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Abstract

The study and characterisation of quantum entanglement represents an extended effort
within the field of quantum information. This thesis addresses two problems. The first re-
gards entanglement in open systems, where it’s more difficult to define a dichotomic (two
outcome) observable due to population loss. The second problem concerns genuine multi-
partite entanglement, that is entanglement between many particles in states that cannot be
separable with respect to any possible bipartition of a system.

The first chapter consists of an introduction to the basic elements of quantum mechanics
and quantum information theory. We briefly describe a few historical facts about quantum
mechanics and the study of entanglement, to help put things into perspective.

The second chapter is a detailed discussion of the neutral kaon system. These particles are
produced in pairs and are described as a particle-antiparticle system. This system displays
some unique properties like the violation of CP-symmetry, and shares some characteristics
with other mesons, such as neutral particle oscillation and decay. This makes formulating
Bell-type inequalities for them more difficult, but also provides the opportunity for new tests.

The third chapter continues with the presentation of an already existent effective formal-
ism for performing Bell tests on neutral kaons. The essence of the formalism is a switch to the
Heisenberg picture, transferring the time evolution and dependence on measurement direc-
tions to a so-called effective operator. This has many advantages, some of the most important
being a proper normalization during population loss (due to decay), an easy application to
the case of multiple particles and the fact that it allows one to observe entanglement within
the system for a relatively long amount of time. The final part presents a way to simulate
neutral kaons with atomic systems, namely with Ytterbium isotopes and discuss what are
the differences between these atomic systems and neutral kaons.

The second part of the thesis treats the problem of proving genuine multipartite en-
tanglement from separable two-body marginals. For this, an introduction to semidefinite
programming is necessary due to the fact that the problem under study can be formulated
in terms of this method. We will briefly discuss linear and semidefinite programming as well
as the concept of duality and provide some basic examples.

The formal description of this problem and previous results are provided in the fifth



chapter. Our result shows that, through a cyclic iteration between two SDPs, one obtains
states with the desired properties. Using this method we managed to go up to six qubit states
for various configurations. From this we can construct higher-dimensional states having the

same properties.



Zusammenfassung

Die Studium und die Charakterisierung von Verschrankung in Quantensystemen ist ein
bestandiges Ziel in dem Gebiet der Quantuminformationstheorie. Diese Dissertation widmet
sich hauptsachlich zwei Problemen: Einerseits dem Studium von Verschrankung in offenen
Quantensystemen, wo die Definition einer dichotomischen Observablen wegen Teilchenverlust
im System gewisse Schwierigkeiten bereitet. Andrerseits untersucht es echte Mehrteilchen-
Verschrankung, welches Verschrankung in Zustdnden beschreibt, welche beziiglich aller
moglichen Bipartitionen nicht separabel sind.

Das erste Kapitel fiithrt in die grundlegenden Elemente der Quantenmechanik und der
Quanteninformationstheorie ein. Um den Kontext darzustellen beschreiben wir kurz die
historische Entwicklung der Quantenmechanik und im Spezifischen die des Phanomens Ver-
schrankung.

Das zweite Kapitel beinhaltet eine detaillierte Diskussion von neutralen Kaon-Systemen.
Die Teilchen entstehen in Prozessen als Paare, und lassen sich als Teilchen-Antiteilchen
beschreiben. Zudem zeigen diese Systeme einige Besonderheiten, im speziellen die Verlet-
zung der CP-Symmetrie, und teilt im weiteren einige Merkmale mit anderen Mesonen, wie
zum Beispiel die neutrale Teilchen-Oszillation und Teilchenzerfall. All dies macht die For-
mulierung von Bell-artigen Ungleichen anspruchsvoller, andrerseits bietet sich dadurch die
Moglichkeit von neuen Experimenten.

Das dritte Kapitel prasentiert den bereits existierenden effektiven Formalismus, um
Bell-Experimente mit neutralen Kaonen durchzufithren. Einer der Hauptaugenmerke des
Formalismus ist der Wechsel ins Heisenberg-Bild, welches die Zeitentwicklung und die
Abhéangigkeiten zu den Messrichtungungen in den sogenannten effektiven Operator ver-
schiebt. Dies hat viele Vorteile, wobei als einer der wichtigsten die korrekte Normierung
beziiglich Teilchenverlust ist. Weiterhin vereinfacht dies die Anwendung auf Mehrteilchen-
Verschrankung und gibt die Moglichkeit einer verlangerten Beobachtungsdauer. Zuletzt
wird diskutiert, wie sich neutrale Kaonen durch atomare Systeme, namentlich durch Ytter-
bium Isotope, simulieren lassen, bevor Unterschiede zwischen diesen atomaren Systemen und
neutralen Kaonen erortert werden.

Der zweite Teil der Dissertation untersucht das Problem, echte Mehrteilchen-Verschrankung



nur durch separable zwei-Teilchen Marginalien zu zeigen. Wir fithren dazu in die Methode
der semidefinite Programmierung (SDP) ein, und diskutierern sowohl lineare und semidefi-
nite Programmierung als auch das Konzept der Dualitat. Weiterhin geben wir einige einfach
Beispiele.

Eine detaillierte Darstellung dieses Problems sowie bereits bekannte Herangehensweisen
erscheinen im funften Kapitel. Unser Resultat zeigt, dass eine zyklische Iteration zwis-
chen zwei semidefiniten Programmen einen Zustand findet, welcher echt mehrteilchen-
verschrankt ist, jedoch separable zwei-Teilchen Marginalien hat. Durch diese Methode
finden wir Zustande mit von bis zu sechs qubits, welche diese Eigenschaften haben. Aus
diesen konnen dann wiederum hoherdimensionale Zustande gebildet werden, welche auch

separable zwei-Teilchen Marginalien aufweisen, jedoch echt mehrteilchen-verschrankt sind.
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I. Introduction

Since its beginnings, at the start of the 20" century, quantum mechanics has expanded
to encompass a large array of domains within physics. Almost every field of modern physics
has quantum laws at its foundations or is an extension of an already existent classical field

to the quantum realm.

By the third decade after its birth (commonly associated with Max Planck’s publication of
his black-body radiation law, in 1901), quantum mechanics had already managed to explain
much of the existing phenomenology. It went on to explain atomic and nuclear structures
and ultimately become the foundation of the standard model of particles and interactions. It
also found more pragmatic applications, like in the study of semiconductors, bringing with

them a revolution in automation and information technology.

In spite of its huge successes, however, quantum mechanics has also left open fundamental
questions, with which physicists have struggled for the last hundred years. What exactly
does the word ”measurement” mean within a quantum mechanical context? Why is the
macroscopic world behaving in a classical way? (following the rules of classical not quantum
physics) Is the quantum state real or just a mathematical object? A number of unanswered
questions were not the only problems physicists had to deal with. quantum mechanics seemed

to display a series of strange behaviours like wave-particle duality and, non-locality.

The Principle of Locality states that two spatially-separate systems can interact with each
other only through a mediator (field or particle), and that the interaction has a finite speed.
Thus there cannot be any instantaneous action at a distance. In a seminal paper in 1935,
Einstein, Podolsky and Rosen [19], together with later work by Bell [2], have shown that

Quantum Mechanics might not be a local theory, as we shall see in the next section.

A. The EPR Argument

Due to its non-classical predictions, various aspects of the theory were under scrutiny from
the very beginning. In their 1935 paper, Einstein, Podolsky and Rosen [19] sought to prove
that the physical description of a system, given by the quantum wave-function cannot be

complete. Before describing their argument in detail, we must first give two definitions.
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Definition 1.1. A theory is considered complete if every element of physical reality has a
counterpart in the theory.

Definition 1.2. If the value of some physical quantity can be predicted with certainty, without

disturbing the system, then to that quantity there corresponds an element of physical reality.

First, one can consider the case of a single particle. Take two incompatible observables,
say position Z and momentum p. One can measure either & or p, but not both at the same

time. This brings forth two possibilities:

e if both # and p are real, then the wave function % is not a complete description of the
system’s state. Say the observer measures the position of the particle. Then he does
not now precisely the value for the momentum, even though the momentum itself is an

element of physical reality.

e only the measured observable, say 7 is real, and the other is created at the moment of

measurement. This could lead one to conclude that 1 is complete.

In order to go one step further, the discussion is simplified if, instead of the continuous
observables position and momentum, we choose two spin directions, corresponding to o, and
o,. Then we can easily write down the state for the two parties (from now on, keeping with
convention, the two experimenters will be referred to as Alice and Bob).

1
V2

Suppose Alice measures the spin along o, on her qubit. She them immediately knows

[YaB) = —=(|04,15) + |05, 14)). (1)

that Bob’s qubit is in either a |0) or a |1) state, depending on her measurement outcome.
If, however, Alice chooses to measure o, ,then she knows Bob’s qubit is in one of the two o,

eigenvectors,

By _ 1 B B
\01)_E(|0 )+ [17)),

B\ _ L1 1B\ |1B
12) = 5(10°) - |1%)).

By her choice of either the o, or o, observable, Alice can predict one of two incompatible

(2)

properties of Bob’s qubit. Due to the fact that the two Pauli operators do not commute,

2
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FIG. 1: Anticorrelations in arbitrary directions without quantum mechanics.

hence they have no common eigenstates, there is no quantum state having well-defined values
for both o, and o,. Thus, there need to be at least two distinct wave functions describing
what seems to be the same situation !, hence the wave function is an incomplete description

of physical reality.

