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Summary

In this thesis we design a framework for computing in (abelian) categories in a structured
manner, inspired by constructions in category theory.

We start by giving necessary definitions for a category to be computable in the sense of
this thesis. This includes the requirements on the data structure for objects and morphisms,
and the specifications of categorical operations which need to be implemented.

As a first example, we provide data structures and algorithms to show how the category
of finitely presented graded modules over a graded computable ring can be implemented
in this context.

Then we describe the category of Serre morphisms of an abelian category. It provides an
example of the flexibility a categorical framework offers for the implementation of abelian
categories. The category of Serre morphisms will then be used, together with the previously
described implementation of f.p. graded modules, to implement the category of coherent
sheaves over a normal toric variety. To achieve this, we present an algorithm to compute
the graded parts of a f.p. graded module over a Laurent polynomial ring, the latter graded
by a finitely presented abelian group.

As application of this axiomatic computational setup for both f.p. graded modules and
coherent sheaves over toric varieties, we describe a categorical algorithm to compute a
grade-compatible presentation of a f.p. graded module and a coherent sheaf.

A realization of the categorical framework to implement computable categories was
created alongside this thesis: CAP (Categories, Algorithms, Programming). All concepts
and algorithms presented in this thesis are implemented in CAP. In the last chapter of the
thesis, some technical concepts of CAP are explained and motivated.






Zusammenfassung

In dieser Arbeit definieren wir einen durch die Konstruktionen der Kategorientheorie
definierten Rahmen, um abelsche Kategorien auf dem Computer zu implementieren und
mit diesen zu arbeiten.

Wir beginnen mit der Definition einer berechenbaren Kategorie im Sinne dieser Arbeit.
Dies beinhaltet die Anforderungen an die Datenstrukturen fiir Objekte und Morphismen
und die Spezifikationen der kategoriellen Operationen, die implementiert werden sollen.

Als erstes Beispiel definieren wir Datenstrukturen und geben Algorithmen an, um
zu zeigen, dass die Kategorie der endlich prasentierten graduierten Moduln tiber einem
berechenbaren Ring ebenfalls berechenbar ist.

Anschlieflend beschreiben wir die Kategorie der Serre Morphismen einer abelschen
Kategorie A beziiglich einer dicken Teilkategorie von A. Diese Serre Morphismen Kate-
gorie bietet ein Beispiel fiir die Flexibilitat des kategoriellen Rahmens der Implementation
abelscher Kategorien. Wir benutzen die Serre Morphismen Kategorie, zusammen mit der
Implementation endlich prasentierter graduierter Moduln, um ein berechenbares Modell
koharenter Garben tiber torischen Varietaten zu beschreiben. Um dies zu erreichen, stellen
wir einen Algorithmus vor, der die Gradschichten eines endlich présentierten graduierten
Moduls iiber einem mit einer endlich préasentierten abelschen Gruppe graduierten Laurent
Polynomring berechnet.

Als Anwendung dieser axiomatischen Implementation der endlich présentierten gra-
duierten Moduln und kohédrenten Garben geben wir abschliefend einen Algorithmus an,
welcher Reinheitsgrad-kompatible Prasentationen endlich prasentierter graduierter Moduln
und kohérenter Garben berechnet.

Eine Realisierung dieses axiomatisch-kategoriellen Rahmens zur Implementation be-
rechenbarer Kategorien entstand zusammen mit dieser Arbeit: CAp (Categories, Algo-
rithms, Programming). Alle Konzepte und Algorithmen, welche in dieser Arbeit vorgestellt
werden, sind bereits in CAP implementiert. Im letzten Kapitel motivieren und erkléren
wir zudem einige technische Konzepte von CAP.
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CHAPTER 1

Introduction

Many structures in abstract algebra and computer algebra can be organized as abelian
categories. Many algorithms boil down to basic categorical constructions in abelian cate-
gories. In this thesis we provide a framework to organize the implementation of algebraic
structures in a categorical fashion and show the flexibility and computational capabilities of
this framework in various examples: Using the notion of computable categories we provide
algorithms for computable descriptions of finitely presented graded modules and coherent
sheaves over normal toric varieties, the latter modeled as a Serre quotient category. After-
wards we present an algorithm to compute the so-called grade or purity filtration of both a
f.p. graded module and a coherent sheaf. As a consequence of the high level of abstraction
provided by a categorical implementation of this algorithm, we will be able to use the same
algorithm for both f.p. graded modules and coherent sheaves.

In Chapter II we start by defining the type of category we use as a base for the definition
of computable categories: Categories with Hom-setoids. We show how this type of category
relates to the classical definition of a category. Then we define what we call a realization
of a category. The realization will state all requirements we have for the data structure
of a computable category. Using this realization, we state a minimal set of algorithms to
be implemented for a given realization of a category A in order to render A computable
abelian.

In Chapter III we describe the category of graded module presentations over a com-
putable graded ring S. This is simultaneously our first involved example of a computable
abelian category together with a realization and all necessary algorithms. The category of
graded module presentations is a computable model of the category of f.p. graded modules
over the ring S. The algorithms for this category will show the necessity of the definition
of a computable category as category with Hom-setoids. Furthermore, we are going to use
this computable description of f.p. graded modules to define a computable model of the
category of coherent sheaves over a toric variety.

In Chapter IV, to show the flexibility of the developed categorical framework for im-
plementing abelian categories, we give an instance of constructing a computable category
out of another one: the generalized morphism category G (A) of a computable abelian cat-
egory A. While the generalized morphism category G (A) is already interesting by itself,
for example to constructively perform diagram chases in the computable abelian category
A, we use it to describe another level of abstraction: the Serre quotient category A/C of
an abelian category A with respect to a thick subcategory C < A. The Serre quotient
category A/C is computable abelian if A is computable abelian and the membership of

11



12 I. INTRODUCTION

objects in C is decidable. We call the membership of objects in C decidable if there is an
algorithm which decides for any object in A whether it is in C. We describe three distinct
data structures for generalized morphisms and establish the computability of the Serre
quotient category for each of the three data structures.

In Chapter V, using the Serre quotient category we show that the category of coherent
sheaves over a mormal toric variety is computable abelian. For a normal toric variety X
with no torus factors every coherent sheaf is the sheafification of a f.p. graded module over
the Cox ring S of X. To model the category of coherent sheaves over X we use the Serre
quotient of the category of f.p. graded S-modules with respect to the thick subcategory of
modules that sheafify to zero. Whether or not a f.p. graded module sheafifies to zero in this
setup can be decided by computing the 0-th degree parts of certain finitely presented graded
modules over Laurent polynomial rings. We give an algorithm to compute all graded parts
of a f.p. graded module over such a ring. This algorithm establishes the decidability of
the thick subcategory of f.p. graded S-modules that sheafify to zero, so we can prove that
the category of coherent sheaves over a toric variety modeled by the said Serre quotient is
computable abelian.

As an application of the computable versions of the categories of f.p. graded modules
and coherent sheaves we give a purely categorical algorithm to compute the grade or purity
filtration of a f.p. graded module and a coherent sheaf in Chapter VI. We will see that
ensuring the computability of all involved categories in our categorical framework, we can
apply the same algorithm to compute the grade filtration in both the f.p. graded module
and the coherent sheaf context. So we see that the abstraction provided by the categorical
framework leads to highly abstract algorithms, mimicking the constructions in category
theory proofs.

The notion of computable categories and the defined constructions which mirror the
existential quantifiers from the definition of an (abelian) category led us to the imple-
mentation of a categorical programming language, which itself is implemented as the GAP
([GAP17]) package CAP ([GSP17]). Such an implementation posed several challenges
due to the many possible choices of data structures for categories, but also due to the
undecidability of certain problems. We are going to address these challenges and provide
possible solutions in Chapter VII. We will also highlight certain features implemented in
CAP that help to provide a universal framework which still allows efficient computations,
including the following:

e Derivation of categorical constructions, ensuring that only a small set of algorithms
has to be implemented for an abelian category A to provide the possibility to
computationally carry out all categorical constructions possible in A.

e The caching of results of computations to make categorical constructions compat-
ible, fast, and mimic “paper mathematics” as far as possible on a computer.

The categorical framework and all computable categories discussed in this thesis are

implemented in the GAP package CAP. Parts of the code of the implementations can be
found in the Appendices D to G.



CHAPTER 1II

Computability of categories

This chapter sets the stage for computable categories, by giving all necessary definitions
needed throughout this thesis. We introduce the notions of computability and computable
abelian categories. We start by defining computable functions and decidable sets. Using
these computable functions and decidable sets, we define the realization of a category, which
will serve as data structure for a category. We then define when a certain category with
a given realization is computable preadditive, additive, preabelian, and abelian, following
the hierarchy of category types described in [BLH11, Appendix A].

We do not use the classical definition of a category, but an extended one called category
with Hom-setoids to define the realization and a computable category.

This chapter contains no theory, and the running example is meant to illustrate the
definitions. A more involved example for the definitions in this chapter will be given in
Chapter II1I.

1. Computable functions and decidable sets

Before we can even talk about computability of a category we need to define what it
means for functions to be computable and for mathematical data to be representable on a
computer.

Definition 1.1. Let 2,8 < N and §: 21 — B a function. We call f computable if
there is a deterministic Turing machine M which computes f.

The phrase “there is a deterministic Turing machine which computes §” can be rephrased
by “there is an algorithm implementable on a computer which for every a € 2 computes
f(a)”

We now establish when a set is representable on a computer. A category can only be
represented on a computer if objects and morphisms have finite data structures. Every
data on a computer boils down to a finite sequence of natural numbers, and we can encode
such a sequences as a single natural numbers in a computable way. So any computer
representation of mathematical objects is just a natural number.

Definition 1.2 (Decidable sets). A subset 2l < N is decidable if there is a computable
function

IsContainedy : N — {0,1}
such that
IsContainedy (a) = 1 < ae 2l
More elaborately we say that 2l is decidable by IsContainedy.

13



14 II. COMPUTABILITY

We will use decidable sets as data structures for objects and morphisms in computable
categories. Note that not every subset of N is decidable. Also decidability of a set does not
mean subsets are decidable as well: By Rice’s Theorem, the set of computable functions is
decidable, but every nontrivial subset thereof is undecidable.

Definition 1.3 (Decidable equivalence relation). Let A « N and ~< 24 x 2 an equiv-
alence relation. We say ~ is decidable if there is a computable function

IsEqual : A x A — {0, 1}

such that
IsEqual (a,b) =1 < a~b.

Definition 1.4 (Realization of a set). Let A be a set. We say that the decidable set
20 < N is a realization of A if there is a surjective map

Interpret, : A — A,

such that the induced equivalence relation ~yyterpret, 00 2l is decidable. We call Interpret 4
the realization map.

A set A is representable on a computer if it has a realization, and the realization defines
a data structure for the elements of the set. Note that the set A itself does not need to be
finite.

REMARK 1.5.

(1) We have A = 2/ ~yerpret, s sets.
(2) The notion of computability does not apply to Interpret ,, since A ¢ N. It merely

describes the interpretation of the computer data 2 in the mathematical context
of A.

We will now identify the set {0,1} with the set {false, true}, with 0 = false and
1 = true.

Definition 1.6. In the setting of Definition I1.1.4 we define Serialize4 to be an arbi-
trary, but fixed section of Interpret 4, i.e., Interpret 4 o Serialize, = id 4.

While Interpret 4, is seen as the interpretation of computer data in the mathematical
context, Serializey can be seen as the “constructor”. As for Interpret,, the notion of
computability does not apply to Serialize 4. Part of the application of Serialize 4 to elements
of A is usually done by hand, e.g., rewriting matrices as a list of lists which form a valid
input for the computer. Mapping such input data into memory, e.g., converting this list of
lists to a single number, is then done by the computer itself.

After having defined data structures for sets, we will now define when a function be-
tween two realized sets is computable.

Definition 1.7 (Computable function). Let A, B be sets with realizations 2,8 < N
and corresponding interpretations Interpret, and Interprety, A” < A, B’ < B, A" :=
Interpret;' (A’), and B’ := Interprety' (B’).
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We call a map f : A’ - B’ computable by the realizations 2l and B if there is a
computable function

foA — B
such that the following diagram commutes:

Interpret 4
Ql/ 5 A/

i |7

%/ N B/
Interpret 5

The choice of the computable counterpart f of f is not unique in general. Furthermore,
the subsets A" and B’ are not realized sets by themselves, since the membership in the

realizations of realized sets is by definition decidable, but we do not require decidability
for 2" and B’.

2. Categories with Hom-setoids

We now define the type of category we are going to work with: categories with Hom-
setoids. As a reminder we first give the classical definition of a category.

Definition 2.1 (Category, classical definition). A (locally small) category A con-
sists of a class of objects Obj, and for each pair A,B € Obj, a set of morphisms
Hom 4 (A, B) such that for A, B,C € Obj 4 there is a map

PreCompose : Homy (A, B) x Homy (B, C) — Homy (A, C), (p,0) — o)
for which the following holds:
(1) For A, B,C, D € Obj 4, ¢ € Hom4 (A, B), v € Hom 4 (B, C), and w € Homy4 (C, D)
() w = (Yw).

(2) For every A € Obj 4 there is an idy € Homy4 (A, A) such that for every B € Obj 4
and every ¢ € Homy (A, B) and ¢ € Homy (B, A) the equalities idap = ¢ and
1ids = 1 hold. We call id4 the identity morphism of A.

For a ¢ € Hom 4 (A, B) we define
A =: Source (y) ,
B =: Range (¢p) .
Furthermore, we denote by

Mor 4 := U Hom 4 (A, B)
A,BeObj 4

the disjoint union of all morphisms.
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For computable categories, we are not going to use the classical definition of categories
above, but a generalized one: categories with Hom-setoids'.

Definition 2.2 (Category with Hom-setoids). A (locally small) category (with
Hom-setoids) A consists of the following data:

(1) A class of objects Obj 4.

(2) For two objects A, B € Obj, there is a set Homy (A, B) with an equivalence
relation ~ 4 p, called congruence of morphisms.

(3) For every triple A, B, C' € Obj 4 there is a composition function

PreCompose : Hom4 (A, B) x Homy (B, C) — Homy (A, C), (p, 1) — @b,
such that for ¢, ¢" € Hom 4 (A, B) with ¢ ~4 5 ¢’ and 1,9’ € Hom 4 (B, C) with
Y ~p.c ' we have
oY ~ac 'Y,
and forall A, B,C, D € Obj 4, « € Hom 4 (A, B), 5 € Homy (B, C),y € Homy (C, D)

we have

((@B)7) ~ap (a(B7))-
(4) A function
IdentityMorphism : Obj 4 — Mory4, A +— idy,
such that for all A, B € Obj, and ¢ € Homy4 (A, B) we have
idap ~ap p and pidp ~a 5 ¢.
Notation. From now on a category is a category with Hom-setoids as defined in Defi-

nition I1.2.2. If we want to refer to the classical setting in Definition I1.2.1, we denote this
category by classical category.

3. Categories with Hom-setoids vs. classical categories

We explain how categories with Hom-setoids relate to classical categories. We will show
that every classical category can naturally be interpreted as a category with Hom-setoids.
Afterwards, we will define two ways how a classical category can be equivalent to a category
with Hom-setoids: Either by using the natural way of a classical category to be interpreted
as category with Hom-setoids, or by using the natural way of a category with Hom-setoids
to be interpreted as classical category.

Theorem 3.1. Let A be a category. Then A is a category with Hom-setoids by setting
for two objects A, B € Obj 4 and two morphisms «, 5 € Homy (A, B)

a~A,Bﬁ:<:>oz:B.
We call this the setoid interpretation of A.

Definition 3.2 (Functor). Let A and B be two categories (with Hom-setoids). A
functor F': A — B consists of the following data:

IThe necessity of this definition will be explained in Chapter II1, in particular in Example I11.2.13.



3. CATEGORIES WITH HOM-SETOIDS VS. CLASSICAL CATEGORIES 17

(1) A function
Fy : Obj 4 — Objg, M — Fy (M);

2) For each pair of objects A, B € Obj 4 there is a function
A
Fyp:Homy (A, B) — Homg (Fy (A), Fo (B)) .0 = Fap ()
such that
(a) for each object A € Obj,,
F(idA) ~ idF(A);
(b) for composable ¢, 1) € Mor 4,

F(ey) ~ Fe) F(¥).
For M € Obj 4 and ¢ € Homy (A, B) we define F' (M) := Fy (M) and F () := Fa 5 (p).
Definition 3.3. Let A and B be two categories (with Hom-setoids). A and B are
equivalent if there is a functor F' : A — B for which the following holds:
(1) For any two objects A, B € Obj 4 the induced map

HOIHA (A, B)/ ~AB — HOIHB (F (A) ,F(B))/ ~F(A),F(B)

is well-defined and bijective.
(2) For every B € Objg there is an A € Obj 4 such that B = F'(A).

Proposition 3.4. Let A and B be two classical categories. Then A and B are equiva-
lent as classical categories if and only if they are equivalent as categories with Hom-setoids
in the sense of Theorem [1.53.1.

PROOF. If the equivalence relation on the Hom sets is just the equality, the Definition
[1.3.3 is the classical definition of equivalence. The claim follows. U

Proposition 3.5. Let A be a category (with Hom-setoids). Then we can obtain a
classical category A’ with
(2) HOIIl_A/ (A, B) = HOHI_A (A, B)/ ~AB-

PROOF. Since two morphisms of A" are equal if and only if they are equivalent in A,
the axioms of a classical category are fulfilled. O

Definition 3.6. In the setting of Theorem I1.3.5, we call A’ the reduction of A.

Theorem 3.7. Let A be a category (with Hom-setoids). Then A is equivalent to its
reduction A’ as a category with Hom-setoids.

PrROOF. Let F' : A — A’ the functor defined by F (A) := A for all A € Obj, and
F (p) :=p for all ¢ € Mory. Then F is an equivalence. O

REMARK 3.8. If there is a classical category A and a category (with Hom-setoids)
B, such that the reduction B’ of B is equivalent to A in the classical sense, the setoid
interpretation of A is equivalent to B.



18 II. COMPUTABILITY

4. Computable categories

We now define a computable category by stating the requirements to the realizations
of the set of objects and the set of morphisms. We start by defining the requirements
for the data structures of objects and morphisms, i.e., the realizations thereof, and then
define which functions we require to be computable in those realizations to call a category
computable. From now on, we use typewriter font for computable functions and normal
font for categorical constructions.

Definition 4.1 (Realization of a category). Let A be a category where Obj := Obj 4
and Mor := Mor 4 are sets. A realization R of A consists of

(1) a realization Dbj for Obj, where we denote the functions as follows:
(a) the interpretation by InterpretObj,
(b) the computable equivalence relation on Dbj induced by the interpretation
InterpretObj by IsEqualForObjects,
(c) and the decidability function IsContainedpp; by IsWellDefinedForObjects.
(2) a realization Mot for Mor, where we denote the functions as follows:
(a) the interpretation by InterpretMor,
(b) The computable equivalence relation on 2ot induced by the interpretation
InterpretMor by IsEqualForMorphisms,
(c) the decidability function IsContainedgy, by IsWellDefinedForMorphisms.
(3) two computable functions

Source : Mot — Obj,
Range : Mot — Obj,

such that the following diagrams commute:

InterpretMor InterpretMor
Mot ———  Mor Mot — > Mor
Source l l Source  Range l l Range
0 bj - Obj 0bj - Obj
InterpretObj InterpretObj

(4) a computable function
IsCongruentForMorphisms : 9ot x Mot — {true, false}

which models the equivalence relation on the homomorphism sets from Definition
I1.2.2, i.e., for two morphisms f, g € Mo, one has

IsCongruentForMorphisms (f, g) = true
< InterpretMor (f) ~ InterpretMor (g) .

We say that A is realized by R := (Obj, Mor, IsCongruentForMorphisms). If the real-
ization is clear from the context we just say realized.
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It is also possible to realize a category by undecidable sets, i.e., where the functions
[sWellDefinedForObjects and IsWellDefinedForMorphisms are not computable. We will
call such a realized category undecidable.

Definition 4.2 (Computable category). Let A be a category realized by R. We call
A computable (by the realization R) if the two functions

IdentityMorphism : Obj 4 — Mory4, A +— idy and

PreCompose : U Hom 4 (A, B) x Homy (B, C) — Mor 4, (¢, %) — @i
A,B,CeObj 4

are computable by the realizations Dbj and Dot by R.

So to render a category with a given realization computable, we must provide algorithms
that make the functions PreCompose and IdentityMorphism computable.

Definition 4.3. Let A be a realized category. If only IdentityMorphism is computable,
we call it a category with computable identity morphism. If only the function
PreCompose is computable, we call it a category with computable composition.

We start the running example for this chapter and illustrate that the category of finite
dimensional rational vector spaces is computable in the sense of Definition I1.4.2.

Example 4.4 (Vector spaces). Let V be the category of isomorphism classes of finite
dimensional vector spaces over @Q with Obj,, := N and Homy, (m,n) = Q™*", where the
composition of morphisms is just matrix multiplication and the identity morphism of an
object m is the m x m identity matrix.? We define two matrices in Q™*" to be congruent
if they are equal®.

We give a realization for this category to see that it is indeed computable. Let

a0
Tolnteger : U Q' — N
i=0
be a computable, injective function with computable inverse.* Using Tolnteger, we can
establish data structures for the objects and the morphisms in the category. For Obj,,, we
will use the integers N « Q!, which we realize using Tolnteger. For a morphism A € Q™"

2The category V is indeed equivalent to the category of finite vector spaces over Q.

3In the computable category described in Chapter IIT IsCongruentForMorphisms will differ from
IsEqualForMorphisms

4 The function Tolnteger can be defined by taking a computable injective function p:Q — N, for
example

% s gEn(@san®) +13lal 5l ged (g, b) = 1.

Now, the function
i
Ni — N7 (n17"'7ni) — szlb,
j=1

where p; is the ¢-th prime number together with ¢ provides Tolnteger.
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we will use a list
(m,n, A11,..., Apn) = (m,n, A),
which we will model as an integer using Tolnteger. The function for IsEqualForObjects is
the equality of integers, and the decidability function [sWellDefinedForObjects is the check
whether the preimage of an integer under Tolnteger is a single integer. The functions for
IsEqualForMorphisms and IsCongruentForMorphisms are also just comparison of integers,
since the serialization function Tolnteger is injective. So two integers in the realization
of Mory correspond to the same matrix if and only if there are equal. The function
IsWellDefinedForMorphisms checks whether an integer corresponds to a list where the
first two entries a,b are non-negative integers and the rest of the list has length ab. The
algorithm for IdentityMorphism is creating an identity matrix, i.e., for an integer m it
creates the list
(m,m,1,...).
The algorithm for PreCompose is the multiplication of matrices, i.e., for two lists
(m,n,A) and (n,p, B)

it creates the list
(m,p, AB).

From now on for the rest of this thesis, we will not go back to a single integer rep-
resentation of computer data. Instead we are going to use data structures every modern
programming language has, e.g., integers, floats, rationals, arrays/lists, etc. Giving these
data structures an image in the memory of the computer is then done by compilers and
interpreters, and not of any further interest for this thesis.

5. Decidable properties

Categorical properties of objects and morphisms in categories are often the desired
result of a computation. So we define the decidability of a property in a category.

Definition 5.1. Let A be a computable category realized by SR and P a property, i.e.,
a mathematical attribute of objects or morphisms in A that can either be true or false. We
say P is decidable if for the appropriate € € {Obj, Mot} there is a computable function

IsP : € — {true, false}
with the following property for all x € €:
IsP (z) = true < P (Interpret (x)).

The function IsP should return true on serialized objects or morphisms if and only if the
property P is fulfilled for their interpreted counterpart. For all other serialized objects or
morphisms, it should return false.

Important properties to mention here are whether a morphism is a mono-, epi-, or
isomorphisms.

Definition 5.2. Let A be a category, A, B e Obj,, and ¢ : A — B.
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(1) The morphism ¢ is a monomorphism if for any C' € Obj, and any two ¢y, €
Hom 4 (C, A) we have

Y1 ~c.B Yo = Py ~c,a Yo

We then write ¢ : A — B.
(2) The morphism ¢ is an epimorphism if for any C' € Obj, and any two ¢y, €
Hom 4 (B, C') we have

Y1 ~a,0 P2 = U1 ~p o Va.

We then write ¢ : A - B.
(3) The morphism ¢ is an isomorphisms if there exists a morphism ¢! : B — A
such that

PreCompose (p, ") ~a,4 IdentityMorphism (A)
PreCompose ((p_l, gp) ~ p.p IdentityMorphism (B) .
Definition 5.3. Let A be a computable category.

(1) A has decidable monomorphisms if the monomorphism property is decid-
able for morphisms. We call the computable function that decides this property
IsMonomorphism.

(2) A has decidable epimorphisms if the epimorphism property is decidable for
morphisms. The name of the computable function in this case is [sEpimorphism.

(3) A has decidable isomorphisms if the isomorphism property is decidable for
morphisms. The name of the computable function in this case is IsIsomorphism.

Example 5.4 (I1.4.4 cont.). The category of vector spaces V has decidable monomor-
phisms, epimorphisms, and isomorphisms. The function Rank which returns the rank of a
rational matrix is well-known to be computable and can be used to compute all of those
properties. Let ¢ € Mory, be the triple (m,n, M).

(1) The function to decide monomorphisms is defined by
IsMonomorphism (¢) := (Rank (M) = m).
(2) The function to decide epimorphisms is defined by
IsEpimorphism (¢) := (Rank (M) = n).
(3) The function to decide isomorphisms is defined by
I[sIsomorphism (¢) := (m =n A Rank (M) =n).

6. Preadditive categories

We continue following the hierarchy (preadditive, additive, preabelian, abelian) from
[BLH11, Appendix A] to define abelian categories. For the corresponding hierarchy of
computability notions the disjunctions and existential quantifiers in the definitions of
(preadditive, additive, preabelian, abelian) categories need to be turned into algorithms.
So we emphasize existential quantifiers and disjunctions in the definitions in this chapter.
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Definition 6.1 (Preadditive category). Let A be a category. A is preadditive if the
following conditions hold:

(1) For A, B € Obj 4 there ezists a zero morphism 04 5 € Homy4 (A, B) such that
for every C' € Obj 4 and every ¢ € Homy (C, A) and ¢ € Hom4 (B, C), ¢045 ~c.5
OQB and OA,Bw ~AC OA,C holds.

(2) For every A, B € Obj, and every ¢,1 € Homy (A, B) there ezists a sum ¢ +
1 € Homy (A, B) which is associative, commutative, and distributive with the
composition up to congruence.

(3) For every A, B € Obj, and every ¢ € Homy (A, B) there erxists the additive
inverse —¢ € Hom 4 (A, B) such that ¢ + (—¢) ~a5 04 5.

In other words, for every A, B € Obj, the set Homy (A, B)/ ~ap together with the
addition, inversion and the zero morphism is an Abelian group.

Definition 6.2 (Computable preadditive category). Let A be a computable category
by the realization R. A is computable preadditive (by fR) if A is preadditive and

(1) There is a function
ZeroMorphism : Obj 4 x Obj 4 — Mory, (A,B) — 045

which is computable by *R.
(2) There is a function

AdditionForMorphisms : U (Homy (A, B) x Homy4 (A, B)) — Mor4, (¢, ) — @ +
A,BeObj 4

which is computable by fR.
(3) There is a function

Additivelnverse : Mor 4 — Mor 4, ¢ — —¢

which is computable by fR.

While the addition of morphisms in the classical sense is parameterized by the source
and the range of the two morphisms in the sum, the definition of a computable preadditive
category states a single function, having all pairs of summable morphisms as domain. When
parameterizing the functions by objects, we would end up with a (possibility infinite) set
of functions, which would not be implementable, even if every single function in this set is
computable. Therefore we need a single function for the addition. The addition function
is also not required to check whether their two input morphisms are summable. If the
computable function for addition gets the realization of two morphisms as input which
cannot be summed, the result is undefined.

Following the terminology Definition 11.4.3 we get the following notation:

Notation. A computable preadditive category is a preadditive computable category
with computable zero morphisms, computable addition, and computable additive
inverse.
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Example 6.3 (I1.4.4 cont.). We describe the three functions ZeroMorphism, Addition-
ForMorphisms, and Additivelnverse for V. These functions can be sketched as follows:
create a zero matrix, add two matrices, and additively invert a matrix. Up to applying the
inverse of Tolnteger to the arguments and again applying Tolnteger to the result of the
computation, we can model the functions as follows:

(1) ZeroMorphism takes two integers m,n and returns

m,n,0,...,0
——
mn times

(2) AdditionForMorphisms takes two sequences (m,n, A) and (m’,n’, B), and returns
(m,n, A+ B), where A + B is the entrywise addition.
(3) Additivelnverse takes a sequence (m,n, A) and returns (m,n, —A).

Since all of them are computable, V' is computable preadditive.

7. Additive categories

Next in the hierarchy of category types from [BLH11, Appendix A] is the notion of
an additive category. Again we emphasize the existential quantifiers.

Definition 7.1 (Additive category). Let A be a preadditive category. A is additive if
the following conditions hold:

(1) There exists a unique zero object 0 € Obj 4 such that for every A € Obj 4 the sets
Hom 4 (A,0) and Hom 4 (0, A) consist of exactly one element up to congruence.

(2) For every pair of objects Ay, Ay € Obj 4 there exists a product object A; x A,
together with projections 7, : A; x Ay — A;, @ = 1,2 such that for all B € Obj 4
and all pairs of morphisms ¢; € Hom 4 (B, A;) there erists an up to congruence
unique universal morphism {¢;, ps} € Homy (B, A; x As) which makes the
following diagram commute up to congruence:

B
P1 ‘/{3017 802} P2
Al X A2
Al A2

(3) For every pair of objects A;, Ay € Obj 4 there exists a coproduct object A; 114,
together with injections ¢; : A; — A 1145, ¢ = 1,2 such that for all B € Obj 4 and
all pairs of morphisms ¢; € Homy (A;, B) there exists an up to congruence unique
universal morphism (¢, ps) € Homy (A; 11 Ay, B) which makes the following
diagram commute up to congruence:
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We will split up the definition of a computable additive category in several parts cor-
responding to the granulated notions in Definition I1.4.3.

Definition 7.2 (Computable zero object). Let A be a computable preadditive category
by the realization R. Then A has a computable zero objects if the two constructions

UniversalMorphismIntoZeroObject : Obj, — Mor4, A +— 04,
UniversalMorphismFromZeroObject : Obj 4 — Mor4, A — 0y

are computable by fA.
Definition 7.3 (Computable product). Let A be a computable additive category by
the realization R. Then A has computable products if the three constructions
DirectProduct : Obj 4 x Obj 4 — Obj 4, (A1, Ay) — Ay x Ay,
ProjectionInFactorOfDirectProduct : Obj 4 x Obj 4 x {1,2} — Moru, (A;, As, i) — 7,

UniversalMorphismIntoDirect Product : U (Homy (B, Ay) x Homy (B, Ay))
Al,AQ,BEObjA

— Mor g, (<p1, 902) — {9017<P2}

are computable by fA.
Definition 7.4 (Computable coproduct). Let A be a computable additive category
by the realization PR. Then A has computable coproducts if the three constructions
Coproduct : Obj 4 x Obj 4 — Obj 4, (A1, Ag) — A; 11 A,
InjectionOfCofactorOfCoproduct : Obj 4 x Obj 4 x {1,2} — Mor 4, (A1, Az, 7) = ¢4,

UniversalMorphismFromCoproduct : U (Hom 4 (Aq, B) x Hom4 (A, B))
Al,AQ,BGObj_A
— Mory, (1, ¢2) = (o1, ¢2)

are computable ‘R.

Proposition 7.5 ([ML71, p. 194]). Let A be an additive category. Then finite direct
products and coproducts are isomorphic.
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Corollary 7.6. Let A be a computable preadditive category by the realization R in
which direct product and coproduct are computable. Then A has computable isomor-
phisms between products and coproducts, i.c., the following functions are computable

by R:
IsomorphismFromCoproductToDirectProduct : Obj 4 x Obj 4 — Mor 4,
(Al,AQ) — (Al HAQ g Al X Ag),
IsomorphismFromDirectProductToCoproduct : Obj 4 x Obj 4 — Mor 4,
(Al,AQ) — (A1 X AQ - Al ]_[AQ) .

Both functions can be computed using the universal properties of products and coprod-
ucts.

Definition 7.7. Objects which are simultaneously direct products and coproducts are
called biproducts or direct sums.

Definition 7.8. Let A be a computable preadditive category by realization R in which
finite direct products and coproducts coincide, i.e., for two A, B € Obj 4, we have
A®B:=AxB=AUB.

The corresponding categorical notions for direct sums are:

DirectProduct : ObJA X ObJA — ObjA, (Al, AQ) — Al &) AQ,
ProjectionInFactorOfDirectSum : Obj 4, @ Obj 4 ® {1,2} — Mory, (Aj, Ao, i) — 7,
UniversalMorphismIntoDirectSum : U (Hom 4 (B, A1) @ Homy4 (B, A2))
Al,AQ,BEObjA
- MOI'A, (gplv 302) — {9017 902} )
InjectionOfCofactorOfDirectSum : Obj 4 x Obj 4 x {1,2} — Mor 4, (A1, Az, i) — ¢;,
UniversalMorphismFromDirectSum : U (Homy (Aq, B) x Homy (As, B))
Al,AQ,BEObjA
— Mory, (@1, p2) = (p1, P2) -

We say A has computable direct sums.

A category with computable direct sums has computable direct products and coprod-
ucts.

Definition 7.9 (Computable additive category). Let A be an additive category which
is computable preadditive by the realization 8. Then A is computable additive if
it has a computable zero object, computable products, and computable coproducts, all
computable by the realization fA.

For additive categories, one can decide whether an object is isomorphic to the zero
object.
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Definition 7.10. Let A be a additive category with realization PR. An object A € A
is zero if it is isomorphic to 0 € A. The category A has decidable zeros if this property
is decidable for the realization ‘R.

Lemma 7.11. Let A be computable additive by realization R. Then A has decidable
zeros.

PRrROOF. For A € Obj, we have A = 0 if and only if idg ~4,4 04 4. Since both id4 and
04,4 are computable by R, and congruence of morphisms is decidable, A has decidable
ZET0S. U

Example 7.12 (I1.6.3 cont.). We give algorithms for the zero object and direct sum
in V to show that V is computable additive. Again, we describe the algorithms for the list
data structures of matrices, assuming the function Tolnteger is applied a posteriori.

(1) UniversalMorphismFromZeroObject: For a number n return (0,n).

(2) UniversalMorphismIntoZeroObject: For a number n return (n, 0).

(3) DirectSum: For two integers m and n return m + n.

(4) ProjectionInFactorOfDirectSum: Let 1,, be the m x m identity matrix and 0,
the n x m zero matrix. For three parameters m, n, and i return

+ L
m 4+ n,m, O
n Om,n
m—+n,n, 1,
if i = 2.

(5) InjectionOfCofactorOfDirectSum: The same function as ProjectionInFactorOf-
DirectSum, but with the output matrices transposed.

(6) UniversalMorphismIntoDirectSum: Takes two matrices (m,n, A) and (m,n’, B)
and returns the matrix (m,n + n', (A, B)).

(7) UniversalMorphismFromDirectSum: The same function as UniversalMorphism-
IntoDirectSum, but with the output matrices transposed.

if7=1and

Since all of these functions are computable, V is computable additive.

REMARK 7.13. In definition of a computable additive category, there is already a re-
dundancy: The function ZeroMorphism can be computed using UniversalMorphismFrom-
ZeroObject and UniversalMorphismIntoZeroObject. So when implementing a computable
additive category it suffices to give algorithms for UniversalMorphismFromZeroObject
and UniversalMorphismIntoZeroObject, and the algorithm for ZeroMorphism can be con-
structed from these two algorithms. This process is called derivation of operations and will
be explained in Section VII.7.

8. Preabelian categories

We now give the definition of a preabelian category and a computable notion thereof.
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Definition 8.1 (Preabelian category). Let A be an additive category. A is preabelian
if the following conditions hold:

(1) For every morphism ¢ : A — B there exists a kernel x : K — A with kp ~x p
Og,p such that for every morphism 7 : T" — A with 79 ~7p Opp there ewists
an up to congruence unique kernel lift 7/k : T'— K which makes the following
diagram commute up to congruence:

K Ok.B

T,B

(2) For every morphism ¢ : A — B there erists a cokernel € : B — C with pe ~4 ¢
04,0 such that for every morphism 7 : B — T with o7 ~4 ¢ 04,¢ there exists an
up to congruence unique cokernel colift €\7 : C' — T which makes the following
diagram commute up to congruence:

Oac

A——B

C
3 e\T
T

A

0ac
Definition 8.2. Let A be a computable category by the realization 8. Then A has
computable kernels if the three functions

KernelObject : Mor4 — Obj 4, ¢ — K,
KernelEmbedding : Mor 4 — Mor 4, ¢ — k,
Kernellift : M — Mory, (¢, 7) — 7/K

are computable by the realization R, where

M = {(gp,T) € U (Homy (A, B) x Homy (T, A))
T,A,BeObj 4

Tg0~0}.

REMARK 8.3. To treat the kernel of a morphism in a computable category algorith-
mically, it is not sufficient to have an algorithm to compute the kernel object, but also
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algorithms to compute the kernel embedding and the kernel lift are necessary. So for a
proper algorithmical handling of the kernel not only a computable function KernelObject
is needed, but also a computable functions for KernelEmbedding and KernelLift. On the
other hand we have

KernelObject = Source o KernelEmbedding,

so the algorithm for the kernel object can be “derived” from the algorithm for kernel
embedding.

In Example 11.8.6 we see that it can be more effective not to use this “derivation”
(cf. Section VIIL.7) to implement the algorithm for KernelObject.

Definition 8.4. Let A be a computable category by the realization 8. Then A has
computable cokernels if the three functions

CokernelObject : Mor 4 — Obj 4, ¢ — C,
CokernelProjection : Mory — Mor 4, ¢ — €,
CokernelColift : M — Mor, (¢,7) — €\

are computable by the realization R, where

M = {(@,7’) € U (Hom 4 (A, B) x Homy (B, T))

T,A,BeObj 4

<p7~0}.

Definition 8.5 (Computable preabelian categories). Let A be a computable additive
category by the realization R, which is preabelian. Then A is computable preabelian
if it has computable kernels and cokernels by the realization R.

Example 8.6 (I1.7.12 cont). We give the algorithms to make V a computable pre-
abelian category. All algorithms are based on Gaussian elimination, which is well-known
to be computable.

(1) KernelObject: Gets a matrix A € Q™*", and returns k := m — Rank (A).
(2) KernelEmbedding: Let A € Q™™ . There is a computable function

Basis0fSyzygiesOfRows (A)

which computes a matrix 7' e Q¥*™ such that 7" is in Gaussian normal form, i.e.,
the rows form a basis, TA = 0, and for every 7" € Q¥ *™ with T"A = 0 the equation
XT =T’ is solvable. KernelEmbedding is then Basis0fSyzygies0fRows®.

(3) KernelLift: Let A e Q™" and B € Q" be matrices. Define B’ € Q" such that
B — B' = X A'is solvable and the i-th column B’ ; = 0 if and only if zA = B_; is
solvable. In particular, X A = B is solvable if and only if B’ = 0. Then we define

RightDivide (B, A) := X.

5A more usual name for this function could be Nullspace or LeftNullspace, but we want to emphasize
the relations of this functions to the functions defined in I11.2.4.
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We can then set
KernelLift (B, A) := RightDivide (Basis0fSyzygiesOfRows (B), A).

(4) CokernelObject: Gets a matrix A € Q™*™, and returns ¢ := n — Rank (A).
(5) CokernelProjection: Let A € Q™*™ . There is a computable function

Basis0fSyzygies0fColumns (A)

which computes a matrix 7' € Q™*¢ such that T is in Gaussian normal form, i.e., the
columns form a basis, AT = 0, and for every 7" € Q"** with AT’ = 0 the equation
TX =T'is solvable. CokernelProjection is then Basis0fSyzygies0fColumns.
(6) CokernelColift: Let A € Q"*™ and B € Q"¢ be matrices. Define B’ € Q"** such
that B—B' = AX is solvable and the i-th row B; _ = 0 if and only if Az = B; _ is
solvable. In particular, AX = B is solvable if and only if B’ = 0. Then we define

LeftDivide (A, B) := X.
We can then set
CokernelColift (B, A) := LeftDivide (A, Basis0fSyzygies0fColumns (B)).

All of those functions are computable, and therefore V is computable preabelian. We will
reencounter the functions Basis0fSyzygies0fRows, Basis0fSyzygiesOfColumns, LeftDivide,
RightDivide, DecideZeroRows, and DecideZeroColumns. in Definition I11.2.4.

Proposition 8.7. Let A be a computable preabelian category. Then A has decidable

monomorphisms and epimorphisms.

PROOF. Let ¢ : A — B be a morphism in A. We will show that ¢ is a monomorphism
if and only if the kernel object of ¢ is isomorphic to the zero object. Let

(k: K — A) := KernelEmbedding () .
Suppose p is a monomorphism. Then we have

ke ~ 0 ap
and therefore
K ~ 0K,A~

Since the kernel lift is unique up to congruence for every test morphism this means that
K ~0.

Now suppose K =~ 0 and let ¥y, : T — A with 11 ~ 9. By the additivity this
means that (¢ — 1s) ¢ ~ Or p therefore

Y= 11 — Py

is a test morphism for the kernel. But, since K =~ 0, we have ¢y ~ 07 4, and therefore

Y1 ~ 1.

The dual fact that a morphism is epi if and only if its cokernel is zero is analog.
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Indeed, we can state the constructions as follows: Let ¢ € Mor 4. Then

IsMonomorphism (¢) := IsZero (KernelObject (¢))
IsEpimorphism (¢) := IsZero (CokernelObject (¢)) .

9. Abelian categories

The final type of category in the hierarchy in [BLH11, Appendix A] are abelian cate-
gories. We start again by defining an abelian category, then we give a computable notion
thereof.

Definition 9.1. Let A be a preabelian category. Then A is abelian if the following
conditions hold:

(1) Any monomorphism is the kernel of its cokernel: Let x : K < A be a mono,
€ : A — (' its cokernel. Then for any 7: 7 — A with 7€ ~7¢ Op ¢ there exists an
up to congruence unique lift 7/k : T — K with (7/K) Kk ~r.a T.

(2) Any epimorphism is the cokernel of its kernel: Let e : A — C' beanepi, k : K — A
its kernel. Then for any 7 : A — T with k7 ~g 7 Ogr there exists an up to
congruence unique colift e\7 : C' — T with € (e\7) ~a7 T.

Definition 9.2 (Computable abelian categories). Let A be a computable preabelian
category by realization SR which is abelian. Then A is computable abelian if the following
functions

Lift AlongMonomorphism : M — Mory, (7,k) — 7/k,
Colift AlongEpimorphism : N — Mory, (e,7) — €\7

are computable by R, where

M {<T, 9e U (Homa(T A) x Hom (K. 4)) |
T,A,KeObj 4

x mono, T CokernelProjection (k) ~ 0},

N = {(6,7') € U (Homy (A, C) x Homy (A,T)) |
T,A,Ce0bj 4

¢ epi, KernelEmbedding (¢) 7 ~ 0}.

Corollary 9.3. Let A be a computable abelian category. Then A has decidable iso-
morphisms.

PROOF. For abelian categories a morphism is an isomorphism if it is both a monomor-
phism and an epimorphism, and those properties are decidable by Proposition I1.8.7. [J
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We finish the definitions of computable categories by showing that the category of
rational finite dimensional vector spaces is computable abelian.

Example 9.4 (I1.8.6 cont). We show that V is computable abelian. Again, all com-
putations depend on the Gaussian elimination.

(1) LiftAlongMonomorphism: Takes two matrices K and 7', returns
RightDivide (K,T).

(2) ColiftAlongEpimorphism: Gets two matrices C' and 7', returns
LeftDivide (7,C).

Since those two are computable, V' is computable abelian by the serialization given in
Example 11.4.4.

10. Categorical notions

We will establish notions for sub- and quotient (or factor) objects in categories, as well
as the notion of the image of a morphism. All the definitions in this section are only
of minor importance to this thesis. They are used to make definitions and proofs in the
following chapters look more natural.

Definition 10.1. Let A be a category, and A, B,C' € Obj 4.
(1) Let ¢ € Homy (B, A) and ¢ € Homy4 (C, A). We say ¢ dominates 1 if there is a
morphism 7 € Homy (C, B) such that
TP ~ 1.

(2) A subobject of A is a class of mutually dominating monomorphisms with range
A. If B < A is an element of this class, we write B for the subobject and A < B.

(3) Let ¢ € Homy (A, B) and ¢ € Hom4 (A4, C). We say ¢ codominates v if there
is a morphism 7 € Hom 4 (B, C') such that

T = .

(4) A factor object or quotient object of A is a class of mutually codominating
epimorphisms with source A. If 7 : A — B is an element of this class, we identify
the factor object with B and write

B =: A/KernelObject (7).

Every time we write a subobject or a factor object we use it as a placeholder for its
embedding or projection.

Definition 10.2. Let A be a category and ¢ : A — B € Mor 4.

(1) An image of A under ¢ is a monomorphism ¢ : [ < B such that there is a
(necessarily unique) epimorphism ¢’ : A — [ with

o't~ .
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We define
ImageObject (¢) := I and ImageEmbedding (¢) := ¢.

(2) The restriction of ¢ to a subobject A" with embedding ¢ : A" <— A is the mor-
phism tp. We write ¢|4 for the restriction and ¢ (A’) for its image.

Definition 10.3. Let A be an abelian category, ¢ : A — B € Mory, and ¢ : B’ — B.
(1) If « dominates ImageEmbedding () we call the lift
o/t: A— B

the coastriction of ¢ with «.
(2) Let v : A" — A a monomorphism such that ¢ dominates y¢. Then we call

(vp)/v: A — B
the restriction-coastriction of ¢ with v and «.



CHAPTER III

Implementation of graded modules

As a first involved example of a computable category we present the category of graded
module presentations over a graded ring. This category is equivalent to the category of
finitely presented graded modules over a graded ring and is computable abelian if certain
conditions on the ring a met.

We start by defining a graded ring, graded modules, and morphisms between graded
modules. Then we define the category of graded module presentations over a graded ring
and state their equivalence to the category of f.p. graded modules. Afterwards, we define
the conditions on the graded ring to be computable, and show that the category of graded
module presentations over such a computable ring is computable abelian.

The category of graded module presentations is also the motivation for working with
categories with Hom-setoids instead of classical categories. In the graded module presen-
tations category, the notions of equality and congruence of morphisms will be distinct, and
we will emphasize the reason for this distinction.

1. The category of graded module presentations

We now give the definitions of a graded rings, graded modules, and their computable
versions.

Our definition of the grading will be general, i.e., the rings will be graded by a finitely
presented abelian group. As stated in the Introduction I, we want to model the graded
modules over Cox rings of toric varieties, and for each finitely presented abelian group G
a toric variety can be constructed whose Cox Ring is graded by the group G.

Definition 1.1 (Graded ring). Let G be a finitely presented additively written abelian
group and S a ring. We call S graded by G or GG-graded if there is a subring Sy < S
and for every g € G an Sp-submodule S, < S such that

S=@PSs,
geG

with g, h € G implies SyS), S Sy44 and the set
{geG |5, #{0}}

generates G as an abelian group.
An element s, € 9 is called homogeneous of degree g and G is called the degree
group of R.

33
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Definition 1.2 (Graded module). Let S be a G-graded ring. An S-(left)-module M
is graded by G or G-graded if for every g € G there is a Sy submodule M, < M such
that

MZC—BMQ

geG
and for every g, h € G we have SyM), © Myp,.
Definition 1.3 (Graded morphisms). Let S be a G-graded ring and M, N G-graded
S-modules. An S-module homomorphism
p: M — N

is called graded if there is an h € G such that for each g € G the restriction-coastriction'

g Mg — Ngin, J;HQO(ZE)
is an Sp-module homomorphism. We call h the degree of .
For a g € G we define
Homgy (M, N) := {¢: M — N | deg(¢) = g},

and set

Hom (M, N) := @ Hom, (M, N).
geG

A morphism of G-graded S-modules is a graded morphism of degree 0.

REMARK 1.4. Let S be a GG graded ring and M, N G-graded S-modules. Then the set
Hom (M, N) is a G-graded S-module.

Definition 1.5. Let S be a G-graded ring, M € S™** and N e S™** matrices with
homogeneous entries. We say N row dominates M and write N >, M if there is an
matrix with homogeneous entries X € S™*" such that XN = M.

We now define the model of f.p. graded modules we are going to work with: the category
of graded presentations.

Definition 1.6 (Category of finitely presented G-graded S-modules). Let S be a
graded ring with degree group G. The category S-grpres of graded left presentations
over S is defined as follows:

(1) The class Objg g pres is the set of all tuples M := (M’ w), where M’ e S™*9m,
m, gy € Lo, is an matrix with homogeneous entries and w € G9“ such that for
all k =1,...,m we have

deg (M,él) —w =+ =deg (M,’WM) — Wy
for i =1,..., gn with My ; # 0.

IFor a definition, see 11.10.3.
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We call M’ the relation matrix of M, g); the number of generators of M,
and w the generator degrees of M. We define:

UnderlyingMatrix (M) := M,
NumberOfGenerators (M) := gy,

GeneratorDegrees (M) := w.

(2) For two objects M, N € Objg ;e the set Homg grpres (M, V) is the set of all triples

(M, A, N) such that

(a) A is a homogeneous gj; x gy matrix.

(b) For wy, := GeneratorDegrees (M) and wy := GeneratorDegrees (N) we
have

wa g + deg (A j) = wnj

forall k =1,...,gm and j = 1,..., gy with A ; # 0.

(¢) N’ row dominates M'A, i.e., XN’ = M’'A is solvable for X.

Two morphisms (M, Ay, Nq) and (Ms, Ay, Ny) are equal if

(a) Ml = MQ,
(b) Ay = As,
(C) N1 = NQ.
They are congruent if
(a) M1 = MQ,
(b) Ny = No,

(c) there exist a matrix with homogeneous entries Y such that Y N{ = A; — A,.
For S-grpres the identity morphism and composition are defined as follows:
(1) IdentityMorphism (M) := (M, 1,,,, M),
(2) PreCompose ((M,A,N),(N,B,L)) :=(M,AB, L),

where 1,,, denotes the gy, x gps identity matrix over S.

gm

REMARK 1.7. As in Definition I1.2.2, we have different notions for equality and con-
gruence on the Hom-setoids.

Proposition 1.8. Let S be a G-graded ring. Then S-grpres is a category.
ProOOF. We need to show that composed morphisms are again morphisms and the

defined operations for composition and identity morphism respect the congruence:
(1) We show that the composition of two morphisms is well-defined. Let a :=
(M,A,N) and  := (N, B, R) be morphisms. Then there is a matrix X with
XN’ = M'A and a matrix Y with YR' = N'B. So we have
M'AB=XN'B=XYR

and therefore the equation M'AB = ZR' is solvable for Z.
(2) We show the well-definedness of the identity morphism. Let M be an object and
a:=(M,A, N) a morphism. We have

ids = (4,1,,,A) = IdentityMorphism (A) .
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So aid4 = a and therefore aid4 ~ . The same is true for id . opposite side.
(3) We show that the composition respects the congruence. Let M, N, R be objects
and o := (M, A,N), o/ :== (M, A’",N), 5 :=(N,B,R), 5’ := (N, B, R) morphisms
with
a~ca and f~ 4,
i.e., there are matrices X4 4 and Yp p with A — A" = Xy 4 N' and B — B’ =
Yp g R'. Then we have
AB - A'B = (A, + YA’A/N/> (B, + YB7B/R/> — A'B
= YA7A/N/B/ + A/YB7B/R/ + YA7A/N/YB7B/R/
= (YA,A’X + A/YB,B’ + YA,A’N/YB,B’) R
with XR' = N'B’. So we get
Ba ~ ['d. O
Proposition 1.9. Let S be a G-graded ring and (M, A, N) € Morg gpres- Then the

degrees of the non-zero entries of A are determined by the generator degrees of M and N.

PROOF. Let wy, := GeneratorDegrees (M) and wy := GeneratorDegrees (N). If
A; ; # 0, we have

deg (Ai,j) = WM;i — WN;- ]

Theorem 1.10 ([BLH11, 3.1] using 11.3.8). The category S-grpres is equivalent to

the category of finitely presented graded modules over S, S-grmod, where the congruence
of morphisms is just the equality.

2. Computability of graded module presentations

We are now going to investigate which properties of the ring S and the grading group
G need to hold such that S-grpres is computable abelian.

Definition 2.1 (Realized ring). Let S be a ring. A realization of S is a realization
R of the underlying set of S such that the following functions are computable by the
realization fR:

(1) The addition
+:9%x 85— S, (s1,8) — 51+ S,

(2) the inversion

—:85->5, s— —s,
(3) the multiplication

1S x 8 — 8, (s1,82) — $182,

(4) the zero element

0:{x} > 85,=—0,
(5) the one element

1:{s} = 8 +— 1.
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Definition 2.2 (Realized group). Let G be an additively written group. A realization
of G is a realization R of the underlying set of G such that the following functions are
computable by the realization fA:

(1) The addition
+:GxG—G, (g1,92) = g1 + 9o,
(2) the inversion
1G>G, g9t
(3) the neutral element
0:{+} > G, =—0.

Definition 2.3 (Realized G-graded ring). Let S be a G-graded ring. A realization
of S as (G-graded ring consists of realizations JRg of S as a ring and PR of G, such that
the function

deg : (USQ>—{O}—>G, s— hif se S,

geG
is computable for the realizations Rg and Rg.
If a realization exists, we call S realized.

Definition 2.4 (Computable ring). Let S be a G-graded ring with realization R :=
(Rs,Rg). We call S (left) computable if the following functions are computable using
Rg.

(1) For two matrices with homogeneous entries A € S™*" and B € S¥*" there is an
algorithm

DecideZeroRows (B, A)

which returns a matrix B’ € S¥*" such that B — B’ = X A is solvable and the i-th
column B’ ; = 0 if and only if zA = B_; is solvable. In particular, B = XA is
solvable if and only if B’ = 0.

(2) For two matrices with homogeneous entries A € S™*" B € S™** over S there is
an algorithm

DecideZeroRowsEffectively (B, A)
which computes a matrix X such that B — XA = B’ with

B' := DecideZeroRows (B, A).
Furthermore, if B’ = 0, we define
X :=RightDivide (B, A).
(3) For a matrix with homogeneous entries A € S™*" there is an algorithm
SyzygiesOfRows (A)

which computes the homogeneous syzygies of the rows of A, i.e., a matrix (with
homogeneous entries) T € S**™ such that TA = 0 and for every 77 € S¥*" with
T'A = 0 the equation XT = T" is solvable.
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A right computable ring can be defined by replacing left with right, rows with columns,
and the side of the computed matrices in Definition II[.2.4. For a commutative ring,
the notions left computable and right computable coincide. So we call a left computable
commutative ring computable.

Proposition 2.5. Let S := K [z1,...,x,] be a G-graded polynomial ring with a term
order < and I := {fi,..., fu) with f; homogeneous for all i. Then the reduced Gribner
basis {g1,...,gm} of I with respect to < is homogeneous.

Proor. We show that the reduced Grobner basis computed with BUCHBERGER’s al-
gorithm is homogeneous. It suffices to show that the S-polynomial of two homogeneous
polynomials is homogeneous. Let

f= Z fil"i

€N

0= g

1eN"™
be two homogeneous polynomials in S, and a := Lt< (f) and b := Lt< (g), where Lt<
denotes the leading term with respect to <. Define m := lem (a,b) and my := m/a and
myg := m/b. Then we have

and

Lt< (m;f) = Lt< (myg) = m

and therefore myf and m,g are homogeneous of degree deg(m), since m; and m, are
terms and f and g are homogeneous, and myf and m,g contain the term m. But then the
S-polynomial of f and g,

myf —mgg
is a homogeneous polynomial. From the same argument it follows that the autoreduction
preserves the homogeneity. O

Definition 2.6. Let K be a field. A realization of K is a realization R of K as a
ring such that the inversion

K- {0} > K- {0}, 2!
is computable by fR.

Proposition 2.7. Let n e N, G a group realized by Rg and K a field realized by Ry .
Furthermore, let S := K |x1,...,2,]. Then S has a realization Rg and if the grading
function is computable for Rs and Rg, S is computable G-graded.

Proor. If K is realized, a polynomial in S can be realized as list of terms, consisting
of a factor in K and exponents. Multiplication and addition are then carried out in K
and N, so S is realizable with a realization Rg. If the grading is computable, S is then
also realized as a G-graded ring. Since polynomials in S are just lists of terms, one can
decide leading terms, and therefore can have a computable term ordering on S. So S ad-
mits a BUCHBERGERs algorithm. [BROS8, Sections 1 and 2] show how DecideZeroRows,
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RightDivide, and SyzygiesOfRows boil down to Grobner basis computations for polyno-
mial rings, and since by Proposition I11.2.5 homogeneous ideal generators lead homogeneous
Grobner bases, the described algorithms can be applied to the G-graded case. O

Definition 2.8. Let S be a left computable G-graded ring.
(1) Let Be S™%* Ae S>" N e Sm=" have homogeneous entries. We can compute

(X Y) := RightDivide (B, ( ff ))

RightDivide (B, A, N) := X.

(2) For two matrices with homogeneous entries A € S™*" N € S¥*" we can compute

(K L) := SyzygiesOfRows (( ;1[ ))

and define

and define
SyzygiesOfRows (A, N) := K.

Definition 2.9. Let S be a computable G-graded ring.
(1) Let Ae S™*" be a matrix and w € G™. Then we define

W' := NonTrivialDegreePerRow (A, w),

with
Wi = w
ifAZ',l = - :Ai,n IO, or
w; := deg (A ;) + w;j
ifAiJ =" :Ai,j—l =0 and Ai,j #OfOI‘ZI 1,...,n.
(2) Let A e S™*" be a matrix and w € G™. Then we define
w' := NonTrivialDegreePerColumn (A,w),
with
Wi = w
ifALZ' = - :An,i IO, or
w; = deg (A;;) + w;
ifAl’Z’ = -- :Aj_l’izoandAm # 0 for ¢ = 1,...,7’L.

Proposition 2.10. The functions defined in Definition I11.2.9 are computable.
Theorem 2.11. Let S be a G-graded computable ring. Then S-grpres is computable.

PROOF.

(1) Objects are pairs of matrices over S and lists of elements in G. Since both S and
G have realizations, there is a realization for the category.
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(2) The equality of objects and morphisms are computable, since equality in S is
decidable.
(3) Let av:= (M,A,N),B := (M, A", N) € Morg_grpres and N’ := UnderlyingMatrix.
We have
a~p
iff XN" = A — A’ is solvable. Since S is computable, we compute A — A" and use

DecideZeroRows (A — A', N')

to decide whether the system is solvable. So the congruence of morphisms is
decidable.

(4) 0,1 € S can be constructed, as well as 0 € G. So the identity morphism is
computable.

(5) Since products and sums of elements of S are computable, and sums in G are
computable, the composition of morphisms is computable.

(6) The well-definedness of objects is computable since G is computable.

(7) The well-definedness of a morphism is computable because DecideZeroRows and
G are computable. O

Theorem 2.12. Let S be a computable G-graded ring. Then S-grpres is computable
abelian.

ProOF. We go though the list of constructions in Chapter II and give the necessary
algorithms and prove their correctness. They are all based on the algorithms defined for
the ring to be computable. If not stated otherwise, the compatibility of entry degrees of
morphisms follows directly from Proposition I11.1.9.

(1) We start by constructing the zero morphism between two objects. For two objects
M, N € ODbjg gypres We define

ZeroMorphism (M, N) := (M,0,N),

where 0 is the gy; X gy zero matrix. The triple (M,0, N) clearly defines a mor-
phism, and is computable since 0 € S is computable. Let o := (N, B, R) and
p:= (T,C, N) be morphisms. Then we have

ZeroMorphism (M, N) « = (M, 0, R) = ZeroMorphism (M, R)
and
[ ZeroMorphism (M, N) = (T,0, M) = ZeroMorphism (T, M) ,

so (M, 0, N) fulfills the universal properties of the zero morphism.
(2) We define

AdditionForMorphisms (M, A, N), (M, A", N)) := (M, A+ A", N).

Since (M, A, N) and (M, A’, N) are morphisms, there exist matrices X and X’
with XN’ = AM’ and X'N’ = A’M’. Then we have

(A+ AYM' = AM' + AM' = XN' + X'N' = (X + X') N’
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so (M,A+ A’/N) is indeed a morphism, and since the sum of elements in S
is computable, A + A’ is computable. Since addition of matrices is associative
and distributive with multiplication, the defined sum of morphisms fulfills the
properties of the addition.

(3) We define

AdditiveInverse (M, A, N)) := (M,—A,N).
We have
(M,A,N)+ (M,—A,N) = (M,0,N) = ZeroMorphism (M, N)

and therefore (M, —A, N) fulfills the properties of the additive inverse (M, A, N).
The additive inverse is computable since negation in S is computable.
(4) We define

ZeroObject (S-grpres) := (o,()),

where o is the 0 x 0 matrix, and () € G is the empty list. The object (o,()) is
obviously computable. Let M € Objg s Indeed, there is exactly one morphism

a : M — ZeroObject (S-grpres) ,
namely o = (M, A, (0, ())) where A is the gy x 0 matrix, and exactly one morphism
B : ZeroObject (S-grpres) — M,

namely 5 ((o,()), A, M) where A is the 0 x gy, matrix. Both morphisms are
computable using ZeroMorphism.

(5) We now define the direct sum. For two objects M := (M’ wys) and N := (N',wy)
we will prove that the object

: M0
D := DirectSum (M, N) := 0 N , (war, wi)
together with the projections

ProjectionInFactorOfDirectSum ((M, N) , 1) := <D, ( éM > ,M) ,
N
Onr
1

ProjectionInFactorOfDirectSum ((M, N),2) := (D,

and the injections

InjectionOfCofactorOfDirectSum ((M, N), 1) := (M, (1 On), D),
InjectionOfCofactorOfDirectSum ((M, N),2) := (N, (0p 1n), D)
is a direct sum, where 1,; is the gy; x gas identity matrix, 1y is the gy x gn identity

matrix, and 0y, and Oy are the gy X gy and gy % gy zero matrices, respectively.
Since 0 and 1 in S are computable, the direct sum object, the projections, and the
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injections are computable. Indeed, let (M, A, L) and (N, B, L) be two morphisms.
We define the universal morphism from the direct sum to be

UniversalMorphismFromDirectSum ((M, A, L) , (N, B, L))

(m(4).2)

Since there is nothing to compute, this morphism is computable. For two mor-
phisms (L, A, M) and (L, B, N) we define the universal morphism into the direct
sum by

UniversalMorphismIntoDirectSum ((L, A, M), (L, B, N))
= (L,(AB),D).
Since there is again nothing to compute, this morphism is computable.

We now show that these two universal morphisms fulfill the properties of the
universal morphisms of product and coproduct. Let

¢ := UniversalMorphismFromDirectSum ((M, A, L) , (N, B, L)),
7 := UniversalMorphismIntoDirectSum ((L, A, M), (L, B,N)) .

By blockwise matrix multiplication it follows that

InjectionOfCofactorOfDirectSum (M, N), 1)t = (M, A, L),
InjectionOfCofactorOfDirectSum ((M, N),2)t = (N, B, L),
7 ProjectionInFactorOfDirectSum ((M, N) ,1) = (L, A, M),
7 ProjectionInFactorOfDirectSum ((M, N),2) = (L, B, N).

We still need to show the uniqueness of the universal morphisms. We show this
for the morphism from the direct sum, the dual case for the morphism into the
direct sum is analog. Let ¢ be as above and

t1 := InjectionOfCofactorOfDirectSum ((M, N) ,
1o := InjectionOfCofactorOfDirectSum ((M, N) ,

—_

)
).

[\

/
Now, let ¢ := (D, < g, ) ,L) be a morphism with

25 W (M7A7L) and P2 ~ (NanL> :
Then we have matrices X and Y such that X' = A — A" and YL = B — B'.

Therefore we have
X A A’
(¥)e=(5)-()

so we have ¢ ~ .
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(6) We give the constructions for the kernel. Let (M, A, N) be a morphism and
J' := SyzygiesOfRows (A, N'). Furthermore, let K’ := Syzygies0OfRows (J', M').
We define

KernelObject (M, A, N)) := (K',w)
with
w := NonTrivialDegreePerRow (J',wyy) .
By definition K’ has homogeneous entries, and since there is a matrix Y with ho-
mogeneous entries such that K'J" = Y M’, the tuple w fulfills the degree properties.
So the tuple (K’,w) defines an object in S-grpres. Furthermore, let K := (K’ w)
be the kernel object. Then the kernel embedding is defined as
KernelEmbedding ((M, A, N)) := (K, J', M).

We have J’A + XN’ = 0, so the composition of kernel embedding and morphism
is congruent to 0, and since there is a matrix X’ with K'J" + X'M’ = 0 the
triple (K, J’, M) is compatible. By the definition of NonTrivialDegreePerRow
the grading for (K, J', M) is also compatible, so (K, J’, M) is indeed a morphism.
Since Syzygies0fRows is computable in .S and NonTrivialDegreePerRow is com-
putable, kernel embedding and kernel object are computable. Now, let (T, H, M)
be a test morphism for the kernel, i.e,

(T,HA,N) ~ (T,0,N),
which means that there is a matrix Z’ with Z'N' = HA. We define
KernelLift (M, A, N),(T,H,M))
:= (T,RightDivide (H, J') , K).
By definition, we have
KernelLift (M, A, N), (T, H, M)) KernelEmbedding ((M, A, N))
~(T,H,M).

The uniqueness of the kernel lift follows from the fact that (K, J’, M) is a monomor-
phism. Since RightDivide is computable in S, the KernelLift is computable.

(7) We give the constructions for the cokernel. Let (M, A, N) be a morphism. The
cokernel is defined by

CokernelObject ((M, A, N)) := (< ]13 ) ,wN) )

so the generator degrees are the generator degrees of N. Therefore, by the defini-
tion of an object and morphism, the object is well-defined.
The cokernel projection is defined by

CokernelProjection (M, A, N)) := (N,1,C),
where C' := CokernelObject ((M, A, N)). Since we have
(M, A, N) CokernelProjection ((M, A, N)) = (M, A, C),
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and A = XC is clearly solvable for X, we have (M, A,C) ~ Op,c. Let (N, H,T)
be a test morphism for the cokernel, i.e.,

(MuAaN) (N7H7T) ~ 0M,T~
We define the cokernel colift as
CokernelColift (M, A,N),(N,H,T)) := (C,H,T),

with C' := CokernelObject ((M, A, N)). Obviously, this morphism fulfills the uni-
versal property of the cokernel colift, and the morphism is well-defined. Again, the
uniqueness follows from the fact that the cokernel projection is an epimorphism.
To define LiftAlongMonomorphism and ColiftAlongEpimorphism, we first show
that in S-grpres, every monomorphism is the kernel of its cokernel, and every
epimorphism is the cokernel of its kernel. We then use KernelLift to define
LiftAlongMonomorphism and CokernelColift to define ColiftAlongEpimorphism.

We start by showing that every monomorphism is the kernel of its cokernel.
Let ¢ := (M, A, N) be a mono. Then we have

¢ := CokernelProjection (¢) = (N, 1y, C)
with C' = CokernelObject (). Let v := (M, G, N) be another morphism with

ve ~ Oum, 0, 1.6,
A
( N ) >I‘OW G7

which means that there exist matrices X,Y with G = XA+ Y N. A candidate for
a unique lift would be A := (My, X, M) with

X :=RightDivide (G, A, N')

once we have shown that the triple (My, X, N) is compatible, i.e., M" =, M5 X
and

Wity i + deg (Xy ;) = wir;

forall &k = 1,...,9m, and j = 1,...,g9p with X;; # 0. Since v and ¢ are
morphisms and we have X = RightDivide (G, A, N’), the degrees of A\ are com-
patible. Indeed, note that N’ >, MjG since v is a morphism. Furthermore
N' = 0w MJY N'. Hence

N' =00 MG — MUY N' = MO XA = (M X) A.
Since ¢ is a mono, the kernel embedding of ¢ vanishes, which means that
M' >,y SyzygiesOfRous (A, N') =: K.
But K row-dominates by definition any 7" with N’ >, T'A, in particular we have
M’ 2100 K Z10w My X.
So we set

Lift AlongMonomorphism (v, ¢) := A = (M, X, M) .
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We continue to show that any epi is the cokernel projection of its kernel em-
bedding. Let ¢ := (M, A, N) be an epi and

k := KernelEmbedding (¢) = (Ko, K, M) .
It suffices to show that the unique colift
A := CokernelColift (k, p) = (C, A, N)

of ¢ along € := CokernelProjection (k) is an isomorphism, where C' denotes the
cokernel object of k. We have K = Syzygies0fRows (A, N’). An inverse « of the
colift A must satisfy aX ~ idy. This implies that

a=(N,Y,C)
with
Y := RightDivide (1y, A, N'),
where 1y is the gy x gy identity matrix. The matrix Y exists since ¢ is an epi.

Now we show that the triple a = (N,Y, () is compatible and hence defines a
morphism. By definition of Y there exists a matrix Z such that

YA+ ZN' = 1y.

Multiplying with N’ from the left we obtain N'YA + N'ZN’' = N’, which is
equivalent to

NYA=(1y—NZ)N',
ie., N>, NYA But K row-dominates by definition any 7" with N’ >, T'A,
hence K >, N'Y and therefore « is a compatible triple. Since a\ ~ idy by

definition of Y, it remains to show that Aa ~ id¢c. We multiply with A from the
left and obtain

AYA+ AZN' = A,
or equivalently
(AY —1y) A = (AZ) N/,

hence N =, (AY — 1x) A and as above K =, (AY — 1y), which concludes the
proof. O

From the algorithms for the categorical constructions in S-grpres, we can see why the
distinction of congruence and equality of morphisms is important.

Example 2.13. Let S be the Q with a trivial grading, M’ := (1) € Q}, M :=
(M’ (0)), and ¢ := (M, M’ , M). Then the cokernel projection of ¢ is

¢ := CokernelProjection () — (M, M (( } ) ,(0))) .

So the composition e of ¢ and its cokernel projection is the same morphism as the cokernel
projection € of . The morphism e is congruent to the zero morphism, but not equal.
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REMARK 2.14. In the actual CAP implementation the category S-grpres is implemented
in two steps: There is a category of module presentation over a non-graded ring, and data
structures and algorithms of this non-graded module presentations are just like the above,
but without any grading conditions. The implementation in CAP can be found in Appendix
F.2.

The implementation of the graded module presentation category then uses this category
and equips the objects with gradings. It can also check whether the matrices in the
underlying non-graded presentation category represent well-defined objects and morphisms
in the graded module presentation category. The corresponding implementation can be
found in Appendix F.4.

Also, the category defined in this chapter describes left modules. Since we are only
going to work with commutative rings, this is general enough. CAP has implementations
for both left and right modules. The implementations for right modules can be found in
Appendix F.3 and Appendix F.5.



CHAPTER IV

Generalized morphisms and Serre quotients

In this chapter we present an example of the flexibility a categorical organized setup
offers for the implementation of computable categories: We create a computable category
on top of another computable abelian category, only using the categorical constructions
from that underlying category. We first define the category of generalized morphisms of
an abelian category. Then we use a certain subcategory thereof, the category of so-called
Gabriel morphisms, to establish the computability of Serre quotient categories.

