
Constructive Category Theory and
Applications to Algebraic Geometry

DISSERTATION
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

vorgelegt von
Sebastian Gutsche

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2017

Gutachter

Prof. Dr. Mohamed Barakat, Universität Siegen
Prof. Dr. Max Horn, Universität Gießen

Tag der mündlichen Prüfung: 29. August 2017

gedruckt auf alterungsbeständigem holz- und säurefreiem Papier

Preface

I would like to thank all people who supported and helped me in the years I worked on
this thesis.

I wish to express my sincere gratitude to Mohamed Barakat, who introduced me to toric
geometry, constructive category theory, and many additional projects I worked on during
the last years. Without him and his endless help and patience this thesis would not exist.

Special thanks also to my dear colleague Sebastian Posur for countless fruitful discus-
sions and the great time we had developing our software project Cap.

Furthermore, I like to thank Max Horn for many discussions, a lot of input for this thesis,
and many hours of working together on other various topics and projects.

I would like to thank all my colleagues in Aachen, Kaiserslautern, and Siegen for the
great times I had there. Special thanks to Wilhelm Plesken for letting me keep my office
in Aachen for the last years.

Last, I would like to thank my family: my mother, my father, my grandmother, my
brothers, my uncle, my girlfriend Maike, and all the others for supporting me during this
time.

Summary

In this thesis we design a framework for computing in (abelian) categories in a structured
manner, inspired by constructions in category theory.

We start by giving necessary definitions for a category to be computable in the sense of
this thesis. This includes the requirements on the data structure for objects and morphisms,
and the specifications of categorical operations which need to be implemented.

As a first example, we provide data structures and algorithms to show how the category
of finitely presented graded modules over a graded computable ring can be implemented
in this context.

Then we describe the category of Serre morphisms of an abelian category. It provides an
example of the flexibility a categorical framework offers for the implementation of abelian
categories. The category of Serre morphisms will then be used, together with the previously
described implementation of f.p. graded modules, to implement the category of coherent
sheaves over a normal toric variety. To achieve this, we present an algorithm to compute
the graded parts of a f.p. graded module over a Laurent polynomial ring, the latter graded
by a finitely presented abelian group.

As application of this axiomatic computational setup for both f.p. graded modules and
coherent sheaves over toric varieties, we describe a categorical algorithm to compute a
grade-compatible presentation of a f.p. graded module and a coherent sheaf.

A realization of the categorical framework to implement computable categories was
created alongside this thesis: Cap (Categories, Algorithms, Programming). All concepts
and algorithms presented in this thesis are implemented in Cap. In the last chapter of the
thesis, some technical concepts of Cap are explained and motivated.

Zusammenfassung

In dieser Arbeit definieren wir einen durch die Konstruktionen der Kategorientheorie
definierten Rahmen, um abelsche Kategorien auf dem Computer zu implementieren und
mit diesen zu arbeiten.

Wir beginnen mit der Definition einer berechenbaren Kategorie im Sinne dieser Arbeit.
Dies beinhaltet die Anforderungen an die Datenstrukturen für Objekte und Morphismen
und die Spezifikationen der kategoriellen Operationen, die implementiert werden sollen.

Als erstes Beispiel definieren wir Datenstrukturen und geben Algorithmen an, um
zu zeigen, dass die Kategorie der endlich präsentierten graduierten Moduln über einem
berechenbaren Ring ebenfalls berechenbar ist.

Anschließend beschreiben wir die Kategorie der Serre Morphismen einer abelschen
Kategorie A bezüglich einer dicken Teilkategorie von A. Diese Serre Morphismen Kate-
gorie bietet ein Beispiel für die Flexibilität des kategoriellen Rahmens der Implementation
abelscher Kategorien. Wir benutzen die Serre Morphismen Kategorie, zusammen mit der
Implementation endlich präsentierter graduierter Moduln, um ein berechenbares Modell
kohärenter Garben über torischen Varietäten zu beschreiben. Um dies zu erreichen, stellen
wir einen Algorithmus vor, der die Gradschichten eines endlich präsentierten graduierten
Moduls über einem mit einer endlich präsentierten abelschen Gruppe graduierten Laurent
Polynomring berechnet.

Als Anwendung dieser axiomatischen Implementation der endlich präsentierten gra-
duierten Moduln und kohärenten Garben geben wir abschließend einen Algorithmus an,
welcher Reinheitsgrad-kompatible Präsentationen endlich präsentierter graduierter Moduln
und kohärenter Garben berechnet.

Eine Realisierung dieses axiomatisch-kategoriellen Rahmens zur Implementation be-
rechenbarer Kategorien entstand zusammen mit dieser Arbeit: Cap (Categories, Algo-
rithms, Programming). Alle Konzepte und Algorithmen, welche in dieser Arbeit vorgestellt
werden, sind bereits in Cap implementiert. Im letzten Kapitel motivieren und erklären
wir zudem einige technische Konzepte von Cap.

Contents

Chapter I. Introduction 11

Chapter II. Computability of categories 13
1. Computable functions and decidable sets 13
2. Categories with Hom-setoids 15
3. Categories with Hom-setoids vs. classical categories 16
4. Computable categories 18
5. Decidable properties 20
6. Preadditive categories 21
7. Additive categories 23
8. Preabelian categories 26
9. Abelian categories 30
10. Categorical notions 31

Chapter III. Implementation of graded modules 33
1. The category of graded module presentations 33
2. Computability of graded module presentations 36

Chapter IV. Generalized morphisms and Serre quotients 47
1. The category of generalized morphisms 47
1.a Preliminaries 47
1.b Generalized morphisms by cospans 50
1.c Generalized morphisms by spans 53
1.d Generalized morphisms by 3-arrows 56
1.e Conversion between different types of generalized morphisms 63
2. Structure of the category of generalized morphisms 67
3. Generalized and pseudo-inverse 69
4. Serre quotients 76
5. Computability of Serre quotients 79
5.a Computability of Serre morphisms by spans 79
5.b Decidability 90
5.c Computability of Serre morphisms by cospans 91
5.d Computability of Serre morphisms by 3-arrows 94

Chapter V. The category of coherent sheaves over a toric variety 99
1. Preliminaries from toric geometry 99

7

8 CONTENTS

2. Equivalence of Serre quotient and coherent sheaves 103
3. Deciding membership of the kernel of the sheafification functor 104
3.a Hilbert polynomial for projective spaces 104
3.b Global sections 105
3.c A generating set for S0 106
3.d Relations between the generators of S0 108
3.e The homogeneous parts of S 110
3.f A generating set for Sα 111
3.g Relations between the generating monomials of Mon pSαq 113
3.h Homogeneous parts of finitely presented modules 118

Chapter VI. Application 127
1. Preliminaries 127
2. Bicomplexes 134
3. Internal Hom and Ext 137
4. Grade filtration 139
5. Spectral sequences 142
6. Filtered presentation 145
7. Coherent sheaves 150

Chapter VII. Implementation of computable categories 159
1. The concept of categorical programming 159
2. Main design goal and feature 161
2.a Data structure agnosticism 161
2.b Selection options of basic categorical constructions 161
3. Error messages for categorical operations 162
4. Undecidable realizations 162
5. Ensuring compatibility: WithGiven operations 163
6. Caching 165
6.a Pointers and Garbage Collection 165
6.b Caches 166
6.c Caching in GAP 167
6.d Caching in Cap 168
6.e Avoiding the setoid 169
6.f Caching for compatibility 170
6.g Caching for performance 170
7. Primitive and derived categorical operations 171
7.a Why the graph is necessary: Circular dependencies 171
7.b The derivation graph 171
7.c Installation and derivation of operations 173
8. Logic Propagation: ToDoLists 174
8.a Property propagation: ToDoLists 174
8.b Creating ToDoList entries: The LATEXlogic parser 175

CONTENTS 9

Bibliography 177

Appendix A. Programming in Cap 179

Appendix B. Logical theorems in Cap 187

Appendix C. All method names 193

Appendix D. Derivations 199

Appendix E. Final Derivations 287

Appendix F. Installed basic operations 301

Appendix G. Application code 375

Appendix. Index 393

CHAPTER I

Introduction

Many structures in abstract algebra and computer algebra can be organized as abelian
categories. Many algorithms boil down to basic categorical constructions in abelian cate-
gories. In this thesis we provide a framework to organize the implementation of algebraic
structures in a categorical fashion and show the flexibility and computational capabilities of
this framework in various examples: Using the notion of computable categories we provide
algorithms for computable descriptions of finitely presented graded modules and coherent
sheaves over normal toric varieties, the latter modeled as a Serre quotient category. After-
wards we present an algorithm to compute the so-called grade or purity filtration of both a
f.p. graded module and a coherent sheaf. As a consequence of the high level of abstraction
provided by a categorical implementation of this algorithm, we will be able to use the same
algorithm for both f.p. graded modules and coherent sheaves.

In Chapter II we start by defining the type of category we use as a base for the definition
of computable categories: Categories with Hom-setoids. We show how this type of category
relates to the classical definition of a category. Then we define what we call a realization
of a category. The realization will state all requirements we have for the data structure
of a computable category. Using this realization, we state a minimal set of algorithms to
be implemented for a given realization of a category A in order to render A computable
abelian.

In Chapter III we describe the category of graded module presentations over a com-
putable graded ring S. This is simultaneously our first involved example of a computable
abelian category together with a realization and all necessary algorithms. The category of
graded module presentations is a computable model of the category of f.p. graded modules
over the ring S. The algorithms for this category will show the necessity of the definition
of a computable category as category with Hom-setoids. Furthermore, we are going to use
this computable description of f.p. graded modules to define a computable model of the
category of coherent sheaves over a toric variety.

In Chapter IV, to show the flexibility of the developed categorical framework for im-
plementing abelian categories, we give an instance of constructing a computable category
out of another one: the generalized morphism category G pAq of a computable abelian cat-
egory A. While the generalized morphism category G pAq is already interesting by itself,
for example to constructively perform diagram chases in the computable abelian category
A, we use it to describe another level of abstraction: the Serre quotient category A{C of
an abelian category A with respect to a thick subcategory C Ď A. The Serre quotient
category A{C is computable abelian if A is computable abelian and the membership of

11

12 I. INTRODUCTION

objects in C is decidable. We call the membership of objects in C decidable if there is an
algorithm which decides for any object in A whether it is in C. We describe three distinct
data structures for generalized morphisms and establish the computability of the Serre
quotient category for each of the three data structures.

In Chapter V, using the Serre quotient category we show that the category of coherent
sheaves over a normal toric variety is computable abelian. For a normal toric variety X
with no torus factors every coherent sheaf is the sheafification of a f.p. graded module over
the Cox ring S of X. To model the category of coherent sheaves over X we use the Serre
quotient of the category of f.p. graded S-modules with respect to the thick subcategory of
modules that sheafify to zero. Whether or not a f.p. graded module sheafifies to zero in this
setup can be decided by computing the 0-th degree parts of certain finitely presented graded
modules over Laurent polynomial rings. We give an algorithm to compute all graded parts
of a f.p. graded module over such a ring. This algorithm establishes the decidability of
the thick subcategory of f.p. graded S-modules that sheafify to zero, so we can prove that
the category of coherent sheaves over a toric variety modeled by the said Serre quotient is
computable abelian.

As an application of the computable versions of the categories of f.p. graded modules
and coherent sheaves we give a purely categorical algorithm to compute the grade or purity
filtration of a f.p. graded module and a coherent sheaf in Chapter VI. We will see that
ensuring the computability of all involved categories in our categorical framework, we can
apply the same algorithm to compute the grade filtration in both the f.p. graded module
and the coherent sheaf context. So we see that the abstraction provided by the categorical
framework leads to highly abstract algorithms, mimicking the constructions in category
theory proofs.

The notion of computable categories and the defined constructions which mirror the
existential quantifiers from the definition of an (abelian) category led us to the imple-
mentation of a categorical programming language, which itself is implemented as the GAP
([GAP17]) package Cap ([GSP17]). Such an implementation posed several challenges
due to the many possible choices of data structures for categories, but also due to the
undecidability of certain problems. We are going to address these challenges and provide
possible solutions in Chapter VII. We will also highlight certain features implemented in
Cap that help to provide a universal framework which still allows efficient computations,
including the following:

‚ Derivation of categorical constructions, ensuring that only a small set of algorithms
has to be implemented for an abelian category A to provide the possibility to
computationally carry out all categorical constructions possible in A.

‚ The caching of results of computations to make categorical constructions compat-
ible, fast, and mimic “paper mathematics” as far as possible on a computer.

The categorical framework and all computable categories discussed in this thesis are
implemented in the GAP package Cap. Parts of the code of the implementations can be
found in the Appendices D to G.

CHAPTER II

Computability of categories

This chapter sets the stage for computable categories, by giving all necessary definitions
needed throughout this thesis. We introduce the notions of computability and computable
abelian categories. We start by defining computable functions and decidable sets. Using
these computable functions and decidable sets, we define the realization of a category, which
will serve as data structure for a category. We then define when a certain category with
a given realization is computable preadditive, additive, preabelian, and abelian, following
the hierarchy of category types described in [BLH11, Appendix A].

We do not use the classical definition of a category, but an extended one called category
with Hom-setoids to define the realization and a computable category.

This chapter contains no theory, and the running example is meant to illustrate the
definitions. A more involved example for the definitions in this chapter will be given in
Chapter III.

1. Computable functions and decidable sets

Before we can even talk about computability of a category we need to define what it
means for functions to be computable and for mathematical data to be representable on a
computer.

Definition 1.1. Let A,B Ă N and f : A Ñ B a function. We call f computable if
there is a deterministic Turing machine M which computes f.

The phrase “there is a deterministic Turing machine which computes f” can be rephrased
by “there is an algorithm implementable on a computer which for every a P A computes
fpaq”.

We now establish when a set is representable on a computer. A category can only be
represented on a computer if objects and morphisms have finite data structures. Every
data on a computer boils down to a finite sequence of natural numbers, and we can encode
such a sequences as a single natural numbers in a computable way. So any computer
representation of mathematical objects is just a natural number.

Definition 1.2 (Decidable sets). A subset A Ă N is decidable if there is a computable
function

IsContainedA : N Ñ t0, 1u
such that

IsContainedA paq “ 1 ô a P A.

More elaborately we say that A is decidable by IsContainedA.
13

14 II. COMPUTABILITY

We will use decidable sets as data structures for objects and morphisms in computable
categories. Note that not every subset of N is decidable. Also decidability of a set does not
mean subsets are decidable as well: By Rice’s Theorem, the set of computable functions is
decidable, but every nontrivial subset thereof is undecidable.

Definition 1.3 (Decidable equivalence relation). Let A Ă N and «Ă A ˆ A an equiv-
alence relation. We say « is decidable if there is a computable function

IsEqual« : A ˆ A Ñ t0, 1u
such that

IsEqual« pa, bq “ 1 ô a « b.

Definition 1.4 (Realization of a set). Let A be a set. We say that the decidable set
A Ă N is a realization of A if there is a surjective map

InterpretA : A � A,

such that the induced equivalence relation «InterpretA
on A is decidable. We call InterpretA

the realization map.
A set A is representable on a computer if it has a realization, and the realization defines

a data structure for the elements of the set. Note that the set A itself does not need to be
finite.

Remark 1.5.

(1) We have A – A{ «InterpretA
as sets.

(2) The notion of computability does not apply to InterpretA, since A � N. It merely
describes the interpretation of the computer data A in the mathematical context
of A.

We will now identify the set t0, 1u with the set tfalse, trueu, with 0 “ false and
1 “ true.

Definition 1.6. In the setting of Definition II.1.4 we define SerializeA to be an arbi-
trary, but fixed section of InterpretA, i.e., InterpretA ˝ SerializeA “ idA.

While InterpretA is seen as the interpretation of computer data in the mathematical
context, SerializeA can be seen as the “constructor”. As for InterpretA, the notion of
computability does not apply to SerializeA. Part of the application of SerializeA to elements
of A is usually done by hand, e.g., rewriting matrices as a list of lists which form a valid
input for the computer. Mapping such input data into memory, e.g., converting this list of
lists to a single number, is then done by the computer itself.

After having defined data structures for sets, we will now define when a function be-
tween two realized sets is computable.

Definition 1.7 (Computable function). Let A, B be sets with realizations A,B Ď N
and corresponding interpretations InterpretA and InterpretB, A1 Ă A, B1 Ă B, A1 :“
Interpret´1

A pA1q, and B1 :“ Interpret´1
B pB1q.

2. CATEGORIES WITH HOM-SETOIDS 15

We call a map f : A1 Ñ B1 computable by the realizations A and B if there is a
computable function

f : A1 Ñ B1

such that the following diagram commutes:

A1 A1

B1 B1

InterpretA

f f

InterpretB

The choice of the computable counterpart f of f is not unique in general. Furthermore,
the subsets A1 and B1 are not realized sets by themselves, since the membership in the
realizations of realized sets is by definition decidable, but we do not require decidability
for A1 and B1.

2. Categories with Hom-setoids

We now define the type of category we are going to work with: categories with Hom-
setoids. As a reminder we first give the classical definition of a category.

Definition 2.1 (Category, classical definition). A (locally small) category A con-
sists of a class of objects ObjA and for each pair A, B P ObjA a set of morphisms
HomA pA, Bq such that for A, B, C P ObjA there is a map

PreCompose : HomA pA, Bq ˆ HomA pB, Cq Ñ HomA pA, Cq , pϕ, ψq ÞÑ ϕψ

for which the following holds:
(1) For A, B, C, D P ObjA, ϕ P HomA pA, Bq, ψ P HomA pB, Cq, and ω P HomA pC, Dq

pϕψq ω “ ϕ pψωq .

(2) For every A P ObjA there is an idA P HomA pA, Aq such that for every B P ObjA
and every ϕ P HomA pA, Bq and ψ P HomA pB, Aq the equalities idAϕ “ ϕ and
ψidA “ ψ hold. We call idA the identity morphism of A.

For a ϕ P HomA pA, Bq we define

A “: Source pϕq ,

B “: Range pϕq .

Furthermore, we denote by

MorA :“
ď

A,BPObjA

HomA pA, Bq

the disjoint union of all morphisms.

16 II. COMPUTABILITY

For computable categories, we are not going to use the classical definition of categories
above, but a generalized one: categories with Hom-setoids1.

Definition 2.2 (Category with Hom-setoids). A (locally small) category (with
Hom-setoids) A consists of the following data:

(1) A class of objects ObjA.
(2) For two objects A, B P ObjA there is a set HomA pA, Bq with an equivalence

relation „A,B, called congruence of morphisms.
(3) For every triple A, B, C P ObjA there is a composition function

PreCompose : HomA pA, Bq ˆ HomA pB, Cq Ñ HomA pA, Cq , pϕ, ψq ÞÑ ϕψ,

such that for ϕ, ϕ1 P HomA pA, Bq with ϕ „A,B ϕ1 and ψ, ψ1 P HomA pB, Cq with
ψ „B,C ψ1 we have

ϕψ „A,C ϕ1ψ1,
and for all A, B, C, D P ObjA, α P HomA pA, Bq, β P HomA pB, Cq, γ P HomA pC, Dq
we have

ppαβq γq „A,D pα pβγqq .

(4) A function
IdentityMorphism : ObjA Ñ MorA, A ÞÑ idA,

such that for all A, B P ObjA and ϕ P HomA pA, Bq we have
idAϕ „A,B ϕ and ϕidB „A,B ϕ.

Notation. From now on a category is a category with Hom-setoids as defined in Defi-
nition II.2.2. If we want to refer to the classical setting in Definition II.2.1, we denote this
category by classical category.

3. Categories with Hom-setoids vs. classical categories

We explain how categories with Hom-setoids relate to classical categories. We will show
that every classical category can naturally be interpreted as a category with Hom-setoids.
Afterwards, we will define two ways how a classical category can be equivalent to a category
with Hom-setoids: Either by using the natural way of a classical category to be interpreted
as category with Hom-setoids, or by using the natural way of a category with Hom-setoids
to be interpreted as classical category.

Theorem 3.1. Let A be a category. Then A is a category with Hom-setoids by setting
for two objects A, B P ObjA and two morphisms α, β P HomA pA, Bq

α „A,B β :ô α “ β.

We call this the setoid interpretation of A.
Definition 3.2 (Functor). Let A and B be two categories (with Hom-setoids). A

functor F : A Ñ B consists of the following data:
1The necessity of this definition will be explained in Chapter III, in particular in Example III.2.13.

3. CATEGORIES WITH HOM-SETOIDS VS. CLASSICAL CATEGORIES 17

(1) A function
F0 : ObjA Ñ ObjB, M ÞÑ F0 pMq ;

(2) For each pair of objects A, B P ObjA there is a function
FA,B : HomA pA, Bq Ñ HomB pF0 pAq , F0 pBqq , ϕ ÞÑ FA.B pϕq

such that
(a) for each object A P ObjA,

F pidAq „ idF pAq;
(b) for composable ϕ, ψ P MorA,

F pϕψq „ F pϕq F pψq .

For M P ObjA and ϕ P HomA pA, Bq we define F pMq :“ F0 pMq and F pϕq :“ FA,B pϕq.
Definition 3.3. Let A and B be two categories (with Hom-setoids). A and B are

equivalent if there is a functor F : A Ñ B for which the following holds:
(1) For any two objects A, B P ObjA the induced map

HomA pA, Bq { „A,B Ñ HomB pF pAq , F pBqq { „F pAq,F pBq
is well-defined and bijective.

(2) For every B P ObjB there is an A P ObjA such that B – F pAq.
Proposition 3.4. Let A and B be two classical categories. Then A and B are equiva-

lent as classical categories if and only if they are equivalent as categories with Hom-setoids
in the sense of Theorem II.3.1.

Proof. If the equivalence relation on the Hom sets is just the equality, the Definition
II.3.3 is the classical definition of equivalence. The claim follows. �

Proposition 3.5. Let A be a category (with Hom-setoids). Then we can obtain a
classical category A1 with

(1) ObjA1 :“ ObjA and
(2) HomA1 pA, Bq :“ HomA pA, Bq { „A,B.

Proof. Since two morphisms of A1 are equal if and only if they are equivalent in A,
the axioms of a classical category are fulfilled. �

Definition 3.6. In the setting of Theorem II.3.5, we call A1 the reduction of A.
Theorem 3.7. Let A be a category (with Hom-setoids). Then A is equivalent to its

reduction A1 as a category with Hom-setoids.
Proof. Let F : A Ñ A1 the functor defined by F pAq :“ A for all A P ObjA and

F pϕq :“ ϕ for all ϕ P MorA. Then F is an equivalence. �
Remark 3.8. If there is a classical category A and a category (with Hom-setoids)

B, such that the reduction B1 of B is equivalent to A in the classical sense, the setoid
interpretation of A is equivalent to B.

18 II. COMPUTABILITY

4. Computable categories

We now define a computable category by stating the requirements to the realizations
of the set of objects and the set of morphisms. We start by defining the requirements
for the data structures of objects and morphisms, i.e., the realizations thereof, and then
define which functions we require to be computable in those realizations to call a category
computable. From now on, we use typewriter font for computable functions and normal
font for categorical constructions.

Definition 4.1 (Realization of a category). Let A be a category where Obj :“ ObjA
and Mor :“ MorA are sets. A realization R of A consists of

(1) a realization Obj for Obj, where we denote the functions as follows:
(a) the interpretation by InterpretObj,
(b) the computable equivalence relation on Obj induced by the interpretation

InterpretObj by IsEqualForObjects,
(c) and the decidability function IsContainedObj by IsWellDefinedForObjects.

(2) a realization Mor for Mor, where we denote the functions as follows:
(a) the interpretation by InterpretMor,
(b) The computable equivalence relation on Mor induced by the interpretation

InterpretMor by IsEqualForMorphisms,
(c) the decidability function IsContainedMor by IsWellDefinedForMorphisms.

(3) two computable functions

Source : Mor Ñ Obj,

Range : Mor Ñ Obj,

such that the following diagrams commute:

Mor Mor

Obj Obj

InterpretMor

Source Source

InterpretObj

Mor Mor

Obj Obj

InterpretMor

Range Range

InterpretObj

(4) a computable function

IsCongruentForMorphisms : Mor ˆ Mor Ñ ttrue, falseu
which models the equivalence relation on the homomorphism sets from Definition
II.2.2, i.e., for two morphisms f, g P Mor, one has

IsCongruentForMorphisms pf, gq “ true
ô InterpretMor pfq „ InterpretMor pgq .

We say that A is realized by R :“ pObj,Mor, IsCongruentForMorphismsq. If the real-
ization is clear from the context we just say realized.

4. COMPUTABLE CATEGORIES 19

It is also possible to realize a category by undecidable sets, i.e., where the functions
IsWellDefinedForObjects and IsWellDefinedForMorphisms are not computable. We will
call such a realized category undecidable.

Definition 4.2 (Computable category). Let A be a category realized by R. We call
A computable (by the realization R) if the two functions

IdentityMorphism : ObjA Ñ MorA, A ÞÑ idA and

PreCompose :
ď

A,B,CPObjA

HomA pA, Bq ˆ HomA pB, Cq Ñ MorA, pϕ, ψq ÞÑ ϕψ

are computable by the realizations Obj and Mor by R.
So to render a category with a given realization computable, we must provide algorithms

that make the functions PreCompose and IdentityMorphism computable.
Definition 4.3. Let A be a realized category. If only IdentityMorphism is computable,

we call it a category with computable identity morphism. If only the function
PreCompose is computable, we call it a category with computable composition.

We start the running example for this chapter and illustrate that the category of finite
dimensional rational vector spaces is computable in the sense of Definition II.4.2.

Example 4.4 (Vector spaces). Let V be the category of isomorphism classes of finite
dimensional vector spaces over Q with ObjV :“ N and HomV pm, nq “ Qmˆn, where the
composition of morphisms is just matrix multiplication and the identity morphism of an
object m is the m ˆ m identity matrix.2 We define two matrices in Qmˆn to be congruent
if they are equal3.

We give a realization for this category to see that it is indeed computable. Let

ToInteger :
8ď

i“0
Qi Ñ N

be a computable, injective function with computable inverse.4 Using ToInteger, we can
establish data structures for the objects and the morphisms in the category. For ObjV , we
will use the integers N Ă Q1, which we realize using ToInteger. For a morphism A P Qmˆn,

2The category V is indeed equivalent to the category of finite vector spaces over Q.
3In the computable category described in Chapter III IsCongruentForMorphisms will differ from

IsEqualForMorphisms
4 The function ToInteger can be defined by taking a computable injective function ϕ : Q Ñ N, for

example
a

b
ÞÑ 2sgnpaqsgnpbq`13|a|5|b|, gcd pa, bq “ 1.

Now, the function

Ni Ñ N, pn1, . . . , niq ÞÑ
iź

j“1
pni

i ,

where pi is the i-th prime number together with ϕ provides ToInteger.

20 II. COMPUTABILITY

we will use a list
pm, n, A1,1, . . . , Am,nq “: pm, n, Aq ,

which we will model as an integer using ToInteger. The function for IsEqualForObjects is
the equality of integers, and the decidability function IsWellDefinedForObjects is the check
whether the preimage of an integer under ToInteger is a single integer. The functions for
IsEqualForMorphisms and IsCongruentForMorphisms are also just comparison of integers,
since the serialization function ToInteger is injective. So two integers in the realization
of MorV correspond to the same matrix if and only if there are equal. The function
IsWellDefinedForMorphisms checks whether an integer corresponds to a list where the
first two entries a, b are non-negative integers and the rest of the list has length ab. The
algorithm for IdentityMorphism is creating an identity matrix, i.e., for an integer m it
creates the list

pm, m, 1, . . . q .

The algorithm for PreCompose is the multiplication of matrices, i.e., for two lists
pm, n, Aq and pn, p, Bq

it creates the list
pm, p, ABq .

From now on for the rest of this thesis, we will not go back to a single integer rep-
resentation of computer data. Instead we are going to use data structures every modern
programming language has, e.g., integers, floats, rationals, arrays/lists, etc. Giving these
data structures an image in the memory of the computer is then done by compilers and
interpreters, and not of any further interest for this thesis.

5. Decidable properties

Categorical properties of objects and morphisms in categories are often the desired
result of a computation. So we define the decidability of a property in a category.

Definition 5.1. Let A be a computable category realized by R and P a property, i.e.,
a mathematical attribute of objects or morphisms in A that can either be true or false. We
say P is decidable if for the appropriate C P tObj,Moru there is a computable function

IsP : C Ñ ttrue, falseu
with the following property for all x P C:

IsP pxq “ true ô P pInterpret pxqq .

The function IsP should return true on serialized objects or morphisms if and only if the
property P is fulfilled for their interpreted counterpart. For all other serialized objects or
morphisms, it should return false.

Important properties to mention here are whether a morphism is a mono-, epi-, or
isomorphisms.

Definition 5.2. Let A be a category, A, B P ObjA, and ϕ : A Ñ B.

6. PREADDITIVE CATEGORIES 21

(1) The morphism ϕ is a monomorphism if for any C P ObjA and any two ψ1, ψ2 P
HomA pC, Aq we have

ψ1ϕ „C,B ψ2ϕ ñ ψ1 „C,A ψ2.

We then write ϕ : A ãÑ B.
(2) The morphism ϕ is an epimorphism if for any C P ObjA and any two ψ1, ψ2 P

HomA pB, Cq we have
ϕψ1 „A,C ϕψ2 ñ ψ1 „B,C ψ2.

We then write ϕ : A � B.
(3) The morphism ϕ is an isomorphisms if there exists a morphism ϕ´1 : B Ñ A

such that
PreCompose

`
ϕ, ϕ´1˘ „A,A IdentityMorphism pAq

PreCompose
`
ϕ´1, ϕ

˘ „B,B IdentityMorphism pBq .

Definition 5.3. Let A be a computable category.
(1) A has decidable monomorphisms if the monomorphism property is decid-

able for morphisms. We call the computable function that decides this property
IsMonomorphism.

(2) A has decidable epimorphisms if the epimorphism property is decidable for
morphisms. The name of the computable function in this case is IsEpimorphism.

(3) A has decidable isomorphisms if the isomorphism property is decidable for
morphisms. The name of the computable function in this case is IsIsomorphism.

Example 5.4 (II.4.4 cont.). The category of vector spaces V has decidable monomor-
phisms, epimorphisms, and isomorphisms. The function Rank which returns the rank of a
rational matrix is well-known to be computable and can be used to compute all of those
properties. Let ϕ P MorV be the triple pm, n, Mq.

(1) The function to decide monomorphisms is defined by
IsMonomorphism pϕq :“ pRank pMq “ mq .

(2) The function to decide epimorphisms is defined by
IsEpimorphism pϕq :“ pRank pMq “ nq .

(3) The function to decide isomorphisms is defined by
IsIsomorphism pϕq :“ pm “ n ^ Rank pMq “ nq .

6. Preadditive categories

We continue following the hierarchy (preadditive, additive, preabelian, abelian) from
[BLH11, Appendix A] to define abelian categories. For the corresponding hierarchy of
computability notions the disjunctions and existential quantifiers in the definitions of
(preadditive, additive, preabelian, abelian) categories need to be turned into algorithms.
So we emphasize existential quantifiers and disjunctions in the definitions in this chapter.

22 II. COMPUTABILITY

Definition 6.1 (Preadditive category). Let A be a category. A is preadditive if the
following conditions hold:

(1) For A, B P ObjA there exists a zero morphism 0A,B P HomA pA, Bq such that
for every C P ObjA and every ϕ P HomA pC, Aq and ψ P HomA pB, Cq, ϕ0A,B „C,B

0C,B and 0A,Bψ „A,C 0A,C holds.
(2) For every A, B P ObjA and every ϕ, ψ P HomA pA, Bq there exists a sum ϕ `

ψ P HomA pA, Bq which is associative, commutative, and distributive with the
composition up to congruence.

(3) For every A, B P ObjA and every ϕ P HomA pA, Bq there exists the additive
inverse ´ϕ P HomA pA, Bq such that ϕ ` p´ϕq „A,B 0A,B.

In other words, for every A, B P ObjA the set HomA pA, Bq { „A,B together with the
addition, inversion and the zero morphism is an Abelian group.

Definition 6.2 (Computable preadditive category). Let A be a computable category
by the realization R. A is computable preadditive (by R) if A is preadditive and

(1) There is a function

ZeroMorphism : ObjA ˆ ObjA Ñ MorA, pA, Bq ÞÑ 0A,B

which is computable by R.
(2) There is a function

AdditionForMorphisms :
ď

A,BPObjA

pHomA pA, Bq ˆ HomA pA, Bqq Ñ MorA, pϕ, ψq ÞÑ ϕ ` ψ

which is computable by R.
(3) There is a function

AdditiveInverse : MorA Ñ MorA, ϕ ÞÑ ´ϕ

which is computable by R.
While the addition of morphisms in the classical sense is parameterized by the source

and the range of the two morphisms in the sum, the definition of a computable preadditive
category states a single function, having all pairs of summable morphisms as domain. When
parameterizing the functions by objects, we would end up with a (possibility infinite) set
of functions, which would not be implementable, even if every single function in this set is
computable. Therefore we need a single function for the addition. The addition function
is also not required to check whether their two input morphisms are summable. If the
computable function for addition gets the realization of two morphisms as input which
cannot be summed, the result is undefined.

Following the terminology Definition II.4.3 we get the following notation:
Notation. A computable preadditive category is a preadditive computable category

with computable zero morphisms, computable addition, and computable additive
inverse.

7. ADDITIVE CATEGORIES 23

Example 6.3 (II.4.4 cont.). We describe the three functions ZeroMorphism, Addition-
ForMorphisms, and AdditiveInverse for V . These functions can be sketched as follows:
create a zero matrix, add two matrices, and additively invert a matrix. Up to applying the
inverse of ToInteger to the arguments and again applying ToInteger to the result of the
computation, we can model the functions as follows:

(1) ZeroMorphism takes two integers m, n and returns¨̋
m, n, 0, . . . , 0loomoon

mn times

‚̨.

(2) AdditionForMorphisms takes two sequences pm, n, Aq and pm1, n1, Bq, and returns
pm, n, A ` Bq, where A ` B is the entrywise addition.

(3) AdditiveInverse takes a sequence pm, n, Aq and returns pm, n, ´Aq.
Since all of them are computable, V is computable preadditive.

7. Additive categories

Next in the hierarchy of category types from [BLH11, Appendix A] is the notion of
an additive category. Again we emphasize the existential quantifiers.

Definition 7.1 (Additive category). Let A be a preadditive category. A is additive if
the following conditions hold:

(1) There exists a unique zero object 0 P ObjA such that for every A P ObjA the sets
HomA pA, 0q and HomA p0, Aq consist of exactly one element up to congruence.

(2) For every pair of objects A1, A2 P ObjA there exists a product object A1 ˆ A2
together with projections πi : A1 ˆ A2 Ñ Ai, i “ 1, 2 such that for all B P ObjA
and all pairs of morphisms ϕi P HomA pB, Aiq there exists an up to congruence
unique universal morphism tϕ1, ϕ2u P HomA pB, A1 ˆ A2q which makes the
following diagram commute up to congruence:

B

A1 ˆ A2

A1 A2

tϕ1, ϕ2u

π1 π2

ϕ1 ϕ2

(3) For every pair of objects A1, A2 P ObjA there exists a coproduct object A1 > A2
together with injections ιi : Ai Ñ A1>A2, i “ 1, 2 such that for all B P ObjA and
all pairs of morphisms ϕi P HomA pAi, Bq there exists an up to congruence unique
universal morphism xϕ1, ϕ2y P HomA pA1 > A2, Bq which makes the following
diagram commute up to congruence:

24 II. COMPUTABILITY

B

A1 > A2

A1 A2

xϕ1, ϕ2y

ι1 ι2

ϕ1 ϕ2

We will split up the definition of a computable additive category in several parts cor-
responding to the granulated notions in Definition II.4.3.

Definition 7.2 (Computable zero object). Let A be a computable preadditive category
by the realization R. Then A has a computable zero objects if the two constructions

UniversalMorphismIntoZeroObject : ObjA Ñ MorA, A ÞÑ 0A,0,

UniversalMorphismFromZeroObject : ObjA Ñ MorA, A ÞÑ 00,A

are computable by R.
Definition 7.3 (Computable product). Let A be a computable additive category by

the realization R. Then A has computable products if the three constructions

DirectProduct : ObjA ˆ ObjA Ñ ObjA, pA1, A2q ÞÑ A1 ˆ A2,

ProjectionInFactorOfDirectProduct : ObjA ˆ ObjA ˆ t1, 2u Ñ MorA, pA1, A2, iq ÞÑ πi,

UniversalMorphismIntoDirectProduct :
ď

A1,A2,BPObjA

pHomA pB, A1q ˆ HomA pB, A2qq

Ñ MorA, pϕ1, ϕ2q ÞÑ tϕ1, ϕ2u
are computable by R.

Definition 7.4 (Computable coproduct). Let A be a computable additive category
by the realization R. Then A has computable coproducts if the three constructions

Coproduct : ObjA ˆ ObjA Ñ ObjA, pA1, A2q ÞÑ A1 > A2,

InjectionOfCofactorOfCoproduct : ObjA ˆ ObjA ˆ t1, 2u Ñ MorA, pA1, A2, iq ÞÑ ιi,

UniversalMorphismFromCoproduct :
ď

A1,A2,BPObjA

pHomA pA1, Bq ˆ HomA pA2, Bqq

Ñ MorA, pϕ1, ϕ2q ÞÑ xϕ1, ϕ2y
are computable R.

Proposition 7.5 ([ML71, p. 194]). Let A be an additive category. Then finite direct
products and coproducts are isomorphic.

7. ADDITIVE CATEGORIES 25

Corollary 7.6. Let A be a computable preadditive category by the realization R in
which direct product and coproduct are computable. Then A has computable isomor-
phisms between products and coproducts, i.e., the following functions are computable
by R:

IsomorphismFromCoproductToDirectProduct : ObjA ˆ ObjA Ñ MorA,

pA1, A2q ÞÑ pA1 > A2 Ñ A1 ˆ A2q ,

IsomorphismFromDirectProductToCoproduct : ObjA ˆ ObjA Ñ MorA,

pA1, A2q ÞÑ pA1 ˆ A2 Ñ A1 > A2q .

Both functions can be computed using the universal properties of products and coprod-
ucts.

Definition 7.7. Objects which are simultaneously direct products and coproducts are
called biproducts or direct sums.

Definition 7.8. Let A be a computable preadditive category by realization R in which
finite direct products and coproducts coincide, i.e., for two A, B P ObjA we have

A ‘ B :“ A ˆ B “ A > B.

The corresponding categorical notions for direct sums are:

DirectProduct : ObjA ˆ ObjA Ñ ObjA, pA1, A2q ÞÑ A1 ‘ A2,

ProjectionInFactorOfDirectSum : ObjA ‘ ObjA ‘ t1, 2u Ñ MorA, pA1, A2, iq ÞÑ πi,

UniversalMorphismIntoDirectSum :
ď

A1,A2,BPObjA

pHomA pB, A1q ‘ HomA pB, A2qq

Ñ MorA, pϕ1, ϕ2q ÞÑ tϕ1, ϕ2u ,

InjectionOfCofactorOfDirectSum : ObjA ˆ ObjA ˆ t1, 2u Ñ MorA, pA1, A2, iq ÞÑ ιi,

UniversalMorphismFromDirectSum :
ď

A1,A2,BPObjA

pHomA pA1, Bq ˆ HomA pA2, Bqq

Ñ MorA, pϕ1, ϕ2q ÞÑ xϕ1, ϕ2y .

We say A has computable direct sums.
A category with computable direct sums has computable direct products and coprod-

ucts.
Definition 7.9 (Computable additive category). Let A be an additive category which

is computable preadditive by the realization R. Then A is computable additive if
it has a computable zero object, computable products, and computable coproducts, all
computable by the realization R.

For additive categories, one can decide whether an object is isomorphic to the zero
object.

26 II. COMPUTABILITY

Definition 7.10. Let A be a additive category with realization R. An object A P A
is zero if it is isomorphic to 0 P A. The category A has decidable zeros if this property
is decidable for the realization R.

Lemma 7.11. Let A be computable additive by realization R. Then A has decidable
zeros.

Proof. For A P ObjA we have A – 0 if and only if idA „A,A 0A,A. Since both idA and
0A,A are computable by R, and congruence of morphisms is decidable, A has decidable
zeros. �

Example 7.12 (II.6.3 cont.). We give algorithms for the zero object and direct sum
in V to show that V is computable additive. Again, we describe the algorithms for the list
data structures of matrices, assuming the function ToInteger is applied a posteriori.

(1) UniversalMorphismFromZeroObject: For a number n return p0, nq.
(2) UniversalMorphismIntoZeroObject: For a number n return pn, 0q.
(3) DirectSum: For two integers m and n return m ` n.
(4) ProjectionInFactorOfDirectSum: Let 1m be the m ˆ m identity matrix and 0n,m

the n ˆ m zero matrix. For three parameters m, n, and i returnˆ
m ` n, m,

ˆ
1m

0n,m

˙˙
if i “ 1 and ˆ

m ` n, n,

ˆ
0m,n

1n

˙˙
if i “ 2.

(5) InjectionOfCofactorOfDirectSum: The same function as ProjectionInFactorOf-
DirectSum, but with the output matrices transposed.

(6) UniversalMorphismIntoDirectSum: Takes two matrices pm, n, Aq and pm, n1, Bq
and returns the matrix pm, n ` n1, pA, Bqq.

(7) UniversalMorphismFromDirectSum: The same function as UniversalMorphism-
IntoDirectSum, but with the output matrices transposed.

Since all of these functions are computable, V is computable additive.

Remark 7.13. In definition of a computable additive category, there is already a re-
dundancy: The function ZeroMorphism can be computed using UniversalMorphismFrom-
ZeroObject and UniversalMorphismIntoZeroObject. So when implementing a computable
additive category it suffices to give algorithms for UniversalMorphismFromZeroObject
and UniversalMorphismIntoZeroObject, and the algorithm for ZeroMorphism can be con-
structed from these two algorithms. This process is called derivation of operations and will
be explained in Section VII.7.

8. Preabelian categories

We now give the definition of a preabelian category and a computable notion thereof.

8. PREABELIAN CATEGORIES 27

Definition 8.1 (Preabelian category). Let A be an additive category. A is preabelian
if the following conditions hold:

(1) For every morphism ϕ : A Ñ B there exists a kernel κ : K ãÑ A with κϕ „K,B

0K,B such that for every morphism τ : T Ñ A with τϕ „T,B 0T,B there exists
an up to congruence unique kernel lift τ{κ : T Ñ K which makes the following
diagram commute up to congruence:

K

A B

T

κ

τ

ϕ

0K,B

0T,B

τ{κ

(2) For every morphism ϕ : A Ñ B there exists a cokernel ε : B � C with ϕε „A,C

0A,C such that for every morphism τ : B Ñ T with ϕτ „A,C 0A,C there exists an
up to congruence unique cokernel colift εzτ : C Ñ T which makes the following
diagram commute up to congruence:

C

A B

T

ϕ

ε

τ

0A,C

0A,C

εzτ

Definition 8.2. Let A be a computable category by the realization R. Then A has
computable kernels if the three functions

KernelObject : MorA Ñ ObjA, ϕ ÞÑ K,

KernelEmbedding : MorA Ñ MorA, ϕ ÞÑ κ,

KernelLift : M Ñ MorA, pϕ, τq ÞÑ τ{κ

are computable by the realization R, where

M :“
#

pϕ, τq P
ď

T,A,BPObjA

pHomA pA, Bq ˆ HomA pT, Aqq
ˇ̌̌̌
ˇ τϕ „ 0

+
.

Remark 8.3. To treat the kernel of a morphism in a computable category algorith-
mically, it is not sufficient to have an algorithm to compute the kernel object, but also

28 II. COMPUTABILITY

algorithms to compute the kernel embedding and the kernel lift are necessary. So for a
proper algorithmical handling of the kernel not only a computable function KernelObject
is needed, but also a computable functions for KernelEmbedding and KernelLift. On the
other hand we have

KernelObject “ Source ˝ KernelEmbedding,

so the algorithm for the kernel object can be “derived” from the algorithm for kernel
embedding.

In Example II.8.6 we see that it can be more effective not to use this “derivation”
(cf. Section VII.7) to implement the algorithm for KernelObject.

Definition 8.4. Let A be a computable category by the realization R. Then A has
computable cokernels if the three functions

CokernelObject : MorA Ñ ObjA, ϕ ÞÑ C,

CokernelProjection : MorA Ñ MorA, ϕ ÞÑ ε,

CokernelColift : M Ñ MorA, pϕ, τq ÞÑ εzτ

are computable by the realization R, where

M :“
#

pϕ, τq P
ď

T,A,BPObjA

pHomA pA, Bq ˆ HomA pB, T qq
ˇ̌̌̌
ˇ ϕτ „ 0

+
.

Definition 8.5 (Computable preabelian categories). Let A be a computable additive
category by the realization R, which is preabelian. Then A is computable preabelian
if it has computable kernels and cokernels by the realization R.

Example 8.6 (II.7.12 cont). We give the algorithms to make V a computable pre-
abelian category. All algorithms are based on Gaussian elimination, which is well-known
to be computable.

(1) KernelObject: Gets a matrix A P Qmˆn, and returns k :“ m ´ Rank pAq.
(2) KernelEmbedding: Let A P Qmˆn . There is a computable function

BasisOfSyzygiesOfRows pAq
which computes a matrix T P Qkˆm such that T is in Gaussian normal form, i.e.,
the rows form a basis, TA “ 0, and for every T 1 P Qk1ˆm with T 1A “ 0 the equation
XT “ T 1 is solvable. KernelEmbedding is then BasisOfSyzygiesOfRows5.

(3) KernelLift: Let A P Qmˆn and B P Qkˆn be matrices. Define B1 P Qkˆn such that
B ´ B1 “ XA is solvable and the i-th column B 1́

,i “ 0 if and only if xA “ B´,i is
solvable. In particular, XA “ B is solvable if and only if B1 “ 0. Then we define

RightDivide pB, Aq :“ X.

5A more usual name for this function could be Nullspace or LeftNullspace, but we want to emphasize
the relations of this functions to the functions defined in III.2.4.

8. PREABELIAN CATEGORIES 29

We can then set

KernelLift pB, Aq :“ RightDivide pBasisOfSyzygiesOfRows pBq , Aq .

(4) CokernelObject: Gets a matrix A P Qmˆn, and returns
 :“ n ´ Rank pAq.
(5) CokernelProjection: Let A P Qmˆn . There is a computable function

BasisOfSyzygiesOfColumns pAq
which computes a matrix T P Qnˆ� such that T is in Gaussian normal form, i.e., the
columns form a basis, AT “ 0, and for every T 1 P Qnˆ�1 with AT 1 “ 0 the equation
TX “ T 1 is solvable. CokernelProjection is then BasisOfSyzygiesOfColumns.

(6) CokernelColift: Let A P Qnˆm and B P Qnˆ� be matrices. Define B1 P Qnˆ� such
that B ´B1 “ AX is solvable and the i-th row B1

i,´ “ 0 if and only if Ax “ Bi,´ is
solvable. In particular, AX “ B is solvable if and only if B1 “ 0. Then we define

LeftDivide pA, Bq :“ X.

We can then set

CokernelColift pB, Aq :“ LeftDivide pA, BasisOfSyzygiesOfColumns pBqq .

All of those functions are computable, and therefore V is computable preabelian. We will
reencounter the functions BasisOfSyzygiesOfRows, BasisOfSyzygiesOfColumns, LeftDivide,
RightDivide, DecideZeroRows, and DecideZeroColumns. in Definition III.2.4.

Proposition 8.7. Let A be a computable preabelian category. Then A has decidable
monomorphisms and epimorphisms.

Proof. Let ϕ : A Ñ B be a morphism in A. We will show that ϕ is a monomorphism
if and only if the kernel object of ϕ is isomorphic to the zero object. Let

pκ : K Ñ Aq :“ KernelEmbedding pϕq .

Suppose ϕ is a monomorphism. Then we have

κϕ „ 0K,Aϕ

and therefore
κ „ 0K,A.

Since the kernel lift is unique up to congruence for every test morphism this means that
K – 0.

Now suppose K – 0 and let ψ1, ψ2 : T Ñ A with ψ1ϕ „ ψ2ϕ. By the additivity this
means that pψ1 ´ ψ2q ϕ „ 0T,B therefore

ψ :“ ψ1 ´ ψ2

is a test morphism for the kernel. But, since K – 0, we have ψ „ 0T,A, and therefore
ψ1 „ ψ2.

The dual fact that a morphism is epi if and only if its cokernel is zero is analog.

30 II. COMPUTABILITY

Indeed, we can state the constructions as follows: Let ϕ P MorA. Then
IsMonomorphism pϕq :“ IsZero pKernelObject pϕqq

IsEpimorphism pϕq :“ IsZero pCokernelObject pϕqq .

�

9. Abelian categories

The final type of category in the hierarchy in [BLH11, Appendix A] are abelian cate-
gories. We start again by defining an abelian category, then we give a computable notion
thereof.

Definition 9.1. Let A be a preabelian category. Then A is abelian if the following
conditions hold:

(1) Any monomorphism is the kernel of its cokernel: Let κ : K ãÑ A be a mono,
ε : A Ñ C its cokernel. Then for any τ : T Ñ A with τε „T,C 0T,C there exists an
up to congruence unique lift τ{κ : T Ñ K with pτ{κq κ „T,A τ .

(2) Any epimorphism is the cokernel of its kernel: Let ε : A � C be an epi, κ : K Ñ A
its kernel. Then for any τ : A Ñ T with κτ „K,T 0K,T there exists an up to
congruence unique colift εzτ : C Ñ T with ε pεzτq „A,T τ .

Definition 9.2 (Computable abelian categories). Let A be a computable preabelian
category by realization R which is abelian. Then A is computable abelian if the following
functions

LiftAlongMonomorphism : M Ñ MorA, pτ, κq ÞÑ τ{κ,

ColiftAlongEpimorphism : N Ñ MorA, pε, τq ÞÑ εzτ

are computable by R, where

M :“
#

pτ, κq P
ď

T,A,KPObjA

pHomA pT, Aq ˆ HomA pK, Aqq |

κ mono, τ CokernelProjection pκq „ 0u ,

N :“
#

pε, τq P
ď

T,A,CPObjA

pHomA pA, Cq ˆ HomA pA, T qq |

ε epi, KernelEmbedding pεq τ „ 0u .

Corollary 9.3. Let A be a computable abelian category. Then A has decidable iso-
morphisms.

Proof. For abelian categories a morphism is an isomorphism if it is both a monomor-
phism and an epimorphism, and those properties are decidable by Proposition II.8.7. �

10. CATEGORICAL NOTIONS 31

We finish the definitions of computable categories by showing that the category of
rational finite dimensional vector spaces is computable abelian.

Example 9.4 (II.8.6 cont). We show that V is computable abelian. Again, all com-
putations depend on the Gaussian elimination.

(1) LiftAlongMonomorphism: Takes two matrices K and T , returns

RightDivide pK, T q .

(2) ColiftAlongEpimorphism: Gets two matrices C and T , returns

LeftDivide pT, Cq .

Since those two are computable, V is computable abelian by the serialization given in
Example II.4.4.

10. Categorical notions

We will establish notions for sub- and quotient (or factor) objects in categories, as well
as the notion of the image of a morphism. All the definitions in this section are only
of minor importance to this thesis. They are used to make definitions and proofs in the
following chapters look more natural.

Definition 10.1. Let A be a category, and A, B, C P ObjA.
(1) Let ϕ P HomA pB, Aq and ψ P HomA pC, Aq. We say ϕ dominates ψ if there is a

morphism τ P HomA pC, Bq such that

τϕ „ ψ.

(2) A subobject of A is a class of mutually dominating monomorphisms with range
A. If B ãÑ A is an element of this class, we write B for the subobject and A Ď B.

(3) Let ϕ P HomA pA, Bq and ψ P HomA pA, Cq. We say ϕ codominates ψ if there
is a morphism τ P HomA pB, Cq such that

ϕτ “ ψ.

(4) A factor object or quotient object of A is a class of mutually codominating
epimorphisms with source A. If π : A � B is an element of this class, we identify
the factor object with B and write

B “: A{KernelObject pπq .

Every time we write a subobject or a factor object we use it as a placeholder for its
embedding or projection.

Definition 10.2. Let A be a category and ϕ : A Ñ B P MorA.
(1) An image of A under ϕ is a monomorphism ι : I ãÑ B such that there is a

(necessarily unique) epimorphism ϕ1 : A � I with

ϕ1ι „ ϕ.

32 II. COMPUTABILITY

We define
ImageObject pϕq :“ I and ImageEmbedding pϕq :“ ι.

(2) The restriction of ϕ to a subobject A1 with embedding ι : A1 ãÑ A is the mor-
phism ιϕ. We write ϕ|A1 for the restriction and ϕ pA1q for its image.

Definition 10.3. Let A be an abelian category, ϕ : A Ñ B P MorA, and ι : B1 ãÑ B.
(1) If ι dominates ImageEmbedding pϕq we call the lift

ϕ{ι : A Ñ B1

the coastriction of ϕ with ι.
(2) Let γ : A1 ãÑ A a monomorphism such that ι dominates γϕ. Then we call

pγϕq {ι : A1 Ñ B1

the restriction-coastriction of ϕ with γ and ι.

CHAPTER III

Implementation of graded modules

As a first involved example of a computable category we present the category of graded
module presentations over a graded ring. This category is equivalent to the category of
finitely presented graded modules over a graded ring and is computable abelian if certain
conditions on the ring a met.

We start by defining a graded ring, graded modules, and morphisms between graded
modules. Then we define the category of graded module presentations over a graded ring
and state their equivalence to the category of f.p. graded modules. Afterwards, we define
the conditions on the graded ring to be computable, and show that the category of graded
module presentations over such a computable ring is computable abelian.

The category of graded module presentations is also the motivation for working with
categories with Hom-setoids instead of classical categories. In the graded module presen-
tations category, the notions of equality and congruence of morphisms will be distinct, and
we will emphasize the reason for this distinction.

1. The category of graded module presentations

We now give the definitions of a graded rings, graded modules, and their computable
versions.

Our definition of the grading will be general, i.e., the rings will be graded by a finitely
presented abelian group. As stated in the Introduction I, we want to model the graded
modules over Cox rings of toric varieties, and for each finitely presented abelian group G
a toric variety can be constructed whose Cox Ring is graded by the group G.

Definition 1.1 (Graded ring). Let G be a finitely presented additively written abelian
group and S a ring. We call S graded by G or G-graded if there is a subring S0 Ă S
and for every g P G an S0-submodule Sg Ă S such that

S “ à
gPG

Sg

with g, h P G implies SgSh Ď Sg`h and the set

tg P G | Sg ‰ t0uu
generates G as an abelian group.

An element sg P Sg is called homogeneous of degree g and G is called the degree
group of R.

33

34 III. GRADED MODULES

Definition 1.2 (Graded module). Let S be a G-graded ring. An S-(left)-module M
is graded by G or G-graded if for every g P G there is a S0 submodule Mg Ă M such
that

M “ à
gPG

Mg

and for every g, h P G we have SgMh Ď Mg`h.
Definition 1.3 (Graded morphisms). Let S be a G-graded ring and M, N G-graded

S-modules. An S-module homomorphism

ϕ : M Ñ N

is called graded if there is an h P G such that for each g P G the restriction-coastriction1

ϕg : Mg Ñ Ng`h, x ÞÑ ϕ pxq
is an S0-module homomorphism. We call h the degree of ϕ.

For a g P G we define

Homg pM, Nq :“ tϕ : M Ñ N | deg pϕq “ gu ,

and set
Hom pM, Nq :“ à

gPG

Homg pM, Nq .

A morphism of G-graded S-modules is a graded morphism of degree 0.

Remark 1.4. Let S be a G graded ring and M, N G-graded S-modules. Then the set
Hom pM, Nq is a G-graded S-module.

Definition 1.5. Let S be a G-graded ring, M P Smˆk, and N P Snˆk matrices with
homogeneous entries. We say N row dominates M and write N ěrow M if there is an
matrix with homogeneous entries X P Smˆn such that XN “ M .

We now define the model of f.p. graded modules we are going to work with: the category
of graded presentations.

Definition 1.6 (Category of finitely presented G-graded S-modules). Let S be a
graded ring with degree group G. The category S-grpres of graded left presentations
over S is defined as follows:

(1) The class ObjS-grpres is the set of all tuples M :“ pM 1, ωq, where M 1 P SmˆgM ,
m, gM P Zě0, is an matrix with homogeneous entries and ω P GgM such that for
all k “ 1, . . . , m we have

deg
`
M 1

k,1
˘ ´ ω1 “ ¨ ¨ ¨ “ deg

`
M 1

k,gM

˘ ´ ωgM

for i “ 1, . . . , gM with M 1
k,i ‰ 0.

1For a definition, see II.10.3.

1. THE CATEGORY OF GRADED MODULE PRESENTATIONS 35

We call M 1 the relation matrix of M , gM the number of generators of M ,
and ω the generator degrees of M . We define:

UnderlyingMatrix pMq :“ M 1,
NumberOfGenerators pMq :“ gM ,

GeneratorDegrees pMq :“ ω.

(2) For two objects M, N P ObjS-grpres the set HomS-grpres pM, Nq is the set of all triples
pM, A, Nq such that
(a) A is a homogeneous gM ˆ gN matrix.
(b) For ωM :“ GeneratorDegrees pMq and ωN :“ GeneratorDegrees pNq we

have
ωM,k ` deg pAk,jq “ ωN,j

for all k “ 1, . . . , gM and j “ 1, . . . , gN with Ak,j ‰ 0.
(c) N 1 row dominates M 1A, i.e., XN 1 “ M 1A is solvable for X.

Two morphisms pM1, A1, N1q and pM2, A2, N2q are equal if
(a) M1 “ M2,
(b) A1 “ A2,
(c) N1 “ N2.

They are congruent if
(a) M1 “ M2,
(b) N1 “ N2,
(c) there exist a matrix with homogeneous entries Y such that Y N 1

1 “ A1 ´ A2.
For S-grpres the identity morphism and composition are defined as follows:

(1) IdentityMorphism pMq :“ pM, 1gM
, Mq,

(2) PreCompose ppM, A, Nq , pN, B, Lqq :“ pM, AB, Lq,
where 1gM

denotes the gM ˆ gM identity matrix over S.

Remark 1.7. As in Definition II.2.2, we have different notions for equality and con-
gruence on the Hom-setoids.

Proposition 1.8. Let S be a G-graded ring. Then S-grpres is a category.
Proof. We need to show that composed morphisms are again morphisms and the

defined operations for composition and identity morphism respect the congruence:
(1) We show that the composition of two morphisms is well-defined. Let α :“

pM, A, Nq and β :“ pN, B, Rq be morphisms. Then there is a matrix X with
XN 1 “ M 1A and a matrix Y with Y R1 “ N 1B. So we have

M 1AB “ XN 1B “ XY R1

and therefore the equation M 1AB “ ZR1 is solvable for Z.
(2) We show the well-definedness of the identity morphism. Let M be an object and

α :“ pM, A, Nq a morphism. We have
idA “ pA, 1gA

, Aq “ IdentityMorphism pAq .

36 III. GRADED MODULES

So αidA “ α and therefore αidA „ α. The same is true for idAα. opposite side.
(3) We show that the composition respects the congruence. Let M, N, R be objects

and α :“ pM, A, Nq, α1 :“ pM, A1, Nq, β :“ pN, B, Rq, β1 :“ pN, B1, Rq morphisms
with

α „ α1 and β „ β1,
i.e., there are matrices XA,A1 and YB,B1 with A ´ A1 “ XA,A1N 1 and B ´ B1 “
YB,B1R1. Then we have

AB ´ A1B1 “ pA1 ` YA,A1N 1q pB1 ` YB,B1R1q ´ A1B1

“ YA,A1N 1B1 ` A1YB,B1R1 ` YA,A1N 1YB,B1R1

“ pYA,A1X ` A1YB,B1 ` YA,A1N 1YB,B1q R1

with XR1 “ N 1B1. So we get
βα „ β1α1. �

Proposition 1.9. Let S be a G-graded ring and pM, A, Nq P MorS-grpres. Then the
degrees of the non-zero entries of A are determined by the generator degrees of M and N .

Proof. Let ωM :“ GeneratorDegrees pMq and ωN :“ GeneratorDegrees pNq. If
Ai,j ‰ 0, we have

deg pAi,jq “ ωM,i ´ ωN,j. �
Theorem 1.10 ([BLH11, 3.1] using II.3.8). The category S-grpres is equivalent to

the category of finitely presented graded modules over S, S-grmod, where the congruence
of morphisms is just the equality.

2. Computability of graded module presentations

We are now going to investigate which properties of the ring S and the grading group
G need to hold such that S-grpres is computable abelian.

Definition 2.1 (Realized ring). Let S be a ring. A realization of S is a realization
R of the underlying set of S such that the following functions are computable by the
realization R:

(1) The addition
` : S ˆ S Ñ S, ps1, s2q ÞÑ s1 ` s2,

(2) the inversion
´ : S Ñ S, s ÞÑ ´s,

(3) the multiplication
¨ : S ˆ S Ñ S, ps1, s2q ÞÑ s1s2,

(4) the zero element
0 : t˚u Ñ S, ˚ ÞÑ 0,

(5) the one element
1 : t˚u Ñ S, ˚ ÞÑ 1.

2. COMPUTABILITY OF GRADED MODULE PRESENTATIONS 37

Definition 2.2 (Realized group). Let G be an additively written group. A realization
of G is a realization R of the underlying set of G such that the following functions are
computable by the realization R:

(1) The addition
` : G ˆ G Ñ G, pg1, g2q Ñ g1 ` g2,

(2) the inversion
´1 : G Ñ G, g ÞÑ g´1,

(3) the neutral element
0 : t˚u Ñ G, ˚ ÞÑ 0.

Definition 2.3 (Realized G-graded ring). Let S be a G-graded ring. A realization
of S as G-graded ring consists of realizations RS of S as a ring and RG of G, such that
the function

deg :
˜ď

gPG

Sg

¸
´ t0u Ñ G, s ÞÑ h if s P Sh

is computable for the realizations RS and RG.
If a realization exists, we call S realized.
Definition 2.4 (Computable ring). Let S be a G-graded ring with realization R :“

pRS,RGq. We call S (left) computable if the following functions are computable using
RS.

(1) For two matrices with homogeneous entries A P Smˆn and B P Skˆn there is an
algorithm

DecideZeroRows pB, Aq
which returns a matrix B1 P Skˆn such that B ´ B1 “ XA is solvable and the i-th
column B 1́

,i “ 0 if and only if xA “ B´,i is solvable. In particular, B “ XA is
solvable if and only if B1 “ 0.

(2) For two matrices with homogeneous entries A P Smˆn, B P Smˆk over S there is
an algorithm

DecideZeroRowsEffectively pB, Aq
which computes a matrix X such that B ´ XA “ B1 with

B1 :“ DecideZeroRows pB, Aq .

Furthermore, if B1 “ 0, we define
X :“ RightDivide pB, Aq .

(3) For a matrix with homogeneous entries A P Smˆn there is an algorithm
SyzygiesOfRows pAq

which computes the homogeneous syzygies of the rows of A, i.e., a matrix (with
homogeneous entries) T P Skˆn such that TA “ 0 and for every T 1 P Sk1ˆn with
T 1A “ 0 the equation XT “ T 1 is solvable.

38 III. GRADED MODULES

A right computable ring can be defined by replacing left with right, rows with columns,
and the side of the computed matrices in Definition III.2.4. For a commutative ring,
the notions left computable and right computable coincide. So we call a left computable
commutative ring computable.

Proposition 2.5. Let S :“ K rx1, . . . , xns be a G-graded polynomial ring with a term
order ď and I :“ xf1, . . . , fny with fi homogeneous for all i. Then the reduced Gröbner
basis tg1, . . . , gmu of I with respect to ď is homogeneous.

Proof. We show that the reduced Gröbner basis computed with Buchberger’s al-
gorithm is homogeneous. It suffices to show that the S-polynomial of two homogeneous
polynomials is homogeneous. Let

f :“
ÿ

iPNn

fix
i

and
g :“

ÿ
iPNn

gix
i

be two homogeneous polynomials in S, and a :“ Ltď pfq and b :“ Ltď pgq, where Ltď
denotes the leading term with respect to ď. Define m :“ lcm pa, bq and mf :“ m{a and
mg :“ m{b. Then we have

Ltď pmffq “ Ltď pmggq “ m

and therefore mff and mgg are homogeneous of degree deg pmq, since mf and mg are
terms and f and g are homogeneous, and mff and mgg contain the term m. But then the
S-polynomial of f and g,

mff ´ mgg

is a homogeneous polynomial. From the same argument it follows that the autoreduction
preserves the homogeneity. �

Definition 2.6. Let K be a field. A realization of K is a realization R of K as a
ring such that the inversion

´1 : K ´ t0u Ñ K ´ t0u , x ÞÑ x´1

is computable by R.
Proposition 2.7. Let n P N, G a group realized by RG and K a field realized by RK.

Furthermore, let S :“ K rx1, . . . , xns. Then S has a realization RS and if the grading
function is computable for RS and RG, S is computable G-graded.

Proof. If K is realized, a polynomial in S can be realized as list of terms, consisting
of a factor in K and exponents. Multiplication and addition are then carried out in K
and N, so S is realizable with a realization RS. If the grading is computable, S is then
also realized as a G-graded ring. Since polynomials in S are just lists of terms, one can
decide leading terms, and therefore can have a computable term ordering on S. So S ad-
mits a Buchbergers algorithm. [BR08, Sections 1 and 2] show how DecideZeroRows,

2. COMPUTABILITY OF GRADED MODULE PRESENTATIONS 39

RightDivide, and SyzygiesOfRows boil down to Gröbner basis computations for polyno-
mial rings, and since by Proposition III.2.5 homogeneous ideal generators lead homogeneous
Gröbner bases, the described algorithms can be applied to the G-graded case. �

Definition 2.8. Let S be a left computable G-graded ring.
(1) Let B P Smˆk, A P S�ˆn, N P Sm´�ˆn have homogeneous entries. We can compute

pX Y q :“ RightDivide
ˆ

B,

ˆ
A
N

˙˙
and define

RightDivide pB, A, Nq :“ X.

(2) For two matrices with homogeneous entries A P Smˆn, N P Skˆn we can compute

pK Lq :“ SyzygiesOfRows
ˆˆ

A
N

˙˙
and define

SyzygiesOfRows pA, Nq :“ K.

Definition 2.9. Let S be a computable G-graded ring.
(1) Let A P Smˆn be a matrix and ω P Gn. Then we define

ω1 :“ NonTrivialDegreePerRow pA, ωq ,

with
ω1

i :“ ω1

if Ai,1 “ ¨ ¨ ¨ “ Ai,n “ 0, or
ω1

i :“ deg pAi,jq ` ωj

if Ai,1 “ ¨ ¨ ¨ “ Ai,j´1 “ 0 and Ai,j ‰ 0 for i “ 1, . . . , n.
(2) Let A P Smˆn be a matrix and ω P Gm. Then we define

ω1 :“ NonTrivialDegreePerColumn pA, ωq ,

with
ω1

i :“ ω1

if A1,i “ ¨ ¨ ¨ “ An,i “ 0, or
ω1

i :“ deg pAj,iq ` ωj

if A1,i “ ¨ ¨ ¨ “ Aj´1,i “ 0 and Aj,i ‰ 0 for i “ 1, . . . , n.
Proposition 2.10. The functions defined in Definition III.2.9 are computable.
Theorem 2.11. Let S be a G-graded computable ring. Then S-grpres is computable.

Proof.

(1) Objects are pairs of matrices over S and lists of elements in G. Since both S and
G have realizations, there is a realization for the category.

40 III. GRADED MODULES

(2) The equality of objects and morphisms are computable, since equality in S is
decidable.

(3) Let α :“ pM, A, Nq , β :“ pM, A1, Nq P MorS-grpres and N 1 :“ UnderlyingMatrix.
We have

α „ β

iff XN 1 “ A ´ A1 is solvable. Since S is computable, we compute A ´ A1 and use
DecideZeroRows pA ´ A1, N 1q

to decide whether the system is solvable. So the congruence of morphisms is
decidable.

(4) 0, 1 P S can be constructed, as well as 0 P G. So the identity morphism is
computable.

(5) Since products and sums of elements of S are computable, and sums in G are
computable, the composition of morphisms is computable.

(6) The well-definedness of objects is computable since G is computable.
(7) The well-definedness of a morphism is computable because DecideZeroRows and

G are computable. �
Theorem 2.12. Let S be a computable G-graded ring. Then S-grpres is computable

abelian.
Proof. We go though the list of constructions in Chapter II and give the necessary

algorithms and prove their correctness. They are all based on the algorithms defined for
the ring to be computable. If not stated otherwise, the compatibility of entry degrees of
morphisms follows directly from Proposition III.1.9.

(1) We start by constructing the zero morphism between two objects. For two objects
M, N P ObjS-grpres we define

ZeroMorphism pM, Nq :“ pM, 0, Nq ,

where 0 is the gM ˆ gN zero matrix. The triple pM, 0, Nq clearly defines a mor-
phism, and is computable since 0 P S is computable. Let α :“ pN, B, Rq and
β :“ pT, C, Nq be morphisms. Then we have

ZeroMorphism pM, Nq α “ pM, 0, Rq “ ZeroMorphism pM, Rq
and

β ZeroMorphism pM, Nq “ pT, 0, Mq “ ZeroMorphism pT, Mq ,

so pM, 0, Nq fulfills the universal properties of the zero morphism.
(2) We define

AdditionForMorphisms ppM, A, Nq , pM, A1, Nqq :“ pM, A ` A1, Nq .

Since pM, A, Nq and pM, A1, Nq are morphisms, there exist matrices X and X 1
with XN 1 “ AM 1 and X 1N 1 “ A1M 1. Then we have

pA ` A1q M 1 “ AM 1 ` A1M 1 “ XN 1 ` X 1N 1 “ pX ` X 1q N 1

2. COMPUTABILITY OF GRADED MODULE PRESENTATIONS 41

so pM, A ` A1, Nq is indeed a morphism, and since the sum of elements in S
is computable, A ` A1 is computable. Since addition of matrices is associative
and distributive with multiplication, the defined sum of morphisms fulfills the
properties of the addition.

(3) We define

AdditiveInverse ppM, A, Nqq :“ pM, ´A, Nq .

We have

pM, A, Nq ` pM, ´A, Nq “ pM, 0, Nq “ ZeroMorphism pM, Nq
and therefore pM, ´A, Nq fulfills the properties of the additive inverse pM, A, Nq.
The additive inverse is computable since negation in S is computable.

(4) We define
ZeroObject pS-grpresq :“ po, pqq ,

where o is the 0 ˆ 0 matrix, and pq P G0 is the empty list. The object po, pqq is
obviously computable. Let M P ObjS-grpres. Indeed, there is exactly one morphism

α : M Ñ ZeroObject pS-grpresq ,

namely α “ pM, A, po, pqqq where A is the gM ˆ0 matrix, and exactly one morphism

β : ZeroObject pS-grpresq Ñ M,

namely β ppo, pqq , A, Mq where A is the 0 ˆ gM matrix. Both morphisms are
computable using ZeroMorphism.

(5) We now define the direct sum. For two objects M :“ pM 1, ωM q and N :“ pN 1, ωN q
we will prove that the object

D :“ DirectSum pM, Nq :“
ˆˆ

M 1 0
0 N 1

˙
, pωM , ωN q

˙
together with the projections

ProjectionInFactorOfDirectSum ppM, Nq , 1q :“
ˆ

D,

ˆ
1M

0N

˙
, M

˙
,

ProjectionInFactorOfDirectSum ppM, Nq , 2q :“
ˆ

D,

ˆ
0M

1N

˙
, N

˙
and the injections

InjectionOfCofactorOfDirectSum ppM, Nq , 1q :“ pM, p1M 0N q , Dq ,

InjectionOfCofactorOfDirectSum ppM, Nq , 2q :“ pN, p0M 1N q , Dq
is a direct sum, where 1M is the gM ˆgM identity matrix, 1N is the gN ˆgN identity
matrix, and 0M and 0N are the gM ˆ gM and gN ˆ gN zero matrices, respectively.
Since 0 and 1 in S are computable, the direct sum object, the projections, and the

42 III. GRADED MODULES

injections are computable. Indeed, let pM, A, Lq and pN, B, Lq be two morphisms.
We define the universal morphism from the direct sum to be

UniversalMorphismFromDirectSum ppM, A, Lq , pN, B, Lqq
:“

ˆ
D,

ˆ
A
B

˙
, L

˙
.

Since there is nothing to compute, this morphism is computable. For two mor-
phisms pL, A, Mq and pL, B, Nq we define the universal morphism into the direct
sum by

UniversalMorphismIntoDirectSum ppL, A, Mq , pL, B, Nqq
:“ pL, pA Bq , Dq .

Since there is again nothing to compute, this morphism is computable.
We now show that these two universal morphisms fulfill the properties of the

universal morphisms of product and coproduct. Let
ι :“ UniversalMorphismFromDirectSum ppM, A, Lq , pN, B, Lqq ,

π :“ UniversalMorphismIntoDirectSum ppL, A, Mq , pL, B, Nqq .

By blockwise matrix multiplication it follows that
InjectionOfCofactorOfDirectSum ppM, Nq , 1q ι “ pM, A, Lq ,

InjectionOfCofactorOfDirectSum ppM, Nq , 2q ι “ pN, B, Lq ,

π ProjectionInFactorOfDirectSum ppM, Nq , 1q “ pL, A, Mq ,

π ProjectionInFactorOfDirectSum ppM, Nq , 2q “ pL, B, Nq .

We still need to show the uniqueness of the universal morphisms. We show this
for the morphism from the direct sum, the dual case for the morphism into the
direct sum is analog. Let ι be as above and

ι1 :“ InjectionOfCofactorOfDirectSum ppM, Nq , 1q ,

ι2 :“ InjectionOfCofactorOfDirectSum ppM, Nq , 2q .

Now, let ϕ :“
ˆ

D,

ˆ
A1
B1

˙
, L

˙
be a morphism with

ϕπ1 „ pM, A, Lq and ϕπ2 „ pN, B, Lq .

Then we have matrices X and Y such that XL1 “ A ´ A1 and Y L1 “ B ´ B1.
Therefore we have ˆ

X
Y

˙
L “

ˆ
A
B

˙
´

ˆ
A1
B1

˙
,

so we have ϕ „ ι.

2. COMPUTABILITY OF GRADED MODULE PRESENTATIONS 43

(6) We give the constructions for the kernel. Let pM, A, Nq be a morphism and
J 1 :“ SyzygiesOfRows pA, N 1q. Furthermore, let K 1 :“ SyzygiesOfRows pJ 1, M 1q.
We define

KernelObject ppM, A, Nqq :“ pK 1, ωq
with

ω :“ NonTrivialDegreePerRow pJ 1, ωM q .

By definition K 1 has homogeneous entries, and since there is a matrix Y with ho-
mogeneous entries such that K 1J 1 “ Y M 1, the tuple ω fulfills the degree properties.
So the tuple pK 1, ωq defines an object in S-grpres. Furthermore, let K :“ pK 1, ωq
be the kernel object. Then the kernel embedding is defined as

KernelEmbedding ppM, A, Nqq :“ pK, J 1, Mq .

We have J 1A ` XN 1 “ 0, so the composition of kernel embedding and morphism
is congruent to 0, and since there is a matrix X 1 with K 1J 1 ` X 1M 1 “ 0 the
triple pK, J 1, Mq is compatible. By the definition of NonTrivialDegreePerRow
the grading for pK, J 1, Mq is also compatible, so pK, J 1, Mq is indeed a morphism.
Since SyzygiesOfRows is computable in S and NonTrivialDegreePerRow is com-
putable, kernel embedding and kernel object are computable. Now, let pT, H, Mq
be a test morphism for the kernel, i.e,

pT, HA, Nq „ pT, 0, Nq ,

which means that there is a matrix Z 1 with Z 1N 1 “ HA. We define
KernelLift ppM, A, Nq , pT, H, Mqq

:“ pT, RightDivide pH, J 1q , Kq .

By definition, we have
KernelLift ppM, A, Nq , pT, H, Mqq KernelEmbedding ppM, A, Nqq

„ pT, H, Mq .

The uniqueness of the kernel lift follows from the fact that pK, J 1, Mq is a monomor-
phism. Since RightDivide is computable in S, the KernelLift is computable.

(7) We give the constructions for the cokernel. Let pM, A, Nq be a morphism. The
cokernel is defined by

CokernelObject ppM, A, Nqq :“
ˆˆ

A
N

˙
, ωN

˙
,

so the generator degrees are the generator degrees of N . Therefore, by the defini-
tion of an object and morphism, the object is well-defined.

The cokernel projection is defined by
CokernelProjection ppM, A, Nqq :“ pN, 1, Cq ,

where C :“ CokernelObject ppM, A, Nqq. Since we have
pM, A, Nq CokernelProjection ppM, A, Nqq “ pM, A, Cq ,

44 III. GRADED MODULES

and A “ XC is clearly solvable for X, we have pM, A, Cq „ 0M,C . Let pN, H, T q
be a test morphism for the cokernel, i.e.,

pM, A, Nq pN, H, T q „ 0M,T .

We define the cokernel colift as
CokernelColift ppM, A, Nq , pN, H, T qq :“ pC, H, T q ,

with C :“ CokernelObject ppM, A, Nqq. Obviously, this morphism fulfills the uni-
versal property of the cokernel colift, and the morphism is well-defined. Again, the
uniqueness follows from the fact that the cokernel projection is an epimorphism.

(8) To define LiftAlongMonomorphism and ColiftAlongEpimorphism, we first show
that in S-grpres, every monomorphism is the kernel of its cokernel, and every
epimorphism is the cokernel of its kernel. We then use KernelLift to define
LiftAlongMonomorphism and CokernelColift to define ColiftAlongEpimorphism.

We start by showing that every monomorphism is the kernel of its cokernel.
Let ϕ :“ pM, A, Nq be a mono. Then we have

ε :“ CokernelProjection pϕq “ pN, 1N , Cq
with C “ CokernelObject pϕq. Let γ :“ pM2, G, Nq be another morphism with
γε „ 0M2,C , i.e., ˆ

A
N

˙
ěrow G,

which means that there exist matrices X, Y with G “ XA ` Y N . A candidate for
a unique lift would be λ :“ pM2, X, Mq with

X :“ RightDivide pG, A, N 1q
once we have shown that the triple pM2, X, Nq is compatible, i.e., M 1 ěrow M 1

2X
and

ωM2,k ` deg pXk,jq “ ωM,j

for all k “ 1, . . . , gM2 and j “ 1, . . . , gM with Xk,j ‰ 0. Since γ and ϕ are
morphisms and we have X “ RightDivide pG, A, N 1q, the degrees of λ are com-
patible. Indeed, note that N 1 ěrow M 1

2G since γ is a morphism. Furthermore
N 1 ěrow M 1

2Y N 1. Hence
N 1 ěrow M 1

2G ´ M 1
2Y N 1 “ M 1

2XA “ pM 1
2Xq A.

