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UNIVERSITÄT SIEGEN

Zusammenfassung

Entwicklung und Zertifizierung von zuverlässigen eingebetteten

Mixed-Criticality-Systemen

von Asier Larrucea Ortube

Der Übergang von herkömmlichen Verbundarchitekturen zu integrierten Architekturen

ermöglicht die Integration von Funktionalitäten mit unterschiedlichen Kritikalitäten in

Bezug auf die Betriebs- und Angriffssicherheit sowie Echtzeit fähigkeit in einer einzi-

gen eingebetteten Computer-Plattform. Der Trend zu Multi-core- und Many-Core-

Architekturen hat des Weiteren zu dieser Tendenz beigetragen, indem er Vorteile in

Hinblick auf die Kosten, Größe und Gewicht liefert. Multi-Core-Architekturen sind

derart gestaltet, dass eine maximale durchschnittliche Leistung auf Kosten einer erhöhten

Komplexität und Wechselwirkungen zwischen Applikationen geboten wird. Partition-

ierungslösungen wie Hypervisoren (z.B. XtratuM, PikeOS) werden normalerweise zur

Bewältigung von mit diesen Architekturen in Verbindung stehenden Herausforderun-

gen verwendet. Sie begrenzen die Auswirkung von Veränderungen und Störungen auf

abgesteckte Bereiche des Systems, auch Partitionen genannt, ermöglichen die Wiederver-

wendbarkeit und verringern die Komplexität. Derartige Partitionen können individuell

und mit unterschiedlichen Kritikalitätslevels gestaltet, entwickelt und zertifiziert werden

(z.B. Sicherheitsintegritätslevel (SIL) 1 bis 4 gemäß IEC 61508). Obgleich auch parti-

tionierte Multi-Core-Architekturen die o.g. Vorteile aufweisen können sie viele Probleme

im Zusammenhang mit der Zertifizierung mit sich bringen, wie z.B. die Bewertung der

zeitlichen Unabhängigkeit, was wiederum zu einer beachtlichen Erhöhung der Engineering-

und Zertifizierungskosten führt. Darüber hinaus kann ein eingebettetes System verteilte

Subsysteme mit Kommunikationsnetzwerken (wie z.B. EtherCAT) erforderlich machen,

um den Rechnerressourcenbedarf zu decken, Fehlertoleranz sicherzustellen und die In-

stallationsanforderungen zu erfüllen. Der allgemeine Trend hin zur Integration von

Funktionalitäten mit unterschiedlichen Kritikalitäten in einer einzigen eingebetteten

Computer-Plattform erfordert die Implementierung von sicheren und vorhersagbaren

Kommunikationssystemen mit einer zeitlichen Trennung zwischen den verschiedenen

Kritikalitäten. Aus diesem Grund stellen sich für Kommunikationsnetzwerke besondere
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Herausforderungen in Hinblick auf die Zertifizierung, wie z.B. ein Sicherstellen der

Non-Interference zwischen sicherheitskritischen und nicht sicherheitskritischen Kommu-

nikationsaktivitäten. In dieser Dissertation werden modulare Sicherheitskonzepte für

einen IEC 61508-konformen generischen Hypervisor, die Partition, kommerzielle Mehrk-

ernprozessoren und Netzwerke mit gemischter Kritikalität vorgestellt. In einem modularen

Sicherheitsnachweis werden sicherheitsrelevante Argumente und Nachweise definiert, die

ein System aufweisen muss, um die Sicherheitsstandards zu erfüllen. Die in dieser Disser-

tation definierten Sicherheitsnachweise sind von einer Zertifizierungsstelle im Rahmen des

Europäischen Forschungsprojekts DREAMS bewertet worden. Darüber hinaus wird in

dieser Doktorarbeit eine Verbindungsanalyse für kommerzielle Technologien, wie z.B. den

XtratuM-Hypervisor, Zynq-7000, TTEthernet und EtherCAT-Netzwerke durchgeführt.

In dieser Analyse wird beschrieben, inwiefern ein kommerzielles System in generischen

modularen Sicherheitsnachweisen identifizierte sicherheitsrelevante Anforderungen erfüllt.

Als Ergebnis der Definition von modularen Sicherheitsnachweisen und der dazugehörigen

Analyse des IEC 61508 Sicherheitsstandards sind jene Komponenten identifiziert worden,

die Herausforderungen für die Entwicklung und Zertifizierung von derzeit vorhandenen

eingebetteten Computer-Plattformen mit gemischter Kritikalität aufweisen. Außerdem

konnte festgestellt werden, dass die durch den Sicherheitsstandard IEC 61508 empfohlenen

Maßnahmen und Diagnosetechniken meist auf Single-Core-Architekturen ausgerichtet

sind, bei denen eine Ressource lediglich mit einer Komponente geteilt werden kann. Diese

Maßnahmen und Diagnosetechniken sind keineswegs auf heute verfügbare Systeme mit

gemischter Kritikalität anwendbar, da bei ihnen sehr häufig eine Ressource mit mehr als

einer Komponente geteilt wird. So kann z.B. bei einer Multi-Core-Architektur gleichzeitig

mehr als eine Komponente auf einen Speicherbereich zugreifen, was wiederum zu Wechsel-

wirkungen führt, die die Sicherheit des Systems gefährden können. In dem Bestreben, eine

Antwort auf diese Herausforderungen zu finden, werden in dieser Dissertation verschiedene

allgemeine domänenübergreifende Modelle und Lösungen für bei der Entwicklung von

Systemen mit gemischter Kritikalität häufig auftretende Probleme vorgestellt. Diese

Modelle werden ausgehend vom DREAMS-Architekturstil untersucht, definiert und let-

ztlich in einer Fallstudie zu einer Windkraftanlage implementiert. Diese Fallstudie liefert

ein realistisches Systemszenario, in das die in dieser Dissertation aufgeführten Lösungen

integriert und letztlich bewertet werden können.
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Abstract

Development and Certification of Dependable Mixed-Criticality Embedded

Computing Systems

by Asier Larrucea Ortube

The transition from conventional federated architectures to integrated architectures

enables the integration of functionalities with different criticality concerning safety,

security and real-time on a single embedded computing platform. The trend towards

multi-core and many-core architectures has further contributed to this tendency, providing

benefits regarding cost-size-weight. Multi-core architectures are designed for offering the

maximum average performance at the cost of increasing complexity and interferences.

Partitioning solutions such as hypervisors (e.g., XtratuM, PikeOS) are commonly used

to tackle the challenges related to these architectures. They limit the impact of changes

and faults to reduced areas of the system, also called partitions, enabling reusability and

reducing the complexity. Partitions can be designed, developed and certified individually

with different levels of criticality (e.g., Safety Integrity Level (SIL) 1 to 4 according to

IEC 61508). However, although partitioned multi-core architectures provide the benefits

mentioned before, they imply many challenges to certification such as the assessment of

the temporal independence, which leads to a significant increase in the engineering and

certification cost. Furthermore, an embedded system may require distributed subsystems

with communication networks (such as EtherCAT) to satisfy the computational resource

demands, ensure fault-tolerance and satisfy the installation requirements. The broad

trend of the integration of functionalities with different criticality on a single embedded

computing platform involves the implementation of safe and predictable communication

systems with temporal segregation between different criticality. Therefore, communication

networks represent certification challenges such as guaranteeing the non-interference

between safety-critical and non safety-critical communications. This dissertation presents

the modular safety concepts for an IEC 61508 compliant generic hypervisor, partition,

commercial-off-the-shelf (COTS) multi-core device and mixed-criticality network. A

modular safety case (MSC) defines the safety-related arguments and evidences that a

v
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system must fulfil in order to be compliant with a safety standard. The MSCs defined

throughout this thesis have been assessed by a certification body within the context of

the European research project DREAMS. Besides, this dissertation defines the linking

analysis for commercial technologies such as XtratuM hypervisor, Zynq-7000 multi-core

device and TTEthernet and EtherCAT networks. A linking analysis describes the way in

which a commercial system fulfils the safety-related requirements identified in the generic

modular safety cases.

As a result of the definition of the modular safety cases and associated analysis of the

IEC 61508 safety standard, the remarkable components that imply challenges in the

development and certification of today’s mixed-criticality embedded computing platforms

have been identified. In addition, it is detected that the measures and diagnostic

techniques recommended by the IEC 61508 safety standard are mostly geared to single-

core architectures where a resource cannot be shared among more than one component.

These measures and diagnostic techniques are not at all applicable to today’s mixed-

criticality systems where sharing a resource among more than one component is a

common task. For example, in multi-core architectures a memory area can be accessed

simultaneously by more than one component (e.g., CPUs), leading to interferences that

may jeopardise the safety of the system. In order to give a solution to those challenges,

the dissertation presents several generic cross-domain patterns for commonly occurring

problems in the development of mixed-critical systems. These patterns are analysed,

defined and implemented in a wind turbine case study based on the DREAMS architecture

style. This case study provides a realistic system scenario where the solutions generated

in this dissertation are integrated and evaluated.
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Chapter 1

Introduction

Embedded systems have commonly followed a federated architecture paradigm in which

each Distributed Application Subsystem (DAS) is implemented on its stand-alone dis-

tributed HW base with a well-defined functionality. However, the soaring demand for

high performance and increasing functionality challenges the viability of this approach,

leading to the rising trend of moving towards integrated architectures [OKG04] [Ham03].

As a consequence, system engineers aim at the integration of multiple functionalities with

different criticality with respect to safety, security and real-time on the same embedded

computing platform. A system that combines functionalities of different criticality is

often referred to as a mixed-criticality system [Bau11].

The transition from single-core to multi-core architectures has further contributed to

this tendency. Multi-core architectures provide benefits in terms of cost, size and

weight reduction as well as improved scalability. However, they imply certification

challenges (such as the assessment of the temporal independence) which may lead to a

significant and potentially unacceptable increase of engineering and certification cost

[DAN+13, RGG+12].

Virtualization mechanisms such as hypervisors are commonly used solutions to tackle

challenges related to integrated architectures based on multi-core and many-core proces-

sors. These mechanisms limit the impact of changes and faults to reduced areas of the

system, enabling in turn reusability and reducing the complexity [Kop08]. A hypervisor

is a layer of SW or a combination of SW and HW that enables different independent

execution environments on a single computing platform (e.g., XtratuM [Sol14], PikeOS

[SYS15]). The execution environments, which are also often referred to as guest operating

systems, virtual machines, partitions or domains, can be designed, developed and certified

individually with different criticality levels (e.g., Safety Integrity Level (SIL) 1 to 4

according to the IEC 61508 safety standard).
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The current integration trend of functionalities with different criticality into a single

embedded computing platform may use communication networks with support for different

criticality for communication purposes. These communication systems, which are usually

referred to as mixed-criticality networks, are capable of supporting safe and predictable

message exchanges between DAS with different criticality. Mixed-criticality networks are

targeted as the natural replacement of legacy buses in modern system architectures due

to their low-cost, high-speed and easy integration with existing network infrastructures.

They can be divided into on-chip buses (e.g., Advanced High-Performance Bus (AHB),

Advanced System Bus (ASB), Advanced Peripheral Bus (APB)) for communication

between the components of the integrated circuits such as the cores of a multi-core

processor, off-chip buses (e.g., Ethernet) for inter-node communication (e.g., two devices)

and local buses (e.g., PCI, PCI Express (PCIe)) for chip-to-chip interconnect. However,

the use of mixed-criticality networks may lead to certification challenges related to the

increasing safety, security and real-time constraints in demanding application domains

such as automotive and railway.

Certification is a third-party attestation related to products, processes, systems or

persons [ISO04]. An attestation is the issue of a statement, based on a decision following

reviews, where the fulfilment of specified requirements has been demonstrated. In the

safety domain, safety certification is an attestation where an authorised organization

or a certification body assesses the fulfilment of the safety requirements of a system

regarding specified safety requirements or a safety standard (e.g., IEC 61508, ISO

26262). The traditional approach to certification relies on the certification of the whole

system, where the change of a safety aspect of the system implies the re-certification

of the entire system. Modularity provides a mechanism for managing the complexity

of today’s mixed-criticality systems, subdividing the system into smaller parts, also

called modules, which can be independently certified and re-used to compose a mixed-

criticality system. The certification process of a safety-related system is usually carried

out by means of safety cases. A safety case is a documented body of evidences that

provides convincing and valid arguments that a system is adequately safe for a given

application in a given environment (e.g., automotive, railway, lift). Instead, in modular

certification, MSCs are used for evidencing the safety of the components that compose

a safety-related system. These safety cases take advantage of the modularity in mixed-

criticality system design, allowing assurance of the safety of a system that consists of

design modules. This approach is supported by different safety-related standards such

as IEC 61508 [IEC10a], ISO 26262 [ISO15a], EN 50129 [EN03] and DO-178 [RTC11]

and by many research projects such as the European projects Aviation Safety and

Certification of new Operations and Systems (ASCOS) [ASC12], Dependable Embedded

Components and Systems (DECOS) [SAS+08] and National Aeronautics and Space
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Administration’s (NASA) Safe Autonomous Systems Operations (SASO) project [DP15]

[NAS15].

On the other hand, the measures and diagnostic techniques recommended by today’s

safety-related standards such as IEC 61508 are geared to single computer systems (see

Annex F of IEC 61508-3), where a resource cannot be shared between more than one

component at the same time. Instead, multi-core architectures enable sharing a resource

between the CPUs at the same time, thus leading to possible interferences in temporal

and spatial domains. So, the need for extra measures and diagnostic techniques with

support for multi-core devices is identified. However, there are certain exceptions which

include non-shared resources of multi-core devices where the measures and diagnostic

techniques recommended by those safety standards are applicable (see Tables A.2 to

A.14 of IEC 61508-2 [IEC10b]).

1.1 Objective

The objectives of this thesis are the definition of generic MSCs for mixed-criticality

systems and the definition and implementation of reusable generic cross-domain patterns

to solve the certification challenges of today’s mixed-criticality systems. These objectives

target the key challenges related to certification and mixed-criticality systems which are

identified in the introduction.

• Challenges related to certification: Mixed-criticality systems are complex systems

that support executing functionalities with different criticality onto the same

embedded computing platform. These systems imply several challenges that increase

the development and certification cost. In traditional certification, the system is

assessed as a whole. Therefore, if a requirement of the system changes, the entire

system must be re-certified. This thesis integrates the modularity methodology

into the development and certification of mixed-criticality systems to tackle these

certification challenges. To that end, this dissertation defines IEC 61508 compliant

MSCs for remarkable components of today’s mixed-criticality systems such as a

hypervisor, a safety partition, a COTS device and a mixed-criticality network.

• Challenges of mixed-criticality systems: Today’s safety-related standards (e.g., IEC

61508) focus mainly on single computer architectures where a resource is not shared

among more than one component. Instead, multi-core architectures enable sharing

a resource between more than one component at the same time. For instance,

a memory region can be shared between several processing units of a multi-core

device at the same time. This sharing of resources may cause interferences in
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the temporal and spatial domains hindering the certification of mixed-criticality

systems. Therefore, the measures and diagnostic techniques recommended by

those standards are only applicable to single computers. For that reason, the need

for new measures and diagnostic techniques with support for multi-core mixed-

criticality architectures is identified. This thesis presents reusable generic solutions

for mixed-criticality systems which are out of the scope of today’s safety-related

standards.

1.2 Contributions

The contributions of this dissertation consist of:

• Generic IEC 61508 compliant MSCs for components of today’s mixed-criticality

systems, including a safety hypervisor (see Section 5.1), a safety partition (see

Section 5.2), a safety COTS multi-core device (see Section 5.3) and a mixed-

criticality network (see Section 5.4). Modularity enables the division of the system

into modules which can be independently assessed and re-used for developing a

mixed-criticality system.

• Reusable and generic cross-domain patterns for partitioned and networked multi-

core mixed-criticality systems. These patterns provide reusable solutions, measures

and diagnostic techniques to solve, detect and avoid the key issues of today’s mixed-

criticality systems which are not considered by current safety-related standards

(see Chapter 6).

The MSCs and cross-domain patterns defined throughout this dissertation can be inte-

grated into different domain case studies (e.g., railway, automotive, wind-power, health-

care, lift). The solutions presented in this thesis are integrated into a wind turbine

case study that complies with the architecture style of the European research project

DREAMS (see Chapter 4) and the IEC 61508 safety standard.

1.3 Structure of this Thesis

This thesis is organised as described below and as shown in Figure 1.1.

• Chapter 2 introduces the basic concepts on which the work of this thesis is based.
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• Chapter 3 analyses the state-of-the-art of the modularity among different safety

standards (e.g., IEC 61508 and ISO 26262) and defines the remarkable safety case

notation languages.

• Chapter 4 defines the architecture style of the European research project DREAMS.

• Chapter 5 presents the MSCs for an IEC 61508 compliant generic hypervisor,

partition, COTS multi-core processor and mixed-criticality network.

• Chapter 6 analyses the recurring problems in the development and certification

process of today’s mixed-criticality systems by cross-domain patterns. In addition,

this chapter defines several remarkable cross-domain patterns that aim to solve the

commonly occurring problems in mixed-criticality systems.

• Chapter 7 presents the wind turbine case study where the main contributions of

this thesis are integrated.

• Chapter 8 shows the conclusions and future work.

Chapter 2: Background

Chapter 3: State-of-the-Art

Chapter 4: DREAMS Architecture Chapter 5: Modular Safety Cases Chapter 6: Cross-Domain Patterns

Chapter 7: Case Study

Chapter 8: Conclusion

Chapter 1: Introduction

Figure 1.1: Structure of the thesis.
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Chapter 2

Background

This chapter introduces the basic concepts on which the work presented in this thesis is

based.

2.1 Mixed Criticality Systems

A mixed-criticality system refers to the integration of HW, operating system, middleware

services and software applications (e.g., safety-critical, non safety-critical) on the same

embedded computing platform [Com12, WESK10]. This approach enables the reduction

of devices, wires, and connectors, thereby improving the overall cost-size-weight factor

and scalability. However, mixed-criticality systems, especially multi-core mixed-criticality

systems, give rise to challenges related to certification (e.g., the assurance of temporal

independence) [ESEH+12, PGT+13, PGN+14].

There are many running or just finished research projects in the field of multi-core and

mixed-criticality technology funded by the European Union (e.g., DREAMS [DRE13],

Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-

functional properties (CONTREX) [CON14], Probabilistic real-time control of mixed-

criticality multi-core and manycore systems (PROXIMA) [PRO14]), national bodies (e.g.,

Automotive, Railway and Avionics Multicore Systems (ARAMIS) project [ARA11]) and a

mix of European and national funding (e.g., ARTEMIS Embedded Multi-Core systems for

Mixed Criticality applications in dynamic and changeable real-time environments (EMC2)

[EMC14]).

7
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2.2 Certification Standards

Certification is a third-party attestation related to products, processes, systems or persons

[ISO04]. An attestation is the issue of a statement, based on a decision following reviews,

where the fulfilment of specified requirements has been demonstrated. Safety certification

attests that a system is safe enough for its purpose with a given confidence level and in a

given environment. For instance, IEC 61508 [IEC10a, IEC10b, IEC10c] is the generic

international standard for Electrical / Electronic / Programmable Electronic (E/E/PE)

functional safety systems and it is the reference safety standard for different domain-

specific safety standards such as machinery, industrial process, automotive and railway

(see Figure 2.1). IEC 61508 defines the concept of SIL as a relative level of risk-reduction

provided by a safety-related system with values in the range from 1 to 4. SIL1 is the

lowest value and SIL4 is the most restrictive one. As a general rule, the highest SIL has

the highest certification cost.

IEC 61508

IEC 61511ISO 13849ISO 26262EN 81 1/prA2

EN 50129

EN 50128

EN 50126

Railway Process oil 
and gasMachineryElevator Automotive ...

Figure 2.1: Safety standards – Hierarchy. (Source IEC 61508-1 [IEC10a])

2.2.1 Fail-Safe and Fail-Operational Systems

Safety-critical systems can be classified as fail-safe or fail-operational [Kop11]. A system

is fail-safe when in the event of a failure a safe state can be reached. For example, a

train can be stopped in the case of a failure, leading it to a safe state. Conversely, a

system that must remain operational even after the occurrence of a fault, i.e., cannot

reach a safe state, is called a fail-operational system. For example, an aircraft cannot

reach a safe state while in flight, it must continue flying although a failure occurs.
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2.3 Dependability

Dependability refers to the ability to provide services that can defensibly be trusted at a

time. These services can be provided to system users such as human users or computer

systems [ALRL04]. Whenever the behaviour of a system deviates from the expected

intended usage, it is considered that the system fails. An error is part of the system

state that may cause a subsequent failure. A fault is the adjudged or hypothesised cause

of an error. Dependability can also be defined as the measure of a system’s reliability,

safety, maintainability, availability and security attributes.

• Reliability (MTTF) refers to the probability that a system will provide specific

services until a given time, considering that the system is operational at the

beginning.

• Safety is reliability regarding critical failure modes. The failure modes can be

malign or benign. Malign failure modes are concerned to critical failure modes

while benign failure modes are considered non-critical failures. For example, the

crash of an aeroplane due to a failure in the flight-control system is regarded as a

malign failure mode.

• Maintainability (MTTR) is a measure of the time interval required to repair a

system after the occurrence of a benign failure.

• Availability (A) is a measure of the delivery of the correct service given the

alternation of correct and incorrect services. Availability is related to the reliability

and maintainability attributes as follows:

A = MTTF/(MTTF +MTTR)

• Security is concerned with the authenticity and integrity of information and the

ability of a system to prevent unauthorised accesses to information or services.

2.4 Fault Containment

Fault containment refers to design and engineering efforts that ensure that the immediate

consequences of a fault are limited to a single Fault Containment Unit (FCU) [Kop11].

An FCU is the specification of the units of failure that can impact on the overall reliability

of a system. The quality engineer must ensure that FCUs fail independently. Otherwise,
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if they fail at the same time, they will have a substantial impact on the overall reliability

of the system.

In a distributed system, a HW or a SW component can be considered to form an FCU.

For instance, on a multi-core processor, a core that communicates with other cores

through messages can be deemed to constitute an FCU. However, since the cores of a

multi-core processor are physically close together, share a common power supply and a

common timing source, the independence of the failures of the cores cannot be justified.

For example, in the E/E/PE safety function or the automotive domain, the compliance

to SIL3 or Automotive Safety Integrity Level (ASIL) D means that a maximum of one

dangerous error within 10−7 operating hours is acceptable [ISO15b].

Fault Tolerant Units (FTUs) tolerate the failures of FCUs. An FTU masks the failure of

an FCU inside. To that purpose, an FCU can implement the fail-silent abstraction. A

fail-silent FCU consists of a computational subsystem and an error monitor or two FCUs

and a result comparator. In addition, if no assumptions about the failure behaviour of the

FCU can be made, i.e., Byzantine failures,1 then the Triple Modular Redundancy (TMR)

may be needed. In TMR, an FTU consists of three synchronised replica deterministic

FCUs composed of a voter and the computational subsystems which may communicate

through a real-time communication network such as shown in Figure 2.2.

Computational 
Subsystem

Computational 
Subsystem

Computational 
Subsystem

Voter

Figure 2.2: Triple Modular Redundancy – Overview.

2.5 Complexity Management

As stated in Section 2.1, the integration of applications with different criticality on a

single embedded computing platform improves scalability and reduces the number of

the system’s wires and connectors, thereby improving the cost-size-weight factor. For

instance, a system can be composed of tens/hundreds of SW partitions that communicate

through an on-chip and/or off-chip mixed-criticality network and execute on the cores in

case of the on-chip networks and devices in case of off-chip networks [Kop08].

1An error that occurs when a set of receivers observes different values of a real-time entity.
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The system architect plays a key role in the specification and design of mixed-criticality

systems and the selection of appropriate safety techniques for the system level. In addition,

the system architect must provide sufficient evidence to the claim that the overall system

is safe to the Reliability, Availability, Maintainability and Safety (RAMS) team and the

external certification authorities. The availability of complexity management strategies

should ease the development, maintenance and certification of mixed-criticality systems.

As stated in [Kop08], four basic simplification strategies can be applied to manage the

complexity and overcome human limited cognitive capabilities.

• Abstraction refers to the formation of a higher-level concept that captures the

essence of the problem-at-hand and reduces the complexity of the scenario by

omitting irrelevant details. In a scenario with tens/hundreds of building blocks,

which can be custom implementations, COTS or developed by a third party,

abstraction becomes a key concern for the system architect.

• Partitioning refers to the spatial division of a problem using a divide and conquer

approach. This is applied, for example using SW partitions.

• Isolation refers to the suppression of irrelevant details from the specification of

cause and an effect.

• Segmentation refers to the temporal decomposition of complex behaviour into

smaller parts that can be processed sequentially. This is applied, for example,

using SW partition schedules (e.g., periodic cyclic scheduling with pre-assigned

time slots).

2.6 Structuring of Mixed-Criticality Embedded Systems

Mixed-criticality embedded systems consist of physical and logical structures (See Figure

2.3). Physically, a mixed-criticality system consists of a set of clusters that contain nodes.

Each node is a multi-core chip containing tiles that is interconnected through a real-time

communication network. The tiles provide network interfaces (NI) to the network and

offer ports for the transmissions or receptions of the NoC’s messages [DRE13].

A tile can be a processor cluster with several processor cores, caches, local memories

and I/O resources. Alternatively, a tile can also be a single processor core or an IP core

(e.g., memory controller that is accessible using the NoC and shared by several other

tiles). Off-chip and on-chip networks are responsible for time and space partitioning

between nodes or tiles respectively. They ensure that a node or tile cannot affect the

guaranteed timing (e.g., bounded latency and jitter, guaranteed bandwidth) and the
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Figure 2.3: Logical and Physical structure of a mixed-criticality systems – Overview.

integrity of messages sent by other nodes and tiles. The processor cores within a tile can

run a hypervisor (see Section 2.8) that establishes partitions, each of which executes a

corresponding SW component. The hypervisor establishes time and space partitioning,

thereby ensuring that a SW component cannot affect the availability of the computational

resource in other partitions (e.g., time and duration of execution on the processor core,

integrity and timing of memory).

On the other hand, the overall logical structure of a mixed-criticality system is structured

into criticality levels. Several criticality levels can be distinguished in different application

domains such as SIL1 to 4 in IEC 61508, classes A to E in avionics and ASILA to D

in automotive. For each criticality level, there can be multiple application subsystems

with different safety assurance levels. These subsystems can be further subdivided into

components (e.g., processing memory and I/Os). Each component provides services

to its environment and interacts by the exchange of messages via ports. TT, Rate

Constrained (RC) and Best-Effort (BE) types of messages can be distinguished based on

the timing of the messages.
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2.7 Partitioning in Time and Value Domains

Partitioning is a requisite for modular certification that ensures the independence re-

gardless of design faults affecting the components of a system. In modular certification,

each application subsystem is certified to the respective level of criticality (e.g., SIL1 to 4

according to the IEC 61508 safety standard). The partitions for mixed-criticality systems

are usually realised by operating systems and hypervisors (see Section 2.8 with time

and space partitioning). In the temporal domain, scheduling mechanisms that assign

available resources to tasks based on fixed periodic time slots are applied. On the other

hand, spatial partitioning can be achieved by allocating a partition to an address space

which is not accessible by other partitions. A partitioned system offers many appealing

benefits such as memory protection (space partitioning), execution guarantees (time

partitioning) and improved fault containment capabilities.

2.8 Virtualization

A Virtual Machine (VM) is a SW implementation of a machine (computer) that executes

programs like a real machine. A hypervisor is a layer of SW or a combination of HW and

SW that allows running several independent execution environments on a single computer

platform. Several terms are used as synonyms of independent execution environments:

guest operating system, virtual machine, partition or domain. The key difference between

hypervisor technology and other virtualization technologies such as the Java VM are the

performance and the portability. An hypervisor is slower than the Java VM but allows

to run a wide variety of operating systems, which cannot be done using the Java VM.

Partitioning ensures that the shared computer system provides protection against fault

propagation from one partition to another (fault-containment) in the temporal and

spatial domains [Rus99]. In real-time embedded applications, the predictability and

efficiency are essential requirements. Virtualization mechanisms jointly with real-time

constraints must implement strict design methods and efficient solutions to guarantee

the safety behaviour of the system [LAN+15]. Consequently, virtualization mechanisms

such as hypervisors are promising solutions for developing and certifying safety-critical

embedded computing platforms.

Several software execution environments are available on the market reaching from bare

metal (type 1) hypervisors to full featured operating systems with the capability of hosting

heterogeneous guest operating systems in their partitions. Examples of software execution

environments capable of running mixed-criticality applications include XtratuM [Sol14],
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PikeOS [SYS15] and Wind River Hypervisor [Riv15]. These hypervisors run directly

on top of the HW and abstract from it, generating multiple execution environments

(partitions) where functionalities with different criticality are hosted.

2.9 COTS Multi-Core Devices

The use of COTS multi-core devices is gaining popularity in different embedded system

domains (e.g., automotive, railway, avionic) driven by the demand of low cost, increased

complexity and shortened time to market. However, the shift towards these multi-core

devices is not straightforward. The development and certification of COTS devices are

hindered by numerous drawbacks including temporal interferences. Those interferences

may hamper the computation of the Worst Case Execution Times (WCETs) and increase

the engineering and certification costs.

COTS multi-core devices are designed with the objective of offering a maximum perfor-

mance by increasing the complexity of the underlying architecture, which conflicts with

the standard practice in safety-critical systems that aims to employ simple, predictable

and proven-in-use devices. Examples of COTS multi-core devices with high performance

and low temporal predictability are P4080 [Sem10], Zynq [XIL14c], Hercules [Ins13] and

MPC5643L [Fre13].

2.10 Mixed-Criticality Networks

Distributed mixed-criticality systems depend on communication networks (e.g., TTEther-

net) for the data exchange between distributed computations. The trend of the integration

of functionalities with different criticality on a distributed embedded computing platform

requires the usage of communication systems supporting the coexistence of different

criticalities. These communication systems, which are also called mixed-criticality net-

works, shall be capable of supporting a safe and a predictable message exchange between

DAS with different criticality. Mixed-criticality networks are targeted as the natural

replacement of traditional legacy buses due to the increasing amount of data that is

required to be exchanged, the decrease of cost, the higher speed and the integration with

existing network infrastructures. They can be divided into off-chip and on-chip networks

with real-time and non-real-time features, where both can co-exist in one system. Off-chip

networks are used for the interconnection of devices while on-chip networks are used

for interconnecting the cores within a device. For example, EtherCAT is a real-time

industrial Ethernet off-chip network. The use of internal network-on-chip systems shifts

the problems associated with traditional networks into the chip.
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However, the shift towards mixed-criticality networks poses many challenges related to

the increasing demand for real-time, safety and security features in different application

domains such as automotive and railway. To cope with those challenges white channel

and black channel network approaches are defined by the IEC 61508-2 safety standard

[IEC10b]. White channel networks (See Figure 2.4) are designed, implemented and

validated according to the IEC 61508 [IEC10b, IEC10c] and IEC 61784-3 [IEC10g] or

IEC 62280 [IEC02b] safety standards. In the case of the black channel networks (see

Figure 2.5) it is assumed that not all parts of the communication channel are designed

and validated according to the IEC 61508 safety standard. In that case, the safety-related

components that compose the communication channel must implement IEC 61784-3

[IEC10g] or IEC 62280 [IEC02b] compliant measures and diagnostic techniques to ensure

the failure performance of the communication process.

Figure 2.4: White channel approach. (Source IEC 61508-2 [IEC10b])

Figure 2.5: Black channel approach. (Source IEC 61508-2 [IEC10b])

2.11 Modular Safety Cases

A safety case [Kop11] represents an argument supporting the claim that the system is

safe for a given application in a given environment [BB98]. It provides I) arguments

to demonstrate that safety properties are satisfied and risk has been mitigated, II) a

notation mechanism that is often required as a piece of the certification process and

III) data interoperability among different standards (e.g., IEC 61508, ISO 26262) and

application domains (e.g., avionic, automotive, railway).

A well-partitioned safety case limits the impact of changes to a reduced area of the safety

case and enables the reusability of these areas. Partitioning is a complexity management

technique [Kop08] that subdivides the system into smaller parts, more commonly referred

to as modules, which are independently generated and used to compose a system. The

modules can be generated with different levels of criticality such as SIL1 to 4 according to

the IEC 61508 safety-related standard. On this basis, the implementation of MSCs enables

the reusability of predefined modules, reducing the overall complexity (simplification

strategy) and supporting the limitation of change impacts to specific modules.
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2.12 Cross-Domain Mixed-Criticality Patterns

Cross-domain patterns are widely used and universal approaches for describing and

documenting recurring solutions for design problems. They are used to guide and support

engineers towards solutions that solve commonly occurring problems in the development

of mixed-criticality systems from design to verification and validation. Two pattern

approaches can be identified:

• Traditional patterns: Their representation derives from the definition of design

patterns which include four essential elements: name, context, problems and

solutions. In general, the traditional pattern representation consists of the following

elements:

– Name: A meaningful name for the pattern.

– Context: Describes the preconditions or the situation in which the pattern

can be used to solve a problem.

– Problem: Describes the problem that is indented to be addressed by the

pattern.

– Solution: Defines the solution to the problem.

• Custom patterns: They are based on traditional patterns and differ from those in

terms of different element naming and/or additional elements [HGZ+13, AM95,

Rub95, GHJV94, Ada95]. For instance, the context element can be subdivided

into Applicability and Preconditions in a custom pattern representation. Most

popular works on pattern representation of mixed-criticality systems are defined in

[Dou99, Dou02] where the common patterns that deal with building safe and reliable

architectures are presented. For example, patterns such as the single protected

channel, homogeneous redundancy, triple modular redundancy, heterogeneous

redundancy, monitor-actuator, watchdog and safety executive are introduced. Table

2.1 presents an example of a custom cross-domain pattern representation.

Pattern ID

Pattern Name

Related Pattern

Type

Context

Problem

Solution Under Consideration
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Board Name

Implementation

Results

Additional Considerations

References

Table 2.1: Custom cross-domain pattern representation template.
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Chapter 3

State Of The Art

This chapter analyses modular certification from the perspective of different safety

standards and it describes notation languages for representing safety cases. A safety

case is a documented body of evidences that provides convincing and valid arguments

that a system is adequately safe for a given application in a given environment (e.g.,

automotive, railway, elevation) [BB98]. Section 3.1 presents the way in which the

modularity methodology is supported by the IEC 61508 [IEC10a], ISO 26262 (Automotive)

[ISO11], EN 50129 (Railway) [EN03] and DO-178 + IMA (Avionic) [RTC92] safety

standards. Section 3.2 gives an overview of the prevalent safety case notation languages.

3.1 Modularity among Standards

3.1.1 IEC 61508

IEC 61508 is the international standard for functional safety of E/E/PE safety-related

systems (see also Section 2.2). This standard is intended to be the basis for other

domain-specific safety standards such as automotive, railway, machinery and others (see

Figure 2.1). These safety standards consider the modularity, such as a method to develop,

certify and re-use already certified and qualified components (e.g., actuators, sensors,

communication networks, logic units/devices) for developing mixed-criticality systems.

Figure 3.1 shows in detail the decomposition considered by this standard where the

system can be divided into subsystems and the subsystems can be divided into elements.

