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ABSTRACT 

 

The main aim of this thesis is to develop an accurate and efficient numerical tool 

based on the radial basis function collocation method (RBFCM) for the band structure 

calculations of elastic and acoustic waves in one-dimensional (1D) and 

two-dimensional (2D) phononic crystals. Some new numerical techniques are 

proposed to accurately deal with the derivative computations of the field quantities 

near/on the boundaries/interfaces required by the boundary conditions and the 

continuity conditions on the interfaces. By using these novel numerical techniques, 

the stability of the RBFCM can be significantly improved, which leads to an enhanced 

accuracy and efficiency. Both the global RBFCM (GRBFCM) and the local RBFCM 

(LRBFCM) are presented and discussed in the thesis. Then, the accuracy and the 

efficiency of the RBFCM are verified by the numerical results obtained by the finite 

element method (FEM), and applied to the band structure computations of 1D and 2D 

solid/solid as well as 2D solid/fluid and fluid/solid phononic crystals with different 

acoustic impedance mismatches, material combinations, scatterer shapes, and lattice 

forms. The effects of the key geometrical and material parameters on the band 

structures especially the bandgaps of 1D and 2D phononic crystals are also 

investigated and discussed.    
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Kurzfassung 

 

Das Hauptziel dieser Arbeit ist es, ein genaues und effizientes numerisches Programm 

zu entwickeln, welches auf der Basis der radialen Basisfunktions-Kollokations 

methode (RBFCM) die Bandstrukturberechnung von elastischen und akustischen 

Wellen in eindimensionalen (1D) und zweidimensionalen (2D) phononischen 

Kristallen ermöglicht. Es werden einige neue numerische Techniken vorgeschlagen, 

um die Ableitungsberechnungen der Feldgrößen in der Nähe von oder auf den 

Rändern/Grenzflächen, welche für die Randbedingungen und die 

Kontinuitätsbedingungen an den Grenzflächen erforderlich sind, genau zu behandeln. 

Durch die Verwendung dieser neuartigen numerischen Techniken kann die Stabilität 

der RBFCM wesentlich gesteigert werden, was zu einer verbesserten Genauigkeit und 

Effizienz führt. Sowohl die globale RBFCM (GRBFCM) als auch die lokale RBFCM 

(LRBFCM) werden in der Arbeit vorgestellt und diskutiert. Anschließend werden die 

Genauigkeit und die Effizienz der RBFCM durch die mit der 

Finite-Elemente-Methode (FEM) erhaltenen numerischen Ergebnisse verifiziert, und 

die entwickelten RBFCM werden auf die Bandstrukturberechnung von 1D und 2D 

fest-festen sowie 2D fest-flüssigen und flüssig-festen phononischen Kristallen mit 

verschiedenen akustischen Impedanzunterschieden, Materialkombi- nationen, 

Streuerformen und Gitterformen angewandt. Die Auswirkungen der wichtigsten 

geometrischen und materiellen Parameter auf die Bandstrukturen, insbesondere auf 

die Bandlücken von 1D und 2D phononischen Kristallen werden ebenfalls untersucht 

und diskutiert. 

 

 

 

 

 

 



 

IV 
 

Acknowledgments 

This thesis was completed in the course of my research activity as a PhD candidate 

from 2012 to 2016 at the Chair of Structural Mechanics, Department of Civil 

Engineering, School of Science and Technology, University of Siegen, Germany. 

I would like to sincerely thank my advisor, Prof. Dr.-Ing. habil. Dr. h. c. 

Chuanzeng Zhang for his instructive guidance, useful suggestions, and continuous 

support during my research. His help and patience have contributed greatly to this 

thesis. I am deeply grateful for his advices over the past years.  

My sincere thanks to Prof. Dr.-Ing. Ulrich P. Schmitz as the second reviewer of 

my thesis for his precious time spent to read and check my thesis in details. I would 

like also to thank Prof. Dr.-Ing. Claus-Peter Fritzen and Prof. Dr.-Ing. Richard A. 

Herrmann acting as members of the Doctoral Commission for their time and effort.  

I would like to express my thanks to my Master supervisor, Prof. Dr. Wen Chen, 

who has helped me with the great chance to pursue my PhD study in Germany. I 

would like to extend my thanks to Prof. Yuesheng Wang, Prof. Jan Sladek and Prof. 

Vladimir Sladek for many useful discussions related to my PhD research work. The 

time and effort they spent to my research work are highly appreciated. I would like to 

thank Prof. Šarler Božidar for offering me a chance to visit his research group. 

    I highly appreciate and acknowledge many helps and supports from Dr. Longtao 

Xie and other team members at the Chair of Structural Mechanics, Department of 

Civil Engineering, School of Science and Technology, University of Siegen, Germany. 

Additionally, my sincerey thanks to Dr. Yanfeng Wang and Mr. Tianxue Ma, who 

have provided me a continuous support regarding the application of the software 

COMSOL Multiphysics. Thanks to Elias Perras, Pedro Villamil, and Benjamin Ankay 

for the translation of the abstract of my PhD thesis. Thanks to Meike Stricker for her 

great helps and supports during my stay in Siegen, Germany.  

Last but not least, I would like to thank my parents, my sister and her husband 

for their nonrestrictive love and support. This work was supported by the China 

Scholarship Council (CSC), which is gratefully acknowledged. 

September 2016, Siegen                                        Hui Zheng 



 

V 
 

Contents 
 

ABSTRACT                                                       II 

ACKNOWLEDGEMENTS                                           IV 

LIST OF FIGURES                                                IX 

LIST OF TABLES                                                 XIV 

LIST OF ABBREVIATIONS                                         XV 

 

1 Introduction  

1.1 Current state of research on phononic crystals                       1 

1.2 Numerical methods for band structure computations                 5 

1.3 Objectives of the thesis                                         8 

1.4 Outline of the thesis                                           9 

 

2 Governing equations of elastic and acoustic wave propagation in phononic 

crystals 

2.1 1D elastic wave propagation                                    12 

2.1.1 1D elastic wave equation                                   12 

2.1.2 Interface continuity conditions                              13 

2.1.3 Periodic boundary conditions                               14 

2.2 2D anti-plane elastic wave propagation                           14 

2.2.1 2D anti-plane elastic wave equation                          14 

2.2.2 Interface continuity conditions                              15 

2.2.3 Periodic boundary conditions                              16 

2.3 2D in-plane elastic wave propagation                             16 

2.3.1 2D in-plane elastic wave equations                           16  

2.3.2 Interface continuity conditions                              17 

2.3.3 Periodic boundary conditions                               17 

2.4 2D mixed elastic and acoustic wave propagation                    18 

2.4.1 Elastic wave equations and acoustic wave equation              18  



 

VI 
 

2.4.2 Interface continuity conditions                              18 

2.4.3 Periodic boundary conditions                               19 

2.4.3.1  Fluid scatterers embedded in an elastic matrix            19 

2.4.3.2  Elastic scatterers embedded in a fluid matrix              19 

 

3 Radial basis function collocation methods (RBFCM) 

3.1 Global radial basis function collocation method (GRBFCM)          20 

3.2 Local radial basis function collocation method (LRBFCM)           22 

3.3 Treatments of the boundary and interface continuity conditions        24 

3.3.1 Dirichlet boundary conditions                               24 

3.3.2 Neumann boundary conditions                              25 

3.3.3 Interface continuity conditions                              28 

3.4 Summary                                                   28 

 

4 Global RBFCM for 1D solid/solid phononic crystals                                                 

4.1 GRBFCM formulation for 1D solid/solid phononic crystals           31 

4.2 Numerical results and discussions                               32 

4.2.1 Numerical results of the inverse MQ RBF                     32 

4.2.2 Numerical results of the Gaussian RBF                        37 

4.2.3 Numerical results of the MQ RBF                            43 

4.3 Summary                                                   48 

 

5 Local RBFCM for anti-plane wave propagation analysis in 2D solid/solid 

phononic crystals 

5.1 LRBFCM formulation of the eigenvalue problems                  51 

5.1.1 Discretized governing equations                             51 

5.1.2 Discretized interface continuity conditions                     51 

5.1.3 Discretized periodic boundary conditions of square lattice         52 

5.1.4 Discretized periodic boundary conditions of triangular lattice      54 

5.2 Numerical results and discussions                               57 



 

VII 
 

5.2.1 Effects of the shape parameter                               57 

5.2.2 Aurum scatterers embedded in epoxy matrix                   58 

5.2.3 Aluminum scatterers embedded in epoxy matrix                63 

5.3 Analysis of the computational efficiency                          67 

5.4 Summary                                                   69 

 

6 Local RBFCM for in-plane elastic wave propagation analysis in 2D 

solid/solid phononic crystals 

6.1 LRBFCM formulation of the eigenvalue problems                  70 

6.1.1 Discretized governing equations                             70 

6.1.2 Discretized interface continuity conditions                     71 

6.1.3 Discretized periodic boundary conditions of square lattice         73 

6.1.4 Discretized periodic boundary conditions of triangular lattice      76 

6.2 Numerical results and discussions                               77                                          

6.2.1 Square and rectangular scatterers in square and triangular lattices   78 

6.2.2 Circular scatterers in square and triangular lattices               82 

6.2.3 Triangular scatterers in square and triangular lattices             85 

6.3 Analysis of the computational efficiency                          88 

6.4 Summary                                                 92 

 

7 Local RBFCM for wave propagation analysis in 2D solid/fluid and fluid/solid 

phononic crystals 

7.1 LRBFCM formulation of the eigenvalue problems                  94 

7.1.1 Discretized governing equations                             94 

7.1.2 Discretized interface continuity conditions                     95 

7.1.3 Discretized periodic boundary conditions                      96 

7.1.3.1 Solid/fluid phononic crystals                          96 

7.1.3.1.1 Square lattice                                    97 

7.1.3.1.2 Triangular lattice                                 97 

   7.1.3.2 Fluid/solid phononic crystals                         98 



 

VIII 
 

7.1.3.2.1 Square lattice                                    98 

7.1.3.2.2 Triangular lattice                                 99 

7.1.4 Eigenvalue equations                                     101 

7.1.4.1 Square lattice                                    101 

7.1.4.2 Triangular lattice                                 103 

7.2 Numerical results and discussions                              104 

7.2.1 Solid/fluid phononic crystals                               104 

7.2.2 Fluid/solid phononic crystals                               111 

7.3 Analysis of the computational efficiency                         119 

7.4 Summary                                                  124 

 

8 Conclusions and outlook 

8.1 Conclusions                                                125 

8.2 Outlook                                                  127 

 

References                                                        128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

IX 
 

 

LIST OF FIGURES 

1.1 1D, 2D and 3D phononic crystals……………………………………………….1 

1.2 The band structures of Ni-Al composite: Ni/Al system with the filling fraction    

f=0.1 (left) and Al/Ni system with the filling fraction f =0.75 (right) for    

transverse waves…………………………………………………………...….. 2 

1.3 A phononic sculpture consisting of periodic steel cylinders (left), and the sound    

   attenuation results (right)…..……………..…………………………………..…...3 

2.1 One-dimensional (1D) phononic crystal ………………………….……………..12 

2.2 A unit-cell of the 1D phononic crystal………………………………..…………..13 

2.3 The considered phononic crystal structures: (a1), (a2) and (a3) are the square  

   lattice, its corresponding square unit-cell and the first Brillouin zone; (b1), (b2)    

   and (b3) are the triangular lattice, its corresponding hexagonal unit-cell and the  

   first Brillouin zone…………..…………………………………………………...15 

3.1 Schematic sketch for the direct method………………………………………....25 

3.2 Schematic sketch for the indirect method……………………………………….26 

3.3 Schematic sketch for the fictitious nodes method……………………………….27 

3.4 Special node distribution for a circular boundary………………………………..30 

4.1 Band structure obtained by using inverse MQ RBF with N=19 and 0.8  …...33 

4.2 Band structure obtained by using inverse MQ RBF with N=19 and 0.9  …...34 

4.3 Band structure obtained by using inverse MQ RBF with N=19 and 1.5  …...34 

4.4 Band structure obtained by using inverse MQ RBF with N=9 and 1  …….…35 

4.5 Band structure obtained by using inverse MQ RBF with N=19 and 1  ……...36 

4.6 Band structure obtained by using inverse MQ RBF with N=29 and 1  ……...36 

4.7 Band structure obtained by using inverse MQ RBF with N=29 and 2  ……..37 

4.8 Band structure obtained by using Gaussian RBF with N=19 and 0.2  ….…...38 

4.9 Band structure obtained by using Gaussian RBF with N=19 and 0.3  ……....38 



 

X 
 

4.10 Band structure obtained by using Gaussian RBF with N=19 and 0.4  …..…39 

4.11 Band structure obtained by using Gaussian RBF with N=19 and 0.6  ……..39 

4.12 Band structure obtained by using Gaussian RBF with N=9 and 0.4  ………40 

4.13 Band structure obtained by using Gaussian RBF with N=19 and 0.4  …..…41 

4.14 Band structure obtained by using Gaussian RBF with N=29 and 0.4  …..…41 

4.15 Band structure obtained by using Gaussian RBF with N=29 and 0.2  …..…42 

4.16 Band structure obtained by using MQ RBF with N=19 and 0.4  …………..43 

4.17 Band structure obtained by using MQ RBF with N=19 and 0.5  .……….…44 

4.18 Band structure obtained by using MQ RBF with N=19 and 1  …..…………44 

4.19 Band structure obtained by using MQ RBF with N=19 and 1.2  ...…...……45 

4.20 Band structure obtained by using MQ RBF with N=9 and 0.7  …………....46 

4.21 Band structure obtained by using MQ RBF with N=19 and 0.7  .………….46 

4.22 Band structure obtained by using MQ RBF with N=29 and 0.7  ……….….47 

4.23 Band structure obtained by using MQ RBF with N=29 and 0.5  .….…...….47 

5.1 Matrix and scatterer in a unit-cell of a square lattice……………………………52 

5.2 Matrix and scatterer in a unit-cell of a triangular lattice………………………...55 

5.3 Node distribution of the aurum/epoxy phononic crystal in a square lattice with  

   square scatterers………..………………………………………………………...59 

5.4 Band structure of the aurum/epoxy phononic crystal in a square lattice with square  

   scatterers by the direct method…….……………….…………………………….59 

5.5 Band structure of the aurum/epoxy phononic crystal in a square lattice with square  

   scatterers by the fictitious nodes method…………….…………………………..60 

5.6 Convergence rates of the averaged eigenvalues for the aurum/epoxy phononic  

   crystal in a square lattice with square scatterers………..………………………...60 

5.7 Band structure of the aurum/epoxy phononic crystal in a square lattice with square  



 

XI 
 

   scatterers by the fictitious nodes method (right) with strongly disordered node  

   distribution (left)…………………..……………………………………………..61 

5.8 Band structure of the aurum/epoxy phononic crystal in a square lattice with square  

   scatterers by the fictitious nodes method (right) with weakly disordered node  

   distribution (left)…………..……………………………………………………..61 

5.9 Node distribution of the aurum/epoxy phononic crystal in a square lattice with  

   circular scatterers..………………………………………………………………..62 

5.10 Band structure of the aurum/epoxy phononic crystal in a square lattice with  

    circular scatterers by the direct and indirect methods.………………………..63 

5.11 Band structure of the aurum/epoxy phononic crystal in a square lattice with  

    circular scatterers by the fictitious nodes method…………..…………………63 

5.12 Node distribution of the aluminium/epoxy phononic crystal in a square lattice  

    with triangular scatterers………..……………………………………………..64 

5.13 Band structure of the aluminium/epoxy phononic crystal in a square lattice with  

    triangular scatterers by the indirect/direct method………..…………………...64 

5.14 Band structure of the aluminium/epoxy phononic crystal in a square lattice with  

    triangular scatterers by the fictitious nodes method…………………………….64 

5.15 Node distribution of the aluminium/epoxy phononic crystal in a triangular lattice  

    with square scatterers…………..……………………………………………….65 

5.16 Band structure of the aluminium/epoxy phononic crystal in a triangular lattice  

    with square scatterers by the direct/indirect method……………………………66 

5.17 Band structure of the aluminium/epoxy phononic crystal in a triangular lattice  

    with square scatterers by the fictitious nodes method…………………………..66 

6.1 Node distribution in a square lattice with square scatterers (Green nodes for  

   interface; Blue nodes for matrix; Red nodes for scatterer)………..……………..79       

6.2 Band structure of the aurum/epoxy phononic crystal in a square lattice with square  

   scatterers………………..………………………………………………………...79 

6.3 Band structure of the aluminium/epoxy phononic crystal in a square lattice…..79 

6.4 Convergence rate of the aluminium/epoxy phononic crystal in a square lattice 

   with square scatterers…………..……………………………………………...…80 



 

XII 
 

6.5 Node distribution of the phononic crystal in a triangular lattice………………...80 

6.6 Band structure of the aurum/epoxy phononic crystal in a triangular lattice with  

   rectangular scatterers………..……………………………………………………81 

6.7 Band structure of the aluminium/epoxy phononic crystal in a triangular lattice  

   with rectangular scatterers……..…………………………………………………81 

6.8 Node distribution of a square lattice with circular scatterers……………………82 

6.9 Band structure of the aurum/epoxy phononic crystal in a square lattice with  

   circular scatterers………………..………………………………………………..83 

6.10 Band structure of the aluminium/epoxy phononic crystal in a square lattice with  

    circular scatterers………………………………………………………………..83 

6.11 Node distribution of a triangular lattice with circular scatterers……………….84 

6.12 Band structure of the aurum/epoxy phononic crystal in a triangular lattice with  

    circular scatterers………………………………………………………………..84 

6.13 Band structure of the aluminium/epoxy phononic crystal in a triangular lattice  

    with circulars catterers………………...…………….…………………………..85 

6.14 Node distribution of the phononic crystal in a square lattice with triangular  

    scatterers………………………………………………………………………...86 

6.15 Band structure of the aurum/epoxy phononic crystal in a square lattice with  

    triangular scatterers……………………………………………………………..86 

6.16 Band structure of the aluminium/epoxy phononic crystal in a square lattice with  

    triangular scatterers……………………………………………………………..86 

6.17 Node distribution of the phononic crystal in a triangular lattice with triangular  

    scatterers………………………………………………………………………...87 

6.18 Band structure of the aurum/epoxy phononic crystal in a square lattice with  

    triangular scatterers……………………………………………………..………87 

6.19 Band structure of the aluminium/epoxy phononic crystal in a square lattice with  

    triangular scatterers……………………………………………………………..87 

7.1 Node distribution in a square lattice with square scatterers…………………...106 

7.2 Band structure of aluminum embedded in mercury……………………………106 

7.3 Band structure of iron embedded in air………………………………………...107 



 

XIII 
 

7.4 Convergence rate of the averaged eigenvalues for the aluminum embedded in the  

   mercury……………………………..……………………………………...107 

7.5 Node distribution in a square lattice with circular scatterers………………….108 

7.6 Band structure of aluminum embedded in mercury…….………………………108 

7.7 Band structure of iron embedded in air…………….………………………….108 

7.8 Node distribution in a triangular lattice with square scatterers……………….109 

7.9 Band structure of iron embedded in water……………………………………..109 

7.10 Band structure of iron embedded in air……………………………………….110 

7.11 Node distribution in a triangular lattice with circular scatterers….….………..110 

7.12 Band structure of iron embedded in water……………………………………111 

7.13 Band structure of iron embedded in air……………………………………….111 

7.14 Node distribution in a square lattice with square scatterers…….…………….113 

7.15 Band structure of water embedded in iron………………………………….113 

7.16 Band structure of air embedded in iron……………………………………….114 

7.17 Node distribution in a square lattice with square scatterers……….………….114 

7.18 Band structure of water embedded in iron……………………………………115 

7.19 Band structure of air embedded in iron……………………………………….115 

7.20 Node distribution in a triangular lattice with square scatterers….……….……116 

7.21 Band structure of water embedded in iron……………………………………116 

7.22 Band structure of air embedded in iron……………………………………….117 

7.23 Node distribution in a triangular lattice with circular scatterers……..………..117 

7.24 Band structure of water embedded in iron……………………………………118 

7.25 Band structure of air embedded in iron……………………………………….118 
 

 

 

 

 

 

 



 

XIV 
 

LIST OF TABLES 

 

3.1 Radial basis functions of various kinds……………………..……………………21 

3.2 Special techniques used for computing the normal derivatives of the primary field  

   quantity…….………………........................................................... ...............29 

4.1 Relative errors by using inverse MQ RBF with fixed N=19……...……………...33 

4.2 Relative errors by using inverse MQ RBF with fixed 1  ………………….....35 

4.3 Relative errors by using Gaussian RBF with fixed N=19…..……………...…….37 

4.4 Relative errors by using Gaussian RBF with fixed 0.4  ……..……………....40 

4.5 Relative errors by using MQ RBF with fixed N=19……...……………...………43 

4.6 Relative errors by using MQ RBF with fixed 0.7  ……..……………………46 

4.7 The effects of the shape parameter and total node number…......………………..48 

5.1 Computing time and accuracy comparisons……………………………………..67 

6.1 Computing time and accuracy comparisons (Al/epoxy)………………………...89 

6.2 Computing time and accuracy comparisons (Au/epoxy)………………………..90 

6.3 Computing time and accuracy comparisons (Al/epoxy)……………………….. 91 

6.4 Computing time and accuracy comparisons (Au/epoxy)………………………..92 

7.1 Computing time and accuracy comparisons for the aluminium/mercury phononic  

   crystals…………..………………………………………………………………120 

7.2 Computing time and accuracy comparisons for the iron/air phononic  

    crystals…………..………………………………………………………........121 

7.3 Computing time and accuracy comparisons for the water/iron phononic  

    crystals…………………………………………………………………………122 

7.4 Computing time and accuracy comparisons for the air/iron phononic  

    crystals…………………………………………………………………………123 

 

 

 

 



 

XV 
 

LIST OF ABBREVIATIONS 

 

 

 

MQ - Multiquadrics 

PC - Phononic Crystal 

TPS - Thin Plate Splines 

PDE - Partial Differential Equation 

RBF - Radial Basis Function 

FEM - Finite Element Method 

BEM - Boundary Element Method 

PWE - Plane Wave Expansion Method 

SEM - Spectral Element Method 

MST - Multiple Scattering Theory  

SAW - Surface Acoustic Wave 

FDTD - Finite Difference Time Domain Method  

DTNM - Dirichlet to Neumann Map Method  

RBFCM - RBF Collocation Method 

LRBFCM - Local RBF Collocation Method 

GRBFCM - Global RBF Collocation Method 

 



 

1 
 

Chapter 1 

Introduction 

 

1.1 Current state of research on phononic crystals 

Phononic crystals are synthetic composite materials which are formed by a periodic 

arrangement of different materials, either in one-dimensional (1D), two-dimensional 

(2D) or three-dimensional (3D) as shown in Fig. 1.1 [1]. The constituent materials 

could be gas, solid or fluid. The periodic structure of such materials has a great 

influence on the wave propagation characteristics, and the Bloch waves are usually 

formed in phononic crystals. One of the main properties of the Bloch waves is the 

possible existence of phononic bandgaps, which represents the frequency ranges in 

which the waves are forbidden to propagate through the periodic composite structures 

[2]. In 1987, the term "Photonic Crystals" (PhCs) has been firstly used to describe the 

periodic dielectric structures that prevent certain wavelengths of the electromagnetic 

wave propagation [3, 4]. Later on, Ho and Yablonovitch respectively proved the 

existence of the bandgaps in the photonic crystals numerically and experimentally 

[5-7]. Since then, the photonic crystals have been manufactured and applied to many 

problems in engineering and sciences. 