Since ϕ is a mono, the kernel embedding of ϕ vanishes, which means that
M 1 ěrow SyzygiesOfRows pA, N 1q “: K.

But K row-dominates by definition any T with N 1 ěrow TA, in particular we have
M 1 ěrow K ěrow M 1

2X.

So we set
LiftAlongMonomorphism pγ, ϕq :“ λ “ pM2, X, Mq .

2. COMPUTABILITY OF GRADED MODULE PRESENTATIONS 45

We continue to show that any epi is the cokernel projection of its kernel em-
bedding. Let ϕ :“ pM, A, Nq be an epi and

κ :“ KernelEmbedding pϕq “ pK2, K, Mq .

It suffices to show that the unique colift
λ :“ CokernelColift pκ, ϕq “ pC, A, Nq

of ϕ along ε :“ CokernelProjection pκq is an isomorphism, where C denotes the
cokernel object of κ. We have K “ SyzygiesOfRows pA, N 1q. An inverse α of the
colift λ must satisfy αλ „ idN . This implies that

α “ pN, Y, Cq
with

Y :“ RightDivide p1N , A, N 1q ,

where 1N is the gN ˆ gN identity matrix. The matrix Y exists since ϕ is an epi.
Now we show that the triple α “ pN, Y, Cq is compatible and hence defines a
morphism. By definition of Y there exists a matrix Z such that

Y A ` ZN 1 “ 1N .

Multiplying with N 1 from the left we obtain N 1Y A ` N 1ZN 1 “ N 1, which is
equivalent to

N 1Y A “ p1N ´ N 1Zq N 1,
i.e., N 1 ěrow N 1Y A. But K row-dominates by definition any T with N 1 ěrow TA,
hence K ěrow N 1Y and therefore α is a compatible triple. Since αλ „ idN by
definition of Y , it remains to show that λα „ idC . We multiply with A from the
left and obtain

AY A ` AZN 1 “ A,

or equivalently
pAY ´ 1N q A “ pAZq N 1,

hence N ěrow pAY ´ 1N q A and as above K ěrow pAY ´ 1N q, which concludes the
proof. �

From the algorithms for the categorical constructions in S-grpres, we can see why the
distinction of congruence and equality of morphisms is important.

Example 2.13. Let S be the Q with a trivial grading, M 1 :“ p1q P Q1ˆ1, M :“
pM 1, p0qq, and ϕ :“ pM, M 1, Mq. Then the cokernel projection of ϕ is

ε :“ CokernelProjection pϕq “
ˆ

M, M 1,
ˆˆ

1
1

˙
, p0q

˙˙
.

So the composition ϕε of ϕ and its cokernel projection is the same morphism as the cokernel
projection ε of ϕ. The morphism ϕε is congruent to the zero morphism, but not equal.

46 III. GRADED MODULES

Remark 2.14. In the actual Cap implementation the category S-grpres is implemented
in two steps: There is a category of module presentation over a non-graded ring, and data
structures and algorithms of this non-graded module presentations are just like the above,
but without any grading conditions. The implementation in Cap can be found in Appendix
F.2.

The implementation of the graded module presentation category then uses this category
and equips the objects with gradings. It can also check whether the matrices in the
underlying non-graded presentation category represent well-defined objects and morphisms
in the graded module presentation category. The corresponding implementation can be
found in Appendix F.4.

Also, the category defined in this chapter describes left modules. Since we are only
going to work with commutative rings, this is general enough. Cap has implementations
for both left and right modules. The implementations for right modules can be found in
Appendix F.3 and Appendix F.5.

CHAPTER IV

Generalized morphisms and Serre quotients

In this chapter we present an example of the flexibility a categorical organized setup
offers for the implementation of computable categories: We create a computable category
on top of another computable abelian category, only using the categorical constructions
from that underlying category. We first define the category of generalized morphisms of
an abelian category. Then we use a certain subcategory thereof, the category of so-called
Gabriel morphisms, to establish the computability of Serre quotient categories.

For categorical operations, e.g., KernelEmbedding and UniversalMorphismFromDirect-
Sum, we use the notation from Chapter II.

1. The category of generalized morphisms

Generalized morphisms will serve as a data structure for morphisms in Serre quotient
categories. Generalized morphisms already are an interesting tool by themselves, for ex-
ample for performing diagram chases. There are several data structures for generalized
morphisms, and we will explicitly describe three of them. An extensive description of gen-
eralized morphisms, including their universal properties, can be found in [Pos17, Section
II.1]. We will limit our exposition to the description of the data structures and operations
of generalized morphism categories, and the proof of the necessary constructions to estab-
lish the computability of Serre quotients. We will also describe how to convert those three
different generalized morphism data structures into each other, to state that they define
equivalent categories.

The three described versions of the generalized morphisms category are currently im-
plemented in Cap, and the implemented algorithms can be found in Appendices F.6, F.7,
and F.8.

1.a. Preliminaries. To define generalized morphisms we need the notions of the fiber
product and the pushout of two morphisms. Both constructions are computable in a
computable preabelian category.

Definition 1.1. Let A be a category.
(1) Let ϕ : A1 Ñ M, ψ : A2 Ñ M in MorA. The fiber product or pullback of ϕ

and ψ is an object Pf P ObjA together with two morphisms π1 : Pf Ñ A1 and
π2 : Pf Ñ A2 such that π1ϕ „ π2ψ and for every pair of morphisms τ1 : Q Ñ A1
and τ1 : Q Ñ A2 with τ1ϕ „ τ2ψ there is an up to congruence unique morphism
η : Q Ñ Pf such that τ1 „ ηπ1 and τ2 „ ηπ2.1

1Recall, categories are categories with Hom-setoids

47

48 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

M

A1 A2

Pf

Q

ϕ ψ

π1 π2

τ1 τ2

η

(2) Let ϕ : M Ñ A1, ψ : M Ñ A2 in MorA. The pushout of ϕ and ψ is an object
Pp P ObjA together with two morphisms ι1 : A1 Ñ Pp and ι2 : A2 Ñ Pp such that
ϕι1 „ ψι2 and for every pair of morphisms τ1 : A1 Ñ Q and τ2 : A2 Ñ Q with
ϕτ1 „ ψτ2 there is an up to congruence unique morphism ε : Pp Ñ Q such that
τ1 „ ι1ε and τ2 „ ι2ε.

Q

Pp

A1 A2

M

ϕ ψ

ι1 ι2

τ1 τ2

ε

Definition 1.2. Let A be a category computable by the realization R.

(1) We say A has computable fiber products if the functions

FiberProduct : M Ñ ObjA, pϕ, ψq ÞÑ Pf ,

ProjectionInFactorOfFiberProduct : M ˆ t1, 2u Ñ MorA, pϕ, ψ, iq ÞÑ πi,

UniversalMorphismIntoFiberProduct : N Ñ MorA, pϕ, ψ, τ1, τ2q ÞÑ η,

1. THE CATEGORY OF GENERALIZED MORPHISMS 49

with
M :“

ď
A1,A2,MPObjA

HomA pA1, Mq ˆ HomA pA2, Mq ,

N :“
ď

A1,A2,M,QPObjA

HomA pA1, Mq ˆ HomA pA2, Mq ˆ HomA pQ, A1q ˆ HomA pQ, A2q

are computable by R.
(2) We say A has computable pushouts if the functions

Pushout : M Ñ ObjA, pϕ, ψq ÞÑ Pp,

InjectionOfCofactorOfPushout : M ˆ t1, 2u Ñ MorA, pϕ, ψ, iq ÞÑ ιi,

UniversalMorphismFromPushout : N Ñ MorA, pϕ, ψ, τ1, τ2q ÞÑ ε,

with
M :“

ď
A1,A2,MPObjA

HomA pM, A1q ˆ HomA pM, A2q ,

N :“
ď

A1,A2,M,QPObjA

HomA pM, A1q ˆ HomA pM, A2q ˆ HomA pA1, Qq ˆ HomA pA2, Qq

are computable by R.
In a computable preabelian category the fiber product and the pushout can be derived

from other categorical operations.
Theorem 1.3. Let A be a computable preabelian category. Then A has computable

fiber products.
Proof. Let ϕ : A1 Ñ M and ψ : A2 Ñ M be morphisms in A. We first give

constructions for FiberProduct and ProjectionInFactorOfFiberProduct. Let
D :“ DirectSum pA1, A2q

with projections
πi :“ ProjectionInFactorOfDirectSum ppA1, A2q , iq

for i “ 1, 2. To compute the projections in the factors of the fiber product of ϕ and ψ and
the fiber product object itself we compute the diagonal difference

δ :“ π1ϕ ´ π2ψ

and set
P :“ FiberProduct pϕ, ψq :“ KernelObject pδq .

With
χ :“ KernelEmbedding pδq

we set
κi :“ ProjectionInFactorOfFiberProduct pϕ, ψ, iq :“ PreCompose pχ, πiq

for i “ 1, 2.

50 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

KernelObject pδq

D A1

A2 M

χ

π1

π2 ϕ

μ2

δ

κ1

κ2

To construct the universal morphisms into the fiber product of τ1 : Q Ñ A1 and τ2 : Q Ñ A2
set

τ :“ UniversalMorphismIntoDirectSum pτ1, τ2q .

Then τ P HomA pQ, Dq, and we have
τδ „ 0P,M .

So we can define the universal morphisms to be
UniversalMorphismIntoFiberProduct pϕ, ψ, τ1, τ2q :“ KernelLift pδ, τq . �

Since the pushout is dual to the fiber product, it is also computable in preabelian
categories.

Corollary 1.4. Let A be a computable preabelian category. Then A has computable
pushouts.

For the rest of this chapter, we use the following notation.
Notation. Since we often work with different categories at the same time in this

chapter, we will extend the operators for categorical operations with the name of the
category, e.g., the composition in the category A will be denoted by PreComposeA.

1.b. Generalized morphisms by cospans. As first data structure for generalized
morphisms we describe the generalized morphisms by cospans.

Definition 1.5. Let A be an abelian category. A pair ϕ :“ pα : A Ñ C, β : B Ñ Cq
with α, β P MorA is called cospan with source A and range B in A.

C

A B

α β

ϕ

We call α the arrow of ϕ and β the reversed arrow of ϕ.

Definition 1.6. A cospan A
αÑ C

βÐ B in an abelian category A is called normalized
if the universal morphism from the direct sum A ‘ B

xα,βyÝÑ C is an epimorphism.

1. THE CATEGORY OF GENERALIZED MORPHISMS 51

Definition 1.7 (Generalized morphisms by cospans). Let A be an abelian category.
The category of generalized morphisms by cospans GC pAq has the following objects
and morphisms:

(1) ObjGCpAq :“ ObjA.
(2) For two objects A, B P ObjGCpAq we set

HomGCpAq pA, Bq :“
˜ ď

CPObjA

HomA pA, Cq ˆ HomA pB, Cq
¸

{ »,

where » is the following equivalence relation: Let ϕ :“ pα1, β1q and ψ :“ pα2, β2q be two
cospans in HomGCpAq pA, Bq, and Fi :“ FiberProductA pαi, βiq, i “ 1, 2, the fiber products
of α1 and β1, and α2 and β2 respectively, together with injections from the fiber product
ιi,1 : Fi Ñ A and ιi,2 : Fi Ñ B.

C1

F1

A A ‘ B B

F2

C2

α1

ι1,1
κ1

β1

ι1,2

α

α2

ι2,1
κ2

β2

ι2,2

The cospans ϕ and ψ are equivalent if the monomorphisms κ1 :“ tι1,1, ι1,2u : F1 ãÑ A ‘ B
and κ2 :“ tι2,1, ι2,2u : F2 ãÑ A ‘ B are equivalent as subobjects of A ‘ B, i.e., if there is
an isomorphism α : F1 Ñ F2 such that ακ2 „ κ1 holds. 2

For a morphism ϕ P MorGCpAq represented by the normalized cospan pα, βq we call α
the arrow of ϕ and write Arrow pϕq :“ α, and β the reversed arrow of ϕ and write
ReversedArrow pϕq :“ β.3 The identity morphism for an A P ObjGCpAq can be represented
by the cospan consisting of two times the identity of A (viewed as an object in A), or,

2HomGCpAq pA, Bq is a set, not a setoid, i.e., two morphisms are congruent if they are equal.
3The terms arrow and reversed arrow of a morphism ϕ P MorGCpAq are dependent on the choice of

the representative of ϕ. Every time we use the terms arrow and reversed arrow, we assume a normalized
representative is fixed.

52 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

written in operators:

Arrow
`
IdentityMorphismGCpAq pAq˘

:“ IdentityMorphismA pAq ,

ReversedArrow
`
IdentityMorphismGCpAq pAq˘

:“ IdentityMorphismA pAq .

The composition of two composable morphisms ϕ, ψ P MorGCpAq is defined as follows: Let

ιi :“ InjectionOfCofactorOfPushoutA ppReversedArrow pϕq , Arrow pψqq , iq ,

for i “ 1, 2. Then ϕψ is represented by

Arrow pϕψq :“ PreComposeA pArrow pϕq , ι1q
ReversedArrow pϕψq :“ PreComposeA pι2, ReversedArrow pψqq .

P

X Y

A B C

Arrow pϕq ReversedArrow pψq

ι1 ι2

ϕ ψ

For a proof that this category is well-defined and the composition is compatible with
the equivalence relation on the Hom-sets, see [Pos17, Subsection II.1.2].

Proposition 1.8. Let ϕ : A Ñ B in MorGCpAq represented by the cospan A
αÑ C

βÐ B.
Then a normalized representative A

α1Ñ C 1 β1Ð B is computable.

Proof. We compute

ιi :“ ProjectionInFactorOfFiberProductA ppα, βq , iq

for i “ 1, 2 and

α1 :“ InjectionOfCofactorOfPushoutA ppι1, ι2q , 1q ,

β1 :“ InjectionOfCofactorOfPushoutA ppι1ι2q , 2q .

1. THE CATEGORY OF GENERALIZED MORPHISMS 53

C

C 1

A B

P

α β

α1 β1

ϕ

ι1 ι2

Since ι1, ι2 is a fiber product diagram of α1 and β1, the cospan pα1, β1q is equivalent to the
cospan pα, βq. Furthermore, since α1 and β1 are the pushout of a fiber product, the cospan
pα1, β1q is normalized. �

Definition 1.9. Let A be an abelian category and ϕ P MorGCpAq. The generalized
morphism ϕ is called honest if ReversedArrow pϕq is an isomorphism in A. We define

HonestRepresentative pϕq :“ Arrow pϕq ReversedArrow pϕq´1

to be the honest representative of ϕ.
The category A embeds naturally into GC pAq:
Definition 1.10. There is an embedding

FC : A Ñ GC pAq ,

defined as follows: For A P ObjA set FC pAq :“ A and for a morphism ϕ P MorA the image
FC pϕq is represented by

Arrow
`
FC pϕq˘

:“ ϕ,

ReversedArrow
`
FC pϕq˘

:“ IdentityMorphismA pRange pϕqq .

We call FC pϕq the corresponding honest cospans of ϕ.

1.c. Generalized morphisms by spans. The second data structure, generalized
morphisms by spans, is dual to the generalized morphisms by cospans data structure.

Definition 1.11. Let A be an abelian category. A pair ϕ :“ pα : C Ñ A, β : C Ñ Bq
is called span with source A and range B in A.

54 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

A B

C

αβ

ϕ

We call α the reversed arrow of ϕ and β the arrow of ϕ.

Definition 1.12. A span A
αÐ C

βÑ B in an abelian category A is called normalized
if the universal morphism into the direct sum C

tα,βuÝÑ A ‘ B is a monomorphism.
Definition 1.13 (Generalized morphisms by spans). Let A be an abelian a category.

The category of generalized morphisms by spans is the category GS pAq with the
following objects and morphisms:

(1) We set ObjGSpAq :“ ObjA.
(2) For two objects A, B P ObjGSpAq we set

HomGSpAq pA, Bq :“
˜ ď

CPObjA

HomA pC, Aq ˆ HomA pC, Bq
¸

{ »,

where » describes the following equivalence relation: Let ϕ :“ pα1, β1q and ψ :“ pα2, β2q be
two spans in HomGSpAq pA, Bq, and P1 :“ PushoutA pα1, β1q and P2 :“ PushoutA pα2, β2q
the pushouts of α1 and β1, and α2 and β2 respectively, together with projections to the
pushout πi,1 : A Ñ Pi and πi,2 : B Ñ Pi.

C1

P1

A A ‘ B B

P2

C2

α1

π1,1
κ1

β1

π1,2

α

α2

π2,1
κ2

β2

π2,2

1. THE CATEGORY OF GENERALIZED MORPHISMS 55

The pairs ϕ and ψ are equivalent if the epimorphisms κ1 :“ xπ1,1, π1,2y : A ‘ B � P1 and
κ2 :“ xπ2,1, π2,2y : A ‘ B � P2 are equivalent as factor objects of A ‘ B, i.e., if there is an
isomorphism α : P1 Ñ P2 such that κ1α „ κ2 holds.4

For a morphism ϕ P MorGSpAq represented by the normalized cospan pα, βq we call β
the arrow of ϕ and write Arrow pϕq :“ β, and α the reversed arrow of ϕ and write
ReversedArrow pϕq :“ α.5

The identity morphism for an A P ObjGSpAq is represented by the span consisting of
two times the identity of A (viewed as an object in A), or, written in operators:

Arrow
`
IdentityMorphismGSpAq pAq˘

:“ IdentityMorphismA pAq ,

ReversedArrow
`
IdentityMorphismGSpAq pAq˘

:“ IdentityMorphismA pAq .

The composition of two composable morphisms ϕ : A Ñ B, ψ : B Ñ C P MorGSpAq is
defined as follows: Let

πi :“ ProjectionInFactorOfFiberProductA ppArrow pϕq , ReversedArrow pψqq , iq
for i “ 1, 2. Then ϕψ is represented by

ReversedArrow pϕψq :“ PreComposeA pπ1, ReversedArrow pϕqq ,

Arrow pϕψq :“ PreComposeA pπ2, Arrow pψqq .

A B C

X Y

P

π1

ReversedArrow pϕq

π2

Arrow pψq

ϕ ψ

For a proof that this category is well-defined and the composition is compatible with
the equivalence relation on the Hom-sets, see [Pos17, Subsection II.1.2].

Proposition 1.14. Let ϕ : A Ñ B in MorGSpAq, represented by the span A
αÐ C

βÑ B.
Then a normalized representative A

α1Ð C 1 β1Ñ B of ϕ is computable.
The proof is dual to the proof of Proposition IV.1.8.

4HomGSpAq pA, Bq is a set, not a setoid, i.e., two morphisms are congruent if they are equal.
5The terms arrow and reversed arrow of a morphism ϕ P MorGSpAq are dependent on the choice of

the representative of ϕ. Every time we the use terms arrow and reversed arrow, we assume a normalized
representative is fixed.

56 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

Definition 1.15. Let A be an abelian category and ϕ P MorGSpAq. The generalized
morphism ϕ is called honest if ReversedArrow pϕq is an isomorphism in A. We define

HonestRepresentative pϕq :“ ReversedArrow pϕq´1 Arrow pϕq
to be the honest representative of ϕ.

The category A embeds naturally into GS pAq:
Definition 1.16. There is an embedding

FS : A Ñ GS pAq .

defined as follows: For A P ObjA set FS pAq :“ A and for a morphism ϕ P MorA

Arrow
`
FS pϕq˘

:“ ϕ,

ReversedArrow
`
FS pϕq˘

:“ IdentityMorphismA pSource pϕqq .

We call FS pϕq the corresponding honest span of ϕ.

1.d. Generalized morphisms by 3-arrows. The third data structure for general-
ized morphisms consists of three morphisms from the underlying category A instead of
two.

Definition 1.17 (Data structure for 3-arrow generalized morphisms). Let A be an
abelian category. A generalized morphism by 3-arrows ϕ with source A and range B
in A is an equivalence class of tuples of three morphisms

ι :A1 Ñ A,

α :A1 Ñ B2,

π :B Ñ B2,

where ι is called the source aid, π is called the range aid, and α is called the arrow.
We write

SourceAid pϕq :“ ι,

RangeAid pϕq :“ π,

Arrow pϕq :“ α.

A B

A1 B2

SourceAid pϕq

Arrow pϕq

RangeAid pϕq

1. THE CATEGORY OF GENERALIZED MORPHISMS 57

We now define the equivalence relation for generalized morphisms by 3-arrows. To do
this, we define a normalized generalized morphism by 3-arrows, then give the normalization
algorithm. At last we show how to compare two normalized generalized morphisms by 3-
arrows.

Definition 1.18 (Normalized 3-arrow generalized morphism). Let ϕ be a 3-arrow gen-
eralized morphism in A. We call ϕ normalized if SourceAid pϕq is an A-monomorphism
and RangeAid pϕq is an A-epimorphism. The source aid can then be seen as an A-subobject
of the source of ϕ, and the range aid as an A-quotient object of the range of ϕ.

Remark 1.19. A generalized morphism ϕ : A Ñ B can be interpreted as a morphism
from an A-subobject of A to an A-quotient object of B.

Algorithm 1.20 (Normalization). Let ϕ : A Ñ B be a generalized morphism by
3-arrows in A.

A B

A1 B2

ϕ

SourceAid pϕq

Arrow pϕq

RangeAid pϕq

The following algorithm computes a normalized representative of ϕ, i.e., three morphisms
of the form

A B

Y X 1

α β

such that α is a monomorphism, β an epimorphism, and the 3-arrow represents the gener-
alized morphism ϕ.

We start by computing the pushout of the source aid and the arrow of ϕ:

ι1 :“ InjectionOfCofactorOfPushoutA ppSourceAid pϕq , Arrow pϕqq , 1q ,

ι2 :“ InjectionOfCofactorOfPushoutA ppSourceAid pϕq , Arrow pϕqq , 2q .

58 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

A B

X

A1 B2

ϕ

SourceAid pϕq

Arrow pϕq

RangeAid pϕq

ι1

ι2

Now we compose the range aid of ϕ with the second cofactor injection ι of the pushout,
i.e.,

γ :“ PreComposeA pRangeAid pϕq , ιq .

and then compute

γ1 :“ CoastrictionToImageA pγq ,

γ2 :“ ImageEmbeddingA pγq .

A B

X X 1

A1 B2

ϕ

SourceAid pϕq

Arrow pϕq

RangeAid pϕq

ι1

ι2

γ1

γ2

Now we compute the pullback of the image embedding γ2 and the first injection ι1, i.e.,

δ1 :“ ProjectionInFactorOfFiberProductA ppι1, γ2q , 1q ,

δ2 :“ ProjectionInFactorOfFiberProductA ppι1, γ2q , 2q .

1. THE CATEGORY OF GENERALIZED MORPHISMS 59

A B

Y

X X 1

A1 B2

ϕ

SourceAid pϕq

Arrow pϕq

RangeAid pϕq

ι1

ι2

γ1

γ2

δ1

δ2

The normalized generalized morphism rϕ is now given by

A B

Y X 1

rϕ
δ1

δ2

γ2

We can now define the equivalence relation for 3-arrow generalized morphisms.
Definition 1.21. Let

A B

A1
1 B2

1

ϕ1

ι1

α1

π1

A B

A1
2 B2

2

ϕ2

ι2

α2

π2

be two 3-tuples as in Definition IV.1.17. Then the tuples ϕ1 and ϕ2 represent the same
3-arrow generalized morphism if for their normalizations rϕ1 and rϕ2 the following holds:

(1) The source aids SourceAid prϕ1q and SourceAid prϕ2q are equivalent as subobjects
of A;

(2) The range aids RangeAid prϕ1q and RangeAid prϕ2q are equivalent as factor objects
of B.

60 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

A2 B2

A B

A1 B1

rϕ1

Ăϕ2

„ „
Definition 1.22. Let A be an abelian category. The category GT pAq of generalized

morphisms by 3-arrows in A is the category with
(1) ObjGTpAq :“ ObjA and
(2) A, B P ObjGTpAq set6

HomGTpAq pA, Bq :“ tϕ : A Ñ B | ϕ is a 3-arrow generalized morphism in Au
Let A P ObjGTpAq. The identity morphism IdentityMorphismGTpAq pAq is the generalized
morphism represented by the triple where all three morphisms, i.e., SourceAid, RangeAid,
and Arrow are the identity morphism of A (viewed as object in A).

Let ϕ : A Ñ B and ψ : B Ñ C be two generalized morphisms in A. We define their
composition ϕψ as follows: Let ϕ and ψ represented by the following triples:

A B B C

A1 B2 B1 C2

ϕ

SourceAid pϕq

Arrow pϕq

RangeAid pϕq

ψ

SourceAid pψq

Arrow pψq

RangeAid pψq

We compose SourceAid pψq and RangeAid pϕq and get a morphism α : B1 Ñ B2, i.e.,

α :“ PreComposeA pSourceAid pψq , RangeAid pϕqq .

A B B C

A1 B2 B1 C 1

ϕ ψ

α

6HomGTpAq pA, Bq is a set, not a setoid, i.e., two morphisms are congruent if they are equal.

1. THE CATEGORY OF GENERALIZED MORPHISMS 61

The next step is an epi-mono-factorization of α, resulting in two morphisms π : B1 � X
and ι : X ãÑ B2, i.e.,

pπ, ιq :“ EpiMonoFactorizationA pαq .

A B B C

A1 B2 B1 C 1

X

ϕ

Arrow pϕq

ψ

Arrow pψq
α

πι

At last we compute FiberProductA pArrow pϕq , ιq and PushoutA pπ, Arrow pψqq and their
corresponding projections and injections and get a full rectangle. We define

γi :“ ProjectionInFactorOfFiberProductA ppArrow pϕq , πq , iq ,

δi :“ InjectionOfCofactorOfPushoutA ppι, Arrow pψqq , iq ,

for i “ 1, 2.

A B B C

A1 B2 B1 C 1

A2 X C2

ϕ

SourceAid pϕq

ψ

RangeAid pψq
α

ιπγ1

γ2 δ1

δ2

Now we compose the borders of the rectangle, i.e,

ε :“ PreComposeA pγ1, SourceAid pϕqq ,

η :“ PreComposeA pγ2, δ1q ,

κ :“ PreComposeA pδ2, RangeAid pψqq ,

and get the composition of ϕ and ψ as

62 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

A B

A2 C2

ϕψ

ε

η

κ

Remark 1.23. We summarize the steps for the composition ϕψ of two 3-arrow gener-
alized morphisms ϕ and ψ:

(1) α :“ PreComposeA pSourceAid pψq , RangeAid pϕqq
(2) pι, πq :“ EpiMonoFactorizationA pαq
(3)

SourceAid pϕψq :“ PreComposeA pProjectionInFactorOfFiberProductA ppArrow pϕq , πq , 1q ,

SourceAid pϕqq
(4)

RangeAid pϕψq :“ PreComposeA p RangeAid pψq ,

InjectionOfCofactorOfPushoutA ppι, Arrow pψqq , 1qq
(5)

Arrow pϕψq :“ PreComposeA pProjectionInFactorOfFiberProductA ppArrow pϕq , πq , 2q ,

InjectionOfCofactorOfPushoutA ppι, Arrow pψqq , 1qq .

For a proof that this category is well-defined and the composition is compatible with
the equivalence relation on the Hom-sets, see [Pos17, Subsection II.1.2].

Definition 1.24. Let A be a category and ϕ P MorGTpAq. The generalized morphism
ϕ is called honest if SourceAid pϕq and RangeAid pϕq are isomorphisms. We define

HonestRepresentative pϕq :“ SourceAid pϕq´1 Arrow pϕq RangeAid pϕq´1

to be the honest representative of ϕ.
The category A embeds naturally into GT pAq.
Definition 1.25. There is an embedding

FT : A Ñ GT pAq
defined as follows: For A P ObjA set FT pAq :“ A and for a morphism ϕ P MorA

Arrow
`
FT pϕq˘

:“ ϕ,

SourceAid
`
FT pϕq˘

:“ IdentityMorphismA pSource pϕqq ,

RangeAid
`
FT pϕq˘

:“ IdentityMorphismA pRange pϕqq .

1. THE CATEGORY OF GENERALIZED MORPHISMS 63

We call FT pϕq the corresponding honest 3-arrow of ϕ.

1.e. Conversion between different types of generalized morphisms. We now
show how to relate the three different kinds of generalized morphism categories. We give
the conversion functors between all three types of generalized morphisms, which are equiv-
alences of categories. For the proof of correctness see [Pos17, Subsection II.1.4].

Definition 1.26. Let A be an abelian category. The conversion functor from
cospans to spans CGSpAq,GCpAq : GC pAq Ñ GS pAq is defined as follows:

(1) For an object A P ObjGCpAq set CGSpAq,GCpAq pAq :“ A (recall, the object classes
are the same).

(2) Let ϕ P MorGCpAq and set

πi :“ ProjectionInFactorOfFiberProductA ppArrow pϕq , ReversedArrow pϕqq , iq ,

i “ 1, 2.

P

A B

F

Arrow pϕq ReversedArrow pϕq
ϕ

π1 π2

Then the span below the dashed arrow represents CGSpAq,GCpAq pϕq, i.e.,

Arrow
`
CGSpAq,GCpAq pϕq˘

:“ π2,

ReversedArrow
`
CGSpAq,GCpAq pϕq˘

:“ π1.

Definition 1.27. Let A be an abelian category. The conversion functor from
spans to cospans CGCpAq,GSpAq : GS pAq Ñ GC pAq is defined as follows:

(1) For an object A P ObjGSpAq set CGCpAq,GSpAq pAq :“ A.
(2) Let ϕ P MorGSpAq and set

ιi :“ InjectionOfCofactorOfPushoutA ppReversedArrow pϕq , Arrow pϕqq , iq ,

i “ 1, 2.

64 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

P

A B

F

ι1 ι2

ϕ

ReversedArrow pϕq Arrow pϕq

Then the cospan above the dashed arrow represents CGCpAq,GSpAq pϕq, i.e.,
Arrow

`
CGCpAq,GSpAq pϕq˘

:“ ι1,

ReversedArrow
`
CGCpAq,GSpAq pϕq˘

:“ ι2.

Definition 1.28. Let A be an abelian category. The conversion functor from
cospans to 3-arrows CGTpAq,GCpAq : GC pAq Ñ GT pAq is defined as follows:

(1) For an object A P ObjGCpAq set CGTpAq,GCpAq pAq :“ A.
(2) For a morphism ϕ P MorGCpAq with

ϕ “ pϕ1 : A Ñ B2, ϕ2 : B Ñ B2q
the 3-arrow generalized morphism CGTpAq,GCpAq pϕq is represented by

A B

A B2

CGTpAq,GCpAq pϕq

IdentityMorphismA pAq

ϕ1

ϕ2ϕ

i.e.,
SourceAid

`
CGTpAq,GCpAq pϕq˘

:“ IdentityMorphismA pAq ,

RangeAid
`
CGTpAq,GCpAq pϕq˘

:“ ϕ2,

Arrow
`
CGTpAq,GCpAq pϕq˘

:“ ϕ1.

Definition 1.29. Let A be an abelian category. The conversion functor from
spans to 3-arrows CGTpAq,GSpAq : GS pAq Ñ GT pAq is defined as follows:

(1) For an object A P ObjGSpAq set CGTpAq,GCpAq pAq :“ A.
(2) For a morphism ϕ P MorGSpAq with

ϕ “ pϕ1 : A1 Ñ A, ϕ2 : A1 Ñ Bq

1. THE CATEGORY OF GENERALIZED MORPHISMS 65

the 3-arrow generalized morphism CGTpAq,GSpAq pϕq is represented by

A B

A B2

CGTpAq,GSpAq pϕq

ϕ1

ϕ2

IdentityMorphismA pBqϕ

i.e.,

SourceAid
`
CGTpAq,GSpAq pϕq˘

:“ ϕ1,

RangeAid
`
CGTpAq,GSpAq pϕq˘

:“ IdentityMorphismA pBq ,

Arrow
`
CGTpAq,GSpAq pϕq˘

:“ ϕ2.

Definition 1.30. Let A be an abelian category. The conversion functor from 3-
arrows to cospans CGCpAq,GTpAq : GT pAq Ñ GC pAq is defined as follows:

(1) For an object A P ObjGTpAq set CGCpAq,GTpAq pAq :“ A.
(2) For a morphism ϕ P MorGTpAq which is represented by

A B

A1 B2

ϕ

ι

α

π

we set CGCpAq,GTpAq pϕq to be the composition of the cospans

A B2

A A1 B

IdentityMorphismA pAq ι α π

CGCpAq,GTpAq pϕq
i.e.,

Arrow
`
CGCpAq,GTpAq pϕq˘

:“ InjectionOfCofactorOfPushoutA ppι, αq , 1q ,

66 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

ReversedArrow
`
CGCpAq,GTpAq pϕq˘

:“ PreComposeA pπ,

InjectionOfCofactorOfPushoutA ppι, αq , 2qq .

X

A B2

A A1 B

Definition 1.31. Let A be an abelian category. The conversion functor from 3-
arrows to spans CGSpAq,GTpAq : GT pAq Ñ GS pAq is defined as follows:

(1) For an object A P ObjGTpAq set CGSpAq,GTpAq pAq :“ A.
(2) For a morphism ϕ P MorGTpAq which is represented by

A B

A1 B2

ϕ

ι

α

π

we set CGSpAq,GTpAq pϕq to be the composition of the spans

A B2 B

A1 B

ι α π
IdentityMorphismA pBq

CGSpAq,GTpAq pϕq

i.e.,

Arrow
`
CGSpAq,GTpAq pϕq˘

:“ ProjectionInFactorOfFiberProductA ppπ, αq , 2q ,

2. STRUCTURE OF THE CATEGORY OF GENERALIZED MORPHISMS 67

ReversedArrow
`
CGSpAq,GTpAq pϕq˘

:“ PreComposeA pι,
ProjectionInFactorOfFiberProductA ppπ, αq , 1qq .

2. Structure of the category of generalized morphisms

As already seen from the constructions, all three types of generalized morphism cate-
gories are computable, as long as their underlying category A is computable abelian. We
are going to formulate this as a theorem.

Theorem 2.1. Let A be computable abelian. Then the categories GS pAq, GC pAq, and
GT pAq are computable.

Generalized morphisms are not preadditive, but they fulfill a property which is close.
Definition 2.2. Let A be a category. A is called enriched over a commutative

regular semigroup if for any two objects
(1) there is a commutative addition in HomA pA, Bq;
(2) there exists a morphism 0 P HomA pA, Bq such that for every ϕ P HomA pA, Bq we

have 0 ` ϕ “ ϕ ` 0 “ ϕ;
(3) for every ϕ P HomA pA, Bq there exists a morphism ´ϕ P HomA pA, Bq such that

ϕ ` p´ϕq ` ϕ “ ϕ and p´ϕq ` ϕ ` p´ϕq “ p´ϕq.
Remark 2.3. We use the same names ZeroMorphism and AdditiveInverse as for the

preadditive case, since a preadditive category is a special case of a category enriched over
a commutative regular semigroup.

Proposition 2.4. Let A be computable abelian. Then the category of generalized mor-
phisms by spans GS pAq is computable enriched over a commutative regular semigroup.

The enrichment algorithms implemented in Cap for GS pAq can be found in Appendix
F.7.

Proof. We are going to give the enrichment constructions which will turn out to be
computable.

(1) Let A, B P ObjGSpAq and ϕ :“ ZeroMorphismGSpAq pA, Bq. Then ϕ is defined via
Arrow pϕq :“ ZeroMorphismA pA, Bq ,

ReversedArrow pϕq :“ IdentityMorphismA pAq .

(2) Let ϕ, ψ P HomGSpAq pA, Bq for two objects A, B P ObjGSpAq. To compute the sum
AdditionForMorphismsGSpAq pϕ, ψq “ ϕ ` ψ one first computes the fiber product
of the two reversed arrows:

ρ1 :“ ProjectionInFactorOfFiberProductA ppReversedArrow pϕq ,

ReversedArrow pψqq , 1q ,

ρ2 :“ ProjectionInFactorOfFiberProductA ppReversedArrow pϕq ,

ReversedArrow pψqq , 2q .

68 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

Then the sum is represented by
Arrow pϕ ` ψq :“ AdditionForMorphismsA pPreComposeA pρ1, Arrow pϕqq

PreComposeA pρ2, Arrow pψqqq ,

ReversedArrow pϕ ` ψq :“ PreComposeA pρ1, ReversedArrow pϕqq .

The commutativity of the addition and the fact that 0 ` ϕ “ ϕ ` 0 “ ϕ follow
from the construction.

(3) Let ϕ P MorGSpAq. Then the AdditiveInverse pϕq “ ´ϕ is defined as follows:
Arrow p´ϕq :“ ´ Arrow pϕq ,

ReversedArrow p´ϕq :“ ReversedArrow pϕq .

The algorithms to construct the zero morphism, the addition, and the additive inverse in
GS pAq were completely based on constructions from the computable category A. Therefore
these three constructions are computable in GS pAq. �

Remark 2.5. Let A, B P ObjGSpAq. Then we have

ZeroMorphismGSpAq pA, Bq “ FS pZeroMorphismA pA, Bqq .

Proposition 2.6. Let A be computable abelian. Then the category of generalized mor-
phisms by cospans GC pAq is computable enriched over a commutative regular semigroup.

The enrichment algorithms implemented in Cap for GS pAq can be found in Appendix
F.6.

Proof. We are going to give the enrichment constructions which will turn out to be
computable.

(1) Let A, B P ObjGCpAq and ϕ :“ ZeroMorphismGSpAq pA, Bq. Then ϕ is defined via
Arrow pϕq :“ ZeroMorphismA pA, Bq ,

ReversedArrow pϕq :“ IdentityMorphismA pBq .

(2) Let ϕ, ψ P HomGCpAq pA, Bq for two objects A, B P ObjGCpAq. To compute the sum
AdditionForMorphismsGCpAq pϕ, ψq “ ϕ ` ψ one first computes the pushout of the
reversed arrows of ϕ and ψ:

ρ1 :“ InjectionOfCofactorOfPushoutA ppReversedArrow pϕq ,

ReversedArrow pψqq , 1q ,

ρ2 :“ InjectionOfCofactorOfPushoutA ppReversedArrow pϕq ,

ReversedArrow pψqq , 2q .

Then the sum can be described as
Arrow pϕ ` ψq :“ AdditionForMorphismsA pPreComposeA pArrow pϕq , ρ1q

PreComposeA pArrow pψq , ρ2qq ,

3. GENERALIZED AND PSEUDO-INVERSE 69

ReversedArrow pϕ ` ψq :“ PreComposeA pReversedArrow pϕq , ρ1q .

The commutativity of the addition and the fact that 0 ` ϕ “ ϕ ` 0 “ ϕ follow
from the construction.

(3) Let ϕ P MorGSpAq. Then the AdditiveInverse pϕq “ ´ϕ is defined as follows:
Arrow p´ϕq :“ ´ Arrow pϕq ,

ReversedArrow p´ϕq :“ ReversedArrow pϕq .

The algorithms to construct the zero morphism, the addition, and the additive inverse in
GC pAq were completely based on constructions from the computable category A. Therefore
these three constructions are computable in GC pAq. �

Proposition 2.7. Let A be computable abelian. Then the category of generalized mor-
phisms by 3-arrows GT pAq is computable enriched over a commutative regular semigroup.

The enrichment algorithms implemented in Cap for GT pAq can be found in Appendix
F.8.

Proof. We give the enrichment constructions. The proofs can be found in [BLH14b,
Thm. 2.7]. Let A, B P ObjGTpAq. Then we define

ZeroMorphismGTpAq pA, Bq “ FT pZeroMorphismA pA, Bqq .

To compute the sum of ϕ, ψ P HomGTpAq pA, Bq we first define
ιi :“ InjectionOfCofactorOfPushoutA ppRangeAid pϕq , RangeAid pψqq , iq ,

πi :“ ProjectionInFactorOfFiberProductA ppSourceAid pϕq , SourceAid pψqq i, q .

Then we represent the sum ϕ ` ψ by
SourceAid pϕ ` ψq :“ PreComposeA pπi, SourceAid pϕqq ,

RangeAid pϕ ` ψq :“ PreComposeA pRangeAid pϕq , ιiq ,

Arrow pϕ ` ψq :“ π1 Arrow pϕq ι1 ` π2 Arrow pψq ι2.

The additive inverse of a morphism ϕ P MorGTpAq is defined as
SourceAid p´ϕq :“ SourceAid pϕq ,

RangeAid p´ϕq :“ RangeAid pϕq ,

Arrow p´ϕq :“ ´ Arrow pϕq . �

3. Generalized and pseudo-inverse

In this section we emphasize why generalized morphisms are useful for computations
in abelian categories. Generalized morphisms offer the possibility to compute a one-sided
inverse of a non-split mono- or epimorphism in any abelian category. The result of a com-
position with such a split can then be recovered from the resulting generalized morphism.
In this sense generalized morphisms provide a computational tool for performing diagram
chases.

70 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

Notation. If we do not specify the data structure of the generalized morphism category
of a category A, we write G pAq. The corresponding embedding functor is F : A Ñ G pAq.

Definition 3.1 (Pseudo inverse). Let A be an abelian category.
(1) Let ϕ P MorGSpAq. The pseudo-inverse of ϕ is the morphism ψ P MorGSpAq with

Arrow pψq :“ ReversedArrow pϕq ,

ReversedArrow pψq :“ Arrow pϕq .

A B

X

ϕ

ϕ1 ϕ2
pseudo-inverseñ

B A

X

ψ

ϕ2 ϕ1

(2) Let ϕ P MorGCpAq. The pseudo-inverse of ϕ is the morphism ψ P MorGCpAq with
Arrow pψq :“ ReversedArrow pϕq ,

ReversedArrow pψq :“ Arrow pϕq .

X

A B
ϕ

ϕ1 ϕ2
pseudo-inverseñ

X

B A
ψ

ϕ2 ϕ1

(3) Let ϕ P MorGTpAq. The pseudo-inverse of ϕ is the morphism ψ P MorGTpAq which
can be computed as follows: Set pα, βq :“ EpiMonoFactorizationA pArrow pϕqq and

πi :“ ProjectionInFactorOfFiberProductA ppRangeAid pϕq , βq , iq ,

ιi :“ InjectionOfCofactorOfPushoutA ppα, SourceAid pϕqq , iq .

Then
SourceAid pψq :“ π1,

RangeAid pψq :“ ι2,

Arrow pψq :“ PreComposeA pπ2, ι1q .

We write PseudoInverse pϕq :“ ψ. Furthermore, for a morphism ϕ P MorA we write
GeneralizedInverse pϕq :“ PseudoInverse pF pϕqq .

Proposition 3.2 ([Pos17, Prop. II.1.35]). Let ϕ P MorGpAq and ϕ´1 the pseudo-inverse
of ϕ. Then

ϕϕ´1ϕ “ ϕ and ϕ´1ϕϕ´1 “ ϕ´1.

3. GENERALIZED AND PSEUDO-INVERSE 71

Proposition 3.3. Let A be an abelian category and ϕ P MorA a mono- or epimor-
phism. Then F pϕq is split, and the corresponding pre- or post-inverse is the generalized
inverse of ϕ.

Proof. We give a proof for each type of generalized morphisms. Let rϕ P MorA be a
morphism, ϕ :“ F prϕq, and ψ :“ GeneralizedInverse pϕq.

(1) Suppose we are working with spans and rϕ is a mono. Then the composition ϕψ
looks as follows:

A B A

A A

Y

idA rϕ rϕ idA

α β

ϕ ψ

Setting α, β :“ IdentityMorphismA pAq fulfills the properties of a fiber product ofrϕ with itself, so we have

ϕψ represented by A
idAÐ A

idAÑ A.

Now suppose rϕ is an epi. Then the composition ψϕ is represented by the two
epis B

rϕ
� A

rϕ
� B and B together with the identities is a valid pushout of the two

morphisms in ψϕ. So the result is equivalent to the identity.
(2) Suppose we are working with cospans and rϕ is an epi. Then the composed cospan

ψϕ looks as follows:

Y

B B

B A B

idB rϕ rϕ idB

α β

ψ ϕ

72 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

Setting α, β :“ IdentityMorphismA pBq fulfills the properties of a pushout of rϕ
with itself, so we have

ψϕ represented by B
idBÐ B

idBÑ B.

Now Suppose rϕ is a mono. Then the composition ϕψ is represented by the two
monos A

rϕãÑ B
rϕÐâ A and A together with two identities of A is a valid pullback of

the arrow and reversed arrow in ϕψ. So the composition ϕψ is equivalent to the
identity.

(3) The corresponding honest 3-arrow of a morphism can either be viewed as a span
or a cospan, so the claim follows. �

We can use the pseudo-inverse to compute lifts and colifts in A.
Proposition 3.4 ([Pos17, Cor. II.1.54]). Let A be an abelian category.

(1) Let κ : A ãÑ B a monomorphism and τ : T Ñ B a morphism such that a morphism
λ : T Ñ A with λκ „ τ exists. Then

rλ :“ F pτq GeneralizedInverse pκq

is an honest morphism and we have

λ „ HonestRepresentative
´rλ¯

.

(2) Let γ : A ãÑ B a monomorphism and τ : A Ñ T a morphism such that a morphism
λ : B Ñ Z with λκ „ τ exists. Then

rλ :“ GeneralizedInverse pγq F pτq

is an honest morphism and we have

λ „ HonestRepresentative
´rλ¯

.

We give an example how pseudo-inverses allow to perform diagram chases in a purely
categorical setting.

Example 3.5 (Snake lemma). We want to compute the snake in the following diagram
with exact rows and commutative squares:

3. GENERALIZED AND PSEUDO-INVERSE 73

ker pγ3q

A B C 0

0 A1 B1 C

coker pγ1q

α1 α2

β1 β2

γ1 γ2 γ3

CokernelProjection pγ1q

KernelEmbedding pγ3q

The snake can now be computed by the following composition:

rσ :“ KernelEmbedding pγ3q GeneralizedInverse pα2q γ2

GeneralizedInverse pβ1q CokernelProjection pγ1q .

The resulting generalized morphism rσ is honest, and its honest representative σ makes the
sequence

ker pγ1q Ñ ker pγ2q Ñ ker pγ3q σÑ coker pγ1q Ñ coker pγ2q Ñ coker pγ3q

exact.
Example 3.6 (IV.3.5, Cap version). Let A be the category of presented Z-modules,

described in Chapter III. Consider the following diagram:

0 Z1 Z3 Z2 0

0 Z2 Z4 Z2 0

α1 α2

β1 β2

γ1 γ2 γ3

74 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

with the following matrices:

α1 :“ `
1 ¨ ¨ ˘

, α2 :“
¨̋ ¨ ¨

1 ¨
¨ 1

‚̨,

β1 :“
ˆ

2 2 ¨ ¨
¨ ¨ 2 2

˙
, β2 :“

¨̊
˚̋ 1 ¨

´1 ¨
¨ 1
¨ ´1

‹̨‹‚,

γ1 :“ `
1 ¨ ˘

, γ3 :“
ˆ ¨ 2

¨ ´2

˙
,

γ2 :“
¨̋

2 2 ¨ ¨
¨ ¨ 2 ¨
¨ ¨ ¨ 2

‚̨.

Note that while β1 is a monomorphism in A, it has no split. Using the Cap implementation
of A, we compute the snake as follows:
gap> LoadPackage("ModulePresentationsForCAP");
true
gap> LoadPackage("GeneralizedMorphismsForCAP");
true
gap> ZZ := HomalgRingOfIntegers();
Z
gap> ZZ1 := FreeLeftPresentation(1, ZZ);
<An object in Category of left presentations of Z>
gap> ZZ2 := FreeLeftPresentation(2, ZZ);
<An object in Category of left presentations of Z>
gap> ZZ3 := FreeLeftPresentation(3, ZZ);
<An object in Category of left presentations of Z>
gap> ZZ4 := FreeLeftPresentation(4, ZZ);
<An object in Category of left presentations of Z>
gap> alpha2 := HomalgMatrix([[0, 0], [1, 0], [0, 1]], ZZ);
<A 3 x 2 matrix over an internal ring>
gap> alpha2 := PresentationMorphism(ZZ3, alpha2, ZZ2);
<A morphism in Category of left presentations of Z>
gap> beta1 := HomalgMatrix([[2, 2, 0, 0], [0, 0, 2, 2]], ZZ);
<A 2 x 4 matrix over an internal ring>
gap> beta1 := PresentationMorphism(ZZ2, beta1, ZZ4);
<A morphism in Category of left presentations of Z>
gap> gamma1 := HomalgMatrix([[1, 0]], ZZ);
<A 1 x 2 matrix over an internal ring>
gap> gamma1 := PresentationMorphism(ZZ1, gamma1, ZZ2);

3. GENERALIZED AND PSEUDO-INVERSE 75

<A morphism in Category of left presentations of Z>
gap> gamma2 := HomalgMatrix([[2, 2, 0, 0], [0, 0, 2, 0],
> [0, 0, 0, 2]], ZZ);
<A 3 x 4 matrix over an internal ring>
gap> gamma2 := PresentationMorphism(ZZ3, gamma2, ZZ4);
<A morphism in Category of left presentations of Z>
gap> gamma3 := HomalgMatrix([[0, 2], [0, -2]], ZZ);
<A 2 x 2 matrix over an internal ring>
gap> gamma3 := PresentationMorphism(ZZ2, gamma3, ZZ2);
<A morphism in Category of left presentations of Z>

After we have set up the objects and morphisms in the category A, we continue by
constructing the necessary generalized morphisms:

gap> kernel_gamma3 := KernelEmbedding(gamma3);
<A monomorphism in Category of left presentations of Z>
gap> coker_gamma1 := CokernelProjection(gamma1);
<An epimorphism in Category of left presentations of Z>
gap> gen_kernel_gamma3 := AsGeneralizedMorphismBySpan(kernel_gamma3);
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

gap> gen_cokernel_gamma1 := AsGeneralizedMorphismBySpan(coker_gamma1);
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

gap> gen_gamma2 := AsGeneralizedMorphismBySpan(gamma2);
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

gap> gen_inv_alpha2 := GeneralizedInverseBySpan(alpha2);
<A morphism in Generalized morphism category of Category of

left presentations of Z by span>
gap> gen_inv_beta1 := GeneralizedInverseBySpan(beta1);
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

Now we can compute the snake:

gap> snake := PreCompose(gen_kernel_gamma3, gen_inv_alpha2);
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

gap> snake := PreCompose(snake, gen_gamma2);
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

gap> snake := PreCompose(snake, gen_inv_beta1);
<A morphism in Generalized morphism category of Category of

76 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

left presentations of Z by span>
gap> snake := PreCompose(snake, gen_cokernel_gamma1);
<A morphism in Generalized morphism category of Category of
left presentations of Z by span>

gap> IsHonest(snake);
true
gap> Display(HonestRepresentative(snake));
[[1, 1]]

A morphism in Category of left presentations of Z
gap> Display(Range(snake));
[[1, 0]]

An object in Category of left presentations of Z

So the snake morphism is

Z1 Z2{ xp1 0qy .
p1 1q

4. Serre quotients

One goal of this thesis mentioned in Chapter I is a computable description of coherent
sheaves over toric varieties. The computational model for the category of coherent sheaves
over a toric variety will be the so-called Serre quotients, which we will define using gener-
alized morphisms. Serre quotients are described in [BLH14b, §1.1]. We recapitulate the
main definitions.

Definition 4.1 (Thick subcategory). Let A be an abelian category. A subcategory C
is called thick if it is closed under extensions and for any object A P ObjC the subcategory
C contains all subfactors of A.

The objects in C will all become zero objects in the Serre quotient, and, hence, a
morphism ϕ in A which kernel and cokernel object lie in C will be an isomorphism in A
modulo C.

Definition 4.2 (Serre quotient). Let A be an abelian category and C Ď A a thick
subcategory. Then the Serre quotient category A{C is defined as follows:

(1) The object class is the same as that of A;
(2) For two objects A, B P ObjA we set

HomA{C pA, Bq :“ limÝÑ
M 1

ãÑM,N 1
ãÑN

M{M 1,N 1PC

pM 1, N{N 1q .

Our model for Serre quotients will be a certain subcategory of the generalized morphism
category, which we now define.

4. SERRE QUOTIENTS 77

Definition 4.3 (Gabriel morphisms). Let A be an abelian category and C a thick
subcategory.

(1) A normalized generalized morphism by 3-arrows ϕ P MorGTpAq is called a Gabriel
morphism (of A with respect to C) if

CokernelObjectA pSourceAid pϕqq ,

KernelObjectA pRangeAid pϕqq

are objects in C.

CokernelObjectA pιq P C KernelObjectA pπq P C

A B

A1 B2

ϕ

ι

α

π

CokernelProjectionA pιq KernelEmbeddingA pπq

Informally we say that both SourceAid pϕq and RangeAid pϕq are isomorphisms
up to objects in C.

(2) A generalized morphism by spans ϕ P MorGSpAq is called a Gabriel morphism
(of A with respect to C) if its conversion to a 3-arrow morphism CGTpAq,GSpAq pϕq
is a Gabriel morphism.

Equivalently, ϕ is a Gabriel morphism if both the cokernel object of the reversed
arrow of ϕ and the image object of the kernel object of the reversed arrow under
the arrow of ϕ are objects in C.

78 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

CokernelObjectA pαq P C

A B

X ImageObjectA pκβq P C

KernelObjectA pαq

ϕ

α β

κ :“ KernelEmbeddingA pαq

CokernelProjectionA pαq

(3) A generalized morphism by cospans ϕ P MorGCpAq is called a Gabriel morphism
(of A with respect to C) if its conversion to a 3-arrow morphism CGTpAq,GCpAq pϕq
is a Gabriel morphism.

Equivalently, ϕ is a Gabriel morphism if both the kernel object of the reversed
arrow of ϕ and the image object of the composition of the arrow and the cokernel
projection of the reversed arrow of ϕ are objects in C.

CokernelObjectA pβq

ImageObjectA pαεq P C X

A B

KernelObjectA pβq P C

ϕ

α β

KernelEmbeddingA pβq

ε :“ CokernelProjectionA pβq

5. COMPUTABILITY OF SERRE QUOTIENTS 79

Since Gabriel morphisms are generalized morphisms, the term honest and all operations
(SourceAid, RangeAid, Arrow, ReversedArrow, HonestRepresentative, PseudoInverse) de-
fined for generalized morphisms apply.

Definition 4.4. Let A be an abelian category and C a thick subcategory. We de-
note by GC pAq the subcategory of Gabriel morphisms of G pAq and the respective
presentations with GS

C pAq, GC
C pAq, and GT

C pAq.
The generalized morphisms are Gabriel morphisms if and only if the “helper” mor-

phisms ReversedArrow, SourceAid, and RangeAid of the normalized representatives are
isomorphisms in A{C, i.e., isomorphisms up to objects in C.

For the proof that the category of Gabriel morphisms is indeed a category see [BLH14b,
§2.5].

Definition 4.5 (Zeroid of GC pAq). Let A be an abelian category and C a thick sub-
category. For two objects A, B P GC pAq we define the zeroid as

ZA,B :“ �
ϕ P HomGCpAq pA, Bq | ImageObjectA pArrow pϕqq P ObjC

(
.

Definition 4.6. Let A be an abelian category and C a thick subcategory. The Serre
morphism category GC pAq (of A with respect to C) has the same object class as GC pAq,
and the Hom-sets are the quotients by the zeroid, i.e., for two objects A, B P GC pAq we
set

HomGCpAq pA, Bq :“ HomGCpAq pA, Bq { ZA,B .

The respective presentations of GC pAq using spans, cospans, and 3-arrow generalized
morphisms are denoted with GS

C pAq, GC
C pAq, and GT

C pAq.
Theorem 4.7. Let A be an abelian category and C a thick subcategory. The Serre

quotient category A{C is equivalent to the Serre morphism category GC pAq.
A proof of this theorem and further motivation can be found in [BLH14b, Thm. 3.1].

5. Computability of Serre quotients

We are now going to describe the algorithms necessary for the category of Serre mor-
phisms to be computable and therefore a model for the Serre quotient category. The
algorithms for the normalized 3-arrow morphism category can be found in the proof of
[BLH14b, Thm. 1.1], but for completeness we include the necessary constructions in Sub-
section IV.5.d.

Theorem 5.1 ([BLH14b, Thm. 1.1]). Let A be computable abelian. Then the category
GT

C pAq is computable abelian.

5.a. Computability of Serre morphisms by spans. We show that the category
of Serre morphisms by spans is computable abelian by going through the constructions
from Chapter II, and therefore provides a suitable data structure for A{C. Throughout the
hole section A will denote a computable abelian category and C a thick subcategory with
decidable membership.

80 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

Theorem 5.2. The category GS
C pAq is equivalent to GT

C pAq and therefore abelian.

Proof. Since GS pAq and GT pAq are equivalent, and the definitions of Gabriel mor-
phisms and the zeroid in both categories GS pAq and GT pAq correspond to each other
under the conversion functor CGTpAq,GSpAq the claim follows. �

Proposition 5.3. The category GS
C pAq is computable.

Proof. Since GS
C pAq is a subcategory of the computable category GS pAq and compo-

sition and identity morphisms are inherited from GS pAq, the operations IdentityMorphism
and PreCompose are computable. We still need to provide the proper constructions for
the equalities:

(1) The operation IsEqualForObjectsGS
CpAq is inherited from the corresponding equality

IsEqualForObjectsA of objects in A and therefore computable.7
(2) The equality notion IsEqualForMorphismsGS

CpAq is computed via the following al-
gorithm: Let ϕ, ψ : A Ñ B in MorGS

CpAq:
(a) Compute ´ϕ :“ AdditiveInverseGSpAq pϕq.
(b) Compute π :“ AdditionForMorphismsGSpAq p´ϕ, ψq.
(c) Compute I :“ ImageObjectA pArrow pπqq.
(d) Use the membership function to decide if I P C.
If I P C, the morphisms ϕ and ψ are equal.

(3) Since the membership for C is decidable and we can compute images as kernels of
cokernels of morphisms in A, the morphism set MorGS

CpAq is decidable . �

The decidability of the membership function of C has a big part in the realization of
the Serre quotient category. Without the decidability of C, the category would not have
decidable equalities, and therefore no realization.

Proposition 5.4. The category GS
C pAq is computable preadditive.

Proof. Let ϕ, ψ : A Ñ B in MorGS
CpAq. The operations for zero morphism, addition,

and the additive inverse are defined by the zero morphism, addition, and additive inverse
(for the enrichment structure) in GS pAq. We have ϕ “ ψ if for any of their Gabriel mor-
phism representatives ϕ1, ψ1 P GS

C pAq the morphism ϕ1 `p´ψ1q lies in ZA,B. So addition and
additive inverse are independent of the choice of representative in the set HomGS

CpAq pA, Bq.
We still need to show that the additive inverse in the sense of commutative semigroups

is an additive inverse in the sense of abelian groups. So we sum a morphism ϕ : A Ñ B in
GS

C pAq and its additive inverse. We get the following representative for the sum:

ReversedArrow pϕ ` p´ϕqq “ ReversedArrow pϕq ,

Arrow pϕ ` p´ϕqq “ Arrow pϕq ´ Arrow pϕq .

7Remember, the object classes of GS
C pAq and A coincide.

5. COMPUTABILITY OF SERRE QUOTIENTS 81

The arrow of the resulting morphism is zero, and so its image is in C, which means that
ϕ ` p´ϕq P ZA,B. So ϕ ` p´ϕq is equivalent to the zero morphism from A to B. �

Proposition 5.5. The category GS
C pAq is computable additive.

To describe the operations needed for the proof, we need another definition.
Definition 5.6. Let ϕ1, ϕ2 P MorGSpAq with Source pϕ1q “ Source pϕ2q and

πi :“ ProjectionInFactorOfFiberProductA ppReversedArrow pϕ1q , ReversedArrow pϕ2qq , iq .

B

X

A Z

Y

C

ϕ1

ϕ2

α1

α2

β1

β2

π1

π2

π1β1

π2β2

The common restriction CommonRestriction pϕ1, ϕ2q of ϕ1 and ϕ2 is the pair of gener-
alized morphisms pϕ1

1, ϕ1
2q represented by

Arrow pϕ1
iq :“ πiβi

and

ReversedArrow pϕ1
iq :“ πiαi.

Proposition 5.7. Let ϕ1 : A Ñ B, ϕ2 : A Ñ C in MorGSpAq, and pϕ1
1, ϕ1

2q :“
CommonRestriction pϕ1, ϕ2q. Then

ϕ1 “ ϕ1
1 and ϕ2 “ ϕ1

2 in GS
C pAq .

Proof. We show ϕ1 ´ ϕ1
1 “ 0. Suppose ϕ1 is represented by the span A

αÐ D
βÑ B

and after the restriction ϕ1
1 is represented by A

αÐ D
πÐ X

πÑ D
β
π B. To compute the

sum, we first compute the fiber product of the reversed arrows of the representations of ϕ1
and ϕ1

1:

82 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

A

D

D

X

Y

α

α

π

γ1 γ2

To compute ϕ1 ´ ϕ1
2, we need to compute γ1β ´ γ2πβ “ pγ1 ´ γ2πq β. By the commu-

tativity of the fiber product diagram above8, we know that
γ1α „ γ2πα,

and therefore
pγ1 ´ γ2πq α „ 0Y,A,

which means that the image of pγ1 ´ γ2πq lies in the kernel of α, and therefore in C. It
follows that the image pγ1 ´ γ2πq β lies in C as well. By symmetry, we also have ϕ2 “
ϕ1

2. �
Note that for generalized morphisms Proposition IV.5.7 is not true in general.

Proof of Proposition IV.5.5. To show that the category GS
C pAq is computable

additive, we need to prove that there is a computable zero object, and computable direct
sums, which are products and coproducts at the same time.

Let 0 be a zero object in A. Then 0, interpreted as object in GS
C pAq, is a zero object

in GS
C pAq (remember, the object classes of A and GS

C pAq coincide). Furthermore, for an
object A P ObjGS

CpAq we define

UniversalMorphismIntoZeroObjectGS
CpAq pAq :“ ZeroMorphismGS

CpAq pA, 0q ,

UniversalMorphismFromZeroObjectGS
CpAq pAq :“ ZeroMorphismGS

CpAq p0, Aq .

By construction, those morphisms are well-defined and computable.
We now prove the universal properties of the universal morphisms from and to the zero

object. Let
ζA :“ UniversalMorphismIntoZeroObjectGS

CpAq pAq
be the universal morphism into the zero object, i.e., ζA is represented by A

idAÐ A
0AÑ 0,

and ϕ P HomGS
CpAq pA, 0q. We need to show that ζA “ ϕ, so we compute ζA ´ ϕ. Let ϕ be

8Note that the commutativity of the fiber product diagram is only up to congruence „ of morphisms
in A.

5. COMPUTABILITY OF SERRE QUOTIENTS 83

represented by the span A
αÐ X

0XÑ 0. Then, to compute the sum, we first compute the
fiber product of idA and α, i.e.,

πi :“ ProjectionInFactorOfFiberProductA ppidA, αq , iq ,

i “ 1, 2.

A

A X

Y

idA α

π1 π2

Since idA is an isomorphism, π2 is also an isomorphism, and we can assume Y “ X, π1 “ α,
and π2 “ idX . So have

Arrow pζA ´ ϕq “ α0X ´ idX0X “ 0Y ,

and therefore ζA “ ϕ. The proof for the universality of UniversalMorphismFromZeroObject
is analogous.

We now construct the direct sum and show the universality of the construction. Let
A1, A2 P GS

C pAq. Their direct sum

DirectSumGS
CpAq pA1, A2q

is defined to be the direct sum DirectSumA pA1, A2q P ObjA, interpreted as an object in
GS

C pAq. We define the injection ιi :“ InjectionOfCofactorOfDirectSumGS
CpAq ppA1, A2q , iq

of the i-th cofactor, i “ 1, 2, to be represented by the span

Ai A1 ‘ A2

Ai

ιi

rιiidAi

with rιi :“ InjectionOfCofactorOfDirectSumA ppA1, A2q , iq P MorA,

i “ 1, 2. We define the projection

πi :“ ProjectionInFactorOfDirectSumGS
CpAq ppA1, A2q , iq

to the i-th factor, i “ 1, 2, to be represented by the span

84 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

A1 ‘ A2 Ai

A1 ‘ A2

πi

idA1‘A2 rπi

with rπi :“ ProjectionInFactorOfDirectSumA ppA1, A2q , iq P MorA,

i “ 1, 2.
To define the universal morphism into the direct sum, let ϕ : A Ñ B, ψ : A Ñ C in

MorGS
CpAq and set

pϕ1, ψ1q :“ CommonRestriction pϕ, ψq .

Suppose ϕ1 and ψ1 are represented by the following spans:

A B

Z

ϕ1

α β1

A C

Z

ψ1

α β2

With
β :“ UniversalMorphismIntoDirectSumA pβ1, β2q

we define
γ :“ UniversalMorphismIntoDirectSumA pϕ, ψq

to be represented by the span

A B ‘ C

Z

γ

α β

In operator language we have

ReversedArrow pUniversalMorphismIntoDirectSum pϕ, ψqq
:“ ReversedArrow pϕ1q

5. COMPUTABILITY OF SERRE QUOTIENTS 85

and

Arrow
´

UniversalMorphismIntoDirectSumGS
CpAq pϕ, ψq

¯
:“ UniversalMorphismIntoDirectSumA pArrow pϕ1q , Arrow pψ1qq .

To show that the defined universal morphism into the direct fulfills the universal property,
let

πB :“ ProjectionInFactorOfDirectSumGS
CpAq ppB, Cq , 1q .

The diagram for the composition γπB is

A B ‘ C B

Z B ‘ C

K

γ πB

α β idB‘C rπB

ε1 ε2

with rπB :“ ProjectionInFactorOfDirectSumA ppB, Cq , 1q P MorA.

We can assume that K “ Z, ε1 “ idZ , and ε2 “ β since this setting leads to a valid fiber
product. Therefore, by the universal property of rπB we have βrπB „ β1 and γπB “ ϕ1 “ ϕ.

To define the universal morphism from the direct sum, let ϕ :“ B Ñ A and ψ :
C Ñ A in MorGS

CpAq, with ϕ : B
α1Ð X

β1Ñ A and ψ : C
α2Ð Y

β2Ñ A. We define γ :“
UniversalMorphismFromDirectSumGS

CpAq pϕ, ψq to be represented by the span

B ‘ C A

X ‘ Y

γ

α1 ‘ α2 β

with
β :“ UniversalMorphismFromDirectSumA pβ1, β2q .

86 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

In operator language we have

Arrow
´

UniversalMorphismFromDirectSumGS
CpAq pϕ, ψq

¯
:“ UniversalMorphismFromDirectSumA pArrow pϕq , Arrow pψqq

and
ReversedArrow

´
UniversalMorphismFromDirectSumGS

CpAq pϕ, ψq
¯

:“ DirectSumFunctorialA pReversedArrow pϕq , ReversedArrow pψqq .

To show that the defined universal morphism from the direct sum fulfills the universal
property, let ιB :“ InjectionOfCofactorOfDirectSumGS

CpAq ppB, Cq , 1q. The diagram for the
composition ιBγ is

B B ‘ C A

B X ‘ Y

Z

ιB γ

idB rιB α1 ‘ α2 β

ε1 ε2

with rιB :“ InjectionOfCofactorOfDirectSumA ppB, Cq , 1q P MorA.

We have ε1rιB “ ε2 pα1 ‘ α2q, which means that the image of ε2 pα1 ‘ α2q lies in B. Hence
the image of ε2 lies in X. To get a valid fiber product we can assume Z “ X, ε1 “ α1, and
ε2 “ tidY , 0Y,Xu, and therefore we have ιBγ “ ϕ. �

Before we prove that the category GS
C pAq is computable preabelian, we establish a

computational trick.
Proposition 5.8. Let A be an abelian category and C a thick subcategory. Let fur-

thermore F : A Ñ GS
C pAq be the projection functor, i.e., the functor mapping a morphism

γ : A Ñ B in MorA to the morphism γ P GS
C pAq represented by the span A

idAÐ A
γÑ B in

A. Then the induced functor

GF : GS pAq Ñ GS
´

GS
C pAq

¯
is full and the preimage of a morphism ψ P GS

´
GS

C pAq
¯

with

Arrow pψq represented by ψ1 :“ X
αÐ Y

βÑ B P GS pAq

5. COMPUTABILITY OF SERRE QUOTIENTS 87

and
ReversedArrow pψq represented by ψ1

2 :“ X
γÐ Z

εÑ A

is ψ´1
2 ψ1, where ψ´1

2 denotes the pseudo-inverse of ψ2.

Proof. Let ϕ P HomGS
´

GS
CpAq

¯ pA, Bq represented by the span A
αÐ X

βÑ B with
α, β P MorGS

CpAq such that α and β are represented by morphisms α1, β1 P MorGS
CpAq. Let

α1´1 : A Ñ X :“ PseudoInverse pα1q P MorGSpAq. Then we can compute

γ1 :“ α1´1β1 P MorGSpAq,

and we have
GF pγ1q “ GF pα1q´1 GF pβ1q “ ϕ. �

Remark 5.9. We can interpret Proposition IV.5.8 as follows: Whenever we need to
compute with a generalized morphism by spans over the Serre morphisms category, i.e.,
with a morphism ϕ P MorGS

´
GS

CpAq
¯, we can treat the two Serre morphisms Arrow pϕq and

ReversedArrow pϕq in a representing span of ϕ like the composition of their representatives
in GS pAq. The result can then be mapped back to MorGS

´
GS

CpAq
¯ using the functor GF

from Proposition IV.5.8.

Theorem 5.10. The category GS
C pAq is computable preabelian.

Proof. We start by giving the constructions and proofs for the kernel. Let ϕ P
HomGS

CpAq pA, Bq, represented by the span A
αÐ X

βÑ B in A. To construct the kernel
embedding, let rκ :“ KernelEmbeddingA pβq .

Then we set κ :“ KernelEmbeddingGS
CpAq pϕq to be represented by the corresponding honest

span of
PreComposeA prκ, αq .

K A

X

K

κ

idK

rκ
α

We show that κϕ “ 0K,B. The composition can be represented by the following diagram:

88 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

K A B

X

K X

Y

κ ϕ

idK rκ
ε1 ε2

α

α β

Setting Y “ K and ε2 “ rκ forms a valid fiber product diagram, so we have

ε2β “ rκβ “ 0K,B,

and therefore κϕ is zero.
To construct the kernel lift, let τ : T Ñ A in MorGS

CpAq represented by the span
T

τ1Ð Z
τ2Ñ A such that τϕ is zero. Since GS

C pAq is abelian, a lift λ : T Ñ K with λκ “ τ
exists. Since κ is a mono, by Proposition IV.3.4 we can compute the lift λ as honest
representative of the honest morphism

τ 1κ´1,

where κ´1 denotes the generalized inverse in MorGS
´

GS
CpAq

¯ of κ and τ 1 the corresponding
honest span of τ in MorGS

´
GS

CpAq
¯. By Proposition IV.5.8 we can also compose the following

two spans to compute a representative of λ:

T A K

Z K

τ

τ1 τ2

κ´1

rκ idK

λ

We now give the constructions and proofs for the cokernel. Let ϕ P MorGS
CpAq be

represented by the span A
αÐ X

βÑ B in A. For the cokernel projection let

rγ :“ CokernelProjectionA pβq .

We set γ :“ CokernelProjectionGS
CpAq pϕq to be represented by the span

5. COMPUTABILITY OF SERRE QUOTIENTS 89

B C

B

γ

idB rγ

The composition ϕγ can be displayed by the following diagram:

A B C

X B

Y

ϕ

α β

γ

idB rγ
ε1 ε2

Setting Y “ X and ε2 “ β we get a valid fiber product diagram. It follows that the
composition ϕγ is zero.

We now construct the cokernel colift. Let τ : B Ñ T in MorGS
CpAq represented by the

span B
τ1Ð Z

τ2Ñ T in A such that ϕτ is zero. Since GS
C pAq is abelian, a colift λ : C Ñ T

with γλ “ τ exists. Since γ is an epimorphism, by Proposition IV.3.4 we can compute the
colift λ as an honest representative of the honest morphism

γ´1τ 1,

where γ´1 denotes the generalized inverse in MorGS
´

GS
CpAq

¯ of γ and τ 1 the corresponding
honest span of τ in MorGS

´
GS

CpAq
¯. By Proposition IV.5.8 we can also compose the following

two spans to compute λ:

C B T

B Z

γ´1

rγ idB

τ 1

τ1 τ2

λ

�

Theorem 5.11. The category GS
C pAq is computable abelian.

90 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

Proof. The constructions of lifts along monos and colifts along epis are similar to the
ones for the kernel lift and the cokernel colift.

We first provide a construction for the lift. Let ϕ : A ãÑ B in MorGS
CpAq a monomor-

phism, with cokernel projection ψ : B Ñ C and τ : T Ñ B such that τψ is zero. By
Theorem IV.5.2 GS

C pAq is abelian, which means that there is a morphism λ : T Ñ A in
MorGS

CpAq with λϕ “ τ . Let τ 1, ϕ1 P MorGSpAq be the generalized morphisms by spans that
represent τ and ϕ, respectively. Then we can compute the lift γ of τ along ϕ, i.e.,

γ :“ LiftAlongMonomorphismGS
CpAq pτ, ϕq

as the image under GF of
τ 1ϕ1´1,

where ϕ1´1 denotes the pseudo-inverse of ϕ1. The well-definedness of this construction and
the fact that γϕ “ τ follows from Proposition IV.5.8 and Proposition IV.3.4.

To construct the colift, let ϕ : A � B in MorGS
CpAq be an epimorphism with kernel

embedding ψ : K Ñ A and τ : A Ñ T such that ψτ is zero. By Theorem IV.5.2, GS
C pAq is

abelian, which means that there is a morphism λ : B Ñ T in MorGS
CpAq with ϕλ “ τ . Let

τ 1, ϕ1 P MorGSpAq be the spans that represent τ and ϕ, respectively. Then we can compute
the colift γ of τ along ϕ, i.e.,

γ :“ ColiftAlongEpimorphismGS
CpAq pϕ, τq

as the image under GF of
ϕ1´1τ 1,

where ϕ1´1 denotes the pseudo-inverse of ϕ1. The well-definedness of this construction and
the fact that ϕγ “ τ follows from Proposition IV.5.8 and Proposition IV.3.4. �

All categorical operations for GS pAq are implemented in Cap and can be found in
Appendix F.10.

5.b. Decidability. For Serre morphisms, mono-, epi-, and isomorphisms are always
decidable.

Remark 5.12. The category GS
C pAq has decidable zeros.

Proof. Let A P ObjGS
CpAq. Then, by the construction of GS

C pAq we have A – 0 P
ObjGS

CpAq if and only if A P ObjC. Since membership of ObjC is decidable, GS
C pAq has

decidable zeros. �

We can now deduce from Proposition II.8.7 and Corollary II.9.3 that GS
C pAq has de-

cidable monomorphisms, epimorphisms, and isomorphisms.
Corollary 5.13. The category GS

C pAq has decidable monomorphisms, epimorphisms,
and isomorphisms.

5. COMPUTABILITY OF SERRE QUOTIENTS 91

5.c. Computability of Serre morphisms by cospans. In this section, we want
to state the computability of the category of Serre morphisms by cospans and therefore
provide the third data structure for A{C. We do not give proofs here, since they are all
dual to the proofs for spans. Still we make all constructions explicit.

Theorem 5.14. The category GC
C pAq is computable abelian.

Before we give the explicit constructions, there is one construction left to mention: the
dual of the common restriction.

Definition 5.15. Let ϕ1, ϕ2 P MorGCpAq with Range pϕ1q “ Range pϕ2q and ϕi repre-
sented by the cospan Bi

αiÑ Xi
βiÐ A and

ιi :“ InjectionOfCofactorOfPushoutA ppβ1, β2q , iq .

The common coarsening CommonCoarsening pϕ1, ϕ2q of ϕ1 and ϕ2 is the pair of general-
ized morphisms pϕ1

1, ϕ1
2q represented by Arrow pϕ1

iq :“ αiιi and ReversedArrow pϕ1
iq :“ βiιi.

B1

X1

Z A

X2

B2

ϕ1

ϕ2

α1

α2

β1

β2

ι1

ι2

Proposition 5.16. Let ϕ1 : A Ñ C, ϕ2 : B Ñ C in MorGCpAq, and pϕ1
1, ϕ1

2q :“
CommonCoarsening pϕ1, ϕ2q. Then

ϕ1 “ ϕ1
1 and ϕ2 “ ϕ1

2 in GC
C pAq .

The proof is dual to that of Proposition IV.5.7 of the common restriction.

Sketch of proof of IV.5.14. We give sketches for the categorical constructions in
GC

C pAq.
(1) Some algorithms for categorical operations in GC

C pAq are, as for GS
C pAq, inherited

from the underlying generalized morphism category GC pAq. Those constructions

92 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

are:

IsEqualForObjects
IdentityMorphism
PreCompose
AdditionForMorphisms
AdditiveInverse
ZeroMorphism.

They are carried out by applying the corresponding construction from GC pAq to
an object or a representation of a morphism in GC

C pAq.
(2) Some algorithms for categorical operations in GC

C pAq are, as for GS
C pAq, inherited

from the underlying abelian category A, by taking either the resulting object or the
corresponding honest cospan of the result in A and interpreting those as objects
or representatives of morphisms in GC

C pAq. Those constructions are:

ZeroObject
DirectSum
InjectionOfCofactorOfDirectSum
ProjectionInFactorOfDirectSum .

(3) Some constructions for categorical operations in GC
C pAq are the same constructions

as the corresponding ones in GS
C pAq as they are carried out by computing with

the representing generalized morphism in GC pAq of a morphism in GC
C pAq using

only operations which are available for all generalized morphism categories. Those
constructions are:

IsEqualForMorphisms
KernelLift
CokernelColift
LiftAlongMonomorphism
ColiftAlongEpimorphism.

We make the remaining constructions explicit. To construct the kernel embedding and the
cokernel projection, let ϕ P MorGC

C pAq represented by the cospan A
αÑ X

βÐ B in A,

κ1 :“ KernelEmbeddingA pαq
the kernel embedding of α, and

π1 :“ CokernelProjectionA pαq .

5. COMPUTABILITY OF SERRE QUOTIENTS 93

Then we define the kernel embedding κ of ϕ to be the Serre morphism in GC
C pAq represented

by the cospan
κ : K

κ1ÝÑ A
idAÐÝ A

and the cokernel projection π of ϕ to be the Serre morphism in GC
C pAq represented by the

cospan

π : B
βπ1ÝÑ C

idCÐÝ C.

We now construct the universal morphism into the direct sum. Let ϕ : A Ñ B and
ψ : A Ñ C be in MorGC

C pAq, ϕ is represented by the cospanA
α1Ñ X

β1Ð B, and ψ represented

by the cospan A
α2Ñ Y

β2Ð C. Let furthermore

α :“ UniversalMorphismIntoDirectSumA pα1, α2q .

