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Zusammenfassung

Mit den vielen hochauflösenden SAR- (Radar mit synthetischer Apertur) und
optischen Satelliten, die sich im Orbit befinden, werden auch die zugehörigen Bil-
darchive ständig größer und aktualisiert, da täglich neue hochaufgelöste Bilder
aufgenommen werden. Daraus ergeben sich neue Perspektiven und Heraus-
forderungen an eine automatische Interpretation von hochaufgelösten Satelliten-
bildern zur detaillierten semantischen Annotation und Objekt-Extraktion. Dazu
kommt, dass das florierende Gebiet des maschinellen Lernens die Leistungskraft
von Computer-Algorithmen gezeigt hat, die ihre "Intelligenz" zur Lösung zahlrei-
cher und verschiedenartiger Anwendungsfälle (wie visuelle Objekterkennung,
inhaltsbasierte Bildsuche etc.) bereits allgemein demonstriert haben. Allerdings
können die vorgeschlagenen und bereits existierenden Methoden momentan
nur eine begrenzte Anzahl von Bildern verarbeiten. Daher wird in dieser
Dissertation versucht, Informationen aus großen Mengen von Satellitenbildern
zu extrahieren. Wir bieten Lösungen zur halbautomatischen Interpretation von
Satellitenbildinhalten auf der Ebene von Bild-ausschnitten und von Pixeln, bis hin
zur Objekt-Ebene mit hochaufgelösten Bildern von TerraSAR-X und WorldView-
2. Hierbei wird das Analyse-Potential von nicht überwachten Lernverfahren zur
Verarbeitung von großen Datenmengen genutzt.

Bei großen Datenmengen versuchen unsere Lösungen, die Problemstellung in
einem ersten Schritt aufgrund einer einfachen Annahme zu vereinfachen. Wir
nehmen eine Gauß-Verteilung an, um Bild-Cluster zu beschreiben, die sich aus
einer Clustering-Methode ergeben. Basierend auf bereits aufgeteilten Clustern
von Bildausschnitten schlagen wir für die semantische Annotation von großen
Datensätzen eine teil-überwachte Cluster und Klassifizierungs-Vorgehensweise
vor.

Dazu entwerfen wir ein Mehr-Ebenen-System, das eine gute Möglichkeit bietet,
Bildinhalte von drei Gesichtspunkten her zu beschreiben. Der erste Punkt bezieht
sich auf Bildausschnitte in einer hierarchischen Baumstruktur, wo ähnliche
Ausschnitte zusammengelegt werden. Der zweite Punkt beschreibt die Bildhel-
ligkeiten und SAR-Speckle-Details, um eine Klassifizierung auf Pixelebene für
allgemeine Landbedeckungskategorien zu erhalten. Der dritte Punkt erlaubt die
Interpretation auf Objektebene. Dafür werden Informationen zur Ortszuordnung
sowie zur ähnlichkeit zwischen Komponenten berücksichtigt. Zur iterativen
Berechnung der sog. "Non-Locality"-Karte, die zur Objektextraktion genutzt
wird, wurde ein Konzept zum aktiven Lernen auf der Basis einer Support-Vector-
Maschine (SVM) implementiert.

Eine weitere Nutzung unseres Ansatzes kann über eine hierarchische Struktur
für SAR- und optische Daten erfolgen, nämlich in der Art, wie die Bildinter-
pretationen auf Ausschnittsebene, Pixelebene und Objektebene untereinander



verbunden werden. Infolgedessen kann man, von einem Vollbild ausgehend, all-
gemeine und detaillierte Informationsebenen extrahieren. Das Zusammenfügen
von verschiedenen Ebenen hat bereits zu vielversprechenden Ergebnissen bei der
automatischen semantischen Annotation für große Mengen von hochaufgelösten
Satellitenbildern geführt. Diese Dissertation zeigt auch, bis zu welchem Grad
Informationen aus jeder Datenquelle extrahiert werden können.



Abstract

With a number of high-resolution Synthetic Aperture Radar (SAR) and optical
satellites in orbit, the corresponding image archives are continuously increasing
and updated as new high-resolution images are being acquired everyday. New
perspectives and challenges for the automatic interpretation of high-resolution
satellite imagery for detailed semantic annotation and object extraction have
been raised up. What’s more, the booming machine learning field has proved
the power of computer algorithms by presenting the world their "intelligence"
to solve numerous and diverse applications, visual object recognition, content-
based image retrieval, etc. However, till now, the proposed and already existing
methods are usually able to process only a limited amount of images. Hence, this
dissertation tries to extract information from large amounts of satellite imagery.
We provide solutions for the semi-automatic interpretation of satellite image
content from patch-level and pixel-level to object-level, using the high-resolution
imagery provided by TerraSAR-X and WorldView-2. The mining potential of
unsupervised learning methods is utilized for the processing of large amounts
of data.

With large amounts of data, our solutions try to simplify the problem at the
first step based on a simple assumption. A Gaussian distribution assumption is
applied to describe image clusters obtained via a clustering method. Based on
the already grouped image patch clusters, a semi-supervised cluster-then-classify
framework is proposed for the semantic annotation of large datasets.

We design a multi-layer scheme that offers a great opportunity to describe image
contents from three perspectives. The first perspective represents image patches
in a hierarchical tree structure, similar patches are grouped together, and are
semantically annotated. The second perspective characterizes the intensity and
SAR speckle information in order to get a pixel-level classification for general
land cover categories. The third perspective allows an object-level interpretation.
Here, the information of location and similarity among elements are taken
into account, and an SVM-based active learning concept is implemented to
update iteratively the so-called "non-locality" map which can be used for object
extraction.

A further exploitation of our approach could be to introduce a hierarchical
structure for SAR and optical data in the way the patch-level, pixel-level and
object-level image interpretation are connected to each other. Hence, starting
from a whole scene, general and detailed levels of information can be extracted.
Such fusions between different levels have achieved promising results towards
an automated semantic annotation for large amounts of high-resolution satellite
images. This dissertation also demonstrates up to which level information can be
extracted from each data source.



Keywords: High-resolution TerraSAR-X data, high-resolution WorldView-2 data,
patch-level image interpretation, pixel-level SAR image interpretation, object-
level optical image interpretation, hypothesis test, speckle statistics, Bayesian
model, active learning.
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Chapter 1

Introduction

The only true wisdom is knowing that you know nothing.

Socrates

1.1 Motivation

Nowadays, Earth Observation (EO) from space is becoming an increasingly booming and
promising scientific research area. According to the Union of Concerned Scientists (UCS)
database, till the end of January 2014, there were already 45 organisations with 192 EO
satellites in space. Nevertheless, more and more EO satellites are launched into space. For
example, until now, there are 20 Chinese Earth observation satellites already in orbit. In the
commercial or civilian remote sensing industry, satellite imaging instruments with varying
spatial resolutions have been launched into space.

As a consequence, besides already existing large image archives, tens of thousands of
new images of various resolutions, imaging modes (active and passive imaging, e.g., SAR and
optical) and processing products (e.g., SSC, MGD, GEC modes of TerraSAR-X products Portal
[2016], multi-spectral, hyper-spectral and panchromatic products) are also acquired and
processed everyday. Simultaneously, the fast development of new processing and analyzing
algorithms in machine learning and computer vision (e.g., complex scene understanding,
and object extraction) have achieved amazing results. For example, convolutional neural
networks (CNNs) with a deep hierarchical structure consisting of several layers have yielded
excellent results outperforming human beings on face and cat recognition Khaligh-Razavi
[2014], Bengio et al. [2014], Le et al. [2012], by training millions of images.

On the contrary, the interpretation of satellite imagery has not yet reached a very detailed
and satisfying level, due to the large amount of data as well as the image content complexity.
Hence, motivated by new image data and promising algorithmic methods, and also provoked
by the inherent nature of human curiosity, we are no longer content with basic level satellite
image analysis and applications in low resolutions (e.g., general land cover classification),
but eager to extract new information from high-resolution imagery. Fig. 1.1 and Fig. 1.2
provide possible interpretation schemes for high-resolution satellite data through patch-level
semantic annotation and object-level semantic recognition.
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Figure 1.1: TerraSAR-X image interpretation of Siegen city. Three example patches are
shown: buildings and fields, industrial areas and fields, and residential areas. Within the
patches, forest and urban categories can be classified in pixel-level.
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Figure 1.2: Worldview-2 image interpretation of Munich city. Three example patches are
shown: middle density residential areas, high density residential area, and high density
residential areas, river and forest. Within the patches, various objects can be extracted:
white square building, gray round building, tennis court, pond, blue corner building, etc.
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1.2 Main Goals of This Work

In this dissertation, the overall objective is to provide solutions for patch-level and pixel-level
semi-automatic interpretation and mapping of image content using high-resolution SAR and
optical satellite imagery, e.g., TerraSAR-X and WorldView-2 products.

Behind this general objective lie four important goals:

• To represent image patches as a hierarchical structure, and describe image contents
with different distance metrics in high-dimensional feature space.

• To develop a patch-level semi-supervised clustering-then-classification method, with
respect to two levels of semantic categories, i.e., general and detailed level semantic
labels.

• To develop a pixel-level classification method which is based on joint probability
distributions and a Bayesian classifier for SAR imagery.

• To develop an object-level extraction method which is based on a non-locality concept
and SVM-based active learning for optical imagery.

1.3 Contributions of the Dissertation

The first contribution of this dissertation lies in an adaptation and a deep analysis of a
hierarchical clustering method for patch-level high-resolution satellite image clustering. In
order to simplify the image content interpretation by grouping similar patterns together at
the first step, the Gaussian-test-based hierarchical patch clustering method is adapted and
modified with a suitable size threshold to get meaningful clusters. The evaluation of the
cluster homogeneity is qualitatively and quantitatively analyzed in three ways: internal
and external evaluation, as well as visual evaluation. The experimental results confirmed
that the method is able to obtain homogeneous clusters.

A further exploitation of our approach would be to further process the grouped clusters.
In fact, when the first step of problem simplification goal is achieved, the goal of image
content interpretation for large-scale image data is not so complex as in the beginning. This
introduces our second contribution which generates a semi-supervised learning scheme
by implementing supervised learning within obtained clusters. In here, different feature
descriptors, and different classification methods are discussed.

The third contribution of this dissertation consists in the evaluation of the proposed
semi-supervised methodology using different distance metrics under the concept of the
curse of dimensionality regarding high-dimensional feature vectors. In fact, although we
usually take the Euclidean distance for granted, however, the different distance metrics can
shape different feature spaces, so that they have different geometrical characteristics.

Due to the different data characteristics, the fourth contribution of this dissertation
is the attempt to reach pixel-level classification using TerraSAR-X imagery for general
semantic categories. It uses a copula function to incorporate image intensity and image
feature information to obtain a joint probability distribution which is used as a likelihood
PDF in a Bayesian classifier. The next attempt is to obtain object-level extraction using
WorldView-2 imagery for detailed semantic categories based on the non-locality concept
and an SVM-based active learning scheme. The experimental results confirm that currently
it is not easy to extract detailed-level categories from SAR imagery; however, it is a reachable
goal for optical imagery.
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1.4 Outline of the Dissertation

Chapter 2 deals with the data characteristics and preliminary mathematics. Starting from
an energy source, the electromagnetic spectrum, and how energy sources interact with
objects, the basic characteristics of synthetic aperture radar and optical images are explained
and compared. For synthetic aperture radar images, there is a difficult phenomenon
that we need to pay attention to: the speckle effect. Then fundamentals of SAR image
intensity distribution models and mathematical tools for parameter estimation, numerical
optimization, and sampling methods, which are important for machine learning algorithms,
are presented.

In Chapter 3 the problems of how to represent the image information and how to
describe image contents will be answered. Respectively, a hierarchical representation
structure, various feature descriptors, and the influence of different distance metrics in high-
dimensional feature space will reviewed. The current trend of machine learning, especially
semi-supervised learning, active learning, and object extraction will be discussed. Moreover,
the classic machine learning algorithms are summarized into tables in Appendix A. In the
end, our proposed concept and the processing framework will be illustrated and explained.

Coming to Chapter 4, a modified Gaussian-test-based hierarchical clustering method
is applied and evaluated for high-resolution satellite images. The purpose is to obtain
homogeneous clusters within a hierarchical clustering structure which later allow the
classification and annotation of image data ranging from single scenes up to large satellite
data archives. After cutting a given image into small patches and feature extraction from
each patch, k-means is used to split sets of extracted image feature vectors to create a
hierarchical structure. As image feature vectors usually fall into a high-dimensional feature
space, we test different distance metrics, in order to tackle the curse of dimensionality
problem. By using three different SAR and optical image datasets, Gabor texture and Bag-
of-Words (BoW) features are extracted, and the clustering results are analyzed via visual
and quantitative evaluations. The approach is compared with other classic unsupervised
clustering methods.

Based on the evaluations in Chapter 4, Chapter 5 proposes a semi-automated hierar-
chical clustering and classification framework for SAR image annotation. As an updated
framework, it comprises three stages: Firstly, each image is cut into patches and each patch
is transformed into a texture feature vector. Secondly, similar feature vectors are grouped
into clusters, where the number of clusters is determined by repeated cluster splitting to
optimize their Gaussianity. Finally, the most appropriate class (i.e., a semantic label) is
assigned to each image patch. This is accomplished by semi-supervised learning. Various
validation methods have been used to test and evaluate the proposed framework.

Chapter 6 tries to solve the problem from the pixel-level perspective. Although it is
difficult to perform pixel-level classification for SAR imagery, we try to model joint density
distributions of different features for general categories: urban, water, etc. Then a Bayesian
classifier is used to assign semantic labels to the category that obtains the largest posterior
probability. Later, an active learning method based on the non-locality concept is discussed
for optical images to extract more detailed objects: buildings, rivers, tennis courts, etc. In
order to allow interactive user operations, an SVM-based active learning scheme will be
applied.

Finally, Chapter 7 gives some conclusions summarizing the main experimental results.
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Figure 1.3: First contribution of the dissertation: patch-level hierarchical clustering for
TerraSAR-X imagery. Second contribution of the dissertation: semi-supervised semantic
annotation for TerraSAR-X image patches.

Figure 1.4: First part of the fourth contribution of the dissertation: pixel-level classification
for TerraSAR-X images.

Figure 1.5: Second part of the fourth contribution of the dissertation: object extraction
for WorldView-2 optical images.
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Chapter 2

Data Characteristics and Basic
Mathematics

You see, but you do not observe. The distinction is clear.

Sherlock Holmes

2.1 Data Characteristics

In this chapter, typical data characteristics of satellite images and their basic mathematics
are presented. Starting from an energy source, we explain and compare the electromagnetic
spectrum, the interaction of radiating energy with objects, and the basic characteristics of
SAR and optical imaging. For SAR images, there are difficult phenomena that we need to pay
attention to: the speckle effect, shadowing and foreshortening phenomena, etc. In addition,
we present the fundamentals of SAR image brightness distribution models, mathematical
tools for parameter estimation and numerical optimization, and sample generation methods
which are important for machine learning algorithms.

2.1.1 Introduction to Remote Sensing

As defined in the Nomenclature chapter, remote sensing is the acquisition of information
about a remote object or phenomenon without making real physical contact with it. In
many cases, remote sensing from satellites, airplanes or ground-based stations is used
to gather information about the physical, chemical and biological systems of the Earth.
This field of applications is called Earth observation. Typical examples of remote sensing
applications are: air traffic control, meteorological predictions and early warning, generation
of topographic maps via stereographic pairs of aerial photographs, measuring land-use
change (e.g., deforestation), as well as monitoring and responding to natural disasters (e.g.,
fires, floods, earthquakes, etc.). In order to accomplish these tasks, different data sources
can be used separately or fused to achieve the expected results. Data processing techniques
as well as state-of-the-art theories and algorithms (e.g., image processing, machine learning,
etc.) from other research areas are used. In this dissertation, we will mostly rely on state-of-
the-art machine learning algorithms to process high-resolution satellite images and generate
semantic image annotations.

When we look at our potential energy sources, there are two categories of sensors -
passive ones and active ones. As the Sun is a continuous energy source, the majority of
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remote sensing data is obtained with passive sensors, e.g., our everyday photos, and images
taken by airborne or space-borne sensors. Besides sunshine as the main energy source for
passive imaging, thermal infrared and passive microwave sensors also measure the natural
Earth’s energy emissions. In contrast, active sensors contain their own source of energy. In
the field of remote sensing, the best examples are radar and SAR, which emit energy in the
microwave range of the electromagnetic spectrum. The energy being reflected by a selected
area of the Earth’s surface and acquired by the remote sensing instrument is recorded as a
sensed image of that area.

As shown in Fig. 2.1 Drinkwater [2008], with different electromagnetic wavelengths,
various kinds of remote sensing images (e.g., SAR, panchromatic, multispectral and
hyperspectral images) can be obtained. When electromagnetic waves reach a material,
depending on the characteristics of the material, three types of mostly partial interaction
will occur: reflection, absorption, and transmission.

Figure 2.1: The electromagnetic spectrum and the atmospheric transmittance of a clear
cloud-free atmosphere. Source: with modifications from Albertz [2007].

As the atmosphere scatters and absorbs radiation during its passage from the Sun to
the Earth’s surface and from the Earth’s surface to the sensor, the wavelength ranges of the
electromagnetic spectrum in which the transmission of radiation through the atmosphere is
high are known as the "atmospheric windows". Hence, satellite sensors designed to observe
land or water surfaces operate within the atmospheric windows which are shown in Fig. 2.1.
For us remote sensing researchers, multispectral and hyperspectral images are acquired from
the ultraviolet, visible and infrared spectral ranges, while SAR images are acquired from the
microwave spectral range.

2.1.2 Synthetic Aperture Radar

Since one main data source in this dissertation is SAR, we will look in the following sub-
sections into the basic radar principle and SAR statistical properties, as well as speckle
effects, and some speckle reduction techniques.

2.1.2.1 Radar Principle

Radar is the abbreviation for Radio Detection and Ranging. It is a method developed
for target acquisition and distance measurement by means of radio waves or microwave

8
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measurements. Radar systems are active illumination systems which operate in the radio
wave or microwave domain, which means that radar systems are independent from solar
illumination. Radar benefits us with the following two advantages: 1) its imaging capability
through clouds; and 2) its imaging capability at night. Table 2.1 gives an overview of the
commonly used radar frequency bands and their parameters.

Table 2.1: Radar frequency bands Ulaby et al. [1981].

Band Frequency (GHz) Wavelength (cm)
K 10.9 - 36.0 2.75 - 0.83
X 5.75 - 10.9 5.21 - 2.75
C 4.2 - 5.75 7.14 - 5.21
S 1.55 - 4.2 19.4 - 7.14
L 0.39 - 1.55 76.9 - 19.4
P 0.225 - 0.39 133 - 76.9

Regarding different radar frequency bands, target visibility is the key factor for the
wavelength selection. While a long wavelength allows a penetration into vegetation and
soil, a small one is more sensitive to surface roughness. Hence, intermediate bands (L, C
and X) have been mostly used by radar systems. Moreover, X-band is a suitable frequency-
band for high-resolution radar applications, e.g., urban sensing applications. The benefits of
X-band lie in its improved resolution, but it also shows a good response to most land cover
signatures. A typical X-band instrument is the German TerraSAR-X system launched in June,
2007, with a SAR sensor that can be operated in different modes and polarizations Portal
[2016].

SAR systems are special systems which have been developed to overcome the limitations
of systems with real aperture concerning their azimuth (i.e., along-track) resolution. In order
to improve their azimuth resolution, SAR systems electronically synthesize an extremely long
antenna or aperture by using the forward motion of a small antenna and a special recording
and processing of the backscattered echoes.

This can be accomplished by an airborne or space-borne SAR instrument that continu-
ously transmits a time-synchronized sequence of pulses; their received echoes are sampled
regularly, and recorded on-board; then the data are compressed and downlinked to ground
and, during routine processing, sharp ("focused") images are generating via an inverse
Fourier transformation. The Fourier transformation generates complex-valued image pixels.
These complex-valued samples span a large dynamic range and their magnitudes are called
"detected" pixels; in order to reduce the dynamic range of the SAR data, one often converts
the initial "intensities" into "amplitudes" via square rooting. Thus, one has to be careful, what
product types are available.

In addition, based on SAR image analysis and observations, here are some properties of
basic SAR image characteristics: Large incidence angles (shallow angles) result in smoother
images and better range resolution Oliver and Quegan [1998]. Buildings often cause
multiple reflections: sequential ground-wall or wall-ground reflections induce multi-bounce
effects. Different surface types have different backscattering effects, due to smooth or rough
surface structures, or different textures.

9



2.1. DATA CHARACTERISTICS

2.1.3 SAR Statistical Properties

As a coherent imaging system, SAR systems generate images which suffer from speckle.
Basically, speckle is a salt-and-pepper pattern in radar imagery due to the coherent
nature of the radar wave, which causes random constructive and destructive interference
among the electromagnetic waves which are reflected from different scatterers within
the imaged footprint area of each pixel. This phenomenon becomes visible only in
magnitude (’detected’) images, not in complex-valued SAR images. As a consequence of this
phenomenon, the interpretation of detected SAR images may become severely disturbed.
Hence, many previous research works focus on the topic of speckle reduction Oliver and
Quegan [1998].

In this section, the physical origins of the speckle effect as well as its statistical properties
are discussed. Afterwards, speckle reduction is briefly investigated although in high-
resolution images where we have a lower number of scatterers per pixel, the speckle, which
therefore is only partly developed, is less disturbing than in low-resolution images Oliver
and Quegan [1998].

2.1.3.1 Speckle Effect

Although the true physical interactions among electromagnetic waves, surfaces and sensors
are very complex, a simple multiplicative model is normally applied to explain, for instance,
how the Earth’s surface appears in a SAR satellite image. For distributed targets, each
resolution cell can be considered to contain a number of N discrete scatterers. When an
electromagnetic wave interacts with a given target, each scatterer k contributes a reflected
wave with an amplitude Ak and a phase ψk. Hence, the total reflected return of the incident
wave is:

u = Aeiψ =

N∑
k=1

Ake
iψk (2.1)

The summation is made over the number of scatterers which are illuminated.

2.1.3.2 Statistical Properties of the Backscattered Signal

As indicated by Formula 2.1, for large numbers of scatterers N , several properties of the
received signal can be derived Oliver and Quegan [1998].

• Due to the Central Limit Theorem, the in-phase and quadrature components of a
complex-valued SAR image, ui = Acosψ and uq = Asinψ, are independent identically
distributed Gaussian random variables with zero mean, and their spatially-dependent
variance σ/2 within a small local window is determined by the scattering amplitudes
Ak. The corresponding joint probability density function (pdf) is a circular Gaussian
distribution with variance σ:

fui,uq(ξi, ξq) =
1

πσ
e−

ξ2i+ξ
2
q

σ . (2.2)

• The observed phase ψ is uniformly distributed between −π and π.

10



2.1. DATA CHARACTERISTICS

• The amplitude A = |u| =
√
u2
i + u2

q follows a Rayleigh distribution:

fA(a) =
2a

σ
e−

a2

σ , a ≥ 0, (2.3)

with a mean value of E(A) =
√
πσ
2 and a variance of var(A) = (1− π

4σ).

• The intensity or power I = A2 has a negative exponential distribution:

fI(i) =
1

σ
e−

i
σ , i ≥ 0, (2.4)

with a mean value of E(I) = σ and a variance of var(I) = σ2.

Except for the phase ψ, for other distributions that are characterized by only a single
parameter, σ corresponds to the mean average intensity.

The presented speckle model and the proposed distributions are important in handling
SAR data as they can be used for target classification and image segmentation. Hence,
in this dissertation, most of the experiments are carried out using amplitude or intensity
values as our interest lies in the brightness distributions of "detected" single SAR images. A
corresponding example will be discussed in the first part of Chapter 6, where we use the
statistical properties of SAR images for general land cover classification.

2.1.4 Speckle Reduction

For low to mid SAR image resolution, speckle is an undesirable effect which hinders the
image interpretation. Therefore, speckle reduction may become a critical pre-processing
step of different applications such as target detection, object recognition and classification,
etc. There are two main despeckling techniques: multi-look processing, and adaptive image
restoration techniques (i.e., speckle filtering). In this dissertation, several experiments have
been performed by using the statistical information of probability density distributions of
image intensities or amplitudes, hence some basic relationships will be explained.

2.1.4.1 Multi-Look Processing

The multi-look approach is to average the detected images over several pixels within a sliding
window. This process of averaging is known as multi-looking, the resulting images are known
as L-looks, where L denotes the number of incoherently summed pixels or looks.

Multi-look intensity images: The L-look average intensity

I =
1

L

L∑
k=1

Ik (2.5)

is known to obey a Gamma distribution with order parameter L and I ≥ 0 according to
Oliver and Quegan [1998]:

fI(i) =
1

Γ(L)
(
L

σ
)LiL−1e−

Li
σ , (2.6)

where Γ(.) is the Gamma function:

Γ(z) =

∫ ∞
0

tz−1e−tdt. (2.7)
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Moreover, the Equivalent Number of Looks (ENL) within a window is defined as:

ENL =
(E(I))2

var(I)
, (2.8)

where E(I) = σ and var(I) = σ2

L . The ENL is equivalent to the number of independent
intensity values averaged per pixel.

Square-rooted multi-look intensity images: Chaabouni-Chouayakh [2009] The square
root of the multi-look intensity is preferred to use for displaying purposes:

S =
√
I =

√√√√ 1

L

L∑
k=1

Ik. (2.9)

With µS =
√
µI , S ≥ 0 follows a conditional square-rooted Gamma distribution:

fS(s|µS) =
2

Γ(L)
(
L

µ2
S

)Ls2L−1e
−Ls

2

µ2
S , (2.10)

which is a Rayleigh distribution with L = 1 and µ2
S = µI .

As statistical modeling has served as a useful tool in SAR image analysis, basic and
advanced mathematical tools, which are widely used for remote sensing image processing,
will be systematically discussed in the following section.

2.2 Basic Mathematics

In order to better explain different mathematical tools, this section is organized to explain
classic analytical and numerical tools to deal with large amounts of data. Special attention
will be paid to probabilistic and statistical models due to their powerful data modeling
capability.

2.2.1 Probability Distributions

From the perspective of signal processing, image histograms can be modeled in the standard
form of a Gamma distribution:

fI|α,β(i|α, β) =
βαiα−1 exp{−βi}

Γ(α)
. (2.11)

In SAR processing, I stands for the intensity I, α is used as the number of looks L, β is taken

as
L

σ
, and σ is the standard deviation.

Since the often used Rayleigh distribution and the negative exponential distribution are
two special examples of a Weibull distribution with specific parameters, the definition of the
Weibull distribution is shown below:

fI|α,β(i|α, β) =
β

αβ
iβ−1 exp

[
−(

i

α
)β
]
, i > 0. (2.12)

Here α is used as the scale parameter, and β is the shape parameter. A Weibull distribution
can describe single-look SAR images with high accuracy for either amplitude or intensity
values; however, it cannot exactly represent multi-look SAR images exactly Gao [2010].
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Particularly, for high-resolution SAR images of urban regions, the G0 distribution, which
is equivalent to the Fisher distributions Tison et al. [2004], is usually used as an empirical
model:

fI|α,β,L(i|α, β, L) =
LLΓ(L− β)

αβΓ(L)Γ(−β)

iL−1

(α+ Li)L−β
, (2.13)

while α stands for the scale parameter, β is the shape parameter, and L is the number of
looks.

From the perspective of machine learning, the multinomial distribution and the Dirichlet
distribution, which are conjugate distributions, are important tools and often used in the
framework of Bayesian statistics. A typical example is the generative statistical Latent
Dirichlet Allocation (LDA) model that allows observation sets to be explained by unobserved
groups where similar data are grouped together.