 

 

Fig. 1.1 1D, 2D and 3D phononic crystals [1].  

(The arrows indicate the wave propagation directions).  

 

The acoustic and elastic analogy of the photonic crystals is termed as phononic 

crystals, which may possess passbands and bandgaps for the acoustic or elastic wave 
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propagation in the acoustic/elastic periodic materials. The first known experimental 

investigation of phononic crystals was in 1979, although they were not referred to as 

as phononic crystals [8]. As for theoretical works, Kushwaha was the first to calculate 

the complete band structures for periodic elastic composites in 1993 [9], as shown in 

Fig. 1.2. In 1995，Martinez-Sala has made a sound attenuation experiment in a 

sculpture, and firstly reported the bandgaps experimentally [10], as shown in Fig. 1.3. 

However, the first complete phononic bandgap was only observed in the frequency 

range between 1000 and 1120 kHz in 1998 by Montero de Espinosa [11]. In recent 

years, different types of materials (elastic, piezoelectric, piezomagnetic, fluid, soft 

materials, etc.) and material combinations (solid/solid, fluid/fluid, solid/fluid, and 

fluid/solid) are used in the fabrication of phononic devices, which allows significant 

improvements on the reachable frequencies for the bandgaps [12, 13].  

 

 

 

Fig. 1.2 The band structures of Ni-Al composite: Ni/Al system with  

the filling fraction f =0.1 (left), and Al/Ni system with the filling fraction f =0.75 

(right) for transverse waves. The hatched areas designate bandgaps [14]. 
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Fig. 1.3 A phononic sculpture consisting of periodic steel cylinders (left), 

and the sound attenuation results (right) [10]. 

 

In phononic crystal structures, complete bandgaps may appear which are 

independent of the direction of the acoustic or elastic wave propagation. In contrast, 

when bandgaps are only for certain directions of the wave propagation, they are 

referred to as directional bandgaps. Within the bandgaps, the phononic crystal 

behaves as a perfect non-absorbing acoustic mirror of the incident waves at the 

corresponding frequencies. The central frequency of the bandgap is determined by the 

size, periodicity, filling and arrangement of the scatterers or inclusions. There are two 

main physical mechanisms to explain the bandgap phenomena in phononic crystals. 

One is based on the Bragg-scattering theory, which describes the diffraction of the 

acoustic or elastic waves by the scatterers or inclusions [15]. However, according to 

the Bragg-scattering theory, the periodicity of the phononic crystal structures must be 

strictly preserved, which may limit their practical applications. The second 

mechanism was introduced later in 2000 by [16], who proposed a new type of 

periodic phononic structures with three material components, which are often termed 

as the locally resonant phononic structures. When such periodic structures are excited 

by the incident acoustic or elastic waves at certain frequencies, the scatterers resonant 

and interact with the incident waves stops the wave propagation and thus results in the 

bandgaps. In comparison to the Bragg-scattering mechanism, the locally resonant 

mechanism has two essential advantages: 1.) The wave-length related to the bandgaps 

could be much larger than the lattice constant, and 2.) the scatterers could be not 
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strictly periodically distributed. The band structure of the locally resonant phononic 

crystals is mainly dependent on the resonant structures of the scatterers rather than the 

lattice constant [17]. Further works on locally resonant phononic crystals can be 

found for instance in [18-21].    

It is difficult to realize a perfect periodicity in the engineering applications, this 

difficulty in the real engineering may lead to the defect or disordered states and the 

localizations of the acoustic or elastic waves in phononic crystals [22-31]. Phononic 

crystal structures with a quasi-periodicity or random disorders were investigated in 

[32-35]. Previous works have shown that the acoustic or elastic waves could be 

trapped inside the point or line defect and therefore cannot propagate through the 

phononic crystals. Based on this fact, a directional tuning and a localization could be 

achieved to guide the propagation of the acoustic or elastic waves by introducing 

certain kinds of defects, such as by replacing or removing some of the scatterers in a 

phononic crystal, or by changing their periodic arrangement irregular. Control and 

manipulation of the acoustic and elastic wave propagation by intentionally imposing 

some kinds of the defects into the periodic structures is an important research topic of 

phononic crystals. 

Besides the wave localization by defects, the surface localization of the acoustic 

and elastic waves is another important characteristic of the phononic crystals. When 

the Bloch waves propagate near the surface, the wave energy can be localized near the 

surface under certain conditions. The amplitude of the surface waves decreases as the 

distance from an interior observation point to the surface increases. Surface acoustic 

waves (SAWs) have many important applications in the engineering and and sciences 

[36-41]. Hence, it is still a top research subject of phononic crystals. 

According to the aforementioned facts, there are many promising and innovative 

applications of the phononic crystals in engineering and sciences. The bandgap theory 

has already been applied to the fish school structure, trees planting distribution, 

acoustic rectifier and so on [42-45]. The wave tuning and localization by defects can 

be utilized in the design of acoustic filters, wave guides, wave couplers and wave 

splitters [46-49]. The band structures of phononic crystals may also lead to negative 
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refractions, negative effective mass density, negative effective elastic moduli, which 

can be applied to focusing and directional control of the acoustic and elastic waves, 

and so on [50-53]. 

 

1.2 Numerical methods for band structure computations 

Due to the wide-range and promising applications of the phononic crystals, different 

numerical methods have been developed to calculate the band structures of the 

phononic crystals, such as the plane wave expansion (PWE) method, the multiple 

scattering theory (MST), the wavelet method, the finite difference time domain 

(FDTD) method, the finite element method (FEM) the boundary element method 

(BEM), the Dirichlet-to-Neumann map (DtN-map) method, the spectral element 

method (SEM), the radial basis function collocation methods (RBFCM) and so on. 

However, each of these numerical methods has its advantages and disadvantages, 

which are briefly reviewed in the following.  

The plane wave expansion (PWE) method is one of the most popular methods in 

phononic band structure calculations [54-58]. It considers the periodic composite 

structure as an inhomogeneous continuous medium, and takes the displacements, the 

elastic constants and the mass density as periodic functions in the space. By 

considering the Bloch-theorem and using Fourier-series, the inhomogeneous wave 

equations are expanded into an infinite series form in the first Brillouin zone. The 

PWE method has already been applied to many cases of phononic crystals [59-63]. 

However, the PWE method is inaccurate in dealing with phononic crystals with large 

acoustic impedance mismatches between the scatterers and the matrix, especially for 

the solid/fluid and fluid/solid phononic band structure calculations, which requires 

some special techniques [64, 65]. 

The finite element method (FEM) is an important and general-purpose numerical 

technique in almost every field of engineering and sciences, and it has been indeed 

applied to the phononic band structure calculations [66-70]. However, the FEM is not 

quite suitable for handling the imperfect interfaces, because different unit-cell must be 

adopted according to the interface conditions. When dealing with those phononic 
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crystals with a high acoustic impedance ratio, such as solid/fluid or fluid/solid 

phononic crystals [71], a large number of elements must be used, which may reduce 

the efficiency of the FEM.  

The finite difference time domain method (FDTD) is also very common in the 

band structure analysis of the phononic crystals [72-75]. When evaluating the wave 

band structures, the FDTD always considers the time- and the space-dependences of 

the problems together, and then the eigenvalues will be obtained by using the Fast 

Fourier-transform (FFT) from the time-domain to the frequency-domain. This 

procedure is quite time consuming, and also a large number of girds are needed when 

dealing with the solid/fluid or fluid/solid phononic systems by the FDTD method.  

The Dirichlet-to-Neumann (DtN) map method uses too many small matrices and 

is only suitable for simple scatterer shapes such as circular and spherical scatterers 

[76-81]. The complicated fundamental solutions and the singularity problems in the 

boundary element method (BEM) could limit its wide applications, especially in 3D 

cases [82-88]. 

    The meshless methods have been developed and applied to many problems of 

engineering and sciences in the past two decades, including fluid dynamics, solid 

mechanics, and so on [89-93]. Due to their wide-range applications, many application 

examples of various kinds can be found in the literature [94-97]. Among several types 

of the meshless methods, one of them is based on the radial basis functions (RBFs) 

and especially useful [98]. In 1990s, Kansa first utilized the RBFs to deal with the 

multivariate data for the solution of the partial differential equations (PDEs), which is 

known as the Kansa’s method or the RBF collocation method (RBFCM) [99, 100]. 

The advantages of the RBFCM for solving PDEs lie in its simplicity, broad 

applicability to various kinds of problems, high accuracy and effectiveness in dealing 

with complicated geometries. Different from the general idea of the RBFCM, many 

other variants of the meshless methods have been also proposed and developed, such 

as the finite point method (FPM) [101], the meshless local Petrov-Galerkin method 

(MLPGM) [102], the method of fundamental solution (MFS) [103], the boundary 

knot method (BKM) [104], and so on [105-107]. The existence, uniqueness and 
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convergence of the RBFCM have been extensively studied [108, 109]. However, in 

the RBFCM simulation process, an asymmetric and fully populated matrix of a 

system of the linear equations will be generated, which may cause a high condition 

number and affect the stability of the method. In order to deal with the asymmetric 

matrix, some methods have been proposed and developed to avoid the difficulties 

associated with the asymmetric matrix, such as the RBF Hermite-collocation method 

[110], the modified Kansa’s method (MKM) [111]. However, the matrix generated in 

both symmetric and asymmetric RBFCM still remains a fully populated matrix, thus 

the computational cost and the condition number are becoming large as the number of 

the nodes increases. For the above mentioned reasons, the applications of the 

conventional global RBFCM (GRBFCM) are limited to small-scale problems. Many 

techniques have been suggested to reduce the computational cost and the condition 

number of the system matrix in the RBFCM, such as the domain decomposition 

method [112, 113], the multi-grid approach [114], the improved truncated singular 

valued decomposition (SVD) method [115], the compactly supported RBFs [116], the 

greedy algorithm [117, 118], the extended precision arithmetic [119], and so on [114, 

115, 120, 121]. All these techniques bring a substantial complication of the original 

GRBFCM. However, one of the significant improvements is the local RBF 

collocation method (LRBFCM) or RBF finite difference method (RBF-FD) [121]. 

The key feature of the LRBFCM is that the collocation takes place on overlapping 

local domains, which could reduce the size of the collocation matrix without a 

remarkable loss of the accuracy. As the efficiency of the LRBFCM becomes improved 

in comparison with its global version, it has been applied to many complicated 

problems, including large-scale industrial problems [122-124]. Another numerical 

trouble in both the GRBFCM and the LRBFCM is the existence of the unbalanced 

errors between the approximated quantities near or on the boundaries and in the 

interior domain, which limits the applications of the RBFCM [125]. To overcome this 

difficulty, the technique of the weighted boundary conditions has been suggested to 

keep the errors in the interior domain and near or on the boundaries almost on the 

same level [126]. However, how to weight the boundary conditions and the interface 
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continuity conditions in multi-domain composite structures and in elastodynamics still 

remains an unresolved problem, and only few works can be found in the literature[127, 

128]. In particular, the formulations and the applications of the GRBFCM and 

LRBFCM for band structure computations of the acoustic and elastic waves in 

phononic crystals or periodic structures have been very rarely reported so far.  

There are also several other methods, such as the transfer matrix method [32-34], 

the lumped-mass method [129], the variational method [130] and so on [2, 39, 

131-134], but they are rather limited to special geometrical configurations or material 

combinations. It should be mentioned here that none of the above mentioned methods 

is perfect for every case of the phononic crystals. Thus, there is still a great demand 

on developing more efficient and accurate numerical methods to simulate the wave 

propagation phenomena in phononic crystals. 

 

1.3 Objectives of the thesis   

Motivated by the above mentioned facts, the present thesis is devoted to the 

development and applications of the RBFCMs for band structure computations of the 

acoustic and elastic waves in one-dimensional (1D) and two-dimensional (2D) 

phononic crystals or periodic structures. The primary objectives of the thesis are: 

 Formulation and numerical implementation of a global RBFCM or GRBFCM for 

the band structure computations of the elastic waves in 1D solid/solid phononic 

crystals. 

 Formulation and numerical implementation of a local RBFCM or LRBFCM for the 

band structure computations of the anti-plane elastic waves in 2D solid/solid 

phonon crystals. 

 Formulation and numerical implementation of a LRBFCM for the band structure 

computations of the in-plane elastic waves in 2D solid/solid phononic crystals. 

 Formulation and numerical implementation of a LRBFCM for band structure 

computations of the elastic/acoustic waves in 2D solid/fluid phononic crytsals 

(solid scatterers embedded in a fluid matrix) and fluid/solid phononic crystals 

(fluid scatterers embedded in a solid matrix). 
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 Development of novel techniques for computing the derivatives of the field 

quantities near or on the boundaries and the interfaces between the scatterer and 

the matrix, to improve the stability and the accuracy of the RBFCM. 

 Verification and applications of the developed RBFCM for band structure 

computations of elastic/acoustic waves in 1D and 2D phononic crystals for 

different acoustic impedance ratios (small to large), material combinations 

(solid/fluid or fluid/solid), scatterers’ shapes (rectangular, circular or triangular) 

and lattice forms (square and triangular). 

 Investigation of the wave propagation phenomena, especially the passbands and 

the bandgaps, in 1D and 2D phononic crystals. 

 

1.4 Outline of the thesis         

In this introductory chapter, the concept and the applications of the phononic crystals 

are described, and the numerical techniques especially the RBFCM for the band 

structure computations of phononic crystals are briefly reviewed and discussed.  

In Chapter 2, the governing equations, the periodic boundary conditions, and the 

interface continuity conditions for elastic and wave propagation problems in 

one-dimensional (1D) and two-dimensional (2D) periodic structures are formulated. 

In particular, the wave propagation problems of 1D elastic waves, 2D anti-plane 

elastic waves, 2D in-plane elastic waves and 2D mixed elastic/acoustic waves in 

periodicn structures are described and discussed. 

In Chapter 3, the key steps of the global RBFCM and local RBFCM (LRBFCM) 

are presented and discussed in details. Special numerical techniques are proposed to 

accurately compute the spatial derivatives of the field quantities near or on the 

boundaries and interfaces, which are required for the treatments of the interface and 

boundary conditions. The suggested special numerical techniques improve the 

stability of the RBFCM significantly.  

Chapter 4 is devoted to the global RBFCM and its applications to the band 

structure calculations of 1D solid/solid phononic crystals. The stability of the global 

RBFCM for 1D solid/solid phononic crystals is tested by using three types of the 
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RBFs. The numerical results obtained with different node distributions and shape 

parameters are verified by comparing them with the exact solutions. Some useful 

relationships between the shape parameter and the node distribution are established 

and suggested. 

In Chapter 5, the LRBFCM is presented and applied to the band structure 

computations of the 2D anti-plane elastic waves propagating in 2D solid/solid 

phononic crystals. The LRBFCM formulation to discretize the governing equation of 

the anti-plane elastic waves, the periodic boundary conditions and the interface 

continuity conditions in 2D solid/solid phononic crystals is derived, which results in 

an eigenvalue problem for computing the elastic wave band structures. The direct 

method, indirect method and fictitious nodes method are applied and compared to 

deal with the boundary and interface continuity conditions. The numerical efficiency 

of the developed LRBFCM in comparison with the FEM is investigated and discussed 

in details. 

Chapter 6 presents the LRBFCM and its applications to the band structure 

calculations of the in-plane elastic waves in 2D solid/solid phononic crystals. The 

corresponding eigenvalue problem is formulated by using the discretized equations of 

the elastic wave motion, the periodic boundary conditions of the unit-cell and the 

interface continuity conditions between the scatterer and the matrix, based on 

LRBFCM for the in-plane elastic waves propagating in 2D solid/solid phononic 

crystals. For different acoustic mismatches, scatterer shapes and lattice forms, 

numerical results are presented and compared with the FEM results. The efficiency of 

the present LRBFCM is analysed and discussed by comparing the numerical results 

with those of the FEM. 

In Chapter 7, the LRBFCM is developed and applied to the band structure 

calculations of the mixed elastic/acoustic wave propagation problems in 2D 

solid/fluid and fluid/solid phononic crystals. Here, both the elastic solid scatterers 

embedded into a fluid matrix and the fluid scatterers embedded into an elastic solid 

matrix are considered. The LRBFCM is developed to discretize the governing 

equations of the wave motion, the periodic boundary conditions of the unit-cell and 
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the continuity conditions on the interface between the scatterer and the matrix, which 

results in an eigenvalue problem for computing the band structures of the 

elastic-acoustic wave propagating in 2D solid/fluid and fluid/solid phononic crystals. 

The stability, accuracy and efficiency of the developed LRBFCM are verified by 

comparing the numerical results with those obtained by the FEM. The effects of the 

materials combination (solid elastic scatterers in a fluid matrix or fluid scatterers in an 

elastic solid matrix), the scatterer shapes (square and circular) and the lattice forms 

(square and triangular) on the band structures of the elastic/acoustic waves in 2D 

solid/fluid and fluid/solid phoninc crystals are also revealed and discussed.    

In the last chapter, the essential conclusions from this thesis are given and some 

related future works are pointed out. 
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Chapter 2 

Governing equations of elastic and acoustic wave propagation in 

phononic crystals 

 

2.1 1D elastic wave propagation 

 

2.1.1 1D elastic wave equation 

 

 

Fig. 2.1 One-dimensional (1D) phononic crystal. 

 

Fig. 2.1 depicts an infinite periodic composite structure or one-dimensional phononic 

crystal that consists of the material 1 and the material 2. In this case, the 

time-harmonic elastic wave propagation can be described by  

2 2

2 2

j
j

j

du
u

dx c


 ,  j=1, 2， (2.1.1) 

a

2a1a

x

where 
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, longitudinal wave,
, anti-plane transverse wave

j
j x

j
z

u
u

u


 


 

denotes the longitudinal or the anti-plane displacement of the material j (j=1,2),   

is the circular frequency,  

/ , longitudinal wave,

/ , anti-plane transverse wave

j j

j

j j

E
c



 




 


 

denotes the longitudinal and the transverse wave speed, 
(3 2 )j j j

j
j j

E
  

 





is the 

Young's modulus with j  and j  being Lame’s constants, j  is the mass density, 

and j=1, 2 represents the material 1 and 2. For the sake of brevity, the common term 

i te   in all field quantities is omitted throughout the thesis, where i  is the imaginary 

unit.   

 

2.1.2 Interface continuity conditions 

Due to the periodicity of the 1D phononic crystal structure and based on the 

Bloch-theorem, only a unit-cell has to be considered as shown in Fig. 2.2. Here, 1  

and 2  are the boundaries of the unit-cell, 0  is the interface between the two 

neighbouring sub-layers 1D  and 2D  denote the domains of the two materials, 

1 2a a a   is the 1D lattice constant or the length of a unit-cell of the 1D phononic 

crystal. 

 

Fig. 2.2 A unit-cell of the 1D phononic crystal. 

1

1D
2D

0 2

1a 2a
a

x
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On the interface 0x , the displacement and stress continuity conditions are given 

by  

 
0 0

1 2( ) ( ),u u x x  (2.1.2) 

 
0 0

1 2( ) ( ),  x x  (2.1.3) 

where 

, longitudinal wave,

, anti-plane transverse wave,

j
x

j
j

j
z

j

duE
dx

du
dx








 



 

represents the stress component in the material j (j=1,2).  

 

2.1.3 Periodic boundary conditions 

According to the Bloch-theorem, the general displacement solution in the 1D 

phononic crystal can be written as 

 ( ) ( ) ,ikau x a u x e   (2.1.4) 

where k is the wave vector. With Eq. (2.1.4), the periodic boundary conditions of the 

unit-cell can be stated as follows 

 
1 2

1 2( ) ( ),ikau e u

 x x  (2.1.5) 

 
1 2

1 2( ) ( ),ikae 

 x x                      (2.1.6) 

where 
1

1( )u x ,
2

2 ( )u x , 
1

1( ) x  and 
2

2 ( ) x  denote the displacement and the 

stress component located on the boundaries 1  and 2 , respectively. 

 

2.2 2D anti-plane elastic wave propagation  

 

2.2.1 2D anti-plane elastic wave equation 

A 2D phononic crystal is composed of straight and infinite cylinders of a square or 

triangular array with the lattice constant a, as shown in Fig. 2.3. The cross-sections of 

the inner domains or scatterers might be arbitrary. If the propagation of the elastic 
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wave is in the transverse plane (x–y plane) normal to the cylinder axis (z-axis), then 

we have the anti-plane transverse wave mode with the displacement perpendicular to 

the cylinders. The governing equation describing the anti-plane transverse wave 

motion can be expressed as 

 2( ) ( ) 0,       ( 0,1),j j j ju u j     x x              (2.2.1)  

where   is the Laplace operator, u  is the displacement along the z-direction,   

is the circular frequency,   and   are the mass density and the shear modulus, 

respectively. The quantities with the subscript ‘‘0’’ are referred to the matrix, while 

those with the subscript ‘‘1’’ are to the scatterers.  
 