Then the universal morphism into the direct sum γ of ϕ and ψ is represented by the cospan

A B ‘ C

X ‘ Y

γ

α β1 ‘ β2

To construct the universal morphism from the direct sum, let ϕ : A Ñ C and ψ : B Ñ C
in MorGC

C pAq and

pϕ1, ψ1q :“ CommonCoarsening pϕ, ψq
their common coarsenings, represented by the spans ϕ1 : A

α1Ñ X
βÐ C and ψ : B

α2Ñ X
βÐ C.

Let furthermore

α :“ UniversalMorphismFromDirectSumA pα1, α2q .

Then the universal morphism from the direct sum γ of ϕ and ψ is represented by the
cospan

A ‘ B C

X

γ

α β

�

94 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

5.d. Computability of Serre morphisms by 3-arrows. For the sake of complete-
ness, we want to give explicit constructions for the category of Serre morphisms modeled
by 3-arrow generalized morphisms to be computable abelian, as stated in IV.5.1.

Before, we need to give the notion of common restrictions and coastrictions for 3-arrows.
Definition 5.17. Let ϕ1, ϕ2 P MorGTpAq.

(1) Assume Source pϕ1q “ Source pϕ2q. Then the common restriction pϕ1
1, ϕ1

2q :“
CommonRestriction pϕ1, ϕ2q of ϕ1 and ϕ2 is defined as follows: Let

πi :“ ProjectionInFactorOfFiberProductA ppSourceAid pϕ1q , SourceAid pϕ2qq , iq .

Then set

SourceAid pϕ1
iq :“ PreCompose pπi, SourceAid pϕiqq ,

Arrow pϕ1
iq :“ PreCompose pπi, Arrow pϕiqq ,

RangeAid pϕ1
iq :“ RangeAid pϕq .

(2) Assume Range pϕ1q “ Range pϕ2q. Then the common coarsening pϕ1
1, ϕ1

2q :“
CommonCoarsening pϕ1, ϕ2q of ϕ1 and ϕ2 is defined as follows: Let

ιi :“ InjectionOfCofactorOfPushoutA ppRangeAid pϕ1q , RangeAid pϕ2qq , iq .

Then set

SourceAid pϕ1
iq :“ SourceAid pϕiq ,

Arrow pϕ1
iq :“ PreComposeA pArrow pϕiq , ιiq ,

RangeAid pϕ1
iq :“ PreComposeA pRangeAid pϕiq , ιiq .

Proposition 5.18. Let ϕ1, ϕ2 P MorGTpAq.

(1) If Source pϕ1q “ Source pϕ2q and pϕ1
1, ϕ1

2q “ CommonRestriction pϕ1, ϕ2q. Then
ϕ1 “ ϕ1

1 and ϕ2 “ ϕ1
2 in GT

C pAq.
(2) If Range pϕ1q “ Range pϕ2q and pϕ1

1, ϕ1
2q “ CommonCoarsening pϕ1, ϕ2q. Then

ϕ1 “ ϕ1
1 and ϕ2 “ ϕ1

2 in GT
C pAq.

The proof is again analogous to that of Proposition IV.5.7.

Sketch of proof of IV.5.1. We give sketches for the constructions in GT
C pAq. The

proofs and a longer description of the constructions can be found in [BLH14b, 1.1]. The
implemented algorithms can be found in Appendix F.11.

(1) Some algorithms for categorical operations in GT
C pAq are, as for GS

C pAq, inherited
from the underlying generalized morphism category GT pAq. Those constructions

5. COMPUTABILITY OF SERRE QUOTIENTS 95

are:

IsEqualForObjects
IdentityMorphism
PreCompose
AdditionForMorphisms
AdditiveInverse
ZeroMorphism.

They are carried out by applying the corresponding construction from GT pAq to
an object or a representation of a morphism in GT

C pAq.
(2) Some algorithms for categorical operations in GT

C pAq are, as for GS
C pAq, inherited

from the underlying abelian category A, by taking either the resulting object or the
corresponding honest cospan of the result in A and interpreting those as objects
or representatives of morphisms in GT

C pAq. Those constructions are:

ZeroObject
DirectSum
InjectionOfCofactorOfDirectSum
ProjectionInFactorOfDirectSum .

(3) Some algorithms for categorical operations in GT
C pAq are the same constructions

as the corresponding ones in GS
C pAq as they are carried out by computing with the

representing 3-arrow generalized morphism in GT pAq of a morphism in GT
C pAq

using only operations which are available for all generalized morphism categories.
Those constructions are:

IsEqualForMorphisms
KernelLift
CokernelColift
LiftAlongMonomorphism
ColiftAlongEpimorphism.

We sketch the remaining four constructions:
To construct the kernel embedding and the cokernel projection let ϕ : A Ñ B in

MorGT
C pAq represented by the normalized 3-arrow generalized morphism representative

96 IV. GENERALIZED MORPHISMS AND SERRE QUOTIENTS

A B

A1 B2

ϕ

ι

α

π

Let κ :“ KernelEmbeddingA pαq and γ :“ CokernelProjectionA pαq. We define the kernel
embedding of ϕ to be the corresponding honest 3-arrow of κι, and the cokernel projection
of ϕ to be the corresponding honest 3-arrow of πγ.

To construct the universal morphism from the direct sum let ϕ : A Ñ C, ψ : B Ñ C in
MorGT

C pAq. The common coarsening pϕ1, ψ1q of ϕ and ψ are represented by the normalized
3-arrow generalized morphism representatives

A C

A1 C2

ϕ1

ι1

α1

π

B C

B1 C2

ψ1

ι2

α2

π

The universal morphism from direct sum

γ :“ UniversalMorphismFromDirectSumGT
C pAq pϕ, ψq

of ϕ and ψ is then represented by the 3-arrow generalized morphism

A ‘ B C

A1 ‘ B1 C2

γ

ι1 ‘ ι2

tα1, α2u

π

To construct the universal morphism into the direct sum let ϕ : A Ñ B, ψ : A Ñ C in
MorGT

C pAq. The common restriction pϕ1, ψ1q of ϕ and ψ are represented by the normalized
3-arrow generalized morphism representatives

5. COMPUTABILITY OF SERRE QUOTIENTS 97

A B

A1 B2

ϕ1

ι

α1

π1

A C

A1 C2

ψ1

ι

α2

π2

The universal morphism into direct sum
γ :“ UniversalMorphismIntoDirectSumGT

C pAq pϕ, ψq
of ϕ and ψ is then represented by the 3-arrow generalized morphism

A B ‘ C

A1 B2 ‘ C2

γ

ι

xα1, α2y

π1 ‘ π2

�

CHAPTER V

The category of coherent sheaves over a toric variety

In this chapter we show that the category of coherent sheaves over a toric variety
is computable. The coherent sheaf category over a toric variety X will be modeled as
a Serre quotient of the category of finitely presented graded modules over the Cox ring
of X. In Chapter III we already saw that the category of f.p. graded modules over a
computable ring is computable abelian. We first state the equivalence of the mentioned
Serre quotient category and the category of coherent sheaves over a toric variety. Then
we give an algorithm to decide the membership in the thick subcategory of the f.p. graded
modules to show that the category of coherent sheaves over a normal toric variety is indeed
computable.

1. Preliminaries from toric geometry

We are going to recall the main definitions from toric geometry. We follow the defi-
nitions and notations of [CLS11]. For the whole chapter, K will denote an algebraically
closed field of characteristic 0.

Definition 1.1 (Toric variety). An n-dimensional toric variety X over K is an irre-
ducible algebraic variety over K in which an algebraic torus T – pK˚qn can be embedded
such that the torus is a dense open subset and the algebraic action of T on itself by
multiplication can be extended to an algebraic action on the whole variety.

Definition 1.2. Let T – pK˚qn be an algebraic torus.
(1) A character of T is a group homomorphism

T Ñ K˚.

(2) Let m P Zn. Then m defines a character of T by the map

χm : T Ñ K˚, pt1, . . . , tnq ÞÑ tm1
1 ¨ ¨ ¨ tmn

n .

The characters of T form a lattice isomorphic to Zn, called the character lattice
of T , which we will denote by M .

(3) A one-parametric subgroup of T is a group homomorphism

K˚ Ñ T.

(4) Let ν P Zn. Then ν defines a one-parametric subgroup of T by the map

K˚ Ñ T : λ ÞÑ pλν1 , . . . , λνnq .

99

100 V. TORIC SHEAVES

The one-parametric subgroups of T form a lattice isomorphic to Zn, called the
lattice of one-parametric subgroups, which we will denote by N .

Remark 1.3. The lattices M and N are dual to each other. For m P M and ν P N
there exists a k P Z such that their composition can be written as

m ˝ ν : K˚ Ñ K˚, x ÞÑ xk.

We define the duality
x, y : M ˆ N Ñ Z, pm, νq ÞÑ k.

We now state the basic combinatorial notions in toric geometry.
Definition 1.4. Let T be a torus and N its lattice of one-parametric subgroups. For

a finite subset G Ď N the set
Cone pGq :“

ÿ
gPG

Rě0g Ď N b R

is a rational polyhedral cone or simply cone.
Definition 1.5. Let σ Ď N b R be a cone.
(1) For every m P M such that the minimum min txm, μy | μ P σu exists, the set

τ :“ tν P σ | xm, νy “ min txm, ky | k P σuu
is called a face of σ, denoted by τ ĺ σ.

(2) For a cone σ the dual cone

tm P M b R | xm, νy ě 0, ν P σu
is denoted by σ_.

From now on every cone σ is pointed, i.e., t0u is a face of σ.
Definition 1.6. Let σ Ď N b R be a cone.
(1) A face ρ ĺ σ of dimension one is called ray. The unique uρ P N such that

τ X N “ Zě0uρ is called ray generator of τ .
(2) The generators of all rays in a cone σ generate σ. They are called the ray gen-

erators of σ.
Definition 1.7. A fan Σ is a finite collection of pointed cones Σ “ tσ1, . . . , σru, σi Ď

N bR such that for every cone σi P Σ all faces of σi are contained in Σ, and the intersection
of two cones σi, σj P Σ is a face of both cones.

Lemma 1.8 (Gordan). Let σ be a cone. Then Sσ :“ σ_ X M is a finitely generated
semigroup.

Proposition 1.9. Let σ Ă N b R be a cone. Then
Uσ :“ Spec pK rσ_ X M sq

is an affine toric variety with torus M bZ K˚.

1. PRELIMINARIES FROM TORIC GEOMETRY 101

Example 1.10. Let n :“ 2. Consider the cone
σ :“ Cone pe1, e2q .

The cone
τ :“ Cone pe1q

is a face of σ, and
K rSσs – K rx, ys
K rSτ s – K

“
x, y˘1‰

.

In general, let τ be a face of σ. Then the semigroup embedding Sσ ãÑ Sτ gives the inclusion
K rSσs ãÑ K rSτ s

which leads to the embedding
Uτ “ Spec pK rSτ sq Ñ Uσ “ Spec pK rSσsq .

Given a fan Σ and two maximal cones σ1, σ2 P Σ, one can glue the affine varieties Uσ1

and Uσ2 along Uσ1Xσ2 – Uσ1 X Uσ2 . If one does the gluing for all cones σ P Σ one gets a
colimit variety

XΣ :“ limÝÑ
σPΣ

Uσ.

The variety XΣ is the toric variety of the fan Σ. It is indeed toric since t0u P Σ by
definition of the fan and Ut0u “ pK˚qn. The torus is a dense open subset of the variety XΣ,
and the action is extended naturally since the inclusions are compatible and every Uσ is
toric with that torus. Furthermore, the maximal cones Σmax of the fan Σ define a torus
invariant affine open covering of the variety.

Example 1.11. Let n “ 1 and
σ1 :“ Cone pe1q ,

σ2 :“ Cone p´e1q .

Then we have
τ :“ σ1 X σ2 “ t0u

and
Σ :“ tσ1, σ2, τu

is a fan. One gets XΣ by the maps
Krxs Ñ K

“
x˘1‰ Ð K

“
x´1‰

which leads to the embeddings

K K˚ K.
x Ð� x x ÞÑ x´1

So we have XΣ – P1.

102 V. TORIC SHEAVES

We denote the set of i-dimensional cones in a fan Σ by Σ piq. Furthermore, we assume
that Σ pnq is not empty, with n “ dim XΣ. This translates to the fact that the toric variety
XΣ has no torus factors.

Definition 1.12. Let XΣ be a toric variety with torus T . For ρ P Σ p1q the closed
subvariety Dρ :“ Uρ Ă XΣ is a torus invariant Weil divisor.

Definition 1.13. The group of torus invariant Weil divisors on a variety XΣ
with torus T is denoted by

DivT pXΣq :“ à
ρPΣp1q

ZDρ.

Every torus invariant principal divisor on a toric variety XΣ with torus T can be
expressed as the divisor of a character, i.e., for every principal divisor D on XΣ there is a
m P M such that

D “ div pχmq :“
ÿ

ρPΣp1q
xm, uρy Dρ,

where uρ denotes the unique ray generator of the ray ρ.
So there is a Z-homomorphism

M Ñ DivT pXΣq
with the torus invariant principal divisors as its image.

Theorem 1.14 (Class group). Let XΣ be an n-dimensional toric variety with torus T
and without torus factors. Then there exists an exact sequence

0 Ñ M Ñ DivT pXΣq r¨sÑ Cl pXΣq Ñ 0
m ÞÑ div pχmq

where Cl pXΣq is the class group of XΣ.
The exactness on the left is due to the assumption that no torus factor exists.
Definition 1.15. For a toric invariant divisor D on a toric variety XΣ we denote by

rDs its class in Cl pXΣq.
Definition 1.16. The Cox ring SΣ of a toric variety XΣ is defined as

SΣ :“ K rxρ | ρ P Σ p1qs .

SΣ is a Cl pXΣq-graded ring and the degree of xρ is the element rDρs P Cl pXΣq.
SΣ is a computable graded ring by the definition of Cl pXΣq and SΣ.
Definition 1.17. Let SΣ “ K rxρ | ρ P Σ p1qs be the Cox ring of the variety XΣ. For

a cone σ P Σ define
xpσ :“

ź
ρ P Σ p1q

ρ R σ

xρ.

2. EQUIVALENCE OF SERRE QUOTIENT AND COHERENT SHEAVES 103

The irrelevant ideal of XΣ is the ideal

B pΣq :“ @
xpσ | σ P Σ

D
.

Proposition 1.18. Let XΣ be a toric variety and A a graded SΣ-module. Then there is
a quasi-coherent sheaf rA on XΣ such that for every σ P Σ the sections of rA over Uσ Ă XΣ
are

Γ
´

Uσ, rA¯
“ pAxpσ q0 .

The sheaf rA is coherent if A is a finitely generated graded SΣ-module. On the other
hand, a sheaf F on XΣ is coherent if there exists a finitely presented graded SΣ-module A
such that rA – F .

2. Equivalence of Serre quotient and coherent sheaves

We state how the category of graded module presentations over the Cox ring S of a
toric variety XΣ relates to the category of coherent sheaves over XΣ. Recall that K is an
algebraically closed field of characteristic 0 and all toric varieties are normal and with no
torus factor, i.e., their fans contain the cone t0u and a full-dimensional cone.

Notation. For the rest of this section XΣ will denote an n-dimensional toric variety
with fan Σ, S its Cox ring (homogeneous coordinate ring in [CLS11]) with irrelevant ideal
B and degree group G :“ Cl pXΣq.

We denote by S-grmod the category of finitely presented G-graded modules over S
which is computable by III.2.11, and denote the sheafification functor by

Sh : S-grmod Ñ CohXΣ, A ÞÑ rA.

Theorem 2.1 ([BLH14a, Cor. 4.5]). The sheafification functor Sh induces an equiv-
alence

S-grmod{S-grmod0 – CohXΣ,

where S-grmod0 is the kernel of Sh and the left side is a Serre quotient.
There is a local description for S-grmod0, since normal toric varieties have a natural

torus invariant affine cover.
Theorem 2.2. Let XΣ be a toric variety with fan Σ. Then a graded SΣ-module A is

in the kernel of Sh if and only if
Γ

´
Uσ, rA¯

“ 0

for all maximal cones σ P Σ. Here Uσ denotes the affine subvariety coming from the
maximal cone σ in the fan Σ.

Proof. Indeed a sheaf is zero iff it is zero on every subvariety of an affine cover.
Since the Uσ belonging to the maximal cones σ P Σ form an affine open cover, the claim
follows. �

104 V. TORIC SHEAVES

We can also formulate Theorem V.2.2 in a completely module theoretic setup. We
denote by Spσ the ring S localized at the monomial xpσ, i.e., the product of all indeterminates
of S which correspond to the rays in Σ which are not in the cone σ.

Theorem 2.3. Let XΣ be a normal toric variety with fan Σ, Cox ring S, and A a
f.p. graded S-module. Then A sheafifies to zero if and only if for every maximal cone
σ P Σ the pSpσq0-module pApσq0 is zero. Here pSpσq0 resp. pApσq0 denotes the degree zero part
of the ring S resp. the module A localized at xpσ.

Proof. We have
Γ

´
Uσ, rA¯

“ pApσq0

by [CLS11, Prop. 5.3.3], so the claim follows by Theorem V.2.2. �

For smooth toric varieties there is also a global criterion for deciding whether a finitely
presented graded module over the Cox ring sheafifies to zero.

Theorem 2.4 ([CLS11, Prop. 5.3.10]). Let XΣ be a smooth toric variety with Cox ring
S, B the irrelevant ideal, and A in S-grmod. Then A is in the kernel of the sheafification
functor Sh if and only if there exists an
 P N such that B�A “ 0.

3. Deciding membership of the kernel of the sheafification functor

We now give two distinct algorithms for deciding the membership of the kernel of the
sheafification functor Sh. The first algorithm decided the kernel membership in the case
where XΣ – Pn and uses the global criterion for the kernel membership in Theorem V.2.4.
The second algorithm decides the kernel membership for every normal toric variety XΣ
with no torus factors. The algorithm uses the local criterion for the kernel membership
from Theorem V.2.2.

3.a. Hilbert polynomial for projective spaces. For projective spaces, the follow-
ing holds:

Proposition 3.1. Let XΣ :“ Pn and S :“ K rx0, . . . , xns a graded polynomial ring with
deg pxiq “ 1, i “ 0, . . . , n. Then S is the Cox ring of XΣ and the sheafifications rA and rB
of two f.p. graded S-modules A and B are isomorphic if and only if Aěd – Běd as graded
S-modules for some d ě 0. In particular, rA “ 0 if and only if Aěd – 0 for some d ě 0.

Let HA ptq P Zrrtss be the Hilbert series of A. Then rA – 0 if and only if HA P Zrts, and
therefore the Hilbert polynomial hA P Qrts of A is 0.

For projective spaces it is therefore enough to compute the Hilbert polynomial of a
f.p. graded module A in order to to decide whether the module sheafifies to 0 or not.

This theorem cannot even be extended to weighted projective spaces.
Example 3.2. Let XΣ :“ P p1, 1, 2q the weighted projective space. Then the Cox ring

of XΣ is given by S :“ C rx1, x2, x3s with
deg px1q “ deg px2q “ 1, deg px3q “ 2

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 105

and irrelevant ideal B “ xx1, x2, x3y. Let
M :“ S p1q { px1S p1q ` x2S p1qq .

The Hilbert series of M is
HM :“

8ÿ
i“0

t2i´1,

so it has no Hilbert polynomial, but instead a quasi polynomial which is not 0. But we
have

pMx1q0 “ pMx2q0 “ pMx3q0 “ 0,

where pMx1q0 and pMx2q0 are zero because x1 and x2 respectively are invertible in Sx1 and
Sx2 and pMx3q0 is zero since x3 has degree 2 and therefore Mx3 is zero in all even degrees.
So it follows that ĂM “ 0.

This means that for the general case, we have to fall back to Theorem V.2.2 to decide
if a module sheafifies to 0.

3.b. Global sections. To decide the kernel membership of the sheafification functor
for toric varieties we need to compute the graded parts Mα of a f.p. graded module M over
a graded Laurent polynomial ring S in which all monomials are homogeneous.

Remark 3.3. While it seems natural that monomials in a graded polynomial ring are
homogeneous, this cannot be deduced from Definition III.1.1. Let S :“ Q rxs, with degree
group Z such that px ´ 1qn is homogeneous and

deg ppx ´ 1qnq “ n

for all n P Zě0. Then the only homogeneous monomial is 1 “ x0.
Proposition 3.4. Let S be a graded Laurent polynomial ring and M P ObjS-grmod. Let

f P S be a monomial. Furthermore, let
0 Ð M Ð F 0 Ð F 1

be a graded free presentation of M . Then pMf q0 – 0 as an pSf q0-module if and only if the
cokernel of the induced localized map`

F 0
f Ð F 1

f

˘
0 “ `

F 0
f

˘
0 Ð `

F 1
f

˘
0

is 0.
Proof. Both localizing at a monomial and taking the degree zero part of a module or

morphism are exact functors. So the localized sequence remains exact, and we can restrict
that sequence to its degree 0 part, and get an exact sequence of pSf q0-modules. �

In order to compute pMf q0 we will show how the map`
F 0

f Ð F 1
f

˘
0

can be computed from the map
F 0 Ð F 1.

For the rest of this chapter we use the following notation.

106 V. TORIC SHEAVES

Notation. S :“ K
“
x1, . . . , xk, x˘1

k`1, . . . , x˘1
n

‰
is a Laurent polynomial ring graded by

a finitely presented abelian group G such that all monomials in S are homogeneous. For
any subset S 1 Ă S we define Mon pS 1q as the subset of monomials in S 1.

3.c. A generating set for S0. We first compute a finite generating set of S0 :“
tf P S | deg pfq “ 0u as a K-algebra.

Notation. Let r ą 0. Then x, y : Zr ˆ Zr Ñ Z denotes the standard scalar product
on Zr.

Definition 3.5. We call the epimorphism of Z-modules
ϕ : Zn Ñ G, ei ÞÑ deg pxiq

the grading function of S.
We call the isomorphism of semigroups

χ : tm P Zn | xm, eiy ě 0, i “ 1, . . . , ku Ñ Mon pSq , m ÞÑ xm.

the character function of S.
Proposition 3.6 (First description of S0). Suppose S :“ K

“
x1, . . . , xk, x˘1

k`1, . . . , x˘1
n

‰
with a grading function ϕ as above. Then the monoid

T :“ tm P Zn | ϕ pmq “ 0, xm, eiy ě 0, i “ 1, . . . , ku
is isomorphic to the monoid Mon pS0q via the character function χ of S.

Proof. Let m P T . Then m P tm P Zn | xm, eiy ě 0, i “ 1, . . . , ku as well, so χ|T is
well-defined. We now compute deg χ pmq. Since χ pmq “ xm, we have

deg χ pmq “
nÿ

i“1
deg

´
x

xm,eiy
i

¯
“

nÿ
i“1

xm, eiy deg pxiq “ ϕ pmq “ 0.

Hence χ pT q Ď Mon pS0q. Now, let xm P Mon pS0q. Then ϕ pmq “ 0 and xm, eiy ě 0 for all
i “ 1, . . . , n. So Mon pS0q Ď χ pT q. The injectiveness follows since χ is injective. �

Since ϕ pmq “ 0 means that m P ker ϕ we can get a better description of the cone T .
Corollary 3.7 (Second description of S0). Let ϕ be the grading function of S and ψ

the kernel embedding of ϕ. Then the sequence of Z-modules

(:) 0 Ñ M
ψÑ Zn ϕÑ G Ñ 0,

is exact and the monoid
T 1 :“ tm P M | xψ pmq , eiy ě 0, i “ 1, . . . , ku

is isomorphic to the monoid T from Proposition V.3.6 via ψ.
Proof. This follows from Proposition V.3.6 and the exactness of the sequence (:),

more precisely from the facts that ψ is injective and ϕ ˝ ψ “ 0. �
Remark 3.8. If S is be the Cox ring of a toric variety XΣ, the lattice M from Corollary

V.3.7 will be the character lattice of XΣ.

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 107

Definition 3.9. We call the monoid T 1 from Corollary V.3.7 the monomial cone of
S0.

Notation. From now on, ψ : M Ñ Zn denotes the kernel of ϕ. Furthermore, ψ˚
denotes its transposed, i.e.,

ψ˚ : Zn Ñ M

such that for all pairs pm, νq P M ˆ Zn we have

xψ pmq , νy “ xm, ψ˚ pνqy .

To get a finite generating set of S0 as K-algebra, we need a finite generating set of T 1
as affine semigroup.

Proposition 3.10. The monomial cone T 1 of S0 of a graded polynomial ring S is a
saturated affine semigroup.

Proof. We can rewrite T 1 as

T 1 :“ tm P M | xm, ψ˚ peiqy ě 0, i “ 1, . . . , ku .

So T 1 is given by a set of linear homogeneous inequations, and therefore is a saturated
affine semigroup. �

The property that T 1 is a saturated affine semigroup is important since it means that
a finite generating set for T 1 exists.

Using the finite generating set of T 1 we can write down a finite generating set for S0 as
K-algebra.

Theorem 3.11 (Generating set of S0). Let T 1 be the monomial cone of S0 and H a
finite generating set of T 1 as a semigroup. Furthermore, let χ be the character function
of S and ψ : M Ñ Zn the kernel of the grading function of S. Then the set χ pψ pHqq
generates S0 as a K-subalgebra of S, i.e., S0 “ K rχ pψ pHqqs Ă S.

Proof. We can already deduce from Proposition V.3.6 and Corollary V.3.7 that
χ pψ pT 1qq generates S0 as a K-vector space and as a K-subalgebra of S. Since every element
of T 1 can be expressed as a finite sum of elements of H, the set χ pψ pHqq generates S0 as
a K-subalgebra of S. �

Example 3.12 (V.3.2 cont.). We are going to compute the degree zero part of Sx3 .
The degrees of the indeterminates were

deg px1q “ deg px2q “ 1, deg px3q “ 2,

so the degree sequence looks as follows

0 Z2 Z3 Z 0

ˆ ´1 1 0
´2 0 1

˙ ¨̋
1
1
2

‚̨

108 V. TORIC SHEAVES

where the right map is the map ϕ from the section above, and the left map is ψ. Now, we
have

T 1 :“ �
m P Z2 | m1 ě 0, ´m1 ´ 2m2 ě 0

(
,

and its Hilbert basis is
H “ tp2, ´1q , p1, ´1q , p0, ´1qu .

Using ψ, we see that

pSx3q0 “ C

„
x2

1

x3
,
x1x2

x3
,
x2

2

x3

j
.

To compute this example in GAP we use the ToricSheaves package. We first create the
graded ring S:
gap> S := HomalgFieldOfRationalsInSingular() * "x1..3";
Q[x1,x2,x3]
gap> S := GradedRing(S);
Q[x1,x2,x3]
(weights: yet unset)
gap> SetWeightsOfIndeterminates(S, [1,1,2]);

S is now defined to be the graded ring Q rx1, x2, x3s, with degrees of indeterminates as
above.

Now we compute the generators of pSx3q0. The input for the function will be the ring S
and a list of indeterminates to localize at. Here, we only localize at the third indeterminate.
gap> DegreeZeroMonomialsOfLocalizedRing(S, [3]);
[[0, 2, -1], [1, 1, -1], [2, 0, -1]]

Since there is no data structure for Laurent polynomial ring monomials, we only get the
list of exponents. r0, 2, ´1s translates to the monomial x2

2
x3

, and so on. We see this list
coincides with the list of ring generators given above, up to permutation.

3.d. Relations between the generators of S0. We now compute all relations be-
tween the monomial generators of S0. Once we have computed the relations, we will be
able to present S0 as quotient of a polynomial ring R with a binomial ideal I.

Proposition 3.13. Let r ą 0 and m P Zr. Then there is a decomposition m “
m` ´ m´, such that m`,i ě 0, m´,i ě 0 and m`,im´,i “ 0 for all i.

Remark 3.14. For m P Zr the decomposition m “ m` ´ m´ is unique.

Theorem 3.15 (Writing S0 as a quotient of a polynomial ring). As before let S :“
K

“
x1, . . . , xk, x˘1

k`1, . . . , x˘1
n

‰
be graded by G with grading function ϕ and ψ : M Ñ Zn be

the kernel of ϕ. Furthermore, let H Ď M be a generating set of the monomial cone of S0
and ψ pHq “: ty1, . . . , yru and R :“ K ry1, . . . , yrs a free polynomial ring. Then the maps

κ : Zr Ñ Zn, ei ÞÑ yi

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 109

and
χR : tm P Zr | xm, eiy ě 0, i “ 1, . . . , ru Ñ Mon pRq m ÞÑ ym.

are well-defined and the map χR is the character function of R.
Furthermore, S0 is the image of the map

β : R Ñ S, yi ÞÑ χ pyiq
and its kernel ideal is

I :“ xχR pm`q ´ χR pm´q | m P ker κy .

Proof. First, the image of β is S0, since the y1
is form a Hilbert basis of the monomial

cone of S0. The fact that I is the kernel of β is proved in [CLS11, Prop. 1.1.9]. �

Remark 3.16. The kernel ideal I can be computed using a generating set B Ă ker κ.
We have

I “ xχR pm`q ´ χR pm´q | m P By :
C

rź
i“1

yi

G
.

For a proof, see [Stu96, p. 155].
Example 3.17 (V.3.12 cont.). Using the algorithms described above, we see that

pSx3q0 “ C

„
x2

1

x3
,
x1x2

x3
,
x2

2

x3

j
– C rx, y, zs { @

xz ´ y2D
.

In GAP, we can again use the ToricSheaves package:
gap> RI := DegreeZeroPartOfRingAsQuotient(S, [3]);
[[[0, 2, -1], [1, 1, -1], [2, 0, -1]],

Q[t1,t2,t3]/(t2^2-t1*t3)]

The command DegreeZeroPartOfRingAsQuotient computes both the quotient ring R{I
as well as a data structure for the above isomorphism.
gap> RI[2];
Q[t1,t2,t3]/(t2^2-t1*t3)

We see that the computed ring R{I is isomorphic to C rx, y, zs { xxz ´ y2y. Next we look
at the isomorphism data structure:
gap> RI[1];
[[0, 2, -1], [1, 1, -1], [2, 0, -1]]

Here again, each tuple corresponds to a monomial in pSx3q0. Since the first computed
tuple is r0, 2, ´1s, the generator t1 of the computed ring R{I corresponds to the monomial
x2

2
x3

P pSx3q0.
Algorithm 3.18. Computing S0 as a monomorphism R{I Ñ S:

110 V. TORIC SHEAVES

(1) Compute a resolution of the grading group G, i.e., a sequence

0 Ñ M
ψÑ Zn ϕÑ G Ñ 0.

(2) Take a matrix P P Zkˆn which represents ψ for a basis pe1, . . . , enq of Zn that
has ϕ peiq “ deg pxiq. Create the cone T 1 by the appropriate columns of P as
inequalities.

(3) Compute a Hilbert basis H for the cone T 1.
(4) Construct the mapping κ representing it by a matrix Q P Zrˆn with rows H.
(5) Compute a generating set for the kernel of κ.
(6) Compute I using Remark V.3.16.
(7) Compute the monomorphism R{I Ñ S induced by β.

3.e. The homogeneous parts of S. We now want to compute a presentations for
the S0-modules Sα for α P G. To compute with the presentations of the S0-modules Sα in
the sense of Chapter III, we will present Sα as R{I-module, together with their embeddings
in S. Since S itself is not finitely generated as S0 module, the embedding Sα ãÑ S will
be represented by the images of the generators of Sα in S. We start by establishing the
necessary combinatorial notions.

Proposition 3.19 (Tail cone decomposition). Let P Ď Zn be a convex lattice polyhe-
dron. Then there exists a cone T P and a polytope P 1 such that P “ P 1 ` T P . In this
decomposition the cone T P is unique.

Definition 3.20. The cone T P is called the tail cone of P .

Remark 3.21. Suppose, for i “ 1, . . . , k, there are ai P Zn, bi P Z such that
P “ tm P Zn | xm, aiy ě biu .

Then
T P “ tm P Zn | xm, aiy ě 0u .

Proof. Suppose P 1 Ă P , then P 1 ` T P Ă P follows. The tail cone can be presented
as the set

tm P Zn | for all p P P : p ` m P P u .

The claim follows by the linearity of the inequalities. �
Proposition 3.22. Let P “ P 1 ` T P be a polyhedron and H a generating set of

T P . Then, for every point m P P there is a point m1 P P 1 and an H-indexed family
tah P Zě0|h P Hu with

m “ m1 `
ÿ
hPH

ahh.

Proof. Since P “ P 1 ` T P and since there is an a P ZHě0 for every c P T P such that

c “
ÿ
hPH

ahh

the claim follows. �

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 111

Remark 3.23. Unfortunately, the decomposition in Proposition V.3.22 is not unique.
Let

P :“ �
m P Z2 | m2 ě 0, m2 ´ m1 ě ´1

(
.

Then we have
T P “ �

m P Z2 | m2 ě 0, m2 ´ m1 ě 0
(“ Cone pe2, e1 ` e2q

and we can set
P 1 :“ t0, e1u .

But then the point e1 ` e2 can either be composed as
0 ` pe1 ` e2q

with 0 P P and e1 ` e2 P T P or
pe1q ` pe2q

with e1 P P and e2 P T P .

3.f. A generating set for Sα. We will now describe the set SαXMon pSq “ Mon pSαq.
Proposition 3.24. Let a P ϕ´1 pαq. Then the set

Gα :“ tm P Zn | ϕ pmq “ α, xm, eiy ě 0, i “ 1, . . . , ku
“ tm ` a P Zn | ϕ pmq “ 0, xm, eiy ě xa, eiy , i “ 1, . . . , ku .

defines a K-basis of Sα via the morphism χ.
Proof. A K-basis of Sα is given by the set Mon pSαq. For a monomial

xm “ χ pmq P Sα

the element m P Zn fulfills
(1) xm, eiy ě 0 for all i “ 1, . . . , k and
(2) ϕ pmq “ α.

Therefore m P Gα and χ pGαq Ą Mon pSαq. Given a m P Gα, we have xm, eiy ě 0 for
i “ 1, . . . , k and χ pmq is well-defined. Further

deg pχ pmqq “ ϕ pmq “ α.

Thus χ pGαq Ă Mon pSαq and finally χ pGαq “ Mon pSαq. �
The set

Gα ´ a “ tm P Zn | ϕ pmq “ 0, xm, eiy ě xa, eiy , i “ 1, . . . , ku
is a polyhedron. Of course, Gα is also a polyhedron.

Proposition 3.25. We have Gα ´ a Ă ker ϕ. Therefore we can rewrite Gα ´ a as
G1

α :“ tm P M | xψ pmq , eiy ě xa, eiy , i “ 1, . . . , ku .

G1
α is a polyhedron in M with T G1

α “ T 1.
Proof. We have ψ pG1

αq “ Gα ´ a since ψ is a monomorphism, and by the inequations
that define T 1 the tail cone of G1

α is T 1 (cf. Remark V.3.21). �

112 V. TORIC SHEAVES

So we can write down a finite generating set of Sα.
Theorem 3.26. Let G1

α “ G2
α ` T 1 a tail cone decomposition. Then the set

Bα :“ χ pψ pG2
αq ` aq Ď S

is a generating set of Sα Ă S as an S0-module.
Proof. The set χ pψ pG1

αq ` aq is a K-Basis of Sα. Since every point in m1 P G1
α is of

the form
m1 “ m ` t

with m P G2
α and t P T 1 it follows that

χ pψ pm1q ` aq “ χ pψ ptq ` ψ pmq ` aq “ χ pψ pmq ` aq χ pψ ptqq .

But χ pψ ptqq P Mon pS0q by definition of T 1, so the set Bα is a generating set of Sα. �
Example 3.27 (V.3.12 cont.). The module A is presented by the following map

Sp0q2 Sp1q.

ˆ
x1
x2

˙

We need to compute generating sets of pSp0qx3q0 and pSp1qx3q0, i.e., generators for pSx3q0
and pSx3q1. For pSx3q0 we have already computed G1

0, and we get
G2

0 “ tp0, 0qu and B0 :“ tp0, 0, 0qu ,

which is what we expected.
For pSx3q1 we choose the monomial corresponding to a to be x1, i.e., a :“ p1, 0, 0q, and

get
G1

1 “ �
m P Z2 | ´ m1 ´ 2m2 ě ´1, m1 ě 0

(
.

Then we compute
G2

1 “ tp0, 0q , p1, 0qu ,

using an integer linear program solver and obtain
B1 “ tp1, 0, 0q , p0, 1, 0qu ,

which corresponds to the monomials x1 and x2. We therefore see that
pSp1qx3q0 – xx1, x2ypSx3q0

as a pSx3q0-modules.
We use the function MonomialsOfDegreePart in ToricSheaves to compute the mono-

mials of pSp1qx3q0. The first argument is again the graded polynomial ring S, the second
is a list of variables to localize at, and the third is the degree part for which we want to
compute monomial generators, i.e., 1.
gap> B1 := MonomialsOfDegreePart(S, [3], [1]);
[[0, 1, 0], [1, 0, 0]]

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 113

We see that pSp1qx3q0 is in fact generated by two monomials, namely x1, which is repre-
sented by the tuple r1, 0, 0s, and x2, which is represented by r0, 1, 0s.

3.g. Relations between the generating monomials of Mon pSαq. Since we now
have a finite generating set of Sα as an S0-module, it remains to compute abstract relations
between these generators of Sα in order to present Sα as an R{I-module. We first describe
the type of relations that appear.

Proposition 3.28. Let txm1 , . . . , xmhu Ă Mon pSαq be a monomial generating set of
Sα as an S0-module. Then every relation

pp1, . . . , phq P Sh
0

with
hÿ

i“1
pix

mi “ 0 P S

is a K-linear combination of relations of the form

xsiei ´ xsj ej P Sh
0

i, j P t1, . . . , hu with xsi P Mon pS0q such that

xsixmi ´ xsj xmj “ 0 P S.

Proof. Let
pi :“

ÿ
jPZn

pi,jx
j.

Then
hÿ

i“1
pix

mi “
hÿ

i“1

ÿ
jPZn

pi,jx
jxmi

“
hÿ

i“1

ÿ
jPZn

pi,j´mi
xj

“
ÿ

jPZn

˜
hÿ

i“1
pi,j´mi

¸
xj

which is zero if and only if ˜
hÿ

i“1
pi,j´mi

¸
“ 0

for all j P Zn, since the monomials are K-linear independent. So every relation is a K-linear
combination of relations of the form

pa1x
n1 , . . . , ahxnhq P Sh

0

114 V. TORIC SHEAVES

with xni P Mon pS0q and ai P k. Now given a relation of this form, i.e.,

(:)
hÿ

j“1
ajx

nj xmj “ 0.

We can w.l.o.g. assume that ni ` mi “ nj ` mj for all i, j “ 1, . . . , h, since otherwise we
can separate the relations by the K-linear independence of the monomials. We can also
assume that ai ‰ 0 for all i “ 1, . . . , h. Then we have

hÿ
j“1

ajx
nj xmj “ 0

ô
hÿ

j“1
aj “ 0.

Therefore (:) lies in the K-linear span of the relations
txsiei ´ xsj ej | xsixmi “ xsj xmj , xsk P Mon pS0qu . �

So we see that all relations between generators gi and gj of Sα are of the form
xnigi ´ xnj gj

for some monomials xni and xnj in S0. Hence, to get the full set of relations of generators
of Sα it is sufficient to compute all relations between pairs of two of them.

Proposition 3.29. Given two points g1, g2 P G2
α. Then the polyhedron

Qg1,g2 :“ pT 1 ` g1q X pT 1 ` g2q
has tail cone T 1.

Proof. We have
T 1 ` gj “ tm ` gj | m P M, xm, ψ˚ peiqy ě 0, i “ 1, . . . , ku

“ tm P M | xm ´ gj, ψ˚ peiqy ě 0, i “ 1, . . . , ku
“ tm P M | xm, ψ˚ peiqy ě xgj, ψ˚ peiqy , i “ 1, . . . , ku

for j “ 1, 2. So
T 1 ` g1 X T 1 ` g2 “ tm P M | xm, ψ˚ peiqy ě max pxg1, ψ˚ peiqy , xg2, ψ˚ peiqyq ,

i “ 1, . . . , ku ,

and thus, by the inequalities that define the intersection, T 1 is the tail cone of Qg1,g2 . �
Using the polyhedron Qg1,g2 , we can describe all relations of two elements in the gen-

erating set Bα of Sα.
Theorem 3.30. Let g1, g2 P G2

α like in Proposition V.3.29 and Qg1,g2 “ Q1
g1,g2

` T 1 the
tail cone decomposition of Qg1,g2. Then the kernel of the S0-module morphism

γ : pS0q2 Ñ Sα, ei ÞÑ χ pψ pgiq ` aq

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 115

is the image of the map

δ : pS0qQ1
g1,g2 Ñ pS0q2 , eq ÞÑ pχ pψ pq ´ g1qq , ´χ pψ pq ´ g2qqq .

Proof. We first show that γ ˝ δ “ 0. Let q P Qg1,g2 . Then

pγ ˝ δq peqq “ γ ppχ pψ pq ´ g1qq , ´χ pψ pq ´ g2qqqq
“ χ pψ pg1q ` aq χ pψ pq ´ g1qq ´ χ pψ pg2q ` aq χ pψ pq ´ g2qq
“ χ pψ pqq ` aq ´ χ pψ pqq ` aq
“ 0.

Now suppose pxn1 , ´xn2q is in the kernel of γ. Then

0 “ xn1χ pψ pg1q ` aq ´ xn2χ pψ pg2q ` aq
“ χ pn1 ` ψ pg1q ` aq ´ χ pn2 ` ψ pg2q ` aq .

Since χ is injective, we get
n1 ` ψ pg1q “ n2 ` ψ pg2q .

The monomials xn1 , xn2 are monomials in S0, and therefore n1, n2 P T “ ψ pT 1q. So there
exist n1

1, n1
2 P T 1 with ψ pn1

iq “ ni. Also, since ψ is injective, we have n1
1 ` g1 “ n1

2 ` g2,
hence n1

1 ` g1 P Qg1,g2 . Therefore, there exist q1 P Q1
g1,g2

and t1 P T 1 such that

q1 ` t1 “ n1
1 ` g1,

and

χ pψ pt1qq δ pq1q “ χ pψ pt1qq pχ pψ pq1 ´ g1qq , ´χ pψ pq1 ´ g2qqq
“ pχ pψ pt1 ` q1 ´ g1qq , ´χ pψ pt1 ` q1 ´ g2qqq
“ pxn1 , ´xn2q .

Therefore pxn1 , ´xn2q lies in the image of δ, and the claim follows. �

Theorem 3.31 (Presentation of Sα). Sα can be represented by the mapà
gi,gjPG2

α

pS0qQ1
gi,gj Ñ pS0qG2

α

with

eqi,j
ÞÑ x with xg :“

$&% χ pψ pqi,j ´ gqq g “ gi

´χ pψ pqi,j ´ gqq g “ gj

0
.

Proof. By Proposition V.3.28, all relations are linear combinations of binomial rela-
tions. So, by taking all the binomial relations, we get a presentation for Sα. �

We now want to present Sα as an R{I-module, i.e., we have to translate the S0-relations
in R1 for the generators G2

α of Sα into relations in R{I.

116 V. TORIC SHEAVES

Remark 3.32. Let g1, g2 P G2
α, q P Q1

g1,g2
as above, and rm P Zr such that κ p rmq “ q´g1.

Then every element n in the set

L :“ tn P Zr | κ pnq “ 0, xn, eiy ě ´ x rm, eiy , i “ 1, . . . , ku
fulfills κ pn ` rmq “ q ´ g1 and xn ` rm, eiy ě 0, where κ was defined as

κ : Zr Ñ Zn, ei ÞÑ yi.

Remember that R :“ K ry1, . . . , yrs, and yi was the image of the i-th generator hi P H
of the monomial cone T of S0 under the mapping ψ. So, while yi is an indeterminate in a
free polynomial ring, it is also an element of Zn.

Proposition 3.33. For every n P L ` rm we have

pβ ˝ χRq pnq “ pχ ˝ κq pnq “ xq´g1 .

We see that every element of the set L ` rm corresponds to both a monomial in S and
R{I via the mappings in Proposition V.3.33. So the elements in L provide the relations
for the generators of Sα as an pR{Iq-module.

Proof. We have
pβ ˝ χRq pnq “ β pynq “ x

řxn,eiyyi

and
pχ ˝ κq pnq “ xq´g1 .

which proves the second equality. Furthermoreÿ
xn, eiy yi “ κ pnq “ q ´ g1 P R{I,

which concludes the proof. �

Theorem 3.34 (Presentation of Sα as an R{I-module). Let G2
α be as above. Then Sα

is isomorphic via β to the cokernel of the mappingà
gi,gjPG2

α

pR{IqQ1
g1,g2 Ñ pR{IqG2

α

with

eqi,j
ÞÑ x with xg :“

$&% χR p
iq g “ gi

´χR p
jq g “ gj

0
.

where
k is an element of the set L ` rm with α p rmq “ qi,j ´ gk for k “ i, j.

Proof. By Theorem V.3.31, Sα is isomorphic to the cokernel ofà
gi,gjPG2

α

pS0qQ1
g1,g2 Ñ pS0qG2

α .

Since β maps the relations from S0 Ă S to R{I, the claim follows. �

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 117

Example 3.35 (V.3.27 cont.). Since pSp0qx3q0 has only one generator as an pSx3q0-
module, namely 1, pSp0qx3q0 is free. On the other hand, pSp1qx3q0 has two monomials as
generators, so we need to compute their pSx3q0-relations.

We consider again the monomial cone of pSx3q0�
m P Z2 | ´ m1 ´ 2m2 ě 0, m1 ě 0

(
,

and intersect the shifts by g1 :“ p0, 0q and g2 :“ p1, 0q, respectively. The intersection
polytope is

T 1 ` g1 X T 1 ` g2 “ �
m P Z2 | ´ m1 ´ 2m2 ě 0, m1 ě 1

(
.

The polytope is generated by the lattice points
Q1

g1,g2
“ tp1, ´1q , p2, ´1qu .

which leads to the relations ´
x1x2

x3
´x2

1
x3

¯
for p1, ´1q and ´

x2
2

x3
´x1x2

x3

¯
for p2, ´1q. Now, using the isomorphism

pSx3q0 – C rx, y, zs { @
xz ´ y2D

:“ R,

we can rewrite these relations as ˆ
y ´x
z y

˙
“: X.

Ultimately, we can present pSp1qx3q0 as the cokernel of

R2 XÝÑ R2.

Note that we know that the generators of this new representation correspond to x1 and x2.
Using ToricSheaves, we can compute the relation matrix for a presentation of pSp1qx3q0

as follows:
gap> S1 := DegreePartOfRing(S, [3], [1]);
[[[0, 1, 0], [1, 0, 0]],

<An unevaluated 2 x 2 matrix over a residue class ring>]

The arguments for the function DegreePartOfRing are the same arguments as for the
functionMonomialsOfDegreePart. The output consist of the generating monomials seen
in Example V.3.27, and a matrix., which describes the R{I-relations of the generators:
gap> Display(S1[2]);
t2, -t1,
-t3,-t2

modulo [t2^2-t1*t3]

118 V. TORIC SHEAVES

So we see, the relation matrix for pSp1qx3q0 isˆ
t2 ´t1

´t3 ´t2

˙
over the ring R{I :“ C rt1, t2, t3s { xt2

2 ´ t1t3y.
3.h. Homogeneous parts of finitely presented modules. We now use the R{I-

presentations of the graded parts Sα of S to describe the homogeneous parts Aα of degree
α P G of a finitely presented graded S-module A. We first establish some well-known facts.

Remark 3.36. Let F P ObjS -grpres be a free module. Then there are α1, . . . , αr P G
such that

F –
sà

i“1
S pαiq .

S pαq is the shift of S by α, i.e., for any β P G

S pαqβ “ Sα`β.

Notation. For the rest of the section ty1, . . . , yru “ H Ă Mon pS0q will both be the
generating set for S0 and for the ring R as K-algebra.

Presenting the homogeneous parts Fα of a free S-module as S0-modules can be done
using the presentations of the homogeneous parts of S. Note that even if F is a free
S-module, the homogeneous parts Fα of F are not free S0-modules in general.

Remark 3.37. Let F P ObjS -grpres be a free module, α P G, and

F –
sà

i“1
S pαiq

like in Remark V.3.36. Then

Fα –
sà

i“1
S pαiqα “

sà
i“1

Sαi`α

as S0-modules.

Proposition 3.38. Let Bα Ă Mon pSq be an S0-generating set of Sα, px P Mon pSαq,
and H a finite generating set (as computed from T 1) of the monomial cone Mon pS0q of S0.
Then there is at least one b P Bα such that a solution a P ZHě0 with

b
ź
tPH

tat “ px
exists and can be computed.

Proof. Since Bα is an S0-generating set of Sα and H generates S0 as a K-algebra, the
existence of b and a follows.

To find the solution a, assume px, b, and the elements of H are presented by their
exponent vectors. Then one needs to solve Hz “ px ´ b for z P ZHě0. This can be done using
an integer inequation solver. �

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 119

Now we can describe homogeneous parts of A P S-grpres, i.e., a module A given as the
cokernel of a morphism of free graded modules

F1
ϕÑ F0 Ñ A “ coker pϕq Ñ 0.

Since ϕ is a graded S-module homomorphism, we get the following commutative diagram
of S0-modules:

F1 F0 A 0

F1,α F0,α Aα 0

ϕ π

rϕ rπι1 ι0 ι

Let
F1 –

s1à
i“1

S pαiq , F0 –
s0à

j“1
S pβjq ,

and Bαi
, Bβj

Ă Mon pSq the S0-generating sets of S pαiqα and S pβjqα respectively. The
disjoint unions of the Bαi

, i “ 1, . . . , s1 and Bβj
, j “ 1, . . . , s0 form generating sets for F1,α

and F0,α. Since we can compute the R{I-relations of Bαi
and Bβi

, we are able to present
both F0,α and F1,α as R{I-modules by the methods in Subsection V.3.f.

We now want to write down a matrix for the map rϕ in terms of the generators of F1,α

and F0,α. Let ei be the generator of F1 which corresponds to S pαiq, and
tb1, . . . , buu :“ Bαi

.

Then we have
ϕ pb�eiq “ b� pfi,1, . . . , fi,s0q

with
b�fi,j P S pβjqα ,

where fi,j is the i, j-th entry of the matrix representing the morphism ϕ. Let

b�fi,j “
ÿ

pxPMonpSβj q
cpxpx.

For every px P Mon
`
Sβj

˘
by Proposition V.3.38 we can compute a generator b P Bβj

and a
monomial spx P S0 such that

b�fi,j “
ÿ

pxPMonpSβj q
cpxspxb.

To write b�fi,j as an R{I-linear combination consider again Proposition V.3.38. The mono-
mial spx P Mon pS0q comes with an apx P Zr such that

spx “
rź

i“1
yapx,i

i P R{I.

120 V. TORIC SHEAVES

Therefore, we can write b�fi,j as an R{I-combination of the generators of F0,α. Now, for
every b P Ţs1

i“1 Bαi
we know rϕ pbq P F0,α written as an R{I-linear combinations in the

generators
Ţs0

j“1 Bβj
of F0,α as R{I-module, and can therefore construct a matrix for rϕ.

We summarize the steps to compute the R{I-presentation of Aα from the S-module A:
Algorithm 3.39. Computing Aα as an R{I-module from the graded S-module A:
(1) Compute F1 and F0 from A.
(2) Compute R{I, together with K-algebra generators H Ă Mon pS0q.
(3) For F1 and F0, compute the R{I-generating sets Bαi

, i “ 1, . . . , s1, and Bβj
, j “

1, . . . , s0, together with R{I-presentations for F1,α and F0,α.
(4) For each b P Ţr

i“1 Bαi
compute the image rϕ pbq in terms of the R{I-generatorsŢs

j“1 Bβj
of F0,α.

(5) Compute Aα as the cokernel of rϕ.
Example 3.40 (V.3.35 cont.). We now finish the computation of the new presentation

matrix of A. Remember, A was given by the cokernel of the map

Sp0q2 Sp1q
`

x1 x2
˘

and we already know that, using the ring R :“ C rx, y, zs { xxy ´ z2y, we have

pSp0qx3q0 – R and
pSp1qx3q0 – R2{X

with

X :“
ˆ

y ´x
z y

˙
.

Now, using the presentation of A, we can reconstruct the localized map presenting A on
the 0-th degree level.

The first generator e1 of Sp0q2 is mapped to x1, which corresponds to our first generator
of pSp1qx3q0, which again corresponds to the first generator of R2{X.

The second generator e2 of Sp0q2 is mapped to x2, which corresponds to the second
generator of R2{X.

So, we obtain the following presentation of pAx3q0 as an R module:

R2 R2{X

ˆ
1 0
0 1

˙

This morphism is clearly surjective, so its cokernel, which is isomorphic to pAx3q0, is 0.
This again concludes the fact that the module A sheafifies to 0.

We now use GAP to compute a presentation matrix of pAx3q0. We first create the Cap

category of finitely presented graded modules, as described in Chapter III.

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 121

gap> Sgrmod := GradedLeftPresentations(S);
The category of graded f.p. modules over Q[x1,x2,x3]

(with weights [1, 1, 2])

Now, to create the module, we first create its relation matrix px1, x2q over the ring S. We
then create a graded module out of this matrix by specifying the degree of the generator
of A. Since A is a quotient of Sp1q, the degree of the generator is ´1.

gap> A := HomalgMatrix("[x1, x2]", 2, 1, S);
<A 2 x 1 matrix over a graded ring>
gap> A := AsGradedLeftPresentation(A, [[-1]]);
<An object in The category of graded f.p. modules over Q[x1,x2,x3]

(with weights [1, 1, 2])>

Now we create the functor which computes the 0-th part of a graded Sx3-module. As
input we use the graded module category and a list that indicates which variables of the
polynomial ring S are localized, i.e., invertible.

gap> F := DegreeZeroPartOfLocalizationFunctor(Sgrmod, [3]);
Degree zero functor localized at [3]

Now we apply the functor to A to get an R{I-module.

gap> A0 := ApplyFunctor(F, A);
<An object in Category of left presentations of

Q[t1,t2,t3]/(t2^2-t1*t3)>

When we examine the relation matrix of the module, we see that it is (up to ordering of
the generators)1 indeed the cokernel of the presentation map pAx3q0 above, in the sense we
described the algorithm for the cokernel of a finitely presented module in Chapter III.

gap> Display(UnderlyingMatrix(A0));
0, 1,
1, 0,
t2, -t1,
-t3,-t2

modulo [t2^2-t1*t3]

1The ordering of the generators depends on the GAP session, since some of the underlying linear
programming tools use randomness.

122 V. TORIC SHEAVES

So, the relation matrix for pAx3q0 over the ring R{I :“ C rt1, t2, t3s { xt2
2 ´ t1t3y is¨̊

˚̋ 0 1
1 0
t2 ´t1

´t3 ´t2

‹̨‹‚.

We now use these algorithms to model the category of coherent sheaves over a toric
variety, since we can now decide whether a module sheafifies to 0.

Example 3.41 (V.3.2 cont.). We will now wrap up all examples from the previous
sections together and show that the module M from Example V.3.2 indeed sheafifies to 0.

We compute presentations for the affine sections of M . To compute pMxi
q0, we first

need to compute pSxi
q0. For i “ 1, 2 we have

pSx1q0 – pSx2q0 – C ry1, y2s “: R1,

since the subrings are generated by the monomials x´1
1 x2, x´2

1 x3 and x1x
´1
2 , x´2

2 x3. For
both i “ 1, 2 the module pMxi

q0 can be presented by the R1-module homomorphism

R2
1

¨̋
y1
1

‚̨
ÝÑ R1

1,

which is an epimorphism, so pMxi
q0 – 0 for i “ 1, 2.

The ring pSx3q0 is generated by the monomials x2
1x

´1
3 , x2

2x
´1
3 , x1x2x

´1
3 , and can therefore

be presented as a quotient of a polynomial ring:

pSx3q0 – C ry1, y2, y3s { @
y1y2 ´ y2

3
D “: R2.

The module pMx3q0 can be presented as the cokernel of the R2-module epimorphism

R2
2 Ñ R2

2{N,

with
N :“ xpy2, ´y3q , py3, ´y1qy .

Hence pMx3q0 “ 0.
To carry out the example in GAP, we use the ToricVarieties package together with

the ToricSheaves package. We first produce the fan of P p1, 1, 2q and create a toric variety
out of it, using the ToricVarieties package.
gap> F := Fan([[0, 1], [1, 0], [-1, -2]],
> [[1, 2], [2, 3], [1, 3]]);
<A fan in |R^2>
gap> P112 := ToricVariety(F);
<A toric variety of dimension 2>

Now P112 represents P p1, 1, 2q, and we use the Serre quotient category (cf. Chapter IV)
to model the category of coherent sheaves on P p1, 1, 2q.

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 123

gap> CohP112 := CategoryOfToricSheaves(P112);
The Serre quotient category of The category of graded f.p. modules
over Q[x_1,x_2,x_3] (with weights [2, 1, 1]) by zero sheaves

We will now compute the Cox ring of the variety.

gap> S := CoxRing(P112);
Q[x_1,x_2,x_3]
(weights: [2, 1, 1])

Note that the order of the variables have changed, since now x_1 has degree 2. As before,
we first create the relation matrix for the module M , then create a module presentation
out of it.

gap> M := HomalgMatrix("[x_2, x_3]", 2, 1, S);
<A 2 x 1 matrix over a graded ring>
gap> M := AsGradedLeftPresentation(M, [-1]);
<An object in The category of graded f.p. modules over Q[x_1,x_2,x_3]

(with weights [2, 1, 1])>

Now we sheafify the module M .

gap> SheafM := AsSerreQuotientCategoryObject(CohP112, M);
<An object in The Serre quotient category of The category of
graded f.p. modules over Q[x_1,x_2,x_3] (with weights [2, 1, 1])
by zero sheaves>

The variable SheafM now represents the sheafification of the module M . By testing whether
the object SheafM is 0, we test if the module sheafifies to 0.

gap> IsZero(SheafM);
true

As already seen, the module sheafifies to 0.
We provide another example where we compute the degree zero part of each localiza-

tions Mxpσ belonging to a maximal cone σ P Σ for a f.p. graded module M over the Cox
ring S of a toric variety XΣ.

Example 3.42. Let XΣ be isomorphic to the Hirzebruch surface H7. Its fan Σ looks
like this:

124 V. TORIC SHEAVES

p´1, 7q

Its Cox ring is S :“ C rx1, . . . , x4s, with
deg px1q “ p1, ´7q , deg px3q “ p1, 0q
deg px2q “ deg px4q “ p0, 1q ,

and the irrelevant ideal is generated by the monomials
x1x2, x1x4, x2x3, and x3x4.

We compute the sections corresponding to the affine chart of XΣ given by the maximal
cones of Σ for the sheafification of the module presented by

Sp´1, 0q ‘ Sp´1, ´1q Sp0q2.

ˆ
x1x

7
2 x3

x1x
8
4 0

˙

We first setup the module:
gap> S;
Q[x_1,x_2,x_3,x_4]
(weights: [(1, -7), (0, 1), (1, 0), (0, 1)])
gap> M := HomalgMatrix("[x_1*x_2^7, x_3, x_1*x_4^8, 0]", 2,2, S);
<A 2 x 2 matrix over a graded ring>
gap> M := AsGradedLeftPresentation(M);
<An object in The category of graded f.p. modules over Q[x_1,x_2,x_3,x_4]
(with weights [[1, -7], [0, 1], [1, 0], [0, 1]])>
gap> SMod := GradedLeftPresentations(S);
The category of graded f.p. modules over Q[x_1,x_2,x_3,x_4]
(with weights [[1, -7], [0, 1], [1, 0], [0, 1]])

Now we set up the functors mapping a module to the degree zero part of its localization.
We denote the functors with Γi,j, where i, j are the indices of the variables we are localizing.
gap> Gamma12 := DegreeZeroPartOfLocalizationFunctor(SMod, [1, 2]);
Degree zero functor localized by [1, 2]
gap> Gamma14 := DegreeZeroPartOfLocalizationFunctor(SMod, [1, 4]);
Degree zero functor localized by [1, 4]

3. DECIDING MEMBERSHIP OF THE KERNEL OF THE SHEAFIFICATION FUNCTOR 125

gap> Gamma23 := DegreeZeroPartOfLocalizationFunctor(SMod, [2, 3]);
Degree zero functor localized by [2, 3]
gap> Gamma34 := DegreeZeroPartOfLocalizationFunctor(SMod, [3, 4]);
Degree zero functor localized by [3, 4]

We apply those functors to the module M .
gap> M12 := ApplyFunctor(Gamma12, M);
<An object in Category of left presentations of Q[t1,t2]>
gap> Display(M12);
1, t1,
t2^8,0

An object in Category of left presentations of Q[t1,t2]

We see that the ring Sx1x2 is isomorphic to C rt1, t2s, i.e., the polynomial ring in two
variables, and that pMx1x2q is presented by the matrixˆ

1 t1
t8
2 0

˙
.

We compute the remaining degree zero parts:
gap> M14 := ApplyFunctor(Gamma14, M);
<An object in Category of left presentations of Q[t1,t2]>
gap> Display(M14);
t2^7,t1,
1, 0

An object in Category of left presentations of Q[t1,t2]
gap> M23 := ApplyFunctor(Gamma23, M);
<An object in Category of left presentations of Q[t1,t2]>
gap> Display(M23);
t1, 1,
t1*t2^8,0

An object in Category of left presentations of Q[t1,t2]
gap> M34 := ApplyFunctor(Gamma34, M);
<An object in Category of left presentations of Q[t1,t2]>
gap> Display(M34);
t1*t2^7,1,
t1, 0

An object in Category of left presentations of Q[t1,t2]

CHAPTER VI

Application

As an application of the categorical framework for implementing categories in Chapter
II, the graded module presentations from Chapter III, and their application when modeling
coherent sheaves over toric varieties in Chapter V using the Serre quotient categories
described in Chapter IV, we give an algorithm to compute presentations of graded modules
and coherent sheaves over toric varieties which are compatible with a special filtration
thereof: the so-called grade or purity filtration.

We first establish further categorical notions we need throughout this chapter. Then
we define the grade or purity filtration of a f.p. graded module and a coherent sheaf.
Afterwards, we give the algorithm to compute both the grade filtration and the adjusted
presentation of a f.p. graded module and a coherent sheaf. All algorithms will be stated in
a categorical manner and can be applied to both f.p. graded modules and coherent sheaves.
For the source code, see Appendix G.

1. Preliminaries

We will first give the necessary categorical notions to describe the grade filtration of
f.p. graded modules and coherent sheaves. We start by defining projective objects.

Definition 1.1 (Projective object). Let A be a category.
(1) Let A, B P ObjA. An object P P ObjA is called projective if for every morphism

ϕ : P Ñ A and every epimorphism π : B � A there exists a morphism λ : P Ñ B
such that λπ „ ϕ.

(2) A is said to have enough projectives if for every A P ObjA there is a projective
object P P ObjA and an epimorphism π : P � A.

The dual notion of projective is injective.
Definition 1.2 (Injective object). Let A be a category.
(1) Let A, B P ObjA. An object I P ObjA is called injective if for every morphism

ϕ : A Ñ I and every monomorphism ι : A ãÑ B there exists a morphism λ : B Ñ I
such that ιλ „ ϕ.

(2) A is said to have enough injectives if for every A P ObjA there is an injective
object I P ObjA and a monomorphism ι : A ãÑ I.

Definition 1.3 (Computable projective). Let A be a computable category with real-
ization R. Then A has computable enough projectives if:

127

128 VI. APPLICATION

(1) for every object A there is a projective object P and an epimorphism ϕ : P � A
such that the function

EpiFromProjective :ObjA Ñ MorA, A ÞÑ ϕ

is computable by R;
(2) for every triple of objects P, A, B P ObjA where P is projective and there are

epimorphisms ϕ : A � P and π : B � A with a lift λ : P Ñ B with λπ „ ϕ the
function

Lift :MorA ˆ MorA Ñ MorA, pϕ, πq ÞÑ λ

is computable by R.
We show that the category S-grpres of graded module presentation (cf. Chapter III),

which is equivalent to the category of f.p. graded modules -grmod has enough projectives.
Definition 1.4 (Free module). Let S be a graded ring with degree group G. An

M P ObjS-grmod is free of rank n P N if it is isomorphic to
nà

i“1
S pαiq

for some αi P G.
Proposition 1.5. A free module in the category S-grpres is projective. Therefore, the

category S-grpres has enough projectives.

Remark 1.6. In the category S-grpres a module presented by a 0 ˆ n matrix for some
n P N is free of rank n. The converse is not true: A module presented by the 1 ˆ 2 matrix
p1 0q is free of rank 1.

In fact, any projective object in S-grpres is isomorphic to exactly one object in the set�p0n, ωnq | n P N, 0n P S0ˆn, ωn P Gn
(

.

Theorem 1.7. The category S-grpres has computable enough projectives.
Proof. We give algorithms for EpiFromProjective and Lift:
(1) For any object M :“ pM 1, ωq P ObjS-grpres set

P :“ po, ωq ,

where o is the 0 ˆ n matrix over S and n :“ NumberOfGenerators pMq. Now set
ϕ :“ pM, 1n, P q ,

where 1n is the n ˆ n identity matrix. Then we can define
EpiFromProjective pMq :“ ϕ.

(2) Let A, B, P P ObjS-grpres, P projective, π :“ pB, M, Aq an epimorphism, and
ϕ :“ pP, N, Aq. We set

L :“ RightDivide pN, M, A1q ,

1. PRELIMINARIES 129

which means that there is a matrix X such that
LM ` XA1 “ N,

and define
λ :“ Lift pϕ, πq :“ pP, L, Bq .

P is projective, so PL P S0ˆgB , so B ěrow PL. Furthermore, from Proposition
III.1.9 it follows that λ is indeed a morphism.

For the universal property, consider
λπ :“ pP, LM, Aq .

We have LM ` XA1 “ N , so LM ´ N “ ´XA1, and therefore
λπ „ ϕ. �

We now define (co)homological chain complexes in a preabelian category, since we need
them to define the grade filtration.

Definition 1.8 ((Co)Complex). Let A be a preabelian category.
(1) A homological complex or chain complex or complex pC‚, Bq in A is a series

of morphisms
Bi : Ci Ñ Ci´1

for i P Z such that
ImageObject pBiq Ď KernelObject pBi´1q

for all i. We will often write it as
C‚ : ¨ ¨ ¨ B0ÐÝ C0

B1ÐÝ C1
B2ÐÝ

We denote by
Bi pC‚q :“ ImageObject pBi`1q ,

Zi pC‚q :“ KernelObject pBiq ,

Hi pC‚q :“ Zi pC‚q { Bi pC‚q .

Hi pC‚q is called the i-th homology of C‚. The complex C‚ is called exact at
homological degree i if Hi pC‚q is zero.

(2) A cohomological complex or cochain complex or cocomplex pC‚, Bq in A
is a series of morphisms

Bi : Ci Ñ Ci`1

for i P Z such that
ImageObject

`Bi
˘ Ď KernelObject

`Bi`1˘
for all i. We will often write it as

C‚ : ¨ ¨ ¨ B´2ÝÑ C´1 B´1ÝÑ C0 B0ÝÑ

130 VI. APPLICATION

We denote by
Bi pC‚q :“ ImageObject

`Bi´1˘
,

Zi pC‚q :“ KernelObject
`Bi

˘
,

Hi pC‚q :“ Zi pC‚q { Bi pC‚q .

The cocomplex C‚ is called exact at cohomological degree i if Hi pC‚q is zero.
Definition 1.9 (Chain map). Let A be a preabelian category and pC‚, Bq and pD‚, εq

chain complexes. A chain map ϕ : pC‚, Bq Ñ pD‚, εq is a collection of morphisms
ϕi : Ci Ñ Di, i P Z

such that
ϕiεi „ Biϕi´1 for all i P Z.

The chain complexes in a preabelian A with chain maps as morphisms form a category.
Definition 1.10 (Projective resolution). Let A be an abelian category and M P ObjA.
(1) A homological projective resolution of M is a chain complex

P‚ : ¨ ¨ ¨ ÐÝ 0 B0ÐÝ P0
B1ÐÝ P1

B2ÐÝ . . .

together with an augmentation map ε : P0 � M satisfying the following prop-
erties:
(a) Pi is projective for all i,
(b) P‚ is exact everywhere except at homological degree 0,
(c) M – CokernelObject pB1q via ε,
(d) ε is an epimorphism,
(e) B1ε „ 0P1,M .

(2) A cohomological projective resolution of M is a cochain complex (cocomplex)

P ‚ : ¨ ¨ ¨ ÝÑ P ´2 B´2ÝÑ P ´1 B´1ÝÑ P 0 B0ÝÑ 0 ÝÑ . . .

together with an augmentation map ε : P 0 � M satisfying the following prop-
erties:
(a) P i is projective for all i,
(b) P ‚ is exact everywhere except at cohomological degree 0,
(c) M – CokernelObject pB´1q via ε,
(d) ε is an epimorphism,
(e) B0ε „ 0P ´1,M .

We often write ε : pP ‚, Bq � M for the augmentation map.
Definition 1.11 (Injective Resolution). Let M be an object in an abelian category A.

A homological injective resolution of M is a cochain complex

I‚ : ¨ ¨ ¨ ÝÑ 0 ÝÑ I0 B0ÝÑ I1 B1ÝÑ . . .

together with an augmentation map ι : M ãÑ I0 satisfying following properties:

1. PRELIMINARIES 131

(1) I i is projective for all i,
(2) I‚ is exact everywhere except at cohomological degree 0.
(3) M – KernelObject pB0q via ι,
(4) ι is a monomorphism,
(5) ιB0 „ 0M,I1 .

Projective resolutions are computable in computable abelian categories with com-
putable enough projectives.

Definition 1.12. Let A be a computable abelian category with computable enough
projectives and M P ObjA. Let

α :“ EpiFromProjective pMq .

The chain complex defined by the morphisms

δ1 :“ PreCompose pEpiFromProjective pKernelObject pαqq , KernelEmbedding pαqq ,

δi :“ PreCompose pEpiFromProjective pKernelObject pδi´1qq , KernelEmbedding pαqq ,

δj :“ UniversalMorphismIntoZeroObject pRange pδj`1qq ,

for i ą 1 and j ă 0, together with α as augmentation map is a homological projective
resolution of M . We set the operators

ProjectiveResolutionComplex pMq :“ pP‚, Bq ,

AugmentationMap pMq :“ α.

P0 P1 P2

M K1 K2

α
κ0 π1

δ1

κ1 π2

δ2

with

κ0 :“ KernelEmbedding pαq ,

κ1 :“ KernelEmbedding pδ1q ,

πi :“ EpiFromProjective pKiq , i “ 1, 2.

Indeed, this is a projective resolution, as directly seen from the construction. By
multiplying all indices by ´1, we can define the operator

ProjectiveResolutionCocomplex .

Corollary 1.13. Let S be a G-graded ring. Then every object in the category S-grpres
admits a projective resolution.

132 VI. APPLICATION

Definition 1.14 (Ascending/Homological Filtration). Let A be an abelian category
and A P ObjA. We call A pn ` 1q-filtered if there is a chain of subobjects

0 “ A´n´1 ãÑ A´n ãÑ A´n`1 ãÑ ¨ ¨ ¨ ãÑ A0 “ A.

We define
FiA :“ Ai,

and say A is pn ` 1q-filtered by F‚A. Further, we define
gri

F A :“ Ai{Ai´1,

which we call the i-th graded part of A.
A morphism ϕ : A Ñ B of two ascendingly filtered objects A, B filtered by F‚A and

F‚B is called a filtered morphism if for every i we have
ϕ pFiAq Ď FiB.

Definition 1.15. Let pC‚, Bq a homological complex in an abelian category A. pC‚, Bq
is pn ` 1q-filtered if each object Ci admits an pn ` 1q-filtration F‚Ci such that each Bi is
filtered.

Proposition 1.16. Let pC‚, Bq be a filtered complex with filtration F‚C‚. Then there
is an induced filtration on the homology Hi pC‚q, which we will again denote by F‚Hi pC‚q
and is defined by

FnHi pC‚q :“ Hi pFnC‚q ,

together with the natural isomorphisms for the identification as subobjects.
Proof. We have

Bj pFiC‚q “ Bj pC‚q X FiCj

Zj pFiC‚q “ Zj pC‚q X FiCj,

so the embedding FiCj ãÑ Fi`1Cj gives rise to a well-defined monomorphism
Hj pFiC‚q ãÑ Hj pFi`1C‚q .

Therefore we have an induced filtration on homologies. �
Generalized morphisms (cf. Chapter IV) deliver a tool to relate homology of a complex

C‚ to the objects in C‚.
Definition 1.17. Let A be an abelian category, A, B, C P ObjA, and ι : B ãÑ A,

ϕ : C ãÑ B monomorphisms. Then the generalized morphism by spans

B{C A

B

CokernelProjection pϕq ι

is called the subfactor embedding of B{C in A. Its pseudo-inverse is called the sub-
factor projection of A onto B{C.

1. PRELIMINARIES 133

Proposition 1.18. Let A be an abelian category, pC‚, Bq, pD‚, εq chain complexes over
A, and ϕ : C‚ Ñ D‚ a chain morphism. Let furthermore

α : Hi pCq Ñ Ci,

β : Di Ñ Hi pDq
be the i-th embedding of the homology of C‚ and the i-th projection of the homology of D‚,
respectively. Then the morphism

Hi pϕq : Hi pCq Ñ Hi pDq
induced by the functoriality of H can be computed as honest representative of composition
of generalized morphisms

αϕiβ.

If ϕ is a quasi-isomorphism, Hi pϕq is an isomorphism.

Proof. Let
κC :“ KernelEmbedding pBiq ,

KC :“ KernelObject pBiq ,

κD :“ KernelEmbedding pεiq ,

KD :“ KernelObject pεiq .

Then we can compute the functoriality of the kernel by Proposition IV.3.4 via
κ :“ HonestRepresentative pκCϕi GeneralizedInverse pκDqq .

We now have κ : KC Ñ KD with κCϕi „ κκD. Now, let
HC :“ Hi pC‚q ,

HD :“ Hi pD‚q ,

πC : KC Ñ HC ,

πD : KD Ñ HD.

So we get the diagram with commuting squares

HC KC Ci Ci`1

HD KD Di Di`1

πC

πD

κ

κC

κD

Bi

εi

ϕi ϕi`1Hi pϕq

We can now fill the first column by
Hi pϕq :“ GeneralizedInverse pπCq κπD,

134 VI. APPLICATION

and get
Hi pϕq “ GeneralizedInverse pπCq κCϕi GeneralizedInverse pκDq πD,

but we have
α „ GeneralizedInverse pπCq κC ,

β „ GeneralizedInverse pκDq πD,

which concludes the proof. �

2. Bicomplexes

We now introduce bicomplexes, which are a special kind of filtered complex. After
we define bicomplexes, we will give an algorithm to associate a special bicomplex to the
projective resolution of an object A. This bicomplex is called Cartan-Eilenberg resolution.
It will introduce a filtration on the projective resolution and therefore by Proposition
VI.1.16 induce a filtration on the 0-th homology of the projective resolution, which is the
object A. This filtration will later become the grade filtration.

Definition 2.1 (Homological bicomplex). Let A be a category. A homological bi-
complex C‚‚ over A is a 2-dimensional grid Ci,j, i, j P Z of objects in A, together with
morphisms

Bh
i,j : Ci,j Ñ Ci´1,j

and
Bv

i,j : Ci,j Ñ Ci,j´1

such that
BvBv “ BhBh “ BhBv ` BvBh “ 0.

Since BhBv ` BvBh “ 0, a bicomplex is not a complex of complexes.
Throughout the whole of this thesis, bicomplexes B‚‚ are assumed finite, i.e., there is

some N P N such that for all n ě N it is
Bn,n “ B´n,n “ Bn,´n “ B´n,´n “ 0.

Definition 2.2 (Total complex). Let A be an abelian category and pC‚‚, Bq a homo-
logical bicomplex. Then the total complex Tot‘ pC‚‚q is a homological complex defined
as follows:

(1) The objects are
Tot‘ pC‚‚qn :“ à

p`q“n

Cp,q.

(2) The differentials are

Bn :“
˜ à

p`q“n

Bh
p,q

¸
`

˜ à
p`q“n

Bv
p,q

¸
.

Theorem 2.3 ([Wei94, p.141]). Let A be an abelian category and C‚‚ a homological
bicomplex. Then the following are filtrations on Tot‘ pC‚‚q:

2. BICOMPLEXES 135

(1)
IFi Tot‘ pC‚‚qn :“ à

p`q“n
pďi

Cp,q;

(2)
IIFi Tot‘ pC‚‚qn :“ à

p`q“n
qďi

Cp,q.

Definition 2.4. Let A be a category and pC‚‚, Bq a homological bicomplex. The
transposed bicomplex pCtr‚‚, γq is a homological bicomplex such that

Ctr
pq :“ Cqp,

γh
pq :“ Bv

qp,

γv
pq :“ Bh

qp.

Both C‚‚ and Ctr‚‚ have the same total complex. The first filtration IF‚ on the total
complex Tot‘ pC‚‚q of C‚‚ is the second filtration IIF‚ on the total complex Tot‘ pCtr‚‚q of
Ctr‚‚, and vice versa.

Theorem 2.5 ([Wei94, Def. 5.7.1 and Lemma 5.7.2]). Let A be an abelian category
with enough projectives and P‚ a complex over A. Then there is a homological bicomplex
pQ‚‚, Bq together with a connecting chain map ε : Q0‚ Ñ P‚ such that for every i the
following holds:

(1) If Pi is zero, the column Qi,‚ is zero;
(2) The induced maps on the boundaries and homology

Bi pεq : Bi

`
Qi,‚, Bh

˘ Ñ Bi pP q ,

Hi pεq : Hi

`
Qi,‚, Bh

˘ Ñ Hi pP q
are homological projective resolutions in A.

The bicomplex Q‚‚ is called a Cartan-Eilenberg resolution of P‚.
To give the necessary construction for the proof we need the horseshoe lemma.
Lemma 2.6 (Horseshoe lemma). Let A be an abelian category and

0 ÝÑ A1 ιAÝÑ A
πAÝÑ A2 ÝÑ 0

a short exact sequence. Let furthermore pP 1‚, B1q and pP 2‚ , B2q be projective resolutions of A1
and A2. Then there is a projective resolution pP‚, Bq of A such that there is a short exact
sequences of complexes

0 Ñ P 1
‚

αÝÑ P‚
βÝÑ P 2

‚ Ñ 0

with Pi – P 1
i ‘ P 2

i .

136 VI. APPLICATION

Proof. Since P 1‚ and P 2‚ are projective resolutions of A1 and A2, respectively, there
are epimorphisms

ε1 : P 1
0 � A1,

ε2 : P 2
0 � A2.

Since πA is epi and P 2
0 is projective, we can define

λ2 :“ Lift pε2, ιAq ,

so we have λ2 : P 2
0 Ñ A. Together with

λ1 :“ PreCompose pε1, ιAq
we can define

ε :“ UniversalMorphismFromDirectSum pλ1, λ2q .

