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Abstract

Multi-core processors are gaining increasing importance in safety-relevant embedded real-
time systems, where temporal guarantees must be ensured despite the sharing of on-chip
resources such as processor cores and networks-on-chip (NoC). At the same time, many
applications comprise workloads with different timing models including time-triggered and
event-triggered communication.

The first contribution is a scheduling model based on Mixed Integer Linear Programming
(MILP) supporting the allocation of computational jobs to processing cores as well as the
scheduling of messages and the selection of paths on NoC. The model supports dependencies
between computational jobs and it combines both time-triggered and event-triggered mes-
sages. Phase alignment of time-triggered messages is performed while avoiding collisions
between time-triggered messages and satisfying bandwidth constraints for event-triggered
messages. Example scenarios are solved optimally using the IBM CPLEX optimizer yielding
minimal computational and communication latencies.

Real-time communication and reliability are two important requirements in the devel-
opment of safety-critical embedded systems, which benefit from the inherent fault isolation
and temporal predictability of time-triggered networks. These systems depend on redundant
communication schedules that contain global time-based information of message transmis-
sions with conflict-free paths through the switches. In these systems, the use of redundancy
to handle communication errors requires the preallocation of communication resources. The
second contribution introduces a novel scheduler for redundant time-triggered networks that
assigns messages to redundant paths. The scheduler considers the link reliability along with
physical and logical models and produces a schedule where each message is assigned to two
different paths along the switches. We also discuss and validate the approach with results
from a prototype implementation.

SoS consist of complex interconnections of large numbers of networked embedded
systems that are characterized by operational and managerial independence of constituent
systems, geographical separation, and emergent behavior in a constantly changing environ-
ment. The support for real-time communication is crucial for many SoS application areas

such as medical, business, and military systems. The third contribution is a conceptual model
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and a scheduling algorithm for supporting real-time requirements in SoS. The search for a
feasible schedule is computed incrementally upon the introduction of new applications in
the SoS. The distributed computation of the schedule using the different constituent systems
considers the lack of global knowledge and control in the SoS, while also reducing the
overall scheduling time. Concurrent scheduling activities are supported to deal with the
uncoordinated and possibly simultaneous introduction of multiple applications.

The dissertation introduces also a simulation framework with real-time support of SoS
that supports high-level scheduling as well as low-level scheduling for each constituent
system. A time-triggered Ethernet (TTEthernet) simulation framework was extended by
adding a scheduler layer to perform incremental scheduling among Constituent System
Managers (CSMs). The simulation framework enabled the evaluation of the proposed
algorithms in terms of schedulability, run-time, and worst-case latency for time-triggered

and rate-constrained messages.



Kurzfassung

Mehrkernprozessoren gewinnen zunehmend an Bedeutung in sicherheitsrelevanten eingebet-
teten Echtzeitsystemen, bei denen trotz der gemeinsamen Nutzung von On-Chip-Ressourcen
wie Prozessorkernen und On-Chip-Netzwerken zeitliche Garantien gewéhrleistet sein miissen.
Gleichzeitig umfassen viele Anwendungen Arbeitsbelastungen mit unterschiedlichen Timing-
Modellen, einschlieBlich zeitgesteuerter und ereignisgesteuerter Kommunikation.

Der erste Beitrag der Dissertation ist ein Planungsmodell, das auf der gemischt-ganzzahligen
linearen Programmierung basiert und die Zuweisung von Rechenauftrigen an Prozessorkerne
sowie die Planung von Nachrichten und die Auswahl von Wegen auf NoCs unterstiitzt.
Das Modell unterstiitzt Abhédngigkeiten zwischen Rechenjobs und kombiniert sowohl zeit-
gesteuerte als auch ereignisgesteuerte Nachrichten. Die Phasenausrichtung zeitgesteuerter
Nachrichten wird durchgefiihrt, wihrend Kollisionen zwischen zeitgesteuerten Nachrichten
und die Verletzung von Bandbreitenbeschrankungen fiir ereignisgesteuerte Nachrichten ver-
mieden werden. Beispielszenarien werden optimal mit dem IBM CPLEX-Optimierer gelost,
wobei minimale Rechen- und Kommunikationslatenzen garantiert werden.

Echtzeitkommunikation und Zuverldssigkeit sind zwei wichtige Anforderungen bei der
Entwicklung sicherheitskritischer eingebetteter Systeme, die von der inhdrenten Fehlerisolierung
und zeitlichen Vorhersagbarkeit zeitgesteuerter Netzwerke profitieren. Als Grundlage fiir
Fehlertoleranz benotigen diese Systeme auflerdem redundante Kommunikationspline, die
globale zeitbasierte Informationen von mehrfachen Nachrichteniibertragungen mit konflikt-
freien Pfaden durch die Switches enthalten. In diesen Systemen erfordert die Verwendung
von Redundanz zur Behandlung von Kommunikationsfehlern die Vorbelegung von Kommu-
nikationsressourcen. Der zweite Beitrag der Dissertation stellt einen neuartigen Scheduler
fiir redundante zeitgesteuerte Netzwerke vor, der Nachrichten redundanten Pfaden zuweist.
Der Scheduler beriicksichtigt die Verbindungszuverlédssigkeit zusammen mit physischen und
logischen Modellen und erstellt einen Zeitplan, bei dem jede Nachricht zwei verschiedenen
Pfaden entlang der Switches zugewiesen wird. Wir diskutieren und validieren den Ansatz
mit den Ergebnissen einer Prototypimplementierung.

Systeme von Systemen (SoS) bestehen aus komplexen Zusammenschaltungen einer

groflen Anzahl von vernetzten eingebetteten Systemen, die durch betriebliche Unabhiéngigkeit
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von Teilsystemen, geografische Trennung und emergentes Verhalten in einer sich stindig
verdndernden Umgebung gekennzeichnet sind. Die Unterstiitzung fiir Echtzeitkommunika-
tion ist fiir viele Anwendungsbereiche wie medizinische, geschiftliche und militédrische
Systeme von entscheidender Bedeutung. Der dritte Beitrag der Dissertation ist ein konzep-
tionelles Modell und ein Planungsalgorithmus zur Unterstiitzung von Echtzeitanforderungen
in SoS. Die Suche nach einem realisierbaren Zeitplan wird schrittweise nach der Einfithrung
neuer Anwendungen im SoS berechnet. Die verteilte Berechnung des Zeitplans unter Ver-
wendung der verschiedenen Teilsysteme beriicksichtigt den Mangel an globalem Wissen und
Kontrolle im SoS, wihrend gleichzeitig die Gesamtplanungszeit verringert wird. Gleichzeit-
ige Terminierungsaktivititen werden unterstiitzt, um die unkoordinierte und moglicherweise
gleichzeitige Einfithrung mehrerer Anwendungen zu bewiltigen.

Die Dissertation stellt auch ein Simulationsframework mit Echtzeit-Unterstiitzung von
SoS vor, das sowohl die High-Level-Planung als auch die Low-Level-Planung fiir jedes
Teilsystem unterstiitzt. Ein Simulationsframework fiir zeitgesteuertes Ethernet (TTEthernet)
wurde um eine Scheduler-Schicht erweitert, um eine inkrementelle Planung unter Constituent
System Managern (CSMs) durchzufiihren. Das Simulationsframework erméglichte die
Evaluierung der vorgeschlagenen Algorithmen hinsichtlich der Planbarkeit, der Laufzeit und

der Worst-Case-Latenz fiir zeitgesteuerte und ratenbeschriankte Nachrichten.
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Chapter 1
Introduction

The advances of the semiconductor industry resulted in a trend towards multi-core processors
in safety-critical real-time systems. The performance improvement of single-core processors
is roughly proportional to the square root of the increase in the number of transistors, while
multi-core processors promise a linear performance gain [BC11]. The required parallelism of
the application software is common in most embedded systems, where numerous concurrent
activities are required such as sensing, control, actuation and diagnostic functions.

A major challenge towards the use of multi-core processors in real-time systems is the
temporal interference between cores. Cores require access to shared resources such as
input/output devices, external memory, and the on-chip interconnect. The dynamic resolving
of this resource contention significantly complicates Worst-Case Execution Time (WCET)
analysis and results in pessimistic upper bounds of execution times [ABD " 13]. Experimental
evaluations have shown that the WCET on a commercial off-the-shelf (COTS) multi-core
processor can be multiple times higher than the WCET of the same application on a single
core without other interfering cores [NP12].

At present, two different approaches are perceived to enable the use of multi-core pro-
cessors in safety-critical real-time systems. Firstly, development methods for deploying
COTS multi-core processors in safety-relevant systems have been introduced, e.g., by per-
forming probabilistic WCET analysis [KQA " 14] and randomization techniques [Dav13].
Secondly, several researchers propose multi-core architectures targeted towards temporal
predictability, whereas COTS processors for consumer applications are optimized for average
execution times. These real-time architectures are based on Time-Triggered Network-on-
Chips (TTNoCs) with short and predictable WCET. Examples are the GENESYS MPSoC
using the time-triggered Network-on-Chip (NoC) [OKP10], COMPSoC with the AEthereal
NoC [GAC " 13] and PARMERASA [UBG " 13].



Likewise, many distributed embedded systems are based on multiple clusters and time-
triggered networks with complex topologies. Examples are electronic systems in industrial
control, the automotive domain and avionics. In these systems, a large number of end-
systems is required, which are connected to switches using stars while switches themselves
are interconnected using different topologies [DT03], [DYNO3a]. Furthermore, there is a
trend to combine complex network topologies with different timing models including rate-
constrained and periodic communication. Examples are large-scale systems based on Time
Sensitive Networking (TSN) [[EE15b] and Time-Triggered Ethernet (TTEthernet) [AS611].

The TTNoCs in multi-core architectures as well as in distributed embedded systems
depend on scheduling and allocation algorithms in order to guarantee that the communication
and computational activities meet the deadlines. In case of NoCs using Time-division
Multiple Access (TDMA), conflict-free sending slots need to be assigned to the message-
exchanges between the cores. For event-triggered communication activities, worst-case
delays imposed by competing messages with given predefined minimum interarrival times
need to be analyzed.

In general, scheduling and allocation techniques from the area of distributed systems
cannot directly be applied to multi-core architectures due to differences between on-chip
and off-chip networks. These differences include the differences in the network topologies
(e.g., regular distributed topologies vs. customized on-chip topologies), different routing
protocols (source-based vs. distributed routing) and control schemes (e.g., granularity of
communication, interleaving of virtual networks).

In order to ensure reliability in time-triggered networks, there should be a mechanism
to guarantee the timely message delivery in the presence of communication link faults.
Generally, most of the common faults can be masked using redundancy techniques [BK00].
Depending on the system type, there are two main techniques to overcome communication
errors: temporal and spatial redundancy [NSL.O9]. The first technique transmits messages
over the same link in different time intervals, while the second method sends the message
copies through different links.

Furthermore, the field of embedded systems is faced with the trend of an increasing inter-
connection of independently developed embedded systems to each other and to the cloud. The
resulting Systems-of-Systems (SoSs) are networked together for a period of time to achieve
a certain higher goal [Jam09]. Examples of SoSs include smart cities [ZBC " 14], intelligent
factories [Jaz14] and integrated healthcare systems [WCBMO7]. SoSs are characterized by
operational and managerial independence of constituent systems, geographical distribution,

emergent behavior and evolutionary development processes [Mai98]. In addition, many SoSs
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depend on support for stringent real-time requirements for time-critical application services.
Examples are medical monitoring and telemedicine in healthcare systems.

Real-time support in SoSs is an open research challenge due to the lack of central control
as well as the evolving and dynamic nature of the interactions between the constituent
systems. In monolithic systems, the dynamic introduction of new applications is performed
using schedulability tests in order to ensure that accepted applications meet their real-time
requirements and new applications do not affect existing ones.

1.1 Research Scope

This thesis presents time-triggered scheduling models and optimal scheduling algorithms
that support real-time and reliability requirements for NoCs as well as SoSs. This thesis
addresses time-triggered systems, because the temporal interference between the cores
of event-triggered multi-core processors significantly complicates the analysis of WCETs.
For example, due to the interference at the level of input/output devices, external memory
and on-chip interconnects, event-triggered multi-core processors are not recommended in
safety-critical avionic systems [CASTCAT16].

