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Abstract

In this thesis, structured hierarchical Bayesian models and estimators are considered for
the analysis of multidimensional datasets representing high complexity phenomena.

The analysis is motivated by the problem of urban scene reconstruction and understand-
ing from meter resolution InSAR data, observations of highly diverse, structured settlements
through sophisticated, coherent radar based instruments from airborne or spaceborne plat-
forms at distances of up to hundreds of kilometers from the scene.

Based on a Bayesian analysis framework, stochastic models are developed for both the
original signals to be recovered (in this case, the original scene characteristics that are object
of the analysis— 3D geometry, radiometry in terms of cover type) and the noisy acquisition
instrument (a meter resolution SAR interferometer). The models are then combined to
provide a consistent description of the acquisition process that can be inverted by the
application of the so called Bayes’ equation.

The developed models for both the scene and the acquisition system are splitted into a
series of separated layers with likelihoods providing a probabilistic link between the different
levels and with Maximum A Posteriori Bayesian inference as a basis for the estimation
algorithms.

To discriminate between different Prior scene models and to provide the necessary ability
to choose in a given set the most probable model for the data, a Bayesian model selection
framework is considered.

In particular, a set of existing Gauss–Markov randon field model–based algorithms for
SAR and InSAR information extraction and denoising are extended by automated space–
variant model–order selection capabilities whose performance is demonstrated by generating
and validating model–complexity based classification maps of a set of test images as well as
of real SAR data.

Based on that, a method for building recognition and reconstruction from InSAR data
centered on Bayesian information extraction and data classification and fusion is developed.
The system integrates signal based classes and user conjectures, and is demonstrated on
input data ranging from on board Shuttle based observations of large urban centers to
airborne data acquired at sub–metric resolutions on small rural ones.

To overcome the limitations of pixel based models and inference methods, a system based
on stochastic geometry, decomposable object Gibbs fields and Monte Carlo Markov Chains
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is developed and evaluated on sub–metric data acquired on both urban and industrial sites.

The developed algorithms are then extensively validated by integrating them in an image
information mining system that enables the navigation and exploitation of large image
archives based on a generic characterization of the data that is automatically generated.



Zusammenfassung

In dieser Dissertation werden strukturierte, hierarchische Bayes’sche Modelle und
Schätzverfahren zur Analyse von komplexen mehrdimensionalen Fernerkundungsdaten
vorgestellt.

Die entwickelten Methoden befassen sich mit der Problematik der Rekonstruktion und In-
terpretation von interferometrischen Radardaten mit einer Auflösung in der Größenordnung
von einem Meter. Die betrachteten Daten beschreiben Stadtgebiete, wie sie von kohärenten
luft– oder raumbasierten Sensoren aus großer Entfernung aufgenommen werden.

Basierend auf einem Bayes’schen Ansatz werden stochastische Modelle entwickelt sowohl
für die Rekonstruktion der Szeneneigenschaften als auch für den verwendeten Sensor. An-
schließend werden die Modelle kombiniert, um eine konsistente Beschreibung des Aufnah-
mevorgangs zu erreichen. Die enwickelten Modelle für die Szene und das Beobachtungssys-
tem werden in mehrere getrennte Ebenen aufgeteilt. Dabei verbinden Wahrscheinlichkeiten
die unterschiedlichen Ebenen. Die Basis für die Schätzverfahren liefert die Maximum A
Posteriori Statistik.

Um zwischen unterschiedlichen A Priori Modellen der Szene zu unterscheiden und das
Modell mit der höchsten Wahrscheinlichkeit auszuwählen, wird eine sog. Modellauswahl
nach Bayes benutzt. Diese Methodik führt zur Entwicklung von einigen Algorithmen, die die
Interpretation von Radar- und interferometrischen Radardaten von Stadtszenen erlauben.
Im Besonderen werden einige bereits existierende Algorithmen zur Informationsgewinnung
und Filterung von Radardaten, basierend auf Gauß–Markov–Zufallsfeldern, erweitert zur
raumvarianten automatischen Bestimmung der Modellordnung. Die Leistungsstärke dieser
Methoden wird durch modellordnungsbasierte Klassfikationen dargestellt.

Basierend auf diesem Wissen wird eine Methode zur Rekonstruktion von Gebäuden mit-
tels interferometrischer Radardaten entwickelt. Die Methode integriert signal–basierte und
nutzerrelevante Klassen durch Bayes’sche Informationsgewinnung, Fusion und Klassifika-
tion. Die Leistung des Systems wird an Hand von raumbezogenen Fernerkundungsdaten
gezeigt.

Um die Beschränkungen von pixelbasierten Modellen und statistischen Verfahren zu
überwinden, wurde ein System auf der Grundlage von stochastischer Geometrie, aufteil-
baren Gibbs-Objektfeldern und Monte Carlo Methoden entwickelt. Zur Evaluiering werden
Fernerkundungsbilder verwendet, die große Städte und Industrieanlagen bedecken.

Die entwickelten Algorithmen werden anschliessend ausführlich evaluiert, indem sie in
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ein Image Information Mining System integriert werden. Das System ermöglicht es, in dem
Datenarchiv zu navigieren und es zu analysieren.
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Chapter 1

Introduction

One of the goals of signal processing is the extraction of information from data that are
noisy, vague or otherwise affected by incertitude. In many situations additional complexity
is introduced by the non-stationariety of the data both in the useful information and in its
distortions. From information theory we know that the most compact encoding of data is
given by the probabilistic model that describes it best. However, to find tractable models
for high complexity data is not an easy task.

This thesis explains and proposes new methods to model high complexity data and to
develop algorithms for parameter estimation for hierarchical Bayesian models, in the frame-
work of image information mining and three dimensional structure analysis and reconstruc-
tion. Its goal is the derivation and real-world validation of a paradigm for the extraction,
characterization and construction of features tied to a three dimensional spatial domain
starting from incomplete, multiple-source data with high complexity. Emphasis is placed
on the study of Bayesian hierarchical modeling methods and on the problematic of model
selection in the framework of machine learning with models having hidden parameters.

The analysis is motivated by the problem of urban scene understanding from meter
resolution InSAR data, in which data cubes are acquired by the observation of highly
diverse, structured settlements through sophisticated, coherent radar based instruments
from airborne or spaceborne platforms at distances of up to hundreds of kilometers from the
scene. The thesis therefore includes an application of the obtained theoretical results to the
accurate recovery of geometrical information describing built-up, urbanized areas observed
through a very high resolution interferometric synthetic aperture radar apparatus.

1.1 Advances in Bayesian inference
for signal processing and analysis

The techniques of hierarchical Bayesian modeling for feature extraction and model based
measure from incomplete, noisy data have been established since a number of years in the
signal processing literature. Applications have ranged from frequency analysis (Jaynes,
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1987) to modelling feedback in human–computer interaction studies (Pavlovic et al., 1997).
The seminal works by Besag (Besag, 1974; Besag et al., 1995) were instrumental in intro-
ducing the ideas of stochastic Markov modelling to the field of image processing (Winkler,
1995; Chellappa, 1985; Chellappa and Jain, 1993). Geman and Geman (1984) introduced
the techniques of Gibbs modelling and sampling to the field. Their ideas were applied in
providing solutions to a number of problems from noisy image data filtering (Besag, 1986)
to content–based image retrieval (Flickner et al., 1995; Schröder et al., 2000b).

Bayesian analysis is often characterized by the fundamental role played in it by prior
distributions. The usage of subjective ones has often been the ground for objections and
controversies. Jeffreys (1939) and Jaynes (1986) layed the ground for the development
of techniques that can be applied to generate objective prior descriptions starting from a
set of objective constraints to the problem and from the principle of Maximum Entropy.
Furthermore, Bayesian analysis can be used to perform a principled choice of a prior model
in a class of available ones by employing a two–level description of the problem under
analysis in which inference is performed both on the model parameters and on the models
themselves. MacKay (1992) and O’Hagan (1994) showed how model selection naturally
maps into the maximization of the Bayesian evidence across a model class.

A number of the principles and techniques of hierarchical Bayesian modelling and two–
level Bayesian inference for the modelling and estimation of noisy, nonstationary 2D signals
are summarized by Datcu et al. (1998) and Schröder et al. (1998a). Their works introduce
the general problem of estimation theory in a Bayesian framework centering on the prop-
erties of 2D Gibbs random fields and on their role in estimation. The focus of Walessa
and Datcu (2000) centers instead on the extraction of reliable estimates of the parameters
of these models from noisy, nonstationary observations in a two–levels Bayesian approach.
Gauss–Markov random fields are used to describe textured radar backscatter images cor-
rupted by speckle noise. The described system performs an estimation of the texture pa-
rameters of the clean image. The order of the model that is used as a prior description of the
data is not an object of the estimation, though, and is considered a fixed input parameter
instead.

Further works concentrate on object–based stochastic geometry models for the analysis
of the structure of image data. In particular, based on Ripley and Kelly (1977), Stoica et al.
(2000), Imberty and Descombes (2002) and Ortner et al. (2002) focus on marked point pro-
cesses whose attached label processes describe the characteristics of the elements in a scene.
Gibbs fields can then be used to describe the interactions between the objects (Cressie,
1991).

The problem of conducting estimation from the often non–analytic posterior distribu-
tions is approached by considering Monte Carlo Markov Chain methods (Winkler, 1995).
Estimation is conducted by Expectation Maximization methods (Dempster et al., 1977) in
a number of image denoising and information extraction problems.
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Figure 1.1: Growing spaceborne SAR sensor resolution with time, together with most rel-
evant features for image understanding. This thesis addresses the area marked with a
question mark on the upper right part of the plot, where relevant features are not yet esta-
bilished and therefore new methods are needed to fully exploit the information content in
the data.

1.2 On the information content
of InSAR data at metric resolutions

The reconstruction of buildings and of other typical settlement structures is a goal of
great interest in an increasing number of applications related to the understanding and
management of urbanized areas. At present, due to the broad availability of high resolution
optical and of metric interferometric Synthetic Aperture Radar (SAR) data originating
from both airborne and spaceborne sensors, new and more efficient methods of analysis are
needed to address the challenges that are specific of the inherent complexity of the imaged
scenes and of the acquisition systems themselves.

From the point of view of the traditional deterministic, pixel–based SAR and inter-
ferometric SAR data processing techniques, urban scenes are often regarded as problem-
atic (D. L. Bickel, 1997):

• the scene: height discontinuities originated by vertical surfaces such as building walls
are the norm in such data, while a wider dynamic range of the image shows up
frequently, often saturating the receiver. Strong layover and shadowing effects imply
an accentuated sparseness of the data with respect to the classical case. Multipath
reflections and multiplicative noise from the sidelobes of the radar beam, as well as the
presence of areas of low coherence are no more isolated deficiencies of generally simpler
and more consistent data, but embody instead its most peculiar traits. Complex man-
made objects and structures, moving elements such as cars or even varying housing
details such as open and closed doors or windows show up at the imaging scales;
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Figure 1.2: Scene geometry and SAR backscatter intensity for X-SAR view of Mount Aetna
(a,c) at X band, 25 meters resolution, with the main vulcanic cone visible (Schwäbisch, 1994)
and Intermap AeS-2 view of Maastricht, the Netherlands, X band, 0.5 meters resolution,
showing a single building composed by a number of square elements and by a round metallic
tower generating multiple reflections clearly visible. With growing resolution, more complex
models are needed to account for the mutated characteristics of observable scene element
classes as well as for the peculiar effects introduced by sensors.
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• the acquisition geometry: new corrections need to be taken into account for the
attitude variations of the platform that carries the acquisition system and for the
variations in the acquisition geometry from near to far range, that are much more
pronounced than in the spaceborne case;

• the sensor: the high resolution of the acquisition system itself leads to image process-
ing and SNR issues — speckle noise tends to change in nature, appearing in large
correlated blobs, the sensitiveness to target texture changes completely and the whole
statistics of the data must be re-evaluated. Strong isolated scatterers are mode com-
mon.

The acquired result changes so much in nature with respect to its traditional low-
resolution counterpart on natural surfaces that the whole reconstruction approach needs
to be shifted from the usual image processing based, two dimensional view to a full 3D
domain in order to be able to explain and in the very end to exploit the effects and features
that characterize this kind of data (Figure 1.2).

Significantly, up to now the problem of the reconstruction in the three dimensions of urban
scenes from interferometric radar data has never been addressed in a unified, consistent
framework by well-integrated algorithms and approaches: usually solutions originating from
the well assessed problem of reconstructing low resolution imagery of natural surfaces are
ported to the new operating environment and supplemented by manual intervention by the
user (Heuel and Nevatia, 1995; Li et al., 1999) or are used as preliminary steps with moderate
importance for some further processing carried out on higher resolution optical data that
uses the obtained results as preliminary cues (Huertas et al., 1998). Strong assumptions
are often made in the processing that tend to be appropriate for narrow application cases
only (Gamba and Houshmand, 1999; Burkhart et al., 1996).

Unwrapped interferometric SAR phase surfaces are employed directly or after simple (e.g.
morphologic) processing to obtain simple segmentation and classification maps that are used
to initialize some shape from shade algorithm applied on coregistered optical imagery, or
alternatively user assisted segmentation is followed by some back-projection operation in a
shape from shade fashion (Bolter and Leberl, 2000).

While applications of stochastic modelling and analysis techniques have recently started
to appear in the remote sensing field with particular reference to SAR with model based
despeckling filters, knowledge based mining of large image databases and automatic target
recognition and classification, the hierarchical modeling of data acquired on complex, de-
tailed three dimensional structures in complicated environments has never been addressed:
most of the studies up to now published limit themselves to the two dimensional case (Tupin
et al., 1998; Schröder, 1999a) as a natural consequence of the simpler situation of natural
environments imaged by lower resolution sensors. Traditional radargrammetric and inter-
ferometric techniques are used in the new environment along with ad-hoc methods that tend
to provide very preliminary and partial results essentially by treating the peculiarities of
the problem simply as shortcomings of the data that must be regularized in the processing
instead of being used as additional sources of information.
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1.3 Outline: the contribution of this thesis

The concept developed in this thesis is centered on the synergetic analysis of intensity
and interferometric SAR data: a hierarchical model of the acquisition process and of its
result is defined starting from a set of three–dimensional features that describe the scene
and the sensor. The set is both deterministic and stochastic: while the deterministic sec-
tion describes the SAR imaging geometry and its peculiar effects on the imaged scene and
expresses a spatial description of the different scene structures, the stochastic part encap-
sulates instead prior knowledge about the SAR signal and details specific signal attributes.

The analysis is carried out as follows:

• a set of existing Gauss–Markov random field model–based algorithms for SAR and
InSAR information extraction and denoising are extended by space–variant automated
model–order selection capabilities (chapter 4) whose performance is demonstrated by
generating and validating model complexity–based classification maps (figures 1.3a,b)
of a set of test images as well as of real SAR data (Datcu and Quartulli, 2003);

• based on that, a method for building recognition and reconstruction from InSAR
data centered on Bayesian information extraction and data classification and fusion
is developed (chapter 5). Bayesian inference and networks are used to couple the
different models specifying dependencies and to define further parameter estimation
algorithms. The system integrates signal based classes and user conjectures, and
is demonstrated on input data ranging from on–board Shuttle–based observations of
large urban centers (figures 1.3c,d) to airborne data acquired at sub–metric resolutions
on small rural center (Quartulli and Datcu, 2003b);

• to overcome the limitations of pixel–based models and inference methods, a system
based on stochastic geometry, decomposable object Gibbs fields and Monte Carlo
Markov Chains (Quartulli and Datcu, 2004) is developed. A semantic model is used
as an important factor in the derivation of the results along with computer vision
algorithms in order to provide a strong and robust discrimination criterion for the
different elements showing up in the image as well as to simplify the separation of the
different structures.

Such an approach (figures 1.3e,f) strongly reduces the need for the most problematic
steps in the traditional interferometric SAR data processing chains (e.g. the phase
unwrapping of the interferogram describing the city elevations model) and in the very
end turn the sources of processing problems in standard interferometric methods into
strengths in the form of additional sources of information providing added performance
and robustness in a unified, coherent fashion (chapter 6);

• the developed approaches are validated on sub–metric data acquired on both urban
and industrial sites (chapter III).

Such a conceptual shift, modeling the peculiarities of high resolution SAR acquisitions in-
stead of considering them as artifacts to be treated by ad-hoc techniques generally separated
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from the main corpus of the processing, produces as a final effect a significant simplification
of the whole processing chain.

The methods here proposed are new with regards to both the estimation theory, with
particular reference to the usage of a hierarchical mixed model for the evaluation and
measurement of spatial features tied to a three dimensional domain, and to practice: to the
best of our knowledge, none of the paradigms up to date employed for city reconstruction
from SAR data shares the 3D hierarchical Bayesian modeling scheme that we propose, and
none of them exploits in a unified fashion the multiple sources of information in SAR data
to derive results in an attempt to overcome the limitations induced by the peculiar effects
of the acquisition systems and of the complexity of the imaged scene.

The developed algorithms tend to construct a hierarchy of data models that leads from
a set of data features to model–based descriptors and finally to features of the scene that
has generated the data. While the first of the developed algorithms only considers the
starting step of the modelling (from the data to the model–based features), all the others
lead to the definition of scene characteristics in terms of scene elements or directly in terms
of parametric, interacting scene objects.

This scheme provides results that, with respect to the reconstruction of geometrical
features at least, outperforms the existing algorithms for urban area reconstruction from
SAR data by overcoming their limitations related to the ad–hoc methods and conceptually
separated processing steps and by turning into strengths the weaknesses of the existing
approaches in the urban environment.

This work proceeds as follows: Chapters 2 and 3 introduce respectively Synthetic Aper-
ture Radar systems with a resolution of the order of magnitude of one meter and the
principles and techniques of Hierarchical Bayesian Modelling used in the remainder of the
thesis. In part II, a set of techniques for feature extraction and scene understanding from
high resolution SAR and interferometric SAR are introduced and explained in Chapters 4
to 6 and evaluated in Chapter III. Finally, conclusions are drawn.
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Figure 1.3: Scene understanding, sensor resolutions and obtained reconstruction levels. In
the first row, SAR backscatter intensity of data acquired over urban areas by sensors at
different resolutions (respectively RADARSAT-1, SRTM at X band, Intermap AeS-1). In
the second row, either optical- or map-based ground truth for the datasets considered. In
the third row, reconstructed scenes and obtained reconstruction levels. While for lower
resolution data an essentially two–dimensional scene reconstruction in terms of land cover
is usually sufficient (chapter 4) and can be extended to the third dimension by taking
into account interferometric datasets and classifications in terms of typical scene elements
(chapter 5), the information contained in high-resolution data is most naturally described
in terms of scene objects in a three-dimensional domain (chapter 6).
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Abstract

In chapter 2, the characteristics of SAR and InSAR systems with metric resolu-
tions are analyzed with reference to their performance in urban environments.
Their geometric and radiometric properties are introduced together with the
fundamental processing techniques used in their exploitation. The statistical
properties of SAR and InSAR data are then detailed.

After introducing the peculiar phenomenology of SAR and InSAR with metric
resolution in urban environments, traditional and model–based inversion algo-
rithms in the literature are evaluated and compared.

Motivated by the challenges implicit in the exploitation of such high—complexity
data in chapter 3, Bayesian modelling and estimation techniques for the analysis
of multidimensional fields are introduced. After presenting the properties of
Gibbs–Markov fields, hierarchical Bayesian models are introduced.

The second level of Bayesian analysis for model selection is presented. Bayesian
estimation and decision theories are introduced together with modern posterior
optimization techniques based on expectation maximization and on the Gibbs
sampler and Monte Carlo Markov chains.



Chapter 2

Synthetic Aperture Radar
Interferometry at meter resolution

Abstract

The geometric and radiometric characteristics of SAR and InSAR systems and
the relevant processing techniques are introduced.

They are analyzed with reference to their performance at metric resolutions in
urban environments: geometric effects such as layover, shadowing and occlu-
sion are investigated together with the radiometric effect of smooth surfaces on
speckle noise, backscatter texture and signal–to–noise ratio and on the appear-
ance of multiple reflections of the incident radar beam. Strong isolated scatterer
classes and behaviors are subsequently analyzed and related to the statistics of
meter resolution data.

Traditional, simulation– and model–based inversion algorithms in the literature
are evaluated and compared.

2.1 Synthetic Aperture Radar

The weather–resistent, all–time characteristics of the Synthetic Aperture Radar (SAR),
as well as its peculiar sensitivity to scene characteristics such as dielectric properties and
both large and small scale geometry (Curlander and McDonough, 1992), have made it the
instrument of choice in a number of remote–sensing applications.

The instrument works by moving along its trajectory while recording echoes of a coherent
modulated transmitted signal and by correlating them with a reference function that takes
into account both the characteristics of the original signal as well as the expected rates of
variation of these characteristics with both the along and across range sensor-target distance
by considering the sensor platform motion characteristics.
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↑ azimuth → range

Figure 2.1: SAR image coordinate system: unless otherwise stated, SAR images are pre-
sented with the range direction in the left–right direction, while the azimuth direction is
represented as growing bottom to top. In the figure, view of a car parking at X band,
resolution 0.5 meters: a number of isolated scatterers as well as large areas of very low SNR
— very low energy return — are clearly visible.

The SAR principle The system can be described as a way of incrementing the resolution
in the along track direction (the azimuth) by generating a synthetic virtual aperture that
is orders of magnitude more extended than the physical one by coherently summing the
echoes from a target in response to a coherent signal generated on board by a closely
controlled oscillator. The usage of a longer antenna allows a corresponding increase in the
azimuth resolution ∆x. If, furthermore, the simplified expression the diffraction limit with
λ denoting the carrier wavelength, W the antenna size, ηa the angular aperture of the beam
and R the sensor to target distance is considered

∆xeff ' λ

2W
· R

Weff ' ηa · R =
λ

W
· R

a figure can be obtained for the system resolution

∆xeff ' λR

2λ/WR
=

W

2

that is independent of the range distance R.

A second approach describes the system as increasing the azimuth resolution by esti-
mating Doppler shifts generated in the recorded signal by the angular difference between
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the instantaneous position of the scatterer and a reference “zero Doppler” plane. From
this point of view, the resolution of the SAR system depends directly on the quality of the
frequency analysis performed: the instantaneous Doppler shift fD of the target, generated
by the relative speed v between sensor and ground, can be written as

fD ' − 2

λ

dR

dt
= − 2

λ

v2

R
t = − 2

λ

v

R
· x

and thefore

∆x =

(

2λ

2v

)

∆fD

and considering that the Doppler resolution is related to the duration of the illumination
of a single target on the ground

∆fD ' 1

T
=

ηa

v
R =

Rλ

Wv

an expression for the azimuth resolution can again be written as

∆x ' λR

2v

Lv

λR
=

W

2

according to Curlander and McDonough (1992).

The key point that makes the SAR principle possible is the presence of a stable oscillator
from which all the signals are synthesized: the SAR is similar to a holographic device
in which the recorded signal needs to be compared to a reference signal, a copy of the
transmitted signal, to be visualized.

2.1.1 SAR radiometry and geometry

The radar equation The “radar equation” characterizes the energy of a backscattered
wave given the properties of the target object. In the case in which the emitting and the
receiving antenna coincide, if Pt and Pr are the emitted and the received power, then for
an unfocussed SAR

Pr = Pt
λ2

4π
σ

Gt(θi)

4πR2

Gr(θi)

4πR2
(2.1)

being Gt and Gr the emission and the reception gains at incidence angle θi, λ the carrier
wavelength, R the antenna to target distance, and σ the radar backscatter equivalent surface
of the target

σ = 4π lim
R→+∞

R2 Ar

At

with Ar and At the received and transmitted signal amplitudes. The radar backscatter
expresses the ratio between the energy received and that backscattered by the target. It
depends on the incidence angle, on the dielectric characteristics of the target and on the
rugosity of its surface with respect to the incident wavelength. The backscatter coefficient
σ0 is defined as the radar backscatter per unit surface. The intensity observed in the radar
image is proportional to σ0 (Curlander and McDonough, 1992).
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Figure 2.2: Acquisition geometry for side looking configurations: the asymmetry of the
system with respect to the azimuth directions allows it to avoid the ambiguity right-left by
the illumination of one side only of the trajectory.

