Less stable
& Increases
Less accurate More accurate
Less stable More stable
¢ decreases
More accurate Less accurate
N increases ¢ should increase ¢ should decrease

Table 4.7: The eftects of the shape parameter and total node number.

The relationship between the shape parameter and the total node number or the
nodal distance investigated in this chapter is very important for the accurate and

efficient computation of the band structures of phononic crystals. From our numerical
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tests for 1D phononic crystals, we find that, when N=19 is employed, the range of the

shape parameter in the MQ RBF is £=04 to £=1.2, which is larger than the
ranges of the shape parameter in the Gaussian RBF (£=0.3 to £=0.6) and the

inverse MQ RBF (£=0.9 to &=1.5). The computed band structures also show that

the MQ RBF in the present RBFCM outperforms the Gaussian RBF and the inverse
MQ RBEF. For this reason, only the MQ RBF is employed in the following chapters

for the band structure computations of 2D phononic crystals.
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Chapter 5
Local RBFCM for anti-plane wave propagation analysis in 2D

solid/solid phononic crystals

In Chapter 4, the global RBFCM has already been applied to the 1D solid/solid
phononic crystals, and the influences of the shape parameter and the total anode
number have been discussed in details. Due to the high computational costs of the
global RBFCM, it is very difficult to apply the global RBFCM to high-dimensional
problems. In this chapter, the LRBFCM is developed and applied to calculate the band
structures of two-dimensional (2D) anti-plane transverse elastic waves in phononic
crystals. The special numerical techniques proposed in Chapter 2 are applied to
compute the spatial derivatives of the field quantities, which are needed by the
boundary conditions and the interface continuity conditions.

The governing wave equation, the periodic boundary conditions of the unit-cell
and the continuity conditions on the interface between the matrix and the scatterer are
discretized by the LRBFCM, which forms a matrix eigenvalue equation. The band
structures or the dispersion relations can be obtained by solving the generalized
eigenvalue problem and sweeping the boundary of the irreducible first Brillouin zone.
The developed LRBFCM is verified by using the corresponding results obtained with
the FEM. Numerical examples for various scatterer shapes and lattice forms with
different acoustic impedance ratios are presented and discussed in this chapter. The
FEM results are also used to show the performance and the efficiency of the
developed LRBFCM for the anti-plane transverse elastic wave propagation in 2D
phononic crystals.

This chapter is organized as follows. The general form of the LRBFCM for
anti-plane transverse elastic wave propagation in 2D phononic crystals is given in
section 5.1. Numerical results are discussed and compared with the FEM results in
section 5.2. The computational efficiency is analysed and discussed in section 5.3.

Then some concluding remarks are given in the last section 5.4.
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5.1 LRBFCM formulation of the eigenvalue problems

There are two ways to calculate the band structures or dispersion relations of
phononic crystals. One way is to employ the Bloch periodic condition (2.2.5) in the
whole domain, and then substitute Eq. (2.2.5) into the governing equation to
formulate an eigenvalue problem with the wave vector k. Then the eigenvalues @
are calculated for different k, and those eigenvalues in the first Brillouin zone are
picked out according to some relationships, for more details please refer to [137]. The
other way is to employ the periodic conditions only on the boundary of the unit-cell.
Then the governing equation and the continuity conditions on the interface are still
needed for computing the eigenvalues . The band structure or dispersion relation
can be directly calculated by sweeping the wave vector k in the first Brillouin zone. In
this thesis, we use the latter one. In this section, the LRBFCM formulation of the
governing equations, continuity boundary conditions and the periodic boundary
conditions of the anti-plane transverse wave in two dimensional phononic crystals are

respectively presented.

5.1.1 Discretized governing equations
By using Egs. (3.2.11) to (3.2.13), we can write governing equation of anti-plane

transverse wave (2.2.1) as

LAP(xHI = p o’ Ag(xya’,  (j=0,1), (5.2.1)

5.1.2 Discretized interface continuity conditions
The interface continuity conditions of the anti-plane transverse wave equations in
(2.2.3) can be expressed as

o0P(x7) _, op(xr,)
o ————1" =
on on

~1
u,

and (2.2.2) considered analytically by rearranging the columns of the RBF matrix,
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which will be discussed later.

5.1.3 Discretized periodic boundary conditions of square lattice

I,

Fig. 5.1 Matrix and scatterer in a unit-cell of a square lattice.

For the square lattice, as shown in Fig. 5.1, we have

u(xp,) =u(x; e ™, u(x:) =u(x; e ", (5.2.2)

T(xp,)=T(x; )e™", T(x.)=T(x; )e ", (5.2.3)

ou
where xp €I, x. €I, x. €'y, x €l',. T=— is the traction at the interface.
1 2 3 4 an

Equations (5.2.3) can be recast into the following matrix form

Au(x”) 0
0 Au(x' i ]
() Poyx®y 0
ou(xr) B ou(xr.,) e 0 M
on on = _p? 0 Piyx"y|, (5.2.4)
ou(x,) B ou(xr,) ok 0 H
on on 0 0
ou(x2,) 4y Qu(xL) i |
| on Uy on |

where x° e D, x'e D,.Eq. (5.2.4) can be rewritten in the following form

AU = -’ HU, (5.2.5)

where A is the RBF matrix obtained by using the RBFs and H is the matrix that
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related to the mass density o and the shear module . U is the displacement

unknowns in z direction. A and H for square lattice of anti-plane problems are

respectively given as

Ap(x,) 0
0 A@(x,)
0p(x) p(x) .
4| On on (5.2.6)
op(x.) 09(x) _u, ’
— e 0
on on
0p(x,,) o 06(x},)
| on ty On |
P 0
Hy
P
0 L)
H= 4 ¥ , (527)

where x, e D°, xp €@, (=L,...4), x)eT,UD’, x, €D, xyelr,uD" . If we

order the discrete displacement unknowns at boundary and interior nodes, then we can

define
U =[x, (), ), ) o ) o, ), ) wx )| (5.2.8)

A=[ A A, 4, A A A A A, (5.2.9)

H=[H".H'.H ,H. H_H_H/_H (5.2.10)

if we order the node distribution at X, and x, » We can easily obtain Eq. (5.2.9),
where A°, 4. (i=1,..,4) and Aﬁo are respectively the columns that related to the

nodes at x located on D, I, (i=1,..,4) and T . The left- and right-hand sides

of Eq. (5.2.5) can be written explicitly as
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AU = Au(x’)+ A'u(x") + Ap u(x; )+ A u(x;.)
+ Ap u(x )+ A u(xp )+ A7 u(x] )+ Ar u(xy), (5.2.11)
HU = H'u(x")+ H'u(x")+ H. u(x. )+ H u(x; )
+H, u(x. )+ H u(x. )+H] u(x} )+ H u(x;). (5.2.12)
Now the displacement periodicity conditions (2.2.5) of the unit-cell and the
displacement continuity condition on the matrix-scatterer’s interface have to be taken

into consideration, which can be rewritten into the following forms

a

u(xl_1 )= u(xl_3 )eiikxa , ll(x]-2 ) = u(xr4 )e—ik‘, , u(xll-o) =Uu, (xl(—)o ) . (5.2.13)

Substitution of Eq. (5.2.13) into Egs. (5.2.12) and (5.2.11) results in
AU = Au(x")+ A'u(x") + (A, + Ay, e Ju(x;.)
Ju(xp,)+ (AL, + Ap Ju(xy),

HU = H'u(x")+ H'u(x")+(H, +H, e"" Ju(x)

+ (A, + A e
+(H, +H. " Ju(x; )+ (HY. +H]. Ju(x)),
then, Eq. (5.2.5) can be rewritten as the following generalized eigenvalue equation

AU =-o’HU,, (5.2.14)

where
q_ 0 1 ik.a ik,a 0 1
A=A, A, A + A A+ 4, A 4],
ry 0 1 ik.a ik,a 0 1
A=[H.HH. +H " H, +H_ " H +H |

T

U =] u(x),u(x"), u(x;) u(x;),u(x},) |
In this manner, smaller matrices H, A and the reduced displacement vector

U are obtained. The displacement periodicity conditions on the boundary of the

unit-cell and the displacement continuity condition on the matrix-scatterer’s interface
are automatically satisfied, which significantly improves the stability of the present

RBF collocation method.

5.1.4 Discretized periodic boundary conditions of triangular lattice

For the triangular lattice, as show in Fig. 5.2, the governing equation and the
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continuity conditions are the same, however we have the following 3 boundary

conditions (5.2.15) and (5.2.16), which are different from that for the square lattice.

_i(kxguky%) ik —i(—kxga+ y%)
u(xp,) =u(x; e cou(x ) =u(x e u(x) =u(x; e (5.2.15)
i(kXﬁwk,ﬁ) B

T(x)=T(x)e 22, T(x)=T(x)e™, T(x)=T(x)e 27 (5.2.16)

Fig. 5.2 Matrix and scatterer in a unit-cell of a triangular lattice

where X el, (i=1,2,...,6), and T(x) is the boundary traction vector of

anti-plane elastic wave. The equation of motion, the displacement continuity and the
traction equilibrium conditions are the same as for the square lattice. By taking the
equation of motion, the traction periodicity conditions (5.2.16) on the boundary of the
unit-cell and the traction equilibrium condition (2.2.5) on the matrix-scatterer’s

interface into account, we obtain the eigenvalue equation in the following matrix form
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Au(x) 0

0 Au(x")
B a - -
Ouloey,) _ Qulx,) eil(k'%m}a) 0 2o u(x) 0
on on yin
8u(xr2) _ au(xl"S)e—i/fJ,(l O — _a)Z O &u(xl) ) (5217)
On on m
Ou(x;) Qu(xp) crfend o 0 0
on on L A
ou (x?o) mn au( xll_o)
on U, On

Following the same procedure as for the square lattice and considering the
displacement periodicity conditions (5.2.15) as well as the displacement continuity
condition (2.2.2) on the matrix-scatterer’s interface, we finally obtain the same

eigenvalue equation Eq. with

G B a
~ 0 1 —1(/»X—a+ky7) —ik,a
A=A, A, A +Are > P A +Ae
5.2.18
—i(—kxﬁcﬁkyﬁ) ( )
A +Ae TP AL+ A4 |,
7 0 1 oNTF
U = u(x)u(x")u(xp ulxe,) ulx, ) u(x;,) | (5.2.19)
The detailed expressions of the matrices 4 and H are given
Ap(x,) 0 |
0 Ap(x))
Op(xr,) OP(xp) -tk Bai o)
1 _ 4 e O
on on
op op ,
A= ¢)(xl‘2 ) _ ¢(x1“5 ) e—:k),a 0 , (5220)
on on
~ ~ . NG p
8¢(xr3) B 8¢)(x1-6 ) e—l(—kxjﬁkyg) 0
on on
op(x},) py 0P(x)
| on M, ©On |
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B-= PRGAET (5.2.21)

The generalized eigenvalue equation (5.2.14) can be solved numerically by using the

eigensolver in MATLAB.

5.2 Numerical results and discussions

5.2.1 Effects of the shape parameter

The LRBFCM combined with the special techniques proposed in Chapter 2 are
validated by comparison of the numerical results with that obtained by the finite
element method of the acoustics module in COMSOL Multiphysics. The
multi-quadratic (MQ) RBF is adopted in the present meshfree LRBFCM in the whole
thesis. A uniform node distribution is used for all numerical calculations in this
chapter. It was found in a previous study that a uniform node distribution has a
slightly better convergence rate than a random distribution of equal size 88, and our

test results of the random node distribution also verifies this finding.