By setting P0 :“ P 1
0 ‘ P 2

0 we get an epimorphism
ε : P0 Ñ A.

We set
α0 :“ InjectionOfCofactorOfDirectSum ppP 1

0, P 2
0 q , 1q ,

β0 :“ ProjectionInFactorOfDirectSum ppP 1
0, P 2

0 q , 2q ,

and therefore have
α0ε „ ε1ιA,

β0ε
2 „ επA.

The sequence
0 Ñ P 1

0
α0ÝÑ P0

β0ÝÑ P 2
0 Ñ 0

is exact, and therefore, with
K0 :“ KernelObject pεq ,

K 1
0 :“ KernelObject pε1q ,

K2
0 :“ KernelObject pε2q ,

we get another exact sequence
0 Ñ K 1

0 Ñ K0 Ñ K2
0 Ñ 0.

Now we can iterate the construction above to get pP‚, Bq, α, and β. �

For the implementation, see Appendix G.8.

Proof of Theorem VI.2.5. For each object Pi in P‚, take the induced short exact
sequence

0 Ñ Bi pP q Ñ Zi pP q Ñ Hi pP q Ñ 0

3. INTERNAL HOM AND EXT 137

and compute projective resolutions P B
i,‚ and P H

i,‚ of Bi pP q and Hi pP q. Using the Horseshoe
lemma VI.2.6 construct a compatible projective resolution P Z

i,‚, which leads to a short exact
sequence of complexes

0 Ñ P B
i,‚ Ñ P Z

i,‚ Ñ P H
i,‚ Ñ 0.

Using the computed resolutions P Z
i,‚ and P B

i´1,‚, we can apply the Horseshoe lemma again
to the short exact sequence

0 Ñ Zi pP q Ñ Pi Ñ Bi´1 pP q Ñ 0,

and get a compatible resolution Pi,‚ for Pi, together with a short exact sequence of com-
plexes

0 Ñ P Z
i,‚ Ñ Pi,‚ Ñ P B

i´1,‚ Ñ 0.

For the Cartan-Eilenberg resolution Q‚‚ the Pij are the objects and the vertical differentials
are the differentials from the Pi,‚, multiplied with p´1qi. The horizontal differentials are
constructed by the induced mappings

Pi`1,‚ Ñ P B
i,‚ Ñ P Z

i,‚ Ñ Pi,‚.

A proof that this construction fulfills the desired properties can be found in [Wei94,
Lemma 5.7.2]. �

We will denote the Cartan-Eilenberg resolution Q‚‚ of a complex P‚ constructed in
the above proof by CE‚‚ pP‚q. The construction of the Cartan-Eilenberg resolution given
above is for a homological bicomplex. In this case, the Cartan-Eilenberg resolution is a
bicomplex in which the only non-zero objects lie in the upper half-plane, i.e., all objects
below the p-axis are zero. In the cohomological case, the Cartan-Eilenberg resolution lives
in the lower half-plane, meaning that all objects above the p-axis are zero.

The code for the Cap implementation of the construction of the Cartan-Eilenberg
resolution can be found in Appendix G.9.

One can recover the homologies of the initial complex from the Cartan-Eilenberg reso-
lution.

Theorem 2.7 ([Wei94, Thm. 5.7.2]). Let P‚ be a chain complex. Then the total
complex Tot‘ pCE‚‚ pP‚qq of the Cartan-Eilenberg resolution of P‚ is quasi-isomorphic to
P‚ via the connecting chain map ε.

3. Internal Hom and Ext

To compute the bicomplex which will later define the grade filtration of an object, we
need the internal Hom and Ext functors. We will define those two functors only for graded
modules and for coherent sheaves.

Definition 3.1 (Additive Functor). Let A and B be preadditive categories. A functor
F : A Ñ B is called additive if it induces homomorphisms of abelian groups

FM,N : HomA pM, Nq Ñ HomB pF pMq , F pNqq .

138 VI. APPLICATION

Definition 3.2 (Right derived functor). Let A be an abelian category with enough
injectives, B another category, and F : A Ñ B a left-exact additive functor. Furthermore,
let A P ObjA and I‚ an injective resolution of A. The i-th right derived functor RiF
of F is defined on objects by

RiF pAq :“ Hi pF pI‚qq .

Definition 3.3 (Right derived contravariant functor). Let A be an abelian category
with enough projectives, B another abelian category, and F : Aop Ñ B a left-exact additive
functor. Furthermore, let A P ObjA and P‚ a projective resolution of A. The i-th right
derived functor RiF of F is defined on objects by

RiF pAq :“ Hi pF pP‚qq .

Derived functors are independent of the chosen resolution.
Definition 3.4. Let A be an additive category, Ab the category of abelian groups,

A, B, C, D P ObjA, ϕ : A Ñ B, and ψ : C Ñ D. The functor
Hom : Aop ˆ A Ñ Ab

defined by
Hom0 ppAop, Bqq :“ HomA pA, Bq
Hom1 ppϕop, ψqq :“ pHomA pB, Cq Ñ HomA pA, Dq , α ÞÑ ϕαψq

is called the Hom-Functor of A. We write
Hom pA, Bq :“ Hom0 ppAop, Bqq

and
Hom pϕ, ψq :“ Hom1 ppϕop, ψqq .

Definition 3.5. Let S be a G-graded ring and M P S-grmod. Then the functor
Hom p´, Mq : S-grmodop Ñ Ab

is left exact and additive, and we call its right derived functor the Ext-Functor of S-grmod
and M , and denote it by

Extc p´, Mq :“ Rc Hom p´, Mq .

Definition 3.6. Let S be a G-graded ring. The internal Hom-Functor

Hom : S-grmodop ˆ S-grmod Ñ S-grmod
in S-grmod is defined on objects as in Definition III.1.3, and on morphisms via

Hom1 ppϕop, ψqq :“ pHom pB, Cq Ñ Hom pA, Dq , α ÞÑ ϕαψq ,

with ϕ : A Ñ B and ψ : C Ñ D in MorS-grmod.
For an object A P ObjA and a morphism ϕ P MorA we define

Hom pϕ, Aq :“ Hom pϕ, idAq

4. GRADE FILTRATION 139

and
Hom pA, ϕq :“ Hom pidA, ϕq .

Definition 3.7. Let S be a G-graded ring and M P S-grmod. Then the functor
Hom p´, Mq : S-grmodop Ñ S-grmod

is left exact and additive, and we call its right derived functor the internal Ext-Functor
of S-grmod and M , and denote it by

Extc p´, Mq :“ Rc Hom p´, Mq .

Definition 3.8. Let n, m P N, S be a computable G-graded ring, 0n P S0ˆn, ωn P Gn,
S1 :“ p01, p0qq P ObjS-grpres, and P0 :“ p0n, ωnq P ObjS-grpres. We define

Hom
`
P0, S1˘

:“ p0n, ´ωnq ,

so this particular internal Hom is computable. Let furthermore m P N and P1 :“ p0m, ωmq P
ObjS-grpres, A P Snˆm, and ϕ :“ pP0, A, P1q P MorS-grpres. We define

Hom
`
ϕ, S1˘

:“ `
Hom

`
P1, S1˘

, Atr, Hom
`
P0, S1˘˘

so this particular internal Hom is computable.
Indeed, those internal Homs coincide with the internal Homs defined in Definition

VI.3.6.
Definition 3.9 (Internal Hom on sheaves). Let XΣ be a normal toric variety. Then

we define the internal Hom for two sheaves F, G in qCoh pXΣq as the sheaf
Hom pF, Gq : U ÞÑ HomOXΣ pUq pF pUq , G pUqq ,

so the internal Hom is again a quasi-coherent sheaf of OXΣ-modules.
Definition 3.10 (Internal Ext on sheaves). Let XΣ be a normal toric variety, and

M P ObjqCohpXΣq. Then the covariant internal Hom functor
Hom pM, ´q : qCoh pXΣq Ñ qCoh pXΣq

is left-exact and additive, and we call its right derived functor the internal Ext-Functor
of qCoh pXΣq and M , and notate it by

Extc pM, ´q :“ Rc Hom pM, ´q .

4. Grade filtration

We now introduce the grade filtration for a graded module M over a G-graded ring
S. We will first define the grade of a module, then define the grade filtration. Afterwards,
we give a (purely categorical) algorithms to compute a presentation for M adjusted to the
filtration, and compute it for examples.

Definition 4.1 (Codimension of a module). Let S be a G-graded ring and 0 ‰ M P
ObjS-grpres. The codimension or grade of M is

min tc ě 0 | Extc pM, Sq ‰ 0u .

140 VI. APPLICATION

Definition 4.2 (Grade filtration). Let S be a G-graded polynomial ring and M P
ObjS-grpres. The filtration t‚ : t´n´1M ď t´nM ď ¨ ¨ ¨ ď t0M “ M is called grade
filtration or purity filtration if t´iM is the maximal submodule of M of grade greater
or equal to i.

Remark 4.3. In this setting the graded parts t´iM{t´i´1M are pure of grade i, which
means that each nontrivial submodule of t´iM{t´i´1M has grade i.

Definition 4.4 (Dual). Let S be a computable G-graded ring.
(1) The dual M_ of an object M P ObjS-grpres is Hom pM, S1q.
(2) The dual ϕ_ of a morphism ϕ P MorS-grpres is Hom pϕ, S1q.

Remark 4.5. For every object M P ObjS-grpres there is a canonical morphism
M Ñ pM_q_ .

Proposition 4.6. Let S be a computable G-graded ring. Then the functions
DualOnObjects : ObjS-grpres Ñ ObjS-grpres, M ÞÑ M_,

DualOnMorphisms : MorS-grpres Ñ MorS-grpres, ϕ ÞÑ ϕ_,

MorphismIntoBidual : ObjS-grpres Ñ MorS-grpres, M ÞÑ pM ÞÑ pM_q_q
are computable in S-grpres.

Proof. Let U :“ p01, p0qq with 01 P S0ˆ1. By using EpiFromProjective and Kernel-
Embedding, for every M P ObjS-grpres we can construct a morphism of free objects F0, F1

α : F1 Ñ F0

such that M – CokernelObject pαq, where the isomorphism can be computed using the
cokernel colift. Since Hom p´, Uq is contravariant and left exact, therefore, it suffices to
compute duals of free objects, since

KernelObject pHom pα, Uqq – Hom pM, Uq .

This was already done in Proposition VI.3.8, therefore both DualOnObjects and DualOn-
Morphisms are computable in S-grpres.

We now construct the morphism into the bidual. Let now F :“ p0n, ωnq P ObjS-grpres a
free object, with n P N, 0n P S0ˆn, and ω P Gn. Then we can set

pF _q_ :“ F,

and
MorphismIntoBidual pF q :“ IdentityMorphism pF q .

Then, for an arbitrary object M as above,
MorphismIntoBidual pMq

can be computed by the morphism α above and the functoriality of Hom. �
We will also define notions for a dual complex and a dual bicomplex.

4. GRADE FILTRATION 141

Definition 4.7. Let S be a computable G-graded ring and pC‚, Bq a chain complex in
S-grpres. Then the dual ppC_q‚ , B_q is a cochain complex such that

pC_qi :“ pCiq_ ,

pB_qi :“ pBi´1q_ .

Dualizing preserves the indices of the objects, and therefore shifts the indices of the
differentials.

Definition 4.8. Let S be a computable G-graded ring and pC‚‚, Bq a homological
bicomplex in S-grpres. Then the dual ppC_q‚‚ , B_q is a cohomological bicomplex such
that

pC_qi,j :“ pCi,jq_ ,

pB_qi,j :“ pBi´1,j´1q_

for both horizontal and vertical differentials.
Definition 4.9 (Bidualizing resolution). Let S be a G-graded ring, and M P ObjS-grpres.

We define the bidualizing resolution of M as the homological bicomplex
BidualizingBicomplex‚‚ pMq :“ pCE‚‚ pProjectiveResolutionComplex pMq_qq_

,

i.e., the dual of the Cartan-Eilenberg resolution of the dual of the projective resolution of
M .

Theorem 4.10 ([Bar09b, p.32]). Let S be a G-graded ring, M P ObjS-grpres, and
Q‚‚ :“ BidualizingBicomplex‚‚ pMq .

Then the following holds:
(1) Tot‘ pQ‚‚q is exact everywhere except at homological degree 0.
(2) There exists a natural isomorphism

H0
`
Tot‘ pQ‚‚q˘ – M.

(3) The induced filtration of IIF Tot‘ pQ‚‚q on M is the grade filtration of M .
Theorem 4.11. Let S be a computable G-graded ring and M P ObjS-grmod. Then the

isomorphism
H0

`
Tot‘ pBidualizingBicomplex‚‚ pMqq˘ – M

is computable.

Proof. Let Q‚‚ :“ BidualizingBicomplex‚‚ pMq and C‚‚ :“ CE‚‚ pM_q. Furthermore,
let P‚ :“ ProjectiveResolutionComplex pMq, and α :“ AugmentationMap pMq. Then we
have

M “ H0 pP q .

For an object in S-grpres the canonical morphism to the bidual is computable and is an
isomorphism for free objects, so the isomorphism γ : P0 Ñ pP _

0 q_ is computable. Using

142 VI. APPLICATION

this isomorphism and a cokernel colift we get an isomorphism

δ : H0 ppP _q_q Ñ M.

The Cartan-Eilenberg resolution comes with an augmentation C‚‚ Ñ P _, which induces a
quasi-isomorphism

ϕ : Tot‘ pC‚‚q Ñ P _.

Taking its dual we get a quasi-isomorphism

ψ :“ ϕ_ : pP _q_ Ñ Tot‘ pQ‚‚q ,

since duals of quasi-isomorphisms between complexes consisting of free objects are quasi-
isomorphisms. So we get an isomorphism

χ : H0
`
Tot‘ pQ‚‚q˘ Ñ H0 ppP _q_q

by applying Proposition VI.1.18. Composing χ and δ we get the desired isomorphism. �

An implementation of this isomorphism can be found in Appendices G.16 - G.22.

5. Spectral sequences

We now define spectral sequences and use them to compute the graded parts of the
grade filtration of a module over a G-graded ring S. Spectral sequences can be associated
to a filtered complex F‚C‚ or a bicomplex C‚‚ (as a special case of a filtered complex) and
can then be used to compute the graded parts of the induced filtration F‚H‚ pCq on the
homologies of the filtered complex.

Definition 5.1 (Homological spectral sequence). Let A be an abelian category. A
homological spectral sequence Ep,q starting at page a consists of the following data:

(1) A family of objects Er
p,q for all p, q P Z, r P Zěa;

(2) Morphisms
dr

p,q : Er
p,q Ñ Er

p´r,q`r´1

such that drdr “ 0.
(3) Isomorphisms

εr
p,q : Hp,q pEr

‚‚q „ÝÑ Er`1
p,q

between the homology of Er‚‚ at Er
p,q and Er`1

p,q .
Each object Er

p,q is by definition a certain subfactor of the corresponding object on the
previous pages Es

p,q, s ď r.
Example 5.2. One can visualize the pages 0, 1, and 2 as follows:

5. SPECTRAL SEQUENCES 143

E0
0,2 E0

1,2 E0
2,2

E0
0,1 E0

1,1 E0
2,1

E0
0,0 E0

1,0 E0
2,0

E1
0,2 E1

1,2 E1
2,2

E1
0,1 E1

1,1 E1
2,1

E1
0,0 E1

1,0 E1
2,0

E2
0,2 E2

1,2 E2
2,2

E2
0,1 E2

1,1 E2
2,1

E2
0,0 E2

1,0 E2
2,0

Definition 5.3 (Boundness and convergence). Let A be an abelian category. A ho-
mological spectral sequence Ep,q is bounded if for each n there are only finitely many
non-zero Ea

p,q with p ` q “ n. In this case for each p, q there is an r0 ě 0 such that for all
r ě r0 it is

Er
p,q – Er`1

p,q

via the isomorphisms εr
p,q, since all in- and outgoing morphisms of Er

p,q start or end at zero
objects. We write E8

p,q for this stable value.
We say that the spectral sequence converges to H‚ if there is a family of objects Hn

with an ascending filtration
0 “ FsHn Ď ¨ ¨ ¨ Ď FtHn “ Hn

and isomorphisms
E8

p,q – FpHp`q{Fp´1Hp`q.

We write
Ea

p,q ñ Hp`q.

We can use the notion of subfactor embeddings from Definition VI.1.17 to define the
spectral sequence of a filtered complex.

Theorem 5.4. Let A be an abelian category and C‚ a filtered complex with filtration
F‚. The filtered complex C‚ determines a spectral sequence E pF‚C‚q as follows:

(1) For the 0-th page, we set
E0 pF‚C‚qp,q :“ FpCp`q{Fp´1Cp`q.

(2) We recursively define dr
p,q to be a honest representative of the composition of gen-

eralized morphisms

(:) Er pF‚C‚qp,q ãÑ Cp`q
Bp`qÑ Cp`q´1 � Er pF‚C‚qp´r,q`r´1 .

The proof that all morphisms (:) are honest and this object is indeed a spectral sequence
can be found in [Bar09a, Section 1.6].

Corollary 5.5. Let A be a computable abelian category, and C‚ a filtered complex.
Then the generalized embeddings

Er pF‚C‚qp,q ãÑ Cp`q

144 VI. APPLICATION

are computable for all p, q, r.
The fact that the generalized embeddings Er pF‚C‚qp,q ãÑ Cp`q are computable follows

from the definition of E pF‚C‚q in Theorem VI.5.4. Beside the obvious recursive algorithm,
there is a non-recursive algorithm to compute the morphisms Er pF‚C‚qp,q ãÑ Cp`q which
can be found in [Pos17, Subsection II.2.4].

If the filtration F‚C‚ of C‚ is finite, the spectral sequence E pC‚q converges.
Theorem 5.6 ([Wei94, p.135]). Let A be an abelian category and C‚ an pn ` 1q-

filtered complex with filtration F‚C‚. Then the induced spectral sequence converges to the
induced filtration of the homology of C‚ (cf. Prop. VI.1.16), i.e.

Er pF‚C‚qp,q ñ Hp`q pC‚q .

The spectral sequence of a bicomplex can be defined using the total complex and an
induced filtration.

Definition 5.7. Let A be an abelian category and C‚‚ a homological bicomplex. Then
we define

IE pC‚‚q :“ E
`

IF Tot‘ pC‚‚q˘
IIE pC‚‚q :“ E

`
IIF Tot‘ pC‚‚q˘ “ E

`
IF Tot‘ `

Ctr
‚‚

˘˘
the first and second spectral sequence of C‚‚, respectively.

In fact, for all p, q we have
IE0 pC‚‚qp,q – Cp,q

and
IIE0 pC‚‚qp,q – Ctr

p,q.

For a computable abelian category, the algorithm in [Pos17, Subsection II.2.4] computes
for given C‚‚ and p, q, r the generalized embedding

IEr pC‚‚qp,q ãÑ Cp,q.

Definition 5.8 (Bidualizing spectral sequence). Let S be a G-graded ring, M P
ObjS-grpres, and P :“ ProjectiveResolutionComplex pMq. The bidualizing spectral se-
quence

BidualizingSS pMq
is the spectral sequence

IIE pBidualizingBicomplex‚‚ pMqq :“ E
`

IIF Tot‘ `
Hom

`
CE‚‚

`
Hom

`
P, S1˘˘

, S1˘˘˘
.

This spectral sequence converges to the grade filtration of M .
Theorem 5.9 ([Bar09a, Thm. 9.1.3]). Let S be a G-graded ring, M P ObjS-grpres,

and E :“ BidualizingSS pMq the bidualizing spectral sequence of M . Then we have

E2
pq “ Ext´p pExtq pM, Sq , Sq ,

6. FILTERED PRESENTATION 145

and

Er
pq ñ

"
M, p ` q “ 0,
0, otherwise,

where the filtration of M is the grade filtration.
An implementation for computing the generalized embedding of Er´p,p into M can be

found in Appendix G.21, using algorithm [Pos17, Subsection II.2.4].

6. Filtered presentation

In the last section we saw how we can compute presentations for the graded parts of
the grade filtration of a f.p. graded module M , together with their generalized embeddings
in M . We will now use these generalized embeddings to compute a presentation for M
which honors the filtration, the so-called filtered presentation. We first define the filtered
presentation of a filtered module.

Theorem 6.1. Let S be a G-graded ring and M P ObjS-grpres an pn ` 1q-filtered graded
module presentation with filtration F‚M such that each graded part gri M has the presen-
tation

gri M “ pM 1
i , ωiq .

Then there exists an object

MF :“ pM 1
F , pω0, . . . , ω´nqq

such that M – MF and the relation matrix M 1
F is in upper triangular form with matrices

M 1
0, . . . , M 1́

n as diagonal blocks.
We call such a presentation MF a filtered presentation.

Proof. For the construction of the matrix M 1
F and the isomorphism M

„Ñ MF , we
use a recursive algorithm. We will assume that the presentation of a submodule Fi´1M is
already of the desired form, and use the projection

FiM � gri M

and the injection
Fi´1M ãÑ FiM

to construct an isomorphism from a module MFi
with a filtered presentation to FiM .

We set
Mi :“ gri M,

and
πi : FiM Ñ gri M.

Furthermore, let
ιi : Fi´1M Ñ FiM

146 VI. APPLICATION

and suppose Fi´1M is already presented by an upper triangular matrix of the desired form.
To compute a filtered presentation for FiM , we compute

ν :“ EpiFromProjective pMiq ,

μi :“ KernelEmbedding pνq ,

η0 :“ Lift pν, πiq ,

η :“ LiftAlongMonomorphism pPreCompose pμi, η0q , ιiq ,

and get the following commutative diagram with exact rows:

0 Mi P K 0

0 Mi FiM Fi´1M 0

ν μi

πi ιi

η0 η

Since P is a free object, and ν is given by the identity matrix, we can assume that μi is
represented by the relation matrix of Mi. Now consider the short exact sequence

0 K P ‘ Fi´1M FiM 0.
pμi ηq

ˆ ´η0
ιi

˙

The cokernel object of the first map pμi ηq computed by the algorithms for S-grpres is
presented by ˆ

Mi A
0 Fi´1M

1

˙
,

where A represents the morphism η :“ pK, A, Fi´1Mq and Fi´1M
1 is the relation matrix

of Fi´1M . Since the sequence is exact, we can compute an isomorphism from the object
represented by the above matrix to the old presentation of FiM via CokernelColift. The
claim follows. �

To put all steps together and define a filtered presentation for the grade filtration, we
need the combined image of a generalized morphism, which we now define.

Definition 6.2. Let A be a abelian category and ϕ : A Ñ B in MorGSpAq. We define

CombinedImageGSpAq pϕq :“ ImageObjectA pArrow pϕqq ,

CombinedImageEmbeddingGSpAq pϕq :“ ImageEmbeddingA pArrow pϕqq
the combined image and combined image embedding of ϕ.

If A is a computable abelian category, both CombinedImage and CombinedImageEm-
bedding are computable.

6. FILTERED PRESENTATION 147

Proposition 6.3. Let A be a computable abelian category, M P ObjA, M2 ď M 1 ď M
subobjects, and ι : M 1{M2 � M the subfactor embedding of M 1{M2 into M . Then

CombinedImage pϕq “ M 1.

Proof. By definition, we have ϕ : M 1{M2 � M 1 ãÑ M , so the claim follows. �
Now, to summarize all previous parts of this chapter, we give an algorithm to compute

the filtered presentation for the grade filtration of a graded module M P ObjS-grpres for a
computable G-graded ring S.

Algorithm 6.4. Let M P ObjS-grpres, and E :“ BidualizingSS pMq. Let furthermore
Q‚‚ :“ BidualizingBicomplex‚‚ pMqtr. Now a filtered presentation of M adjusted to the
grade filtration t‚M can be computed as follows:

(1) Compute the boundaries of Q‚‚, i.e., find r P N such that Qi,j “ 0 for all i ď ´r,
j ě r. This r works as bound for computing the total complex. We also have
E8 “ Er.

(2) Compute Tot‘ pQ‚‚q, using r as bounds for the direct sums.
(3) Compute the isomorphism ϕ : M Ñ H0

`
Tot‘ pQ‚‚q˘

as in Theorem VI.4.11.
(4) For q “ 0, . . . , r compute the generalized embedding

ιq : Er
´q,q ãÑ Tot‘

0 pQ‚‚q
via the algorithm in [Pos17, Algorithm II.4.2].

(5) If Er´q,q is not 0 compute the generalized embedding
αq : Er

´q,q ãÑ M,

as composition of ιq, the cokernel projection
π : Tot‘

0 pQ‚‚q Ñ H0 Tot‘ pQ‚‚q
and the isomorphism ϕ. We get a morphism

Er
´q,q

αãÑ Tot‘
0 pQ‚‚q πÑ H0 Tot‘ pQ‚‚q ϕÑ M.

(6) Compute
βq :“ CombinedImageEmbedding pαqq .

We now have βq : t´qM ãÑ M .
(7) Compute

γ1
q :“ PreCompose pβq, PseudoInverse pαqqq .

and set
γq :“ HonestRepresentative

`
γ1

q

˘
.

This map is now the epimorphism
γq : t´qM Ñ t´qM{t´q´1M.

(8) Use the algorithm for the filtered presentation VI.6.1 to construct the filtered
presentation of M for the grade filtration.

An implementation for the entire algorithm can be found in Appendix G.22.

148 VI. APPLICATION

Example 6.5. Using the Algorithm VI.6.4, we can compute the filtered presentation
for the grade filtration of a module M , presented by the matrix¨̊

˚̊̊̊
˝

´x2z ` xyz ` xz2 y2z ´xz ` yz x ´ y ¨ ¨
´x3 ` x2y ` x2z xy2 ´x2 ` xy ¨ x ´ y ´xy

¨ ¨ ¨ xy ´yz ¨
¨ ¨ ¨ x2 ´xz ¨
¨ ¨ ¨ xz ´z2 ¨
¨ ¨ ¨ ¨ ¨ z

‹̨‹‹‹‹‚P Q rx, y, zs .

We first set up the ring, the module, and the necessary categories for the computation.
gap> LoadPackage("ModulePresentationsForCAP");
gap> LoadPackage("HomologicalAlgebraForCAP");
gap> SwitchGeneralizedMorphismStandard("span");
gap>
gap> Q := HomalgFieldOfRationalsInSingular();
Q
gap> S := GradedRing(Q * "x,y,z");;
gap> WeightsOfIndeterminates(S);
[1, 1, 1]
gap>
gap> mat := HomalgMatrix("[\
> -x^2*z+x*y*z+x*z^2,y^2*z,-x*z+y*z,x-y,0, 0, \
> -x^3+x^2*y+x^2*z, x*y^2,-x^2+x*y,0, x-y, -x*y,\
> 0, 0, 0, x*y,-y*z,0, \
> 0, 0, 0, x^2,-x*z,0, \
> 0, 0, 0, x*z,-z^2,0, \
> 0, 0, 0, 0, 0, z \
>]", 6, 6, S);
<A 6 x 6 matrix over a graded ring>
gap> S0 := GradedFreeLeftPresentation(1, S);
<An object in The category of graded f.p. modules over Q[x,y, z]

(with weights [1, 1, 1])>
gap> SetIsAdditiveCategory(CocomplexCategory(CapCategory(S0)), true);
gap> SetIsAdditiveCategory(ComplexCategory(CapCategory(S0)), true);
gap> M := AsGradedLeftPresentation(mat, [0, 0, 1, 2, 2, 1]);
<An object in The category of graded f.p. modules over Q[x,y,z]

(with weights [1, 1, 1])>

We now compute a free resolution res of the module M , and compute its dual homres.
gap> res1 := FreeResolutionComplex(M);
[<An object in Complex category of The category of graded f.p.

modules over Q[x,y,z] (with weights [1, 1, 1])>,
<A morphism in The category of graded f.p. modules over Q[x,y,z]

6. FILTERED PRESENTATION 149

(with weights [1, 1, 1])>]
gap> res := res1[1];
<An object in Complex category of The category of graded f.p.

modules over Q[x,y,z] (with weights [1, 1, 1])>
gap> homres := DualOnComplex(res);
<An object in Cocomplex category of The category of graded f.p.

modules over Q[x,y,z] (with weights [1, 1, 1])>

We now compute the Cartan-Eilenberg resolution CE of homres, and then compute the
dual of CE, homCE.
gap> CE := CartanEilenbergResolution(homres, FreeResolutionCocomplex);
<An object in Cocomplex category of Cocomplex category of The

category of graded f.p. modules over Q[x,y,z]
(with weights [1, 1, 1])>

gap> homCE := DualOnCocomplexCocomplex(CE);
<An object in Complex category of Complex category of The category

of graded f.p. modules over Q[x,y,z] (with weights [1, 1, 1])>

Since we want to work with the second filtration of homCE, we compute the transposed of
homCE, which we denote by trhomCE.
gap> trhomCE := TransposeComplexOfComplex(homCE);
<An object in Complex category of Complex category of The category

of graded f.p. modules over Q[x,y,z] (with weights [1, 1, 1])>

We can now compute the filtered presentation of the module M .
gap> filtration := PurityFiltrationBySpectralSequence(trhomCE, 4,
> homCE, homres, res1[2]);
<A morphism in The category of graded f.p. modules over Q[x,y,z]

(with weights [1, 1, 1])>

We can now check that the computed morphism from the filtered presentation of M to the
original one is indeed an isomorphism, and look at both the filtered presentation and the
matrix presenting the isomorphism.
gap> IsIsomorphism(filtration);
true
gap> Display(Source(filtration));
x, -z, 0, 0, 0, 0, 1,
-y,z, y^2*z,-y*z^2,-x*z+y*z,0, -1,
0, x-y,x*y^2,-x*y*z,-x^2+x*y,x*y,0,
0, 0, 0, 0, 0, z, 0,
0, 0, 0, 0, 0, 0, z,
0, 0, 0, 0, 0, 0, y,

150 VI. APPLICATION

0, 0, 0, 0, 0, 0, x
(over a graded ring)
gap> Display(filtration);
0, 0, 0, -1,0, 0,
0, 0, 0, 0, -1,0,
0, -1,0, 0, 0, 0,
1, 0, 0, 0, 0, 0,
-x+z,0, -1,0, 0, 0,
0, 0, 0, 0, 0, 1,
0, 0, 0, x, -z,0
(over a graded ring)

We get the following blocks in the resulting matrix:¨̊
˚̊̊̊
˚̋̊̊

x ´z ¨ ¨ ¨ ¨ 1
´y z y2z ´yz2 ´xz ` yz ¨ ´1

¨ x ´ y xy2 ´xyz ´x2 ` xy xy ¨
¨ ¨ ¨ ¨ ¨ z ¨
¨ ¨ ¨ ¨ ¨ ¨ z
¨ ¨ ¨ ¨ ¨ ¨ y
¨ ¨ ¨ ¨ ¨ ¨ x

‹̨‹‹‹‹‹‹‹‚
The isomorphism from the filtered presentation of the module M to its original represen-
tation is given by the matrix¨̊

˚̊̊̊
˚̋̊

¨ ¨ ¨ ´1 ¨ ¨
¨ ¨ ¨ ¨ ´1 ¨
¨ ´1 ¨ ¨ ¨ ¨
1 ¨ ¨ ¨ ¨ ¨

´x ` z ¨ ´1 ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ 1
¨ ¨ ¨ x ´z ¨

‹̨‹‹‹‹‹‹‚
.

In Figure VI.1 we visualize the relevant part of the zeroth to fourth page of the spectral
sequence with binary matrices. The columns range from ´3 to 0 from left to right and
rows range from 0 to 3 from the bottom to the top. This means, e.g., E´3,2 is displayed at
position p1, 2q of the matrices. If an entry is ., it means that the object is already zero. A *
means that the object at that position is not zero. We see that on the third page the entry
E3´3,2 is not zero, and therefore the entry E3

0,0 is not the limit E8
0,0. So the computation of

the grade filtration on page 3 would not have been possible, but we indeed had to compute
it using the entries on page 4.

7. Coherent sheaves

We want to apply Algorithm VI.6.4 to construct a presentation induced by the grade
filtration of coherent sheaves over the Cox ring S of a toric variety XΣ realized as an object

7. COHERENT SHEAVES 151

gap> DisplaySpectralSequencePage(trhomCE, 0, [-3 .. 0], [0 .. 3]);
* * * *
* * * *
* * * *
. * * *

gap> DisplaySpectralSequencePage(trhomCE, 1, [-3 .. 0], [0 .. 3]);
* * * *
* * * *
* * * *
. . * *

gap> DisplaySpectralSequencePage(trhomCE, 2, [-3 .. 0], [0 .. 3]);
* . . .
* . . .
* * * .
. . * *

gap> DisplaySpectralSequencePage(trhomCE, 3, [-3 .. 0], [0 .. 3]);
* . . .
* . . .
. . * .
. . . *

gap> DisplaySpectralSequencePage(trhomCE, 4, [-3 .. 0], [0 .. 3]);
* . . .
. . . .
. . * .
. . . *

Figure VI.1. Spectral sequence of the graded module M , see VI.6.5.

in the Serre quotient of the f.p. graded module category over S. From now on, we will
always work over a toric variety XΣ with no torus factors and Cox ring S. We identify the
Serre quotient pA :“ S-grpresq { `

C :“ S-grpres0˘
with Coh pXΣq and denote by

Sh : S-grpres Ñ Coh pXΣq

the sheafification functor. We take GC pAq to be GS
C pAq.

Notation. By identifying Coh pXΣq with the Serre quotient S-grpres{S-grpres0 which
is modeled by GS

C pAq, a morphism in Coh pXΣq has an arrow and a reversed arrow. Fur-
thermore, if we talk about an honest morphism, it is the image of a morphism in S-grpres
under the functor Sh. The honest representative of a morphism ϕ P MorCohpXΣq will be a
morphism in S-grpres.

152 VI. APPLICATION

We first give a proper alternative for projective objects and projective resolutions, since
Coh pXΣq does not have enough projectives in general.

Definition 7.1 (Locally free objects). An object F P ObjCohpXΣq is called locally free
if there exists some index set I and for every x P XΣ there is an open subset x P U Ď XΣ
such that

F |U – à
iPI

OX |U .

Corollary 7.2. The sheafification of a free module is locally free.

Proof. The sheafification respects the direct sum, and the localization is blind to
twists. The claim follows. �

Proposition 7.3 (Homological locally free resolution). Let F P ObjCohpXΣq with F “
Sh pMq. Then the homological locally free resolution of F can be computed as

Sh
`
ProjectiveResolutionComplexS-grpres pMq˘

.

The dual is true for the cohomological locally free resolution.
Since all of the morphisms in such a homological locally free resolution are represented

by honest generalized morphisms, i.e., come from morphisms in S-grpres, we can also
compute a Cartan-Eilenberg resolution of this locally free resolution. We are going to
define a locally free lift along honest morphisms, which replaces the projective lift used in
the horseshoe lemma.

Definition 7.4. Let α1 : A Ñ C and β1 : B Ñ C P MorCohpXΣq be honest and α, β P
MorS-grpres their honest representatives, such that Lift pα, βq exists. Then we define

LiftCohpXΣq pα1, β1q :“ Sh pLiftS-grpres pα, βqq .

Proposition 7.5. Using the lift of sheaf morphisms defined in Definition VI.7.4 we
are able to compute the Cartan-Eilenberg resolution of a complex of sheaves, using locally
free resolutions.

Proof. The computed resolutions in the horseshoe lemma only contain honest mor-
phisms: All morphisms in the locally free resolution are honest, the injection and projec-
tions of and to factors of direct sums are honest, compositions of honest morphisms are
honest, and the lifts are honest. So all involved morphisms are honest. �

Remark 7.6 (Existence of lifts). When using locally free objects due to the lack of
projectives in the proof of Theorem VI.6.1, the needed substitution of the projective lift
might not exist: if a surjective morphism ϕ : A � B in MorCohpXΣq is represented by the
honest span of ϕ1 P MorS-grpres, then

CokernelObjectS-grpres pArrow pϕqq P S-grpres0.

But the cokernel object of Arrow pϕq itself is not zero in ObjS-grpres. Therefore the lift
method described in Definition VI.7.4 does not apply, since Arrow pϕq is not an epimor-
phism in S-grpres.

7. COHERENT SHEAVES 153

Example 7.7. Let S :“ C rx, ys be the polynomial ring in two indeterminates graded
with the standard grading and

ϕ : S p´1q2ˆ1 px,yqÑ S1ˆ1.

The sheafification of this morphism is surjective, since the cokernel is finite dimensional
as C-vector space and therefore sheafifies to 0. If we compute the epimorphism from a
projective to S2ˆ1, π : S2ˆ1 idÑ S2ˆ1, the lift does not exist, since ϕ is not surjective as a
morphism of graded S-modules.

We can solve this by using compatible lifts, i.e., computing epimorphisms from locally
free objects such that the lift exists.

Definition 7.8 (Compatible lift). Let ϕ : A Ñ B be an honest epimorphism in
Coh pXΣq – GS

C pAq. Then the compatible locally free lift is a tuple
pπ : P � B, ψ : P Ñ Aq ,

such that
(1) P is locally free,
(2) π is epi,
(3) and π „ ψϕ.1

Theorem 7.9. The compatible lift of an honest epimorphism ϕ : A � B always exists.

Proof. We are going to construct the necessary morphisms. Let
η :“ ImageEmbeddingS-grpres pHonestRepresentative pϕqq .

Since ϕ is an honest epimorphism, Sh pηq is an isomorphism (but η is not necessarily). Let
π1 : P � I be an epimorphism from a locally free object to Source pSh pηqq and set

π :“ PreComposeCohpXΣq pπ1, Sh pηqq .

This morphism is now serving as epi from a locally free object. For the lift, we compute
ϕ1 :“ PreComposeCohpXΣq

`
ϕ, InverseCohpXΣq pSh pηqq˘

.

Since HonestRepresentative pϕ1q is surjective, we can now use the lift from Definition VI.7.4
and set

ι :“ LiftCohpXΣq pπ1, ϕ1q .

The pair pπ, ιq is the desired lift tuple. The correctness follows from the construction. �

We also need the notion of a dual object and morphism in Coh pXΣq.
Definition 7.10. Let F P ObjCohpXΣq with F “ Sh pMq and ϕ : A Ñ B P MorCohpXΣq.

We set
DualOnObjectsCohpXΣq pF q :“ Sh

`
DualOnObjectsS-grpres pMq˘

,

1Recall, „ is the equivalence relation on the Hom-sets in the category model II.2.2.

154 VI. APPLICATION

and, with ϕ1 :“ ReversedArrow pϕq, ϕ2 :“ Arrow pϕq, and
ψi :“ ProjectionInFactorOfFiberProductS-grpres ppϕ1, ϕ2q , iq ,

we set
Arrow

`
DualOnMorphismsCohpXΣq pϕq˘

:“ ψ1,

ReversedArrow
`
DualOnMorphismsCohpXΣq pϕq˘

:“ ψ2.

For the morphism to the bidual, we take the sheafification of the morphism of graded
module, i.e.,

MorphismIntoBidualCohpXΣq pF q :“ Sh
`
MorphismIntoBidualS-grpres pMq˘

.

Now, we can use the compatible lift in Theorem VI.6.1 to compute a filtered presenta-
tion. We cannot expect a nice small resulting matrix as for modules.

Example 7.11. We take the same module M as in Example VI.6.5, but do the com-
plete computation with its sheafification ĂM . At the end we look at the sizes of the resulting
matrices. We cannot expect the same matrices as in Example VI.6.5 since the cokernel
of the augmented maps pμi ηq in the construction of a filtered presentation in the proof
of Theorem VI.6.1 is not computed by stacked matrices of the map and the range, but
according to the construction given for the cokernel of a Serre quotient morphism in the
proof of Theorem IV.5.10.
gap> LoadPackage("ModulePresentationsForCAP");
true
gap> LoadPackage("HomologicalAlgebraForCAP");
true
gap> LoadPackage("ToricSheaves");
true
gap> SetRecursionTrapInterval(1000000);
gap> SwitchGeneralizedMorphismStandard("span");
gap> Q := HomalgFieldOfRationalsInSingular();
Q
gap> S := GradedRing(Q * "x,y,z");;
gap>
gap> WeightsOfIndeterminates(S);
[1, 1, 1]
gap>
gap> mat := HomalgMatrix("[\
> -x^2*z+x*y*z+x*z^2,y^2*z,-x*z+y*z,x-y,0, 0, \
> -x^3+x^2*y+x^2*z, x*y^2,-x^2+x*y,0, x-y, -x*y,\
> 0, 0, 0, x*y,-y*z,0, \
> 0, 0, 0, x^2,-x*z,0, \
> 0, 0, 0, x*z,-z^2,0, \
> 0, 0, 0, 0, 0, z \

7. COHERENT SHEAVES 155

>]", 6, 6, S);
<A 6 x 6 matrix over a graded ring>
gap> is_artinian_left := function(module)
> local mat;
>
> mat := UnderlyingMatrix(module);
>
> return IsZero(HilbertPolynomial(
> UnderlyingMatrixOverNonGradedRing(mat)));
>
> end;
function(module) ... end
gap> Coh := GradedLeftPresentations(S) / is_artinian_left;
The Serre quotient category of The category of graded f.p. modules
over Q[x,y,z] (with weights [1, 1, 1]) by test funct
ion with name: is_artinian_left

gap>
gap> SetIsAdditiveCategory(CocomplexCategory(Coh), true);
gap> SetIsAdditiveCategory(ComplexCategory(Coh), true);
gap> M := AsGradedLeftPresentation(mat, [0, 0, 1, 2, 2, 1]);
<An object in The category of graded f.p. modules over Q[x,y,z]
(with weights [1, 1, 1])>

gap> ShM := AsSerreQuotientCategoryObject(Coh, M);
<An object in The Serre quotient category of The category of
graded f.p. modules over Q[x,y,z] (with weights [1, 1,1])
by test function with name: is_artinian_left>

gap> res1 := FreeResolutionComplex(ShM);
[<An object in Complex category of The Serre quotient category
of The category of graded f.p. modules over Q[x,y,z]
(with weights [1, 1, 1]) by test function with name:
is_artinian_left>,
<A morphism in The Serre quotient category of The category

of graded f.p. modules over Q[x,y,z] (with weights [1, 1, 1])
by test function with name: is_artinian_left>]

gap> res := res1[1];
<An object in Complex category of The Serre quotient category

of The category of graded f.p. modules over Q[x,y,z]
(with weights [1, 1, 1]) by test function
with name: is_artinian_left>

gap> homres := DualOnComplex(res);
<An object in Cocomplex category of The Serre quotient catego
ry of The category of graded f.p. modules over Q[x,y,z]

156 VI. APPLICATION

(with weights [1, 1, 1]) by test function with name:
is_artinian_left>

gap> CE := CartanEilenbergResolution(homres, FreeResolutionCocomplex);
<An object in Cocomplex category of Cocomplex category of The

Serre quotient category of The category of graded f.p. modules
over Q[x,y,z] (with weights [1, 1, 1]) by test function
with name: is_artinian_left>

gap> homCE := DualOnCocomplexCocomplex(CE);
<An object in Complex category of Complex category of The Serre
quotient category of The category of graded f.p. modules over Q[x,y,z]
(with weights [1, 1, 1]) by test function with name:
is_artinian_left>

gap> trhomCE := TransposeComplexOfComplex(homCE);
<An object in Complex category of Complex category of The Serre
quotient category of The category of graded f.p. modules over Q[x,y,z]
(with weights [1, 1, 1]) by test function with name:
is_artinian_left>

gap> homhomres := DualOnCocomplex(homres);
<An object in Complex category of The Serre quotient category
of The category of graded f.p. modules over Q[x,y,z]
(with weights [1, 1, 1]) by test function with name:
is_artinian_left>

gap> filtration := PurityFiltrationBySpectralSequence(trhomCE, 3, homCE,
> homres, res1[2]);
<A morphism in The Serre quotient category of The category of

graded f.p. modules over Q[x,y,z] (with weights [1, 1, 1])
by test function with name: is_artinian_left>

gap> IsIsomorphism(filtration);
true

Since we have computed an isomorphism to a new presentation, we look at the sizes of
the resulting matrices.

gap> UnderlyingMatrix(UnderlyingHonestObject(Source(filtration)));
<An unevaluated non-zero 92 x 83 matrix over a graded ring>
gap> UnderlyingMatrix(Arrow(
> UnderlyingGeneralizedMorphism(filtration)));
<An unevaluated 137 x 6 matrix over a graded ring>
gap> UnderlyingMatrix(ReversedArrow(
> UnderlyingGeneralizedMorphism(filtration)));
<An unevaluated 137 x 83 matrix over a graded ring>

In Figure VI.2 we visualize the relevant part of the zeroth to third page of the spectral
sequence with a binary matrix. As in Figure VI.1 if an entry is ., it means that the object

7. COHERENT SHEAVES 157

gap> DisplaySpectralSequencePage(trhomCE, 0, [-3 .. 0], [0 .. 3]);
* * * *
* * * *
* * * *
. * * *

gap> DisplaySpectralSequencePage(trhomCE, 1, [-3 .. 0], [0 .. 3]);
* * * *
* * * *
* * * *
. . * *

gap> DisplaySpectralSequencePage(trhomCE, 2, [-3 .. 0], [0 .. 3]);
. . . .
. . . .
. * * .
. . . *

gap> DisplaySpectralSequencePage(trhomCE, 3, [-3 .. 0], [0 .. 3]);
. . . .
. . . .
. . * .
. . . *

Figure VI.2. Spectral sequence of the coherent sheaf ĂM
is already zero. A * means that the object at that position is not zero. We see that on the
third page of the spectral sequence all diagonal entries are stable, and therefore we do not
have to compute the fourth page of the spectral sequence as in the corresponding example
VI.6.5 for modules, but could terminate the computation of the grade filtration at page
3. This different in the page numbers where all objects are stable between modules and
their sheafification rises with the dimension of the irrelevant ideal B of the Cox ring S of
the toric variety XΣ. Therefore computing the spectral sequence with sheaves instead of
computing with modules and sheafifying the result leads to shorter computations.

CHAPTER VII

Implementation of computable categories

In this chapter we will describe the philosophy, design, and features of the categorical
programming language Cap via its implementation in the computer algebra system GAP,
alongside with the motivation behind the design decisions and the most important features.

Much like category theory, Cap is a powerful bookkeeping and organizational tool for
high-level algorithms and can cover a wide range of computational setups as it is designed
independent of any specific application. To this end the main design goal of Cap is data
structure agnosticism (cf. Section VII.2).

Moreover, it can be used to organize preexisting data structures and fundamental al-
gorithms into a proper categorical setup as shown in Chapter II. While implementing a
category or a type of categories it should be left to the programmer to specify which con-
structions are basic, i.e., to be explicitly implemented, and which are derived, i.e., to be
automatically composed by Cap from the basic ones. This is the main feature of Cap

(cf. Section VII.2).

1. The concept of categorical programming

We start by introducing the concept of categorical programming. Many computa-
tions and constructions in mathematics can be carried out using only the basic categorical
constructions mentioned in Chapter II. So those constructions form a language in which
algorithms can be expressed.

We are going to show the concept of categorical programming by computing the inter-
section of two subobjects in a computable category A. In Theorem IV.1.3 it was already
shown that in a computable preabelian category the fiber product of two morphisms is
computable. Using the fiber product we can provide a generic algorithm to compute inter-
sections of subobjects.

Example 1.1. Let A be a preabelian category and M P ObjA an object together with
two monomorphisms ϕ : A ãÑ M and ψ : B ãÑ M which are representatives of the classes
of monomorphisms defining two subobjects (cf. Section II.10).

We want to compute the intersection of the images of ϕ and ψ in M , i.e., a mono
A X B ãÑ M which is a representative for the class of monos defining the intersection of
the images of ϕ and ψ. We can compute this monomorphism as

PreCompose pProjectionInFactorOfFiberProduct ppϕ, ψq , 1q , ϕq .

159

160 VII. IMPLEMENTATION

M

A B

FiberProduct pA, Bq

ϕ ψ

τ

τϕ

with τ :“ ProjectionInFactorOfFiberProduct ppϕ, ψq , 1q . If ψ : B ãÑ M is a monomor-
phism, the projection τ is also a monomorphism. So the composition

τϕ “ PreCompose pProjectionInFactorOfFiberProduct ppϕ, ψq , 1q , ϕq
is a monomorphism and by the universal property of the fiber product a representative for
the desired intersection.

As the example shows, there is a generic algorithm for intersection of subobjects if
a category is computable preabelian. This means that if there is an implementation of a
computable abelian category as in Chapter II, i.e., a realization together with the necessary
computable functions, one can use the above intersection algorithm which is implemented
in an abstract and categorical way. The framework which enables the usage of such generic
categorical algorithms is the main goal of Cap.

Example 1.2. We use the category of rational vector spaces from Example II.4.4 and
compute the intersection of two subobjects, each represented by a monomorphism.

We compute the intersection of two subobjects of a three dimensional vector space,
given by the monomorphisms

α1 :“
ˆ

1 1 0
0 1 1

˙
and

α2 :“
ˆ

1 0 0
0 0 1

˙
.

gap> Q := HomalgFieldOfRationals();
Q
gap> Q3 := VectorSpaceObject(3, Q);
<A vector space object over Q of dimension 3>
gap> Q2 := VectorSpaceObject(2, Q);
<A vector space object over Q of dimension 2>
gap> alpha1 := HomalgMatrix([[1,1,0],[0,1,1]], Q);
<A matrix over an internal ring>
gap> alpha1 := VectorSpaceMorphism(Q2, alpha1, Q3);
<A morphism in Category of matrices over Q>
gap> alpha2 := HomalgMatrix([[1,0,0],[0,0,1]], Q);

2. MAIN DESIGN GOAL AND FEATURE 161

<A matrix over an internal ring>
gap> alpha2 := VectorSpaceMorphism(Q2, alpha2, Q3);
<A morphism in Category of matrices over Q>
gap> pi1 := ProjectionInFactorOfFiberProduct([alpha1, alpha2], 1);
<A morphism in Category of matrices over Q>
gap> subobj := PreCompose(pi1, alpha1);
<A morphism in Category of matrices over Q>
gap> Display(UnderlyingMatrix(subobj));
[[-1, 0, 1]]

The intersection is the subobject represented by the monomorphism` ´1 0 1
˘

.

More sophisticated examples of categorical programming are used to build the basic
operations for generalized morphism categories and Serre quotient categories in Chapter
IV, as well as Algorithm VI.6.4 to compute the grade filtration of a finitely presented
graded module or a coherent sheaf in Chapter VI.

2. Main design goal and feature

In category theory, all constructions boil down to the existential quantifiers in the
definition of a category (cf. Chapter II).

2.a. Data structure agnosticism. Cap is completely agnostic of the given realiza-
tion R of a category:

(1) The user is completely free to use the data structure which is most suitable for
the category he wants to implement, with the obvious restriction that a morphism
has to have a Source and a Range.

(2) Equality notions for objects and morphisms are completely free to choose. In fact,
they are treated in the same way as a basic categorical construction (cf. Chapter
II).

These two paradigms ensure the most possible flexibility. Any GAP-object can be an
object or morphism in exactly one Cap category. To tell a GAP-object X it is an object or
morphism in a Cap category A, one “adds” the GAP-object X as object or morphism to A.
This process of adding the X to A enriches the data structure of X with the information
that X is an object or morphism in A.

This allows to declare the category membership of a data structure even a posteriori
and make it possible to use existing data structures in a categorical framework. One can
also use the same object or morphism class for several categories, by deciding a posteriori
which category a specific instance of a class is added to.

2.b. Selection options of basic categorical constructions. As seen in the exam-
ple of the fiber product in Section VII.1, the list of basic categorical constructions described
in Chapter II is not unique. Cap wants to cover all possible sets of basic categorical con-
structions which can be used to define a computable category. Therefore any set of basic

162 VII. IMPLEMENTATION

constructions for a certain type of category is a valid set of basic operations for that type of
category. All other categorical constructions implemented in Cap for that type of category
will be derived by Cap. The system for the derivations will be described in Section VII.7.

3. Error messages for categorical operations

Most categorical operations need stronger typing than the GAP declaration of the cate-
gorical operation requires:

Example 3.1. The definition of the computable function PreCompose for a com-
putable category A is

PreCompose : HomA pA, Bq ˆ HomA pB, Cq Ñ HomA pA, Cq ,

whereas the declaration of this function in the GAP implementation of Cap is
PreCompose : MorA ˆ MorA Ñ MorA.

So the type of the arguments in the declaration of PreCompose requires two arguments
which are morphisms in the same category. It is not required that the range of the first
argument is equal to the source of the second. Since GAP does not support dependent types,
further specification in the declaration of the function PreCompose is not possible.

On the other hand the specification of the function states that for the arguments pϕ, ψq
(:) Range pϕq “ Source pψq
has to hold, and the behavior for the implemented function is not specified for input that
does not fulfill this property. Therefore it needs to be checked whether the range of the first
argument equals the source of the second. When a function is specified for the categorical
operation PreCompose Cap checks the equality (:) using the IsEqualForObjects function.
If the range of the first argument of PreCompose is not equal to the source of the second,
an error is raised.

As seen in the above Example VII.3.1, even if the declaration of a categorical function
in the GAP implementation of Cap does not specify all requirements on the types of the
arguments, Cap itself implements a system which enriches all implemented categorical
operations with checks for all their requirements.

4. Undecidable realizations

A realization R of a computable category in the GAP implementation of Cap is al-
lowed to be undecidable, i.e., there are no computable functions for IsEqualForObjects
and IsEqualForMorphisms in the given realization R. We give a simple example.

Definition 4.1. Let A be an abelian category. We denote by Ch pAq the category of
chain complexes: The objects in Ch pAq are chain complexes in A (cf. Definition VI.1.8)
and the morphisms Ch pAq are chain maps (cf. Defintion VI.1.9).

Definition 4.2. A functionally defined chain complex over a category A is a
computable function

δ : Z Ñ MorA

5. ENSURING COMPATIBILITY: WITHGIVEN OPERATIONS 163

such that Range pδ piqq “ Source pδ pi ` 1qq and PreCompose pδ piq , δ pi ` 1qq “ 0 for all
i P Z.

Using this functorial realization for the category of functionally defined complexes im-
plies that equality of objects is impossible to decide. This is a well-known restriction for
computers.1

If A is computable abelian, the category of chain complexes Ch pAq is computable
abelian, with the data structure in Definition VII.4.2 as realization for objects.

Example 4.3. Let A be a category and Ch pAq the category of functionally defined
chain complexes over A. Furthermore, for ϕ P MorChpAq let

K :“ KernelObject pϕq ,

κ :“ KernelEmbedding pϕq .

The objects K and Source pκq are now two distinct functions. Since it is undecidable if
two functions produce the same output for every input, the question whether

IsEqualForObjects pK, Source pκqq “ true

cannot generally be decided by the computer.
If the implementation of a category in Cap is not able to strictly meet the requirements

of a realization, it is possible to have the equality functions output a third value, namely
fail. For the computation this value will be treated like false, i.e., the computation is
not carried out. It will nevertheless raise a different error message, with the explanatory
text “This equality is undecidable”.

If one wants to use Cap for such a category, the next two sections describe two possible
solutions for the problems of such undecidable realizations, both implemented in Cap.
The first approach are so-called “WithGiven operations” which solve the problem arising
in Example VII.4.3. The second approach is caching, which guarantees identical output if
a function is called several times with identical input.

5. Ensuring compatibility: WithGiven operations

Example 5.1 (VII.4.3 cont.). In Example VII.4.3 we saw that computing both
K :“ KernelObject pϕq ,

κ :“ KernelEmbedding pϕq
in the category of functionally defined chain complexes leads to incompatible results, i.e.,
the equality

K “ Source pκq
is undecidable. Cap has the following strategy to solve this problem: When K has al-
ready been computed, Cap redirects the computation of KernelEmbedding to a second

1It is also undecidable if such an object is well-defined, as, for example, the equality
PreCompose pδ piq , δ pi ` 1qq “ 0 is impossible to decide for all i P Z.

164 VII. IMPLEMENTATION

categorical construction, KernelEmbeddingWithGivenKernelObject:
κ :“ KernelEmbeddingWithGivenKernelObject pϕ, Kq .

This categorical construction is a second version of the algorithm to compute the embed-
ding, which does not compute the source of κ again, but instead uses K as source. So we
have
(:) Source pκq “ K,

The Source pκq and K are now represented by the same part of the memory. So the equality
(:) is true regardless of the implementation of IsEqualForObjects.

The concept of such WithGiven operations is implemented for every categorical oper-
ation that produces a morphism where source or range is not part of the input data.

Example 5.2. Let A be a computable category and ϕ : A Ñ B P MorA. Then we
have

KernelEmbedding pϕq “: κ : K Ñ A,

and the object K is not defined by the input ϕ of the call of KernelEmbedding. Let
K 1 :“ KernelObject pϕq .

Redirecting the computation of KernelEmbedding to
KernelEmbeddingWithGivenKernelObject pϕ, K 1q :“ κ1 : K 1 Ñ A

one computes a kernel embedding which source and range are predefined by the input of
the function. Therefore we have ensured that

Source pKernelEmbedding pϕqq “ KernelObject pϕq .

Notation. Let MorphismOp be a categorical operation which produces a morphism,
for which its source or range are not part of the input data, e.g., KernelEmbedding, and
ObjectOp the categorical operation which produces the corresponding source or range.
Then the categorical operation MorphismOpWithGivenObjectOp has the object as last ar-
gument, and produces the morphism corresponding to MorphismOp for which source and
range are given as input.

The WithGiven operations are a feature to keep the computations in sync. To imple-
ment them correctly in a category, it is important to understand how categorical operations
and their WithGiven counterpart work together. We again take a look at Example VII.4.3:

Example 5.3 (VII.4.3 cont.). There are three methods which can be used to add
functions for the kernel object and kernel embedding:

‚ AddKernelObject
‚ AddKernelEmbedding
‚ AddKernelEmbeddingWithGivenKernelObject

It is not necessary to install functions for all three of them. The two following ways ensure
compatibility between calls of KernelObject and KernelEmbedding:

(1) Only provide a function for KernelEmbedding.

6. CACHING 165

(2) Provide two functions, one for KernelObject and one for KernelEmbeddingWith-
GivenKernelObject.

In case (1), if KernelObject is called by the user with a morphism ϕ as argument, Cap

will invoke KernelEmbedding pϕq, and the source of the kernel embedding is returned as the
result of KernelObject. The computed resulting morphism of the call of KernelEmbedding
is stored in the data structure of ϕ, so the results of KernelObject and KernelEmbedding
will stay compatible in future invocation of these commands.

In case (2), a call of KernelEmbedding with a morphism ϕ as argument will first invoke
KernelObject pϕq, and the resulting object K of the call of KernelObject will then be
passed as second argument to KernelEmbeddingWithGivenKernelObject, together with ϕ
as first argument. Since the result K of KernelObject is also stored in ϕ, the results of
KernelObject pϕq and KernelEmbedding pϕq will be compatible if one of the operations is
called later.

If an universal object (e.g., the kernel object) is already computed without their cor-
responding universal morphism (e.g., kernel embedding) the corresponding WithGiven op-
eration is always called when the corresponding morphism is computed.

6. Caching

Many categorical constructions are carried out by very long calculations, even more if
the data structure has several stacked categories, e.g., Serre quotients (cf. Chapter IV).
Also, categorical constructions often come in pairs, so that the result of one computation
might be part of another, e.g., KernelObject and KernelEmbedding. For these two rea-
sons, each categorical operation, each functor, and each natural transformation in Cap is
equipped with a cache which stores the computed results.

The caches in Cap come in two flavors, weak and crisp (or strong) caches. While crisp
caches store the result permanently, weak caches only hold a weak pointer to the result.

Weak pointers are a feature of garbage collected languages like GAP: They are a pointer
to the result, but do not prevent the garbage collector from deleting the object, assuming
no other pointer holds the object. This means that for compatibility reasons, weak caches
are completely sufficient, since the result is stored as long as it is used somewhere else, and
only recomputed if it cannot be accessed from another point, so no wrong comparisons
can be performed. For performance reasons, crisp caches might be preferable, especially
if the structures computed are relatively small in comparisons to the time they need to
be computed. On the other hand, crisp caches produce memory leaks, since no computed
result is ever deleted. Cap allows the behavior of caches to be switched at any time for
any operation in any category, so one can choose a very fine granulation of which values
should be stored and which not.

6.a. Pointers and Garbage Collection. Computer algebra systems and program-
ming languages in general either use explicit or implicit memory management. When
creating a new object, e.g., a list or a matrix, the computer needs memory to store it.

166 VII. IMPLEMENTATION

Once an object is not used in further computations, the memory it uses can be reused by
different data. There are two strategies to indicate that memory can be reused:

(1) Explicit freeing of memory: When data is not used anymore, it has to be explicitly
deleted. In C/C++ this is done via the free command or by the delete keyword,
which calls the destructor of an object.

(2) Implicit freeing of memory, i.e., Garbage Collection: The system analyzes whether
there is still a reference to that part of memory, i.e., the object stored there can
be accessed from the current session, and, if not, indicates that the memory can
be used again. As long anything is referring to an object, this object remains in
the memory and cannot be deleted, and the part of the memory the object uses
stays occupied.

A reference to an object is called a pointer to such an object. A pointer can either be
a variable which was set by the user in a compute session, a global variable in a program,
or part of the data structure of another object.

Sometimes it is necessary to hold a pointer to an object without preventing it from
being deleted. This is achieved by so-called weak pointers. They are references to
objects without preventing the garbage collector from deleted them. This means that a
weak pointer can be valid or invalid, where valid means that it still points to an object,
and invalid means that the object it pointed to has been deleted.2

6.b. Caches. As mentioned above it is helpful to store the results of computations for
performance or compatibility reasons. The right data structure for such a storage should
be small, flexible, and ideally not causing memory leaks, i.e., making their stored data
accidentally undeletable.3 We are going to describe the data structure implemented in
Cap.

Data structure 6.1. A cache C of length n consists of n lists of weak pointers
key1, . . . , keyn, and a list keys of translations between keys and results. Furthermore, it
consists of n equality functions “1, . . . , “n, and, depending on the type of the cache, there
is

(1) a list of weak pointers, results, for weak caches;
(2) a list of pointers, results, for crisp caches.

To manipulate the cache, the following operations exists:
(1) SetCacheValue;
(2) GetCacheValue;
(3) HasCacheValue.

Remark 6.2. At any given time the cache C can be interpreted as a map

rC :
ną

i“1
N Ñ N Z tfalseu .

2We assume the implementation of weak pointers recognizes that the object was deleted and therefore
a weak pointer cannot accidentally point to a new object at the same place in memory.

3Crisp caches always make their data undeletable.

6. CACHING 167

Since there are objects deleted from the weak pointer lists or new results stored in the
cache, the map rC which the cache C represents changes during the lifetime of the cache
C.

Remark 6.3. The false that rC could possibly return is different from the value false,
since caches should be able to store boolean values. In the Cap implementation, caches
return a pair ptrue, aq or the singleton pfalseq, indicating the value a is stored in the
cache, or no value is stored in the cache to the input given. This way, caches can store
boolean values.

We describe the three operations for caches.
Algorithm 6.4 (SetCacheValue). SetCacheValue sets a value for the cache, i.e., adds

elements to the Ai in the underlying map.
‚ Input: n ` 1 objects a1, . . . , an, a.
‚ Output: true or false.
‚ Algorithm:

(1) Check, using “i, if ai is already in keyi. If so, let bi the position of ai in keyi.
If not, add ai to keyi, and set bi to the position where ai was added to keyi.

(2) Check whether the tuple bi :“ pb1, . . . , bnq is in keys. If so, let c the position
of the tuple b in keys . If not, add the tuple b to keys, and let c the position
where it was added.

(3) Look up whether resultsc is already set. If not, set resultsc to a and return
true. If it is set, compare the value to a. If they are equal, return true, and
false otherwise.

Algorithm 6.5 (GetCacheValue and HasCacheValue). GetCacheValue gets a value
from the cache, i.e., applies the map to a list of objects. HasCacheValue looks up whether
an result is stored in the cache, i.e., the map returns something different from false.

‚ Input: n objects a1, . . . , an.
‚ Output:

– HasCacheValue: true or false.
– GetCacheValue: An object a or false.

‚ Algorithm:
(1) Check, using “i, if ai is in keyi. If so, let bi the position of ai in keyi. If not,

return false.
(2) Check whether the tuple bi :“ pb1, . . . , bnq is in keys. If so, let c the position

of the tuple b in keys If not, return false.
(3) – HasCacheValue: Look up whether resultsc is set, and, in case if it is a

weak pointer, is valid. If so, return true, and false otherwise.
– GetCacheValue: Look up whether resultsc is set, and, in case if it is a

weak pointer, is valid. If so, return the value, and false otherwise.

6.c. Caching in GAP. GAP itself already has caching features, so-called Attributes,
and, as a special case, Properties. Attributes are special unary operations, which store

168 VII. IMPLEMENTATION

their output inside the argument object. To make an operation in GAP an attribute, one
needs to declare it not via DeclareOperation, but via DeclareAttribute. Then each
method installed for such an operation will store its result in a pointer (not weak) in the
argument object, and will always return the stored object instead of recompute it. Those
GAP caches have three major differences from the caches described above:

(1) They can only store objects for a single key, not for a fixed length of keys.
(2) They can only compare keys by IsIdenticalObj and not by another more appro-

priate equality function.
(3) They are always crisp, i.e., might produce memory leaks.

On the other hand, as these internal GAP caches are very fast, Cap takes advantage of
them.

6.d. Caching in Cap. In Cap, each categorical operation, e.g., PreCompose or Di-
rectSum, is by default equipped with a cache of appropriate length.

Remark 6.6. Equipping a computable function f : A Ñ B with a cache changes the
function, and these changes even depend on the current GAP session. When implementing
an algorithm for a basic categorical construction it is necessary to keep in mind that Cap

uses weak caching by default.

Each call of a categorical operation first looks up the cache, and possibly returns a
cached object instead of recomputing it. The corresponding equality notions can be set via
AddIsEqualForCacheForObjects and AddIsEqualForCacheForMorphisms, respectively.
These equality notions are by default set to the IsEqualForObjects and IsEqualForMor-
phisms. For simplicity reasons, it is not possible to set the equality for each cache/opera-
tion.

The behavior of the caches can be controlled for each operation in each category:
‚ SetCachingWeak: The arguments are either a category C or a category C and a

string s. If only a category is given, all caches in the category will be set to weak.
Otherwise, only the cache corresponding to the operation s will be set to weak.

‚ SetCachingCrisp: The arguments are either a category C or a category C and a
string s. If only a category is given, all caches in the category will be set to crisp.
Otherwise, only the cache corresponding to the operation s will be set to crisp.

‚ DeactivateCaching: The arguments are either a category C or a category C and a
string s. If only a category is given, all caches in the category will be deactivated,
i.e., neither store new values nor return any values. Otherwise, only the cache
corresponding to the operation s will be deactivated.

For performance reasons, unary categorical operations are implemented as Attributes,
which means that the results are stored inside the object passed to the function as the
single argument. Since the comparison function for Attributes is always IsIdenticalObj
and not the appropriate notion IsEqualForCache, even Attributes are equipped with a
second cache in the above sense. So Cap has two cache layers:

6. CACHING 169

(1) If the operation is unary, e.g., KernelEmbedding, it is declared as an Attribute.
This means that if the operation has already been computed for the (single) argu-
ment, the result has already been computed and stored in the specific argument,
so the previously computed result is returned.

(2) If the operation has more than one argument, or has not been computed before,
the cache is looked up with the category specific equality notions. If there is a
result matching the argument stored in the cache, this result is returned instead
of a new computed one. Otherwise the result is computed from scratch.

As mentioned above, there are two main reasons to cache results of computations:
result compatibility and performance.

6.e. Avoiding the setoid. Using caches it is possible to go back from the definition
of categories with Hom-setoids (cf. Definition II.2.2) to the classical Definition II.2.1.

Categorical constructions are functions up to the equality on the morphism sets, but
the compatibility properties are defined for the congruence of morphisms. Example III.2.13
shows that using the equality of morphisms instead of congruence can lead to algorithms
incompatible with the specifications of the corresponding categorical constructions. Using
caches we can work around this.

Theorem 6.7. Suppose a computable abelian category A where all categorical opera-
tions in the implementation of A are equipped with crisp caches. Then it is possible to set
IsEqualForMorphisms in that category to IsCongruentForMorphisms, and therefore going
to the reduction A1 of A (cf. Theorem II.3.5) and obtaining a category in the classical
sense.

Proof. For a categorical operation F two different argument lists pa1, . . . , anq and
pa1

1, . . . , a1
nq with

IsEqualForObjects pai, a1
iq “ true

if ai is an object and

IsCongruentForMorphisms pai, a1
iq “ true

if ai is a morphism now have to produce identical output, since the second call will always
return a value identical to the first result. So for morphisms those values are again equal,
and the object comparison does not matter. Furthermore, all categorical operations become
functions with respect to the new IsEqualForMorphisms :“ IsCongruentForMorphisms.

�

Now, using Theorem VII.6.7, we can achieve an implementation of S-grpres in the
classical sense, i.e., as a classical category which has Hom-sets instead of Hom-setoids.4

4Another system that by default implements its abelian categories as classical categories is homalg
(cf. [hom17]).

170 VII. IMPLEMENTATION

6.f. Caching for compatibility. For the category of functionally defined chain com-
plexes from Definition VII.4.2, it is impossible to implement equality notions for objects
and morphisms that are compatible with the mathematical notion of equality of chain com-
plexes. Here caching leads to predictable and compatible output of categorical operations.

Example 6.8. Let A be the category of functionally defined chain complexes (cf. Def-
inition VII.4.2) and ϕ a morphism in A. Let KernelEmbedding pϕq be called twice with
results κ and κ1. Without storing the first result of the call of KernelEmbedding and re-
turning a different GAP-object the second time KernelEmbedding is called, κ and κ1 will
not be equal, since

Source pκq “ Source pκ1q
is undecidable. So it is important to store the result of the first call to avoid creating
several different object which are theoretically equal but cannot be decided as such. Fur-
thermore, other caches needs to be filled with parts of the result: If after the call of
KernelEmbedding pϕq the operation KernelObject pϕq is called, the result K should be
equal to Source pκq. This is achieved by storing the Source of the result of the Kernel-
Embedding in the cache of KernelObject.5

Cap caches ensure such a compatibility as it fills all appropriate caches with the already
computed results. To ensure such a compatibility a weak cache is always sufficient, since
incompatibility can only occur if the resulting object can be compared to an object another
pointer points to.

6.g. Caching for performance. A second reason for caching is increasing the per-
formance.

Example 6.9. Consider the category of rational vector spaces (cf. Example II.4.4),
with caching equalities being the equalities of the category, i.e., the integer comparison for
the object, and for morphism entrywise comparison of the matrix. Now, if two different
morphisms with the same matrix entries are given to KernelEmbedding, there will not be
any Gaussian elimination performed for the second morphism, but the cache returns the
same data as for the first call of KernelEmbedding. This leads to a faster computation,
and less memory usage, since the same matrix would not be computed twice.

Performance enhancing caches can be weak or crisp, which is a trade off between com-
putation time for the result and space it needs to be stored. A fine granulated equality
notion and fine tuned caches for each categorical operation can be used to enhance the
performance of Cap.

Example 6.10. We consider again the category of rational vector spaces (cf. Exam-
ple II.4.4). A cache for DirectSum will not increase performance, since the computation
needed for DirectSum is just addition of two integers. On the other hand, a cache for the
KernelEmbedding can reduce computation time for large matrices.

5Since KernelObject is an Attribute, the attribute of KernelObject of ϕ will also be set to the source
of the result of the call of KernelEmbedding.

7. PRIMITIVE AND DERIVED CATEGORICAL OPERATIONS 171

7. Primitive and derived categorical operations

A powerful feature of Cap is deriving categorical constructions from other basic ones.
In Chapter II some categorical constructions to make an abelian category computable are
explicitly listed. It is already mentioned there that not all constructions are needed to be
implemented explicitly but some can be derived from others (cf. Remark II.7.13). Further-
more, some very popular constructions are not mentioned in the list of basic categorical
operations in Chapter II, e.g., Pullback or Pushout, nevertheless it should be possible to
give explicit algorithms for these categorical constructions. To decide which categorical
operations can be derived from an explicitly implemented set of basic ones and which
derivations are supposed to deliver the best performance, we are going to introduce the
derivation graph as a system for finding all possible derivations for a given set of explicitly
implemented categorical constructions.

7.a. Why the graph is necessary: Circular dependencies. When implementing
several categorical constructions, there are often several ways to compute a specific object
or morphism. We have already seen an example in II.7.13. We give a second trivial
example:

Example 7.1. Let A be a computable category and ϕ : A Ñ B, ψ : B Ñ C in MorA.
Cap offers two functions to compute the composition ϕψ:

ϕψ “PreCompose pϕ, ψq ,

ϕψ “PostCompose pψ, ϕq .

When following the definitions in II, one would ideally implement an algorithm to compute
PreCompose and let the system derive PostCompose. But since the system is supposed to
be modular, it should also be possible to derive PreCompose from an installed version of
PostCompose.

Such derivations need to be carried out in a way which prevents the occurrence of
circular dependencies. An example of a circular dependency is to derive PreCompose from
PostCompose and to derive PostCompose from PreCompose.

7.b. The derivation graph. To organize all ways the different categorical operations
can imply each other, to store the functions that derive categorical constructions from
other, and to track the circular dependencies, we introduce the derivation graph.

This graph is not bound to a specific category but intended to be used by all categories
at the same time, since it only contains the functions which can be derived by other
categorical operations.

We give a definition of this graph which differs from the GAP implementation of Cap

at certain points. We will point out the differences at the end of the section.
Definition 7.2 (Method derivation graph). Let M be a set of categorical operations

(cf. Appendix C for the set of categorical operations implemented in Cap). The method

172 VII. IMPLEMENTATION

derivation graph is a directed hypergraph pV, Eq6 where the vertices V are given by
M Z tcu and the set of edges consists of the following:

(1) For every categorical operation m P M there is an edge from c to m in E.
(2) One hyperedge for every derived method of a categorical operation m P M con-

sisting of the following data:
(a) The range m P M;
(b) The sources m1, . . . , mn P M, which are the categorical operations used in

the derived algorithm for m;
(c) The exclusions m1, . . . , mk P M which describe operations are not allowed

to be installed to derive m using the derivation the current edge represents;
(d) A boolean function which checks whether the category in which the de-

rivation should be installed has a certain property, e.g., if the category is
abelian;

(e) The source weights i1, . . . , in P Zě0 indicating that mj is used ij times in
the derivation.

Remark 7.3. For Cap, it is possible to enrich the set of categorical operations at any
time. This allows users to extend the Cap kernel, for example to implement triangulated
categories. Only categories created after the extension will have access to the new deriva-
tions. Appendix C shows the full list of all categorical operations currently available in the
Cap kernel.

We give examples for edges of the method derivation graph.
Example 7.4. For all categories, the methods PreCompose and IdentityMorphism

must be given primitively. This means that the graph has an edge from c to PreCompose
and one from c to IdentityMorphism. Obviously, in most cases there is an edge from c to
every element in M.

Example 7.5. The categorical operation PostCompose is defined by
PostCompose pα, βq :“ PreCompose pβ, αq .

Using this definition, which is already a derivation, we give an example for the second type
of edges. The list of sources of the edge representing this derivation is only the operation
PreCompose, the range is PostCompose. There are no exclusions for this edge, and the
boolean function just returns true, since this derivation can be installed for every category.
The integer i1 is 1, since PreCompose is called once in this derivation.

Example 7.6. For abelian categories, one can implement a functorial direct sum, i.e.,
the direct sum of two morphisms, which is denoted by DirectSumFunctorial. We give a
derivation for this as an example:

function(morphism_list)
local direct_sum_diagram, sink, diagram;

6In a hypergraph it is E Ď Pot pV q ˆ Pot pV q instead of E Ď V ˆ V .

7. PRIMITIVE AND DERIVED CATEGORICAL OPERATIONS 173

direct_sum_diagram := List(morphism_list, mor -> Range(mor));

sink := List([1 .. Length(morphism_list)], i ->
PreCompose(morphism_list[i],

InjectionOfCofactorOfDirectSum(direct_sum_diagram, i)));

diagram := List(morphism_list, mor -> Source(mor));

return UniversalMorphismFromDirectSum(diagram, sink);

end

This derivation uses the operations PreCompose, InjectionOfCofactorOfDirectSum, and
UniversalMorphismFromDirectSum, so those would be m1, m2, and m3. We i1 :“ i2 :“ 2
and i3 :“ 1. The values of i2 and i2, i.e., the number of times PreCompose and Injection-
OfCofactorOfDirectSum are called in this derivation, depend on the input size. Since the
installation of a method happens before a call of the operation, there is no way to determine
the actual number of calls of the operations PreCompose and InjectionOfCofactorOfDirect-
Sum. Most of the time this construction is called for two morphisms, so setting i1 and i2
to 2 is sufficient.

In the GAP implementation of Cap it is always be possible for a user to add nodes or
edges to the derivation graph.

7.c. Installation and derivation of operations.
Algorithm 7.7 (Derivation graph marking algorithm). Suppose we have a computable

category A for which primitive operations p1, . . . , pk P M are installed (with weight wi).
To install all possible derivations we use the following algorithm:

(1) Mark all nodes with infinity and c with 0.
(2) Mark all edges pc, piq and mark nodes pi with wi.
(3) Now start at c and find the edge with the smallest weight which is not already

marked. The weight is calculated by
řk

i“1 imi
wmi

, where wmi
is the current weight

of mi. Now four possibilities apply:
(a) If there is no such edge with weight smaller than infinity, terminate.
(b) If the range m of the edge already has weight smaller infinity, remove the

edge and go back to the beginning of step 3.
(c) If any exclusion mi of the edge already has a weight smaller than infinity,

remove the edge and go back to the beginning of step 3.
(d) Otherwise, mark the range m with the calculated weight of the edge, install

the corresponding derivation, remove the edge, and go back to the beginning
of step 3.

Since there are only finitely many edges in the graph and each step in the algorithm
removes one edge, the algorithm terminates.

174 VII. IMPLEMENTATION

This marking graph and algorithm ensures that from all the derivations for a categorical
operation only the one with the smallest weight is installed. The actual Cap implemen-
tation does not follow this algorithm: Edges that do not have exclusions are installed
directly if reachable from c, while the ones with exclusions are installed when the category
is finalized, i.e., no more operations will be installed primitively.

The development of this algorithm and its Cap implementation was joint work with
Øystein Skartsæterhagen.

8. Logic Propagation: ToDoLists

Certain properties of objects or morphisms can lead to easier computations in categor-
ical operations:

Example 8.1. Let V be the category of finite vector spaces (cf. Example II.4.4) and
ϕ : A Ñ B a monomorphism in V . For a monomorphism in V the kernel embedding

κ :“ KernelEmbedding pϕq
can be computed as

κ :“ UniversalMorphismFromZeroObject pSource pϕqq ,

i.e., without performing a Gaussian elimination. Therefore, the kernel embedding and
kernel object of a morphism ϕ in V can be computed more efficiently if ϕ is known to be
a monomorphism.