SAR geometry To simplify the description of SAR systems and that of the data they
produce, a coordinate system tied to the platform is employed. It has origin in the instan-
taneous position of the sensor, one axis x pointing in the instantaneous direction of motion
of the sensor, the “azimuth”, and a second axis in the “slant range” direction, the vector
linking the position of the antenna with the point nearest to it on the plane in which the
illumination vector lies in the illuminated area on the ground.

Every point of a SAR image is then identified as belonging to a given point on the
ground, to a specific equi–range surface (a sphere centered in the position of the sensor)
and to an equi–Doppler surface (a double cone with vertex in the sensor position and axis
coincident with the azimuth): each ground element can be identified from its range delay
and its Doppler displacement in azimuth, and therefore the terrain can be described by
a system made of concentric circles and coaxial hyperbole. The only potential ambiguity
comes from the complete symmetry of the system with respect to the azimuth direction. To
avoid this ambiguity, the antenna is not directly pointed to nadir but rather tilted laterally
with respect to the the platform trajectory at a “look angle” θi in a so–called Side Looking
geometry (see Figure 2.2) (Curlander and McDonough, 1992; Elachi, 1988).

Geometric effects The use of SAR images computed in the natural coordinates (slant
range and azimuth) is complicated by the presence of geometric distortions intrinsic to the
range imaging mode.



2.1. SYNTHETIC APERTURE RADAR 16

theta_i
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Figure 2.3: Slant and ground range (Walessa, 2000): the uniform sampling along the slant
direction implies a dependence of the sampling step in ground on the local height of the
illuminated terrain. The SAR system suffers from a series of prospectic deformations that
need to be compensated in the data processing step.

It is clear that if the system samples uniformly the terrain reflectivity in the slant and
azimuth directions, it must sample the ground range direction with a density that dependss
on the terrain topography. The fact that the SAR system is set in a side looking geometry
and the fact that is operates in cylindrical rather than in angular coordinates generates a
number of geometrical effects.

Even if the illuminated area is planar, a constant resolution ∆r in the slant range direc-
tion does not correspond to a similarly constant resolution, say ∆y, on the ground range. In
particular, the decrease of the incidence angle θi from near to far range leads to a decrease
of the ground resolution

∆y =
∆r

sin θi

and these results also apply to the ground range pixel dimension. For a surface slope of α,
the resolution on the ground depends on the local incidence angle θi − α. Three cases are
of interest (Franceschetti and Lanari, 1999):

• Foreshortening: −θi < α < θi. It corresponds to a dilation or compression of the reso-
lution cell on the ground with respect to the planar case, depending on the conditions
0 < α < θi or −θi < α < 0.

• Layover: α ≥ θi. It causes an inversion of the image geometry. Ground elements
with a steep slope commute with their bases in slant range, thus causing an extremely
severe image distortion. A particular case is represented by the situation α = θi

corresponding to the compression of the area with this slope into a single pixel.
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• Shadow: α ≤ θi − π/2. In this case the region does not produce any backscattered
signal.

Geocoding To generate SAR images with uniform and earth–fixed grids, a post-
processing step is necessary; this is usually referred to as geocoding (Schreier, 1993). To
perform it, knowledge of the location of each pixel of the SAR image with respect to a
reference system is required. Processing of a single SAR data set generates a 2D SAR im-
age related only to the two variables x, r of the cylindrical coordinate system (x, r, θi). A
solution to this problem is the use of SAR interferometry, that allows the determination of
the further coordinate θi through the use of a second sensor. In cases in which InSAR data
are severely distorted by foreshortening, layover and shadowing, and hence the traditional
approach based on phase unwrapping tends to fail, the θi coordinate needs to be introduced
into the system as external information in order to provide the full information needed for
geolocalization.

2.1.2 SAR processing and PSF

The stop and go approximation Although in a somewhat physically inaccurate fash-
ion, a fairly good description of the behavior of a SAR system in the along–track (or
azimuth) direction can be derived in terms of a stop–and–go approximation as in Bamler
and Schättler (1993). The antenna is supposed to be moving along a trajectory at constant
altitude h with constant speed v. At well specified equally spaced positions along the tra-
jectory, it stops, emits an electromagnetic wave, receives its echo and moves further along
the trajectory.

The range chirp Focusing in the range direction is simply achieved by computing the
correlation between transmitted wave and received signal. To obtain good resolution prop-
erties, signals with narrow autocorrelation and tendentially white spectrum have to be
chosen. A “chirp” signal

g(τ) = exp(2πjk
τ2

2
) rect(τ

k

Bν
) (2.2)

can be used to obtain a complete analogy between the range and the azimuth directions.
Since both the received signal and the transmitted chirp are long, the correlation is usually
computed in the Fourier domain. Furthermore, modern SAR systems do not generate a
chirp signal at each transmission act, but rather keep on board a digitized copy of the
signal in order to better preserve its characteristics (see Figure 2.4).

The azimuth chirp An object placed on a flat ground surface below the system at range
and azimuth coordinates r0 and x = v(t − t0) has an overall instantaneous distance from
the antenna of

R(r0, t − t0) =
√

r2
0 + v2 · (t − t0)2 ' r0 +

v2(t − t0)
2

2r0
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and a “range migration” of

∆R(r0, t − t0) = R(r0, t − t0) − r0 ' v2(t − t0)
2

2r0

where the last equalities hold if a parabolic approximation is considered. This range varia-
tion appears as a phase modulation ϕ̂(r0, t − t0)

exp[−jϕ̂(r0, t − t0)] = exp

[

−j
4π

λ
R(r0, t − t0)

]

= exp

[

−j
4π

λ

(

r0 −
v2(t − t0)

2

2r0

)

]

in the backscattered received signal. The term

lim
t→t0

ϕ̂(r0, t − t0) =
[

−4π

λ
R(r0, t, t0)

]

= −4π

λ
r0

is called “zero Doppler phase”.

This modulation results in an instantaneous “Doppler” frequency

fD(r0, t − t0) =
1

2π

∂

∂t
ϕ̂(r0, t − t0) = − 2

λ

v2

r0
(t − t0)

and in a “Doppler” rate

FM(r0) ≡
∂

∂t
fD(t − t0) = − 2

λ

∂2

∂t2
R(r0, t − t0) = − 2

λ

v2r2
0

R(t − t0, r0)3
= − 2

λ

v2

r0
< 0 .

The instantaneous frequency at beam center t0 + tC

fDC = fD(r0, t − t0)|t=t0+tC = − 2

λ

v2

R(r0, tC)
= FM(r0) · tC

is called the “Doppler centroid” of the data. The energy of the data is distributed in azimuth
around this center.

A signal characterized by a frequency increase like the one generated by the quadratic
term in the last relations is again a chirp like the one considered in range.

SAR raw point scatterer response If a raw SAR point scatterer response (normalized
to unity radar cross section) is considered

ĥa(τ, t − t0, r0) = C(r0)aβ(v(t − t0 − tC)/r0)g(τ − 2R(r0, t − t0)/c) exp[−jϕ̂(r0, t − t0)]

in which the delayed range signal g(·) is multiplied by the instantaneous range–dependent
modulation term exp[−jϕ̂(·)] and by C(·), containing an R−2 amplitude range dependence
term as well as an elevation antenna pattern, and an amplitude gain aβ(·) term function of
azimuth time reflecting the shape of the two–way azimuth antenna pattern of the sensor,
then if a unit δ-point is considered as a ground target having complex reflectivity

γ̂0(r, t) = δ(t − t0, r − r0) exp[j4πr0/λ]
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being δ(·) a two–dimensional Dirac function and a response of

ĥa(τ, t − t0, r0) exp[j4πr0/λ] = ha(τ − 2r0/c, t − t0, r0)

then the “SAR data acquisition model” can be described in terms of a linear relationship
between raw data d(τ, t) and object γ0(r, t)

d(τ, t) =

∫ ∫ +infty

−∞
γ0(r, t′)ha(τ − 2r/c, t − t′, r)dr dt′

=

∫ +infty

−∞
γ0(r, t) ?t ha(τ − 2r/c, t, r)dr

wich is evidently a convolution in the azimuth dimension (denoted by ?t) but is space variant
in range.

If the range dependence of ha is neglected (which is appropriate within a narrow swath),
the last expression can be written as a two–dimensional convolution

d(τ, r) ' c

2
γ0(τc/2, t) ?r ?tha(τ, t, r0) .

Focussed SAR point scatterer response The focussing in the azimuth direction is
performed according to the theory of matched filtering by computing the correlation between
the recorded radar echoes and the expected space–variant azimuth chirp.

The complex image u(r, t) is then related to the raw data d(τ, t) via

u(r, t) =

∫ ∫ +∞

−∞
d(τ, t′)h?

a(2r/c − τ, t − t′, r)dτdt′ (2.3)

which in the narrow swath approximation can be written as

u(τc/2, t) ' d(τ, t) ?r ?th
?
a(τ, t, r0) ∝ d(τ, t) ⊗τ ⊗tha(τ, t, r0)

with ⊗ denoting convolution.

The shape of the point scatterer response therefore obtained can be shown to be a cubic
spline in azimuth and a sinc function in range:

s(r, t) ∝ spline(2v/L · t) sinc(2/c Bνr) exp(j2πfDCt)

being Bν the available range bandwidth, with

spline(x) =











2/3 − x2 + |x|3/2 for |x| <= 1

4/3 − 2|x| + x2 − |x|3/6 for 1 < |x| <= 2

0 else .

The range and azimuth resolutions, defined as the half–power widths of s(·), are found
as

res(r) = 0.885 · c/(2Bν) ⇒ res(y) = 0.885c/(2Bν sin θi)

res(t) = 1.024 · L/(2ν) ⇒ res(x) = 1.024L/2 .
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(a) (b)

(c) (d)

Figure 2.4: Real part (a) and amplitude (b), Fourier transform amplitude (c) and autocor-
relation (d) of the 768 samples long ERS “chirp” signal. The characteristic linear frequency,
constant amplitude, frequency modulation of the signal are visible in (a), (b) and (c). (d)
shows the narrow autocorrelation of the signal.

The latter equation again states the fact that the azimuth resolution of a SAR system is
in the order of half the physical antenna size L, irrespective of wavelength or sensor–target
distance.

SAR processing strategies Altough last equations look quite simple, the following
peculiarities of the correlation kernel make SAR image formation a challenge for signal
processing:

• the support of ha(·) can be as large as a hundred range samples (due to range mi-
gration) and several thousand azimuth samples, which forbids the direct time domain
implementation of equation 2.3 in most case;

• equation 2.3 is range-variant, i.e. an implementation via a two–dimensional FFT and
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(a) (b)

Figure 2.5: Azimuth (a) and range (b) spectra of sample ERS data. While the azimuth
spectrum is Hamming weighted and shifted of a Doppler centroid frequency, the observed
range spectrum is centered.

a single spectral filter multiply is only possible within a narrow range segment;

• due to range migration, the response function is inherently two–dimensional and non
separable. Hence, the range–variance cannot be accounted for by simply using range
dependent one–dimensional azimuth correlation kernels.

A direct implementation of the azimuth compression using a two–dimensional time do-
main correlation would be extremely computation time intensive. Therefore, frequency
domain correlation methods are preferred. Common approaches to data focussing include:

• the range–Doppler approach (Cumming and Bennett, 1979; Wu et al., 1982; Jin and
Wu, 1984), which operates in the range signal/azimuth frequency domain on the
already range–compressed signal. Its main disadvantage is that the interpolation to
convert the target trajectory along azimuth to a straight line given only by r0 has to be
carried out with a truncated kernel for efficiency purposes, which might cause image
degradation. Furthermore, usually a single central frequency (usually the Doppler
centroid, or a common mean one for the two antennas for physical interferometer
configurations) is used for the entire processed block;

• wave–number techniques (Cafforio et al., 1991; Rocca et al., 1989; Bamler, 1992) make
use of concepts from the field of wave propagation. The (already range compressed)
signal is again treated in the two–dimensional frequency domain. The problem of
the range variance of the two–dimensional compression filter can be overcome by a
nonlinear mapping of the range frequency. This technique is sometimes referred to as
‘Stolt interpolation’ or ‘grid deformation’. The mapping can be split into a shift, a
scale factor and a negligible higher order terms. It poses a trade–off between efficiency
and image quality if phase preservation is a key issue;
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Figure 2.6: Theoretical SAR Point Spread Function amplitude.

• chirp–scaling algorithms (Runge and Bamler, 1992; Cumming et al., 1992; Raney
et al., 1994) are based on the scaling properties of chirp signals. They avoid the use of
interpolations (common to range–Doppler and wave–number techniques) during the
processing. The range migration correction is performed by means of a scaling of the
target trajectory in the range–Doppler domain: all the targets along the swath are
shifted to have the same curvature as the one located at a reference range, usually at
mid–swath;

• in an alternative approach, the need for range–dependent scaling of the along track
pixel dimension is met by replacing the standard Fourier transform with a chirp z
transform, the kernel of which includes a range-dependent correction (scaling) factor.
The chirp z-transform can be computed by use of fast-Fourier-transform software,
without need for zero-padding, instead of a post-processing interpolation step that
can degrade either computational efficiency or accuracy (Lanari, 1995). Lanari and
Fornaro (1997) subsequently showed that the chirp-z transform was actually a partic-
ular implementation of the chirp scaling algorithm. Both are equivalent to a scaled
inverse Fourier transform (Loffeld et al., 1998).

It is important to notice the presence of sidelobes that may hinder the detection of weak
main peaks in the vicinity of much stronger targets.

Resolution and multilooking The SNR of SAR data is often not sufficiently large for
most remote sensing applications. The problem is usually handled by multilooking. It
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Figure 2.7: Measured SAR Point Spread Function amplitude at X band, 0.5 meters resolu-
tion.

consists of first dividing and then separately processing N non-overlapped portions of the
SAR bandwidth. The incoherent average of the so obtained N SAR images improves the
SNR by a factor N. However, antenna pattern spectral modulation, aliasing etc. render
this improvement only an upper bound. Its effective value can be quantified in terms of an
equivalent number N ′ < N of uncorrelated samples; this number is usually referred to as
equivalent number of looks (ENL).

Figure 2.8 represents the correlation coefficients computed in range and azimuth for a
typical meter resolution SAR image at X band.

2.1.3 SAR statistics

Since the scattering properties of the illuminated scene can only be described in terms
of statistical parameters, thus rendering the scattered field (and the SAR raw signal) a
random process, SAR raw signals cannot be considered to be deterministic variables.

At resolutions of tens of meters, a SAR resolution cell is very large when compared to
the centimeter wavelength of the illuminating electromagnetic wave. In addition, a large
number of scatterers are generally present within each cell due to the roughness of the
surface and/or the inhomogeneities of the scattering volume. The returned echo is the
result of the coherent summation of all the returns due to the single scatterers: the phase
of each single return is related to the distance between the sensor and the scatterer itself,
their mutual orientation, and to the electromagnetic properties of the scattering material.

By describing the summation of the single vector responses as a random walk in the
complex Gauss plane, it can be shown that magnitude and phase of the scatterers are
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(a) (b)

Figure 2.8: Measured SAR backscatter intensity autocorrelation values for high resolution
SAR in range (a) and azimuth (b). Image was oversampled 2 times in azimuth.

(a) (b)

(c) (d)

Figure 2.9: Measured SAR image distributions: (a) Gaussian distribution for real and
imaginary part of complex SAR image, (b) uniform distribution SAR phase distribution (c)
square–root Gamma distribution SAR amplitude distribution, (d) negative exponential for
SAR backscatter intensity.



2.2. SAR INTERFEROMETRY 25

statistically independent. Furthermore, by simple derivations it is possible to show that if
the number of individual wavelength–sized scatterers per resolution cell is high, real and
imaginary parts of the received signal are Gaussian distributed with zero mean (according
to the central limit theorem) and are statistically independent. The phase of the scatterers
is uniformly distributed between 0 and 2π. Speckle is in this case assumed to be fully
developed (Tur et al., 1982). This assumption does not apply for reflections from specular
scatterers.

Speckle properties The characteristics of detected SAR images are quite different from
those of both optical data and complex SAR data: in contrast to data acquired by incoherent
systems, SAR backscatter intensity images appear to be affected by a granular and rather
strong “speckle” noise (Goodman, 1975), an effect caused by random interferences between
the electromagnetic waves reflected from the different scatterers present in the single reso-
lution cell. Speckle becomes visible only in the detected amplitude or intensity signal: the
complex signal by itself is distorted by thermal noise and signal processing induced effects
only. Multilook intensity speckle adheres to a Gamma distribution characterized by the
density

p(I = i0, Mi = µi) =
LLiL−1

0

µL
i Γ(L)

exp

(

−Li0
µi

)

where L is the estimated number of looks of the data and µi its expected value.

Multi–look amplitude images are instead square–root Gamma distributed

p(A = a|Ma = µa) = 2
a2L−1 LL

µ2L
a Γ(L)

exp

(

−L
a2

µ2
a

)

if µa is the square root of the expectation value of the amplitude.

2.2 SAR interferometry

varSynthetic Aperture Radar Interferometry (InSAR) is an extension of the radar con-
cept that is made possible by the coherent nature of the signal (Prati et al., 1994; Massonnet,
1993). The contextual exploitation of data acquired on the same area from a number of
slightly different positions allows the measurement of the local distance between the scene
elements and the interferometer.

An indication of the geometric and radiometric stability of the scene is obtained by
considering the interferometric coherence, an estimate of the amplitude of the normalized
cross-correlation between the observations (Touzi, 1999).

The processing of SAR and InSAR data for the generation of backscatter intensity,
Digital Elevation Model (DEM) and interferometric coherence measurements is a well-
established field that has attained the operational stage since a number of years.
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Figure 2.10: Interferometric SAR geometry.

2.2.1 InSAR principle and processing

If two antennas are involved, with ’baseline’ spacing l across the range direction r, and
if a point target is located in the plane orthogonal to the azimuth direction, at (r = r′, θ),
the signals collected by the antennas are

I1 = |I1| exp[−j
4π

λ
r + jϕscatter]

and

I2 = |I2| exp[−j
4π

λ
(r + δr) + jϕscatter]

if the effect of the random reflectivity term is neglected (Franceschetti and Lanari, 1999;
Massonnet, 1993). From the two signals an interferometric pattern can be generated

6 I1I
?
2 = |I1 I2| exp[j

4π

λ
δr′] = exp[jψ]

with 6 denoting the complex versor angle and

r + δr = r − l sin(θ − β)

and therefore

ψ = −4π

λ
l sin(θ − β) .

which relates the interferometric phase ψ to the cylindrical coordinate θ of the imaged point.

The transformation of slant range altitudes to ground range ones implies the possibility
of obtaining height maps of the imaged areas solving the 3D location of the point because
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all its three coordinates are determined. The third coordinate can be specified in terms of
a length rather than an angle: if s is a slant range altitude,

ψ = 2
2π

λ

l⊥s

r0

and

s = −ε
λr

2πl
ψ ∼ −ε

λr

2πl⊥
ψ

where ε = 1/2 for dual pass and ε = 1 for single pass interferometry, respectively.

InSAR processing The first step in InSAR processing is the formation of the interfer-
ogram: complex images are coregistered (Carrasco et al., 1998; Scheiber et al., 1999) to
sub–pixel precision by an interpolation whose factors are evaluated by local measures of
signal correlation in the Fourier domain.

After the interferogram is computed by data common–band pre–filtering for the can-
cellation of non–common spectral contributions leading to decreased SNR in the interfero-
gram (Gatelli et al., 1994), complex conjugate product of corresponding pixel values, phase
extraction and phase pre–filtering techniques (Goldstein and Werner, 1997; Lee et al., 1998),
multilooking and flat–earth phase removal algorithms (Carrasco et al., 1998) are applied to
obtain a phase surface representing only the local surface heights.

Similar to intensity images, also in the interferometric case an average operation can
applied to reduce speckle effects and to improve the estimate of the interferometric phase.
In this case the average step is carried out in the complex quantity Î1Î

?
2 and therefore is

referred to as complex multilooking. This operation asymptotically (N → +∞) provides
a maximum likelihood estimate of the phase interferogram (Curlander and McDonough,
1992; Franceschetti and Lanari, 1999).

Since the slant altitude is linearly proportional to the interferometric phase pattern,
but the latter can only be measured in the [−π, π[ interval, appropriate phase unwrapping
techniques must be implemented (Ghiglia and Romero, 1998; Costantini, 1998) to recover
the full phase value ϕ (see figure 2.11).

Subsequent processing is necessary to convert the obtained absolute phase surface to a
height map by multiplication with the local phase–cycle–height and to re-sample the result-
ing topographic map of the terrain in a map projection such as the Universal Transverse
Mercator by geocoding techniques (Schreier, 1993) that allow the generation of ground range
altitude maps.

InSAR coherence It is convenient for the statistical description of the interferogram to
define the correlation coefficient

χ = | E[I1I
?
2 ]

√

E[I1I?
1 ]E[I2I?

2 ]
|
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(a)

(b) (c)

(d)

Figure 2.11: Interferometric SAR principle illustration: phase images (b) and (c) of relief
(a) are combined into interferogram (d).
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(a) (b)

Figure 2.12: Absolute (a) and wrapped (b) Gaussian phase surfaces.

(a) (b)

Figure 2.13: Analytical InSAR data distributions (Touzi and Lopes, 1996): (a) the Wishart
distribution of interferometric phase noise for different looks: L=3(-), L=6(–), L=10(.-.) and
(b) interferometric coherence distribution for different looks: L=3(-), L=10(–), L=20(.-.).

that has to be compensated for the topograhic mean effective phase difference ϕ with
ϕ ∈ [−π, π[ as in

χ0 = |E[I1I
?
2 ] · exp(−iϕ)

√

E[I1I?
1 ]E[I2I?

2 ]
| .

The term χ0 is usually referred to as interferometric coherence and provides an estimate of
the local phase image SNR and of the small–scale geometric stability of the scene, among
others.

2.2.2 InSAR statistics

The probability distribution function of the degree of coherence χ is derived by Touzi
and Lopes (1996) to be

p(X = χ) = 2(L − 1)(1 − χ2
0)

Lχ(1 − χ2)L−2F (L; L; 1;χ2χ2
0)

for L > 2 and χ0 6= 1, and being F the hypergeometric function.
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Sensor Information Applications Methodologies
resolution sources for interpretation for data analysis

10-30 m InSAR DEM, natural scenes Parameter
coherence, retrieval,
backscatter, classification,
some texture DEM generation

2-10 m Structure: natural scenes
- texture
- linesedges
-backscatter
InSAR

0.5-2 m Strong targets man–made scenes analysis on
sparse scattering

Table 2.1: Resolution and information content in SAR data.

The interferometric phase noise can instead be shown (Sarabandi, 1992; Lee et al., 1994;
Touzi and Lopes, 1996) to be Wishart distributed: if ϕ is the true phase value and ϕn the
associated noise, then

p(Ψ = ψ) =
(1 − χ2)L

2π
· F (L, 1; 1/2; κ2)

+ κ
Γ(L + 1/2)

Γ(L)

(1 − χ2)L

√
4π (1 − κ2)L+1/2

being
κ = χ cos(ϕ − ϕn) .

The Wishart distribution can be shown to correspond here to that expected for that of
the phase of a sinusoid summed to complex, white Gaussian noise with SNR=χ2/(1 − χ2).
A series of plots of different Wishart distribution functions with different values of the
interferometric coherence are reported in Figure 2.13.