For categorical operations, e.g., KernelEmbedding and UniversalMorphismFromDirect-
Sum, we use the notation from Chapter II.

1. The category of generalized morphisms

Generalized morphisms will serve as a data structure for morphisms in Serre quotient
categories. Generalized morphisms already are an interesting tool by themselves, for ex-
ample for performing diagram chases. There are several data structures for generalized
morphisms, and we will explicitly describe three of them. An extensive description of gen-
eralized morphisms, including their universal properties, can be found in [Pos17, Section
I1.1]. We will limit our exposition to the description of the data structures and operations
of generalized morphism categories, and the proof of the necessary constructions to estab-
lish the computability of Serre quotients. We will also describe how to convert those three
different generalized morphism data structures into each other, to state that they define
equivalent categories.

The three described versions of the generalized morphisms category are currently im-
plemented in CAP, and the implemented algorithms can be found in Appendices F.6, F.7,
and F.8.

1.a. Preliminaries. To define generalized morphisms we need the notions of the fiber
product and the pushout of two morphisms. Both constructions are computable in a
computable preabelian category.

Definition 1.1. Let A be a category.

(1) Let ¢ : Ay — M,¢ : Ay — M in Mory. The fiber product or pullback of ¢
and 7 is an object Py € Obj, together with two morphisms m : Py — A; and
Ty 1 Py — Ay such that m¢ ~ m1) and for every pair of morphisms 71 : @@ — A;
and 7 1 Q — A with T3¢0 ~ T there is an up to congruence unique morphism
n:Q — Py such that 7 ~ nm and 7 ~ nmy.!

1Recall, categories are categories with Hom-setoids

47
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(2) Let ¢ : M — Ay, : M — Ay in Mor4. The pushout of ¢ and 1 is an object
P, € Obj 4 together with two morphisms ¢, : A; — P, and ¢y : Ay — P, such that
pt1 ~ iy and for every pair of morphisms 7 : A — @ and 7, : Ay — @ with
@11 ~ 79 there is an up to congruence unique morphism € : B, — (@ such that
T ~ t1€ and Ty ~ L9€.

Definition 1.2. Let A be a category computable by the realization fA.

(1) We say A has computable fiber products if the functions

FiberProduct : M — Obj 4, (¢,v) — P,
ProjectionInFactorOfFiberProduct : M x {1,2} — Mor, (p,,i) — m;,
UniversalMorphismIntoFiberProduct : N' — Mor 4, (¢,v, 71, 72) — n,
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with
M = U Hom 4 (Ay, M) x Homy (Ag, M),
Al,AQ,MEObjA
N = U Hom 4 (Ay, M) x Hom 4 (A, M) x Homy (Q, A1) x Hom 4 (Q, A2)

A1,A2,M,QeObj 4

are computable by fA.
(2) We say A has computable pushouts if the functions

Pushout : M — Objy, (p,¢) — P,
InjectionOfCofactorOfPushout : M x {1,2} — Mor4, (p,,7) —
UniversalMorphismFromPushout : N' — Mory, (¢, 4,71, 72) — €,

with
M = U Hom 4 (M7A1) X HOmA (M7A2)7
Al,AQ,MEObjA
N = U Hom 4 (M, Ay) x Hom 4 (M, As) x Homy4 (A;, Q) x Homy4 (A2, Q)

A1,A2,M,Qe0bj 4
are computable by fA.

In a computable preabelian category the fiber product and the pushout can be derived
from other categorical operations.

Theorem 1.3. Let A be a computable preabelian category. Then A has computable
fiber products.

PrOOF. Let ¢ : Ay — M and ¢ : Ay — M be morphisms in A. We first give
constructions for FiberProduct and ProjectionInFactorOfFiberProduct. Let

D := DirectSum (A;, As)
with projections
m; := ProjectionInFactorOfDirectSum ((A;, As) ,7)

for i = 1,2. To compute the projections in the factors of the fiber product of ¢ and v and
the fiber product object itself we compute the diagonal difference

0 1= T — M
and set
P := FiberProduct (¢, 1) := KernelObject () .
With
X := KernelEmbedding ()
we set

ki := ProjectionInFactorOfFiberProduct (¢, v, i) := PreCompose (x, ;)
fori=1,2.
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K1
KernelObject (0)

X
T
D——— A

oo

Ay — M
2

To construct the universal morphisms into the fiber product of 71 : Q — A;and 75 : Q — A,
set

7 := UniversalMorphismIntoDirectSum (7, 72) .
Then 7 € Hom 4 (Q, D), and we have
76 ~ Op .
So we can define the universal morphisms to be

UniversalMorphismIntoFiberProduct (¢, ¥, 11, 79) := KernelLift (4, 7) . O

Since the pushout is dual to the fiber product, it is also computable in preabelian
categories.

Corollary 1.4. Let A be a computable preabelian category. Then A has computable
pushouts.

For the rest of this chapter, we use the following notation.

Notation. Since we often work with different categories at the same time in this
chapter, we will extend the operators for categorical operations with the name of the
category, e.g., the composition in the category A will be denoted by PreCompose 4.

1.b. Generalized morphisms by cospans. As first data structure for generalized
morphisms we describe the generalized morphisms by cospans.

Definition 1.5. Let A be an abelian category. A pair ¢ := (a: A— C,f: B — C)
with «, § € Mor 4 is called cospan with source A and range B in A.

C

We call a the arrow of ¢ and 3 the reversed arrow of ¢.

Definition 1.6. A cospan A = C £ Bin an abelian category A is called normalized

if the universal morphism from the direct sum A® B et C' is an epimorphism.
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Definition 1.7 (Generalized morphisms by cospans). Let A be an abelian category.
The category of generalized morphisms by cospans G€ (A) has the following objects
and morphisms:

(1) Obch(A) = ObJA
(2) For two objects A, B € Objge(4) we set

Homge(a) (A, B) := ( U Homy (A, C) x Hom 4 (B,C')) / ~,

where ~ is the following equivalence relation: Let ¢ := (aq, 31) and ¢ := (a2, 52) be two
cospans in Homge 4y (A, B), and F; := FiberProduct 4 (o, 3;), @ = 1,2, the fiber products
of ay and (7, and ay and Sy respectively, together with injections from the fiber product
ti1: F; — Aand 9 F; — B.

Ch
g 51
F
R1
1,1 l1,2
A al A®B B
a1 l22
R2
F:
Q2 ’ B
Cy

The cospans ¢ and v are equivalent if the monomorphisms sy := {11,012} : F1 — A® B
and ko := {ta1,t22} 1 F» — A @ B are equivalent as subobjects of A@® B, i.e., if there is
an isomorphism « : Fy — F, such that axs ~ k1 holds. 2

For a morphism ¢ € Morge(4) represented by the normalized cospan (a, 3) we call o
the arrow of ¢ and write Arrow (¢) := «, and (3 the reversed arrow of ¢ and write
ReversedArrow (¢) := 3.> The identity morphism for an A € Objge(a) can be represented
by the cospan consisting of two times the identity of A (viewed as an object in A), or,

2Hoch< A) (A, B) is a set, not a setoid, i.e., two morphisms are congruent if they are equal.

3The terms arrow and reversed arrow of a morphism ¢ € Morge(a) are dependent on the choice of
the representative of . Every time we use the terms arrow and reversed arrow, we assume a normalized
representative is fixed.
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written in operators:

Arrow (IdentityMorphismgce 4 (A)) := IdentityMorphism 4 (A)
ReversedArrow (IdentityMorphismge 4 (A)) := IdentityMorphism 4 (A) .

The composition of two composable morphisms ¢, 1) € Morge(y) is defined as follows: Let
t; := InjectionOfCofactorOfPushout 4 ((ReversedArrow (¢) , Arrow (¢)) ,4) ,
for i = 1,2. Then ¢ is represented by

Arrow (¢v) := PreCompose 4 (Arrow (¢) , t1)
ReversedArrow (1)) := PreCompose 4 (12, Reversed Arrow (1)) .

P

L1 L2

Arrow (i) ReversedArrow (1)

For a proof that this category is well-defined and the composition is compatible with
the equivalence relation on the Hom-sets, see [Pos17, Subsection I1.1.2].

Proposition 1.8. Let ¢ : A — B in Morgea) represented by the cospan A Lop:ay:3

Then a normalized representative A o8B s computable.

Proor. We compute
t; := ProjectionInFactorOfFiberProduct 4 ((«, 5) , )
for i = 1,2 and

o' := InjectionOfCofactorOfPushout 4 ((¢1,2) , 1),
S’ := InjectionOfCofactorOfPushout 4 ((¢1e2),2).
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Since 1, t9 is a fiber product diagram of o/ and ', the cospan (¢, ') is equivalent to the
cospan («, ). Furthermore, since o’ and " are the pushout of a fiber product, the cospan
(o/, B") is normalized. O

Definition 1.9. Let A be an abelian category and ¢ € Morge(s). The generalized
morphism ¢ is called honest if ReversedArrow () is an isomorphism in A. We define

HonestRepresentative () := Arrow () ReversedArrow (@)~

to be the honest representative of .
The category A embeds naturally into G€ (A):
Definition 1.10. There is an embedding

FO: A - G (A),

defined as follows: For A € Obj 4 set F€ (A) := A and for a morphism ¢ € Mor4 the image
FC (¢) is represented by
Arrow (F€ (p)) := o,
ReversedArrow (F© (¢)) := IdentityMorphism 4 (Range (¢)) .

We call F€ () the corresponding honest cospans of .

1.c. Generalized morphisms by spans. The second data structure, generalized
morphisms by spans, is dual to the generalized morphisms by cospans data structure.

Definition 1.11. Let A be an abelian category. A pair p := (a: C — A, :C — B)
is called span with source A and range B in A.
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We call a the reversed arrow of ¢ and /3 the arrow of .

Definition 1.12. A span A & C %, B in an abelian category A is called normalized

if the universal morphism into the direct sum C' toBl 4 @ B is a monomorphism.

Definition 1.13 (Generalized morphisms by spans). Let A be an abelian a category.
The category of generalized morphisms by spans is the category G5 (A) with the
following objects and morphisms:

(1) We set ObjGS(A) = ObJA
(2) For two objects A, B € Objgs(4) we set

Homgs () (A, B) := ( | Hom(C,A) x Homyu (C, B))/:,

CeObj 4

where ~ describes the following equivalence relation: Let ¢ := (ay, 51) and ¢ := (ag, f2) be
two spans in Homgs (4 (A4, B), and P, := Pushout4 (a1, 81) and P, := Pushout 4 (o, 3;)
the pushouts of oy and S, and as and [y respectively, together with projections to the
pushout m;; : A —> P, and w5 : B — P,.

Cy
(€31 B
Py
K1
1,1 1,2
A al A®B B
2,1 2.2
K2
P.
a2 ’ B

Cs
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The pairs ¢ and ) are equivalent if the epimorphisms r; := (m1,m2): A® B — P and
Ko 1= (a1, To2): A® B — P, are equivalent as factor objects of A® B, i.e., if there is an
isomorphism « : P, — P, such that ko ~ Ky holds.*

For a morphism ¢ € Morgs(4) represented by the normalized cospan (a, 3) we call 3
the arrow of ¢ and write Arrow (¢) := [, and « the reversed arrow of ¢ and write
ReversedArrow () := a.”

The identity morphism for an A € Objgs 4 is represented by the span consisting of
two times the identity of A (viewed as an object in A), or, written in operators:

Arrow (IdentityMorphismGS( A) (A)) := IdentityMorphism 4 (A),
ReversedArrow (IdentityMorphismgs 4y (A)) := IdentityMorphism 4 (A) .
The composition of two composable morphisms ¢ : A — B9 : B — C € Morgs(y is
defined as follows: Let

m; := ProjectionInFactorOfFiberProduct 4 ((Arrow (¢) , ReversedArrow (1)) , @)
for i = 1,2. Then ¢ is represented by

ReversedArrow (1)) := PreCompose 4 (71, Reversed Arrow (¢)) ,
Arrow (1)) := PreCompose 4 (72, Arrow (1)) .

Reversed Arrow () Arrow (¢)

For a proof that this category is well-defined and the composition is compatible with
the equivalence relation on the Hom-sets, see [Pos17, Subsection I1.1.2].

Proposition 1.14. Let ¢ : A — B in Morgsa, represented by the span A < C 2 B.
Then a normalized representative A da of v is computable.

The proof is dual to the proof of Proposition IV.1.8.

4HomGs(A) (A, B) is a set, not a setoid, i.e., two morphisms are congruent if they are equal.

5The terms arrow and reversed arrow of a morphism ¢ € Morgs 4y are dependent on the choice of
the representative of . Every time we the use terms arrow and reversed arrow, we assume a normalized
representative is fixed.



56 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

Definition 1.15. Let A be an abelian category and ¢ € Morgs(4). The generalized
morphism ¢ is called honest if ReversedArrow (¢) is an isomorphism in A. We define

HonestRepresentative (¢) := ReversedArrow () Arrow (¢)
to be the honest representative of .
The category A embeds naturally into G5 (A):
Definition 1.16. There is an embedding
FS: A G5(A).
defined as follows: For A € Obj 4 set F5 (A) := A and for a morphism ¢ € Mor 4
Arrow (F® (p)) := ¢,
ReversedArrow (F® (¢)) := IdentityMorphism 4 (Source (¢)) .

We call F® () the corresponding honest span of ¢.

1.d. Generalized morphisms by 3-arrows. The third data structure for general-
ized morphisms consists of three morphisms from the underlying category A instead of
two.

Definition 1.17 (Data structure for 3-arrow generalized morphisms). Let A be an
abelian category. A generalized morphism by 3-arrows ¢ with source A and range B
in A is an equivalence class of tuples of three morphisms

LA — A,
a:A— B
7 :B — B’

where ¢ is called the source aid, 7 is called the range aid, and « is called the arrow.
We write

SourceAid () :
RangeAid () :=7
Arrow (p) := a.

Ly

)

SourceAid () RangeAid (o)

Al N B//

Arrow ()
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We now define the equivalence relation for generalized morphisms by 3-arrows. To do
this, we define a normalized generalized morphism by 3-arrows, then give the normalization
algorithm. At last we show how to compare two normalized generalized morphisms by 3-
arrows.

Definition 1.18 (Normalized 3-arrow generalized morphism). Let ¢ be a 3-arrow gen-
eralized morphism in 4. We call ¢ normalized if SourceAid (¢) is an .A-monomorphism
and RangeAid (¢) is an A-epimorphism. The source aid can then be seen as an A-subobject
of the source of ¢, and the range aid as an A-quotient object of the range of ¢.

REMARK 1.19. A generalized morphism ¢ : A — B can be interpreted as a morphism
from an A-subobject of A to an A-quotient object of B.

Algorithm 1.20 (Normalization). Let ¢ : A — B be a generalized morphism by
3-arrows in A.

SourceAid () RangeAid (¢)

/ N B//
Arrow ()

The following algorithm computes a normalized representative of ¢, i.e., three morphisms
of the form

such that « is a monomorphism, § an epimorphism, and the 3-arrow represents the gener-
alized morphism .
We start by computing the pushout of the source aid and the arrow of ¢:

t1 := InjectionOfCofactorOfPushout 4 ((SourceAid (¢) , Arrow (¢)), 1),
1o := InjectionOfCofactorOfPushout 4 ((SourceAid (¢) , Arrow (¢)) , 2) .
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SourceAid (¢) X RangeAid (¢)

A/ B//
Arrow ()

Now we compose the range aid of ¢ with the second cofactor injection ¢ of the pushout,
i.e.,

v := PreCompose 4 (RangeAid () ,¢) .

and then compute

71 := CoastrictionTolmage 4 () ,
72 := ImageEmbedding 4 () .

U ey
\ /
SourceAid () X 7 X' RangeAid (¢)
L2
A/ B”
Arrow ()

Now we compute the pullback of the image embedding 75 and the first injection ¢, i.e.,

91 := ProjectionInFactorOfFiberProduct 4 ((¢1,72), 1),
dy := ProjectionInFactorOfFiberProduct 4 ((¢1,72) ,2) .
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e e -
01

SourceAid () d9 RangeAid (¢)

Arrow ()

The normalized generalized morphism ¢ is now given by

We can now define the equivalence relation for 3-arrow generalized morphisms.

Definition 1.21. Let

¥1 ©2
A » B Ao » B
L1 T Lo 9
Ay ——— B Ay B}
aq &%)

be two 3-tuples as in Definition IV.1.17. Then the tuples ¢; and ¢, represent the same
3-arrow generalized morphism if for their normalizations ¢; and @, the following holds:

(1) The source aids SourceAid (@) and SourceAid (¢,) are equivalent as subobjects
of A,

(2) The range aids RangeAid (1) and RangeAid (@) are equivalent as factor objects
of B.
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A// N B//

A/ N B/

Definition 1.22. Let A be an abelian category. The category GT (A) of generalized
morphisms by 3-arrows in A is the category with
(1) Objgr(4) := Obj 4 and
(2) A, Be ObjGT(A) SetG

Homgr(g) (A, B) :={¢: A — B | ¢ is a 3-arrow generalized morphism in A}

Let A € Objgr(4)- The identity morphism IdentityMorphismgr 4 (A) is the generalized
morphism represented by the triple where all three morphisms, i.e., SourceAid, RangeAid,
and Arrow are the identity morphism of A (viewed as object in A).

Let ¢ : A — B and ¢ : B — C be two generalized morphisms in A. We define their
composition ¢ as follows: Let ¢ and ¢ represented by the following triples:

A*"ip”ﬂB B""%”ﬁ(]

_ RangeAid () '
SourceAid (¢) SourceAid (1) RangeAid (1)
Al N B// B/ N C//

Arrow (@) Arrow (¢)

We compose SourceAid (¢) and RangeAid (¢) and get a morphism « : B — B”| i.e.,
a := PreCompose 4 (SourceAid () , RangeAid (¢)) .

Al B// B/ Cl

6HOmGT(_A) (A, B) is a set, not a setoid, i.e., two morphisms are congruent if they are equal.
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The next step is an epi-mono-factorization of «, resulting in two morphisms 7 : B’ - X
and ¢ : X — B’ ie.,

(m, ) := EpiMonoFactorization 4 («) .

At last we compute FiberProduct 4 (Arrow (¢),¢) and Pushout 4 (7, Arrow (1)) and their
corresponding projections and injections and get a full rectangle. We define

7vi := ProjectionInFactorOfFiberProduct 4 ((Arrow (¢), 7)),
9; := InjectionOfCofactorOfPushout 4 ((¢, Arrow (¢)) ,7) ,

fori=1,2.
A***ip”ﬂB B"*%”ﬁC’
SourceAid () RangeAid (v))
A B = B C’
M U L 09
A" - X 3 c”

Now we compose the borders of the rectangle, i.e,

¢ := PreCompose 4 (71, SourceAid (p)) ,
n := PreCompose 4 (72,01) ,
r := PreCompose 4 (02, RangeAid (¢)),

and get the composition of ¢ and ¢ as
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Al/ - Cl/

n

REMARK 1.23. We summarize the steps for the composition 1) of two 3-arrow gener-
alized morphisms ¢ and :

(1) a := PreCompose 4 (SourceAid (¢) , RangeAid (¢))
(2) (¢, m) := EpiMonoFactorization 4 («)
(3)
SourceAid (¢v) := PreCompose 4 ( ProjectionInFactorOfFiberProduct 4 ((Arrow (), ), 1),
SourceAid (¢))

(4)

RangeAid (p1)) := PreCompose 4 ( RangeAid (¢),

InjectionOfCofactorOfPushout 4 ((¢, Arrow (¢)), 1))

(5)

Arrow (1)) := PreCompose 4 ( ProjectionlnFactorOfFiberProduct 4 ((Arrow (¢) ,7),2),

InjectionOfCofactorOfPushout 4 ((¢, Arrow (¢0)), 1)) .

For a proof that this category is well-defined and the composition is compatible with
the equivalence relation on the Hom-sets, see [Pos17, Subsection 11.1.2].

Definition 1.24. Let A be a category and ¢ € Morgr(4). The generalized morphism
¢ is called honest if SourceAid (¢) and RangeAid (¢) are isomorphisms. We define
HonestRepresentative () := SourceAid (¢) " Arrow () RangeAid (¢) "
to be the honest representative of ¢.
The category A embeds naturally into GT (A).
Definition 1.25. There is an embedding
FT: A - GH(A)
defined as follows: For A € Obj 4 set FT (A) := A and for a morphism ¢ € Mor 4
Arrow (F" () := ¢,
SourceAid (F" (¢)) := IdentityMorphism 4 (Source (),
RangeAid (F" (¢)) := IdentityMorphism 4 (Range ()) .
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We call FT () the corresponding honest 3-arrow of ¢.

1l.e. Conversion between different types of generalized morphisms. We now
show how to relate the three different kinds of generalized morphism categories. We give
the conversion functors between all three types of generalized morphisms, which are equiv-
alences of categories. For the proof of correctness see [Pos17, Subsection I1.1.4].

Definition 1.26. Let A be an abelian category. The conversion functor from
cospans to spans Cgs(4)ce() : G° (A) = G¥ (A) is defined as follows:

(1) For an object A € Objge(a) set Cas(ay,aoqa) (A) 1= A (recall, the object classes
are the same).
(2) Let ¢ € Morge(a) and set

m; := ProjectionInFactorOfFiberProduct 4 ((Arrow (¢) , ReversedArrow (¢)) ,7),

Arro / Reversed Arrow ()

i=1,2.

Then the span below the dashed arrow represents Cgs ) cea) (@), ie.,

Arrow (Cgs(a)cea) (@) == m,
Reversed Arrow (CGS(A),GC(A) (gp)) = Ty

Definition 1.27. Let A be an abelian category. The conversion functor from
spans to cospans Cge(a)asa) : G° (A) > GY (A) is defined as follows:

(1) For an object A € Objgs 4 set Cgoay,asia) (A) 1= A.
(2) Let ¢ € Morgs(4) and set

= InjectionOfCofactorOfPushout 4 ((ReversedArrow (¢) , Arrow (¢)) , ),

i=1,2.
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ReversedArrowN %ow ()

Then the cospan above the dashed arrow represents Cge(ayasa (¢), ie.,

Arrow (Cgequ),as(a) (#)) = w1,
ReversedArrow (Caea).asa) (9)) = to.

Definition 1.28. Let A be an abelian category. The conversion functor from
cospans to 3-arrows Cqr(4) goa) 1 G° (A) — GT (A) is defined as follows:

(1) For an object A € Objge 4 set Carayao) (A) == A.
(2) For a morphism ¢ € Morge () with

o= (p1:A— B" vy,: B— B")

the 3-arrow generalized morphism Cgr(a) ey () is represented by

IdentityMorphism 4 (A) P | ©2
A——Dpr— B
ie.,
SourceAid (Cqra).gea) (¢)) = IdentityMorphism 4 (A),
RangeAid (Cariay,cea) (9)) = w2,
Arrow (CGT(A%GC(A) (gp)) = 1.

Definition 1.29. Let A be an abelian category. The conversion functor from
spans to 3-arrows Cgr(4)cs(a) : G° (A) > GT (A) is defined as follows:
(1) For an object A € Objgs 4 set Caria),aow) (A) = A.
(2) For a morphism ¢ € Morgs(4) with

o= _(p1: A > A ¢y: A > B)
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the 3-arrow generalized morphism Cgr(4) gs(a) () is represented by

1 @ IdentityMorphism 4 (B)

"
- s pn
A 22 B

ie.,
SourceAid (CGT(A),GS(A) (30)) =P,
RangeAid (Cqr(4)as(a) () := IdentityMorphism 4 (B),
Arrow (CGT(A),GS(A) (QO)) = P,

Definition 1.30. Let A be an abelian category. The conversion functor from 3-
arrows to cospans Cge(a)ar(a) : GT (A) — G© (A) is defined as follows:

(1) For an object A € Objgr 4 set Cgorayara) (A) = A.
(2) For a morphism ¢ € Morgr(4) which is represented by

A/ o N B//

we set Cgea),gr(a) (©) to be the composition of the cospans

A B//
IdentityMorphism 4 M \ / \
A - » A

————————————————————————————————————— > B

T

ie.,

Arrow (Cgegay.ara) (¢)) = InjectionOfCofactorOfPushout 4 (¢, ), 1),
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ReversedArrow (Cge(a).ar(a) () := PreCompose 4 (7,
InjectionOfCofactorOfPushout 4 ((¢, ), 2)) .

X

A A B

Definition 1.31. Let A be an abelian category. The conversion functor from 3-
arrows to spans Cgs 4 gr(a) : G* (A) — G® (A) is defined as follows:

(1) For an object A € Objgr 4y set Cas(a),ara) (A) = A.
(2) For a morphism ¢ € Morgr(4) which is represented by

A/ o N B//

we set Casa),ar(a) (¢) to be the composition of the spans

___________________ N B// oo

\ / \ AqtltyMorphlsm 4 (B)

Arrow (Cas(ay.ara) (@) := ProjectionInFactorOfFiberProduct 4 ((, a) , 2)

ie.,
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ReversedArrow (Cas(4).ar(4) () := PreCompose 4 (¢,
ProjectionInFactorOfFiberProduct 4 (7, «), 1)) .

2. Structure of the category of generalized morphisms

As already seen from the constructions, all three types of generalized morphism cate-
gories are computable, as long as their underlying category A is computable abelian. We
are going to formulate this as a theorem.

Theorem 2.1. Let A be computable abelian. Then the categories G5 (A), GY (A), and
GT (A) are computable.

Generalized morphisms are not preadditive, but they fulfill a property which is close.
Definition 2.2. Let A be a category. A is called enriched over a commutative
regular semigroup if for any two objects
(1) there is a commutative addition in Hom 4 (A, B);
(2) there exists a morphism 0 € Hom 4 (A, B) such that for every ¢ € Hom 4 (A, B) we
have 0+ ¢ = p + 0 = ¢;
(3) for every ¢ € Homy (A, B) there exists a morphism —¢ € Homy (A, B) such that
v+ (=) +e=pand (=p) + ¢+ (—¢) = (—p).
REMARK 2.3. We use the same names ZeroMorphism and Additivelnverse as for the
preadditive case, since a preadditive category is a special case of a category enriched over
a commutative regular semigroup.

Proposition 2.4. Let A be computable abelian. Then the category of generalized mor-
phisms by spans G° (A) is computable enriched over a commutative reqular semigroup.

The enrichment algorithms implemented in CAP for G5 (A) can be found in Appendix
F.7.

Proor. We are going to give the enrichment constructions which will turn out to be
computable.

(1) Let A, B € Objgs(4) and ¢ := ZeroMorphismgs 4) (4, B). Then ¢ is defined via
Arrow () := ZeroMorphism 4 (A, B) ,
ReversedArrow () := IdentityMorphism 4 (A) .

2) Let ¢,1 € Homgs( ) (A, B) for two objects A, B € Objas 4. To compute the sum
(A) G5(A)
AdditionForMorphismsgs 4 (p,1) = ¢ + 1 one first computes the fiber product
of the two reversed arrows:

p1 := ProjectionInFactorOfFiberProduct 4 ((Reversed Arrow (),
ReversedArrow (1)), 1),

p2 := ProjectionInFactorOfFiberProduct 4 ((Reversed Arrow (),
ReversedArrow (1)), 2) .
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Then the sum is represented by

Arrow (¢ + 1) := AdditionForMorphisms 4 (PreCompose 4 (p1, Arrow (p))
PreCompose 4 (p2, Arrow (1)),

ReversedArrow (¢ + 1) := PreCompose 4 (p1, ReversedArrow (¢)) .

The commutativity of the addition and the fact that 0 + ¢ = ¢ + 0 = ¢ follow
from the construction.
(3) Let ¢ € Morgs(4). Then the Additivelnverse (¢) = —¢ is defined as follows:

Arrow (—¢) := — Arrow (¢) ,
ReversedArrow (—¢) := Reversed Arrow (¢) .

The algorithms to construct the zero morphism, the addition, and the additive inverse in
G5 (A) were completely based on constructions from the computable category A. Therefore
these three constructions are computable in G5 (A). 0

REMARK 2.5. Let A, B € Objgs(4)- Then we have
ZeroMorphismgs 4 (A, B) = FS (ZeroMorphism 4 (A, B)).
Proposition 2.6. Let A be computable abelian. Then the category of generalized mor-
phisms by cospans G (A) is computable enriched over a commutative regular semigroup.

The enrichment algorithms implemented in CAP for G¥ (A) can be found in Appendix
F.6.

ProOF. We are going to give the enrichment constructions which will turn out to be
computable.

1) Let A, B € Objac g and ¢ := ZeroMorphismgs, 4y (A, B). Then ¢ is defined via
GC(A) GS(A)
Arrow () := ZeroMorphism 4 (A, B),
ReversedArrow () := IdentityMorphism 4 (B) .

2) Let ¢, 1 € Homge(y) (A, B) for two objects A, B € Objgc( 4y- To compute the sum
(A) G(A)
AdditionForMorphismsgc 4 (¢, %) = ¢ + 9 one first computes the pushout of the
reversed arrows of ¢ and :

p1 := InjectionOfCofactorOfPushout 4 ((ReversedArrow (¢) ,
ReversedArrow (1)), 1),
p2 = InjectionOfCofactorOfPushout 4 ((ReversedArrow (¢) ,
ReversedArrow (¢)),2) .
Then the sum can be described as
Arrow (¢ + 1) := AdditionForMorphisms 4 (PreCompose 4 (Arrow (¢) , p1)
PreCompose 4 (Arrow (¢) , pa)) ,
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ReversedArrow (¢ + 1) := PreCompose 4 (ReversedArrow (¢) , p1) -

The commutativity of the addition and the fact that 0 + ¢ = ¢ + 0 = ¢ follow
from the construction.
(3) Let ¢ € Morgs(4). Then the Additivelnverse (¢) = —¢ is defined as follows:

Arrow (—p) := — Arrow (¢) ,
ReversedArrow (—¢) := ReversedArrow (¢) .

The algorithms to construct the zero morphism, the addition, and the additive inverse in
G (A) were completely based on constructions from the computable category A. Therefore
these three constructions are computable in G© (A). U

Proposition 2.7. Let A be computable abelian. Then the category of generalized mor-
phisms by S-arrows GT (A) is computable enriched over a commutative reqular semigroup.

The enrichment algorithms implemented in CAP for GT (A) can be found in Appendix
F.8.

PrROOF. We give the enrichment constructions. The proofs can be found in [BLH14b,
Thm. 2.7]. Let A, B € Objgr(4). Then we define
ZeroMorphismgr 4 (A, B) = FT (ZeroMorphism 4 (A, B)) .
To compute the sum of ¢, € Homgr 4 (A, B) we first define
t; := InjectionOfCofactorOfPushout 4 ((RangeAid (¢) , RangeAid (v)) , 1),
m; := ProjectionInFactorOfFiberProduct 4 ((SourceAid (¢) , SourceAid (¢)) 7, ) .
Then we represent the sum ¢ + 1 by
SourceAid (¢ + ) := PreCompose 4 (7;, SourceAid (¢)) ,
RangeAid (¢ + v) := PreCompose 4 (RangeAid (¢), ;) ,
Arrow (¢ + ©) := 1 Arrow (¢) 11 + T2 Arrow (1) La.
The additive inverse of a morphism ¢ € Morgr4) is defined as
SourceAid (—¢p) := SourceAid (¢),
RangeAid (—¢) := RangeAid () ,
Arrow (—¢) := — Arrow (¢) . O

3. Generalized and pseudo-inverse

In this section we emphasize why generalized morphisms are useful for computations
in abelian categories. Generalized morphisms offer the possibility to compute a one-sided
inverse of a non-split mono- or epimorphism in any abelian category. The result of a com-
position with such a split can then be recovered from the resulting generalized morphism.
In this sense generalized morphisms provide a computational tool for performing diagram
chases.
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Notation. If we do not specify the data structure of the generalized morphism category
of a category A, we write G (LA). The corresponding embedding functor is F : A — G (A).
Definition 3.1 (Pseudo inverse). Let A be an abelian category.
(1) Let ¢ € Morgs(4). The pseudo-inverse of ¢ is the morphism ¢ € Morgs 4y with
Arrow (¢) := ReversedArrow () ,
ReversedArrow (1) := Arrow ().

2) Let ¢ € Morge(4). The pseudo-inverse of ¢ is the morphism 1 € Morge 4y with
(A) (A)
Arrow (¢) := ReversedArrow () ,
ReversedArrow (¢) := Arrow ().

(3) Let ¢ € Morgr (). The pseudo-inverse of ¢ is the morphism ¢ € Morgr(4) which
can be computed as follows: Set («, ) := EpiMonoFactorization 4, (Arrow (¢)) and
m; := ProjectionInFactorOfFiberProduct 4 ((RangeAid (¢), 5) ,4) ,
t; := InjectionOfCofactorOfPushout 4 ((c, SourceAid (¢)) , ).
Then
SourceAid (¢) := m,
RangeAid (¢) := 1o,
Arrow (1) := PreCompose 4 (72, t1) .
We write Pseudolnverse () := 1. Furthermore, for a morphism ¢ € Mor 4 we write
GeneralizedInverse (¢) := Pseudolnverse (F (¢)) .

Proposition 3.2 ([Pos17, Prop. I1.1.35]). Let ¢ € Morgay and ¢! the pseudo-inverse
of p. Then
Pl = and et = o7
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Proposition 3.3. Let A be an abelian category and ¢ € Mor4 a mono- or epimor-
phism. Then F (v) is split, and the corresponding pre- or post-inverse is the generalized
inverse of ¢.

PROOF. We give a proof for each type of generalized morphisms. Let ¢ € Mory be a
morphism, ¢ := F (§), and 1) := GeneralizedInverse (¢).

(1) Suppose we are working with spans and ¢ is a mono. Then the composition i)
looks as follows:

Setting «, /5 := IdentityMorphism 4 (A) fulfills the properties of a fiber product of
¢ with itself, so we have

idy

1 represented by A da g9y

Now suppose ¢ is an epi. Then the composition 1 is represented by the two

epis B £ A% Band B together with the identities is a valid pushout of the two
morphisms in ¢p. So the result is equivalent to the identity.

(2) Suppose we are working with cospans and ¢ is an epi. Then the composed cospan
Y looks as follows:

Y
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Setting «, f := IdentityMorphism 4 (B) fulfills the properties of a pushout of @
with itself, so we have

Y represented by B s pldg p.

Now Suppose @ is a mono. Then the composition ¢ is represented by the two

monos A <% B < A and A together with two identities of A is a valid pullback of
the arrow and reversed arrow in . So the composition ¢ is equivalent to the

identity:.
(3) The corresponding honest 3-arrow of a morphism can either be viewed as a span
or a cospan, so the claim follows. O

We can use the pseudo-inverse to compute lifts and colifts in A.
Proposition 3.4 ([Posl7, Cor. I1.1.54]). Let A be an abelian category.

(1) Letk : A — B a monomorphism and 7 : T — B a morphism such that a morphism
AT — A with \k ~ 7 exists. Then

X := F (1) GeneralizedInverse (r)

1s an honest morphism and we have
A ~ HonestRepresentative (X) .

(2) Lety: A — B a monomorphism and T : A — T a morphism such that a morphism
A B — Z with Ak ~ 7 exists. Then

X := GeneralizedInverse () F (7)

is an honest morphism and we have

A ~ HonestRepresentative (X) .

We give an example how pseudo-inverses allow to perform diagram chases in a purely
categorical setting.

Example 3.5 (Snake lemma). We want to compute the snake in the following diagram
with exact rows and commutative squares:
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ker (73)
KernelEmbedding (v3)
A = B— ¢ !
" V2 3
. bt o1t e Ba C

CokernelProjection (1)

coker (1)

The snake can now be computed by the following composition:

o := KernelEmbedding (v3) GeneralizedInverse (az) 7o

GeneralizedInverse () CokernelProjection () .

The resulting generalized morphism ¢ is honest, and its honest representative o makes the
sequence

ker (71) — ker (72) — ker (v3) 5 coker (1) — coker (y2) — coker (v3)

exact.

Example 3.6 (IV.3.5, CAP version). Let A be the category of presented Z-modules,
described in Chapter I1I. Consider the following diagram:

(03] (0]
0 7 A 7?2 0

il 72 Y3
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with the following matrices:

a1:=(1 : '), Qg = 1 - s
-1
1
2 2 - - —1
ﬁ1:< 22)752: 1 )
—1
-2
71::(1 .)7 73::<‘ _2)7
2 2 -
72:: . . 2 .
.. .9

Note that while 3 is a monomorphism in A, it has no split. Using the CAP implementation
of A, we compute the snake as follows:

gap> LoadPackage( "ModulePresentationsForCAP" );

true

gap> LoadPackage( "GeneralizedMorphismsForCAP" );
true

gap> ZZ := HomalgRingOfIntegers();

A

gap> ZZ1 := FreelLeftPresentation( 1, ZZ );

<An object in Category of left presentations of Z>

gap> ZZ2 := FreelLeftPresentation( 2, ZZ );

<An object in Category of left presentations of Z>

gap> ZZ3 := FreeLeftPresentation( 3, ZZ );

<An object in Category of left presentations of Z>

gap> ZZ4 := FreelLeftPresentation( 4, ZZ );

<An object in Category of left presentations of Z>

gap> alpha2 := HomalgMatrix( [ [ 0, 01, [ 1,01, [0, 111, 2Z);
<A 3 x 2 matrix over an internal ring>

gap> alpha2 := PresentationMorphism( ZZ3, alpha2, ZZ2 );

<A morphism in Category of left presentations of Z>

gap> betal := HomalgMatrix( [ [ 2, 2, 0, 01, [ 0, 0, 2,211, ZZ );
<A 2 x 4 matrix over an internal ring>

gap> betal := PresentationMorphism( ZZ2, betal, ZZ4 );

<A morphism in Category of left presentations of Z>

gap> gammal := HomalgMatrix( [ [ 1, 01 1, ZZ );

<A 1 x 2 matrix over an internal ring>

gap> gammal := PresentationMorphism( ZZ1, gammal, ZZ2 );
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<A morphism in Category of left presentations of 7>

gap> gamma? := HomalgMatrix( [ [ 2, 2, 0, 01, [0, 0, 2, 01,
> L0, 0,0,211, 22 );

<A 3 x 4 matrix over an internal ring>

gap> gamma2 := PresentationMorphism( ZZ3, gamma2, ZZ4 );

<A morphism in Category of left presentations of Z>

gap> gamma3 := HomalgMatrix( [ [ 0, 21, [ 0, -2 11, ZZ );

<A 2 x 2 matrix over an internal ring>

gap> gamma3 := PresentationMorphism( ZZ2, gamma3, ZZ2 );

<A morphism in Category of left presentations of Z>

After we have set up the objects and morphisms in the category A, we continue by
constructing the necessary generalized morphisms:

gap> kernel gamma3 := KernelEmbedding( gamma3 );
<A monomorphism in Category of left presentations of Z>
gap> coker_gammal := CokernelProjection( gammal );
<An epimorphism in Category of left presentations of Z>
gap> gen_kernel _gamma3 := AsGeneralizedMorphismBySpan( kernel_gamma3 );
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>
gap> gen_cokernel gammal := AsGeneralizedMorphismBySpan( coker_ gammal );
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>
gap> gen_gamma2 := AsGeneralizedMorphismBySpan( gamma2 ) ;
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>
gap> gen_inv_alpha2 := GeneralizedInverseBySpan( alpha2 );
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>
gap> gen_inv_betal := GeneralizedInverseBySpan( betal );
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

Now we can compute the snake:

gap> snake := PreCompose( gen_kernel gamma3, gen_inv_alpha2 );
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

gap> snake := PreCompose( snake, gen_gamma2 );

<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

gap> snake := PreCompose( snake, gen inv_betal );

<A morphism in Generalized morphism category of Category of




76 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

left presentations of Z by span>

gap> snake := PreCompose( snake, gen cokernel gammal );

<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

gap> IsHonest( snake );

true
gap> Display( HonestRepresentative( snake ) );
tf 1, 1711

A morphism in Category of left presentations of Z
gap> Display( Range( snake ) );
L 1, 01]

An object in Category of left presentations of Z

So the snake morphism is

(11)
7' ——— 72/{(10)).

4. Serre quotients

One goal of this thesis mentioned in Chapter I is a computable description of coherent
sheaves over toric varieties. The computational model for the category of coherent sheaves
over a toric variety will be the so-called Serre quotients, which we will define using gener-
alized morphisms. Serre quotients are described in [BLH14b, §1.1]. We recapitulate the
main definitions.

Definition 4.1 (Thick subcategory). Let A be an abelian category. A subcategory C
is called thick if it is closed under extensions and for any object A € Obj, the subcategory
C contains all subfactors of A.

The objects in C will all become zero objects in the Serre quotient, and, hence, a
morphism ¢ in A which kernel and cokernel object lie in C will be an isomorphism in .4
modulo C.

Definition 4.2 (Serre quotient). Let A be an abelian category and C < A a thick
subcategory. Then the Serre quotient category A/C is defined as follows:
(1) The object class is the same as that of A;
(2) For two objects A, B € Obj 4 we set
HOIHA/C (A, B) = h_I)Il (M/,N/N/>

M'—M,N'—N
M/M' N'eC

Our model for Serre quotients will be a certain subcategory of the generalized morphism
category, which we now define.
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Definition 4.3 (Gabriel morphisms). Let .4 be an abelian category and C a thick
subcategory.

(1) A normalized generalized morphism by 3-arrows ¢ € Morgr(y) is called a Gabriel
morphism (of A with respect to C) if

CokernelObject 4 (SourceAid (¢)) ,
KernelObject 4 (RangeAid (¢))

are objects in C.

CokernelObject 4 (¢) € C KernelObject 4 () € C
KernelEmbedding 4 ()
CokernelProjection 4 (¢)
A--------------- SO— —————————————— > B
L T
A/ B//
a

Informally we say that both SourceAid (¢) and RangeAid (¢) are isomorphisms
up to objects in C.

(2) A generalized morphism by spans ¢ € Morgs(y4) is called a Gabriel morphism
(of A with respect to C) if its conversion to a 3-arrow morphism Cgr(4y,cs(a) (@)
is a Gabriel morphism.

Equivalently, ¢ is a Gabriel morphism if both the cokernel object of the reversed
arrow of ¢ and the image object of the kernel object of the reversed arrow under
the arrow of ¢ are objects in C.
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CokernelObject 4 (o) € C

CokernelProjection 4 ()

\/

ImageObject 4 (k) €
r := KernelEmbedding 4 («)

KernelObject 4 (o)

(3) A generalized morphism by cospans ¢ € Morgc(y is called a Gabriel morphism
(of A with respect to C) if its conversion to a 3-arrow morphism Cgr( 4y ce(a) (@)
is a Gabriel morphism.

Equivalently, ¢ is a Gabriel morphism if both the kernel object of the reversed
arrow of ¢ and the image object of the composition of the arrow and the cokernel
projection of the reversed arrow of ¢ are objects in C.

CokernelObject 4 (5)
e := CokernelProjection 4 ()

ImageObject 4

/\

KernelEmbedding 4 (/3)

KernelObject 4 (8) € C
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Since Gabriel morphisms are generalized morphisms, the term honest and all operations
(SourceAid, RangeAid, Arrow, Reversed Arrow, HonestRepresentative, Pseudolnverse) de-
fined for generalized morphisms apply.

Definition 4.4. Let A be an abelian category and C a thick subcategory. We de-
note by G¢ (A) the subcategory of Gabriel morphisms of G (A) and the respective
presentations with GZ (A), G¢ (A), and G¢ (A).

The generalized morphisms are Gabriel morphisms if and only if the “helper” mor-
phisms ReversedArrow, SourceAid, and RangeAid of the normalized representatives are
isomorphisms in A/C, i.e., isomorphisms up to objects in C.

For the proof that the category of Gabriel morphisms is indeed a category see [ BLH14b,
§2.5].

Definition 4.5 (Zeroid of G¢ (A)). Let A be an abelian category and C a thick sub-
category. For two objects A, B € G¢ (A) we define the zeroid as

Zap = {p € Home,(a) (A, B) | ImageObject 4 (Arrow ()) € Obje} .

Definition 4.6. Let A be an abelian category and C a thick subcategory. The Serre
morphism category G¢ (A) (of A with respect to C) has the same object class as Ge (A),
and the Hom-sets are the quotients by the zeroid, i.e., for two objects A, B € G¢ (A) we
set

Homg, 4 (A, B) := Homg,(a) (A,B)/Zap .

The respective presentations of G¢ (A) using spans, cospans, and 3-arrow generalized
morphisms are denoted with @2 (A), CS (A), and CE (A).

Theorem 4.7. Let A be an abelian category and C a thick subcategory. The Serre
quotient category A/C is equivalent to the Serre morphism category Ge (A).

A proof of this theorem and further motivation can be found in [BLH14b, Thm. 3.1].

5. Computability of Serre quotients

We are now going to describe the algorithms necessary for the category of Serre mor-
phisms to be computable and therefore a model for the Serre quotient category. The
algorithms for the normalized 3-arrow morphism category can be found in the proof of
[BLH14b, Thm. 1.1], but for completeness we include the necessary constructions in Sub-
section IV.5.d.

Theorem 5.1 ((BLH14b, Thm. 1.1]). Let A be computable abelian. Then the category
=T , ,
Ge (A) is computable abelian.

5.a. Computability of Serre morphisms by spans. We show that the category
of Serre morphisms by spans is computable abelian by going through the constructions
from Chapter 11, and therefore provides a suitable data structure for .A4/C. Throughout the
hole section 4 will denote a computable abelian category and C a thick subcategory with
decidable membership.
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Theorem 5.2. The category éﬁ (A) is equivalent to CE (A) and therefore abelian.

ProOF. Since G5 (A) and GT (A) are equivalent, and the definitions of Gabriel mor-
phisms and the zeroid in both categories G° (A) and G* (A) correspond to each other
under the conversion functor Cgr(4) as(a) the claim follows. (|

Proposition 5.3. The category C(Sz (A) is computable.

PROOF. Since @2 (A) is a subcategory of the computable category G® (A) and compo-
sition and identity morphisms are inherited from G (A), the operations IdentityMorphism
and PreCompose are computable. We still need to provide the proper constructions for
the equalities:

(1) The operation IsEqualForObjectsgs S(4)

IsEqualForObjects 4 of objects in A and therefore computable.”
(2) The equality notion IsEqualForMorphisms_s, ,. is computed via the following al-

Ge(A)
gorithm: Let ¢,9: A — B in Mors S

(a) Compute —p := Add1t1ve1nverseGs ) ().
(b) Compute 7 := AdditionForMorphismsgs 4 (=, ¥).
(¢) Compute I := ImageObject 4 (Arrow ()).
(d) Use the membership function to decide if I € C.
If I € C, the morphisms ¢ and v are equal.
(3) Since the membership for C is decidable and we can compute images as kernels of

cokernels of morphisms in A, the morphism set Morgs n is decidable . O
C

The decidability of the membership function of C has a big part in the realization of
the Serre quotient category. Without the decidability of C, the category would not have
decidable equalities, and therefore no realization.

is inherited from the corresponding equality

Proposition 5.4. The category é(sj (A) is computable preadditive.

PrOOF. Let p,¢: A — B in MOI@E(A)'

and the additive inverse are defined by the zero morphism, addition, and additive inverse
(for the enrichment structure) in G® (A). We have ¢ = 1) if for any of their Gabriel mor-
phism representatives ¢’, ¢’ € G (A) the morphism ¢+ (—1) lies in Z 5. So addition and
additive inverse are mdependent of the choice of representative in the set Homgs S (4) (A, B).

We still need to show that the additive inverse in the sense of commutative semigroups
is an additive inverse in the sense of abelian groups. So we sum a morphism ¢ : A — B in
G2 (A) and its additive inverse. We get the following representative for the sum:

The operations for zero morphism, addition,

ReversedArrow (¢ 4+ (—¢)) = ReversedArrow () ,
Arrow (¢ + (—¢)) = Arrow () — Arrow () .

"Remember, the object classes of Gi (A) and A coincide.
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The arrow of the resulting morphism is zero, and so its image is in C, which means that
@+ (—p) €Zap. So ¢+ (—p) is equivalent to the zero morphism from A to B. i

Proposition 5.5. The category G(S; (A) is computable additive.
To describe the operations needed for the proof, we need another definition.

Definition 5.6. Let o1, @ € Morgs 4y with Source (¢1) = Source (2) and

m; := ProjectionInFactorOfFiberProduct 4 ((ReversedArrow (1) , Reversed Arrow (s)) , 7).

B
g T 7T151

/
\

s T2/
g :

\//

N
The common restriction CommonRestriction (@1, ¢2) of ¢1 and ¢, is the pair of gener-
alized morphisms (¢, ¢}) represented by

Arrow (o)) := m53;
and

ReversedArrow (¢}) := m;a.

Proposition 5.7. Let o1 : A — B, ¢y : A — C in Morgs s, and (¢, py) =
CommonRestriction (o1, ¢2). Then

—
01 = ¢ and p3 = ¢y in Go (A) .

PROOF. We show ¢; — ¢} = 0. Suppose ¢ is represented by the span A < D 2B

and after the restriction ¢} is represented by A < D & X 5 D 7@ B. To compute the
sum, we first compute the fiber product of the reversed arrows of the representations of ¢,
and ¢:
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\Y

\/

To compute ¢ — ¢, we need to compute 18 — o7 = (73 — 72m) f. By the commu-
tativity of the fiber product diagram above®, we know that

e~ T,
and therefore
(71— 72m) & ~ Oy, 4,
which means that the image of (y; — yo7) lies in the kernel of «, and therefore in C. It

follows that the image (71 — 72m) § lies in C as well. By symmetry, we also have ¢y =
©y- O

Note that for generalized morphisms Proposition [V.5.7 is not true in general.

PrOOF OF PROPOSITION 1V.5.5. To show that the category @2 (A) is computable
additive, we need to prove that there is a computable zero object, and computable direct
sums, which are products and coproducts at the same time.

Let 0 be a zero object in A. Then 0, interpreted as object in @(Sz (A), is a zero object
in @2 (A) (remember, the object classes of A and é(sj (A) coincide). Furthermore, for an
object A € Obja(s: we define

(A)
UniversalMorphismIntoZeroObject—; S (A) := ZeroMorphismgs n (A,0),
C
UniversalMorphismFromZeroObject— S (A) = ZeroMorphisms n (0,A).
C

By construction, those morphisms are well-defined and computable.
We now prove the universal properties of the universal morphisms from and to the zero
object. Let
Ca = UniversalMorphismIntoZeroObjectég “ (A)

be the universal morphism into the zero object, i.e., (4 is represented by A P! 0,
and ¢ € Homgs S 4) (A,0). We need to show that (4 = ¢, so we compute (4 — . Let ¢ be

8Note that the commutativity of the fiber product diagram is only up to congruence ~ of morphisms

in A.
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represented by the span A <& X % . Then, to compute the sum, we first compute the
fiber product of id4 and «;, i.e.,

m; := ProjectionInFactorOfFiberProduct 4 ((ida, a) ,7) ,
i=1,2.

1d/'\
\/

Since id 4 is an isomorphism, 7 is also an isomorphism, and we can assume Y = X, m; = a,
and m = idx. So have

Arrow (CA — gO) = OéOX — idXOX = Oy,

and therefore (4 = . The proof for the universality of UniversalMorphismFromZeroObject
is analogous.
We now construct the direct sum and show the universality of the construction. Let

Ay, Ay € @2 (A). Their direct sum
DirectSumag “ (A1, Ag)
is defined to be the direct sum DirectSum 4 (Ay, Ay) € Obj,, interpreted as an object in

@2 (A). We define the injection ¢; := InjectionOfCofactorOfDirectSums “ ((Aq, Ay) 1)
C
of the i-th cofactor, i = 1,2, to be represented by the span

Aj----- - S » AL @ Ay
id 4, [
A;

with
1; := InjectionOfCofactorOfDirectSum 4 ((A;, As) ,7) € Mor 4,
1 = 1,2. We define the projection

= ProjectionInFactorOfDirectSum-—s Ay, Ag) i)

oS ((
to the i-th factor, ¢+ = 1,2, to be represented by the span



84 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

T

Al &) A2 ****************** ” Az
1dA1@A2 7~Tz
A1 @ Ay
with
7; := ProjectionInFactorOfDirectSum 4 ((A1, Az) , i) € Mor 4,
i=1,2.

To define the universal morphism into the direct sum, let ¢ : A - B,y : A — C in

Moré(s: A and set
(¢, ¢") := CommonRestriction (¢, 1)) .

Suppose ¢" and 1)’ are represented by the following spans:

' V'
A---------- > B A---------- » C
Z Z
With
$ := UniversalMorphismIntoDirectSum 4 (51, B2)
we define

7 := UniversalMorphismIntoDirectSum 4 (¢, ?)
to be represented by the span

A 777777777 i}/ 777777777 > B(‘BC

In operator language we have

Reversed Arrow (UniversalMorphismIntoDirectSum (i, ¢))
:= Reversed Arrow (¢)
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and
Arrow (UniversalMorphismIntoDirectSumé(s: “ (¢, w)>
:= UniversalMorphismIntoDirectSum 4 (Arrow (¢') , Arrow (¢)) .

To show that the defined universal morphism into the direct fulfills the universal property,
let

7p := ProjectionInFactorOfDirectSumgs n (B,C),1).
C
The diagram for the composition y7rp is
T
A-mmemee LR — » BOC ---------- T ' B
\ / id% %p
Z BaC
\ /

with
7 := ProjectionInFactorOfDirectSum 4 ((B, C), 1) € Mor 4.

We can assume that K = Z, ¢y = idg, and €5 = [ since this setting leads to a valid fiber
product. Therefore, by the universal property of Tz we have g ~ 1 and yrg = ¢’ = .

To define the universal morphism from the direct sum, let ¢ := B — A and ¢ :
CﬁAinMorés(A), WithgozB?—lXﬁ»Aandz/):C?—QYﬁA. We define v :=
C

UniversalMorphismFromDirectSums w (¢, 1) to be represented by the span
C

BOC e L A

a1 @ o 6]
XeY

with
$ := UniversalMorphismFromDirectSum 4 (51, B2) .
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In operator language we have
Arrow (UniversalMorphismF romDirectSuma(s: ) (¢, ¢)>
:= UniversalMorphismFromDirectSum 4 (Arrow (), Arrow (1))
and
Reversed Arrow (UniversalMorphismFromDirectSumég w (o, 1/1))
:= DirectSumFunctorial 4 (ReversedArrow (¢) , Reversed Arrow (1)) .

To show that the defined universal morphism from the direct sum fulfills the universal
property, let 15 := InjectionOfCofactorOfDirectSumss B,C),1). The diagram for the
C

composition tp7y is

w ((

B----ree e »BOC - > A
i /m% /
B XY
A

with
ip := InjectionOfCofactorOfDirectSum 4 (B, C'), 1) € Mor 4.

We have €10 = €3 (a1 @ ap), which means that the image of €, (a; @ as) lies in B. Hence
the image of €, lies in X. To get a valid fiber product we can assume Z = X, ¢; = oy, and
€2 = {idy, Oy x}, and therefore we have gy = . O

Before we prove that the category éﬁ (A) is computable preabelian, we establish a
computational trick.

Proposition 5.8. Let A be an abelian category and C a thick subcategory. Let fur-
thermore F : A — G(S; (A) be the projection functor, i.e., the functor mapping a morphism
v: A — B in Mory to the morphism 7 € G(S; (A) represented by the span A YA B
A. Then the induced functor

GF 1 G5 (4) - G° (G (4))
is full and the preimage of a morphism ) € G5 (éi (A)) with

Arrow (¢) represented by i, := X <Y L BeGs (A)
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and
ReversedArrow (¢) represented by ¢ := X < Z 5 A

is g by, where ¥y ' denotes the pseudo-inverse of 1s.

PRrROOF. Let ¢ € Hom A, B) represented by the span A < X % B with

as (GE(A)) (

a,f € Mors such that o and [ are represented by morphisms o/, 3’ € MorGg (a)- Let
C

(A)
o/~': A — X := Pseudolnverse (') € Morgs(4). Then we can compute

v = /7' € Morgs ),

and we have

GF (') = GF (o) GF (8) = ¢. O

REMARK 5.9. We can interpret Proposition IV.5.8 as follows: Whenever we need to
compute with a generalized morphism by spans over the Serre morphisms category, i.e.,

with a morphism ¢ € Mor (GS ( A)), we can treat the two Serre morphisms Arrow (¢) and
C

ReversedArrow (¢) in a representing span of ¢ like the composition of their representatives
in G5 (A). The result can then be mapped back to Mor g (és ( A)) using the functor GF
C

from Proposition IV.5.8.
Theorem 5.10. The category éi (A) is computable preabelian.

Proor. We start by giving the constructions and proofs for the kernel. Let ¢ €
Homs “ (A, B), represented by the span A < X % Bin A. To construct the kernel
C
embedding, let

k := KernelEmbedding 4 (/) .

Then we set r := KernelEmbeddings ) () to be represented by the corresponding honest
C
span of

PreCompose 4 (R, «) .

We show that k¢ = Ox . The composition can be represented by the following diagram:
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K--------- o P Ao LA > B
o
ldK X o ﬁ
i
K X
Y

Setting Y = K and e; = & forms a valid fiber product diagram, so we have

GZB = %ﬁ = OK,Ba

and therefore r¢ is zero.

To construct the kernel lift, let 7 : T — A in Morgs ) represented by the span
C

T & Z 3 A such that 7o is zero. Since éﬁ (A) is abelian, a lift A : T"— K with Ak = 7
exists. Since k is a mono, by Proposition 1V.3.4 we can compute the lift A as honest
representative of the honest morphism

TK 7,

where £~ denotes the generalized inverse in Mor of k and 7' the corresponding

Gs(Ge()

honest span of 7 in Mor . By Proposition IV.5.8 we can also compose the following

as(Ge)
two spans to compute a representative of \:

L U W o
N AN
Z K

We now give the constructions and proofs for the cokernel. Let ¢ € Mor be

Ge)
represented by the span A <& X % Bin A. For the cokernel projection let
7 := CokernelProjection 4 (5) .

We set vy := CokernelProjectiongs w () to be represented by the span
C
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A-mmmmmmmms » B »C
NN
X B
N\

Y

Setting ¥ = X and e, = [ we get a valid fiber product diagram. It follows that the
composition ¢y is zero.

We now construct the cokernel colift. Let 7: B — T in Morgs 7 represented by the
C

span B <~ Z 53 T in A such that ¢7 is zero. Since Gi (A) is abelian, a colift A : C' — T
with yA = 7 exists. Since 7 is an epimorphism, by Proposition IV.3.4 we can compute the
colift A as an honest representative of the honest morphism

—1_
T T

where 7~ denotes the generalized inverse in Mor of v and 7’ the corresponding

as (GE(A))

honest span of 7 in Mor ) By Proposition IV.5.8 we can also compose the following

as(Ge ()
two spans to compute A:

o
¢l Ty
B A

Theorem 5.11. The category @2 (A) is computable abelian.
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PRrROOF. The constructions of lifts along monos and colifts along epis are similar to the
ones for the kernel lift and the cokernel colift.

We first provide a construction for the lift. Let ¢ : A < B in Morég (4) & monomor-
phism, with cokernel projection ¢» : B — C and 7 : T" — B such that 7¢ is zero. By
Theorem IV.5.2 G(S; (A) is abelian, which means that there is a morphism A : 7" — A in
Morég w with Ap = 7. Let 7/,¢" € Morgs(4) be the generalized morphisms by spans that
represent 7 and ¢, respectively. Then we can compute the lift v of 7 along ¢, i.e.,

v o= LiftAlomgMonomorphisma(sj ) (1,¢)

as the image under GF of
7_/ S0/—17
where ¢'~1 denotes the pseudo-inverse of ¢'. The well-definedness of this construction and

the fact that yp = 7 follows from Proposition IV.5.8 and Proposition 1V.3.4.

To construct the colift, let ¢ : A — B in Mores W be an epimorphism with kernel
C

embedding ¢ : K — A and 7 : A — T such that ¢7 is zero. By Theorem IV.5.2, Cﬁ (A) is
abelian, which means that there is a morphism A : B — 7" in Morgs " with o\ = 7. Let
[¢
7', ¢’ € Morgs(a) be the spans that represent 7 and ¢, respectively. Then we can compute
the colift v of 7 along ¢, i.e.,
o= ColiftAlonngimorphismag “ (o, 7)

as the image under GF of

woT,
where ¢! denotes the pseudo-inverse of ¢/. The well-definedness of this construction and
the fact that ¢y = 7 follows from Proposition IV.5.8 and Proposition 1V.3.4. U

All categorical operations for G®(A) are implemented in CAP and can be found in
Appendix F.10.

5.b. Decidability. For Serre morphisms, mono-, epi-, and isomorphisms are always
decidable.

REMARK 5.12. The category @3 (A) has decidable zeros.

PROOF. Let A € Objgs . Then, by the construction of CE (A) we have A = 0 €
C
Objgs n if and only if A € Obj,. Since membership of Obj, is decidable, Gﬁ (A) has
C

decidable zeros. O

We can now deduce from Proposition 11.8.7 and Corollary 11.9.3 that G(Sj (A) has de-
cidable monomorphisms, epimorphisms, and isomorphisms.

Corollary 5.13. The category @2 (A) has decidable monomorphisms, epimorphisms,
and isomorphisms.
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5.c. Computability of Serre morphisms by cospans. In this section, we want
to state the computability of the category of Serre morphisms by cospans and therefore
provide the third data structure for A/C. We do not give proofs here, since they are all
dual to the proofs for spans. Still we make all constructions explicit.

Theorem 5.14. The category Gg (A) is computable abelian.

Before we give the explicit constructions, there is one construction left to mention: the
dual of the common restriction.

Definition 5.15. Let o1, s € Morge(qy with Range (p1) = Range (¢2) and ¢; repre-
sented by the cospan B; % X; 2 A and

= InjectionOfCofactorOfPushout 4 ((f1, 52) , 1) .

The common coarsening CommonCoarsening (1, o) of 1 and s is the pair of general-
ized morphisms (¢}, ©,) represented by Arrow (¢}) := «;t; and ReversedArrow (¢}) := fB;t;.

\ 9
e \
BN

/ap

Proposition 5.16. Let o1 : A — C, vy : B — C in Morge(a), and (¢}, ¢h) =
CommonCoarsening (¢1, p2). Then

. —=C
01 = ) and vy = @b in G; (A).
The proof is dual to that of Proposition IV.5.7 of the common restriction.

SKETCH OF PROOF OF IV.5.14. We give sketches for the categorical constructions in
—C
Ge (A).

(1) Some algorithms for categorical operations in GS (A) are, as for éi (A), inherited
from the underlying generalized morphism category G¢ (A). Those constructions



92 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

are:

IsEqualForObjects
IdentityMorphism
PreCompose
AdditionForMorphisms
Additivelnverse

ZeroMorphism.

They are carried out by applying the corresponding construction from G€ (A) to
. . .. =C
an object or a representation of a morphism in G, (A).

(2) Some algorithms for categorical operations in GS (A) are, as for @(S; (A), inherited
from the underlying abelian category A, by taking either the resulting object or the
corresponding honest cospan of the result in A and interpreting those as objects

: . . =C .
or representatives of morphisms in G, (A). Those constructions are:

ZeroObject
DirectSum
InjectionOfCofactorOfDirectSum

ProjectionInFactorOfDirectSum .

(3) Some constructions for categorical operations in GS (A) are the same constructions
as the corresponding ones in G(S; (A) as they are carried out by computing with

the representing generalized morphism in G (A) of a morphism in CS (A) using
only operations which are available for all generalized morphism categories. Those
constructions are:

IsEqualForMorphisms
KernelLift

Cokernel Colift

Lift AlongMonomorphism
ColiftAlongEpimorphism.

We make the remaining constructions explicit. To construct the kernel embedding and the

cokernel projection, let ¢ € Morzc ., represented by the cospan A 5 X £ Bin A,
C

(A)
k" := KernelEmbedding 4 («)
the kernel embedding of «, and

7’ := CokernelProjection 4 (@) .
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Then we define the kernel embedding x of ¢ to be the Serre morphism in @g (A) represented
by the cospan
koK S A 4

and the cokernel projection 7 of ¢ to be the Serre morphism in GS (A) represented by the
cospan

7B 0 de o
We now construct the universal morphism into the direct sum. Let ¢ : A — B and
Y :A— C bein MOICS(A), ©
by the cospan A 3Y 2 ¢ Let furthermore

is represented by the cospanAd 3 X 2 p , and v represented

« := UniversalMorphismIntoDirectSum 4 (a, as) .

Then the universal morphism into the direct sum ~ of ¢ and 1 is represented by the cospan
XeY

o B1 @ B2

A 777777777 iy 777777777 > B(‘BO

To construct the universal morphism from the direct sum, let ¢ : A - C and ¢ : B - C

in Morég n and
(¢, 9") := CommonCoarsening (i, 1)

their common coarsenings, represented by the spans ¢’ : A %5 X £ Cand p:BBX £,
Let furthermore

« := UniversalMorphismFromDirectSum 4 (a1, az) .

Then the universal morphism from the direct sum v of ¢ and 1 is represented by the
cospan

X

APB - > C
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5.d. Computability of Serre morphisms by 3-arrows. For the sake of complete-
ness, we want to give explicit constructions for the category of Serre morphisms modeled
by 3-arrow generalized morphisms to be computable abelian, as stated in IV.5.1.

Before, we need to give the notion of common restrictions and coastrictions for 3-arrows.

Definition 5.17. Let ¢y, ps € Morgr(4)-

(1) Assume Source (¢1) = Source (¢2). Then the common restriction (¢}, ¢}) =
CommonRestriction (¢1, ¢2) of 1 and ¢, is defined as follows: Let

m; := ProjectionInFactorOfFiberProduct 4 ((SourceAid (¢1) , SourceAid (ps9)) , 7).
Then set

SourceAid (
Arrow (
RangeAid (¢)) := RangeAid (¢) .

) := PreCompose (7;, SourceAid (¢;)),

/
®;
¢;) := PreCompose (7, Arrow (¢;)),

(2) Assume Range (p;) = Range (p2). Then the common coarsening (¢}, p}) =
CommonCoarsening (¢1, p2) of p; and ¢y is defined as follows: Let

t; := InjectionOfCofactorOfPushout 4 ((RangeAid (¢1) , RangeAid (¢2)) ,7) .
Then set

SourceAid (¢}) := SourceAid (¢;),
Arrow (¢;) := PreCompose 4 (Arrow (¢;) , ¢;) ,
RangeAid () := PreCompose 4 (RangeAid (¢;) , ;) -
Proposition 5.18. Let 1, 92 € Morgr(y).
(1) If Source (¢1) = Source (pq) and (¢}, ¢5) = CommonRestriction (@1, @2). Then
01 = @) and p3 = @b in ég (A).
(2) If Range (p1) = Range (yp2) and (¢}, ¢) = CommonCoarsening (1, 2). Then
o1 = ¢ and s = i in e (A).
The proof is again analogous to that of Proposition IV.5.7.

SKETCH OF PROOF OF IV.5.1. We give sketches for the constructions in ég (A). The
proofs and a longer description of the constructions can be found in [BLH14b, 1.1]. The
implemented algorithms can be found in Appendix F.11.

(1) Some algorithms for categorical operations in Gg (A) are, as for éi (A), inherited
from the underlying generalized morphism category G* (A). Those constructions
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are:

[sEqualForObjects
IdentityMorphism
PreCompose
AdditionForMorphisms
Additivelnverse

ZeroMorphism.

They are carried out by applying the corresponding construction from GT (A) to
. . .. =T
an object or a representation of a morphism in G, (\A).

(2) Some algorithms for categorical operations in ég (A) are, as for C(Sj (A), inherited
from the underlying abelian category A, by taking either the resulting object or the
corresponding honest cospan of the result in A and interpreting those as objects

: . . =T .
or representatives of morphisms in G, (A). Those constructions are:

ZeroObject
DirectSum
InjectionOfCofactorOfDirectSum

ProjectionInFactorOfDirectSum .

(3) Some algorithms for categorical operations in CZ (A) are the same constructions
as the corresponding ones in é(sj (A) as they are carried out by computing with the
representing 3-arrow generalized morphism in GT (A) of a morphism in @g (A)
using only operations which are available for all generalized morphism categories.
Those constructions are:

IsEqualForMorphisms
KernelLift

CokernelColift

Lift AlongMonomorphism
ColiftAlongEpimorphism.

We sketch the remaining four constructions:
To construct the kernel embedding and the cokernel projection let ¢ : A — B in

Morgr n represented by the normalized 3-arrow generalized morphism representative
C
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A/ o 5 Bl/

Let r := KernelEmbedding 4 (o) and v := CokernelProjection 4 (). We define the kernel
embedding of ¢ to be the corresponding honest 3-arrow of k¢, and the cokernel projection
of ¢ to be the corresponding honest 3-arrow of 7.

To construct the universal morphism from the direct sum let ¢ : A - C ¢ : B — C' in
Morég e The common coarsening (¢’,1’) of ¢ and 1 are represented by the normalized
3-arrow generalized morphism representatives

¢’ (04
Ao »C B »C
U1 T L2 T
Al T) C// Bl T C/l

The universal morphism from direct sum

7 := UniversalMorphismFromDirectSumzr w (p, 1)
C

of ¢ and 1 is then represented by the 3-arrow generalized morphism

11 DLy s

Al (_D B/ 5 C//
{0417 Oéz}

To construct the universal morphism into the direct sum let p: A - B,y : A — C in

Morr e The common restriction (¢',1’) of ¢ and v are represented by the normalized
C

3-arrow generalized morphism representatives
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S0/ wl
A » B Ao » C
L st L T2
Al al N B// A/ a2 N C//

The universal morphism into direct sum

7 := UniversalMorphismIntoDirectSumzz n (p, )
C
of ¢ and 1 is then represented by the 3-arrow generalized morphism

a7 pec

L 7T1®7T2

A/ , B// @ O//
<Oél7 062>






CHAPTER V

The category of coherent sheaves over a toric variety

In this chapter we show that the category of coherent sheaves over a toric variety
is computable. The coherent sheaf category over a toric variety X will be modeled as
a Serre quotient of the category of finitely presented graded modules over the Cox ring
of X. In Chapter III we already saw that the category of f.p. graded modules over a
computable ring is computable abelian. We first state the equivalence of the mentioned
Serre quotient category and the category of coherent sheaves over a toric variety. Then
we give an algorithm to decide the membership in the thick subcategory of the f.p. graded
modules to show that the category of coherent sheaves over a normal toric variety is indeed
computable.

1. Preliminaries from toric geometry

We are going to recall the main definitions from toric geometry. We follow the defi-
nitions and notations of [CLS11]. For the whole chapter, K will denote an algebraically
closed field of characteristic 0.

Definition 1.1 (Toric variety). An n-dimensional toric variety X over K is an irre-
ducible algebraic variety over K in which an algebraic torus 7' =~ (K*)" can be embedded
such that the torus is a dense open subset and the algebraic action of T on itself by
multiplication can be extended to an algebraic action on the whole variety.

Definition 1.2. Let 7 =~ (K*)" be an algebraic torus.
(1) A character of T is a group homomorphism
T — K*.
(2) Let m € Z". Then m defines a character of T' by the map
X" T =K (ty,... t,) — 7t

The characters of T form a lattice isomorphic to Z", called the character lattice
of T, which we will denote by M.
(3) A one-parametric subgroup of 7" is a group homomorphism

K* — T.
(4) Let v € Z". Then v defines a one-parametric subgroup of 7" by the map
K* > T: X (AN N,
99
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The one-parametric subgroups of 7" form a lattice isomorphic to Z", called the
lattice of one-parametric subgroups, which we will denote by N.