 

 
Fig. 2.3 The considered phononic crystal structures: (a1), (a2) and (a3) are the square 
lattice, its corresponding square unit-cell and the first Brillouin zone; (b1), (b2) and 
(b3) are the triangular lattice, its corresponding hexagonal unit-cell and the first 
Brillouin zone. 
 
 
2.2.2 Interface continuity conditions 

According to the Bloch theorem, the elastic wave field are expressed as a periodic 

function in the phononic crystal structure. In this thesis, the periodic conditions are 

only applied to the boundaries in a unit-cell. The continuity conditions at the interface 
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between the matrix and the scatterer are employed as follows 
 

 
0 0 01 0 0( ) ( ), ,u u   x x x                   (2.2.2) 

 
0 0 01 0 0( ) ( ), ,T T   x x x  (2.2.3) 

where 
1( )T x  and 

0 ( )T x  are the traction vectors. ( )T x  in the anti-plane elastic 

problems can be expressed as 
( )( ) uT 






xx
n

,                      (2.2.4) 

where  ,
T

x yn nn  is the unit normal vector perpendicular to the interface. 

 
2.2.3 Periodic boundary conditions 
By using the Bloch theorem, the displacement of anti-plane elastic wave can be 

expressed as  

 ( ) ( ),iu e u  k ax a x                  (2.2.5) 

( ) ( ),iT e T  k ax a x                      (2.2.6) 

where ( , )x yk kk  is the Bloch wave vector composed from the reciprocal lattice 

vectors ib ( 2i j ij a b ), ( )u x  and ( )T x  are the displacement and the traction 

satisfying the Bloch periodicity conditions. 1i   , 
1 1 2 2m m a a a  with 

  2
1 2,m m Z m , 

1a  and 
2a  are the fundamental translation vectors of the lattices. 

On the boundary of the unit-cell, the Bloch periodic condition (2.2.5) and (2.2.6) 

apply. 

 

2.3 2D in-plane elastic wave propagation 

 

2.3.1 2D in-plane elastic wave equations 

Let us consider time-harmonic in-plane elastic waves propagating in 2D phononic 

crystals as shown in Fig. 2.3. The elastic waves are propagating in the xy-plane, and 

the corresponding elastodynamic governing equations in the absence of body forces 
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are given by 

 
22 2

2
2 2

( )( ) ( )( 2 ) ( ) ( )
jj j
y jx x

j j j j j j x

uu u u
x y x y

      
 

     
   

xx x x  (2.3.1) 

 
2 2 2

2
2 2

( ) ( ) ( )( 2 ) ( ) ( )
j j j
y y jx

j j j j j j y

u u u u
y x x y

      
  

     
   

x x x x  (2.3.2) 

where j , j  and j  are the Lame’s constant, mass density and shear modulus, 

j
xu  and j

yu  are the displacements in the x- and y-directions,   is the circular 

frequency, and 0,1j  denotes domain 
jD . 

 

2.3.2 Interface continuity conditions 

On the interface
0

, the displacement continuity conditions and the traction 

equilibrium conditions of in-plain elastic problem can be written as 

 
1 0 1 0

0( ) ( ), ( ) ( ), ,x x y yu u u u  x x x x x              (2.3.3) 

         1 0 1 0
0,    ,       ,x x y y     x x x x x              (2.3.4) 

where ( )xu x  and ( )yu x  are the displacement components in x- and y-directions, 

respectively. ( )xT x  and ( )yT x  are the traction components in x- and y-directions. 

 

2.3.3 Periodic boundary conditions 

According to the Bloch theory, the displacements and the tractions of the in-plain 

elastic wave can be expressed as  

 ( ) ( ),i
x xu e u  k ax a x    ( ) i

y yu e u  k ax a x , (2.3.5) 

 ( ) ( )i
x xT e T  k ax a x ,   ( ) ( )i

y yT e T  k ax a x ,   (2.3.6) 

where 
x xx x xy yT n n    and 

y xy x yy yT n n    are the traction components of the 

in-plain elastic wave, ,  xx xy  and 
yy  are the stress components, and 

( ) ( ), ( )
T

x yn n   n x x x  is the unit normal vector. On the boundaries of the unit-cell, 

the Bloch periodic conditions (2.3.5) and (2.3.6) can be applied.  
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2.4 2D mixed elastic and acoustic wave propagation 
 

2.4.1 Elastic wave equations and acoustic wave equation 

The governing equation of elastic waves in solid are given the same as (2.3.1) and 

(2.3.2), which can be written as 

 
22 2

2
2 2

( )( ) ( )( 2 ) ( ) ( )yx x
s x

uu u u
x y x y

      
 

     
   

xx x x ,  

 
2 2 2

2
2 2

( ) ( ) ( )( 2 ) ( ) ( )y y x
s y

u u u u
y x x y

      
  

     
   

x x x x ,  

where  , s  and   are the Lame’s constant, mass density and shear modulus of 

the solid, j
xu  and j

yu  are the displacements in the x- and y-directions in the solid. 

The governing equation of water pressure waves in the ideal fluid field are expressed 

as 

2 2
2

2 2
fp p p

x y K



 

  
 

,                    (2.4.1)                       

where p, f  and K are respectively the pressure, density and the bulk modulus of the 

fluid.  
 
 

2.4.2 Interface continuity conditions 

The continuity conditions on the interface 0  of the fluid/solid or solid/fluid systems 

are the same. The acceleration in the normal direction perpendicular to the interface 

should be continuous, which can be expressed as 

 0,f
p




 


un
n

                    (2.4.2) 

where    2, ,
T T

x y x yu u u u u =  is the acceleration vector of the elastic solid on 

the interface. The equilibrium conditions of the tractions on the solid/fluid interface in 

the direction perpendicular to the interface can be expressed as 

x xT pn ,   y yT pn ,                 (2.4.3) 
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where the traction  x xx x xy yT n n    and y xy x yy yT n n   are the traction 

components of the in-plain elastic wave in the solid.  

 

2.4.3 Periodic boundary conditions 

The periodic boundary conditions of the mixed elastic and acoustic waves for 

‘‘fluid/solid’’ and ‘‘solid/fluid’’ systems are different, which are described separately 

in the following. 
 

2.4.3.1 Fluid scatterers embedded in an elastic matrix 

In the fluid/solid system, the periodic boundary conditions are applied to the elastic 

wave field in the solid matrix. According to the Bloch theorem, the elastic wave field 

in the phononic crystal is expressed as periodic functions. Hence the displacements 

and the tractions of the elastic waves can be written as  

    ( ) i
x xu e u  k ax a x ,    ( ) i

y yu e u  k ax a x ,             (2.4.4) 

 ( ) ( )i
x xT e T  k ax a x ,     ( ) i

y yT e T  k ax a x .            (2.4.5) 

 
 
 

2.4.3.2 Elastic scatterers embedded in a fluid matrix 

In the solid/fluid system, the periodic boundary conditions are only applied to the 

pressure wave field of fluid scatterers, which can be expressed as 

 ( ) ( ),ip e p  k ax a x      (2.4.6) 

 ( ) ( )ip pe 
 

 

k ax a x
n n

, (2.4.7) 
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Chapter 3 

Radial basis function collocation methods (RBFCM) 
 
The radial basis function collocation method (RBFCM) or the Kansa’s Method is a 

well-known strong-form meshfree or meshless method. The key features of the 

RBFCM are the high-order accuracy, and the flexibility with respect to geometry. The 

RBFCM does not require a mesh or grid and only utilize the distance between 

distributed nodes in the computational domain. Thus, its extensions to higher 

dimensions do not increase the difficulty of the method. Due to its simplicity and 

effectiveness, the RBFCM is becoming more and more popular in different areas of 

engineering and sciences. In this chapter, the general idea of the RBFCM will be 

described and discussed for both the global and the local RBFCM. Three special 

numerical techniques for the spatial derivative calculations, which are required by the 

treatments of the boundary conditions, are presented.  

 

3.1 Global radial basis function collocation method (GRBFCM) 

In the RBFCM, the general solution ( )u x  is assumed as  

1
( ) ( )

N

n n
n

u  


 x x x ,                   (3.1.1) 

where N is the total number of all used nodes,   is the RBF that we choose and n  

are the unknown coefficients that we need to compute, nx x  is the Euclidean 

distance between x  and nx .  In Table 3.1, some frequently used RBFs are 

summarized, where   is the shape parameter and nr  x x . How to choose the 

optimal shape parameter is still a top issue in the scientific community. For simplicity, 

we take the following boundary value problem as an example 

 ( ) ( )Lu fx x ,  x ,                   (3.1.2) 

 ( ) ( )Bu hx x ,  1x ,                   (3.1.3) 
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 ( ) ( )u gx x ,   2x ,                  (3.1.4) 

where   is the problem domain considered, 1  is the Neumann boundary, 2  is 

the Dirichlet boundary, L and B are the differential operators in   and on 1 , 

respectively, and f(x), h (x) and g (x) are the given functions. With the RBF 

approximation in (3.1.1), the boundary value problem defined by Eqs. (3.1.2) to (3.1.4) 

can be recast into the following discretized form: 

 
1

( ) ( )
N

n n
n

L f 


  x x x ,          x ,            (3.1.5) 

 
1

( ) ( )
N

n n
n

B h 


  x x x ,          1x ,           (3.1.6) 

 
1

( ) ( )
N

n n
n

g 


  x x x ,          2x ,            (3.1.7) 

after the unknown coefficients have been evaluated from Eqs. (3.1.5) to (3.1.7), other 

information could be obtained by using (3.1.1). 

 

Linear r  

Cubic 3r  

Polyharmonic 2 1,nr n N   

Polyharmonic 2 ln ,nr r n N  

Thin-plate spline (TPS) 2 lnr r  

Multiquadric (MQ) 2 2r    

Inverse multiquadric   (inverse MQ) 
2 2

1
r







 

Gaussian 2

2exp r




 
  

 
 

Table 3.1 Radial basis functions of various kinds [98]. 
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3.2 Local radial basis function collocation method (LRBFCM)  

In this section, a brief introduction of the local RBFCM (LRBFCM) is given. Unlike 

the global RBFCM as described in section 3.1, the LRBFCM approximates the field 

quantity with only a small number of local nodes in the neighbourhood of the 

considered node by using 

  

 
1

( )
sN

n n
n

u  


 x x x ,                   (3.2.1) 

where sN  is the total number of the involved local nodes, n denotes the nth local 

node,   is the RBF, and n  are the unknown coefficients related to the field 

quantities ( )nu x , which can be expressed as follows  

1
n

 u  .                       (3.2.2) 

In Eq. (3.2.2), 1[ ( ),..., ( )]
s

T
N= u uu x x  is the vector of the field quantities with the 

size of sN ,  1 2[ , ,..., ]
s

T
n N=     is the vector of the unknown coefficients with 

the size of sN , and 1 , s
m n m n N 

     x x   is the RBF interpolation matrix with 

the size of s sN N . According to Eq. (3.2.2), Eq. (3.2.1) can be expressed as 

1

1
( ) ( ) ,

sN

n n
n

u   



  x x x u                  (3.2.3) 

where 

1( ),...., ( )
sN    

 
x x x x .       

        
 (3.2.4) 

In Eq. (3.2.3), 1  is a vector with the size of sN  related to the local field 

quantities. For convenience, the following definition is introduced 

1( ) ( )  x x ,                     (3.2.5) 

then the field quantity given in Eq. (3.2.3) can be expressed as follows 

( ) ( )u x x u .                       (3.2.6) 
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It is straightforward to reformulate the vector ( )x  to a global vector by 

inserting zeros at the proper positions. For simplicity, we define the global vector 

( )x  with the size of N  mapped from the local one with the size of sN , where N  

is the total number of the global nodes, and u  is the global field vector. Then we can 

obtain 

local ( )      global ( ),
local     global ,





 x x
u        u              (3.2.7) 

where  1 2( ), ( ),..., ( ) T
Nu u uu x x x  is the vector of the field quantity in the global 

domain with the size of N . The global vector 1 2( ) [ ( ), ( ),..., ( )]N  x x x x  with 

the size of N  is a sparse vector related to the local vector. When x  is not located 

on the local nodes, then ( ) 0 x . By using the relationship of (3.2.7), the Eq. (3.2.6) 

can be expressed as  

( ) ( ) ( )u  x x u x u  ,              (3.2.8) 

where the unknown vector u  in Eq. (3.2.8) can be determined by using the 

governing partial differential equation and the boundary conditions. It should be noted 

here that the partial derivative of ( ) x  is related to the partial differentiation of 

( ) x , while 1  is a constant matrix, i.e., 

1( ) ( ) ( )global   local ,
i i ix x x

  
 

  

x x x 
      (3.2.9) 

while otherwise the partial derivative of ( ) x  is a Dirac-delta function which 

results in 

, ,
( ) ( ) =

0, ,n

xn n
xn

n

u
u u


  


xx

x x
x x u

x x
             (3.2.10) 

where the subscript n denotes the nth element of a vector, i.e., the corresponding field 

quantity at the nth node nx = x . By substituting Eq. (3.2.8) back to Eqs. (3.1.2)

-(3.1.4) we obtain  

( ) ( )Lu L f x u = x ,                      (3.2.11) 
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( ) ( )Bu B h x u = x ,                      (3.2.12) 

( ) ( )u gx u = x .                      (3.2.13) 

By using Eqs. (3.2.11)-(3.2.13), the LRBFCM calculates the unknown field quantity 

vector u  instead of the unknown coefficient vector  .  

 

3.3 Treatments of the boundary and interface continuity conditions 

One critical issue of the strong-form LRBFCM is its stability, which is closely related 

to the numerical approximation of the boundary conditions, especially in the analysis 

of dynamic problems. In this section, we give some detailed discussions on the 

numerical treatments of the Dirichlet and Neumann boundary conditions separately. 

In particular, we present our new special techniques for the treatments of the 

Neumann boundary conditions. We will show that the new special techniques 

proposed in this thesis can greatly improve the stability of the RBFCM.  

 
3.3.1 Dirichlet boundary conditions      
In the case of the Dirichlet boundary conditions, the quantity u is known on the 

Dirichlet boundary. Then the governing Eq. (3.1.2) can be expressed as follows 

1 1 2 2
( ) ( ),Lu L L L f       x u = u u x            (3.3.1) 

where 2
u  and 1u  are the vectors on 2  and in 1  , 

1 2
, ,L L L 

 
 =    

and 
1 2
,

T

 
   u u u . Since 2

u  is already given, 2 2
L  u  can be evaluated 

analytically and moved to the right-hand side. Then Eq. (3.3.1) is converted to 

 
1 1

( ) ( ),bL f f    u x x x ,          (3.3.2) 

where 
2 2

( )bf L   x u . From Eq. (3.3.2), only the nodes in 1  are needed for 

the calculation of the unknown quantities, and in this manner a smaller matrix is 

formed. We should notice here that the Eq. (3.3.2) has already taken the Dirichlet 

boundary conditions into account exactly. By giving the same consideration to the Eq. 

(3.1.3), the unknown field quantity u  can be evaluated, where the Dirichlet 

boundary conditions are taken into account exactly. 
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3.3.2 Neumann boundary conditions 
In the case of the Neumann boundary conditions, the situation is much more 

complicated, because it requires the computation of the normal derivatives /u n  

of the field quantity. For this purpose, we propose three special methods to compute 

the normal derivatives. 

 

Fig. 3.1 Schematic sketch for the direct method. 
 

Method 1: Direct method 

As shown in Fig. 3.1, let us consider a boundary node whose normal derivative should 

be calculated. Instead of using the information of the nearby nodes, we use the 

information of some adjacent nodes only in the n  direction. Then /u n  can be 

easily evaluated. Our own numerical experiences show that this method greatly 

increases the stability of the RBFCM, because the calculation of the normal 

derivatives of the boundary nodes for 2D or 3D case is actually reduced to a 1D case 

in the n  direction. However, this method needs some interior nodes exactly in the n  

direction, which limits the applicability of the method. To overcome this difficulty, we 

propose two other special methods in the following. 

n
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Fig. 3.2 Schematic sketch for the indirect method. 
 

Method 2: Indirect method 

Fig. 3.2 shows the schematic sketch for the indirect method. If we need to evaluate the 

normal derivative /u n  without a sufficient number of available nodes in the n  

direction, but with some nodes in other two directions 1m  and 2m , then we can first 

compute the two directional derivatives 1/u m  and 2/u m . By using the 

following geometrical relationship, we obtain for the normal derivative /u n  as  

cos( , ) cos( , )l l
l

u u ux y
x y

  
 

  
m m

m
,   l=1,2, 

where ( , )l xm  and ( , )l ym  are the angles between the vector lm  and the x-axis as 

well as the vector lm  and the y-axis. Then the spatial derivatives /u x   and 

/u y   can be expressed by using / lu m  (l=1,2) as follows  

cos( , ) cos( , )u u ux y
x y

  
 

  
n n

n
, 

where ( , )xn  and ( , )yn  are the angles between the vector n and the x-axis as well 

as the vector n and the y-axis. This method can overcome the difficulty in finding 

n

1m

2m

n

1m

2m
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some sufficient nodes in the normal direction and is thus more flexible in the node 

distribution. However, as shown in Fig. 3.2, the indirect method still needs some 

nodes that are located on the two lines in the 1m  and 2m  directions. In order to 

solve this problem, we suggest a third method in the following.  
 

Method 3: Fictitious nodes method 
 

 

Fig. 3.3 Schematic sketch for the fictitious nodes method. 
 

In the fictitious nodes method as illustrated in the Fig. 3.3, some fictitious nodes or 

ghost nodes are introduced in the normal direction, which are in reality not exist. Then 

the normal derivate /u n  is calculated in two steps. First, the field quantity values 

on the fictitious nodes are expressed by using the information of the real nodes nearby 

as shown by the circular area in Fig. 3.3. Hence we have 

 1( ) ( )
sN

n n
n

u      x x x u ,               (3.3.3) 

where 1[ ( ),... ( )]
s

T
N= u uu x x  contains the values at the real nodes, x  is located on 

the fictitious node that does not exist in the reality, 
1 , s

m n m n N


 
      x x , 

1( ),...., ( )
sN    

 
x x x x , and 

n  are the unknown coefficients that are 

n

fictitious nodes 

real nodes 
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related to the real nodes. Then the second step is to calculate the normal derivative of 

the boundary nodes by using the direct method, which results in   

 1( )( ) sN
n

n
n

u 
 

  
 

  


x xx u
n n n


 , (3.3.4) 

where sN  is the local node number of the fictitious nodes that we introduced in the 

n  direction as shown in Fig. 3.3, 
n  are the coefficients related to the fictitious 

nodes, and 

 
1 , s

m n m n N


 
     x x , 

1( ),...., ( )
sN    

 
x x x x , 

1[ ( ),... ( )]
s

T
N= u uu x x . 

By substituting Eq. (3.3.3) into Eq. (3.3.4) we obtain 

 
1( )u  

 
 

x u
n n


  . (3.3.5) 

In the fictitious nodes method, the requirement on the node distribution is much 

more flexible than the methods 1 and 2. However, the accuracy of the method could 

be a little lost due to the additional RBF interpolation by using the local nodes nearby, 

and also the distance of the fictitious nodes should be considered carefully.  
 

3.3.3 Interface continuity conditions 

In the multi-domain problems as considered in this thesis, the field quantities must be 

continuous on the interface. This can be analytically considered by adding or 

subtracting the corresponding columns in the formulated matrix. The traction or other 

continuous conditions can be well treated by using our proposed three numerical 

techniques for dealing with the derivative calculations.  
 
3.4 Summary 

The instability of the RBFCM stems from the numerical error of the boundary 

conditions, especially the Neumann boundary conditions. The three special techniques 

for the treatments of the Neumann boundary conditions proposed in this chapter are 
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very important to the stability of the RBFCM. The direct method possesses the 

highest stability but the lowest flexibility. The indirect method is more flexible in the 

node distribution but less stable than the direct method. The fictitious nodes method 

has the greatest flexibility in the node distribution but the lowest stability compared to 

the direct and indirect methods due to the introduction and intermediate 

approximation of the fictitious nodes. The essential advantages and disadvantages of 

the three special techniques are summarized in Table 3.2. 

 
 
 

Techniques Direct method Indirect method 
Ficticious nodes 

method 

Distribution 
of nodes 

 
   

Advantages 
 Very accurate 
 Very stable 

 More flexible node 
distribution 

 Accurate and stable 

 Arbitrary node 
distribution 

 Very flexible 

Disadvantages 

 Strict node distribu- 
tion required 

 Not flexible 

 Special node distri- 
bution 

 Less accurate and 
stable 

 Less accurate 
 Less stable 

 

Table 3.2 Special techniques used for computing the normal derivatives of 

the primary field quantity. 

 

From Table 3.2, it can be concluded that the indirect method or the direct method 

is more stable than the fictitious nodes method. How to generate a node distribution 

for which the direct method and the indirect method can be directly employed is an 

interesting topic. Here we propose a new way to apply the indirect method to 

calculate the spatial derivatives of the field quantity on a circular boundary. 
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Let us consider the node distribution as shown in Fig. 3. 4. For nodes located on 

the circular boundary in Fig. 3. 4, one can always find some interior nodes in the x- or 

y- direction. However, the indirect method can be employed only when sufficient 

nodes along another direction exist. Fortunately, the radius of the circular boundary is 

fixed, and the Cartesian coordinates can be transformed into the polar coordinates. 

Thus, the derivative in the tangential direction can be expressed as  

                        
t

u u r 


 n 
,                             (3.3.12)  

where tn  is the tangential vector, r is the radius of the circular boundary, and   is 

the polar angle of the considered node. The derivative /u   is first evaluated in 

the circumferential direction, from which / tu n  can be subsequently evaluated 

by using Eq. (3.3.12). Thereafter, the indirect method can be employed for computing 

the normal derivatives of the field quantity on the boundary nodes. 