Time-triggered networks exhibit a predictable temporal behavior of communication
systems as well as fault containment where end-systems are working based on a permitted
behavior with respect to a global time base. The challenge is how to guarantee the timely
message delivery in a multi-hop time-triggered networks with the presence of communication
link faults. Moreover, some applications have event-triggered communication in addition to
time-triggered, which requires minimizing the end-to-end delay of event-triggered messages
while ensuring the timing requirements for time-triggered messages. Previous research work
either presented temporal redundancy mechanism which requires schedule change when a
message dropped or did not introduce a complete model that provides a reliable schedule;
i.e., including job allocation, precedence constraints, and link failure.

The end-to-end communication with real-time requirements in SoS imposes a number
of challenges such as managerial independence of constituent systems, emergent behavior,
and evolutionary development processes. The scheduling of these large-scale networked
embedded systems requires a decentralized algorithm in which each constituent system is
only aware of its own resources at the same time the introduction of new applications requires
a model that considers the allocation of reserved resources for the previous applications in

order to avoid resource contention with the new applications to be scheduled.
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1.2 Thesis Contributions

The scientific contributions of this thesis beyond the state of the art are as follows:

1. Scheduler for Distributed Systems with Time-Triggered Networks: We introduce a
system model for distributed systems deployed with time-triggered networks that
supports time-triggered and event-triggered communications. The system model is
mapped to a Mixed-Integer Linear Programming (MILP) problem for optimizing the
allocation and scheduling of computational and communication activities. Constraints
ensure correct allocations based on a given distributed system architecture and applica-
tion model (e.g., dependencies between communication and computational activities,
limited connectivity between routers). The MILP problem also expresses real-time

constraints and avoids collisions between time-triggered messages.

2. Extension of Time-Triggered Networks scheduler for reliability: We extend the
scheduler model from (1) to optimize the reliability as part of the objective func-
tion. This is done by generating redundant messages each with different paths. As a
consequence, communication reliability is improved compared to the failure rates of

individual communication links.

3. Scheduler for SoSs with real-time requrements: We presents an SoS architecture
with support for real-time requirements based on managed traffic and dynamic configu-
ration. Each constituent system is equipped with a Constituent System Manager (CSM),
which not only configures the local communication networks within the constituent
systems but also interacts with the CSMs of other constituent systems and the backbone
infrastructure of the SoS to establish resource reservations. This is done by formulating
an incremental, distributed and concurrent scheduling problem for the CSMs. The
computed schedules lead to resource reservations for time-triggered communication

and computational activities.

1.3 Thesis Structure

The remainder of the dissertation is structured as follows.

Chapter 2 contains the main concepts and terms that are used throughout the dissertation.
First, it outlines the background of real-time system focusing on distributed systems explain-
ing their timing models and their main classifications. Then, an introduction on real-time
scheduling problem is introduced with the focus on linear programming method to solve such

problems. After that, the concept of dependability and its main classifications is explained
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followed by an introduction on the fault hypothesis concept. Finally, an overview of SoS
with its main characteristics is presented.

Chapter 3 starts with the classifications of scheduling algorithms and followed by an
overview of the state of the art in the scheduling of distributed systems. Afterwards, the
research gaps in the state of the art are outlined with the proposed solutions.

In Chapter 4 the system model for safety critical embedded systems based on multi-core
architecture is introduced. The introduced model is then mapped into a scheduling model
where jobs are mapped to end-systems and messages of different criticality are optimally
scheduled. Finally, example scenarios and optimization results are presented.

Chapter 5 provides an optimized model presented in the previous chapter where the search
space of the model is reduced and consequently scheduling execution time is less compared
to the previous model. After that, the reliability concept in time-triggered embedded systems
is highlighted focusing on the parallel-series model as a redundancy technique. The explained
model is then mapped into a scheduling model that integrates a redundant model for safety
critical embedded system based on multi-core architecture. The proposed model is then
evaluated using example scenarios.

Chapter 6 presents a conceptual model of an SoS. Based on the described model, a
scheduling model for an SoS architecture is explained based on incremental, distributed,
and concurrent scheduling principles. The proposed model is then formulated and evaluated
using example scenarios.

Chapter 7 describes a simulation framework for SoS model to validate the previously
described SoS scheduling model. It starts with a detailed description of the building blocks
in an SoS simulation framework. Then, a simulation tool chain is presented which consists
of the main processes of the simulation framework. After that, example scenarios and
simulation results are presented using OPNET simulation. Finally, the previously described
SoS building blocks are extended where the SoS scheduling model is integrated inside the
end-system process model of the simulation.

Chapter 8 concludes the dissertation and summarizes the main outcomes of the contribu-

tions presented in the previous chapters.



Chapter 2
Concepts and Terms

This chapter provides definitions and background highlights about the main concepts and
terms that are used throughout this dissertation. It starts with the fundamental concept of
real-time system including its important characteristics and its main components. Then, an
overview of the basic principles of a distributed real-time system is presented explaining its
timing models in addition to its significant classifications. After that, a general review about
the timing concept in real-time system followed by a brief notion about real-time scheduling
and linear programming. Next, the attributes and means of the dependability concept are
outlined with a background about the fault-hypothesis. Finally, definitions and a quick review

of the term SoS are given highlighting its main characteristics.

2.1 Real-time Systems

A system is a collection of dependent components that interact to produce a desired emergent
behavior. The functionalities of a system depend on the structural parts of their components,
connections and relationships between the interacting components, and the behaviors of the
overall system.

An embedded system is a combination of hardware and software which is designed to
accomplish a particular task or several tasks. There are many definitions for embedded
systems. [Kam!l1] defined an embedded system as a system that has two main components;
particularly computer-hardware and embedded software that are combined together for a
specific application or part of a larger system. In another definition by [Shi09], an embedded
system is a combination of special-purpose hardware and embedded software, that may
consist of electro-mechanical parts, which is designed to perform a specific function.

Real-time systems have a number of characteristics that are different compared to other

computer systems. The correctness of real-time systems does not only depend on the
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delivery of the logical results of computation but also on the time at which these results are
delivered [Sta88], [Kop!1]. The important characteristic of these systems is the real-time
operation which is defined by the German industry standard DIN 44300 [Kav92] as ‘the
operating mode of computer systems in which the programs for the processing of data
arriving from the outside are permanently ready, so that their results will be available within
predetermined periods of time; the arrival times of the data can be randomly distributed or be
already a priori determined depending on the different applications’.

A real-time application is composed of a set of tasks that have different levels of criticality.
The consequence of missing deadlines in hard real-time tasks is catastrophic and may results
to deadly results. On the other hand, soft real-time tasks can miss deadlines without severe
damage and the system still work correctly [MJ95].

A system that consists of set of job tasks, J = {j1,J2,...,jn} Where their finish times are
F={f1,f2,...,fn} consecutively is said to be real-time iff there exists at least one job j;
relates to J in which its execution should not be more than the given deadline d;; i.e., f; < d;

To better understand the concept of real-time system, consider the example of a nuclear
power plant monitoring system, where the nuclear core temperature and pressure are continu-
ously monitored by the sensors of a real-time control system. Based on periodic readings
from the sensors, a coolant is fed to keep the nuclear core below a certain temperature while
controlling the pressure inside the reactor using a pilot-operated relief valve (PORV).

As illustrated in the above example, a real-time system changes as a function of physical
time. Generally, a real-time system can be decomposed into a set of self-contained clus-
ters, namely the computational cluster and its environment, such as controlled cluster and
operator cluster as shown in Figure 2.1. In the nuclear plant monitoring system example,
the temperature and pressure are part of the controlled cluster, the system that monitors the
readings of pressure and temperature and invokes real-time actions is the computational
cluster, and the operator cluster is represented by the observer who keeps track of the readings
and actions taken by the system. Thus, a real-time computational cluster must analyze the
input taken from the controlled cluster and react within a specified time interval dictated by

its environment.

2.2 Distributed Real-time Systems

A distributed system is defined by [CDKO05] as a collection of networked computers, in
which each computer consists of hardware and software components, that communicate and

coordinate together by using message transmissions. Another definition of a distributed
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system by [Tan95], is a collection of autonomous computers that collaborate together to give
the perception of a single system.

A distributed real-time system performs activities that have specific time bounds. Hence,
the difference between distributed real-time systems and ordinary distributed systems is the
time bounds of the performed activities.

Distributed real-time systems interact with the environment through application tasks
that perform activities. This is realized by reading the received data form sensors and
consequently reacting by means of actuators. In order to achieve the time bounds of the
aforementioned activities, both processing and communication events associated with those
activities should be constrained in time domain by means of task and message scheduling
2.5.

2.2.1 Timing Models in Distributed Real-Time Systems

Due to many different and partially contradicting requirements in embedded systems, multiple
timing models exist for building a communication system. Well-known trade-offs are
predictability versus flexibility or resource adequacy versus best-effort strategies. According

to these requirements, we distinguish between two types of communication networks [Edi12]:

* Time-triggered communication of messages ensures predictability and resource ade-
quacy by a priori scheduled transmission times of periodic messages. This transmission
is characterized by a period and a phase with respect to a global time base. By dedi-
cating a priori defined bandwidth to time-triggered messages, timely delivery of all
messages is guaranteed. Time-triggered NoCs (e.g., TTNoC [Pau(08]) are beneficial in
safety-critical systems, because they help in managing the complexity of fault-tolerance
and analytical dependability models. The static schedule of a time-triggered system
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maximizes predictability, while the schedule in an event-triggered network unfolds
dynamically at run-time depending on the occurrence of events.

* Event-triggered communication supports the transmission of messages that are trig-
gered by the occurrence of significant events in the environment or inside a core. For
example, a core requests the transmission of a message whenever an interrupt arrives
from a sensor. We can distinguish between two types of event-triggered messages:
rate-constrained and best-effort messages. Rate-constrained communication is used
by applications with less stringent timing requirements, compared to time-triggered.
These messages have sufficient bandwidth allocation for each transmission with de-
fined limits for delays and temporal deviations. The arrival times of rate-constraint
messages are not specifically known but they have minimum time intervals between
consecutive instances and it is called the Bandwidth Allocation Gap (BAG). The
best-effort transmission of messages there is no guarantee whether or when the mes-
sage will arrive at the destination where they are transmitted during the idle periods
where no time-triggered nor rate-constrained messages are being transmitted. Priorities

determine how contention with other event-triggered messages is resolved.

Time-triggered and rate-constrained messages have unique identifiers called Virtual
Links (VLs) which are virtual transmission channels that make them known while they
are transmitted through the network. The communication in TTEthernet is based on VLs
where each defines the necessary reserved resources of one message for end-to-end trans-
mission [SAE]. In other words, VLs define the bandwidth allocation of the communication
network in order to provide certain level of temporal message delivery.

Event-triggered networks provide flexibility and high resource utilization and suit non-
critical applications very well. However, there are some NoCs such as AEthereal [GDRO5]
that support both event-triggered and time-triggered communication. AEthereal supports both
guaranteed services based on TDMA as well as event-triggered Best Effort Services (BESs).

Guaranteed services need resource reservations in order to increase resource utilization.

2.2.2 Classification of Real-time Distributed Systems

Real-time systems can be classified according to [Kopl1 1] from different perspectives. In
this thesis, three main important classifications are defined in this subsection. Based on
the laxities of tasks and severity of consequences of missed deadlines, real-time systems
can be classified into hard real-time and soft real-time systems. Laxity is the amount of
time tolerated by a task while still meeting its deadline and avoiding severe consequences.

Hard-real-time systems can also be classified according to how they react to failures. These
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classifications are fail-safe and fail-operational systems. In addition, real-time systems can
be classified based on the triggering mechanism for activities, which can be time-triggered or

event-triggered.

2.2.2.1 Hard Real-time versus Soft Real-time Systems

Hard real-time systems have strict timing constraints and a temporal failure of a critical
service can lead to deadly results, human life loss, high economic loss, or extensive envi-
ronmental damage. These systems have little laxity and provide full deadline compliance.
Systems that incorporate this feature are called safety-critical systems. These systems require
predictable, reliable, and real-time communication between the end-systems to ensure safety
and reliability. These systems are found in many domains such as military applications,
automotive applications, and flight control applications.