In contrast, the multinomial distribution denoted by Mult(p1, .., pK , n), is a discrete
distribution over k-dimensional non-negative integer vectors x ∈ ZK+ where

∑K
i=1 xi = n,

and P = (p1, ..., pK) is an element of the (K-1)-dimensional simplex SK , n ≥ 1. The
probability mass function (pmf) of this multinomial distribution is:

f(x1, ..., xK ;n, p1, ..., pK) = Pr(X1 = x1 and... andXK = xK)

=

{
n!

x1!...xK !p1
x1 ...pK

xK , when
∑K

i=1 xi = n

0 otherwise,

(2.14)

for non-negative integers x1, ..., xK . It can be expressed using the Gamma function as:

f(x1, ..., xK ;n, p1, ..., pK) =
Γ(
∑

i xi + 1)∏
i Γ(xi + 1)

K∏
i=1

pi
xi . (2.15)

A Dirichlet distribution is the conjugate prior for Multinomial distribution in the sense
of Bayesian inference, and a generalization of the Beta distribution:

f(x1, ..., xK ;α1, ..., αK) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

xαi−1
i . (2.16)

Using Bayes’ Rule which will be explained later, the data X = X1, ..., Xn is generated
independently and identically from Mult(p1, ..., pK , n), its prior information follows Dir(α),
and its posterior is:

P (θ|X) ∝ P (X)

∝ (

m∑
j=1

θ
Nj
j )(

m∑
j=1

θ
αj−1
j )

=

m∑
j=1

θ
Nj+αj−1
j ,

(2.17)

so

P (θ|X) = Dir(N + α). (2.18)

Hence, if the prior is a Dirichlet distribution with parameters α, the posterior is a Dirichlet
distribution with parameters N + α.
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Table 2.2: Bivariate Archimedean copula families.

Copula C(u, v) Parameter θ

Clayton (max{u−θ + v−θ − 1; 0})−
1
θ θ ∈ (−1,∞)\{0}

Frank −1

θ
log

(
1 +

(exp{(−θu)} − 1)(exp{(−θv)} − 1)

exp{(−θ)− 1}

)
θ ∈ R\{0}

Gumbel exp
(
−((− log(u))θ + (− log(v))θ)

1
θ

)
θ ∈ [1,∞)

2.2.1.1 Copula-based Joint Probability Modeling

In most cases, a single random variable is not sufficient to describe a problem, and
a joint probability distribution is needed to solve complicated problems. Based on
Sklar’s theorem, any multivariate joint distribution can be written in terms of uni-variate
marginal distribution functions and a copula function, which describes the dependence
structure between the variables Nelsen [2006]. Hence, copulas are popular in high-
dimensional statistical applications. When two random variables are considered, the
bivariate Archimedean family copulas can be used to fit a joint PDF model (cf. Table 2.2). A
bivariate copula function is a joint cumulative distribution of two uniform random variables
X1 and X2, defined as:

C(x1, x2) = P (X1 < x1, X2 < x2) (2.19)

where Xi ∼ U(0, 1) for i = 1, 2.
According to Sklar’s theorem Nelsen [2006], the joint cumulative distribution of two

random variables X1 and X2 is expressed by the copula function of F1(x1), F2(x2).
Therefore, the corresponding joint probability density can be given by the derivative of the
following copula function:

f(x1, x2) =
∂2C(x1, x2)

∂x1∂x2
= c(F1(x1), F2(x2))f1(x1)f2(x2).

(2.20)

2.2.1.2 Gaussian Mixture Models (GMM)

Sometimes, complicated data can be modeled as a mixture model which is a probabilistic
model for representing the presence of subpopulations within an overall population. The
simplest example is the popular Gaussian Mixture Model, which is a weighted sum of M
component Gaussian densities as given by the following equation:

p(x|λ) =
∑M

i=1wig(x|µi,
∑

cov), (2.21)

where x is a D-dimensional continuous-valued data vector. A GMM is parameterized by the
mean vectors µi, , i = 1, ...,M , covariance matrices wi, , i = 1, ...,M and mixture weights∑

cov from all component densities. Collectively, they are represented by the notation:

λ = {µi, wi,
∑

cov}, i = 1, ...,M. (2.22)

Each component density is a D-variate Gaussian function with the form:

g(x|µi,
∑

cov) = 1
(2(π)D/2)|

∑
cov |1/2

exp
{
− 1

2(x− µi)′
∑

cov
−1(x− µi)

}
, (2.23)
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with µi as the mean vector,
∑

cov as the covariance matrix. The mixture weights satisfy the∑M
i=1wi = 1 constraint.
GMM parameters can be estimated from training data using the iterative Expectation-

Maximization (EM) algorithm or the Maximum A Posteriori (MAP) methods from a well-
trained prior model Reynolds [2008].

2.2.1.3 Bayes’ Rule

Bayesian approaches use Bayes’ rule to update beliefs in hypotheses in response to data:

P (Hypothesis|Data) =
P (Data|Hypothesis)P (Hypothesis)

P (Data)
(2.24)

P (Hypothesis|Data) is the posterior distribution, P (Hypothesis) is the prior distribution,
P (Data|Hypothesis) is the likelihood, and P (Data) is a normalizing constant also called
"evidence".

2.2.2 Parameter Estimation Methods

In order to properly model the data, parameter estimation techniques are needed to estimate
the parameters of the selected distributions. Classic methods are method of moments,
method of maximum likelihood estimation, method of maximum a posterior estimation,
method of log-cumulants, expectation maximization and the Bayesian rule. All these will be
presented in this section.

2.2.2.1 Method of Moments (MoM)

The method of moments estimation is based on the law of large numbers, which has the
property that the average of the results obtained from a large number of trials shall be close
to the expected value, and will tend to converge when more trials are performed:

M̃n =
1

n

n∑
i=1

Mi → µM as n→∞. (2.25)

MoM has the advantages of being easy to compute, to always work, and the estimate is
consistent; its disadvantages are that it is usually not the best estimator which achieves the
minimum Mean Squared Error (MSE) and sometimes obtains meaningless estimates.

2.2.2.2 Method of Maximum Likelihood Estimation (MLE)

The idea behind the method of maximum likelihood is that it is preferable to obtain
parameter estimates which would most likely produce the data we actually observe.

The definition of likelihood is: Let f(x1, ..., xn; θ), θ ∈ Rk, be the joint probability density
function of n random variables X1, ..., Xn with sample values x1, ..., xn. The likelihood
function of the samples is given by:

L(θ;x1, ..., xn) = f(x1, ..., xn; θ), (2.26)

where L is a function of θ for fixed sample values.
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The maximum likelihood estimators (MLEs) are those values of the parameters that
maximize the likelihood function with respect to the parameter θ. That is,

L(θ̃;x1, ..., xn) = max
θ∈Θ

L(θ;x1, ..., xn), (2.27)

where Θ is the set of possible values of the parameter θ.
MLE has the advantages that when the sample size n is large (n > 30), the MLE is

unbiased, consistent, normally distributed, and efficient in the sense that it produces the
minimum MSE compared with other methods; Moreover, it is more useful in statistical
inference. At the same time, it also has the disadvantages that it can be highly biased for
small samples; sometimes there is no closed-form solution; MLE is sensitive to initial values,
which might not result in a global optimum.

2.2.2.3 Method of Maximum A Posterior Estimation (MAP)

The method of maximum a posterior estimation estimates θ as the mode of the posterior
distribution of this random variable:

θ̃MAP (x) = arg max
θ

f(θ|x) = arg max
θ

f(x|θg(θ))∫
θ f(x|θ)g(θ)dθ

= arg max
θ

f(x|θ)g(θ). (2.28)

Given the MAP formulation, three key points need to be addressed: the choice of the
prior distribution family, the specification of the parameters for the prior densities, and the
evaluation of the maximum a posteriori. Thus, an appropriate choice of the prior distribution
can greatly simplify the MAP estimation process Gauvain and Lee [1994].

Usually, a MAP estimation can be computed in the following four ways:
Analytically, the estimator can be given in closed form because conjugate priors are used; Via
numerical optimization, such as a conjugate gradient method or Newton’s method. It usually
requires first or second derivatives that need to be evaluated analytically or numerically; Via
the application of an expectation-maximization algorithm. This does not require derivatives;
Or via the Monte Carlo method using simulated annealing.

2.2.2.4 Method of Log-Cumulants (MoLC)

Proposed by Nicolas [2002], and applied by Moser et al. [2006], MoLC has been introduced
to SAR data analysis for image distribution estimation. A Mellin transform instead of a
Fourier transform is used to analyze random variables which are defined over R+. For a
function f defined over R+ only, the integral MT[f]

MT [f ](s) =

∫ +∞

0
u(s− 1)f(u)du (2.29)

is called a Mellin transformation, where s is a complex number whose norm is equal to 1.
There are known relationships between common statistics and the Fourier transform: the

first characteristic function of a function f is the Fourier transform of its density function.
The nth moment is the nth derivative of the characteristic function; the nth cumulant is the
nth derivative of the logarithm of the characteristic function.

Main Second-Kind Statistics: By mimicking common statistics based on a Fourier
transformation, with a Mellin transformation, the main functions are summarized by Tison
et al. [2004]; here X is a random variable:
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• 1st second-kind characteristic function:

φX(s) = MT (pX) =

∫ +∞

0
xs−1pX(x)dx. (2.30)

• 2nd second-kind characteristic function:

ψX(s) = log(φX(s)). (2.31)

• rth-order second-kind characteristic moment:

mr(s) =
drφX(s)

dsr

∣∣∣∣
s=1

=

∫ ∞
0

(logx)rpX(x)dx. (2.32)

• rth-order second-kind characteristic cumulant which is also called "log-cumulant":

kr(s) =
drψX(s)

dsr

∣∣∣∣
s=1

. (2.33)

• For regular moments, we have:
k̂1 = m̂1. (2.34)

k̂2 = m̂2 − (m̂1)2. (2.35)

k̂3 = m̂3 − 3m̂1m̂2 + 2(m̂1)3. (2.36)

• Based on Equations 2.34, 2.35 and 2.36, the first three log-cumulant estimators for N
samples yi are defined as follows:

k̂1 =
1

N

N∑
i=1

[log(yi)]. (2.37)

k̂2 =
1

N

N∑
i=1

[(log(yi)− k̂1)2]. (2.38)

k̂3 =
1

N

N∑
i=1

[(log(yi)− k̂1)3]. (2.39)

Therefore, like for MoM, parameter estimation is used to solve the above-mentioned
equations.

2.2.2.5 Expectation Maximization (EM)

The EM algorithm is an efficient iterative procedure to compute the maximum likelihood or
maximum a posteriori estimate in the presence of missing or hidden data.

Here is an example of calculating a maximum likelihood estimate. Consider a generative
model with parameter θ. This model generates a set of data D, which consists of two parts:
the observed data X, and the latent data Z. Under this model, the complete likelihood of D
is given by:

p(D|θ) = p(X,Z|θ). (2.40)
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The marginal likelihood of X is given by:

p(X|θ) =
∑
z

p(X, z|θ). (2.41)

Here, the variable Z represents the summation over all possible assignments z. If Z is a
continuous variable, then the sum operation is changed to an integral over the domain of Z.

1. Initialize θ̃(0), which can be set to some random value in Θ, or by an initial guess
derived from problem-specific heuristics.

2. For t = 1,2,..., repeat:
a. E-step. The missing data are estimated given the observed data, and the current

estimates of the model parameters are obtained by using the conditional expectation.
Compute the posterior of the distribution of Z given X and θ(t−1):

q(t)(Z) = p(Z|X; θ̃(t−1)). (2.42)

Here, q(t) is used to denote the posterior distribution of Z obtained at the t-th iteration.
b. M-step. Under the assumption that the missing data are known, the likelihood

function is maximized. The estimates of the missing data from the E-step are used to
replace the actually missing data. Solve the optimal θ̃(t) by maximizing the expectation
of the complete log-likelihood with respect to q(t):

θ̃(t) = arg max
θ∈Θ

∑
z

q(t)(z) log p(X, z|θ). (2.43)

By taking advantage of the independence between the variables, the computation of this
sum can be greatly simplified.

3. The iteration stops when a convergence criterion is met: for instance, when the
difference between θ(t) and θ(t−1) is below a given threshold, etc.

2.2.3 Numerical Optimization Methods

We can solve equations analytically like aforementioned, but sometimes no closed-form
solution can be obtained, then numerical optimization methods can be considered. In
order to better discuss the problem, a simple supervised learning setup is considered. Each
example pair z = (x, y) is composed of an arbitrary input x and a scalar output y. A loss
function l(ỹ, y) measures the cost of predicting ỹ when the actual answer is y. A family F
of functions fw(x) is parametrized by a weight vector w. We seek the function f ∈ F which
minimizes the loss Q(z, w) = l(fw(x), y) averaged on the examples z1, ..., zn:

En(f) =
1

n

n∑
i=1

l(f(xi), yi). (2.44)

The empirical risk En(f) measures the training set performance.

2.2.3.1 Gradient Descent

Gradient descent, also known as steepest descent, is a first-order iterative optimization
algorithm. In order to find a local minimum of a function, one takes steps proportional to
the negative of the gradient (or of the approximate gradient) of the function at the current
point.
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Each iteration updates the weights w on the basis of the gradient of En(fw):

wt+1 = wt − γ
1

n

n∑
i=1

∇wQ(zi, wt), (2.45)

where γ is an adequately chosen gain. Under sufficient regularity assumptions, when the
initial estimate w0 is close enough to the optimum, and the gain γ is sufficiently small, the
algorithm achieves linear convergence Bottou [2010].

2.2.3.2 Newton’s Method

By replacing the scalar gain γ by a positive definite matrix Γt which approaches the inverse
of the Hessian of the cost at the optimum, we obtain:

wt+1 = wt − Γt
1

n

n∑
i=1

∇wQ(zi,Wt). (2.46)

This second-order gradient descent is a variant of the well-known Newton’s method. Under
sufficiently optimistic regularity assumptions, when w0 is sufficiently close to the optimum,
this algorithm achieves quadratic convergence Bottou [2010].

2.2.3.3 Stochastic Gradient Descent

Instead of computing the gradient of En(fw) exactly, in the stochastic gradient descent
algorithm, each iteration estimates this gradient on the basis of a single randomly picked
example zt:

wt+1 = wt − γt∇wQ(zt, wt). (2.47)

The stochastic process wt, t = 1, ... depends on the examples randomly picked at each
iteration, and this is a drastic simplification.

Similarly, the second-order stochastic gradient descent (2SGD) multiplies the gradients by
a positive definite matrix Γt to approach the inverse of the Hessian Bottou [2010]:

wt+1 = wt − γtΓt∇wQ(zt, wt). (2.48)

2.2.4 Sampling Methods

In machine learning applications, the integration and optimization problems play a funda-
mental role. Hence, sampling methods are often applied to solve these problems in high-
dimensional spaces.

2.2.4.1 Markov Chain Monte Carlo (MCMC)

As a posterior probability is in most of the cases difficult to compute, the MCMC
approximation generates samples from the posterior distribution by constructing a reversible
Markov-chain as an equilibrium distribution to match the target posterior distribution. In
this sub-section, the details of how inference is actually performed will not be explained;
however, in the sense of practical applications, the Metropolis-Hastings algorithm, the
most popular MCMC method, will be explained as an example.

1. Initialise x(0).
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2. For i = 0 to N − 1
- Sample u U[0,1].
- Sample x∗ q(x∗‖x(i)).

- If u < A(x(i), x∗) = min(1,
p(x∗)q(x(i)|x∗)
p(x(i))q(x∗|x(i))

)

x(i+1) = x∗ (2.49)

else

x(i+1) = x(i) (2.50)

Algorithm 2.1. Metropolis-Hastings algorithm.

A Metropolis-Hastings step of an invariant distribution p(x) and proposal distribution
q(x∗|x) includes sampling a candidate value x∗ given the current value x according to
q(x∗|x). Then the Markov chain moves towards x∗ with acceptance probability A(x, x∗) =

min(1,
p(x∗q(x|x∗))
p(x)q(x∗|x)

), otherwise it remains at x Andrieu et al. [2003].
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Chapter 3

State of the Art

To know that we know what we know, and that we do not know what
we do not know, that is true knowledge.

Confucius

With the increased availability of Earth Observation (EO) data, due to new satellite
missions, their various sensors, and the interoperability of data archives, the remote sensing
community is facing today a dramatic increase in both data volume and data content
details. Many EO applications which stem from the early days of the geoscience and remote
sensing discipline, such as measuring land-use characteristics, monitoring and responding to
natural disasters, managing natural resources, etc. are nowadays outdated and have been
complemented by more detailed innovative application-oriented techniques. Further, remote
sensing image analysis models, methods and algorithms, especially in urban areas, have been
largely developed for medium-resolution images. With regard to their data volume as well
as their data content, the current abundant high-resolution satellite data are far from being
well processed, analyzed, and utilized. They, for example, hyperspectral images taken from
space, are stimulating new research ideas, and driving future research trends towards new
models and algorithms for object analysis, pixel level segmentation, etc.

To fully explore the value of these data, their essential information has to be extracted,
converted and presented in tangible form which can be utilized in conjunction with other
data sets, for example, the widely used Geographic Information Systems (GIS). Particularly,
in order to browse and index image content information efficiently in large-scale image
databases, usually the information is compressed and complemented by textual keywords.
A common method is to pre-process, classify and, in the end, annotate the image databases.
Despite its high level of correctness, manual annotation requires a considerable amount of
human effort, because labeling an image forces us to become aware of the detailed image
content which is very time-consuming Barriuso and Torralba [2012]. As a result, some
researchers process data with the help of further professional GIS software, some process
data on pixel level, and some process them on polygon level Benz et al. [2004]. However,
these users process data only for certain specialized applications, and their functionalities
need to be enhanced.

In this dissertation, we focus on developing various kinds of fully automatic or semi-
automatic techniques which can efficiently and correctly interpret an image database,
without reliance on commercial software. By the nature of image annotation, there are
three major intrinsic problems: (a) how to describe an image mathematically, (b) how to
assess the similarity of images Datta et al. [2008], and (c) How to extract information
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Table 3.1: Ranges of spatial resolution with different satellites or instruments and
corresponding levels of expected object recognition.

Type of satellite or
instrument scale

Approximate range of
spatial resolution (meters)

General level of object
discrimination

Low-resolution satellite
images (Landsat 1,2,5)

30 m or worse Broad land-cover patterns
(regional to global mapping)
DigitalGlobe [2015]

Medium-resolution satellite
images (Spot 1,2,3,5, Rapid
Eye, ESA’s Sentinel-2)

5 m to 30 m Separation of between
major land use classes (e.g.,
urban, agricultural, forest,
water, barren, vegetation)
DigitalGlobe [2015]

High-resolution satellite
images (e.g., SPOT 5,6,
TerraSAR-X)

1 m to 5 m Recognition of urban
elements (buildings, houses,
sport grounds), natural
forest stands and orchards
DigitalGlobe [2015]

Very high resolution satellite
images (e.g., WorldView-
1,2,3, Quickbird)

1 m or better More finer objects are
observable (cars, smaller
trees, and large animals in
grassland)

Airborne multispectral
scanners

> 0.3 m Identification of very small
objects (windows, doors and
large individual trees)

Drone-mounted digital
frame camera Mostegel
et al. [2016]

> 0.04 m Identification of humans,
faces, phones and books

within an image which corresponds to the following chapters.

3.1 Earth Observation Meets Computer Vision

In the sense of different resolutions, as shown by Table 3.1, the spatial resolution trends fall
into 6 classes, while very detailed urban elements (buildings, houses, etc.) can be recognized
from high-resolution satellite imagery.

Hence, in this section, we briefly review the development of Earth observation, especially
when it meets computer vision. We are under the illusion that seeing is effortless, but
frequently our visual system is cheated by false perceptions which make us believe we
understand something but in fact we don’t. The task of labeling an image forces us to become
aware of the difficulties underlying scene understanding. Suddenly, the act of seeing is not
effortless anymore Barriuso and Torralba [2012]. Hence, appropriate techniques are needed
to overcome the difficulties, and the consideration of the booming computer vision area is
probably a good choice.

As photogrammetry has developed in parallel to remote sensing, researchers also have
noticed the growing relations of photogrammetry with computer vision Foerstner [2009]. In
the early days of high-resolution imaging, as opposed to pixel-level based analysis, computer
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vision based image analysis has been performed mainly through the recognition of objects,
for example, coastlines, roads, rivers, etc., as objects allow for a meaningful interpretation
of an image which is close to human perception. In this case, textural and line features were
extracted as image primitives, probabilistic graphs were used as model-based processing,
and shape information was used to analyze a multi-sensor dataset Gautama et al. [2000].

Nowadays, computer vision experts are still making efforts for understanding parts of
larger images that we probably neglect at a first glance Barriuso and Torralba [2012]. They
have collected many typical image datasets and their understanding is supported by image
annotation. Most of the available semantically annotated image collections, which contain
a large variety of retrievable objects and classes, have been built by individual groups with
the intention to solve specific problems. Typical examples are LabelMe Russell et al. [2008]
and Scene UNderstanding (SUN) Xiao et al. [2010].

Compared with computer vision applications that mainly focus on ordinary optical
images which cover specific objects within a small field of view, remote sensing images are
often used for EO purposes covering large areas which contain rich and detailed information.
However, remote sensing image analysis applications haven’t yet reached the same level of
automation as computer vision applications, and is way more complicated. In order to fast
browse and index image content in a large-scale remote sensing image dataset, it is critical
to develop techniques which are able to semantically annotate a given dataset efficiently and
with high quality. Thus, one of the urgent but not yet well-solved tasks in remote sensing
is the image annotation in large-scale remote sensing datasets. More specifically, the
purpose of semantic image annotation in remote sensing is to reach a better understanding
not only of the natural environment that surrounds us, but also of the built-up environment
that we live in.

3.2 Hierarchical Representation

Here we deal with the first question: How to represent the image information? In remote
sensing, a large complex image scene is usually highly informative with multiple levels of
concepts, it is then preferable to logically represent the image content as a hierarchical
structure with abstract and detailed levels. For example, urban areas can be categorized
into sub-classes such as densely built-up areas or sparsely built-up areas. In addition, a
hierarchical structure provides us a visual intuition to describe the connections between
different layers.

As images are usually highly informative with multiple levels of concepts, image
semantics is represented as a hierarchical structure with different levels. Some researchers
try to provide descriptive information, e.g., image attributes or tags in addition to image
classes or categories. Gao et al. [2014] propose a multi-layer group based tag propagation
method which combines the class labels and subgroups of instances with similar tag
distributions to annotate test images. A hierarchical tree-structured semantic unit provides
not only the class and subclass an image belongs to, but also the attributes an image has Han
et al. [2014]. In Yuan et al. [2015], hierarchical features are learnt based on a layer-wise
tag-embedded deep learning model to correspond to hierarchical semantic structures in the
tag hierarchy; some researchers adjust topic model concepts which have been successfully
applied in the natural language processing to image processing domains, e.g., Latent
Dirichlet Allocation (LDA); here the image information is described as documents, topics,
and words. In Hoo and Chan [2015], a zero-shot object recognition system which integrates
a topic model and a hierarchical class concept is proposed, and comparable performance with
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Figure 3.1: Hierarchical representations from semantic and feature perspectives.

state-of-the-art algorithms is achieved. A novel author-genre-topic hierarchical generative
model is proposed in Luo et al. [2014]. In addition to a cascaded category-aware visual
search model, weak category clues are utilized to achieve better retrieval accuracy, efficiency,
and memory consumption Zhang et al. [2014]. WordNet1 is a typical example of hierarchical
representation. It is an English lexical database where nouns, verbs, adjectives, and adverbs
are grouped into distinct concepts that are interlinked via conceptual-semantic and lexical
relations. There is also psycholinguistic theory behind, which attributes human memory with
hierarchical semantics, as complex scenes are difficult to be fully described by a single label
for each image patch. Some researchers propose a hierarchical Multi-Instance Multi-Label
semantic learning (MIML) method which is a variation of the traditional semisupervised
framework for high-resolution remote sensing image annotation via a Gaussian process Chen
et al. [2013].

We can build a hierarchical representation from different perspectives: feature hierarchy
and semantic hierarchy, Fig. 3.1 shows that, when we consider general-level semantic labels
of "settlements" and "industrial area", "high buildings" and "refugee camps" to belong to
"settlements", "industrial buildings" and "storage tanks" belong to "industrial area"; when we
consider the shape features of "linear" and "non-linear", now "high buildings" and "industrial
buildings", "refugee camps" and "storage tanks" should be grouped together. However, in this
dissertation, we prefer to construct a semantic hierarchy rather than a feature hierarchy.

3.2.1 Feature Hierarchy

Features can be extracted hierarchically. From a biological perspective, a hierarchical
process seems to happen during the fast visual recognition in the mammalian cortex, and
is also consistent with the inherent characteristics of human cognition. Hence, a number of
weakly inspired computer vision models and unsupervised learning algorithms are described
and presented in LeCun [2012], the effectiveness of these algorithms for learning various
feature hierarchies are demonstrated with practical tasks such as scene parsing, pedestrian

1http://wordnet.princeton.edu
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detection, and object classification.
The hierarchical features can represent objects in a very exquisite way. In Epshtein and

Uliman [2005], an automated informative feature hierarchy extraction method is described
for object classification, and according to the authors, these hierarchical features are more
informative and better for classification compared with similar non-hierarchical features.
Moreover, a feature hierarchy organizes image representations into multiple levels which
also correspond to different semantic levels. Hence, some authors propose a novel Layer-
wise Tag-embedded Deep Learning (LTDL) model to learn hierarchical features that relate
to hierarchical semantic structures in the tag hierarchy Yuan et al. [2015].

3.2.2 Semantic Hierarchy

In most cases, semantic labels are formed hierarchically. In the survey of semantic hierarchies
for image annotation Tousch et al. [2012], the use of an unstructured vocabulary and
structured vocabulary are analyzed, and it is argued that the use of structured vocabularies
is critical to the success of image annotation.

Regarding the application of detecting and recognizing object parts, e.g., face recogni-
tion, a semantic hierarchical representation is proposed in Epshtein and Ullman [2007]. In
this method, a minimal feature hierarchy is constructed at the beginning, then semantically
equivalent representatives are added to each node, and the entire hierarchy is used as a
context to determine the identity and locations of added features. Particularly, object parts
are detected and learned for all levels in the hierarchy. Similarly, a lexical semantic network
is proposed in Marszalek and Schmid [2007] to extend the current object recognition
techniques. The semantics of image labels are used to integrate prior knowledge about
inter-class relationships. Thus, a semantic hierarchy of discriminative classifiers is built
and trained. The results demonstrate that high-level categories can be classified due to
the extension with semantic inference tools, e.g., animals or car windows. Moreover, the
topic model can be used for the application of object recognition Hoo and Chan [2015]; in
this paper, a probabilistic Latent Semantic Analysis (pLSA) topic model is used. The idea is
that an object is represented via a hierarchical concept, which includes feature primitives,
bag of words features, and semantic topics in the image.

Most of the available image classification works are not able to deal with large-scale
image search; hence, a cascaded category-aware visual search method is proposed in Zhang
et al. [2014], where noisy local features are discarded, and visual and category image clues
are extracted and recorded in a hierarchical index structure; the algorithm shows good
performance although the introduced training information is weak. Armed with a sparse
coding technique, a multi-layer group-based tag propagation method which combines class
labels and subgroups of instances is proposed in Gao et al. [2014], where the Reproducing
Kernel Hilbert Space (RKHS) is used for non-linearly separable features; in this case, a kNN
strategy is integrated which greatly improves the computational efficiency.

In summary, as the world is so complex and contains a lot of different objects, a semantic
hierarchy is viewed as a practical and useful tool to model and represent it. Thus, the second
goal of this research is to represent semantic labels hierarchically.

3.3 Description of Images

When we want to represent images hierarchically, at first, we need to solve a problem: How
to describe image contents? In both the remote sensing and computer vision communities,
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this is usually done by extracting and encoding image features. Fig. 3.2 illustrates different
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Figure 3.2: Description and analysis of images. The procedure consists of feature extraction,
feature encoding, and different distance metric analyses in high-dimensional feature space.

complexities of feature descriptors, the common image description procedure consists of
two levels: the first step deals with feature extraction which is the extraction of image
texture, shape and color information as a primitive feature descriptor; the next step is feature
encoding in which the primitive descriptors are aggregated as a feature vector, for example,
as a bag-of-words feature.

3.3.1 Feature Extraction

Image feature extraction can be viewed from many perspectives, traditionally, features are
extracted based on human expert knowledge. Take finger print classification for example:
the image gradient direction, the local dominant orientation, and minutia points are
extracted and described as an image feature vector. Regarding remote sensing images, and
the special properties of satellite images, for example, the speckle effect which is inherent in
SAR images, should be analyzed and taken into account when necessary.

Without domain-specific knowledge, features can be extracted based on our general
knowledge. One important image property is its color or spectral information, which
can be identified by different color descriptors. With respect to image structure, we
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concentrate on shape features: edges, lines, bridges, image region contours, corners, and
blobs which represent local structures. For the global image properties, we usually extract
texture features: the statistical properties of an image such as its gray-level histogram,
mean, variance, Fourier transform, and various moments. For example, Newsam et al.
[2003] use Gabor filter based homogeneous texture descriptors to annotate remotely sensed
datasets. Furthermore, from a machine learning perspective, feature extraction can be made
by analyzing the variables after a statistical processing procedure: principal component
analysis, discriminant analysis, etc. Jiang [2009].

