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Abstract
At the heart of the curious phenomenon of quantum entanglement lies the relation
between the whole and its parts. In my thesis, I explore different aspects of this theme
in the multipartite setting by drawing connections to concepts from statistics, graph
theory, and quantum error-correcting codes: first, I address the case when joint
quantum states are determined by their few-body parts and by Jaynes’ maximum
entropy principle. This can be seen as an extension of the notion of entanglement,
with less complex states already being determined by their few-body marginals.
Second, I address the conditions for certain highly entangled multipartite states
to exist. In particular, I present the solution of a long-standing open problem
concerning the existence of an absolutely maximally entangled state on seven qubits.
This sheds light on the algebraic properties of pure quantum states, and on the
conditions that constrain the sharing of entanglement amongst multiple particles.
Third, I investigate Ulam’s graph reconstruction problems in the quantum setting,
and obtain legitimacy conditions of a set of states to be the reductions of a joint
graph state. Lastly, I apply and extend the weight enumerator machinery from
quantum error correction to investigate the existence of codes and highly entangled
states in higher dimensions. This clarifies the physical interpretation of the weight
enumerators and of the quantum MacWilliams identity, leading to novel applications
in multipartite entanglement.



Zusammenfassung
Für das Phänomen der Quantenverschränkung sind die Beziehungen zwischen
dem Ganzen und dessen Teilen zentral. In dieser Dissertation untersuche ich ver-
schiede Aspekte dieser Thematik im Hinblick auf Mehrteilchen-Systeme, und ziehe
Verbindungen zu Konzepten der Statistik, der Graphentheorie, und der Quanten-
fehlerkorrektur. Als Erstes untersuche ich die Bedingungen, unter denen Quan-
tenzustände durch ihre Reduktionen auf kleine Subsysteme zusammen mit der
Anwendung von Jaynes’ Maximum-Entropie-Methode bestimmt sind. Dies kann als
eine Ausweitung des Verschränkungsbegriffes gesehen werden, wobei ein weniger
komplexer Zustand bereits durch seine Subsysteme kleiner Größe festgelegt ist.
Zweitens erörtere ich notwendige Bedingungen an die Existenz von gewissen hoch
verschränkten Zuständen. Insbesondere präsentiere ich die Lösung einer langjähri-
gen bisher noch ungelösten Frage zur Existenz eines absolut maximal verschränkten
Zustandes, welcher aus sieben Quantenbits besteht. Dies wirft neues Licht auf die al-
gebraischen Eigenschaften von reinen Quantenzuständen und auf die Restriktionen,
welche das Teilen von Verschränkung unter mehreren Parteien limitieren. Drittens
untersuche ich gewisse Fragestellungen für Quantenzustände, welche dem Rekon-
struktionproblem von Ulam in der Graphentheorie ähneln. Dies führt zu neuen
Bedingungen, damit eine Sammlung von Marginalien einem gemeinsamen Zustand
entstammt. Zuletzt wende ich die Theorie der Gewichtszähler aus der Quanten-
fehlerkorrektur auf Fragen der Existenz von hoch verschränkten höher-dimensionale
Zuständen und von fehlerkorrigierenden Codes an. Dies klärt die physikalische
Interpretation der Gewichtszähler und der quantum MacWilliams identität, und
führt zu neuartigen Anwendungen in der Theorie der Mehrteilchen-Verschränkung.
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Preface

Quantum mechanical states exhibit the two peculiar and closely related phenomena
of superposition and entanglement. Exploring the ramifications of these phenomena
has been a major scientific challenge during the last century. In particular, the
discovered applications of quantum mechanics to information theory have spawned
a whole new field of physics that is now known as quantum information theory.
It includes all aspects of information processing and computation by means of
quantum states, and led to algorithms in the quantum domain which are widely
thought to outperform their classical counterparts.

Entanglement was recognized early to be one of the key resources for quantum
information processing and computation tasks. Loosely speaking, entanglement is
present when the ’best possible knowledge of a whole does not necessarily include
the best possible knowledge of all of its parts, even though they may be entirely
separated and therefore virtually capable of being “best possibly known”’[1]. Thus
the individual parts of a quantum system cannot be described independently from
each other, making a joint description of all involved particles necessary.

However, the characterization of entanglement and of its related notions such
as steering and non-locality has turned out to be a far more difficult endeavor than
one could have initially anticipated. In particular, there cannot exist any simple
means to determine whether any given state is entangled or not [2, 3]. While the
understanding of entanglement occurring between two particles has seen strong ad-
vances, the deeper investigation of entanglement between multiple parties is a rather
recent undertaking. In particular, it has been recognized that entanglement cannot
be shared arbitrarily amongst all particles, but that its distribution is constrained in
various ways.

This thesis explores aspects of multipartite entanglement by drawing connections
to concepts from statistics, graph theory, and the theory of quantum error-correcting
codes. First, I address the case when quantum states are already determined by their
few-body marginals and by Jaynes’ maximum entropy principle [A]. This can be seen
as an extension of the notion of entanglement, with less complex states being already
determined by their few-body marginals. Our methods permit to detect states that
cannot be obtained as thermal or ground states of few-body Hamiltonians. This
furthermore answers questions about which states are unlikely to appear in naturally
occurring equilibrium systems. Together with my co-authors, I subsequently treated
questions concerning the quantum marginal problem of four-partite systems [B],
and provided methods for pure qubit states to be reconstructed from their even-
or odd-body correlations only [C]. Second, I address conditions for certain highly
entangled multipartite states, that exhibit maximal entanglement across every bipar-

vii
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tition, to exist. These states are also called absolutely maximally entangled, or perfect
tensors. Here, I present the solution of a long-standing open problem concerning
the existence of an absolutely maximally entangled state on seven qubits [D]. The
methods used shed light on the algebraic properties of pure states, and on the condi-
tions that constrain the distribution of entanglement amongst multiple particles. It
furthermore highlights the usefulness of the Bloch decomposition for also represent-
ing pure quantum states, as it directly incorporates the correlations as exhibited by
the state. Third, I investigate Ulam’s graph reconstruction problem in the quantum
setting [E]. The classical graph-theoretic problem consists of reconstructing a graph
from the knowledge of its vertex-deleted subgraphs; I address analogous questions
concerning reductions of a class of quantum states called graph states. This yields
conditions for a set of states to originate from a common joint state. Lastly, I use
approaches from the theory of quantum error correction and adopt the weight enu-
merator machinery to investigate questions in multipartite entanglement [F]. This
offers a physical interpretation of the quantum weight enumerators, and clarifies a
remarkable relation known as the quantum MacWilliams identity. With the shadow
inequalities as introduced by Rains, I provide a systematic approach to disprove
the existence of many higher-dimensional absolutely maximally entangled states.
These inequalities can be seen as an exponentially large family of constraints for
quantum correlations, and provide a fine-graining of the reduction map known
from multipartite entanglement.

This thesis is based on the following projects and publications:
[A] Felix Huber and O. Gühne,

Characterizing Ground and Thermal States of Few-Body Hamiltonians.
Phys. Rev. Lett. 117, 010403 (2016).
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Almost all four-particle pure states are determined by their two-body marginals.
Phys. Rev. A 96, 010102(R) (2017).

[C] N. Wyderka, Felix Huber, and O. Gühne,
Constraints on correlations in qubit systems.
arXiv:1710.00758 (2017).

[D] Felix Huber, O. Gühne, and J. Siewert,
Absolutely Maximally Entangled States of Seven Qubits Do Not Exist.
Phys. Rev. Lett. 118, 200502 (2017).

[E] Felix Huber and S. Severini,
Some Ulam’s reconstruction problems for quantum states.
In preparation (2017).

[F] Felix Huber, C. Eltschka, J. Siewert, and O. Gühne,
Bounds on absolutely maximally entangled states from shadow inequalities, and the
quantum MacWilliams identity.
arXiv:1708.06298 (2017).
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Chapter 1

Basic concepts

In this first part, I introduce basic notions of quantum information and multipartite
entanglement.

1.1 Fundamentals

1.1.1 Quantum states

A pure quantum state having D levels can mathematically be represented by a unit
vector in the complex Hilbert spaceH = CD. [4]. It is commonly written as a ket |φ〉,
and can be expanded in any orthonormal basis {|α〉} ofH as

|φ〉 =

D−1∑
α=0

cα |α〉 . (1.1)

Its adjoint is written as a bra 〈φ|. Normalization demands that the inner product
fulfills 〈φ|φ〉 = 1, and thus

∑ |cα|2 = 1. Often, an expansion in the computational
basis is of interest,

|φ〉 =

D−1∑
i=0

ci |i〉 , (1.2)

where
|i〉 = (0, . . . , 0, 1

i’th position
, 0, . . . , 0)T . (1.3)

Statistical probability distributions of pure quantum states (so-called mixed states) in
turn are represented by positive 1 operators in the space B(H) of bounded operators
onH having trace one, denoted as density matrices,

% =
∑
i

pi|φi〉〈φi|. (1.4)

In order that the density matrix % is indeed positive % ≥ 0 and of trace one, one
requires that

∑
i pi = 1 and pi ≥ 0. By the spectral theorem, Hermitian operators

1Throughout this text, we often refer to Hermitian operators with non-negative eigenvalues as
positive, instead of the more precise but somewhat cumbersome term positive semi-definite or non-
negative.

1



2 CHAPTER 1. BASIC CONCEPTS

can be diagonalized, having real eigenvalues. The eigenvalues of density matrices
λi must thus be real and non-negative, with

Tr(%) =
∑
i

λi = 1 . (1.5)

While the expectation value of an observable represented by a Hermitian operator Â
is from the Born’s rule given by 〈Â〉|φ〉 = 〈φ| Â |φ〉, it is obtained from 〈Â〉% = Tr(Â%)
for density matrices.

Convex combinations, as done here in the transition from pure to mixed states,
is a common way to incorporate classical statistical probabilities on top of the un-
derlying description of quantum objects. Generally, given a set of quantum states
{|φi〉}, its convex hull is formed by taking all possible statistical mixtures,

conv({|φi〉}) = {σ | σ =
∑
i

pi|φi〉〈φi| ,
∑
i

pi = 1 , pi ≥ 0} . (1.6)

1.1.2 Multiple particles

Pure quantum states ofnparticles (or parties), having the local dimensionsD1, . . . , Dn,
are represented by complex unit vectors in the Hilbert spaceH = CD1 ⊗ . . .⊗ CDn .
Given independent pure quantum states {|φi〉 ∈ Hi}, their joint description is
obtained by taking the tensor product

|φ〉 = |φ1〉 ⊗ · · · ⊗ |φn〉 ∈ H1 ⊗ · · · ⊗ Hn . (1.7)

A multipartite state can be expanded in any orthonormal basis, in particular in the
computational basis which is obtained by the tensor product of the local compu-
tational bases. Often, the symbols for the tensor products are then left out, or the
individual kets are grouped together into a single one,

|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 = |i1〉 |i2〉 . . . |in〉
= |i1i2 . . . in〉 . (1.8)

A crucial operation in quantum information is the mathematical “forgetting” of
individual parties, which is done by taking a partial trace. If V and W are complex
Hilbert spaces, the partial trace TrW over subsystem W is defined as follows: For all
operators M and N on V and V ⊗W respectively, TrW (·) is the unique operation
such that

Tr[(MV ⊗ 1W )N ] = Tr[MV TrW (N)] . (1.9)

Given an orthonormal basis {|iS〉} of subsystem S, the partial trace is usually written
as

TrS(X) =
∑
i

(〈iS | ⊗ 1Sc)X(|iS〉 ⊗ 1Sc) ,

=
∑
i

〈iS |X |iS〉 , (1.10)

where Sc denotes the complement of S in {1 . . . n}. In particular, by taking the
partial trace, independent pure quantum states can be decomposed into their parts
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again. If |φ〉 = |φ1〉 ⊗ . . . ⊗ |φn〉, the density matrix of an individual subsystem
|φi〉〈φi|, a marginal or reduction can be recovered by taking the partial trace over the
remaining parties,

|φi〉〈φi| = Tr(1,...,i−1,i+1,...,n)(|φ〉〈φ|) . (1.11)

After preforming a partial trace, one does not necessarily recover a pure state, but a
(mixed) density matrix. Tracing over the subsystems in Sc, one thus writes

%S = TrSc(|φ〉〈φ|) . (1.12)

1.1.3 Operators and maps

A Hermitian operator on B(H) is positive, A ≥ 0, if all its eigenvalues are non-
negative, λi ≥ 0 [5]. Correspondingly,A ≥ B if (A−B) ≥ 0. Positive operators form
a cone, as any convex combination pA+(1−p)B for positive operatorsA andB with
0 ≤ p ≤ 1 remains positive. Because every positive operator corresponds up to a
normalization of the trace to a density matrix, the set of density matrices corresponds
to a hyperplane through the cone of positive operators. The identity operator is
denoted by 1, or id if emphasis is placed on its nature as a map. A decomposition of
the identity

∑
iEi = 1 in terms of positive operators {0 ≤ Ei ≤ 1} is called a positive

operator-valued measure (POVM). POVMs are the most general form of describing
measurements in quantum mechanics, with an effectEi having the expectation value
〈Ei〉% = Tr(Ei%). Finally, note that unitary operators U with U † = U−1 map pure
states to pure states.

A map L[·] is positive if positive operators (e.g. density matrices) stay positive
under its action,

% ≥ 0 =⇒ L[%] ≥ 0 . (1.13)

However, a quantum system may consist of multiple systems, including a possible
environment. This necessitates the definition of completely positive maps.

Definition 1. Consider a map L acting on B(HA). L is completely positive, if for allHB
and all positive % ∈ B(HA ⊗HB),

(LA ⊗ idB)[%] ≥ 0 . (1.14)

If additionally the trace is preserved under the action of a map L, it is called a
completely positive trace preserving map (CPTP), or quantum channel, mapping quantum
states to quantum states. Completely positive maps can be represented in the Kraus
form as [6–8]

% −→ L[%] =
∑
i

Ai%Ai
† , (1.15)

where {Ai} are the Kraus operators. In order that the map also be trace-preserving,
one has the additional requirement of∑

i

Ai
†Ai = 1 . (1.16)
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According to Stinespring’s dilation theorem, any completely positive map onHA can
always be represented in a larger Hilbert spaceHA ⊗HB as a unitary map followed
by a partial trace,

L(%A) = TrB[UAB(%A ⊗ |0〉〈0|B)U †AB)] . (1.17)

Finally, a map is called decomposable, if it can be written as

L[·] = L1[·] + L2 ◦ T [·] , (1.18)

where T is the transpose map.
Allowing for certain sets of operations only gives rise to different classifications

of quantum states. Local unitary operations (LU) connect n-partite states that can be
transformed by tensor products of local unitaries,

|φ〉 = U1 ⊗ · · · ⊗ Un |ψ〉 . (1.19)

This can be seen as a different choice of local basis to represent the state. Local
operations (LO) are of the form

(Φ1 ⊗ · · · ⊗ Φn)[%] =
∑
i...r

(
A

(i)
1 ⊗ · · · ⊗A(r)

n

)
%
(
A

(i)
1

†
⊗ · · · ⊗ A(r)

n

†)
. (1.20)

If one additionally allows for the exchange of classical communication amongst
the parties between rounds of local operations, one arrives at a class called local
operations and classical communication (LOCC). The LOCC conversion of pure states
is characterized by majorization: A state % is said to majorize a state σ, in shorthand
% � σ, if their eigenvalues sorted in descending order fulfill for all k that

k∑
i=1

λ↓i (%) ≥
k∑
i=1

λ↓i (σ) . (1.21)

This leads to the following theorem.

Theorem 1 ( [9]). A bipartite pure state |ψ〉 can be converted by LOCC into another state |φ〉,
if and only if the eigenvalues of %A,φ = TrB(|φ〉〈φ|) majorize those of %A,ψ = TrB(|ψ〉〈ψ|),

|ψ〉 LOCC−−−−→ |φ〉 ⇐⇒ %A,ψ ≺ %A,φ . (1.22)

Note that the majorization induces a partial order only; thus there exist mutually
inconvertible states.

Stochastic local Operations and classical communications (SLOCC) extends this set
of operations to also allow for a probabilistic conversion between states. Mathemati-
cally, SLOCC operations can be represented by

|φ〉 = A1 ⊗ · · · ⊗An |ψ〉 , (1.23)

where the matrices A1, . . . , An must be invertible.
The above maps represent the key idea of operations which may only create

classical correlations, but no entanglement (c.f. Sect. 1.1.4). As an example, a key task
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in quantum information is to distill or concentrate entanglement using LOCC only.
Given k copies of a bipartite state %, the aim is to obtain a singlet,

%⊗ · · · ⊗ %︸ ︷︷ ︸
k copies

LOCC−−−−→ 1√
2

(|01〉 − |10〉) . (1.24)

A state % for which this is not possible for any number of copies is called undistillable;
undistillable but entangled states are bound entangled. A sufficient criterion for
undistillability is for a state to have a positive partial transpose (c.f. Sect. 1.1.6) [10].
If on the other hand a state violates the reduction criterion, it is distillable [11].

Finally, one may desire to copy an unknown quantum states, similarly as to
copying classical bits. This however turns out to be impossible [12, 13]. Suppose
one wished to copy an unknown state |ψ〉, such that

|ψ〉 ⊗ |t〉 U−→ |ψ〉 ⊗ |ψ〉 , (1.25)

under a necessarily unitary evolution U , and where |t〉 is an arbitrary target state.
Then this copying procedure must also work for another state |φ〉, and we have

U(|ψ〉 ⊗ |t〉) = |ψ〉 ⊗ |ψ〉 ,
U(|φ〉 ⊗ |t〉) = |φ〉 ⊗ |φ〉 . (1.26)

The inner product of the above equations yields 〈ψ|φ〉 = (〈ψ|φ〉)2, whose only two
solutions can either be 〈ψ|φ〉 = 0 or |ψ〉 = |φ〉. Therefore it may be possible to
construct devices copy from a specific set of mutually orthogonal states, but the
cloning of arbitrary states is forbidden. This is known as the no-cloning theorem.

1.1.4 Entanglement

Entanglement is the notion of quantum states which are not simply built up from their
constituents in any classical way. Loosely speaking, these are states in the tensor
product space (of say, Hilbert spacesHA andHB), that are not statistical mixtures
of tensor-product vectors. Thus entangled quantum states exhibit non-classical
correlations, whose classification and quantification is of interest.

Bipartite entanglement

Consider two quantum states |φA〉 inHA and |φB〉 inHB of two independent sub-
systems A and B. Their joint description is obtained by taking their tensor product,
forming a product state inHA ⊗HB ,

|φAB〉 = |φA〉 ⊗ |φB〉 . (1.27)

If the quantum states on subsystems A and B are mixed themselves, the product
state is represented by a density matrix,

%AB = %A ⊗ %B . (1.28)



6 CHAPTER 1. BASIC CONCEPTS

Taking a statistical mixture of product states, one obtains a separable state. These are
of the form

%AB =
∑
i

pi%
(i)
A ⊗ %

(i)
B , (1.29)

where pi ≥ 0 and
∑

i pi = 1. Thus the set of separable states SEP forms the convex
hull of product states. Any correlations appearing in separable states between the
different parties are of purely classical nature. However, not every bipartite quantum
state (that is, consisting of two subsystems) can be written in such way: These states
are called entangled [14].

Definition 2. A bipartite quantum state %AB is entangled, if it cannot be written as a
convex combination of product states.

%AB 6=
∑
i

pi%
(i)
A ⊗ %

(i)
B , (1.30)

for all choices of convex weights pi, and density matrices %(i)
A , %(i)

B .

For pure joint states, this reduces to

Definition 3. A pure bipartite quantum state |φAB〉 is entangled, if it cannot be written as

|φAB〉 6= |φA〉 ⊗ |φB〉 (1.31)

for all choices of |φA〉 and |φB〉.
The paradigmatic example of an entangled state on two subsystems having two

levels each is the Bell state (or Einstein-Podolsky-Rosen pair),

|φ+〉 =
1√
2

(|00〉+ |11〉) , (1.32)

exhibiting strong non-classical correlations between the subsystems. Three other
states complete the set of Bell states,

|φ−〉 = (|00〉 − |11〉)/
√

2 ,

|ψ+〉 = (|01〉+ |10〉)/
√

2 ,

|ψ−〉 = (|10〉 − |01〉)/
√

2 , (1.33)

having the same entanglement features as |φ+〉. The last state in above list is also
called a singlet. For pairs of higher dimensional states, the Bell state generalizes to

|Ω〉 =
1√
D

D−1∑
i=0

|iA〉 ⊗ |iB〉 . (1.34)

In fact, every state that shows maximal entanglement across a bipartition A|B can
be written as |φ〉 = (1⊗ U) |Ω〉, where U is a suitable unitary [15]. An interesting
property for bipartite states with maximal entanglement is that any operation on
the first party can also be performed by acting on the second party,

A⊗ 1 |Ω〉 = 1⊗AT |Ω〉 . (1.35)

In particular, it holds that U ⊗ Ū |Ω〉 = |Ω〉 for all unitaries U .
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Schmidt decomposition

An important aspect of bipartite states is their Schmidt decomposition [14].

Theorem 2. For every pure state |φ〉 inHA ⊗HB , there exist orthonormal bases {|αi〉} in
HA and {|βi〉} inHB , such that the state can be expressed as

|φ〉 =
K∑
i=1

√
λi |αi〉 ⊗ |βi〉 , (1.36)

with K = min(dim(HA),dim(HB)). The Schmidt coefficients {
√
λi} are non-negative

and normalized, fulfilling λi ≥ 0 and
∑K

i=1 λi = 1. The number of nonzero Schmidt
coefficients is called the Schmidt rank, and a state |φ〉 is entangled if and only if its Schmidt
rank is strictly larger than one.

In the Schmidt decomposed form, the reductions of |φ〉 can be written as

%A = TrB |φ〉〈φ| =
K∑
i=1

λi|αi〉〈αi| , (1.37)

%B = TrA |φ〉〈φ| =
K∑
i=1

λi|βi〉〈βi| . (1.38)

Note that the spectrum of the reductions σ(%A) = σ(%B) = (λ1, . . . , λK) is given by
the Schmidt coefficients, up to additional vanishing eigenvalues. Conversely, every
mixed state can be purified on a larger system. This works in the following way: let
%A =

∑K
i=1 λi|αi〉〈αi| be the spectral decomposition of a state %A onHA. Given an

orthonormal basis {|βi〉} forHB of dim(HB) ≥ K, a pure state can be constructed
by

|ψAB〉 =
K∑
i=1

√
λi |αi〉 ⊗ |βi〉 . (1.39)

The state |ψAB〉 has indeed %A as its marginal on subsystem A.
A bipartite state is called maximally entangled, if all λi = K−1. This follows from

the fact that every other state of the same dimension can be obtained by means
of local operations and classical communication (c.f. Thm. 1). Note that the reduced
density matrices of maximally entangled states are proportional to the identity
on the supported subspace of dimension K. Indeed the Bell state [Eq. (1.32)] and
its generalization to higher dimensions [Eq. (1.34)] are maximally entangled. Its
one-party marginal states are maximally mixed, being proportional to the identity
matrix.

Tr2(|φ+〉〈φ+|) = 1/D ,

Tr1(|φ+〉〈φ+|) = 1/D . (1.40)

Thus while the joint state is definite (in the sense of not being a classical mixture
of states), any measurement performed single reductions alone yield completely
random outcomes. However, performing the same measurement on both parties,
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one can see that their outcomes are strongly correlated. It can be shown that this
type of correlations cannot have classical origins [16].

While maximal entanglement can be defined in different ways for multipartite
systems, having maximally mixed reductions is a typical feature of highly entangled
pure states. For systems consisting of more than two parties this will lead to the
notion of absolutely maximally entangled states (AME), which will be the subject of
Sect. 1.2.3 and Chpt. 3.

Multipartite entanglement

Considering more than two parties, product states, separable states, and entangled
states are defined similarly [14]: Pure product states of n parties are of the form

|φ〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉 , (1.41)

while mixed product states can be written as

% = %1 ⊗ %2 ⊗ · · · ⊗ %n . (1.42)

Accordingly, separable states are obtained by taking statistical mixtures of product
states,

%fs =
∑
i

pi%
(i)
1 ⊗ %

(i)
2 ⊗ · · · ⊗ %(i)

n , (1.43)

where again, pi ≥ 0 and
∑

i pi = 1. These states are also called fully separable, in
contrast to states which are separable only when some subsystems are grouped
together. Multi-partite states are called entangled, if they are not fully separable.

Definition 4. A multipartite state is called entangled, if it cannot be written as a convex
combination of product states.

% 6=
∑
i

pi%
(i)
1 ⊗ %

(i)
2 ⊗ · · · ⊗ %(i)

n , (1.44)

for all choices of convex weights pi, and density matrices %(i)
1 , . . . , %

(i)
n .

Biseparable states can be written as the convex combination of pure states |ψbs
k 〉

that are separable across some bipartition, but which are not fully separable.

%bs =
∑
k

pk|ψbs
k 〉〈ψbs

k | . (1.45)

Note that the individual |ψbs
k 〉might be biseparable with respect to different biparti-

tions. If a multipartite state cannot be written as a fully separable or a biseparable
state, the state is called genuinely multipartite entangled.

While the entanglement properties of pure bipartite states are well understood,
multipartite states allow for more freedom in the distribution of quantum corre-
lations between the different parties. This gives rise to different classifications of
multipartite entanglement with respect to different entanglement properties or
operational procedures. As an example, considering local operations and classical
communications (LOCC) (c.f. Sect. 1.1.3), this gives in the case of three two-level
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systems (termed qubits) rise to two entanglement classes, which are represented by
the W- and the Greenberger-Horne-Zeilinger (GHZ) states,

|W 〉 = (|001〉+ |010〉+ |100〉)/
√

3 ,

|GHZ3〉 = (|000〉+ |111〉)/
√

2 . (1.46)

Lastly, note that many further notions of entanglement and quantum correlations,
such as steering, non-locality, genuine multi-level entanglement, and other notions
are naturally defined with the convex hull picture: considering a set of states which
do not show a certain type of correlation, the convex hull is taken to incorporate
classical mixtures thereof. It is then of interest to understand what states lie outside
of the so constructed convex hull.

1.1.5 Entropy and distance measures

Non-orthogonal quantum states cannot be distinguished with certainty. However, it
is still interesting to understand how far “apart” two states are. Thus it is of interest
to have suitable distance measures on the state space, and to be able to compare them.
These can then also be used in perturbation proofs, as e.g. done in Obs. 18. Similarly,
measures to quantify mixedness of quantum states are crucial to understand the
amount of classical uncertainty about a state.

A short note about matrix functions: these are defined in the eigenbasis on the
eigenvalues. That is, given a matrix A that is diagonalizable as A = ZDZ−1, the
matrix function is understood as operating on the spectrum {λi},

f(A) = Z

f(λ1)
. . .

f(λn)

Z−1 . (1.47)

With this, the absolute value of an operator A is defined as

|A| =
√
AA† . (1.48)

For finite-dimensional bounded operators this equals to |A| = ∑i |λi| 2. With it, the
Lp-norm of an operator is given by

||A||p =
[

Tr(|A|p)
] 1
p
, (1.49)

or in terms of its eigenvalues, ||A||p =
(∑ |λi|p)1/p. The trace norm of an operator is

its L1-norm,
||A||Tr = ||A||1 = Tr |A| = Tr

√
AA† . (1.50)

The trace distance between two Hermitian operators is then obtained by the trace
norm of their difference,

DTr(%, σ) =
1

2
||%− σ||Tr =

1

2
Tr
√

(%− σ)2 . (1.51)

2In this text, I will consider finite-dimensional bounded operators only.
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The physical interpretation of the trace distance is that of distinguishing quantum
states by an optimal measurement [17]. It fulfills,

DTr(%, σ) = max
0≤E≤1

Tr[E(%− σ)] , (1.52)

where 0 ≤ E ≤ 1 is an effect (c.f. Sect. 1.1.3). Accordingly, the average optimal
success probability of distinguishing % from σ is [1 +DTr(%, σ)]/2.

The fidelity is defined by

F (%, σ) =
(

Tr
√√

%σ
√
%
)2
. (1.53)

While it is not apparent from the formulation above, the fidelity is symmetric in its
two arguments. For pure states, the fidelity is equal to the overlap F (|φ〉 , |ψ〉) =
| 〈φ|ψ〉 |2. This generalizes to mixed states, where it corresponds to the maximum
overlap of purifications |φ〉 and |ψ〉 of % and σ. This follows from Uhlmann’s theo-
rem [18],

F (%, σ) = max
|φ〉,|ψ〉

| 〈φ|ψ〉 |2 . (1.54)

In the following 0 ≤ a ≤ 1. The fidelity has further nice properties,

1. Positivity. 0 ≤ F (%, σ) ≤ 1, and F (%, σ) = 1 ⇐⇒ % = σ. F (%, σ) = 0 if and
only if the support of % is orthogonal to that of σ.

2. Symmetry. F (%, σ) = F (σ, %).

3. Unitary invariance. F (U%U †, UσU †) = F (%, σ).

4. Concavity. F (%, aσ1 + (1− a)σ2) ≥ aF (%, σ1) + (1− a)F (%, σ2).

5. Multiplicativity. F (%1 ⊗ %2, σ1 ⊗ σ2) = F (%1, σ1)F (%2, σ2).

6. Monotonicity under CPTP maps. F (L[%],L[σ]) ≤ F (%, σ) for any CPTP map
L. In particular, this includes monotonicity under the partial trace.

The quantum relative entropy originates from the classical relative entropy. It is
defined as

S(%||σ) = Tr[%(ln %− lnσ)] . (1.55)

It is per se not a distance measure, but rather a divergence, as it is generally not
symmetric in its arguments, S(%||σ) 6= S(σ||%). It has the following properties [17]:

1. Positivity. S(%||σ) ≥ 0, where equality implies % = σ.

2. Unitary invariance. S(U%U †||UσU †) = S(%||σ).

3. Joint convexity.

S(a%1 + (1− a)%2||aσ1 + (1− a)σ2) ≤ aS(%1||σ1) + (1− a)S(%2||σ2) .

4. Additivity. S(%1 ⊗ %2||σ1 ⊗ σ2) = S(%1||σ1) + S(%2||σ2).
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5. Superadditivity [19].(
1 + 2||H(σAB)||∞

)
D(%AB||σAB) ≥ D(%A||σA) +D(%B||σB) , (1.56)

whereH(σAB) = (σ
−1/2
A ⊗σ−1/2

B )σAB(σ
−1/2
A ⊗σ−1/2

B )−1AB . Note thatH(σAB) =
0 if σAB = σA ⊗ σB .

6. Monotonicity under CP maps. S(L[%]||L[σ]) ≤ S(%||σ) for any CPTP map L,
such as e.g. the partial trace.

The von Neumann entropy of a state % is defined as

S(%) = −Tr(% log %) , (1.57)

which in terms its eigenvalues λi reads as S(%) = −∑i λi log λi. It is related to the
quantum relative entropy by S(%||1/D) = ln(D)− S(%) , where D is the dimension
of the Hilbert space. It has the properties

1. Positivity. 0 ≤ S(%) ≤ S(1/D) = lnD.

2. Unitary invariance. S(U%U †) = S(%).

3. Concavity. S(a%+ (1− a)σ) ≥ aS(%) + (1− a)S(σ).

4. Subadditivity. S(%12) ≤ S(%1) + S(%2).

5. Araki-Lieb Triangle inequality. |S(%1)− S(%2)| ≤ S(%12).

6. Strong Subadditivity. S(%123) + S(%2) ≤ S(%12) + S(%23).

The strong subadditivity of the von Neumann entropy, the weak monotonicity of the
quantum relative entropy, and the joint convexity of the quantum relative entropy
are equivalent [20]. The operational significance of the von Neumann entropy stems
from Schumacher’s noiseless coding theorem, where it can be seen that the von Neumann
entropy of % =

∑
i pi|ψi〉〈ψi| is a measure of the information contained in a string of

pure states |ψi〉 occurring with probabilities pi [21]. Furthermore, the von Neumann
entropy quantifies the distillable entanglement and the entanglement cost for pure
states (c.f. Sect. 1.1.6). It can also be used to measure the mixedness of quantum
states: it vanishes for pure states, S(|ψ〉) = 0, while for maximally mixed states
S(1/D) = ln(D) holds.

One can establish inequalities and continuity bounds between the different
distance and entropy measures. The quantum Pinsker inequality relates the trace
distance and the quantum relative entropy,

S(%||σ) ≥ 2DTr(%, σ)2 . (1.58)

The Fannes’ Lemma upper bounds a change in trace distance to the change in the von
Neumann entropy: If DTr(%, σ) ≤ ε ≤ 1, then

|S(%)− S(σ)| ≤
{
ε log(D − 1) + h(ε) if ε ≤ 1−D−1

logD if ε > 1−D−1 ,
(1.59)
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whereD is the dimension of the Hilbert space, and h(x) = −x log x−(1−x) log(1−x)
is the binary entropy. The Fuchs-Van-de-Graaf inequalities relates the fidelity and trace
distance [22],

1−
√
F (%, σ) ≤ DTr(%, σ) ≤

√
1− F (%, σ) . (1.60)

Many more inequalities for distance measures and entropies have been derived [23],
including continuity bounds on conditional relative entropies [24–27].

Often, the mixedness of quantum states is of interest: Given a pure joint state,
the extent of the impurity of its reductions signal entanglement. The purity can be
used to define such mixedness of a state,

Tr(%2) =
∑
i

λ2
i , (1.61)

where λi are the eigenvalues of %. A state % is pure if and only if Tr(%2) = 1. The
linear entropy is related to the purity and approximates the von Neumann entropy
[Eq. (1.57)] by its first leading order terms in the Mercator series,

SL(%) =
D

D − 1
[1− Tr(%2)] . (1.62)

The normalization is chosen such that 0 ≤ SL(%) ≤ 1. The marginals of the maxi-
mally entangled Bell states have, in contrast to pure product states, a minimal purity
and a maximal linear entropy. While their operational significance is not as clear the
one of the von Neumann entropy, they are often used as a measure of entanglement.
In Sect. 5.11.3, I will present a subadditivity-like expression for the purity and linear
entropy that constrains the possible correlations of three-partite states.

1.1.6 Entanglement detection and measures

In order to determine whether a given state is entangled or not, it has to be tested
if it can be written as a separable state. This is the so-called separability problem.
Unfortunately, this is a computationally difficult task, being NP-hard [2, 3]. Therefore,
various separability criteria and entanglement measures have been developed to
detect and quantify entanglement. A common approach is that entanglement cannot
be created locally, and that entangled quantum states can be seen as a resource for
certain operational tasks. Here, I mention those which are necessary for the later
Chapters.

Witnesses

Given a convex set, it can be delineated by a hyperplane: the Banach-Hahn separation
theorem guarantees that a closed convex set can always be separated from a point
outside of it by a continuous linear functional. Hence, an entangled state, lying
outside of the convex set of separable states, can be delineated by a witness [28]. This
is a Hermitian operatorW , such that

Tr(Wσ) ≥ 0 for all separable states σ ,
Tr(W%) < 0 for at least one entangled state % . (1.63)
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Then,W is said to detect the entangled state %. As an example, given any entangled
state |ψ〉, a projector-based witness can be constructed from

W = α1− |ψ〉〈ψ| , (1.64)

where α is obtained by maximizing the overlap to separable states,

α = max
%∈SEP

Tr(%|ψ〉〈ψ|) = max
|φ〉=|φA〉⊗|φB〉

| 〈ψ|φ〉 |2 . (1.65)

If then Tr(σW) < 0 is measured, then the state σ must be entangled. There are other
strategies to construct suitable witnesses, and in general multiple witnesses are able
to detect the same state. Often specific witnesses are designed in such way as to
optimize the type and number of measurements necessary [29, 30].

Positive maps

Another method to detect entanglement are positive but not completely positive maps [14].
Recall that a map L[·] is positive if all positive operators (e.g. density matrices) stay
positive under its action,

M ≥ 0 =⇒ L(M) ≥ 0 . (1.66)

Naturally, if a map L is positive but not completely positive (c.f. Sect. 1.1.3), then
there must exist a state %AB , such that

(LA ⊗ idB)[%AB] � 0 . (1.67)

Necessarily, such a state %AB must be entangled: If it would be separable, then

(LA ⊗ idB)
[∑

i

pi%
(i)
A ⊗ %

(i)
B

]
=
∑
i

pi
(
LA[%

(i)
A ]⊗ %(i)

B

)
(1.68)

would be positive, contrary to the assumption. It has been shown that a state % is
separable, if and only if (L ⊗ id)[%] ≥ 0 for all positive maps L [28].

An example of a positive but not completely positive map is the reduction map [11].

R[X] = Tr(X)1−X . (1.69)

With it, one can detect entanglement, this is called the reduction criterion: Clearly, this
map is positive, mapping pure states to the mixture of orthogonal states. However,
it is not completely positive. This can be seen by choosing %AB to be equal to the
Bell state |φ+〉〈φ+|. Then

(RA ⊗ idB)[%AB] = 1⊗ %B − %AB = 1/2− |ψ+〉〈ψ+| � 0 , (1.70)

having one negative eigenvalue. If a state violates the reduction criterion, it is
distillable [11] (c.f. Sect. 1.1.3).