Another important factor in the RBFCM is the shape parameter £ in the RBF,

which could affect the results of the RBF collocation methods. According to many
pervious works [138, 139], the shape parameter is related to the distance of the nodes
nearby. There are several ways to find an optimal shape parameter, such as the golden
search method, and so on [140, 141]. One key point to determine the optimal shape
parameter is to calculate the errors at the boundary or the residuals of the governing
equations. Here we use a simple way to determine the shape parameter, which aer
described in the following. We select a simple function, such as w=x+y or

u=sin(x)cos(y), then Lu can be evaluated analytically, where L is the Laplace operator.
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Then, we compare the analytical result of Lu and the result of the RBFCM from Eq.

and define an error indicator

Error(c,) = |Lu —Lu

, (5.3.1)

where Lu is the numerical result of a node, and Lu is the exact solution that we
employed. A pre-calculation is done to find out the shape parameter that has the
smallest error. We give the node distribution and the shape parameter in our numerical

examples in following.

5.2.2 Aurum scatterers embedded in epoxy matrix
In this subsection, aurum (Au) cylinders embedded in the epoxy matrix are considered.

The densities and the wave velocities of the component materials are given by:

0, =1180kg/m’, ¢, =1161m/s  p =19500kg/m’, and ¢ =1239m/s . Thus, the

acoustic impedance ratio of the considered phononic crystal is Z = p,¢c; / pyc, =17.64,

which is large.

The first example considers both square and circular scatterers in a square lattice.
The filling fraction of the aurum/epoxy phononic crystal with square scatterers is
0.138, the area of the square scatterer is 0.4x0.4 and the unit-cell area is 1x1. Fig. 5.3
shows the node distribution of the aurum/epoxy phononic crystal in a square lattice
with square scatterers. Here, 31>3 1 nodes are uniformly distributed in the domain. In
this case the direct method for computing the normal derivative of the displacement
could be easily applied to all the boundary nodes, and the results of the direct method
are shown in Fig. 5.4. However, in order to show the stability of the fictitious nodes

method the corresponding results by using the fictitious nodes method for all
boundary nodes are also shown in Fig. 5.5. The shape parameter is chosen as & =3
and 9 local nodes are employed for both fictitious nodes method and direct method.
From Fig. 5.4 and Fig. 5.5, we can find that both methods could lead to a stable

LRBFCM, and the results are fitting quite well with the FEM results.

However, our numerical results indicate that the direct method keeps stable in the
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50, while the shape parameter is limited to the range of

=0.1 to &

range of &

8 when the fictitious nodes method is employed. This means that the

02 to &=

E=

direct method for computing the normal derivative of the displacement is much better

than the fictitious nodes method with respect to the stability of the LRBFCM.

* * * * * * * * *
eecece0c00c000000000000000000
-----------------------------

e cececcc0c000000000000000000
-----------------------------

oooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooo

$o0 000000000000 0000000000000 00

oooooooooooooooooooooooooooooooo

Fig. 5.3 Node distribution of the aurum/epoxy phononic crystal in a square lattice

O FEM
— RBF

with square scatterers.

Fig. 5.4 Band structure of the aurum/epoxy phononic crystal in a square lattice with

square scatterers by the direct method (I', X and M are the characteristic points

in the first Brillouin zone as shown in Fig. 2.3).
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Fig. 5.5 Band structure of the aurum/epoxy phononic crystal in a square lattice with
square scatterers by the fictitious nodes method.
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Fig. 5.6 Convergence rates of the averaged eigenvalues for the aurum/epoxy phononic
crystal in a square lattice with square scatterers.

In Fig. 5.6, the convergence rate of the direct method for the average of all
eigenvalues is given in terms of the relative error (E.—E,)/E,, where E, is the
result of the present LRBFCM by using 1681 nodes or degrees of freedom, and E,
is the result of the LRBFCM or the FEM with the actual degrees of freedom. In Fig.
5.6, log,,(-) scale is used for convenience, and different FE meshes including coarse,

fine and very fine meshes are tested. From Fig. 5.6 we can see that a number of more

than 100 nodes should be guaranteed to keep an acceptable accuracy, and the order of

the accuracy can easily reach 10~ with more than about 120 nodes. From the results
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in Fig. 5.6, it can be easily seen that with the same degrees of freedom, the present

LRBFCM can generally lead to more accurate results than the FEM. Fig. 5.6 also

shows that in the log ,(-) scale the relative error decreases more or less linearly with

increasing degrees of freedom in both methods, but the linearly fitted error curve of
the LRBFCM has a larger slope that that of the FEM, which implies that the
convergence rate of the present LRBFCM is higher than that the FEM. In the
following analysis, more than 1000 degrees of freedom are employed in the FEM for

the comparison purposes.

O FEM
2.0 —RBF

wa/(2me )

Fig. 5.7 Band structure of the aurum/epoxy phononic crystal in a square lattice with
square scatterers by the fictitious nodes method (right) with
strongly disordered node distribution (left).
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Fig. 5.8 Band structure of the aurum/epoxy phononic crystal in a square lattice with
square scatterers by the fictitious nodes method (right)
with weakly disordered node distribution (left).

Fig. 5.7 and Fig. 5.8 show the effects of the random node distribution on the
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numerical results. Here, we add a certain disorder in the node distribution, where the
node distribution in Fig. 5.7 is more disordered than in Fig. 5.8. As disordered nodes
are applied, only fictitious nodes method can be employed for the treatment at the
boundaries and the interface. The results show that if the node distribution is more
disordered, the results become much worse, which confirms the same conclusion
drown in the previous work [142].

In the second example as shown Fig. 5.9, a square lattice with circular scatterers
is considered. A uniform distribution of total 948 nodes is used. The filling fraction is
0.196, the radius of the circular scatterers is 0.25, and some line nodes are added in
order to easily get more nodes on the interface boundary. Fig. 5.10 shows the results
by using the direct method on the boundary of the scatterer and the indirect method on
the interface boundary belonging to the matrix. Fig. 5.11 shows the results by using
the fictitious nodes method for all the boundary nodes. As we can see that in the low
frequency range, the results of the LRFBCM and the FEM agree very well, while in
the high frequency range both results show a little difference but they are still in a

good agreement in general. The shape parameter used in both Fig. 5.10 and Fig. 5.11

is ¢, =3 and the local nodes number is 9.
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Fig. 5.9 Node distribution of the aurum/epoxy phononic crystal in a square lattice
with circular scatterers.
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Fig. 5.10 Band structure of the aurum/epoxy phononic crystal in a square lattice with
circular scatterers by the direct and indirect methods.
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Fig. 5.11 Band structure of the aurum/epoxy phononic crystal in a square lattice with
circular scatterers by the fictitious nodes method.

5.2.3 Aluminum scatterers embedded in epoxy matrix

In this subsection, we consider the aluminium (Al) scatterers embedded in the epoxy

matrix. The material parameters are given by p,=1180kg/ m3, ¢, =1161km/s ,
p,=2730kg / m and ¢, =3242km /s . The corresponding acoustic impedance ratio

of the phononic crystal is Z = p¢, / p,c, = 6.46, which is smaller than that of the

previous example.
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Fig. 5.12 Node distribution of the aluminium/epoxy phononic crystal in a square
lattice with triangular scatterers
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Fig. 5.13 Band structure of the aluminium/epoxy phononic crystal in a square lattice
with triangular scatterers by the indirect/direct method.
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Fig. 5.14 Band structure of the aluminium/epoxy phononic crystal in a square lattice
with triangular scatterers by the fictitious nodes method.
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In the first case as shown in Fig. 5.12, the triangular scatterers in a square lattice
are considered. Here, totally 2114 nodes are uniformly distributed. In order to match
the local geometry and the node distribution near the boundary of the triangular lattice.

The local nodes number is taken as 11, and the shape parameter in the RBF is selected

as & =1. The filling fraction is 0.18. For the node distribution as shown in Fig. 5.12 ,

the indirect method could be applied to the interface and the direct method is
employed at the boundary of the unit-cell. Fig. 5.13 shows the results by using the
indirect method for the interface boundary and the direct method for the matrix
boundaries, while Fig. 5.14 shows the results by using the fictitious nodes method for

all the boundaries. Both figures show a good agreement with the FEM results.
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Fig. 5.15 Node distribution of the aluminium/epoxy phononic crystal in a triangular
lattice with square scatterers.
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Fig. 5.16 Band structure of the aluminium/epoxy phononic crystal in a triangular
lattice with square scatterers by the direct/indirect method.
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Fig. 5.17 Band structure of the aluminium/epoxy phononic crystal in a triangular
lattice with square scatterers by the fictitious nodes method.

Finally, we consider a triangular lattice with square scatterers as shown in Fig. 5.15.
In this case, a uniform node distribution with total 903 nodes is used, the filling

fraction is chosen as 0.138, the local nodes number is 11, and the shape parameter is
& =3. Fig. 5.16 shows the results by using the indirect method for the boundary of

the unit-cell and the direct method for the boundary of the square sactterer. Fig. 5.17
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shows the corresponding results by using the fictitious nodes method for all
boundaries of the unit-cell and the scatterer. Here again, both results show a quite
good agreement with the FEM results. All the numerical results demonstrate that the
present LRBFCM is suitable and efficient for the band structure calculation of the
phononic crystals. The stability of the LRBFCM can be greatly improved by using our
proposed special techniques for computing the normal derivative of the displacement

needed for the treatment of the boundary conditions.

5.3 Analysis of the computational efficiency
The computational efficiency of the LRBFCM is analysed and discussed in this
subsection. The computational costs of the present LRBFCM for the numerical

examples considered previously are given in Table 1 and they are compared with that

of the FEM. The error in Table 1 is defined as ‘Ef —Er‘/E , in which E, is the

result of the FEM by using COMSOL Multiphysics and E  is the result of the

present LRBFCM. All the programs are run on the same laptop with Intel(R)
Core(TM) i7-4510U, 2.00 GHz CPU and 8 GB RAM.

Lattice form Square Triangular
Square Circular Triangular Square
Scatterer from
a || [o]| [a] | (m
Number of nodes 441 948 1294 903
RBE Time cost [s] 8.124 40.49 66.096 39.19
Degrees of 1401 1533 1265 837
FEM freedom
Time cost [s] 139 135 137 129
Comparison Errors 0.0097 0.0126 0.0098 0.0081
Time saving 94% 70% 51% 69%

Table 5.1 Computing time and accuracy comparisons.

From Table 5.1, we can easily find that for the square lattice with square

scatterers, 441 nodes could already lead to a high accuracy with a saving of 96%
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computing time compared with the FEM. We also mention that the degrees of
freedom (DF) are 1401 in the FEM, which could be reduced to keep the same
accuracy. However, it is rather cumbersome to reduce or change the meshes as we
want in the COMSOL Multiphysics.

When 948 nodes are employed for the square lattice with circular scatterers, the
computing time saving is still 70% in comparison to the FEM. The error of the present
LRBFCM compared with the FEM is 0.0126. This reduced accuracy might come
from the difference of the circular interface approximated by the triangular meshes in
the FEM and the LRBFCM. In the present meshfree method, the circular interface can
be exactly approximated while in the FEM the circular interface is only approximately
replaced by using piecewise straight lines of the triangular meshes.