At the beginning of this chapter, the concept of a safety case is defined. This definition can

be extended to modularity, thus defining the concept of MSC. An MSC is a documented

body of evidences that allows the assurance of the safety of a system that is composed of

19
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Communications

Elements

Elements

E/E/PE Device

Subsystem 
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(e.g., A/D converters)
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(e.g., D/A converters)
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Output devices
(e.g., Actuators)

Figure 3.1: IEC 61508 – System hierarchy. (Source IEC 61508-1 [IEC10a])

modules with different criticality. According to the IEC 61508 safety standard an MSC

shall cover the following aspects:

− Analysis of the system’s safety-related needs.

− Strategies adopted to achieve the desirable SILs.

− Measures and diagnostic techniques for random and systematic faults.

− Evidences that demonstrate that the selected measures and diagnostic techniques

are sufficient to fulfil safety needs.

Product families are another use case of modular certification. Products of the same

product family can be developed using a set of pre-certified components. In addition, in

the case that a safety requirement of the product changes, its re-certification according

to the IEC 61508 safety standard might cut its cost since the modules affected shall only

be certified. Modular certification implies the pre-certification of the modules according

to IEC 61508 to achieve a certain Safety Integrity Level Claim Level (SILCL). The HW

and SW components shall be developed and certified according to IEC 61508 to fulfil

the required SIL.

3.1.2 ISO 26262

ISO 26262 [ISO09] is a functional safety standard for road vehicles. It defines the

functional safety for automotive electrical and electronic safety equipment. This standard

provides its own component model, where the terms item, system, component, HW part,

SW unit and element are respectively defined (see Figures 3.2). An item is a system or an

array of systems used to implement a function (e.g., a vehicle system). A system is a set
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of elements that includes at least a sensor, a controller and an actuator. An element is a

system or a part of a system including components, HW, SW, HW parts and SW units.

It is considered that an element is non-dissoluble when it includes HW parts or SW units.

Instead, a dissoluble element can be labelled as a system, a subsystem or a component.

A component is a non-system level element that is logically and technologically separable

and is composed of more than one HW parts and/or SW units. A component is part of

a system. On the other hand, a HW part is a HW which cannot be subdivided anymore,

and a SW unit is an atomic level SW component - one or more SW units - of the SW

architecture. This system architecture is shown in Figure 3.3.

1

n

1

n
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Item

ElementComponent
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1

n
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1

Figure 3.2: ISO 26262 – Relationship of items, system components, HW parts, SW
units and elements. (Source ISO 26262 [ISO09])
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Figure 3.3: ISO 26262 – Item dissolution. (Source ISO 26262 [ISO09])

This safety-related standard also defines the term of Safety Element out of Context

(SEooC). An SEooC is a safety element for which an item does not exist at the time
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of the development. An item can be either an element, a SW application or a HW

component. The development of an element or a HW component out of context implies

the replacement of the prerequisite work products by assumptions on ASIL A, B, C or

D capability. A work product is the result of one or more associated requirements of

the ISO 26262 standard. In that case, the design specification of the system (clause

7 of ISO 26262-4 [ISO15a]) and the technical safety concept (clause 6 of ISO 26262-4

[ISO15a]) that provide the ASIL attributes are replaced by assumptions. Similarly, the

development of a SW out of context can also begin with the SW architectural design

(clause 6 of ISO 26262-6 [ISO15a]) or the SW unit design and implementation (clause 8

of ISO 26262-6 [ISO15a]). In that case, the safety requirements of the SW (clause 6 of

ISO 26262-6 [ISO15a]) and the architectural design specification (clause 7 of ISO 26262-6

[ISO15a]) can be replaced by assumptions.

3.1.3 EN 50129

EN 50129 [EN03] is the European railway standard that is intended for safety-related

railway signalling systems and equipments. This standard defines the conditions and

the development process for safety-related electronic railway systems and equipments to

be accepted as adequately safe for their intended application. Safety cases evidence the

acceptance of these systems and equipments. According to this safety-related standard,

a safety case shall contain the definition of the system and the equipment, the quality

management, safety management and technical safety reports, the related safety cases

and the conclusions. The evidences that demonstrate the compliance of the system or

equipment shall be included in the justification documents. These documents contain

the following conditions for safety acceptance:

− Evidence of quality management:

The first condition for safety acceptance refers to the quality of the system or

equipment which should be controlled by the quality management team in the

life-cycle (see EN 50126 [EN99]). These evidences shall be included in the Quality

Management Report, which is part of the safety case documentation. The purpose

of the quality management report is to minimise the number of human errors at

each stage of the life-cycle, thus reducing the risk of systematic faults in the systems

and equipments.

− Evidence of safety management:

The second condition for safety acceptance is that RAMS manage the safety of

the system (see EN 50126 [EN99]). The use of Safety Management process is
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mandatory for SIL1 to 4. Documented evidence to demonstrate the compliance

with the safety management process throughout the life-cycle shall be provided

in the Safety Management Report, which also forms part of the safety case. For

example, safety plans for verifying that the phases of the life-cycle satisfies the

safety requirements identified and for validating the system, subsystem, equipment

against its original safety requirements specification.

− Evidence of functional and technical safety:

In addition to the evidences of quality and safety management, technical evidences

for safety design shall be provided in the Technical Safety Report. This document

forms part of the safety case, and it is mandatory for SIL1 to 4. SIL0 is outside

the scope of this safety standard. The headings of the technical safety report

include an introduction, the assurance of correct functional operation, including

the architecture, interfaces, fulfilment of requirements and assurance of correct

HW and SW behaviour, the effects and faults, including random HW faults and

systematic faults, the operation with external influences, thus demonstrating the

operability and safety of the system or equipment, the safety-related application

rules, conditions and constraints and the safety qualification test. For example, the

environmental stress testing technique is executed and the results of the tests are

verified.

− Safety Assurance and Approval:

This sub-clause defines the safety acceptance and approval procedures for safety-

related electronic systems. In addition, it considers the following three categories

of safety cases:

? Generic Product Safety Case (GPSC): A generic product can be re-used for

different independent applications, e.g., a balise, a track circuit, a signalling

system and a lineside electronic unit (LEU) of a train system.

? Generic Application Safety Case (GASC): A generic application can be re-

used for a range of applications with common functions. Examples include

a radio block centre (RBC) and a driver machine interface (DMI) of a train

system.

? Specific Application Safety Case (SASC): A specific application presents the

safety properties of a particular combination of products in a given application.

An example is a train supervisor. This safety case shall be divided into the

application design and physical implementation safety approvals. The applica-

tion design safety case contains the safety evidences for the theoretical design

of the specific application. On the other hand, the physical implementation
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safety case is the safety evidence for the physical implementation of the spe-

cific application. For example, safety evidences are provided for manufacture,

installation, test, facilities for operation and maintenance.

There shall be two safety assessment reports for application design and physical

implementation respectively. A safety assessment, in general, must determine

whether verification and validation evidence that a system meets the specified

requirements, form a judgement as to whether the system is fit for its intended

purpose and determine if the components are compliant to the defined SIL.

3.1.4 DO-178 Integrated Modular Avionics (IMA)

DO-178C [RTC11] is an airborne standard approved by Radio Technical Commission

for Aeronautics (RTCA), where SW considerations in airborne systems and equipment

certification are defined. This standard defines a SW component like an atomic SW

element that can be reused or used in conjunction with other components. Ideally,

it should work without modifications and without the engineer needing to know the

content and internal function of the component. However, the interface, functionality,

pre-conditions and post-conditions, performed characteristics and required supported

elements must be well known. DO-178C defines two types of components: modifiable and

not modifiable components. A modifiable component is part of the SW that is intended

to be changed by the user, whereas a non-modifiable component is not intended to be

modified by the user. Non-modifiable components should be protected against modifiable

components to prevent interferences in the safe operations of non-modifiable components.

For example, HW or SW based protection mechanisms can be implemented for that

purpose.

In some airborne systems and equipments, optional functions may be selected by SW

options rather than by HW. Subsection 5.4.3 of DO-178 [RTC92] defines the considera-

tions for deactivated code. This document also specifies the constraints for using COTS

SW in airborne systems or equipments. Figure 3.4 illustrates the DO-178 compliant

development process for the components of SW products.

− Component W implements a set of system requirements to define a SW design.

This design is coded into source code, and then, it is integrated with the HW.

− Component X shows the use of previously developed source code in Component W

that is employed in a certified aircraft engine.

− Component Y illustrates the use of a simple partitioned function that can be coded

directly from the SW requirements.
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Figure 3.4: SW project development sequences. (Source DO-178C [RTC92])

− Component Z shows the use of a prototyping strategy. The goals of prototyping

are to understand the SW requirements better and to mitigate the development

and technical risks, through the continuous evaluation and continuous refinement

of the SW project requirements.

3.2 Modular Safety Case Notation Languages

Evidence that a system is suitable for a specific purpose is a complex and essential

requirements in today’s mixed-criticality systems. Safety cases are usually required by

safety standards and regulations as a means to present the safety-related requirements

and supporting evidences for safety claims. For instance, safety cases are explicitly

required by the IEC 61508 (E/E/PE functional safety systems), the DO-178C (avionic)

and the ISO 26262 (road vehicles) industrial standards.

A safety case provides an explicit and definitive set of claims, arguments and evidences

with different viewpoints, hierarchies and levels of details. Traditional safety cases are

presented through a text notation, where the ways in which the safety requirements

have to be interpreted and implemented in the system are specified. These approaches

are effective for the notation of simple requirements. However, in the case of complex

requirements, they often result in unclear, unstructured and ambiguous safety cases. In

1958 Toulmin [Tou58] developed an approach to overcome the problems that a textual

notation presents. This notation language presents a graphical notation language for

representing the hierarchical structure of the safety cases (see Figure 3.5). The Toulmin

approach consists of the following six parts [Tou14]:
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− Data: They are evidences used to support the arguments.

− Claims: They define the statements to be argued.

− Warrants: They are statements to connect the data and the claims.

− Qualifiers: They are statements to express the conditions under which the argu-

ments are true or not.

− Rebuttals: They are restrictions which may be applied to the claim.

− Backings: They are credentials or justifications to certify the statement expressed

in the warrants.

Ibon is the brother of Asier.

Unless

Ibon has cut or lost his hair.

On the fact that

The brother of Asier has 

previously been observed with 

blue hair.

Since

The brother of Asier may have 

blue hair.

So, presumably

Ibon has blue hair.

Data

Warrant

Backing

Claim

Rebuttal

Figure 3.5: Toulmin Notation Language – Example.

On the basis of the Toulmin approach, the GSN [Ade98, KW04, Kel07], CAE [Ade98,

BB10, EC02] and Structured Assurance Case Metamodel (SACM) [OCM16] notation

languages were developed. These notation languages are supported by SW tools like

the ASCE [Ade98] that help to create and modify the claim structure, assist in the

propagation of changes through the safety case and handle automatic links to the

requirements. These tools also enable targeting problems with the Toulmin approach,

managing information complexity and linking the arguments and the stakeholders.

3.2.1 Goal Structuring Notation Language (GSN)

GSN is an argumentation notation language developed by University of York in 1990 for

the documentation of safety cases. In GSN the safety-related requirements of a system

are expressed, as shown in Figure 3.6, by means of goal, strategy, solution, context,

assumption and justification elements.

− Goal: It is the claim to be supported by sub-claims.

− Strategy: It is the nature of the argument that connects the claim and sub-claim.
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− Solution: It is an evidence asserted to support the truth of the claim.

− Context: The context in which the claim should be implemented.

− Justification: Justification of claims or strategies.

− Assumption: Assumptions to hold valid the claims and strategies.

− Undeveloped Entity: It refers to elements requiring further decomposition.

− Undeveloped Goal: It refers to elements that require instantiation.

  

AJ

Goal Strategy

Solution

Context Justification Assumption

UndevelopedEntity

UndevelopedGoal

Figure 3.6: GSN Elements – Overview.

In addition, the GSN notation language has been adapted to support modular certifica-

tion as defined in [OBM+14], [Kel07] and [Kel01]. For that purpose, new representation

elements such as the module extension and contract elements are included in the GSN

representation. The module extension is a package of arguments to provide an abstract

view of the argument structure. It is rendered as a rectangle with a second smaller rect-

angle that represents the reference to a module containing an argument (See Figure 3.7).

On the other hand, the contract modules are introduced for describing the relationship

between two or more modules, defining how a claim in one supports the argument in the

other.

Module

<Module Description>

Contract

<Contract Description>

Figure 3.7: GSN – Modularity extensions.



28 Chapter 3. State Of The Art

3.2.2 Claim, Argument, Evidence Notation Language (CAE)

The CAE notation language has been developed by Adelard as a simple and effective

way to define safety cases. These safety cases are composed of claims, arguments and

evidences (see Figure 3.8).

− Claim: It is the assertion of one or more arguments that can be assessed to be

true or not (e.g., the system is adequately safe).

− Argument: It describes the content presented to support the claims and links

claims to evidences.

− Evidence: It is the reference presented in support of claims and arguments (e.g.,

the Functional Safety Management (FSM) deliverables).

Figure 3.8: CAE Elements – Overview.

These arguments and evidences can be enriched with the following custom tags for easing

their classification:

Arguments:

− [Safety – Standard]: The argument is based on a safety standard.

− [Safety – Function]: The argument defines a safety-related function.

− [Safety – Technique]: The argument defines a safety technique, e.g. diagnosis

technique and system reactions to errors.

− [Safety – Assumptions]: The argument defines a set of safety-related assumptions

that must be met, e.g. constraints and hypothesis of use.

− [Recommendations]: The argument defines a set of recommendations.

Evidences:

− [Deterministic]: The evidence is deterministic, e.g. a safety manual is provided.

− [Probabilistic]: Quantitative statistical reasoning (numerical level).

− [Qualitative]: Compliance with rules (i.e., standards).

− [Export]: An external entity provides the evidence (e.g. system architect or third

party item provider).
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3.2.3 Structured Assurance Case Metamodel (SACM)

SACM [OCM16] combines the Argument Metamodel (ARM) and Software Assurance

Evidence Metamodel (SAEM) Object Management Specifications (OMG) specifications.

Furthermore, it harmonises the common elements of the GSN and CAE notation lan-

guages, resulting in a formal model with structured graph of assertions (claims) ultimately

supported by an evidence repository. The evidence repository expresses attributes about

the SW artefacts and the relations between them (i.e., containment, the specification of

models, library dependencies, versioning).
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Chapter 4

DREAMS Architecture Style

The DREAMS research project [DRE13] aims at developing a cross-domain real-time

architecture and design tools for complex networked systems where application subsystems

of different criticality executing on networked multi-core chips are supported. This

project delivers architectural concepts, meta-models, virtualization technologies, model-

driven development methods, tools, adaptation strategies and validation, verification

and certification methods for the seamless integration of mixed-criticality to establish

security, safety and real-time performance as well as data, energy and system integrity.

Furthermore, it defines a cross-domain system architecture of a hierarchical distributed

platform for mixed-criticality applications combining the logical and physical views (see

Figure 4.1). This system design enables tackling the development and certification

challenges of today’s mixed-criticality systems.

Logically, the architecture style of DREAMS consists of heterogeneous application

subsystems with different criticality levels (SIL1 to 4 according to IEC 61508), timing

(firm, soft, hard and non-real-time) and computation models such as TT messages, data-

flow and shared memory. Application subsystems can have contradicting requirements

for the underlying platform such as different trade-offs between predictability, safety and

performance in processor cores (i.e., Zynq-7000 processor), hypervisors (i.e., XtratuM

hypervisor), operating systems (i.e., Windows CE) and networks (i.e., on-chip and off-chip

networks). They can be further split into SW components (e.g., diagnosis partitions and

safety protection partitions which are responsible for executing a safety state in the case

of a failure).

The platform architecture proposed in DREAMS provides resources such as global and

local resource management units (Global Resource Manager (GRM) and Local Resource

Manager (LRM)) for executing multiple application subsystems and their components

in different execution environments. Blocks highlighted in grey in Figure 4.1 are core
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Figure 4.1: DREAMS Architecture – Overview. (Source [DRE13])

platform services, the dotted ones are the optional platform services and the block with

dark stripes are the application-related platform services. Partitioning establishes this

system perspective, enabling the decomposition of the system into multiple application

subsystems which can be independently certified to the respective level of criticality.

Partitioning is a prerequisite for modular certification.

The HW architectural style proposed by the European project DREAMS ensures deter-

minism and temporal independence to simplify the timing and resource analysis. Temporal

predictability and low jitter also promote the quality of control of mixed-criticality sys-

tems. This project considers the IEC 61508 safety standard for its development, although

it also considers the security [ISO15c] and timing standards [USE12]. These standards

define different lifecycle development processes for developing safe, secure and real-time

mixed-criticality systems. The development processes for secure, and real-time systems

are not included in this thesis because they are out of the scope of in this dissertation.

The second objective of this project is to reduce the overall cost required for developing

and certifying mixed-criticality solutions. This thesis has been developed within the

European DREAMS project and therefore, it pursues the same objectives. For that

purpose, it implements a general optimisation strategy towards the selection of safety

components such as the ones provided by a hypervisor, a COTS multi-core device and the

on-chip and off-chip mixed-criticality networks. In addition to the significantly decreased

costs in the development lifecycle, deployment and maintenance, the modularity method-

ology is applied and reusable generic cross-domain patterns are defined and implemented.

These patterns allow faster design and higher applicability to different application fields

and they guide and support engineers towards solutions that solve commonly occurring

problems in the development of mixed-criticality products.
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4.1 Safety Development Process for Mixed-Criticality Sys-

tems

The engineering of safety-related systems implies strict development processes to attain

certification. For example, the IEC 61508 safety standard defines a safety lifecycle

development process for E/E/PE functional safety systems [IEC10a]. A safety lifecycle

is an engineering process that sets out a set of steps for achieving the required functional

safety. It is used to develop and document the safety plan, execute that plan and

document its execution. In this section, the IEC 61508 compliant development process is

followed as the basis for defining the development process for safety shown in Figure 4.2.

2 Overall scope definition

1 Concept

3 Hazar and Risk analysis

4 Overall safety 
requirements

5 Overall safety 
requirements allocation

16 Decommissioning or 
disposal

15 Overall modification and 
retrofit14 Overall operation 

maintenance and repair

13 Overall safety validation

12 Overall installation and 
comissioning

Realisation
(see E/E/PE system 

Lifecycle)

10 E/E/PE safelty-related 
systems

9 E/E/PE system safety 
requirements specification

6

Overall 
operation and 
maitenance 

planning

7

Overall 
safety 

validation 
planning

8

Overall 
installation and 
comissioning 

planning

Overall Planning 11 Other risk reduction 
measures

Specification and 
Realisation

Figure 4.2: IEC 61508 – Life cycle. (Source IEC 61508-1 [IEC10a])

Phases 1 ”Concepts” and 2 ”Overall scope definition” entail the safety implications of the

actions related to the Electronic Under Control (EUC). More specifically, the objective

of the first phase is to develop a level of understanding of applications of the EUC and its
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environment (physical, legislative) to satisfy complete the other safety lifecycle activities.

The second phase aims to determine the boundary of the applications of the EUC and the

EUC control system and specify the scope of the hazard and risk analysis (e.g., process

hazards, environmental hazards), taking as input the information from phase 1. In phase

3 the hazard and risk analyses are performed to determine the hazards, hazardous events

and situations related to actions of the EUCs. The defined scope of the hazards and risk

analysis are considered as a starting point in this phase. Phase 4 specifies the overall

safety requirements regarding safety functions and safety integrity requirements. For that

purpose, the information related to the hazard and risk analysis are taken from phase 3.

In phase 5 ”Overall safety requirements allocation”, the overall safety requirements of

phase 4 are translated to design the safety functions.

The design of safety functions is dependent on the implementation in phases 9, 10 and 11.

Phase 9 defines the E/E/PE system safety requirements in terms of the safety function

and safety integrity requirements to achieve the required functional safety. Phase 7

provides the inputs for this phase, and its outputs are used for developing the E/E/PE

safety-related system in phase 10. Phase 10 defines the life cycle for E/E/PE functional

safety systems shown in Figure 4.3. The continuous arrows of the figure define the

dependencies between the phases of the development process. At the end of each step,

a verification process against the results of the next step (broken vertical arrows) is

executed to check the consistency of the steps’ I/Os.

This development process is split into a design branch and a testing branch (green

arrows). The design branch covers the development phases related to the definition and

design of the HW and/or the SW. Instead, the testing branch covers the phases related

to the integration, verification and validation activities of the HW and the SW. The

design and testing branches are linked to the test plans, which can differ depending on

the implementation in HW or SW. For instance, the development of HW requires the

implementation of measures and diagnostic techniques recommended by IEC 61508-2

[IEC10b], whereas the development of SW requires the implementation of measures and

diagnostic techniques recommended by IEC 61508-3 [IEC10c]. The solid arrows on the

left side of each test plan indicate the origin of the test plans while the solid arrows on

the right side denote the actions which are required to be performed during the testing.

The dashed lines to/from the test plans denote the verification activities between the

phases.

Phase 9 defined before comprises the safety-related requirements for the HW and the

SW and sets the validation plan that shall be followed in sub-phase 10.8 for validating

the entire HW or/and SW system. It helps in the system requirements gathering and

classifying. Sub-phase 10.1 defines the HW and SW system modelling and architecture
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Figure 4.3: Safety Life cycle – The V-model.

definition. This sub-phase also defines the integration tests that shall be executed in

the HW or/and SW integration testing (Sub-phase 10.7). Sub-phase 10.2 defines the

system architecture design and specifies a verification plan for the modules of sub-phase

10.6. In addition, sub-phase 10.3 describes the way in which each component of the HW

(module or part) and/or SW system shall be implemented, the communication protocols

to be used by the components, configures the SW components associated with the HW

architecture and defines the verification plan for testing the modules in sub-phase 10.5.

These HW and SW modules, and attached interfaces (application programming interfaces

(APIs)) are developed/implemented in sub-phase 10.4. Once the HW and/or SW modules

are developed/implemented, the testing branch starts. This branch tests the modules

developed/implemented in the design branch. To that end, sub-phase 10.5 uses the test

plan defined in the linked sub-phase. Sub-phase 10.6 and 10.7 verify the integration of

the modules and the HW and/or the SW using the verification plans established by the

sub-phases of the design branch. Finally, in sub-phase 10.8 the entire system is validated

according to the validation plan defined in phase 9 to check the system’s functionality.

On the other hand, the overall safety context reflected in phases 6, 7 and 8 shall be

deemed to ensure a safe development process. Phase 6 develops a plan for operating and

maintaining the E/E/PE safety-related system, taking the safety requirements allocation

document as its input. Phase 7 defines a plan for the overall safety validation of the

E/E/PE safety systems. The inputs of this phase include outputs of phases 4 and 5.

Phase 8 ”Overall installation and commissioning planning” develops a plan for the
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installation and commissioning of the E/E/PE safety system ensuring the achievement of

the required functional safety. This phase takes the overall safety requirements document

(phase 5) as an input. Further phases, phases 12-16 are executed when the system has

been built. In phase 12 the E/E/PE system is installed and commissioned, whereas, in

phase 13, the E/E/PE system is checked to verify that the safety-related requirements

are identified and handled during the building and installation before the system is put

into operation. Maintenance activities are carried out in phase 14. These activities

are usually performed at run-time. It is also foreseen that an E/E/PE system can be

modified during run-time, thus requiring the overall modification and retrofit of the

safety-related functions. The conditioning and modification processes are carried out in

phase 15 of the development process. Finally, in phase 16 ”Decommissioning or Disposal”

the definition of the procedures to assure the adequacy of the E/E/PE system during

and after the decommissioning or disposing of the Electronic Control Unit (ECU) is

carried out. If another safety lifecycle is required, it should be specified as part of the

functional safety management activities, and it should fulfil the requirements defined by

the IEC 61508-1-2-3 safety-related standard [IEC10a, IEC10b, IEC10c]. It is assumed

that if at any phase of the safety lifecycle, a modification is required, then an impact

analysis shall be carried out for defining the areas of impact and which earlier safety

lifecycle activities shall be repeated.

The development process based on the IEC 61508 safety standard presented in this chapter

is not intended to develop HW in its particular context. Instead, it aims to develop SW.

However, this standard also defines that the implementation of communication systems

inside a Field Programmable Gate Array (FPGA) (e.g., NoC) can be considered as HW.

Therefore, mixed-criticality systems that contain programmable logic applications shall

be compatible with both HW and SW developments. For instance, the architecture

of the European project DREAMS presented in this chapter shall be consistent with

both HW and SW development processes as it uses a standard manufactured multi-core

processor, implements a hypervisor for partitioning the cores of the processor and uses a

mixed-criticality network for communication between the partitions.

4.1.1 Meet-in-the-Middle Methodology

The meet-in-the-middle methodology is considered as a successive refinement method

that combines top-down and bottom-up methodologies to converge on HW and/or SW

solutions. A platform based design is a meet-in-the-middle process emphasising systematic

reuse for developing complex products based upon platforms and HW and SW virtual

components, intended to reduce development cost and time to market [SVM01]. The

meet-in-the-middle approach is not a top-down process where the SW is designed in the
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first place, and the HW is developed in the second place [FJKM11]. Its development

strategy offers a middle ground between the top-down and bottom-up methodologies

attempting to take advantages of those approaches while attenuating some of their most

notable risks and problems [PvdH06]. For instance, the top-down methodology may

converge to no concrete solutions, whereas a bottom-up method fights against the increase

of the simulation time of today’s complex models. From a safety perspective, according

to the IEC 61508 safety standard, the following two requirements may be implemented

to show the absence of systematic faults [IEC10b].

1. Meet the requirements of Route 2S or Route 3S . Route 2S ”Proven-in-use approach”

establishes the compliance with the requirements of proven in use components. It

defines that an component shall only be regarded as proven-in-use when it has a

clearly restricted and specified functionality and when the absence of systematic

faults is demonstrated (see Subsection 7.4.10 of IEC 61508-2 [IEC10b]). On the

other hand, Route 3S ”Pre-existing SW” establishes the compliance with the

requirements of IEC 61508-3, including the requirements for pre-existing and

re-used SW.

2. Provide a safety manual that includes a precise and complete description of the

pre-existent components, enabling the assessment of the integrity of a specific safety

function that depends wholly or partly on the pre-existing SW components (see

Annex D of IEC 61508-2 [IEC10b] and IEC 61508-3 [IEC10c]).

Figure 4.4 shows the meet-in-the-middle methodology where it applies a top-down design

(application design) for a high level of abstraction and implements a bottom-up design

for a low level of abstraction (platform design). These two methodologies converge at one
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Figure 4.4: Safety approach – Meet-in-the-middle methodology.
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point, the meet-in-the-middle point, where the platform is ready to host an application

and where the application is ready to be hosted on a platform. From a HW perspective,

this methodology supports the bottom-up approach (low to high abstraction level), thus

enabling the adaptation of HW at design time and run-time using dynamic and partial

reconfiguration.

The meet-in-the-middle methodology is applied to mixed-criticality system architec-

tures (e.g., research project CONTREX [TOG+14]) for the integration of the design

environment, models, analyses and simulation tools.

4.1.2 Traceability

The traceability is the impact analysis that enables to check that the decisions taken at

earlier stages are adequately implemented (forward traceability) and that the decisions

made at later stages are required and stated by previous decisions. According to the IEC

61508 safety standard, the following traceability techniques can be implemented during

the development of a mixed-criticality system:

− HW traceability shall be computer-aided and it shall be based on defined methods

(see Table B.6 and Subsection 7.2.2.2 of IEC 61508-2 [IEC10b]). It is placed among

the specification, design, circuit and parts phases.

− SW traceability is placed among the phases of the development process and shall

be compliant to IEC 61508-3 [IEC10c].

A prerequisite for traceability is that the requirements for the HW and the SW must be

clearly identified, using unique identifiers.

4.1.3 Modularity

The component based design or modularity enables partitioning the system into smaller

comprehensible parts, also called modules. The modules can be independently developed

with different criticality levels (e.g., SIL1 to 4 according to the IEC 61508 safety standard)

and be re-used for developing different system architectures. This design approach limits

the complexity of the system and follows a joint development process (such as the IEC

61508 compliant development process).

Figure 4.5 presents the modular V-model development process based on the meet-in-the-

middle methodology. The right branch of the model implements a top-down method

(System of System (SoS) layer to component layer) while the left branch implements a

bottom-up methodology (component layer to SoS layer). These branches contain different
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abstraction layers such as the SoS, system, subsystem and component layers, where each

layer shall follow its development processes.
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Figure 4.5: Safety approach – Modularity.

Modularity methodology is applicable to mixed-criticality systems such as a wind park

system based on the DREAMS architecture style. A wind park usually can be split

into a set of wind turbines and a wind park control centre, where, a wind turbine

contains protection, supervision and control units. Consequently, the wind park can be

considered as a SoS while the wind turbines and the control centre are considered such

as systems. In addition, the protection, control and supervision units that compose the

wind turbine can be regarded as such subsystems. These units can also be decomposed

into a set of components such as COTS multi-core processors, virtualization mechanisms,

mixed-criticality networks, operating systems and SW. The subsystems and components

can be in turn systems and subsystems in their own right. All these abstraction layers

shall follow a safety development process such as the development process presented in

this chapter to attain certification.

The development of products with the system architecture presented in the Figure 4.6

can be eased by using already certified components, also known as compliant items.

These items can be reused and integrated for developing different products. They shall

be backed by their respective certificates and a set of documents that ensure that the

integration of the component is carried out according to the specifications for safety.

Figure 4.6 presents the development process based on a compliant item where certified

components may be re-used for developing diverse HW and/or SW, thus reducing the

development time and cost. For example, an IEC 61508 compliant control system of a

wind turbine could be re-used from the compliant item pool to develop a wind park, and

a certified COTS multi-core device (such as the Hercules multi-core device [Ins13] or the

Zynq-7000 multi-core device [XIL14b]) could be used from the compliant item pool for

developing a control system.
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Figure 4.6: Component based development process – Safety approach.

The same figure represents the adaptation process that is required by the compliant

items to fulfil the requirements defined at design time. For example, imagine that we

re-use a pre-certified COTS multi-core device from the compliant item pool and that

we aim to connect it through a PCIe bus to another device. However, imagine that

the re-used multi-core device does not implement a PCIe interface, thus precluding the

communication between the devices. Consequently, an adaptation strategy shall be

executed for achieving the communication between the devices. In this case, a PCIe bus

adapter should be required for establishing the communication between both devices.
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Modular Safety Cases

Mixed-criticality systems are complex systems that enable to combine on the same

computing platform functions with different criticality. These systems aim to provide

high performance and low power consumption, weight, size and cost and improve the

reliability and scalability. However, they are commonly subject to internal and external

interferences in temporal and spatial domains that significantly increase the develop-

ment and certification cost. For instance, they suffer temporal interferences due to

communication errors and spatial interferences due to resource sharing.

A typical certification process implies the certification of the whole system, where if

a safety aspect of the system changes, the entire system shall be re-certified. This

traditional certification process, which is also presented in Chapter 3, increases the final

cost and time-to-market for developing and certifying mixed-criticality systems. The

modularity methodology appears as a way forward to tackle the challenges related to the

traditional certification. This method enables the division of the system into different

application components and platform services, also called modules, and enables reducing

the development and certification cost. A module can be implemented independently
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Figure 5.1: Modular Certification – Overview
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and re-used for developing different mixed-criticality system architectures. For example,

in a perfect world, such as shown in Figure 5.1, a set of certified modules (compliant

items) (e.g., a hypervisor, a COTS multi-core device and a mixed-criticality network)

may be used in conjunction (such as jigsaw pieces) with a certified operating system to

compose a certified mixed-criticality system.

The certification process of safety-related systems is usually carried out through safety

cases. A safety case is a documented body of evidences that provides convincing and

valid arguments that a system is adequately safe for a given application in a given

environment (e.g., automotive and railway) [BB98]. In the modular domain, the safety-

related arguments are commonly represented by means of MSCs. An MSC is a safety

case that enables the reusability of predefined modules, reducing the overall complexity

(simplification strategy) and limiting the impacts of changes to specific modules of

mixed-criticality systems. Nowadays, the predominant safety case notation languages for

representing safety cases are the GSN [KW04, Kel07] and the CAE [BB10, BB98, EC02].

These notation languages are introduced in Section 3.2.

This chapter defines the generic MSCs for fundamental platform services for mixed-

criticality systems such as a hypervisor, a safety partition, a COTS multi-core device and

a mixed-criticality network. CAE and IEC 61508 are taken as the reference safety-case

notation language and safety standard for defining the MSCs. Section 5.1 defines the

MSC for an IEC 61508 compliant generic hypervisor, whereas Section 5.2 defined the

MSC for an IEC 61508 compliant partition. Section 5.3 defines the MSC for an IEC

61508 compliant COTS multi-core device and Section 5.4 defines the MSC for an IEC

61508 compliant mixed-criticality network.

5.1 A Modular Safety Case for an IEC 61508 compliant

Generic Hypervisor

This section presents an MSC for an IEC 61508 compliant generic hypervisor positively

assessed by a certification body within the European project DREAMS [LPA+15]. Figure

5.2 presents the MSC and the safety-related arguments that a safety hypervisor must

meet to be compliant with the IEC 61508 safety standard. These safety arguments are

enriched with several custom tags presented in Subsection 3.2.2 and they may be fulfilled

by different safety hypervisors using a variety of strategies and mechanisms.

In this section, the term hypervisor is used as the abbreviation of the expression safety

hypervisor, which is intended to be used in an IEC 61508 compliant safety-related mixed-

criticality system. This MSC considers several significant constraints and hypothesis
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such as that the hypervisor manufacturer provides the safety-related hypervisor ’as it is’.

This term means that the hypervisor can be provided by the manufacturer in compliance

with a safety standard or not for fail-safe systems. A system is considered fail-safe when

in the event of a failure, it can reach a safe state (e.g., stop the execution). For example,

a train is a fail-safe system because, in the case of a failure, it can be switched into a

safe state. This term is further defined in Subsection 2.2.1. Furthermore, it is assumed

that a safety hypervisor follows safe installation procedures, which are contained in the

hypervisor’s documents. These documents include information regarding the qualified

tools used by the hypervisor, the minimum knowledge of the operators, the measures and

diagnostic techniques implemented, the failure modes of the hypervisor and the Safety

Related Application Conditions (SRAC). The safety installation procedures enable the

safe upload and non-volatile storage of the executable files (binary files) of the hypervisor

into an ECU. If the failure-modes of the safety hypervisor are not documented, it is

assumed that the hypervisor fails in an arbitrary way when it is affected by a fault. The

SRAC list defines the imported and exported requirements of the safety hypervisor such

as the timing requirements, the performance, the resources required and their associated

restrictions.

The first two arguments defined in this MSC address the development of a safety

hypervisor based on an IEC 61508 compliant development process (see Section 4.1) and

qualified tools. These tools shall be used to reduce the likelihood of introducing or not

detecting faults in the safety development process. According to the IEC 61508 safety

standard, qualified tools can be classified as off-line or on-line tools. On-line tools can

influence in the safety-related systems during their run-time, whereas off-line tools cannot

affect the run-time behaviour. Off-line tools can be re-categorized as T1, T2 or T3

depending on their purpose of usage [IEC10d]. T1 tools do not generate outputs which

can contribute to the executable code of the safety-related systems (e.g., text editor with

no automatic code generation capability such as a configuration control tool). T2 tools

support the test or verification of the design or the code, where errors in the tool can fail

to reveal defects of the safety-related system without creating errors in the executable

software (e.g., a test harness generator and a test coverage measurement tool) and T3

tools generate outputs that can contribute to the executable code of the safety-related

system (e.g., a compiler).