 
Fig. 3. 4 Special node distribution for a circular boundary.  
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Chapter 4  

Global RBFCM for 1D solid/solid phononic crystals 

 

In this chapter, the GRBFCM is employed to deal with the one-dimensional (1D) 

phononic crystals. The governing wave equation, the periodic boundary conditions of 

the unit-cell and the interface continuity conditions as presented in section 2.1 are 

discretized by the GRBFCM method. The stability of the RBFCM with different types 

of the RBFs is analyzed and compared in details. The basic discretized equations and 

the GRBFCM formulation of the eigenvalue problem for 1D phononic crystal are 

given in section 4.1. The influence of different RBFs on the stability of the RBFCM is 

discussed by investigating the numerical results in section 4.2. Then, some remarks 

are given in section 4.3. 

 

4.1 GRBFCM formulation for 1D solid/solid phononic crystals 

By applying the RBF formulation from Eqs. (3.1.5) to (3.1.7), we can obtain the 

general eigenvalue equation of the GRBFCM for the 1D phononic crystal structure as 

follows   

 
1 2

1 2

0 0

0 0

2
1

2

2 2
2 1 1

2 2
2 2

1 1
2

1

2
2

1

2

( )

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

ika

ika

d
dx

d c
dx c

e

d dE e
E dx dx

d dE
E dx dx





 
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 

 

 
 
 
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   
    
    
      
    
     
   
    
 
 
  

0

00
0
0 0
0 0
0 0
0 0



 


  

 


 

 

x

x x
x

x x

x x

x x

x x

2

 
 
 
 
 

,     (4.1.1) 

where 1 1Dx , 2 2Dx , 
j j x , j=0, 1, 2, 1N  and 2N  are the number of the 

nodes distributed in the domains 1D  and 2D , respectively. The size of the matrix on 

both the left- and right-hand sides in Eq. (4.1.1) is the same. The generalised 
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eigenvalue equation (4.1.1) can be solved by MATLAB directly, and the bandgap 

structure can be obtained by sweeping the wave vector at the boundary in the first 

irreducible Brillouin zone. 

 

4.2 Numerical results and discussions 

In this section, we present some numerical tests of different RBFs by using an 

example of a 1D phononic crystal. The numerical results are compared with the exact 

solution in the work of [135]. The layer thicknesses are taken as 1 2 0.5a a m   as 

shown in Fig. 2.2. The used material parameters are given as follows:  

Epoxy:  

3
2 1180 /kg m  ,     2 1161c  m/s, 

Aurum: 
3

1 19500 /kg m  ,     1 1239c  m/s.  

The relative error used in this section is defined as follows 

( )
Error ,exact r

exact

E E
E






 

where N is the total number of the used nodes, rE  and exactE  represent the 

numerical result and the exact solution respectively. We compare the numerical results 

from the first to the fourth band with the exact solution to reveal the effects of the 

type of the used RBFs, the shape parameter and the total node number or the nodal 

distance on the accuracy of the GRBFCM.  

 

4.2.1 Numerical results of the inverse MQ RBF 

 

Effects of the shape parameter 

In this subsection, only the inverse MQ RBF is considered. The computed band 

structures for different values of the shape parameter are shown in Fig. 4.1 to Fig. 4.3, 

and Table 4.1 shows the relative errors of the lowest four bands of the corresponding 

figures. 
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Fig. 4.1 Band structure obtained by using inverse MQ RBF with N=19 and 0.8  . 

 

 

N=19  0.8   0.9   1.5   

1st   2.36×10-4 1.16×10-4 3.47×10-2 

2nd   9.48×10-7 7.92×10-7 4.58×10-2 

3rd 1.09×10-5 5.94×10-5 2.27×10-2 

4th   2.71×10-3 4.20×10-3 1.48×10-2 

Table 4.1 Relative errors by using inverse MQ RBF with fixed N=19. 
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Fig. 4.2 Band structure obtained by using inverse MQ RBF with N=19 and 0.9  . 
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Fig. 4.3 Band structure obtained by using inverse MQ RBF with N=19 and 1.5  . 

 

Fig. 4.1 to Fig. 4.3 show that, as the shape parameter increases from 0.8   to 

1.5  , the band structures obtained by the inverse MQ are becoming more stable, 

but the relative error as given in Table 4.1 is getting worse. It is easy to conclude that 

with a fixed number of the used nodes, a larger shape parameter   leads to a more 
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stable but less accurate band structure. On the other hand, a smaller shape parameter 

  gives rise to a less stable but more accurate band structure. Our own experiences 

show that, when N=19, the shape parameter of the inverse MQ RBF in the range of 

0.9   to 1.5   always works well in the present GRBFCM. 

 

Effects of the total node number 

In order to reveal the influences of the total node number or the nodal distance, the 

shape parameter is fixed now as 1  ,, while different total node numbers are 

employed to obtain the band structures in Fig. 4.4 to Fig. 4.6.  

 

1   N=9 N=19 N=29 

1st   2.05×10-1 1.33×10-3 4.08×10-2 

2nd   2.33×10-3 7.56×10-7 2.93×10-2 

3rd 6.88×10-2 2.63×10-5 6.75×10-7  

4th   1.79×10-1 1.35×10-4 1.09×10-1 

Table 4.2 Relative errors by using inverse MQ RBF with fixed 1  .  
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Fig. 4.4 Band structure obtained by using inverse MQ RBF with N=9 and 1  . 
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Fig. 4.5 Band structure obtained by using inverse MQ RBF with N=19 and 1  . 
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Fig. 4.6 Band structure obtained by using inverse MQ RBF with N=29 and 1  . 

 

Fig. 4.4 to Fig. 4.6 show the computed band structures obtained by using N=9, 

N=19 and N=29, while Table 4.2 shows the relative errors of the lowest four bands 

accordingly. From Fig. 4.4 to Fig. 4.6, we can see that, an increasing total node 

number may lead to an unstable band structure for a fixed shape parameter. However, 

if the shape parameter of the inverse MQ also increases with the total node number, 
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the results become much better as shown in Fig. 4.7. 
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Fig. 4.7 Band structure obtained by using inverse MQ RBF with N=29 and 2  . 

 

4.2.2 Numerical results of the Gaussian RBF 

 

Effects of the shape parameter 

In this subsection, the Gaussian RBF is considered. The computed band structures for 

different values of the shape parameter are presented in Fig. 4.8 to Fig. 4.10, while 

Table 4.3 gives the relative errors of the lowest four bands of the corresponding 

figures.  

 

N=19 0.2   0.3   0.4   0.6   

1st   1 2.26×10-1 2.45×10-2 5.95×10-4 

2nd   9.57×10-4 4.09×10-5 4.06×10-6 2.31×10-7 

3rd 2.19×10-4 4.06×10-6 6.17×10-6 4.25×10-7 

4th   1.54×10-3 6.04×10-4 1.13×10-3 5.56×10-3 

 

Table 4.3 Relative errors by using Gaussian RBF with fixed N=19. 
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Fig. 4.8 Band structure obtained by using Gaussian RBF with N=19 and 0.2  . 
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Fig. 4.9 Band structure obtained by using Gaussian RBF with N=19 and 0.3  . 
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Fig. 4.10 Band structure obtained by using Gaussian RBF with N=19 and 0.4  . 
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Fig. 4.11 Band structure obtained by using Gaussian RBF with N=19 and 0.6  . 

 
From Fig. 4.8 to Fig. 4.11, we can observe that with the shape parameter 

increasing from 0.2   to 0.6  , the band structures obtained by the Gaussian 

RBF become less stable, but the relative error as given in Table 4.3 is getting better. 

Thus, it can be concluded that with a fixed number of the used nodes, a smaller shape 

parameter   leads to a more stable but less accurate band structure. In contrast, a 
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larger shape parameter   results in a less stable but more accurate band structure. 

According to our own experiences that for N=19 the shape parameter of the Gaussian 

RBF in the range of 0.3   to 0.6   always works well in the present GRBFCM. 

This conclusion is just opposite to the inverse MQ RBF. 
        

Effects of the total node number 

To investigate the influences of the total node number or the nodal distance, the shape 

parameter is fixed now as 0.4  , while different total node numbers are employed 

to obtain the band structures given in Fig. 4.12 to Fig. 4.14.  

 

0.4   N=9 N=19 

1st   1 2.45×10-2 

2nd   1.34×10-3 4.06×10-6 

3rd 4.19×10-2 6.17×10-6 

4th   1.46×10-1 1.13×10-3 

Table 4.4 Relative errors by using Gaussian RBF with fixed 0.4  . 
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Fig. 4.12 Band structure obtained by using Gaussian RBF with N=9 and 0.4  . 
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Fig. 4.13 Band structure obtained by using Gaussian RBF with N=19 and 0.4  . 
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Fig. 4.14 Band structure obtained by using Gaussian RBF with N=29 and 0.4  . 

 
In Fig. 4.12 to Fig. 4.14, the computed band structures obtained by using N=9, 

N=19 and N=29 are presented, while the corresponding relative errors of the lowest 

four bands are given in Table 4.4. Fig. 4.12 to Fig. 4.14 illustrate that an increasing 

total node number may lead to an unstable band structure for a fixed shape parameter. 

However, if the shape parameter of the Gaussian RBF decreases with the total node 

number, the results will become improved as shown in Fig. 4.15. This is also opposite 
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to the inverse MQ RBF. 
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Fig. 4. 15 Band structure obtained by using Gaussian RBF with N=29 and 0.2  . 

 

By comparing the properties of the Gaussian RBF and the inverse MQ RBF, one 

can find that the absolute value of the Gaussian RBF ( )  monotonically increases 

with   while the absolute value of the inverse MQ RBF ( )   monotonically 

decreases with  . When the absolute value of ( )   in the GRBFCM monotonically 

increases with  , a larger shape parameter   leads to more accurate but less stable 

results, while a smaller shape parameter   in a certain range gives rise to a less 

accurate but more stable band structure. If the absolute value of ( )   in the 

GRBFCM monotonically decreases with  , the situation is just opposite. This 

conclusion is almost the same as that of our previous work [136]. In order to verify 

this conclusion, the MQ RBF is tested in the next subsection. 
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4.2.3 Numerical results of the MQ RBF 

 

Effects of the shape parameter 

In this subsection, the MQ RBF is investigated. Figures 4.16 to 4.19 show the 

computed band structures for different values of the shape parameter, while the 

corresponding relative errors of the lowest four bands are given in Table 4.5. 

 

N=19 0.4   0.5   1   1.2   

1st 2.56×10-1 8.24×10-2 1.31×10-3 4.51×10-4 

2nd 2.30×10-5 4.49×10-5 1.23×10-6 1.22×10-6 

3rd 7.39×10-4 1.90×10-4 1.42×10-5 1.34×10-5 

4th 2.35×10-3 5.59×10-4 1.11×10-3 3.43×10-3 

 

Table 4.5 Relative errors by using MQ RBF with fixed N=19. 
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Fig. 4.16 Band structure obtained by using MQ RBF with N=19 and 0.4  . 
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Fig. 4.17 Band structure obtained by using MQ RBF with N=19 and 0.5  . 
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Fig. 4.18 Band structure obtained by using MQ RBF with N=19 and 1  . 
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Fig. 4.19 Band structure obtained by using MQ RBF with N=19 and 1.2  . 

                                 

In contrast to the inverse MQ RBF but similar to the Gaussian RBF, the absolute 

value of the MQ RBF ( )   monotonically increases with the shape parameter  . 

From Fig. 4.16 to Fig. 4.19 one can find that, as the shape parameter increases from 

0.4   to 1.2  , the band structures obtained by the MQ RBF are becoming less 

stable, but the relative error as given in Table 4.5 is getting better. Also here, it can be 

concluded that for a fixed total node number, a smaller shape parameter   leads to a 

more stable but less accurate band structure. On the contrary, a larger shape parameter 

  yields a less stable but more accurate band structure. Our own numerical 

experiences show that for N=19 the shape parameter of the MQ RBF in the range of 

0.4   to 1.2   always works well in the present GRBFCM. 

 

Effects of the total node number 
In order to analyse the influences of the total node number or nodal distance,, the 

shape parameter is fixed now as 0.7  , while different total node numbers are used 

to compute the band structures in Fig. 4.20 to Fig. 4.22.  
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0.7   N=9 N=19 N=29 

1st 4.32×10-1 1.12×10-2 7.09×10-4 

2nd 3.92×10-3 1.00×10-5 1.09×10-7 

3rd 6.41×10-2 8.20×10-5 2.40×10-6 

4th 1.65×10-1 1.92×10-3 1.29×10-1 

Table 4.6 Relative errors by using MQ RBF with fixed 0.7  . 
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Fig. 4.20 Band structure obtained by using MQ RBF with N=9 and 0.7  . 
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Fig. 4.21 Band structure obtained by using MQ RBF with N=19 and 0.7  . 
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Fig. 4.22 Band structure obtained by using MQ RBF with N=29 and 0.7  . 

 

Fig. 4.20 to Fig. 4.22 show the computed band structures obtained by using N=9, 

N=19 and N=29, while Table 4.6 shows the relative errors of the lowest four bands 

accordingly. From Fig. 4.20 to Fig. 4.22, we can see that, an increasing total node 

number may lead to an unstable band structure for a fixed shape parameter. However, 

if the shape parameter of the MQ decreases with the total node number, the results 

become much better as shown in Fig. 4.23. 
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Fig. 4.23 Band structure obtained by using MQ RBF with N=29 and 0.5  . 
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4.3 Summary 

The numerical results presented in the previous sections show the effects of the shape 

parameter and the total node number or the nodal distance on the numerical accuracy 

of the RBFCM for band structure calculations of 1D phononic crystals. One can find 

that the shape parameter should also be changed accordingly when more nodes are 

employed because of the decreasing nodal distance. How to change the shape 

parameter depends on the property of the used RBF. When the absolute value of the 

RBF ( )   monotonically increases with  , then with a smaller shape parameter 

we can obtain more stable band structures. If the absolute value of the RBF ( )   

monotonically decreases with  , then a larger shape parameter   is suggested to 

obtain more stable band structures. The effects of the shape parameter and the total 

node number are summarized in Table 4.7 

 

RBF ( )   

RBF 

property 

( )   monotonically 

decreases with   

( )   monotonically 

increases with   

  increases 
More stable Less stable 

Less accurate More accurate 

  decreases 
Less stable More stable 

More accurate Less accurate 

N increases   should increase   should decrease 

 Table 4.7: The effects of the shape parameter and total node number. 

 

The relationship between the shape parameter and the total node number or the 

nodal distance investigated in this chapter is very important for the accurate and 

efficient computation of the band structures of phononic crystals. From our numerical 



 

49 
 

tests for 1D phononic crystals, we find that, when N=19 is employed, the range of the 

shape parameter in the MQ RBF is 0.4   to 1.2  , which is larger than the 

ranges of the shape parameter in the Gaussian RBF ( 0.3   to 0.6  ) and the 

inverse MQ RBF ( 0.9   to 1.5  ). The computed band structures also show that 

the MQ RBF in the present RBFCM outperforms the Gaussian RBF and the inverse 

MQ RBF. For this reason, only the MQ RBF is employed in the following chapters 

for the band structure computations of 2D phononic crystals. 
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Chapter 5 

Local RBFCM for anti-plane wave propagation analysis in 2D 

solid/solid phononic crystals 

 

In Chapter 4, the global RBFCM has already been applied to the 1D solid/solid 

phononic crystals, and the influences of the shape parameter and the total anode 

number have been discussed in details. Due to the high computational costs of the 

global RBFCM, it is very difficult to apply the global RBFCM to high-dimensional 

problems. In this chapter, the LRBFCM is developed and applied to calculate the band 

structures of two-dimensional (2D) anti-plane transverse elastic waves in phononic 

crystals. The special numerical techniques proposed in Chapter 2 are applied to 

compute the spatial derivatives of the field quantities, which are needed by the 

boundary conditions and the interface continuity conditions.  

The governing wave equation, the periodic boundary conditions of the unit-cell 

and the continuity conditions on the interface between the matrix and the scatterer are 

discretized by the LRBFCM, which forms a matrix eigenvalue equation. The band 

structures or the dispersion relations can be obtained by solving the generalized 

eigenvalue problem and sweeping the boundary of the irreducible first Brillouin zone. 

The developed LRBFCM is verified by using the corresponding results obtained with 

the FEM. Numerical examples for various scatterer shapes and lattice forms with 

different acoustic impedance ratios are presented and discussed in this chapter. The 

FEM results are also used to show the performance and the efficiency of the 

developed LRBFCM for the anti-plane transverse elastic wave propagation in 2D 

phononic crystals. 

This chapter is organized as follows. The general form of the LRBFCM for 

anti-plane transverse elastic wave propagation in 2D phononic crystals is given in 

section 5.1. Numerical results are discussed and compared with the FEM results in 

section 5.2. The computational efficiency is analysed and discussed in section 5.3. 

Then some concluding remarks are given in the last section 5.4. 
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5.1 LRBFCM formulation of the eigenvalue problems 

There are two ways to calculate the band structures or dispersion relations of 

phononic crystals. One way is to employ the Bloch periodic condition (2.2.5) in the 

whole domain, and then substitute Eq. (2.2.5) into the governing equation  to 

formulate an eigenvalue problem with the wave vector k. Then the eigenvalues   

are calculated for different k, and those eigenvalues in the first Brillouin zone are 

picked out according to some relationships, for more details please refer to [137]. The 

other way is to employ the periodic conditions only on the boundary of the unit-cell. 

Then the governing equation and the continuity conditions on the interface are still 

needed for computing the eigenvalues  . The band structure or dispersion relation 

can be directly calculated by sweeping the wave vector k in the first Brillouin zone. In 

this thesis, we use the latter one. In this section, the LRBFCM formulation of the 

governing equations, continuity boundary conditions and the periodic boundary 

conditions of the anti-plane transverse wave in two dimensional phononic crystals are 

respectively presented.  

 

5.1.1 Discretized governing equations 

By using Eqs. (3.2.11) to (3.2.13), we can write governing equation of anti-plane 

transverse wave (2.2.1) as 

2( ) ( )j j j j
j j   x u = x u  ,    ( 0,1),j           (5.2.1) 

 

 

5.1.2 Discretized interface continuity conditions 

The interface continuity conditions of the anti-plane transverse wave equations in 

(2.2.3) can be expressed as 

0 0

0 1
0 1

0 1

( ) ( )
 

  


 

x x
u u

n n
  , 

and (2.2.2) considered analytically by rearranging the columns of the RBF matrix, 
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which will be discussed later. 

 

5.1.3 Discretized periodic boundary conditions of square lattice 

 

Fig. 5.1 Matrix and scatterer in a unit-cell of a square lattice. 
 

For the square lattice, as shown in Fig. 5.1, we have  

               
1 3 2 4

( ) ( ) , ( ) ( ) ,yx ik aik au u e u u e

    x x x x      (5.2.2) 

 
1 3 2 4

( ) ( ) , ( ) ( ) ,yx ik aik aT T e T T e

    x x x x             (5.2.3) 

where 
1 1 x , 

2 2 x ,
3 3 x , 

4 4 x . 
uT 


n

 is the traction at the interface. 

Equations (5.2.3) can be recast into the following matrix form 
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 (5.2.4) 

where 0 1
0 1,D D x x . Eq. (5.2.4) can be rewritten in the following form 

 2 , AU HU  (5.2.5) 

where A is the RBF matrix obtained by using the RBFs and H is the matrix that 

01

2

30

n

4

n

0D

1D
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related to the mass density   and the shear module  . U  is the displacement 

unknowns in z direction. A and H for square lattice of anti-plane problems are 

respectively given as 
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
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x x
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where 0
0 Dx , 

i i x (i=1,...,4), 0 0
0 0 D x , 1

1 Dx , 1 1
0 0 D x . If we 

order the discrete displacement unknowns at boundary and interior nodes, then we can 

define  

 
1 2 3 4 0 0

0 1 0 1( ), ( ), ( ), ( ) , ( ) , ( ), ( ), ( ) ,
T

     
   U u x u x u x u x u x u x u x u x  (5.2.8) 

 
1 2 3 4 0 0

0 1 0 1, , , , , ,     
   A A A A , A A A A , A  (5.2.9) 

 
1 2 3 4 0 0

0 1 0 1, , , , , ,     
   H H H H ,H H H H ,H  (5.2.10) 

if we order the node distribution at 
0x  and 

1x , we can easily obtain Eq. (5.2.9), 

where 0  ( 1,...,4)
i

i A , A  and 
0

0
A  are respectively the columns that related to the 

nodes at x  located on 0D ,  ( 1,...,4)i i   and 
0
. The left- and right-hand sides 

of Eq. (5.2.5) can be written explicitly as 
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 1 1 2 2

3 3 4 4 0 0 0 0

0 0 1 1

0 0 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),
   

       



  

AU = A u x + A u x A u x + A u x

A u x A u x A u x + A u x
 (5.2.11)

 1 1 2 2

3 3 4 4 0 0 0 0

0 0 1 1

0 0 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).
   

       



  

HU = H u x + H u x H u x + H u x

H u x H u x H u x + H u x
 (5.2.12) 

Now the displacement periodicity conditions (2.2.5) of the unit-cell and the 

displacement continuity condition on the matrix-scatterer’s interface have to be taken 

into consideration, which can be rewritten into the following forms  

1 3
( ) ( ) ,xik ae u x u x  

2 4
( ) ( ) ,yik ae

 u x u x  
0 0

1 0
0( ) ( ) u x u x .    (5.2.13) 

Substitution of Eq. (5.2.13) into Eqs. (5.2.12) and (5.2.11) results in 

1 3 1

2 4 4 0 0 0

0 0 1 1

0 1 0

( ) ( ) ( ( )

( ) ( ( ),

x

y

ik a

ik a

e

e
  

     

 

 

AU = A u x + A u x A A )u x

+ (A A )u x A + A )u x
 

1 3 1

2 4 4 0 0 0

0 0 1 1

0 1 0

( ) ( ) ( ( )

( ) ( ( ),

x

y

ik a

ik a

e

e
  

     

 

 

HU = H u x + H u x H H )u x

+ (H H )u x H + H )u x
 

then, Eq. (5.2.5) can be rewritten as the following generalized eigenvalue equation  

 2 AU HU , (5.2.14) 

 

where 

 
1 3 2 4 0 0

0 1 0 1, , , ,yx ik aik ae e     
    
 

A A A A A A A A A ,  

1 3 2 4 0 0

0 1 0 1, , , ,yx ik aik ae e     
    
 

H H H H H H H H H , 

  
1 2 0

0 1 0( ), ( ), ( ), ( ) , ( )
T

  
   U u x u x u x u x u x .               