2.3 The metric InSAR domain

The phenomenology of urban high resolution SAR is peculiar and has to be studied specif-
ically. With higher resolution, while natural targets show a typical fractal self–similarity
property, man made scene elements, well confined in their scale of relevance, tend to change
their appearance noticeably. A new level of complexity appears, determined by the pres-
ence in the scene of a number of objects whose influence on the data has to be understood.
Historical buildings, moving vehicles, metallic structures need to be modeled and recon-
structed.

Data geometric phenomenology at metric resolutions In the traditional approach
to SAR data processing, a number of effects like layover or shadowing are regarded as data
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Resolution Object / Structure Notes

2 m - 4 m buildings, settlements
forest, strong texture
other vegetation

10 m - 30 m agriculture, low texture
industrial areas,
vegetation

60 m - 100 m drainage, strong texture
geomorphology,
agriculture

Table 2.2: Recognizable object structures with varying resolutions in SAR data.

shortcomings that have to be regularized or filtered out in pre-processing steps. While this
approach is justified in the case of natural surfaces imaged by lower resolution sensors, in
the case of meter resolution SAR, and especially in urban environments, these hindrances
become the norm rather than the exception and must be dealt with appropriately (Adragna
et al., 2002):

• shadowing is a lack of signal caused by very steep surfaces in a way similar to that of
geometrical optics: no energy is returned to the sensor in a given frame. The intensity
images appear correspondingly dark, whereas interferometric coherence and phase
turn to pure noise. Shadowing from buildings is ubiquitous in city scenes. It must
be noted, though, that any triple scattering mechanism (figure 2.16c) corresponds to
scattering from a virtual point whose position depends on the elevation of the building.
This virtual point can easily be located inside the shadow area of a building. Therefore,
in the case of meter resolution SAR data the presence of shadows from buildings is
not guaranteed. Shadows, therefore, have only limited relevance when used as hints
for the presence of buildings in an automatic scene understanding system;

• foreshortening and specular reflections represent an opposite lack respectively of range
and of radiometric resolution to account for particular target geometries or radiome-
tries (generally a combination of the two). The structure of the target becomes par-
tially unobservable, and side–lobe effects might become important, especially in very
high resolution data, thus further hindering information in other areas of the image.
Specular reflections from house roofs and metallic structures appear frequently in
cities;

• layover — an inversion of the range–to–height relation also caused by very steep
surfaces — is the norm in scenes with buildings. Layover areas are generally simply
masked out and ignored in the traditional processing approach;

• occlusion is a phenomenon also occurring in optical imaging. Although it is relatively
infrequent in low resolution space-borne radar imaging, it becomes a key factor in the
phenomenology of urban HR SAR imaging. Again, some information about the scene
is missing from the data.
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(a) (b)

layover shadowing extended saturation correlated speckle

(c) (d)

Figure 2.14: Resolution-dependent interferometric SAR phenomenology: scene (a,b) and
basic signal features (c,d) for X-SAR image of Mount Etna (Schwäbisch, 1994) and for X
band sub-metric resolution Intermap data over Maastricht, the Netherlands.
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While all of these effects do appear in low–resolution images acquired on natural surfaces,
their effect is usually limited to a small minority of the imaged areas (an important exception
being alpine regions characterized by extremely steep slopes and very dense mountainous
peaks). The affected image areas can, therefore, be left out of the processing results and
integrated with data resulting from different sources. In high–resolution SAR data on
urban environments, though, this exceptional cases become the norm, and the effects need
to be dealt with appropriately. Furthermore, the fact that they are originated by the
characteristics of the scene geometry means that they contain information on it: they
should be consequently considered as information sources rather than hindrances. Further
effects that become fundamental in metric urban SAR include:

• along–range variations of the acquisition geometry and therefore of the SAR PSF are
an important factor in airborne acquisitions of SAR data: the incidence angle is very
different at near and at far range, and therefore the sensitivity of the system to scene
geometry can change noticeably. Reconstruction algorithms that operate on large
datasets must be aware of the effect;

• speckle appears as a strong multiplicative noise that makes the radar cross section not
directly observable. While in lower resolution SAR it is spatially uncorrelated, in HR
data the fully developed assumption does not hold: noise appears in large correlated
blobs in strict dependence with the scene geometry;

• backscatter texture is different than expected: much more textural information ap-
pears in the images, especially on non saturated, natural surfaces, but the statistics of
noise (which now appears as correlated speckle) change in a significant way, imposing
a redesign of analysis techniques; in urban environments, instead, the prevalence of
specular reflections on smooth extended surfaces renders most of the scene as non
textured;

• low-return areas are not limited to shadows: electromagnetic waves are returned with
a definite strength from clear edges, while they tend to be scattered away from smooth
surfaces, except in conditions of perpendicular incidence, when they saturate the re-
ceiver. In these conditions, returns from strong — e.g. dihedral — scatterers dominate
the image extending well beyond the resolution cell;

• isolated scatterers are more frequent with increased resolution/wavelength ratio and
with the presence of wavelength-sized man made metallic objects in the scene.

Scattering phenomenology Two main forms of scattering are possible for radar waves
when they interact with a target surface:

• smooth surfaces tend to scatter the incoming way in a privileged direction: the scat-
tering is specular;

• surfaces with high rugosities tend to re–radiate the received energy uniformly in all
directions: the backscattering is diffuse.
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Figure 2.15: Scheme of principle: diffuse (a,c,e) and specular (b,d,f) scattering with resulting
random walks in the complex Gauss plane.
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According to the Rayleigh criterion, a surface tends to be smoother as the incidence angle
increases and as the wavelength becomes larger, since any irregularities on the target become
negligeable. It must be noted that the Rayleigh criterion does not take into account the
actual density of scatterers on the scattering surface. In the extreme case in which a single
scatterer appears in a resolution cell (the probability increases as the wavelength and the
resolution increase), the backscattered energy is dominated by the scatterer. Since the single
scatterer tends to appear similar to itself when observed from different incidence angles in
the azimuth direction (as well as in the range one), if its backscatter equivalent surface σ is
sufficiently large it is possible to discriminate it by means of a correlation between different
looks generated by considering different sub–apertures along the azimuth direction (Elachi,
1988).

Man–made targets, particularly such complex targets as those found in urban centers,
contain scatterers with a variety of scattering behaviors (Rihaczeck and Hershkowitz, 1996):

• discontinuities: discontinuities are made of scatterers whose effective extents are rel-
atively small in terms of the wavelength. Such discontinuities essentially act as fixed
point scatterers, and their returns are usually relatively weak compared with those
from other features on the target scene object. Discontinuities will become conspic-
uous on a target if the gain is set to high values or if the corner-like and cavity-like
features on it are ineffective or inexistent;

• smooth extended surfaces: if a flat surface is illuminated at its broadside aspect, it will
generate a huge return, commonly referred to as a specular return. Since the angular
width ηa of the specular return is about equal to the ratio of the wavelength to twice
the width of the antenna plate, this specular reflection is generated only within an
extremely small angular section and is therefore rarely observed in practice. When it
is, though, the return can be so strong that the other responses in the vicinity, much
beyond the resolution cell in which the specular flash occurs, are more or less masked.
In addition, for a practical radar the flash will generate inordinately high range and
Doppler sidelobes, which tend to mask other responses.

When, on the other hand, smooth surfaces are observed out of the small broadside
aspect, they tend to scatter most of the energy away from the incidence direction in
a specular fashion. This makes them appear as areas of very low SNR in the data
containing no usable information, often indistinguishable from shadows.

Since smooth extended surfaces are the norm in man–made objects such as vehicles,
streets and many important classes of buildings, they determine a large part of the
phenomenology of SAR data in urban environments;

• corners: an ideal trihedral, whose three sides are perpendicular to one another, acts as
a triple bounce reflector and has the unique property that its effective phase center is
at the corner point, independently of the aspect angle and of the frequency within very
broad limits. The corner thus acts as a fixed, strong point reflector. A sizeable corner
reflector that closely approaches the ideal trihedral generates returns that compete in
strength with those from flat plates at perpendicular incidence.
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(a) (b) (c)

Figure 2.16: Electromagnetic wave paths (Simonetto et al., 1999) for direct reflections (a),
double bouncings (b) and triple bouncings (c) on a dihedral.

Real corners only poorly approximate the ideal trihedral, but anyway tend to trap the
incoming wave in a complicated fashion that usually cannot be explained by multiple-
bounce reflections.

The general corner–type reflector typically gives much stronger returns than discon-
tinuities: it will appear with a very bright phase center (the point from which the
return appears to emanate, giving the effective position of the reflector as measured
by radar).

• multiple reflections: with fixed azimuth and fixed target altitude, a number of target
echoes will appear on a typical scene building image ordered by increasing distance
or by decreasing altitude:

– direct reflections on the borders of the structure edge;

– direct reflections on the ground/structure edge;

– double bouncings on the border, accumulating on the pixel corresponding to
the edge: double-bounce propagation at the extended dihedral corner reflector
between the ground and the building wall is mapped to the location at the
building footprint. This leads to a line of bright intensity in azimuth direction
at the edge of the building wall and ground;

– higher–order bouncings.

Multiple bouncings generate an ambiguity in the interpretation of structure images
and in the evaluation of its altitude, since every phenomenon corresponds to a differ-
ent altitude. Their energy is normally much lower than that of direct bouncings on
structure edges and of scattering on the structure base edge. They might be therefore
difficult to observe.

Interferometric data phenomenology The processing of distance information ac-
quired by interferometric techniques also becomes more complicated.

• interferometric phase, describing the distance between sensor and scene targets and
hence the geometry of the scene, is often regarded as the key content in interferometric
SAR observations. In metric resolution data over urban areas it cannot be directly
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used as in traditional systems, though, unless many other information sources are
recognized as such — instead of being considered as shortcomings in the data — to gain
in robustness and discrimination power. Correct phase unwrapping is a complicated
problem, and noise has to be accounted for without lowering the resolution if the
characteristics of many of the scene elements have to be extracted;

• interferometric coherence images have different appearance: both geometry and ra-
diometry tend to segment the scene into isolated patches of very coherent and very
noisy responses. Simply increasing the size of the estimation windows loses geometri-
cal information and raises further estimation problems.

The scene understanding problem is made more difficult by the compromises that are nec-
essarily made in the design of very high resolution radar systems:

• spatial (and temporal) baselines might often be sub-optimal;

• signal–to–noise ratio issues might make the interpretation more difficult;

• motion–compensation effects, again for airborne acquisitions, can complicate the phe-
nomenology: once the data is transformed to ground coordinates, strong deformations
and even rotations of the PSF can be visible and need to be accounted for in inversion
algorithms.

The increased resolution, on the other hand, means that contextual geometric informa-
tion content is acquired at finer scales, and thus describes in greater detail every structure
in the scene: backscatter, texture, edges and strong targets are evidently still valuable
descriptors even in the new scenario. What is needed, though, is to relate them to a three–
dimensional domain providing a natural context for their understanding.

2.3.1 Meter resolution SAR and InSAR for single isolated buildings

The reconstruction of man-made objects in dense urban areas from SAR imagery is
complicated by inherent geometric constraints.

The incidence of phenomena like layover, shadow and multi-path signals (Schreier, 1993;
Simonetto et al., 1999; Stilla et al., 2002) has to be considered with care in urban areas (see
Figure 2.17).

If the building in Figure 2.17a is illuminated by a sensor located in F , in the slant range
image the points A, B and C will appear ordered according to their range distance. Hence,
the point A of the building footprint will appear as A′, behind point B′ and in-between B′

and C ′.

The area B′A′ will therefore be layovered, as always happens at vertical building walls
facing towards the sensor. This will lead to a mixture of signal contributions from the
building and the ground in the SAR image, because the elevated objects will be closer to
the sensor than the ground.
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(a) (b)

Figure 2.17: Projection of a building into a a) slant and b) ground range image (Stilla et al.,
2002).

Since the slant image shows a geometric distortion in the ground range direction which
makes an object recognition and interpretation more difficult, for image interpretation the
data will be sampled to a rectangular grid on the ground (Fig. 2.17b). However, the order
of the points B′′, A′′, C ′′ in the ground image will still be the same as in the slant image:
no complete geocoding procedure can take place, since the true heights in the scene are
unknown and cannot be derived by simple unwrapping–based processes.

On its far range side, the building will cast a shadow which might occlude smaller objects
behind it and that will appear as an energy–less, very low SNR, dark area in the image. In
theory, the height of a detached building might be derived from the shadow length and the
viewing angle. In real cases, the fact that triple reflections extend often to shadow areas
poses serious limits on this kind of approach.

2.3.2 Metric SAR statistics in urban environments

When resolution cells are not anymore populated by a large number of scatterers but
instead only a small number of scatterers determines their behavior, the fully developed
speckle assumption (Tur et al., 1982) does not hold any more. New distributions have to
be taken into account if a proper description of the statistics of the data is sought.

Usually, a K law is used to describe high resolution SAR data. The K law is derived
under the hypotheses of Gamma reflectivity and Gamma speckle:

pK(A = a) =
2λL

Γ(α)Γ(L)
(λLa)(α+L)/2−1Kα−L(2

√
λLa)

where Kn denotes the modified Bessel function of the third kind and order n and x is the
amplitude. The difficulty in using K-law distributed random variables lies in the complica-
tions related to the evaluation of the Bessel function.

Inverse Gaussian distributed backscatter values corrupted by square–root Gamma
speckle model well the amplitude return from the slowly varying small number of scatterers
that compose these elements. They have been shown to approximate well a K–distribution
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while keeping a better tractability, and have been used to model backscatter in urban en-
vironments (Frery et al., 1997; Mejail et al., 2001):

p(A = a) = exp

[

− LL Γ(L − α) aL−1

γαΓ(−α)(γ + L a)L−α

]

(2.4)

with L > 0 the number of looks of the data, a > 0 the amplitude pixel value, and −αs, γs > 0
and −α0, γ0 > 0 respectively the parameters for the distribution that models the amplitude
values of the strong scattering elements, and those for remaining clutter obtained by solving
the system

γ = L

[

m̂1 Γ(−α)Γ(L)

Γ(−α − 1/2)Γ(L + 1/2)

]2

m̂2
1/2

m̂1
=

Γ2(−α − 1/4)Γ2(L + 1/4)

Γ(−α − 1/2)Γ(L + 1/2)Γ(−α)Γ(L)

where m̂n is the n−th order moment estimated on a training area and Γ(·) is the Gamma
function.

2.3.3 High resolution urban SAR and InSAR inversion: state of the art

The problem of scene understanding from meter resolution SAR data is increasingly
present in the remote sensing literature. Most studies limit themselves to the two–
dimensional intensity case. Up to now the problem of the reconstruction in the three
dimensions of urban scenes from interferometric radar data has never been addressed in a
unified, consistent framework by well–integrated and clearly justified algorithms and ap-
proaches. Actually, if the peculiarities of urban HR SAR are analyzed, it is clear that the
usual approach of identifying and excluding from further processing problematic shadowing
or layover areas proves problematic, since they are almost ubiquitous.

Simulation based scene understanding A number of simulation–based approaches
have been considered. In them, a model of the scene is progressively updated looking for
the configuration that best explains the data.

The comparison between the scene and the data is actually carried out in the data space:
the candidate scene is mapped into the data by using a simulator, that is able to mimic
the acquisition system. The distance between data and simulated scene is computed as a
cross–correlation.

In (Bolter, 2000) and (Bolter and Leberl, 2000) interferometric coherence, absolute phase
and shadowing are identified as powerful image features for the reconstruction of buildings.
A deterministic correlation measure between real and simulated data is used as a quality
criterion for the reconstruction.

In (Gamba and Houshmand, 1999) segmentation and plane–fitting techniques are applied
to interferometry-derived local elevation data to identify buildings. In one case only (Huer-
tas et al., 1998), a segmentation of local heights from interferometric radar is used as a cue
in a pre–processing step of the building reconstruction system chain.
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Ad hoc data regularization techniques A number of studies were carried out on
the peculiar effects encountered in very high resolution SAR images in urban environments.
They have the great merit of having brought to a better understanding of the characteristics
of HR SAR phenomenology.

In (Burkhart et al., 1996) layover in the height profiles of buildings reconstructed by SAR
interferometry is investigated. Some ad–hoc algorithms for the correction of this effect are
also proposed. The peculiarities of HR urban SAR tend to be treated as shortcomings of
the data that must be regularized instead of being used as additional sources of information.

Stochastic approaches The main limit of deterministic simulation based approaches is
that

• only the scene that best explains a given dataset is extracted from the data: no full
posterior probabilistic distribution for it is generated;

• they are strongly dependent on the quality of the simulator: if good results are to be
obtained, a good simulator is needed, hence

• they are computationally expensive.

As an alternative, a probabilistic approach can be considered, where full probabilistic
descriptions are given for the phenomena and terms involved.

To deal with the high complexity of the problem, stochastic algorithms have been pro-
posed in recent years from a number of authors. Although exploiting interferometric radar
data in a limited way, (Heuel and Nevatia, 1995) makes use in an explicit way of models for
the scene objects of interest. Parallelepipedal buildings are extracted from high resolution
optical images supplementing in some cases automatic processing with user intervention (Li
et al., 1999; Chellappa et al., 1993; Heuel and Nevatia, 1995).

If a Bayesian system is considered, then A–Priori descriptions of the scene can be incor-
porated into the description.

In (Simonetto, 2002) the phenomenology of HR SAR is investigated. A stochastic algo-
rithm for the exploitation of stereo intensity observations for industrial building extraction
is proposed. In (Tupin and Roux, 2003), the extraction of building outlines using a pair
of optical and SAR images is considered. In (Stoica et al., 2000), a model for a set of
segments is employed in a stochastic geometry framework to overcome the difficulties with
a part of the linear feature extraction process. In a related paper (Ortner et al., 2002) a
similar approach is used for the reconstruction of building areas from Laser digital elevation
data. In (Stilla et al., 2003), techniques for the extraction of building models from inter-
ferometric SAR data are considered and the results are compared with those obtained by
LIDAR data. The full hierarchical modeling of both the geometry and the radiometry of
HR SAR data acquired on complex structures in urban environments has — to the best of
our knowledge — never been addressed as a tool for scene understanding, though.
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2.4 Summary

In this Chapter, the following points have been discussed:

• SAR and InSAR systems have very peculiar geometric and radiometric properties that
can be treated by appropriate, well established processing techniques;

• their performance at metric resolutions in urban environments is determined by

– geometric effects such as layover, shadowing and occlusion;

– the radiometric effect of smooth surfaces on speckle noise, backscatter texture
and signal–to–noise ratio;

– the appearance of multiple reflections of the incident radar beam;

– the various classes of strong isolated scatterers;

– the peculiar statistics of meter resolution data;

• the limiting effects on the traditional interferometry–based scene reconstruction ap-
proaches of the presence of very strong reflectors and of phenomena like layover and
multiple reflections depend on the scene geometry. Therefore, they contain informa-
tion about it;

• traditional, simulation– and model–based inversion algorithms in the literature have
been evaluated and compared.

The phenomenology and effects described in this chapter form the basis for the hierarchical
probabilistic modelling and inversion algorithms presented in chapters from 4 to 6 and
validated in chapter III.



Chapter 3

Bayesian modeling, estimation and
decision theory for
multidimensional signal analysis

Abstract

Bayesian modeling and estimation techniques for the analysis of multidimen-
sional fields are introduced. After presenting the properties of Gibbs–Markov
fields on random variable networks and the results of the Hammersley–Clifford
theorem, hierarchical Bayesian models are introduced.

The second level of Bayesian analysis for model selection is presented together
with the role of the Occam factor in model choice and analysis.

Bayesian estimation and decision theories are then introduced: the analysis
focuses on Maximum A Posteriori estimates and on decisions as posterior ratios.

Posterior optimization techniques based on complete enumeration, on Iterated
Conditional Modes and on the Gibbs Sampler and Monte Carlo Markov chains
are then introduced and detailed.

3.1 Bayesian modeling and analysis

The high complexity of models made up by large numbers of possibly interdependent
variables can be tackled by considering and exploiting conditional independence assump-
tions. The use of independence assumptions allows efficient inference to be carried out even
for problems involving a large number of variables.



3.1. BAYESIAN MODELING AND ANALYSIS 43

X1 X2

p(X2=x2|X1=x1)

p(X2=x2)

p(X2=x2|X1=x1)p(X1=x1)
p(X1=x1|X2=x2)=

Figure 3.1: The Bayes’ law enables the reversal of probabilistic links and therefore allows
inference to take place based on the existence of direct models. Following the usual notation
for Bayesian networks, random variables are represented by circles at the nodes of a graph
while probabilistic relations are represented by (oriented) edges.

3.1.1 A principled approach to the composition of stochastic descriptions

The Bayes’ equation In Bayesian probability theory, logical links are expressed by
means of conditional probabilities

p(X1 = x1|X2 = x2) ≡
p(X1 = x1, X2 = x2)

p(X2 = x2)

that express the degree of belief that event x1 takes place given that event x2 happens with
certainty.

An immediate consequence of the definition of conditional probability is the so–called
Bayes’ law

p(X1 = x1|X2 = x2) =
p(X2 = x2|X1 = x1) p(X1 = x1)

p(X2 = x2)
(3.1)

that enables the reversal of probabilistic links and therefore allows inference to take place
based on the existence of direct models. The law can be seen as a rule for updating an
existing description of a phenomenon X1, the prior p(X1 = x1), based on new information
— new data or a new description — x2. The direct link from the old to the new description
needs to be modeled in the likelihood p(X2|X1). Furthermore, an evidence normalization
term is introduced in p(X2 = x2) that expresses the probability of the data and that can
be computed as a Marginalization on the prior model used

p(X2 = x2) =
∑

x1,i

p(X2 = x2|X1 = x1,i) p(X1 = x1,i) . (3.2)

Bayesian inversion results in a powerful method in the understanding of complex phe-
nomena for which precise mathematical modeling is available starting from incomplete in-
formation available in datasets of different nature.

This measure and the dependence description itself is updated from a starting prior belief
to a posterior one by considering the data available.
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On the logical nature of conditional probability connections It is important to
notice that conditional probabilities are used to express logical links, not causal ones. If, for
instance, event X1 generates by some physical process event X2, a link that is both causal
and logical exists between events X1 and X2, but a link that is only logical exists between
events X2 and X1 in the sense that an occurrence of event X2 gives us a hint about the
occurrence of event X1.

3.1.2 Modeling interdependence in random variable sets: chain Rule and
Markov property

The chain rule We consider a set of N stochastic variables

X = (X1, X2, · · ·XN )

with values
x = (x1, x2, · · ·xN ) .

Independently of the type of stochastic process considered, the joint probability of X
can be written as

p(X = x) = p(X1 = x1, · · ·XN = xN )

and can be decomposed based only on the definition of conditional probability as in

p(X = x) =p(X1 = x1) p(X2 = x2|X1 = x1) p(X3 = x3|X2 = x2, X1 = x1)

· · · p(XN = xn|XN−1 = xn−1, · · ·X2 = x2, X1 = x1)

which is called the “chain rule” decomposition theorem of probability. The last terms in
the decomposition are based on a very large number of variables, and are therefore likely
to render an inference process based on them hard to treat.

The Markov property A k–order Markov source is a symbol–emitting device with mem-
ory for which if X denotes the ordered set of symbols emitted by the source, the Markov
property

p(X = x) =p(X1 = x1) · · · p(Xk−1 = xk−1|Xk−2 = xk−2 · · ·X1 = x1)

N
∏

i=k+1

p(Xi = xi|Xi−1 = xi−1 · · ·Xi−k = xi−k)

holds. Even if the number of elements in the set X grows, only a maximum number of k
symbols has to be taken into account in modeling the source.
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A ⊥ D, A ⊥ B|C

Figure 3.2: Markov property for random variables: random variables are depicted as cir-
cles. Two neighborhoods are represented. First–order cliques for neighborhood N1 are
depicted by closed shapes enclosing the variables. The three cliques C1, C2 and C3 form
the first–order neighborhood N1. The diagram describes a belief network encoding statisti-
cal independence relations: variable A is independent of D (no path exists between the two),
while A is independent of B if C is known. Independence and conditional independence are
respectively denoted by · ⊥ · and · ⊥ ·|·. The exploitation of conditional independence
relations allows the simplification of high complexity probabilistic descriptions.