In relation to the safe startup and initialization of a safety hypervisor, they shall be

provided in a known initial state, in a repeatable way and at a specified time window.

The startup and initialization time of the hypervisor and the time required for configuring

it shall also be considered for achieving determinism. It is assumed that before the

startup sequence, a HW based diagnosis and the diagnosis of the hypervisor’s binaries

are executed. Concerning the shutdown sequence of an IEC 61508 compliant hypervisor,
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Figure 5.2: An MSC for an IEC 61508 compliant generic hypervisor – Top.

two possible shutdown scenarios based on the dependency level shall be considered. In

the first scenario, the safety hypervisor has absolute control of its shutdown sequence

(autonomous shutdown), while, in the second scenario, the hypervisor has no means to

know and control its shutdown. It depends partially on external components. Nonetheless,

regardless of the scenario, the shutdown process shall lead to a known and repeatable

state within a limited time and shall consider the time for shutting down the hypervisor

and the partitions.

As a general rule, the sharing of resources (such as memory and peripherals) shall
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be avoided in mixed-criticality systems for preventing interferences in the temporal

and spatial domains. However, resource sharing is a common tactic used in today’s

partitioned mixed-criticality systems. For example, the memory assigned to a hypervisor

can be shared with a communication network, thus possibly leading to interferences (e.g.,

the bottleneck effect). The resource virtualization technique provides a way to reduce

problems related to the resource assignment avoiding as much as possible the sharing of

resources.

Virtualization enables creating a layer of abstraction above the resources of the physical

HW. The virtualization can be done entirely (full-virtualization) or partially (para-

virtualization). A safety hypervisor shall support the virtualization of the processor’s

cores, the resources and the peripherals. Furthermore, the safety hypervisor must ensure

that the partitions do not leave their configured environment and that the assigned

virtualized resources do not directly access to the hypervisor’s resources (such as the

memory). For instance, a safety hypervisor shall guarantee that any partition does

not influence a safety-related partition. These restrictions shall be configured in the

hypervisor’s configuration file.

In a similar way, the peripherals shall also be protected from undesirable accesses from

partitions. To that end, the safety hypervisor must implement the exclusive access to

peripheral functions. Those mechanisms guarantees that a peripheral is not assigned to

more than one partition at a time and protects the peripherals from unauthorised accesses.

The allocation of the resources and peripherals of a device to partitions may lead to

failures that can jeopardise the assessment of the temporal and the spatial independences.

These independences must be guaranteed by the safety hypervisor as defined in Annex F

of IEC 61508-3 [IEC10c]. The assurance of temporal freedom means that no safety or

non safety partition can influence a safety partition. For example, if a partition takes

the processor’s available execution time or if it blocks the execution by locking a shared

resource, the temporal independence is not be guaranteed. Therefore, a safety hypervisor

must ensure that partitions have enough time to complete their execution. The execution

time per each partition is configured in the hypervisor configuration file. On the other

hand, the spatial independence refers to the ability to guarantee that the data of a

partition is not modified by other partitions (see Annex F of IEC 61508-3 [IEC10c]).

The execution of a safety hypervisor shall be isolated and protected against SW faults, thus

guaranteeing the integrity of the hypervisor’s code, its execution and the virtualization

of the CPUs. The hypervisor’s code shall be diagnosed periodically to ensure that it has

not undergone any modification due to a failure. These periodic checks shall include IEC

61508 compliant measures and diagnostic techniques such as the RAM test and checksum

mechanisms (see Tables A.5 and A.6 of IEC 61508-2). Further mechanisms such as a
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Memory Management Unit (MMU) shall also be supported by a safety hypervisor to

manage independent memory access rights. A MMU virtualizes the physical memory of

the system, thus preventing that any code executed within a partition can access to the

hypervisor’s memory or the memory of another partition. Among others, this unit is

responsible for ensuring that:

− no CPU instruction executed at a low level of privilege can access and modify the

memory belonging to another partition (also called privileged separation).

− each partition has exclusive access to the CPU’s cache

− a partition can only allocate and free its assigned memory

− a call to the MMU does not alter the partitioning of the memory

− only the hypervisor’s functions that operate on the MMU can access the data

structure of the MMU

It is usual that partitions generated by a safety hypervisor require communicating. This

data exchange between partitions must be established by the safety hypervisor in a safe

manner, complying with the temporal requirement of the communication protocol that is

used for that purpose and avoiding the temporal interferences as much as possible. For

example, a safety hypervisor may provide the communication between partitions through

a shared memory (e.g., L2 cache) or using a mixed-criticality network (e.g., NoC). If the

hypervisor does not establish a communication line for partitions, it should be explicitly

justified in the hypervisor’s documentation.

The configuration of a safety hypervisor is vital for the correctness and adequacy of the

partitions’ execution and guarantees the safety of the mixed-criticality system. For that

reason, the configuration of a safety hypervisor shall be established using qualified tools

with a static configuration file as an input (e.g., an .XML file). The configuration file

must be defined during the design stage of the safety hypervisor’s compliant development

process, installed following a safe installation procedure and diagnosed independently at

boot time and at run-time to detect misconfigurations.

It is a fact that the safety hypervisor can be subject to interferences derived from the HW

platform, the operating system or the communication network implemented by the final

system. Those interferences shall challenge the assessment of the temporal and spatial

independences, the configuration process, the safe boot, power on, power off and shutdown

sequences and the inclusion of the resource virtualization and the exclusive access to

peripherals functions. To that end, an IEC 61508 compliant hypervisor must support and
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implement a set of IEC 61508 compliant measures and diagnostic techniques to detect and

control random and systematic failures. For instance, a safety hypervisor shall implement

platform-independent diagnostic techniques such as the Defensive programming and the

Input comparison voting techniques (see Table A4 of IEC 61508-3 and Table A.7 of IEC

61508-2). In addition, platform related measures and diagnostic techniques (see Table

A.5 of IEC 61508-2)), system reactions to errors (e.g., safe state) and fault-tolerance

techniques (e.g., independent clock sources and Watch Dog Timer (WDT)) shall also be

supported by the safety hypervisor. If it does not support these measures and diagnostic

techniques, they should be implemented by the application SW or additional HW.

The evidences that support the safety-related arguments presented by this MSC shall be

compiled in a set of evidence documents. These documents shall include, among others,

the way in which the safety arguments defined in this section are met by the IEC 61508

compliant hypervisor, the impact analyses for each nonconformity and the identification

of exported requirements that shall be completed by a third party. These documents

shall also include the safe installation procedure followed by the hypervisor, and the

relevant details of the usage of qualified tools in the life cycle of the safety hypervisor.

5.2 A Modular Safety Case for an IEC 61508 compliant

Generic Safety Partition

This section presents the MSC for an IEC 61508 compliant safety partition positively

assessed by a certification body within the context of the European research project

DREAMS [LPA+15]. The arguments set out throughout this section are established

as the result of the analysis of the IEC 61508 safety standard and the safety concept

for a wind-power mixed-criticality embedded system defined in [PGTT15]. Figure 5.3

presents the graphical representation of the MSC with the claim that a compliant SW

partition must fulfil a set of safety arguments and evidences to achieve the compliance

with the IEC 61508 safety standard and support reusability. This MSC considers that

the intended usage of a safety partition is an IEC 61508 compliant fail-safe system with

an SIL up to SIL3 where it is executed on top of an IEC 61508 compliant hypervisor (see

Section 5.1). A system is called fail-safe when in the event of a failure, it reaches a safe

state (e.g., stop the execution). For example, a train is a fail-safe system because it can

be stopped when a failure occurs. The term fail-safe is more detailed in Subsection 2.2.1.

It is assumed that the safety partition can be developed for being compliant with a safety

standard (e.g., safety partition or non safety partition). The safety partition shall include

an SRAC list where the imported and exported requirements are specified. Examples

are timing requirements and performance, required resources and associated restrictions.



48 Chapter 5. Modular Safety Cases

Diagnostic

Figure 5.3: An MSC for an IEC 61508 compliant generic safety partition – Top.

This MSC considers that the safety partition shall be abstracted from the HW platform

(e.g., abstracted from the COTS multi-core device) and that it must follow an IEC 61508

compliant development process. If another safety standard is considered for developing a

safety partition, this MSC would need to be reviewed and updated accordingly. Further-

more, it is defined that the development process of a safety partition must support T3

qualified tools. These tools generate outputs that can contribute to the executable code

of the safety-related partitions [IEC10d] (e.g., a compiler).

The startup, initialization and shutdown of a safety partition shall result in a known

and repeatable state within a bounded time. The time needed by the components of the

safety chain (e.g., the processors, the hypervisor) for completing the startup, initialization

and shutdown processes shall also be considered by the safety partition for calculating

the startup, boot and shutdown times. These processes may be executed directly by

the safety partitions, or they can depend on external requests from a safety-related

hypervisor or the HW platform. For each type of shutdown, three scenarios that differ

depending on the external components (e.g., a WDT) for executing the shutdown can

be identified (autonomous, partial dependency and total dependency). The autonomous

shutdown means that the safety partition controls its safe shutdown. Instead, when the

safety partition has no mean to know and control its safe shutdown and partially or

totally depends on external HW or SW components, it is said that the partition executes

a partial or total dependency.

A safety partition shall ensure that its failures do not affect the behaviour of other

partitions. To that end, the safety partition shall implement a set of measures and
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diagnostic techniques recommended by the IEC 61508 safety standard for detecting

random and systematic failures. The safety partition shall also support further methods

such as the life-cycle related techniques and platform independent diagnostic techniques

(see Table A.4 of IEC 61508-3 [IEC10c] and Table A.7 of IEC 61508-2 [IEC10b]). The

abstraction of the measures and diagnostic techniques from the HW platform and the

hypervisor enables the reusability of the safety partitions for developing different mixed-

criticality systems. Different design techniques such as the standard language subsets for

safety (e.g., restricted ANSI C) may be adopted to achieve that goal.

Furthermore, a safety partition shall implement a set of system reactions to errors and

fault-tolerance techniques to manage the faults. For example, a safety partition may

trigger the transition to a sleep state if a failure is detected or an other safety-related

partition could supply the functionality of the faulty safety partition. The reactions

to errors and fault-tolerance mechanisms supported by the safety partition shall be

configured in the hypervisor’s configuration file and shall be configured through qualified

tools (see Section 5.1).

The safety arguments defined throughout this section and their evidences shall be

collected in a set of evidence deliverables. These deliverables shall include the way in

which a safety partition fulfils the safety-related arguments, the impact analyses for each

nonconformity and the identification of exported requirements that have to be met by

a third party. The evidence documents shall also define the uploading and the storage

of the partitions’ configuration and the relevant details of the qualified tools used for

designing, implementing, integrating and configuring the safety partition.

5.3 A Modular Safety Case for an IEC 61508 compliant

Generic COTS multi-core device

This section presents the MSC for an IEC 61508 compliant fail-safe COTS multi-core

device [LPO15]. Figure 5.4 presents the MSC and the safety-related arguments that

a COTS multi-core device shall fulfil in order to be compliant with the IEC 61508

safety standard. This MSC uses the term device as the abbreviation of a programmable

electronic device and a COTS multi-core device whose end user is a safety embedded

system engineer. A device is part of the HW design and executes SW. Hence, different

dependencies, constraints and hypotheses can be exported to the device and the HW

and the SW that is developed by the end user. On the other hand, it is assumed that a

safety COTS multi-core device supports virtualization solutions such as hypervisors and

on-chip and off-chip mixed-criticality networks. In these cases, the IEC 61508 compliant
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COTS multi-core device may be used in conjunction with other IEC 61508 compliant

components such as the IEC 61508 compliant hypervisor defined in Section 5.1 and the

IEC 61508 compliant mixed-criticality network presented in Section 5.4.

Figure 5.4: An MSC for an IEC 61508 compliant generic COTS multi-core device –
Top.

The MSC presented in this section defines an IEC 61508 compliant COTS multi-core

device that follows an IEC 61508 compliant development process. It claims that a

safety device shall use qualified on-line and/or off-line tools for its design, configuration,

verification and validation. The use of qualified tools enables mitigating the undesirable
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influences in the phases of the safety development process followed by a safety device.

These influences derive from random and systematic failures which occur in the design,

development, configuration, verification and validation phases of a safety development

process. On-line tools can directly impact the safety-related system during the run-time,

whereas off-line SW tools support a phase of the SW development life-cycle [IEC10a] and

cannot directly affect the safety-related system during the run-time. Further, qualified

off-line tools can be classified as T1, T2 and T3 tools in analogy to the MSC of the

hypervisor (see Section 5.1).

An IEC 61508 compliant COTS multi-core device must guarantee a safe power up, power

down, boot and shutdown sequences. From the end user point of view, these sequences

represent the transitions between the operating states of the safety device, which shall

be performed in a predefined and repeatable way within a limited time window. The

power up and boot sequences of a safety device can be given in a cold state or a warm

state. A cold sequence is the one where the device is off, and it is unexpectedly powered,

thus providing the transition from power off state to active device state. This scenario

requires additional HW mechanisms to ensure the device’s safe power up and boot. For

example, an external HW WDT and an external power supply supervisor are required.

On the other hand, in a warm sequence, the device is suddenly restarted due to a reset

signal (e.g., Power On Reset (POR)) that provides the transition from the device’s

current state (e.g., power off to power on). Similarly, the power down and shut-down

sequences represent the transition of the safety device’s state to the no power state. This

transaction can be autonomously commanded by SW or by external events (e.g., power

blackout) and managed in collaboration with external HW mechanisms (e.g., external

HW WDT).

Multi-core devices provide a wide variety of resources (e.g., peripherals, memory, inter-

rupts) which can be accessed and assigned to the safety and non safety-related components

which are executed on top of them (e.g., hypervisor, partitions, operating system, commu-

nication network). As a general rule, in multi-core architectures, a resource should not be

handled by more than one component at the same time. The main reason for that is that

resource sharing may lead to harmful interferences which can hinder the achievement

of the temporal independence. The temporal interference issues in COTS multi-core

devices are treated in the next paragraph. However, in multi-core COTS devices, there

are some exceptions where a resource (e.g., a memory area or a peripheral) can be shared

among more than one component at the same time (e.g., two cores) [CAS14].

Resource virtualization techniques generate virtual solutions which help to reduce the

complexity of the HW and the interferences caused by the resource sharing. For example,

virtual cores, shared buses and communication resources can be directly managed by the
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end user or by a safety hypervisor, partition or mixed-criticality network. The resource

virtualization technique is supported by the exclusive access to peripherals in this MSC.

This technique aims to guarantee the freedom from interferences between safety and

non safety-related components by managing the peripherals of the safety devices. To

that end, a safety device shall support segregation (see Annex F of IEC 61508-3) where

measures and techniques for achieving the non-interference between the SW components

on a single computing system are recommended. The segregation must work in close

cooperation with the other safety techniques (such as the resource virtualization, temporal

independence, spatial independence and configuration) and shall also include a set of

measures and diagnostic techniques to detect and control the unintended access to the

peripherals.

COTS multi-core devices are designed to achieve the maximum average performance

instead of supporting temporal guarantees. An example of that is the resource sharing

between the components that compose the system (e.g., partitions, hypervisor, mixed-

criticality networks) and the resulting occurrence of temporal interferences. Annex

F of IEC 61508-3 recommends a set of safety techniques for achieving the temporal

independence between the SW components of a single computing platform [IEC10c].

These measures and diagnostic techniques shall also be supported and implemented by

safety COTS multi-core devices to be compliant with the IEC 61508 safety standard

and achieve the temporal independence. For instance, a partial or complete temporal

independence may be accomplished by implementing a TT network (e.g., TTNoC

[ART10], AEthereal [GDR05]). The sources of the temporal interferences which can

occur in a safety device shall be analysed and documented in a set of evidence documents.

On the other hand, a safety device shall support the spatial independence as described in

Annex F of the IEC 61508-3 [IEC10c]. For example, an MMU or a HW or/and a SW

technique (e.g., a virtualization mechanism) may be used to that end.

The configuration of a safety COTS multi-core device shall be established using qualified

tools of classes T2 (test tools) and T3 (constructive tools) [IEC10c, IEC10d]. The use

of these tools enables achieving a safe configuration of the safety device. Hence, a set

of detection and monitoring techniques shall be implemented by the safety multi-core

device for guaranteeing a safe configuration. In the case of undocumented components

of the device, the system integrator should contact the device manufacturer to identify

configuration settings of the behaviour of those components.

An IEC 61508 compliant COTS device must implement further measures and diagnostic

techniques in addition to the ones mentioned in the paragraphs before for avoiding and

controlling HW random and systematic faults (see Annex A and B of IEC 61508-2).

For example, the majority comparator technique or the parity bit for RAM may be
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implemented for detecting and controlling random failures of the processing units and the

variable memory. A variable memory is a computer memory that required periodic refresh

to maintain its content. Also, the diverse HW and the antivalent signal transmission

techniques may be implemented to avoid systematic failures. For the management of

the detected failures, a safety COTS multi-core device must implement hard coded or

configurable system reactions to errors (e.g., safe state) and fault-tolerance techniques

(e.g., HW redundancy). If the safety device does not support those techniques as a

default, they shall be implemented by means of additional SW or HW mechanisms (e.g.,

external HW WDT).

Multi-core devices are not designed for safety applications by default. Therefore, they are

not usually completely tested, thus leading to possible residual design errors. To address

these errors, the device manufacturers rely on errata documents to notify customers of

errors uncovered in field use. These errata documents imply that the system integrator

must define and implement additional techniques (such as extra measures and diagnostic

techniques, system reactions to errors and fault-tolerance techniques) to detect, mitigate

and manage the residual errors defined in those documents. FMEA, FMECA and Failure

Mode Effects and Diagnostic Analysis (FMEDA) analyses support the safety measures,

techniques and components implemented by a safety COTS multi-core device and assess

random and systematic failures. These analyses must be included in the documentation

of the developer, including the description, intended usage, reconfigurability, compliance

evidence, time restrictions and dependencies. Furthermore, those documents must

contain the information related to the device’s fault-hypotheses (including the Failure In

Time (FIT), HW Fault-Tolerance (HFT) and SIL values) the functional specification of

performed functions (e.g., power up states) and the list of exported/imported requirements

(at HW, SW and system levels). The recommended and optimised usage of the device’s

features with respect to the safety standards must also be provided by the device

manufacturer to ease the development and certification of the safety device.

An IEC 61508 compliant COTS multi-core device shall be accompanied, at least, by an

evidence deliverable. This document must include, among others, the way in which the

safety device fulfils the arguments defined in this MSC, the impact analyses per each

nonconformity, the identification of exported requirements to be met by a third party,

the FMEA / FMECA / FMEDA analyses and the specification of the configuration

process. If additional safety techniques are required for a given safety device, they shall

be explicitly stated in other evidence documents. In the same way, if further measures

and diagnostic techniques, system reactions to errors or fault-tolerance techniques are

required, they shall also be explicitly described in additional documents.
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5.4 A Modular Safety Case for an IEC 61508 compliant

Generic Mixed-Criticality Network

This section presents the MSC for an IEC 61508 compliant generic mixed-critical network

based on the CAE notation language (see Figure 5.5). The scope of this MSC includes

networks provided by the manufacturer as they are (black channel networks) and networks

developed in accordance with a safety standard (e.g., IEC 61508, IEC 61784-3) (white

channel networks). White channel networks are designed, implemented and validated

according to IEC 61508 [IEC10a, IEC10b, IEC10c] and IEC 61784-3 [IEC10g] or IEC

62280 [IEC02a]. In the case of black channel networks, it is assumed that parts of the

communication channel cannot be designed, implemented and validated according to a

safety standard. Therefore, additional measures and diagnostic techniques are required to

ensure that the failure performance of the communication process is compliant with the

IEC 61508 and the IEC 61784-3 safety standards. Those extra measures and diagnostic

techniques may be provided, for example, by an IEC 61508 compliant SCL.

In this section, whenever it refers to a safety network, we mean a network composed of

HW and SW in the case of white channel networks and a network consisting of HW, SW

and an SCL in the case of black channel networks. The safety arguments in green of

Figure 5.5 are related to white channel networks, while the remaining arguments apply to

both approaches (white channel and black channel networks). Furthermore, it is assumed

that the safety concept defined in this section is intended for fail-safe mixed-criticality

systems with an SIL up to SIL3.

According to IEC 61508 and as defined in Section 2.10, communication systems can

be divided into white channel and black channel networks. White channel networks

and the safety-related parts (the SCL) of black channel networks shall be developed in

compliance with the IEC 61508 and IEC 61784-3 safety standards, against the required

SIL and residual error rate values. The residual bit error rate is the number of bit

errors per time unit based on the total number of bits received during a time interval.

For instance, as stated in Table 1 of IEC 61784-3, for an SIL of 3, the probability of

dangerous failures per hour, and the maximum permissible residual error rate of the

functional safety communication system shall be lower than 10−9/h [IEC10g]. A safety

network shall guarantee that the reception time interval of two consecutive messages is

below a pre-established time value. Otherwise, a communication error shall be assumed.

This requirement is usually referred to as the idle current, closed-circuit or de-energized

to trip principle.
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Figure 5.5: An MSC for an IEC 61508 compliant generic mixed-criticality network –
Top.

According to the IEC 61784-3 [IEC10g] standard, the common communication errors that

can occur in a mixed-criticality network include the corruption, unintended repetitions,

incorrect sequence, loss, unacceptable delay, insertion, masquerade and addressing. These

errors shall be detected and mitigated by implementing a set of deterministic remedial

measures recommended in IEC 61784-3. For instance, the sequence numbers, time stamps,

expectation time, connection authentication, feedback messages, data integrity assurance,

redundancy with cross checking and different data integrity assurance techniques may

be implemented by a white channel or black channel safety network for detecting and
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controlling communication errors.

In addition to the defined methods for the estimation of residual errors, further fault cases

defined in the IEC 62280 safety standard [IEC02a] shall be considered and controlled

by white channel networks. IEC 62280 recommends the measures and safety services

to reduce the risk associated with the threats of communication systems. For instance,

it suggests the message authentication, integrity, timeliness and sequence checking,

source and destination identify, feedback message and cryptography techniques to reduce

associated risks with the communication threats (e.g., repetition, deletion, insertion).

Moreover, a safety network must provide error reaction mechanisms to achieve a safe

state in the case that a communication error is detected. For example, it can stop

the communication between specific components of the system. In the case of black

channel networks, the reaction to error mechanisms shall be defined in the documentation

provided by the network developer.

An IEC 61508 compliant communication network shall guarantee that its safety reaction

and response times do not exceed the time values specified by the network manufacturer,

even in the presence of a failure. To that end, the safety communication systems shall

provide a predictable and a deterministic communication between the components with

different criticality (e.g., safety, non safety).

In addition, a combination of the measures quoted before (e.g., sequence numbers, time

stamps, expectation time, connection authentication) shall be implemented by the safety

communication network to detect communication errors (see an example in Table 5.2).

The quantity and timing errors to be considered is provided by the network manufacturer

or the Functional Safety Communication Profile (FSCP). The utilisation of a common

function within the fieldbus communication by the specific groups of participants is

called a profile. For example, communication profile family 12, commonly known as

EtherCAT is based on the IEC 61158 standard [IEC03] and the safety communication

Communication errors

Measure and Diagnostic
Techniques

Sequence
Number

Echo CRC
Connection

authentication

Time
stamp

Unintended repetition x x

Loss x x

Insertion x x

Incorrect sequence x x

Corruption x x

Unacceptable delay x

Masquerade x

Wrong addressing x x x

Table 5.2: Communication errors and combination of measures and detection tech-
niques – Example.



5.4. A Modular Safety Case for an IEC 61508 compliant Generic Mixed-Criticality
Network 57

layer specification is defined in IEC 61784-3-12 [IEC10f]. FSCP 12 describes a protocol

for transferring safety data up to SIL3 between FSCP 12 devices.

The transmission/reception among safety and non safety-related messages through

white channel networks may be affected by interferences, leading to the failure of the

communication between the components connected to the network. For that reason, white

channel networks shall guarantee the non-interference of non safety-related communication

to ensure the compliance with the temporal and spatial independence requirements. For

instance, TT communication systems may be used to ensure the temporal independence.

These networks use a priori knowledge about the permitted component behaviour to

block faulty messages.

Safety communication networks can be tested in two ways. In the first instance, the

components of the network may be tested together, thus obtaining an exhaustive diagnosis

of the network. In the second scenario, the components of the network are tested

independently by test beds and/or simulators. Nevertheless, both scenarios must follow

the parameters set in the FSCP. An FSCP defines suitable conformance testing to assess

services and measures of IEC 61784-3. A safety network shall support an adequate

diagnostic strategy to avoid configuration related issues that can jeopardise the safety of

the communication system and associated subsystems. For that reason, qualified tools of

classes T2 (e.g., verification tools) and T3 (e.g., compilers) shall be used for designing,

developing and configuring the safety network. The safety-related techniques presented in

this section shall be evidenced by FMEA / FMECA / FMEDA analyses, only in the case

of white channel networks, to assess random and systematic faults. These analyses shall

include information related to the safety-relevant failure modes, causes and effects, as

well as the measures, diagnostic techniques and system reactions to errors implemented

by the safety network.

A safe mixed-criticality network shall be backed up by a set of evidence documents

which shall be available for the end user to support the integration of the safety network.

These documents shall include the evidences that support the fulfilments of the safety

techniques, the impact analyses for each nonconformity and the identification of exported

requirements that must be met by a third party.
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Chapter 6

Cross-Domain Mixed-Criticality

Patterns

The current upward trend in the development of mixed-criticality systems where func-

tionalities with different criticality are integrated onto a single embedded computing

platform has its basis on virtualization, HW segregation and partitioning solutions. This

architecture style is considered for defining the MSCs in the chapter before, where a so-

lution to the associated challenges that lead to a significant and potentially unacceptable

increase of engineering and certification costs is presented. As a result of the definition

of the MSCs and the analysis of the IEC 61508 safety standard, several components

of today’s mixed-criticality systems out of the scope of this safety standard have been

identified. Consequently, new techniques are required to give solutions to the occurring

problems in the development of today’s mixed-critical systems.

Cross-domain patterns are widely used universal approaches for describing and docu-

menting recurring solutions for design problems which are used to guide and support

engineers towards solutions that solve commonly occurring problems in the development

of mixed-criticality products from design to verification and validation (V & V).

This chapter defines several remarkable generic cross-domain patterns, including patterns

for hypervisors (see Section 6.1), COTS multi-core devices (see Section 6.2) and mixed-

criticality networks (see Section 6.3). These cross-domain patterns are defined in plain

text format for better understanding, although they are commonly represented using the

structure presented in Section 2.12.

59
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6.1 Hypervisor

A hypervisor is a layer of SW or a combination of SW and HW that allows running

several independent execution environments, also called partitions, in a single embedded

computing platform. Partitions are logical divisions of memory with static or dynamic

cycle and execution time. They can have assigned one or more peripherals and can be

developed for different levels of criticality (e.g., SIL1 to 4 according to the IEC 61508

safety standard). Among products in this category, XtratuM [Sol14], PikeOS [SYS15],

Wind River [Riv15] and QNX [QNX15] hypervisors can be commercially distinguished.

Partitioning a system using a hypervisor can give rise to spatial independence, temporal

independence and real-time constraints. The broad trend of the division of a system into

partitions with different criticality requires inter-partition communication mechanisms.

In multi-core architectures, partitions can communicate through shared memories or by

using NoC communication systems. NoCs are commonly used communication systems

for avoiding the problems associated with the use of shared memories [KP15]. These

memories imply temporal and spatial interferences due to memory inconsistencies and

cache coherency problems. However, the use of NoCs increases the complexity of the

system and involves challenges to certification such as guaranteeing that the critical

memory assigned to the mixed-criticality network is not accessed by the hypervisor or

by the partitions and that the critical memory itself does not cause faults which can

jeopardise the system. These and further failure scenarios are handled in Subsections

6.1.1, 6.2.2, 6.1.3 and 6.1.4 where solutions to tackle spatial and temporal interferences

and manage the resources in multi-core mixed-criticality systems are presented.

6.1.1 NoC-Accessible Memory Area Diagnosis Pattern

NoCs are widely implemented communication systems to avoid Point-to-Point (P2P)

individual communication paths between the components of mixed-criticality systems.

They enable the creation of logic paths to interchange data. On-chip networks may access

critical memory areas in use by other components, which may imply errors that could

jeopardise the safety of the system. The most significant impact caused by a memory

access of a NoC communication system is the breaking of the temporal isolation. The

temporal isolation can also be endangered due to delays caused by a high amount of

traffic in the NoC.

This cross-domain pattern defines the following design solutions to detect, manage and

avoid failures in the critical memory areas accessible by the NoC.

I Solution 1: Provide complete HW isolation of NoC
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This solution proposes the assignment of a dedicated memory to the NoC for incoming

and outgoing message buffers and its internal operations. In addition, this solution

suggests avoiding the attachment of the NoC to the same bus as the processing cores,

thus achieving a complete isolation from the processing cores. This solution scheme can

be implemented using a dual-port RAM where one port is accessible by the NoC, and

the other port is connected to the bus where the processing cores are connected (See

Figure 6.1).

Processing Cores

NoC

ADDR_A

DIN_A

CLK

WE_A

ADDR_B

DIN_B

WE_B

DOUT_A

DOUT_B

Dual Port RAM

Figure 6.1: Dual-port RAM – Overall representation.

I Solution 2: I/O MMU

This solution proposes the implementation of an MMU for controlling the access of Direct

Memory Access (DMA) transfers programmed by the bus-master capable I/O devices.

Consequently, the DMA transfers cannot overwrite and read from the restricted memory

addresses. In the case of safety-critical systems, the memory addresses may contain the

code and data of safety-critical tasks. An I/O MMU enforces the spatial isolation and

avoids the overwriting of the safety-sensitive memory regions by the NoC.

I Solution 3: Additional monitoring mechanisms

See design pattern Critical partition diagnosis pattern (Subsection 6.1.2).

6.1.2 Critical Partition Diagnosis Pattern

When dealing with partitioned mixed-criticality systems, failures caused by the exchange

of information are quite probable. The lower criticality functionalities can lead to

interferences on the higher criticality functionalities. This pattern analyses two possible

sources of interferences. The first source refers to the occurrence of temporal interferences

generated by multiple accesses in parallel to the shared memory (e.g., interferences

caused by the processors of a multi-core device). The concurrent accesses will compete

for accessing the shared memory cache, possibly leading to interferences in the temporal

domain. On the other hand, failures of the hypervisor in the spatial isolation must be
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considered. These failures can also be found in mono-core architectures. The following

generic and scalable design solutions presented by this pattern measure and detect

interferences caused by non-critical partitions on critical partitions and guarantee the

system’s temporal and spatial independences.

I Solution 1: Limit the concurrency

This solution proposes to execute the critical tasks without concurrency. When a critical

task is running on a certain CPU of a multi-core processor, the other CPUs do idle

only for the duration of the task. This consideration enables avoiding contention. The

limitation of the concurrency can be achieved by appropriately configuring at design

time the partition execution windows for all the CPUs. The loss in performance can be

leveraged by tuning the amount of time that a CPU (running a critical task) executes

without concurrency. The maximum amount of interferences suffered by one CPU due

to accesses to shared memory and the bus bandwidth used by the other CPUs can be

calculated using off-line analyses. The concurrent execution can be guaranteed up to a

certain safe time limit based on the temporal constraints of the safety-critical tasks and

the maximum amount of interferences.

I Solution 2: Assess the spatial isolation

This solution presents a diagnostic partition that periodically checks the data of the

critical memory areas, including the hypervisor’s code and the partitions’ code and data.

Checksum and similar mechanism recommended by the IEC 61508 safety standard are

perfect candidates to ensure that no accidental modification of code or data takes place.

Partitions can individually implement measures and diagnostic techniques for checking

their code and data. However, the code of the hypervisor shall be verified by at least one

partition to ensure that is not unexpectedly modified.

I Solution 3: Assess the temporal isolation

The measures and techniques recommended by the IEC 61508 safety standard can also

be implemented to assess the temporal isolation. For instance, the Program temporal

sequence monitoring technique recommended in Section A.9 of IEC61508-7 [IEC10e] may

be implemented to monitor the execution of safety-critical tasks regarding their temporal

response and to ensure that the temporal isolation is not compromised due to a failure

of the hypervisor. This proposed solution aims to detect failures in the hypervisor and

in the configuration of the partition execution window that may jeopardise the temporal

isolation. The task scheduling inside the partitions is out of the scope of this solution

and therefore it is not analysed.
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6.1.3 Communication Input/Output Server Pattern

The functionalities (e.g., safety-related, non safety-related) executed on multi-core mixed-

criticality systems usually require communication. To that end, today’s multi-core devices

usually implement shared memories, on-chip buses (e.g., TTNoC), off-chip buses (e.g.,

EtherCAT) and local buses (e.g., PCIe, digital I/Os and RS485). These communication

systems have their pros and cons. For instance, shared memories are common sources of

interferences in architectures with more than one core [MSM+11]. To overcome issues

related to the shared memories, on-chip and off-chip communication networks are one

of the alternatives for providing internal and external communications. For example,

the communication between partitions with different criticality levels can be carried

out through an STmicroelectronics’ NoC (STNoC) on-chip network and a TTE network

with or without real-time capabilities. However, the use of NoCs implies additional

interferences in general with challenges for certification. The challenges regarding NoCs

are discussed in Subsection 6.3.1.

On the other hand, the number of functions integrated in a mixed-criticality system which

require communication tends to increase, mixing the communication requirements of

different criticality (e.g., safety, real-time, security) and hampering the development and

certification of mixed-criticality networks. As a result, the underlying mixed-criticality

communication systems can require an adaptation procedure or shall be modified to

cover new requirements. These processes may incur a higher engineering and certification

cost. This pattern defines a communication server that simplifies the system design

and development and reduces the cost of certification. This communication server is

a centralised communication manager of the communication between partitions and

external components that compose a mixed-criticality system. It is logically abstracted

from the processor control of the communication network (e.g., using partition ports) and

manages the assignment of the peripherals to the partitions implementing the exclusive

access to peripherals (see Section 5.1).

6.1.4 Digital Input/Output Server Pattern

Different mixed-criticality system architectures widely use DIOs for communicating with

external components such as sensors and actuators. In single core architectures, the

DIOs can be managed without significant difficulty. However, in multi-core architectures

where hundreds of thousands of functionalities with different criticality levels can be

implemented (e.g., safety, non safety, real-time) and where, a DIO can be requested

at the same time by all the functionalities, the management of these I/O interfaces is

hindered [Ona17]. The simultaneous access to a DIO by more than one function may
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Figure 6.2: Communication I/O Server – Overview.

cause interferences in the temporal domain which could jeopardise the system. Besides,

from a product line perspective, the number of DIOs requested by a product might

change, which may lead to scalability problems and an adaptation process to fit with the

changes.

This cross-domain pattern proposes the implementation of a DIO Server (DIOS) partition

for centralizing the management of the DIOs of mixed-criticality systems (see Figure 6.3).

