
Novel Scheduling Strategies for
Future NoC and MPSoC

Architectures

DISSERTATION
zur Erlangung des Grades eines Doktors

der Naturwissenschaften

vorgelegt von
Dipl.-Math. Christian Schöler

betreut von
Prof. Dr. René Krenz-Bååth

Prof. Dr.-Ing. habil. Roman Obermaisser

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2017

Datum der Disputation: 6. Juni 2017

gedruckt auf alterungsbeständigem holz- und säurefreiem Papier

I

Abstract English
Time-Triggered Network-on-Chip (TTNoC) and Multi-Processor-System on a Chip
(MPSoC) are networking concepts aiming at providing both predictable and high-
throughput communication for modern multiprocessor systems. Time-triggered
networks play an important role in safety-critical systems, where their inherent
properties such as temporal predictability, fault tolerance and composability im-
prove safety and reduce certification costs. Time-triggered networks use timeplans,
which define the points in time of all message exchanges with respect to a global
time base. In multi-cluster time-triggered systems of large embedded systems
(e.g. automotive, avionics), conflict-free paths along switches and endsystems
are defined for each message. The conflict-free temporal and spatial allocation
of communication resources in combination with an intelligent communication
network (e.g. local and central guardians) prevents interference between messages
from different components upon integration and in the presence of faults.

Therefore, message scheduling in TTNoCs is one of the major challenges, where
the points in time for the transmission of a message with conflict-free paths through
the switches are determined. As the scheduling problem is NP-complete this
work introduces a novel scheduling framework based on the latest advancements
of theorem solvers such as Satisfiability Modulo Theories (SMT) techniques which
have successfully been applied to problem instances of this complexity class.

In addition, this work also investigates different concepts to partition the problem
instances allowing the application of parallel computing to further accelerate the
proposed scheduling framework.

MPSoC architectures and their specific architectural properties will require schedul-
ing tools capable of dealing with the increasing complexity of the systems. To meet
these challenges, we will outline how the proposed scheduling framework performs
after it has been ported to an MPSoC emulating target system. We compare its
performance to state-of-the-art schedulers based on CPLEX. Furthermore, we will
analyze how the proposed scheduling framework can be deployed to recover from
faults by re-scheduling the system under consideration at runtime.

II

Kurzzusammenfassung Deutsch
Zur Erfüllung steigender Anforderungen hinsichtlich Sicherheit, Komfort und
Effizienz an Mobilitätssysteme spielt die Elektronik eine immer größere Rolle.
Dem daraus resultierenden Mehrbedarf an Performanz sowie der Reduzierung
von Energieverbrauch, Größe und Gewicht können nur Multicoresysteme gerecht
werden. Der Einsatz solcher Systeme in sicherheitskritischen Mobilitätsbereichen
bringt allerdings noch viele offene Fragen mit sich:

Mit den steigenden Anforderungen an die Verfügbarkeit von Funktionen speziell in
Zukunftsthemen wie (teil-)automatisiertem Fahren oder Internet of Things, müssen
neue Architekturpattern, sogenannte Multi-Processor-Systems on a Chip (MP-
SoCs), entwickelt werden. Diese Patterns sollen eine hochgradige Verfügbarkeit
von Funktionen sicherstellen und gleichzeitig kostengünstig umgesetzt werden.

Eine der zentralen Fragestellungen für moderne Mehrkernarchitekturen ist eine
effektive Umsetzung der internen Kommunikationsprozesse. Die vorliegende
Arbeit präsentiert einen Scheduler, der optimale Zeitpläne berechnen kann und auch
auf einem eingebetteten System mit eingeschränkter Rechenkapazität eingesetzt
werden kann. Darüber hinaus diskutieren wir Strategien, um diesen Scheduler
effizient einzusetzen. Als Grundlage für die Berechnung von optimalen Schedules
nutzen wir moderne Tools aus der automatisierten Verifikationstheorie, da das
optimale Scheduling Problem aus der Komplexitätsklasse der NP−vollständigen
Probleme stammt. Wir erläutern, warum Verifikationstools aus diesem Gebiet
geeignet sind, um optimale Schedules für zeitgesteuerten Systemen, sogenannten
TTNoCs, zu berechnen.

Der Einsatz dieser Programme bietet zwei zentrale Vorteilen gegenüber der her-
kömmlichen Berechnung mit Multi-Integer-Linear-Programming (MILP) basierten
Schedulern: Zum einen können wir die Laufzeit und den Speicherbedarf reduzieren
und auf der anderen Seite unser Scheduling Framework auch direkt auf dem
MPSoC verwenden. Neben dem Einsatz auf dem Zielsystem evaluieren wir,
wie unser Scheduler zur Laufzeit eingesetzt werden kann und die Fehlertoleranz
des betrachteten Zielsystems verbessert. Dabei analysieren wir insbesondere
die Performance unseres Schedulers im Vergleich zu einem weit verbreiteten
heuristischen Ansatz.

III

Declaration of Authorship
I hereby certify that this thesis has been composed by me and is based on my own
work, unless stated otherwise. No other person’s work has been used without due
acknowledgement in this thesis. All references and verbatim extracts have been
quoted, and all sources of information, including graphs and data sets, have been
specifically acknowledged.

IV

Publications
Below are listed the peer-reviewed publications that were published during the
writing of this thesis between 2014 and 2016. Parts of the presented dissertation
are based on these references. The contributions are listed in descending order of
publication date:

• Christian Schöler, René Krenz-Bååth, Roman Obermaisser (2015). A Novel
Formal Verification Framework for Future MPSoC Architectures. In Proc.
on Manufacturable and Dependable Multicore Architectures at Nanoscale
(MEDIAN/ETS) Workshop, co-located with DATE 2015, ISBN, Grenoble,
France [1].

• Christian Schöler, Ayman Murshed, René Krenz-Bååth, Roman Obermaisser
(2015). Optimal SAT-based Scheduler for Time-Triggered Networks -on-a-
Chip. In Proceedings of 10th IEEE International Symposium on Industrial
Embedded Systems, Siegen, Germany [2].

• Christian Schöler, Ayman Murshed, René Krenz-Bååth, Roman Obermaisser
(2016). Computing Optimal Communication Schedules for Time-Triggered
Networks Using an SMT Solver. In Proceedings of 11th IEEE International
Symposium on Industrial Embedded Systems, Krakow, Poland [3].

• Christian Schöler, René Krenz-Bååth, Roman Obermaisser (2016). A Dom-
inator-Based Partitioning for Efficient Scheduling in Time-Triggered NoCs.
In Proceedings of 42nd Euromicro DSD/SEAA 2016, Limassol, Cyprus [4].

In addition, the topic of this thesis was accepted for poster presentation at the PhD
Forum of IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC) in Tallinn, Estonia 2016. Our contribution can be accessed in the
proceedings of the conference:

• Christian Schöler, René Krenz-Bååth, Roman Obermaisser (2016). Novel
Scheduling Strategies for future NoC and MPSoC Architectures. In Pro-
ceedings of 24th IFIP/IEEE International Conference on Very Large Scale
Integration, Tallinn, Estonia [5].

V

Acknowledgements
First of all, I owe thanks to my doctor-fathers Professor René Krenz-Bååth and Pro-
fessor Roman Obermaisser for suggesting this interesting research topic, for their
endless patience and for letting me pursue the topic so freely. Furthermore, I want
to express my gratitude to the Hochschule Hamm-Lippstadt (HSHL), University
of Applied Sciences, for funding my work and giving all organizational support
required. Furthermore, I wish to take the opportunity to thank Microsoft Research
and Princeton University for their generous financial sponsorship allowing me to
attend the Conference for Computer Aided Verification (CAV) in Toronto in July
2016.

I also wish to express my gratitude explicitly to Prof. Klaus Zeppenfeld and
Karl-Heinz Sandknop representing the Board of HSHL for funding this research
project over 36 months. Also I want to thank all members of HSHL-staff for their
continuous and passionate support over the past three years. Without their help I
would not have been able to realize this thesis.

In the same way I also want to mention my colleagues from the Fachgruppe Em-
bedded Systems at Siegen University who supported my studies in every possible
way. Not only did they kindly grant access to all their facilities but also made
me feel at home whenever I visited. Special credit is of course given to Ayman
Murshed, my respected co-author of two publications, whose expert knowledge
on CPLEX was absolutely valuable for my work. Also I want to thank Hamidreza
Ahmadian for giving me a detailed introduction into the models we consider in the
scope of this work.

Obviously this project would have been impossible without the constant, caring
and reassuring support of my family, especially my wife Sarah, my parents and
my parents-in-law. They were always helping out and found the time to look after
our son Julian, who is of course a precious gift and has been a valuable source of
diversion whenever needed.

Finally, this work was partially supported by the European project DREAMS under
the Grant Agreement No. 610640. Thank you.

VI CONTENTS

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Thesis Contribution . 2
1.4 Methodology . 3
1.5 Thesis Structure . 4

2 State-of-the-Art 5
2.1 Applications of Embedded Systems 5
2.2 SoC, NoC and MPSoC Architectures 6
2.3 Time-Triggered Communication Protocol 9
2.4 Scheduling in Time-Triggered Distributed Systems 10
2.5 MILP-based Scheduling . 12
2.6 Related Work . 13

3 Concepts and Terms 16
3.1 Boolean Functions and their representations 16
3.2 Optimization . 25
3.3 Complexity . 31
3.4 SAT Solving . 34

4 An Optimal SAT based Scheduler 38
4.1 Introduction . 38
4.2 System Model . 38
4.3 MiniSat+ . 43
4.4 Results . 47
4.5 Summary . 51

5 An Optimal SMT-based Scheduler 53
5.1 Introduction . 53
5.2 SMT Solving . 54
5.3 Refinements and Implementation 60
5.4 Application of YICES SMT . 67
5.5 Results . 69
5.6 Execution on MPSoC-emulating target systems 70
5.7 Summary . 73

CONTENTS VII

6 Parallel Computation of Schedules 75
6.1 Introduction . 75
6.2 Parallel Checks for Satisfiability 75
6.3 Results . 78
6.4 Dominator-based Partitioning . 80
6.5 Results . 88
6.6 Summary . 90

7 Scheduling on Fault-Tolerant Architectures 92
7.1 Introduction . 92
7.2 Introduction into Fault Tolerance Techniques 92
7.3 Re-scheduling after Failure . 94
7.4 List Scheduling . 96
7.5 Results . 101
7.6 Summary . 106

8 Conclusion 108
8.1 Summary . 108
8.2 Open Problems and Future Work 109

A Appendix 111
A.1 List of Figures . 111
A.2 List of Tables . 112
A.3 List of Abbreviations . 114
A.4 References . 115

1

1 Introduction

1.1 Motivation

This thesis is located in the field of multicore architectures implemented on a single
chip like Multi Processor System-on-Chip (MPSoC) based on Network-on-Chip
(NoC). NoC and MPSoC started a new computing era but brought a twofold chal-
lenge: On the one hand a new hardware paradigm emerged which required a layout
pattern easy to use for software designers. On the other hand efficient NoC and MP-
SoC architectures require efficient software capable of utilizing the full potential of
the high degree of parallelisation. Crucial to both research issues is the provision of
a powerful communication infrastructure on the architectures under consideration.
This work focuses on NoC and MPSoC architectures deploying a time-triggered
communication protocol and introduces a novel scheduling framework providing
optimal schedules by applying verification engines such as Boolean satisfiability
(SAT) solvers and Satisfiability Modulo Theories (SMT) solvers.
Efficient scheduling on time-triggered NoC and MPSoC architectures is a promi-
nent research subject especially as multicore chips play an important role in
safety-critical systems, where their inherent properties such as temporal predictabil-
ity, fault tolerance and composability [6] improve safety and reduce certification
costs [7]. Time-triggered networks on and off chip use timeplans, which define
the points in time of all message exchanges with respect to a global time base.
In multi-cluster time-triggered systems of large embedded systems (e.g., automo-
tive, avionics), conflict-free paths along switches and endsystems are defined for
each message. The conflict-free temporal and spatial allocation of communica-
tion resources in combination with an intelligent communication network (e.g.,
local and central guardians) prevents interference between messages from different
components upon integration and in the presence of faults.
However, the computation of the timeplans is time consuming and computation-
ally complex [8]. Feasible schedules need to avoid conflicts of communication
resources, meet deadlines, satisfy precedence constraints and ensure implicit syn-
chronization [9]. Different optimal and heuristic scheduling algorithms have been
devised in the state-of-the art (e.g. enumerative methods, mathematical program-
ming, simulated annealing, genetic algorithms, tabu search, neural networks).
While heuristics often fail to find feasible schedules, the runtime of optimal algo-
rithms becomes prohibitive upon large problem sizes. This is due to the fact that
computation of optimal schedules is one of the hardest problems in algorithmic
and one of the first problems proven to be NP-complete.
In order to address this challenge we introduce a communication model which

2 1 INTRODUCTION

allows the application of the latest advances in SAT and SMT-solving which have
undergone tremendous progress in the past two decades. SAT and SMT solvers are
the backbone of a wide range of academic and industrial research activities and
are widely used to tackle complex mathematical problems. On their basis optimal
schedules can be computed in reasonable time for different types of MPSoCs.
There are various fields of applications for time triggered NoC and MPSoC ar-
chitectures in industry for instance in (safety-critical) embedded systems in the
automotive industry [10] as well as in academia [11]. Different types of embedded
time-triggered execution platforms can be distinguished in practice [12, 13, 14].

1.2 Problem Statement

The main purpose of this work is the development of a scheduling framework
tailored to meet the tremendous complexity of evolving NoC and MPSoC archi-
tectures and their specific architectural properties. As modern NoC and MPSoC
architectures are highly parallel systems an efficient communication infrastructure
is of vital importance. In this thesis we optimize the schedule with respect to
the given system requirement of minimizing the end-to-end latency. We can also
formulate this by referring to the minimal transmission time for all messages or
the minimal makespan. We introduce a model which allows the application of
state-of-the art tools from the area of hardware verification like SAT and SMT to
find optimal schedules.
Finding optimal schedules is one the most complex problems in computer science
and is known to beNP-complete. Therefore, we also analyse the tradeoff between
optimal solutions which may be costly to compute in terms of runtime and heuristi-
cal methods which may be fast to calculate but result in a larger end-to-end-latency.

1.3 Thesis Contribution

This thesis contributes to the field of design, implementation and verification of
Multi-Processor System-on-a-Chip (MPSoC) architectures realizing embedded
real-time systems. We develop a concept to deploy a set of SAT and SMT solvers
to meet two different challenges: On the one hand we want to guarantee safety
after reconfiguration and on the other hand we can find optimal solutions at runtime
for scheduling problems within a network, which allows tolerating failing nodes
or broken links and guarantees correctness within a given interval. Finally the
proposed framework has successfully been ported to an architecture resembling an
embedded real-time system.

1.4 Methodology 3

For a set of tasks depending on each other and represented by a directed acyclic
graph, we present a model where the scheduling for endsystems and switches can
be combined to find an optimal solution with respect to total transmission time.
As the scheduling problem is NP-complete we investigate different methods to
improve scalability in order to apply the proposed framework to novel NoC and
MPSoC architectures.
At first we model the properties of the scheduling problem in a way to apply
modern SAT and SMT solvers respectively. We compute optimal schedules for
different systems under consideration. Furthermore, the generation of benchmarks
arising from scheduling problems on TT-NoCs is outlined and it is explained how
the solvers can be applied either during the design process or on the target system
itself. By enabling scheduling at runtime we increase the fault tolerance of the
system under consideration. We can increase the flexibility to recover from faults
by rescheduling the all required tasks if a component (i.e. an endsystem, a switch
or a communication link) fails at runtime. For demonstrating purposes we use an
MPSoC emulating target system.
We will report on the evaluation of performance and scalability of the proposed
scheduler and suggest different techniques to tackle the NP-complete optimal
scheduling problem such as parallelising certain algorithmic instances or relaxing
optimality constraints. We will compare runtime and resource requirements of the
proposed framework with state-of-the-art-tools such as as the MILP tool CPLEX.
Furthermore, we will demonstrate how the proposed scheduler can significantly
improve the quality of schedules in comparison to a state-of-the-art approach
deploying the popular list-scheduling heuristic if components of the system under
investigation become faulty.

1.4 Methodology

After providing the theoretical background on propositional logic, optimization
and complexity theory we develop a time discrete model which resembles the
communication of the system under consideration. We will then outline how the
scheduling problem can be formulated as an optimization problem with constraints
and an objective function which is minimized in order to compute the minimal
makespan i.e. the shortest possible transmission time for all messages. We will use
SAT and SMT solver to compute optimal schedules and verify the solutions using
Mixed integer linear programming. We will evaluate the results with respect to
runtime and memory footprint and illustrate how the performance of our proposed
scheduling framework can be further enhanced by the applying parallelisation.
Due toNP-completeness of the scheduling problem we will also analyse strategies

4 1 INTRODUCTION

to partition problems and compute feasible - not necessarily optimal - solutions in
parallel.
Finally, we will also evaluate the proposed scheduling framework by comparing
it to a scheduler based on heuristical methods called list scheduling (LS). We
will apply both schedulers to a fault-tolerant MPSoC architecture and show how
our proposed scheduling frameworks outperforms LS with respect to a minimal
makespan if the number of faulty components in the system under consideration is
increased significantly.

1.5 Thesis Structure
This thesis is structured as follows: In the first Chapter we have already outlined the
motivation, objective and contribution of this thesis as well as the methodologies
applied.
In Chapter 2 introduces the technical background against this thesis is set. It
describes the current state-of-the-art of requirements, challenges and applications
of so called real-time embedded systems which become increasingly complex and
are crucial for the implementation of safety-critical systems.
Chapter 3 then lays the mathematical and algorithmic foundations needed to model
the scheduling problem as an (pseudo-Boolean-)optimization problem. Here we
discuss all preliminaries regarding Boolean functions, mathematical optimization
and complexity theory.
Chapter 4 we will demonstrate how the scheduling problem can be modelled in
a way that allows the application of SAT-solving techniques to compute optimal
solutions. The results are verified and evaluated using state-of-the-art tools.
On this basis Chapter 5 discusses enhancements to the proposed model and mo-
tivates the use of SMT solvers which are a generalization of SAT solvers. After
further evaluation the SMT-based scheduling framework is ported to an MPSoC
evaluating target system.
Two possible techniques to parallelize the solving process are discussed in Chapter
6. Both approaches have a significant impact on the runtime of the solvers.
In Section 7 we introduce the concept of fault tolerance and illustrate the advantages
of the proposed scheduling framework if components of the architecture under
consideration are subject to permanent failures. We will outline how critical
deadlines can still be met thus sustaining functionality.
Finally Chapter 8 concludes this thesis and summarizes the results of our con-
tribution. We also provide an outlook on how open problems may be tackled in
future.

5

2 State-of-the-Art

This introductory chapter outlines the technological background in which this
thesis is set. We will describe the current state-of-the-art in theory and application
of distributed embedded computer systems, which are realized using time-triggered
communication networks. In this context the structural elements of an embedded
computer system with a time-triggered communication network are explained and
a terminology is established. We will continue with an introduction into modern
scheduling methods and briefly present how feasible schedules can be computed
deploying commercial software.
Especially the computation of optimal solutions to the scheduling problem has
been a popular research topic for the past decade and tremendous progress has been
achieved in recent years. Therefore, we will conclude this chapter by discussing
the influential contributions on this vibrant research subject.

2.1 Applications of Embedded Systems

Digitalisation is one of the major challenges for a modern society. As computers
become increasingly dominant in every-day life the most inconspicuous objects
are by now equipped with integrated computer chips. Furthermore, the growing
demand of digital networking and communication, i.e. Internet of Things (IoT),
will lead to increasing advances in technology and the need for small, cheap and yet
reliable hardware. Already today embedded computers are by far the most common
type of computer in use and experts estimate that nowadays ninety-eight per cent of
all computing devices are embedded in different kinds of electronic equipment such
as automotive, industrial automation, telecommunications, consumer electronics
and health/medical systems [7].
However, there exists no single model for building embedded systems. This
is due to many different and, partially, contradicting requirements for instance
trade-offs such as resource adequacy versus best-effort strategies or predictability
versus flexibility. As a consequence the system model depends strongly on the
requirements of the application.
In any given application the purpose of the embedded computer system is defined
by the requirements at the interface to the controlled object. Thus we will give
more details on the specific requirements of architectures under investigation in the
scope of this thesis: We consider real-time embedded systems referring to systems
gathering their required information at runtime. It is commonly distinguished
between two different communication protocols in multicore systems: On the one
hand there is event-triggered communication which is dynamic and flexible and on

6 2 STATE-OF-THE-ART

the other end time-triggered communication, whose salient features are monitoring
ability and temporal predictability. The focus of this work is on the latter, the de
facto standard for safety critical applications, explained in more detail in Section
2.3.
Such real-time applications are also called cyber-physical systems in order to reflect
the integration of computation and physical processes. Such a distributed embedded
system contains a set of node computers (nodes for short). In this work each node
is considered a self-contained composite hardware/software subsystem, which
communicates with each other over a time-triggered communication network.
At present, time-triggered off-chip networks such as TTP [12], FlexRay [13]
and TTEthernet [14] are deployed in automotive, aerospace and railway appli-
cations. In recent years, time-triggered (TT) architectures [KB01] have gained
momentum for platform-based applications. Time-triggered system architecture,
especially FlexRay and TTEthernet are widely used in embedded systems for
safety-critical applications. The FlexRay communication standard for instance
has gained industry-wide acceptance as the next-generation automotive network-
ing standard. Likewise, multi-processor architectures based on time-triggered
on-chip networks have been introduced for safety-critical systems (e.g., GENESYS
MPSoC [15], AEthereal [16]).
In the next section we will outline a novel design paradigm how these systems
are actually realized in practice meeting the increasing demands of complexity,
functionality and efficiency. We will then continue and discuss how the proposed
architectural properties can be exploited to compute optimal schedules on the
device itself.

2.2 SoC, NoC and MPSoC Architectures

The increasing complexity of multicore systems, together with the unending de-
mand for higher performance and less energy consumption, keeps pushing the
trend of shrinking device sizes and increasing the number of endsystems integrated
on a single chip. Moore’s famous law does not only describe the increasing density
of transistors permitted by technological advances. It also imposes new require-
ments and challenges. System complexity increases at the same speed. Nowadays
systems could never be designed using the same approaches applied 30 years ago
[17]. New architectures are and must be continuously conceived. Hence Multipro-
cessor systems-on-chips (MPSoCs) are the latest incarnation of very large-scale
integration (VLSI) technology. A single integrated circuit can contain over 100
million transistors, and the International Technology Roadmap for Semiconductors
predicts that chips with a billion transistors are within reach [18].

2.2 SoC, NoC and MPSoC Architectures 7

In order to comply to the needs outlined designers are forced to move beyond
logic design into computer architecture. The demands placed on these chips
by applications require designers to face problems not confronted by traditional
computer architecture: harsh operational conditions, very low-power operation
and as in the scope of this work real-time deadlines. These opportunities and
challenges make MPSoC design an important field of research especially regarding
communication paradigms on these architectures.
In order to define MPSoC we first have to define a system-on-chip (SoC). A SoC is
an integrated circuit that implements most of the functions of a complete electronic
system. The most fundamental characteristic of a SoC is complexity. A memory
chip may have many transistors, but its regular structure makes it a component and
not a system. Exactly what components are assembled on the SoC varies with the
application. It is predicted that future embedded SoCs will probably be made up of
tens or hundreds of heterogeneous endsystems, which will be able to execute one
parallel application or even several applications running in parallel [19].
SoCs first came up in the mid-nineties. One of the main challenges then was the
way to interconnect all these devices efficiently as due to the increasing complexity
the bus interconnect structure soon reached its limits and was no longer appropriate
to meet the challenges of modern design patterns. Therefore a new interconnection
paradigm emerged, the so-called Network-on-Chip (NoC). Basically a NoC can
be described as a communication subsystem on an integrated circuit in a SoC.
Therefore NoC architectures can be regarded as the solution for the scalability
problem of SoCs.
SoCs can be found in many product categories ranging from every day consumer
devices to industrial systems:

• Cell phones use several programmable processors to handle the signalpro-
cessing and protocol tasks required by telephony. These architectures must
be designed to operate at the very low-power levels provided by batteries.

• Telecommunications and networking use specialized SoCs, such as network
processors, to handle the huge data rates presented by modern transmission
equipment.

• Digital televisions and set-top boxes use sophisticated multiprocessors to
perform real-time video and audio decoding and user interface functions.

• Television production equipment uses systems-on-chips to encode videos.

Now we can define an MPSoC as a system-on-chip containing multiple processors
(CPUs). In practice, most SoCs are MPSoCs because it is too difficult to design

8 2 STATE-OF-THE-ART

a complex system-on-chip without making use of multiple CPUs. In MPSoC we
can in general distinguish between two communication protocols i.e. an event-
triggered communication protocol where messages are triggered by an external
event opposed to a time-triggered communication protocol. This thesis will focus
on the latter. Details are provided in Section 2.3.
Considering architectures equipped with TT communication protocols offers sev-
eral advantages i.e. monitoring aspects or the capability of providing fault toler-
ance: A faulty endsystem for example cannot affect the message exchange between
other endsystems if the execution of jobs is scheduled to different parts of the
on-chip-network still operating free from defects. On-chip fault isolation is a pre-
requisite for fault-tolerance through active redundancy [20] and the integration of
mixed-criticality applications on a single chip [21]. This concepts and subsequent
applications of our proposed framework will be introduced extensively in Chapter
7.2.
Just like SoCs MPSoCs have been used to realize a a wide range of new products
and services in many areas. Their popularity arises from the average high per-
formance. MPSoC design has been regarded an emerging research area for the
last few years [22] and subsequently tremendous research is being conducted on
MPSoCs. Areas of special interest regard critical issues like computational capa-
bilities, programmability, flexibility, scalability and power consumption. Using
parallel programming techniques, more efficient computational capabilities can
be achieved. Such parallel task execution models have been studied for parallel
computing machines during the past decades.
There are numerous examples where MPSoCs are already applied in practice
especially in cost-sensitive, real-time systems: Consider for example cellular
phone, game stations or high-definition digital television (HDTV). Due to the
application scenarios designers face real-time performance requirements as well
as stringent cost requirements (chip area, energy consumption). To satisfy those
requirements, applications executed on MPSoCs need to be optimized in terms of
code size, energy consumption and execution time. In this thesis we will focus
on the latter and introduce a scheduling framework not only tailored to meet the
requirements of MPSoC architectures described but are also executable on the
target architecture itself thus meeting the requirements for software designers
outlined [23].
In conclusion it can be said that MPSoC is an emerging research area and de-
servedly in the focus of industry and academia. As there is a huge variety of
different approaches we have confined for the scope of this work that all processors
of the MPSoC are assumed to be homogeneous. We will emphasize our work on
scalability of scheduling within the architecture under consideration. We will inves-

2.3 Time-Triggered Communication Protocol 9

tigate how the optimal scheduling problem on MPSoCs can be solved efficiently
deploying parallel computation. In this context we examine how the multicore
structure can be exploited for parallel execution.

2.3 Time-Triggered Communication Protocol

For distributed embedded systems there currently exist two fundamentally different
paradigms for the design of real-time systems: In an event triggered system a
processing activity is initiated as a consequence of internal or external stimuli
such as the reception of a message or a rise of temperature. On the other hand a
time-triggered communication protocol strictly controls the entire communication
within a network determining exactly at which point in time a message is sent
and received. This thesis will focus on the latter paradigm because time-triggered
networks [12, 13, 14] play an important role in safety-critical systems, where their
inherent properties such as temporal predictability, fault tolerance and composabil-
ity [6] improve safety and reduce certification costs [7]. Time-triggered networks
use timeplans, which define the points in time of all message exchanges with
respect to a global time base. In multi-cluster time-triggered systems of large
embedded systems (e.g., automotive, avionics), conflict-free paths along switches
and endsystems are defined for each message. The conflict-free temporal and
spatial allocation of communication resources in combination with an intelligent
communication network (e.g., local and central guardians) prevents interference
between messages from different components upon integration and in the presence
of faults.
For the time-triggered communication network different topologies can be dis-
tinguished such as bus, star and ring topologies. Independently of the topology,
different redundancy degrees of the communication network are possible. A single
communication channel is typically used in non safety-critical applications. In
safety critical systems, redundant communication channels support the masking of
channel failures. For example, the computational components can be allocated to
the nodes of a distributed system, where the network serves as the communication
infrastructure between these components. Another possibility, which has been
enabled by the advances of Multi-Processor System-on-a-Chips (MPSoCs), is the
allocation of computational components to endsystems that are interconnected
switches [17] which will be discussed in more detail in the next chapter.
Time-triggered, safety critical, distributed systems, the scope of this work, have
established themselves as a de facto standard for numerous applications i.e. chassis
control systems and power train communication. Therefore it seem sensible to
analyse the impact of optimal schedules on the performance of the systems under

10 2 STATE-OF-THE-ART

investigation.