Assumption 1. In the above argument it was assumed that the principle of locality holds,
meaning that measurements on one particle do not instantaneously lead to a change in the

state of the second particle.

As we shall see, keeping this line of reasoning will lead to a contradiction.

Note that, contrary to the common misconception that anticorrelations in arbitrary di-
rections are a profoundly quantum mechanical phenomenon, they can be entirely reproduced
within classical physics. Consider the case of two spinning tops in two boxes (Fig.1), prepared
such that their angular momenta have opposite directions. By defining a ”spin” operator for
any arbitrary direction a,

S(a@) = sign(@- L), (3)

we obtain perfect anticorrelations in arbitrary directions without quantum mechanics.

A first answer to EPR was given the same year by Bohr [7]. Bohr’s main focus was first
on criticizing the EPR definition of "reality” and second on arguing that, while measuring
only one observable, say Z or p' on one particle, only the corresponding observable of the
other particle can be real. The issue is that Bohr does not also discuss any influence between
the particles, which seems to be implied, if Bob’s particle ”knows” which measurement was

performed by Alice.

1 Both o, and o, are elements of physical reality, since Alice can predict the state of Bob’s qubit without

disturbing his system, in accordance with Definition 1.2.
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FIG. 2: Two-party basic setup for Bell inequalities. Alice and Bob can perform

measurements on two observables each and the results of any measurement can be +1.

B. Local Hidden Variables and Bell Inequalities

We will try now to make quantum mechanics complete, in the EPR sense by adding
extra parameters that, though not accessible to the experimenter, help the wave function
describe the full properties of the system. Such a theory is called a ”hidden-variable theory”,
and the inaccessible parameters are called ”hidden variables”. Furthermore, because it seems
reasonable to expect that the complete version of quantum mechanics must also be compatible
with the theory of special relativity, the principle of locality must also hold. Therefore we
address here a class of theories known as ”local hidden-variable theories”, and we shall see that
these theories are not compatible with experimental predictions. In this, and the following
sections on entanglement and entanglement witnesses, we shall mainly follow Ref.[24].

Consider the situation depicted in Fig.2. Alice and Bob perform simultaneous measure-
ments on four quantities,A; and A, for Alice and B; and B, for Bob, M times. The mea-
surement outcomes will be labelled by a,, as, b; and by, respectively. The expectation values

can simply be obtained by averaging the results

M
(A0 By) = 12> a(k)by(R) (@
If the probabilities for the outcomes can be w:izen as
p(af,by) =plar = +1,b, = 1), (5)
then one can write the expectation values as
(AiB;) = p(af ,bf) — p(a; ,b]) — plaf,b;) + p(a; , b7). (6)

4



One can now introduce the idea of a Local Hidden-Variable model (LHV). Two assump-
tions need to be made: first, the measurement results should be independent of whether they
are actually measured or not (this corresponds to the reality assumption), second, Alice’s re-
sults should not depend on Bob’s choice of observables and vice-versa (locality assumption).

With the above in mind, one can make an ansatz for the probabilities

p(ad, b) = f dAp(N) A (a8) By (1), (7)

where a and 8 denote the possible outcomes +1 and A is the hidden variable, occurring
with probability p(A). The response function AA(G?)BAU)? ) factorizes due to the locality
assumption. One can always assume an LHV model to be deterministic (i.e. for a given
lambda, A,(a$) and BA(bf) take only the values of 0 or 1). A nondeterministic model

corresponds to a deterministic one where A is not known [42, 54].
In 1964, Bell 2] showed that there are bounds on the correlations of these probabilities.

We present here a slightly more general bound, obtained by Clauser and Horne [13],

p(al_:bl_) —I—p({li'—,bg_) +p(a2_: b—li—) —p(a;,b;) Z 0. (8)

From this, one can derive the Clauser-Horne-Shimony-Holt (CHSH) inequality [14, 15],
(A1By) + (AsB1) + (A1 By) — (A3 By) < 2. (9)

It is important to notice that, while deriving Eq. (9), there were no notions of quantum
mechanics involved, so we must now place the CHSH inequality in a quantum context.
Consider the two experimenters, Alice and Bob, each having a spin—% particle, on which
they can perform the measurements A; and B;, corresponding to measuring the Pauli spin
operators o, and oy, respectively. One may now write the inequality in operator (or witness)

form by defining a Bell operator
B:Al®Bl+A2®Bl+A1®BQ—A2®BQ. (10)

There are quantum states that violate this inequality and give a value of 21/2, the so-called

Tsirelson bound [12], which can also be shown to be the maximal violation for the CHSH.

5



For a choice of observables

A =—0,

Ay = —oy

B, — (0 +0y) (11)
2

B, = (02 ; ay)

the state with the highest violation of the CHSH inequality is the eigenstate of the Bell

operator B, corresponding to the largest eigenvalue,

1
[¥) = ﬁ(lﬂl) — [10)), (12)

also known as the singlet state.

We have seen that quantum mechanics violates Bell inequalities and this is due to the fact
that one of the two assumptions initially made, reality or locality, is wrong. It is not at all
obvious which one. Removing the realism conditions and making certain assumptions on the
correlation functions (A;, B;), it is possible to derive Bell-type inequalities [31]. Conversely,
one can keep realism and remove the locality assumption, obtaining a non-local theory com-

patible with quantum mechanics, such as Bohmian mechanics. For a more detailed discussion

see Ref. [24].

C. A Different Kind of Bell Inequality

One Bell-type inequality we will be focusing on in later chapters was initially proposed by
C. Sliwa [46] and shown by D. Collins and N. Gisin [17] not to be equivalent with the CHSH.

For brevity we shall call this the Sliwa-Collins-Gisin inequality or SCG.

This is a two-party three-setting inequality of the form

(A1) + (A2) + (B1) + (Ba) + (A1By) + (A1 By) + (A2 By)
+(A3By) + (A3By) — (A3Bs;) + (A1 Bs) — (A3 Bs) > —4.

(13)

Here the (A;) and (B;) should be understood as (A; ® 1) and (1 ® B;), respectively. This
means that the correlation functions belong to the case where only one of the observers

performs a measurement.



In Ref. [17], an example state has been given
p = 0.85P, + 0.15Pyy, (14)

where Py, is the projector corresponding to the state

1
= ﬁ@ 100) +[11)), (15)

and Po;y = |01) (01|. This state does violate the SCG inequality but not the CHSH, proving
that there is a class of states which are only detected by the SCG, thus the two Bell-type

%)

inequalities are not equivalent.

D. Violation of Bell-type Inequalities and Entanglement

Violation of Bell-type inequalities directly implies entanglement. Before explaining this,

it would be appropriate here to give a formal definition of entanglement.

Definition 1.3. Let p be the density matriz of a bipartite system. p is a product state if
p = pa®pp, where py and pp are the reduced density matrices for Alice and Bob, respectively.
Furthermore, if the global state can be written as p = Y., pipy ® plz, the state is called
separable, where Y .p; =1 and p; > 0 for all i.

Definition 1.4. A state that is not separable is called entangled.

We stated above that any separable state can be written in the form

p=> pibs ® P (16)
The correlation function for bipartite measurements A; and B; will thus be given by
(A:iBj) = peTr(Aspl)Tr(B;pl). (17)
k
Defining two operators

U(Ai) = Tr(Aiply),

(18)
Bi(B;) = Tr(B;pp),

7



leads to the following form of the correlation function
(AiBj) = paldi(Ai) Bi(B;), (19)
k

which is exactly the case of LHV models (See Eq.(7)). This means that, if a quantum state
violates a Bell-type inequality, it cannot be a separable state, hence it’s entangled. The
opposite is generally not true, Bell inequalities are not optimal entanglement witnesses, so

there exist entangled states that they do not detect [24].

E. Partial Transposition and a Criterion for Entanglement Detection

In the following, we will briefly present an entanglement detection criterion, known as
the positive partial transpose (PPT) criterion. It is worth mentioning that there is a large
number of entanglement criteria available in the literature but we restrain our discussion only
to what will be applicable in later chapters.

Any density matrix of a composite system can be expanded as

p= szn Gl Ik, (20)

in terms of some chosen product basis.

Definition 1.5. The partial transposition of p is defined as the transposition with respect to
one of the subsystems. Its effect, on Alice’s system, is described by p™ = Ei\; Efl piik ) (F1®
|k) (I| and on Bob’s system, p'8 = E iy Eklpm“ i) (j| ® |k) (1.

A useful property of the partial transpose is that p? = (p™)72, or pT8 = (pT4)T.

Definition 1.6. A density matriz p has positive partial transpose (or simply, is PPT) if
p'4 >0 or, equivalently, p™® > 0.

Now we are ready to state the Peres-Horodecki criterion (also known as the PPT criterion)

[41].
Theorem I.1. If p is a bipartite separable state, then p is PPT.

Proof. 1If p is separable, it can be writtenas p =), prpt ® pl. Taking the partial transpose
of this, with respect to Alice’s system, gives p™ = >, pe(p%)T @ (pf) = 32, pkpnifl ®@pk. O

8



In general, the converse of this is not true in higher dimensions. In later chapters we will

be dealing with 2 x 2 systems and, in this special case, the following theorem, known as the

Horodecki theorem [25] holds.

Theorem 1.2. If p is a state of a 2 x 2 or 2 x 3 system, p'4 > 0 implies separability.

F. Entanglement Witnesses and Multipartite Entanglement

While it is not the purpose of this section to give an in-depth review of entanglement
witnesses and their construction (for that see, for example Ref. [24][26]), we will give here
the formal definition of an entanglement witness and, at the end of the section, discuss an
important class of witnesses called fully-separable witnesses, that will prove important later

on.