These primitive features, i.e., color, textual and shape features, have been integrated
or evaluated in a number of different research works. Image retrieval from large
and heterogeneous image databases is evaluated in Howe and Huttenlocher [2000] by
exploiting a diverse and expandable set of image properties, for instance, color, texture,
and location information. Various primitive features, for example, gray-level co-occurrence
matrices, Gabor filters, quadrature mirror filters, and nonlinear short-time Fourier transforms
have also been adapted for SAR images and evaluated, see Dumitru and Datcu [2013].
Furthermore, for general land cover classification, for example, urban, natural land and
water classification, Aytekin et al. [2013] propose a new SAR image feature vector by
combining the intensity information of pixels with spatial information and structural
relationships. This work also shows the importance of taking account of both the intensity
information of pixels as well as their spatial-structural relationships when generating an
image feature vector.

3.3.1.1 Multi-Spectral Information

Spectral information is one of the most commonly used features of remote sensing images;
it is especially useful for multi-spectral or hyper-spectral images. In RGB color space,
spectral information is considered as color information. The traditional color descriptors
are extracted to represent image color distributions and are often expressed in the form of a
color histogram. The simplest color descriptor is obtained by calculating a color histogram in
the original RGB space Swain and Ballard [1991]. The corresponding discrete distributions
can be summarized to their first- and second-order statistical moments Stricker and Orengo
[1995]. The performance of the color descriptors which include a histogram descriptor
coded via a Haar transform, a color structure histogram, a dominant color descriptor, and
a color layout descriptor that are defined in the MPEG-7 standard, are documented in
Manjunath et al. [2001]. However, the drawback of distribution-based color histogram
descriptors is their lack of spatial relationships. Hence, in order to incorporate spatial
color information among image pixels, color coherence vectors Pass et al. [1996], color
correlograms Huang et al. [1997], and weighted color histograms are proposed and analyzed
in Vertan and Boujemaa [2000]. In principle, the authors try to weight each pixel distribution
into its corresponding color distribution.

Another direction goes into color space transformations. There are different color spaces;
the Lab color space is considered to better coincide with human perception than the RGB
space; the YUV color space is a linear transform of RGB which separates intensity from
color information. It is primarily used in video applications; one luminance (Y) and two
chrominance (UV) components are defined in this model Tokarczyk et al. [2015]; Salembier
and Sikora [2002] describe a set of color descriptors using the YUV color space.

When we look at object and scene recognition applications, the invariance properties
and the distinctiveness of color descriptors are studied in a structured way in Sande et al.
[2010]. Based on their theoretical and experimental results, the invariance to light intensity
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changes and light color changes affects category recognition. Furthermore, the usefulness of
invariant properties turns out to be category-specific.

As for color object recognition, there is a discussion in Gevers and Smeulders [1999],
which concludes that for multicolored man-made objects, the highest object recognition
accuracy is achieved by l1, l2, l3 and a hue color model.

Color information extraction from multi-spectral satellite images is different from the
extraction from common color spaces, which requires specific techniques. Multi-spectral
image analysis is usually made by combining different spectral bands. In the case of SAR or
optical satellite images, the color descriptor is reduced to a single channel which represents
the intensity value. The commonly used color descriptors described above can be adjusted
to gray level images.

3.3.1.2 Textural Information

Image texture information is a set of metrics designed to describe the spatial arrangement of
intensities in an image or selected regions of an image. Texture features are characterized to
describe granular and repetitive patterns inside images; hence, they have direct relations
to image semantics: categories such as forest, grassland and urban areas can be well
distinguished using very simple texture attributes.

Haralick et al. Haralick et al. [1973] propose to use quantities based on gray level co-
occurrence matrices to characterize image structures. The co-occurrence matrices represent
the distribution of co-occurring pixel values at a certain offset, and correspond to second-
order statistics. Based on these matrices, statistical measures such as contrast, uniformity,
mean, variance, inertia moments, etc. and up to fifth-order statistical moments are computed
on theses matrices.

The performance of the texture descriptors defined in the MPEG-7 standard which
include one that characterizes homogeneous texture regions, another that represents the
local edge distribution, and a compact descriptor that facilitates texture browsing, are
documented in Manjunath et al. [2001].

Besides, geometric and photometric transformation invariance are desired characteristics
of texture features; hence, they are very helpful to the segmentation of natural scenes or
object recognition in remote sensing images. In Lazebnik et al. [2003], an affine-invariant
texture descriptor is extracted from a sparse set of regions using a Laplacian blob detector. In
Mikolajczyk and Schmid [2004] a Harris detector is used to locate highly textured points and
the derivatives of the Laplacian allows the computation of the scale and affine shape of the
corresponding local structures. This kind of affine- and scale-invariant texture information
is very useful to represent local structures and regions.

Later, many approaches which rely on transforms to capture textual information have
been proposed. Most of these transforms are made in the spatial-frequency domain
as the frequency and the orientation of repetitive patterns which describe how textual
information can be captured. As a classic image feature technique which originated from
signal processing, Gabor filter-based features proposed by Manjunath and Ma [1996] for
two-dimensional signals are used as a stable tool for image feature extraction. These
Gabor texture features are based on multichannel filtering which covers a limited range
of frequencies and orientations, thus emulating some characteristics of the human visual
system. The filters are defined by various radial frequencies, standard deviations, and
orientations. In Kamarainen et al. [2006], the authors study the most significant results
of Gabor filtering, its invariance properties, and restrictions on the use of Gabor filters in
feature extraction.
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Similar ideas are also applied to wavelet transforms in which the wavelet coefficients are
used as the final texture descriptor Randen and Husoy [1994], Do and Vetterli [2002], and
Ruiz et al. [2004]. The wavelet transform based texture features decompose a signal using
a series of elementary functions which are created by scalings and translations of a base
function as wavelets via high-pass filters and scalings via low-pass filters.

Other popular texture descriptors are Tamura’s six texture features selected via psy-
chological experiments: coarseness, contrast, directionality, linelikeness, regularity, and
roughness Tamura et al. [1978]. They perform well on general databases. It is also noticed
that they can outperform traditional texture features, e.g., first- and second-order statistics
on Gabor filter bank outputs Deselaers et al. [2008]. Moreover, different texture features,
and their use in content-based image retrieval applications are reviewed in Howarth and
Rueger [2004]. Recent research for SAR images has shown that a combination of texture
features comprising mean, variance, wavelet components, semivariogram, lacunarity, and
weighted-rank fill ratio yields a better classification accuracy than single textural measures
Chamundeeswari et al. [2009].

3.3.1.3 Geometric Information

Shape information is another powerful attribute in describing image content, and is strongly
linked to image semantics, because humans can easily recognize objects simply from their
shapes, which demonstrates their special distinguishability compared to color and texture
features. The purpose of shape features is to encode simple geometric forms such as
straight lines in different directions. Basically, the shape features can be categorized into the
following classes: polygonal approximations which include merging methods and splitting
methods; spatial interrelation features which include convex hulls, chain codes, smooth
curve decompositions, shape matrices, and shape context; moments which include boundary
moments and region moments comprising invariant moments, algebraic moment invariants,
homocentric polar-radius moments, and orthogonal Fourier-Mellin moments; scale-space
methods which include curvature scale spaces, and intersection point maps; and shape
transform domains which include Fourier descriptors, wavelet transforms, angular radial
transforms, and shapelet descriptors.

In the computer vision field, Hoiem et al. [2005] propose a multiple hypothesis
framework for robustly estimating scene structures from a single image and obtaining
confidence levels for each geometric label; the coarse geometric properties of a scene can
be estimated by learning appearance-based models of geometric classes, even in cluttered
natural scenes. The method is useful in two domains: object detection and automatic
single-view reconstruction. Moreover, the implementation procedures of different shape
representation techniques have been examined and their advantages and disadvantages are
discussed in Zhang and Lu [2004].

Furthermore, in computer vision, in contrast to traditional geometrical features, re-
searchers have proposed several shape features which consider spatial information between
pixels and their neighborhoods. Lowe [2004] presents a method to extract image distinctive
features which are invariant to image scale and rotation by transforming image data into
scale-invariant coordinates relative to local features. This method was originally proposed
to be used to perform reliable matching between different views of an object or scene.
Later, Bay et al. [2008] present a another scale- and rotation-invariant interest point
detector and descriptor, called SURF (Speeded-up robust features) which approximates or
even outperforms previous schemes regarding repeatability, distinctiveness and robustness;
however, it can be computed and compared much faster. The method relies on integral
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images for image convolutions by using a Hessian matrix-based measure for the detector, and
a distribution-based descriptor. For robust visual object recognition, Histograms of Oriented
Gradient (HOG) descriptors are proposed in Dalal and Triggs [2005]. The method is based
on the idea that local object appearance and shape can often be characterized rather well
by the distribution of local intensity gradients or edge directions. As shown in Cai et al.
[2013], Wang and Wang [2015], Bouchiha and Besbes [2013], and Torrione et al. [2014],
these shape features have also been applied and adapted in the remote sensing area and
they perform well.

3.3.2 Feature Encoding

Many state-of-the-art scene classification techniques re-process low-level image descriptors
into richer feature encoding representations of intermediate complexity Boureau et al.
[2010]. Feature encoding gives us a more compact feature representation based on primary
feature descriptors. According to Chatfield et al. [2011], this includes the following methods:
histogram encoding which is actually vector quantization, kernel codebook encoding,
locality-constrained linear coding, Fisher encoding, and super-vector encoding.

In particular, as first described by Li and Perona [2005] and Li et al. [2007], bag-of-
visual-words features yield more satisfactory and cogent experimental classification results
than other state-of-the-art features Feng et al. [2011], Yang et al. [2007], and Yang and
Newsam [2010]. When constructing a bag-of-visual-words representation, Cui et al. [2015]
discovered that the direct use of the pixel values from a local window as low level features
and the introduction of a random dictionary to divide the feature space leads to very
competitive results, and can achieve rather good performance for both optical and SAR
satellite images.

Regarding human action recognition, Fisher vector feature encoding is used in com-
bination with efficient linear kernels in Kantorov and Laptev [2014], and shows better
performance compared to histogram encoding.

In Boureau et al. [2010], several types of coding modules, such as hard and soft vector
quantization, and sparse coding, are comprehensively cross-evaluated. A more recent
and thorough discussion concerning different coding methods as well as the connections
between them, especially their motivations and mathematical representations, and how
they have evolved, are surveyed in Huang et al. [2014]. According to these authors,
when considering the whole feature space, voting-based coding and Fisher coding follow
different ways of describing the probability density distribution of features. Considering
local coding with careful feature representation, reconstruction-based coding achieves a
more precise description of each feature than voting-based coding. For example, Locality-
constrained Linear Coding (LLC) performs better than other classic methods such as sparse
coding, and also runs faster than most reconstruction-based coding methods. Compared
with reconstruction-based coding, saliency-based coding has two advantages: it is directly
derived from the definition of saliency which avoids the underdetermined problem in the
least-squares-based reconstruction procedure, and it performs much faster due to its easy
implementation without iterative optimization.

Due to lots of parameters, resulting from the feature encoding process, the final feature
vectors usually form a high-dimensional feature space, which thus brings out the famous
"curse of dimensionality" problem.
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3.3.3 The Curse of Dimensionality

Richard Bellman apparently coined the term "the curse of dimensionality" in a book on
control theory Bellman [1961], by saying "In view of all that we have said in the foregoing
sections, the many obstacles we appear to have surmounted, what casts the pall over our
victory celebration? It is the curse of dimensionality, a malediction that has plagued the
scientist from the earliest days."

Generally, the problem with high dimensionality is that a certain number of data points
becomes increasingly "sparse" as the dimensionality increases. Here is an example of one of
the special topology characteristics in high dimension given by Bishop [2006]: Considering
a sphere of radius α together with the concentric hypercube of side 2α, so the sphere touches
the hypercube at the centers of each of its sides, then by calculating the ratio of the volume
of the sphere to the volume of the cube, the results show that in a high-dimensional space,
most of the volume of a cube is concentrated in the large number of corners, in other words,
"spikes".

In remote sensing, usually people extract and combine various kinds of feature de-
scriptors to describe an original image; thus, a feature vector typically lies in a very
high-dimensional feature space, which brings out the well-known "curse of dimensionality"
problem. For example, in the case of cluster analysis, the original data is divided into clusters
for the purposes of summarizing or improving understanding. The effect of increasing
dimensionality of distances or similarity is a new challenge which needs to be taken up
to tackle the curse of dimensionality problem Steinbach et al. [2003]. Other researchers
claim that the commonly used Euclidean norm and Gaussian kernels are inappropriate
in high-dimensional spaces. Hence, alternative distance measures and kernels together
with geometrical methods are developed by Verleysen and Francois [2005] to reduce the
dimension of the space. Efficient feature coding can shrink a high-dimensional feature space
to a relatively modest dimension. Regarding the problem of large-scale image search, a joint
dimensionality reduction and indexing approach is proposed in Hervé et al. [2012] who
claim that the Fisher kernel gives better feature coding than the reference bag-of-visual-
words approach for any given vector dimension. The evaluation also concludes that the
image representation can be reduced to a few dozen bytes while preserving high accuracy.

From a mathematical point of view, the curse of dimensionality term usually refers to the
apparent intractability of searching in a high-dimensional space while approximating and
integrating a high-dimensional function Donoho [2000]. As discrete function integration
is used very frequently in machine learning algorithms, e.g., in Bayesian graphical models,
some experts propose algorithms to tame the problem by applying randomized algorithms
which decompose the problem into a small number of discrete combinatorial optimization
problems subject to constraints used as a hash function Ermon et al. [2013]. For better
searching and indexing in high-dimensional data spaces, the pyramid-technique is proposed
by Berchtold et al. [1998] towards breaking the curse of dimensionality. It is highly adapted
to range query processing using a so-called maximum metric. The original data is mapped
into a one-dimensional space which is managed via a B+ tree. Moreover, Donoho [2000]
mentions it as both a curse and a blessing of dimensionality which indicates the high-
dimensionality is actually a double-edged sword.

In contrast to the traditional negative impression of the high-dimensionality curse, there
is also positive aspect of high dimensionality. This is the concentration of a measured
phenomenon, for example, in the Banach space, in which random fluctuations are well
controlled in high dimensions. Thus, some problems will be easier to solve than in lower
dimensions. In our case, if the blessings of dimensionality are properly utilized, these might
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bring us unexpected and surprising performance gains.
Hence, one goal of this dissertation is to study features in a high-dimensional feature

space, especially what is a good distance metric to describe the pair-wise relationships
between feature points. Therefore, the definition of distance metrics plays an important
role in exploring features in a given feature space which usually has more than three
dimensions Aggarwal et al. [2001]). Exploratory data analysis which aims to identify the
main data characteristics will be explained in following chapters, in order to verify statistical
assumptions, to select appropriate models, and to determine the hidden relationships among
the variables.

Like atoms behave differently in tiny molecules, for example, the wave-particle duality
property, classic geometrical characteristics also change in a high-dimensional space, for
example, the volume of a cube case where most of the mass are in the corners. The classic
Euclidean distance does not suit for a high-dimensional space anymore, and other distance
metrics are needed to measure the distance between two elements. In this dissertation, we
have a closer look at this phenomenon.

3.3.4 Distance Metrics

From a mathematical perspective, a set of points X and a metric d defines a metric space
(X, d), and a metric function is also known as the distance between two points Burago
et al. [2001]. These distance metrics reduce multi-dimensional distances to simple scalars
which can be used for later processing. Regarding digital images, the similarity between
image feature vectors is measured by some practical distances: Lp metrics which are usually
used for image compression to select a lossy compression scheme, weighted editing metrics,
or cosine distance, Mahalanobis distance which is histogram quadratic distance, Kullback-
Leibler distance, Kolmogorov-Smirnov distance, Hamming distance which calculates pixel
misclassification error rate, and Hausdorff distance which measures the distance between
two point-sets Deza and Deza [2009].

As a similarity measurement, the Hausdorff distance is used to compare different images
Huttenlocher et al. [1993]. The method is tolerant of small position errors and it extends
naturally to the problem of comparing a portion of a model against an image. In Yu et al.
[2006], a distance metric study is made, and the authors propose a novel boosted distance
metric which not only finds the best distance metric that fits the distribution of the underlying
elements but also selects the most important feature elements with respect to similarity.
Concerning the application of image retrieval, distances are calculated between feature
vectors of a query and reference data in order to query and index new images Deza and
Deza [2009].

Moreover, for the unsupervised clustering and supervised classification methods, due
to their computational efficiency and ease of use, Euclidean distance, Manhattan and
Minkowski distance metrics have been embedded in the k-means algorithm for comparison
and discussion Singh et al. [2013]. As proposed by Von Luxburg and Bousquet [2004], a
Lipschitz classifier can be used for metric spaces and a corresponding notion of margin is
defined such that the classifier separates the training points with a large margin.

In a broader sense, distance metrics have also been used for the indexing of a digital
library of popular music Francu and Nevill-Manning [2000], for pollen records Gavin et al.
[2003], for duplicate detection in databases Bilenko and Mooney [2002], for the comparison
of strings for name-matching Cohen et al. [2003], and social networks Tang et al. [2009].
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3.3.4.1 Fractional and Minkowski Distances

Especially, in a high-dimensional space, the typical characteristics are the undesired effects
of distance concentration and the emergence of hub and anti-hub objects. A hub object
has a small distance to an exceptionally large number of data points; an anti-hub object
lies far from all other data points. An unsupervised approach is proposed in Schnitzer and
Flexer [2014] for an empirical examination of concentration and hubness, and choosing an
Lp norm by minimizing hubs and miximizing nearest neighbor classification. Particularly
in high-dimensional continuous landscape analysis, distance metrics together with sampling
techniques are discussed in Morgan and Gallagher [2014], and their limitations have also
been studied and improved.

For a specific feature descriptor, different distance metrics can lead to large discrepancies
in clustering performances. For example, in Aggarwal et al. [2001], the fractional distance
metric is claimed to outperform classic Euclidean and Manhattan distance metrics with
clustering algorithms. Previous work has also resulted in the use of fractional Lp distance
metrics instead of the universal Euclidean distance metric Aggarwal et al. [2001]. Howarth
and Rueger [2005] provide more meaningful results both from the theoretical and empirical
perspectives. However, researches contained in Francois et al. [2007] conclude that
fractional metrics are always more concentrated than the Euclidean metric, contrary to what
is generally assumed. This indicates that it is worthwhile and intriguing to study fractional
distances, and to analyze the clustering or classification performances of different distance
metrics, e.g., fractional, L1, L2, and Minkowski distance metrics, etc.

The Minkowski distance is a metric in a normalized vector space which can be considered
as a generalization of both the Euclidean distance which is known as the L2 distance, and the
Manhattan distance which is known as the L1 distance. In this dissertation, the Minkowski
distance is used to represent distance metrics.

The Minkowski distance was originated by Kruskal [1964]. It is a natural extension of
fractional distances, as they share a similar distance metric form, except that the norms
are different. For a more detailed explanation of Minkowski distances, see Van de Geer
[1995]. There the author discusses how to use the Minkowski model to solve problems.
In Amorim and Mirkin [2012], the use of Minkowski metric based k-means is proposed to
tackle irrelevant features; the method appears to be competitive compared to other distance
metrics based on k-means algorithms, e.g., the Euclidean metric based approach.

3.3.4.2 Distance Metric Learning

Besides, there is a new trend which learns the optimal metric by using state-of-the-art
machine learning algorithms. In a survey by Bellet et al. [2013] on metric learning for
feature vectors and structured data, various metric learning algorithms are categorized and
summarized, and recent trends and extensions are discussed. One can easily find a suitable
algorithm for one’s own application based on the main features of metric learning methods.

Basically, distance metrics can be learnt for similarity measurement, e.g., for image
similarity measurements. The classic SVM approach is to develop an algorithm which
provides a flexible way of describing qualitative training data as a set of constraints
Schultz and Joachims [2003]. Very recently, a regularized distance metric framework
called Semantic Discriminative Metric Learning (SDML) is proposed in Wang et al. [2016].
It ensures the consistency between dissimilarities and semantic distinctions, and avoids
inaccuracy similarities; in the end, excellent performance on benchmark image datasets is
obtained.
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For unsupervised clustering and supervised classification applications, Xing et al. [2003]
propose distance metric learning with an application to clustering with side-information.
In order to obtain large margin nearest neighbor classifiers, Weinberger and Saul [2009]
also propose to learn a Mahalanobis distance metric which significantly improves the
classification performance of the k nearest neighbor algorithm. Moreover, Park et al.
[2011] focus on solving the large margin nearest neighbor optimization problem more
efficiently, while learning a Mahalanobis distance metric. For image retrieval, Discriminative
Component Analysis (DCA) and kernel DCA which outperform the common relevant
component analysis are proposed for learning distance metrics with contextual constraints
Hoi et al. [2006]. Propelled by the rapid development of machine learning algorithms,
Hoi et al. [2010] implemented a semi-supervised learning scheme for collaborative image
retrieval, and compared it with standard metrics, unsupervised metrics, and supervised
metrics with side-information.

In order to get a clear idea about the advantages and disadvantages of different
distance learning methods, Yang [2006] made a very comprehensive and thorough survey
about distance metric learning. The topic is reviewed under different learning conditions:
unsupervised learning versus supervised learning; learning in a global sense versus in a
local sense; and linear kernel based distance metrics versus nonlinear kernel based distance
metrics. More recently, a systematic review of the metric learning literature is compiled in
Bellet et al. [2013], in which the Mahalanobis distance metric learning is discussed, as it
emerged as a powerful alternative. Other than calculating the similarity between points,
Zhu et al. [2013] propose to extend the idea to evaluating the similarities between one point
and one set, and between sets. The corresponding experiments on gender classification,
digit recognition, object categorization and face recognition show that the performance of
point-to-set distance and set-to-set distance based classifications have improved. In remote
sensing applications, almost no related researches have been preformed.

3.4 Machine Learning

As is mentioned in Jiang [2009], feature extraction reduces the original 2-D image data
into a high-dimensional feature vector while annotation or classification then guarantee the
numerical feature vector to a binary one, which corresponds to image annotations with
regard to remote sensing image annotation.

The statistical properties of remote sensing images become complicated because of
the multi-spectral properties of a pixel location, the presence of different kinds of noise
sources and uncertainties, the inherent non-linear data model, and the high spatial and
spectral redundancies. The special characteristics of remote sensing data and the variety of
application objectives give rise to the application of a wide range of machine learning and
signal processing algorithms.

There are specific technical terms both used in the machine learning and statistics
communities. A comparison which shows typical terms is shown in Table 3.2. This table
is based on Bob Tibshirani’s amusing comparison between machine learning and statistics1.
It is interesting to note that, when reviewing the literature of machine learning or computer
vision, it is easy to get confused by different sets of terminology used by the authors. In this
dissertation, technical terms will follow the direction of machine learning, which appears to
be more practically orientated and better to understand.

1http://statweb.stanford.edu/~tibs/stat315a/glossary.pdf
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Table 3.2: Glossary of machine learning and statistics.

Machine Learning Statistics
network, graphs model
weights parameters
learning fitting
generalization test set performance
supervised learning regression or classification
unsupervised learning density estimation or clustering

3.4.1 Classic Machine Learning Methods

Nowadays, a number of machine learning techniques which include classification, regres-
sion, and clustering are successfully applied in different fields. The commonly used methods
are: statistical methods, Bayesian methods, probabilistic graph models, etc.. Tables A.1,
A.2, A.3, A.4 in the Appendix give an overview of basic and advanced machine learning
algorithms which range from unsupervised learning to supervised learning regarding aspects
of algorithm descriptions, models, objective functions, and training algorithms.

Table A.1 describes three types of unsupervised learning algorithms which cluster
data into groups based on chosen metrics, e.g., different distance metrics, Kullback-
Leibler (KL) divergence, information gain, etc.; Table A.2 explains three basic supervised
learning algorithms which make simple assumptions about clean and organized data; in
Table A.3, the classic perceptron algorithm is shown at first, then the details of more
advanced convolutional neural networks are explained, via models, objective functions,
and training algorithms; Table A.4 lists three advanced learning algorithms: decision trees,
random forests, and SVM. For a wide range of applications, they yield robust and efficient
performance, for example, content based image retrieval, facial expression classification,
personal recommendation systems, handwritten character categorization, etc.

3.4.2 New Trends in Semi-supervised Learning

In order to prevent making EO analyses in a very laborious way, in Datcu and Seidel [2005] a
remote sensing information processing system Knowledge-driven Information Mining (KIM)
is proposed which is based on human-centered concepts to solve difficult tasks in EO
image interpretation. In this context, image annotation can be performed with supervision,
without supervision, or with "intermediate-level" supervision. It includes supervised learning

Figure 3.3: Active learning scheme vs. passive learning scheme.
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Carneiro et al. [2007], unsupervised learning Lienou et al. [2010], Su et al. [2011], as well
as the "intermediate" form of supervision, i.e., semi-supervised learning Blanchart and Datcu
[2010], or active learning Blanchart et al. [2014]. As shown in Fig. 3.3, active learning is
a special case of semi-supervised machine learning in which a learning algorithm is able to
interactively query the user or some other information source to obtain the desired outputs
at new data points Settles [2014], Olsson [2009]. Driven by the motivation of applying high-
quality state-of-the-art algorithms, many researchers dealing with remote sensing image
annotation have exploited a full supervision for image content understanding:

In a 20 meter resolution pixel-level land cover classification Rodriguez-Galiano et al.
[2012], a Random Forest (RF) algorithm (see Table A.4 in the Appendix) which is robust to
training data reduction and noise yields accurate land cover classifications. Those variables
that the RF algorithm identified as most important for classifying land cover also coincided
with our expectations.

In a review of SVM (see Table A.4 in the Appendix) applied in remote sensing Mountrakis
et al. [2011], SVMs are particularly appealing in the remote sensing field due to their ability
to generalize well even with limited training samples, a common limitation for remote
sensing applications. However, they also suffer from parameter assignment issues that can
significantly affect the obtained results. A summary of empirical results is provided for
various applications of over one hundred published works. It is their hope that this survey
will provide guidelines for future applications of SVMs and potential areas of algorithm
enhancement.

Latent Dirichlet Allocation (LDA), as a generative model, is often used for classification in
natural language processing. The original algorithm and its variations have been introduced
and extended into the remote sensing domain by Lienou et al. [2010], Luo et al. [2012], and
Zhang et al. [2010]. Similarly, inspired by the relationships among chromosomes, DNA, and
genes in biological systems, an image-to-concept distribution model is proposed by Su et al.
[2011] to obtain reliable semantic annotations.

Moreover, in the context of dealing with huge amounts of data, unsupervised clustering
methods (see Table A.1 in the Appendix) which group visually similar results together Cao
et al. [2009], Choi et al. [2010], Wang et al. [2014], Lu et al. [2010], and Wang et al. [2008]
usually reduce the time required to generate an annotated dataset Chen and Ellis [2015].
In order to better evaluate the clustering results, research done in Varga and Nedevschi
[2013] formulates a new definition of compactness which can be used as a similarity measure
between feature descriptors.

As both supervised learning and unsupervised learning have their own advantages and
disadvantages, a probabilistic formulation, which combines the advantages of the two
methods via a reformulation of the supervised approach, is proposed by Carneiro et al.
[2007] for semantic image annotation and retrieval. A semi-supervised algorithm which
trains a hierarchical latent variable model with both labeled and unlabeled data is proposed
by Blanchart and Datcu [2010] for auto-annotation and unknown structure discovery in
satellite images, and a multi-scale coarse-to-fine cascaded active learning method to retrieve
patterns in large image datasets, is proposed by Blanchart et al. [2014]. As complex scenes
are difficult to describe with a single label for each image patch, a hierarchical semantic
multi-instance multi-label learning (MIML) framework for high resolution remote sensing
image annotation via a Gaussian process is proposed by Chen et al. [2013].