REMARK 1.3. The lattices M and N are dual to each other. For m € M and v € N
there exists a k € Z such that their composition can be written as

mov: K* —» K* zw— zF.

We define the duality
(Y M x N—>Z, (mv)— k.
We now state the basic combinatorial notions in toric geometry.

Definition 1.4. Let T be a torus and N its lattice of one-parametric subgroups. For
a finite subset G < N the set

Cone (G) := Z Ropg € N®R
geG
is a rational polyhedral cone or simply cone.
Definition 1.5. Let 0 € N ® R be a cone.

(1) For every m € M such that the minimum min {{m, u) | pu € o} exists, the set
T:={veo| (mr)y=min{{m,k) | keo}}

is called a face of o, denoted by 7 < 0.
(2) For a cone o the dual cone

{meM®R| (mv)=0, veo}
is denoted by V.
From now on every cone o is pointed, i.e., {0} is a face of o.

Definition 1.6. Let 0 € N ® R be a cone.

(1) A face p < o of dimension one is called ray. The unique u, € N such that
TN N = Zzgu, is called ray generator of 7.

(2) The generators of all rays in a cone o generate o. They are called the ray gen-
erators of o.

Definition 1.7. A fan ¥ is a finite collection of pointed cones ¥ = {01,...,0,}, 0;
N ®R such that for every cone o; € X all faces of g; are contained in X, and the intersection
of two cones 0;,0; € X is a face of both cones.

Lemma 1.8 (Gordan). Let o be a cone. Then S, := c¥ n M is a finitely generated
Semigroup.

Proposition 1.9. Let 0 € N QR be a cone. Then
U, := Spec (K[o¥ n M])

is an affine toric variety with torus M ®z K*.



1. PRELIMINARIES FROM TORIC GEOMETRY 101

Example 1.10. Let n := 2. Consider the cone
o := Cone (e, €2) .
The cone
7 := Cone (e;)

is a face of o, and

K[S:] = Klz,y]

K [Sr] K[z, y*].
In general, let 7 be a face of 0. Then the semigroup embedding S, < S, gives the inclusion

K[Ss] — K[57]

lle

which leads to the embedding
U, = Spec (K[S;]) = U, = Spec (K[5,]) .

Given a fan ¥ and two maximal cones 01,09 € 3, one can glue the affine varieties U,,
and U,, along Uy, no, = Uy, N U,,. If one does the gluing for all cones o € ¥ one gets a
colimit variety

Xy = 11_1)n U,.
oeEX

The variety Xy is the toric variety of the fan X. It is indeed toric since {0} € ¥ by
definition of the fan and Uy, = (K*)". The torus is a dense open subset of the variety X,
and the action is extended naturally since the inclusions are compatible and every U, is
toric with that torus. Furthermore, the maximal cones X, of the fan ¥ define a torus
invariant affine open covering of the variety.

Example 1.11. Let n =1 and
o1 := Cone (e1),
o9 := Cone (—ey) .
Then we have
T:=01 N oy = {0}
and
Y= {01,090, T}
is a fan. One gets Xy by the maps
K[z] - K[2*'] « K[z7]
which leads to the embeddings

-1
r < T +— T
Ke——Kf —K.

So we have Xy ~ P
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We denote the set of i-dimensional cones in a fan ¥ by 3 (¢). Furthermore, we assume
that X (n) is not empty, with n = dim Xy. This translates to the fact that the toric variety
X5 has no torus factors.

Definition 1.12. Let Xy be a toric variety with torus 7. For p € ¥ (1) the closed
subvariety D, := U, < Xy is a torus invariant Weil divisor.

Definition 1.13. The group of torus invariant Weil divisors on a variety Xy
with torus 7" is denoted by

DIVT XZ @ ZD

peX(1)

Every torus invariant principal divisor on a toric variety Xy with torus T can be
expressed as the divisor of a character, i.e., for every principal divisor D on Xy there is a
m € M such that

D—div(x"):= Y mu D,
peX(1)
where u, denotes the unique ray generator of the ray p.
So there is a Z-homomorphism

M — DiVT (XE)

with the torus invariant principal divisors as its image.

Theorem 1.14 (Class group). Let Xx be an n-dimensional toric variety with torus T
and without torus factors. Then there exists an exact sequence

0—>M — Divp(Xy) 3 Cl(xs) >0
m —  div (™)

where Cl (Xy,) is the class group of Xs.

The exactness on the left is due to the assumption that no torus factor exists.

Definition 1.15. For a toric invariant divisor D on a toric variety Xy we denote by
[D] its class in Cl (Xy).

Definition 1.16. The Cox ring Sy, of a toric variety Xy is defined as
Sy =Kz, | pe X (1)].
Sy, is a Cl (Xy)-graded ring and the degree of x, is the element [D,] € Cl (Xy,).

Sy, is a computable graded ring by the definition of Cl (Xy) and Ss.

Definition 1.17. Let Sy, = K[z, | p€ ¥ (1)] be the Cox ring of the variety Xx. For
a cone o € X define
2 = H z,.

peX(l)
pEo
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The irrelevant ideal of Xy is the ideal
B(Y):=("]|oceX).

Proposition 1.18. Let Xy be a toric variety and A a graded Sx.-module. Then there is

a quasi-coherent sheafﬁ on Xy, such that for every o € ¥ the sections ofﬁ over U, c Xy
are

r (UC,,A') — (Ays),.

The sheaf A is coherent if A is a finitely generated graded Sy-module. On the other
hand, a sheaf F on Xy is coherent if there exists a finitely presented graded Sy-module A
such that

171;]-".

2. Equivalence of Serre quotient and coherent sheaves

We state how the category of graded module presentations over the Cox ring S of a
toric variety Xy relates to the category of coherent sheaves over Xy. Recall that K is an
algebraically closed field of characteristic 0 and all toric varieties are normal and with no
torus factor, i.e., their fans contain the cone {0} and a full-dimensional cone.

Notation. For the rest of this section Xy, will denote an n-dimensional toric variety
with fan ¥, S its Cox ring (homogeneous coordinate ring in [CLS11]) with irrelevant ideal
B and degree group G := Cl(Xy).

We denote by S-grmod the category of finitely presented G-graded modules over S
which is computable by II1.2.11, and denote the sheafification functor by

Sh : S-grmod — Coh Xy, Ar— A.

Theorem 2.1 ([BLH14a, Cor. 4.5]). The sheafification functor Sh induces an equiv-
alence

S-grmod/S-grmod’ = Coh Xy,
where S-grmod® is the kernel of Sh and the left side is a Serre quotient.

There is a local description for S-grmod?, since normal toric varieties have a natural
torus invariant affine cover.

Theorem 2.2. Let Xy, be a toric variety with fan 3. Then a graded Ss,-module A is
in the kernel of Sh if and only if
r (Ug, 21) —0

for all maximal cones o € . Here U, denotes the affine subvariety coming from the
maximal cone o in the fan 3.

PRrROOF. Indeed a sheaf is zero iff it is zero on every subvariety of an affine cover.

Since the U, belonging to the maximal cones ¢ € ¥ form an affine open cover, the claim
follows. O
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We can also formulate Theorem V.2.2 in a completely module theoretic setup. We
denote by S; the ring S localized at the monomial 2, i.e., the product of all indeterminates
of S which correspond to the rays in ¥ which are not in the cone o.

Theorem 2.3. Let Xx be a normal toric variety with fan 3, Cox ring S, and A a
f.p. graded S-module. Then A sheafifies to zero if and only if for every mazimal cone
o € X the (S3),-module (Az), is zero. Here (S3), resp. (Asz), denotes the degree zero part
of the ring S resp. the module A localized at x°.

Proor. We have
P (U, A) = (45),
by [CLS11, Prop. 5.3.3], so the claim follows by Theorem V.2.2. O

For smooth toric varieties there is also a global criterion for deciding whether a finitely
presented graded module over the Cox ring sheafifies to zero.

Theorem 2.4 ( [CLS11, Prop. 5.3.10]). Let X, be a smooth toric variety with Cox ring
S, B the irrelevant ideal, and A in S-grmod. Then A is in the kernel of the sheafification
functor Sh if and only if there exists an { € N such that B*A = 0.

3. Deciding membership of the kernel of the sheafification functor

We now give two distinct algorithms for deciding the membership of the kernel of the
sheafification functor Sh. The first algorithm decided the kernel membership in the case
where Xy =~ P" and uses the global criterion for the kernel membership in Theorem V.2.4.
The second algorithm decides the kernel membership for every normal toric variety X
with no torus factors. The algorithm uses the local criterion for the kernel membership
from Theorem V.2.2.

3.a. Hilbert polynomial for projective spaces. For projective spaces, the follow-
ing holds:

Proposition 3.1. Let Xy :=P" and S := K|z, ..., x,] a graded polynomial ring with
deg(z;) =1,1=0,...,n. Then S is the Cox ring of Xx and the sheafifications A and B
of two f.p. graded S-modules A and B are isomorphic if and only if Asq = Bsq as graded
S-modules for some d = 0. In particular, A=0 if and only if Asq = 0 for some d = 0.

Let Hu (t) € Z[[t]] be the Hilbert series of A. Then A = 0 if and only if H, € Z[t], and
therefore the Hilbert polynomial ha € Q[t] of A is 0.

For projective spaces it is therefore enough to compute the Hilbert polynomial of a
f.p. graded module A in order to to decide whether the module sheafifies to 0 or not.
This theorem cannot even be extended to weighted projective spaces.

Example 3.2. Let Xy :=P(1,1,2) the weighted projective space. Then the Cox ring
of Xy is given by S := C [z, z9, x3] with

deg (v1) = deg (xz) =1, deg (x3) =2
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and irrelevant ideal B = (x1, x5, x3). Let
M :=S(1)/(x1S (1) + 225(1)).
The Hilbert series of M is

0
Hy = Z 21,
i=0

so it has no Hilbert polynomial, but instead a quasi polynomial which is not 0. But we
have

(MSH)O = (Ml‘z)o = (Mx5>0 =0,
where (M,,), and (M,,), are zero because x1 and x, respectively are invertible in S,, and
Sz, and (M, ), is zero since x3 has degree 2 and therefore M,, is zero in all even degrees.

So it follows that M = 0.
This means that for the general case, we have to fall back to Theorem V.2.2 to decide

if a module sheafifies to 0.

3.b. Global sections. To decide the kernel membership of the sheafification functor
for toric varieties we need to compute the graded parts M, of a f.p. graded module M over
a graded Laurent polynomial ring S in which all monomials are homogeneous.

REMARK 3.3. While it seems natural that monomials in a graded polynomial ring are
homogeneous, this cannot be deduced from Definition II1.1.1. Let S := Q [x], with degree
group Z such that (x — 1)™ is homogeneous and

deg ((z —1)") =n
for all n € Z=y. Then the only homogeneous monomial is 1 = 2°.

Proposition 3.4. Let S be a graded Laurent polynomial ring and M € Objg gyp0q- Let
f €S be a monomial. Furthermore, let

0« M« F° — F!

be a graded free presentation of M. Then (My), = 0 as an (Sf),-module if and only if the
cokernel of the induced localized map

0 1 0 1
(F < Fp)y = (F7)y < (Ff),
15 0.
PRroOOF. Both localizing at a monomial and taking the degree zero part of a module or

morphism are exact functors. So the localized sequence remains exact, and we can restrict
that sequence to its degree 0 part, and get an exact sequence of (Sy),-modules. U

In order to compute (M), we will show how the map
0 1
(F F F ! )o
can be computed from the map
FY — F!.
For the rest of this chapter we use the following notation.
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Notation. § := K [:z:l, ceey T, x,‘il, e ,xj{l] is a Laurent polynomial ring graded by
a finitely presented abelian group G such that all monomials in S are homogeneous. For
any subset S’ < S we define Mon (S’) as the subset of monomials in 5.

3.c. A generating set for S);. We first compute a finite generating set of Sy :=
{feS| deg(f) =0} as a K-algebra.

Notation. Let r > 0. Then {,): Z" x Z" — Z denotes the standard scalar product
on Z".

Definition 3.5. We call the epimorphism of Z-modules
p: L" — G, e deg ()

the grading function of S.
We call the isomorphism of semigroups

X: {meZ"| {mye;)=>0,i=1,...,k} - Mon(S), m— a™.

the character function of S.

S+
=
[

Proposition 3.6 (First description of Sp). Suppose S := K [ml, TR T, T
with a grading function ¢ as above. Then the monoid

T:={meZ" | p(m)=0,(m,e)=>0,i=1,... k}
is isomorphic to the monoid Mon (Sy) via the character function x of S.

PRrROOF. Let m € T. Then m € {m e Z" | {(m,e;» = 0,i=1,...,k} as well, so x|r is
well-defined. We now compute deg x (m). Since x (m) = z™, we have

deg x (m) = Z deg (:pfmel>> = Z {m,e;ydeg (x;) = ¢ (m) = 0.

Hence x (T') < Mon (Sp). Now, let 2™ € Mon (Sp). Then ¢ (m) = 0 and {m,e;) = 0 for all
i=1,...,n. So Mon (Sy) € x (7). The injectiveness follows since x is injective. O

Since ¢ (m) = 0 means that m € ker ¢ we can get a better description of the cone 7.

Corollary 3.7 (Second description of Sy). Let ¢ be the grading function of S and v
the kernel embedding of . Then the sequence of Z-modules

(1) 0->M572" %G -0,
is exact and the monoid

T :={meM | {H(m),e;y=0,i=1,... k}
is isomorphic to the monoid T from Proposition V.5.6 via 1.

Proor. This follows from Proposition V.3.6 and the exactness of the sequence (7),
more precisely from the facts that ¢ is injective and ¢ o) = 0. U

REMARK 3.8. If S is be the Cox ring of a toric variety Xy, the lattice M from Corollary
V.3.7 will be the character lattice of Xx.
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Definition 3.9. We call the monoid 7" from Corollary V.3.7 the monomial cone of
So.

Notation. From now on, ¢y : M — Z" denotes the kernel of ¢. Furthermore, ¥*
denotes its transposed, i.e.,

YL M

such that for all pairs (m,v) € M x Z™ we have

@ (m),v)=<{m,¢*(v)).
To get a finite generating set of Sy as K-algebra, we need a finite generating set of 7"

as affine semigroup.

Proposition 3.10. The monomial cone T' of Sy of a graded polynomial ring S is a
saturated affine semigroup.

Proor. We can rewrite 7" as
T :={meM]| (mp*(e;))=0,i=1,...,k}.

So T" is given by a set of linear homogeneous inequations, and therefore is a saturated
affine semigroup. O

The property that 7" is a saturated affine semigroup is important since it means that
a finite generating set for 7" exists.

Using the finite generating set of 7" we can write down a finite generating set for Sy as
K-algebra.

Theorem 3.11 (Generating set of Sy). Let T be the monomial cone of Sy and H a
finite generating set of T' as a semigroup. Furthermore, let x be the character function
of S and ) : M — Z" the kernel of the grading function of S. Then the set x (v (H))
generates Sy as a K-subalgebra of S, i.e., Sy = K[x (¢ (H))] < S.

PrROOF. We can already deduce from Proposition V.3.6 and Corollary V.3.7 that
X (¢ (T")) generates Sy as a K-vector space and as a K-subalgebra of S. Since every element
of T" can be expressed as a finite sum of elements of H, the set x (¢ (H)) generates Sy as

a K-subalgebra of S. O

Example 3.12 (V.3.2 cont.). We are going to compute the degree zero part of S,,.
The degrees of the indeterminates were

deg (551) = deg (1’2) =1, deg ($3> = 2,

so the degree sequence looks as follows

-1 10 1
-2 01 2

Z? z3
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where the right map is the map ¢ from the section above, and the left map is ). Now, we
have

T :={meZ|m =0, —m; —2my >0},
and its Hilbert basis is
H={(2,-1), (1,-1), (0,-1)}.
Using v, we see that

)

ZL’% T1T9 ZL’%
$3’ xr3 X3 .

(Sus)y = @[

To compute this example in GAP we use the ToricSheaves package. We first create the
graded ring S:

gap> S := HomalgFieldOfRationalsInSingular() * "x1..3";
Q[x1,x2,x3]

gap> S := GradedRing( S );

Qlx1,x2,x3]

(weights: yet unset)

gap> SetWeightsOfIndeterminates( S, [1,1,2] );

S is now defined to be the graded ring Q [z1,x2, 23], with degrees of indeterminates as
above.

Now we compute the generators of (S,),. The input for the function will be the ring S
and a list of indeterminates to localize at. Here, we only localize at the third indeterminate.

gap> DegreeZeroMonomialsOfLocalizedRing( S, [3] );
[ [ O’ 2, _1 ], [ 1’ 1, _1 ], [ 2’ O’ _1 ] ]

Since there is no data structure for Laurent polynomial ring monomials, we only get the

list of exponents. [0,2,—1] translates to the monomial i—é, and so on. We see this list
coincides with the list of ring generators given above, up to permutation.

3.d. Relations between the generators of S;. We now compute all relations be-
tween the monomial generators of Sy. Once we have computed the relations, we will be
able to present Sy as quotient of a polynomial ring R with a binomial ideal .

Proposition 3.13. Let r > 0 and m € Z". Then there is a decomposition m =
my —m_, such that m,; >0, m_; =0 and my ;m_,; =0 for all i.

REMARK 3.14. For m € Z" the decomposition m = m, — m_ is unique.

Theorem 3.15 (Writing Sy as a quotient of a polynomial ring). As before let S :=
Kz, ... 26, 2ily, ... x| be graded by G with grading function ¢ and ¢ : M — Z" be
the kernel of p. Furthermore, let H < M be a generating set of the monomial cone of Sy
and ¥ (H) =:{y1,...,y-} and R :=K|y1,...,y,| a free polynomial ring. Then the maps

) r n
k: Z"— 7", e;—y;
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and
r: {meZ | (m,e;)=>0,i= ., v} — Mon (R) m — y™.

are well-defined and the map xr is the chamcter functzon of R.
Furthermore, Sy is the image of the map

p: R—S, yi'—’X(?/z’)
and its kernel ideal is
I:={(xg(my)—xr(m_) | mekerk)y.

PRrOOF. First, the image of § is Sy, since the y.s form a Hilbert basis of the monomial
cone of Sy. The fact that I is the kernel of 3 is proved in [CLS11, Prop. 1.1.9]. O

REMARK 3.16. The kernel ideal I can be computed using a generating set B < ker .

We have
I ={xr(ms)—xr(m-) [ meB): <Hyz>

For a proof, see [Stu96, p. 155].
Example 3.17 (V.3.12 cont.). Using the algorithms described above, we see that

2 riwy T3

(Saz)g = C | =, ==, 2| =Clx,y,2] /{zz —y*).
il

r3 T3 I3

In GAP, we can again use the ToricSheaves package:

gap> RI := DegreeZeroPartOfRingAsQuotient( S, [ 3] );
ccco,2,-11, 01,1, -11,[02,0,-111,
Qlt1,t2,t3]/( t272-t1*t3 ) 1]

The command DegreeZeroPart0OfRingAsQuotient computes both the quotient ring R/[
as well as a data structure for the above isomorphism.

gap> RI[ 2 1;
Qlt1,t2,t3]1/( t272-t1*t3 )

We see that the computed ring R/I is isomorphic to C|[z,y, 2] /{zz — y*). Next we look
at the isomorphism data structure:

gap> RI[ 1 ];
tfo,2,-11,01,1,-11,[02,0,-17]1]

Here again, each tuple corresponds to a monomial in (S,,),. Since the first computed
tuple is [0, 2, —1], the generator t; of the computed ring R/I corresponds to the monomial

o (Sas)o-
Algorithm 3.18. Computing Sy as a monomorphism R/I — S:
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(1) Compute a resolution of the grading group G, i.e., a sequence
0->M572"5 G -0
(2) Take a matrix P € Z**" which represents ¢ for a basis (e;,...,e,) of Z" that
has ¢ (e;) = deg(z;). Create the cone 7" by the appropriate columns of P as
inequalities.
(3) Compute a HILBERT basis H for the cone 7.
(4) Construct the mapping x representing it by a matrix @) € Z"™*" with rows H.
(5) Compute a generating set for the kernel of k.
(6)
(7)

Compute I using Remark V.3.16.
Compute the monomorphism R/I — S induced by f.

3.e. The homogeneous parts of S. We now want to compute a presentations for
the Sp-modules S, for a € G. To compute with the presentations of the Sy-modules S, in
the sense of Chapter 111, we will present S, as R/I-module, together with their embeddings
in S. Since S itself is not finitely generated as Sy module, the embedding S, <— S will
be represented by the images of the generators of S, in S. We start by establishing the
necessary combinatorial notions.

Proposition 3.19 (Tail cone decomposition). Let P € Z™ be a convex lattice polyhe-
dron. Then there exists a cone T P and a polytope P' such that P = P' + T P. In this
decomposition the cone T P is unique.

Definition 3.20. The cone T P is called the tail cone of P.

REMARK 3.21. Suppose, for i = 1,..., k, there are a; € Z", b; € Z such that
P = {mEZ” | <m,ai>> bl}
Then
TP={meZ"| {(m,a;) = 0}.

PROOF. Suppose P’ < P, then P’ + T P < P follows. The tail cone can be presented
as the set
{meZ" |forallpe P: p+me P}.

The claim follows by the linearity of the inequalities. ]

Proposition 3.22. Let P = P’ + T P be a polyhedron and H a generating set of

T P. Then, for every point m € P there is a point m’ € P’ and an H-indexed family
{ay € Z=olh € H} with

m=m"+ Z aph.
heH
PROOF. Since P = P’ + T P and since there is an a € ZZ for every ¢ € T P such that

CZZahh

heH
the claim follows. O
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REMARK 3.23. Unfortunately, the decomposition in Proposition V.3.22 is not unique.

Let
P:={meZ | my>0, my—my > —1}.

Then we have
TP = {meZ2 | mo =0, mg —my 20} = Cone (eg, €1 + €5)

and we can set
P :={0,e1}.
But then the point e; + e; can either be composed as
0+ (e1 + e2)
with 0e Pand e; +e3 €T P or
(e1) + (€2)

with e; € P and e; € T P.
3.f. A generating set for S,. We will now describe the set S, "Mon (S) = Mon (S,,).

Proposition 3.24. Let a € ¢! (a). Then the set
Go = {meZ" | o(m)=qa, (me)=0,i=1,... k}
= {m+acZ"|o(m)=0, {m,ye;y ={a,e;y,i=1,... k}

defines a K-basis of S, via the morphism x.
PRrROOF. A K-basis of S, is given by the set Mon (5,). For a monomial

™ = x(m)e S,

the element m € Z" fulfills
(1) {m,e;y =0foralli=1,...,k and

(2) ¢ (m) = a.
Therefore m € G, and x (G,) > Mon (S,)
i=1,...,kand x (m) is well-defined. Further

deg (x (m)) = ¢ (m) = o
O

Given a m € G,, we have (m,e;) = 0 for

Thus x (Go) € Mon (S,) and finally x (G,) = Mon (S,,).
The set
Go—a={meZ"|p(m)=0, (m,e;) ={a,e;y,i=1,...,k}
is a polyhedron. Of course, G, is also a polyhedron.

Proposition 3.25. We have G, — a < ker . Therefore we can rewrite G, — a as

G :={meM| (m),e;y={aey,i=1,... k}.

G!, is a polyhedron in M with T G, =T’
G, — a since 1 is a monomorphism, and by the inequations
O

Proor. We have ¢ (G))
that define 7" the tail cone of G/, is T" (cf. Remark V.3.21).
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So we can write down a finite generating set of S,.
Theorem 3.26. Let G/, = G + 1" a tail cone decomposition. Then the set
Bai=x¥(Gy) +a)c S

is a generating set of S, < S as an Sy-module.

PrOOF. The set x (¢ (G)) + a) is a K-Basis of S,. Since every point in m’ € G, is of
the form

m =m+t

with m e G and t € T" it follows that

X (@ (m') +a) = x (&) + 1 (m) +a) =x ¥ (m)+a) x (¥ (1))
But x (¢ (t)) € Mon (Sp) by definition of 77, so the set B, is a generating set of S,,. O
Example 3.27 (V.3.12 cont.). The module A is presented by the following map

(%)

S(0)2 —————— S(1).

We need to compute generating sets of (5(0)s,), and (S(1)4,),, i-e., generators for (S, ),
and (Sg,),. For (S,), we have already computed Gy, and we get

Gy ={(0,0)} and By :={(0,0,0)},
which is what we expected.
For (S,,), we choose the monomial corresponding to a to be zy, i.e., a := (1,0,0), and
et
’ G’lz{mEZ2|—m1—2m2>—1, m120}.
Then we compute
Glll = {(070) ) (170)}7
using an integer linear program solver and obtain
By ={(1,0,0), (0,1,0)},
which corresponds to the monomials x; and x,. We therefore see that

(S(l)xs)o = <$1, x2>(5'z3)0

as a (5;,),-modules.

We use the function Monomials0fDegreePart in ToricSheaves to compute the mono-
mials of (S(1),,),- The first argument is again the graded polynomial ring S, the second
is a list of variables to localize at, and the third is the degree part for which we want to
compute monomial generators, i.e., 1.

gap> Bl := MonomialsOfDegreePart( S, [ 31, [ 11 );
(fo,1,01, [1,0,01]]1
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We see that (S(1),,), is in fact generated by two monomials, namely z;, which is repre-
sented by the tuple [1,0,0], and x5, which is represented by [0, 1,0].

3.g. Relations between the generating monomials of Mon (S,). Since we now
have a finite generating set of S, as an Sy-module, it remains to compute abstract relations
between these generators of S, in order to present S, as an R/I-module. We first describe
the type of relations that appear.

Proposition 3.28. Let {z™ ... 2™} < Mon (S,) be a monomial generating set of
S, as an Sy-module. Then every relation

(p1,---.pn) € SY
with

h
Zpixmi =0eS
i=1

is a K-linear combination of relations of the form

Si

z¥ie; — ve; € S
i,j€{l,...,h} with % € Mon (Sy) such that
g™ — %™ =0e S,

PROOF. Let

Di = Z pi,ﬂj-

JEL™

Then

h h
i=1

i=1 jeZn

which is zero if and only if

h
(Z pi,j—rm-) =0
=1

for all j € Z™, since the monomials are K-linear independent. So every relation is a K-linear
combination of relations of the form

(ar2™, ... apz™) € Sy
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with 2™ € Mon (Sp) and a; € k. Now given a relation of this form, i.e.,

h
(1) Z a;z"iz™ = 0.
j=1
We can w.l.o.g. assume that n;, + m; = n; + m; for all 4,7 = 1,..., h, since otherwise we
can separate the relations by the K-linear independence of the monomials. We can also
assume that a; # 0 for all ¢ = 1,...,h. Then we have

h
Z a;x"x™ =0
=1

J
h
<:>Z (lj = 0.
=1

Therefore (1) lies in the K-linear span of the relations
{z%e; —a%e; | x%a™ = %™ x°* € Mon (S))} . O
So we see that all relations between generators g; and g; of S, are of the form
a"g; —a™ g

for some monomials 2™ and 2™ in Sy. Hence, to get the full set of relations of generators
of S, it is sufficient to compute all relations between pairs of two of them.

Proposition 3.29. Given two points g1, g2 € G&. Then the polyhedron
Qorgo = (T"+g1) 0 (T" + ¢o)

has tail cone T".

ProOF. We have

T +g9; = {m+gj|meM, (my*(e;))=0,i=1,...,k}
{meM| (m—g;,v*(e;))=0,i=1,... k}
= {meM| (m ¢ (&) = (g;,¢" (&), i=1,... .k}
for y =1,2. So
T'+ 0T +go={me M| (m, " (&) = max (g1, ¥ (€0)), (g2, V" (€3))) ,
i=1,...,k},

and thus, by the inequalities that define the intersection, 7" is the tail cone of Qg 4,. O

Using the polyhedron @)y, 4,, we can describe all relations of two elements in the gen-
erating set B, of S,.

Theorem 3.30. Let gy, g2 € GY, like in Proposition V.5.29 and Q, 4, = Qy, ,, +T" the

tail cone decomposition of Qg, 4,- Then the kernel of the So-module morphism

v: (S0)” = Say €= X (¥ (g:) + a)
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is the image of the map

61 (So)9m — (S0)*, eq = (x (¥ (a— 1), —x (¢ (4= g2))) -
ProOF. We first show that yo¢d = 0. Let g € )y, 4,- Then
(vo0d)(eg) = 7((x(¥(a=91)), —x (¥ (g~ 92))))

= xX(@W(g)+a)x (W (g—91)) —x (@ (g2) +a) x (¥ (q— g2))

= x(@(g) +a)—x(qg) +a)
= 0.

"2) i in the kernel of 7. Then

0 = 2"x @ (q1)+a)—2x (¥ (g2) +a)
= x(n +¢Y (1) +a)—x(n2+v(g2)+a).

Since y is injective, we get

Now suppose (2™

ny + Y (g1) = n2 + 1 (g2) -
The monomials 2", 2" are monomials in Sy, and therefore ny,ny € T = 1 (T"). So there
exist nj,ny € T" with ¢ (n}) = n;. Also, since v is injective, we have n| + g1 = nb + go,

hence ny + g1 € Qy, 4, Therefore, there exist ¢’ € Qf, ,, and ¢ € T" such that

¢+t =n|+g,

and
X@(#)o(d) = x@T) (x @@ —g1)), —x (¢ — g2)))
@ +4¢ =91), —x @ (' + ¢ = g2)))
= (2™, —2").
Therefore (z™, —x"2) lies in the image of §, and the claim follows. U

Theorem 3.31 (Presentation of S,). S, can be represented by the map
D (50)%or — ()%
9i,9;€GY,
with
X (6;—9) 9=29

€q,; = T with 7= ¢ —x (¥ (6;—9) 9=9;
0

PrRoOOF. By Proposition V.3.28, all relations are linear combinations of binomial rela-
tions. So, by taking all the binomial relations, we get a presentation for S,. O

We now want to present S, as an R/I-module, i.e., we have to translate the Syp-relations
in R’ for the generators G7, of S, into relations in R/I.
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REMARK 3.32. Let g1,902 € G, g€ Q! . asabove, and m € Z" such that x (m) = ¢—g¢.

91,92
Then every element n in the set

L:={neZ |k(n) =0, {(ne)=—{mey,i=1...k}
fulfills x (n + m) = ¢ — g1 and (n + m,e;) > 0, where xk was defined as

ki 2" — 7", e —y;.

Remember that R := K[yi,...,y,], and y; was the image of the i-th generator h; € H

of the monomial cone T' of Sy under the mapping . So, while y; is an indeterminate in a

free polynomial ring, it is also an element of Z".

Proposition 3.33. For every n € L +m we have

(Boxgr)(n) = (xor)(n)=ar9.

We see that every element of the set L + m corresponds to both a monomial in S and
R/I via the mappings in Proposition V.3.33. So the elements in L provide the relations

for the generators of S, as an (R/I)-module.

Proor. We have
(Boxr) (n) = B(y") = pXmeou
and
(xor)(n) =2
which proves the second equality. Furthermore

D ey =rk(n) =q—g e R/,

which concludes the proof.

g

Theorem 3.34 (Presentation of S, as an R/I-module). Let G” be as above. Then S,

is isomorphic via (8 to the cokernel of the mapping

D (/D)% — (R/1)%

9i,9;€G%
with
xr(li) g=gi
g, = T withzy:=< —xr(;) 9=g9;
0

where (y, is an element of the set L +m with a (M) = q; j — gi for k =1, .

Proor. By Theorem V.3.31, S, is isomorphic to the cokernel of

D (S0) % — (5)7.

9i,9;€GY,

Since  maps the relations from Sy < S to R/I, the claim follows.
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Example 3.35 (V.3.27 cont.). Since (5(0),,), has only one generator as an (.5;,),-
module, namely 1, (S(0),,), is free. On the other hand, (S(1),,), has two monomials as
generators, so we need to compute their (.5, ),-relations.

We consider again the monomial cone of (.S,,),

{meZ| —my —2my >0, my >0},
and intersect the shifts by ¢g; := (0,0) and g, := (1,0), respectively. The intersection
polytope is
T/—l-glﬂT/-i-gQ: {mEZQ | —mqy—2my =0, my = 1}
The polytope is generated by the lattice points

Q;hgg = {(17 _1)7 (27 _1)}
T1T2 x%
( 3 _?3>
2
( T3 _ximo )
T3 T3

for (2, —1). Now, using the isomorphism
(51'3)0 =C [I7y7 Z] /<I’Z - y2> = R7

we can rewrite these relations as
( y - ) =: X.
zZy

Ultimately, we can present (S(1)g,), as the cokernel of
R2 l} R2
Note that we know that the generators of this new representation correspond to x; and z».
Using ToricSheaves, we can compute the relation matrix for a presentation of (S(1),,),
as follows:
gap> S1 := DegreePartOfRing( S, [ 31, [ 11 );

tccto,1,0],[1,0,011,
<An unevaluated 2 x 2 matrix over a residue class ring> ]

which leads to the relations

for (1,—1) and

The arguments for the function DegreePartOfRing are the same arguments as for the
functionMonomialsOfDegreePart. The output consist of the generating monomials seen
in Example V.3.27, and a matrix., which describes the R/I-relations of the generators:

gap> Display( Si[ 2 1 );
t2, -ti1,
-t3,-t2

modulo [ t272-t1%t3 ]
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So we see, the relation matrix for (S(1),), is

to  —11
—ls —1o
over the I'iIlg R/I =C [tl, tQ, tg] /<t% - t1t3>.

3.h. Homogeneous parts of finitely presented modules. We now use the R/I-
presentations of the graded parts S, of S to describe the homogeneous parts A, of degree
a € G of a finitely presented graded S-module A. We first establish some well-known facts.

REMARK 3.36. Let F' € Objg_ g5 be a free module. Then there are ay,...,a, € G
such that

F =~ @ S (Oél) .
i=1
S («) is the shift of S by a, i.e., for any g € G

Notation. For the rest of the section {y1,...,y,} = H < Mon (Sy) will both be the
generating set for Sy and for the ring R as K-algebra.

Presenting the homogeneous parts F,, of a free S-module as Sp-modules can be done
using the presentations of the homogeneous parts of S. Note that even if F' is a free
S-module, the homogeneous parts F, of F' are not free Sy-modules in general.

REMARK 3.37. Let F' € Objg 4,5 D€ a free module, a € G, and

F =~ @ S (Oél)
i=1
like in Remark V.3.36. Then

S

Fa = S (Oél)a - @Sa2‘+04
=1

i=1
as Sp-modules.

Proposition 3.38. Let B, < Mon (S) be an Sy-generating set of Sy, T € Mon (S,),
and H a finite generating set (as computed from T") of the monomial cone Mon (Sy) of Sp.
Then there is at least one b € B, such that a solution a € ZH with

b [t =2
teH
exists and can be computed.

PROOF. Since B, is an Sp-generating set of S, and H generates Sy as a K-algebra, the
existence of b and a follows.

To find the solution a, assume Z, b, and the elements of H are presented by their
exponent vectors. Then one needs to solve Hz = Z —b for z € Z. This can be done using
an integer inequation solver. O
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Now we can describe homogeneous parts of A € S-grpres, i.e., a module A given as the
cokernel of a morphism of free graded modules

Fy 5 Fy — A = coker (¢) — 0.

Since ¢ is a graded S-module homomorphism, we get the following commutative diagram
of Sy-modules:

Fy Ey A 0
Fl [ d FO,a i Aa 0

Let

S1 S0

Fi=@S (), o=@ S(5),

i=1 j=1

and B,,, Bs; = Mon (5) the Sp-generating sets of S (a;), and S (3;), respectively. The

disjoint unions of the B,,, 7 =1,...,sy and Bg,, 7 = 1,..., s form generating sets for F ,

and Fy,. Since we can compute the R/I-relations of B,, and Bg,, we are able to present
both Fy, and Fi, as R/I-modules by the methods in Subsection V.3.f.

We now want to write down a matrix for the map ¢ in terms of the generators of Fj ,
and Fy,. Let e; be the generator of F; which corresponds to S («;), and

{b1,...,by} = Ba,.
Then we have
¥ (bfei) =by (fi,h cee fi,so)
with
befij € S(B)),
where f; ; is the 7, j-th entry of the matrix representing the morphism ¢. Let

bzfi,j = Z Cz

#eMon(Sg; )

=N

For every T € Mon (Sg].) by Proposition V.3.38 we can compute a generator b € B, and a
monomial s; € Sy such that

bofij= Y, casab.

feMon(ng )

To write by f; j as an R/I-linear combination consider again Proposition V.3.38. The mono-
mial sz € Mon (Sp) comes with an az € Z" such that

S5 = Hy e R/I.
=1
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Therefore, we can write by f; ; as an R/I-combination of the generators of Fy,. Now, for

every b € |1, By, we know ¢ (b) € Iy, written as an R/I-linear combinations in the

generators Hjjozl Bg, of Fyq as R/I-module, and can therefore construct a matrix for ¢.
We summarize the steps to compute the R/I-presentation of A, from the S-module A:

Algorithm 3.39. Computing A, as an R/I-module from the graded S-module A:

(1) Compute F; and Fj from A.

(2) Compute R/I, together with K-algebra generators H < Mon (S).

(3) For Fy and Fp, compute the R/I-generating sets B,,,i = 1,...,s1, and Bg,, j =
1,...,so, together with R/I-presentations for F , and Fp,.

(4) For each b € |J._, B,, compute the image @ (b) in terms of the R/I-generators
H—Jj=1 Bﬂj of F()@.

(5) Compute A, as the cokernel of @.

Example 3.40 (V.3.35 cont.). We now finish the computation of the new presentation
matrix of A. Remember, A was given by the cokernel of the map

5(0)2 M 5(1)

and we already know that, using the ring R := C|[xz,v, z] /{(xy — 2%), we have

(5(0)g)o = R and
(S(L)ay)o = B/ X

(1)

Now, using the presentation of A, we can reconstruct the localized map presenting A on
the 0-th degree level.

The first generator e; of S(0)? is mapped to x1, which corresponds to our first generator
of (S(1)4,),, which again corresponds to the first generator of R?/X.

The second generator e, of S(0)? is mapped to 3, which corresponds to the second
generator of R?/X.

So, we obtain the following presentation of (A,,), as an R module:

(07)

RR—— S RYX

with

This morphism is clearly surjective, so its cokernel, which is isomorphic to (A, ),, is 0.
This again concludes the fact that the module A sheafifies to 0.

We now use GAP to compute a presentation matrix of (A,,),. We first create the Cap
category of finitely presented graded modules, as described in Chapter III.
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gap> Sgrmod := GradedLeftPresentations( S );
The category of graded f.p. modules over Q[x1,x2,x3]
(with weights [ 1, 1, 2 1)

Now, to create the module, we first create its relation matrix (z1,z3) over the ring S. We
then create a graded module out of this matrix by specifying the degree of the generator
of A. Since A is a quotient of S(1), the degree of the generator is —1.

gap> A := HomalgMatrix( "[ x1, x2 1", 2, 1, S );

<A 2 x 1 matrix over a graded ring>

gap> A := AsGradedLeftPresentation( A, [ [ -11 1 );

<An object in The category of graded f.p. modules over Q[x1,x2,x3]
(with weights [ 1, 1, 2 ])>

Now we create the functor which computes the 0-th part of a graded S,,-module. As
input we use the graded module category and a list that indicates which variables of the
polynomial ring S are localized, i.e., invertible.

gap> F := DegreeZeroPartOfLocalizationFunctor( Sgrmod, [ 3 ] );
Degree zero functor localized at [ 3 ]

Now we apply the functor to A to get an R/I-module.

gap> A0 := ApplyFunctor( F, A );
<An object in Category of left presentations of
Qlt1,t2,t3]/(t272-t1*t3 )>

When we examine the relation matrix of the module, we see that it is (up to ordering of
the generators)' indeed the cokernel of the presentation map (A,,), above, in the sense we
described the algorithm for the cokernel of a finitely presented module in Chapter III.

gap> Display( UnderlyingMatrix( A0 ) );

0, 1,
1, O,
t2, -ti,
-t3,-t2

modulo [ t272-t1*t3 ]

IThe ordering of the generators depends on the GAP session, since some of the underlying linear
programming tools use randomness.
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So, the relation matrix for (A,,), over the ring R/I := C [t1, 2, t3] /{t3 — t1t3) is

0 1
1 0
o —1l
—t3 —t

We now use these algorithms to model the category of coherent sheaves over a toric
variety, since we can now decide whether a module sheafifies to 0.

Example 3.41 (V.3.2 cont.). We will now wrap up all examples from the previous
sections together and show that the module M from Example V.3.2 indeed sheafifies to 0.

We compute presentations for the affine sections of M. To compute (M,,),, we first
need to compute (S,,),. For ¢ = 1,2 we have

(Sm)o = (Sm)o ~ Cly1, 2] =: Ry,

since the subrings are generated by the monomials z7 2o, 27225 and z125 ", 25 %2s. For
both ¢ = 1,2 the module (M,,), can be presented by the R;-module homomorphism

()
1
Ry Ry,

—

which is an epimorphism, so (M,,), = 0 for ¢ = 1, 2.
The ring (S, ), is generated by the monomials ziz3
be presented as a quotient of a polynomial ring:

(ng)o =C [y17927y3]/<y1y2 - y§> =: Ry.

The module (M,,), can be presented as the cokernel of the Ry-module epimorphism

R5 — R3/N,

V2223t oiwew3 !, and can therefore

with
N = {(y2, —v3) » (Y3, —v1)) -

Hence (M,,), = 0.

To carry out the example in GAP, we use the ToricVarieties package together with
the ToricSheaves package. We first produce the fan of P (1,1, 2) and create a toric variety
out of it, using the ToricVarieties package.

gap> F :=Fan( [ [0, 1], [ 1,01, [ -1, -211,
> [[01,21,02,31,[01,311);

<A fan in |R"2>

gap> P112 := ToricVariety( F );

<A toric variety of dimension 2>

Now P112 represents P (1,1,2), and we use the Serre quotient category (cf. Chapter IV)
to model the category of coherent sheaves on P (1,1,2).
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gap> CohP112 := CategoryOfToricSheaves( P112 );
The Serre quotient category of The category of graded f.p. modules
over Q[x_1,x_2,x_3] (with weights [ 2, 1, 1 ]) by zero sheaves

We will now compute the Cox ring of the variety.

gap> S := CoxRing( P112 );
Qlx_1,x_2,x_3]
(weights: [ 2, 1, 1 1)

Note that the order of the variables have changed, since now x_1 has degree 2. As before,
we first create the relation matrix for the module M, then create a module presentation
out of it.

gap> M := HomalgMatrix( "[ x_2, x.3 1", 2, 1, S );

<A 2 x 1 matrix over a graded ring>

gap> M := AsGradedLeftPresentation( M, [ -1 ] );

<An object in The category of graded f.p. modules over Q[x_1,x_2,x_3]
(with weights [ 2, 1, 1 1)>

Now we sheafify the module M.

gap> SheafM := AsSerreQuotientCategoryObject( CohP112, M );

<An object in The Serre quotient category of The category of
graded f.p. modules over Q[x_1,x_2,x_3] (with weights [ 2, 1, 1 1)
by zero sheaves>

The variable SheafM now represents the sheafification of the module M. By testing whether
the object SheafM is 0, we test if the module sheafifies to 0.

gap> IsZero( SheafM );
true

As already seen, the module sheafifies to 0.

We provide another example where we compute the degree zero part of each localiza-
tions M_s belonging to a maximal cone o € ¥ for a f.p. graded module M over the Cox
ring S of a toric variety Xx.

Example 3.42. Let Xy be isomorphic to the Hirzebruch surface H,. Its fan ¥ looks
like this:
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Its Cox ring is S := C|[z1, ..., x4, with
deg (zq1) = (1,-7), deg(x3) = (1,0)
deg (z2) = deg (z4) = (0,1),
and the irrelevant ideal is generated by the monomials
T1To, T1X4, Toxz, and r3xy.

We compute the sections corresponding to the affine chart of Xy given by the maximal
cones of ¥ for the sheafification of the module presented by

Jlll‘g €T3
Tz 0

S(—1,0)® S(—1, 1) » S(0)2.

We first setup the module:

gap> S;

Qlx_1,x_2,x_3,x 4]

(weights: [ (1, -7 ), (0, 1), (1,0), (0, 1) D

gap> M := HomalgMatrix( "[ x_1*x_277, x_ 3, x_1*x 478, 0 1", 2,2, S );
<A 2 x 2 matrix over a graded ring>

gap> M := AsGradedLeftPresentation( M );

<An object in The category of graded f.p. modules over Q[x_1,x_2,x_3,x_4]
(with weights [ [ 1, -7 1, [0, 11, [ 1,071, [0, 1] 1)

gap> SMod := GradedLeftPresentations( S );

The category of graded f.p. modules over Q[x_1,x_2,x_3,x_4]

(with weights [ [ 1, -7 1, [0, 11, [ 1,01, [0, 1110

Now we set up the functors mapping a module to the degree zero part of its localization.
We denote the functors with I'; ;, where 7, j are the indices of the variables we are localizing.

gap> Gammal2 := DegreeZeroPartOfLocalizationFunctor( SMod, [ 1, 2 ] );
Degree zero functor localized by [ 1, 2 ]
gap> Gammal4 := DegreeZeroPartOfLocalizationFunctor( SMod, [ 1, 4 ] );
Degree zero functor localized by [ 1, 4 ]
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gap> Gamma23 := DegreeZeroPartOfLocalizationFunctor( SMod, [ 2, 3 ] );
Degree zero functor localized by [ 2, 3 ]
gap> Gamma34 := DegreeZeroPartOfLocalizationFunctor( SMod, [ 3, 4 ] );
Degree zero functor localized by [ 3, 4 ]

We apply those functors to the module M.

gap> M12 := ApplyFunctor( Gammal2, M );

<An object in Category of left presentations of Q[t1,t2]>
gap> Display( M12 );

1, t1,

t278,0

An object in Category of left presentations of Q[t1,t2]

We see that the ring S,,,, is isomorphic to C|[ty,ts], i.e., the polynomial ring in two
variables, and that (M,,,,) is presented by the matrix

(47)
B0 )

We compute the remaining degree zero parts:

gap> M14 := ApplyFunctor( Gammal4, M );

<An object in Category of left presentations of Q[t1,t2]>
gap> Display( M14 );

t277,t1,

1, 0

An object in Category of left presentations of Q[tl1,t2]
gap> M23 := ApplyFunctor( Gamma23, M );

<An object in Category of left presentations of Q[t1,t2]>
gap> Display( M23 );

t1, 1,

t1xt278,0

An object in Category of left presentations of Q[t1,t2]
gap> M34 := ApplyFunctor( Gamma34, M );

<An object in Category of left presentations of Q[tl1,t2]>
gap> Display( M34 );

t1xt277,1,

t1, 0

An object in Category of left presentations of Q[t1,t2]







CHAPTER VI
Application

As an application of the categorical framework for implementing categories in Chapter
I1, the graded module presentations from Chapter III, and their application when modeling
coherent sheaves over toric varieties in Chapter V using the Serre quotient categories
described in Chapter [V, we give an algorithm to compute presentations of graded modules
and coherent sheaves over toric varieties which are compatible with a special filtration
thereof: the so-called grade or purity filtration.

We first establish further categorical notions we need throughout this chapter. Then
we define the grade or purity filtration of a f.p. graded module and a coherent sheaf.
Afterwards, we give the algorithm to compute both the grade filtration and the adjusted
presentation of a f.p. graded module and a coherent sheaf. All algorithms will be stated in
a categorical manner and can be applied to both f.p. graded modules and coherent sheaves.
For the source code, see Appendix G.

1. Preliminaries

We will first give the necessary categorical notions to describe the grade filtration of
f.p. graded modules and coherent sheaves. We start by defining projective objects.

Definition 1.1 (Projective object). Let A be a category.

(1) Let A, B € Obj 4. An object P € Obj 4 is called projective if for every morphism
v : P — A and every epimorphism 7 : B — A there exists a morphism A : P — B
such that Am ~ .

(2) A is said to have enough projectives if for every A € Obj 4 there is a projective
object P € Obj, and an epimorphism 7 : P — A.

The dual notion of projective is injective.
Definition 1.2 (Injective object). Let A be a category.

(1) Let A, B € Obj4. An object I € Obj, is called injective if for every morphism
¢ : A — [ and every monomorphism ¢ : A < B there exists a morphism A : B — [
such that (A ~ .

(2) A is said to have enough injectives if for every A € Obj, there is an injective
object I € Obj, and a monomorphism ¢ : A — I.

Definition 1.3 (Computable projective). Let A be a computable category with real-
ization R. Then A has computable enough projectives if:

127
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(1) for every object A there is a projective object P and an epimorphism ¢ : P — A
such that the function
EpiFromProjective :Obj 4 — Mor 4, A — ¢

is computable by *R;

(2) for every triple of objects P, A, B € Obj, where P is projective and there are
epimorphisms ¢ : A - P and 7 : B - A with a lift A\ : P — B with A7 ~ ¢ the
function

Lift :Mory4 x Morgq — Mor 4, (@, 7) — A
is computable by fA.

We show that the category S-grpres of graded module presentation (cf. Chapter I1I),
which is equivalent to the category of f.p. graded modules -grmod has enough projectives.

Definition 1.4 (Free module). Let S be a graded ring with degree group G. An
M € ODbjg gymoq is free of rank n € N if it is isomorphic to

DS ()
i=1
for some «; € GG.

Proposition 1.5. A free module in the category S-grpres is projective. Therefore, the
category S-grpres has enough projectives.

REMARK 1.6. In the category S-grpres a module presented by a 0 x n matrix for some
n € N is free of rank n. The converse is not true: A module presented by the 1 x 2 matrix
(1 0) is free of rank 1.

In fact, any projective object in S-grpres is isomorphic to exactly one object in the set
{(On,wn) | neN,0, eS8 w, e G”} )
Theorem 1.7. The category S-grpres has computable enough projectives.
PrOOF. We give algorithms for EpiFromProjective and Lift:
(1) For any object M := (M’ ,w) € Objg g res S€t
P = (o,w),
where o is the 0 x n matrix over S and n := NumberOfGenerators (M). Now set
p:=(M,1,,P),
where 1, is the n x n identity matrix. Then we can define
EpiFromProjective (M) := ¢.

(2) Let A, B,P € Objg gpes, P projective, m := (B, M, A) an epimorphism, and
¢ :=(P,N,A). We set

L :=RightDivide (N, M, A’),
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which means that there is a matrix X such that
LM+ XA =N,
and define
A := Lift (p,7) := (P, L, B).

P is projective, so PL € S°98 5o B >,,, PL. Furthermore, from Proposition
I11.1.9 it follows that A is indeed a morphism.
For the universal property, consider

A= (P,LM,A).
We have LM + XA" = N,so LM — N = —XA’, and therefore
AT~ . O
We now define (co)homological chain complexes in a preabelian category, since we need
them to define the grade filtration.
Definition 1.8 ((Co)Complex). Let A be a preabelian category.

(1) A homological complex or chain complex or complex (C,, 0) in A is a series
of morphisms

0; : C; — C;_4
for ¢ € Z such that
ImageObject (0;) < KernelObject (0;—1)

for all i. We will often write it as

Coioon &0y oy &
We denote by

B; (C.) := ImageObject (0;41) ,

Z; (C,) := KernelObject (0;) ,

H; (C.) := Z; (C.) /Bi (C.) .
H; (C,) is called the i-th homology of C,. The complex C, is called exact at
homological degree i if H; (C,) is zero.

(2) A cohomological complex or cochain complex or cocomplex (C*,0) in A
is a series of morphisms

o O i
for i € Z such that

ImageObject (81) < KernelObject (5”1)
for all 2. We will often write it as

—2 —1 0
o ... ot o0 2,
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We denote by
B’ (C*) := ImageObject (0 '),
Z' (C*) := KernelObject ("),
H' (C*):= 7" (C") /B (C*).
The cocomplex C* is called exact at cohomological degree i if H' (C*) is zero.
Definition 1.9 (Chain map). Let A be a preabelian category and (C., d) and (D.,€)
chain complexes. A chain map ¢ : (C,,0) — (D.,¢€) is a collection of morphisms
0;:C; > Dy, i€Z
such that
wi€; ~ Oip;— for all i € Z.
The chain complexes in a preabelian A with chain maps as morphisms form a category.

Definition 1.10 (Projective resolution). Let A be an abelian category and M € Obj 4.
(1) A homological projective resolution of M is a chain complex

A
Poioooe— 08 p i p 2

together with an augmentation map ¢ : Py - M satisfying the following prop-
erties:
(a) P, is projective for all i,
(b) P, is exact everywhere except at homological degree 0,
(¢c) M =~ CokernelObject (01) via e,
(d) € is an epimorphism,
(e 816 ~ OPl,M-
(2) A cohomological projective resolution of M is a cochain complex (cocomplex)
Pt P2l ptaip0 &g,
together with an augmentation map e : P’ — M satisfying the following prop-
erties:
(a) P'is projective for all 4,
(b) P* is exact everywhere except at cohomological degree 0,
(¢) M = CokernelObject (071) via €,
(d) €is an epimorphism,
(e) Goe ~ Op-1 .
We often write € : (P*,0) — M for the augmentation map.

Definition 1.11 (Injective Resolution). Let M be an object in an abelian category A.

A homological injective resolution of M is a cochain complex
I 0

together with an augmentation map ¢ : M < I° satisfying following properties:
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(1) I' is projective for all 7,

(2) I°® is exact everywhere except at cohomological degree 0.
(3) M =~ KernelObject (0°) via ¢,

(4) ¢ is a monomorphism,

(5) L@O ~ OM,Il-

Projective resolutions are computable in computable abelian categories with com-
putable enough projectives.

Definition 1.12. Let A be a computable abelian category with computable enough
projectives and M € Obj 4. Let

a := EpiFromProjective (M) .
The chain complex defined by the morphisms

01 := PreCompose (EpiFromProjective (KernelObject («)), KernelEmbedding («))
d; := PreCompose (EpiFromProjective (KernelObject (d;-1)) , KernelEmbedding (),
d; := UniversalMorphismIntoZeroObject (Range (0,41)),

for ¢« > 1 and 7 < 0, together with o as augmentation map is a homological projective
resolution of M. We set the operators

ProjectiveResolutionComplex (M) := (P,, ) ,
AugmentationMap (M) := «.

) )
P, ! P, 2 P,
/ \ / \ /
Ro T R1 T2
M K K,

ko := KernelEmbedding («) ,
k1 := KernelEmbedding (d;)
m; := EpiFromProjective (K;), i = 1, 2.

with

Indeed, this is a projective resolution, as directly seen from the construction. By
multiplying all indices by —1, we can define the operator
ProjectiveResolutionCocomplex .

Corollary 1.13. Let S be a G-graded ring. Then every object in the category S-grpres
admits a projective resolution.
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Definition 1.14 (Ascending/Homological Filtration). Let A be an abelian category
and A € Obj 4. We call A (n + 1)-filtered if there is a chain of subobjects
0=A,19A,>A 1> A=A
We define
FiA:= A,

and say A is (n + 1)-filtered by F,A. Further, we define

grio A= A A,
which we call the i-th graded part of A.

A morphism ¢ : A — B of two ascendingly filtered objects A, B filtered by F,A and
F,B is called a filtered morphism if for every ¢« we have

¢ (FA) € FiB.

Definition 1.15. Let (C,, d) a homological complex in an abelian category A. (C,, 0)
is (n + 1)-filtered if each object C; admits an (n + 1)-filtration F,C; such that each 0J; is
filtered.

Proposition 1.16. Let (C,,0) be a filtered complex with filtration F,C,. Then there
is an induced filtration on the homology H; (C,), which we will again denote by FJH; (C,)
and is defined by
FnHz (C.) = I‘IZ (FnC’.) s
together with the natural isomorphisms for the identification as subobjects.
ProOF. We have
B; (FiC,) = B; (Co) n FiC;
2; (FiC,) = Z;(Cs) 0 FiC5,
so the embedding F;C; — F;,C; gives rise to a well-defined monomorphism
H, (FiCL) = H, (Fin ).
Therefore we have an induced filtration on homologies. g

Generalized morphisms (cf. Chapter IV) deliver a tool to relate homology of a complex
C, to the objects in C,.

Definition 1.17. Let A be an abelian category, A, B,C' € Obj,, and ¢ : B — A,
¢ : C'— B monomorphisms. Then the generalized morphism by spans

B/C «--------- > A

CokernelProjection (:0\ /
B

is called the subfactor embedding of B/C in A. Its pseudo-inverse is called the sub-
factor projection of A onto B/C'.
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Proposition 1.18. Let A be an abelian category, (Cs,0), (D.,€) chain complezes over
A, and ¢ : Cy — D, a chain morphism. Let furthermore

a:H; (C)— C;

be the i-th embedding of the homology of Cy and the i-th projection of the homology of D,,
respectively. Then the morphism

H; (v) : H; (C) — H; (D)

induced by the functoriality of H can be computed as honest representative of composition
of generalized morphisms

;3.
If ¢ is a quasi-isomorphism, H; (p) is an isomorphism.
PROOF. Let
ke := KernelEmbedding (¢;),
K¢ := KernelObject (0;) ,
kp := KernelEmbedding (¢;) ,
Kp := KernelObject (¢;) .
Then we can compute the functoriality of the kernel by Proposition 1V.3.4 via

r := HonestRepresentative (kop; GeneralizedInverse (kp)) .

We now have k : Ko — Kp with kcp; ~ kkp. Now, let
He :=H; (C,),
Hp :=H;(D.),
mc : Ke — He,
mp: Kp — Hp.

So we get the diagram with commuting squares

K é‘z
He «C— Ko "2 ¢ Cit1
H; () /‘i‘ 902“ 90i+1‘
Hp i Kp - "D D; “ Djq

We can now fill the first column by

H; (¢) := GeneralizedInverse (7¢) k7p,
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and get
H; (¢) = GeneralizedInverse (7¢) kow; GeneralizedInverse (kp) mp,
but we have
a ~ GeneralizedInverse (7¢) ko,
S ~ GeneralizedInverse (kp) 7p,

which concludes the proof. O

2. Bicomplexes

We now introduce bicomplexes, which are a special kind of filtered complex. After
we define bicomplexes, we will give an algorithm to associate a special bicomplex to the
projective resolution of an object A. This bicomplex is called Cartan-Eilenberg resolution.
It will introduce a filtration on the projective resolution and therefore by Proposition
VI.1.16 induce a filtration on the 0-th homology of the projective resolution, which is the
object A. This filtration will later become the grade filtration.

Definition 2.1 (Homological bicomplex). Let A be a category. A homological bi-
complex C,, over A is a 2-dimensional grid C;;, 4,7 € Z of objects in A, together with
morphisms

62]- . Ci,j - 01;17]'
and
6;’7]- : Ci,j - Ci’jfl
such that
0v0Y = "ot = oMY + vt = 0.
Since o"0¥ + 0Y0" = 0, a bicomplex is not a complex of complexes.

Throughout the whole of this thesis, bicomplexes B,, are assumed finite, i.e., there is
some N € N such that for all n > N it is

Bn,n = Bfn,n = Bn,fn = Bfn,fn = 0.

Definition 2.2 (Total complex). Let A be an abelian category and (C.., ) a homo-
logical bicomplex. Then the total complex Tot® (C,,) is a homological complex defined
as follows:

(1) The objects are
Tot® (Cua), := P Cpy

pt+q=n

(2) The differentials are

Op 1= ( P 81’;(1) + ( P 8§7q> :
p+qg=n p+qg=n

Theorem 2.3 ([Wei94, p.141]). Let A be an abelian category and Cee a homological
bicomplex. Then the following are filtrations on Tot® (C,,):
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(1)
'F, Tot? (Cua),, i= P Cpys

ptq=n
P<i

(2)
"E,Tot? (Cud), = @ Cpy.

pt+g=n
q<i

Definition 2.4. Let A be a category and (C,., ) a homological bicomplex. The
transposed bicomplex (C!, v) is a homological bicomplex such that

tr . __

Cl = Cyp,
h ._ v

Tpg = aqp’
v ._ Ah

Tpg = aqp‘

Both C,, and C!f have the same total complex. The first filtration ! F, on the total
complex Tot® (C,,) of C,, is the second filtration !/ F, on the total complex Tot® (C) of
Ct . and vice versa.

ee)

Theorem 2.5 ([Wei94, Def. 5.7.1 and Lemma 5.7.2]). Let A be an abelian category
with enough projectives and P, a complex over A. Then there is a homological bicomplex
(Qee, 0) together with a connecting chain map € : Qope — P. such that for every i the
following holds:

(1) If P; is zero, the column Q; . is zero;
(2) The induced maps on the boundaries and homology
B; (6) : B; (Qi,o7 ah) — B; (P) )
Hz’ (6) : Hl (Qi,n (3h) - Hz (P)
are homological projective resolutions in A.
The bicomplex (Qee s called a Cartan-Eilenberg resolution of P,.

To give the necessary construction for the proof we need the horseshoe lemma.

Lemma 2.6 (Horseshoe lemma). Let A be an abelian category and
0— A AT A 0

a short exact sequence. Let furthermore (P.,0") and (P),3") be projective resolutions of A’
and A”. Then there is a projective resolution (P,,0) of A such that there is a short exact
sequences of complexes

0—P P -5 P -0

with P; ~ P/ @ P!
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PRrROOF. Since P! and P! are projective resolutions of A" and A”, respectively, there
are epimorphisms

€ Py A,
e Py — A"
Since 74 is epi and PJ is projective, we can define
N = Lift (€”,14),
so we have \" : ] — A. Together with
A := PreCompose (€, 1)

we can define
¢ := UniversalMorphismFromDirectSum (A, \") .

By setting P := P} @ P} we get an epimorphism
e: Py — A.
We set
g := InjectionOfCofactorOfDirectSum ((Fy, Py) , 1),
Bo := ProjectionInFactorOfDirectSum ((Fy, Py) ,2),
and therefore have
age ~ €Lg,
Bo€” ~ emy.
The sequence
0— P, 2% py 2% P -0
is exact, and therefore, with
Ky := KernelObject (¢) ,
K|, := KernelObject (¢},
K[ := KernelObject (¢"),
we get another exact sequence
0— K, — Ky— K — 0.
Now we can iterate the construction above to get (P, d), «, and f. ]

For the implementation, see Appendix G.8.

ProoOF oF THEOREM VI.2.5. For each object P; in P,, take the induced short exact
sequence
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and compute projective resolutions P, and PZH. of B; (P) and H; (P). Using the Horseshoe

lemma VI.2.6 construct a compatible projective resolution PE,, which leads to a short exact
sequence of complexes

i,0 i,0 i,0

Using the computed resolutions Pf, and PEL,, we can apply the Horseshoe lemma again
to the short exact sequence

and get a compatible resolution P;, for P;, together with a short exact sequence of com-
plexes

0— P, —>P.—>P,—0.

For the Cartan-Eilenberg resolution Q.. the P;; are the objects and the vertical differentials
are the differentials from the P;,, multiplied with (—1)". The horizontal differentials are
constructed by the induced mappings

Pi1a — PB — P4 = B,

i,0 i,0

A proof that this construction fulfills the desired properties can be found in [Wei94,
Lemma 5.7.2]. 0

We will denote the Cartan-Eilenberg resolution (),, of a complex P, constructed in
the above proof by CE,. (P,). The construction of the Cartan-Eilenberg resolution given
above is for a homological bicomplex. In this case, the Cartan-Eilenberg resolution is a
bicomplex in which the only non-zero objects lie in the upper half-plane, i.e., all objects
below the p-axis are zero. In the cohomological case, the Cartan-Eilenberg resolution lives
in the lower half-plane, meaning that all objects above the p-axis are zero.

The code for the CAP implementation of the construction of the Cartan-Eilenberg
resolution can be found in Appendix G.9.

One can recover the homologies of the initial complex from the Cartan-Eilenberg reso-
lution.

Theorem 2.7 ([Wei94, Thm. 5.7.2]). Let P, be a chain complex. Then the total
complex Tot® (CE,, (P.)) of the Cartan-Eilenberg resolution of P, is quasi-isomorphic to
P, via the connecting chain map €.

3. Internal Hom and Ext

To compute the bicomplex which will later define the grade filtration of an object, we
need the internal Hom and Ext functors. We will define those two functors only for graded
modules and for coherent sheaves.

Definition 3.1 (Additive Functor). Let A and B be preadditive categories. A functor
F: A — B is called additive if it induces homomorphisms of abelian groups

Fun : Hom g (M, N) — Homg (F (M), F (N)).



138 VI. APPLICATION

Definition 3.2 (Right derived functor). Let A be an abelian category with enough
injectives, B another category, and F': A — B a left-exact additive functor. Furthermore,
let A € Obj 4 and I* an injective resolution of A. The i-th right derived functor R'F
of F'is defined on objects by

RF (A) = H (F (I*)).

Definition 3.3 (Right derived contravariant functor). Let A be an abelian category
with enough projectives, B another abelian category, and F' : A°? — B a left-exact additive
functor. Furthermore, let A € Obj, and P, a projective resolution of A. The i-th right
derived functor R'F of F is defined on objects by

R'F(A):=H (F(P)).
Derived functors are independent of the chosen resolution.

Definition 3.4. Let A be an additive category, Ab the category of abelian groups,
A,B,C,DeObj,, ¢: A— B,and ¢ : C — D. The functor

Hom : A°® x A — Ab
defined by
Homy ((A°P, B)) := Hom 4 (A, B)
Hom; ((¢°P,4)) := (Homy (B,C) — Homy (A, D), a— pai))
is called the Hom-Functor of A. We write
Hom (A, B) := Hom, ((A°?, B))

and

Hom (g, ) := Homy (¢, ¢)) .
Definition 3.5. Let S be a G-graded ring and M € S-grmod. Then the functor

Hom (—, M) : S-grmod®® — Ab

is left exact and additive, and we call its right derived functor the Ext-Functor of S-grmod
and M, and denote it by

Ext®(—, M) := R°Hom (—, M).
Definition 3.6. Let S be a G-graded ring. The internal Hom-Functor
Hom : S-grmod® x S-grmod — S-grmod
in S-grmod is defined on objects as in Definition III.1.3, and on morphisms via
Hom, ((¢°P, ) := (Hom (B,C) — Hom (A, D), a — par)),

with ¢ : A — B and ¢ : C' — D in Morg_gmod-

For an object A € Obj, and a morphism ¢ € Mor 4 we define

Hom (p, A) := Hom (p,id4)
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and
Hom (A, ) := Hom (id4, ¢) .
Definition 3.7. Let S be a G-graded ring and M € S-grmod. Then the functor
Hom (—, M) : S-grmod® — S-grmod

is left exact and additive, and we call its right derived functor the internal Ext-Functor
of S-grmod and M, and denote it by

Ext®(—, M) := R°Hom (—, M).
Definition 3.8. Let n,m € N, S be a computable G-graded ring, 0,, € S°*", w,, € G",
Sl = (01, (0>> € Objs_grpr957 and PO = <0n7wn) € ObjS—grpreS‘ We define
Hom (PO, Sl) = (0, —wn) ,

so this particular internal Hom is computable. Let furthermore m € N and P; := (0,,, wy,) €
ODbjggrpress A € S™™, and ¢ := (P, A, Py) € Morg_grpres. We define

Hom (gp, Sl) = (Hom (Pl, Sl) , A Hom (Po, Sl))
so this particular internal Hom is computable.

Indeed, those internal Homs coincide with the internal Homs defined in Definition
VI.3.6.

Definition 3.9 (Internal Hom on sheaves). Let Xy be a normal toric variety. Then
we define the internal Hom for two sheaves I, G in q€obh (Xy) as the sheaf

Hom (F,G) : U — Homo, () (F(U),G(U)),
so the internal Hom is again a quasi-coherent sheaf of Ox,.-modules.

Definition 3.10 (Internal Ext on sheaves). Let Xy be a normal toric variety, and
M € Objyeon(xy)- Then the covariant internal Hom functor

Hom (M, —) : q€ob (Xy) — q€ob (Xyx)
is left-exact and additive, and we call its right derived functor the internal Ext-Functor
of q€oh (Xx) and M, and notate it by

Ext® (M, —) := R°Hom (M, —).
4. Grade filtration

We now introduce the grade filtration for a graded module M over a G-graded ring
S. We will first define the grade of a module, then define the grade filtration. Afterwards,
we give a (purely categorical) algorithms to compute a presentation for M adjusted to the
filtration, and compute it for examples.

Definition 4.1 (Codimension of a module). Let S be a G-graded ring and 0 # M €
ODbjg grpres- The codimension or grade of M is

min{c> 0| Ext®(M,S) # 0}.
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Definition 4.2 (Grade filtration). Let S be a G-graded polynomial ring and M €
ODbjg gpres- The filtration ¢4 : ¢, M < t, M < -+ < t¢tM = M is called grade
filtration or purity filtration if ¢ ;M is the maximal submodule of M of grade greater
or equal to i.

REMARK 4.3. In this setting the graded parts ¢t ;M /t_;, 1M are pure of grade i, which
means that each nontrivial submodule of ¢t ;M /t_; 1M has grade 1.

Definition 4.4 (Dual). Let S be a computable G-graded ring.
(1) The dual M of an object M € Objg_gpres is Hom (M, ST).
(2) The dual " of a morphism ¢ € Mors_gpres is Hom (¢, S*).

REMARK 4.5. For every object M € Objg 4,,e there is a canonical morphism
M— (MY)".
Proposition 4.6. Let S be a computable G-graded ring. Then the functions
DualOnObjects : Objg gpres = Objs gipress M — M7,
DualOnMorphisms : Morg_grpres — MoOr'g_grpres; ¢ — @7,
MorphismIntoBidual : Objg gpres = MOTs grpres, M +— (M — (MY)")
are computable in S-grpres.

PROOF. Let U := (0, (0)) with 0; € §°*!. By using EpiFromProjective and Kernel-
Embedding, for every M € Objg s We can construct a morphism of free objects Fp, I
[ Fl - FO

such that M =~ CokernelObject (o), where the isomorphism can be computed using the
cokernel colift. Since Hom (—,U) is contravariant and left exact, therefore, it suffices to
compute duals of free objects, since

KernelObject (Hom (o, U)) = Hom (M, U) .

This was already done in Proposition VI.3.8, therefore both DualOnObjects and DualOn-
Morphisms are computable in S-grpres.

We now construct the morphism into the bidual. Let now F':= (0,,w,) € Objg 416 @
free object, with n € N, 0,, € S°*", and w € G™. Then we can set

(F¥)" = F,
and
MorphismIntoBidual (F’) := IdentityMorphism (F) .
Then, for an arbitrary object M as above,
MorphismIntoBidual (M)

can be computed by the morphism « above and the functoriality of Hom. O

We will also define notions for a dual complex and a dual bicomplex.
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Definition 4.7. Let S be a computable G-graded ring and (C,, 0) a chain complex in
S-grpres. Then the dual ((CV)*,0Y) is a cochain complex such that

(CY) = (Cy)",
(@V) = (0,_1)" .

Dualizing preserves the indices of the objects, and therefore shifts the indices of the
differentials.

Definition 4.8. Let S be a computable G-graded ring and (C,,., ) a homological
bicomplex in S-grpres. Then the dual ((CV)**,7dY) is a cohomological bicomplex such
that

(C) = (Ciy)"
(0¥)" = (0ic15-1)"
for both horizontal and vertical differentials.