For the square lattice with triangular scatterers, more nodes are used to take the
complex geometry near the tips of the triangular scatterer into account. In this case,
the computing time saving of the present LRBFCM is 51% compared with the FEM.
Here, 1294 nodes are used in the LRBFCM, while 1265 degrees of freedom are
employed in the FEM. In this example, the number of the unknowns in the present
LRBFCM is almost the same as that in the FEM. Thus, it could be concluded that the
efficiency of the LRBFCM is generally higher than the FEM for the same number of
unknowns or degrees of freedom.

For the triangular lattice with square scatterers, the computing time saving is 69%
compared with the FEM, and the accuracy is still pretty high. In this example, 903
nodes are employed in the LRBFCM compared with 837 degrees of freedom in the
FEM. Even with some more unknowns, the efficiency of the present LRBFCM is still
higher than the FEM in this case.

From the above discussions, we can conclude that the efficiency and the stability
of the present meshfree LRBFCM are very high for band structure calculations of 2D
phononic crystals. In addition, the present LRBFCM is a truly meshfree method,
which has certain advantages compared to other domain-type computational methods
such as the FEM and the finite difference method. For instance, the node creation in

the present method is easier than the mesh generation in the FEM, which is beneficial
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for the pre- and post-processing of the computational data. With respect to the
adaptivity of the computational methods and the moving boundary-value problems
(crack propagation, free or moving boundary problems like ice melting or phase
change problems, etc.), the present meshfree method is also advantageous because the
insertion of additional nodes is much simpler than the remeshing in the domain-type
methods. Nevertheless, the computational code of the present LRBFCM is
self-developed in-house, while the FEM used for the verification purpose is a
commercial and optimized software package. In this sense, the present computational

code can be further improved and optimized to increase its efficiency and accuracy.

5.4 Summary

In this chapter the LRBFCM is presented for the band structure calculations of the
anti-plane transverse elastic wave propagation in 2D phononic crystals. The numerical
results show that the three different techniques for computing the normal derivatives
of the displacement at the boundary conditions in the LRBFCM greatly enhance the
stability of the present LRBFCM. The results also prove that the performances of the
indirect method and the direct method are much better than the fictitious nodes
method. The developed LRBFCM is verified by using the results obtained with the
FEM. The effects of the shape parameter of the RBF, the number of the used nodes
and the node distribution on the numerical results are investigated. Numerical results
for square, circular and triangular scatterers in square and triangular lattices with
different acoustic impedance ratios and material properties are presented and
discussed. The performance and the efficiency of the present LRBFCM in comparison
to the FEM are analysed and revealed. The results show that the present meshfree
LRBFCM is a promising alternative numerical tool for computing phononic band

structures.
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Chapter 6
Local RBFCM for in-plane elastic wave propagation analysis in

2D solid/solid phononic crystals

In this chapter, the LRBFCM combined with indirect method is employed to calculate
the in-plane elastic waves of the phononic crystals. The general form of LRBFCM for
the in-plane elastic waves is given in section 6.1. The numerical results are discussed
in section 6.2. The the computational efficiency are fully compared with FEM in 6.3.

Then some remarks are given in the last section 6.4.

6.1 LRBFCM formulation of the eigenvalue problems

In this section, the LRBFCM discretization form for the governing equation, and
continuity conditions, and the periodic boundary conditions of different lattice are
going to be discussed separately. The boundary value problem of in-plane elastic
wave propagation in 2D phononic crystals determined by the elastodynamic wave
equations (2.3.1) and (2.3.2), the periodic boundary conditions (2.3.5) and (2.3.6) on
the boundaries of the unit-cell, and the displacement continuity conditions (2.3.3) as

well as the traction equilibrium conditions (2.3.4) can be solved by the LRBFCM.

6.1.1 Discretized governing equations

In order to solve the governing equation (2.3.1) and (2.3.2), the displacements in the
x- and y-direction are approximated in the LRBFCM as followings by using (3.2.11)
to (3.2.13),

u (x)=@(x)ii, u,(x)=¢(x)i,, (6.1.1)
where i, =[u, ()., ().t (x,)] and & =[u,(x).u,(x,),nt, (x,)] - Then

the governing equation (2.3.1) and (2.3.2) are expressed as

O’P(x)
oy’

i)+ (A, + ;)

J

azééx) &
X

O *p(x) o
((zﬁzﬂ,.) T Sy =PRI (612)
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=—p,0 ¢(x)u (6.1.3)

((lj+2uj)82¢(2x)+ : azqo(x)]~j+(/1 +u )82¢(x)
ay X

Ox0y

For simplicity we define

G/ (x)= ((/1 +2,u) o >+ U, ai—zj p(x), xeD,,

®/(x) = ((ﬂ +2ﬂ)ai—+ﬂ (,f—]qo( ), xeD,

¥ (x)= m+-)yﬁf xeD,

Then the governing equation (6.1.2) and (6.1.3) can be expressed as

G’ (x)u +¥ (x)u =—p. 0’ P(x)it, (6.1.4)

¥ (x)u] + @ (x)u) =—p,0’ G(x)it]. (6.1.5)

6.1.2 Discretized interface continuity boundary conditions
The continuity boundary conditions are given as Eqgs. (2.3.3) and (2.3.4). The Eq.
(2.3.3) can be taken as

(6.1.6)

x |r0:ux ‘Fo’ ”y |F0:u}’ ’ro’
where g | and i, | denote the elements of the vectors 5 and i,
corresponding to the unit-cell interface x T, the Eq. (6.1.6) can be analytically

satisfied by adding or subtracting the corresponding columns of the formulated matrix.

By using the definition in Eq. (6.1.1), we can obtain the stress components as

| 0p . . 0 -
O';x =(/1_/.+2,uj)aux+ij5uy (617)
0 0 -
quzyé%ux+og+2ygzguy (6.1.8)
4 0p .  0f .
Fep| L+ L 6.1.9

Then the traction components could be expressed as
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T/(x)=ocln(x)+oln(x), xeD, (6.1.10)

XXX

T/ (x)=o)n,(x)+0,n.(x), xeD,, (6.1.11)

T .
where n(x)=[nx(x), ny(x)} denotes as the unit normal vector at x, and

T/ = [7;/' , Tyf }T as the traction vector. Then we obtain from Egs. (6.1.7) to (6.1.11),

TJ(x):[w+2uf>@nx<x)+uf@ny<x>jﬂx
x o

iy iy 6.1.12)
+£/1f 9PN () ! Mn,(x)]ﬁ :
oy ox 7 g
T/(x) =(/1j Mn (x)+ 4’ @nx(x)]ﬁx
g ox 7 oy
o o (6.1.13)
-i—((ﬂj -I-Z,Uj) ¢(X) n ,(X)‘f',uj ¢(x) nx(x)]ﬁ ,
oy 7 Ox !

For the simplicity further we define

of(x)=(2,+2y,.)@nx(x)+yj 0p(x) n,(x), (6.1.14)
: P o
0'(x)=14, 90, (x)+ 4, opx) n,(x), (6.1.15)
G, Y ox
§(x)=2, Mny(x)+ 4, P, (), (6.1.16)
Ri(x)=(2, +2ﬂ,)mnv(x)+yj P, (x). (6.1.17)
' ooy ox
Then Egs. (6.1.10) and (6.1.11) can be expressed as

T/(x)=0'(x)a, +Q'(x)i,, xeD,, (6.1.18)
T/(x)=S8'(x)i, + R (x)it], xeD.. (6.1.19)

Thus, Eq. (2.3.4) can be written as
0'(x)it, + Q' (x)it, = 0" (x)it, + Q" (x)ii) , (6.1.20)
S'(x)u, + R (x)i, = S° (x)it, + R (x)ii, . (6.1.21)
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6.1.3 Discretized periodic boundary conditions of square lattice
For the square lattice, as shown in Fig. 5.1, the periodical boundary conditions (2.3.5)
and (2.3.6) can be expressed as

() =u, (e )e ™, () =u (xp e ™,
o R (6.1.22)
u (xp)=u(xpJe ™, u (xp )=u/(x )e ",

T(xe) =T, )e ™ T () =T, (% )e ™,

ik ,a

; (6.1.23)
T, (xrz) =T, (xr4 e Ty(xrz )= Ty(xr4 )eﬂk-"“e

where x. eI, (i=1,2,3,4), 7T,.(x) and 7, (x) are the tractions. Eq. (6.1.22) can

be changed to

i;x |F1 = ux |F; _ikxa’ Ny |F = iiy |l"; e s
: : (6.1.24)

~ ~ —ik, ~ ~ —ik,,
ux |F2= ux |F4 e l }a’ uy |1"2= uy |l"4 e >

a | and u, |, denote the elements of the vectors 4 and &, corresponding to

the unit-cell boundary x eT,, and are analytically considered by modifying the RBF

matrix which will be discussed later. The traction vector in Eq. (6.1.23) can be

expressed as

(0(x:) - 0(x e ™ )it +(Q(x;,) — Oy, )e ™ )it} =0, (6.1.25)
(8Cx) =S e ™ )il +(R(x;,) ~ R(x; )e ™ )it} =0, (6.1.26)
(0(x) -0 )e ™ )i +(0(x;., ) - @y e ™ ) =0, 6.1.27)
(S(xrz)—S(xFA)e_ik"”)ﬁf:+(R(x )~ R(x; )e ™ ) - 0. (6.1.28)

By considering the governing equations (6.1.4) and (6.1.5), the traction
equilibrium condition (2.3.4) on the matrix-scatterer’s interface, and the traction
periodicity conditions (6.1.25)-(6.1.28), a generalized eigenvalue equation is formed

as

AU =—w’HU, (6.1.29)
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where A is the RBF matrix, H is the matrix related to the property of the constituent
materials, and U is the vector of the displacements. The displacement periodicity
conditions (6.1.24) and the displacement continuity conditions (6.1.6) on the
matrix-scatterer’s interface are considered by modifying the RBF matrix A and H.