Definition 1.7. An observable W is called an entanglement witness (or just witness) if

Tr(Wps) >0 Vps separable,
(Wps) = Ps sep (21)

Tr(Wp.) <0 for at least one entangled p..

An important remark, stated here without proof (for proof see Ref. [25]) is that for any
entangled state p. there exists a witness that detects it.

As an example [24] of a two-qubit entanglement witness, one can easily be constructed by
using the PPT criterion. Consider a state p, which is NPT (negative partial transpose), hence
it does have a negative eigenvalue A_ < 0 to which there corresponds an eigenvector |n). The
witness W = |n) (n|™ detects pe since Tr(W pe) = Tr(|n) (n|™ pe) = Tr(|n) (n] pT2) = A_ < 0.

In order to generalize entanglement to the multipartite case, we must first look at two
types of pure states for a three-qubit system. The first type is given by fully separable states,

which can be written as

[97%) = |aa) ® |B8) @ |1c) (22)
while the second represents biseparable states,
|¥) = |oa) ® |0Bc) (23)

9
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|__biseparable
states

FIG. 3: Graphical representation of the sets of biseparable states and PPT mixtures.
(Picture reproduced from [29])

with respect to bipartition A|BC of the system.
In the case of mixed states, a state pspc is said to be separable with respect to a bipartition

A|BC if it can be written as a mixture of product states, with respect to the bipartition A|BC

Paise = Dk |#4) (4] @ [dse) (¥hol - (24)
k
If the global state of the system can be written as
P" = Prpitne + P2Puiac T P3PGAB (25)

it is known as biseparable. Now we can proceed with defining genuine multipartite entangle-

ment.

Definition 1.8. If a state is not biseparable, thus it cannot be written in the form of Eq.(25),
then it is genuinely multipartite entangled.

One last class of states we need to look at is represented by the so-called PPT-mixtures.

Similarly to biseparable states, a state that can be written as

P = Plpﬁtgc + p2p§|tAc +p3pg'TAB (26)

in terms of states PP'T with every bipartition of the system, are known as PPT miztures. The

reason for discussing PPT-mixtures here is that (see Fig.3) PPT-mixtures include biseparable

10



states, thus, if a state is not a PPT-mixture, it certainly is genuinely multipartite entangled.
It is much easier to prove that a state is not a PPT-mixture, due to the ease of implementation
of the PPT criterion, than to prove that the state is not biseparable.

In the last part of this section, a class of entanglement witnesses is presented, that proves
useful in the case of PPT-mixtures. For a two-particle case, A and B, a witness W is called
decomposable if it can be written in terms of two positive semidefinite observables P and ()
(P>0and Q > 0) as

W =P+Q™, (27)

where T’y represents the partial transpose with respect to subsystem A. If one generalizes

this definition to a multipartite case, namely, a witness that can be written as
W = Py + Q) (28)
for any bipartition M|M, of the system, then the witness W is called fully decomposable.

Theorem 1.3. If p is not a PPT mixture, then there exists a fully decomposable witness W
that detects it. The proof can be found in Ref. [29].

G. Applications of Entanglement

In this section we will describe two such applications, one is quantum cryptography, more
exactly the problem of securely distributing a private key (a problem also known as quantum
key distribution) between two parties, and a second application is the quantum teleportation

scheme, used to transmit a qubit state between the same two parties.

1. Quantum Key Distribution

One of the first key distribution protocols in quantum information was the BB84 protocol
[3]. It consists of two observers; Alice and Bob, sharing a private key over a public channel, as
part of a private key system. The protocol also allows the two to verify if their communication
has been intercepted by an eavesdropper, aptly named Eve, thus compromising their security.
One requirement for the implementation of the BB84 protocol is that Alice and Bob can

exchange qubits over a public channel, with an error rate that is sufficiently small.

11



String Values|br = 0|b =1
ar =0 | L7
ar =1 =) | N\

TABLE I: Alice’s encryption rule in the BB84 protocol.

To describe the scheme, we primarily follow the derivations from Ref. [1, 37]. Alice beginns
with two strings of random classical bits a and b, of equal length. She encodes each bit in a
as {|0),|1)}, if the corresponding bit in string b is 0 and {|+) , |—)}, if the corresponding bit

in string b is 1, where

1
|+) = EUU) +11)),
1
|-) = EUU) — 1)),

are the eigenvectors of the Pauli ox matrix.

(29)

After the encoding operation, Alice is left with the state

[¥) = ® |71bakbk> ’ (30)

with a, being the k-th bit of string a, which can be in one of the four possible states
{10),[1),|+),]—)}- Consider now two photon polarization bases {|1),||)}, representing
vertical and horizontal polarization and {| 7),|\,)} , representing a polarization basis ro-
tated by 45 degrees with respect to the first one. We denote the two bases as Z = {[1), [})}
and X = {| ), |\,)}, and we identify the four basis vectors with the eigenkets of the Pauli
o, and o, respectively.

Thus, the value of the k-th bit in string b, say by, gives the choice of basis (Z or X) for
encoding the k-th bit in string a, a;. In it’s turn, the value of the corresponding a; bit gives
the ket that Alice will use during the encoding process. To make this clearer, the rule for
Alice’s choice of kets is described in Table L.

After obtaining her encrypted state, Alice sends it to Bob. Since, at this point, Bob has
no knowledge of string b, all the can do is measure all the qubits received from Alice, and

changing the measurement basis between Z and X randomly. It is only after Bob announces

12



that he has performed all the measurements, that Alice makes string b public. This sequence
of steps is essential. Alice and Bob now discard all bits in strings a and a’ (where a’ is the
string representing Bob’s measurement results) in all cases where Bob measured in a different
basis from Alice. They are thus left with two identical strings, representing their private key.

A last step to be carried out in the protocol ensures the security of the transmission,
determining whether or not an eavesdropper, aptly named Eve, managed to intercept their
message. Due to basic postulates of quantum mechanics, if Eve observes the qubits, she will
inevitably disturb their state. One other option for Eve would be to intercept the qubits
from Alice, make a perfect copy of each one, then send them, in their original state, to Bob.
However this is impossible due to the no-cloning theorem [55].

On average, Alice and Bob would choose a different basis 50% of the time. Because an
eavesdropper would have the same probability of getting Alice’s choices of bases wrong, if
Bob observes that the probability of a mismatch in a subset of the string of his measure-
ment results, with Alice’s encryption choices is around 25%, this would mean that Eve has

intercepted the message and the privacy of the key has been compromised.
a. The EPR Protocol

An important point about the BB84 protocol [37] relates to the source of the private key.
Let Alice and Bob share n entangled states

1
) = ﬁ(lﬂﬂ) +[11)), (31)

which have either been prepared by one of the parties and then half of each pair has been
distributed to the other, or all pairs have been prepared by a third party and distributed to
the two experimenters.

After using a Bell-type inequality to certify that the states are still entangled, they can
be used for key distribution. The procedure would go like this

e Alice generates a classical string of bits b, and according to each value of the bits in
this string, she measures her half of the EPR pairs, into either the Z or the X basis,

obtaining a string a.
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FIG. 4: Scheme of the quantum teleportation protocol.

e Bob does the same on his side of the EPR pair, obtaining a string @/, by randomly

choosing his measurement bases according to the values of a string of bits b'.

e Both experimenters communicate the values of b and &’ and remove all instances in a

and o', for which by # b]..

e The private key is represented by the common resulting string.

What is interesting here is that this key is only generated after both Alice and Bob perform
their measurements on the EPR pairs, such that one cannot say the private key originated

from one of the two parties.

2.  Quantum Teleportation

A second application of entanglement we describe here is a procedure aptly named quan-
tum teleportation. The purpose of this technique is the transmission of a previously unknown
qubit state between two experimenters. The setup is as follows: two experimenters, Alice
and Bob, share an entangled EPR pair and a classical communications channel. Alice must
send the state of a third particle, in her possession, to Bob. As reference, see Ref [1] and
[37], here we will mostly follow the former.

As previously mentioned, Alice and Bob share an EPR pair, denoted here as being com-

prised of the particles A; and B (see Fig.4). They are in the entangled state

[aa8) = =004, 1) + 11, 10)). 3)

Alice performs on particles A; and A, a measurement of the operator
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B:crl-&'(02'34-02'57)—#0'1'G_:'(JQ'E—C’?‘g): (33)

which is nothing more than the CHSH inequality in operator form. The eigenbasis of B is
the Bell basis,

[v7) = f(IU 1) = 11)10)),

") = I0 1) +11)10)),

(34)
) = 0) |0) — |1) |1)),
|67) = f(l |0) — [1) 1))
|¢*) = |0 [0) + [1) [1)).
Consider now that the state of particle A;, which Alice intends to transmit to Bob, is
| A1) = a|0) +d'[1). (35)

We can write the total three-particle state in the form

aB) =—=(10) 4, [0).4, 1) — 10) 4, 114, 10 )
2 (36)
ﬁ(u)fll |0)Az |1)B - |1)A1 |1)A2 |0)B)'

This can be further rewritten in the Bell basis as

_|_

[YaB) = |’¢' >A1A2 —a|0)p —a'|1)p)

- |w+ s (01005 + ¢/ [1)) an
+ |¢5_>A1A2 (a|l)p+d'[0)p)
+ |¢+>A1A2 (a |1)B —d |O>B)]‘
After performing her Bell measurements on particles A; and A,, Alice ends up with one
of the four possible Bell states, while Bob obtains the corresponding pure state. Now, Alice

must use a classical channel to inform Bob of which of the four states she obtained. Then, in

order to recover the state |A;), Bob has to perform one of the following unitary operations on
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his state: U; = —1, Uy = —0z, U3 = 0x and Uy = —ox0z, depending on the state obtained
by Alice.