2.4 Scheduling in Time-Triggered Distributed Systems
Scheduling is the act of creating a schedule, which is a timetable for planned
occurrences. Scheduling may also involve allocating resources to activities over
time. A scheduling problem can be viewed as a constraint satisfaction problem or
as a constrained optimization problem [24], but regardless of how it is viewed, a
scheduling problem is defined by:

1. A set of time intervals, i.e. definitions of activities, operations or tasks to be
completed.

2. A set of temporal constraints, i.e. definitions of possible relationships be-
tween the start and end times of the intervals.

3. A set of specialized constraints i.e. definitions of the complex relationships
on a set of intervals due to the state and finite capacity of resources.

In the state-of-the-art scheduling techniques for time-triggered networks have
been introduced with different optimal techniques and heuristics. However, the
scalability of optimal techniques is limited with the number of endsystems, switches
and messages. Even in case of sufficient resources, heuristics cannot guarantee
the computation of a feasible schedule. Thus scheduling is important but NP-
complete. Therefore scheduling has been a very important research subject for
the past thirty years. Only recently a very attractive alternative to simulation
and testing has emerged [25]: The application of formal verification tools to
the scheduling problem. While simulation and testing explore only some of the
possible behaviours and scenarios, formal verification conducts an exhaustive
exploration of all possibilities and thus guarantees that an optimal solution is found,
if it actually exists.
In this thesis, we deploy tools from the area of formal verification, such as SAT and
SMT solvers, by which a desired behavioural property of a defined system model
is analysed. Therefore we will develop a time-discrete model representing the
tasks the on-chip-system under investigation has to perform. We consider logical
dependencies as well as architectural properties, which are both outlined in Chapter
4.
One of the main objectives of this work is the application of our proposed schedul-
ing framework on real-time systems. A real-time system must produce the intended
results at the intended instant in real time [26]. Time-triggered real-time systems

2.4 Scheduling in Time-Triggered Distributed Systems 11

are popular in safety-critical applications where temporal predictability is an im-
portant concern. In order to describe the tasks which have to be performed on
the system under consideration, we use the term jobs to denote a logical unit of
computation and we represent a program as a set of jobs. In literature, terms as
jobs, task and processes. are used interchangeably. In many traditional real-time
applications, especially in the aeronautic or automotive sector, it is assumed that
the set of tasks does not change at runtime. We adopt this paradigm and throughout
this thesis it is our aim to schedule a set J of n jobs, i.e.

J = {j1, j2, · · · jn}.

The so-called job shop scheduling problem is an optimization problem. It at-
tempts to find a minimal makespan, where the makespan denotes the total length
of the schedule. Therefore the makespan depends on the allocation of jobs to
endsystems and the routes of the time-triggered messages sent between them. Both
allocation and paths are fully determined by the proposed scheduling framework.
Details on optimization problems and their complex challenges can be gathered
from Sections 3.2 and 3.3.
In the literature it is distinguished between four different scheduling classes, which
we will briefly outline:

1. Static scheduling: all scheduling decisions are based on fixed parameters,
assigned to tasks before their activation. Static scheduling needs a priori
knowledge of all task attributes. Therefore it is less flexible.

2. Dynamic scheduling: all scheduling decisions are based on dynamic pa-
rameters that might change at runtime. Dynamic scheduling can provide a
better processor utilization and supports non-predicted events such as failing
components, but it has a higher runtime overhead than static scheduling.

3. Off-line scheduling: All scheduling decisions are computed at compile time
and stored in a dispatcher table which is located in a Trusted Research Man-
ager (TRM), d device that will not become faulty by construction. At runtime
no scheduler is needed, but only a dispatcher which takes the next entry from
the table. Off-line scheduling is also called table-driven scheduling, which
incorporates a table determining which tasks to execute at which points in
time. Thus, feasibility is proven constructively. Off-line scheduling methods
are capable of managing distributed applications with complex constraints
(e.g. precedence or end-to-end deadlines). On the other hand, the a-priori
knowledge about all system activities may be hard or impossible to obtain.
Its rigidity enables deterministic behaviour, but drastically limits flexibility.

12 2 STATE-OF-THE-ART

4. On-line scheduling: All scheduling decisions are made at runtime, meaning
that the scheduler decides when a new task is released or when a task
terminates its execution. Nevertheless, on-line scheduling anomalies have to
be handled.

This thesis focuses on static scheduling, because the architecture and allocation of
tasks to endsystems. The off-line scheduling approach is the one usually associated
with time-triggered architectures. When enhancing the proposed scheduler, how-
ever, we will also consider dynamic, on-line scheduling, especially when regarding
fault tolerant architectures.
Currently timeplans are computed during the design process employing high
performance computers and state-of-the-art software like IBM ILOG CPLEX
Optimization Studio (often informally referred to simply as CPLEX) are deployed.
We will outline how CPLEX solves scheduling problems in the next section.
Cyper-physical systems are also equipped with redundant alternative schedules to
react to system failures. However these errors can never be covered completely
and non-predictable failures may still cause permanent errors of the system. As
memory capacities on an embedded system are limited, an effective way to com-
pute alternative schedules meeting all deadline constraints have to be developed.
Especially if optimal solutions are required and state-of-the-art-solvers cannot be
deployed on the architecture under consideration due to the hardware limitations
outlined above the process can be very time-consuming. Otherwise if feasible
solutions are sufficient, it may prove sensible to apply heuristics to the scheduling
problem. This may significantly reduce runtime but may fail to find solutions
meeting all deadline constraints even if they exist.

2.5 MILP-based Scheduling

Scheduling is known to be a tough challenge which may prove to be time-consuming,
especially if the architecture under investigation relies on optimal schedules. There-
fore a common way to compute possible schedules in practice is the application
of high-performance computer clusters during the design process. Hence static
off-line scheduling - see previous section - is mainly deployed in the state-of-the-art.
In this process efficient hard- and software computes a number of valid schedules
which are then copied onto the device and stored in a TRM [27]. If components
fail or the system has to be reconfigured the schedules are substituted. The TRM
accepts proposals for new communication schedules, which are provided by the
components. The TRM checks the validity of a supplied time-triggered schedule by
checking whether it is free of collisions. However, as the computation of schedules

2.6 Related Work 13

is not dynamic there is a high probability that the entire system may fail if the
schedules stored in the TRM are not capable to mask the fault reported.
The main software adopted in the research area of embedded systems to compute
schedules is IBM ILOG CPLEX Optimization Studio. CPLEX Studio is a rapid
development system for optimization models with interfaces to embed models into
standalone applications. We will briefly refer to this software as CPLEX deploy
the version released in 2014 [28].
CPLEX is an optimization software package based originally on the Simplex
algorithm. Today it solves integer programming problems using the simplex
method or the barrier interior point method, convex and non-convex quadratic
programming problems and convex quadratically constrained problems. CPLEX is
referred to be the leading software product in the field of mathematical optimization
and operational research. This work mainly relies on CPLEX as a reference solver
which is on the one hand deployed to validate our results. On the other hand we
compare the memory footprint as well as the computation time of our proposed
scheduling framework to CPLEX. In contrast to CPLEX all other tools proposed
in the course of this work are open source and free of charge.

2.6 Related Work

Time-triggered networks play an important role in safety-critical systems, where
their inherent properties such as temporal predictability, fault tolerance and com-
posability [6] improve safety and reduce certification costs [7]. Time-triggered
networks use timeplans, which define the points in time of all message exchanges
with respect to a global time base. In multi-cluster time-triggered systems of large
embedded systems (e.g., automotive, avionics), conflict-free paths along switches
and endsystems are defined for each message. The conflict-free temporal and
spatial allocation of communication resources in combination with an intelligent
communication network (e.g., local and central guardians) prevents interference
between messages from different components upon integration and in the presence
of faults.
However, the computation of the timeplans is time consuming and computation-
ally complex [8]. Feasible schedules need to avoid conflicts of communication
resources, meet deadlines, satisfy precedence constraints and ensure implicit syn-
chronization [9]. Different optimal and heuristic scheduling algorithms have been
devised in the state-of-the art (e.g., enumerative methods, mathematical program-
ming, simulated annealing, genetic algorithms, tabu search, neural networks).
While the runtime of optimal algorithms becomes prohibitive upon large problem
sizes, heuristics often fail to find feasible schedules.

14 2 STATE-OF-THE-ART

Network
Interface

Endsystem

Network
Interface

Endsystem

Network
Interface

Endsystem

Network
Interface

Endsystem

Network
Interface

Endsystem

Network
Interface

Endsystem

Switch Switch

Message-based
serviceJob

Job

Job

Job

Job

Job

Allocation

Time-triggered
message-based
interfaces

Figure 1: Logical Application Model (left) mapped to Physical Multicore Platform
(right)

For the past five years the application of tools from hard- and software verification
to the scheduling problem has been studied extensively [25]. Especially so-called
SAT solvers have been applied. Modern SAT solvers use heuristics to efficiently
compute solutions for the Boolean Satisfiability Problem, one of most-researched
NP-complete problem in computer science [29] - see also Section 3.3. SAT solvers
have demonstrated to be effective in solving NP-complete problems for many
applications, including planning, circuit design and also scheduling [30]. This
widespread adoption is the result of the efficiency gains made during the last decade
[31]. Modern SAT-solvers use different heuristics to check whether a given Boolean
formula F (x1, · · · , xn) is satisfiable and if so returns a satisfying assignment that
makes F true.
SMT solvers, which extend SAT with richer theories, can handle an even broader
range of problems [32] by allowing the input of (in)-equalities expressed in clas-
sical first-order logic. SMT solvers have proved to be powerful and expressive
backend engines for formal verification in many contexts, including the verifica-
tion of software, hardware, and of timed and hybrid systems [33] and have been
successfully used to compute feasible schedules for time-triggered networks [25].
Because of the high computation time required by existing schedulers, a technique
that applies an SMT-solver to compute an optimal solution to a scheduling problem
with time-triggered messages is proposed. It has been previously investigated how
the scheduling problem can be translated into a conjunctive normal form (CNF)
allowing the application of a SAT-solver to compute satisfiable solutions that were
optimal with respect to the total transmission time to receive all messages [2].

2.6 Related Work 15

This model was however limited by the constant allocation of jobs to nodes. In this
work the model is enhanced such that an arbitrary allocation of jobs to endsystems
is allowed. The proposed scheduler is optimizing the allocation of jobs as well as
the message paths with respect to the minimal transmission times. Furthermore
the proposed SMT scheduler is able to handle multiple messages from the same
sender which represents a more realistic behaviour.
In the past SMT solvers have been successfully applied to verify the TT-Ethernet
synchronisation function [25]. Furthermore SMT solvers were also applicable for
the generation of (even large-scale) time-triggered schedules [34]. This scheduling
model proposed in [34] has also recently been evaluated using the SMT solver
YICES2 [35].
Due to its multicore heritage MPSoC can also be deployed for parallel computing
[36] and high performance parallel-programming frameworks for MPSoC archi-
tectures such as [37] have recently been developed. Hence we will also study
the impact of parallelization of the proposed scheduling framework considering
different approaches for the computation of optimal and feasible schedules. We
have already previously investigated the parallel distribution of different problem
instances (i.e. SAT benchmarks) to different endsystems [1]. Therefore distributing
the scheduling problem and approaches to solve the partitions in parallel is also
analysed in the scope of this work.
For years parallel computing has been a popular research subject. Since the
switch to multicore and manycore processors industry has laid out a roadmap for
multicore designs [38]. Also the use of SAT solvers [39, 40] in various application
areas is on the rise since in addition to the traditional hardware and software
verification domains, SAT solvers are gaining popularity in new domains. This
widespread adoption is the result of the efficiency gains made during the last decade
[41]. Tremendous efforts have been taken to combine the two disciplines and to
apply the concept of parallelisation to improve performance of SAT solvers even
further [42].
In addition to this industrial partners have defined key challenges in parallel SAT
solving [41], which shows how important efficient SAT solving methods are for
real-world applications.

16 3 CONCEPTS AND TERMS

3 Concepts and Terms
This chapter presents the mathematical terms and concepts used in this thesis:
we explicitly introduce three basic concepts: propositional logic, mathematical
optimization including the special case of pseudo-Boolean optimization problems
and complexity classes for evaluation purposes.
We begin with the introduction of an algebra whose original purpose, dating back
to Aristotle, was to model reasoning. In more recent times this algebra, like
many other algebras, has proved useful as a design tool. We will outline the
formalities and notations used to describe the Scheduling Problem using Boolean
Functions and their representations only. In the same way it is demonstrated how
the Scheduling Problem can be transformed into a mathematical optimization
problems using so-called pseudo-Boolean variables only. Because of this we will
be able to apply state-of-the-art tools from the field of computer verification to
find solutions, to the Scheduling problem. In order to classify these solutions we
define optimization problems. The chapter is concluded with an introduction to
complexity theory which is needed to evaluate the scalability and sustainability of
our proposed scheduling framework.

3.1 Boolean Functions and their representations
In this section we will define a Boolean algebra, introduce logical expressions
with Boolean-valued operands and logical operators such as AND, OR and NOT
operating on Boolean values. The sequential arrangement is inspired by [43].
A Boolean value is one with two choices: true or false, yes or no, 1 or 0. In
computer science the Boolean data type is a data type, having two values intended
to represent the truth values of logic in an algebra. This algebra is often called
Boolean algebra after George Boole, the logician who first defined the underlying
concept formally. In mathematical logic, a propositional variable (also called a
sentential variable or sentential letter) is a variable which can either be true or false.
Propositional variables are the basic building-blocks of propositional formulae,
used in propositional and higher order logics.
Propositional logic is a mathematical model that allows us to reason about the truth
or falsehood of logical expressions. This can be formalized by defining logical
expressions as follows:

Definition 3.1. Propositional variables and the logical constants, TRUE and
FALSE, are logical expressions. These are the so-called atomic operands.

Remark 3.2. Let E and F be logical expression. Then so are:

3.1 Boolean Functions and their representations 17

OR

AND

p OR

q r

s

Figure 2: Expression tree for the logical expression p AND (q OR r) OR s

• E AND F . The value of this expression is TRUE if and only if both E and
F are TRUE. It is FALSE, otherwise.

• E OR F . The value of this expression is TRUE if either E or F or both are
TRUE. It is FALSE, if both E and F are FALSE.

• E. The value of this expression is TRUE if E is FALSE, and vice versa.

Thus logical expressions can be built from the binary infix operators AND and OR
as well as the unary prefix operator NOT.
When all of the propositional variables in a logical expression are assigned truth
values, the expression itself acquires a truth value. We can evaluate a logical
expression just as we would with arithmetic or a relational expression. A good way
to visualize this fact is the deployment of so-called expression trees as depicted in
Figure 2. For a given truth assignment of each variable the tree is worked up from
the bottom producing truth values for each node. The truth value at the root is then
the truth value of the expression as a whole.
Formally a logical expression can be described as a function from the values of
its arguments to a value of the whole expression. To be more precise a logical
expression’s meaning is a function that takes truth assignments as arguments and
returns either TRUE or FALSE. Such functions are called Boolean functions and
defined below. Like arithmetic expressions, Boolean expressions can be thought
of as sets of pairs. The first component of each pair is a truth assignment, that
is a tuple giving the truth value of each propositional variable in some specified
order. The second component of the pair is the value of the expression for that
truth assignment.
Before we can explicitly define Boolean functions we have to introduce Boolean
domains:

Definition 3.3. A Boolean domain is a set consisting of exactly two elements
usually written as {0, 1} or {TRUE, FALSE}.

18 3 CONCEPTS AND TERMS

Throughout this work we will denote Boolean domains as B. Hence Boolean
functions can be defined as follows:

Definition 3.4. A Boolean function is a function of the form

f : Bk −→ B,

where B is a Boolean domain. The non-negative integer k is called the arity of
the Boolean function. If k = 0 the Boolean function f is constant which means it
always evaluates to the same element of B.

In Boolean functions we will use the following symbols to denote infix operators:
∨ for OR and ∧ for AND. Thus our introductory example can be expressed as a
Boolean function in the following way:

f : B4 −→ B : (p, q, r, s) ∈ B4 7→ p ∨ (q ∧ r) ∨ s.
It is convenient to display a Boolean function as a truth table, in which the rows
correspond to all possible combinations of truth values for the arguments. There
is a column for each argument and a column for the value of the function. Our
introductory example is evaluated in the truth table depicted in Table 1.

The example illustrates that four variables require 24 = 16 assignments in order to
fully evaluate all possibilities. This conjunction holds and in fact the truth table
for Boolean function of arity k consists of 2k row, one for each truth assignment.
Therefore it is highly complex to compare two Boolean functions as well as to
fully evaluate Boolean functions or to prove that no valid truth assignment exits for
a given Boolean function. We will discuss the complexity of this problem in more
detail in Section 3.3.
The importance of Boolean algebras for computer science goes back to 1938, when
it was proven that a two-valued Boolean algebra can describe the operation of
two-valued electrical switching circuits [44]. Table 2 depicts the truth table for the
222 = 16 possible Boolean functions of two binary variables of the form:

f : B2 −→ B, (p, q) ∈ B2 7→ f(p, q).

In addition to the two Boolean functions we have already met, hence AND i.e. F7

and OR i.e. F1, we want to draw attention to five additional Boolean functions of
two arguments, which will prove useful in the context of this thesis:

3.1 Boolean Functions and their representations 19

p q r s q ∨ r p ∧ (q ∨ r) p ∧ (q ∨ r) ∨ s
1 1 1 1 1 1 1

1 1 1 0 1 1 1

1 1 0 1 1 1 1

1 1 0 0 1 1 1

1 0 1 1 1 1 1

1 0 1 0 1 1 1

1 0 0 1 0 0 1

1 0 0 0 0 0 0

0 1 1 1 1 0 1

0 1 1 0 1 0 0

0 1 0 1 1 0 1

0 1 0 0 1 0 0

0 0 1 1 1 0 1

0 0 1 0 1 0 0

0 0 0 1 0 0 1

0 0 0 0 0 0 0

Table 1: Truth Table for for the logical expression p ∧ (q ∨ r) ∨ s

20 3 CONCEPTS AND TERMS

p q F0 F1 F2 F3 F4 F5 F6 F7

1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0 1 0

p q F8 F9 F10 F11 F12 F13 F14 F15

1 1 0 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0

0 1 1 1 0 0 1 1 0 0

0 0 1 0 1 0 1 0 1 0

Table 2: Truth Table for all possible Boolean functions Fi, i ∈ {0, 1, · · · 15} of two
binary variables

• F4, denoted with Boolean expression p ∨ q also referred to as Implication
in propositional logic, denoted with =⇒. The respective truth table is also
depicted in Table 3a.

• F6, denoted with Boolean expression (p ∧ q) ∨ (p ∧ q) also referred to as
Equivalence in propositional logic, denoted with⇔ or XNOR in digital logic.
The respective truth table is also depicted in Table 3b.

• F8 denoted with Boolean expression p ∧ q also referred to as NAND-operator.
The respective truth table is also depicted in Table 3c.

• F9 denoted with the Boolean expression (p ∧ q) ∨ (p ∧ q) also expressed
as Exclusive or, denoted ⊕ in digital logic. The respective truth table is
depicted in Table 3d.

3.1 Boolean Functions and their representations 21

p q p ∨ q
1 1 1
1 0 0
0 1 1
0 0 1
(a) F4 i.e.p ∨ q

p q (p ∧ q) ∨ (p ∧ q
1 1 1
1 0 0
0 1 0
0 0 1
(b) F6 i.e. (p ∧ q) ∨ (p ∧ q

p q p ∧ q
1 1 0
1 0 0
0 1 0
0 0 1
(c) F8 i.e. p ∧ q

p q (p ∧ q) ∨ (p ∧ q)
1 1 0
1 0 1
0 1 1
0 0 0
(d) F9 i.e. (p ∧ q) ∨ (p ∧ q)

p q (p ∨ q)
1 1 0
1 0 1
0 1 1
0 0 1

(e) F14 i.e. (p ∨ q)

Table 3: Truth Tables for Additional Logical Operators.

The representation of a Boolean function is not unique. In fact it can be represented
by an infinite number of Boolean formulae. Consider for example the simple
Boolean function f = p ∧ q, which is the same as

f = q ∧ p = (p ∧ q) ∧ (p ∧ q) = · · ·

A truth table is the simplest way of representing a Boolean function and starting
from here any Boolean function whatsoever can be represented by a logical expres-
sion using the operators AND, OR, and NOT. Finding the simplest expression for
a given Boolean function is generally hard. However, we can easily construct some
expression for any Boolean function. Starting with the truth table for the function,
we construct a logical expression of the form

m1 ∨m2 ∨ · · · ∨mn.

Each mi is a term that corresponds to one of the rows in the truth table evaluating
to 1. The terms mi are of special form and have to obey certain rules, which we
want to outline in the following:
A literal is a Boolean expression that is either a single propositional variable, such
as p, or negated variable NOT p, which we will in future denote p. Consider a
truth table consisting of k variables then each mi is the composition of k literals.
If in row i the variable p is of value 1 select the literal p otherwise choose p. If
we continue in this fashion mi is the logical conjunction of the literals. Clearly

22 3 CONCEPTS AND TERMS

mi can only evaluate to TRUE if all variables have the values that appear in the
corresponding row of the truth table.

Definition 3.5. Ifmi is constructed in the way describedmi will is called minterm.
If all minterms are combined using the operator OR the resulting expression

m1 ∨m2 ∨ · · · ∨mn

is called the disjunctive normal form (DNF).
The expression describes the Boolean function under consideration, because it has
the value 1 exactly when there is a minterm with value 1. A minterm cannot be 1
unless the values of the variables correspond to the row of the truth table for that
minterm. Thus the representation is correct.
In a dual way we can also construct a representation by defining a maxterm, which
is the disjunction of those literals disagreeing with the value of one of the argument
variables in that row. More precisely this means: if the row has value 0 for variable
p, select the literal p and if the value of that row for p is 1, choose p. If the maxterms
are combined conjunctively the expression is described in so-called conjunctive
normal form (CNF).
We can summarize the above as follows: A Boolean function f can be represented
using its minterms and maxterms. This disjunction of all minterms, where F is
mapped to 1 results in a DNF. Similarly, the conjunction of all maxterms, where f
evaluates to 0, results in a CNF.
As an example consider again

f : B4 −→ B : (p, q, r, s) ∈ B4 7→ p ∨ (q ∧ r) ∨ s.

whose truth table has been illustrated in Table 1. We extend this truth table by
adding an extra column to describe the corresponding minterms and maxterms.
The result is depicted in Table 4. Hence we can now formulate the two normal
forms:

1. DNF: f = m1 ∨m2 ∨m3 ∨m4 ∨m5 ∨m7 ∨m9 ∨m11 ∨m13 ∨m15.

2. CNF: f = m8 ∧m10 ∧m12 ∧m14 ∧m16.

In the same way we can also formulate normal forms for the Boolean functions
explicitly introduced in Table 3:

• F4:

1. DNF: (p ∧ q) ∨ (p ∧ q) ∨ (p ∧ q).

3.1 Boolean Functions and their representations 23

2. CNF: (p ∨ q).

• F6:

1. DNF: (p ∧ q) ∨ (p ∧ q).

2. CNF: (p ∨ q) ∧ (p ∨ q)

• F8:

1. DNF: (p ∧ q).

2. CNF: (p ∨ q) ∧ (p ∨ q) ∧ (p ∨ q)

• F9:

1. DNF: (p ∧ q) ∨ (p ∧ q).

2. CNF: (p ∨ q) ∧ (p ∨ q)

• F14:

1. DNF: (p ∧ q) ∨ (p ∧ q) ∨ (p ∧ q).

2. CNF: (p ∨ q)

We are now in the position to find a representation in CNF or DNF for every
Boolean function. Throughout this work we will restrict our attention to CNFs.
Finding assignments to the variables of a Boolean formula expressed in CNF is a
very prominent research subject. These problems are called Boolean Satisfiability
Problems or SAT-problems. They ask whether for a given Boolean formula
there exits an assignment for all variables involved such that the whole expression
evaluates to TRUE. In other words, the SAT-problem asks whether the variables of a
given Boolean formula can be consistently replaced by the values TRUE or FALSE
in such a way that the formula evaluates to TRUE. If such an assignment exists
the formula is called satisfiable or sat. On the other hand, if no such assignment
exists, the function expressed by the formula is FALSE for all possible variable
assignments and the formula is thus unsatisfiable or unsat. This decision problem
is of central importance in various areas of computer science, including theoretical
computer science, complexity theory, algorithmics, cryptography and artificial
intelligence.
In the following chapters we will propose the application of modern SAT solvers
to the scheduling problem. SAT solvers are very powerful tools from the field of
Electronic Design Automation and have contributed to dramatic advances in our
ability to automatically solve problem instances involving tens of thousands of

24 3 CONCEPTS AND TERMS

variables and millions of constraints (i.e. clauses). An extension that has gained
significant popularity since 2003 is Satisfiability modulo theories (SMT) that can
enrich CNF formulae with linear constraints, arrays, all-different constraints or
uninterpreted functions.
In Chapter 4 we will apply the techniques introduced here to formulate equations
modelling the scheduling problem and deploy SAT solvers to find solutions. This
approach is enhanced in Chapter 5 where we will also apply SMT solvers to the
scheduling problem.

p q r s q ∨ r p ∧ (q ∨ r) p ∧ (q ∨ r) ∨ s terms

1 1 1 1 1 1 1 m1 = p ∧ q ∧ r ∧ s
1 1 1 0 1 1 1 m2 = p ∧ q ∧ r ∧ s
1 1 0 1 1 1 1 m3 = p ∧ q ∧ r ∧ s
1 1 0 0 1 1 1 m4 = p ∧ q ∧ r ∧ s
1 0 1 1 1 1 1 m5 = p ∧ q ∧ r ∧ s
1 0 1 0 1 1 1 m6 = p ∧ q ∧ r ∧ s
1 0 0 1 0 0 1 m7 = p ∧ q ∧ r ∧ s
1 0 0 0 0 0 0 m8 = p ∨ q ∨ r ∨ s
0 1 1 1 1 0 1 m9 = p ∧ q ∧ r ∧ s
0 1 1 0 1 0 0 m10 = p ∨ q ∨ r ∨ s
0 1 0 1 1 0 1 m11 = p ∧ q ∧ r ∧ s
0 1 0 0 1 0 0 m12 = p ∧ q ∧ r ∧ s
0 0 1 1 1 0 1 m13 = p ∧ q ∧ r ∧ s
0 0 1 0 1 0 0 m14 = p ∨ q ∨ r ∨ s
0 0 0 1 0 0 1 m15 = p ∧ q ∧ r ∧ s
0 0 0 0 0 0 0 m16 = p ∨ q ∨ r ∨ s

Table 4: Truth Table for the logical expression p ∧ (q ∨ r) ∨ s including minterms
and maxterms.

3.2 Optimization 25

3.2 Optimization
This subsection presents the concept of mathematical optimization which we
want to deploy in order to compute optimal communication schedules for the
architectures under investigation. This introduction to optimization problems has
been inspired by [45].