3.2 Gibbs random fields

3.2.1 Lattices, sets, neighborhoods, cliques, sites, pixel values

For any variable Xi in X a neighborhood Ni is defined by

Ni = {j} such that

{

i 6∈ Ni

j ∈ Ni ⇔ i ∈ Nj

.

A neighborhood is assigned a relative set C of cliques Ck

C = {Ck}

each made of k random variables and each characterized by a vector parameter

~θ = {θ11, θ12, θ21, θ22, · · · }

that expresses the local interactions in the clique Ck.

While in the case of image processing and analysis neighborhoods are limited to the
geometric vicinity of the central pixel under analysis Xi, it must be noticed that once
again the important point is the logical link between the variables in the same clique which
might or might not be associated to a location and even belong to spaces with different
dimensionality.
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3.2.2 Random fields in terms of potentials and energies

Local interactions, that is interactions that take place between elements of the same
clique, can be now expressed in terms of energies and potentials

U(X = x) =
∑

c∈C

Vc(x)

where the energy of the full variable set is expressed by a sum of the potentials of all the
single cliques in the model and the energy of a single variable

Ui(Xi = xi) =
∑

c∈C,i∈c

Vc(xi)

is expressed as a sum of all the energies of the cliques that include that variable.

Markov on a lattice: restating the Markov property at higher dimensionality

The Markov property can then be restated as specifying the interdependence between vari-
ables to actually occur only among variables belonging to the same clique. In a Markov
random field a random variable can be expressed in terms of a limited number of its neigh-
bors:

if xi = (xj)j 6=i then p(Xi = xi|Xi = xi) = p(Xi = xi|xj ∈ Ni) .

The specification of statistical independence relations between random variables allows the
design of faster inference algorithms taking into account only meaningful logical links.

Gibbs random fields In a Gibbs random field probability distribution functions can be
expressed in terms of potentials, as in

p(X = x) =
1

∑

xi
exp(−U(xi))

exp(−
∑

c∈C

Vc(x)) .

The denominator partition function integral over the configuration space is often hard to
evaluate due to the large number of elements in the domain of X.

The Hammersley–Clifford theorem The Hammersley–Clifford theorem states that
the probability of one random variable instead of the whole set can be derived from its
neighbors only, and hence states the equivalence between Markov and Gibbs fields:

p(Xi = xi|Xj = xj) =
1

∑

xi,xj
exp(−Ui(xi|xj ∈ Ni))

exp(−Ui(xi|xj ∈ Ni)) .

3.2.3 Markov random fields in terms of belief networks

A Bayesian network (Hackerman et al., 1995) is a graphical model for probabilistic rela-
tionships among variables in a set. It consists of an annotated directed graph that encodes



3.2. GIBBS RANDOM FIELDS 47

p(Xk−1=xk−1|Xk=xk)

X1 Xk XNXk−1

p(Xk=xk|Xk−1=xk−1)

Figure 3.3: Hierarchical model illustration: the distribution of parameters at any level
of the hierarchy depends on parameters at the next lower level and, conditional on those
parameters, is independent of parameters at all levels below that.

probabilistic relationships among variables of interest in uncertain–reasoning problems. The
representation formally encodes the joint probability distribution for its domain, yet includes
a human–oriented qualitative structure that facilitates communication between a user and
a system incorporating the probabilistic model.

Bayesian networks allow us to overcome the curse of dimensionality by encoding proba-
bilistic independence between the elements of the inference problem. They can be mapped
to graphs whose nodes represent the random variables under study, while dependencies
are encoded in their structure. The learning procedure progressively updates the network
thereby obtaining a description of the statistical link between the variables based on all the
information available. Once the graph structure is set up, it can be used to perform effi-
cient inference by taking into account only significant dependencies in between the random
variables.

The nodes in the graph correspond to the variables in the problem, while the directed
edges encode the significant probabilistic dependencies. The fundamental property of the
net is that a node is conditionally independent of its ancestors given its parents. Hence,
inference on the graph can be reduced to a message passing algorithm in which starting
from a set of root nodes, probability is propagated down the graph to the node of interest.

3.2.4 Hierarchical models

As noted by O’Hagan (1994), the p(X1 = x1|X2 = x2) posterior statistical model and
p(X2 = x2) prior model together form an ordered structure in which the distribution of
the data x1 is written conditionally on parameters X2 = x2 as p(X1 = x1|X2 = x2).
Analogously, the prior distribution of X2 can be written conditionally on hyperparameters
X3 as p(X2 = x2|X3 = x3), and be completed by the distribution of X3 = x3, p(X3 = x3).
We could go further and write the distribution of X3 conditionally on some more (’hyper-
hyper’) parameters X4 = x4 as p(X3 = x3|X4 = x4), and this process could continue as far
as is needed. Such models are called hierarchical models, because of the way in which the
distribution of parameters in each level of the hierarchy depends on the parameters in the
previous level.

In fact it is usual to say that the distribution of parameters at any level of the hierarchy
depends on parameters at the next lower level and, conditional on those parameters, is
independent of parameters at all levels below that. For instance, if we model the distribution
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of X2 in terms of p(X2 = x2|X3 = x3) and p(X3 = x3), then the likelihood p(X1 =
x1|X2 = x2) is formally the distribution of X1 given X2 = x2 and X3 = x3. Writing it
as p(X1 = x1|X2 = x2) incorporates a judgment that if we know X2 = x2 then knowing
X3 = x3 would not add any information about X1. This is reasonable because X3 has been
introduced only as a way of formulating p(X3 = x3) as in the (discrete) evidence integral

p(X2 = x2) =
∑

x3

p(X2 = x2|X3 = x3)p(X3 = x3) . (3.3)

The reason for making this interpretation of p(X1 = x1|X2 = x2) is that otherwise the
distributions of p(X1 = x1|X2 = x2), p(X2 = x2|X3 = x3) and p(X3 = x3) together do not
completely specify the joint distribution of X1, X2 and X3. The extra assumption allows
us to write

p(X1 = x1, X2 = x2, X3 = x3) = p(X1 = x1|X2 = x2) p(X2 = x2|X3 = x3) p(X3 = x3) .
(3.4)

A hierarchical model does always specify the full joint distribution of all quantities this
way 1.

3.2.5 Principle of inference for 2–level hierarchical models

If a set (M1, · · ·MN ) of models is available, and we consider that each model M = m has
a vector of parameters Θ = θ, then a full three–levels hierarchical model can be described
as in

M → Θ → D .

A model is defined by its functional form and two probability distributions: a prior distri-
bution p(Θ = θ|M = m) which states what values the model’s parameters might plausibly
take; and the predictions p(D = d|Θ = θ;M = m) that the model makes about the data
D = d when its parameters have a particular value θ. Note that models with the same pa-
rameterization but different priors over the parameters are therefore defined to be different
models.

At the first level of inference, we assume that one model M = m is true, and we infer
what the model’s parameters Θ = θ might be given the data d. Using Bayes’ rule in eq. 3.1,
the posterior probability of the parameters θ is:

p(Θ = θ|D = d;M = m) =
p(D = d|Θ = θ;M = m) p(Θ = θ|M = m)

p(D = d|M = m)
. (3.5)

1The equivalence of this formulation with that of Bayesian networks and graphical models is indicated
by the correspondence of the description above with the textbook definition (as in Heckerman (1995) or
in Myllymaki and Tirri (1993)) of a Bayesian belief network representation for a probability distribution
p(·) on a domain (X1, · · ·XN ) as a pair (G, P ) where G is a directed acyclic graph whose nodes correspond
to the variables X1, · · ·XN and whose topology satisfies the following: each variable Xi is conditionally
independent of all of its non–descendants in G, given its set of parents paXi

and no proper subset of paXi

satisfies this condition. The second component P is a set consisting of all the conditional probabilities of
the form p(Xi|paXi

).
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The normalizing constant p(D = d|M = m) is commonly ignored, since it is irrelevant to
the first level of inference, i.e., the choice of Θ = θ; but it is important in the second level
of inference, and is called the evidence. It is common to use gradient-based methods to
find the maximum of the posterior, which defines the most probable value for the vector
parameter, θ̂MAP, that is subsequently used to summarize the posterior distribution by its
value 2 (section 3.3).

3.2.6 Occam razor and Occam factor

As noted by MacKay (1992), model comparison is a difficult task because it is not possible
simply to choose the model that fits the data best: more complex models can always fit the
data better, so the maximum likelihood model choice would lead us inevitably to implausibly
over-parameterized models which generalize poorly.

‘Occam’s razor’ is the principle that states that unnecessarily complex models should not
be preferred to simpler ones. Bayesian methods automatically and quantitatively embody
Occam’s razor (Jeffreys, 1939; Gull, 1988), without the introduction of ad hoc penalty terms:
complex models are automatically self-penalizing under Bayes’ rule.

At the second level of inference, we wish to infer which model is most plausible given
the data. The posterior probability of each model is:

p(M = m|D = d) ∝ p(D = d|M = m) p(M = m) . (3.7)

Notice that the data-dependent likelihood term p(D = d|M = m) is the first-level Bayesian
inference evidence for M = m of equation 3.5. The second term, p(M = m), is a ‘subjective’
prior over the hypothesis space, kept constant when there is no reason to assign strongly
differing priors p(M = m) to the alternative models.

The evidence then naturally embodies Occam’s razor: in order to assign a preference to
alternative models M = m, the evidence p(D = d|M = m) has to be evaluated.

It should be pointed out that the emphasis of this modern Bayesian approach is not on
the inclusion of priors into inference. Historically, Bayesian analysis has been accompanied
by methods to work out the ‘right’ prior p(Θ = θ|M = m) for a problem, for example, the
principles of insufficient reason and maximum entropy. Modern Bayesian theory, however,
does not take a fundamentalist attitude to assigning the ‘right’ priors – many different priors
can be tried, allowing the data to inform us which is most appropriate. Each particular
prior corresponds to a different hypothesis about the way the world is. These alternative
hypotheses can be compared in the light of the data by evaluating the evidence.

2The width of the posterior distribution is approximately characterized by the curvature of the posterior;
writing the Hessian H = ∇∇ log p(Θ = θ|D = d;M = m) and Taylor-expanding the log posterior with
∆θ = θ − θ̂MAP, with T denoting the transpose operator,

p(Θ = θ|D = d;M = m) ' p(θ̂MAP|D = d;M = m) exp
ˆ

−
1

2
∆θ

T
H ∆θ

˜

(3.6)

we see that the posterior can be locally approximated as a Gaussian with covariance matrix H
−1.
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In practice, the evaluation of the Marginalization integral of eq. 3.3

p(D = d|M = m) =
∑

θ

p(D = d|Θ = θ,M = m) p(Θ = θ|M = m) (3.8)

can be conducted by approximating the posterior as a Gaussian around its MAP peak,
using Laplace’s method:

p(D = d|M = m) ' p(D = d|θ̂MAP,M = m) · p(θ̂MAP|M = m)det−
1

2 (H/2π) (3.9)

in which the Hessian H = −∇∇ log p(Θ = θ|D = d;M = m) appears in the last two terms
that account for the so called ‘Occam factor’

Ω ≡ p(θ̂MAP|M = m)det−
1

2 (H/2π) < 1 (3.10)

which penalizes M = m for having the parameter θ. The first–level evidence p(D = d|M =
m) can then be obtained simply by multiplying the best fit likelihood by the Occam factor,
favoring less complicated models whenever a choice is made for instance by making use of
the Bayes’ factor

Bij =
p(D = d|M = m)

p(D = d|M = m′)
' Ωm

Ωm′

(3.11)

in a set of given models.

The maximization of the evidence is therefore regarded as a criterion for the choice of a
suitable model to explain a given dataset.

Jeffrey’s priors Frequently partial prior information is available, outside of which it is
desired to use a prior that is as non-informative as possible.

The maximum entropy distribution “is uniquely determined as the one which is max-
imally noncommittal with regard to missing information” (Jaynes, 1957): it “agrees with
what is known, but expresses ‘maximum uncertainty’ with regard to all other matters,
and thus leaves a maximum possible freedom for our final decision to be influenced by the
subsequent sample data” (Jaynes, 1968). It has been further shown by Jaynes that the
maximum entropy distribution is equal to the frequency distribution that can be realized
in the greatest number of ways.

In order to define the requested maximum entropy prior, constraints can be composed
by using Lagrange multipliers with a Shannon entropy measure

−
∑

x

p(X = x) log p(X = x) (3.12)

and the resulting composite equation can therefore be maximized providing the requested
resulting prior.
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3.2.7 From posterior distributions to estimates and decisions

Full probabilistic inference produces as output full posterior distributions rather than
simple scalar values. On the other hand, in a number of situations, scalar values are required
in order to be able to compare a theoretical result with actual measured quantities.

Estimation and decision theory considers the problem of choosing a representative value
for a given probabilistic distribution in a principled way.

3.3 Estimation and decision theory

The problem of estimation and decision theory is the derivation in a principled way
of criteria for the choice of single scalar values from a full probabilistic description of a
problem.

It is clear that moving from a full probabilistic description of a phenomenon to a single
value must involve some kind of loss in the quality of the descriptor. This loss must be
expressed by some kind of cost function leading to a definition of an optimal estimator: the
classical parameter estimation is formulated as the minimization of the Bayes risk R defined
over the signal space. The risk R is the expectation value of a cost function defined over
the joint space of observations (Y ) and model parameters X

R = E[c(X = x, x̂)] =
∑

y

∑

y

c(X = x, x̂) p(X = x, Y = y) . (3.13)

The cost function c(X = x, x̂) is a measure of goodness of the estimated parameter x̂, being
defined as a distance between the actual and the desired but unknown value of x. Minimizing
the risk and using a uniform cost function, at the limit ε → 0, we obtain the Maximum A
Posteriori (MAP) estimator that summarizes the posterior description of phenomenon y in
terms of the position of its maximum

ŷMAP = arg max
y

{p(X = x|Y = y) p(Y = y)/p(X = x)} . (3.14)

We observe that, in classical estimation theory, using a cost function is nothing else but
describing a type of prior information. The expression for the posterior encapsulates the
deterministic prior knowledge represented by the forward model. In addition, the knowledge
about the observation noise and the a priori information about the desired parameter are
also included. We conclude that MAP is a complete frame for model–based approaches in
information extraction.

This can be demonstrated (Rissanen, 1985) to be equivalent to a shortest description
length estimate obtained by considering that the best model of a phenomenon is the one that
produces the most compact encoding of it. A very similar approach, also considering two
terms, a data one requiring the maximization of a likelihood and a penalty term considering
the complexity of the model, is the Akaike information criterion (Akaike, 1974).
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3.3.1 Decisions as posterior ratios

Decision theory focuses on the problem of choosing the most probable hypothesis in a
set of given ones. It is clearly strongly related to the problem of model selection as well
as to estimation: even in this case, the fundamental problem is the reduction of a full
probabilistic description to a single value. We consider the problem of binary hypothesis
testing under data D. If the two competing hypotheses we are considering are called H0

and H1, it can be seen that the decision reduces itself to the evaluation of the ratio

p(H = h0)p(D = d|H = h0)

p(H = h1)p(D = d|H = h1)

that, introducing the evidence p(D) and using the Bayes’ theorem, equals

p(H = h0|D = d)

p(H = h1|D = d)

a comparison of the posterior probabilities that becomes, when identical priors are consid-
ered, to the usual likelihood ratio estimator of decision theory

L(D = d) ≡ p(H = h0|D = d)

p(H = h1|D = d)
.

3.3.2 Estimation and decision algorithms

The optimization of probability distributions of large sets of random variables is compli-
cated by the large dimensionality of the spaces where these sets are located. Examples of
such sets include

• gray-scale image processing: X is a set of mono-dimensional stochastic pixels Xi with
values xi in some set L. The number of configurations N is usually very large (it
easily takes up values in the order of a million), and the size of L can be considerably
large as well, especially if instead of limiting the problem to a quantized space of 256
values larger pixel ranges are considered

• color image processing: the size of L increases considerably with respect to the gray-
scale image processing example. Quite often, different mechanisms have to be ac-
counted for in describing the way different physical phenomena are responsible for the
generation of the different bands

• hierarchical geometrical modeling: X is decomposed into a series of subsets X =
(X1D, X2D, X3D) each of which models a set of interdependent objects with different
dimensionality. For instance, the full problem space might be composed of a set of
points that probabilistically generate a set of segments that are composed into bi–
and three–dimensional graphs.

The characterization of the behavior of the set X is in cases like these made complex by the
very size of the state space one has to consider. Even in the simple case of a 1000 × 1000
pixels 256–levels image processing, with N fixed and Xi mono-dimensional, the possible
number of states of X is 1000 × 1000 × 256.
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3.3.2.1 Analytic derivation of MAP estimate

In the cases when the posterior is analytic, the MAP estimate

x̂ = arg max
x

p(X = x|Y = y)

can be computed directly from

dp(X = x|Y = y)

dx
|X=x̂MAP

= 0,
d2p(X = x|Y = y)

dx2
|X=x̂MAP

< 0 .

When this is not possible, the optimization is instead carried out by numerical methods (Co-
hen and Cooper, 1987).

3.3.2.2 Exact inference by complete enumeration

A possible method for statistical inference is a brute–force one: complete enumeration of
all the hypotheses, and evaluation of their probabilities. This approach is an exact method,
and the difficulty of carrying it out motivates the approximate methods introduced in later
Paragraphs.

It has to be noted that, even though the hypothesis spaces of many problems can be
thought of as continuous, such continuous spaces can be discretized and so can, in principle,
be enumerated –at a grid of parameter values, for example.

3.3.2.3 The Iterated Conditional Modes algorithm

The Iterated Conditional Modes (Besag, 1986; Winkler, 1995) algorithm is an iterative
optimization technique specifically designed for probabilistic models. It is a local technique,
and so is susceptible to local minima. The algorithm works by iteratively computing the
MAP estimate of the data using the available observations and the current estimates of the
model parameters until convergence is reached. The IEM algorithm is closely related to the
Expectation–Maximization algorithm of Dempster et al. (1977), that operates instead by
optimizing on a simpler, convex approximation (a form of the Jensen’s inequality, the fact
that an arithmetic mean is never smaller than a geometric mean, is used as a bound) of the
posterior.

3.3.2.4 The Gibbs sampler and Monte Carlo Markov chains

A Metropolis algorithm based on a Simulated Annealing procedure (see Appendix B)
can be adopted for the estimation of the MAP: the multivariate posterior is maximized by
iteratively evaluating many possible solutions in a multidimensional parameter space.

The Metropolis algorithm can therefore be understood as a special case of a threshold
random search, a relaxation of the greedy maximal ascent algorithm.
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• Step 0: Choose arbitrary starting point

θ0 = (θ0
1, θ

0
2, ..., θ

0
p)

′

and set i = 0;

• Step 1: Generate θ1 = (θ1
1, θ

1
2, ..., θ

1
p)

′ as follows:

– Generate θi+1
1 ∼ p(Θ1 = θ1|Θ2 = θi

2, Θ3 = θi
3, ...,Θp = θi

p, D);

– Generate θi+1
2 ∼ p(Θ2 = θ2|Θ1 = θi

1, Θ2 = θi
2, ...,Θp = θi

p, D);

– ...

– Generate θi+1
p ∼ p(Θp = θp|Θ1 = θi

1, Θ2 = θi
2, ...,Θp−1 = θi

p−1, D);

• Step 2: Set i = i + 1, go to Step 1.

Table 3.1: The Gibbs Sampling algorithm. Starting from a purely random initial configu-
ration θ0, the algorithm sequentially updates all parameters at each iteration by sampling
the new value from the local probability distribution conditioned on those that influence
the one under analysis.

This approach allows the system to explore solutions that a direct maximum-gradient
maximization would not consider, permitting it to identify the global maximum of a mul-
tivariate distribution avoiding the burden of constructing the full posterior distribution.

A Gibbs sampler can be set up to sample the posterior distribution keeping all the dimen-
sions of the Scene process fixed but one: this modified distribution can be shown (Winkler,
1995; Stoica et al., 2000) to converge to the full posterior.

For generating the new candidate solutions to the optimization problem from the previous
ones, update rules have to be defined. Special care must be used in ensuring that the
mutation dynamics of the Gibbs sampler are completely reversible, to avoid getting stuck
on some local maxima or on the borders of the domain. Each of the defined mutation step
must have an equiprobable opposite move.

3.4 Summary

In this chapter, the following points have been discussed:

• Bayesian modeling and estimation techniques for the analysis of multidimensional
fields have been introduced;

• the properties of Gibbs–Markov fields and hierarchical Bayesian models were detailed;

• Bayesian model selection was presented together with the role of evidence maximiza-
tion and of the Occam factor in model choice and analysis;
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• Bayesian estimation and decision theories were introduced focusing on Maximum A
Posteriori estimates and on decisions as posterior ratios;

• Posterior optimization techniques based on complete enumeration, on Iterated Con-
ditional Modes and on the Gibbs Sampler and Monte Carlo Markov chains were then
introduced and detailed.

The techniques presented in this chapter are applied to the construction of hierarchical
models of complex acquisition procedures and of their results and to the derivation of
estimation algorithms for the inversion of these procedures in the next chapters of this
thesis.



Part II

Hierarchical Bayesian modelling
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Abstract

A set of novel algorithms for urban scene understanding from high resolution
SAR imagery are introduced that are based on hierarchial stochastic models of
the scene and the data and on Bayesian estimation and decision.

A new algorithm for space–variant model order selection in Bayesian model–
based image denoising and information extraction is developed based on evidence
maximization in the framework of second–level Bayesian inference for model
selection. The algorithm is demonstrated on real and simulated data generated
from different models and corrupted by multiplicative speckle noise.

Based on the information extracted and in order to complement different types
of information derived from various data sources, a novel approach to scene
reconstruction based on Bayesian data classification and fusion is introduced:
generic features extracted from the data are combined with user conjectures
to generate land use maps. The system is demonstrated on real InSAR data
acquired by spaceborne sensors.

To overcome the limitations of pixel–based analysis applied to sub–metric reso-
lution data, an new object–based algorithm is presented that models the scene
as an instance of a decomposable–object hierarchic marked–point prior process.
The geometric and radiometric phenomenologies of sub–metric SAR in urban
environments are taken into account in the likelihood term. The optimization
of the obtained posterior is based on Gibbs sampling and Monte Carlo Markov
chains. The developed algorithm is demonstrated on real data acquired by air-
borne X band sensors on built–up areas in high complexity settings characterized
by tall vegetation and strong metallic scatterers.



Chapter 4

Space–variant model selection in
model–based information
extraction

Abstract

While the problematic of model selection in the Bayesian framework is well
known, most applications in the image processing literature deal with clean
data that are assumed completely known.

Here instead, an extension of the image denoising and information extraction
method of Walessa and Datcu (2000) is introduced that incorporates a further
estimation level to allow the space–variant selection of the model order by means
of the maximization of the Bayesian model evidence.

This allows the system to properly model and reconstruct images that are com-
posed of instances of different stochastic image models with varying degrees of
complexity.

The extended algorithm is demonstrated on simulated data generated with well–
known model orders as well as on Brodatz textures corrupted by multiplicative
speckle noise. Classification maps based on model order are generated that for
airborne X band SAR data at metric resolution demonstrate the discrimination
potential of the Bayesian evidence maximization with respect to model choice.