The DIOS is a consistent concurrent manager of DIOs which is abstracted from platform

and hypervisor details to assure reusability. Furthermore, it periodically updates the

values of the inputs and refreshes the information of the partitions where the inputs are

required. This server can be reused on different system architectures without significant

changes, thus simplifying the system design.
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Figure 6.3: Digital Input/Output Server – An overview.

Afterwards, the diagnosis techniques explained in the following paragraphs are executed,

so that, if a failure is detected, the outputs will be refreshed with the safe value instead

of with the value provided by the partitions. In the case that different partitions try to

update the same output with different values, the partitions will be moved to a safe state,
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and the outputs will be updated to the default value. The conditions, measures and

diagnostic techniques implemented by the DIOS partition to assess that a DIO controlled

by a safety-related partition does not affect other partitions are the following:

− The safety-related outputs have associated inputs with the same or opposite values.

These values vary depending on the configuration.

− The CRCs of the register’s values associated to the digital I/Os are periodically

compared against the values which are already stored by the digital I/O server.

The comparison period is determined by the minimum refreshing period of the

digital outputs.

− It is checked that the partitions in charge for updating the digital outputs refresh

the values of the DIOS partition. For that purpose, a token is implemented that is

updated every time that the communication is performed, always agreeing with the

expected values in the DIOS. This solution can also be applied to the remaining

partitions of the system, but with the inputs, for assuring the communication

between the partitions and the DIOS.

− The register values of the digital outputs are checked against the values supported

by the DIOS every time that the values of the digital outputs change.

− Each digital input is checked under a pre-configured timeout to detect whether

their values can be modified. If the time-out value is not specified, the default

value will be used (a month) and the developer shall integrate an output to change

the values of the inputs in a controlled non safety way for testing purposes.

In safety-related applications, the configuration of the digital I/Os of the server like the

configuration of partitions shall be established using qualified off-line tools. This pattern

relies on the safety-related arguments defined in the MSC for an IEC 61508 compliant

generic hypervisor [LPA+15] and the safe communication between partitions provided

by an IEC 61508 compliant hypervisor.

6.2 COTS Multi-Core Device

COTS multi-core devices are commonly used for real-time systems due to their low-cost

and short time to market. However, multi-core devices provide sophisticated components

which increment the complexity and may cause drawbacks, thus jeopardising the safety

of the system. For example, the simultaneous running of tasks and the resource sharing
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between more than one component can cause interferences in temporal and spatial

domains.

Different research studies propose techniques to improve the performance of the multi-core

devices by reducing the memory interferences of the applications [GBEL10] [PQnCV09]

[KHMHB10] and to control the mapping of application’s data to memory channels

[SHK14]. Some of these techniques focus on scheduling policies which provide request

prioritisation and reduce the inter-partition interferences.

On the other hand, the coherency of the cores of the processor and the memories can

be a source of issues in general. In single-core systems, the coherency of the cores and

the memory is not a problem such as there is only one processing unit that can read or

write from/to the memory. Conversely, in multi-core systems, there can be two or more

processing units executing at the same time. So, it is possible that they access the same

memory location at the same time. If no processor changes the data of the accessed

memory location, they can share data indefinitely. However, the coherency protocol may

fail, leading to inconsistencies and jeopardising the safety of the system.
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Figure 6.4: Zynq-7000 zc706 – Complex and challenging components. (Source
[XIL14c])

The following subsections deeply analyse the shared memory and the coherency manage-

ment units of today’s COTS multi-core devices and propose solutions that aim to solve
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the commonly occurring problems of those components.

6.2.1 Shared Memory Diagnosis Pattern

The sharing of resources is a habitual implementation in today’s multi-core mixed-

criticality devices for improving the performance. Modern multi-core devices integrate

cache memories which can be applied for private use (e.g., L1 cache) or memories which

can be shared between more than one component at the same time (e.g., L2 cache).

Secondary cache memory is commonly used to improve the performance of the system

when the processor generates significant data traffic. In single-core architectures, the IEC

61508 safety standard covers the failures caused by memory sharing such as the causal

factors of the execution interference between components of a single computer platform

(see Annex F of IEC 61508-3 [IEC10c] Techniques for achieving non-interference between

SW components on a single computer).

Measures and diagnostic techniques recommended by the IEC 61508 safety standard

should be reviewed and extended for covering the issues caused by the use of shared

memories in multi-core architectures. Different research studies propose techniques to

solve and reduce as much as possible the interferences posed by the shared memories. For

example, techniques to improve the performance of the system by reducing the memory

interferences of the applications [GBEL10], [PQnCV09] and [KHMHB10] are proposed.

These techniques focus on scheduling policies which provide request prioritisation and

reduce the inter-partition interferences. Other solutions aim to control the mapping of

application’s data to memory channels [SHK14].

This cross-domain pattern proposes the following reusable generic solutions to detect,

evict and manage the failures related to the shared memories in HW architecture with

more than one processing core.

I Solution 1: Limit the use of shared memories

This solution proposes to limit as much as possible the use of the shared memory and in

the case that it is implemented to control its access for avoiding parallel accesses. For

instance, the shared memory of the Zynq zc706 multi-core device can be disabled for

avoiding interferences [XIL14c]. Another possibility is to replace the shared memory by

an on-chip network, thus avoiding interferences caused by the use of shared memory.

NoC systems provide benefits regarding spatial and temporal segregation. However, as

analysed in Subsection 6.3.1, the management of NoCs for communicating components

with different criticality implies fundamental challenges to certification [DAM+13].

I Solution 2: Cyclic redundancy check with comparison
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This solution proposes a CRC based diagnosis with comparison technique to detect failures

in the shared memory. It considers two implementation scenarios where the first scenario

builds on a COTS multi-core device provided as it is by the device manufacturer and

the second scenario presents a partitioned COTS multi-core device where functionalities

with different criticality are executed on top of partitions (e.g., safety, security, real-

time). The term as it is refers to a device provided without modifications (e.g., without

partitioning) that would alter its properties (e.g., safety-related properties). The graphical

representation of this solution is shown in Figure 6.5, where it implements two independent

memories (memoryA and memoryB) for storing and reading the application data and

the CRCs.

For reasons of simplification and understanding, a scenario where both CPUs execute

the same functionalities is taken as a basis for describing the steps for implementing

the CRC and the comparison-based diagnosis pattern. The first step to undertake this

diagnosis pattern is to send the application data of both CPUs to separate memory areas

of memoryB. The application data is stored in memoryB through the shared memory.

Then, the CRCs of the application data are calculated and stored in separate memory

locations of memoryA. These CRC values are usually referred to as golden CRC. A

golden CRC is the result of the first calculation of the CRC. This CRC is used to perform

the comparison against the CRC values of the data that is sent to the shared memory

and to determine if a failure occurs in the shared memory. The CRCs can be calculated

at the beginning or the end of the execution of the tasks, although, in the case that the

CRCs are calculated at the beginning, a synchronisation mechanism may be required to

synchronise the calculation and the comparison of the CRCs.

CPU0 CPU1CRC CRC

ComparatorComparator

Memory A Memory B

Shared Memory

Figure 6.5: Shared memory diagnosis pattern – Solution 2: CRC with comparison.

The successful implementation of this pattern depends on additional components of

the mixed-criticality system, including among other things the processing cores, the

timers, the interrupt controllers, the coherency management units, the interconnection

management units and the memories. Therefore, this cross-domain pattern assumes that
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all those components are checked in advance and that they do not interfere with the

shared memory, thus achieving the optimum implementation of this solution.

• Scenario 1: Non-partitioned COTS multi-core system

− Sub-scenario 1.1: Non partitioned system where the processors execute the same

functionality and generate the same outputs

This sub-scenario considers a non-partitioned processing system that supports the

CRC with comparison solution and allows the execution of applications with the

same or different criticality levels on top of the processor’s cores (see Figure 6.7).

The steps for implementing the proposed settlement in this scenario are defined

below.

Step A) CPU0 and CPU1 write the application data in separate memory areas of

memoryB. This memory is accessed through a shared memory. Then, each CPU

calculates the CRC of the application data. These CRCs usually referred to as

golden CRC, are stored in separate memory regions of memoryA.

Step B) The application data stored in memoryB is periodically read (e.g., each

50ms) by each CPU, and the CRC of the data is calculated (one CRC per CPU).

The calculation of the CRCs can be performed at the beginning or at the end of

the task which is executed by each CPU.

− If the execution of the CPUs’ tasks is synchronous, steps c, d and f shall be

followed.

− Otherwise, if the execution of the tasks is asynchronous, a synchronisation

mechanism should be implemented to synchronise the execution of the tasks

and the associated CRC calculations. In that case, once a synchronization

mechanism is implemented, steps e and f shall be followed.

Step C) The CRCs of the application data read from memoryB are calculated.

Next, the CRCs are compared on the fly against the golden CRCs stored in

memoryA (see Figure 6.6).

Step D) The CRCs of the data read from memoryB are calculated. During the

calculating process, the CRCs are compared on the fly against the golden CRC

read from memoryA. This is a particular case where it is assumed that the golden

CRCs of each CPU do not differ (same functionality and data), thus resulting in

the same golden CRC value.
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CPU0 CPU1CRC CRC

ComparatorComparator

On the fly On the fly

Sync. Sync.

Shared Memory

Memory BMemory A

Figure 6.6: Shared memory diagnosis pattern – Solution 2 – Scenario 1: Non partitioned
system with the same functionality execution and on-fly comparison.

Step E) The comparison of the CRCs takes place. CPU0 reads the golden CRC

that is stored in memoryA and compares it against the current CRC. If the CRCs

match, the execution will continue. Otherwise, a fault-tolerance technique or a safe

state must be executed. CPU1 shall executes the same process.

Step F) Once the CRCs are compared and it is checked that they are not corrupted,

the current CRCs of the application data are stored in memoryA such as the new

golden CRCs.

− Sub-scenario 1.2: Non partitioned multi-core system where the processors execute

different functionality and generate different outputs

This sub-scenario assumes that the processor’s cores execute applications with

different criticality levels. In that case, a variant of the solution presented at the

beginning of this section can be implemented. This solution is represented in Figure

6.7 and it contains the following steps:

Step A) CPU0 and CPU1 execute different functionalities. Before sending data

to memoryB, the golden CRC of the data is calculated and stored in memoryA.

This process is realised per each CPU and the resultant golden CRCs are stored in

different memory locations in memoryA.

Step B) CPU0 and CPU1 write the application data in memoryB (e.g., DDR).

Each CPU has its own memory region.

Step C) The data stored in memoryB is periodically read (e.g., 50ms) and inde-

pendent CRCs are calculated (one CRC per CPU). The CRCs can be calculated

at the beginning or the end of the tasks executed by each CPU.
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CPU0 CPU1CRC CRC

ComparatorComparator

Memory A Memory B
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Figure 6.7: Shared memory diagnosis pattern – Solution 2 – Scenario 1: Non partitioned
system with diverse functionality execution.

Step D) The golden CRCs are compared against the CRCs calculated . The

comparator unit of CPU0 reads the CPU0’s golden CRC from memoryA and

compares it against the current CRC. If the CRCs match, the execution continues.

Otherwise, a fault-tolerance technique or a safe state is executed. CPU1 shall

execute the same process.

Step E) Once the CRCs are compared and it is checked that the shared memory

does not corrupt the data, the current CRCs (one CRC per CPU) are stored in

memoryA such as the new golden CRCs.

− Sub-scenario 1.3: Non partitioned COTS multi-core system with a PS and a PL

The solution defined at the beginning of this section can also be implemented for

a COTS multi-core device with a PS and a PL. The PL enables implementing

more than one soft-core processors in the same device. From a safety perspective,

the diagnosis coverage provided by this architecture would be better than the

ones provided by the other diagnosis scenarios. The main reason for that is that

according to the IEC 61508 safety standard, the PL can be considered as an

additional independent HW, where its failure modes, causes and effects differ

from the ones of the PS. This extra scenario considers that the functionalities

executed by the soft-core processors may vary from the executed ones in the PS.

Independently of the scenario, the steps defined in the sub-scenarios 1.1 and 1.2

should be followed to diagnose the shared memory. The major differences between

these sub-scenarios lie in the execution environments of the tasks and the access

methods to the memories (e.g., OCM and DDR) such as shown in Figure 6.8 and

Figure 6.9.

• Scenario 2: Partitioned COTS multi-core system
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Figure 6.8: Shared memory diagnosis pattern – Solution 2 – Scenario 1.3.A.
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Figure 6.9: Shared memory diagnosis pattern – Solution 2 – Scenario 1.3.B.

Mixed-criticality systems implement virtualization mechanisms such as hypervisors

for dividing the system into partitions where functionalities with different criticality

can be implemented. This second scenario considers the diagnosis of the shared

memory in a partitioned system where functionalities with different criticality levels

are executed. From a safety perspective, the proposed diagnosis scenario can be

improved if the comparison is given between two partitions which are located in

different cores or if the HW redundancy is implemented. Nevertheless, this scenario

assumes that the partitions are scheduled by the hypervisor, thus providing bounded

execution time of the tasks.

− Sub-scenario 2.1: Partitioned system where safety-related partitions execute

functionalities with different criticality levels
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In sub-scenario 1.1 the overall solution for a device where each CPU executes a

different functionality is presented. That solution can also be applied to partitioned

multi-core devices where functionalities with different criticality levels are executed

on the same CPU (see Figure 6.10). This sub-scenario shall follow the steps stated

in the sub-scenario 1.1, taking into account that instead of having two CPUs, only

a single CPU is available.

Safety 

Partition 0

Safety 

Partition 1

CRC calculation and

Comparator partition

CPU0

CRC calculation and

Comparator partition

Memory BMemory A

Shared Memory

Figure 6.10: Shared memory diagnosis pattern – Solution 2 – Scenario 2.1: Partitioned
system with functionalities with different criticality.

− Sub-scenario 2.2: Partitioned system where some safety-related partitions execute

the same functionality

In sub-scenario 1.2 the overall solution for a device where two CPUs execute the

same functionally is presented. That solution can also be applied to the partitioned

multi-core device shown in 6.11. This scenario shall follow the steps stated in

sub-scenario 1.2, taking into account that instead of having two CPUs, we have a

single partitioned CPU.

Safety 

Partition 0

Safety 

Partition 1

CRC calculation and

Comparator partition

CPU0

CRC calculation and

Comparator partition

Memory BMemory A

Shared Memory

Sync

On the flyOn the fly

Sync

Figure 6.11: Shared memory diagnosis pattern – Solution 2 – Scenario 2.2: Partitioned
system where safety-related partitions execute the same functionalities.

− Sub-scenario 2.3: Partitioned-system where the partitions are executed on a CPU

and a soft-core processor
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In sub-scenario 1.3 the overall solution for a COTS multi-core device where the

same or different functionalities are executed on a CPU and a soft-core processor

is presented. That solution can also be extended to partitioned multi-core devices

such as shown in Figure 6.12. This scenario shall follow the steps stated in the

sub-scenario 1.2, taking into account that instead of having two CPUs, we have a

partitioned CPU and a soft-core processor.
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Safety 
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CRC calculation and

Comparator partition

CPU0

CRC calculation and

Comparator partition

Shared Memory

Memory A Memory B

Programmable Logic (PL)

Figure 6.12: Shared memory diagnosis pattern – Solution 2 – Scenario 2.3: Partitioned
system with a PS and a PL.

− Additional considerations

In the above scenarios, several solutions to solve the issues regarding shared memories

are identified. These solutions may be extended for improving their diagnosis coverage.

For instance, partition redundancy can be implemented, thus enabling the comparison

of the CRCs in different CPUs (see Figure 6.13).
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Figure 6.13: Shared memory diagnosis pattern - Solution 2 - Scenario 2.4a: Additional
considerations and solutions.

In addition, a diagnosis scenario with redundant HW can also be implemented (see

Figure 6.14). This scenario executes the comparison of the CRCs at partition level

and system level. This comparison can be realised internally by a SW comparator

or externally by a HW comparator. In the case that a SW based comparator is
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implemented, a communication network wold be required to spread of the resulting

CRCs through the entire system. This approach enables to detect whether the shared

memory fails due to a failure of some component of the device or the device itself.
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Figure 6.14: Shared memory diagnosis pattern - Solution 2 - Scenario 2.4b: Additional
considerations and solution.

Chapter 7 presents the implementation of the solutions proposed in this cross-domain

pattern, providing results that evidence the applicability of these solutions in a realistic

wind turbine system.

6.2.2 Cache Coherency Management Diagnosis Pattern

Cache coherency is the consistency of shared resource data that ends up stored in multiple

local caches (such as the L1 cache and L2 cache). For example, a coherency mechanism

can store the copies of the data saved in several caches. When one copy of the data

is modified, the other copy shall also be changed. Otherwise, an inconsistency arises.

The directory-based approach, snooping and snarfing are the usually used coherency
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mechanisms. In a directory-based system, the shared data is stored in a common directory

that is used for guaranteeing the coherency between the caches. This directory acts as a

filter that grants permission to the processor to load an entry to the cache. When an

entry is updated, the directory-based mechanism updates the other caches with the new

entry. Snooping is a coherency protocol where the individual caches monitor address lines

for accessing memory locations that they have cached, whereas snarfing is a mechanism

where a cache controller watches both address and data in an attempt to update its

own copy of a memory location when a second master modifies a location in the main

memory. If a write operation is observed to a memory area where the cache has a copy

of data, the cache controller will update its own copy located in the snarfed memory

with the new data.

Today’s mixed-criticality systems based on multi-core devices implement a coherency

management unit for managing, among others, the coherency of the processors, the

memory and the PL (if applicable). For instance, the Zynq-7000 zc706 multi-core device

implements a SCU for managing the coherency of the memories (e.g., L1 cache, L2

cache, OCM) using the snooping coherency technique [XIL14c]. However, the snooping

coherency technique does not fully guarantee the coherency of the memories. For

example, the CPUA of the Figure 6.15 has a copy of a memory block from a previous

read and CPUB changes the memory block. Consequently, in the case that the coherency

management unit fails, the data of CPUA is not updated, leading to an inconsistency of

data that can jeopardise the behaviour of the system. Here is where this cross domain

pattern is focused, ensuring that changes of the data are propagated through the device

and if not, detecting whether a coherency failure occurs.
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Figure 6.15: Coherency management diagnosis pattern – Zynq-7000 multi-core device
– Overview.

This pattern defines the following three design solutions for checking the memory co-

herency unit from a safety perspective:
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I Solution 1: Check the configuration of the coherency management unit

The coherency management unit shall be configured in a reasonable manner to minimise

the interferences. The wrong or incorrect configuration of the coherency management unit

may lead to the loss of coherency and the resultant failure of the system. Therefore, this

first solution proposes to periodically check the configuration of the coherency management

unit, comparing it with the expected configuration or the last valid configuration set.

In addition, this solution assumes that the chosen configuration is free of systematic

faults and that, therefore, a set of measures and diagnostic techniques for ensuring that

it is protected against unexpected configuration changes should be implemented. For

instance, the periodic read-back (see Table A.10 of IEC 61508-2), modification protection

(see Table A.17 of IEC 61508-2) and the failure detection by on-line monitoring (see

Table A.15 of IEC 61508-2) techniques may be implemented.

I Solution 2: Diagnose random failures

The software can manage the memory regions shared among certain sets of coherent

masters. In addition, it can ensure that the shareability mappings between the masters

are consistent to avoid unexpected behaviours and inconsistencies. For instance, a

protection mechanism such as a MMU can be used to control the memory, manage

permissions to blocks of the memory and translate the virtual addresses to physical

addresses. This solution assumes that the coherency management unit implements a

set of measures and diagnosis techniques to detect and control random faults such as

the wrong addressing, partial update or single bit errors faults. For instance, WDTs

can be used for detecting the temporal deviations, a CRC with comparison technique

may be implemented for detecting unexpected data modifications, (see pattern ”Shared

memory diagnosis” in Subsection 6.2.1) and an ECC and/or a parity bit technique can

be implemented to detect data consistency violations, including partial update or single

bit error failures.

I Solution 3: Diagnose systematic failures

Systematic faults can also affect the coherency management unit. These faults can be

sourced from the HW design, the environmental stress, external influences and operational

failures. This third solution considers the implementation of the measures and diagnostic

techniques recommended in Tables A.15 to A.17 of IEC 61508-2 [IEC10b] for managing

the systematic faults in the coherency unit. The selection of the measures and techniques

depends on the HW available and the SW supported by the system architecture, giving

rise to different combinations of measures and diagnostic techniques.
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In addition to the solutions defined, this pattern considers that fault avoidance and fault

control measures should be implemented in systems with cache coherency. For instance,

the use of the shared memory may be limited to an absolute minimum required for

operation, the use of multiple threads and tasks for one safety function can be restricted

to a minimum and write accesses to the memory can be assigned statically to the tasks.

The automatic invalidation of cache lines after a defined period is required to ensure that

caches are flushed periodically and that they keep coherent. The faults can be controlled

implementing communication protocols with additional messaging between sender and

receiver of the information. For example, flags to indicate whether the information

is updated and received can be applied. This procedure enables detecting the order

violation fault.

Extra coding information may be integrated with the data to detect data consistency

violations. To that end techniques such as CRC, ECC or parity information may be

used. It is safe to assume that a HW that implements the ECC technique or the parity

technique may have bugs (e.g., ARM: 751475—Parity error may not be reported on full

cache line access (eviction / coherent data transfer / cp15 clean operations [Sem13]).

Further techniques implement data structures that match the cache architecture (e.g.,

the maximum size of one cache line for optimal performance) and implement additional

measures and diagnosis techniques. Examples are, ECC techniques, scrubbing, the

implementation of timing expectations and error detection for the shared memory

communication or common communication error related measures such as sequence

numbers.

Chapter 7 presents the implementation of the solutions proposed in this cross-domain

pattern in a wind turbine system, providing results that evidence the applicability of

these solutions.

6.2.3 Inter-Connection Management Unit Diagnosis Pattern

COTS multi-core devices implement interconnection buses for the communication of

the components with different criticality levels which are integrated on them. These

interconnection buses can provide different protocols to switch the traffic through the

components such as AMBA AXI and AXI Coherency Extension (ACE). For instance, the

Zynq-7000 zc706 device implements an interconnection manager that includes a set of

interconnect blocks or switches for managing, among others, the communication between

the CPUs of the processor, the memories (e.g., OCM, DDR, L2 cache), the peripherals

(e.g., I/O Peripheral (IOP)), the PL (if applicable). Figure 6.16 presents the block-

diagram of the interconnections inside the Zynq device which are based on interconnect
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master blocks (e.g., Accelerator Coherency Port (ACP), AXI HP (High Performance),

AXI GP (Generic Purpose), DMA, IOP), the SCU, the central interconnect, the master

interconnect, the slave interconnect, the memory interconnect and the OCM interconnect.
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Figure 6.16: Zynq-7000 zc706 – Interconnection scheme – Overview.

The interconnection units, in general, are prone uncertainties related to their behaviours

(e.g., lack of information). The interconnection scheme of each COTS multi-core device

is unique. For instance, the Zynq zc706 multi-core device provides the interconnection

scheme shown in Figure 6.16. This interconnection scheme includes several ports and

interconnection blocks such as the AXI HP and AXI GP ports, going through several

interconnect blocks such as the central interconnect, the OCM, the SCU, the memory

interconnect or the IOP.
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Figure 6.17: Interconnection – Certification challenges.
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This cross-domain pattern aims to provide generic solutions for measuring and detecting

faults in the interconnection management units. To that end, it assumes that the

processing units of the multi-core processor, the cache memories (e.g., L1 and L2

memories), the OCM memory, the PL (if applicable) and its associated components (e.g.,

memory), the timers and the interrupt controller are checked in advance. This pattern

considers the following three solutions for testing the interconnection management units.

I Solution 1: Check the configuration of the interconnect management unit

The interconnect management unit shall be configured in a reasonable manner to provide

minimum possible interferences. The components or blocks that compose the interconnect

manager are set up by means of registers. The configuration of their registers will be used

to manage their behaviour, thus leading to an incorrect or partial behaviour. Therefore,

to detect whether the configuration of the interconnection management unit changes, this

solution proposes the implementation of the periodic read-back check with comparison

of the interconnect manager’s configuration registers.

I Solution 2: Diagnose random failures

In the case that the implemented system requires a maximum latency, the Quality-of-

Service (QoS) modules can be used to ensure expected throughput and latency in the

system design. The modules regulate the masters that do not guarantee maximum latency

(e.g., CPU, DMA and IOP). Furthermore, they can be used to resolve issues related

to contention by means of a two-level arbitration abstraction scheme. The first scheme

is based on the priority indicated by the QoS register. The highest QoS value has top

priority. The second scheme is based on a least recently granted scheme and is used when

multiple requests are pending with the same QoS signal value. An interconnect manager

shall consider, among others, measures and diagnostic techniques for typical faults such

as wrong addressing or wrong data forwarding, including partial transmissions or single

bit errors. For instance, a WDT can be implemented to detect temporal deviations

and the CRC with comparison (see Shared memory diagnosis pattern), the ECC and

the parity bit diagnostic techniques may be implemented to detect data consistency

violations, considering partial updating or single bit error failures.

I Solution 3: Diagnose systematic failures

The interconnect manager can be affected by systematic faults which can be caused by

the HW design, environmental stress or operational failures. This solution considers

the implementation of the measures and diagnostic techniques recommended in Tables

A.15 to A.17 of IEC 61508-2 for detecting and controlling the systematic faults of the

interconnection management unit. Furthermore, it is assumed that the selection of

measures and diagnostic techniques depends on the HW platform or the SW that is
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supported by the system architecture. Therefore, the selection of measures and diagnostic

techniques for this purpose may vary. On the other hand, the possibility of systematic

errors in the configuration of the interconnection management unit shall be addressed by

these techniques.

6.2.4 Interrupt Controller Diagnosis Pattern

The interrupt controllers are components of today’s COTS multi-core devices that may

imply certification challenges. They are key components for managing the prioritisation

of the tasks in multi-core devices. For instance, the Zynq-7000 device implements an

interrupt controller named GIC to that end. The GIC is internally composed of one

or more distributed blocks depending on the number of CPUs, and one or more CPU

interface blocks (see Figure 6.18). The interrupt distributor centralises the sources of

interrupts before dispatching the one with the highest priority level to an individual

CPU. This controller ensures that one CPU can only take an interrupt targeted to

several CPUs at a time. The sources of interrupts are identified by a unique interrupt ID

number, a configurable priority and a list of the cores which are targeted. The interrupts

that are handled by the interrupt controller can originate in cores (Private Peripheral

Interrupts (PPIs), the PL and the PS (Shared Peripheral Interrupts (SPIs) and SW

Generated Interrupts (SGIs)).

On the other hand, the core interfaces perform the interrupt priority masking and

pre-emption handling for the cores of the device. Each core interface block provides

an interface for each processor that operates within the GIC. In the case that the core

interface implements the security extension, the Interrupt Request (IRQ) (non-secure)

and Fast Interrupt reQuest (FIQ) (secure) signals may be used. The GIC also provides

the write protection lock mechanism for preventing unauthorised accesses to the critical

configuration registers.

However, at the event that the interrupt controller fails or that the request for an interrupt

or the assignment of an interrupts fails, the execution of the processors will be affected.

In multi-core mixed-criticality systems, the interrupt controller is used for guaranteeing

and managing the execution of the functionalities with different criticality level. Table

A.1 of IEC 61508-2 [IEC10b] defines the requirements for faults that shall be detected

and measured to guarantee the safety of the interrupt handling. However, this standard

is intended for single computing systems where a resource is not shared between more

than one component, and therefore, the measures and diagnosis techniques recommended

by this standard (see Annex F of IEC 61508-2) are not at all applicable to the interrupt

controllers used for managing the execution of functionalities with different criticality on
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Figure 6.18: Generic Interrupt Controller of Zynq-7000 device – Block diagram (Source
[XIL14c]).

today’s mixed-criticality systems. This cross-domain pattern defines the following design

solutions for diagnosing the interrupt controllers. Furthermore, it is assumed that the

CPUs of the device, the L1 and L2 cache memories and the OCM memory, the PL and

associated components (such as memories), the timers, the interconnection management

units and the coherency management units are checked in advance.

I Solution 1: Check the configuration of the interrupt controller unit

Figure 6.18 shows the block diagram architecture of an interrupt controller composed

of a distributor and one or more CPU interfaces. These components can be configured

independently by means of registers. This first solution proposes to periodically check

the configuration registers of the interrupt controller to detect whether the configuration

is modified.

I Solution 2: Diagnose random failures

The interrupt controller component can be the subject to unexpected internal failures

which can be caused by direct-current (DC) faults, drift and oscillations and reset-related

faults. In Table A.1 of IEC 61508-2 [IEC10b] techniques and measures for diagnostics

and recommended maximum levels of diagnostic coverage for an interrupt controller are

defined.
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I Solution 3: Diagnose systematic failures

Tables A.15 to A.17 of IEC 61508-2 [IEC10b] recommend techniques and measures for

controlling systematic failures, including techniques and measures to control systematic

failures caused by the HW design, environmental stress or operational failures. These

techniques shall be implemented to detect systematic faults that can occur in the GIC.

For example, the possibility of systematic errors in the configuration of the interconnection

management unit shall be addressed using these techniques.

6.3 Mixed-Criticality Network

May mixed-criticality systems implement shared memories for the communication of their

components including the transactions between functionalities with different criticality.

However, the use shared memories may imply interferences on the communication such

as the bottleneck effects. NoCs embed the solutions associated with traditional off-

chip networks into the chip. They can be implemented for safety-critical applications,

providing support for TT and Event-Triggered (ET) (RC and BE) traffic. TT NoCs

are predictable communication systems with inherent non-interferences among their

components (such as processing cores, peripherals and memories). Instead, ET NoCs are

non-predictable networks.

The shift towards NoCs leads to challenges such as supporting multiple types of commu-

nication as well as supporting applications with different criticality levels. For instance,

the TT Network-on-Chip (TTNoC) communication system [OESHK08] does not support

the transmission of ET messages and AEthereal NoC [GDR05] does not support the

transmission of RC messages. However, the integration of functionalities with different

criticality on a single computing platform communicating through a NoC can lead to

communication errors.

This cross-domain pattern aims to provide a generic fault-tolerant on-chip communication

network with support for different computation and communication models as well as

mixed-criticality systems.

6.3.1 Network-on-Chip Diagnosis Pattern

This pattern defines a generic solution that manages the prioritisation of communication

for different criticalities with scheduling, routing, traffic shaping and error detection. In

accordance with the IEC 61508 safety standard, this pattern can be considered as a SCL

network implemented on top of a black channel network (see Figure 6.19). Therefore, it
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is assumed that parts of the communication channel,i.e., the NoC cannot be designed,

implemented and validated according to a safety standard. Instead, this SCL shall be

compliant with a safety standard (such as IEC 61508 and IEC 61784-3). To that end, the

SCL must fulfil the safety-related requirements stated in the safety standard, including a

safety life-cycle development process. A linking analysis of this NoC pattern is presented

in [LPN+16] where the way in which this SCL fulfils the safety-related requirements

defined in the MSC for an IEC 61508 compliant mixed-criticality network (see Section

5.4) is analysed.
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Figure 6.19: NoC cross-domain pattern – Overview.

This pattern supports the following requirements to schedule, route, shape traffic and

detect the communication errors:

− Support for TT and ET (BE and RC) timing models: TT messages are periodically

transmitted for achieving predictable timing with minimal latency and no jitter.

Instead, BE messages do not have timing restrictions and do not fulfil requirements

of non safety applications. RC messages offer a reasonable trade-off between

resource reservation and latency.

− Provide fault-isolation: This NoC pattern provides fault-isolation at SW level using

a hypervisor virtualization mechanism and establishes partitioning at HW level

using encapsulated communication channels.

− Compatibility to a wide range of NoCs: This pattern shall be integrable on a broad

variety of NoCs, enabling the system to support both TT and ET communications,

despite only ET transmission are backed by the underlying network.

− Support of hard real-time applications: This pattern shall ensure that messages of

the system meet the pre-specified deadlines in all situations defined in [45]. For this
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purpose, this pattern shall provide a scheduler that enables to achieve deterministic

communication.

− Support of mixed-criticality systems: The communication of applications with

different criticality levels that interact and coexist on a shared computing platform

requires protection mechanisms that establish chip-wide segregation. Virtualization

mechanisms such as hypervisors are not considered enough to establish the segrega-

tion because non safety partitions can influence the safety-related ones. Therefore,

this approach shall provide rigid temporal and spatial partitioning by setting up a

chip-wide partitioning.

− Establish temporal and spatial segregation: It establishes temporal segregation

among TT messages assigning different time slots to the TT messages of each tile

and guaranteeing that no other tile can inject messages within the slots of other

tiles. In addition, this NoC pattern ensures the temporal segregation between TT

and ET messages. ET messages can be injected into the network only if there is

no ongoing or upcoming TT communication.

On the other hand, this SCL ensures spatial segregation. To that end, it assigns

separate memory areas to the ports of the network for storing the messages and

establishes that the messages with different criticality levels are routed through

separate paths (source based routing).

This NoC shall further consider IEC 61508-2 and IEC 61784-3 compliant measures and

diagnostic techniques to assure that all safety-related failures are detected and controlled.

An overview of the measures and diagnostic techniques recommended by those standards

is presented in Section 5.4.
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Chapter 7

Case Study – Wind Turbine

This chapter presents the integration and evaluation of the solutions defined throughout

this dissertation in a wind power case study. The solutions envisaged include a modular

development process based on the DREAMS architecture style (see Chapter 4), the

MSCs for an IEC 61508 compliant hypervisor, partition, COTS multi-core processor and

mixed-criticality network presented in Chapter 5 and the reusable generic cross-domain

patterns defined in Chapter 6. A real wind turbine installation, which is commonly

referred to as Wind Park, is largely composed of a set of interconnected wind turbines and

a centralised control centre (see Figure 7.1). The control unit is made up of one or more

supervision subsystems, Human Machine Interface (HMI), communication and safety-

related subsystems. Supervision subsystems perform real-time control and supervision of

the wind turbine, while the safety-related subsystems assure that the design limits of

the wind turbine are not exceeded. These subsystems can be accessed directly or via

Supervision and 
Control Unit

Supervision and 
Control Unit

EtherCAT/TTEthernet

Developer

Wind-Farm Control 
Center

Maintenance 
Operator Web HMI

Park Client

Maintenance 
SCADA

Client 
SCADA

EtherCAT/TTEthernet

I/OI/OI/O

I/OI/OI/O

Figure 7.1: A wind-farm – Overview.
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the web for fixing bugs, upgrading the system, performing corrective and/or preventive

maintenance activities and collecting data for performance analysis.

This case study focuses on the integration of the safety-related solutions defined in

this thesis onto a safety wind-turbine system. It identifies and lists the safety-related

standards applicable for developing wind-turbine systems (see Section 7.1), presents the

HW architectural style of a simplified wind turbine system (see Section 7.2), introduces

the safety-related requirements of a safety wind turbine system from a product line

perspective (see Section 7.3) and exposes the results from executing selected mixed-

criticality cross-domain patterns (see Section 7.4).

7.1 Safety Standards

This section lists the different directives and standards that are applied for the developing

of a wind power system. However, the IEC 61508 safety standard is taken as the reference

standard in this thesis for defining the technical integration of the solutions identified in

the previous chapters into a wind turbine system.