The details of the matrices A and H for different lattice forms are given in the

following
v=[aa.i.a ] (6.130)
Go(xo) LPO(xO) 0 0
) ' (x,) 0 0
0 0 Gl(xl) “Pl(xl)
0 0 \Pl(xl) d)l(xl)
So(xl'o) Ro(xl_ﬂ) Sl(xl“o) Rl(xrﬂ)
A= 0°(x) 0'(x,,) 0x,) Qx,)| (613D
SO(xrl)-l-SO(xF})e*ikxa RO(XFI)-I-RO(xr} )e—ikxa 0 0
Oo(xrl)+00 (x T, )e_"kxa QO (xrl)_l_QO(x N )e_ik“a 0 0
S )+ 8 (xp)e ™ R(x )+ R (x e 0 0
Oo(xrz)+00(xr4 )e—ikva Qo(xl-z)‘I'QO (xr4 )e—ikya 0 0
_po(xo) 0 0 0 -
0 p(x) 0 0
H: 0 0 pl(xl) 0 R (6.1.32)
0 0 0 pl (xl)
L 0 0 0 0 |

where, x,eD,, x,eD,, H is a sparse matrix which has the same size as 4, and
pl(x)= [5“ o’ (x)} is a sparse matrix related to the mass density, where & _ 1is

the Dirac delta. Also, A is a sparse RBF matrix related to x and x,, which can

also be written as

A=A, (6.1.33)

X

where x indicates the columns inside the matrix A. After the displacement

periodicity boundary conditions (6.1.24) and the displacement continuity conditions
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(6.1.6) are employed, the displacement vectors ul(xro), u(x;) and wu(x;) can
be eliminated by using uo(xro), u(x;) and w(x.) in Eq. (6.1.29), which results
in the following reduced matrix

A=[ A A4 + 4. ¢ 4 + 46" 4 + 4 . (6.1.34)
In Eq. (6.1.34), the columns inside the matrix A4 related to I'/UD,, T'; and I', are
rearranged by adding them to the columns related to T'yUD,, I', and T,. The size

of the matrix A is reduced, the elements in the columns related to I'yUD,, T', and

[',are no longer necessary, and thus a reduced generalized eigenvalue equation is
obtained as

AU =—*AU, (6.1.35)

where H is a sparse matrix with the same size as A, the matrix size of A is
2N, x2N, compared with 2N,x2N, of A, N, is number of the nodes on D,,

D, T T and

1 2

I and T',, N, is total node number on D,, D

0> a 1 0>

I, (=12,3,4), and U is the displacement vector with nodes only located in

D,uD wl'yul',Ul,. Since the columns related to x? , x; and x. (=1,2,3,4)

inside H areall zero, H and U can be written as
A=[H.H.H H_H] (6.1.36)
T

U=[U(x,).U(x,),U(x;,).U(x; ), U(x;,) | (6.1.37)

where U(x)=[a (x),a,(x)]", H, indicates the columns inside the matrix H

related to x, the matrix size of H is 2N, x2N, while the size of His 2N, x2N. .

6.1.4 Discretized periodic boundary conditions of triangular lattice
For the triangular lattice, as shown in Fig. 5.2, the periodical boundary conditions

(2.3.5) and (2.3.6) can be expressed as
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u, (xrl )=1u, (xr4 )e

—ik,
u (X)) =u(xp e ™,

YX%)Zﬂwnk{k

k,a

T(x;,)=T.(x;)e ",

i| =k

Jx%)=nuhw{

7{/{,{ ﬁwk}%]
> uy(xr] )= u, (xr4 )e

T2 r2

—ik,
uy(xrz) :uy(xrs )e l Va’

_,»[_kX
2

B 3]

ooou (X)) =u,(x e

X

ﬂ-[k B

a
a+k,—
2 y2]

9

B }a]

—a+k,—
2

5

The matrices A and H as well as the vector U in Eq. (6.1.29) are given by

G'(x,)
P (x,)
0
0
S'(xp,)
0°(x,)
8 (xp)+8°(x1) e,
0°(x.)+0°(x, e,
8%(xp)+ 8 (x e ™
—ik,a

OO(xFZ)JrOO(er)e y
S%(x r3)+SO(xré)e376

¥ (x,)
@’ (x,)
0
0
R"(x Fl.)
0’ (x;)
R'(x)+R'(x)e.,
0 (x)+0"(x e,

—ik ,a

Ro(xr2)+R°(xr5)e y

0'(x.)+0"(x; )e ™
R (x; )+ R (x; ey

_00 (xp )+ 0’ (x r, )€ 6 0’ (x r)+ 0°(x r,)e
p(x) 0 0
0 p(x) 0
H=| 0 0 pl(x)
0 0 0
.0 0 0

T
~0 ~0 ~1 ~1
U=[ux,uy,ux,uy] .

where the sparse matrix H has the same size as 4, and

0

0
G'(x,)
P(x,)

0

0
¥ (x,)
D'(x,)

S'(x;) R'(x;)
0'(x;) 0'(x)

0
0

0

0
0

0o |

pl(x)
0

0
0

0

(6.1.38)

(6.1.39)

(6.1.40)

(6.1.41)

(6.1.42)

As for the square lattice, the displacement periodicity boundary conditions (2.3.5)
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and the displacement continuity conditions (2.3.3) are employed to obtain a reduced

~

matrix A for the triangular lattice as

A= [AO, Ay A e A A A A e AL AL (6.1.43)

~

Then a reduced eigenvalue equation as (6.1.35) is formed. Here, the matrix size of A4

is 2N, x2N, compared with 2N, x2N, of A, N, is number of the nodes located
on D,, D, I'j,and I',, (i=1,2,3), N, is total nodes number in D,, D, , I',,
and T,, i=1, 2,...6. Since the columns related to 'y and T, (i=1,2,...6 ) inside H

are all zero, H and U can be written as

H=[H, H.H H_H._H /I (6.1.44)

0 =[U(x,).U(x,).UCx;,). UG, UCx ) UCx) | (6.1.45)

where U(x)=[a,(x),a,(x)]", H, represents the columns related to x inside H,

the matrix size of H is the same as A here. To solve the generalized eigenvalue

equation (6.1.35) numerically for both the square and the triangular lattices, the

eigenvalue solver implemented in MATLAB is applied.

6.2 Numerical results and discussions
In this section, numerical results obtained by the LRBFCM are presented and
discussed. As it was found in last chapter that a uniform node distribution has a better
convergence rate than a random distribution of equal size, a uniform node distribution
is used for all numerical calculations.

Two different lattice forms and three different shapes of the scatterers are
considered. For the aurum (Au) scatterers embedded in the epoxy matrix, the

parameters of the component materials are given by:

P =19500kg /m’, A'=4.23x10°"N/m*, u' =2.99x10°N/m’,

P’ =1180kg /m’, A°=443x10°N/m?, ' =1.59x10°N /m”.
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In this case, the acoustic impedance ratio of the considered phononic crystal is
Z=p'c, /p’c,=17.64, where ¢, = «/ 1’/ p’ is the transverse wave speed. For the

aluminium (Al) scatterers embedded in the epoxy matrix, the parameters of the
component materials are:

p' =2730kg /m®, A' =4.59x10°N/m*, ' =2.7x10"°N /m?,

P’ =1180kg /m*, A°=4.43x10° N /m*, 1° =1.59x10° N /m>.

Here, the acoustic impedance ratio of the considered phononic crystal is

Z=plc, | p’c,=6.46.

6.2.1 Square and rectangular scatterers in square and triangular lattices

Fig. 6.1 shows the node distribution of the phononic crystal in a square lattice with the
square scatterers. The filling fraction of the square lattice with the square scatterers is
0.138, the area of the square scatterer is 0.4x0.4 and the unit-cell area is 1x1. Totally,
21x21 nodes are uniformly distributed in the unit-cell. By using this node distribution,
there are always nodes in the x- or y-direction, so we can apply the direct method to

treat the traction boundary conditions on the boundary of the unit-cell and the

common matrix/scatterer’s interface, the shape parameter is chosen as £ =1 and the

number of the local nodes is taken as 9.

0Of © o o o o o o o o o o o o o o o o o o 4

088 ¢ © o o o o o o o o o o o o o o o o o -

074 o o o o o °o o o . o e e e o o 4

068 © o o o o o o o o o o o o > e o o o o 4

058 o o o o o o o o o o o o » e o o o o 4

04 o o o o o 5 e o o o o o o 5 s o s o o 4

03¢ o o o o o ® s o o 6 5 0 e e s o o 4

ooooooooooooooooooo

020 o o o o o o o o o o o o o o o o o o o 4
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Fig. 6.1 Node distribution in a square lattice with square scatterers.
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(Green nodes for interface; Blue nodes for matrix; Red nodes for scatterer)
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Fig. 6.2 Band structure of the aurum/epoxy phononic crystal in a square lattice

with square scatterers.
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Fig. 6.3 Band structure of the aluminium/epoxy phononic crystal in a square lattice.

Fig. 6.2 and Fig. 6.3 show the band structures of the aurum/epoxy and

aluminium/epoxy phononic crystals in a square lattice with square scatterers, where

the normalized frequency wa/(27zc,) is introduced and ¢ =\f U/ p' is the

transverse wave velocity of the scatterer. The results of the LRBFCM represented by
the red line are compared with the results of the FEM. Both figures show that the
results are fitting quite well, and the change of the materials combination or the

acoustic impedance ratio does not affect the results remarkably in the LRBFCM.
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Fig. 6.4 Convergence rate of the aluminium/epoxy phononic crystal in a square lattice

with square scatterers.

Fig. 6.5 Node distribution of the phononic crystal in a triangular lattice

with rectangular scatterers.
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Fig. 6.6 Band structure of the aurum/epoxy phononic crystal in
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a triangular lattice with rectangular scatterers.
—RBF

o)a/(chl)

Fig. 6.7 Band structure of the aluminium/epoxy phononic crystal in

a triangular lattice with rectangular scatterers.

Fig. 6.4 shows the convergence rate of the average of all eigenvalues which is

given in terms of the relative error (£, —E))/E, , where E, is the result by using

414 1 nodes and E, is the result by using the current nodes number. From Fig. 6.4,

we can see that a number of more than 200 nodes should be used to ensure an
acceptable accuracy.

In order to test the present LRBFCM for other lattice forms and filling fractions,
a triangular lattice with rectangular scatterers is considered next, as shown in Fig. 6.5.

The filling fraction is chosen as 0.5689, totally 731 uniformly distributed nodes are

used, &=1 is selected and the number of the local nodes is taken as 9. From Fig. 6.5,

it is difficult to find sufficient nodes in the direction of the y-axis in some parts of the
boundaries of the unit-cell. In this case, the indirect method is hence employed to deal
with those nodes for which no sufficient nodes can be found in the y-direction on the
boundaries of the unit-cell, and the direct method is employed on the
matrix/scatterer’s interface. Fig. 6.6 and Fig. 6.7 show the band structures of the
aurum/epoxy and aluminium/epoxy phononic crystals with a triangular lattice and
rectangular scatterers. In both cases, the present numerical results agree quite well

with that obtained by the FEM. This means that the LRBFCM is also suitable for
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complicated lattice forms and quite large filling fraction.

6.2.2 Circular scatterers in square and triangular lattices
In the next example, a square lattice with circular scatterers is considered. The filling
fraction is 0.196, the radius of the circular scatterers is 0.25, and totally 952 nodes are

used as shown in Fig. 6.8. In this work, the indirect method is thus used for nodes on

the circular interface.

Fig. 6.8 Node distribution of a square lattice with circular scatterers.

O FEM
1.6 — RBF

O

o
=
3

oa/(2rc))

<
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0.0 &=

Fig. 6.9 Band structure of the aurum/epoxy phononic crystal in a square lattice

with circular scatterers.
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Fig. 6.10 Band structure of the aluminium/epoxy phononic crystal in a square lattice
with circular scatterers.
The computed band structures of the aurum/epoxy and aluminium/epoxy

phononic crystals are compared with that of the FEM in Fig. 6.9 and Fig. 6.10. Here,

the shape parameter is taken as £ =1 and the number of the local nodes is chosen as

11 due to the node distribution at the circular interface is too close or random
distributed. The present numerical results and the FEM results are fitting quite well in
general.

In the next case, a triangular lattice with circular scatterers is investigated. The
filling fraction of the scatterers is 0.226, the radius of the circular scatterers is 0.25,
and totally 785 nodes are used as shown in Fig. 6.11. Here, the indirect method is
employed on the boundaries of the unit-cell. The stability of the present LRBFCM is a
little reduced compared with that for the square lattice, and more nodes must be
employed when the fictitious nodes method for the treatment of the traction
equilibrium conditions on the interface is applied. In order to solve this problem the
indirect method is employed in this case as described previously for the square lattice

with circular scatterers.
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Fig. 6.11 Node distribution of a triangular lattice with circular scatterers.
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Fig. 6.12 Band structure of the aurum/epoxy phononic crystal in a triangular lattice

with circular scatterers.
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Fig. 6.13 Band structure of the aluminium/epoxy phononic crystal in a triangular
lattice with circular scatterers.