Mathematical Optimisation

An amazing variety of practical problems involving decision making (or system
design, analysis and operation) can be cast in the form of a mathematical optimisa-
tion problem. Indeed, mathematical optimisation has become an important concept
in many areas. It is widely used in engineering, in electronic design automation,
automatic control systems, and optimal design problems arising in civil, chemical,
mechanical, and aerospace engineering. optimisation is used for problems arising
in network design and operation, finance, supply chain management, scheduling,
and many other areas.
In the scope of this work we propose a way to find the best solution to the scheduling
problem as with the proliferation of computers embedded in products, we have
seen a rapid growth in embedded optimisation. In these embedded applications,
optimisation is used to automatically make real-time choices and even carry out
the associated actions with no (or little) human intervention or oversight.
Embedded real-time optimisation raises some new challenges: in particular, it
requires solution methods that are extremely reliable, and solve problems in a pre-
dictable amount of time and memory. The proposed optimal scheduling framework
tackles both challenges and results in significant advancements with respect to
computation times and memory footprints.
Linear Programs play a central role in the modelling of optimisation problems
and therefore we will also go into further detail on the properties of CPLEX, the
state-of-the-art-solver introduced in Section 2.5.
In general a mathematical optimisation problem can be defined as follows:

Definition 3.6. A mathematical optimisation problem has the form:

minimize f0(x)

subject to fi(x) ≤ bi, i = 1 · · · ,m.

where

• f0 : Rn −→ R is called the objective function,

26 3 CONCEPTS AND TERMS

• fi : Rn −→ R, i = 1, · · · ,m are called constraint functions or con-
straints,

• x = (x1, x2, · · · xn) is called the optimisation variable

• and the constants b1, b2, · · · , bn are called the bounds of the constraints.

Definition 3.7. A vector x∗ is called optimal if it has the smallest objective value
among all vectors that satisfy the constraints, i.e.:

∀z ∈ Rn with f1(z) ≤ b1, f2(z) ≤ b2, · · · , fm(z) ≤ bm : f0(z) ≥ f0(x
∗).

The optimisation problem is an abstraction of the problem of making the best
possible choice of a vector in Rn from a set of candidate choices. The variable x
represents the choice made; the constraints fi(x) ≤ bi represent firm requirements
or specifications that limit the possible choices, and the objective value f0(x)
represents the cost of choosing x. (We can also think of f0(x) as representing the
value, or utility, of choosing x.)
A solution of the optimisation problem corresponds to a choice that has minimum
cost (or maximum utility), among all choices that meet the firm requirements.

Linear Optimisation and Simplex

As mentioned above an important class of optimisation problems is linear pro-
gramming (LP), in which the objective and all constraint functions are linear.
Corresponding to Definition 3.6 we can define linear optimisation problems:

Definition 3.8. A linear optimisation problem is of the following form:

minimize cTx

subject to αT
i x ≤ bi, i = 1 · · · ,m.

where the vectors c, a1, · · · , an ∈ Rn and scalars b1, · · · , bm are problem parame-
ters specifying the objective and constraint functions.

There is no simple analytical formula for the solution of a linear problem (as there
is for a least-squares problem), but there are a variety of very effective methods
for solving them, including the so-called simplex method, which is a common tool
included in state-of-the-art optimizing software. As the tools proposed in this thesis
also rely on this popular method we will outline its functionality in the following.
First of all we can determine that every LP can be formulated in a standard form
suitable for algorithmic implementations. In the standard form the objective

3.2 Optimization 27

function is maximized and formulated as an equation referred to as row 0, the
constraints are equalities and the variables are all non-negative. In order to achieve
this the following steps are required:

• If the problem is minimize cTx, convert it to maximize −cTx.

• Let z denote the value of the objective function, i.e. z = cTx. Hence row 0
can be denoted as:

z − cTx = 0.

• If a constraint is an inequality of the form

αi1x1 + αi2x2 + · · ·αinxn ≤ bi

introduce a non-negative slack variable si to convert it into an equality:

αi1x1 + αi2x2 + · · ·αinxn + si = bi.

• If a constraint is of the form

αi1x1 + αi2x2 + · · ·αinxn ≥ bi

convert it in to an equality constraint by subtracting a non-negative surplus
variable si. The resulting constraint becomes:

αi1x1 + αi2x2 + · · ·αinxn − si = bi

Usually the nature of optimisation problems requires all variables to be positive or at
least zero as they usually model some sort of produced material. For completeness
sake, however, we also consider variables unrestricted in sign:

• If some variable xj is unrestricted in sign, replace it everywhere in the
formulation with x′j − x′′j where x′j, x

′′
j ≥ 0 and xj = x′j − x′′j .

Once a linear optimisation problem has been converted into the standard form we
basically have to solve a system of linear equations, which is a standard routine.
However, if a solution exists, it has to be ensured that it is optimal with respect to
the objective function.
In order to find a feasible solution in the first place all non-basic variables, i.e.
those occurring in more than one equation, are set to zero. From here a basic
solution can be obtained by immediately. Now if all coefficients in row 0 are

28 3 CONCEPTS AND TERMS

non-negative the current basic solution is already optimal because z cannot be
increased any further. Otherwise pick a variable xj with a negative coefficient in
row 0, which we will call entering variable. The choice of this entering variable
is arbitrary as long as its sign is negative. The idea is to pivot in order to make
a non-basic variable a basic one. This change of basis is done using the famous
Gauss-Jordan procedure. Next the so-called pivot element is chosen according to
the ratio of the right hand side of the equation and the coefficient of the entering
variable. The pivot element is chosen as being the one of minimum ratio. Once the
pivot element has been identified we perform a Gauss-Jordan pivot. This results in
a new basic solution, which is again tested for optimality. This process is repeated
until all coefficients in row 0 are positive. Subsequently the current basic solution
will be optimal.
We will demonstrate the functionality of the simplex method:

Example 3.9. Consider the following linear optimisation problem:

maximize x1 + x2

2x1 + x2 ≤ 4

x1 + 2x2 ≤ 3

x1 ≥ 0, x2 ≥ 0.

Applying the techniques outlined in the description of the simplex method the
problem can be converted into standard form and we obtain a system of linear
equations:

z − x1 −x2 = 0 (1)
2x1 +x2 + x3 = 4 (2)
x1 +2x2 +x4 = 3 (3)

In this system of linear equations x3 and x4 are the slack variables while z = x1+x2
denotes the value of the objective function. Now the goal is to maximize z while
satisfying all equations. Complying to the notation introduced above x1 and x2
are the non-basic variables and thus x3 and x4 are set to zero to obtain a basic
solution. Here this yields:

x1 = x2 = 0, x3 = 4, x4 = 3, z = 0.

It is obvious that z can be increased by increasing x1 or x2 because both signs are
negative. As thus either x1 or x2 is applicable as entering variable. We will choose

3.2 Optimization 29

x1 and compute the ratios of the right hand side of the equation and the coefficient
of the entering variable. We obtain:

r1 =
4

2
= 2 in (2) and r2 =

3

1
= 3 in (3).

As r1 < r2 the choice for the pivot element is row (2) and thus the system of linear
equations can be transferred into

z −1

2
x2 +

1

2
x3 = 2 (4)

x1+
1

2
x2 +

1

2
x3 = 2 (5)

+
3

2
x2 −

1

2
x3+x4 = 1 (6)

with basic solution

x1 = 2, x2 = x3 = 0, x4 = 1, z = 2.

As x2 in line (4) is still of negative sign the current basic solution is not necessarily
optimal. Therefore, x2 becomes the new entering variable and simplex method is
performed again obtaining the following system of linear equations:

z +
1

3
x3

1

3
x4 =

7

3
(7)

x1 +
2

3
x3−

1

3
x4 =

5

3
(8)

x2 −
1

3
x3+

2

3
x4 =

2

3
(9)

yielding in the basic solution

x1 =
5

3
, x2 =

2

3
, x3 = x4 = 0, z =

7

3
. (10)

This solution is feasible as it fulfils all conditions of the linear optimization problem.
It is also optimal because all coefficients in row (7) are positive.

Pseudo-Boolean Optimisation

One of the key contributions of this thesis is the development of a model for the
optimal scheduling problem which purely relies on Boolean variables. Hence we
concentrate on the the pseudo-Boolean (PB) optimisation problem. Therefore, we
define PB constraints as follows:

30 3 CONCEPTS AND TERMS

Definition 3.10. A PB-constraint is an inequality of the form

C0p0 + C1p1 + Cn−1pn−i ≤ bi

where, for all i ∈ N pi is a literal and Ci and bi are integer coefficients.

A TRUE literal is interpreted as the value 1, a FALSE literal as 0. In particular
x = (1− x). As defined in Definition 3.6 a PB optimisation problem may consist
of an arbitrary number of PB constraints.

Definition 3.11. A coefficient Ci is called activated under a partial assignment
if its corresponding literal pi is assigned to TRUE. A PB-constraint is said to be
satisfied under an assignment if the sum of its activated coefficients exceeds or is
equal to the right-hand side constant Cn.

In a PB optimisation problem an objective function is a sum of weighted literals
on the same form as the left hand side on the constraints. The PB optimisation
problem is the task of finding a satisfying assignment to a set of PB-constraints
that minimizes a given objective function which in this work will be the total
transmission time for all messages of a given problem.
To be more precise assume we have a PB minimization problem with an objective
function f0(x) . A minimal satisfying assignment can readily be found by iterative
calls to the solver. First run the solver on the set of constraints (without considering
the objective function) to get an initial solution f0(x0) = k.
Then add a new constraint f0(x) ≤ k and restart the procedure. If the problem is
UNSAT, k is the optimum solution. If not, the process is repeated with the new
smaller solution.
Throughout this work we will distinguish between feasible and optimal solutions.
Feasible solutions refer to all values that satisfy the (PB-)constraints used to
formulate the optimisation problem. An optimal solution however is a feasible
solution that also fulfils the properties of an optimal vale defined in Definition 3.6.
To be more precise: An optimal solution is a solution which is feasible and for
which there exists no feasible solution which evaluates to a smaller value of the
objective function.
There are several ways how either optimisers for constraint programming - such as
CPLEX - or verification tools - i.e. Minisat+ or the SMT solver YICES2 - can be
deployed to compute optimal solutions. We will briefly outline the techniques used
in this work.
Basically in the scope of this work we can differentiate between three different
approaches:

3.3 Complexity 31

1. The first approach is the use of the state-of-the-art optimisation software
package CPLEX briefly introduced in Section 2.5. It uses different methods
of integer programming such as the popular Simplex algorithm. Usually
CPLEX is satisfied with feasible solutions if no better solutions can be
computed within a given interval which is user specified. Yet CPLEX can be
forced to take the entire search space into consideration which can have a
significant impact on the computation time. CPLEX performs its calculations
in a highly parallelised way using as many simultaneous threads as possible.

2. The second approach translates the problem into PB-constraints and uses a
SAT-based 0-1 integer linear programming (0-1 ILP) solver which is based
on a mixture of heuristics and Conflict-Driven Clause Learning (CDCL),
which is an algorithm for solving the SAT problem. It basically uses the
iterative calls to the solver as described above in an efficient way.

3. Finally we consider a Mixed Integer Linear Programming (MILP) problem
involving integers variables as well as non-integers. The main difference to
the approach described in 3.2 is that we can use integer variables rather than
only constants. This results on the one hand in a more compact representation
and on the other hand can also significantly reduce runtime in comparison to
CPLEX. Details will be outlined in the respective Section. Inspired by 3.2
we also suggest an incremental approach. This time we start with a given
lower bound and prove that no feasible (and hence no optimal) solution can
be found. Then the lower bound is incremented until the solver reports SAT.
The solution is then optimal by construction.

More details are provided on SAT and SMT in the respective chapters. We will
also show in detail how the scheduling problem can be modelled and solved as an
optimisation problem in Chapter 4.

3.3 Complexity
We use complexity theory to evaluate our proposed scheduler and to analyse its
scalability. Complexity theory is branch of theoretical computer science which
classifies computational problems according to their difficulty. Instinctively a prob-
lem is regarded as inherently difficult if its solution requires significant resources
regardless of the algorithm used. In the following section we will formalise this
intuition by introducing different complexity classes and relating these classes to
each other. We will outline why computational problems which seem at first glance
simple my still be hard to solve.

32 3 CONCEPTS AND TERMS

As a first example consider the simplex method introduced in the previous Section.
This algorithm is reliable and can easily solve problems with hundreds of variables
and thousands of constraints on a small desktop computer in a matter of seconds.
If the problem is sparse or has some other exploitable structure, we can often solve
problems with tens or hundreds of thousands of variables and constraints.
On the other hand even simple problems may be very hard to solve. Consider
the so-called Tautology Problem. A tautology is a logical expression whose
value is true regardless of the values of its propositional variables. There is a
straightforward way to test if a given logical expression is a tautology. Construct
a truth table with one row for each possible assignment of truth values to the
variables of the expression. The expression is a tautology if and only if every
row evaluates to TRUE. If the expression has k variables, then the table has 2k

rows. Thus a straightforward implementation of this algorithm is in the complexity
O(2k). This means for 30 variables, there are already more than billion rows.
These observations are typical of what happens when one uses an exponential-
time algorithm. An important part of this thesis is concerned with the analysis of
so-called scalability of our proposed scheduling framework.
In order to classify scalability and the subsequent computational costs we want to
introduce the concept of complexity classes. For notation we stick to [46]. The
definition of SAT problems as a special decision problem introduced in Section 3.1
can be generalized as follows:

Definition 3.12. A search problem is specified by an algorithm C requiring two
inputs, an instance I and a proposed solution S, and runs in time polynomial
in n =| I |, which defines the length of the instance. Furthermore S is called a
solution to I if and only if C(I, S) = TRUE.

This means a search problem has two defining characteristics: On the one hand
the correctness of any proposed solution S can quickly be verified. This is done
by applying the polynomial algorithm C which takes the given instance I and
the proposed solution S as an input and returns TRUE if and only if S is really a
solution to I . On the other hand the runtime of C(I,S) is bounded by a polynomial
in n, the length of the instance.

Example 3.13. SAT is a search problem. A given Boolean formula in CNF can
be regarded as an instance I. It is our goal to find a solution S, which meets the
particular specification to satisfy each clause. Therefore, S contains an assignment
for every variable in I . S is concise and its length is polynomially bounded by that
of I because it cannot consist of more variables. The polynomial-time algorithm C,
which takes I and S as an input, just has to check whether the assignment specified
by S indeed satisfies every clause in I.

3.3 Complexity 33

Definition 3.14. The class of all search problems defined in 3.12 is denoted NP .

There are many other examples of NP search problems that can be solved in
polynomial time such as finding shortest paths or minimum spanning trees of a
graph or maximal flows in a network. In all these cases, there is an algorithm
that takes as input an instance I and has a running time polynomial in n. If I is
satisfiable the algorithm returns a solution. Vice versa if no solution exists the
algorithm correctly returns UNSAT.

Definition 3.15. The class of all search problems that can be solved in polynomial
time is denoted P .

Clearly P is a subset of NP , i.e.

P ⊂ NP (11)

P is the abbreviation for polynomial,NP stands for "nondeterministic polynomial
time", a term going back to the roots of complexity theory.
Given the importance of the SAT search problem, researchers over the past 50
years have tried hard to implement efficient ways to solve it. Tremendous progress
has been made but due to theNP-complete nature of the problem, there are always
cases which cannot be solved fast. This means that even the fastest algorithms
currently in use may still perform exponentially on their worst-case inputs.
In order to fully classify the SAT problem in a complexity class we have to define
the reduction of a search problem:

Definition 3.16. Given two search problems A and B we can define a reduction
from a A to B as a polynomial-time algorithm f that transforms any instance I of
A to an instance f(I) of B together with a second polynomial-time algorithm h
mapping any solution S of f(I) to a solution h(S) of I.

If f(I) has no solution, then neither does I . The two translation functions f and h
imply that any algorithm for B can be converted into an algorithm for A. We can
now define the class of the hardest search problems:

Definition 3.17. A search problem is called NP-complete if all other search
problems reduce to it.

In fact SAT has been one of the first problems that was proven to be NP-complete
[29]. This means that all problems in the complexity class NP , which includes a
wide range of natural decision and optimization problems, are at most as difficult
to solve as SAT. There is no known algorithm that efficiently solves each SAT
problem and it is generally believed that no such algorithm exists. However, this

34 3 CONCEPTS AND TERMS

belief has not been proven mathematically. Resolving the question whether SAT
has a polynomial-time algorithm is equivalent to the P versusNP problem, which
is a famous open problem in the theory of computing and the converse inclusion of
equation 11.
Finally we can summarize the complexity classes essential for the scope of this
work:

1. P: Solvable in polynomial time.

2. NP: Positive answers can be verified in polynomial time.

3. NP-complete: The hardest or most expressive problems in NP .

Many other complexity classes can be characterized in terms of mathematical logic
but are not relevant to the algorithms explored in this thesis. This is due to the
fact that the optimal scheduling problem is also NP-complete and therefore all
algorithms tackling the SAT problem can be applied.
In order to prove this fact we will briefly describe one of the most famous prob-
lems from complexity theory: The travelling salesman problem (TSP) asks the
following question:

Given a list of cities and the distances between each pair of cities, what is the
shortest possible route that visits each city exactly once and returns to the origin
city?

It is assumed that the problem was firstly formulated in the 1930s and it is still
one of the most intensively studied problems in optimization [47]. In the theory of
computational complexity, the decision version of the TSP (where, given a length
L, the task is to decide whether the graph has any tour shorter than L) belongs
to the class of NP-complete problems. Thus, it is possible that the worst-case
running time for any algorithm for the TSP increases superpolynomially (but no
more than exponentially) with the number of cities. The job scheduling problem is
closely linked to the TSP if the following transformation is considered: the cities
can be regarded as jobs which have to be scheduled to an endsystem (salesman). A
detailed proof can be obtained from [48].

3.4 SAT Solving
We will conclude this theoretical chapter by introducing the basic principles of
modern SAT-solvers which intersect the theory of Boolean Function and Complex-
ity issues. SAT solvers determine whether a given Boolean formula can be satisfied

3.4 SAT Solving 35

and state a valid solution if one exists. For our purposes we expand SAT-solving
techniques to even find optimal solutions i.e. for PB-optimization problems.
The Boolean Satisfiability problem introduced in Section 3.1 is a well-known con-
straint satisfaction problem with many applications in the fields of VLSI Computer-
Aided Design (CAD) and Artificial Intelligence (AI). As outlined in the previous
Section it is known to be NP-complete. Still in practice there have been tremen-
dous advancements in the past two decades [49], which make modern SAT-solvers
applicable to huge problems consisting of millions of variables and constraints.
As we deploy modern SAT solvers throughout this work it is sensible to introduce
functionality and impact of these solvers. We will dedicate special emphasis to
the circumstances where they can quickly find results for NP-complete problems.
A simple brute force exponential approach can successively assign all variables.
For n variables this would require 2n different assignments in the worst case to
determine whether a solution exists. However, in practice modern SAT-solvers are
much more efficient:
In order to explain how modern SAT-solvers work we will define the terminology
of this Section following [50]. Most SAT-solvers use the CNF representation
discussed in Section 3.1. Recall that in CNF a Boolean Formula is represented
as a conjunction of clauses where each clause itself is a disjunction of literals. A
literal is either a Boolean variable or its negation. Note that a formula in CNF
is only satisfied if each clause is satisfied i.e. at least one literal in each clause
must be assigned to TRUE. A clause with at least two unassigned literals is called
unsatisfied. A unit clause is a clause where all literals are FALSE except one
which is unassigned referred to as the unit literal. Finally we denote a clause
where all literals are FALSE as a conflicting clause.
Most modern SAT-solvers are based on the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm illustrated in Algorithm 1. It was introduced in 1962 and is a
complete, backtracking-based search algorithm for deciding the satisfiability for
solving the SAT problem. The DPLL procedure is shown as SATsolve in Algorithm
4 and is based on three main engines: decision, deduction and diagnosis. The basic
SAT algorithm is a branch-and-search algorithm. An unassigned variable is called
free. Initially all variables are free.
All results computed in this thesis rely on conflict driven clause learning (CDCL)
SAT-solvers. Explicitly we deploy MiniSat 1.4 [39] and an integrated SAT solver
of Yices SMT which is similar to MiniSat [51]. As the YICES2 Tool paper
[52] states the integrated SAT solver "uses the CDCL approach. It is similar in
performance and implementation to solvers such as Minisat 1.4 (...) with extensions
to communicate with the theory solvers". Theory solvers are in detail explained in
Chapter 5.2.

36 3 CONCEPTS AND TERMS

Algorithm 1 DPLL-style SAT solver
1: procedure SATSOLVE(Boolean Problem in CNF)
2: if (Deduce()=CONFLICT) then return UNSAT; . Pre-process
3: end if
4: while (Decide()=SUCCESS) do . branch
5: while (Deduce()=CONFLICT) do . constraint propagation
6: blevel= Diagnose(); . conflict-driven learning
7: if blevel==0 then
8: return UNSAT
9: else

10: backtrack(blevel);
11: end if
12: end while
13: end while
14: return SAT
15: end procedure

Therefore, both SAT solvers deployed in this work follow the patterns outlined in
Algorithm 1. In both cases pre-processing is done by a deduction engine without
making any decision. Besides other techniques this engine applies the so-called
unit clause rule [53] repeatedly on unit clauses until no such clause exists or
a conflicting clause is detected. This rule basically works by identifying unit
clauses and setting the unit literal to TRUE in order to satisfy the corresponding
clause. Consecutive application of this rule is also denoted by Boolean Constraint
Propagation (BCP) or unit propagation. Furthermore the deduction engine can also
apply the so-called pure-literal rule, which identifies variables that appear only as
positive (or negative) literals in remaining unsatisfied clauses and assigning them
to TRUE (or FALSE respectively).
The main loop beginning in line 4 starts by invoking the decision engine wherein
a free variable is assigned to a value. This process is called branching literal and
the choice of this branching literal is crucial to the performance of the SAT solver.
After the branch the deduction engine is called which applies BCP until no more
unit clauses exist or a conflict occurs. In the first case the decision engine is called
again to make a decision at the next level, in the latter the diagnosis engine is
invoked to resolve the conflict. This involves learning reasons for the conflict and
backtracking. Abstractly speaking backtracking will undo assignments made under
BCP on a previous level on the decision stack derived from conflict analysis. Both
MiniSAT and the Yices’ integrated SAT-solver rely on a clause database where

3.4 SAT Solving 37

so-called learnt clauses are stored. This database is created when a constraint
becomes conflicting under the current assignment. The conflicting constraint is
then asked for a set of variable assignments that make it contradictory. For a clause
this would be all the literals of the clause which are FALSE under a conflict.
However, as the set of learnt clauses increase, propagation is slowed down. There-
fore, learnt clauses are deleted after a certain amount of time. We have also
investigated the influence of learnt clauses during our research but the results are
out of the scope of this work [54].
In both solvers under investigation the decision phase will continue until either
all variables have been assigned, in which case we have a model, or a conflict
has occurred. On conflicts, the learning the backtracking level is computed, the
procedure will be invoked and a conflict clause produced. Then the process is
repeated until either the solver can deduce that no valid assignment exists or
all clauses are satisfied. In the first case the solver will return UNSAT. In the
second case we can again distinguish between two possibilities: If all variables
are assigned the solver will precisely return this assignment - called a model - and
SAT. However, there may also be models where several variables are not assigned
because all clauses are already satisfied without explicitly assigning every single
variable. For instance the Boolean expression x1 ∨ x2 is satisfied regardless of the
assignment of x2 if x1 = TRUE.
The next chapter is dedicated to precisely describing the setup in which we can
apply these SAT-solvers. We will investigate how to formulate constraints as well
as objective functions in an appropriate way to express the NP-complete - and
thus computationally difficult problem - using Boolean expressions only. We will
outline how these state-of-the-art tools can be applied to solve the optimisation
problem and discuss limitations arising from scalability issues.

38 4 AN OPTIMAL SAT BASED SCHEDULER

4 An Optimal SAT based Scheduler

4.1 Introduction

This section discusses two major contributions of this thesis: At first we develop
a time-discrete model to illustrate the scheduling problem in an arbitrary on-chip
network. The endsystems are connected via switches to each other such as in
modern MPSoCs. In a second step we will demonstrate how an objective function
and subsequent constraints can be formulated in a way respecting the properties of
a PB-optimization problem as introduced in Chapter 3.2.
We will then apply MiniSat+, a pseudo-Boolean SAT-solver, in order to compute
optimal solutions with respect to minimal transmission times. We will compare
our results to the state-of-the-art software CPLEX and evaluate the performance.
We will show that the proposed scheduling framework is very efficient when
applied to small and medium sized benchmarks. In comparison to a CPLEX based
scheduler we can significantly accelerate runtime. Furthermore the decided model
presented reduces the number of constraints fed into the SAT-based solver by
identifying obsolete connections on the architecture under consideration. These
results have partially been published in [2].

4.2 System Model

Preliminaries

In a time-triggered network all message transmission is triggered by the progression
of time. Schedule tables define the points in time of all message transmissions with
respect to a global time base. The global time base can be a low frequency global
clock signal or the result of clock synchronization, thus also permitting different
high-frequency clock domains.
As we have discussed in Chapter 2.3 these schedule tables are either located in
network interfaces (e.g., GENESYS MPSoC [15])or in the switches (e.g. Athe-
real [16]). The point in the time of the injection of a message into the NoC or
MPSoC as well as the points in time for the redirection of messages between
switches are solely controlled by the schedule tables and independent of the be-
haviour of the endsystems.
Therefore the timing of the NoC or MPSoC can be analysed in isolation, because
the bandwidths, latencies and jitter are determined by the schedule tables. The
autonomy of the NoC or MPSoC simplifies worst-case execution time analysis
and facilitates temporal composability [6]. Therefore a sensible model must be

4.2 System Model 39

developed by considering the allocation of jobs to resources of the network at every
point in time.
In this thesis we will model the multicore system under consideration as a bidirec-
tional graph. It is distinguished between nodes n, jobs j and messages m where
n, j and m describe the total number respectively. The number of nodes n consists
of the number of switches s and the number of endsystems e resembling the NoC
or MPSoC under consideration, thus n = e+ s.
Throughout this work communication will be modelled by messages being sent
from one job to another. There are two ways in which communication can be
optimized: On the one hand jobs can be allocated to different nodes and on the
other hand it has to be determined by the schedule which path a message chooses
to travel from sending to receiving jobs. To restrict the degree of freedom we will
initially focus on the latter property and assign jobs constantly to nodes during this
chapter. This condition will be relaxed from Chapter 5 onwards.
Basically a message can be defined by specifying the sender and recipient. In this
context we also we allow logical dependencies of jobs i.e. messages may have to
wait for one another.
Throughout this work time is considered to be discrete therefore different points
in time - so-called timeframes - can be identified and easily distinguished. This
guarantees we can easily examine the status of each message and its location
during every timeframe. The model thus depends on n, j,m and the number of
timeframes, denoted by t, which are needed to complete all jobs. Our goal is to
calculate the minimal value for t.
The activities in the schedule tables can be temporally aligned in such a way that
collisions are avoided, thereby avoiding any need for dynamic arbitration in the
NoC or MPSoC as long as the system under consideration functions faultlessly
which is assumed throughout this chapter. Faults are randomly injected into the
system in Chapter 8 and the impact of our proposed scheduling framework on
fault-tolerant architectures is discussed in detail then.

Restriction to Boolean Variables

In this subsection we will substantiate how the application model described in the
previous subsection can be realized in order to apply Boolean SAT solving tech-
niques which will enable us to find an optimal solution to the scheduling problem
within an on-chip network. The schedule tables in the network interfaces require
temporal coordination of the injection times and paths of messages. Likewise,
switch configurations need to coordinate in such a way that the routing decisions
prevent collisions.

40 4 AN OPTIMAL SAT BASED SCHEDULER

Constant name Description

n Number of nodes

e Number of endsystems

s Number of switches

j Number of jobs

m Number of messages

t Number of timeframes

Table 5: Overview table with constants

Applying the proposed time discrete model guarantees the network can be specifi-
cally analysed. At every point in time it can be deduced which jobs are assigned to
an endsystem, which switches are used by messages and which nodes are idle. By
construction jobs communicate with each other via messages which are triggered
on behalf of the schedule computed. Messages have to respect logical dependencies
determined by the problem instance. The logical dependencies can be illustrated
using a directed acyclic graph (DAG). Jobs cannot be executed on the same endsys-
tem simultaneously. Therefore an endsystem can be labelled with the respective
job number or zero if the endsystem is idle. The traversal of a message thorough
the system under consideration can be depicted by stating every node visited on
the way from source to destination in the respective timeframe. Considering this
the following representation of the scheduling problem can be obtained:

n0
1 n0

2 n0
3 n0

4 · · ·
n1
1 n1

2 n1
3 n1

4 · · ·
...