There are two important remarks here. First, quantum teleportation does not allow for
faster-than-light communication, since the two parties require a classical channel for the
scheme to work. Indeed it can be quite easily shown (see. Ref.[37] section 2.4.3) that, in the
absence of a classical channel, no information can be transmitted.

The second remark relates to the fact that it might seem the scheme produces a copy
of the previously unknown state of particle A,. If this were true, it would go against the
predictions of the no-cloning theorem [55], however, it does not. Upon performing the EPR
measurement on particles A; and A,, Alice destroys the state of particle A;, which just gets
projected onto one of the eigenstates of o,. Thus, no copy of the unknown state is actually

produced.

H. Open Quantum Systems

Every quantum system is in contact with some environment, and because of this, one
needs to provide a way to describe time evolution, taking the environment (or reservoir) into
account. Isolated systems evolve in time in a unitary fashion, a pure state will always be
mapped to another pure state. For open systems, this is not the case. An initial pure state
will evolve into a mixed state. In what follows, a brief presentation of open systems is given.

For more detail, some useful references are [1, 10].

1. Decoherence and Dephasing

Two phenomena appear when a quantum system is in contact with an environment (or
reservoir): decoherence and dephasing. They both affect the off-diagonal terms of the sys-
tem’s density matrix. In the following, a simple example [1] will be given to illustrate the
effects of the two phenomena.

Consider a system S in contact with its environment E. For simplicity, let S be a two-level

system, described by a state vector of the form

) =col0) + e 1) (38)
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The environment’s state can be expanded in terms of an arbitrary basis

|5) = Z an |en> ) (39)

13

and the state of the total system (S + FE) is thus

9) = |¥) |€). (40)

After the interaction this separability will be lost and the total state will be of the form

|¢") = co|0) |Eo) +c1]1) |&1), (41)

where |&) , |€;) are generally non-orthogonal states of the reservoir.

The density matrix corresponding to this state is then

psr =|col? |0) (0] &) (Eof 4 lea]* 1) (1] €1) (&4
+coct [0) (1] &) (€1 + erc|1) (0] &) (Eol

(42)

and one can calculate the reduced density matrix of S by tracing out the environment,

2 * 5 5
ps = |CO| cocy ( 12| 0) ( 43)
acg(&ol&) el

The off-diagonal elements are thus reduced by a factor of | (£; | &) |. The more |&;) and |&;)
get closer to being orthogonal, the smaller the off-diagonal elements tend to become.

Due to the environment’s random fluctuations, another phenomenon called dephasing
manifests itself. For simplicity, resort again to the example from Ref. [1]. Suppose that, after

interacting with the environment, the state of S can be written as

[¥) = o [0) + c1e™ 1), (44)

where ¢ is some random phase. In the case of large fluctuations, the off-diagonal terms once

more tend to zero, this time due to the fact that (e*®) = 0.
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2.  Dynamics of Closed Systems

Before considering the time evolution of open quantum systems it is useful to quickly
sketch the simpler situation, namely for closed (or isolated) quantum systems.
The evolution of a pure state is given by the Schrédinger equation (where we drop the &

term for simplicity)

0 .
5 [P@) = —iH(®) [4(2)) (45)

with the formal solution

|¢(t)) = U(t: tl]) |’¢'(to)> ) (46)

The time evolution for a closed system is unitary and we can write the unitary time

evolution operator in terms of the Hamiltonian as

U(t to) = T expl—i f CdsH(s)) (47)

to
and UTU = UU' = 1. Here we have used the notation from Ref. [35]. The time-ordering
operator g orders products of unitary operators in a time-dependent way, such that the
operators containing the earliest times are to the right of the product (i.e. they act first on
the state vector).
In the case of a time-independent Hamiltonian, one can write the unitary operator in a

simplified way

Ul(t, to) = exp[—iH (t — to)]. (48)

For mixed states

p(t) = an |¢n(t)> (%(t” ’ (49)

time evolution is given by the Liouville-von Neumann equation

9 plt) = ~lH(0), p(1)]. (50)
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3.  Dynamics of Open Systems

Having reviewed the time evolution equations for closed systems, we want to extend
this to the more general open system case. Open quantum systems consist of a system of
interest (denoted so far as S) and an environment with which it is in contact (denoted as
E). In general, the time evolution of S is not unitary and we will need to make a number of
approximations to obtain a usable time evolution equation. We will follow the derivations of
Ref. [35], but one should also consider Ref. [10, 45]

The total Hilbert space of the combined system (S + FE) is

H = HS ®H5: (51)

so we will be concerned with finding an equation for the reduced state (the state of S), thus

we trace out the environment

ps(t) = Trg(p(t)), (52)

where p(t) is the global state. Such an equation will be known as a master equation, whose

definition [45] we give in the following.

Definition 1.9. A master equation is a first order differential equation describing the time

evolution of probabilities, of the form

d Py

—= = [P — TPy, (53)

1
for some discrete events k € {1,..., N} and where Ty > 0 are transition rates from event [

to event k, and Py are the corresponding probabilities for the transitions.

In what follows, the above events should be understood as as different possible states of

S. We first go through a step-by-step derivation of a Markovian master equation and then

provide a form, similar to the one in Def.1.9, which is far more useful to implement. Before

that, however, we should point out an essential aspect of master equations, namely that they
conserve total probability
dP,

Z p7 Z[Tkzpt — TPy = Z[lepk — TiPy] = 0. (54)
% Kl Kl

19



A detailed discussion of how the master equation is obtained [35] is useful due to the fact
that some important simplifying assumptions are made in the process. These assumptions
restrict the applicability of the equation and explicitly show that the time-evolution rule thus
obtained is only an approximation (something which should be taken into account in later
chapters).

The system-environment Hamiltonian can be split into three operators

H:HS—I—HE-I—HI} (55)

where Hj is the interaction Hamiltonian, the only part that involves both system and envi-
ronment degrees of freedom. We also denote Hy = Hg + Hg and switch to the interaction

picture

ﬁI (t) = e";(HS'FHE)tHIe_i(HS'FHE)tj (56)

The combined system S + F is closed, so it evolves according to Eq.(50),

9 plt) =~ (0), 5] (57)

All operators marked with a tilde are written in the interaction picture, by using the Eq.(56)
transformation.

The formal solution of Eq.(57) is

3(t) = p(0) — i / ds{F1(s), 3(5)), (58)

which, together with Eq.(57), gives

5770 = =il1(0),p0)] = [ dslx (), [r(s), 53] (59)

0

Since we are only interested in the dynamics of the system, we trace-out the environment

75(0) = i T [1(0),p(0)] ~ [ ds Teal i (0), 11 (5), 5] (60)

20



At this point one must make a series of simplifying assumptions. First, assume that the
interaction between S and F is turned on exactly at ¢ = 0. This means that the initial

density operator factorizes

p(0) = ps ® pe(0). (61)
Second, the term Trg[Hy(t), p(0)] can be set to zero. This in effect means that we can

subtract a term Trg[H(t), pe(0)] from H; and include it in Hg. The time evolution equation

now becomes

5y7s(®) == [ dsTep{Hi(e), (o), (5] (62)

Now we use the Born approximation, this further assumes that the interactions described

by H are weak, so pg is time-independent

pe = pr(0). (63)

The density operator thus factorizes at all times

pt) = ps(t)pe, (64)

and time evolution will now be given by

2 plt) = - f ds TeplF1(t), (1 (s), ps(s)pe]). (65)

The evolution of pg(t) still depends on its past history, through the pg(s) term. For
this reason, the last approximation to be made is the Markovian approximation, stating
that the future behaviour of pg(t) will only depend on its current state, hence we replace
ps(s) — ps(t) and s — t—7. Extending the limits of integration to infinity (See Ref. [35]),

we finally obtain

0

inf N _
& pst) =— ] dr Teg[H (1), (i (t — 7). ps(t)p], (66)

written in the interaction picture.
This is a Markovian weak-coupling master equation that provides a good approximation

for the time-evolution of the open quantum system. However, it is very cumbersome to work
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|0)

FIG. 5: A two level system with decay.

with so, in the next section, we provide an alternative form, known as a Lindblad form of

the master equation and give a simple example of how it can be applied.

4. Lindblad Master Equation

In Ref. [9, 40], the authors provides simple derivations of the master equation in Lindblad
form. Here, we only reproduce the result and go on to give a very simple example of how
such an equation will be used in a later chapter, when we will apply it to neutral kaons and

general decaying systems.

The Lindblad form of the master equation is

L p(t) = —ilH, p(0)] — 32 PLALop(t) + pOLTL 2L (OL)  (67)

o

or in the equivalent form

2 p(t) = ~ilH p(0)] — Y (5 (LML p(t) ) — L7p(1) L), (68)

where {-}, is the anticommutator and L® are the Lindblad operators. In our case, the Lind-
blad operators will simply be jump operators, describing a transition between two quantum
states.

Finally, we provide a simple example of a two-level system with decay and show how the
Lindblad equation describes the decay process. Consider the two-level system in Fig. (5).
We ignore any unitary time evolution and just focus on the decay from |1) to |0), with a
decay rate 7.