In two review papers of content based image retrieval Gevers and Smeulders [2003],
and Datta et al. [2008], the authors discuss generally and thoroughly about the learning
techniques that are traditionally used in image retrieval. As described in Datta et al. [2008],
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three different machine learning techniques and their applications in image retrieval are
available: clustering, classification, and relevance feedback. Clustering has the advantage of
exploring unknown information but with poor user adaptability; classification makes better
predictions but is limited to existing labeled training classes; relevance feedback provides
more user involvement. The authors mention the importance of user interaction which
shows a positive trend for future image retrieval applications. Both active learning and
semi-supervised learning are important techniques when scarce labeled data are available.
A Gaussian random field model is used to combine them, while the semi-supervised learning
problem is formulated in terms of a Gaussian random field on a weighted graph, the mean
value of which is characterized in terms of harmonic functions. Then active leaning is
performed on top of this semi-supervised learning Zhu et al. [2003]. In an overview of
image information mining in the exploration of EO archives by Datcu and Seidel [2003],
the authors clarify the trend from a computer-centered approach, for example, in content
based image retrieval to a human-centered approach, for example, in image information
mining. The huge volume of data, the variability and heterogeneity of the image data
which include a diversity of sensors, times or conditions of acquisition, etc., has made image
information mining a task with high complexity. In this review, a theoretical concept for
image information representation and adaptation to the user conjecture is developed, in
which the image data is represented via image features and meta features, then a clustering
and learning algorithm is applied to generate a cluster model; in the end, a semantic
representation is obtained.

Furthermore, when adapting learning methods to user experience, Blanchart proposes
in his PhD dissertation a semi-supervised algorithm which exploits "unknown" semantic
structures and tries to solve the problem of learning in interactive image search engines
which relates to active learning Blanchart [2012]. The results show that the introduction of
active learning is able to handle large volumes of data while preserving a satisfactory level
of accuracy. Sometimes, there is a confusion between content-based image retrieval and
image information mining Quartulli and Olaizola [2013]; however, this term is explained in
the Nomenclature chapter. In order to minimize the total annotation cost within an active
learning process, Persello et al. [2014] address the active sample selection problem in the
framework of a Markov decision process, in which one is allowed to plan the next labeling
action based on an expected long-term cumulative reward. Hence, we can see that there
is a clear trend of integrating semi-supervised learning and active learning methods in the
framework of classification or annotation applications.

Additionally, in some cases, extra information can also be considered for image
annotation, e.g., visual contexts can be learned for image annotation based on Flickr group
labels Ulges et al. [2011]. Regarding the high-dimensional feature space, a semantic
image browser which applies existing information visualization techniques to semantic
image analysis is proposed in Yang et al. [2006]. There the high-dimensional feature
space is shown without dimension reduction, and also a rich set of interaction tools are
integrated. For geospatial analysis, this is a common approach to process data from
heterogeneous geospatial databases. In Shyu et al. [2007], new techniques with shape
and visual characteristics, multiobject relationships and semantic models which link low-
level image features with high-level visual descriptors are proposed. The system is able to
answer image analysts’ questions in seconds which allows image analysts to identify relevant
imagery more rapidly. A query method which combines data metadata, image content and
image semantics is presented in Espinoza-Molina and Datcu [2013], and Dumitru et al.
[2014]. The system is focused on processing TerraSAR-X data and is able to analyze sets of
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high-resolution TerraSAR-X image scenes with more than 300 semantic annotations.

3.4.3 Object Extraction-based Semantic Exploration

In the sense of semantic exploration, it is desirable to obtain information (i.e., annotation
labels) up to the object-based pixel level. An object-oriented analysis can contribute to most
remote sensing applications as pixel-level processing explores richer information contents
Benz et al. [2004]. For SAR images, due to their image properties, it is still difficult to
process the data up to the pixel level; however, researchers have already tried to extract
various objects from high-resolution optical images. For example, in Guo et al. [2009],
a semantics-aware two-stage image segmentation approach integrated with a hyperclique
pattern discovery method is proposed. In Blaschke [2010], the authors give an overview
of the development of object-based image analysis methods for remote sensing, which aim
to delineate readily usable objects from imagery, and combine image processing and GIS
functionalities in order to utilize spectral and contextual information in an integrative way.

As the object-based segmentation for remote sensing imagery requires pixel-level
precision, most of the applications are done with a multi-level or multi-scale approach
which allows refinement of segmentation regarding different levels of objects. The authors
of Chaabouni-Chouayakh and Datcu [2010] propose to fuse different automatic object
extractors from coarse to fine level which is able to provide reliable pieces of interpretation.
In order to extract semantically meaningful objects for object-based remote sensing image
analysis, a multi-scale analysis is always needed during segmentation. In Yi et al. [2012],
the multi-scale segmentation first divides the whole image area into multiple regions
where each region consists of ground objects within similar optimal segmentation scales.
Then those suboptimal segmentation regions are synthesized to get the final result. The
proposed scale-synthesis method can generate accurate segmentation results that benefit
latter classification procedures. For object-based classification, a multiagent object-based
segmentation algorithm is proposed to optimally control the procedure of object merging
Zhong et al. [2014]. The contextual information includes strong interaction, high flexibility,
and parallel global control capability from the surrounding objects. The experimental results
show that the algorithm yields a stable and competitive performance for high-resolution
remote sensing images.

Moreover, the segmentation results are obtained in a iterative manner or within a scalable
tile-based framework. In Mylonas et al. [2015], the image is segmented in an iterative
manner; at each iteration, a single object is extracted via a genetic algorithm-based object
extraction method. As the objective of remote sensing applications is often to adapt image
segmentation algorithms for large amounts of data, large images are usually divided into
smaller image tiles to overcome the memory problem; in this case, each tile is processed
independently. A scalable tile-based framework for region-merging algorithms to segment
large images is proposed in Lassalle et al. [2015]. The results show the benefits of this
framework and demonstrate the scalability of this approach by applying it to really large
images.

The first segmentation results are not always optimal, and a lot of post-processing
methods are proposed to refine the segmentation results. For high-resolution remote sensing
imagery, a novel texture-preceded segmentation algorithm is proposed by Li et al. [2010], in
which texture clustering is carried out first as a loose constraint for subsequent segmentation.
The method can merge homogeneous texture segments easily and also well detect real object
boundaries. In Johnson and Xie [2011], an optimal image segmentation is identified using
an unsupervised evaluation method of segmentation quality, the under- and over-segmented
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regions are refined accordingly, and a multi-scale approach is used for segmentation
refinement. In Stefanski et al. [2013], a strategy for a semi-automatic optimization of
object-based classification of multi-temporal data is presented by applying a Random Forest
(RF) approach. Troya-Galvis et al. [2015] propose a novel unsupervised metric, which
evaluates the local quality per segment by analyzing segment neighborhoods and a specific
homogeneity criterion is given to quantify under- and over-segmentation. The behavior
of the proposed metric is analyzed and validated. A detail-preserving smoothing classifier
based on conditional random fields with a competitive performance is proposed in Zhao
et al. [2015]. Moreover, in Geiss and Taubenboeck [2015], the authors propose a supervised
classification model which is trained for the refinement of second time segmentation results;
here, additional information is provided from the initial classification outcome.

When multi-level processing and specific learning methods may not provide globally
acceptable solutions for remote sensing applications, some authors seek support from
extra information or build very domain-specific models. In Bouziani et al. [2010], as
high-resolution urban areas usually contain many objects which form a very complicated
segmentation task, the authors use an existing digital map of the same area within
a classification process where an automated multi-spectral segmentation algorithm is
applied. In particular, for building detection, a domain-specific segmentation method is
proposed in Karadag et al. [2015], which integrates information related to the building
detection problem into the detection system during the segmentation step. Although this
approach may obtain very precise segmentation results regarding a specific type of object
segmentation, the drawback of it is that the data model is so specific and limited to the
usage of a given application, and is not robust enough to be extended to other applications.

Other machine learning methods were also applied to the semantic segmentation
of remote sensing images. Some authors propose an automated selection of a single
segmentation level with the Hierarchical SEGmentation (HSEG) algorithm Tarabalka et al.
[2012], which gives a good performance for multi- and hyper-spectral image analysis by
combining region object finding with region object clustering. A total variation formulation
which is an effective tool for image restoration, enhancement, reconstruction and diffusion
is proposed in Zhang et al. [2013]. The relations among different objects in high-resolution
remote sensing images are discussed in Vanegas et al. [2013], namely the alignment and
parallelism for image description; illustrative examples on optical satellite images show
the descriptive power. A morphological profile-based attribute profile method with special
emphasis on remote sensing image classification is contained in Ghamisi et al. [2015]. A
superpixel-based graphical model is proposed in Zhang et al. [2015], where gradient fusion,
probabilistic fusion, and boundary penalties between the super-pixel methods are introduced
in the procedure of classification. The results outperform the other state-of-the-art methods.

Similar to image annotation, regarding image segmentation for high-resolution remote
sensing imagery, the importance of user interaction is also emphasized. Some authors
propose to apply Graph Cut (GC) theory within a labeling problem on a Markov Random
Field (MRF) constructed on the image grid Bai et al. [2012]. In this case, a large number
of interactive user strikes are needed to obtain satisfactory segmentation results. In a
review particularly for hyper-spectral image classification Camps-Valls et al. [2014], the
authors discuss the performance difference among traditional purely supervised solutions,
semi-supervised solutions and active learning solutions, then address the emphasis of user
interaction for future hyper-spectral image classification.
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3.5 Conclusions and Proposed Concepts

We start from a huge amount of available data, then extract information via data analysis,
and, in the end, knowledge is acquired by using different data processing techniques. In
the Motivation and State of the Art chapters, three research goals have already been brought
out, namely:
1. To annotate images in large-scale remote sensing datasets.
2. To study the extracted features in their high-dimensional feature space.
3. To obtain object-based extraction for high-resolution optical satellite images.

Based on the above literature review, we propose an intuitive rough idea of how to
decompose the big complex problem into smaller parts and represent image content on three
levels: scene, patch, and object. The full scene level covers a large area with an abundance of
detailed information; the patch level covers local semantics ranging from general to detailed
levels, for example, from urban areas to high-density residential areas; finally, the object
level depicts very detailed object information by extracting object profiles.

As indicated by Sinha and Poggio [1996], human vision relies heavily on context. For
optical and SAR images, image content can be represented via different levels. As shown in
Fig. 1.2, the optical image content can be represented as a hierarchical structure of a scene,
patches, and objects. On the full scene level, the figure shows a high-density urban area in
Munich, Germany, where the typical city elements (e.g., residential areas, industrial areas,
railways, rivers, etc.) are clearly visible. On patch level, three patches represent different
scales of a residential area, together with other land cover types. On object level, high-
resolution optical satellite imagery provides us with a good opportunity to visually recognize
detailed objects: a white square building, a gray round building, a tennis court, a pond, etc.

Similar to Fig. 1.2, SAR image content can also be represented on scene-patch-objects
levels, as shown in Fig. 1.1. On the full scene level, the whole scene depicts the city of
Siegen, Germany within a large area of forests and agricultural fields; On patch level, three
patches depict a building within a field, an industrial area within a field, and a residential
area. On object level, the objects are visually very difficult to identify, as they have different
visual characteristics compared with optical images. Among the given examples, the football
playground is dark because its smooth surface generates low backscattering towards the
observer; the industrial building has very bright lines along its edges because of metallic
material on the roof and double scattering due to the given incidence angle; residential
houses are represented by clusters of bright spots. More detailed SAR image properties are
explained in the Data Characteristics and Basic Mathematics chapter.

Fig. 3.4 describes our proposed overall semi-supervised framework from two perspec-
tives: patch-level classification, and pixel-level segmentation. Both of them consist of three
basic modules: determination of image characteristics, machine learning algorithms, and
semantic annotation. After that, either hierarchically grouped patches or extracted objects
are obtained. Then different semantic labels are attached to patches and objects. More
solution details will be explained and further developed in the following chapters.
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3.5.1 Applied Dataset

Since its launch, the German TerraSAR-X satellite has already acquired tens of thousands
of high-resolution Synthetic Aperture Radar (SAR) images that have been processed into
different product types. Their resolution is usually 1-5 meters/pixel; thus, very detailed
structures (e.g., industrial constructions, residential buildings, etc.) are clearly visible in the
images Fritz [2013].

Based on the available data products that we have at our disposal, we focus in this
dissertation on Multi-look Ground Detected (MGD) and Radiometrically Enhanced (RE) high
resolution TerraSAR-X SpotLight mode products. In this mode, the resolution of TerraSAR-X
images is about 2.9 m with a pixel spacing of 1.25 m. The average size of the given images
is 4,500×6,500 pixels. We generated a semantically annotated dataset consisting of more
than 100 scenes covering different urban and non-urban areas from around the world (see
Fig. 3.5). Each image was tiled into patches of 160×160 pixels; thus, about 110,000 patches
were generated.

Due to the specific characteristics of SAR imaging systems, there are some unique
phenomena that can be observed in a SAR image, which make the interpretation of a
single SAR image more challenging compared to an optical image. For instance, there is the
notorious speckle phenomenon which has the so-called "pepper and salt" noise effect. Apart
from their specific data characteristics, there are also other bottlenecks for SAR satellite
image interpretation: artifacts due to ortho-rectification, highly unbalanced classes, a small
number of training data, and many labeling errors caused by human factors, etc. Hence, in
this dissertation, we focus on individual SAR images with single polarization.

Besides SAR products, we also analyzed optical images of WorldView-2, a commercial
EO satellite which is owned by DigitalGlobe. WorldView-2 provides commercially available
panchromatic imagery with a resolution of 0.46 m, and eight-band multispectral imagery of
1.84 m resolution. It was launched on October 8th, 2009 as the third DigitalGlobe satellite in
orbit, joining WorldView-1 which was launched in 2007 and QuickBird which was launched
in 2001. The satellite revisit period for any place on Earth is 1.1 days Wikipedia [2016]. In
August 2014, WorldView-3 was launched complementing the fleet of WorldView satellites.
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Figure 3.5: Geographical distribution of our semantically annotated TerraSAR-X data set.

3.5.2 Semi-supervised Learning

Due to the large data volume of satellite images, their scene content complexity, and the
computational effort of classification and labeling algorithms, we had to cut large image
scenes into small patches for subsequent object extraction. Hence, hundreds of scenes
become hundreds of thousands of patches. In order to save image interpreter time by
avoiding manual labeling of training data, which is necessary for supervised learning, an
intuitive idea comes to our mind: Why not simplify this large-scale data problem at the
beginning by grouping similar patterns together? We know that unsupervised learning
methods are able to group similar patterns together. Fig. 3.6 shows a rough idea of
this concept. Here, similar patches can be grouped together based on different patch
characteristics such as square-like patterns, homogeneous textures, scattered short and
long lines, etc. To be independent from the actual statistical distribution of the image
data, we aim at a homogeneous clustering of feature vectors which allows us to group
similar patches within the dataset as proposed by Datcu and Schwarz [2010]. We assume
a Gaussian distribution for homogeneous cluster content because it is rather general and
robust (not case-specific). Thus, we hope to obtain homogeneous clusters prior to final
semantic annotation based on suitable cluster splitting.

In hierarchical clustering, the main problem is to find a suitable criterion for cluster
splitting. Based on the method proposed in Hamerly and Elkan [2003], the Anderson-
Darling Gaussian test Anderson and Darling [1952] performs better than the Bayesian
Information Criterion (BIC) in finding a good stopping rule during clustering. Therefore,
the Gaussian-test was used for creating our hierarchical structures. In order to make the
whole process as simple as possible, we applied an adjusted Gaussian test based clustering
method.

During the construction of the hierarchical structure, we used K-means clustering of
image patch feature vectors for cluster splitting due to its simplicity and efficiency. We
incorporated a fractional distance metric and the Minkowski distance metric into k-means
while calculating the distances to tackle the "curse of dimensionality" problem. In order to
better evaluate the homogeneity of the grouped clusters, the evaluation was made from two
aspects: image patch visualization as well as feature space cluster density analysis.

However, an unsupervised learning method alone cannot provide reliable semantic
information to users. As known, it is hard to link unsupervised learning results to physically
meaningful semantic labels. It would be a good solution to add some prior information and
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Table 3.3: Table of semantic categories.

No. Abstract Level Detailed Level
1 Agriculture Agricultural land
2 Transportation Airport
3 Transportation Airport building area
4 Transportation Boat
5 Water bodies Breaking waves
6 Transportation Bridge
7 Water bodies Channel
8 Bare ground Cliff
9 Bare ground Desert and Sand

10 Forest Forest mixed
11 Forest Forest mixed and Stubble
12 Urban area High-density residential area
13 Bare ground Hill
14 Urban area House in residential area
15 Industrial area Industrial area
16 Urban area Low-density residential area
17 Urban area Medium-denisty residential area and 2
18 Urban area Medium-density residential area and 1
19 Military facilities Military aerospace facilities
20 Urban area Mixed urban area
21 Urban area Mixed urban area and Stubble
22 Water bodies Ocean and 1
23 Water bodies Ocean and 2
24 Transportation Port
25 Transportation Railway
26 Transportation Road
27 Urban area Skyscraper
28 Urban area Sport area
29 Industrial area Storage tank
30 Agriculture Stubble and Road
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Figure 3.6: Unsupervised clustering for TerraSAR-X image patches.
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human interaction, which leads to the use of semi-supervised learning methods: A small
amount of labeled data is used for training with a large amount of unlabeled data remaining
for subsequent analysis. Thus, a cluster-then-label semi-supervised learning method Zhu and
Goldberg [2009] was adapted and modified. Different supervised learning methods were
tested within clusters, in particular, methods related to nearest neighbors have been paid
attention to, as we are interested in the effects of distance metrics on semantic annotation.
Table 3.3 lists the semantic categories that we use in this dissertation.

Figure 3.7: Proposed processing and analysis procedure for image patches.

Fig. 3.7 illustrates the whole concept of our proposed patch level processing and analysis
procedure. We start from a semantically annotated dataset of image patches, from which we
select a number of collections. Then we perform feature extraction for each image patch.
This results in a high-dimensional feature space. A clustering algorithm with a Gaussian test
and distance metric are used to generate a dichotomized hierarchical cluster tree structure.
After applying supervised learning in each cluster, predefined semantic labels are assigned
to the feature vector points. Since the object-level is for semantic exploration, so there are
no predefined semantic labels.

Fig. 3.8 demonstrates the whole concept of our proposed pixel level processing and
analysis procedure. Optical images are taken as input, and a user interface is set up for
handling positive and negative training samples. Based on pixel distance and similarity
information, a non-locality map is calculated, which is used for iterative active learning. At
the end, user-selected objects are extracted via object segmentation.

Chapters 4,5 and 6 follow the procedure proposed in this chapter.
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Figure 3.8: Proposed processing and analysis procedure for object extraction.
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Chapter 4

Application and Evaluation of a
Hierarchical Patch Clustering Method
for Image Patches

A setback may turn out to be a blessing in disguise.

Chinese proverb

In this chapter, we apply and evaluate a modified Gaussian-test-based hierarchical clus-
tering method for high-resolution satellite images. The purpose is to obtain homogeneous
clusters within each hierarchy level which later allow the classification and annotation of
image data ranging from single scenes up to large satellite data archives. After cutting
a given image into small patches and feature extraction from each patch, k-means is
used to split sets of extracted image feature vectors to create a hierarchical structure. As
image feature vectors usually fall into a high-dimensional feature space, we test different
distance metrics, in order to tackle the "curse of dimensionality" problem. By using three
different SAR and optical image datasets, Gabor texture and Bag-of-Words (BoW) features
are extracted, and the clustering results are analyzed via visual and quantitative evaluations.
We also compared our approach with other classic unsupervised clustering methods. The
most important contributions of this chapter are the discussion and evaluation of cluster
homogeneity by comparing various datasets, feature descriptors, evaluation measures and
clustering methods, as well as the analysis of the clustering performances under various
distance metrics. The results show that the Gaussian-test-based hierarchical patch clustering
method is able to obtain homogeneous clusters, while Gabor texture features performs better
than the BoW features. In addition, it turns out that a distance parameter ranging from 1.2
to 2 performs best. Also indicated by Yao et al. [2016a], our modified G-means algorithm is
faster than the original algorithm.

4.1 Approach

Driven by the motivation to apply high-quality state-of-the-art algorithms, many researchers
dealing with remote sensing image annotation prefer a full supervision for image content
understanding. However, due to the large data volume and the scene content complexity in
our applications, we shifted our attention towards an alternative solution: Why not simplify
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the problem at the beginning by grouping similar data together as a first step to generate
sets of homogeneous clusters.

So in this dissertation, we apply an unsupervised clustering method as a preliminary step
to obtain homogeneous clusters of similar patches within image databases. Specifically, our
method intends to answer the following questions: How do we define homogeneity, how do
we obtain homogeneous groups, and how do we evaluate the results?

For a large complex image scene, it is preferable to represent the image content as a
hierarchical structure with abstract and detailed levels. For example, urban areas can be
categorized into sub-classes such as densely built-up areas or sparsely built-up areas. In
addition, a hierarchical structure will provide a lot of information describing the connections
between different layers. However, in hierarchical clustering, the main problem is to find a
suitable criterion for cluster splitting. Based on the method proposed in Hamerly and Elkan
[2003], the Anderson-Darling Gaussian test performs better than the Bayesian Information
Criterion (BIC) in finding a good stopping rule during clustering. Hence, the Gaussian-test
was used for creating our hierarchical structures. Further details will be explained in the
Methodology section.

Prior to clustering, we cut all given images into small patches and extract feature vectors
from each patch. For high-dimensional image feature vectors, the well-known "curse of
dimensionality" problem exists. In addition, for a specific feature descriptor, different
distance measures can lead to large discrepancies in clustering performances. For example,
in Aggarwal et al. [2001], the fractional distance metric is claimed to outperform classic
Euclidean and Manhattan distance metrics. Thus, we have to analyze the performances of
different distance metrics. Therefore, the fractional, L1, L2, and Lp (Minkowski) distance
metrics are also studied in the Methodology section.

In order to better evaluate the homogeneity of the grouped clusters, the evaluation is
done from two aspects: image patch visualization as well as feature space cluster density
analysis. Then we continue with the preparation of various datasets that we need for the
evaluation and validation of our method. This includes SAR and optical datasets, with
semantic references, as well as the internal clustering validation, analysis of annotation
credibility, and representativeness of the dataset.

To deal with the above issues, we present a Gaussian-test-based hierarchical clustering
method for space-borne TerraSAR-X and airborne optical images. K-means clustering
of image patch feature vectors is used to split the clusters during the construction of
the hierarchical structure due to its simplicity and efficiency. The fractional distance
metric is incorporated in k-means while calculating the distance for tackling the "curse of
dimensionality" problem.

For cluster creation, it is like creating a new lexicon, each cluster corresponds to a letter,
which we can look up in the dictionary. Creating a dictionary is useful for indexing and
organizing a scalable database.

Since the annotation can be made with a big variety of different datasets, the class
distributions in the feature space are different, and the annotation labels become quite
different, too. In order to simplify the problem and make it less ambiguous, we use a
Gaussian assumption for homogeneous cluster content because it is rather general and robust
(not case-specific). Thus, we can obtain homogeneous clusters prior to final annotation.
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4.2 Methodology

As depicted in Fig. 4.1 and suggested by Datcu and Schwarz [2010] and Newsam et al.
[2003], after obtaining homogeneous image patch clusters, they can be used as a basic
component of an image retrieval system to find similar images and to exploit hidden
information. Hence, in this section, a detailed description of our proposed method, the
Gaussian-test-based hierarchical clustering and the related evaluation metrics are given.

Given Images Feature Extraction
High-Dimensional 

Feature Space

Dichotomized 
Hierarchical 
Clustering

Feature Points 
Grouped in Feature 

Space
Gaussian Test

Comparative 
Distance 
Metrics

etc.

Figure 4.1: Proposed data clustering and analysis scheme for image patches.

A problem of most off-the-shelf clustering algorithms is the need of selecting the
appropriate number of clusters. With a hierarchical clustering structure, this can be
approached alternatively by a proper splitting rule. In order to get homogeneous clusters, we
chose to use the Gaussian-means algorithm proposed in Hamerly and Elkan [2003] that splits
clusters based on their actual feature vector contents. The splitting rule in this algorithm
is to check whether the cluster follows a Gaussian distribution and to perform splitting if
necessary. Thus, there is no need to preset a fixed number of clusters. To prevent too small
clusters, we add a constraint on the minimum size of clusters. In the following, we first
present the Gaussian-means algorithm and then describe the fractional distance metric.
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4.2.1 Feature Extraction

In order to analyze the performance of the modified G-means method (see below) with
different remote sensing image sources, SAR and optical image datasets have been used
for comparison. As a typical texture feature extractor, Gabor coefficients represent an
established standard tool for feature extraction from SAR data as they support robust texture
recognition. In contrast, optical images can also be well classified by the Bag-of-Words (BoW)
method Yang et al. [2007] since it describes the general as well as the detailed information
contained in an image patch.

In the experiments, we have used 2D Gabor wavelet coefficients as texture features. As
a typical texture feature extractor, Gabor coefficients represent an established standard tool
for feature extraction from SAR data as they support robust texture recognition.

gλ,θ,ψ,σ,η(x, y) = exp

{
−x
′2 + λ2y′2

2σ2

}
cos(2π

x′

λ
+ ψ), (4.1)

where x′ = xcosθ + ysinθ, y′ = −xsinθ + ycosθ. Different θ values represent different
directions, different σ values control different scale of Gabor filters.

Figure 4.2: An ensemble of odd (a) and even (b) Gabor filters Lee [1996]. This figure shows
Gabor filters of 5 scales and 10 orientations.

4.2.2 Hierarchical Clustering

In routine operations, the same Gabor feature extraction steps, which are used to create the
reference dataset, are executed for each newly acquired image to be analyzed, however, we
had to adapt the feature clustering step.

Since the classification performance of each reference class is unpredictable, it is difficult
to expect a direct correspondence between clusters and classes. Each class can spread out
into several clusters and we have to generate a hierarchical cluster structure to overcome
this difficulty. Due to its simplicity and efficiency, k-means clustering can be used to split the
initial clusters to construct a hierarchical structure. As a result, convex clusters are grouped
in feature space and homogeneous clusters are obtained. A problem of k-means is to select
the optimal number of clusters. This can be reached, however, by a proper splitting rule.
Therefore, we use the Gaussian-means (G-means) algorithm proposed in Hamerly and Elkan
[2003]. The Central Limit Theory tells us that the arithmetic mean of a sufficiently large
number of iterates of independent random variables, each with a well-defined expectation
value and a well-defined variance, will be approximately normally distributed, regardless of
the underlying distribution.
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Our splitting rule is to check whether a cluster follows a Gaussian distribution. Thus,
there is no need to preset a fixed number of clusters. To prevent cluster generation with too
few patches, we define an additional constraint for a minimum cluster size and we modify
the G-means algorithm accordingly.

4.2.3 Modified G-means Algorithm

For cluster generation, we replace the classic k-means algorithm with a modified Gaussian-
means (G-means) variant that checks the Gaussianity of the cluster content and performs a
cluster splitting in case of non-Gaussianity. The modified G-means algorithm starts with the
whole image patch dataset. During each iteration of the algorithm, a cluster of data which
does not follow a Gaussian distribution is split into two new clusters, while all clusters that
already obey a Gaussian distribution are preserved in the generated hierarchical structure.
For computational efficiency, the Gaussian hypothesis test is simplified to process only an n -
dimensional vector as the original n × p-dimensional feature vectors are projected onto the
vector direction formed by the two new cluster centers. Because of the way the Gaussianity
test is performed, a hierarchical clustering structure is naturally created.

4.2.3.1 Gaussian Hypothesis Testing

The Gaussian hypothesis is chosen because of its ability to obtain homogeneous clusters
as well as its simplicity of implementation. Based on the method proposed in Hamerly
and Elkan [2003], the Anderson-Darling Gaussian-test performs better than the Bayesian
information criterion (BIC) in finding a good splitting rule for clustering. Hence, the
Anderson-Darling Gaussian-test is used to construct a hierarchical cluster structure, where
an existing cluster is split into two new clusters when the null hypothesis is rejected, and
the cluster splitting is stopped when the null hypothesis is accepted. For the definition of
the null hypothesis, see Hamerly and Elkan [2003]. For hypothesis testing, a confidence
level refers to the percentage of all possible samples that can be expected to include the true
population parameter. Algorithm 1 describes our modifiedG-means algorithm, the algorithm
is initialized with two clusters by applying k-means once.

4.2.3.2 Anderson-Darling Test

The Anderson-Darling test is a statistical test of whether a given sample of data is drawn
from a given probability distribution. When applied to testing whether a normal distribution
adequately describes a set of data, it is one of the most powerful statistical tools for
detecting most departures from normality Stephens [1974], Stephens [1986]. The following
procedure shows how the Anderson-Darling test works:

• Define two hypotheses:
H0: the data points around the data set center are sampled from a Gaussian.
H1: the data points around the data set center are not sampled from a Gaussian.