As the above example shows, knowledge about special properties of objects can reduce
computation time. Therefore, it is important to propagate such knowledge between the ob-
jects as far and extensive as possible. We will now show how such knowledge is propagated
in Cap computations.

8.a. Property propagation: ToDoLists. Since knowledge of basic properties can
speed up of computations, Cap offers a tool to propagate knowledge between objects when
possible: ToDoLists.

Data structure 8.2 (ToDoList entry). A ToDoList entry E consists of a list of GAP
objects Ai, . . . , An, A, a list of properties P1, . . . , Pn, P , and a list of values a1 . . . , an, a P
ttrue, falseu. A ToDoList entry with this data stored encapsulates the proposition

nľ
i“1

Pi pAiq “ ai ñ P pAq “ a.

We call the Ai’s the sources of E and A the range of E. We call E fulfilled if
HasPi pAiq “ true ^ Pi pAiq “ ai

for all i.

Remark 8.3. The condition HasPi pAiq “ true in the definition of ’fulfilled’ ensures
that a ToDoList entry never computes a property. If the HasP filter is not fulfilled, P is
not evaluated. The HasP filter is true only if the property P has already been evaluated.

8. LOGIC PROPAGATION: TODOLISTS 175

ToDoList entries form the entities stored in ToDoLists.
Data structure 8.4 (ToDoList). Let A be a GAP object. The ToDoList of A is a list

of ToDoList entries Ei such that A is a source of E.
ToDoLists keep track of entries that can be applied once the conditions are known to

be satisfied. For the application of ToDoList entries the following algorithm is used:
Algorithm 8.5. Let A be a GAP object and P be a property. If P becomes known,

the applicable entries in the ToDoList T of A are applied with the following algorithm:
(1) Store all fulfilled entries in T in a list Tf and delete them from T .
(2) Apply all entries E from Tf , by setting the property P of the range object of the

entry E to a.

Remark 8.6. Deleting fulfilled entries from the ToDoList before applying any of them
ensures that no recursion in applying entries occurs. Each entry is only applied once it
becomes applicable.

8.b. Creating ToDoList entries: The LATEXlogic parser. Cap provides a parser
to read LATEX files in a certain format containing theorems which are then used to create
ToDoList entries.

Example 8.7. A theorem looks like this:
\begin{sequent}
\begin{align*}

\alpha:\Mor, \beta:\Mor ~&|~ \IsMonomorphism(\beta) \\
&\vdash \IsMonomorphism (

\ProjectionInFactorOfFiberProduct([\alpha, \beta], 1))
\end{align*}
\end{sequent}
and in its LATEX compiled version:

Sequent.

α : Mor, β : Mor | IsMonomorphismpβq
$ IsMonomorphism

`
ProjectionInFactorOfFiberProductprα, βs, 1q˘

This logical implication states that for two morphisms α, β of a category A, if β is
known to be a monomorphism, i.e., known to fulfill the property IsMonomorphism, then
the result of

ProjectionInFactorOfFiberProductppα, βq , 1q
also fulfills IsMonomorphism. The syntax for the sequents is described in the Cap manual.

In the GAP implementation of Cap one can add files containing such sequents and attach
them to a category or type of categories. The files are then read by the Cap theorem parser,
and the sequents are added to the category. When computing a categorical operation, all
applicable sequents are then stored as ToDoList entries to the appropriate argument objects
and in the result of the called operation.

176 VII. IMPLEMENTATION

Example 8.8. The following GAP session shows the application of the ToDoList entries
coming from the sequent in Example VII.8.7 on the result of ProjectionInFactorOfFiber-
Product.
gap> A := VectorSpaceObject(3, Q);
<A vector space object over Q of dimension 3>
gap> B := VectorSpaceObject(1, Q);
<A vector space object over Q of dimension 1>
gap> alpha := HomalgMatrix([1,0,0],1,3,Q);
<A matrix over an internal ring>
gap> beta := HomalgMatrix([0,1,0], 1,3,Q);
<A matrix over an internal ring>
gap> alpha := VectorSpaceMorphism(A, alpha, B);
gap> alpha := VectorSpaceMorphism(B, alpha, A);
<A morphism in Category of matrices over Q>
gap> beta := VectorSpaceMorphism(B, beta, A);
<A morphism in Category of matrices over Q>
gap> gamma := ProjectionInFactorOfFiberProduct([alpha,beta], 1);
<A morphism in Category of matrices over Q>
gap> HasIsMonomorphism(gamma);
false
gap> IsMonomorphism(beta);
true
gap> HasIsMonomorphism(gamma);
true
gap> IsMonomorphism(gamma);
true

Many implications are already implemented in Cap, a complete (LATEX compiled) list
can be found in Appendix B.

Bibliography

[Bar09a] Mohamed Barakat, The homomorphism theorem and effective computations, Habilitation thesis,
Department of Mathematics, RWTH-Aachen University, April 2009. 143, 144

[Bar09b] , Spectral filtrations via generalized morphisms, submitted (arXiv:0904.0240) (v2 in
preparation), 2009. 141

[BIR`] W. Bruns, B. Ichim, T. Römer, R. Sieg, and C. Söger, Normaliz. algorithms for rational cones
and affine monoids, Available at https://www.normaliz.uni-osnabrueck.de.

[BLH11] Mohamed Barakat and Markus Lange-Hegermann, An axiomatic setup for algorithmic homologi-
cal algebra and an alternative approach to localization, J. Algebra Appl. 10 (2011), no. 2, 269–293,
(arXiv:1003.1943). MR 2795737 (2012f:18022) 13, 21, 23, 30, 36

[BLH14a] , Characterizing Serre quotients with no section functor and applications to coherent
sheaves, Appl. Categ. Structures 22 (2014), no. 3, 457–466, (arXiv:1210.1425). MR 3200455
103

[BLH14b] , Gabriel morphisms and the computability of Serre quotients with applications to coher-
ent sheaves, (arXiv:1409.2028), 2014. 69, 76, 79, 94

[BR08] Mohamed Barakat and Daniel Robertz, homalg – A meta-package for homological algebra, J.
Algebra Appl. 7 (2008), no. 3, 299–317, (arXiv:math.AC/0701146). MR 2431811 (2009f:16010)
38

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in
Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
(2012g:14094) 99, 103, 104, 109

[DGPS16] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann, Singular 4-1-0
— A computer algebra system for polynomial computations, http://www.singular.uni-kl.de,
2016.

[GAP17] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.7, 2017. 12
[GJ00] Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex polytopes,

Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, Birkhäuser,
Basel, 2000, (http://www.polymake.org), pp. 43–73. MR 1785292 (2001f:52033)

[GSP17] Sebastian Gutsche, Øystein Skartsæterhagen, and Sebastian Posur, The CAP project – Cat-
egories, Algorithms, and Programming, (http://homalg-project.github.io/CAP_project),
2013–2017. 12

[hom17] homalg project authors, The homalg project – Algorithmic Homological Algebra, (http://
homalg-project.github.io), 2003–2017. 169

[ML71] Saunders Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics,
no. 5, Springer-Verlag, 1971. 24

[Pos17] Sebastian Posur, Constructive category theory and applications to equivariant sheaves, Ph.D.
thesis, University of Siegen, 2017, http://dokumentix.ub.uni-siegen.de/opus/volltexte/
2017/1179/. 47, 52, 55, 62, 63, 70, 72, 144, 145, 147

[Stu96] Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American
Mathematical Society, Providence, RI, 1996. MR 1363949 (97b:13034) 109

177

http://www.mathb.rwth-aachen.de/~barakat/habil/habil.pdf
http://arxiv.org/abs/0904.0240
http://arxiv.org/abs/1003.1943
http://arxiv.org/abs/1210.1425
http://arxiv.org/abs/1409.2028
http://arxiv.org/abs/math.AC/0701146
http://www.singular.uni-kl.de
http://www.polymake.org
http://homalg-project.github.io/CAP_project
http://homalg-project.github.io
http://homalg-project.github.io
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2017/1179/
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2017/1179/
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2017/1179/
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2017/1179/

178 BIBLIOGRAPHY

[tt] 4ti2 team, 4ti2—a software package for algebraic, geometric and combinatorial problems on linear
spaces, Available at www.4ti2.de.

[Wei94] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math-
ematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR MR1269324 (95f:18001) 134,
135, 137, 144

APPENDIX A

Programming in Cap

1. An overview of installing categories

We give a short overview of the three steps of the initialization process of a category
in Cap.

1.a. Creating the data structures. When implementing a category and its objects
and morphisms, the first thing to do is to implement data structures for objects and
morphisms.

Example 1.1 (Category of finite sets). Let A be the category of finite subsets of N. A
possible data structure for objects are unordered lists of integers. Consider the set t1, 2, 3u.
Then r1, 2, 3s and r1, 3, 2s would be possible serializations of this set, but of course they
differ on the machine level.

In this example the realization differs from the implemented category: We use ordered
sets (i.e., lists) as data structures, instead of sets. In Chapters IV and V we came across
more sophisticated examples of this difference between the data structure and the realized
category and emphasized the importance of the equality notions.

1.b. Implementing basic algorithms. After implementing the data structures, the
next step is to implement the categorical constructions as algorithms acting on the data
structures. For every categorical construction there should be one algorithm implemented
or a way to derive it from given algorithms. Note that the algorithms have to give equal
output on equal input according to the implemented equality functions. A list of all possible
basic algorithms which can be installed and derived in Cap can be found in Appendix C.

1.c. Finalization of the category. Once all necessary primitive operations are im-
plemented the finalization tells Cap that the initialization process if the category is now
completed. This will lead trigger the derivation mechanism (cf. Section VII.7) and derive
all possible constructions for that type of category.

2. The category object

In the GAP implementation of Cap the category object itself is a large object. It contains
several information about the category and can itself be used to create new categories. We
are going to give a short description of the important components of the category object:

(1) Name: For every category the name of the category is stored. The name is used
to display the category, but also to automatically create new names, e.g., names of

179

180 A. PROGRAMMING IN Cap

functors and natural transformations. Since functors and natural transformations
can be installed as global functions, using their names as global names, the name
of the category should be unique.

(2) Filters: Each category holds two unique filters (cf. Section A.5): One for objects
and one for morphisms in the category. These filters are used to identify objects
and morphisms that belong to the category.

(3) Caches: Each category stores all caches for categorical operations of that category
(cf. Section VII.6).

(4) Logical implications: Each category stores applicable sequents (cf. Section
VII.8) for this category.

(5) Precondition check: Most of the categorical operations have preconditions, e.g.,
the two arguments for PreCompose have to be composable. Checking these pre-
conditions is useful when doing experiments, but slows down large computations
for which all input data is correct. So each category holds a boolean value which
indicates whether the preconditions should be checked for categorical operations
or not.

(6) Finalization indicator: Each category stores a boolean value indicating if the
category is finalized, i.e., all primitive operations for that category are already in-
stalled. Since the finalization of a category triggers the derivation process (cf. Sec-
tion VII.7), a non-finalized category should not be used for computations.

3. Functors and natural transformations: The category of categories

Cap features an implementation of the category of categories, CapCat. Its objects
are the Cap category objects themselfs, and its morphisms are the Cap functors. It is
currently the only 2-category in Cap. Its 2-cells are natural transformations. The category
CapCat is also a Cap category, which means the same categorical operations can be used
to manipulate with objects and morphisms in CapCat.

3.a. Functors.
Definition 3.1. Let A, B be categories. A (covariant) functor F : A Ñ B consists

of two maps
F0 : ObjA Ñ ObjB, A ÞÑ F pAq ,

F1 : MorA Ñ MorB, ϕ ÞÑ F pϕq ,

such that
Source pF pϕqq “ F pSource pϕqq ,

Range pF pϕqq “ F pRange pϕqq ,

F pϕψq „ F pϕq F pψq , and
F pidAq „ idF pAq.

Two functors are composed by composing the maps Fi, and the identity functor is the
functor where both F1 and F2 are the identity maps.

3. FUNCTORS AND NATURAL TRANSFORMATIONS: THE CATEGORY OF CATEGORIES 181

Covariant functors form the morphisms in the category of categories.
Definition 3.2. The category of categories in Cap, CapCat, is the category with

categories as objects and functors as morphisms.
The main reason for the existence of CapCat in Cap is the implementation of functors

and natural transformations.

3.b. Implementation of functors. The implementation of a functor F consists of
algorithms for the two functions F0 and F1 in Definition A.3.1.

Data structure 3.3 (Functors). Let A and B be categories and F : A Ñ B a functor.
The data structure of F consists of the following two functions:

ObjectFunction pF q : ObjA Ñ ObjB,

MorphismFunction pF q : ObjB ˆ MorA ˆ ObjB Ñ MorB.

Both functions are cached independently.
The ObjectFunction has the role of F0. The MorphismFunction has the role of F1 and

can be interpreted as a WithGiven function (see Section VII.5 for more details).
Algorithm 3.4 (Functor evaluation). Let A and B be categories, F : A Ñ B a functor,

and A P ObjA, ϕ P MorA. The operation ApplyFunctor is used to evaluate the functor at
objects or morphisms of A using the following algorithm:

(1)
ApplyFunctor pF, Aq :“ ObjectFunction pF q pAq .

(2) Let
A1 :“ ObjectFunction pF q pSource pϕqq ,

B1 :“ ObjectFunction pF q pRange pϕqq .

Then
ψ :“ ApplyFunctor pF, ϕq :“ MorphismFunction pF q pA1, ϕ, B1q ,

such that Source pψq “ A1 and Range pψq “ B1.
This algorithm guarantees the compatibility of the result, since the result of the eva-

luation of a morphism ϕ has the evaluations of the source and range of ϕ as source and
range of the result ψ, respectively.

Remark 3.5. All functors in Cap are covariant. To implement contravariant or mul-
tivariate functors the opposite and the product category (cf. Section A.4) are used.

3.c. Natural transformations. Natural transformations are morphisms between func-
tors. They are implemented as 2-cells in the category of categories. The corresponding
categorical operations are:

(1) IdentityTwoCell,
(2) HorizontalPreCompose,
(3) and VerticalPreCompose.

182 A. PROGRAMMING IN Cap

The data structure contains two functors, serving as source and range, and a function
defining how the natural transformation acts on objects.

Definition 3.6. Let A and B be categories and F, G : A Ñ B functors. A natural
transformation N : F ñ G consists of a map

N0 : ObjA Ñ MorB, A ÞÑ pN pAq : F pAq Ñ G pAqq
such that for any morphism ϕ : A Ñ B P MorA the following diagram commutes up to
congruence:

F pAq GpAq

F pBq GpBq

N pAq

F pϕq G pϕq
N pBq

Data structure 3.7. Let A, B, F, G and N be as in Definition A.3.6. The data
structure for the natural transformation N consists of the functor F as source, the functor
G as range, and a function

NaturalTransformationFunction pN q :ObjB ˆ ObjA ˆ ObjB Ñ MorB,

pB1, A, B2q ÞÑ pN : B1 Ñ B2q .

The function NaturalTransformationFunction is 3-ary for same reason as the function
MorphismFunction for functors is 3-ary: When a natural transformation N is applied to
an object A P ObjA, the resulting morphism should have the object F pAq as source and
G pAq as range. Giving source and range of the resulting morphism as arguments to the
natural transformation function guarantees this compatibility condition.

Algorithm 3.8 (Natural transformation evaluation). Let A, B, F, G and N as in
Definition A.3.6 and A P ObjA. A natural transformation is applied via

ApplyNaturalTransformation

using the following: Set

AF :“ ApplyFunctor pF, Aq ,

AG :“ ApplyFunctor pG, Aq .

Then it is

ψ :“ ApplyNaturalTransformation pN , Aq
:“ NaturalTransformationFunction pN q pAF , A, AGq ,

such that Source pψq “ AF and Range pψq “ AG.
Again, natural transformations cache their output.

4. SPECIAL CATEGORIES IMPLEMENTED IN Cap 183

4. Special categories implemented in Cap

There are three special categories in Cap. We give a description of those categories
and motivate their existence.

4.a. Opposite category.
Definition 4.1. Let A be a category. The opposite category Aop is defined by

ObjAop :“ tAop | A P ObjAu ,

MorAop :“ tϕop : Bop Ñ Aop | ϕ : A Ñ B P MorAu .

In the GAP implementation of Cap the opposite category Aop of a category A is con-
structed via Opposite pAq. The Opposite command also constructs objects and morphisms
in the opposite category Aop out of objects and morphisms of the underlying category A.

Using the opposite category one can implement contravariant functors:
Proposition 4.2. Let A and B be categories and F : A Ñ B a contravariant functor.

Then the functor rF : Aop Ñ B with

rF pAopq :“ F pAqrF pϕopq :“ F pϕq
is covariant.

The implementation of the opposite category enables Cap to only use covariant functors
as morphisms in CapCat. Contravariant functors are modeled as covariant functors having
the opposite category as source.

4.b. Product category.
Definition 4.3. Let A1, . . . , An be categories. The product category A :“ A1 ˆ

¨ ¨ ¨ ˆ An is defined by

ObjA :“
ną

i“1
ObjAi

,

MorA :“
ną

i“1
MorAi

.

The product category is used to implement multivariate functors, i.e., functors that take
more than one argument. The product of a list of categories can be created by the Product
command. With the same command, objects and morphisms in the product category can
be created.

4.c. Terminal category.

184 A. PROGRAMMING IN Cap

Definition 4.4. The terminal category T is a single object, single morphism cate-
gory defined by

ObjT :“ tT u ,

MorT :“ tidT : T Ñ T u .

It is an abelian category, where each categorical construction is either T or idT .
Proposition 4.5. The terminal category T is a terminal object in the category of

categories, CapCat.
In Cap, the terminal category can be accessed using TerminalCategory. The object

T and the morphism idT can be accessed using UniqueObject and UniqueMorphism.
The category itself can be used to create single valued functors, which can again be

used to evaluate multivariate functors at certain arguments.
Example 4.6. Let A be an abelian category and A P ObjA. Consider the functor

F : A Ñ A, X ÞÑ DirectSum pA, Xq
on objects, and with DirectSumFunctorial on morphisms. This functor can then be written
as the sum of the functors

F1 : T Ñ A, T ÞÑ A

F2 : A Ñ A, X ÞÑ X.

F1 can be created using the command FunctorFromTerminalCategory, and F2 using
IdentityMorphism. Since functors are morphisms in the category of categories, the cate-
gorical construction DirectSumFunctorial can be used to produce the functor F .

5. Filters and Method Selection

We present the system that enables GAP to implement special methods for objects or
morphisms with additional properties, e.g., a special method to compute the kernel object
for monomorphisms.

5.a. Filters.
Definition 5.1 (Filter). Let A be a GAP object.
(1) A filter F is a boolean flag written as a function, i.e.,

F pAq P ttrue, falseu .

(2) A property P is a boolean function together with a filter HasP . P can only be
evaluated once for any object A, and it is

P pAq P ttrue, falseu .

It is
HasP pAq “ true

if and only if P has already been evaluated.

5. FILTERS AND METHOD SELECTION 185

Filters can be concatenated via the operation and. Such concatenated filters are eval-
uated as follows:

Algorithm 5.2. Let A be a GAP object and P and Q filters. The filter S :“ P and Q
is evaluated as follows:

‚ If P pAq “ false, then S pAq :“ false without looking at Q.
‚ If P pAq “ true, then S pAq :“ Q pAq.

This lazy evaluation practice makes it possible to use properties as filters.
Definition 5.3 (Properties as Filters). Let A be a GAP object and P be a property.

Then P can be used as a filter, evaluated like the filter
HasP and P,

i.e., the filter can only be true if P has been evaluated before.
This evaluation strategy for properties ensures that properties used as filters do not

trigger expensive computations. Filters are used to decide which method to use for an
operation, and triggering expensive computation when deciding which method to use can
lead to more expensive computations than applying a generic function.

5.b. Method selection. GAP provides the possibility of gluing partial methods to-
gether to an operation, the so-called Predicate Dispatch.

A GAP operation X is a callable object which reassembles a n-ary function for 0 ď
n ď 6. It is declared with a list of filters F of length n and equipped with methods
m1, . . . , mk. Each method mj is an n-ary function hj together with a filter list Gj of length
n, such that for each GAP object A holds

Gj,i pAq ñ Fi pAq ,

j “ 1, . . . , k. If X is called with n arguments A1, . . . , An, the best matching function hj

according to the filter list Gj is called. The procedure of choosing the correct method for
an operation is called Method Selection.

APPENDIX B

Logical theorems in Cap

1. Logic for all categories

Sequent 1.

A : Obj | IsZeropAq $ IsTerminalpAq
Sequent 2.

A : Obj | IsZeropAq $ IsInitialpAq
Sequent 3.

A : Obj | IsZeropAq $ IsInjectivepAq
Sequent 4.

A : Obj | IsZeropAq $ IsProjectivepAq
Sequent 5.

α : Mor | IsIsomorphismpαq $ IsSplitMonomorphismpαq
Sequent 6.

α : Mor | IsIsomorphismpαq $ IsSplitEpimorphismpαq
Sequent 7.

α : Mor | IsOnepαq $ IsAutomorphismpαq
Sequent 8.

α : Mor | IsAutomorphismpαq $ IsIsomorphismpαq
Sequent 9.

α : Mor | IsAutomorphismpαq $ IsEndomorphismpαq
Sequent 10.

α : Mor | IsEndomorphismpαq, IsIsomorphismpαq
$ IsAutomorphismpαq

Sequent 11.

α : Mor | IsSplitMonomorphismpαq $ IsMonomorphismpαq
187

188 B. LOGICAL THEOREMS IN Cap

Sequent 12.

α : Mor | IsSplitEpimorphismpβq $ IsEpimorphismpβq
Sequent 13.

A : Obj | pq $ IsIdempotentpIdentityMorphismpAqq
Sequent 14.

A : Obj | pq $ IsOne
`
IdentityMorphismpAq˘

Sequent 15.

A : Obj | pq $ IsIdenticalToIdentityMorphism
`
IdentityMorphismpAq˘

Sequent 16.

| pq $ IsZero
`

ZeroObjectpqq˘
Sequent 17.

α : Mor, β : Mor | IsMonomorphismpβq
$ IsMonomorphism

`
ProjectionInFactorOfFiberProductprα, βs, 1q˘

Sequent 18.

α : Mor, β : Mor | IsMonomorphismpαq
$ IsMonomorphism

`
ProjectionInFactorOfFiberProductprα, βs, 2q˘

Sequent 19.

α : Mor, β : Mor | IsEpimorphismpαq
$ IsEpimorphism

`
InjectionOfCofactorOfPushoutprα, βs, 2q˘

Sequent 20.

α : Mor, β : Mor | IsEpimorphismpβq
$ IsEpimorphism

`
InjectionOfCofactorOfPushoutprα, βs, 1q˘

Sequent 21.

α : Mor | pq
$ IsMonomorphism

`
KernelEmbeddingpαq˘

Sequent 22.

α : Mor | pq
$ IsEpimorphism

`
CokernelProjectionpαq˘

Sequent 23.

α : Mor, β : Mor | pq
$ IsMonomorphism

`
Equalizerpα, βq˘

2. LOGIC FOR PREADDITIVE CATEGORIES 189

Sequent 24.

α : Mor, β : Mor | pq
$ IsEpimorphism

`
Coequalizerpα, βq˘

Sequent 25.

α : Mor | IsTerminal
`
Sourcepαq˘

$ IsSplitMonomorphismpαq
Sequent 26.

α : Mor | IsInitial
`
Rangepαq˘

$ IsSplitEpimorphismpαq
Sequent 27.

L : ListObj | `@x P L : IsTerminalpxq˘ $ IsTerminal
`

DirectProductpLq˘
Sequent 28.

L : ListObj | `@x P L : IsInitialpxq˘ $ IsInitial
`
CoproductpLq˘

Sequent 29.

α : Mor, β : Mor | IsMonomorphismpαq, IsMonomorphismpβq
$ IsMonomorphism

`
PreComposepα, βq˘

Sequent 30.

α : Mor, β : Mor | IsEpimorphismpαq, IsEpimorphismpβq
$ IsEpimorphism

`
PreComposepα, βq˘

Sequent 31.

α : Mor | IsIsomorphismpαq $ IsIsomorphismpInverseImmutablepαqq
Sequent 32.

α : Mor | pq
$IsMonomorphism

`
ImageEmbeddingpαq˘

2. Logic for preadditive categories

Sequent 33.

a : Obj, b : Obj | pq $ IsZero
`
ZeroMorphismpa, bq˘

Sequent 34.

a : Obj, b : Obj | pq $ IsIdenticalToZeroMorphism
`
ZeroMorphismpa, bq˘

Sequent 35.

a : Obj | pq $ IsZero
`

UniversalMorphismIntoZeroObjectpaq˘

190 B. LOGICAL THEOREMS IN Cap

Sequent 36.

a : Obj | pq $ IsZero
`

UniversalMorphismFromZeroObjectpaq˘
Sequent 37.

α : Mor | IsZeropSourcepαqq $ IsZeropαq
Sequent 38.

α : Mor | IsZeropRangepαqq $ IsZeropαq
Sequent 39.

α : Mor | IsZeropαq, IsMonomorphismpαq $ IsZeropSourcepαqq
Sequent 40.

α : Mor | IsZeropαq, IsEpimorphismpαq $ IsZeropRangepαqq
Sequent 41.

α : Mor, β : Mor | IsZeropαq $ IsZeropPreComposepα, βqq
Sequent 42.

α : Mor, β : Mor | IsZeropβq $ IsZeropPreComposepα, βqq
Sequent 43.

α : Mor | IsInitial
`
KernelObjectpαq˘ $ IsMonomorphismpαq

Sequent 44.

α : Mor | IsMonomorphismpαq $ IsZeropKernelObjectpαqq
Sequent 45.

α : Mor | IsZero
`

KernelEmbeddingpαq˘ $ IsMonomorphismpαq
Sequent 46.

α : Mor | IsMonomorphismpαq $ IsZeropKernelEmbeddingpαqq
Sequent 47.

α : Mor | IsTerminal
`

CokernelObjectpαq˘ $ IsEpimorphismpαq
Sequent 48.

α : Mor | IsEpimorphismpαq $ IsZero
`

CokernelObjectpαq˘
Sequent 49.

α : Mor | IsZero
`

CokernelProjectionpαq˘ $ IsEpimorphismpαq
Sequent 50.

α : Mor | IsEpimorphismpαq $ IsZero
`

CokernelProjectionpαq˘

4. LOGIC FOR ABELIAN CATEGORIES 191

3. Logic for additive categories

Sequent 51.
A : Obj | IsTerminalpAq $ IsZeropAq

Sequent 52.
A : Obj | IsInitialpAq $ IsZeropAq

Sequent 53.
a : Obj | IsZero

`
a

˘ $ IsZero
`
IdentityMorphismpaq˘

Sequent 54.
a : Obj, b : Obj | IsZero

`
a

˘
, IsZero

`
b
˘

$IsZero
`

DirectSumpra, bsq˘
4. Logic for abelian categories

Sequent 55.
α : Mor | IsMonomorphismpαq, IsEpimorphismpαq $ IsIsomorphismpαq

Sequent 56.
α : Mor | IsEpimorphism

`
α

˘
$IsIsomorphism

`
ImageEmbeddingpαq˘

Sequent 57.
α : Mor | IsIsomorphism

`
ImageEmbeddingpαq˘

$IsEpimorphism
`
α

˘
Sequent 58.

α : Mor | IsEpimorphism
`
α

˘
$IsIsomorphism

`
AstrictionToCoimagepαq˘

Sequent 59.
α : Mor | IsIsomorphism

`
AstrictionToCoimagepαq˘

$IsEpimorphism
`
α

˘
Sequent 60.

α : Mor | IsMonomorphism
`
α

˘
$IsIsomorphism

`
CoimageProjectionpαq˘

Sequent 61.
α : Mor | IsIsomorphism

`
CoimageProjectionpαq˘

$IsMonomorphism
`
α

˘

192 B. LOGICAL THEOREMS IN Cap

Sequent 62.
α : Mor | IsMonomorphism

`
α

˘
$IsIsomorphism

`
CoastrictionToImagepαq˘

Sequent 63.
α : Mor | IsIsomorphism

`
CoastrictionToImagepαq˘

$IsMonomorphism
`
α

˘

APPENDIX C

All method names

‚ AdditionForMorphisms
‚ AdditiveInverseForMorphisms
‚ AssociatorLeftToRightWithGivenTensorProducts
‚ AssociatorRightToLeftWithGivenTensorProducts
‚ AstrictionToCoimage
‚ AstrictionToCoimageWithGivenCoimage
‚ BraidingInverseWithGivenTensorProducts
‚ BraidingWithGivenTensorProducts
‚ CoastrictionToImage
‚ CoastrictionToImageWithGivenImageObject
‚ CoevaluationForDualWithGivenTensorProduct
‚ CoevaluationMorphismWithGivenRange
‚ Coimage
‚ CoimageProjection
‚ CoimageProjectionWithGivenCoimage
‚ CokernelColift
‚ CokernelColiftWithGivenCokernelObject
‚ CokernelFunctorialWithGivenCokernelObjects
‚ CokernelObject
‚ CokernelProjection
‚ CokernelProjectionWithGivenCokernelObject
‚ Colift
‚ ColiftAlongEpimorphism
‚ Coproduct
‚ CoproductFunctorialWithGivenCoproducts
‚ DirectProduct
‚ DirectProductFunctorialWithGivenDirectProducts
‚ DirectSum
‚ DirectSumCodiagonalDifference
‚ DirectSumDiagonalDifference
‚ DirectSumFunctorialWithGivenDirectSums
‚ DirectSumProjectionInPushout
‚ DualOnMorphismsWithGivenDuals
‚ DualOnObjects

193

194 C. ALL METHOD NAMES

‚ EvaluationForDualWithGivenTensorProduct
‚ EvaluationMorphismWithGivenSource
‚ FiberProduct
‚ FiberProductEmbeddingInDirectSum
‚ FiberProductFunctorialWithGivenFiberProducts
‚ HorizontalPostCompose
‚ HorizontalPreCompose
‚ IdentityMorphism
‚ IdentityTwoCell
‚ ImageEmbedding
‚ ImageEmbeddingWithGivenImageObject
‚ ImageObject
‚ InitialObject
‚ InitialObjectFunctorial
‚ InjectionOfCofactorOfCoproduct
‚ InjectionOfCofactorOfCoproductWithGivenCoproduct
‚ InjectionOfCofactorOfDirectSum
‚ InjectionOfCofactorOfDirectSumWithGivenDirectSum
‚ InjectionOfCofactorOfPushout
‚ InjectionOfCofactorOfPushoutWithGivenPushout
‚ InternalHomOnMorphismsWithGivenInternalHoms
‚ InternalHomOnObjects
‚ InternalHomToTensorProductAdjunctionMap
‚ InverseImmutable
‚ InverseMorphismFromCoimageToImageWithGivenObjects
‚ IsAutomorphism
‚ IsCodominating
‚ IsCongruentForMorphisms
‚ IsDominating
‚ IsEndomorphism
‚ IsEpimorphism
‚ IsEqualAsFactorobjects
‚ IsEqualAsSubobjects
‚ IsEqualForCacheForMorphisms
‚ IsEqualForCacheForObjects
‚ IsEqualForMorphisms
‚ IsEqualForMorphismsOnMor
‚ IsEqualForObjects
‚ IsIdempotent
‚ IsIdenticalToIdentityMorphism
‚ IsIdenticalToZeroMorphism
‚ IsInitial
‚ IsInjective

C. ALL METHOD NAMES 195

‚ IsIsomorphism
‚ IsMonomorphism
‚ IsOne
‚ IsProjective
‚ IsSplitEpimorphism
‚ IsSplitMonomorphism
‚ IsTerminal
‚ IsWellDefinedForMorphisms
‚ IsWellDefinedForObjects
‚ IsWellDefinedForTwoCells
‚ IsZeroForMorphisms
‚ IsZeroForObjects
‚ IsomorphismFromCoimageToCokernelOfKernel
‚ IsomorphismFromCokernelOfDiagonalDifferenceToPushout
‚ IsomorphismFromCokernelOfKernelToCoimage
‚ IsomorphismFromCoproductToDirectSum
‚ IsomorphismFromDirectProductToDirectSum
‚ IsomorphismFromDirectSumToCoproduct
‚ IsomorphismFromDirectSumToDirectProduct
‚ IsomorphismFromDualToInternalHom
‚ IsomorphismFromFiberProductToKernelOfDiagonalDifference
‚ IsomorphismFromImageObjectToKernelOfCokernel
‚ IsomorphismFromInitialObjectToZeroObject
‚ IsomorphismFromInternalHomToDual
‚ IsomorphismFromInternalHomToObjectWithGivenInternalHom
‚ IsomorphismFromInternalHomToTensorProduct
‚ IsomorphismFromKernelOfCokernelToImageObject
‚ IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct
‚ IsomorphismFromObjectToInternalHomWithGivenInternalHom
‚ IsomorphismFromPushoutToCokernelOfDiagonalDifference
‚ IsomorphismFromTensorProductToInternalHom
‚ IsomorphismFromTerminalObjectToZeroObject
‚ IsomorphismFromZeroObjectToInitialObject
‚ IsomorphismFromZeroObjectToTerminalObject
‚ KernelEmbedding
‚ KernelEmbeddingWithGivenKernelObject
‚ KernelLift
‚ KernelLiftWithGivenKernelObject
‚ KernelObject
‚ KernelObjectFunctorialWithGivenKernelObjects
‚ LambdaElimination
‚ LambdaIntroduction
‚ LeftDistributivityExpandingWithGivenObjects

196 C. ALL METHOD NAMES

‚ LeftDistributivityFactoringWithGivenObjects
‚ LeftUnitorInverseWithGivenTensorProduct
‚ LeftUnitorWithGivenTensorProduct
‚ Lift
‚ LiftAlongMonomorphism
‚ MonoidalPostComposeMorphismWithGivenObjects
‚ MonoidalPreComposeMorphismWithGivenObjects
‚ MorphismFromBidualWithGivenBidual
‚ MorphismFromCoimageToImageWithGivenObjects
‚ MorphismFromInternalHomToTensorProductWithGivenObjects
‚ MorphismFromTensorProductToInternalHomWithGivenObjects
‚ MorphismToBidualWithGivenBidual
‚ PostCompose
‚ PreCompose
‚ ProjectionInFactorOfDirectProduct
‚ ProjectionInFactorOfDirectProductWithGivenDirectProduct
‚ ProjectionInFactorOfDirectSum
‚ ProjectionInFactorOfDirectSumWithGivenDirectSum
‚ ProjectionInFactorOfFiberProduct
‚ ProjectionInFactorOfFiberProductWithGivenFiberProduct
‚ Pushout
‚ PushoutFunctorialWithGivenPushouts
‚ RankMorphism
‚ RightDistributivityExpandingWithGivenObjects
‚ RightDistributivityFactoringWithGivenObjects
‚ RightUnitorInverseWithGivenTensorProduct
‚ RightUnitorWithGivenTensorProduct
‚ TensorProductDualityCompatibilityMorphismWithGivenObjects
‚ TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects
‚ TensorProductInternalHomCompatibilityMorphismWithGivenObjects
‚ TensorProductOnMorphismsWithGivenTensorProducts
‚ TensorProductOnObjects
‚ TensorProductToInternalHomAdjunctionMap
‚ TensorUnit
‚ TerminalObject
‚ TerminalObjectFunctorial
‚ TraceMap
‚ UniversalMorphismFromCoproduct
‚ UniversalMorphismFromCoproductWithGivenCoproduct
‚ UniversalMorphismFromDirectSum
‚ UniversalMorphismFromDirectSumWithGivenDirectSum
‚ UniversalMorphismFromImage
‚ UniversalMorphismFromImageWithGivenImageObject

C. ALL METHOD NAMES 197

‚ UniversalMorphismFromInitialObject
‚ UniversalMorphismFromInitialObjectWithGivenInitialObject
‚ UniversalMorphismFromPushout
‚ UniversalMorphismFromPushoutWithGivenPushout
‚ UniversalMorphismFromZeroObject
‚ UniversalMorphismFromZeroObjectWithGivenZeroObject
‚ UniversalMorphismIntoCoimage
‚ UniversalMorphismIntoCoimageWithGivenCoimage
‚ UniversalMorphismIntoDirectProduct
‚ UniversalMorphismIntoDirectProductWithGivenDirectProduct
‚ UniversalMorphismIntoDirectSum
‚ UniversalMorphismIntoDirectSumWithGivenDirectSum
‚ UniversalMorphismIntoFiberProduct
‚ UniversalMorphismIntoFiberProductWithGivenFiberProduct
‚ UniversalMorphismIntoTerminalObject
‚ UniversalMorphismIntoTerminalObjectWithGivenTerminalObject
‚ UniversalMorphismIntoZeroObject
‚ UniversalMorphismIntoZeroObjectWithGivenZeroObject
‚ UniversalPropertyOfDual
‚ VerticalPostCompose
‚ VerticalPreCompose
‚ ZeroMorphism
‚ ZeroObject

APPENDIX D

Derivations

Derivation index

‚ AdditionForMorphisms
‚ AssociatorLeftToRightWithGivenTensorProducts
‚ AssociatorRightToLeftWithGivenTensorProducts
‚ AstrictionToCoimage
‚ AstrictionToCoimageWithGivenCoimage
‚ BraidingInverseWithGivenTensorProducts
‚ BraidingWithGivenTensorProducts
‚ CoastrictionToImage
‚ CoastrictionToImageWithGivenImageObject
‚ CoevaluationForDualWithGivenTensorProduct
‚ CoevaluationMorphismWithGivenRange
‚ Coimage
‚ CoimageProjection
‚ CokernelColift
‚ CokernelColiftWithGivenCokernelObject
‚ CokernelFunctorialWithGivenCokernelObjects
‚ CokernelObject
‚ ColiftAlongEpimorphism
‚ Coproduct
‚ CoproductFunctorialWithGivenCoproducts
‚ DirectProduct
‚ DirectProductFunctorialWithGivenDirectProducts
‚ DirectSumCodiagonalDifference
‚ DirectSumDiagonalDifference
‚ DirectSumFunctorialWithGivenDirectSums
‚ DirectSumProjectionInPushout
‚ DualOnMorphismsWithGivenDuals
‚ DualOnObjects
‚ EvaluationForDualWithGivenTensorProduct
‚ EvaluationMorphismWithGivenSource
‚ FiberProduct
‚ FiberProductEmbeddingInDirectSum
‚ FiberProductFunctorialWithGivenFiberProducts

199

200 D. DERIVATIONS

‚ HorizontalPostCompose
‚ HorizontalPreCompose
‚ ImageEmbedding
‚ ImageObject
‚ InitialObject
‚ InitialObjectFunctorial
‚ InjectionOfCofactorOfCoproduct
‚ InjectionOfCofactorOfDirectSum
‚ InjectionOfCofactorOfPushout
‚ InternalHomOnMorphismsWithGivenInternalHoms
‚ InternalHomOnObjects
‚ InternalHomToTensorProductAdjunctionMap
‚ InverseImmutable
‚ InverseMorphismFromCoimageToImageWithGivenObjects
‚ IsAutomorphism
‚ IsCodominating
‚ IsDominating
‚ IsEndomorphism
‚ IsEpimorphism
‚ IsEqualAsFactorobjects
‚ IsEqualAsSubobjects
‚ IsEqualForCacheForObjects
‚ IsEqualForMorphismsOnMor
‚ IsIdempotent
‚ IsIdenticalToIdentityMorphism
‚ IsIdenticalToZeroMorphism
‚ IsInitial
‚ IsIsomorphism
‚ IsMonomorphism
‚ IsOne
‚ IsTerminal
‚ IsZeroForMorphisms
‚ IsZeroForObjects
‚ IsomorphismFromCoimageToCokernelOfKernel
‚ IsomorphismFromCokernelOfDiagonalDifferenceToPushout
‚ IsomorphismFromCokernelOfKernelToCoimage
‚ IsomorphismFromCoproductToDirectSum
‚ IsomorphismFromDirectProductToDirectSum
‚ IsomorphismFromDirectSumToCoproduct
‚ IsomorphismFromDirectSumToDirectProduct
‚ IsomorphismFromFiberProductToKernelOfDiagonalDifference
‚ IsomorphismFromImageObjectToKernelOfCokernel
‚ IsomorphismFromInitialObjectToZeroObject

DERIVATION INDEX 201

‚ IsomorphismFromInternalHomToObjectWithGivenInternalHom
‚ IsomorphismFromInternalHomToTensorProduct
‚ IsomorphismFromKernelOfCokernelToImageObject
‚ IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct
‚ IsomorphismFromObjectToInternalHomWithGivenInternalHom
‚ IsomorphismFromPushoutToCokernelOfDiagonalDifference
‚ IsomorphismFromTensorProductToInternalHom
‚ IsomorphismFromTerminalObjectToZeroObject
‚ IsomorphismFromZeroObjectToInitialObject
‚ IsomorphismFromZeroObjectToTerminalObject
‚ KernelLift
‚ KernelLiftWithGivenKernelObject
‚ KernelObject
‚ KernelObjectFunctorialWithGivenKernelObjects
‚ LambdaElimination
‚ LambdaIntroduction
‚ LeftDistributivityExpandingWithGivenObjects
‚ LeftDistributivityFactoringWithGivenObjects
‚ LeftUnitorInverseWithGivenTensorProduct
‚ LeftUnitorWithGivenTensorProduct
‚ LiftAlongMonomorphism
‚ MonoidalPostComposeMorphismWithGivenObjects
‚ MonoidalPreComposeMorphismWithGivenObjects
‚ MorphismFromBidualWithGivenBidual
‚ MorphismFromCoimageToImageWithGivenObjects
‚ MorphismFromInternalHomToTensorProductWithGivenObjects
‚ MorphismFromTensorProductToInternalHomWithGivenObjects
‚ MorphismToBidualWithGivenBidual
‚ PostCompose
‚ PreCompose
‚ ProjectionInFactorOfDirectProduct
‚ ProjectionInFactorOfDirectSum
‚ ProjectionInFactorOfFiberProduct
‚ Pushout
‚ PushoutFunctorialWithGivenPushouts
‚ RankMorphism
‚ RightDistributivityExpandingWithGivenObjects
‚ RightDistributivityFactoringWithGivenObjects
‚ RightUnitorInverseWithGivenTensorProduct
‚ RightUnitorWithGivenTensorProduct
‚ TensorProductDualityCompatibilityMorphismWithGivenObjects
‚ TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects
‚ TensorProductInternalHomCompatibilityMorphismWithGivenObjects

202 D. DERIVATIONS

‚ TensorProductToInternalHomAdjunctionMap
‚ TerminalObject
‚ TerminalObjectFunctorial
‚ TraceMap
‚ UniversalMorphismFromCoproduct
‚ UniversalMorphismFromDirectSum
‚ UniversalMorphismFromDirectSumWithGivenDirectSum
‚ UniversalMorphismFromImage
‚ UniversalMorphismFromImageWithGivenImageObject
‚ UniversalMorphismFromInitialObject
‚ UniversalMorphismFromInitialObjectWithGivenInitialObject
‚ UniversalMorphismFromPushout
‚ UniversalMorphismFromZeroObject
‚ UniversalMorphismIntoCoimage
‚ UniversalMorphismIntoCoimageWithGivenCoimage
‚ UniversalMorphismIntoDirectProduct
‚ UniversalMorphismIntoDirectSum
‚ UniversalMorphismIntoDirectSumWithGivenDirectSum
‚ UniversalMorphismIntoFiberProduct
‚ UniversalMorphismIntoTerminalObject
‚ UniversalMorphismIntoTerminalObjectWithGivenTerminalObject
‚ UniversalMorphismIntoZeroObject
‚ UniversalMorphismIntoZeroObjectWithGivenZeroObject
‚ UniversalPropertyOfDual
‚ VerticalPostCompose
‚ VerticalPreCompose
‚ ZeroMorphism

Derivations for AdditionForMorphisms

AdditionForMorphisms(mor1, mor2) as the composition of (mor1,mor2)
with the codiagonal morphism

This derivation is for additive categories. This derivation uses:
‚ UniversalMorphismIntoDirectSum ˆ 1
‚ IdentityMorphism ˆ 1
‚ UniversalMorphismFromDirectSum ˆ 1
‚ PreCompose ˆ 1

function (mor1, mor2)
local return_value, B, identity_morphism_B,
componentwise_morphism, addition_morphism;
B := Range(mor1);
componentwise_morphism := UniversalMorphismIntoDirectSum(mor1,

mor2);

DERIVATIONS 203

identity_morphism_B := IdentityMorphism(B);
addition_morphism := UniversalMorphismFromDirectSum(

identity_morphism_B, identity_morphism_B);
return PreCompose(componentwise_morphism, addition_morphism);

end;

Back to index

Derivations for AssociatorLeftToRightWithGivenTensorProducts

AssociatorLeftToRightWithGivenTensorProducts as the identity morphism
This derivation is for all categories. This derivation uses:

‚ IdentityMorphism ˆ 1
function (left_associated_object, object_1, object_2, object_3,

right_associated_object)
return IdentityMorphism(left_associated_object);

end;

Back to index
AssociatorLeftToRightWithGivenTensorProducts as the inverse of Associa-

torRightToLeftWithGivenTensorProducts
This derivation is for all categories. This derivation uses:

‚ AssociatorRightToLeftWithGivenTensorProducts ˆ 1
function (left_associated_object, object_1, object_2, object_3,

right_associated_object)
return
Inverse(AssociatorRightToLeftWithGivenTensorProducts(

right_associated_object, object_1, object_2, object_3,
left_associated_object));

end;

Back to index

Derivations for AssociatorRightToLeftWithGivenTensorProducts

AssociatorRightToLeft as the identity morphism
This derivation is for all categories. This derivation uses:

‚ IdentityMorphism ˆ 1
function (right_associated_object, object_1, object_2, object_3,

left_associated_object)
return IdentityMorphism(right_associated_object);

end;

204 D. DERIVATIONS

Back to index
AssociatorRightToLeftWithGivenTensorProducts as the inverse of Associa-

torLeftToRightWithGivenTensorProducts
This derivation is for all categories. This derivation uses:

‚ AssociatorLeftToRightWithGivenTensorProducts ˆ 1
function (right_associated_object, object_1, object_2, object_3,

left_associated_object)
return
Inverse(AssociatorLeftToRightWithGivenTensorProducts(

left_associated_object, object_1, object_2, object_3,
right_associated_object));

end;

Back to index

Derivations for AstrictionToCoimage

AstrictionToCoimage using that coimage projection can be seen as a coker-
nel

This derivation is for all categories. This derivation uses:
‚ ColiftAlongEpimorphism ˆ 1
‚ CoimageProjectionWithGivenCoimage ˆ 1
‚ CoimageProjection ˆ 1

function (morphism)
local coimage_projection;
coimage_projection := CoimageProjection(morphism);
return ColiftAlongEpimorphism(coimage_projection, morphism);

end;

Back to index

Derivations for AstrictionToCoimageWithGivenCoimage

AstrictionToCoimage using that coimage projection can be seen as a coker-
nel

This derivation is for all categories. This derivation uses:
‚ ColiftAlongEpimorphism ˆ 1
‚ CoimageProjectionWithGivenCoimage ˆ 1
‚ CoimageProjection ˆ 1

function (morphism, coimage)
local coimage_projection;
coimage_projection := CoimageProjectionWithGivenCoimage(

morphism, coimage);

DERIVATIONS 205

return ColiftAlongEpimorphism(coimage_projection, morphism);
end;

Back to index

Derivations for BraidingInverseWithGivenTensorProducts

BraidingInverseWithGivenTensorProducts using BraidingWithGivenTensor-
Products

This derivation is for symmetric monoidal categories. This derivation uses:
‚ BraidingWithGivenTensorProducts ˆ 1

function (object_2_tensored_object_1, object_1, object_2,
object_1_tensored_object_2)
return BraidingWithGivenTensorProducts(

object_2_tensored_object_1, object_2, object_1,
object_1_tensored_object_2);

end;

Back to index
BraidingInverseWithGivenTensorProducts as the inverse of the braiding
This derivation is for braided monoidal categories. This derivation uses:

‚ BraidingWithGivenTensorProducts ˆ 1
‚ TensorProductOnObjects ˆ 2

function (object_2_tensored_object_1, object_1, object_2,
object_1_tensored_object_2)
return Inverse(Braiding(object_1, object_2));

end;

Back to index

Derivations for BraidingWithGivenTensorProducts

BraidingWithGivenTensorProducts using BraidingInverseWithGivenTensor-
Products

This derivation is for symmetric monoidal categories. This derivation uses:
‚ BraidingInverseWithGivenTensorProducts ˆ 1

function (object_1_tensored_object_2, object_1, object_2,
object_2_tensored_object_1)
return BraidingInverseWithGivenTensorProducts(

object_1_tensored_object_2, object_2, object_1,
object_2_tensored_object_1);

end;

206 D. DERIVATIONS

Back to index
BraidingWithGivenTensorProducts as the inverse of BraidingInverse
This derivation is for braided monoidal categories. This derivation uses:

‚ BraidingInverseWithGivenTensorProducts ˆ 1
‚ TensorProductOnObjects ˆ 2

function (object_1_tensored_object_2, object_1, object_2,
object_2_tensored_object_1)
return Inverse(BraidingInverse(object_1, object_2));

end;

Back to index

Derivations for CoastrictionToImage

CoastrictionToImage using that image embedding can be seen as a kernel
This derivation is for all categories. This derivation uses:

‚ LiftAlongMonomorphism ˆ 1
‚ ImageEmbeddingWithGivenImageObject ˆ 1
‚ ImageEmbedding ˆ 1

function (morphism)
local image_embedding;
image_embedding := ImageEmbedding(morphism);
return LiftAlongMonomorphism(image_embedding, morphism);

end;

Back to index

Derivations for CoastrictionToImageWithGivenImageObject

CoastrictionToImage using that image embedding can be seen as a kernel
This derivation is for all categories. This derivation uses:

‚ LiftAlongMonomorphism ˆ 1
‚ ImageEmbeddingWithGivenImageObject ˆ 1
‚ ImageEmbedding ˆ 1

function (morphism, image)
local image_embedding;
image_embedding := ImageEmbeddingWithGivenImageObject(

morphism, image);
return LiftAlongMonomorphism(image_embedding, morphism);

end;

Back to index

DERIVATIONS 207

Derivations for CoevaluationForDualWithGivenTensorProduct

CoevaluationForDualWithGivenTensorProduct using LambdaIntroduction
on the identity and IsomorphismFromInternalHomToTensorProduct

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ DualOnObjects ˆ 1
‚ LambdaIntroduction ˆ 1
‚ PreCompose ˆ 2
‚ IsomorphismFromInternalHomToTensorProduct ˆ 1
‚ BraidingWithGivenTensorProducts ˆ 1
‚ TensorProductOnObjects ˆ 2

function (unit, object, tensor_object)
local morphism;
morphism := IdentityMorphism(object);
morphism := LambdaIntroduction(morphism);
morphism
:= PreCompose(morphism,

IsomorphismFromInternalHomToTensorProduct(object, object));
morphism
:= PreCompose(morphism, Braiding(DualOnObjects(object),

object));
return morphism;

end;

Back to index

Derivations for CoevaluationMorphismWithGivenRange

CoevaluationMorphismWithGivenRange using the rigidity of the monoidal
category

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 2
‚ DualOnObjects ˆ 1
‚ PreCompose ˆ 5
‚ TensorProductOnObjects ˆ 6
‚ IsomorphismFromTensorProductToInternalHom ˆ 1
‚ LeftUnitorInverseWithGivenTensorProduct ˆ 1
‚ TensorUnit ˆ 1
‚ CoevaluationForDualWithGivenTensorProduct ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 3
‚ AssociatorLeftToRightWithGivenTensorProducts ˆ 1
‚ BraidingWithGivenTensorProducts ˆ 2

208 D. DERIVATIONS

function (object_1, object_2, internal_hom)
local morphism, dual_2, id_1;
dual_2 := DualOnObjects(object_2);
id_1 := IdentityMorphism(object_1);
morphism := LeftUnitorInverse(object_1);
morphism
:= PreCompose(morphism,

TensorProductOnMorphisms(CoevaluationForDual(object_2),
id_1));

morphism
:= PreCompose(morphism,

TensorProductOnMorphisms(Braiding(object_2, dual_2), id_1
));

morphism
:= PreCompose(morphism,

AssociatorLeftToRight(dual_2, object_2, object_1));
morphism
:= PreCompose(morphism,

TensorProductOnMorphisms(IdentityMorphism(dual_2),
Braiding(object_2, object_1)));

morphism
:= PreCompose(morphism,

IsomorphismFromTensorProductToInternalHom(object_2,
TensorProductOnObjects(object_1, object_2)));

return morphism;
end;

Back to index
CoevaluationMorphismWithGivenRange using the rigidity of the monoidal

category
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

‚ IdentityMorphism ˆ 2
‚ DualOnObjects ˆ 1
‚ PreCompose ˆ 3
‚ TensorProductOnObjects ˆ 6
‚ IsomorphismFromTensorProductToInternalHom ˆ 1
‚ CoevaluationForDualWithGivenTensorProduct ˆ 1
‚ TensorUnit ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 3
‚ BraidingWithGivenTensorProducts ˆ 2

DERIVATIONS 209

function (object_1, object_2, internal_hom)
local morphism, dual_2, id_1;
dual_2 := DualOnObjects(object_2);
id_1 := IdentityMorphism(object_1);
morphism
:= TensorProductOnMorphisms(CoevaluationForDual(object_2),

id_1);
morphism
:= PreCompose(morphism,

TensorProductOnMorphisms(Braiding(object_2, dual_2), id_1
));

morphism
:= PreCompose(morphism,

TensorProductOnMorphisms(IdentityMorphism(dual_2),
Braiding(object_2, object_1)));

morphism
:= PreCompose(morphism,

IsomorphismFromTensorProductToInternalHom(object_2,
TensorProductOnObjects(object_1, object_2)));

return morphism;
end;

Back to index
CoevaluationMorphismWithGivenRange using the tensor hom adjunction

on the identity
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IdentityMorphism ˆ 1
‚ TensorProductOnObjects ˆ 1
‚ TensorProductToInternalHomAdjunctionMap ˆ 1

function (object_1, object_2, internal_hom)
return TensorProductToInternalHomAdjunctionMap(object_1,

object_2,
IdentityMorphism(TensorProductOnObjects(object_1, object_2

)));
end;

Back to index

Derivations for Coimage

Coimage as the range of CoimageProjection
This derivation is for all categories. This derivation uses:

210 D. DERIVATIONS

‚ CoimageProjection ˆ 1
function (morphism)

return Range(CoimageProjection(morphism));
end;

Back to index
Coimage as the range of IsomorphismFromCokernelOfKernelToCoimage
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromCokernelOfKernelToCoimage ˆ 1
function (morphism)

return
Range(IsomorphismFromCokernelOfKernelToCoimage(morphism));

end;

Back to index
Coimage as the source of IsomorphismFromCoimageToCokernelOfKernel
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromCoimageToCokernelOfKernel ˆ 1
function (morphism)

return
Source(IsomorphismFromCoimageToCokernelOfKernel(morphism));

end;

Back to index

Derivations for CoimageProjection

CoimageProjection as the cokernel projection of the kernel embedding
This derivation is for Abelian categories. This derivation uses:

‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ KernelEmbedding ˆ 1
‚ CokernelProjection ˆ 1
‚ IsomorphismFromCokernelOfKernelToCoimage ˆ 1
‚ PreCompose ˆ 1

function (mor)
local coimage_projection;
coimage_projection
:= CokernelProjection(KernelEmbedding(mor));

return PreCompose(coimage_projection,
IsomorphismFromCokernelOfKernelToCoimage(mor));

end;

DERIVATIONS 211

Back to index

Derivations for CokernelColift

CokernelColift using ColiftAlongEpimorphism and CokernelProjection
This derivation is for all categories. This derivation uses:

‚ ColiftAlongEpimorphism ˆ 1
‚ CokernelProjectionWithGivenCokernelObject ˆ 1
‚ CokernelProjection ˆ 1

function (mor, test_morphism)
return ColiftAlongEpimorphism(CokernelProjection(mor),

test_morphism);
end;

Back to index

Derivations for CokernelColiftWithGivenCokernelObject

CokernelColift using ColiftAlongEpimorphism and CokernelProjection
This derivation is for all categories. This derivation uses:

‚ ColiftAlongEpimorphism ˆ 1
‚ CokernelProjectionWithGivenCokernelObject ˆ 1
‚ CokernelProjection ˆ 1

function (mor, test_morphism, cokernel)
return
ColiftAlongEpimorphism(

CokernelProjectionWithGivenCokernelObject(mor, cokernel),
test_morphism);

end;

Back to index

Derivations for CokernelFunctorialWithGivenCokernelObjects

CokernelFunctorialWithGivenCokernelObjects using the universality of the
cokernel

This derivation is for all categories. This derivation uses:
‚ CokernelColift ˆ 1
‚ PreCompose ˆ 1
‚ CokernelProjection ˆ 1

function (cokernel_alpha, alpha, nu, alpha_p, cokernel_alpha_p)
return
CokernelColift(alpha,

212 D. DERIVATIONS

PreCompose(nu, CokernelProjection(alpha_p)));
end;

Back to index

Derivations for CokernelObject

CokernelObject as the range of CokernelProjection
This derivation is for all categories. This derivation uses:

‚ CokernelProjection ˆ 1
function (mor)

return Range(CokernelProjection(mor));
end;

Back to index

Derivations for ColiftAlongEpimorphism

ColiftAlongEpimorphism using Colift
This derivation is for all categories. This derivation uses:

‚ Colift ˆ 1
function (alpha, beta)

return Colift(alpha, beta);
end;

Back to index

This derivation is for all categories. This derivation uses:
‚ KernelEmbedding ˆ 1
‚ CokernelColift ˆ 2
‚ PreCompose ˆ 1
‚ InverseImmutable ˆ 1

function (epimorphism, test_morphism)
local kernel_emb, cokernel_colift_to_range_of_epimorphism,
cokernel_colift_to_range_of_test_morphism, inverse;
kernel_emb := KernelEmbedding(epimorphism);
cokernel_colift_to_range_of_epimorphism
:= CokernelColift(kernel_emb, epimorphism);

cokernel_colift_to_range_of_test_morphism
:= CokernelColift(kernel_emb, test_morphism);

return
PreCompose(Inverse(cokernel_colift_to_range_of_epimorphism)

DERIVATIONS 213

, cokernel_colift_to_range_of_test_morphism);
end;

Back to index

Derivations for Coproduct

Coproduct as the range of the first injection
This derivation is for all categories. This derivation uses:

‚ InjectionOfCofactorOfCoproduct ˆ 1
function (object_product_list)

return
Range(InjectionOfCofactorOfCoproduct(object_product_list, 1

));
end;

Back to index
Coproduct as the range of IsomorphismFromDirectSumToCoproduct
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromDirectSumToCoproduct ˆ 1
function (object_product_list)

return
Range(IsomorphismFromDirectSumToCoproduct(

object_product_list));
end;

Back to index

Derivations for CoproductFunctorialWithGivenCoproducts

CoproductFunctorialWithGivenCoproducts using the universality of the co-
product

This derivation is for all categories. This derivation uses:
‚ PreCompose ˆ 2
‚ InjectionOfCofactorOfCoproduct ˆ 2
‚ UniversalMorphismFromCoproduct ˆ 1

function (coproduct_source, morphism_list, coproduct_range)
local coproduct_diagram, sink, diagram;
coproduct_diagram := List(morphism_list, function (mor)

return Range(mor);
end);

sink := List([1 .. Length(morphism_list)], function (i)
return
PreCompose(morphism_list[i],

214 D. DERIVATIONS

InjectionOfCofactorOfCoproduct(coproduct_diagram, i
));

end);
diagram := List(morphism_list, function (mor)

return Source(mor);
end);

return UniversalMorphismFromCoproduct(diagram, sink);
end;

Back to index

Derivations for DirectProduct

DirectProduct as Source of ProjectionInFactorOfDirectProduct
This derivation is for all categories. This derivation uses:

‚ ProjectionInFactorOfDirectProduct ˆ 1
function (object_product_list)

return
Source(ProjectionInFactorOfDirectProduct(object_product_list

, 1));
end;

Back to index
DirectProduct as the source of IsomorphismFromDirectProductToDirect-

Sum
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromDirectProductToDirectSum ˆ 1
function (object_product_list)

return
Source(IsomorphismFromDirectProductToDirectSum(

object_product_list));
end;

Back to index

Derivations for DirectProductFunctorialWithGivenDirectProducts

DirectProductFunctorialWithGivenDirectProducts using universality of di-
rect product

This derivation is for all categories. This derivation uses:
‚ PreCompose ˆ 2
‚ ProjectionInFactorOfDirectProduct ˆ 2
‚ UniversalMorphismIntoDirectProduct ˆ 1

DERIVATIONS 215

function (direct_product_source, morphism_list,
direct_product_range)
local direct_product_diagram, source, diagram;
direct_product_diagram := List(morphism_list, function (mor)

return Source(mor);
end);

source := List([1 .. Length(morphism_list)], function (i)
return
PreCompose(ProjectionInFactorOfDirectProduct(

direct_product_diagram, i), morphism_list[i]);
end);

diagram := List(morphism_list, function (mor)
return Range(mor);

end);
return UniversalMorphismIntoDirectProduct(diagram, source);

end;

Back to index

Derivations for DirectSumCodiagonalDifference

DirectSumCodiagonalDifference using the operations defining this morphi-
sm

This derivation is for all categories. This derivation uses:
‚ InjectionOfCofactorOfDirectSum ˆ 2
‚ PreCompose ˆ 2
‚ UniversalMorphismFromDirectSum ˆ 2
‚ AdditiveInverseForMorphisms ˆ 2
‚ AdditionForMorphisms ˆ 2
‚ UniversalMorphismFromZeroObject ˆ 1

function (diagram)
local cobase, direct_sum_diagram, number_of_morphisms,
list_of_morphisms, mor1, mor2;
direct_sum_diagram := List(diagram, Range);
number_of_morphisms := Length(diagram);
list_of_morphisms := List([1 .. number_of_morphisms],

function (i)
return
PreCompose(diagram[i],

InjectionOfCofactorOfDirectSum(direct_sum_diagram,
i));

end);

216 D. DERIVATIONS

if number_of_morphisms = 1 then
return UniversalMorphismFromZeroObject(

Range(list_of_morphisms[1]));
fi;
mor1 := CallFuncList(UniversalMorphismFromDirectSum,

list_of_morphisms{[1 .. number_of_morphisms - 1]});
mor2 := CallFuncList(UniversalMorphismFromDirectSum,

list_of_morphisms{[2 .. number_of_morphisms]});
return mor1 - mor2;

end;

Back to index

Derivations for DirectSumDiagonalDifference

DirectSumDiagonalDifference using the operations defining this morphism
This derivation is for all categories. This derivation uses:

‚ PreCompose ˆ 2
‚ ProjectionInFactorOfDirectSum ˆ 2
‚ UniversalMorphismIntoDirectSum ˆ 2
‚ AdditiveInverseForMorphisms ˆ 2
‚ AdditionForMorphisms ˆ 2
‚ UniversalMorphismIntoZeroObject ˆ 1

function (diagram)
local direct_sum_diagram, number_of_morphisms,
list_of_morphisms, mor1, mor2;
direct_sum_diagram := List(diagram, Source);
number_of_morphisms := Length(diagram);
list_of_morphisms := List([1 .. number_of_morphisms],

function (i)
return
PreCompose(

ProjectionInFactorOfDirectSum(direct_sum_diagram, i
), diagram[i]);

end);
if number_of_morphisms = 1 then

return UniversalMorphismIntoZeroObject(
Source(list_of_morphisms[1]));

fi;
mor1 := CallFuncList(UniversalMorphismIntoDirectSum,

list_of_morphisms{[1 .. number_of_morphisms - 1]});
mor2 := CallFuncList(UniversalMorphismIntoDirectSum,

list_of_morphisms{[2 .. number_of_morphisms]});

DERIVATIONS 217

return mor1 - mor2;
end;

Back to index

Derivations for DirectSumFunctorialWithGivenDirectSums

DirectSumFunctorialWithGivenDirectSums using the universal morphism
into direct sum

This derivation is for additive categories. This derivation uses:
‚ PreCompose ˆ 2
‚ ProjectionInFactorOfDirectSum ˆ 2
‚ UniversalMorphismIntoDirectSum ˆ 1

function (direct_sum_source, morphism_list, direct_sum_range)
local direct_sum_diagram, source, diagram;
direct_sum_diagram := List(morphism_list, function (mor)

return Source(mor);
end);

source := List([1 .. Length(morphism_list)], function (i)
return
PreCompose(

ProjectionInFactorOfDirectSum(direct_sum_diagram, i
), morphism_list[i]);

end);
diagram := List(morphism_list, function (mor)

return Range(mor);
end);

return UniversalMorphismIntoDirectSum(diagram, source);
end;

Back to index
DirectSumFunctorialWithGivenDirectSums using the universal morphism

from direct sum
This derivation is for additive categories. This derivation uses:

‚ PreCompose ˆ 2
‚ InjectionOfCofactorOfDirectSum ˆ 2
‚ UniversalMorphismFromDirectSum ˆ 1

function (direct_sum_source, morphism_list, direct_sum_range)
local direct_sum_diagram, sink, diagram;
direct_sum_diagram := List(morphism_list, function (mor)

return Range(mor);
end);

sink := List([1 .. Length(morphism_list)], function (i)

218 D. DERIVATIONS

return
PreCompose(morphism_list[i],

InjectionOfCofactorOfDirectSum(direct_sum_diagram,
i));

end);
diagram := List(morphism_list, function (mor)

return Source(mor);
end);

return UniversalMorphismFromDirectSum(diagram, sink);
end;

Back to index

Derivations for DirectSumProjectionInPushout

DirectSumProjectionInPushout as the cokernel projection of DirectSum-
CodiagonalDifference

This derivation is for all categories. This derivation uses:
‚ CokernelProjection ˆ 1
‚ DirectSumCodiagonalDifference ˆ 1
‚ IsomorphismFromCokernelOfDiagonalDifferenceToPushout ˆ 1
‚ PreCompose ˆ 1

function (diagram)
local cokernel_proj_of_diagonal_difference;
cokernel_proj_of_diagonal_difference
:= CokernelProjection(DirectSumCodiagonalDifference(diagram

));
return PreCompose(cokernel_proj_of_diagonal_difference,

IsomorphismFromCokernelOfDiagonalDifferenceToPushout(
diagram));

end;

Back to index
DirectSumProjectionInPushout using the universal property of the direct

sum
This derivation is for all categories. This derivation uses:

‚ UniversalMorphismFromDirectSum ˆ 1
‚ InjectionOfCofactorOfPushout ˆ 2

function (diagram)
local ranges_of_diagram, test_sink;
ranges_of_diagram := List(diagram, Range);
test_sink := List([1 .. Length(diagram)], function (i)

return InjectionOfCofactorOfPushout(diagram, i);

DERIVATIONS 219

end);
return UniversalMorphismFromDirectSum(ranges_of_diagram,

test_sink);
end;

Back to index

Derivations for DualOnMorphismsWithGivenDuals

DualOnMorphismsWithGivenDuals using InternalHomOnMorphisms and
IsomorphismFromDualToInternalHom

This derivation is for symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ TensorUnit ˆ 1
‚ IsomorphismFromDualToInternalHom ˆ 1
‚ IsomorphismFromInternalHomToDual ˆ 1
‚ PreCompose ˆ 2
‚ InternalHomOnMorphismsWithGivenInternalHoms ˆ 1
‚ InternalHomOnObjects ˆ 2

function (new_source, morphism, new_range)
local category, result_morphism;
category := CapCategory(morphism);
result_morphism := InternalHomOnMorphisms(morphism,

IdentityMorphism(TensorUnit(category)));
result_morphism
:=
PreCompose(IsomorphismFromDualToInternalHom(

Range(morphism)), result_morphism);
result_morphism := PreCompose(result_morphism,

IsomorphismFromInternalHomToDual(Source(morphism)));
return result_morphism;

end;

Back to index

Derivations for DualOnObjects

DualOnObjects as the source of IsomorphismFromDualToInternalHom
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IsomorphismFromDualToInternalHom ˆ 1
function (object)

return Source(IsomorphismFromDualToInternalHom(object));
end;

220 D. DERIVATIONS

Back to index
DualOnObjects as the range of IsomorphismFromInternalHomToDual
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IsomorphismFromInternalHomToDual ˆ 1
function (object)

return Range(IsomorphismFromInternalHomToDual(object));
end;

Back to index

Derivations for EvaluationForDualWithGivenTensorProduct

EvaluationForDualWithGivenTensorProduct using the tensor hom adjunc-
tion and IsomorphismFromDualToInternalHom

This derivation is for symmetric closed monoidal categories. This derivation uses:
‚ IsomorphismFromDualToInternalHom ˆ 1
‚ InternalHomToTensorProductAdjunctionMap ˆ 1

function (tensor_object, object, unit)
return InternalHomToTensorProductAdjunctionMap(object, unit,

IsomorphismFromDualToInternalHom(object));
end;

Back to index

Derivations for EvaluationMorphismWithGivenSource

EvaluationMorphismWithGivenSource using the rigidity of the monoidal
category

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 3
‚ DualOnObjects ˆ 2
‚ PreCompose ˆ 4
‚ IsomorphismFromInternalHomToTensorProduct ˆ 1
‚ RightUnitorWithGivenTensorProduct ˆ 1
‚ TensorProductOnObjects ˆ 6
‚ TensorUnit ˆ 1
‚ EvaluationForDualWithGivenTensorProduct ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 3
‚ AssociatorLeftToRightWithGivenTensorProducts ˆ 1
‚ BraidingWithGivenTensorProducts ˆ 1

function (object_1, object_2, internal_hom_tensored_object_1)
local morphism;
morphism

DERIVATIONS 221

:= TensorProductOnMorphisms(
IsomorphismFromInternalHomToTensorProduct(object_1,

object_2), IdentityMorphism(object_1));
morphism
:= PreCompose(morphism,

TensorProductOnMorphisms(
Braiding(DualOnObjects(object_1), object_2),
IdentityMorphism(object_1)));

morphism
:= PreCompose(morphism, AssociatorLeftToRight(object_2,

DualOnObjects(object_1), object_1));
morphism
:= PreCompose(morphism,

TensorProductOnMorphisms(IdentityMorphism(object_2),
EvaluationForDual(object_1)));

morphism := PreCompose(morphism, RightUnitor(object_2));
return morphism;

end;

Back to index
EvaluationMorphismWithGivenSource using the rigidity and strictness of

the monoidal category
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

‚ IdentityMorphism ˆ 3
‚ DualOnObjects ˆ 1
‚ PreCompose ˆ 2
‚ IsomorphismFromInternalHomToTensorProduct ˆ 1
‚ EvaluationForDualWithGivenTensorProduct ˆ 1
‚ TensorProductOnObjects ˆ 6
‚ TensorUnit ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 3
‚ BraidingWithGivenTensorProducts ˆ 1

function (object_1, object_2, internal_hom_tensored_object_1)
local morphism;
morphism
:= TensorProductOnMorphisms(

IsomorphismFromInternalHomToTensorProduct(object_1,
object_2), IdentityMorphism(object_1));

morphism
:= PreCompose(morphism,

TensorProductOnMorphisms(
Braiding(DualOnObjects(object_1), object_2),

222 D. DERIVATIONS

IdentityMorphism(object_1)));
morphism
:= PreCompose(morphism,

TensorProductOnMorphisms(IdentityMorphism(object_2),
EvaluationForDual(object_1)));

return morphism;
end;

Back to index
EvaluationMorphismWithGivenSource using the tenor hom adjunction on

the identity
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IdentityMorphism ˆ 1
‚ InternalHomOnObjects ˆ 1
‚ InternalHomToTensorProductAdjunctionMap ˆ 1

function (object_1, object_2, tensor_object)
return InternalHomToTensorProductAdjunctionMap(object_1,

object_2,
IdentityMorphism(InternalHomOnObjects(object_1, object_2)

));
end;

Back to index

Derivations for FiberProduct

FiberProduct as the source of FiberProductEmbeddingInDirectSum
This derivation is for all categories. This derivation uses:

‚ FiberProductEmbeddingInDirectSum ˆ 1
function (diagram)

return Source(FiberProductEmbeddingInDirectSum(diagram));
end;

Back to index

Derivations for FiberProductEmbeddingInDirectSum

FiberProductEmbeddingInDirectSum as the kernel embedding of Direct-
SumDiagonalDifference

This derivation is for all categories. This derivation uses:
‚ KernelEmbedding ˆ 1
‚ DirectSumDiagonalDifference ˆ 1
‚ IsomorphismFromFiberProductToKernelOfDiagonalDifference ˆ 1
‚ PreCompose ˆ 1

DERIVATIONS 223

function (diagram)
local kernel_of_diagonal_difference;
kernel_of_diagonal_difference
:= KernelEmbedding(DirectSumDiagonalDifference(diagram));

return
PreCompose(

IsomorphismFromFiberProductToKernelOfDiagonalDifference(
diagram), kernel_of_diagonal_difference);

end;

Back to index
FiberProductEmbeddingInDirectSum using the universal property of the

direct sum
This derivation is for all categories. This derivation uses:

‚ UniversalMorphismIntoDirectSum ˆ 1
‚ ProjectionInFactorOfFiberProduct ˆ 2

function (diagram)
local sources_of_diagram, test_source;
sources_of_diagram := List(diagram, Source);
test_source := List([1 .. Length(diagram)], function (i)

return ProjectionInFactorOfFiberProduct(diagram, i);
end);

return UniversalMorphismIntoDirectSum(sources_of_diagram,
test_source);

end;

Back to index

Derivations for FiberProductFunctorialWithGivenFiberProducts

FiberProductFunctorialWithGivenFiberProducts using the universality of
the fiber product

This derivation is for all categories. This derivation uses:
‚ PreCompose ˆ 2
‚ ProjectionInFactorOfFiberProduct ˆ 2
‚ UniversalMorphismIntoFiberProduct ˆ 1

function (fiber_product_source, morphism_of_morphisms,
fiber_product_range)
local pullback_diagram, source, diagram;
pullback_diagram := List(morphism_of_morphisms,

function (mor)
return mor[1];

224 D. DERIVATIONS

end);
source := List([1 .. Length(morphism_of_morphisms)],

function (i)
return
PreCompose(ProjectionInFactorOfFiberProduct(

pullback_diagram, i), morphism_of_morphisms[i][2]
);

end);
diagram := List(morphism_of_morphisms, function (mor)

return mor[3];
end);

return UniversalMorphismIntoFiberProduct(diagram, source);
end;

Back to index

Derivations for HorizontalPostCompose

HorizontalPostCompose using HorizontalPreCompose
This derivation is for all categories. This derivation uses:

‚ HorizontalPreCompose ˆ 1
function (twocell_right, twocell_left)

return HorizontalPreCompose(twocell_left, twocell_right);
end;

Back to index

Derivations for HorizontalPreCompose

HorizontalPreCompose using HorizontalPostCompose
This derivation is for all categories. This derivation uses:

‚ HorizontalPostCompose ˆ 1
function (twocell_left, twocell_right)

return HorizontalPostCompose(twocell_right, twocell_left);
end;

Back to index

Derivations for ImageEmbedding

ImageEmbedding as the kernel embedding of the cokernel projection
This derivation is for Abelian categories. This derivation uses:

‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ KernelEmbedding ˆ 1

DERIVATIONS 225

‚ CokernelProjection ˆ 1
‚ IsomorphismFromImageObjectToKernelOfCokernel ˆ 1
‚ PreCompose ˆ 1

function (mor)
local image_embedding;
image_embedding := KernelEmbedding(CokernelProjection(mor));
return
PreCompose(IsomorphismFromImageObjectToKernelOfCokernel(mor)

, image_embedding);
end;

Back to index

Derivations for ImageObject

ImageObject as the source of ImageEmbedding
This derivation is for all categories. This derivation uses:

‚ ImageEmbedding ˆ 1
function (mor)

return Source(ImageEmbedding(mor));
end;

Back to index
ImageObject as the source of IsomorphismFromImageObjectToKernelOf-

Cokernel
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromImageObjectToKernelOfCokernel ˆ 1
function (morphism)

return
Source(IsomorphismFromImageObjectToKernelOfCokernel(morphism

));
end;

Back to index
ImageObject as the range of IsomorphismFromKernelOfCokernelToImage-

Object
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromKernelOfCokernelToImageObject ˆ 1
function (morphism)

return
Range(IsomorphismFromKernelOfCokernelToImageObject(morphism

226 D. DERIVATIONS

));
end;

Back to index

Derivations for InitialObject

InitialObject as the source of IsomorphismFromInitialObjectToZeroObject
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromInitialObjectToZeroObject ˆ 1
function (category)

return
Source(IsomorphismFromInitialObjectToZeroObject(category));

end;

Back to index
InitialObject as the range of IsomorphismFromZeroObjectToInitialObject
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromZeroObjectToInitialObject ˆ 1
function (category)

return
Range(IsomorphismFromZeroObjectToInitialObject(category));

end;

Back to index

Derivations for InitialObjectFunctorial

InitialObjectFunctorial using the identity morphism of initial object
This derivation is for all categories. This derivation uses:

‚ InitialObject ˆ 1
‚ IdentityMorphism ˆ 1

function (category)
local initial_object;
initial_object := InitialObject(category);
return IdentityMorphism(initial_object);

end;

Back to index
InitialObjectFunctorial using the universality of the initial object
This derivation is for all categories. This derivation uses:

‚ InitialObject ˆ 1
‚ UniversalMorphismFromInitialObject ˆ 1

DERIVATIONS 227

function (category)
local initial_object;
initial_object := InitialObject(category);
return UniversalMorphismFromInitialObject(initial_object);

end;

Back to index

Derivations for InjectionOfCofactorOfCoproduct

InjectionOfCofactorOfCoproduct using InjectionOfCofactorOfDirectSum
This derivation is for all categories. This derivation uses:

‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ PreCompose ˆ 1
‚ InjectionOfCofactorOfDirectSum ˆ 1
‚ IsomorphismFromDirectSumToCoproduct ˆ 1

function (diagram, injection_number)
return
PreCompose(InjectionOfCofactorOfDirectSum(diagram,

injection_number), IsomorphismFromDirectSumToCoproduct(
diagram));

end;

Back to index

Derivations for InjectionOfCofactorOfDirectSum

InjectionOfCofactorOfDirectSum using InjectionOfCofactorOfCoproduct
This derivation is for all categories. This derivation uses:

‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ PreCompose ˆ 1
‚ InjectionOfCofactorOfCoproduct ˆ 1
‚ IsomorphismFromCoproductToDirectSum ˆ 1

function (diagram, injection_number)
return
PreCompose(InjectionOfCofactorOfCoproduct(diagram,

injection_number), IsomorphismFromCoproductToDirectSum(
diagram));

end;

Back to index

228 D. DERIVATIONS

Derivations for InjectionOfCofactorOfPushout

InjectionOfCofactorOfPushout by composing the direct sum injection with
the direct sum projection to the pushout

This derivation is for all categories. This derivation uses:
‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ PreCompose ˆ 1
‚ InjectionOfCofactorOfDirectSum ˆ 1
‚ DirectSumProjectionInPushout ˆ 1

function (diagram, injection_number)
local projection_from_direct_sum, direct_sum_diagram,
injection;
projection_from_direct_sum := DirectSumProjectionInPushout(

diagram);
direct_sum_diagram := List(diagram, Range);
injection := InjectionOfCofactorOfDirectSum(direct_sum_diagram

, injection_number);
return PreCompose(injection, projection_from_direct_sum);

end;

Back to index

Derivations for InternalHomOnMorphismsWithGivenInternalHoms

InternalHomOnMorphismsWithGivenInternalHoms using functorality of Dual
and TensorProduct

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ PreCompose ˆ 2
‚ IsomorphismFromTensorProductToInternalHom ˆ 1
‚ IsomorphismFromInternalHomToTensorProduct ˆ 1
‚ DualOnMorphismsWithGivenDuals ˆ 1
‚ DualOnObjects ˆ 2
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 1
‚ TensorProductOnObjects ˆ 2

function (internal_hom_source, morphism_1, morphism_2,
internal_hom_range)
local dual_morphism;
dual_morphism := DualOnMorphisms(morphism_1);
return
PreCompose(

PreCompose(IsomorphismFromInternalHomToTensorProduct(
Range(morphism_1), Source(morphism_2)),

DERIVATIONS 229

TensorProductOnMorphisms(dual_morphism, morphism_2)),
IsomorphismFromTensorProductToInternalHom(

Source(morphism_1), Range(morphism_2)));
end;

Back to index

Derivations for InternalHomOnObjects

InternalHomOnObjects as the source of IsomorphismFromInternalHomTo-
TensorProduct

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ IsomorphismFromInternalHomToTensorProduct ˆ 1

function (object_1, object_2)
return
Source(IsomorphismFromInternalHomToTensorProduct(object_1,

object_2));
end;

Back to index
InternalHomOnObjects as the range of IsomorphismFromTensorProductTo-

InternalHom
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IsomorphismFromTensorProductToInternalHom ˆ 1
function (object_1, object_2)

return
Range(IsomorphismFromTensorProductToInternalHom(object_1,

object_2));
end;

Back to index

Derivations for InternalHomToTensorProductAdjunctionMap

InternalHomToTensorProductAdjunctionMap using TensorProductOnMor-
phisms and EvaluationMorphism

This derivation is for symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ PreCompose ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 1
‚ TensorProductOnObjects ˆ 2
‚ EvaluationMorphismWithGivenSource ˆ 1
‚ InternalHomOnObjects ˆ 1

230 D. DERIVATIONS

function (object_1, object_2, morphism)
local evaluation, tensor_product_on_morphisms;
tensor_product_on_morphisms
:= TensorProductOnMorphisms(morphism,

IdentityMorphism(object_1));
evaluation := EvaluationMorphism(object_1, object_2);
return PreCompose(tensor_product_on_morphisms, evaluation);

end;

Back to index

Derivations for InverseImmutable

Inverse using LiftAlongMonomorphism of an identity morphism
This derivation is for all categories. This derivation uses:

‚ IdentityMorphism ˆ 1
‚ LiftAlongMonomorphism ˆ 1

function (mor)
local identity_of_range;
identity_of_range := IdentityMorphism(Range(mor));
return LiftAlongMonomorphism(mor, identity_of_range);

end;

Back to index
Inverse using ColiftAlongEpimorphism of an identity morphism
This derivation is for all categories. This derivation uses:

‚ IdentityMorphism ˆ 1
‚ ColiftAlongEpimorphism ˆ 1

function (mor)
local identity_of_source;
identity_of_source := IdentityMorphism(Source(mor));
return ColiftAlongEpimorphism(mor, identity_of_source);

end;

Back to index

Derivations for InverseMorphismFromCoimageToImageWithGivenObjects

InverseMorphismFromCoimageToImageWithGivenObjects as the inverse of
MorphismFromCoimageToImage

This derivation is for Abelian categories.