Definition 4.9 (Bidualizing resolution). Let S be a G-graded ring, and M € Objg g res-
We define the bidualizing resolution of M as the homological bicomplex

BidualizingBicomplex,, (M) := (CE,. (ProjectiveResolutionComplex (M)"))"

i.e., the dual of the Cartan-Eilenberg resolution of the dual of the projective resolution of
M.

Theorem 4.10 ([Bar09b, p.32]). Let S be a G-graded ring, M € Objg 4, and
Q.. := BidualizingBicomplex,, (M) .

Then the following holds:
(1) Tot® (Q..) is evact everywhere except at homological degree 0.

(2) There exists a natural isomorphism

Hy (Tot® (Q..)) = M.

(8) The induced filtration of "' F Tot® (Q..) on M is the grade filtration of M.
Theorem 4.11. Let S be a computable G-graded ring and M € Objg gn0q- Then the
isomorphism
H, (Tot® (BidualizingBicomplex,, (M))) = M

is computable.

PROOF. Let Q.. := BidualizingBicomplex,, (M) and C,, := CE,, (M"). Furthermore,
let P, := ProjectiveResolutionComplex (M), and « := AugmentationMap (M). Then we
have

M =Hy (P).
For an object in S-grpres the canonical morphism to the bidual is computable and is an
isomorphism for free objects, so the isomorphism 7 : Py — (Py’)" is computable. Using
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this isomorphism and a cokernel colift we get an isomorphism

d:Ho((PY)") —> M.
The Cartan-Eilenberg resolution comes with an augmentation Cq — PV, which induces a
quasi-isomorphism

¢ : Tot® (C,.) — P".

Taking its dual we get a quasi-isomorphism
=Y (PY)" — Tot® (Qu.),

since duals of quasi-isomorphisms between complexes consisting of free objects are quasi-
isomorphisms. So we get an isomorphism

X+ Ho (Tot® (Qu.)) — Ho ((P¥)Y)

by applying Proposition VI.1.18. Composing y and d we get the desired isomorphism. [

An implementation of this isomorphism can be found in Appendices G.16 - G.22.

5. Spectral sequences

We now define spectral sequences and use them to compute the graded parts of the
grade filtration of a module over a G-graded ring S. Spectral sequences can be associated
to a filtered complex F,C, or a bicomplex C,, (as a special case of a filtered complex) and
can then be used to compute the graded parts of the induced filtration F,H, (C') on the
homologies of the filtered complex.

Definition 5.1 (Homological spectral sequence). Let A be an abelian category. A
homological spectral sequence E, , starting at page a consists of the following data:

(1) A family of objects E]  for all p,q € Z, r € Zz,;
(2) Morphisms

T, T T
d%q : EILQ - E

p—r,q+r—1

such that d"d" = 0.

(3) Isomorphisms

€pq : Hpyg (E.,) — E;,Zl

X
T T r+1
between the homology of E¢, at E] and E, "

Each object EJ , is by definition a certain subfactor of the corresponding object on the

previous pages £ , s <T.

Example 5.2. One can visualize the pages 0, 1, and 2 as follows:
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0 0 0 1 1 1 2 2
EO,Q E1,2 E2,2 Eo,2 A E1,2 A E2,2 E0,2 Ez,z
0 0 0 1 1 1 2 2
E0,1 E1,1 E2,1 Eo,l AE— E1,1 A E2,1 Eo,1 E2,1
0 0 0 1 1 1 2 2 2
Eo,o El,o E270 Eo,o A— EI,O A— E2,0 Eo,o El,O E2,0

Definition 5.3 (Boundness and convergence). Let A be an abelian category. A ho-
mological spectral sequence E, , is bounded if for each n there are only finitely many
non-zero EJ  with p + ¢ = n. In this case for each p,q there is an 79 > 0 such that for all
r=ryitis

Er o~ Er+1

Pg =
via the isomorphisms €, ., since all in- and outgoing morphisms of £ , start or end at zero
objects. We write E°, for this stable value.

We say that the spectral sequence converges to H, if there is a family of objects H,

with an ascending filtration

and isomorphisms
E;Oq = +‘Z/ p+q
We write
Eg, ¢ = Hpiyg
We can use the notion of subfactor embeddings from Definition VI.1.17 to define the
spectral sequence of a filtered complex.

Theorem 5.4. Let A be an abelian category and C, a filtered complex with filtration
F,. The filtered complex C, determines a spectral sequence E (F,C,) as follows:

(1) For the 0-th page, we set
E°(F.C.), = FpChig/Fp1Cpyyg.

(2) We recursively define d, , to be a honest representative of the composition of gen-
eralized morphisms

r 8P+L1 r
(T) E (FOCO)p,q — Up+rg = Lptg—1 = E (F.C.)

The proof that all morphisms (f) are honest and this object is indeed a spectral sequence
can be found in [Bar09a, Section 1.6].

p—r,q+r—1-

Corollary 5.5. Let A be a computable abelian category, and C, a filtered complez.
Then the generalized embeddings

ET (F‘C‘)p,q - p+q
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are computable for all p,q,r.

The fact that the generalized embeddings E" (F,C,) pq > Cp+q are computable follows
from the definition of £ (F,C,) in Theorem VI.5.4. Beside the obvious recursive algorithm,
there is a non-recursive algorithm to compute the morphisms E” (F.C’.)n ¢ > Cp+q which
can be found in [Pos17, Subsection 11.2.4].

If the filtration F,C, of C, is finite, the spectral sequence E (C,) converges.

Theorem 5.6 ([Wei94, p.135]). Let A be an abelian category and Co an (n+ 1)-
filtered complex with filtration F,C,. Then the induced spectral sequence converges to the
induced filtration of the homology of Cs (cf. Prop. VI.1.16), i.e.

Er (F'C')p,q = Hp+q (C') .

The spectral sequence of a bicomplex can be defined using the total complex and an
induced filtration.

Definition 5.7. Let A be an abelian category and C,, a homological bicomplex. Then
we define

B (Cu) = B ('F T (C)
"E(Cu) i= E ("FTot® (C..)) = E ("F Tot® (CLL))
the first and second spectral sequence of C,, respectively.

In fact, for all p, g we have
IEO (C..)

lle

Cp:q

p,q
and
I o (C..)M ~ C;fq.

For a computable abelian category, the algorithm in [Pos17, Subsection 11.2.4] computes
for given C,, and p, ¢, r the generalized embedding

IEIT (Cﬂ)p,q

Definition 5.8 (Bidualizing spectral sequence). Let S be a G-graded ring, M €
ODjg grpres; and P := ProjectiveResolutionComplex (M). The bidualizing spectral se-
quence

= Cpyq-

BidualizingSS (M)
is the spectral sequence
" E (BidualizingBicomplex,, (M)) := E ("' F Tot® (Hom (CE.. (Hom (P, S")),S"))).
This spectral sequence converges to the grade filtration of M.

Theorem 5.9 ( [Bar09a, Thm. 9.1.3]). Let S be a G-graded ring, M € Objg_gpres;
and E := BidualizingSS (M) the bidualizing spectral sequence of M. Then we have

EZ = Ext 7P (Ext1(M,S),S),
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and
r M, p+q=0,
Epg = { 0, otherwise,

where the filtration of M is the grade filtration.

An implementation for computing the generalized embedding of E” ,  into M can be
found in Appendix G.21, using algorithm [Pos17, Subsection I1.2.4].

6. Filtered presentation

In the last section we saw how we can compute presentations for the graded parts of
the grade filtration of a f.p. graded module M, together with their generalized embeddings
in M. We will now use these generalized embeddings to compute a presentation for M
which honors the filtration, the so-called filtered presentation. We first define the filtered
presentation of a filtered module.

Theorem 6.1. Let S be a G-graded ring and M € Objg ,. e an (n+1)-filtered graded
module presentation with filtration F,M such that each graded part gr* M has the presen-
tation

gr' M = (M],w;).
Then there exists an object
Mp = (Mp, (wo, ..., w_p))
such that M =~ Mg and the relation matriz M} is in upper triangular form with matrices
M, ..., M, as diagonal blocks.
We call such a presentation My a filtered presentation.
PROOF. For the construction of the matrix M} and the isomorphism M = Mg, we

use a recursive algorithm. We will assume that the presentation of a submodule F;_{M is
already of the desired form, and use the projection

F,M — gr' M
and the injection
F, 1M — F;M
to construct an isomorphism from a module My, with a filtered presentation to F; M.
We set
M; = gr' M,
and
it FyM — gr' M.
Furthermore, let
v F,_ M — F;M
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and suppose F;_1M is already presented by an upper triangular matrix of the desired form.
To compute a filtered presentation for F; M, we compute

v := EpiFromProjective (M;),

;i = KernelEmbedding (v) ,

no := Lift (v, m;),

n := LiftAlongMonomorphism (PreCompose (1, 10) , ti) ,

and get the following commutative diagram with exact rows:

0 Ml pl g 0
lno lﬁ
5 Li
0 M, M Foo M «—0

Since P is a free object, and v is given by the identity matrix, we can assume that p; is
represented by the relation matrix of M;. Now consider the short exact sequence

(ki 1) ( _:0 )

0 K PO F, M EM 0.

The cokernel object of the first map (p; 1) computed by the algorithms for S-grpres is

presented by
M; A
0 E—IM/ )

where A represents the morphism 7 := (K, A, F;_1M) and F;_1 M’ is the relation matrix
of F;_1M. Since the sequence is exact, we can compute an isomorphism from the object
represented by the above matrix to the old presentation of F;M via CokernelColift. The
claim follows. Il

To put all steps together and define a filtered presentation for the grade filtration, we
need the combined image of a generalized morphism, which we now define.

Definition 6.2. Let A be a abelian category and ¢ : A — B in Morgs(4). We define

CombinedImagegs 4 () := ImageObject 4 (Arrow (),
CombinedImageEmbeddinggs 4 () := ImageEmbedding 4 (Arrow (¢))

the combined image and combined image embedding of ¢.

If A is a computable abelian category, both Combinedlmage and CombinedImageEm-
bedding are computable.
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Proposition 6.3. Let A be a computable abelian category, M € Obj 4, M" < M' < M
subobjects, and v : M'/M" — M the subfactor embedding of M'/M" into M. Then

CombinedImage (@) = M.
PROOF. By definition, we have ¢ : M'/M" «— M’ — M, so the claim follows. O

Now, to summarize all previous parts of this chapter, we give an algorithm to compute
the filtered presentation for the grade filtration of a graded module M € Objg g s for a
computable G-graded ring S.

Algorithm 6.4. Let M € Objg e, and E := BidualizingSS (M). Let furthermore

Q.. := BidualizingBicomplex,, (M)". Now a filtered presentation of M adjusted to the
grade filtration ¢, M can be computed as follows:

(1) Compute the boundaries of Q.., i.e., find r € N such that @; ; = 0 for all i < —r,
j = r. This r works as bound for computing the total complex. We also have
E* =FE".

(2) Compute Tot® (Q..), using r as bounds for the direct sums.

(3) Compute the isomorphism ¢ : M — Hy (Tot® (Q..)) as in Theorem VI.4.11.

(4) For ¢ = 0,...,r compute the generalized embedding

tg: BT, Tot% (Qu.)

via the algorithm in [Pos17, Algorithm 11.4.2].
(5) If £”_ is not 0 compute the generalized embedding

—q,9
ag: BT, > M,

—q,9
as composition of ¢,, the cokernel projection

7 : Tot®) (Qee) — Ho Tot® (Qu.)
and the isomorphism . We get a morphism

ET o <5 Tot% (Qua) > Ho Tot® (Qua) 5 M.

q,
(6) Compute
B, := CombinedImageEmbedding (o) .
We now have 3, : t_,M — M.
(7) Compute
7, := PreCompose (3, PseudoInverse (ay)) .
and set
7, := HonestRepresentative (7,) -
This map is now the epimorphism

Vo i togM — t_ M/t_, M.

(8) Use the algorithm for the filtered presentation VI.6.1 to construct the filtered
presentation of M for the grade filtration.

An implementation for the entire algorithm can be found in Appendix G.22.
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Example 6.5. Using the Algorithm VI.6.4, we can compute the filtered presentation
for the grade filtration of a module M, presented by the matrix

—2?z +ayz +x2® Yz —azztyzr T —y

—x3 + xzy + 222 ny —x? + Ty : rT—Yy —xY
. . . ‘/I/‘y —yz .
ZL‘2 —1rz . EQ[I7y7Z]'
Tz 22
Z

We first set up the ring, the module, and the necessary categories for the computation.

gap> LoadPackage( "ModulePresentationsForCAP" );
gap> LoadPackage( "HomologicalAlgebraForCAP" );
gap> SwitchGeneralizedMorphismStandard( "span" );

gap>

gap> Q := HomalgFieldOfRationalsInSingular();

Q

gap> S := GradedRing( Q * "x,y,z" );;

gap> WeightsOfIndeterminates( S );

[ 1,1, 1]

gap>

gap> mat := HomalgMatrix( "[ \

> —x"2xzAx*ykzAx*2z" 2,y 2%z, —x*2Z2+y*z,x-y,0, 0, \
> —x73+x7T2xy+x" 2%z,  x*y~2,-x"2+xxy,0, x-y, -x*y,\
> 0, 0, 0, x*y,-y*z,0, \
>0, 0, 0, x"2,-x*z,0, \
>0, 0, 0, x*z,-z"2,0, \
> 0, 0, 0, 0, O, z \
> 1", 6, 6, S );

<A 6 x 6 matrix over a graded ring>
gap> SO := GradedFreelLeftPresentation( 1, S );
<An object in The category of graded f.p. modules over Q[x,y, z]
(with weights [ 1, 1, 1 1)>
gap> SetIsAdditiveCategory( CocomplexCategory( CapCategory(S0) ), true );
gap> SetIsAdditiveCategory( ComplexCategory( CapCategory( SO ) ), true );
gap> M := AsGradedLeftPresentation( mat, [ 0, 0, 1, 2, 2, 1] );
<An object in The category of graded f.p. modules over Q[x,y,z]
(with weights [ 1, 1, 1 ])>

We now compute a free resolution res of the module M, and compute its dual homres.

gap> resl := FreeResolutionComplex( M );

[ <An object in Complex category of The category of graded f.p.
modules over Q[x,y,z] (with weights [ 1, 1, 1 ]1)>,
<A morphism in The category of graded f.p. modules over Q[x,y,z]
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(with weights [ 1, 1, 1 1)> ]

gap> res := resi[ 1 ];

<An object in Complex category of The category of graded f.p.
modules over Q[x,y,z] (with weights [ 1, 1, 1 ])>

gap> homres := DualOnComplex( res );

<An object in Cocomplex category of The category of graded f.p.
modules over Q[x,y,z] (with weights [ 1, 1, 1 ])>

We now compute the Cartan-Eilenberg resolution CE of homres, and then compute the
dual of CE, homCE.

gap> CE := CartanEilenbergResolution( homres, FreeResolutionCocomplex );
<An object in Cocomplex category of Cocomplex category of The
category of graded f.p. modules over Q[x,y,z]
(with weights [ 1, 1, 1 ])>
gap> homCE := DualOnCocomplexCocomplex( CE );
<An object in Complex category of Complex category of The category
of graded f.p. modules over Q[x,y,z] (with weights [ 1, 1, 1 ])>

Since we want to work with the second filtration of homCE, we compute the transposed of
homCE, which we denote by trhomCE.

gap> trhomCE := TransposeComplex0fComplex( homCE ) ;
<An object in Complex category of Complex category of The category
of graded f.p. modules over Q[x,y,z] (with weights [ 1, 1, 1 ])>

We can now compute the filtered presentation of the module M.

gap> filtration := PurityFiltrationBySpectralSequence( trhomCE, 4,

> homCE, homres, resi[ 2 1 );

<A morphism in The category of graded f.p. modules over Q[x,y,z]
(with weights [ 1, 1, 1 1)>

We can now check that the computed morphism from the filtered presentation of M to the
original one is indeed an isomorphism, and look at both the filtered presentation and the
matrix presenting the isomorphism.

gap> IsIsomorphism( filtration );

true
gap> Display( Source( filtration ) );
x, -z, 0, 0, 0, 0, 1,

-y,Z, Yy 2%z,-y*¥z"2,-x*z+y*z,0, -1,
0, X-y,X*y"2,-X¥y*z,-X"2+x*y,x*y,0,

0, 0, O, 0, 0, z, O,
O’ O’ O’ O’ O’ O’ Z’
0, 0, O, 0, 0, 0, v,
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0, 0, O, 0, 0, 0, x
(over a graded ring)

gap> Display( filtration );

0, 0, 0, -1,0, O,

0, o, 0, 0, -1,0,
0, 1,0, 0, 0, O,
1, o, 0, 0, 0, O,
-x+z,0, -1,0, 0, O,
0, o, 0, 0, 0, 1,
0, 0o, 0, x, -z,0

(over a graded ring)

We get the following blocks in the resulting matrix:

r —s . . . 1
—y oz oy —y2? —zztyz| - | -1
r—vy xy? —wzyz —2?+ay|ay

. . >
2
Y
T

The isomorphism from the filtered presentation of the module M to its original represen-
tation is given by the matrix

-1 .
-1

T —Z

In Figure VI.1 we visualize the relevant part of the zeroth to fourth page of the spectral
sequence with binary matrices. The columns range from —3 to 0 from left to right and
rows range from 0 to 3 from the bottom to the top. This means, e.g., E_3 is displayed at
position (1,2) of the matrices. If an entry is ., it means that the object is already zero. A *
means that the object at that position is not zero. We see that on the third page the entry
E? 4, is not zero, and therefore the entry Ef is not the limit Eg5. So the computation of
the grade filtration on page 3 would not have been possible, but we indeed had to compute
it using the entries on page 4.

7. Coherent sheaves

We want to apply Algorithm VI.6.4 to construct a presentation induced by the grade
filtration of coherent sheaves over the Cox ring S of a toric variety Xy, realized as an object
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gap> DisplaySpectralSequencePage( trhomCE, 0, [ -3 .. 0], [ 0 .. 31 );
Xk ok ok
Xk kK
X ok kK
I

gap> DisplaySpectralSequencePage( trhomCE, 1, [ -3 .. 0], [0 .. 31 );
X ox K K
X K kK
X Kk ok
* ok

gap> DisplaySpectralSequencePage( trhomCE, 2, [ -3 .. 0], [0 .. 31 );

* kx|
* ok

gap> DisplaySpectralSequencePage( trhomCE, 3, [ -3 .. 01, [ 0 .. 31 );

Lo
gap> DisplaySpectralSequencePage( trhomCE, 4, [ -3 .. 0], [0 .. 31 );

FiGure VI.1. Spectral sequence of the graded module M, see VI.6.5.

in the Serre quotient of the f.p. graded module category over S. From now on, we will
always work over a toric variety Xy with no torus factors and Cox ring S. We identify the
Serre quotient (A := S-grpres) / ( = S—grpreso) with €ob (Xy) and denote by

Sh : S-grpres — Cob (Xy)

the sheafification functor. We take Ge (A) to be @2 (A).

Notation. By identifying €ob (Xx) with the Serre quotient S-grpres/S-grpres’ which
is modeled by Gi (A), a morphism in €obh (Xy) has an arrow and a reversed arrow. Fur-
thermore, if we talk about an honest morphism, it is the image of a morphism in S-grpres

under the functor Sh. The honest representative of a morphism ¢ € Morggpy(xy,) Will be a
morphism in S-grpres.
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We first give a proper alternative for projective objects and projective resolutions, since
Coh (Xy) does not have enough projectives in general.

Definition 7.1 (Locally free objects). An object F' € ODbjggy(x,,) is called locally free
if there exists some index set [ and for every x € Xy, there is an open subset x € U € Xy,
such that

F|U = @ OX|U‘
el

Corollary 7.2. The sheafification of a free module is locally free.

PRrROOF. The sheafification respects the direct sum, and the localization is blind to
twists. The claim follows. O

Proposition 7.3 (Homological locally free resolution). Let F' € Objeyy(x,,) with F' =
Sh (M). Then the homological locally free resolution of F' can be computed as

Sh (ProjectiveResolutionComplexg y,pres (M) -

The dual is true for the cohomological locally free resolution.

Since all of the morphisms in such a homological locally free resolution are represented
by honest generalized morphisms, i.e., come from morphisms in S-grpres, we can also
compute a Cartan-Eilenberg resolution of this locally free resolution. We are going to
define a locally free lift along honest morphisms, which replaces the projective lift used in
the horseshoe lemma.

Definition 7.4. Let o/ : A — (' and ' : B — C € Morgopy(x,,) be honest and a, 3 €
Morg grpres their honest representatives, such that Lift (o, 3) exists. Then we define

Lift@oh(Xg) (O/, ﬁ/) := Sh (LiftS—grpres (O{, ﬁ)) .

Proposition 7.5. Using the lift of sheaf morphisms defined in Definition VI.7.} we
are able to compute the Cartan-FEilenberg resolution of a complex of sheaves, using locally
free resolutions.

ProOF. The computed resolutions in the horseshoe lemma only contain honest mor-
phisms: All morphisms in the locally free resolution are honest, the injection and projec-
tions of and to factors of direct sums are honest, compositions of honest morphisms are
honest, and the lifts are honest. So all involved morphisms are honest. U

REMARK 7.6 (Existence of lifts). When using locally free objects due to the lack of
projectives in the proof of Theorem VI.6.1, the needed substitution of the projective lift
might not exist: if a surjective morphism ¢ : A — B in Morg,y(xy,) is represented by the
honest span of ¢’ € Morg.grpres, then

CokernelObject gy pres (Arrow () € S-grpres’.
But the cokernel object of Arrow (¢) itself is not zero in Objg Therefore the lift

grpres*
method described in Definition VI.7.4 does not apply, since Arrow (¢) is not an epimor-

phism in S-grpres.
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Example 7.7. Let S := C[z,y] be the polynomial ring in two indeterminates graded
with the standard grading and

oS (—1)P> Y g

The sheafification of this morphism is surjective, since the cokernel is finite dimensional
as C-vector space and therefore sheafifies to 0. If we compute the epimorphism from a

projective to S2¥1, 7 : §21 14 §2x1 the 1ift does not exist, since ¢ is not surjective as a
morphism of graded S-modules.

We can solve this by using compatible lifts, i.e., computing epimorphisms from locally
free objects such that the lift exists.

Definition 7.8 (Compatible lift). Let ¢ : A — B be an honest epimorphism in
Coh (Xy) = Cﬁ (A). Then the compatible locally free lift is a tuple

(m:P— B,ip: P— A),
such that

(1) P is locally free,
(2) = is epi,
(3) and 7 ~ .t

Theorem 7.9. The compatible lift of an honest epimorphism ¢ : A — B always exists.
PrRoOOF. We are going to construct the necessary morphisms. Let
n := ImageEmbeddingg ,, ., (HonestRepresentative (¢)) .

Since ¢ is an honest epimorphism, Sh (7) is an isomorphism (but 7 is not necessarily). Let
7' P — I be an epimorphism from a locally free object to Source (Sh (n)) and set

7 := PreComposeg,y x,,) (7', Sh (7)) -
This morphism is now serving as epi from a locally free object. For the lift, we compute
o = PreComposeg, vy (gp, Inversegon(xy) (Sh (n))) )

Since HonestRepresentative (') is surjective, we can now use the lift from Definition VI.7.4
and set

v := Lifteop(xy) (7', ¢') .
The pair (7, ¢) is the desired lift tuple. The correctness follows from the construction. [
We also need the notion of a dual object and morphism in €ob (Xy).

Definition 7.10. Let F' € Objg,y(yy,) With ' = Sh (M) and ¢ : A — B € Morgop(xy)-
We set

DualOnObjects gy xy,) (F) := Sh (DualOnObjects gy pres (M)

1Recall, ~ is the equivalence relation on the Hom-sets in the category model I1.2.2.
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and, with ¢; := ReversedArrow (¢), 2 := Arrow (), and
¥; := ProjectionInFactorOfFiberProduct 4, e ((¢1, 92) ;1) ,
we set
Arrow (DualOnMorphismsQuh( X5) (gp)) =1y,
Reversed Arrow (DualOnMorphismse,y xy) () := 1.

For the morphism to the bidual, we take the sheafification of the morphism of graded
module, i.e.,

MorphismIntoBidualgyx, (') := Sh (MorphismIntoBidualg e (M)) -

Now, we can use the compatible lift in Theorem VI.6.1 to compute a filtered presenta-
tion. We cannot expect a nice small resulting matrix as for modules.

Example 7.11. We take the same module M as in Example VI.6.5, but do the com-
plete computation with its sheafification M. At the end we look at the sizes of the resulting
matrices. We cannot expect the same matrices as in Example VI.6.5 since the cokernel
of the augmented maps (u; 17) in the construction of a filtered presentation in the proof
of Theorem VI.6.1 is not computed by stacked matrices of the map and the range, but
according to the construction given for the cokernel of a Serre quotient morphism in the
proof of Theorem IV.5.10.

gap> LoadPackage( "ModulePresentationsForCAP" );

true

gap> LoadPackage( "HomologicalAlgebraForCAP" );
true

gap> LoadPackage( "ToricSheaves" );

true

gap> SetRecursionTrapInterval( 1000000 );
gap> SwitchGeneralizedMorphismStandard( "span" );
gap> Q := HomalgFieldOfRationalsInSingular();

Q

gap> S := GradedRing( Q * "x,y,z" );;

gap>

gap> WeightsOfIndeterminates( S );

(1,1, 1]

gap>

gap> mat := HomalgMatrix( "[ \

> —xXT2kzAxkykz+x*z" 2,y 2%z, —x*z+y*z,x-y,0, 0, \
> —x73+x7T2xy+x7 2%z,  x*y”2,-x"2+xxy,0, x-y, —x*y,\
> 0, 0, 0, X*y,-y*z,0, \
>0, 0, 0, x"2,-x*z,0, \
> 0, 0, 0, x*z,-2"2,0, \
>0, 0, 0, o, O, z \
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>1", 6, 6, S);

<A 6 x 6 matrix over a graded ring>

gap> is_artinian_left := function( module )
> local mat;

mat := UnderlyingMatrix( module );

return IsZero( HilbertPolynomial(
UnderlyingMatrixOverNonGradedRing( mat ) ) );

V V V V V

>
> end;
function( module ) ... end
gap> Coh := GradedLeftPresentations( S ) / is_artinian_left;
The Serre quotient category of The category of graded f.p. modules
over Q[x,y,z] (with weights [ 1, 1, 1 ]) by test funct
ion with name: is_artinian_left
gap>
gap> SetIsAdditiveCategory( CocomplexCategory( Coh ), true );
gap> SetIsAdditiveCategory( ComplexCategory( Coh ), true );
gap> M := AsGradedLeftPresentation( mat, [ O, 0, 1, 2, 2, 1 ] );
<An object in The category of graded f.p. modules over Q[x,y,z]
(with weights [ 1, 1, 1 ])>
gap> ShM := AsSerreQuotientCategoryObject( Coh, M );
<An object in The Serre quotient category of The category of
graded f.p. modules over Q[x,y,z] (with weights [ 1, 1,1 1)
by test function with name: is_artinian_left>
gap> resl := FreeResolutionComplex( ShM );
[ <An object in Complex category of The Serre quotient category
of The category of graded f.p. modules over Q[x,y,z]
(with weights [ 1, 1, 1 ]) by test function with name:
is_artinian_left>,
<A morphism in The Serre quotient category of The category
of graded f.p. modules over Q[x,y,z] (with weights [ 1, 1, 1 ])
by test function with name: is_artinian_left> ]
gap> res := resi[ 1 ];
<An object in Complex category of The Serre quotient category
of The category of graded f.p. modules over Q[x,y,z]
(with weights [ 1, 1, 1 ]) by test function
with name: is_artinian_left>
gap> homres := DualOnComplex( res );
<An object in Cocomplex category of The Serre quotient catego
ry of The category of graded f.p. modules over Q[x,y,zl]
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(with weights [ 1, 1, 1 ]) by test function with name:
is_artinian_left>
gap> CE := CartanEilenbergResolution( homres, FreeResolutionCocomplex );
<An object in Cocomplex category of Cocomplex category of The
Serre quotient category of The category of graded f.p. modules
over Q[x,y,z] (with weights [ 1, 1, 1 ]) by test function
with name: is_artinian_left>
gap> homCE := DualOnCocomplexCocomplex( CE );
<An object in Complex category of Complex category of The Serre
quotient category of The category of graded f.p. modules over Q[x,y,z]
(with weights [ 1, 1, 1 ]) by test function with name:
is_artinian left>
gap> trhomCE := TransposeComplex0fComplex( homCE ) ;
<An object in Complex category of Complex category of The Serre
quotient category of The category of graded f.p. modules over Q[x,y,z]
(with weights [ 1, 1, 1 ]) by test function with name:
is_artinian_left>
gap> homhomres := DualOnCocomplex( homres );
<An object in Complex category of The Serre quotient category
of The category of graded f.p. modules over Q[x,y,z]
(with weights [ 1, 1, 1 ]) by test function with name:
is_artinian_left>
gap> filtration := PurityFiltrationBySpectralSequence( trhomCE, 3, homCE,
> homres, resli[ 2 ] );
<A morphism in The Serre quotient category of The category of
graded f.p. modules over Q[x,y,z] (with weights [ 1, 1, 1 1)
by test function with name: is_artinian_left>
gap> IsIsomorphism( filtration );
true

Since we have computed an isomorphism to a new presentation, we look at the sizes of
the resulting matrices.

gap> UnderlyingMatrix( UnderlyingHonestObject( Source( filtration ) ) );
<An unevaluated non-zero 92 x 83 matrix over a graded ring>

gap> UnderlyingMatrix( Arrow(

> UnderlyingGeneralizedMorphism( filtration ) ) );

<An unevaluated 137 x 6 matrix over a graded ring>

gap> UnderlyingMatrix( ReversedArrow(

> UnderlyingGeneralizedMorphism( filtration ) ) );

<An unevaluated 137 x 83 matrix over a graded ring>

In Figure VI.2 we visualize the relevant part of the zeroth to third page of the spectral
sequence with a binary matrix. As in Figure VI.1 if an entry is ., it means that the object
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gap> DisplaySpectralSequencePage( trhomCE, 0, [ -3 .. 0], [ 0 .. 31 );
Xk ok ok
Xk kK
X ok kK
I

gap> DisplaySpectralSequencePage( trhomCE, 1, [ -3 .. 0], [0 .. 31 );
X ox K K
X K kK
X Kk ok
* ok

gap> DisplaySpectralSequencePage( trhomCE, 2, [ -3 .. 0], [0 .. 31 );

LOX ok
gap> DisplaySpectralSequencePage( trhomCE, 3, [ -3 .. 01, [ 0 .. 31 );

FiGURE VI.2. Spectral sequence of the coherent sheaf M

is already zero. A * means that the object at that position is not zero. We see that on the
third page of the spectral sequence all diagonal entries are stable, and therefore we do not
have to compute the fourth page of the spectral sequence as in the corresponding example
VI1.6.5 for modules, but could terminate the computation of the grade filtration at page
3. This different in the page numbers where all objects are stable between modules and
their sheafification rises with the dimension of the irrelevant ideal B of the Cox ring S of
the toric variety Xy. Therefore computing the spectral sequence with sheaves instead of
computing with modules and sheafifying the result leads to shorter computations.






CHAPTER VII

Implementation of computable categories

In this chapter we will describe the philosophy, design, and features of the categorical
programming language CAP via its implementation in the computer algebra system GAP,
alongside with the motivation behind the design decisions and the most important features.

Much like category theory, CAP is a powerful bookkeeping and organizational tool for
high-level algorithms and can cover a wide range of computational setups as it is designed
independent of any specific application. To this end the main design goal of CAP is data
structure agnosticism (cf. Section VII.2).

Moreover, it can be used to organize preexisting data structures and fundamental al-
gorithms into a proper categorical setup as shown in Chapter II. While implementing a
category or a type of categories it should be left to the programmer to specify which con-
structions are basic, i.e., to be explicitly implemented, and which are derived, i.e., to be
automatically composed by CAP from the basic ones. This is the main feature of CAP
(cf. Section VII.2).

1. The concept of categorical programming

We start by introducing the concept of categorical programming. Many computa-
tions and constructions in mathematics can be carried out using only the basic categorical
constructions mentioned in Chapter II. So those constructions form a language in which
algorithms can be expressed.

We are going to show the concept of categorical programming by computing the inter-
section of two subobjects in a computable category A. In Theorem IV.1.3 it was already
shown that in a computable preabelian category the fiber product of two morphisms is
computable. Using the fiber product we can provide a generic algorithm to compute inter-
sections of subobjects.

Example 1.1. Let A be a preabelian category and M € Obj 4, an object together with
two monomorphisms ¢ : A < M and ¢ : B — M which are representatives of the classes
of monomorphisms defining two subobjects (cf. Section I1.10).

We want to compute the intersection of the images of ¢ and ¢ in M, i.e., a mono
A n B — M which is a representative for the class of monos defining the intersection of
the images of ¢ and ). We can compute this monomorphism as

PreCompose (ProjectionInFactorOfFiberProduct ((¢,v), 1), ¢).
159
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M
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FiberProduct (A, B)

with 7 := ProjectionInFactorOfFiberProduct ((¢,v),1). If ¢ : B < M is a monomor-
phism, the projection 7 is also a monomorphism. So the composition

7 = PreCompose (ProjectionInFactorOfFiberProduct ((p, 1), 1), ¢)

is a monomorphism and by the universal property of the fiber product a representative for
the desired intersection.

As the example shows, there is a generic algorithm for intersection of subobjects if
a category is computable preabelian. This means that if there is an implementation of a
computable abelian category as in Chapter 11, i.e., a realization together with the necessary
computable functions, one can use the above intersection algorithm which is implemented
in an abstract and categorical way. The framework which enables the usage of such generic
categorical algorithms is the main goal of CAP.

Example 1.2. We use the category of rational vector spaces from Example 11.4.4 and
compute the intersection of two subobjects, each represented by a monomorphism.
We compute the intersection of two subobjects of a three dimensional vector space,

given by the monomorphisms
(110
=011

wen (100,

gap> Q := HomalgFieldOfRationals();
Q
gap> Q3 := VectorSpaceObject( 3, Q );

<A vector space object over Q of dimension 3>

gap> Q2 := VectorSpaceObject( 2, Q );

<A vector space object over Q of dimension 2>

gap> alphal := HomalgMatrix( [[1,1,0],[0,1,1]]1, Q );
<A matrix over an internal ring>

gap> alphal := VectorSpaceMorphism( Q2, alphal, Q3 );
<A morphism in Category of matrices over Q>

gap> alpha2 := HomalgMatrix( [[1,0,0],[0,0,1]1]1, Q );

and
1 0
0 0
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<A matrix over an internal ring>

gap> alpha2 := VectorSpaceMorphism( Q2, alpha2, Q3 );

<A morphism in Category of matrices over (>

gap> pil := ProjectionInFactorOfFiberProduct( [ alphal, alpha2 ], 1 );
<A morphism in Category of matrices over Q>

gap> subobj := PreCompose( pil, alphal );

<A morphism in Category of matrices over (>

gap> Display( UnderlyingMatrix( subobj ) );

(L -1, o, 11]

The intersection is the subobject represented by the monomorphism
(=10 1).

More sophisticated examples of categorical programming are used to build the basic
operations for generalized morphism categories and Serre quotient categories in Chapter
IV, as well as Algorithm VI.6.4 to compute the grade filtration of a finitely presented
graded module or a coherent sheaf in Chapter VI.

2. Main design goal and feature

In category theory, all constructions boil down to the existential quantifiers in the
definition of a category (cf. Chapter II).

2.a. Data structure agnosticism. CAP is completely agnostic of the given realiza-
tion R of a category:

(1) The user is completely free to use the data structure which is most suitable for
the category he wants to implement, with the obvious restriction that a morphism
has to have a Source and a Range.

(2) Equality notions for objects and morphisms are completely free to choose. In fact,
they are treated in the same way as a basic categorical construction (cf. Chapter
I1).

These two paradigms ensure the most possible flexibility. Any GAP-object can be an
object or morphism in exactly one CAP category. To tell a GAP-object X it is an object or
morphism in a CAP category A, one “adds” the GAP-object X as object or morphism to A.
This process of adding the X to A enriches the data structure of X with the information
that X is an object or morphism in A.

This allows to declare the category membership of a data structure even a posteriori
and make it possible to use existing data structures in a categorical framework. One can
also use the same object or morphism class for several categories, by deciding a posteriori
which category a specific instance of a class is added to.

2.b. Selection options of basic categorical constructions. As seen in the exam-
ple of the fiber product in Section VII.1, the list of basic categorical constructions described
in Chapter II is not unique. CAP wants to cover all possible sets of basic categorical con-
structions which can be used to define a computable category. Therefore any set of basic
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constructions for a certain type of category is a valid set of basic operations for that type of
category. All other categorical constructions implemented in CAP for that type of category
will be derived by CAP. The system for the derivations will be described in Section VII.7.

3. Error messages for categorical operations

Most categorical operations need stronger typing than the GAP declaration of the cate-
gorical operation requires:

Example 3.1. The definition of the computable function PreCompose for a com-
putable category A is

PreCompose : Hom 4 (A, B) x Hom 4 (B, C) — Homy (A, C),
whereas the declaration of this function in the GAP implementation of CAP is
PreCompose : Mor 4 x Mor 4 — Mor 4.

So the type of the arguments in the declaration of PreCompose requires two arguments
which are morphisms in the same category. It is not required that the range of the first
argument is equal to the source of the second. Since GAP does not support dependent types,
further specification in the declaration of the function PreCompose is not possible.

On the other hand the specification of the function states that for the arguments (¢, 1)

(f) Range () = Source (1)

has to hold, and the behavior for the implemented function is not specified for input that
does not fulfill this property. Therefore it needs to be checked whether the range of the first
argument equals the source of the second. When a function is specified for the categorical
operation PreCompose CAP checks the equality () using the IsEqualForObjects function.
If the range of the first argument of PreCompose is not equal to the source of the second,
an error is raised.

As seen in the above Example VII.3.1, even if the declaration of a categorical function
in the GAP implementation of CAP does not specify all requirements on the types of the
arguments, CAP itself implements a system which enriches all implemented categorical
operations with checks for all their requirements.

4. Undecidable realizations

A realization R of a computable category in the GAP implementation of CAP is al-
lowed to be undecidable, i.e., there are no computable functions for IsEqualForObjects
and IsEqualForMorphisms in the given realization $R. We give a simple example.

Definition 4.1. Let A be an abelian category. We denote by Ch (A) the category of
chain complexes: The objects in Ch (A) are chain complexes in A (cf. Definition VI.1.8)
and the morphisms Ch (A) are chain maps (cf. Defintion VI.1.9).

Definition 4.2. A functionally defined chain complex over a category A is a
computable function
0 : Z — Mor 4
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such that Range (¢ (i)) = Source (d (i + 1)) and PreCompose (0 (¢),d (i + 1)) = 0 for all
1€ .

Using this functorial realization for the category of functionally defined complexes im-
plies that equality of objects is impossible to decide. This is a well-known restriction for
computers.’

If A is computable abelian, the category of chain complexes Ch (A) is computable
abelian, with the data structure in Definition VII.4.2 as realization for objects.

Example 4.3. Let A be a category and Ch (A) the category of functionally defined
chain complexes over A. Furthermore, for ¢ € Morcp4) let

K := KernelObject (¢) ,
k := KernelEmbedding (¢) .

The objects K and Source (k) are now two distinct functions. Since it is undecidable if
two functions produce the same output for every input, the question whether

IsEqualForObjects (K, Source (k)) = true
cannot generally be decided by the computer.

If the implementation of a category in CAP is not able to strictly meet the requirements
of a realization, it is possible to have the equality functions output a third value, namely
fail. For the computation this value will be treated like false, i.e., the computation is
not carried out. It will nevertheless raise a different error message, with the explanatory
text “This equality is undecidable”.

If one wants to use CAP for such a category, the next two sections describe two possible
solutions for the problems of such undecidable realizations, both implemented in CAP.
The first approach are so-called “WithGiven operations” which solve the problem arising
in Example VII.4.3. The second approach is caching, which guarantees identical output if
a function is called several times with identical input.

5. Ensuring compatibility: WithGiven operations
Example 5.1 (VII.4.3 cont.). In Example VII.4.3 we saw that computing both
K := KernelObject (¢) ,
k := KernelEmbedding (¢)

in the category of functionally defined chain complexes leads to incompatible results, i.e.,
the equality

K = Source (k)
is undecidable. CAP has the following strategy to solve this problem: When K has al-
ready been computed, CAP redirects the computation of KernelEmbedding to a second

Tt is also undecidable if such an object is well-defined, as, for example, the equality
PreCompose (0 (i), (¢ + 1)) = 0 is impossible to decide for all i € Z.
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categorical construction, KernelEmbeddingWithGivenKernelObject:
rk := KernelEmbeddingWithGivenKernelObject (¢, K) .

This categorical construction is a second version of the algorithm to compute the embed-
ding, which does not compute the source of x again, but instead uses K as source. So we
have

(1) Source (k) = K,

The Source (k) and K are now represented by the same part of the memory. So the equality
(1) is true regardless of the implementation of IsEqualForObjects.

The concept of such WithGiven operations is implemented for every categorical oper-
ation that produces a morphism where source or range is not part of the input data.

Example 5.2. Let A be a computable category and ¢ : A — B € Mory. Then we
have
KernelEmbedding (¢) =: k: K — A,

and the object K is not defined by the input ¢ of the call of KernelEmbedding. Let
K’ := KernelObject () .
Redirecting the computation of KernelEmbedding to
KernelEmbeddingWithGivenKernelObject (¢, K') :== ' : K' — A

one computes a kernel embedding which source and range are predefined by the input of
the function. Therefore we have ensured that

Source (KernelEmbedding (¢)) = KernelObject () .

Notation. Let MorphismOp be a categorical operation which produces a morphism,
for which its source or range are not part of the input data, e.g., KernelEmbedding, and
ObjectOp the categorical operation which produces the corresponding source or range.
Then the categorical operation MorphismOpWithGivenObjectOp has the object as last ar-
gument, and produces the morphism corresponding to MorphismOp for which source and
range are given as input.

The WithGiven operations are a feature to keep the computations in sync. To imple-
ment them correctly in a category, it is important to understand how categorical operations
and their WithGiven counterpart work together. We again take a look at Example VII.4.3:

Example 5.3 (VIL.4.3 cont.). There are three methods which can be used to add
functions for the kernel object and kernel embedding;:

e AddKernelObject
e AddKernelEmbedding
e AddKernelEmbeddingWithGivenKernelObject

It is not necessary to install functions for all three of them. The two following ways ensure
compatibility between calls of KernelObject and KernelEmbedding:

(1) Only provide a function for KernelEmbedding.
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(2) Provide two functions, one for KernelObject and one for KernelEmbeddingWith-
GivenKernelObject.

In case (1), if KernelObject is called by the user with a morphism ¢ as argument, CAP
will invoke KernelEmbedding (¢), and the source of the kernel embedding is returned as the
result of KernelObject. The computed resulting morphism of the call of KernelEmbedding
is stored in the data structure of ¢, so the results of KernelObject and KernelEEmbedding
will stay compatible in future invocation of these commands.

In case (2), a call of KernelEmbedding with a morphism ¢ as argument will first invoke
KernelObject (), and the resulting object K of the call of KernelObject will then be
passed as second argument to KernelEmbeddingWithGivenKernelObject, together with ¢
as first argument. Since the result K of KernelObject is also stored in ¢, the results of
KernelObject () and KernelEmbedding () will be compatible if one of the operations is
called later.

If an universal object (e.g., the kernel object) is already computed without their cor-
responding universal morphism (e.g., kernel embedding) the corresponding WithGiven op-
eration is always called when the corresponding morphism is computed.

6. Caching

Many categorical constructions are carried out by very long calculations, even more if
the data structure has several stacked categories, e.g., Serre quotients (cf. Chapter 1V).
Also, categorical constructions often come in pairs, so that the result of one computation
might be part of another, e.g., KernelObject and KernelEmbedding. For these two rea-
sons, each categorical operation, each functor, and each natural transformation in CAP is
equipped with a cache which stores the computed results.

The caches in CAP come in two flavors, weak and crisp (or strong) caches. While crisp
caches store the result permanently, weak caches only hold a weak pointer to the result.

Weak pointers are a feature of garbage collected languages like GAP: They are a pointer
to the result, but do not prevent the garbage collector from deleting the object, assuming
no other pointer holds the object. This means that for compatibility reasons, weak caches
are completely sufficient, since the result is stored as long as it is used somewhere else, and
only recomputed if it cannot be accessed from another point, so no wrong comparisons
can be performed. For performance reasons, crisp caches might be preferable, especially
if the structures computed are relatively small in comparisons to the time they need to
be computed. On the other hand, crisp caches produce memory leaks, since no computed
result is ever deleted. CAP allows the behavior of caches to be switched at any time for
any operation in any category, so one can choose a very fine granulation of which values
should be stored and which not.

6.a. Pointers and Garbage Collection. Computer algebra systems and program-
ming languages in general either use explicit or implicit memory management. When
creating a new object, e.g., a list or a matrix, the computer needs memory to store it.
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Once an object is not used in further computations, the memory it uses can be reused by
different data. There are two strategies to indicate that memory can be reused:

(1) Explicit freeing of memory: When data is not used anymore, it has to be explicitly
deleted. In C/C++ this is done via the free command or by the delete keyword,
which calls the destructor of an object.

(2) Implicit freeing of memory, i.e., Garbage Collection: The system analyzes whether
there is still a reference to that part of memory, i.e., the object stored there can
be accessed from the current session, and, if not, indicates that the memory can
be used again. As long anything is referring to an object, this object remains in
the memory and cannot be deleted, and the part of the memory the object uses
stays occupied.

A reference to an object is called a pointer to such an object. A pointer can either be
a variable which was set by the user in a compute session, a global variable in a program,
or part of the data structure of another object.

Sometimes it is necessary to hold a pointer to an object without preventing it from
being deleted. This is achieved by so-called weak pointers. They are references to
objects without preventing the garbage collector from deleted them. This means that a
weak pointer can be valid or invalid, where valid means that it still points to an object,
and invalid means that the object it pointed to has been deleted.?

6.b. Caches. As mentioned above it is helpful to store the results of computations for
performance or compatibility reasons. The right data structure for such a storage should
be small, flexible, and ideally not causing memory leaks, i.e., making their stored data
accidentally undeletable.® We are going to describe the data structure implemented in
Cap.

Data structure 6.1. A cache C' of length n consists of n lists of weak pointers
keyq, ..., key,, and a list keys of translations between keys and results. Furthermore, it
consists of n equality functions =1, ..., =,, and, depending on the type of the cache, there
is

(1) a list of weak pointers, results, for weak caches;
(2) a list of pointers, results, for crisp caches.

To manipulate the cache, the following operations exists:

(1) SetCacheValue;
(2) GetCacheValue;
(3) HasCacheValue.

REMARK 6.2. At any given time the cache C' can be interpreted as a map
C': X N—- Nuw {false}.
i=1

2We assume the implementation of weak pointers recognizes that the object was deleted and therefore
a weak pointer cannot accidentally point to a new object at the same place in memory.
3Crisp caches always make their data undeletable.
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Since there are objects deleted from the weak pointer lists or new results stored in the
cache, the map C which the cache C represents changes during the lifetime of the cache

C.

REMARK 6.3. The false that C could possibly return is different from the value false,
since caches should be able to store boolean values. In the CAP implementation, caches
return a pair (true,a) or the singleton (false), indicating the value a is stored in the
cache, or no value is stored in the cache to the input given. This way, caches can store
boolean values.

We describe the three operations for caches.

Algorithm 6.4 (SetCacheValue). SetCacheValue sets a value for the cache, i.e., adds
elements to the A; in the underlying map.

e Input: n + 1 objects ay,...,a,,a.
e Output: true or false.
e Algorithm:
(1) Check, using =;, if a; is already in key;. If so, let b; the position of a; in key;.
If not, add a; to key;, and set b; to the position where a; was added to key;.
(2) Check whether the tuple b; := (b1, ...,b,) is in keys. If so, let ¢ the position
of the tuple b in keys . If not, add the tuple b to keys, and let ¢ the position
where it was added.
(3) Look up whether results,. is already set. If not, set results. to a and return
true. If it is set, compare the value to a. If they are equal, return true, and
false otherwise.

Algorithm 6.5 (GetCacheValue and HasCacheValue). GetCacheValue gets a value
from the cache, i.e., applies the map to a list of objects. HasCacheValue looks up whether
an result is stored in the cache, i.e., the map returns something different from false.

e Input: n objects aq,...,a,.
e Output:
— HasCacheValue: true or false.
— GetCacheValue: An object a or false.
e Algorithm:
(1) Check, using =;, if a; is in key;. If so, let b; the position of a; in key;. If not,
return false.
(2) Check whether the tuple b; :== (by,...,b,) is in keys. If so, let ¢ the position
of the tuple b in keys If not, return false.
(3) — HasCacheValue: Look up whether results, is set, and, in case if it is a
weak pointer, is valid. If so, return true, and false otherwise.
— GetCacheValue: Look up whether results, is set, and, in case if it is a
weak pointer, is valid. If so, return the value, and false otherwise.

6.c. Caching in GAP. GAP itself already has caching features, so-called Attributes,
and, as a special case, Properties. Attributes are special unary operations, which store
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their output inside the argument object. To make an operation in GAP an attribute, one
needs to declare it not via DeclareOperation, but via DeclareAttribute. Then each
method installed for such an operation will store its result in a pointer (not weak) in the
argument object, and will always return the stored object instead of recompute it. Those
GAP caches have three major differences from the caches described above:

(1) They can only store objects for a single key, not for a fixed length of keys.

(2) They can only compare keys by IsIdenticalObj and not by another more appro-
priate equality function.

(3) They are always crisp, i.e., might produce memory leaks.

On the other hand, as these internal GAP caches are very fast, CAP takes advantage of
them.

6.d. Caching in Cap. In CAP, each categorical operation, e.g., PreCompose or Di-
rectSum, is by default equipped with a cache of appropriate length.

REMARK 6.6. Equipping a computable function f: A — B with a cache changes the
function, and these changes even depend on the current GAP session. When implementing
an algorithm for a basic categorical construction it is necessary to keep in mind that CAP
uses weak caching by default.

Each call of a categorical operation first looks up the cache, and possibly returns a
cached object instead of recomputing it. The corresponding equality notions can be set via
AddIsEqualForCacheForObjects and AddIsEqualForCacheForMorphisms, respectively.
These equality notions are by default set to the IsEqualForObjects and IsEqualForMor-
phisms. For simplicity reasons, it is not possible to set the equality for each cache/opera-
tion.

The behavior of the caches can be controlled for each operation in each category:

e SetCachingWeak: The arguments are either a category C or a category C and a
string s. If only a category is given, all caches in the category will be set to weak.
Otherwise, only the cache corresponding to the operation s will be set to weak.

e SetCachingCrisp: The arguments are either a category C or a category C and a
string s. If only a category is given, all caches in the category will be set to crisp.
Otherwise, only the cache corresponding to the operation s will be set to crisp.

e DeactivateCaching: The arguments are either a category C or a category C and a
string s. If only a category is given, all caches in the category will be deactivated,
i.e., neither store new values nor return any values. Otherwise, only the cache
corresponding to the operation s will be deactivated.

For performance reasons, unary categorical operations are implemented as Attributes,
which means that the results are stored inside the object passed to the function as the
single argument. Since the comparison function for Attributes is always IsIdenticalObj
and not the appropriate notion IsEqualForCache, even Attributes are equipped with a
second cache in the above sense. So CAP has two cache layers:
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(1) If the operation is unary, e.g., KernelEmbedding, it is declared as an Attribute.
This means that if the operation has already been computed for the (single) argu-
ment, the result has already been computed and stored in the specific argument,
so the previously computed result is returned.

(2) If the operation has more than one argument, or has not been computed before,
the cache is looked up with the category specific equality notions. If there is a
result matching the argument stored in the cache, this result is returned instead
of a new computed one. Otherwise the result is computed from scratch.

As mentioned above, there are two main reasons to cache results of computations:
result compatibility and performance.

6.e. Avoiding the setoid. Using caches it is possible to go back from the definition
of categories with Hom-setoids (cf. Definition 11.2.2) to the classical Definition 11.2.1.

Categorical constructions are functions up to the equality on the morphism sets, but
the compatibility properties are defined for the congruence of morphisms. Example [11.2.13
shows that using the equality of morphisms instead of congruence can lead to algorithms
incompatible with the specifications of the corresponding categorical constructions. Using
caches we can work around this.

Theorem 6.7. Suppose a computable abelian category A where all categorical opera-
tions in the implementation of A are equipped with crisp caches. Then it is possible to set
IsEqualForMorphisms in that category to IsCongruentForMorphisms, and therefore going
to the reduction A" of A (cf. Theorem 11.3.5) and obtaining a category in the classical
sense.

PROOF. For a categorical operation F' two different argument lists (ay,...,a,) and
(ay,...,al) with
IsEqualForObjects (a;, a;) = true
if a; is an object and

IsCongruentForMorphisms (a;, a;) = true

if a; is a morphism now have to produce identical output, since the second call will always
return a value identical to the first result. So for morphisms those values are again equal,
and the object comparison does not matter. Furthermore, all categorical operations become
functions with respect to the new IsEqualForMorphisms := I[sCongruentForMorphisms.

O

Now, using Theorem VII.6.7, we can achieve an implementation of S-grpres in the
classical sense, i.e., as a classical category which has Hom-sets instead of Hom-setoids.*

4 Another system that by default implements its abelian categories as classical categories is homalg
(cf. [hom17]).
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6.f. Caching for compatibility. For the category of functionally defined chain com-
plexes from Definition VII.4.2, it is impossible to implement equality notions for objects
and morphisms that are compatible with the mathematical notion of equality of chain com-
plexes. Here caching leads to predictable and compatible output of categorical operations.

Example 6.8. Let A be the category of functionally defined chain complexes (cf. Def-
inition VII.4.2) and ¢ a morphism in A. Let KernelEmbedding (¢) be called twice with
results k and «’. Without storing the first result of the call of KernelEmbedding and re-
turning a different GAP-object the second time KernelEmbedding is called, x and " will
not be equal, since

Source (k) = Source (k')

is undecidable. So it is important to store the result of the first call to avoid creating
several different object which are theoretically equal but cannot be decided as such. Fur-
thermore, other caches needs to be filled with parts of the result: If after the call of
KernelEmbedding () the operation KernelObject (¢) is called, the result K should be
equal to Source (k). This is achieved by storing the Source of the result of the Kernel-
Embedding in the cache of KernelObject.”

CAP caches ensure such a compatibility as it fills all appropriate caches with the already
computed results. To ensure such a compatibility a weak cache is always sufficient, since
incompatibility can only occur if the resulting object can be compared to an object another
pointer points to.

6.g. Caching for performance. A second reason for caching is increasing the per-
formance.

Example 6.9. Consider the category of rational vector spaces (cf. Example 11.4.4),
with caching equalities being the equalities of the category, i.e., the integer comparison for
the object, and for morphism entrywise comparison of the matrix. Now, if two different
morphisms with the same matrix entries are given to KernelEmbedding, there will not be
any Gaussian elimination performed for the second morphism, but the cache returns the
same data as for the first call of KernelEmbedding. This leads to a faster computation,
and less memory usage, since the same matrix would not be computed twice.

Performance enhancing caches can be weak or crisp, which is a trade off between com-
putation time for the result and space it needs to be stored. A fine granulated equality
notion and fine tuned caches for each categorical operation can be used to enhance the
performance of CAP.

Example 6.10. We consider again the category of rational vector spaces (cf. Exam-
ple 11.4.4). A cache for DirectSum will not increase performance, since the computation
needed for DirectSum is just addition of two integers. On the other hand, a cache for the
KernelEmbedding can reduce computation time for large matrices.

5Since KernelObject is an Attribute, the attribute of KernelObject of o will also be set to the source
of the result of the call of KernelEmbedding.
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7. Primitive and derived categorical operations

A powerful feature of CAP is deriving categorical constructions from other basic ones.
In Chapter II some categorical constructions to make an abelian category computable are
explicitly listed. It is already mentioned there that not all constructions are needed to be
implemented explicitly but some can be derived from others (cf. Remark 11.7.13). Further-
more, some very popular constructions are not mentioned in the list of basic categorical
operations in Chapter II, e.g., Pullback or Pushout, nevertheless it should be possible to
give explicit algorithms for these categorical constructions. To decide which categorical
operations can be derived from an explicitly implemented set of basic ones and which
derivations are supposed to deliver the best performance, we are going to introduce the
derivation graph as a system for finding all possible derivations for a given set of explicitly
implemented categorical constructions.

7.a. Why the graph is necessary: Circular dependencies. When implementing
several categorical constructions, there are often several ways to compute a specific object
or morphism. We have already seen an example in [1.7.13. We give a second trivial
example:

Example 7.1. Let A be a computable category and ¢ : A — B,1¢ : B — C in Mor 4.
CAP offers two functions to compute the composition p:

@) =PreCompose (p, ),
1) =PostCompose (1, ¢) .

When following the definitions in II, one would ideally implement an algorithm to compute
PreCompose and let the system derive PostCompose. But since the system is supposed to
be modular, it should also be possible to derive PreCompose from an installed version of
PostCompose.

Such derivations need to be carried out in a way which prevents the occurrence of
circular dependencies. An example of a circular dependency is to derive PreCompose from
PostCompose and to derive PostCompose from PreCompose.

7.b. The derivation graph. To organize all ways the different categorical operations
can imply each other, to store the functions that derive categorical constructions from
other, and to track the circular dependencies, we introduce the derivation graph.

This graph is not bound to a specific category but intended to be used by all categories
at the same time, since it only contains the functions which can be derived by other
categorical operations.

We give a definition of this graph which differs from the GAP implementation of CAP
at certain points. We will point out the differences at the end of the section.

Definition 7.2 (Method derivation graph). Let M be a set of categorical operations
(cf. Appendix C for the set of categorical operations implemented in CAP). The method
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derivation graph is a directed hypergraph (V, E)® where the vertices V are given by
M w {c} and the set of edges consists of the following:

(1) For every categorical operation m € M there is an edge from ¢ to m in E.

(2) One hyperedge for every derived method of a categorical operation m € M con-
sisting of the following data:
(a) The range m € M;

(b) The sources my,...,m, € M, which are the categorical operations used in
the derived algorithm for m;
(¢) The exclusions iy, ...,m; € M which describe operations are not allowed

to be installed to derive m using the derivation the current edge represents;
(d) A boolean function which checks whether the category in which the de-
rivation should be installed has a certain property, e.g., if the category is
abelian;
(e) The source weights iy,...,i, € Z> indicating that m; is used ¢; times in
the derivation.

REMARK 7.3. For CAP, it is possible to enrich the set of categorical operations at any
time. This allows users to extend the CAP kernel, for example to implement triangulated
categories. Only categories created after the extension will have access to the new deriva-
tions. Appendix C shows the full list of all categorical operations currently available in the
CAP kernel.

We give examples for edges of the method derivation graph.

Example 7.4. For all categories, the methods PreCompose and IdentityMorphism
must be given primitively. This means that the graph has an edge from ¢ to PreCompose
and one from c to IdentityMorphism. Obviously, in most cases there is an edge from c to
every element in M.

Example 7.5. The categorical operation PostCompose is defined by
PostCompose (v, 3) := PreCompose (3, @) .

Using this definition, which is already a derivation, we give an example for the second type
of edges. The list of sources of the edge representing this derivation is only the operation
PreCompose, the range is PostCompose. There are no exclusions for this edge, and the
boolean function just returns true, since this derivation can be installed for every category.
The integer 7; is 1, since PreCompose is called once in this derivation.

Example 7.6. For abelian categories, one can implement a functorial direct sum, i.e.,

the direct sum of two morphisms, which is denoted by DirectSumFunctorial. We give a
derivation for this as an example:

function( morphism_list )
local direct_sum_diagram, sink, diagram;

6In a hypergraph it is £ < Pot (V) x Pot (V) instead of E< V x V.
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direct_sum_diagram := List( morphism_list, mor -> Range( mor ) );
sink := List( [ 1 .. Length( morphism_list ) ], i ->

PreCompose( morphism_list[i],

InjectionOfCofactor0fDirectSum( direct_sum_diagram, i ) ) );

diagram := List( morphism_list, mor -> Source( mor ) );

return UniversalMorphismFromDirectSum( diagram, sink );

end

This derivation uses the operations PreCompose, InjectionOfCofactorOfDirectSum, and
UniversalMorphismFromDirectSum, so those would be m, ms, and ms3. We iy := 15 := 2
and i3 := 1. The values of 75 and is, i.e., the number of times PreCompose and Injection-
OfCofactorOfDirectSum are called in this derivation, depend on the input size. Since the
installation of a method happens before a call of the operation, there is no way to determine
the actual number of calls of the operations PreCompose and InjectionOfCofactorOfDirect-
Sum. Most of the time this construction is called for two morphisms, so setting i; and i
to 2 is sufficient.

In the GAP implementation of CAP it is always be possible for a user to add nodes or
edges to the derivation graph.

7.c. Installation and derivation of operations.

Algorithm 7.7 (Derivation graph marking algorithm). Suppose we have a computable
category A for which primitive operations pq,...,pr € M are installed (with weight w;).
To install all possible derivations we use the following algorithm:

(1) Mark all nodes with infinity and ¢ with 0.

(2) Mark all edges (¢, p;) and mark nodes p; with w;.

(3) Now start at ¢ and find the edge with the smallest weight which is not already
marked. The weight is calculated by Zle U, Wi, , Where wy,. is the current weight
of m;. Now four possibilities apply:

(a) If there is no such edge with weight smaller than infinity, terminate.

(b) If the range m of the edge already has weight smaller infinity, remove the
edge and go back to the beginning of step 3.

(c) If any exclusion m; of the edge already has a weight smaller than infinity,
remove the edge and go back to the beginning of step 3.

(d) Otherwise, mark the range m with the calculated weight of the edge, install
the corresponding derivation, remove the edge, and go back to the beginning
of step 3.

Since there are only finitely many edges in the graph and each step in the algorithm
removes one edge, the algorithm terminates.
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This marking graph and algorithm ensures that from all the derivations for a categorical
operation only the one with the smallest weight is installed. The actual CAP implemen-
tation does not follow this algorithm: Edges that do not have exclusions are installed
directly if reachable from ¢, while the ones with exclusions are installed when the category
is finalized, i.e., no more operations will be installed primitively.

The development of this algorithm and its CAP implementation was joint work with
Dystein Skartseeterhagen.

8. Logic Propagation: ToDoLists

Certain properties of objects or morphisms can lead to easier computations in categor-
ical operations:

Example 8.1. Let V be the category of finite vector spaces (cf. Example 11.4.4) and
¢ : A — B a monomorphism in V. For a monomorphism in V the kernel embedding

r := KernelEmbedding (¢)
can be computed as
r := UniversalMorphismFromZeroObject (Source (¢)) ,

i.e., without performing a Gaussian elimination. Therefore, the kernel embedding and
kernel object of a morphism ¢ in V can be computed more efficiently if ¢ is known to be
a monomorphism.

As the above example shows, knowledge about special properties of objects can reduce
computation time. Therefore, it is important to propagate such knowledge between the ob-
jects as far and extensive as possible. We will now show how such knowledge is propagated
in CAP computations.

8.a. Property propagation: ToDoLists. Since knowledge of basic properties can
speed up of computations, CAP offers a tool to propagate knowledge between objects when
possible: ToDoLists.

Data structure 8.2 (ToDoList entry). A ToDoList entry E consists of a list of GAP
objects A;,..., A,, A, a list of properties Pi,..., P,, P, and a list of values ay...,a,,a €
{true, false}. A ToDoList entry with this data stored encapsulates the proposition

;\B(Ai):aisp(A)za.

We call the A;’s the sources of £ and A the range of E. We call F fulfilled if
HasP; (A;) = true A P (4;) = q;
for all 7.

REMARK 8.3. The condition HasP; (A;) = true in the definition of ’fulfilled’ ensures
that a ToDoList entry never computes a property. If the HasP filter is not fulfilled, P is
not evaluated. The HasP filter is true only if the property P has already been evaluated.
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ToDoList entries form the entities stored in ToDoLists.

Data structure 8.4 (ToDoList). Let A be a GAP object. The ToDoList of A is a list
of ToDoList entries E; such that A is a source of F.

ToDolLists keep track of entries that can be applied once the conditions are known to
be satisfied. For the application of ToDoList entries the following algorithm is used:

Algorithm 8.5. Let A be a GAP object and P be a property. If P becomes known,
the applicable entries in the ToDoList T of A are applied with the following algorithm:

(1) Store all fulfilled entries in 7" in a list 7 and delete them from 7'.
(2) Apply all entries E from T}, by setting the property P of the range object of the
entry E to a.

REMARK 8.6. Deleting fulfilled entries from the ToDoList before applying any of them
ensures that no recursion in applying entries occurs. Each entry is only applied once it
becomes applicable.

8.b. Creating ToDoList entries: The ETEXlogic parser. CAP provides a parser
to read KTEX files in a certain format containing theorems which are then used to create
ToDolList entries.

Example 8.7. A theorem looks like this:

\begin{sequent}
\begin{align*}

\alpha:\Mor, \beta:\Mor ~&|~ \IsMonomorphism( \beta ) \\

&\vdash \IsMonomorphism (

\ProjectionInFactorOfFiberProduct( [\alpha, \betal, 1 ) )

\end{alignx}
\end{sequent}

and in its HTEX compiled version:
Sequent.
a : Mor, 5 : Mor | IsMonomorphism(/3)
I IsMonomorphism (ProjectionInFactorOfFiberProduct([a, 5], 1))

This logical implication states that for two morphisms «, 5 of a category A, if g is
known to be a monomorphism, i.e., known to fulfill the property IsMonomorphism, then
the result of

ProjectionInFactorOfFiberProduct((a, ), 1)
also fulfills IsMonomorphism. The syntax for the sequents is described in the CAP manual.

In the GAP implementation of CAP one can add files containing such sequents and attach
them to a category or type of categories. The files are then read by the CAP theorem parser,
and the sequents are added to the category. When computing a categorical operation, all
applicable sequents are then stored as ToDoList entries to the appropriate argument objects
and in the result of the called operation.
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Example 8.8. The following GAP session shows the application of the ToDoList entries
coming from the sequent in Example VII.8.7 on the result of ProjectionIlnFactorOfFiber-
Product.

gap> A := VectorSpaceObject( 3, Q );

<A vector space object over ( of dimension 3>
gap> B := VectorSpaceObject( 1, Q );

<A vector space object over ( of dimension 1>
gap> alpha := HomalgMatrix( [1,0,0],1,3,Q );

<A matrix over an internal ring>

gap> beta := HomalgMatrix( [0,1,0], 1,3,Q );

<A matrix over an internal ring>

gap> alpha := VectorSpaceMorphism( A, alpha, B );
gap> alpha := VectorSpaceMorphism( B, alpha, A );
<A morphism in Category of matrices over Q>

gap> beta := VectorSpaceMorphism( B, beta, A );
<A morphism in Category of matrices over Q>

gap> gamma := ProjectionInFactorOfFiberProduct( [alpha,betal, 1 );
<A morphism in Category of matrices over Q>

gap> HasIsMonomorphism( gamma ) ;

false

gap> IsMonomorphism( beta );

true

gap> HasIsMonomorphism( gamma ) ;

true

gap> IsMonomorphism( gamma ) ;

true

Many implications are already implemented in CAP, a complete (KTEX compiled) list
can be found in Appendix B.
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APPENDIX A
Programming in Cap

1. An overview of installing categories

We give a short overview of the three steps of the initialization process of a category
in CAP.

1l.a. Creating the data structures. When implementing a category and its objects
and morphisms, the first thing to do is to implement data structures for objects and
morphisms.

Example 1.1 (Category of finite sets). Let A be the category of finite subsets of N. A
possible data structure for objects are unordered lists of integers. Consider the set {1, 2, 3}.
Then [1,2,3] and [1,3,2] would be possible serializations of this set, but of course they
differ on the machine level.

In this example the realization differs from the implemented category: We use ordered
sets (i.e., lists) as data structures, instead of sets. In Chapters IV and V we came across
more sophisticated examples of this difference between the data structure and the realized
category and emphasized the importance of the equality notions.

1.b. Implementing basic algorithms. After implementing the data structures, the
next step is to implement the categorical constructions as algorithms acting on the data
structures. For every categorical construction there should be one algorithm implemented
or a way to derive it from given algorithms. Note that the algorithms have to give equal
output on equal input according to the implemented equality functions. A list of all possible
basic algorithms which can be installed and derived in CAP can be found in Appendix C.

1.c. Finalization of the category. Once all necessary primitive operations are im-
plemented the finalization tells CAP that the initialization process if the category is now
completed. This will lead trigger the derivation mechanism (cf. Section VII.7) and derive
all possible constructions for that type of category.

2. The category object

In the GAP implementation of CAP the category object itself is a large object. It contains
several information about the category and can itself be used to create new categories. We
are going to give a short description of the important components of the category object:

(1) Name: For every category the name of the category is stored. The name is used
to display the category, but also to automatically create new names, e.g., names of
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functors and natural transformations. Since functors and natural transformations
can be installed as global functions, using their names as global names, the name
of the category should be unique.

(2) Filters: Each category holds two unique filters (cf. Section A.5): One for objects
and one for morphisms in the category. These filters are used to identify objects
and morphisms that belong to the category.

(3) Caches: Each category stores all caches for categorical operations of that category
(cf. Section VILG).

(4) Logical implications: Each category stores applicable sequents (cf. Section
VIL.8) for this category.

(5) Precondition check: Most of the categorical operations have preconditions, e.g.,
the two arguments for PreCompose have to be composable. Checking these pre-
conditions is useful when doing experiments, but slows down large computations
for which all input data is correct. So each category holds a boolean value which
indicates whether the preconditions should be checked for categorical operations
or not.

(6) Finalization indicator: Each category stores a boolean value indicating if the
category is finalized, i.e., all primitive operations for that category are already in-
stalled. Since the finalization of a category triggers the derivation process (cf. Sec-
tion VIL.7), a non-finalized category should not be used for computations.

3. Functors and natural transformations: The category of categories

CAP features an implementation of the category of categories, CapCat. Its objects
are the CAP category objects themselfs, and its morphisms are the CAP functors. It is
currently the only 2-category in CAP. Its 2-cells are natural transformations. The category
CapCat is also a CAP category, which means the same categorical operations can be used
to manipulate with objects and morphisms in CapCat.

3.a. Functors.

Definition 3.1. Let A, B be categories. A (covariant) functor F' : A — B consists
of two maps

F, : Obj 4 — Objgz, A— F(A),
Fy : Mor 4 — Morg, ¢ — F (),
such that

Fpp) ~ F(p) F (), and
F (ida) ~ idp(a).

Two functors are composed by composing the maps F;, and the identity functor is the
functor where both F} and F;, are the identity maps.
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Covariant functors form the morphisms in the category of categories.

Definition 3.2. The category of categories in CAP, CapCat, is the category with
categories as objects and functors as morphisms.

The main reason for the existence of CapCat in CAP is the implementation of functors
and natural transformations.

3.b. Implementation of functors. The implementation of a functor F' consists of
algorithms for the two functions Fy and F} in Definition A.3.1.

Data structure 3.3 (Functors). Let A and B be categories and F' : A — B a functor.
The data structure of F' consists of the following two functions:

ObjectFunction (F') : Obj 4 — Objg,
MorphismFunction (F') : Objz x Mor 4 x Objz — Mors.
Both functions are cached independently.