− Directives:

– 2001/108/EC Electromagnetic Compatibility (EMC)

– 2011/65/EU Restriction of the use of certain hazardous substances (RoHS)

− Standards:

– IEC 61508 Functional safety of E/E/PE safety-related systems [IEC10a]

[IEC10b] [IEC10c]

– IEC 61400 Wind turbine generator systems [AS14a] [AS14b]

– ISO 13849 Safety machinery – Safety-related parts of control systems [ISO06][ISO12]

– IEC 60204-1 Safety of machinery – Electrical equipments of machines [IEC06]

7.2 System Architecture

This case study for the sake of simplicity is based on the wind turbine system architecture

that can be shown in Figure 7.2, where the supervision, control and protection units

are only considered. These units run on top of a real-time platform named Galileo and

a Zynq-7000 zc706 harmonised platform [XIL14c], which are interconnected through a

PCIe bus. Nevertheless, according to the IEC 61508 safety standard, these HW platforms
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can be considered as independent HW systems. The Galileo platform supervises and

controls the wind turbine system. It is based on an industrial PC APC 910 (commercial

HW) [Hea15] and it is customised at the operating system level and SW level. On the

other hand, the harmonised platform implements the safety-related functionalities and

integrates the results from this dissertation. The Zynq-7000 zc706 multi-core device is a

programmable System on a Chip (SoC) that supports a PS with a dual ARM Cortex A9

MPCore and a PL into a single silicon chip.

Input / 

Output 

EtherCAT EtherCAT

PCIe

Supervision and 

Control Unit

(Galileo Platform)

Protection Unit 

(Harmonized Platform 

Zynq-7000 zc706)

Input / 

Output

Input / 

Output

Figure 7.2: Wind turbine use case – Overall architecture.

This system architecture supports the execution of functionalities with different criticality

levels (such as SIL1 to 3 according to IEC 61508). To that end, XtratuM hypervisor [Sol14]

is used, splitting the CPUs of the PS and the soft-core(s) of the PL into partitions where

the functionalities with different criticality are executed. Partitions carried out by the

wind turbine system can be classified into safety-related partitions (e.g., safety-protection

partition), non safety-related partitions (e.g., supervision partitions), diagnostic partitions

and further partitions (e.g., server patterns). Safety-related partitions execute the

safety-related functionalities such as reacting to the failures detected by the diagnostic

partition(s). Instead, non safety partitions supervise the behaviour of the system’s

execution, and diagnostic partitions execute the safety-related tests for detecting failures

that can jeopardise the safety of the system. Further partitions may be implemented in

this system architecture to centralise certain functionalities such as the communication

peripherals of the HW platform (e.g., digital I/Os).

The protection unit shown in Figure 7.2 communicates with external sensors (e.g., wind

speed sensor) and actuators (e.g., safety relay) through a safe fieldbus protocol composed

of a non-safe fieldbus EtherCAT and a SCL integrated on top of a NoC. The combination

of the NoC and the SCL enables temporal and spatial independences, which depend if a

shared memory is used or not to communicate the partitions. The NoC implemented in
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this case study is the STNoC, which is complemented with the NoC SCL cross-domain

pattern (see Subsection 6.3.1). The SCL guarantees a safe communication between the

partitions. Figure 7.3 presents the overall architecture style of the protection system

(combination of the HW and the SW) implemented onto the partitioned and networked

Zynq-7000 zc706 multi-core platform.
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Figure 7.3: Wind turbine case study – Block diagram of the protection unit based on
the Zynq-7000 zc706 device.

The components presented in the preceding paragraphs have been analysed from a

safety perspective to identify the safety-related arguments that they fulfil and detect

inconsistencies. To that end, the following subsections present the linking analyses where

the way in which those components fulfil the safety-related arguments presented in the

MSCs is analysed.

7.2.1 XtratuM Hypervisor – Linking Analysis

This subsection defines a brief representative example of a linking analysis based on the

commercially available hypervisor XtratuM used in dependable aerospace applications.

XtratuM is not certified as a compliant item. Instead, it implements multiple IEC 61508

compliant safety techniques, safety functions and requirements. Within the scope of

this analysis, XtratuM is considered to be an IEC 61508 compliant hypervisor by means

of Route 3S ”assessment of non compliant development” [IEC10c]. This route implies

that the hypervisor shall fulfil all the requirements stated in subsection 7.4.2.13 of IEC

61508-3 [IEC10c]. Among others, the XtratuM hypervisor shall meet the specification

of the functional safety requirements and the safety behaviour for hypervisors in its

application.
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XtratuM uses up to five qualified tools to automate its configuration (xmeformat, xm-

pack, rswbuid and xmcparse). Figure 7.4 shows the inputs, outputs, interactions and

intermediate results of the tools used by this hypervisor. From a safety perspective and

according to the IEC 61508 safety standard, these tools can be considered off-line tools

of category T3 with support for a safe installation procedure. T3 tools generate outputs

which can directly or indirectly contribute to the executable code of the safety-related

system (e.g., compilers).

− xmcparser tool handles the hypervisor’s configuration. To that end, it reads

the XtratuM Configuration File (XMCF) and generates a binary file containing

the hypervisor’s and partitions’ configuration data. This tool also checks the

consistency of the configuration parameters of the hypervisor.

− xmeformat and xmpack tools generate a binary package (container.bin) contain-

ing the hypervisor’s and partitions’ configuration.

− rswbuild tool appends the package (container.bin) right after the resident SW

code to generate the final image which is written to an invariable memory. The

resident SW code is the SW that is executed before the hypervisor’s execution.

partition.elf custom_file

xm_cf.xml

xm_core

xmeformat xmeformat

xmcparse

xmeformat

xm_cf.bin

xmcparse

partition.elf
custom_file.x

ef
xm_core.xefxm_cf.xef

xmpack

containter.bin rsw_obj.o

rswbuild resident_sw

Figure 7.4: XtratuM Tool set. (Source DREAMS D5.1.1 Annex A [DRE15])

This hypervisor is considered to be active (startup) when the resident SW has finished

copying the code and the data of the hypervisor and partitions to the memory. The boot

sequence continues with the configuration and checking of the hypervisor, partitions and
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their associated resources. Once finished, XtratuM initializes the partitions’ internal data

and waits until the initialization reaches the state of all the cores. Finally, the hypervisor

executes the schedule for each core.

The shutdown sequence of the XtratuM hypervisor is given in a deterministic way where

partitions finish their executions first and the hypervisor is shut down after wards. The

temporal boundaries of this process are configured in the XMCF and they are also

included as a part of the hypervisor’s documentation.

On the other hand, XtratuM supports a basic virtualization interface for virtualizing

resources. This interface avoids the failures related to the assignment of one resource to

more than one partition. The resource virtualization is usually based on hypercalls which

provide access to the hypervisor’s services such as the real-time clocks, interrupts and

communications. The only restriction is that the virtualization is limited to resources that

may endanger the hypervisor’s integrity, temporal independence or spatial independence.

− Timer virtualization is supported to get the status of the virtualized timers and

simulate the arrival of the partition’s interruption when the timer expires.

− Interrupt masks, exceptions and IRQs are managed by the hypervisor by means of

IRQ controller virtualization and vector based exception/IRQ handling.

− The HW dependency which is related to the presence of any component of the

processor such as a MMU or a Memory Protection Unit (MPU) is an issue to be

considered. The MMU virtualization enables modifying the page tables of the

partitions that must be compliant with the physical memory areas. These physical

memory areas are specified in the XMCF.

The XtratuM hypervisor also avoids interferences caused by the assignment of the

peripherals (e.g., I/Os). To that end, it limits the assignments of peripherals to certain

specific partitions (exclusive access to peripherals). The assignment is configured off-line,

during the system design phase, by means of the XMCF. In that regards, XtratuM

considers to set the access to certain bits of a specific I/O address using a bit mask or to

configure the access to contiguous I/O regions.

The execution of safety-related and non safety-related partitions can lead to interferences

precluding the achievement of the temporal independence. To address issues of this

nature, XtratuM supports a cyclic execution scheduling that follows the ARINC 653

specification [ARI06]. The hypervisor’s cyclic scheduling is supported by one-shot timer

interrupts which are statically allocated to the partitions in the XMCF. Figure 7.5

shows an example of the deterministic execution scheduling implemented by the XtratuM
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hypervisor. Nevertheless, the scheduler of the hypervisor and partitions can be changed

depending on the needs of the system to be partitioned (e.g., maximum and minimum

execution time, maximum and minimum response time).

Figure 7.5: Cyclic execution scheduling for the XtratuM hypervisor – Example.

The basic concept of spatial independence aims to detect and avoid unauthorised accesses

to the memory areas and the peripherals assigned to partitions. Partitions can be allocated

by XtratuM in different physical memory addresses to prevent that one partition can

access to memory areas of other partitions. Safety partitions check that the contents

of their memory areas are not accidentally or intentionally modified. A safety partition

periodically calculates the CRC of the hypervisor’s code and compares it with the off-line

calculated CRC value. This check enables detecting when a modification on the memory

occurs. In the same vein, the direct I/O memory accesses are prohibited for partitions

and they can only be granted using the hypervisor’s hypercalls. All the access requests

for peripherals are managed by the MMU and MPU.

The communication between partitions and between the partitions and their assigned

components is supported by specific services provided by the XtratuM hypervisor (e.g.,

port based communication). These services operate in a similar manner to the inter-

partition services described in the ARINC 653 standard [ARI06]. They are based on

channels and endpoints, which are configured off-line in the XMCF. The memory used

for storing the messages of the communication channels is only accessible by XtratuM.

If a partition requires communication, the communication messages shall be copied

to the memory areas controlled by XtratuM and the respective partition. Therefore,

there is no way that partitions can accidentally or intentionally modify the contents of

the messages. In addition, the limitation of the number of messages and the message

size preserves the system integrity by statically allocating the required memory areas

during the initialisation of the XtratuM hypervisor and bounding interferences in the

communication.

This hypervisor uses a global notion of time when it is executed on Symmetric Multi-

Processing (SMP) architectures. The fault-tolerant clock synchronisation is academic,

with no claim of compliance with the IEC 61508 standard. The fault-tolerant global

notion of time relies on a fault-tolerant HW clock and fault-tolerant timers which are
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configured in the XMCF. Furthermore, as defined in Section 5.1, an IEC 61508 compliant

hypervisor must implement a set of measures and diagnostic techniques to detect and

control random and systematic faults. In the case of the XtratuM hypervisor, it provides

the following set of IEC 61508 compliant measures and diagnostic techniques to that end.

I Random Failures

− Program sequence monitoring to diagnose failures related to the critical ex-

ecution patterns of the hypervisor, e.g., initialisation, partition context-switch,

exception handling. The last one is especially relevant since it contributes to the

fault-tolerance mechanisms.

− Temporal monitoring mechanisms such as WDTs with a separate time-base

complement the program sequence monitoring technique.

− XtratuM is deployed with a variable monitor by the resident SW tool. Therefore,

it does not require any invariable memory monitoring mechanism. The resident

SW tool is responsible of checking, by means of a checksum, that the hypervisor’s

image is not modified. If any partition is deployed into the invariable memory, a

safety partition shall be responsible for checking the appropriate memory areas

during the startup and initialization sequences.

− The run-time data of XtratuM shall be protected by HW ECC mechanisms. The

correctness of the ECC shall be tested by a third-party entity.

− XtratuM does not use any I/O unit. It is assumed that the partitions which use

I/Os for safety purposes are responsible for their diagnoses.

− The implementation of extra measures and diagnostic techniques for the detection

of communication and mass-storage failures is the responsibility of the partitions.

I Random Failures

− A program sequence monitoring technique is supported by XtratuM for random

failure diagnosis.

− The XtratuM hypervisor implements the defensive programming technique to

diagnose the interfaces between the partitions and the HW.

− Failure assertion programming is employed on the upper and lower limits of

the stacks that are used by XtratuM to manage the partitions.

Once a random or systematic failure is detected, the hypervisor should react to the

unusual event or state by executing a system reaction to an error or a fault-tolerance
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mechanism. XtratuM implements a Health Monitoring (HM) function for discovering

the faults at an early stage and masking or isolating the failure to avoid its consequences

[Sol13, MRC11]. The HM defines four different execution scopes, depending on which

part of the system is affected (partition process, operating system, XtratuM code or

resident SW) and defines their reactions in the XMCF (e.g., ignore the event, notify to

the partition, warm restart or cold restart).

It is worth stressing that when a safety hypervisor is ported to a new ECU, a recertification

process must be carried out. This process includes the redefinition of its associated safe

states, intended uses and documentation.

7.2.2 Safety Protection Partition – Linking Analysis

This subsection defines a brief representative linking analysis of a safety protection parti-

tion defined in the Multi-cores Partitioning for Trusted Embedded Systems (MultiPARTES)

project [PGN+14]. Figure 7.6 shows an example of a partitioned heterogeneous quad-core

processor that implements partitions with different criticality levels (i.e., safety partitions,

non-safety partitions) and where resources are shared between the partitions (e.g., L2

cache, extended shared memory, I/Os).
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Figure 7.6: Partitioned mixed-criticality system – Example.

The safety protection partition does not require additional startup and initialization

functions. The safety hypervisor performs these functions. The safety startup and

initialization implemented by the safety hypervisor manages and updates the outputs of

the safety partitions at execution time. Likewise, no new shutdown function is required by



96 Chapter 7. Case Study – Wind Turbine

the safety partitions. In the specific case of the diagnosis safety partitions shown in Figure

7.6, they support platform independent measures and diagnostic techniques to detect

faults during execution. For instance, the Error Detection Correction (EDC), temporal

and logical monitoring, defensive programming and diverse monitoring techniques may

be provided by a safety-related diagnosis partition. In addition, platform dependent

diagnosis techniques such as the reciprocal comparison of memory and I/Os may be

provided by those partitions.

The overall system response to errors executed by the safety partitions considers different

scenarios where reaching a safe state is required. For instance, if a fatal error is detected,

the safety protection partition will stop the execution. Furthermore, in the case that a

diagnostic partition does not receive the periodic confirmation from the safety protection

partition, the watchdog of the system will not be refreshed, thus leading to a safe state.

7.2.3 Zynq-7000 Multi-Core Device – Linking Analysis

This subsection provides a brief representative example of a linking analysis between

the MSC that is defined in Section 5.3 and the commercially available Zynq-7000 zc706

device. This device is a programmable SoC property of Xilinx, Inc., which integrates a

PS with dual ARM Cortex A9 MPCore and a PL in a single device. Figure 7.7 shows

the major functional blocks of a Zynq-7000 device. This multi-core device includes,

among others, two processor cores, a programmable logic, instruction and data L1 caches

for each core, an L2 shared cache, an interconnect and coherency management unit

(SCU), an OCM, DDR memories and multiplexed I/Os. Regarding safety standards and

certification, this device is not an IEC 61508 compliant device. Therefore, it is used as

provided by the device manufacturer for fail-safe systems.

This multi-core device offers different processing units, including the CPUs of the PS

and the soft-core processors of the PL, in lockstep and normal modes [HCM15]. These

implementation modes (shown in Figure 7.9 and Figure 7.8) impact on the selection

of the device’s measures, diagnostic techniques, system reactions to errors and fault-

tolerance techniques. For instance, if the scenario composed of two soft-core processors in

lockstep mode is implemented, the Comparator technique will be one of the recommended

mechanisms to diagnose the processing units (see Annex A of IEC 61508-2). Conversely, if

lockstep mode is not implemented, the Self-Test by SW: Walking bit [IEC10b] diagnostic

technique will be recommended.

For the sake of simplification, the scenario composed of a soft-core processor and a

single CPU is used as the reference scenario in this linking analysis (see Figure 7.8).

This analysis identifies the safety-related arguments which are met by the Zynq-7000
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Figure 7.7: Zynq-7000 – Block diagram. (Source UG585 [XIL14c])

device, the measures and diagnostic techniques which are implemented and supported by

this device and the parts of the safety techniques stated in the MSC for an IEC 61508

compliant COTS multi-core device which are delegated to other components. This MSC

is defined in Section 5.3.
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In relation to the safe power up and power down techniques, the Zynq device provides

separated and isolated power domains for the PS and the PL. These power domains are

powered up and powered down independently and in a deterministic way (see Figure

7.10). The PS can be powered up and powered down regardless of the PL, although for
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security reasons, the PL cannot be powered before the PS [XIL15]. The feed sequence

and time bounds for the power up and power down of the Zynq device are specified in

[XIL15], where the optimised sequences for achieving the minimum current are indicated.

In the case of the Zynq-7000 device, it executes an optimised power up sequence where

the PS VCCINT is first powered up, followed by the activation of the PS VCCAUX,

PS VCCPLL, PS VCCO, PL VCCINT, PL VCCBRAM, PL VCCAUX and PL VCCO

power signals. In the case of the power down sequence, it follows a reverse sequence of

the power up sequence.

VCCPAUX

VCCO VCCO1 VCCOn

VCCPAUX

VCCO_MIO0 VCCO_DDR VCCO_MIO1

Programable Logic (PL)Processing System (PS)

VCCPINT

VCCPLL

VCCPINT

Figure 7.10: Zynq-7000 – Power Up and Power Down sequences. (Source UG585
[XIL15])

The boot sequence is an inclusive safety technique in the Zynq device [XIL14c]. This

device supports two boot modes, a normal mode and a secure mode (see Figure 7.11).

The main difference between them is that in the secure boot mode, the First Stage

Boot Loader (FSBL)/User code is authenticated (Rivest, Shamir and Adleman (RSA))

and decrypted (Advanced Encryption Standard (AES)/Hash Message Authentication

Code (HMAC)), whereas in the normal boot the FSBL/User code is executed directly

from the boot device (e.g., Secure Digital (SD) card or RAM). If any of the checks fails

during the boot sequence, the contents of the memory and registers of the PS and the

PL shall be deleted; the PL shall be shutdown and a secure lock-down state shall be

executed.

The Zynq device is always powered up in secure boot mode, only switching to non-secure

boot mode when it detects that the FSBL is not encrypted. The boot of the Zynq

device is a two-stage process, where the code of the internal BootROM and the FSBL

are executed. In Stage 0, CPU0 starts executing the code from the internal BootROM,

whereas, in stage 1, CPU0 executes the FSBL from the OCM. Once the PS is fully

operational, the configuration of the PL is carried out by providing a bitstream.

Regarding the shutdown of the Zynq device, this process takes place before the powering-

down of the device to keep the system stable, thereby avoiding the corruption of the file
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Figure 7.11: Zynq-7000 – Boot. (Source UG585 [XIL14c])

systems (e.g., operating system, functionality) and the invariable memory [XIL14d].

The resource sharing is a common source of interferences in nowaday’s multi-core devices.

These interferences lie in the fact that as a general rule, a resource should not be

allocated to more than one component of the device at the same time. This assertion
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is however not fulfilled in the case of multi-core devices where specific resources are

shared among their components (e.g., memory, peripherals). The resource virtualization

technique overcomes the interferences in multi-core devices. This technique manages

the non-exclusive resources for guaranteeing the interference freeness among safety and

non safety-related functionalities executed on top of the multi-core device. The Zynq

device supports the virtualization of the CPUs, the memory and the interrupt controller,

thereby enabling the isolation of functionalities executed on the system. In addition, the

resource virtualization technique allows the migration of applications from one platform

to another, reducing the power consumption and improving the availability of critical

applications.

− CPU virtualization: The ARM Cortex A9 processors inside the Zynq device are

specifically designed to execute complex applications, providing high performance,

efficiency, scalability and low-power architectures. These processors support ARM

V7-A architectures with full virtualization of memory [ARM11b]. The Cortex-

A9 CPU employs speculative execution of instructions which are enabled by the

dynamic renaming of physical registers into an available pool of virtual registers.

The CPU employs the renaming of the virtual register to eliminate dependencies

across registers without jeopardising the correct execution of programs.

This feature allows code acceleration through HW based program execution optimi-

sation and increases the pipeline utilisation removing data dependencies between

adjacent instructions (e.g., pointer arithmetic), simultaneously reducing the inter-

rupt latency of the Zynq device.

− Memory: Each Cortex A9 processor in the Zynq device includes a separate L1

cache that supports 4KB, 64KB, 1MB and 16MB virtual memory pages [XIL14c].

The MMU works in close cooperation with the L1 and L2 memories in the process

of translating their virtual addresses to physical addresses and controlling access

to the external memories. It is compatible with the requirements of the Virtual

Memory System Architecture v7 (VMSAv7) with 4 KB, 64 KB, 1 MB, and 16 MB

page table entries and 16 access domains. It uses an in-memory table of items

called page table that contains one page table entry per page. The tables are used to

map the virtual page numbers to physical page numbers in the main memory. For

that end, the MMU contains a single unified Translation Lookaside Buffer (TLB)

that is used to fetch instructions and data accesses.

− Interrupt controller: The GICv1.0 [ARM08] has been enhanced by a newer version,

the GICv2.0 [ARM13]. The new version enables the virtualization extension that

allows handling both virtual and physical interrupts.
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Another safety technique supported by the Zynq device is the exclusive access to periph-

erals. This technique is implemented by means of the AXI interconnect IP [ARM11a] and

the TrustZone security extension [GP14], thus hiding the peripherals and memories from

the non secure accesses (see Figure 7.12). Table 7.1 summarizes the exclusive accesses

which can be executed by the Cortex A9 cores of the PS, the L2 cache and the PL masters

of the ACP ”S ACP”, Generic Product (GP) ”S GP” and High Performance (HP) ”S HP”

ports. The ACP port of the PL does not support exclusive accesses to the coherent

memory and the L2 cache does not support exclusive monitors.

AXI BUS

Generic Interrupt 

Controller (GIC)
RAM BootROM

Secure World

Non-Secure World

Secure/Non-Secure World

DMA

Secure 

World

Non 

Secure 

World

Protection 

Controller

Address Space 

Controller

Dynamic Memory 

Controller

DRAM

AXI to APB 

bridge

Peripherals

Figure 7.12: Zynq-7000 – Exclusive access to peripherals.

Exclusive Operation
Exclusive Accesses

Supported

ACP to L1 cache Yes
Two A9 CPUs to L2 cache No
Two A9 CPUs and ACP to DDR memory No
ACP and one CPU to DDR Yes
Two A9 CPUs to DDR Yes
Masters on GP and HP to DDR:
- GP0 and GP1 can do exclusive access with each other only.
- HP0 and HP1 can do exclusive access with each other only.
- HP2 and HP3 can do exclusive access with each other only.

Yes

Table 7.1: Zynq-7000 – Exclusive AXI accesses. (Source [XIL15])

The resource virtualization and exclusive access to peripherals safety techniques and the

techniques described in Annex F of IEC 61508 [IEC10c] for achieving the non-interference

between SW components focuses on reaching the temporal and spatial independences.

In the case of the Zynq device, it is assumed that unacceptable temporal delays may
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occur (e.g., concurrent cache access, contention by cores). Nevertheless, the boundaries

of the temporal interference can be estimated and measured by the system developer

(e.g., estimate and measure the WCET and Best Case Execution Time (BCET)). The

delays can be measured and detected, for example, by means of an external HW WDT.

On the other hand, the spatial independence can be achieved by means of HW memory

protection mechanisms, partitioning mechanisms, operating systems and bare metal user

applications (see Annex F of IEC 61508-3 [IEC10c]). In the case of the Zynq device, it

implements an MMU, a partitioning mechanism (TrustZone security extension) and a

DMA to ensure it.

− An MMU effectively performs the management of the virtual memory, preventing

SW running in a CPU from accessing other CPUs’ address spaces. At the same

time, it handles memory protection, cache control, bus arbitration and translates

the addresses for mapping the logic memory spaces to physical memory regions.

As stated in Table E.2 item 4 of IEC 61508-2 [IEC10b], the isolation of the Zynq

device’s memory regions can be achieved by means of qualified tools. For instance,

the Isolation Design Flow (IDF) qualified tool can be implemented to guarantee

the isolation through the use of fences.

− ARM TrustZone security extension [GP14] helps to create a secure environment to

run applications and protect their contents by splitting the processor’s cores into

two virtual cores, where secure and non-secure functionalities are implemented.

This extension, in conjunction with certain peripherals (see Table 7.2) enables a

secure system to handle private data and encrypted information without leaking

to the non-secure core. The transition of data between the two cores of the Zynq

device is switched by a secure monitor that runs in a secure core.

Entity TrustZone Security

ARM A9 Core Secure and Non Secure
L1 cache controller Secure
L1 cache Secure and Non Secure
MMU Secure
SCU Secure
L2 cache controller Secure
SLCR Secure
Triple Timer-Counter0 Secure
Triple Timer-Counter1 Configurable
Watchdog Secure
SoC CoreSight Debug Secure
OCM Secure and Non Secure
DDR memory Secure and Non Secure
IOU devices Configurable (I2C, GPIO, CAN, Ethernet and UART)

Table 7.2: Zynq-7000 device – TrustZone Security Summary. (Source DS190 [XIL15])
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− The DMA provides the spatial separation of the SW tasks of the processor memory

by means of DMA data transfers between the memories and peripherals of the Zynq

device. If a violation of a memory policy is given, a memory protection exception

will be generated.

The configuration of resources, peripherals and user applications required for implementing

the safety techniques specified above (resource virtualization, exclusive peripheral access,

temporal independence and spatial independence) is mostly carried out at the devices’

startup using qualified tools. However, it can also be performed at run-time. The

qualified tools must follow proper methodologies and procedures for the implementation

and configuration of the device and they shall be used as defined in the documentation

provided by the tool manufacturer. In the case of the Zynq device, Xilinx provides the

Integrated Synthesis Environment (ISE) and IDF qualified tools. These tools are certified

tools for IEC 61508 and ISO 26262 and follow proper methodologies and procedures for

configuring the device.

− ISE design tool [HCM15, XIL14c] is used to develop safety-related applications for

FPGAs. This qualified tool includes the description of the design methodology and

the flow for the FPGA design. It also guides the user toward the application of the

design flow and guides verification and testing of the implementation (e.g., timing,

temperature, power consumption, violation of design rules and isolation violations).

− IDF [XIL14b, XIL13, Hal14] is a SW methodology and tool that enables the

logical and physical isolation among functionalities by using fences. The Isolation

Verification Tool (IVT) verifies the isolated regions and assesses that a partitioned

FPGA design fulfils the stringent security and safety standards. The blocks obtained

using the IDF tool can be considered as a structure that separates and decouples

the physical blocks (see Table E.2 of IEC 61508-2 [IEC10b]). On the other hand,

this tool helps to accelerate the development of secure and safety-related systems

and provides techniques such as the modular redundancy, watchdog alarms and

segregation by safety levels, enhancing the development of independent functional

modules on a single device.

The safety techniques defined in the MSC of chapter 5.3 and the components of the

Zynq device require verification and validation activities for detecting failure conditions

which may hinder the system. The measures and diagnostic techniques implemented

by a multi-core device shall be provided by the device manufacturer or defined in the

FMEA / FMECA / FMEDA analyses. As stated at the beginning of this subsection, a

device scenario composed of two CPUs and a soft-core processor in the PL is used as the

default device scenario to be analysed. The purpose of this subsection is not to specify at
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length the diagnostic strategy, system reactions to errors and fault-tolerance techniques

which are or must be implemented by the Zynq multi-core device, but the fundamentals

of the techniques for both random and systematic faults that are supported by the Zynq

device are described in the following paragraphs.

Tables 7.4 and 7.5 summarise the IEC 61508 compliant measures and diagnostic techniques

for detecting and controlling random and systematic faults, highlighting if they are

supported by the Zynq multi-core device and if not, defining the way in which they can

be supported.

I Random Failures

The diagnosis techniques for random failures summarised below support the requirements

of IEC 61508-2 Table A.1 [IEC10b].

− Electrical Components

Electrical components (e.g., cables, wires, relays) should follow the recommended

measures and diagnostic techniques in Table A.2 of IEC 61508-2 [IEC10b]. For

instance, the Failure detection by online monitoring, Monitoring of relay contacts,

Comparator or Majority Voter techniques can be implemented in order to diagnose

the electrical components of the device. The Zynq-7000 device does not support

those measures and diagnostic techniques by default.

− Electronic Components

Electronic components (e.g., diodes, transistors, integrated circuits, displays, power

supply) can be diagnosed by means of recommended technologies in Table A.3

of IEC 61508-2 [IEC10b]. The Zynq device contains a wide variety of electronic

components such as the flip-flops and multiplexers, which should be checked

following the recommended techniques stated in the same table. For instance, the

Failure detection by on-line monitoring, Comparator, Majority Voter, Monitored

redundancy or HW with automatic check techniques can be applicable to the Zynq

device. The Standard test access port and boundary-scan architecture technique

can also be implemented, although this technique depends on whether the device

has been designed following the design for test approach.

On the other hand, the Test by redundant HW, Dynamic principles and Analogue

signal monitoring techniques are not supported by the Zynq device. The Test by

redundant HW technique is not applicable in the first instance because it requires

HW redundancy. The same occurs for the Dynamic principle technique.

The Analogue signal monitoring technique shall not be implemented due to its

low Diagnosis Coverage (DC) level (60%). The main reason for that is that, as
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stated in the MSC for an IEC 61508 compliant COTS processor, a SIL up to SIL3

is expected and consequently, a minimum DC of 90% is required.

Electronic devices occasionally exhibit erroneous behaviour for no apparent reasons.

Soft errors (such as Single Event Upsets (SEUs)) are the common source of these

failures. SEUs are non-permanent errors that can lead to transient current pulses,

can change the memory data values or cause latch-ups. A latch-up is a type of

short circuit that can occur in an integrated circuit, which can disrupt the proper

functioning of the device. To prevent latch-ups, the PL side of the Zynq device

follows proprietary design rules that specially mitigate that kind of effects [JED01].

Also, to detect and correct soft errors of the PL, the Soft Error Mitigation (SEM)

IP is provided by Xilinx. SEM IP cores [XIL14a, HS12, GdL00, CFBC99] perform

SEU detection, correction, classification for the configuration memory and perform

the emulation of SEUs by injecting errors into the configuration memory.

− Processing Units

The Zynq product family relies on a dual-core ARM Cortex A9 CPU with NEON

co-processor. Each processor is a high-performance and low-power core [XIL15]

that implements the ARMv7 instruction set architecture. In our particular case,

as the processing units (CPUs and soft-core processors) of the Zynq device do

not execute the same SW and the lockstep architecture is not supported, the

Comparator technique recommended by the IEC 61508-2 [IEC10b] is precluded. In

the same way, the majority voter and reciprocal comparison by SW techniques are

also excluded. Similarly, the self-test by SW (limited number of patterns) technique

is not applicable due to its low DC value (60%). In addition, although the self-test

supported by HW technique is suitable for use, it requires extra HW facilities and

therefore, it is not supported by the Zynq device.

The processing units of the Zynq device may be diagnosed using well-known IEC

61508 compliant measures and diagnostic techniques such as the Self-test by SW:

walking bit (one-channel), Code Processing and Reciprocal comparison by SW

techniques (see Table A.4 of IEC 61508-2 [IEC10b]). For instance, the Self-test by

SW: walking bit (one channel) technique (DC of 99%) may be used for diagnosing

the processing units by means of additional SW functions responsible for the

physical storage (data and address registers of the CPUs) and the instruction

decoder. Instead, the code processing and reciprocal comparison by SW techniques

may be implemented as additional diagnosis techniques with a maximum achievable

DC of 99%.

− Invariable Memory
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Table A.5 of IEC 61508-2 [IEC10b] recommends a set of measures and diagnostic

techniques for invariable memories. For instance, the Word-protection multi-bit

redundancy technique is not supported by the Zynq device because it requires

additional HW to monitor the processing units and additional memory to store the

parity of each location, thus increasing the cost of the device. In the same way, the

Modified Checksum technique is inadequate as it has a maximum achievable DC of

60%. On the other hand, although the signature of one word (8-bit) technique is

adequate to be used, the Signature of doubleword (16-bit) technique is preferable

because it provides the detection of all one-bit and multi-bit failures with a DC

value of 99%. In addition, the Block replication technique can be optionally applied.

This technique aims to replicate the content of the memory and compares the

replicated information to ensure that the memory is error-free.

− Variable Memory

The Zynq device is composed of several variable memories such as the DDR, the L1

and L2 caches and the OCM. The IEC 61508 safety standard recommends a set of

measures and diagnosis techniques for variable memory diagnosis (see Table A.6 of

IEC 61508-2 [IEC10b]). However, those techniques are not completely supported

by the Zynq device because, among others, the communication between the CPUs,

the L2 cache, the OCM and the DDR is mainly carried out through the SCU. The

SCU manages the coherency between the CPUs, the PL and the cache memories,

and controls the communication of the components of the device (such as the CPU

and the PL, the peripherals and the memory). Therefore, if the SCU fails, it is

unknown if the write/read processes in the memory are concluded properly.

Additionally, in multi-core devices the L2 cache is shared among a wide variety

of subsystems and components, which leads to interferences in general. For these

reasons, in Chapter 6 the subsystems and components of nowaday’s multi-core

devices (e.g., shared memory) are analysed, defining at the same time new solutions

and diagnosis techniques to overcome issues related to them.

However, in the case of the Zynq device, some variable memories such as the

OCM and DDR can be accessed from the PL side, without going through the

SCU and L2 cache (see Figure 7.13). Those variable memories can be diagnosed

following the diagnostic techniques stated in Table A.6 of IEC 61508-2. For instance,

techniques such as March C- or March U or equivalent can be implemented for

RAM diagnosis at boot time. In addition, a cyclic execution of the RAM test

checkerboard technique would be recommendable to ensure adequate coverage for

permanent faults. In the same vein, the parity bit for RAM technique would be

recommendable to be implemented to improve the detection of the random failures

(permanent and transient) that can affect the variable memories. Moreover, the
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parity bit diagnosis technique can be extended with the EDC code, increasing

the detection capability and including the detection of all odd-bit failures, all two

bit-failures, some three-bit failures and some multi-bit failures.

As previously mentioned, the SEM core IP is provided by Xilinx for the detection,

correction and classification of SEUs that can occur in the PL (e.g., in the Block

RAM (BRAM)). SEM IP implements device primitives such as the Internal

Configuration Access Port (ICAP) and the ECC to clock and check the read-

back CRC as part of the detection function of SEUs. This IP also provides the

ECC mechanism for error correction and performs the emulation of the SEUs by

injecting errors into the configuration memory. The fault injector provides a means

to evaluate and test the mitigation capabilities of variable memories.

− I/O Units and Interfaces

The Zynq device uses a handful of I/O peripherals for on-chip and off-chip commu-

nications. The I/Os are organised into four banks of registers (Bank 0, 1, 2 and 3),

providing individual (separate) power domains and configuration (e.g., sensitivity

level (edge or level sensitivity), interrupts). The PS of the Zynq device accesses

the peripherals through the SCU. The SCU manages the coherency of the CPUs,

PL and memory and controls, among others, the communication of the PS’s CPUs,

PL, memory and peripherals. Consequently, if the SCU fails, it is unknown what

happens with the peripherals.

Chapter 6 defines additional techniques to diagnose the coherency management

unit. However, not all the accesses to peripherals are made through the SCU. In

those cases, the recommended measures and diagnostic techniques by the IEC 61508

standard are applicable (see Table A.6 of IEC 61508-2 [IEC10b]). For instance,

the Test pattern technique is a static (stuck-at) and cross-talk failure detection

technique that measures the values of the I/Os and compares the obtained values

with the ones expected. The Multi-channel parallel output technique makes use of

the device’s independent outputs for random HW failure detection (stuck-at). The

detection is done via external comparators. To ensure that predefined tolerance

ranges (e.g., time, addressing, value) are not modified due to external influences

(drift failures or transient faults), the use of the Monitored outputs diagnosis

technique is highly recommendable.