The Lindblad equation would contain just the decay part
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2 p(t) = 1 (5 {AAp(0)} — Ap(DAD), (69)

where the Lindblad A operators are just jump operators between the two levels,

A =0) (1], (70)
AT =1)(0].

I. Basic Notions of Experimental Quantum Optics

The last section of this introductory chapter will briefly present basic notions and tech-
niques from the field of experimental quantum optics. We focus on the classical equations of
motion for a trapping potential, laser cooling and internal state detection of a trapped ion.
The main sources for this section are Ref.[20, 32, 52], to which we shall refer the interested

reader for more detail.

1. Trapping Potential and Classical Equations of Motion

Due to Laplace’s equation, one cannot trap a charged particle in three dimensions using
only an electrostatic field, thus, following Ref.[32], we consider a quadrupolar potential which
can be decomposed into an oscillating time-dependent part and a time-independent static
part

_ E 2 2 2 g /.2 /2 1.2
B(z,y,2,t) = F(az” + By” +727) + 5 cos(wrrt) (a'e” + By" +7'2%), (71)
where w,s is the driving frequency. In order for this to fulfil the Laplace equation A® = 0,

the following restrictions are imposed

Ofr‘f‘ﬁr‘i"')’!:o-

From these constraints, one observes that such a potential can only trap charges dynamically,

by giving the trapped particles a quasi-harmonic motion in all directions.
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There are two possible choices in terms of spatial factors,

O = = "}/ = 0?
(73)
o + ﬁ; - _ﬁf’:
giving three-dimensional confinement in an oscillating field, or
—(a+pB)=7>0,
(a+p) =7 (74)
o = _JB!:

which results in dynamical confinement in the XY-plane and static potential confinement for
positive charges in the Z direction (as used in linear traps [39]).
We now shortly discuss the classical equations of motion of a particle in a trapping poten-

tial ®(z,y, z,t). Considering only motion in the X-direction, the equation of motion becomes

Z|e| 6

Ziel (79)
= " [Ua+ U cos(w,st)]z,
m

which can be written as a Mathieu differential equation

d?

d—; + [az — 2¢z cos(28)]z =0 (76)
using the substitutions
wyrt 47 e|lUa 27 e|lUo’
E - Qf ) Qg = |7|2? Gr = % (77)
mw? mw?
The general form of the solutions is

2(26) = At Y Cype®™ + Bem et Y " Cype™ ™, (78)

here 3, and Cj,, depend on a, and g, only.
One can now perform a lowest order approximation, by setting C.4, = 0 and the condition

that A = B. This leads to a simplified form of £,
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FIG. 6: Cylindrically-symmetric RF trap.

Be =4[ ar + q_;a (79)
and of the particle trajectory
z(t) = 2AC, cos (wa;f t) [1 - %r COS({anft):l. (80)

The quantum mechanical description of the dynamics of charged particles in ion traps
is somewhat more involved, so the reader is referred to Ref.[32] for that and also a more
detailed treatment on classical motion and trap stability.

In Fig.6 the schematic of a cylindrically-symmetric RF trap is presented, with

a, = —2a, = —2ay, 81)
q: = —2q, = —2qy,
and the requirements that a = o' = f = ' = —27 = —29/ and also a = ;ﬁr"%g
Another possibility is to design a linear RF trap with
=9=0
, =~ =
| (82)
Qy = — 4z,

initially proposed by W. Paul [39]. This type of trap is more useful for manipulating indi-

vidual ions with lasers.
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As previously described, the motion of the trapped ion is composed of axial and transverse
motion, with respect to the axis of the linear trap, with typical transverse frequencies being
three to four times larger than the axial. In what follows, we focus exclusively on axial
motion, for simplicity.

After the ion has been trapped, the next step is removing its vibrational energy, a process

known as cooling.

2. Laser Cooling

Following Ref.[52], we describe here a cooling procedure known as side band cooling.
Consider an atomic two-level system, a ground state |g) and an excited state |e), coupled to
external lasers that drive a two-photon transition between them.

The Hamiltonian is, in this case

hQ) . )
H = bva'a + hwao, + 7(0._'ez(t.-.rz,t—l'e‘u,q) 4 o-_f_e—e(wz,t—kz,q))} (83)

where ¢ is an operator representing the ion’s displacement from its equilibrium position, v
is the trap frequency, {2 is the Rabi frequency of the transition, w4 represents the atomic
transition frequency while wy and kj are the laser’s frequency and wave number. The sigma

matrices are given by

o_ = 5(% + ioy),
2 (849
Oy = 5(% — i0y),

The key point here is the careful use of relations between the three frequencies v, w4 and wr..

We rewrite the position operator as

0= (1) (@t a), (55)

and also define the Lamb-Dicke parameter

B \3 27AZpme
n_kL(va) - A (86)

with the root-mean-square (r.m.s.) position fluctuations given by Azyys.
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By switching to the interaction picture, using

UO (t) — e—iuafat—onzt’ (87)

one gets an interaction Hamiltonian of the form

hQ i —ivt it :
Hi(t) = 7(0_6—”?(“ talel) —ilwa—wi)t | h.c.) (88)

This expression needs to be simplified, so we consider only small 7, typically < 1 and expand
H;(t) in terms of this parameter. This, however, leads to a complicated expression and it
is not the purpose of the current section to provide an in depth treatment of experimental
methods. The interested reader can find the detailed derivation in Ref.[52]. Tuning § =
w — wr, such that it becomes an integer multiple of the trap frequency v, one obtains three

situations:

e carrier excitation, when 6 = 0

H. = Q1 —n*a'a)o,, (89)
with oz = 3(0— + 03).

e first red sideband excitation, when é = v (such that wy, = w4 —v)

H, = i@(aa@ —alo.). (90)
e first blue sideband excitation, when § = —v (such that w;, = w4 +v)
H, = i?(afmr —ao_). (91)

While in the case of the first red sideband excitation we have a process involving the
absorption of a trap phonon, as well as a laser photon, in the case of the first blue sideband
excitation, a phonon is emitted. If the ion is in the excited state |e) and it spontaneously
decays to the ground state, tuning to the first red sideband, we obtain cycles of excitation

and emission that remove one phonon per cycle, cooling the vibrational degree of freedom.
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FIG. 7: Three level system used for electron shelving.

3.  Reading the Internal State

After trapping and cooling the ion, the last step to be discussed here is the detection of
its internal states. This is usually performed by laser-induced fluorescence. In this process,
one ion can scatter large numbers of photons, some of which can be picked up by a detector
(such as a CCD camera or a photon-multiplier). Because the spatial extension of the ion’s
wave function is smaller than the wavelength of the fluorescent light, single ions will show
up as bright dots.

One detection procedure is the so-called electron shelving method. Consider adding an
extra level |r) to the previously introduced two-level system, as in Fig.7. Further assume that
[32] the transitions |g) <> |e) and |g) <+ |r) can be independently driven, and that the lifetime
of |r) is much shorter than the lifetimes of the other two levels. Thus, the transition |g) <> |r)
can be strongly driven and a large number of scattered photons if the initial interaction with
the laser field prepared the atom in the state |r). On the other hand, if the initial state of
the atom, after being excited by the laser, is |e), no photons will be scattered.
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II. Neutral Kaons

In the first half of this thesis we will be presenting our results [38], as well as previous
ones, regarding the study of entanglement in systems of decaying particles. The testbed for
this will be a system of electrically neutral mesons, called neutral k-mesons or neutral kaons

for short.

Mesons are hadrons (composite particles made of quarks) composed of one quark and one
antiquark, bound together by strong interaction. In particular, neutral kaons are composed

of a down quark and a strange antiquark.

Historically, neutral kaons have been essential in providing an insight into the quark
structure of hadrons and the theory of quark mixing, for which a Nobel Prize in Physics
has been awarded in 2008, and in deepening our understanding on the matter-antimatter
asymmetry in the universe. On this second subject, the violation of charge conjugation and
parity (CP) symmetry was first observed experimentally in systems of neutral kaons by J.W.
Cronin and V. L. Fitch [11], and brought the two the 1980 Nobel Prize in Physics.

As we shall see, neutral kaons exhibit two types of behaviour that give the experimenter a
new possibility of performing Bell tests: a particle-antiparticle oscillation and decay. Before

this, however, a more thorough description of the particles will be given.

Neutral kaons are pseudo-scalar mesons, even though their total spin is zero, they have
odd parity, denoted by J¥ = 0~, compared to scalar mesons which have even parity J* = 07.

They are produced in particle-antiparticle pairs (K°K?), either in electron-positron collisions
(DADNE at Frascati) or proton-antiproton collisions (CPLEAR at CERN). For this reason,

we must always treat neutral kaons as a two-particle system.

At time t = 0, the initial state function for the pair is

(e = 0)) = (K% [K) ~ [ K [K°)). @)

Time evolution will be treated in detail later on in this chapter, but first, we want to

describe in more detail CP-symmetry and the Cronin-Fitch experiment.
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FIG. 8: Neutral kaon pair production. Beams of kaon-antikaon pairs propagate in opposite

directions. The beams contain two different mass states, a short-lived state |Kg) and a

long-lived state |Kp).