...
...

...
nt
1 nt

2 nt
3 nt

4. · · ·

where ns
i describes the messages currently assigned to ni during timeframe s.

Let there be a link between two nodes n1 and n2. For demonstration purposes we
do not distinguish between switches and endsystems. Then executing for instance
a job j1 during timeframe t0 may result in a message being sent from node 1 which
arrives at node 2 in the consecutive timeframe t+ 1.
A path travelled by a message through the network can therefore be described
by formulating constraints describing how the behaviour of a certain node ni

in timeframe t influences the behaviour of another node nj in the subsequent

4.2 System Model 41

(a) Idle nodes 1 to 4 in consecutive timeframes. (b) Message M1 traveling from node 1 to node 2
in two consecutive timeframes.

(c) Different possibilities for message M1 to travel
from node 1 to node 2.

(d) Messages M1 and M2 traveling through the
system simultaneously without collision.

(e) Collisions of two messages on the same node
in the same timeframe must be avoided.

Figure 3: Schematic representation of the proposed model.

42 4 AN OPTIMAL SAT BASED SCHEDULER

timeframe t + 1. A detailed schematic representation is illustrated in Figure 3
which also considers different scenarios:

• In Figure 3a all nodes (i.e. switches and endsystems) are idle in all considered
timeframes.

• In Figure 3b a message is sent from node 1 to node 2 via a link connecting
both nodes.

• Likewise Figure 3c outlines two different possibilities for a message trav-
elling between two links. On the one hand the messages could possibly be
delivered directly from node 1 to node 2. On the other hand there also exists
an alternative route via node 3. Which route is favourable is determined by
the proposed scheduling framework. It optimises the total makespan and
guarantees to find the minimal number of timeframes required to complete
all jobs by sending all messages.

• Figure 3d depicts how messages can traverse the multicore system under
consideration simultaneously. Collisions on every node (i.e. switch or
endsystem) must be avoided at all times.

• The proposed scheduling framework identifies collisions as illustrated in
Figure 3e and only returns conflict-free schedules without collisions.

Translation into Boolean expressions

In order to apply the theory of PB-optimization outlined in Chapter 3.2 to the model
we have to translate the constraints into PB variables. Hence it is not sufficient
to assign a job ji to a node nj by simply labelling nj with the ji. Thus in order
to introduce Boolean variables we now assign ji performed by nj using one-hot
encoded variables. This means every node has to be described by m variables
in every timeframe, where m denotes the total number of messages that will be
triggered in the network. Given two jobs j1 and j2 that send messages m1 and m2

and a path between two nodes n1 and n2 we require a set of 4 Boolean variables
in each timeframe to describe the different possibilities of allocating the jobs as
illustrated in Table 6.
For every message and every node we use a Boolean variable which is set to 1 if the
corresponding message is currently allocated to the node. Otherwise the Boolean
variable is set to zero. Currently the model is subject to the following limitations:

4.3 MiniSat+ 43

Timeframe 1 Node 1 Node 2
x1, x2 x3, x4

Timeframe 2 Node 1 Node 2
x5, x6 x7, x8

...
...

...
Timeframe t Node 1 Node 2

x4t−3, x4t−2 x4t−1, x4t

Table 6: Scheduling two messages in t timeframes using Boolean variables only

1. A certain node ni can only perform one job ji per timeframe implying that
only one message can be sent at maximum by each node during this specific
point in time.

2. In order to be able to use our representation communication itself is modelled
by a message being allocated to different nodes in consecutive timeframes.
Therefore messages can not be buffered and have to travel through the
network immediately.

3. The allocation of jobs to nodes is a constant and the jobs are distributed
before the optimal solution is calculated.

Taking this into account we can compute the minimum travel time of all messages
in the system by maximizing the number of timeframes in which all nodes are
idle. Stemming from the ILP community, PB problems often contain an objective
function, a linear term that should be minimized or maximized under the given
constraints [55]. Adding an objective function is also an extension to standard SAT,
where there is no ranking between different satisfiable assignments. A detailed
explanation for the formulation of applicable constraints and the objective function
will be given in Section 4.3.

4.3 MiniSat+

In this section we will provide details how to apply constraints and formulate an
objective function using only Boolean variables. We follow the structure developed
in Section 4.2 and explain the transformation from MILP into Boolean formulae
because MiniSat+ requires the problem to be formulated in PB format, a mix of
inequality constraints over 0 − 1 variables. As we have seen in Chapter 3.2 an

44 4 AN OPTIMAL SAT BASED SCHEDULER

instance of a linear pseudo Boolean optimization problem can be formally defined
as follows:

minimize
n∑

j=1

cjxj (12)

subject to
n∑

j=1

aijlj ≥ bj (13)

xj ∈ {0, 1}, aij, bj ∈ Z, i ∈ {1, · · ·m}. (14)

where cj is a non-negative integer cost associated with variable xj; 1 ≤ j ≤ n and
aij denote the coefficients of the literals lj in the set of m linear constraints.

Constants

As illustrated in Table 9 the only numerical constants needed are the number of
nodes n, the number of jobs j with the corresponding number of messages m and
the of timeframes t. As it is our key objective to minimise t we need an initial
value t0 to start our analyse from. As described previously in Chapter 3.2 our
aim is to find a solution to the PB-problem in t0 timeframes and then feeding new
constraints into the PB-solver reducing the number of timeframes required.
While n,m and j can be obtained from the physical model and the randomly
generated input file the initial value t0 can easily be calculated by counting the
number of timeframes needed if all jobs were performed successively. This always
guarantees a feasible but obviously not necessarily an optimal solution to the
scheduling problem. Furthermore the allocation of jobs is fixed and cannot be
altered to optimise the result even further. Finally dependencies of jobs are a
constant obtained from the logical mode.

Decision Variables

In the following the variables needed in the optimisation process are introduced.
Opposed to the constants discussed above decision variables can be changed during
the optimisation process unless constraints are violated.

Variables to assign messages to nodes

Every node can be described by j = m variables in every timeframe, where mi ∈
{1, · · · ,m} is set to 1, if job mi is performed during the considered timeframe.

4.3 MiniSat+ 45

Using the formulation from Section 5.3 every ns
i now consists of m different

Boolean variables x1, · · · xm, xk ∈ {0, 1} for 1 ≤ k ≤ m. As a neat side effect the
equation

k=m∑
k=1

xk = 1 (15)

guarantees that only one job can be performed on each node during each timeframe
which complies with the regulations to the model described above. As all equations
arising from (15) have to be fulfilled m · n · t constraints are created and added
to the model. In this context it is important to mention that a number of these
constraints may be obsolete as they can describe executions of jobs that may never
occur in practice.

Possible Paths

For each message mi a path Pi can be fully described by adding all nodes visited
during the transmission process. Pi begins with the number of the endsystem the
sending job is located upon followed by the ids of the switches visited and finishes
eith the id of the endsystem the receiving job is located upon.
Using our representation from above we describe a possible path using logical
implications. Formally this means if the eventA describes the sending of a message
m1 at node n1 and B describes the following reception at node n2 assuming there
is a path between n1 and n2. Then applying formal logic this can be expressed as:
A −→ B or using propositional calculus as A ∨B which is obviously a Boolean
expression. If we consider the one-hot encoded variables to be xA and xB the
pseudo Boolean constraint is:

xB − xA ≥ 0. (16)

Scheduling Constraints

This part describes the constraints that are used in scheduling time-triggered and
event-triggered messages.

Connectivity Constraints

These constraints use the connectivity constants C in order to build the network
path topology. A message can visit the link between two nodes, a and b, only
if there is a direct connection between these two nodes. In the SAT model this

46 4 AN OPTIMAL SAT BASED SCHEDULER

condition is ensured by the use of implications i.e. a message m being sent from
node 1 in timeframe t can only result in the same message being received by node
2 in t + 1 if there is a direct link between the nodes. This is however only an
implication and not an equivalence as node 2 may remain idle for instance if m
takes a different route. This can be formulated as a constraint

xt2 − xt+1
1 ≥ 0.

Collision-Free Constraint

Collision free message transfer is guaranteed on the one hand by the constraints
formulated in (15) and on the other hand by ensuring that no two messages travel
the same link in the same timeframe by limiting the maximum arrival of messages
per node per timeframe to one.

Job Dependencies Constraints

Certain jobs cannot be triggered at any point in time but have to wait for the arrival
of a certain message before those jobs can actually send messages themselves. This
means constraints have to guarantee that only after the arrival of message m1 in the
fixed timeframe tf the message m2 can be triggered in tf + 1. In order to ensure
this all possible variables xtm1

describing the arrival of m1 from t = 0 until t = t1
are added and then compared to possible starting points of m2:

t=tf∑
t=0

xtm1
− xt+1

m2
> 0. (17)

(17) is only true for xt+1
m2

= 0 if at least one of the other variables is true. This
implies that m2 will not be sent without the arrival of m1 during a previous
timeframe.

Objective Function

The proposed optimisation process guarantees an optimal solution with respect
to time needed for all jobs to be performed successfully. Technically this means
that all job corresponding messages are sent and received in the least number of
timeframes possible. To realize this auxiliary Boolean variables a1 to at are created
for each timeframe from 1 to t. Whenever all nodes are idle during a certain
timeframe t̂ the respective auxiliary variable at̂ is set to zero. If on the other hand a

4.4 Results 47

least one job is performed on any node during t̂, the auxiliary variable at̂ is set to
one. Therefore the objective function can be formulated as:

minimize
t∑

k=1

ak. (18)

Application of MiniSat+

We propose the application of MiniSat+ [55] as a backend solver to compute
optimal solutions for the scheduling problem formulated in the previous subsection.
MiniSat+ has been developed from 2006 onwards as a SAT-based alternative for
PB optimization problems. As thus it combines the theoretical properties outlined
in Section 3.2 with the practical approach of a SAT solver discussed in Section 3.4.
MiniSat+ accepts input files exactly in the form outlined and handles the constraints
through translation to SAT without modifying the SAT procedure itself. As thus
the solver can take advantage of the significant improvements made over the last
decades as referred to in Section 2.6 dedicated to related work and in more detail
outlined in Section 3.4. The constraints are incrementally solved and the solution
is evaluated with respect to the objective function formulated in (18).
MiniSat+ is open source and executable on machines providing limited compu-
tational and memory resources. Therefore, it is also suitable for execution on
embedded systems which are usually subject to restricted performance.

4.4 Results

The comparison between SAT and CPLEX models is based on 9 example scenarios
that are fed equally into both model. These scenarios are generated using Stanford
Network Analyzer Platform library (SNAP) [56] which is widely used in numerous
academic researches. Each scenario comprises of the constants explained in detail
in Table 9 and can be depicted by a physical and a logical models. The physical
model consists of a bidirectional graph where the nodes resemble the endsystems
and switches and the edges show the connections between them. The logical model
is illustrated by a DAG where the nodes represent the jobs and the directed edges
specify the dependencies.
As an example consider an on-chip network with 10 nodes consisting of 5 switches
and 5 endsystems in which 5 jobs communicate and need to send 5 time-triggered
messages. The physical and logical models are depicted in Figure 7, where
Figure 7a depicts the physical connection among nodes with bi-directional links

48 4 AN OPTIMAL SAT BASED SCHEDULER

(a) Physical Model (b) TT Logical
Model

Figure 4: Model example with 10 Nodes, 5 Jobs and 5 messages.

and Figures 7b depicts the time-triggered logical model. The nodes represent the
jobs and the arrows represent the messages sent from one job to another job.
Table 9 shows the CPLEX input constants for the model in Figure 7 according to
Section 4.2. The first constant describes the network model (10, 5, 5) in which the
model consists of 10 nodes and 5 jobs sending 5 messages. The second constant
defines the node connectivity in the network C with bi-directional links. For
example the first node is connected to node 1, 2, 4, 6 and 8 and the last node is
connected to node 8. Constant 3 shows the jobs that send the messages, where
each job can send more than one message. For example job 1 is the sender of the
first message and job 2 is the sender of the messages 1 and 2.
The fourth constant describes the receiving jobs of messages. For example job 0 is
the receiver of messages 0 and 1, whereas job 1 is the receiver of messages 2 and 3.
The hop-to-hop transmission time T is defined in constant 6. For simplicity and
better understanding of the example all times of T are set to a constant with the
value of 3. Constant 7 describes the job execution times E and also here we set
them all to a constant value of 3.
The constant ALLOC defines the allocation of jobs to endsystems where jobs
cannot be allocated to switches (i.e., 0, 2, 4, 6 and 8). Also only one job can be
assigned to an endsystem (i.e., nodes 1,3,5,7 and 9).
On the SAT side there is no further distinction between switches and endsystems,
this is why we will refer to both as nodes in the following. In the SAT model
the number of nodes (10), the number of jobs (5) and the number of maximum

4.4 Results 49

Constant-No. Constant Name Data

1 n, j, m [10,5,5]

[[0,1,1,0,1,0,1,0,1,0],

[1,0,0,0,0,0,0,0,0,0],

[1,0,0,1,1,0,1,0,1,0],

2 C [0,0,1,0,0,0,0,0,0,0],

[1,0,1,0,0,1,1,0,1,0],

[0,0,0,0,1,0,0,0,0,0],

[1,0,1,0,1,0,0,1,1,0],

[0,0,0,0,0,0,1,0,0,0],

[1,0,1,0,1,0,1,0,0,1],

[0,0,0,0,0,0,0,0,1,0]]

3 S [1,2,2,3,4]

[[1,0,0,0,0],

[1,0,0,0,0],

4 D [0,1,0,0,0],

[0,1,0,0,0],

[0,0,0,1,0]]

5 T 30

6 U 3

7 E 3

8 ALLOC [1,3,7,5,9]

Table 7: CPLEX Input constants for model in Figure 7.

50 4 AN OPTIMAL SAT BASED SCHEDULER

timeframes (20) result in a total introduction of 10 · 5 · 20 = 1000 variables used to
describe the temporal SAT model described in Section 4.2.
As outlined constraints to each node in each timeframe are formulated to guarantee
sending and reception of all messages triggered by the jobs performed on the nodes.
This is done with respect to the randomly generated allocation of jobs - i.e. job 0 is
allocated to node 1, which means that during one of the timeframes t0 message 1
has to be triggered here and will be received by node 1 in t0 + 1. Simultaneously it
has to be ensured that no other message uses the link between node 0 and node 1
and that all dependencies from the logical model are respected.
While implementing these constraints it is already considered that some possible
message transfers only have to be considered in theory but never take place in
practice. For instance message 4 will never travel between nodes 1 and 2 and
as thus there is no necessity to formulate any constraints consisting of variables
describing the correlation between the link and message 4. Actually the entire
implementation of variables representing message 4 on node 1 and 2 is redundant
but is still implemented due to a clear representation of results explained in more
detail at the end of this section.
Runtimes for the calculations were obtained with CPLEX 12.6.1 and MiniSat+ 1.4
running on a 12 processor Intel(R) Xeon(R), 2.2 GHz server with the operating
system Linux Ubuntu 14.04.1. Table 8 depicts the execution times along with the
number of constraints for the different physical and logical topologies.
The experiments show on the one hand that MiniSat+ is able to reproduce the
results from CPLEX in terms of finding optimal solutions with respect to time
and furthermore can significantly decrease runtime of the solver. The result file,
however, needs further attention before the paths of all messages can be concluded.
This is due to the fact that MiniSat+ calculates the assignment of every Boolean
variable introduced when formulating the problem. From this one can immediately
deduct the minimal number of timeframes needed to execute all jobs from which the
total time taken is calculated by simply counting the auxiliary variables assigned to
1. In order to find all the paths travelled in the network the non-auxiliary variables
assigned to 1 have to be linked to the node, job and timeframe they describe.
This is also possible but not done within the execution time shown in table 8.
Comparing the paths is however necessary in order to review the SAT model with
respect to the CPLEX solution. By evaluating the paths for each message we
can definitely demonstrate that both approaches produce the same results and are
therefore equivalent under the agreed circumstances.
In general one can also witness that applying further additional conditions, for
instance in terms of logical dependencies, do not affect runtime considerably. This
is due to the fact that logical constraints have a strong impact on the search space

4.5 Summary 51

and eliminate a large number of possible solutions i.e. exclude the execution of
simultaneous jobs. This effect can be exploited, when generating the MiniSat+
problem sheet by not allowing certain jobs to be carried out during specific time-
frames. Further pre-processing the input of the SAT solver results in a significant
reduction of constraints that have to be passed into the solver. This results in a
further speed up when computing optimal schedules.

4.5 Summary
In this subsection we will summarize the results of comparing a SAT-based sched-
uler to a state-of-the-art scheduler based on CPLEX and outline how the proposed
model will be enhanced in the following chapters.
This chapter has introduced a novel approach to solve the scheduling problem. The
application of modern SAT solving techniques has been successfully implemented
and the corresponding mapping of the problem into a PB optimization has been
proposed. We have demonstrated we can not only reproduce the results based
on a state-of-the-art MILP scheduler based on CPLEX but we are also able to
significantly reduce runtime on the examples analysed. Furthermore we have been
able to reduce computational expenditure by downsizing the numbers of constraints
required to model the scheduling problem. The results give reason to further
investigate the strategy to apply tools from formal verification to the scheduling
problem. Our goal is the development of a framework to solve scheduling problems
on MPSoC architectures at runtime.
Therefore, it will prove sensible to further adapt our communication model in
two ways: On the one hand we have so far restricted our research to small sized
problems only masking complexity and scalability. Yet we can already detect
that due to one-hot encoding of variables the SAT-based approach will face severe
problems with respect to scalability. On the other hand we have so far only confined
our focus on a static allocation of jobs which considerably affects the flexibility of
the model and makes it less realistic.
Due to these considerations we will dedicate the following chapter to discuss a
more flexible approach deploying a state-of-the-art SMT solver allowing a more
compact representation of the scheduling problem because the application of the
integrated MILP-solver allows the use of integer variables which makes one-hot-
encoding strategies obsolete. Furthermore we are able to arbitrarily allocate jobs
to endsystems using integer variables. This increases the degree of freedom and
the possibilities to optimize communication because jobs can now be allocated
dynamically optimizing the number of switches needed for communication between
them.

52 4 AN OPTIMAL SAT BASED SCHEDULER

Scenario
Scenario

Param
eters

C
PL

E
X

M
iniSat+

N
o.

PhysicalM
odel

L
ogicalM

odel

R
S

C
S

Job
M

sgs
runtim

e
(s)

constraints
runtim

e
(s)

constraints

1
3

7
5

5
0.44

1221
0.022

255

2
4

8
3

3
0.92

1387
0.032

606

3
4

8
4

4
0.46

1367
0.02

771

4
4

8
5

5
1.80

2391
0.08

1003

5
5

5
5

5
0.24

1073
0.089

255

6
5

5
4

4
0.17

840
0.064

634

7
5

9
3

3
1.69

1891
0.048

706

8
5

8
3

3
0.42

1210
0.053

613

9
6

6
3

3
0.26

922
0.07

403

Table
8:C

om
paring

the
results

for9
exam

ple
scenarios

53

5 An Optimal SMT-based Scheduler

5.1 Introduction
This chapter extends our prior work on the application of SAT-solvers to scheduling
problems. It describes the second contribution of this thesis: Application of SMT
solvers to compute optimal solutions allowing for flexible allocation of jobs to
nodes. We will furthermore outline how the proposed scheduling framework can
be ported to an MPSoC-emulating system. We will demonstrate how to enable an
arbitrary allocation of jobs to nodes as well as multiple messages between them.
The proposed optimal scheduler in this section is based on an SMT problem and
deploys the state-of-the-art SMT-solver YICES2 [57] in its current version 2.3
[57]. Experimental results on randomly generated scenarios show how runtime and
scalability compare to a scheduler based on CPLEX. Furthermore it is simulated
how the SMT-approach can be parallelised and how distribution results in a sig-
nificant reduction of runtime even if the set-up is ported to a resource-constrained
embedded platform with limited memory and processing capacities.
The main contributions of the this chapter are as follows:

• Scheduling model optimized to SMT with high number of Boolean deci-
sion variables and effective clause learning.

• Parallelisation of incremental scheduling algorithm by simultaneously
using different makespan values at different endsystems.

• Low memory footprint enabling execution of scheduling algorithm on
target system as required for adaptive time-triggered networks.

• Experimental evaluation compared the SMT-based scheduler with a refer-
ence scheduler (i.e., MILP) in order to demonstrate correctness as well as
the benefits with respect to runtime and memory requirements.

The technical framework and the results of this chapter have partially been pub-
lished in [3]. It extends our prior work on the application of SAT-solvers to
scheduling problems, which was in detail outlined in Chapter 4.
The chapter is structured as follows: We will begin with an introduction to basic
SMT theory and outline the advantages of the proposed backend-solver Yices2.
Then we will explain in detail how the reference model has to be altered in order
to apply SMT. After comparing the novelties and benefits of the proposed SMT-
based communication model to other models we will be provide experimental
results on randomly generated benchmarks. We will conclude by reporting on

54 5 AN OPTIMAL SMT-BASED SCHEDULER

the performance of our proposed scheduling framework on an MPSoC emulating
architecture.

5.2 SMT Solving

An Introduction into SMT solving

Recent breakthroughs in SAT solving as outlined in more detail in Section 3.4
have enabled new approaches to software and hardware verification. Furthermore
existing SAT solvers can handle problems with millions of clauses and variables
that are encountered in bounded model checking, test-case generation, and certain
types of planning problems. SAT solvers can especially be applied to optimal
scheduling problems as described in the previous chapter. After SAT solving has
become a major tool in automated analysis of hardware and other finite systems it
has been subject to various enhancements. One of the evolutions of Boolean SAT
is Satisfiability modulo theories (SMT), which generalises SAT by adding equality
reasoning, arithmetic and other useful first-order theories to the solver.
An SMT-solver is a tool for deciding the satisfiability (or dually the validity) of
formulae in these theories. They have numerous applications in theorem proving
and other domains such as temporal or metric planning and test-case generation
and as we will outline in the following (real-time) scheduling. Just like a SAT
solver an SMT-solver proves the satisfiability of a given input formula. Yet the
input files may provide an enhanced level of complexity and are not restricted to
Boolean expressions: For instance propositionally complex formulae in theories
such as arithmetic and uninterpreted functions with equality can be handled. The
application of SMT-solvers allows us to check for satisfiability of formulae modulo
first-order theories. Using theory combination techniques, we can verify systems
using many-sorted first order logic where our terms are not constrained to a single
domain.
SMT-solvers have emerged in the last decade beginning in 2005 when the SMT
competition was held for the first time as a satellite event of the 17th International
Conference on Computer Aided Verification (CAV), which is commonly regarded
as the premier international conference in this prominent research area. Since then
this contention has become a regular annual event and has attracted attention from
prominent protagonists in industry i.e. Microsoft Research [58] and academia
i.e. Stanford Research Institute [51]. Hence SMT-solvers were firstly classified in
Armin Biere’s Handbook of Satisfiability in 2009 in [59].
Nowadays SMT-solvers are generally based on a cooperation of an integrated
SAT solver and a theory reasoner for the combination of theories understood by

5.2 SMT Solving 55

the SMT-solver. The propositional structure of the problem is handled by the
SAT solver, whereas the theory reasoner only has to deal with conjunctions of
literals. It has been shown that modern SMT-solvers perform particularly well on
NP-complete problems [60].
Just like previously in Section 3.4 refinements can be done by refuting models
of the propositional abstraction one at a time. This is also described in detail in
[60], where it stated that "(however,) in practice it is much more productive to
refute all propositional models that are spurious for the same reason. A model
of the abstraction is spurious if the set of concrete literals corresponding to the
abstracted literals satisfied by this model is unsatisfiable modulo the theory. Given
such an unsatisfiable set of concrete literals, the disjunction of the negations of any
unsatisfiable subset, also denoted an unsatisfiable core in literature, is a suitable
conflict clause. By backtracking and asserting the conflict clause, the SAT-solver is
prevented from generating the spurious model again". This means that the smaller
the clause, the stronger it is and the more spurious models it prevents. Therefore, an
optimal conflict clause, corresponding to a minimal unsatisfiable subset of literals
is desirable. We will outline this concept in more detail in Example 5.1.
In recent years several SMT-solvers have been developed on the basis of the
concepts outlined above. SMT-solvers apply different theories satisfying different
demands. Among those Microsoft Research’s contribution Z3 has emerged to
become a state-of-the-art tool [58]. Furthermore the tool developed by Stanford
Research Institute named YICES or YICES2 in its current version respectively,
deserves special attention. The latter one was introduced in 2006 featuring a
novel simplex based algorithm integrated with the classic DPLL procedure. This
provided a theory for linear and real arithmetic that established YICES as the top
SMT-solver. Two years later, in 2008, the first paper on Microsoft’s SMT-solver,
Z3, was published. Today both solvers are regarded as the leading tools in SMT
solving and only recently in January 2016 both Z3 and YICES2 were classified as
"state-of-the-art" SMT-solvers by "Lecture Notes in Computer Science Theoretical
Computer Science and General Issues" [61].
If the SMT competition is an indicator of how a solver performs with respect to its
contenders, then Z3 is would be a good choice. From 2010 onwards Z3 dominated
the competition every year even outperforming its competitors in 2012 without
actually submitting a new version. However, since then the actual competition was
diversified as a tribute to the various theories and applications of SMT-solvers.
Therefore, for example in the latest SMT-COMP in 2016 three tracks were offered:
the conventional main track, an application (i.e., incremental) track, and an unsat-
core track. Within each track there are multiple divisions, where each division
uses benchmarks from a specific logic or group of logics [62]. Both solvers

56 5 AN OPTIMAL SMT-BASED SCHEDULER

mentioned explicitly have performed well when using a combination of Boolean
and integer variables which in SMT-Lib terms is called applying the quantum-
free, uninterpreted functions with equalities logic (QF-UF) and linear arithmetic
(LA). These two theories exactly combine the necessary formulae for our approach
described in more detail throughout the next Section. In this context SMT-Lib
describes a standard input and theory format to compare different solvers which
has been established in its latest version in 2010 due to overwhelming success
of SMT solving [63]. Furthermore YICES2 also outperforms Z3 in the so-called
incremental track, which means that constraints are incrementally added to a given
problem. We will also deploy this technique in the following.
Currently YICES2 may be viewed as a more domain specific SMT solver in contrast
to the feature rich Z3 [64]. One of these features is the property to evaluate a model,
if one exists, with respect to an objective function. Thus Z3 allows the computation
of optimal solutions without any alterations to its source code. However, Z3 is not
open source and does not provide the source code for modification. Therefore, we
have refrained from using Z3. Furthermore one of the key contributions of this
work is an evaluation of the proposed scheduler on the target system itself. As we
have opted to emulate an explicit MPSoC architecture as a multicore Raspberry
Pi based platform for our purpose it is necessary for the SMT-solver integrated
into our framework to provide ARM support. Furthermore beginning in 2010 there
has already been research conducted on Time Triggered Ethernet Scheduling as an
SMT problem [25]. In this context Winfried Steiner proposed to deploy YICES2
as a backend solver [34]. We will compare our approach to Steiner’s latest work
which originated in 2015 [35] in Section 5.4 where we will discuss the benefits and
novelties of our proposed scheduling framework.
Due to the advantages outlined above we have chosen YICES2 (in the version
released on December 11, 2015, YICES2.4.2) to be included in our scheduling
framework. We will outline its functionality in the following section.

Properties and Functionality of YICES2

YICES2 supports the same logics as Z3, except for those involving non-linear
arithmetic which we will not consider in the scope of this work. It is designed to
be modular and extensible, to be efficient on a large class of problems which is
exactly the type induced by the optimal scheduling problem. YICES2 includes a
Boolean satisfiability solver and theory solvers for four main theories: uninterpreted
functions with equalities, linear arithmetic, bitvectors, and arrays. These solvers
can be combined as illustrated in Figure 5. The SAT-solver uses the CDCL
approach outlined in Chapter 3.4. It is similar in performance and implementation

5.2 SMT Solving 57

Figure 5: The modular structure of YICES2. The Arithmetic Solver deals with
linear integer and real arithmetic. It implements a decision procedure based on the
Simplex algorithm. The Bitvector Solver deals with the theory of bitvectors. The
Array Solver implements a decision procedure for McCarthy’s theory of arrays.
Illustration taken from [57].

to solvers such as MiniSat which is the backend of the solver suggested for the
PB-optimization problem in the previous section.
YICES2 can be conceptually decomposed into three main modules as depicted in
Figure 6:

• Term Database
YICES2 maintains a global term database in which all terms and types are
stored. YICES2 provides an API for constructing terms, formulae and types
stored in this database.