Furthermore, to address permanent and transient failures of the input lines, the In-

put comparison/voting (1oo2, 1oo3 or better redundancy) technique is recommended.

A 1oo2 scheme connects the external safety-relevant signal to two independent

I/O lines. To reduce the potential impact of common causes of failures, I/O lines
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belonging to different I/O ports are recommended. Optionally, the antivalent signal

transmission diagnosis might be implemented by SW (if applicable).

− Data Paths

The interconnect block located within the PS comprises the resources to connect

the device’s internal components via the ARM Advanced Microcontroller Bus Archi-

tecture (AMBA) 3.0 on-chip interconnect bus. The communication bus implements

complete interconnect communication capabilities by means of interconnect masters

and slaves, the SCU, the Central interconnect, the Master interconnect, the Slave

interconnect, the memory interconnect, the OCM interconnect and the L2 cache

controller (see Figure 7.13).

The transactions among the masters and slaves must be diagnosed to detect and

control transmission errors. To that end, the IEC 61508 safety standard recommends

a set of measures and diagnosis techniques to detect and control the failures of the

data paths (see Table A.7 of IEC 61508-2 [IEC10b]). For the sake of simplification,

techniques such as the One-bit HW redundancy, Multiple-bit HW redundancy or

Complete HW redundancy are excluded, among others, due to their implementation

complexities and maximum achievable DC values (60%), which are not enough for

SIL3.

On the other hand, diagnosis techniques such as the Inspection using test pattern

and/or the transmission and information redundancies might be implemented by

SW and supported by the Zynq device. The Inspection using test pattern is based

on periodical connectivity tests and it must be verified through fault injection

mechanisms to ensure that the diagnosis technique itself is free of failures. In addi-

tion, the transmission and information redundancy techniques are recommended

to detect and control both permanent and transient faults.

− Power Supply

The Zynq device provides separate and independent power supplies for the PS

and PL. These layers reside on different power areas, and they can be connected

to independent power rails. Therefore, in the case that the PL is not used,

it can be completely shut down to save power. When the PL is powered-off,

signals between the PS and the PL would not be accessible. PS includes an

independent power supply for the DDR memory (e.g., DDR2 1V8, DDR3 1v5, Low-

Power DDR (LPDDR)2 1V2) and two separate voltage banks for the Multiplexed

I/Os (MIOs) (e.g., High-Speed Transceiver Logic (HSTL) 1V8, Logic Voltage

Complementary Metal-Oxide Semiconductor (LVCMOS) 1V8, 2V5, 3V3) [XIL15].

In our case, as the Zynq device has a single main power supply that is divided for

supplying both the PL and the PS, the diagnosis of the device’s power supply can be
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Figure 7.13: Zynq-7000 – Interconnect. (Source UG585 [XIL14c])

performed using an external power supply supervisor. In addition, the over-voltage

protection with safety shut-off, Voltage control secondary voltages or/and Power

down with safety shutdown diagnosis techniques can be implemented (see Table A.9

of IEC 61508-2 [IEC10b]). Ideally, the Zynq device should support separate power

supplies, one for the PS and another one for the PL, which shall be monitored by

two external power supply supervisors, one per each power supply.
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− Program Sequence

A defective program sequence is a sequence where the individual components of a

program are processed incorrectly or in a wrong period. IEC 61508 recommends

a set of measures and diagnostic techniques for diagnosing defective program

failures (see Table A.10 of IEC 61508-2 [IEC10b]). For instance, the Watchdog

with separate time-base without time-window technique is not applicable in our

case due to its maximum achievable DC value of 60%, which is not high enough

for our purpose (SIL3). In exchange, the Watchdog with separate time-base and

time-window technique which has a maximum achievable DC value of 99% might

be applicable. Two watchdog timers are required, one for the PL and another one

for the PS.

The temporal and logical monitoring technique monitors the correct behaviour and

sequence of the individual program sections. If the program sequence is executed

as expected, the watchdog timer monitor will be re-triggered. Otherwise, it will

not be re-triggered. Hence, the logical monitoring of program sequence diagnosis

technique is recommended for our purpose. Furthermore, the temporal monitoring

with on-line check diagnosis technique may be required during the processor’s

boot-time to detect faults in the temporal monitoring.

− Clock

The Zynq device has two separated crystals which can be used to generate the PS’s

and PL’s clocks. The PS consists of three clock domains which are generated from

the PS CLK clock. The ARM processing units, the DDR memory and the I/Os

(e.g., CAN, Ethernet, UART) make use of those clock domains. On the other hand,

the four clock signals that are received by the PL from the PS are derived from the

Phase Locked Loops (PLLs) (see Figure 7.14). However, the PL cannot provide any

clock to the PS. In the case that any clock of the device is faulty, the techniques

recommended by the IEC 61508 standard should be implemented to detect and

control clock-related failures (see Table A.11 of IEC 61508-2 [IEC10b]). For

instance, the external watchdog timer is highly recommended due to its reliability

and coverage. Additional diagnosis techniques can be implemented to improve the

diagnosis coverage of the device up to SIL3.

I Systematic Failures

The diagnosis techniques for systematic failures are summarised and enumerated in

Table A.18 of IEC 61508-2 [IEC10b], including the guidance on effectiveness levels (e.g.,

low, high). Table A.15 of IEC 61508-2 [IEC10b] defines the techniques and measures to

control systematic failures caused by the HW design. The Program sequence monitoring,
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Figure 7.14: Zynq-7000 – Clock. (Source UG585 [XIL14c])

Failure detection by on-line monitoring and/or diverse HW techniques and measures

can be highlighted. At least one of the techniques highlighted in grey (see Table 7.5)

must be implemented to guarantee the detection and control of the HW design failures.

For instance, the Standard test access port and boundary-scan architecture technique

can be applied, although it is dependent on whether the HW has been designed in

accordance with the design for test approach. The test by redundant HW technique might

be applicable, although it requires a redundant HW, and the code protection technique

cannot be implemented because it is based on information and/or time redundancy,

which is not provided by the Zynq device.

In order to detect the systematic failures caused by environmental stress or influences

(see Table A.16 of IEC 61508-2 [IEC10b]), the Zynq device should implement the

measures against power failures, separation of electrical energy lines from information

lines, increase of electromagnetic immunity and measures against physical environment

(e.g., temperature and humidity) techniques. At least one of the light-grey and black-grey

techniques related to the environmental failure detection techniques stated in Table

7.5 shall be provided by the Zynq device. For instance, the Measure to detect breaks

and shorts in signal line and the diverse HW techniques are already provided by the

Zynq device, although they are dependent on the requirements of IEC 61508-2 Annex E

[IEC10b]. On the other hand, the Modification protection technique can be used to detect

and control systematic operational failures (see Table A.17 of IEC 61508-2 [IEC10b]).

At least one of the techniques highlighted in light-grey of Table 7.5 shall be implemented

to detect and control systematic operational failures.
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An IEC 61508 compliant COTS device must include system reactions to errors and fault-

tolerance techniques for managing detected failures. As shown in Table 7.3, whenever

a processing unit, peripheral or the device itself is reset, a reaction to the error is

executed by the device to manage and minimise the impact of the failure. For instance,

in the case that the internal temperature of the Zynq device overcomes the maximum

allowed temperature value, an interrupt status is sent to the PS, providing the automatic

shutdown of the PL. The PL will remain shut down until the temperature alarm goes

inactive. Further system reactions to errors can be provided via SW-controlled reactions

(e.g., safe state).

Reset name Portion of system that is reset

Power On Reset (POR)
External System Reset Entire chip reset
System SW

CPU 0 Watchdog Timers CPU(s) reset
CPU 1 Watchdog Timers

Peripherals Selected peripheral or CPU reset

Table 7.3: Reset effects (Source [XIL15]).

The safety techniques stated in this subsection, and the components of the Zynq-7000

device must provide functional safety failure analyses to identify the causes and effects

of the failures. Hence, according to Table B.6 of IEC 61508-2 [IEC10b], the techniques

and components of a safety device shall be commonly backed up by FMEA / FMECA /

FMEDA analyses. Those analyses aim to evaluate the reliability, safety and integrity of

presented techniques and components.

Annex A of this dissertation includes the FMEA / FMECA / FMEDA analyses to assess

the random and systematic failures of the safety-related requirements and remarkable

components of the Zynq-7000 device. These analyses include the failure modes, causes,

effects, related measures and diagnosis techniques and associated DC values (random

failures), failure rate values (systematic failures) and mitigation measures (systematic

failures) per each failure mode.
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Measures and Diagnostic Techniques See IEC 61508-7 Maximum achievable DC
Supported by the

Zynq-7000 device
Arguments

Failure detection by on-line monitoring A1.1

Low (Low demand mode).

Medium (High demand or

continuous mode).

No It can be supported.

Monitoring of relay contacts A1.2 High (99%). No –

Comparator A1.3 High (99%). No It can be supported.E
le

c
tr

ic
a
l

C
o
m

p
o
n
e
n
ts

Majority voter A1.4 High (99%). No It can be supported.

Failure detection by on-line monitoring A1.1

Low (Low demand mode)

Medium (High demand or

continuous mode)

No It can be supported.

Comparator A1.3 High (99%). No It can be supported.

Majority voter A1.4 High (99%). No It can be supported.

Test by redundant HW A2.1 Medium (90%). No –

Dynamic principles A2.2 Medium (90%). No It can be supported.

Standard test access port and boundary-scan archi-

tecture
A2.3 High (99%). No

It can be supported if the device’s design follows the

design for test.

Monitored redundancy A2.5 High (99%). No It can be supported.

HW with automatic check A2.6 High (99%). No It can be supported.

E
le

c
tr

o
n
ic

C
o
m

p
o
n
e
n
ts

Analogue signal monitoring A2.7 Low (60%). No –

P
ro

c
e
ss

in
g

U
n
it

s

Comparator A1.3 High (99%) No –

Majority voter A1.4 High (99%) No –

Self-test by SW (limited number of patterns) A3.1 Low (60%) No –

Self-test by SW: Walking bit A3.2 Medium (90%) No It can be supported by SW implementation.

Self-test supported by HW A3.3 Medium (90%) No –

Coded processing A3.4 High (99%) No It can be supported by SW implementation.

Reciprocal comparison by SW A3.5 High (99%). No It can be supported by SW implementation.

In
v
a
ri

a
b
le

M
e
m

o
ry

Word-protection multi bit redundancy A4.1 Medium (90%) No –

Modified checksum A4.2 Low (60%) Yes
It is implemented at boot time to verify the boot

header.

Signature of one word (8-bit) A4.3 Medium (90%) No –

Signature of a double word (16-bit) A4.4 High (99%) No It is provided by SW implementation.



1
1
4

C
h

ap
ter

7.
C

a
se

S
tu

d
y

–
W

in
d

T
u

rb
in

e

Block replication A4.5 High (99%) No It is provided by SW implementation.

RAM Test ”Checkerboard” or ”March” A5.1 Low (60%) No It is provided by SW implementation.

RAM Test ”Walkpath” A5.2 Medium (90%) No –

RAM test ”Galpat” or ”Transparent Galpat” A5.3 High (99%) No –

RAM test ”Abraham” A5.4 High (99%) No –

Parity-bit for RAM A5.5 Low (60%) Yes It is supported by both L1 and L2 caches and OCM.

RAM monitoring with a modified Hamming code or

detection for data failure with EDC
A5.6 Medium (90%) Yes

ECC: It is supported by the DDR memory controller,

QSPI and NAND flash controller.

CRC: It is supported by the SD/SDIO host con-

troller, the PL and the OCM.

V
a
ri

a
b
le

M
e
m

o
ry

Double RAM with HW or SW comparison and read-

/write test
A5.7 High (99%) No –

Failure detection on-line monitoring A1.1

Low (Low demand mode)

Medium (High demand or

continuous mode)

No It is supported by SW implementation.

Test pattern A6.1 High (99%) No It is supported by SW implementation.

Code protection A6.2 High (99%) No –

Multi-channel parallel output A6.3 High (99%) No It is supported by SW implementation.

Monitored outputs A6.4 High (99%) No It is supported by SW implementation.

Input comparison/voting (1oo2, 2oo3 or better redun-

dancy)
A6.5 High (99%) No It is supported by SW implementation.

I/
O

u
n
it

s

Antivalent signal transmission A11.4 High (99%) No It is supported by SW implementation.

One-bit HW redundancy A7.1 Low (60%) No –

Multi-bit HW redundancy A7.2 Medium (90%) No –

Complete HW redundancy A7.3 High (99%) No –

Inspection using test patterns A7.4 High (99%) No It is supported by SW implementation.

Transmission redundancy A7.5 High (99%) No It is supported by SW implementation.

D
a
ta

P
a
th

s

Information redundancy A7.6 High (99%) Yes It is supported when the multi-core device is reset.

Over-voltage protection with safety shut-off A8.1 Low (60%) No An external power supply supervisor is required.

Voltage control secondary voltages A8.2 High (99%) No –

P
o
w

e
r

S
u
p
p
ly

Power down with safety shutdown A8.3 High (99%) No –

Watchdog with separate time-base without time-

window
A9.1 Low (60%) No –
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Watchdog with separate time-base and time-window A9.2 Medium (90%) No

The device provides three integrated SW watchdog

timers (two CPU watchdog timers and a system

watchdog timer). These watchdogs reset the CPUx

or the entire system when they are enabled and the

timer expires. One or more external watchdogs are

required.

Logical monitoring of program sequence A9.3 Medium (90%) No –

Temporal and logical monitoring A9.4 High (99%) No It is supported by an external watchdog.P
ro

g
ra

m
S
e
q
u
e
n
c
e

M
o
n
it

o
ri

n
g

Temporal monitoring with on-line check A9.5 Medium (90%) No It is supported by an external watchdog.

Watchdog with separate time-base without time-

window
A9.1 Low (60%) No –

Watchdog with separate time-base and time-window A9.2 Medium (90%) No

The device provides three integrated SW watchdog

timers (two CPU watchdog timers and a system

watchdog timer). These watchdogs reset the CPUx

or the entire system when they are enabled and the

timer expires. One or more external watchdogs are

required.

Logical monitoring of program sequence A9.3 High (99%) No –

Temporal and logical monitoring A9.4 High (99%) No It is supported by an external watchdog.

C
lo

c
k

Temporal monitoring with on-line check A9.5 Medium (90%) No It is supported by an external watchdog.

Table 7.4: IEC 61508 compliant measures and diagnostic techniques for random failures.1 (Source Tables A.2 to A.14 of IEC 61508-2 [IEC10b])

1Light-Gray: Optional measures and diagnostic techniques. Black-Gray: Recommended measures and diagnostic techniques.
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Measures and Diagnostic Techniques
See IEC

61508-7
SIL1 SIL2 SIL3 SIL4

Supported by the

Zynq-7000 device
Argumentation

Program sequence monitoring A9 HR Low HR Low HR Medium HR High No –

Failure detection by on-line monitoring A1.1 R Low R Low R Medium R High No –

Test by redundant HW A2.1 R Low R Low R Medium R High No –

Standard test access port and boundary-

scan architecture
A2.3 R Low R Low R Medium R High No

Might be applied to the Zynq-7000 device if

it has been designed following the design for

test approach.

Code protection A6.2 R Low R Low R Medium R High No –F
a
il

u
re

s
c
a
u
se

d
b
y

H
W

d
e
si

g
n

Diverse HW B1.4 – Low – Low R Medium R High No –

F
a
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u
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s
c
a
u
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d
b
y
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n
v
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Measure against voltage breakdown, varia-

tions and over voltage
A8 M Low M Medium M Medium M High No

The Zynq-7000 device supports an internal

voltage parameter supervisor. There are re-

quired two external power supply supervi-

sors.

Separation of electrical energy lines from in-

formation lines
A11.1 M M M M Yes –

Increase of interference immunity A11.3 M Low M Low M Medium M High No
SEM core IP can be used for protecting the

device against SEUs.

Measures against physical environment

(temperature, humidity, vibration and dust)
A14 M Low M High M High M High No

The Zynq-7000 device supports an internal

temperature monitor with alarm.

Program sequence monitoring A9 HR Low HR Low HR Medium M High No
External watchdog timers are required, one

for the PS and another for the PL.

Measures against temperature increase A10 HR Low HR Low HR Medium M High Yes

The Zynq-7000 device provides an internal

temperature alarm that reaches a safe state

until the temperature reaches a normal tem-

perature value range.

Spatial separation of multiple lines A11.2 HR Low HR Low HR Medium M High No –

Idle current principle A1.5 R R R R No
It could be supported if an external relay is

used.

Measure to detect breaks and shorts in sig-

nal lines
– R R R R No

It could be implemented by additional HW

and/or SW.

Failure detection by on-line monitoring A1.1 R Low R Low R Medium R High No It could be implemented by additional HW.

Test by redundant HW A2.1 R Low R Low R Medium R High No It could be implemented.

Code protection A6.2 R Low R Low R Medium R High No See Tables A.2 and C.2 of IEC 61508-3.

Antivalent signal transmission A11.4 R Low R Low R Medium R High No –

Diverse HW B1.4 – Low – Low – Medium – High No
It could be supported if Annex E of IEC

61508-2 is accomplished.
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SW architecture

IEC 61508-3

Subsection

7.4.3

See tables A.2 and C.2 of IEC 61508-3 No –

Modification protection B4.8 M Low M Medium M High M High No
It should be implemented by the Zynq-7000

device.

Failure detection by online monitoring A1.1 R Low R Low R Medium R High No
It can be implemented in the Zynq-7000 de-

vice.

Input acknowledgement B4.9 R Low R Low R Medium R High No –

F
a
il

u
re

s
c
a
u
se

d
b
y

o
p

e
ra

ti
o
n
a
l

fa
il

u
re

s

Failure assertion programming C3.3 See tables A.2 and C.2 of IEC 61508-3 No –

Table 7.5: IEC 61508 compliant measures and diagnostic techniques for systematic failures.2 (Source Tables A.15 to A.18 of IEC 61508-2 [IEC10b])

2Per each set of measures and diagnostic techniques, at least one of the techniques in the gray shaded group and at least of the techniques of the black gray shaded
group is required.
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7.2.4 Mixed-Criticality Networks – Linking Analysis

This subsection provides a brief representative example of two linking analyses between

the MSC presented in Section 5.4, a black channel network and a white channel network.

The black channel approach is based on an EtherCAT network, where on top of it, a

SCL is implemented. In relation to the white channel approach, it is based on a TTE

network which has been developed following the development process defined in the IEC

61508 safety standard.

7.2.4.1 EtherCAT – Linking analysis

EtherCAT is a high-performance, low-cost, easy to use industrial Ethernet technology

with a flexible topology. It was introduced in 2003 and has been an international standard

since 2007. Its key functional principle lies in how its nodes process Ethernet frames.

Each node reads its corresponding data and writes the data back to the frame, while

the frame is moving downstream. This leads to improved bandwidth utilisation (one

frame per cycle is often sufficient for communication) while also eliminating the need

for switches or hubs. The host microprocessors in the slave devices are not involved in

the processing of the EtherCAT data transfer, thus achieving short cycle times and high

performance.

Custom or commercial SCLs can be implemented on top of an EtherCAT network to

provide safety-related functionality to the black channel network. The SCLs shall be

compliant with a safety standard (e.g., IEC 61508, IEC 61784). For instance, Functional

Safety over EtherCAT (FSoE) [Eth11] is a commercial certified protocol that fulfils the

requirements for SIL3 systems, and it is suitable for both centralised and decentralised

control systems. FSoE defines a safety single-channel communication layer (SCL) for

transferring messages of different criticality. The transport medium (EtherCAT) is

referred to as a black channel network, which is not included in safety considerations.

It is assumed that the SCL (custom or commercial) on top of EtherCAT network is

applicable to fail-safe systems and that it follows an IEC 61508 compliant development

process with a residual error rate probability. For example, the FSoE is developed with

a residual error rate lower than 10−9/h.

According to the IEC 615784-3, a safety network shall operate according to the idle

current principle, thus guaranteeing that the time intervals of two consecutive message

receptions do not exceed a predefined time window. To that end, the SCL diagnoses the

EtherCAT black channel network by separate watchdog timers to detect delays on the

communication paths, detecting whether an EtherCAT frame arrives within the specific
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time and when not. The parametrization and documentation of diagnosis mechanisms

must be provided by the system integrator.

The SCL includes the measures defined in Section 5.4 for controlling the common errors

that can jeopardise the communication among safety and non safety-related components

of the network. The communication errors to consider by a safety network are presented

below. For more information see Section 5.3 of IEC 61784-3 [IEC10g]).

− Corruption of the messages due to errors on the transmission lines or interferences

between the messages

− Unintended repetitions of the messages due to an error, fault or interference.

− Incorrect sequence of messages due to an error, fault or interference.

− Loss of the reception of a message or missing acknowledgement due to an error,

fault or interference.

− Unacceptable delay of the messages beyond their permitted arrival time window.

− Insertion of messages in the communication medium with an unexpected or

unknown source.

− Masquerade errors where a message is inserted from an apparently valid safety

source into a safety-related source, but the source is not a safety source; it masks

its source.

− Addressing errors where a safety-related message is sent to a wrong safety receiver.

Table 7.6 shows the measures and diagnostic techniques implemented by the SCL to

cover the communication errors presented in the previous paragraph. In the case that

a communication error is detected, the SCL on top of an EtherCAT network provides

safe state mechanisms to react to the error. For instance, the erroneous communication

system is reset.

The reaction time of the SCL depends on the arriving time of the order from the

master node (calculated) plus the order’s propagation time required to reach the upper

communication layer. The processing time of the application on top of the slave depends

on the application itself. Therefore, it is out of the scope of this paper. In the case of the

SCL on top of a black channel network, its deterministic response time is determined,

among other things, by the network topology.

The custom or commercial SCL provides non interference of non safety-related communi-

cations, ensuring temporal and spatial independences. These independences are provided
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Measures

Sequence

Number

Watchdog

Timer
Connection

ID
CRC

calculation

E
r
r
o
r
s

Unintended repetition X X

Loss X X X

Insertion X X

Incorrect sequence X X

Corruption X

Unacceptable delay X

Masquerade X X

Repeating memory errors in switches X X

Incorrect forwarding between segments X

Table 7.6: SCL – Communication errors vs Safety measures. (Source [Eth11])

using detection and correction techniques explained before. In the case of temporal

independence, Time Division Multiple Access (TDMA) based protocols are frequently

used in industrial networks. Although the average performance is not as good as for

randomly accessed networks, it is one way to assure the temporal independence. Data

networks such as Avionics Full-Duplex Switched Ethernet (AFDX) with rate constraints

can also be implemented for the same purpose. The SCL supports the time multiplexed

concept, where the access to the medium is given via a token. The token is represented

by the communication frame where each network slave writes and reads the transmitted

information. On the other hand, spatial independence is supported by the SCL through

isolation of the application from the HW by means of a HW network controller. The HW

only passes the information to the application layer when the received information is

marked as correct. The spatial independence between black channel slaves is inherent to

the network definition and the communication generation. The HW network controller

provides random and systematic failure diagnosis in order to detect failures during design

time and execution time (see IEC 61508-2 and IEC 61508-3 [IEC10b, IEC10c]).

As defined in Section 5.4, the components of a safety network shall be tested together to

obtain an exhaustive diagnosis scenario. If diagnosis in conjunction is not applicable, the

components of the network shall be diagnosed separately. In that case, the SCL on top

of a black channel network shall be tested using the extensive testing approach where

the worst case scenarios shall be considered. The worst case scenarios shall be defined by

the network manufacturer or the FSCP.

Conformance testing is mandatory to verify that the device complies with the communi-

cation requirements of IEC 61508 [IEC10b] and IEC 61784-3 [IEC10g]. The tests are

required to diagnose the communication devices that shall work together with other

communicating devices provided by other manufacturers, where an integration test is
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not possible. The conformance testing is also required for the black channel approach

and the SCL. For instance, the EtherCAT conformance test tools [Eth12].

It is assumed that the SCL is developed in accordance with a safety standard. Therefore,

the configuration of the SCL on top of the EtherCAT network is performed by means of

qualified tools to avoid configuration errors that could lead to errors of the communication

network.

The EtherCAT network is used as a black channel network, therefore, no FMEA /

FMECA / FMEDA analyses must be provided. Instead, the SCL should provide FMEA

/ FMECA / FMEDA analyses to assess its random and systematic failures and evince

that it is safe enough for its intended use.

7.2.4.2 TTEthernet – Linking analysis

TTE is an extension of the traditional Ethernet standard, with additional services that

guarantee reliable and deterministic delivery of time-critical messages. TTE offers the

TT, RC and BE classes of traffic [SD11]. The TT traffic class serves for deterministic

communication, RC traffic is subject to traffic policing by TTE switches and BE traffic

does not support timing guarantees and priorities. A TTE network is a white channel

network composed of HW and SW. It has been developed according to the IEC 61508

safety standard, and it applies to fail-safe and fail-operational systems. This network can

be seen as an implementation of the TT Architecture (TTA). The prime concept of TTA

is the common perception of the time in the devices that form the distributed system.

According to the IEC 61784-3, a network in safety-related applications shall operate

according to the idle current principle. This principle claims that a safety network must

guarantee that the time intervals of two consecutive message receptions do not exceed a

predefined time value. To that end, redundancy mechanisms (such as the information or

transmission redundancy) or the majority voting mechanism may be implemented. For

instance, an end-system can be configured such that it delivers all redundant messages

to the host CPU. The host CPU will execute a SW layer, and it will perform different

voting mechanisms.

In relation to communication errors, a TTE network considers the communication errors

stated in Section 5.4 of IEC 61784-3 [IEC10g], Table A.1 of IEC 61508-2 Annex A

[IEC10b] and a set of well-known failure modes, including the fail-silence, fail-omission,

fail-inconsistent and fail-arbitrary failure modes [Int11]. The communication errors to

consider are defined in the previous linking analysis for EtherCAT black channel network.
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The global time-stamping service simplifies the process of reconstructing a distributed

event chain. TTE supports periodic diagnostic information as well as inner self-checking

mechanisms. The period of the status and diagnosis data can be scheduled with the other

TT messages or the ET traffic (RC or BE traffic). TTE can be queried for state and

diagnostic information. For instance, it provides the diagnostic parameters associated

with the TTE network, the diagnostic values of the protocol state (e.g., the state of the

protocol state machine of the TTE network) and the diagnostic information about the

clock synchronisation mechanism (e.g., the largest correction value ever applied by the

clock synchronisation), the membership (e.g., number of integration frames received in

the most recent acceptance window) and the current sync priority of the Synchronization

Master (SM).

On the other hand, a TTE communication network provides error detection and reaction

mechanisms. It allows the development of critical systems parts according to fail-safe

or fail-operational application requirements. In fail-safe systems, it must detect and

react (e.g., reach a safe state) to errors of the network. For instance, the TTE networks

support fault hypotheses with a single-failure, dual-failure and arbitrary disturbances

(transient disturbances). An even higher level of fault-tolerance can be achieved by a SoS

approach that supports system-level fault-tolerance. The overall failure or power down

of a TTE based system can be mitigated by another redundant TTE based system.

For safety-critical applications that require deterministic communication, the TT frames

are used. TTE components can send TT frames, which are received by any Ethernet

component. If necessary, those frames can implement higher priorities than the RC and

BE traffic classes. Triggered frames are sent and routed at defined points in time, which

gives to TTE its highly deterministic timing properties and minimal jitter. The path

and timing of TT frames are determined by the schedules configured in the senders and

the switches.

Due to the statically configured schedule, the sending instants of messages are triggered

by a globally synchronised clock and each TT frame is received with a defined latency and

a minimal (bounded) jitter. There is no external (application) control over the protocol

progression. The global time base and common knowledge about the action times reside

inside the protocol controllers. The application CPU can not modify them. This concept

guarantees predictable reaction and response times. In relation to the non interference

of/from safety-related communication, TTE provides temporal independence by means

of several traffic classes in parallel: TT, RC and BE. TT traffic dispatches messages

according to a predefined communication schedule. Since the transmission delay of any

frame can be bounded, TT operations constitute a TDMA communication network that

guarantees temporal independence. Additionally, TTE networking components provide
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spatial independence of messages in switches and end systems at all times. In end-systems,

the network controller is implemented in the HW. Any fault in the communication

system is thus spatially guarded against the application system.

When a TTE device supports multiple traffic classes with different time criticality,

the designer of the respective TTE device should ensure that appropriate memory

protection mechanisms are in place. In particular, it should ensure that the TTE devices

independently treats the frames belonging to different traffic classes. For instance, TTE

devices can use physically separated memories or statically reserved memory space in a

single physical memory. Parts of TTE networks are tested using the extensive testing

approach, including the worst case scenarios (e.g., delays, queue length and shuffle delays).

This method defines that the components of a safety network shall be tested together to

obtain an exhaustive diagnosis scenario. If it is not applicable, it determines that the

parts of the safety network could be diagnosed separately. In relation to the configuration

of a TTE network, its overall configuration work-flow relies on a set of tools, which are

shown in Figure 7.15 and described in the next paragraphs [TTT15, Cha13].

Network 

description 

(XML)

TTE-Plan 

(Schedule network)

TTE-Load

(Load binary to the 

device)

TTE-Build

(Generate 

device file)

Network configuration 

(XML)

Device configuration

(XML and binaries)

Device Target 

mapping

Device Specifications 

(XML)

Figure 7.15: TTE configuration toolset. (Source [TTT15])

− TTE-Plan [TTT15] is a scheduling and network analysis tool that performs check-

ing and validation of the Network Description (ND). It analyses the schedulability

of Critical Traffic (CT) and outputs a schedule, provided that the ND is valid, in

the form of corresponding network configuration files. Additionally, a checking

report is output by TTE-Plan.

The resulting TTE Network Configuration database (NCDB) consist of a network

configuration file (e.g., devices and ports mapping, synchronisation parameters),

device specification file (e.g., device type information, traffic routeing information)

and a device target mapping that maps the devices to HW.
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− TTE-Build [TTT15] is used to handle the TTE NCDB with a Graphical User

Interface (GUI). It allows navigating through the NCDB in an Eclipse GUI,

displaying and editing individual Virtual Links (VLs) going through the network,

manually changing the timing, creating new TT/RC - VLs and adjusting timing

parameters of TT/RC VLs.

− The ARINC 615A Data Loader [TTT15] comes with the following key features:

615A-v2&3 Data Loading, command line operation, A615 FIND [TTT15], TFTP C

API [TTT15] with support for client and server services, ARINC-615A C API that

supports high-level data load operations and support for multiple, simultaneous

load operations.

− The diagnosis tool TTE-View is [TTT15] based on a standard PC and the open

source WireShark network protocol analyser. It allows capturing traffic live for

offline analysis, to monitor multiple TTE switches (channels or hops), to dissect

frame content according to the TTE protocol specification and to inspect TTE

traffic and protocols other than TTE.

FMEA / FMECA / FMEDA analyses are required by white channel networks in order

to evidence that the relevant failure modes, causes and effects, diagnosis techniques and

reaction techniques are taken into consideration. The TTE network manufacturer shall

provide these analyses.

7.3 System of System, Product Line and Modularity

A SoS is the integration of independently useful systems into a larger system that delivers

unique capabilities [PHZ+14]. On the other hand, a product line is set of systems that

share and manage a common set of features satisfying the needs of particular market areas.

Those systems may be developed from a common set of reusable core. The concepts

from SoS engineering can be helpful in Product Line Engineering. As an example, we

can consider the scenario shown in Figure 7.16 where a wind park system that kept

at different levels of detail (granularity) is presented. The granularity levels state the

abstraction levels of a wind turbine system. I.e., SoS, system, subsystem and component.

Those levels of abstraction should follow a proper development process to be considered

compliant items and be reused. For instance, the development process presented in

Section 4.1 for developing an IEC 61508 compliant items may be applied to that end.

Vertically (see Figure 7.16), we can distinguish a SoS (i.e., a wind park) that is composed

of different systems (e.g., wind turbines, wind park control centre systems). These systems
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Figure 7.16: Dimensions of abstraction: Development Viewpoint and Granularity
Level.

consist of subsystems which can be in turn systems on their right. This hierarchical

structure can occur recursively at many levels of abstraction. For instance, a wind

turbine system can be composed of HMI and communication, supervision and control,

and protection subsystems. In this case study, the supervision and the control of the wind

turbines are provided by a commercial real-time platform which monitors the external

sensors and acts on the external actuators (see Figure 7.1). Instead, the protection

subsystem consists of a heterogeneous platform component that executes the safety-

related functionalities, assuring that the design limits of the wind turbine system are not

exceeded and controlling the safety chain. These components may be connected to each

other, within the subsystems and systems. For instance, the protection subsystem may

be composed of a COTS multi-core device, a NoC communication network, a hypervisor

and a wide variety of SW with different safety levels (e.g., SIL1 to 4 according to the

IEC 61508 safety standard).

When dealing with SoS engineering, we can consider each system to be potentially a

product of a product line. The motivation to that (in a SoS context) can come from the

following causes. First, in many cases, a supplier of systems (e.g., a manufacturer of

the protection system of a wind turbine) may have families of similar systems. Product

line techniques promise considerable benefits in handling such families of products in

a systematic fashion. Therefore, product lines can be seen as a mechanism to develop

components, subsystems and systems in a SoS approach. Second, from the perspective

of an end user of systems, which manages a SoS, it can be beneficial to handle groups

of systems together rather than addressing them independently. For instance, an end

user can use modelling to represent the variability of the protection systems which are

executed in a wind park.
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Variability is the quality, state or degree of a system to be changeable. For example, the

product samples of a product line can vary depending on the safety standard (i.e., IEC

61508, ISO 26262, IEC 50126) and the level of criticality (i.e., SIL1 to 4 according to

the IEC 61508, ASIL A to D according to ISO 26262). Variability and safety-related

arguments of those systems can be represented using the GSN, CAE and SACM safety

case notation languages (see Section 3.2). For instance, the MSCs for IEC 61508 compliant

components, including a hypervisor, safety partition, COTS multi-core device and mixed-

criticality network are defined in Chapter 5 using the CAE notation. These MSCs define

the basic safety requirements that shall be met by those components to be IEC 61508

compliant items.

Furthermore, this dissertation presents the linking analyses of a commercial/custom

hypervisor, safety-partition, COTS multi-core device and mixed-criticality network which

are generated taken the generic MSCs as a basis. These MSCs and the linking analyses

defined in this dissertation have been ported to the GSN language due to the limitations

of the CAE notation language for representing complex safety cases and the facilities

and extensions provided by GSN (see Subsection 3.2.1). For instance, the modularity

extension supports the development of compositional safety cases, reducing the effort to

the reassessment of a safety case after a modification of the system.

The MSCs and linking analyses presented in this thesis provide the safety-related argu-

mentation for the design branch of an IEC 61508 compliant product sample development

process. These safety arguments can be taken as the basis to extend the argumentation

scheme up to a realistic wind turbine product line including further components and

considering different levels of criticality and safety-related standards.