In this manner, smaller matrices H , A  and the reduced displacement vector 

U  are obtained. The displacement periodicity conditions on the boundary of the 

unit-cell and the displacement continuity condition on the matrix-scatterer’s interface 

are automatically satisfied, which significantly improves the stability of the present 

RBF collocation method. 

 

5.1.4 Discretized periodic boundary conditions of triangular lattice 

For the triangular lattice, as show in Fig. 5.2, the governing equation and the 
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continuity conditions are the same, however we have the following 3 boundary 

conditions (5.2.15) and (5.2.16), which are different from that for the square lattice.  

1 4 2 5 3 6

3 3( ) ( )
2 2 2 2( ) ( ) , ( ) ( ) , ( ) ( )x y x yy

a ai k a k i k a kik au u e u u e u u e
    

       x x x x x x , (5.2.15) 
 

1 4 2 5 3 6

3 3( ) ( )
2 2 2 2( ) ( ) , ( ) ( ) , ( ) ( )x y x yy

a ai k a k i k a kik aT T e T T e T T e
    

       x x x x x x ,(5.2.16) 

 

 
Fig. 5.2 Matrix and scatterer in a unit-cell of a triangular lattice 

 

where 
i i x  ( 1,2,...,6i  ), and ( )T x  is the boundary traction vector of 

anti-plane elastic wave. The equation of motion, the displacement continuity and the 

traction equilibrium conditions are the same as for the square lattice. By taking the 

equation of motion, the traction periodicity conditions (5.2.16) on the boundary of the 

unit-cell and the traction equilibrium condition (2.2.5) on the matrix-scatterer’s 

interface into account, we obtain the eigenvalue equation in the following matrix form 
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  (5.2.17) 

Following the same procedure as for the square lattice and considering the 

displacement periodicity conditions (5.2.15) as well as the displacement continuity 

condition (2.2.2) on the matrix-scatterer’s interface, we finally obtain the same 

eigenvalue equation Eq. with 

               

1 4 2 5

3 6 0 0

3( )0 1 2 2

3( ) 0 12 2

, , , ,

, ,

x y y

x y

ai k a k ik a

ai k a k

e e

e

  

   

  

   


  



  



A A A A A A A

         A A A A

 (5.2.18) 

 1 2 3 0

0 1 0( ), ( ), ( ), ( ) , ( ) , ( )
T

u u u u u u   
   U x x x x x x

.      (5.2.19) 

The detailed expressions of the matrices A and H are given  
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



x x

x xB .                 (5.2.21) 

The generalized eigenvalue equation (5.2.14) can be solved numerically by using the 

eigensolver in MATLAB. 
 

 

5.2 Numerical results and discussions 

 

5.2.1 Effects of the shape parameter 

The LRBFCM combined with the special techniques proposed in Chapter 2 are 

validated by comparison of the numerical results with that obtained by the finite 

element method of the acoustics module in COMSOL Multiphysics. The 

multi-quadratic (MQ) RBF is adopted in the present meshfree LRBFCM in the whole 

thesis. A uniform node distribution is used for all numerical calculations in this 

chapter. It was found in a previous study that a uniform node distribution has a 

slightly better convergence rate than a random distribution of equal size 88, and our 

test results of the random node distribution also verifies this finding. 

Another important factor in the RBFCM is the shape parameter   in the RBF, 

which could affect the results of the RBF collocation methods. According to many 

pervious works [138, 139], the shape parameter is related to the distance of the nodes 

nearby. There are several ways to find an optimal shape parameter, such as the golden 

search method, and so on [140, 141]. One key point to determine the optimal shape 

parameter is to calculate the errors at the boundary or the residuals of the governing 

equations. Here we use a simple way to determine the shape parameter, which aer 

described in the following. We select a simple function, such as u=x+y or 

u=sin(x)cos(y), then Lu can be evaluated analytically, where L is the Laplace operator. 
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Then, we compare the analytical result of Lu and the result of the RBFCM from Eq. 

and define an error indicator  

 Error( )sc Lu Lu  , (5.3.1) 

where Lu  is the numerical result of a node, and Lu is the exact solution that we 

employed. A pre-calculation is done to find out the shape parameter that has the 

smallest error. We give the node distribution and the shape parameter in our numerical 

examples in following. 
 
5.2.2 Aurum scatterers embedded in epoxy matrix 

In this subsection, aurum (Au) cylinders embedded in the epoxy matrix are considered. 

The densities and the wave velocities of the component materials are given by: 

3
0 1180 /kg m  , 0 1161 /c m s , 3

1 19500 /kg m  , and 1 1239 /c m s . Thus, the 

acoustic impedance ratio of the considered phononic crystal is 1 1 0 0/ 17.64Z c c   , 

which is large. 

The first example considers both square and circular scatterers in a square lattice. 

The filling fraction of the aurum/epoxy phononic crystal with square scatterers is 

0.138, the area of the square scatterer is 0.4×0.4 and the unit-cell area is 1×1. Fig. 5.3 

shows the node distribution of the aurum/epoxy phononic crystal in a square lattice 

with square scatterers. Here, 31×3 1 nodes are uniformly distributed in the domain. In 

this case the direct method for computing the normal derivative of the displacement 

could be easily applied to all the boundary nodes, and the results of the direct method 

are shown in Fig. 5.4. However, in order to show the stability of the fictitious nodes 

method the corresponding results by using the fictitious nodes method for all 

boundary nodes are also shown in Fig. 5.5. The shape parameter is chosen as 3   

and 9 local nodes are employed for both fictitious nodes method and direct method. 

From Fig. 5.4 and Fig. 5.5, we can find that both methods could lead to a stable 

LRBFCM, and the results are fitting quite well with the FEM results. 

However, our numerical results indicate that the direct method keeps stable in the 
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range of 0.1   to 50  , while the shape parameter is limited to the range of 

0.2   to 8   when the fictitious nodes method is employed. This means that the 

direct method for computing the normal derivative of the displacement is much better 

than the fictitious nodes method with respect to the stability of the LRBFCM.  

 
Fig. 5.3 Node distribution of the aurum/epoxy phononic crystal in a square lattice 

with square scatterers. 
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Fig. 5.4 Band structure of the aurum/epoxy phononic crystal in a square lattice with 

square scatterers by the direct method ( , X  and M  are the characteristic points 

in the first Brillouin zone as shown in Fig. 2.3). 
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Fig. 5.5 Band structure of the aurum/epoxy phononic crystal in a square lattice with 

square scatterers by the fictitious nodes method. 
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Fig. 5.6 Convergence rates of the averaged eigenvalues for the aurum/epoxy phononic 

crystal in a square lattice with square scatterers. 
 

In Fig. 5.6, the convergence rate of the direct method for the average of all 

eigenvalues is given in terms of the relative error ( ) /r m rE E E , where rE  is the 

result of the present LRBFCM by using 1681 nodes or degrees of freedom, and mE  

is the result of the LRBFCM or the FEM with the actual degrees of freedom. In Fig. 

5.6, 10log ( )  scale is used for convenience, and different FE meshes including coarse, 

fine and very fine meshes are tested. From Fig. 5.6 we can see that a number of more 

than 100 nodes should be guaranteed to keep an acceptable accuracy, and the order of 

the accuracy can easily reach 310  with more than about 120 nodes. From the results 
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in Fig. 5.6, it can be easily seen that with the same degrees of freedom, the present 

LRBFCM can generally lead to more accurate results than the FEM. Fig. 5.6 also 

shows that in the 10log ( )  scale the relative error decreases more or less linearly with 

increasing degrees of freedom in both methods, but the linearly fitted error curve of 

the LRBFCM has a larger slope that that of the FEM, which implies that the 

convergence rate of the present LRBFCM is higher than that the FEM. In the 

following analysis, more than 1000 degrees of freedom are employed in the FEM for 

the comparison purposes.  
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Fig. 5.7 Band structure of the aurum/epoxy phononic crystal in a square lattice with 

square scatterers by the fictitious nodes method (right) with  
strongly disordered node distribution (left). 
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Fig. 5.8 Band structure of the aurum/epoxy phononic crystal in a square lattice with 

square scatterers by the fictitious nodes method (right)  
with weakly disordered node distribution (left). 
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numerical results. Here, we add a certain disorder in the node distribution, where the 

node distribution in Fig. 5.7 is more disordered than in Fig. 5.8. As disordered nodes 

are applied, only fictitious nodes method can be employed for the treatment at the 

boundaries and the interface. The results show that if the node distribution is more 

disordered, the results become much worse, which confirms the same conclusion 

drown in the previous work [142].  

In the second example as shown Fig. 5.9, a square lattice with circular scatterers 

is considered. A uniform distribution of total 948 nodes is used. The filling fraction is 

0.196, the radius of the circular scatterers is 0.25, and some line nodes are added in 

order to easily get more nodes on the interface boundary. Fig. 5.10 shows the results 

by using the direct method on the boundary of the scatterer and the indirect method on 

the interface boundary belonging to the matrix. Fig. 5.11 shows the results by using 

the fictitious nodes method for all the boundary nodes. As we can see that in the low 

frequency range, the results of the LRFBCM and the FEM agree very well, while in 

the high frequency range both results show a little difference but they are still in a 

good agreement in general. The shape parameter used in both Fig. 5.10 and Fig. 5.11 

is 3sc   and the local nodes number is 9. 

 
Fig. 5.9 Node distribution of the aurum/epoxy phononic crystal in a square lattice 

with circular scatterers.  
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Fig. 5.10 Band structure of the aurum/epoxy phononic crystal in a square lattice with 

circular scatterers by the direct and indirect methods.  
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Fig. 5.11 Band structure of the aurum/epoxy phononic crystal in a square lattice with 

circular scatterers by the fictitious nodes method. 
 
 

5.2.3 Aluminum scatterers embedded in epoxy matrix 

In this subsection, we consider the aluminium (Al) scatterers embedded in the epoxy 

matrix. The material parameters are given by 
3

0 1180 /kg m  , 0 1161 /c km s , 

3
1 2730 /kg m   and 1 3242 /c km s . The corresponding acoustic impedance ratio 

of the phononic crystal is 1 1 0 0/ 6.46Z c c   , which is smaller than that of the 

previous example. 
 



 

64 
 

 
Fig. 5.12 Node distribution of the aluminium/epoxy phononic crystal in a square 

lattice with triangular scatterers  
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Fig. 5.13 Band structure of the aluminium/epoxy phononic crystal in a square lattice 

with triangular scatterers by the indirect/direct method.  
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Fig. 5.14 Band structure of the aluminium/epoxy phononic crystal in a square lattice 

with triangular scatterers by the fictitious nodes method.  
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In the first case as shown in Fig. 5.12, the triangular scatterers in a square lattice 

are considered. Here, totally 2114 nodes are uniformly distributed. In order to match 

the local geometry and the node distribution near the boundary of the triangular lattice. 

The local nodes number is taken as 11, and the shape parameter in the RBF is selected 

as 1  . The filling fraction is 0.18. For the node distribution as shown in Fig. 5.12 , 

the indirect method could be applied to the interface and the direct method is 

employed at the boundary of the unit-cell. Fig. 5.13 shows the results by using the 

indirect method for the interface boundary and the direct method for the matrix 

boundaries, while Fig. 5.14 shows the results by using the fictitious nodes method for 

all the boundaries. Both figures show a good agreement with the FEM results. 

 

 

 
Fig. 5.15 Node distribution of the aluminium/epoxy phononic crystal in a triangular 

lattice with square scatterers. 
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Fig. 5.16 Band structure of the aluminium/epoxy phononic crystal in a triangular 

lattice with square scatterers by the direct/indirect method.  
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Fig. 5.17 Band structure of the aluminium/epoxy phononic crystal in a triangular 
lattice with square scatterers by the fictitious nodes method.  

 

Finally, we consider a triangular lattice with square scatterers as shown in Fig. 5.15. 

In this case, a uniform node distribution with total 903 nodes is used, the filling 

fraction is chosen as 0.138, the local nodes number is 11, and the shape parameter is 

3  . Fig. 5.16 shows the results by using the indirect method for the boundary of 

the unit-cell and the direct method for the boundary of the square sactterer. Fig. 5.17 
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shows the corresponding results by using the fictitious nodes method for all 

boundaries of the unit-cell and the scatterer. Here again, both results show a quite 

good agreement with the FEM results. All the numerical results demonstrate that the 

present LRBFCM is suitable and efficient for the band structure calculation of the 

phononic crystals. The stability of the LRBFCM can be greatly improved by using our 

proposed special techniques for computing the normal derivative of the displacement 

needed for the treatment of the boundary conditions.  
 
 
5.3 Analysis of the computational efficiency 

The computational efficiency of the LRBFCM is analysed and discussed in this 

subsection. The computational costs of the present LRBFCM for the numerical 

examples considered previously are given in Table 1 and they are compared with that 

of the FEM. The error in Table 1 is defined as /f r fE E E , in which fE  is the 

result of the FEM by using COMSOL Multiphysics and rE  is the result of the 

present LRBFCM. All the programs are run on the same laptop with Intel(R) 

Core(TM) i7-4510U, 2.00 GHz CPU and 8 GB RAM. 
 

Lattice form Square Triangular  
 

Scatterer from 
Square 

 

Circular 

 

Triangular 

 

Square 

 

RBF 
Number of nodes 441 948 1294 903 

Time cost [s] 8.124 40.49 66.096 39.19 

FEM 
Degrees of 

freedom 
1401 1533 1265 837 

Time cost [s] 139 135 137 129 

Comparison Errors 0.0097 0.0126 0.0098 0.0081 
Time saving 94% 70% 51% 69% 

Table 5.1 Computing time and accuracy comparisons. 
 

From Table 5.1, we can easily find that for the square lattice with square 

scatterers, 441 nodes could already lead to a high accuracy with a saving of 96% 
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computing time compared with the FEM. We also mention that the degrees of 

freedom (DF) are 1401 in the FEM, which could be reduced to keep the same 

accuracy. However, it is rather cumbersome to reduce or change the meshes as we 

want in the COMSOL Multiphysics. 

When 948 nodes are employed for the square lattice with circular scatterers, the 

computing time saving is still 70% in comparison to the FEM. The error of the present 

LRBFCM compared with the FEM is 0.0126. This reduced accuracy might come 

from the difference of the circular interface approximated by the triangular meshes in 

the FEM and the LRBFCM. In the present meshfree method, the circular interface can 

be exactly approximated while in the FEM the circular interface is only approximately 

replaced by using piecewise straight lines of the triangular meshes. 

For the square lattice with triangular scatterers, more nodes are used to take the 

complex geometry near the tips of the triangular scatterer into account. In this case, 

the computing time saving of the present LRBFCM is 51% compared with the FEM. 

Here, 1294 nodes are used in the LRBFCM, while 1265 degrees of freedom are 

employed in the FEM. In this example, the number of the unknowns in the present 

LRBFCM is almost the same as that in the FEM. Thus, it could be concluded that the 

efficiency of the LRBFCM is generally higher than the FEM for the same number of 

unknowns or degrees of freedom.  

For the triangular lattice with square scatterers, the computing time saving is 69% 

compared with the FEM, and the accuracy is still pretty high. In this example, 903 

nodes are employed in the LRBFCM compared with 837 degrees of freedom in the 

FEM. Even with some more unknowns, the efficiency of the present LRBFCM is still 

higher than the FEM in this case. 

From the above discussions, we can conclude that the efficiency and the stability 

of the present meshfree LRBFCM are very high for band structure calculations of 2D 

phononic crystals. In addition, the present LRBFCM is a truly meshfree method, 

which has certain advantages compared to other domain-type computational methods 

such as the FEM and the finite difference method. For instance, the node creation in 

the present method is easier than the mesh generation in the FEM, which is beneficial 
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for the pre- and post-processing of the computational data. With respect to the 

adaptivity of the computational methods and the moving boundary-value problems 

(crack propagation, free or moving boundary problems like ice melting or phase 

change problems, etc.), the present meshfree method is also advantageous because the 

insertion of additional nodes is much simpler than the remeshing in the domain-type 

methods. Nevertheless, the computational code of the present LRBFCM is 

self-developed in-house, while the FEM used for the verification purpose is a 

commercial and optimized software package. In this sense, the present computational 

code can be further improved and optimized to increase its efficiency and accuracy.            
 
 

5.4 Summary 

In this chapter the LRBFCM is presented for the band structure calculations of the 

anti-plane transverse elastic wave propagation in 2D phononic crystals. The numerical 

results show that the three different techniques for computing the normal derivatives 

of the displacement at the boundary conditions in the LRBFCM greatly enhance the 

stability of the present LRBFCM. The results also prove that the performances of the 

indirect method and the direct method are much better than the fictitious nodes 

method. The developed LRBFCM is verified by using the results obtained with the 

FEM. The effects of the shape parameter of the RBF, the number of the used nodes 

and the node distribution on the numerical results are investigated. Numerical results 

for square, circular and triangular scatterers in square and triangular lattices with 

different acoustic impedance ratios and material properties are presented and 

discussed. The performance and the efficiency of the present LRBFCM in comparison 

to the FEM are analysed and revealed. The results show that the present meshfree 

LRBFCM is a promising alternative numerical tool for computing phononic band 

structures. 
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Chapter 6 

Local RBFCM for in-plane elastic wave propagation analysis in 

2D solid/solid phononic crystals 

 

In this chapter, the LRBFCM combined with indirect method is employed to calculate 

the in-plane elastic waves of the phononic crystals. The general form of LRBFCM for 

the in-plane elastic waves is given in section 6.1. The numerical results are discussed 

in section 6.2. The the computational efficiency are fully compared with FEM in 6.3. 

Then some remarks are given in the last section 6.4. 

 

6.1 LRBFCM formulation of the eigenvalue problems   

In this section, the LRBFCM discretization form for the governing equation, and 

continuity conditions, and the periodic boundary conditions of different lattice are 

going to be discussed separately. The boundary value problem of in-plane elastic 

wave propagation in 2D phononic crystals determined by the elastodynamic wave 

equations (2.3.1) and (2.3.2), the periodic boundary conditions (2.3.5) and (2.3.6) on 

the boundaries of the unit-cell, and the displacement continuity conditions (2.3.3) as 

well as the traction equilibrium conditions (2.3.4) can be solved by the LRBFCM. 

 

6.1.1 Discretized governing equations 

In order to solve the governing equation (2.3.1) and (2.3.2), the displacements in the 

x- and y-direction are approximated in the LRBFCM as followings by using  (3.2.11) 

to (3.2.13),            

 ( ) ( ) ,x xu x x u    ( )y yu x x u , (6.1.1) 

where  1 2( ), ( ),..., ( ) T
x x x x nu u uu x x x  and 

1 2( ), ( ),..., ( )
T

y y y y nu u u   u x x x . Then 

the governing equation (2.3.1) and (2.3.2) are expressed as 

2 2 2
2

2 2

( ) ( ) ( )( 2 ) ( ) ( )j j j
j j j x j j y j xx y x y

      
   

      
    

x x xu u x u  
 , (6.1.2) 
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2 2 2
2

2 2

( ) ( ) ( )( 2 ) ( ) ( )j j j
j j j y j j x j yy x x y

      
   

      
    

x x xu u x u  
 . (6.1.3) 

For simplicity we define 

2 2

2 2( ) ( 2 ) ( ), ,j
j j j jD

x y
  

  
    

  
G x x x  

2 2

2 2( ) ( 2 ) ( ), ,j
j j j jD

y x
  

  
    

  
x x x  

2 ( )( ) ( ) , .j
j j jD

x y
 


  

 

xx x
  

Then the governing equation (6.1.2) and (6.1.3) can be expressed as  

 2( ) ( ) ( )j j j j j
x y j x   G x u x u x u , (6.1.4) 

 2( ) ( ) ( )j j j j j
x y j y   x u x u x u  . (6.1.5) 

 

6.1.2 Discretized interface continuity boundary conditions 

The continuity boundary conditions are given as Eqs. (2.3.3) and (2.3.4). The Eq. 

(2.3.3) can be taken as 

0 0 0 0

0 1 0 1| | , | | ,x x y y    u u u u                      (6.1.6) 

where  
0

|x u  and 
0

|y u  denote the elements of the vectors 
xu  and 

yu  

corresponding to the unit-cell interface 
0x , the Eq. (6.1.6) can be analytically 

satisfied by adding or subtracting the corresponding columns of the formulated matrix. 