• Context-Management
A context is a central data structure that stores asserted formulae. Each
context contains a set of assertions to be checked for satisfiability. The
context-management API supports operations for creating and initializing
contexts, for asserting formulae into a context, and for checking the satisfia-
bility of the asserted formulae. Optionally, a context can support operations
for retracting assertions using a push/pop mechanism. Several contexts can
be constructed and manipulated independently. Contexts are highly cus-
tomisable. Each context can be configured to support a specific theory, and
to use a specific solver or combination of solvers.

• Model Management
If the set of formulae asserted in a context is satisfiable, then one can con-
struct a model of the formulae. The model maps symbols of the formulae to
concrete values.

58 5 AN OPTIMAL SMT-BASED SCHEDULER

Figure 6: Illustration of the modular structure of the proposed SMT-solver YICES2,
taken from [57].

The simplifier/internaliser component converts the format used by the term database
into the internal format used by the solver. In particular, the internaliser rewrites
all formulae in conjunctive normal form, which is used by the internal SAT-solver.
For example, a solver for pure arithmetic can be built by directly attaching the
arithmetic solver to the CDCL SAT-solver. Similarly, YICES2 can be specialised
for pure bitvector problems, or for problems combining uninterpreted functions,
arrays and bitvectors.
Thus as YICES2 offers the possibility to select different solvers or combinations
depending on the problem we will be attaching the arithmetic solver directly to the
SAT-solver. The Arithmetic Solver deals with linear integer and real arithmetic. It
implements a decision procedure based on the Simplex algorithm in the version
introduced in Section 3.9. This is one of the main advantages of the modular
structure of YICES2. Therefore, arithmetic can be built by directly attaching the
arithmetic solver to the CDCL SAT-solver.
We will outline the functionality of YICES2 in the following example, which was
inspired by [51] but has been slightly altered to comply to the simplex method
illustrated in Example 3.9.

Example 5.1. Let φ be a quantifier-free formula consisting of the following con-
straints:

• c1 : (2x1 + x2 ≤ 4) ∨ P1

• c2 : (x1 + 2x2 > 3) ∨ P2

• c3 : (x1 ≥ 0) ∨ P3

• c4 : (x2 ≥ o) ∨ P4

5.2 SMT Solving 59

where x1, x2, x3, x4 are of rational and P1, P2, P3 and P4 are Boolean. Assuming
all constraints have to be fulfilled a CNF-like representation would be:

φ = c1 ∧ c2 ∧ c3 ∧ c4.

As Example 5.1 is a generalization of Example 3.9 we know that φ is satisfied, for
the basic solution:

x1 = 0, x2 = 0,

as well as the optimal solution with respect to the objective function considered:

x1 =
5

3
, x2 =

2

3
,

and arbitrary Boolean values for P1, P2, P3 and P4.
Now YICES2 initially translates the problem into purely Boolean by introducing
auxiliary functions as follows:
Let φBool

1 consist of the following constraints:

• c1 : A1 ∨ P1

• c2 : A2 ∨ P2

• c3 : A3 ∨ P3

• c4 : A4 ∨ P4

withA1 = TRUE if and only if 2x1+x2 ≤ 4,A2 = TRUE if and only if x1+2x2 > 3,
A3 = TRUE if and only if x1 ≥ 0 and A4 = TRUE if and only if x2 ≥ 0.
YICES2 then calls the integrated SAT-solver (based on MiniSat) to check whether
φBool
1 is satisfiable. In this small example in CNF it can easily find a valid solution

and produce the following model:

P1 = P2 = P4 = TRUE and P3 = FALSE. (19)

Because of the P -variables the inequalities are obsolete. However, we can force
the SMT-solver to consider the equations by adding further constraints: Let φBool

2

consist of the following constraints:

• c1 : A1 ∨ P1

• c2 : A2 ∨ P2

• c3 : A3 ∨ P3

60 5 AN OPTIMAL SMT-BASED SCHEDULER

• c4 : A4 ∨ P4

• c5 : P1 = FALSE

• c6 : P2 = FALSE

• c5 : P3 = TRUE

• c6 : P4 = FALSE

Under these modifications the model from 19 is altered into

P1 = P2 = P4 = FALSE and P3 = TRUE, x1 = x2 = 0. (20)

In the following section we will give details how to model the objective function
explicitly using an incremental approach similar to the one introduced in Chapter
3.2.

5.3 Refinements and Implementation

In this section details how to formulate the scheduling constraints to be evaluated
in YICES2 are provided. As we have discussed in detail during the precious
section YICES2 is a widely recognized SMT-solver that decides the satisfiability
of formulae containing uninterpreted function symbols with equality, linear real
and integer arithmetic, bitvectors, scalar types, and tuples. We will limit ourselves
in the following to two data types to guarantee that computations can be carried
out in a reasonable time. Hence the proposed model is restricted to two data
types: integer and Boolean. On the one hand this extends the SAT-based model
proposed in the previous chapter. Furthermore the proposed approach allows a more
compact representation of the scheduling problem accounting. Also the dynamic
allocation of jobs to nodes and multiple messages between two endsystems are
now modelled resulting in a more realistic representation. On the other hand the
proposed SMT-based model does not use complex data structures such as arrays
or tuples which are a key element in the model presented in [34]. Furthermore
no quantifiers are required for the proposed model which significantly reduces
the search space for possible solutions. All integer variables are bounded and the
range is explicitly assigned. Further details on those boundaries and the difference
between the models are provided in Section 5.4. In the following the structure of
the SMT-based model and the necessary constraints are outlined.

5.3 Refinements and Implementation 61

Alterations to the Communication Model

In this subsection the general set-up of the networks analysed and the underlying
communication model are described: The physical topology of the network under
investigation is again described by an undirected graph G(V,E) where the vertices
in V consist of all the nodes and the edges E the set of communication links
between them. It is differentiated between nodes, jobs and messages, where
n, j and m denote their total numbers. The nodes are further classified into e
endsystems and s switches such that n = e+s. The representation can be deducted
from the physical description which is automatically generated using Stanford
Network Analyzer Platform library (SNAP) [56] - see Section 5.5 for details. As an
example consider Figure 1. To limit the complexity of the model only the sub-graph
consisting of switches and their connecting edges is considered for formulating
path-constraints: G′(V ′, E ′) with V ′ ⊂ V and E ′ ⊂ E . Jobs can only be allocated
to endsystems. Messages are sent between jobs respectively and may have to obey
logical dependencies. Those can be deducted from the logical model, which is
also generated randomly. An example is depicted in Figure 7. In Figure 7(a) the
physical model of a network consisting of 11 nodes, 8 endsystems, 3 switches and
its associated physical links, is pictured. Figure 7(b) represents the jobs that have to
be allocated to the endsystems. The directed edges between the jobs symbolise the
messages and the logical dependencies between them. For instance the message
from job 1 to job 0 can only be sent if job 1 received a message from job 4.
Jobs can communicate to one another by sending messages passing the commu-
nication links within the network visiting at least one switch between source and
destination. The traversal can be described by listing all nodes visited in this
process. Those lists are not necessarily equal as there may exist different paths
from source to destination. The transition of a message mi from one node k1 to
another node k2 is denoted by 〈mi

k1
,mi

k2
〉.

In order to pursuit the SAT approach introduced in the previous chapter time is still
considered to be discrete. Again different points in time so-called timeframes can
be identified and easily distinguished. This guarantees that one can examine the
status of each message and its allocation during every timeframe. To be consistent
on the notation the size of the model depends on n, j,m and the number of required
timeframes needed which are denoted by t.
As collisions of messages within an endsystem or a switch must be avoided only
a single message can be allocated to a node in a given timeframe. Therefore, in
every timeframe each node can be labelled with the respective message number
or zero if the node is idle. A node n1 is called idle in a given timeframe s if no
message is allocated to n1 in s. Considering this the following representation of

62 5 AN OPTIMAL SMT-BASED SCHEDULER

the scheduling problem can be obtained:

n0
1 n0

2 n0
3 n0

4 · · ·
n1
1 n1

2 n1
3 n1

4 · · ·
...

...
...

...
nt
1 nt

2 nt
3 nt

4. · · ·
where ns

i contains the message id of the message currently allocated to node ni

during timeframe s. If no message is allocated and the examined node is idle
ns
i = 0 in timeframe s.

As the SMT-based scheduler permits the use of integer valued variables a more
compact representation of the problem in comparison to a SAT-based scheduler
introduced in the previous chapter is achieved. Other enhancements include the
arbitrary allocation of jobs to nodes and the consideration of multiple messages
from one sender. As a consequence the model turns out to be much closer to reality
than the SAT-based communication model. Details will be provided in the next
sections.
As mentioned in Section 4.3 the SMT-based model is also subject to the following
conditions:

1. One job must only be allocated to exactly one endsystem. This assignment
cannot be altered in a different timeframe. Jobs must not be allocated to
switches and are assigned to endsystems only.

2. Jobs can communicate with one another by sending messages. In every
instance only be one message can be dealt with on a single switch.

3. Messages travel between two different jobs via switches and the links be-
tween them. Collisions must be avoided, therefore only one message can
be assigned to a switch or a link in a certain timeframe. As the edges of
the graph resembling the network under consideration are not directed in
the model it has to be ensured that neither two switches nor a switch and an
endsystem send messages to each other simultaneously.

4. Buffering and different communication channels within a single switch are
not considered.

5. Execution time and travelling time from one hop to another are assumed to
be one timeframe. All messages are treated as if they were equally sized and
can pass through a communication link within one timeframe. Bandwidth is
not considered.

5.3 Refinements and Implementation 63

Constant name Description

n Number of nodes

e Number of endsystems

s Number of switches

j Number of jobs

m Number of messages

t Number of timeframes

Table 9: Overview of the input parameters for the SMT-based model

Parameters

As illustrated in Table 9 the numerical parameters needed to generate the input
file are the number of nodes n, where it is distinguished between the number of
endsystems e and the number of switches s, the number of jobs j, the corresponding
number of messages m and the number of considered timeframes t. While n,m
and j can be obtained from the physical model, t is varied within a given range. For
every possible t from this range the proposed algorithm checks whether a satisfiable
solution exists. A feasible solution exits if and only if all jobs can be allocated
to nodes in a way that guarantees the reception of all messages considering all
temporal and logical constraints. The solver then generates a model which allows
the deduction of a schedule. If no allocation of jobs is possible for a given number
of timeframes t the scheduler returns unsatisfiable. By varying t an optimal solution
can be calculated. The necessary conditions are outlined in the following.

Incremental approach and boundaries

As described optimal solutions can be deducted by varying the number of time-
frames t of the problem instances fed into the solver. In order to reduce the problem
size it is necessary to determine which values for t have to be considered.
As an incremental approach is proposed a lower bound is suggested for t. A
lower bound can be deducted from the logical model by identifying the longest
sequence of messages depending on one another. If this sequence is denoted by
lmin scheduling is conducted with t = lmin as an initial value before incrementation.
Because logical dependencies must be obeyed a valid schedule for t′ < lmin cannot
exist. Therefore, the proposed incremental approach is complete.

64 5 AN OPTIMAL SMT-BASED SCHEDULER

Firstly it is checked if a valid schedule exists for lmin. If no valid schedule can
be found, i.e. YICES2 returns UNSAT, then lmin is successively incremented until
the solver returns SAT for a t′′ ≥ lmin which is then by construction the minimal
number of timeframes required and thus the optimal solution.

Variables and Constraints

In the following the necessary variables and the resulting constraints are outlined.
Their role within the reasoning process is also analysed. The following assumptions
are made in order to formulate the scheduling problem:

1. The nodes in the network are labelled from 0 to n− 1 where 0, 1, . . . , e− 1
denote the endsystems and e, e+ 1, . . . , n− 1 the switches.

2. For each switch si the number of adjoined endsystems is labelled by sie .

3. Messages denoted m1, · · · ,mn are not allowed to visit the same switch
repeatedly which means that no loops are allowed.

(a) Physical Model (b) TT Logical
Model

Figure 7: Model example with 11 nodes (3 switches, 8 endsystems), 6 jobs and 6
messages.

Assigning jobs to nodes

Considering the matrix representation established in Section 5.3 once a job ji is
allocated to an endsystem ej this assignment cannot be altered. Therefore, for
every job ji, i ∈ {0, . . . , j−1} an integer variable in the range Ω := 0, 1, . . . , e−1
is implemented independently of the timeframe. Jobs have to be assigned distinctly
and at maximum one job can be assigned to an endsystem.

5.3 Refinements and Implementation 65

Path

A message will travel from sender to destination via switches. This is modelled by
assigning the message id to the nodes passed in this process. The matrix structure
of the nodes can be deployed in this context. Assuming ni and nj are connected a
message m travelling from node ni via nj to nk in consecutive timeframes s, s+ 1
and s+ 2 the following condition has to be fulfilled:

ns
i = m→

(
ns+1
j = m ∧ ns+2

k = m
)
.

If there exits more than one path between source and destination the arising
constraints are formulated disjunctively. Let P1 to Pt denote the different paths
each containing a set of nodes passed as described above, then exactly one path
has to be chosen.

Collision-Free Constraint

Furthermore it has to be ensured that no two messages travel through the same link
in opposite directions during the same timeframe. Therefore, Boolean variables are
introduced for every edge in both directions for every timeframe - denoted lsninj

for
the link between nodes ni and nj in timeframe s. It is set to TRUE if the link is
busy. To avoid collisions the following condition must hold at all time:

lsninj
= TRUE → lsnjni

= FALSE.

As these constraints are modelled with Boolean variables only they can efficiently
be evaluated in the SAT-solver contained in YICES2. Further details are provided
in Section 5.4.

Message Trigger Constraint

For every message mi each possible path between two endsystems ei and ej needs
to be considered in every timeframe. For this purpose integer variables denoted by
pmis
eiej

for messagemi travelling from ei to ej triggered in timeframe s are introduced.
pmis
eiej

and can exclusively take the values 0 and message id mi. Hence it can be
ensured that every message is triggered by formulating:∑

pmis
eiej

= mi. (21)

Because equation (21) is integral pmis
eiej

must be integers.

66 5 AN OPTIMAL SMT-BASED SCHEDULER

Job Dependency Constraint

Certain messages cannot be triggered during arbitrary timeframes but have to wait
for the arrival of another message before the receiving jobs can actually send
messages themselves. This means constraints have to guarantee that only after the
arrival of message m1 in the fixed timeframe s the message m2 can be triggered in
s+ 1. In order to keep track of the messages that have reached their destination a
further integer variable is introduced for each message mi in every timeframe to
monitor its arrival. Denote these variables by ms

i for every timeframe s. It is set
to the message id mi if the message has reached its destination and is 0 otherwise.
For a message mj depending on the arrival of mi the following condition has to
hold in timeframe s′:

ms′

i = 0→ pmis
eiej

= 0 ∀s : 1 ≤ s ≤ s′. (22)

Combining the constraints (21) and (22) guarantees that two messages that depend
on each other are processed in the right order.

Computation of Optimal Solutions

The proposed optimisation process guarantees an optimal solution with respect to
time needed for all jobs to be performed successfully. In other words this means
that all messages are sent and received in the least number of timeframes possible.
By adapting an incremental approach every iteration generates a new problem file
providing a different number of timeframes. An optimal solution is found if a
problem file with s timeframes is proven to be unsatisfiable and the subsequent
iteration with s+ 1 timeframes returns SAT.
We will demonstrate our approach by an illustrative example:

Example 5.2. Allocate three jobs (j0, j1, j2) whose logical dependencies are il-
lustrated in Figure 8a to the architecture (physical model) depicted in Figure
8b.
Three messages are send:

• Message 1 from Job 1 to Job 0 (red),

• Message 2 from Job 2 to Job 0 (green),

• Message 2 from Job 2 to Job 1 (yellow).

A possible optimal solution allocates the following endsystems to the job variable
j0, j1, j2 to illustrate where they are executed:

j0 = 4, j1 = 2, j2 = 1.

5.4 Application of YICES SMT 67

(a) Logical
Model

(b) Physical Model

Figure 8: Illustration of Example 5.2

Figure 9: Possible Optimal Schedule for Example 5.2.

As a consequence the optimal schedule depicted in Figure 9 can be obtained. The
colours represent the messages 1 (red), 2 (green) and 3 (yellow), white boxes
labelled 0 represent idle endsystems or switches in the respective timeframe.

5.4 Application of YICES SMT
In the following the presented SMT-based scheduling problem is compared to
previously introduced SMT-based schedule synthesis for time-triggered multi-hop
networks [25]. Furthermore the advantages of the SMT-based representation by
exploiting the theory-combination method in YICES2 will be outlined. As the
presented model neither considers buffering nor different data link layers the
analysis is restricted to three sorts of constraints:

68 5 AN OPTIMAL SMT-BASED SCHEDULER

Collision free constraints

In order to benefit from the effects of YICES2’s integrated CDCL SAT-Solver
Boolean variables and expressions which can easily be transferred into Boolean
expressions are used wherever possible in the SMT-based model. The short and
compact representation of the path variables in Section 5.3 and the avoidance of
collisions in links in Section 5.3 guarantee a conflict free assignment of messages
to nodes. Furthermore Steiner refrains from the implementation of purely Boolean
constraints and guarantees contention-freedom by formulating ILP problems en-
suring that no two messages from the same source can be set off during the same
instance of a TT-network.

Path dependency constraints

Given a certain start job a message is triggered from an arbitrary node in a fixed
timeframe and traverses the network according to one of the corresponding path
constraints. In total this results in the deployment of 2 · l · t different Boolean
variables where t is the number of timeframes and l denotes the number of links
in the network. The corresponding path constraint assigns numerical identifiers
to the switches passed by a message. Therefore the required integer variables are
in the range r such that 0 ≤ r ≤ m and thus limited to m + 1 values. Instead in
Steiner’s and the presented CPLEX model the path-dependent constraints for the
dataflow path are formulated using tuples of integers. The traversal of message is
described by a tuple containing the links passed between sender and destination.
For each message every single link visited is stored. The transition from one node
to another is again controlled by ensuring that a message has to arrive at a node at
least one instance before leaving it. This results in an integral constraint for every
message and possible link between two nodes.

Message trigger constraints

In the presented model a pseudo-Boolean representation as illustrated in Section
5.3 is deployed to ensure that all messages are actually triggered. The solver will
internally convert this into a Boolean problem. Steiner uses end-to-end transmission
constraints to describe the maximum allowed end-to-end latency for a message as
linear equations for every message. Therefore an integer theory logic has to be
applied by the solver.
The SMT solver YICES2 used in the proposed scheduler includes a Boolean satis-
fiability solver and in addition theory solvers for four main theories: uninterpreted
functions with equalities (UF), linear arithmetic (LA), bitvectors (BV) and arrays.

5.5 Results 69

Details can be found in [57]. In YICES2, theory combination always involves UF
on one side and either AV or BV. Due to the use of tuples and arrays this approach
cannot applied to Steiner’s model.
As quantifiers are not used in the SMT-based model a range can be assigned to
all necessary variables. This significantly reduces the search space for possible
solutions. The domain used in all experiments conducted ranges from 0 to the
number of messages m where 0 denotes an idle node.

5.5 Results

The comparison between YICES2 and the CPLEX model is based on 17 example
scenarios that are applied to both discussed models. These scenarios are randomly
generated based on the SNAP library [56], where networks are constructed from a
given number of switches, endsystems and jobs required. The necessary messages
are generated based on the information of the jobs. Each scenario comprises of a
physical and a logical model, whose properties are described in detail in Section
5.3.
Experiments are executed using CPLEX 12.6.1 and YICES2.4 both running on an
Intel(R) Xeon(R), CPU E5645, 2.40GHz, 64 GB RAM with operating system Linux
Mint Release 13 (maya) 64-bit. This setup allows a comparison of performance
and an evaluation of the two models outlined.

Sequential approach

Table 10 depicts the execution times along with the number of constraints for
the different physical and logical topologies on both target systems in columns
labelled CPLEX and YICES2. As explained in detail in Chapter 5.3 scenarios
are distinguished by the number of switches (SW), endsystems (ES), jobs and
messages. The seventh column labelled "Timeframes" shows the least number
of timeframes needed to complete all jobs. The difference between the number
of timeframes and the lower bound allows to conclude how many iterations are
necessary to compute a result with the incremental solver proposed. The results
have been verified with the commercial MILP problem solver IBM CPLEX.
The results clearly indicate that the proposed SMT-based scheduler can compete
with state-of-the-art schedulers and is able to produce optimal schedules for the
scenarios investigated. This shows that the model presented in Section 5 is an
appropriate basis to compute schedules for distributed systems. Starting the incre-
mental search for a valid assignment of a lower bound lmin proved to be sensible
as on the one hand the number of variables and constraints is smaller if less time-

70 5 AN OPTIMAL SMT-BASED SCHEDULER

frames are available and on the other hand it has been observed that contradictions
i.e. unsatisfiable assignments are faster to find with YICES2. In over 70% of the
benchmarks the SMT-based scheduler generates a schedule in less time than the
CPLEX-based scheduler.
The last two columns of Table 10 also outline how runtimes of the SMT-based
solver increase when the framework is executed on a Raspberry. In general a
slowdown of at least one magnitude can be witnessed.

Memory Footprint

During the conducted experiments a significant reduction of the required amount of
memory was observed when applying the YICES2-based SMT solver. Experimen-
tal evidence is provided in Table 11. Here the peak amount of memory required
by the CPLEX-based scheduler is depicted and compared to memory footprints of
the SMT-based scheduler. It has been witnessed that the required memory of the
YICES2-based scheduler peaks when the satisfiability of the optimal solution is
verified i.e. when the minimal number of timeframes is found.
The effect described above can be witnessed most clearly when comparing sce-
narios for which the computation time of an optimal schedule exceeds 2 seconds.
This is usually the case if the number of messages is increased. Therefore the SMT-
based scheduler is more appropriate for application on a distributed embedded
system with limited processing and memory resources as the memory consumption
can be decreased by more than factor 100 in certain scenarios.

5.6 Execution on MPSoC-emulating target systems

It may be of vital importance to compute a schedule on the embedded system under
consideration itself. For instance in safety-critical environments components may
fail and therefore jobs cannot be executed on the endsystems they were originally
allocated to.
In order to emulate the application of the proposed SMT-based scheduler we have
successfully ported the framework on a Raspberry Pi2 Model B @ CPU 900MHz
x 4, with 927MiB system memory. This enables the evaluation of performance on
an ARM-cortex. In order to analyse the performance of this MPSoC emulating
architecture we repeated the execution of the experiments from the previous section.
We followed the same setup and also generated the problem files on the target
platform according to the description in Section 5.5. In order to provide a better
overview the execution times are provided in the final column of Table 10.
The first notable fact is the ability to actually compute optimal schedules on this

5.6 Execution on MPSoC-emulating target systems 71

Sc
en

ar
io

N
od

es
E

S
SW

Jo
bs

M
es

sa
ge

s
Ti

m
ef

ra
m

es
L

ow
er

B
ou

nd
C

PL
E

X
Y

IC
E

S2
Y

IC
E

S2
R

2
S1

18
14

4
5

6
9

3
0.

16
1.

18
72

.9
7

S2
17

14
3

11
17

13
4

18
1.

69
9.

63
21

2.
19

S3
26

21
5

11
16

21
7

9.
70

56
7.

22
4,

70
7.

00
S4

20
16

4
10

13
14

4
13

0,
37

6.
96

3.
87

21
1.

51
S5

12
9

3
9

10
12

3
4.

88
5.

14
55

.8
2

S6
17

13
4

8
11

14
4

7.
26

3.
03

18
2.

06
S7

15
12

3
8

8
12

4
3.

39
0.

42
34

.6
9

S8
10

8
2

7
11

13
4

0.
37

0.
57

18
.7

4
S9

12
10

2
6

8
10

3
0.

20
0.

61
12

.8
3

S1
0

25
20

5
5

4
6

2
0.

20
0.

19
55

.9
4

S1
1

25
20

5
6

7
14

4
1.

71
1.

07
17

8.
15

S1
2

25
20

5
8

11
14

4
9.

53
4.

54
52

1.
09

S1
3

24
20

4
10

12
12

4
3.

89
1.

74
19

9.
57

S1
4

24
20

4
15

25
17

5
>2

da
ys

10
7.

65
8,

81
3.

17
S1

5
24

20
4

19
26

19
6

>2
da

ys
46

.6
7

1,
42

7.
97

S1
6

30
27

3
20

35
26

6
>2

da
ys

52
3.

06
7,

88
7.

53
S1

7
27

24
3

24
41

32
7

>2
da

ys
24

,1
40

.8
8

11
7,

72
1.

69

Ta
bl

e
10

:R
es

ul
ts

fo
r1

7
sc

en
ar

io
s

co
m

pa
rin

g
C

PL
EX

-a
nd

Y
IC

ES
-b

as
ed

sc
he

du
le

rs
on

di
ff

er
en

tp
la

tfo
rm

s,
al

le
xe

cu
tio

n
tim

es
in

se
co

nd
s.

72 5 AN OPTIMAL SMT-BASED SCHEDULER

Scenario CPLEX YICES2 Proportion
S1 <1 6 -

S2 50 9 5.56

S3 153 38 4.03

S4 351 15 23.40

S5 20 6 3.33

S6 24 12 2.00

S7 <1 6 -

S8 15 5 3.00

S9 <1 4 -

S10 <1 5 -

S11 15 12 1.25

S12 26 17 1.53

S13 25 12 2.08

S14 >3,500 35 >100

S15 >1,600 39 >41

S16 >11,000 29 >379

S17 >8,400 941 >8

Table 11: Demonstration of the Memory peaks for CPLEX- and YICES2-based
schedulers in MB.

5.7 Summary 73

limited architecture. CPLEX does not provide support for ARM-cortices and can
therefore not be used as reference or in fact to compute new schedules on the
architecture itself if necessary. Due to the limited resources however we witness
the loss of one magnitude on average which still allows the computation of results
in reasonable time for small and medium-sized examples.
In order to further accelerate the computation of optimal schedules on the target
architecture itself we will propose different approaches to execute the proposed
framework in parallel in the next chapter, because modern multicore chips usually
provide idle resources which can be exploited.

5.7 Summary

The growing size of TT-networks and their increasing complexity demand high-
performance schedulers to plan the communication schedule. In this chapter the
formal scheduling constraints that apply in a time-triggered network-on-chip have
been defined in a way the state-of-the-art SMT solver YICES2 can be deployed
to compute valid schedules. Additionally an SMT-based scheduler, which is able
to compute optimal schedules for time-triggered architectures incrementally, has
been introduced.
The scheduler has been validated using an ILOG CPLEX based MILP model. It
has been shown that the scheduler based on the SMT-solver YICES2 is an effective
alternative to state-of-the-art schedulers. Furthermore it has been outlined how
porting the scheduler to a distributed embedded system enables the SMT-based
solver to execute the scenarios on the target system itself. Finally it has also been
demonstrated that applying the SMT-based scheduler could significantly reduce
the amount of memory required especially on larger benchmarks.
We successfully implemented a complete scheduler which also allocates jobs. The
incremental approach chosen guarantees an optimal allocation of jobs minimising
the overall makespan. The general problem of finding optimal communication
schedules is, as discussed in detail previously,NP-complete and therefore scalabil-
ity is an important issue especially as it is estimated that the number of endsystems
on future architectures will grow exponentially.
The development of an efficient scheduling framework which can be deployed to
full extend even in resource constraint systems (i.e. low memory or small CPUs)
becomes of vital importance. This is due to the fact that safety-critical embedded
systems may only have to perform unpretentious tasks requiring limited hardware
and rather focus on reliability and persistence.
Therefore we will dedicate the next Chapter to discuss different parallel approaches
to accelerate the proposed scheduling framework and reduce computation time.