Another example is the Breuer-Hall map or extended reduction criterion [31, 32],

RBH [X] = Tr(X)1−X − UXTU †. (1.71)



14 CHAPTER 1. BASIC CONCEPTS

for any U with UT = −U and U †U ≤ 1. This map is positive, but in contrast to the
reduction map, not necessarily decomposable. Recall that a decomposable map can
be written as

L[·] = L1[·] + L2 ◦ T [·] , (1.72)

where T is the transpose map. If U in Eq. (1.71) is unitary,RBH cannot be written
in such a way and is therefore non-decomposable 3. Note that decomposable maps
correspond to decomposable witnesses, which have the formW = P +QTA for pos-
itive observables P and Q [14, 15]. However, decomposable witnesses cannot detect
entangled states that have a positive partial transpose (so-called bound entangled
states), and decomposable witnesses and maps are generally weaker than the PPT
criterion for detecting entanglement (see also the next Section).

Interestingly, the reduction map can be extended to multiple parties 4 [33, 35–37],
called the universal state inversion.

Definition 5. The universal state inversion map is given by

I[%] =
∑

S⊆{1...n}

(−1)|S|%S ⊗ 1Sc , (1.73)

where %S = TrSc(%).

It can also be written as I[·] =
⊗

j(1j Trj −1)[·]. In case of qubits, the inversion
is also given by I[%] = σ⊗ny σTσ⊗ny . This map will play a major role in Chapters 3
and 5, with the shadow enumerator generalizing the constraints originating from
the non-negative overlap Tr(I[%]%). A proof of the positivity of the universal state
inversion and an extension of this map are presented in Sect. 5.11.1.

Further separability criteria

The positive partial transpose (PPT) or Peres-Horodecki criterion detects entanglement
from the eigenvalues of a partially transposed state. Given a bipartite state expanded
as

% =
∑
ijkl

Cij,kl |i〉〈j| ⊗ |k〉〈l| , (1.74)

its partial transposition with respect to its first subsystem is given by

%TA =
∑
ijkl

Cji,kl |i〉〈j| ⊗ |k〉〈l| . (1.75)

In terms of the Bloch decomposition (c.f. Sect. 1.1.7), the partial transpose simply
maps Y to −Y in the transposed party. The PPT-criterion can also be regarded
as a positive but not completely positive map L = T ⊗ 1, where T is the partial
transposition. If %TA is not positive, % must be entangled. In particular, if the system
is composed of two qubits, or of one qubit and one qutrit, a positive partial transpose

3Note that anti-symmetric unitaries can only be found in even dimensions.
4A two-partite version of the universal state inversion already appeared in Refs. [33, 34].
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is a necessary and sufficient criterion for states to be separable [28]. Additionally, a
positive transpose implies undistillability for all bipartite systems [10]..

The computable cross norm or realignment (CCNR) criterion uses the Schmidt
decomposition of operators: A density matrix can be decomposed as

% =
∑
i

µiG
A
i ⊗GBi . (1.76)

Above, µi ≥ 0 and GAi , GBi form orthonormal bases ofHA andHB with respect to
the Hilbert-Schmidt inner product. The CCNR criterion states, that if % is separable,
then its operator Schmidt coefficients µi fulfill∑

µi ≤ 1 . (1.77)

Thus a state with
∑

i µi > 1 must be entangled.
The majorization criterion states, that if %AB is separable, the decreasingly ordered

eigenvalues λ↓i of %AB and of its reductions %A and %B fulfill

k∑
i=1

λ↓i (%AB) ≤
k∑
i=1

λ↓i (%A) ,

k∑
i=1

λ↓i (%AB) ≤
k∑
i=1

λ↓i (%B) 1 ≤ k ≤ D . (1.78)

This type of ordering is called majorization, and one writes above inequalities as
%AB ≺ %A and %AB ≺ %B .

The reshuffling criterion states, that if % is separable, then

||%R||Tr ≤ ||%||Tr , (1.79)

where the reshuffled matrix %R is obtained in the following way: Expand the state %
as

% =
∑
ijkl

Cij,kl |i〉〈j| ⊗ |k〉〈l| , (1.80)

the reshuffled state is then defined as

%R =
∑
ijkl

Cik,jl |i〉〈j| ⊗ |k〉〈l| . (1.81)

Entanglement measures

Besides detecting entanglement, it is also of interest to quantify it. Thus the need
for entanglement measures. For an entanglement measure E(%), all or some of the
following requirements are desirable [14, 17].

1. Faithfulness. E(%) = 0 if and only if % is separable.

2. Monotonicity. Entanglement cannot be created by local operations and classi-
cal communication (LOCC), E(ΛLOCC[%]) ≤ E(%) .
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3. Unitary invariance. E(U%U †) = E(%) for all unitaries U = U1 ⊗ . . .⊗ Un.

4. Convexity. E(a%+ (1− a)σ) ≤ aE(%) + (1− a)E(σ) for 0 ≤ a ≤ 1.

5. Additivity. E(%⊗ σ) = E(%) + E(σ).

Many entanglement measures fulfill variants of these requirements. As an example,
a weakly discriminant entanglement measure may not only vanish for all separable,
but additionally also for some entangled states; the criterion of monotonicity under
LOCC may be replaced by the stronger condition of monotonicity under probabilistic
LOCCs ΦLOCC of the form∑

k

pkE(Φk[%]) ≤ E(%) ,
∑
k

pk = 1 , pk ≥ 0 , (1.82)

where ΦLOCC maps % to Φk[%] with probability pk.
The convex roof construction can be used to extend entanglement measures defined

on pure states by a decomposition of mixed into pure states. Given a measureE(|ψ〉),
its convex roof is given by

E(%) = inf
pk,|φk〉

∑
k

pkE(|φk〉) , (1.83)

where % =
∑

k pk|φk〉〈φk|,
∑

k pk = 1, and pk ≥ 0. The convex roof is often difficult
to compute.

Entanglement measures: Examples

Below I list some bipartite entanglement measures. It is possible to roughly distin-
guish between geometric & entropic measures, operational measures, and algebraic
measures; however there is significant overlap between these classes as e.g. certain
operational measures can be interpreted in different ways.

Examples of geometric & entropic measures are [14, 17]:

1. Geometric measure of entanglement.

DG(|φ〉) = 1− sup
|ψ〉=|ψ1〉···|ψn〉

| 〈φ|ψ〉 |2 . (1.84)

Its extension to mixed states is obtained by the convex roof construction.

2. Relative entropy of entanglement. DR(%) = minσ∈SEP S(%||σ).

3. Entanglement of formation.

EF (%) = inf
pk,|ψk〉

∑
k

pkS[TrB(|ψk〉)] (1.85)

is the convex roof construction of the von Neumann entropy of reductions as
an entanglement measure of pure states. Thus the minimization is performed
over all decompositions % =

∑
k pk|φk〉〈φk|with

∑
k pk = 1 and pk ≥ 0.
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Operational measures are often defined in terms of rates converting one type of
state into another one. Examples are [14, 17]:

4. Entanglement cost.

EC(%) = inf
LOCC

lim
n−→∞

nin
nout

, (1.86)

where nin is the minimal number of singlets needed to create nout copies of %
under an optimal LOCC operation.

5. Distillable Entanglement.

ED(%) = inf
LOCC

lim
n−→∞

nin
nout

, (1.87)

where nout is the maximal number of singlets obtained from nin copies of %
under an optimal LOCC operation.

Naturally, ED(%) ≤ EC(%). For pure states, equality holds, and ED(%) = EC(%) =
S(%A) [38]. If ED(%) = 0, no singlets can be distilled. Accordingly, % is called
undistillable. This is in particular the case if a bipartite state has a positive partial
transpose [10]. Entangled but undistillable states are called bound entangled.

Examples of algebraic measures are [14, 17]:

6. Negativity. NT (%) = (||%TA ||1 − 1)/2, which measures the violation of the
positive partial transpose criterion [c.f. Eq. (1.75)].

7. Reshuffling negativity. NR(%) = (||%R||1−1)/2, which measures the violation
of positivity after reshuffling % to %R [c.f. Eq. (1.81)].

8. Concurrence. For a mixed two-qubit state, C(%) = max{0, λ1 − λ2 − λ3 − λ4},
where λ1, λ2, λ3, λ4 are the square roots of the eigenvalues of the operator√
%%̃
√
% in descending order, and the spin-flipped state is %̃ = (σy⊗σy)%T (σy⊗

σy). For pure states % = |ψ〉〈ψ|, the concurrence simplifies to C(%) =
√

Tr(%%̃).

1.1.7 Bloch representation

Density matrices are positive Hermitian operators, having trace one. They can
be expanded in a suitable operator basis. This is called the Bloch (or Bloch-Fano)
representation [39, 40].

One qubit

Let us first consider a multipartite system composed of two-level subsystems, called
qubits. A single pure qubit can be written as

|φ〉 = α |0〉+ β |1〉 . (1.88)

Its associated density matrix then reads

|φ〉〈φ| =
(
α2 αβ̄
ᾱβ β2

)
. (1.89)
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Any qubit density matrix (also those which are not pure) can be expanded in terms
of the Hermitian Pauli matrices. These are the matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.90)

The Pauli matrices σ0, σ1, σ2, σ3 are often also denoted by I,X, Y, Z. Following
properties are crucial for what follows.

σ†i = σi

Tr(σi) = 0 for i = 1, 2, 3 ,

σiσj = δijσ0 + iεijkσk , (1.91)

where εijk is the Levi-Civita symbol. They form an orthonormal basis with respect
to the Hilbert-Schmidt inner product 〈A,B〉 = Tr(A†B),

Tr(σiσj) = 2δij . (1.92)

A density matrix can then be expanded as

% =
1

2

∑
i

Tr(σi%)σi . (1.93)

Many qubits: the Pauli basis

This similarly works for multipartite states. By forming tensor products of Pauli
matrices, one obtains the n-qubit Pauli basis of Hermitian operators acting on (C2)⊗n,

Pn = {σα|σα = σα1 ⊗ . . .⊗ σαn} (1.94)

From the orthonormality of the Pauli matrices, Tr(σασβ) = δα1β1 . . . δαnβn2n follows.
Often we will writeXj , Yj , Zj for the Pauli matrices acting on particle j alone. Define
by the supp(σα) the support of an operator σα ∈ Pn, that is, the parties on which the
operator σα acts not with the identity σ0. The weight of an operator is then size of
its support, wt(σα) = | supp(σα)|. A density matrix % on n qubits can be expanded
in terms of the Pauli basis as

% = 2−n
∑
σα∈Pn

Tr[σα%]σα . (1.95)

Given a quantum state %, we obtain its reduction on parties S by acting with the
partial trace on its complement Sc

%S = TrSc(%) . (1.96)

Let % be expanded as in Eq. (1.95). The reduction tensored by the identity can also
be written as

%S ⊗ 1Sc =
1

2|S|
∑

supp(σα)⊆S

Tr[σα%]σ†α . (1.97)

This follows from the fact that TrSc(σα) = 0 if supp(σα) 6⊂ S.
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Bloch representation in higher dimensions

Operators and density matrices in higher (but finite) dimensions can also be ex-
panded in the Bloch representation - only an orthonormal basis has to be chosen.

A particularly nice 5 basis is the unitary but non-Hermitian Heisenberg-Weyl
or displacement basis [40, 43, 44]. Define the shift and clock operators on a basis
{|j〉 , j = 1, . . . , D − 1} for CD by

X |j〉 = |j + 1 mod D〉 ,
Z |j〉 = ωj |j〉 , (1.98)

where ω = e2πi/D is a root of unity. X,Z, and ω generate the generalized single-qubit
Pauli group G1 = {ωrXsZt} [45]. For even dimensions, sometimes also {√ωrXsZt}
is used. The operators X and Z satisfy the relation

ZX = ωXZ . (1.99)

In particular, ZαXβ = ωαβXβZα. In the case of D = 2, these simply reduce to
the Pauli matrices, where ZX = −XZ. The Heisenberg-Weyl basis consists of the
displacement operators

D(µ, ν) = ωµν/2XµZν . (1.100)

It is orthonormal, Tr[D(µ, ν)†D(α, β)] = Dδµνδαβ . With it, operators on CD can be
expanded by

% =
1

D

D−1∑
µ,ν=0

Tr[D(µ, ν)†%]D(µ, ν) . (1.101)

Another useful basis is the generalized Gell-Mann basis. It is given by [40, 46]

xjk =

√
D

2

(
|j〉〈k|+ |k〉〈j|

)
, 0 ≤ j < k < D ,

yjk =

√
D

2

(
− i |j〉〈k|+ i |k〉〈j|

)
, 0 ≤ j < k < D ,

zl =

√
D

l(l − 1)

( l−1∑
i=0

|i〉〈i| − l|l〉〈l|
)

1 ≤ l < D . (1.102)

There areD(D−1)/2 symmetric elements {xjk},D(D−1)/2 antisymmetric elements
{yjk}, and (D − 1) diagonal elements {zl}. The Gell-Mann basis is Hermitian and
orthonormal,

Tr(xab xµν) = Tr(yab yµν) = δaµδbνD ,

Tr(za zµ) = δaµD , (1.103)

with all other inner products vanishing. If D = 2, this basis reduces to the Pauli
basis for qubits, where x01 = X, y01 = Y , and z1 = Z.

5In fact, the Heisenberg-Weyl basis is a so-called nice error basis: Its elements form - up to a complex
phase - a group [41, 42].
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Given a basis {eα} for a single particle, a tensor-product basis is obtained by taking
tensor products

Eα = eα1 ⊗ eα2 ⊗ · · · ⊗ eαn . (1.104)

Operators such as many-party density matrices can then be expanded as

% =
1

Dn

∑
α

Tr[E†α%]Eα . (1.105)

A local basis spanned by {D(µ, ν)} turns out to a particularly suitable error basis
for quantum error-correcting codes. Similarly as in the case of qubits, define by
supp(Eα) the support of an operator, i.e. the parties it acts non-trivially on. The
weight is then the size of the support, wt(Eα) = | supp(Eα)|.

Lastly, the generalized Pauli group on n qubits Gn is formed by tensor-products of
the single-qubit generalized Pauli group. That is, its elements are of the form

ωrXs1Zt1 ⊗ · · · ⊗XsnZtn , (1.106)

or sometimes for even dimensions

(
√
ω)rXs1Zt1 ⊗ · · · ⊗XsnZtn . (1.107)

The necessity of
√
ω in the case of even dimensions can be seen in the case of qubits:

The term ±1XsZt can never be equal to ±Y . Thus an additional phase i is needed
to generate the Pauli group for 2-level systems, 〈±i,±1, XsZt〉.

1.2 Further notions

1.2.1 Graph states

Graph states are a type of states on n parties with prime dimensionD each, which are
completely defined by a corresponding graph [47, 48]. These states are often highly
entangled 6, and can be used to construct stabilizer codes (also called graph or additive
codes), which are a type of quantum error-correcting codes [54–56]. Additionally,
graph states are a resource for measurement-based quantum computation [57, 58].
Nevertheless, they can be described by simple means - that is, by their corresponding
graph. This makes them particularly useful.

A graph G(V,E) is a collection of vertices v ∈ V , connected by edges e ∈ E. For
each vertex i, the neighborhood N(i) is defined to be the set of vertices j connected
by an edge. Considering graph states on D-level systems, each edge can appear
multiple times, having an up to (D− 1)-fold multiplicityme (ormij). Given a graph
G = (V,E) of n vertices, its corresponding graph state |G〉 is defined as the common
and unique (+1)-eigenstate of the n commuting operators {gi},

gi = Xi

⊗
j∈N(i)

Z
mij
j . (1.108)

6Many highly entangled graph states can be obtained from graphs having a circulant adjacency
matrix [49–52]. Also see the tables in Ref. [53].
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Figure 1.1: A graph state of seven qutrits. This is also an absolutely maximally
entangled (AME) state (c.f. Sect. 1.2.3) [48].

Above, X and Z are the shift and clock operators,

X |j〉 = |j + 1 mod D〉 ,
Z |j〉 = ωj |j〉 , (1.109)

where ω = e2πi/D is a root of unity. In the case of D = 2, these simply reduce to
the Pauli matrices. The set {gi} is called the generator. To obtain |G〉〈G| in the Bloch
decomposition, the notion of its stabilizer is helpful. The stabilizer S is the Abelian
group obtained by the multiplication of generator elements,

S =
{∏

gi11 g
i2
2 · · · ginn

∣∣ i1, . . . , in ∈ {1, . . . , D − 1}
}
. (1.110)

Each of its Dn elements are said to stabilize the state, that is, gi |G〉 = |G〉 for all gi.
The stabilizer forms a subgroup of the generalized Pauli group (c.f. Sect. 1.1.7). In
the case of qubits, this group simply reduces to the n-party Pauli-group Gn, which
consists of all elements in Pn in addition to a complex phase {±1,±i}. With the
notion of the stabilizer, the graph state can be written as

|G〉〈G| = 1

2n

∑
sa∈S

sa . (1.111)

On the other hand, it can be shown that the graph state can also be written as

|G〉 =
∏
e∈E

CZmee |0̄〉⊗n . (1.112)

Above, the generalized controlled-Z gate CZ acting on the two parties of edge
e = (i, j) reads,

CZij =
D−1∑
k=0

|k〉〈k|i ⊗ Zkj =
D−1∑
k,l=0

ωkl|k〉〈k|i ⊗ |l〉〈l|j . (1.113)

Furthermore, |0̄〉 is obtained by the Fourier gate, |k̄〉 = F † |k〉, where

F =
1√
D

D−1∑
k,l=0

ωkl |k〉 〈l| . (1.114)

Therefore, |0̄〉 = 1√
D

∑
i |i〉. To obtain the graph state, the state is initialized in |0̄〉⊗n

and conditional phase gates CZij are applied corresponding to the graph. In the
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case of qubits, |0̄〉 = 1√
2
(|0〉+ |1〉), and CZij is the controlled Z gate

CZij =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (1.115)

Local unitary equivalence of graph states

Let us for now focus on graph states for qubits. To understand when two non-
isomorphic graphs give non-identical but comparable quantum states, let us make a
small detour: When comparing quantum states, equivalence up to local unitaries
(LU) is often considered. That is, two n-qubit states % and σ are said to be LU-
equivalent if there exist the unitaries U1, . . . , Un ∈ SU(2), such that

% = U1 ⊗ · · · ⊗ Un σ U †1 ⊗ · · · ⊗ U †n . (1.116)

If no such unitaries exist, the states are said to be LU-inequivalent.
An interesting subset of unitaries to consider is the so-called local Clifford group

Cln. It is obtained by the n-fold tensor product of the one-qubit Clifford group C1,
generated by

C1 =
〈
H =

1√
2

(
1 1
1 −1

)
, P =

(
1 0
0 i

)〉
. (1.117)

The group C1 maps the one-qubit Pauli group G1 = 〈±i,±1, X, Y, Z〉 to itself
under conjugation. The n-qubit local Clifford group Cln = C1 ⊗ · · · ⊗ C1 (n times)
then similarly maps the n-qubit Pauli group Gn = G⊗n1 to itself under conjugation.
Interestingly, it was shown that the action of local Clifford operations on a graph
state can be understood as a sequence of local complementations on the corresponding
graph [59]. This works in the following way: Given a graph G, the local complemen-
tation with respect to vertex j is defined as the complementation of the subgraph
in G consisting of all vertices in its neighborhood N(j) and their associated edges.
That is, each edge occurring in the neighborhood of vertex j is removed, while
previously missing edges are added. We conclude, that for two graphs being in
the same local complementation orbit, their corresponding graph states must be
equivalent under the action of local Clifford operations, and vice versa. Thus they
must also be LU-equivalent. The contrary however is not necessarily true: It has
been shown that there are LU-equivalent graph states that are not also local Clifford
equivalent [60, 61].

1.2.2 Quantum exponential families

Considering a quantum state of interest, one might ask, whether or not this state
could possibly exist in naturally occurring systems. Similarly, an experimentalist
would be interested in preparing a desired state in the laboratory. However, both the
experimentalist as well as nature mostly have access to local interactions only - this
is because higher-order interactions are both suppressed in quantum field theory,
as well as difficult to engineer artificially. Additionally, under sufficient conditions,
physical systems thermalize when left alone for long enough [62]. That is, they have
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the form of a thermal state % = e−βH/Tr(e−βH), where H is the Hamiltonian of the
system and β the inverse temperature. In the limit of β → ∞, the density matrix
becomes proportional to the projector onto the ground state space. This Section is
concerned with the classification of thermal states according to the interaction struc-
ture present in their Hamiltonians. This leads to the notion of quantum exponential
families, and to that of irreducible correlations.

This approach is also of interest for aspects of statistical physics: According to
Jaynes’ maximum entropy principle, the classical probability distribution that describes
the current knowledge best is the one that maximizes the Shannon entropy [63, 64].
Thus given expectation values E[Ai(x)] = ai of functions Ai, one wishes to solve the
optimization problem

maximize −
∫
x
p(x) log p(x)dµ(x) (1.118)

subject to
∫
x
p(x)Ai(x)dµ(x) = E[Ai(x)] = ai (1.119)∫

x
p(x)dµ(x) = 1 , p(x) ≥ 0 . (1.120)

The resulting probability distribution can be seen as being maximally unbiased or
non-committal with respect to missing information, while being consistent with
all known constraints. Starting with a set of observables {Ai}, this results in the
classical exponential families, a class of distributions with parameters {θi} having the
form

pθ(x) = exp [
∑
i

θiAi(x)− ψ(θ)] , (1.121)

ψ(θ) = log

∫
exp[

∑
i

θiAi(x)dµ(x)] . (1.122)

A similar reasoning can be applied to density matrices: the maximization of the
von Neumann entropy (c.f. Sect. 1.1.5) under a set of constraints {〈Ai〉} singles out
thermal states of the form

% =
exp(

∑
λiAi)

Tr exp(
∑
λiAi)

(1.123)

as the maximally unbiased description of physical states [65]. The development of
quantum exponential families as part of information geometry was then strongly
shaped by the work of Amari for classical exponential families [66, 67]: A hierarchy
of exponential families is defined, obtained by considering increasingly local cor-
relation structures. This led to the notions of the classical information projection,
the k-body irreducible interactions, and a Pythagorean relation for the classical
relative entropy (also called Kullback-Leibler divergence). In the following, the
corresponding constructions are presented for quantum states.

Thermal states of few-body Hamiltonians

Let us consider systems of spin-1/2 particles. A two-local (or two-body) Hamiltonian
of a system consisting of N particles can be written as

H =
∑N

i,j=1

∑
αβ
λ

(ij)
αβ σ

(i)
α ⊗ σ(j)

β , (1.124)
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where σ(i)
α denotes a Pauli matrix {1, σx, σy, σz} acting on the i-th particle. Note that

the identity matrix is included, soH can also contain single particle terms. We denote
the set of all possible two-local Hamiltonians byH2 and in an analogous manner the
set of k-local Hamiltonians byHk. An example for a two-local Hamiltonian is the
Heisenberg model having nearest-neighbor interactions. However, this approach
generally ignores any geometrical arrangement of the particles. This motivates the
following definition for the so-called quantum exponential family.

Definition 6. The exponential family Q2 of thermal states of two-local Hamiltonians is
given by

Q2 =
{
τ
∣∣ τ =

e−βH

Tr[e−βH ]
, H ∈ H2

}
. (1.125)

Ground states can be reached in the limit of infinite inverse temperature β 7. For
any k, the exponential families Qk can be defined in a similar fashion. The set Q1

consists of mixed product states, the set QN of the full state space. The exponential
families form the hierarchy Q1 ⊆ Q2 ⊆ · · · ⊆ QN , and a suitable βH can be seen
as a way of parameterizing a specific density matrix τ = e−βH/Tr[e−βH ]. The
question arises, what states are in Qk? And for those which are not, what is their
best approximation by states in Qk? This will lead to the concepts of the information
projection and of irreducible higher-order interactions.

To make connections with concepts of recent interest, it was shown that states
in Q2 whose individual Hamiltonian interaction terms are so-called shield com-
muting are equivalent to quantum Markov networks [71]: if a state can be written
as τ = eH/Tr(eH), where H = HAB +HBC with [HAB, HBC ] = 0, then % shows a
vanishing conditional mutual information between the two regions A and C that
are shielded by the region B,

I(A : C|B) = S(%AB) + S(%BC)− S(%ABC)− S(%B) = 0 . (1.126)

One says thatA−B−C forms a quantum Markov chain. This result 8 resonates with
the Hammersley-Clifford theorem, which shows that classical Markov networks,
whose nodes are only dependent on their direct neighbors, can be expressed as a
classical thermal state with local two-body interactions only [76, 77].

Information projection

Here I present some results on the characterization of quantum exponential fami-
lies [78, 79]. Given a state %, consider its distance from the exponential family Q2

in terms of the relative entropy (or divergence) S(%||τ) = Tr[%(log(%)− log(τ))] (c.f.
7Note that in general, calculating ground or thermal states is numerically and analytically hard [68–

70].
8Furthermore, it has recently been shown that also approximate Markov chains on one-dimensional

lattices can be represented by thermal states of (geometrically) local Hamiltonians [72], and that
Gibbs states of local Hamiltonians on lattices can be well-approximated by certain tensor network
methods [73]. If the mutual information [Eq. 1.126] is not too large for some state %ABC , then a positive
map idA⊗TB→BC can be found to approximately reconstruct %ABC from its marginal %AB [74]. Further
interesting aspects regarding local Hamiltonians, such as area laws and the spreading of correlations
(so-called Lieb-Robinson bounds), can be found in Ref. [75].
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Sect. 1.1.5). As the closest state to % in Q2, one obtains the so-called information
projection %̃2.

Definition 7. The information projection %̃k of a state % is the unique closest state inQk in
terms of the relative entropy,

%̃k = argminτ∈Qk S(%||τ) . (1.127)

Following equivalent characterizations of the information projection are known:

Proposition 1 ([78, 79]). Let % be a quantum state, and %̃k its information projection. Then
(a) %̃2 is the unique minimizer of the relative entropy of % from the set Q2,

%̃2 = argminτ∈Q2
S(%||τ) . (1.128)

(b) Of the set of states having the same two-body reduced density matrices (2-RDMs) as %,
denoted byM2(%), %̃2 has a maximal von Neumann entropy

%̃2 = argmaxµ∈M2(%) S(µ) . (1.129)

(c) Finally, %̃2 is the unique intersection of Q2 andM2(%).

From (b) it follows that if for a state σ another state % of higher entropy but
having the same 2-RDMs can be found, then σ must lie outside of Q2. This fact will
be used in Chpt. 2 to characterize the convex hull conv(Q2).

Irreducible interactions

The irreducible higher-order interaction of a state is defined by its relative entropy
distance to Qk,

Dk(%) = S(%||%̃k) . (1.130)
States not in Q2 are said to have irreducible interactions of order three or higher,
because they contain information which is not already present in their 2-RDMs. This
can be seen from the characterization in Eq. (1.129): The 2-RDMs are then already
sufficient to reconstruct the global state from its marginals, according to Jaynes’
maximum entropy principle [63, 80]. This is conceptionally nice, but also has certain
drawbacks. Importantly, the irreducible interaction, as quantified by the relative
entropy, is not continuous, as shown in Ref. [81]. In addition, the relative entropy
is difficult to estimate experimentally without doing state reconstruction, so other
distances such as the fidelity are preferable. These properties make the relative
entropy somewhat problematic and give further reasons why we will consider the
convex hull conv(Qk) in Chpt. 2.

From the Pythagorean relation [c.f Eq. (1.139)] [82], one has

S(%||%̃1) = S(%||%̃n−1) + S(%̃n−1||%̃n−2) + · · ·+ S(%̃2||%̃1) . (1.131)

Thus the correlations of a state can be decomposed into

Dk(%) = Dn−1(%) +Dn−2(%̃n−1) + · · ·+Dk(%̃k+1)

= Cn(%) + Cn−1(%) + · · ·+ Ck+1(%) , (1.132)

where Ci(%) = Di−1(%̃i). Because the quantities Dk≥2 can increase under local oper-
ations, the Ci(%) as attributable to i-body interactions should be seen as measuring
complexity, rather than as measuring entanglement [78].
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Quantum information geometry

The marginal setMk(%) consists of quantum states having the same k-party reduced
density matrices (k-RDMs) as %

Mk(%) = {µ |µA = %A for all |A| ≤ k} , (1.133)

where µA is the reduced state obtained by tracing out all subsystems not contained
in A. This set is convex, as states stay in the marginal family under convex combi-
nation. Recall that the exponential family Qk consists of thermal states of k-local
Hamiltonians

Q2 =
{
τ
∣∣ τ =

eH

Tr[eH ]
, H ∈ H2

}
. (1.134)

In contrast to the marginal set, the exponential families Qk are, apart from Qn, not
convex. To see this, note that conv(Q1) is the set of separable states, having a volume
and a number of free parameters corresponding to the dimension of the state space.
In addition, conv(Qk) is larger than the set of separable states for k ≥ 2. However,Qk
has not as many free parameters and is a set of measure zero. Thus Qk ( conv(Qk),
and Qk cannot be convex.

The relations between the marginal set and the exponential family originate in
two special ways to parametrize a quantum state [83]. These are the affine (also
called mixed) and the exponential representations

%aff = 1/D + ηiAi , η ∈ [−1, 1]D
2−1 ,

%exp = exp[θiAi − ψ(θ)] , θ ∈ RD2−1 , (1.135)

where D is the dimension of the system, {Ai} is a suitable orthonormal basis of the
operator space, and we sum over repeated indices. The Massieu function ψ(θ) =
log Tr[expH] is not only required for normalization, but also defines, together with
the potential φ(η) = −S(η) = Tr[% log %], a Legendre transform ψ(θ) + φ(η)− θiηi =
0 . The relations

ηi =
∂ψ(θ)

∂θi
= Tr[%Ai] and θi =

∂φ(η)

∂ηi
= Tr[HAi] (1.136)

follow. For any two states %(η) and %′(θ′), the following Pythagorean relation for the
relative entropy holds [82]

S(%||%′) = φ(η) + ψ(θ′)− ηiθ′i , (1.137)

and its repeated application yields

S(%||%′′) = S(%||%′) + S(%′||%′′) + (ηi − η′i) · (θ′i − θ′′i ) . (1.138)

Recall that the information projection %̃k of % is the element inMk(%) having the largest
von Neumann entropy. Given %, its information projection %̃k, and a τ ∈ Qk, the
Pythagorean relation then simplifies to

S(%||τ) = S(%||%̃k) + S(%̃k||τ) . (1.139)
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Mk(%)Qk

%

τ
%̃k

Figure 1.2: The information projection %̃k lies in the unique intersection of Qk and
Mk(%). It is also the minimizer of the relative entropy S(%||·) in Qk.

Thus the above definition of the information projection is equivalent to %̃ being in
the unique intersection of the exponential family Qk withMk(%), and to

%̃k = argminτ∈Qk S(%||τ) . (1.140)

This is illustrated in Fig. 1.2.
Let us consider two examples. First, consider the five-qubit ring cluster state

|C5〉 (c.f. Fig. 1.2.3) and its information projection onto Q2. The state |C5〉 has
maximally mixed 2-body marginals, and of the setM2(|C5〉), the maximally mixed
state has the highest entropy. Second, consider the one-parameter family of states
|GHZα〉 = (|000〉 + eiα |111〉)/

√
2. All of its two-party reduced states are equal to

(|00〉〈00|+ |11〉〈11|)/2. Also,

γ =

∫
α
|GHZα〉〈GHZα| dα

= (|000〉〈000|+ |111〉〈111|)/2 (1.141)

has the same 2-RDMs and is thus an element of the marginal set M2(|GHZα〉).
Additionally, γ is the information projection of |GHZα〉 onto Q2, as it is the element
of maximum entropy inM2(|GHZα〉). As known from Ref. [84], almost all three
qubit states are determined by their 2-RDMs, and thus the irreducible three-body
correlation is discontinuous at |GHZα〉. More examples can be found in Ref. [79].

1.2.3 Absolutely maximally entangled (AME) states

Multiparticle entanglement is central for the understanding of the possible quantum
advantages in metrology or information processing. When investigating multi-
particle entanglement as a resource, the question arises which quantum states are
the most entangled. Considering pure bipartite states, maximally entangled states
have maximally mixed reductions, such as the Bell state in Eq. (1.32). Considering
bipartite entanglement measures, one can argue that states which are maximally
entangled across any bipartition show the strongest form of entanglement [85, 86].
Accordingly, these states are also known as absolutely maximally entangled (AME)
[44, 48, 87–101]. The following definition makes this precise.
Definition 8 (AME states). A pure state of n parties, having D levels each, is called
absolutely maximally entangled (AME), if all reductions to bn2 c parties are maximally
mixed.
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Then maximal possible entanglement is present across each bipartition. Note
that when writing an AME state in its Schmidt decomposition across a bipartition
A|B with k = |A| ≤ |B|, it can with the help of Eq. (1.35) be brought into the
following form [88],

|φn,D〉 =
∑

i1i2...ik

|i1〉 |i2〉 . . . |ik〉 |φi1i2...ik〉 . (1.142)

Here, |i1〉 , . . . |ik〉 form a computational basis for the parties {1 . . . k}, and the states
{|φi1i2...ik〉} are mutually orthogonal.

Well-known examples of AME states are the Bell and GHZ states [Eqs. (1.32)
and (1.46)] on two and three parties respectively. AME states have been shown
to be a resource for a variety of quantum information-theoretic tasks that require
maximal entanglement amongst many parties, such as open-destination telepor-
tation, entanglement swapping, and quantum secret sharing [102, 88, 99]. They
can be seen as quantum error-correcting codes having parameters ((n, 1, bn2 c+ 1))D
(c.f. Def. 9), and are key building blocks for holographic quantum error-correcting
codes [103–105] 9. Thus, it is a natural question to ask for what number of parties
and local dimensions such states may exist [44, 85, 86].

The existence of AME states composed of two-level systems was until recently
still unresolved: Qubit AME states were known to exist for n = 2, 3, 5, and 6 parties,
all of which can be expressed as graph or stabilizer states, see Fig. 1.2.3 [44]. Of
particular interest was the case of four parties: While the existence of an AME state
was ruled out [86], best approximations (where not all reductions are maximally
mixed) have been presented 10 [96]. The existence of AME states of eight or more
qubits was excluded by linear programming bounds, using the so-called shadow
enumerator [44, 106, 107]; see also the bounds in Eq. (1.165) and Chpt. 5. The last
case concerning seven qubits was a long-standing open problem, first raised by
Calderbank et. al in a seminal article on the connection between qubit stabilizer
codes and classical codes over GF (4) [108] (c.f. Sect. 1.2.4). I will address this
question in Chpt. 3, where the existence of such a state is ruled out. This solves the
problem of AME states in the case of qubits [109].

Concerning larger local dimensions, the existence of AME states is only partially
resolved. Scott obtained the following bound on the existence of AME states [44].

Proposition 2 (Scott bound). An AME state of n parties having D levels each fulfills

n ≤
{

2(D2 − 1) n even,

2D(D + 1)− 1 n odd.
(1.143)

I will present a proof of this bound in Sect. 3.3. Curiously enough, AME states
exist for any number of parties, if the dimension of the subsystems is chosen large
enough [99]. Furthermore, different constructions for such states have been put
forward, based on graph states [47, 48], classical maximum distance separable
codes [99, 110], and combinatorial designs [91, 111]. As an example, the rightmost

9AME states are also called perfect tensors in this context.
10The case of four parties remains intriguing; an open problem concerns the four-party AME state

with D = 6.
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Figure 1.3: Left: qubit AME states on n = 2, 3, 5, 6 parties can be expressed as graph
states. Right: from this graph, AME states for all odd prime dimensions can be
obtained.

graph depicted in Fig. 1.2.3 is a four-party AME state for all odd prime dimen-
sions [48]. However, for many cases it is still unknown if AME states can exist: For
the current status of this question, see Table 5.2 in Chpt. 5 and Problem 35 in the list
of Open Quantum Problems of the IQOQI Vienna [112].

1.2.4 Quantum error-correcting codes

Quantum information processing inevitably happens in the presence of disturbance
from the environment. This can introduce errors on the information carriers, which
are quantum states. In order to subsequently recover the information from these
disturbances, some sort of error-correction has to be performed. Quantum error-
correcting codes (QECC) allow for such a mechanism. More precisely, a QECC is a
subspace of the Hilbert space, that can be reconstructed completely if only certain
types of disturbances occur. The mere existence of such error-correcting techniques
in the quantum domain is already highly surprising for several reasons [113, 114]:

1. Quantum errors: While classical errors are discrete, quantum errors are contin-
uous by nature. Thus it is unclear if any methods from the theory of discrete
classical error-correcting codes can be adapted to quantum errors.

2. No-cloning: The information has to be encoded in some sort of redundant
way. However, the no-cloning theorem forbids to simply copy an unknown
state (c.f. Sect. 1.1.3).