Soft real-time systems have less stringent timing constraints in which temporal failures
do not lead to catastrophic results, but result in performance degradation. They have greater
laxity and can tolerate certain amounts of deadline misses. In other words, the usefulness of
the result is degraded as a consequence of deadline misses. Examples of these systems are

multimedia applications.

2.2.2.2 Fail-safe versus Fail-operational Systems

A fail-safe system has two important characteristics: high probability of error-detection and a
pre-determined safe state. When the system detects a component failure, it forces the system
to a safe state to prevent damage. For example, some machines are designed to switch off
operation if they detect a component failure.

A system that must continue to provide an acceptable level of services even in the
occurrence of failures in order to avoid a catastrophe is called a fail-operational system.
These systems require fault-tolerance mechanisms to mask component failures. For instance,
computer-based flight control systems are designed with redundancy so that if one fails the

other system continues operation to avoid an airplane crash.

2.2.2.3 Time-Triggered versus Event-Triggered Systems

Time-triggered systems depend on interrupts triggered by a periodic real-time clock for the
communication and processing activities. A time-triggered schedule contains information
about the real-time instances for every system activity, such as initiation of a job execution or
message transmission. Distributed real-time systems must have a global time base where the

clocks of all nodes are synchronized.



2.2 Distributed Real-time Systems 11

On the other hand, event-triggered systems perform communication and processing
activities based on control signals created by events. These events are initiated either inside
the computer system (e.g., task completion) or outside the computer system (e.g., message

receipt).

2.2.3 Timing Concepts

Most hard real-time systems are based on periodic tasks which are invoked after fixed time
intervals [Kop11]. The attributes of these periodic tasks must be known a priori, such as
period, deadline, and required resources [HS97]. On the other hands, there are sporadic tasks
where the invocation times are unknown but they have known inter-arrival times. The third
type of tasks is called aperiodic and it has neither invocation times, nor inter-arrival times.

The release time is the instant of time at which a task becomes ready for execution [But! 1]

The execution time, also called computation time, is the time required by the processor
for executing the task without interruption [Butl 1]. The estimation of the execution time
depends mainly on system resources and inter-task dependencies.

Real-time systems perform computational and communication activities with temporal
constraints that must be met in order to ensure their desired behavior. A temporal constraint
of a real-time activity is called a deadline, which denotes the latest point of time when the
system should produce a correct result.

In order to guarantee the deadlines of all real-time tasks, the maximum duration latency of
all computation and communication activities in all components of a real-time system must be
known a priori. A WCET is defined as the maximum latency required between task initiation
and task termination. Also, a Worst-Case Communication Time (WCCOM) is defined as the
maximum latency required between a sending action and the receipt action [Kop!1].

The end-to-end delay of a message in a distributed system is the duration between the
time the message is injected by the sender component till the delivery at the destination

component through multiple hops along routers and communication links.

2.2.4 Precedence Constraints

Certain applications consists of jobs that respect precedence relations that describes the
execution order. These jobs cannot be executed in random order and have to start their
execution after the completion of all its predecessor jobs. The precedence relations are
described by using a Directed Acyclic Graph (DAG) where jobs are represented by nodes
and precedence relations by arrows [Butl 1]. A directed path from node .J, to node .J,, means
that job .J, is a predecessor of job J;, and can be described by the notation J, < J;.
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The precedence constraints among three jobs is illustrated as a DAG in figure 2.3. The
Job J; is the only job that does not have predecessors and it can start execution first. The
second job Jo can start execution only when job .J; is completed, whereas .J3 must wait for

J1 and Jo to complete.

2.2.5 Real-time Scheduling

The solution of a scheduling problem of a set of tasks requires an ordered list according to
which the tasks are to be executed where a number of constraints are satisfied. Throughout
this thesis, the scheduling problems are represented by a set of jobs J = j1,72,...,J, and
a set of End-systems (Processing machines) P = p1,p2,. .., pn that are used to process the
jobs. The solution of the scheduling problem is called scheduling which is related to the
assignment of End-systems from the set P to jobs from .J so that all jobs are successfully
completed under certain dependent constraints. In our work, it is assumed that each job is to
be processed by at most one End-system at a time and each End-system can only process one
job per unit of time.

The solution of the scheduling problem is to find out a schedule for the set of given jobs,
where a message schedule is incorporated that guarantee the requirements of the planned
real-time system by satisfying the reliability and predictability characteristics of the time-
triggered network. A schedule need not to be only valid but feasible and in best cases optimal
is given. A valid schedule for a set of jobs considers exclusive job assignments to End-
systems, satisfying all precedence constraints, and guaranteeing inter-task communication
by message transmission according to precedence dependencies. A valid schedule is said
to be feasible only if the time constraints of the respective jobs are met; i.e., arrival and
deadline of each job. An optimal schedule is the best feasible schedule according to some
measures [Mal09]. For example, if the objective of a scheduling problem is to minimize the
end-to-end latency of the overall jobs, the optimal schedule is the one that has the minimal

end-to-end- latency.

2.3 Linear Programming

Linear Programming (LLP) problems contain a set of unknown quantities to be optimized
called decision variables. These variables are subject to certain requirements and restrictions
by means of constraints. Each constraint requires that a linear function of the decision
variable is either equal to, not less than, or not more than, a scalar value. The quality of

the variables to be optimized is assessed by a linear function, which is called an objective
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function. The objective function is either a minimization or a maximization linear function.
In MILP, some, but not all, variables are restricted to be integer [Baz92]. LP model is
used to model different types of problems, such as routing, scheduling, and assignment.
Various industries make use of LP models including transportation, telecommunications, and
manufacturing.

In general, a linear programming problem can be represented as:

minimize /maximize cyxy+coxa+...+cpry

T1T2..Tn
subject to a1z +apre+...+apr, (<,=0r>) b
a1+ agere + ... +agpry, (<,=,0r>) by
U121 + a2+ .. F Gy, (S,=,01 >) by,
;>0 Vj=1,....,n
Values c;,Vj =1,...,n, are the objective coefficients, and denote the costs associated

with their corresponding decisions in minimization problems, or the profit generated from the
corresponding decisions in maximization problems. The values 01, ..., b,, represent amounts
of available resources (in case of < constraints) or requirements (in case of > constraints).
The amount of resources consumed or requirements needed are typically represented by the
values a;;.

A solution in which all constraints are satisfied is called a feasible solution. An optimal
solution is a feasible solution that gives the best objective function value. In case no solution
exists to an MILP problem, the MILP problem is called infeasible.

MILP problem are generally solved using branch-and-bound algorithm in which the
search space of the problem is divided into a sequence of subproblems. A MILP problem
has a search space that can be represented by a tree where its root represents the original
problem and its nodes are subproblems that are generally derived from the root.

The branch-and-bound algorithm starts with calculating the relaxation of the MILP
problem which represents the optimal solution of the relaxed MILP problem using one
of the standard linear programming techniques. The relaxation of a MILP is taking the
same constraints and the objective function in the LP model while dropping the integrality
requirements of the variables. If the optimal LP solution contains integer values for the
variables, then the optimal solution of the MILP is also the optimal solution of the relaxed
MILP problem. Otherwise, we need to perform a rounding procedure that transforms z; into

an integral value ;. The procedure divides the problem into two subproblems, called active
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nodes, where each subproblem is identical to the original subproblem with a new constraint
related to the branching variable z;: x; < |x;| in the first subproblem and x; > [z;] [ASO05].

After that, the algorithm chooses one of the active nodes and starts solving the LLP
relaxation of its subproblem. If the solution is non-integer feasible, then the algorithm
defines two new subproblems similar to the predecessor divisions. If the subproblem can
result to a solution that generates an integer, then the solution is checked for feasibility.
Infeasible solution requires the algorithm to drop the current subproblem, i.e., the active
node is fathomed. The objective value of a feasible solution provides an upper bound for the
objective value in the MILP problem. This upper bound, in case of minimization, is used to
drop active nodes that have lower bounds higher than an existing upper bound.

MILP problems are generally non-deterministic polynomial-time hard (NP-hard), in
which the solution time needed to solve a MILP problem grows exponentially with the size
problem size. The branch-and-bound algorithm has been improved to speed up the search
progress where heuristics methods are implemented for improving the upper bounds by
finding feasible solutions. Moreover, preprocessing technique reduces the problem size
and enhances the problem solvability by tightening the linear relaxation [LLG11]. Other
improvement is called cutting planes technique that adds constraints to the subproblem which
cut-off the optimal LP solution while keeping one or more optimal integer solution. Cutting
planes technique tends to reduce the relaxed feasible region and in optimal cuts part of the

MILP feasible region may be removed which results in lower bound improvement.

2.4 Dependability

One of the most important non-functional attributes of real-time systems is dependability. It
is defined as a measure of the ability of a system to provide its agreed level of service to its
users [Dub13]. Another broader definition is provided by the International Electrotechnical
Commission (IEC) IEV 191-02-03: "dependability is the collective term used to describe the
availability performance and its influencing factors: reliability performance, maintainability
performance and maintenance support performance”. According to [ALLR "01], the concept of

dependability consists of three classifications: faults, means, and attributes of dependability.

2.4.1 Faults and Fault-Tolerance

Distributed systems are used to offer a dependable service to the users of the system. When
the user does not receive the intended service, i.e., the system behavior deviates from its

intended service, a system failure event exists. Failures happen due to an unintended state
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within the system, which is called an error. An error is the result of an incorrect computation
that may be the cause of a failure if not detected before altering a service by one of the error
detection mechanisms. The main origin of errors are faults. A fault is an adverse phenomenon
that can occur in the system such as a bit change in a memory or an uninitialized variable
in software. A fault is active when it results in an error, otherwise it is dormant [Kop!1]
[ALRT01].

To better understand the above mentioned terms, consider a sensory input data, which
contains information about the current wheel speed in an ABS system of an automobile. The
DRAM memory storing this sensor data can encounter a bit flip of its cells, e.g., due to a
rowhammer effect. Assuming the memory is not protected by a parity bit the system will
produce an incorrect brake pressure value (computation error) which causes a failure that
results in a longer stopping distance of the car. However, the faulty value is called dormant if
the driver does not trigger the brake.

Faults can be classified into three main groups depending on duration, nature and
scope [Nel90]. The fault’s duration can be transient, intermittent, or permanent. A transient
fault occurs at short duration and it is non-periodic. An intermittent fault is a sporadic
occurrence of faults due to unstable component operation. A permanent fault remains a fault
and is not corrected by time due to component failures or damage. The unintended system
behavior determines the nature of a fault that may be logical or indeterminate. The error

produced by determinate faults are easy to model since they can be represented as logical
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values compared to indeterminate faults which do not have a digital representation, such
as the floating of a signal voltage between logic 1 and 0. The last classification of faults
relates to the area that is affected at the considered level of abstraction. It is classified into
two sub-categories: local faults that affect only one module and distributed faults that have

effect on more than one module and may affect the entire system [Avi76].

2.4.2 Dependability Means

The means to attain dependability are grouped into four classes [ALRI.O4]. Fault prevention
includes methods and techniques that are applied to eliminate the occurrence of faults. These
techniques represent the quality control techniques that are employed during the design phase
of hardware and software.

During system operation, faults can occur at any time in any part or component of the
system and disrupt the delivery of correct services. Fault tolerance is responsible for keeping
the system operational and providing reasonable services in the presence of faults. The
implementation of fault tolerance consists of detecting errors followed by a system recovery
mechanism that transforms the faulty state of the system into a state without errors. Fault-
tolerant systems must be based on a clear understanding of the fault assumptions as specified
by the a fault hypothesis which is covered in section 2.5.

Fault removal is a repeated process, which is performed in the development phase as
well as in the maintenance phase, consisting of three main steps: verification, diagnosis,
and correction. The first step concerns observing the system to detect any violation of the
specified verification conditions. If such a deviation exists, a diagnosis process is triggered,
which identifies the fault(s) that caused the occurrence of the detected violation. The last
step concerns performing corrective actions to eliminate faults.

Fault forecasting 1s an evaluation and estimation of the possible future occurrences of
faults with their consequences on the system behavior. It consists of a set of methods to
evaluate the system behavior regarding faults occurrences and activations. The evaluation
can be qualitative where failure types are identified and classified, or quantitative where a
study of the satisfaction of the dependability attributes is based on a probabilistic evaluation.