The band structures of the aluminium/epoxy and aurum/epoxy phononic crystals
84



are compared with that obtained by the FEM in Fig. 6.12 and Fig. 6.13. Here, the

shape parameter is taken as £ =1 and the number of the local nodes is chosen as 11.

Here again, the present results are fitting quite well with the FEM results in general.

6.2.3 Triangular scatterers in square and triangular lattices
Here, a square lattice with triangular scatterers is analysed. The filling fraction of the

scatterers is 0.08, and totally 968 nodes are applied as shown in Fig. 6.14. The shape

parameter is chosen as £ =1, and the number of the local nodes is taken as 9. The

indirect method is employed on the interface and the direct method is used on the
boundaries of the unit-cell to obtain the results in Fig. 6.15 and Fig. 6.16. Due to the
complex form of the triangular scatterer, the numerical results obtained by the present
LRBFCM show a little difference from that of the FEM. However, they are still in a

good agreement in general.

; ; x x ; ‘ ‘ ; 5
0 01 02 03 04 05 06 07 08 09 1

Fig. 6.14 Node distribution of the phononic crystal in a square lattice

with triangular scatterers.
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Fig. 6.15 Band structure of the aurum/epoxy phononic crystal in

a square lattice with triangular scatterers.

“““l“g{.v‘ =

essssesanauss
N

wa/(2ne )

Fig. 6.16 Band structure of the aluminium/epoxy phononic crystal in

a square lattice with triangular scatterers.

Fig. 6.17 Node distribution of the phononic crystal in a triangular lattice with
triangular scatterers.
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Fig. 6.18 Band structure of the aurum/epoxy phononic crystal in

a square lattice with triangular scatterers.
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Fig. 6.19 Band structure of the aluminium/epoxy phononic crystal in

a square lattice with triangular scatterers.

Finally, we consider a triangular lattice with triangular scatterers as shown in Fig.

6.17. In this case, the filling fraction of the scatterers is 0.0741, and totally 741 nodes

are applied as shown in Fig. 20. The shape parameter is chosen as £=1 and the

number of the local nodes is selected as 9. The indirect method is employed on the
matrix/scatterer’s interface and the direct method is used on the boundaries of the
unit-cell to obtain the band structures given in Fig. 6.18 and Fig. 6.19. Here again, the

numerical results of the present LRBFCM are in good agreement with the results of

the FEM.
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6.3 Analysis of the computational efficiency

In order to show the computational efficiency and accuracy of the present LRBFCM,
the required computing time and the accuracy for the previously presented numerical
examples are summarized in Tables 6.1-6.4 and compared with that of the FEM. Here,

the numerical error is defined as

Z(Ef _Er)
2E

where E, is the result of the FEM by using COMSOL Multiphysics and E, . is the

Error =

result of the present LRBFCM. All the computations are carried out on the same
laptop with Intel(R) Core(TM) i7-4510U, 2.00 GHz CPU and 8 GB RAM.

For the aluminium/epoxy and aurum/epoxy phononic crystals with a square
lattice, the results are respectively listed in the Table 6.1 and Table 6.2. In general, we
can find that the computational errors in the case of a square lattice do not vary
remarkably with the change of the material combinations or acoustic impedance ratios.
Even with a smaller number of the degrees of freedom, the present LRBFCM can still
lead to sufficiently accurate results compared to the FEM. For the square lattice with
square scatterers, we can easily find that 433 nodes can already lead to a high
accuracy with a saving of the computing time around 87% compared with the FEM.
Even though the degrees of freedom in the FEM could also be reduced, however, the
meshes in the FEM are rather cumbersome to change as we wish in the COMSOL
Multiphysics. For the square lattice with circular scatterers, the computing time
saving of the LRBFCM is still more than 33% in comparison to the FEM. For the
square lattice with triangular scatterers, the computing time saving of the present
LRBFCM is more than 40% compared with the FEM.

Table 6.3 and Table 6.4 show the corresponding results for the Al/epoxy and
Au/epoxy phononic crystals with a triangular lattice, respectively. For the triangular
lattice with triangular scatterers, the degrees of freedom of the LRBFCM are 1462 and
not significantly lower than 1674 in the FEM, but the computing time saving is 60%.

The other two cases for circular and triangular scatterers also show that the efficiency
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of the LRBFCM is very high in comparison with the FEM.

Lattice form Square
Square Circular Triangular
Scatterer shape —
L] O A
Number of nodes 433 952 968
Degrees of
866 1904 1936
RBF freedom
Time needed [s] 21.62 104.86 102.34
Degrees of
2802 3066 2618
freedom
FEM
Time needed [s] 173 177 172
Errors 0.0042 0.0054 3.6702x10-4
Comparison
Time saving 87.78% 40.75% 40.50%

Table 6.1 Computing time and accuracy comparisons (Al/epoxy).

From Table 6.1 to Table 6.4 in the above discussions we can conclude that the
present meshfree LRBFCM is very efficient and quite accurate and exhibits a high
convergence rate for band structure calculations of in-plane elastic waves in 2D
phononic crystals, which is validated by the corresponding numerical results obtained
by the FEM. It is worth to mention here that the used FEM for the purpose of
comparison is a commercial and optimized software package, while the present
LRBFCM is self-developed. In this sense, the efficiency and the accuracy of the
present LRBFCM can be further improved and enhanced.
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Lattice form Square
Square Circular Triangular
Scatterer shape
Number of nodes 433 952 968
Degrees of
866 1904 1936
RBF freedom
Time needed [s] 23.40 111.26 98.14
Degrees of
2802 3066 2618
freedom
FEM
Time needed [s] 173 174 171
Errors 0.0014 0.0054 0.0011
Comparison
Time saving 86.7% 33.18% 42.69%

Table 6.2 Computing time and accuracy comparisons (Au/epoxy).
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Lattice form Triangular
Rectangular Circular Triangular
Scatterer shape @ @
Number of nodes 731 785 741
Degrees of
1462 1570 1482
RBF freedom
Time needed [s] 68.25 75.44 60.26
Degrees of
1674 2226 1634
freedom
FEM
Time needed [s] 172 175 169
Errors 0.0025 0.0025 0.0050
Comparison
Time saving 60.3% 56.89% 64.34%

Table 6.3 Computing time and accuracy comparisons (Al/epoxy).
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Lattice form Triangular
Rectangular Circular Triangular
Scatterer shape @ @
Number of nodes 731 785 741
Degrees of
1462 1570 1482
RBF freedom
Time needed [s] 73.4300 74.06 59.17
Degrees of
1674 2226 1634
freedom
FEM
Time needed [s] 173 175 168
Errors 0.0146 0.0021 0.0028
Comparison
Time saving 57.5% 57.68% 64.47%

Table 6.4 Computing time and accuracy comparisons (Au/epoxy).

6.4 Summary

In this chapter, the LRBFCM is extended to the band structure calculations of the
in-plane elastic waves in 2D solid/solid phononic crystals. By a proper choice of the
shape parameter and the number of the local nodes of the RBFs, the node distributions
and the application of the special techniques for the treatments of the boundary
conditions proposed in Chapter 3, the LRBFCM is applied to the band structure
computation of the in-plain elastic waves in 2D phononic crystals. For different
material combinations or acoustic impedance ratios (small to large), different filling
fractions (small to large), different lattice forms (square or triangular) and several
scatterer shapes (square, circular and triangular), the accuracy and the efficiency of
the present method are validated by comparing the numerical results with that

obtained by the FEM. By keeping a comparable numerical accuracy, the present
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meshfree RBF collocation method is more efficient than the used FEM. It requires
only distributed nodes instead of meshes in contrast to the domain-type discretization
methods such as the FEM, which makes the method very attractive. For moving
boundary value problems (e.g., propagating cracks, time-dependent phase change or
Stephan problem, etc.) and adaptive numerical schemes, this feature could be
significantly advantages because the insertion of nodes is much easier than the
remeshing procedure required by the conventional FEM. Indeed, the present method
has also certain disadvantages. In particular, the method is still relatively sensitive to
the choice of the shape parameter, the number of the local nodes involved and the
node distributions under complex geometrical circumstances, and it suffers from the
stability problem when the normal derivatives of the primary field quantities near the

boundaries of the analyzed domain are not handled properly.
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Chapter 7
Local RBFCM for wave propagation analysis in 2D solid/fluid

and fluid/solid phononic crystals

In this chapter, the LRBFCM is presented for computing the band structures of the
two-dimensional (2D) solid/fluid and fluid/solid phononic crystals. Both systems of
solid scatterers embedded in a fluid matrix (solid/fluid phononic crystals) and fluid
scatterers embedded in a solid matrix (fluid/solid phononic crystals) are investigated.
The general form of LRBFCM for the in-plane elastic waves is given in section 7.1.
The numerical results are discussed in section 7.2. Analysis of the computational

efficiency are presented in 7.3. Then some remarks are given in the last section 7.4.

7.1 LRBFCM formulation of the eigenvalue problems
In order to solve the governing equations, the displacements along the x- and y-
direction in the solid and the pressure of the acoustic wave are given separately in the

LRBFCM as follows by using (3.2.11) to (3.2.13),

u,(x)=@(x)u,, u/(x )=¢(x )ﬁx , (7.1.1)
p(x)=@(x)p, (7.1.2)
where u,= [uy (x),u,(x,)..u, (xn)]T s U, = [ux (x),u (x,)..u, (xn)]I are the

displacements vectors in the solid, ,3:[ p(x), p(xz)...p(xn)]z are the pressure

vectors of the fluid.