3. Measurement: In order to correct an error, information about it has to be
acquired. A measurement of the system however will collapse the wave
function and is likely to destroy the information encoded in the state.

To address these challenges, consider the simplest error-correcting code, the
three-qubit bit-flip code: Define the two logical states

|0L〉 = |000〉 ,
|1L〉 = |111〉 . (1.144)

During the encoding, any superposition α |0〉+β |1〉will thus be mapped to α |000〉+
β |111〉 11. Any (qu)bit-flip on a single party, e.g. a on the third party, mapping |000〉
to |001〉 and |111〉 to |110〉, can be detected by majority voting. Note that in order

11Note that this is not the same as making two additional copies of the state, as in(
α |0〉+ β |1〉

)
−→

(
α |0〉+ β |1〉)(α |0〉+ β |1〉)(α |0〉+ β |1〉).
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to do this, we cannot simply measure each qubit - this would collapse the state,
destroying the encoded information. Instead, a syndrome measurement is done: By
performing the parity measurements Z1Z2 and Z2Z3, the position of the bit-flip
error can be identified. In practice, this is done by coupling a helper qubit, termed
ancilla, by conditional gates CZij = diag(1, 1, 1,−1) between parties i and j. To
implement the parity measurement e.g. Z1Z2, the ancilla (on position 4) is coupled
with the gates CZ14 and CZ24. Measuring the ancilla with Z4, the outcome will be
+1 if the first and second qubit are in the same state, and −1 otherwise. The parity
measurement Z2Z3 is performed in a similar way. Crucially, the logical states, being
eigenvectors of Z1Z2 and Z2Z3, are left undisturbed. After the identification of the
error, it can subsequently be corrected by a recovery operation, which in the case of
〈Z1Z2〉 = 1 and 〈Z2Z3〉 = −1 consists of an X3 gate on the third qubit.

With this, the problem of cloning quantum states and of state collapse by the
measurement is circumvented. The continuous nature of quantum errors can further
be addressed by recognizing that any error can linearly be decomposed into a discrete
set of errors. If a code is able to correct these, their linear combination can also be
corrected [115].

Definition of QECC

From the operational perspective, a subspace C is a quantum error-correcting code
if there exists a recovery procedure R which corrects the error map E . Thus one
requires that

R ◦ E ∝ I on C . (1.145)

The errors or noise acts on states in (CD)⊗n as a completely positive trace preserving
(CPTP) superoperator E(·). As any CPTP map, E can be decomposed in the Kraus
representation (c.f. Sect. 1.1.3) [8],

E(·) =
∑
µ

Eµ(·)E†µ , with
∑
µ

E†µEµ = 1 , (1.146)

with Kraus operators {Eµ}. The recovery mapR is often explicitly given, however
for the definition of the code, only its existence is required. This is guaranteed if the
following requirements, the so-called Knill Laflamme conditions, are met.

Theorem 3 (Knill-Laflamme [116]). Let ΠC be the projector onto the code C. A necessary
and sufficient condition for the existence of an error-recovery operationR to correct a set of
errors {Eα} is that

ΠCE
†
µEνΠC = CµνΠC , (1.147)

where the matrix C = (Cµν) is Hermitian.

If the set of errors {Eµ} can be corrected, then so can the error map E(·) =∑
µEµ(·)E†µ. This can be seen by the linear decomposition of E in terms of error

operators Eµ. Thus the problem of correcting a continuum of errors is turned into
one of correcting a discrete set.

For the purposes of this thesis we are concerned with any kind of local but
independent errors. Thus we adapt a notion which is derived from Thm. 3, where
the concept of a specific error map is replaced with that of local errors. A local error
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Figure 1.4: Parameters of quantum codes.

basis {Eα} is given by the n-fold tensor product of a single-particle operator basis
{ej}, which includes the identity, e0 = 1. Then the notion of the weight wt(Eα) of
a basis element is well-defined, which is the number of sites it acts non-trivially
on. A suitable basis is the Heisenberg-Weyl basis, as introduced in Sect. 1.1.7. Note
however that the notions that follow are independent of any particular local error
basis chosen, as long as as the identity is included in the basis. A quantum error-
correcting code is then defined in the following way.

Definition 9 (QECC [44, 117]). A quantum error-correcting code C with distance d on a
system of n parties having local dimension D each is defined as a K-dimensional subspace
C, such that for any orthonormal basis {|jC〉} of C the Knill-Laflamme error conditions hold
for all errors of weight less than d,

〈iC |Eα |jC〉 = δijC(Eα) ∀Eα ∈ {Eα} : wt(Eα) < d . (1.148)

Thus any error Eα of weight less than the distance d affects all states lying in the
code space in the same way. The notation ((n,K, d))D is used to refer to such codes,
see Fig. 1.4. If K = Dk for some integer k, this can be seen as encoding k logical
quDits inton physical quDits, and the parameters are then often written as [[n, k, d]]D
12. If C(E) = Tr(E)/Dn, the code is called pure. By convention, codes with K = 1
(also called self-dual) are only considered codes if they are pure. Thus a self-dual
code of distance d, described by a projector ΠC = |ψ〉〈ψ|, fulfills Tr(Eα|ψ〉〈ψ|) = 0 for
allEα 6= 1 of weight smaller than d. Therefore these are simply pure quantum states
whose reductions onto (d− 1) parties are all maximally mixed, and are also called
(d− 1)-uniform states. In particular, AME states, whose reductions onto bn2 c parties
are maximally mixed, are self-dual QECC having the parameters ((n, 1, bn2 c+ 1))D.

A code with distance d can then be used to correct t = b(d− 1)/2c errors. This
leads to an equivalent formulation for a quantum error-correcting code to have
distance d, the requirement being

〈iC |E†αEβ |jC〉 = Cαβδij (1.149)

for any orthonormal code basis {|iC〉} spanning C and all Eα, Eβ with weights not
larger than t = b(d− 1)/2c.

Making new codes from old

Often, new codes can be created from known ones. Taking the partial trace over
subsystems of a pure code, its reduction can be obtained.

12Sometimes this notation is exclusively used for stabilizer codes, which will be introduced in
Sect.1.2.4.
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Theorem 4 (Rains [118], Theorem 20). Suppose C is a pure ((n,K, d))D code with
n, d ≥ 2. Then there exists a pure ((n− 1, DK, d− 1))D.

Two codes can also be concatenated, that is, the encoding is performed in series.
This new code is constructed by encoding each system of dimension D2 of an outer
code C2 using an inner code C1 having K1 = D2 codewords [119, 120].

Theorem 5 (Rains [118], Theorem 21). Let C1 be a ((n1,K1, d1))D1 and C2 be ((n2, D1, d2))D2 .
Let C = C2(C1) be any concatenation of C1 and C2. Then C is a ((n1n2,K1, d))D2 , with a
minimal distance d of at least d1d2.

As an example, the Shor code [115] is a concatenation of a three-qubit outer code,
protecting against single-qubit phase-flips,

|0〉 −→ |+++〉
|1〉 −→ |−−−〉 , (1.150)

with a three-qubit inner code that protects against single-qubit bit-flips,

|+〉 −→ |000〉+ |111〉
|−〉 −→ |000〉 − |111〉 . (1.151)

Concatenated, they protect against any error on a single qubit, and thus form a
((9, 2, 3))2 . The code space is spanned by the logical vectors |0L〉 and |1L〉, where

1√
2

(
|0L〉+ |1L〉

)
∝
(
|000〉+ |111〉

)(
|000〉+ |111〉

)(
|000〉+ |111〉

)
,

1√
2

(
|0L〉 − |1L〉

)
∝
(
|000〉 − |111〉

)(
|000〉 − |111〉

)(
|000〉 − |111〉

)
. (1.152)

The logical operations on the encoded qubit with the basis states |0L〉 and |1L〉 are
given by XL = X⊗9 and ZL = Z⊗9,

XL |0L〉 = |1L〉 ZL |0L〉 = |0L〉 ,
XL |1L〉 = |0L〉 ZL |1L〉 = − |1L〉 . (1.153)

Stabilizer codes

A particularly useful type of QECC are stabilizer codes. To introduce it, recall that the
generalized Pauli group GN consists of the elements

ωrXs1Zt1 ⊗ · · · ⊗XsnZtn , (1.154)

or sometimes

(
√
ω)rXs1Zt1 ⊗ · · · ⊗XsnZtn (1.155)

in even dimensions. Here,X andZ are the shift and clock operators inD dimensions,
and ω is the D’th root of unity (also see Sect. 1.1.7).
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As with graph states, a stabilizer code is defined by its stabilizer, which is an
Abelian subgroup of Gn 13 [45] .

Given k generator elements g1, . . . , gk ∈ Gn , the stabilizer S is the Abelian group
obtained by the multiplication of generator elements [45],

S =
{∏

gi11 g
i2
2 · · · gikk

∣∣ i1, . . . , ik ∈ {1, . . . , D − 1}
}
. (1.156)

The code space ΠC is then the (+1)-eigenspace of all stabilizer elements,

saΠCsa = ΠC ∀sa ∈ S . (1.157)

Consider a stabilizer code on n parties. Given a generator with (n− k) elements, the
stabilizer will contain Dn−k elements. If the dimension D is prime, the associated
coding space will have dimension Dk. Therefore, such a code will encode k quDits
into n quDits, denoted by [[n, k, d]]D. However, if D is not prime, this does not
necessarily need to be the case anymore [45].

Let us restrict on prime dimensions. The logical operators are obtained by extend-
ing the generator with a complete independent set of commuting operators Zi. If
the generator consists of (n− k) elements, this will consist of k elements Z1, . . . , Zk.
The remaining logical operators are given by the additional k operators X1, . . . , Xk

having the properties

Xisa = saXi , ∀sa ∈ S ,
XiZj = ZjXi , if i 6= j ,

XiZi = ω−1ZiXi . (1.158)

The logical operators Xi, Zi are in the normalizer N(S) = {n ∈ Gn |nS = Sn}, Thus
their action on the code space cannot be detected, and they can be used to perform
logical operations on the encoded states.

As an example, the Shor code [115] (introduced in the previous section) is a
stabilizer code, having the generator matrix

X X X X X X I I I
I I I X X X X X X
Z Z I I I I I I I
I Z Z I I I I I I
I I I Z Z I I I I
I I I I Z Z I I I
I I I I I I Z Z I
I I I I I I I Z Z
X X X X X X X X X
Z Z Z Z Z Z Z Z Z

. (1.159)

Each of the eight top rows is a generator element, thus the encoded space has
dimension 29−8 = 2. The last two rows are the logical operators XL and ZL that act
on the encoded logical qubit. These commute with all generators, and are in the
normalizer N(S) of the stabilizer. The Shor code, being able to correct for one error,
is a [[9, 1, 3]]2.

13This is reminiscent of the graph states introduced in Sect. 1.2.1. In fact, graph states are simply
stabilizer codes with K = 1 [54].
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Pauli GF (4)

I 0
X 1
Y ω
Z ω2

tensor products vectors
multiplication addition
[Mx, Ny] = 0 〈x,y〉 = 0

nothing multiplication
phases nothing

Table 1.1: Correspondences between qubit stabilizer codes and additive codes over
GF (4). The table is from Ref. [117].

Stabilizer codes and classical codes

Stabilizer codes are also called additive, because of their connection to classical codes.
In particular, qubit stabilizer codes are related to classical additive codes over the
finite field GF (4) that have a Hermitian trace inner product [106, 108]. If a qubit
stabilizer code has codewords of even weight only, the code is of type II, being of
type I otherwise. These types are sometimes denoted by 4H+

I and 4H+
II respectively.

This works in the following way [108]: Take GF (4) to consist of {0, 1, ω, ω2},
with ω2 = ω + 1 and ω3 = 1. The code consists of codewords that are vectors of
elements in GF (4), c = c1 . . . cn ∈ GF (4)n. The weight wt(x) of a vector x is the
number of its nonzero components. The conjugation of vectors is x̄ = x2, thus

0̄ = 0 1̄ = 1 ,

ω̄ = ω2 ω̄2 = ω . (1.160)

The trace is given by Tr(x) = x + x2, therefore Tr(0) = Tr(1) = 0 and Tr(ω) =
Tr(ω2) = 1. The Hermitian trace inner product of two vectors x = x1 . . . xn and
y = y1 . . . yn is given by

〈x,y〉 =
∑
i

Tr(xiȳi) . (1.161)

A code is additive, if the addition of two codewords yields a codeword again. Table 1.1
relates elements and operations on stabilizer codes with those of additive codes
over GF (4) [117]. The Pauli matrices are associated with elements of GF (4) by
the mapping {I → 0, X → 1, Y → ω,Z → ω2}. The multiplication of Pauli
elements, neglecting phases, corresponds to the addition of vectors overGF (4); their
commutator corresponds to the Hermitian trace inner product. If a code C is additive,
its dual code C⊥ is additive again, spanned by C⊥ = {x ∈ GF (4) | 〈x, c〉 = 0 ∀c ∈ C}.
A code with C ⊆ C⊥ is called self-orthogonal, a code with C = C⊥ self-dual.

Stabilizer codes can also be expressed as graph codes, and ifK = 1, these are the
graph states introduced in Sect. 1.2.1 [54]. Thus graph states correspond to self-dual
additive codes over GF (4). While a single graph states (having K = 1) cannot be used
to encode anything, they are however often highly entangled. As an example, the
six-qubit absolutely maximally entangled graph state of Fig. 1.2.3 corresponds to
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the classical hexacode [44]. It is generated by the rows of the generator matrix

1 0 0 1 ω ω
0 1 0 ω 1 ω
0 0 1 ω ω 1
ω 0 0 ω ω̄ ω̄
0 ω 0 ω̄ ω ω̄
0 0 ω ω̄ ω̄ ω

 . (1.162)

The code space consists of all the codewords that can be generated by the addition of
rows. In terms of a quantum code, this corresponds to the [[6, 0, 4]]2 qubit stabilizer
code obtained from the generator matrix

X I I X Y Y
I X I Y X Y
I I X Y Y X
Y I I Y Z Z
I Y I Z Y Z
I I Y Z Z Y

 . (1.163)

In the matrix above, each row represents a generator. Its stabilizer corresponds,
up to local unitaries, to the stabilizer of the six-qubit AME graph state depicted in
Fig. 1.2.3. Finally, note that expressing stabilizer codes in terms of graph states and
codes generalizes to prime power dimensions q = pl; stabilizer codes in q dimensions
are one-to-one related to classical additive codes over GF (q2) [121, 122].

Bounds on QECC

It is interesting to know for what parameters QECC can possibly exist. Here, I will
list some bounds on the existence of QECC.

Theorem 6 (Quantum Singleton bound [123]). Let C be a quantum code with parameters
((n,K, d))D. Then

K ≤ Dn−2d+2 . (1.164)

If equality holds, then C is pure to weight (n− d+ 2), that is Aj = 0 for all j < n− d+ 2.

Codes reaching equality in the quantum singleton bound are called quantum
maximum distance separable (QMDS), with parameters ((n,Dn−2d+2, d))D.

From the shadow inequalities (see Chpt. 5), Rains derived bounds for qubit codes.
Self-dual additive codes on qubits (i.e graph states) are called type II , if all its
codewords have even weight, and type I otherwise (also see Chpt. 5). Denote by
dII , dI their distances. The following bounds hold [44, 124, 125] 14:

dI ≤


2bn/6c+ 1 if n = 0 mod 6

2bn/6c+ 3 if n = 5 mod 6

2bn/6c+ 2 otherwise ,
(1.165)

dII ≤ 2bn/6c+ 2 . (1.166)
14Also see Table 11.1 in Ref. [106].
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Codes meeting the bound are called extremal. In fact, these bounds are general, and
carry over to non-additive codes.

Theorem 7 (Shadow bound: Theorem 13.4.1. in [106]). If a pure ((N, 1, d))2 exists,
then

d ≤
{

2bn/6c+ 3 if N = 5 mod 6 ,

2bn/6c+ 2 otherwise.
(1.167)

If a pure ((N,K, d))2 exists for K > 1, with 0 ≤ l ≤ 5, then

d ≤
{

2bn/6c+ 2 if N = 4 mod 6 ,

2bn/6c+ 1 otherwise.
(1.168)

Thus, qubit AME states having the parameters ((n, 1, bn2 c+ 1))2 may only exist
if n = 2, 3, 5, 6, 7. However, as I will show in Chpt. 3, an AME state of seven qubits
having the parameters ((7, 1, 4))2 is ruled out.

The quantum Hamming bound is a type of sphere packing bound, obtained by a
counting argument.

Theorem 8 (Quantum Hamming bound [126, 127]). Let C be a pure ((n,K, d))D. Then

K

b(d−1)/2c∑
j=0

(
n

j

)
(D2 − 1)j ≤ Dn . (1.169)

Proof. For C spanned by some orthonormal basis {|jC〉} to be pure,

〈iC |E†αEβ |jC〉 = Tr(E†αEβ)/Dn (1.170)

for all errors Eα,β ∈ E with wt(Eα,β) < b(d − 1)/2c. Thus the elements in the set
{Eα |iC〉}must be mutually orthogonal. Note that there are D2 − 1 different error
operators for on each site. Distributing exactly j local errors onto n sites must lead
to
(
n
j

)
(D2 − 1) orthogonal vectors. Summing over all possible errors of weight up to

t = b(n− 1)/2c, one obtains the bound.

The Quantum Gilbert-Varshamov bound is an existence bound on codes that must
not necessarily be pure.

Theorem 9 (Quantum Gilbert-Varshamov [126]). A ((n,K, d))D exists, if

K
2t∑
j=0

(
n

j

)
(D2 − 1)j ≥ Dn , (1.171)

where t = b(n− 1)/2)c.

Because this bound does not imply purity of the code, this bound however does
not give sufficient conditions for the existence of AME states.
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Quantum weight enumerators

Here I introduce quantum weight enumerators. These are polynomials that are useful
to characterize QECC. A thorough presentation is given in Chapter 3. The Shor-
Laflamme (weight) enumerators [118, 128] are defined for any two given Hermitian
operators M and N acting on (CD)⊗n, and are local unitary invariants. Their (un-
normalized) coefficients are given by 15.

Aj(M,N) =
∑

wt(E)=j

Tr(EM) Tr(E†N) , (1.172)

Bj(M,N) =
∑

wt(E)=j

Tr(EME†N) , (1.173)

where {E} is an local error basis that includes the identity (c.f. Sect. 1.1.7). The list
of coefficients (A0, . . . , An) is also called a weight distribution. The corresponding
enumerator polynomials are

AMN (x, y) =

n∑
j=0

Aj(M,N)xn−jyj , (1.174)

BMN (x, y) =

n∑
j=0

Bj(M,N)xn−jyj . (1.175)

While it might not be obvious from the definition, these enumerators are independent
of the local error-basis E chosen, and are thus local unitary invariants. As an example,
it can be shown that for absolutely maximally entangled states (AME) of n parties
having D levels each (c.f. Sect. 1.2.3), the weight enumerator is given by [44]

Aj(|φn,D〉) =
n!

(n− j)!

j∑
k=bn

2
c+1

(−1)j−k(D2k−n − 1)

k!(j − k)!
. (1.176)

The quantum MacWilliams identity relates Aj(M,N) and Bj(M,N).

Theorem 10 (quantum MacWilliams identity, Rains [106, 118]). Given two Hermitian
operators M and N acting on n systems having D levels each, then

AMN (x, y) = BMN

(x+ (D2 − 1)y

D
,
x− y
D

)
. (1.177)

Considering a QECC with parameters ((n,K, d))D, one sets M = N to be equal
to the projector ΠC onto the code space. The following results concerning QECC and
their Shor-Laflamme enumerators are known [118]: The coefficients Aj = Aj(ΠC)
and Bj = Bj(ΠC) are non-negative, and

KB0 = A0 = K2 , (1.178)
KBj ≥ Aj , (1.179)

with equality in the second equation for j < d. In fact, these conditions are not only
necessary but also sufficient for a projector ΠC to be a QECC.

15In fact, for higher dimensions, we chose a definition that is different, but equivalent, to the original
definition as found in Ref. [118].
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Theorem 11 ([118]). Let ΠC be a projector of rank K. Then ΠC is a code of distance d if
and only if

KBj(ΠC) = Aj(ΠC) ∀j < d . (1.180)

The shadow enumerator further constrains the values that the weight distribution
can take. Given AMN (x, y), is it obtained by

SMN (x, y) = AMN

(
(D − 1)x+ (D + 1)y

D
,
y − x
D

)
. (1.181)

Its coefficients Sj must be non-negative [107, 129]. In Chapter 5, I show how the
shadow enumerator constrains the correlations in quantum codes. In fact, it turns
out to be a type of monogamy relation that originates in the universal state inversion
map (c.f. 1.1.6), constraining the purities of reductions.

Given the parameters of a hypothetical quantum code, one can formulate a
linear program to find hypothetical weight distributions that satisfy Eqs. (1.177),
(1.178), (1.180), and (1.181). If no valid weights Aj(ΠC) can be found, a code with
the proposed parameters cannot exist. This therefore represents a way to prove the
non-existence of certain hypothetical states and QECC.

Theorem 12 (LP bound for general QECC, Thm. 21 in Ref. [108] and Thm. 10 in
Ref. [107]). If a ((n,K, d))D exists, then there is a solution to the following set of linear
equations and inequalities for Ai, Bi, and Si with 0 ≤ j ≤ n:

Ai, Bi, Si ≥ 0

A0 = K2

KBi = Ai (i < d)

KBi ≥ Ai (i ≥ d) ,

Bi = D−n
∑

0≤k≤n
Ki(k;n, 1, D2 − 1)Ak

Si = D−n
∑

0≤k≤n
(−1)kKi(k;n,D − 1, D + 1)Ak (1.182)

For pure codes, the third constraint above is strengthened to

KBj = Aj = 0 for all j < d . (1.183)

The Krawtchouk-like polynomial in Eq. (1.182) is given by (c.f. Appendix 5.12),

Km(k;n,E, F ) =
∑
α

(−1)α
(
n− k
m− α

)(
k

α

)
E[(n−k)−(m−α)]Fm−α . (1.184)

For qubit stabilizer codes, one additionally has that [108] (also see Sect. 4.4)∑
i even

Ai = 2n−log2K−1 for type I codes. (1.185)∑
i even

Ai = 2n−log2K for type II codes, (1.186)
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1.2.5 Semidefinite programming

Semidefinite programming (SDP) is a type of convex optimization 16, that can effi-
ciently be solved and the result of which is certifiable [130–133]. It is of use in various
fields such as convex constrained optimization, control theory, and combinatorial
optimization. In quantum information, it can be used to study distillable entangle-
ment [134], nonlocal correlations [135, 136], separability [137], steering [138], and
measurement compatibility [139] amongst other applications, often approximating
NP-hard problems [140].

A semidefinite program is in its primal form defined as 17

minimize
x∈Rm

cTx

subject to F0 +
m∑
i=1

xiFi ≥ 0 . (SDP-P)

where the optimization is performed over the variable x ∈ Rm, c = (c1, . . . , cm)T ∈
Rm is the problem vector, and {Fi} are Hermitian problem matrices. To every primal
SDP an associated dual problem is given by

maximize
Z∈Bn+

−Tr(F0Z)

subject to Z ≥ 0

Tr(FiZ) = bi for i = 1, . . . ,m , (SDP-D)

where the optimization of Z is performed over the cone of positive semi-definite
matrices Bn+ of size n× n. An SDP is feasible if a solution, called feasible point, exists.
Note that the set of feasible points is always convex. For c = 0, the primal problem
reduces to a problem of feasibility instead of minimization. If the primal and dual
problem are both feasible, their difference in objective values is

cTx− [−Tr(F0Z)] =
m∑
i=1

cixi + Tr(F0Z)

=
m∑
i=1

Tr(FiZ)xi + Tr(F0Z)

= Tr[(
m∑
i=1

xiFi + F0)Z] ≥ 0 . (1.187)

This difference is called the duality gap, and its non-negativity is known as weak
duality: The solution of the dual problem lower bounds any solution to the primal

16Convex optimization concerns itself with the optimisation of convex functions over convex sets.
17Note that there are different equivalent formulations of SDPs to be found in the literature. In

particular, the notions of the primal and dual program can be interchanged, and it is possible to
formulate them in a completely symmetric way [140]. Often, the primal problem is minimized, while
the dual problem is maximized. I choose to take the approach and notation as used in Refs. [130]
and [141].
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problem, and vice versa. If the feasible sets of both the primal and the dual problem
are non-empty, then for every ε > 0 there exists feasible x and Z such that

Tr(cTx) + Tr(F0Z) < ε . (1.188)

Then the solutions x and Z are known to be ε-suboptimal. Consequently, ε serves as
a stopping criterion in numerical algorithms. Strong duality holds if the primal and
dual program achieve the same optimal value. This is the case if both the primal
and dual problem are strictly feasible, that is, when there exist x with F (x) > 0
and Z > 0 with Tr(FiZ) = ci [130]. Then one has the complementary slackness
condition of a vanishing duality gap,

Tr
[( m∑

i=1

xiFi + F0

)
Z
]

= 0 . (1.189)

If the primal problem is infeasible, a certificate Z can be given in the following way:
If there exists an operator Z ≥ 0, such that Tr(FiZ) = 0 for all i = 1, . . . ,m while
Tr(F0X) < 0, the duality gap would be negative: then the primal problem must be
infeasible. In entanglement theory, a certificate for a suitable primal program can
take the role of a witness (c.f. Sect. 1.1.6) [141, 142].

Note that the primal problem in Eq. (SDP-P) can be seen as a Bloch decomposition
of a positive operator (c.f. Sect. 1.1.7), such as a quantum state. Further constraints
on the state, such as certain marginals or a positive partial transpose, can naturally
be stated in terms of the Bloch coefficients. Interestingly, also quadratic constraints
can be incorporated: Terms of the form (Ax + b)T (Ax + b) − cTx − d ≤ 0 can be
written as (

1 Ax+ b
(Ax+ b)T cTx+ d

)
≥ 0 . (1.190)

Such additional constraints G(i) are included into the primal SDP by enlarging the
term F (x) = F0 +

∑m
i=1 xiFi ≥ 0 such that is has the block-diagonal form

F (x)⊕G(1)(x)⊕ · · · ⊕G(k)(x) ≥ 0 . (1.191)

Many NP-hard problems admit a convex relaxation as an SDP. As an example,
the problem of minimizing a quadratic form over the vertices of a hypercube is
NP-hard [132]:

minimize
x

xTQx

subject to xi ∈ {+1,−1} for all i = 1, . . . , n ,

whereQ = QT is a symmetric matrix of size n×n. Its optimal solution can be lower
bounded by solving the SDP-pair of the primal program given by

minimize
X

Tr(QX)

subject to X ≥ 0

Xii = 1 for all i = 1, . . . , n , (1.192)
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and its dual

maximize
Λ

Tr(Λ)

subject to Λ diagonal
Q− Λ ≥ 0 . (1.193)

This can be seen as follows: Writing X = xxT , the original objective function in
Eq. (1.192) reads xTQx = Tr(QxxT ) = Tr(QX). The feasible set is then given by{
X |X ≥ 0, Xii = 1, rank(X) = 1

}
. By dropping the rank constraint, one obtains

the SDP above.
Finally, note that linear programs (LP) of the form

minimize
x∈Rm

cTx

subject to Ax+ b ≥ 0 . (LP)

with componentwise inequalities are a special case of SDPs, where the problem
matrix A is diagonal. In this view, semidefinite programs are a natural extension of
linear programs, where componentwise inequalities are replaced by matrix inequal-
ities. While the feasible sets of LPs are polyhedral with planar faces, the feasible
sets of SDPs are spectrahedral, having additional curved boundaries.

1.2.6 The quantum marginal problem

The relation between the whole to its parts lies at the heart of quantum entanglement.
Namely, if a many-party pure quantum state is not the tensor product of its individual
parts, the state is said to be entangled. A particularly intriguing consequence is, that
given a set of quantum marginals, it is not clear from the outset if and how they can
be assembled into a joint pure state. This is the so-called quantum marginal problem
(QMP) which will resurface in the following Chapters in various disguises.

Originally coined the N -representability problem by Coleman, its first formula-
tion asks how to recognize when a putative two-party reduced density matrix is a
reduction of a N -particle system of indistinguishable fermions [143]. In fact, the
N -representability problem has been highlighted as one of the most prominent
research challenges in theoretical and computational chemistry [144]. If it was re-
solved, it would e.g. allow to efficiently calculate the binding or ground state energy
of molecules.

Coleman gave a necessary and sufficient constraint for the QMP in the case of
one-body marginals of fermions.

Theorem 13 (Coleman [36, 143]). A density matrix % is the reduced one-body marginal
of a system of n fermions, if and only if each of its eigenvalues λ satisfies 0 ≤ λ ≤ 1/n.

This question was subsequently expanded to the case of distinguishable particles,
and in particular, to systems of qubits. In the case of the marginals being disjoint,
the conditions for the existence of a pure joint qubit state has been completely
characterized: it is given by the so-called polygon inequalities, which constrain the
spectra of reductions.
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Theorem 14 (Polygon inequalities, Higuchi et al. [145]). Let %1, . . . , %n be one-qubit
density matrices, and denote by λi the smaller eigenvalue of %i. Then there exists a compatible
pure n-qubit state with the one-body marginals {%i}, if and only if the eigenvalues {λi}
satisfy the polygon inequalities

λi ≤
∑
j 6=i

λj . (1.194)

Constraints for the existence of a mixed joint state on two qubits have subse-
quently been obtained by Ref. [146], and for the case of a joint pure three qutrit case
by Ref. [147]. Solving the QMP in case of disjoint marginals completely, Klyachko
extended the spectral conditions for the existence of a mixed joint state on n parties
of arbitrary local dimensions [148, 149]. However, these conditions result already for
more than four qubits in thousands of inequalities [36]. The QMP in the Gaussian
setting was settled in Ref. [150].

The quantum marginal problem with overlapping marginals has turned out to
be intractable - only necessary conditions for the general case are known [36, 151–
153], some of which are based on entropic inequalities. Let us consider the case of
overlapping two-party reductions of three particles. The strong subadditivity states
that (c.f. Sect. 1.1.5),

S12 + S23 ≥ S123 + S2 , (1.195)

where S12 = S(%12), etc. Discarding the non-negative term S123 yields the require-
ment

S12 + S23 ≥ S2 . (1.196)

By purification of Eq.(1.195), one obtains an equivalent, but, in the context of the
QMP, stronger relation,

S12 + S23 ≥ S1 + S3 . (1.197)

However, this is only a sufficient condition for the QMP on three parties: it has been
shown that there exist %12 and %23 that satisfy above condition, but for which no
valid extension %123 can be found [152].

Another criterion for the tripartite case is an inequality obtained by Butterley et
al. for qubits.

Theorem 15 (Quantum Bell-Wigner inequality [36]). Suppose %12, %23 and %13 are
two-qubit reductions of a three qubit state, with compatible one-body marginals. Then

0 ≤ ∆ ≤ 1 , (1.198)

where ∆ = 1− %1 − %2 − %3 + %12 + %13 + %23.

Subsequently, it has been shown that while this requirement is necessary, it is
not sufficient [37]. This is in stark contrast to the classical case, where an analogous
requirement is indeed also sufficient for a joint probability distribution to exist [36].
Above relation will be extended in Sect. 5.11.2 to a family of inequalities for all finite
local dimensions and an arbitrary number of parties.

Interestingly, the special case of the symmetric extension of two qubits, where
a two-party density matrix %AB is extended to a tripartite state %ABB′ that satisfies
TrB(%ABB′) = TrB′(%ABB′) , has completely been characterized.
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Theorem 16 ( [154]). A two qubit state %AB admits a symmetric extension %ABB′ if and
only if

Tr(%2
B) ≥ Tr(%2

AB)− 4
√

det %AB . (1.199)

Further constraints on the QMP are imposed by relations involving entanglement
measures. The key idea is that entanglement cannot be shared arbitrarily amongst
the individual subsystems: rather, so-called monogamy of entanglement relations
constrain the possible correlations which quantum states can exhibit [155, 156].
In its most basic form, this concept can be expressed as follows: If two parties A
and B are maximally entangled with each other, then neither A nor B can also be
entangled with a third party C. Monogamy relations are different formulations of
this concept, imposing restrictions on how quantum correlations can be shared by
multiple parties. This was first made precise for 2-level systems in a seminal article
by Coffman, Kundu, and Wootters [156]: consider states of two qubits, and define
the spin-flipped state as %̃ = (σy ⊗ σy)%T (σy ⊗ σy) 18. Recall that the concurrence
for a two qubit mixed state %AB is given by CAB = max{0, λ1 − λ2 − λ3 − λ4},
where λ1, λ2, λ3, λ4 are the square roots of the eigenvalues of the operator√%%̃√% in
descending order (c.f. Sect. 1.1.6). The concurrence is an entanglement monotone,
being non-increasing under stochastic LOCC operations. The following relation
holds:

Theorem 17 (Coffman-Kundu-Wootters monogamy [156]). For all pure three-qubit
states |ψ〉 it holds that

C2
AB + C2

AC ≤ C2
A(BC) , (1.200)

where C2
A(BC) = 4 det(%A).

Note that above, C2
A(BC) can be seen as the concurrence on an effective two-

qubit pure state: because %ABC is pure, the reduction %BC can only have at most
rank two. Considering the three-partite states introduced in Eq. (1.46), the W-state
reaches equality in above equation. In contrast, the GHZ state does not reach
equality; its so-called tangle is non-zero and the state contains essential three-way
entanglement. A conjecture extending the Coffman-Kundu-Wootters inequality
[Eq. (1.200)] to more parties was later proven by Osborne and Verstraete [157], and
similar relations constraining multipartite quantum correlations have been found
for other measures such as squashed entanglement, entanglement negativity, and
non-local correlations [158–162].

Related to the QMP are conditions for joint states to be unique, given their
marginals - a question we will address in Chpt. 2. This is motivated by a naturally
arising physical question: Considering a Hamiltonian having local interactions
only, its ground state is non-degenerate only if no other states with the same local
reductions exist. In this context, Linden et al. showed that almost every pure
state of three qubits is completely determined by its two-particle reduced density
matrices [84, 163]. This result was extended to systems of n qubits, where it was
shown that having access to a certain subset of all marginals of size bn2 c+1 is already
enough to uniquely specify a joint pure state [164].

18This is the universal state inversion as encountered in Eq. (1.73).
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Despite many efforts, a general necessary and sufficient condition for the QMP
with overlapping marginals is still lacking. We want to add that, while the QMP
can be stated as a semidefinite program in principle [165], its formulation scales
exponentially in system size. In fact, the quantum marginal problem has been shown
to be QMA-complete, being too hard to solve, even when having access to a quantum
computer [166, 167].



Chapter 2

Ground and thermal states of local
Hamiltonians

The question whether a given quantum state is a ground or thermal state of a
few-body Hamiltonian can be used to characterize the complexity of the state and
is important for possible experimental implementations. We provide methods to
characterize the states generated by two- and, more generally, k-body Hamiltonians
as well as the convex hull of these sets. This leads to new insights into the question
which states are uniquely determined by their marginals and to a generalization of
the concept of entanglement. Finally, certification methods for quantum simulation
can be derived. This Chapter is based on Project [A].

2.1 Introduction

Interactions in quantum mechanics are described by Hamilton operators. The study
of their properties, such as their symmetries, eigenvalues, and ground states, is
central for several fields of physics. Physically relevant Hamiltonians, however, are
often restricted to few-body interactions, as the relevant interaction mechanisms
are local. But the characterization of generic few-body Hamiltonians is not well
explored, since in most cases one starts with a given Hamiltonian and tries to find
out its properties.

In quantum information processing, ground and thermal states of local Hamil-
tonians are of interest for several reasons: First, if a desired state is the ground or
thermal state of a sufficiently local Hamiltonian, it might be experimentally prepared
by engineering the required interactions and cooling down or letting thermalize
the physical system [168–174]. For example, one may try to prepare a cluster state,
the resource for measurement-based quantum computation, as a ground state of
a local Hamiltonian [175]. Second, on a more theoretical side, ground states of
k-body Hamiltonians are completely characterized by their reduced k-body density
matrices. The question which states are uniquely determined by their marginals has
been repeatedly studied and is a variation of the representability problem, which
asks whether given marginals can be represented by a global state [143]. It has
turned out that many pure states have the property to be uniquely determined by a
small set of their marginals [84, 163, 164], and for practical purposes it is relevant
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conv(Q2) conv(Q1)
= SEP

state space

Q2

Q1

Figure 2.1: Schematic view of the state space, the exponential families Q1 and
Q2, and their convex hulls. While the whole space of mixed states is convex, the
exponential families are non-convex low-dimensional manifolds. The convex hull of
Q1 are the fully separable states and our approach allows to characterize the convex
hull for arbitrary Qk.

that often entanglement or non-locality can be inferred by considering the marginals
only [142, 176, 177].