The first approach to data analysis we consider fills the gap from data to application
generic signal features. In particular, we consider the problem of image denoising and in-
formation extraction. A model–based approach (Walessa, 2000) can be applied that models
the image data as a sample of a Markov random field whose parameters express the local
texture (Cross and Jain, 1983).
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Figure 4.1: Clique structures for different Gauss–Markov random field model orders (respec-
tively one, two, three and four): the number of model parameters in the vector θ increases
with model order, allowing the expression of more complex structures.

4.1 Model based image denoising and information extraction

Bayesian model based image denoising makes use of the Bayes’ equation

p(X = x|Y = y) = p(Y = y|X = x) p(X = x) / p(Y = y)

applying it to the case where X is a stochastic process generating images x, Y describes
“dirty” images y and the likelihood p(Y = y|X = x) describes the noise in the image. If
a further modeling level Θ generating X is included in the analysis and its most probable
parameter θ̂MAP is estimated, the denoising system is able to perform an information extrac-
tion task: the clean image is not only extracted from the noisy one, but it is also explained
in terms of a lower–level model. In this chapter, we will introduce a further extension
to the speckle filtering and image information extraction approach described by Walessa
and Datcu (2000), introducing a third modeling level that, in addition to the denoising and
model parameter estimation, allows the local space–variant estimation of the most probable
model to have generated the data.
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4.2 Image models

The probabilistic models used play a central role in Bayesian analysis. We introduce here
the image models and the noise models used in the denoising and information extraction
system of Walessa and Datcu (2000) and Datcu et al. (1998) that is object of the extension
to space–variant model order selection in the following section of this chapter.

Since the system is developed in a Bayesian framework, the choice of appropriate prior
models for the clean data plays an important role, and affects in a direct way the obtained
results.

A prior scene model used for scene reconstruction should ideally be completely inde-
pendent of the data available and its characteristics. On the other hand, the development
of tractable scale-independent probabilistic scene models is a complicated task, both for
the practical need of constraining the model complexity and because the properties of the
sensor (and in particular its incidence angle and spatial resolution)we influence in a very
direct way the classes of objects that are actually observable and their perceived level of
detail.

4.2.1 Gauss–Markov random fields

The prior model considered for image data is the Gauss-Markov random field
(GMRF) (Datcu et al., 1998; Schröder et al., 1998a)

p(Xs = xs|Xr = xr, r ∈ GMs , σs, θs,Ms) =
1

√

2πσ2
s

exp

[

−( xs −
∑

r∈G θs,rr xs+r )2

2σ2
s

]

.

(4.1)
It expresses the generic pixel value xs as normally distributed with width σs around the
mean of its neighboring pixels xs+r symmetrically weighted by the texture parameter vector
θ = (θ0, ...θm) defined on a neighborhood of cliques G centered on the pixel xs, and such that
the scalar parameters are symmetric around the central element (see figure 4.1) according
to Chellappa (1985); Chellappa et al. (1985).

The main strength of the Gauss-Markov model lies in its ability to model local de-
pendencies between pixels in a wide set of textured images, while still allowing analytical
tractability.

While the prior model employed in both information extraction modules is the GMRF,
the likelihoods considered have to be adapted to the characteristics of the data under anal-
ysis.

4.2.2 Gaussian likelihoods for additive Gaussian noise

If an additive Gaussian noise model is assumed for the data (as is the case, for example,
for SAR interferometry–derived Digital Elevation models), a Gaussian likelihood can be used



4.3. LOCALLY–ADAPTIVE PARAMETER ESTIMATION BY EVIDENCE

MAXIMIZATION 61

M

x_i

theta_iMAP Evidence
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theta_i −> theta_i’

M_theta step

y_i x_i_MAP

E step

p(theta_i|y_i)

...

Figure 4.2: Flowchart of the evidence maximization algorithm used for texture parameter
estimation in the model based denoising and information extraction system seen as an
Expectation–Maximization algorithm.

to describe the relation between noise–less pixel values and their noise corrupted instances:

pĥ(Yi = yi|Xi = xi) =
1

√

2πσ2
n

exp

[

−(yi − xi)
2

2σ2
n

]

where σn is the width of the distribution.

4.2.3 Gamma likelihoods for multiplicative fully developed speckle noise

The data model can be also adapted to model uncorrelated multiplicative noise, as for
the (fully developed) speckle corrupting coherent SAR backscatter intensity data.

The likelihood therefore employed in the Bayes equation is a space-variant square root
Gamma distribution

p(Yi = yi|Xi = xi) = 2
( yi

xi

)2L−1 LL

xiΓ(L)
exp

[

−L
( yi

xi

)2
]

(4.2)

where yi and xi are the corrupted and the original backscatter square-root intensity values,
L is the number of looks of the data, and Γ(·) is the Gamma function.

4.3 Locally–adaptive parameter estimation by evidence max-
imization

The denoising system of Walessa and Datcu (2000) uses the GMRF and the square–root
Gamma models to describe and filter out additive Gaussian and speckle noise from images
while preserving basic textures performing an inversion of the hierarchical model

Θ → X → Y
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Figure 4.3: Flowchart of the evidence maximization algorithm used for contextual texture
parameter and model order estimation in the extended model based denoising and infor-
mation extraction system seen as an Expectation–Maximization algorithm.

being Θ, X and Y stochastic processes describing respectively clean image parameters,
clean images and noise–degraded images.

Analytically computed MAP estimates of the noise-less data are generated from the
filter. These estimates are then employed (as in figure 4.2) to produce parameters for
the Gauss–Markov texture random field by maximization of the analytical evidence term
p(Yi = yi|Θi = θi, M = m) ∝ p(Θi = θi|Yi = yi, M = m). The model order M = m is
considered fixed. The estimated model parameters express the characteristics of the texture
and the strength of geometrical structures in the data and can therefore be used as an input
to further image interpretation methods.

Non–linear features such as sharp edges and targets are also extracted from the data and
separately handled in order to restore them in the filtered images.

4.3.1 Fixed model order computational overview

Usually, stochastic relaxation methods are required for MAP optimization tasks. In
the system, however, a deterministic Iterated Conditional Modes algorithm (Besag, 1986;
Winkler, 1995) is employed, since convergence to the final solution is much faster. The
algorithm is applied to the estimation by

• computing the MAP estimate of the despeckled backscatter using the available obser-
vations and the current estimates of the model parameters;

• keeping the MAP estimate fixed and determining the model parameters that maximize
the expression for the evidence.

To be able to perform the integration over the posterior product p(Y = y|X = x)p(X =
x|Θ = θ) and to keep the problem tractable several approximations must be made (Walessa
and Datcu, 2000):
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(a) (b) (c)

(d) (e)

Figure 4.4: Synthetic and natural realizations of random fields. Figures (a) and (b) are in-
stances of Gauss–Markov random fields obtained by Fourier techniques (Fenton, 1990) with
model orders respectively 2 and 5. Figure (c) is an instance of a synthesized autobinomial
model. Figures (d) and (e) are examples of natural textures from the Brodatz (1966) album
respectively with low and high textural complexity, and therefore presumably descriptible
respectively through low and high model order fields.

• the multi-dimensional posterior product is approximated by a multivariate Gaussian
distribution, which is centered around the MAP estimate x̂MAP, i.e. around the max-
imum of the posterior (MacKay, 1992)

• the integrand of equation 3.2 is considered to consist of mutually independent random
variables, allowing us to break the conditional probability density functions into the
products of their components. Of course, this statistical independence is not given
but has been shown to be a good approximation for large numbers of pixels, being
equivalent to the maximum pseudo-likelihood approach (Besag, 1986).

By approximating the square–root Gamma likelihood with a Gaussian around its maximum,
an analytic expression for the Occam factor can be computed.
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4.3.2 Fixed model order processing examples and global model evidence
computation

A set of test images is reported in figure 4.4. It contains synthetic and natural realiza-
tions of random fields. In particular, figures 4.4a and 4.4b are instances of Gauss–Markov
random fields obtained by Fourier techniques (Fenton, 1990) with model orders respectively
2 and 5. Figure 4.4c is an instance of a synthesized autobinomial model (Cross and Jain,
1983). Figures 4.4d and 4.4e are examples of natural textures from the Brodatz album (Bro-
datz, 1966) respectively with low and high textural complexity, and therefore presumably
descriptible respectively through low and high model order fields.

All the images are corrupted with a three–looks speckle noise generated according
to Rainey and Wessels (1988): if L denotes the number of looks of the output image, L in-
dependent instances of Rayleigh distributed noise are generated, band–passed and averaged
before being multiplied with the original noise–less image.

The generated images are fed to the filtering system imposing both low and high model
orders: the results show too that low model orders generate an over-smoothing of the results,
while too high model orders might generate spurious results by letting noise leak into the
texture parameters of highest order.

Examples of denoising and information extraction with fixed model order are given in
figure 4.6: results are shown on the model order 2 synthetic noisy texture in 4.5a: for
each model M = m used for processing, the model order, the obtained local backscatter
σ0 and texture ||θ|| intensities are reported together with the local evidence of the model
p(M = m) and its histogram with “+” marking model order 2 and “×” marking model
order 5. The simpler model order 2 is most evident in the data, consistently with the
considered simulation parameters. Similar results, reported in figures 4.7, hold for natural
Brodatz textures.

4.4 Model order selection

It is clear that the order influences the degree of structural complexity that a model is
able to express: lower order models properly describe simple, uniform scenes, but might
result in an over-smoothing of very structured data; on the other hand, higher order models
are able to describe more complicated dependencies at the cost of growing complexity and
at the risk of introducing noise–induced artifacts when dealing with simple, unstructured
data.

Since both natural and remote sensing images are in general only approximated by
instances of Gauss–Markov random fields, imposing a uniform model order to a whole
image can severely limit the quality of the obtained results. Conversely, a system for
the automatic analysis of local image model order can be used to discriminate between
phenomena of different complexity in the data.

To be able to distinguish between different model orders in the data, a new modeling
level needs to be added to the hierarchy leading from the GMRF parameter Θ = θ to the



4.4. MODEL ORDER SELECTION 65

(a) (b) (c)

(d) (e)

Figure 4.5: Speckled versions of the images in figure 4.4. The speckle noise has been
generated with number of looks L = 3 according to (Rainey and Wessels, 1988): if L
denotes the number of looks of the output image, L independent instances of Rayleigh
distributed noise are generated, band–passed and averaged before being multiplied with the
original noise–less image.
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Figure 4.6: Denoising and information extraction with fixed model order — results on the
synthetic, model order 2 noisy texture in 4.5a: for each model M = m used for processing,
the model order, the obtained local backscatter σ0 and texture ||θ|| intensities are reported
together with the local evidence of the model p(M = m) and its histogram with “+” mark-
ing model order 2 and “×” marking model order 5. Although the two models considered
are very similar to each other, model order 2 is most evident in the data, consistently with
the simulation parameters.
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Figure 4.7: Denoising and information extraction with fixed model order — results on the
natural Brodatz “cloud” image, with low geometrical complexity speckled texture in 4.5a:
for each model m used for processing, the model order, the obtained local backscatter σ0 and
texture ||θ|| intensities are reported together with the local evidence of the model p(M = m)
and its histogram with “+” marking model order 2 and “×” marking model order 7. Again,
model order 2 is most evident in the data, consistently with the simplicity of the data.
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noisy backscatter image Y = y
Θ → X → Y

making explicit the model order m.

M → Θ → X → Y.

The new hierarchical model is able to generate more diverse classes of realizations than the
previous one: realizations with locally variable model complexity are now included in the
model. This comes at the cost of a growing estimation complexity: the new causal relation
must be inverted in addition to the ones related to the fixed order hierarchical model.

4.4.1 Variable order Gauss–Markov random field hierarchical modeling

As noted in section 3.2.6, Bayesian methods automatically and quantitatively include
model order selection (Gull, 1988; Jeffreys, 1939). Complex models are automatically self-
penalizing under Bayes’ rule.

The joint probability of a given model M = m and a given parameter Θ = θ at a given
location i in the image lattice with data pixel value Yi = yi can be written explicitly as

p(Θi = θi,Mi = mi|Yi = yi) =
p(Yi = yi|Θi = θi,Mi = mi)p(Θi = θi,Mi = mi)

p(Yi = yi)

∝ p(Yi = yi|Θi = θi,Mi = mi)

by using the Bayes’ equation: the probability of the model is proportional to the evidence
if a uniform non–informative prior for the location parameters M = m and Θ = θ is
assumed and if the data Y = y is fixed. The evidence then naturally embodies Occam’s
razor: in order to assign a preference to alternative models Mi, the first–level evidence
p(D = d|M = m, Θ = θ) has to be evaluated.

If the despeckled backscattered pixel value Xi = xi is introduced as a nuisance parameter,
the expression for the evidence of the model (Θi = θi,Mi = mi) in the data pixel becomes

p(Θi = θi,Mi = mi|Yi = yi) ∝
∫

Xi

p(Yi = yi|Xi = xi) p(Xi = xi|Θi = θi,Mi = mi) dxi

where Xi = [0, +∞[ is the space of the allowed values for the despeckled pixel values xi.

If the integrand posterior distribution can be approximated by a Gaussian around its
MAP maximum value — or, equivalently, if the monotonous logarithm of the posterior
can be approximated by its second order Taylor expansion around the MAP (as shown for
instance by Stan et al. (2001)), then

p(Θi = θi,Mi = mi|Yi = yi) '
∫

X
p(Yi = yi|Xi = x̂iMAP) p(Xi = x̂iMAP|Θi = θi,Mi = mi)

· exp
(

−1

2
∆xT

i Hi∆xi

)

dxi

' 2π p(Yi = yi|Xi = x̂iMAP) p(Xi = x̂iMAP|Θi = θi,Mi = mi) h
−1/2
ii
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with

hii ≡ − d2

dx2
i

[

p(Yi = yi|Xi = xi) p(Xi = xi|Θi = θi,Mi = mi)

]

|xi=x̂iMAP

.

The log probability of the model given the data therefore becomes

log p(Θi = θi,Mi = mi|Yi = yi) ' log p(Yi = yi|Xi = x̂iMAP)

+ log p(Xi = x̂iMAP|Θi = θi,Mi = mi)

− 1

2
log

(

− d2

dx2
i

p(Yi = yi|Xi = xi) p(Xi = xi|Θi = θi,Mi = mi)
)

and by substituting Gauss–Markov prior (equation 4.1) and square–root Gamma likelihood
(equation 4.2) in the expression:

'
[

(2L − 1)(log yi − log x̂iMAP) − log x̂iMAP − L

(

yi

x̂iMAP

)2
]

+
1

2

[

log σ2 − (x̂iMAP − µi)
2

2σ2

]

− 1

2

[

− 2L

x̂i
2
MAP

+
6Ly2

i

x̂i
4
MAP

+
1

σ2
+

1

σ2

Nmi
∑

k,l

θ2
k,l

]

where according to Walessa and Datcu (2000):

x̂i
3
MAP

− µix̂i
2
MAP

+ Lσ2x̂iMAP = Lσ2yi

µi ≡
Nmi
∑

k,l

θk,lxk .

A contextual local model parameter and local model order estimation can be carried out
by maximizing this obtained approximated expression for the probability p(Θ = θ,M =
m|Y = y).

4.4.2 Local evidence maximization in Gauss–Markov random field image
models

The selection of the most probable model order is performed by extending the Iterative
Evidence Maximization loop to consider a spatially variant model order. The probability
p(Y = y|Θ = θ,M = m) is maximized as a function of Θ and of M.

The computational complexity grows with respect to the fixed model order case, since a
new parameter has to be inverted by probability maximization.
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Figure 4.8: Clean and speckled multiple model (autobinomial and GMRF with order 2)
test image, evidence of GMRF model with order 2 and histogram of this evidence. The
multi-modality of the histogram – in abscissa, binned values of the model M = m2 evidence
p(M = m2) – is an indication that the models can be clearly separated by the evidence.

4.4.3 Model order selection examples and comments

Further “mixed” test images are produced by combining different samples of the consid-
ered models and processed, as in figures 4.8, 4.9 and 4.10, the multi-modality of the evidence
histogram is an indication of the contextual presence of different models in the data. This
indication is of course more pronounced in the cases in which the difference between models
is more significant, but it is observable even in the case of GMRF models with different
model orders.

The results in the estimated evidence and model order maps (in figure 4.11) tend to
discriminate the different phenomena.
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Figure 4.9: Clean and speckled multiple model (GMRF with orders 2 and 5) test image,
evidence of GMRF model with order 2 and histogram of this evidence. In abscissa, again
binned values for the model M = m2 evidence p(M = m2). Two curves are clearly vis-
ible, but the discrimination between the two models in the evidence histogram is more
problematic than in the case with different models.
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Figure 4.10: Clean and speckled multiple model (Brodatz “cloud” and “straw”) test image,
evidence of GMRF model with order 2 and histogram of this evidence. In abscissa, binned
values for the model M = m2 evidence p(M = m2). Again, the clear bimodality suggests
the contextual presence of multiple models in the data.
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σ0 p(M = m̂MAP) m̂MAP

Figure 4.11: By using the second level of Bayesian inference based on the maximization
of the local evidence across models, a local MAP estimate of the local model order can be
performed from noisy data. The noisy intensity data, the evidence of the MAP model and
the order of the MAP model itself are reported. In the right hand column, the discrimination
of the order of the model from noisy data is performed even though the estimate itself is
very noisy.
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Figure 4.12: E-SAR X band SAR backscatter amplitude image over Oberpfaffenhofen,
Germany.

4.4.4 Spatially–variant model order selection for SAR data analysis

We apply the extended image denoising and information extraction system to the analysis
of an E-SAR X band SAR backscatter intensity image (in figure 4.12) acquired over the
Oberpfaffenhofen site in Germany. The image contains elements of varying degrees of
complexity including car parkings on the upper left, a forest on the lower right and a
railway line cutting the scene vertically.

The processed data (in figure 4.13) show the quality of the despeckled dataset together
with the locally estimated model order: a number of different structures in the data are
recognized as being generated from processes of different complexity. The discrimination is
able to distinguish between areas characterized by different geometrical complexity without
taking into account the parameters of the local texture: smooth grassy areas are recognized
as similar to shadow ones with respect to model complexity, just as forests and car parkings
both share higher complexity.

4.5 Summary

In this chapter, an extension of the image denoising and information extraction method
of Walessa and Datcu (2000) was introduced. The following points have been discussed:

• while the problematic of model selection in the Bayesian framework is well known,
most applications in the image processing literature deal with clean data that are
assumed completely known. Here instead the estimation is carried out locally starting
from noisy data: the extended system incorporates a further estimation level that
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(a) (b)

Figure 4.13: Despeckled image (a) and estimated model order (b) for the SAR intensity
image in 4.12

allows the space–variant selection of the model–order by means of the maximization
of the Bayesian model evidence;

• this extension allows the system to properly model and reconstruct images that are
composed of instances of different stochastic image models with varying degrees of
complexity;

• the extended algorithm was demonstrated on simulated data generated with well–
known model orders as well as on Brodatz textures corrupted by multiplicative speckle
noise;

• we gave examples of classification by model order in the context of Gauss–Markov
random field model based image denoising and information extraction starting from
speckled Synthetic Aperture Radar data. Model complexity maps were generated that
demonstrate the discrimination potential of the Bayesian evidence maximization with
respect to model choice.

The extended system is able to extract descriptors from the data in terms of a model–based
vocabulary, to choose models for the data in a space–variant way in a given reference class
and to discriminate different image elements by their complexity, again in terms of the
model.

An application of the derived algorithm to the analysis of SAR data is presented in
chapter III.



Chapter 5

Information Fusion for scene
reconstruction
from Interferometric SAR Data
in Urban Environments

Abstract

A novel framework for scene understanding from InSAR data is presented that
is based on Bayesian machine learning and information extraction and fusion.

The system is based on a hierarchical model of the acquisition process that leads
from the scene to the data: this model is introduced and its different levels and
components are detailed.

A generic description of the data in terms of multiple models is automatically
generated from the original signals based on the denoising and information ex-
traction algorithms presented in chapter 4.

The obtained feature space is then mapped by the application of simple Bayesian
networks to user semantics representing urban scene elements in a supervised
step.

The developed system is demonstrated by generating high–resolution land-use
maps on urban environments from real InSAR data acquired from spaceborne
sensors.

Interferometric SAR systems are able to contextually acquire multidimensional datasets
whose channels, in particular the SAR backscatter intensity, the interferometric coherence
and the interferometric phase, carry different kinds of information about the acquired scene:

• the phase is a very direct descriptor of the geometry of the scene in terms of the
distances between the sensor and the scene elements (Massonnet, 1993);
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• the interferometric coherence contains a description of the geometric and radiometric
stability of the scene elements, and therefore allows a discrimination between different
kinds of scene features;

• in the backscatter intensity, radiometric and geometric factors are again intermixed:
many classes of scene elements are directly recognizable from their backscatter signa-
ture as well as from their spatial aspect.

To exploit the complementarity of the features derived from the different data sources, a
Bayesian classification and information fusion framework can be employed that composes
the different semantic–less descriptions of the data originated by the denoising and infor-
mation extraction systems described in chapter 4 to associate them with user semantics
mapping the acquisition into a well defined set of scene elements and features.

5.1 The need for probabilistic modeling in scene reconstruc-
tion

Scene reconstruction can be thought of as the procedure of finding the scene that best
explains a given dataset:

SCENE → DATA direct model of acquisition

SCENE ← DATA scene reconstruction .

Examples of scene reconstruction include building recognition and the generation of land
use maps from remote sensing data.

When the reconstruction is carried out from measurements derived from multiple sensors
of dissimilar nature, or from sources that are fundamentally different — such as radar images
and records of knowledge gathered from humans —, the techniques of information fusion
are used to derive conclusions and decisions based on a synergy of all the data available.

A limitation of deterministic scene reconstruction algorithms is that the presence of
incertitudes and noise in the available measurements — as well as the imperfect knowledge
of the parameters of the acquisition — generates an inherent incompleteness of the data.

We therefore approach the problem of scene understanding and information fusion in a
probabilistic framework.

In particular, we consider the nature of the scene reconstruction problem by adopting
regularization strategies that incorporate external sources of information into the available
data set.

Posterior probability as a measure of reconstruction quality In this context, the
data d and the scene s are considered to be samples drawn from the multidimensional
random processes D and S (Geman and Geman, 1984; Cressie, 1991).
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A treatment of the scene reconstruction inversion problem that incorporates and com-
poses models for these processes is obtained by rewriting the Bayes’ equation as

p(S = s|D = d) p(D = d) = p(D = d|S = s) p(S = s) . (5.1)

The main characteristic of the Bayesian approach is the explicitation of the modeling
assumptions made for both the data formation mechanism S → D in the likelihood term
p(D = d|S = s) and for the phenomenon under analysis S in the prior p(S = s). Further
important features in this context include the capacity to deal with incomplete data, to
learn causal relationships — thus learning the problem domain, and the power to combine
knowledge and signal information.

The inversion can again be carried out by maximization of the posterior probability,
resulting in the so called Maximum A Posteriori (MAP) estimate of the phenomenon S

ŝMAP = arg max
s

{p(D = d|S = s) p(S = s)} . (5.2)

Bayesian modeling and inversion as machine learning The MAP equation in (5.2)
can be considered as a model for a learning device (Hackerman et al., 1995): a description
for s is obtained from D by learning about their relation with the model S. Probability is
used as a measure for the uncertainty in the knowledge of this relation.

5.2 Scene–to–data hierarchical models

When models for the scene S and the data D become so complicated that the inversion
in terms of (5.2) becomes intractable, a common solution is a divide-and-conquer approach
in which simpler intermediate description levels are introduced in the modeling.

Curse of dimensionality in stochastic data inversion The large amount of data
required to perform a full inference while keeping high resolution detail observable would
prohibit the treatment of high-order probability distribution functions. This explosion of
computational complexity, known as the“curse of dimensionality”, has to be treated by
recurring to models described by only local statistics, as is the case in Markov models and
of hierarchical Bayesian networks.