The ObjectFunction has the role of Fj. The MorphismFunction has the role of F} and
can be interpreted as a WithGiven function (see Section VIL5 for more details).

Algorithm 3.4 (Functor evaluation). Let A and B be categories, F' : A — B a functor,
and A € Obj 4, ¢ € Mor 4. The operation ApplyFunctor is used to evaluate the functor at
objects or morphisms of A using the following algorithm:

(1)

(2) Let

ApplyFunctor (F, A) := ObjectFunction (F') (A) .

A" := ObjectFunction (F') (Source (¢)),
B’ := ObjectFunction (F') (Range (¢)) .
Then
Y := ApplyFunctor (F, ) := MorphismFunction (F') (A", ¢, B),
such that Source (¢) = A" and Range (¢) = B'.

This algorithm guarantees the compatibility of the result, since the result of the eva-
luation of a morphism ¢ has the evaluations of the source and range of ¢ as source and
range of the result v, respectively.

REMARK 3.5. All functors in CAP are covariant. To implement contravariant or mul-
tivariate functors the opposite and the product category (cf. Section A.4) are used.

3.c. Natural transformations. Natural transformations are morphisms between func-
tors. They are implemented as 2-cells in the category of categories. The corresponding
categorical operations are:

(1) IdentityTwoCell,
(2) HorizontalPreCompose,
(3) and VerticalPreCompose.
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The data structure contains two functors, serving as source and range, and a function
defining how the natural transformation acts on objects.

Definition 3.6. Let A and B be categories and F,G : A — B functors. A natural
transformation A : F' = G consists of a map

No : Obj 4 — Morg, A (N (A): F(A) - G (A))

such that for any morphism ¢ : A — B € Mory the following diagram commutes up to
congruence:

G (p)

N (A)

FA) — L aA)
N (B

_NB

Q

Data structure 3.7. Let A, B, I'G and N be as in Definition A.3.6. The data
structure for the natural transformation A consists of the functor F as source, the functor
G as range, and a function

Natural TransformationFunction (N') :Objz x Obj 4 x Objz — Mors,
(B1, A, By) = (N : By — Bs).

The function NaturalTransformationFunction is 3-ary for same reason as the function
MorphismFunction for functors is 3-ary: When a natural transformation N is applied to
an object A € Obj 4, the resulting morphism should have the object F'(A) as source and
G (A) as range. Giving source and range of the resulting morphism as arguments to the
natural transformation function guarantees this compatibility condition.

Algorithm 3.8 (Natural transformation evaluation). Let A, B, F,G and N as in
Definition A.3.6 and A € Obj,. A natural transformation is applied via

ApplyNaturalTransformation
using the following: Set

Ap := ApplyFunctor (F, A),
Ag := ApplyFunctor (G, A).

Then it is

1) := ApplyNaturalTransformation (N, A)
:= Natural TransformationFunction (N) (Ar, A, Ag) ,

such that Source (¢) = A and Range () = Ag.

Again, natural transformations cache their output.
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4. Special categories implemented in Cap

There are three special categories in CAP. We give a description of those categories
and motivate their existence.

4.a. Opposite category.
Definition 4.1. Let A be a category. The opposite category A°P is defined by

Mor gop :={? : B®® — A% | ¢ : A — B € Mor,} .
In the GAP implementation of CAP the opposite category A° of a category A is con-
structed via Opposite (A). The Opposite command also constructs objects and morphisms

in the opposite category A° out of objects and morphisms of the underlying category .A.
Using the opposite category one can implement contravariant functors:

Proposition 4.2. Let A and B be categories and F : A — B a contravariant functor.
Then the functor F : A°® — B with

(4)

F (A%P)
F (¢)

) =F
P):=F
15 covariant.

The implementation of the opposite category enables CAP to only use covariant functors
as morphisms in CapCat. Contravariant functors are modeled as covariant functors having

the opposite category as source.

4.b. Product category.

Definition 4.3. Let Ay,..., A, be categories. The product category A := A; x
- x A, is defined by

i=1

n
Mor 4 := X Mor 4,.
i=1
The product category is used to implement multivariate functors, i.e., functors that take
more than one argument. The product of a list of categories can be created by the Product
command. With the same command, objects and morphisms in the product category can
be created.

4.c. Terminal category.
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Definition 4.4. The terminal category 7 is a single object, single morphism cate-
gory defined by

ObJT = {T} )
Mory :={idy : T — T}.
It is an abelian category, where each categorical construction is either 7" or idp.

Proposition 4.5. The terminal category T is a terminal object in the category of
categories, CapCat.

In CAP, the terminal category can be accessed using TerminalCategory. The object
T and the morphism id; can be accessed using UniqueObject and UniqueMorphism.

The category itself can be used to create single valued functors, which can again be
used to evaluate multivariate functors at certain arguments.

Example 4.6. Let A be an abelian category and A € Obj 4. Consider the functor
F:A— A, X — DirectSum (A, X)

on objects, and with DirectSumFunctorial on morphisms. This functor can then be written
as the sum of the functors

FliTHA,T*—)A
FQ:A_)A,X'—)X.

F} can be created using the command FunctorFromTerminalCategory, and F, using
IdentityMorphism. Since functors are morphisms in the category of categories, the cate-
gorical construction DirectSumFunctorial can be used to produce the functor F.

5. Filters and Method Selection

We present the system that enables GAP to implement special methods for objects or
morphisms with additional properties, e.g., a special method to compute the kernel object
for monomorphisms.

5.a. Filters.

Definition 5.1 (Filter). Let A be a GAP object.

(1) A filter F' is a boolean flag written as a function, i.e.,
F(A) € {true, false}.
(2) A property P is a boolean function together with a filter HasP. P can only be
evaluated once for any object A, and it is
P (A) € {true, false}.
It is
HasP (A) = true
if and only if P has already been evaluated.
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Filters can be concatenated via the operation and. Such concatenated filters are eval-
uated as follows:

Algorithm 5.2. Let A be a GAP object and P and @ filters. The filter S := P and @
is evaluated as follows:

o If P(A) = false, then S (A) := false without looking at Q).
o If P(A) = true, then S (A) := Q (A).

This lazy evaluation practice makes it possible to use properties as filters.

Definition 5.3 (Properties as Filters). Let A be a GAP object and P be a property.
Then P can be used as a filter, evaluated like the filter

HasP and P,
i.e., the filter can only be true if P has been evaluated before.

This evaluation strategy for properties ensures that properties used as filters do not
trigger expensive computations. Filters are used to decide which method to use for an
operation, and triggering expensive computation when deciding which method to use can
lead to more expensive computations than applying a generic function.

5.b. Method selection. GAP provides the possibility of gluing partial methods to-
gether to an operation, the so-called Predicate Dispatch.

A GAP operation X is a callable object which reassembles a n-ary function for 0 <
n < 6. It is declared with a list of filters F' of length n and equipped with methods
mi, ..., mg. Each method m; is an n-ary function h; together with a filter list GG; of length
n, such that for each GAP object A holds

Gji(A) = F (A),
Jj=1,...,k If X is called with n arguments A;,..., A,, the best matching function A,

according to the filter list G is called. The procedure of choosing the correct method for
an operation is called Method Selection.






APPENDIX B

Logical theorems in Cap

1. Logic for all categories

Sequent 1.

A : Obj | IsZero(A) + IsTerminal(A)
Sequent 2.

A : Obj | IsZero(A) + IsInitial(A)

Sequent 3.

A : Obj | IsZero(A) + IsInjective(A)
Sequent 4.

A : Obj | IsZero(A) + IsProjective(A)
Sequent 5.

a : Mor | IsIsomorphism(«) + IsSplitMonomorphism(«)
Sequent 6.
a : Mor | IsIsomorphism(a) + IsSplitEpimorphism (o)
Sequent 7.
a : Mor | IsOne(a) - IsAutomorphism(c)
Sequent 8.
a : Mor | IsAutomorphism(«) + IsIsomorphism(«)
Sequent 9.
a : Mor | IsAutomorphism(a) - IsEndomorphism («)
Sequent 10.
a : Mor | IsEndomorphism(a), IsIsomorphism(«)
+ IsAutomorphism(a)

Sequent 11.

a : Mor | IsSplitMonomorphism(a) - IsMonomorphism («)
187
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Sequent 12.
a : Mor | IsSplitEpimorphism(3) + IsEpimorphism(/3)
Sequent 13.
A : Obj | () + Isldempotent(IdentityMorphism(A))
Sequent 14.
A : Obj | () - IsOne(IdentityMorphism(A))
Sequent 15.

A : Obj | () + IsIdentical ToldentityMorphism (IdentityMorphism(A))
Sequent 16.
| () - IsZero( ZeroObject()))
Sequent 17.
« : Mor, 5 : Mor | IsMonomorphism(/3)
I IsMonomorphism (ProjectionInFactorOfFiberProduct([e, 5], 1))
Sequent 18.
« : Mor, 3 : Mor | IsMonomorphism ()
- IsMonomorphism (ProjectionInFactorOfFiberProduct([a, 5], 2))
Sequent 19.
a : Mor, 5 : Mor | IsEpimorphism(«)
+ IsEpimorphism (InjectionOfCofactorOfPushout([a, A, 2))
Sequent 20.
a : Mor, 5 : Mor | IsEpimorphism(/3)
+ IsEpimorphism (InjectionOfCofactorOfPushout([a, 5], 1))

Sequent 21.
a : Mor | ()
- IsMonomorphism ( KernelEmbedding(cv))
Sequent 22.
a : Mor | ()
- IsEpimorphism ( CokernelProjection(c))
Sequent 23.

a : Mor, 8 : Mor | ()
F IsMonomorphism (Equalizer(a, 5))
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Sequent 24.
a : Mor, 5 : Mor | ()
- IsEpimorphism (Coequalizer(a, 3))

Sequent 25.
a : Mor | IsTerminal (Source(a))
+ IsSplitMonomorphism ()
Sequent 26.
o : Mor | IsInitial (Range())
- IsSplitEpimorphism(«)
Sequent 27.

L : ListObj | (Vz € L : IsTerminal(z)) + IsTerminal ( DirectProduct(L))
Sequent 28.
L : ListObj | (Vz € L : IsInitial(z)) - IsInitial (Coproduct(L))
Sequent 29.
a : Mor, 5 : Mor | IsMonomorphism(«), IsMonomorphism(/3)
F IsMonomorphism (PreCompose(a, 6))
Sequent 30.
a : Mor, 5 : Mor | IsEpimorphism(«), IsEpimorphism(5)
 IsEpimorphism (PreCompose(a, 6))

Sequent 31.
a : Mor | IsIsomorphism(«) I IsIsomorphism(Inverselmmutable(«))
Sequent 32.
a : Mor | ()
IsMonomorphism (ImageEmbedding(c))
2. Logic for preadditive categories
Sequent 33.
a: Obj,b: Obj | () - IsZero(ZeroMorphism(a, b))
Sequent 34.

a: Obj,b: Obj | () - IsldenticalToZeroMorphism (ZeroMorphism(a, b))
Sequent 35.
a: Obj | () - IsZero( UniversalMorphismIntoZeroObject(a))
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Sequent 36.
a : Obj | () + IsZero( UniversalMorphismFromZeroObject(a))
Sequent 37.
« : Mor | IsZero(Source(a)) + IsZero(a)
Sequent 38.
a : Mor | IsZero(Range(«))  IsZero(«)
Sequent 39.
a : Mor | IsZero(a), IsMonomorphism(a) - IsZero(Source(«))
Sequent 40.
« : Mor | IsZero(«), IsEpimorphism(«) - IsZero(Range(«))
Sequent 41.
a : Mor, 8 : Mor | IsZero(«) + IsZero(PreCompose(a, /3))
Sequent 42.
a : Mor, § : Mor | IsZero(3) - IsZero(PreCompose(a, /3))
Sequent 43.
o : Mor | IsInitial (KernelObject(c)) - IsMonomorphism(cv)
Sequent 44.
a : Mor | IsMonomorphism(«)  IsZero(KernelObject(«))
Sequent 45.
o : Mor | IsZero( KernelEmbedding(c)) + IsMonomorphism ()
Sequent 46.
a : Mor | IsMonomorphism(a) - IsZero(KernelEmbedding(c))
Sequent 47.
o : Mor | IsTerminal ( CokernelObject(a)) + IsEpimorphism(a)
Sequent 48.
a : Mor | IsEpimorphism(«) + IsZero( CokernelObject(cv))
Sequent 49.
o : Mor | IsZero( CokernelProjection(a)) + IsEpimorphism(«)
Sequent 50.
o : Mor | IsEpimorphism(a) b IsZero( CokernelProjection(c))
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3. Logic for additive categories

Sequent 51.
A : Obj | IsTerminal(A) + IsZero(A)
Sequent 52.
A : Obj | IsInitial(A) - IsZero(A)
Sequent 53.
a : Obj | IsZero(a) - IsZero(IdentityMorphism(a))
Sequent 54.

a: Obj,b: Obj | IsZero(a),IsZero(b)
IsZero( DirectSum([a, b]))

4. Logic for abelian categories

Sequent 55.
a : Mor | IsMonomorphism(«), IsEpimorphism(«) + IsIsomorphism («)
Sequent 56.
« : Mor | IsEpimorphism (a)
IsIsomorphism (ImageEmbedding(a))
Sequent 57.
o : Mor | IsIsomorphism (ImageEmbedding(a))
—IsEpimorphism (a)
Sequent 58.

a : Mor | IsEpimorphism (a)
IsIsomorphism ( Astriction ToCoimage())

Sequent 59.
o : Mor | IsIsomorphism ( AstrictionToCoimage(c))
—IsEpimorphism (a)
Sequent 60.
a : Mor | IsMonomorphism(a)
I—ISIsomorphism( CoimageProj ection(a))
Sequent 61.

o : Mor | IsIsomorphism ( CoimageProjection(cv))

+IsMonomorphism (oz)
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Sequent 62.
a : Mor | IsMonomorphism(a)
-IsIsomorphism ( CoastrictionTolmage(c))
Sequent 63.
o : Mor | IsIsomorphism ( Coastriction Tolmage(cv))

—IsMonomorphism (a)
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All method names

AdditionForMorphisms
AdditivelnverseForMorphisms
AssociatorLeft ToRight WithGivenTensorProducts
AssociatorRight ToLeft WithGivenTensorProducts
AstrictionToCoimage
AstrictionToCoimageWithGivenCoimage
BraidingInverseWithGivenTensorProducts
BraidingWithGivenTensorProducts
CoastrictionTolmage
CoastrictionTolmageWithGivenlmageObject
CoevaluationForDualWithGivenTensorProduct
CoevaluationMorphismWithGivenRange
Coimage

CoimageProjection
CoimageProjectionWithGivenCoimage
CokernelColift

CokernelColift WithGivenCokernelObject
CokernelFunctorial WithGivenCokernel Objects
CokernelObject

CokernelProjection
CokernelProjectionWithGivenCokernelObject
Colift

ColiftAlongEpimorphism

Coproduct

CoproductFunctorial WithGivenCoproducts
DirectProduct

DirectProductFunctorial WithGivenDirectProducts
DirectSum

DirectSumCodiagonalDifference
DirectSumDiagonalDifference
DirectSumFunctorial WithGivenDirectSums
DirectSumProjectionInPushout
DualOnMorphismsWithGivenDuals
DualOnObjects
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EvaluationForDualWithGivenTensorProduct
EvaluationMorphismWithGivenSource
FiberProduct
FiberProductEmbeddingInDirectSum
FiberProductFunctorial WithGivenFiberProducts
HorizontalPostCompose

HorizontalPreCompose

IdentityMorphism

Identity TwoCell

ImageEmbedding
ImageEmbeddingWithGivenImageObject
ImageObject

InitialObject

InitialObjectFunctorial
InjectionOfCofactorOfCoproduct
InjectionOfCofactorOfCoproduct WithGivenCoproduct
InjectionOfCofactorOfDirectSum
InjectionOfCofactorOfDirect SumWithGivenDirectSum
InjectionOfCofactorOfPushout
InjectionOfCofactorOfPushout WithGivenPushout
InternalHomOnMorphismsWithGivenInternalHoms
InternalHomOnObjects
InternalHomToTensorProduct AdjunctionMap
Inverselmmutable
InverseMorphismFromCoimageTolmageWithGivenObjects
IsAutomorphism

[sCodominating

[sCongruentForMorphisms

IsDominating

IsEndomorphism

IsEpimorphism

IsEqualAsFactorobjects

IsEqualAsSubobjects
IsEqualForCacheForMorphisms
IsEqualForCacheForObjects
IsEqualForMorphisms
IsEqualForMorphismsOnMor

[sEqualForObjects

IsIdempotent

IsIdentical ToldentityMorphism

IsIdentical ToZeroMorphism

IsInitial

IsInjective
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IsIsomorphism

I[sMonomorphism

[sOne

IsProjective

IsSplitEpimorphism

IsSplitMonomorphism

IsTerminal

IsWellDefinedForMorphisms

IsWellDefinedForObjects

IsWellDefinedForTwoCells

[sZeroForMorphisms

IsZeroForObjects
IsomorphismFromCoimageToCokernel OfKernel
IsomorphismFromCokernelOfDiagonalDifference ToPushout
IsomorphismFromCokernel OfKernel ToCoimage
IsomorphismFromCoproductToDirectSum
[somorphismFromDirect Product ToDirectSum
IsomorphismFromDirectSumToCoproduct
IsomorphismFromDirectSumToDirectProduct
IsomorphismFromDual ToInternalHom
[somorphismFromFiberProduct ToKernelOfDiagonalDifference
IsomorphismFromImageObject ToKernel OfCokernel
IsomorphismFromInitialObject ToZeroObject
IsomorphismFromInternalHomToDual
IsomorphismFromInternalHomToObject WithGivenInternalHom
IsomorphismFromInternalHomToTensorProduct
IsomorphismFromKernelOfCokernel TolmageObject
[somorphismFromKernelOfDiagonalDifferenceToFiberProduct
IsomorphismFromObject TolnternalHomWithGivenInternalHom
IsomorphismFromPushoutToCokernelOfDiagonalDifference
IsomorphismFromTensorProductTolnternalHom
IsomorphismFromTerminalObject ToZeroObject
IsomorphismFromZeroObject Tolnitial Object
IsomorphismFromZeroObject ToTerminalObject
KernelEmbedding
KernelEmbeddingWithGivenKernelObject

KernelLift

KernelLiftWithGivenKernelObject

KernelObject

KernelObjectFunctorial WithGivenKernelObjects
LambdaElimination

Lambdalntroduction
LeftDistributivityExpandingWithGivenObjects
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LeftDistributivityFactoringWithGivenObjects

LeftUnitorInverse WithGivenTensorProduct
LeftUnitorWithGivenTensorProduct

Lift

Lift AlongMonomorphism

MonoidalPost ComposeMorphismWithGivenObjects
MonoidalPreComposeMorphismWithGivenObjects
MorphismFromBidual WithGivenBidual
MorphismFromCoimageTolmageWithGivenObjects
MorphismFromInternalHomToTensorProduct WithGivenObjects
MorphismFromTensorProductTolnternalHomWithGivenObjects
MorphismToBidualWithGivenBidual

PostCompose

PreCompose

ProjectionInFactorOfDirectProduct
ProjectionInFactorOfDirectProduct WithGivenDirectProduct
ProjectionInFactorOfDirectSum

ProjectionInFactorOfDirect SumWithGivenDirectSum
ProjectionInFactorOfFiberProduct
ProjectionInFactorOfFiberProductWithGivenFiberProduct
Pushout

PushoutFunctorial WithGivenPushouts

RankMorphism
RightDistributivityExpandingWithGivenObjects
RightDistributivityFactoringWithGivenObjects
RightUnitorInverseWithGivenTensorProduct
RightUnitorWithGivenTensorProduct
TensorProductDualityCompatibilityMorphismWithGivenObjects
TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects
TensorProductInternalHomCompatibilityMorphismWithGivenObjects
TensorProductOnMorphismsWithGivenTensorProducts
TensorProductOnObjects
TensorProductTolnternalHomAdjunctionMap

TensorUnit

TerminalObject

TerminalObjectFunctorial

TraceMap

UniversalMorphismFromCoproduct
UniversalMorphismFromCoproductWithGivenCoproduct
UniversalMorphismFromDirectSum
UniversalMorphismFromDirectSumWithGivenDirectSum
UniversalMorphismFromImage
UniversalMorphismFromImageWithGivenlmageObject
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e UniversalMorphismFromlInitialObject

e UniversalMorphismFromInitialObject WithGivenlInitialObject
e UniversalMorphismFromPushout

e UniversalMorphismFromPushoutWithGivenPushout

e UniversalMorphismFromZeroObject

e UniversalMorphismFromZeroObjectWithGivenZeroObject

e UniversalMorphismIntoCoimage

e UniversalMorphismIntoCoimageWithGivenCoimage

e UniversalMorphismIntoDirectProduct

e UniversalMorphismIntoDirectProduct WithGivenDirectProduct
e UniversalMorphismIntoDirectSum

e UniversalMorphismIntoDirectSumWithGivenDirectSum

e UniversalMorphismIntoFiberProduct

e UniversalMorphismIntoFiberProduct WithGivenFiberProduct
e UniversalMorphismIntoTerminalObject

e UniversalMorphismIntoTerminalObject WithGivenTerminalObject
e UniversalMorphismIntoZeroObject

e UniversalMorphismIntoZeroObject WithGivenZeroObject

e UniversalPropertyOfDual

e VerticalPostCompose

e VerticalPreCompose

e ZeroMorphism

e ZeroObject






APPENDIX D

Derivations

Derivation index

AdditionForMorphisms
AssociatorLeft ToRight WithGivenTensorProducts
AssociatorRight ToLeft WithGivenTensorProducts
AstrictionToCoimage
AstrictionToCoimageWithGivenCoimage
BraidingInverseWithGivenTensorProducts
BraidingWithGivenTensorProducts
CoastrictionTolmage
CoastrictionTolmageWithGivenlmageObject
CoevaluationForDualWithGivenTensorProduct
CoevaluationMorphismWithGivenRange
Coimage

CoimageProjection

CokernelColift

CokernelColift WithGivenCokernelObject
CokernelFunctorial WithGivenCokernelObjects
CokernelObject

ColiftAlongEpimorphism

Coproduct

CoproductFunctorial WithGivenCoproducts
DirectProduct

DirectProductFunctorial WithGivenDirectProducts
DirectSumCodiagonalDifference
DirectSumDiagonalDifference
DirectSumFunctorial WithGivenDirectSums
DirectSumProjectionInPushout
DualOnMorphismsWithGivenDuals
DualOnObjects
EvaluationForDualWithGivenTensorProduct
EvaluationMorphismWithGivenSource
FiberProduct
FiberProductEmbeddingInDirectSum
FiberProductFunctorial WithGivenFiberProducts
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HorizontalPost Compose

HorizontalPreCompose

ImageEmbedding

ImageObject

InitialObject

InitialObjectFunctorial
InjectionOfCofactorOfCoproduct
InjectionOfCofactorOfDirectSum
InjectionOfCofactorOfPushout
InternalHomOnMorphismsWithGivenInternalHoms
InternalHomOnObjects
InternalHomToTensorProduct AdjunctionMap
Inverselmmutable
InverseMorphismFromCoimageTolmageWithGivenObjects
IsAutomorphism

IsCodominating

IsDominating

IsEndomorphism

IsEpimorphism

IsEqualAsFactorobjects

IsEqualAsSubobjects

IsEqualForCacheForObjects
IsEqualForMorphismsOnMor

IsIdempotent

IsIdentical ToldentityMorphism

IsIdentical ToZeroMorphism

IsInitial

IsIsomorphism

IsMonomorphism

[sOne

IsTerminal

IsZeroForMorphisms

IsZeroForObjects
IsomorphismFromCoimageToCokernel OfKernel
IsomorphismFromCokernelOfDiagonalDifferenceToPushout
IsomorphismFromCokernel OfKernel ToCoimage
IsomorphismFromCoproductToDirectSum
IsomorphismFromDirectProduct ToDirectSum
[somorphismFromDirectSumToCoproduct
IsomorphismFromDirectSumToDirectProduct
IsomorphismFromFiberProduct ToKernelOfDiagonalDifference
IsomorphismFromImageObject ToKernel OfCokernel
IsomorphismFromInitialObject ToZeroObject
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IsomorphismFromInternalHomToObject WithGivenInternalHom
IsomorphismFromInternalHomToTensorProduct
IsomorphismFromKernel OfCokernel TolmageObject
IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct
IsomorphismFromObjectTolnternalHomWithGivenInternalHom
IsomorphismFromPushoutToCokernelOfDiagonalDifference
IsomorphismFromTensorProductTolnternalHom
IsomorphismFromTerminalObject ToZeroObject
IsomorphismFromZeroObject TolnitialObject
IsomorphismFromZeroObject ToTerminalObject

KernelLift

KernelLiftWithGivenKernelObject

KernelObject

KernelObjectFunctorial WithGivenKernelObjects
LambdaElimination

Lambdalntroduction
LeftDistributivityExpandingWithGivenObjects
LeftDistributivityFactoringWithGivenObjects

LeftUnitorInverse WithGivenTensorProduct
LeftUnitorWithGivenTensorProduct

Lift AlongMonomorphism
MonoidalPostComposeMorphismWithGivenObjects
MonoidalPreComposeMorphismWithGivenObjects
MorphismFromBidual WithGivenBidual
MorphismFromCoimageTolmageWithGivenObjects
MorphismFromInternalHomToTensorProduct WithGivenObjects
MorphismFromTensorProductTolnternalHomWithGivenObjects
MorphismToBidualWithGivenBidual

PostCompose

PreCompose

ProjectionInFactorOfDirect Product
ProjectionInFactorOfDirectSum
ProjectionInFactorOfFiberProduct

Pushout

PushoutFunctorial WithGivenPushouts

RankMorphism
RightDistributivityExpandingWithGivenObjects
RightDistributivityFactoringWithGivenObjects
RightUnitorInverseWithGivenTensorProduct
RightUnitorWithGivenTensorProduct
TensorProductDualityCompatibilityMorphismWithGivenObjects
TensorProductInternalHomCompatibilityMorphismInverse WithGivenObjects
TensorProductInternalHomCompatibilityMorphismWithGivenObjects
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TensorProductTolnternalHomAdjunctionMap
TerminalObject

TerminalObjectFunctorial

TraceMap

UniversalMorphismFromCoproduct

e UniversalMorphismFromDirectSum

e UniversalMorphismFromDirectSumWithGivenDirectSum
e UniversalMorphismFromImage

e UniversalMorphismFromImageWithGivenlmageObject

e UniversalMorphismFromInitialObject

e UniversalMorphismFromInitialObject WithGivenlInitialObject
e UniversalMorphismFromPushout

e UniversalMorphismFromZeroObject

e UniversalMorphismIntoCoimage

e UniversalMorphismIntoCoimageWithGivenCoimage

e UniversalMorphismIntoDirectProduct

e UniversalMorphismIntoDirectSum

e UniversalMorphismIntoDirectSumWithGivenDirectSum
e UniversalMorphismIntoFiberProduct

e UniversalMorphismIntoTerminalObject

e UniversalMorphismIntoTerminalObjectWithGivenTerminalObject
e UniversalMorphismIntoZeroObject

e UniversalMorphismIntoZeroObject WithGivenZeroObject
e UniversalPropertyOfDual

e VerticalPostCompose

e VerticalPreCompose

e ZeroMorphism

Derivations for AdditionForMorphisms

AdditionForMorphisms(morl, mor2) as the composition of (morl,mor2)
with the codiagonal morphism
This derivation is for additive categories. This derivation uses:

e UniversalMorphismIntoDirectSum x 1
e IdentityMorphism x 1

e UniversalMorphismFromDirectSum x 1
e PreCompose x 1

function ( moril, mor2 )
local return_value, B, identity_morphism_B,
componentwise_morphism, addition_morphism;
B := Range( morl );
componentwise_morphism := UniversalMorphismIntoDirectSum( morl,
mor2 );
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identity_morphism B := IdentityMorphism( B );
addition_morphism := UniversalMorphismFromDirectSum(
identity _morphism B, identity _morphism B );
return PreCompose( componentwise morphism, addition_morphism );
end;

Back to index

Derivations for AssociatorLeftToRight WithGivenTensorProducts

AssociatorLeft ToRight WithGivenTensorProducts as the identity morphism
This derivation is for all categories. This derivation uses:

e IdentityMorphism x 1

function ( left_associated_object, object_1, object_2, object_3,
right_associated_object )
return IdentityMorphism( left_associated_object );

end;

Back to index

AssociatorLeftToRight WithGivenTensorProducts as the inverse of Associa-
torRightToLeft WithGivenTensorProducts

This derivation is for all categories. This derivation uses:

e AssociatorRightToLeft WithGivenTensorProducts x 1

function ( left_associated_object, object_1, object_2, object_3,
right_associated_object )
return
Inverse( AssociatorRightToLeftWithGivenTensorProducts/(
right_associated_object, object_1, object_2, object_3,
left_associated_object ) );
end;

Back to index

Derivations for AssociatorRightToLeft WithGivenTensorProducts

AssociatorRightToLeft as the identity morphism
This derivation is for all categories. This derivation uses:

e IdentityMorphism x 1

function ( right associated_object, object_1, object_2, object_3,
left_associated_object )
return IdentityMorphism( right associated_object );

end;




204 D. DERIVATIONS

Back to index

AssociatorRight ToLeft WithGivenTensorProducts as the inverse of Associa-
torLeftToRight WithGivenTensorProducts

This derivation is for all categories. This derivation uses:

e AssociatorLeft ToRight WithGivenTensorProducts x 1

function ( right associated_object, object_1, object_2, object_3,
left_associated_object )
return
Inverse( AssociatorLeftToRightWithGivenTensorProducts(
left_associated_object, object_1, object_2, object_3,
right_associated_object ) );
end;

Back to index

Derivations for AstrictionToCoimage

AstrictionToCoimage using that coimage projection can be seen as a coker-
nel
This derivation is for all categories. This derivation uses:

e ColiftAlongEpimorphism x 1
e CoimageProjectionWithGivenCoimage x 1
e CoimageProjection x 1

function ( morphism )

local <coimage projection;

coimage_projection := CoimageProjection( morphism );

return ColiftAlongEpimorphism( coimage_projection, morphism ) ;
end;

Back to index

Derivations for AstrictionToCoimageWithGivenCoimage

AstrictionToCoimage using that coimage projection can be seen as a coker-
nel
This derivation is for all categories. This derivation uses:
e ColiftAlongEpimorphism x 1
e CoimageProjectionWithGivenCoimage x 1
e CoimageProjection x 1

function ( morphism, coimage )
local <coimage projection;
coimage projection := CoimageProjectionWithGivenCoimage (
morphism, coimage );
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return ColiftAlongEpimorphism( coimage projection, morphism );
end;

Back to index

Derivations for BraidingInverseWithGivenTensorProducts

BraidingInverseWithGivenTensorProducts using BraidingWithGivenTensor-
Products

This derivation is for symmetric monoidal categories. This derivation uses:
e BraidingWithGivenTensorProducts x 1

function ( object_2 tensored_object_1, object_1, object_2,
object_1 tensored_object_2 )
return BraidingWithGivenTensorProducts(
object_2 tensored_object_1, object_2, object_1,
object_1_tensored_object_2 );
end;

Back to index
BraidingInverseWithGivenTensorProducts as the inverse of the braiding
This derivation is for braided monoidal categories. This derivation uses:
e BraidingWithGivenTensorProducts x 1
e TensorProductOnObjects x 2

function ( object_2_ tensored_object_1, object_1, object_2,
object_1_tensored_object_2 )
return Inverse( Braiding( object_1, object_2 ) );

end;

Back to index

Derivations for BraidingWithGivenTensorProducts

BraidingWithGivenTensorProducts using BraidingInverseWithGivenTensor-
Products

This derivation is for symmetric monoidal categories. This derivation uses:

¢ BraidingInverseWithGivenTensorProducts x 1

function ( object_1 tensored_object_2, object_1, object_2,
object_2_ tensored_object_1 )
return BraidingInverseWithGivenTensorProducts/(
object_1 tensored_object_2, object_2, object_1,
object_2_tensored_object_1 );

end;
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Back to index
BraidingWithGivenTensorProducts as the inverse of BraidingInverse
This derivation is for braided monoidal categories. This derivation uses:

e BraidingInverseWithGivenTensorProducts x 1
e TensorProductOnObjects x 2

function ( object_1 tensored_object_2, object_1, object_2,
object_2 tensored_object_1 )
return Inverse( BraidingInverse( object_1, object_2 ) );
end;

Back to index

Derivations for CoastrictionTolmage

CoastrictionTolmage using that image embedding can be seen as a kernel
This derivation is for all categories. This derivation uses:

e LiftAlongMonomorphism x 1
¢ ImageEmbeddingWithGivenlmageObject x 1
e ImageEmbedding x 1

function ( morphism )

local image_embedding;

image embedding := ImageEmbedding( morphism );

return LiftAlongMonomorphism( image_embedding, morphism );
end;

Back to index

Derivations for CoastrictionTolmageWithGivenIlmageObject
CoastrictionTolmage using that image embedding can be seen as a kernel
This derivation is for all categories. This derivation uses:

e LiftAlongMonomorphism x 1
¢ ImageEmbeddingWithGivenImageObject x 1
e ImageEmbedding x 1

function ( morphism, image )
local image_embedding;
image_embedding := ImageEmbeddingWithGivenImageObject(
morphism, image );
return LiftAlongMonomorphism( image_embedding, morphism );
end;

Back to index
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Derivations for CoevaluationForDualWithGivenTensorProduct

CoevaluationForDualWithGivenTensorProduct using Lambdalntroduction
on the identity and IsomorphismFromInternalHomToTensorProduct
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

e IdentityMorphism x 1

DualOnObjects x 1

Lambdalntroduction x 1

PreCompose x 2
IsomorphismFromInternalHomToTensorProduct x 1
BraidingWithGivenTensorProducts x 1
TensorProductOnObjects x 2

function ( unit, object, tensor_object )
local morphism;
morphism := IdentityMorphism( object );
morphism := LambdaIntroduction( morphism ) ;
morphism
:= PreCompose( morphism,
IsomorphismFromInternalHomToTensorProduct( object, object ) );
morphism
:= PreCompose( morphism, Braiding( DualOnObjects( object ),
object ) );
return morphism;
end;

Back to index

Derivations for CoevaluationMorphismWithGivenRange

CoevaluationMorphismWithGivenRange using the rigidity of the monoidal
category
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

e IdentityMorphism x 2

e DualOnObjects x 1

e PreCompose x 5

e TensorProductOnObjects x 6

e I[somorphismFromTensorProductTolnternalHom x 1
o LeftUnitorInverseWithGivenTensorProduct x 1

e TensorUnit x 1

e CoevaluationForDualWithGivenTensorProduct x 1

e TensorProductOnMorphismsWithGivenTensorProducts x 3
e AssociatorLeft ToRight WithGivenTensorProducts x 1
¢ BraidingWithGivenTensorProducts x 2
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end;

function ( object_1, object_2, internal hom )

local morphism, dual 2, id_1;
dual_2 := DualOnObjects( object_2 );
id_1 := IdentityMorphism( object_1 );
morphism := LeftUnitorInverse( object_1 );
morphism
:= PreCompose( morphism,
TensorProductOnMorphisms( CoevaluationForDual( object 2 ),
id 1) );
morphism
:= PreCompose( morphism,
TensorProductOnMorphisms( Braiding( object_2, dual_2 ), id_1
) )
morphism
:= PreCompose( morphism,
AssociatorLeftToRight( dual 2, object_2, object_1 ) );
morphism
:= PreCompose( morphism,
TensorProductOnMorphisms ( IdentityMorphism( dual_2 ),
Braiding( object_2, object_1 ) ) );
morphism
:= PreCompose( morphism,
IsomorphismFromTensorProductToInternalHom( object_2,
TensorProductOnObjects( object_1, object 2 ) ) );
return morphism;

Back

to index

CoevaluationMorphismWithGivenRange using the rigidity of the monoidal
category
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 2

DualOnObjects x 1

PreCompose x 3

TensorProductOnObjects x 6
IsomorphismFromTensorProductTolnternalHom x 1
CoevaluationForDualWithGivenTensorProduct x 1
TensorUnit x 1
TensorProductOnMorphismsWithGivenTensorProducts x 3
BraidingWithGivenTensorProducts x 2
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function ( object_1, object_2, internal hom )
local morphism, dual 2, id_1;
dual_2 := DualOnObjects( object_2 );
id_1 := IdentityMorphism( object_1 );
morphism
:= TensorProductOnMorphisms( CoevaluationForDual( object_2 ),
id 1 );
morphism
:= PreCompose( morphism,
TensorProductOnMorphisms( Braiding( object_2, dual_2 ), id_1
) )s
morphism
:= PreCompose( morphism,
TensorProductOnMorphisms( IdentityMorphism( dual_2 ),
Braiding( object_2, object_1 ) ) );
morphism
:= PreCompose( morphism,
IsomorphismFromTensorProductToInternalHom( object_2,
TensorProductOnObjects( object_1, object_2 ) ) );
return morphism;
end;

Back to index
CoevaluationMorphismWithGivenRange using the tensor hom adjunction

on the identity
This derivation is for symmetric closed monoidal categories. This derivation uses:

e IdentityMorphism x 1
e TensorProductOnObjects x 1
e TensorProductTolnternalHomAdjunctionMap x 1

function ( object_1, object_2, internal hom )
return TensorProductToInternalHomAdjunctionMap( object_1,
object_2,
IdentityMorphism( TensorProductOnObjects( object_1, object_ 2
)ADEDE

end;

Back to index

Derivations for Coimage

Coimage as the range of CoimageProjection
This derivation is for all categories. This derivation uses:
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e CoimageProjection x 1

function ( morphism )
return Range( CoimageProjection( morphism ) );
end;

Back to index
Coimage as the range of IsomorphismFromCokernelOfKernelToCoimage
This derivation is for all categories. This derivation uses:

e [somorphismFromCokernelOfKernel ToCoimage x 1

function ( morphism )

return

Range ( IsomorphismFromCokernelOfKernelToCoimage( morphism ) );
end;

Back to index
Coimage as the source of IsomorphismFromCoimageToCokernelOfKernel
This derivation is for all categories. This derivation uses:

e [somorphismFromCoimageToCokernelOfKernel x 1

function ( morphism )
return
Source( IsomorphismFromCoimageToCokernelOfKernel( morphism ) );
end;

Back to index

Derivations for CoimageProjection

CoimageProjection as the cokernel projection of the kernel embedding
This derivation is for Abelian categories. This derivation uses:

e AdditionForMorphisms x 1
AdditivelnverseForMorphisms x 1
KernelEmbedding x 1

CokernelProjection x 1
[somorphismFromCokernel OfKernel ToCoimage x 1
PreCompose x 1

function ( mor )
local <coimage projection;
coimage_projection
:= CokernelProjection( KernelEmbedding( mor ) );
return PreCompose( coimage projection,
IsomorphismFromCokernel0fKernelToCoimage( mor ) );
end;
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Back to index

Derivations for CokernelColift

CokernelColift using Colift AlongEpimorphism and CokernelProjection
This derivation is for all categories. This derivation uses:

e ColiftAlongEpimorphism x 1

o CokernelProjectionWithGivenCokernelObject x 1

e CokernelProjection x 1

function ( mor, test_morphism )
return ColiftAlongEpimorphism( CokernelProjection( mor ),
test_morphism );

end;

Back to index

Derivations for CokernelColift WithGivenCokernelObject

CokernelColift using Colift AlongEpimorphism and CokernelProjection
This derivation is for all categories. This derivation uses:

e ColiftAlongEpimorphism x 1

e CokernelProjectionWithGivenCokernelObject x 1

e CokernelProjection x 1

function ( mor, test_morphism, cokernel )
return
ColiftAlongEpimorphism(
CokernelProjectionWithGivenCokernelObject( mor, cokernel ),
test_morphism );

end;

Back to index

Derivations for CokernelFunctorial WithGivenCokernelObjects

CokernelFunctorial WithGivenCokernelObjects using the universality of the
cokernel
This derivation is for all categories. This derivation uses:

e CokernelColift x 1
e PreCompose x 1
e CokernelProjection x 1

function ( cokernel alpha, alpha, nu, alpha_p, cokernel alpha p )
return
CokernelColift( alpha,
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PreCompose( nu, CokernelProjection( alpha p ) ) );
end;

Back to index

Derivations for CokernelObject

CokernelObject as the range of CokernelProjection
This derivation is for all categories. This derivation uses:

e CokernelProjection x 1

function ( mor )
return Range( CokernelProjection( mor ) );
end;

Back to index

Derivations for Colift AlongEpimorphism

Colift AlongEpimorphism using Colift
This derivation is for all categories. This derivation uses:

o Colift x 1

function ( alpha, beta )
return Colift( alpha, beta );
end;

Back to index

This derivation is for all categories. This derivation uses:

e KernelEmbedding x 1
e CokernelColift x 2

e PreCompose x 1

e Inverselmmutable x 1

function ( epimorphism, test_morphism )
local kernel_emb, cokernel colift to_range of_epimorphism,
cokernel colift_to_range of test_morphism, inverse;
kernel_emb := KernelEmbedding( epimorphism ) ;
cokernel colift_to_range_of_epimorphism
:= CokernelColift( kernel_emb, epimorphism );
cokernel colift_to_range_of_test_morphism
:= CokernelColift( kernel _emb, test_morphism );
return
PreCompose( Inverse( cokernel colift to_range of epimorphism )
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, cokernel colift_to_range of_ test_morphism );
end;

Back to index

Derivations for Coproduct

Coproduct as the range of the first injection
This derivation is for all categories. This derivation uses:

e InjectionOfCofactorOfCoproduct x 1

function ( object_product_list )
return
Range( InjectionOfCofactor0fCoproduct( object_product_list, 1
) )

end;

Back to index
Coproduct as the range of IsomorphismFromDirectSumToCoproduct
This derivation is for all categories. This derivation uses:

e [somorphismFromDirectSumToCoproduct x 1

function ( object_product_list )
return
Range ( IsomorphismFromDirectSumToCoproduct (
object_product_list ) );
end;

Back to index

Derivations for CoproductFunctorial WithGivenCoproducts

CoproductFunctorial WithGivenCoproducts using the universality of the co-
product
This derivation is for all categories. This derivation uses:
e PreCompose x 2
e InjectionOfCofactorOfCoproduct x 2
e UniversalMorphismFromCoproduct x 1

function ( coproduct_source, morphism_list, coproduct_range )
local coproduct_diagram, sink, diagram,

coproduct_diagram := List( morphism_list, function ( mor )
return Range( mor );
end );
sink := List( [ 1 .. Length( morphism_list ) ], function ( i )
return

PreCompose( morphism list[i],
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Injection0fCofactor0fCoproduct( coproduct_diagram, i

) )5
end );
diagram := List( morphism_list, function ( mor )
return Source( mor );
end );

return UniversalMorphismFromCoproduct( diagram, sink );
end;

Back to index

Derivations for DirectProduct

DirectProduct as Source of ProjectionInFactorOfDirectProduct
This derivation is for all categories. This derivation uses:

e ProjectionInFactorOfDirectProduct x 1

function ( object_product_list )
return
Source( ProjectionInFactorOfDirectProduct( object_product_list
» 1) )5

end;

Back to index

DirectProduct as the source of IsomorphismFromDirectProductToDirect-
Sum

This derivation is for all categories. This derivation uses:

e [somorphismFromDirectProductToDirectSum x 1

function ( object_product_list )
return
Source( IsomorphismFromDirectProductToDirectSum(
object_product_list ) );
end;

Back to index

Derivations for DirectProductFunctorial WithGivenDirectProducts

DirectProductFunctorial WithGivenDirectProducts using universality of di-
rect product
This derivation is for all categories. This derivation uses:

e PreCompose x 2
e ProjectionInFactorOfDirectProduct x 2
e UniversalMorphismIntoDirectProduct x 1
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function ( direct_product_source, morphism list,
direct_product_range )
local direct_product_diagram, source, diagram;

direct_product_diagram := List( morphism_list, function ( mor )
return Source( mor );
end );
source := List( [ 1 .. Length( morphism_list ) ], function ( i )
return

PreCompose( ProjectionInFactorOfDirectProduct(
direct_product_diagram, i ), morphism list[i] );

end );
diagram := List( morphism_list, function ( mor )
return Range( mor );
end );

return UniversalMorphismIntoDirectProduct( diagram, source );

end;

Back to index

Derivations for DirectSumCodiagonalDifference

DirectSumCodiagonalDifference using the operations defining this morphi-

sm
This derivation is for all categories. This derivation uses:

o InjectionOfCofactorOfDirectSum x 2

e PreCompose x 2

e UniversalMorphismFromDirectSum x 2
e AdditivelnverseForMorphisms x 2

e AdditionForMorphisms x 2

e UniversalMorphismFromZeroObject x 1

function ( diagram )
local cobase, direct_sum_diagram, number_ of morphisms,
list_of _morphisms, morl, mor2;

direct_sum_diagram := List( diagram, Range );
number_of morphisms := Length( diagram );
list_of morphisms := List( [ 1 .. number_of morphisms ],
function ( i )
return

PreCompose( diagram[i],
InjectionOfCofactor0fDirectSum( direct_sum_diagram,
i)
end );




216 D. DERIVATIONS

if number of morphisms = 1 then
return UniversalMorphismFromZeroQObject (
Range( list_of_morphisms[1] ) );
fi;
morl := CallFuncList( UniversalMorphismFromDirectSum,
list_of morphisms{[ 1 .. number_of morphisms - 1 ]} );
mor2 := CallFuncList( UniversalMorphismFromDirectSum,
list_of morphisms{[ 2 .. number_of morphisms ]} );
return morl - mor2;
end;

Back to index

Derivations for DirectSumDiagonalDifference

DirectSumDiagonalDifference using the operations defining this morphism
This derivation is for all categories. This derivation uses:

e PreCompose x 2

e ProjectionInFactorOfDirectSum x 2

e UniversalMorphismIntoDirectSum x 2
e AdditivelnverseForMorphisms x 2

e AdditionForMorphisms x 2

e UniversalMorphismIntoZeroObject x 1

function ( diagram )
local direct_sum_diagram, number_ of morphisms,
list_of _morphisms, morl, mor2;

direct_sum_diagram := List( diagram, Source );
number_of morphisms := Length( diagram );
list_of morphisms := List( [ 1 .. number_ of morphisms ],
function ( i )
return
PreCompose (

ProjectionInFactorOfDirectSum( direct_sum_diagram, i
), diagram[i] );
end );
if number of morphisms = 1 then
return UniversalMorphismIntoZeroObject(
Source( list_of morphisms[1] ) );

fi;

morl := CallFuncList( UniversalMorphismIntoDirectSum,
list_of morphisms{[ 1 .. number_ of morphisms - 1 ]} );

mor2 := CallFuncList( UniversalMorphismIntoDirectSum,

list_of morphisms{[ 2 .. number_ of morphisms ]} );
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return morl - mor2;
end;

Back to index

Derivations for DirectSumFunctorial WithGivenDirectSums

DirectSumFunctorial WithGivenDirectSums using the universal morphism
into direct sum
This derivation is for additive categories. This derivation uses:
e PreCompose x 2
e ProjectionInFactorOfDirectSum x 2
e UniversalMorphismIntoDirectSum x 1

function ( direct_sum_source, morphism list, direct_sum_range )
local direct_sum_diagram, source, diagram;

direct_sum_diagram := List( morphism_list, function ( mor )
return Source( mor );
end );
source := List( [ 1 .. Length( morphism_list ) ], function ( i )
return
PreCompose (

ProjectionInFactorOfDirectSum( direct_sum_diagram, i
), morphism_list[i] );

end );
diagram := List( morphism_list, function ( mor )
return Range( mor );
end );

return UniversalMorphismIntoDirectSum( diagram, source );
end;

Back to index

DirectSumFunctorial WithGivenDirectSums using the universal morphism
from direct sum

This derivation is for additive categories. This derivation uses:

e PreCompose x 2
e InjectionOfCofactorOfDirectSum x 2
e UniversalMorphismFromDirectSum x 1

function ( direct_sum_source, morphism_list, direct_sum_range )
local direct_sum_diagram, sink, diagram;

direct_sum_diagram := List( morphism_list, function ( mor )
return Range( mor );
end );

sink := List( [ 1 .. Length( morphism list ) ], function ( i )
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return
PreCompose ( morphism_list[i],
InjectionOfCofactor0fDirectSum( direct_sum_diagram,

i) );
end );
diagram := List( morphism_list, function ( mor )
return Source( mor );
end );

return UniversalMorphismFromDirectSum( diagram, sink );
end;

Back to index

Derivations for DirectSumProjectionInPushout

DirectSumProjectionInPushout as the cokernel projection of DirectSum-
CodiagonalDifference
This derivation is for all categories. This derivation uses:

CokernelProjection x 1

DirectSumCodiagonalDifference x 1
IsomorphismFromCokernelOfDiagonalDifferenceToPushout x 1
PreCompose x 1

function ( diagram )
local cokernel proj_of diagonal difference;
cokernel proj_of_diagonal_difference
:= CokernelProjection( DirectSumCodiagonalDifference( diagram
) )5
return PreCompose( cokernel proj_of_diagonal_ difference,
IsomorphismFromCokernelOfDiagonalDifferenceToPushout (
diagram ) );
end;

Back to index

DirectSumProjectionInPushout using the universal property of the direct
sum

This derivation is for all categories. This derivation uses:

e UniversalMorphismFromDirectSum x 1
o InjectionOfCofactorOfPushout x 2

function ( diagram )
local ranges_of diagram, test_sink;
ranges_of diagram := List( diagram, Range );
test_sink := List( [ 1 .. Length( diagram ) ], function ( i )
return InjectionOfCofactorOfPushout( diagram, i );
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end );
return UniversalMorphismFromDirectSum( ranges_of_diagram,
test_sink );
end;

Back to index

Derivations for DualOnMorphismsWithGivenDuals

DualOnMorphismsWithGivenDuals using InternalHomOnMorphisms and
IsomorphismFromDualTolnternalHom
This derivation is for symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 1

TensorUnit x 1

IsomorphismFromDualTolnternalHom x 1
IsomorphismFromInternalHomToDual x 1
PreCompose x 2
InternalHomOnMorphismsWithGivenInternalHoms x 1
InternalHomOnObjects x 2

function ( new_source, morphism, new_range )
local category, result_morphism;
category := CapCategory( morphism );
result_morphism := InternalHomOnMorphisms( morphism,
IdentityMorphism( TensorUnit( category ) ) );
result_morphism

PreCompose( IsomorphismFromDualToInternalHom(
Range( morphism ) ), result_morphism );
result_morphism := PreCompose( result_morphism,
IsomorphismFromInternalHomToDual( Source( morphism ) ) );
return result_morphism;
end;

Back to index

Derivations for DualOnObjects

DualOnObjects as the source of IsomorphismFromDualToInternalHom
This derivation is for symmetric closed monoidal categories. This derivation uses:

e [somorphismFromDualTolnternalHom x 1

function ( object )
return Source( IsomorphismFromDualToInternalHom( object ) );
end;
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Back to index
DualOnObjects as the range of IsomorphismFromInternalHomToDual
This derivation is for symmetric closed monoidal categories. This derivation uses:

e [somorphismFromInternalHomToDual x 1

function ( object )
return Range( IsomorphismFromInternalHomToDual( object ) );
end;

Back to index

Derivations for EvaluationForDualWithGivenTensorProduct

EvaluationForDualWithGivenTensorProduct using the tensor hom adjunc-
tion and IsomorphismFromDualToInternalHom
This derivation is for symmetric closed monoidal categories. This derivation uses:

e [somorphismFromDualTolnternalHom x 1
e InternalHomToTensorProduct AdjunctionMap x 1

function ( tensor_object, object, unit )
return InternalHomToTensorProductAdjunctionMap( object, unit,
IsomorphismFromDualToInternalHom( object ) );
end;

Back to index

Derivations for EvaluationMorphismWithGivenSource

EvaluationMorphismWithGivenSource using the rigidity of the monoidal
category
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

e IdentityMorphism x 3

e DualOnObjects x 2

e PreCompose x 4

e [somorphismFromInternalHomToTensorProduct x 1
e RightUnitorWithGivenTensorProduct x 1

e TensorProductOnObjects x 6

e TensorUnit x 1

e EvaluationForDualWithGivenTensorProduct x 1

e TensorProductOnMorphismsWithGivenTensorProducts x 3
o AssociatorLeft ToRight WithGivenTensorProducts x 1
e BraidingWithGivenTensorProducts x 1

function ( object_1, object_2, internal hom_tensored_object_1 )
local morphism;
morphism
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:= TensorProductOnMorphisms (
IsomorphismFromInternalHomToTensorProduct( object_1,
object_2 ), IdentityMorphism( object_1 ) );
morphism
:= PreCompose( morphism,
TensorProductOnMorphisms (
Braiding( DualOnObjects( object_1 ), object_2 ),
IdentityMorphism( object_1 ) ) );
morphism
:= PreCompose( morphism, AssociatorLeftToRight( object 2,
DualOnObjects( object_1 ), object_1 ) );
morphism
:= PreCompose( morphism,
TensorProductOnMorphisms( IdentityMorphism( object_2 ),
EvaluationForDual( object_1 ) ) );
morphism := PreCompose( morphism, RightUnitor( object_2 ) );
return morphism;
end;

Back to index

EvaluationMorphismWithGivenSource using the rigidity and strictness of
the monoidal category

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

e IdentityMorphism x 3

e DualOnObjects x 1

e PreCompose x 2

e [somorphismFromInternalHomToTensorProduct x 1

e EvaluationForDualWithGivenTensorProduct x 1

e TensorProductOnObjects x 6

e TensorUnit x 1

e TensorProductOnMorphismsWithGivenTensorProducts x 3
e BraidingWithGivenTensorProducts x 1

function ( object_1, object_2, internal hom_tensored_object_1 )
local morphism;
morphism
:= TensorProductOnMorphisms(
IsomorphismFromInternalHomToTensorProduct( object_1,
object_2 ), IdentityMorphism( object_1 ) );
morphism
:= PreCompose( morphism,
TensorProductOnMorphisms (
Braiding( DualOnObjects( object_1 ), object_2 ),
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IdentityMorphism( object_1 ) ) );
morphism
:= PreCompose( morphism,
TensorProductOnMorphisms( IdentityMorphism( object_2 ),
EvaluationForDual( object_1 ) ) );
return morphism;
end;

Back to index
EvaluationMorphismWithGivenSource using the tenor hom adjunction on
the identity
This derivation is for symmetric closed monoidal categories. This derivation uses:
e IdentityMorphism x 1
e InternalHomOnObjects x 1
e InternalHomToTensorProductAdjunctionMap x 1

function ( object_1, object_2, tensor_object )
return InternalHomToTensorProductAdjunctionMap( object_1,
object_2,
IdentityMorphism( InternalHomOnObjects( object_1, object_2 )
) )

end;

Back to index

Derivations for FiberProduct

FiberProduct as the source of FiberProductEmbeddingInDirectSum
This derivation is for all categories. This derivation uses:

e FiberProductEmbeddingInDirectSum x 1
function ( diagram )

return Source( FiberProductEmbeddingInDirectSum( diagram ) );
end;

Back to index

Derivations for FiberProductEmbeddingInDirectSum

FiberProductEmbeddingInDirectSum as the kernel embedding of Direct-
SumDiagonalDifference
This derivation is for all categories. This derivation uses:

KernelEmbedding x 1

DirectSumDiagonalDifference x 1
IsomorphismFromFiberProductToKernelOfDiagonalDifference x 1
PreCompose x 1
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function ( diagram )

local kernel_of_diagonal_difference;

kernel of_diagonal_difference

:= KernelEmbedding( DirectSumDiagonalDifference( diagram ) );
return
PreCompose (
IsomorphismFromFiberProductToKernelOfDiagonalDifference (
diagram ), kernel of diagonal difference );

end;

Back to index

FiberProductEmbeddingInDirectSum using the universal property of the
direct sum

This derivation is for all categories. This derivation uses:

e UniversalMorphismIntoDirectSum x 1
e ProjectionInFactorOfFiberProduct x 2

function ( diagram )
local sources_of diagram, test_source;
sources_of_diagram := List( diagram, Source );
test_source := List( [ 1 .. Length( diagram ) ], function ( i )
return ProjectionInFactorOfFiberProduct( diagram, i );
end );
return UniversalMorphismIntoDirectSum( sources_of_diagram,
test_source );

end;

Back to index

Derivations for FiberProductFunctorialWithGivenFiberProducts

FiberProductFunctorial WithGivenFiberProducts using the universality of
the fiber product
This derivation is for all categories. This derivation uses:
e PreCompose x 2
e ProjectionInFactorOfFiberProduct x 2
e UniversalMorphismIntoFiberProduct x 1

function ( fiber product_source, morphism_of morphisms,
fiber_product_range )
local pullback_diagram, source, diagram;
pullback diagram := List( morphism_of morphisms,
function ( mor )
return mor[1];
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end );
source := List( [ 1 .. Length( morphism_of morphisms ) ],
function ( i )
return
PreCompose( ProjectionInFactorOfFiberProduct(
pullback_diagram, i ), morphism_of_morphisms[i] [2]

);
end );
diagram := List( morphism_of morphisms, function ( mor )
return mor[3];
end );

return UniversalMorphismIntoFiberProduct( diagram, source );
end;

Back to index

Derivations for HorizontalPost Compose

HorizontalPostCompose using HorizontalPreCompose
This derivation is for all categories. This derivation uses:

e HorizontalPreCompose x 1

function ( twocell _right, twocell_left )
return HorizontalPreCompose( twocell left, twocell _right );
end;

Back to index

Derivations for HorizontalPreCompose

HorizontalPreCompose using HorizontalPost Compose
This derivation is for all categories. This derivation uses:

e HorizontalPostCompose x 1

function ( twocell_left, twocell right )
return HorizontalPostCompose( twocell right, twocell left );
end;

Back to index

Derivations for ImageEmbedding

ImageEmbedding as the kernel embedding of the cokernel projection
This derivation is for Abelian categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e KernelEmbedding x 1



DERIVATIONS 225

e CokernelProjection x 1
e [somorphismFromImageObject ToKernelOfCokernel x 1
e PreCompose x 1

function ( mor )
local image_embedding;
image_embedding := KernelEmbedding( CokernelProjection( mor ) );
return
PreCompose( IsomorphismFromImageObjectToKernelOfCokernel( mor )
, image_embedding ) ;

end;

Back to index

Derivations for ImageObject

ImageObject as the source of ImageEmbedding
This derivation is for all categories. This derivation uses:

e ImageEmbedding x 1

function ( mor )
return Source( ImageEmbedding( mor ) );
end;

Back to index

ImageObject as the source of IsomorphismFromImageObjectToKernelOf-
Cokernel

This derivation is for all categories. This derivation uses:

e IsomorphismFromImageObject ToKernelOfCokernel x 1

function ( morphism )
return
Source( IsomorphismFromImageObjectToKernelOfCokernel ( morphism
) )

end;

Back to index

ImageObject as the range of IsomorphismFromKernelOfCokernelToImage-
Object
This derivation is for all categories. This derivation uses:

e [somorphismFromKernelOfCokernel TolmageObject x 1

function ( morphism )
return
Range ( IsomorphismFromKernelOfCokernelToImageObject( morphism
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) )

end;

Back to index

Derivations for InitialObject

InitialObject as the source of IsomorphismFromlInitialObjectToZeroObject
This derivation is for all categories. This derivation uses:

o [somorphismFromInitialObjectToZeroObject x 1

function ( category )
return
Source( IsomorphismFromInitialObjectToZeroObject( category ) );

end;

Back to index
InitialObject as the range of IsomorphismFromZeroObjectTolnitialObject
This derivation is for all categories. This derivation uses:

e I[somorphismFromZeroObjectTolnitialObject x 1

function ( category )

return

Range ( IsomorphismFromZeroObjectToInitialObject( category ) );
end;

Back to index

Derivations for InitialObjectFunctorial

InitialObjectFunctorial using the identity morphism of initial object
This derivation is for all categories. This derivation uses:

e InitialObject x 1

e IdentityMorphism x 1

function ( category )
local initial_object;
initial_object := InitialObject( category );
return IdentityMorphism( initial object );
end;

Back to index
InitialObjectFunctorial using the universality of the initial object
This derivation is for all categories. This derivation uses:

e InitialObject x 1
e UniversalMorphismFromInitialObject x 1
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function ( category )

local initial_object;

initial _object := InitialObject( category );

return UniversalMorphismFromInitialObject( initial_object );
end;

Back to index

Derivations for InjectionOfCofactorOfCoproduct

InjectionOfCofactorOfCoproduct using InjectionOfCofactorOfDirectSum
This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e PreCompose x 1

e InjectionOfCofactorOfDirectSum x 1

e [somorphismFromDirectSumToCoproduct x 1

function ( diagram, injection_number )
return
PreCompose( InjectionOfCofactorOfDirectSum( diagram,
injection_number ), IsomorphismFromDirectSumToCoproduct (
diagram ) );

end;

Back to index

Derivations for InjectionOfCofactorOfDirectSum

InjectionOfCofactorOfDirectSum using InjectionOfCofactorOfCoproduct
This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e PreCompose x 1

o InjectionOfCofactorOfCoproduct x 1

e [somorphismFromCoproductToDirectSum x 1

function ( diagram, injection_number )
return
PreCompose( InjectionOfCofactorOfCoproduct( diagram,
injection_number ), IsomorphismFromCoproductToDirectSum(
diagram ) );
end;

Back to index
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Derivations for InjectionOfCofactorOfPushout

InjectionOfCofactorOfPushout by composing the direct sum injection with
the direct sum projection to the pushout
This derivation is for all categories. This derivation uses:
e AdditionForMorphisms x 1
o AdditivelnverseForMorphisms x 1
e PreCompose x 1
e InjectionOfCofactorOfDirectSum x 1
e DirectSumProjectionInPushout x 1

function ( diagram, injection_number )

local projection_from direct_sum, direct_sum_diagram,

injection;

projection_from_direct_sum := DirectSumProjectionInPushout (

diagram );
direct_sum_diagram := List( diagram, Range );
injection := InjectionOfCofactorOfDirectSum( direct_sum_diagram
, injection_number );

return PreCompose( injection, projection_from direct_sum );

end;

Back to index

Derivations for InternalHomOnMorphismsWithGivenInternalHoms

InternalHomOnMorphismsWithGivenInternalHoms using functorality of Dual
and TensorProduct
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

e PreCompose x 2

e [somorphismFromTensorProductTolnternalHom x 1

e [somorphismFromInternalHomToTensorProduct x 1

e DualOnMorphismsWithGivenDuals x 1

e DualOnObjects x 2

e TensorProductOnMorphismsWithGivenTensorProducts x 1
e TensorProductOnObjects x 2

function ( internal hom_source, morphism_1, morphism 2,
internal_hom_range )
local dual_morphism;
dual_morphism := DualOnMorphisms( morphism_1 );
return
PreCompose (
PreCompose( IsomorphismFromInternalHomToTensorProduct (
Range( morphism_1 ), Source( morphism 2 ) ),
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TensorProductOnMorphisms( dual morphism, morphism 2 ) ),
IsomorphismFromTensorProductToInternalHom(
Source( morphism_1 ), Range( morphism_2 ) ) );
end;

Back to index

Derivations for InternalHomOnObjects

InternalHomOnObjects as the source of IsomorphismFromInternalHomTo-
TensorProduct
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

e [somorphismFromInternalHomToTensorProduct x 1

function ( object_1, object_2 )
return
Source( IsomorphismFromInternalHomToTensorProduct( object_1,
object_2 ) );
end;

Back to index

InternalHomOnObjects as the range of IsomorphismFromTensorProductTo-
InternalHom

This derivation is for symmetric closed monoidal categories. This derivation uses:

e [somorphismFromTensorProductTolnternalHom x 1

function ( object_1, object_2 )
return
Range ( IsomorphismFromTensorProductToInternalHom( object_1,
object_2 ) );
end;

Back to index

Derivations for InternalHomToTensorProduct AdjunctionMap

InternalHomToTensorProduct AdjunctionMap using TensorProductOnMor-
phisms and EvaluationMorphism
This derivation is for symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 1

PreCompose x 1
TensorProductOnMorphismsWithGivenTensorProducts x 1
TensorProductOnObjects x 2
EvaluationMorphismWithGivenSource x 1
InternalHomOnObjects x 1
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function ( object_1, object_2, morphism )

local evaluation, tensor_product_on_morphisms;

tensor_product_on_morphisms

:= TensorProductOnMorphisms( morphism,
IdentityMorphism( object_1 ) );

evaluation := EvaluationMorphism( object_1, object_2 );

return PreCompose( tensor_product_on morphisms, evaluation );
end;

Back to index

Derivations for Inverselmmutable

Inverse using Lift AlongMonomorphism of an identity morphism
This derivation is for all categories. This derivation uses:

e IdentityMorphism x 1
e LiftAlongMonomorphism x 1

function ( mor )
local identity_of_range;
identity_of range := IdentityMorphism( Range( mor ) );
return LiftAlongMonomorphism( mor, identity_of_ range );
end;

Back to index
Inverse using Colift AlongEpimorphism of an identity morphism
This derivation is for all categories. This derivation uses:

e IdentityMorphism x 1
e ColiftAlongEpimorphism x 1

function ( mor )
local identity_of_source;
identity_of_source := IdentityMorphism( Source( mor ) );
return ColiftAlongEpimorphism( mor, identity_of_source );
end;

Back to index

Derivations for InverseMorphismFromCoimageTolmageWithGivenObjects

InverseMorphismFromCoimageTolmageWithGivenObjects as the inverse of
MorphismFromCoimageTolmage
This derivation is for Abelian categories.
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function ( coimage, morphism, image )
return Inverse( MorphismFromCoimageToImage( morphism ) );
end;

Back to index

Derivations for IsAutomorphism
IsAutomorphism by checking IsIsomorphism and IsEndomorphism
This derivation is for all categories. This derivation uses:

e [slsomorphism x 1
e [sEndomorphism x 1

function ( morphism )
return IsIsomorphism( morphism ) and IsEndomorphism( morphism );
end;

Back to index

Derivations for IsCodominating
IsCodominating using IsDominating and duality by kernel
This derivation is for all categories. This derivation uses:

e KernelEmbedding x 2
e [sDominating x 1

function ( factorl, factor2 )

local kernel_embedding 1, kernel embedding 2;

kernel embedding 1 := KernelEmbedding( factorl );

kernel embedding 2 := KernelEmbedding( factor2 );

return IsDominating( kernel embedding 2, kernel embedding 1 );
end;

Back to index

IsCodominating(factorl, factor2) by deciding if KernelEmbedding(factor2)
composed with factorl is zero

This derivation is for all categories. This derivation uses:

e KernelEmbedding x 1
e PreCompose x 1
e IsZeroForMorphisms x 1

function ( factorl, factor2 )
local kernel_embedding, composition;
kernel embedding := KernelEmbedding( factor2 );
composition := PreCompose( kernel embedding, factorl );
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return IsZero( composition );
end;

Back to index

Derivations for IsDominating
IsDominating using IsCodominating and duality by cokernel
This derivation is for all categories. This derivation uses:

e CokernelProjection x 2
e [sCodominating x 1

function ( subl, sub2 )
local cokernel projection_1, cokernel projection_2;
cokernel_projection_1 := CokernelProjection( subl );
cokernel_projection_2 := CokernelProjection( sub2 );
return IsCodominating( cokernel projection_1,
cokernel_projection_2 );

end;

Back to index

IsDominating(subl, sub2) by deciding if subl composed with Cokernel-
Projection(sub2) is zero

This derivation is for all categories. This derivation uses:

e CokernelProjection x 1
e PreCompose x 1
e IsZeroForMorphisms x 1

function ( subl, sub2 )
local cokernel projection, composition;

cokernel projection := CokernelProjection( sub2 );
composition := PreCompose( subl, cokernel projection );
return IsZero( composition );

end;

Back to index

Derivations for IsEndomorphism

IsEndomorphism by deciding whether source and range are equal as objects
This derivation is for all categories. This derivation uses:

e IsEqualForObjects x 1

function ( morphism )
return IsEqualForObjects( Source( morphism ), Range( morphism )
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);

end;

Back to index

Derivations for IsEpimorphism

IsEpimorphism by deciding if the cokernel is a zero object
This derivation is for additive categories. This derivation uses:

o [sZeroForObjects x 1
e CokernelObject x 1

function ( morphism )
return IsZero( CokernelObject( morphism ) );
end;

Back to index
IsEpimorphism by deciding if the codiagonal morphism is an isomorphism
This derivation is for all categories. This derivation uses:
e IdentityMorphism x 1
e UniversalMorphismFromPushout x 1
e [sIsomorphism x 1

function ( morphism )
local pushout_diagram, identity, codiagonal morphism;
pushout_diagram := [ morphism, morphism J];
identity := IdentityMorphism( Range( morphism ) );
codiagonal morphism := UniversalMorphismFromPushout (

pushout_diagram, identity, identity );

return IsIsomorphism( codiagonal morphism );

end;

Back to index

Derivations for IsEqualAsFactorobjects

IsEqualAsFactorobjects(factorl, factor2) if factorl dominates factor2 and
vice versa
This derivation is for all categories. This derivation uses:

e [sCodominating x 2

function ( factorl, factor2 )
return IsCodominating( factorl, factor2 )
and IsCodominating( factorl, factor2 );
end;

Back to index
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Derivations for IsEqualAsSubobjects

IsEqualAsSubobjects(subl, sub2) if subl dominates sub2 and vice versa
This derivation is for all categories. This derivation uses:

e [sDominating x 2

function ( subl, sub2 );
return IsDominating( subl, sub2 ) and IsDominating( sub2, subl );
end;

Back to index

Derivations for IsEqualForCacheForObjects

This derivation is for all categories. This derivation uses:
e IsEqualForObjects x 1

function ( object_1, object 2 )

local ret_value;

return IsEqualForObjects( object_1, object_2 ) = true;
end;

Back to index

Derivations for IsEqualForMorphismsOnMor
IsEqualForMorphismsOnMor using IsEqualForMorphisms
This derivation is for all categories. This derivation uses:

e IsEqualForMorphisms x 1
o IsEqualForObjects x 2

function ( morphism_1, morphism_2 )

local value 1, value 2;

value_1 := IsEqualForObjects( Source( morphism_1 ),
Source( morphism 2 ) );

if value_1 = fail then
return fail;

fi;

value_2 := IsEqualForObjects( Range( morphism_1 ),
Range ( morphism_2 ) );

if value_2 = fail then
return fail;

fi;

if value_1 = false or value 2 = false then
return false;

fi;
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return IsEqualForMorphisms( morphism 1, morphism 2 );
end;

Back to index

Derivations for Isldempotent

Isldempotent by comparing the square of the morphism with itself
This derivation is for all categories. This derivation uses:

e PreCompose x 1
o [sCongruentForMorphisms x 1

function ( morphism )
return IsCongruentForMorphisms( PreCompose( morphism, morphism )
, morphism );
end;

Back to index

Derivations for IsIdenticalToldentityMorphism

IsIdenticalToldentityMorphism using IsEqualForMorphismsOnMor and I-
dentityMorphism
This derivation is for all categories. This derivation uses:
o [sEqualForMorphismsOnMor x 1
o IdentityMorphism x 1

function ( morphism )
return IsEqualForMorphismsOnMor ( morphism,
IdentityMorphism( Source( morphism ) ) );
end;