In this Chapter we present a general approach to characterize ground and ther-
mal states of few-body Hamiltonians. We use the formalism of exponential families,
a concept first introduced for classical probability distributions by Amari [66] and
extended to the quantum setting in Refs. [78, 79, 82, 83] (also see Sect. 1.2.2). This
offers a systematic characterization of the complexity of quantum states in a concep-
tionally pleasing way. We derive two methods that can be used to compute various
distances to thermal states of k-body Hamiltonians: The first method is general and
uses semidefinite programming, while the second method is especially tailored to
cluster and, more generally, graph states. In previous approaches it was only shown
that some special states are far away from the eigenstates of local Hamiltonians [178],
but no general method for estimating the distance is known.

Our approach leads to new insights in various directions. First, it has been shown
that cluster and graph states can, in general, not be exact ground states of two-body
Hamiltonians [175], but it was unclear whether they still can be approximated
sufficiently well. Our method shows that this is not the case and allows to bound
the distance to ground and thermal states. Second, as shown in Ref. [84], almost all
pure states of three qubits are completely determined by their two-party reduced
density matrices. As we prove, for N ≥ 5 qubits or four qutrits this is not the
case, but we present some evidence that the fact might still be true for four qubits.
Finally, our method results in witnesses, which can be used in a quantum simulation
experiment to certify that a three-body Hamiltonian or a Hamiltonian having long-
range interactions was generated.

2.2 The setting

Let us recall the notion of quantum exponential families (c.f. Sect. 1.2.2). A two-local
(or two-body) Hamiltonian of a system consisting of N spin-1/2 particles can be
written as

H =
∑N

i,j=1

∑
αβ
λ

(ij)
αβ σ

(i)
α ⊗ σ(j)

β , (2.1)
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where σ(i)
α denotes a Pauli matrix {1, σx, σy, σz} acting on the i-th particle etc. Note

that the identity matrix is included, so H can also contain single particle terms. We
denote the set of all possible two-local Hamiltonians by H2 and in an analogous
manner the set of k-local Hamiltonians byHk. An example for a two-local Hamilto-
nian is the Heisenberg model having nearest-neighbor interactions. However, our
approach generally ignores any geometrical arrangement of the particles. Finally,
for an arbitrary multi-qubit operator A we call the number of qubits where it acts
on non-trivially the weight of A. In practice, this can be determined by expanding A
in terms of tensor products of Pauli operators and looking for the largest non-trivial
product.

The set we aim to characterize is the so-called exponential family Q2, consisting
of thermal states of two-local Hamiltonians

Q2 =
{
τ
∣∣ τ =

e−βH

tr[e−βH ]
, H ∈ H2

}
. (2.2)

Ground states can be reached in the limit of infinite inverse temperature β. For any k,
the exponential families Qk can be defined in a similar fashion. The set Q1 consists
of mixed product states, the set QN of the full state space. The exponential families
form the hierarchy Q1 ⊆ Q2 ⊆ · · · ⊆ QN , and a suitable βH can be seen as a way of
parameterizing a specific density matrix τ = e−βH/ tr[e−βH ]. The question arises,
what states are inQk? And for those which are not, what is their best approximation
by states in Qk?

It turns out to be fruitful to consider the convex hull

conv(Q2) =
{∑

i
pi τi | τi ∈ Q2 ,

∑
i
pi = 1 , pi ≥ 0

}
,

and ask whether a state is in this convex hull or not (see also Fig. 2.1). The convex hull
has a clear physical interpretation as it contains all states that can be generated by
preparing thermal states of two-body Hamiltonians stochastically with probabilities
pi. In this way, taking the convex hull can be seen as a natural extension of the
concept of entanglement: The thermal states of one-body Hamiltonians are just
the mixed product states and their convex hull are the fully separable states of N
particles [14]. In this framework, the result of Linden et al. [84] can be rephrased
as stating that all three-qubit states are in the closure of the convex hull conv(Q2),
since nearly all pure states are ground states of two-body Hamiltonians.

Finally, the characterization of the convex hull leads to the concept of witnesses
that can be used for the experimental detection of correlations [14]. Witnesses are
observables which have positive expectation values for states inside a given convex
set. Consequently, the observation of a negative expectation value proves that a state
is outside of the set. We will see below that such witnesses can be used to certify
quantum simulation.

2.3 Characterization of conv(Qk) via semidefinite program-
ming

Our first method to estimate the distance of a given state to the convex hull of Q2

relies on semidefinite programming [179]. This optimization method is insofar
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useful, as semidefinite programs are efficiently solvable and their solutions can be
certified to be optimal. Moreover, ready-to-use packages for their implementation
are available.

As a first step we formulate a semidefinite program to test if a given pure |ψ〉
state is outside of Q2. Recall that it has been shown that the following three charac-
terizations for the information projection %̃2 ∈ Q2 are equivalent (c.f. Sect. 1.2.2) [78]:
(a) %̃2 is the unique minimizer of the relative entropy of % from the set Q2,

%̃2 = argminτ∈Q2
S(%||τ) . (2.3)

(b) Of the set of states having the same two-body reduced density matrices (2-RDMs)
as %, denoted byM2(%), %̃2 has a maximal von Neumann entropy

%̃2 = argmaxµ∈M2(%) S(µ) . (2.4)

(c) Finally, %̃2 is the unique intersection of Q2 andM2(%). From the characterization
in Eq. (2.4), it follows that it suffices to find a different state % having the same
2-RDMs as |ψ〉. If % is mixed, its entropy is higher than that of |ψ〉, meaning that
|ψ〉 cannot be its own information projection and therefore lies outside of Q2. If % is
pure, consider the convex combination (|ψ〉〈ψ|+%)/2, again having a higher entropy.
To simplify notation we define for an arbitrary N -qubit operator X the operator
Rk(X) as the projection of X onto those operators, which can be decomposed into
terms having at most weight k. In practice, Rk(X) can be computed by expanding
X in Pauli matrices, and removing all terms of weight larger than k. Note that Rk(%)
may have negative eigenvalues.

The following semidefinite program (c.f. Sect. 1.2.5) finds a state with the same
k-body marginals as a given state |ψ〉,

minimize
%

tr(%|ψ〉〈ψ|)

subject to Rk(%) = Rk(|ψ〉〈ψ|)
tr[%] = 1, % = %†, % ≥ δ1 . (2.5)

While this program can be run with δ = 0, it is useful to choose δ to be strictly
positive. Then, a strictly positive % may be found, which is guaranteed to be distant
from the state space boundary. Consequently, if |ψ〉 is disturbed, one can still expect
to find a state with the same reduced density matrices in the vicinity of %. This
can be used to prove that the distance to Q2 is finite, and will allow us to construct
witnesses for proving irreducible correlations (or interactions) in |ψ〉. We make
this rigorous in the following Observation. For that, let B(|ψ〉) be the ball in trace
distance DTr(µ, η) = 1

2 tr(|µ− η|) centered at |ψ〉.

Observation 18. Consider a pure state |ψ〉 and a mixed state % ≥ δ1 with Rk(%) =
Rk(|ψ〉〈ψ|). Then, for any state σ in the ball Bδ(|ψ〉) a valid state %̃ in Bδ(%) can be found,
such that their k-party reduced density matrices match. Moreover, the entropy of %̃ is larger
than or equal to the entropy of σ. This implies that the ball Bδ(|ψ〉) contains no thermal
states of k-body Hamiltonians.
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|ψ〉
X

X

σ

% %̃

Bδ(%)

Bδ(ψ)

Figure 2.2: Illustration of Observation 18: If a strictly positive % can be found, then
for a given perturbation σ of |ψ〉 one can find a corresponding %̃ in the vicinity of %,
such that the reduced density matrices of σ and %̃ are the same.

Proof. Anyσ in the trace ballBδ(|ψ〉) can be written asσ = |ψ〉〈ψ|+X , with a traceless
X . The trace can be decomposed as tr(X) = 〈ψ|X |ψ〉+

∑
i〈ψ⊥i |X|ψ⊥i 〉 = 0 , where

the |ψ⊥i 〉 are orthogonal to |ψ〉 . The second term of this expression is positive, since∑
i

〈ψ⊥i |X|ψ⊥i 〉 =
∑
i

〈ψ⊥i |(X + |ψ〉〈ψ|)|ψ⊥i 〉

=
∑
i

〈ψ⊥i |σ|ψ⊥i 〉 ≥ 0 . (2.6)

So we must have 〈ψ|X|ψ〉 ≤ 0. Furthermore, X can only have one negative eigen-
value λ−, otherwise there would be also |ψ⊥i 〉 with 〈ψ⊥i |X|ψ⊥i 〉 < 0, which is in con-
tradiction to σ ≥ 0. From tr(X) = 0 it follows that λ− has the largest modulus of all
eigenvalues and consequently tr(|X|) = 2|λ−|. Since DTr(|ψ〉〈ψ|, σ) = tr |X|/2 ≤ δ,
it follows that |λ−| ≤ δ. For σ ∈ Bδ(|ψ〉) we choose %̃ = %+X as a candidate having
the k-RDMs of σ. We have

Rk(σ) = Rk(|ψ〉〈ψ|+X) = Rk(%+X) = Rk(%̃) . (2.7)

Furthermore, %̃ is a positive semidefinite density matrix, because of %̃ = % + X ≥
(δ − |λ−|)1 ≥ 0. Thus, for any state σ in Bδ(|ψ〉) there exists a state %̃ in Bδ(%), such
that the k-RDMs of σ and %̃ match.

Now we show that the entropy of %̃ is larger than or equal to the entropy of σ,
as this ensures that σ is not in Qk. Namely, if the entropy of %̃ is larger, a state with
the same k-RDMs but of higher entropy than σ has been found, and σ is outside of
Qk. If on the other hand equality holds, then again σ /∈ Qk due to the uniqueness
of the information projection and because of σ 6= %̃. First, note that if % fulfills the
condition S(%) ≥ 2Cδ, where

Cδ = −δ log( δ
D−1)− (1− δ) log(1− δ) , (2.8)

then also as required S(%̃) ≥ S(σ). This follows from the sharp Fannes-Audenaert
inequality (c.f. Sect. 1.1.5) [25]

|S(η)− S(µ)| ≤ −d log
( d

D − 1

)
− (1− d) log(1− d) , (2.9)
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where d = DTr(η, µ) and D = 2N is the dimension of the system. Recall that
σ ∈ Bδ(ψ) and %̃ ∈ Bδ(%). Thus the entropy of σ can be at most Cδ, and the entropy
of %̃ must be at least S(%) − Cδ. Requiring S(%) ≥ 2Cδ therefore ensures that the
entropy of %̃ is higher than or equal to that of σ.

It remains to show that % indeed fulfills this condition. For that, note that the
eigenvalues of % are larger than δ but smaller than 1/N due to the normalization of
%. Furthermore assume D ≥ 8, since we are considering at least three qubits. From
the bounds on the eigenvalues it follows that the entropy of % is bounded by

S(%) ≥ −[1− (D − 1)δ] log[1− (D − 1)δ]

− (D − 1)δ log(δ) ≡ Γ . (2.10)

So, we consider the function F(δ,D) = Γ− 2Cδ and have to show its positivity. Let
us first fix D. Taking the second derivative of F with respect to δ one directly finds
that this second derivative is strictly negative. This implies that F assumes only one
maximum in the interval [0, 1/D] and that the minima are assumed at the borders.
We haveF(0, D) = 0 and it remains to prove that G(D) = F(1/D,D) is positive. For
D = 8 one can directly check that G as well as its derivative is positive. Furthermore,
the second derivative of G(D) with respect to D is strictly positive for any D ≥ 8,
which proves the claim.

In the Observation, we considered the trace distance, but a ball in fidelity instead
of trace distance can be obtained: Consider a state σ near |ψ〉, having the fidelity
F (σ, ψ) = α ≥ 1 − δ2, where F (%, ψ) = tr[%|ψ〉〈ψ|] = 〈ψ| % |ψ〉. Then from the
Fuchs-van-de-Graaf inequality (see Sect. 1.1.5) [22] follows that

DTr(σ, |ψ〉〈ψ|) ≤
√

1− F (σ, ψ) ≤ δ . (2.11)

Thus Observation 18 is applicable.
The usage of the fidelity as a distance measure has a clear advantage from the

experimental point of view, as it allows the construction of witnesses for multiparticle
correlations. Indeed the observable

W = (1− δ2)1− |ψ〉〈ψ| (2.12)

has a positive expectation value on all states in Qk and, due to the linearity of the
fidelity, also on all states within the convex hull conv(Qk). So, a negative expectation
value signals the presence of k-body correlations. Witnesses for entanglement have
already found widespread applications in experiments [14].

Numerical results

Equipped with a method to test whether a pure state is in conv(Q2) or not we
are able to tackle the question whether the results of Ref. [84] can be generalized.
Recall that in this reference it has been shown that nearly all pure states of three
qubits are uniquely determined (among all mixed states) by their reduced two-body
density matrices. This means that they are ground states of two-body Hamiltonians.
Consequently, the closure of the convex hull conv(Q2) contains all pure states and
therefore also all mixed states, and the semidefinite program in Eq. (2.5) will not
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δ 10−3 10−4 10−5 10−6 10−7

5qb 0.0040 0.1325 0.2976 0.3729 0.4000
6qb 0.7680 0.8872 0.8897 1.0000 1.0000

Table 2.1: Fraction of pure five and six qubit states which are outside of the convex
hulls of Q2, as detected by the semidefinite program from Eq. (2.5). See the text for
further details.

be feasible for δ strictly positive. The question is whether this result holds for more
qubits too.

Let us first consider states of five and six qubits. We report in Table 2.1 numerical
results for the fraction of pure states lying outside of conv(Q2), with the condition
of positive definiteness δ ranging from 10−3 to 10−7. We tested 300′000 (30′000)
random five-qubit (six-qubit) states distributed to the Haar measure [180] for each
setting δ with our semidefinite program using the solver MOSEK 1As can be seen
from the Table, at least 40% of all tested five-qubit states and 100% of all tested
six-qubit states lie outside of conv(Q2). Thus, a similar result as in Ref. [84] does
not hold in the cases of five and six qubits. Concerning conv(Q3), a single five-qubit
state and no six-qubit state has been detected to lie outside. We ascribe the latter
result to a rather weak statistics, as states in the vicinity of |M6〉 are easily detected
by our semi-definite program (cf. Fig. 2.3).

Let us now turn to the case of four qubits. Here, none of 8 million random pure
states have been found to be outside of conv(Q2). The numerical result suggests
that this is a general feature of four-qubit systems. We also tested special examples
of highly entangled four-qubit states, such as the cluster state, classes of hypergraph
states [181], the Higuchi-Sudbery |M4〉 state [86] or the |χ〉-state [14] ( also see Eq.
(7.76) in [182] or Eq. (16) in [183]. While many of theses states can be shown to
be outside of Q2, we were not able to prove analytically or with the help of the
semidefinite program that they have a finite distance to Q2. This implies that they
might be approximated by thermal states of two-body Hamiltonians.

To summarize: concerning pure five-qubit states, we numerically found a fraction
of 40% to be outside of conv(Q2). In the case of pure four-qubit states however, no
tested random state has been found to lie outside of conv(Q2). Given the fact that
the test works well in the cases of five and six qubits, this leads us to conjecture
that nearly all pure four qubit states are in conv(Q2), and hence also in Q2. This
would imply that a similar result as the one obtained by Ref. [84] holds in the case of
four qubits: almost every pure state of four qubits is completely determined by its
two-particle reduced density matrix. Indeed, we have subsequently shown a similar
result, namely, that almost all four-particle pure states are determined amongst pure
states by their two-body marginals (see Sect. 2.6.3) [184].

1 We used the software MOSEK (MOSEK ApS, The MOSEK Python optimizer, API manual Version
7.1 (Revision 39), 2015) with a solver tolerance of 10−8 and the python wrapper PICOS (PICOS, A
Python Interface for Conic Optimization Solvers, v. 1.1.1). For five to six qubits, a single problem
instance takes around 5− 10 seconds to solve on a desktop computer.
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2.4 Characterization via the graph state formalism

The family of graph states includes cluster states and GHZ states, and furthermore
has turned out to be important for measurement-based quantum computation and
quantum error correction [47, 58]. Due to their importance, the question whether
graph states can be prepared as ground states of two-body Hamiltonians has been
discussed before [175]. Generally, graph states have shown to not be obtainable
as unique non-degenerate ground states of two-local Hamiltonians. Further, any
ground state of a k-local Hamiltonian H can only be ε-close to a graph state |G〉
with m(|G〉) > k at the cost of H having an ε-small energy gap relative to the total
energy in the system [175]. Here m(|G〉) is the minimal weight of any element in
the stabilizer S of state |G〉 (see also below). But as pointed out in Ref. [175], this
does not imply that graph states cannot be approximated in general, as ε is a relative
gap only.

Let us recall the construction of graph states (also see Sect. 1.2.1). A graph
consists of vertices and edges (see Fig. 2.3). This defines the generators

ga = σ(a)
x

∏
b∈N(a)

σ(b)
z , (2.13)

where the product of the σ(b)
z runs over all vertices connected to vertex a, called

neighborhood N(a). The graph state |G〉 can be defined as the unique eigenstate of
all the ga, that is |G〉 = ga |G〉. This can be rewritten with the help of the stabilizer.
The stabilizer S is the commutative group consisting of all possible 2N products
of ga, that is S = {si =

∏
a∈I ga}. Then, the graph state can be written as |G〉〈G| =

2−N
∑

si∈S si [47]. This formula allows to determine the reduced density matrices
of graph states easily, since one only has to look at the products of the generators ga.

For instance, all stabilizer elements of the five-qubit ring cluster state |C5〉 (c.f.
Fig. 2.3) have at least weight three, and therefore the 2-RDMs of |C5〉 are maximally
mixed. By choosing δ = 2−5 in Observation 18, the maximum overlap to conv(Q2)
is bounded by Fτ∈Q2(|C5〉 , τ) ≤ 1− δ2 ≈ 0.99902. Note that Ref. [185] has demon-
strated a slightly better bound F (|C5〉 , τ) ≤ 1/32 +

√
899/960 ≈ 0.99896. However,

both bounds are by far not reachable in current experiments. In fact, one can do
significantly better. In the following, we will formulate a stricter bound by first
considering Q2 and the ring cluster state |CN 〉 for an arbitrary number of qubits
N ≥ 5, but the result is general.

A bound on the overlap of maximally entangled states to conv(Qk)

Observation 19. The maximum overlap between the N -qubit ring cluster state |CN 〉 and
an N -qubit state τ ∈ Q2 is bounded by

sup
τ∈Q2

〈CN |τ |CN 〉 = sup
H∈H2

tr
[ eH

tr[eH ]
|CN 〉〈CN |

]
≤ D − 1

D
, (2.14)

where D = 2N is the dimension of the system. More generally, for an arbitrary pure state
with maximally mixed reduced k-party states in a d⊗N -system, the overlap with Qk is
bounded by (dN − 1)/dN .
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Figure 2.3: Examples of graphs discussed in this section. Left: A graph state of four
qudits. In odd dimensions, this state can be used as a witness to detect states outside
of conv(Q2). Center Left: The five-qubit ring-cluster graph. The corresponding
ring-cluster state |C5〉 has a finite distance to the exponential family Q2. Center
Right: The maximally entangled six-qubit |M6〉 state is not in the convex hull of Q3.
Right: The 2D periodic 5× 5 cluster state |C5×5〉 is not in conv(Q4).

Proof. We consider first only the ring cluster state, the generalization is then straight-
forward. For N ≥ 5, the ring cluster state |CN 〉 has m(|CN 〉) = 3, that is, all the
two-body reduced density matrices are maximally mixed [175]. Since the family of
thermal states is invariant under the addition of the identity τ(H) 7→ τ(H + θ1),
we can choose H to be traceless when maximizing the overlap. So tr[H] = 0 and
tr[H|CN 〉〈CN |] = 0 follows. Note that this is the only part in the proof where the
property of |CN 〉 having maximally mixed 2-RDMs is required.

We write H and |CN 〉〈CN | in the eigenbasis {|ηi〉} of H ,

H =
∑
i

ηi|ηi〉〈ηi| , (2.15)

|CN 〉〈CN | =
∑
ij

cicj |ηi〉〈ηj | , (2.16)

and obtain following conditions, where the second results from the normalization
of the ring cluster state:

f1 =
∑
i

ηi = 0 , (2.17)

f2 =
∑
i

pi − 1 = 0 , pi = |ci|2 ≥ 0 , (2.18)

f3 =
∑
i

piηi = 0 . (2.19)

Under these conditions, we have to maximize

F =

∑
i pie

ηi∑
i e
ηi
. (2.20)

If H is nontrivial, it must have both some positive and negative eigenvalues. Then
at least two of the pi must be nonzero. We use the method of Lagrange multipliers
and consider

Λ =

∑
i pie

ηi∑
i e
ηi

+ λ1f1 + λ2f2 + λ3f3 . (2.21)
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If the maximum is attained for some value pk which is not at the border of the
domain [0, 1], we then must have

∂Λ

∂pk
=

eηk∑
i e
ηi

+ λ2 + λ3ηk = 0 . (2.22)

For a given spectrum of H , {η} = (η1, . . . , ηD), Eq. (2.22) has a solution for at most
two values, η+ and η−. For any ηi not equal to η+ or η−, the corresponding variable
pi has to lie at the boundary of the domain [0, 1], which implies that pi = 0 if
ηi /∈ {η+, η−}. The eigenvalues η+ and η− can be l and l′ fold degenerate, with
corresponding pl+, pl

′
−. But then, it is easy to see that it is optimal to maximize one of

those by taking p+ =
∑

l p
l
+ and p− =

∑
l′ p

l′
− and setting the others to zero. Second,

considering the set of ηi /∈ {η+, η−}where pi = 0 one can further see with Jensen’s
inequality that it is optimal to take all of the ηi equal, that is (D− 2)ηi = −(η+ + η−).
So, the whole problem reduces to a problem with four variables,

max
pi,ηi
F = max

p±,η±

p+e
η+ + p−e

η−

eη+ + eη− + (D − 2)e−(η++η−)/(D−2)
. (2.23)

From the conditions it follows that we can choose η+ > 0, which implies that η− =
−η+p+/p− < 0. We have to prove that the upper bound is (D − 1)/D. Rewriting
p− = η+

η+−η− , we aim to show that(
1− η+

η+−η−

)
eη+ + η+

η+−η− e
η−

eη+ + eη− + (D − 2)e−(η++η−)/(D−2)
≤ D − 1

D
. (2.24)

This can be rewritten to

(D − 1)(η+ − η−)
[
eη+ + eη− + (D − 2)e−(η++η−)/(D−2)

]
−D(η+e

η− − η−eη+) ≥ 0 . (2.25)

Regrouping terms leads to

(D − 1)(D − 2)(η+ − η−) exp

(
−η+ + η−

D − 2

)
︸ ︷︷ ︸

t1

− [η+ + (D − 1)η−] exp(η−)︸ ︷︷ ︸
t2

+ [η− + (D − 1)η+] exp(η+)︸ ︷︷ ︸
t3

≥ 0 . (2.26)

The term t1 is always positive, while the signs of t2 and t3 depend upon the choice
of η+ and η−. So consider the following three cases:

1. Case: (D− 1)η+ < |η−|: Then t2 ≥ 0, but t3 < 0. However, we have t1 + t3 ≥ 0
because of

−(η+ + η−) = −η+ + |η−| ≥ (D − 2)η+ (2.27)
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and

(D − 1)(D − 2)(η+ − η−)

≥ (D − 1)(D − 2)|η−| ≥ 2|η−|
≥ |η−|+ (D − 1)η+ ≥ |η− + (D − 1)η+| . (2.28)

2. Case: (D − 1)−1η+ ≤ |η−| ≤ (D − 1)η+: This case directly leads to t2 ≥ 0 and
t3 ≥ 0.

3. Case: |η−| < (D − 1)−1η+: Then t3 ≥ 0, but t2 < 0. However, we have
t2 + t3 ≥ 0, because of eη+ > eη− and

(D − 1)η+ + η− ≥ 3η+ + η−

≥ 2η+ ≥ η+ + (D − 1)η− . (2.29)

This finishes the proof.

In the case of five qubits, Fτ∈Q2(|C5〉 , τ) ≤ 31/32 ≈ 0.96875, which improves the
bound on the distance to conv(Q2) by more than two orders of magnitude 2. From
Observation 19, we can construct the witness

W =
D − 1

D
1− |CN 〉〈CN | , (2.30)

which detects states outside of conv(Q2). In a similar fashion, any state having the
maximally mixed state as k-particle RDMs can be used to construct a witness for
conv(Qk). First, in all odd dimensions D there is a four-partite graph state (see
Fig. 2.3) with maximally mixed 2-RDMs [91], which can be used to derive a witness
for conv(Q2). The highly entangled six-qubit state |M6〉 (see the graph in Fig. 2.3) has
maximally mixed 3-RDMs, soW = 63

641− |M6〉〈M6| is a witness to exclude thermal
states of three-body Hamiltonians. Third, consider a 5 × 5 2D cluster state with
periodic boundary conditions. This state hasm(|C5×5〉) = 5 [175], and can therefore
serve as a witnessW = α1− |C5×5〉〈C5×5| for conv(Q4), where α = (225− 1)/225. It
should be noted that this witness can also be used for conv(Q2), for which the value
α might be improved 3.

Lower bounding the irreducible higher-order interactions

Note that the minimal fidelity distance from the convex hull conv(Qk) can be used
to show the presence of irreducible interactions Dk. The minimal distance Dk to Qk
in terms of the relative entropy is bounded by

Dk(%) ≥ min
σ∈conv(Q2)

S(%||σ) ≥ − log max
σ∈Q2

F (%, σ) . (2.31)

2Numerical optimization by a stochastic basin-hopping algorithm yields a maximal overlap of
≈ 81%

3The reason is that in the proof of Observation 19 one has not only the constraint
tr[H|C5×5〉〈C5×5|] = 0, but also tr[H2|C5×5〉〈C5×5|] = 0.
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2 431

Figure 2.4: Graph of the linear cluster state η with particles 2 and 3 exchanged. This
state cannot be approximated by Hamiltonians with nearest-neighbor interactions
only.

This follows from a recent result on α-Rényi relative entropies [186],

S(%||σ) ≥ S1/2(%||σ) = − logF (%, σ) . (2.32)

Therefore, the divergence of the five qubit ring cluster state from Q2 is bounded by
D2(|C5〉) ≥ 0.0317.

2.5 Quantum simulation as an application

The aim of quantum simulation is to simulate a physical system of interest by another
well-controllable one. Naturally, it is crucial to ascertain that the interactions really
perform as intended. Different proposals have recently come forward to engineer
sizeable three-body interactions in systems of cold polar molecules [187], trapped
ions [188], ultracold atoms in triangular lattices [189], Rydberg atoms [190] and
circuit QED systems [191]. Using the ring cluster state witnessW = α1− |CN 〉〈CN |
derived above, it is possible to certify that three- or higher-body interactions have
been engineered. This is done by letting the system under control thermalize. If
then 〈W〉 < 0 is measured, one has certified that interactions of weight three or
higher are present. At least five qubits are generally required for this, but by further
restricting the interaction structure, four qubits can be enough for demonstration
purposes. This can already be done with a fidelity of 93.75%, which is within reach
of current technologies.

A four-qubit example

To certify that higher than two-body interactions have been engineered, a four qubit
state can be used by further restricting the possible interaction structure of the system.
As an example, consider an ion chain of four qubits in a linear trap, where the only
two-body interactions allowed are of the nearest-neighbor type. Then the four-qubit
linear cluster state η, which is a usual linear cluster state with a permutation of
particles 2 and 3 (see Fig. 2.4), cannot be obtained as a ground or thermal state but
only be approximated up to a fidelity of α = (N − 1)/N = 15/16 = 93.75%. This
value is within reach of current technologies.

To see why this state cannot be obtained, note that it has the generator

G = {XIZI, IXZZ,ZZXI, IZIX} ,
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where X,Y, Z, I stand for the Pauli matrices and the identity respectively. The
stabilizer is then given by

S = {IIII, IXZZ, IY ZY, IZIX,
XIZI,XXIZ,XY IY,XZZX,

Y IY X, Y XXY,−Y Y XZ, Y ZY I,
ZIXX,−ZXY Y,ZY Y Z,ZZXI} . (2.33)

The nearest-neighbor marginals of the graph state

η = 2−4
∑
sa∈S

sa , (2.34)

which are η12, η23, and η34, are all maximally mixed. The remaining two-party
marginals do not need to be considered, as long-range interactions are precluded
by the physical setup. Then an argument similar to as in Observation 2 can be
made. It is again interesting to see what fraction of states cannot be ground states
in such a setup. Our semidefinite program shows that 94% of pure states cannot
be approximated as ground or thermal states of a linear spin chain having nearest-
neighbor interactions only 4.However, when including next-to-nearest neighbor
interactions, no unobtainable states were detected.

As an outlook, one may try to extend this idea of interaction certification to the
unitary time evolution under local Hamiltonians. For instance, digital quantum
simulation can efficiently approximate the time evolution of a time-independent local
Hamiltonian and in Ref. [192] an effective 6-particle interaction has been engineered
by applying a stroboscopic sequence of universal quantum gates. The process fidelity
was quantified using quantum process tomography, however it would be of interest
to prove that the same time evolution cannot be generated by 5-particle interactions
only.

2.6 Further results

2.6.1 Further results on the information projection

The information projection of real states

The following observation is concerned with the information projection of states
having real entries only.

Proposition 3. Consider a real density matrix, % = %T . Denote its information projection
onto Qk as %̃k = eH̃/ tr[eH̃ ]. Then %̃k and H̃ must be real, too.

Proof. From definition of the information projection, one has

%̃k = argminτ∈Qk S(%||τ) . (2.35)

For any τ = eH/ tr[eH ], consider τ ′ = eH
′
/ tr[eH

′
] with H ′ = (H +HT )/2. If we can

show that
S(%||τ ′) ≤ S(%||τ) , (2.36)

4 We tested 3 million random pure states for δ = 10−7.
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the claim holds. First, note that

S(%||τ)) = tr[% log %− % log τ ]

= tr[% log %− %(H − log tr[eH ])] , (2.37)

and Eq. (2.36) thus corresponds to

− tr[%(H ′ − log tr[eH
′
])] ≤ − tr[%(H − log tr[eH ])] . (2.38)

The first term on each side cancels because of tr[%H ′] = tr[%H], and we are left to
show that

tr eH
′ ≤ tr eH . (2.39)

This is indeed the case: From the Golden-Thompson inequality [5], one obtains that

tr eH
′

= tr e(H+HT )/2
GT
≤ tr[eH/2 eH

T /2] . (2.40)

Next, consider the Matrix-Hölder-Inequality (see e.g. Eq. 7.5 in [193]),

|Tr(A†B)| ≤ ‖A‖p‖B‖q ,
1

p
+

1

q
= 1 , (2.41)

where ‖A‖p = (tr[|A|p])1/p with |A| =
√
A†A (also Sect. 1.1.5). It follows with

H = H† and eH ≥ 0 that |eH | = eH , and thus

tr[eH/2eH
T /2]

MHI
≤ ‖eH/2‖2 ‖eH

T /2‖2 = tr eH . (2.42)

Therefore, H̃k has to be real, and so is %̃ = eH̃k/ tr[eH̃k ]. This proves the claim.

Analogously, if the state has some symmetry, say % = U †%U , then it follows
that H̃ = U †H̃U and accordingly %̃ = U †%̃U [79]. This is can be seen by setting
H ′ = (H + U †HU)/2, then tr[%H] = tr[%H ′] and ‖eH/2‖2 = ‖eU†HU/2‖2, and the
claim follows as in above proof.

Upper bounding the divergence to conv(Qk) by the irreducible interactions of
decompositions

Proposition 4. Consider a state, with a decomposition % =
∑

i pi%i. Its relative entropy
divergence to conv(Qk) is upper bounded by the irreducible higher-order interactions to Qk
of its decompositions %i.

min
σ∈conv(Qk)

S(%||σ) ≤ min
τi∈Qk

∑
i

piS(%i||τi) . (2.43)

Proof. Choose elements τi ∈ Qk, such that they minimize the irreducible interactions
Dk(%i) to Qk, {

τi
∣∣τi = argminτi∈Qk S(%i||τi)

}
. (2.44)

From the joint convexity of the relative entropy (see Sect. 1.1.5), it follows that

S(% ||
∑
i

piτi) ≤
∑
i

piS(%i||τi) . (2.45)
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But
∑

i piτi ∈ conv(Qk), and thus also

min
σ∈conv(Qk)

S(%||σ) ≤ S(% ||
∑
i

piτi) . (2.46)

This ends the proof.

2.6.2 Ground and excited states of local Hamiltonians

It is of interest to relate the exponential family conv(Qk) to the sets of ground and
excited states of local Hamiltonians respectively. As mentioned, nondegenerate
ground states of k-local HamiltoniansHk ∈ Hk are determined by their k-RDMs and
belong to the closure of Qk. Nondegenerate excited states of k-local Hamiltonians
are completely determined by their 2k-RMDs [173], and are therefore ground states
of suitable 2k-local HamiltoniansH2k ∈ H2k. The argument rests on the fact that any
eigenstate of a Hamiltonian Hk will also be the ground state of (Hk − λ1)2, where λ
is the corresponding eigenvalue. A similar argument also holds for nondegenerate
ground and eigenstates. But as can be seen by parameter counting, there exist
2k-local Hamiltonians which cannot be written as H2k = (Hk − λ1)2 with Hk ∈ Hk.
Thus the set of eigenstates of k-local Hamiltonians ES(Hk) is a proper subset of the
set of ground states of 2k-local Hamiltonians GS(H2k), ES(Hk) ( GS(H2k). Finally,
thermal states of k-local Hamiltonians are in the convex hull of ES(Hk), and it
follows that conv(Qk) ( conv(GS(H2k)). Noting that conv(GS(H2k)) ⊆ conv(Q2k),
a witness for conv(Q2k) is therefore also a witness for conv(ES(Hk)).

2.6.3 States of four parties

Let us consider a question that was raised from the work in the previous Section:
namely, if states of four parties are uniquely determined by their two-body marginals.
In such case, these states could be obtained as ground states of 2-body Hamiltonians.
Here we consider this question in detail. This Section is based on Project [B].

When stating the question of uniqueness, it is important to specify the set of
states that are under consideration. Usually, either the set of pure states or the set
of all states are taken into account. This leads to two different kinds of uniqueness,
namely to that of uniqueness among pure states (UDP) and to that of uniqueness
among all states (UDA). We adopt here the definition of Ref. [194] and extend it by
specifying which marginals are involved.

Definition 10. A state |ψ〉 is called

1) k-uniquely determined among pure states (k-UDP), if there exists no other pure state
having the same k-body marginals as |ψ〉.

2) k-uniquely determined among all states (k-UDA), if there exists no other state (mixed
or pure) having the same k-body marginals as |ψ〉.

Using this language, pure states are in Q2, if they are 2-UDA. In contrast, if a
state |ψ〉 is 2-UDP but not 2-UDA, then there exists a state with the same two-body
marginals, but of higher entropy. Then |ψ〉 cannot be a ground state of a two-body
Hamiltonian and is not inQ2, according to Eq. (2.4). Therefore, the results of Ref. [84]
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Figure 2.5: Illustration of two different sets of two-body marginals. Left: the set of
all six two-body marginals. Right: a set of three two-body marginals that is shown to
suffice to uniquely determine pure generic states. Illustration adopted from Proj. [C].

show that almost all three-qubit pure states are 2-UDA: given a random pure state
|ψ〉, it is uniquely determined by its marginals %AB, %AC and %BC. Ref. [163] states
that knowledge of just two of the three two-body marginals suffices to determine the
state among all pure states (UDP). Later, the authors of Ref. [164] have shown that
generic states of n qudits are uniquely determined by certain sets of reduced states
of just more than half of the parties, whereas the reduced states of fewer than half
of the parties are not sufficient. While UDA implies UDP, the converse in general
does not need to be true: there are examples of four-qubit states which are 2-UDP
but not 2-UDA [195]. Other cases of UDP versus UDA are discussed in Ref. [194].
Note that in some cases a subset of all k-body marginals already suffices to show
uniqueness, as in the case of almost all three-qubit states discussed above [163].

States of four parties are 2-UDP

In the case of four particles, it turns out that specific sets consisting of only three of
the six two-body marginals suffice to determine generic pure states among all pure
states.

Theorem 20 (N. Wyderka, FH, and O. Gühne [C]). Almost all four-qubit pure states
are uniquely determined among pure states by the three two-body marginals %AB, %CD and
%BD. In particular, this implies that they are 2-UDP.

The proof relies on the Schmidt decomposition of a four qubit state state along
different bipartitions, while requiring that it yields given reductions %AB, %CD, %BD
(illustrated in Fig.2.5). This in turn fixes all parameters of the joint four-qubit state.
In fact, this theorem generalizes to all pure four-partite states whose subsystems are
of equal dimensions.

Theorem 21 (N. Wyderka, FH, and O. Gühne [C]). Almost all four-qudit pure states
of internal dimension D are uniquely determined among pure states by the three two-body
marginals of particles %AB, %CD and %BD. In particular, this implies that they are 2-UDP.