A. CP-symmetry and its Violation
1. Theoretical Remarks

As previously stated, neutral kaons are pseudoscalar particles hence they have odd (neg-
ative) intrinsic parity. They are produced in a standard collision setup (see Fig. 8) and
propagate in opposite directions from the source. Due to a continuous oscillation between
|K°) and }f_{ D), one must consider the two opposing beams of particles as containing both
particles and antiparticles. The two particle beams can also be described in another basis,
the lifetime basis, composed of a long-lived and short-lived state, | K1) and |K), respectively.
These two states can be experimentally distinguished by observing the dominant resulting
decay products. The exact forms of |K) and |Ks) will be discussed later, for now it suffices
to think of them as superpositions of |K°) and ‘f_{ D). One important aspect of the lifetime
eigenstates is their vastly different lifetimes: 7g = 8.95- 10~ s and 77, = 5.11 - 10~ %s.

One feature of neutral kaons is a property called strangeness. In fact, for our purposes, we
can consider strangeness as an operator whose eigenstates are the particle-antiparticle states

themselves,

S|K®) = (+1)|K®),

_ _ (93)
S|K®) = (~1) |K®).

Having the notion of strangeness formally defined, we can look the operation that trans-
forms one of the eigenstates of the strangeness operator into the other (or, in other words,

that transforms a particle to its antiparticle). That operation is charge conjugation. However,
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since we are interested in the violation of CP-symmetry, we couple the charge conjugation
transformation with the parity transformation, and obtain the effects of the combined CP

operator on the kaon states,

CP|K°) = (-1) |K?),

_ (94)
CP |K0> =(-1) |K0>.
From this, one can now easily construct the eigenstates of the CP operator
1 _
|KY) = —(|K®) = |K®)),
p \{i . . (95)
= —(|K K
such that
CP|K?Y) = (+1) |KY),
|K7) = (+1) |KD) %6)

CPIKY) = (~1)|K9).

The violation of CP-symmetry is directly linked to the matter-antimatter imbalance in
the universe; there are vastly more particles than antiparticles observed, and the reason for
this is still not entirely understood.

Because CP-violation has been observed experimentally in the neutral kaon system, it
follows that the system’s Hamiltonian (whose eigenstates, as we've previously mentioned,
are precisely |Kp) and |Kg)) and the CP operator do not commute, hence they do not have
common eigenstates.

The CP-violation parameter for kaons has an experimentally determined value of approx-

imately € = 1072, so it is usual to write the short and long-lived states as

IKs) = 0| K°) — q|K)),
\ ) (97)
K1) = 5 |K°) +q|K")),

where p = 1+¢€, ¢ = 1 — e and the normalization coefficient is N? = |p|?> +|q|>. By comparing
Eq. (95) and Eq. (97), one can indeed observe that the slight difference between the two bases

is given by the p and ¢ coefficients, corresponding to the small, experimentally observed, €
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parameter. Also, it is straightforward to show that |Kp) and |Kg) are normalized but not

orthogonal,

1 lpl* — I
K| Ks) = —=(p|* — |q|*) = ——. 98

2. The Cronin and Fitch Erperiment

The short and long-lived kaon states |Kp) and |Kgs) have different decay modes. A state

of m-particles (or pions) has parity

P = (—1)"(-1)~. (99)
For spinless kaon decays L = 0 so
P |2m) = +|27),
(100)
P |37y = —|3).
Because
C |n7r0> =+ ‘nﬂﬂ) , (101)

in the case of neutral pions, since they have no electromagnetic charge and
C ‘?T+?r_> =+ ‘?T+?T_> , (102)

due to charge cancellation in the case of positive and negatively charged pions, combinations
of 7 or 7° and a pair of 777~ do not change the value of C. If one thus assumes CP-
symmetry to be conserved, the only allowed decay modes are (by combining the two C and

P operations),

|Ks) — |mm) (103)
|KL) — |mwm) .

The states |KL) and |Kg) also have very different lifetimes,
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Distance from the source to the detector ~ 17.4 m.

- -

|KL) T o T =
OrES 4 }-@\
m m T \/\

‘f. - l 45 two-pion decays in 22700
observed (roughly 1/500).

Decay of |Kg) to 1/500 of original population.

FIG. 9: A schematic representation of the Cronin and Fitch experiment. Even with
relativistic corrections, two-pion decays were observed at a rate of 1/500, at a greater
distance than the one required for the sort-lived state to decay to the same extent. This

picture has been reproduced from the one in Ref. [27].

ks = 8.9-107's K, = 5.2-107%s, (104)

which would make it possible to distinguish between the two by looking at their decay

products at a certain distance away from the source.

In 1964, Cronin and Fitch [11] had devised an experiment to test the conservation of
CP-symmetry. A sketch of the experimental setup is provided in Fig. 9.

A particle beam of length L = 17.4m contains both |K}) and |Kg) states, coming from
a source S. Taking into account relativistic corrections (see also Ref. [27]) and a particle
travelling at a speed of v = 0.98¢, the short-lived state would have decayed by a factor of
one in five hundred of the initial population at roughly one meter from the source. This is
also the distance at which one could expect two-pion events to occur with the same 1/500
frequency, since, if CP-symmetry is conserved, these events can only occur from the |Kg)

state.

Experimentally, Cronin and Fitch observed 45 (+9) 27 decays out of 22700, or approxi-
mately one in five hundred. These decay events, at 17.4m from the source could have only
resulted from the long-lived state | K1), a decay forbidden by CP-symmetry, hence the neutral

kaon system violates this type of symmetry.
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B. Time Evolution of the Neutral Kaon System

Neutral kaons display two types of behaviour that make them interesting to the study
of entanglement: first there is the decay process, bringing with it the challenge of defining
a qubit state within a more realistic representation of the actual quantum system as an
open system; second, an intrinsic oscillation between particle and antiparticle states (called
strangeness oscillation). This oscillation offers experimenters a new possibility of performing
Bell tests, by having one of the parties wait for an additional time 7 after the other party
performed the measurement. This serves to give the particle measured at a later time an
additional interval in which to oscillate, thus 7 can serve as an "angle” for some spin-like
quantity (which we will later define rigorously).

Before discussing Bell-tests on kaons, however, and the various available settings, we must
derive in detail the time-dependent forms of |K°) and |f_{ .

Since we are dealing with an open system, it is usual to split the Hamiltonian into a

hermitian and an antihermitian part (see Ref.[4])

H=M-—il, (105)

where H is called an effective Hamiltonian, M is the mass term (or mass matrix), responsible
for the unitary time evolution, and I" is the decay matrix. Both matrices are diagonal in the
eigenbasis of H (represented by the two lifetime eigenstates |Kg) and | K1 )), with the different
masses, mg,r, and decay rates I'g/, of the short and long-lived states, as their elements.

With this, the eigenvalue equations of the Hamiltonian are

H|Ks) = As|Ks),

(106)
H|Kp) = A |KL),
where the eigenvalue itself can be decomposed as Ag/;, = mg/;, — %FS/L.
From the definition of |Kgs) and |KL),
1 70
1Ks) = 0 |K%) —a|)).
(107)

K2} = (0|K°) +q|K%),
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one can extract |K°) as

|K°) = %(IKs) +|KL)). (108)

In order to obtain a time-dependent form of | K°), it suffices to use the eigenvalue equations

(106) into (108), to obtain

N ,

‘Ko(t» _ _(e—?)\st |KS> + e—z)\Lt |KL>)
N
T2

1 X )
— 5 [g(e—z)\st + e—t)\Lt) |KD> 4

[ —iagt L @ |K°) —q|K°)) + EALt%@ |K®) +q |}_{0>)] (109)
Lot o) |9

The above expression can be simplified by introducing the notation

(f,) — l(e—z‘hgt 1 e—z‘)\Lt)?
(t) _ _( —iAgt te z)\Lt) (110)

such that Eq.(109) becomes

|K°(t)) = g4 () |K°) + %g_(t) |K°). (111)

Following the same line of reasoning, one can find the time-dependent antiparticle state

|K°(t)) = gg_ (t) | K°) + g+ (1) | K°). (112)

In a typical Bell-setup, the two parties share the time-dependent state

|6(2)) = (1)) [K°(t)) — [K°(t)) [K°(t))), (113)

vl
and if Alice would have performed a measurement and would have found her particle to be
in a |K°) state, Bob’s particle, at that moment, would be in the state ‘f_{ D). This is the point
where neutral kaons allow the experimenter to alter the traditional Bell test, namely Bob can
wait for an additional time 7, and there is a non-zero probability that, when measuring, he

also obtains a |K?) state. We shall use this when deriving the effective formalism for neutral
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kaons, by defining a quasi-spin in terms of |K°) and |I_( 0) (where these two states would play
the role of spin —i—% or —%, in the case of a spin-1/2 particle).

One last derivation we carry out in detail is for finding time-dependent expressions for
possible measurements in the strangeness eigenbasis (|K°) / |f_{ 0)).