DERIVATIONS 231

function (coimage, morphism, image)
return Inverse(MorphismFromCoimageToImage(morphism));

end;

Back to index

Derivations for IsAutomorphism

IsAutomorphism by checking IsIsomorphism and IsEndomorphism
This derivation is for all categories. This derivation uses:

‚ IsIsomorphism ˆ 1
‚ IsEndomorphism ˆ 1

function (morphism)
return IsIsomorphism(morphism) and IsEndomorphism(morphism);

end;

Back to index

Derivations for IsCodominating

IsCodominating using IsDominating and duality by kernel
This derivation is for all categories. This derivation uses:

‚ KernelEmbedding ˆ 2
‚ IsDominating ˆ 1

function (factor1, factor2)
local kernel_embedding_1, kernel_embedding_2;
kernel_embedding_1 := KernelEmbedding(factor1);
kernel_embedding_2 := KernelEmbedding(factor2);
return IsDominating(kernel_embedding_2, kernel_embedding_1);

end;

Back to index
IsCodominating(factor1, factor2) by deciding if KernelEmbedding(factor2)

composed with factor1 is zero
This derivation is for all categories. This derivation uses:

‚ KernelEmbedding ˆ 1
‚ PreCompose ˆ 1
‚ IsZeroForMorphisms ˆ 1

function (factor1, factor2)
local kernel_embedding, composition;
kernel_embedding := KernelEmbedding(factor2);
composition := PreCompose(kernel_embedding, factor1);

232 D. DERIVATIONS

return IsZero(composition);
end;

Back to index

Derivations for IsDominating

IsDominating using IsCodominating and duality by cokernel
This derivation is for all categories. This derivation uses:

‚ CokernelProjection ˆ 2
‚ IsCodominating ˆ 1

function (sub1, sub2)
local cokernel_projection_1, cokernel_projection_2;
cokernel_projection_1 := CokernelProjection(sub1);
cokernel_projection_2 := CokernelProjection(sub2);
return IsCodominating(cokernel_projection_1,

cokernel_projection_2);
end;

Back to index
IsDominating(sub1, sub2) by deciding if sub1 composed with Cokernel-

Projection(sub2) is zero
This derivation is for all categories. This derivation uses:

‚ CokernelProjection ˆ 1
‚ PreCompose ˆ 1
‚ IsZeroForMorphisms ˆ 1

function (sub1, sub2)
local cokernel_projection, composition;
cokernel_projection := CokernelProjection(sub2);
composition := PreCompose(sub1, cokernel_projection);
return IsZero(composition);

end;

Back to index

Derivations for IsEndomorphism

IsEndomorphism by deciding whether source and range are equal as objects
This derivation is for all categories. This derivation uses:

‚ IsEqualForObjects ˆ 1
function (morphism)

return IsEqualForObjects(Source(morphism), Range(morphism)

DERIVATIONS 233

);
end;

Back to index

Derivations for IsEpimorphism

IsEpimorphism by deciding if the cokernel is a zero object
This derivation is for additive categories. This derivation uses:

‚ IsZeroForObjects ˆ 1
‚ CokernelObject ˆ 1

function (morphism)
return IsZero(CokernelObject(morphism));

end;

Back to index
IsEpimorphism by deciding if the codiagonal morphism is an isomorphism
This derivation is for all categories. This derivation uses:

‚ IdentityMorphism ˆ 1
‚ UniversalMorphismFromPushout ˆ 1
‚ IsIsomorphism ˆ 1

function (morphism)
local pushout_diagram, identity, codiagonal_morphism;
pushout_diagram := [morphism, morphism];
identity := IdentityMorphism(Range(morphism));
codiagonal_morphism := UniversalMorphismFromPushout(

pushout_diagram, identity, identity);
return IsIsomorphism(codiagonal_morphism);

end;

Back to index

Derivations for IsEqualAsFactorobjects

IsEqualAsFactorobjects(factor1, factor2) if factor1 dominates factor2 and
vice versa

This derivation is for all categories. This derivation uses:
‚ IsCodominating ˆ 2

function (factor1, factor2)
return IsCodominating(factor1, factor2)

and IsCodominating(factor1, factor2);
end;

Back to index

234 D. DERIVATIONS

Derivations for IsEqualAsSubobjects

IsEqualAsSubobjects(sub1, sub2) if sub1 dominates sub2 and vice versa
This derivation is for all categories. This derivation uses:

‚ IsDominating ˆ 2
function (sub1, sub2);

return IsDominating(sub1, sub2) and IsDominating(sub2, sub1);
end;

Back to index

Derivations for IsEqualForCacheForObjects

This derivation is for all categories. This derivation uses:
‚ IsEqualForObjects ˆ 1

function (object_1, object_2)
local ret_value;
return IsEqualForObjects(object_1, object_2) = true;

end;

Back to index

Derivations for IsEqualForMorphismsOnMor

IsEqualForMorphismsOnMor using IsEqualForMorphisms
This derivation is for all categories. This derivation uses:

‚ IsEqualForMorphisms ˆ 1
‚ IsEqualForObjects ˆ 2

function (morphism_1, morphism_2)
local value_1, value_2;
value_1 := IsEqualForObjects(Source(morphism_1),

Source(morphism_2));
if value_1 = fail then

return fail;
fi;
value_2 := IsEqualForObjects(Range(morphism_1),

Range(morphism_2));
if value_2 = fail then

return fail;
fi;
if value_1 = false or value_2 = false then

return false;
fi;

DERIVATIONS 235

return IsEqualForMorphisms(morphism_1, morphism_2);
end;

Back to index

Derivations for IsIdempotent

IsIdempotent by comparing the square of the morphism with itself
This derivation is for all categories. This derivation uses:

‚ PreCompose ˆ 1
‚ IsCongruentForMorphisms ˆ 1

function (morphism)
return IsCongruentForMorphisms(PreCompose(morphism, morphism)

, morphism);
end;

Back to index

Derivations for IsIdenticalToIdentityMorphism

IsIdenticalToIdentityMorphism using IsEqualForMorphismsOnMor and I-
dentityMorphism

This derivation is for all categories. This derivation uses:
‚ IsEqualForMorphismsOnMor ˆ 1
‚ IdentityMorphism ˆ 1

function (morphism)
return IsEqualForMorphismsOnMor(morphism,

IdentityMorphism(Source(morphism)));
end;

Back to index

Derivations for IsIdenticalToZeroMorphism

IsIdenticalToZeroMorphism using IsEqualForMorphismsOnMor and Zero-
Morphism

This derivation is for all categories. This derivation uses:
‚ ZeroMorphism ˆ 1
‚ IsEqualForMorphismsOnMor ˆ 1

function (morphism)
return IsEqualForMorphismsOnMor(morphism,

ZeroMorphism(Source(morphism), Range(morphism)));
end;

Back to index

236 D. DERIVATIONS

Derivations for IsInitial

IsInitial using IsZeroForObjects
This derivation is for additive categories. This derivation uses:

‚ IsZeroForObjects ˆ 1
function (object)

return IsZeroForObjects(object);
end;

Back to index

Derivations for IsIsomorphism

IsIsomorphism by deciding if it is a mono and an epi
This derivation is for Abelian categories. This derivation uses:

‚ IsMonomorphism ˆ 1
‚ IsEpimorphism ˆ 1

function (morphism)
return IsMonomorphism(morphism) and IsEpimorphism(morphism);

end;

Back to index

Derivations for IsMonomorphism

IsMonomorphism by deciding if the kernel is a zero object
This derivation is for additive categories. This derivation uses:

‚ IsZeroForObjects ˆ 1
‚ KernelObject ˆ 1

function (morphism)
return IsZero(KernelObject(morphism));

end;

Back to index
IsMonomorphism by deciding if the diagonal morphism is an isomorphism
This derivation is for all categories. This derivation uses:

‚ IsIsomorphism ˆ 1
‚ IdentityMorphism ˆ 1
‚ UniversalMorphismIntoFiberProduct ˆ 1

function (morphism)
local pullback_diagram, pullback_projection_1,
pullback_projection_2, identity, diagonal_morphism;
pullback_diagram := [morphism, morphism];
identity := IdentityMorphism(Source(morphism));

DERIVATIONS 237

diagonal_morphism := UniversalMorphismIntoFiberProduct(
pullback_diagram, identity, identity);

return IsIsomorphism(diagonal_morphism);
end;

Back to index

Derivations for IsOne

IsOne by comparing with the identity morphism
This derivation is for all categories. This derivation uses:

‚ IdentityMorphism ˆ 1
‚ IsCongruentForMorphisms ˆ 1

function (morphism)
local object;
object := Source(morphism);
return IsCongruentForMorphisms(IdentityMorphism(object),

morphism);
end;

Back to index

Derivations for IsTerminal

IsTerminal using IsZeroForObjects
This derivation is for additive categories. This derivation uses:

‚ IsZeroForObjects ˆ 1
function (object)

return IsZeroForObjects(object);
end;

Back to index

Derivations for IsZeroForMorphisms

IsZeroForMorphisms by deciding whether the given morphism is congruent
to the zero morphism

This derivation is for all categories. This derivation uses:
‚ ZeroMorphism ˆ 1
‚ IsCongruentForMorphisms ˆ 1

function (morphism)
local zero_morphism;
zero_morphism := ZeroMorphism(Source(morphism),

Range(morphism));

238 D. DERIVATIONS

return IsCongruentForMorphisms(zero_morphism, morphism);
end;

Back to index

Derivations for IsZeroForObjects

IsZeroForObjects by comparing identity morphism with zero morphism
This derivation is for all categories. This derivation uses:

‚ IsCongruentForMorphisms ˆ 1
‚ IdentityMorphism ˆ 1
‚ ZeroMorphism ˆ 1

function (object)
return IsCongruentForMorphisms(IdentityMorphism(object),

ZeroMorphism(object, object));
end;

Back to index

Derivations for IsomorphismFromCoimageToCokernelOfKernel

IsomorphismFromCoimageToCokernelOfKernel as the inverse of Isomorphi-
smFromCokernelOfKernelToCoimage

This derivation is for all categories. This derivation uses:
‚ IsomorphismFromCokernelOfKernelToCoimage ˆ 1

function (morphism)
return
Inverse(IsomorphismFromCokernelOfKernelToCoimage(morphism));

end;

Back to index

Derivations for IsomorphismFromCokernelOfDiagonalDifferenceToPushout

IsomorphismFromCokernelOfDiagonalDifferenceToPushout using the uni-
versal property of the cokernel

This derivation is for all categories. This derivation uses:
‚ CokernelColift ˆ 1
‚ DirectSumCodiagonalDifference ˆ 1
‚ DirectSumProjectionInPushout ˆ 1

function (diagram)
local direct_sum_codiagonal_difference,
direct_sum_projection_in_pushout;
direct_sum_codiagonal_difference

DERIVATIONS 239

:= DirectSumCodiagonalDifference(diagram);
direct_sum_projection_in_pushout
:= DirectSumProjectionInPushout(diagram);

return CokernelColift(direct_sum_codiagonal_difference,
direct_sum_projection_in_pushout);

end;

Back to index
IsomorphismFromCokernelOfDiagonalDifferenceToPushout as the inverse

of IsomorphismFromPushoutToCokernelOfDiagonalDifference
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromPushoutToCokernelOfDiagonalDifference ˆ 1
‚ InverseImmutable ˆ 1

function (diagram)
return
Inverse(IsomorphismFromPushoutToCokernelOfDiagonalDifference(

diagram));
end;

Back to index

Derivations for IsomorphismFromCokernelOfKernelToCoimage

IsomorphismFromCokernelOfKernelToCoimage as the inverse of Isomorphi-
smFromCoimageToCokernelOfKernel

This derivation is for all categories. This derivation uses:
‚ IsomorphismFromCoimageToCokernelOfKernel ˆ 1

function (morphism)
return
Inverse(IsomorphismFromCoimageToCokernelOfKernel(morphism));

end;

Back to index
IsomorphismFromCokernelOfKernelToCoimage using the universal proper-

ty of the coimage
This derivation is for all categories. This derivation uses:

‚ KernelEmbedding ˆ 1
‚ CokernelProjection ˆ 1
‚ ColiftAlongEpimorphism ˆ 1
‚ UniversalMorphismIntoCoimage ˆ 1

function (morphism)
local cokernel_proj, morphism_from_cokernel;
cokernel_proj

240 D. DERIVATIONS

:= CokernelProjection(KernelEmbedding(morphism));
morphism_from_cokernel
:= ColiftAlongEpimorphism(cokernel_proj, morphism);

return UniversalMorphismIntoCoimage(morphism,
[cokernel_proj, morphism_from_cokernel]);

end;

Back to index

Derivations for IsomorphismFromCoproductToDirectSum

IsomorphismFromCoproductToDirectSum using cofactor injections and the
universal property of the coproduct

This derivation is for all categories. This derivation uses:
‚ InjectionOfCofactorOfDirectSum ˆ 2
‚ UniversalMorphismFromCoproduct ˆ 1

function (diagram)
local sink;
sink := List([1 .. Length(diagram)], function (i)

return InjectionOfCofactorOfDirectSum(diagram, i);
end);

return UniversalMorphismFromCoproduct(diagram, sink);
end;

Back to index
IsomorphismFromCoproductToDirectSum as the inverse of Isomorphism-

FromDirectSumToCoproduct
This derivation is for all categories. This derivation uses:

‚ InverseImmutable ˆ 1
‚ IsomorphismFromDirectSumToCoproduct ˆ 1

function (diagram)
return Inverse(IsomorphismFromDirectSumToCoproduct(diagram));

end;

Back to index

Derivations for IsomorphismFromDirectProductToDirectSum

IsomorphismFromDirectProductToDirectSum using direct product projec-
tions and universal property of direct sum

This derivation is for all categories. This derivation uses:
‚ ProjectionInFactorOfDirectProduct ˆ 2
‚ UniversalMorphismIntoDirectSum ˆ 1

DERIVATIONS 241

function (diagram)
local source;
source := List([1 .. Length(diagram)], function (i)

return ProjectionInFactorOfDirectProduct(diagram, i);
end);

return UniversalMorphismIntoDirectSum(diagram, source);
end;

Back to index
IsomorphismFromDirectProductToDirectSum as the inverse of Isomorphi-

smFromDirectSumToDirectProduct
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromDirectSumToDirectProduct ˆ 1
‚ InverseImmutable ˆ 1

function (diagram)
return
Inverse(IsomorphismFromDirectSumToDirectProduct(diagram));

end;

Back to index

Derivations for IsomorphismFromDirectSumToCoproduct

IsomorphismFromDirectSumToCoproduct using cofactor injections and the
universal property of the direct sum

This derivation is for all categories. This derivation uses:
‚ InjectionOfCofactorOfCoproduct ˆ 2
‚ UniversalMorphismFromDirectSum ˆ 1

function (diagram)
local sink;
sink := List([1 .. Length(diagram)], function (i)

return InjectionOfCofactorOfCoproduct(diagram, i);
end);

return UniversalMorphismFromDirectSum(diagram, sink);
end;

Back to index
IsomorphismFromDirectSumToCoproduct as the inverse of Isomorphism-

FromCoproductToDirectSum
This derivation is for all categories. This derivation uses:

‚ InverseImmutable ˆ 1
‚ IsomorphismFromCoproductToDirectSum ˆ 1

242 D. DERIVATIONS

function (diagram)
return Inverse(IsomorphismFromCoproductToDirectSum(diagram));

end;

Back to index

Derivations for IsomorphismFromDirectSumToDirectProduct

IsomorphismFromDirectSumToDirectProduct using direct sum projections
and universal property of direct product

This derivation is for all categories. This derivation uses:
‚ ProjectionInFactorOfDirectSum ˆ 2
‚ UniversalMorphismIntoDirectProduct ˆ 1

function (diagram)
local source;
source := List([1 .. Length(diagram)], function (i)

return ProjectionInFactorOfDirectSum(diagram, i);
end);

return UniversalMorphismIntoDirectProduct(diagram, source);
end;

Back to index
IsomorphismFromDirectSumToDirectProduct as the inverse of Isomorphi-

smFromDirectProductToDirectSum
This derivation is for all categories. This derivation uses:

‚ InverseImmutable ˆ 1
‚ IsomorphismFromDirectProductToDirectSum ˆ 1

function (diagram);
return
Inverse(IsomorphismFromDirectProductToDirectSum(diagram));

end;

Back to index

Derivations for IsomorphismFromFiberProductToKernelOfDiagonalDifference

IsomorphismFromFiberProductToKernelOfDiagonalDifference as the inverse
of IsomorphismFromKernelOfDiagonalDifferenceTo FiberProduct

This derivation is for all categories. This derivation uses:
‚ IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct ˆ 1
‚ InverseImmutable ˆ 1

DERIVATIONS 243

function (diagram)
return
Inverse(

IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct(
diagram));

end;

Back to index
IsomorphismFromFiberProductToKernelOfDiagonalDifference using the un-

iversal property of the kernel
This derivation is for all categories. This derivation uses:

‚ KernelLift ˆ 1
‚ DirectSumDiagonalDifference ˆ 1
‚ FiberProductEmbeddingInDirectSum ˆ 1

function (diagram)
local direct_sum_diagonal_difference,
fiber_product_embedding_in_direct_sum;
direct_sum_diagonal_difference := DirectSumDiagonalDifference(

diagram);
fiber_product_embedding_in_direct_sum
:= FiberProductEmbeddingInDirectSum(diagram);

return KernelLift(direct_sum_diagonal_difference,
fiber_product_embedding_in_direct_sum);

end;

Back to index

Derivations for IsomorphismFromImageObjectToKernelOfCokernel

IsomorphismFromImageObjectToKernelOfCokernel as the inverse of Iso-
morphismFromKernelOfCokernelToImageObject

This derivation is for all categories. This derivation uses:
‚ IsomorphismFromKernelOfCokernelToImageObject ˆ 1

function (morphism)
return
Inverse(IsomorphismFromKernelOfCokernelToImageObject(

morphism));
end;

Back to index
IsomorphismFromImageObjectToKernelOfCokernel using the universal pr-

operty of the image

244 D. DERIVATIONS

This derivation is for all categories. This derivation uses:
‚ KernelEmbedding ˆ 1
‚ CokernelProjection ˆ 1
‚ LiftAlongMonomorphism ˆ 1
‚ UniversalMorphismFromImage ˆ 1

function (morphism)
local kernel_emb, morphism_to_kernel;
kernel_emb := KernelEmbedding(CokernelProjection(morphism));
morphism_to_kernel := LiftAlongMonomorphism(kernel_emb,

morphism);
return UniversalMorphismFromImage(morphism,

[morphism_to_kernel, kernel_emb]);
end;

Back to index

Derivations for IsomorphismFromInitialObjectToZeroObject

IsomorphismFromInitialObjectToZeroObject as the unique morphism from
initial object to zero object

This derivation is for additive categories. This derivation uses:
‚ UniversalMorphismFromInitialObject ˆ 1
‚ ZeroObject ˆ 1

function (category)
return UniversalMorphismFromInitialObject(

ZeroObject(category));
end;

Back to index
IsomorphismFromInitialObjectToZeroObject using the universal property of

the zero object
This derivation is for all categories. This derivation uses:

‚ UniversalMorphismIntoZeroObject ˆ 1
‚ InitialObject ˆ 1

function (category)
return UniversalMorphismIntoZeroObject(

InitialObject(category));
end;

Back to index
IsomorphismFromInitialObjectToZeroObject as the inverse of Isomorphism-

FromZeroObjectToInitialObject
This derivation is for all categories. This derivation uses:

DERIVATIONS 245

‚ InverseImmutable ˆ 1
‚ IsomorphismFromZeroObjectToInitialObject ˆ 1

function (category)
return
Inverse(IsomorphismFromZeroObjectToInitialObject(category));

end;

Back to index

Derivations for
IsomorphismFromInternalHomToObjectWithGivenInternalHom

IsomorphismFromInternalHomToObjectWithGivenInternalHom using the co-
evaluation morphism

This derivation is for symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ TensorUnit ˆ 1
‚ PreCompose ˆ 1
‚ RightUnitorWithGivenTensorProduct ˆ 1
‚ TensorProductOnObjects ˆ 1
‚ InternalHomOnMorphismsWithGivenInternalHoms ˆ 1
‚ InternalHomOnObjects ˆ 2
‚ CoevaluationMorphismWithGivenRange ˆ 1

function (object, internal_hom)
local unit;
unit := TensorUnit(CapCategory(object));
return PreCompose(CoevaluationMorphism(object, unit),

InternalHomOnMorphisms(IdentityMorphism(unit),
RightUnitor(object)));

end;

Back to index

Derivations for IsomorphismFromInternalHomToTensorProduct

IsomorphismFromInternalHomToTensorProduct using MorphismFromInter-
nalHomToTensorProduct

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ MorphismFromInternalHomToTensorProductWithGivenObjects ˆ 1
‚ DualOnObjects ˆ 1
‚ TensorProductOnObjects ˆ 1
‚ InternalHomOnObjects ˆ 1

246 D. DERIVATIONS

function (object_1, object_2)
return MorphismFromInternalHomToTensorProduct(object_1,

object_2);
end;

Back to index

Derivations for IsomorphismFromKernelOfCokernelToImageObject

IsomorphismFromKernelOfCokernelToImageObject as the inverse of Iso-
morphismFromImageObjectToKernelOfCokernel

This derivation is for all categories. This derivation uses:
‚ IsomorphismFromImageObjectToKernelOfCokernel ˆ 1

function (morphism)
return
Inverse(IsomorphismFromImageObjectToKernelOfCokernel(

morphism));
end;

Back to index

Derivations for IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct

IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct using the un-
iversal property of the fiber product

This derivation is for all categories. This derivation uses:
‚ KernelEmbedding ˆ 1
‚ PreCompose ˆ 2
‚ ProjectionInFactorOfDirectSum ˆ 2
‚ UniversalMorphismIntoFiberProduct ˆ 1
‚ DirectSumDiagonalDifference ˆ 1

function (diagram)
local kernel_emb, sources_of_diagram, test_source;
kernel_emb
:= KernelEmbedding(DirectSumDiagonalDifference(diagram));

sources_of_diagram := List(diagram, Source);
test_source := List([1 .. Length(diagram)], function (i)

return
PreCompose(kernel_emb,

ProjectionInFactorOfDirectSum(sources_of_diagram, i
));

end);

DERIVATIONS 247

return UniversalMorphismIntoFiberProduct(diagram, test_source);
end;

Back to index
IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct as the inverse

of IsomorphismFromFiberProductToKernelOfDiagona lDifference
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromFiberProductToKernelOfDiagonalDifference ˆ 1
‚ InverseImmutable ˆ 1

function (diagram)
return
Inverse(

IsomorphismFromFiberProductToKernelOfDiagonalDifference(
diagram));

end;

Back to index

Derivations for
IsomorphismFromObjectToInternalHomWithGivenInternalHom

IsomorphismFromObjectToInternalHomWithGivenInternalHom using the eva-
luation morphism

This derivation is for symmetric closed monoidal categories. This derivation uses:
‚ TensorUnit ˆ 1
‚ PreCompose ˆ 1
‚ RightUnitorInverseWithGivenTensorProduct ˆ 1
‚ TensorProductOnObjects ˆ 1
‚ EvaluationMorphismWithGivenSource ˆ 1
‚ InternalHomOnObjects ˆ 1

function (object, internal_hom)
local unit, morphism;
unit := TensorUnit(CapCategory(object));
morphism := EvaluationMorphism(unit, object);
return PreCompose(RightUnitorInverse(internal_hom), morphism

);
end;

Back to index

Derivations for IsomorphismFromPushoutToCokernelOfDiagonalDifference

IsomorphismFromPushoutToCokernelOfDiagonalDifference using the uni-
versal property of the pushout

248 D. DERIVATIONS

This derivation is for all categories. This derivation uses:
‚ CokernelProjection ˆ 1
‚ PreCompose ˆ 2
‚ InjectionOfCofactorOfDirectSum ˆ 2
‚ UniversalMorphismFromPushout ˆ 1
‚ DirectSumCodiagonalDifference ˆ 1

function (diagram)
local cokernel_proj, ranges_of_diagram, test_sink;
cokernel_proj
:= CokernelProjection(DirectSumCodiagonalDifference(diagram

));
ranges_of_diagram := List(diagram, Range);
test_sink := List([1 .. Length(diagram)], function (i)

return
PreCompose(InjectionOfCofactorOfDirectSum(

ranges_of_diagram, i), cokernel_proj);
end);

return UniversalMorphismFromPushout(diagram, test_sink);
end;

Back to index
IsomorphismFromPushoutToCokernelOfDiagonalDifference as the inverse

of IsomorphismFromCokernelOfDiagonalDifferenceToPushout
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromCokernelOfDiagonalDifferenceToPushout ˆ 1
‚ InverseImmutable ˆ 1

function (diagram)
return
Inverse(IsomorphismFromCokernelOfDiagonalDifferenceToPushout(

diagram));
end;

Back to index

Derivations for IsomorphismFromTensorProductToInternalHom

IsomorphismFromTensorProductToInternalHom using MorphismFromTen-
sorProductToInternalHom

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ MorphismFromTensorProductToInternalHomWithGivenObjects ˆ 1
‚ DualOnObjects ˆ 1
‚ TensorProductOnObjects ˆ 1
‚ InternalHomOnObjects ˆ 1

DERIVATIONS 249

function (object_1, object_2)
return MorphismFromTensorProductToInternalHom(object_1,

object_2);
end;

Back to index

Derivations for IsomorphismFromTerminalObjectToZeroObject

IsomorphismFromTerminalObjectToZeroObject as the inverse of Isomorphi-
smFromZeroObjectToTerminalObject

This derivation is for all categories. This derivation uses:
‚ InverseImmutable ˆ 1
‚ IsomorphismFromZeroObjectToTerminalObject ˆ 1

function (category)
return
Inverse(IsomorphismFromZeroObjectToTerminalObject(category)

);
end;

Back to index
IsomorphismFromTerminalObjectToZeroObject using the universal proper-

ty of the zero object
This derivation is for all categories. This derivation uses:

‚ UniversalMorphismIntoZeroObject ˆ 1
‚ TerminalObject ˆ 1

function (category)
return UniversalMorphismIntoZeroObject(

TerminalObject(category));
end;

Back to index

Derivations for IsomorphismFromZeroObjectToInitialObject

IsomorphismFromZeroObjectToInitialObject as the inverse of Isomorphism-
FromInitialObjectToZeroObject

This derivation is for all categories. This derivation uses:
‚ InverseImmutable ˆ 1
‚ IsomorphismFromInitialObjectToZeroObject ˆ 1

function (category)
return

250 D. DERIVATIONS

Inverse(IsomorphismFromInitialObjectToZeroObject(category));
end;

Back to index
IsomorphismFromZeroObjectToInitialObject using the universal property of

the zero object
This derivation is for all categories. This derivation uses:

‚ UniversalMorphismFromZeroObject ˆ 1
‚ InitialObject ˆ 1

function (category)
return UniversalMorphismFromZeroObject(

InitialObject(category));
end;

Back to index

Derivations for IsomorphismFromZeroObjectToTerminalObject

IsomorphismFromZeroObjectToTerminalObject as the unique morphism fr-
om zero object to terminal object

This derivation is for additive categories. This derivation uses:
‚ UniversalMorphismIntoTerminalObject ˆ 1
‚ ZeroObject ˆ 1

function (category)
return UniversalMorphismIntoTerminalObject(

ZeroObject(category));
end;

Back to index
IsomorphismFromZeroObjectToTerminalObject using the universal proper-

ty of the zero object
This derivation is for all categories. This derivation uses:

‚ UniversalMorphismFromZeroObject ˆ 1
‚ TerminalObject ˆ 1

function (category)
return UniversalMorphismFromZeroObject(

TerminalObject(category));
end;

Back to index
IsomorphismFromZeroObjectToTerminalObject as the inverse of Isomorphi-

smFromTerminalObjectToZeroObject
This derivation is for all categories. This derivation uses:

DERIVATIONS 251

‚ InverseImmutable ˆ 1
‚ IsomorphismFromTerminalObjectToZeroObject ˆ 1

function (category)
return
Inverse(IsomorphismFromTerminalObjectToZeroObject(category)

);
end;

Back to index

Derivations for KernelLift

KernelLift using LiftAlongMonomorphism and KernelEmbedding
This derivation is for all categories. This derivation uses:

‚ LiftAlongMonomorphism ˆ 1
‚ KernelEmbeddingWithGivenKernelObject ˆ 1
‚ KernelEmbedding ˆ 1

function (mor, test_morphism)
return LiftAlongMonomorphism(KernelEmbedding(mor),

test_morphism);
end;

Back to index

Derivations for KernelLiftWithGivenKernelObject

KernelLift using LiftAlongMonomorphism and KernelEmbedding
This derivation is for all categories. This derivation uses:

‚ LiftAlongMonomorphism ˆ 1
‚ KernelEmbeddingWithGivenKernelObject ˆ 1
‚ KernelEmbedding ˆ 1

function (mor, test_morphism, kernel)
return
LiftAlongMonomorphism(KernelEmbeddingWithGivenKernelObject(

mor, kernel), test_morphism);
end;

Back to index

Derivations for KernelObject

KernelObject as the source of KernelEmbedding
This derivation is for all categories. This derivation uses:

‚ KernelEmbedding ˆ 1

252 D. DERIVATIONS

function (mor)
return Source(KernelEmbedding(mor));

end;

Back to index

Derivations for KernelObjectFunctorialWithGivenKernelObjects

KernelObjectFunctorialWithGivenKernelObjects using the universality of
the kernel

This derivation is for all categories. This derivation uses:
‚ KernelLift ˆ 1
‚ PreCompose ˆ 1
‚ KernelEmbedding ˆ 1

function (kernel_alpha, alpha, mu, alpha_p, kernel_alpha_p)
return
KernelLift(alpha_p, PreCompose(KernelEmbedding(alpha), mu

));
end;

Back to index

Derivations for LambdaElimination

LambdaElimination using the tensor hom adjunction and left unitor
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ PreCompose ˆ 1
‚ InternalHomToTensorProductAdjunctionMap ˆ 1
‚ LeftUnitorInverseWithGivenTensorProduct ˆ 1
‚ TensorProductOnObjects ˆ 1
‚ TensorUnit ˆ 1

function (object_1, object_2, morphism)
local result_morphism;
result_morphism := InternalHomToTensorProductAdjunctionMap(

object_1, object_2, morphism);
return PreCompose(LeftUnitorInverse(object_1),

result_morphism);
end;

Back to index

DERIVATIONS 253

Derivations for LambdaIntroduction

LambdaIntroduction using the tensor hom adjunction and left unitor
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ TensorUnit ˆ 1
‚ PreCompose ˆ 1
‚ TensorProductToInternalHomAdjunctionMap ˆ 1
‚ LeftUnitorWithGivenTensorProduct ˆ 1
‚ TensorProductOnObjects ˆ 1

function (morphism)
local result_morphism, category, source;
category := CapCategory(morphism);
source := Source(morphism);
result_morphism := PreCompose(LeftUnitor(source), morphism);
return TensorProductToInternalHomAdjunctionMap(

TensorUnit(category), source, result_morphism);
end;

Back to index

Derivations for LeftDistributivityExpandingWithGivenObjects

LeftDistributivityExpandingWithGivenObjects using the universal proper-
ty of the direct sum

This derivation is for additive categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ ProjectionInFactorOfDirectSum ˆ 2
‚ UniversalMorphismIntoDirectSum ˆ 1
‚ TensorProductOnObjects ˆ 4
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 2

function (factored_object, object, summands, expanded_object)
local nr_summands, projection_list, id, diagram;
nr_summands := Size(summands);
projection_list := List([1 .. nr_summands], function (i)

return ProjectionInFactorOfDirectSum(summands, i);
end);

id := IdentityMorphism(object);
projection_list := List(projection_list, function (mor)

return TensorProductOnMorphisms(id, mor);
end);

diagram := List(summands, function (summand)
return TensorProductOnObjects(object, summand);

end);

254 D. DERIVATIONS

return UniversalMorphismIntoDirectSum(diagram, projection_list
);

end;

Back to index

Derivations for LeftDistributivityFactoringWithGivenObjects

LeftDistributivityFactoringWithGivenObjects using the universal property
of the direct sum

This derivation is for additive categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ InjectionOfCofactorOfDirectSum ˆ 2
‚ UniversalMorphismFromDirectSum ˆ 1
‚ TensorProductOnObjects ˆ 4
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 2

function (expanded_object, object, summands, factored_object)
local nr_summands, injection_list, id, diagram;
nr_summands := Size(summands);
injection_list := List([1 .. nr_summands], function (i)

return InjectionOfCofactorOfDirectSum(summands, i);
end);

id := IdentityMorphism(object);
injection_list := List(injection_list, function (mor)

return TensorProductOnMorphisms(id, mor);
end);

diagram := List(summands, function (summand)
return TensorProductOnObjects(object, summand);

end);
return UniversalMorphismFromDirectSum(diagram, injection_list);

end;

Back to index

Derivations for LeftUnitorInverseWithGivenTensorProduct

LeftUnitorInverseWithGivenTensorProduct as the identity morphism
This derivation is for all categories. This derivation uses:

‚ IdentityMorphism ˆ 1
function (object, unit_tensored_object)

return IdentityMorphism(object);
end;

DERIVATIONS 255

Back to index
LeftUnitorInverseWithGivenTensorProduct as the inverse of LeftUnitor-

WithGivenTensorProduct
This derivation is for all categories. This derivation uses:

‚ LeftUnitorWithGivenTensorProduct ˆ 1
function (object, unit_tensored_object)

return
Inverse(LeftUnitorWithGivenTensorProduct(object,

unit_tensored_object));
end;

Back to index

Derivations for LeftUnitorWithGivenTensorProduct

LeftUnitorWithGivenTensorProduct as the identity morphism
This derivation is for all categories. This derivation uses:

‚ IdentityMorphism ˆ 1
function (object, unit_tensored_object)

return IdentityMorphism(object);
end;

Back to index
LeftUnitorWithGivenTensorProduct as the inverse of LeftUnitorInverse-

WithGivenTensorProduct
This derivation is for all categories. This derivation uses:

‚ LeftUnitorInverseWithGivenTensorProduct ˆ 1
function (object, unit_tensored_object)

return
Inverse(LeftUnitorInverseWithGivenTensorProduct(object,

unit_tensored_object));
end;

Back to index

Derivations for LiftAlongMonomorphism

LiftAlongMonomorphism using Lift
This derivation is for all categories. This derivation uses:

‚ Lift ˆ 1
function (alpha, beta)

return Lift(beta, alpha);
end;

256 D. DERIVATIONS

Back to index

Derivations for MonoidalPostComposeMorphismWithGivenObjects

MonoidalPostComposeMorphismWithGivenObjects using associator, evalu-
ation, and tensor hom adjunction

This derivation is for symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ PreCompose ˆ 1
‚ TensorProductOnObjects ˆ 4
‚ InternalHomOnObjects ˆ 2
‚ TensorProductToInternalHomAdjunctionMap ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 1
‚ AssociatorLeftToRightWithGivenTensorProducts ˆ 1
‚ EvaluationMorphismWithGivenSource ˆ 2

function (new_source, x, y, z, new_range)
local hom_x_y, hom_y_z, morphism;
hom_x_y := InternalHomOnObjects(x, y);
hom_y_z := InternalHomOnObjects(y, z);
morphism
:=
PreCompose([AssociatorLeftToRight(hom_y_z, hom_x_y, x),

TensorProductOnMorphisms(IdentityMorphism(hom_y_z),
EvaluationMorphism(x, y)),

EvaluationMorphism(y, z)]);
return TensorProductToInternalHomAdjunctionMap(

TensorProductOnObjects(hom_y_z, hom_x_y), x, morphism);
end;

Back to index
MonoidalPostComposeMorphismWithGivenObjects using evaluation, and

tensor hom adjunction
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IdentityMorphism ˆ 1
‚ PreCompose ˆ 1
‚ TensorProductOnObjects ˆ 2
‚ InternalHomOnObjects ˆ 2
‚ TensorProductToInternalHomAdjunctionMap ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 1
‚ EvaluationMorphismWithGivenSource ˆ 2

function (new_source, x, y, z, new_range)
local hom_x_y, hom_y_z, morphism;
hom_x_y := InternalHomOnObjects(x, y);

DERIVATIONS 257

hom_y_z := InternalHomOnObjects(y, z);
morphism
:=
PreCompose(
[TensorProductOnMorphisms(IdentityMorphism(hom_y_z),

EvaluationMorphism(x, y)),
EvaluationMorphism(y, z)]);

return TensorProductToInternalHomAdjunctionMap(
TensorProductOnObjects(hom_y_z, hom_x_y), x, morphism);

end;

Back to index
MonoidalPostComposeMorphismWithGivenObjects using MonoidalPreCom-

poseMorphism and braiding
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ PreCompose ˆ 1
‚ InternalHomOnObjects ˆ 3
‚ BraidingWithGivenTensorProducts ˆ 1
‚ TensorProductOnObjects ˆ 2
‚ MonoidalPreComposeMorphismWithGivenObjects ˆ 1

function (new_source, x, y, z, new_range)
local braiding;
braiding := Braiding(InternalHomOnObjects(y, z),

InternalHomOnObjects(x, y));
return
PreCompose(braiding, MonoidalPreComposeMorphism(x, y, z));

end;

Back to index

Derivations for MonoidalPreComposeMorphismWithGivenObjects

MonoidalPreComposeMorphismWithGivenObjects using associator, braid-
ing, evaluation, and tensor hom adjunction

This derivation is for symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 2
‚ PreCompose ˆ 1
‚ TensorProductOnObjects ˆ 4
‚ InternalHomOnObjects ˆ 2
‚ TensorProductToInternalHomAdjunctionMap ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 2
‚ AssociatorRightToLeftWithGivenTensorProducts ˆ 1
‚ AssociatorLeftToRightWithGivenTensorProducts ˆ 1

258 D. DERIVATIONS

‚ BraidingWithGivenTensorProducts ˆ 2
‚ EvaluationMorphismWithGivenSource ˆ 2

function (new_source, x, y, z, new_range)
local hom_x_y, hom_y_z, morphism;
hom_x_y := InternalHomOnObjects(x, y);
hom_y_z := InternalHomOnObjects(y, z);
morphism
:=
PreCompose([AssociatorLeftToRight(hom_x_y, hom_y_z, x),

TensorProductOnMorphisms(IdentityMorphism(hom_x_y),
Braiding(hom_y_z, x)),

AssociatorRightToLeft(hom_x_y, x, hom_y_z),
TensorProductOnMorphisms(EvaluationMorphism(x, y),

IdentityMorphism(hom_y_z)), Braiding(y, hom_y_z),
EvaluationMorphism(y, z)]);

return TensorProductToInternalHomAdjunctionMap(
TensorProductOnObjects(hom_x_y, hom_y_z), x, morphism);

end;

Back to index
MonoidalPreComposeMorphismWithGivenObjects using, braiding, evalua-

tion, and tensor hom adjunction
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IdentityMorphism ˆ 2
‚ PreCompose ˆ 1
‚ TensorProductOnObjects ˆ 4
‚ InternalHomOnObjects ˆ 2
‚ TensorProductToInternalHomAdjunctionMap ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 2
‚ BraidingWithGivenTensorProducts ˆ 2
‚ EvaluationMorphismWithGivenSource ˆ 2

function (new_source, x, y, z, new_range)
local hom_x_y, hom_y_z, morphism;
hom_x_y := InternalHomOnObjects(x, y);
hom_y_z := InternalHomOnObjects(y, z);
morphism
:=
PreCompose(
[TensorProductOnMorphisms(IdentityMorphism(hom_x_y),

Braiding(hom_y_z, x)),
TensorProductOnMorphisms(EvaluationMorphism(x, y),

IdentityMorphism(hom_y_z)), Braiding(y, hom_y_z),

DERIVATIONS 259

EvaluationMorphism(y, z)]);
return TensorProductToInternalHomAdjunctionMap(

TensorProductOnObjects(hom_x_y, hom_y_z), x, morphism);
end;

Back to index
MonoidalPreComposeMorphismWithGivenObjects using MonoidalPostCom-

poseMorphism and braiding
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ PreCompose ˆ 1
‚ InternalHomOnObjects ˆ 3
‚ BraidingWithGivenTensorProducts ˆ 1
‚ TensorProductOnObjects ˆ 2
‚ MonoidalPostComposeMorphismWithGivenObjects ˆ 1

function (new_source, x, y, z, new_range)
local braiding;
braiding := Braiding(InternalHomOnObjects(x, y),

InternalHomOnObjects(y, z));
return
PreCompose(braiding, MonoidalPostComposeMorphism(x, y, z));

end;

Back to index

Derivations for MorphismFromBidualWithGivenBidual

MorphismFromBidualWithGivenBidual as the inverse of MorphismToBidual-
WithGivenBidual

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ MorphismToBidualWithGivenBidual ˆ 1

function (object, bidual)
return
Inverse(MorphismToBidualWithGivenBidual(object, bidual));

end;

Back to index

Derivations for MorphismFromCoimageToImageWithGivenObjects

MorphismFromCoimageToImageWithGivenObjects using that images are
given by kernels of cokernels

This derivation is for pre Abelian categories. This derivation uses:
‚ CokernelProjection ˆ 1
‚ IsomorphismFromKernelOfCokernelToImageObject ˆ 1

260 D. DERIVATIONS

‚ CoimageProjection ˆ 1
‚ AstrictionToCoimage ˆ 1
‚ KernelLift ˆ 1
‚ PreCompose ˆ 1

function (coimage, morphism, image)
local coimage_projection, cokernel_projection, kernel_lift;
cokernel_projection := CokernelProjection(morphism);
coimage_projection := CoimageProjection(morphism);
kernel_lift := KernelLift(cokernel_projection,

AstrictionToCoimage(morphism));
return
PreCompose(kernel_lift,

IsomorphismFromKernelOfCokernelToImageObject(morphism));
end;

Back to index

Derivations for
MorphismFromInternalHomToTensorProductWithGivenObjects

MorphismFromInternalHomToTensorProductWithGivenObjects using Iso-
morphismFromInternalHomToTensorProduct

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ IsomorphismFromInternalHomToTensorProduct ˆ 1

function (tensor_object, object_1, object_2, internal_hom)
return IsomorphismFromInternalHomToTensorProduct(object_1,

object_2);
end;

Back to index

Derivations for
MorphismFromTensorProductToInternalHomWithGivenObjects

MorphismFromTensorProductToInternalHomWithGivenObjects using Iso-
morphismFromTensorProductToInternalHom

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ IsomorphismFromTensorProductToInternalHom ˆ 1

function (tensor_object, object_1, object_2, internal_hom)
return IsomorphismFromTensorProductToInternalHom(object_1,

object_2);
end;

DERIVATIONS 261

Back to index
MorphismFromTensorProductToInternalHomWithGivenObjects using Ten-

sorProductInternalHomCompatibilityMorphism
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IdentityMorphism ˆ 1
‚ TensorUnit ˆ 1
‚ IsomorphismFromDualToInternalHom ˆ 1
‚ PreCompose ˆ 1
‚ RightUnitorWithGivenTensorProduct ˆ 1
‚ TensorProductOnObjects ˆ 4
‚ IsomorphismFromObjectToInternalHomWithGivenInternalHom ˆ 1
‚ InternalHomOnObjects ˆ 3
‚ IsomorphismFromInternalHomToObjectWithGivenInternalHom ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 2
‚ TensorProductInternalHomCompatibilityMorphismWithGivenObjects ˆ 1

function (tensor_object, object_1, object_2, internal_hom)
local unit, morphism;
unit := TensorUnit(CapCategory(object_1));
morphism
:=
PreCompose(
[

TensorProductOnMorphisms(IsomorphismFromDualToInternalHom(
object_1), IsomorphismFromObjectToInternalHom(
object_2)),

TensorProductInternalHomCompatibilityMorphism(object_1,
unit, unit, object_2),

TensorProductOnMorphisms(IdentityMorphism(internal_hom)
, IsomorphismFromInternalHomToObject(unit)),

RightUnitor(internal_hom)]);
return morphism;

end;

Back to index

Derivations for MorphismToBidualWithGivenBidual

MorphismToBidualWithGivenBidual as the inverse of MorphismFromBidual-
WithGivenBidual

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ MorphismFromBidualWithGivenBidual ˆ 1

function (object, bidual)
return

262 D. DERIVATIONS

Inverse(MorphismFromBidualWithGivenBidual(object, bidual));
end;

Back to index
MorphismToBidualWithGivenBidual using the braiding and the universal

property of the dual
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ DualOnObjects ˆ 2
‚ PreCompose ˆ 1
‚ UniversalPropertyOfDual ˆ 1
‚ EvaluationForDualWithGivenTensorProduct ˆ 1
‚ TensorProductOnObjects ˆ 2
‚ TensorUnit ˆ 1
‚ BraidingWithGivenTensorProducts ˆ 1

function (object, bidual)
local morphism;
morphism := Braiding(object, DualOnObjects(object));
morphism := PreCompose(morphism, EvaluationForDual(object));
return UniversalPropertyOfDual(object, DualOnObjects(object)

, morphism);
end;

Back to index
MorphismToBidualWithGivenBidual using Coevaluation, InternalHom, and

Evaluation
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IdentityMorphism ˆ 2
‚ TensorUnit ˆ 1
‚ DualOnObjects ˆ 1
‚ PreCompose ˆ 1
‚ BraidingWithGivenTensorProducts ˆ 1
‚ TensorProductOnObjects ˆ 2
‚ InternalHomOnMorphismsWithGivenInternalHoms ˆ 2
‚ InternalHomOnObjects ˆ 4
‚ EvaluationMorphismWithGivenSource ˆ 1
‚ CoevaluationMorphismWithGivenRange ˆ 1

function (object, bidual)
local morphism, dual_object, tensor_unit;
dual_object := DualOnObjects(object);
tensor_unit := TensorUnit(CapCategory(object));
morphism
:=

DERIVATIONS 263

PreCompose(
[CoevaluationMorphism(object, dual_object),

InternalHomOnMorphisms(IdentityMorphism(dual_object),
Braiding(object, dual_object)),

InternalHomOnMorphisms(IdentityMorphism(dual_object),
EvaluationMorphism(object, tensor_unit))]);

return morphism;
end;

Back to index

Derivations for PostCompose

PostCompose using PreCompose and swapping arguments
This derivation is for all categories. This derivation uses:

‚ PreCompose ˆ 1
function (right_mor, left_mor)

return PreCompose(left_mor, right_mor);
end;

Back to index

Derivations for PreCompose

PreCompose using PostCompose and swapping arguments
This derivation is for all categories. This derivation uses:

‚ PostCompose ˆ 1
function (left_mor, right_mor)

return PostCompose(right_mor, left_mor);
end;

Back to index

Derivations for ProjectionInFactorOfDirectProduct

ProjectionInFactorOfDirectProduct using ProjectionInFactorOfDirectSum
This derivation is for all categories. This derivation uses:

‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ PreCompose ˆ 1
‚ ProjectionInFactorOfDirectSum ˆ 1
‚ IsomorphismFromDirectProductToDirectSum ˆ 1

264 D. DERIVATIONS

function (diagram, projection_number)
return
PreCompose(IsomorphismFromDirectProductToDirectSum(diagram)

, ProjectionInFactorOfDirectSum(diagram, projection_number
));

end;

Back to index

Derivations for ProjectionInFactorOfDirectSum

ProjectionInFactorOfDirectSum using ProjectionInFactorOfDirectProduct
This derivation is for all categories. This derivation uses:

‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ PreCompose ˆ 1
‚ ProjectionInFactorOfDirectProduct ˆ 1
‚ IsomorphismFromDirectSumToDirectProduct ˆ 1

function (diagram, projection_number)
return
PreCompose(IsomorphismFromDirectSumToDirectProduct(diagram)

, ProjectionInFactorOfDirectProduct(diagram,
projection_number));

end;

Back to index

Derivations for ProjectionInFactorOfFiberProduct

ProjectionInFactorOfFiberProduct by composing the direct sum embedding
with the direct sum projection

This derivation is for all categories. This derivation uses:
‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ PreCompose ˆ 1
‚ ProjectionInFactorOfDirectSum ˆ 1
‚ FiberProductEmbeddingInDirectSum ˆ 1

function (diagram, projection_number)
local embedding_in_direct_sum, direct_sum_diagram, projection;
embedding_in_direct_sum := FiberProductEmbeddingInDirectSum(

diagram);
direct_sum_diagram := List(diagram, Source);
projection := ProjectionInFactorOfDirectSum(direct_sum_diagram

DERIVATIONS 265

, projection_number);
return PreCompose(embedding_in_direct_sum, projection);

end;

Back to index

Derivations for Pushout

Pushout as the range of DirectSumProjectionInPushout
This derivation is for all categories. This derivation uses:

‚ DirectSumProjectionInPushout ˆ 1
function (diagram)

return Range(DirectSumProjectionInPushout(diagram));
end;

Back to index

Derivations for PushoutFunctorialWithGivenPushouts

PushoutFunctorialWithGivenPushouts using the universality of the pushout
This derivation is for all categories. This derivation uses:

‚ PreCompose ˆ 2
‚ InjectionOfCofactorOfPushout ˆ 2
‚ UniversalMorphismFromPushout ˆ 1

function (pushout_source, morphism_of_morphisms, pushout_range)
local pushout_diagram, sink, diagram;
pushout_diagram := List(morphism_of_morphisms, function (mor)

return mor[3];
end);

sink := List([1 .. Length(morphism_of_morphisms)],
function (i)

return PreCompose(morphism_of_morphisms[i][2],
InjectionOfCofactorOfPushout(pushout_diagram, i));

end);
diagram := List(morphism_of_morphisms, function (mor)

return mor[1];
end);

return UniversalMorphismFromPushout(diagram, sink);
end;

Back to index

266 D. DERIVATIONS

Derivations for RankMorphism

Rank of an object as the trace of its identity
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

‚ IdentityMorphism ˆ 1
‚ TraceMap ˆ 1

function (object)
return TraceMap(IdentityMorphism(object));

end;

Back to index

Derivations for RightDistributivityExpandingWithGivenObjects

RightDistributivityExpandingWithGivenObjects using the universal prop-
erty of the direct sum

This derivation is for additive categories. This derivation uses:

‚ IdentityMorphism ˆ 1
‚ ProjectionInFactorOfDirectSum ˆ 2
‚ UniversalMorphismIntoDirectSum ˆ 1
‚ TensorProductOnObjects ˆ 4
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 2

function (factored_object, summands, object, expanded_object)
local nr_summands, projection_list, id, diagram;
nr_summands := Size(summands);
projection_list := List([1 .. nr_summands], function (i)

return ProjectionInFactorOfDirectSum(summands, i);
end);

id := IdentityMorphism(object);
projection_list := List(projection_list, function (mor)

return TensorProductOnMorphisms(mor, id);
end);

diagram := List(summands, function (summand)
return TensorProductOnObjects(summand, object);

end);
return UniversalMorphismIntoDirectSum(diagram, projection_list

);
end;

Back to index

DERIVATIONS 267

Derivations for RightDistributivityFactoringWithGivenObjects

RightDistributivityFactoringWithGivenObjects using the universal proper-
ty of the direct sum

This derivation is for additive categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ InjectionOfCofactorOfDirectSum ˆ 2
‚ UniversalMorphismFromDirectSum ˆ 1
‚ TensorProductOnObjects ˆ 4
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 2

function (expanded_object, summands, object, factored_object)
local nr_summands, injection_list, id, diagram;
nr_summands := Size(summands);
injection_list := List([1 .. nr_summands], function (i)

return InjectionOfCofactorOfDirectSum(summands, i);
end);

id := IdentityMorphism(object);
injection_list := List(injection_list, function (mor)

return TensorProductOnMorphisms(mor, id);
end);

diagram := List(summands, function (summand)
return TensorProductOnObjects(summand, object);

end);
return UniversalMorphismFromDirectSum(diagram, injection_list);

end;

Back to index

Derivations for RightUnitorInverseWithGivenTensorProduct

RightUnitorInverseWithGivenTensorProduct as the identity morphism
This derivation is for all categories. This derivation uses:

‚ IdentityMorphism ˆ 1
function (object, object_tensored_unit)

return IdentityMorphism(object);
end;

Back to index
RightUnitorInverseWithGivenTensorProduct as the inverse of RightUnitor-

WithGivenTensorProduct
This derivation is for all categories. This derivation uses:

‚ RightUnitorWithGivenTensorProduct ˆ 1

268 D. DERIVATIONS

function (object, object_tensored_unit)
return
Inverse(RightUnitorWithGivenTensorProduct(object,

object_tensored_unit));
end;

Back to index

Derivations for RightUnitorWithGivenTensorProduct

RightUnitorWithGivenTensorProduct as the identity morphism
This derivation is for all categories. This derivation uses:

‚ IdentityMorphism ˆ 1
function (object, object_tensored_unit)

return IdentityMorphism(object);
end;

Back to index
RightUnitorWithGivenTensorProduct as the inverse of RightUnitorInverse-

WithGivenTensorProduct
This derivation is for all categories. This derivation uses:

‚ RightUnitorInverseWithGivenTensorProduct ˆ 1
function (object, object_tensored_unit)

return
Inverse(RightUnitorInverseWithGivenTensorProduct(object,

object_tensored_unit));
end;

Back to index

Derivations for
TensorProductDualityCompatibilityMorphismWithGivenObjects

TensorProductDualityCompatibilityMorphismWithGivenObjects using left
unitoar, and compatibility of tensor product and internal hom

This derivation is for symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ TensorUnit ˆ 1
‚ IsomorphismFromDualToInternalHom ˆ 2
‚ IsomorphismFromInternalHomToDual ˆ 1
‚ PreCompose ˆ 1
‚ TensorProductOnObjects ˆ 3
‚ LeftUnitorWithGivenTensorProduct ˆ 1

DERIVATIONS 269

‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 1
‚ InternalHomOnMorphismsWithGivenInternalHoms ˆ 1
‚ InternalHomOnObjects ˆ 3
‚ TensorProductInternalHomCompatibilityMorphismWithGivenObjects ˆ 1

function (new_source, object_1, object_2, new_range)
local morphism, unit, tensor_product_on_object_1_and_object_2;
unit := TensorUnit(CapCategory(object_1));
tensor_product_on_object_1_and_object_2
:= TensorProductOnObjects(object_1, object_2);

morphism
:=
PreCompose(
[

TensorProductOnMorphisms(IsomorphismFromDualToInternalHom(
object_1), IsomorphismFromDualToInternalHom(
object_2)),

TensorProductInternalHomCompatibilityMorphism(object_1,
unit, object_2, unit),

InternalHomOnMorphisms(
IdentityMorphism(

tensor_product_on_object_1_and_object_2),
LeftUnitor(unit)),

IsomorphismFromInternalHomToDual(
tensor_product_on_object_1_and_object_2)]);

return morphism;
end;

Back to index
TensorProductDualityCompatibilityMorphismWithGivenObjects using com-

patibility of tensor product and internal hom
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ TensorUnit ˆ 1
‚ IsomorphismFromDualToInternalHom ˆ 2
‚ IsomorphismFromInternalHomToDual ˆ 1
‚ PreCompose ˆ 1
‚ TensorProductOnObjects ˆ 3
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 1
‚ TensorProductInternalHomCompatibilityMorphismWithGivenObjects ˆ 1
‚ InternalHomOnObjects ˆ 3

function (new_source, object_1, object_2, new_range)
local morphism, unit, tensor_product_on_object_1_and_object_2;
unit := TensorUnit(CapCategory(object_1));

270 D. DERIVATIONS

tensor_product_on_object_1_and_object_2
:= TensorProductOnObjects(object_1, object_2);

morphism
:=
PreCompose(
[

TensorProductOnMorphisms(IsomorphismFromDualToInternalHom(
object_1), IsomorphismFromDualToInternalHom(
object_2)),

TensorProductInternalHomCompatibilityMorphism(object_1,
unit, object_2, unit),

IsomorphismFromInternalHomToDual(
tensor_product_on_object_1_and_object_2)]);

return morphism;
end;

Back to index

Derivations for
TensorProductInternalHomCompatibilityMorphismInverseWithGivenObjects

TensorProductInternalHomCompatibilityMorphismInverseWithGivenObje-
cts as the inverse of TensorProductInternalHomCompatibilityMorphi smWith-
GivenObjects

This derivation is for rigid symmetric closed monoidal categories. This derivation uses:
‚ TensorProductInternalHomCompatibilityMorphismWithGivenObjects ˆ 1

function (a1, b1, a2, b2, new_source_and_range_list)
return
Inverse(

TensorProductInternalHomCompatibilityMorphismWithGivenObjects
(a1, b1, a2, b2, new_source_and_range_list));

end;

Back to index

Derivations for
TensorProductInternalHomCompatibilityMorphismWithGivenObjects

TensorProductInternalHomCompatibilityMorphismWithGivenObjects using
associator, braiding an the evaluation morphism

This derivation is for symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 4
‚ PreCompose ˆ 1
‚ TensorProductOnObjects ˆ 14

DERIVATIONS 271

‚ InternalHomOnObjects ˆ 2
‚ TensorProductToInternalHomAdjunctionMap ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 7
‚ AssociatorRightToLeftWithGivenTensorProducts ˆ 2
‚ AssociatorLeftToRightWithGivenTensorProducts ˆ 2
‚ BraidingWithGivenTensorProducts ˆ 1
‚ EvaluationMorphismWithGivenSource ˆ 2

function (a1, b1, a2, b2, new_source_and_range_list)
local morphism, int_hom_a1_b1, int_hom_a2_b2, id_a2,
tensor_product_on_objects_int_hom_a1_b1_int_hom_a2_b2;
int_hom_a1_b1 := InternalHomOnObjects(a1, b1);
int_hom_a2_b2 := InternalHomOnObjects(a2, b2);
id_a2 := IdentityMorphism(a2);
tensor_product_on_objects_int_hom_a1_b1_int_hom_a2_b2
:= TensorProductOnObjects(int_hom_a1_b1, int_hom_a2_b2);

morphism
:=
PreCompose(
[

AssociatorRightToLeft(
tensor_product_on_objects_int_hom_a1_b1_int_hom_a2_b2,
a1, a2),

TensorProductOnMorphisms(
AssociatorLeftToRight(int_hom_a1_b1, int_hom_a2_b2,

a1), id_a2),
TensorProductOnMorphisms(

TensorProductOnMorphisms(
IdentityMorphism(int_hom_a1_b1),
Braiding(int_hom_a2_b2, a1)), id_a2),

TensorProductOnMorphisms(
AssociatorRightToLeft(int_hom_a1_b1, a1,

int_hom_a2_b2), id_a2),
TensorProductOnMorphisms(

TensorProductOnMorphisms(EvaluationMorphism(a1, b1)
, IdentityMorphism(int_hom_a2_b2)), id_a2),

AssociatorLeftToRight(b1, int_hom_a2_b2, a2),
TensorProductOnMorphisms(IdentityMorphism(b1),

EvaluationMorphism(a2, b2))]);
return TensorProductToInternalHomAdjunctionMap(

tensor_product_on_objects_int_hom_a1_b1_int_hom_a2_b2,
TensorProductOnObjects(a1, a2), morphism);

end;

272 D. DERIVATIONS

Back to index
TensorProductInternalHomCompatibilityMorphismWithGivenObjects using

braiding an the evaluation morphism
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IdentityMorphism ˆ 4
‚ PreCompose ˆ 1
‚ TensorProductOnObjects ˆ 10
‚ InternalHomOnObjects ˆ 2
‚ TensorProductToInternalHomAdjunctionMap ˆ 1
‚ TensorProductOnMorphismsWithGivenTensorProducts ˆ 5
‚ BraidingWithGivenTensorProducts ˆ 1
‚ EvaluationMorphismWithGivenSource ˆ 2

function (a1, b1, a2, b2, new_source_and_range_list)
local morphism, int_hom_a1_b1, int_hom_a2_b2, id_a2,
tensor_product_on_objects_int_hom_a1_b1_int_hom_a2_b2;
int_hom_a1_b1 := InternalHomOnObjects(a1, b1);
int_hom_a2_b2 := InternalHomOnObjects(a2, b2);
id_a2 := IdentityMorphism(a2);
tensor_product_on_objects_int_hom_a1_b1_int_hom_a2_b2
:= TensorProductOnObjects(int_hom_a1_b1, int_hom_a2_b2);

morphism
:=
PreCompose(
[

TensorProductOnMorphisms(
TensorProductOnMorphisms(

IdentityMorphism(int_hom_a1_b1),
Braiding(int_hom_a2_b2, a1)), id_a2),

TensorProductOnMorphisms(
TensorProductOnMorphisms(EvaluationMorphism(a1, b1)

, IdentityMorphism(int_hom_a2_b2)), id_a2),
TensorProductOnMorphisms(IdentityMorphism(b1),

EvaluationMorphism(a2, b2))]);
return TensorProductToInternalHomAdjunctionMap(

tensor_product_on_objects_int_hom_a1_b1_int_hom_a2_b2,
TensorProductOnObjects(a1, a2), morphism);

end;

Back to index

DERIVATIONS 273

Derivations for TensorProductToInternalHomAdjunctionMap

TensorProductToInternalHomAdjunctionMap using CoevaluationMorphism
and InternalHom

This derivation is for symmetric closed monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ PreCompose ˆ 1
‚ InternalHomOnMorphismsWithGivenInternalHoms ˆ 1
‚ InternalHomOnObjects ˆ 2
‚ CoevaluationMorphismWithGivenRange ˆ 1
‚ TensorProductOnObjects ˆ 1

function (object_1, object_2, morphism)
local coevaluation, internal_hom_on_morphisms;
coevaluation := CoevaluationMorphism(object_1, object_2);
internal_hom_on_morphisms
:= InternalHomOnMorphisms(IdentityMorphism(object_2),

morphism);
return PreCompose(coevaluation, internal_hom_on_morphisms);

end;

Back to index

Derivations for TerminalObject

TerminalObject as the source of IsomorphismFromTerminalObjectToZero-
Object

This derivation is for all categories. This derivation uses:
‚ IsomorphismFromTerminalObjectToZeroObject ˆ 1

function (category)
return
Source(IsomorphismFromTerminalObjectToZeroObject(category));

end;

Back to index
TerminalObject as the range of IsomorphismFromZeroObjectToTerminal-

Object
This derivation is for all categories. This derivation uses:

‚ IsomorphismFromZeroObjectToTerminalObject ˆ 1
function (category)

return
Range(IsomorphismFromZeroObjectToTerminalObject(category));

end;

274 D. DERIVATIONS

Back to index

Derivations for TerminalObjectFunctorial

TerminalObjectFunctorial using the identity morphism of terminal object
This derivation is for all categories. This derivation uses:

‚ TerminalObject ˆ 1
‚ IdentityMorphism ˆ 1

function (category)
local terminal_object;
terminal_object := TerminalObject(category);
return IdentityMorphism(terminal_object);

end;

Back to index
TerminalObjectFunctorial using the universality of terminal object
This derivation is for all categories. This derivation uses:

‚ TerminalObject ˆ 1
‚ UniversalMorphismIntoTerminalObject ˆ 1

function (category)
local terminal_object;
terminal_object := TerminalObject(category);
return UniversalMorphismIntoTerminalObject(terminal_object);

end;

Back to index

Derivations for TraceMap

TraceMap composing the lambda abstraction with the evaluation
This derivation is for rigid symmetric closed monoidal categories. This derivation uses:

‚ LambdaIntroduction ˆ 1
‚ PreCompose ˆ 2
‚ IsomorphismFromInternalHomToTensorProduct ˆ 1
‚ EvaluationForDualWithGivenTensorProduct ˆ 1
‚ TensorProductOnObjects ˆ 1
‚ DualOnObjects ˆ 1
‚ TensorUnit ˆ 1

function (morphism)
local result_morphism, object;
result_morphism := LambdaIntroduction(morphism);
object := Source(morphism);
result_morphism := PreCompose(result_morphism,

DERIVATIONS 275

IsomorphismFromInternalHomToTensorProduct(object, object));
return PreCompose(result_morphism, EvaluationForDual(object)

);
end;

Back to index

Derivations for UniversalMorphismFromCoproduct

UniversalMorphismFromCoproduct using UniversalMorphismFromDirect-
Sum

This derivation is for all categories. This derivation uses:
‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ PreCompose ˆ 1
‚ UniversalMorphismFromDirectSum ˆ 1
‚ IsomorphismFromCoproductToDirectSum ˆ 1

function (diagram, sink)
return
PreCompose(IsomorphismFromCoproductToDirectSum(diagram),

UniversalMorphismFromDirectSum(diagram, sink));
end;

Back to index

Derivations for UniversalMorphismFromDirectSum

UniversalMorphismFromDirectSum using projections of the direct sum
This derivation is for additive categories. This derivation uses:

‚ PreCompose ˆ 2
‚ ProjectionInFactorOfDirectSumWithGivenDirectSum ˆ 2
‚ AdditionForMorphisms ˆ 1
‚ ProjectionInFactorOfDirectSum ˆ 2

function (diagram, sink)
local nr_components;
nr_components := Length(sink);
return Sum(List([1 .. nr_components], function (i)

return
PreCompose(ProjectionInFactorOfDirectSum(diagram,

i), sink[i]);
end));

end;

276 D. DERIVATIONS

Back to index
UniversalMorphismFromDirectSum using UniversalMorphismFromCopro-

duct
This derivation is for all categories. This derivation uses:

‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ PreCompose ˆ 1
‚ UniversalMorphismFromCoproduct ˆ 1
‚ IsomorphismFromDirectSumToCoproduct ˆ 1

function (diagram, sink)
return
PreCompose(IsomorphismFromDirectSumToCoproduct(diagram),

UniversalMorphismFromCoproduct(diagram, sink));
end;

Back to index

Derivations for UniversalMorphismFromDirectSumWithGivenDirectSum

UniversalMorphismFromDirectSum using projections of the direct sum
This derivation is for additive categories. This derivation uses:

‚ PreCompose ˆ 2
‚ ProjectionInFactorOfDirectSumWithGivenDirectSum ˆ 2
‚ AdditionForMorphisms ˆ 1
‚ ProjectionInFactorOfDirectSum ˆ 2

function (diagram, sink, direct_sum)
local nr_components;
nr_components := Length(sink);
return Sum(List([1 .. nr_components], function (i)

return
PreCompose(

ProjectionInFactorOfDirectSumWithGivenDirectSum(
diagram, i, direct_sum), sink[i]);

end));
end;

Back to index

Derivations for UniversalMorphismFromImage

UniversalMorphismFromImage using ImageEmbedding and LiftAlongMo-
nomorphism

This derivation is for all categories. This derivation uses:
‚ LiftAlongMonomorphism ˆ 1

DERIVATIONS 277

‚ ImageEmbeddingWithGivenImageObject ˆ 1
‚ ImageEmbedding ˆ 1

function (morphism, test_factorization)
local image_embedding;
image_embedding := ImageEmbedding(morphism);
return LiftAlongMonomorphism(test_factorization[2],

image_embedding);
end;

Back to index

Derivations for UniversalMorphismFromImageWithGivenImageObject

UniversalMorphismFromImage using ImageEmbedding and LiftAlongMo-
nomorphism

This derivation is for all categories. This derivation uses:
‚ LiftAlongMonomorphism ˆ 1
‚ ImageEmbeddingWithGivenImageObject ˆ 1
‚ ImageEmbedding ˆ 1

function (morphism, test_factorization, image)
local image_embedding;
image_embedding := ImageEmbeddingWithGivenImageObject(

morphism, image);
return LiftAlongMonomorphism(test_factorization[2],

image_embedding);
end;

Back to index

Derivations for UniversalMorphismFromInitialObject

UniversalMorphismFromInitialObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

‚ ZeroMorphism ˆ 1
‚ InitialObject ˆ 1

function (test_sink)
local initial_object;
initial_object := InitialObject(CapCategory(test_sink));
return ZeroMorphism(initial_object, test_sink);

end;

Back to index
UniversalMorphismFromInitialObject using UniversalMorphismFromZero-

Object

278 D. DERIVATIONS

This derivation is for all categories. This derivation uses:
‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ UniversalMorphismFromZeroObject ˆ 1
‚ IsomorphismFromInitialObjectToZeroObject ˆ 1
‚ PreCompose ˆ 1

function (obj)
local category;
category := CapCategory(obj);
return
PreCompose(IsomorphismFromInitialObjectToZeroObject(category

), UniversalMorphismFromZeroObject(obj));
end;

Back to index

Derivations for UniversalMorphismFromInitialObjectWithGivenInitialObject

UniversalMorphismFromInitialObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

‚ ZeroMorphism ˆ 1
‚ InitialObject ˆ 1

function (test_sink, initial_object)
return ZeroMorphism(initial_object, test_sink);

end;

Back to index

Derivations for UniversalMorphismFromPushout

UniversalMorphismFromPushout using the universality of the cokernel rep-
resentation of the pushout

This derivation is for all categories. This derivation uses:
‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ CokernelColift ˆ 1
‚ PreCompose ˆ 1
‚ UniversalMorphismFromDirectSum ˆ 1
‚ IsomorphismFromPushoutToCokernelOfDiagonalDifference ˆ 1
‚ DirectSumCodiagonalDifference ˆ 1

function (diagram, sink)
local test_function, direct_sum_codiagonal_difference,
cokernel_colift;

DERIVATIONS 279

test_function := CallFuncList(UniversalMorphismFromDirectSum,
sink);

direct_sum_codiagonal_difference
:= DirectSumCodiagonalDifference(diagram);

cokernel_colift
:= CokernelColift(direct_sum_codiagonal_difference,

test_function);
return
PreCompose(

IsomorphismFromPushoutToCokernelOfDiagonalDifference(
diagram), cokernel_colift);

end;

Back to index

Derivations for UniversalMorphismFromZeroObject

UniversalMorphismFromZeroObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

‚ ZeroMorphism ˆ 1
‚ ZeroObject ˆ 1

function (test_sink)
local zero_object;
zero_object := ZeroObject(CapCategory(test_sink));
return ZeroMorphism(zero_object, test_sink);

end;

Back to index
UniversalMorphismFromZeroObject using UniversalMorphismFromInitial-

Object
This derivation is for all categories. This derivation uses:

‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ IsomorphismFromZeroObjectToInitialObject ˆ 1
‚ UniversalMorphismFromInitialObject ˆ 1
‚ PreCompose ˆ 1

function (obj)
local category;
category := CapCategory(obj);
return
PreCompose(IsomorphismFromZeroObjectToInitialObject(category

280 D. DERIVATIONS

), UniversalMorphismFromInitialObject(obj));
end;

Back to index

Derivations for UniversalMorphismFromZeroObjectWithGivenZeroObject

UniversalMorphismFromZeroObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

‚ ZeroMorphism ˆ 1
‚ ZeroObject ˆ 1

function (test_sink, zero_object)
return ZeroMorphism(zero_object, test_sink);

end;

Back to index

Derivations for UniversalMorphismIntoCoimage

UniversalMorphismIntoCoimage using CoimageProjection and ColiftAlong-
Epimorphism

This derivation is for all categories. This derivation uses:
‚ ColiftAlongEpimorphism ˆ 1
‚ CoimageProjectionWithGivenCoimage ˆ 1
‚ CoimageProjection ˆ 1

function (morphism, test_factorization)
local coimage_projection;
coimage_projection := CoimageProjection(morphism);
return ColiftAlongEpimorphism(test_factorization[1],

coimage_projection);
end;

Back to index

Derivations for UniversalMorphismIntoCoimageWithGivenCoimage

UniversalMorphismIntoCoimage using CoimageProjection and ColiftAlong-
Epimorphism

This derivation is for all categories. This derivation uses:
‚ ColiftAlongEpimorphism ˆ 1
‚ CoimageProjectionWithGivenCoimage ˆ 1
‚ CoimageProjection ˆ 1

DERIVATIONS 281

function (morphism, test_factorization, coimage)
local coimage_projection;
coimage_projection := CoimageProjectionWithGivenCoimage(

morphism, coimage);
return ColiftAlongEpimorphism(test_factorization[1],

coimage_projection);
end;

Back to index

Derivations for UniversalMorphismIntoDirectProduct

UniversalMorphismIntoDirectProduct using UniversalMorphismIntoDirect-
Sum

This derivation is for all categories. This derivation uses:
‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ PreCompose ˆ 1
‚ UniversalMorphismIntoDirectSum ˆ 1
‚ IsomorphismFromDirectSumToDirectProduct ˆ 1

function (diagram, source)
return
PreCompose(UniversalMorphismIntoDirectSum(diagram, source),

IsomorphismFromDirectSumToDirectProduct(diagram));
end;

Back to index

Derivations for UniversalMorphismIntoDirectSum

UniversalMorphismIntoDirectSum using the injections of the direct sum
This derivation is for additive categories. This derivation uses:

‚ PreCompose ˆ 2
‚ InjectionOfCofactorOfDirectSumWithGivenDirectSum ˆ 2
‚ AdditionForMorphisms ˆ 1
‚ InjectionOfCofactorOfDirectSum ˆ 2

function (diagram, source)
local nr_components;
nr_components := Length(source);
return Sum(List([1 .. nr_components], function (i)

return
PreCompose(source[i],

InjectionOfCofactorOfDirectSum(diagram, i));

282 D. DERIVATIONS

end));
end;

Back to index
UniversalMorphismIntoDirectSum using UniversalMorphismIntoDirectPro-

duct
This derivation is for all categories. This derivation uses:

‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ PreCompose ˆ 1
‚ UniversalMorphismIntoDirectProduct ˆ 1
‚ IsomorphismFromDirectProductToDirectSum ˆ 1

function (diagram, source)
return
PreCompose(UniversalMorphismIntoDirectProduct(diagram,

source), IsomorphismFromDirectProductToDirectSum(diagram
));

end;

Back to index

Derivations for UniversalMorphismIntoDirectSumWithGivenDirectSum

UniversalMorphismIntoDirectSum using the injections of the direct sum
This derivation is for additive categories. This derivation uses:

‚ PreCompose ˆ 2
‚ InjectionOfCofactorOfDirectSumWithGivenDirectSum ˆ 2
‚ AdditionForMorphisms ˆ 1
‚ InjectionOfCofactorOfDirectSum ˆ 2

function (diagram, source, direct_sum)
local nr_components;
nr_components := Length(source);
return Sum(List([1 .. nr_components], function (i)

return
PreCompose(source[i],

InjectionOfCofactorOfDirectSumWithGivenDirectSum(
diagram, i, direct_sum));

end));
end;

Back to index

DERIVATIONS 283

Derivations for UniversalMorphismIntoFiberProduct

UniversalMorphismIntoFiberProduct using the universality of the kernel
representation of the pullback

This derivation is for all categories. This derivation uses:
‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ KernelLift ˆ 1
‚ PreCompose ˆ 1
‚ UniversalMorphismIntoDirectSum ˆ 1
‚ DirectSumDiagonalDifference ˆ 1
‚ IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct ˆ 1

function (diagram, source)
local test_function, direct_sum_diagonal_difference,
kernel_lift;
test_function := CallFuncList(UniversalMorphismIntoDirectSum,

source);
direct_sum_diagonal_difference := DirectSumDiagonalDifference(

diagram);
kernel_lift := KernelLift(direct_sum_diagonal_difference,

test_function);
return
PreCompose(kernel_lift,

IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct(
diagram));

end;