7.1.1 Discretized governing equations
By substituting Egs. (7.1.1) and (7.1.2) into Eq. (2.4.1), the governing equations of the

elastic waves in the solid can be expressed as

A+2 g + g +(A+ —;
( IIJ) 2 M y2 u, ( ,U) y uy

= P’ G()i,,
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I’p(x)  I'P(x) ) - O’P(x) .
A+2 + u +(A+u)—/——=un
[( ) o H— |4, (A+w) ooy
=—p,@*G(x)i,.
For convenience we define

2 2

G(x)=((ﬂ+2m%+u%j¢(x>,

‘P(x>=(ﬂ+u)%§;‘),

2 2

0 ~
O(x) = ((z +2y>y+y$j¢(x) ,

then the governing equations of the elastic wave in the solid can be expressed as
G(x)u, +¥(x)u, = —p, &’ @(X)il, (7.1.3)
¥(x)a, +O(x)u, =-p, o’ @(xX)u,. (7.1.4)
The governing equation of pressure waves in the fluid can be expressed as

IPx) PP\ Py oo
( = & ]p— @ @(x) P,

K

for convenience we define

2 2

M(x) =K[%+§J¢(x),

then the governing equations of the pressure wave in the fluid can be expressed as

M(x)p =—p,;p(x)Pp. (7.1.5)

7.1.2 Discretized interface continuity conditions

The interface continuity conditions (2.4.2) can be expressed as

[aéaix) n.t agx) ”y]f’ =—p,@ (p(x)ii,n, +@(x)iin ), xel,,  (7.1.6)

And Eq. (2.4.3) can be expressed as
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(u 20,00, J” ) ﬂ(ﬁ@(x) ) L OO,
X

» oy o "yj”y (7.1.7)
=@(x)pn,, xel,

((/1 12,y 00 5, , 90() ujn + y(a";(") i+ 0p(x) jn
oy Ox ! g

' oy ox (7.1.8)
= p(x)pn,, xel,.
For simplicity we further define
op(x) 0P(x)
O(x)=(A+2u)—~>n +u——"=n_,
(0= (4 20 = m =2,
Q(x) = lM”x +ﬂmny’
ox
S =202, 00
ox 7 oy
o0P(x) op(x)
Rx)=(1+2u)——n +u——""=n.
(=200 i E o,
Then, we can rewrite Egs. (7.1.7) and (7.1.8) as
O(x)u, +Q(x)u, =p(x)pn,, xely, (7.1.9)
S(x)u, + R(x)u, =@(x)pn,, xeT,- (7.1.10)

7.1.3 Discretized periodic boundary conditions

7.1.3.1 Solid/fluid phononic crystals
In the square lattice, the RBF discretization of fluid/solid and solid/fluid system is
different. The periodic boundary conditions of these two systems are going to be

discussed separate

7.1.3.1.1 Square lattice

For solid/fluid system in a square lattice, the periodic boundary condition (2.4.6) in
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the fluid matrix can be expressed as
Plo=Pl, e™,  Pl,=pl, ™, (7.1.11)
where p I (i=1,2,3,4) are the elements of the vector p corresponding to the

unit-cell boundary xeTI,. The periodic boundary conditions (2.4.7) can be

expressed as

op ap " op ap _ika
—(x. )=—(x:)e ™, —(x.)=—"(x;)e . (7.1.12)
ax( r) ax( r,) ay( r,) ay( r,)
By considering the RBF approximation (7.1.2), Eq. (7.1.12) can be rewritten as
6¢(x1"1) _ 8¢(xr3 ) e_ikxa ﬁ — 0’ (7 1 . 13)
Ox Ox

0. (7.1.14)

(8(5(3&2 ) _ a@(-’ﬁy) efikya ] p=
oy y

7.1.3.1.2 Triangular lattice
In the solid/fluid system, the periodic boundary conditions are only applied to the

acoustic wave field in the fluid matrix, which can be expressed as

Pl =Pl e ,

~ ~ —ik,a

p |xr2: plxl-5 e’ s (7115)
—1[—kxga+k ﬂ]

Plo.= Pl e ,

in which p |F, (i=1,...,6) denotes the elements of the vector p corresponding to

x e T, The periodic pressure derivative boundary conditions (2.4.7) can be expressed

as
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op(xr) _ op(xr,) e‘{"f“”‘v;]
on on ’

op(xr,) _op(x,) o (7.1.16)
on on

op(x,) _ ap(x;,) e_{_kfmy;j
on on .

By considering the RBF approximation (7.1.2), Eq. (7.1.16) can be recast into

09(x) 0px) ftons]

5=0, 7.1.17
on on P ( :
0p(x) 0p(x;) e |5 =o0, (7.1.18)
on on
- . [ B a
a a —i —kx—a+ky7
¢(xr3)_ ¢(xr6)e [ 2 ZJ p=0. (7.1.19)
on on

7.1.3.2 Fluid/solid phononic crystals

7.1.3.2.1 Square lattice
As shown in the Fig. 5.1, for the square lattice in fluid/solid the periodic boundary
conditions are only applied to the elastic waves of the solid part, the periodic

displacement boundary conditions (2.4.4) can be expressed as

Lo —ik.a

u . =ul, e

~ ~ —ik.a
u =Uu e

B a’ ? In =4, I, ’ (7.1.20)

e ", U

=u

—lkyll

x |F2 y |1"2: uy |1“4 e D)

where and denote the elements of the vectors gz and g
u, r; v I x y

corresponding to the unit-cell boundary x eI, .The periodic traction boundary
conditions (2.4.5) can be expressed as
—ik.a _ —ik.a
T;(xr]):Tx(xQ)e ) Ty(xrl)_Ty(xrj)e 5 (7.1.21)

ik,a

T.(x.)=T.(x;)e ™, T,(x)=T,(x; )e"",
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where xel, xel,,xel,, xel,, T(x) and 7 (x) are the traction vectors.

By considering the following relations

T ou, N ou, u, | %
< T Oull T T, = o )T S T ) (7.1.22)
= O(x)ii, + Q(x)i,.
o, o ou, o,
I =o.n +o,n, —,u( > +§]nx +((/1+2,u) = +A & ]ny (7.1.23)
=S(x)u, +R(x)u,,
the periodic traction boundary conditions (7.1.21) can be expressed as
(0(x:) - 0(x e ™ )i, +(Q(x) - Q(x. e ™ )i, =0, (7.1.24)
(SCx,)—S(x e ™ )i, +(R(xp,) — R(x;. )e ™ )i, =0, (7.1.25)
(0Gx )= 0Cx )e ™ )i, +(Qx ) - 0Cx;, )e ™ )it, =0, (7.1.26)
(SCx)=SCe e ™ )i, +(RCx,, )~ Rex, )e ™ )i, =0 (7.1.27)

7.1.3.2.2 Triangular lattice
Fig. 5.2 shows the matrix and the scatterer in a unit-cell of a triangle lattice. The
discretized periodic boundary conditions for the fluid/solid systems are presented
separately in the following.

For the fluid/solid system in a triangle lattice, the discretized periodic boundary
conditions are only applied to the elastic wave field of the solid matrix. The periodic

displacement boundary conditions (2.4.4) can be expressed as

~ ~ 7{/‘ [mk),%] ~ ~ —i[k ﬁa%}ﬁ]

ux |x]~l = ux |xr4 > y |x|-] = uy |xr4 2

~ ~ —ik a ~ ~ —ik,a

|, =ul, e, e, =0, e, (7.1.28)
—i 7kxﬁa+k e —i ,kxﬁcﬁk a

~ o~ 2 ~ o~ 2

u, |x]~3 =u, |x,—6 > uy |x]~3 - uy |xr6 e >

where u#_| and a | (i=1,..,6) are the elements of the vectors 7 and i,
x xp, Xxr, LR x

corresponding to the unit-cell boundary * €T\ The periodic traction boundary
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conditions (2.4.5) can be expressed as

—z| —a+

T, (x;)=T,(x. e
Tx(xrz):Tx(xrs)e _.,a,

™
—k, £a'+k}—

Tx(xrz):Tx(xrﬁ)e { Y

2

a+k —

A ey athy 2
Ty ("’.l"2 ) = Ty ("’.l"5 )e_ikl'a E)

™
—z{ —k, %a +ky§ i
4

(7.1.29)

Ty(xrz) = Ty(xrﬂ)e

By considering the RBF formulation in (7.1.22) and (7.1.23), the periodic boundary

conditions (7.1.29) can be written as

[ —z[ k. %aﬂzyah‘ J - [ —i[k,%rﬁky %\i ] .
O(x)—O(xp e u +| O(xp)—0(xp e a, =0, (7.1.30)
[ —z|\kx—a+k E\ ] [ z['kx‘fa+ky;\i} N
S(x)—S(xp e R(xp)—R(xp )e a, =0, (7.1.31)
(0Gxr,)—O(xr,)e™ )i, +(Q(xr, )~ Qxr, )™ ), =0, (7.1.32)
(SCxr,)—S(xr)e™ ) +(R(xp,)— R(xp, )e ™ )i, =0, (7.1.33)
[ —z| kx +k, 3 i ] [ —z|\ kx—ﬂ‘*ky ;\i )
O(xp)—O0(xp )e * O(x)—0(xp e * Ca, =0, (7.1.34)
[S —z|\ —k, a+k Vs ]] [ —{—kx§a+ky;:| .
(xp,)—S(xp e +| R(xp ) —R(xp )e S la, =0, (7.1.35)

7.1.4 Eigenvalue equations

7.1.4.1 Square lattice

By collocating the discretized governing wave equations (7.1.3)-(7.1.5),

discretized interface conditions (7.1.6),

(7.1.9) and (7.1.10) on the N interior and

boundary nodes, and the discretized periodic boundary conditions for the tractions in

the fluid/solid system (i.e., Eqs. (7.1.21) and (7.1.29)) while for the normal derivative
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of the pressure in the solid/fluid system (i.e., Egs. (7.1.12) and (7.1.16)) we obtain the
eigenvalue equation in the following matrix form

AU = -’ HU, (7.1.36)
where @ denotes the eigenvalues to be determined, and the eigenvector is defined
by

U=l[a,,i,pl. (7.1.37)

The system matrices A and H have the same size and they are given in the
Appendices A and B.

By invoking the discretized periodic boundary conditions for the displacements
in the fluid/solid system (i.e., Egs. (7.1.20) and (7.1.28)) and for the pressure in the
solid/fluid system (i.e., Eqgs. (7.1.11) and (7.1.15)) as described in the following
subsections, some nodal unknowns on the unit-cell boundary can be eliminated. This
leads to the following reduced generalized eigenvalue equation

AU =-*HU, (7.1.38)

where the reduced matrices 4 and H and the reduced vector U are dependent

on the lattice form and the material combination (fluid/solid or solid/fluid systems),

which are presented and described in the following.

System 1: Fluid/solid system

According to the periodic displacement boundary conditions in Eq. (7.1.20), the nodal

displacements on ", and I, can be eliminated by using the nodal displacements

on T, and T, which results in the following reduced matrices and vector

ﬁz[Axo,Axo A LA, A A A A, e”‘}'”] (7.1.39)
il:[on,on JH,,H, ,H_H. } (7.1.40)

- T
o-lv,.v, 0,0 0 . (7.1.41)

where the subscript X in 4_ and H_ indicates the corresponding columns inside
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the matrices A and H related to X, while the subscript X in U_ designates
the corresponding rows of the vector U corresponding to X . The matrices A4 and
H have the same size N,xN,, while the matrices 4 and H have the size
N, x N, . The size of the reduced vector U is N,, while the size of the vector U is
N,, where
N, =2N_+N, +2ng0 +Nx1r0 +2Nxrl +2Nxr2 ,
N,=2N_+N_ +2Nx90 +Nx1ro +2Nxrl +2Nxr2 +2er3 +2er4 ;

with N_ being the total number of the nodes on X . Here, x; eI, belongs to the
domain D,, and x; eI', belongs to the domain D,. The reduced vector U
contains the nodal displacements in D, Ty uT', UT', and the nodal pressure values

in D uUry.

System 2: Solid/fluid system

In this case, the periodic pressure boundary conditions (7.1.11) imply that the nodal

pressure values on the unit-cell boundaries I'; and I', can be eliminated by using

the nodal pressure valueson I', and T',. Thus, we obtain

Az[AxO,Axo A A A A A+ A e"""“}, (7.1.42)
ﬁ:[HxO,on H H, H_.H } (7.1.43)

- T
U=[le,Ux, U, U, U U, } : (7.1.44)

where the matrices 4 and H have the same size N,xN, while 4 and H
have the size N, xN,, and
Ny =N, +2N +2N, +N, +N_+N_ .,

N,=N, +2N_+2N, +N, +N_+N_+N_+N_.