By using the definition in Eq. (6.1.1), we can obtain the stress components as 

 ( 2 )j
xx j j x j yx y

   
 

  
 

u u 

,
 (6.1.7) 

 ( 2 )j
yy j x j j yx y

   
 

  
 

u u 

,
 (6.1.8) 

 j
xy j x yy x

 
  

  
  

u u 

.
 (6.1.9) 

Then the traction components could be expressed as  
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 ( ) ( ) ( ), ,j j j
x xx x xy y jT n n D   x x x x  (6.1.10) 

 ( ) ( ) ( ), ,j j j
y yy y yx x jT n n D   x x x x  (6.1.11) 

where ( ) ( ), ( )
T

x yx n n   n x x  denotes as the unit normal vector at x, and

,
Tj j j

x yT T   T  as the traction vector. Then we obtain from Eqs. (6.1.7) to (6.1.11), 

( ) ( )( ) ( 2 ) ( ) ( )

( ) ( )( ) ( ) ,

j j j j
x x y x

j j
x y y

T n n
x y

n n
y x

  

 

  
   

  

  
  

  

x xx x x u

x xx x u

 

 
            (6.1.12) 

( ) ( )( ) ( ) ( )

( ) ( )( 2 ) ( ) ( ) ,

j j j
y y x x

j j j
y x y

T n n
x y

n n
y x

 

  

  
  

  

  
   

  

x xx x x u

x xx x u

 

 
        (6.1.13) 

For the simplicity further we define 

 
( ) ( )( ) ( 2 ) ( ) ( )j

j j x j yn n
x y

  
 

  
 

x xO x x x 
, (6.1.14) 

( ) ( )( ) ( ) ( )j
j x j y

x xn n
y x

 
 

 
 

Q x x x 
,            (6.1.15) 

( ) ( )( ) ( ) ( )j
j y j xn n

x y
 

 
 

 

x xS x x x 
,            (6.1.16) 

( ) ( )( ) ( 2 ) ( ) ( )j
j j y j xn n

y x
  

 
  

 

x xR x x x 
.         (6.1.17) 

Then Eqs. (6.1.10) and (6.1.11) can be expressed as  

 ( ) ( ) ( ) , ,j j j j j
x x y jT D  x O x u Q x u x  (6.1.18) 

 ( ) ( ) ( ) , .j j j j j
y x y jT D  x S x u R x u x  (6.1.19) 

Thus, Eq. (2.3.4) can be written as 

1 1 1 1 0 0 0 0( ) ( ) ( ) ( )x y x y  O x u Q x u O x u Q x u ,            (6.1.20) 

1 1 1 1 0 0 0 0( ) ( ) ( ) ( )x y x y  S x u R x u S x u R x u .            (6.1.21) 
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6.1.3 Discretized periodic boundary conditions of square lattice 

For the square lattice, as shown in Fig. 5.1, the periodical boundary conditions (2.3.5) 

and (2.3.6) can be expressed as 

 1 3 1 3

2 4 2 4

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

x x

y y

ik a ik a
x x y y

ik a ik a
x x y y

u u e u u e

u u e u u e

 

   

 

   

 

 

x x x x

x x x x
        (6.1.22) 

1 3 1 3

2 4 2 4

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

x x

y y

ik a ik a
x x y y

ik a ik a
x x y y

T T e T T e

T T e T T e

 

   

 

   

 

 

x x x x

x x x x
       (6.1.23) 

where  ( 1,2,3,4)
i i i  x , ( )xT x  and ( )yT x  are the tractions. Eq. (6.1.22) can 

be changed to  

 1 3 1 3

2 4 2 4

| | , | | ,

| | , | | ,

x x

y y

ik a ik a
x x y y

ik a ik a
x x y y

e e

e e

 

   

 

   

 

 

u u u u

u u u u
            (6.1.24) 

|
ix u  and |

iy xu  denote the elements of the vectors xu  and yu  corresponding to 

the unit-cell boundary ix , and are analytically considered by modifying the RBF 

matrix which will be discussed later. The traction vector in Eq. (6.1.23) can be 

expressed as 

 

   1 3 1 3

0 0( ) ( ) ( ) ( ) 0,x xik a ik a
x ye e 

      O x O x u Q x Q x u            (6.1.25) 

   1 3 1 3

0 0( ) ( ) ( ) ( ) 0,x xik a ik a
x ye e 

      S x S x u R x R x u            (6.1.26) 

   2 4 2 4

0 0( ) ( ) ( ) ( ) 0,y yik a ik a
x ye e 

      O x O x u Q x Q x u            (6.1.27) 

   2 4 2 4

0 0( ) ( ) ( ) ( ) 0.y yik a ik a
x ye e 

      S x S x u R x R x u            (6.1.28) 

 

By considering the governing equations (6.1.4) and (6.1.5), the traction 

equilibrium condition (2.3.4) on the matrix-scatterer’s interface, and the traction 

periodicity conditions (6.1.25)-(6.1.28), a generalized eigenvalue equation is formed 

as  

 2 , AU HU  (6.1.29) 
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where A is the RBF matrix, H is the matrix related to the property of the constituent 

materials, and U is the vector of the displacements. The displacement periodicity 

conditions (6.1.24) and the displacement continuity conditions (6.1.6) on the 

matrix-scatterer’s interface are considered by modifying the RBF matrix A and H. 

The details of the matrices A and H for different lattice forms are given in the 

following  

 0 0 1 1, , , ,
T

x y x y   U u u u u                 (6.1.30) 

 
0 0 0 0

0 0 0 0

1 3 1 3

1 3 1 3

0 0
0 0

0 0
0 0

1 1
1 1

1 1
1 1

0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x

x x

ik a ik a

ik a ik a

e e

e e

   

   

 

   

 

   



 

 

0 0
0 0

0 0
0 0

0 0

G x x
x x

G x x
x x

S x R x S x R x
A O x Q x O x Q x

S x S x R x R x

O x O x Q x Q x



 



 

2 4 2 4

2 4 2 4

0 0 0 0

0 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

y y

y y

ik a ik a

ik a ik a

e e

e e

 

   

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

  

0 0

0 0

0 0

S x S x R x R x

O x O x Q x Q x

,   (6.1.31) 

 

0
0

0
0

1
1

1
1

( )
( )

( )
( )

 
 
 
 
 
 
 
 

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 0

x
x

H x
x









,            (6.1.32) 

 

where, 0 0 ,Dx  1 1,Dx  H  is a sparse matrix which has the same size as A, and 

( ) ( )
n

j j    xxx x  is a sparse matrix related to the mass density, where 
n

 xx  is 

the Dirac delta. Also, A  is a sparse RBF matrix related to x  and nx , which can 

also be written as  

  xA A ,                       (6.1.33) 

where x  indicates the columns inside the matrix A. After the displacement 

periodicity boundary conditions (6.1.24) and the displacement continuity conditions 
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(6.1.6) are employed, the displacement vectors 
0

1( )u x , 
3

( )u x  and 
4

( )u x  can 

be eliminated by using 
0

0 ( )u x , 
1

( )u x  and 
2

( )u x  in Eq. (6.1.29), which results 

in the following reduced matrix  

 
1 3 2 4 0 0

0 1 0 1, , , ,yx ik aik ae e     
    
 

A A A A A A A A A .          (6.1.34) 

In Eq. (6.1.34), the columns inside the matrix A related to 0 1D , 3  and 4  are 

rearranged by adding them to the columns related to 0 0D , 1  and 2 . The size 

of the matrix A is reduced, the elements in the columns related to 0 1,D  3  and 

4 are no longer necessary, and thus a reduced generalized eigenvalue equation is 

obtained as 

2 AU HU ,                    (6.1.35) 

where H  is a sparse matrix with the same size as A , the matrix size of A  is 

1 12 2N N  compared with 12 2 aN N  of A , 1N  is number of the nodes on 0D , 

1D , 0 , 1  and 2 , aN  is total node number on 0D , 1D , 0 , and 

 ( 1,2,3,4)i i  , and U  is the displacement vector with nodes only located in 

0 1 0 1 2D D    . Since the columns related to 
0

0
x , 

0

1
x  and 

i
x (i=1,2,3,4) 

inside H  are all zero, H  and U  can be written as  

 
1 2 0

0 1 0, , , ,  
   H H H H H H ,                (6.1.36) 

 
1 2 00 1( ), ( ), ( ), ( ), ( ) ,

T

  
 
 U = U x U x U x U x U x            (6.1.37) 

where ( ) [ ( ), ( )]T
x yU x u x u x , xH  indicates the columns inside the matrix H 

related to x , the matrix size of H  is 1 12 2N N  while the size of H is 12 2 aN N . 

6.1.4 Discretized periodic boundary conditions of triangular lattice 

For the triangular lattice, as shown in Fig. 5.2, the periodical boundary conditions 

(2.3.5) and (2.3.6) can be expressed as 
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1 4 1 4

2 5 2 5

3 6 3 6

3 3
2 2 2 2

3 3
2 2 2 2

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

x y x y

y y

x y x y

a ai k a k i k a k

x x y y

ik a ik a
x x y y

a ai k a k i k a k

x x y y

u u e u u e

u u e u u e

u u e u u e

   
         
   

   

 

   

   
           
   

   

 

 

 

x x x x

x x x x

x x x x

   (6.1.38) 

 

1 4 1 4

2 5 2 5

3 6 3 6

3 3
2 2 2 2

3 3
2 2 2 2

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) .
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The matrices A and H as well as the vector U in Eq. (6.1.29) are given by 
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 0 0 1 1, , , ,
T

x y x y   U u u u u  (6.1.42) 

where the sparse matrix H has the same size as A, and 

3 3
2 2 2 2

1 4 3 6, .
x y x y

a ai k a k i k a k

e e e e
   

          
   

    

As for the square lattice, the displacement periodicity boundary conditions (2.3.5) 
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and the displacement continuity conditions (2.3.3) are employed to obtain a reduced 

matrix A  for the triangular lattice as 

    
1 4 2 5 3 6 0 0

0 1
0 1 1 4 3 6, , , , .yik ae e e         

      
A A A A A A A A A , A A  (6.1.43) 

Then a reduced eigenvalue equation as (6.1.35) is formed. Here, the matrix size of A  

is 1 12 2N N  compared with 12 2 aN N  of A , 1N  is number of the nodes located 

on 0D , 1D , 0 , and i , ( i=1, 2, 3 ), aN  is total nodes number in 0D , 1D , 0 , 

and i , i=1, 2,…6. Since the columns related to 0  and i  ( i=1,2,…6 ) inside H  

are all zero, H  and U  can be written as  

1 2 3 0

0
0 1, , , , ,   

   H H H H H H H ,                  (6.1.44) 

1 2 3 00 1( ), ( ), ( ), ( ), ( ), ( ) ,
T

   
 
 U = U x U x U x U x U x U x          (6.1.45) 

where ( ) [ ( ), ( )]T
x yU x u x u x , xH  represents the columns related to x inside H , 

the matrix size of H  is the same as A  here. To solve the generalized eigenvalue 

equation (6.1.35) numerically for both the square and the triangular lattices, the 

eigenvalue solver implemented in MATLAB is applied. 
 

6.2 Numerical results and discussions 

In this section, numerical results obtained by the LRBFCM are presented and 

discussed. As it was found in last chapter that a uniform node distribution has a better 

convergence rate than a random distribution of equal size, a uniform node distribution 

is used for all numerical calculations.  

Two different lattice forms and three different shapes of the scatterers are 

considered. For the aurum (Au) scatterers embedded in the epoxy matrix, the 

parameters of the component materials are given by:  
 

1 319500 /kg m  , 11 0 24.23 10 /N m  , 11 0 212.99 0 /N m  , 

0 31180 /kg m  ,  90 24.43 10 /N m  , 91 21.59 10 /N m  . 
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In this case, the acoustic impedance ratio of the considered phononic crystal is 
1 0

1 0/ 17.64Z c c   , where /j j
jc    is the transverse wave speed. For the 

aluminium (Al) scatterers embedded in the epoxy matrix, the parameters of the 
component materials are:  
 

1 32730 /kg m  , 11 0 24.59 10 /N m  , 11 0 212.7 0 /N m  , 

0 31180 /kg m  , 90 24.43 10 /N m  , 90 21.59 10 /N m  . 

Here, the acoustic impedance ratio of the considered phononic crystal is 

1 0
1 0/ 6.46Z c c   .  

 

6.2.1 Square and rectangular scatterers in square and triangular lattices 

Fig. 6.1 shows the node distribution of the phononic crystal in a square lattice with the 

square scatterers. The filling fraction of the square lattice with the square scatterers is 

0.138, the area of the square scatterer is 0.4×0.4 and the unit-cell area is 1×1. Totally, 

21×21 nodes are uniformly distributed in the unit-cell. By using this node distribution, 

there are always nodes in the x- or y-direction, so we can apply the direct method to 

treat the traction boundary conditions on the boundary of the unit-cell and the 

common matrix/scatterer’s interface, the shape parameter is chosen as 1   and the 

number of the local nodes is taken as 9. 
 

  

Fig. 6.1 Node distribution in a square lattice with square scatterers. 
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(Green nodes for interface; Blue nodes for matrix; Red nodes for scatterer) 
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 Fig. 6.2 Band structure of the aurum/epoxy phononic crystal in a square lattice 

with square scatterers. 
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Fig. 6.3 Band structure of the aluminium/epoxy phononic crystal in a square lattice. 

Fig. 6.2 and Fig. 6.3 show the band structures of the aurum/epoxy and 

aluminium/epoxy phononic crystals in a square lattice with square scatterers, where 

the normalized frequency 1/ (2 )a c   is introduced and 1 1
1 /c    is the 

transverse wave velocity of the scatterer. The results of the LRBFCM represented by 

the red line are compared with the results of the FEM. Both figures show that the 

results are fitting quite well, and the change of the materials combination or the 

acoustic impedance ratio does not affect the results remarkably in the LRBFCM. 
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Fig. 6.4 Convergence rate of the aluminium/epoxy phononic crystal in a square lattice 

with square scatterers. 
 

 
 

Fig. 6.5 Node distribution of the phononic crystal in a triangular lattice 

with rectangular scatterers. 
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Fig. 6.6 Band structure of the aurum/epoxy phononic crystal in 
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a triangular lattice with rectangular scatterers. 
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Fig. 6.7 Band structure of the aluminium/epoxy phononic crystal in 

a triangular lattice with rectangular scatterers. 

 

Fig. 6.4 shows the convergence rate of the average of all eigenvalues which is 

given in terms of the relative error  ( ) /r m rE E E , where rE  is the result by using 

41×4 1 nodes and mE  is the result by using the current nodes number. From Fig. 6.4, 

we can see that a number of more than 200 nodes should be used to ensure an 

acceptable accuracy.  

In order to test the present LRBFCM for other lattice forms and filling fractions, 

a triangular lattice with rectangular scatterers is considered next, as shown in Fig. 6.5. 

The filling fraction is chosen as 0.5689, totally 731 uniformly distributed nodes are 

used, 1   is selected and the number of the local nodes is taken as 9. From Fig. 6.5, 

it is difficult to find sufficient nodes in the direction of the y-axis in some parts of the 

boundaries of the unit-cell. In this case, the indirect method is hence employed to deal 

with those nodes for which no sufficient nodes can be found in the y-direction on the 

boundaries of the unit-cell, and the direct method is employed on the 

matrix/scatterer’s interface. Fig. 6.6 and Fig. 6.7 show the band structures of the 

aurum/epoxy and aluminium/epoxy phononic crystals with a triangular lattice and 

rectangular scatterers. In both cases, the present numerical results agree quite well 

with that obtained by the FEM. This means that the LRBFCM is also suitable for 
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complicated lattice forms and quite large filling fraction.  
 

6.2.2 Circular scatterers in square and triangular lattices 

In the next example, a square lattice with circular scatterers is considered. The filling 

fraction is 0.196, the radius of the circular scatterers is 0.25, and totally 952 nodes are 

used as shown in Fig. 6.8. In this work, the indirect method is thus used for nodes on 

the circular interface. 
 

 

Fig. 6.8 Node distribution of a square lattice with circular scatterers. 
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Fig. 6.9 Band structure of the aurum/epoxy phononic crystal in a square lattice 

with circular scatterers. 
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Fig. 6.10 Band structure of the aluminium/epoxy phononic crystal in a square lattice 

with circular scatterers. 

The computed band structures of the aurum/epoxy and aluminium/epoxy 

phononic crystals are compared with that of the FEM in Fig. 6.9 and Fig. 6.10. Here, 

the shape parameter is taken as 1   and the number of the local nodes is chosen as 

11 due to the node distribution at the circular interface is too close or random 

distributed. The present numerical results and the FEM results are fitting quite well in 

general.  

In the next case, a triangular lattice with circular scatterers is investigated. The 

filling fraction of the scatterers is 0.226, the radius of the circular scatterers is 0.25, 

and totally 785 nodes are used as shown in Fig. 6.11. Here, the indirect method is 

employed on the boundaries of the unit-cell. The stability of the present LRBFCM is a 

little reduced compared with that for the square lattice, and more nodes must be 

employed when the fictitious nodes method for the treatment of the traction 

equilibrium conditions on the interface is applied. In order to solve this problem the 

indirect method is employed in this case as described previously for the square lattice 

with circular scatterers.  
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Fig. 6.11 Node distribution of a triangular lattice with circular scatterers. 
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Fig. 6.12 Band structure of the aurum/epoxy phononic crystal in a triangular lattice 

with circular scatterers. 
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Fig. 6.13 Band structure of the aluminium/epoxy phononic crystal in a triangular 
lattice with circular scatterers. 
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are compared with that obtained by the FEM in Fig. 6.12 and Fig. 6.13. Here, the 

shape parameter is taken as 1   and the number of the local nodes is chosen as 11. 

Here again, the present results are fitting quite well with the FEM results in general. 

 

6.2.3 Triangular scatterers in square and triangular lattices 

Here, a square lattice with triangular scatterers is analysed. The filling fraction of the 

scatterers is 0.08, and totally 968 nodes are applied as shown in Fig. 6.14. The shape 

parameter is chosen as 1  , and the number of the local nodes is taken as 9. The 

indirect method is employed on the interface and the direct method is used on the 

boundaries of the unit-cell to obtain the results in Fig. 6.15 and Fig. 6.16. Due to the 

complex form of the triangular scatterer, the numerical results obtained by the present 

LRBFCM show a little difference from that of the FEM. However, they are still in a 

good agreement in general.   
 

 

 

Fig. 6.14 Node distribution of the phononic crystal in a square lattice 

with triangular scatterers. 
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Fig. 6.15 Band structure of the aurum/epoxy phononic crystal in 

a square lattice with triangular scatterers. 
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Fig. 6.16 Band structure of the aluminium/epoxy phononic crystal in 

a square lattice with triangular scatterers. 

 

Fig. 6.17 Node distribution of the phononic crystal in a triangular lattice with 
triangular scatterers. 
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Fig. 6.18 Band structure of the aurum/epoxy phononic crystal in 

a square lattice with triangular scatterers. 
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Fig. 6.19 Band structure of the aluminium/epoxy phononic crystal in 

a square lattice with triangular scatterers. 

 

Finally, we consider a triangular lattice with triangular scatterers as shown in Fig. 

6.17. In this case, the filling fraction of the scatterers is 0.0741, and totally 741 nodes 

are applied as shown in Fig. 20. The shape parameter is chosen as 1   and the 

number of the local nodes is selected as 9. The indirect method is employed on the 

matrix/scatterer’s interface and the direct method is used on the boundaries of the 

unit-cell to obtain the band structures given in Fig. 6.18 and Fig. 6.19. Here again, the 

numerical results of the present LRBFCM are in good agreement with the results of 

the FEM.  
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6.3 Analysis of the computational efficiency       

In order to show the computational efficiency and accuracy of the present LRBFCM, 

the required computing time and the accuracy for the previously presented numerical 

examples are summarized in Tables 6.1-6.4 and compared with that of the FEM. Here, 

the numerical error is defined as  

( )
Error f r

f

E E
E






, 

where fE  is the result of the FEM by using COMSOL Multiphysics and rE . is the 

result of the present LRBFCM. All the computations are carried out on the same 

laptop with Intel(R) Core(TM) i7-4510U, 2.00 GHz CPU and 8 GB RAM. 

For the aluminium/epoxy and aurum/epoxy phononic crystals with a square 

lattice, the results are respectively listed in the Table 6.1 and Table 6.2. In general, we 

can find that the computational errors in the case of a square lattice do not vary 

remarkably with the change of the material combinations or acoustic impedance ratios. 

Even with a smaller number of the degrees of freedom, the present LRBFCM can still 

lead to sufficiently accurate results compared to the FEM. For the square lattice with 

square scatterers, we can easily find that 433 nodes can already lead to a high 

accuracy with a saving of the computing time around 87% compared with the FEM. 

Even though the degrees of freedom in the FEM could also be reduced, however, the 

meshes in the FEM are rather cumbersome to change as we wish in the COMSOL 

Multiphysics. For the square lattice with circular scatterers, the computing time 

saving of the LRBFCM is still more than 33% in comparison to the FEM. For the 

square lattice with triangular scatterers, the computing time saving of the present 

LRBFCM is more than 40% compared with the FEM.    

Table 6.3 and Table 6.4 show the corresponding results for the Al/epoxy and 

Au/epoxy phononic crystals with a triangular lattice, respectively. For the triangular 

lattice with triangular scatterers, the degrees of freedom of the LRBFCM are 1462 and 

not significantly lower than 1674 in the FEM, but the computing time saving is 60%. 

The other two cases for circular and triangular scatterers also show that the efficiency 
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of the LRBFCM is very high in comparison with the FEM.  
 

Lattice form Square 

 

Scatterer shape 

Square 

 

Circular 

 

Triangular 

 

 

 

RBF 

Number of nodes 433 952 968 

Degrees of 
freedom 

866 1904 1936 

Time needed [s] 21.62 104.86 102.34 

 

FEM 

Degrees of 
freedom 

2802 3066 2618 

Time needed [s] 173 177 172 

Comparison 
Errors 0.0042 0.0054 3.6702x10-4 

Time saving 87.78% 40.75% 40.50% 

 
Table 6.1 Computing time and accuracy comparisons (Al/epoxy). 