Based on the representation scheme exposed in the previous paragraphs and the use

case presented at the beginning of this chapter, the following four abstraction layers are

identified (see Figure 7.17).

a) The generic safety-related arguments for a safety standard (e.g.,IEC 61508) com-

pliant components. E.g., a hypervisor, a safety partition, a COTS multi-core

device.

b) The safety-related arguments for application independent safety standard compliant

commercial or custom components. E.g., a Zynq-7000 multi-core device, the

XtratuM hypervisor.

c) The safety arguments for a specific product sample. I.e., a wind turbine product

sample based on the DREAMS architecture style.

d) The safety-related arguments for a product line which should be common to all

possible product samples of a product line. I.e., a wind turbine product line.
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Figure 7.17: Product line development abstraction layers.

GSN also provides the contract element for specifying the interrelationships between the

safety arguments of each abstraction layer, linking the goals to be supported with the

supporting goals and minimising the impact of changes between interrelated layers. In

this particular case, the contract element details how a commercial/custom component

fulfils the safety-related requirements defined in the generic safety argumentation for

heterogeneous safety architectures (see Figure 7.18).
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Figure 7.18: Linkage between the abstraction layers and the contract.

A product line representation can be automated for achieving an optimum product

configuration, depending on the safety requirements for a product sample. Automation

can be accomplished using tools, which also automate the generation of the safety reports.

In addition, this kind of tools can complete the information of the product sample

safety contract, linking the requirements of the product sample to the safety-related

requirements of the optimum application independent components (see Figure 7.19). For

instance, the Design Space Exploration (DSE) toolset [For16] resolves variability models,

selecting alternative candidate deployments of the logical components on the HW target

and automatically assembles the safety argumentation models per each product sample.

The outputs of DSE toolset include a partial argumentation model that is mapped to a

set of evidence documents which are semi-automatically generated.
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Figure 7.19: Automatizing the deployment of a product line.

Continuing with representation style presented in the previous paragraphs, an extended

version based on a wind turbine product line with a basis on the DREAMS architecture

style is generated. This product line architecture exposes the safety arguments related

to the wind turbine product line, identifying the way in which a wind-turbine product

sample meets those requirements and presenting the linkage between the product sample

and the commercial or custom components that make it up. Figure 7.20 represents the
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Figure 7.20: Wind Turbine Product Line Safety Argumentation – Example.

wind turbine product line architecture where a safety contract regarding the qualified

tools selects the best combination of components for a particular wind turbine product

sample. For instance, as shown in the same figure, the wind turbine product sample can

choose from amongst different multi-core processors (Zynq-7000, Hercules), hypervisors

(XtratuM, PikeOS) and mixed-criticality networks (TTEthernet, Safety over EtherCAT).

In this case, this product sample selects the combination formed by a Zynq-7000 multi-

core device, a XtratuM hypervisor, a safety protection partition and a TTEthernet

mixed-criticality network as the optimum combination. It can be highlighted that the

safety over EtherCAT network shall be used in all the product sample developments

since it is defined as a critical requirement. Therefore, this network is directly selected

from the product line abstraction layer (see Figure 7.20).
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As defined in the previous paragraphs, this representation hierarchy can be extended

for developing product lines of different application domains (e.g., railway, automotive)

as it enables reusing the safety argumentation blocks of the commercial and custom

components. Each domain specific safety standard defines additional requirements and

measures and diagnostic techniques that shall be met to accomplish safety certification.

In addition, this representation hierarchy can be extended to develop product samples

with different levels of criticality (e.g., SIL1 to 4 according to the IEC 61508 safety

standard). Figure 7.21 presents a partial representation of the safety argumentation for

COTS multi-core devices that support the variations from safety standards and safety

requirements.
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Figure 7.21: Variation points in a Wind Turbine product line – Example.

7.4 Cross-Domain Patterns

This section presents the implementation and evaluation results of the cross-domain

patterns for multi-core processors, namely Shared memory diagnosis pattern (SMDP)

and Coherency management unit diagnosis pattern (CMUDP). All other patterns have

been implemented and tested by third party entities and therefore, their implementation

is out of the scope of this dissertation.

7.4.1 Shared Memory Diagnosis Pattern (SMDP)

The subsection presents the integration of the solutions provided by the shared memory

diagnostic pattern into a Zynq-7000 zc706 multi-core device. More specifically, this

subsection presents the application of the sub-scenarios 1.1 and 1.2 introduced by this

cross-domain pattern within the PS, whereas the sub-scenarios 1.3 and 2.x are not
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implemented due to time limitations. Consequently, the PL of the Zynq-7000 device is

not used in the implementation process.

Figure 7.22 shows the interconnection scheme provided by the Zynq-7000 multi-core

device. This interconnection scheme enables accessing the memories through different

routes. For instance, the DDR memory can be accessed by the CPUs through the SCU

and the shared memory (red arrows). Instead, the OCM memory can be accessed through

the SCU without going through the shared memory (green arrow). These two memories

are used by this cross-domain pattern for implementing the shared memory diagnosis.

The OCM memory is used for storing the values of the golden CRCs calculated by the

CPUs (CPU0 and CPU1). Instead, the DDR memory is used for storing the data of the

CPUs and reading them for comparing against the golden CRC.

On the other hand, for test purposes only, this implementation scenario supports a SW

fault injector that causes periodical failures in the execution of this diagnostic pattern.

The injector inserts modified data to the DDR memory region of CPU1 before calculating

the CRCs. Consequently, the comparison of the CRCs results in an inconsistency, which

stops the execution of the CPU1. This fault injection scheme can also be commanded

through a soft-core processor as the memory B can be accessed through the PL.

The implementation of scenarios 1.1 and 1.2 requires SW tools such as the Vivado Design

Suite [XIL16a] and the SW Development Kit (SDK) [XIL16b]. The main reason for

that is that the Zynq-7000 zc706 device is a property of Xilinx Inc., and therefore all

application SW generated for this device shall be compiled and programmed through

tools belonging to Xilinx. Vivado SW is used for defining the Zynq device’s system

architecture, whereas the SDK tool is used for implementing the application code in C for

the CPUs. The main difference between the scenarios 1.1 and 1.2 lies in the functionality

executed by the CPUs. Sub-scenario 1.1 executes the same functionality in both CPUs,

while the CPUs run different functionalities in sub-scenario 1.2.

Tables 7.7 and 7.8 present the execution states of the scenarios 1.1 and 1.2 defined in the

SMDP. The right column defines the execution sequence followed by CPU0 while the

left column defines the sequence of CPU1.

CPU0 execution CPU1 execution

CPU0 - Cycle 0 CPU1 - Cycle 0

Disable cache on the OCM Disable cache on the OCM

Disable cache on the FSBL Disable cache on the FSBL

Initialize the SCU Interrupt Distributed (ICD) Initialize the SCU Interrupt Distributed (ICD)

CPU0 - writing start address for CPU0 CPU1 - writing start address for CPU1

Golden CRC calculated and stored in the memory Golden CRC calculated and stored in the memory

Write data to the DDR Write data to the DDR

Read from the DDR Read from the DDR
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Comparing... Comparing...

Successful comparison! Successful comparison!

Writing new golden CRC in the memory Writing new golden CRC in the memory

CPU0 - Cycle 1 CPU1 - Cycle 1

Disable cache on OCM Disable cache on OCM

Disable cache on FSBL Disable cache on FSBL

Initialize the SCU Interrupt Distributed (ICD) Initialize the SCU Interrupt Distributed (ICD)

CPU0 - writing start address for CPU0 CPU1 - writing start address for CPU1

Golden CRC calculated and stored in the memory Golden CRC calculated and stored in the memory

Write data to the DDR Write data in the DDR

CPU0 modifying the data of CPU1 and writing it ...

in the DDR...

Read from the DDR Read from the DDR

Comparing... Comparing...

Successful comparison!!! Unsuccessful comparison!

... Activating a safe state. Stopping CPU1...

CPU0 - Cycle 2

Disable cache on OCM

Disable cache on FSBL

Continue...

Table 7.7: SMDP – Implementation results of Scenario 1.1.

CPU0 execution CPU1 execution

CPU0 - Cycle 0 CPU1 - Cycle 0

Disable cache on the OCM Disable cache on the OCM

Disable cache on the FSBL Disable cache on the FSBL

Initialize the SCU Interrupt Distributed (ICD) Initialize the SCU Interrupt Distributed (ICD)

CPU0 - writing start address for CPU0 CPU1 - writing start address for CPU1

Golden CRC calculated and stored in the memory Golden CRC calculated and stored in the memory

Write data to the DDR Write data to the DDR

CPU0 modifying the data of CPU1 and writing it ...

in the DDR...

Read from the DDR Read from the DDR

Comparing... Comparing...

Successful comparison! Unsuccessful comparison!!!

... Activating safe state. Stopping CPU1...

CPU0 - Cycle 1

Disable cache on OCM

Disable cache on FSBL

Continue...

Table 7.8: SMDP – Implementation results of Scenario 1.2.

These implementations are supported by the dispersion diagrams shown in Figures

7.23 and 7.24. A dispersion diagram represents the measures of data variability using

Cartesian coordinates. These diagrams use two axes that define the relationship between

two variable values. The horizontal axis represents the execution and failure detection

times of the SMDP while the vertical axis represents the probability that the execution

and failure detection happen.
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Figure 7.22: Zynq-7000 ZC706 – OCM and DDR interconnect. (Source [XIL14c])



7.4. Cross-Domain Patterns 133

The following dispersion diagrams are generated as a result of one million executions of

the SMDP where the same amount of failures is injected in each execution. The failures

are injected only once per cycle to the data of the CPU1 (i.e., 50ms). It is considered

that random failures that may occur in an industrial environment can also be detected

by this diagnostic pattern. However, the assessment of this assumption is out of the

scope of this thesis and therefore, it should be evaluated in future trials.

The execution time diagram shown in Figure 7.23 presents a bimodal (double-peak)

distribution with two local maximums at 0,0892ms and 0,09015ms. A bimodal distribution

is a continuous distribution with two or more peaks. This dispersion diagrams also

presents a bounded execution of the shared memory diagnostic pattern with a minimum

execution time value of 0,0887ms and a maximum value of 0,0911ms.

Figure 7.23: SMDP – Execution Time Dispersion.

Instead, the failure detection diagram shown in Figure 7.24 follows a normal distribution,

also known as Gaussian bell distribution. This distribution is the most commonly

observed probability distribution. The bell curve shown in this figure represents the

failure detection time distribution of the shared memory diagnostic pattern that is

bounded between 0,003477ms and 0,003877ms with the highest peak at 0,03711ms.

Figure 7.24: SMDP – Failure Detection Time Dispersion.
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7.4.2 Coherency Management Unit Diagnosis Pattern (CMUDP)

This subsection presents the implementation and the results of the solutions proposed in

Subsection 6.2.2 for detecting and controlling the failures in the coherency management

units. This implementation is based on the Zynq-7000 zc706 multi-core device that

implements a SCU for managing the coherency between the processing cores and the

memories.

The first solution defined in this pattern proposes to actively diagnose the configuration

of the coherency management unit to detect configuration errors that can disrupt

the behaviour of the coherency unit. Table 7.9 shows the registers associated with

the coherency management unit of the Zynq-7000 zc706 device. These registers are

periodically checked (e.g., each 50ms) and compared against the values expected (pre-

defined values at design time) to detect whether the configuration of the coherency

management unit changes. If the configuration registers coincide, the device will continue

working. Otherwise, a fault is asserted and the device should reach a safe state.

Control register bit assignment

Bit Name Description

[2] SCU RAMs

parity

1 = Parity on.

0 = Parity off.

Configuration register bit assignment

Bit Name Description

[7:4] CPUs SMP Defines the processor mode:

0: Asymmetric MultiProcessing (AMP) mode not tak-

ing part in the coherency or not present.

1: SMP mode taking part in the coherency.

[7] CPU3

[6] CPU2

[5] CPU1

[4] CP0

SCU CPU power status register bit assignment

Bit Name Description

[25:24] CPU status Power status of the processor

b00: Normal mode.

b01: Reserved.

b10: the processor is about to enter (or is in) dormant

mode. No coherency request is sent to the processor.

b11: the processor is about to enter (or is in) powered-

off mode, or is non-present. No coherency request is

sent to the processor.

AXI user attributes encodings

Bit Name Description

[0] ARUSERMx Shared bit

1: Coherent request.

0: Non-coherent request.

[1] AWUSERMx Shared bit

1: Coherent request.

0: Non-coherent request.

Table 7.9: Zynq-7000 zc706 SCU’s coherency configuration registers. (Source [XIL14c])
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The results of executing this solution are presented in the next lines where all registers

related to the coherency management unit are read and compared against the expected

values. For demonstration purposes only, the configuration register of the SCU CPU power

status is altered to check the effectiveness of this diagnostic technique. Consequently,

whenever a modified register value is detected, the system should be restarted and the

CMUDP should be re-executed.

#### Checking configuration errors

#### Reading registers of SCU Controller....

10001000001101111000000001011010

#### Checking if read values match with the expected configuration values

#### Successful Comparison!

#### Summary of SCU controller’s registers:

SMP mode activated for CPU0

AMP mode activated for CPU1

AMP mode activated for CPU2

AMP mode activated for CPU3

#### Reading registers of the SCU CPU power status....

00000000000000001101001000011101

#### Checking if read values match with the expected configuration values

#### Unsatisfactory Comparison!

#### Restarting...

This diagnostic pattern implements further measures and diagnostic techniques to diag-

nose the coherency control unit of the Zynq-7000 device. These measures and diagnostic

techniques include CRC with comparison, ECC and parity bit check techniques which

aim to detect random failures in the coherency control unit. The CRC with comparison

technique is defined in Subsection 7.4.1. On the other hand, the DDR, L1 and L2 caches

and the OCM memory and the SCU of the Zynq-7000 device support the parity bit check

technique [XIL14c]. In the case of the DDR memory, the parity bit can be enabled or

disabled in the configuration registers (register DRAM Controller (DDRC) ECC scrub

[4:0] with relative resolution address 0x000000F4 and absolute address 0xF80060F4, bit

[2:0] in b010 ). In the same vein, the parity bit of the L2 cache can be enabled in the

configuration registers. The parity bit of the L2 cache is by default disabled.

The steps followed by diagnose the parity bit errors in the L2 cache are the following:

i) Disable L2 cache

ii) Disable the parity

iii) Enable L2 cache

iv) Write data

v) Disable L2 cache
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vi) Enable parity

vii) Enable L2 cache

viii) Read data

The OCM memory supports both single and multiple bit parity bit errors. In the event

that a parity error is detected, an interrupt is asserted and the parity bit errors of the

OCM memory is returned. The steps followed to diagnose random faults using the parity

bit technique are the following:

i) Disable D cache of L1 and L2 cache memories.

ii) Disable I cache of L1 and L2 cache memories.

iii) Configure the OCM PARITY CTRL register to enable the AXI read and the use

of interrupts for reporting the parity error to the CPU.

iv) Write data to the OCM to generate a parity error.

v) Read data from the OCM.

The execution results of this pattern to check parity bit error in the OCM and L2 cache

memories are shown below, where an error is inserted for checking the application.

#### OCM parity error test

#### An exception processed

IRQ No.35 OCM interrupt processed

#### OCM parity error test is run successfully run

#### L2 cache parity error test

#### An exception processed

IRQ No.34 L2 cache interrupt processed

#### L2 cache parity error test is run successfully run

The Zynq-7000 device supports the ECC technique in half-bus (16bit) data width

configuration. The ECC provides single error correction and dual error detection. When

this technique is enabled, a write operation computes and stores the ECC code along

with the data. Then, the ECC code that is stored in the memory is compared against

the data that is read. To that end, all memory locations are written before being

read, thus avoiding reading ECC errors. The errors detected by ECC diagnosis can be

classified into correctable and uncorrectable errors. For correctable errors, there is no

error actively signalled via an interrupt or AXI response. Instead, for uncorrectable

errors, the controller returns a signal response back to the requesting AXI bus master.

In both cases, information regarding the errors (such as a column, row and bank error

address and error byte lane) is logged in the controller register space. In the case that
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the controller detects a correctable ECC error, it automatically corrects the error and

sends the right data to the bus master. Instead, when the driver (e.g., DDRC) detects

an uncorrectable ECC error, it returns a response signal to the bus master with the

uncorrectable data. In that case, if the shared memory is disabled, the signal response

is directly received by the CPU, causing a data abort. Otherwise, the ECC error is

reported to the CPU using an interrupt sourced in the shared memory.

This solution considers the four scenarios that depend on the ECC error detection

requirements (detection of correctable and uncorrectable errors) and the availability of

the shared cache memory (shared memory enable and disable). The steps followed for

executing this technique in the Zynq-7000 zc706 device include:

i) Disable the cache

ii) Read ECC registers

iii) Initialize data in the DDR memory

iv) Disable the ECC

v) Depending on the errors which are required to be detected, this pattern injects

uncorrectable or correctable errors in the DDR.

vi) Enable the ECC

vii) Read ECC resisters

viii) If the cache memory shall be implemented, enable the cache, set up an interrupt

for reporting the ECC errors to the CPU and read data from the DDR memory.

ix) If uncorrectable ECC errors are detected, an interrupt is generated by the cache

memory to report the ECC errors to the CPU.

x) Otherwise, the ECC error is directly transmitted to the CPU.

The results of the execution of the ECC diagnosis sequence presented before are the

following:

#### Disable L1 and L2 Cache

#### Read ECC registers

DDRC.CHE CORR ECC LOG REG OFFSET:00000000 (No Correctable Error)

DDRC.CHE UNCORR ECC LOG REG OFFSET:00000000 (No Uncorrectable Error)

DDRC.CHE ECC STATS REG OFFSET:00000000 (0 Correctable Error(s), 0 Uncorrectable Error(s))

#### Initialize Data on DDR3

00100000: 00000000

00100004: 00000000

00100008: 00000000

0010000C: 00000000



138 Chapter 7. Case Study – Wind Turbine

00100010: 00000000

00100014: 00000000

00100018: 00000000

0010001C: 00000000

#### Disable ECC

ADDR: 0x000000F4 W: 0x04

#### Insert Correctable Errors (1bit error) on DDR3

00100000: 00000001

00100004: 00000000

00100008: 00000000

0010000C: 00000000

00100010: 00000000

00100014: 00000000

00100018: 00000000

0010001C: 00000000

#### Enable ECC

ADDR: 0x000000F4 W:0x04, ADDR:0x000000C4 W:0x03, W:0x00

#### Read ECC registers

DDRC.CHE CORR ECC LOG REG OFFSET:00000000 (No Correctable Error)

DDRC.CHE UNCORR ECC LOG REG OFFSET:00000000 (No Uncorrectable Error)

DDRC.CHE ECC STATS REG OFFSET:00000000 (0 Correctable Error(s), 0 Uncorrectable Error(s))

#### Enable Cache

#### Enable D-Cache (L1 and L2)

#### Enable I-Cache (L1 and L2)

#### Set Up Interrupt

#### Read Data from DDR3 again

00100000: 00000000

#### Read ECC registers

DDRC.CHE CORR ECC LOG REG OFFSET:00000007 (Correctable Error Detected)

DDRC.CHE CORR ECC ADDR REG OFFSET:00040000 (Correctable Error: Bank=0x0, Row=0x40, Column=0x0)

DDRC.CHE UNCORR ECC LOG REG OFFSET:00000000 (No Uncorrectable Error)

DDRC.CHE ECC STATS REG OFFSET:00000100 (1 Correctable Error(s), 0 Uncorrectable Error(s))

Further considerations when using the coherency management unit include that it is

assumed that the components of the multi-core device are diagnosed in advance to detect

and control systematic failures and that the use of the shared memory is minimised to an

absolute minimum required for operating (fault avoidance). To that end, the SCU of the

Zynq-7000 zc706 device should be disabled (see configuration registers in [ARM11b]).

The following figures present the dispersion diagrams of the tests executed by the CMUDP.

These diagrams are generated as a result of one million executions of the pattern where

the same amount of failures are injected to the SCU configuration, L2 cache data, OCM

data and ECC (one failure per cycle). The horizontal axes of these dispersion diagrams

represent the time required for executing the tests of CMUDP, including the failures

detection times. The vertical axes define the probability that the failure detection

happens.
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It is assumed that this cross-domain pattern can be applied in an industrial environment

where failures may occur at a random time. The main reason for this assertion is that,

in a real scenario: (a) we do not need to inject faults and (b) the diagnostic pattern

will be periodically executed to detect the occurrence of faults. The assessment of this

cross-domain pattern in a realistic scenario is out of the scope of this dissertation, and

therefore, it should be evidenced in future trials.

Figure 7.25 shows the dispersion diagram of the SCU configuration test execution where

one failure (a modified configuration register) is injected in the configuration each cycle.

This diagram follows a normal dispersion bounded between 0,00466ms and 0,00526ms

with a maximum peak at 0,00484ms and a maximum execution time percentage of

13,32%.

Figure 7.25: CMUDP – SCU Configuration Test Dispersion.

On the other hand, Figure 7.26 shows the dispersion diagram of the L2 cache test execution

with fault injection (one failure per cycle). This diagram presents an approximation of

the normal distribution with a maximum peak at 97,9ms and media at 98,14ms. The

execution of the L2 cache test is bounded between 97,7ms and 98,56ms and reaches a

maximum execution time percentage of 36,07% at its highest peak.

Figure 7.26: CMUDP – L2 cache Test Dispersion.
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Figure 7.27 exhibit also a normal distribution dispersion where one failure is injected per

cycle. The failure injects modified data to the OCM memory. This dispersion shows the

highest peak at 0,2670ms with an execution percentage of 16,79%. The execution of the

OCM test is bounded between 0,261ms and 0,281ms with a media of 0,2707ms, which

comparing with values of the previous figure shows a more linear dispersion with lower

execution times.

Figure 7.27: Coherency Management Diagnostic Pattern – OCM Test Dispersion.

The ECC test execution dispersion diagram also shows a normal distribution with a

maximum peak at 0,0575ms and an execution percentage of 17.97% (see Figure 7.28).

This diagram presents a bounded dispersion between 0,0571ms and 0,0584ms and a

media of 0,0577ms.

Figure 7.28: Coherency Management Diagnostic Pattern – ECC Test Dispersion.

The dispersion diagrams presented in the previous figures follow a normal distribution

where each distribution has a maximum peak and bounded execution times. The sole

exception focuses on the execution time required by the L2 cache test which requires

higher execution time comparing with the rest of the tests and results in an increase

of the cycle execution time. Nevertheless, the execution cycle time of this diagnostic

pattern can be modified under demand depending on the requirements of the system

under test. For instance, this pattern is executed by the wind turbine use case each
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100ms, although it may be configured for being executed each 150ms, always considering

the minimum time that is required to run the diagnostic pattern (maximum execution

time).
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Chapter 8

Conclusions

This chapter reviews the work defined throughout this dissertation and identifies possible

future opportunities for research.

8.1 Review

This thesis provides reusable generic solutions to commonly occurring challenges in

today’s mixed-criticality systems. To that end, this dissertation defines a modular safety

development process based on the IEC 61508 compliant development process and the

modularity methodology. Modularity enables limiting the impact of changes to reduced

areas of the safety case, allowing the reusability of those areas. Based on the modularity

method, this thesis introduces the MSCs for an IEC 61508 compliant generic hypervisor,

partition, COTS multi-core device and mixed-criticality network. These modular safety

concepts can be used as the reference documents for developing and certifying mixed-

criticality systems based on the IEC 61508 safety standard. In addition, this dissertation

provides the analyses of a selected set of commercial components (including the XtratuM

hypervisor, the Zynq-7000 multi-core device, the Safety over EtherCAT and Time-

Triggered Ethernet networks) and exposes the way in which those components fulfil the

safety-related arguments defined in the MSCs.

As a result of the definition of the MSCs and the analysis of the IEC 61508 safety standard,

reusable generic cross-domain patterns to solve the common certification challenges

in today’s mixed-criticality systems are defined. These patterns enable reducing the

engineering and certification cost and provide benefits regarding scalability. The patterns

exposed in this thesis can be taken as the basis for developing other cross-domain patterns

that will solve future challenges in mixed-criticality systems and update today’s safety
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related standards such as the IEC 61508 safety standard for E/E/PE functional safety

systems.

Finally, this thesis presents the theoretical integration of the DREAMS development

process, the MSCs and the cross-domain patterns on a simplified wind-turbine case

study. The development of the wind turbine system has been analysed from a product

line perspective, identifying the linkage between the safety-related requirements of the

subsystems and components that compose a wind turbine. This integration provides the

evidence to sustain the applicability of the contributions of this dissertation, including the

benefits gained regarding scalability, reusability and lower engineering and certification

cost.

8.2 Future work

The contributions of this thesis can be extended leading to future research lines:

− Extra MSCs: In this dissertation, the MSCs for some common components of mixed-

criticality systems are defined (e.g., safety hypervisor, partition, COTS multi-core

device, mixed-criticality network). However, the mixed-criticality systems are also

composed of other subsystems (e.g., operating system) which shall be compliant

with a safety standard to allow a successful certification. Therefore, further MSCs

could be defined to support the MSCs already defined in this thesis.

− Realistic implementation: This dissertation provides a theoretical definition of the

MSCs for an IEC 61508 hypervisor, partition, COTS device and mixed-criticality

network. However, the industrial application of those MSC in the development and

certification of a commercial IEC 61508 compliant hypervisor, partition, COTS

multi-core device and mixed-criticality network is not provided (outside the scope

of this research). Therefore, the industrial certification of those components and

the subsequent development and certification of a mixed-criticality system that

uses the certified components could be the following course of action.

− Automatization: Manual linking analyses have been performed in this thesis for the

safety-related arguments defined in the MSCs for the commercial hypervisor, a safety

protection partition, a COTS multi-core device and a mixed-criticality network.

Therefore, a future research line would be the automatization of the generation of

the linking analyses, thus reducing the time spent for their definition. For instance,

a qualified tool could be used for managing the safety-related requirements.
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− Extra cross-domain patterns: This dissertation defines several reusable generic cross-

domain patterns to solve the commonly occurring problems in mixed-criticality

systems. In addition, some of those patterns have been implemented and integrated

into a system architecture based on a simplified wind turbine system. However, the

implementation of the remaining cross-domain patterns is still pending. Therefore,

another future research line could be to implement the remaining cross-domain

patterns.

− Extension to other safety standards: This dissertation is focused on the IEC

61508 safety standard. This standard is the basis for other domain-specific safety

standards such as ISO 26262 (automotive), EN 5012X (railway) and ISO 13849

(machinery). However, the applicability of IEC 61508 does not cover all engineering

domains. For instance, the domain of avionics uses of its own safety standards

where the requirements differ from the ones defined by the IEC 61508. Therefore,

further MSCs with safety-related requirements in compliance with other safety

standards could be defined. For example, future work can consider the DO-178C

as the basic avionic safety standard.

− Extension to security standards: The MSCs, the cross-domain patterns and the case

study provided in this thesis are defined from a safety perspective. However, other

domains such as the security or real-time domain are still not analysed. Therefore,

the work presented in this dissertation could be extended to cover other approaches

such as security.
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[OBM+14] André L. de Oliveira, Rosana T. V. Braga, Paulo C. Masiero, Yiannis

Papadopoulos, Ibrahim Habli, and Tim Kelly. A model-based approach

to support the automatic safety analysis of multiple product line products.



154 Bibliography

In Proceedings of the 2014 Brazilian Symposium on Computing Systems

Engineering, SBESC ’14, pages 7–12, Washington, DC, USA, 2014. IEEE

Computer Society.

[OCM16] OCM. Structured assurance case metamodels (SACM), 2016.

[OESHK08] Roman Obermaisser, Christian El Salloum, Bernhard Huber, and Hermann

Kopetz. The time-triggered system-on-a-chip architecture. In 2008 IEEE

International Symposium on Industrial Electronics, pages 1941–1947, 6 2008.

[OKG04] Roman Obermaisser, Hermann Kopetz, and Kastner Gruppe. An Integrated

Architecture for Event-Triggered and Time-Triggered Control Paradigms. PhD

thesis, 2004.

[Ona17] Peio Onaindia. Design patterns for mix-criticality applications. Master, 2017.

[PGN+14] Jon Perez, David Gonzalez, Carlos Fernando Nicolas, Ton Trapman, and

Jose Miguel Garate. A safety certification strategy for IEC 61508 compliant

industrial mixed-criticality systems based on multi-core partitioning. In 2014

17th Euromicro Conference on Digital System Design, pages 394–400, 8 2014.

[PGT+13] Jon Perez, David Gonzalez, Salvador Trujillo, Anton Trapman, and Alfonso

Garate. A safety concept for a wind power mixed-criticality embedded

system based on multi-core partitioning. In Proceedings of 11th International

Symposium on Functional Safety in Industrial Applications, page 9, 2013.

[PGTT15] Jon Perez, David Gonzalez, Salvador Trujillo, and Anton Trapman. A safety

concept for an IEC 61508 compliant fail-safe wind power mixed-criticality

embedded system based on multi-core partitioning, volume 9111, pages 3–17.

Springer International Publishing, 2015.

[PHZ+14] Dave Prochnow, Laura Hilton, Anita Zabek, Mike Willoughby, and Cindy

Harrison. Systems of systems and product line best practices from the DoD

modeling and simulation industry, 9 2014.
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Appendix A

Zynq-7000 COTS multi-core

device –

FMEA/FMECA/FMEDAs

The functional safety/failure analyses are usually applied to identify the causes of the

failures and their effects (see Table B.6 of IEC 61508-2 [IEC10b]). A typical method to

assess systematic failures is the use of FMECAs, while FMEAs are used to assess random

failures. Those analyses aim to evaluate the reliability, safety and integrity of the system.

FMECAs extend FMEAs by including the criticality analysis to chart the probability of

the failure modes against the severity of their consequences. Tables A.1 and A.2 show

the patterns for FMEAs and FMECAs which include the following elements:

− FMEA:

– Name: A meaningful name to describe the system, subsystem or component

to be analysed.

– Failure mode: The manner or way by which a failure of the system, subsys-

tem or component occurs.

– Failure cause: Cause or sequence of causes that initiates a failure of the

system, subsystem or component.

– Failure effect on: Consequences of a failure of the system, subsystem or

component.

– Detection: The means of detection of the failure.

– DC: Diagnostic coverage value.

∗ High (99%).

159
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FMEA/FMECA/FMEDAs

∗ Medium (90%).

∗ Low (60%).

– Failure rate (λ): The frequency with which a system, subsystem or compo-

nent fails, expressed in failures per unit of time.

∗ λS : Failure rate of safe failures.

∗ λD: Failure rate of dangerous failures.

∗ λDD: Failure rate of dangerous detected failures.

∗ λDU : Failure rate of dangerous undetected failures.

Name Failure Mode Failure Cause Failure effect
on Detection DC

Failure Rate

λ λS λD λDD λDU

Table A.1: FMEA template.

− FMECA:

– Name: A meaningful name to describe the system, subsystem or component

that is being analysed.

– Failure mode: The manner or way by which a failure of the system, subsys-

tem or component occurs.

– Failure cause: Cause or sequence of causes that initiates a failure of the

system, subsystem or component.

– Failure effects without failure control measures: Consequences of a

failure of the system, subsystem or component.

– Without mitigation measures: Information about the risk level scenario

without mitigation measures, including:

∗ Probability (P): Probability of the occurrence of the failure.

· 5: High (e.g., once per day).

· 4: Rather High (e.g., once per week).

· 3: Low (e.g., once per year).

· 2: Very Low (e.g., once in 10 years).

· 1: Improbable (e.g., once in the millennium).

∗ Severity (S): The worst potential consequence of the failure.

· 5: Loss of safety function.

· 4: Safety function is still available, although a failure occurs.
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· 3: Safety function is available, although the system, subsystem or

component is unusable.

· 2: Safety function is available, although safety system, subsystem or

component is affected.

· 1: No effect on safety function.

∗ Detection (D): The means of detection of the failure.

· 5: None (D < 20%).

· 4: Low (20% ≤ D < 60%). DC = Low (60%).

· 3: Low (60% ≤ D < 90%). DC = Medium (90%).

· 2: Medium (90% ≤ D ≥ 99%). DC = High (99%).

· 1: High (D > 99%).

∗ Risk Priority Number (RPN): Probability (P) x Severity (S) x Detection

(D).

– Safety Measure: Mitigation measures to improve or justify risk.

– With mitigation measures: Information about the risk level scenario with

mitigation measures, including:

∗ Probability (P): Probability of the occurrence of the failure.

· 5: High (e.g., once per day).

· 4: Rather High (e.g., once per week).

· 3: Low (e.g., once per year).

· 2: Very Low (e.g., once in 10 years).

· 1: Improbable (e.g., once in the millennium).

∗ Severity (S): The worst potential consequence of the failure.

· 5: Loss of safety function.

· 4: Safety function is still available, although a failure occurs.

· 3: Safety function is available, although the system, subsystem or

component is unusable.

· 2: Safety function is available, although safety system, subsystem or

component is affected.

· 1: No effect on safety function.

∗ Detection (D): The means of detection of the failure.

· 5: None (D < 20%).

· 4: Low (20% ≤ D < 60%). DC = Low (60%).

· 3: Low (60% ≤ D < 90%). DC = Medium (90%).

· 2: Medium (90% ≤ D ≥ 99%). DC = High (99%).

· 1: High (D > 99%).
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FMEA/FMECA/FMEDAs

∗ Risk Priority Number (RPN): Probability (P) x Severity (S) x Detection

(D).

Name
Failure
Mode

Failure
Cause

Consequence without

failure control
measures

without mitigation
measures Safety

integrity
measure

With mitigation
measures

P S D RPN P S D RPN

Table A.2: FMECA template.

This annex defines the FMEAs and FMECAs to assess the random and systematic faults

of safety techniques defined in the MSC for an IEC 61508 compliant generic COTS device

(see Section 5.3) and remarkable components of the Zynq-7000 device. It is assumed that

the estimations of the Failure Rates of the FMEAs and the Risk Priority Numbers of

the FMECAs are provided as part of the device manufacturer documentation.

A.1 Safety Requirements

A.1.1 Power Up

The power Up requirement is defined in Section 5.3. The FMEA of this safety-related

requirement is defined in Table A.4 and its FMECA in Table A.27.

A.1.2 Boot

The boot requirement is defined in Section 5.3. The FMEA of of this safety-related

requirement is defined in Table A.6 and its FMECA in Table A.28.

A.1.3 Reset

The Reset requirement is defined in Section 5.3. The FMEA of of this safety-related

requirement is defined in Table A.8 and its FMECA in Table A.29.

A.1.4 Power Down

The power down requirement is defined in Section 5.3. The FMEA of this safety-related

requirement is defined in Table A.10 and its FMECA in Table A.30.
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A.1.5 Shutdown

The shutdown requirement is defined in Section 5.3. The FMEA of this safety-related

requirement is defined in Table A.12 and its FMECA in Table A.31.

A.1.6 Resource Virtualization

The resource virtualization requirement is defined in Section 5.3. The FMEA of this

safety-related requirement is defined in Table A.14 and its FMECA in Table A.32.

A.1.7 Exclusive Access to Peripherals

The exclusive access to peripherals requirement is defined in Section 5.3. The FMEA of

this safety-related requirement is defined in Table A.16 and its FMECA in Table A.33.

A.1.8 Temporal Independence

The temporal independence requirement is defined in Section 5.3. The FMEA of this

safety-related requirement is defined in Table A.18 and its FMECA in Table A.34.

A.1.9 Spatial Independence

The spatial independence requirement is defined in Section 5.3. The FMEA of this

safety-related requirement is defined in Table A.20 and its FMECA in Table A.35.