4
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The reduced vector U contains the nodal displacements in D, uT and the nodal

pressure values in D, Ty UT", UT,.

7.1.4.2 Triangular lattice

System 1: Solid/fluid system
In the case of the solid/fluid system with a triangular lattice, the periodic displacement

boundary conditions (7.1.15) result in the following reduced matrices and vector

l[k,(
~ ) )
A=A A, A A, A +A4, e :

(7.1.45)
" I[*kx?a+ky%]
A, +A, e, A, +A e ,
fI:[HxO,HxO JH H, H ,H_,H } (7.1.46)
- T
o=lv,.v,.U,.U,.U U U |, (7.1.47)

where 4 and H are sparse matrices with the same size N, xN,, while the

matrices A and H have the size N,x N, . Here,

N, =N_+2N_+N, +2N, +N_+N_+N_,
0 1 X, Xr, xry xr, Xty
N =N_+2N_+N, +2N, +N +N +N +N +N +N .
a Xo X1 xr, xr, X xr, Xy X, X Xre

The reduced vector {7 involves the nodal displacements in D, U and the nodal

) o )
pressure values in D, Ty ur, ul, url’;, respectively.

System 2: Fluid/solid system
For the fluid/solid system with a triangular lattice, the periodic displacement boundary

conditions (7.1.28) yield the following reduced matrices and vector
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ﬁaJrk}%]

x

- l[/{
A=A A, A A, A +A4, e :

(7.1.48)
ko f[ka ?a+ky %}
A +A4 e, A +A e ,
ﬁz[on,on JH H, H ,H H } (7.1.49)
~ T
U=[le,le U,U, U U U, } , (7.1.50)

where the size of A and H is N, x N, while the size of 4 and H is N,xN,

1
with

N1=2Nx0+le+2Nx0 +N +2Nx +2Nx +2Nx ,

*To Ty T) T3

N,=2N_ +N +2N, +N, +2N_ +2N_+2N_ +2N_

T X T T3 T4

+2Nx +2Nx .

Te
The reduced vector U contains the nodal displacements in D, U U, U, UT,

and the nodal pressure values in D, uT?.

7.2 Numerical results and discussions

7.2.1 Solid/fluid phononic crystals
For the solid/fluid system, we consider two different materials with different scatterer
shapes. For iron scatterers embedded in the air matrix, the constants of the component

materials are given by:
p, =7670kg /m*s A=117x10"N/m*, pu=7.99x10"N/m’,
p, =12lkg/m*s K =139876N/m".
The acoustic impedance ratio of the considered phononic crystal is
pK /! p, /(Ps W) =1.66x107°, where \W is the acoustic wave speed of
the fluid and m is the transverse wave velocity of the solid.

For aluminium scatterers embedded in the mercury matrix, the constants of the

component materials are:
104



p. =2730kg /m*s A=4.59x10"N/m*, pu=2.7x10"N/m*,
p, =13500kg / m’ > K =2.86x10" N/m’.

In this case, the acoustic impedance ratio of the considered phononic crystal is

P, K/Pf/(/?s lu/ps)zo,463. Fig. 7.1 shows the node distribution of the

phononic crystal in a square lattice with square scatterers. The filling fraction of the
square lattice with square scatterers is 0.138, the area of the square scatterer is 0.4x0.4
and the unit-cell area is 1x1. Totally 433 nodes are uniformly distributed due to the
uniform distributed nodes are much better in convergence according to our previous
work [143, 144]. By using this distribution, there are always nodes along the x or y

direction so that the direct method is employed to treat the traction on the boundary
and the common interface, the shape parameter is £ =1 and the number of the local
nodes is 9. The green nodes are located at the interface, the blue nodes and red nodes
are respectively representing the scatterers and the matrix.

Fig. 7.2 and Fig. 7.3 respectively show the bandgaps of aluminum/mercury and

air/iron of phononic crystal in a square lattice with square scatterers, where the

normalized frequency /(2nc)) is introduced which ¢ = jlu /p, in solid/fluid
system and ¢ = fK /p, in fluid/solid system. The results of the LRBFCM

depicted in red line are compared with the results of finite element method. Both of
the figures show that results are fitting quite well, and the change of the materials

does not affect the results in the LRBFCM.
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Fig. 7.1 Node distribution in a square lattice with square scatterers.
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Fig. 7.3 Band structure of iron embedded in air.
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Fig. 7.4 Convergence rate of the averaged eigenvalues for

the aluminum embedded in the mercury.

In Fig. 7.4, the convergence rate of the direct method for the average of all

eigenvalues is given in terms of the relative error (£, —F,)/E,, in which E_ is the

result by using 1673 nodes and E, is the result by using the current nodes number.

From Fig. 7.4, it is obvious that the convergence rate of FEM is lower than LRBFCM
in solving the solid/fluid system of the aluminum embedded in the mercury.

In the next example, a square lattice with circular scatterers is considered. The
filling fraction is 0.2826, the radius of the circular scatterers is 0.3, and totally 1011
nodes are used as shown in Fig. 7.5. For the nodes on the circular interface, nodes in
the x- or y- direction can always be found, then the indirect can be employed here to

deal with the boundary conditions that required in the solid/fluid interface. The shape
parameter £ =1 with 9 local number nodes is employed in this case. Fig. 7.6 and Fig.
7.7 show the results of the band structures of the FEM and RBF, the present numerical

results and the FEM results are fitting quite well in general. This indicates that the

geometry variation of the inclusions does not affect the results in the LRBFCM.
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In the next example, a triangular lattice with square scatterers is considered. The

filling fraction is 0.08, the radius of the circular scatterers is 0.25, and totally 727

nodes are used as shown in Fig. 7.8. The shape parameter £ =1 with 9 local number

nodes is employed in this case. Fig. 7.9 and Fig. 7.10 show the results of the band
structures obtained by the LRBFCM and the FEM. Here again, a quite well agreement
between the present numerical results and the FEM results is observed. By comparing
this example with the previous examples, it can be concluded that the change of the

lattice forms does not affect the accuracy of the LRBFCM as well.

Fig. 7.8 Node distribution in a triangular lattice with square scatterers.
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Fig. 7.9 Band structure of iron embedded in water.

109



O FEM
0.20 ——RBF

0.18
0.16
0.14

0.12 s
0.10

0.08

wa/(2mc )

e e
=
S =

0 0 6 NN

0.04
0.02
0.00

Fig. 7.10 Band structure of iron embedded in air.

In the next example, a triangular lattice with circular scatterers is considered. The

filling fraction is 0.196, the radius of the circular scatterers is 0.25, and totally 775

nodes are used as shown in Fig. 7.11. The shape parameter & =1 with 9 local number

nodes is employed in this case. Fig. 7.12 and Fig. 7.13 show the results of the band
structures of the FEM and RBF, the present numerical results and the FEM results are
fitting quite well in general. The variation of the geometry and materials in both

lattice and inclusions does not affect the results in LRBFCM.
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Fig. 7.11 Node distribution in a triangular lattice with circular scatterers.
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Fig. 7.13 Band structure of iron embedded in air.

7.2.2 Fluid/solid phononic crystals

In this part, we discuss the fluid/solid system, which the fluid is embedded in the solid.
The water embedded in iron and airs embedded in iron are going to be considered

here. The materials property of water embedded in the iron are:

p. =7670kg /m*, A=1.17x10"N/m*, u=7.99x10"N/m’,
p, =1025kg /m’, K =2.40x10°N/m’.

In this case, the acoustic impedance ratio of the considered phononic crystal is
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P a/,u/p, . . .
DNE 1577, ulp, or [K/p, is the wave speed. For air embedded in
PK TPy !

the iron, the parameters of the component materials are:

p, =7670kg /m*, A=1.17x10"N/m*, u=7.99x10"N/m’,

p,=12lkg/m*, K=139876N/m’.

The acoustic impedance ratio of the considered phononic crystal is

The band structures of the square lattice (solid) with square scatterers (fluid) are
considered, the band structures of the water/iron and air/iron phononic crystals are

compared with those obtained by the FEM in Fig. 7.15 and Fig. 7.16. 953 nodes are

uniformly distributed as shown in Fig. 7.14, the shape parameter is taken as ¢=3

and the number of the local nodes is chosen as 9. The present results are fitting quite
well with the FEM results in general, however we have found that a higher number of
nodes compared with the solid/fluid system must be employed to obtain a accurate
results both in the LRBFCM and the FEM. 953 nodes must employed to guarantee the
stability of the results in the LRBFCM however more than 40,000 degree of freedom
should be employed in the FEM. The computational efficiency is very slow in FEM
for the fluid/solid system here. All the FEM cases presented in the figures are using a

high number of meshes.

Another interesting thing is the flat band, since the ¢ = / K/p, is employed

here, the value of the flat band are almost the same level in Fig. 7.15 and Fig. 7.16.
This i1s because of the large acoustic impedance ratio, when the solid materials
property is much larger than fluid, the fluid has few influence to the solid at the
interface, and the solid exhibits as a hard wall for the fluid with very tiny
displacements in the solid. In the Fig. 7.15, the water is still influenced by iron and
does not exhibit any bands as flat as air/iron due to the acoustic impedance ratio is not

big enough, while in the Fig. 7.16, the wave speed of the air is much lower than iron
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so that the flat bands are formed.

Fig. 7.14 Node distribution in a square lattice with square scatterers.
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Fig. 7.15 Band structure of water embedded in iron.
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Fig. 7.17 Node distribution in a square lattice with circular scatterers.
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Fig. 7.18 Band structure of water embedded in iron.
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Fig. 7.19 Band structure of air embedded in iron.

The square lattice (solid) with circular scatterers (fluid) are considered here, the
band structures of the iron/water and iron/air phononic crystals are compared that
obtained by the LRBFCM are compared with FEM in Fig. 7.18 and Fig. 7.19. 952

nodes are uniformly distributed as shown in Fig. 7.22, the shape parameter is taken as
c, =3 and the number of the local nodes is chosen as 9. The present results are fitting

quite well with the FEM results in general. The eigenvalues of the flat band are almost

the same level in both Fig. 7.18 and Fig. 7.19, which are the same as pervious cases.
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This supported that the flat bands can be found when the wave speed of the fluid are

much smaller than the solid.
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Fig. 7. 20 Node distribution in a triangular lattice with square scatterers.
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Fig. 7.21 Band structure of water embedded in iron.
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Fig. 7.22 Band structure of air embedded in iron.

The triangular lattice (solid) with square scatterers (fluid) are considered here,
the band structures of the iron/water and iron/ air that obtained by the LRFCM are

compared with FEM. In Fig. 7.21 and Fig. 7.22, 727 nodes are uniformly distributed

as shown in Fig. 7.22, the shape parameter is taken as ¢=3 and the number of the

local nodes is chosen as 9. The present results are fitting quite well with the FEM
results in general. The values of the flat band are almost the same level in Fig. 7.21
and Fig. 7.22, which are the same as pervious cases. This supported that the flat bands

can be found when the wave speed of the fluid are much smaller than the solid.

Fig. 7.23 Node distribution in a triangular lattice with circular scatterers.
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Fig. 7.25 Band structure of air embedded in iron.