5.2.1 Scene reconstruction Bayesian belief networks

A Bayesian network is set up for the task of scene reconstruction as in figure 5.1a. A
tree edge structure encodes statistical independence between the random variables in the
nodes. The last level of inference is performed by learning the problem semantics through
user interaction.

Since the problem of inferring a general network structure from the data is in prov-
ably NP-hard, simplifying assumptions are often made about the nature of the existing
dependencies between the variables.
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Figure 5.1: Learning scene semantics through hierarchical Bayesian Networks: (a) the tree
edge structure encodes statistical independence between the random variables in the nodes.
The last level of inference is performed by learning the problem semantics through user
interaction. As in naive Bayesian classification variables on the same level of the tree
structure are assumed mutually independent. This might not be strictly the case, as in the
example in (b): the label WATER might be characterized by very low backscatter intensity
and interferometric coherence. Although in general very low backscatter areas also show
low coherence values, the relation between the two variables is not taken into account by
the classifier.
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As in naive Bayesian classifiers, the considered simplified network consist only of a series
of levels of parents and of several mutually independent children nodes. Classification is
obtained by considering the parent node to be a hidden variable stating which class each
data element should belong to. The classification is termed “naive” since the hypothesis
of statistical independence between variables belonging to the same level is not necessarily
justified (see for instance figure 5.1b).

5.2.2 User feedback and machine learning

When the naive Bayesian approximation is considered valid, the scene S can be related
to the data D through more levels of intermediate simpler models Fi which are causally
linked

S → F1 → ... → Fn → D direct modeling

S ← F1 ← ... ← Fn ← D scene reconstruction .

The learning is in this case performed across levels, again by making use of the Bayes’
equation in a version that considers the various levels of inference involved

p(S = s|F1 = f1) ... p(Fn = fn|D = d) p(D = d) = p(D = d|Fn = fn) ... p(F1 = f1|S = s) p(S = s)
(5.3)

to derive a conclusion about the underlying scene S.

In this framework, a model for the image formation mechanism can be described in this
way:

S → Ω → R → D direct model

S ← Ω ← R ← D scene reconstruction (5.4)

a scene S is illuminated and generates a reflected field carrying information in the parameter
ω, a realization of the scene feature process Ω. The scene features are translated to signal
features R by the instrument and finally to data D by the image formation systems.

The scene reconstruction procedure must invert this causal chain, recovering the original
scene features from the data. The layers of inference needed are implemented in the stages
of a processing chain that is described in figure 5.2: the original signals acquired are used to
generate image data products (backscatter intensity, coherence and height map) by using
standard operational processors. These products are analyzed by a feature extraction sys-
tem (described in chapter 4 and section 5.2.3) and translated into a set of image features.
The features are grouped by similarity using a simple unsupervised classification system, and
the generic multidimensional description obtained is fed into a Bayesian classification and
information fusion system (section 5.3). This new level of description in the data-to-scene
chain can incorporate user-provided semantic information into the available representation,
finally connecting the generic, multiple–model based obtained description to the domain of
the unknowns in the particular scene reconstruction problem under investigation.
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Figure 5.2: The scene reconstruction processing chain: data preparation is followed by
information extraction. An unsupervised clustering module performs a grouping of the
image features by similarity. Its output is subject to information fusion incorporating
semantics by user feedback, thereby producing the final scene description.

5.2.3 Information extraction from backscatter and height image data

Since the height noise in interferometric SAR DEMs is additive Gaussian while the
noise affecting SAR backscatter intensity is a form of strong multiplicative speckle noise,
the feature extraction from SAR intensity and topographic height data can be performed
respectively by the backscatter despeckling/Gaussian noise filtering and feature extraction
systems introduced in chapter 4.

We postulate in this context that a quasi–complete description of a typical remote sensing
image requires a separation of the sources of interesting information and of hindrances in
the data — SAR backscatter despeckling, DEM noise filtering — and the estimation of the
structural texture properties of the images thereby obtained.

The combined feature extraction system models and reconstructs a dataset that is free
of noise, while still preserving its most important attributes: it estimates the parameters
that describe the data in terms of the employed models. In this sense, it is not only a set
of filters, but also a model–based feature extraction system that generates a representation
of its input. The model fitting is performed in a space-variant manner that accommodates
for local nonstationarities in the data.

5.3 Learning procedure

After the basic features have been extracted by the combined image information ex-
traction system, they are grouped by similarity, by using a simple unsupervised K-Means
classification system (appendix A). The multiple layers of information thereby obtained
have then to be fused with each other: the clusters —here indicated as ωi — play the
role of an abstract image vocabulary that is able to explain, by different combinations, the
image semantics S.

Instead of imposing an explicit definition of the phenomenon under study as in a rule-
based expert system, descriptions are learnt from the human user by example. This implies
a much more direct and powerful way of providing information to the system and enabling
it to consider the interpreter conjectures.
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Figure 5.3: The model based SAR backscatter–InSAR derived height information extraction
system: input square root intensity and interferometric height data are used to generate
noise-clean estimates for the backscatter and for the height as well as local texture estimates.

Again, to be able to capture the subjective, interpreter-dependent aspects of information,
a Bayesian formalization is needed: probability is interpreted as a degree of belief rather
than as a frequency of realization. This contextual fusion and interactive classification is
performed via a Bayesian classification and fusion system.

The process of interactive learning consists in progressively computing the probability of
a specific cover-type in the image, on the basis of positive and negative pixel–level examples
provided by the user. The inference process for the label S = sν given the image data d
and the features in the clusters ωi is realized through the probability

p(Sν = sν |D = d) = p(Sν = sν)
∑

i

p(Ωi = ωi|Sν = sν) p(Ωi = ωi|D = d)

p(Ωi = ωi)

where p(Sν = sν) and p(Ωi = ωi) are (usually non-informative) prior probabilities, while
p(Ωi = ωi|Sν = sν) has to be learnt from user examples. An independence condition is
assumed, i.e., the probability is assumed equal to the product of the separate likelihoods
for the cover type dν given each single model

p(Ωi = ωi|Sν = sν) = p(Ωi,M1
= ωi,M1

, Ωi,M2
= ωi,M2

, ...,Ωi,Mm = ωi,Mm |sν)

= p(Ωi,M1
= ωi,M1

|Sν = sν) p(Ωi,M2
= ωi,M2

|Sν = sν)...

p(Ωi,Mm = ωi,Mm |Sν = sν)

since each cover type is considered a combination of different models

ωi = ωM1
⊗ ωM2

⊗ ... ⊗ ωMm

where ⊗ denotes scalar product between sets.

If we denote with φ the vector parameter which satisfies the identities

p(Ωi = ωi|Sν = sν , Φ = φ) = φi, p(Φ = φ) = Γ(r)
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where Γ(·) is the Gamma distribution, then the probability of the training set is

p(Φ = φ|T ) = Dir(φ|1 + N1, ..., 1 + Nr)

where Dir(·) is the Dirichlet distribution and Ni is the number of occurrences of the signal
type ωi in T . If a new training set T ′ is provided, the probability is updated according to

p(Φ = φ|T, T ′) = Dir(φ|1 + N1 + N ′
1, ..., 1 + Nr + N ′

r)

Denoting with a the parameter vector which satisfies the identity

ai = 1 + Ni

the learning process is modeled by updating the vector a after observation of each training
set (Schröder et al., 2000a).

5.4 Urban scene reconstruction from InSAR data

We apply the described framework to the analysis of urban scene data acquired by
airborne SAR sensors with metric resolution.

5.4.1 E-SAR Dresden data analysis for settlement understanding

A single polarization high resolution interferometric E-SAR dataset on the German city
of Dresden is analyzed. The city center lies in the area on the lower left of the image. The
Semper-Oper building belongs to the area.

False color interferometric land use color composites Laur et al. (1998) as the ones in
figures 5.4b and 5.6b are useful to allow an easier discrimination between different land use
types: mostly green areas correspond to heavily vegetated (forests) or layover areas, blue
areas to water surfaces (sea and inland water), red areas mostly to bare rock and stable
agricultural fields and mostly yellow ones to urban centers.

Starting from the interferometric dataset, the SAR backscatter denoising and information
extraction system extracts despeckled backscatter and full texture vector from the |I1|
master amplitude. We also extract the interferometric phase. After K-means unsupervised
classification, we obtain vectorized data for these three quantities.

The intensity clustering produces quite clear results, while the phase information might
be complicated by unwrapping errors.

Texture strength and variance are extracted from the texture vector. The obtained
channels are then separately subject to K–means clustering to produce a classified feature
space representation.

A supervised classification and fusion is carried out starting from these preclassified
datasets. The supervised MAP classification/fusion obtained tends to discriminate between
the different kinds of ground cover and land use present in the imaged scene: natural
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(a) (b)

(c) (d)

Figure 5.4: E-SAR Dresden - Ground truth optical image (a), interferometric land use (Laur
et al., 1998) false color image (R=coherence, G=average intensity, B=intensity difference)
(b), SAR backscatter intensity (c), SAR texture norm (d).
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(a) (b)

Figure 5.5: E-SAR Dresden - Ground truth optical image (a) and generated land use map (b)
with classes vegetation (GREEN), vertical flat surface (WHITE), strong scatterer (RED),
water/shadow (BLACK).

(a) (b)

Figure 5.6: E-SAR Dresden Semper Oper- Ground truth optical image (a), interfero-
metric land use (Laur et al., 1998) false color image (R=coherence, G=average intensity,
B=intensity difference) (b).
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(a) (b)

Figure 5.7: E-SAR Dresden Semper Oper- interferometric SAR backscatter coherence (a),
interferometric SAR phase (b).

(a) (b)

Figure 5.8: E-SAR Dresden Semper Oper- land use map obtained by unsupervised classifica-
tion (a) and Bayesian classification/fusion (b) by considering intensity, coherence, absolute
phase: vertical surfaces in layover (YELLOW), strong scattering areas (RED), flat terrain
(LIGHT GRAY), layover areas (ORANGE), water/shadow (BLACK).
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(grass, water, trees) as well as man–made scene elements (walls, roofs) are extracted and
separated from each other yielding results that outperform those obtained by simple K–
means clustering conducted across all available channels.

5.5 Summary

In this chapter, a novel framework for scene understanding from InSAR data was pre-
sented that is based on Bayesian machine learning and information extraction and fusion.
The following points were detailed:

• the system is based on a hierarchical model of the acquisition process that leads from
the scene to the data: a generic description of the data in terms of multiple models
is automatically generated from the original signals, based on modifications of the
denoising and information extraction algorithms presented in chapter 4;

• unsupervised K–means clustering is used to group by similarity the elements popu-
lating the feature space;

• the obtained feature space is then mapped by the application of simple Bayesian
networks to user semantics representing urban scene elements in a supervised step.

The developed system was demonstrated by generating high–resolution land-use maps on
urban environments from real InSAR data acquired from spaceborne sensors. Further ap-
plications of the method to the reconstruction of urban scenes from high–resolution InSAR
data are reported in chapter III.



Chapter 6

Stochastic geometrical modeling
for urban scene understanding
from a single SAR intensity image
with meter resolution

Abstract

To overcome the limitations of pixel–based analysis applied to sub–metric res-
olution data, a novel model based algorithm for the automatic reconstruction
of building areas from single observation meter-resolution Synthetic Aperture
Radar intensity data is introduced.

The reconstruction is based on the Maximum A Posteriori estimation by Monte
Carlo methods of an optimal scene that is modeled as a set of pairwise-
interacting Poisson-distributed marked points describing parametric buildings.

Each of the objects can be hierarchically decomposed into a collection of ra-
diometrically and geometrically specified object facets that in turn get mapped
into data features.

The geometric and radiometric phenomenologies of sub–metric SAR in urban
environments are taken into account in the likelihood term.

The detection of the buildings is based on a decision likelihood ratio.

The optimization of the obtained posterior is based on Gibbs sampling and
Monte Carlo Markov chains.

The developed algorithm is demonstrated on real data acquired by airborne X
band sensors on built–up areas in high complexity settings characterized by tall
vegetation and strong metallic scatterers.

The Bayesian classification and information fusion approach to scene reconstruction pre-
sented in the last chapter is applicable in the range of resolutions from tens of meters down
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to about one meter. At lower scales, two phenomena take place in urban environments:

• information in SAR data becomes inherently sparse, in the sense that the areas of the
image containing some energy (mostly corresponding to cavities and sharp edges) are
intermixed by much larger areas of very low SNR caused by the specular reflection
of the incident signal on smooth surfaces: a traditional lattice–based model should
consider an inordinately large amount of (mostly totally noisy) pixels in order to gain
some discrimination and modeling capability;

• a pixel–based description of the scene would anyway be of limited interest, since at
sub–metric resolutions single objects are recognizable as separate entities associated
with specific semantics and generating peculiar effects in the data.

The usual interferometric approach based on unwrapping tends to be difficult in high res-
olution SAR data, since very steep surfaces and areas of very low coherence are the norm.
Unwrapping needs to be regularized by means of external information. If, for instance, the
tower in Figure 6.1 is considered, it is evident that extreme layover, multiple reflections
and the presence of very strong, high coherence echoes in combination with very low en-
ergy, low coherence returns from non-dihedral scattering will render the usual lattice–based
interferometric reconstruction approach quite limited.

The artifacts complicating the analysis are actually due to the geometry of the scene: this
is why they carry information about it. We therefore concentrate our analysis on the case
of single pass, single model high resolution SAR data on urban environments. Phenomena
usually considered as limitations of the dataset and excluded from further processing are
instead recognized and exploited as information sources to provide added robustness to the
estimation algorithm.

Normal lattice-based image data models and inversion algorithms can then be effectively
complemented by descriptions in terms of scene objects. Evident features in the data have
to be exploited in the scene reconstruction problem. Hindrances (e.g. a dihedral scattering
from a building base partially hidden by the surrounding vegetation) can be overcome by
using a prior description for the scene. A hierarchical modeling of remote sensing data can
be constructed that considers the whole structure from data to reconstructed scene objects.

6.1 Scene understanding from SAR: objects and their rela-
tions

Scene understanding (SU) is in Computer Vision the recognition and reconstruction of
the objects in the scene and of the spatial relations between them (Edelman and Weinshall,
1989). The problem is related to that of understanding visual perception in information
processing terms: assuming that the purpose of vision is to reconstruct the spatial layout
of the outside world, one is confronted with the problem of ambiguity in inferring the third
dimension from retinal projection. This ambiguity is a necessary consequence of the imaging
process, during which the depth information is lost. Marr (1982) proposed to compensate
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Figure 6.1: Meter resolution interferometric SAR phenomenology ground–to–slant mapping:
basic signal features. Two distinct high energy, high interferometric coherence returns from
roof (layovered) and base characterize buildings in meter resolution SAR imagery.
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for this loss by constraining the solution to the reconstruction problem to conform to a
priori assumptions, dictated by our knowledge of the physical world.

As the resolution of SAR systems approaches the level where the scene can be represented
as a set of separated interacting objects, the methods and techniques of computer vision,
traditionally centered on optical data taken on man–made settings, can be can be employed
in radar remote sensing inversion problems, provided proper modeling of the specificities of
the sensor and of the scene is assured.

6.2 Marked spatial point processes as prior scene models

A marked spatial point process (Upton and Fingleton, 1985; Diggle, 1983; Cressie, 1991)
on the space X with marks in F can be represented mathematically as a point process on
the product space X × F . It can be defined in terms of random locations of events in a
set X and corresponding random marks Z(·) in a set F and used to model random events
occurring at sparse, random locations according to its marginal spatial bidimensional point
pattern. For example, events might represent the unknown positions of buildings in a scene
and the corresponding marks may be describing them parametrically.

Gibbs point processes In particular, Gibbs marked point processes of order m are a
class of inhomogeneous point processes for which the intensity function is written in terms of
exponentials of functions of up to m distinct point process events. If m = 2, the probability
distribution can be written as

p(S = (s1, · · · sn), N = n) =
exp(−ν(A))

αn!
exp

[

−
n

∑

i=1

g1(si) −
n

∑

i=1,j=1,j 6=i

g1,2(si, sj)
]

with g1(·) and g1,2(·, ·) two positive first- and second-order potential terms, ν and α two free
parameters. We approach the scene understanding problem by considering a marked point
process to model built-up areas: a random parametric description O(·) of the geometry of
a building object marks a random site Ci representing its geometric position (Ortner et al.,
2002) in a study area D imaged in the data:

S ≡ {(Ci, O(Ci)), Ci ∈ D} .

The expression for the posterior corresponds to that for a generic Markov point process,
in which the joint density function p(S) can be factored uniquely into a series of terms if
only the first two are considered.

p(S, n) =
1

Z(n)
exp{−Un(s1, · · · , sn)}

Un(s1, · · · , sn) =
n

∑

i=1

g1(si) +
∑ ∑

1≤i<j≤n

g1,2(si, sj) + · · ·

with Un the total potential energy of the Markov point process.



6.2. MARKED SPATIAL POINT PROCESSES AS PRIOR SCENE

MODELS 92

A Gibbs marked point process can be demonstrated to be equivalent to a Markov point
process. The spatial point process that we consider is Markov with range ρ,

p(O(C0)|S \ O(C0)) ≡ p(O(C0)|{O(C)}, C ∈ b(C0, ρ) \ {C0}) (6.1)

with \ indicating the set subtraction operation, where b(C0, ρ) is a ball of center C0 and
ray ρ in the domain D: scene objects tend to interact with each other to produce more
plausible ordered configurations. The properties of the marginal spatial point process (and
in particular its density) are conserved in the marked point process, except for a finite
number of sites in some vicinity of each of the given points in which local (repulsive)
interactions are modeled that tend to decrease the density of the original marginal point
process.

6.2.1 Point and mark distributions

The building centers are Poisson–distributed in the domain D. The marks describing
the building geometry are instead defined as in

O(C) ≡ (W, α, Q)

with uniformly distributed random parameters

Q one of











cylinder

block

v–shaped roof

building shape element

W ∈ R
3 width, length, height of building element

α ∈ [−π/2, +π/2] base angle to ref. direction.

6.2.2 Modelling hierarchy

We further assume that each of the separate building objects Oi in which we can de-
compose the scene S in turn can be described as composed by different facets Fij . Each of
those can be mapped to a set of SAR amplitude pixels with values Ak in the SAR amplitude
data image space (Figure 6.2): the parameters of each building define together with the
acquisition geometry its observable facets and the pixels that belong to them

S ≡ {Oi}i ≡ {{Fij}j}i → {Ak}k ≡ D .

The hierarchical structure models a container/contained relation whose top level represents
the full scene while the bottom one is a set of data pixels.
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(a) (b)

(c) (d)

Figure 6.2: Levels in the hierarchical scene model: (a) the scene S is a collection of buildings
Oi that are pairwise interacting within a given range; (b) objects are described parametri-
cally as marked Poisson–distributed points; (c) objects can be decomposed into a collection
of facets Fij that have both a geometric and a radiometric parametric probabilistic descrip-
tion; (d) the facet Fij is probabilistically mapped into a set of pixels {Dk}k in the amplitude
image data space.
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→ range direction

(a) (b) (c)

Figure 6.3: SAR phenomenology considered in the scene understanding process: (a) for
every scene object (in this case a v–shaped roof house) (b) dihedral scattering region and
(c) layovered roof are considered in the computation of the likelihood potential as clues for
the reconstruction.

6.3 Scene posterior structure decomposition
in Gibbs potential terms

Given a single meter resolution SAR intensity image, we want to infer by Maximum A
Posteriori (MAP) estimation a description of the scene that is most likely to have generated
it: if S and D denote respectively the scene and the data stochastic processes, then p(S =
s|D = d), the posterior probability we maximize, can be understood as a measure of quality
for the reconstructed scene given the data.

Scene posterior description in terms of Gibbs formalism The posterior probability
can be written under a Gibbs field formalism (Winkler, 1995) as in

ŝMAP = arg max
S

p(S = s|D = d) = arg max
S

1

Z
· exp

[

−U(s|d)
]

where Z is a normalizing constant (the partition function) and U(s|d) is a local potential
function. U(S = s|D = d) can be decomposed into a regularization prior potential UP (S =
s) while a likelihood potential UL(D = s|S = s) describes a distance between scene and
data that takes into account a model of the acquisition system:

U(S = s|D = d) ∼ UP (S = s) + UL(D = d|S = s) .

Scene posterior decomposition The potential terms can therefore be decomposed as
in

UP (S = s) =
∑

oi,oj∈s,j 6=i

Up(Oi = oi|Oj = oj)

UL(D = d|S = s) =
∑

oi∈s

∑

Fij=fij∈oi

∑

ak∈d

Ul(Ak = ak|Fij = fij)
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where Up(·) and Ul(·) are the object–level prior and the pixel–level likelihood potentials
and where some of the possible dependencies have been neglected to simplify the modeling
in the spirit of naive Bayesian classification: when the descriptions for both the scene
and the data formation mechanism become too complex, both theoretical considerations
connected to the “curse of dimensionality” (Jaynes, 1987) and practical concerns about the
tractability of the model suggest the adoption of a divide-and-conquer approach in which
simpler intermediate representation levels are introduced in the modeling. In our case,
for simplicity, elements at the same level of the description are considered independent of
each other, as in the case of Naive Bayesian Classification. This assumption allows a much
simpler handling of the estimation process.

6.4 The scene prior potential term

To keep the modeling as simple and general as possible, the potential term

UP (S = s) =
∑

i,j

Up(Oi = oi, Oj = oj)

is kept totally independent of the data and the sensor characteristics, and therefore describes
an a priori plausibility of the scene only.

Keeping the prior term as general as possible, and therefore avoiding introducing local
maxima in the posterior distribution through it, is desirable both to keep the reconstruc-
tion algorithm general and to ease the subsequent search for the global MAP. The prior
interaction potential Up(·) is used to avoid overlapping conditions between scene objects
and corresponds to a geometric intersection measure between different scene objects:

Up(Oi = oi|Oj = oj) ∼ area of intersection(oi, oj) .

6.5 The data likelihood potential term

While the prior potential is independent of the data, the likelihood potential must instead
express a definition of the relevant acquisition phenomenology. Both the geometric and
radiometric causal relations that compose the direct model of the acquisition are expressed
through the likelihood.

6.5.1 Extraction of strong targets from clutter in urban environments by
inverse Gaussian statistics, decision theory–based classification

Strong signals generated by dihedral scattering on the building basement and by direct
layovered returns from clean edges on the building roofs need to be modeled and extracted
to be exploited in Ul(·).

Inverse Gaussian distributed backscatter values (Section 2.3.2) are assumed to model the
amplitude return from the slowly varying small number of scatterers that compose these
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elements: they have been shown to approximate well a K–distribution while keeping a better
tractability, and have been used to model backscatter in urban environments (Frery et al.,
1997; Mejail et al., 2001).

An expression for the discriminating likelihood ratio

p(Ak = ak|αs, γs, L)

p(Ak = ak|α0, γ0, L)
(6.2)

with

p(Ak = ak|α, γ, L) = exp

[

− LL Γ(L − α) aL−1
k

γαΓ(−α)(γ + L ak)L−α

]

is obtained with L > 0 the number of looks of the data, ak > 0 the amplitude pixel value, and
−αs, γs > 0 and −α0, γ0 > 0 respectively the parameters for the distribution that models
the amplitude values of the strong scattering facet elements, and those for remaining clutter
obtained by solving the system

γ = L

[

m̂1 Γ(−α)Γ(L)

Γ(−α − 1/2)Γ(L + 1/2)

]2

m̂2
1/2

m̂1
=

Γ2(−α − 1/4)Γ2(L + 1/4)

Γ(−α − 1/2)Γ(L + 1/2)Γ(−α)Γ(L)

where m̂n is the n−th order moment estimated on a training area and Γ(·) is the Gamma
function.