• Normalize the data points so that their mean value becomes 0 and their variance equals
1. Let x(i) be the ith ordered value. Let F (x(i)) be the N(0, 1) cumulative distribution
function of the data points, with zi = F (x(i)).

• In our case, the mean value µ and standard value σ are estimated from the data, the
corresponding test statistic is:
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Data: Feature vector matrix Xn×p, a confidence level α, and a minimum cluster size s.
n is the number of patches, p is the feature vector dimension.

Result: A hierarchical cluster structure.
Initialize C, D, G, S; //cluster centers, cluster data, Gaussianity booleans, cluster sizes
while !(gi = 1 or si ≤ s) do

Use k-means with k=2 to split cluster i;
Obtain vector X’ by projecting the feature matrix of cluster i onto the direction
defined by the two newly generated cluster centers;

Use an Anderson-Darling Gaussian test for vector X’ under the confidence level α
to check whether cluster i follows a Gaussian distribution;

if cluster i follows a Gaussian then
Keep ci;
gi = 1;

else
Update C, D, G, S with new cluster parameters;
Reorder Xn×p according to clusters.

end
i = i + 1;

end
Algorithm 1: Modified G-means (X, α, size) Algorithm Yao et al. [2016b].

A2(Z) = (− 1

n

n∑
i=1

(2i− 1) ∗ [log zi + log(1− zn+1−i)]− n)

A2
?(Z) = A2(Z) ∗ (1 + 4/n− 25/(n2)).

(4.2)

4.2.3.3 Feature Vector Projection

The commonly used Gaussian hypothesis test is designed for data points along one
dimension. In the case of high-dimensional data, the computational complexity increases
dramatically. Therefore, the feature vectors are re-projected to make them amenable to one-
dimensional Gaussian hypothesis testing Hamerly and Elkan [2003]. The idea of feature
projection is explained in the following and Fig. 4.3.

• For a data set X with n × p dimensions, initialize two centers using the k-means++
algorithm with k=2 Arthur and Vassilvitskii [2007], and run k-means on these two
centers in X until convergence is reached.

• The cluster centers c1, c2 are obtained. Let v = c1 − c2 be a p-element vector which
connects the two centers. This is the cardinal direction that k-means exploits for
clustering.

• Project all the data points X onto this preferred direction v, obtain xi′=<xi, v>/‖v‖2.
X ′ is thus a one-dimensional representation of the dataset X projected onto v.

• NormalizeX ′ so that its mean value equals 0 and its variance equals 1. The normalized
X ′ is the projected feature vector which will be used and tested for Gaussianity.

The linear projection works as a reverse case of Projection Pursuit and Independent
Component Analysis (ICA). A linear projection of a random vector is a linear combination of
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its components. As indicated by the idea of ICA, indirectly due to the central limit theorem,
such a projection (i.e., signal mixture) tends to appear to be “more Gaussian” than the
components of the original vector Kruskal [1969], Stone [2004].
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Figure 4.3: Feature projection based on k-means clustering, a Gaussian-test will be used later
during the construction of a hierarchical clustering structure.

For the implementation, various distance metrics were experimented with and we used
a tree data structure to store the overall clustering structure. The tree structure not only
enables us to observe how the entire dataset splits into smaller clusters at different levels,
but also provides us the possibility to explore the connection among general and detailed
classes.

4.2.4 Comparative Similarity Measures

Since the relationships among feature points in the feature space are measured by pair-
wise distances, the definition of a distance metric hence plays an important role in
exploring structures in feature space. In this research, we also analyzed the performance of
different distance metrics. Besides Euclidean space, the fractional distance and the L1 (i.e.,
Manhattan), L2 (i.e., Euclidean), and Lp (i.e., Minkowski) distance metrics were included in
our modified G-means clustering algorithm and studied.

4.2.4.1 Fractional Distance Metric

The fractional distance metric is claimed to be able to tackle the "curse of dimensionality"
problem Aggarwal et al. [2001], as an extension of Euclidean distance, the distance
parameter f lies within the range of (0, 1):

distfd(x, y) = [
d∑
i=1

|xi − yi|f ]1/f , (4.3)

where d is the length of the feature vectors. It has been demonstrated in Aggarwal et al.
[2001] that this metric performs better than the common Euclidean and Manhattan distance
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metrics (i.e., L2 and L1) in high-dimensional feature spaces, which is the usual case in image
classification.

4.2.4.2 Minkowski Distance Metric

Similar to the fractional distance metric, the Minkowski distance Kruskal [1964] is a metric
defined in Euclidean space which can be viewed as a generalization form besides the
Euclidean and the Manhattan distances:

distpd(x, y) = [

d∑
i=1

|xi − yi|p]1/p, (4.4)

where d is the length of the feature vector and p is a parameter with p ≥ 1. The Minkowski
distance is typically used when p equals 1 or 2 (i.e., Manhattan distance, Euclidean distance).
When p approaches infinity, the so-called Chebyshev distance is obtained.

4.2.5 Evaluation

For unsupervised clustering analysis, there are two major categories, the internal evaluation
which takes account of the compactness of the data, e.g., the spreadness of the data which
is usually calculated by the average ratio of the cluster diameter compared to the distance
between clusters; and the external evaluation which uses reference labels to calculate the
accuracy of the clustering method.

Apart from the above two methods, in this article, an intuitive visualization evaluation is
also performed. It can give us a direct impression of the clustering quality as the goal of the
clustering method is to group similar patches together and obtain homogeneous clusters.

4.2.5.1 Visual Evaluation

The visual evaluation includes visualizing patches within Gaussian-distributed clusters.

4.2.5.2 Internal Evaluation

Suggested by Kovacs et al. [2006] and Halakidi et al. [2002], hierarchical clustering
algorithms usually use the root-mean-squared standard deviation (RMSSTD) index and the
R Squared (RS) index for internal evaluation, but they can also be used to evaluate the
results of any clustering algorithm. The RMSSTD index Sharma [1996] is the variance of
the clusters which measures the homogeneity of the clusters, and is formally defined by
Equation 4.5. Since the aim of the clustering process is to identify homogeneous groups, a
lower RMSSTD value stands for better clustering Kovacs et al. [2006].

RMSSTD =

√√√√√
∑

i=1...nc
j=1...d

∑nij
k=1 (xk − xij)2∑

i=1...nc
j=1...d

(nij − 1)
. (4.5)

On the contrary, the RS (R Squared) index Kovacs et al. [2006] measures the dissimilarity
of clusters as it measures the degree of homogeneity between groups. The values of RS range
from 0 to 1 where 0 means there is no difference among the clusters and 1 indicates that
there are significant differences among the clusters. The definition is as follows:
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RS = SSt−SSw
SSt

,where
SSt =

∑d
j=1

∑nj
k=1(xk − xj)2,

SSw =
∑

i=1...nc
j=1...d

∑nij
k=1 (xk − xij)2,

(4.6)

The parameter nc represents the number of clusters, the parameter d stands for the
dimensionality of the feature vector, the parameter xij is the mean of the data in variable
j and cluster i, and the parameter nij describes the number of elements in variable j and
cluster i.

4.2.5.3 External Evaluation

In our research, the purpose of clustering is to prepare for subsequent semantic annotation;
instead of using traditional standard clustering evaluation methods (e.g., F-measure,
confusion matrix), a new external analysis method to measure the homogeneity of clustering
results is defined which is able to emphasize the following points: 1. the homogeneity in
each cluster, as the more homogeneous one cluster is, the more easily we can annotate the
cluster later; 2. the number of clusters; 3. the size of the resulting clusters. The detailed
calculation is defined as follows:

• A cluster is considered as homogeneous, when more than 90% of the patches belong
to one class, denoted by Chomo.

• A patch is considered to be labeled correctly as homogeneous, when it belongs to the
major class of the homogeneous cluster Chomo, denoted by Phomo.

• Count the number of homogeneous patches, denoted by num(Phomo).

• Calculate the homogeneity percentage of the clustering result, which is defined as the
number of homogeneous patches divided by the total number of patches in the dataset:
num(Phomo)/num(P ).

4.2.6 Comparative Clustering Methods

In order to prove the method’s performance in simplifying the image annotation problem
by obtaining homogeneous clusters, we have also made a set of comparative experiments
using related traditional unsupervised clustering methods. The following three methods
were chosen for the comparison:

• k-means: as the G-means method uses k-means to split the data.

• Gaussian mixture model (GMM): as the cluster splitting criterion is based on a
Gaussian test.

• Agglomerative hierarchical clustering: as the method builds a hierarchical structure.

The results are shown below.
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4.3 Results

In this section, our prepared datasets, the experimental settings, and the results will be
described. Then the clustering results of the proposed methodology will be analyzed,
including quantitative evaluations in terms of different distance metrics, together with some
visual evaluations which provide detailed insights into the data characteristics.

4.3.1 Datasets

In order to obtain a more thorough analysis with the G-means method, we have prepared
three datasets for the evaluation. All of them are semantically annotated, two datasets are
cut from SAR images, and one is collected from optical data.

Dataset 1 consists of 15 classes of SAR image patches, with over 100 patches in each class
and more than 3000 patches in total. The patches are collected from Spotlight TerraSAR-X
radiometrically enhanced Multilook Ground Range detected products, with a pixel spacing
of 1.25 m, a resolution about 2.9 m and a size of 160×160 pixels Fritz [2013]. As shown in
Fig. 4.4, each class has a relatively large intra-class variance.

Dataset 2 consists of 11 classes of SAR image patches, with 100 patches in each class
and 1100 patches in total. The patches are collected from Spotlight TerraSAR-X Single Look
Complex products which have been converted to magnitude data, with a resolution of 1
m/pixel and a size of 200×200 pixels. As shown in Fig. 4.5, compared to dataset 1, dataset
2 is very homogeneous, with a relatively small intra-class variance.

Dataset 3 is the UC Merced Land Use Dataset Yang and Newsam [2010], which consists of
21 classes of optical image patches, with 100 patches in each class and 2100 patches in total.
The patches are extracted from the USGS National Map Urban Area Imagery collection, with
a resolution of 1 foot and a size of 256×256 pixels.

Mountains.

Fields.

Highways.

Figure 4.4: Patch examples for three classes of dataset 1.
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Airstrips.

Grasslands.

Urban areas.

Figure 4.5: Patch examples for three classes of dataset 2.

Buildings.

Intersections.

Rivers.

Figure 4.6: Patch examples for three classes of dataset 3.
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4.3.2 Experimental Settings

The image features are extracted using a Gabor filter bank with 4 scales and 6 orientations.
The feature values are the mean and variance of the filtered responses of each patch and
they form a 48-dimensional feature vector. The choice of Gabor features resulted from
comparisons with other feature extraction methods Dumitru and Datcu [2013].

Before we extract feature descriptors, each image patch will be subsampled from its
original size of 160×160 to 80×80 pixels. This procedure decorrelates neighboring pixels,
reduces the computational effort, and typically increases the recall during image retrieval by
1% Dumitru and Datcu [2013].

Alternatively, the BoW features are constructed by using the raw pixel values as the
primitive feature descriptors, as suggested by Cui et al. [2015]. For a better comparison,
two methods of building the visual-word vocabulary have been experimented with, namely
vector quantization as well as random dictionaries.

As a conventional approach, the vector quantization (VQ) technique clusters the
primitive feature descriptors in their feature space into a large number of clusters (e.g.,
using the k-means clustering algorithm) and encodes each feature descriptor by the index
of the cluster to which it belongs to Yang et al. [2007]. Each cluster is conceived as a visual
word that represents a specific local pattern shared by the feature descriptors in that cluster.

Recently, random dictionaries have been claimed to yield good classification results in
addition to their computational efficiency Yang et al. [2007]. In our case, the required visual
words are created by generating a random dictionary which introduces the randomness
during feature extraction. However, we will not deal with the effect of randomness in this
dissertation, as it is only being used as a specific type of feature descriptor.

4.3.3 Parameter Settings

Table 4.1 lists the detailed parameter settings of our experiments.

Table 4.1: Table of parameter settings.

Parameters Values Remarks
Gabor filters 4 scales and 6 orien-

tations
These parameters resulted from comparisons
with other feature extraction methods and are
also used in the MPEG-7 standard MPEG-7.

Bag-of-Words Window size 3×3,
patch size 5×5, 250
visual words

These parameters are based on their excellent
performance published in Cui et al. [2015].

Confidence
level

α = 0.0001 Critical value = 1.8692.

Cluster size
limit

40 patches The number 40 is chosen based on two reasons:
(1) based on the Central Limit Theorem, to
obtain a meaningful Gaussian distribution; (2)
to obtain suitable cluster sizes.

Distance
metrics

0.2 to 5 From 0.2 to 1 with a step size of 0.2 for
fractional distance, from 1 to 5 with a step size
of 1 for Minkowski distance.

60



4.3. RESULTS

4.3.4 Visual Evaluation

In this section, in order to have a direct visual impression of the clustering performance, one
clustering example comprising 40 patches is shown for each dataset. The clustering results
are obtained under the condition of a distance metric equal to 1.

Figure 4.7: Screen shot of patches as an example of a cluster from dataset 1.

Fig. 4.7 shows a screen shot of patches as an example of a cluster from dataset 1. It
consists of: 86 cropland patches, 1 highway patch, 12 grass patches, 21 field patches, and 2
mountain patches. Although some are light patches, some are dark patches. The majority of
patches refers to vegetation.

Figure 4.8: Screen shot of patches as an example of a cluster from dataset 2.

Fig. 4.8 shows a screen shot of patches as an example of a cluster from dataset 2. All 61
patches are railway train patches.

Fig. 4.9 shows a screen shot of patches as an example of a cluster from dataset 3. It
contains 1 airplane patch, 1 baseball diamond patch, 8 building patches, 19 dense residential
patches, 1 golf course patch, 55 harbor patches, 3 intersection patches, 4 medium residential
patches, 21 mobile home park patches, 28 parking lot patches, and 1 tennis court patch. The
common characteristic of the patches is that most of them contain regular patterns.
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Figure 4.9: Visualization of patches as an example of a cluster from dataset 3.

All of the three examples are typical clustering results from each dataset, the visualization
results represent the method’s ability in arranging similar image patches. Furthermore, as
a side product, the results also reflect the individual subjective effect of semantic image
annotation, since two patches might be annotated as belonging to one class or to two classes,
depending on the level of image details and the annotation level.

4.3.5 Internal Evaluation
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Figure 4.10: RMSSTD index versus distance parameter for three datasets. Different colors
show the results for different datasets.

In this section, all of the three datasets are used for comparative experiments. Fig. 4.10
and Fig. 4.11 illustrate the RMSSTD index and the RS index versus distance parameter
for three datasets, respectively. The RMSSTD index values first decrease then increase as
the distance parameter increases; on the contrary, the RS index values first increase then
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Figure 4.11: RS index versus distance parameter for three datasets. Different colors show
the results for different datasets.

decrease as the distance parameter increases. Generally, a distance parameter that ranges
from 1.2 to 2 performs best.

For dataset 1, the best distance parameter is 1.2 due to the high feature vector variance.
For dataset 2, the best distance parameter is 1.6 due to the lower feature vector variance.
For dataset 3, the best distance parameter is 2 because the optical data are characterized by
a low noise level. Also, the two SAR datasets result in more homogeneous clusters as their
RMSSTD and RS index values are similar, although the obtained clusters in dataset 1 contain
more mixed annotations than in dataset 2. There are two possible explanations: Either the
feature vector variances are different or the applied feature descriptor performs worse for
dataset 1. We prefer the first explanation, as shown in Fig. 4.7 and Fig. 4.8; the patches are
more diverse for dataset 1.

Fig. 4.10 and Fig. 4.11 demonstrate that a distance parameter larger than 2 does not
improve the performance, so a distance metrics range from 0.2 to 2 has been used for the
following experiments.

4.3.6 External Evaluation

In this section, the properties of cluster homogeneity will be discussed. As dataset 1 and
dataset 2 are both SAR datasets with big and small within-class invariance labeling, it is
reasonable to concentrate on a comparison between dataset 1 and dataset 2. We show
experimental results and an analysis of the proposed hierarchical patch clustering method
for dataset 1 and dataset 2. In order to get a more thorough understanding, we analyze the
results from different perspectives.
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Figure 4.12: Homogeneity of the whole dataset. The blue line represents results for dataset
1. The red line represents results for dataset 2. Here we consider two types of clusters:
Gaussian clusters and small-sized clusters, and all clusters.

4.3.6.1 Analysis of Absolute Homogeneity

Fig. 4.12 depicts the homogeneity of the whole dataset versus different distance parameters.
We observe:

• For dataset 1 (shown in red) with large intra-class variances, around 10 percent of
the patches are grouped in homogeneous clusters; for dataset 2 (shown in green)
with small intra-class variances, around 50 percent of the patches are grouped in
homogeneous clusters.

• Gaussian clusters comprise the majority of the homogeneous clusters, as the green
curves and the corresponding red curves have similar shapes.

• Small-size clusters also contain some homogeneous clusters, shown in blue. In
particular, dataset 2 contains more homogeneous small-size clusters.

• The best distance parameter for dataset 1 is 1.8; the best distance parameter for dataset
2 is 1.6.

Based on these observations, the Gaussian-test-based hierarchical patch clustering
method is able to group visually homogeneous image patches (e.g., dataset 2).

4.3.6.2 Analysis of Relative Homogeneity

Fig. 4.13 depicts the homogeneity percentage of each cluster type (Gaussian clusters and
small-sized clusters) versus different distance parameters:

• Gaussian clusters have a similar homogeneity percentage to overall clusters, as the
green curves and the corresponding red curves have similar shapes.
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Figure 4.13: Homogeneity percentage of different cluster types. The blue line represents
results for dataset 1. The red line represents results for dataset 2. Here we consider two
types of clusters: Gaussian clusters and small-sized clusters, and all clusters.

• For dataset 2 (shown in green), the small-size clusters are more homogeneous, as the
green line with "+" symbols has higher values than the green line with "o" symbols.

• The best distance parameter for dataset 1 is 1.8; the best distance parameter for dataset
2 is 1.6.

As a consequence, we have to set a minimum cluster size threshold during the
clustering procedure, since compared to Gaussian clusters, the small-size clusters are already
homogeneous.

4.3.6.3 Analysis of Cluster Numbers

Fig. 4.14 shows the number of clusters:

• For dataset 1 (shown in red), the number of clusters changes drastically and is unstable.

• For dataset 2 (shown in green), the number of clusters does not change much and
is relatively stable. The number of clusters equals about twice the actual number of
classes.

The different number of clusters for the different datasets is due to the variance of the
image patches.
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Figure 4.14: Number of clusters for dataset 1 and 2. Different colors represent the results
for different datasets.

4.3.7 Comparative Experiments

All of the comparative experiments were conducted by applying a Matlab environment.

4.3.7.1 Different Clustering Methods

For the previously mentioned different clustering methods, we used all three datasets.
The number of clusters for k-means, GMM, and agglomerative hierarchical clustering

methods is set according to the number of clusters obtained by the G-means method; for the
sake of simplicity, the distance metric is set to Euclidean.

Fig. 4.15 and Fig. 4.16 demonstrate the RMSSTD and the RS index values for all three
datasets when using different clustering methods: G-means, k-means, and agglomerative
hierarchical clustering.

The GMM algorithm did not converge correctly due to the fitting of too many parameters.
Obviously, the agglomerative hierarchical clustering method yields the worst result. Not
surprisingly, the classic k-means performs somewhat better than G-means, as k-means
groups the feature vectors in a global way. However, due to the Gaussian-test-based splitting
method, G-means can build a hierarchical tree structure for clusters, and there is no need to
preset the number of clusters, which is an obvious limitation to the application of k-means.

4.3.7.2 Different Features

Because dataset 3 is a popular publicly available optical dataset which has been used more
frequently than the other two datasets; all of our comparative experiments using different
features were made by using dataset 3.

Fig. 4.17, Fig. 4.18 and Fig. 4.19 depict the RMSSTD index value, the RS index value,
and the number of clusters for dataset 3 when applying three different feature extractors:
Gabor filtering, BoW based on clustering, and BoW based on a random dictionary.
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Figure 4.15: RMSSTD index versus different clustering methods for three datasets.
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Figure 4.16: RS index versus different clustering methods for three datasets.
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Figure 4.17: RMSSTD index versus distance parameter for dataset 3. Different colors show
the results for different features.
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Figure 4.18: RS index versus distance parameter for dataset 3. Different colors show the
results for different features.
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Figure 4.19: Cluster numbers versus distance parameter for dataset 3. Different colors show
the results for different features.

The best distance metric for dataset 3 is the Euclidean distance. Gabor features turn
out to give the best performance, while BoW features with a random dictionary yield better
results for the RMSSTD index and slightly inferior results for the RS index compared to BoW
features with clustering. However, as shown in Fig. 4.19, BoW features with a random
dictionary result in too many clusters, which is not practical as we prefer a lower number
of clusters as well as cluster homogeneity. Hence, clustering based on BoW features is more
practical than BoW features with a random dictionary.

4.4 Conclusions

In this chapter, we presented a hierarchical patch clustering method for high-resolution
remote sensing images, with the purpose of obtaining homogeneous clusters. A Gaussian
goodness test (Anderson-Darling test) is used to split feature vectors into homogeneous
clusters; in addition, we define a threshold for the minimum cluster size. Thus, Gaussian
clusters and small-sized clusters are obtained during the clustering procedure. We compared
various distance metrics in order to obtain robust clustering. The results show that the
Gaussian-test-based hierarchical patch clustering method is able to obtain homogeneous
clusters, while Gabor texture features perform better than the BoW features. In addition,
it turns out that a distance parameter ranging from 1.2 to 2 performs best. Also indicated by
Yao et al. [2016b], our modified G-means algorithm is faster than the original algorithm.

The clustering method was applied to two space-borne SAR datasets and one airborne
optical dataset. The clustering results were evaluated in three ways: visually, and by internal
and external index calculations. The label annotations of all three datasets were used to
assist in the evaluations. Visualizations of typical clusters give us an intuitive feeling of
how homogeneous feature vector clusters look like. Based on the internal and external
evaluations of the experimental results, we compared relations among the clustering results,

69



4.4. CONCLUSIONS

under different distance metrics, and we calculated the homogeneity percentage against
the whole dataset or for each category (Gaussian clusters and small-sized clusters) with
the annotated reference data. It turns out that our presented method is able to obtain
homogeneous data, the best distance parameter lies within the range from 1.2 to 2.

We also compared the results using different clustering methods and different feature
descriptors. The results show that G-means can obtain relatively homogeneous clusters,
although compared to k-means, the cluster homogeneity is slightly degraded because of the
repeated dichotomous cluster splitting. Moreover, Gabor features gave the best performance
for the optical dataset 3.
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Chapter 5

Semi-supervised Semantic Image
Patch Annotation

The journey of a thousand miles begins with one step.

Lao Tzu

In this chapter, we propose a semi-automated hierarchical clustering and classification
framework for SAR image annotation. The implementation of the framework allows the
classification and annotation of image data ranging from single scenes up to large satellite
data archives. As an updated version of our framework Fig. 4.1 of Chapter 4, the new
framework comprises three stages: Firstly, each image is cut into patches and each patch is
transformed into a texture feature vector. Secondly, similar feature vectors are grouped into
clusters, where the number of clusters is determined by repeated cluster splitting to optimize
their Gaussianity. Finally, the most appropriate class (i.e., a semantic label) is assigned to
each image patch. This is accomplished by semi-supervised learning. For the testing and
validation of our implemented framework, a concept for a two-level hierarchical semantic
image content annotation was designed and applied to a manually annotated reference data
set consisting of various TerraSAR-X image patches with meter-scale resolution. Here, the
upper level contains general classes, while the lower level provides more detailed sub-classes
for each parent class. For a quantitative and visual evaluation of the proposed framework, we
compared the relationships between the clustering results, the semi-supervised classification
results, and the two-level annotations. It turns out that this proposed method is able to
obtain reliable results for the upper level (i.e., general class) semantic classes; however, due
to the too many detailed sub-classes versus the few instances of each sub-class, the proposed
method generates inferior results for the lower level. The most important contributions of
this chapter are the integration of modified Gaussian-means and modified cluster-then-label
algorithms, for the purpose of large-scale SAR image annotation, as well as the measurement
of the clustering and classification performances of various distance metrics.

5.1 Methodology

We follow the work of Chapter 4 by presenting a semi-supervised Gaussianity-based
hierarchical clustering method for remote sensing image annotation. Specifically, our
method intends to answer the following two questions: How do we explore information
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Figure 5.1: Proposed data classification and analysis scheme for image patches.

in the feature vector space, and how do we link our semi-supervised results with an already
annotated reference dataset?

Hence, one goal of this research is to study the extracted features in their high-
dimensional feature space, i.e., how do they behave (including their computational effort)
and what is a good distance metric to describe the pair-wise relationships between the
feature points. Therefore, the definition of distance metrics plays an important role in
exploring features in a given feature space (that, as a rule, has more than three dimensions
Aggarwal et al. [2001]).

The second goal is to find the relationships between the clustering results, the semi-
supervised classification results, and the two-level annotations. When we group the feature
points based on their similarity, we are able to generate homogeneous clusters. Then a
cluster-then-label semi-supervised learning method is performed Zhu and Goldberg [2009].

We start with the preparation and application of reference data that we need for
the evaluation and validation of our method. This includes the performance analysis of
clustering as well as classification, where we apply quantitative tests. The hierarchical
clustering method which have been explained in detail in Chapter 4 will be used within the
notion of semi-supervised classification. In the end, we compare the clustering results of the
above-mentioned hierarchical clustering method and the cluster-then-label semi-supervised
results with the reference data annotations, in order to analyze the correspondences between
the learning results and manually annotated reference data. The results are evaluated by
visual and quantitative analyses.

Fig. 5.1 illustrates the whole concept of the proposed data classification and analysis
scheme. We start from a semantically annotated dataset of image patches, from which we
select a number of collections. Then we perform feature extraction for each image patch.
This results in a high-dimensional feature space. A clustering algorithm with a Gaussian test
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and distance metric are used to generate a dichotomized hierarchical cluster tree structure.
After applying supervised learning in each cluster, predefined semantic labels are assigned
to the feature vector points.

In this chapter, the range of distance parameters is set to [0.2, 2] with a step size of 0.2,
and to [3, 13] with a step size of 1. In case of the original G-means algorithm, the range of
distance parameters is modified to [0.8, 2] with a step size of 0.2, and to [3, 12] with a step
size of 1, due to the long computational time.

5.1.1 Creation of a Reference Dataset

In this sub-section, we present the methodology used to classify and semantically annotate
our TerraSAR-X images being used as a reference dataset. Our general approach during the
annotation scheme was to tile each TerraSAR-X image into a number of non-overlapping
patches, extract features, then classify and annotate each individual patch. The main steps
of the processing chain were:

• Select TerraSAR-X images and tile them into patches with a size of 160×160 pixels.
Subsample each patch into a smaller patch of 80×80 pixels to generate decorrelated
pixels Dumitru and Datcu [2013].

• Extract a 48-dimensional feature vector from each patch using Gabor filters with 4 scales
and 6 orientations (take the mean and variance of the patch coefficients) Dumitru and
Datcu [2013].

• Classify the feature vectors into classes using a Support Vector Machine (SVM) with
relevance feedback Cui [2014]. Each patch is assigned to a single class based on the
dominant content of the patch.

• Annotate each class by giving an appropriate semantic meaning to each class Dumitru
et al. [2014]. Google Earth is used as ground truth for visual support.

The annotation chain was semi-automated. The first two steps were automated, while
the last two steps required manual interaction. For classification, an operator had to rank
the given positive and negative examples and grouped them into classes of relevance; for
annotation, the operator selected a proper semantic label for each class from a list of
available labels. We defined a nomenclature adapted to TerraSAR-X images with a two-
level hierarchical scheme that consists of a total of 150 semantic classes MPEG-7. The upper
level semantic annotation contained 8 general classes (settlements, industrial production
areas, military facilities, transport, agriculture, natural vegetation, bare ground, and water
bodies) which were later split into lower level detailed sub-classes. For example, agriculture
was split into the following sub-classes: cropland, stubble, bare land, ploughed agricultural
land, rice paddies, pasture, plantations and vegetables, greenhouses, and vineyards. Fig. 5.2
gives some examples of the annotated classes.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.2: Examples of annotated classes. (a) Industrial Buildings (b) Mixed Forest (c)
Mountains (d) Railways (e) Roads (f) Bridges (g) Depots (h) Harbor Infrastructure (i) High-
Density Residential Areas (j) Skyscrapers.