Although above theorem is limited to states of four particles, the result sheds
also some light on states of more parties.

Corollary 1 (N. Wyderka, FH, and O. Gühne [C]). For n ≥ 4, almost all n-qudit
pure states of parties A,B,C,D, E1, . . . , En−4 having dimension D each are uniquely
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ρBC
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Figure 2.6: Illustration of the two other possible sets of three two-body marginals.
Left: a set of marginals, which clearly does not determine the global state, as %D is
not fixed. Right: a set of marginals to which our proof does not apply. Nevertheless,
we have numerical evidence that these marginals still determine the state uniquely
for qubits. Illustration adopted from Proj. [C].

determined among pure states by the three (n − 2)-body marginals of particles %ABE1...,
%CDE1... and %BDE1.... In particular, this implies that they are (n− 2)-UDP.

It should be stressed that the main statement of this Corollary is the fact that
three marginals of size (n − 2) can already suffice. The fact that pure states are
(n− 2)-UDP is not surprising, as already less knowledge is generally sufficient for a
pure state to be UDA [164].

Discussion

We have shown that generic four-qudit pure states are uniquely determined among
pure states by three of their six different marginals of two parties, partially answering
questions raised in main part of this Chapter. Interestingly, it also follows that pure
states of an arbitrary number of qudits are determined by certain subsets of their
marginals having size n− 2. The proof required two marginals of distinct systems
to be equal, for instance %AB and %CD, in order to fix the Schmidt decomposition of
the compatible state. However, there are two other sets of three two-body marginals,
illustrated in Fig. 2.6. The first one, namely knowledge of %AB, %AC and %BC, is
certainly not sufficient to fix the state, as we do not have any knowledge of particleD
in this case: Every product state %ABC⊗%D with arbitrary state %D is compatible. The
situation for the second configuration, namely knowledge of the three marginals
%AB, %AC and %AD, is not that clear. In a numerical survey testing random four-qubit
states, we could not find pairs of different pure states which coincide on these
marginals 5. Thus, we conjecture that any marginal configuration involving all four
parties determines generic states. In any case, knowledge of any set of four two-body
marginals fixes the state, as there are always two marginals of distinct particle pairs
present in these sets.

The question remains which pure four-qudit states are uniquely determined
also among all mixed states by their two-body marginals. The results from Ref. [164]
suggest that generic states are not necessarily UDA by their bn2 c-RDMs. Indeed,
the discussion in Sect. 2.4 shows that for the case of four qutris, there exists a
witness detecting states which are not UDA, namely the four qutrit AME state

5Here we used the semi-definite program from Sect. 2.3.
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depicted in Fig. 1.2.3. This generalizes to all odd dimensions. On the other hand,
the numerical procedure used in Sect. 2.3 indicated that for generic pure four-qubit
states the compatible mixed states (having the same marginals) are never of full
rank. Clarifying this situation is an interesting problem for further research.

2.6.4 Even- and odd-body correlations of qubit states

Let us focus on aspects of the universal state inversion map applied to qubits. This
answers questions about the uniqueness of quantum states, given certain sets of
its correlations. In the first part in the Chapter the uniqueness of states from the
knowledge of their local correlations was considered. In contrast, this Section deals
with the uniqueness of states given all their odd- or even-body correlations, leading
to extensions and variations of previous results [84, 163, 164, 184]. Additionally, we
provide explicit relations between these sets of correlations. This section is based on
Project [C].

The universal state inversion in the Bloch representation

Recall that a density matrix % on n qubits can be expanded in terms of the Pauli
basis as (c.f. Sect. 1.1.7)

% = 2−n
∑
σα∈Pn

Tr(σα%)σα . (2.47)

Let us group terms appearing in the decomposition according to their weight:

% = 2−n
n∑
j=0

Pj , (2.48)

where Pj accounts for all j-body correlations

Pj =
∑
σα∈Pn

wt(σα)=j

Tr(σα%)σα . (2.49)

Recall from Sect. 1.73 that the universal state inversion is given by

I[%] =
∑

S⊆{1...n}

(−1)|S|%S ⊗ 1Sc , (2.50)

where %S = TrSc(%). Denote by the inverted state as %̃ = I[%]. The action of the
universal state inversion on qubits corresponds to flipping all spins - thus introducing
a minus sign for all odd-body correlations. This can be seen by understanding how
I acts in the Bloch representation.

Proposition 5. Given a state ofn parties havingD levels each expanded as % = D−n
∑n

j=0 Pj .
Its (unnormalized) state inversion reads

%̃ = I[%] =
1

Dn

n∑
j=0

(−1)j(D − 1)n−jPj . (2.51)
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Proof. In Eq. (2.50), the subsystems of size k contribute to terms of weight j by
a factor of (−1)kDn−k(n−j

n−k
)
. Here, the minus sign depends on the size k of the

subsystem, the term Dn−k originates in the different normalization factor of the
partially reduced states tensored by 1⊗n−k, and each Pj appears

(
n
k

)(
k
j

)
/
(
n
j

)
=
(
n−j
n−k
)

times in the sum. Thus

I[%] =
1

Dn

n∑
k=0

k∑
j=0

(−1)kDn−k
(
n− j
n− k

)
Pj . (2.52)

For j = 0, above expression is simply equal to (D − 1)n. Let us now consider a
fixed j > 0. Using

(
n−j
n−k
)

= 0 if j > k, one obtains

n∑
k=0

(
n− j
n− k

)
(−1)kDn−k =

n∑
k=0

(
n− j
k

)
(−1)n−kDk

= (−1)j
n′∑
k=0

(
n′

k

)
(−1)n

′−kDk

= (−1)j(D − 1)n
′
, (2.53)

where n′ = n− j. This ends the proof.

A normalization of the state inversion, such that it is also trace-preserving, yields

%̃norm =
1

Dn

n∑
j=0

(−1)j(D − 1)−jPj . (2.54)

The normalized universal state inversion of a pure qubit state again pure; however
this is not the case in higher dimensions. To see this, evaluate

Tr(%̃2
norm) = D−2n

n∑
j=0

(D − 1)−2j Tr(P 2
j ) . (2.55)

where
∑

j Tr(P 2
j ) = Dn because of Tr(%2) = 1. Clearly, Tr(%̃2

norm) will be strictly
smaller than 1, except in the case ofD = 2. Concerning the inversion for qubits, each
term Pj with j being odd only acquires a minus sign, and I[I[%norm]] = ˜̃%norm =
%norm. This is in contrast to the universal state inversion map for D ≥ 3, which is
not involutory.

If the number of parties is odd and % pure, then the state inversion %̃ is orthogonal
to % in the Hilbert-Schmidt inner product.

Proposition 6 (N. Wyderka, FH, and O. Gühne [E]). Given a pure state % on an odd
number of parties n, then

Tr(%%̃) = 0 . (2.56)

Proof. Consider the Schmidt decomposition of a pure state across a bipartition A|B.
It can be seen that

(%A ⊗ 1B)%AB = (1A ⊗ %B)%AB . (2.57)
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Po = P1 + P3Pe = P2

% ∝ 1+ Pe + Po

Figure 2.7: Visualization of the decomposition of a three-particle state ρ into even
and odd-body correlations. A state ρ is expanded in Bloch representation as ρ ∝
1+P1+P2+. . . , wherePj denotes all terms containing j-body correlations. We prove
that the even-body correlations Pe are determined by the odd-body correlations Po

for pure states of an odd number of qubits, so the three qubit state is completely
determined by Po. The illustration is adopted from Proj. [E].

In Eq. (2.50), any two complementary terms %S and %Sc acquire opposite signs for
all subsystems S. Consequently all terms cancel pairwise in

Tr(%%̃) = Tr
(
%
∑

S⊆{1...n}

(−1)|S|%S ⊗ 1Sc
)

= 0 . (2.58)

This ends the proof.

Let us now focus on systems of qubits only. In order to obtain relations between
correlations acting on even and odd subsystems respectively, we decompose a state
of n qubits into

% = 2−n(1+ Pe + Po) . (2.59)
Above, Pe and Po contain only even-body (excluding the identity) and odd-body
correlations respectively,

Pe =
∑
j even,
j 6=0

Pj , (2.60)

Po =
∑
j odd

Pj . (2.61)

This decomposition is visualized in Fig. 2.7 for the case of three qubits. Using such
a decomposition, the state inversion can be written as

%̃ = 2−n(1+ Pe − Po) , (2.62)

where all odd-body correlations change sign. Interestingly, this can also be written
as %̃ = Y ⊗n%TY ⊗n [196, 197]. In particular, for pure qubit states, the inversion can
also be obtained from

|ψ̃〉 = (iσy)
⊗nC |ψ〉 , (2.63)

where C is the complex conjugation. Note that | ˜̃ψ〉 = − |ψ〉 for n odd, and %̃ = |ψ̃〉〈ψ̃|.
Thus when considering pure qubit states on an odd number of parties, Eq. (2.56)
reduces to

〈ψ|ψ̃〉 = 0 . (2.64)
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States of an odd number of qubits

From Eq. (2.64) one can obtain interesting relations between Pe and Po if the number
of qubits is odd.
Proposition 7 (N. Wyderka, FH, and O. Gühne; Ref. [E]). Let % = |ψ〉〈ψ| be a pure
state of an odd number of qubits, written in the even-odd decomposition of Eq. (2.59). Then

P 2
o = (1+ Pe)

2 , (2.65)
P 2

o = 2n−1(1+ Pe) , (2.66)
[Po, Pe] = 0 , (2.67)

spectrum(Pe) = (2n−1 − 1, 2n−1 − 1,−1, . . . ,−1) , (2.68)
spectrum(Po) = (2n−1,−2n−1, 0, . . . , 0, ) . (2.69)

Proof. Expand

%%̃ = 2−2n(1+ Pe + Po)(1+ Pe − Po)

= 2−2n(1+ 2Pe + P 2
e − P 2

o ) = 0 . (2.70)

This yields the first relation P 2
o = (1+Pe)

2 . From Eqs. (2.59) and (2.62), one obtains

1+ Pe = 2n−1(|ψ〉〈ψ|+ |ψ̃〉〈ψ̃|) , (2.71)
Po = 2n−1(|ψ〉〈ψ| − |ψ̃〉〈ψ̃|) . (2.72)

With the fact that 〈ψ|ψ̃〉 = 0, the first two relations can directly be verified. Further-
more, Pe and Po are diagonal in the same eigenbasis, and [Pe, Po] = 0. The spectrum
can simply be read of Eqs. (2.71) and (2.72). This ends the proof.

From Eq. (2.66), it follows that a pure state of an odd number of qubits is uniquely
determined amongst all pure states (UDP) by its odd-body correlations. Thus, one
could ask if states are also uniquely determined by their odd-body correlations
amongst all states (UDA), pure or mixed [194]. This is indeed the case.
Corollary 2 (N. Wyderka, FH, and O. Gühne [E]). Let |ψ〉 be a pure state of an odd
number of qubits. Then its odd-body correlations Po uniquely determine |ψ〉 amongst all
states (UDA).

Proof. Let σ be a (possibly mixed) state having the same odd-body correlations as
|ψ〉〈ψ|. Expand σ in terms of pure states {|φi〉} as

σ =
∑
i

pi|φi〉〈φi| = 2−n
∑
i

pi(1+ P (i)
e + P (i)

o ) , (2.73)

with the convex weights pi. By assumption,
∑

i piP
(i)
o = Po. Note that all the rank-

2 operators P (i)
o share the same spectrum, having the non-vanishing eigenvalues

±2n−1. In order that

λmax

(∑
piP

(i)
o

)
= 2n−1 and λmin

(∑
piP

(i)
o

)
= −2n−1 , (2.74)

the corresponding eigenvectors of all P (i)
o must to be equal. It follows that P (i)

o = Po

, and from Eq. (2.66), also P (i)
e = Pe . Hence σ = |ψ〉〈ψ|. This ends the proof.
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This result can be seen as a variation of the theme found in Ref. [84], where it
was shown that almost all three-qubit states are UDA by P1 and P2. Corollary 4
shows that all three-qubit states are UDA by P1 and P3 , and it is remarkable that
this generalizes to all odd numbers of parties.

Conversely, one could ask if the even-body correlations also uniquely determine
the state. This is not the case, although the admissible odd-body correlations can
easily be parametrized.

Corollary 3 (N. Wyderka, FH, and O. Gühne [E]). Let |ψ〉 be a pure state of an odd
number of qubits, and let its even-body correlations Pe be given. Then there is a two-
parameter family of admissible odd-body correlations Po(θ, φ) to retrieve a pure state again,

%(θ, φ) = 2−n[1+ Pe + Po(θ, φ)] . (2.75)

Proof. From Eq. (2.71), recall that

1+ Pe = 2n−1(|ψ〉〈ψ|+ |ψ̃〉〈ψ̃|) . (2.76)

Let Pe be given. Then for any vector |η〉 lying in the two-dimensional subspace
of the projector (1 + Pe), one has also that 2n−1(|η〉〈η| + |η̃〉〈η̃|) = (1 + Pe). Thus
compatible odd-body correlations Po can be reconstructed by

Po = 2n−1(|η〉 〈η| − |η̃〉 〈η̃|). (2.77)

Keeping |η〉 fixed, all valid solutions are parametrized in terms of real valued θ and
φ as

Po(θ, φ) = 2n−1[cos θ(|η〉〈η| − |η̃〉〈η̃|)
+ sin θ(eiφ |η̃〉〈η|+ e−iφ |η〉〈η̃|)] . (2.78)

This ends the proof.

Results for an even number of qubits

Let us now consider pure states ψ of an even number of qubits. Denote by α the
absolute value of the overlap

〈ψ̃|ψ〉 = αeiϕ . (2.79)
Note that the phase ϕ is not a physical property of the state, as changing the state
|ψ〉 to eiβ |ψ〉 changes the value of ϕ while describing the same state. The value α,
however, is physical and the properties of the state depend on it. Indeed, for pure
states and n = 2, α is the concurrence [197]. For pure states with n ≥ 2, α is known
as the n-concurrence of a state and is an entanglement monotone [198]. For our
purposes, one can distinguish three cases: 1) If α = 0, then results similar to those
for an odd number of qubits hold. Examples for such states are fully separable states
and the W state on n qubits. 2) If α = 1, only even-body correlations are present.
Examples of such states are graph states whose every vertex is connected to an
odd number of other vertices 6, such as e.g. GHZ states of n qubits. These states
correspond to self-dual additive codes of type II (c.f. Sect. 1.2.4). 3) If 0 < α < 1, one
has the following:

6See Thm. 15 in Ref. [199].



2.6. FURTHER RESULTS 67

n even and 0 < a < 1 n odd or a = 0

Po given One dimensional Pe is uniquely
solution space for Pe (UDP) determined (UDA)

Pe given ±Po is uniquely determined Two dimensional
up to the sign (UDP) solution space for Po (UDP)

Table 2.2: A summary of the relations between the even and odd components of
the correlations as in this Section. Adopted from Proj. [E].

Proposition 8 (N. Wyderka, FH, and O. Gühne [E]). Let |ψ〉 be a pure state of an even
number of qubits with | 〈ψ|ψ̃〉 | = α 6= 0. Then
(1) the even-body correlations Pe uniquely determine the odd-body correlations Po amongst
pure states up to a sign;
(2) the family of pure states having the same odd-body correlations Po as |ψ〉 amongst pure
states is one-dimensional. The even-body correlations can then be parameterized in terms of
Po.

The proof relies on determining the eigenvalues of Pe and Pe. Note that in
contrast to the case of an odd number of qubits, a statement analogous to Cor. 2
is generally not true for an even number of parties. While Pe determines a state
among all pure states up to a sign of Po, it does not so among all states, except
when Po = 0. This can be seen by convex combination of % and %̃, leading equal
even-body but diminished odd-body correlations. Only in the case of α = 1, where
no odd-body correlations are present, is the state uniquely determined among all
states by Pe. This can be seen from the fact that introducing additional odd-body
correlations would lead to a purity Tr(ρ2) greater than one. The results of all the
previous Propositions and Corollaries are summarized in Table 2.2.

Applications

Our results have various applications. First, it can be shown that unique ground
states of Hamiltonians having even-body interactions only cannot exhibit any odd-
body correlations. This is seen from the fact that for any state |ψ〉, the state inversion
|ψ̃〉will have the same Pe and therefore the same energy. If n is odd however, this
will not be possible. Thus ground states of even-body Hamiltonians on an odd
number of qubits must necessarily be degenerate. This can be seen as an instance
of Kramers degeneracy theorem [200]. Conversely, consider Hamiltonians having
odd-body interactions only. Then it follows from Prop. 8 that their ground states
can only be non-degenerate if | 〈ψ̃|ψ〉 | = α = 0.

Second, consider the unitary time evolution under Hamiltonians having odd-
body interactions only. Then α2 = Tr(ρρ̃) stays constant for all times. This can be
seen by applying an adaption of Lemma 1 from Chapt. 3 to the decomposition of
the time evolution into nested commutators. Interestingly, this is also true for mixed
states, and the result also holds for the n-concurrence Cn as given by the convex roof
construction of α [198]. This re-derives previously known results from Ref. [201].
Additionally, this can be used to test if three-body interactions such as proposed by
Refs. [187, 202] truly have been engineered.
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Finally, these results can be applied to the task of entanglement detection. Con-
sider a pure state of an odd number of qubits. Then it can be checked for bisepa-
rability by its (n− 2)-body marginals only: Consider any bipartition A|B. If A (B)
contains an odd number of qubits, Pe can according to Prop. 7 be reconstructed and
%A ( %B) be tested for purity. Thus separability across any bipartition of pure states
can be detected.

Further details on these application can be found in Proj. [E].

Discussion

We introduced the decomposition of multipartite qubit states in terms of even-
and odd-body correlations. For pure states, we showed that the even- and odd-
body correlations are deeply connected, and often one type of the correlations
determines the other. This allowed to prove several applications, ranging from the
unique determination of a state by its odd-body correlations to invariants under
Hamiltonian time evolution and entanglement detection. It may be of interest to
extend this theory to monogamy relations between the different sets of correlations.

2.7 Conclusion

In this Chapter, I have provided methods to characterize thermal and ground states
of few-body Hamiltonians. The results can be used to test experimentally with a
witness whether three-body or higher-order interactions are present. The concepts
developed can also be seen as extending notions of entanglement, with less complex
states already being determined by their few-body marginals. For future work,
it would be desirable to characterize the entanglement properties of Q2, e.g. to
determine whether the entanglement in these states is bounded, or whether they
can be simulated classically in an efficient manner. Furthermore, it is of significant
experimental relevance to develop schemes to certify that a unitary time evolution
was generated by a k-body Hamiltonian.

In further projects, I have shown that generic four-qudit pure states are uniquely
determined among pure states by three of their six different marginals of two parties.
Interestingly, from this follows that almost all pure states of an arbitrary number of
qudits are determined by a set of three marginals having size (n− 2).

An analysis of the Bloch decomposition of pure qubit states showed intricate re-
lations between their even- and odd-body correlations. Given one set of correlations,
the full state is often completely determined up to a few parameters, and an explicit
reconstruction of the missing correlations can be given. These results are useful
to deduce certain properties of ground states, to obtain invariants under unitary
time evolution, and to simplify certain tasks of entanglement detection. It would be
desirable to derive similar relations also for states having higher dimensions.



Chapter 3

AME state of seven qubits

This Chapter is concerned with the existence of an absolutely maximally entangled
of seven qubits, as introduced in Chpt.1.2.3. These are states that show maximal
possible entanglement across every bipartition. Accordingly, these states are also
known as absolutely maximally entangled (AME) [44, 48, 87–100].

Definition 11 (AME states). A pure state of n parties, having D levels each, is called
absolutely maximally entangled (AME), if all reductions to bn2 c parties are maximally mixed.

In the following, I will show the non-existence proof of the hitherto last open
case concerning 2-level systems, the case of seven qubits. This Chapter is based on
Project [D].

Let me summarize the known results concerning qubits: The three-qubit Greenberger-
Horne-Zeilinger (GHZ) state is an AME state since all the single-qubit reduced states
are maximally mixed. For four qubits it was shown that AME states do not exist [86]
and best approximations of AME states (where not all reduced states are maximally
mixed) have been presented [96]. Five- and six-qubit AME states are known [44, 93].
These can be represented as graph states and correspond to additive or stabilizer
codes used in quantum error correction [44, 47]. For more than eight qubits, AME
states do not exist [44, 106, 107, 118].

Despite many attempts, the case of seven qubits remained unresolved. Numerical
results give some evidence for the absence of an AME state [93–95]. By exhaustive
search, it was shown that such a state could not have the form of a stabilizer state [47].
Nevertheless, some approximation has been presented by making many but not all
three-body marginals maximally mixed [98, 203].

As shortly mentioned, AME states are a type of pure quantum error-correcting
codes (QECC), having the maximal distance allowed by the Singleton bound (see
Thm. 6) [204]. In particular, AME states of n parties having local dimension D each
correspond to a pure QECC in (CD)⊗n of distance bn2 c+ 1, denoted by ((n, 1, bn2 c+
1))q. Often, but not always, bounds on so-called non-additive (i.e. non-stabilizer)
codes coincide with those for additive (stabilizer) codes. The seven qubit AME
state would - if it existed - be one of the few examples where a non-additive code
outperformed an additive one. This possibility was noted already in a seminal article
by Calderbank et al. [108]. Up to n = 30, there are only three other instances known
where this could be the case for one-dimensional codes on qubits: The existence of
one-dimensional non-additive codes with parameters ((13, 1, 6))2, ((19, 1, 8))2, and
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((25, 1, 10))2 was still unresolved (see Table 13.3 in [106]). I will address these three
cases in Chpt. 5, and show that these codes cannot exist either.

In the following, I provide a method to characterize AME states and their ap-
proximations, making use of the Bloch representation [39]. The usefulness of this
tool may be surprising at first sight, as the Bloch representation is designed to be a
tool for mixed states. We were motivated to choose this approach by the fact that
monogamy equalities [96, 159] directly signal the non-existence of a four-qubit AME
state, and the natural framework for deriving the monogamy equalities appears to
be the Bloch representation [159].

3.1 The Bloch representation

As described in Sect. 1.1.7, any n-qubit state can be written as

% =
1

2n

∑
α1...αn

rα1,...,αnσα1 ⊗ · · · ⊗ σαn , (3.1)

where the {α1, . . . , αn} ∈ {0, x, y, z} label combinations of the four Pauli matrices.
For simplicity, we group the terms according to their weight, that is, their number
of non-trivial (Pauli) operators. Let Pj be the sum over terms of weight j, then the
state can be written as

% =
1

2n

(
1⊗n +

n∑
j=1

Pj

)
. (3.2)

We denote by P
(V )
j a subset of Pj , where V further specifies its support, i.e. its

non-trivial terms are located on the subsystems in V . To give an example, a state of
three qubits reads

% =
1

23

(
1⊗3 +

3∑
j=1

P
(j)
1 +

∑
1≤k<l≤3

P
(kl)
2 + P3

)
, (3.3)

where, e.g., P (12)
2 =

∑
rα1,α2,0 σα1 ⊗ σα2 ⊗ 1 and α1, α2 6= 0. When tracing out the

third qubit, one drops the terms P3, P
(13)
2 , P

(23)
2 , and P (3)

1 , as they do not contain an
identity in the third subsystem. Also, the normalization prefactor is multiplied by
the dimension of the parties over which the partial trace was performed, resulting
in

tr{3}[%]⊗ 1 =
1

22

(
1⊗3 + P

(1)
1 + P

(2)
1 + P

(12)
2

)
. (3.4)

Accordingly, a three-qubit state having maximally mixed one-body reduced density
matrices does not have terms of weight one, the terms P (j)

1 are absent. Similarly, in
n-qubit AME states all operators Pj with 1 ≤ j ≤ bn2 c vanish.

Our further discussion rests on recognizing what terms may appear in the
squared state %2. For this, consider two terms A and B, both appearing in the Bloch
expansion of the state. For computing %2, the anticommutator {A,B} is required,
and we state the following observation regarding its weight.
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Lemma 1 (parity rule). Let M,N be Hermitian operators proportional to n-fold tensor
products of single-qubit Pauli operators,M = cM σµ1⊗· · ·⊗σµn ,N = cN σν1⊗· · ·⊗σνn ,
where cM , cN ∈ R. Let us denote their weights, that is, their number of nontrivial Pauli-
operators in their tensor expansion, by |M | and |N |. Then, if the anticommutator {M,N}
does not vanish, its weight |{M,N}| fulfills

|{M,N}| = |M |+ |N | mod 2 . (3.5)

Proof. The product MN , and thus also {M,N}, has at most weight |M |+ |N |. This
is attained, if the supports of M and N are disjoint. Each pair of equal, but non-
zero indices µj = νj corresponds to some overlap of the supports and reduces the
maximal weight |M | + |N | by two. In contrast, if a pair of non-zero indices are
not equal (e.g., µj 6= νj), the product MN contains the term σµjσνj = iεµjνjχσχ.
Consequently for each such pair |M |+ |N | is reduced by only one. If an odd number
of such pairs exists, the anticommutator has to vanish, as it is Hermitian. So, such
pairs have to occur an even number of times, which proves the claim.

We can summarize the behavior of the weights of M and N and their anticom-
mutator as follows:

{even, even} −→ even,

{odd, odd} −→ even,

{even, odd} −→ odd. (3.6)

It follows that an analogous behavior holds for the Pj . If j and k are either both
even or both odd, the anticommutator {Pj , Pk} can only contribute to the Pl where l
is even. Similarly, if j is even and k is odd, it only contributes to the Pl having odd l.

3.2 Properties of AME state reductions

First, recall that for a pure n-party state |ψ〉AB consisting of D-level systems, the
complementary reduced states of any bipartition share the same spectrum. This
follows from its Schmidt decomposition. Hence, if a (n− k)-body reduction %B is
maximally mixed, its complementary reduced state %A of size k ≥ bn2 c has allD(n−k)

nonzero eigenvalues equal to λ = D−(n−k). Thus the reduced state is proportional
to a projector,

%2
A = D−(n−k)%A . (3.7)

By Schmidt decomposition, one further sees that the full state |ψ〉AB is an eigenvector
of the reduced state %A,

%A ⊗ 1⊗(n−k) |ψ〉AB = D−(n−k) |ψ〉AB . (3.8)

Accordingly, for an AME state having all bn2 c-body reduced states maximally mixed,
any k-body reduced state %(k) with bn2 c ≤ k ≤ n fulfills relations (3.7) and (3.8).

Let us now consider AME states of n qubits. We decompose Eq. (3.8) in the Bloch
representation, using the reduced state %(k) on the first k = bn2 c+ 1 parties of a qubit
AME state,

1

2k
(1⊗k + P

(1···k)
k )⊗ 1(n−k) |ψ〉 = 2−(n−k) |ψ〉 . (3.9)
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Because all bn2 c-body marginals are maximally mixed, Pj≤bn
2
c = 0. We obtain the

eigenvector relations

P
(1···k)
k ⊗ 1⊗(n−k) |ψ〉 =

{
3 |ψ〉 n even ,

1 |ψ〉 n odd .
(3.10)

By accounting for combinatorial factors, similar relations can be obtained in an
iterative way for all P (1···j)

j≥bn
2
c+1

1.

3.3 Scott bound

The projector property [Eq. (3.7)] alone is already enough to derive bounds on the
existence of AME states. These bounds originate in work by Rains and were applied
to AME states by Scott [44, 118]. In the following, I will provide a proof in the Bloch
representation.

Proposition 9 (Scott bound). An AME state of n parties having D levels each fulfills

n ≤
{

2(D2 − 1) n even,

2D(D + 1)− 1 n odd.
(3.11)

Proof. Let {Λα} form an orthonormal basis of Hermitian operators for a qudit system
of local dimension D. Because of orthonormality, tr[ΛαΛβ] = Dδαβ . A k-body
reduced state on parties in V can then be written as

%(k) =
1

Dk
(1+

∑
supp(α)∈V

rα1,...,αnΛα1 ⊗ · · · ⊗ Λαn) . (3.12)

Here, the sum runs over appropriate α, specifically, over those whose corresponding
basis terms have nontrivial support only strictly within the reduced state under
discussion, supp(α) ∈ V , cf. also Eq. (3.4). We recall that any subsystem of an AME
state, having size k ≥ b n/2 c + 1, fulfills the projector property

%2
(k) = D−(n−k)%(k) . (3.13)

Expanding in the Bloch representation and taking the trace gives

tr[%2
(k)] =

1

Dk
(1 +

∑
supp(α)∈V

r2
α) = D−(n−k) . (3.14)

Thus the coefficients rα are constrained by

∑
supp(α)∈V

r2
α =

{
D2k−n − 1 > 0 k > bn2 c ,
0 k ≤ bn2 c .

(3.15)

1Also see Sect. 1.2.4 for the weight enumerator of AME states, which is one-to-one related with the
eigenvector relations.
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For k > bn2 c, the sum is strictly positive, because reductions of pure states to size
bn2 c + 1 can not be proportional to the identity, as one can see from its Schmidt
decomposition.

Let us look at a specific reduced state of size bn2 c+ 2, containing bn2 c+ 2 reduced
systems of size bn2 c+ 1. Clearly, all coefficients appearing in the smaller subsystems
also appear in the larger subsystem.

To obtain the bound, we require the coefficients corresponding to weight bn2 c+ 2
alone to be non-negative,∑

supp(α)∈V
wt(α)=α+2

r2
α =

∑
supp(α)∈V

wt(α)≤bn
2
c+2

r2
α − (bn

2
c+ 2)

∑
supp(α)∈V

wt(α)=bn
2
c+1

r2
α

≥ 0 . (3.16)

This leads to the conditions

(D4 − 1)− (bn
2
c+ 2)(D2 − 1) ≥ 0 n even,

(D3 − 1)− (bn
2
c+ 2)(D − 1) ≥ 0 n odd, (3.17)

which can be recast to the bounds of Refs. [44, 118],

n ≤
{

2(D2 − 1) n even,

2D(D + 1)− 1 n odd.
(3.18)

This ends the proof.

3.4 Nonexistence of the seven qubit AME state

With these building blocks in place, we are in the position to solve the last open
qubit case — the existence of a seven qubit AME state. In the following, we will
combine the projector property of a five qubit reduced state %(5) with the eigenvector
relations for P (1···5)

4 and P (1···5)
5 to obtain a contradiction from the parity rule stated

in Lemma 1.

Observation 22. Consider a pure state of seven qubits. Then not all of its three-body
reduced density matrices can be maximally mixed.

Proof. Assume we have a pure seven-qubit state % = |φ〉〈φ|, whose three-body
marginals are all maximally mixed. Then, its five-party reduced density matrix on
systems {1, · · · , 5} is proportional to a projector,

%2
(5) =

1

4
%(5) . (3.19)

Note that while the proof requires the projector property only to hold on the first
five qubits, Eq. (3.19) actually holds for all possible five-qubit reductions. Regarding
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the eigenvector relations, a Schmidt decomposition of the pure state |φ〉 across the
bipartitions {1, 2, 3, 4 | 5, 6, 7} and {1, 2, 3, 4, 5 | 6, 7} yields

%(4) ⊗ 1⊗3 |φ〉 =
1

8
|φ〉 , (3.20)

%(5) ⊗ 1⊗2 |φ〉 =
1

4
|φ〉 . (3.21)

Again, analogous equations hold for any possible four- or five-qubit reductions,
including for the five different four-party reduced states in {1, 2, 3, 4, 5}.

We will use above three equations to obtain a contradiction: Let us expand %(4)

and %(5) in the Bloch basis

%(4) =
1

24
(1+ P4) , (3.22)

%(5) =
1

25
(1+

5∑
j=1

P
[j]
4 ⊗ 1(j) + P5) . (3.23)

There are five different terms P [j]
4 ⊗1(j), with [j] indexing the five different supports

of weight four terms within a five body reduced state, each having an identity on
different positions. Inserting Eqs. (3.22, 3.23) into Eqs. (3.20, 3.21) results in the
eigenvector relations

P
[j]
4 ⊗ 1⊗3 |φ〉 = 1 |φ〉 ,
P5 ⊗ 1⊗2 |φ〉 = 2 |φ〉 . (3.24)

We similarly insert Eq. (3.23) in Eq. (3.19) to obtain

(
1+

5∑
j=1

P
[j]
4 ⊗ 1(j) + P5

)(
1+

5∑
j=1

P
[j]
4 ⊗ 1(j) + P5

)
= 8
(
1+

5∑
j=1

P
[j]
4 ⊗ 1(j) + P5

)
. (3.25)

The key observation is now the parity rule stated in Lemma 1: Only certain products
occurring on the left-hand side of Eq. (3.25) can contribute to P5 on the right-hand
side. Indeed, P 2

5 on the left-hand side cannot contribute to P5 on the right-hand
side. Similarly, (

∑5
j=1 P

[j]
4 ⊗ 1(j))2 on the left-hand side cannot contribute to P5 on

the right-hand side. Thus we can collect terms of weight five on both sides of the
equation,

{P5,

5∑
j=1

P
[j]
4 ⊗ 1(j)} = 6P5 . (3.26)

Tensoring with the identity and multiplying by |φ〉 from the right leads to

{P5,

5∑
j=1

P
[j]
4 ⊗ 1(j)} ⊗ 1⊗2 |φ〉 = 6(P5 ⊗ 1⊗2) |φ〉 . (3.27)
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However, using the eigenvector relations Eqs. (3.20, 3.21), one arrives at a contradic-
tion

(2 · 5 · 1 + 5 · 1 · 2) |φ〉 = 6 · 2 |φ〉 . (3.28)

This ends the proof.

3.5 Upper bound for the number of maximally mixed reduc-
tions

Note that in the derivation above not all constraints imposed by the reduced states
have been taken into account. In fact, we only needed a single five-qubit reduced
state (say, for definiteness, on the qubits {1, 2, 3, 4, 5}) fulfilling the Eqs. (3.19, 3.21),
whose three-body reduced density matrices are all maximally mixed [this was
needed for Eq. (3.23)]. In addition, the five four-qubit reduced density matrices
corresponding to the possible subsets of {1, 2, 3, 4, 5} have to obey Eq. (3.20).

Thus one can try to answer a relaxation of the original question: Given a seven-
qubit state whose two-party reduced states are all maximally mixed, how many of
its three-party reduced states can then be maximally mixed?

Observation 23. Let |φ〉 be a pure state of seven qubits, where all two-body reduced density
matrices are maximally mixed. Then, maximally 32 of the 35 three-body density matrices
can be maximally mixed. There exist seven-qubit states for which this bound is reached.

Proof. Consider a pure seven-qubit state where all two-body marginals are maxi-
mally mixed. This implies that any of the

(
7
5

)
= 21 possible %(5) obeys Eqs. (3.19,

3.21). There are
(

7
3

)
= 35 possible %(3) and corresponding %(4). If a single three-qubit

reduced state %(3) (say, {1, 2, 3} for definiteness) is not maximally mixed, then nine
of the %(5) cannot be used for the proof anymore: First, for six five-qubit subsets
(namely, {1, 2, 3, 4, 5}, . . . , {1, 2, 3, 6, 7}) not all three-qubit density matrices are max-
imally mixed, implying that Eq. (3.23) is not valid. Furthermore, for three five-qubit
subsets (namely, {1, 4, 5, 6, 7}, {2, 4, 5, 6, 7}, and {3, 4, 5, 6, 7}) not all reduced four-
qubit subsets obey Eq. (3.20). It follows that if two three-qubit reduced states are not
maximally mixed then at least 21− 2 · 9 = 3 five-qubit sets still obey the conditions
required for the proof. This ends the proof.

We note that the existence of states where 32 of the three-body density matrices
are maximally mixed was shown before: Refs. [98, 203] presented such states, which
are, up to local unitary transformation, a graph state occurring in Refs. [47, 55]. As
a graph state, the state can be described by the graphs in Fig. 3.1. Recall, that graph
states are constructed as follows as follows: Each vertex in a graph corresponds to a
qubit. One prepares all the qubits in the state |+〉 = (|0〉+ |1〉)/

√
2. Then, for any

edge connecting the qubits j and k one applies a two-qubit phase gate

Cjk =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (3.29)
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LC
≡

Figure 3.1: The graph of the Fano (or seven-point) plane on the left, which can be
transformed by local complementation (corresponding to local Clifford gates) to the
wheel graph displayed on the right. The Fano plane plays a role in classical error
correction, describing both a balanced block design as well as an error-correcting
code [205]. The corresponding graph state saturates the bound of Observation 23,
having 32 out of 35 three-body marginals maximally mixed. The states are locally
equivalent to the graph state depicted in Figs. 1 in [55], to No. 44 in Table V from
Ref. [47], and to the states of Eq. (11) in Ref. [98] and of Eq. (26) in Ref. [203].

to the initial state. The fact that the marginals of this state have the right properties
can also directly be checked in the stabilizer formalism, as explained in Ref. [47].
Finally, we add that there exists an AME state for seven three-dimensional systems,
which is the graph state depicted in Fig. 1.2.1 [48].