 

From Table 6.1 to Table 6.4 in the above discussions we can conclude that the 

present meshfree LRBFCM is very efficient and quite accurate and exhibits a high 

convergence rate for band structure calculations of in-plane elastic waves in 2D 

phononic crystals, which is validated by the corresponding numerical results obtained 

by the FEM. It is worth to mention here that the used FEM for the purpose of 

comparison is a commercial and optimized software package, while the present 

LRBFCM is self-developed. In this sense, the efficiency and the accuracy of the 

present LRBFCM can be further improved and enhanced. 
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Lattice form Square 

 

Scatterer shape 

Square 

 

Circular 

 

Triangular 

 

 

 

RBF 

Number of nodes 433 952 968 

Degrees of 
freedom 

866 1904 1936 

Time needed [s] 23.40 111.26 98.14 

 

FEM 

Degrees of 
freedom 

2802 3066 2618 

Time needed [s] 173 174 171 

Comparison 
Errors 0.0014 0.0054 0.0011 

Time saving 86.7% 33.18% 42.69% 

 

Table 6.2 Computing time and accuracy comparisons (Au/epoxy). 
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Lattice form Triangular 

 

Scatterer shape 

Rectangular 

 

Circular 

 

Triangular 

 

 

 

RBF 

Number of nodes 731 785 741 

Degrees of 
freedom 

1462 1570 1482 

Time needed [s] 68.25 75.44 60.26 

 

FEM 

Degrees of 
freedom 

1674 2226 1634 

Time needed [s] 172 175 169 

Comparison 
Errors 0.0025 0.0025 0.0050 

Time saving 60.3% 56.89% 64.34% 

Table 6.3 Computing time and accuracy comparisons (Al/epoxy). 
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Lattice form Triangular 

 

Scatterer shape 

Rectangular 

  

Circular 

 

Triangular 

 

 

 

RBF 

Number of nodes 731 785 741 

Degrees of 
freedom 

1462 1570 1482 

Time needed [s] 73.4300 74.06 59.17 

 

FEM 

Degrees of 
freedom 

1674 2226 1634 

Time needed [s] 173 175 168 

Comparison 
Errors 0.0146 0.0021 0.0028 

Time saving 57.5% 57.68% 64.47% 

Table 6.4 Computing time and accuracy comparisons (Au/epoxy). 

 

6.4 Summary 

In this chapter, the LRBFCM is extended to the band structure calculations of the 

in-plane elastic waves in 2D solid/solid phononic crystals. By a proper choice of the 

shape parameter and the number of the local nodes of the RBFs, the node distributions 

and the application of the special techniques for the treatments of the boundary 

conditions proposed in Chapter 3, the LRBFCM is applied to the band structure 

computation of the in-plain elastic waves in 2D phononic crystals. For different 

material combinations or acoustic impedance ratios (small to large), different filling 

fractions (small to large), different lattice forms (square or triangular) and several 

scatterer shapes (square, circular and triangular), the accuracy and the efficiency of 

the present method are validated by comparing the numerical results with that 

obtained by the FEM. By keeping a comparable numerical accuracy, the present 
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meshfree RBF collocation method is more efficient than the used FEM. It requires 

only distributed nodes instead of meshes in contrast to the domain-type discretization 

methods such as the FEM, which makes the method very attractive. For moving 

boundary value problems (e.g., propagating cracks, time-dependent phase change or 

Stephan problem, etc.) and adaptive numerical schemes, this feature could be 

significantly advantages because the insertion of nodes is much easier than the 

remeshing procedure required by the conventional FEM. Indeed, the present method 

has also certain disadvantages. In particular, the method is still relatively sensitive to 

the choice of the shape parameter, the number of the local nodes involved and the 

node distributions under complex geometrical circumstances, and it suffers from the 

stability problem when the normal derivatives of the primary field quantities near the 

boundaries of the analyzed domain are not handled properly. 
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Chapter 7 

Local RBFCM for wave propagation analysis in 2D solid/fluid 

and fluid/solid phononic crystals   
 
In this chapter, the LRBFCM is presented for computing the band structures of the 

two-dimensional (2D) solid/fluid and fluid/solid phononic crystals. Both systems of 

solid scatterers embedded in a fluid matrix (solid/fluid phononic crystals) and fluid 

scatterers embedded in a solid matrix (fluid/solid phononic crystals) are investigated. 

The general form of LRBFCM for the in-plane elastic waves is given in section 7.1. 

The numerical results are discussed in section 7.2. Analysis of the computational 

efficiency are presented in 7.3. Then some remarks are given in the last section 7.4. 
 
7.1 LRBFCM formulation of the eigenvalue problems 

In order to solve the governing equations, the displacements along the x- and y- 

direction in the solid and the pressure of the acoustic wave are given separately in the 

LRBFCM as follows by using (3.2.11) to (3.2.13),            

 ( ) ( ) ,y yu x x u    ( ) ,x xu x x u   (7.1.1) 

( ) ( ) ,p x x p                           (7.1.2) 

where 
1 2( ), ( )... ( )

T

y y y y nu u u   u x x x ,  1 2( ), ( )... ( ) T
x x x x nu u uu x x x  are the 

displacements vectors in the solid,  1 2( ), ( )... ( ) T
np p pp x x x are the pressure 

vectors of the fluid. 

 
7.1.1 Discretized governing equations 

By substituting Eqs. (7.1.1) and (7.1.2) into Eq. (2.4.1), the governing equations of the 

elastic waves in the solid can be expressed as  
 

2 2 2

2 2

2

( ) ( ) ( )( 2 ) ( )

( ) ,

x y

s x

x y x y
    

 

   
    

    

 

x x xu u

x u

  


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2 2 2

2 2

2

( ) ( ) ( )( 2 ) ( )

( ) .

y x

s y

y x x y
    

 

   
    

    

 

x x xu u

x u

  



 

For convenience we define 

2 2

2 2( ) ( 2 ) ( ),
x y

  
  

   
  

G x x  

2 ( )( ) ( ) ,
x y

 


 
 

xx 
  

2 2

2 2( ) ( 2 ) ( )
y x

  
  

   
  

x x ,   

then the governing equations of the elastic wave in the solid can be expressed as 

2( ) ( ) ( ) ,x y s x   G x u x u x u              (7.1.3) 

2( ) ( ) ( ) .x y s y   x u x u x u               (7.1.4) 

The governing equation of pressure waves in the fluid can be expressed as  

2 2
2

2 2

( ) ( ) ( ) ,f

x y K



  

   
  

x x p x p 
  

for convenience we define 

2 2

2 2( ) ( ),K
x y

  
  

  
M x x  

then the governing equations of the pressure wave in the fluid can be expressed as 

( ) ( )f M x p x p.                  (7.1.5) 

 
7.1.2 Discretized interface continuity conditions 

The interface continuity conditions (2.4.2) can be expressed as  

 2( ) ( ) ( ) ( ) ,x y f x x y yn n n n
x y

 
  

   
  

x x+ p x u x u 
  0 ,x     (7.1.6) 

 

And Eq. (2.4.3) can be expressed as 
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0

( )( ) ( ) ( )( 2 )

( ) ,    ,

y
x y x x y y

x

n n
x y y x

n

   
    

     
      

 

x ux x xu u u u

x p x

  



   (7.1.7) 

 

0

( ) ( ) ( ) ( )( 2 )

( ) ,    .

y x y x y x

y

n n
y x y x

n

   
      

      
      

 

x x x xu u u u

x p x

   



     (7.1.8) 

For simplicity we further define 

 
( ) ( )( ) ( 2 ) ,x yn n
x y

  
 

  
 

x xO x  
  

( ) ( )( ) ,x yn n
y x

 
 

 
 

x xQ x  
 

( ) ( )( ) ,y xn n
x y

 
 

 
 

x xS x  
 

( ) ( )( ) ( 2 ) .y xn n
y x

  
 

  
 

x xR x  
 

Then, we can rewrite Eqs. (7.1.7) and (7.1.8) as  

( ) ( ) ( ) ,x y xn O x u Q x u x p   
0x ,          (7.1.9) 

( ) ( ) ( ) ,x y yn S x u R x u x p   
0x .         (7.1.10) 

 
 

7.1.3 Discretized periodic boundary conditions 

 

7.1.3.1 Solid/fluid phononic crystals 

In the square lattice, the RBF discretization of fluid/solid and solid/fluid system is 

different. The periodic boundary conditions of these two systems are going to be 

discussed separate 

 

7.1.3.1.1 Square lattice 

For solid/fluid system in a square lattice, the periodic boundary condition (2.4.6) in 
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the fluid matrix can be expressed as 

1 3 2 4
| | , | | ,yx ik aik ae e

    p p p p                (7.1.11) 

where |
i

p  ( 1,2,3,4i  ) are the elements of the vector p  corresponding to the 

unit-cell boundary 
ix . The periodic boundary conditions (2.4.7) can be 

expressed as 
 

1 3 2 4
( ) ( ) , ( ) ( ) .yx ik aik ap p p pe e

x x y y


   

   
 

   
x x x x             (7.1.12) 

By considering the RBF approximation (7.1.2), Eq. (7.1.12) can be rewritten as 

31
( )( )

0,xik ae
x x

 
 

 
  

xx
p =


                 (7.1.13) 

2 4
( ) ( )

0.yik ae
y y

   
 

  

x x
p =

 
                 (7.1.14) 

 

7.1.3.1.2 Triangular lattice 

In the solid/fluid system, the periodic boundary conditions are only applied to the 

acoustic wave field in the fluid matrix, which can be expressed as  

 

1 4

2 5

3 6

3
2 2

3
2 2

| | ,

| | ,

| | ,

x y

y

x y

ai k a k

ik a

ai k a k

e

e

e

 

 

 

 
   
 



 
    
 







x x

x x

x x

p p

p p

p p

                   (7.1.15) 

in which |
i

p  ( 1,...,6i  ) denotes the elements of the vector p  corresponding to 

ix . The periodic pressure derivative boundary conditions (2.4.7) can be expressed 

as 
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1 4

52

3 6

3
2 2

3
2 2

( ) ( )
,

( )( )
,

( ) ( )
.

x y

y

x y

ai k a k

ik a

ai k a k

p p
e

pp
e

p p
e

 
      



 
       

 


 




 

 


 

x x
n n

xx
n n

x x
n n

                  (7.1.16) 

By considering the RBF approximation (7.1.2), Eq. (7.1.16) can be recast into 

1 4

3
2 2( ) ( )

0,
x y

ai k a k

e
 

      

  
 
  
 

x x
p =

n n
 

                (7.1.17) 

52
( )( )

0,yik ae
 

 
  

xx
p =

n n


                (7.1.18) 

3 6

3
2 2( ) ( )

0.
x y

ai k a k

e
 

       

  
 
  
 

x x
p =

n n
 

                (7.1.19) 

 

7.1.3.2 Fluid/solid phononic crystals 

 

7.1.3.2.1 Square lattice 

As shown in the Fig. 5.1, for the square lattice in fluid/solid the periodic boundary 

conditions are only applied to the elastic waves of the solid part, the periodic 

displacement boundary conditions (2.4.4) can be expressed as 

1 3 1 3

2 4 2 4

| | , | | ,

| | , | | ,

x x

y y

ik a ik a
x x y y

ik a ik a
x x y y

e e

e e

 

   

 

   

 

 

u u u u

u u u u
            (7.1.20) 

where |
ix u  and |

iy u  denote the elements of the vectors xu  and 
yu  

corresponding to the unit-cell boundary ix .The periodic traction boundary 

conditions (2.4.5) can be expressed as 

 

1 3 1 3

2 4 2 4

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

x x

y y

ik a ik a
x x y y

ik a ik a
x x y y

T T e T T e

T T e T T e

 

   

 

   

 

 

x x x x

x x x x
          (7.1.21) 
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where 
1x , 

2x ,
3x , 

4x , ( )xT x  and ( )yT x  are the traction vectors. 

By considering the following relations 

( 2 )

   ( ) ( ) ,

y yx x
x xx x xy y x y

x y

u uu uT n n n n
x y y x

     
     

         
      

 O x u Q x u
         (7.1.22) 

( 2 )

   ( ) ( ) ,

y yx x
y xy x yy y x y

x y

u uu uT n n n n
y x x y

     
     

         
      

 S x u R x u
         (7.1.23) 

the periodic traction boundary conditions (7.1.21) can be expressed as 

   1 3 1 3
( ) ( ) ( ) ( ) 0,x xik a ik a

x ye e 

      O x O x u Q x Q x u            (7.1.24) 

   1 3 1 3
( ) ( ) ( ) ( ) 0,x xik a ik a

x ye e 

      S x S x u R x R x u            (7.1.25) 

   2 4 2 4
( ) ( ) ( ) ( ) 0,y yik a ik a

x ye e 

      O x O x u Q x Q x u            (7.1.26) 

   2 4 2 4
( ) ( ) ( ) ( ) 0.y yik a ik a

x ye e 

      S x S x u R x R x u            (7.1.27) 

 

 

7.1.3.2.2 Triangular lattice 

Fig. 5.2 shows the matrix and the scatterer in a unit-cell of a triangle lattice. The 

discretized periodic boundary conditions for the fluid/solid systems are presented 

separately in the following. 

For the fluid/solid system in a triangle lattice, the discretized periodic boundary 

conditions are only applied to the elastic wave field of the solid matrix. The periodic 

displacement boundary conditions (2.4.4) can be expressed as 

1 4 1 4

2 5 2 5

3 6 3 6

3 3
2 2 2 2

3 3
2 2 2 2

| | , | | ,

| | , | | ,

| | , | | ,

x y x y

y y

x y x y

a ai k a k i k a k

x x y y

ik a ik a
x x y y

a ai k a k i k a k

x x y y

e e

e e

e e

   

   

   

   
         
   

 

   
           
   

 

 

 

x x x x

x x x x

x x x x

u u u u

u u u u

u u u u

    (7.1.28) 

where |
ix xu  and |

iy xu  ( 1,...,6i  ) are the elements of the vectors xu  and 
yu  

corresponding to the unit-cell boundary ix . The periodic traction boundary 
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1 4 1 4

2 5 2 5

3 6 3 6

3 3

2 2 2 2

3 3

2 2 2 2

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) .

x y x y

y y

x y x y

a a
ik ak ik ak

x x y y

ika ika

x x y y

a a
i k ak i k ak

x x y y

e e

e e

e e

   
         
   

   

 

   

   
           
   

   

 

 

 

Tx Tx T x T x

Tx Tx T x T x

Tx Tx T x T x

conditions (2.4.5) can be expressed as 

   (7.1.29) 

1 4 1 4

3 3

2 2 2 2
( ) ( ) ( ) ( ) 0,

x y x y
a a

ik ak ik ak

x ye e

   
         
   

   

   
      
   
   

Ox Ox u Qx Qx u

By considering the RBF formulation in (7.1.22) and (7.1.23), the periodic boundary 

conditions (7.1.29) can be written as  

    (7.1.30)

1 4 1 4

3 3

2 2 2 2
( ) ( ) ( ) ( ) 0,

x y x y
a a

ik ak ik ak

x ye e

   
         
   

   

   
      
   
   

Sx Sx u Rx Rx u

 

    (7.1.31)

   
2 5 2 5

( ) ( ) ( ) ( ) 0,y yika ika

x ye e
 

      Ox Ox u Qx Qx u

 

         (7.1.32)

   
2 5 2 5

( ) ( ) ( ) ( ) 0,y yika ika

x ye e
 

      Sx Sx u Rx Rx u

 

         (7.1.33)

3 6 3 6

3 3

2 2 2 2
( ) ( ) ( ) ( ) 0,

x y x y
a a

i k ak i k ak

x ye e

   
           
   

   

   
      
   
   

Ox Ox u Qx Qx u

 

   (7.1.34)

3 6 3 6

3 3

2 2 2 2
( ) ( ) ( ) ( ) 0,

x y x y
a a

i k ak i k ak

x ye e

   
           
   

   

   
      
   
   

Sx Sx u Rx Rx u

 

   (7.1.35) 

 

 

7.1.4 Eigenvalue equations 

 

7.1.4.1 Square lattice 

By collocating the discretized governing wave equations (7.1.3)-(7.1.5), the 

discretized interface conditions (7.1.6)， (7.1.9) and (7.1.10) on the N interior and 

boundary nodes, and the discretized periodic boundary conditions for the tractions in 

the fluid/solid system (i.e., Eqs. (7.1.21) and (7.1.29)) while for the normal derivative 



 

101 
 

of the pressure in the solid/fluid system (i.e., Eqs. (7.1.12) and (7.1.16)) we obtain the 

eigenvalue equation in the following matrix form 

2 , AU HU                            (7.1.36) 

where   denotes the eigenvalues to be determined, and the eigenvector is defined 

by 

[ , , ]T
x y .U u u p                         (7.1.37) 

The system matrices A  and H  have the same size and they are given in the 

Appendices A and B.  

By invoking the discretized periodic boundary conditions for the displacements 

in the fluid/solid system (i.e., Eqs. (7.1.20) and (7.1.28)) and for the pressure in the 

solid/fluid system (i.e., Eqs. (7.1.11) and (7.1.15)) as described in the following 

subsections, some nodal unknowns on the unit-cell boundary can be eliminated. This 

leads to the following reduced generalized eigenvalue equation 

 2 , AU HU                             (7.1.38) 

where the reduced matrices A  and H  and the reduced vector U  are dependent 

on the lattice form and the material combination (fluid/solid or solid/fluid systems), 

which are presented and described in the following. 
 

System 1: Fluid/solid system 

According to the periodic displacement boundary conditions in Eq. (7.1.20), the nodal 

displacements on 
3  and 

4  can be eliminated by using the nodal displacements 

on 
1  and 

2 , which results in the following reduced matrices and vector 

0 10 1 1 3 2 40 0
, , , , , yx ik aik ae e

    

   
  x x x x x xx x

A A A A A A A A A ,          (7.1.39) 

0 10 10 0 1 2
, , , ,

   

 
  x xx x x x

H H H ,H H H H ,                 (7.1.40) 

 1 01 00 0 1 2
, , , , , ,

T

   

 
  x xx x x x

U = U U U U U U  (7.1.41) 

where the subscript x  in xA  and xH  indicates the corresponding columns inside 
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the matrices A  and H  related to x , while the subscript x  in xU  designates 

the corresponding rows of the vector U corresponding to x . The matrices A  and 

H  have the same size 1 1N N , while the matrices A  and H  have the size 

1 aN N . The size of the reduced vector U  is 1N , while the size of the vector U  is 

aN , where 

0 10 1 0 0 1 2
1 2 2 2 2N N N N N N N

   

     x x x x x x
 , 

0 10 1 0 0 1 2 3 4
2 2 2 2 2 2aN N N N N N N N N

     

       x x x x x x x x
, 

with N x  being the total number of the nodes on x . Here, 
0

0
0 x  belongs to the 

domain 0D , and 
0

1
0 x  belongs to the domain 1D . The reduced vector U  

contains the nodal displacements in 0
0 0 1 2D     and the nodal pressure values 

in 1
1 0D  . 

 
System 2: Solid/fluid system 

In this case, the periodic pressure boundary conditions (7.1.11) imply that the nodal 

pressure values on the unit-cell boundaries 3  and 4  can be eliminated by using 

the nodal pressure values on 1  and 2 . Thus, we obtain 

0 10 1 1 3 2 40 0
, , , , , yx ik aik ae e

    

   
  x x x x x xx x

A A A A A A A A A ,           (7.1.42) 

0 10 10 0 1 2
, , , ,

   

 
  x xx x x x

H H H ,H H H H ,                  (7.1.43) 

1 01 00 0 1 2
, , , , , ,

T

   

 
  x xx x x x

U = U U U U U U                   (7.1.44) 

where the matrices A  and H  have the same size 1 1N N  while A  and H  

have the size 1 aN N , and 

0 10 1 0 0 1 2
1 2 2N N N N N N N

   

     x x x x x x
 , 

0 10 1 0 0 1 2 3 4
2 2aN N N N N N N N N

     

       x x x x x x x x
. 
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The reduced vector U  contains the nodal displacements in 1
1 0D   and the nodal 

pressure values in 1
0 0 1 2D    . 

 
 
7.1.4.2 Triangular lattice 
 

System 1: Solid/fluid system 

In the case of the solid/fluid system with a triangular lattice, the periodic displacement 

boundary conditions (7.1.15) result in the following reduced matrices and vector 

0 10 1 1 40 0

2 5 3 6

3
2 2

3
2 2

, , , , ,

, ,

x y

x y
y

ai k a k

ai k a k
ik a

e

e e

  

   

 
  

 

 
   
 


 




 



x x x xx x

x x x x

A A A A A A A

      A A A A

               (7.1.45) 

0 10 10 0 1 2 3
, , , , ,

    

 
  x xx x x x x

H H H ,H H H H H ,                (7.1.46) 

1 01 00 0 1 2 3
, , , , , , ,

T

    

 
  x xx x x x x

U = U U U U U U U                (7.1.47) 

 

where A  and H  are sparse matrices with the same size 
1 1N N , while the 

matrices A  and H  have the size 
1 aN N . Here, 

0 10 1 0 0 1 2 3
1 2 2N N N N N N N N

    

      x x x x x x x
 , 

0 10 1 0 0 1 2 3 4 5 6
2 2aN N N N N N N N N N N

       

         x x x x x x x x x x
. 

The reduced vector U  involves the nodal displacements in 0
1 1D   and the nodal 

pressure values in 0
0 0 1 2 3D     , respectively. 

 

System 2: Fluid/solid system 

For the fluid/solid system with a triangular lattice, the periodic displacement boundary 

conditions (7.1.28) yield the following reduced matrices and vector 
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0 10 1 1 40 0

2 5 3 6

3
2 2

3
2 2

, , , , ,

, ,

x y

x y
y

ai k a k

ai k a k
ik a

e

e e

  

   

 
  

 

 
   
 


 




 



x x x xx x

x x x x

A A A A A A A

      A A A A

                 (7.1.48) 

0 10 10 0 1 2 3
, , , , ,

    

 
  x xx x x x x

H H H ,H H H H H ,                 (7.1.49)  

1 01 00 0 1 2 3
, , , , , , ,

T

    

 
  x xx x x x x

U = U U U U U U U                  (7.1.50)                 

where the size of A  and H  is 
1 1N N  while the size of A  and H  is 

1 aN N  

with 

0 10 1 0 0 1 2 3
1 2 2 2 2 2N N N N N N N N

    

      x x x x x x x
, 

0 10 1 0 0 1 2 3 4 5 6
2 2 2 2 2 2 2 2aN N N N N N N N N N N

       

         x x x x x x x x x x
. 

The reduced vector U  contains the nodal displacements in 0
0 0 1 2 3D      

and the nodal pressure values in 0
1 1D  . 

 
7.2 Numerical results and discussions 
 
 
7.2.1 Solid/fluid phononic crystals 

For the solid/fluid system, we consider two different materials with different scatterer 

shapes. For iron scatterers embedded in the air matrix, the constants of the component 

materials are given by:  

37670 /s kg m  , 11 21.17 10 /N m  , 10 217.99 0 /N m  , 

31.21 /f kg m  ,  213987 /6K N m . 