5.1.2 Semi-supervised Learning

5.1.2.1 Cluster-then-Label

With already homogeneously clustered data points on hand, we follow a cluster-then-label
procedure within each cluster which then makes the whole procedure a semi-supervised
classification Zhu and Goldberg [2009].

To this end, the original cluster-then-label algorithm is modified to accelerate the image
annotation. After the clusters are obtained, we label the training data within each cluster,
which guarantees there is no cluster without training labels. The algorithm 2 describes the
modified cluster-then-label algorithm.

Data: Labeled patches (x1, y1),...,(xl, yl), unlabeled patches xl+1,...,xl+u, a clustering
algorithm A, and a supervised learning algorithm L

Result: Labels for unlabeled patches yl+1,...,yl+u
Use A to cluster xl,...,xl, xl+1,...,xl+u, obtain clusters c1,...,cn.
for each cluster ci = c1 : cn do

Let Sci be the labeled patches in the cluster ci;
Learn a supervised predictor from Sci: fSci = L(Sci);
Apply fSci to all unlabeled patches within the cluster ci.

end

Algorithm 2: Modified cluster-then-label semi-supervised algorithm.

5.1.2.2 Supervised Learning Within Clusters

For our studies, three algorithms are chosen and evaluated to perform supervised learning
within clusters: an SVM and a k Nearest Neighbor (KNN), as well as a Naive Bayes Nearest
Neighbor (NBNN) algorithm. We assume that the readers are already familiar with the SVM
and KNN algorithms that rely on the image-to-image distance. Here, we explain the NBNN
algorithm which obtains classifications from the perspective of image-to-class distances.

The NBNN image classifier is formalized in Algorithm 3, which is a highly accurate
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approximation of the optimal maximum a posteriori Naive-Bayes image classifier. A detailed
theoretical derivation can be found in Boiman et al. [2008].

Data: Feature descriptor types f1,...,fn of an image patch P.
Result: Class label C̃P .
for every fi do

for every defined Cj do
Compute the NN of fi in class Cj: NNCj (fi).

end
end
C̃P = arg minC

∑n
i=1 ‖fi −NNC(fi)‖2.

Algorithm 3: The NBNN algorithm.

5.1.3 K-Medoids Algorithm Implementation

Although k-means is the most popular clustering algorithm due to its simplicity and efficiency
Hastie et al. [2009], it has shortcomings as well, such as:

• No recommendation on the initial location of cluster centroids;

• No criterion for selecting the number of clusters Amorim and Mirkin [2012].

With the alternative distance metrics in place of the traditional Euclidean distance metric,
k-means turns into k-medoids. Thus, the cluster center is no longer the mean of the data
points and we have to find the cluster center whose components are minimizers of the
summed distances:

dist(Ck) =
∑
i∈Ck

|yi − ck|p. (5.1)

In order to calculate the corresponding Minkowski center, a steepest descent algorithm
is proposed in Amorim and Mirkin [2012], and is claimed to converge much faster than
a nature-inspired evolutionary method. Since the Minkowski distance is very similar to a
fractional distance (with p >= 1 or 0 < p < 1), we extend the steepest descent algorithm to
the entire real-valued parameter space (i.e., to p > 0).

5.1.4 Evaluation

Several tests are performed to evaluate the behavior of the proposed clustering method.
We use quantitative measurements like internal criteria (e.g., the Dunn index) and external
evaluations (i.e. precision/recall, F-score, etc.); we also make visual evaluations by analyzing
feature space plots and the patches of selected cluster centroids.

5.1.4.1 Quantitative Evaluation

Since the purpose of clustering is for later semantic annotation, instead of using the
traditional standard clustering evaluation methods, we need to define evaluation methods
which are able to emphasize the following points: the homogeneity in each cluster, as the
more homogeneous a cluster is, the easier it becomes that we can annotate the cluster later;
the number of clusters; and the size of clusters.
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The clustering results can be evaluated in two ways:

• Internal evaluation: the clustering results are evaluated without reference data. The
Dunn index that identifies dense and well-separated clusters is used in this chapter.
It is defined as the ratio between the minimal inter-cluster distance to the maximal
intra-cluster distance Dunn [1973]:

D = min
1≤i≤n

min
1≤j≤n,i6=j

d(i, j)

max1≤k≤n d′(k)
. (5.2)

• External evaluation: the clustering results are evaluated based on given reference data.
In our case, the widely used confusion matrix, overall accuracy, and F-score are used to
evaluate the classification accuracy. In addition, the overall accuracy and F-scores are
also calculated for the original G-means algorithm. Equation 5.3 defines precision and
recall; Equation 5.4 shows the definition of F-score Sokolova and Lapalme [2009]:

P =
TP

TP + FP
,R =

TP

TP + FN
(5.3)

Fβ =
((β)2 + 1)× P ×R

(β)2 × P +R
(5.4)

Here, P is precision, R is recall. TP means true positive error, FP means false positive error,
FN means false negative error. β is a positive real number which enables Fβ to “measures
the effectiveness of retrieval with respect to a user who attaches β times as much importance
to recall as precision” Van Rijsbergen [1979].

Because each class generates a separate F-score value, a micro F-score (obtained by
weighted averaging the class-specific F-scores) is used in this chapter.

Finally, we present in this chapter for each distance metric its individual computational
time and the resulting number of clusters.

5.1.4.2 Visual Evaluation

Visual evaluation is used to get an intuitive idea about the clusters in feature space as it is
very difficult to understand how features spread out in high-dimensional spaces Aggarwal
et al. [2001]. Therefore, we have to apply a dimensionality reduction method to facilitate the
understanding of the clusters. The following list describes our 5 visual evaluation methods.

• Tree structure: The hierarchical clustering structure can be represented as a dichotomy
tree, which explains the splitting of the clusters.

• Feature space visualization: In order to visually evaluate the clustering results,
the t-distributed stochastic neighbor embedding (t-SNE) algorithm can be used for
dimensionality reduction; it retains the local data structure as well as the main global
structure of the feature space Van der Maaten and Hinton [2008]. For the reference
data, the clusters are labeled using the available annotation classes; for the obtained
clustering results, each cluster is shown in a different color.

• Cluster centroid patches: For analyzing the compactness of clusters, the closest patch,
the median distance patch, and the farthest patch from the cluster centroid are chosen
to show the patch-feature relationships of the clusters.
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• Cluster homogeneity: The cluster homogeneity is presented via pie charts, using the
general and detailed level reference data, to provide the quantitative class percentages
within each cluster.

5.2 Results

In this section, the selection of the image data collections, the subsampling of the pixels
as well as the detailed parameter settings will be described. Then the clustering results of
the proposed methodology will be analyzed, including a quantitative evaluation to find the
optimal distance metric, and also some visual evaluations which provide detailed insights
into the data characteristics.

5.2.1 Image Data Selection and Subsampling

Prior to any data analysis, we had to select appropriate image data collections and to pre-
process the data.

5.2.1.1 Data Selection

As typical examples, we selected four image collections from our database which cover
different areas of the world from North America, Africa, and Europe. Table 5.1 contains
detailed information about the selected collections. Figures 5.3 and 5.6 show some quick-
look examples of images taken from the selected collections.

5.2.1.2 Data Pre-Processing

Before we extracted feature descriptors, each image patch was subsampled from its original
size of 160×160 to 80×80 pixels. This procedure decorrelated neighboring pixels, reduced
the computational effort, and typically increased the recall by 1% Dumitru and Datcu [2013].

(a) Perm (b) Tula (c) Center of Moscow (d) North Moscow

Figure 5.3: Examples of scenes from Russia Fritz [2013], Dumitru et al. [2014].
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(a) Bonn (b) Munich (c) Kiel (d) Cologne

Figure 5.4: Examples of scenes from German speaking countries. Here the selected examples
are from Germany Fritz [2013], Dumitru et al. [2014].

(a) Ciudad Juarez, Mex-
ico

(b) Tucson, USA (c) San Diego North, USA (d) Sun Lakes, USA

Figure 5.5: Examples of scenes from North America Fritz [2013], Dumitru et al. [2014].

(a) Port Elizabeth, South
Africa

(b) Bulawayo, Zimbabwe (c) Abuja, Nigeria (d) Lome, Togo

Figure 5.6: Examples of scenes from Africa Fritz [2013], Dumitru et al. [2014].

Table 5.1: Image data collection parameters.

Dataset ContinentCountry Resolution No. of
Scenes

No. of
Patches

No. of
General
Classes

No. of
Detailed
Classes

Collection
02

Asia Russia 2.9 m 7 7187 8 39

Collection
03

Europe Germany,
Switzerland

2.9 m 7 7176 8 41

Collection
17

North
Amer-
ica

United States,
Mexico

2.9 m 9 6975 8 30

Collection
27

Africa South Africa,
Zimbabwe,
Nigeria, Togo

2.9 m 4 3536 8 22
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5.2.2 Parameter Settings

Table 5.2 lists the detailed parameter settings of our experiment.

Table 5.2: Table of parameter settings.

Parameter Value Remark

Patch size 160×160 pixels Depends on the imaging parameters of
the TerraSAR-X data acquisitions (e.g.,
resolution and pixel spacing) Dumitru and
Datcu [2013].

Gabor filters 4 scales and 6
orientations

These parameters resulted from compar-
isons with other feature extraction methods
and are also used in the MPEG-7 standard
MPEG-7.

Confidence level in
Anderson-Darling test

α = 0.0001 Critical value = 1.8692.

Cluster size limit ≥ 40 patches The number 40 is chosen based on two
reasons: (1) based on the Central Limit
Theorem, to obtain a meaningful Gaussian
distribution; (2) to obtain suitable cluster
sizes (see Table 5.1).

Supervision percentage 30 percent Normally 30 percent is sufficient for experi-
ments.

5.2.3 Quantitative Evaluations

We started our performance evaluation experiment with image data collection 17 and our
detailed level reference data. In this case, for urban areas, the given images contained high-
density residential areas, medium-density residential areas, low-density residential areas,
skyscrapers, etc. Dumitru et al. [2014]). In total, collection 17 contained 30 semantic
classes.

From the experimental results, we presented not only the internal and external
evaluations, but also the computational time and the resulting number of clusters. In order
to explain the annotation results and to get a better understanding, we conducted a set
of comparative tests to prove the effectiveness and limits of our proposed method. Finally,
based on the quantitative results, the optimal distance metric is chosen for later experiments.

5.2.3.1 Internal Evaluation

Dunn’s Index yielded 0.0047 for all distance metrics. Since it was defined as the ratio of
the minimal inter-cluster distance to the maximal intra-cluster distance, the constant result
reflects that the obtained clustering structures are similar, even when applying different
distance metrics.
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Figure 5.7: Accuracy of detailed level classifications for the modified G-means algorithm for
the data collection 17. The blue line shows results for fully-supervised classification. The
red line shows results for semi-supervised classification. Different colors of squares represent
different algorithms.
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Figure 5.8: Micro-average F-score of detailed level classifications for the modified G-means
algorithm for the data collection 17. The blue line shows results for fully-supervised
classification. The red line shows results for semi-supervised classification. Different colors
of squares represent different algorithms.
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Figure 5.9: Accuracy of detailed level classifications for the original G-means algorithm for
the data collection 17. The blue line shows results for fully-supervised classification. The
red line shows results for semi-supervised classification. Different colors of squares represent
different algorithms.
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Figure 5.10: Micro-average F-score of detailed level classifications for the original G-means
algorithm for the data collection 17. The blue line shows results for fully-supervised
classification. The red line shows results for semi-supervised classification. Different colors
of squares represent different algorithms.
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5.2.3.2 External Evaluation

For the data collection 17, Fig. 5.7 and Fig. 5.9 depict the overall classification accuracy of
our detailed level reference data for each distance metric obtained with different supervised
and semi-supervised classifiers (KNN, SVM, and NBNN), regarding the original and modified
G-means algorithms.

In case of the modified G-means algorithm, as shown by Fig. 5.7, we observe that:

• When p < 2, all (supervised and semi-supervised) classification accuracies are decreasing
versus distance; when p > 2, the accuracy does not change much.

• When we compare the semi-supervised and supervised classifications, the supervised
classifications are more accurate.

In case of the original G-means algorithm, as shown by Fig. 5.9, we observe that:

• When p < 2, all (supervised and semi-supervised) classification accuracies are increasing
versus distance; when 2 ≤ p < 3, all (supervised and semi-supervised) classification
accuracies are decreasing versus distance; when p ≥ 3, the accuracy does not change
much.

• When we compare the semi-supervised and supervised classifications, the semi-supervised
classifications are more accurate.

Similarly, Fig. 5.8 and Fig. 5.10 show the overall classification F-score of our detailed
level reference data for each distance metric obtained with different supervised and semi-
supervised classifiers (KNN, SVM, and NBNN), for the original and modified G-means
algorithms, respectively. For the F-score plots, the remarks made to Fig. 5.7 and Fig. 5.9
apply, too.

Overall, the accuracy and F-score values of the original G-means algorithm are lower
than the values of the modified G-means algorithm.

Fig. 5.3 shows the confusion matrix for a selected number of classes with a sufficient
number of patch samples. The urban classes are often mixed up, which also reflects the
"semantic gap" between manually annotated semantics and computer-based calculations.

Table 5.3: Confusion matrix of image data collection 17 with detailed level reference data
for selected classes.

Actual \ Predicted Airport Channel Forest mixed
High-density

 residential area
Hill Industrial area

Medium density 
residential area

Aerospace facilities Mixed urban area Ocean Road Skyscraper

Airport 66 6 2 0 17 1 0 6 0 22 3 0

Channel 13 23 4 0 12 11 5 13 4 0 17 0

Forest mixed 0 6 24 0 11 2 10 2 8 0 15 0
High-density 

residential area
0 0 0 165 0 16 29 0 3 0 3 15

Hill 5 9 7 0 84 0 0 3 1 4 15 0

Industrial area 0 4 0 41 0 96 63 12 14 0 34 9

Medium density 
residential area

0 2 5 35 0 40 703 0 92 0 38 8

Aerospace facilities 5 11 1 0 3 5 11 51 6 0 9 0

Mixed urban area 0 5 7 10 2 47 265 12 124 0 42 0

Ocean 47 2 0 0 8 0 0 1 0 207 0 0

Road 0 13 11 13 10 69 98 16 35 0 102 6

Skyscraper 0 0 0 31 0 34 19 0 3 0 10 102

In general, with regard to detailed level reference data, semi-supervised classifiers deliver
worse results than supervised classifiers. For the general level reference data, we have 8
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semantic classes with more than 120 patches per class; for the detailed level reference data,
we have 30 semantic classes with around 15 patches per class. Hence, there are too few
samples for each detailed class, so that the trained classifiers are too weak to make correct
decisions.
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Figure 5.11: Accuracy of general level classifications for the modified G-means algorithm for
the data collection 17. The blue line shows results for fully-supervised classification. The
red line shows results for semi-supervised classification. Different colors of squares represent
different algorithms.

For the data collection 17, Fig. 5.11 and Fig. 5.13 depict the overall classification
accuracy of general level data for each distance metric, with KNN, SVM, and NBNN as
classifiers, for the original and modified G-means algorithms. We notice for both algorithms:

• For the semi-supervised classifiers, the highest classification accuracy is obtained by
SVM, followed by KNN. The accuracy versus distance parameter is decreasing with
higher distance parameter values.

• For the supervised classifiers, we obtain a curve ordering similar to the semi-supervised
curves. The tendency of the accuracy is fluctuating but stays relatively constant.

• When we compare the semi-supervised classifiers with the supervised classifiers, the
semi-supervised classifiers perform better.

Fig. 5.12 and 5.14 depict the overall classification F-score of the general level reference
data for each distance metric, using different supervised and semi-supervised classifiers
(KNN, SVM, and NBNN), for the original and modified G-means algorithms. We observe
that:

• For the semi-supervised classifiers, we notice that the F-score decreases with higher
values of Lp. The highest F-score value is obtained by KNN, followed by NBNN.

• For the supervised classifiers, we obtain a curve ordering similar to the semi-supervised
curves. The F-score value is fluctuating but stays relatively constant.
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Figure 5.12: Micro-average F-score of general level classifications for the modified G-
means algorithm for the data collection 17. The blue line shows results for fully-supervised
classification. The red line shows results for semi-supervised classification. Different colors
of squares represent different algorithms.
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Figure 5.13: Accuracy of general level classifications for the original G-means algorithm for
the data collection 17. The blue line shows results for fully-supervised classification. The
red line shows results for semi-supervised classification. Different colors of squares represent
different algorithms.
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Figure 5.14: Micro-average F-score of general level classifications for the original G-means
algorithm for the data collection 17. The blue line shows results for fully-supervised
classification. The red line shows results for semi-supervised classification. Different colors
of squares represents different algorithms.

• When we compare the semi-supervised classifiers with the supervised classifiers, the
semi-supervised classifiers perform better.

For the accuracy and F-scores, the values of the modified G-means algorithm are higher
than the original ones.

On the one hand, the results verified our guess that with more samples in each class, the
cluster-then-label semi-supervised learning performs better than fully supervised learning.
On the other hand, the need for a relatively large number of samples limits the applicability
of the former method. To sum up, in terms of learning accuracy and F-score value, it is
obvious that fractional distances give better performance. In terms of computational time,
the classical Euclidean distance as well as the Manhattan distance cost much less time, while
the fractional distances take around 100 times more time than the Euclidean and Manhattan
norms. In terms of the number of clusters, Minkowski distances yield fewer clusters than
the number of clusters for detailed level reference data, while fractional distances generate
more and thus smaller clusters. As a consequence of the compromise between efficiency and
performance, we chose L = 1 as our optimal distance parameter for subsequent analyses.

5.2.3.3 Additional Evaluations

Besides the internal and external evaluations of the clustering results, we also considered
the computational time and the number of generated clusters. Fig. 5.15 shows the
computational time and the number of generated clusters for different distance metrics for
the image data from collection 17.

Fig. 5.15(a) shows the computational time for all Lp distance results. We can observe
that:

• For p = 1 and p = 2, we obtain the lowest computational time.
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Figure 5.15: Evaluation of data collection 17. (a) Computational time. (b) Number of
clusters. The number of annotated classes for the general level reference data is 8, the
number of annotated classes for the detailed level reference data is 30.
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• For p < 1 and 1 < p < 2, the computational time is higher than for p = 1 and p = 2.

• For p > 2, the computational time is increasing.

Fig. 5.15(b) presents the number of clusters for all Lp distance results. When we look at
the classification accuracies of the generated clusters, we need to take into account that the
general level reference data contain 8 classes, while the full number of manually referenced
data is 30. The results show that:

• For p < 6, the number of clusters is fluctuating but the tendency is decreasing versus
distance.

• For 6 < p < 12, the number of clusters is lower than the attainable maximum (i.e.,
30).

5.2.4 Visual Evaluations

All our visual results were generated with a distance metric of L = 1 for data collection 17.

5.2.4.1 Tree Structure

Fig. 5.16 shows the hierarchical tree structure with 4 to 10 layers by using our proposed
method. A cluster that follows a Gaussian distribution and contains a sufficient number
of patches is labeled as "1"; otherwise, it is labeled as "0". The homogeneities within the
clusters (i.e., the zoomed area shown in Fig. 5.16) are analyzed in the Cluster Homogeneity
sub-section.

Figure 5.16: Cluster tree structure of the data collection 17. The blue ellipse shows some
zoomed clusters, the green ellipse shows the corresponding cluster numbering.

5.2.4.2 Feature Space Visualization

By using the t-SNE algorithm Van der Maaten and Hinton [2008] which is claimed to
preserve the complete local structure and some global structure of the data points, the
original 48-dimensional feature space was reduced to three dimensions.
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• Fig. 5.17 and Fig. 5.18 show that due to the human interaction, the semantic
annotations change the separating surfaces among the different classes, which then
result in the spreading of a single class across the whole feature space.

• Fig. 5.19 demonstrates the effectiveness of the cluster stopping criterion (i.e., the
Gaussian hypothesis test), each cluster is visually compactly grouped.

• Many classes are so spread out that without human interaction or supervision, it is
impossible to rely on unsupervised learning methods to separate classes.
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Figure 5.17: 3D feature space of the data collection 17 with general level reference data.
The different colors stand for classes with different semantic annotations. The axis scaling
refers to projected t-SNE results Van der Maaten and Hinton [2008].

5.2.4.3 Cluster Centroid Patches

We chose three scales of cluster distances: most compact, mid-compact and spread out.
For each cluster, the distance-based feature-patch correspondence is illustrated by three
representative patches: the closest patch, the mid-distance patch, and the farthest patch
from the cluster center. Fig. 5.20 to Fig. 5.22 illustrate how the distance influences the
representative patches of the clusters.

• Fig. 5.20 shows the patches with very low intensity which correspond to water body
classes.

• Fig. 5.21 shows the patches with mid-intensity which correspond to transportation or
agriculture classes.

• Fig. 5.22 shows the patches with very high intensity which correspond to urban areas.

• Fig. 5.20 to Fig. 5.22 demonstrate that high-intensity urban area classes tend to yield
spread out clusters; in contrast, water bodies and agriculture classes with low intensity
tend to result in compact clusters.
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Figure 5.18: 3D feature space of the data collection 17 with detailed level reference data.
The different colors stand for classes with different semantic annotations. The axis scaling
refers to projected t-SNE results Van der Maaten and Hinton [2008].
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Figure 5.19: 3D feature space of the data collection 17 with a distance parameter of 1. The
different colors stand for different obtained clusters. The axis scaling refers to projected
t-SNE results Van der Maaten and Hinton [2008].
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(a) (b) (c)

Figure 5.20: Patch examples of the most compact cluster (collection 17). (a) The patch
closest to the cluster center. (b) The mid-distance patch from the cluster center. (c) The
patch farthest from the cluster center.

(a) (b) (c)

Figure 5.21: Patch examples of the mid-compact cluster (collection 17). (a) The patch
closest to the cluster center. (b) The mid-distance patch from the cluster center. (c) The
patch farthest from the cluster center.

(a) (b) (c)

Figure 5.22: Patch examples of the most spread out cluster (collection 17). (a) The patch
closest to the cluster center. (b) The mid-distance patch from the cluster center. (c) The
patch farthest from the cluster center.
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5.2.4.4 Cluster Homogeneity

• Fig. 5.23 and Fig. 5.24 show the layer-wise splitting of clusters for general and detailed
level reference data, which corresponds to the zoomed clusters in Fig. 5.16. The size
of the pie-diagrams reflects the number of patches within each cluster. Clusters 88,
100 and 109 represent the main route of cluster splitting, where urban areas are the
dominant class in the general level reference data, and high-density residential areas
are the dominant class in the detailed level reference data.

Transportation

Bare ground

Urban area

Industrial area

7% 

1% 

82% 
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5% 
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6% 

Cluster 100 

12% 
3% 
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20% 
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6% 

Cluster 108 

3% 

91% 

6% 

Cluster 109 

Figure 5.23: Cluster splitting for the data collection 17 with the general level reference data.

• Fig. 5.25 and Fig. 5.26 show the overall class-cluster distribution for the general and
detailed level reference data, respectively. For the general level reference data, most of
the clusters contain one or two dominant classes; for the detailed level reference data,
due to the increased number of classes, the distributions tend to be more disordered
than for the general level reference data. However, there are a number of clusters with
highly dominant classes, which appear to be very homogeneous.
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Figure 5.24: Cluster splitting for the data collection 17 with the detailed level reference data.
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Figure 5.25: The class-cluster distribution of data collection 17 with general level reference
data. The X axis represents the last layer Gaussian-distributed cluster number; the Y axis
shows the general level reference class labels; the Z axis represents the percentage of the
number of patches versus the total number of patches.
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Figure 5.26: The class-cluster distribution of data collection 17 with detailed level reference
data. The X axis represents the last layer Gaussian-distributed cluster number; the Y axis
shows the detailed level reference class labels; the Z axis represents the percentage of the
number of patches versus the total number of patches.
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5.3 Conclusions

In this chapter, we proposed a processing and analyzing procedure for large-scale SAR image
annotation, which is illustrated in Fig. 5.1. For the purpose of testing and evaluation, four
semantically annotated data collections with two-level reference data was prepared. We used
them for the analysis of two methods proposed in the introduction, a hierarchical cluster
splitting method and various distance metrics (fractional and Minkowski distances) in order
to explore the information contained in the feature space. We compared the semi-supervised
results and the annotated reference data and analyzed the relations between the clustering
results and the general level reference as well as the relations between the semi-supervised
classification results and the detailed level reference data. Based on quantitative and visual
evaluations of the experimental results, we compared relations among the clustering results,
the semi-supervised classification results, and the general and detailed level reference data.
It turned out that our proposed method is able to obtain reliable results for the general level
reference data; however, due to the too many detailed sub-classes and their few instances,
the proposed method generates inferior results for the detailed level reference data. Similar
results were obtained for all data collections.

5.3.1 Clustering

There were two main issues when we analyzed unsupervised clustering: The distance metrics
(i.e., fractional distance, Minkowski distance), and the termination criterion for the cluster
splitting (i.e., the Gaussian hypothesis test).

Regarding the overall classification accuracy and F-score, fractional distances outperform
Minkowski distances. The stop criterion works well; when we visualized the feature space,
the clusters were grouped compactly; during cluster splitting, the clusters tend to become
homogeneous with one or two dominant classes. This can be seen in the pie diagrams.
Moreover, by observing the quick-look patches of the clusters it turned out that most of the
clusters are very homogeneous, although they may have different semantic labels.

As demonstrated by Figures 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13 and 5.14 the modified
G-means algorithm performs better than the original G-means algorithm.

5.3.2 Classifiers

For the classification accuracy and F-score value, we investigated the performances of
different supervised learning methods that were used within the clusters (i.e., SVM, KNN,
and NBNN).

As for the overall classification accuracy, SVM always achieves the best results both for
general and detailed level reference data. In the case of the F-score value, the nearest
neighbor methods (i.e., KNN and NBNN) performs better than SVM. The reason behind
it is that SVM obtains better classification accuracies for some dominant classes, but lower
classification accuracies for the other minority classes.

When the number of classes within a cluster is increasing (e.g., semi-supervised NBNN
compared to semi-supervised KNN, for F-score values of detailed level reference data), NBNN
performs better than KNN. This indicates that NBNN tends to provide good results when we
have a limited number of samples in each class.
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5.3.3 Semi-supervised Learning and Manually Annotated Reference Data

As mentioned in Carneiro et al. [2007], unsupervised clustering makes weaker demands on
the quality of the manual annotations which largely reduced the human effort. On the other
hand, it does not explicitly treat semantics as image classes; therefore, it is not guaranteed
that the semantic annotations are optimal in a recognition or retrieval sense.

In order to bridge this "semantic gap", the relationships between the unsupervised
clusters and the general and detailed level reference data have to be discussed:

When we look at the relations between clustering results and general level reference
data, and the relations between clustering results and detailed level reference data, usually
a cluster comprised 5 to 6 classes, with one or two of them being dominant. Of course, the
correspondence is better for the general level reference data due to their lower number of
classes. With a good classifier, each patch is labeled correctly with a probability of 0.6 for
the general level reference data, and with a probability of 0.4 for the detailed level reference
data.

5.3.4 Semi-Annotation/Labeling

In the end, we provide a general framework which can be used as a reference by other
practitioners who are also interested in large-scale SAR image dataset annotations. We
recommend the following procedure:

• Tile the data set into image patches and extract patch features.

• Use clustering methods to group feature data into clusters based on distance similarity. It
is better to use fractional distances or Manhattan distances rather than the traditional
Euclidean distances.

• Within each cluster, label some general classes manually; then use a supervised learning
method to label the remaining unlabeled patches.
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Chapter 6

Pixel-Level Bayesian Classification
and Active Learning Based Object
Extraction

Our life is endless in the way that our visual field is without limit.

Ludwig Wittgenstein

Currently, most remote sensing classification and recognition researches and applications
are interested in large-scale areas, e.g., image patches. However, in addition to patch-level
methods, which are presented in Chapters 4 and 5, in this chapter, we will present pixel-level
and object-level methods for high-resolution satellite imagery. Due to the special inherent
imaging mechanisms of SAR images, e.g., the speckle effect, it is difficult to perform pixel-
level classification. Hence, in the first part of this chapter, we try to model joint density
distributions of different features for very general categories: urban, water, etc. Later, an
active learning method based on the non-locality concept proposed by Pierre Blanchart in
Blanchart and Ferecatu [2015], and Blanchart and Ferecatu [2014], is discussed for optical
images to extract more detailed objects: buildings, rivers, sports fields, etc. The most
important contributions of this chapter are the attempts to reach pixel-level classification
using TerraSAR-X imagery for general semantic categories, and object-level extraction using
WorldView-2 imagery for detailed semantic categories. The experimental results show that,
currently it is rather difficult to extract detailed-level categories from SAR imagery; on the
contrary, it is a reachable goal for optical imagery.