2.4.3 Dependability Attributes

The expected properties of the system are called the dependability attributes. There are six
major attributes of dependability: availability, reliability, safety, confidentiality, integrity,
and maintainability. The importance of each one of these attributes depends on the intended
application of the system.
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Reliability is the continuity of correct service delivery, also called up-time. It is defined
as the probability of the system to provide correct and continuous behavior during a period
of system operation. In other words, reliabilityy is a function of time and the considered
interval of time depends on the nature of the system being considered. For example, the
mission time of a spacecraft is significantly longer than the mission time of an aircraft flight.
Alternatively, unreliability is the probability of failure, which is the probability that the
system fails to deliver correct services during a time period. Safety-critical systems, such as
modern aircrafts, have failure rates in the order of 10~ critical failures per hour [Bow00].

while critical failure of a system must be infinitly avoided, sn infinite failure-free operation
of a component is impractical due to high cost [Nel90]. Systems subject to failures need
to have low repair time in order to minimize downtime. Availability is the probability that
the system is in an operational state and provides correct services when needed [ShoO1].
It is measured by the fraction of time that the system is ready to provide correct services.
Availability can be calculated based on the reliability (uptime) and the repair time (downtime)

as follows:

Uptime

- Uptime + Downtime

Compared to reliability that considers that all failures are equal, safety partitions failures
into two main groups namely: fail-safe which is a noncritical failure and fail-unsafe which
causes disastrous results. For example, an intrusion alarm system might malfunction in which
it fails to function properly in case an unauthorized access occurs (fail-unsafe), or it may
give a wrong alarm when no danger exists (fail-safe). Safety is the reliability with respect
to critical failure types [Kop11]. In other words, safety is the probability of the system to
avoid the occurrence of a catastrophic failure within a certain period of time. Safety-critical
applications, in which a failure may have catastrophic results such as human injury, life
loss, or environmental damage, demand high safety measures. Examples are trains, avionics,
medical systems, and military systems.

Security is related to the confidentiality and integrity of information. It is defined as the
ability of the system to prevent unauthorized access to data and avoid data modification
by unapproved access or component/communication error [Gas88]. Generally, security
aims to protect the system against attacks that aim to harm system component hardware,
cause information loss /damage, and disrupt services provided by the system. Most research
in the field of embedded systems focuses on protocol and communication issues in the
context of reliability and safety, while security remains an open challenge in present day of
embedded systems. The study presented by [WWP06] stated that the internal communication

connecting the embedded system components inside modern vehicles is insecure against
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malicious attacks. Moreover, these internal communication networks may even encounter
external security attacks when coupled with Bluetooth or car multimedia networks, i.e.,
Media Oriented System Transport (MOST) or GigaStar.

Maintainability is a measure of the time required to restore a system after a failure
occurrence. It is defined as the probability that the system is repaired within an interval of

time.

2.5 Fault Hypothesis

Safety-critical systems are designed based on fault-tolerant architectures. The key point for
designing a fault-tolerant architecture is the specification of a fault hypothesis. The fault
hypothesis states assumptions about the types and the rates of faults and how end-systems
may fail [OP0O6].

A fault hypothesis divides the fault-space into two partitions, namely normal faults
and rare faults. The former set contains faults that must be tolerated by the fault-tolerance
mechanisms to bring the system back into a correct state. The latter set contains faults that are
outside the fault hypothesis and are not covered by the provided fault-tolerance mechanisms.
However, a never-give-up strategy is used to bring the system back (without assurance) to its
correct state [Kop!1 1].

The principle of fault tolerance in safety-critical systems is based on the assumptions of
failure independence among redundant units [BCDV91]. A Fault Containment Region (FCR)
is defined as a set of components that operate correctly regardless of any arbitrary logical or
electrical fault outside the region [[.LH94]. According to another definition given by [Kop11],
a FCR is a set of subsystems that share one or more common resources that can be affected
by a single fault. The assumption of failure independence among these FCRs can be justified
by using independent power supplies and electrically isolated interfaces that connect these
FCRs.

Moreover, error propagation by sending erroneous messages from one FCR to another one
must be prohibited in order to prevent fault occurrence in healthy FCRs and thus disrupting
the failure independence assumption [Zur04]. Error propagation can be either in the time
domain where the send/receive instants of a message are not in agreement with the agreed
schedule, or in the value domain where a message contains incorrect data. Error detection
in the time domain can be performed by the architecture whereas the responsibility of
performing error detection in the value domain is typically within the host. To ensure that a
faulty FCR does not impact the error detection mechanism, the latter must be in different

FCRs than the message sender.
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2.6 Systems-of-Systems

A system is a set of interconnected components that interact in order to achieve a designed
service which cannot be produced by components individually. These systems are basically
managed by a central authority in which its behaviors are requested. When a number of
these systems, each operated and managed independently, interact to fulfill an integrated
overall goal, we speak of SoSs [Mai98]. This means that each constituent system in the SoS
can still operate and produce useful results to fulfill its own purpose if separated from the
SoS, while the main goal of coordinating these systems into an SoS is to deliver emergent
services. Also, the management of each system is performed by its own when it is working
independently as well as inside an SoS. The main reasons for the rising focus on SoS
are the realization of different and emergent functionality that reach beyond the capability
achieved by a single system, and the control of the complexity growth of large systems due
to continuous evolution [Kop11].

There exist several definitions in the literature of SoSs that are based on the viewpoint of
certain applications. [SJS07] defined SoSs as large-scale complex systems in which these
systems are concurrent and distributed. Another definition by [[SO15] states that a "SoS
brings together a set of systems for a task that none of the systems can accomplish on its own.
Each constituent system keeps its own management, goals, and resources while coordinating
within the SoS and adapting to meet SoS goals".
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2.6.1 Characteristics of SoS

Autonomy is defined as "the ability to complete one’s own goals within limits and without
the control of another entity" [BS09]. An autonomous system is described by [SMGO0]
as a system that can operate and provide services independently and without any form of
external help. Hence, managerial and operational independence are the main subsets of the
autonomy property. In addition, an autonomous system must react to external stimuli in order
to achieve the SoS purpose [Ze190].

Compared to the design of monolithic systems where the components can operate as
an integral part of the whole system, each system in a SoS is considered as an autonomous
system that can decide and choose to participate in a SoS. The choice to belong to a SoS and
to accept cooperation with other systems to achieve higher goals is based on the own needs
and benefits [GGS11]. Thus, the term belonging in a SoS refers to the acceptance ability and
need to make a valued contribution to the goal of the larger entity [BS09].

In order for the systems belonging to the SoS to cooperate and achieve common goals,
there should be some form of connectivity between them. The ability for a system to
connect to a SoS and stay connected during the required time period to exchange data is a
connectivity characteristic [BS09]. In other words, the connectivity property is the ability
to achieve interoperability amongst the systems forming the SoS [BS06]. The connectivity
determination for each system in an SoS, how and when interfaces and links are formed with
other systems, is based on the system’s needs.

Although autonomy refers to the capability of the connected systems to achieve a common
goal, it does not explain the number of methods and capabilities available to perform such
connections. The cooperation of these heterogeneous systems in an SoS requires a variety
of capabilities in order to survive for a long time despite the introduction of different and
emergent technologies. An SoS that has a variety of capabilities is called a diverse system
and this property increases the overall capability of the SoS achieved by autonomy, belonging,
and connectivity.

The behaviors and capabilities of a system are deliberately and intentionally designed.
However, evolving behaviors and capabilities can be developed inside the SoS based on
the other factors, such as autonomy of the related systems, belonging feature, enriched
connectivity, and diverse behavior commitment of SoS [BS06]. Emergence is a term that
refers to behaviors and services that result from the interaction of systems in an SoS and that
are not inherent in any individual system. Emergence is defined by [Jam0&] as "something
unexpected in the collective behavior of an entity within its environment, not attributed to
any sub-set of its parts, that is present (and observed) in a given view and not present (and

observed) in any other view".



Chapter 3

Related Work

Distributed systems consist of a set of end-systems that share a communication network.
Application’s tasks compete for the shared physical resources in order to deliver a specific
service of the system. Scheduling is the process of the temporal and spatial allocation of the
shared resources for tasks and messages. This chapter gives an overview of related work in
the area of scheduling algorithms.

3.1 Classification of Scheduling Algorithms

Task computations and message transmissions are the main operations that describe the
functionality of real-time systems. These activities are described in terms of a precedence
constraints graph according to which the operations need to be executed. The process of
effectively assigning computation and communication activities to shared resources, such
as CPU s and communication links, is the function of scheduling algorithms. According
to [Butl1], scheduling algorithms can be classified as follows.

Static scheduling algorithms are those in which all decisions are based on fixed parameters,
assigned to tasks before their activation [Butl 1]. Thus, static scheduling requires a priori
knowledge of all task attributes and it is considered less flexible. On the other hand, a
dynamic scheduling algorithm is based on dynamic parameters that may change over time in
the generation of scheduling decisions. This type of algorithm has the advantage of better
resource utilization and support for unpredictable events, but its runtime is higher compared
to static scheduling.

Scheduling algorithms are divided into two groups based on the time at which scheduling
decisions are made. Offline scheduling algorithms generate scheduling decisions and store
them in a dispatcher table before the system is deployed [Butl1]. The dispatcher table
contains temporal properties of all participating tasks, such as the time instants at which
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each message is injected by the sending node till it is received by the received node. Offline
scheduling is used to manage distributed applications with complex constraints where all
system activities and properties are a priori known with deterministic time bounds. The
second type is called on-line scheduling where scheduling decisions are determined at run-
time. Generally, it is impossible to design an optimal on-line scheduling algorithm since
less information and time are available, but an offline scheduling algorithm can guarantee
deadlines where optimal ordering of tasks are found [Kop11].

Preemptive scheduling algorithms use the task priority characteristic in task scheduling
where lower priority tasks can be suspended by tasks with higher priorities. This type of
scheduling is more complex and requires more resources where poorly designed preemption
strategies can lead to starvation of low priority tasks [GGLLR98]. The priorities of tasks
are determined randomly or based on the system design goal. The order of task selection
is based on the priority given either statically or dynamically depending on their informa-
tion availability. Non-preemptive scheduling algorithms are based on uninterrupted task

executions [Butl1].

3.2 Scheduling of Distributed Systems

Due to the fact that embedded systems are used for specific purposes, they are different from
general-purpose computers in terms of functionality. Consequently, embedded systems have
restricted resources (e.g., power consumption, memory size, processing speed). In addition,
embedded system users do not only expect its correct logical operation, but functions also
need to be finished in a timely manner and with high reliability. Thus, Extra-Functional
Properties (EFPs) such as reliability, energy-efficiency, and scalability have to be considered
in the design of embedded system to address the trade-off between reliability and limited
resources.

These EFPs are competing against each other. For example, a system that is designed
for best performance can have high power consumption. Also, a system which is the best
from the reliability view point tends to be the worse in terms of latency. As a consequence,
one of the main problems in the design of embedded system is to find the optimal solutions
for these EFPs in order to get the best property trade-offs. Multi-criteria optimization is
the process of fine-tuning EFPs in order to get the best solutions possible. This is done by
exploring the points in the Pareto curve [AHU], which is used to select the best property
value under other property constraints. For example, the optimization challenge is to reduce
the power consumption under a performance constraint which can be solved by finding the

Pareto curve. However, the Pareto curve is found after a full search, where all points in the
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design space have to be explored. This search process tends to be unfeasible since it needs a
long simulation time for function evaluation.

Numerous methods have been suggested to explore the system design space. The authors
in [BABY96] proposed a toolset called SimpleScalar, which consists of a number of MIPS-
based simulators for computing the influences of high level architectural trade-offs. It is
specifically designed to find the architectures of processor and memory without considering
the energy. SimplePower is suggested by [VKI"00], based on SimpleScalar to evaluate
the power of several aspects at the system-level. It computes the energy consumption
considering several aspects of memory (I-cache, D-cache, address and data busses, and
off-chip main memory) and the data path of the cores. An extension to the SimpleScalar
simulator, called Wattch, is proposed by [BTMO0] that integrates energy evaluation at the
architectural level with a good level of accuracy for processor and memory subsystems. It
is a low level estimation approach to evaluate energy consumption relating to performance
trade-offs. It also supports finding different system optimization strategies to reduce power
consumption. A framework called Avalanche, proposed by [[LH98], explores the trade-offs
between performance and power consumption for embedded systems in terms of software,
memory and hardware.