74 5 AN OPTIMAL SMT-BASED SCHEDULER

We will thus show how parallel checks for satisfiability of problem instances can
not only compensate but significantly reduce runtime.
Obviously it is important to investigate different strategies to further reduce com-
putation time of optimal schedules on the one hand. On the other hand it may
prove sensible to debate under which conditions feasible solutions are sufficient.
Therefore we will investigate the trade-off between computation costs and quality
of the solution if different, not necessarily optimal methods are applied, to the
scheduling problem. During this process we will intensively compare the proposed
SMT-based scheduler to the application of heuristics to compute feasible but no
longer optimal schedules.
Finally our objective will be to work towards online verification in safety-critical
systems where for instance jobs could be rescheduled during runtime if either
a communication link, a switch or an endsystem fails. We will investigate this
complex in Chapter 7.

75

6 Parallel Computation of Schedules

6.1 Introduction
The objective of this chapter is the discussion of different attempts to use paral-
lel computing to accelerate the computation of schedules for the systems under
consideration. We will begin by investigating the impact of parallel computing on
optimal schedules applying the proposed scheduling framework by simultaneously
checking different problem instances for satisfiability. We will demonstrate how
the parallel execution of the proposed scheduling framework actually allows us
to compare the performance on an MPSoC emulating target system to runtimes
obtained from regular machines with large memory and chip resources.
In addition to this we will also show how the so-called dominator concept can
be applied to split the logical dependencies before computing schedules. This
technique may sacrifice optimality but on the other results in a significant reduction
of the problem size. This is due to the fact that the logical dependencies are
distributed into two problem instances which can be scheduled in parallel. We will
evaluate both approaches on large and medium sized benchmarks. For this purpose
we will also develop a three-dimensional, regular mesh to provide the necessary
freedom of allocation for the second approach.
Both approaches have already been partially published in [3] and [4] respectively.

6.2 Parallel Checks for Satisfiability
Recalling the results from Table 10 in Section 5.5 it can be detected that porting the
framework to the Raspberry-based embedded platform results in a significant dete-
rioration in performance by at least one magnitude for each scenario. However, the
incremental approach chosen can easily be distributed to different available com-
putational cores by simultaneously checking the problem instance for satisifiability
allowing a different number of timeframes in parallel.
More explicitly this means in the most basic version to check simultaneously
whether a given scheduling problem can be solved in t1 or t2 timeframes for
t1, t2 ∈ N, t1 < t2. Three different results are possible:

1. The proposed scheduling framework reports UNSAT for t1 and t2. In this
case we will continue the incremental approach with t′1 and t′2 where t′1, t

′
2 ∈

N, t′1 < t′2 and t′1, t
′
2 > t2.

2. The proposed scheduling framework reports UNSAT for t1 and SAT for t2.
In this case the optimal solution is located between t1 and t2. Therefore, we

76 6 PARALLEL COMPUTATION OF SCHEDULES

continue with t′1 and t′2 where t′1, t
′
2 ∈ N and t1 < t′1 < t′2 < t2.

3. Theoretically it possible that the proposed scheduling framework reports
SAT for t1 and t2. In this case we will continue the incremental approach
with t′1 and t′2 where t′1, t

′
2 ∈ N, t′1 < t′2 and t′1, t

′
2 < t1. However, if t1 is

chosen according to the lower bound this scenario cannot occur.

In the following part we will generalise this concept to n computation nodes. For
this purpose we require n different numbers of timeframes which will be denoted
t1 < t2 < · · · , < tn and will be simultaneously checked for satisfiability. The
computations t1 to tn will be performed in parallel. Therefore, if YICES2 returns
UNSAT for a value ti ∈ {t1, t2 · · · tn} all runs for t < ti can be aborted immediately
because there cannot be a solution requiring less timeframes. Vice versa if YICES2
returns SAT fora value tj ∈ {t1, t2 · · · tn} all all runs for t > tj can be terminated
as they must return feasible, yet not optimal, solutions by construction.
We will suggest three different approaches to define sensible numbers of timeframes
to start. The following approaches have been investigated:

1. For n computation nodes calculate schedules for t, t + 1, · · · , t + n − 1
simultaneously.

2. For n computation nodes calculate schedules for t, t+ 2, · · · , t+ 2(n− 1)
simultaneously.

3. For n computation nodes calculate schedules for t, t + n, t + 2n, · · · , t +
n(n− 1) simultaneously.

We will denote an optimal solution t̂. The essential property of t̂ can be described
by the fact that YICES2 returns SAT for t̂ and UNSAT for t̂ − 1. Now we can
formulate criteria for termination of the approaches described above. Approach 1
and 2 will terminate automatically as soon as an optimal solution is found. The
third approach will firstly define the set {t′, t′+1, · · · , t′+n] where t̂ is located for
t′ ∈ {t1, t+ n, t+ 2n, · · · t+ n(n− 1)} with YICES2 returning UNSAT for t′ and
SAT for t′+n. Once the set containing the optimal solution has been identified only
one further execution of the framework is required checking t′, t′+ 1, · · · t′+n− 1
for satisfiability simultaneously. All proposed strategies are also depicted in Figure
10.

6.3 Results 77

Sc
en

ar
io

N
od

es
SW

Jo
bs

M
es

sa
ge

s
Ti

m
ef

ra
m

es
L

ow
er

B
ou

nd
C

PL
E

X
Y

IC
E

S2
Y

IC
E

S2
R

2
D

is
tr

ib
ut

ed
R

2
S1

18
4

5
6

9
3

0.
16

1.
18

72
.9

7
1.

41
S2

17
3

11
17

13
4

18
1.

69
9.

63
21

2.
19

41
.0

1
S3

26
5

11
16

21
7

9.
70

56
7.

22
4,

70
7.

00
23

7.
34

S4
20

4
10

13
14

4
13

0,
37

6.
96

3.
87

21
1.

51
10

.8
4

S5
12

3
9

10
12

3
4.

88
5.

14
55

.8
2

1.
32

S6
17

4
8

11
14

4
7.

26
3.

03
18

2.
06

14
.9

5
S7

15
3

8
8

12
4

3.
39

0.
42

34
.6

9
0.

32
S8

10
2

7
11

13
4

0.
37

0.
57

18
.7

4
0.

71
S9

12
2

6
8

10
3

0.
20

0.
61

12
.8

3
0.

28
S1

0
25

5
5

4
6

2
0.

20
0.

19
55

.9
4

0.
61

S1
1

25
5

6
7

14
4

1.
71

1.
07

17
8.

15
3.

89
S1

2
25

5
8

11
14

4
9.

53
4.

54
52

1.
09

16
.6

2
S1

3
24

4
10

12
12

4
3.

89
1.

74
19

9.
57

8.
45

S1
4

24
4

15
25

17
5

>2
da

ys
10

7.
65

8,
81

3.
17

56
0.

00
S1

5
24

4
19

26
19

6
>2

da
ys

46
.6

7
1,

42
7.

97
35

2.
84

S1
6

30
3

20
35

26
6

>2
da

ys
52

3.
06

7,
88

7.
53

4,
44

9.
49

S1
7

27
3

24
41

32
7

>2
da

ys
24

,1
40

.8
8

11
7,

72
1.

69
10

5,
86

4.
95

Ta
bl

e
12

:C
om

pl
et

e
ov

er
vi

ew
of

ex
ec

ut
io

n
tim

es
fo

r1
7

sc
en

ar
io

s
co

m
pa

ri
ng

C
PL

E
X

-a
nd

Y
IC

E
S2

-b
as

ed
sc

he
du

le
rs

on
di

ff
er

en
tp

la
tf

or
m

s.
Y

IC
E

S2
R

2
de

no
te

s
ex

ec
ut

io
n

tim
e

on
R

as
pb

er
ry

Pi
2.

D
is

tr
ib

ut
ed

R
2

de
no

te
s

fa
st

es
tp

ar
al

le
l

ex
ec

ut
io

n
ap

pr
oa

ch
.A

ll
ex

ec
ut

io
n

tim
es

in
se

co
nd

s,
nu

m
be

ro
fe

nd
sy

st
em

s
si

m
ila

rt
o

Ta
bl

e
10

.

78 6 PARALLEL COMPUTATION OF SCHEDULES

Figure 10: Parallelisation of incremental scheduling

6.3 Results
For our experiments we choose n = 6 compute nodes as our MPSoC emulating
platform consists of six Raspberry Pis connected via a single switch. The results
thus are again obtained using six Raspberry Pi 2 Model B @ CPU 900MHz x 4,
with 927MiB system memory. They are used to simulate the parallel execution of
the proposed SMT-based scheduler on a system emulating an embedded system
with restricted memory and limited computational properties.
The strategies to distribute problem instances are outlined in the previous subsec-
tion: We explicitly consider the first approach and simultaneously run six successive
problems beginning with t0 = lmin many timeframes, increasing timeframes respec-
tively. In this context lmin denotes the lower bound depicted in the seventh column
of Table 12. All six runs can be aborted if the largest t = t0 + 5 returns UNSAT as
all instances with a lower number of timeframes must be UNSAT by construction.
Then continue the reasoning process starting with t0 + 6, t0 + 7, . . . , t0 + 11. We
continue in this fashion until optimal neighbours are found.
Table 12 serves as an overview illustrating the total experimental setup. In the final
column the most successful (i.e. fastest) parallel approach is depicted. Thus the
performance can be evaluated in comparison to the sequential execution scheme
on the Raspberry Pi 2 and also on the same reference computer, we have applied to
execute CPLEX.
In the following Table 13 the results for the three different parallel approaches are

6.3 Results 79

outlined in more detail. The final column of Table 12 is broken to explicitly depict
the performance of the three strategies outlines in Section 6.2.

Scenario Approach 1 Approach 2 Approach 3
S1 3.17 2.43 1.41

S2 66.53 59.86 41.01

S3 307.49 399.16 237.34

S4 19.38 24.87 10.84

S5 2.19 1.32 1.32

S6 14.95 22.15 14.95

S7 1.27 1.27 0.32

S8 2.51 2.51 0.71

S9 0.99 0.99 0.28

S10 2.87 1.24 0.61

S11 6.2 10.55 3.89

S12 31.96 42.64 16.62

S13 17.44 20.75 8.45

S14 779.5 719.43 560

S15 413.67 586.29 352.84

S16 4618.32 4641.63 4449.49

S17 106510.89 106510.89 105864.95

Table 13: Scheduling performance of three different parallel strategies, all runtimes
in seconds

Results show that runtime can be significantly reduced by applying parallelisation.
As depicted in the last column of Table 12 this strategy results in a significant
reduction of runtime enabling the SMT-based scheduler to compete with the results
obtained incrementally using a high performance machine. Special attention should
be dedicated to the results for benchmarks S5, S7 and S9. In these three scenarios
the parallel approach executed on an MPSoC emulating target system outperforms
the results obtained on the high performance machine regardless of applying
YICES2 oder CPLEX. Again we refer to Table 10 for further details.

80 6 PARALLEL COMPUTATION OF SCHEDULES

Figure 11: A logical model for 24 jobs

6.4 Dominator-based Partitioning

In the following a strategy using so-called graph dominators is discussed which
will enable us to partition the logical model and hence compute optimal solutions
for smaller sub-problems. These solutions will be combined into a global schedule
which will no longer be optimal but feasible.
As we have seen the computation of optimal schedules is time-consuming as the
scheduling problem is known to be NP-complete [29]. Therefore, it is sensible
approach to partition the scheduling problem into smaller sub-problems, which
can then be scheduled in parallel before combining the resulting schedules into
a global schedule for the system under investigation. We will discuss a concept
based on graph dominators to partition the logical model. The partitions created
will also be referred to as clouds or splits.
Dominators were already introduced in 1959 to examine flow diagrams [65] and an
efficient algorithm was implemented in 1979 [66]. Dominators provide information
about origin and end of re-converging paths and can be used to create possible
partitions of the network under investigation. Dominators are widely used in the
analysis of graphs and flowcharts for instance in logic synthesis, decomposition and
industrial circuit designs [67]. Dominator trees can be calculated with a complexity
of O((V + E)log(V + E)) [68], where V and E denote the numbers of vertices
and edges in a directed flow graph respectively. The notations and definitions
outlined in [67] are adapted in the following.
In a directed graph (in our case the logical model G(V,E)) a dominator u ∈ V of
a vertex v ∈ V with respect to some vertex w ∈ V is a vertex which is contained in
every path starting from v to w. The set of dominators of some vertex u ∈ V with
respect to some vertex w ∈ V is denoted Doms(v, w). The immediate dominator
z of a vertex v 6= z with respect to some vertex r dominates v and itself and does

6.4 Dominator-based Partitioning 81

Figure 12: Dominator tree for the logical model depicted in Figure 11

Figure 13: Model of three-dimensional Distributed System with 32 endsystems
and 8 switches

82 6 PARALLEL COMPUTATION OF SCHEDULES

not dominate any other dominator of v and is denoted by z = idom(v, r). The
edges

{
〈idom(w, r), w〉|w ∈ V − {r}

}
form a directed tree rooted at r which

is called the dominator tree. As an example consider the dominator tree of the
logical model depicted in Figure 11 which is illustrated in Figure 12. The complete
transformation process is simulated in an illustrative example in the next section.
Dominators provide a general mechanism for identifying so called re-converging
paths in graphs. Two or more paths are said to be re-convergent if their source and
destination nodes are similar. If a vertex u is the origin of a re-converging path, then
the immediate dominator of u is the earliest point at which such a path converges.
Because the main aim when splitting the logical dependencies is minimising the
communication between the emerging partitions, a partition containing v should
also contain Doms(v, w). A complete illustrative example for the graph in 15a is
given as a conclusion at the end of the following section.
The traversal can be described by listing all nodes visited in this process. Those
lists are not necessarily equal as there may exist different paths from source to
destination. In order to avoid collisions of messages on a switch or an endsystem
only a single message can be allocated to a switch or and endsystem in a given
timeframe. Therefore, in every timeframe each node can be labelled with the
respective message number or zero if the node is idle. A node n1 is called idle in
a given timeframe s if no message is allocated to n1 in s . Considering this the
following representation of the scheduling problem can be obtained:

n0
1 n0

2 n0
3 n0

4 · · ·
n1
1 n1

2 n1
3 n1

4 · · ·
...

...
...

...
nt
1 nt

2 nt
3 nt

4. · · ·
where ns

i contains the message id of the message currently allocated to node ni

during timeframe s. If no message is allocated and the examined node is idle
ns
i = 0 in timeframe s.

Dominator-Orientated Decomposition of Logical Dependencies

In this section the partitioning techniques and the static compaction are described
and the proposed dominator-orientated approach is demonstrated by the illustrative
example from Figure 11.
First of all the dominator tree is computed for the logical dependencies under
investigation using the Lengauer-Tarjan algorithm [68]. In order to do so the
logical dependency graph G has to be modified by changing the directions of all its
edges. Thus a graph G′ with entry node job 1 is constructed for scenarios allowing

6.4 Dominator-based Partitioning 83

Figure 14: Two partitions for Figure 11

a meaningful application of Lengauer-Tarjan’s algorithm. From the dominator
tree information about jobs inducing each other can be deduced. Considering the
dominator tree the logical model depicted in Figure 11 depicted one can see for
instance that node 23 is dominated by node 2 and thus all paths beginning at 23
re-converge into node 2. Therefore, all messages (i.e. directed edges) ought to be
contained in the same partition as it is aimed to split the logical dependencies into
different clouds minimising the interaction between them. Because job 1 is always
the sink this is never completely possible which is why the assignment of one job
to different clouds is possible. Figure 14 shows how two different clouds can be
constructed from Figure 11.
This dominator-based decomposition results in two clouds without any communica-
tion between them. Therefore, they can be scheduled independently and in parallel
on the architecture depicted in Figure 13. It has to be ensured, however, that job 1
is allocated to the same node for both clouds as otherwise a non-resolvable con-
tradiction would occur. Therefore, an additional constraint has to be implemented
before computing schedules i.e. constantly allocating job 1 to endsystem 1. As
the architecture is symmetric this will not have an impact on the optimality of the
individual schedules for the two clouds.
Each schedule independently allocates jobs to possible endsystems. Therefore

84 6 PARALLEL COMPUTATION OF SCHEDULES

before composing a global schedule, it has to be checked that endsystems are not
overstaffed. If this is the case jobs have to be shifted for instance to idle endsystems
attached to the same switch. If no idle resources can be provided, one can try to
rotate the allocation of all jobs from the same schedule to a different switch as the
network under investigation is symmetric. If these strategies prove to be successful
and all conflicts can be resolved a feasible global schedule can be obtained by
simply combining the two sub-schedules consecutively.
This approach can be refined by applying so-called static compaction: This means
once all conflicts in the allocation of jobs have been resolved, the sub-schedules
s1, s2, . . . , sn are combined in a joint schedule side by side. Then the first time-
frames is checked for collisions on vertices or edges. If no collisions are reported
the analysis terminates and global schedule has been found. If a collision is identi-
fied the conflicting schedule si is shifted by one timeframe. Then the checking is
repeated until no further collisions occur. The resulting schedule is then a feasible
global solution.

Outlining the splitting algorithm

In this subsection we want to formalise the approach outlined in the previous chap-
ter in order to propose an algorithm to split the logical dependencies automatically.
Fur this purpose it can be assumed we have created the dominator tree T for a
directed graph G′ using the Lengauer-Tarjan algorithm. In this context G′ denotes
the graph the logical model G has been transformed into by changing the direction
of all edges. Now let Ω := {1, 2, · · · , j} denote the number of jobs (i.e. the nodes
in the dominator tree) and let

δ : Ω := {1, 2, · · · , j} → N

determine the number of nodes reachable from some vertex i in the dominator tree.
Here reachability refers to the ability to get from one vertex to another within a
graph. A vertex i′ is defined to be reachable from i if it can there exists a sequence
of adjacent vertices (i.e. a path) which starts with i and ends with i′.
By construction all vertices are reachable from the entry node. Thus job 1 is not
considered in the following. Denote with î the first vertex in the dominator tree
where δ(̂i) is maximal i.e. ∀i ∈ Ω : δ(̂i) ≥ δ(i). Now take î from the dependency
graph and add it to the split S1. Then traverse G′ performing a depth first search
(DFS) starting at î and append all vertices visited during this process to S1. If the
nodes contained in S1 ∪ {1} and G′ are identical, repeat the process with the next
smaller or equal value for î. Algorithmically this can be achieved by deleting î
from the dominator tree T , re-assigning δ(i) to all nodes i remaining in T and thus

6.4 Dominator-based Partitioning 85

identifying a new vertex î. If S1 (G′, i.e. S1 ∪ {1} and G′ are different add all
nodes not included in S1 to a second split S2.
All nodes k with δ(k) > δ(̂i) are added to both splits. This means that all jobs
which were checked but not used as starting points for the proposed splitting
heuristic are part of both partitions. In case that the first value for î already results
in a valid distribution of jobs, job 1 is added to both splits.
Another goal of the proposed splitting technique is to distribute the workload as
balanced as possible: If the number of messages in S1 and S2 are denoted by mS1

and mS2 respectively and without loss of generality let mS1 ≥ mS2 then repeat the
splitting procedure with the next smaller or equal value for î if mS1

mS2
> 3.

Therefore for valid splits the following restriction holds:

mS1 ≤ 3mS2 .

Finally it has to be ensured that no messages are sent from S1 to S2 or vice versa.
If this is the case then the sending job will also be included in both partitions thus
making communication between the splits obsolete. The problem size will however
be enlarged because the sending and receiving jobs are scheduled redundantly in
each partition.

An illustrative example

In order to illustrate Algorithm 2 the example depicted in Figure 7b is explained in
detail. Each step is visualized in Figure 15.
First the dependency graph G is transformed in the corresponding graph G′ by
changing the directions of all edges which can be seen in Figure 15a. From G′ the
dominator Tree shown in Figure 15b is computed using the algorithm of Lengauer-
Tarjan. By counting the number of children for each job different to job 1 in the
dominator tree, î = 2 can be identified as depicted in Figure 15c because δ(2) = 12.
Now î = 2 is added to S1 and the subgraph of G′ rooted at î = 2 is also copied into
S1. As G′ = S1 ∪ {1} the split is not valid and the proposed algorithm continues
with î = 5 as δ(5) = 9 is the new maximum.
Again î is added to S1 and all nodes reachable from node 5 î in G′ are appended.
This time S1 = {5, 6, 9, 14, 17, 20, 21, 22, 23, 24} and job 2 is also added as it has
been previously checked for its splitting properties. Finally î = 2 is also added to
S2 which is then completed by adding all the vertices from G \ S1. As the ratio
between S1 and S2 is almost 1 : 1 i.e. mS1

mS2
= 21

20
≈ 1 ≤ 3 the algorithm terminates

and schedules for each partition are computed.

86 6 PARALLEL COMPUTATION OF SCHEDULES

Algorithm 2 Splitting the dependency graph
1: procedure SPLIT(G) . Logical Dependency Graph G
2: compute G′ . Graph G′

3: compute dominator Tree T
4: while true do . Terminate if S1 is complete
5: if T = ∅ then
6: break
7: end if
8: create empty split S1

9: ∀i ∈ T count nodes reachable δ(i)
10: identify î == max(δ(i))
11: DFS to find vertices reachable from î
12: add vertices to S1

13: if (S1 = G′) or (ratio > 3) then remove î from T
14: else
15: break
16: end if
17: end while
18: create S2

19: S2 = G′ \ S1

20: end procedure

6.4 Dominator-based Partitioning 87

(a) The transformation of G into
G′

(b) Dominator Tree T

(c) Identifying î in T

(d) Split S1 con-
taining all vertices
reachable from job
5.

(e) Split S2 containing job 2
and all vertices in G \ S1.

Figure 15: Splitting the logical dependency graph G from Figure 7b using the
proposed dominator-oriented approach

88 6 PARALLEL COMPUTATION OF SCHEDULES

6.5 Results

This section provides results on seven benchmarks of varying complexity. The
benchmarks were identified with respect to the results from Chapter 5.5. We have
focused on the most time-consuming benchmarks in order to outline the effects of
dominator-based partitioning.
Experiments were again executed using YICES2.3 running on an Intel(R) Xeon(R),
CPU E5645, 2.40GHz, 64 GB RAM with the operating system Linux Mint Release
13 (maya) 64-bit. As the benchmarks have originally been chosen under complexity
aspects in order to analyse the scalability and performance of the SMT-based
scheduler, almost as many jobs as endsystems have to be allocated. This means
there are hardly any idle endsystems, which prevents a successful application of
static compaction due to conflicts, when allocating jobs simultaneously. In order
to rectify this bottleneck, all experiments have been performed on an artificial
architecture with 32 endsystems and 8 switches which is depicted in Figure 13.
This architecture provides the necessary freedom for allocation and significantly
improves results in runtime and static compaction as demonstrated in Table 14.
The table illustrates the performance of different sized scenarios, where ES, SW,
M and TF denote the number of endsystems, switches, jobs and messsages re-
spectively. The column labelled TF shows the number of timeframes needed for
an optimal solution with necessary execution time depicted in the neighbouring
column. In the following columns the performance after partitioning the logical
dependencies is described. As the schedules for different clouds can be computed
simultaneously only the slowest execution time is stated in the column labelled
Worst Execution Time. Adding the number of timeframes necessary for each op-
timal cloud schedule results in the worst case number of timeframes (TF). The
performance gain and the loss of optimality are quantified in the respective columns
before finally the effect of static compaction is portrayed. Here S1S2 and S2S1
describe the different combinations of the two clouds S1 and S2, which can be
connected either way.
In general it can be witnessed that the runtime to compute a feasible global schedule
is significantly decreased at the expense of possibly losing optimality. Therefore, it
might take longer to complete all jobs and receive all messages which may prove
to be problematic if the scenarios have to be completed within a given number of
timeframes. This may be the case for real-time periodic jobs.
The illustrative example from Figure 14 is denoted S21-2Clouds and accordingly
S21-3D-2Clouds when executed on the architecture in Figure 13. As one can see
the execution time is significantly reduced regardless of the underlying architec-
ture. However, static compaction cannot be performed if the original physical

6.5 Results 89

Sc
en

ar
io

N
od

es
E

S
SW

J
M

T
F

E
xe

cu
tio

n
Ti

m
e

C
lo

ud
s

E
xe

cu
tio

n
Ti

m
e

W
or

st
C

as
e

Pe
rf

or
m

an
ce

G
ai

n
W

or
st

C
as

e
T

F
O

pt
im

al
ity

L
os

s
S1

S2
S2

S1

S2
17

14
3

11
17

13
9.

22
2

1.
13

8.
15

26
2.

00
20

19

S2
-3

D
40

32
8

11
17

13
57

.6
8

2
15

.1
8

3.
80

25
1.

92
17

15

S1
6

30
27

3
20

29
18

45
.1

3
2

6.
78

6.
65

28
1.

56
co

lli
si

on
in

en
ds

ys
te

m
s

S1
7

27
24

3
24

41
25

24
,1

38
.1

8
2

22
8.

60
10

5.
59

32
1.

28
co

lli
si

on
in

en
ds

ys
te

m
s

S1
8

30
27

3
20

35
26

1,
93

9.
32

3
29

.6
8

65
.3

5
41

1.
58

co
lli

si
on

in
en

ds
ys

te
m

s

S1
9

30
27

3
20

39
27

11
,9

70
.4

2
2

17
4.

18
68

.7
2

36
1.

33
co

lli
si

on
in

en
ds

ys
te

m
s

S2
0

27
24

3
24

35
20

42
,3

78
.7

2
2

3.
53

11
99

7.
83

32
1.

60
co

lli
si

on
in

en
ds

ys
te

m
s

S1
6-

3D
40

32
8

20
29

19
1,

32
1.

91
2

26
8.

89
4.

92
34

1.
79

20
20

S1
7-

3D
40

32
8

24
41

32
14

,1
55

.3
4

2
22

4.
50

63
.0

5
41

1.
28

21
21

S1
8-

3D
40

32
8

20
35

20
1,

88
2.

60
3

29
.6

8
63

.4
3

41
2.

05
co

lli
si

on
in

en
ds

ys
te

m
s

S1
9-

3D
40

32
8

20
39

23
5,

13
3.

92
2

1,
74

4.
79

2.
94

36
1.

57
34

31

S2
1-

2C
lo

ud
s

27
24

3
24

38
23

27
,9

45
.0

8
2

84
.2

7
33

1.
63

34
1.

48
32

30

S2
1-

3D
-2

C
lo

ud
s

40
32

8
24

38
21

3,
36

3.
50

2
27

03
.5

0
1.

24
34

1.
62

32
29

S2
0-

3C
lo

ud
s

27
24

3
24

35
20

42
,3

78
.7

2
3

4.
72

89
77

.9
7

46
2.

30
co

lli
si

on
in

en
ds

ys
te

m
s

S2
0-

3D
-3

C
lo

ud
s

40
32

8
24

35
26

6,
47

9.
47

3
17

1.
11

37
.8

7
47

1.
81

co
lli

si
on

in
en

ds
ys

te
m

s

Ta
bl

e
14

:R
es

ul
ts

fo
rs

ev
en

sc
en

ar
io

s
ill

us
tr

at
in

g
th

e
tr

ad
e-

of
fb

et
w

ee
n

ru
nt

im
e

an
d

qu
al

ity
of

so
lu

tio
n

w
he

n
sp

lit
tin

g
lo

gi
ca

ld
ep

en
de

nc
ie

s,
3D

de
no

te
s

32
en

ds
ys

te
m

ar
ch

ite
ct

ur
e,

al
le

xe
cu

tio
n

tim
es

in
se

co
nd

s.

90 6 PARALLEL COMPUTATION OF SCHEDULES

model from the previous chapter is taken as a basis, because there are not enough
endsystems to resolve all conflicts arising during allocation. Therefore, the over-
all number of timeframes needed to complete all jobs is increased by more than
50% if all conflicts are resolved manually. On the other hand the experimental
result shows a significant performance improvement with respect to runtime and
achieved a speed-up of two magnitudes. The opposite effect can be witnessed when
executing the second example scenario on a larger three-dimensional symmetric
architecture with 32 endsystems as depicted in Figure 13. Here static compaction
can be applied successfully and results in a loss of optimality of only 38%. Due to
an increased number of different possible paths to be checked for optimality in the
clouds, however, runtime can only be enhanced by about 25%. These effects will
have to be analysed in future.