Back to index

Derivations for UniversalMorphismIntoTerminalObject

UniversalMorphismIntoTerminalObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

‚ ZeroMorphism ˆ 1
‚ TerminalObject ˆ 1

function (test_source)
local terminal_object;
terminal_object := TerminalObject(CapCategory(test_source));
return ZeroMorphism(test_source, terminal_object);

end;

Back to index

284 D. DERIVATIONS

UniversalMorphismFromInitialObject using UniversalMorphismFromZero-
Object

This derivation is for all categories. This derivation uses:
‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ UniversalMorphismIntoZeroObject ˆ 1
‚ IsomorphismFromZeroObjectToTerminalObject ˆ 1
‚ PreCompose ˆ 1

function (obj)
local category;
category := CapCategory(obj);
return PreCompose(UniversalMorphismIntoZeroObject(obj),

IsomorphismFromZeroObjectToTerminalObject(category));
end;

Back to index

Derivations for
UniversalMorphismIntoTerminalObjectWithGivenTerminalObject

UniversalMorphismIntoTerminalObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

‚ ZeroMorphism ˆ 1
‚ TerminalObject ˆ 1

function (test_source, terminal_object)
return ZeroMorphism(test_source, terminal_object);

end;

Back to index

Derivations for UniversalMorphismIntoZeroObject

UniversalMorphismIntoZeroObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

‚ ZeroMorphism ˆ 1
‚ ZeroObject ˆ 1

function (test_source)
local zero_object;
zero_object := ZeroObject(CapCategory(test_source));
return ZeroMorphism(test_source, zero_object);

end;

DERIVATIONS 285

Back to index
UniversalMorphismIntoZeroObject using UniversalMorphismIntoTerminal-

Object
This derivation is for all categories. This derivation uses:

‚ AdditionForMorphisms ˆ 1
‚ AdditiveInverseForMorphisms ˆ 1
‚ IsomorphismFromTerminalObjectToZeroObject ˆ 1
‚ UniversalMorphismIntoTerminalObject ˆ 1
‚ PreCompose ˆ 1

function (obj)
local category;
category := CapCategory(obj);
return PreCompose(UniversalMorphismIntoTerminalObject(obj),

IsomorphismFromTerminalObjectToZeroObject(category));
end;

Back to index

Derivations for UniversalMorphismIntoZeroObjectWithGivenZeroObject

UniversalMorphismIntoZeroObject computing the zero morphism
This derivation is for additive categories. This derivation uses:

‚ ZeroMorphism ˆ 1
‚ ZeroObject ˆ 1

function (test_source, zero_object)
return ZeroMorphism(test_source, zero_object);

end;

Back to index

Derivations for UniversalPropertyOfDual

UniversalPropertyOfDual using the hom tensor adjunction
This derivation is for symmetric closed monoidal categories. This derivation uses:

‚ IsomorphismFromInternalHomToDual ˆ 1
‚ PreCompose ˆ 1
‚ TensorProductToInternalHomAdjunctionMap ˆ 1

function (object_1, object_2, test_morphism)
local adjoint_morphism;
adjoint_morphism := TensorProductToInternalHomAdjunctionMap(

object_1, object_2, test_morphism);
return
PreCompose(adjoint_morphism,

286 D. DERIVATIONS

IsomorphismFromInternalHomToDual(object_2));
end;

Back to index

Derivations for VerticalPostCompose

VerticalPostCompose using VerticalPreCompose
This derivation is for all categories. This derivation uses:

‚ VerticalPreCompose ˆ 1
function (twocell_below, twocell_above)

return VerticalPreCompose(twocell_above, twocell_below);
end;

Back to index

Derivations for VerticalPreCompose

VerticalPreCompose using VerticalPostCompose
This derivation is for all categories. This derivation uses:

‚ VerticalPostCompose ˆ 1
function (twocell_above, twocell_below)

return VerticalPostCompose(twocell_below, twocell_above);
end;

Back to index

Derivations for ZeroMorphism

Zero morphism by composition of morphism into and from zero object
This derivation is for additive categories. This derivation uses:

‚ PreCompose ˆ 1
‚ UniversalMorphismIntoZeroObject ˆ 1
‚ UniversalMorphismFromZeroObject ˆ 1

function (obj_source, obj_range)
return PreCompose(UniversalMorphismIntoZeroObject(obj_source)

, UniversalMorphismFromZeroObject(obj_range));
end;

Back to index

APPENDIX E

Final Derivations

Final derivation index

‚ IsomorphismFromFiberProductToKernelOfDiagonalDifference
‚ IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct
‚ IsomorphismFromPushoutToCokernelOfDiagonalDifference
‚ IsomorphismFromCokernelOfDiagonalDifferenceToPushout
‚ IsomorphismFromImageObjectToKernelOfCokernel
‚ IsomorphismFromKernelOfCokernelToImageObject
‚ IsomorphismFromCoimageToCokernelOfKernel
‚ IsomorphismFromCokernelOfKernelToCoimage
‚ IsomorphismFromInitialObjectToZeroObject
‚ IsomorphismFromZeroObjectToInitialObject
‚ IsomorphismFromTerminalObjectToZeroObject
‚ IsomorphismFromZeroObjectToTerminalObject
‚ IsomorphismFromDirectSumToDirectProduct
‚ IsomorphismFromDirectProductToDirectSum
‚ IsomorphismFromCoproductToDirectSum
‚ IsomorphismFromDirectSumToCoproduct
‚ IsEqualForObjects
‚ IsCongruentForMorphisms0
‚ IsEqualForMorphisms
‚ IsEqualForCacheForMorphisms
‚ IsomorphismFromTensorProductToInternalHom
‚ IsomorphismFromInternalHomToTensorProduct
‚ IsomorphismFromInternalHomToDual
‚ IsomorphismFromDualToInternalHom

Final derivation for
IsomorphismFromFiberProductToKernelOfDiagonalDifference

This final derivation is for all categories. This derivation uses:
‚ DirectSumDiagonalDifference ˆ 1
‚ KernelObject ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
287

288 E. FINAL DERIVATIONS

‚ ProjectionInFactorOfFiberProduct
‚ ProjectionInFactorOfFiberProductWithGivenFiberProduct
‚ UniversalMorphismIntoFiberProductWithGivenFiberProduct
‚ FiberProductEmbeddingInDirectSum
‚ IsomorphismFromFiberProductToKernelOfDiagonalDifference
‚ IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct

function (diagram)
local kernel_of_diagonal_difference;
kernel_of_diagonal_difference
:= KernelObject(DirectSumDiagonalDifference(diagram));

return IdentityMorphism(kernel_of_diagonal_difference);
end;

Back to index

Final derivation for
IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct

This final derivation is for all categories. This derivation uses:
‚ DirectSumDiagonalDifference ˆ 1
‚ KernelObject ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ ProjectionInFactorOfFiberProduct
‚ ProjectionInFactorOfFiberProductWithGivenFiberProduct
‚ UniversalMorphismIntoFiberProductWithGivenFiberProduct
‚ FiberProductEmbeddingInDirectSum
‚ IsomorphismFromFiberProductToKernelOfDiagonalDifference
‚ IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct

function (diagram)
local kernel_of_diagonal_difference;
kernel_of_diagonal_difference
:= KernelObject(DirectSumDiagonalDifference(diagram));

return IdentityMorphism(kernel_of_diagonal_difference);
end;

Back to index

Final derivation for
IsomorphismFromPushoutToCokernelOfDiagonalDifference

This final derivation is for all categories. This derivation uses:
‚ CokernelObject ˆ 1

DERIVATIONS 289

‚ DirectSumCodiagonalDifference ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ Pushout
‚ InjectionOfCofactorOfPushout
‚ InjectionOfCofactorOfPushoutWithGivenPushout
‚ UniversalMorphismFromPushoutWithGivenPushout
‚ DirectSumProjectionInPushout
‚ IsomorphismFromPushoutToCokernelOfDiagonalDifference
‚ IsomorphismFromCokernelOfDiagonalDifferenceToPushout

function (diagram)
local cokernel_of_diagonal_difference;
cokernel_of_diagonal_difference
:= CokernelObject(DirectSumCodiagonalDifference(diagram));

return IdentityMorphism(cokernel_of_diagonal_difference);
end;

Back to index

Final derivation for
IsomorphismFromCokernelOfDiagonalDifferenceToPushout

This final derivation is for all categories. This derivation uses:
‚ CokernelObject ˆ 1
‚ DirectSumCodiagonalDifference ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ Pushout
‚ InjectionOfCofactorOfPushout
‚ InjectionOfCofactorOfPushoutWithGivenPushout
‚ UniversalMorphismFromPushoutWithGivenPushout
‚ DirectSumProjectionInPushout
‚ IsomorphismFromPushoutToCokernelOfDiagonalDifference
‚ IsomorphismFromCokernelOfDiagonalDifferenceToPushout

function (diagram)
local cokernel_of_diagonal_difference;
cokernel_of_diagonal_difference
:= CokernelObject(DirectSumCodiagonalDifference(diagram));

return IdentityMorphism(cokernel_of_diagonal_difference);
end;

Back to index

290 E. FINAL DERIVATIONS

Final derivation for IsomorphismFromImageObjectToKernelOfCokernel

This final derivation is for all categories. This derivation uses:
‚ KernelObject ˆ 1
‚ CokernelProjection ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ ImageObject
‚ ImageEmbedding
‚ ImageEmbeddingWithGivenImageObject
‚ CoastrictionToImage
‚ CoastrictionToImageWithGivenImageObject
‚ UniversalMorphismFromImage
‚ UniversalMorphismFromImageWithGivenImageObject
‚ IsomorphismFromImageObjectToKernelOfCokernel
‚ IsomorphismFromKernelOfCokernelToImageObject

function (mor)
local kernel_of_cokernel;
kernel_of_cokernel := KernelObject(CokernelProjection(mor));
return IdentityMorphism(kernel_of_cokernel);

end;

Back to index

Final derivation for IsomorphismFromKernelOfCokernelToImageObject

This final derivation is for all categories. This derivation uses:
‚ KernelObject ˆ 1
‚ CokernelProjection ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ ImageObject
‚ ImageEmbedding
‚ ImageEmbeddingWithGivenImageObject
‚ CoastrictionToImage
‚ CoastrictionToImageWithGivenImageObject
‚ UniversalMorphismFromImage
‚ UniversalMorphismFromImageWithGivenImageObject
‚ IsomorphismFromImageObjectToKernelOfCokernel
‚ IsomorphismFromKernelOfCokernelToImageObject

function (mor)
local kernel_of_cokernel;

DERIVATIONS 291

kernel_of_cokernel := KernelObject(CokernelProjection(mor));
return IdentityMorphism(kernel_of_cokernel);

end;

Back to index

Final derivation for IsomorphismFromCoimageToCokernelOfKernel

This final derivation is for all categories. This derivation uses:
‚ CokernelObject ˆ 1
‚ KernelEmbedding ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ Coimage
‚ CoimageProjection
‚ CoimageProjectionWithGivenCoimage
‚ AstrictionToCoimage
‚ AstrictionToCoimageWithGivenCoimage
‚ UniversalMorphismIntoCoimage
‚ UniversalMorphismIntoCoimageWithGivenCoimage
‚ IsomorphismFromCoimageToCokernelOfKernel
‚ IsomorphismFromCokernelOfKernelToCoimage

function (mor)
local cokernel_of_kernel;
cokernel_of_kernel := CokernelObject(KernelEmbedding(mor));
return IdentityMorphism(cokernel_of_kernel);

end;

Back to index

Final derivation for IsomorphismFromCokernelOfKernelToCoimage

This final derivation is for all categories. This derivation uses:
‚ CokernelObject ˆ 1
‚ KernelEmbedding ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ Coimage
‚ CoimageProjection
‚ CoimageProjectionWithGivenCoimage
‚ AstrictionToCoimage
‚ AstrictionToCoimageWithGivenCoimage
‚ UniversalMorphismIntoCoimage

292 E. FINAL DERIVATIONS

‚ UniversalMorphismIntoCoimageWithGivenCoimage
‚ IsomorphismFromCoimageToCokernelOfKernel
‚ IsomorphismFromCokernelOfKernelToCoimage

function (mor)
local cokernel_of_kernel;
cokernel_of_kernel := CokernelObject(KernelEmbedding(mor));
return IdentityMorphism(cokernel_of_kernel);

end;

Back to index

Final derivation for IsomorphismFromInitialObjectToZeroObject

This final derivation is for all categories. This derivation uses:
‚ ZeroObject ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ InitialObject
‚ UniversalMorphismFromInitialObject

function (category)
return IdentityMorphism(ZeroObject(category));

end;

Back to index

Final derivation for IsomorphismFromZeroObjectToInitialObject

This final derivation is for all categories. This derivation uses:
‚ ZeroObject ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ InitialObject
‚ UniversalMorphismFromInitialObject

function (category)
return IdentityMorphism(ZeroObject(category));

end;

Back to index

DERIVATIONS 293

Final derivation for IsomorphismFromTerminalObjectToZeroObject

This final derivation is for all categories. This derivation uses:
‚ ZeroObject ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ TerminalObject
‚ UniversalMorphismIntoTerminalObject

function (category)
return IdentityMorphism(ZeroObject(category));

end;

Back to index

Final derivation for IsomorphismFromZeroObjectToTerminalObject

This final derivation is for all categories. This derivation uses:
‚ ZeroObject ˆ 1
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ TerminalObject
‚ UniversalMorphismIntoTerminalObject

function (category)
return IdentityMorphism(ZeroObject(category));

end;

Back to index

Final derivation for IsomorphismFromDirectSumToDirectProduct

This final derivation is for all categories. This derivation uses:
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ DirectProductFunctorialWithGivenDirectProducts
‚ ProjectionInFactorOfDirectProduct

function (diagram)
return IdentityMorphism(DirectSum(diagram));

end;

Back to index

294 E. FINAL DERIVATIONS

Final derivation for IsomorphismFromDirectProductToDirectSum

This final derivation is for all categories. This derivation uses:
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ DirectProductFunctorialWithGivenDirectProducts
‚ ProjectionInFactorOfDirectProduct

function (diagram)
return IdentityMorphism(DirectSum(diagram));

end;

Back to index

Final derivation for IsomorphismFromCoproductToDirectSum

This final derivation is for all categories. This derivation uses:
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ Coproduct
‚ CoproductFunctorialWithGivenCoproducts
‚ InjectionOfCofactorOfCoproduct

function (diagram)
return IdentityMorphism(DirectSum(diagram));

end;

Back to index

Final derivation for IsomorphismFromDirectSumToCoproduct

This final derivation is for all categories. This derivation uses:
‚ IdentityMorphism ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ Coproduct
‚ CoproductFunctorialWithGivenCoproducts
‚ InjectionOfCofactorOfCoproduct

function (diagram)
return IdentityMorphism(DirectSum(diagram));

end;

Back to index

DERIVATIONS 295

Final derivation for IsEqualForObjects

This final derivation is for all categories. This derivation can only be triggered if the
following operations are not installed:

‚ IsEqualForObjects
ReturnFail

Back to index

Final derivation for IsCongruentForMorphisms

This final derivation is for all categories. This derivation can only be triggered if the
following operations are not installed:

‚ IsCongruentForMorphisms
‚ IsEqualForMorphisms

ReturnFail

Back to index

Final derivation for IsCongruentForMorphisms

This final derivation is for all categories. This derivation uses:
‚ IsEqualForMorphisms ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ IsCongruentForMorphisms

IsEqualForMorphisms

Back to index

Final derivation for IsEqualForMorphisms

This final derivation is for all categories. This derivation can only be triggered if the
following operations are not installed:

‚ IsCongruentForMorphisms
‚ IsEqualForMorphisms

ReturnFail

Back to index

296 E. FINAL DERIVATIONS

Final derivation for IsEqualForMorphisms

This final derivation is for all categories. This derivation uses:
‚ IsCongruentForMorphisms ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ IsEqualForMorphisms

IsCongruentForMorphisms

Back to index

Final derivation for IsEqualForCacheForMorphisms

This final derivation is for all categories. This derivation uses:
‚ IsEqualForMorphismsOnMor ˆ 1

function (mor1, mor2)
return IsEqualForMorphismsOnMor(mor1, mor2) = true;

end;

Back to index

Final derivation for IsEqualForCacheForMorphisms

This final derivation is for all categories. This derivation uses:
‚ IsCongruentForMorphisms ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ IsEqualForMorphisms

ReturnFail

Back to index

Final derivation for IsomorphismFromTensorProductToInternalHom

This final derivation is for rigid symmetric closed monoidal categories. This derivation
uses:

‚ IdentityMorphism ˆ 1
‚ DualOnObjects ˆ 1
‚ TensorProductOnObjects ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ InternalHomOnObjects
‚ InternalHomOnMorphismsWithGivenInternalHoms
‚ EvaluationMorphismWithGivenSource
‚ CoevaluationMorphismWithGivenRange
‚ TensorProductToInternalHomAdjunctionMap
‚ InternalHomToTensorProductAdjunctionMap

DERIVATIONS 297

‚ MonoidalPreComposeMorphismWithGivenObjects
‚ MonoidalPostComposeMorphismWithGivenObjects
‚ TensorProductInternalHomCompatibilityMorphismWithGivenObjects
‚ TensorProductDualityCompatibilityMorphismWithGivenObjects
‚ MorphismFromTensorProductToInternalHomWithGivenObjects
‚ MorphismFromInternalHomToTensorProductWithGivenObjects
‚ IsomorphismFromTensorProductToInternalHom
‚ IsomorphismFromInternalHomToTensorProduct

function (object_1, object_2)
return
IdentityMorphism(

TensorProductOnObjects(DualOnObjects(object_1), object_2
));

end;

Back to index

Final derivation for IsomorphismFromInternalHomToTensorProduct

This final derivation is for rigid symmetric closed monoidal categories. This derivation
uses:

‚ IdentityMorphism ˆ 1
‚ DualOnObjects ˆ 1
‚ TensorProductOnObjects ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ InternalHomOnObjects
‚ InternalHomOnMorphismsWithGivenInternalHoms
‚ EvaluationMorphismWithGivenSource
‚ CoevaluationMorphismWithGivenRange
‚ TensorProductToInternalHomAdjunctionMap
‚ InternalHomToTensorProductAdjunctionMap
‚ MonoidalPreComposeMorphismWithGivenObjects
‚ MonoidalPostComposeMorphismWithGivenObjects
‚ TensorProductInternalHomCompatibilityMorphismWithGivenObjects
‚ TensorProductDualityCompatibilityMorphismWithGivenObjects
‚ MorphismFromTensorProductToInternalHomWithGivenObjects
‚ MorphismFromInternalHomToTensorProductWithGivenObjects
‚ IsomorphismFromTensorProductToInternalHom
‚ IsomorphismFromInternalHomToTensorProduct

function (object_1, object_2)
return
IdentityMorphism(

298 E. FINAL DERIVATIONS

TensorProductOnObjects(DualOnObjects(object_1), object_2
));

end;

Back to index

Final derivation for IsomorphismFromInternalHomToDual

This final derivation is for rigid symmetric closed monoidal categories. This derivation
uses:

‚ IdentityMorphism ˆ 1
‚ DualOnObjects ˆ 1
‚ TensorProductOnObjects ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ InternalHomOnObjects
‚ InternalHomOnMorphismsWithGivenInternalHoms
‚ EvaluationMorphismWithGivenSource
‚ CoevaluationMorphismWithGivenRange
‚ TensorProductToInternalHomAdjunctionMap
‚ InternalHomToTensorProductAdjunctionMap
‚ MonoidalPreComposeMorphismWithGivenObjects
‚ MonoidalPostComposeMorphismWithGivenObjects
‚ TensorProductInternalHomCompatibilityMorphismWithGivenObjects
‚ TensorProductDualityCompatibilityMorphismWithGivenObjects
‚ MorphismFromTensorProductToInternalHomWithGivenObjects
‚ MorphismFromInternalHomToTensorProductWithGivenObjects
‚ IsomorphismFromTensorProductToInternalHom
‚ IsomorphismFromInternalHomToTensorProduct

function (object)
return IdentityMorphism(DualOnObjects(object));

end;

Back to index

Final derivation for IsomorphismFromInternalHomToDual

This final derivation is for symmetric monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ InternalHomOnObjects ˆ 1
‚ TensorUnit ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ DualOnObjects
‚ DualOnMorphismsWithGivenDuals

DERIVATIONS 299

‚ MorphismToBidualWithGivenBidual
‚ MorphismFromBidualWithGivenBidual
‚ IsomorphismFromDualToInternalHom
‚ IsomorphismFromInternalHomToDual
‚ UniversalPropertyOfDual
‚ TensorProductDualityCompatibilityMorphismWithGivenObjects
‚ EvaluationForDualWithGivenTensorProduct
‚ CoevaluationForDualWithGivenTensorProduct
‚ MorphismFromInternalHomToTensorProductWithGivenObjects
‚ MorphismFromTensorProductToInternalHomWithGivenObjects

function (object)
local category;
category := CapCategory(object);
return
IdentityMorphism(

InternalHomOnObjects(object, TensorUnit(category)));
end;

Back to index

Final derivation for IsomorphismFromDualToInternalHom

This final derivation is for rigid symmetric closed monoidal categories. This derivation
uses:

‚ IdentityMorphism ˆ 1
‚ DualOnObjects ˆ 1
‚ TensorProductOnObjects ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ InternalHomOnObjects
‚ InternalHomOnMorphismsWithGivenInternalHoms
‚ EvaluationMorphismWithGivenSource
‚ CoevaluationMorphismWithGivenRange
‚ TensorProductToInternalHomAdjunctionMap
‚ InternalHomToTensorProductAdjunctionMap
‚ MonoidalPreComposeMorphismWithGivenObjects
‚ MonoidalPostComposeMorphismWithGivenObjects
‚ TensorProductInternalHomCompatibilityMorphismWithGivenObjects
‚ TensorProductDualityCompatibilityMorphismWithGivenObjects
‚ MorphismFromTensorProductToInternalHomWithGivenObjects
‚ MorphismFromInternalHomToTensorProductWithGivenObjects
‚ IsomorphismFromTensorProductToInternalHom
‚ IsomorphismFromInternalHomToTensorProduct

300 E. FINAL DERIVATIONS

function (object)
return IdentityMorphism(DualOnObjects(object));

end;

Back to index

Final derivation for IsomorphismFromDualToInternalHom

This final derivation is for symmetric monoidal categories. This derivation uses:
‚ IdentityMorphism ˆ 1
‚ InternalHomOnObjects ˆ 1
‚ TensorUnit ˆ 1

This derivation can only be triggered if the following operations are not installed:
‚ DualOnObjects
‚ DualOnMorphismsWithGivenDuals
‚ MorphismToBidualWithGivenBidual
‚ MorphismFromBidualWithGivenBidual
‚ IsomorphismFromDualToInternalHom
‚ IsomorphismFromInternalHomToDual
‚ UniversalPropertyOfDual
‚ TensorProductDualityCompatibilityMorphismWithGivenObjects
‚ EvaluationForDualWithGivenTensorProduct
‚ CoevaluationForDualWithGivenTensorProduct
‚ MorphismFromInternalHomToTensorProductWithGivenObjects
‚ MorphismFromTensorProductToInternalHomWithGivenObjects

function (object)
local category;
category := CapCategory(object);
return
IdentityMorphism(

InternalHomOnObjects(object, TensorUnit(category)));
end;

Back to index

APPENDIX F

Installed basic operations

1. Primitive operation index

1.a. Primitive operations for left module presentations.
(1) IdentityMorphism
(2) KernelEmbedding
(3) CokernelProjection
(4) ZeroObject
(5) TensorUnit
(6) Lift
(7) KernelEmbeddingWithGivenKernelObject
(8) CokernelProjectionWithGivenCokernelObject
(9) CokernelColiftWithGivenCokernelObject
(10) PreCompose
(11) UniversalMorphismFromZeroObjectWithGivenZeroObject
(12) UniversalMorphismIntoZeroObjectWithGivenZeroObject
(13) ZeroMorphism
(14) DirectSum
(15) ProjectionInFactorOfDirectSumWithGivenDirectSum
(16) UniversalMorphismIntoDirectSumWithGivenDirectSum
(17) InjectionOfCofactorOfDirectSumWithGivenDirectSum
(18) UniversalMorphismFromDirectSumWithGivenDirectSum
(19) IsCongruentForMorphisms
(20) IsEqualForMorphisms
(21) IsEqualForObjects
(22) IsEqualForCacheForObjects
(23) IsEqualForCacheForMorphisms
(24) AdditionForMorphisms
(25) AdditiveInverseForMorphisms
(26) IsWellDefinedForMorphisms
(27) IsWellDefinedForObjects
(28) TensorProductOnObjects
(29) TensorProductOnMorphismsWithGivenTensorProducts
(30) BraidingWithGivenTensorProducts
(31) InternalHomOnObjects
(32) InternalHomOnMorphismsWithGivenInternalHoms

301

302 F. INSTALLED BASIC OPERATIONS

(33) EvaluationMorphismWithGivenSource
(34) CoevaluationMorphismWithGivenRange

1.b. Primitive operations for right module presentations.
(1) IdentityMorphism
(2) KernelEmbedding
(3) CokernelProjection
(4) ZeroObject
(5) TensorUnit
(6) Lift
(7) KernelEmbeddingWithGivenKernelObject
(8) CokernelProjectionWithGivenCokernelObject
(9) CokernelColiftWithGivenCokernelObject
(10) PreCompose
(11) UniversalMorphismFromZeroObjectWithGivenZeroObject
(12) UniversalMorphismIntoZeroObjectWithGivenZeroObject
(13) ZeroMorphism
(14) DirectSum
(15) ProjectionInFactorOfDirectSumWithGivenDirectSum
(16) UniversalMorphismIntoDirectSumWithGivenDirectSum
(17) InjectionOfCofactorOfDirectSumWithGivenDirectSum
(18) UniversalMorphismFromDirectSumWithGivenDirectSum
(19) IsCongruentForMorphisms
(20) IsEqualForMorphisms
(21) IsEqualForObjects
(22) IsEqualForCacheForObjects
(23) IsEqualForCacheForMorphisms
(24) AdditionForMorphisms
(25) AdditiveInverseForMorphisms
(26) IsWellDefinedForMorphisms
(27) IsWellDefinedForObjects
(28) TensorProductOnObjects
(29) TensorProductOnMorphismsWithGivenTensorProducts
(30) BraidingWithGivenTensorProducts
(31) InternalHomOnObjects
(32) InternalHomOnMorphismsWithGivenInternalHoms
(33) EvaluationMorphismWithGivenSource
(34) CoevaluationMorphismWithGivenRange

1.c. Primitive operations for graded left module presentations.
(1) IdentityMorphism
(2) KernelEmbedding
(3) CokernelObject

1. PRIMITIVE OPERATIONS 303

(4) ZeroObject
(5) TensorUnit
(6) Lift
(7) KernelEmbeddingWithGivenKernelObject
(8) CokernelProjectionWithGivenCokernelObject
(9) CokernelColiftWithGivenCokernelObject
(10) PreCompose
(11) UniversalMorphismFromZeroObjectWithGivenZeroObject
(12) UniversalMorphismIntoZeroObjectWithGivenZeroObject
(13) ZeroMorphism
(14) DirectSum
(15) ProjectionInFactorOfDirectSumWithGivenDirectSum
(16) UniversalMorphismIntoDirectSumWithGivenDirectSum
(17) InjectionOfCofactorOfDirectSumWithGivenDirectSum
(18) UniversalMorphismFromDirectSumWithGivenDirectSum
(19) IsCongruentForMorphisms
(20) IsEqualForMorphisms
(21) IsEqualForObjects
(22) IsEqualForCacheForObjects
(23) IsEqualForCacheForMorphisms
(24) AdditionForMorphisms
(25) AdditiveInverseForMorphisms
(26) IsWellDefinedForMorphisms
(27) IsWellDefinedForObjects
(28) TensorProductOnObjects
(29) TensorProductOnMorphismsWithGivenTensorProducts
(30) InternalHomOnObjects
(31) InternalHomOnMorphismsWithGivenInternalHoms

1.d. Primitive operations for graded right module presentations.
(1) IdentityMorphism
(2) KernelEmbedding
(3) CokernelObject
(4) ZeroObject
(5) TensorUnit
(6) Lift
(7) KernelEmbeddingWithGivenKernelObject
(8) CokernelProjectionWithGivenCokernelObject
(9) CokernelColiftWithGivenCokernelObject
(10) PreCompose
(11) UniversalMorphismFromZeroObjectWithGivenZeroObject
(12) UniversalMorphismIntoZeroObjectWithGivenZeroObject
(13) ZeroMorphism

304 F. INSTALLED BASIC OPERATIONS

(14) DirectSum
(15) ProjectionInFactorOfDirectSumWithGivenDirectSum
(16) UniversalMorphismIntoDirectSumWithGivenDirectSum
(17) InjectionOfCofactorOfDirectSumWithGivenDirectSum
(18) UniversalMorphismFromDirectSumWithGivenDirectSum
(19) IsCongruentForMorphisms
(20) IsEqualForMorphisms
(21) IsEqualForObjects
(22) IsEqualForCacheForObjects
(23) IsEqualForCacheForMorphisms
(24) AdditionForMorphisms
(25) AdditiveInverseForMorphisms
(26) IsWellDefinedForMorphisms
(27) IsWellDefinedForObjects
(28) TensorProductOnObjects
(29) TensorProductOnMorphismsWithGivenTensorProducts

1.e. Primitive operations for generalized morphisms by cospans.
(1) IdentityMorphism
(2) PreCompose
(3) ZeroMorphism
(4) IsCongruentForMorphisms
(5) IsEqualForObjects
(6) IsEqualForCacheForObjects
(7) IsEqualForCacheForMorphisms
(8) AdditionForMorphisms
(9) AdditiveInverseForMorphisms
(10) IsWellDefinedForMorphisms
(11) IsWellDefinedForObjects

1.f. Primitive operations for generalized morphisms by spans.
(1) IdentityMorphism
(2) PreCompose
(3) ZeroMorphism
(4) IsCongruentForMorphisms
(5) IsEqualForObjects
(6) IsEqualForCacheForObjects
(7) IsEqualForCacheForMorphisms
(8) AdditionForMorphisms
(9) AdditiveInverseForMorphisms
(10) IsWellDefinedForMorphisms
(11) IsWellDefinedForObjects

1. PRIMITIVE OPERATIONS 305

1.g. Primitive operations for generalized morphisms by three arrows.
(1) IdentityMorphism
(2) PreCompose
(3) IsCongruentForMorphisms
(4) IsEqualForObjects
(5) IsEqualForCacheForObjects
(6) IsEqualForCacheForMorphisms
(7) AdditionForMorphisms
(8) IsWellDefinedForMorphisms
(9) IsWellDefinedForObjects

1.h. Primitive operations for Serre quotient by cospans.
(1) IdentityMorphism
(2) KernelEmbedding
(3) CokernelProjection
(4) ZeroObject
(5) LiftAlongMonomorphism
(6) ColiftAlongEpimorphism
(7) PreCompose
(8) ZeroMorphism
(9) DirectSum
(10) ProjectionInFactorOfDirectSumWithGivenDirectSum
(11) UniversalMorphismIntoDirectSum
(12) InjectionOfCofactorOfDirectSumWithGivenDirectSum
(13) UniversalMorphismFromDirectSum
(14) IsCongruentForMorphisms
(15) IsEqualForObjects
(16) AdditionForMorphisms
(17) AdditiveInverseForMorphisms
(18) IsZeroForObjects

1.i. Primitive operations for Serre quotient by spans.
(1) InverseImmutable
(2) IdentityMorphism
(3) KernelEmbedding
(4) CokernelProjection
(5) ZeroObject
(6) DualOnObjects
(7) LiftAlongMonomorphism
(8) ColiftAlongEpimorphism
(9) Lift
(10) PreCompose
(11) ZeroMorphism

306 F. INSTALLED BASIC OPERATIONS

(12) DirectSum
(13) ProjectionInFactorOfDirectSumWithGivenDirectSum
(14) UniversalMorphismIntoDirectSum
(15) InjectionOfCofactorOfDirectSumWithGivenDirectSum
(16) UniversalMorphismFromDirectSum
(17) IsCongruentForMorphisms
(18) IsEqualForObjects
(19) IsEqualForCacheForObjects
(20) IsEqualForCacheForMorphisms
(21) AdditionForMorphisms
(22) AdditiveInverseForMorphisms
(23) IsZeroForObjects
(24) DualOnMorphismsWithGivenDuals

1.j. Primitive operations for Serre quotient by three arrows.
(1) IdentityMorphism
(2) KernelEmbedding
(3) CokernelProjection
(4) ZeroObject
(5) LiftAlongMonomorphism
(6) ColiftAlongEpimorphism
(7) PreCompose
(8) ZeroMorphism
(9) DirectSum
(10) ProjectionInFactorOfDirectSumWithGivenDirectSum
(11) UniversalMorphismIntoDirectSum
(12) InjectionOfCofactorOfDirectSumWithGivenDirectSum
(13) UniversalMorphismFromDirectSum
(14) IsCongruentForMorphisms
(15) IsEqualForObjects
(16) IsZeroForMorphisms
(17) AdditionForMorphisms
(18) AdditiveInverseForMorphisms
(19) IsZeroForObjects

2. Primitive operations for left module presentations

IdentityMorphism. Back to index.
function (object)

local matrix;
matrix
:= HomalgIdentityMatrix(NrColumns(UnderlyingMatrix(object)

), homalg_ring);

2. PRIMITIVE OPERATIONS 307

return PresentationMorphism(object, matrix, object);
end;

KernelEmbedding. Back to index.
function (morphism)

local kernel, embedding;
embedding := SyzygiesOfRows(UnderlyingMatrix(morphism),

UnderlyingMatrix(Range(morphism)));
kernel
:= SyzygiesOfRows(embedding,

UnderlyingMatrix(Source(morphism)));
kernel := AsLeftPresentation(kernel);
return PresentationMorphism(kernel, embedding,

Source(morphism));
end;

CokernelProjection. Back to index.
function (morphism)

local cokernel_object, projection;
cokernel_object := UnionOfRows(UnderlyingMatrix(morphism),

UnderlyingMatrix(Range(morphism)));
cokernel_object := AsLeftPresentation(cokernel_object);
projection
:= HomalgIdentityMatrix(

NrColumns(UnderlyingMatrix(Range(morphism))),
homalg_ring);

return PresentationMorphism(Range(morphism), projection,
cokernel_object);

end;

ZeroObject. Back to index.
function ()

local matrix;
matrix := HomalgZeroMatrix(0, 0, homalg_ring);
return AsLeftPresentation(matrix);

end;

TensorUnit. Back to index.
function ()

return

308 F. INSTALLED BASIC OPERATIONS

AsLeftPresentation(HomalgZeroMatrix(0, 1, homalg_ring));
end;

Lift. Back to index.
function (alpha, beta)

local lift;
lift := RightDivide(UnderlyingMatrix(alpha),

UnderlyingMatrix(beta), UnderlyingMatrix(Range(beta)));
if lift = fail then

return fail;
fi;
return PresentationMorphism(Source(alpha), lift,

Source(beta));
end;

KernelEmbeddingWithGivenKernelObject. Back to index.
function (morphism, kernel)

local embedding;
embedding := SyzygiesOfRows(UnderlyingMatrix(morphism),

UnderlyingMatrix(Range(morphism)));
return PresentationMorphism(kernel, embedding,

Source(morphism));
end;

CokernelProjectionWithGivenCokernelObject. Back to index.
function (morphism, cokernel_object)

local projection;
projection
:= HomalgIdentityMatrix(

NrColumns(UnderlyingMatrix(Range(morphism))),
homalg_ring);

return PresentationMorphism(Range(morphism), projection,
cokernel_object);

end;

CokernelColiftWithGivenCokernelObject. Back to index.
function (morphism, test_morphism, cokernel_object)

return PresentationMorphism(cokernel_object,
UnderlyingMatrix(test_morphism), Range(test_morphism));

end;

2. PRIMITIVE OPERATIONS 309

PreCompose. Back to index.
function (left_morphism, right_morphism)

return PresentationMorphism(Source(left_morphism),
UnderlyingMatrix(left_morphism)
* UnderlyingMatrix(right_morphism),

Range(right_morphism));
end;

function (left_morphism, identity_morphism)
return left_morphism;

end;

This function uses the following extra filters:
‚ IsIdenticalToIdentityMorphism for the 2nd argument.

function (identity_morphism, right_morphism)
return right_morphism;

end;

This function uses the following extra filters:
‚ IsIdenticalToIdentityMorphism for the 1st argument.

function (left_morphism, zero_morphism)
return PresentationMorphism(Source(left_morphism),

HomalgZeroMatrix(NrRows(UnderlyingMatrix(left_morphism))
, NrColumns(UnderlyingMatrix(zero_morphism)),

homalg_ring), Range(zero_morphism));
end;

This function uses the following extra filters:
‚ IsIdenticalToZeroMorphism for the 2nd argument.

function (zero_morphism, right_morphism)
return PresentationMorphism(Source(zero_morphism),

HomalgZeroMatrix(NrRows(UnderlyingMatrix(zero_morphism))
, NrColumns(UnderlyingMatrix(right_morphism)),

homalg_ring), Range(right_morphism));
end;

This function uses the following extra filters:
‚ IsIdenticalToZeroMorphism for the 1st argument.

UniversalMorphismFromZeroObjectWithGivenZeroObject. Back to index.
function (object, initial_object)

local nr_columns, morphism;

310 F. INSTALLED BASIC OPERATIONS

nr_columns := NrColumns(UnderlyingMatrix(object));
morphism := HomalgZeroMatrix(0, nr_columns, homalg_ring);
return PresentationMorphism(initial_object, morphism, object);

end;

UniversalMorphismIntoZeroObjectWithGivenZeroObject. Back to index.
function (object, terminal_object)

local nr_columns, morphism;
nr_columns := NrColumns(UnderlyingMatrix(object));
morphism := HomalgZeroMatrix(nr_columns, 0, homalg_ring);
return PresentationMorphism(object, morphism, terminal_object);

end;

ZeroMorphism. Back to index.
function (source, range)

local matrix;
matrix
:= HomalgZeroMatrix(NrColumns(UnderlyingMatrix(source)),

NrColumns(UnderlyingMatrix(range)), homalg_ring);
return PresentationMorphism(source, matrix, range);

end;

DirectSum. Back to index.
function (product_object)

local objects, direct_sum;
objects := product_object;
objects := List(objects, UnderlyingMatrix);
direct_sum := DiagMat(objects);
return AsLeftPresentation(direct_sum);

end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local objects, object_column_dimension, dimension_of_factor,
projection, projection_matrix, i;
objects := product_object;
object_column_dimension := List(objects, function (i)

return NrColumns(UnderlyingMatrix(i));
end);

dimension_of_factor := object_column_dimension[component_number];
projection := List(object_column_dimension, function (i)

2. PRIMITIVE OPERATIONS 311

return HomalgZeroMatrix(i, dimension_of_factor,
homalg_ring);

end);
projection[component_number]
:= HomalgIdentityMatrix(

object_column_dimension[component_number], homalg_ring);
projection_matrix := projection[1];
for i in [2 .. Length(objects)] do

projection_matrix := UnionOfRows(projection_matrix,
projection[i]);

od;
return PresentationMorphism(direct_sum_object,

projection_matrix, objects[component_number]);
end;

UniversalMorphismIntoDirectSumWithGivenDirectSum. Back to index.
function (diagram, product_morphism, direct_sum)

local components, number_of_components, map_into_product, i;
components := product_morphism;
number_of_components := Length(components);
map_into_product := UnderlyingMatrix(components[1]);
for i in [2 .. number_of_components] do

map_into_product := UnionOfColumns(map_into_product,
UnderlyingMatrix(components[i]));

od;
return PresentationMorphism(Source(components[1]),

map_into_product, direct_sum);
end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local objects, object_column_dimension, dimension_of_cofactor,
injection, injection_matrix, i;
objects := product_object;
object_column_dimension := List(objects, function (i)

return NrColumns(UnderlyingMatrix(i));
end);

dimension_of_cofactor
:= object_column_dimension[component_number];

injection := List(object_column_dimension, function (i)
return HomalgZeroMatrix(dimension_of_cofactor, i,

homalg_ring);

312 F. INSTALLED BASIC OPERATIONS

end);
injection[component_number]
:= HomalgIdentityMatrix(

object_column_dimension[component_number], homalg_ring);
injection_matrix := injection[1];
for i in [2 .. Length(objects)] do

injection_matrix := UnionOfColumns(injection_matrix,
injection[i]);

od;
return PresentationMorphism(objects[component_number],

injection_matrix, direct_sum_object);
end;

UniversalMorphismFromDirectSumWithGivenDirectSum. Back to index.
function (diagram, product_morphism, direct_sum)

local components, number_of_components, map_into_product, i;
components := product_morphism;
number_of_components := Length(components);
map_into_product := UnderlyingMatrix(components[1]);
for i in [2 .. number_of_components] do

map_into_product := UnionOfRows(map_into_product,
UnderlyingMatrix(components[i]));

od;
return PresentationMorphism(direct_sum, map_into_product,

Range(components[1]));
end;

IsCongruentForMorphisms. Back to index.
function (morphism_1, morphism_2)

local result_of_divide;
result_of_divide
:= DecideZeroRows(UnderlyingMatrix(morphism_1)

- UnderlyingMatrix(morphism_2),
UnderlyingMatrix(Range(morphism_1)));

return IsZero(result_of_divide);
end;

IsEqualForMorphisms. Back to index.
function (morphism_1, morphism_2)

return UnderlyingMatrix(morphism_1)

2. PRIMITIVE OPERATIONS 313

= UnderlyingMatrix(morphism_2);
end;

IsEqualForObjects. Back to index.
function (object1, object2)

return UnderlyingMatrix(object1) = UnderlyingMatrix(object2);
end;

IsEqualForCacheForObjects. Back to index.
IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.
IsIdenticalObj

AdditionForMorphisms. Back to index.
function (morphism_1, morphism_2)

return PresentationMorphism(Source(morphism_1),
UnderlyingMatrix(morphism_1)
+ UnderlyingMatrix(morphism_2), Range(morphism_1));

end;

AdditiveInverseForMorphisms. Back to index.
function (morphism_1)

return PresentationMorphism(Source(morphism_1),
- UnderlyingMatrix(morphism_1), Range(morphism_1));

end;

IsWellDefinedForMorphisms. Back to index.
function (morphism)

local source_matrix, range_matrix, morphism_matrix;
source_matrix := UnderlyingMatrix(Source(morphism));
range_matrix := UnderlyingMatrix(Range(morphism));
morphism_matrix := UnderlyingMatrix(morphism);
if
not (NrColumns(source_matrix) = NrRows(morphism_matrix)

and NrColumns(morphism_matrix)
= NrColumns(range_matrix)) then

return false;
fi;
if RightDivide(source_matrix * morphism_matrix, range_matrix)

= fail then

314 F. INSTALLED BASIC OPERATIONS

return false;
fi;
return true;

end;

IsWellDefinedForObjects. Back to index.
function (object)

return IsHomalgMatrix(UnderlyingMatrix(object))
and IsHomalgRing(UnderlyingHomalgRing(object));

end;

TensorProductOnObjects. Back to index.
function (object_1, object_2)

local identity_1, identity_2, presentation_matrix_1,
presentation_matrix_2, presentation_matrix;
presentation_matrix_1 := UnderlyingMatrix(object_1);
presentation_matrix_2 := UnderlyingMatrix(object_2);
identity_1
:= HomalgIdentityMatrix(NrColumns(presentation_matrix_1),

homalg_ring);
identity_2
:= HomalgIdentityMatrix(NrColumns(presentation_matrix_2),

homalg_ring);
presentation_matrix
:=
UnionOfRows(KroneckerMat(identity_1, presentation_matrix_2)

, KroneckerMat(presentation_matrix_1, identity_2));
return AsLeftPresentation(presentation_matrix);

end;

TensorProductOnMorphismsWithGivenTensorProducts. Back to index.
function (new_source, morphism_1, morphism_2, new_range)

return PresentationMorphism(new_source,
KroneckerMat(UnderlyingMatrix(morphism_1),

UnderlyingMatrix(morphism_2)), new_range);
end;

BraidingWithGivenTensorProducts. Back to index.
function (object_1_tensored_object_2, object_1, object_2,

object_2_tensored_object_1)
local homalg_ring, permutation_matrix, rank_1, rank_2, rank;

2. PRIMITIVE OPERATIONS 315

homalg_ring := UnderlyingHomalgRing(object_1);
rank_1 := NrColumns(UnderlyingMatrix(object_1));
rank_2 := NrColumns(UnderlyingMatrix(object_2));
rank
:= NrColumns(UnderlyingMatrix(object_1_tensored_object_2));

permutation_matrix
:= PermutationMat(

PermList(List([1 .. rank], function (i)
return
RemInt((i - 1), rank_2) * rank_1

+ QuoInt((i - 1), rank_2) + 1;
end)), rank);

return PresentationMorphism(object_1_tensored_object_2,
HomalgMatrix(permutation_matrix, rank, rank, homalg_ring),
object_2_tensored_object_1);

end;

InternalHomOnObjects. Back to index.
function (object_1, object_2)

return
Source(INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(

object_1, object_2));
end;

InternalHomOnMorphismsWithGivenInternalHoms. Back to index.
function (new_source, morphism_1, morphism_2, new_range)

local internal_hom_embedding_source,
internal_hom_embedding_range, morphism_between_tensor_products;
internal_hom_embedding_source
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(

Range(morphism_1), Source(morphism_2));
internal_hom_embedding_range
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(

Source(morphism_1), Range(morphism_2));
morphism_between_tensor_products
:= PresentationMorphism(Range(internal_hom_embedding_source)

, KroneckerMat(Involution(UnderlyingMatrix(morphism_1))
, UnderlyingMatrix(morphism_2)),

Range(internal_hom_embedding_range));
return LiftAlongMonomorphism(internal_hom_embedding_range,

PreCompose(internal_hom_embedding_source,

316 F. INSTALLED BASIC OPERATIONS

morphism_between_tensor_products));
end;

EvaluationMorphismWithGivenSource. Back to index.
function (object_1, object_2, internal_hom_tensored_object_1)

local internal_hom_embedding, rank_1, morphism, free_module,
column, zero_column, i, matrix, rank_2, lifted_evaluation;
internal_hom_embedding
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(object_1,

object_2);
rank_1 := NrColumns(UnderlyingMatrix(object_1));
free_module := FreeLeftPresentation(rank_1, homalg_ring);
morphism := PreCompose(internal_hom_embedding,

Braiding(free_module, object_2));
morphism := TensorProductOnMorphisms(morphism,

IdentityMorphism(object_1));
column := [];
zero_column := List([1 .. rank_1], function (i)

return 0;
end);

for i in [1 .. rank_1 - 1] do
Add(column, 1);
Append(column, zero_column);

od;
if rank_1 > 0 then

Add(column, 1);
fi;
matrix := HomalgMatrix(column, rank_1 * rank_1, 1, homalg_ring

);
rank_2 := NrColumns(UnderlyingMatrix(object_2));
matrix
:= KroneckerMat(HomalgIdentityMatrix(rank_2, homalg_ring),

matrix);
lifted_evaluation := PresentationMorphism(Range(morphism),

matrix, object_2);
return PreCompose(morphism, lifted_evaluation);

end;

CoevaluationMorphismWithGivenRange. Back to index.
function (object_1, object_2, internal_hom)

local object_1_tensored_object_2, internal_hom_embedding,
rank_2, free_module, morphism, row, zero_row, i, matrix,

3. PRIMITIVE OPERATIONS 317

rank_1, lifted_coevaluation;
object_1_tensored_object_2 := TensorProductOnObjects(object_1,

object_2);
internal_hom_embedding
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(object_2,

object_1_tensored_object_2);
rank_2 := NrColumns(UnderlyingMatrix(object_2));
free_module := FreeLeftPresentation(rank_2, homalg_ring);
morphism := PreCompose(internal_hom_embedding,

Braiding(free_module, object_1_tensored_object_2));
row := [];
zero_row := List([1 .. rank_2], function (i)

return 0;
end);

for i in [1 .. rank_2 - 1] do
Add(row, 1);
Append(row, zero_row);

od;
if rank_2 > 0 then

Add(row, 1);
fi;
matrix := HomalgMatrix(row, 1, rank_2 * rank_2, homalg_ring);
rank_1 := NrColumns(UnderlyingMatrix(object_1));
matrix
:= KroneckerMat(HomalgIdentityMatrix(rank_1, homalg_ring),

matrix);
lifted_coevaluation := PresentationMorphism(object_1, matrix,

Range(morphism));
return LiftAlongMonomorphism(morphism, lifted_coevaluation);

end;

3. Primitive operations for right module presentations

IdentityMorphism. Back to index.
function (object)

local matrix;
matrix
:= HomalgIdentityMatrix(NrRows(UnderlyingMatrix(object)),

homalg_ring);
return PresentationMorphism(object, matrix, object);

end;

318 F. INSTALLED BASIC OPERATIONS

KernelEmbedding. Back to index.
function (morphism)

local kernel, embedding;
embedding := SyzygiesOfColumns(UnderlyingMatrix(morphism),

UnderlyingMatrix(Range(morphism)));
kernel := SyzygiesOfColumns(embedding,

UnderlyingMatrix(Source(morphism)));
kernel := AsRightPresentation(kernel);
return PresentationMorphism(kernel, embedding,

Source(morphism));
end;

CokernelProjection. Back to index.
function (morphism)

local cokernel_object, projection;
cokernel_object
:= UnionOfColumns(UnderlyingMatrix(morphism),

UnderlyingMatrix(Range(morphism)));
cokernel_object := AsRightPresentation(cokernel_object);
projection
:= HomalgIdentityMatrix(

NrRows(UnderlyingMatrix(Range(morphism))), homalg_ring
);

return PresentationMorphism(Range(morphism), projection,
cokernel_object);

end;

ZeroObject. Back to index.
function ()

local matrix;
matrix := HomalgZeroMatrix(0, 0, homalg_ring);
return AsRightPresentation(matrix);

end;

TensorUnit. Back to index.
function ()

return
AsRightPresentation(HomalgZeroMatrix(1, 0, homalg_ring));

end;

3. PRIMITIVE OPERATIONS 319

Lift. Back to index.
function (beta, alpha)

local lift;
lift := LeftDivide(UnderlyingMatrix(alpha),

UnderlyingMatrix(beta), UnderlyingMatrix(Range(alpha))
);

if lift = fail then
return fail;

fi;
return PresentationMorphism(Source(beta), lift,

Source(alpha));
end;

KernelEmbeddingWithGivenKernelObject. Back to index.
function (morphism, kernel)

local embedding;
embedding := SyzygiesOfColumns(UnderlyingMatrix(morphism),

UnderlyingMatrix(Range(morphism)));
return PresentationMorphism(kernel, embedding,

Source(morphism));
end;

CokernelProjectionWithGivenCokernelObject. Back to index.
function (morphism, cokernel_object)

local projection;
projection
:= HomalgIdentityMatrix(

NrRows(UnderlyingMatrix(Range(morphism))), homalg_ring
);

return PresentationMorphism(Range(morphism), projection,
cokernel_object);

end;

CokernelColiftWithGivenCokernelObject. Back to index.
function (morphism, test_morphism, cokernel_object)

return PresentationMorphism(cokernel_object,
UnderlyingMatrix(test_morphism), Range(test_morphism));

end;

320 F. INSTALLED BASIC OPERATIONS

PreCompose. Back to index.
function (left_morphism, right_morphism)

return PresentationMorphism(Source(left_morphism),
UnderlyingMatrix(right_morphism)
* UnderlyingMatrix(left_morphism),

Range(right_morphism));
end;

function (left_morphism, identity_morphism)
return left_morphism;

end;

This function uses the following extra filters:
‚ IsIdenticalToIdentityMorphism for the 2nd argument.

function (identity_morphism, right_morphism)
return right_morphism;

end;

This function uses the following extra filters:
‚ IsIdenticalToIdentityMorphism for the 1st argument.

function (left_morphism, zero_morphism)
return PresentationMorphism(Source(left_morphism),

HomalgZeroMatrix(NrRows(UnderlyingMatrix(zero_morphism))
, NrColumns(UnderlyingMatrix(left_morphism)),

homalg_ring), Range(zero_morphism));
end;

This function uses the following extra filters:
‚ IsIdenticalToZeroMorphism for the 2nd argument.

function (zero_morphism, right_morphism)
return PresentationMorphism(Source(zero_morphism),

HomalgZeroMatrix(NrRows(UnderlyingMatrix(right_morphism)
), NrColumns(UnderlyingMatrix(zero_morphism)),

homalg_ring), Range(right_morphism));
end;

This function uses the following extra filters:
‚ IsIdenticalToZeroMorphism for the 1st argument.

UniversalMorphismFromZeroObjectWithGivenZeroObject. Back to index.
function (object, initial_object)

local nr_rows, morphism;

3. PRIMITIVE OPERATIONS 321

nr_rows := NrRows(UnderlyingMatrix(object));
morphism := HomalgZeroMatrix(nr_rows, 0, homalg_ring);
return PresentationMorphism(initial_object, morphism, object);

end;

UniversalMorphismIntoZeroObjectWithGivenZeroObject. Back to index.
function (object, terminal_object)

local nr_rows, morphism;
nr_rows := NrRows(UnderlyingMatrix(object));
morphism := HomalgZeroMatrix(0, nr_rows, homalg_ring);
return PresentationMorphism(object, morphism, terminal_object);

end;

ZeroMorphism. Back to index.
function (source, range)

local matrix;
matrix := HomalgZeroMatrix(NrRows(UnderlyingMatrix(range))

, NrRows(UnderlyingMatrix(source)), homalg_ring);
return PresentationMorphism(source, matrix, range);

end;

DirectSum. Back to index.
function (product_object)

local objects, direct_sum;
objects := product_object;
objects := List(objects, UnderlyingMatrix);
direct_sum := DiagMat(objects);
return AsRightPresentation(direct_sum);

end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local objects, object_column_dimension, dimension_of_factor,
projection, projection_matrix, i;
objects := product_object;
object_column_dimension := List(objects, function (i)

return NrRows(UnderlyingMatrix(i));
end);

dimension_of_factor := object_column_dimension[component_number];
projection := List(object_column_dimension, function (i)

return HomalgZeroMatrix(dimension_of_factor, i,

322 F. INSTALLED BASIC OPERATIONS

homalg_ring);
end);

projection[component_number]
:= HomalgIdentityMatrix(

object_column_dimension[component_number], homalg_ring);
projection_matrix := projection[1];
for i in [2 .. Length(objects)] do

projection_matrix := UnionOfColumns(projection_matrix,
projection[i]);

od;
return PresentationMorphism(direct_sum_object,

projection_matrix, objects[component_number]);
end;

UniversalMorphismIntoDirectSumWithGivenDirectSum. Back to index.
function (diagram, product_morphism, direct_sum)

local components, number_of_components, map_into_product, i;
components := product_morphism;
number_of_components := Length(components);
map_into_product := UnderlyingMatrix(components[1]);
for i in [2 .. number_of_components] do

map_into_product := UnionOfRows(map_into_product,
UnderlyingMatrix(components[i]));

od;
return PresentationMorphism(Source(components[1]),

map_into_product, direct_sum);
end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local objects, object_column_dimension, dimension_of_cofactor,
injection, injection_matrix, i;
objects := product_object;
object_column_dimension := List(objects, function (i)

return NrRows(UnderlyingMatrix(i));
end);

dimension_of_cofactor
:= object_column_dimension[component_number];

injection := List(object_column_dimension, function (i)
return HomalgZeroMatrix(i, dimension_of_cofactor,

homalg_ring);
end);

3. PRIMITIVE OPERATIONS 323

injection[component_number]
:= HomalgIdentityMatrix(

object_column_dimension[component_number], homalg_ring);
injection_matrix := injection[1];
for i in [2 .. Length(objects)] do

injection_matrix := UnionOfRows(injection_matrix,
injection[i]);

od;
return PresentationMorphism(objects[component_number],

injection_matrix, direct_sum_object);
end;

UniversalMorphismFromDirectSumWithGivenDirectSum. Back to index.
function (diagram, product_morphism, direct_sum)

local components, number_of_components, map_into_product, i;
components := product_morphism;
number_of_components := Length(components);
map_into_product := UnderlyingMatrix(components[1]);
for i in [2 .. number_of_components] do

map_into_product := UnionOfColumns(map_into_product,
UnderlyingMatrix(components[i]));

od;
return PresentationMorphism(direct_sum, map_into_product,

Range(components[1]));
end;

IsCongruentForMorphisms. Back to index.
function (morphism_1, morphism_2)

local result_of_divide;
result_of_divide
:= DecideZeroColumns(UnderlyingMatrix(morphism_1)

- UnderlyingMatrix(morphism_2),
UnderlyingMatrix(Range(morphism_1)));

return IsZero(result_of_divide);
end;

IsEqualForMorphisms. Back to index.
function (morphism_1, morphism_2)

return UnderlyingMatrix(morphism_1)
= UnderlyingMatrix(morphism_2);

end;

324 F. INSTALLED BASIC OPERATIONS

IsEqualForObjects. Back to index.
function (object1, object2)

return UnderlyingMatrix(object1) = UnderlyingMatrix(object2);
end;

IsEqualForCacheForObjects. Back to index.
IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.
IsIdenticalObj

AdditionForMorphisms. Back to index.
function (morphism_1, morphism_2)

return PresentationMorphism(Source(morphism_1),
UnderlyingMatrix(morphism_1)
+ UnderlyingMatrix(morphism_2), Range(morphism_1));

end;

AdditiveInverseForMorphisms. Back to index.
function (morphism_1)

return PresentationMorphism(Source(morphism_1),
- UnderlyingMatrix(morphism_1), Range(morphism_1));

end;

IsWellDefinedForMorphisms. Back to index.
function (morphism)

local source_matrix, range_matrix, morphism_matrix;
source_matrix := UnderlyingMatrix(Source(morphism));
range_matrix := UnderlyingMatrix(Range(morphism));
morphism_matrix := UnderlyingMatrix(morphism);
if
not (NrRows(source_matrix) = NrColumns(morphism_matrix)

and NrRows(morphism_matrix) = NrRows(range_matrix))
then

return false;
fi;
if
LeftDivide(range_matrix, morphism_matrix * source_matrix)

= fail then
return false;

fi;

3. PRIMITIVE OPERATIONS 325

return true;
end;

IsWellDefinedForObjects. Back to index.
function (object)

return IsHomalgMatrix(UnderlyingMatrix(object))
and IsHomalgRing(UnderlyingHomalgRing(object));

end;

TensorProductOnObjects. Back to index.
function (object_1, object_2)

local identity_1, identity_2, presentation_matrix_1,
presentation_matrix_2, presentation_matrix;
presentation_matrix_1 := UnderlyingMatrix(object_1);
presentation_matrix_2 := UnderlyingMatrix(object_2);
identity_1
:= HomalgIdentityMatrix(NrRows(presentation_matrix_1),

homalg_ring);
identity_2
:= HomalgIdentityMatrix(NrRows(presentation_matrix_2),

homalg_ring);
presentation_matrix
:= UnionOfColumns(

KroneckerMat(identity_1, presentation_matrix_2),
KroneckerMat(presentation_matrix_1, identity_2));

return AsRightPresentation(presentation_matrix);
end;

TensorProductOnMorphismsWithGivenTensorProducts. Back to index.
function (new_source, morphism_1, morphism_2, new_range)

return PresentationMorphism(new_source,
KroneckerMat(UnderlyingMatrix(morphism_1),

UnderlyingMatrix(morphism_2)), new_range);
end;

BraidingWithGivenTensorProducts. Back to index.
function (object_1_tensored_object_2, object_1, object_2,

object_2_tensored_object_1)
local homalg_ring, permutation_matrix, rank_1, rank_2, rank;
homalg_ring := UnderlyingHomalgRing(object_1);
rank_1 := NrRows(UnderlyingMatrix(object_1));

326 F. INSTALLED BASIC OPERATIONS

rank_2 := NrRows(UnderlyingMatrix(object_2));
rank := NrRows(UnderlyingMatrix(object_1_tensored_object_2));
permutation_matrix
:= PermutationMat(

PermList(List([1 .. rank], function (i)
return
RemInt((i - 1), rank_2) * rank_1

+ QuoInt((i - 1), rank_2) + 1;
end)), rank);

return PresentationMorphism(object_1_tensored_object_2,
Involution(HomalgMatrix(permutation_matrix, rank, rank,

homalg_ring)), object_2_tensored_object_1);
end;

InternalHomOnObjects. Back to index.
function (object_1, object_2)

return
Source(INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_RIGHT(

object_1, object_2));
end;

InternalHomOnMorphismsWithGivenInternalHoms. Back to index.
function (new_source, morphism_1, morphism_2, new_range)

local internal_hom_embedding_source,
internal_hom_embedding_range, morphism_between_tensor_products;
internal_hom_embedding_source
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_RIGHT(

Range(morphism_1), Source(morphism_2));
internal_hom_embedding_range
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_RIGHT(

Source(morphism_1), Range(morphism_2));
morphism_between_tensor_products
:= PresentationMorphism(Range(internal_hom_embedding_source)

, KroneckerMat(Involution(UnderlyingMatrix(morphism_1))
, UnderlyingMatrix(morphism_2)),

Range(internal_hom_embedding_range));
return LiftAlongMonomorphism(internal_hom_embedding_range,

PreCompose(internal_hom_embedding_source,
morphism_between_tensor_products));

end;

3. PRIMITIVE OPERATIONS 327

EvaluationMorphismWithGivenSource. Back to index.
function (object_1, object_2, internal_hom_tensored_object_1)

local internal_hom_embedding, rank_1, morphism, free_module,
row, zero_row, i, matrix, rank_2, lifted_evaluation;
internal_hom_embedding
:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_RIGHT(object_1,

object_2);
rank_1 := NrRows(UnderlyingMatrix(object_1));
free_module := FreeRightPresentation(rank_1, homalg_ring);
morphism := PreCompose(internal_hom_embedding,

Braiding(free_module, object_2));
morphism := TensorProductOnMorphisms(morphism,

IdentityMorphism(object_1));
row := [];
zero_row := List([1 .. rank_1], function (i)

return 0;
end);

for i in [1 .. rank_1 - 1] do
Add(row, 1);
Append(row, zero_row);

od;
if rank_1 > 0 then

Add(row, 1);
fi;
matrix := HomalgMatrix(row, 1, rank_1 * rank_1, homalg_ring);
rank_2 := NrRows(UnderlyingMatrix(object_2));
matrix
:= KroneckerMat(HomalgIdentityMatrix(rank_2, homalg_ring),

matrix);
lifted_evaluation := PresentationMorphism(Range(morphism),

matrix, object_2);
return PreCompose(morphism, lifted_evaluation);

end;

CoevaluationMorphismWithGivenRange. Back to index.
function (object_1, object_2, internal_hom)

local object_1_tensored_object_2, internal_hom_embedding,
rank_2, free_module, morphism, column, zero_column, i, matrix,
rank_1, lifted_coevaluation;
object_1_tensored_object_2 := TensorProductOnObjects(object_1,

object_2);
internal_hom_embedding

328 F. INSTALLED BASIC OPERATIONS

:= INTERNAL_HOM_EMBEDDING_IN_TENSOR_PRODUCT_RIGHT(object_2,
object_1_tensored_object_2);

rank_2 := NrRows(UnderlyingMatrix(object_2));
free_module := FreeRightPresentation(rank_2, homalg_ring);
morphism := PreCompose(internal_hom_embedding,

Braiding(free_module, object_1_tensored_object_2));
column := [];
zero_column := List([1 .. rank_2], function (i)

return 0;
end);

for i in [1 .. rank_2 - 1] do
Add(column, 1);
Append(column, zero_column);

od;
if rank_2 > 0 then

Add(column, 1);
fi;
matrix := HomalgMatrix(column, rank_2 * rank_2, 1, homalg_ring

);
rank_1 := NrRows(UnderlyingMatrix(object_1));
matrix
:= KroneckerMat(HomalgIdentityMatrix(rank_1, homalg_ring),

matrix);
lifted_coevaluation := PresentationMorphism(object_1, matrix,

Range(morphism));
return LiftAlongMonomorphism(morphism, lifted_coevaluation);

end;

4. Primitive operations for graded left module presentations

IdentityMorphism. Back to index.
function (object)

local morphism;
morphism
:= IdentityMorphism(UnderlyingPresentationObject(object));

return GradedPresentationMorphism(object, morphism, object);
end;

KernelEmbedding. Back to index.
function (morphism)

local underlying_embedding, kernel_object, range_degrees,
new_degrees;

4. PRIMITIVE OPERATIONS 329

underlying_embedding
:= KernelEmbedding(UnderlyingPresentationMorphism(morphism)

);
kernel_object := Source(underlying_embedding);
new_degrees
:= NonTrivialDegreePerRow(

UnderlyingMatrix(underlying_embedding),
GeneratorDegrees(Source(morphism)));

kernel_object := AsGradedLeftPresentation(kernel_object,
new_degrees);

return GradedPresentationMorphism(kernel_object,
underlying_embedding, Source(morphism));

end;

CokernelObject. Back to index.
function (object)

local result;
result
:= CokernelObject(UnderlyingPresentationMorphism(object));

return
object_constructor(result, GeneratorDegrees(Range(object)

));
end;

ZeroObject. Back to index.
function ()

local zero_object;
zero_object := ZeroObject(underlying_presentation_category);
return object_constructor(zero_object);

end;

TensorUnit. Back to index.
function ()

local unit, new_degrees;
unit := TensorUnit(underlying_presentation_category);
return object_constructor(unit);

end;

Lift. Back to index.
function (alpha, beta)

local lift;
lift := Lift(UnderlyingPresentationMorphism(alpha),

330 F. INSTALLED BASIC OPERATIONS

UnderlyingPresentationMorphism(beta));
if lift = fail then

return fail;
fi;
return GradedPresentationMorphism(Source(alpha), lift,

Source(beta));
end;

KernelEmbeddingWithGivenKernelObject. Back to index.

function (morphism, kernel)
local underlying_embedding;
underlying_embedding
:= KernelEmbedding(UnderlyingPresentationMorphism(morphism)

);
return GradedPresentationMorphism(kernel, underlying_embedding

, Source(morphism));
end;

CokernelProjectionWithGivenCokernelObject. Back to index.

function (morphism, cokernel_object)
local projection;
projection := CokernelProjectionWithGivenCokernelObject(

UnderlyingPresentationMorphism(morphism),
UnderlyingPresentationObject(cokernel_object));

return GradedPresentationMorphism(Range(morphism),
projection, cokernel_object);

end;

CokernelColiftWithGivenCokernelObject. Back to index.

function (morphism, test_morphism, cokernel_object)
local lift;
lift := CokernelColiftWithGivenCokernelObject(

UnderlyingPresentationMorphism(morphism),
UnderlyingPresentationMorphism(test_morphism),
UnderlyingPresentationObject(cokernel_object));

return GradedPresentationMorphism(cokernel_object, lift,
Range(test_morphism));

end;

4. PRIMITIVE OPERATIONS 331

PreCompose. Back to index.
function (left_morphism, right_morphism)

return GradedPresentationMorphism(Source(left_morphism),
PreCompose(UnderlyingPresentationMorphism(left_morphism),

UnderlyingPresentationMorphism(right_morphism)),
Range(right_morphism));

end;

UniversalMorphismFromZeroObjectWithGivenZeroObject. Back to index.
function (object, initial_object)

local morphism;
morphism := UniversalMorphismFromZeroObjectWithGivenZeroObject(

UnderlyingPresentationObject(object),
UnderlyingPresentationObject(initial_object));

return GradedPresentationMorphism(initial_object, morphism,
object);

end;

UniversalMorphismIntoZeroObjectWithGivenZeroObject. Back to index.
function (object, terminal_object)

local morphism;
morphism := UniversalMorphismIntoZeroObjectWithGivenZeroObject(

UnderlyingPresentationObject(object),
UnderlyingPresentationObject(terminal_object));

return GradedPresentationMorphism(object, morphism,
terminal_object);

end;

ZeroMorphism. Back to index.
function (source, range)

local morphism;
morphism := ZeroMorphism(UnderlyingPresentationObject(source)

, UnderlyingPresentationObject(range));
return GradedPresentationMorphism(source, morphism, range);

end;

DirectSum. Back to index.
function (product_object)

local objects, degrees;
objects
:=

332 F. INSTALLED BASIC OPERATIONS

DirectSum(List(product_object, UnderlyingPresentationObject
));

degrees
:= Concatenation(List(product_object, GeneratorDegrees));

return object_constructor(objects, degrees);
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local underlying_objects, underlying_direct_sum, projection;
underlying_objects
:= List(product_object, UnderlyingPresentationObject);

underlying_direct_sum := UnderlyingPresentationObject(
direct_sum_object);

projection := ProjectionInFactorOfDirectSumWithGivenDirectSum(
underlying_objects, component_number, underlying_direct_sum);

return GradedPresentationMorphism(direct_sum_object,
projection, product_object[component_number]);

end;

UniversalMorphismIntoDirectSumWithGivenDirectSum. Back to index.
function (diagram, product_morphism, direct_sum)

local underlying_diagram, underlying_product_morphism,
underlying_direct_sum, universal_morphism;
underlying_diagram
:= List(diagram, UnderlyingPresentationObject);

underlying_product_morphism
:= List(product_morphism, UnderlyingPresentationMorphism);

underlying_direct_sum := UnderlyingPresentationObject(
direct_sum);

universal_morphism
:= UniversalMorphismIntoDirectSumWithGivenDirectSum(

underlying_diagram, underlying_product_morphism,
underlying_direct_sum);

return GradedPresentationMorphism(Source(product_morphism[1])
, universal_morphism, direct_sum);

end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local underlying_objects, underlying_direct_sum, injection;
underlying_objects

4. PRIMITIVE OPERATIONS 333

:= List(product_object, UnderlyingPresentationObject);
underlying_direct_sum := UnderlyingPresentationObject(

direct_sum_object);
injection := InjectionOfCofactorOfDirectSumWithGivenDirectSum(

underlying_objects, component_number, underlying_direct_sum);
return
GradedPresentationMorphism(product_object[component_number],

injection, direct_sum_object);
end;

UniversalMorphismFromDirectSumWithGivenDirectSum. Back to index.
function (diagram, product_morphism, direct_sum)

local underlying_diagram, underlying_product_morphism,
underlying_direct_sum, universal_morphism;
underlying_diagram
:= List(diagram, UnderlyingPresentationObject);

underlying_product_morphism
:= List(product_morphism, UnderlyingPresentationMorphism);

underlying_direct_sum := UnderlyingPresentationObject(
direct_sum);

universal_morphism
:= UniversalMorphismFromDirectSumWithGivenDirectSum(

underlying_diagram, underlying_product_morphism,
underlying_direct_sum);

return GradedPresentationMorphism(direct_sum,
universal_morphism, Range(product_morphism[1]));

end;

IsCongruentForMorphisms. Back to index.
function (morphism_1, morphism_2)

return
IsCongruentForMorphisms(UnderlyingPresentationMorphism(

morphism_1), UnderlyingPresentationMorphism(morphism_2)
);

end;

IsEqualForMorphisms. Back to index.
function (morphism_1, morphism_2)

return UnderlyingMatrix(morphism_1)
= UnderlyingMatrix(morphism_2);

end;

334 F. INSTALLED BASIC OPERATIONS

IsEqualForObjects. Back to index.
function (object1, object2)

if UnderlyingMatrix(object1) = UnderlyingMatrix(object2)
then

return GeneratorDegrees(object1)
= GeneratorDegrees(object2);

fi;
return false;

end;

IsEqualForCacheForObjects. Back to index.
IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.
IsIdenticalObj

AdditionForMorphisms. Back to index.
function (morphism_1, morphism_2)

return GradedPresentationMorphism(Source(morphism_1),
UnderlyingPresentationMorphism(morphism_1)
+ UnderlyingPresentationMorphism(morphism_2),

Range(morphism_1));
end;

AdditiveInverseForMorphisms. Back to index.
function (morphism_1)

return GradedPresentationMorphism(Source(morphism_1),
- UnderlyingPresentationMorphism(morphism_1),
Range(morphism_1));

end;

IsWellDefinedForMorphisms. Back to index.
function (morphism)

local matrix_degrees, matrix_entries, source_degrees,
range_degrees;
if
not IsWellDefined(UnderlyingPresentationMorphism(morphism))

then
return false;

fi;
return GeneratorDegrees(Source(morphism))

4. PRIMITIVE OPERATIONS 335

= NonTrivialDegreePerRow(UnderlyingMatrix(morphism),
GeneratorDegrees(Range(morphism)));

end;

IsWellDefinedForObjects. Back to index.
function (object)

local relation_degrees, generator_degrees, relation_entries;
if
not IsHomalgMatrix(UnderlyingMatrix(object))

or not IsHomalgRing(UnderlyingHomalgRing(object)) then
return false;

fi;
relation_degrees
:= DegreesOfEntries(UnderlyingMatrix(object));

relation_entries := EntriesOfHomalgMatrixAsListList(
UnderlyingMatrix(object));

generator_degrees := GeneratorDegrees(object);
return
CAP_INTERNAL_CHECK_DEGREES_FOR_IS_WELL_DEFINED_FOR_OBJECTS(

relation_degrees, relation_entries, generator_degrees);
end;

TensorProductOnObjects. Back to index.
function (object_1, object_2)

local new_object, degrees_1, degrees_2, new_degrees, i, j;
new_object
:= TensorProductOnObjects(

UnderlyingPresentationObject(object_1),
UnderlyingPresentationObject(object_2));

degrees_1 := GeneratorDegrees(object_1);
degrees_2 := GeneratorDegrees(object_2);
new_degrees := [];
for i in [1 .. Length(degrees_1)] do

for j in [1 .. Length(degrees_2)] do
Add(new_degrees, degrees_1[i] + degrees_2[j]);

od;
od;
return object_constructor(new_object, new_degrees);

end;

TensorProductOnMorphismsWithGivenTensorProducts. Back to index.