6.1 Pixel-Level Bayesian Classification

A novel speckle statistics feature for the characterization of speckle development has been
presented by Esch et al. [2011]. It shows significant differences for certain basic land
cover types: urban, forest, and water. As well, the G0 model has been proposed to model
SAR image intensities by Frery et al. [1997] for extremely heterogeneous regions, such as
urban areas. Hence, in this research, we focus on pixel-based image classifications of high-
resolution SAR images which statistically model the joint probability densities of speckle
statistics feature and image intensities under a Bayesian classification framework, regarding
three specific land cover types: urban, forest, and water.
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6.1.1 Modeling of Speckle Statistics Feature

As explained in Esch et al. [2011], the speckle statistics feature modeling is implemented
by the following steps: The description of the local development of speckle, also known as
image texture in a SAR image, is the local image heterogeneity expressed by the coefficient
of variation:

CS =
σS
µS

(6.1)

where µS describes the mean amplitude value and σS stands for the standard deviation
of the amplitude values within an image window. CS has a relationship between true texture
CT and fading texture CF induced by speckle:

C2
S = C2

TC
2
F + C2

T + C2
F (6.2)

where the speckle-induced heterogeneity CF can be estimated via the number of looks
N

CF =
σF
µF

(6.3)

with

µF =
Γ(N + 1/2)

N1/2Γ(N)
(6.4)

and

σ2
F = 1− µ2

F . (6.5)

Here, by reading the metadata file of a TerraSAR-X products, the number of looks is
calculated as a product of azimuth looks and range looks.

The discrepancy between CS and CF can be used to quantify the true texture CT :

C2
T =

C2
S − C2

F

1 + C2
F

. (6.6)

It is recommended to add a majority procedure by calculating the mean of these local
measurements in a larger window, which can reduce the feature’s sensitivity towards local
noise:

C2
Tm =

1

M

n∑
i=1

C2
T i. (6.7)

Because the speckle statistics distribution is unknown, we use a Weibull distribution as
suggested in Esch et al. [2011], as well as a G0 distribution and kernel density estimator for
comparison to model the distribution. Based on the definition of the Weibull distribution in
Chapter 2, the probability density of the speckle statistics feature is expressed as:

fC2
Tm

(c2
Tm) =

β

αβ
c2
Tm

β−1
exp

[
−(
c2
Tm

α
)β
]
, c2
Tm > 0. (6.8)
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6.1.2 Image Intensity Modeling

In addition to the classic statistical properties modeling of SAR images, which are presented
in Chapter 2, alternatively, a multiplicative model is also used as a parametric model for SAR
images which explains the stochastic behavior of data obtained with coherent illumination.
With the assumption of fully developed speckle, a pixel y in a SAR images is the outcome of
the product of two independent random variables: the terrain backscatter x and the speckle
noise z.

y = x · z, (6.9)

where y is the observed image pixel, x is the noise free pixel, and z is the speckle noise. The
most common multiplicative noise models are the G and the K distributions.

Extremely heterogeneous regions in high-resolution SAR image follow a generalized
inverse Gaussian distribution Frery et al. [1997], therefore, we use the G0 distribution to
model the probability density of SAR intensities which is defined as:

fI|α,β,L(i|α, β, L) =
LLΓ(L− β)

αβΓ(L)Γ(−β)

iL−1

(α+ Li)L−β
. (6.10)

6.1.3 Combined Intensity - Speckle Statistics Feature Model

In the recent literature about statistical SAR image modeling, the method of log cumulant
(MoLC) estimation is being widely used; it is well adapted to urban areas, and less sensitive
to large values Tison et al. [2004]. Hence, in this research, we estimate the marginal PDF
of the speckle statistics feature, and the marginal PDF of intensities by solving the MoLC
equations of Table 6.1 Cui et al. [2014]. The marginal PDFs for the categories urban,
water, and forest are expressed by fC2

Tm
(c2
Tm|urban), fC2

Tm
(c2
Tm|water), fC2

Tm
(c2
Tm|forest),

fI(i|urban), fI(i|water) and fI(i|forest).
As two features (SAR intensities and speckle statistics feature) are considered, a joint

distribution model of the speckle statistics feature, and image intensities can be obtained
via Copula functions which have been explained in Chapter 2 Voisin et al. [2013]. The
definition of a bivariate copula function is a joint cumulative distribution of two uniform
random variables X1 and X2,

CX1,X2(x1, x2) = P (X1 < x1, X2 < x2) (6.11)

where Xi ∼ U(0, 1) for i = 1, 2.
In order to construct a land cover specific statistical model for urban, forest and water

land covers, their joint probability distribution is defined by the following formula. The
bivariate Archimedean family copulas which have been defined in Table 2.2 are chosen to fit
the joint PDF model. Moreover, as the probability density function rather than the cumulative
density function is what we are interested in, the problem is simplified via Sklar’s theorem
as follows:

fC2
Tm,I

(c2
Tm, i|classi) =

∂2CC2
Tm,I

(c2
Tm, i|classi)

∂(C2
Tm|classi)∂(I|classi)

= c(FC2
Tm

(c2
Tm|classi), FI(i|classi))fC2

Tm
(c2
Tm|classi)fI(i|classi),

(6.12)
where c is the density of the copula, classi is the label for class i, with i ∈ [1, 3] since
we consider three categories: urban, forest, and water. The FC2

Tm
(c2
Tm) and FI(i) are the
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Table 6.1: PDFs and MoLC equations for the G0 and Weibull distributions

Model Probability Density Function MoLC Equations Parameters

G0 fX|α,β,L(x|α, β, L) = k1 = ln(α)
L + φ(L)φ(−β) α: scale parameter

LLΓ(L−β)
αβΓ(L)Γ(−β)

xL−1

(α+Lx)L−β
ki = β: shape parameter

φ(i− 1, L) + (−1)iφ(i− 1,−β) L: number of looks
i = 2, 3

Weibull fX|α,β(x|α, β) = k1 = ln(α) + β−1φ(0, 1) α: scale parameter
β
αβ
x1 exp

[
−( xα)β

]
, x > 0 k2 = β−2φ(1, 1) β: shape parameter

cumulative distributions of C2
Tm and I. Thus, the likelihood PDFs fC2

Tm,I
(c2
Tm, i|urban),

fC2
Tm,I

(c2
Tm, i|water) and fC2

Tm,I
(c2
Tm, i|forest) are obtained.

In Formula 6.12, the cumulative distribution is calculated via the following definition:

FX(x) = P (X ≤ x) =
∑
xi≤x

PX(x = xi) =
∑
xi≤x

PX(xi). (6.13)

As already explained in Chapter 2, we are using the MoLC estimation method to estimate
the probability density functions for image intensities and the speckle statistics feature. In
analogy with the classic moment generating functions and cumulant generating functions,
which are used in probability theory and statistics, MoLC uses second kind statistics
which consist of a second kind moment generating function, and a second kind cumulant
generating function. In terms of computation, the second kind cumulant generating
functions can be estimated by observed samples:

k̃1 =
1

n

n∑
i=1

log xi, k̃i =
1

n

n∑
i=1

(log xi − k̃1)i. (6.14)

6.1.4 Bayesian Classification

For classification, a Bayesian classifier which is explained in Chapter 2 is used to model and
classify different land cover types in high-resolution TerraSAR-X images. A Bayesian classifier
obeys Bayes’ Rule, the posterior probability is proportional to the product of prior probability
and likelihood probability:

fC2
Tm,I

(classi|c2
Tm, i) =

f(classi)fC2
Tm,I

(c2
Tm, i|classi)

fc2Tm,i
(c2
Tm, i)

∝ f(classi)fC2
Tm,I

(c2
Tm, i|classi),

(6.15)

here classi is the label for class i, with i ∈ [1, 3] as we consider three categories: urban,
forest and water. Hence, based on 6.15, the posterior probabilities for the three categories
fC2

Tm,I
(urban|c2

Tm, i), fC2
Tm,I

(forest|C2
Tm, I), and fC2

Tm,I
(water|C2

Tm, I) are generated.
In the end, a classification label is assigned to the class that gives the largest class

conditional posterior probability:

label = arg max
class

f(class)fC2
Tm,I

(c2
Tm, i|class). (6.16)

The computational procedure is as follows:
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• Compute the image intensities I.

• Compute the speckle statistics feature Ctm2, according to the formulas in Section
6.1.1.

• Take the logarithms of I and Ctm2.

• For the three given categories,

compute the second kind moments m1,m2, and m3 based on a moment generating
function.

compute the second kind cumulants k1, k2, and k3 using a cumulant generating
function which is based on second kind moments.

according to Table 6.1, solve the MoLC equations of the Weibull and G0 distribu-
tions, so that the model parameters β, α, and L are obtained.

with the MoLC estimated distribution parameters, the marginal PDFs and CDFs
are obtained for image intensities and the speckle statistics feature.

based on the equation 6.12, model the copula density of two cumulative distri-
butions of two random variables, which is also the marginal likelihood probability
distribution.

• A classification label is assigned to the category that gives the largest posterior
probability distribution.

6.1.5 Experiments

6.1.5.1 Brief Dataset Description

A dataset consisting of 15 TerraSAR-X images containing cities of North Rhine-Westphalia
(NRW), Germany is used to create our training and test database. The images are GEC
products with a ground resolution of 2.9m, their incidence angles lie between 20 and
45 degrees, with various acquisition dates and orbits branches. The reason of choosing
GEC products rather than SSC products lies in that we need geographic coordinates for
comparisons to a ground truth map. With the help of geocoded coordinates, we use the open
source data from OpenStreetMap to obtain the corresponding ground truth data. These data
largely reduce the human labeling effort and can easily create ground truth for a number of
products.

In order to generate the ground truth reference map, we use the coordinate information
from the metadata file provided by GEC product, and the polygon position information
from the shape file provided by OpenStreetMap. Hence, each pixel of the ground truth
reference map has an exact correspondence with the shape file; the image-to-OpenStreetMap
coregistration is relatively accurate expect for the geometrical and radiometric distortions
of the GEC products which may occur. Moreover, there is one inevitable problem in the
OpenStreetMap based reference map generation method: There are some pixels without
specific map class information, due to the lack of geographical information from the open
source data. In order to overcome this difficulty, in the current experiment setting, we focus
our attention only on those pixels which have geographical information, rather than the
whole scene.
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6.1.5.2 Evaluation

For classifying the three land cover classes: urban, forest, water, a set of experiments for
comparison and analysis has been carried out.
In the intermediate step of fitting feature marginal distributions to each land cover class, we
noticed that, as expected, a G0 distribution is promising in modeling highly heterogeneous
regions, while the estimated G0 model can fit data histograms very well; however, for speckle
statistics feature, the estimated Weibull model, and the G0 model show minor differences
with respect to histogram shapes and amplitudes; in contrast, the kernel density estimator
can exactly fit the data.
Hereinafter three experiments with different models for speckle statistics feature are
presented. We used three copula functions (Clayton, Frank, and Gumbel) to model the
joint probability. The results using different copula functions are similar; therefore, the most
representative results are presented. In the confusion matrix table, each column contains
the classification rate between the actual TSX-based result compared to the ground truth
reference map.

Histogram fitting Fig. 6.1 and Fig. 6.2 show G0 distribution fitting for intensities and
G0 distribution fitting for the Ctm2 feature, for urban and forest areas. Fig. 6.3 and Fig.
6.4 show G0 distribution fitting for intensities and Weibull distribution fitting for the Ctm2
feature, for urban and forest areas. As can be observed from the figures, a G0 distribution
fits better than a Weibull distribution for the Ctm2 feature, which is also proved by the
classification results below.

Figure 6.1: Urban area, G0 distributions for intensities and the Ctm2 feature. The color
green shows the fitted model, the color red shows the real data.

Experiment 1 We model the intensities with a G0 distribution, and the speckle statistics
feature with a kernel density estimator. By using a Frank copula function, the overall
classification accuracy is 72.31%.
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Figure 6.2: Forest area, G0 distributions for intensities and the Ctm2 feature. The color
green shows the fitted model, the color red shows the real data.

Figure 6.3: Urban area, G0 distribution for intensities, and Weibull distribution for the Ctm2
feature. The color green shows the fitted model, the color red shows the real data.
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Figure 6.4: Forest area, G0 distribution for intensities, and Weibull distribution for the Ctm2
feature. The color green shows the fitted model, the color red shows the real data.

Table 6.2: Confusion matrix of experiment 1.

Urban Forest Water

Urban 0.9234 0.3198 0.5931
Forest 0.0659 0.6739 0.3300
Water 0.0107 0.0062 0.0769

As stated above, the kernel density estimator can exactly model the texture feature, the
overall accuracy is the highest among the three experiments, but the specific class accuracy
rate lies in the middle among all of the experiments.

Experiment 2 We model the intensities with a G0 distribution, and the speckle statistics
feature with a Weibull distribution. By using a Frank copula function, the overall
classification accuracy is 71.81%.
A Weibull distribution is proposed by Esch et al. [2011] for the speckle statistics feature.
The overall accuracy lies in the middle, while the forest area accuracy is the lowest among
the three experiments. When looking at the PDF fitting step, the automatic Weibull model
did not fit the observed data very well, which may be the main reason for its inferior
performance.

Experiment 3 We model intensities and the speckle statistics feature with G0 distribution.
When using a Clayton copula function, the overall classification accuracy is 71.22%.
A G0 distribution is proposed by Frery et al. [1997] to model heterogeneous areas; our
classification results prove this idea, since the urban and forest classification accuracies yield
the highest values, while the water accuracy results in the lowest value among the three
experiments.
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Table 6.3: Confusion matrix of experiment 2.

Urban Forest Water

Urban 0.9401 0.3594 0.5903
Forest 0.0488 0.6332 0.3256
Water 0.0111 0.0074 0.0841

Table 6.4: Confusion matrix of experiment 3.

Urban Forest Water

Urban 0.9430 0.2788 0.6408
Forest 0.0462 0.7160 0.2977
Water 0.0108 0.0052 0.0615

By looking at experiment 1,2, and 3, compared to the method of Esch et al. [2011],
whose urban classification accuracy is 0.8261, our proposed classification method has a
better performance.
Fig. 6.5 shows a GEC product of Aachen, Germany, whose brightness and contrast has been
adjusted in order to show the image details. Fig. 6.6 depicts the corresponding ground
truth reference map generated by using geographic information from OpenStreetMap. Fig.
6.7 contains a typical classification result for Aachen, by using the proposed classification
procedure. Red represents urban areas, green represents forest areas, gray represents water,
and white represents those areas without geographic information. Fig. 6.8 shows an example
of a color composite image for Aachen, by overlapping the intensity value and the Ctm2
feature.
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Figure 6.5: TerraSAR-X GEC product of Aachen city.

Figure 6.6: Ground truth reference map of Aachen city.
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Figure 6.7: Classification result of Aachen city.

Figure 6.8: Pseudo-color image of Aachen city.
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6.2 Active Learning Based Object Extraction

Due to the small amount of given training samples, the assumption has been made that
the potential corresponding objects in a big scene either visually look similar to or are
locationally close to the given samples or similar objects Blanchart and Ferecatu [2014]. As
verified by Blanchart and Ferecatu, their non-locality method is able to extract and discover
semantic categories within optical imagery; however, in most cases, there is still potential
for improving the first results; hence, active learning has been incorporated in this method
for improving results via iterations.

Since an SVM is used for the definition of the non-locality map, the corresponding active
learning concept is then based on the support vectors which are suggested by the classifier.
The proposed active learning procedure is shown in Fig. 6.9.

Figure 6.9: Active learning based object extraction for optical imagery.

6.2.1 Definition of Non-Locality

The principle of non-locality has been proposed based on the observation that objects are
localized elements in an image with strong intra-part similarity Blanchart and Ferecatu
[2015], This similarity is denoted by locality / non-locality: an element from our target
object will be surrounded by many other elements of the same object, and thus can be
paired with many similar elements inside its neighborhood. This phenomenon is referred as
locality. Hence, a high "non-locality" refers to the scene background, and a low "non-locality"
refers to objects. Thus, similarity and closeness are two important phenomena to define
objects that belong to the same category. The non-locality NL-score is thus defined as:

NL(x) =
∑
y∈Img

nl(x, y) =
∑
y∈Img

s(x, y) ∗ d(x, y) (6.17)

where s(x, y) is the similarity between elements x and y and d(x, y) is their Euclidean
distance in the given image Blanchart et al. [2014].

A Support Vector Machine (SVM) based Supervised Pairwise Target Similarity (SPTS)
measure has been proposed to define the similarity part in NL(x), so 6.17 is computed as:

NL(x) =
∑
y∈Img

nl(x, y) =
∑
y∈Img

(1− SPTS(x, y)) ∗ f(dn(x, y)) (6.18)
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where f(d) = exp(−d
2

h2
) is a function that characterizes the object scale to the whole image,

and dn(x, y) =
d(x, y)

max(d(x, y))
is the normalized Euclidean distance. According to Blanchart

et al. [2014], f(d) = exp(−d
2

h2
) is taken where h is a spatial bandwidth. The map is

normalized between 0 and 1 using the affine transformation which relies on the minimum
and maximum value in the non-locality map.

6.2.2 SVM-based Active Learning

Since the calculation of similarity in the non-locality map is based on a support vector
machine (SVM), the basic theory of support vector machines (SVMs) is explained in
Appendix A as a background knowledge. Generally, there are two basic types of machine
learning models: discriminative models and generative models. The former ones estimate
conditional probability distributions which are typically used for tasks such as classification
and regression; the latter ones rely on the joint distributions which are a full probabilistic
model of all variables and require a full understanding of the problem and domain specific
expertise in advance. The setback of these models is that once the model type is chosen,
the rest is to estimate its parameters; hence, there is seldom a chance for us to upgrade the
selected model. This is the typical drawback of classic machine learning.

In analogy to human learning, in the domain of educational research, Prince [2004]
mentions, “In the classroom-based learning process, active learning requires students to do
meaningful learning activities and think about what they are doing. It is often contrasted
to the traditional lecture where students passively receive information from the instructor.”
Comparatively, there is potential for improvement space that machine learning can also learn
from human learning. Namely, when we see our machine (our computer) as a student,
a passively learning student (classic machine learning methods) only gets information (an
empirical model) from the teacher (us), once being taught knowledge (a fixed model) is
composed (built), parameters are set, with no freedom at all; however, on the contrary,
an actively learning student (active learning methods) uses his own ideas or judgment to
actively propose a possible solution (a sample selection) that boosts a learning procedure,
which is with more freedom and learns faster.

6.2.2.1 Version Space

In order to better understand the idea of active learning, there is an important notion called
version space that needs to be explained. Given a set of labeled instances xi, i = 1, 2, ..., N
and a kernel function K(x, y), many different hyperplanes y = wTψ(x) + b in the mapped
higher-dimensional feature space F can separate the actual classes. This set of hyperplanes
is called version space Tong [2001 (accessed October 17, 2016]. It is defined as:

W = w|‖w‖ = 1, yi(w
Tψ(x)) > 0, i = 1, 2, ..., N (6.19)

The instances that correspond to these hyperplanes are the support vectors.

6.2.2.2 Sample Selection Strategies

The objective of active learning is then to select the samples that can reduce the size of
the version space as much as possible. Intuitively to speed up the query procedure, the

109



6.2. ACTIVE LEARNING BASED OBJECT EXTRACTION

instance selected in each iteration should split the current version space into two equal parts.
However, this is not practically feasible. It is assumed that the version space is symmetric;
hence, the normal vector w∗ of the optimal decision surface is often roughly in the center of
the version space which is able to separate the version space into two approximately equal
parts. Thus, the unlabeled instances that are closest to the current decision surface should
be queried as the most informative ones.

Besides that, similarity metrics are also used for sample selection with the assumption
that the selected samples should be diverse enough from the currently labeled instances.
The most popular approach is to compute the angular diversity between two samples.
Another direction is density sampling which aims to select samples from dense unlabeled
regions in the feature space under the assumption that the samples in dense regions are
more representative than samples from rare regions. In our experiments, we make the
first assumption, and the samples are chosen as the support vectors to the current decision
surface.

6.2.2.3 Prototype Implementation

Our original prototype was implemented by Blanchart and Ferecatu [2014]. Fig. 6.10 shows
the interface of the active learning method without any user interaction, Fig. 6.11 shows the
positive and negative training sample selection via mouse operations. Here, green stands
for positive training samples, red stands for negative training samples. An improved version
makes it an iterative algorithm based on an active learning concept.

Figure 6.10: The interface of the active learning based object extraction method.

The WorldView-2 multi-spectral satellite image of Munich city which is shown in Fig.
6.12 is used for extracting objects based on a pixel-level non-locality map. In the following
experiments, the non-locality map is calculated by using the red, green and blue channel
data of the WorldView-2 multi-spectral image.

The most informative and ambiguous points are those support vectors that are close to
the classification hyperplane surface, which is shown in the middle column of Fig. 6.13, Fig.
6.15 and the other examples. The white points are the queried pixels that are proposed by
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Figure 6.11: Training sample selection of the active learning based object extraction method.

classifier, please note that most of the points lie on the edges of our target objects or false
alarm objects which look very similar to target objects. The Matlab color bar ’jet’ routine
has been used to colorize the non-locality map, where blue stands for "positive", and red
means "negative". The results are evaluated either with available reference data based on
OpenStreetMap, or by visually checking the original image. In future, region growing and
morphological operations can be used to get a better object profile.

6.2.2.4 Evaluation and Discussion

Our approach has two general expectations: one is to explore unknown objects or new
categories based on the given training samples, the other is to obtain the exact objects that
we are interested in; this usually applies to only one instance.

In the following, the results of extracting different objects are shown for visual
evaluation. In order to evaluate the algorithm, the experimental results are divided into
three subgroups: common objects with several occurrences in the image, specific objects
with only one occurrence in the image, and difficult objects that we discuss for further
analysis.

During the iterations of the non-locality map, the added training samples chosen by a
user are very critical to obtain the final results; at the same time, the user is guided by the
queried informative pixels which are shown in the middle column, and the non-locality map
to add training samples.

Common Objects: In this sub-section, different common object classes are discussed:
railways, a red building, a river, trees, a white square building, and a sports field. Each
category contains more than one instance within the test image. However, only the river
object will be discussed here, the results of the other objects are contained in Appendix B.

This river example and other common object examples in Appendix B show that the
proposed algorithm is able to discover new instances and after 3 to 4 iterations the potential
object instances are all extracted. The extracted river results is evaluated by superimposing
the OpenStreetMap based water reference. The main water body is extracted, while the
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Figure 6.12: WorldView-2 data of Munich city.

bridge is left without creating a false alarm. There is a false negative on the left river bank,
the reason might be the bare land rather than the trees-covered land on the river bank.
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River case: The river extraction is complete when new positive samples are retrieved.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Iteration 2 of training samples Iteration 2 of queried pixels Iteration 2 of the non-locality map

Figure 6.13: Iterations of training samples and non-locality maps for a river object.
Regarding training samples, green stands for positive training samples, and red stands for
negative training samples; regarding results, blue stands for object, and red stands for non-
object.
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Figure 6.14: Non-locality map of a river superimposed on a water reference.

Specific Objects: In this sub-section, extraction of specific objects: such as a bridge, a
round-about, a pond, and a tennis court, which all have only one instance within the image,
will be discussed. Hence, the user demand is very specific. However, only the tennis court
object will be discussed here, the results of the other objects will be shown in Appendix B.

This tennis court example and other specific object examples in Appendix B show that the
proposed algorithm is able to discover new instances, and after 3 to 4 iterations the potential
object instances are all extracted. Also due to the unique properties of the specific objects,
remarkably more negative samples need to be given for an accurate extraction of the objects.
The extracted tennis court is evaluated by superimposing of the original optical image. The
main tennis court body is extracted correctly.
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Tennis court case: The tennis court can be extracted when enough negative samples which
look similar are given.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Iteration 2 of training samples Iteration 2 of queried pixels Iteration 2 of the non-locality map

Figure 6.15: Iterations of training samples and non-locality maps for a tennis court object.
Regarding training samples, green stands for positive training samples, and red stands for
negative training samples; regarding results, blue stands for object, and red stands for non-
object.
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Figure 6.16: Non-locality map of a tennis court superimposed by the original image.

Discussion of Difficult Objects: In this sub-section, difficult cases with specific objects
are discussed and analyzed. Particularly, we try to figure out the reasons why the method is
inferior or fails to extract the objects.

For very specific objects, advanced features are needed to describe the distinctiveness
of the objects. Otherwise, more human input is needed to distinguish between positive
and negative, especially the negative samples. The extracted gray round building result
is evaluated by superimposing the original optical image. The main building bodies are
extracted, while the centers of the buildings are left out as false negatives.
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Gray round building case: Lots of training samples are needed to specify this user-selected
object, as the given positive training samples are not sufficiently representative for its circular
shape. The similarity concept of the non-locality map is not good enough to represent
circular shape.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Iteration 2 of training samples Iteration 2 of queried pixels Iteration 2 of the non-locality map

Iteration 3 of training samples Iteration 3 of queried pixels Iteration 3 of the non-locality map

Iteration 4 of training samples Iteration 4 of queried pixels Iteration 4 of the non-locality map

Figure 6.17: Iterations of training samples and non-locality maps for a gray round building
object. Regarding training samples, green stands for positive training samples, and red
stands for negative training samples; regarding results, blue stands for object, and red stands
for non-object.
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Figure 6.18: Non-locality map of a gray round building superimposed by the original image.
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Blue corner building case: The non-locality map indicates that the buildings close to the
user-selected buildings are similar to the target objects. In the third iteration, when too many
samples are given, the classifier generates an inferior result in the end. The reason might
be that the calculated features are not able to distinguish between positive and negative
training samples.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Iteration 2 of training samples Iteration 2 of queried pixels Iteration 2 of the non-locality map

Iteration 3 of training samples Iteration 3 of queried pixels Iteration 3 of the non-locality map

Figure 6.19: Iterations of training samples and non-locality maps for a blue corner building
object. Regarding training samples, green stands for positive training samples, and red
stands for negative training samples; regarding results, blue stands for object, and red stands
for non-object.
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6.3 Summary

In this chapter, Bayesian rule based pixel classification for SAR imagery and active learning
based object extraction for optical imagery have been discussed.

For high-resolution TerraSAR-X imagery, an alternative approach to using the speckle
statistics was proposed and evaluated. The G0 distribution was validated using second-kind
statistics for modeling SAR image intensities. For comparison, the Weibull distribution, the
G0 distribution, and a kernel density estimator was used for modeling speckle statistics.
To model joint distributions, three bivariate copula functions from the Archimedean family
were applied. Based on a copula function, joint probabilities were used for classification
by a Bayesian classifier. For urban and forest areas, the G0 distribution is more appropriate
for modeling speckle statistics of SAR images. Regarding the low classification accuracy
of water, we conclude that the main reason is the lack of sufficient sample pixels in this
category. Furthermore, the urban classification accuracy outperforms the threshold method
proposed in Esch et al. [2011]. In the end, the three copulas (Clayton, Frank, and Gumbel)
give similar performances.

For high-resolution WorldView-2 imagery, we implemented an active learning concept
have been implemented to improve the object extraction which is based on a non-locality
map. The support vectors generated by the SVM classifiers during the creation of the non-
locality maps are used as the queried pixels in the active learning iterations and are assumed
to be informative. We performed various experiments with the purpose to extract various
objects. The results show that our adapted method is able to extract common objects via 3
to 4 iterations, with a few more user inputs also specific objects can be extracted via 3 to 4
iterations. However, there are some very specific objects that cannot be extracted reliably
what might improved via the use of advanced features.

In general, the pixel-level classification in SAR imagery is suitable for very general
semantic categories; on the contrary, object extraction in optical imagery can reach a very
detailed level and with relatively good results.
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Chapter 7

Conclusions

Do not go where the path may lead, go instead where there is no path

and leave a trail.