6.6 Summary

In this chapter we have demonstrated two different approaches to parallelise the
scheduling problem in order to accelerate the computation of schedules. At first
we exploited the incremental nature of the proposed SMT-based scheduling frame-
work and checked different instances of the same problem for satisfiability given
different upper limits for the number of timeframes available. We have been able
to show that for the scenarios discussed in Chapter 5 we could significantly reduce
execution times on an MPSoC emulating architecture to an extend that it could
compete with a state-of-the-art CPLEX based scheduler. Therefore this technique
can be considered for application on an MPSoC if memory and computational
specifications permit the execution of large scheduling problems in parallel.
If the scenarios are enlarged, we have also investigated an approach to separate
the logical dependencies and divide them into smaller problems. In order to do
so we have applied a dominator-based approach which relies on the well-known
technique to detect re-converging paths in a CFG. In this context we have created a
setup which applies the Lengauer-Tarjan algorithm to the CFG representing the
logical dependencies and formulated a strategy for an automatic division. We then
have computed optimal solutions for each split which were finally merged into a
global schedule under application of static compaction.
In order to implement static compaction sensibly under the avoidance of collisions
on endsystems we have significantly enlarged the physical model and executed
all logical scenarios on a symmetric three dimensional architecture consisting of
8 switches and 32 endsystems. We have shown that sacrificing optimality has
a severe impact on the total execution time. Therefore it may be worthwhile to
dispense an optimal solution if runtime is essential.

6.6 Summary 91

However, if we are willing to relax the optimality condition, it is necessary to
compare the proposed scheduling framework to a scheduling software based on a
state-of-the-art heuristic. Therefore we will introduce List Scheduling techniques
in the next chapter and further evaluate the proposed scheduler in comparison to
this concept.

92 7 SCHEDULING ON FAULT-TOLERANT ARCHITECTURES

7 Scheduling on Fault-Tolerant Architectures

7.1 Introduction

This chapter describes the fourth and final contribution of the thesis: An evaluation
of our proposed optimal scheduling framework when comparing it to a state-of-
the-art heuristic on a fault tolerant architecture. It is structured as follows:
The first subsection serves as an introduction into fault tolerance and presents
common terms and concepts. This is followed by a demonstration of the proposed
scheduling framework on a three-dimensional mesh which is subjected to randomly
injected faults. In order to evaluate the performance, we will also use a popular
heuristic called List Scheduling, which can be applied to schedule on-chip networks
such as MPSoCs. We illustrate its functionality and we compare the gap in
makespans of optimal solutions to those schedules obtained from heuristics. We
will show that the overall number of timeframes required to perform all tasks can
be significantly reduced when opting for an optimal scheduler. This effect is further
amplified if the number of permanent failures is increased.

7.2 Introduction into Fault Tolerance Techniques

In this subsection we will introduce the basic terms and concepts of fault tolerance.
We will follow [69] for notation and terminology. The key technique for handling
failures is redundancy, which is also discussed. For more general information on
fault tolerance in distributed systems we refer to [70].
Nowadays hardware is equipped with fault tolerance mechanisms and therefore the
concepts are also applied to modern NoC and MPSoC such as the Phoenix NoC,
a fault tolerant distributed on-chip architecture, which was presented for the first
time in 2013 [71]. Reliability and availability have become increasingly important
in today’s computer dependent world. In many applications, where computers are
used, malfunctions can be expensive or even disastrous, when we consider the
telecommunication switching systems or the bank transaction systems for instance.
As embedded systems play a dominant role in safety-critical applications guarantee-
ing functionality and reliability of these architectures is vital and an indispensable
part of every certification process. Therefore, fault-tolerant systems and protocols
are required. They have the ability to tolerate faults by detecting failures, and
isolate defect modules so that the rest of the system can operate correctly. Fault-
tolerant mechanisms and techniques have also become of increasing interest to
embedded systems. Four trends contribute to this:

7.2 Introduction into Fault Tolerance Techniques 93

1. Embedded systems are deployed under harsh conditions such as high tem-
peratures over a wide range, dust, humidity and unstable power supply.

2. Embedded systems are operated without supervision of trained personnel.

3. Service costs are relative to hardware cost. Therefore, as components become
cheaper, maintenance must not be expensive.

4. The most important aspect from our point of view is the significant increase
of the size of modern NoC and MPSoC architectures. As systems become
larger, there are more components that can fail. This means, to keep the
reliability at an acceptable level, designs have to tolerate faults resulting
from component failures.

When a system or module is designed, its behaviour is specified. If the observed
behaviour differs from the specified behaviour, a so-called failure has occurred. A
failure occurs because of an error caused by a fault. It is distinguished between
transient, intermittent and permanent faults
Transient faults occur once and then disappear. If the operation is repeated, the
fault goes away. A bird flying through the beam of a microwave transmitter may
cause lost bits on some network. If the transmission times out and is retried, it will
probably work the second time.
An intermittent fault occurs, vanishes and reappears randomly. A loose contact on a
connector will often cause an intermittent fault. Intermittent faults are challenging
because they are difficult to diagnose.
A permanent fault is one that continues to exist until the faulty component is
repaired. Burnt-out chips, software bugs, and disk head crashes are examples of
permanent faults.
In order to detect how serious a failure actually is a classification scheme was
developed in 1993 [72]. Although originally designed for classical distributed
systems (servers, networks) it can still be applied to modern MPSoC architectures.
We will specify this scheme in Table 15.
If a system is fault tolerant, it can sustain its services even after the occurrence of
failures. The key technique for masking faults is to use redundancy. Three different
kinds are discussed in literature [73]: information redundancy, time redundancy
and physical redundancy. Information redundancy means that extra bits are added
to allow recovery from garbled bits. Time redundancy allows an action, i.e. sending
a message, to be performed again.
We will focus on physical redundancy, which is a well-known technique for pro-
viding fault tolerance. It has been used in the design of fault-tolerant electronic

94 7 SCHEDULING ON FAULT-TOLERANT ARCHITECTURES

Type of failure Description

Crash failure A switch halts.

An endsystem stops working.

Omission failure A switch cannot handle messages.

An endsystem can neither send nor receive messages.

Timing failure A message does not travel between two nodes in the specified time interval.

Response failure A switch does not respond after receiving a message.

An endsystem cannot receive messages.

Arbitrary failure Random messages are produced.

Table 15: Different types of failures.

circuits for years. Consider for instance the very popular Three Modular Redun-
dancy (TMR) approach where each component is replicated three times and a voter
device checks whether two or three inputs are the same. If this is true, the signal is
assumed to be correct.
As the architectures we consider are consisting of a large number of switches,
endsystems and different links between them, the system will not usually be used
to full capacity. Therefore, on the one hand we are able to re-allocate jobs from
faulty components to endsystems free from defect. On the other hand we can
compensate for broken switches and links by re-routing the messages in the system.
Our model considers all faults to be permanent and we assume all failures are
identified correctly by the system. In the following subsection we will demonstrate
how recovery from faults can be achieved by re-computing the scheduling problem.

7.3 Re-scheduling after Failure
Due to the large number of computational units provided by an MPSoC architecture
fault tolerance can be employed using redundancy techniques as described in the
previous section. Usually the system is not used to full capacity and therefore jobs
can be allocated to other endsystems if certain components become faulty. If an
error is detected, the proposed optimal scheduler will re-schedule the modified
system and compute a new optimal schedule providing the minimal makespan with
respect to the new topology.
In an initial step an optimal schedule with respect to the makespan is computed
considering the MPSoC is operating without errors and all components are faultless.
In order to quantify the makespan we will again apply the concept of timeframes.
Just as before all messages require one timeframe to pass from one node to another.

7.3 Re-scheduling after Failure 95

In this context a node may either be a switch or an endsystem.
In order to guarantee the optimality of the solution an incremental approach has
been chosen where it is evaluated whether messages can be received within a
given number of timeframes t. If this is not the case t is incremented by 1 and
the reasoning process is repeated until the minimal value for t, denoted as tmin has
been determined.
We assume that multiple combinations of the following permanent faults are can
occur randomly:

1. Failure of an arbitrary node (i.e. switch or endsystem).

2. Bidirectional breakdown of a link.

3. Multiple combinations of both.

By assumption faults are detected correctly. The re-scheduling process can then be
initiated using tmin as a starting value. By construction of the incremental approach
described in Subsection 5.3 a solution requiring a lower number of timeframes
cannot exist. This means the satisfiability checks for t < tmin become obsolete
which will significantly reduce runtime. As depicted in Table 16 the runtime to
compute an optimal schedule for the problem is significantly reduced if components
are faulty. For instance if a switch fails the number of possibilities to allocate
jobs is immediately reduced by the number of endsystems attached to the faulty
component. These two aspects lead to a significant reduction of runtime as on the
one hand the problem becomes smaller and on the other hand the evaluation for
t < tmin becomes obsolete. Thus overall computation time can be significantly
reduced enabling the application of the scheduler at runtime if all pre-computed
communication schedules fail. This can prolong the lifetime of the system under
consideration.
As the optimal scheduling problem is NP-complete we cannot guarantee that
we will be able to reduce the runtime of the scheduling process if the size of the
problem is reduced. There we initially evaluate two medium-sized scenarios from
the previous section illustrated in Figure 16. We assume that components fail
randomly. The results are depicted in Table 16.
The jobs were optimally scheduled on the three-dimensional mesh found in Figure
17a obeying their logical dependencies depicted in 16. Firstly the system under
consideration is supposed to perform faultlessly. Then the model is changed t to
reflect the output of an error detection service. If an error is detected, we reallocate
all jobs to endsystems free of fault and ensure that messages are only sent via links
and switches still in operation. This ensures that the new solution is still optimal
with respect to the components still in operation.

96 7 SCHEDULING ON FAULT-TOLERANT ARCHITECTURES

(a) First example (b) Second example

Figure 16: Logical models for examples in Table 16

Technically the process described can be illustrated by removing the faulty com-
ponents from the physical model thus creating a new scenario. This process is
illustrated in Figure 17.

(a) Physical model before failure (b) Physical model after failure

Figure 17: Transformation after permanent error on switch 1

7.4 List Scheduling
One of the main advantages of an optimal scheduler is that it always provides
a schedule with the minimal makespan even if components in the system under
consideration become faulty. In order to evaluate this effect, we will compare the
performance of the proposed scheduling framework to one of the most popular
heuristic approaches. When applying heuristics we will show that the makespan
will increase significantly if the number of faulty components within the system is
increased. Vice versa the makespan is reduced when applying an optimal scheduler.

7.4 List Scheduling 97

Scenario Total Nodes Endsystems Switches Jobs Messages Lower Bound Timeframes Execution Time

no fault 40 32 8 11 16 7 21 45.3587

1 SW fault 35 28 7 11 16 21 21 13.6809

2 SW fault 30 24 6 11 16 21 21 7.6125

3 SW fault 25 20 5 11 16 21 21 3.8082

4 SW fault 20 16 4 11 16 21 21 1.4321

5 SW fault 15 12 3 11 16 21 23 9.7846

no fault 40 32 8 11 17 5 21 252.6438

1 SW fault 35 28 7 11 17 21 21 39.2585

2 SW fault 30 24 6 11 17 21 21 20.5533

3 SW fault 25 20 5 11 17 21 21 9.1286

4 SW fault 20 16 4 11 17 21 21 4.8643

1 ES fault 39 31 8 11 17 21 21 98.1221

2 ES fault 38 30 8 11 17 21 21 97.3426

3 ES fault 37 29 8 11 17 21 21 97.3621

Table 16: Re-scheduling at runtime considering random number of faulty endsys-
tems and switches. Logical dependencies for the two scenarios are depicted in
Figure 17.

We will focus on List Scheduling (LS), the dominant scheduling heuristic. LS
heuristics use a sorted priority list, containing the jobs ready to be scheduled, while
respecting the precedence constraints. A job is ready if all the predecessor tasks
have finished executing and all the incoming messages are received.
LS generates the schedule by successively scheduling each job and message onto
an endsystem. The start time in the schedule table is the earliest time when the
resource is available for the respective job (or message). If more resources than
jobs are available every job is assigned to the idle endsystem with the lowest index.
Therefore, the allocation of jobs has a direct influence on communication cost.
Adapting this heuristic to our proposed time-discrete model the following adjust-
ments are made:

• A priority list is obsolete as all jobs have the same priority. Therefore, we
will simply list them in ascending order. This means for i 6= i′ job ji is
allocated before job ji′ if i < i′ and vice versa.

• Jobs will be allocated to an endsystem if all incoming messages are received.
If no messages have to be received (i.e. job is source) the job will be allocated
immediately to the idle endsystems with lowest index.

• Once a job has been assigned to an endsystem this endsystem is no longer
considered idle an thus not available for future allocations.

98 7 SCHEDULING ON FAULT-TOLERANT ARCHITECTURES

Figure 18: Logical dependencies

Figure 19: 3D Mesh

As an example we consider the logical model depicted in Figure 18 and execute it
on the 3D-Mesh represented in Figure 19. Here we have to schedule 8 jobs j1 · · · j8
onto 32 endsystems.
It is our goal to assign the job variables j1 · · · j8 with the number of the endsystem
the job is allocated to. We can determine the following:

j3 = 8, j7 = 9, j8 = 10

because jobs 3, 7 and 8 are source jobs and as such they are the only jobs that can
be allocated in timeframe 1. Now the next jobs, which can be assigned are j6 and
j5 because they do not have to wait for any other jobs to be scheduled. Opposed to
this j1 cannot be assigned because it still has to wait for j2 which has not yet been
allocated.
We continue in the proposed fashion and therefore assign

j5 = 11, j6 = 12.

Of all the jobs not yet allocated only j4 does not depend on any other non-scheduled
jobs. Therefore, it can be stated

j4 = 13

7.4 List Scheduling 99

and subsequently
j2 = 14

and finally
j1 = 15.

In conclusion the job variables are assigned according to LS as follows:

j1 = 15, j2 = 14, j3 = 8, j4 = 13, j5 = 11, j6 = 12, j7 = 9, j8 = 10. (23)

Messages are scheduled in the following way: Whenever a job is allocated it is
checked whether it is a destination of a message. If this is the case, the messages
that are received by this node are scheduled so that they are received in the earliest
possible timeframe obeying the logical dependencies and the conflict-free traversal.
If more than one message is received, the message with the smallest destination
job is scheduled first. To illustrate this consider again the example above. We will
identify the messages with respect to the original SMT problem sheet:

• M1 : j2 → j1

• M2 : j3 → j1

• M3 : j4 → j2

• M4 : j5 → j2

• M5 : j6 → j1

• M6 : j6 → j2

• M7 : j6 → j4

• M8 : j6 → j5

• M9 : j7 → j5

• M10 : j7 → j6

• M11 : j8 → j1

The three source jobs j3, j7 and j8 can be allocated without consideration of any
messages. When j5 is allocated the following messages have to be considered:

• M9 : j7 → j5

100 7 SCHEDULING ON FAULT-TOLERANT ARCHITECTURES

• M8 : j6 → j5

M8 cannot be scheduled because j6 has not yet been allocated. M9 however can
be scheduled because it corresponding source and destination jobs have already
been scheduled to j7 = 9 and j5 = 11. In order to travel from node 9 to node
11 switch 0 has to be passed. As no further dependencies have to be obeyed this
can be scheduled between timeframes 1 and 3. We continue in the same way and
allocate j6. This means we can add

• M10 : j7 → j6,

• M8 : j6 → j5

to the schedule. As M10 has to be scheduled before M8 (logical dependencies)
M10 starts in timeframe 2 and finishes in timeframe 5 as it has to pass two switches
0 and 1. Then M8 is scheduled subsequently finishing in timeframe 9. In the next
step j4 is allocated an thusM7 can also be scheduled. Then j2 is allocated receiving
messages

• M3 : j4 → j2

• M4 : j5 → j2

• M6 : j6 → j2.

At first M3 is scheduled due to the lowest index of the sending job needing only
three timeframes and finishing in timeframe 12. We continue with M4 and M6

before finally allocating j1. Now the final remaining messages M1,M2 and M11

must be scheduled. Conveniently only the message to be scheduled first i.e. M1

has to obey any dependencies and is scheduled following the arrival of M4. M2

and M11 are independent and are scheduled such that they finish in the earliest
timeframe possible.
The proposed list-scheduling approach results in a schedule requiring 16 time-
frames. The proposed scheduling framework finds a solution in 15 timeframes
when allocating the jobs to endsystems as follows:

j1 = 17, j2 = 27, j3 = 15, j4 = 24, j5 = 26, j6 = 10, j7 = 9, j8 = 31. (24)

The different schedules arising from the assignments of the job variables in (23)
and (24) are depicted in Figure 20. For every message the tables illustrate which
endsystem or switch is visited in each timeframe.
The gap between the optimal solution and the schedule based on LS is one time-
frame and thus almost negligible. However, as we will demonstrate in the next
section the gap increases significantly if faults are injected into the 3D-mesh.

7.5 Results 101

(a) Schedule based on LS requires 16 timeframes.

(b) Optimal schedule requires 15 timeframes.

Figure 20: Different schedules for the example.

7.5 Results

So far we have seen that the proposed scheduling framework is performing better
than state-of-the-art schedulers when we compare the computation of optimal
solutions i.e. for minimal transmission times. However usually heuristic-based
approaches are sufficient for most applications because they are often able to com-
pute feasible solutions. Therefore, depending on the properties of the architecture
under consideration, an optimal solution with respect to a minimal makespan may
not be necessary, because all timing constraints can be met with a feasible solution
which makes the computational expenditure for an optimal solution redundant. As
we have seen with LS in the previous section heuristic approaches are very fast
and opposed to the optimal scheduling problem not in the class of NP-complete
problems. Feasible solutions may however not be sufficient as their makespan
might not meet certain deadline constraints. Therefore it is important to clearly
distinguish between a feasible solution, which may be regarded as optimal be-
cause it fulfils all timing constraints, and an optimal schedule with the respect
to a minimal makespan. The latter schedule guarantees that there cannot exist a
schedule with a smaller makespan. There are good reasons to insist on an optimal
solution with respect to the minimal makespan as we will outline in detail in this

102 7 SCHEDULING ON FAULT-TOLERANT ARCHITECTURES

section. We will illustrate how the timeplans computed with a scheduler based
on the LS-heuristic introduced in the previous section will differ from optimal
solutions. We will show that this gap is actually growing significantly if the number
of faulty components within the system under consideration is increased. This
effect is further intensified if faults occur more frequently in the same area of the
mesh (i.e. failure of neighbouring switches). An accumulation of faults in the same
region of a distributed system is a realistic assumption and has for instance been
described in a fault hypothesis for integrated architectures [74].
We will randomly declare components to be faulty. By assumption faults are
detected correctly. The re-scheduling process is then be initiated using tmin as
described in Section 7.2. In addition we compute a schedule applying an LS-based
heuristical scheduler from Section 7.4. We investigate on the one hand how the
total number of timeframes increases when the number of faults on the architecture
under consideration is increased and also analyse how this is linked to connectivity
of the components that become faulty. On the other hand we will show that we
can significantly reduce the total number of timeframes required to complete the
transmission of all messages if the proposed scheduling framework is deployed.
Therefore, shorter deadlines can still be met even if large parts of the system
fail. This will eventually prolong the lifetime of the systems under consideration
considerably.
As before we have executed the experiments with respect to a symmetric, three-
dimensional mesh consisting of eight switches each connected to two other switches
and 4 endsystems. Hence in a scenario without faults we basically consider a cube
of switches as depicted in Figure 19. For every fault that occurs we consider a new
architecture and remodel the problem respectively just as we did in the example
depicted in Figure 20.
In the following Table 17 demonstrates explicitly the faults we randomly considered.
The first columns refer to the logical model executed on the platform. The final
column describes the origin of the faults and their locations. Evaluation of the
performance with respect to runtime and minimal makespan are provided in Table
18 and 19 using the short notation introduced in the second column of the following
table:
Obviously the heuristic based approach significantly outperforms the proposed
optimal scheduling framework when comparing computation times. This is due to
the fact that LS is immediately allocates a job once a spare endsystem is detected.
The first schedule acquired in this manner is then given as a result without checking
for optimality. Therefore, other schedules with a smaller makespan may exist
which is practically always the case unless the scenarios are tiny. This is also
the most striking difference to the NP-completeness of the optimal scheduling

7.5 Results 103

Scenario Number Total Nodes Endsystems Switches Jobs Messages Description of randomly injected faults

S1 1 40 32 8 6 8 no fault

S3 2 40 32 8 11 16 no fault

S3 2a 35 28 7 11 16 1 faulty switch

S3 2b 30 24 6 11 16 2 faulty switches (nn)

S5 3 40 32 8 11 17 no fault

S5 3a 35 28 7 11 17 1 faulty switch

S5 3b 30 24 6 11 17 1 faulty switch

S16 4 40 32 8 19 26 no fault

S16 4a 35 28 7 19 26 1 faulty switch

S16 4b 30 24 6 19 26 2 faulty neighboring switches

S16 4c 32 24 8 19 26 failure of every fourth ES

S16 4d 32 24 8 19 26 additionally links between switches 0/1 and 3/4

S16 4e 32 24 8 19 26 additionally links between switches 0/1, 2/3, 2,7, 3/4

S16 4f 29 21 8 19 26 failure of every third ES

S16 4g 29 21 8 19 26 additionally links between switches 0/1, 2/3

S16 4h 29 21 8 19 26 additionally links between switches 0/1, 2/3, 2,7, 3/4

S20 5 40 32 8 20 35 no fault

S20 5a 35 28 7 20 35 1 faulty switch

S20 5b 30 24 6 20 35 1 faulty switch

S20 5c 32 24 8 20 35 failure of every fourth ES

S20 5d 32 24 8 20 35 additionally links between switches 0/1, 3/4

S20 5e 32 24 8 20 35 additionally links between switches 0/1, 2/3, 2,7, 3/4

S20 5f 29 21 8 20 35 additionally links between switches 0/1, 2/3, 2,7, 3/4

S20 5g 29 21 8 20 35 failure of every third ES

S20 5h 29 21 8 20 35 additionally links between switches 0/1, 3/4

S17 6 40 32 8 24 41 no fault

S17 6a 40 32 8 24 41 ES 8-15 and switches 0,1

S17 6b 35 28 7 24 41 1 faulty switch

S17 6c 30 24 6 24 41 2 faulty neighboring switches

S17 6d 30 24 6 24 41 2 switches (nn)

S17 6e 32 24 8 24 41 failure of every fourth ES

S17 6f 32 24 8 24 41 additionally links between switches 0/1, 2,7

S17 6g 32 24 8 24 41 additionally links between switches 0/1, 2/3, 2,7, 3/4

S19 7 40 32 8 20 29 no fault

S19 7a 39 31 8 20 29 1 faulty ES

S19 7b 37 29 8 20 29 2 faulty ES

S19 7c 36 28 8 20 29 3 faulty ES

S19 7d 35 28 7 20 29 1 faulty switch

S19 7e 30 24 6 20 29 2 faulty neighbouring switches

S19 7f 30 24 6 20 29 2 faulty switches (nn)

S19 7g 25 20 5 20 29 3 faulty switches

S19 7h 32 24 8 20 29 failure of every fourth ES

S19 7i 32 24 8 20 29 additionally links between switches 2,7, 3/4

S19 7j 32 24 8 20 29 additionally links between switches 0/1, 2/3, 2,7, 3/4

S19 7k 29 21 8 20 29 failure of every third ES

S19 7l 29 21 8 20 29 additionally links between switches 0/1, 2/3,

S19 7m 29 21 8 20 29 additionally links between switches 0/1, 2/3, 2,7, 3/4

Table 17: Classification of random faults which occurred. (nn) denotes non-
neighbouring switches, i.e. no link between them, in the three-dimensional mesh
under consideration.

104 7 SCHEDULING ON FAULT-TOLERANT ARCHITECTURES
N

um
ber

J obs
M

essages
t
o T im

efram
esY

IC
E

S+
t
h

T im
efram

esL
S

Pr oportion
g

R
untim

e
Y

+
in

s
R

untim
e

H
euristic

in
s

Pr oportion
1

6
8

11
11

1.00
0

0.68
0.01

136.00
2

11
16

18
25

1.39
7

45.36
0.03

1.814.35
2a

11
16

18
25

1.39
7

13.6809
0.04

361.93
2b

11
16

18
26

1.44
8

7.6125
0.03

254.85
2c

11
17

18
21

1.17
3

252.64
0.08

3.158.05
2d

11
17

18
21

1.17
3

39.2585
0.08

506.56
2e

11
17

18
23

1.28
5

20.5533
0.08

253.37
3

19
26

19
31

1.63
12

1321.91
0.84

1.565.32
3a

19
26

19
32

1.68
13

154.54
0.67

231.78
3b

19
26

19
32

1.68
13

74.56
0.79

94.58
3c

19
26

20
37

1.85
17

1028.48
0.65

1.582.27
3d

19
26

20
39

1.95
19

100.25
0.70

143.21
3e

19
26

20
39

1.95
19

96.70
0.62

155.97
3f

19
26

20
37

1.85
17

121.65
0.65

187.15
3g

19
26

22
45

2.05
23

1359.44
0.79

1.720.81
3h

19
26

22
51

2.32
29

86.50
0.68

127.21
4

20
35

21
39

1.86
18

6370.00
0.95

6.705.26
4a

20
35

21
39

1.86
18

1323.35
0.98

1.350.36
4b

20
35

21
40

1.90
19

410.68
0.85

483.15
4c

20
35

22
45

2.05
23

2025.33
1.01

2.005.28
4d

20
35

22
43

1.95
21

541.26
0.80

676.57
4e

20
35

23
48

2.09
25

2002.25
0.62

3.229.44
4f

20
35

25
44

1.76
19

2002.25
0.62

3.229.44
4g

20
35

25
44

1.76
19

3412.12
0.77

4.431.32
4h

20
35

26
52

2.00
26

9221.09
0.87

10.598.95

Table
18:Part1:C

om
paring

R
untim

e
and

G
ap
g

betw
een

optim
aland

heuristic
solution

afterinjecting
differentfaults

into
the

system
s

7.5 Results 105
N

um
be

r
Jo

bs
M

es
sa

ge
s

t o
T

im
ef

ra
m

es
Y

IC
E

S+
t h

T
im

ef
ra

m
es

L
S

Pr
op

or
tio

n
g

R
un

tim
e

Y
+

in
s

R
un

tim
e

H
eu

ri
st

ic
in

s
Pr

op
or

tio
n

5
24

41
33

47
1.

42
24

14
15

5.
34

1.
25

11
.3

33
.3

4
5a

24
41

33
43

1.
30

10
14

15
5.

34
1.

25
11

.3
33

.3
4

5b
24

41
33

48
1.

45
15

17
84

.4
2

1.
23

1.
44

6.
51

5c
24

41
34

47
1.

38
13

40
76

.5
2

1.
24

3.
27

5.
89

5e
24

41
34

42
1.

24
8

40
76

.5
2

1.
34

3.
03

4.
70

5f
24

41
36

51
1.

42
15

18
22

9.
36

1.
45

12
.5

71
.9

7
5g

24
41

38
63

1.
66

25
61

57
.2

3
1.

45
4.

24
6.

36
5h

24
41

40
79

1.
98

39
13

70
8.

53
1.

48
9.

26
2.

52
6

20
29

19
34

1.
79

15
97

7.
49

0.
21

4.
59

9.
96

6a
20

29
19

34
1.

79
15

36
4.

06
28

0.
20

1.
82

0.
31

6b
20

29
19

34
1.

79
15

36
1.

23
23

0.
20

1.
80

6.
16

6c
20

29
19

34
1.

79
15

31
6.

99
43

0.
20

1.
58

4.
97

6d
20

29
19

34
1.

79
15

20
4.

48
0.

16
1.

31
5.

81
6e

20
29

19
34

1.
79

15
97

.8
8

0.
13

78
0.

53
6f

20
29

19
34

1.
79

15
97

.8
8

0.
13

78
0.

53
6g

20
29

19
38

2.
00

19
52

.8
3

0.
15

35
2.

21
6h

20
29

22
43

1.
95

21
82

4.
17

0.
21

3.
92

4.
61

6i
20

29
25

48
1.

92
23

23
73

.0
0

0.
27

8.
78

8.
89

6j
20

29
26

53
2.