First, consider the probability at time ¢t that a measurement performed on a single neutral

kaon, initially in a state |K°), would yield the result |K°). This is formally given by

Pyogo = | (KO | KO@)) |2 = |Q‘+(t)|2: (114)

where the last term results directly from Eq.(111). Elaborating on this expression

L —i
g+ (O = Fle™st e
1
=3
1
-2l

1
=1 [e_rgt +e7Tet 4 ge Tt cos(Am)t] ,

WithF:%andAm:mL—mg.

|e—i(ms—%[‘3)t + e—‘i(mg—%[‘x{)tl?
(115)

—I'st

+e +2e" 72 ‘cos(mp —ms)t

—Trt Psilp ]

Once more, by following similar reasoning, one can find the remaining expressions which

we list below

2
Progo = [(K°| K°(t)) | = i% [e_rst + e Tet 97Tt cos(Am)t]
D
o 0| 770 2 _ lﬂ —I'st It —I't (116)
Pyogo = |<K ‘K (t)>| = 114 e +e 2e™" " cos(Am)t
q

Pgogo = | (K° ‘ Ko@) |> = i[e‘rst + e Tt 4 e Tt cos(Am)t]

C. Bell Inequalities and Neutral Kaons

Having obtained the time evolution equations for the neutral kaon system, we can now
discuss possible implementations of Bell tests. It can be tempting to treat neutral kaons (or
the similarly behaving B-mesons) in analogy to photons [22; 23], however there are some im-
portant shortcomings to such an approach. In what follows, we consider a parallel treatment

of photons within optical fibers and kaons.
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Considering a photon’s linear and circular polarization states, one can define two bases
(see. Ref.[22]): {|L),|R)}, corresponding to the circular left and right polarization states
and {|H) ,|V)}, corresponding to the horizontal and vertical polarizations, respectively. The

transformation between the two bases is given by

L) = ‘%UV) +|HY), -
1B) = —5(1V) ~ ).
and
V) = (L) + |R)),
‘? (118)
H) = (1) = |R)).

Comparing this with Eq.(95), one can identify the photon polarization states with the
strangeness eigenstates |K°) and |I_{“> and the CP-eigenstates |K?) and |KY). However, the
CP-violation phenomenon cannot be ignored, such that, upon performing a measurement,
the choice is between the strangeness eigenstates and the eigenstates of the Hamiltonian,
Eq.(97), thus a first case of dissimilarity between the two systems.

What is possible, however, is to simulate decay and strangeness oscillations with pho-
tons. In Ref.[22], the authors describe the possibility of using birefringence and polarization-
dependent loss as analogous phenomena. Birefringence determines fast and slow polarization
modes which can be identified with |V') and |H), respectively. Any polarization state can
be represented by a point on the Bloch sphere (in quantum optics sometimes referred to as
the Poincaré sphere). The effect of birefringence on the corresponding Bloch vector mi(z), at
position z along the optical fiber, is that it causes it to rotate around a birefringent axis E .
If one looks at the time evolution of the pure polarization state, for a fixed wavelength, the

following occurs

[i7i(2)) = e~ F7/2E=20) |7y z)) . (119)

The vector & is the Pauli vector, having the Pauli matrices as components and U(a) = e~i85/2

is the unitary operator corresponding to the rotation. If the experiment is performed with
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o Eigenvector Photons Neutral Kaons
|z+) V) |K°)
lz—) |H) |K°)
|z+) |R) |K?) (~ |Ks))
z—) L) |K3) (~ |KL))

TABLE II: Correspondence between relevant kaon states, photon polarization states and

the eigenvectors of the o, and o, Pauli matrices.

an initial singlet state, after observing one of the photons, the experimenter can wait an
additional time before performing the second measurement and, due to the birefringence-
caused rotation, allow the second photon’s polarization to further rotate. In this way, the
polarization correlation is reduced and the system has a similar property to the neutral kaon
system’s natural strangeness oscillation.

In order to also add a decay property to the photon system, we can introduce a polarizer
that would attenuate the two polarization states differently. Considering two orthogonal
polarization states |P,) and |P_), the transmission coefficients T4, and T, for the two
states would differ, corresponding to the I's and 'z, case for kaons.

The testing of Bell-type inequalities within meson systems (in our case neutral K-mesons)

requires the taking into consideration of two important aspects [5]:

e The two observers have to be able to perform active measurements on their paricles.

e Decay products cannot be ignored.

The first requirement is essential for enforcing the locality condition. Alice must be able
to freely choose between two different bases A and A’, and Bob, between B and B’. The
argument is that (see Ref.[5]) if Alice had chosen, at the very last moment, to measure A
instead of A’, this choice would not modify the outcome of Bob’s measurement.

In the case of neutral kaons, there are two types of measurements that one can carry
out (For a detailed discussion, see Ref.[8]). Active measurements are experimentally made
possible by introducing a dense piece of matter in the flight path of the kaons, at a flight

time 7. The kaon’s interaction with the matter corresponds to a projection of the initial
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time-dependent state of Eq. (111)-(112), onto the lifetime or strangeness eigenbasis. By
carefully selecting the flight time 7, from the source to the piece of mater, the experimenter
can perform a strangeness or lifetime measurement at different times.

Passive measurements require the measurement of a time-dependent decay rate T'(f, ),
which represents the number of decays into mode f, in the time interval 7 and 7+ d7. These
measurements are not useful for testing Bell inequalities, since they do not provide a way for
the experimenter to choose the basis into which the measurement is done, there is, essentially,
no way of forcing the particle to decay.

The second requirement is due to the unstable nature of mesons. The complete time

evolution of a general meson system can be written in the form

|Mi5(t)) = €12 [ My5) + |Qu5(2)) (120)

in terms of the eigenvectors of the ” effective mass” non-Hermitian Hamiltonian. The resulting
decay product state |2 5(¢)) brings its contribution by providing an extra outcome as opposed
to the case of stable particles. If the measurement is performed in the strangeness eigenbasis,
the results can be 7| K°)” | ”|I_{D>” or 7|Q2)”. The last situation corresponds to the case when
the observed particle has decayed prior to the measurement.

In the next chapter, we will discuss an existing effective operator formalism that man-
ages to overcome these restrictions by switching to the Heisenberg picture and constructing
an operator that contains both the characteristic time evolution of the system (decay and
strangeness oscillation) and the measurement settings corresponding to a measurement of
strangeness or lifetime on a single particle. We will then provide our generalization of this
effective formalism to arbitrary decaying systems, retaining neutral kaons as a special case,

and provide possible experimental implementations using trapped ions.

39



III. Effective Formalism
1. Special Effective Formalism

In Ref. [18], the authors present an effective formalism, constructed specifically for neutral
kaons, that aims to go around the previously discussed impediments. We will develop this
formalism here, in detail, and then proceed to deriving our generalization to one applicable
to other decaying systems. We shall also prove that our general formalism reproduces the
results of the special effective formalism, in the case of kaons.

The main difference between the way Bell inequalities have usually been tested with
kaons (by analogy with photons and other stable systems) and the effective formalism, is
the question that is being asked. In the standard Bell scenario, a dichotomic observable is
measured (for example the spin of a spin—% particle or the polarization of a photon) and
the corresponding question to this would be ”Is the system in a [1) or in a []) state ?” (or
two orthogonal polarization states, for photons). The issue here is that this type of question
leaves no room for the decay products. While this may suffice for the above mentioned stable
systems, it does not suffice for kaons.

The question asked within the effective formalism is ”Is the system in a |1) state or not?”.
By "or not” we assume that it does not matter if the system finds itself in the corresponding
orthogonal state or if it has already decayed. To translate this for our particular case, the
question for a strangeness measurement is: ”Is the system in a ‘I_{ “) state or not?”. There

is nothing special here about |f_{ D), we could have chosen |K°) just as well.

a. Quasi-spin and Expectation Values

In order to draw a parallel with spin, a pseudo-quantity called quasi spin is introduced,

whose direction is given by

(877)
2

in terms of the lifetime eigenstates. This can be transformed to the strangeness eigenbasis

|kn) = cos — | Kg) + sin %ew“ |KL), (121)

by using Eq.( 97). Care must be taken here when choosing the appropriate o and ¢ angles.
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While in the case of spin, it does make sense to choose arbitrary directions, for kaons it
does not. The choices or quasi-spin directions are limited to the strangeness ‘I_{D ) /|K°) and
lifetime |Kg) / |KL) eigenstates.

Now, by taking advantage of the fact that probabilities must add up to one

P(K®) + P(K°) + P(Q) =1, (122)

this can be rewritten as

P(Yes) = P(K"),

(123)
P(No) =1— P(K°) — P(),

where ”Yes” and "No” are precisely the answers to the relevant question: ”Is the system in a
|f_{ “) state or not?”, and P({2) is the probability that the particle has decayed prior to being
measured. Furthermore, now we clearly have P(Yes) + P(No) = 1.

Using the quasi-spin form of Eq. (121), the expectation value can now be written based

on these two probabilities

E(kn,tn) = P(Y : kn,tn) — P(N : kn, tn)
= 2P(Y : kn, tn) — 1,

(124)

the index n showing that this corresponds to one of the measurement settings of Alice and
Bob, at time t¢,,. The time-dependent density matrix of the entire system can be described

in terms of its surviving and decayed components

Pss Psf

pltn) = (125)

Pfs P5f
the subscript s labelling surviving components and f (for final) labelling decayed ones. The
probability for obtaining the desired direction of the quasi-spin is then just a projection of

the surviving kaon states onto |k,),

T ) (ka0 -
P(Y chust) = Tr| (757 F pltn) | = Gkl (i) o) (126)
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This can be further expanded in the lifetime eigenbasis

Qi . Qi
(kn| Pss(tn) |kn) = cos’ b <kS| Pss(tn) |kS> + sin’ b <kL| Pss(tn) |kL>

+ cos % sin %ew“ (ks| pss(tn) |kL) + cos % sin g% (kL| pss(tn) |ks)

2
iy Qo ay, B
= Pss COSQ 2 ~Tst + PLL 81112 2 —Tet + PsI, Cos ? SlIl 7'¢’n iAmt—T't

o, . ap
+ pLs cos?sm e~ ibn giAmt—Tt

2

Here, pss, psL, pLs, pLL, represent the elements of the density matrix in the lifetime eigen-

basis {|Kg),|Kr)} (not to be confused with |ps), the component of surviving particles). A

rescaling Am = 1 such that I'; =

obtain the desired direction for the quasi-spin, at time t,, in terms of the lifetime elements

of pis
P(Yes : kn}t ) Pss COS2 C; e —I'stn + pLL SlIl2 C; e —Trtn
+ pSL COSs % S]_n 76%((;&”_1;“)6 I'tn (127)
+ pLs cos % gin — e~ (#@n—tn) [L'tn
where I' = #

b. Effective Operator Matriz Form

We must first provide a formal definition of what is meant by ”effective operator”.