Ralph Waldo Emerson

7.1 Summary

In this dissertation, we have provided solutions for high-resolution satellite image infor-
mation extraction and content interpretation using TerraSAR-X and WorldView-2 data. As
an image scene is usually of big size with complicated contents, in order to reduce the
processing time and the complexity of problem, we remote sensing researchers often cut
the whole scenes into patches as a pre-processing step in order to reduce the processing
time and the complexity of problem. However, as so much information and interesting
details become visible in high-resolution imagery, it is not satisfactory to stop at patch level
processing. Hence, processing and analyzing on pixel level is needed. Due to the large
amount of data, we start the analysis by using an unsupervised learning methods, in the
hope of simplifying our interpretation task to group similar patches together at the first step.
However, as known, the accuracy of unsupervised learning methods is insufficient to obtain
satisfactory semantic annotation results; therefore, supervised learning methods are applied
to those grouped data clusters. In the sense of pixel level processing, different methods have
been proposed for different data sources: speckle statistics feature and image intensities are
considered for SAR data to obtain joint probability distributions; similarity and closeness
have been considered to extract objects based on active learning concepts for optical data.

We presented a hierarchical patch clustering method for high-resolution remote
sensing images:

• As evaluated by internal cluster and external cluster indices as well as patch visual-
ization, the Gaussian-test-based hierarchical patch clustering method is able to obtain
homogeneous clusters. A Gaussian goodness test (Anderson-Darling test) is used to
split feature vector sets into homogeneous clusters which largely reduces the clustering
time and also preserves the homogeneity. With a minumum cluster size threshold, our
modified G-means algorithm is faster than the original algorithm.
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• However, for different datasets, external results show that the human defined semantic
labels influence the homogeneity level evaluation, which indicates that some human
subjective factor is involved in the process of semantic annotation.

• Moreover, fractional and Minkowski distance metrics have been analysed; it turns
out that a distance parameter ranging from 1.2 to 2 performs best. Different feature
descriptors have been evaluated during the experiments, the results show that classic
Gabor texture features perform better than the BoW features. By comparing with
different clustering methods, our results show that G-means can obtain relatively
homogeneous clusters; the cluster homogeneity is slightly degraded compared to k-
means because of the repeated dichotomous cluster splitting.

Then, a semi-supervised classification scheme for image patches has been formulated
within the framework of a hierarchical clustering method. Large-scale datasets have been
used, each with more than thousands of image patches and two-level semantic annotations:
these serve as general and detailed level reference data. It turns out that our proposed
method is able to obtain reliable results for the general level reference data; however, due to
the too many detailed sub-classes and their few instances, the proposed method generates
inferior results for the detailed level reference data.

• Concerning classifiers: For the classification accuracy and F-score value, the perfor-
mances of different applied supervised learning methods (i.e., SVM, KNN, and NBNN)
were investigated.

– As for the overall classification accuracy, SVM always achieves the best results
both for general and detailed level reference data. In the case of the F-score
value, the nearest neighbor methods (i.e., KNN and NBNN) perform better than
SVM. The reason behind it is that SVM obtains better classification accuracies for
some dominant classes, but lower classification accuracies for the other minority
classes.

– When the number of classes within a cluster is increasing (e.g., semi-supervised
NBNN compared to semi-supervised KNN, for F-score values of detailed level
reference data), NBNN performs better than KNN. This indicates that NBNN tends
to provide good results when we have a limited number of samples in each class.

• Concerning semi-supervised learning and manually annotated reference data: Af-
ter supervised classification within clusters, the relationships between the unsupervised
clusters and the general and detailed level reference data were discussed:

– When we look at the relations between clustering results and general level
reference data, and the relations between clustering results and detailed level
reference data, usually a cluster comprises 5 to 6 classes, with one or two of them
being dominant. Of course, the correspondence is better for the general level
reference data due to their lower number of classes.

– With a good classifier, each patch is labeled correctly with a probability of 0.6
for the general level reference data, and with a probability of 0.4 for the detailed
level reference data.

Regarding pixel-level segmentation and object extraction, a method based on the
concept of Bayes’ rule and joint probability densities has been analyzed for SAR data.
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Moreover, an active learning concept was implemented with the idea of non-locality for
various detailed object extractions in high-resolution optical imagery. In general, the pixel-
level classification in SAR imagery is suitable for very general semantic categories; on
the contrary, object extraction in optical imagery can reach very detailed levels and with
relatively good results.

• For high resolution TerraSAR-X imagery, considering image intensities and speckle
statistics feature, three copula functions have been studied to model the joint
probability density:

– The urban classification accuracy outperforms the threshold method proposed in
Esch et al. [2011].

– Concerning urban and forest areas, the G0 distribution is more appropriate
for modeling the speckle statistics feature of SAR images. Regarding the low
classification accuracy of water, the main reason could be the lack of sufficient
sample pixels in this category.

– The three copulas (Clayton, Frank, and Gumbel) give similar performances.

• For high resolution WorldView-2 imagery, an active learning concept has been
implemented to improve the object extraction method which is based on a non-locality
map.

– Various experiments were performed with the purpose to extract various objects.
The results show that the modified method is able to extract common objects via 3
to 4 iterations. With a few more user inputs, specific objects can also be extracted
via 3 to 4 iterations.

7.2 Future Works

This dissertation has put efforts in solving high-resolution satellite image interpretation on
patch level and pixel level, by using semi-supervised learning, active learning, and Bayes’
rule. The summary above demonstrates the attained semantic annotations for different data
sources. However, there are still some open questions within this dissertation: the optimal
distance metrics in the processing of SAR data, the local and global minimum of G-means
clustering, better histogram fitting in modelling different land covers in SAR data, and the
possibilities of more detailed semantic class extractions via active learning. Hence, as shown
in Fig. 7.1, more detailed semantic categories encourage us to develop still more advanced
semantic annotations and object recognition algorithms.
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7.2. FUTURE WORKS

Figure 7.1: Detailed level openstreetmap ground truth of Aachen city.
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Appendix A

A.1 Summary of Machine Learning Algorithms
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Table A.1: Overview of classic machine learning algorithms.

Algorithm Description Model Objective Training Algorithm

K-Means A hard-margin,
geometric
clustering
algorithm, where
each data point
is assigned to its
closest centroid.

Hard assignments

rnk ∈ 0, 1 s.t. ∀n
∑
k

rnk = 1, (1)

i.e., each data point is assigned to one cluster k. The
geometric distance is the l2 norm Euclidean distance:

‖xni − µki‖2 =

√√√√ D∑
i=1

(xni − µki)2. (2)

arg min
r,µ

N∑
n=1

K∑
k=1

rnk‖xn − µk‖22, (3)

...i.e. minimize the distance from each cluster center to
each of its points.

Expectation:

rnk =

{
1 if‖xn − µk‖2 minimalfor k,
0 o/w.

Maximisation:

µ
(k)
MLE =

∑
n rnkxn∑
n rnk

, (4)

...where µ(k) is the centroid of cluster k.

Mean Shift
Clustering

A non-parametric
clustering
algorithm for
locating the maxima
of a density function
(mode finding
procedure).

Starting on the data points, find the stationary points
of the density function. Then prune these points by
retaining only the local maxima. The set of all locations
that converge to the same mode defines the basin of
attraction of that mode. The points which are in the
same basin of attraction are associated with the same
cluster.
Given n data points xi, i = 1, ..., n on a d-dimensional
space Rd, the multivariate kernel density estimate
obtained with kernel K(x) and window radius h is:

f(x) =
1

nhd

n∑
i=1

K(
(x− xi)

h
),

K(x) = ck,dk(‖x‖2).

(5)

The gradient of the density estimator is

∇f(x) =
2ck,d

nhd+2

n∑
i=1

(xi − x)g(‖
x− xi
h
‖2)

=
2ck,d

nhd+2
[

n∑
i=1

g(‖
x− xi
h
‖2)]∗

[

∑n
i=1 xig(‖

x−xi
h
‖2)∑n

i=1 g(‖
x−xi
h
‖2)

− x],

(6)

...where g(x) = k′(s). The second term is the mean
shift

mh(x) =

∑n
i=1 xig(‖

x−xi
h
‖2)∑n

i=1 g(‖
x−xi
h
‖2)

− x. (7)

The mean shift procedure, obtained by successive
• computation of the mean shift vector mh(xt),
• translation of the window xt+1 = xt +mh(xt).

Gaussian Mix-
ture Model

A probabilistic
clustering
algorithm, where
clusters are modeled
as latent Gaussians,
and each data
point is assigned
the probability of
being drawn from a
particular Gaussian.

Assignments to clusters by specifying probabilities:

p(x(i), z(i)) = p(x(i)|z(i))p(z(i)), (8)

...with z(i) follows a multinomial(γ) distribution, and

γnk ≡ p(k|xn)s.t.

k∑
j=1

γnj = 1, (9)

i.e., maximize the probability of the observed data x.

L(x, π, µ,
∑

) = log p(x|π, µ,
∑

)

=
N∑
n=1

log

(
K∑
k=1

πkNk(xn|µk,
∑
k

)

)
.

(10)

Expectation: For each n, k set:

γnk = p(z(i) = k|x(i); γ, µ,
∑

) (= p(k|kn))

=
p(xi|z(i) = k;µ,

∑
)p(z(i) = k;π)∑K

j=1 p(x
(i)|z(i) = l;µ,

∑
)p(z(i) = l;π)

=
πkN (xn|µk,

∑
k)∑K

j=1 πjN (xn|µj ,
∑
j)
.

(11)

Maximisation:

∑
k

=

∑N
n=1 γnk(xn − µk)(xn − µk)T∑N

n=1 γnk
,

µk =

∑N
n=1 γnkxn∑N
n=1 γnk

, πk =
1

N

N∑
n=1

γnk.

(12)



Table A.2: Overview of classic machine learning algorithms (continued)

Algorithm Description Model Objective Training Algorithm

Logistic
Regression

A classification al-
gorithm, which pre-
dicts a dichotomous
outcome like ordi-
nary least squares
regression.

p(y = ±1|x,w) = σ(ywT x)

=
1

1 + exp(−ywT x)
,

(13)

used for binary classification or for predicting the
certainty of a binary outcome. σ(x) is the logistic
function which is defined as:

σ(x) =
1

1 + exp(x)
(14)

arg max
w

= −
n∑
i=1

log
(

1 + exp
(
−yiwT xi

))
, (15)

...i.e. find the parameter vector w which maximizes the
log-likelihood.

Newton’s method based on iteratively reweighted least
squares algorithms:

wnew = wold+

(XAXT )−1
∑
i

(1− σ(yiwT xi))yixi.
(16)

We define

zi = xTi wold +
1− σ(yiwT xi)yi

aii
. (17)

Naive Bayes
Classifier

A classification
algorithm which
learns p(Ck|x) by
modeling p(x|Ck)
and p(Ck), using
Bayes’ rule to infer
the class conditional
probability. It
assumes each
feature independent
of all others,
therefore ’Naive’.

y(x) = arg max
k

p(Ck|x)

= arg max
k

p(x|Ck) ∗ p(Ck)

= arg max
k

D∏
i=1

p(xi|Ck) ∗ p(Ck)

= arg max
k

D∑
i=1

log(p(xi|Ck)) + log(p(Ck)).

(18)

No optimisation needed. Multivariate likelihood

p(x|Ck) =
D∑
i=1

log(p(xi|Ck)),

pMLE(xi = v|Ck) =∑N
j=1 σ(tj = CkΣxji = v)∑N

j=1 σ(tj = Ck)
.

(19)

Multinomial likelihood which is used in LDA

p(x|Ck) =
D∏
i=1

p(wordi|Ck)xi . (20)

K Nearest
Neighbors

A simple classifica-
tion algorithm, in
which the label of
a new point x̂ is
classified with the
most frequent label
t̂ of the k nearest
training instances.

t̂ = arg max
C

∑
i:xi∈Nk(x,x̂)

δ(ti, C),

Nk(x, x̂)← k points in x closest to x̂,

Euclidean distance formula:

√√√√ D∑
t=1

(xi − x̂i)2,

δ(a, b)← 1 if a=b; 0 otherwise.

(21)

No optimisation needed. Use cross-validation to learn the appropriate k;
otherwise no training, classification based on existing
points.



Table A.3: Overview of classic machine learning algorithms (continued).

Algorithm Description Model Objective Training Algorithm

Perceptron A classification al-
gorithm which di-
rectly estimates the
linear function y(x)
by iteratively updat-
ing the weight vec-
tor when incorrectly
classifying a training
instance.

Binary, linear classifier:

y(x) = sign(wT x), (22)

...where:

sign(x) =

{
+1 if x > 0,

−1 if x < 0.

Multiclass perceptron:

y(x) = arg max
Ck

wTφ(x,Ck). (23)

Tries to minimise the error function (the number of
incorrectly classified input vectors):

arg min
w

Ep(w) = arg min
w

−
∑
n∈M

wT xntn, (24)

...whereM is the set of misclassified training vectors.

Iterate over each training example xn, and update the
weight vector if misclassification occurs:

wi+1 = wi + η∆Ep(w)

= wi + ηxntn,
(25)

...where typically η = 1. For the multiclass perceptron:

wi+1 = wi + φ(x, t)− φ(x, y(x)). (26)

Convolutional
Neural
Network

A problem of de-
termining the net-
work weights to ap-
proximate a specific
target mapping g,
which makes it a
classification algo-
rithm.

A (L+1)-layer perceptron, consists of D input units, C
output units, and several so called hidden units. The ith

unit within layer l computes the output

y
(l)
i = f(z

(l)
i ) with

z
(l)
i =

m(l−1)∑
k=1

w
(l)
i,ky

(l−1)
k + w

(k)
i,0 ,

(27)

...where w(l)
i,k denotes the weighted connection from the

kth unit in layer (l − 1) to the ith unit in layer l, and
w

(l)
i,0 can be regarded as external input to the unit and is

referred to as bias. m(l) denotes the number of units in
layer l, such that D = m(0) and C = m(L+1)

Minimise a chosen objective function which can be
interpreted as an error measure between the network
output y(xn) and the desired target output tn. The
sum-of-squared error measures is given by:

E1(w) =
N∑
n=1

E1n(w)

=
N∑
n=1

C∑
k=1

(yk(xn, w)− tn,k)2,

(28)

and the cross-entropy error measure is given by:

E2(w) =
N∑
n=1

E2n(w)

=
N∑
n=1

C∑
k=1

tn,k log(yk(xn, w)),

(29)

...where tn,k is the kth entry of the target value tn.

Stochastic training: An input value is chosen at
random and the network weights are updated based
on the error En(w).
Batch training: All input values are processed and
the weights are updated based on the overall error
E(w) =

∑N
n=1 En(w).

Online training: Every input value is processed only
once and the weights are updated using the error
En(w).
Mini-batch training: A random subset M ⊆ 1, ..., N
(mini-batch) of the training set is processed and the
weights are updated based on the cumulative error
EM (w) :=

∑
n∈M En(w).



Table A.4: Overview of classic machine learning algorithms (continued).

Algorithm Description Model Objective Training Algorithm

Decision Trees A hierarchical
piecewise classifier
for splitting complex
problems into a
hierarchy of simpler
ones.

Features are thought of as being randomly sampled from
the set of all possible features, with a function φ(v)
selecting a subset of the features of interest.

φ : Rd →Rd
′
, with d′ << d, (30)

...where d is the feature dimensionality, and φ(v) is a
function which selects a subset of features of interest.

The optimal parameters θ of the jth split node need
to be computed, which is done here by maximizing an
information gain objective function:

θ∗j = arg max
θj

Ij , (31)

with
Ij = I(Sj , S

L
j , S

R
j , θj), (32)

...where the symbols Sj , SLj , S
R
j denote the sets of

training points before and after the split.

The gain of information achieved by splitting the data is
computed as:

I = H(S)−
∑
i∈1,2

|Si|
|S|

H(Si), (33)

the differential entropy of a d-variate Gaussian density is
defined as:

H(S) =
1

2
log
(

(2π)d|Λ(S)|
)
. (34)

Here, Λ(S) stands for the gradient of S.

Random
Forests

A classification
algorithm which
is an ensemble of
randomly trained
decision tree
methods.

Each split node j is associated with a binary split
function:

h(v,θj) ∈ 0, 1. (35)

The ensemble model is obtained via combining all tree
predictions into a single forest prediction by a simple
averaging operation:

p(c|v) =
1

T

T∑
t=1

pt(c|v). (36)

Alternatively, one could also multiply the tree output
together (though the trees are not statistically
independent)

p(c|v) =
1

Z

T∏
t=1

pt(c|v). (37)

The optimal parameters θ of the jth split node need
to be computed, which is done here by maximizing an
information gain objective function:

θ∗j = arg max
θj∈Tj

Ij , (38)

with
Ij = I(Sj , S

L
j , S

R
j , θj), (39)

...where the symbols Sj , SLj , S
R
j denote the sets of

training points before and after the split.

The gain of information achieved by splitting the data is
computed as:

Ij = H(Sj)−
∑
i∈L,R

|Sij |
|Sj |

H(Sij), (40)

...where the Shannon entropy is defined mathematically
as:

H(S) = −
∑
c∈C

p(c) log p(c). (41)

Support Vector
Machine

A maximum margin
classifier: finds
the separating
hyperplane with the
maximum margin
to its closest data
points.

y(x) =
N∑
n=1

λntnx
T xn + w0. (42)

Primal
arg min

w,w0

1

2
‖w‖2,

s.t.tn(wT xn + w0) ≥ 1 ∀n.
(43)

Dual

L̂(
∧

) =

N∑
n=1

λn −
N∑
n=1

N∑
m=1

λnλmtntmx
T
nxm,

s.t.λn ≥ 0,

N∑
n=1

λntn = 0, ∀n.

(44)

• Quadratic Programming (QP)
• SMO, Sequential Minimal Optimisation (chunking).



A.2. SUPPORT VECTOR MACHINES (SVMS)

A.2 Support Vector Machines (SVMs)

An SVM can be used to solve tasks such as linearly separable binary classifications, non-
linearly separable binary classifications, data regressions, non-linearly separable classifica-
tions or regression problems. Since in most cases, our real world problems are non-linear
but separable, not only the basic support vector machines for linearly separable binary
classifications, but also for non-linearly separable problems will be explained in this section.

A.2.1 Linearly Separable Binary Classifications

We have L training points, where each input xi has D attributes (i.e., with D dimensions)
and belongs to one of two classes yi=-1 or +1:

xi, yi where i = 1...L, yi ∈ −1, 1, x ∈ RD. (45)

We assume there is a hyperplane which can separate the two classes. This hyperplane can
be described by w · x+ b = 0 where w is normal to the hyperplane; b

‖w‖ is the perpendicular
distance from the origin to the hyperplane.

Support Vectors are the training points closest to the separating hyperplane, and the aim
of an SVM is to orientate this hyperplane to be as far as possible from the closest members
of both classes, which is also called as maximize the minimum margin.

Referring to Fig. A.1, an SVM needs to select the variables w and b so that our training
data can be described by:

xi · w + b ≥ +1 for yi = +1 (46)

xi · w + b ≤ −1 for yi = −1 (47)

These equations can be combined into:

yi(xi · w + b)− 1 ≥ 0 ∀ (48)

We now consider the points that lie closest to the separating hyperplane, i.e. the Support
Vectors. Then the two planes H1 and H2 that these points lie on can be described by:

xi · w + b = +1 for H1 (49)

xi · w + b = −1 for H2 (50)

The hyperplane’s equidistance from H1 to H2 is known as the SVM margin. The margin is
to be maximized in order to orientate the hyperplane H to be as far away from the Support
Vectors as possible.

Vector geometry shows that the margin is equal to 1
‖w‖ , maximizing it and subjecting to

constraint 48 is equivalent to find:

min‖w‖ such that yi(xi · w + b)− 1 ≥ 0 ∀i (51)
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A.2. SUPPORT VECTOR MACHINES (SVMS)

Figure A.1: The separating hyperplane of a Support Vector Machine.

Minimizing ‖w‖ is equivalent to minimizing 1
2‖w‖

2; this term enables us to perform a
Quadratic Programming (QP) optimization later on. Therefore, we need to find:

min
1

2
‖w‖2 s.t. yi(xi · w + b)− 1 ≥ 0 ∀i (52)

When caring for the constraints in this minimization, Lagrange multipliers α have to be
assigned, where αi ≥ 0 ∀i:

LP ≡
1

2
‖w‖2 − α[yi(xi · w + b)− 1 ∀i] (53)

≡ 1

2
‖w‖2 −

L∑
i=1

αiyi(xi · w + b) +
L∑
i=1

αi (54)

By differentiating LP with respect to w and b and setting the derivatives to zero we
obtain:

∂LP
∂w

= 0 ⇒ w =

L∑
i=1

αiyixi (55)

∂LP
∂b

= 0 ⇒
L∑
i=1

αiyi = 0 (56)

So we need to maximize:

LD ≡
L∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj s.t. αi ≥ 0 ∀,
L∑
i=1

αiyi = 0 (57)
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≡
L∑
i=1

αi −
1

2
αTHα s.t. αi ≥ 0 ∀,

L∑
i=1

αiyi = 0 (58)

The new formulation LD is referred as the Dual form of the Primary LP . It is worth to
note that the Dual form requires only dot product values of each input vector xi, which is
known as the Kernel Trick. Hence, instead of minimizing LP , we need to maximize LD:

max
α

[

L∑
i=1

αi −
1

2
αTHα] s.t. αi ≥ 0 ∀ and

L∑
i=1

αiyi = 0 (59)

A QP solver is used to obtain α and w for this convex quadratic optimization problem. Only
parameter b then remains to be calculated.

Any data point satisfying 56 is a support vector xs that will have the following form:

ys(xs · w + b) = 1 (60)

Substituting in 55 yields:
ys(
∑
m∈S

αmymxm · xs + b) = 1 (61)

where S denotes the set of indices of support vectors, which is determined when αi > 0.
Multiplication by ys and use of y2

s = 1 leads to:

y2
s(
∑
m∈S

amy +mx+m · xs + b) = ys (62)

b = ys −
∑
m∈S

amymxm · xs (63)

Instead of using an arbitrary support vector xs, b is calculated by taking an average over all
of the support vectors in S:

b =
1

Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm · xs) (64)

With the variables w and b that define the optimal orientation of the separating hyperplane,
the support vector machine is then defined Fletcher [2009].

A.2.2 Non-Linearly Separable Classifications

In this case, create a matrix H from the dot product of our input variables:

Hij = yiyjk(xi, xj) = xi · xj = xTi xj (65)
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where k(xi, xj) is an example of a family of functions called Kernel Functions (k(xi, xj) =
xTi xj is known as a Linear Kernel). Kernel functions are all based on calculating inner
products of two vectors. If these functions can be recast into a higher dimensionality
space by some potentially non-linear feature mapping functions x → ψ(x), only inner
products of the mapped inputs in the feature space need to be determined rather than to
explicitly calculate ψ. This is also called Kernel Trick; it is useful for non-linearly separable
or regressable problems when a suitable mapping is given to map the input vectors x to a
higher dimensionality feature space Burges [1998]. The most commonly used kernels are
listed in Table A.5:

Table A.5: Commonly used kernel functions.

Kernel Function Formula

Radial Basis Kernel k(xi, xj) = exp−(
(‖xi−xj‖)

2

2σ2
)

Polynomial Kernel k(xi, xj) = (xi · xj + a)b

Sigmoid Kernel tanh(axi · xj − b)

A.2.3 Application

Regarding the classification problem for non-linearly separable data, we can obtain a support
vector machine via following steps Fletcher [2009]:

• Create H, where Hij = yiyjψ(xi) · ψ(xj).

• Depending on how significantly misclassifications should be treated, a suitable
threshold value of parameter C is selected.

• Find α so that
L∑
i=1

αi −
1

2
αTHα (66)

is maximized, subject to the constraints

0 ≤ αi ≤ C ∀i and
L∑
i=1

αiyi = 0. (67)

This is solve via a quadratic programming (QP) solver.

• Calculate w =
∑L

i=1 αiyiψ(xi).

• Determine the set of support vectors S by finding the indices such that 0 < αi ≤ C.

• Calculate b = 1
Ns

∑
s∈S(ys −

∑
m∈S αmymψ(xm) · ψ(xs)).

• Each new point x′ is then classified by evaluating y′ = sgn(w · ψ(x′) + b).

133





Appendix B

In this appendix, more experimental results are reported.

B.1 Extraction of Common Objects

For active learning results, the following shows results of common objects: railways, a red
building, trees, and a white square building.
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B.1. EXTRACTION OF COMMON OBJECTS

Railway case: the lighter part of railways looks different from the darker part of railways,
assumably there were train cabins, so at the beginning the lighter part is described as light
blue. After giving more training samples, the algorithm learns what the user wants and then
returns better results later.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Iteration 2 of training samples Iteration 2 of queried pixels Iteration 2 of the non-locality map

Iteration 3 of training samples Iteration 3 of queried pixels Iteration 3 of the non-locality map

Figure B.1: Iterations of training samples and non-locality maps for railway objects.
Regarding training samples, green stands for positive training samples, and red stands for
negative training samples; regarding results, blue stands for object, and red stands for non-
object.
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B.1. EXTRACTION OF COMMON OBJECTS

Red building case: Due to the used color descriptor, a tennis court has also been considered
as a potential target at the beginning; however, after giving more negative training samples,
the trained model learns the difference between red buildings and a tennis court.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Iteration 2 of training samples Iteration 2 of queried pixels Iteration 2 of the non-locality map

Iteration 3 of training samples Iteration 3 of queried pixels Iteration 3 of the non-locality map

Figure B.2: Iterations of training samples and non-locality maps for red building objects.
Regarding training samples, green stands for positive training samples, and red stands for
negative training samples; regarding results, blue stands for object, and red stands for non-
object.
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B.1. EXTRACTION OF COMMON OBJECTS

Trees case: In this image, trees are very different from the rest of the image content, with a
single training iteration the objects are extracted.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Figure B.3: Iteration of training samples and non-locality maps for trees objects. Regarding
training samples, green stands for positive training samples, and red stands for negative
training samples; regarding results, blue stands for object, and red stands for non-object.
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B.1. EXTRACTION OF COMMON OBJECTS

White square building case: With many similar objects and user-selected specific target
objects, it takes 4 iterations to extract the white square buildings.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Iteration 2 of training samples Iteration 2 of queried pixels Iteration 2 of the non-locality map

Iteration 3 of training samples Iteration 3 of queried pixels Iteration 3 of the non-locality map

Iteration 4 of training samples Iteration 4 of queried pixels Iteration 4 of the non-locality map

Figure B.4: Iterations of training samples and non-locality maps for white square building
objects. Regarding training samples, green stands for positive training samples, and red
stands for negative training samples; regarding results, blue stands for object, and red stands
for non-object.
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B.2 Extraction of Specific Objects

The following results of specific objects are shown: a sports field, a bridge, a round-about,
and a pond.

Sports field case: The result of the first iteration indicates that river and sports field are
similar. In fact, they do visually look similar, however, semantically they are different objects.
After selecting river as negative samples in the second iteration, the user-preferred sports
fields are extracted.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Iteration 2 of training samples Iteration 2 of queried pixels Iteration 2 of the non-locality map

Figure B.5: Iterations of training samples and non-locality maps for sports field objects.
Regarding training samples, green stands for positive training samples, and red stands for
negative training samples; regarding results, blue stands for object, and red stands for non-
object.
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B.2. EXTRACTION OF SPECIFIC OBJECTS

Bridge case: A bridge is an object which is confused with roads on land; however, it refers
to bridges over water. Hence, roads need to be given as negative samples.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Iteration 2 of training samples Iteration 2 of queried pixels Iteration 2 of the non-locality map

Figure B.6: Iterations of training samples and non-locality maps for a bridge object.
Regarding training samples, green stands for positive training samples, and red stands for
negative training samples; regarding results, blue stands for object, and red stands for non-
object.

141



B.2. EXTRACTION OF SPECIFIC OBJECTS

Round-about case: A round-about contains roads with a specific shape, so normal roads
need to be given as negative samples during some iterations.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Iteration 2 of training samples Iteration 2 of queried pixels Iteration 2 of the non-locality map

Iteration 3 of training samples Iteration 3 of queried pixels Iteration 3 of the non-locality map

Iteration 4 of training samples Iteration 4 of queried pixels Iteration 4 of the non-locality map

Figure B.7: Iterations of training samples and non-locality maps for a round-about object.
Regarding training samples, green stands for positive training samples, and red stands for
negative training samples; regarding results, blue stands for object, and red stands for non-
object.
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B.2. EXTRACTION OF SPECIFIC OBJECTS

Pond case: Pond-like small objects can be extracted when enough negative samples are
given.

Iteration 1 of training samples Iteration 1 of queried pixels Iteration 1 of the non-locality map

Figure B.8: Iterations of training samples and non-locality maps for a pond object. Regarding
training samples, green stands for positive training samples, and red stands for negative
training samples; regarding results, blue stands for object, and red stands for non-object.
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