In [GV02], the authors proposed an optimization structure, called Platune, to find estima-
tions for Pareto curves without delving into the whole design space. This is specifically done
by introducing the concept of parameter independence where each space can be analyzed
separately which leads to short simulation time. However, the independencies of parameters
needs to be defined by the user using a dependency graph and not by the framework itself. An
extension to the Platune framework is designed by [PGO2] which integrates genetic algorithm
analysis for the optimization of dependent parameters. Similarly, the user needs to define the
parameters independencies using a dependency graph. The work presented in [PSZ] exploits
heuristic algorithms (i.e., Random Search Pareto (RSP), Pareto Simulating Annealing (PSA)
and Pareto Reactive Tabu Search (PRTS)) to explore the design space and to find the Pareto
curve for EFPs in short time. The analysis results showed that those algorithms minimize the
time needed to get an approximate Pareto curve up to three orders compared to a full search.
The Tri-criteria Scheduling Heuristic (TSH) is developed by [AGK 12] and creates a static
multiprocessor schedule as an output given a software application graph and a multiprocessor
architecture as inputs. The produced schedule has three optimized characteristics: small
schedule length, reliability and low power consumption. The length of the schedule is reduced
by exploiting power efficient schedule pressure as a cost function. Its reliability is enhanced
through the use of active replication of operations while the lower power consumption is

accomplished by using dynamic voltage scaling.
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The work done by [Ram90] presents the allocation problem as a global view, where the
allocation algorithm aims to schedule periodic tasks to processors while taking into account
precedence constraints. The proposed static algorithm assumes a TDMA protocol for a shared
broadcast bus where all processors are connected to. Heuristics are used to allocate tasks to
processors according to their communication overhead. Tasks which communicate with each
other are moved to the same processor and preventing task allocations to non-schedulable
processors.

[ACPO4] explores the use of genetic algorithms to resolve the mapping problem. It
finds an accurate approximation of the Pareto-optimal front of the mappings that minimize
the amount of communication delay and the average power consumption. It is based on
the SPEA?2 algorithm [ZL'TO1] for mapping space exploration. The mapping solution is
evaluated using a NoC simulator that shows the performance to be optimized and determines
the fitness of the provided solution. The above two steps are iteratively executed till a stop
criterion is met. The main drawback of this approach is the time required by the simulator to
evaluate each solution where a high confidence on average delay and power consumption
takes a long time by the simulator.

An automatic schedule generation algorithm for tasks and messages is introduced
by [Far06]. The algorithm is based on the so-called Logical Execution Time (LET) ab-
straction, which abstracts from physical execution time and thereby from both the underlying
execution platform and the communication topology. The idea of LET follows a timed-
model; in which computational and communication activities are independent of the physical
execution times and take a fixed amount of time. Thus, the temporal behaviors of a given
program, such as task initialization and computational results, are determined previously and
independent from the executing platform. This concept provides determinism and predictabil-
ity where the program behavior depends only on the task property and the environment.
The scheduling of tasks and messages is done in two steps. First, the messages are sched-
uled based on a heuristic algorithm called Latest Release Time (LRT). Then, the tasks are
scheduled using Earliest Deadline First (EDF) with a precedence constraint algorithm. Task
scheduling is based on the timing constraints of the corresponding messages. The messages
are scheduled as late as possible in order to guarantee that producer task will finish before the
corresponding message is sent on the bus. The LET concept introduces a so-called unit-delay,
in which dependent tasks exchange information only at the LET boundaries and previous
execution values remain in the outputs between LET.

An online scheduling algorithm for time-triggered messages is proposed by [MVPA13]
that takes advantage of temporal redundancy to mask message errors due to transient faults.

The proposed scheduling algorithm is in contrast to offline scheduling algorithms that always
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assume worse-case scenarios and consume bandwidth independently of the actual occurrence
of errors. The proposed technique only consumes bandwidth when error occurs. The devised
mechanism takes advantage of distinguishing features of the Flexible Time-Triggered (FTT)
CAN protocol that has a built-in omission detection mechanism. In order to combine
Event-Triggered (ET) and time-triggered communication with temporal isolation, the FTT-
CAN protocol uses the dual-phase Elementary Cycle (EC) that is composed of two windows.
Moreover, it relies on a periodic server to reschedule error messages which are then integrated
into the time-triggered traffic. Although the implemented mechanism offers error recovery
using much less extra bandwidth than typical techniques, it fails to reschedule messages that
have short deadlines because the rescheduling process takes a considerable amount of time.

Other research generates a reliable time-triggered-message schedule called (&, [)-resistant
schedule, based on the assumption of the degree of the link failures in the network [AGRN16].
A schedule is (k, [)-resistant if at least | messages are delivered by the global deadline when
k edge crashes occur in the network. The problem was solved using an Satisfiability Modulo
Theories (SMT)-based solver. It uses a CEGAR-like procedure to find a (k, [)-resistant
schedule. First, it randomly selects the source and destination nodes for each message
taking into account that the selected nodes are different. Then, it peaks an arbitrary message
and finds the shortest path between the source and destination nodes by running Dijkstra’s
algorithm. After that, it computes second paths that represent the alternatives for the first
path. This is done by having for each traversed node v on the first path, a second path that is
the shortest path from v to the destination node while avoiding heavily loaded edges.

A simultaneous co-synthesis of network and application schedules with preemptive time-
triggered tasks communicating in a switched time-triggered network is addressed in [CO14].
The scheduling constraints are formulated using SMT and solved using a SMT solver called
Yices v2.2.1. The algorithm defines two types of tasks to be scheduled, communicating
tasks that have dependencies and free tasks that do not require any network messages. An
Incremental scheduling is performed where only communicating tasks are scheduled and
then adding the free tasks to the end-system and checking whether the resulting model
is schedulable in terms of end-system utilization. The communicating tasks are allocated
to randomly selected end-systems. If the resulting schedule is unfeasible, the problem is
backtracked and the increment size is increased by adding those free tasks that result in
unfeasibility. The procedure is incrementally repeated until either a solution is found or all
the free tasks have been added to the scheduling problem.
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3.3 Research Gap in the State of the Art

A scheduling model for multi-core architectures based on network on chip as well as for dis-
tributed systems with support of real-time characteristics, fault-tolerance, and different timing
models is missing in the state of the art. Previous research works outlined in section 3.2
either provide scheduling model for time-triggered communication without considering rate-
constrained communication or their models do not support fault tolerance of communication
links.

To the best of our knowledge, a scheduling model for SoS architectures that support
real-time communication is still missing due to the lack of central knowledge and control.
Also, the overall computation for the whole constituent systems of the SoS creates another
issue that requires a huge memory size and processing time.

Moreover, a simulation framework for validating SoS models is not available in the state
of the art. Because of its dynamic nature of interaction between the constituent systems, it is
impossible to validate SoS scheduling model in real networks.

This dissertation advances the state of the art by introducing a scheduling model for a
networked multi-core architecture that supports real-time communications as well as rate-
constraints. Moreover, the proposed model finds optimal end-to-end paths of application
communications while taking into account collision avoidance and precedence constraints
of dependent jobs. Moreover, a fault tolerance technique is integrated into the introduced
model to maximize the reliability of message delivery. This is done in the form of redundant
messages where each message is sent through different paths in which their communication
links have good reliability.

Furthermore, the proposed scheduling model is further extended to allow scheduling of
SoS applications. A so called incremental, distributed, and concurrent scheduling model
is proposed to schedule applications that need to be executed in a number of differently
managed constituent systems.

Finally, a simulation framework for SoS consisting of the main building blocks (end-
systems and switches) is proposed. This simulation framework is used to evaluate and
validate the scenario results of the proposed SoS scheduling model.



Chapter 4

Scheduling and Allocation of
Time-Triggered and Event-Triggered
Services for Multi-Core Processors with
Networks-on-a-Chip

This chapter proposes a scheduling model that supports different timing models and inter-job
dependency for networked multi-core chips [MOAK15]. First, a conceptual model of the
NoC architecture where its physical platform (in which network interfaces are connected to
switches) as well as logical model (in which a number of jobs have precedence relationships
in the form of message transmissions) are described. Then, an optimization model for the
scheduling problem is formulated as a MILP model. Finally, an evaluation for the presented

model is conducted and its results are discussed.

4.1 Network-on-Chip Architecture

As communication has become the bottleneck in many of today’s digital systems, the
interconnection is a dominant factor in determining performance and timeliness in real-time
embedded systems [MBO6]. In this section, we introduce the system model of a multi-core

architecture for safety-relevant embedded systems.

4.1.1 Multi-Core Platform

The bus-based architectures have been substituted by NoCs in the past decades as today’s

Socket-on-Chips (SoCs) demand more and more interconnection capacity. A typical NoC is



4.1 Network-on-Chip Architecture 29

mainly composed of the on-chip Network Interfaces (NIs) and on-chip switches. An Network
Interface (NI) serves as the interface to the NoC for the processing cores by injecting the
messages from the cores into the NoC as well as delivering the received messages from
theNoC to the cores. Switches are responsible to relay the flits — fractions of messages — from
the sender’s NI to the destination NIs. Physical links serve for the interconnection among
NIs and switches.

We can distinguish between autonomous and source-controlled NoCs. In autonomous
NoCs, the switches have their own configurations that determine the temporal control and the
distributed routing of flits. In source-controlled networks in contrast, the information about
the complete path through the network is injected alongside with the message. This routing
paradigm is known as source-based routing [DYNO3b].

An on-chip message consists of packets, each of which includes flits, typically starting
with a head flit, successive data flits and a tail flit. The head flit, in case of source-based
routing includes the complete path to the destination and in case of an autonomous network,
the head flit will include the destination address. Each flit traverses a path on the NoC starting

from the sender’s NI, taking multiple hops via switches until reaching the destination NI.

4.1.2 Topology

The number of input and output units at each switch and the connection pattern of these
units represent the topology of the NoC. We can distinguish between topology-dependent
and topology-independent NoCs. While multicore SoCs tend to use topology-independent
structures, a topology-dependent NoC offers a considerable degree of flexibility in arbitration,
routing, flow control and queue size [M. 09].

There are several well-known topologies for NoCs, each of which offer beneficial prop-
erties in different applications. For instance, n-dimensional meshes or tori, are common
examples of point-to-point NoC solutions with regularity, scalability, and conceptual sim-
plicity. Despite a relatively large diameter and average distance, regular, low dimensional,
point-to-point NoCs benefit from this cost-effective topology for regular use-cases. However,
the large diameter of the mesh has a negative effect on the communication latency. Therefore,
the Spidergon topology has been introduced [C1.M " 04] to enhance the network diameter
and consequently to offer less communication latency by offering a simple bidirectional ring
with extra cross links from each switch to its diagonally opposite neighbor. This topology
has been employed by STNoC in order to offer cost and performance enhancements and a
simple switch architecture [M. 09]. The ring topology on the other hand offers symmetry

and a low node degree at the cost of a high average distance.
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Fig. 4.1 Example NoC Topology (Mesh)

Figure 4.1 shows an example topology with a 2-dimensional n x n mesh where each
core is connected to a single switch. This topology consists of n? cores arranged in a

two-dimensional n X n grid.

4.1.3 Application and Jobs

An SoC serves as the platform for the realization of an embedded application (e.g., automotive
control functions in an in-vehicle system). We model an application as a set of jobs, which
depend on each other due to input/output relationships. Formally, the jobs are represented by
a DAG.

In this thesis we assume that each core hosts at most one job. In this way, we establish
a one-to-one mapping between the cores and the jobs. The communication between the

jobs is performed via the NoC. Each job needs to wait for the information provided by
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other jobs (located on other cores). Likewise, it needs to deliver the processed data to
other jobs via messages on the NoC. In case of time-triggered messages, the dependency
means that a job needs to have the requested data ready before the deadline defined by the
time-triggered schedule. This defines dependencies among jobs and consequently cores —
due to the one-to-one mapping between jobs and cores.

Since the NIs add the routing information to the messages, cores do not need to be
aware of the physical routes. Each message has a predefined path to the destination. Hence,
we bind messages to paths represented as predefined links. This information is part of
the configuration parameters at NIs. The time-triggered schedule as well as the temporal

characteristics of event-triggered messages will also be stored at the NIs.