3.6 AME states of n qubits

The method presented for seven qubits can also be applied to the general n-qubit
case. There, it can exclude that an AME state for a given number of qubits exists.
It turns out that the qubit numbers n for which no contradiction is found (n =
2, 3, 5, 6) are exactly the ones for which AME states are known [91]. Their graph
state representations are shown in Fig. 1.2.3.

Observation 24. Qubit AME states can only exist for n = 2, 3, 5 and 6 parties.

Proof. The general case of determining which n-qubit AME states can possibly exist
follows the method which was used in the case of seven qubits: We combine the
projector property of the reduced state of the first bn2 c+2 parties with the eigenvector
relations for the terms Pbn

2
c+1 and Pbn

2
c+2 appearing in its expansion. Collecting

terms with either even or odd weight, depending on the case, and applying the
parity rule will lead to contradictions except in the cases of n = 2, 3, 5, 6 qubits. In
the following, we will distinguish four cases, depending on n and bn2 c being even or
odd.

Case 1 (n even, bn2 c even): For n even, one obtains the two eigenvector relations

Pbn
2
c+1 ⊗ 1⊗(bn

2
c−1) |φ〉 = 3 |φ〉 ,

Pbn
2
c+2 ⊗ 1⊗(bn

2
c−2) |φ〉 = (9− 3bn

2
c) |φ〉 . (3.30)
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Applying the parity rule, we collect terms of odd weight in %2
(bn

2
c+2),

{
bn
2
c+2∑
j=1

P
[j]
bn
2
c+1 ⊗ 1

(j), Pbn
2
c+2} |φ〉

= 14

bn
2
c+2∑
j=1

P
[j]
bn
2
c+1 ⊗ 1

(j) |φ〉 . (3.31)

This results in a contradiction, as

9− 3bn
2
c 6= 7 . (3.32)

Thus qubit AME states do not exist when n is a multiple of 4.

Case 2 (n even, bn2 c odd): The eigenvector relations are as appearing in Case 1,
Eq. (3.30). We collect terms of odd weight in %2

(bn
2
c+2),

{
bn
2
c+2∑
j=1

P
[j]
bn
2
c+1 ⊗ 1

(j), Pbn
2
c+2} |φ〉 = 14Pbn

2
c+2 (3.33)

If Pbn
2
c+2 |φ〉 6= 0, we obtain a contradiction because

(bn
2
c+ 2) · 3 6= 7 . (3.34)

Thus 1⊗(bn
2
c−2) ⊗ Pbn

2
c+2 |φ〉 = 0. But from the eigenvector relation in Eq. (3.30) this

can only by possible if n = 6. Indeed, for this case an AME graph state is known,
depicted in Fig. 1.2.3. Note that the Bell state consisting of only two qubits is too
small to be excluded by this method.

Case 3 (n odd, bn2 c even): For n odd, one obtains the two eigenvector relations

Pbn
2
c+1 ⊗ 1⊗(bn

2
c−1) |φ〉 = |φ〉 ,

Pbn
2
c+2 ⊗ 1⊗(bn

2
c−2) |φ〉 = (5− bn

2
c) |φ〉 . (3.35)

We collect terms of odd weight,

{
bn
2
c+2∑
j=1

P
[j]
bn
2
c+1 ⊗ 1

(j), Pbn
2
c+2} |φ〉

= 6

bn
2
c+2∑
j=1

P
[j]
bn
2
c+1 ⊗ 1

(j) |φ〉 . (3.36)

Thus one requires

(5− bn
2
c) |φ〉 = 3 |φ〉 , (3.37)
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whose only solution is n = 5. The corresponding AME state is the five-qubit ring-
cluster state, depicted in Fig. 1.2.3.

Case 4 (n odd, bn2 c odd): This final case is slightly more involved, but the method
ultimately succeeds on a larger reduced state of size bn2 c + 4. The eigenvector
relations are as appearing in Case 3, Eq. (3.35). We collect terms of odd weight,

{
bn
2
c+2∑
j=1

P jbn
2
c+1 ⊗ 1

(j), Pbn
2
c+2} |φ〉

= 6Pbn
2
c+2 |φ〉 . (3.38)

If Pbn
2
c+2 |φ〉 6= 0, it follows that

bn
2
c+ 2 = 3 . (3.39)

The only solution is n = 3, corresponding to the GHZ state. If however Pbn
2
c+2 |φ〉 =

0, that is n = 11, we have to make use of further eigenvector relations.

P6 ⊗ 1⊗5 |φ〉 = 1 |φ〉 ,
P7 ⊗ 1⊗4 |φ〉 = 0 |φ〉 ,
P8 ⊗ 1⊗3 |φ〉 = 3 |φ〉 ,
P9 ⊗ 1⊗2 |φ〉 = 16 |φ〉 . (3.40)

We require %2
(9) = 2−2%(9) and collect terms of odd weight

({
(96)∑
j=1

P
[j]
6 ⊗ 1⊗3, P9}+ {

9∑
j=1

P
[j]
8 ⊗ 1, P9}) |φ〉

= 126P9 |φ〉 . (3.41)

This also leads to a contradiction in the case of n = 11,(
9

6

)
+ 9 · 3 6= 63 . (3.42)

Therefore, no AME qubit state with both n and bn2 c being odd exists. This ends the
proof.

To summarize: the only qubit AME states which are not excluded to exist by
this method are the cases of two, three, five, and six parties, all of which are known.
Their graph state representations are shown in Fig. 1.2.3.

3.7 Further results

3.7.1 An iterative semidefinite program to find AME states

To find AME states, or more generally, states with maximally mixed k-RDMs, the
following algorithm can be used. It is a iterative semidefinite program (c.f. Sect. 1.2.5)
with a so-called hard-threshold, as after each iteration step, the state is projected
onto the vector corresponding to its largest eigenvalue.
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1) Choose a random initial state |ψ0〉.

2) Solve the following semidefinite program,

maximize
%

Tr(|ψi〉〈ψi|%)

subject to Tr[%σα] = 0 ∀σα : wt(σα) ≤ k , σα 6= 1

Tr[%] = 1, % = %†, % ≥ 0 .

3) |ψi+1〉 = eigenvector corresponding to maximal eigenvalue of %.

4) Repeat steps 2) & 3) until the desired numerical accuracy is reached.

While the convergence of this algorithm to find AME states is not yet proven, it
shows very good results: In the case of five and six qubits, this algorithm typically
converges within 5− 10 iterations. However, as the complete density matrix has to
be represented numerically, it is not yet feasible to search for an four-party AME
state with D = 6 using a desktop computer only.

3.8 Conclusion

In summary, with my co-authors I have developed a method based on the Bloch
representation for characterizing AME states. This allowed to rederive most of the
known results for qubits in a very simple manner, but more importantly, it solved
the long-standing question whether AME states of seven qubits exist or not. A best
approximation to such a state could be determined, which also turned out to be a
graph state.

Our treatment highlighted the usefulness of the Bloch representation to not only
represent mixed, but also pure states: While the positivity of operators is not obvious
from their Bloch decomposition, their marginals can be simply read off. Such an
approach can be seen as being complementary to that of representing pure states by
normalized vectors. Given a ket, the state is pure and positive by construction, but
its marginals are not immediately apparent. Our methodology resonates with other
recent developments in this well-established subject [46, 90, 159, 206–208], and it is
likely that many other open problems can successfully be approached in this way.
Additionally, I developed an iterative semi-definite program to search for highly
entangled states.

For future work, it is of interest to apply similar approaches to the question
whether or not n-qubit states exist, whose k-body reduced density are all maximally
mixed for some k < bn/2c. These highly entangled states are central for quantum
error correction and secret sharing schemes [102], and many efforts have been
devoted to finding them in the last years [209, 210]. It is likely that our methods
can contribute also to this problem.
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Chapter 4

Ulam’s reconstruction problems
for quantum states

Provided by a complete set of putative k-body reductions of a quantum state, can
one determine the existence of a joint state? Here, we derive necessary criteria for
a type of joint state known as graph state to exist. Crucially, these criteria do not
require the knowledge of the labeling of the subsystems, in analogy to the Ulam
reconstruction problem in graph theory. Interestingly, the non-compatibility of
reductions can in some cases already be inferred from the set of marginals having
the size of just more than half of the parties. In this Chapter, we consider quantum
marginals which are unlabeled, that is, their associated parties are unknown to
us, and ask for the existence and uniqueness of a joint state. Such reconstructing
amounts to a kind of quantum jigsaw puzzle: One is given overlapping (quantum)
parts and is tasked with determining whether or not these can be assembled to one
or even many different joint states. This Chapter is based on Project [E].

4.1 Motivation

The relation between the whole and its parts lies at the heart of quantum entan-
glement. Namely, if a many-party pure quantum state is not the tensor product
of its individual parts, the state is said to be entangled. A particularly intriguing
consequence is, that given a set of quantum marginals, it is not clear from the outset
if and how they can be assembled into a joint pure state. This is the so-called quantum
marginal problem (QMP) (c.f. Sect. 1.2.6).

These questions are in spirit similar to the Ulam reconstruction problem in graph
theory [211, 212]: Given a complete set of vertex-deleted subgraphs, is the original
graph the only compatible joint graph they could have been obtained from? Despite
of ample research that focused on this question during the last decades, this is still
one of the outstanding unresolved problems in graph theory [213–218].

In contrast to previous work on the QMP, we consider here only unlabeled
marginals, that is, marginals whose corresponding subsystems are unknown to us.
Thus, one is free to arrange them as necessary in order to obtain a joint state. Should
all reductions to a singly party be different (e.g. when considering reductions of
random states), such labels can naturally be restored by comparing the one-body
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reductions of the marginals given. However, we are here considering a special type
of quantum states that turned out to be immensely useful for certain tasks in quan-
tum information such as quantum error correction [54–56] and measurement-based
quantum computation [47, 57, 58], but which can still be described by simple means.
The lower-body reductions of these states are often maximally mixed, so above
strategy cannot be applied.

4.2 Realizability and uniqueness in graphs

Consider a simple graphG(V,E) on n vertices. Denote byN(i) the neighborhood of
vertex j, that is, the vertices connected to vertex i by an edge. By removing a single
vertex j ∈ V and removing all edges e connected to j, one obtains the vertex-deleted
subgraph on (n− 1) vertices

Gj = G
(
V \{j}, E\{e|j ∈ e}

)
. (4.1)

By forming all vertex-deleted subgraphs Gj induced by G, the so-called cards, we
obtain its unordered deck, the multi-set

D(G) = {G1, . . . , Gn} . (4.2)

The Ulam graph reconstruction problem states: Given a deck D(G), is there, up
to graph isomorphisms, a unique graph corresponding to it? The Ulam graph
reconstruction conjecture states that this must indeed be the case for all graphs.

Conjecture 1 (Kelly, Ulam [211, 212]). If D(G) = D(H), then G is isomorph to H .

However, a deck does not necessarily need to originate from a truly existing
graph: Suppose we are given a putative deck containing n cards of size (n− 1) each,
whose origin is unknown to us. A naturally arising question is: Can this deck indeed
be obtained from a graph containing n vertices? This is also called the legitimate deck
problem, and is a type of realizability problem [213].

Let us state a legitimacy condition originating from Kelly’s Lemma [216]:

Theorem 25 (Kelly conditions [216]). Let D = {Gi} be a complete deck. Then for any
graph F having ν(F ) < n vertices, ∑n

i=1 s
′(F,Gi)

n− ν(F )
(4.3)

must be an integer, where s′(F,Gi) is the number of induced subgraphs of Gi that are
isomorphic to F .

Interestingly, for most decks, not all but already a specific set of three cards are
sufficient to uniquely reconstruct the original graph [219]. In the following, we aim
to treat the Ulam graph reconstruction and the legitimate deck problem for a special
type of quantum states called graph states. That is, given a collection of graph states
marginals, we ask for the existence of a joint state, with which these marginals are
compatible. Conversely, if a joint state exist, we are interested in its uniqueness. This
motivates the following definition as the analogue of a graph deck for quantum
states.
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Definition 12. A quantum k-deck is a collection of quantum marginals, also called quantum
cards, having size k each. In particular, the marginals are not associated to any particular
parties, thus the cards are unlabeled. The deck is called complete, if it contains

(
n
k

)
cards,

and legitimate, if the deck originates from a common joint state.

Thus given a quantum state |ψ〉, its corresponding k-deck is given by the collec-
tion of all its marginals of size k,

D(|ψ〉) = {%S = TrSc(%) | |S| = k} . (4.4)

4.3 Graph states

Let us shortly recall how qubit graph states are defined (c.f. Sect. 1.2.1) [47]: Given a
graph G = (V,E) of n vertices, its corresponding graph state |G〉 is defined as the
common and unique (+1)-eigenstate of the n commuting operators {gi},

gi = Xi

⊗
j∈N(i)

Zj . (4.5)

The set {gi} is called the generator. The stabilizer S is the Abelian group obtained by
the multiplication of generator elements,

S =
{∏

gi11 g
i2
2 . . . ginn

∣∣ i1, . . . , in ∈ {1, . . . , D − 1}
}
. (4.6)

Each of its Dn elements stabilize the state, gi |G〉 = |G〉 for all gi. Then the graph
state can be written as

|G〉〈G| = 1

2n

∑
sa∈S

sa . (4.7)

On the other hand, it can be shown that the graph state can also be written as

|G〉 =
∏
e∈E

Ce |+〉V , (4.8)

where |+〉V =
⊗

j∈V (|0〉j + |1〉j)/
√

2, and the controlled-Z gate between parties i
and j of edge e = (i, j) reads Ce = diag(1, 1, 1− 1).

Let us state a first Proposition concerning the reductions of graph states onto
(n− 1) parties.

Proposition 10 ( [220]). Considering the quantum (n− 1)-deck of a graph state |G〉, each
of its cards of can be represented by two graphs: a vertex-deleted and a vertex-shrunken
graph, each having (n− 1) vertices.

Proof. In Eq. (4.8), let us single out vertex j to be traced over.

|G〉 =
∏
e∈E

Ce |+〉V

=

|0〉j +
∏

e∈E | j∈e

Ce\{j} |1〉j

⊗ ∏
e′∈E | j /∈e′

Ce′ |+〉V \{j} . (4.9)
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Note that above, if Ce is a controlled two-qubit Z-gate acting on parties i and j, then
Ce\{j} is simply the local Zi gate acting on party i alone. A partial trace over party j
then yields

trj [|G〉〈G|] = 〈0j |G〉〈G|0j〉+ 〈1j |G〉〈G|1j〉

=
1

2

( ∏
e′∈E | j /∈e′

Ce′ |+〉〈+|V \{j}
∏

e′∈E | j /∈e′
Ce′︸ ︷︷ ︸

delete

+
∏

i∈N(j)

Zi
∏

e′∈E | j /∈e′
Ce′ |+〉〈+|V \{j}

∏
e′∈e | j /∈e′

Ce′
∏

i∈N(j)

Zi︸ ︷︷ ︸
shrink

)
. (4.10)

The reduction of a graph state onto (n−1) parties is thus given by the equal mixture
of two graph states: A vertex-deleted graph state Dj |G〉, whose graph is the vertex
deleted subgraph of G, and a vertex-shrunken graph state Sj |G〉, whose graph is a
vertex deleted subgraph with additional one-edges on N(j) caused by shrinking all
edges connected to vertex j. One obtains

Dj |G〉 =
∏

e′∈E | j /∈e′
Ce′ |+〉V \{j} , (4.11)

Sj |G〉 =
∏

i∈N(j)

Zi
∏

e′∈E | j /∈e′
Ce′ |+〉V \{j} , (4.12)

and we can write

Trj(|G〉〈G|) =
1

2
(Sj |G〉〈G|Sj +Dj |G〉〈G|Dj) . (4.13)

This ends the proof.

If the graph G is fully connected, then Dj |G〉〈G|Sj = 0. This follows from the
fact that all stabilizer elements corresponding to a fully connected graph must have
a weight larger or equal than two. Thus, the one-body reductions are maximally
mixed, and the complementary (n − 1) body reductions must be proportional to
projectors of rank two. When tracing out more than one party, this procedure of
substituting each graph by the mixture of its vertex-deleted and vertex-shrunken
subgraphs is iteratively repeated. Thus reductions of graph states of size n− k are
represented by a collection of 2k graphs.

Let us now consider a specific formulation of the Ulam graph problem in the
quantum setting, where all (n− 1)-body reductions of a graph state are given in the
computational basis. What can one say about the joint state?

Proposition 11. Given a legitimate (n− 1)-deck of a graph state |G〉 in the computational
basis, the joint state |G〉 can be reconstructed up to local Zj gates from any single card.

Proof. Let us expand the graph states Dj |G〉 and Sj |G〉 as appearing in (4.13) in the
computational basis. Due to our ignorance about the joint state, denote them by |α〉
and |β〉, where either one could be the vertex-deleted graph state, with the other one
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being the vertex-shrunken graph state. From Eq. (4.8) it follows that graph states
are real equally weighted states, thus it is possible to expand them as

|α〉 =

√
1

N

∑
αi |i〉 ,

|β〉 =

√
1

N

∑
βi |i〉 , (4.14)

with αi, βi ∈ {−1, 1}, and {|i〉} is the computational basis for V \{j}. We can there-
fore write the card Ck = Trk(|G〉〈G|) as

Ck =
1

2N

2n∑
i,j=0

(αiαj + βiβj) |i〉〈j| . (4.15)

Because of αi, βi ∈ {−1, 1}, 2NCkij can only be 0 or ±1. Because |0 . . . 0〉 remains
unaffected by any conditional phase gate Ce, we can choose α1 = β1 = 1. Then
αj = βj = sgn(C l1j) if C l1j 6= 0, and αj = −βj otherwise. Without loss of generality,
set αm = −βm = 1, for the first instance of m where %1m = 0. Then the remaining
but yet undetermined coefficients αj and βj are given from the entries Ck1j and Ckmj ,

α1αj + β1βj = αj + βj = 0 , (4.16)
αmαj + βmβj = αj − βj = 2αj . (4.17)

This completely determines the remaining coefficients of |α〉 and |β〉. Now the task is
to reconstruct the graphs corresponding to |α〉 and |β〉. This can be done by erasing
all minus signs in the expansion in the computational basis [221]: first, minus signs
in front of terms having a single excitation only, e.g. |0 . . . 010 . . . . . . 0〉, are removed
by local Zj gates. Then, conditional phase gates are applied to erase minus signs in
front of components having two excitations. By this procedure, one obtains the state
|+〉⊗n and all the gates necessary to obtain the original graph state, thus determining
the graph.

The symmetric difference of the two graphs corresponding to |α〉 and |β〉 yields
all edges which were severed under the partial trace operation,∏

j∈e
Ce∈E | e\{j}

∏
e′∈E | j /∈e′

Ce′︸ ︷︷ ︸
shrink

∏
e′∈E | j /∈e′

Ce′︸ ︷︷ ︸
delete

=
∏

e∈E | j∈e

Ce\{j}︸ ︷︷ ︸
edges connected to j

=
∏

i∈N(j)

Zj . (4.18)

Then the original graph state can then only be one of the following

|G〉〈G| =
∏

e∈E | j∈e

Ce |α〉 ⊗ |+〉j , or

|G〉〈G| =
∏

e∈E | j∈e

Ce |β〉 ⊗ |+〉j . (4.19)

This ends the proof.
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In order to determine whether or not, given a quantum k-deck, a joint graph
state could possibly exist, we introduce the weight distribution of quantum states,
a tool from the theory of quantum error-correcting codes (c.f. Sect. 5). A partial
weight distribution can be obtained from a complete quantum k-deck already, and
no knowledge of the labeling of the individual parties is needed, making this tool
useful for legitimate deck type problems. With it, it is possible to detect illegitimate
decks, that is, marginal sets that are incompatible with any joint pure state.

4.4 Weight distribution

The weight distribution of a quantum state % is given by [118, 128] (c.f. Sect. 1.2.4)

Aj(%) =
∑
P∈P

wt(P )=j

Tr(P%) Tr(P †%) , (4.20)

where the sum is over all elements P of weight j in the n-qubit Pauli basis Pn. Note
that for higher dimensional quantum systems, any appropriate orthonormal tensor-
product basis can be chosen instead of the Pauli basis, e.g. the Heisenberg-Weyl or
Gell-Mann basis. For graph states, the weight distribution is particularly simple:
because Tr[P |G〉〈G|] can only be either 0 or ±1, the weight distribution of |G〉 is
simply given by the number of its stabilizer elements having weight j,

Aj(|G〉) = |{sa ∈ S(G)|wt(sa) = j}| . (4.21)

Let us give an example.

Example 1. The three-qubit graph state corresponding to the fully connected graph of three
vertices has the generator G = {XZZ,ZXZ,ZZX} 1. Its stabilizer reads

S = {III, IY Y, Y IY, Y Y I,XZZ,ZXZ,ZZX,−XXX} . (4.22)

Accordingly, the weight distribution is A = [A0, A1, A2, A3] = [1, 0, 3, 4]. By normal-
ization, A0 = Tr(%) = 1 must hold for all states. Because % is pure, Tr(%2) = 1, and∑n

j=0Aj(|ψ〉) = 2n.

As a warm-up, let us derive a result known from quantum error-correcting codes
(c.f. Sect. 1.2.4) [44]:

Proposition 12. Given a graph state, the sum Ae =
∑bn

2
c

j=0A2j can only take two possible
values,

Ae =

{
2(n−1) (type I) ,
2n (type II) .

(4.23)

Proof. Note that the graph state % = |G〉〈G| can be decomposed into

% =
1

2n

( ∑
P∈P

wt(P ) even

tr[PM ]P † +
∑
P∈P

wt(P ) odd

tr[PM ]P †
)

=
1

2n
(Pe + Po) , (4.24)

1This is a state LU-equivalent to the GHZ state.
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where Pe and Po are the sums of all stabilizer elements having even and odd weight
respectively. Because of s% = % for all s ∈ S, also Pe and Po have % as an eigenvector.
We now apply this decomposition to %2 = %, making use of the Lemma 1 from
Chpt. 3: The term {Pe, Po} appearing in %2 can only contribute to terms of odd
weight in %, yielding {Pe, Po} = 2nPo . From this we obtain

Tr({Pe, Po}%) = tr(2nPo%) . (4.25)

Accordingly, 2AeAo = 2nAo ,where Ae and Ao are the number even and odd weight
terms in the stabilizer respectively. Consider first Ao 6= 0. Then Ae = 2(n−1).
Conversely, if Ao = 0, then Ae = 2n, because % is pure and must satisfy

∑
Aj =

Ae +Ao = 2n. This ends the proof.

The same argument can be done for reductions of graph states, that happen to
be proportional to projectors of rank 2q. There, either Ae = 2n−q−1 or Ae = 2n−q

holds. These two cases, that is, graph states of type I and II , are also known from
the theory of classical self-dual additive codes overGF (4) (c.f. Sect. 1.2.4) [44, 108]. If
only stabilizer elements of even weight are present, the code is said to be of type II ,
while codes having both even and odd correlations in equal amount are of type I . It
can be shown that all type II codes must have even length, and conversely, self-dual
additive codes of odd length n are always of type I . This is also a direct consequence
of monogamy relations derived in Ref. [159]: these can be restated in terms of the
shadow coefficient S0 from Chpt. 5, which is known to vanish for an odd number
of parties, implying Ae = Ao = 2n−1. Examples of type II codes are the two qubit
Bell state and the absolutely maximally entangled state of six qubits of Fig.1.2.3,
having only even-body correlations present. Also graph states whose every vertex
is connected to an odd number of other vertices, such as e.g. GHZ states of an even
number of qubits, are of type II 2.

This result can be used to show that a particular state is LU-inequivalent to any
graph state. Let us consider the state depicted in Fig. 4.4. It is a hypergraph state [221],
which is obtained by applying the additional gate C138 = diag(1, 1, 1, 1, 1, 1, 1,−1)
between particles 1, 3, and 8 to the graph state of a cube, |H〉 = C138 |Gcube〉. Its
weight distribution reads

A = [1, 0, 0, 0, 30, 48, 96, 48, 33] , (4.26)

with Ae =
∑

j even,j 6=0 = 160. This is incompatible with being a graph state of type I
or type II , these having Ae = 128 and Ae = 256 respectively.

One could ask, whether or not the presence of entanglement can be detected
from the weight distribution of pure states. This is indeed the case.

Proposition 13. Let |ψ〉 be a pure state on n qubits. If Aj(|ψ〉) >
(
n
j

)
, then |ψ〉 must be

entangled.

Proof. Take a product state onm− 1 qubits, having weights denoted by A(m−1)
j , and

tensor it by a pure state on the last qubit. Then the weight A(m)
j of the resulting state

2See Thm. 15 in Ref. [199].
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Figure 4.1: A hypergraph state that is LU-inequivalent to graph states. All of its
three-body marginals are maximally mixed.

on m qubits is

A
(m)
j = A

(m−1)
j A

(1)
0 +A

(m−1)
j−1 A

(1)
1

= A
(m−1)
j +A

(m−1)
j−1 , (4.27)

because of A0 = A1 = 1 for a pure one-qubit state. But this is exactly the recurrence
relation fulfilled by the binomial coefficients, namely(

m

j

)
=

(
m− 1

j

)
+

(
m− 1

j − 1

)
, (4.28)

together with the initial condition A(1)
j =

(
1
j

)
= 1. Thus a pure product state on n

qubits fulfills Aj =
(
n
j

)
. This proofs the claim.

If |ψ〉 is entangled across a partition of one party versus the rest, then above
relation takes the form of a strict inequality

A
(n)
j > A

(n−1)
j +A

(n−1)
j−1 . (4.29)

Considering entanglement across a partition ofm ≤ bn2 c versus (n−m) parties, one
obtains in a similar fashion the inequality

A
(n)
j > A

(n−m)
j A

(m)
0 +A

(n−m)
j−1 A

(m)
1 + · · ·+A

(n−m)
j−m A(m)

m . (4.30)

4.5 Constraints on the weight distribution

In the following, we derive further relations on the weight distribution of pure states.
These are obtained from the Schmidt decomposition along bipartitions having
fixes sizes and from monogamy relations. First, let us define the reduced weight
distributions.

Definition 13. Given a quantum state % on n parties and its weight distribution Aj(%), its
associated reduced weight distributions Amj (%) are defined as

Amj (%) =

(
n

m

)(
m

j

)/(n
j

)
Aj(%) =

(
n− j
n−m

)
Aj(%) . (4.31)
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Proposition 14. The reduced weight distributions Aaj of any pure state |ψ〉 of n qubits
satisfy

2−a
a∑
j=0

Aaj (|ψ〉) = 2−(n−a)
n−a∑
j=0

An−aj (|ψ〉) . (4.32)

Proof. In the following, let us writeAj forAj(|ψ〉). From the Schmidt decomposition
of pure states, it follows that the purities of reductions on complementary subsystems
must be equal,

tr(%2
S) = tr(%2

Sc) . (4.33)

Define
ASj =

∑
P∈P

supp(P )⊆S
wt(S)=j

Tr(P%) Tr(P †%) . (4.34)

Summing over all bipartitions S, Sc having fixed size a ≤ bn2 c and (n− a), one then
obtains

2−a
∑
|S|=a

a∑
j=0

ASj = 2−(n−a)
∑

|Sc|=(n−a)

n−a∑
j=0

AS
c

j . (4.35)

In the case of graph states, ASj is just the number of stabilizer elements of weight j
having support on S. Note that in Eq. (4.35), the dimensional prefactor results from
the difference in normalization of %S and %Sc . By summing over all subsystem pairs
of fixed size, elements of weight j are overcounted by factors of

(
n
a

)(
a
j

)(
n
j

)−1
=
(
n−j
n−a
)

and
(
n−a−j
n−2a

)
respectively. We arrive at

2−a
a∑
j=0

(
n− j
n− a

)
Aj = 2−(n−a)

n−a∑
j=0

(
n− a− j
n− 2a

)
Aj . (4.36)

In terms of the reduced weight distribution, this reads

2−a
a∑
j=0

Aaj = 2−(n−a)
n−a∑
j=0

An−aj . (4.37)

This ends the proof.

These are b(n− 1)/2c independent relations linear equations the weight distri-
butions of pure states have to satisfy. In fact, these relations can seen as a special
case of the so-called quantum MacWilliams identity for quantum codes, applied to
pure quantum states 3.

Let us obtain further constraints on the reduced weight distributions, obtained
from the universal state inversion [33–37].

Proposition 15. The weight distribution of any pure state of n qubits fulfills for all 1 ≤
m ≤ n

m∑
j=0

(−1)jAmj (|ψ〉) ≥ 0 . (4.38)

3C.f. Eq. (1.177), Ref. [118], and the subsequent Chapter.



90 CHAPTER 4. ULAM’S PROBLEMS FOR QUANTUM STATES

Proof. Recall that the universal state inversion for qubits can be written as the spin-
flipped state [c.f. Eq. (1.73) and Sects. 2.6.4, 5.11.1]

I[%] = %̃ = Y ⊗n%TY ⊗n . (4.39)

This maps I −→ I , Y −→ −Y ,X −→ −X , and Z −→ −Z in the Bloch decom-
position of the state. Because %̃ is positive, it holds that tr(%%̃) ≥ 0. This leads
to

Tr(%%̃) =
1

22n
Tr
[( n∑

j=0

(−1)j
∑
P∈P

wt(P )=j

Tr(P%)P †
)( n∑

j′=0

∑
P ′∈P

wt(P )=j′

Tr(P ′†%)P ′
)]

=
1

22n

n∑
j=0

(−1)j
∑
P∈P

wt(P )=j

Tr(P%) Tr(P †%) Tr(P †P )
]

=
1

2n

n∑
j=0

(−1)jAj ≥ 0 . (4.40)

Applying the same method to all reductions %S of fixed size |S| = m, one obtains

∑
|S|=m

tr[%S %̃S ] = 2−2m
∑
|S|=m

m∑
j=0

(−1)jASj

= 2−m
m∑
j=0

(−1)j
(
n− j
n−m

)
Aj ≥ 0 . (4.41)

This can be rewritten as
∑m

j=0(−1)jAmj ≥ 0 . This ends the proof.

Th expression Tr(%%̃) is also known as an entanglement monotone called n-
concurrence, and can be converted into a monogamy relation [159, 198]. In light of
the subsequent Chapter 5, Eq. (4.38) can also be restated as the requirement that the
so-called shadow coefficient S0 = Tr(%S %̃S) be non-negative when averaged over all
m-body marginals %S . Note that in the case of graph states, this expression must
be integer, as it is obtained by counting elements of the stabilizer set with integer
prefactors. Similar conditions can be obtained by requiring Sj(%S) ≥ 0 for all j and
all reductions. This leads to constraints similar to those of the linear program in
Eq. (1.182).

4.6 Detecting illegitimate decks

In the following, we use the relations derived in the previous section to detect
illegitimate states. This is possible because having access to all reduced states of
size m directly yields Amj .

Proposition 16. Given a complete quantum k-deck D = {%S}, the weights A1, . . . , Ak of
the weight distribution of possible joint states can be obtained.
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Figure 4.2: Left: Ring cluster state on five qubits. Right, top row: the three-qubit re-
ductions of the five qubit ring cluster state obtained by tracing out nearest neighbors
are the equal mixture of these graph states. Right, bottom row: modifying some
reductions to be the equal mixture of the graph states shown in the bottom row, no
compatible joint state on five qubits exists.

Proof. Given a complete deck D, we obtain∑
%S∈D

∑
P∈P

wt(P )=j

= tr[(%S ⊗ 1Sc)P ] tr[(%S ⊗ 1Sc)P †]

= 2−k
∑

S, |S|=k

ASj = 2−k
(
n− j
n−m

)
Aj = 2−k

∑
Akj . (4.42)

where

ASj =
∑
P∈P

supp(P )⊆S
wt(S)=j

Tr(P%) Tr(P †%) . (4.43)

From Akj , the Aj can be obtained from Eq. (4.31). This ends the proof.

For decks of hypothetical joint graph states, Akj is exactly equal to the total
number of stabilizer elements of weight j appearing in the quantum k-deck. To see
how Prop. 14 can help to decide compatibility of a quantum deck, let us provide
some examples.

Example 2. Consider the case of three qubits. Then, setting a = 1 yields the necessary
condition on the weight distribution of a pure three-qubit state to be

A2 = 3 . (4.44)

By normalization, A1 +A3 = 4 follows. This makes clear that it is not possible to join three
Bell states together, as each one has the weights A = [1, 0, 3] already.

Example 3. Let us consider a more elaborate example, the ring cluster state of five qubits
depicted in Fig. 3. Those of its marginals which can be obtained by tracing out nearest
neighbors can be described as an equal mixture of the four graph states on three qubits that
are shown in Fig. 3, where the circles denote local Z-gates applied to the state. However,
modifying the reductions to be equal to the mixture of the states shown in the bottom row, no
consistent joint state can exist. This follows from their corresponding weight distribution:
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The ring cluster state has
(

5
3

)
= 10 reductions on three qubits withA = [1, 0, 0, 1], consistent

with Prop. 14 on five qubits. These read

−2A1 +A2 +A3 = 10 (4.45)
−4A1 + 3A2 + 2A3 +A4 = 35 . (4.46)

Slightly modifying some reductions to be an equal mixture of four other states depicted in
the lower row of Fig. 3, we obtain an illegitimate deck: These reductions have the weight
distribution A = (1, 0, 3/8, 11/8), together with the rest of the deck, they do not satisfy
Prop. 14. Thus, a corresponding joint state on five qubits cannot exist.

Example 4. Let us ask whether a pure state % on ten qubits could exist that has all reductions
on six qubits equal to

TrS(%) = p|GHZ6〉〈GHZ6|+ (1− p)1 , (4.47)

for all subsystems S of size six. Above, the GHZ state on six qubits is defined as |GHZ6〉 =
(|000000〉+|111111〉 /

√
2, and its weight distribution isA(|GHZ6〉) = [1, 0, 15, 0, 15, 0, 33].

From it, we can obtain a part of the weight distribution of the full state, namely

Aj≤6(%) =

(
10

j

)(
6

j

)−1

Aj(|GHZ6〉) . (4.48)

Thus for the putative pure joint state, [A0, . . . , A6] = [1, 0, 45p, 0, 210p, 0, 6930p]. Let
us now see what value p can have, in order to satisfy Prop. 14. The relation involving
A0, . . . , A6 only requires that

630 = −210A1 − 42A2 + 7A3 + 11A4 + 5A5 +A6 . (4.49)

This can only be fulfilled if p = 3/35.

Note that in above examples, one does not require to know the labeling of the
parties. Despite that, it is possible to make statements whether a joint state might
exist, and to already detect illegitimate decks when provided by a deck whose cards
have only size (bn2 c+ 1).

4.7 When is a weight distribution graphical?

Even when given the complete weight distribution A0, . . . , An, one cannot always
decide whether or not it can be realized by a graph state, that is, if the weight
distribution is graphical: While the criteria derived in the previous sections are
necessary, they are however not sufficient. One can find weight distributions which
satisfy all of the relations derived above, but for which no corresponding quantum
states exists. As an example, consider a hypothetical pure state of seven qubits,
having all three-body reductions maximally mixed (c.f. Chpt. 3). This a so-called
absolutely maximally entangled state, having the code parameters ((7, 1, 4))2. Its
weights distribution reads [44]

A = [1, 0, 0, 0, 35, 42, 28, 22] . (4.50)
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Figure 4.3: Two graph states on seven qubits that share the same weight distribu-
tion, but which can be shown to be inequivalent under local unitaries and graph
isomorphism. These are the graphs No. 42 and 43 of Table 5 in Ref. [47].

This weight distribution fulfills all of above relations. While it was known by ex-
haustive search that a realization as a graph state does not exist, we could only
recently show that such state can possibly exist with these properties (see Chpt. 3
and Ref. [109]). Interestingly, weight distributions are known for which the exis-
tence of corresponding graph states is unknown. As an example, the existence
of a graph state on 24 qubits, having all 9-body reductions maximally mixed, is a
long-standing open problem 4. Such state is equivalent to a self-dual additive code
over GF4, and corresponds to a quantum code having the parameters [[24, 0, 10]]2.
A putative weight distribution for such a state of type II , having a distribution of
even non-vanishing weights, reads

[A10, A12, A14, . . . A24] =

[18216, 156492, 1147608, 3736557, 6248088, 4399164, 1038312, 32778] , (4.51)

This weight distribution can also be found in The On-Line Encyclopedia of Integer
Sequences 5.

Finally, note that a weight distribution does not necessarily uniquely identify the
corresponding graph state, as states inequivalent under LU-transformations and
graph isomorphism can indeed have the same weight distribution. As an example,
consider the two graph states on seven qubits that are depicted in Fig. 4.7. These
can be shown to be inequivalent under local unitaries and graph isomorphism, but
they share the same weight distribution of 6

A = [1, 0, 0, 7, 21, 42, 42, 15] . (4.52)

Thus a weight distribution does not necessarily uniquely identify a graph state.