6.5.1.1 Radiometric likelihood potential term

Based on the discriminating likelihood in Equation 6.2, the likelihood potential can be
written as

Ul(Ak = ak|Fij = fij) =

{

p(Ak=ak|αs,γs,L)
p(Ak=ak|α0,γ0,L) if ak taken in fij

0 otherwise

p(Ak = ak|α, γ, L) = exp

[

− LL Γ(L − α) aL−1
k

γαΓ(−α)(γ + L ak)L−α

]

.

Given a hypothesis on the 3D disposition of strong scatterers in the scene, the loci of
the strong scattering phenomena can be defined in deterministic terms, as in Figure 6.1.
Since the likelihood ratio potential Ul(Ak = ak|Fij = fij) is non–zero for the candidate facet
pixel values only, its computation requires the determination of the geometry of the strong
responses from the visible facets in the data: the candidate scene object edges are iterated
upon, they are projected in slant range coordinates and the loci in the image of the relevant
dihedral scattering and roof layover phenomena to be analyzed are therefore determined.

The expression for the decision ratio in the last paragraph provides by itself a discrimi-
nation between strong clutter and backscatter that are typical of very high resolution SAR
data.
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It can therefore be directly used to assess the probability that a candidate strong scat-
tering area in the scene space (linked to some phenomenology in the image space by a
ground–to–slant transformation) appears as such in the data.

6.5.2 Geometric likelihood potential terms

The analysis of the data must take into account the peculiar aspects of the phenomenol-
ogy of high resolution radar. Strong responses often appear translated in range due to
layover (and to multiple signal reflections), but no full geocoding is possible, since local
heights at metric resolutions are unknown.

In particular, if Hs is the altitude of flight of the sensor with respect to the ground,
H = h is the building height and G its position in ground range, then the layovered signal
generated from building roof edges is located at a slant–range distance ∆rg of

∆rg = (H2
s + G2)1/2 + ((Hs − h)2 + G2)1/2

from the first one produced by dihedral scattering at the border between the vertical struc-
ture and the terrain.

The loci of the hypothesized top and bottom of the scene building facets are therefore
used as the loci on which the estimation of the likelihood potential is performed.

6.6 Inference in Bayesian scene understanding with non–
analytic posteriors

MAP inference is performed globally on the whole scene parameter space. The practical
computation of the posterior probability p(S = s|D = d) of a given candidate scene S is
performed by decomposing it in terms of the hierarchically dependent elements Oi and Fij

that constitute it. The α0, γ0 and αs, γs factors are estimated starting from clutter and
strong scattering training areas. A decision likelihood ratio image can then be generated
from the data and used directly in the computation of the Ul likelihood potential.

The obtained posterior expression is not analytic: as a consequence, the MAP estimate
of the optimal scene given the data

ŝMAP = arg max
s

p(S = s|D = d)

cannot be computed directly. The optimization is instead carried out by Monte Carlo
methods.

6.6.1 Monte Carlo Markov Chain Gibbs sampling of the scene posterior

We adopt a simulated annealing procedure (Metropolis et al., 1953) for the estimation
of the MAP (see Appendix B) : the multivariate posterior is maximized by iteratively
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evaluating many possible solutions in a multidimensional parameter space. In stages, the
optimization algorithm restricts the search paths to only the most promising solutions.
While at the beginning of the iterative optimization procedure the sampled posterior func-
tion is essentially flat, at the end of the annealing the algorithm is forced to follow a steepest
ascent trajectory. The net effect is that of maximizing the f(.)1/T for T that slowly changes
from high values to zero to be able to find the maximum of the function.

Scene configuration acceptance ratio and cooling schedule An acceptance ratio
that is dependent on the rate of improvement in the solution is used together with the
decreasing “temperature” T acceptance factor to probabilistically accept or reject new so-
lutions. The Metropolis algorithm can therefore be understood as a relaxation of the
greedy maximal ascent algorithm.

This approach allows the system to explore solutions that a direct maximum-gradient
maximization would not consider, permitting it to identify the global maximum of a mul-
tivariate distribution.

The acceptance ”temperature” factor is decreased from starting temperature T0 with
iteration step iter according to a logarithmic cooling schedule as in Stoica et al. (2000)

τ(i) = T0/ log(1 + 2
√

iter)

in order to allow for a sufficiently slow confinement of the optimization algorithm to steepest
ascent paths.

6.6.2 Scene configuration initialization

For simplicity, the initialization starting solution that is input into the system at temper-
ature T0 consists of a set of identical objects, all located at the same location in the center
of the image and in the minimum allowed number of objects. More sophisticated starting
configuration schemes (such as the initialization of the system by some simpler sub–optimal
scene understanding algorithm) might improve the convergence speed.

6.6.3 Scene configuration sampling and Gibbs dynamics

A Gibbs sampler is set up to sample the posterior distribution keeping all the dimensions
of the scene process fixed but one: this modified distribution can be shown (Winkler, 1995;
Stoica et al., 2000) to converge to the full posterior.

For generating the new candidate solutions to the optimization problem from the previous
ones, update rules are defined as in (Ortner et al., 2002) with the addition of the mutation
of the building type parameter Q.

The scene marked point process with varying number of objects is simulated under the
spatial birth–and–death process framework, as shown by Imberty and Descombes (2002).
Special care must be used in ensuring that the mutation dynamics of the Gibbs sampler
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are completely reversible, to avoid getting stuck on some local maxima or on the borders of
the domain. Each of the defined mutation step must have an equiprobable opposite move.
The moves considered are object creation and destruction, and displacements and mutation
moves for the building parameters.

All the transformations are symmetric: first a building object

U ≡ (Ci, O(Ci)) = u ≡ ((x, y), (α, w, q))

centered at location Ci ≡ (x, y) in a lattice and having parameters α (the orientation angle),
w (a three–terms width, length and height size term) and q (the building element type) is
uniformly chosen in the image spatial domain, and then the mutation is applied to it:

• Translations are generated by

– uniformly sampling δ = (δx, δy) from [−dx, +dx] × [−dy, +dy] and

– setting
u = ((x, y), (α, w, q)) → v = ((x + δx, y + δy), (α, w, q))

considering for this transformation that the image space is a torus, in order to
obtain the symmetry of the transformation.

• Rotations are generated by

– sampling δα uniformly in [−dα, +dα], and

– setting
u = ((x, y), (α, w, q)) → v = ((x, y), (α + δα, w, q)) .

In particular, we consider [−dα, +dα] = [−π/2, +π/2].

• Dilations are generated according to the same principle: the length, width or hight of
the object are modified. This modification is applied contextually to the dimension
of the object and to its center coordinate, in order to let one side of it constant under
the transformation, as shown in Figure 6.4, by

– uniformly sampling (δDX , δDY , δDZ) from [−dDX , +dDX ] × [−dDY , +dDY ] ×
[−dDZ , +dDZ ] and

– setting u = ((x, y), α, w, q) to

∗ v = ((x + δDX/2 · cos α, y + δDY /2 · sinα), (α, w + (δDX/2, δDY /2, δDZ), q))
for rectangle-shaped objects and

∗ v = ((x+δDX/2, y+δDY /2), (α, w+(δDX/2, δDY /2, δDZ), q) for round shaped
ones for which the components of W = w are by definition coincident.

We notice that this kind of dilation transformation is the one that is naturally
applied to height mutations of buildings on a plane: the roof of the building is
moved, while the its base remains fixed.
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Figure 6.4: Gibbs sampler dynamics. Dilation moves are preferred to width and length
modification with fixed center, since they leave one of the borders of the object totally
untouched.

• Mutations are generated by sampling a q′ uniformly in the space
{cylinder, box, v–shaped roof building} \ q (with \ again the set exclusion oper-
ator) and consequently setting

u = ((x, y), (α, w, h, q)) → v = ((x, y), (α, w, h, q′))

with the convention that for transitions to a cylinder from square–based objects only
the first element of w is kept as a radius of the new base, whereas for transitions from
round objects to square ones the new horizontal components of w are again decoupled
but keep at the next step after the mutation their common value equal to the cylinder
radius.

For simplicity, the initialization starting solution that is input into the system at temper-
ature T0 consists of a set of identical objects, all located at the same location in the center
of the image and in the minimum allowed number of objects. More sophisticated starting
configuration schemes (such as the initialization of the system by some simpler sub–optimal
scene understanding algorithm) might improve the convergence speed.

6.7 Overview of estimation method

The full estimation system is described in Figure 6.5.

Simulated annealing is often considered too computationally expensive to be used in
image processing. Since the scene understanding system considers only a limited number of
objects in the scene compared to the huge number of image lattice sites, the dimensionality
of the problem is reduced, speeding up convergence. The only operations performed at
every iteration are the mutation of one of the parameters of the model and then, given the
updated scene model, the recomputation of the mutated potential terms in the posterior.
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Figure 6.5: The complete MAP estimation system: simulated annealing is used for the
maximization of the posterior via Gibbs sampling. The posterior depends on an a priori
defined measure of plausibility of the hypothesis scene and on a likelihood ratio for the
actual building detection.
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In the implementation, all objects provide iterators to their component sub–objects. In
particular, Facet objects provide iterator access to facet edges, corners and, by using a
simple acquisition geometry model, to data pixels.

While the prior is computed at the object level by evaluating a geometrical intersection
measure between different scene objects (O’Rourke, 1998), the computation of the likelihood
potential needs to take into account the data pixel–level description of the buildings in the
candidate scene (Simonetto, 2002; Haines, 1994) and the likelihood Ratio image.

When the MAP optimization is carried out iteratively, only the terms related to mutated
objects need to be recalculated at each iteration.

The quantities related to the non–mutated scene elements (the intersection potential
values and the data related ones that are generated by taking into account pixel–level
descriptions of the buildings that are dynamically generated from the object parameters)
are constant and are therefore not object of re–computation, yielding better performance.

The optimization procedure on images containing about a million of pixels takes about
30 minutes on a common PC workstation.

6.8 Marked Point Process based scene understanding exam-
ple

In Figure 6.6, Intermap AeS-2 data on Trudering test area, east of Munich. Some houses
are visible (a), together with the generated shadows and a part of the road network. In
(b), the main identified buildings are shown with their location, size and orientation. The
limitation of the obtain results is explained by the complexity of the scene: the structures
to be reconstructed are small houses partially hidden at X band by surrounding taller
vegetation Typically for very high–resolution SAR data in built–up environments, multiple
scattering and other disturbing effects tend to dominate the data, saturating the receiver
and propagating to different areas in the image.

6.9 Summary

In this chapter, a novel algorithm based on stochastic geometry, decomposable object
models and Gibbs sampling was introduced. The following points were detailed:

• an algorithm for the reconstruction of building areas from a single high resolution SAR
intensity image was introduced, described and demonstrated on data with resolutions
ranging from 0.5 to 2 meters;

• the algorithm is based on the Maximum A Posteriori estimation via Monte Carlo
methods of an optimal scene described in a hierarchical Bayesian framework as a set of
pairwise interacting Poisson distributed marked points that represent parametrically
described scene buildings;
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(a) (b)

Figure 6.6: Intermap AeS-2 data on Trudering test area, east of Munich. Some houses are
visible (a), together with the generated shadows and a part of the road network. In (b),
the locations of the identified buildings are shown with their location, size and orientation.
Although the phenomenology of the data is very different from the one of industrial buildings
for which the algorithm has been developed, the three most evident targets are identified.

• each of the scene objects can be decomposed into a set of elements that get proba-
bilistically mapped into the image data space via a likelihood term that takes into
account the geometric and radiometric phenomenologies of sub–metric SAR in urban
environments;

• the detection of the buildings is based on a decision likelihood ratio;

• the optimization of the obtained posterior is based on Gibbs sampling and Monte
Carlo Markov chains.

The developed algorithm was demonstrated on real data acquired by airborne X band
sensors on built–up areas in high complexity settings characterized by tall vegetation and
strong metallic scatterers. Further results are presented in chapter III using airborne data
with resolutions in the range of 0.5 to 2 meters on a variety of scenes.



Part III

Evaluation and validation of results
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Abstract

The novel methods and techniques developed are evaluated, validated and ap-
plied to large amounts of data.

The information extraction systems are combined into a complete, automatic
data processing chain that serves a knowledge–based information mining and
content–based image retrieval system used in the analysis of a nation–wide ERS
dataset.

The automatic, space–variant model–order selection capabilities of the extended
denoising and information extraction system are demonstrated by generating a
local model complexity based classification map from fine–mode RADARSAT
data.

The developed system for scene reconstruction based on Bayesian classification
and fusion of the extracted features is applied to the analysis of images ac-
quired by the SRTM mission and by the DLR E-SAR system. The scenes are
reconstructed by combining the obtained classification and land–use maps with
interferometric height data.

Finally, the scene understanding algorithm based on the Gibbs sampling of hi-
erarchical marked point processes is evaluated by applying it to sub–metric
Intermap data acquired on an industrial site as well as on high-complexity com-
posed buildings in urban environments.
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Figure 6.7: The data analysis hierarchy, from content-based query to scene understanding.
Due to the problem complexity, the system scales down the amount of data to be analyzed
such that the detail of extracted information can be increased.

chapterLarge scale evaluation and validation of developed methods and algorithms Ab-

stract

The algorithms and techniques introduced in the last chapter are evaluated
and validated on a variety of data including real meter resolution SAR data
from airborne sensors serving as a testbed for next generation spaceborne radar
systems.

6.10 Content–based retrieval, information mining, scene un-
derstanding

Modern remote sensing systems are capable of acquiring and processing very large
amounts of data: the SRTM mission collected about 11 TBytes of interferometric SAR
data per day. Content–based image retrieval, image information mining and scene under-
standing all relate to the need of analyzing large amounts of data to produce descriptions
of their content in terms of models.

6.10.1 Information extraction for application–independent data charac-
terization

Content based image retrieval, image data mining and scene understanding share com-
mon methods (data analysis and probabilistic modeling techniques) and goals (the extrac-
tion of meaningful information from data affected by incertitude), but they operate at
different scales of data amount. Content based image retrieval focuses on extracting com-
pact representations for the retrieval of interesting elements in very large amounts of data;
image data mining works at an intermediate level, trying to find interesting configurations
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Figure 6.8: Scheme of principle of ingestion chain operations.

in moderately populated feature spaces; scene understanding tries to extract the maxi-
mum possible amount of information from a given dataset applying to it models of high
complexity.

All three approaches to the analysis of the data, although they operate on different
scales of detail and of data amount, share the same need for an application–independent
description of the contents of the data. Such description needs to be generated in an
automatic way, must be application independent and needs to be as general and complete
as possible.

As in the case of the hierarchical model inversion algorithms developed in previous chap-
ters, the analysis is based on a series of description levels linked by conditional probability
links. The image data (level 0) is processed to extract primitive features and meta features
(levels 1 and 2). Information at level 1 is in form of a parameter vector of a signal model.
The specific signal model is the level 2 of information representation. A further description
level, a characteristic vocabulary of signal classes (level 3), is generated by unsupervised
information clustering for each signal model. User specific interests, that is, cover type
labels, are linked to combinations of terms in these vocabularies using simple Bayesian net-
works. Levels 1 to 3 are obtained in a completely unsupervised and application free way
during data ingestion in the system. The information at level 4 can be interactively defined
by users employing a learning paradigm. In an additional step of stochastic modeling, the
stochastic link between signal classes and user (subjective) labels is described using a vector
of hyper-parameters.

6.10.2 The knowledge-based information mining system

The knowledge-based information mining (KIM) system is designed as a system to oper-
ate on large archives of remote sensing data in a way that is free from application specificity.
After extraction of primitive features takes place as described in previous chapters, the fea-
tures are grouped by similarity by using a K-means clustering algorithm. The clusters have
no direct meaning, since they group points in an n-dimensional space of non-commensurable
variables. Still, they represent characteristics of the image seen as a multi-dimensional sig-
nal. It is possible to associate meaning with these clusters through training. A user can
tell the system that a specific, weighted combination of clusters represents a derived feature
of the data. By making this association, it is possible to select all images in the database
that have that specific combination and may therefore contain the feature that the user is
searching for.
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Figure 6.9: Hierarchical modeling of image content and user semantic (Schröder et al.,
2000a): description levels are linked by conditional probability links.
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Figure 6.10: KIM coverage of Mozambique.

Kossovo Mozambique

Sensor E-SAR ERS-1
Scenes 1 30
Archive 800 MB 3.5 GB
Mining 24 MB 800 MB

Compression 33 4
Application scene understanding information mining

Table 6.1: Summary of SAR data ingested in the KIM system and the level of data analysis
considered.

6.10.3 Knowledge-based information mining evaluation results

Table 6.1 presents the summary of all SAR data sets ingested in the KIM system, or-
ganized by site. The table outlines the nature of the function implemented in KIM. In the
Content Based Image Retrieval mode the compression factor is very high (∼ 100), thus
enabling the search of very large volumes of data: the accuracy of the search is limited,
proportional to the available information for on–line search. The information mining mode
is using a moderate compression factor, thus enabling the access to more detailed informa-
tion for on–line mining. In the scene understanding mode, all image content information
is used, thus enabling accurate exploration and interpretation of the images and observed
scenes.

The described image information mining based approach to SAR model based despeck-
ling and information extraction evaluation has been applied to large ERS and SIRC/X-SAR
coverages of Mozambique and Switzerland. The results obtained allow the navigation of im-
age archives containing 15 GBytes of data imaging surfaces that span about 800 x 600 km2

and demonstrate the value of the obtained image features.
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(a)

(b)

Figure 6.11: (a) Classification based only on backscatter cannot separate lake and moun-
tain shadow in a scene from 75 m resolution X-SAR data. (b) If the fusion of estimated
backscatter and texture norm is used, the lake is correctly identified.
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(a) (b)

Figure 6.12: (a) SAR relief in an ERS scene on Mozambique at 60 m resolution and (b) cor-
responding classification show the understanding of geomorphological features using texture
estimated at low–resolution scales.

An example of land use cover discrimination is visible in figure 6.11a: even when a
classification based only on backscatter cannot separate lake and mountain shadow in a
scene from 75 m resolution multilooked X-SAR data, the system is able to integrate such
data by fusing the estimated backscatter and the texture norm. By using both information
sources, the lake is correctly identified.

In figure 6.12, the SAR relief in an ERS scene on Mozambique at 60 m resolution is
reported together with the corresponding classification of geomorphological features using
texture estimated at low–resolution scales.

Further results were obtained by analyzing with the pixel–based information extraction
algorithm in chapter 4 a meter resolution E-SAR dataset in the frame of the humanitarian
demining SMART project (Vanhuysse et al., 2003). The obtained results tend to discrimi-
nate in a clear way different types of land cover and scene structures.

The signal–based, level 0 classes considered for information mining and scene understand-
ing from sub–metric resolution polarimetric SAR are all derived from X and L–band SAR
polarimetric data. In particular, the despeckled backscattered intensities are separately
considered together with a backscatter mean and a backscatter .

The different channels are separately subject to feature extraction and to similarity
grouping, and then input into the system and made available for user learning.

Results are shown in figure 6.13 and 6.14. The information made available in the
system allows the separation of a number of different cover types as well as the recognition
of different scene structures.
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(a) (b)

Figure 6.13: Meter resolution information mining example: ground truth Daedalus ATM
image (bands 2,3,4) in (a) with Gaussian–normalized RGB quicklook in (b).

6.11 Case studies with local model order selection in model
based information extraction

We consider a RADARSAT-1 fine mode four–looks image (in figure 6.15a) of Las Vegas,
USA. At least two different kinds of structures with very different target complexities are
present in the data. Smooth desert areas lay close to a very complex urbanized environment.

The RADARSAT-1 image in figure 6.15, is filtered by using the model order fixed across
the whole image. figure 6.16a is processed assuming a low order GMRF model. This
accounts well for the smoothness of the desert area, but tends to smear the borders of the
city scene. Figure 6.16b, processed instead with higher model order, tends to provide a
better reconstruction of the complex city structures, but produces a sub–optimal filtering
of the smooth desert area.

Figure 6.17 shows the automatically estimated local SAR intensity backscatter and the
corresponding space variant model order for the Las Vegas RADARSAT-1 scene: the sys-
tem tends to discriminate the complex urban area from the smoother natural surroundings.
Roads and natural relief structures are separated as being more complex than the surround-
ing desert area. Furthermore, the city area is clearly discriminated from the smoother,
simpler surroundings.

6.12 Urban scene reconstruction from InSAR data

A different application of the algorithms presented in previous chapter for the extraction
of geometrical information from high resolution SAR and InSAR data is related to the
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(a) (b)

(c) (d)

Figure 6.14: Meter resolution information mining example: the original data hh polarized
intensity and texture from 6.13b express features that are linked to the user domain by
machine learning. In the example, borders (a), fields (b), urban (c), and isolated trees (d).
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(a) (b)

Figure 6.15: Uncalibrated optical (from Microsoft Terraserver Imagery, Images courtesy
of the U.S. Geological Survey (LasVegas aerial photographies, 10 jun 1994)) (a) and
RADARSAT-1 fine mode four–looks image (b) of Las Vegas, USA. At least two different
kinds of structures with very different target complexities are present in the data. Smooth
desert areas lay close to a very complex urbanized environment.

specific scene understanding task of recovering the aspect of an urban scene starting from
remote sensing data.

InSAR as a multiple model, high dimensionality data source The scene recon-
struction procedure described in chapter 5 is applied to the understanding of urban scenes
starting from an interferometric dataset acquired in the context of the Shuttle Radar
Topography Mission (SRTM) on the city of Baltimore, USA. The mission, occurred Feb.
11-22, 2000, was based on the single-pass acquisition of multiple streams of data from two
sets of antennas on board of the Space Shuttle. The 12 Terabytes of raw data acquired are
currently being processed into digital elevation maps, providing the first-ever global coher-
ent DEM of the Earth between latitudes −60◦, +54◦ together with radar backscatter and
interferometric coherence information. The dataset under study, with a spatial resolution
of about 25 m, was acquired at X band.

A very different dataset, acquired on the outskirts of Munich, Germany, from an Intermap
airborne sensor with a spatial resolution of about 0.5 m again at X band, is used as a second
example.

We consider the results obtained with this second dataset indicative of the quality of
the developed algorithms for their application to the large amounts of data that will be
acquired at comparable resolutions by the next generation of satellite–borne SAR systems
in the next few years.
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(a) (b)

(c)

Figure 6.16: The RADARSAT-1 image in figure 6.15, filtered by using the model order
fixed across the whole image. The left part of the picture, (a), is processed assuming a low
order GMRF model. This accounts well for the smoothness of the desert area, but tends
to smear the borders of the city scene. The right part, (b), processed instead with higher
model order, tends to provide a better reconstruction of the complex city structures, but
produces a sub–optimal filtering of the smooth desert area. In (c), local SNR as estimated
number of looks.
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x̂MAP ||ĤMAP||0

Figure 6.17: Automatically estimated despeckled amplitude and locally estimated maxi-
mum evidence model order for the Las Vegas RADARSAT-1 scene: the system tends to
discriminate the complex urban area from the smoother natural surroundings. Roads and
natural relief structures are separated as being more complex than the surrounding desert
area.

6.12.1 Urban land-use mapping from SRTM data

We apply the whole procedure described in chapter 5 — and summarized in figure 5.2 —
to urban land use mapping on the city of Baltimore, USA, from an SRTM dataset. A USGS
map of the scene is reported in figure 6.20b, while the original backscatter and the DEM
data are shown in figure 6.18. No interferometric coherence information is used.

Before being fed into the Bayesian classification and information fusion system, the
original dataset layers are subject to separate information extraction and unsupervised
classification. A description of the procedure and the intermediate results are shown in
figure 6.19.