4.2 Scheduling Model

This section introduces a system model for a multi-core processor deployed with a NoC for
time-triggered and event-triggered communication. We support both periodic communica-
tion with a fixed period and phase with respect to a global time base, as well as sporadic
communication with rate-constraints.

The system model is mapped to a MILP problem for optimizing the allocation and
scheduling of computational and communication activities. Arbitrary application graphs
and NoC topologies are supported in order to permit the instantiation for different processor
architectures and application-specific multi-core chips. Constraints ensure correct allocations
based on a given multi-core architecture and application model (e.g., dependencies between
communication and computational activities, limited connectivity between on-chip switches).
The MILP problem also expresses real-time constraints and avoids collisions between time-
triggered messages. Thereby, TDMA-based communication without dynamic arbitration is
supported for time-triggered messages.

In the scheduling problem, two models are distinguished. A physical model describes the
on-chip resources including the cores, the switches and their connectivity via the NoC. The
second model is a logical model of the application that defines jobs and their dependencies
based on exchanged messages. The term end-system will be used instead of core during the
remaining parts of the thesis.

Table 4.1 summarizes the constants with the associated value domains. In the physical
model, we consider a system with n nodes consisting of switches STV and end-systems ES.
The nodes are connected using bi-directional physical communication links which can be
described by a two-dimensional array C, in which the n? values of the matrix are either 0

(not connected) or 1 (connected).
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Domain | Constant name Typel/size Description
n N Number of nodes
11 ... Cip
Physical C €{0,1}mxn Node Connectivity
Cpnl - Cnn
Model ALLOC [aly ...al,)" € {0,1}" Allocability
U [u1 .. upm]" € N™ H-to-H transmission time
] N Number of jobs
N Number of messages
Logical S [s1...8m)" €40,...,7—1}" Sender jobs
di dy j
Model D Dol eqo, 1y Destination jobs
dm,1 dm.j
T [t1...tm]" € N™ Interarrival time
E le1... ej]T €N Job’ execution time
MT [mty ... mtm]T e {0,1}™ Message type

Table 4.1 Overview table with constants

The logical model comprises a set of j jobs and a set of m messages to be exchanged. The
vector .S denotes the sender job of each message. Each job can send one or more messages,
while a message is sent to only one receiving job. The input/output relationships between
jobs as imposed by the messages are captured using a two-dimensional array D. For example,
do 3 = 1 denotes that message 2 is transmitted to job 3.

Depending on the timing model, either a period and phase of a time-triggered message or a
minimum interarrival time of an event-triggered message is expressed by the timing parameter
T'. To differentiate between time-triggered and event-triggered messages, a message type
is expressed in the boolean array M T where the value of one is set for the time-triggered
messages while event-triggered messages are set to zero.

Each message requires a certain time, depending on the size of the message, to be
transmitted on one link (from one hop to another hop). Thus, every time a message is sent
from one hop to another, its time is advanced by a Hop-to-Hop (H-to-H) transmission time U
The computational time of jobs E' is the execution time needed by the receiving job before

sending a subsequent message.
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In order for jobs to be allocated to only end-systems, allocability data is defined by
ALLOC where a value of 1 is set for end-systems and 0 for switches. The maximum number
of hops a message can travel between the source and the destination is found by counting the
number of switches ST.

4.2.1 Decision Variables
4.2.1.1 Job Allocation

These variables are used to denote the allocation of jobs to nodes of the physical platform

model. The maximum value is determined by the number of nodes n.

ai

To ensure that each job is allocated to exactly one end-system, a boolean matrix ALLOC M
is used where the rows relate to jobs and columns to nodes. For example, mat3 1 = 1 means
that job 3 is allocated to node 1.

maty ... matyy
ALLOCM = | : : e {0,1}7"

matj1 ... matjy

4.2.1.2 Hop Count

A message is injected at the source end-system, where the sender job was allocated. The
message needs to be transported along one or more switches to the end-system of the
destination job. In order to express the number of visited switches for each message, the
vector hop count / is used and the maximum value of its elements denotes the critical path

length. In the absence of cyclic paths, the maximum path length is Mazpg = SW + 1.

h1
H=1|:|e{l,..Maxg}™
hm,
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4.2.1.3 Injection Time

This one-dimensional array represents the times by which the messages are injected in the
network-on-a-chip.
i1
I=|:|e{N}"

4.2.1.4 Path and Visited Nodes

To record the path between the message’s source and destination end-system, the path array
P is used. Each row represents the path of a message starting from the node which allocates
a source job to the node in which the destination job is allocated. For example, p; 3 =25
means that the third node in which message number 1 visits is node number 5. The maximum
number of nodes in a path equals the maximum number of hops along with the source
end-system.

P11 ... Plz

P=| : - i le{l.,nm™*
Pma1 -+ Pmyz

where z = Maxg + 1.
For the purpose of calculating the end-to-end latency, a matrix O is used to denote the
switches that are passed by a message. For example, 02 3 = 1 means that message 2 meets

node 3.
011 -.- Oin

Om,1 --- Omxn
4.2.2 Scheduling Constraints

This part describes the constraints that are used in the scheduling of time-triggered and

event-triggered messages.

4.2.2.1 Connectivity Constraint

The first constraint considers the path topology of the network based on the node connectivity

C'. If there is no direct connection between two nodes a and b, then the path of a message
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must not include a hop from a to b.

Vmy € {1,...m},Va e {1,...n},VB € {a+1,...,n},
Vre{l,..,.Maxg}:

Cap=0—=(r+1>hp,)

V(@ # Py VO # Py 1) A0 F Py V @ F Py 1))

4.1)

4.2.2.2 Collision Avoidance Constraint

To ensure that no collision occurs, the scheduling of time-triggered messages ensures that no
two messages are transmitted in one link at the same time. Thus, the messages should be
transmitted in different paths or one needs to be scheduled before or after the transmission of

the other one.
Vmy € {1,...m},ma € {mi+1,...m},

Vri,re € {1,....,Maxy} :

Mty = LAMty, =1

= (Pmar1 7 Pmars V Py ri+1 # Pimg,ro+1 (4.2)
V141> hy, Vo 4+1> hyp,
Vi, + (114 1)ty < imy + 72 U,

Vimy +(ra+1) - Umy < imy +71Um, )

4.2.2.3 Job Dependency Constraint

Depending on the precedence constraints between the jobs, jobs may need to wait for the
output of the transmission of other jobs before they begin transmission. This constraint
ensures that if a job sends a message m to another job that needs the output of m1 in order
to send mo, the start time of m9 must be after the end of the transmission and execution of
mi.
VYmi,mg € {1,...m},Vj €{1,....5}:

dmygji =1 A Smy =01 (4.3)

— g+ iy - Uy ey <imy)
Each message must reach the destination node within its path and the selected number of
hops.

Vmi,ma € {1,...m}, Vi1 € {1,....5},Vri € {1,...,2} :
dm,y jy =1 4.4)

- (pmlﬂ"l =aj; N1 < Py )
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Where z = Maxy + 1.

4.2.2.4 Job Assignment Constraints

These constraints ensure that each job is assigned to exactly one node (end-system). This is
done by having the sum of each row in ALLOCM, i.e., each job, equal to 1. The allocated
end-systems are stored in the allocation array A.

Vit € {Lij)
mat; =1
(E ]) (4.5)
ES
\/ (matj, r, =1Naj, =r1)
ri=1

For jobs to be assigned only to end-systems and not to switches, the following constraints
check the allocability constant (ALLOC), where nodes with a value of 0 must not be allocated
jobs. This is done by requiring the sum of the switches columns in the ALLOCM matrix to
be zero. To allow only one job to be allocated to an end-system, the sum for each end-system

must be less than or equal to one.
Vrp €{1,...,n}:

J
al,, =1 — (Z matjl,rl) <1

= (4.6)

J
al,, =0 — (Z matjw-l) =0
71=1

In order to start the path of each message with the end-system that was allocated the job,
the first node for each message path py1 1...pp, 1 1s set to the allocated node.
Vmy €{1,..m},Vj €{1,...,5}:

Smi = J1

ES
— \/ (ajl =711 APmy,1 =71

ri=1

4.7)
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4.2.2.5 Message Deadline Constraints

These constraints define the restrictions for the end-to-end message durations in order to
ensure the temporal delivery of strictly periodic behavior of time-triggered messages as well
as the less stringent rate-constrained messages. This is done by evaluating the end-to-end
latency in addition to the execution time in the message sink job where the result must not

exceed the message period.

Vmy € {1,...m}:
vjl € {ij}

(4.8)
dmhjl =1

— iy + Ry - Uy +ej, < tml)

4.2.2.6 Bandwidth Constraints

The bandwidth constraints avoid discarding of messages due to insufficient bandwidth and

buffer capacity of switches. First we need to express the visitation of nodes by messages:

Ogy-
Vr1 €{1,...Maxg},Ymy € {1,...,m},Vra € {1,...,n}:

(re =pmr AT1 < hpm,) (4.9)

— Omyry =1

Vmy €{1,...m},Vr1 €{1,...n}:

hm
( Vo (n #pml,m)> (4.10)

ro=1

— Omyq =0

Then, the bandwidth at each node is determined by summing up the utilization (i.e., ratio
of transmission time and minimum interarrival time) imposed by each message visiting the
node:

LY
vrr €{l,.on}t: | D T om . <1 4.11)

mi1=1 tml
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4.2.2.7 Other Constraints

A value of 0 is required for all elements of the path after the hop count in order to ensure that

the path finishes at the destination node.

Vmy €{1,...m},Vr1 €{1,...,2}:
1 > hipy 4.12)

— Pmir — 0

where z = Maxg + 1.
In order to reduce scheduling time, loops should be avoided in each message such that a

node is not visited more than once in the search process.

Vmy € {l,...m},Vr1 €{1,...,Mazxg}:
himy (4.13)
\/ (pm1,7“1 #pml,rg)

ro=r1+1

4.2.3 Objective Function

The objective is to minimize the maximum transmission time over the time-triggered mes-
sages (i.e., minimization of critical path). This is done by first finding the transmission times
of each time-triggered message, expressed as the sum of the injection time 7,,, and the number
of hops h,,, multiplied by the transmission duration of a message w,,. Then, the objective
function minimizes the highest value among all these messages.

Vmy € {1,...,m} :
mt[mi] =1— CP[mi]| = (ipm; + himy - Umy) (4.14)

minimize max(CP)

4.3 Graph Generation

The scenarios generated in the analysis of the work in this thesis are based on the Stanford
Network Analysis Platform (SNAP) library which is widely used in numerous academic
researches [Les]. The SNAP is extended to enable the creation of physical and logical graphs
in terms of undirected and directed graphs, respectively. The following is a brief introduction
of the SNAP library.
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4.3.1 Stanford Network Analysis Platform (SNAP)

The SNAP library has the ability to modify graph structures and to provide fast execution of
graph algorithm. It provides its efficient operations in adding, deleting, editing nodes and
edges in graph while having a limited overhead on graph algorithms. It is used in the analysis
of large graphs since it requires a smaller amount of RAM than alternative representations.
SNAP is provided as an open-source library in C++ as well as in python for major operating
systems [LS16]. .

The SNAP library defines graph as a set of nodes and edges where each edge connects
two nodes. Two types of edges can be drawn, directed and undirected. It can generate
and analyze large networks with hundreds of millions of nodes and edges. The SNAP can
generate regular as well as random graphs with detailed attributes and metadata on each node
and edge.

SNAP is based on fundamental classes, called graph and network containers, that are
used to provide several types of graphs and networks. The generated graphs and networks
can be directed and undirected graphs with the ability to create multi-graphs. Each node
and edge connecting two nodes can have several attributes that define its characteristics in
terms of color, position, and time. The graph and network containers can be accessed using a
unified interface that is implemented with a number of generic methods. These methods are
used to generate, manipulate, and analyze specific graph statistics.

Each node in the generated graph has a unique non-negative integer number called unique
identifiers. These unique identifies do not have to be sequentially ordered from one to the
number of nodes, but arbitrary integers. Edges of multi-graphs have a unique identifiers
similar to the nodes. However, edges of simple graphs have no unique identifiers and can be
accessed by providing the IDs of the pair of nodes that connect the edge.