Back to index

Derivations for IsIdenticalToZeroMorphism

IsIdenticalToZeroMorphism using IsEqualForMorphismsOnMor and Zero-
Morphism
This derivation is for all categories. This derivation uses:
e ZeroMorphism x 1
e I[sEqualForMorphismsOnMor x 1

function ( morphism )
return IsEqualForMorphismsOnMor ( morphism,
ZeroMorphism( Source( morphism ), Range( morphism ) ) );
end;

Back to index
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Derivations for IsInitial
IsInitial using IsZeroForObjects
This derivation is for additive categories. This derivation uses:
o IsZeroForObjects x 1

function ( object )
return IsZeroFor(Objects( object );

end;

Back to index

Derivations for IsIsomorphism
IsIsomorphism by deciding if it is a mono and an epi
This derivation is for Abelian categories. This derivation uses:

e [sMonomorphism x 1
e [sEpimorphism x 1

function ( morphism )
return IsMonomorphism( morphism ) and IsEpimorphism( morphism );

end;

Back to index

Derivations for IsMonomorphism
IsMonomorphism by deciding if the kernel is a zero object
This derivation is for additive categories. This derivation uses:

e [sZeroForObjects x 1
e KernelObject x 1

function ( morphism )
return IsZero( KernelObject( morphism ) );

end;

Back to index
IsMonomorphism by deciding if the diagonal morphism is an isomorphism

This derivation is for all categories. This derivation uses:
e Islsomorphism x 1

o IdentityMorphism x 1
e UniversalMorphismIntoFiberProduct x 1

function ( morphism )
local pullback_diagram, pullback projection_1,
pullback_projection_2, identity, diagonal _morphism;
pullback diagram := [ morphism, morphism ];
identity := IdentityMorphism( Source( morphism ) );
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diagonal morphism := UniversalMorphismIntoFiberProduct (
pullback diagram, identity, identity );
return IsIsomorphism( diagonal morphism );
end;

Back to index

Derivations for IsOne
IsOne by comparing with the identity morphism
This derivation is for all categories. This derivation uses:

e IdentityMorphism x 1
e [sCongruentForMorphisms x 1

function ( morphism )
local object;
object := Source( morphism );
return IsCongruentForMorphisms( IdentityMorphism( object ),
morphism );
end;

Back to index

Derivations for IsTerminal

IsTerminal using IsZeroForObjects
This derivation is for additive categories. This derivation uses:

o [sZeroForObjects x 1
function ( object )

return IsZeroFor(Objects( object );
end;

Back to index

Derivations for IsZeroForMorphisms

IsZeroForMorphisms by deciding whether the given morphism is congruent
to the zero morphism
This derivation is for all categories. This derivation uses:

e ZeroMorphism x 1
e [sCongruentForMorphisms x 1

function ( morphism )
local zero_morphism;
zero_morphism := ZeroMorphism( Source( morphism ),
Range ( morphism ) );
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return IsCongruentForMorphisms( zero _morphism, morphism );
end;

Back to index

Derivations for IsZeroForObjects

IsZeroForObjects by comparing identity morphism with zero morphism
This derivation is for all categories. This derivation uses:

e [sCongruentForMorphisms x 1
e IdentityMorphism x 1
e ZeroMorphism x 1

function ( object )
return IsCongruentForMorphisms( IdentityMorphism( object ),
ZeroMorphism( object, object ) );
end;

Back to index

Derivations for IsomorphismFromCoimageToCokernelOfKernel

IsomorphismFromCoimageToCokernelOfKernel as the inverse of Isomorphi-
smFromCokernelOfKernelToCoimage
This derivation is for all categories. This derivation uses:

o [somorphismFromCokernelOfKernel ToCoimage x 1

function ( morphism )
return
Inverse( IsomorphismFromCokernelOfKernelToCoimage( morphism ) );
end;

Back to index

Derivations for IsomorphismFromCokernelOfDiagonalDifferenceToPushout

IsomorphismFromCokernelOfDiagonalDifferenceToPushout using the uni-
versal property of the cokernel
This derivation is for all categories. This derivation uses:
e CokernelColift x 1

e DirectSumCodiagonalDifference x 1
e DirectSumProjectionInPushout x 1

function ( diagram )
local direct_sum_codiagonal difference,
direct_sum_projection_in_pushout;
direct_sum_codiagonal_difference
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:= DirectSumCodiagonalDifference( diagram );
direct_sum_projection_in_pushout
:= DirectSumProjectionInPushout( diagram );
return CokernelColift( direct_sum_codiagonal_difference,
direct_sum_projection_in_pushout );

end;

Back to index

IsomorphismFromCokernelOfDiagonalDifferenceToPushout as the inverse
of IsomorphismFromPushoutToCokernelOfDiagonalDifference

This derivation is for all categories. This derivation uses:

o [somorphismFromPushoutToCokernelOfDiagonalDifference x 1
e Inverselmmutable x 1

function ( diagram )
return
Inverse( IsomorphismFromPushoutToCokernelOfDiagonalDifference(
diagram ) );

end;

Back to index

Derivations for IsomorphismFromCokernelOfKernelToCoimage

IsomorphismFromCokernelOfKernelToCoimage as the inverse of Isomorphi-
smFromCoimageToCokernelOfKernel
This derivation is for all categories. This derivation uses:

e [somorphismFromCoimageToCokernelOfKernel x 1

function ( morphism )
return
Inverse( IsomorphismFromCoimageToCokernelOfKernel( morphism ) );
end;

Back to index

IsomorphismFromCokernelOfKernelToCoimage using the universal proper-
ty of the coimage

This derivation is for all categories. This derivation uses:

e KernelEmbedding x 1

e CokernelProjection x 1

e ColiftAlongEpimorphism x 1

e UniversalMorphismIntoCoimage x 1

function ( morphism )
local cokernel proj, morphism_from_cokernel;
cokernel proj
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:= CokernelProjection( KernelEmbedding( morphism ) );
morphism_from_cokernel
:= ColiftAlongEpimorphism( cokernel _proj, morphism );
return UniversalMorphismIntoCoimage( morphism,
[ cokernel proj, morphism_from_cokernel ] );

end;

Back to index

Derivations for IsomorphismFromCoproductToDirectSum

IsomorphismFromCoproductToDirectSum using cofactor injections and the
universal property of the coproduct
This derivation is for all categories. This derivation uses:

e InjectionOfCofactorOfDirectSum x 2
e UniversalMorphismFromCoproduct x 1

function ( diagram )
local sink;
sink := List( [ 1 .. Length( diagram ) ], function ( i )
return InjectionOfCofactorOfDirectSum( diagram, i );
end );
return UniversalMorphismFromCoproduct( diagram, sink );
end;

Back to index

IsomorphismFromCoproductToDirectSum as the inverse of Isomorphism-
FromDirectSumToCoproduct

This derivation is for all categories. This derivation uses:

e Inverselmmutable x 1
e [somorphismFromDirectSumToCoproduct x 1

function ( diagram )
return Inverse( IsomorphismFromDirectSumToCoproduct( diagram ) );
end;

Back to index

Derivations for IsomorphismFromDirectProductToDirectSum

IsomorphismFromDirectProductToDirectSum using direct product projec-
tions and universal property of direct sum
This derivation is for all categories. This derivation uses:

e ProjectionInFactorOfDirectProduct x 2
e UniversalMorphismIntoDirectSum x 1
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function ( diagram )
local source;
source := List( [ 1 .. Length( diagram ) ], function ( i )
return ProjectionInFactorOfDirectProduct( diagram, i );
end );
return UniversalMorphismIntoDirectSum( diagram, source );
end;

Back to index

IsomorphismFromDirectProductToDirectSum as the inverse of Isomorphi-
smFromDirectSumToDirectProduct

This derivation is for all categories. This derivation uses:

e [somorphismFromDirectSumToDirectProduct x 1
o Inverselmmutable x 1

function ( diagram )
return
Inverse( IsomorphismFromDirectSumToDirectProduct( diagram ) );
end;

Back to index

Derivations for IsomorphismFromDirectSumToCoproduct

IsomorphismFromDirectSumToCoproduct using cofactor injections and the
universal property of the direct sum
This derivation is for all categories. This derivation uses:
e InjectionOfCofactorOfCoproduct x 2
e UniversalMorphismFromDirectSum x 1

function ( diagram )
local sink;
sink := List( [ 1 .. Length( diagram ) ], function ( i )
return InjectionOfCofactorO0fCoproduct( diagram, i );
end );
return UniversalMorphismFromDirectSum( diagram, sink );
end;

Back to index

IsomorphismFromDirectSumToCoproduct as the inverse of Isomorphism-
FromCoproductToDirectSum

This derivation is for all categories. This derivation uses:

e Inverselmmutable x 1
e [somorphismFromCoproductToDirectSum x 1
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function ( diagram )
return Inverse( IsomorphismFromCoproductToDirectSum( diagram ) );
end;

Back to index

Derivations for IsomorphismFromDirectSumToDirectProduct

IsomorphismFromDirectSumToDirectProduct using direct sum projections
and universal property of direct product
This derivation is for all categories. This derivation uses:

e ProjectionInFactorOfDirectSum x 2
e UniversalMorphismIntoDirectProduct x 1

function ( diagram )
local source;
source := List( [ 1 .. Length( diagram ) ], function ( i )
return ProjectionInFactorOfDirectSum( diagram, i );
end );
return UniversalMorphismIntoDirectProduct( diagram, source );
end;

Back to index

IsomorphismFromDirectSumToDirectProduct as the inverse of Isomorphi-
smFromDirectProductToDirectSum

This derivation is for all categories. This derivation uses:

e Inverselmmutable x 1
e [somorphismFromDirectProductToDirectSum x 1

function ( diagram );
return
Inverse( IsomorphismFromDirectProductToDirectSum( diagram ) );
end;

Back to index

Derivations for IsomorphismFromFiberProductToKernelOfDiagonalDifference

IsomorphismFromFiberProduct ToKernelOfDiagonalDifference as the inverse
of IsomorphismFromKernelOfDiagonalDifferenceTo FiberProduct
This derivation is for all categories. This derivation uses:

e [somorphismFromKernelOfDiagonalDifferenceToFiberProduct x 1
e Inverselmmutable x 1
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function ( diagram )
return
Inverse(
IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct (
diagram ) );

end;

Back to index

IsomorphismFromFiberProductToKernelOfDiagonalDifference using the un-
iversal property of the kernel

This derivation is for all categories. This derivation uses:

e KernelLift x 1
e DirectSumDiagonalDifference x 1
e FiberProductEmbeddingInDirectSum x 1

function ( diagram )
local direct_sum_diagonal_difference,
fiber_product_embedding in_direct_sum;
direct_sum_diagonal difference := DirectSumDiagonalDifference(
diagram );
fiber_product_embedding in direct_sum
:= FiberProductEmbeddingInDirectSum( diagram );
return KernellLift( direct_sum_diagonal difference,
fiber product_embedding in direct_sum );
end;

Back to index

Derivations for IsomorphismFromImageObjectToKernelOfCokernel

IsomorphismFromImageObject ToKernelOfCokernel as the inverse of Iso-
morphismFromKernelOfCokernelTolmageObject
This derivation is for all categories. This derivation uses:

e [somorphismFromKernel OfCokernel TolmageObject x 1

function ( morphism )
return
Inverse( IsomorphismFromKernelOfCokernelToImageObject (
morphism ) );

end;

Back to index
IsomorphismFromImageObject ToKernelOfCokernel using the universal pr-
operty of the image
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This derivation is for all categories. This derivation uses:

KernelEmbedding x 1
CokernelProjection x 1
LiftAlongMonomorphism x 1
UniversalMorphismFromImage x 1

function ( morphism )
local kernel_emb, morphism_to_kernel;
kernel emb := KernelEmbedding( CokernelProjection( morphism ) );
morphism_to_kernel := LiftAlongMonomorphism( kernel emb,
morphism );
return UniversalMorphismFromImage( morphism,
[ morphism_to_kernel, kernel emb ] );
end;

Back to index

Derivations for IsomorphismFromlInitialObjectToZeroObject

IsomorphismFromlnitialObjectToZeroObject as the unique morphism from
initial object to zero object
This derivation is for additive categories. This derivation uses:

e UniversalMorphismFromInitialObject x 1
e ZeroObject x 1

function ( category )
return UniversalMorphismFromInitialObject(
ZeroObject( category ) );

end;

Back to index

IsomorphismFromlInitialObjectToZeroObject using the universal property of
the zero object

This derivation is for all categories. This derivation uses:

e UniversalMorphismIntoZeroObject x 1
e InitialObject x 1

function ( category )
return UniversalMorphismIntoZeroObject (
InitialObject( category ) );
end;

Back to index

IsomorphismFromlInitialObject ToZeroObject as the inverse of Isomorphism-
FromZeroObjectTolnitialObject

This derivation is for all categories. This derivation uses:
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e Inverselmmutable x 1
e [somorphismFromZeroObjectTolnitialObject x 1

function ( category )
return
Inverse( IsomorphismFromZeroObjectToInitialObject( category ) );

end;

Back to index

Derivations for
IsomorphismFromInternalHomToObject WithGivenInternalHom

IsomorphismFromInternalHomToObjectWithGivenInternalHom using the co-
evaluation morphism
This derivation is for symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 1

TensorUnit x 1

PreCompose x 1
RightUnitorWithGivenTensorProduct x 1
TensorProductOnObjects x 1
InternalHomOnMorphismsWithGivenInternalHoms x 1
InternalHomOnObjects x 2
CoevaluationMorphismWithGivenRange x 1

function ( object, internal _hom )
local wunit;
unit := TensorUnit( CapCategory( object ) );
return PreCompose( CoevaluationMorphism( object, unit ),
InternalHomOnMorphisms( IdentityMorphism( unit ),
RightUnitor( object ) ) );
end;

Back to index

Derivations for IsomorphismFromInternalHomToTensorProduct

IsomorphismFromInternalHomToTensorProduct using MorphismFromInter-
nalHomToTensorProduct
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

MorphismFromInternalHomToTensorProduct WithGivenObjects x 1
DualOnObjects x 1

TensorProductOnObjects x 1

InternalHomOnObjects x 1
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function ( object_1, object 2 )
return MorphismFromInternalHomToTensorProduct( object 1,
object_2 );
end;

Back to index

Derivations for IsomorphismFromKernelOfCokernelToImageObject

IsomorphismFromKernelOfCokernelTolmageObject as the inverse of Iso-
morphismFromImageObject ToKernelOfCokernel
This derivation is for all categories. This derivation uses:

e [somorphismFromImageObject ToKernelOfCokernel x 1

function ( morphism )
return
Inverse( IsomorphismFromImageObjectToKernelOfCokernel(
morphism ) );
end;

Back to index

Derivations for IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct

IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct using the un-
iversal property of the fiber product
This derivation is for all categories. This derivation uses:

e KernelEmbedding x 1

PreCompose x 2
ProjectionInFactorOfDirectSum x 2
UniversalMorphismIntoFiberProduct x 1

[
L]
L]
e DirectSumDiagonalDifference x 1

function ( diagram )
local kernel_emb, sources_of diagram, test_source;
kernel emb
:= KernelEmbedding( DirectSumDiagonalDifference( diagram ) );

sources_of_diagram := List( diagram, Source );
test_source := List( [ 1 .. Length( diagram ) ], function ( i )
return

PreCompose( kernel_emb,
ProjectionInFactorOfDirectSum( sources_of_diagram, i

) )

end );
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return UniversalMorphismIntoFiberProduct( diagram, test_source );
end;

Back to index

IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct as the inverse
of IsomorphismFromFiberProductToKernelOfDiagona 1Difference

This derivation is for all categories. This derivation uses:

e [somorphismFromFiberProduct ToKernelOfDiagonalDifference x 1
e Inverselmmutable x 1

function ( diagram )
return
Inverse(
IsomorphismFromFiberProductToKernelOfDiagonalDifference (
diagram ) );

end;

Back to index

Derivations for
IsomorphismFromObject ToInternalHomWithGivenInternalHom

IsomorphismFromObject ToInternalHomWithGivenInternalHom using the eva-
luation morphism
This derivation is for symmetric closed monoidal categories. This derivation uses:

TensorUnit x 1

PreCompose x 1
RightUnitorInverseWithGivenTensorProduct x 1
TensorProductOnObjects x 1
EvaluationMorphismWithGivenSource x 1
InternalHomOnObjects x 1

function ( object, internal hom )
local wunit, morphism;
unit := TensorUnit( CapCategory( object ) );

morphism := EvaluationMorphism( unit, object );
return PreCompose( RightUnitorInverse( internal_hom ), morphism
)

end;

Back to index

Derivations for IsomorphismFromPushoutToCokernelOfDiagonalDifference

IsomorphismFromPushoutToCokernelOfDiagonalDifference using the uni-
versal property of the pushout
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This derivation is for all categories. This derivation uses:

e CokernelProjection x 1

PreCompose x 2
InjectionOfCofactorOfDirectSum x 2
UniversalMorphismFromPushout x 1
DirectSumCodiagonalDifference x 1

function ( diagram )
local cokernel proj, ranges_of_ diagram, test_sink;
cokernel proj
:= CokernelProjection( DirectSumCodiagonalDifference( diagram

ADN
ranges_of_diagram := List( diagram, Range );
test_sink := List( [ 1 .. Length( diagram ) ], function ( i )
return

PreCompose( InjectionOfCofactor0fDirectSum(
ranges_of diagram, i ), cokernel proj );
end );
return UniversalMorphismFromPushout( diagram, test_sink );
end;

Back to index

IsomorphismFromPushoutToCokernelOfDiagonalDifference as the inverse
of IsomorphismFromCokernelOfDiagonalDifferenceToPushout

This derivation is for all categories. This derivation uses:

e [somorphismFromCokernelOfDiagonalDifferenceToPushout x 1
e Inverselmmutable x 1

function ( diagram )
return
Inverse( IsomorphismFromCokernelO0fDiagonalDifferenceToPushout(
diagram ) );
end;

Back to index

Derivations for IsomorphismFromTensorProductToInternalHom

IsomorphismFromTensorProductToIlnternalHom using MorphismFromTen-
sorProductTolnternalHom
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

MorphismFromTensorProductTolnternalHomWithGivenObjects x 1
DualOnObjects x 1

TensorProductOnObjects x 1

InternalHomOnObjects x 1
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function ( object_1, object 2 )
return MorphismFromTensorProductToInternalHom( object 1,
object_2 );

end;

Back to index

Derivations for IsomorphismFromTerminalObjectToZeroObject

IsomorphismFromTerminalObject ToZeroObject as the inverse of Isomorphi-
smFromZeroObject ToTerminalObject
This derivation is for all categories. This derivation uses:

o Inverselmmutable x 1
e [somorphismFromZeroObject ToTerminalObject x 1

function ( category )
return
Inverse( IsomorphismFromZeroObjectToTerminalObject( category )
)

end;

Back to index

IsomorphismFromTerminalObjectToZeroObject using the universal proper-
ty of the zero object

This derivation is for all categories. This derivation uses:

e UniversalMorphismIntoZeroObject x 1
e TerminalObject x 1

function ( category )
return UniversalMorphismIntoZeroObject (
TerminalObject( category ) );

end;

Back to index

Derivations for IsomorphismFromZeroObjectTolnitialObject

IsomorphismFromZeroObject TolnitialObject as the inverse of Isomorphism-
FromlInitialObject ToZeroObject
This derivation is for all categories. This derivation uses:
e Inverselmmutable x 1
e [somorphismFromInitialObjectToZeroObject x 1

function ( category )
return
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Inverse( IsomorphismFromInitialObjectToZeroObject( category ) );
end;

Back to index

IsomorphismFromZeroObjectTolnitialObject using the universal property of
the zero object

This derivation is for all categories. This derivation uses:

e UniversalMorphismFromZeroObject x 1
o InitialObject x 1

function ( category )
return UniversalMorphismFromZeroObject (
InitialObject( category ) );

end;

Back to index

Derivations for IsomorphismFromZeroObjectToTerminalObject

IsomorphismFromZeroObject ToTerminalObject as the unique morphism fr-
om zero object to terminal object
This derivation is for additive categories. This derivation uses:

e UniversalMorphismIntoTerminalObject x 1
e ZeroObject x 1

function ( category )
return UniversalMorphismIntoTerminalObject(
ZeroObject( category ) );

end;

Back to index

IsomorphismFromZeroObject ToTerminalObject using the universal proper-
ty of the zero object

This derivation is for all categories. This derivation uses:

e UniversalMorphismFromZeroObject x 1
e TerminalObject x 1

function ( category )
return UniversalMorphismFromZeroObject (
TerminalObject( category ) );
end;

Back to index

IsomorphismFromZeroObject ToTerminalObject as the inverse of Isomorphi-
smFromTerminalObjectToZeroObject

This derivation is for all categories. This derivation uses:
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e Inverselmmutable x 1
e [somorphismFromTerminalObjectToZeroObject x 1

251

function ( category )
return
Inverse( IsomorphismFromTerminalObjectToZeroObject( category )
);

end;

Back to index

Derivations for KernelLift

KernelLift using Lift AlongMonomorphism and KernelEmbedding
This derivation is for all categories. This derivation uses:

e LiftAlongMonomorphism x 1
e KernelEmbeddingWithGivenKernelObject x 1
e KernelEmbedding x 1

function ( mor, test_morphism )
return LiftAlongMonomorphism( KernelEmbedding( mor ),
test_morphism );
end;

Back to index

Derivations for KernelLift WithGivenKernelObject

KernelLift using Lift AlongMonomorphism and KernelEmbedding
This derivation is for all categories. This derivation uses:

e LiftAlongMonomorphism x 1
e KernelEmbeddingWithGivenKernelObject x 1
e KernelEmbedding x 1

function ( mor, test_morphism, kernel )
return
LiftAlongMonomorphism( KernelEmbeddingWithGivenKernelObject(
mor, kernel ), test_morphism );
end;

Back to index

Derivations for KernelObject

KernelObject as the source of KernelEmbedding
This derivation is for all categories. This derivation uses:

e KernelEmbedding x 1
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function ( mor )
return Source( KernelEmbedding( mor ) );
end;

Back to index

Derivations for KernelObjectFunctorial WithGivenKernelObjects

KernelObjectFunctorial WithGivenKernelObjects using the universality of
the kernel
This derivation is for all categories. This derivation uses:

e KernelLift x 1
e PreCompose x 1
e KernelEmbedding x 1

function ( kernel_alpha, alpha, mu, alpha_p, kernel_alpha p )
return
KernelLift( alpha_p, PreCompose( KernelEmbedding( alpha ), mu
) )5
end;

Back to index

Derivations for LambdaElimination

LambdaElimination using the tensor hom adjunction and left unitor
This derivation is for symmetric closed monoidal categories. This derivation uses:

e PreCompose x 1
InternalHomToTensorProductAdjunctionMap X 1
LeftUnitorInverse WithGivenTensorProduct x 1
TensorProductOnObjects x 1

TensorUnit x 1

function ( object_1, object_2, morphism )
local result_morphism;
result_morphism := InternalHomToTensorProductAdjunctionMap (
object_1, object_2, morphism );
return PreCompose( LeftUnitorInverse( object_1 ),
result_morphism );
end;

Back to index
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Derivations for Lambdalntroduction

Lambdalntroduction using the tensor hom adjunction and left unitor
This derivation is for symmetric closed monoidal categories. This derivation uses:

TensorUnit x 1

PreCompose x 1
TensorProductTolnternalHomAdjunctionMap x 1
LeftUnitorWithGivenTensorProduct x 1
TensorProductOnObjects x 1

253

function ( morphism )
local result_morphism, category, source;
category := CapCategory( morphism );
source := Source( morphism );
result_morphism := PreCompose( LeftUnitor( source ), morphism );
return TensorProductToInternalHomAdjunctionMap(
TensorUnit( category ), source, result_morphism );
end;

Back to index

Derivations for LeftDistributivityExpandingWithGivenObjects

LeftDistributivityExpandingWithGivenObjects using the universal proper-

ty of the direct sum
This derivation is for additive categories. This derivation uses:

e IdentityMorphism x 1

ProjectionInFactorOfDirectSum x 2
UniversalMorphismIntoDirectSum x 1
TensorProductOnObjects x 4
TensorProductOnMorphismsWithGivenTensorProducts x 2

function ( factored_object, object, summands, expanded_object )
local nr_summands, projection_list, id, diagram;
nr_summands := Size( summands );
projection_list := List( [ 1 .. nr_summands ], function ( i )
return ProjectionInFactorOfDirectSum( summands, i );
end );
id := IdentityMorphism( object );
projection_list := List( projection_list, function ( mor )
return TensorProductOnMorphisms( id, mor );
end );
diagram := List( summands, function ( summand )
return TensorProductOnObjects( object, summand );
end );
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return UniversalMorphismIntoDirectSum( diagram, projection_list
)

end;

Back to index

Derivations for LeftDistributivityFactoringWithGivenObjects

LeftDistributivityFactoringWithGivenObjects using the universal property
of the direct sum
This derivation is for additive categories. This derivation uses:

e IdentityMorphism x 1
e InjectionOfCofactorOfDirectSum x 2
e UniversalMorphismFromDirectSum x 1
e TensorProductOnObjects x 4
e TensorProductOnMorphismsWithGivenTensorProducts x 2
function ( expanded object, object, summands, factored_object )
local nr_summands, injection_list, id, diagram;
nr_summands := Size( summands ) ;
injection_list := List( [ 1 .. nr_summands ], function ( i )
return InjectionOfCofactorOfDirectSum( summands, i );
end );
id := IdentityMorphism( object );
injection_list := List( injection_list, function ( mor )
return TensorProductOnMorphisms( id, mor );
end );
diagram := List( summands, function ( summand )
return TensorProductOnObjects( object, summand ) ;
end );
return UniversalMorphismFromDirectSum( diagram, injection_list );
end;

Back to index

Derivations for LeftUnitorInverseWithGivenTensorProduct

LeftUnitorInverseWithGivenTensorProduct as the identity morphism
This derivation is for all categories. This derivation uses:

e IdentityMorphism x 1

function ( object, unit_tensored_object )
return IdentityMorphism( object );
end;
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Back to index

LeftUnitorInverseWithGivenTensorProduct as the inverse of LeftUnitor-
WithGivenTensorProduct

This derivation is for all categories. This derivation uses:

o LeftUnitorWithGivenTensorProduct x 1

function ( object, unit_tensored_object )
return
Inverse( LeftUnitorWithGivenTensorProduct( object,
unit_tensored_object ) );

end;

Back to index

Derivations for LeftUnitorWithGivenTensorProduct

LeftUnitorWithGivenTensorProduct as the identity morphism
This derivation is for all categories. This derivation uses:

e IdentityMorphism x 1

function ( object, unit tensored_object )
return IdentityMorphism( object );
end;

Back to index

LeftUnitorWithGivenTensorProduct as the inverse of LeftUnitorInverse-
WithGivenTensorProduct

This derivation is for all categories. This derivation uses:

o LeftUnitorInverseWithGivenTensorProduct x 1

function ( object, unit_tensored_object )
return
Inverse( LeftUnitorInverseWithGivenTensorProduct( object,
unit_tensored_object ) );

end;

Back to index

Derivations for Lift AlongMonomorphism

Lift AlongMonomorphism using Lift
This derivation is for all categories. This derivation uses:

e Lift x 1
function ( alpha, beta )

return Lift( beta, alpha );
end;
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Back to index

Derivations for MonoidalPostComposeMorphismWithGivenObjects

MonoidalPost ComposeMorphismWithGivenObjects using associator, evalu-
ation, and tensor hom adjunction
This derivation is for symmetric closed monoidal categories. This derivation uses:

e IdentityMorphism x 1

PreCompose x 1

TensorProductOnObjects x 4

InternalHomOnObjects x 2
TensorProductTolnternalHomAdjunctionMap x 1
TensorProductOnMorphismsWithGivenTensorProducts x 1
AssociatorLeft ToRight WithGivenTensorProducts x 1
EvaluationMorphismWithGivenSource x 2

function ( new_source, x, y, z, new_range )
local hom_x_y, hom_y_z, morphism;
hom_x_y := InternalHomOnObjects( x, y );
hom_y_z := InternalHomOnObjects( y, z );
morphism

PreCompose( [ AssociatorLeftToRight( hom_y_z, hom x_y, x ),
TensorProductOnMorphisms( IdentityMorphism( hom_y_z ),
EvaluationMorphism( %, y ) ),
EvaluationMorphism( y, z ) 1 );
return TensorProductToInternalHomAdjunctionMap (
TensorProductOnObjects( hom_y_z, hom_x_y ), x, morphism );
end;

Back to index

MonoidalPost ComposeMorphismWithGivenObjects using evaluation, and
tensor hom adjunction

This derivation is for symmetric closed monoidal categories. This derivation uses:

e IdentityMorphism x 1

PreCompose x 1

TensorProductOnObjects x 2

InternalHomOnObjects x 2
TensorProductTolnternalHomAdjunctionMap x 1
TensorProductOnMorphismsWithGivenTensorProducts x 1
EvaluationMorphismWithGivenSource x 2

function ( new_source, x, y, z, new_range )
local hom_x_y, hom_y_z, morphism;
hom_x_y := InternalHomOnObjects( x, y );
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hom_y_z := InternalHomOnObjects( y, z );
morphism

PreCompose (
[ TensorProductOnMorphisms( IdentityMorphism( hom_y_z ),
EvaluationMorphism( x, y ) ),
EvaluationMorphism( y, z ) ] );
return TensorProductToInternalHomAdjunctionMap(
TensorProductOnObjects( hom_y_z, hom x_y ), x, morphism );
end;

Back to index

MonoidalPostComposeMorphismWithGivenObjects using MonoidalPreCom-
poseMorphism and braiding

This derivation is for symmetric closed monoidal categories. This derivation uses:

PreCompose x 1

InternalHomOnObjects x 3
BraidingWithGivenTensorProducts x 1
TensorProductOnObjects x 2
MonoidalPreComposeMorphismWithGivenObjects x 1

function ( new_source, x, y, z, new_range )
local braiding;
braiding := Braiding( InternalHomOnObjects( y, z ),
InternalHomOnObjects( x, y ) );
return
PreCompose( braiding, MonoidalPreComposeMorphism( x, y, z ) );
end;

Back to index

Derivations for MonoidalPreComposeMorphismWithGivenObjects

MonoidalPreComposeMorphismWithGivenObjects using associator, braid-
ing, evaluation, and tensor hom adjunction
This derivation is for symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 2

PreCompose x 1

TensorProductOnObjects x 4

InternalHomOnObjects x 2
TensorProductTolnternalHomAdjunctionMap x 1
TensorProductOnMorphismsWithGivenTensorProducts x 2
AssociatorRight ToLeft WithGivenTensorProducts x 1

e AssociatorLeft ToRight WithGivenTensorProducts x 1
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e BraidingWithGivenTensorProducts x 2
e EvaluationMorphismWithGivenSource x 2

function ( new_source, x, y, z, new_range )
local hom_x_y, hom_y_z, morphism;
hom_x_y := InternalHomOnObjects( x, y );
hom_y_z := InternalHomOnObjects( y, z );
morphism

PreCompose( [ AssociatorLeftToRight( hom_x_y, hom_y_z, x ),
TensorProductOnMorphisms ( IdentityMorphism( hom_x_y ),
Braiding( hom_y_z, x ) ),
AssociatorRightToLeft( hom _x_y, x, hom_y z ),
TensorProductOnMorphisms( EvaluationMorphism( x, y ),
IdentityMorphism( hom_y_z ) ), Braiding( y, hom_y_z ),
EvaluationMorphism( y, z ) ] );
return TensorProductToInternalHomAdjunctionMap(
TensorProductOnObjects( hom_x_y, hom y_z ), x, morphism );
end;

Back to index

MonoidalPreComposeMorphismWithGivenObjects using, braiding, evalua-
tion, and tensor hom adjunction

This derivation is for symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 2

PreCompose x 1

TensorProductOnObjects x 4

InternalHomOnObjects x 2
TensorProductTolnternalHomAdjunctionMap x 1
TensorProductOnMorphismsWithGivenTensorProducts x 2
BraidingWithGivenTensorProducts x 2
EvaluationMorphismWithGivenSource x 2

function ( new_source, x, y, z, new_range )
local hom_x_y, hom_y_z, morphism;
hom_x_y := InternalHomOnObjects( x, y );
hom_y_z := InternalHomOnObjects( y, z );
morphism

PreCompose(
[ TensorProductOnMorphisms( IdentityMorphism( hom_x_y ),
Braiding( hom_y_z, x ) ),
TensorProductOnMorphisms( EvaluationMorphism( x, y ),
IdentityMorphism( hom_y_z ) ), Braiding( y, hom_y z ),
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EvaluationMorphism( y, z ) ] );
return TensorProductToInternalHomAdjunctionMap(
TensorProductOnObjects( hom_x_y, hom_y_z ), x, morphism );
end;

Back to index

MonoidalPreComposeMorphismWithGivenObjects using MonoidalPost Com-
poseMorphism and braiding

This derivation is for symmetric closed monoidal categories. This derivation uses:

e PreCompose x 1

InternalHomOnObjects x 3
BraidingWithGivenTensorProducts x 1
TensorProductOnObjects x 2
MonoidalPostComposeMorphismWithGivenObjects x 1

function ( new_source, x, y, z, new_range )
local braiding;
braiding := Braiding( InternalHomOnObjects( x, y ),
InternalHomOnObjects( y, z ) );
return
PreCompose( braiding, MonoidalPostComposeMorphism( x, y, z ) );

end;

Back to index

Derivations for MorphismFromBidual WithGivenBidual

MorphismFromBidual WithGivenBidual as the inverse of MorphismToBidual-
WithGivenBidual

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
e MorphismToBidualWithGivenBidual x 1
function ( object, bidual )

return
Inverse( MorphismToBidualWithGivenBidual( object, bidual ) );

end;

Back to index

Derivations for MorphismFromCoimageTolmageWithGivenObjects

MorphismFromCoimageTolmageWithGivenObjects using that images are
given by kernels of cokernels
This derivation is for pre Abelian categories. This derivation uses:

e CokernelProjection x 1
o [somorphismFromKernelOfCokernel TolmageObject x 1
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CoimageProjection x 1
AstrictionToCoimage x 1
KernelLiift x 1
PreCompose x 1

function ( coimage, morphism, image )
local coimage_projection, cokernel projection, kernel lift;
cokernel projection := CokernelProjection( morphism ) ;
coimage_projection := CoimageProjection( morphism );
kernel 1ift := KernellLift( cokernel projection,
AstrictionToCoimage( morphism ) );
return
PreCompose( kernel lift,
IsomorphismFromKernelOfCokernelToImageObject( morphism ) );
end;

Back to index

Derivations for
MorphismFromInternalHomToTensorProductWithGivenObjects

MorphismFromInternalHomToTensorProductWithGivenObjects using Iso-
morphismFromInternalHomToTensorProduct
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

e [somorphismFromInternalHomToTensorProduct x 1

function ( tensor_object, object_1, object_2, internal_hom )
return IsomorphismFromInternalHomToTensorProduct( object_1,
object_2 );

end;

Back to index

Derivations for
MorphismFromTensorProductToInternalHomWithGivenObjects

MorphismFromTensorProductToInternalHomWithGivenObjects using Iso-
morphismFromTensorProductTolnternalHom
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

e [somorphismFromTensorProductTolnternalHom x 1

function ( tensor_object, object_1, object_2, internal hom )
return IsomorphismFromTensorProductToInternalHom( object 1,
object_2 );
end;
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Back to index

MorphismFromTensorProductTolnternalHomWithGivenObjects using Ten-
sorProductInternalHomCompatibilityMorphism

This derivation is for symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 1

TensorUnit x 1

IsomorphismFromDual TolnternalHom x 1

PreCompose x 1

RightUnitorWithGivenTensorProduct x 1
TensorProductOnObjects x 4

IsomorphismFromObject TolnternalHomWithGivenInternalHom x 1
InternalHomOnObjects x 3
[somorphismFromInternalHomToObject WithGivenInternalHom x 1
TensorProductOnMorphismsWithGivenTensorProducts x 2
TensorProductInternalHomCompatibilityMorphismWithGivenObjects x 1

function ( tensor_object, object_1, object_2, internal hom )
local wunit, morphism;
unit := TensorUnit( CapCategory( object_1 ) );
morphism

PreCompose(
I

TensorProductOnMorphisms( IsomorphismFromDualToInternalHom(
object_1 ), IsomorphismFromObjectToInternalHom(
object_2 ) ),

TensorProductInternalHomCompatibilityMorphism( object_1,

unit, unit, object_2 ),

TensorProductOnMorphisms( IdentityMorphism( internal_hom )
, IsomorphismFromInternalHomToObject( unit ) ),

RightUnitor( internal_hom ) ] );

return morphism;
end;

Back to index

Derivations for MorphismToBidualWithGivenBidual

MorphismToBidualWithGivenBidual as the inverse of MorphismFromBidual-
WithGivenBidual
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

e MorphismFromBidualWithGivenBidual x 1

function ( object, bidual )
return
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Inverse( MorphismFromBidualWithGivenBidual( object, bidual ) );
end;

Back to index

MorphismToBidualWithGivenBidual using the braiding and the universal
property of the dual

This derivation is for symmetric closed monoidal categories. This derivation uses:

DualOnObjects x 2

PreCompose x 1

UniversalPropertyOfDual x 1
EvaluationForDualWithGivenTensorProduct x 1
TensorProductOnObjects x 2

TensorUnit x 1
BraidingWithGivenTensorProducts x 1

function ( object, bidual )
local morphism;
morphism := Braiding( object, DualOnObjects( object ) );
morphism := PreCompose( morphism, EvaluationForDual( object ) );
return UniversalProperty0fDual( object, DualOnObjects( object )
, morphism );

end;

Back to index

MorphismToBidualWithGivenBidual using Coevaluation, InternalHom, and
Evaluation

This derivation is for symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 2

TensorUnit x 1

DualOnObjects x 1

PreCompose x 1

BraidingWithGivenTensorProducts x 1
TensorProductOnObjects x 2
InternalHomOnMorphismsWithGivenInternalHoms x 2
InternalHomOnObjects x 4
EvaluationMorphismWithGivenSource x 1
CoevaluationMorphismWithGivenRange x 1

function ( object, bidual )
local morphism, dual_object, tensor_unit;
dual_object := DualOnObjects( object );
tensor_unit := TensorUnit( CapCategory( object ) );
morphism
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PreCompose(
[ CoevaluationMorphism( object, dual_object ),

InternalHomOnMorphisms( IdentityMorphism( dual_object ),
Braiding( object, dual_object ) ),

InternalHomOnMorphisms( IdentityMorphism( dual_object ),
EvaluationMorphism( object, tensor_unit ) ) ] );

return morphism;
end;

Back to index

Derivations for PostCompose

PostCompose using PreCompose and swapping arguments
This derivation is for all categories. This derivation uses:

e PreCompose x 1

function ( right mor, left _mor )
return PreCompose( left_mor, right _mor );
end;

Back to index

Derivations for PreCompose

PreCompose using PostCompose and swapping arguments
This derivation is for all categories. This derivation uses:

e PostCompose x 1

function ( left_mor, right mor )
return PostCompose( right_mor, left_mor );
end;

Back to index

Derivations for ProjectionInFactorOfDirectProduct

ProjectionInFactorOfDirectProduct using ProjectionInFactorOfDirectSum
This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e PreCompose x 1

e ProjectionInFactorOfDirectSum x 1

e [somorphismFromDirectProductToDirectSum x 1
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function ( diagram, projection_number )
return
PreCompose( IsomorphismFromDirectProductToDirectSum( diagram )
, ProjectionInFactorOfDirectSum( diagram, projection_number

) )

end;

Back to index

Derivations for ProjectionInFactorOfDirectSum

ProjectionInFactorOfDirectSum using ProjectionInFactorOfDirectProduct
This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1
AdditivelnverseForMorphisms x 1

PreCompose x 1
ProjectionInFactorOfDirectProduct x 1
IsomorphismFromDirectSumToDirectProduct x 1

function ( diagram, projection_number )
return
PreCompose( IsomorphismFromDirectSumToDirectProduct( diagram )
, ProjectionInFactorOfDirectProduct( diagram,
projection_number ) );
end;

Back to index

Derivations for ProjectionInFactorOfFiberProduct

ProjectionInFactorOfFiberProduct by composing the direct sum embedding
with the direct sum projection
This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e PreCompose x 1

e ProjectionInFactorOfDirectSum x 1

e FiberProductEmbeddingInDirectSum x 1

function ( diagram, projection_number )
local embedding in_direct_sum, direct_sum_diagram, projection;

embedding in direct_sum := FiberProductEmbeddingInDirectSum(
diagram );
direct_sum_diagram := List( diagram, Source );

projection := ProjectionInFactorOfDirectSum( direct_sum_diagram
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, projection_number );
return PreCompose( embedding in_direct_sum, projection );
end;

Back to index

Derivations for Pushout

Pushout as the range of DirectSumProjectionInPushout
This derivation is for all categories. This derivation uses:

e DirectSumProjectionInPushout x 1

function ( diagram )
return Range( DirectSumProjectionInPushout( diagram ) );
end;

Back to index

Derivations for PushoutFunctorial WithGivenPushouts

PushoutFunctorial WithGivenPushouts using the universality of the pushout
This derivation is for all categories. This derivation uses:

e PreCompose x 2
e InjectionOfCofactorOfPushout x 2
e UniversalMorphismFromPushout x 1

function ( pushout_source, morphism_of_morphisms, pushout_range )
local pushout_diagram, sink, diagram;

pushout_diagram := List( morphism_of morphisms, function ( mor )
return mor[3];
end );

sink := List( [ 1 .. Length( morphism_of morphisms ) ],
function ( i )
return PreCompose( morphism_of morphisms[i] [2],
Injection0fCofactor0fPushout ( pushout_diagram, i ) );

end );
diagram := List( morphism_of morphisms, function ( mor )
return mor[1];
end );
return UniversalMorphismFromPushout( diagram, sink );

end;

Back to index
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Derivations for RankMorphism

Rank of an object as the trace of its identity
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

e IdentityMorphism x 1
o TraceMap x 1

function ( object )
return TraceMap( IdentityMorphism( object ) );
end;

Back to index

Derivations for RightDistributivityExpandingWithGivenObjects

RightDistributivityExpandingWithGivenObjects using the universal prop-
erty of the direct sum
This derivation is for additive categories. This derivation uses:

e IdentityMorphism x 1

ProjectionInFactorOfDirectSum x 2
UniversalMorphismIntoDirectSum x 1
TensorProductOnObjects x 4
TensorProductOnMorphismsWithGivenTensorProducts x 2

function ( factored_object, summands, object, expanded_object )
local nr_summands, projection_list, id, diagram;

nr_summands := Size( summands );
projection_list := List( [ 1 .. nr_summands ], function ( i )
return ProjectionInFactorOfDirectSum( summands, i );
end );
id := IdentityMorphism( object );
projection_list := List( projection_list, function ( mor )
return TensorProductOnMorphisms( mor, id );
end );
diagram := List( summands, function ( summand )
return TensorProductOnObjects( summand, object );
end );
return UniversalMorphismIntoDirectSum( diagram, projection_list
)
end;

Back to index
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Derivations for RightDistributivityFactoringWithGivenObjects

RightDistributivityFactoringWithGivenObjects using the universal proper-
ty of the direct sum

This derivation is for additive categories. This derivation uses:

e IdentityMorphism x 1
o InjectionOfCofactorOfDirectSum x 2
e UniversalMorphismFromDirectSum x 1
e TensorProductOnObjects x 4
e TensorProductOnMorphismsWithGivenTensorProducts x 2
function ( expanded object, summands, object, factored_object )
local nr_summands, injection_list, id, diagram;
nr_summands := Size( summands );
injection_list := List( [ 1 .. nr_summands ], function ( i )
return InjectionOfCofactorOfDirectSum( summands, i );
end );
id := IdentityMorphism( object );
injection_list := List( injection_list, function ( mor )
return TensorProductOnMorphisms( mor, id );
end );
diagram := List( summands, function ( summand )
return TensorProductOnObjects( summand, object );
end );
return UniversalMorphismFromDirectSum( diagram, injection_list );
end;

Back to index

Derivations for RightUnitorInverseWithGivenTensorProduct

RightUnitorInverseWithGivenTensorProduct as the identity morphism
This derivation is for all categories. This derivation uses:

e IdentityMorphism x 1

function ( object, object_tensored_unit )
return IdentityMorphism( object );
end;

Back to index

RightUnitorInverseWithGivenTensorProduct as the inverse of RightUnitor-
WithGivenTensorProduct

This derivation is for all categories. This derivation uses:
e RightUnitorWithGivenTensorProduct x 1
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function ( object, object_tensored_unit )
return
Inverse( RightUnitorWithGivenTensorProduct( object,
object_tensored_unit ) );
end;

Back to index

Derivations for RightUnitorWithGivenTensorProduct

RightUnitorWithGivenTensorProduct as the identity morphism
This derivation is for all categories. This derivation uses:

e IdentityMorphism x 1

function ( object, object_tensored_unit )
return IdentityMorphism( object );
end;

Back to index

RightUnitorWithGivenTensorProduct as the inverse of Right UnitorInverse-
WithGivenTensorProduct

This derivation is for all categories. This derivation uses:

e RightUnitorInverseWithGivenTensorProduct x 1

function ( object, object_tensored_unit )
return
Inverse( RightUnitorInverseWithGivenTensorProduct( object,
object_tensored_unit ) );

end;

Back to index

Derivations for
TensorProductDualityCompatibilityMorphismWithGivenObjects

TensorProductDualityCompatibilityMorphismWithGivenObjects using left
unitoar, and compatibility of tensor product and internal hom
This derivation is for symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 1

TensorUnit x 1
IsomorphismFromDualToInternalHom x 2
IsomorphismFromInternalHomToDual x 1
PreCompose x 1
TensorProductOnObjects x 3
LeftUnitorWithGivenTensorProduct x 1
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TensorProductOnMorphismsWithGivenTensorProducts x 1
InternalHomOnMorphismsWithGivenInternalHoms x 1
InternalHomOnObjects x 3
TensorProductInternalHomCompatibilityMorphismWithGivenObjects x 1

function ( new_source, object_1, object_2, new_range )
local morphism, unit, tensor_product_on_object_1 and_object_2;
unit := TensorUnit( CapCategory( object_1 ) );
tensor_product_on_object_1_and object 2
:= TensorProductOnObjects( object_1, object_2 );
morphism

PreCompose (
I
TensorProductOnMorphisms( IsomorphismFromDualToInternalHom(
object_1 ), IsomorphismFromDualToInternalHom(
object_2 ) ),
TensorProductInternalHomCompatibilityMorphism( object 1,
unit, object_2, unit ),
InternalHomOnMorphisms (
IdentityMorphism(
tensor_product_on_object_1_and object_2 ),
LeftUnitor( unit ) ),
IsomorphismFromInternalHomToDual (
tensor_product_on_object_1_and object 2 ) 1 );
return morphism;
end;

Back to index

TensorProductDualityCompatibilityMorphismWithGivenObjects using com-
patibility of tensor product and internal hom

This derivation is for symmetric closed monoidal categories. This derivation uses:

TensorUnit x 1

IsomorphismFromDualTolnternalHom x 2
IsomorphismFromInternalHomToDual x 1

PreCompose x 1

TensorProductOnObjects x 3
TensorProductOnMorphismsWithGivenTensorProducts x 1
TensorProductInternalHomCompatibilityMorphismWithGivenObjects x 1
InternalHomOnObjects x 3

function ( new_source, object_1, object_2, new_range )
local morphism, unit, tensor_product_on_object_ 1 and object 2;
unit := TensorUnit( CapCategory( object_1 ) );
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tensor_product_on_object_ 1 _and object 2
:= TensorProductOnObjects( object_1, object_2 );
morphism

PreCompose (
I
TensorProductOnMorphisms( IsomorphismFromDualToInternalHom(
object_1 ), IsomorphismFromDualToInternalHom(
object_2 ) ),
TensorProductInternalHomCompatibilityMorphism( object 1,
unit, object_2, unit ),
IsomorphismFromInternalHomToDual (
tensor_product_on_object_1_and_object 2 ) 1 );
return morphism;
end;

Back to index

Derivations for
TensorProductInternalHomCompatibilityMorphismInverse WithGivenObjects

TensorProductInternalHomCompatibilityMorphismInverseWithGivenObje-
cts as the inverse of TensorProductInternalHomCompatibilityMorphi smWith-
GivenObjects

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
e TensorProductInternalHomCompatibility MorphismWithGivenObjects x 1

function ( al, bl, a2, b2, new_source_and_range list )
return
Inverse(
TensorProductInternalHomCompatibilityMorphismWithGivenObjects
( al, bl, a2, b2, new_source_and_range list ) );

end;

Back to index

Derivations for
TensorProductInternalHomCompatibilityMorphismWithGivenObjects

TensorProductInternalHomCompatibilityMorphismWithGivenObjects using
associator, braiding an the evaluation morphism
This derivation is for symmetric closed monoidal categories. This derivation uses:
o IdentityMorphism x 4
e PreCompose x 1
e TensorProductOnObjects x 14
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InternalHomOnObjects x 2
TensorProductTolnternalHomAdjunctionMap x 1
TensorProductOnMorphismsWithGivenTensorProducts x 7
AssociatorRight ToLeft WithGivenTensorProducts x 2

e AssociatorLeft ToRight WithGivenTensorProducts x 2

e BraidingWithGivenTensorProducts x 1

e EvaluationMorphismWithGivenSource x 2

271

function ( al, bl, a2, b2, new_source_and_range_list )

end;

local morphism, int_hom_al bl, int_hom_a2 b2, id_a2,
tensor_product_on_objects_int_hom_al bl _int_hom_a2 b2;
int_hom_al bl := InternalHomOnObjects( al, bl );
int_hom_a2 b2 := InternalHomOnObjects( a2, b2 );
id_a2 := IdentityMorphism( a2 );
tensor_product_on_objects_int_hom_al bl _int hom_a2 b2

:= TensorProductOnObjects( int_hom_al bl, int_hom_a2 b2 );
morphism

PreCompose (
L
AssociatorRightToLeft (
tensor_product_on_objects_int_hom_al bl _int_hom_a2 b2,
al, a2 ),
TensorProductOnMorphisms (
AssociatorLeftToRight( int_hom_al b1, int_hom_a2 b2,
al ), id_a2 ),
TensorProductOnMorphisms (
TensorProductOnMorphisms (
IdentityMorphism( int_hom_al bl ),
Braiding( int_hom_a2 b2, al ) ), id_a2 ),
TensorProductOnMorphisms (
AssociatorRightToLeft( int_hom_al b1, al,
int _hom a2 b2 ), id_a2 ),
TensorProductOnMorphisms (
TensorProductOnMorphisms( EvaluationMorphism( al, bl )
, IdentityMorphism( int_hom_a2 b2 ) ), id_a2 ),
AssociatorLeftToRight( bl, int_hom_a2 b2, a2 ),
TensorProductOnMorphisms( IdentityMorphism( bl ),
EvaluationMorphism( a2, b2 ) ) ] );
return TensorProductToInternalHomAdjunctionMap(
tensor_product_on_objects_int_hom_al bl _int hom_a2 b2,
TensorProductOnObjects( al, a2 ), morphism );
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Back to index
TensorProductInternalHomCompatibilityMorphismWithGivenObjects using
braiding an the evaluation morphism
This derivation is for symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 4

PreCompose x 1

TensorProductOnObjects x 10

InternalHomOnObjects x 2
TensorProductTolnternalHomAdjunctionMap x 1
TensorProductOnMorphismsWithGivenTensorProducts x 5
BraidingWithGivenTensorProducts x 1
EvaluationMorphismWithGivenSource x 2

function ( al, bl, a2, b2, new_source_and_range list )
local morphism, int_hom_al bl, int_hom_a2 b2, id_a2,
tensor_product_on_objects_int_hom_al bl _int_hom_a2 b2;
int_hom_al bl := InternalHomOnObjects( al, bl );
int_hom_a2 b2 := InternalHomOnObjects( a2, b2 );
id_a2 := IdentityMorphism( a2 );
tensor_product_on_objects_int_hom_al bl _int hom_a2 b2

:= TensorProductOnObjects( int_hom_al bl, int_hom_a2 b2 );

morphism

PreCompose (
L
TensorProductOnMorphisms (
TensorProductOnMorphisms (
IdentityMorphism( int_hom_al bl ),
Braiding( int_hom_a2 b2, al ) ), id_a2 ),
TensorProductOnMorphisms (
TensorProductOnMorphisms ( EvaluationMorphism( al, bl )
, IdentityMorphism( int_hom_a2 b2 ) ), id_a2 ),
TensorProductOnMorphisms ( IdentityMorphism( bl ),
EvaluationMorphism( a2, b2 ) ) ] );
return TensorProductToInternalHomAdjunctionMap(
tensor_product_on_objects_int_hom_al_bl_int hom_a2 b2,
TensorProductOnObjects( al, a2 ), morphism );
end;

Back to index
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Derivations for TensorProductTolnternalHomAdjunctionMap

TensorProductTolnternalHom AdjunctionMap using CoevaluationMorphism
and InternalHom
This derivation is for symmetric closed monoidal categories. This derivation uses:

IdentityMorphism x 1

PreCompose x 1
InternalHomOnMorphismsWithGivenInternalHoms x 1
InternalHomOnObjects x 2
CoevaluationMorphismWithGivenRange x 1
TensorProductOnObjects x 1

function ( object_1, object_2, morphism )

local coevaluation, internal hom_on_morphisms;

coevaluation := CoevaluationMorphism( object_1, object_2 );

internal _hom_on_morphisms

:= InternalHomOnMorphisms( IdentityMorphism( object_2 ),
morphism );

return PreCompose( coevaluation, internal_hom_on_morphisms );

end;

Back to index

Derivations for TerminalObject

TerminalObject as the source of IsomorphismFromTerminalObjectToZero-
Object
This derivation is for all categories. This derivation uses:

o [somorphismFromTerminalObjectToZeroObject x 1

function ( category )
return
Source( IsomorphismFromTerminalObjectToZeroObject( category ) );
end;

Back to index

TerminalObject as the range of IsomorphismFromZeroObjectToTerminal-
Object

This derivation is for all categories. This derivation uses:

e IsomorphismFromZeroObject ToTerminalObject x 1

function ( category )

return

Range ( IsomorphismFromZeroObjectToTerminalObject( category ) );
end;
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Back to index

Derivations for TerminalObjectFunctorial
TerminalObjectFunctorial using the identity morphism of terminal object
This derivation is for all categories. This derivation uses:

e TerminalObject x 1
e IdentityMorphism x 1

function ( category )
local terminal_object;
terminal object := TerminalObject( category );
return IdentityMorphism( terminal object );
end;

Back to index
TerminalObjectFunctorial using the universality of terminal object
This derivation is for all categories. This derivation uses:
e TerminalObject x 1
e UniversalMorphismIntoTerminalObject x 1

function ( category )

local terminal object;

terminal object := TerminalObject( category );

return UniversalMorphismIntoTerminalObject( terminal_ object );
end;

Back to index

Derivations for TraceMap

TraceMap composing the lambda abstraction with the evaluation
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

Lambdalntroduction x 1

PreCompose x 2
IsomorphismFromInternalHomToTensorProduct x 1
EvaluationForDualWithGivenTensorProduct x 1
TensorProductOnObjects x 1

DualOnObjects x 1

TensorUnit x 1

function ( morphism )
local result_morphism, object;
result_morphism := LambdaIntroduction( morphism );
object := Source( morphism );
result_morphism := PreCompose( result morphism,
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IsomorphismFromInternalHomToTensorProduct( object, object ) );
return PreCompose( result_morphism, EvaluationForDual( object )
)

end;

Back to index

Derivations for UniversalMorphismFromCoproduct

UniversalMorphismFromCoproduct using UniversalMorphismFromDirect-
Sum
This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e PreCompose x 1

e UniversalMorphismFromDirectSum x 1

e [somorphismFromCoproductToDirectSum x 1

function ( diagram, sink )
return
PreCompose ( IsomorphismFromCoproductToDirectSum( diagram ),
UniversalMorphismFromDirectSum( diagram, sink ) );

end;

Back to index

Derivations for UniversalMorphismFromDirectSum

UniversalMorphismFromDirectSum using projections of the direct sum
This derivation is for additive categories. This derivation uses:

e PreCompose x 2

e ProjectionInFactorOfDirectSumWithGivenDirectSum x 2

e AdditionForMorphisms x 1

e ProjectionInFactorOfDirectSum x 2

function ( diagram, sink )
local nr_components;

nr_components := Length( sink );
return Sum( List( [ 1 .. nr_components ], function ( i )
return

PreCompose( ProjectionInFactor0fDirectSum( diagram,
i ), sink[i] );
end ) );
end;
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Back to index

UniversalMorphismFromDirectSum using UniversalMorphismFromCopro-
duct

This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e PreCompose x 1

e UniversalMorphismFromCoproduct x 1

e [somorphismFromDirectSumToCoproduct x 1

function ( diagram, sink )
return
PreCompose( IsomorphismFromDirectSumToCoproduct( diagram ),
UniversalMorphismFromCoproduct( diagram, sink ) );
end;

Back to index

Derivations for UniversalMorphismFromDirectSumWithGivenDirectSum

UniversalMorphismFromDirectSum using projections of the direct sum
This derivation is for additive categories. This derivation uses:

e PreCompose x 2

e ProjectionInFactorOfDirectSumWithGivenDirectSum x 2

e AdditionForMorphisms x 1

e ProjectionInFactorOfDirectSum x 2

function ( diagram, sink, direct_sum )
local nr_components;

nr_components := Length( sink );
return Sum( List( [ 1 .. nr_components ], function ( i )
return

PreCompose (
ProjectionInFactorOfDirectSumWithGivenDirectSum(
diagram, i, direct_sum ), sink[i] );
end ) );

end;

Back to index

Derivations for UniversalMorphismFromImage

UniversalMorphismFromImage using ImageEmbedding and Lift AlongMo-
nomorphism
This derivation is for all categories. This derivation uses:

e LiftAlongMonomorphism x 1
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e ImageEmbeddingWithGivenlmageObject x 1
e ImageEmbedding x 1

function ( morphism, test_factorization )
local image_embedding;
image_embedding := ImageEmbedding( morphism );
return LiftAlongMonomorphism( test_factorization[2],
image embedding );
end;

Back to index

Derivations for UniversalMorphismFromImageWithGivenImageObject

UniversalMorphismFromImage using ImageEmbedding and Lift AlongMo-
nomorphism
This derivation is for all categories. This derivation uses:

e LiftAlongMonomorphism x 1
e ImageEmbeddingWithGivenlmageObject x 1
e ImageFEmbedding x 1

function ( morphism, test_factorization, image )
local image_embedding;
image_embedding := ImageEmbeddingWithGivenImageObject(
morphism, image );
return LiftAlongMonomorphism( test_factorization[2],
image embedding );
end;

Back to index

Derivations for UniversalMorphismFromlInitialObject

UniversalMorphismFromlInitialObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

e ZeroMorphism x 1
e InitialObject x 1

function ( test_sink )
local initial_object;
initial object := InitialObject( CapCategory( test_sink ) );
return ZeroMorphism( initial_object, test_sink );

end;

Back to index

UniversalMorphismFromlInitialObject using UniversalMorphismFromZero-
Object
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This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e UniversalMorphismFromZeroObject x 1

e [somorphismFromInitialObjectToZeroObject x 1
e PreCompose x 1

function ( obj )
local category;
category := CapCategory( obj );
return
PreCompose( IsomorphismFromInitialObjectToZeroObject( category
), UniversalMorphismFromZeroObject( obj ) );
end;

Back to index

Derivations for UniversalMorphismFromlInitialObjectWithGivenlnitialObject
UniversalMorphismFromlInitialObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

e ZeroMorphism x 1
o InitialObject x 1

function ( test_sink, initial object )
return ZeroMorphism( initial_object, test_sink );
end;

Back to index

Derivations for UniversalMorphismFromPushout

UniversalMorphismFromPushout using the universality of the cokernel rep-
resentation of the pushout
This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e CokernelColift x 1

e PreCompose x 1

e UniversalMorphismFromDirectSum x 1

e [somorphismFromPushoutToCokernelOfDiagonalDifference x 1
e DirectSumCodiagonalDifference x 1

function ( diagram, sink )
local test_function, direct_sum_codiagonal_difference,
cokernel colift;
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test_function := CallFuncList( UniversalMorphismFromDirectSum,
sink );
direct_sum_codiagonal_difference
:= DirectSumCodiagonalDifference( diagram ) ;
cokernel colift
:= CokernelColift( direct_sum_codiagonal difference,
test_function );
return
PreCompose (
IsomorphismFromPushoutToCokernelOfDiagonalDifference(
diagram ), cokernel colift );

end;

Back to index

Derivations for UniversalMorphismFromZeroObject

UniversalMorphismFromZeroObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

e ZeroMorphism x 1
e ZeroObject x 1

function ( test_sink )
local =zero_object;
zero_object := ZeroObject( CapCategory( test_sink ) );
return ZeroMorphism( zero_object, test_sink );

end;

Back to index
UniversalMorphismFromZeroObject using UniversalMorphismFromlInitial-
Object

This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e [somorphismFromZeroObject TolnitialObject x 1
e UniversalMorphismFromInitialObject x 1

e PreCompose x 1

function ( obj )
local category;
category := CapCategory( obj );
return
PreCompose ( IsomorphismFromZeroObjectToInitialObject( category
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), UniversalMorphismFromInitialObject( obj ) );
end;

Back to index

Derivations for UniversalMorphismFromZeroObject WithGivenZeroObject

UniversalMorphismFromZeroObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

e ZeroMorphism x 1
e ZeroObject x 1

function ( test_sink, zero_object )
return ZeroMorphism( zero_object, test_sink );
end;

Back to index

Derivations for UniversalMorphismIntoCoimage

UniversalMorphismIntoCoimage using CoimageProjection and Colift Along-
Epimorphism
This derivation is for all categories. This derivation uses:
e ColiftAlongEpimorphism x 1

e CoimageProjectionWithGivenCoimage x 1
e CoimageProjection x 1

function ( morphism, test_factorization )
local <coimage projection;
coimage_projection := CoimageProjection( morphism );
return ColiftAlongEpimorphism( test_factorization[1],
coimage projection );
end;

Back to index

Derivations for UniversalMorphismIntoCoimageWithGivenCoimage

UniversalMorphismIntoCoimage using CoimageProjection and Colift Along-
Epimorphism
This derivation is for all categories. This derivation uses:
e ColiftAlongEpimorphism x 1

e CoimageProjectionWithGivenCoimage x 1
e CoimageProjection x 1
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function ( morphism, test_factorization, coimage )
local coimage_projection;
coimage_projection := CoimageProjectionWithGivenCoimage (
morphism, coimage );
return ColiftAlongEpimorphism( test_factorization[1],
coimage_projection );
end;

Back to index

Derivations for UniversalMorphismIntoDirectProduct

UniversalMorphismIntoDirectProduct using UniversalMorphismIntoDirect-
Sum
This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e PreCompose x 1

e UniversalMorphismIntoDirectSum x 1

e [somorphismFromDirectSumToDirectProduct x 1

function ( diagram, source )
return
PreCompose( UniversalMorphismIntoDirectSum( diagram, source ),
IsomorphismFromDirectSumToDirectProduct( diagram ) );

end;

Back to index

Derivations for UniversalMorphismIntoDirectSum

UniversalMorphismIntoDirectSum using the injections of the direct sum
This derivation is for additive categories. This derivation uses:

e PreCompose x 2

e InjectionOfCofactorOfDirectSumWithGivenDirectSum x 2
e AdditionForMorphisms x 1

e InjectionOfCofactorOfDirectSum x 2

function ( diagram, source )
local nr_components;

nr_components := Length( source );
return Sum( List( [ 1 .. nr_components ], function ( i )
return

PreCompose( sourcel[i],
InjectionOfCofactor0fDirectSum( diagram, i ) );
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end ) );
end;

Back to index

UniversalMorphismIntoDirectSum using UniversalMorphismIntoDirectPro-
duct

This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e PreCompose x 1

e UniversalMorphismIntoDirectProduct x 1

e [somorphismFromDirectProductToDirectSum x 1

function ( diagram, source )
return
PreCompose( UniversalMorphismIntoDirectProduct( diagram,
source ), IsomorphismFromDirectProductToDirectSum( diagram

) )

end;

Back to index

Derivations for UniversalMorphismIntoDirectSumWithGivenDirectSum

UniversalMorphismIntoDirectSum using the injections of the direct sum
This derivation is for additive categories. This derivation uses:

PreCompose x 2
InjectionOfCofactorOfDirectSumWithGivenDirectSum x 2
AdditionForMorphisms x 1
InjectionOfCofactorOfDirectSum x 2

function ( diagram, source, direct_sum )
local nr_components;

nr_components := Length( source );
return Sum( List( [ 1 .. nr_components ], function ( i )
return

PreCompose( sourcel[i],
Injection0fCofactor0fDirectSumWithGivenDirectSum(
diagram, i, direct_sum ) );
end ) );
end;

Back to index
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Derivations for UniversalMorphismIntoFiberProduct

UniversalMorphismIntoFiberProduct using the universality of the kernel
representation of the pullback
This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e KernelLift x 1

e PreCompose x 1

e UniversalMorphismIntoDirectSum x 1

e DirectSumDiagonalDifference x 1

e [somorphismFromKernelOfDiagonalDifferenceToFiberProduct x 1

function ( diagram, source )
local test_function, direct_sum_diagonal_difference,
kernel 1ift;

test_function := CallFuncList( UniversalMorphismIntoDirectSum,
source );

direct_sum_diagonal difference := DirectSumDiagonalDifference(
diagram );

kernel 1ift := KernellLift( direct_sum_diagonal difference,
test_function );

return

PreCompose( kernel 1lift,
IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct (
diagram ) );

end;

Back to index

Derivations for UniversalMorphismIntoTerminalObject

UniversalMorphismIntoTerminalObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

e ZeroMorphism x 1
e TerminalObject x 1

function ( test_source )
local terminal object;
terminal_object := TerminalObject( CapCategory( test_source ) );
return ZeroMorphism( test_source, terminal object );

end;

Back to index
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UniversalMorphismFromlInitialObject using UniversalMorphismFromZero-
Object
This derivation is for all categories. This derivation uses:

e AdditionForMorphisms x 1

e AdditivelnverseForMorphisms x 1

e UniversalMorphismIntoZeroObject x 1

e [somorphismFromZeroObject ToTerminalObject x 1
e PreCompose x 1

function ( obj )
local category;
category := CapCategory( obj );
return PreCompose( UniversalMorphismIntoZeroObject( obj ),
IsomorphismFromZeroObjectToTerminalObject( category ) );

end;

Back to index

Derivations for
UniversalMorphismIntoTerminalObject WithGivenTerminalObject

UniversalMorphismIntoTerminalObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

e ZeroMorphism x 1
e TerminalObject x 1

function ( test_source, terminal object )
return ZeroMorphism( test_source, terminal_ object );
end;

Back to index

Derivations for UniversalMorphismIntoZeroObject

UniversalMorphismIntoZeroObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

e ZeroMorphism x 1
e ZeroObject x 1

function ( test_source )
local =zero_object;
zero_object := ZeroObject( CapCategory( test_source ) );
return ZeroMorphism( test_source, zero_object );

end;
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Back to index
UniversalMorphismIntoZeroObject using UniversalMorphismIntoTerminal-
Object
This derivation is for all categories. This derivation uses:
e AdditionForMorphisms x 1
e AdditivelnverseForMorphisms x 1
e [somorphismFromTerminalObjectToZeroObject x 1
e UniversalMorphismIntoTerminalObject x 1
e PreCompose x 1

function ( obj )
local category;
category := CapCategory( obj );
return PreCompose( UniversalMorphismIntoTerminalObject( obj ),
IsomorphismFromTerminalObjectToZeroObject( category ) );

end;

Back to index

Derivations for UniversalMorphismIntoZeroObjectWithGivenZeroObject
UniversalMorphismIntoZeroObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

e ZeroMorphism x 1
e ZeroObject x 1

function ( test_source, zero_object )
return ZeroMorphism( test_source, zero_object );
end;

Back to index

Derivations for UniversalPropertyOfDual

UniversalPropertyOfDual using the hom tensor adjunction
This derivation is for symmetric closed monoidal categories. This derivation uses:
e [somorphismFromInternalHomToDual x 1

e PreCompose x 1
e TensorProductTolnternalHomAdjunctionMap x 1

function ( object_1, object_2, test_morphism )
local adjoint_morphism;

adjoint_morphism := TensorProductToInternalHomAdjunctionMap(
object_1, object_2, test_morphism );
return

PreCompose( adjoint_morphism,
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IsomorphismFromInternalHomToDual( object 2 ) );
end;

Back to index

Derivations for VerticalPostCompose

VerticalPost Compose using VerticalPreCompose
This derivation is for all categories. This derivation uses:

e VerticalPreCompose x 1

function ( twocell below, twocell above )
return VerticalPreCompose( twocell above, twocell below );
end;

Back to index

Derivations for VerticalPreCompose

VerticalPreCompose using VerticalPostCompose
This derivation is for all categories. This derivation uses:

e VerticalPostCompose x 1

function ( twocell above, twocell below )
return VerticalPostCompose( twocell below, twocell above );
end;

Back to index

Derivations for ZeroMorphism

Zero morphism by composition of morphism into and from zero object
This derivation is for additive categories. This derivation uses:

e PreCompose x 1

e UniversalMorphismIntoZeroObject x 1

e UniversalMorphismFromZeroObject x 1

function ( obj_source, obj_range )
return PreCompose( UniversalMorphismIntoZeroObject( obj_source )
, UniversalMorphismFromZeroObject( obj_range ) );

end;

Back to index
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Final Derivations

Final derivation index

IsomorphismFromFiberProduct ToKernelOfDiagonalDifference
IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct
IsomorphismFromPushoutToCokernelOfDiagonalDifference
IsomorphismFromCokernel OfDiagonalDifferenceToPushout
IsomorphismFromImageObject ToKernel OfCokernel
IsomorphismFromKernelOfCokernel TolmageObject
[somorphismFromCoimageToCokernel OfKernel
IsomorphismFromCokernel OfKernel ToCoimage
IsomorphismFromInitialObjectToZeroObject
IsomorphismFromZeroObject TolnitialObject
IsomorphismFromTerminalObject ToZeroObject
IsomorphismFromZeroObject ToTerminalObject
IsomorphismFromDirectSumToDirect Product
[somorphismFromDirect Product ToDirectSum
IsomorphismFromCoproductToDirectSum
[somorphismFromDirectSumToCoproduct
IsEqualForObjects

[sCongruentForMorphisms0

IsEqualForMorphisms

IsEqualForCacheForMorphisms
IsomorphismFromTensorProductTolnternalHom
IsomorphismFromInternalHomToTensorProduct
IsomorphismFromInternalHomToDual
IsomorphismFromDual ToInternalHom

Final derivation for
IsomorphismFromFiberProductToKernelOfDiagonalDifference
This final derivation is for all categories. This derivation uses:

e DirectSumDiagonalDifference x 1
e KernelObject x 1
o IdentityMorphism x 1

This derivation can only be triggered if the following operations are not installed:

287
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ProjectionInFactorOfFiberProduct
ProjectionInFactorOfFiberProductWithGivenFiberProduct
UniversalMorphismIntoFiberProduct WithGivenFiberProduct
FiberProductEmbeddingInDirectSum
IsomorphismFromFiberProduct ToKernelOfDiagonalDifference
IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct

function ( diagram )
local kernel of diagonal_difference;
kernel of diagonal difference
:= KernelObject( DirectSumDiagonalDifference( diagram ) );
return IdentityMorphism( kernel of_ diagonal difference );
end;

Back to index

Final derivation for
IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct

This final derivation is for all categories. This derivation uses:

e DirectSumDiagonalDifference x 1
e KernelObject x 1
o IdentityMorphism x 1

This derivation can only be triggered if the following operations are not installed:

ProjectionInFactorOfFiberProduct
ProjectionInFactorOfFiberProductWithGivenFiberProduct
UniversalMorphismIntoFiberProduct WithGivenFiberProduct
FiberProductEmbeddingInDirectSum
IsomorphismFromFiberProduct ToKernelOfDiagonalDifference
[somorphismFromKernelOfDiagonalDifferenceToFiberProduct

function ( diagram )
local kernel_of diagonal_difference;
kernel of_diagonal_difference
:= KernelObject( DirectSumDiagonalDifference( diagram ) );
return IdentityMorphism( kernel of diagonal difference );
end;

Back to index
Final derivation for
IsomorphismFromPushoutToCokernelOfDiagonalDifference

This final derivation is for all categories. This derivation uses:
e CokernelObject x 1
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e DirectSumCodiagonalDifference x 1
e IdentityMorphism x 1

This derivation can only be triggered if the following operations are not installed:

Pushout

InjectionOfCofactorOfPushout
InjectionOfCofactorOfPushout WithGivenPushout
UniversalMorphismFromPushoutWithGivenPushout
DirectSumProjectionInPushout
IsomorphismFromPushoutToCokernelOfDiagonalDifference
e IsomorphismFromCokernelOfDiagonalDifferenceToPushout

function ( diagram )
local cokernel of diagonal difference;
cokernel of diagonal difference
:= CokernelObject( DirectSumCodiagonalDifference( diagram ) );
return IdentityMorphism( cokernel of_diagonal_difference );
end;

Back to index

Final derivation for
IsomorphismFromCokernelOfDiagonalDifferenceToPushout

This final derivation is for all categories. This derivation uses:

e CokernelObject x 1
e DirectSumCodiagonalDifference x 1
e IdentityMorphism x 1

This derivation can only be triggered if the following operations are not installed:

Pushout

InjectionOfCofactorOfPushout
InjectionOfCofactorOfPushout WithGivenPushout
UniversalMorphismFromPushout WithGivenPushout
DirectSumProjectionInPushout
IsomorphismFromPushoutToCokernelOfDiagonalDifference
IsomorphismFromCokernelOfDiagonalDifference ToPushout

function ( diagram )
local cokernel of diagonal_difference;
cokernel of diagonal difference
:= CokernelObject( DirectSumCodiagonalDifference( diagram ) );
return IdentityMorphism( cokernel of_diagonal_difference );
end;

Back to index
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Final derivation for IsomorphismFromImageObject ToKernelOfCokernel

This final derivation is for all categories. This derivation uses:

e KernelObject x 1
e CokernelProjection x 1
e IdentityMorphism x 1

This derivation can only be triggered if the following operations are not installed:

ImageObject

ImageEmbedding
ImageEmbeddingWithGivenlmageObject
CoastrictionTolmage
CoastrictionTolmageWithGivenlmageObject
UniversalMorphismFromImage

e UniversalMorphismFromImageWithGivenlmageObject
e [somorphismFromImageObjectToKernelOfCokernel

e [somorphismFromKernelOfCokernel TolmageObject

function ( mor )
local kernel of cokernel;
kernel_of_cokernel := KernelObject( CokernelProjection( mor ) );
return IdentityMorphism( kernel of cokernel );

end;

Back to index

Final derivation for IsomorphismFromKernelOfCokernelToImageObject

This final derivation is for all categories. This derivation uses:

e KernelObject x 1
e CokernelProjection x 1
e IdentityMorphism x 1

This derivation can only be triggered if the following operations are not installed:

ImageObject

ImageEmbedding
ImageEmbeddingWithGivenImageObject
CoastrictionTolmage

e CoastrictionTolmageWithGivenlmageObject

e UniversalMorphismFromImage

e UniversalMorphismFromImageWithGivenlmageObject
e [somorphismFromImageObjectToKernelOfCokernel

e [somorphismFromKernelOfCokernel TolmageObject

function ( mor )
local kernel of cokernel;
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kernel of cokernel := KernelObject( CokernelProjection( mor ) );
return IdentityMorphism( kernel of cokernel );
end;

Back to index

Final derivation for IsomorphismFromCoimageToCokernelOfKernel

This final derivation is for all categories. This derivation uses:

e CokernelObject x 1
e KernelEmbedding x 1
e IdentityMorphism x 1
This derivation can only be triggered if the following operations are not installed:
e Coimage
e CoimageProjection
e CoimageProjectionWithGivenCoimage
e AstrictionToCoimage
e AstrictionToCoimageWithGivenCoimage
e UniversalMorphismIntoCoimage
e UniversalMorphismIntoCoimageWithGivenCoimage
o [somorphismFromCoimageToCokernelOfKernel
e [somorphismFromCokernelOfKernel ToCoimage

function ( mor )
local cokernel of kernel;
cokernel_of_kernel := CokernelObject( KernelEmbedding( mor ) );
return IdentityMorphism( cokernel of_kernel );

end;

Back to index

Final derivation for IsomorphismFromCokernelOfKernelToCoimage

This final derivation is for all categories. This derivation uses:

e CokernelObject x 1
e KernelEmbedding x 1
e IdentityMorphism x 1
This derivation can only be triggered if the following operations are not installed:
e Coimage
e CoimageProjection
e CoimageProjectionWithGivenCoimage
e AstrictionToCoimage
o AstrictionToCoimageWithGivenCoimage
e UniversalMorphismIntoCoimage



292 E. FINAL DERIVATIONS

e UniversalMorphismIntoCoimageWithGivenCoimage
e [somorphismFromCoimageToCokernelOfKernel
o [somorphismFromCokernelOfKernel ToCoimage

function ( mor )
local cokernel of kermnel;
cokernel of kernel := CokernelObject( KernelEmbedding( mor ) );
return IdentityMorphism( cokernel of kernel );

end;

Back to index

Final derivation for IsomorphismFromInitialObjectToZeroObject

This final derivation is for all categories. This derivation uses:

e ZeroObject x 1
e IdentityMorphism x 1

This derivation can only be triggered if the following operations are not installed:

e InitialObject
e UniversalMorphismFromlInitialObject

function ( category )
return IdentityMorphism( ZeroObject( category ) );
end;

Back to index

Final derivation for IsomorphismFromZeroObjectTolnitialObject

This final derivation is for all categories. This derivation uses:

e ZeroObject x 1
e IdentityMorphism x 1

This derivation can only be triggered if the following operations are not installed:

e InitialObject
e UniversalMorphismFromlInitialObject

function ( category )
return IdentityMorphism( ZeroObject( category ) );
end;

Back to index



DERIVATIONS

Final derivation for IsomorphismFromTerminalObjectToZeroObject

This final derivation is for all categories. This derivation uses:

e ZeroObject x 1
e IdentityMorphism x 1

This derivation can only be triggered if the following operations are not installed:

e TerminalObject
e UniversalMorphismIntoTerminalObject

293

function ( category )
return IdentityMorphism( ZeroObject( category ) );
end;

Back to index

Final derivation for IsomorphismFromZeroObjectToTerminalObject

This final derivation is for all categories. This derivation uses:

e ZeroObject x 1
e IdentityMorphism x 1

This derivation can only be triggered if the following operations are not installed:

e TerminalObject
e UniversalMorphismIntoTerminalObject

function ( category )
return IdentityMorphism( ZeroObject( category ) );
end;

Back to index

Final derivation for IsomorphismFromDirectSumToDirectProduct

This final derivation is for all categories. This derivation uses:
e IdentityMorphism x 1
This derivation can only be triggered if the following operations are not installed:

e DirectProductFunctorial WithGivenDirectProducts
e ProjectionInFactorOfDirectProduct

function ( diagram )
return IdentityMorphism( DirectSum( diagram ) );
end;

Back to index
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Final derivation for IsomorphismFromDirectProductToDirectSum

This final derivation is for all categories. This derivation uses:
e IdentityMorphism x 1
This derivation can only be triggered if the following operations are not installed:

e DirectProductFunctorial WithGivenDirectProducts
e ProjectionInFactorOfDirectProduct

function ( diagram )
return IdentityMorphism( DirectSum( diagram ) );
end;

Back to index

Final derivation for IsomorphismFromCoproductToDirectSum

This final derivation is for all categories. This derivation uses:
e IdentityMorphism x 1
This derivation can only be triggered if the following operations are not installed:

e Coproduct
e CoproductFunctorial WithGivenCoproducts
e InjectionOfCofactorOfCoproduct

function ( diagram )
return IdentityMorphism( DirectSum( diagram ) );
end;

Back to index

Final derivation for IsomorphismFromDirectSumToCoproduct

This final derivation is for all categories. This derivation uses:
e IdentityMorphism x 1
This derivation can only be triggered if the following operations are not installed:

e Coproduct
e CoproductFunctorial WithGivenCoproducts
e InjectionOfCofactorOfCoproduct

function ( diagram )
return IdentityMorphism( DirectSum( diagram ) );
end;

Back to index
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Final derivation for IsEqualForObjects

This final derivation is for all categories. This derivation can only be triggered if the
following operations are not installed:

e IsEqualForObjects

ReturnFail

Back to index

Final derivation for IsCongruentForMorphisms

This final derivation is for all categories. This derivation can only be triggered if the
following operations are not installed:

e [sCongruentForMorphisms
e [sEqualForMorphisms

ReturnFail

Back to index

Final derivation for IsCongruentForMorphisms
This final derivation is for all categories. This derivation uses:
e [sEqualForMorphisms x 1
This derivation can only be triggered if the following operations are not installed:

e [sCongruentForMorphisms

IsEqualForMorphisms

Back to index

Final derivation for IsEqualForMorphisms

This final derivation is for all categories. This derivation can only be triggered if the
following operations are not installed:

e [sCongruentForMorphisms
e IsEqualForMorphisms

ReturnFail

Back to index
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Final derivation for IsEqualForMorphisms

This final derivation is for all categories. This derivation uses:
e [sCongruentForMorphisms x 1
This derivation can only be triggered if the following operations are not installed:
e IsEqualForMorphisms

IsCongruentForMorphisms

Back to index

Final derivation for IsEqualForCacheForMorphisms

This final derivation is for all categories. This derivation uses:
e IsEqualForMorphismsOnMor x 1

function ( morl, mor2 )
return IsEqualForMorphismsOnMor ( morl, mor2 ) = true;
end;

Back to index

Final derivation for IsEqualForCacheForMorphisms

This final derivation is for all categories. This derivation uses:
o [sCongruentForMorphisms x 1
This derivation can only be triggered if the following operations are not installed:
e IsEqualForMorphisms

ReturnFail

Back to index

Final derivation for IsomorphismFromTensorProductToInternalHom

This final derivation is for rigid symmetric closed monoidal categories. This derivation
uses:

e IdentityMorphism x 1
e DualOnObjects x 1
e TensorProductOnObjects x 1

This derivation can only be triggered if the following operations are not installed:

InternalHomOnObjects
InternalHomOnMorphismsWithGivenInternalHoms
EvaluationMorphismWithGivenSource
CoevaluationMorphismWithGivenRange
TensorProductTolnternalHomAdjunctionMap
InternalHomToTensorProduct AdjunctionMap
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MonoidalPreComposeMorphismWithGivenObjects

MonoidalPost ComposeMorphismWithGivenObjects
TensorProductInternalHomCompatibilityMorphismWithGivenObjects
TensorProductDualityCompatibility MorphismWithGivenObjects
MorphismFromTensorProductTolnternalHomWithGivenObjects
MorphismFromInternalHomToTensorProduct WithGivenObjects
IsomorphismFromTensorProductTolnternalHom
IsomorphismFromInternalHomToTensorProduct

function ( object_1, object_2 )
return
IdentityMorphism(
TensorProductOnObjects( DualOnObjects( object_1 ), object 2
) )

end;

Back to index

Final derivation for IsomorphismFromInternalHomToTensorProduct

This final derivation is for rigid symmetric closed monoidal categories. This derivation
uses:

e IdentityMorphism x 1
e DualOnObjects x 1
e TensorProductOnObjects x 1

This derivation can only be triggered if the following operations are not installed:

InternalHomOnObjects
InternalHomOnMorphismsWithGivenInternalHoms
EvaluationMorphismWithGivenSource
CoevaluationMorphismWithGivenRange
TensorProductTolnternalHomAdjunctionMap
InternalHomToTensorProduct AdjunctionMap
MonoidalPreComposeMorphismWithGivenObjects

MonoidalPost ComposeMorphismWithGivenObjects
TensorProductInternalHomCompatibilityMorphismWithGivenObjects
TensorProductDualityCompatibility MorphismWithGivenObjects
MorphismFromTensorProductTolnternalHomWithGivenObjects
MorphismFromInternalHomToTensorProduct WithGivenObjects
IsomorphismFromTensorProductTolnternalHom
IsomorphismFromInternalHomToTensorProduct

function ( object_1, object_2 )
return
IdentityMorphism(



298 E. FINAL DERIVATIONS

TensorProductOnObjects( DualOnObjects( object_1 ), object 2
) )5

end;

Back to index

Final derivation for IsomorphismFromInternalHomToDual

This final derivation is for rigid symmetric closed monoidal categories. This derivation
uses:

e IdentityMorphism x 1
e DualOnObjects x 1
e TensorProductOnObjects x 1

This derivation can only be triggered if the following operations are not installed:

InternalHomOnObjects
InternalHomOnMorphismsWithGivenInternalHoms
EvaluationMorphismWithGivenSource
CoevaluationMorphismWithGivenRange
TensorProductTolnternalHomAdjunctionMap
InternalHomToTensorProduct AdjunctionMap
MonoidalPreComposeMorphismWithGivenObjects
MonoidalPostComposeMorphismWithGivenObjects
TensorProductInternalHomCompatibilityMorphismWithGivenObjects
TensorProductDualityCompatibility MorphismWithGivenObjects
MorphismFromTensorProductTolnternalHomWithGivenObjects
MorphismFromInternalHomToTensorProduct WithGivenObjects
IsomorphismFromTensorProductTolnternalHom

[ ]
[
[ ]
[}
[}
[}
[}
[}
[
[ ]
[ ]
[ ]
[}
e [somorphismFromInternalHomToTensorProduct

function ( object )
return IdentityMorphism( DualOnObjects( object ) );
end;

Back to index

Final derivation for IsomorphismFromInternalHomToDual

This final derivation is for symmetric monoidal categories. This derivation uses:

o IdentityMorphism x 1
e InternalHomOnObjects x 1
e TensorUnit x 1
This derivation can only be triggered if the following operations are not installed:

e DualOnObjects
e DualOnMorphismsWithGivenDuals
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MorphismToBidualWithGivenBidual

MorphismFromBidual WithGivenBidual

IsomorphismFromDual ToInternalHom
IsomorphismFromInternalHomToDual

UniversalPropertyOfDual
TensorProductDualityCompatibilityMorphismWithGivenObjects
EvaluationForDualWithGivenTensorProduct
CoevaluationForDualWithGivenTensorProduct
MorphismFromInternalHomToTensorProduct WithGivenObjects
MorphismFromTensorProductTolnternalHomWithGivenObjects

function ( object )
local category;
category := CapCategory( object );
return
IdentityMorphism(

end;

InternalHomOnObjects( object, TensorUnit( category ) ) );

Back to index

Final derivation for IsomorphismFromDualToInternalHom

This final derivation is for rigid symmetric closed monoidal categories. This derivation

uses:

IdentityMorphism x 1
DualOnObjects x 1
TensorProductOnObjects x 1

This derivation can only be triggered if the following operations are not installed:

InternalHomOnObjects
InternalHomOnMorphismsWithGivenInternalHoms
EvaluationMorphismWithGivenSource
CoevaluationMorphismWithGivenRange
TensorProductTolnternalHomAdjunctionMap
InternalHomToTensorProduct AdjunctionMap
MonoidalPreComposeMorphismWithGivenObjects
MonoidalPostComposeMorphismWithGivenObjects
TensorProductInternalHomCompatibility MorphismWithGivenObjects
TensorProductDualityCompatibility MorphismWithGivenObjects
MorphismFromTensorProductTolnternalHomWithGivenObjects
MorphismFromInternalHomToTensorProduct WithGivenObjects
IsomorphismFromTensorProductTolnternalHom
IsomorphismFromInternalHomToTensorProduct
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function ( object )
return IdentityMorphism( DualOnObjects( object ) );
end;

Back to index

Final derivation for IsomorphismFromDualToInternalHom

This final derivation is for symmetric monoidal categories. This derivation uses:

e IdentityMorphism x 1
e InternalHomOnObjects x 1
e TensorUnit x 1

This derivation can only be triggered if the following operations are not installed:

DualOnObjects

DualOnMorphismsWithGivenDuals
MorphismToBidualWithGivenBidual

MorphismFromBidual WithGivenBidual
IsomorphismFromDualTolnternalHom
IsomorphismFromInternalHomToDual

UniversalPropertyOfDual
TensorProductDualityCompatibilityMorphismWithGivenObjects
EvaluationForDualWithGivenTensorProduct
CoevaluationForDualWithGivenTensorProduct
MorphismFromInternalHomToTensorProduct WithGivenObjects
MorphismFromTensorProductTolnternalHomWithGivenObjects

function ( object )
local category;
category := CapCategory( object );
return
IdentityMorphism(
InternalHomOnObjects( object, TensorUnit( category ) ) );

end;

Back to index



APPENDIX F

Installed basic operations

1. Primitive operation index

l.a. Primitive operations for left module presentations.

) IdentityMorphism

) KernelEmbedding

) CokernelProjection

) ZeroObject

) TensorUnit

) Lift

) KernelEmbeddingWithGivenKernelObject

) CokernelProjectionWithGivenCokernelObject

) CokernelColift WithGivenCokernelObject

) PreCompose

) UniversalMorphismFromZeroObject WithGivenZeroObject
) UniversalMorphismIntoZeroObject WithGivenZeroObject
) ZeroMorphism

) DirectSum

) ProjectionInFactorOfDirectSumWithGivenDirectSum

) UniversalMorphismIntoDirectSumWithGivenDirectSum
) InjectionOfCofactorOfDirectSumWithGivenDirectSum

) UniversalMorphismFromDirectSumWithGivenDirectSum
) IsCongruentForMorphisms

) IsEqualForMorphisms

) IsEqualForObjects

) IsEqualForCacheForObjects

) IsEqualForCacheForMorphisms

) AdditionForMorphisms

) AdditivelnverseForMorphisms

) IsWellDefinedForMorphisms

) IsWellDefinedForObjects

) TensorProductOnObjects

) TensorProductOnMorphismsWithGivenTensorProducts
) BraidingWithGivenTensorProducts

) InternalHomOnObjects

) InternalHomOnMorphismsWithGivenInternalHoms

301
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(33) EvaluationMorphismWithGivenSource
(34) CoevaluationMorphismWithGivenRange

1.b. Primitive operations for right module presentations.

IdentityMorphism

KernelEmbedding

CokernelProjection

ZeroObject

TensorUnit

Lift

KernelEmbeddingWithGivenKernelObject
CokernelProjectionWithGivenCokernel Object
CokernelColift WithGivenCokernel Object

PreCompose

UniversalMorphismFromZeroObject WithGivenZeroObject
UniversalMorphismIntoZeroObject WithGivenZeroObject
ZeroMorphism

DirectSum

ProjectionInFactorOfDirect SumWithGivenDirectSum
UniversalMorphismIntoDirectSumWithGivenDirectSum
InjectionOfCofactorOfDirect SumWithGivenDirectSum
UniversalMorphismFromDirectSumWithGivenDirectSum
IsCongruentForMorphisms

IsEqualForMorphisms

IsEqualForObjects

IsEqualForCacheForObjects
IsEqualForCacheForMorphisms

AdditionForMorphisms

AdditivelnverseForMorphisms
IsWellDefinedForMorphisms

IsWellDefinedForObjects

TensorProductOnObjects
TensorProductOnMorphismsWithGivenTensorProducts
BraidingWithGivenTensorProducts
InternalHomOnObjects
InternalHomOnMorphismsWithGivenInternalHoms
EvaluationMorphismWithGivenSource

1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4) CoevaluationMorphismWithGivenRange

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)
34)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

1.c. Primitive operations for graded left module presentations.
(1) IdentityMorphism

(2) KernelEmbedding

(3) CokernelObject
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) ZeroObject

) TensorUnit

) Lift

) KernelEmbeddingWithGivenKernelObject

) CokernelProjectionWithGivenCokernelObject

) CokernelColift WithGivenCokernelObject

) PreCompose

) UniversalMorphismFromZeroObject WithGivenZeroObject
) UniversalMorphismIntoZeroObject WithGivenZeroObject
) ZeroMorphism

) DirectSum

) ProjectionInFactorOfDirectSumWithGivenDirectSum

) UniversalMorphismIntoDirectSumWithGivenDirectSum
) InjectionOfCofactorOfDirectSumWithGivenDirectSum

) UniversalMorphismFromDirectSumWithGivenDirectSum
) IsCongruentForMorphisms

) IsEqualForMorphisms

) IsEqualForObjects

) IsEqualForCacheForObjects

) IsEqualForCacheForMorphisms

) AdditionForMorphisms

) AdditivelnverseForMorphisms

) IsWellDefinedForMorphisms

) IsWellDefinedForObjects

) TensorProductOnObjects

) TensorProductOnMorphismsWithGivenTensorProducts
) InternalHomOnObjects

) InternalHomOnMorphismsWithGivenInternalHoms

1.d. Primitive operations for graded right module presentations.

(1) IdentityMorphism

(2) KernelEmbedding

(3) CokernelObject

(4) ZeroObject

(5) TensorUnit

(6) Lift

(7) KernelEmbeddingWithGivenKernelObject

(8) CokernelProjectionWithGivenCokernelObject

(9) CokernelColift WithGivenCokernelObject

10) PreCompose

11) UniversalMorphismFromZeroObject WithGivenZeroObject
12) UniversalMorphismIntoZeroObject WithGivenZeroObject
13) ZeroMorphism
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(14) DirectSum

(15) ProjectionInFactorOfDirectSumWithGivenDirectSum
(16) UniversalMorphismIntoDirectSumWithGivenDirectSum
(17) InjectionOfCofactorOfDirectSumWithGivenDirectSum
(18) UniversalMorphismFromDirectSumWithGivenDirectSum
(19) IsCongruentForMorphisms

(20) IsEqualForMorphisms

(21) IsEqualForObjects

(22) IsEqualForCacheForObjects

(23) IsEqualForCacheForMorphisms

(24) AdditionForMorphisms

(25) AdditivelnverseForMorphisms

(26) IsWellDefinedForMorphisms

(27) IsWellDefinedForObjects

(28) TensorProductOnObjects

(29) TensorProductOnMorphismsWithGivenTensorProducts

1l.e. Primitive operations for generalized morphisms by cospans.

(1) IdentityMorphism

(2) PreCompose

(3) ZeroMorphism

(4) IsCongruentForMorphisms
(5) IsEqualForObjects

(6) IsEqualForCacheForObjects
(7) IsEqualForCacheForMorphisms
(8) AdditionForMorphisms

(9) AdditivelnverseForMorphisms
10) IsWellDefinedForMorphisms
11) IsWellDefinedForObjects

(
(

1.f. Primitive operations for generalized morphisms by spans.

(1) IdentityMorphism

(2) PreCompose

(3) ZeroMorphism

(4) IsCongruentForMorphisms
(5) IsEqualForObjects

(6) IsEqualForCacheForObjects
(7) IsEqualForCacheForMorphisms
(8) AdditionForMorphisms

(9) AdditivelnverseForMorphisms
10) IsWellDefinedForMorphisms
11) IsWellDefinedForObjects

(
(
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1.g. Primitive operations for generalized morphisms by three arrows.
(1) IdentityMorphism

(2) PreCompose

(3) IsCongruentForMorphisms

(4) IsEqualForObjects

(5) IsEqualForCacheForObjects

(6) IsEqualForCacheForMorphisms

(7) AdditionForMorphisms

(8) IsWellDefinedForMorphisms

(9) IsWellDefinedForObjects

1.h. Primitive operations for Serre quotient by cospans.

(1) IdentityMorphism

(2) KernelEmbedding

(3) CokernelProjection

(4) ZeroObject

(5) LiftAlongMonomorphism

(6) ColiftAlongEpimorphism

(7) PreCompose

(8) ZeroMorphism

(9) DirectSum

10) ProjectionInFactorOfDirectSumWithGivenDirectSum
11) UniversalMorphismIntoDirectSum

12) InjectionOfCofactorOfDirectSumWithGivenDirectSum
13) UniversalMorphismFromDirectSum

14) IsCongruentForMorphisms

15) IsEqualForObjects

16) AdditionForMorphisms

17) AdditivelnverseForMorphisms

18) IsZeroForObjects

(1) Inverselmmutable
(2) IdentityMorphism
(3) KernelEmbedding
(4) CokernelProjection
(5) ZeroObject

(6) DualOnObjects
(7) LiftAlongMonomorphism
(8) ColiftAlongEpimorphism
(9) Lift

10) PreCompose

11) ZeroMorphism
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2) DirectSum

3) ProjectionInFactorOfDirectSumWithGivenDirectSum
4) UniversalMorphismIntoDirectSum

5) InjectionOfCofactorOfDirectSumWithGivenDirectSum
6) UniversalMorphismFromDirectSum

7) IsCongruentForMorphisms

8) IsEqualForObjects

9) IsEqualForCacheForObjects

0) IsEqualForCacheForMorphisms

1) AdditionForMorphisms

2) AdditivelnverseForMorphisms

3) IsZeroForObjects

4) DualOnMorphismsWithGivenDuals

(1) IdentityMorphism

(2) KernelEmbedding

(3) CokernelProjection

(4) ZeroObject

(5) LiftAlongMonomorphism

(6) ColiftAlongEpimorphism

(7) PreCompose

(8) ZeroMorphism

(9) DirectSum

10) ProjectionInFactorOfDirectSumWithGivenDirectSum
11) UniversalMorphismIntoDirectSum

12) InjectionOfCofactorOfDirectSumWithGivenDirectSum
13) UniversalMorphismFromDirectSum

14) IsCongruentForMorphisms

15) IsEqualForObjects
16) IsZeroForMorphisms
17) AdditionForMorphisms
18) AdditivelnverseForMorphisms
19) IsZeroForObjects

2. Primitive operations for left module presentations

IdentityMorphism. Back to index.

function ( object )
local matrix;
matrix
:= HomalgIdentityMatrix( NrColumns( UnderlyingMatrix( object )
), homalg ring );
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return PresentationMorphism( object, matrix, object );
end;

KernelEmbedding. Back to index.

function ( morphism )

local kernel, embedding;

embedding := SyzygiesOfRows( UnderlyingMatrix( morphism ),
UnderlyingMatrix( Range( morphism ) ) );

kernel

:= SyzygiesOfRows( embedding,

UnderlyingMatrix( Source( morphism ) ) );

kernel := AsLeftPresentation( kernel );

return PresentationMorphism( kernel, embedding,
Source( morphism ) );

end;

CokernelProjection. Back to index.

function ( morphism )
local cokernel object, projection;

cokernel object := UnionOfRows( UnderlyingMatrix( morphism ),
UnderlyingMatrix( Range( morphism ) ) );

cokernel object := AsLeftPresentation( cokernel object );

projection

:= HomalgIdentityMatrix(
NrColumns( UnderlyingMatrix( Range( morphism ) ) ),
homalg_ring );
return PresentationMorphism( Range( morphism ), projection,
cokernel object );
end;

ZeroObject. Back to index.

function ( )
local matrix;
matrix := HomalgZeroMatrix( O, O, homalg ring );
return AslLeftPresentation( matrix );

end;

TensorUnit. Back to index.

function ( )
return
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AsLeftPresentation( HomalgZeroMatrix( O, 1, homalg ring ) );
end;

Lift. Back to index.

function ( alpha, beta )
local 1lift;
1ift := RightDivide( UnderlyingMatrix( alpha ),
UnderlyingMatrix( beta ), UnderlyingMatrix( Range( beta ) ) );
if 1lift = fail then
return fail;
fi;
return PresentationMorphism( Source( alpha ), lift,
Source( beta ) );
end;

KernelEmbeddingWithGivenKernelObject. Back to index.

function ( morphism, kernel )
local embedding;
embedding := SyzygiesOfRows( UnderlyingMatrix( morphism ),
UnderlyingMatrix( Range( morphism ) ) );
return PresentationMorphism( kernel, embedding,
Source( morphism ) );

end;

CokernelProjectionWithGivenCokernelObject. Back to index.

function ( morphism, cokernel object )
local projection;
projection
:= HomalgIdentityMatrix(
NrColumns( UnderlyingMatrix( Range( morphism ) ) ),
homalg ring );
return PresentationMorphism( Range( morphism ), projection,
cokernel_object );
end;

CokernelColift WithGivenCokernelObject. Back to index.

function ( morphism, test_morphism, cokernel object )
return PresentationMorphism( cokernel object,
UnderlyingMatrix( test_morphism ), Range( test_morphism ) );
end;
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PreCompose. Back to index.

function ( left_morphism, right_morphism )
return PresentationMorphism( Source( left morphism ),
UnderlyingMatrix( left_morphism )
* UnderlyingMatrix( right _morphism ),
Range( right_morphism ) );
end;

function ( left_morphism, identity _morphism )
return left morphism;
end;

This function uses the following extra filters:
e [sldentical ToldentityMorphism for the 2nd argument.

function ( identity_morphism, right morphism )
return right_morphism;
end;

This function uses the following extra filters:
e [sIdenticalToldentityMorphism for the 1st argument.

function ( left _morphism, zero_morphism )
return PresentationMorphism( Source( left_morphism ),
HomalgZeroMatrix( NrRows( UnderlyingMatrix( left_morphism ) )
, NrColumns( UnderlyingMatrix( zero_morphism ) ),
homalg ring ), Range( zero_morphism ) );
end;

This function uses the following extra filters:
e [sldenticalToZeroMorphism for the 2nd argument.

function ( zero_morphism, right_morphism )
return PresentationMorphism( Source( zero_morphism ),
HomalgZeroMatrix( NrRows( UnderlyingMatrix( zero_morphism ) )
, NrColumns( UnderlyingMatrix( right morphism ) ),
homalg_ring ), Range( right_morphism ) );
end;

This function uses the following extra filters:
e I[sldenticalToZeroMorphism for the 1st argument.

UniversalMorphismFromZeroObject WithGivenZeroObject. Back to index.

function ( object, initial object )
local nr_columns, morphism;
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nr_columns := NrColumns( UnderlyingMatrix( object ) );

morphism := HomalgZeroMatrix( O, nr_columns, homalg ring );

return PresentationMorphism( initial object, morphism, object );
end;

UniversalMorphismIntoZeroObject WithGivenZeroObject. Back to index.

function ( object, terminal object )
local nr_columns, morphism;
nr_columns := NrColumns( UnderlyingMatrix( object ) );
morphism := HomalgZeroMatrix( nr_columns, O, homalg ring );
return PresentationMorphism( object, morphism, terminal object );
end;

ZeroMorphism. Back to index.

function ( source, range )
local matrix;
matrix
:= HomalgZeroMatrix( NrColumns( UnderlyingMatrix( source ) ),
NrColumns( UnderlyingMatrix( range ) ), homalg ring );
return PresentationMorphism( source, matrix, range );
end;

DirectSum. Back to index.

function ( product_object )
local objects, direct_sum;
objects := product_object;
objects := List( objects, UnderlyingMatrix );
direct_sum := DiagMat( objects );
return AsLeftPresentation( direct sum );
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local objects, object_column_dimension, dimension_of_factor,
projection, projection_matrix, i;
objects := product_object;
object_column_dimension := List( objects, function ( i )
return NrColumns( UnderlyingMatrix( i ) );
end );
dimension_of factor := object_column dimension[component number] ;
projection := List( object_column dimension, function ( i )
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return HomalgZeroMatrix( i, dimension_of factor,
homalg ring );
end );
projection[component_number]
:= HomalgIdentityMatrix(
object_column_dimension[component_number], homalg ring );

projection_matrix := projection[1];
for i in [ 2 .. Length( objects ) ] do
projection matrix := UnionOfRows( projection_matrix,

projection[i] );
od;
return PresentationMorphism( direct_sum_object,
projection_matrix, objects[component_number] );
end;

UniversalMorphismIntoDirectSumWithGivenDirectSum. Back to index.

function ( diagram, product_morphism, direct_sum )
local components, number_of_components, map_into_product, i;
components := product_morphism;
number_of_components := Length( components ) ;
map_into_product := UnderlyingMatrix( components[1] );
for i in [ 2 .. number_of components ] do
map_into_product := Union0fColumns( map_into_product,
UnderlyingMatrix( components([i] ) );
od;
return PresentationMorphism( Source( components[1] ),
map_into_product, direct_sum );
end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local objects, object_column_dimension, dimension_of_cofactor,
injection, injection_matrix, i;
objects := product_object;

object_column dimension := List( objects, function ( i )
return NrColumns( UnderlyingMatrix( i ) );
end );

dimension of cofactor
:= object_column_dimension[component_number] ;
injection := List( object_column_dimension, function ( i )
return HomalgZeroMatrix( dimension_of cofactor, i,
homalg ring );
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end );
injection[component number]
:= HomalgIdentityMatrix(
object_column_dimension[component_number], homalg ring );

injection_matrix := injection[1];
for i in [ 2 .. Length( objects ) ] do
injection_matrix := Union0fColumns( injection_matrix,

injection[i] );
od;
return PresentationMorphism( objects[component number],
injection_matrix, direct_sum_object );
end;

UniversalMorphismFromDirectSumWithGivenDirectSum. Back to index.

function ( diagram, product_morphism, direct_sum )
local components, number_of_components, map_into_product, 1i;
components := product_morphism;
number_of_components := Length( components ) ;
map_into_product := UnderlyingMatrix( components[1] );
for i in [ 2 .. number_of components ] do
map_into_product := UnionOfRows( map_into_product,
UnderlyingMatrix( components([i] ) );
od;
return PresentationMorphism( direct_sum, map_into_product,
Range( components([1] ) );
end;

IsCongruentForMorphisms. Back to index.

function ( morphism 1, morphism 2 )
local result of divide;
result _of divide
:= DecideZeroRows( UnderlyingMatrix( morphism_1 )
- UnderlyingMatrix( morphism_2 ),
UnderlyingMatrix( Range( morphism 1 ) ) );
return IsZero( result of divide );
end;

IsEqualForMorphisms. Back to index.

function ( morphism_1, morphism 2 )
return UnderlyingMatrix( morphism 1 )
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= UnderlyingMatrix( morphism 2 );
end;

IsEqualForObjects. Back to index.

function ( objectl, object2 )
return UnderlyingMatrix( objectl ) = UnderlyingMatrix( object2 );
end;

IsEqualForCacheForObjects. Back to index.

IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.

IsIdenticalObj

AdditionForMorphisms. Back to index.

function ( morphism_1, morphism 2 )
return PresentationMorphism( Source( morphism 1 ),
UnderlyingMatrix( morphism 1 )
+ UnderlyingMatrix( morphism 2 ), Range( morphism 1 ) );
end;

AdditivelnverseForMorphisms. Back to index.

function ( morphism_ 1 )
return PresentationMorphism( Source( morphism 1 ),
- UnderlyingMatrix( morphism 1 ), Range( morphism 1 ) );
end;

IsWellDefinedForMorphisms. Back to index.

function ( morphism )
local source_matrix, range matrix, morphism_matrix;

source_matrix := UnderlyingMatrix( Source( morphism ) );
range matrix := UnderlyingMatrix( Range( morphism ) );
morphism_matrix := UnderlyingMatrix( morphism );

if

not (NrColumns( source_matrix ) = NrRows( morphism matrix )
and NrColumns( morphism matrix )
= NrColumns( range _matrix )) then
return false;
fi;
if RightDivide( source_matrix * morphism matrix, range matrix )
= fail then
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return false;
fi;
return true;
end;

IsWellDefinedForObjects. Back to index.

function ( object )
return IsHomalgMatrix( UnderlyingMatrix( object ) )
and IsHomalgRing( UnderlyingHomalgRing( object ) );

end;

TensorProductOnObjects. Back to index.

function ( object_1, object_ 2 )
local identity_1, identity_2, presentation_matrix_1,
presentation_matrix_2, presentation_matrix;
presentation_matrix_1 UnderlyingMatrix( object_1 );
presentation_matrix_2 := UnderlyingMatrix( object_2 );
identity_1
:= HomalgIdentityMatrix( NrColumns( presentation matrix_1 ),
homalg ring );
identity_2
:= HomalgIdentityMatrix( NrColumns( presentation_matrix_2 ),
homalg ring );
presentation_matrix

UnionOfRows( KroneckerMat( identity_1, presentation_matrix_2 )
, KroneckerMat( presentation matrix_1, identity_2 ) );
return AsLeftPresentation( presentation matrix );
end;

TensorProductOnMorphismsWithGivenTensorProducts. Back to index.

function ( new_source, morphism_1, morphism 2, new_range )
return PresentationMorphism( new_source,
KroneckerMat ( UnderlyingMatrix( morphism_1 ),
UnderlyingMatrix( morphism_2 ) ), new_range );
end;

BraidingWithGivenTensorProducts. Back to index.

function ( object_1 tensored_object_2, object_1, object_ 2,
object_2_ tensored_object_1 )
local homalg ring, permutation_matrix, rank 1, rank_ 2, rank;
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homalg ring := UnderlyingHomalgRing( object_1 );
rank_1 := NrColumns( UnderlyingMatrix( object_1 ) );
rank_2 := NrColumns( UnderlyingMatrix( object_2 ) )
rank
:= NrColumns( UnderlyingMatrix( object_1_ tensored_object 2 ) );
permutation_matrix
:= PermutationMat (
PermList( List( [ 1 .. rank ], function ( i )
return
RemInt( (i - 1), rank 2 ) * rank 1
+ QuoInt( (i - 1), rank 2 ) + 1;
end ) ), rank );
return PresentationMorphism( object_1_tensored_object_2,
HomalgMatrix( permutation_matrix, rank, rank, homalg ring ),
object_2_tensored_object_1 );

b

end;

InternalHomOnObjects. Back to index.

function ( object_1, object_2 )
return
Source ( INTERNAL HOM EMBEDDING IN TENSOR_PRODUCT LEFT(
object_1, object_2 ) );
end;

InternalHomOnMorphismsWithGivenInternalHoms. Back to index.

function ( new_source, morphism_1, morphism_2, new_range )
local internal hom_embedding source,
internal_hom_embedding range, morphism_between_tensor_products;
internal_hom_embedding_ source
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(
Range ( morphism 1 ), Source( morphism 2 ) );
internal_hom_embedding_range
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(
Source( morphism_1 ), Range( morphism 2 ) );
morphism_between_tensor_products
:= PresentationMorphism( Range( internal_hom_embedding_source )
, KroneckerMat( Involution( UnderlyingMatrix( morphism_1 ) )
, UnderlyingMatrix( morphism 2 ) ),
Range( internal hom_embedding range ) );
return LiftAlongMonomorphism( internal hom_embedding range,
PreCompose( internal hom_embedding source,
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morphism_between_tensor_products ) );

EvaluationMorphismWithGivenSource. Back to index.

end;

function ( object_1, object_2, internal hom_tensored_object_1 )

local internal hom_embedding, rank 1, morphism, free_module,
column, zero column, i, matrix, rank 2, lifted evaluation;
internal_hom_embedding

:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT( object_1,

object_2 );
rank_1 := NrColumns( UnderlyingMatrix( object_1 ) );
free_module := FreeLeftPresentation( rank 1, homalg ring );
morphism := PreCompose( internal hom_embedding,
Braiding( free_module, object 2 ) );
morphism := TensorProductOnMorphisms( morphism,
IdentityMorphism( object_1 ) );
column := [ J];
zero_column := List( [ 1 .. rank 1 ], function ( i )
return O;
end );

for i in [ 1 .. rank 1 - 11 do
Add( column, 1 );
Append( column, zero_column );
od;
if rank 1 > O then
Add( column, 1 );
fi;
matrix :
)
rank 2 :
matrix
:= KroneckerMat ( HomalgIdentityMatrix( rank 2, homalg ring ),
matrix );
lifted_evaluation := PresentationMorphism( Range( morphism ),
matrix, object 2 );
return PreCompose( morphism, lifted_evaluation );

HomalgMatrix( column, rank 1 * rank 1, 1, homalg ring

NrColumns( UnderlyingMatrix( object_2 ) );

CoevaluationMorphismWithGivenRange. Back to index.

function ( object_1, object_2, internal hom )

local object_1 tensored_object_2, internal hom_embedding,
rank 2, free_module, morphism, row, zero_row, i, matrix,




end;
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rank 1, lifted_coevaluation;
object_1 tensored_object_2 := TensorProductOnObjects( object_1,
object_2 );
internal_hom_embedding
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT( object_2,
object_1_tensored_object_2 );
rank 2 := NrColumns( UnderlyingMatrix( object_2 ) );
free_module := FreeLeftPresentation( rank 2, homalg ring );
morphism := PreCompose( internal hom_embedding,
Braiding( free_module, object_1_ tensored object_2 ) );
row := [ 1;
zero row := List( [ 1 .. rank 2 ], function ( i )
return O;
end );
for i in [ 1 .. rank 2 - 1] do
Add( row, 1 );
Append( row, zero_row );
od;
if rank 2 > 0 then
Add( row, 1 );

fi;
matrix := HomalgMatrix( row, 1, rank 2 * rank 2, homalg ring );
rank_1 := NrColumns( UnderlyingMatrix( object_1 ) );
matrix
:= KroneckerMat ( HomalgIdentityMatrix( rank 1, homalg ring ),
matrix );
lifted_coevaluation := PresentationMorphism( object_1, matrix,

Range( morphism ) );
return LiftAlongMonomorphism( morphism, lifted_ coevaluation );
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3. Primitive operations for right module presentations

IdentityMorphism. Back to index.

function ( object )

end;

local matrix;
matrix
:= HomalgIdentityMatrix( NrRows( UnderlyingMatrix( object ) ),
homalg ring );
return PresentationMorphism( object, matrix, object );
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KernelEmbedding. Back to index.

function ( morphism )

local kernel, embedding;

embedding := SyzygiesOfColumns( UnderlyingMatrix( morphism ),
UnderlyingMatrix( Range( morphism ) ) );

kernel := SyzygiesOfColumns( embedding,
UnderlyingMatrix( Source( morphism ) ) );

kernel := AsRightPresentation( kernel );

return PresentationMorphism( kernel, embedding,
Source( morphism ) );

end;

CokernelProjection. Back to index.

function ( morphism )
local cokernel object, projection;
cokernel _object
:= UnionOfColumns( UnderlyingMatrix( morphism ),
UnderlyingMatrix( Range( morphism ) ) );
cokernel object := AsRightPresentation( cokernel object );
projection
:= HomalgIdentityMatrix(
NrRows( UnderlyingMatrix( Range( morphism ) ) ), homalg ring
)
return PresentationMorphism( Range( morphism ), projection,
cokernel object );

end;

ZeroObject. Back to index.

function ( )
local matrix;
matrix := HomalgZeroMatrix( O, O, homalg ring );
return AsRightPresentation( matrix );

end;

TensorUnit. Back to index.

function ( )
return
AsRightPresentation( HomalgZeroMatrix( 1, O, homalg ring ) );
end;
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Lift. Back to index.

function ( beta, alpha )
local 1lift;
1lift := LeftDivide( UnderlyingMatrix( alpha ),
UnderlyingMatrix( beta ), UnderlyingMatrix( Range( alpha ) )
);
if 1lift = fail then
return fail;
fi;
return PresentationMorphism( Source( beta ), 1lift,
Source( alpha ) );
end;

KernelEmbeddingWithGivenKernelObject. Back to index.

function ( morphism, kernel )
local embedding;
embedding := SyzygiesOfColumns( UnderlyingMatrix( morphism ),
UnderlyingMatrix( Range( morphism ) ) );
return PresentationMorphism( kernel, embedding,
Source( morphism ) );
end;

CokernelProjectionWithGivenCokernelObject. Back to index.

function ( morphism, cokernel object )
local projection;
projection
:= HomalgIdentityMatrix(
NrRows( UnderlyingMatrix( Range( morphism ) ) ), homalg ring
)
return PresentationMorphism( Range( morphism ), projection,
cokernel_object );
end;

CokernelColift WithGivenCokernelObject. Back to index.

function ( morphism, test_morphism, cokernel object )
return PresentationMorphism( cokernel object,
UnderlyingMatrix( test_morphism ), Range( test_morphism ) );
end;
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PreCompose. Back to index.

function ( left_morphism, right_morphism )
return PresentationMorphism( Source( left morphism ),
UnderlyingMatrix( right_morphism )
* UnderlyingMatrix( left_morphism ),
Range( right_morphism ) );
end;

function ( left_morphism, identity _morphism )
return left morphism;
end;

This function uses the following extra filters:
e [sldentical ToldentityMorphism for the 2nd argument.

function ( identity_morphism, right morphism )
return right_morphism;
end;

This function uses the following extra filters:
e [sIdenticalToldentityMorphism for the 1st argument.

function ( left _morphism, zero_morphism )
return PresentationMorphism( Source( left_morphism ),
HomalgZeroMatrix( NrRows( UnderlyingMatrix( zero_morphism ) )
, NrColumns( UnderlyingMatrix( left_morphism ) ),
homalg ring ), Range( zero_morphism ) );
end;

This function uses the following extra filters:
e [sldenticalToZeroMorphism for the 2nd argument.

function ( zero_morphism, right_morphism )
return PresentationMorphism( Source( zero_morphism ),
HomalgZeroMatrix( NrRows( UnderlyingMatrix( right morphism )
), NrColumns( UnderlyingMatrix( zero_morphism ) ),
homalg_ring ), Range( right_morphism ) );
end;

This function uses the following extra filters:
e I[sldenticalToZeroMorphism for the 1st argument.

UniversalMorphismFromZeroObject WithGivenZeroObject. Back to index.

function ( object, initial object )
local nr_rows, morphism;
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nr_rows := NrRows( UnderlyingMatrix( object ) );

morphism := HomalgZeroMatrix( nr_rows, O, homalg _ring );

return PresentationMorphism( initial object, morphism, object );
end;

UniversalMorphismIntoZeroObject WithGivenZeroObject. Back to index.

function ( object, terminal object )

local nr_rows, morphism;

nr_rows := NrRows( UnderlyingMatrix( object ) );

morphism := HomalgZeroMatrix( O, nr_rows, homalg_ring );

return PresentationMorphism( object, morphism, terminal object );
end;

ZeroMorphism. Back to index.

function ( source, range )
local matrix;
matrix := HomalgZeroMatrix( NrRows( UnderlyingMatrix( range ) )
, NrRows( UnderlyingMatrix( source ) ), homalg ring );
return PresentationMorphism( source, matrix, range );
end;

DirectSum. Back to index.

function ( product_object )
local objects, direct_sum;
objects := product_object;
objects List( objects, UnderlyingMatrix );
direct_sum := DiagMat( objects );
return AsRightPresentation( direct_sum );
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local objects, object_column_dimension, dimension_of_factor,
projection, projection_matrix, i;
objects := product_object;

object_column_dimension := List( objects, function ( i )
return NrRows( UnderlyingMatrix( i ) );
end );
dimension_of_ factor := object_column dimension[component number] ;
projection := List( object_column dimension, function ( i )

return HomalgZeroMatrix( dimension_of factor, i,
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homalg ring );
end );
projection[component number]
:= HomalgIdentityMatrix(
object_column_dimension[component_number], homalg ring );

projection_matrix := projection[1];
for i in [ 2 .. Length( objects ) ] do
projection matrix := UnionOfColumns( projection_matrix,

projection[i] );
od;
return PresentationMorphism( direct_sum_object,
projection_matrix, objects[component_number] );
end;

UniversalMorphismIntoDirectSumWithGivenDirectSum. Back to index.

function ( diagram, product_morphism, direct_sum )

local components, number_of_components, map_into_product, 1i;

components := product_morphism;

number_of_components := Length( components ) ;

map_into_product := UnderlyingMatrix( components[1] );

for i in [ 2 .. number_of components ] do
map_into_product := UnionOfRows( map_into_product,

UnderlyingMatrix( components[i] ) );

od;

return PresentationMorphism( Source( components[1] ),
map_into_product, direct_sum );

end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local objects, object_column_dimension, dimension_of_cofactor,
injection, injection_matrix, i;
objects := product_object;

object_column_dimension := List( objects, function ( i )
return NrRows( UnderlyingMatrix( i ) );
end );

dimension of cofactor
:= object_column_dimension[component_number] ;
injection := List( object_column_dimension, function ( i )
return HomalgZeroMatrix( i, dimension_of cofactor,
homalg ring );
end );
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injection[component number]
:= HomalgIdentityMatrix(
object_column_dimension[component_number], homalg ring );

injection_matrix := injection[1];
for i in [ 2 .. Length( objects ) ] do
injection_matrix := UnionOfRows( injection_matrix,

injection[i] );
od;
return PresentationMorphism( objects[component number],
injection_matrix, direct_sum_object );
end;

UniversalMorphismFromDirectSumWithGivenDirectSum. Back to index.

function ( diagram, product_morphism, direct_sum )
local components, number_of_components, map_into_product, i;
components := product_morphism;
number_of_ components := Length( components );
map_into_product := UnderlyingMatrix( components[1] );
for i in [ 2 .. number_of_components ] do
map_into_product := UnionOfColumns( map_into_product,
UnderlyingMatrix( components([i] ) );
od;
return PresentationMorphism( direct_sum, map_into_product,
Range ( components[1] ) );

end;

IsCongruentForMorphisms. Back to index.

function ( morphism_1, morphism_2 )

local result_of _divide;

result_of_divide

:= DecideZeroColumns( UnderlyingMatrix( morphism_1 )
- UnderlyingMatrix( morphism 2 ),
UnderlyingMatrix( Range( morphism_1 ) ) );

return IsZero( result of divide );

end;

IsEqualForMorphisms. Back to index.

function ( morphism 1, morphism 2 )
return UnderlyingMatrix( morphism_1 )
= UnderlyingMatrix( morphism_2 );
end;
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IsEqualForObjects. Back to index.

function ( objectl, object2 )
return UnderlyingMatrix( objectl ) = UnderlyingMatrix( object2 );
end;

IsEqualForCacheForObjects. Back to index.

IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.

IsIdenticalObj

AdditionForMorphisms. Back to index.

function ( morphism_1, morphism 2 )
return PresentationMorphism( Source( morphism_1 ),
UnderlyingMatrix( morphism_1 )
+ UnderlyingMatrix( morphism_2 ), Range( morphism 1 ) );
end;

AdditivelnverseForMorphisms. Back to index.

function ( morphism 1 )
return PresentationMorphism( Source( morphism 1 ),
- UnderlyingMatrix( morphism_1 ), Range( morphism_1 ) );
end;

IsWellDefinedForMorphisms. Back to index.

function ( morphism )
local source_matrix, range_matrix, morphism_matrix;

source_matrix := UnderlyingMatrix( Source( morphism ) );
range _matrix := UnderlyingMatrix( Range( morphism ) );
morphism matrix := UnderlyingMatrix( morphism );

if

not (NrRows( source matrix ) = NrColumns( morphism matrix )
and NrRows( morphism_matrix ) = NrRows( range matrix ))
then
return false;
fi;
if
LeftDivide( range matrix, morphism _matrix * source_matrix )
= fail then
return false;

fi;
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return true;
end;

IsWellDefinedForObjects. Back to index.

function ( object )
return IsHomalgMatrix( UnderlyingMatrix( object ) )
and IsHomalgRing( UnderlyingHomalgRing( object ) );

end;

TensorProductOnObjects. Back to index.

function ( object_1, object_2 )
local identity_1, identity_2, presentation_matrix_ 1,
presentation_matrix_2, presentation_matrix;
presentation_matrix_1 := UnderlyingMatrix( object_1 );
presentation_matrix_2 UnderlyingMatrix( object_2 );
identity_1
:= HomalgIdentityMatrix( NrRows( presentation_matrix_1 ),
homalg ring );
identity_2
:= HomalgIdentityMatrix( NrRows( presentation_matrix_2 ),
homalg ring );
presentation_matrix
:= UnionOfColumns (
KroneckerMat( identity_1, presentation_matrix_2 ),
KroneckerMat ( presentation_matrix_1, identity 2 ) );
return AsRightPresentation( presentation_matrix );
end;

TensorProductOnMorphismsWithGivenTensorProducts. Back to index.

function ( new_source, morphism_1, morphism_2, new_range )
return PresentationMorphism( new_source,
KroneckerMat ( UnderlyingMatrix( morphism_1 ),
UnderlyingMatrix( morphism_2 ) ), new_range );
end;

BraidingWithGivenTensorProducts. Back to index.

function ( object_1_tensored_object_2, object_1, object_ 2,
object_2_tensored_object_1 )
local homalg ring, permutation_matrix, rank 1, rank_2, rank;
homalg ring := UnderlyingHomalgRing( object_1 );
rank 1 := NrRows( UnderlyingMatrix( object_1 ) );
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rank 2 := NrRows( UnderlyingMatrix( object_2 ) );
rank := NrRows( UnderlyingMatrix( object_1_tensored_object_2 ) );
permutation_matrix
:= PermutationMat (
PermList( List( [ 1 .. rank ], function ( i )
return
RemInt( (i - 1), rank 2 ) * rank 1
+ QuoInt( (i - 1), rank 2 ) + 1;
end ) ), rank );
return PresentationMorphism( object_1_tensored_object 2,
Involution( HomalgMatrix( permutation matrix, rank, rank,
homalg ring ) ), object_2_tensored_object_1 );
end;

InternalHomOnObjects. Back to index.

function ( object_1, object 2 )
return
Source ( INTERNAL HOM_EMBEDDING IN TENSOR_PRODUCT RIGHT(
object_1, object_2 ) );
end;

InternalHomOnMorphismsWithGivenInternalHoms. Back to index.

function ( new_source, morphism_1, morphism_2, new_range )
local internal hom_embedding source,
internal_hom_embedding range, morphism_between_tensor_products;
internal_hom_embedding_ source
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_RIGHT(
Range ( morphism 1 ), Source( morphism 2 ) );
internal_hom_embedding_range
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_RIGHT(
Source( morphism_1 ), Range( morphism 2 ) );
morphism_between_tensor_products
:= PresentationMorphism( Range( internal_hom_embedding_source )
, KroneckerMat( Involution( UnderlyingMatrix( morphism 1 ) )
, UnderlyingMatrix( morphism 2 ) ),
Range( internal hom_embedding range ) );
return LiftAlongMonomorphism( internal hom_embedding range,
PreCompose( internal hom_embedding source,
morphism_between_tensor_products ) );
end;
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EvaluationMorphismWithGivenSource. Back to index.
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function ( object_1, object_2, internal hom_tensored_object_1 )
local internal hom_embedding, rank_ 1, morphism, free_module,
row, zero row, i, matrix, rank 2, lifted evaluation;
internal_hom_embedding
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_RIGHT( object_1,

object_2 );
rank 1 := NrRows( UnderlyingMatrix( object_1 ) );
free_module := FreeRightPresentation( rank_1, homalg ring );
morphism := PreCompose( internal_hom_embedding,
Braiding( free_module, object_2 ) );
morphism := TensorProductOnMorphisms( morphism,
IdentityMorphism( object_1 ) );
row := [ ];
zero_row := List( [ 1 .. rank 1 ], function ( i )
return O;
end );

for i in [ 1 .. rank 1 - 11 do
Add( row, 1 );
Append( row, zero_row );

od;

if rank 1 > 0 then
Add( row, 1 );

fi;
matrix := HomalgMatrix( row, 1, rank 1 * rank 1, homalg ring );
rank 2 := NrRows( UnderlyingMatrix( object_2 ) );
matrix
:= KroneckerMat ( HomalgIdentityMatrix( rank_ 2, homalg ring ),
matrix );
lifted_evaluation := PresentationMorphism( Range( morphism ),

matrix, object_2 );
return PreCompose( morphism, lifted_evaluation );
end;

CoevaluationMorphismWithGivenRange. Back to index.

function ( object_1, object_2, internal_hom )
local object_1 tensored_object_2, internal hom_embedding,
rank 2, free_module, morphism, column, zero_column, i, matrix,
rank 1, lifted_coevaluation;
object_1 tensored_object_2 := TensorProductOnObjects( object_1,
object_2 );
internal_hom_embedding




328 F. INSTALLED BASIC OPERATIONS

:= INTERNAL_HOM_EMBEDDING IN TENSOR_PRODUCT RIGHT( object 2,
object_1 tensored_object_2 );
rank_2 := NrRows( UnderlyingMatrix( object_2 ) );

free_module := FreeRightPresentation( rank_2, homalg_ring );
morphism := PreCompose( internal_hom_embedding,
Braiding( free_module, object_1 tensored_object 2 ) );
column := [ J];
zero_column := List( [ 1 .. rank 2 ], function ( i )
return O;
end );

for i in [ 1 .. rank 2 - 1] do
Add( column, 1 );
Append( column, zero_column );
od;
if rank 2 > 0 then
Add( column, 1 );

fi;

matrix := HomalgMatrix( column, rank 2 * rank 2, 1, homalg ring
)

rank_1 := NrRows( UnderlyingMatrix( object_1 ) );

matrix

:= KroneckerMat( HomalgIdentityMatrix( rank_1, homalg_ring ),

matrix );

lifted_coevaluation := PresentationMorphism( object_1, matrix,

Range ( morphism ) );
return LiftAlongMonomorphism( morphism, lifted coevaluation );
end;

4. Primitive operations for graded left module presentations

IdentityMorphism. Back to index.

function ( object )
local morphism;
morphism
:= IdentityMorphism( UnderlyingPresentationObject( object ) );
return GradedPresentationMorphism( object, morphism, object );
end;

KernelEmbedding. Back to index.

function ( morphism )
local wunderlying embedding, kernel object, range_degrees,
new_degrees;
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underlying embedding
:= KernelEmbedding( UnderlyingPresentationMorphism( morphism )
)
kernel_object := Source( underlying_embedding ) ;
new_degrees
:= NonTrivialDegreePerRow(
UnderlyingMatrix( underlying embedding ),
GeneratorDegrees( Source( morphism ) ) );
kernel object := AsGradedLeftPresentation( kernel object,
new_degrees );
return GradedPresentationMorphism( kernel_object,
underlying_ embedding, Source( morphism ) );
end;

CokernelObject. Back to index.

function ( object )
local result;

result
:= CokernelObject( UnderlyingPresentationMorphism( object ) );
return
object_constructor( result, GeneratorDegrees( Range( object )
) )

end;

ZeroObject. Back to index.

function ( )
local =zero_object;
zero_object := ZeroObject( underlying presentation_category );
return object_constructor( zero_object );

end;

TensorUnit. Back to index.

function ( )
local wunit, new_degrees;
unit := TensorUnit( underlying presentation_category );
return object_constructor( unit );

end;

Lift. Back to index.

function ( alpha, beta )
local 1lift;
1lift := Lift( UnderlyingPresentationMorphism( alpha ),
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UnderlyingPresentationMorphism( beta ) );
if 1lift = fail then
return fail;
fi;
return GradedPresentationMorphism( Source( alpha ), lift,
Source( beta ) );
end;

KernelEmbeddingWithGivenKernelObject. Back to index.

function ( morphism, kernel )
local wunderlying embedding;
underlying embedding
:= KernelEmbedding( UnderlyingPresentationMorphism( morphism )
)
return GradedPresentationMorphism( kernel, underlying embedding
, Source( morphism ) );
end;

CokernelProjectionWithGivenCokernelObject. Back to index.

function ( morphism, cokernel object )
local projection;
projection := CokernelProjectionWithGivenCokernelObject (
UnderlyingPresentationMorphism( morphism ),
UnderlyingPresentationObject( cokernel_object ) );
return GradedPresentationMorphism( Range( morphism ),
projection, cokernel object );
end;

CokernelColift WithGivenCokernelObject. Back to index.

function ( morphism, test_morphism, cokernel_object )
local 1ift;
1ift := CokernelColiftWithGivenCokernelObject(
UnderlyingPresentationMorphism( morphism ),
UnderlyingPresentationMorphism( test_morphism ),
UnderlyingPresentationObject( cokernel object ) );
return GradedPresentationMorphism( cokernel object, lift,
Range( test_morphism ) );
end;
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PreCompose. Back to index.

function ( left_morphism, right _morphism )
return GradedPresentationMorphism( Source( left_morphism ),
PreCompose( UnderlyingPresentationMorphism( left_morphism ),
UnderlyingPresentationMorphism( right morphism ) ),
Range( right_morphism ) );
end;

UniversalMorphismFromZeroObject WithGivenZeroObject. Back to index.

function ( object, initial object )
local morphism;
morphism := UniversalMorphismFromZeroObjectWithGivenZeroObject (
UnderlyingPresentationObject( object ),
UnderlyingPresentationObject( initial_object ) );
return GradedPresentationMorphism( initial_object, morphism,
object );
end;

UniversalMorphismIntoZeroObjectWithGivenZeroObject. Back to index.

function ( object, terminal_ object )
local morphism;
morphism := UniversalMorphismIntoZeroObjectWithGivenZeroObject(
UnderlyingPresentationObject( object ),
UnderlyingPresentationObject( terminal_object ) );
return GradedPresentationMorphism( object, morphism,
terminal object );
end;

ZeroMorphism. Back to index.

function ( source, range )
local morphism;
morphism := ZeroMorphism( UnderlyingPresentationObject( source )
, UnderlyingPresentationObject( range ) );
return GradedPresentationMorphism( source, morphism, range );
end;

DirectSum. Back to index.

function ( product_object )
local objects, degrees;
objects
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DirectSum( List( product_object, UnderlyingPresentationObject
) )5

degrees
:= Concatenation( List( product_object, GeneratorDegrees ) );
return object_constructor( objects, degrees );
end;

ProjectionInFactorOfDirect SumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local wunderlying objects, underlying direct_sum, projection;
underlying objects
:= List( product_object, UnderlyingPresentationObject );

underlying direct_sum := UnderlyingPresentationObject(
direct_sum_object );
projection := ProjectionInFactorOfDirectSumWithGivenDirectSum(

underlying objects, component_number, underlying direct_sum );
return GradedPresentationMorphism( direct_sum_object,
projection, product_object[component number] );
end;

UniversalMorphismIntoDirectSumWithGivenDirectSum. Back to index.

function ( diagram, product_morphism, direct_sum )
local wunderlying diagram, underlying product_morphism,
underlying direct_sum, universal_morphism;
underlying diagram
:= List( diagram, UnderlyingPresentationObject );
underlying product_morphism
:= List( product_morphism, UnderlyingPresentationMorphism );
underlying direct_sum := UnderlyingPresentationObject(
direct_sum );
universal_morphism
:= UniversalMorphismIntoDirectSumWithGivenDirectSum(
underlying diagram, underlying product_morphism,
underlying direct_sum );
return GradedPresentationMorphism( Source( product_morphism[1] )
, universal morphism, direct_sum );
end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local wunderlying objects, underlying direct_sum, injection;
underlying objects
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:= List( product_object, UnderlyingPresentationObject );
underlying direct_sum := UnderlyingPresentationObject(
direct_sum_object );
injection := InjectionOfCofactorOfDirectSumWithGivenDirectSum(
underlying objects, component_number, underlying direct_sum );
return
GradedPresentationMorphism( product_object[component number],
injection, direct_sum_object );
end;

UniversalMorphismFromDirectSumWithGivenDirectSum. Back to index.

function ( diagram, product_morphism, direct_sum )
local wunderlying diagram, underlying product_morphism,
underlying direct_sum, universal_morphism;
underlying diagram
:= List( diagram, UnderlyingPresentationObject );
underlying product_morphism
:= List( product_morphism, UnderlyingPresentationMorphism );
underlying direct_sum := UnderlyingPresentationObject(
direct_sum );
universal_morphism
:= UniversalMorphismFromDirectSumWithGivenDirectSum(
underlying diagram, underlying product_morphism,
underlying direct_sum );
return GradedPresentationMorphism( direct_sum,
universal_morphism, Range( product_morphism[1] ) );

end;

IsCongruentForMorphisms. Back to index.

function ( morphism_1, morphism 2 )
return
IsCongruentForMorphisms( UnderlyingPresentationMorphism(
morphism_1 ), UnderlyingPresentationMorphism( morphism_2 )

);

end;

IsEqualForMorphisms. Back to index.

function ( morphism 1, morphism 2 )
return UnderlyingMatrix( morphism_1 )
= UnderlyingMatrix( morphism_2 );
end;
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IsEqualForObjects. Back to index.

function ( objectl, object2 )
if UnderlyingMatrix( objectl ) = UnderlyingMatrix( object2 )
then
return GeneratorDegrees( objectl )
= GeneratorDegrees( object2 );
fi;
return false;
end;

IsEqualForCacheForObjects. Back to index.

IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.

IsIdentical(Obj

AdditionForMorphisms. Back to index.

function ( morphism 1, morphism 2 )
return GradedPresentationMorphism( Source( morphism 1 ),
UnderlyingPresentationMorphism( morphism_1 )
+ UnderlyingPresentationMorphism( morphism_2 ),
Range ( morphism_1 ) );
end;

AdditivelnverseForMorphisms. Back to index.

function ( morphism_1 )
return GradedPresentationMorphism( Source( morphism_1 ),
- UnderlyingPresentationMorphism( morphism 1 ),
Range ( morphism 1 ) );
end;

IsWellDefinedForMorphisms. Back to index.

function ( morphism )

local matrix_degrees, matrix_entries, source_degrees,

range_degrees;

if

not IsWellDefined( UnderlyingPresentationMorphism( morphism ) )
then
return false;

fi;

return GeneratorDegrees( Source( morphism ) )
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= NonTrivialDegreePerRow( UnderlyingMatrix( morphism ),
GeneratorDegrees( Range( morphism ) ) );
end;
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IsWellDefinedForObjects. Back to index.

function ( object )
local relation_degrees, generator_degrees, relation_entries;
if
not IsHomalgMatrix( UnderlyingMatrix( object ) )

or not IsHomalgRing( UnderlyingHomalgRing( object ) ) then

return false;
fi;
relation_degrees
:= DegreesOfEntries( UnderlyingMatrix( object ) );

relation_entries := EntriesOfHomalgMatrixAsListList(
UnderlyingMatrix( object ) );

generator_degrees := GeneratorDegrees( object );

return

CAP_INTERNAL_CHECK_DEGREES_FOR_IS_WELL_DEFINED_FOR_OBJECTS(
relation_degrees, relation_entries, generator_degrees );
end;

TensorProductOnObjects. Back to index.

function ( object_1, object_2 )
local new_object, degrees_1, degrees_2, new_degrees, i, j;
new_object
:= TensorProductOnObjects(
UnderlyingPresentationObject( object_1 ),
UnderlyingPresentationObject( object_2 ) );

degrees_1 := GeneratorDegrees( object_1 );
degrees_2 := GeneratorDegrees( object_2 );
new_degrees := [ ];

for i in [ 1 .. Length( degrees_1 ) ] do
for j in [ 1 .. Length( degrees 2 ) ] do
Add( new_degrees, degrees_1[i] + degrees 2[j] );
od;
od;
return object_constructor( new_object, new_degrees );
end;

TensorProductOnMorphismsWithGivenTensorProducts. Back to index.
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function ( new_source, morphism 1, morphism_ 2, new_range )
local new_morphism;
new_morphism := TensorProductOnMorphismsWithGivenTensorProducts
( UnderlyingPresentationObject( new_source ),
UnderlyingPresentationMorphism( morphism_1 ),
UnderlyingPresentationMorphism( morphism 2 ),
UnderlyingPresentationObject( new_range ) );
return GradedPresentationMorphism( new_source, new_morphism,
new_range ) ;
end;

InternalHomOnObjects. Back to index.

function ( object_1, object 2 )
return
Source( INTERNAL GRADED HOM_EMBEDDING IN_TENSOR_PRODUCT LEFT(
object_1, object 2 ) );
end;

InternalHomOnMorphismsWithGivenInternalHoms. Back to index.

function ( new_source, morphism_1, morphism_2, new_range )
local internal hom_embedding source,
internal_hom_embedding range, morphism_between_tensor_products;
internal_hom_embedding source
:= INTERNAL_GRADED_HOM_EMBEDDING_IN_TENSOR_PRODUCT _LEFT(
Range( morphism_1 ), Source( morphism_2 ) );
internal_hom_embedding_range
:= INTERNAL_GRADED_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(
Source( morphism_1 ), Range( morphism 2 ) );
morphism_between_tensor_products
:= GradedPresentationMorphism(
Range( internal hom_embedding source ),
KroneckerMat ( Involution( UnderlyingMatrix( morphism 1 ) ),
UnderlyingMatrix( morphism 2 ) ),
Range( internal_hom_embedding range ) );
return LiftAlongMonomorphism( internal_hom_embedding range,
PreCompose( internal_hom_embedding_source,
morphism_between_tensor_products ) );
end;

5. Primitive operations for graded right module presentations
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IdentityMorphism. Back to index.

function ( object )
local morphism;
morphism
:= IdentityMorphism( UnderlyingPresentationObject( object ) );
return GradedPresentationMorphism( object, morphism, object );
end;

KernelEmbedding. Back to index.

function ( morphism )
local wunderlying embedding, kernel object, new_degrees,
range_degrees;
underlying_embedding
:= KernelEmbedding( UnderlyingPresentationMorphism( morphism )
)
kernel object := Source( underlying embedding ) ;
new_degrees
:= NonTrivialDegreePerColumn (
UnderlyingMatrix( underlying_embedding ),
GeneratorDegrees( Source( morphism ) ) );
kernel_object := AsGradedRightPresentation( kernel_object,
new_degrees );
return GradedPresentationMorphism( kernel object,
underlying embedding, Source( morphism ) );
end;

CokernelObject. Back to index.

function ( object )
local result;

result
:= CokernelObject( UnderlyingPresentationMorphism( object ) );
return
object_constructor( result, GeneratorDegrees( Range( object )
) )5

end;

ZeroObject. Back to index.

function ( )
local =zero_object;
zero_object := ZeroObject( underlying presentation_category );
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return object_constructor( zero_object );
end;

TensorUnit. Back to index.

function ( )
local wunit, new_degrees;
unit := TensorUnit( underlying presentation_category );
return object_constructor( unit );

end;

Lift. Back to index.

function ( beta, alpha )
local 1lift;
1ift := Lift( UnderlyingPresentationMorphism( beta ),
UnderlyingPresentationMorphism( alpha ) );
if 1ift = fail then
return fail;
fi;
return GradedPresentationMorphism( Source( beta ), 1lift,
Source( alpha ) );
end;

KernelEmbeddingWithGivenKernelObject. Back to index.

function ( morphism, kernel )
local wunderlying embedding;
underlying_embedding
:= KernelEmbedding( UnderlyingPresentationMorphism( morphism )
);
return GradedPresentationMorphism( kernel, underlying embedding
, Source( morphism ) );
end;

CokernelProjectionWithGivenCokernelObject. Back to index.

function ( morphism, cokernel object )
local projection;
projection := CokernelProjectionWithGivenCokernelObject(
UnderlyingPresentationMorphism( morphism ),
UnderlyingPresentationObject( cokernel object ) );
return GradedPresentationMorphism( Range( morphism ),
projection, cokernel object );
end;
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CokernelColift WithGivenCokernelObject. Back to index.

function ( morphism, test_morphism, cokernel object )
local 1lift;
1ift := CokernelColiftWithGivenCokernelObject(
UnderlyingPresentationMorphism( morphism ),
UnderlyingPresentationMorphism( test_morphism ),
UnderlyingPresentationObject( cokernel object ) );
return GradedPresentationMorphism( cokernel object, lift,
Range( test_morphism ) );
end;

PreCompose. Back to index.

function ( left_morphism, right_morphism )
return GradedPresentationMorphism( Source( left_morphism ),
PreCompose( UnderlyingPresentationMorphism( left_morphism ),
UnderlyingPresentationMorphism( right morphism ) ),
Range( right morphism ) );
end;

UniversalMorphismFromZeroObject WithGivenZeroObject. Back to index.

function ( object, initial object )
local morphism;
morphism := UniversalMorphismFromZeroObjectWithGivenZeroObject (
UnderlyingPresentationObject( object ),
UnderlyingPresentationObject( initial object ) );
return GradedPresentationMorphism( initial object, morphism,
object );
end;

UniversalMorphismIntoZeroObject WithGivenZeroObject. Back to index.

function ( object, terminal object )
local morphism;
morphism := UniversalMorphismIntoZeroObjectWithGivenZeroObject (
UnderlyingPresentationObject( object ),
UnderlyingPresentationObject( terminal object ) );
return GradedPresentationMorphism( object, morphism,
terminal object );
end;
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ZeroMorphism. Back to index.

function ( source, range )

local morphism;

morphism := ZeroMorphism( UnderlyingPresentationObject( source )
, UnderlyingPresentationObject( range ) );

return GradedPresentationMorphism( source, morphism, range );

end;

DirectSum. Back to index.

function ( product_object )
local objects, degrees;
objects

DirectSum( List( product_object, UnderlyingPresentationObject
) )5

degrees
:= Concatenation( List( product_object, GeneratorDegrees ) );

return object_constructor( objects, degrees );
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local wunderlying objects, underlying direct_sum, projection;

underlying objects
:= List( product_object, UnderlyingPresentationObject );

underlying direct_sum := UnderlyingPresentationObject(
direct_sum_object );
projection := ProjectionInFactorOfDirectSumWithGivenDirectSum(

underlying objects, component_number, underlying direct_sum );
return GradedPresentationMorphism( direct_sum_object,
projection, product_object[component number] );
end;

UniversalMorphismIntoDirectSumWithGivenDirectSum. Back to index.

function ( diagram, product_morphism, direct_sum )
local wunderlying diagram, underlying_product_morphism,
underlying direct_sum, universal_morphism;
underlying diagram
:= List( diagram, UnderlyingPresentationObject );
underlying product_morphism
:= List( product_morphism, UnderlyingPresentationMorphism );
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underlying direct_sum := UnderlyingPresentationObject(
direct_sum );

universal _morphism

:= UniversalMorphismIntoDirectSumWithGivenDirectSum(

underlying diagram, underlying product_morphism,
underlying direct_sum );

return GradedPresentationMorphism( Source( product_morphism[1] )

, universal morphism, direct_sum );
end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local wunderlying objects, underlying direct_sum, injection;
underlying objects
:= List( product_object, UnderlyingPresentationObject );
underlying direct_sum := UnderlyingPresentationObject(
direct_sum_object );
injection := InjectionOfCofactorOfDirectSumWithGivenDirectSum(
underlying objects, component_number, underlying direct_sum );
return
GradedPresentationMorphism( product_object[component number],
injection, direct_sum_object );
end;

UniversalMorphismFromDirectSumWithGivenDirectSum. Back to index.

function ( diagram, product_morphism, direct_sum )
local wunderlying diagram, underlying product_morphism,
underlying direct_sum, universal_morphism;
underlying diagram
:= List( diagram, UnderlyingPresentationObject );
underlying product_morphism
:= List( product_morphism, UnderlyingPresentationMorphism );
underlying direct_sum := UnderlyingPresentationObject(
direct_sum );
universal_morphism
:= UniversalMorphismFromDirectSumWithGivenDirectSum(
underlying diagram, underlying product_morphism,
underlying direct_sum );
return GradedPresentationMorphism( direct_sum,
universal_morphism, Range( product_morphism[1] ) );
end;
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IsCongruentForMorphisms. Back to index.

function ( morphism_1, morphism_2 )
return
IsCongruentForMorphisms( UnderlyingPresentationMorphism(
morphism_1 ), UnderlyingPresentationMorphism( morphism 2 )

);

end;

IsEqualForMorphisms. Back to index.

function ( morphism 1, morphism 2 )
return UnderlyingMatrix( morphism_1 )
= UnderlyingMatrix( morphism_2 );
end;

IsEqualForObjects. Back to index.

function ( objectl, object2 )
if UnderlyingMatrix( objectl ) = UnderlyingMatrix( object2 )
then
return GeneratorDegrees( objectl )
= GeneratorDegrees( object2 );
fi;
return false;
end;

IsEqualForCacheForObjects. Back to index.