The triangular lattice (solid) with circular scatterers (fluid) are considered here,
the band structures of the iron/water and iron/air that obtained by the LRBFCM in are

compared with FEM in Fig. 7.24 and Fig. 7.25. 727 nodes are uniformly distributed as

shown in Fig. 7.23, the shape parameter is taken as ¢=3 and the number of the local

nodes is chosen as 9. The present results are fitting quite well with the FEM results in
general. The eigenvalues of the flat band are almost at the same level in Fig. 7.24 and
Fig. 7.25, which are the same as pervious cases. This supported that the flat bands can

be found when the wave speed of the fluid are much smaller than the solid.
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7.3 Analysis of the computational efficiency

In order to show the computational efficiency and accuracy of the present LRBFCM,
the required computing time and the accuracy for the previously presented numerical
examples are summarized in Table 7.1 to Table 7.4 compared with that of the FEM.

Here, the numerical error is defined as

Z(Ef —E)
2E,

where E, is the result of the FEM by using COMSOL Multiphysics and E . is the

Error =

5

result of the present LRBFCM. All the computations are carried out on the same
desktop with Intel(R) Core(TM) 17-2600 CPU, 3.40 GHz and 16 GB RAM. A
minimum number of the meshes with acceptable results are employed to obtain higher

computation speed in the FEM of COMSOL Multiphysics.
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Lattice form Square Triangular
Square Circular Square Circular
Scatterer shape @
Number of nodes 433 1017 727 775
RBF Degrees of 538 1376 906 1014
freedom
Time needed [s] 2.9550 7.098 4.3150 4.882
Degrees of 2454 2058 1038 1584
FEM freedom
Time needed [s] 121 129 118 129
Errors 0.0302 0.0312 0.0115 0.0364
Comparison
Time saving 97.55% 94.49% 96.34% 96.21%

Table 7.1 Computing time and accuracy comparisons for the aluminium/mercury
phononic crystals.
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Lattice form Square Triangular
Square Circular Square Circular
Scatterer shape @
Number of nodes 433 1011 727 775
RBF Degrees of 538 1376 906 1014
freedom
Time needed [s] 2.6660 7.098 4.3300 4.6930
Degrees of 2454 2058 1038 1584
FEM freedom
Time needed [s] 121 122 118 129
Errors 0.0030 0.0159 0.0091 0.0116
Comparison
Time saving 97.79% 94.18% 96.33% 96.36%

Table 7.2 Computing time and accuracy comparisons for the iron/air phononic

Table 7.1 and Table 7.2 show that the performance of the present LRBFCM
proposed in this paper is much better than that of the FEM in general. Although the
used degrees of freedom are different in both methods, we can conclude that the
LRBFCM with a smaller number of nodes or degrees of freedom can reach a
comparable accuracy as the FEM by using a larger number of the degrees of freedom,
at least in the considered cases. A minimum element number with an acceptable
accuracy in the numerical results is employed in the FEM to obtain a higher
computational efficiency. In the case of the triangular lattice with square scatterers,
the degrees of freedom in both methods are almost the same. However, the computing
time needed by the FEM is much larger than that required by the LRBFCM. In all

cases considered here, the saving in the computing time by using the present

crystals.
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LRBFCM is larger than 94%.

In Table 7.3, the efficiency and the accuracy of the presented LRBFCM in
comparison with that of the FEM are given. Also here, the number of the used
elements in the FEM is kept at a minimum to guarantee a satisfactory accuracy on the
one hand and to reduce the required computing time on the other hand. Table 3
demonstrates again that the computational efficiency of the present LRBFCM is much
higher than that of the FEM, at least for the considered fluid/solid phononic crystals.
The accuracy of both methods is comparable, but the LRBFCM requires much less
degrees of freedom compared with the FEM. Table 7.3 shows that the saving in the
computing time by using the present LRBFCM is larger than 92% for the investigated

water/iron phononic crystals.

Lattice form Square Triangular
Square Circular Square Circular
Scatterer shape @ Q @ i O :
Number of nodes 953 1676 727 803
RBF Degrees of 1829 3132 1395 1485
freedom
Time needed [s] 14.1170 26.027 10.068 9.370
Degrees of 40513 42305 6057 2033
FEM freedom
Time needed [s] 375 364 165 139
Errors 0.0011 0.0089 0.0078 0.0039
Comparison
Time saving 96.23% 92.84% 93.93% 93.25%

Table 7.3 Computing time and accuracy comparisons for the water/iron phononic crystals.
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Lattice form Square Triangular
Square Circular Square Circular
Scatterer shape : D : @
Number of nodes 953 1676 727 803
RBF Degrees of 1829 3132 1395 1485
freedom
Time needed [s] 47.7660 129.3480 36.7830 49.3090
Degrees of 40513 42305 6057 2033
FEM freedom
Time needed [s] 1793 1859 369 231
Errors 0.0122 0.0078 0.0256 0.0136
Comparison
Time saving 99.88% 99.69% 90.03% 78.35%

Table 7.4 Computing time and accuracy comparisons for the air/iron phononic
crystals.

Table 7.4 shows the comparisons of the computing time and the accuracy for the
air/iron phononic crystals. Due to the existence of many flat bands, a larger number of
the eigenvalues are needed to obtain the band structures by both the LRBFCM and the
FEM. So the computing times in Table 7.4 are evaluated based on the numerical
calculations of the first 100 eigenvalues by both the LRBFCM and the FEM. Here, we
can see that the time saving by the present LRBFCM is more than 99% for the square
lattice and more than 78% for the triangular lattice.

The accuracy in the case of the square lattice is evaluated by comparing the
normalized eigenvalues that are smaller than 8 in the band structures of Fig. 7.16 and

Fig. 7.19, while the accuracy for the triangular lattice is assessed by using the
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normalized eigenvalues smaller than 7 in the band structures of Fig. 7.22 and Fig.
7.25. A comparison of Table 7.4 reveals that the numerical errors in the band structure
calculations for the air/iron phononic crystals are generally larger than that for the
water/iron phononic crystals due to the existence of many flat bands in the former
case induced by the large acoustic impedance ratio. In the low frequency range, the
numerically calculated flat bands by the present LRBFCM agree quite well with that
by the FEM. However, the agreement between both results becomes worse in the high
frequency range, which demands further validations and possible improvements in

both methods.

7.4 Summary

In this chapter, the LRBFCM is presented for the band structure computations of the
2D solid/fluid and fluid/solid phononic crystals. Both systems of the periodic solid
scatterers embedded in a fluid matrix (solid/fluid phononic crystals) and the periodic
fluid scatterers embedded in a solid matrix (fluid/solid phononic crystals) are
investigated by using the developed LRBFCM. The numerical results show that the
present LRBFCM is suitable and accurate for computing the band structures of the 2D
solid/fluid and fluid/solid phononic crystals when the shape parameter of the MQ RBF,
the node distribution and the number of the involved local nodes are properly chosen.
Numerical examples in this chapter also demonstrate that the present LRBFCM is
much more efficient than the FEM for the band structure computations of the elastic
and acoustic waves propagating in 2D solid/fluid and fluid/solid phononic crystals,

when a comparable accuracy in both methods is required.
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Chapter 8

Conclusions and outlook

8.1 Conclusions

In the present thesis, advanced radial basis function collocation methods (RBFCM)
are developed and applied to the band structure computations of the one-dimensional
(1D) and two-dimensional (2D) phononic crystals. Both the global and the local
RBFCM are derived based on the strong-form formulation of the partial differential
equations (PDEs) in conjunction with the corresponding boundary conditions and
interface continuity conditions. The developed RBFCM represent a type of
strong-form meshfree or meshless methods, which require only boundary and interior
nodes instead of meshes or cells needed by the domain-type discretization methods
like the FEM. Since the generation of distributed nodes is easier than the mesh or cell
generation, the pre- and the post-processing as well as the adaptive implementation of
the present RBFCM are advantageous in comparison with the domain-type
discretization methods.

By utilizing the periodicity of the phononic crystals and based on the
Bloch-theorem, a unit-cell with the appropriate periodic boundary conditions is
considered. On the interface between the scatterer and the matrix, perfect continuity
conditions for the displacement and stress components are assumed. The governing
wave equations, the boundary conditions and the interface continuity conditions
together form an eigenvalue problem for computing the dispersion relations or the
band structures of the elastic or acoustic waves, which is solved numerically by using
the developed RBFCM. In particular, three different special techniques, namely, the
direct technique, the indirect technique and the fictitious nodes technique, are
proposed for computing the spatial derivatives of the field quantities near or on the
boundary/interface, which are required by the treatment of the boundary and the
interface continuity conditions. These special techniques improve the stability and the

accuracy of the conventional RBFCM significantly. Numerical examples for the
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anti-plane elastic waves in 2D solid/solid phonic crystals as given in Chapter 5
illustrate that the direct and the indirect techniques outperform the fictitious nodes
technique, though the latter is much more flexible with respect to the node
distribution.

For the elastic wave propagation in 1D solid/solid phononic crystals, the effects
of the shape parameter, the node distance and the type of the RBFs on the accuracy
and the stability of the RBFCM are investigated and discussed, and a general rule for
choosing the shape parameter is suggested. Besides, the influences of the node
number and the node distribution (uniform and random) on the LRBFCM are also
analysed for the anti-plane elastic waves in 2D phononic crystals. Then, the developed
LRBFCM is extended and applied to the band structure calculations of the elastic
waves in 2D solid/solid phononic crystals, and the elastic/acoustic waves in 2D
solid/fluid (solid scatterers embedded in a fluid matrix) and fluid/solid (fluid
scatterers embedded in an elastic solid matrix) phononic crystals. Since the acoustic
impedance ratio is quite large, and the elastic and acoustic wave fields are rather
different, the stability of the LRBFCM in this case is more severe than that in the case
of the solid/solid phononic crystals, which demands a great deal of attention. The
developed LRBFCM are verified by using the numerical results obtained by the FEM.
A comparison with the FEM demonstrates that to guarantee a comparable accuracy
the efficiency of the present LRBFCM is much higher than the FEM. This efficiency
enhancement is attributed to the fact that the present LRBFCM rely on a strong-form
formulation and do not involve any numerical integration required by the FEM based
on the weak-form formulation of the PDEs.

Numerous representative numerical examples as presented in Chapters 4 to 7
show that the developed RBFCM in this thesis are accurate and efficient for the band
structure calculations of the elastic and acoustic waves in 1D and 2D phononic
crystals with different acoustic impedance ratios (small to large), material
compositions (solid/solid, solid/fluid, fluid/solid), filling fractions (small to large)
scatterer shapes (rectangular, square, circular and triangular), and lattice forms (square

and triangular). By using these numerical examples, the effects of the key geometrical
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and material parameters on the band structures, especially the passbands and the

bandgaps, of 1D and 2D phononic crystals are also revealed and discussed.

8.2 Outlook

Based on the improved RBFCM presented in this thesis, further future research works

on the topic are needed, which include for instance:

Further improvement and extension of the three suggested special techniques,
especially the fictitious technique, for computing the spatial derivatives of the field
quantities near or on the boundaries and interfaces for more complex geometrical
configurations.

Further enhancement of the stability, the robustness and the flexibility of the
RBFCM for the band structure calculations of elastic and acoustic waves in 2D
phononic crystals.

Sensitivity improvement of the RBFCM to the selections of the shape parameter
and the type of the RBFs, the node number and the node distribution for 2D
phononic crystals.

Extension and applications of the present RBFCM to the band structure
calculations of 3D phononic crystals.

Extension and applications of the present RBFCM to transient wave propagation

problems in 1D, 2D and 3D phononic crystals.
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