The acoustic impedance ratio of the considered phononic crystal is

  5/ / / 1.66 10f f s sK       , where / fK   is the acoustic wave speed of 

the fluid and / s   is the transverse wave velocity of the solid.  

For aluminium scatterers embedded in the mercury matrix, the constants of the 

component materials are:  



 

105 
 

32730 /s kg m  , 10 24.59 10 / mN  , 10 2102 7 /. N m  , 

313500 /f kg m  ,  K  2.86×1010 N/m2. 

In this case, the acoustic impedance ratio of the considered phononic crystal is

 / / / 0.463f f s sK      . Fig. 7.1 shows the node distribution of the 

phononic crystal in a square lattice with square scatterers. The filling fraction of the 

square lattice with square scatterers is 0.138, the area of the square scatterer is 0.4×0.4 

and the unit-cell area is 1×1. Totally 433 nodes are uniformly distributed due to the 

uniform distributed nodes are much better in convergence according to our previous 

work [143, 144]. By using this distribution, there are always nodes along the x or y 

direction so that the direct method is employed to treat the traction on the boundary 

and the common interface, the shape parameter is 1   and the number of the local 

nodes is 9. The green nodes are located at the interface, the blue nodes and red nodes 

are respectively representing the scatterers and the matrix. 

Fig. 7.2 and Fig. 7.3 respectively show the bandgaps of aluminum/mercury and 

air/iron of phononic crystal in a square lattice with square scatterers, where the 

normalized frequency 
1/ (2 )c   is introduced which 1 / sc    in solid/fluid 

system and 1 / fc K   in fluid/solid system. The results of the LRBFCM 

depicted in red line are compared with the results of finite element method. Both of 

the figures show that results are fitting quite well, and the change of the materials 

does not affect the results in the LRBFCM.  
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Fig. 7.1 Node distribution in a square lattice with square scatterers. 
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Fig. 7.2 Band structure of aluminum embedded in mercury. 
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Fig. 7.3 Band structure of iron embedded in air. 
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Fig. 7.4 Convergence rate of the averaged eigenvalues for 

the aluminum embedded in the mercury. 

 

In Fig. 7.4, the convergence rate of the direct method for the average of all 

eigenvalues is given in terms of the relative error ( ) /r m rE E E , in which rE  is the 

result by using 1673 nodes and mE  is the result by using the current nodes number. 

From Fig. 7.4, it is obvious that the convergence rate of FEM is lower than LRBFCM 

in solving the solid/fluid system of the aluminum embedded in the mercury.  

In the next example, a square lattice with circular scatterers is considered. The 

filling fraction is 0.2826, the radius of the circular scatterers is 0.3, and totally 1011 

nodes are used as shown in Fig. 7.5. For the nodes on the circular interface, nodes in 

the x- or y- direction can always be found, then the indirect can be employed here to 

deal with the boundary conditions that required in the solid/fluid interface. The shape 

parameter 1   with 9 local number nodes is employed in this case. Fig. 7.6 and Fig. 

7.7 show the results of the band structures of the FEM and RBF, the present numerical 

results and the FEM results are fitting quite well in general. This indicates that the 

geometry variation of the inclusions does not affect the results in the LRBFCM. 
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Fig. 7.5 Node distribution in a square lattice with circular scatterers. 
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Fig. 7.6 Band structure of aluminum embedded in mercury. 
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Fig. 7.7 Band structure of iron embedded in air. 
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In the next example, a triangular lattice with square scatterers is considered. The 

filling fraction is 0.08, the radius of the circular scatterers is 0.25, and totally 727 

nodes are used as shown in Fig. 7.8. The shape parameter 1   with 9 local number 

nodes is employed in this case. Fig. 7.9 and Fig. 7.10 show the results of the band 

structures obtained by the LRBFCM and the FEM. Here again, a quite well agreement 

between the present numerical results and the FEM results is observed. By comparing 

this example with the previous examples, it can be concluded that the change of the 

lattice forms does not affect the accuracy of the LRBFCM as well. 

 

 
Fig. 7.8 Node distribution in a triangular lattice with square scatterers. 
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Fig. 7.9 Band structure of iron embedded in water. 
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Fig. 7.10 Band structure of iron embedded in air. 

 

In the next example, a triangular lattice with circular scatterers is considered. The 

filling fraction is 0.196, the radius of the circular scatterers is 0.25, and totally 775 

nodes are used as shown in Fig. 7.11. The shape parameter 1   with 9 local number 

nodes is employed in this case. Fig. 7.12 and Fig. 7.13 show the results of the band 

structures of the FEM and RBF, the present numerical results and the FEM results are 

fitting quite well in general. The variation of the geometry and materials in both 

lattice and inclusions does not affect the results in LRBFCM. 

 

Fig. 7.11 Node distribution in a triangular lattice with circular scatterers. 
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Fig. 7.12 Band structure of iron embedded in water. 
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Fig. 7.13 Band structure of iron embedded in air. 

 

7.2.2 Fluid/solid phononic crystals 

In this part, we discuss the fluid/solid system, which the fluid is embedded in the solid. 

The water embedded in iron and airs embedded in iron are going to be considered 

here. The materials property of water embedded in the iron are:  

37670 /s kg m  , 11 21.17 10 /N m  , 10 217.99 0 /N m  , 

31025 /f kg m  ,  9 22.40 10 /K N m  . 

In this case, the acoustic impedance ratio of the considered phononic crystal is 
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/
15.77

/
s s

f fK
  

 
 , / s   or / fK  is the wave speed. For air embedded in 

the iron, the parameters of the component materials are:  

37670 /s kg m  , 11 21.17 10 /N m  , 10 217.99 0 /N m  , 

31.21 /f kg m  ,  213987 /6K N m . 

The acoustic impedance ratio of the considered phononic crystal is 

/
60241.

/
s s

f fK
  

 
  

The band structures of the square lattice (solid) with square scatterers (fluid) are 

considered, the band structures of the water/iron and air/iron phononic crystals are 

compared with those obtained by the FEM in Fig. 7.15 and Fig. 7.16. 953 nodes are 

uniformly distributed as shown in Fig. 7.14, the shape parameter is taken as 3   

and the number of the local nodes is chosen as 9. The present results are fitting quite 

well with the FEM results in general, however we have found that a higher number of 

nodes compared with the solid/fluid system must be employed to obtain a accurate 

results both in the LRBFCM and the FEM. 953 nodes must employed to guarantee the 

stability of the results in the LRBFCM however more than 40,000 degree of freedom 

should be employed in the FEM. The computational efficiency is very slow in FEM 

for the fluid/solid system here. All the FEM cases presented in the figures are using a 

high number of meshes.  

Another interesting thing is the flat band, since the 1 / fc K   is employed 

here, the value of the flat band are almost the same level in Fig. 7.15 and Fig. 7.16. 

This is because of the large acoustic impedance ratio, when the solid materials 

property is much larger than fluid, the fluid has few influence to the solid at the 

interface, and the solid exhibits as a hard wall for the fluid with very tiny 

displacements in the solid. In the Fig. 7.15, the water is still influenced by iron and 

does not exhibit any bands as flat as air/iron due to the acoustic impedance ratio is not 

big enough, while in the Fig. 7.16, the wave speed of the air is much lower than iron 
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so that the flat bands are formed.  
 

 

Fig. 7.14 Node distribution in a square lattice with square scatterers. 
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Fig. 7.15 Band structure of water embedded in iron. 
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Fig. 7.16 Band structure of air embedded in iron. 

The band structures of the square lattice (solid) with circular scatterers (fluid) are 

considered here, the iron/water and iron/air phononic crystals are compared with that 

obtained by the FEM in Fig. 7.18 and Fig. 7.19, 952 nodes are uniformly distributed 

as shown in Fig. 7.22, the shape parameter is taken as 3   and the number of the 

local nodes is chosen as 12 due to some nodes are very close at the interface. The 

present results are fitting quite well with the FEM results in general. The values of the 

flat band are almost the same level in Fig. 7.18 and Fig. 7.19, which are the same as 

pervious cases.  

 
Fig. 7.17 Node distribution in a square lattice with circular scatterers. 
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Fig. 7.18 Band structure of water embedded in iron. 
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Fig. 7.19 Band structure of air embedded in iron. 
 

The square lattice (solid) with circular scatterers (fluid) are considered here, the 

band structures of the iron/water and iron/air phononic crystals are compared that 

obtained by the LRBFCM are compared with FEM in Fig. 7.18 and Fig. 7.19. 952 

nodes are uniformly distributed as shown in Fig. 7.22, the shape parameter is taken as 

3sc   and the number of the local nodes is chosen as 9. The present results are fitting 

quite well with the FEM results in general. The eigenvalues of the flat band are almost 

the same level in both Fig. 7.18 and Fig. 7.19, which are the same as pervious cases. 
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This supported that the flat bands can be found when the wave speed of the fluid are 

much smaller than the solid. 

 

Fig. 7. 20 Node distribution in a triangular lattice with square scatterers. 

 

 

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8


a



c 1)



 

 X M

 FEM

 RBF
 

 

 
Fig. 7.21 Band structure of water embedded in iron. 
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Fig. 7.22 Band structure of air embedded in iron. 

 

The triangular lattice (solid) with square scatterers (fluid) are considered here, 

the band structures of the iron/water and iron/ air that obtained by the LRFCM are 

compared with FEM. In Fig. 7.21 and Fig. 7.22, 727 nodes are uniformly distributed 

as shown in Fig. 7.22, the shape parameter is taken as 3   and the number of the 

local nodes is chosen as 9. The present results are fitting quite well with the FEM 

results in general. The values of the flat band are almost the same level in Fig. 7.21 

and Fig. 7.22, which are the same as pervious cases. This supported that the flat bands 

can be found when the wave speed of the fluid are much smaller than the solid. 

   

Fig. 7.23 Node distribution in a triangular lattice with circular scatterers. 
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Fig. 7.24 Band structure of water embedded in iron. 
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Fig. 7.25 Band structure of air embedded in iron. 
 

The triangular lattice (solid) with circular scatterers (fluid) are considered here, 

the band structures of the iron/water and iron/air that obtained by the LRBFCM in are 

compared with FEM in Fig. 7.24 and Fig. 7.25. 727 nodes are uniformly distributed as 

shown in Fig. 7.23, the shape parameter is taken as 3   and the number of the local 

nodes is chosen as 9. The present results are fitting quite well with the FEM results in 

general. The eigenvalues of the flat band are almost at the same level in Fig. 7.24 and 

Fig. 7.25, which are the same as pervious cases. This supported that the flat bands can 

be found when the wave speed of the fluid are much smaller than the solid. 
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7.3 Analysis of the computational efficiency 

In order to show the computational efficiency and accuracy of the present LRBFCM, 

the required computing time and the accuracy for the previously presented numerical 

examples are summarized in Table 7.1 to Table 7.4 compared with that of the FEM. 

Here, the numerical error is defined as  

( )f r

f

E E
Error

E




 , 

where 
fE  is the result of the FEM by using COMSOL Multiphysics and 

rE . is the 

result of the present LRBFCM. All the computations are carried out on the same 

desktop with Intel(R) Core(TM) i7-2600 CPU, 3.40 GHz and 16 GB RAM. A 

minimum number of the meshes with acceptable results are employed to obtain higher 

computation speed in the FEM of COMSOL Multiphysics. 
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Lattice form Square Triangular 

 

Scatterer shape 

Square 

 

Circular 

 

Square 

 

Circular 

 

 

RBF 

Number of nodes 433 1017 727 775 

Degrees of 
freedom 

538 1376 906 1014 

Time needed [s] 2.9550 7.098 4.3150 4.882 

 

FEM 

Degrees of 
freedom 

2454 2058 1038 1584 

Time needed [s] 121 129 118 129 

Comparison 
Errors 0.0302 0.0312 0.0115 0.0364 

Time saving 97.55% 94.49% 96.34% 96.21% 

 
 Table 7.1 Computing time and accuracy comparisons for the aluminium/mercury 

phononic crystals. 
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Lattice form Square Triangular 

 

Scatterer shape 

Square 

 

Circular 

 

Square 

 

Circular 

 

 
 

RBF 

Number of nodes 433 1011 727 775 

Degrees of 
freedom 

538 1376 906 1014 

Time needed [s] 2.6660 7.098 4.3300 4.6930 

 

FEM 

Degrees of 
freedom 

2454 2058 1038 1584 

Time needed [s] 121 122 118 129 

Comparison 
Errors 0.0030 0.0159 0.0091 0.0116 

Time saving 97.79% 94.18% 96.33% 96.36% 

 

Table 7.2 Computing time and accuracy comparisons for the iron/air phononic 

crystals. 

 

Table 7.1 and Table 7.2 show that the performance of the present LRBFCM 

proposed in this paper is much better than that of the FEM in general. Although the 

used degrees of freedom are different in both methods, we can conclude that the 

LRBFCM with a smaller number of nodes or degrees of freedom can reach a 

comparable accuracy as the FEM by using a larger number of the degrees of freedom, 

at least in the considered cases. A minimum element number with an acceptable 

accuracy in the numerical results is employed in the FEM to obtain a higher 

computational efficiency. In the case of the triangular lattice with square scatterers, 

the degrees of freedom in both methods are almost the same. However, the computing 

time needed by the FEM is much larger than that required by the LRBFCM. In all 

cases considered here, the saving in the computing time by using the present 
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LRBFCM is larger than 94%. 

In Table 7.3, the efficiency and the accuracy of the presented LRBFCM in 

comparison with that of the FEM are given. Also here, the number of the used 

elements in the FEM is kept at a minimum to guarantee a satisfactory accuracy on the 

one hand and to reduce the required computing time on the other hand. Table 3 

demonstrates again that the computational efficiency of the present LRBFCM is much 

higher than that of the FEM, at least for the considered fluid/solid phononic crystals. 

The accuracy of both methods is comparable, but the LRBFCM requires much less 

degrees of freedom compared with the FEM. Table 7.3 shows that the saving in the 

computing time by using the present LRBFCM is larger than 92% for the investigated 

water/iron phononic crystals. 
 

Lattice form Square Triangular 

 
 

Scatterer shape 

Square 

 

Circular 

 

Square 

 

Circular 

 

 
 

RBF 

Number of nodes 953 1676 727 803 

Degrees of 
freedom 

1829 3132 1395 1485 

Time needed [s] 14.1170 26.027    10.068  9.370 

 

FEM 

Degrees of 
freedom 

40513 42305 6057 2033 

Time needed [s] 375  364 165 139 

Comparison 
Errors 0.0011 0.0089 0.0078 0.0039 

Time saving 96.23% 92.84% 93.93% 93.25% 

       
Table 7.3 Computing time and accuracy comparisons for the water/iron phononic crystals. 
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Lattice form Square Triangular 

 

Scatterer shape 

Square 

 

Circular 

 

Square 

 

Circular 

 

 
 

RBF 

Number of nodes 953 1676 727 803 

Degrees of 
freedom 

1829 3132 1395 1485 

Time needed [s] 47.7660 129.3480 36.7830  49.3090 

 

FEM 

Degrees of 
freedom 

40513 42305 6057 2033 

Time needed [s] 1793 1859 369 231 

Comparison 
Errors 0.0122 0.0078 0.0256 0.0136 

Time saving 99.88% 99.69% 90.03% 78.35% 

       
Table 7.4 Computing time and accuracy comparisons for the air/iron phononic 

crystals. 
 
 
 

Table 7.4 shows the comparisons of the computing time and the accuracy for the 

air/iron phononic crystals. Due to the existence of many flat bands, a larger number of 

the eigenvalues are needed to obtain the band structures by both the LRBFCM and the 

FEM. So the computing times in Table 7.4 are evaluated based on the numerical 

calculations of the first 100 eigenvalues by both the LRBFCM and the FEM. Here, we 

can see that the time saving by the present LRBFCM is more than 99% for the square 

lattice and more than 78% for the triangular lattice.    

The accuracy in the case of the square lattice is evaluated by comparing the 

normalized eigenvalues that are smaller than 8 in the band structures of Fig. 7.16 and 

Fig. 7.19, while the accuracy for the triangular lattice is assessed by using the 
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normalized eigenvalues smaller than 7 in the band structures of Fig. 7.22 and Fig. 

7.25. A comparison of Table 7.4 reveals that the numerical errors in the band structure 

calculations for the air/iron phononic crystals are generally larger than that for the 

water/iron phononic crystals due to the existence of many flat bands in the former 

case induced by the large acoustic impedance ratio. In the low frequency range, the 

numerically calculated flat bands by the present LRBFCM agree quite well with that 

by the FEM. However, the agreement between both results becomes worse in the high 

frequency range, which demands further validations and possible improvements in 

both methods. 
 

7.4 Summary 

In this chapter, the LRBFCM is presented for the band structure computations of the 

2D solid/fluid and fluid/solid phononic crystals. Both systems of the periodic solid 

scatterers embedded in a fluid matrix (solid/fluid phononic crystals) and the periodic 

fluid scatterers embedded in a solid matrix (fluid/solid phononic crystals) are 

investigated by using the developed LRBFCM. The numerical results show that the 

present LRBFCM is suitable and accurate for computing the band structures of the 2D 

solid/fluid and fluid/solid phononic crystals when the shape parameter of the MQ RBF, 

the node distribution and the number of the involved local nodes are properly chosen. 

Numerical examples in this chapter also demonstrate that the present LRBFCM is 

much more efficient than the FEM for the band structure computations of the elastic 

and acoustic waves propagating in 2D solid/fluid and fluid/solid phononic crystals, 

when a comparable accuracy in both methods is required.     
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Chapter 8 

Conclusions and outlook 

 

8.1 Conclusions  

In the present thesis, advanced radial basis function collocation methods (RBFCM) 

are developed and applied to the band structure computations of the one-dimensional 

(1D) and two-dimensional (2D) phononic crystals. Both the global and the local 

RBFCM are derived based on the strong-form formulation of the partial differential 

equations (PDEs) in conjunction with the corresponding boundary conditions and 

interface continuity conditions. The developed RBFCM represent a type of 

strong-form meshfree or meshless methods, which require only boundary and interior 

nodes instead of meshes or cells needed by the domain-type discretization methods 

like the FEM. Since the generation of distributed nodes is easier than the mesh or cell 

generation, the pre- and the post-processing as well as the adaptive implementation of 

the present RBFCM are advantageous in comparison with the domain-type 

discretization methods. 

By utilizing the periodicity of the phononic crystals and based on the 

Bloch-theorem, a unit-cell with the appropriate periodic boundary conditions is 

considered. On the interface between the scatterer and the matrix, perfect continuity 

conditions for the displacement and stress components are assumed. The governing 

wave equations, the boundary conditions and the interface continuity conditions 

together form an eigenvalue problem for computing the dispersion relations or the 

band structures of the elastic or acoustic waves, which is solved numerically by using 

the developed RBFCM. In particular, three different special techniques, namely, the 

direct technique, the indirect technique and the fictitious nodes technique, are 

proposed for computing the spatial derivatives of the field quantities near or on the 

boundary/interface, which are required by the treatment of the boundary and the 

interface continuity conditions. These special techniques improve the stability and the 

accuracy of the conventional RBFCM significantly. Numerical examples for the 
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anti-plane elastic waves in 2D solid/solid phonic crystals as given in Chapter 5 

illustrate that the direct and the indirect techniques outperform the fictitious nodes 

technique, though the latter is much more flexible with respect to the node 

distribution. 

For the elastic wave propagation in 1D solid/solid phononic crystals, the effects 

of the shape parameter, the node distance and the type of the RBFs on the accuracy 

and the stability of the RBFCM are investigated and discussed, and a general rule for 

choosing the shape parameter is suggested. Besides, the influences of the node 

number and the node distribution (uniform and random) on the LRBFCM are also 

analysed for the anti-plane elastic waves in 2D phononic crystals. Then, the developed 

LRBFCM is extended and applied to the band structure calculations of the elastic 

waves in 2D solid/solid phononic crystals, and the elastic/acoustic waves in 2D 

solid/fluid (solid scatterers embedded in a fluid matrix) and fluid/solid (fluid 

scatterers embedded in an elastic solid matrix) phononic crystals. Since the acoustic 

impedance ratio is quite large, and the elastic and acoustic wave fields are rather 

different, the stability of the LRBFCM in this case is more severe than that in the case 

of the solid/solid phononic crystals, which demands a great deal of attention. The 

developed LRBFCM are verified by using the numerical results obtained by the FEM. 

A comparison with the FEM demonstrates that to guarantee a comparable accuracy 

the efficiency of the present LRBFCM is much higher than the FEM. This efficiency 

enhancement is attributed to the fact that the present LRBFCM rely on a strong-form 

formulation and do not involve any numerical integration required by the FEM based 

on the weak-form formulation of the PDEs. 

    Numerous representative numerical examples as presented in Chapters 4 to 7 

show that the developed RBFCM in this thesis are accurate and efficient for the band 

structure calculations of the elastic and acoustic waves in 1D and 2D phononic 

crystals with different acoustic impedance ratios (small to large), material 

compositions (solid/solid, solid/fluid, fluid/solid), filling fractions (small to large) 

scatterer shapes (rectangular, square, circular and triangular), and lattice forms (square 

and triangular). By using these numerical examples, the effects of the key geometrical 
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and material parameters on the band structures, especially the passbands and the 

bandgaps, of 1D and 2D phononic crystals are also revealed and discussed.   

                

8.2 Outlook 

Based on the improved RBFCM presented in this thesis, further future research works 

on the topic are needed, which include for instance:  

 Further improvement and extension of the three suggested special techniques, 

especially the fictitious technique, for computing the spatial derivatives of the field 

quantities near or on the boundaries and interfaces for more complex geometrical 

configurations. 

 Further enhancement of the stability, the robustness and the flexibility of the 

RBFCM for the band structure calculations of elastic and acoustic waves in 2D 

phononic crystals. 

 Sensitivity improvement of the RBFCM to the selections of the shape parameter 

and the type of the RBFs, the node number and the node distribution for 2D 

phononic crystals. 

 Extension and applications of the present RBFCM to the band structure 

calculations of 3D phononic crystals. 

 Extension and applications of the present RBFCM to transient wave propagation 

problems in 1D, 2D and 3D phononic crystals.    
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