The nodes in a graph are represented by a hash table. In case of undirected graphs, the
hash table stores the unique identifiers of the graph nodes where each node is associated with
a vector of adjacent nodes connected to it. In case of directed graphs, the hash table contains
a list of node unique identifiers and each node is associated with an outgoing nodes vector

and an incoming nodes vector.

4.4 Results

This section discusses the results of the MILP model described in 4.1. The main focus is to
perform the scheduling and allocation of jobs and messages, while minimizing the critical
path delay. In addition, we evaluate the computational time required to compute the schedule
in CPLEX.
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M1

Mo

(a) Physical Model (b) TT Logical Model

M2

M3

(c) ET Logical Model

Fig. 4.2 Model example with 7 Nodes, 5 Jobs and 5 msgs

Each example scenario consists of the constants explained in Table 4.1 in which both the
physical and the logical models are defined. Consider an on-chip network with 7 nodes, 2
switches and 5 end-systems, where 5 jobs communicate and need to send 5 messages. The
corresponding physical and logical models are shown in Figure 4.2, where figure a depicts
the physical connection among nodes with bi-directional links and figures b and c depict
the time-triggered and event-triggered logical models. The nodes represent the jobs and the
arrows represent the messages sent from one job to another job. It should be noted that the
first two messages are time-triggered while the other messages are event-triggered.

Table 4.2 shows the CPLEX input constants for the model in Figure 4.2 according to
Section 4.1. The first constant describes the network model (7,5,5) in which the model
consists of 7 nodes and 5 jobs sending 5 messages. The second constant defines the node
connectivity in the network C' with bi-directional links. For example, the first node is
connected to node 5 and the last node is connected to nodes 2, 3,4 and 5. Constant 3 shows
the jobs that send the messages, where each job can send more than one message. For
example, job 1 is the sender of the fifth message and job 3 is the sender of the messages 1, 2
and 3.
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The fourth constant describes the receiving jobs of messages. For example, job 0 and job
2 are the receivers of the time-triggered messages 0 and 1 respectively, whereas job 4 is the
receiver of event-triggered messages 3 and 4. Then, periods of time-triggered messages as
well as the BAG for rate-constrained messages are described. The hop-to-hop transmission
time U is defined in constant 6. For simplicity and better understanding of the example, all
times of U are set to a constant with the value of 3 ;5. Constant 7 describes the job execution
times F and also here we set them all to a constant value of 2 us.

The constant ALLOC' defines the ability of nodes to be allocated jobs where switches
(i.e., the last two nodes) cannot be allocate jobs, while end-systems (i.e., nodes 0,1,2,3 and 4)
can allocate jobs at a maximum of one job per end-system.

The last constant differentiates the type of the message to be transmitted. The value of 1 is
set for time-triggered messages and 0 is used for event-triggered messages. In the examples,
the first two messages are set to be time-triggered messages and the other messages are set to
be event-triggered.

As illustrated in the previous section, the solution of the scheduling problem in on-chip
time-triggered networks requires a large number of constraints. This makes the search space
quite large for realistic network topologies which is illustrated in this section. The times
of CPU calculation were obtained with CPLEX 12.6.1 running on a 12 processor Intel(R)
Xeon(R), 2.2 GHz server with the operating system Linux Ubuntu 14.04.1.

Table 4.3 depicts the results of the MILP model solved by CPLEX. It gave an optimal
solution for the problem within 5.99 seconds in which 498 constraints are evaluated. More-
over, the output presented the values of the decision variables described in Section 4.2.1. The
allocation of jobs to end-systems is done in such a way that it minimizes the maximum trans-
mission time of the time-triggered messages. Here, job 3, which is allocated to node 4, sends
one time-triggered message to job 2 which is allocated to node 2, and two event-triggered
messages to jobs 1 and 4 which are allocated to end-systems 1 and 0, respectively. The
message with VL 1 is initiated at time O in end-system 4 and passes through switch 6 and is
then received by end-system 2 with a total of two hops. Since only the first two messages are
time-triggered, their scheduling is calculated in such a way that their transmissions are done
without collisions. The last three messages can be scheduled without taking into account
the collision constraints, which can be noticed in messages 2 and 3. They are scheduled to
pass through the links between nodes 4, 6 and 5 and it is the job of the switches to resolve
the contention between these event-triggered messages. Moreover, there is a dependency
between job 2 and job 3 in the time-triggered messages and between job 3 and job 1 in
the event-triggered messages. In the case of time-triggered messages, the transmission of

message of VL 0 in job 2, allocated to end-system 2, starts at the end of the transmission of
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Constant-No. | Constant Name | Data

1 n, j, m [7,5,5]
[[0,0,0,0,0,1,0],
[0,0,0,0,0,1,0],
[0,0,0,0,0,0,11],

2 C [0,0,0,0,0,0,1],
[0,0,0,0,0,0,1],
[1,1,0,0,0,0,1],
[0,0,1,1,1,1,0]]

3 S [2,3,3,3,1]
[[1,0,0,0,0],
[0,0,1,0,0],

4 D [0,1,0,0,01],
[0,0,0,0,1],
[0,0,0,0,1]]

5 T/BAG [20,20,30,30,30]

6 U [3,3,3,3,3]

7 E [2,2,2,2,2]

8 ALLOC [1,1,1,1,1,0,0]

9 MT [1,1,0,0,0]

Table 4.2 CPLEX Input constants for model in Figure 4.2

message 1 in job 3 allocated to node 4. Thus, the injection time of message of VL 0 should

be after the reception time of message of VL 1 and the execution time of this message in job

2 as shown in the following equation:

ivro — (i1 +hy-up+e2)
—(0+2-342)

— 8us

Moreover, the temporal constraints for time-triggered messages are preserved in which

all of these messages finish before their deadlines.
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Job-No. | Alloc. | VL | Msg. | Period | Path Start | Finish
Node Type | BAG Time | Time
0 3
1 4 ET 30 1-5-0 14 -
2 2 0 TT 20 2-6-3 8 14
1 TT 20 4-6-2 0 6
3 4 2 ET 30 4-6-5-1 3 -
3 ET 30 4-6-5-0 | 6 -
4 0

Table 4.3 Results for model example

rvo — (io+ho-ug+e3) <Tp
—(842:3+2)
— 16ps < 30us

Table 4.4 shows the execution times for different physical and logical topologies. It is
evident that the solution time of the problem depends on the number of constraints which is
affected by the number of nodes, jobs, and messages.

The proposed model in this chapter provides mapping of applications that have inter-job
dependencies as well as supports different traffic classes such as time-triggered for periodic
events and rate-constrained for sporadic events. The provided functions in the proposed
scheduling model are of main requirements for mixed criticality systems. The mapping of
jobs to end-systems and scheduling messages to communication paths are selected to obtain
minimum overall end-to-end message latencies.

Moreover, the proposed model obtains an optimal solution to the scheduling problem that
results in a guaranteed best minimization of end-to-end latency for periodic time-triggered
messages. On the other hand, the injection times of rate-constrained messages are ensured
to be sufficiently scheduled on the bandwidth gap left after time-triggered messages are
scheduled.
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Physical Model | Logical Model No. of Optimal? | Time
Sw Es Job Msgs Constraints (s)

2 4 3 2 175 Yes 1.04
2 5 3 2 218 Yes 1.66
2 6 3 2 267 Yes 2.58
2 4 3 3 245 Yes 1.63
2 5 3 3 307 Yes 2.77
2 4 4 3 251 Yes 1.74
2 5 4 3 313 Yes 3.24
2 4 4 4 320 Yes 2.05
2 5 4 4 402 Yes 4.28
2 4 4 5 409 Yes 2.37
2 5 4 5 492 Yes 4.16
2 6 4 5 609 Yes 13.50
2 5 5 4 408 Yes 4.28
2 5 5 5 498 Yes 5.99
2 6 5 5 616 Yes 9.27
2 5 4 6 583 Yes 9.26
2 5 5 6 590 Yes 9.75
2 5 5 7 681 Yes 12.17
2 5 5 8 770 Yes 9.85
2 6 6 5 622 Yes 22.22
3 6 4 4 776 Yes 212.90
3 7 4 3 703 Yes 150.98

Table 4.4 Results of 22 case studies.



Chapter 5

Optimized and Reliable Scheduling
Algorithm

This chapter introduces an improved scheduling model for a multi-core processors as well as
for distributed systems with time-triggered and event-triggered communication. The new
model reduces the search space of the scheduling problem and provides optimal solution
with less time compared to the previous one. Moreover, reliability is integrated into the
scheduling model in the form of redundant messages to mask link failures of time-triggered
messages [MO17].

5.1 Improved Scheduling Model for Time-Triggered and
Event-Triggered Messages

The solution of an MILP problem using a branch-and-bound algorithm requires to list all
possible integer combinations of the decision variables and then selects the best feasible
point. Such explicit enumeration is exhaustive and becomes impossible when evaluating
a large number of variables. As a result, a number of enhancements to the branch-and-
bound algorithm have been designed, such as preprocessing, heuristics, and cutting planes
as described in section 2.3. These methods tend to implicitly consider all integer variable
combinations for the general problem without necessarily evaluating them thoroughly. These
implicit enumeration methods tend to reduce the search space of the problem to be solved
and they are already integrated into most MILP solvers [ASO5] [SAS].

Another way of reducing the problem search space is to add user-defined constraints that

optimize the model to be solved. These user-defined constraints should not oppose the main
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Fig. 5.1 Physical Model of 5 end-systems and 2 switches.

constraints which define the model but need to tighten the variables to be evaluated in order
to reduce the time to obtain the optimal solution.

Consider the physical model in figure 5.1 which was used in the scenario model in the
previous chapter. The allocation of jobs is only allowed on end-systems but not switches.
Moreover, each end-system is connected to only one switch. This type of connectivity allows
the scheduling model to consider only the network between switches while neglecting the
end-systems.

Thus, the improved model provides the following enhancements.

e The search space of nodes allocability is reduced to include only end-systems. This
restriction tightens the decision variables as well as the constraints associated with the

allocation of jobs to end-systems.

e The end-to-end path calculation for each message will include only the path from the
switch connected to the source’s end-system to the switch connected to the destination’s
end-system. We call the switch that is connected to an end-system as a neighbor switch,
listed in a vector Dgy;tch, Which is determined by the connectivity matrix C'. The
introduction of neighbor switch to the previous model results in a massive reduction of
the search space in the path decision variables as well as their related constraints.

5.1.1 Optimized Variables

The previously described model in section 4.2.1 defines a number of decision variables to be
optimized according to the objective function. The most important variables to be optimized

are the job allocation and the message path.
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5.1.1.1 Job Allocation

These variables are used to denote the allocation of jobs to nodes of the physical platform
model. Jobs cannot be allocated to switches, but only to end-systems. Thus, the maximum
value is determined by the number of end-systems E'S.

ay
A=|:|ef{1,.,BESY
aj
Also, the boolean matrix ALLOCM is optimized to have a length of the number of end-
systems E'S instead of n.

matyy ... maty gs
ALLOCM = | - : e {0,1}7xFS
matjy ... mat;ps
To keep track of switches via which a job can transmit a message we use a vector S R.
The vector SR denotes for each job a neighbor switch that is directly accessible from the
end-system where the job is located. All other switches can only be reached by more than

one hop. For example, sro = 14 denotes that the switch with ID 14 is the neighbor switch for
the end-system hosting the job 2.

SR=sr1...sr))" €{Z,..n}’

where Z = ES + 1.

5.1.1.2 Message Path

The rows in the path array P will now record the paths where each path starts from the
neighbor switch of the end-system that allocates the source job to the neighbor switch of the
end-system which allocates a sink job. The maximum value of these array elements is the

maximum number of switches ST .

P11 .- Plz
P=| : .. i |e{l,., SW}m

Pma1 - Pmz

where z = Maxy.
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5.1.2 Optimized Constraints

After optimizing the decision variable, the constraints related to these changed variables
needs to be altered. These constraints are the connectivity, collision avoidance, and job

assignment constraints.

5.1.2.1 Job Assignment Constraints

These constraints assign jobs to end-systems. A job must be allocated to exactly one end-
system and each end-system can process at most one job. The ALLOC matrix is used to
allow the aforementioned restrictions where its rows represent jobs to be allocated and its
columns denote the available end-systems.