Definition IIL.1. A time dependent operator O%/J is known as an effective operator if it
includes the time evolution and measurement settings of an open quantum system, such that

expectation values of measurements corresponding to those settings are described by

E = Tr[0° (a, 6, )g]. (128)

Following this definition, we may now obtain the matrix form of the effective operator
corresponding to the neutral kaon system. The expectation value, in terms of the short and

long-lived elements of the density operator, is
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E = Tr(0%!p)
= 2P(Y : kp,tn) — 1

= 2(,0336(:!32%e_r‘gt“n + pLLSmQ%e_PLt" (129)
+ ,OSLcos%sin%eé@"_t“)e_n“
+ ,OLSCOS%sin%e_w“_tn)en“) — 1.
2 2
Considering an initial pure state
p=19) (2l
with |¢) = 5-(|Ks) + |KL)) , we may rewrite the above expectation value as:
€ € 1 €
Tr(07|9) (]) = (61 O |¢) = S ({Ks| + (K )OY/ (| Ks) + | K1) (130)

Identifying the elements of Eq.(130) with the ones from Eq.(129), one obtains the desired

matrix form of the effective operator, in the lifetime eigenbasis

off cos? “T“e_FSt" -1 cos 42 sin %‘e“"bﬂ_t")e_“"
0% (an, ¢n, tn) = Qn i Qn o —i(¢n—tn) ,—Tt < 2 ap —Tpt (131)
cos <t sin e i(¢n—tn)—l'tn sin” e Lin — 1

A few remarks are in order: first, from the matrix form of this operator, we see that for
large times, when the probability that the particles have decayed is very high, the effective
operator tends to minus identity. This is a reasonable expectation, since, as the particles
decay, the overall amount of detection events decreases; second, using the definition Eq.(128),
it is easy to observe that, for a number of m particles, the expectation value can be generalized

simpy as

E=Tr[0" @ 057 @ ... @ 047 p], (132)

where Off I acts on the i-th subsystem, with its corresponding measurement settings and

measurement times; and p,, represents the m-particle initial state.
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c. Pauli Decomposition of O¢f

It is also useful to decompose the effective operator in the Pauli basis. Because it corre-

sponds to an open system,

O = —nyl + 7 - G, (133)

where the explicit dependence on a, # and t has been omitted for brevity. The component ng
increases as the system decays, playing the role of ”white” noise. Determining the individual
elements is done by projecting the effective operator onto each of the corresponding Pauli

matrices. For the first element, we have

n = TT(Oeffdl)

= 1r[0°!! G’ é) ]

T cos % sin Or7“"e“(_‘b“_‘”)e_n” cos? “T"e_FSt" -1 (134)
=Tr
sin? “—;e_PLt“ -1 cos 42 sin %"e_*(_%_t")e_”“

Q. Qs . Qpn . G g4 _ _
— cos — sin —e{T9ntn)g7ltn | og T gip T eTiH—On—tn) o~ Ttn

2 2 2 2

Qp . Op _
= cos - sin 76 Ftn 9 cos(pn — tn)

In a similar way, by projecting O%/Y onto the other two Pauli matrices, one obtains

ny = sin(¢, + t,) sin(ay,)e T
(135)
ns = cos ay,, cosh(AT't,)e "™ + sinh(AT't,)e i,

with AT' = I'g —I'z. In order for the time evolution described by O¢/7 to be trace-preserving,

we must impose the condition that

ng = 1 — |i]. (136)
With all the above results, the vector 7 has the final form
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cos(t, — ¢y) sin(ay,)
— g ltn sin(t, — ¢y) sin(ay,) . (137)
cos ay, cosh(AT'ty,) + sinh(AT't,,)

7]

d. FEigenvalues and Eigenvectors of O¢/f

Using the matrix form of O¢// from Eq.(131), we can proceed to solving the eigenvalue

equation

07 |xi) = Ni |xa) (138)

Solving this equation, we obtain the following values for A and |y) :

Qpn _ . 90n _
A= 6082?6 Pstn 4 81?’12?6 Prtn 1

(139)
)\2 — ]_
corresponding to the eigenvectors:
]‘ T i T
Ix1) = —(cosa—e_PTst" |Ks) + et(t“_é“)e_%tnsina— |KL))
VN 2 2 (140)

(sin%e_%t" |Ks) + eé(t"_qb“)e_zéit"cos% |KL))

1
IX2) = ﬁ 9
where the lifetime eigenstates | Ks) and | K1) have been chosen to represent the computational
basis vectors |0) and |1).

The eigenvector |x1) can be seen as the quasi-spin |k, ), evolving according to the system’s

Hamiltonian and being normalized to the surviving kaons [18].
e. Introducing CP-violation
The effective operator we have so far does not provide a complete description of the neutral

kaon system, due to the fact that we have neglected the phenomenon of CP-violation. In
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what follows, the elements of the effective operator matrix, in the lifetime eigenbasis, will
be included, where we take violation of CP-symmetry into account. Afterwards, the two
Bell-type inequalities previously mentioned [See Eq.(9) and Eq.(13)] will be written in terms

of the effective operator and results will be presented.

With the introduction of the phenomenon of CP violation, the eigenstates of the system’s
Hamiltonian, namely |Ks) and |KL) are no longer the same as the eigenstates of the CP
operator. To account for the slight non-orthogonality of the lifetime states, the € parameter

is added, in the form of p and ¢, as in Eq.(107). A useful quantity, in terms of p and ¢ is

2 (.12
5= M (141)
|p|% + |q|

which will be used later, in order to simplify notation. The matrix elements of the initial

state, in terms of the strangeness eigenstates, are thus

pss = [KCs) (sl = T 0 [K°) (€] = pa |[K°) (RV] = pa | K7) (K] + 2 | K%) (),
pot. = 1K) (il = (0 1K) (K] + pa [ K°) (K] = pa [ K7) (B = 2 [K) (K,
prs = 1K) (Ks| = s 1K) (K] — pa | K°) (R 4 pa | R (K] = [R°) (),
prr = | K} (Ki| = |;|2(P2 |K®) (K| +pq | K°) (K°| + pq |[K°) (K°| + ¢* |[K°) (K°)).

Starting from these expressions, we begin calculating the elements of

it ((KS|OEHKS) <KSOE”|KL>) | .

(K| O |Kg) (Ki|O“T|Kp)

In order to avoid cumbersome calculations, the first term will be derived in detail while the
other three will be written down in their final form, since they are obtained in an analogous

manner.

Referring to Eq.(129) and (131), one can write the first matrix element as
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5 O

(Ks| 0T |Ks) = 2({Ks| pss | Ks) cos® 5 € st
5 Qip

+ (Ks| pr | Ks) sin? 5 et
o a, nmta) T (143)
+ (Ks| psc | Ks) cos?sm 2 ntn)g=hin

an,

+ (Ks| prs | Ks) cos?sm 2 g iOn—tn)=Ttn) _ 1,

Each of the elements above can be further written as [Eq.(107)]

(Ks| pss|Ks) = 5 ((K°| p— (K°| @)pss(p | K°) — q|K®))

INP

|N|4@4+2pq +q")
1
NP

and, the other three can be deduced in the same manner

52
(Ks|pre |Ks) = (Ks| prs |Ks) = (Ks| pst | Ks) = N

and with these, one finds the first matrix element of the effective operator as

(Kg| 0T |Kg) = cos? I Tstn

(144)

Qn . On 408 _ _
cos — sin —eH(¥n—tn) o—Ttn

INE“ 2 7

. Qn s _
" gin — e~ UPn—tn)e Pt") —1

—I——lNl2 COS? 5

Similarly, the other three matrix elements of 0%/ can be found as

Ks| O |K;) = 20 cos? 2" e~ Tstn
|N|? 2

2 oy, ap, ey —
cos — sin — &i(¢n—tn) o~ T'tn

R 2
252
cos % sin e~ iOn=tn)g=Ttn) _ 5,

TINP 2

(145)
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|§f;2 cos? %e_rgt"

25 9 a:n Tyt

|N|2 sin

(K1| O |Ks) = ((Ks| O |Ky))* =

2 cos o:_ sin — On g i0n—tn) o —Ttn o
|N|2 2
2
25 cos % sin — On gi(#n—tn) _Ft“) — 0,

TINE 2

and finally, the last element

Oy,
(K| O |Kp) = 2((Ky| pss | K1) cos® 5 € “hstn

oy,
+ (K| prr | KL) sin? > e Titn

e (147)
+ (K| pst |KL) cos D) sin 76“(‘1’"4")8_“"

+ (KLlpleKL>COS%San; ~i(fn=tn)g~Ttn) _ 1.

f. Bell Inequalities and Results

Having a detailed description of our formalism, it’s now time to look at its predictions. In
Section I, we introduced two Bell-type Inequalities: the CHSH inequality in Eq.(9) and the
SCG inequality, in Eq.(13), and we justified the latter by the fact that there exist states which
violate it and do not violate the original CHSH. In the results section, we will also see that
the optimal violati