The information fusion step takes user input in the form of the definition of training
regions. The ones defined for the scene under study are reported in figure 6.18a together
with their class definitions. The obtained classified results are reported in figure 6.20a
together with USGS ground truth: the main directions of development of the city are visible
as radial areas of higher building density, while the city center and the areas with highest
urbanization around it are well separated from the rest of the urbanized regions. Limited
misclassifications are visible in the lower–right part of the dataset where the original height
information is corrupted by strong artifacts generated by unmasked water areas. The Loch
Raven Reservoir on the upper right part of the image is also recognizable.
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(a)

(b)

Figure 6.18: (a) SRTM backscatter intensity image (resolution 25 m, number of looks
4) on the city of Baltimore, USA. A strong multiplicative noise called speckle gen-
erated from the coherent nature of the SAR system is visible. Supervised classifica-
tion/feature fusion training is superimposed on the data: FOREST (green), WATER
(light blue), SPARSE URBANIZED (middle grey), MIDDLE URBANIZED (light gray),
DENSE URBANIZED (dark grey), AGRICULTURAL (yellow). (b) corresponding SRTM
height image on the city of Baltimore. Artifacts on unmasked water areas are visible.
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Figure 6.19: The scene reconstruction procedure for urban land use mapping on the Balti-
more scene with intermediate and final processing results: the original backscatter intensity
and elevation data are processed into their clean estimates and textural descriptions through
the information extraction system. The features obtained are grouped by similarity and fed
into the Bayesian classification/fusion system together with the training in figure 6.18a to
obtain the final land use map.
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(a)

(b)

Figure 6.20: (a) Bayesian classification/fusion results: FOREST (green), WATER
(light blue), SPARSE URBANIZED (middle grey), MIDDLE URBANIZED (light gray),
DENSE URBANIZED (very light grey), AGRICULTURAL (yellow). (b) USGS 01 Jul
1984 ground truth (from Microsoft Terraserver Imagery, Images courtesy of the U.S. Ge-
ological Survey (Baltimore map 01 jul 1982)). The main directions of development of the
city are visible as radial areas of higher building density, while the city center and the areas
with highest urbanization around it are separated from the rest of the urbanized regions.
Misclassifications appear on areas where the DEM information is corrupted by artifacts.
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6.12.2 Large building recognition from SRTM data

Although the limited spatial resolution (25 m) of the SRTM dataset limits its applica-
bility to the understanding of very complex urban environments, we evaluate the results
of the application of the described scene reconstruction framework to the identification of
large buildings.

The area of the city that we concentrate our analysis on (about 10x10 km wide) is
reported in figure 6.22b: it includes a city park as well as highly developed urban elements.
Original backscatter intensity and heights are reported in figure 6.21.

The input training regions provided to the interactive Bayesian information fusion system
are described in figure 6.21a. The results of the procedure are reported in figure 6.22: the
different elements in the scene are discriminated from each other, and many individual
buildings are separated.

A perspective view of center portion (about 2.5 km of side) of the local DEM where
the heights of class BUILDING have been exaggerated by 10% (in figure 6.23c) shows the
distribution and the 3D aspect of some of the streets in the scene.

A comparison with the ground truth in figure 6.23b shows that all but one of the buildings
reported in the 1986 USGS ground truth map are recognized as such. The remaining
detected buildings, many of which are aligned to the existing road network, are either
actual buildings erected after the ground truth map was produced or false alarms.

6.12.3 Building recognition from Intermap data

While the resolution of the SRTM system makes it more appropriate for the study of
large scale natural structures than for the understanding of complex urban environments,
the next generation of meter–resolution spaceborne SAR sensors will be producing on a
regular basis vast amounts of detailed data on urban environments.

Despite differences in some aspects of the sensor characteristics, current airborne systems
provide a test bed for the evaluation of scene reconstruction algorithms to next–generation
spaceborne data.

An Intermap X band interferometric dataset with resolution of about 0.5 m taken during
a flight on a rural area east of the city of Munich, Germany, is used in a further building
recognition experiment.

The test scene has very high complexity. The structures to be reconstructed are small
houses partially hidden at X band by surrounding taller vegetation (see figure 6.24). Typi-
cally for very high–resolution SAR data in built–up environments, multiple scattering and
other disturbing effects tend to dominate the data, saturating the receiver and propagating
to different areas in the image (figure 6.25).

The signal features used include the interferometric coherence, interferometric phase
gradients obtained via Gabor filters and single image intensities and intensity textures
as well as interferometry–derived measures of the local elevations. The signal features are
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(a)

(b)

Figure 6.21: (a) SRTM backscatter intensity image on the area object of building recogni-
tion with superimposed Bayesian classification/fusion training: BARE-AGRICULTURAL
(yellow), BUILDING (dark grey in red circles), WATER/SHADOW (dark green), GEN-
ERAL URBANIZED (light grey), FOREST (light green). (b) SRTM height image on the
same area. Artifacts are visible on unmasked shadow/water areas.
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(a)

(b)

Figure 6.22: (a) Bayesian classification/fusion results: BARE-AGRICULTURAL (light
green), BUILDING (grey), WATER/SHADOW (light blue), SHADOW (black), GEN-
ERAL URBANIZED (white), FOREST (green) and (b) USGS 01 Jul 1984 ground truth
(from Microsoft Terraserver Imagery, Images courtesy of the U.S. Geological Survey (Bal-
timore map 01 jul 1982)).
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(a) (b)

(c)

Figure 6.23: (a) Bayesian classification/fusion results with in transparency (b) USGS 01
Jul 1986 ground truth (from Microsoft Terraserver Imagery, Images courtesy of the U.S.
Geological Survey (Baltimore map 01 jul 1982)). All but one of the buildings reported
on the 1986 map are recognized as such. The remaining detected buildings are either
actual buildings erected after the ground truth map was produced or false alarms. (c)
3D view of center portion (about 2.5km of side) of the local DEM where the heights of
class BUILDING have been exaggerated by 10% with superimposed annotation data. The
distribution of some of the streets in the scene is visible.
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(a) (b)

Figure 6.24: Views of the rural test area: buildings are partially hidden by trees at X band.
Viewpoints are indicated in figure 6.25b.

separately subject to feature extraction and unsupervised classification and are subsequently
fused in a supervised way after specifying the training mask in figure 6.25a.

Although the scene is very complex and the user provided training is intentionally limited
to two very simple areas describing respectively built–up and natural scene elements, the
results tend to separate built–up elements from different image objects such as trees or
vegetation. Buildings in the scene are marked as such, while some spurious classification in
the middle of the scene is determined by responses by greenhouses and other non–permanent
structures. The results obtained are shown together with ground truth in figure 6.26.

6.13 Marked point process model–based building reconstruc-
tion from metric airborne SAR

The results obtained with pixel–based methodologies in figure 6.26 are of limited interest
because they fail to decompose the scene into a set of different, separated scene objects.
We apply therefore the object–based methodology introduced in chapter 6 to the analysis
of very high resolution SAR data.

6.13.1 Industrial scene understanding from metric SAR backscatter

A single intensity image with a spatial resolution of 2 meters acquired on the German
Oberpfaffenhofen site by the Intermap airborne X band SAR system is used for the valida-
tion of the proposed SU strategy.

The scene contains a number of large parallelepipedal industrial buildings surrounded
by elements of the transport infrastructure.
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(a) (b)

(c) (d)

← range direction

Figure 6.25: Rural test scene data: (a) intensity image of the site presented in figure 6.24.
The intentionally very limited training areas are chosen to allow the detection of buildings by
separating them from other scene structures. The information on buildings is extracted from
intensity image, coherence (b), interferometric-derived elevations (c) and interferometric
phase gradients (d), and further fused according to the “example” given by the training
area. The cross–track direction is indicated as an aid in the interpretation of the data,
given the strong dependence of meter–resolution SAR phenomenology on the acquisition
geometry.
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(a)

(b)

Figure 6.26: Rural test scene results: (a) extracted building map with ground truth provided
for comparison. The arrows mark the view points for the photographs in figure 6.24 while
the red box marks invalid results on image borders.
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The data show well visible artifacts related to the high resolution of the sensor used and
to the smooth, reflective nature of the buildings in the scene. In particular, radiometric
saturation extending on many image areas by very strong dihedral scatterers affects most
part of the data.

The object model considered constrains it to be a parallelepipedal building that gets
mapped in the data into a direct edge and a dihedral scattering facet only.

The original image and the obtained results are reported in figure 6.27.

The main buildings in the data are identified. While their geometry is generally con-
sistent with the scene, the dimensions in the range direction are exaggerated due to the
influence of SAR phenomenology: strong scatterer responses tend to appear elongated in
the range direction, acting as features that suggest an effective building shape that is wider
in that direction. There are clear errors in the upper building on the left, where the
reconstruction does not seem well related to the original image.

6.13.2 Composed building understanding from sub–metric SAR
backscatter

A similar dataset with a resolution of 0.5 meters acquired on the Dutch city of Maastricht
by the Intermap airborne sensor is used as a second example.

The scene is much more complex than in the case of the first dataset. It contains a
museum building situated near to the river Maas crossing the city, visible in the lower right
corner of the image. The areas surrounding the building are coverd by low vegetation. The
building is composed of a strongly reflective, round metallic tower with uneven surfaces.
The main body of the building consists of a closely spaced array of tall, thin block buildings
that tend to occlude each other when observed through the sensor. Even with ground-truth
optical data available, the analysis of the amplitude SAR data is complicated by a number of
artifacts that are typical of sub-metric resolution SAR. In particular, radiometric saturation
effects, layover from the main building body and multiple reflections are clearly visible. A
separated set of multiple returns originates from clear edges, early direct echo returns and
dihedral scattering on the base of the building are observed as well. The models used for
the scene have to account for the complexity of the building. In particular, parallelepipedal
and round tower objects are considered together with models for houses with a V-shaped
roof.

The results are reported in figure 6.28.

The limitations of the method are both evident: although the principal elements in the
scene are correctly identified, the reconstructed main building body is insufficient because
the of the fact that the actual structure of the building is not observable in the radar return.
Furthermore, local along-range radiometric saturation completely hinders the backscatter-
ing from one of the edges of the object. In other areas, the return from the far–range edge
of the building roofs might be invisible: the lack of an indication of the extent of the object
has a direct effect on the validity of the results just as it would constitute a limit to human
interpretation of the data. It is clear that since the presented algorithm is designed as a tool
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(a) (b)

(c) (d)

Figure 6.27: (a) Input 8 looks intensity SAR data on the Oberpfaffenhofen, Germany site
with spatial resolution of 2 meters. Growing range in right–to–left direction. Training
areas for clutter, building response are marked by short oblique white lines. (b) likelihood
ratio classification for the data (c) results on the Oberpfaffenhofen area: most buildings are
identified, while radiometric distortion in the range direction explains the missed elements.
The image represents the reconstructed scene model with each of the objects represented
by a set of facets plus a front and a shadow region in an optical-like view; (d) aerial image
of the relevant area, in ground range.
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(a) (b)

(c)

Figure 6.28: (a) Input intensity SAR data on the Maastricht site with spatial resolution
0.5 meters Growing range in left–to–right direction. Training areas for clutter, building
response are marked by short oblique white lines. (b) results on the Maastricht area. The
image represents the reconstructed scene model with each of the objects represented by a set
of facets plus a front and a shadow region in an optical-like view. Along–range radiometric
distortion due to saturation completely hinders the backscattering from one of the edges
of the main building object, producing an incorrect reconstruction of the close array of
box–shaped buildings that tend to occlude each other when observed through the sensor;
(d) ground truth.
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for the investigation of the limits and merits of information extraction from a single high
resolution intensity image rather than for building reconstruction, application scenarios will
need the integration of its output with data derived from different sources.

6.14 Summary

In this chapter, the following points have been considered:

• the algorithms and techniques introduced in the last chapters were evaluated and
validated on real high resolution SAR data from airborne sensors as a testbed for
next generation spaceborne radar;

• a number of approaches were taken in the validation, making use of large quantities
of data. In particular, an approach based on the evaluation of the quality of the
different extracted image descriptors was introduced that makes use of image infor-
mation mining techniques: applications related to the handling of large archives in
Content–based image queries as well as to the detailed analysis of single scenes were
considered;

• furthermore, the geometrical features extracted by the data were considered as a basis
for the further reconstruction of a number of urban scenes starting from InSAR and
SAR data at resolutions ranging from 25 meters to 0.5 meters.



Conclusions

In this thesis, structured hierarchical Bayesian models and estimators were considered
for the analysis of multidimensional datasets representing high complexity phenomena.

The analysis was motivated by the problem of urban scene reconstruction and under-
standing from meter resolution InSAR data, focussing on the inversion of data acquired
by the observation of highly diverse, structured settlements through sophisticated, coher-
ent radar based instruments from airborne or spaceborne platforms at distances of up to
hundreds of kilometers from the scene.

Based on a Bayesian analysis framework, stochastic models were developed for both
the original signals to be recovered (the original scene characteristics that are object of
the analysis— 3D geometry, radiometry in terms of cover type) and the noisy acquisition
instrument (a meter resolution SAR interferometer). The models were then combined to
provide a consistent description of the acquisition process. to be inverted by the application
of the so called Bayes’ equation.

The developed models for both the scene and the acquisition system were splitted into a
series of separated layers with likelihoods providing a probabilistic link between the layers
and with Maximum A Posteriori Bayesian inference as a basis for the estimation algorithms.
To discriminate between different prior scene models and provide the necessary ability to
choose the most probable model for the data in a given set, a Bayesian model selection
framework was considered. This approach resulted in a set of algorithms for the analysis of
meter resolution SAR and InSAR data acquired on urban environments.

In particular, a set of existing Gauss–Markov random field model–based algorithms for
SAR and InSAR information extraction and denoising were extended by space–variant au-
tomated model–order selection capabilities whose performance was demonstrated by gener-
ating and validating model–complexity based classification maps of a set of test images as
well as on real SAR data.

Based on that, a method for building recognition and reconstruction from InSAR data
centered on Bayesian information extraction and data classification and fusion was devel-
oped. The system integrates signal based classes and user conjectures, and is demonstrated
on input data ranging from on board Shuttle based observations of large urban centers to
airborne data acquired at sub–metric resolutions on small rural centers.

To overcome the limitations of pixel based models and inference methods, a system based
on stochastic geometry, decomposable object Gibbs fields and Monte Carlo Markov chains
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was developed and validated on sub–metric data acquired on both urban and industrial
sites.

The developed algorithms were then extensively validated by integrating them in an
image information mining system that enables the navigation and exploitation of large
image archives based on a generic probabilistic characterization of the data that is performed
automatically.

Summary of the obtained results

First, the properties of SAR and InSAR systems at metric resolutions in urban environ-
ments were introduced as a motivation for the employment of Bayesian analysis for high
complexity hierarchical models. The processing techniques that are used to treat the very
peculiar geometric and radiometric phenomenology of SAR and InSAR systems were intro-
duced. The system properties were analyzed at metric resolutions in urban environments,
investigating geometric effects such as layover, shadowing and occlusion, the radiometric
effect of smooth surfaces on speckle noise, backscatter texture and signal–to–noise ratio,
the appearance of multiple reflections of the incident radar beam, the various classes of
strong isolated scatterers and the peculiar statistics of meter resolution data. Traditional,
simulation– and model–based inversion algorithms in the literature were finally evaluated
and compared.

Bayesian modelling and estimation techniques for the analysis of multidimensional fields
were introduced. The properties of Gibbs–Markov fields and hierarchical Bayesian models
were detailed. Bayesian model selection was presented together with the role of the Occam
factor and of evidence maximization in model choice and analysis. Bayesian estimation
and decision theories were introduced focussing on Maximum A Posteriori estimates and on
decisions as posterior ratios. Posterior optimization techniques based on complete enumer-
ation, on Iterated Conditional Modes and on the Gibbs Sampler and Monte Carlo Markov
chains were then introduced and detailed.

In the second part, dedicated to novel methods developed for the hierarchical modelling
and the inversion of SAR and InSAR datasets, an extension of the image denoising and
information extraction method of Walessa and Datcu (2000) and Datcu et al. (1998) was
introduced: it incorporates a further estimation level that allows the space–variant selection
of the model–order by means of the maximization of the Bayesian model evidence. This
allows the system to properly model and reconstruct images that are composed of instances
of different stochastic image models with varying degrees of complexity. The extended
algorithm was demonstrated on simulated data generated with well–known model orders as
well as on Brodatz textures corrupted by multiplicative speckle noise. We gave examples
of classification by model order in the context of Gauss–Markov random field model based
image denoising and information extraction starting from specked Synthetic Aperture Radar
data: classification maps based on model order were therefore generated that demonstrate
the discrimination potential of the Bayesian evidence maximization with respect to model
choice. The extended system is able to extract descriptors from the data in terms of a
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model–based vocabulary, to choose models for the data in a space–variant way in a given
reference class and to discriminate different image elements by their complexity, again in
terms of the model.

Based on this, a novel framework for scene understanding from InSAR data was presented
that is based on Bayesian machine learning and information extraction and fusion in order
to complement the strengths and limitations of different data sources. The system is based
on a hierarchical model of the acquisition process that leads from the scene to the data: a
generic description of the data in terms of multiple models is automatically generated from
the original signals, based on modifications of the denoising and information extraction
algorithms presented in chapter 4. The obtained feature space is then mapped by the
application of simple Bayesian networks to user semantics representing urban scene elements
in a supervised step. The developed system was demonstrated by generating high–resolution
land-use maps on urban environments from real InSAR data acquired from spaceborne
sensors.

Subsequently, to overcome the limitations of lattice–based models, an algorithm for the
reconstruction of building structures from a single High Resolution SAR intensity image
was introduced, described and demonstrated on data with resolutions ranging from 0.5 to
2 meters. The algorithm is based on the Maximum A Posteriori estimation via Monte
Carlo methods of an optimal scene described in a hierarchical Bayesian framework as a
set of pairwise interacting Poisson distributed marked points that represent parametrically
described scene buildings. Each of the scene objects can be decomposed into a set of
elements that get probabilistically mapped into the image data space via a likelihood term
that takes into account the geometric and radiometric phenomenologies of sub–metric SAR
in urban environments. The detection of the buildings is based on a decision likelihood
ratio. The optimization of the obtained posterior is based on Gibbs sampling and Monte
Carlo Markov chains. The developed algorithm was demonstrated on real data acquired by
airborne X band sensors on built–up areas in high complexity settings characterized by tall
vegetation and strong metallic scatterers. Further results are presented in chapter III using
airborne data with resolutions in the range of 0.5 to 2 meters on a variety of scenes.

Evaluation of the obtained results and outlook

The alogrithms and techniques introduced were evaluated and validated on real high
resolution SAR data from airborne sensors as a testbed for next generation spaceborne
radar. Large quantities of data and a number of data analysis approaches were taken in
the validation. In particular, an approach based on the evaluation of the quality of the
different extracted image descriptors was introduced that makes use of image information
mining techniques: applications related to the handling of large archives in content–based
image queries as well as to the detailed analysis of single scenes were considered.



Appendix A

The K-means clustering algorithm

One of the basic problems that arise in a great variety of fields, including pattern recogni-
tion, machine learning and statistics, is the so–called clustering problem. The fundamental
data clustering problem may be defined as discovering groups in adata or grouping similar
objects together. Each of these groups is called a cluster, a region in which he density of
objects is locally higher than in other regions.

The K-means algorithm (Marroquin and Girosi, 1993; MacKay, 2002) partitions the
points in the data matrix X into k clusters. This iterative partitioning minimizes the
sum, over all clusters, of the within-cluster sums of point-to-cluster-centroid distances. By
default, it uses squared Euclidean distances.

Although this algorithm is known for its robustness, it is widely reported in literature
that its performance depends upon two key points: initial clustering and instance order.

After the k means have been initialized (Pen et al., 1999), the K-means is an iterative
two–step algorithm. In the assignment step, each data point n is assigned to the nearest
mean. In the update step, the means are adjusted to match the sample means of the data
points that they are responsible for. The algorithm converges when point assignments are
unchanged so the means remain unmoved when updated. The K-means algorithm always
converges to a fixed point.

• initialize solution;

• loop until termination condition is met:

– for each pixel in the image, assign that pixel to a class
such that the distance from this pixel to the center of
that class is minimized;

– for each class, recalculate the means of the class based
on the pixels that belong to that class.

Table A.1: A simple version of the K–means clustering algorithm.



Appendix B

Non–analytical optimization and
MAP estimation by simulated
annealing

The simulated annealing optimization algorithm exploits an analogy between the way in
which a metal cools and freezes into a minimum energy crystalline structure (the annealing
process) and the search for a minimum in a more general system.

The algorithm is based upon that of Metropolis et al. (1953), which was originally pro-
posed as a means of finding the equilibrium configuration of a collection of atoms at a given
temperature. The connection between this algorithm and mathematical minimization was
first noted by Pincus (1970), but it was Kirkpatrick et al. (1983) who proposed that it form
the basis of an optimization technique for combinatorial problems.

A simulated annealing procedure can be adopted for the estimation of the Maximum A
Posteriori: the multivariate posterior is maximized by iteratively evaluating many possible
solutions in a multidimensional parameter space. In stages, the optimization algorithm
restricts the search paths to only the most promising solutions. While at the beginning of
the iterative optimization procedure the sampled posterior function is essentially flat, at
the end of the annealing the algorithm is forced to follow a steepest ascent trajectory. The
net effect is that of maximizing the f(.)1/T for T that slowly changes from high values to
zero to be able to find the maximum of the function.

An acceptance ratio that is dependent on the rate of improvement in the solution is
used together with a decreasing “temperature” acceptance factor to probabilistically accept
or reject new solutions.

A simulated annealing program consists of a pair of nested DO-loops. The outer-most
loop sets the temperature and the inner-most loop runs a Metropolis Monte Carlo simulation
at that temperature. The way in which the temperature is decreased is known as the cooling
schedule. In practice, two different cooling schedules are predominantly used; a linear
cooling schedule (Tnew = Told − dT ) and a proportional cooling schedule (Tnew = C × Told)
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Figure B.1: Simulated annealing principle: the function f1/T (in this case f(x) = x·sin(x)) is
sampled for (logarithmically) decreasing temperature in order to locate the global maximum
of the function in the early stages of the optimization, concentrating on it in later ones.

where C < 1.0. In our implementation instead, the acceptance ”temperature” factor is
decreased from starting temperature T0 with iteration step i according to a logarithmic
cooling schedule in order to allow for a sufficiently slow confinement of the optimization
algorithm to steepest ascent paths.

According to Aarts and Korst (1989), it can be proven that the algorithm converges
towards the global minimum if T is lowered not faster than T (n) = c/ log(n + 1), where n
denotes the iteration and c is a constant, which usually can be set to one.

Simulated annealing is often considered too computationally expensive to be used in
image processing. Since the scene understanding system presented in chapter 6 considers
only a limited number of objects in the scene compared to the huge number of image lattice
sites, the dimensionality of the problem is reduced, speeding up convergence.

• generate initial trial solution trial

• best = curr = trial

– generate trial from curr

– if cost(trial) < cost(best): best = curr = trial

– else if cost(trial) < cost(curr): curr = trial

– else:

∗ anneal = exp((cost(curr)-cost(trial))/temp(i))

∗ generate uniform random number in [0,1]

∗ if r < anneal: curr = trial

Table B.1: Simulated annealing algorithm description.



Bibliography

E. H. L. Aarts and J. Korst. Simulated annealing and Boltzmann machines: a stochastic
approach to combinatorial optimization and neural computing. John Wiley and Sons,
Tiptree, Essex, 1989.

F. Adragna, M. Datcu, I. Hajnsek, J. Inglada, K. Papathanassiou, D. Petit, M. Quartulli,
and J. C. Souyris. Information extraction from high resolution SAR data. Proc. XI
European Signal Processing Conference, 3-6 sept 2002, Toulouse France EUSIPCO 2002,
Paper Num. 855, Signal and Image Processing for Space Applications (1/2), 2002.

H. Akaike. A new look at the statistical model identification. IEEE Transactions on
Automation and Control, 19(6):716–723, 1974.
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