IsIdentical(Obj

IsEqualForCacheForMorphisms. Back to index.

IsIdentical(Obj

AdditionForMorphisms. Back to index.

function ( morphism_1, morphism 2 )
return GradedPresentationMorphism( Source( morphism 1 ),
UnderlyingPresentationMorphism( morphism 1 )
+ UnderlyingPresentationMorphism( morphism_2 ),
Range ( morphism_1 ) );
end;
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AdditivelnverseForMorphisms. Back to index.
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function ( morphism 1 )

return GradedPresentationMorphism( Source( morphism 1 ),
- UnderlyingPresentationMorphism( morphism_1 ),
Range ( morphism_1 ) );

IsWellDefinedForMorphisms. Back to index.

function ( morphism )

local matrix_degrees, matrix_entries, source_degrees,

range_degrees;

if

not IsWellDefined( UnderlyingPresentationMorphism( morphism ) )
then
return false;

fi;

matrix_degrees

TransposedMat ( DegreesOfEntries( UnderlyingMatrix( morphism )
) )
matrix_entries
:= TransposedMat ( EntriesOfHomalgMatrixAsListList(
UnderlyingMatrix( morphism ) ) );
source_degrees := GeneratorDegrees( Source( morphism ) );
range_degrees := GeneratorDegrees( Range( morphism ) );
return GeneratorDegrees( Source( morphism ) )
= NonTrivialDegreePerColumn( UnderlyingMatrix( morphism ),
GeneratorDegrees( Range( morphism ) ) );

IsWellDefinedForObjects. Back to index.

function ( object )

local relation_degrees, generator_degrees, relation_entries;
if not IsWellDefined( UnderlyingPresentationObject( object ) )
then
return false;
fi;
relation_degrees
:= TransposedMat ( DegreesOfEntries( UnderlyingMatrix( object )
) )5
relation_entries
:= TransposedMat ( EntriesOfHomalgMatrixAsListList(
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UnderlyingMatrix( object ) ) );
generator_degrees := GeneratorDegrees( object );
return
CAP_INTERNAL_CHECK_DEGREES_FOR_IS_WELL_DEFINED_FOR_OBJECTS(
relation_degrees, relation_entries, generator_degrees );
end;

TensorProductOnObjects. Back to index.

function ( object_1, object_2 )
local new_object, degrees_1, degrees_2, new_degrees, i, j;
new_object
:= TensorProductOnObjects(
UnderlyingPresentationObject( object_1 ),
UnderlyingPresentationObject( object_2 ) );

degrees_1 := GeneratorDegrees( object_1 );
degrees_2 := GeneratorDegrees( object_2 );
new_degrees := [ ];

for i in [ 1 .. Length( degrees_1 ) ] do
for j in [ 1 .. Length( degrees 2 ) ] do
Add( new_degrees, degrees_1[i] + degrees_2[j] );
od;
od;
return object_constructor( new_object, new_degrees );
end;

TensorProductOnMorphismsWithGivenTensorProducts. Back to index.

function ( new_source, morphism_1, morphism_2, new_range )
local new_morphism;
new_morphism := TensorProductOnMorphismsWithGivenTensorProducts
( UnderlyingPresentationObject( new_source ),

UnderlyingPresentationMorphism( morphism_1 ),
UnderlyingPresentationMorphism( morphism_2 ),
UnderlyingPresentationObject( new_range ) );

return GradedPresentationMorphism( new_source, new_morphism,
new_range ) ;

end;

6. Primitive operations for generalized morphisms by cospans

IdentityMorphism. Back to index.

function ( generalized object )
local identity_morphism;
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identity_morphism
:= IdentityMorphism(
UnderlyingHonestObject ( generalized_object ) );
return AsGeneralizedMorphismByCospan( identity_morphism );
end;

PreCompose. Back to index.

function ( morphisml, morphism2 )
local pushout_diagram, injection_left, injection_right;
pushout_diagram
:= [ ReversedArrow( morphisml ), Arrow( morphism2 ) 1];
injection_left := InjectionOfCofactor0fPushout(
pushout _diagram, 1 );
injection_right := Injection0fCofactor0fPushout(
pushout_diagram, 2 );
return
GeneralizedMorphismByCospan( PreCompose( Arrow( morphisml ),
injection_left ), PreCompose( ReversedArrow( morphism2 ),
injection_right ) );
end;

function ( morphisml, morphism2 )
local arrow, reversed_arrow;
arrow := PreCompose( Arrow( morphisml ), Arrow( morphism2 ) );
return AsGeneralizedMorphismByCospan( arrow ) ;

end;

This function uses the following extra filters:

e HasldentityAsReversedArrow for the 1st argument.
e HasldentityAsReversedArrow for the 2nd argument.

function ( morphisml, morphism2 )
local arrow;
arrow := PreCompose( Arrow( morphisml ), Arrow( morphism2 ) );
return GeneralizedMorphismByCospan( arrow,
ReversedArrow( morphism2 ) );

end;

This function uses the following extra filters:
e HasldentityAsReversedArrow for the 1st argument.

ZeroMorphism. Back to index.

function ( objl, obj2 )
local morphism;
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end;
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morphism := ZeroMorphism( UnderlyingHonestObject( objl ),
UnderlyingHonestObject( obj2 ) );
return AsGeneralizedMorphismByCospan( morphism );

IsCongruentForMorphisms. Back to index.

function ( morphisml, morphism2 )

end;

local arrow_tuple, pullback_diagraml, pullback_diagram?2,
subobjectl, subobject2;
arrow_tuple := [ Arrow( morphisml ), ReversedArrow( morphisml )
15
pullback_diagraml
:= [ ProjectionInFactorOfFiberProduct( arrow_tuple, 1 ),
ProjectionInFactorOfFiberProduct( arrow_tuple, 2 ) ];
arrow_tuple := [ Arrow( morphism2 ), ReversedArrow( morphism2 )
15
pullback_diagram?2
:= [ ProjectionInFactorOfFiberProduct( arrow_tuple, 1 ),
ProjectionInFactorOfFiberProduct( arrow_tuple, 2 ) ];
subobjectl := UniversalMorphismIntoDirectSum( pullback_diagraml
)
subobject2 := UniversalMorphismIntoDirectSum( pullback_diagram?2
);
return IsEqualAsSubobjects( subobjectl, subobject2 );

IsEqualForObjects. Back to index.

function ( object_1, object_2 )

end;

return IsEqualForObjects( UnderlyingHonestObject( object_1 ),
UnderlyingHonestObject( object_2 ) );

IsEqualForCacheForObjects. Back to index.

IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.

IsIdenticalObj
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AdditionForMorphisms. Back to index.

function ( morphisml, morphism2 )
local pushout_diagram, pushout_left, pushout_right, arrow,
reversed_arrow;
pushout_diagram
:= [ ReversedArrow( morphisml ), ReversedArrow( morphism2 ) J];

pushout_left := InjectionOfCofactorOfPushout( pushout_diagram,
1);

pushout_right := InjectionOfCofactorOfPushout( pushout_diagram,
2);

arrow := PreCompose( Arrow( morphisml ), pushout_left )
+ PreCompose( Arrow( morphism2 ), pushout_right );

reversed_arrow := PreCompose( pushout_diagram[1], pushout_left );

return GeneralizedMorphismByCospan( arrow, reversed_arrow );
end;

function ( morphisml, morphism2 )
return AsGeneralizedMorphismByCospan( Arrow( morphismil )
+ Arrow( morphism2 ) );
end;

This function uses the following extra filters:

e HasldentityAsReversedArrow for the 1st argument.
e HasldentityAsReversedArrow for the 2nd argument.

AdditivelnverseForMorphisms. Back to index.

function ( morphism )
return GeneralizedMorphismByCospan( - Arrow( morphism ),
ReversedArrow( morphism ) );
end;

function ( morphism )
return AsGeneralizedMorphismByCospan( - Arrow( morphism ) );
end;

This function uses the following extra filters:
e HasldentityAsReversedArrow for the 1st argument.

IsWellDefinedForMorphisms. Back to index.

function ( generalized_morphism )
local category;
category := CapCategory( Arrow( generalized morphism ) );
if
not ForAll(
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[ Arrow( generalized morphism ),
ReversedArrow( generalized_morphism ) ],
function ( x )
return IsIdenticalObj( CapCategory( x ), category );
end ) then
return false;
fi;
if
not ForAll(
[ Arrow( generalized morphism ),
ReversedArrow( generalized_morphism ) ],
IsWellDefined ) then
return false;
fi;
return true;
end;

IsWellDefinedForObjects. Back to index.

function ( object )
return IsWellDefined( UnderlyingHonestObject( object ) );
end;

7. Primitive operations for generalized morphisms by spans

IdentityMorphism. Back to index.

function ( generalized object )
local identity_morphism;
identity_morphism
:= IdentityMorphism(
UnderlyingHonestObject( generalized_object ) );
return AsGeneralizedMorphismBySpan( identity_morphism );
end;

PreCompose. Back to index.

function ( morphisml, morphism2 )
local pullback_diagram, projection_left, projection_right;
pullback_diagram
:= [ Arrow( morphisml ), ReversedArrow( morphism2 ) ];

projection_left := ProjectionInFactorOfFiberProduct (
pullback _diagram, 1 );

projection_right := ProjectionInFactorOfFiberProduct(
pullback diagram, 2 );
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return
GeneralizedMorphismBySpan (
PreCompose( projection_left, ReversedArrow( morphisml ) ),
PreCompose( projection_right, Arrow( morphism2 ) ) );
end;

function ( morphisml, morphism2 )
local arrow;
arrow := PreCompose( Arrow( morphisml ), Arrow( morphism2 ) );
return AsGeneralizedMorphismBySpan( arrow );

end;

This function uses the following extra filters:

e HasldentityAsReversedArrow for the 1st argument.
e HasldentityAsReversedArrow for the 2nd argument.

function ( morphisml, morphism2 )
local arrow;

arrow := PreCompose( Arrow( morphisml ), Arrow( morphism2 ) );
return GeneralizedMorphismBySpan( ReversedArrow( morphisml ),
arrow );

end;

This function uses the following extra filters:
e HasldentityAsReversedArrow for the 2nd argument.

ZeroMorphism. Back to index.

function ( objl, obj2 )
local morphism;
morphism := ZeroMorphism( UnderlyingHonestObject( objl ),
UnderlyingHonestObject( obj2 ) );
return AsGeneralizedMorphismBySpan( morphism );
end;

IsCongruentForMorphisms. Back to index.

function ( morphisml, morphism2 )
local arrow_tuple, pushout_diagraml, pushout_diagram?2,
factorobjectl, factorobject2;
arrow_tuple := [ Arrow( morphisml ), ReversedArrow( morphisml )
15
pushout_diagraml
:= [ Injection0fCofactor0fPushout( arrow_tuple, 1 ),
Injection0fCofactor0fPushout( arrow_tuple, 2 ) ];
arrow_tuple := [ Arrow( morphism2 ), ReversedArrow( morphism2 )
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15
pushout_diagram?2
:= [ InjectionOfCofactorOfPushout( arrow_tuple, 1 ),
InjectionOfCofactor0fPushout( arrow_tuple, 2 ) ];

factorobjectl := UniversalMorphismFromDirectSum(
pushout_diagraml );
factorobject2 := UniversalMorphismFromDirectSum(

pushout_diagram?2 ) ;
return IsEqualAsFactorobjects( factorobjectl, factorobject2 );
end;

IsEqualForObjects. Back to index.

function ( object_1, object_2 )
return IsEqualForObjects( UnderlyingHonestObject( object_1 ),
UnderlyingHonestObject( object_2 ) );

end;

IsEqualForCacheForObjects. Back to index.

IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.

IsIdenticalObj

AdditionForMorphisms. Back to index.

function ( morphisml, morphism2 )
local pullback_diagram, pullback_left, pullback_right, arrow,
reversed_arrow;
pullback_diagram
:= [ ReversedArrow( morphisml ), ReversedArrow( morphism2 ) ];
pullback_left := ProjectionInFactorOfFiberProduct(
pullback_diagram, 1 );
pullback_right := ProjectionInFactorOfFiberProduct (
pullback_diagram, 2 );
arrow := PreCompose( pullback left, Arrow( morphisml ) )
+ PreCompose( pullback right, Arrow( morphism2 ) );
reversed_arrow
:= PreCompose( pullback_left, pullback_diagram[1] );
return GeneralizedMorphismBySpan( reversed_arrow, arrow ) ;
end;
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function ( morphisml, morphism2 )
return AsGeneralizedMorphismBySpan( Arrow( morphisml )
+ Arrow( morphism2 ) );
end;

This function uses the following extra filters:

e HasldentityAsReversedArrow for the 1st argument.
e HasldentityAsReversedArrow for the 2nd argument.

AdditiveInverseForMorphisms. Back to index.

function ( morphism )
return GeneralizedMorphismBySpan( ReversedArrow( morphism ),
- Arrow( morphism ) );
end;

function ( morphism )
return AsGeneralizedMorphismBySpan( - Arrow( morphism ) );
end;

This function uses the following extra filters:
e HasldentityAsReversedArrow for the 1st argument.

IsWellDefinedForMorphisms. Back to index.

function ( generalized morphism )
local category;
category := CapCategory( Arrow( generalized_morphism ) );
if
not ForAll(
[ Arrow( generalized _morphism ),
ReversedArrow( generalized morphism ) ],
function ( x )
return IsIdenticalObj( CapCategory( x ), category );
end ) then
return false;
fi;
if
not ForAll(
[ Arrow( generalized _morphism ),
ReversedArrow( generalized morphism ) ],
IsWellDefined ) then
return false;

fi;
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return true;
end;

IsWellDefinedForObjects. Back to index.

function ( object )
return IsWellDefined( UnderlyingHonestObject( object ) );
end;

8. Primitive operations for generalized morphisms by three arrows

IdentityMorphism. Back to index.

function ( generalized_object )
local identity_morphism;
identity_morphism
:= IdentityMorphism(
UnderlyingHonestObject ( generalized_object ) );
return AsGeneralizedMorphismByThreeArrows( identity_morphism );
end;

PreCompose. Back to index.

function ( morl, mor2 )
return GeneralizedMorphismByThreeArrows( SourceAid( morl ),
PreCompose( Arrow( morl ), Arrow( mor2 ) ), RangeAid( mor2 )
);

end;

This function uses the following extra filters:

e HasldentityAsRangeAid for the 1st argument.
e HasldentityAsSourceAid for the 2nd argument.

function ( morl, mor2 )
local category, pullback_diagram, new_source_aid,
new_morphism_aid;
pullback diagram := [ Arrow( morl ), SourceAid( mor2 ) 1];
new_source_aid

PreCompose( ProjectionInFactorOfFiberProduct( pullback_diagram
, 1), SourceAid( morl ) );
new_morphism_aid

PreCompose( ProjectionInFactorOfFiberProduct( pullback diagram
, 2 ), Arrow( mor2 ) );
return GeneralizedMorphismByThreeArrowsWithSourceAid(
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new_source_aid, new_morphism_aid );
end;

This function uses the following extra filters:

e HasldentityAsRangeAid for the 1st argument.
e HasldentityAsRangeAid for the 2nd argument.

function ( morl, mor2 )
local category, diagram, injection_of_cofactorl,
injection_of cofactor2, new_morphism_aid, new_range_aid;
diagram := [ RangeAid( morl ), Arrow( mor2 ) ];

injection_of_cofactorl := InjectionOfCofactor0fPushout(
diagram, 1 );

injection_of_cofactor2 := InjectionOfCofactor0fPushout(
diagram, 2 );

new_morphism_aid
:= PreCompose( Arrow( morl ), injection_of_cofactorl );
new_range_aid := PreCompose( RangeAid( mor2 ),
injection_of cofactor2 );
return GeneralizedMorphismByThreeArrowsWithRangeAid(
new_morphism_aid, new_range_aid );
end;

This function uses the following extra filters:

e HasldentityAsSourceAid for the 1st argument.
e HasldentityAsSourceAid for the 2nd argument.

function ( morl, mor2 )
local category;
return AsGeneralizedMorphismByThreeArrows (
PreCompose( Arrow( morl ), Arrow( mor2 ) ) );
end;

This function uses the following extra filters:

e HasldentityAsSourceAid for the 1st argument.
e HasldentityAsSourceAid for the 2nd argument.

function ( morl, mor2 )
local generalized _mor_factor_sub, pullback_diagram,
pushout_diagram, new_associated, new_source_aid, new_range_aid;
generalized_mor_factor_sub
:= GeneralizedMorphismFromFactorToSubobjectByThreeArrows (
RangeAid( morl ), SourceAid( mor2 ) );

pullback_diagram
:= [ Arrow( morl ), SourceAid( generalized mor_factor_sub ) ];
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end;
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pushout_diagram
:= [ RangeAid( generalized mor_factor_sub ), Arrow( mor2 ) ];
new_source_aid

PreCompose( ProjectionInFactorOfFiberProduct( pullback_diagram
, 1), SourceAid( morl ) );
new_associated

PreCompose( ProjectionInFactorOfFiberProduct( pullback_diagram
, 2 ), InjectionOfCofactorOfPushout( pushout_diagram, 1 )
)
new_range_aid := PreCompose( RangeAid( mor2 ),
InjectionOfCofactorOfPushout ( pushout_diagram, 2 ) );
return GeneralizedMorphismByThreeArrows( new_source_aid,
new_associated, new_range_aid );

IsCongruentForMorphisms. Back to index.

function ( generalized morphisml, generalized_morphism2 )

local subobjectl, subobject2, factorobjectl, factorobject2,
isomorphism_of_subobjects, isomorphism_of_factorobjects;

subobjectl := DomainOfGeneralizedMorphism(
generalized _morphisml );
subobject2 := DomainOfGeneralizedMorphism(

generalized morphism2 );
if not IsEqualAsSubobjects( subobjectl, subobject2 ) then
return false;
fi;
factorobjectl := Codomain( generalized_morphisml );
factorobject2 := Codomain( generalized_morphism2 ) ;
if not IsEqualAsFactorobjects( factorobjectl, factorobject2 )
then
return false;
fi;
isomorphism_of_subobjects := LiftAlongMonomorphism( subobject2,
subobjectl );
isomorphism_of_factorobjects
:= ColiftAlongEpimorphism( factorobject2, factorobjectl );
return
IsCongruentForMorphisms (
AssociatedMorphism( generalized_morphisml ),
PreCompose( PreCompose( isomorphism_of subobjects,
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AssociatedMorphism( generalized morphism2 ) ),
isomorphism_of factorobjects ) );
end;

IsEqualForObjects. Back to index.

function ( object_1, object_2 )
return IsEqualForObjects( UnderlyingHonestObject( object_1 ),
UnderlyingHonestObject( object_2 ) );
end;

IsEqualForCacheForObjects. Back to index.

IsIdentical(Obj

IsEqualForCacheForMorphisms. Back to index.

IsIdenticalObj

AdditionForMorphisms. Back to index.

function ( morl, mor2 )

local return_value, pullback_of_sourceaids_diagram,
pushout_of_rangeaids_diagram, restricted_morl, restricted_mor2;
pullback_of sourceaids_diagram

:= [ SourceAid( morl ), SourceAid( mor2 ) 1;
pushout_of_rangeaids_diagram

:= [ RangeAid( morl ), RangeAid( mor2 ) 1];
restricted morl

PreCompose( ProjectionInFactorOfFiberProduct(
pullback_of_sourceaids_diagram, 1 ), Arrow( morl ) );

restricted_morl := PreCompose( restricted_moril,
InjectionOfCofactor0fPushout( pushout_of rangeaids_diagram,
1))

restricted_mor2

PreCompose( ProjectionInFactorOfFiberProduct(
pullback_of_sourceaids_diagram, 2 ), Arrow( mor2 ) );
restricted_mor2 := PreCompose( restricted mor2,
InjectionOfCofactorOfPushout ( pushout_of_ rangeaids_diagram,
2));
return_value := GeneralizedMorphismByThreeArrows (
PreCompose( ProjectionInFactor0fFiberProduct (
pullback _of sourceaids_diagram, 1 ), SourceAid( morl ) )
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, restricted_morl + restricted_mor2,
PreCompose( RangeAid( morl ),
InjectionOfCofactorOfPushout ( pushout_of_rangeaids_diagram
;1)) )5
return return_value;
end;

IsWellDefinedForMorphisms. Back to index.

function ( generalized morphism )
local category;
category := CapCategory( SourceAid( generalized_morphism ) );
if
not ForAll(
[ Arrow( generalized_morphism ),
RangeAid( generalized_morphism ) ], function ( x )
return IsIdenticalObj( CapCategory( x ), category );
end ) then
return false;
fi;
if
not ForAll(
[ SourceAid( generalized_morphism ),
Arrow( generalized_morphism ),
RangeAid( generalized_morphism ) ], IsWellDefined )

then
return false;
fi;
return true;
end;

IsWellDefinedForObjects. Back to index.

function ( object )
return IsWellDefined( UnderlyingHonestObject( object ) );
end;

9. Primitive operations for Serre quotient by cospans

IdentityMorphism. Back to index.

function ( object )
return AsSerreQuotientCategoryByCospansMorphism( category,
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IdentityMorphism( UnderlyingHonestObject( object ) ) );
end;

KernelEmbedding. Back to index.

function ( morphism )
local wunderlying general, kernel_mor;
underlying general := UnderlyingGeneralizedMorphism( morphism );
kernel mor := KernelEmbedding( Arrow( underlying general ) );
return AsSerreQuotientCategoryByCospansMorphism( category,
kernel mor );
end;

CokernelProjection. Back to index.

function ( morphism )
local wunderlying general, cokernel mor, triple;
underlying general := UnderlyingGeneralizedMorphism( morphism );
triple := DomainAssociatedMorphismCodomainTriple(
underlying general );
cokernel mor := CokernelProjection( triple([2] );
return AsSerreQuotientCategoryByCospansMorphism( category,
PreCompose( triple[3], cokernel mor ) );
end;

ZeroObject. Back to index.

function ( )
local generalized_zero;
generalized_zero
:= ZeroObject( UnderlyingHonestCategory( category ) );
return AsSerreQuotientCategoryByCospansObject( category,
generalized_zero );
end;

Lift AlongMonomorphism. Back to index.

function ( monomorphism, test_morphism )

local inverse_of _mono, composition;

inverse_of_mono
:= PseudoInverse( UnderlyingGeneralizedMorphism( monomorphism

) )

composition

:= PreCompose( UnderlyingGeneralizedMorphism( test_morphism ),
inverse_of mono );
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return SerreQuotientCategoryByCospansMorphism( category,
composition );
end;

Colift AlongEpimorphism. Back to index.

function ( epimorphism, test_morphism )
local inverse_of epi, composition;
inverse_of_epi
:= PseudoInverse( UnderlyingGeneralizedMorphism( epimorphism )
)
composition
:= PreCompose( inverse_of epi,
UnderlyingGeneralizedMorphism( test_morphism ) );
return SerreQuotientCategoryByCospansMorphism( category,
composition );
end;

PreCompose. Back to index.

function ( morphisml, morphism2 )
local composition;
composition
:= PreCompose( UnderlyingGeneralizedMorphism( morphisml ),
UnderlyingGeneralizedMorphism( morphism2 ) );
return SerreQuotientCategoryByCospansMorphism( category,
composition );
end;

ZeroMorphism. Back to index.

function ( source, range )
local new_general;
new_general
:= ZeroMorphism( UnderlyingGeneralizedObject( source ),
UnderlyingGeneralizedObject( range ) );
return SerreQuotientCategoryByCospansMorphism( category,
new_general );
end;

DirectSum. Back to index.

function ( obj_list )
local honest_list, honest_sum;
honest_list := List( obj_list, UnderlyingHonestObject );
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honest_sum := CallFuncList( DirectSum, honest list );
return AsSerreQuotientCategoryByCospansObject( category,
honest _sum );
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local wunderlying objects, underlying direct_sum,
honest_projection;
underlying objects
:= List( product_object, UnderlyingHonestObject );
underlying _direct_sum
:= UnderlyingHonestObject( direct_sum_object );
honest_projection
:= ProjectionInFactor0fDirectSumWithGivenDirectSum(
underlying objects, component_number, underlying direct_sum );
return AsSerreQuotientCategoryByCospansMorphism( category,
honest_projection );
end;

UniversalMorphismIntoDirectSum. Back to index.

function ( diagram, morphism_list )
local generalized_list, arrow_list, reversedarrow_list,
new_arrow, new_reversed_arrow, object_list;
generalized_list
:= List( morphism_list, UnderlyingGeneralizedMorphism ) ;
arrow_list := List( generalized list, Arrow );
new_arrow := UniversalMorphismIntoDirectSum(
List( arrow_list, Range ), arrow_list );
reversedarrow_list := List( generalized_list, ReversedArrow );
new_reversed_arrow := DirectSumFunctorial( reversedarrow_list );
return SerreQuotientCategoryByCospansMorphism( category,
new_arrow, new_reversed_arrow ) ;
end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.

function ( object_product_list, injection_number, direct_sum_object
)
local wunderlying objects, underlying direct_sum,
honest_injection;
underlying objects
:= List( object_product_list, UnderlyingHonestObject );
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underlying direct_sum
:= UnderlyingHonestObject( direct_sum_object );
honest_injection
:= AddInjectionOfCofactor0fDirectSumWithGivenDirectSum(
underlying objects, injection_number, underlying direct_sum );
return AsSerreQuotientCategoryByCospansMorphism( category,
honest_injection );
end;

UniversalMorphismFromDirectSum. Back to index.

function ( diagram, morphism_list )

local generalized_list, arrow_list, reversedarrow_list,
new_arrow, new_reversed_arrow, object_list;
generalized_list

:= List( morphism_list, UnderlyingGeneralizedMorphism );
generalized_list := CommonCoastriction( generalized_list );
arrow_list := List( generalized_list, Arrow );
new_arrow := UniversalMorphismFromDirectSum(

List( diagram, UnderlyingHonestObject ), arrow_list );
new_reversed_arrow := ReversedArrow( generalized list[1] );
return SerreQuotientCategoryByCospansMorphism( category,

new_arrow, new_reversed_arrow ) ;

end;

IsCongruentForMorphisms. Back to index.

function ( morphisml, morphism2 )
local wunderlying general, new_morphism_aid, new_general,
sum_general, sum_associated, sum_image;
new_general := AdditiveInverse( underlying general );
sum_general
:= AdditionForMorphisms(

UnderlyingGeneralizedMorphism( morphisml ), new_general );
sum_associated := AssociatedMorphism( sum_general );
sum_image := ImageObject( sum_associated );
return membership function( sum_image );

end;

IsEqualForObjects. Back to index.

function ( objl, obj2 )
return IsEqualForObjects( UnderlyingHonestObject( objl ),



10. PRIMITIVE OPERATIONS 361

UnderlyingHonestObject( obj2 ) );
end;

AdditionForMorphisms. Back to index.

function ( morphisml, morphism2 )
local sum;
sum
:= AdditionForMorphisms(
UnderlyingGeneralizedMorphism( morphisml ),
UnderlyingGeneralizedMorphism( morphism2 ) );
return SerreQuotientCategoryByCospansMorphism( category, sum );
end;

AdditivelnverseForMorphisms. Back to index.

function ( morphism )
local new_general,;
new_general := AdditiveInverseForMorphisms(
UnderlyingGeneralizedMorphism( morphism ) );
return SerreQuotientCategoryByCospansMorphism( category,
new_general );
end;

IsZeroForObjects. Back to index.

function ( obj )
return membership function( UnderlyingHonestObject( obj ) );
end;

10. Primitive operations for Serre quotient by spans

InverseImmutable. Back to index.

function ( morphism )
local wunderlying general, inverse;
underlying general := UnderlyingGeneralizedMorphism( morphism );
inverse := PseudoInverse( underlying_general );
return SerreQuotientCategoryBySpansMorphism( category, inverse );
end;

IdentityMorphism. Back to index.

function ( object )
return AsSerreQuotientCategoryBySpansMorphism( category,
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IdentityMorphism( UnderlyingHonestObject( object ) ) );
end;

KernelEmbedding. Back to index.

function ( morphism )
local wunderlying general, kernel mor;
underlying general := UnderlyingGeneralizedMorphism( morphism );
kernel mor := KernelEmbedding( Arrow( underlying general ) );
return AsSerreQuotientCategoryBySpansMorphism( category,
PreCompose( kernel _mor, ReversedArrow( underlying general )

) )

end;

CokernelProjection. Back to index.

function ( morphism )
local wunderlying general, cokernel mor;

underlying general := UnderlyingGeneralizedMorphism( morphism );
cokernel_mor := CokernelProjection( Arrow( underlying_general )
)

return AsSerreQuotientCategoryBySpansMorphism( category,
cokernel mor );

end;

ZeroObject. Back to index.

function ( )
local generalized_zero;
generalized_zero
:= ZeroObject( UnderlyingHonestCategory( category ) );
return AsSerreQuotientCategoryBySpansObject( category,
generalized zero );
end;

DualOnObjects. Back to index.

function ( object )
return AsSerreQuotientCategoryBySpansObject( category,
DualOnObjects( UnderlyingHonestObject( object ) ) );
end;
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Lift AlongMonomorphism. Back to index.

function ( monomorphism, test_morphism )
local inverse_of mono, composition;
inverse_of mono
:= PseudoInverse( UnderlyingGeneralizedMorphism( monomorphism
) )
composition
:= PreCompose( UnderlyingGeneralizedMorphism( test_morphism ),
inverse of mono );
return SerreQuotientCategoryBySpansMorphism( category,
composition );
end;

Colift AlongEpimorphism. Back to index.

function ( epimorphism, test_morphism )
local inverse_of epi, composition;
inverse_of_epi
:= PseudoInverse( UnderlyingGeneralizedMorphism( epimorphism )
)
composition
:= PreCompose( inverse_of_epi,
UnderlyingGeneralizedMorphism( test_morphism ) );
return SerreQuotientCategoryBySpansMorphism( category,
composition );
end;

Lift. Back to index.

function ( test_morphism, monomorphism )
local inverse_of _mono, composition;

test_morphism := UnderlyingGeneralizedMorphism( test_morphism ) ;
monomorphism := UnderlyingGeneralizedMorphism( monomorphism ) ;
if not IsHonest( test_morphism ) or not IsHonest( monomorphism )
then
return fail;
fi;
test_morphism := HonestRepresentative( test_morphism );
monomorphism := HonestRepresentative( monomorphism ) ;
composition := Lift( test_morphism, monomorphism );

if composition = fail then
return fail;
fi;
return AsSerreQuotientCategoryBySpansMorphism( category,
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composition );
end;

PreCompose. Back to index.

function ( morphisml, morphism2 )
local composition;
composition
:= PreCompose( UnderlyingGeneralizedMorphism( morphisml ),
UnderlyingGeneralizedMorphism( morphism2 ) );
return SerreQuotientCategoryBySpansMorphism( category,
composition );
end;

ZeroMorphism. Back to index.

function ( source, range )
local new_general;
new_general := ZeroMorphism( UnderlyingHonestObject( source ),
UnderlyingHonestObject( range ) );
return AsSerreQuotientCategoryBySpansMorphism( category,
new_general );
end;

DirectSum. Back to index.

function ( obj_list )
local honest_list, honest_sum;
honest_list := List( obj_list, UnderlyingHonestObject );
honest_sum := DirectSum( honest_list );
return AsSerreQuotientCategoryBySpansObject( category,
honest_sum );
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local wunderlying objects, honest_projection;
underlying objects
:= List( product_object, UnderlyingHonestObject );

honest_projection := ProjectionInFactorOfDirectSum(
underlying objects, component_number );

return AsSerreQuotientCategoryBySpansMorphism( category,
honest_projection );

end;
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UniversalMorphismIntoDirectSum. Back to index.

function ( diagram, morphism_list )
local generalized_list, arrow_list, reversedarrow_list,
new_arrow, new_reversed_arrow, object_list;

generalized_list
:= List( morphism_list, UnderlyingGeneralizedMorphism );

generalized_list := CommonRestriction( generalized list );
new_reversed_arrow := ReversedArrow( generalized list[1] );
arrow_list := List( generalized_list, Arrow );

new_arrow := UniversalMorphismIntoDirectSum(

List( diagram, UnderlyingHonestObject ), arrow_list );
return SerreQuotientCategoryBySpansMorphism( category,
new_reversed_arrow, new_arrow );
end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.

function ( object_product_list, injection_number, direct_sum_object
)
local wunderlying objects, honest_injection;
underlying objects
:= List( object_product_list, UnderlyingHonestObject );
honest_injection := InjectionOfCofactorO0fDirectSum(
underlying objects, injection_number );
return AsSerreQuotientCategoryBySpansMorphism( category,
honest_injection );

end;

UniversalMorphismFromDirectSum. Back to index.

function ( diagram, morphism_list )
local generalized_list, arrow_list, reversedarrow_list,
new_arrow, new_reversed_arrow, object_list;
generalized_list

:= List( morphism_list, UnderlyingGeneralizedMorphism ) ;

arrow_list := List( generalized_list, Arrow );
reversedarrow_list := List( generalized_list, ReversedArrow );
new_arrow := UniversalMorphismFromDirectSum(

List( arrow_list, Source ), arrow_list );
new_reversed_arrow := DirectSumFunctorial( reversedarrow_list );
return SerreQuotientCategoryBySpansMorphism( category,

new_reversed_arrow, new_arrow );

end;
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IsCongruentForMorphisms. Back to index.

function ( morphisml, morphism2 )
local wunderlying general, new_general, sum_general,
sum_associated, sum_image;
underlying general := UnderlyingGeneralizedMorphism( morphism2 ) ;
new_general := AdditiveInverse( underlying general );
sum_general
:= AdditionForMorphisms (

UnderlyingGeneralizedMorphism( morphisml ), new_general );
sum_associated := AssociatedMorphism( sum_general );
sum_image := ImageObject( sum_associated );
return membership function( sum_image );

end;

IsEqualForObjects. Back to index.

function ( objl, obj2 )
return IsEqualForObjects( UnderlyingHonestObject( objl ),
UnderlyingHonestObject( obj2 ) );
end;

IsEqualForCacheForObjects. Back to index.

IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.

IsIdenticalObj

AdditionForMorphisms. Back to index.

function ( morphisml, morphism2 )
local wunderlying generalized, common_restriction, new_arrow;

underlying generalized := List( [ morphisml, morphism2 ],
UnderlyingGeneralizedMorphism ) ;

common_restriction := CommonRestriction( underlying generalized
)

new_arrow := Arrow( common restriction[1] )

+ Arrow( common restriction[2] );
return SerreQuotientCategoryBySpansMorphism( category,
ReversedArrow( common restriction[1] ), new_arrow );

end;
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AdditivelnverseForMorphisms. Back to index.

function ( morphism )
local general;
general := UnderlyingGeneralizedMorphism( morphism );
return SerreQuotientCategoryBySpansMorphism( category,
ReversedArrow( general ), - Arrow( general ) );
end;

IsZeroForObjects. Back to index.

function ( obj )
return membership_function( UnderlyingHonestObject( obj ) );
end;

DualOnMorphismsWithGivenDuals. Back to index.

function ( new_source, morphism, new_range )
local arrow, reversed_arrow, new_arrow, new_reversed_arrow;
arrow := Arrow( UnderlyingGeneralizedMorphism( morphism ) );
reversed_arrow
:= ReversedArrow( UnderlyingGeneralizedMorphism( morphism ) );
arrow := DualOnMorphisms( arrow );
reversed_arrow := DualOnMorphisms( reversed_arrow ) ;
new_reversed_arrow := ProjectionInFactorOfFiberProduct (
[ reversed arrow, arrow ], 2 );
new_arrow := ProjectionInFactorOfFiberProduct (
[ reversed_arrow, arrow ], 1 );
return SerreQuotientCategoryBySpansMorphism( category,
new_reversed_arrow, new_arrow );
end;

11. Primitive operations for Serre quotient by three arrows

IdentityMorphism. Back to index.

function ( object )
return AsSerreQuotientCategoryByThreeArrowsMorphism( category,
IdentityMorphism( UnderlyingHonestObject( object ) ) );
end;

KernelEmbedding. Back to index.

function ( morphism )
local wunderlying general, kernel mor;
underlying general := UnderlyingGeneralizedMorphism( morphism );
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kernel mor
:= KernelEmbedding( AssociatedMorphism( underlying general ) );
kernel mor
:= PreCompose( kernel _mor,
DomainOfGeneralizedMorphism( underlying general ) );
return AsSerreQuotientCategoryByThreeArrowsMorphism( category,
kernel mor );
end;

CokernelProjection. Back to index.

function ( morphism )
local wunderlying general, cokernel mor;
underlying general := UnderlyingGeneralizedMorphism( morphism );
cokernel mor
:= CokernelProjection( AssociatedMorphism( underlying general
) )
cokernel_mor := PreCompose( Codomain( underlying general ),
cokernel mor );
return AsSerreQuotientCategoryByThreeArrowsMorphism( category,
cokernel mor );
end;

ZeroObject. Back to index.

function ( )
local generalized_zero;
generalized_zero
:= ZeroObject( UnderlyingHonestCategory( category ) );
return AsSerreQuotientCategoryByThreeArrowsObject( category,
generalized _zero );
end;

Lift AlongMonomorphism. Back to index.

function ( monomorphism, test_morphism )
local inverse_of _mono, composition;
inverse_of mono
:= PseudoInverse( UnderlyingGeneralizedMorphism( monomorphism
) )
composition
:= PreCompose( UnderlyingGeneralizedMorphism( test_morphism ),
inverse_of mono );
return SerreQuotientCategoryByThreeArrowsMorphism( category,




11. PRIMITIVE OPERATIONS 369

composition );
end;

Colift AlongEpimorphism. Back to index.

function ( epimorphism, test_morphism )
local inverse_of epi, composition;
inverse_of_epi
:= PseudoInverse( UnderlyingGeneralizedMorphism( epimorphism )
)
composition
:= PreCompose( inverse_of epi,
UnderlyingGeneralizedMorphism( test_morphism ) );
return SerreQuotientCategoryByThreeArrowsMorphism( category,
composition );
end;

PreCompose. Back to index.

function ( morphisml, morphism2 )
local composition;
composition
:= PreCompose( UnderlyingGeneralizedMorphism( morphisml ),
UnderlyingGeneralizedMorphism( morphism2 ) );
return SerreQuotientCategoryByThreeArrowsMorphism( category,
composition );
end;

ZeroMorphism. Back to index.

function ( source, range )
local source_aid, range_aid, morphism_aid;
source := UnderlyingHonestObject( source );
range := UnderlyingHonestObject( range );
source_aid := IdentityMorphism( source );
range_aid := IdentityMorphism( range );
morphism_aid := ZeroMorphism( source, range );
return SerreQuotientCategoryByThreeArrowsMorphism( category,
source_aid, morphism_aid, range_aid );
end;

DirectSum. Back to index.

function ( obj_list )
local honest _list, honest_sum;
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honest_list := List( obj_list, UnderlyingGeneralizedObject );
honest_sum := CallFuncList( DirectSum, honest_list );
return AsSerreQuotientCategoryByThreeArrowsObject( category,
UnderlyingHonestObject ( honest_sum ) );
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.

function ( product_object, component number, direct_sum_object )
local wunderlying objects, underlying direct_sum,
honest_projection;
underlying objects
:= List( product_object, UnderlyingHonestObject );
underlying direct_sum
:= UnderlyingHonestObject( direct_sum_object );
honest_projection
:= ProjectionInFactorOfDirectSumWithGivenDirectSum(
underlying objects, component_number, underlying direct_sum );
return AsSerreQuotientCategoryByThreeArrowsMorphism( category,
honest_projection );
end;

UniversalMorphismIntoDirectSum. Back to index.

function ( diagram, morphism_list )
local generalized_morphisms, source_aid, associated,
range_aid, associated_list;
generalized _morphisms
:= List( morphism_list, UnderlyingGeneralizedMorphism );
generalized_morphisms
:= CommonRestriction( generalized morphisms );

generalized _morphisms := List( generalized_morphisms,
DomainAssociatedMorphismCodomainTriple );
source_aid := generalized morphisms([1][1];
associated_list := List( generalized morphisms, function ( i )
return i[2];
end );
associated := UniversalMorphismIntoDirectSum( associated_list );
range_aid

:= DirectSumFunctorial(
List( generalized morphisms, function ( i )
return i[3];
end ) );
return SerreQuotientCategoryByThreeArrowsMorphism( category,
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source_aid, associated, range_aid );
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InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.

func

end;

tion ( object_product_list, injection_number, direct_sum_object
)
local wunderlying objects, underlying direct_sum,
honest_injection;
underlying objects
:= List( object_product_list, UnderlyingHonestObject );
underlying direct_sum
:= UnderlyingHonestObject( direct_sum_object );
honest_injection
:= AddInjectionOfCofactor0fDirectSumWithGivenDirectSum(
underlying objects, injection_number, underlying direct_sum );
return AsSerreQuotientCategoryByThreeArrowsMorphism( category,
honest_injection );

UniversalMorphismFromDirectSum. Back to index.

function ( diagram, morphism_list )

end;

local generalized_morphisms, source_aid, associated, range_aid;
generalized_morphisms
:= List( morphism_list, UnderlyingGeneralizedMorphism ) ;
generalized_morphisms
:= CommonCoastriction( generalized_morphisms );
generalized _morphisms := List( generalized_morphisms,
DomainAssociatedMorphismCodomainTriple );
range_aid := generalized morphisms[1][3];
associated := UniversalMorphismFromDirectSum(
List( generalized morphisms, function ( i )
return i[2];
end ) );
source_aid
:= DirectSumFunctorial(
List( generalized morphisms, function ( i )
return i[1];
end ) );
return SerreQuotientCategoryByThreeArrowsMorphism( category,
source_aid, associated, range _aid );
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IsCongruentForMorphisms. Back to index.

function ( morphisml, morphism2 )
local wunderlying general, new_morphism_aid, new_general,
sum_general, sum_associated, sum_image;
underlying general := UnderlyingGeneralizedMorphism( morphism2 ) ;
new_morphism_aid
:= AdditivelInverse( Arrow( underlying general ) );
new_general := GeneralizedMorphismByThreeArrows(

SourceAid( underlying general ), new_morphism_aid,

RangeAid( underlying general ) );
sum_general

:= AdditionForMorphisms(

UnderlyingGeneralizedMorphism( morphisml ), new_general );
sum_associated := AssociatedMorphism( sum_general );
sum_image := ImageObject( sum_associated );
return membership function( sum_image );

end;

IsEqualForObjects. Back to index.

function ( objl, obj2 )
return IsEqualForObjects( UnderlyingHonestObject( objl ),
UnderlyingHonestObject( obj2 ) );
end;

IsZeroForMorphisms. Back to index.

function ( morphism )
local associated, image;
associated
:= AssociatedMorphism( UnderlyingGeneralizedMorphism( morphism
) )
image := ImageObject( associated );
return membership function( image );
end;

AdditionForMorphisms. Back to index.

function ( morphisml, morphism2 )
local sum;
sum
:= AdditionForMorphisms(
UnderlyingGeneralizedMorphism( morphisml ),
UnderlyingGeneralizedMorphism( morphism2 ) );
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return SerreQuotientCategoryByThreeArrowsMorphism( category,
sum ) ;
end;

AdditivelnverseForMorphisms. Back to index.

function ( morphism )
local wunderlying general, new_morphism_aid, new_general;
underlying general := UnderlyingGeneralizedMorphism( morphism );
new_morphism_aid
:= AdditivelInverse( Arrow( underlying general ) );
new_general := GeneralizedMorphismByThreeArrows (
SourceAid( underlying general ), new_morphism_aid,
RangeAid( underlying general ) );
return SerreQuotientCategoryByThreeArrowsMorphism( category,
new_general );
end;

IsZeroForObjects. Back to index.

function ( obj )
return membership_function( UnderlyingHonestObject( obj ) );

end;







APPENDIX G

Application code

In this appendix the code for the algorithms used in Chapter VI is displayed.

1. Function ResolutionFunctor

function ( source_category, kernel_hull function, complex )
local functor, object_function, morphism_function,
recursion_function, constructor, category_constructor;
if complex then
constructor := AsComplex;
category_constructor := ComplexCategory;
else
constructor := AsCocomplex;
category_constructor := CocomplexCategory;
fi;
functor
:= CapFunctor( Concatenation( "ResolutionFunctor for ",
Name ( source_category ) ), source_category,
category_constructor( source_category ) );
recursion_function := function ( morphism )
local kernel emb, kernel, cover;
kernel_emb := KernelEmbedding( morphism );
kernel := Source( kernel emb );
cover := kernel hull function( kernel );
return PreCompose( cover, kernel emb );
end;
object_function := function ( object )
local initial_morphism, z_functor;
initial morphism := kernel_hull_function( object );
z_functor
:= ZFunctorObjectByInitialMorphismAndRecursiveFunction(
initial morphism, recursion_function, 0 );
return constructor( z_functor );
end;
AddObjectFunction( functor, object_function );

375
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return functor;
end;

2. Function ResolutionFunctorToComplex

function ( cat, func )
return ResolutionFunctor( cat, func, true );
end;

3. Function ResolutionFunctorToCocomplex

function ( cat, func )
return ResolutionFunctor( cat, func, false );
end;

4. Function FreeResolutionComplex

function ( module )
return ResolutionTo( module, CoverByProjective, true );
end;

5. Function FreeResolutionCocomplex

function ( module )
return ResolutionTo( module, CoverByProjective, false );
end;

6. Function ResolutionTo

function ( object, kernel hull_ function, as_complex )
local z_functor, complex, object_function, morphism_function,
complex_constructor, connection_morphism;
z_functor := ZFunctorObject( ReturnTrue, ReturnTrue,
CapCategory( object ) );
if as_complex = true then
complex_constructor := AsComplex;
else
complex_constructor := AsCocomplex;
fi;
complex := complex_constructor( z_functor );
connection_morphism := kernel hull function( object );
object_function := function ( i )
return Source( Differential( z_ functor, i ) );
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end;
morphism_function := function ( i )
local kernel;
if 1 = 0 then
return UniversalMorphismIntoZeroObject(
Source( connection_morphism ) );
elif i = -1 then
kernel := KernelEmbedding( connection_morphism );
return
PreCompose( kernel hull function( Source( kernel ) )
, kernel );
elif i < -1 then
kernel
:= KernelEmbedding( Differential( z_functor, i + 1 )
)
return
PreCompose( kernel hull function( Source( kernel ) )
, kernel );
else
return
IdentityMorphism( ZeroObject( CapCategory( object )
) )
fi;
return;
end;
z_functor!.object_func := object_function;
z_functor!.differential_func := morphism_function;

return [ complex, connection_morphism J];
end;

7. Function CAP INTERNAL HORSE SHOE HELPER

function ( left_diff i, right diff i, eps_prime, eps, eps_2prime,
pi, iota )
local ker_eps_prime, ker_eps, ker_eps_2prime,
eps_prime_1 _to_ker, eps_2prime_1 to_ker, iotal, piO,
ker_eps_prime_to_eps, ker_eps_to_eps_2prime, first_morphism,
second_morphism, sum_morphism, differential morphism,
range_left_diff, range_right_ diff;
ker_eps_prime := KernelEmbedding( eps_prime );
ker_eps := KernelEmbedding( eps );
ker eps_2prime := KernelEmbedding( eps_2prime );
eps_prime_1 to_ker := KernellLift( eps_prime, left diff i );
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eps_2prime_1 to_ker := KernelLift( eps_2prime, right diff i );
range _left diff := Range( left diff i );
range_right_diff := Range( right_diff i );
iota0 := InjectionOfCofactor0fDirectSum(
[ range left_diff, range right diff ], 1 );
pi0 := ProjectionInFactorOfDirectSum(
[ range left_diff, range right diff ], 2 );
ker_eps_prime_to_eps
:= KernellLift( eps, PreCompose( ker_eps_prime, iotal ) );
ker_eps_to_eps_2prime
:= KernellLift( eps_2prime, PreCompose( ker_eps, pi0 ) );
first morphism := PreCompose( eps_prime_1_to_ker,
ker _eps_prime_to_eps );
second_morphism
:= Lift( eps_2prime_1_to_ker, ker_eps_to_eps_2prime );
sum_morphism := UniversalMorphismFromDirectSum(
[ first_morphism, second_morphism ] );
differential morphism := PreCompose( sum_morphism, ker eps );
return differential morphism;
end;

8. Function HorseShoeLemma

function ( left_complex, right complex, eps_prime, iota, pi,
eps_2prime )
local middle_z_ functor, middle_complex,
kernel resolution_morphism, cokernel resolution_morphism,
object_function, helper_function, morphism_function;

middle_z_functor := ZFunctorObject( ReturnTrue, ReturnTrue,
CapCategory( eps_prime ) );

middle_complex := AsCocomplex( middle_z_ functor );

kernel resolution_morphism := function ( i )

return InjectionOfCofactorO0fDirectSum(
[ left_complex[i], right_complex[i] ], 1 );
end;
cokernel resolution morphism := function ( i )
return
ProjectionInFactorOfDirectSum(
[ left_complex[i], right_complex[i] ], 2 );
end;
kernel resolution_morphism
:= CochainMap( left_complex, kernel resolution_morphism,
middle_complex );
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cokernel resolution_morphism
:= CochainMap( middle_complex, cokernel resolution_morphism,
right_complex );
object_function := function ( i )
return DirectSum( [ left_complex[i], right_ complex[i] ] );

end;
morphism_function := function ( i )
local eps;
if i > 0 then
return
IdentityMorphism(
ZeroObject ( CapCategory( eps_prime ) ) );
fi;
if i = 0 then
return UniversalMorphismIntoZeroQObject(
middle_complex[0] );
fi;
if 1 = -1 then
eps := Lift( eps_2prime, pi );
eps := UniversalMorphismFromDirectSum(
[ PreCompose( eps_prime, iota ), eps 1 );
return CAP_INTERNAL_ HORSE SHOE_HELPER(
Differential( left_complex, -1 ),
Differential( right_complex, -1 ), eps_prime, eps,
eps_2prime, pi, iota );
else
return CAP_INTERNAL HORSE SHOE_HELPER(
Differential( left_complex, i ),
Differential( right_complex, i ),
Differential( left_complex, i + 1 ),
Differential( middle_complex, i + 1 ),
Differential( right_complex, i + 1 ),
kernel resolution morphism[i + 1],
cokernel resolution_morphism[i + 1] );
fi;
return;
end;
middle_z_functor!.object_func := object_function;
middle_z_functor!.differential func := morphism_function;
return

[ middle_complex, kernel resolution_morphism,
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cokernel resolution _morphism ];

end;

9. Function CartanEilenbergResolution

local

end;

function ( complex, projective_resolution_function )

object_function, morphism_function, bicomplex,

helper_function, bicomplex_z_func;

bicomplex_z_func := ZFunctorObject( ReturnTrue, ReturnTrue,
CapCategory( complex ) );

bicomplex := AsCocomplex( bicomplex_z_func );

helper_ function := function ( i )

local delta_iml, delta_i, first_morphism,

second_morphism, first_complex, second_complex,

horse_shoe, third morphism, fourth_morphism,

third_complex, second_horse_shoe, eps;

delta_iml := Differential( complex, i - 1 );

delta_i := Differential( complex, i );

first_morphism

:= KernelLift( delta_i, ImageEmbedding( delta_iml ) );

second_morphism := CokernelProjection( first_morphism ) ;

first_complex := projective_resolution_function(
Source( first_morphism ) );

second_complex := projective_resolution_function(
Range( second_morphism ) );

horse_shoe := HorseShoeLemma( first_complex[1],
second_complex[1], first_complex[2], first_morphism,
second_morphism, second_complex[2] );

third_morphism := KernelEmbedding( delta_i );

fourth_morphism := CoastrictionToImage( delta_i );

eps := Lift( second_complex[2], second morphism );

eps := UniversalMorphismFromDirectSum(
[ PreCompose( first complex[2], first_morphism ), eps

1);

third_complex := projective_resolution_function(
Range ( fourth_morphism ) );

second_horse_shoe := HorseShoeLemma( horse_shoe[1],
third_complex[1], eps, third_morphism,
fourth_morphism, third_complex[2] );

return [ horse_shoe, second_horse_shoe ];

object_function := function ( i )

local those_boots, return_complex, old_diff func,
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underlying cell;

those_boots := helper_function( i );

return_complex := those_boots[2][1];

if 1 mod 2 =1 then
underlying cell

:= UnderlyingZFunctorCell( return_complex );
old_diff func := underlying cell!.differential_func;
underlying cell!.differential func := function ( i )
return - old _diff func( i );

end;
fi;
return return_complex;
end;
morphism_function := function ( i )

local those bootsl, those boots2;
those_bootsl := helper_function( i );
those_boots2 := helper_function( i + 1 );
return PreCompose( those_boots1[2][3],
PreCompose( those_boots2[1] [2], those_boots2[2][2] ) );

end;
bicomplex_z_func!.object_func := object_function;
bicomplex_z_ func!.differential func := morphism_function;
return bicomplex;

end;
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10. Function DualOnComplex

function ( complex )
local object_func, morphism_func;
object_func := function ( i )
return DualOnObjects( complex[i] );
end;
morphism_func := function ( i )
return DualOnMorphisms( Differential( complex, i + 1 ) );
end;
return
AsCocomplex( ZFunctorObject( object_func, morphism_func,
UnderlyingCategory( CapCategory( complex ) ) ) );
end;
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11. Function DualOnCocomplex

function ( cocomplex )
local object_func, morphism_func, id_of_object;

object_func := function ( i )
return DualOnObjects( cocomplex[- i] );
end;
morphism_func := function ( i )
return
DualOnMorphisms( Differential( cocomplex, - i - 1 ) );
end;
return

AsComplex( ZFunctorObject( object_func, morphism_func,
UnderlyingCategory( CapCategory( cocomplex ) ) ) );
end;

12. Function DualOnCochainMap

function ( cochain_map, new_source, new_range )
local 1id_of_object, morphism_func;
morphism_func := function ( i )
return DualOnMorphisms( cochain_map[i] );
end;
return ChainMap( new_source, morphism_func, new_range );
end;

13. Function DualOnCocomplexCocomplex

function ( cocomplex )
local object_func, morphism_func, id_of_object, new_complex,
new_z_functor;
new_z_functor := ZFunctorObject( ReturnTrue, ReturnTrue,
ComplexCategory(
UnderlyingCategory (
UnderlyingCategory( CapCategory( cocomplex ) ) ) ) );
new_complex := AsComplex( new_z_functor );

object_func := function ( i )
return DualOnCocomplex( cocomplex[- i] );
end;
new_z_functor!.object_func := object_func;
morphism_func := function ( i )
return

DualOnCochainMap( Differential( cocomplex, - i - 1 ),
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new_complex[i], new_complex[i - 1] );
end;
new_z_functor!.differential_func := morphism_func;
return new_complex;
end;
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14. Function TransposeComplexOfComplex

function ( complex )
local new_total_complex, new_z_functor, object_func,
morphism_func;
new_z_functor := ZFunctorObject( ReturnTrue, ReturnTrue,
UnderlyingCategory( CapCategory( complex ) ) );
new_total complex := AsComplex( new_z_functor );
object_func := function ( i )
local object_func, morphism_func;
object_func := function ( j )
return complex[- jl[- i];
end;
morphism_func := function ( j )
return Differential( complex, - j )[- i];
end;
return
AsComplex( ZFunctorObject( object_func, morphism_func,
UnderlyingCategory(
UnderlyingCategory( CapCategory( complex ) ) ) ) );
end;
morphism_func := function ( i )
local morphism_func;
morphism_func := function ( j )
return Differential( complex[jl, - i );
end;
return ChainMap( new_total complex[- i], morphism_func,
new_total_complex[- i + 1] );
end;
new_z_functor!.object_func := object_func;
new_z_functor!.differential_func := morphism_func;
return new_total_complex;
end;
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15. Function ResolutionLength

function ( complex )

end;

local 1i;

i :=0;

while not IsZero( complex[i] ) do
i:=1i+1;

od;

return i;

16. Function TotalComplexOfBicomplex

function ( bicomplex, length )

local object_function, morphism_function, z_functor_object,
new_complex;

z_functor_object := ZFunctorObject( ReturnTrue, ReturnTrue,
UnderlyingCategory(
UnderlyingCategory( CapCategory( bicomplex ) ) ) );
new_complex := AsComplex( z_functor_object );
morphism_function := function ( i )

local source_summands, range_summands, nr_range_summands
, nr_source_summands, source_projections,

range_injections, horizontal morphisms, vertical_morphisms
, end_horizontal, end vertical;

i:= - 1i;
nr_source_summands := length - i + 1;
nr_range_summands := length - i + 1 + 1;

source_summands
:= List( [ O .. length - i ], function ( j )
return bicomplex[j + il[- jl;
end );
range_summands := List( [ 0 .. length - i + 1 ],
function ( j )
return bicomplex[j + i - 1]1[- jl;

end );
source_projections := List( [ 1 .. nr_source_summands ],
function ( j )
return
ProjectionInFactorOfDirectSum( source_summands,
j);
end );

range _injections := List( [ 1 .. nr_range summands ],




end;

16. FUNCTION TOTALCOMPLEXOFBICOMPLEX

function ( j )
return InjectionOfCofactorOfDirectSum(
range_summands, j );
end );
horizontal morphisms
:= List( [ O .. length - i ], function ( j )
return Differential( bicomplex, j + i )[- jl;
end );
vertical_morphisms
:= List( [ O .. length - i ], function ( j )
return Differential( bicomplex[j + i], - j );
end );
horizontal morphisms
:= List( [ 1 .. Length( horizontal_morphisms ) ],
function ( j )
return PreCompose( source_projections[j],
horizontal morphisms[j] );
end );
vertical_morphisms
:= List( [ 1 .. Length( vertical morphisms ) ],
function ( j )
return PreCompose( source_projections[j],
vertical_morphisms[j] );
end );
horizontal morphisms
:= List( [ 1 .. Length( horizontal morphisms ) ],
function ( j )
return PreCompose( horizontal morphisms[j],
range_injections[j] );
end );
vertical_morphisms
:= List( [ 1 .. Length( vertical_morphisms ) ],
function ( j )
return PreCompose( vertical morphisms[j],
range_injections[j + 1] );
end );
end_horizontal := Sum( horizontal morphisms );
end_vertical := Sum( vertical morphisms );
return end_horizontal + end_vertical;

object_function := function ( i )

1 := - 1;
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return
DirectSum( List( [ O .. length - i ], function ( j )
return bicomplex[j + il[- jl;

end ) );
end;
z_functor_object!.differential_func := morphism_function;
z_functor_object!.object_func := object_function;

return new_complex;
end;

17. Function EmbeddingInObjectOfTotalComplex

function ( bicomplex, length, position, embedding number )
local object_list;
object_list := List( [ 0 .. length - position ], function ( j )
return bicomplex[j + position] [- j];
end );
return InjectionOfCofactorOfDirectSum( object_list,
embedding number );
end;

18. Function
ConnectingMorphismFromCocomplexToCartanEilenbergResolution

function ( cocomplex, position, projective_resolution_function )
local delta_iml, delta_i, first_morphism, second_morphism,
first_complex, second_complex, third_morphism, third_complex,
fourth_morphism, eps, eps2;
delta_iml := Differential( cocomplex, position - 1 );
delta_i := Differential( cocomplex, position );
first_morphism

:= KernellLift( delta_i, ImageEmbedding( delta_iml ) );

second_morphism := CokernelProjection( first_morphism ) ;

first_complex := projective_resolution_function(
Source( first_morphism ) );

second_complex := projective_resolution_function(

Range( second_morphism ) );
third_morphism := KernelEmbedding( delta_i );

fourth_morphism := CoastrictionToImage( delta_i );
eps := Lift( second_complex[2], second morphism );
eps := UniversalMorphismFromDirectSum(

[ PreCompose( first_complex[2], first_morphism ), eps ] );
third_complex := projective_resolution_function(
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Range( fourth morphism ) );
eps2 := Lift( third_complex[2], fourth morphism );
eps2 := UniversalMorphismFromDirectSum(
[ PreCompose( eps, third_morphism ), eps2 ] );
return eps2;
end;

19. Function GeneralizedEmbeddingOfHomology

function ( complex, i )
local differential_ i, differential ipl, image_embedding,
kernel 1ift, map_to_homology, kernel emb;
differential i := Differential( complex, i );
differential ipl := Differential( complex, i + 1 );
image_embedding := ImageEmbedding( differential_ipl );
kernel_lift := KernelLift( differential_i, image_embedding );
map_to_homology := CokernelProjection( kernel_ lift );
kernel emb := KernelEmbedding( differential i );
return GeneralizedMorphismWithSourceAid( map_to_homology,

kernel emb );

end;

20. Function GeneralizedMorphismBetweenHomologies

function ( source_complex, range complex, connecting morphism, i )
local source_embedding, range_embedding, generalized_connection;
source_embedding := GeneralizedEmbeddingOfHomology (
source_complex, i );
range_embedding := GeneralizedEmbeddingOfHomology (
range_complex, i );
generalized_connection
:= AsGeneralizedMorphism( connecting morphism );
return
PreCompose (
PreCompose( source_embedding, generalized_connection ),
PseudoInverse( range_embedding ) );
end;

21. Function GeneralizedEmbeddingOfSpectralSequenceEntry

function ( trhomCE, diag number, page, homCE, homres,
connection_mor )
local homhomres, resolution_len, tot, connection_at O,
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connection_at_1, homcon_at_ 0O, homcon_at_1, embO, embl,
homcon_at_O_in_tot, homcon_at_1 in_tot, homology_iso,
M_as_homology, M_to_M_as_homology, M_to_hom_of_tot, entry,
homology_proj_of_tot, embO1;
homhomres := DualOnCocomplex( homres );
resolution_len := ResolutionLength( homhomres ) ;
tot := TotalComplex0fBicomplex( homCE, resolution_len );
connection_at 0
:= ConnectingMorphismFromCocomplexToCartanEilenbergResolution(
homres, 0, FreeResolutionCocomplex );
connection_at 1
:= ConnectingMorphismFromCocomplexToCartanEilenbergResolution(
homres, 1, FreeResolutionCocomplex );

homcon_at_0 := DualOnMorphisms( connection_at 0 );

homcon_at_1 := DualOnMorphisms( connection_at_1 );

emb0 := EmbeddingInObject0fTotalComplex( homCE, resolution_len,
0, 1);

embl := EmbeddingInObject0fTotalComplex( homCE, resolution_len,
1, 1);

homcon_at_0_in_tot := PreCompose( homcon_at 0O, emb0 );

homcon_at_1_in_tot := PreCompose( homcon_at 1, embl );

homology_iso := GeneralizedMorphismBetweenHomologies(
homhomres, tot, homcon at O in _tot, 0 );

homology_iso := HonestRepresentative( homology_iso );

M_as_homology
:= HonestRepresentative(
PseudoInverse( GeneralizedEmbeddingOfHomology( homhomres, O
)ADEDF
M_to_M_as_homology := ColiftAlongEpimorphism( connection_mor,
M_as_homology );
M_to_hom_of_tot := PreCompose( M_to_M_as_homology, homology_iso
)
entry := SpectralSequenceEntry( trhomCE, page, - diag_number,
diag_number );
homology_proj_of_tot
:= PseudoInverse( GeneralizedEmbeddingOfHomology( tot, 0 ) );
emb0Ol := EmbeddingInObject0fTotalComplex( homCE,
resolution_len, 0, diag number + 1 );
return
PreCompose (
PreCompose (
PreCompose( entry, AsGeneralizedMorphism( embO1 ) ),
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homology proj_of _tot ),
AsGeneralizedMorphism( Inverse( M_to_hom_of tot ) ) );
end;
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22. Function PurityFiltrationBySpectralSequence

function ( trhomCE, page, homCE, homres, connection_mor )
local homhomres, resolution_len, embedding list,
combined_image_embeddings, pi_list, functors, i, mp, nu,
mp_mat, eta_O, iota_i, eta, kappa, rho, iso, iso_inv;

homhomres := DualOnCocomplex( homres );
resolution_len := ResolutionLength( homhomres ) ;
embedding list := List( [ O .. resolution_len ], function ( i )

return GeneralizedEmbedding0OfSpectralSequenceEntry(
trhomCE, i, page, homCE, homres, connection_mor );

end );
for i in Reversed( [ 1 .. Length( embedding list ) ] ) do
if
IsZero(
UnderlyingHonestObject ( Source( embedding list[i] ) ) )
then

Remove ( embedding list, i );
fi;
od;
embedding list := Reversed( embedding list );
combined_image_embeddings
:= List( embedding list, CombinedImageEmbedding );
functors := ValueOption( "Functors" );
if functors <> fail then
for i in functors do
combined_image_embeddings
:= List( combined_image embeddings, function ( j )
return
PreCompose (
Inverse(
ApplyNaturalTransformation( i, Source( j )
) ), i)
end );
od;
fi;
pi_list := List( [ 2 .. Length( embedding list ) ],
function ( i )
return
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PreCompose (
AsGeneralizedMorphism( combined_image_embeddings[i] )
, PseudoInverse( embedding list[i] ) );

end );
pi_list := List( pi_list, HonestRepresentative );
if functors <> fail then

for i in functors do

pi_list := List( pi_list, function ( j )
return
PreCompose( j,
ApplyNaturalTransformation( i, Range( j ) ) );
end );

od;
fi;
for i in [ 2 .. Length( combined_image_embeddings ) ] do

nu := CoverByProjectiveWithLift( pi_list[i - 1] );

eta_ 0 := nul2];

nu := null];

mp_mat := KernelEmbedding( nu );

iota_i

:= LiftAlongMonomorphism( combined_image_embeddings[i],
combined_image_embeddings([i - 1] );

eta := Lift( PreCompose( mp_mat, eta O ), iota_i );

kappa := UniversalMorphismIntoDirectSum( mp_mat, eta );

rho := UniversalMorphismFromDirectSum( - eta_0, iota_i );

iso := CokernelColift( kappa, rho );

combined_image embeddings[i]

:= PreCompose( iso, combined_image_embeddings[i] );

o

od;
return
combined_image_embeddings[Length( combined_image_embeddings )];
end;
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67
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subfactor projection, 132
subobject, 31

sum of two morphisms, 22

thick subcategory, 76
ToDolList, 175
ToDolList entry, 174
toric variety, 99

toric variety of fan, 101

torus invariant Weil divisor., 102

total complex, 134
transposed bicomplex, 135

undecidable, 19
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valid weak pointer, 166

weak caches, 166
weak pointers, 166

zero morphism, 22
zero object, 23, 26
zeroid, 79
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