4.8 Conclusion

We have introduced the Ulam graph reconstruction problem to the case of quantum
graph states. In contrast to classical graph decks, the full graph state can (up to
local Z-gates) be reconstructed from a single card in the deck. As in the classical
case, the question of detecting illegitimate decks is of interest. Here, consistency
equations can be derived which can detect some but not all illegitimate quantum

4See Research Problem 13.3.7 in Ref. [106].
5See http://oeis.org/A030331.
6These are graphs No. 42 and 43 of Fig. 5 in Ref. [47]. Also c.f. Eq. (1.176).

http://oeis.org/A030331
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decks from their weight distribution; in some cases it is already possible to detect the
illegitimacy of decks consisting of marginals of size bn2 c+ 1. It would be interesting
to see whether similar relations can also be obtained for decks of classical graphs.

The result by Bollobás [219], namely, that almost every graph can uniquely be
reconstructed by a specific set of three cards, has an interesting counterpart in the
quantum setting: In Sect. 2.6.3, we have shown that almost all states are already
uniquely determined amongst all pure states by three marginals of size (n− 2) [184].
It would be desirable to understand if similar results also hold for the special case
of graph states.



Chapter 5

Constraints on correlations in
QECC and AME states

A pure multipartite quantum state is called absolutely maximally entangled
(AME), if all reductions obtained by tracing out at least half of its parties are maxi-
mally mixed. However, the existence of such states is in many cases unclear. With
the help of the weight enumerator machinery known from quantum error-correcting
codes and the generalized shadow inequalities, we obtain new bounds on the exis-
tence of AME states in higher dimensions. To complete the treatment on the weight
enumerator machinery, the quantum MacWilliams identity is derived in the Bloch
representation. This Chapter is based on Project [F].

5.1 Introduction

Recall that a pure state of n parties is called absolutely maximally entangled (AME), if all
reductions to bn2 cparties are maximally mixed. Then maximal possible entanglement
is present across each bipartition (c.f. 1.2.3).

As described in Chpt.3, the non-existence of the seven quit AME state solved the
AME problem in the case of qubits: Qubit AME states do only exist for n = 2, 3, 5,
and 6 parties, all of which can be expressed as graph or stabilizer states [44, 109].
Concerning larger local dimensions however, the existence of such states is only
partially resolved. AME states exist for any number of parties, if the dimension of
the subsystems is chosen large enough [99]. Furthermore, different constructions for
such states have been put forward, based on graph states [47, 48], classical maximum
distance separable codes [99, 110], and combinatorial designs [91, 111]. However,
for many cases it is still unknown whether or not AME states exist 1.

In this Chapter, we give results on the question of AME state existence when the
local dimension is three or higher. Namely, we show that, additionally to the known
non-existence bounds, three-level AME states with

n = 8, 12, 13, 14, 16, 17, 19, 21, 23 ; (5.1)

1 For the current status of this question, see Problem 35 in Ref. [112]
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four-level AME states with

n = 12, 16, 20, 24, 25, 26, 28, 29, 30, 33, 37, 39 ; (5.2)

and five-level AME states of

n = 28, 32, 36, 40, 44, 48 (5.3)

parties do not exist.
To this end, we make use of the weight enumerator machinery known from

quantum error-correcting codes (QECC). With it, bounds can also be obtained for
one-dimensional codes, which are pure quantum states [44]. We will make use of
the so-called shadow inequalities, which constrain the admissible correlations of
multipartite states, to exclude the existence of the above-mentioned AME states.
Along the way, we will prove a central theorem, the quantum MacWilliams identity,
originally derived by Shor and Laflamme for qubits [128] and by Rains for arbitrary
finite-dimensional systems in Ref. [118]. Thus our aim is twofold: On the one hand,
we provide an accessible introduction into the weight enumerator machinery in
terms of the Bloch representation, in order to gain physical intuition. On the other
hand, we apply this machinery to exclude the existence of certain higher-dimensional
AME states by making use of the so-called shadow enumerator.

This Chapter is organized as follows. In the next section, we introduce the
shadow inequalities, from which we eventually obtain the bounds mentioned above.
In Sect. 5.3, the Bloch representation of quantum states is introduced, followed by a
short discussion of QECC and their relation to AME states in Sect. 5.4. In Sect. 5.5, we
introduce the shadow enumerator, the Shor-Laflamme enumerators are explained
in Sect. 5.6, followed by the derivation of the quantum MacWilliams identity in
Sect. 5.7. The shadow enumerator in terms of the Shor-Laflamme enumerator is
derived in Sect. 5.8, from which one can obtain bounds on the existence of QECC
and of AME states in particular, which is presented in Sect. 5.9. We conclude in
Sect. 5.10.

5.2 Motivation

Originally introduced by Shor and Laflamme [128], Rains established the notion of
weight enumerators in a series of landmark articles on quantum error-correcting
codes [107, 118, 129]. With it, he stated some of the strongest bounds known to date
on the existence of QECC [107].

In particular, in his paper on polynomial invariants of quantum codes [129],
Rains showed an interesting theorem, which proved to be crucial to obtain those
bounds. These are the so-called generalized shadow inequalities: For all positive semi-
definite Hermitian operators M and N on parties (1 . . . n) and any fixed subset
T ⊆ {1 . . . n}, it holds that∑

S⊆{1...n}

(−1)|S∩T |TrS [TrSc(M) TrSc(N)] ≥ 0 . (5.4)

Here and in what follows, Sc denotes the complement of subsystem S in {1 . . . n}.
Note that if M = N = % is a quantum state, the generalized shadow inequalities
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are consistency equations involving the purities of the marginals, i.e. they relate
terms of the form Tr[TrSc(%)2], which in turn can be expressed in terms of linear
entropies. Thus, these inequalities form an exponentially large set of monogamy
relations for multipartite quantum states, applicable to any number of parties and
local dimensions.

In order to state bounds on the existence of AME states of n parties having
local dimension D each, one could in principle just evaluate this expression by
inserting the purities of AME state reductions. However, in order to understand the
connections to methods from quantum error-correcting codes, let us first recall the
quantum weight enumerator machinery, including the so-called shadow enumerator,
which is derived from Eq. (5.4). We will then rederive the central theorem, namely
the quantum MacWilliams identity. Finally, we obtain new bounds for AME states
with the help of the shadow inequalities. In order to remain in a language close to
physics, we will work exclusively in the Bloch representation.

5.3 The Bloch representation

Let us recall the Bloch representation (c.f. Sect. 1.1.7). Denote by {ej} an orthonormal
basis for operators acting on CD, such that Tr(e†jek) = δjkD. We require that {ej}
contains the identity (e.g. e0 = 1), and therefore all other basis elements are traceless
(but not necessarily Hermitian). Then, a local error-basis E acting on (CD)⊗n can be
formed by taking tensor products of elements in {ej}. That is, each element Eα ∈ E
can be written as

Eα = eα1 ⊗ . . .⊗ eαn . (5.5)

Because the single-party basis {ej} is orthonormal, the relation Tr(E†αEβ) = δαβD
n

follows. For qubits, E can be thought of to contain all tensor products of the Pauli
matrices σ0, σ1, σ2, σ3; in higher dimensions, a tensor-product basis can be formed
from elements of the Heisenberg-Weyl or the generalized Gell-Mann basis [40].
Further, denote by supp(E) the support of operator E, that is, the set of parties on
which E acts non-trivially. The weight of an operator is then size of its support, and
we write wt(E) = | supp(E)|.

Then, every operator on n parties having D levels each can be decomposed in
the Bloch representation as

M =
1

Dn

∑
E∈E

Tr(E†M)E . (5.6)

As in the above decomposition, we will often omit the subindex α, writing E for
Eα. Also, most equations that follow contain sums over all elements E in E , subject
to constraints. In those cases we will often denote the constraints only below the
summation symbol.

Given an operator M expanded as in Eq. (5.6), its reduction onto subsystem Sc

tensored by the identity on the complement S reads

TrS(M)⊗ 1S = D|S|−n
∑

supp(E)⊆Sc
Tr(E†M)E . (5.7)
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This follows from TrS(E) = 0 whenever supp(E) 6⊆ Sc. Interestingly, this can also be
written in terms of a quantum channel, whose Kraus operators also form a unitary
1-design [222].

Observation 26. The partial trace over subsystem S tensored by the identity on S can also
be written as a channel,

TrS(M)⊗ 1S = D−|S|
∑

supp(E)⊆S

EME† . (5.8)

Proof. Consider a bipartite system with Hilbert space H = CD ⊗ CD with a local
orthonormal operator basis {ej} on CD. Define the SWAP operator as

SWAP =
D−1∑
j,k=0

|jk〉〈kj| . (5.9)

Thus, it acts on pure states as SWAP(|ψ〉 ⊗ |φ〉) = |φ〉 ⊗ |ψ〉. Note that it can also be
expressed in terms of any orthonormal basis {ej} as [15]

SWAP =
1

D

D2−1∑
j=0

e†j ⊗ ej . (5.10)

Therefore we can express 1⊗N as

1⊗N = SWAP ·(N ⊗ 1) · SWAP

= (D−1
D2−1∑
j=0

ej ⊗ e†j)(N ⊗ 1)(D−1
D2−1∑
k=0

e†k ⊗ ek)

= D−2
D2−1∑
j,k=0

(ejNe
†
k)⊗ (e†jek) . (5.11)

Tracing over the second party gives

Tr(N)1 =
1

D

D2−1∑
j=0

ejNe
†
j . (5.12)

The claim follows from the linearity of the tensor product. This ends the proof.

Note that the proof is independent of the local orthonormal operator basis {ej}
chosen.

5.4 Quantum error-correcting codes

Let us introduce recall the definition of quantum error-correcting codes (c.f. 1.2.4)
and their relation to absolutely maximally entangled states. A quantum error-
correcting code with the parameters ((n,K, d))D is a K-dimensional subspace Q of
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(CD)⊗n, such that for any orthonormal basis {|iQ〉} of Q and all errors E ∈ E with
wt(E) < d [44, 117],

〈iQ|E |jQ〉 = δijC(E) . (5.13)
Above, d is called the distance of the code. If C(E) = Tr(E)/Dn, the code is called
pure. By convention, codes with K = 1 are only considered codes if they are pure.
From the definition follows that a one-dimensional code (also called self-dual),
described by a projector |ψ〉〈ψ|, must fulfill Tr(E|ψ〉〈ψ|) = 0 for all E 6= 1 of weight
smaller than d. Thus, pure one-dimensional codes of distance d are pure quantum
states whose reductions onto (d− 1) parties are all maximally mixed. AME states,
whose reductions onto bn2 c parties are maximally mixed, are QECC having the
parameters ((n, 1, bn2 c+ 1))D.

5.5 The shadow enumerator

Let us introduce the shadow enumerator, and point out its usefulness. Following
Rains [118], we define

A′S(M,N) = TrS [TrSc(M) TrSc(N)] , (5.14)
B′S(M,N) = TrSc [TrS(M) TrS(N)] . (5.15)

Naturally, A′S = B′Sc . With this, we define

Sj(M,N) =
∑
|T |=j

∑
S⊆{1...n}

(−1)|S∩T
c|A′S(M,N) , (5.16)

where the sum is over all T ⊆ {1 . . . n} of size j. Eq. (5.4) states that all Sj must be
non-negative. Note however, that there is the term T c instead of T in the exponent,
compared to Eq. (5.4), but this does not matter, as Eq. (5.4) holds for any T . The
shadow enumerator then is the polynomial

SMN (x, y) =
n∑
j=0

Sj(M,N)xn−jyj . (5.17)

The question remains: Given a hypothetical QECC or an AME state in particular,
how do we obtain its shadow enumerator in order to check for the non-negativity
of its coefficients? Two paths come to mind: First, if we are interested in one-
dimensional codes (K = 1), the purities of the reductions determine all A′S(Q).
For AME states of local dimension D, the situation is particularly simple: from the
Schmidt decomposition, it can be seen that all reductions to k parties must have the
purity

Tr(%2
(k)) = D−min(k,n−k) . (5.18)

Second, the coefficients of the so called Shor-Laflamme enumerator Aj(Q) may
be known (see also below), from which the shadow enumerator can be obtained.
Generally, when dealing with codes whose existence is unknown, putative weight
enumerators can often be obtained by stating the relations that follow as a linear
program [44, 106, 108]. If, for a set of parameters ((n,K, d))D, no solution can be
found, a corresponding QECC cannot exist.

In the following three sections, we aim to give a concise introduction as well as
intuition to this enumerator theory.
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Coefficient Enumerator

Shor-Laflamme enum’s: Aj(M,N) =
∑

wt(E)=j Tr(EM) Tr(E†N) AMN (x, y) =
∑n

j=0Aj(M,N)xn−jyj

Bj(M,N) =
∑

wt(E)=j Tr(EME†N) BMN (x, y) =
∑n

j=0Bj(M,N)xn−jyj

Rain’s unitary enum’s:

A′S(M,N) = TrS [TrSc(M) TrSc(N)]
B′S(M,N) = TrSc [TrS(M) TrS(N)]

A′j(M,N) =
∑
|S|=j A′S(M,N) A′MN (x, y) =

∑n
j=0A

′
j(M,N)xn−jyj

B′j(M,N) =
∑
|S|=j B′SM,N) B′MN (x, y) =

∑n
j=0B

′
j(M,N)xn−jyj

Shadow enumerator: Sj(M,N) =
∑
|T |=j

∑
S(−1)|S∩T

c|A′S(M,N) SMN (x, y) =
∑n

j=0 Sj(M,N)xn−jyj

Table 5.1: The weight enumerators and their coefficients, as used in this Chapter.

5.6 Shor-Laflamme enumerators

In this section, we introduce the protagonists of the enumerator machinery, the
Shor-Laflamme (weight) enumerators [118, 128]. These are defined for any two given
Hermitian operators M and N acting on (CD)⊗n, and are local unitary invariants.
Their (unnormalized) coefficients are given by 2.

Aj(M,N) =
∑

wt(E)=j

Tr(EM) Tr(E†N) , (5.19)

Bj(M,N) =
∑

wt(E)=j

Tr(EME†N) . (5.20)

The corresponding enumerator polynomials are

AMN (x, y) =
n∑
j=0

Aj(M,N)xn−jyj , (5.21)

BMN (x, y) =
n∑
j=0

Bj(M,N)xn−jyj . (5.22)

While it might not be obvious from the definition, these enumerators are independent
of the local error-basis E chosen, and are thus local unitary invariants. This follows
from the fact that they can expressed as linear combinations of terms having the
form of Eq. (5.14). The exact relation will be made clear in Section 5.7.

When dealing with weight enumerators, there is the following pattern, as seen
above: First define a set of coefficients [e.g, Aj(M,N)], from which the associated
polynomial, the enumerator, is constructed [e.g., AMN (x, y)]. If M = N , we will
often write the first argument only, e.g. Aj(M), or leave it out alltogether. In Table 5.1,
we give an overview of the coefficients and enumerators used in this Chapter.

Considering a QECC with parameters ((n,K, d))D, one sets M = N to be equal
to the projector Q onto the code space. The following results concerning QECC and
their Shor-Laflamme enumerators are known [118]: The coefficients Aj = Aj(Q)
and Bj = Bj(Q) are non-negative, and

KB0 = A0 = K2 , (5.23)
KBj ≥ Aj , (5.24)

2In fact, for higher dimensions, we chose a definition that is different, but equivalent, to the original
definition as found in Ref. [118].
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with equality in the second equation for j < d. In fact, these conditions are not only
necessary but also sufficient for a projector Q to be a QECC.

Theorem 27 ([118]). LetQ be a projector of rankK. Q is a code of distance d if and only if

KBj(Q) = Aj(Q) ∀j < d , (5.25)

Proof. The equation KB0 = A0 = K2 follows by direct computation. Let us show
that for a QECC having the parameters ((n,K, d))D, the coefficients of the Shor-
Laflamme enumerator fulfill [cf. Eq. (5.24)]Aj(Q) ≤ KBj(Q) ,where equality holds
for j < d. Recall that

Aj(Q) =
∑

wt(E)=j

Tr(EQ) Tr(E†Q) , (5.26)

Bj(Q) =
∑

wt(E)=j

Tr(EQE†Q) . (5.27)

Let us check the inequality for each term appearing in the sum, namely for those of
the form

Tr(EQ) Tr(E†Q) ≤ K Tr(EQE†Q) , (5.28)
where E is a specific error under consideration. For later convenience, let us choose
the error-basis E to be Hermitian, e.g. formed by tensor products of the generalized
Gell-Mann matrices (c.f. Sect. 1.1.7) [40]. Decomposing Q =

∑K
i=0 |iQ〉〈iQ|, write

Tr(EQ) Tr(E†Q) = (
K∑
i=0

〈iQ|E |iQ〉)(
K∑
j=0

〈jQ|E† |jQ〉) ,

Tr(EQE†Q) =
K∑

i,j=0

〈iQ|E|jQ〉〈jQ|E† |iQ〉 . (5.29)

If wt(E) < d, recall the definition of a QECC [Eq. (5.13)],

〈iQ|E |jQ〉 = δijC(E), if wt(E) < d . (5.30)

From this one obtains for j < d

Tr(EQ) Tr(E†Q) = K2C(E)C∗(E) ,

Tr(EQE†Q) = KC(E)C∗(E) . (5.31)

Thus for j < d, one obtains Aj(Q) = KBj(Q). If on the other hand wt(E) ≥ d, let
us define the matrix Q with entries Qij = 〈iQ|E |jQ〉. Note that Q is a Hermitian
matrix of size K ×K. Then

Tr(EQ) Tr(E†Q) = [Tr(Q)]2 ,

Tr(EQE†Q) = Tr(Q2) . (5.32)

Consider the diagonalization ofQ. By Jensen’s inequality, its eigenvalues must fulfill

( K∑
i=1

λi

)2
≤ K

K∑
i=1

λ2
i , (5.33)
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from which the inequality Aj(Q) ≤ KBj(Q) follows.
Let us now show that a projectorQ of rankK is a QECC of distance d if and only

if Aj(Q) = KBj(Q) for all j < d. This can be seen in the following way:
“⇒”: Use the definition of QECC, Eq. (5.13).
“⇐”: Note that in order to obtain Aj(Q) = KBj(Q), there must be equality in

Eq. (5.28) for all E with wt(E) = j. Thus, also equality in Eq. (5.33) is required.
However, this is only possible if all eigenvalues λi ofQ are equal. Then,Q is diagonal
in any basis, and we can write

〈iQ|E |jQ〉 = δijλ(Q) . (5.34)

Because above equation must hold for all errors E of weight less than d, we obtain
Eq. (5.13) defining a quantum error-correcting code:

〈iQ|E |jQ〉 = δijC(E) , (5.35)

for all E with wt(E) < d. This ends the proof.

The distance of a code can thus be obtained in the following way: if a projectorQ
fulfills the above conditions with equality for all j < d, then Q is a quantum code of
distance d 3 For pure codes, additionally Aj = Bj = 0 for all 1 < j < d. In particular,
AME states have Aj = 0 for all 1 < j < bn2 c+ 1; the remaining Aj can be obtained
in an iterative way from Eq. (5.18) [44, 109].

In the case of Q = |ψ〉〈ψ|, the weight enumerators have a particularly simple
interpretation: The coefficient Aj measures the contribution to the purity of |ψ〉〈ψ|
by terms in |ψ〉〈ψ| having weight j only, while the dual enumerator measures the
overlap of |ψ〉〈ψ|with itself, given an error-sphere of radius j. Furthermore, we have
Aj = Bj for all j, as a direct evaluation shows. In the entanglement literature, Aj(%)
is also called the correlation strength, or the two-norm of the j-body correlation
tensor [90, 223]. Concerning codes known as stabilizer codes, Aj and Bj count
elements of weight j in the stabilizer and in its normalizer respectively [224].

Let us now try to give some intuition for these enumerators for general Hermitian
operators M and N . Note that the coefficients of the primary enumerator Aj(M,N)
form a decomposition of the inner product Tr(MN). This can be seen by writing M
and N in the Bloch representation [Eq. (5.6)],

Tr(MN) = D−2n Tr
(∑

E

Tr(EM)E†
∑
E′

Tr(E′†N)E′
)

= D−2n Tr
(∑

E

Tr(EM) Tr(E†N)E†E
)

= D−n
n∑
j=0

Aj(M,N) . (5.36)

On the other hand, the coefficients of the dual enumerator Bj(M,N) can be seen as
a decomposition of Tr(M) Tr(N). To see this, recall that by definition of the partial
trace,

TrSc [TrS(M) TrS(N)] = Tr[TrS(M)⊗ 1S N ] . (5.37)
3See Theorems 2 and 18 in Ref. [118], and Ref. [128].
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As shown in Observation 26, the partial trace over parties in S tensored by the
identity on S can also be written as a quantum channel,

TrS(M)⊗ 1S = D−|S|
∑

supp(E)⊆S

EME† . (5.38)

Thus Bj(M,N) decomposes Tr(M) Tr(N),

Tr(M) Tr(N) = Tr[Tr(M)1N ]

= D−n Tr(
∑
E

EME†N)

= D−n
n∑
j=0

∑
wt(E)=j

Tr(EME†N)

= D−n
n∑
j=0

Bj(M,N) . (5.39)

The insight gained from writing the partial trace in two different ways, and the
decomposition of Tr(MN) and Tr(M) Tr(N) in terms of the coefficients of the Shor-
Laflamme enumerators will prove to be the essence of the MacWilliams identity,
which we rederive in the following section.

5.7 The quantum MacWilliams identity

In this section, we prove the quantum MacWilliams identity. It relates the two Shor-
Laflamme enumeratorsAMN (x, y) andBMN (x, y) for arbitrary Hermitian operators
M and N .

Theorem 28 (Rains [106, 118]). Given two Hermitian operators M and N acting on n
systems having D levels each, following holds:

AMN (x, y) = BMN

(x+ (D2 − 1)y

D
,
x− y
D

)
. (5.40)

Proof. In order to prove this identity, one has to express the trace inner product of
reductions in two different ways: given the operator M expanded as in Eq. (5.6), its
reduction tensored by the identity reads [cf. Eq. (5.7)]

TrSc(M)⊗ 1Sc = D|S
c|−n

∑
supp(E)⊆S

Tr(EM)E† . (5.41)

Therefore,

Tr[TrSc(M)⊗ 1Sc N ]

= Tr
(
D|S

c|−2n
∑

supp(E)⊆S

Tr(EM)E†
∑
E′

Tr(E′†N)E′
)

= D|S
c|−n

∑
supp(E)⊆S

Tr(EM) Tr(E†N) . (5.42)
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Summing over all subsystems S of size m, one obtains∑
|S|=m

Tr[TrSc(M)⊗ 1Sc N ]

= D|S
c|−n

∑
|S|=m

∑
supp(E)⊆S

Tr(EM) Tr(E†N)

= D−m
m∑
j=0

(
n

m

)(
m

j

)(
n

j

)−1

Aj(M,N)

= D−m
m∑
j=0

(
n− j
n−m

)
Aj(M,N) . (5.43)

Above, the binomial factors account for multiple occurrences of terms having weight
j in the sum. Note that Eq. (5.43) forms the coefficients of Rains’ unitary enumerator
[cf. (5.14)] [118], defined as

A′m(M,N) =
∑
|S|=m

A′S(M,N)

=
∑
|S|=m

TrS [TrSc(M) TrSc(N)] . (5.44)

On the other hand, by expressing the partial trace as a quantum channel (see Obs. 26)
and again summing over subsystems of size m, we can write∑

|S|=m

Tr[TrS(M)⊗ 1S N ]

=
∑
|S|=m

Tr(D−|S|
∑

supp(E)⊆S

EME†N)

= D−m
m∑
j=0

(
n

m

)(
m

j

)(
n

j

)−1

Bj(M,N)

= D−m
m∑
j=0

(
n− j
n−m

)
Bj(M,N) . (5.45)

Similar to above, Eq. (5.45) forms the coefficients of the unitary enumerator [cf.
Eq. (5.14)]

B′m(M,N) =
∑
|S|=m

B′S(M,N)

=
∑
|S|=m

TrSc [TrS(M) TrS(N)] . (5.46)

Naturally, the corresponding unitary enumerator polynomials read

A′MN (x, y) =

n∑
j=0

A′j(M,N)xn−jyj (5.47)

B′MN (x, y) =
n∑
j=0

B′j(M,N)xn−jyj . (5.48)
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Using relations (5.43) and (5.45), let us relate the unitary enumerators to the Shor-
Laflamme enumerators. This is somewhat tedious but straightforward:

A′MN (x, y) =

n∑
m=0

A′m(M,N)xn−mym

=
n∑

m=0

[ m∑
j=0

(
n− j
n−m

)
Aj(M,N)D−m

]
xn−mym

=
n∑
j=0

n∑
m=0

(
n− j
n−m

)
Aj(M,N)xn−m(y/D)m

=

n∑
j=0

n∑
m=j

(
n− j
n−m

)
Aj(M,N)xn−m(y/D)m(y/D)−j(y/D)j

=
n∑
j=0

n−j∑
m=0

(
n− j

n− j −m

)
Aj(M,N)xn−j−m(y/D)m(y/D)j

=

n∑
j=0

Aj(M,N)(x+ y/D)n−j(y/D)j

= AMN

(
x+

y

D
,
y

D

)
. (5.49)

In an analogous fashion (replaceA′m byB′m, andAj byBj), one can relateB′MN (x, y)
and BMN (x, y). Thus

A′MN (x, y) = AMN

(
x+

y

D
,
y

D

)
, (5.50)

B′MN (x, y) = BMN

(
x+

y

D
,
y

D

)
. (5.51)

It remains to use that B′S(M,N) = A′Sc(M,N), from which follows thatB′k(M,N) =
A′n−k(M,N), and

A′MN (x, y) = B′MN (y, x) . (5.52)

Thus the quantum MacWilliams identity is established,

AMN (x, y) = A′MN (x− y,Dy) = B′MN (Dy, x− y)

= BMN

(x+ (D2 − 1)y

D
,
x− y
D

)
. (5.53)

This ends the proof.

For M = N = |ψ〉〈ψ|, Aj(|ψ〉) = Bj(|ψ〉). Therefore the enumerator must stay
invariant under the transform

x 7−→ x+ (D2 − 1)y

D
,

y 7−→ x− y
D

. (5.54)
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In this case, a much simpler interpretation of the MacWilliams identity can be
given: It ensures that the purities of complementary reductions, averaged over all
complementary reductions of fixed sizes, are equal.

As shown above, the quantum MacWilliams identity is in essence a decomposi-
tion of the trace inner product of reductions of operators M and N in two different
ways. The motivation lies in the decomposition of Tr(MN) and Tr(M) Tr(N), using
different ways to obtain the partial trace in the Bloch picture [cf. Eqs. (5.7) and
Obs. 26]. Finally, note that the derivation of the identity did not require M,N to be
positive semi-definite. Therefore the quantum MacWilliams identity holds for all,
including non-positive, pairs of Hermitian operators.

5.8 The shadow enumerator in terms of the Shor-Laflamme
enumerator

So far, we have introduced the Shor-Laflamme and the shadow enumerator. Let us
now see how to express one in terms of the other. The strategy is the following: the
shadow inequalities are naturally expressed in terms ofA′S [cf. Eqs. (5.4) and (5.16)],
which we then write as a transformation of AMN (x, y).

Theorem 29 (Rains 4 [106, 107, 118]). GivenAMN (x, y), the shadow enumerator is given
by

SMN (x, y) = AMN

(
(D − 1)x+ (D + 1)y

D
,
y − x
D

)
. (5.55)

Proof. Recall from Eq. (5.16), that for Hermitian operatorsM,N ≥ 0, the coefficients
of the shadow enumerator are

Sj(M,N) =
∑
|T |=j

∑
S

(−1)|S∩T
c|A′S(M,N) . (5.56)

As a first step, let us understand what combinatorial factor a given A′S(M,N)
receives from the sum over the subsets T ⊆ {1 . . . n} of size j, or subsets T c of size
m = n− j respectively. For a fixed subsystem S of size k, we can evaluate the partial
sum

f(m = |T c|, k = |S|;n) =
∑
|T c|=m

(−1)|S∩T
c| . (5.57)

By considering what possible subsets T c of size m have a constant overlap of size α
with S, yielding a sign (−1)α, we obtain the expression

f(m, k;n) =
∑
α

(
n− k
m− α

)(
k

α

)
(−1)α =: Km(k;n) , (5.58)

whereKm(k;n) is the so-called Krawtchouk polynomial (see Appendix 5.12). Above,(
k
α

)
accounts for the different combinatorial possibilities of elements T c having

overlap α with S. Necessarily, T c must then have a part of size m− α lying outside
of S; there are

(
n−k
m−α

)
ways to obtain this. This is illustrated in Fig. 5.1. Therefore,

4See Theorem 13.5.1. on p. 383 in Ref. [106] and Theorem 8 in Ref. [107] for D = 2. Also Sect. V in
Ref. [118] states this result, but contains a sign error in the second argument of AC .
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S, k

T c,m

n

α m− α

1 2 3 ... ... n

Figure 5.1: Overlap between S and subsets T of size m. The term
(
k
α

)
accounts for

the different combinatorial possibilities of elements T c having overlap α with S.
Necessarily, T c must then have a part of size m − α lying outside of S; there are(
n−k
m−α

)
ways to obtain this.

one obtains

Sj(M,N) =
n∑
k=0

Kn−j(k;n)A′k(M,N) . (5.59)

Again, one can write this relation in a more compact form in terms of the unitary
enumerator,

SMN (x, y) =

n∑
m=0

Smx
n−mym

=
n∑

m=0

n∑
k=0

Kn−m(k;n)A′k(M,N)xn−mym

=
n∑
k=0

A′k(M,N)
[ n∑
m=0

Kn−m(k;n)xn−mym
]

=
n∑
k=0

A′k(M,N)
[ n∑
m′=0

Km′(k;n)xm
′
yn−m

′
]

=
n∑
k=0

A′k(M,N)(y + x)n−k(y − x)k

= A′MN (x+ y, y − x) . (5.60)

Above, the second last equality follows from Eq. (118). Thus

SMN (x, y) = A′MN (x+ y, y − x) . (5.61)

To obtain the shadow enumerator in terms of the Shor-Laflamme enumerator, we
take advantage of Eq. (5.50). Then

SMN (x, y) = A′MN (x+ y, y − x)

= AMN

(
(D − 1)x+ (D + 1)y

D
,
y − x
D

)
. (5.62)

This ends the proof.

Thus, given the Shor-Laflamme enumerator, one can obtain the shadow enumer-
ator simply by a transform. If any of its coefficients are negative, a corresponding
QECC cannot exist.
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5.9 New bounds on absolutely maximally entangled states

In this last section, let us return to the question of the existence of absolutely maxi-
mally entangled (AME) states. Scott showed in Ref. [44] that a necessary requirement
for an AME state of n parties having D levels each to exist, is

n ≤
{

2(D2 − 1) n even,

2D(D + 1)− 1 n odd.
(5.63)

We explain now how this bound was obtained by requiring the positivity of the
Shor-Laflamme enumerator Abn

2
c+2. Recall that complementary reductions of pure

states share the same spectrum and therefore also the same purity. Thus if |φn,D〉 is
a putative AME state of n parties having D levels each, then the coefficients of the
unitary enumerator as defined in Eq. (5.44) are given by

A′k(|φn,D〉) =

(
n

k

)
D−min(k,n−k) . (5.64)

Considering the unitary enumerator coefficient A′bn
2
c+2, only the terms A0 = 1,

Abn
2
c+1, and Abn

2
c+2 contribute, with appropriate combinatorial prefactors. From

Eq. (5.43) [or from the transform in Eq. (5.50)], one obtains

A′bn
2
c+2 = D−(bn

2
c+2)

[( n

bn2 c+ 2

)
A0

+

(
n− (bn2 c+ 1)

n− (bn2 c+ 2)

)
Abn

2
c+1 +Abn

2
c+2

]
. (5.65)

The term Abn
2
c+1 in above equation is fixed by the knowledge of A′bn

2
c+1,

A′bn
2
c+1 = D−(bn

2
c+1)

[( n

bn2 c+ 1

)
A0 +Abn

2
c+1

]
. (5.66)

Combining Eqs. (5.64), (5.65), and (5.66), solving for Abn
2
c+2, and requiring its non-

negativity yields then the bound of Eq. (5.63).
Let us now see what the additional constraints from the shadow enumerator

yield. Having knowledge of all the unitary enumerator coefficients [Eq. (5.64)], all
that is left is to evaluate Eq. (5.59) [or Eq. (5.61) respectively], which relates the
shadow enumerator to the unitary enumerator. If any coefficient Sj(|φn,D〉) happens
to be negative, a AME state on n parties having D levels each cannot exist. We
should mention that one could also evaluate Eq. (5.4) directly, for a suitable choice
of T ⊆ {1 . . . n}. To give an example, consider a putative AME state on four qubits,
whose non-existence proven by Ref. [86]. Then

S0(|φ4,2〉) = A′0 −A′1 +A′2 −A′3 +A′4 = −1

2
, (5.67)

in contradiction to the requirement that all Sj be non-negative.
In Fig. 5.2, the parameters of hypothetical AME states are shown: In dark blue,

AME states which are already excluded by the bound from Scott are marked; in
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Figure 5.2: In dark blue, AME states which are already excluded by the bound
from Scott are marked; in light blue, those AME states for which the negativity
of the shadow enumerator coefficients Sj(|φn,D〉) gives stronger bounds. The non-
existence of an AME state having parameters n = 4 andD = 2 is already known [86].
The AME state with n = 7 and D = 2 (also marked in blue) is neither exluded by
the Scott bound nor by the shadow enumerator, but by Ref. [109]. The symbol ∃
marks states which are known to exist, constructions can be found in Refs. [48, 91,
110, 111, 123, 203, 204, 225, 226].

light blue, those AME states for which the negativity of the shadow enumerator
coefficients Sj(|φn,D〉) gives stronger bounds. For Fig. 5.2, all shadow coefficients of
hypothetical AME states with local dimension D ≤ 9 and n not violating the Scott
bound have been evaluated. The non-existence of an AME state having parameters
n = 4 and D = 2 is already known [86]. The AME state with n = 7 and D = 2
(also marked in blue) is neither exluded by the Scott bound nor by the shadow
enumerator, but by Ref. [109]. The symbol ∃marks states which are known to exist,
constructions can be found in Refs. [48, 91, 110, 111, 123, 203, 204, 225, 226].

We conclude, that additionally to the known non-existence bounds, three-level
AME states with

n = 8, 12, 13, 14, 16, 17, 19, 21, 23 ; (5.68)

four-level AME states with

n = 12, 16, 20, 24, 25, 26, 28, 29, 30, 33, 37, 39 ; (5.69)

and five-level AME states of

n = 28, 32, 36, 40, 44, 48 (5.70)

parties do not exist.
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5.10 Discussion

Using the quantum weight enumerator machinery originally derived by Shor,
Laflamme and Rains, we obtained bounds on the existence of absolutely max-
imally entangled states in higher dimensions. For this, we used the so-called
shadow inequalities, which constrain the possible correlations arising from quan-
tum states (also see Sect. 5.11.1). Additionally, we provided a proof of the quantum
MacWilliams transform in the Bloch representation, clarifying its physical interpre-
tation. It should be possible to apply the shadow inequalities also to investigate
the existence of maximally entangled states whose subsystems have differing local
dimensions.

For future work, it would be interesting to see what the generalized shadow
inequalities involving higher-order invariants [129] imply for the distribution of
correlations in QECC and multipartite quantum states.
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5.11 Further results

5.11.1 A generalization of the universal state inversion from the shadow
inequalities

Here, I introduce a generalization of the universal state inversion that naturally
arises from the shadow inequality. It also incorporates an extension of the Breuer-
Hall map to many particles, and can, similar to the reduction criterion, be used to
detect entanglement. Recall that the universal state inversion already generalizes the
reduction map and the reduction criterion (c.f. Sect. 1.1.6). It is given by [35–37] 5

I[%] =
∑

S⊆{1...n}

(−1)|S|%S ⊗ 1Sc , (5.71)

where %S = TrSc %. Note that it can also be written as

I[%] =
⊗
j

(1j Trj −1)[%] . (5.72)

As with the reduction criterion, the universal state inversion can detect entanglement:
If (IA ⊗ 1B)[%] < 0, then % must be entangled across the bipartition A|B.

In Sect. 5.5, I introduced the shadow inequality as established by Rains: For any
two positive semi-definite operators M and N , and a fixed subset T ⊆ {1 . . . n}, the
following expression is non-negative∑

S⊆{1...n}

(−1)|S∩T |Tr[TrSc(M) TrSc(N)] ≥ 0 . (5.73)

Naturally, if M = N = %, the above inequality takes the form of∑
S⊆{1...n}

(−1)|S∩T |Tr[%2
S ] ≥ 0 . (5.74)

Thus the shadow inequality represents an exponentially large family of relations
that constrain the distribution of entanglement of multipartite states in terms of
purities of its reductions 6. A analogous relation in terms of Von Neumann entropies
instead of purities has shown to not hold, as the expression generally can take either
sign [227].