A.1.10 Configuration

The configuration requirement is defined in Section 5.3. The FMEA of this safety-related

requirement is defined in Table A.22 and its FMECA in Table A.36.

A.1.11 Measures and Diagnostic Techniques

The measures and diagnostic techniques requirement is defined in Section 5.3. The

FMEA of this safety-related requirement is defined in Table A.24 and its FMECA in

Table A.37.
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FMEA/FMECA/FMEDAs

A.1.12 System Reactions to Errors

The system reactions to errors requirement is defined in Section 5.3. The FMEA of this

safety-related requirement is defined in Table A.26 and its FMECA in Table A.38.
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Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Power up ramp time and/or
sequence

Incorrect power up ramp
time and/or sequence

Line regulator damaged Unpredictable function of
the device. I/Os do not
function as designed.

External power supply supervisor and
WDT (see Tables A.9 and A.10 of IEC
61508-2).

99% – – – – –

Over or under voltage dur-
ing the power up sequence

Over/under voltage Line regulator damaged Unpredictable function of
the device. Incorrect func-
tioning of I/Os.

External power supply supervisor and
WDT (see Table A.9 of IEC 61508-2).

99% – – – – –

Short circuit Short circuit Line regulator damaged Permanent damage to the
device might be caused.

Over current protection (see Table
A.9 of IEC 61508-2).

60% – – – – –

Supply voltage over the
specified operational range

Over voltage of power sup-
ply

Supply voltage damaged Permanent damage to the
device.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

Supply voltage below the
specified operational range

Under voltage of power sup-
ply

Supply voltage damaged Configuration errors or sam-
pling of wrong data.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

Loss of power supply Loss of power supply Power supply damaged Applications running on the
device are no longer in exe-
cution.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

Excessive power consump-
tion

Excessive power consump-
tion

Line regulator damaged Unpredictable function of
the device. Incorrect func-
tioning of I/Os.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

Power supply below to the
brown-out voltage level

Power supply below to the
brown-out voltage level

Power supply drops below
the nominal value

Unknown and unpredictable
behaviour of the device.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

Time-out Time-out of the power up se-
quence

Line regulator damaged The device is not powered
up in the optimal and ex-
pected manner.

External WDT (see Table A.10 of IEC
61508-2).

99% – – – – –

Table A.4: Power Up – FMEA.
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Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Boot mode Incorrect boot mode (Secure
or Non-Secure)

Incorrect sampling of boot
mode

The device is locked-down. Read-back of boot mode register at
boot time.

90% – – – – –

Power up time-out Power up time-out See Table A.4. Incorrect boot of the device External WDT (see Table A.10 of IEC
61508-2).

60% – – – – –

Boot files Faulty boot files Faulty BootROM Header,
FSBL or User code.

The device is locked-down. CRC mechanism (see Table A.5 of
IEC 61508-2).

60% – – – – –

Boot time-out Time-out Power up time-out, Faulty
boot file, Faulty boot
loader.

The device is locked-down. External WDT (see Table A.10 of IEC
61508-2).

99% – – – – –

Table A.6: Boot – FMEA.

Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Reset signal assertion Unexpected reset assertion Violation of secure lock-
down window.

The device is reset. Periodic read-back of reset registers. 90% – – – – –

Table A.8: Reset – FMEA.
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Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Power up ramp time or se-
quence

Incorrect power up ramp
time or sequence

Line regulator damaged Unpredictable function of
the device. Incorrect func-
tioning of I/Os.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

Over or under voltage dur-
ing the power up sequence

Over/under voltage Line regulator damaged. Unpredictable function of
the device. Incorrect func-
tioning of I/Os.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

Short circuit Short circuit Line regulator damaged Permanent device damage. Over current protection (see Table
A.9 of IEC 61508-2).

60% – – – – –

Excessive power consump-
tion

Excessive power consump-
tion

Line regulator damaged Increase of the internal tem-
perature.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

Power supply below to the
brown-out voltage level

Power supply below to the
brown-out voltage level

Power supply drops below
the nominal value.

Unknown and unpredictable
behaviour of the device.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

Time-out Time-out of the power up se-
quence

Line regulator damaged The device is not powered
up in the optimal/expected
manner.

External WDT (see Table A.10 of IEC
61508-2).

99% – – – – –

Table A.10: Power Down – FMEA.

Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Incomplete shutdown Incomplete shutdown Random failure Corruption of the file sys-
tem and issues with invari-
able memory.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

No shutdown No shutdown Random failure Corruption of the file sys-
tem and issues with invari-
able memory.

External power supply supervisor (see
Table A.9 of IEC 61508-2).

99% – – – – –

Table A.12: Shutdown – FMEA.
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Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Virtualization failure Virtualization failure Virtual to physical address
translation failure on mem-
ory virtualization, Hypervi-
sor failure or GIC failure.

Memory virtualization,
CPU virtualization or
Interrupt virtualization.

Read-back of virtual memory control
registers, Diagnosis technique of Hy-
pervisor and Read-back configuration
registers of GIC v2.0.

90% – – – – –

Table A.14: Resource Virtualization – FMEA.

Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Failure of exclusive access
assignment

Exclusive access assignment
failure

Register value modification System failure Read-back configuration registers 90% – – – – –

Table A.16: Exclusive access to peripherals – FMEA.

Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Temporal interferences Temporal interferences Failure of some component
of the device (e.g., GIC or
shared memory). Simultane-
ous access to memory. Erro-
neous time scheduling.

System failure External WDT (see Table A.10 of IEC
61508-2).

99% – – – – –

Table A.18: Temporal Independence – FMEA.
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Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Partial spatial independence Partial spatial independence No enough mechanisms or
tools are provided to en-
sure the spatial indepen-
dence. Incorrect or un-
expected behaviour of the
mechanisms or tools which
provide the spatial indepen-
dence.

System failure EDC mechanism (see Table A.6 of
IEC 61508-2).

90% – – – – –

In-existent spatial indepen-
dence

In-existent spatial indepen-
dence

A momentary failure of
mechanisms that provide
spatial independence.

System failure N/A. – – – – – –

Table A.20: Spatial Independence – FMEA.

Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Configuration Failure Incorrect configuration Random HW failure. PS failure, PL failure, Sys-
tem failure or Component
failure.

Periodic read-back of configured reg-
isters.

90% – – – – –

No configuration No configuration A momentary failure of
mechanisms that provide
spatial independence.

PS failure, PL failure or Sys-
tem failure.

Periodic read-back of configured reg-
isters.

90% – – – – –

Table A.22: Configuration – FMEA.
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Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Incomplete diagnosis execu-
tion

Incomplete diagnosis execu-
tion

Component is disabled sud-
denly. Unexpected data
value change. System fail-
ure.

Component is not diagnosed
completely.

Periodic read-back of diagnosis execu-
tion results. External WDT (see Ta-
ble A.10 of IEC 61508-2).

60% – – – – –

No Diagnosis No Diagnosis technique can-
not be executed

Component is disabled or
System is powered down.

Component is not diagnosed
on the system.

Periodic read-back of diagnosis execu-
tion results. External WDT (see Ta-
ble A.10 of IEC 61508-2).

60% – – – – –

Table A.24: Measures and Diagnostic Techniques – FMEA.

Name Failure Mode Failure Cause Failure effect on Detection DC Failure Rate

λ λS λD λDD λDU

Incomplete system reaction
to error

Incomplete system reaction
to error

Component is disabled
suddenly, Unexpected data
value change or System
failure.

System failure. See Diagnostic techniques in Table
A.24.

N/A. – – – – –

No reaction to error The system reaction to error
cannot be executed

System is powered down. System failure. See Diagnostic techniques in Table
A.24.

N/A. – – – – –

Table A.26: System reactions to errors – FMEA.
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Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Over temperature Temperature range ex-

ceeded

Break or ageing or incor-

rect use

System failure – – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Excessive power con-

sumption

– – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and measures against the physical

environment and measures to detect breaks

and shorts in signal lines and failure detec-

tion by on-line monitoring (see Table A.16

of IEC 61508-2).

– – – –

Power up Incorrect power up se-

quence

Break or ageing or incor-

rect use

Power up failure. Sys-

tem failure.

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Table A.27: Power Up – FMECA.
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Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Boot loader Faulty boot loader (e.g.,

SD, RAM)

HW break caused by age-

ing or incorrect use

The device is not

booted.

– – – – HW diversity (see Table A.15, IEC 61508-

2).

– – – –

Table A.28: Boot – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Reset activation Unpredictable HW reset

activation

Reset switch break due

to ageing or incorrect

use.

System reset – – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Break of reset line due to

ageing

System reset – – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Environmental or exter-

nal influences

System reset – – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and measures against the physical

environment and measures to detect breaks

and shorts in signal lines and failure detec-

tion by on-line monitoring (see Table A.16

of IEC 61508-2).

– – – –

No reset HW reset is not activated Reset switch break due

to ageing or incorrect

use.

System failure – – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Break of reset line due to

ageing or incorrect use.

System failure – – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Table A.29: Reset – FMECA.
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Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Power Down Power down sequence

failure

Break or ageing or incor-

rect use

System power down

failure

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Table A.30: Power Down – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Shut Down Shut down failure Break or ageing or incor-

rect use

Incorrect or non shut-

down of the system.

– – – – Program sequence monitoring (see Table

A.15 of IEC 61508-2).

– – – –

Failure detection by online monitoring (see

Table A.15 of IEC 61508-2).

Table A.31: Shutdown – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

No Virtualization Incorrect or in-existent

resource virtualization

HW break due to ageing

or incorrect use

Virtualization failure – – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture or Diverse HW (see Table

A.15 of IEC 61508-2).

– – – –
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Environmental causes or

external influences

Virtualization failure – – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Operational failures Virtualization failure – – – – Modification protection and Failure detec-

tion by on-line monitoring or failure asser-

tion programming (see Table A.17 of IEC

61508-2).

– – – –

Table A.32: Resource Virtualization – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

No Exclusive Access Incorrect or in-existent

access

HW break due to ageing

or incorrect use

Exclusive access fail-

ure

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture or Diverse HW (see Table

A.15 of IEC 61508-2).

– – – –

Environmental causes or

external influences

Exclusive access fail-

ure

– – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Operational failures Exclusive access fail-

ure

– – – – Modification protection and Failure detec-

tion by on-line monitoring or failure asser-

tion programming (see Table A.17 of IEC

61508-2).

– – – –

Table A.33: Exclusive access to peripherals – FMECA.
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Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Temporal interferences Temporal independence HW break due to ageing

or incorrect use

Temporal interfer-

ences (e.g., delays)

– – – – Program sequence monitoring (see Table

A.15 of IEC 61508-2).

– – – –

– – – – Failure detection by on-line monitoring (see

Table A.15 of IEC 61508-2).

– – – –

Environmental causes or

external influences

Exclusive access fail-

ure

– – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Table A.34: Temporal Independence – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Design failure Partial or in-existent spa-

tial independence

The HW is not designed

to provide spatial inde-

pendence.

System failure – – – – Diverse HW (see Table A.15 of IEC 61508-

2).

– – – –

Mechanism(s) or Tool(s)

failure

Partial or independent

spatial independence.

Break or ageing of mecha-

nisms/tools of spatial in-

dependence.

System failure – – – – Diverse HW (see Table A.15 of IEC 61508-

2).

– – – –

Table A.35: Spatial Independence – FMECA.
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Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Configuration device Fault configuration de-

vice

SEUs System is not config-

ured

– – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and measures against the physical

environment and measures to detect breaks

and shorts in signal lines and failure detec-

tion by on-line monitoring (see Table A.16

of IEC 61508-2).

– – – –

Break or ageing of the de-

vice.

System is not config-

ured.

– – – – Failure detection by on-line monitoring or

Diverse HW (see Table A.15 of IEC 61508-

2).

– – – –

Configuration file Fault configuration file SEUs System failure – – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and measures against the physical

environment and measures to detect breaks

and shorts in signal lines and failure detec-

tion by on-line monitoring (see Table A.16

of IEC 61508-2).

– – – –

Operational failure System failure. – – – – Modification protection (see Table A.17 of

IEC 61508-2).

– – – –

– – – – Failure detection by on-line monitoring. – – – –

SEUs External influences SEUs Electronic units and

memory failure

– – – – SEM IP – – – –

– – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and measures against the physical

environment and measures to detect breaks

and shorts in signal lines and failure detec-

tion by on-line monitoring (see Table A.16

of IEC 61508-2).

– – – –



A
.1.

S
afety

R
eq

u
irem

en
ts

177

– – – – Failure detection by on-line monitoring or

Diverse HW (see Table A.15 of IEC 61508-

2).

– – – –

Table A.36: Configuration – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Incomplete diagnosis exe-

cution

Incomplete diagnosis HW failure The components or

system cannot be

completely assessed.

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture or Diverse HW (see Table

A.15 of IEC 61508-2).

– – – –

External influence The components or

system cannot be

completely assessed.

– – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Operational failure The components or

system cannot be

completely assessed.

– – – – Modification protection and Failure detec-

tion by on-line monitoring or failure asser-

tion programming. see Table A.17 of IEC

61508-2).

– – – –

No diagnosis No diagnosis HW random failure The components or

system cannot be

completely assessed.

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture or Diverse HW (see Table

A.15 of IEC 61508-2).

– – – –
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External influence The components or

system cannot be

completely assessed.

– – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Operational failure The components or

system cannot be

completely assessed.

– – – – Modification protection and Failure detec-

tion by on-line monitoring or failure asser-

tion programming. see Table A.17 of IEC

61508-2).

– – – –

Table A.37: Measures / Diagnostic Techniques – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Incomplete system reac-

tions to errors

Incomplete system reac-

tions to errors

HW failure The system is under

continuous failure.

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture or Diverse HW (see Table

A.15 of IEC 61508-2).

– – – –

External influence The system is under

continuous failure.

– – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Operational failure The system is under

continuous failure.

– – – – Modification protection and Failure detec-

tion by on-line monitoring or failure asser-

tion programming (see Table A.17 of IEC

61508-2).

– – – –

No system reactions to

errors

No system reactions to

errors

HW random failure The system is under

continuous failure.

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture or Diverse HW (see Table

A.15 of IEC 61508-2).

– – – –
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External influence The system is under

continuous failure.

– – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Operational failure The system is under

continuous failure.

– – – – Modification protection and Failure detec-

tion by on-line monitoring or failure asser-

tion programming (see Table A.17 of IEC

61508-2).

– – – –

Table A.38: System reactions to errors – FMECA.
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Appendix A. Zynq-7000 COTS multi-core device –

FMEA/FMECA/FMEDAs

A.2 Remarkable components of the Zynq-7000 device

A.2.1 Processing Unit

The processing unit of the Zynq device is defined in Subsection 7.2.3. The FMEA of this

component is defined in Table A.4 and its FMECA in Table A.44.

A.2.2 Coherency Management Unit

Subsection 6.2.2 analyses the coherency management unit implemented by the Zynq-7000

multi-core device for managing the coherency between the CPUs and the memories. The

FMEA analysis of this component is defined in Table A.39 and its FMECA in Table

A.46.

A.2.3 Data Paths

The data paths of the Zynq device are defined in Subsection 7.2.3. The FMEA of this

component is defined in Table A.40 and its FMECA in Table A.47.

A.2.4 Interrupt Controller

The Zynq-7000 device supports a GIC for managing the prioritisation of the tasks executed

in the processor cores. This interrupt controller has been introduced in Subsection 6.2.4.

The FMEA analysis of the generic interrupt controller is defined in Tables A.41 and A.42

and its FMECA in Table A.48.

A.2.5 Memory Areas and Registers

The FMEA of the Memory Areas and Registers component is defined in Table A.43 and

its FMECA in Table A.45.
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Name Registers Failure Mode Failure Cause
Failure effect on

Detection DC
Failure rate

SCU CPU PL λ λS λD λDD λDU

Configuration

Registers

SCU Control RegisterI ,

SCU CPU Power StatusII ,

SCU Invalidate all reg-

ister in Secure stateIII

(WO), Filtering Start

AddressesIV , Filtering

End AddressesV , SCU Ac-

cess Control (SAC)V I and

Non Secure SCU Access

Control (NSAC)V II

Data or Address

modification

Modification of

SCU’s registers

IC field is set

to ’1’. SCU

is reached to

standby modeI .

CPU cannot

perform a read

/ write request.

PL cannot per-

form a read /

write request.

Periodic read-

back of configu-

ration registers.

90% – – – – –

IC field is set to

’0’, the SCU is

activatedI .

CPU(s) can

perform a

write/read

request.

PL can perform

a write/read re-

quest.

– – – – –

Bit [5] of I is

set. The SCU is

stoppedI . [5]

CPUs cannot

access to PL,

OCM, L2 cache,

DDR.I [5]

PL cannot ac-

cess to L2 cache

and CPU(s).

– – – – –

SCU is

launchedI .

[5]

CPU can com-

municate with

the PL, OCM,

L2 cache.

PL can commu-

nicate with the

CPUx, OCM.

– – – – –

Value of field [4]

is set to ’1’I . [4]

All requests

from CPUs are

forced to be

issued on the

master port 0.

All requests

from PL are

forced to be

issued on the

master Port 0.

– – – – –

Value of field [4]

is set to ’0’I . [4]

All requests

from CPUs are

forced to be

issued on the

master ports

M0 and M1.

All requests

from PL are

forced to be

issued on the

master ports

M0 and M1.

– – – – –
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Bit [1] of I is set

to ’0’I . [1]

All requests

from CPUs are

forced to be

issued on the

master port M0.

All requests

from PL are

forced to be

issued on the

master port M0.

– – – – –

Bit [1] of I is set

to ’1’I . [1]

All requests

from CPUs are

forced to be

issued on the

master ports

M0 and M1.

All requests

from PL are

forced to be

issued on the

master ports

M0 and M1.

– – – – –

SCU is

disabledI .

[0]

CPU(s) can-

not access to

PL, cache or

memory.

PL cannot ac-

cess to CPUs

and memories.

– – – – –

SCU is enabled.

Bit [0] is setI .

[0]

CPU(s) can

access to PL,

caches.

PL can access

to processors,

memory.

– – – – –

Value of register
II is set to b00.

The power

state of CPUx

changes to nor-

mal operation

mode.

– – – – – –

Value of register
II is set to b10.

The power

state of CPUx

changes to

dormant mode.

No coherency

request is sent

to the CPUx.

– – – – – –

Value of register
II is set to b11.

The power

state of CPUx

changes to

powered-off.

No coherency

request is sent

to the CPUx.

– – – – – –



A
.2.

R
em

arkab
le

com
p

on
en

ts
of

th
e

Z
y
n
q
-7000

d
ev

ice
183

Invalidates

specified ways

of CPUx. III

[15:0] Some

ways of CPUx

are invalidated

by the SCU.

– – – – – – –

Start address

for use with

master port 1

in a two master

port configura-

tion is changed.
IV [31:20]

– – – – – – –

End address for

use with master

port 1 in a two

master port

configuration

is changed.V

[31:20]

– – – – – – –

SAC register’s

value is set to

’0’. V I 1 [3:0]

CPUx cannot

access the

registers1.

– – – – – –

SAC register’s

value is set to

’1’. V I1 [3:0]

CPUx can

access the

registers1.

– – – – – –

Any bit from bit

11 to 8 of NSAC

is set to ’1’. V II

CPUx can

access to the

global timer

in secure and

non-secure

modes.

– – – – – –

Any bit from bit

11 to 8 of NSAC

is set to ’0’. V II

CPUx can ac-

cess only to the

global timer in

secure mode.

– – – – – –

1Accessible/Inaccessible registers due to modification of SAC register are the SCU Control Register, SCU CPU Status Register, SCU Invalidate All Register in Secure
State, filtering registers and SCU CPU Power Status register.



1
8
4

A
p

p
en

d
ix

A
.

Z
y
n

q
-7000

C
O

T
S

m
u

lti-core
d

ev
ice

–
F

M
E

A
/F

M
E

C
A

/F
M

E
D

A
s

Any bit from bit

7 to 4 of NSAC

is set to ’1’.

CPUx can ac-

cess to the pri-

vate timers and

watchdogs in se-

cure and non-

secure modes.

– – – – – –

Any bit from bit

7 to 4 of NSAC

is 0set to ’0’.

CPUx can ac-

cess only to the

private timers

and watchdogs

in secure mode.

– – – – – –

Any bit from

bit 3 to 0 of

NSAC is set to

’1’. V II 2

CPUx can

access the

registers2.

– – – – – –

Any bit from

bit 3 to 0 of

NSAC is set to

’0’. V II2

CPUx can-

not write the

registers2.

– – – – – –

No access to the

registers of the

SCU

Modification

of the SCU’s

registers

SCU cannot be

accessed or con-

figured.

CPUx cannot

communicate

with PL, OCM

and other com-

ponents of the

device.

PL cannot com-

municate with

CPUx, memo-

ries and other

components of

the device.

Periodic read-

back of configu-

ration registers

90% – – – – –

Reading reg-

isters SCU

control register

SCU Configuration reg-

ister, SCU CPU Power

Status Register, Filtering

Start and End Address reg-

ister, SAC, NSAC

Inconclusive read

values of regis-

ter(s)

Modification

of the SCU’s

registers.

– – – Periodic read-

back of configu-

ration registers

90% – – – – –

Table A.39: SCU – FMEA.

2Accessible/Inaccessible registers due to modification of NSAC register are SAC, SCU control, SCU CPU status, filtering and SCU CPU power status registers.
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Name Failure Mode Failure Cause
Failure effect on

Detection DC
Failure rate

SCU CPU PL λ λS λD λDD λDU

CPU – SCU Wrong data Information mod-

ification

Intelligible or in-

complete data is

received

– – Inspection Using Test pattern (see Ta-

ble A.8 of IEC 61508-2).

60% – – – – –

Transmission redundancy (see table

A.8 of IEC 61508-2).

90% – – – – –

Wrong destina-

tion address

Address modifi-

cation

The SCU does not

receive any data.

The CPU cannot

communicate with

the SCU.

– Inspection Using Test pattern (see Ta-

ble A.8 of IEC 61508-2)

60% – – – – –

No transmission Modification

of the SCU’s

configuration

registers.

The SCU is mis-

configured

The CPU can-

not communicate

through the SCU.

The PL cannot

communicate

through the SCU.

Periodic read-back of configuration

registers.

90% – – – – –

AXI ACP - SCU Wrong data Information mod-

ification

Intelligible or in-

complete data is

received

– – Inspection Using Test pattern (see Ta-

ble A.8 of IEC 61508-2).

60% – – – – –

Transmission redundancy (see Table

A.8 of IEC 61508-2).

90% – – – – –

Wrong destina-

tion address

Address modifi-

cation

The SCU does

not receive the

expected data.

– – Inspection Using Test pattern (see Ta-

ble A.8 of IEC 61508-2).

60% – – – – –

No transmission Modification

of the SCU’s

configuration

registers.

The SCU is mis-

configured

The CPU can-

not communicate

through the SCU.

The PL cannot

communicate

through the SCU.

Periodic read-back of configuration

registers.

90% – – – – –

SCU – L2 cache Wrong data Information mod-

ification

– The L2 cache con-

tains an intelligi-

ble or incomplete

data.

– Inspection Using Test pattern (see Ta-

ble A.8 of IEC 61508-2).

60% – – – – –

Transmission redundancy (see Table

A.8 of IEC 61508-2).

90% – – – – –
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Wrong destina-

tion address

Address modifi-

cation

– The L2 cache

stores data on

different address

memory.

– Inspection Using Test pattern (see Ta-

ble A.8 of IEC 61508-2).

60% – – – – –

No transmission Modification

of the SCU’s

configuration

registers.

The SCU cannot

access to the L2

cache.

The CPU cannot

access to the L2

cache.

The PL cannot

access to the L2

cache.

Periodic read-back of configuration

registers (see Table A.8 of IEC 61508-

2).

90% – – – – –

SCU - OCM Wrong data Information mod-

ification

– – Data read from the

PL is erroneous or

incomplete.

Inspection Using Test pattern (see Ta-

ble A.8 of IEC 61508-2).

60% – – – – –

Transmission redundancy (see Table

A.8 of IEC 61508-2).

90% – – – – –

Wrong destina-

tion address

Address modifi-

cation

– – The PL cannot

does not find the

expected data

in the specified

address.

Inspection Using Test pattern (see Ta-

ble A.8 of IEC 61508-2).

60% – – – – –

No transmission Modification

of the SCU’s

configuration

registers.

The SCU cannot

access to the

OCM.

The CPU cannot

access to the

OCM.

The PL cannot ac-

cess to the OCM

through the SCU.

Periodic read-back of configuration

registers.

90% – – – – –

Table A.40: Data Paths – FMEA.

Name Registers Failure Mode Failure Cause
Failure effect on

Detection DC
Failure rate

SCU CPU PL λ λS λD λDD λDU



A
.2.

R
em

arkab
le

com
p

on
en

ts
of

th
e

Z
y
n
q
-7000

d
ev

ice
187

Configuration

Registers

ICDDCR, ICDISR,

ICDICPR, ICDICPR,

ICDIPTR, ICDICFR,

ICDSGIR3,,4 ICDISER,

ICDICER

Data or address

modification

Modification of

GIC’s registers.

The bit ’1’ of

register ICD-

DRCR is set up

to ’1’. Hence,

enables the

distributor to

update regis-

ter locations

for non-secure

interrupts.

– – Periodic read-

back of configu-

ration registers.

90% – – – – –

The bit 1 of reg-

ister ICDDRCR

is set up to ’0’.

Hence, disables

all non-secure

interrupts con-

trol bits in the

distributor.

– – – – – – –

The bit 0 of reg-

ister ICDDRCR

is set up to ’1’.

Hence, enables

the distribu-

tor to update

register loca-

tions for secure

interrupts.5

– – – – – – –

The bit 0 of reg-

ister ICDDRCR

is set up to ’0’.

Hence, disables

all secure inter-

rupts control

bits in the

distributor.5

– – – – – – –

3Only writeable registers (WO).
4If the security extension of GIC is not enables, bit[15] of ICDSGIR is reserved.
5Registers accessible only in Secure mode. Otherwise can be accessed in non-secure and secure mode.
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Some bit of

ICDISR is set

to ’0’. This

means that

corresponding

interrupts are

secure. [31:0] 5

– – – – – – –

Some bit of

ICDISR is set

to ’1’. This

means that

corresponding

interrupts are

non-secure.

[31:0] 5

– – – – – – –

Some bit of IC-

SIDER is set of

to ’0’. This

means that in-

terrupt X is dis-

abled.

– – – – – – –

Some bit of

ICDISER is set

to ’1’. This way,

enabling the

corresponding

interrupt.

– – – – – – –

Incorrect

interrupts

are disabled.

(ICDICER)

Interrupts allo-

cated to CPUx

are deactivated.

– – – – – –
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The state of

interrupt X is

changed. If it is

previously inac-

tive, it changes

to pending and

if it is previ-

ously active,

it changes

to active

and pending.

(ICDICPR)

– – – – – – –

None or in-

correct de-

assignment

of the inter-

rupts pending.

(ICDICPRn)

The status

of allocated

interrupts to

CPUx can

be randomly

changed.

– – – – – –

Incorrect or no

assignment of

interrupt prior-

ity. (ICDIPRn)

CPU’s inter-

rupts have

incorrect prior-

ity assignment.

– – – – – –

Interrupt X is

not assigned to

CPU interface

X. (ICDIPTRn)

– – – – – – –

Interrupt X is

assigned incor-

rectly to CPU

interface X.

(ICDIPTRn)

– – – – – – –

Incorrect in-

terrupt config-

uration (edge

triggered or

level sensitive).

(ICDICFR)

CPUx’s in-

terrupt is

configured with

incorrect trigger

type.

– – – – – – –
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Incorrect as-

signment of

interrupt X to

CPU interfaces.

(ICDSGIR)III

– – – – – – – –

CPUx does not

have assigned

any interrupt.

(ICDSGIR)III

– – – – – – – –

An interrupt

is assigned to

an incorrect

CPU interface.

(ICDSGIR)III

CPUx has as-

signed an incor-

rect interrupt.

– – – – – – –

The SGI in-

terrupt X is

not assigned

to any CPU.

(ICDSGIR)III

CPUx has not

any SGI inter-

rupt assigned.

– – – – – – –

Incorrect inter-

rupts are as-

signed to CPUx.

(ICDSGIR)III

CPUx has as-

signed one or

more incorrect

interrupts.

– – – – – – –

No access to the

registers of the

SCU

Modification

of the SCU’s

registers.

GIC cannot be

configured or is

not accessible

CPU(s) does

not have any

interrupt as-

signed.

– Periodic read-

back of configu-

ration registers

90% – – – – –

Reading regis-

ters

ICDICTR, ICABRn,

ICPPISRn, ICSPISRn,

ICPIDR [0-7], ICCIDR

[0-3]

Inconclusive read

values of regis-

ter(s)

Modification

of the SCU’s

registers.

– – – Periodic read-

back of configu-

ration registers

90% – – – – –

Table A.41: GIC Distributor– FMEA.

Name Registers Failure Mode Failure Cause
Failure effect on

Detection DC
Failure rate

SCU CPU PL λ λS λD λDD λDU
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Configuration

Registers

ICCIR (0NS, 4S, 3S, 2S,

1S, 0S), ICCPMR (S), IC-

CBPR (S), ICCEOIR*1

Data or address

modification

Modification of

GIC’s registers

None of the

interrupts is

signalled by

the CPU in-

terface to the

connected pro-

cessor. (ICCIR)

[0]

CPUx does not

have any inter-

rupt assigned.

– Periodic read-

back of configu-

ration registers.

90% – – – – –

All interrupts

are signalled

by the CPU

interface to the

connected pro-

cessor. (ICCIR)

[0]

All CPUs have

at least an inter-

rupt assigned.

– – – – – –

All interrupts

are signalled

by the CPU

interface to the

connected pro-

cessor. (ICCIR)

[0]

All CPUs have

at least an inter-

rupt assigned.

– – – – – –

Incorrect assign-

ments of the bi-

nary point regis-

ter to CPU in-

terface X. (IC-

CIR) [4]

– – – – – – –

None assign-

ment of the

binary point

register to CPU

interface X.

(ICCIR) [4]

– – – – – – –
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None assign-

ment of the se-

cure interrupts

to a target

processor using

signals IRQ or

FIQ.(ICCIR) [3]

–

– – – – – –

Incorrect as-

signment of

the secure inter-

rupts to a target

processor using

signals IRQ or

FIQ.6(ICCIR)

[3]

The secure in-

terrupts are sig-

nalled using an

incorrect inter-

rupt type (FIQ,

instead of IRQ

and vice versa).

– – – – – –

Interrupt sta-

tus is not

refreshed6.

(ICCIR) [2]

CPU’s tasks are

locked.

– – – – – –

All non-secure

interrupts are

signalled6.

(ICCIR) [1]

– – – – – – –

Non-secure

interrupts are

not signalled6.

(ICCIR) [1]

– – – – – – –

All secure in-

terrupts are

signalled6.

[ICCIR) [0]

– – – – – – –

Secure inter-

rupts are not

signalled6.

(ICCIR) [0]

CPUx does not

have assigned

any secure

interrupt.

– – – – – –

6Registers accessible only in Secure mode. Otherwise can be accessed in non-secure and secure mode.
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The priority

mask of CPU

interface X

is assigned

erroneously6.

(ICCPMR).

– – – – – – –

The interrupt X

is assigned to an

incorrect CPU.

(ICCEOIR)

[12:10]

CPUx has an

incorrect assign-

ment of inter-

rupt X.

– – – – – –

No access to the

registers of the

SCU

Modification

of the SCU’s

registers.

GIC cannot be

configured or is

not accessible.

CPU(s) does

not have any

interrupt as-

signed.

– Periodic read-

back of configu-

ration registers

90% – – – – –

Reading Regis-

ters

ICCIAR, ICCRPR, IC-

CHIPR, ICCIDR

Inconclusive read

values of regis-

ters.

Modification

of the SCU’s

registers.

– – – Periodic read-

back of configu-

ration registers.

90% – – – – –

Table A.42: GIC Interrupt Interface– FMEA.

Name Failure Mode Failure Cause Failure effect on Detection DC
Failure Rate

λ λS λD λDD λDU

Data modification Register data modification Change of information

caused by soft-errors

System failure Periodic read-back of register values.

EDC (see Table A.6 of IEC 61508-

2). Information redundancy (see Ta-

ble A.8 of IEC 61508-2).

90% – – – – –

No access No access to the registers No, wrong or multiple ad-

dressing or Wrong address

decoding or Wrong access

time or Time out.

System failure Periodical software test. External

watchdog timer (see Table A.10 of

IEC 61508-2).

60% – – – – –

Read Inconclusive read values of

registers

No, wrong or multiple ad-

dressing.

– Periodical software test. CRC (see

Table A.7 of IEC 61508-2).

60% – – – – –

Table A.43: Memory and Register areas – FMEA.



1
9
4

A
p

p
en

d
ix

A
.

Z
y
n

q
-7000

C
O

T
S

m
u

lti-core
d

ev
ice

–
F

M
E

A
/F

M
E

C
A

/F
M

E
D

A
s

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Boot Unable to boot Breaking or ageing of

HW

PS failure. The PL

can work normally.

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Malfunction Malfunction

Breaking or ageing of

HW

PS failure. The PL

can work normally.

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

External influence PS failure. The PL

can work normally.

– – – – Modification protection and Failure detec-

tion by on-line monitoring or failure asser-

tion programming (see Table A.17 of IEC

61508-2).

– – – –

Operational failure PS failure. The PL

can work normally.

– – – – Modification protection and Failure detec-

tion by on-line monitoring or failure asser-

tion programming (see Table A.17 of IEC

61508-2).

– – – –

No function No function Break or ageing of HW PS failure. The PL

can work normally.

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Table A.44: Processing Unit – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Memory break Memory break Break due to ageing or in-

correct use.

Possible system fail-

ure

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –
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Environmental or exter-

nal influences

Possible system fail-

ure

– – – – Measures against voltage breakdown and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Table A.45: Memory – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

SCU is broken SCU stops working cor-

rectly

Deterioration of the SCU System failure – – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Failure of the PS. System failure – – – – Measures against voltage break down and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Power Supply failure. System failure – – – – – – – –

Table A.46: SCU – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

Data Paths Failure of Data Paths Deterioration of the data

paths.

System failure, PL

failure PS failure or

Component failure

– – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –
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External influence System failure, PL

failure, PS failure

Component failure

– – – – Measures against voltage break down and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Table A.47: Data Paths – FMECA.

Name Failure Mode Failure Cause

Consequence

without failure
control measures

without mitigation
measures Safety integrity

measure

with mitigation
measures

P S D RPN P S D RPN

GIC is broken GIC stops working Deterioration of the GIC. System failure – – – – Failure detection by on-line monitoring or

Standard test access port and boundary-

scan architecture (see Table A.15 of IEC

61508-2).

– – – –

Failure of the PS. System failure – – – – Measures against voltage break down and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Power Supply failure System failure – – – – Measures against voltage break down and

Separation of electrical energy lines from in-

formation lines and Increase of interference

immunity and Measures against physical en-

vironment and Measure to detect breaks and

shorts in signal lines and Failure detection

by on-line monitoring or Diverse HW (see

Table A.16 of IEC 61508-2).

– – – –

Table A.48: GIC – FMECA.
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