336 F. INSTALLED BASIC OPERATIONS

function (new_source, morphism_1, morphism_2, new_range)
local new_morphism;
new_morphism := TensorProductOnMorphismsWithGivenTensorProducts

(UnderlyingPresentationObject(new_source),
UnderlyingPresentationMorphism(morphism_1),
UnderlyingPresentationMorphism(morphism_2),
UnderlyingPresentationObject(new_range));

return GradedPresentationMorphism(new_source, new_morphism,
new_range);

end;

InternalHomOnObjects. Back to index.
function (object_1, object_2)

return
Source(INTERNAL_GRADED_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(

object_1, object_2));
end;

InternalHomOnMorphismsWithGivenInternalHoms. Back to index.
function (new_source, morphism_1, morphism_2, new_range)

local internal_hom_embedding_source,
internal_hom_embedding_range, morphism_between_tensor_products;
internal_hom_embedding_source
:= INTERNAL_GRADED_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(

Range(morphism_1), Source(morphism_2));
internal_hom_embedding_range
:= INTERNAL_GRADED_HOM_EMBEDDING_IN_TENSOR_PRODUCT_LEFT(

Source(morphism_1), Range(morphism_2));
morphism_between_tensor_products
:= GradedPresentationMorphism(

Range(internal_hom_embedding_source),
KroneckerMat(Involution(UnderlyingMatrix(morphism_1)),

UnderlyingMatrix(morphism_2)),
Range(internal_hom_embedding_range));

return LiftAlongMonomorphism(internal_hom_embedding_range,
PreCompose(internal_hom_embedding_source,

morphism_between_tensor_products));
end;

5. Primitive operations for graded right module presentations

5. PRIMITIVE OPERATIONS 337

IdentityMorphism. Back to index.
function (object)

local morphism;
morphism
:= IdentityMorphism(UnderlyingPresentationObject(object));

return GradedPresentationMorphism(object, morphism, object);
end;

KernelEmbedding. Back to index.
function (morphism)

local underlying_embedding, kernel_object, new_degrees,
range_degrees;
underlying_embedding
:= KernelEmbedding(UnderlyingPresentationMorphism(morphism)

);
kernel_object := Source(underlying_embedding);
new_degrees
:= NonTrivialDegreePerColumn(

UnderlyingMatrix(underlying_embedding),
GeneratorDegrees(Source(morphism)));

kernel_object := AsGradedRightPresentation(kernel_object,
new_degrees);

return GradedPresentationMorphism(kernel_object,
underlying_embedding, Source(morphism));

end;

CokernelObject. Back to index.
function (object)

local result;
result
:= CokernelObject(UnderlyingPresentationMorphism(object));

return
object_constructor(result, GeneratorDegrees(Range(object)

));
end;

ZeroObject. Back to index.
function ()

local zero_object;
zero_object := ZeroObject(underlying_presentation_category);

338 F. INSTALLED BASIC OPERATIONS

return object_constructor(zero_object);
end;

TensorUnit. Back to index.
function ()

local unit, new_degrees;
unit := TensorUnit(underlying_presentation_category);
return object_constructor(unit);

end;

Lift. Back to index.
function (beta, alpha)

local lift;
lift := Lift(UnderlyingPresentationMorphism(beta),

UnderlyingPresentationMorphism(alpha));
if lift = fail then

return fail;
fi;
return GradedPresentationMorphism(Source(beta), lift,

Source(alpha));
end;

KernelEmbeddingWithGivenKernelObject. Back to index.
function (morphism, kernel)

local underlying_embedding;
underlying_embedding
:= KernelEmbedding(UnderlyingPresentationMorphism(morphism)

);
return GradedPresentationMorphism(kernel, underlying_embedding

, Source(morphism));
end;

CokernelProjectionWithGivenCokernelObject. Back to index.
function (morphism, cokernel_object)

local projection;
projection := CokernelProjectionWithGivenCokernelObject(

UnderlyingPresentationMorphism(morphism),
UnderlyingPresentationObject(cokernel_object));

return GradedPresentationMorphism(Range(morphism),
projection, cokernel_object);

end;

5. PRIMITIVE OPERATIONS 339

CokernelColiftWithGivenCokernelObject. Back to index.
function (morphism, test_morphism, cokernel_object)

local lift;
lift := CokernelColiftWithGivenCokernelObject(

UnderlyingPresentationMorphism(morphism),
UnderlyingPresentationMorphism(test_morphism),
UnderlyingPresentationObject(cokernel_object));

return GradedPresentationMorphism(cokernel_object, lift,
Range(test_morphism));

end;

PreCompose. Back to index.
function (left_morphism, right_morphism)

return GradedPresentationMorphism(Source(left_morphism),
PreCompose(UnderlyingPresentationMorphism(left_morphism),

UnderlyingPresentationMorphism(right_morphism)),
Range(right_morphism));

end;

UniversalMorphismFromZeroObjectWithGivenZeroObject. Back to index.
function (object, initial_object)

local morphism;
morphism := UniversalMorphismFromZeroObjectWithGivenZeroObject(

UnderlyingPresentationObject(object),
UnderlyingPresentationObject(initial_object));

return GradedPresentationMorphism(initial_object, morphism,
object);

end;

UniversalMorphismIntoZeroObjectWithGivenZeroObject. Back to index.
function (object, terminal_object)

local morphism;
morphism := UniversalMorphismIntoZeroObjectWithGivenZeroObject(

UnderlyingPresentationObject(object),
UnderlyingPresentationObject(terminal_object));

return GradedPresentationMorphism(object, morphism,
terminal_object);

end;

340 F. INSTALLED BASIC OPERATIONS

ZeroMorphism. Back to index.
function (source, range)

local morphism;
morphism := ZeroMorphism(UnderlyingPresentationObject(source)

, UnderlyingPresentationObject(range));
return GradedPresentationMorphism(source, morphism, range);

end;

DirectSum. Back to index.
function (product_object)

local objects, degrees;
objects
:=
DirectSum(List(product_object, UnderlyingPresentationObject

));
degrees
:= Concatenation(List(product_object, GeneratorDegrees));

return object_constructor(objects, degrees);
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local underlying_objects, underlying_direct_sum, projection;
underlying_objects
:= List(product_object, UnderlyingPresentationObject);

underlying_direct_sum := UnderlyingPresentationObject(
direct_sum_object);

projection := ProjectionInFactorOfDirectSumWithGivenDirectSum(
underlying_objects, component_number, underlying_direct_sum);

return GradedPresentationMorphism(direct_sum_object,
projection, product_object[component_number]);

end;

UniversalMorphismIntoDirectSumWithGivenDirectSum. Back to index.
function (diagram, product_morphism, direct_sum)

local underlying_diagram, underlying_product_morphism,
underlying_direct_sum, universal_morphism;
underlying_diagram
:= List(diagram, UnderlyingPresentationObject);

underlying_product_morphism
:= List(product_morphism, UnderlyingPresentationMorphism);

5. PRIMITIVE OPERATIONS 341

underlying_direct_sum := UnderlyingPresentationObject(
direct_sum);

universal_morphism
:= UniversalMorphismIntoDirectSumWithGivenDirectSum(

underlying_diagram, underlying_product_morphism,
underlying_direct_sum);

return GradedPresentationMorphism(Source(product_morphism[1])
, universal_morphism, direct_sum);

end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local underlying_objects, underlying_direct_sum, injection;
underlying_objects
:= List(product_object, UnderlyingPresentationObject);

underlying_direct_sum := UnderlyingPresentationObject(
direct_sum_object);

injection := InjectionOfCofactorOfDirectSumWithGivenDirectSum(
underlying_objects, component_number, underlying_direct_sum);

return
GradedPresentationMorphism(product_object[component_number],

injection, direct_sum_object);
end;

UniversalMorphismFromDirectSumWithGivenDirectSum. Back to index.
function (diagram, product_morphism, direct_sum)

local underlying_diagram, underlying_product_morphism,
underlying_direct_sum, universal_morphism;
underlying_diagram
:= List(diagram, UnderlyingPresentationObject);

underlying_product_morphism
:= List(product_morphism, UnderlyingPresentationMorphism);

underlying_direct_sum := UnderlyingPresentationObject(
direct_sum);

universal_morphism
:= UniversalMorphismFromDirectSumWithGivenDirectSum(

underlying_diagram, underlying_product_morphism,
underlying_direct_sum);

return GradedPresentationMorphism(direct_sum,
universal_morphism, Range(product_morphism[1]));

end;

342 F. INSTALLED BASIC OPERATIONS

IsCongruentForMorphisms. Back to index.
function (morphism_1, morphism_2)

return
IsCongruentForMorphisms(UnderlyingPresentationMorphism(

morphism_1), UnderlyingPresentationMorphism(morphism_2)
);

end;

IsEqualForMorphisms. Back to index.
function (morphism_1, morphism_2)

return UnderlyingMatrix(morphism_1)
= UnderlyingMatrix(morphism_2);

end;

IsEqualForObjects. Back to index.
function (object1, object2)

if UnderlyingMatrix(object1) = UnderlyingMatrix(object2)
then

return GeneratorDegrees(object1)
= GeneratorDegrees(object2);

fi;
return false;

end;

IsEqualForCacheForObjects. Back to index.
IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.
IsIdenticalObj

AdditionForMorphisms. Back to index.
function (morphism_1, morphism_2)

return GradedPresentationMorphism(Source(morphism_1),
UnderlyingPresentationMorphism(morphism_1)
+ UnderlyingPresentationMorphism(morphism_2),

Range(morphism_1));
end;

5. PRIMITIVE OPERATIONS 343

AdditiveInverseForMorphisms. Back to index.
function (morphism_1)

return GradedPresentationMorphism(Source(morphism_1),
- UnderlyingPresentationMorphism(morphism_1),
Range(morphism_1));

end;

IsWellDefinedForMorphisms. Back to index.
function (morphism)

local matrix_degrees, matrix_entries, source_degrees,
range_degrees;
if
not IsWellDefined(UnderlyingPresentationMorphism(morphism))

then
return false;

fi;
matrix_degrees
:=
TransposedMat(DegreesOfEntries(UnderlyingMatrix(morphism)

));
matrix_entries
:= TransposedMat(EntriesOfHomalgMatrixAsListList(

UnderlyingMatrix(morphism)));
source_degrees := GeneratorDegrees(Source(morphism));
range_degrees := GeneratorDegrees(Range(morphism));
return GeneratorDegrees(Source(morphism))

= NonTrivialDegreePerColumn(UnderlyingMatrix(morphism),
GeneratorDegrees(Range(morphism)));

end;

IsWellDefinedForObjects. Back to index.
function (object)

local relation_degrees, generator_degrees, relation_entries;
if not IsWellDefined(UnderlyingPresentationObject(object))

then
return false;

fi;
relation_degrees
:= TransposedMat(DegreesOfEntries(UnderlyingMatrix(object)

));
relation_entries
:= TransposedMat(EntriesOfHomalgMatrixAsListList(

344 F. INSTALLED BASIC OPERATIONS

UnderlyingMatrix(object)));
generator_degrees := GeneratorDegrees(object);
return
CAP_INTERNAL_CHECK_DEGREES_FOR_IS_WELL_DEFINED_FOR_OBJECTS(

relation_degrees, relation_entries, generator_degrees);
end;

TensorProductOnObjects. Back to index.
function (object_1, object_2)

local new_object, degrees_1, degrees_2, new_degrees, i, j;
new_object
:= TensorProductOnObjects(

UnderlyingPresentationObject(object_1),
UnderlyingPresentationObject(object_2));

degrees_1 := GeneratorDegrees(object_1);
degrees_2 := GeneratorDegrees(object_2);
new_degrees := [];
for i in [1 .. Length(degrees_1)] do

for j in [1 .. Length(degrees_2)] do
Add(new_degrees, degrees_1[i] + degrees_2[j]);

od;
od;
return object_constructor(new_object, new_degrees);

end;

TensorProductOnMorphismsWithGivenTensorProducts. Back to index.
function (new_source, morphism_1, morphism_2, new_range)

local new_morphism;
new_morphism := TensorProductOnMorphismsWithGivenTensorProducts

(UnderlyingPresentationObject(new_source),
UnderlyingPresentationMorphism(morphism_1),
UnderlyingPresentationMorphism(morphism_2),
UnderlyingPresentationObject(new_range));

return GradedPresentationMorphism(new_source, new_morphism,
new_range);

end;

6. Primitive operations for generalized morphisms by cospans

IdentityMorphism. Back to index.
function (generalized_object)

local identity_morphism;

6. PRIMITIVE OPERATIONS 345

identity_morphism
:= IdentityMorphism(

UnderlyingHonestObject(generalized_object));
return AsGeneralizedMorphismByCospan(identity_morphism);

end;

PreCompose. Back to index.
function (morphism1, morphism2)

local pushout_diagram, injection_left, injection_right;
pushout_diagram
:= [ReversedArrow(morphism1), Arrow(morphism2)];

injection_left := InjectionOfCofactorOfPushout(
pushout_diagram, 1);

injection_right := InjectionOfCofactorOfPushout(
pushout_diagram, 2);

return
GeneralizedMorphismByCospan(PreCompose(Arrow(morphism1),

injection_left), PreCompose(ReversedArrow(morphism2),
injection_right));

end;

function (morphism1, morphism2)
local arrow, reversed_arrow;
arrow := PreCompose(Arrow(morphism1), Arrow(morphism2));
return AsGeneralizedMorphismByCospan(arrow);

end;

This function uses the following extra filters:
‚ HasIdentityAsReversedArrow for the 1st argument.
‚ HasIdentityAsReversedArrow for the 2nd argument.

function (morphism1, morphism2)
local arrow;
arrow := PreCompose(Arrow(morphism1), Arrow(morphism2));
return GeneralizedMorphismByCospan(arrow,

ReversedArrow(morphism2));
end;

This function uses the following extra filters:
‚ HasIdentityAsReversedArrow for the 1st argument.

ZeroMorphism. Back to index.
function (obj1, obj2)

local morphism;

346 F. INSTALLED BASIC OPERATIONS

morphism := ZeroMorphism(UnderlyingHonestObject(obj1),
UnderlyingHonestObject(obj2));

return AsGeneralizedMorphismByCospan(morphism);
end;

IsCongruentForMorphisms. Back to index.
function (morphism1, morphism2)

local arrow_tuple, pullback_diagram1, pullback_diagram2,
subobject1, subobject2;
arrow_tuple := [Arrow(morphism1), ReversedArrow(morphism1)

];
pullback_diagram1
:= [ProjectionInFactorOfFiberProduct(arrow_tuple, 1),

ProjectionInFactorOfFiberProduct(arrow_tuple, 2)];
arrow_tuple := [Arrow(morphism2), ReversedArrow(morphism2)

];
pullback_diagram2
:= [ProjectionInFactorOfFiberProduct(arrow_tuple, 1),

ProjectionInFactorOfFiberProduct(arrow_tuple, 2)];
subobject1 := UniversalMorphismIntoDirectSum(pullback_diagram1

);
subobject2 := UniversalMorphismIntoDirectSum(pullback_diagram2

);
return IsEqualAsSubobjects(subobject1, subobject2);

end;

IsEqualForObjects. Back to index.
function (object_1, object_2)

return IsEqualForObjects(UnderlyingHonestObject(object_1),
UnderlyingHonestObject(object_2));

end;

IsEqualForCacheForObjects. Back to index.
IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.
IsIdenticalObj

6. PRIMITIVE OPERATIONS 347

AdditionForMorphisms. Back to index.
function (morphism1, morphism2)

local pushout_diagram, pushout_left, pushout_right, arrow,
reversed_arrow;
pushout_diagram
:= [ReversedArrow(morphism1), ReversedArrow(morphism2)];

pushout_left := InjectionOfCofactorOfPushout(pushout_diagram,
1);

pushout_right := InjectionOfCofactorOfPushout(pushout_diagram,
2);

arrow := PreCompose(Arrow(morphism1), pushout_left)
+ PreCompose(Arrow(morphism2), pushout_right);

reversed_arrow := PreCompose(pushout_diagram[1], pushout_left);
return GeneralizedMorphismByCospan(arrow, reversed_arrow);

end;

function (morphism1, morphism2)
return AsGeneralizedMorphismByCospan(Arrow(morphism1)

+ Arrow(morphism2));
end;

This function uses the following extra filters:
‚ HasIdentityAsReversedArrow for the 1st argument.
‚ HasIdentityAsReversedArrow for the 2nd argument.

AdditiveInverseForMorphisms. Back to index.
function (morphism)

return GeneralizedMorphismByCospan(- Arrow(morphism),
ReversedArrow(morphism));

end;

function (morphism)
return AsGeneralizedMorphismByCospan(- Arrow(morphism));

end;

This function uses the following extra filters:
‚ HasIdentityAsReversedArrow for the 1st argument.

IsWellDefinedForMorphisms. Back to index.
function (generalized_morphism)

local category;
category := CapCategory(Arrow(generalized_morphism));
if
not ForAll(

348 F. INSTALLED BASIC OPERATIONS

[Arrow(generalized_morphism),
ReversedArrow(generalized_morphism)],

function (x)
return IsIdenticalObj(CapCategory(x), category);

end) then
return false;

fi;
if
not ForAll(

[Arrow(generalized_morphism),
ReversedArrow(generalized_morphism)],

IsWellDefined) then
return false;

fi;
return true;

end;

IsWellDefinedForObjects. Back to index.
function (object)

return IsWellDefined(UnderlyingHonestObject(object));
end;

7. Primitive operations for generalized morphisms by spans

IdentityMorphism. Back to index.
function (generalized_object)

local identity_morphism;
identity_morphism
:= IdentityMorphism(

UnderlyingHonestObject(generalized_object));
return AsGeneralizedMorphismBySpan(identity_morphism);

end;

PreCompose. Back to index.
function (morphism1, morphism2)

local pullback_diagram, projection_left, projection_right;
pullback_diagram
:= [Arrow(morphism1), ReversedArrow(morphism2)];

projection_left := ProjectionInFactorOfFiberProduct(
pullback_diagram, 1);

projection_right := ProjectionInFactorOfFiberProduct(
pullback_diagram, 2);

7. PRIMITIVE OPERATIONS 349

return
GeneralizedMorphismBySpan(

PreCompose(projection_left, ReversedArrow(morphism1)),
PreCompose(projection_right, Arrow(morphism2)));

end;

function (morphism1, morphism2)
local arrow;
arrow := PreCompose(Arrow(morphism1), Arrow(morphism2));
return AsGeneralizedMorphismBySpan(arrow);

end;

This function uses the following extra filters:
‚ HasIdentityAsReversedArrow for the 1st argument.
‚ HasIdentityAsReversedArrow for the 2nd argument.

function (morphism1, morphism2)
local arrow;
arrow := PreCompose(Arrow(morphism1), Arrow(morphism2));
return GeneralizedMorphismBySpan(ReversedArrow(morphism1),

arrow);
end;

This function uses the following extra filters:
‚ HasIdentityAsReversedArrow for the 2nd argument.

ZeroMorphism. Back to index.
function (obj1, obj2)

local morphism;
morphism := ZeroMorphism(UnderlyingHonestObject(obj1),

UnderlyingHonestObject(obj2));
return AsGeneralizedMorphismBySpan(morphism);

end;

IsCongruentForMorphisms. Back to index.
function (morphism1, morphism2)

local arrow_tuple, pushout_diagram1, pushout_diagram2,
factorobject1, factorobject2;
arrow_tuple := [Arrow(morphism1), ReversedArrow(morphism1)

];
pushout_diagram1
:= [InjectionOfCofactorOfPushout(arrow_tuple, 1),

InjectionOfCofactorOfPushout(arrow_tuple, 2)];
arrow_tuple := [Arrow(morphism2), ReversedArrow(morphism2)

350 F. INSTALLED BASIC OPERATIONS

];
pushout_diagram2
:= [InjectionOfCofactorOfPushout(arrow_tuple, 1),

InjectionOfCofactorOfPushout(arrow_tuple, 2)];
factorobject1 := UniversalMorphismFromDirectSum(

pushout_diagram1);
factorobject2 := UniversalMorphismFromDirectSum(

pushout_diagram2);
return IsEqualAsFactorobjects(factorobject1, factorobject2);

end;

IsEqualForObjects. Back to index.
function (object_1, object_2)

return IsEqualForObjects(UnderlyingHonestObject(object_1),
UnderlyingHonestObject(object_2));

end;

IsEqualForCacheForObjects. Back to index.
IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.
IsIdenticalObj

AdditionForMorphisms. Back to index.
function (morphism1, morphism2)

local pullback_diagram, pullback_left, pullback_right, arrow,
reversed_arrow;
pullback_diagram
:= [ReversedArrow(morphism1), ReversedArrow(morphism2)];

pullback_left := ProjectionInFactorOfFiberProduct(
pullback_diagram, 1);

pullback_right := ProjectionInFactorOfFiberProduct(
pullback_diagram, 2);

arrow := PreCompose(pullback_left, Arrow(morphism1))
+ PreCompose(pullback_right, Arrow(morphism2));

reversed_arrow
:= PreCompose(pullback_left, pullback_diagram[1]);

return GeneralizedMorphismBySpan(reversed_arrow, arrow);
end;

7. PRIMITIVE OPERATIONS 351

function (morphism1, morphism2)
return AsGeneralizedMorphismBySpan(Arrow(morphism1)

+ Arrow(morphism2));
end;

This function uses the following extra filters:
‚ HasIdentityAsReversedArrow for the 1st argument.
‚ HasIdentityAsReversedArrow for the 2nd argument.

AdditiveInverseForMorphisms. Back to index.
function (morphism)

return GeneralizedMorphismBySpan(ReversedArrow(morphism),
- Arrow(morphism));

end;

function (morphism)
return AsGeneralizedMorphismBySpan(- Arrow(morphism));

end;

This function uses the following extra filters:
‚ HasIdentityAsReversedArrow for the 1st argument.

IsWellDefinedForMorphisms. Back to index.
function (generalized_morphism)

local category;
category := CapCategory(Arrow(generalized_morphism));
if
not ForAll(

[Arrow(generalized_morphism),
ReversedArrow(generalized_morphism)],

function (x)
return IsIdenticalObj(CapCategory(x), category);

end) then
return false;

fi;
if
not ForAll(

[Arrow(generalized_morphism),
ReversedArrow(generalized_morphism)],

IsWellDefined) then
return false;

fi;

352 F. INSTALLED BASIC OPERATIONS

return true;
end;

IsWellDefinedForObjects. Back to index.
function (object)

return IsWellDefined(UnderlyingHonestObject(object));
end;

8. Primitive operations for generalized morphisms by three arrows

IdentityMorphism. Back to index.
function (generalized_object)

local identity_morphism;
identity_morphism
:= IdentityMorphism(

UnderlyingHonestObject(generalized_object));
return AsGeneralizedMorphismByThreeArrows(identity_morphism);

end;

PreCompose. Back to index.
function (mor1, mor2)

return GeneralizedMorphismByThreeArrows(SourceAid(mor1),
PreCompose(Arrow(mor1), Arrow(mor2)), RangeAid(mor2)
);

end;

This function uses the following extra filters:
‚ HasIdentityAsRangeAid for the 1st argument.
‚ HasIdentityAsSourceAid for the 2nd argument.

function (mor1, mor2)
local category, pullback_diagram, new_source_aid,
new_morphism_aid;
pullback_diagram := [Arrow(mor1), SourceAid(mor2)];
new_source_aid
:=
PreCompose(ProjectionInFactorOfFiberProduct(pullback_diagram

, 1), SourceAid(mor1));
new_morphism_aid
:=
PreCompose(ProjectionInFactorOfFiberProduct(pullback_diagram

, 2), Arrow(mor2));
return GeneralizedMorphismByThreeArrowsWithSourceAid(

8. PRIMITIVE OPERATIONS 353

new_source_aid, new_morphism_aid);
end;

This function uses the following extra filters:
‚ HasIdentityAsRangeAid for the 1st argument.
‚ HasIdentityAsRangeAid for the 2nd argument.

function (mor1, mor2)
local category, diagram, injection_of_cofactor1,
injection_of_cofactor2, new_morphism_aid, new_range_aid;
diagram := [RangeAid(mor1), Arrow(mor2)];
injection_of_cofactor1 := InjectionOfCofactorOfPushout(

diagram, 1);
injection_of_cofactor2 := InjectionOfCofactorOfPushout(

diagram, 2);
new_morphism_aid
:= PreCompose(Arrow(mor1), injection_of_cofactor1);

new_range_aid := PreCompose(RangeAid(mor2),
injection_of_cofactor2);

return GeneralizedMorphismByThreeArrowsWithRangeAid(
new_morphism_aid, new_range_aid);

end;

This function uses the following extra filters:
‚ HasIdentityAsSourceAid for the 1st argument.
‚ HasIdentityAsSourceAid for the 2nd argument.

function (mor1, mor2)
local category;
return AsGeneralizedMorphismByThreeArrows(

PreCompose(Arrow(mor1), Arrow(mor2)));
end;

This function uses the following extra filters:
‚ HasIdentityAsSourceAid for the 1st argument.
‚ HasIdentityAsSourceAid for the 2nd argument.

function (mor1, mor2)
local generalized_mor_factor_sub, pullback_diagram,
pushout_diagram, new_associated, new_source_aid, new_range_aid;
generalized_mor_factor_sub
:= GeneralizedMorphismFromFactorToSubobjectByThreeArrows(

RangeAid(mor1), SourceAid(mor2));
pullback_diagram
:= [Arrow(mor1), SourceAid(generalized_mor_factor_sub)];

354 F. INSTALLED BASIC OPERATIONS

pushout_diagram
:= [RangeAid(generalized_mor_factor_sub), Arrow(mor2)];

new_source_aid
:=
PreCompose(ProjectionInFactorOfFiberProduct(pullback_diagram

, 1), SourceAid(mor1));
new_associated
:=
PreCompose(ProjectionInFactorOfFiberProduct(pullback_diagram

, 2), InjectionOfCofactorOfPushout(pushout_diagram, 1)
);

new_range_aid := PreCompose(RangeAid(mor2),
InjectionOfCofactorOfPushout(pushout_diagram, 2));

return GeneralizedMorphismByThreeArrows(new_source_aid,
new_associated, new_range_aid);

end;

IsCongruentForMorphisms. Back to index.
function (generalized_morphism1, generalized_morphism2)

local subobject1, subobject2, factorobject1, factorobject2,
isomorphism_of_subobjects, isomorphism_of_factorobjects;
subobject1 := DomainOfGeneralizedMorphism(

generalized_morphism1);
subobject2 := DomainOfGeneralizedMorphism(

generalized_morphism2);
if not IsEqualAsSubobjects(subobject1, subobject2) then

return false;
fi;
factorobject1 := Codomain(generalized_morphism1);
factorobject2 := Codomain(generalized_morphism2);
if not IsEqualAsFactorobjects(factorobject1, factorobject2)

then
return false;

fi;
isomorphism_of_subobjects := LiftAlongMonomorphism(subobject2,

subobject1);
isomorphism_of_factorobjects
:= ColiftAlongEpimorphism(factorobject2, factorobject1);

return
IsCongruentForMorphisms(

AssociatedMorphism(generalized_morphism1),
PreCompose(PreCompose(isomorphism_of_subobjects,

8. PRIMITIVE OPERATIONS 355

AssociatedMorphism(generalized_morphism2)),
isomorphism_of_factorobjects));

end;

IsEqualForObjects. Back to index.
function (object_1, object_2)

return IsEqualForObjects(UnderlyingHonestObject(object_1),
UnderlyingHonestObject(object_2));

end;

IsEqualForCacheForObjects. Back to index.
IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.
IsIdenticalObj

AdditionForMorphisms. Back to index.
function (mor1, mor2)

local return_value, pullback_of_sourceaids_diagram,
pushout_of_rangeaids_diagram, restricted_mor1, restricted_mor2;
pullback_of_sourceaids_diagram
:= [SourceAid(mor1), SourceAid(mor2)];

pushout_of_rangeaids_diagram
:= [RangeAid(mor1), RangeAid(mor2)];

restricted_mor1
:=
PreCompose(ProjectionInFactorOfFiberProduct(

pullback_of_sourceaids_diagram, 1), Arrow(mor1));
restricted_mor1 := PreCompose(restricted_mor1,

InjectionOfCofactorOfPushout(pushout_of_rangeaids_diagram,
1));

restricted_mor2
:=
PreCompose(ProjectionInFactorOfFiberProduct(

pullback_of_sourceaids_diagram, 2), Arrow(mor2));
restricted_mor2 := PreCompose(restricted_mor2,

InjectionOfCofactorOfPushout(pushout_of_rangeaids_diagram,
2));

return_value := GeneralizedMorphismByThreeArrows(
PreCompose(ProjectionInFactorOfFiberProduct(

pullback_of_sourceaids_diagram, 1), SourceAid(mor1))

356 F. INSTALLED BASIC OPERATIONS

, restricted_mor1 + restricted_mor2,
PreCompose(RangeAid(mor1),

InjectionOfCofactorOfPushout(pushout_of_rangeaids_diagram
, 1)));

return return_value;
end;

IsWellDefinedForMorphisms. Back to index.
function (generalized_morphism)

local category;
category := CapCategory(SourceAid(generalized_morphism));
if
not ForAll(

[Arrow(generalized_morphism),
RangeAid(generalized_morphism)], function (x)

return IsIdenticalObj(CapCategory(x), category);
end) then

return false;
fi;
if
not ForAll(

[SourceAid(generalized_morphism),
Arrow(generalized_morphism),
RangeAid(generalized_morphism)], IsWellDefined)

then
return false;

fi;
return true;

end;

IsWellDefinedForObjects. Back to index.
function (object)

return IsWellDefined(UnderlyingHonestObject(object));
end;

9. Primitive operations for Serre quotient by cospans

IdentityMorphism. Back to index.
function (object)

return AsSerreQuotientCategoryByCospansMorphism(category,

9. PRIMITIVE OPERATIONS 357

IdentityMorphism(UnderlyingHonestObject(object)));
end;

KernelEmbedding. Back to index.
function (morphism)

local underlying_general, kernel_mor;
underlying_general := UnderlyingGeneralizedMorphism(morphism);
kernel_mor := KernelEmbedding(Arrow(underlying_general));
return AsSerreQuotientCategoryByCospansMorphism(category,

kernel_mor);
end;

CokernelProjection. Back to index.
function (morphism)

local underlying_general, cokernel_mor, triple;
underlying_general := UnderlyingGeneralizedMorphism(morphism);
triple := DomainAssociatedMorphismCodomainTriple(

underlying_general);
cokernel_mor := CokernelProjection(triple[2]);
return AsSerreQuotientCategoryByCospansMorphism(category,

PreCompose(triple[3], cokernel_mor));
end;

ZeroObject. Back to index.
function ()

local generalized_zero;
generalized_zero
:= ZeroObject(UnderlyingHonestCategory(category));

return AsSerreQuotientCategoryByCospansObject(category,
generalized_zero);

end;

LiftAlongMonomorphism. Back to index.
function (monomorphism, test_morphism)

local inverse_of_mono, composition;
inverse_of_mono
:= PseudoInverse(UnderlyingGeneralizedMorphism(monomorphism

));
composition
:= PreCompose(UnderlyingGeneralizedMorphism(test_morphism),

inverse_of_mono);

358 F. INSTALLED BASIC OPERATIONS

return SerreQuotientCategoryByCospansMorphism(category,
composition);

end;

ColiftAlongEpimorphism. Back to index.
function (epimorphism, test_morphism)

local inverse_of_epi, composition;
inverse_of_epi
:= PseudoInverse(UnderlyingGeneralizedMorphism(epimorphism)

);
composition
:= PreCompose(inverse_of_epi,

UnderlyingGeneralizedMorphism(test_morphism));
return SerreQuotientCategoryByCospansMorphism(category,

composition);
end;

PreCompose. Back to index.
function (morphism1, morphism2)

local composition;
composition
:= PreCompose(UnderlyingGeneralizedMorphism(morphism1),

UnderlyingGeneralizedMorphism(morphism2));
return SerreQuotientCategoryByCospansMorphism(category,

composition);
end;

ZeroMorphism. Back to index.
function (source, range)

local new_general;
new_general
:= ZeroMorphism(UnderlyingGeneralizedObject(source),

UnderlyingGeneralizedObject(range));
return SerreQuotientCategoryByCospansMorphism(category,

new_general);
end;

DirectSum. Back to index.
function (obj_list)

local honest_list, honest_sum;
honest_list := List(obj_list, UnderlyingHonestObject);

9. PRIMITIVE OPERATIONS 359

honest_sum := CallFuncList(DirectSum, honest_list);
return AsSerreQuotientCategoryByCospansObject(category,

honest_sum);
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local underlying_objects, underlying_direct_sum,
honest_projection;
underlying_objects
:= List(product_object, UnderlyingHonestObject);

underlying_direct_sum
:= UnderlyingHonestObject(direct_sum_object);

honest_projection
:= ProjectionInFactorOfDirectSumWithGivenDirectSum(

underlying_objects, component_number, underlying_direct_sum);
return AsSerreQuotientCategoryByCospansMorphism(category,

honest_projection);
end;

UniversalMorphismIntoDirectSum. Back to index.
function (diagram, morphism_list)

local generalized_list, arrow_list, reversedarrow_list,
new_arrow, new_reversed_arrow, object_list;
generalized_list
:= List(morphism_list, UnderlyingGeneralizedMorphism);

arrow_list := List(generalized_list, Arrow);
new_arrow := UniversalMorphismIntoDirectSum(

List(arrow_list, Range), arrow_list);
reversedarrow_list := List(generalized_list, ReversedArrow);
new_reversed_arrow := DirectSumFunctorial(reversedarrow_list);
return SerreQuotientCategoryByCospansMorphism(category,

new_arrow, new_reversed_arrow);
end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.
function (object_product_list, injection_number, direct_sum_object

)
local underlying_objects, underlying_direct_sum,
honest_injection;
underlying_objects
:= List(object_product_list, UnderlyingHonestObject);

360 F. INSTALLED BASIC OPERATIONS

underlying_direct_sum
:= UnderlyingHonestObject(direct_sum_object);

honest_injection
:= AddInjectionOfCofactorOfDirectSumWithGivenDirectSum(

underlying_objects, injection_number, underlying_direct_sum);
return AsSerreQuotientCategoryByCospansMorphism(category,

honest_injection);
end;

UniversalMorphismFromDirectSum. Back to index.
function (diagram, morphism_list)

local generalized_list, arrow_list, reversedarrow_list,
new_arrow, new_reversed_arrow, object_list;
generalized_list
:= List(morphism_list, UnderlyingGeneralizedMorphism);

generalized_list := CommonCoastriction(generalized_list);
arrow_list := List(generalized_list, Arrow);
new_arrow := UniversalMorphismFromDirectSum(

List(diagram, UnderlyingHonestObject), arrow_list);
new_reversed_arrow := ReversedArrow(generalized_list[1]);
return SerreQuotientCategoryByCospansMorphism(category,

new_arrow, new_reversed_arrow);
end;

IsCongruentForMorphisms. Back to index.
function (morphism1, morphism2)

local underlying_general, new_morphism_aid, new_general,
sum_general, sum_associated, sum_image;
new_general := AdditiveInverse(underlying_general);
sum_general
:= AdditionForMorphisms(

UnderlyingGeneralizedMorphism(morphism1), new_general);
sum_associated := AssociatedMorphism(sum_general);
sum_image := ImageObject(sum_associated);
return membership_function(sum_image);

end;

IsEqualForObjects. Back to index.
function (obj1, obj2)

return IsEqualForObjects(UnderlyingHonestObject(obj1),

10. PRIMITIVE OPERATIONS 361

UnderlyingHonestObject(obj2));
end;

AdditionForMorphisms. Back to index.
function (morphism1, morphism2)

local sum;
sum
:= AdditionForMorphisms(

UnderlyingGeneralizedMorphism(morphism1),
UnderlyingGeneralizedMorphism(morphism2));

return SerreQuotientCategoryByCospansMorphism(category, sum);
end;

AdditiveInverseForMorphisms. Back to index.
function (morphism)

local new_general;
new_general := AdditiveInverseForMorphisms(

UnderlyingGeneralizedMorphism(morphism));
return SerreQuotientCategoryByCospansMorphism(category,

new_general);
end;

IsZeroForObjects. Back to index.
function (obj)

return membership_function(UnderlyingHonestObject(obj));
end;

10. Primitive operations for Serre quotient by spans

InverseImmutable. Back to index.
function (morphism)

local underlying_general, inverse;
underlying_general := UnderlyingGeneralizedMorphism(morphism);
inverse := PseudoInverse(underlying_general);
return SerreQuotientCategoryBySpansMorphism(category, inverse);

end;

IdentityMorphism. Back to index.
function (object)

return AsSerreQuotientCategoryBySpansMorphism(category,

362 F. INSTALLED BASIC OPERATIONS

IdentityMorphism(UnderlyingHonestObject(object)));
end;

KernelEmbedding. Back to index.
function (morphism)

local underlying_general, kernel_mor;
underlying_general := UnderlyingGeneralizedMorphism(morphism);
kernel_mor := KernelEmbedding(Arrow(underlying_general));
return AsSerreQuotientCategoryBySpansMorphism(category,

PreCompose(kernel_mor, ReversedArrow(underlying_general)
));

end;

CokernelProjection. Back to index.
function (morphism)

local underlying_general, cokernel_mor;
underlying_general := UnderlyingGeneralizedMorphism(morphism);
cokernel_mor := CokernelProjection(Arrow(underlying_general)

);
return AsSerreQuotientCategoryBySpansMorphism(category,

cokernel_mor);
end;

ZeroObject. Back to index.
function ()

local generalized_zero;
generalized_zero
:= ZeroObject(UnderlyingHonestCategory(category));

return AsSerreQuotientCategoryBySpansObject(category,
generalized_zero);

end;

DualOnObjects. Back to index.
function (object)

return AsSerreQuotientCategoryBySpansObject(category,
DualOnObjects(UnderlyingHonestObject(object)));

end;

10. PRIMITIVE OPERATIONS 363

LiftAlongMonomorphism. Back to index.
function (monomorphism, test_morphism)

local inverse_of_mono, composition;
inverse_of_mono
:= PseudoInverse(UnderlyingGeneralizedMorphism(monomorphism

));
composition
:= PreCompose(UnderlyingGeneralizedMorphism(test_morphism),

inverse_of_mono);
return SerreQuotientCategoryBySpansMorphism(category,

composition);
end;

ColiftAlongEpimorphism. Back to index.
function (epimorphism, test_morphism)

local inverse_of_epi, composition;
inverse_of_epi
:= PseudoInverse(UnderlyingGeneralizedMorphism(epimorphism)

);
composition
:= PreCompose(inverse_of_epi,

UnderlyingGeneralizedMorphism(test_morphism));
return SerreQuotientCategoryBySpansMorphism(category,

composition);
end;

Lift. Back to index.
function (test_morphism, monomorphism)

local inverse_of_mono, composition;
test_morphism := UnderlyingGeneralizedMorphism(test_morphism);
monomorphism := UnderlyingGeneralizedMorphism(monomorphism);
if not IsHonest(test_morphism) or not IsHonest(monomorphism)

then
return fail;

fi;
test_morphism := HonestRepresentative(test_morphism);
monomorphism := HonestRepresentative(monomorphism);
composition := Lift(test_morphism, monomorphism);
if composition = fail then

return fail;
fi;
return AsSerreQuotientCategoryBySpansMorphism(category,

364 F. INSTALLED BASIC OPERATIONS

composition);
end;

PreCompose. Back to index.
function (morphism1, morphism2)

local composition;
composition
:= PreCompose(UnderlyingGeneralizedMorphism(morphism1),

UnderlyingGeneralizedMorphism(morphism2));
return SerreQuotientCategoryBySpansMorphism(category,

composition);
end;

ZeroMorphism. Back to index.
function (source, range)

local new_general;
new_general := ZeroMorphism(UnderlyingHonestObject(source),

UnderlyingHonestObject(range));
return AsSerreQuotientCategoryBySpansMorphism(category,

new_general);
end;

DirectSum. Back to index.
function (obj_list)

local honest_list, honest_sum;
honest_list := List(obj_list, UnderlyingHonestObject);
honest_sum := DirectSum(honest_list);
return AsSerreQuotientCategoryBySpansObject(category,

honest_sum);
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local underlying_objects, honest_projection;
underlying_objects
:= List(product_object, UnderlyingHonestObject);

honest_projection := ProjectionInFactorOfDirectSum(
underlying_objects, component_number);

return AsSerreQuotientCategoryBySpansMorphism(category,
honest_projection);

end;

10. PRIMITIVE OPERATIONS 365

UniversalMorphismIntoDirectSum. Back to index.
function (diagram, morphism_list)

local generalized_list, arrow_list, reversedarrow_list,
new_arrow, new_reversed_arrow, object_list;
generalized_list
:= List(morphism_list, UnderlyingGeneralizedMorphism);

generalized_list := CommonRestriction(generalized_list);
new_reversed_arrow := ReversedArrow(generalized_list[1]);
arrow_list := List(generalized_list, Arrow);
new_arrow := UniversalMorphismIntoDirectSum(

List(diagram, UnderlyingHonestObject), arrow_list);
return SerreQuotientCategoryBySpansMorphism(category,

new_reversed_arrow, new_arrow);
end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.
function (object_product_list, injection_number, direct_sum_object

)
local underlying_objects, honest_injection;
underlying_objects
:= List(object_product_list, UnderlyingHonestObject);

honest_injection := InjectionOfCofactorOfDirectSum(
underlying_objects, injection_number);

return AsSerreQuotientCategoryBySpansMorphism(category,
honest_injection);

end;

UniversalMorphismFromDirectSum. Back to index.
function (diagram, morphism_list)

local generalized_list, arrow_list, reversedarrow_list,
new_arrow, new_reversed_arrow, object_list;
generalized_list
:= List(morphism_list, UnderlyingGeneralizedMorphism);

arrow_list := List(generalized_list, Arrow);
reversedarrow_list := List(generalized_list, ReversedArrow);
new_arrow := UniversalMorphismFromDirectSum(

List(arrow_list, Source), arrow_list);
new_reversed_arrow := DirectSumFunctorial(reversedarrow_list);
return SerreQuotientCategoryBySpansMorphism(category,

new_reversed_arrow, new_arrow);
end;

366 F. INSTALLED BASIC OPERATIONS

IsCongruentForMorphisms. Back to index.
function (morphism1, morphism2)

local underlying_general, new_general, sum_general,
sum_associated, sum_image;
underlying_general := UnderlyingGeneralizedMorphism(morphism2);
new_general := AdditiveInverse(underlying_general);
sum_general
:= AdditionForMorphisms(

UnderlyingGeneralizedMorphism(morphism1), new_general);
sum_associated := AssociatedMorphism(sum_general);
sum_image := ImageObject(sum_associated);
return membership_function(sum_image);

end;

IsEqualForObjects. Back to index.
function (obj1, obj2)

return IsEqualForObjects(UnderlyingHonestObject(obj1),
UnderlyingHonestObject(obj2));

end;

IsEqualForCacheForObjects. Back to index.
IsIdenticalObj

IsEqualForCacheForMorphisms. Back to index.
IsIdenticalObj

AdditionForMorphisms. Back to index.
function (morphism1, morphism2)

local underlying_generalized, common_restriction, new_arrow;
underlying_generalized := List([morphism1, morphism2],

UnderlyingGeneralizedMorphism);
common_restriction := CommonRestriction(underlying_generalized

);
new_arrow := Arrow(common_restriction[1])

+ Arrow(common_restriction[2]);
return SerreQuotientCategoryBySpansMorphism(category,

ReversedArrow(common_restriction[1]), new_arrow);
end;

11. PRIMITIVE OPERATIONS 367

AdditiveInverseForMorphisms. Back to index.
function (morphism)

local general;
general := UnderlyingGeneralizedMorphism(morphism);
return SerreQuotientCategoryBySpansMorphism(category,

ReversedArrow(general), - Arrow(general));
end;

IsZeroForObjects. Back to index.
function (obj)

return membership_function(UnderlyingHonestObject(obj));
end;

DualOnMorphismsWithGivenDuals. Back to index.
function (new_source, morphism, new_range)

local arrow, reversed_arrow, new_arrow, new_reversed_arrow;
arrow := Arrow(UnderlyingGeneralizedMorphism(morphism));
reversed_arrow
:= ReversedArrow(UnderlyingGeneralizedMorphism(morphism));

arrow := DualOnMorphisms(arrow);
reversed_arrow := DualOnMorphisms(reversed_arrow);
new_reversed_arrow := ProjectionInFactorOfFiberProduct(

[reversed_arrow, arrow], 2);
new_arrow := ProjectionInFactorOfFiberProduct(

[reversed_arrow, arrow], 1);
return SerreQuotientCategoryBySpansMorphism(category,

new_reversed_arrow, new_arrow);
end;

11. Primitive operations for Serre quotient by three arrows

IdentityMorphism. Back to index.
function (object)

return AsSerreQuotientCategoryByThreeArrowsMorphism(category,
IdentityMorphism(UnderlyingHonestObject(object)));

end;

KernelEmbedding. Back to index.
function (morphism)

local underlying_general, kernel_mor;
underlying_general := UnderlyingGeneralizedMorphism(morphism);

368 F. INSTALLED BASIC OPERATIONS

kernel_mor
:= KernelEmbedding(AssociatedMorphism(underlying_general));

kernel_mor
:= PreCompose(kernel_mor,

DomainOfGeneralizedMorphism(underlying_general));
return AsSerreQuotientCategoryByThreeArrowsMorphism(category,

kernel_mor);
end;

CokernelProjection. Back to index.
function (morphism)

local underlying_general, cokernel_mor;
underlying_general := UnderlyingGeneralizedMorphism(morphism);
cokernel_mor
:= CokernelProjection(AssociatedMorphism(underlying_general

));
cokernel_mor := PreCompose(Codomain(underlying_general),

cokernel_mor);
return AsSerreQuotientCategoryByThreeArrowsMorphism(category,

cokernel_mor);
end;

ZeroObject. Back to index.
function ()

local generalized_zero;
generalized_zero
:= ZeroObject(UnderlyingHonestCategory(category));

return AsSerreQuotientCategoryByThreeArrowsObject(category,
generalized_zero);

end;

LiftAlongMonomorphism. Back to index.
function (monomorphism, test_morphism)

local inverse_of_mono, composition;
inverse_of_mono
:= PseudoInverse(UnderlyingGeneralizedMorphism(monomorphism

));
composition
:= PreCompose(UnderlyingGeneralizedMorphism(test_morphism),

inverse_of_mono);
return SerreQuotientCategoryByThreeArrowsMorphism(category,

11. PRIMITIVE OPERATIONS 369

composition);
end;

ColiftAlongEpimorphism. Back to index.
function (epimorphism, test_morphism)

local inverse_of_epi, composition;
inverse_of_epi
:= PseudoInverse(UnderlyingGeneralizedMorphism(epimorphism)

);
composition
:= PreCompose(inverse_of_epi,

UnderlyingGeneralizedMorphism(test_morphism));
return SerreQuotientCategoryByThreeArrowsMorphism(category,

composition);
end;

PreCompose. Back to index.
function (morphism1, morphism2)

local composition;
composition
:= PreCompose(UnderlyingGeneralizedMorphism(morphism1),

UnderlyingGeneralizedMorphism(morphism2));
return SerreQuotientCategoryByThreeArrowsMorphism(category,

composition);
end;

ZeroMorphism. Back to index.
function (source, range)

local source_aid, range_aid, morphism_aid;
source := UnderlyingHonestObject(source);
range := UnderlyingHonestObject(range);
source_aid := IdentityMorphism(source);
range_aid := IdentityMorphism(range);
morphism_aid := ZeroMorphism(source, range);
return SerreQuotientCategoryByThreeArrowsMorphism(category,

source_aid, morphism_aid, range_aid);
end;

DirectSum. Back to index.
function (obj_list)

local honest_list, honest_sum;

370 F. INSTALLED BASIC OPERATIONS

honest_list := List(obj_list, UnderlyingGeneralizedObject);
honest_sum := CallFuncList(DirectSum, honest_list);
return AsSerreQuotientCategoryByThreeArrowsObject(category,

UnderlyingHonestObject(honest_sum));
end;

ProjectionInFactorOfDirectSumWithGivenDirectSum. Back to index.
function (product_object, component_number, direct_sum_object)

local underlying_objects, underlying_direct_sum,
honest_projection;
underlying_objects
:= List(product_object, UnderlyingHonestObject);

underlying_direct_sum
:= UnderlyingHonestObject(direct_sum_object);

honest_projection
:= ProjectionInFactorOfDirectSumWithGivenDirectSum(

underlying_objects, component_number, underlying_direct_sum);
return AsSerreQuotientCategoryByThreeArrowsMorphism(category,

honest_projection);
end;

UniversalMorphismIntoDirectSum. Back to index.
function (diagram, morphism_list)

local generalized_morphisms, source_aid, associated,
range_aid, associated_list;
generalized_morphisms
:= List(morphism_list, UnderlyingGeneralizedMorphism);

generalized_morphisms
:= CommonRestriction(generalized_morphisms);

generalized_morphisms := List(generalized_morphisms,
DomainAssociatedMorphismCodomainTriple);

source_aid := generalized_morphisms[1][1];
associated_list := List(generalized_morphisms, function (i)

return i[2];
end);

associated := UniversalMorphismIntoDirectSum(associated_list);
range_aid
:= DirectSumFunctorial(

List(generalized_morphisms, function (i)
return i[3];

end));
return SerreQuotientCategoryByThreeArrowsMorphism(category,

11. PRIMITIVE OPERATIONS 371

source_aid, associated, range_aid);
end;

InjectionOfCofactorOfDirectSumWithGivenDirectSum. Back to index.
function (object_product_list, injection_number, direct_sum_object

)
local underlying_objects, underlying_direct_sum,
honest_injection;
underlying_objects
:= List(object_product_list, UnderlyingHonestObject);

underlying_direct_sum
:= UnderlyingHonestObject(direct_sum_object);

honest_injection
:= AddInjectionOfCofactorOfDirectSumWithGivenDirectSum(

underlying_objects, injection_number, underlying_direct_sum);
return AsSerreQuotientCategoryByThreeArrowsMorphism(category,

honest_injection);
end;

UniversalMorphismFromDirectSum. Back to index.
function (diagram, morphism_list)

local generalized_morphisms, source_aid, associated, range_aid;
generalized_morphisms
:= List(morphism_list, UnderlyingGeneralizedMorphism);

generalized_morphisms
:= CommonCoastriction(generalized_morphisms);

generalized_morphisms := List(generalized_morphisms,
DomainAssociatedMorphismCodomainTriple);

range_aid := generalized_morphisms[1][3];
associated := UniversalMorphismFromDirectSum(

List(generalized_morphisms, function (i)
return i[2];

end));
source_aid
:= DirectSumFunctorial(

List(generalized_morphisms, function (i)
return i[1];

end));
return SerreQuotientCategoryByThreeArrowsMorphism(category,

source_aid, associated, range_aid);
end;

372 F. INSTALLED BASIC OPERATIONS

IsCongruentForMorphisms. Back to index.
function (morphism1, morphism2)

local underlying_general, new_morphism_aid, new_general,
sum_general, sum_associated, sum_image;
underlying_general := UnderlyingGeneralizedMorphism(morphism2);
new_morphism_aid
:= AdditiveInverse(Arrow(underlying_general));

new_general := GeneralizedMorphismByThreeArrows(
SourceAid(underlying_general), new_morphism_aid,
RangeAid(underlying_general));

sum_general
:= AdditionForMorphisms(

UnderlyingGeneralizedMorphism(morphism1), new_general);
sum_associated := AssociatedMorphism(sum_general);
sum_image := ImageObject(sum_associated);
return membership_function(sum_image);

end;

IsEqualForObjects. Back to index.
function (obj1, obj2)

return IsEqualForObjects(UnderlyingHonestObject(obj1),
UnderlyingHonestObject(obj2));

end;

IsZeroForMorphisms. Back to index.
function (morphism)

local associated, image;
associated
:= AssociatedMorphism(UnderlyingGeneralizedMorphism(morphism

));
image := ImageObject(associated);
return membership_function(image);

end;

AdditionForMorphisms. Back to index.
function (morphism1, morphism2)

local sum;
sum
:= AdditionForMorphisms(

UnderlyingGeneralizedMorphism(morphism1),
UnderlyingGeneralizedMorphism(morphism2));

11. PRIMITIVE OPERATIONS 373

return SerreQuotientCategoryByThreeArrowsMorphism(category,
sum);

end;

AdditiveInverseForMorphisms. Back to index.
function (morphism)

local underlying_general, new_morphism_aid, new_general;
underlying_general := UnderlyingGeneralizedMorphism(morphism);
new_morphism_aid
:= AdditiveInverse(Arrow(underlying_general));

new_general := GeneralizedMorphismByThreeArrows(
SourceAid(underlying_general), new_morphism_aid,
RangeAid(underlying_general));

return SerreQuotientCategoryByThreeArrowsMorphism(category,
new_general);

end;

IsZeroForObjects. Back to index.
function (obj)

return membership_function(UnderlyingHonestObject(obj));
end;

APPENDIX G

Application code

In this appendix the code for the algorithms used in Chapter VI is displayed.

1. Function ResolutionFunctor
function (source_category, kernel_hull_function, complex)

local functor, object_function, morphism_function,
recursion_function, constructor, category_constructor;
if complex then

constructor := AsComplex;
category_constructor := ComplexCategory;

else
constructor := AsCocomplex;
category_constructor := CocomplexCategory;

fi;
functor
:= CapFunctor(Concatenation("ResolutionFunctor for ",

Name(source_category)), source_category,
category_constructor(source_category));

recursion_function := function (morphism)
local kernel_emb, kernel, cover;
kernel_emb := KernelEmbedding(morphism);
kernel := Source(kernel_emb);
cover := kernel_hull_function(kernel);
return PreCompose(cover, kernel_emb);

end;
object_function := function (object)

local initial_morphism, z_functor;
initial_morphism := kernel_hull_function(object);
z_functor
:= ZFunctorObjectByInitialMorphismAndRecursiveFunction(

initial_morphism, recursion_function, 0);
return constructor(z_functor);

end;
AddObjectFunction(functor, object_function);

375

376 G. APPLICATION CODE

return functor;
end;

2. Function ResolutionFunctorToComplex

function (cat, func)
return ResolutionFunctor(cat, func, true);

end;

3. Function ResolutionFunctorToCocomplex

function (cat, func)
return ResolutionFunctor(cat, func, false);

end;

4. Function FreeResolutionComplex

function (module)
return ResolutionTo(module, CoverByProjective, true);

end;

5. Function FreeResolutionCocomplex

function (module)
return ResolutionTo(module, CoverByProjective, false);

end;

6. Function ResolutionTo
function (object, kernel_hull_function, as_complex)

local z_functor, complex, object_function, morphism_function,
complex_constructor, connection_morphism;
z_functor := ZFunctorObject(ReturnTrue, ReturnTrue,

CapCategory(object));
if as_complex = true then

complex_constructor := AsComplex;
else

complex_constructor := AsCocomplex;
fi;
complex := complex_constructor(z_functor);
connection_morphism := kernel_hull_function(object);
object_function := function (i)

return Source(Differential(z_functor, i));

7. FUNCTION CAP INTERNAL HORSE SHOE HELPER 377

end;
morphism_function := function (i)

local kernel;
if i = 0 then

return UniversalMorphismIntoZeroObject(
Source(connection_morphism));

elif i = -1 then
kernel := KernelEmbedding(connection_morphism);
return
PreCompose(kernel_hull_function(Source(kernel))

, kernel);
elif i < -1 then

kernel
:= KernelEmbedding(Differential(z_functor, i + 1)

);
return
PreCompose(kernel_hull_function(Source(kernel))

, kernel);
else

return
IdentityMorphism(ZeroObject(CapCategory(object)

));
fi;
return;

end;
z_functor!.object_func := object_function;
z_functor!.differential_func := morphism_function;
return [complex, connection_morphism];

end;

7. Function CAP INTERNAL HORSE SHOE HELPER
function (left_diff_i, right_diff_i, eps_prime, eps, eps_2prime,

pi, iota)
local ker_eps_prime, ker_eps, ker_eps_2prime,
eps_prime_1_to_ker, eps_2prime_1_to_ker, iota0, pi0,
ker_eps_prime_to_eps, ker_eps_to_eps_2prime, first_morphism,
second_morphism, sum_morphism, differential_morphism,
range_left_diff, range_right_diff;
ker_eps_prime := KernelEmbedding(eps_prime);
ker_eps := KernelEmbedding(eps);
ker_eps_2prime := KernelEmbedding(eps_2prime);
eps_prime_1_to_ker := KernelLift(eps_prime, left_diff_i);

378 G. APPLICATION CODE

eps_2prime_1_to_ker := KernelLift(eps_2prime, right_diff_i);
range_left_diff := Range(left_diff_i);
range_right_diff := Range(right_diff_i);
iota0 := InjectionOfCofactorOfDirectSum(

[range_left_diff, range_right_diff], 1);
pi0 := ProjectionInFactorOfDirectSum(

[range_left_diff, range_right_diff], 2);
ker_eps_prime_to_eps
:= KernelLift(eps, PreCompose(ker_eps_prime, iota0));

ker_eps_to_eps_2prime
:= KernelLift(eps_2prime, PreCompose(ker_eps, pi0));

first_morphism := PreCompose(eps_prime_1_to_ker,
ker_eps_prime_to_eps);

second_morphism
:= Lift(eps_2prime_1_to_ker, ker_eps_to_eps_2prime);

sum_morphism := UniversalMorphismFromDirectSum(
[first_morphism, second_morphism]);

differential_morphism := PreCompose(sum_morphism, ker_eps);
return differential_morphism;

end;

8. Function HorseShoeLemma
function (left_complex, right_complex, eps_prime, iota, pi,

eps_2prime)
local middle_z_functor, middle_complex,
kernel_resolution_morphism, cokernel_resolution_morphism,
object_function, helper_function, morphism_function;
middle_z_functor := ZFunctorObject(ReturnTrue, ReturnTrue,

CapCategory(eps_prime));
middle_complex := AsCocomplex(middle_z_functor);
kernel_resolution_morphism := function (i)

return InjectionOfCofactorOfDirectSum(
[left_complex[i], right_complex[i]], 1);

end;
cokernel_resolution_morphism := function (i)

return
ProjectionInFactorOfDirectSum(

[left_complex[i], right_complex[i]], 2);
end;

kernel_resolution_morphism
:= CochainMap(left_complex, kernel_resolution_morphism,

middle_complex);

8. FUNCTION HORSESHOELEMMA 379

cokernel_resolution_morphism
:= CochainMap(middle_complex, cokernel_resolution_morphism,

right_complex);
object_function := function (i)

return DirectSum([left_complex[i], right_complex[i]]);
end;

morphism_function := function (i)
local eps;
if i > 0 then

return
IdentityMorphism(

ZeroObject(CapCategory(eps_prime)));
fi;
if i = 0 then

return UniversalMorphismIntoZeroObject(
middle_complex[0]);

fi;
if i = -1 then

eps := Lift(eps_2prime, pi);
eps := UniversalMorphismFromDirectSum(

[PreCompose(eps_prime, iota), eps]);
return CAP_INTERNAL_HORSE_SHOE_HELPER(

Differential(left_complex, -1),
Differential(right_complex, -1), eps_prime, eps,
eps_2prime, pi, iota);

else
return CAP_INTERNAL_HORSE_SHOE_HELPER(

Differential(left_complex, i),
Differential(right_complex, i),
Differential(left_complex, i + 1),
Differential(middle_complex, i + 1),
Differential(right_complex, i + 1),
kernel_resolution_morphism[i + 1],
cokernel_resolution_morphism[i + 1]);

fi;
return;

end;
middle_z_functor!.object_func := object_function;
middle_z_functor!.differential_func := morphism_function;
return
[middle_complex, kernel_resolution_morphism,

380 G. APPLICATION CODE

cokernel_resolution_morphism];
end;

9. Function CartanEilenbergResolution

function (complex, projective_resolution_function)
local object_function, morphism_function, bicomplex,
helper_function, bicomplex_z_func;
bicomplex_z_func := ZFunctorObject(ReturnTrue, ReturnTrue,

CapCategory(complex));
bicomplex := AsCocomplex(bicomplex_z_func);
helper_function := function (i)

local delta_im1, delta_i, first_morphism,
second_morphism, first_complex, second_complex,
horse_shoe, third_morphism, fourth_morphism,
third_complex, second_horse_shoe, eps;
delta_im1 := Differential(complex, i - 1);
delta_i := Differential(complex, i);
first_morphism
:= KernelLift(delta_i, ImageEmbedding(delta_im1));

second_morphism := CokernelProjection(first_morphism);
first_complex := projective_resolution_function(

Source(first_morphism));
second_complex := projective_resolution_function(

Range(second_morphism));
horse_shoe := HorseShoeLemma(first_complex[1],

second_complex[1], first_complex[2], first_morphism,
second_morphism, second_complex[2]);

third_morphism := KernelEmbedding(delta_i);
fourth_morphism := CoastrictionToImage(delta_i);
eps := Lift(second_complex[2], second_morphism);
eps := UniversalMorphismFromDirectSum(

[PreCompose(first_complex[2], first_morphism), eps
]);

third_complex := projective_resolution_function(
Range(fourth_morphism));

second_horse_shoe := HorseShoeLemma(horse_shoe[1],
third_complex[1], eps, third_morphism,
fourth_morphism, third_complex[2]);

return [horse_shoe, second_horse_shoe];
end;

object_function := function (i)
local those_boots, return_complex, old_diff_func,

10. FUNCTION DUALONCOMPLEX 381

underlying_cell;
those_boots := helper_function(i);
return_complex := those_boots[2][1];
if i mod 2 = 1 then

underlying_cell
:= UnderlyingZFunctorCell(return_complex);

old_diff_func := underlying_cell!.differential_func;
underlying_cell!.differential_func := function (i)

return - old_diff_func(i);
end;

fi;
return return_complex;

end;
morphism_function := function (i)

local those_boots1, those_boots2;
those_boots1 := helper_function(i);
those_boots2 := helper_function(i + 1);
return PreCompose(those_boots1[2][3],

PreCompose(those_boots2[1][2], those_boots2[2][2]));
end;

bicomplex_z_func!.object_func := object_function;
bicomplex_z_func!.differential_func := morphism_function;
return bicomplex;

end;

10. Function DualOnComplex

function (complex)
local object_func, morphism_func;
object_func := function (i)

return DualOnObjects(complex[i]);
end;

morphism_func := function (i)
return DualOnMorphisms(Differential(complex, i + 1));

end;
return
AsCocomplex(ZFunctorObject(object_func, morphism_func,

UnderlyingCategory(CapCategory(complex))));
end;

382 G. APPLICATION CODE

11. Function DualOnCocomplex

function (cocomplex)
local object_func, morphism_func, id_of_object;
object_func := function (i)

return DualOnObjects(cocomplex[- i]);
end;

morphism_func := function (i)
return
DualOnMorphisms(Differential(cocomplex, - i - 1));

end;
return
AsComplex(ZFunctorObject(object_func, morphism_func,

UnderlyingCategory(CapCategory(cocomplex))));
end;

12. Function DualOnCochainMap

function (cochain_map, new_source, new_range)
local id_of_object, morphism_func;
morphism_func := function (i)

return DualOnMorphisms(cochain_map[i]);
end;

return ChainMap(new_source, morphism_func, new_range);
end;

13. Function DualOnCocomplexCocomplex

function (cocomplex)
local object_func, morphism_func, id_of_object, new_complex,
new_z_functor;
new_z_functor := ZFunctorObject(ReturnTrue, ReturnTrue,

ComplexCategory(
UnderlyingCategory(

UnderlyingCategory(CapCategory(cocomplex)))));
new_complex := AsComplex(new_z_functor);
object_func := function (i)

return DualOnCocomplex(cocomplex[- i]);
end;

new_z_functor!.object_func := object_func;
morphism_func := function (i)

return
DualOnCochainMap(Differential(cocomplex, - i - 1),

14. FUNCTION TRANSPOSECOMPLEXOFCOMPLEX 383

new_complex[i], new_complex[i - 1]);
end;

new_z_functor!.differential_func := morphism_func;
return new_complex;

end;

14. Function TransposeComplexOfComplex

function (complex)
local new_total_complex, new_z_functor, object_func,
morphism_func;
new_z_functor := ZFunctorObject(ReturnTrue, ReturnTrue,

UnderlyingCategory(CapCategory(complex)));
new_total_complex := AsComplex(new_z_functor);
object_func := function (i)

local object_func, morphism_func;
object_func := function (j)

return complex[- j][- i];
end;

morphism_func := function (j)
return Differential(complex, - j)[- i];

end;
return
AsComplex(ZFunctorObject(object_func, morphism_func,

UnderlyingCategory(
UnderlyingCategory(CapCategory(complex)))));

end;
morphism_func := function (i)

local morphism_func;
morphism_func := function (j)

return Differential(complex[j], - i);
end;

return ChainMap(new_total_complex[- i], morphism_func,
new_total_complex[- i + 1]);

end;
new_z_functor!.object_func := object_func;
new_z_functor!.differential_func := morphism_func;
return new_total_complex;

end;

384 G. APPLICATION CODE

15. Function ResolutionLength

function (complex)
local i;
i := 0;
while not IsZero(complex[i]) do

i := i + 1;
od;
return i;

end;

16. Function TotalComplexOfBicomplex

function (bicomplex, length)
local object_function, morphism_function, z_functor_object,
new_complex;
z_functor_object := ZFunctorObject(ReturnTrue, ReturnTrue,

UnderlyingCategory(
UnderlyingCategory(CapCategory(bicomplex))));

new_complex := AsComplex(z_functor_object);
morphism_function := function (i)

local source_summands, range_summands, nr_range_summands
, nr_source_summands, source_projections,

range_injections, horizontal_morphisms, vertical_morphisms
, end_horizontal, end_vertical;

i := - i;
nr_source_summands := length - i + 1;
nr_range_summands := length - i + 1 + 1;
source_summands
:= List([0 .. length - i], function (j)

return bicomplex[j + i][- j];
end);

range_summands := List([0 .. length - i + 1],
function (j)

return bicomplex[j + i - 1][- j];
end);

source_projections := List([1 .. nr_source_summands],
function (j)

return
ProjectionInFactorOfDirectSum(source_summands,

j);
end);

range_injections := List([1 .. nr_range_summands],

16. FUNCTION TOTALCOMPLEXOFBICOMPLEX 385

function (j)
return InjectionOfCofactorOfDirectSum(

range_summands, j);
end);

horizontal_morphisms
:= List([0 .. length - i], function (j)

return Differential(bicomplex, j + i)[- j];
end);

vertical_morphisms
:= List([0 .. length - i], function (j)

return Differential(bicomplex[j + i], - j);
end);

horizontal_morphisms
:= List([1 .. Length(horizontal_morphisms)],

function (j)
return PreCompose(source_projections[j],

horizontal_morphisms[j]);
end);

vertical_morphisms
:= List([1 .. Length(vertical_morphisms)],

function (j)
return PreCompose(source_projections[j],

vertical_morphisms[j]);
end);

horizontal_morphisms
:= List([1 .. Length(horizontal_morphisms)],

function (j)
return PreCompose(horizontal_morphisms[j],

range_injections[j]);
end);

vertical_morphisms
:= List([1 .. Length(vertical_morphisms)],

function (j)
return PreCompose(vertical_morphisms[j],

range_injections[j + 1]);
end);

end_horizontal := Sum(horizontal_morphisms);
end_vertical := Sum(vertical_morphisms);
return end_horizontal + end_vertical;

end;
object_function := function (i)

i := - i;

386 G. APPLICATION CODE

return
DirectSum(List([0 .. length - i], function (j)

return bicomplex[j + i][- j];
end));

end;
z_functor_object!.differential_func := morphism_function;
z_functor_object!.object_func := object_function;
return new_complex;

end;

17. Function EmbeddingInObjectOfTotalComplex

function (bicomplex, length, position, embedding_number)
local object_list;
object_list := List([0 .. length - position], function (j)

return bicomplex[j + position][- j];
end);

return InjectionOfCofactorOfDirectSum(object_list,
embedding_number);

end;

18. Function
ConnectingMorphismFromCocomplexToCartanEilenbergResolution

function (cocomplex, position, projective_resolution_function)
local delta_im1, delta_i, first_morphism, second_morphism,
first_complex, second_complex, third_morphism, third_complex,
fourth_morphism, eps, eps2;
delta_im1 := Differential(cocomplex, position - 1);
delta_i := Differential(cocomplex, position);
first_morphism
:= KernelLift(delta_i, ImageEmbedding(delta_im1));

second_morphism := CokernelProjection(first_morphism);
first_complex := projective_resolution_function(

Source(first_morphism));
second_complex := projective_resolution_function(

Range(second_morphism));
third_morphism := KernelEmbedding(delta_i);
fourth_morphism := CoastrictionToImage(delta_i);
eps := Lift(second_complex[2], second_morphism);
eps := UniversalMorphismFromDirectSum(

[PreCompose(first_complex[2], first_morphism), eps]);
third_complex := projective_resolution_function(

21. FUNCTION GENERALIZEDEMBEDDINGOFSPECTRALSEQUENCEENTRY 387

Range(fourth_morphism));
eps2 := Lift(third_complex[2], fourth_morphism);
eps2 := UniversalMorphismFromDirectSum(

[PreCompose(eps, third_morphism), eps2]);
return eps2;

end;

19. Function GeneralizedEmbeddingOfHomology

function (complex, i)
local differential_i, differential_ip1, image_embedding,
kernel_lift, map_to_homology, kernel_emb;
differential_i := Differential(complex, i);
differential_ip1 := Differential(complex, i + 1);
image_embedding := ImageEmbedding(differential_ip1);
kernel_lift := KernelLift(differential_i, image_embedding);
map_to_homology := CokernelProjection(kernel_lift);
kernel_emb := KernelEmbedding(differential_i);
return GeneralizedMorphismWithSourceAid(map_to_homology,

kernel_emb);
end;

20. Function GeneralizedMorphismBetweenHomologies

function (source_complex, range_complex, connecting_morphism, i)
local source_embedding, range_embedding, generalized_connection;
source_embedding := GeneralizedEmbeddingOfHomology(

source_complex, i);
range_embedding := GeneralizedEmbeddingOfHomology(

range_complex, i);
generalized_connection
:= AsGeneralizedMorphism(connecting_morphism);

return
PreCompose(

PreCompose(source_embedding, generalized_connection),
PseudoInverse(range_embedding));

end;

21. Function GeneralizedEmbeddingOfSpectralSequenceEntry

function (trhomCE, diag_number, page, homCE, homres,
connection_mor)
local homhomres, resolution_len, tot, connection_at_0,

388 G. APPLICATION CODE

connection_at_1, homcon_at_0, homcon_at_1, emb0, emb1,
homcon_at_0_in_tot, homcon_at_1_in_tot, homology_iso,
M_as_homology, M_to_M_as_homology, M_to_hom_of_tot, entry,
homology_proj_of_tot, emb01;
homhomres := DualOnCocomplex(homres);
resolution_len := ResolutionLength(homhomres);
tot := TotalComplexOfBicomplex(homCE, resolution_len);
connection_at_0
:= ConnectingMorphismFromCocomplexToCartanEilenbergResolution(

homres, 0, FreeResolutionCocomplex);
connection_at_1
:= ConnectingMorphismFromCocomplexToCartanEilenbergResolution(

homres, 1, FreeResolutionCocomplex);
homcon_at_0 := DualOnMorphisms(connection_at_0);
homcon_at_1 := DualOnMorphisms(connection_at_1);
emb0 := EmbeddingInObjectOfTotalComplex(homCE, resolution_len,

0, 1);
emb1 := EmbeddingInObjectOfTotalComplex(homCE, resolution_len,

1, 1);
homcon_at_0_in_tot := PreCompose(homcon_at_0, emb0);
homcon_at_1_in_tot := PreCompose(homcon_at_1, emb1);
homology_iso := GeneralizedMorphismBetweenHomologies(

homhomres, tot, homcon_at_0_in_tot, 0);
homology_iso := HonestRepresentative(homology_iso);
M_as_homology
:= HonestRepresentative(

PseudoInverse(GeneralizedEmbeddingOfHomology(homhomres, 0
)));

M_to_M_as_homology := ColiftAlongEpimorphism(connection_mor,
M_as_homology);

M_to_hom_of_tot := PreCompose(M_to_M_as_homology, homology_iso
);

entry := SpectralSequenceEntry(trhomCE, page, - diag_number,
diag_number);

homology_proj_of_tot
:= PseudoInverse(GeneralizedEmbeddingOfHomology(tot, 0));

emb01 := EmbeddingInObjectOfTotalComplex(homCE,
resolution_len, 0, diag_number + 1);

return
PreCompose(

PreCompose(
PreCompose(entry, AsGeneralizedMorphism(emb01)),

22. FUNCTION PURITYFILTRATIONBYSPECTRALSEQUENCE 389

homology_proj_of_tot),
AsGeneralizedMorphism(Inverse(M_to_hom_of_tot)));

end;

22. Function PurityFiltrationBySpectralSequence

function (trhomCE, page, homCE, homres, connection_mor)
local homhomres, resolution_len, embedding_list,
combined_image_embeddings, pi_list, functors, i, mp, nu,
mp_mat, eta_0, iota_i, eta, kappa, rho, iso, iso_inv;
homhomres := DualOnCocomplex(homres);
resolution_len := ResolutionLength(homhomres);
embedding_list := List([0 .. resolution_len], function (i)

return GeneralizedEmbeddingOfSpectralSequenceEntry(
trhomCE, i, page, homCE, homres, connection_mor);

end);
for i in Reversed([1 .. Length(embedding_list)]) do

if
IsZero(

UnderlyingHonestObject(Source(embedding_list[i])))
then
Remove(embedding_list, i);

fi;
od;
embedding_list := Reversed(embedding_list);
combined_image_embeddings
:= List(embedding_list, CombinedImageEmbedding);

functors := ValueOption("Functors");
if functors <> fail then

for i in functors do
combined_image_embeddings
:= List(combined_image_embeddings, function (j)

return
PreCompose(

Inverse(
ApplyNaturalTransformation(i, Source(j)

)), j);
end);

od;
fi;
pi_list := List([2 .. Length(embedding_list)],

function (i)
return

390 G. APPLICATION CODE

PreCompose(
AsGeneralizedMorphism(combined_image_embeddings[i])
, PseudoInverse(embedding_list[i]));

end);
pi_list := List(pi_list, HonestRepresentative);
if functors <> fail then

for i in functors do
pi_list := List(pi_list, function (j)

return
PreCompose(j,

ApplyNaturalTransformation(i, Range(j)));
end);

od;
fi;
for i in [2 .. Length(combined_image_embeddings)] do

nu := CoverByProjectiveWithLift(pi_list[i - 1]);
eta_0 := nu[2];
nu := nu[1];
mp_mat := KernelEmbedding(nu);
iota_i
:= LiftAlongMonomorphism(combined_image_embeddings[i],

combined_image_embeddings[i - 1]);
eta := Lift(PreCompose(mp_mat, eta_0), iota_i);
kappa := UniversalMorphismIntoDirectSum(mp_mat, eta);
rho := UniversalMorphismFromDirectSum(- eta_0, iota_i);
iso := CokernelColift(kappa, rho);
combined_image_embeddings[i]
:= PreCompose(iso, combined_image_embeddings[i]);

od;
return
combined_image_embeddings[Length(combined_image_embeddings)];

end;

Index

(locally small) category, 15
(locally small) category (with Hom-setoids), 16
Cartan-Eilenberg resolution, 135

abelian, 30
additive inverse, 22
arrow, 51, 55, 56
arrow of cospan, 50
arrow of span, 54
augmentation map, 130

bidualizing resolution, 141
bidualizing spectral sequence, 144
biproducts, 25
bounded, 143

cache, 166
categorical programming, 159
category of generalized morphisms by cospans,

51
category of generalized morphisms by spans, 54
category with computable composition, 19
category with computable identity morphism, 19
chain complex, 129
chain map, 130
character, 99
character function, 106
character lattice, 99
class group, 102
classical category, 16
coastriction, 32
cochain complex, 129
codimension, 139
codominates, 31
cohomological projective resolution, 130
cokernel, 27
cokernel colift, 27
combined image, 146
combined image embedding, 146

common coarsening, 91, 94
common restriction, 81, 94
compatible locally free lift, 153
computable, 13
computable abelian, 30
computable additive, 25
computable category, 19
computable cokernels, 28
computable coproducts, 24
computable direct sums, 25
computable enough projectives, 127
computable fiber products, 48
computable function, 15
computable isomorphisms between products and

coproducts, 25
computable kernels, 27
computable preabelian, 28
computable preadditive, 22
computable products, 24
computable pushouts, 49
computable ring, 37
computable zero objects, 24
cone, 100
congruence of morphisms, 16
connecting chain map, 135
converges, 143
conversion functor from 3-arrows to cospans, 65
conversion functor from 3-arrows to spans, 66
conversion functor from cospans to 3-arrows, 64
conversion functor from cospans to spans, 63
conversion functor from spans to 3-arrows, 64
conversion functor from spans to cospans, 63
coproduct injections, 23
coproduct object, 23
coproduct universal morphism, 23
corresponding honest 3-arrow, 63
corresponding honest cospans, 53
corresponding honest span, 56

393

394 INDEX

cospan, 50
Cox ring, 102
crisp caches, 166

decidable epimorphisms, 21
decidable equivalence relation, 14
decidable isomorphisms, 21
decidable monomorphisms, 21
decidable property, 20
decidable set, 13
decidable zero object, 26
degree group, 33
degree of morphism, 34
direct sums, 25
dominates, 31
dual cone, 100
dual morphism, 140
dual object, 140
dual of bicomplex, 141
dual of complex, 141

enough injectives, 127
enough projectives, 127
enriched over a commutative regular semigroup,

67
epimorphism, 21
equivalent categories, 17
exact complex, 129, 130
Ext-Functor, 138

face, 100
factor object, 31
fan, 100
fiber product, 47
filtered, 132
filtered morphism, 132
filtered presentation, 145
free module, 128
functionally defined chain complex, 162
functor, 16

Gabriel morphism, 77
generalized morphism by 3-arrows, 56
generator degrees, 35
grade, 139
grade filtration, 140
graded module, 34
graded morphism, 34
graded part, 132
graded ring, 33
grading function, 106

group of torus invariant Weil divisors, 102

Hom-Functor, 138
homogeneous, 33
homological bicomplex, 134
homological injective resolution, 130
homological projective resolution, 130
homological spectral sequence, 142
homology, 129
honest, 53, 56, 62
honest representative, 53, 56, 62

identity morphism, 15
image, 31
injective, 127
internal Ext-Functor, 139
internal Hom, 139
internal Hom-Functor, 138
invalid weak pointer, 166
irrelevant ideal, 103
isomorphisms, 21

kernel, 27
kernel lift, 27

lattice of one-parametric subgroups, 100
locally free, 152

method derivation graph, 172
monomial cone, 107
monomorphism, 21
morphism of graded modules, 34

normalized, 57
normalized cospan, 50
normalized span, 54
number of generators, 35

one-parametric subgroup, 99

page, 142
pointed, 100
pointer, 166
preabelian, 27
preadditive, 22
product object, 23
product projections, 23
product universal morphism, 23
projective, 127
pseudo-inverse, 70
pullback, 47
purity filtration, 140

INDEX 395

pushout, 48

quotient object, 31

range aid, 56
rational polyhedral cone, 100
ray, 100
ray generator, 100
ray generators, 100
realization, 14
realization map, 14
realization of category, 18
realization of field, 38
realization of graded ring, 37
realization of group, 37
realization of ring, 36
realized category, 18
reduction of category, 17
relation matrix, 35
restriction, 32
restriction-coastriction, 32
reversed arrow, 51, 55
reversed arrow of cospan, 50
reversed arrow of span, 54
right derived functor, 138
row dominates, 34

saturated affine semigroup, 107
Serre morphism category, 79
Serre quotient category, 76
setoid interpretation, 16
source aid, 56
span, 53
spectral sequence of bicomplex, 144
subcategory of Gabriel morphisms, 79
subfactor embedding, 132
subfactor projection, 132
subobject, 31
sum of two morphisms, 22

thick subcategory, 76
ToDoList, 175
ToDoList entry, 174
toric variety, 99
toric variety of fan, 101
torus invariant Weil divisor., 102
total complex, 134
transposed bicomplex, 135

undecidable, 19

valid weak pointer, 166

weak caches, 166
weak pointers, 166

zero morphism, 22
zero object, 23, 26
zeroid, 79

	Title page
	Preface
	Summary
	Zusammenfassung
	Contents
	Chapter I. Introduction
	Chapter II. Computability of categories
	1. Computable functions and decidable sets
	2. Categories with Hom-setoids
	3. Categories with Hom-setoids vs. classical categories
	4. Computable categories
	5. Decidable properties
	6. Preadditive categories
	7. Additive categories
	8. Preabelian categories
	9. Abelian categories
	10. Categorical notions

	Chapter III. Implementation of graded modules
	1. The category of graded module presentations
	2. Computability of graded module presentations

	Chapter IV. Generalized morphisms and Serre quotients
	1. The category of generalized morphisms
	2. Structure of the category of generalized morphisms
	3. Generalized and pseudo-inverse
	4. Serre quotients
	5. Computability of Serre quotients

	Chapter V. The category of coherent sheaves over a toric variety
	1. Preliminaries from toric geometry
	2. Equivalence of Serre quotient and coherent sheaves
	3. Deciding membership of the kernel of the sheafification functor

	Chapter VI. Application
	1. Preliminaries
	2. Bicomplexes
	3. Internal Hom and Ext
	4. Grade filtration
	5. Spectral sequences
	6. Filtered presentation
	7. Coherent sheaves

	Chapter VII. Implementation of computable categories
	1. The concept of categorical programming
	2. Main design goal and feature
	3. Error messages for categorical operations
	4. Undecidable realizations
	5. Ensuring compatibility: WithGiven operations
	6. Caching
	7. Primitive and derived categorical operations
	8. Logic Propagation: ToDoLists

	Bibliography
	Appendix A. Programming in Cap
	1. An overview of installing categories
	2. The category object
	3. Functors and natural transformations: The category of categories
	4. Special categories implemented in Cap

	Appendix B. Logical theorems in Cap
	1. Logic for all categories
	2. Logic for preadditive categories
	3. Logic for additive categories
	4. Logic for abelian categories

	Appendix C. All method names
	Appendix D. Derivations
	Appendix E. Final Derivations
	Appendix F. Installed basic operations
	1. Primitive operation index
	2. Primitive operations for left module presentations
	3. Primitive operations for right module presentations
	4. Primitive operations for graded left module presentations
	5. Primitive operations for graded right module presentations
	6. Primitive operations for generalized morphisms by cospans
	7. Primitive operations for generalized morphisms by spans
	8. Primitive operations for generalized morphisms by three arrows
	9. Primitive operations for Serre quotient by cospans
	10. Primitive operations for Serre quotient by spans
	11. Primitive operations for Serre quotient by three arrows

	Appendix G. Application code
	1. Function ResolutionFunctor
	2. Function ResolutionFunctorToComplex
	3. Function ResolutionFunctorToCocomplex
	4. Function FreeResolutionComplex
	5. Function FreeResolutionCocomplex
	6. Function ResolutionTo
	7. Function CAP INTERNAL HORSE SHOE HELPER
	8. Function HorseShoeLemma
	9. Function CartanEilenbergResolution
	10. Function DualOnComplex
	11. Function DualOnCocomplex
	12. Function DualOnCochainMap
	13. Function DualOnCocomplexCocomplex
	14. Function TransposeComplexOfComplex
	15. Function ResolutionLength
	16. Function TotalComplexOfBicomplex
	17. Function EmbeddingInObjectOfTotalComplex
	18. Function ConnectingMorphismFromCocomplexToCartanEilenbergResolution
	19. Function GeneralizedEmbeddingOfHomology
	20. Function GeneralizedMorphismBetweenHomologies
	21. Function GeneralizedEmbeddingOfSpectralSequenceEntry
	22. Function PurityFiltrationBySpectralSequence

	Index