Interestingly, the shadow inequality can also be seen as a generalization of the
universal state inversion. Let us define the T-inversion map:

Definition 14. Let T ⊆ {1 . . . n}. The T-inversion map IT on a system of n parties is
given by

IT [·] =
∑

S⊆{1...n}

(−1)|S∩T |TrSc [·]⊗ 1Sc . (5.75)

If M is an operator, denote by M̃(T ) = IT [M ] its T -inversion.
5A two-partite version of the universal state inversion already appeared in Refs. [33, 34].
6This is why it can be used to investigate the existence of QECC and AME states, as shown in the

main part of this Chapter.
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Similar to the universal state inversion, the T -inversion IT is a positive map.

Corollary 4. The map IT is positive for all T ⊆ {1 . . . n}.

Proof. Let M be a positive semi-definite operator, M ≥ 0. Consider Eq. (5.73): Note
that given a specific operatorM , one can chooseN ≥ 0 freely. In particular, consider
N = |φ〉〈φ| to be a random unit vector. Then

Tr[TrSc(M) TrSc(|φ〉〈φ|)] = Tr[(TrSc(M)⊗ 1Sc)|φ〉〈φ|]
= 〈φ| (TrSc(M)⊗ 1Sc) |φ〉 . (5.76)

Inserting this into the definition of IT in Eq. (5.75) yields

IT [M ] = 〈φ|
( ∑
S⊆{1...n}

(−1)|S∩T |TrSc [M ]⊗ 1Sc
)
|φ〉 ≥ 0 ∀ |φ〉 . (5.77)

Therefore, given a positive operator M , its T -inversions IT [M ] are positive for all
T ⊆ {1 . . . n}. This ends the proof.

Choosing T = {1 . . . n}, one recovers the universal state inversion from Eq. (5.71),
I{1...n}[M ] = I[M ]. While IT is positive map, it is however not completely positive.
Thus if (IT ⊗ 1)[%] < 0, then % must be entangled.

The T -inversion as a fine-graining of the reduction map.

The T -inversions with |T | odd form a kind of fine-graining of the reduction map
R[%] = 1− %, in the sense made precise below.

Proposition 17. For any operator %,∑
T⊆{1...n}
|T | odd

IT [%] = 2n−1(1− %) . (5.78)

Proof. We have to evaluate∑
T⊆{1...n}
|T | odd

IT [%] =
∑

T⊆{1...n}
|T | odd

∑
S⊆{1...n}

(−1)|S∩T |%S ⊗ 1Sc . (5.79)

Let us now examine the contribution of these sums to a single term of the form
%S ⊗ 1Sc . Let S be of size k with 0 < k < n, and consider those subsets T of size m
that have an overlap of size αwith S. Then T must have an overlap of size β = m−α
with Sc. If α is odd, then β must be even, and vice versa; this follows from T being
odd. Then there are [ ∑

α odd

(
k

α

)][ ∑
β even

(
n− k
β

)]
(5.80)

terms acquiring a negative sign from (−1)|T∩S|, and[ ∑
α even

(
k

α

)][ ∑
β odd

(
n− k
β

)]
(5.81)
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yielding a positive sign. But∑
α odd

(
k

α

)
=
∑
α even

(
k

α

)
= 2k−1 , (5.82)

and ∑
β even

(
n− k
β

)
=
∑
β odd

(
n− k
β

)
= 2n−k−1 . (5.83)

Thus, all positive and all negative terms cancel. However, if |S| = 0, no odd overlap
α can possibly exist. Similarly, if |S| = n, no odd overlap β exists. Therefore, these
terms do not cancel: In the case of S being the empty set, 2n−1 terms acquire a
positive sign from (−1)|S∩T |; and conversely, 2n−1 terms acquire a negative sign in
the case of S = {1 . . . n}. We are left with∑

T⊆{1...n}
|T | odd

IT [%] = 2n−1(1− %) . (5.84)

This ends the proof.

Thus the odd T -inversions form a fine-graining of the reduction map,

R[·] =
1

2n−1

∑
|T | odd

IT [·] . (5.85)

Consequently, % and all its odd inversions form a POVM (c.f. Sect. 1.1.3),

%+
1

2n−1

∑
|T | odd

IT [%] = 1 . (5.86)

Let us explain the connections of the T -inversion to the weight enumerator
theory introduced earlier in this Chapter: Note that the coefficients of the shadow
enumerator [c.f. Eq. (5.16)] are given by 7

Sj(Q) =
∑
|T c|=j

Tr(IT [Q]Q) . (5.87)

Additionally, for pure states % = |φ〉〈φ| and |T | odd it holds that

Tr(IT [%]%) = 0 . (5.88)

This follows from the fact that for pure states,

(%A ⊗ 1B)%AB = (1A ⊗ %B)%AB . (5.89)

Thus when expanding IT [%], if %S happens to have a positive sign, %Sc will obtain
a negative sign, and vice versa. Thus all terms in Tr(IT [%]%) cancel pairwise. We
conclude that Sj(Q) = 0 if (n − j) is odd in the case of pure quantum states or
self-dual codes. Also note that in the case of qubits, S0(Q) is the n-concurrence [198],
vanishing for an odd number of parties.

7Note that S0(Q) corresponds to T = {1 . . . n}, and Sj corresponds to having (n− j) minus signs
appearing in the inversions. This originates from the definition of the shadow enumerator [107, 118].
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A further extension of the T -inversion

One can further generalize the shadow inequalities, and with it, the T -inversion.
This is done by introducing additional parameters, and by incorporating terms
similar to those which appear in the Breuer-Hall map (c.f. Sect. 1.1.5).

Theorem 30. For 0 ≤ α, β ≤ 1, the following map is positive,

IT (α, β)[·] =
∑
S

(−1)|S∩T | α|S∩T | β|S∩T
c| TrSc [·]⊗ 1Sc . (5.90)

Proof. We generalize the proof from Ref. [46] in a straightforward way. Note that
Eq. (5.90) can be expressed as

IT (α, β)[·] =
⊗
j∈T

(
1j trj −α1j

) ⊗
j′ /∈T

(
1j′ trj′ +β1j′

)
[·] . (5.91)

We need following useful formulae, as shown in Observation 26 and in Ref. [46]:
Denote by {hi} an orthonormal operator basis. Then

tr[%]1 =
1

D

D2−1∑
i=0

hi%h
†
i , (5.92)

%T =
1

D

D2−1∑
i=0

hTi %h
†
i . (5.93)

Denote by {ki} the real generalized Gell-Mann matrices (consisting of {xjk} and
{zl}) and by {yi} the imaginary generalized Gell-Mann matrices [c.f. Eq. (1.102) in
Sect. 1.1.7]. They form an orthonormal Hermitian basis, with kTi = k∗i = ki, and
yTi = y∗i = −yi. Then[

1 tr[%] − α%
]

=
[
1 tr[%T ] − α%T

]∗
=
[ 1

D

∑
i

(hi%h
†
i − αhTi %h

†
i )
]∗

=
1

D

[
(1 + α)

∑
i

yi%yi + (1− α)
∑
i

ki%ki

]∗
=

1

D

[
(1 + α)

∑
i

yi%
∗yi + (1− α)

∑
i

ki%
∗ki

]
=

1

D

[
(1 + α)

∑
i

yi%
T yi + (1− α)

∑
i

ki%
Tki

]
. (5.94)

Similarly,[
1 tr[%] + β%

]
=

1

D

[
(1− β)

∑
i

yi%
T yi + (1 + β)

∑
i

ki%
Tki

]
. (5.95)
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Denote by y(j)
i and k(j)

i Gell-Mann matrices acting on subsystem j, and by [·]Tj the
partial transpose on subsystem j. Then, Eq. (5.91) can be written as

IT (α, β)[·] =
⊗
j∈T

(
1j trj −α1j

) ⊗
j′ /∈T

(
1j′ trj′ +β1j′

)
[·]

= D−n
⊗
j∈T

[
(1 + α)

∑
i

y
(j)
i [·]Tjy(j)

i + (1− α)
∑
i

k
(j)
i [·]Tjk(j)

i

]
⊗
j′ /∈T

[
(1− β)

∑
i

y
(j′)
i [·]Tj′y(j′)

i + (1 + β)
∑
i

k
(j′)
i [·]Tj′k(j′)

i

]
. (5.96)

Note that the partial transposition of all subsystems yields a global transposition.
Therefore IT (α, β) is for 0 ≤ α, β ≤ 1 a co-positive, but not completely positive, map.
This means it can be written as

IT (α, β) = L ◦ T , (5.97)

where L is a positive map that can be written in Kraus form 8. This ends the
proof.

If (IT,A1...Ak(α, β) ⊗ 1B1...Bl)[%] < 0, then % must be entangled. Note that for
β = 0, Eq. (5.91) yields the universal inversion on the reduced state tensored by the
identity,

IT (α, β = 0) = I[TrT c(%)]⊗ 1T c . (5.98)
Note that for α = β = 1, this map equals the T -inversion. Thus the above derivation
represents an alternative proof of the shadow inequality in Eq. (5.73). A natural
extension of this map follows by associating individual coefficients 0 ≤ αj , βj′ ≤ 1
to each subsystem.

Furthermore, it is possible to incorporate the features of the Breuer-Hall map:
Recall from Sect. 1.1.6 that this is the map given by [31, 32]

RBH [X] = Tr(X)1−X − UXTU †. (5.99)

for any U with UT = −U and U †U ≤ 1. The mapRBH is non-decomposable if U is
additionally unitary for D > 2 9. This ingredient can be incorporated in Eq.(5.96)
by replacing the following terms∑

i

y
(j)
i [·]Tjy(j)

i −→
∑
i

y
(j)
i [·]Tjy(j)

i − U (j)[·]TjU (j)† , (5.100)

whereU (j)T = −U (j) andU (j)†U (j) ≤ 1. Note that IT (α, β) and its Breuer-Hall mod-
ified form are positive but not completely positive maps that generalize the reduction
criterion. Thus they can be used for entanglement detection. One could ask under
what conditions the Breuer-Hall modified map may also be non-decomposable.
While I did not check this, one could expect this to be the case if the antisymmetric
U (j) are unitary.

8Recall that a map is positive if and only if it is of the form % → %′ =
∑
iAi%A

†
i . Because the

Gell-Mann matrices are Hermitian, the above map is indeed co-positive.
9Note that in case of D = 2, one could simply choose U to be the Pauli matrix Y . However,RBH [·]

is then a trivial mapping to the zero matrix, as can be seen from Eq. (5.94).
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5.11.2 An application to the quantum marginal problem

As presented in Sect. 1.2.6, Butterley et al. derived a condition for the subsystems
%12, %13, %23 to be reductions of a joint three-qubit state %123 [36]. Defining

∆ = 1− %1 − %2 − %3 + %12 + %13 + %23 , (5.101)

then for %12, %23, %13 to be compatible with a joint state %123, the quantum Bell-Wigner
inequality must hold

0 ≤ ∆ ≤ 1 . (5.102)

While this condition is necessary, it is not sufficient for a joint state to exist [37]. With
the T -inversion IT defined in Eq. (5.75), one can extend this to multiple conditions
valid for all finite dimensions.

Proposition 18 (Extended quantum Bell-Wigner inequalities). Consider the putative
reductions %12, %13, %23 of a three-partite state of arbitrary finite local dimensions having
compatible one-body marginals. If a compatible join state %123 exists, then

1− %1 − %2 − %3 + %12 + %13 + %23 ≥ 0 ,

1− %1 + %2 + %3 − %12 − %13 + %23 ≥ 0 ,

1+ %1 − %2 + %3 − %12 + %13 − %23 ≥ 0 ,

1+ %1 + %2 − %3 + %12 − %13 − %23 ≥ 0 , (5.103)

where we wrote %1 for Tr23(%)⊗ 123.

Proof. Consider those T -inversions where |T | is odd. Then the expression IT (%) + %
yields the four inequalities above.

Similar compatibility equations can be obtained for an arbitrary number n of
parties and local dimensions by noting that the expression IT [%] + % is positive and
will only ever contain marginals of size smaller or equal than (n− 1) if |T | is chosen
to be odd. Let us state this more formally.

Proposition 19. Let %1c , . . . %nc be putative marginals of size (n − 1) with compatible
reductions. A necessary condition for a compatible joint state on n parties to exist, is∑

S({1...n}

(−1)|S∩T |%S ≥ 0 , (5.104)

for all T with |T | odd. Note that the sum above runs over all proper subsets of {1 . . . n}.

As an example, Prop. 19 yields with choosing T = {1} the following QMP-
criterion three-party marginals %ijk to be compatible with a joint four-party state
%1234,

1− %1 + %2 + %3 + %4 − %12 − %13 − %14 + %23 + %24 + %34

− %123 − %124 − %134 + %234 ≥ 0 . (5.105)

Interestingly, a condition analogous to Eq. (5.104) is in the classical case both neces-
sary and sufficient for a joint state to exist [36].
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Lastly, in order for a pure joint state to exist in the case of qubits, ∆ in Eq. (5.101)
must necessarily be a projector of rank two. This follows from the fact that in the
case of qubits, a pure state stays pure under the state inversion,

I123[|φ〉〈φ|] = σ⊗3
y (|φ〉〈φ|)Tσ⊗3

y , (5.106)

and is, according to Eq. (5.88), also orthogonal to |φ〉. Therefore ∆ = I123[|φ〉〈φ|] +
|φ〉〈φ|must be of rank two.

5.11.3 A strong subadditivity - like expression for the linear entropy

In Sect. 1.1.5, I introduced the von Neumann entropy, S(%) = −Tr % log(%). Recall
that the strong subadditivity (SSA) holds, which requires for any tripartite state
that [20]

S(%123) + S(%2) ≤ S(%12) + S(%23) . (5.107)

This can be restated in a different way: purify %123 by a fourth party. Then, S(%123) =
S(%4) and S(%12) = S(%34), and Eq. (5.107) yields S(%4) + S(%2) ≤ S(%34) + S(%23).
By a relabeling of the parties, one obtains

S(%1) + S(%3) ≤ S(%12) + S(%23) . (5.108)

Let us now state a remarkably similar relation for the linear entropies of reductions,
which are defined as

SL(%S) =
D

D − 1
[1− tr(%2

S)] . (5.109)

Proposition 20. Let %123 be a tripartite state of arbitrary local dimensions. Then, it must
fulfill

SL(%1) + SL(%3) ≤ SL(%12) + SL(%23) + 2SL(%123) . (5.110)

Proof. Let us regard the inversions I(12) and I(23) of %123, where the parties 1 & 2
and 2 & 3 respectively are grouped together.

I(12)[%] = 1− %12 + %3 − %123 ≥ 0 ,

I(23)[%] = 1+ %1 − %23 − %123 ≥ 0 . (5.111)

Adding the two equations, we obtain

21+ %1 + %3 − %23 − %12 − 2%123 ≥ 0 . (5.112)

Multiplying by %123 and taking the trace, we obtain the following constraint

2 + tr(%2
1) + tr(%2

3) ≥ tr(%2
12) + tr(%2

23) + 2 tr(%2
123) , (5.113)

which can brought to the form of

SL(%1) + SL(%3) ≤ SL(%12) + SL(%23) + 2SL(%123) . (5.114)

This ends the proof.

For pure states, SL(%123) = 0, and equality holds in Prop. 20.
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5.11.4 Further non-existence results of qubit-codes

Recall new codes can be obtained from reductions of pure codes (c.f. Sect. 1.2.4):

Theorem 31 (Rains [118], Theorem 20). Suppose Q is a pure ((n,K, d))D code with
n, d ≥ 2. Then there exists a pure ((n− 1, DK, d− 1))D.

This excludes the existence of a ((13, 1, 6))2, ((25, 1, 10))2, and ((31, 1, 12))2 as
only impure ((12, 2, 5))2, ((24, 2, 9))2, and ((30, 2, 11))2 codes could possibly exist
from the linear programming bound in Eq. (1.182) [209].

5.11.5 Weight distributions of hypothetical codes

Here, I list hypothetical weight distributions of self-dual codes having distance
d = bn2 c. That is, these are hypothetical states which are almost bn2 c-uniform,
approximating AME states. The weight distributions below were obtained by the
linear program as described in Eq. (1.182). Only non-negative weights with j ≥ d
are listed, because A0 = 1 and Aj<d = 0 for all self-dual codes.

((8, 1, 4))3 : [32, 320, 1088, 2560, 2560]

((12, 1, 6))3 : [480, 3456, 15120, 55520, 133920, 193536, 129408]

((16, 1, 8))3 : [6720, 37760, 188160, 881664, 2916480, 7123200,

12284160, 13068288, 6540288]

((20, 1, 10))3 : [95840, 385280, 2297280, 12685440, 48653760, 155818752,

392454960, 734998560, 982256480, 826462720, 330675328]

((24, 1, 12))3 : [1394624, 3233664, 29284992, 174344192, 713873952,

2763516096, 8619269120, 21623196672, 43440522048,

66060142720, 72121509504, 50158439424, 16720809472]

((12, 1, 6))4 : [324, 9936, 71685, 508320, 2266020, 6187536, 7733394] (5.115)

5.12 Conclusion

From this work it emerges that certain methods in quantum error correction and
multipartite entanglement are strongly connected: The shadow enumerator as
known from QECC represents an exponentially large family of inequalities that
constrain the distribution of entanglement in multipartite systems. It thus can be
used to investigate the existence of multipartite states and QECC. It is furthermore
naturally related to a fine-graining of the well-known reduction map, and can be
used for entanglement detection.

Nevertheless, many questions still remain: In the case of stabilizer states, the
dual code corresponds to the normalizer of the stabilizer. However, this dual code is
a proper code only in the classical theory, what is its nature in the quantum domain?
Can a natural extension of this notion also be found for non-stabilizer codes? Can
stronger conditions on code existence be obtained from the shadow enumerator of
the dual code? As shown, all odd T -inversions of a given QECC form a projector
onto its orthogonal subspace. What is the nature of these odd T -inversions, do
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they form interesting QECC themselves? A higher dimensional system can be split
into smaller subsystems, thus the shadow enumerator and the corresponding T -
inversions can further be refined. Can this be applied to solve higher dimensional
existence problems of AME states and QECC 10?

As already noted by Rains, it would be interesting to see what the generalized
shadow inequalities imply for the distribution of correlations in QECC and multi-
partite quantum states [129]. These relate higher-order invariants of quantum states
and codes in a monogamy-like ways. It would be desirable to incorporate these
higher-order invariants in terms of higher-order weight enumerators to strengthen
the linear programming approach as introduced by Calderbank et al. [108].

10As an example, the hitherto unresolved case of a four-partite AME state with D = 6 could be
approached by decomposing the state into four qubits and four qutrits. Then a semidefinite program
similar to Eq. (1.182) can be used to test for the existence of such state. While the approach is promising,
the currently known relations are yet insufficient to yield a contradiction.
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Summary and outlook

In this thesis, I explored the relation between the whole and its parts in quantum
states. For this, methods borrowed from statistics, graph theory, and from the theory
of quantum error correction turned out to be fruitful.

Together with my co-author, I developed methods to detect states that can neither
be obtained as ground or thermal states of Hamiltonians, nor as convex combinations
thereof [A]. Such states can be regarded as being more complex, because they
cannot be reconstructed from few-body measurements and from the maximum
entropy method alone. The approach can be seen as an extension of the concept of
entangled states, which likewise cannot be obtained as convex combinations from
states that are reconstructable by their one-body marginals. Our results allow to
experimentally test with a witness whether three-body or higher-order interactions
are present. For future work, it would be of interest to characterize the entanglement
properties of the set of ground and thermal states of few-body Hamiltonians; e.g. to
determine whether the entanglement in these states is bounded, or whether they
can be simulated classically in any efficient manner.

A question that arose during this project was concerned with states of four qubits:
namely, whether or not pure four-qubit states are already determined by their two-
body reductions. We could successfully address this problem, and showed that in
fact generic pure four-qudit states are uniquely determined amongst all pure states
by already three of their six different two-party marginals [B]. Moreover, from this
follows that almost all pure states of an arbitrary number of qudits are determined
by a set of three marginals having size (n− 2).

We subsequently analyzed pure qubit states in terms of their even- and odd-
body correlations [C]. We found intricate relations between these sets of correlations,
either set of correlations often completely determining the state up to a few parame-
ters. This led to explicit reconstruction formulae for the missing correlations. Our
results are applicable to deduce certain properties of ground states, to obtain invari-
ants under unitary time evolution, and to simplify specific tasks in entanglement
detection. Naturally, one may ask if similar relations also hold for states whose
parties have higher dimensions; we think this would be an interesting question to
consider for future research.

Let us turn to the possible correlations that quantum states can exhibit. We made
significant progress on the question of the existence of certain highly entangled
states known as absolutely maximally entangled (AME). In particular, we solved
the last open case concerning qubits by proving the non-existence of an absolutely
maximally entangled state of seven parties [D]. For this, we developed new methods
to understand the algebraic structure of quantum states, using the Bloch representa-
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tion as a mean to investigate pure states. At first sight, this may seem to complicate
the analysis of the question at hand, as guaranteeing the positivity of an operator
by its Bloch coefficients is generally difficult. On closer inspection however, this
requirement was already satisfied by assumption, and the Bloch representation
allowed us to take advantage of certain signature properties of these states, such as
the uniform spectrum of its marginals, in a straightforward way. Such an approach
can be seen as being complementary to that of representing pure states by kets,
where positivity is guaranteed by construction. This allowed us to solve the case of
seven qubits, and to rederive all known results concerning qubits in a very simple
manner. We could also identify a best approximation to a seven qubit AME state,
and developed an iterative semi-definite program to numerically search for such
highly entangled states. As all presently known AME states are of the stabilizer state
type, this leaves the question open whether or not this is the case for all absolutely
maximally entangled states. The next “small“ candidate for an AME state is one of
four parties, having six levels each, and settling the question of its existence would
provide new insights into AME states of non-prime dimensional systems.

We have introduced the Ulam graph reconstruction problem for graph states to
examine the quantum marginal problem when having access to unlabeled marginals
only [E]. In contrast to classical collections (so-called graph decks) of vertex-deleted
subgraphs, the full quantum graph state can already be reconstructed, up to local
unitaries, from a single marginal in the deck. As for the classical case, the question
of detecting illegitimate decks, which do not originate from joint states, is of interest.
Indeed it is possible to state conditions on the weight distribution for a deck to
originate from a joint state. This already allows to detect illegitimate decks consisting
of marginals having size bn2 c+ 1. It would be interesting to understand if similar
constraints can also be obtained for classical decks.

Lastly, we provided a systematic method to investigate the existence of abso-
lutely maximally entangled states in higher dimensions: with the help of the weight
enumerator machinery known from quantum error correction, we could disprove
the existence of an additional 27 higher-dimensional AME states [F]. Moreover, we
presented a proof of a remarkable relation known as the quantum MacWillams
identity in the Bloch representation, and could interpret the shadow inequalities as
an exponentially large family of monogamy-like relations that constrain the distri-
bution of entanglement in all finite dimensions. With the shadow inequalities, one
furthermore obtains a generalization and fine-graining of the reduction map. In
the light of these results, a possibly fruitful line of research would consist of investi-
gating the generalized shadow inequalities as derived by Rains [129]: these could
likely be used to obtain monogamy relations involving higher-order polynomial
invariants. Also, a more thorough understanding of the nature of the dual code and
of the state inversions seem to be promising avenues of research, and may allow
to obtain stronger bounds on the existence of quantum error-correcting codes and
highly entangled quantum states.
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Appendix: Krawtchouk
polynomials

The Krawtchouk (also Kravchuk) polynomials are, for n, k ∈ N0 and n − k ≥ 0,
defined as 11

Km(k;n) =
∑
α

(−1)α
(
n− k
m− α

)(
k

α

)
. (116)

If m < 0, Km(k;n) = 0. The generating function of the Krawtchouk polynomial is∑
m

Km(k;n)zm = (1 + z)n−k(1− z)k . (117)

In this work, we need a closely related expression,∑
m

Km(k;n)xn−mym = (x+ y)n−k(x− y)k . (118)

That above equation holds, can be seen in the following way.

(x+ y)n−k(x− y)k

=
∑
α

(
n− k
α

)
xn−k−α(y)α

∑
β

(
k

β

)
xk−βyβ(−1)β

=
∑
α

∑
β

(
n− k
α

)(
k

β

)
xn−(α+β)y(α+β)(−1)β

=
∑
m

[∑
β

(
n− k
m− β

)(
k

β

)
(−1)β

]
xn−mym

=
∑
m

Km(k;n)xn−mym , (119)

where we set m = α+ β in the third line. Of course, setting x = 1 recovers Eq. (117).
This can be generalized to the Krawtchouk-like polynomial

Km(k;n,E, F ) =
∑
α

(−1)α
(
n− k
m− α

)(
k

α

)
E[(n−k)−(m−α)]Fm−α , (120)

11See p. 42 in Ref. [106] or Chpt. 5, §7 in Ref. [228].
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which are the coefficients of

(Ex+ Fy)n−k(x− y)k =
∑
α

(
n− k
α

)
(Ex)n−k−α(Fy)α

∑
β

(
k

β

)
xk−βyβ(−1)β

=
∑
α

∑
β

(
n− k
α

)(
k

β

)
xn−(α+β)y(α+β)En−k−αFα(−1)β

=
∑
m

[∑
β

(
n− k
m− β

)(
k

β

)
(−1)βE(n−k)−(m−β)Fm−β

]
xn−mym

=
∑
m

Km(k;n,E, F )xn−mym . (121)
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and quantum combinatorial designs,” (2017), arXiv:1708.05946v1 .

[112] “QOQI List of Open Quantum Problems,” IQOQI Vienna
(2017), online accessible at http://oqp.iqoqi.univie.ac.at/

existence-of-absolutely-maximally-entangled-pure-states.

[113] J. Kempe, “Approaches to Quantum Error Correction,” (2005), arXiv:quant-
ph/0612185v1 .

[114] T. A. Brun and D. E. Lidar, Quantum Error Correction (Cambridge University
Press, 2013).

[115] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,”
Phys. Rev. A 52, 2493(R) (1995).

[116] E. Knill, R. Laflamme, and L. Viola, “Theory of Quantum Error Correction
for General Noise,” Phys. Rev. Lett. 84, 2525 (2000).

[117] D. Gottesman, “An Introduction to Quantum Error Correction,” (American
Mathematical Society, 2002) p. 221, arXiv:quant-ph/0004072v1 .

http://dx.doi.org/10.1038/srep27135
http://dx.doi.org/10.1049/sqj.1944.0033
http://dx.doi.org/10.1049/sqj.1944.0033
https://link.aps.org/doi/10.1103/PhysRevLett.83.648
http://arxiv.org/abs/1502.06618v1
http://dx.doi.org/ 10.1007/JHEP06(2015)149
http://dx.doi.org/ 10.1007/JHEP06(2015)149
http://stacks.iop.org/1367-2630/19/i=6/a=063029
http://stacks.iop.org/1367-2630/19/i=6/a=063029
http://dx.doi.org/10.1109/18.796376
http://dx.doi.org/10.1109/18.796376
http://dx.doi.org/10.1109/18.681315
http://dx.doi.org/ 10.1103/PhysRevLett.118.200502
http://dx.doi.org/10.1142/S0219749904000079
http://dx.doi.org/10.1142/S0219749904000079
http://arxiv.org/abs/1708.05946v1
http://oqp.iqoqi.univie.ac.at/existence-of-absolutely-maximally-entangled-pure-states
http://oqp.iqoqi.univie.ac.at/existence-of-absolutely-maximally-entangled-pure-states
http://arxiv.org/abs/quant-ph/0612185v1
http://arxiv.org/abs/quant-ph/0612185v1
http://dx.doi.org/ 10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevLett.84.2525
http://arxiv.org/abs/quant-ph/0004072v1


134 BIBLIOGRAPHY

[118] E. M. Rains, “Quantum weight enumerators,” IEEE Trans. Inf. Theory 44, 1388
(1998).

[119] M. Grassl, P. Shor, G. Smith, J. Smolin, and B. Zeng, “Generalized concatenated
quantum codes,” Phys. Rev. A 79, 050306 (2009).

[120] E. Knill and R. Laflamme, “Concatenated Quantum Codes,” (1996),
arXiv:quant-ph/9608012v1 .

[121] A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli, “Nonbinary
Stabilizer Codes Over Finite Fields,” IEEE Trans. Inf. Theory 52, 4892 (2006).

[122] A. Ashikhmin and E. Knill, “Nonbinary quantum stabilizer codes,” IEEE Trans.
Inf. Theory 47, 3065 (2001).

[123] E. M. Rains, “Nonbinary quantum codes,” IEEE Trans. Inf. Theory 45, 1827
(1999).

[124] E. M. Rains, “Shadow bounds for self-dual codes,” IEEE Trans. Inf. Theory 44,
134 (1998).

[125] E. Rains and N. Sloane, “Self-Dual Codes,” in Handbook of Coding Theory, edited
by V. S. Pless and W. C. Huffman (1998) p. 177.

[126] A. Ekert and C. Macchiavello, “Error Correction in Quantum Communication,”
(1996), arXiv:quant-ph/9602022v1 .

[127] P. Sarvepalli and A. Klappenecker, “Degenerate quantum codes and the quan-
tum Hamming bound,” Phys. Rev. A 81, 032318 (2010).

[128] P. Shor and R. Laflamme, “Quantum Analog of the MacWilliams Identities
for Classical Coding Theory,” Phys. Rev. Lett. 78, 1600 (1997).

[129] E. M. Rains, “Polynomial invariants of quantum codes,” IEEE Trans. Inf. The-
ory 46, 54 (2000).

[130] L. Vandenberghe and S. Boyd, “Semidefinite Programming,” SIAM Rev. 38,
49 (1996).

[131] H. Wolkowicz, R. Saigal, and L. Vandenberghe, Handbook of Semidefinite Pro-
gramming: Theory, Algorithms, and Applications (Springer US, 2000).

[132] P. A. Parrilo and S. Lall, “Semidefinite Programming Relaxations and Algebraic
Optimization in Control,” Eur. J. Contr. 9, 307 (2003).

[133] G. Blekherman, P. A. Parrilo, and R. R. Thomas, eds., Semidefinite Optimization
and Convex Algebraic Geometry (Society for Industrial and Applied Mathematics,
2013).

[134] E. M. Rains, “A semidefinite program for distillable entanglement,” IEEE
Trans. Inf. Theory 47, 2921 (2001).

http://dx.doi.org/10.1109/18.681316
http://dx.doi.org/10.1109/18.681316
http://dx.doi.org/10.1103/PhysRevA.79.050306
http://arxiv.org/abs/quant-ph/9608012v1
http://dx.doi.org/10.1109/TIT.2006.883612
http://dx.doi.org/10.1109/18.959288
http://dx.doi.org/10.1109/18.959288
http://dx.doi.org/10.1109/18.782103
http://dx.doi.org/10.1109/18.782103
http://dx.doi.org/10.1109/18.651000
http://dx.doi.org/10.1109/18.651000
http://arxiv.org/abs/quant-ph/9602022v1
http://dx.doi.org/10.1103/PhysRevA.81.032318
http://dx.doi.org/10.1103/PhysRevLett.78.1600
http://dx.doi.org/10.1109/18.817508
http://dx.doi.org/10.1109/18.817508
http://dx.doi.org/ 10.3166/ejc.9.307-321
http://dx.doi.org/10.1109/18.959270
http://dx.doi.org/10.1109/18.959270


BIBLIOGRAPHY 135

[135] B. M. Terhal, A. C. Doherty, and D. Schwab, “Symmetric Extensions of Quan-
tum States and Local Hidden Variable Theories,” Phys. Rev. Lett. 90, 157903
(2003).

[136] M. Navascués, S. Pironio, and A. Acı́n, “A convergent hierarchy of semidefinite
programs characterizing the set of quantum correlations,” N. J. Phys. 10,
073013 (2008).

[137] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, “Complete family of separa-
bility criteria,” Phys. Rev. A 69, 022308 (2004).

[138] D. Cavalcanti and P. Skrzypczyk, “Quantum steering: a review with focus on
semidefinite programming,” Rep. Prog. Phys. 80, 024001 (2017).

[139] T. Heinosaari and M. M. Wolf, “Nondisturbing quantum measurements,” J.
Math. Phys. 51, 092201 (2010).

[140] J. Watrous, “Lecture Notes: Theory of Quantum Information,” Online available
at http://cs.uwaterloo.ca/~watrous/TQI (2017).

[141] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, “Distinguishing Separable
and Entangled States,” Phys. Rev. Lett. 88, 187904 (2002).

[142] N. Miklin, T. Moroder, and O. Gühne, “Multiparticle entanglement as an
emergent phenomenon,” Phys. Rev. A 93, 020104 (2016).

[143] A. J. Coleman, “Structure of Fermion Density Matrices,” Rev. Mod. Phys. 35,
668 (1963).

[144] National Research Council, Mathematical Challenges from Theoreti-
cal/Computational Chemistry (Washington DC: The National Academies
Press, 2005).

[145] A. Higuchi, A. Sudbery, and J. Szulc, “One-Qubit Reduced States of a Pure
Many-Qubit State: Polygon Inequalities,” Phys. Rev. Lett. 90, 107902 (2003).

[146] S. Bravyi, “Requirements for compatibility between local and multipartite
quantum states.” Quant. Inf. Comp. 4, 12 (2004).

[147] A. Higuchi, “On the one-particle reduced density matrices of a pure three-
qutrit quantum state,” (2003), arXiv:quant-ph/0309186v2 .

[148] A. Klyachko, “Quantum marginal problem and representations of the sym-
metric group,” (2004), arXiv:quant-ph/0409113v1 .

[149] A. A. Klyachko, “Quantum marginal problem and N-representability,” J. Phys:
Conf. 36, 72 (2006).

[150] J. Eisert, T. Tyc, T. Rudolph, and B. C. Sanders, “Gaussian Quantum Marginal
Problem,” Comm. Math. Phys. 280, 263 (2008).

[151] T. J. Osborne, “Entropic bounds for the quantum marginal problem,” (2008),
arXiv:0806.2962v1 .

http://dx.doi.org/ 10.1103/PhysRevLett.90.157903
http://dx.doi.org/ 10.1103/PhysRevLett.90.157903
http://stacks.iop.org/1367-2630/10/i=7/a=073013
http://stacks.iop.org/1367-2630/10/i=7/a=073013
http://dx.doi.org/ 10.1103/PhysRevA.69.022308
http://stacks.iop.org/0034-4885/80/i=2/a=024001
http://dx.doi.org/10.1063/1.3480658
http://dx.doi.org/10.1063/1.3480658
http://cs.uwaterloo.ca/~watrous/TQI
http://dx.doi.org/ 10.1103/PhysRevLett.88.187904
http://dx.doi.org/10.1103/PhysRevA.93.020104
http://dx.doi.org/10.1103/RevModPhys.35.668
http://dx.doi.org/10.1103/RevModPhys.35.668
http://dx.doi.org/ 10.1103/PhysRevLett.90.107902
http://dblp.uni-trier.de/db/journals/qic/qic4.html#Bravyi04
http://arxiv.org/abs/quant-ph/0309186v2
http://arxiv.org/abs/quant-ph/0409113v1
http://stacks.iop.org/1742-6596/36/i=1/a=014
http://stacks.iop.org/1742-6596/36/i=1/a=014
https://doi.org/10.1007/s00220-008-0442-4
http://arxiv.org/abs/0806.2962v1


136 BIBLIOGRAPHY

[152] E. A. Carlen, J. L. Lebowitz, and E. H. Lieb, “On an extension problem for
density matrices,” J. Math. Phys. 54, 062103 (2013).

[153] J. Chen, Z. Ji, N. Yu, and B. Zeng, “Detecting consistency of overlapping
quantum marginals by separability,” Phys. Rev. A 93, 032105 (2016).

[154] J. Chen, Z. Ji, D. Kribs, N. Lütkenhaus, and B. Zeng, “Symmetric extension of
two-qubit states,” Phys. Rev. A 90, 032318 (2014).

[155] B. M. Terhal, “Is entanglement monogamous?” IBM J. Res. Dev. 48, 71 (2004).

[156] V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys.
Rev. A 61, 052306 (2000).

[157] T. J. Osborne and F. Verstraete, “General Monogamy Inequality for Bipartite
Qubit Entanglement,” Phys. Rev. Lett. 96, 220503 (2006).

[158] M. Koashi and A. Winter, “Monogamy of quantum entanglement and other
correlations,” Phys. Rev. A 69, 022309 (2004).

[159] C. Eltschka and J. Siewert, “Monogamy Equalities for Qubit Entanglement
from Lorentz Invariance,” Phys. Rev. Lett. 114, 140402 (2015).

[160] B. Toner, “Monogamy of non-local quantum correlations,” Proc. Roy. Soc. A
465, 59 (2009).

[161] C. Eltschka, T. Bastin, A. Osterloh, and J. Siewert, “Multipartite-entanglement
monotones and polynomial invariants,” Phys. Rev. A 85, 022301 (2012).

[162] H. S. Dhar, A. K. Pal, D. Rakshit, A. S. De, and U. Sen, “Monogamy of quantum
correlations - a review,” Lectures on General Quantum Correlations and their
Applications, Quantum Science and Technology, 23 (2017).
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