04
27

12
04

.3
8

0.
27

4.
46

0.
67

6k
20

29
24

47
1.

96
23

11
45

.8
4

0.
25

4.
58

3.
37

6l
20

29
27

57
2.

11
30

11
87

.2
0

0.
25

4.
74

8.
80

6m
20

29
29

63
2.

17
34

41
58

.2
4

0.
25

16
.6

32
.9

5

Ta
bl

e
19

:P
ar

t2
:C

om
pa

ri
ng

R
un

tim
e

an
d

G
ap
g

be
tw

ee
n

op
tim

al
an

d
he

ur
is

tic
so

lu
tio

n
af

te
ri

nj
ec

tin
g

di
ff

er
en

tf
au

lts
in

to
th

e
sy

st
em

s

106 7 SCHEDULING ON FAULT-TOLERANT ARCHITECTURES

problem. As the number of possible schedules grows exponentially with respect
to the number of endsystems and links the expenditure of an optimal scheduler is
simultaneously increased.
In order to evaluate the quality of the solution we will examine the gap g be-
tween the number of timeframes required in an optimal solution as opposed to the
makespan of an LS schedule. We define g as

g := to − th, (25)

where to denotes the number of timeframes of an optimal solution and th the
number of timeframes needed in an LS schedule respectively.
We have again chosen the six largest benchmarks from Chapter 5 to demonstrate
the performance of our proposed scheduling framework. We have injected different
faults in order to examine the behaviour of the architecture under different failure
hypotheses. In total we have evaluated 50 scenarios and have been able to establish
a connection between the number of timeframes required and the number of faults
injected: The quality of the optimal solution is improved the more faults are
injected into the architecture.
Consider for instance example number 5: Here we witness how g is growing from
14 in the no failure case to 39 if we fail one in three endsystems a additionally
provoke a further accumulation of link failures between the neighbouring switches
0, 1, 2 and 4 g increases to 39. However we also recognize that applying LS can
also narrow the gap - see 5a - because the failure may coincidentally force LS
to allocate jobs more efficiently. In this scenario the solutions differ relatively
between 24% in 5e and 98% in 5h.
In all examples g increases in absolute and relative terms in the long run, therefore
especially for architectures applied in safety-critical environments it may prove
sensible to compute an optimal solution if stringent timing constraints have to be
met. On the other hand LS is much faster than optimal scheduling which makes it
an attractive alternative if global timing constraints are relaxed.

7.6 Summary
Due to the growing demand of embedded systems in safety critical areas fault
tolerance is an important prerequisite for NoC and MPSoC architectures. In
this chapter we have evaluated our proposed scheduling framework assuming the
underlying architecture supports fault-tolerance through active redundancy and
under the assumption the faults are correctly diagnosed.
We have shown that the proposed scheduling framework significantly outperforms
a scheduler based on a heuristic when the makespan is compared. Although feasi-

7.6 Summary 107

ble solutions can be computed significantly faster using a heuristic approach the
makespan of the schedule computed with the proposed scheduling framework is
significantly shorter. Depending on the number of faults injected and the contain-
ment area the makespan obtained by LS can be 250 % of the optimal solution.
Considering stringent global timing constraints this can become a problem because
deadlines are not met. At worst this could result in an immediate shut-down of the
entire component and overall failure.
Additionally we have also seen that computing an optimal schedule is accelerated if
faults are injected into the system. This effect has two reasons: On the one hand the
problem shrinks because faulty endsystems and broken switches decrease search
space for an optimal schedule. On the other hand an adequate lower bound for
the incremental approach has already been computed for the defect-free scenario,
because by construction a solution requiring less timeframes must not exist even if
components are deleted.
In conclusion it may be sensible to deploy the proposed scheduling framework
on modern NoC and MPSoC architectures especially if they have to meet tight
deadlines. Heuristics will never be able to guarantee optimal schedules with respect
to a minimal makespan. Therefore, an optimal solution may increase the lifetime of
a system because it can still meet its requirements even if components are subject
to permanent faults. This can make the proposed scheduling framework especially
attractive for embedded systems designed for long time services for instance in
aeronautical applications.

108 8 CONCLUSION

8 Conclusion

This chapter concludes the thesis and discusses open problems and future work.

8.1 Summary

In this thesis we have evaluated how formal verification tools such as SAT- and
SMT-solvers can be applied to NP-complete scheduling problems on novel NoC
and MPSoC architectures. For this purpose we have established a time discrete
model, which allowed us to formulate the scheduling problem as an optimization
problem.
We started our experiments for simple architectures and small problem sizes
limiting the complexity by the constant allocation of jobs to endsystems. We
introduced one-hot-encoding in order to transfer the optimization problem to a
pseudo-Boolean optimisation problem. This enabled the use of MiniSat+, an
efficient, SAT-based optimising tool, to compute optimal schedules with respect to
a minimal makespan.
Hence we were able to deduce that our approach was on the one hand more
efficient in computing optimal solutions than state-of-the-art MILP solvers and on
the other hand significantly reduced the amount of memory needed to compute
optimal solutions. Therefore, we elaborated the optimal scheduler enhancing
its functionality by allowing an arbitrary allocation of jobs to endsystems. This
significantly increased complexity because the search space for possible solutions
was enlarged. Therefore, we dropped the concept of one-hot-encoding and also
allowed integer variables to formulate the optimization problem. As a consequence
we switched from SAT solving to SMT solving and deployed the state-of-the-art
SMT solver YICES2 in order to compute optimal schedules. As optimization
is not a feature of YICES2 we choose an incremental approach to compute the
minimal number of timeframes need to complete all jobs by sending and receiving
all messages between them.
Again we were able to show a reduction in runtime and memory consumption
when comparing our SMT-based tool to state-of-the-art MILP scheduler. Also we
were able to port the proposed framework onto an MPSoC emulating multicore
architecture based on Raspberry Pi 2. However due to restricted computation and
memory capacities the calculation of optimal schedules was decelerated by at least
one magnitude. In order to compensate for this defect we investigated different
strategies to parallelise the incremental approach formulated. As a result we could
show that using different parallelisation techniques we could again at least match
or even outperform state-of-the-art MILP solvers which cannot be executed on

8.2 Open Problems and Future Work 109

MPSoCs themselves.
Being able to execute our scheduling framework on the architecture under investi-
gation itself enables us to investigate whether we can perform online scheduling.
As opposed to scheduling during the design process this increases the degree of
flexibility to react to an unforeseen error occurring within the system. Faulty
components may lead to a failure of the entire architecture, because no feasible
schedule stored in a TRM may be applicable to mask the error. Online scheduling
with our proposed scheduling framework will always find an optimal schedule if it
exists within a given interval. Due to the complexity of thisNP-complete problem
this may become very time consuming.
However, under certain circumstances feasible solutions are sufficient. Therefore,
we also investigated how the performance of the scheduling framework can be
enhanced with respect to computation time, if we relax the requirement on the
optimality of the makespan. We evaluated an approach dividing the problem based
on the dominator tree and showed how we could merge locally optimal solutions
into an global feasible solutions and analysed the trade-off between the sacrifice of
optimality and the reduction of runtime.
Finally we evaluated the proposed scheduling framework to a scheduler based on
the popular LS heuristic. Obviously LS scheduling is much faster in producing
feasible schedules. But as the solutions are not optimal they may no meet deadline
requirements. This effect is amplified if we consider fault tolerant architectures and
increase the number of faulty components. We were able to show that even though
multiple errors occurred the makespan computed under failure was still close
to the minimum of the original schedule when the proposed optimal scheduling
framework was applied. Opposed to this LS heuristics computed significantly
larger makespans increasing the probability to fail deadline requirements.
It can be concluded that the application of formal verification tools such as SAT and
SMT can be a sensible enhancement for scheduling jobs to novel NoC and MPSoC
architectures especially if they are used in safety critical embedded systems which
require a high degree of reliability and may have to be re-scheduled at runtime.
Although computing optimal schedules is NP-complete the use of the proposed
scheduling framework computes results within reasonable runtime for complex
problems especially when comparing it to state-of-the-art MILP schedulers.

8.2 Open Problems and Future Work

Scheduling will remain a prominent research topic. Special emphasis will be given
to dynamic, online scheduling as safety critical embedded systems will be even
more dominant in future.

110 8 CONCLUSION

We can extend our research by investigating more sophisticated ways partition the
scheduling problem to further parallelise the computation of schedules exploiting
the large number of endsystems in modern MPSoC architectures. Also it can
be considered to evaluate a portfolio scheduler which employs SAT, SMT and
heuristic based approaches in parallel to compute feasible schedules within a given
number of timeframes. It terminates if either SAT or SMT returns an optimal
solution or a heuristic based method found a schedule within less than a given
number of timeframes.
Furthermore our work can also be continued for instance by investigating further
optimization criteria such as the generation of resource-efficient schedules by
minimising the energy consumption of the architecture under consideration or by
extending life expectancy of the systems by equally balancing jobs to endsystems.
Another interesting perspective would be to extend the presented approach by
the use of different criticality levels. One could image a system configuration
comprising of several functions that has different levels of criticality (e.g. safety-
critical functions and non safety-critical functions) to which a two step optimisation
can be applied which firstly emphasises on safety critical functions before allocating
non-safety-critical jobs to idle endsystems. The approach could be adapted to prefer
tasks or messages that are safety-critical in order to generate a schedule that is
optimal with respect to criticality. Calculating schedules that guarantee quantifiable
safety-properties are conceivable as well.

111

A Appendix

A.1 List of Figures

List of Figures
1 Logical Application Model (left) mapped to Physical Multicore

Platform (right) . 14
2 Expression tree for the logical expression p AND (q OR r) OR s 17
3 Schematic representation of the proposed model. 41
4 Model example with 10 Nodes, 5 Jobs and 5 messages. 48
5 The modular structure of YICES2. The Arithmetic Solver deals

with linear integer and real arithmetic. It implements a decision
procedure based on the Simplex algorithm. The Bitvector Solver
deals with the theory of bitvectors. The Array Solver implements
a decision procedure for McCarthy’s theory of arrays. Illustration
taken from [57]. 57

6 Illustration of the modular structure of the proposed SMT-solver
YICES2, taken from [57]. 58

7 Model example with 11 nodes (3 switches, 8 endsystems), 6 jobs
and 6 messages. 64

8 Illustration of Example 5.2 . 67
9 Possible Optimal Schedule for Example 5.2. 67
10 Parallelisation of incremental scheduling 78
11 A logical model for 24 jobs . 80
12 Dominator tree for the logical model depicted in Figure 11 81
13 Model of three-dimensional Distributed System with 32 endsys-

tems and 8 switches . 81
14 Two partitions for Figure 11 . 83
15 Splitting the logical dependency graph G from Figure 7b using the

proposed dominator-oriented approach 87
16 Logical models for examples in Table 16 96
17 Transformation after permanent error on switch 1 96
18 Logical dependencies . 98
19 3D Mesh . 98
20 Different schedules for the example. 101

112 LIST OF TABLES

A.2 List of Tables

List of Tables

1 Truth Table for for the logical expression p ∧ (q ∨ r) ∨ s 19
2 Truth Table for all possible Boolean functions Fi, i ∈ {0, 1, · · · 15}

of two binary variables . 20
3 Truth Tables for Additional Logical Operators. 21
4 Truth Table for the logical expression p ∧ (q ∨ r) ∨ s including

minterms and maxterms. 24
5 Overview table with constants 40
6 Scheduling two messages in t timeframes using Boolean variables

only . 43
7 CPLEX Input constants for model in Figure 7. 49
8 Comparing the results for 9 example scenarios 52
9 Overview of the input parameters for the SMT-based model 63
10 Results for 17 scenarios comparing CPLEX- and YICES-based

schedulers on different platforms, all execution times in seconds. . 71
11 Demonstration of the Memory peaks for CPLEX- and YICES2-

based schedulers in MB. 72
12 Complete overview of execution times for 17 scenarios comparing

CPLEX- and YICES2-based schedulers on different platforms.
YICES2 R2 denotes execution time on Raspberry Pi 2. Dis-
tributed R2 denotes fastest parallel execution approach. All exe-
cution times in seconds, number of endsystems similar to Table
10. 77

13 Scheduling performance of three different parallel strategies, all
runtimes in seconds . 79

14 Results for seven scenarios illustrating the trade-off between run-
time and quality of solution when splitting logical dependencies,
3D denotes 32 endsystem architecture, all execution times in seconds. 89

15 Different types of failures. 94
16 Re-scheduling at runtime considering random number of faulty

endsystems and switches. Logical dependencies for the two sce-
narios are depicted in Figure 17. 97

17 Classification of random faults which occurred. (nn) denotes non-
neighbouring switches, i.e. no link between them, in the three-
dimensional mesh under consideration. 103

LIST OF TABLES 113

18 Part 1: Comparing Runtime and Gap g between optimal and heuris-
tic solution after injecting different faults into the systems 104

19 Part 2: Comparing Runtime and Gap g between optimal and heuris-
tic solution after injecting different faults into the systems 105

114 LIST OF TABLES

A.3 List of Abbreviations

ATPG Automatic Test Pattern Generation
BCP Boolean Constrain Propagation
BFS Breadth First Search
CAV Computer Aided Verification
CDCL Conflict Directed Clause Learning algorithms
CFG Control Flow Graph
CNF Conjunctive Normal Form
CTL Computational Tree Logic
DAG Directed Acyclic Graph
DFS Depth First Search
EDA Electronic Design Automation
LP Linear Programming
LS List Scheduling
MILP Mixed Integer Linear Programming
NP nondeterministic, polynomial time
NoC Network-on-a-Chip
MPSoC Multi-Processor-System-on-a-Chip
SAT Boolean Satisfiability
SMT Satisfiability Modulo Theories
SoC System-on-a-Chip
TMR Three Modular Redundancy
TRM Trusted Resource Manager
TSP Travelling Salesman Problem
UNSAT unsatisfiable
VLSI Very Large Scale Integration

A.4 References 115

A.4 References

References
[1] C. Schöler, R. Krenz-Bååth, and R. Obermaisser, “A Novel Formal Veri-

fication Framework for Future MPSoC Architectures,” in Proc. on Manu-
facturable and Dependable Multicore Architectures at Nanoscale (MEDI-
AN/ETS) Workshop, ISBN, 2015, pp. 48–51.

[2] C. Schöler, R. Krenz-Bååth, A. Murshed, and R. Obermaisser, “Optimal
SAT-based scheduler for time-triggered networks-on-a-chip,” pp. 1–6, 2015.

[3] ——, “Optimal SAT-based scheduler for Time-Triggered Networks-on-a-
Chip,” in 11th IEEE International Symposium on Industrial Embedded Sys-
tems (SIES). IEEE, 2016, pp. 1–8.

[4] C. Schöler, R. Krenz-Bååth, and R. Obermaisser, “A Dominator-Based Parti-
tioning for Efficient Scheduling in Time-Triggered NoCs,” in Proceedings of
the Work in progress Session held in connection with DSD 2016. Johannes
Kepler University Linz, 2016, pp. 1–2.

[5] C. Schöler, “Novel Scheduling Strategies for future NoC and MPSoC Ar-
chitectures.” in Proceedings of 24th IFIP/IEEE International Conference on
Very Large Scale Integration. PhD Forum, 2016.

[6] H. Kopetz and R. Obermaisser, “Temporal composability,” Computing &
Control Engineering Journal, vol. 13, pp. 156–162, Aug. 2002.

[7] R. Obermaisser, Time-triggered communication. Taylor & Francis, 2011.

[8] K. Singh, M. Alam, and S. Sharma, “A survey of static scheduling algo-
rithm for distributed computing system,” International Journal of Computer
Applications, 2015.

[9] H. Kopetz, Real-Time Systems – Design Principles for Distributed Embedded
Applications. Springer, 2011.

[10] H. Kopetz, R. Obermaisser, C. El Salloum, and B. Huber, “Automotive
software development for a multi-core system-on-a-chip,” in Proceedings
of the 4th International Workshop on Software Engineering for Automotive
Systems. IEEE Computer Society, 2007, p. 2.

116 REFERENCES

[11] M. Schoeberl, “A time-triggered network-on-chip,” in Field Programmable
Logic and Applications, 2007. FPL 2007. International Conference on. IEEE,
2007, pp. 377–382.

[12] “Time-triggered protocol TTP/C – High-Level Specification Document Pro-
tocol Version 1.1,” TTTech, Tech. Rep., 2003.

[13] FlexRay Communications System Protocol Specification Version 2.1, FlexRay
Consortium. BMW AG, DaimlerChrysler AG, General Motors Corporation,
Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volkswagen AG.,
May 2005.

[14] A. I. T. Company, “White paper: SAE AS6802 Deterministic Ethernet Net-
work Solution,” Tech. Rep., Mar. 2011.

[15] R. Obermaisser and C. Paukovits, “A cross-domain multiprocessor system-
on-a-chip for embedded real-time systems,” Industrial Informatics, IEEE
Transactions on, vol. 6, no. 4, pp. 548–567, Nov 2010.

[16] K. Goossens and A. Hansson, “The aethereal network on chip after ten years:
Goals, evolution, lessons, and future,” in Proceedings of the 47th Design
Automation Conference, ser. DAC ’10. New York, NY, USA: ACM, 2010, pp.
306–311. [Online]. Available: http://doi.acm.org/10.1145/1837274.1837353

[17] W. Wolf, “The future of multiprocessor systems-on-chips,” in Design Au-
tomation Conference, 2004. Proceedings. 41st. IEEE, 2004, pp. 681–685.

[18] L. Torres, P. Benoit, G. Sassatelli, M. Robert, F. Clermidy, and D. Puschini,
“An introduction to multi-core system on chip–trends and challenges,” in
Multiprocessor System-on-Chip. Springer, 2011, pp. 1–21.

[19] E. Fernandez-Alonso, D. Castells-Rufas, J. Joven, and J. Carrabina, “Survey
of noc and programming models proposals for mpsoc,” International Journal
of Computer Science Issues, vol. 9, no. 2, pp. 22–32, 2012.

[20] H. Kopetz, Real-time systems – Design Principles for Distributed Embedded
Applications, 2nd ed. Springer, 2011.

[21] R. Obermaisser and D. Weber, “Architectures for mixed-criticality systems
based on networked multi-core chips,” in Emerging Technology and Factory
Automation (ETFA), 2014 IEEE, Sept 2014, pp. 1–10.

http://doi.acm.org/10.1145/1837274.1837353

REFERENCES 117

[22] S. Borkar and A. A. Chien, “The future of microprocessors,” Communications
of the ACM, vol. 54, no. 5, pp. 67–77, 2011.

[23] A. Jerraya and W. Wolf, Multiprocessor systems-on-chips. Elsevier, 2004.

[24] J. K. Lenstra and A. Kan, “Complexity of vehicle routing and scheduling
problems,” Networks, vol. 11, no. 2, pp. 221–227, 1981.

[25] W. Steiner and B. Dutertre, “SMT-Based formal verification of a TTEthernet
synchronization function,” in Formal Methods for Industrial Critical Systems.
Springer, 2010, pp. 148–163.

[26] H. Kopetz, “Time-triggered real-time computing,” IFAC Proceedings Volumes,
no. 1, 2002.

[27] R. Obermaisser and O. Höftberger, “Fault containment in a reconfigurable
multi-processor system-on-a-chip,” in 2011 IEEE International Symposium
on Industrial Electronics. IEEE, 2011, pp. 1561–1568.

[28] IBM, “Cplex Optimization Studio,” URL: http://www-01. ibm.
com/software/commerce/optimization/cplex-optimizer, 2014.

[29] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings
of the third annual ACM symposium on Theory of computing. ACM, 1971,
pp. 151–158.

[30] L. Zhang and S. Malik, “Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applications,”
in Proceedings of the conference on Design, Automation and Test in Europe-
Volume 1. IEEE Computer Society, 2003, p. 10880.

[31] Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: a parallel SAT solver,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 6, pp.
245–262, 2009.

[32] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduction
and applications,” Communications of the ACM, vol. 54, no. 9, pp. 69–77,
2011.

[33] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The mathSAT5
SMT solver,” in Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2013, pp. 93–107.

118 REFERENCES

[34] W. Steiner, “An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks,” in Real-Time Systems Symposium (RTSS),
2010 IEEE 31st. IEEE, 2010, pp. 375–384.

[35] F. Pozo, G. Rodriguez-Navas, H. Hansson, and W. Steiner, “SMT-based
synthesis of TTEthernet schedules: A performance study,” in Industrial
Embedded Systems (SIES), 2015 10th IEEE International Symposium on.
IEEE, 2015, pp. 1–4.

[36] B. Barney et al., Introduction to parallel computing, [Online; accessed 16-
January-2017].

[37] M. Wolf, High-performance embedded computing: applications in cyber-
physical systems and mobile computing. Newnes, 2014.

[38] K. Asanovic, Bodik et al., “The landscape of parallel computing research:
A view from Berkeley,” Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Tech. Rep., 2006.

[39] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and applica-
tions of satisfiability testing. Springer, 2004, pp. 502–518.

[40] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability Testing.
Springer, 2005, pp. 61–75.

[41] Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: a Parallel SAT Solver.” JSAT,
vol. 6, no. 4, pp. 245–262, 2009.

[42] S. Hölldobler, N. Manthey, V. H. Nguyen, J. Stecklina, and P. Steinke, “A
Short Overview on Modern Parallel SAT-Solvers,” in Proceedings of the
International Conference on Advanced Computer Science and Information
Systems, 2011, pp. 201–206.

[43] A. V. Aho and J. D. Ullman, Foundations of computer science. Computer
Science Press, Inc., 1992.

[44] R. E. Simpson, Introductory electronics for scientists and engineers. Allyn
& Bacon, 1974.

[45] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

REFERENCES 119

[46] V. V. Vazirani, Approximation algorithms. Springer Science & Business
Media, 2013.

[47] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “The traveling salesman
problem (2006),” ISBN 0-691-12993-2, Tech. Rep.

[48] J. K. Lenstra and A. R. Kan, “Some simple applications of the travelling
salesman problem,” Journal of the Operational Research Society, vol. 26,
no. 4, pp. 717–733, 1975.

[49] L. Zhang and S. Malik, “The quest for efficient Boolean Satisfiability Solvers,”
in International Conference on Computer Aided Verification. Springer, 2002,
pp. 17–36.

[50] M. Ganai and A. Gupta, SAT-based scalable formal verification solutions.
Springer, 2007.

[51] B. Dutertre and L. De Moura, “The Yices SMT solver,” Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, vol. 2, no. 2, 2006.

[52] B. Dutertre, “Yices 2.2,” in Computer-Aided Verification (CAV’2014), ser.
Lecture Notes in Computer Science, A. Biere and R. Bloem, Eds., vol. 8559.
Springer, July 2014, pp. 737–744.

[53] C. W. Barrett, D. L. Dill, and A. Stump, “Checking satisfiability of first-order
formulas by incremental translation to sat,” in Computer Aided Verification.
Springer, 2002, pp. 236–249.

[54] C. Schöler, R. Krenz-Baath, and R. Obermaisser, “A Novel Formal Veri-
fication Framework for Future MPSoC Architectures,” in Proc. on Manu-
facturable and Dependable Multicore Architectures at Nanoscale (MEDI-
AN/ETS) Workshop, 2015, pp. 48–51.

[55] N. Eén and N. Sorensson, “Translating pseudo-Boolean constraints into SAT,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 2, pp.
1–26, 2006.

[56] J. Leskovec, “Stanford Network Analysis Package(SNAP).” http://snap.
stanford.edu/, [Online; accessed 16-November-2015].

[57] B. Dutertre, “Yices 2.2,” in International Conference on Computer Aided
Verification. Springer, 2014, pp. 737–744.

http://snap.stanford.edu/
http://snap.stanford.edu/

120 REFERENCES

[58] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in International
conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2008, pp. 337–340.

[59] A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability. ios
press, 2009, vol. 185.

[60] A. Fellner, P. Fontaine, G. Hofferek, and B. W. Paleo, “NP-completeness of
small conflict set generation for congruence closure,” p. 8, 2015.

[61] B. Jobstmann and K. Leino, “Verification, Model Checking, and Abstract
Interpretation: 17th International Conference, VMCAI 2016, St. Petersburg,
FL, USA, January 17-19, 2016. Proceedings,” 2015. [Online]. Available:
https://books.google.de/books?id=GYxNCwAAQBAJ

[62] D. R. Cok, D. Déharbe, and T. Weber, “The 2016 SMT Competition,” Journal
on Satisfiability, Boolean Modeling and Computation, vol. 9, pp. 207–242,
2016.

[63] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Version 2.5,” 2010.

[64] W. Blair and N. Ghalili, “When Z3 Met Yices.”

[65] R. T. Prosser, “Applications of boolean matrices to the analysis of flow
diagrams,” in Papers presented at the December 1-3, 1959, eastern joint
IRE-AIEE-ACM computer conference. ACM, 1959, pp. 133–138.

[66] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators in
a flowgraph,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 1, no. 1, pp. 121–141, 1979.

[67] R. Krenz-Bååth, A. Glowatz, and J. Schloeffel, “Computation and applica-
tion of absolute dominators in industrial designs,” in Test Symposium, 2007.
ETS’07. 12th IEEE European. IEEE, 2007, pp. 137–144.

[68] L. Georgiadis, R. E. Tarjan, and R. F. F. Werneck, “Finding dominators in
practice.” J. Graph Algorithms Appl., vol. 10, no. 1, pp. 69–94, 2006.

[69] H. Kopetz and P. Verissimo, “Real time and dependability concepts,” in
Distributed systems (2nd Ed.). ACM Press/Addison-Wesley Publishing Co.,
1993, pp. 411–446.

[70] P. Jalote, Fault tolerance in distributed systems. Prentice-Hall, Inc., 1994.

https://books.google.de/books?id=GYxNCwAAQBAJ

REFERENCES 121

[71] C. Marcon, A. Amory, T. Webber, T. Volpato, and L. B. Poehls, “Phoenix NoC:
A distributed fault tolerant architecture,” in 2013 IEEE 31st International
Conference on Computer Design (ICCD). IEEE, 2013, pp. 7–12.

[72] V. Hadzilacos and S. Toueg, “Distributed systems,” MULLENDER, S.(Ed.),
vol. 2, pp. 97–145, 1993.

[73] B. W. Johnson, “An introduction to the design and analysis of fault-tolerant
systems,” pp. 1–84, 1995.

[74] H. Kopetz, C. El Salloum, B. Huber, R. Obermaisser, and C. Paukovits,
“Composability in the time-triggered system-on-chip architecture,” in 2008
IEEE international SOC conference. IEEE, 2008, pp. 87–90.

	Title
	Abstract English
	Kurzzusammenfassung Deutsch
	Declaration of Authorship
	Publications
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Thesis Contribution
	1.4 Methodology
	1.5 Thesis Structure

	2 State-of-the-Art
	2.1 Applications of Embedded Systems
	2.2 SoC, NoC and MPSoC Architectures
	2.3 Time-Triggered Communication Protocol
	2.4 Scheduling in Time-Triggered Distributed Systems
	2.5 MILP-based Scheduling
	2.6 Related Work

	3 Concepts and Terms
	3.1 Boolean Functions and their representations
	3.2 Optimization
	3.3 Complexity
	3.4 SAT Solving

	4 An Optimal SAT based Scheduler
	4.1 Introduction
	4.2 System Model
	4.3 MiniSat+
	4.4 Results
	4.5 Summary

	5 An Optimal SMT-based Scheduler
	5.1 Introduction
	5.2 SMT Solving
	5.3 Refinements and Implementation
	5.4 Application of YICES SMT
	5.5 Results
	5.6 Execution on MPSoC-emulating target systems
	5.7 Summary

	6 Parallel Computation of Schedules
	6.1 Introduction
	6.2 Parallel Checks for Satisfiability
	6.3 Results
	6.4 Dominator-based Partitioning
	6.5 Results
	6.6 Summary

	7 Scheduling on Fault-Tolerant Architectures
	7.1 Introduction
	7.2 Introduction into Fault Tolerance Techniques
	7.3 Re-scheduling after Failure
	7.4 List Scheduling
	7.5 Results
	7.6 Summary

	8 Conclusion
	8.1 Summary
	8.2 Open Problems and Future Work

	A Appendix
	A.1 List of Figures
	A.2 List of Tables
	A.3 List of Abbreviations
	A.4 References