To allocate each job to only one end-system, the sum of each row in ALLOC'M (i.e., for
each job) equal to 1. Then, the allocated end-systems are stored in the allocation array A and
the neighbor switches of the end-systems are stored in S R.

Vir € {1,...5}:
ES
mati, . | =1
TlZ:1 J1,T1 (5.1)

ri=1

ES
\/ matj, r, =1— (aj, =r1 Asrj, =dry)

To allow only one job to be allocated to an end-system, the sum for each end-system

must be less than or equal to one.

Vry € {1,...,ES} :

j (5.2)
(Z matjlm) <1

Jji1=1

The path of each message starts with the neighbor switch of the end-system that hosts the
job, the first node for each message path py 1 ...ps, 1 is required to be the neighbor switch.

Vmy € {1,...,M},Vj1 S {1,...,J} :
Sma =J1

ES
- \/ (aj, =71 Apmyg =dry,

ri=1

(5.3)
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5.1.2.2 Connectivity Constraint

The path topology of the network is considered by these constraints based on the node
connectivity C'. Since an end-system is connected to only one switch, the connectivity
constraints can be reduced by considering only the switches. If there is no direct connection

between two switches a and b, then the path of a message must not include a hop from a to b.

VYmy e{1,...M}Vre{l,...Mazxg} :

hopy > 1+1
= (5.4)
B
— \/ Cqp = 1 — Connected(a,b)
a,b=FES+1

where the function Connected() states that a message’s path is allowed to pass through the

link between the two switches a and b.
Connected(a,b) = (pmyr = A A\Dmyr+1 =0)

5.1.2.3 Collision Avoidance Constraint

These constraints are divided into three groups:
 Constraints to avoid collisions between a sending node and its neighbor switch
 Constraints to avoid collisions between switches
 Constraints to avoid collisions between a receiving node and its neighbor switch

The first constraints apply when a job sends more than one message. Since, there is only one
link between any end-system and its neighbor switch, the constraints ensure that transmission

times following the injection times / do not overlap.

Vmy € {1,...,M},m2 € {m1 +1,...,M}7

T = B (5.5)
— (iml > img + U,

\/imQ 2 iml —'I_Um1>

To prevent collisions of transmissions between switches, the scheduling of time-triggered

messages ensures that no two messages are transmitted on one link at the same time. Thus,
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the messages should be transmitted on different paths or one needs to be scheduled before or
after the transmission of the other message.

Vmy e{1,...M},mae{mi+1,... M},
Vri,re €41,.... Maxg} :
(Pma,r1 7 Pmayra V Py 41 7 Pmgra+1
Vry+1> hy Vo 41> hyp,
Vi, +(r1+1) -ty <imy +72 Uy
Vimy +(ra+1) - tmy <lmy +71 Uy )

(5.6)

The third type of constraints is used when a job receives more than one message. Since
there is only one link between an end-system and its neighbor switch, these constraints ensure
that the transmission times of the messages from the neighbor switch to the end-system do
not overlap.

VYmye{l,... M} moe{mi+1,.... M},
jre{l,...,J}:
dmhjl =1 /\dm27j1 =1 (5.7)
= (imy + (hmy + 1) Uy <dimg + g * Uy

\/im2 + (hmz + 1) *Umgy < iml +hm1 *um1)

5.1.3 Experimental Evaluation

Table 5.1 illustrates a comparison of the improved model against the previous model where
the same scenarios conducted in section 4.3 are used. The table depicts the number of
constraints as well as the execution time in seconds for both models for 22 different scenarios.
The results show that the improved model has a significant reduction in constraints that
leads to much less execution time. For example, scenario 12 consists of 2 switches and 6
end-systems where 4 jobs send 5 time-triggered messages. The number of constraints is
reduced from 607 for the old model to 77 for the enhanced one and resulted in 0.25 seconds
execution time compared to the previous model which needed 13.5 seconds. The last scenario
shows a significant execution time reduction where the improved model finishes in 0.29
seconds whereas 150.98 seconds were needed by the previous model.
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No. | Physical Model | Logical Model Previous Model Enhanced Model
Sw Es Job Msgs Constraints | Time (s) | Constraints | Time (s)
1 2 4 3 2 175 1.04 31 0.08
2 2 5 3 2 218 1.66 35 0.04
3 2 6 3 2 267 2.58 39 0.04
4 2 4 3 3 245 1.63 44 0.18
5 2 5 3 3 307 277 44 0.09
6 2 4 4 3 251 1.74 44 0.10
7 2 5 4 3 313 3.24 49 0.06
8 2 4 4 4 320 2.05 55 0.16
9 2 5 4 4 402 4.28 60 0.25
10 | 2 4 4 5 409 2.37 67 0.28
11 ] 2 5 4 5 492 4.16 72 0.25
12 | 2 6 4 5 609 13.50 77 0.25
13 | 2 5 5 4 408 4.28 65 0.14
14 | 2 5 5 5 498 5.99 76 0.17
15| 2 6 5 5 616 9.27 82 0.19
16 | 2 5 4 6 583 9.26 86 0.17
17 | 2 5 5 6 590 9.75 91 0.3
18 | 2 5 5 7 681 12.17 105 0.34
19 | 2 5 5 8 770 9.85 122 0.27
20 | 2 6 6 5 622 22.22 88 0.15
21 | 3 6 4 4 776 212.90 65 0.47
22 | 3 7 4 3 703 150.98 60 0.29

Table 5.1 Comparison of the enhanced model with the previous one.

5.2 Reliable Scheduling Model for Time-Triggered Messages

Hard real-time systems have one feature in common; a failure of a critical service can lead
to deadly results, human life loss, high economic loss, or extensive environmental damage.
Systems that incorporate this feature are called safety-critical systems. These systems require
predictable, reliable, and real-time communication between the end-systems to ensure safety
and reliability.
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Reliability is defined as the likelihood of the failure-free operation of a system for a
duration of mission in a specified environment [ALR "01]. Fault tolerant systems are based
on the concept of FCRs where a system is partitioned into a set of subsystems, each of
which will operate correctly regardless of any arbitrary fault outside the region [Kop!11]. The
goal of fault containment is to prevent the propagation of errors among system regions. A
time-triggered network ensures the partitioning of the system into a set of independent FCRs,
namely end-systems and time-triggered switches. One of the challenges is to tolerate faults
introduced by communication links.

A parallel-series architecture can be used for reliability enhancement as depicted in
Figure 5.2, where the links of a message path are shown in series with a certain number of
redundant messages in parallel. In this paper, one redundant message is generated for every
time-triggered message (z = 2). If R; is the reliability of the i-th link of the message path
with 0 < R; < 1 then (1 — R;)" is the failure rate if the i-th link is chosen with a redundancy
degree expressed by x;. Then, 1 — (1 — R;)% is the reliability of the i-th link and hence the
message reliability R is [GLH " 11]:

Ry = ﬁl [1- (1= R)"| (5.8)

Based on this formula, the use of the links over time can be optimized to maximize the
reliability of each message. In order to find an optimum solution within a reasonable time,

the above formula needs to be adopted to enable a linear optimization as follows [San15]:

zn:zn [1— (1= Ry)™] (5.9)
1=1

Moreover, the values in [n [1 —(1— RZ)%} can be calculated before the scheduler is
invoked. These pre-calculated values are given to the scheduler to simplify the scheduler
functionality.

5.2.1 Scheduling Model For Fault-Tolerant Communication

This section illustrates a scheduling model that generates a schedule for a time-triggered
network where each message is duplicated and sent to the destination through different hops.
The implemented scheduling model is formulated using an MILP problem and solved by
IBM CPLEX. This model comprises input constants for the network architecture along with
the application in addition to the scheduling constraints.
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Fig. 5.2 Parallel-Series Redundancy Model

5.2.1.1 Constants

Table 5.2 shows the network architecture and the application model that are used as inputs
in the formulation of the MILP problem. The physical model consists of the n nodes that
are a set of s switches and e end-systems, thus n = e+ s. These nodes are connected with
bi-directional links in which a boolean two-dimensional array C' of size (n-n) is used.
This matrix is sorted where all end-systems come first before the switches. This helps to
reduce the search space of the decision variables as well as the number of constraints, hence
minimizing the computation time for scheduling [OM15]. Moreover, a link reliability matrix
is introduced to capture the reliability of each link between two nodes. On the other hand,
the logical model consists of the number of jobs denoted by j that send m messages where
one end-system can be allocated to at most one job. The sender jobs can be represented as a
one-dimensional array S. The receiving jobs are also described as a one-dimensional array
D. The constant 7" denotes the period of the message according to the timing model of the
time-triggered activities. The execution time of a job is denoted by £ and assumed to be
equal for all jobs.

5.2.1.2 Decision Variables

5.2.1.2.1 Neighbor switches To increase the reliability of the schedule, each end-system
is connected to two switches where each message is injected into these neighbor switches.

These neighbor switches can be expressed by a matrix with two rows for each allocated



5.2 Reliable Scheduling Model for Time-Triggered Messages 54

Domain | Constant name Description
Physical n Number of nodes
Model C Nodes Connectivity
R Links Reliability
] Number of jobs
Logical m Number of messages
Model S Sender jobs
D Destination jobs

Table 5.2 Overview table with constants for the CPLEX-based model

end-system NS.

nsii1 ... NSj1

NS = [ c (N} 2

nsi2 ... nsm

5.2.1.2.2 Hop Count Each message is injected from the end-system that allocates a
sender job to one of the neighbor switches along the intermediate switches and then to the
allocated end-system of the destination job. The hop count A denotes the number of visited
switches. In the absence of cyclic paths, the maximum hop count is Mazry = s — 1.

o= [hl...hm]T e{l,...Mazy}™

5.2.1.2.3 Injection Time The time by which the neighbor switch of the source job trans-
mits a message is called the injection time which can be expressed using a one-dimensional

array of size m.
T
I'=liy...im] €{N}™

5.2.1.2.4 Path The path P denotes the switches that a message visits. A two-dimensional
array is used where the rows denote the messages, and the columns represent the visited

switches.
P11 - Pilgs
P=| : - i le{l.,nym

Pm1 .- Pms

5.2.1.2.5 Link-Pair Reliability Every message, along with its redundant copy, traverses

from the source node that allocates the sending job along a number of switches till it reaches
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the destination node. The scheduler keeps track of each link-pair a message and its redundant
copy traverse and records its reliability in the decision variable RE'L.

T
rell,l .. Tell,MaxH

relm1 ... rely Mazy

5.2.1.3 Scheduling Constraints

This part describes the constraints that are used in scheduling time-triggered messages.

5.2.1.3.1 Connectivity Constraints These constraints use the connectivity constants C'
in order to consider the network path topology. A message can traverse the link between two
nodes a and b, only if there is a direct connection between them. These constraints are only
executed for switches in order to reduce the number of constraints in the model.

Vmy € {1,...m},Va € {s,...,n},Vb e {s,...n}:
Cap=1 (5.10)
— (hm, < 1)V Traversed(m1,a,b),

where m1, a, and b are non-negative integers and Traversed states that a message m can visit
the link between switches a and b.

5.2.1.3.2 Collision-Free Constraints These constraints ensure that only one message is
processed by any node (end-system or switch). Each switch must receive only one message
at a specific time from its directly connected switches. If more than one message must be
sent from a certain switch and received by another switch, these messages need to be sent in

disjoint time intervals.

Vmy €{1,...m},ma € {mi1+1,...m},
Vri,re €4{1,...., Maxpg} :
= (Pmyry 7 Pma,rs V Py +1 7 Pmg,ro+1 (5.11)
Vi, + (114 1) - tmy < imy +72 U,
Vi, + (12 + 1) -ty <imy + 71 U,y )

To prevent collisions between end-systems and their directly connected neighbor switches,
different messages need to be injected/received at disjoint intervals.
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5.2.1.3.3 Job Dependency Constraints When a message is sent to a job that needs to
send another message, the latter message must be injected after the arrival of the former
message. The start time of the message of the dependent job my is after the receipt and

execution for message m of the relied upon job.
VYmy,mo € {1,....m},Vj € {1,....7}:
iy = J1 A Smy = J1 (5.12)

= (imy +himy +ej, +1 <imy),

where m1, mo denote the message numbers and j; denotes the job number as non-negative

integers.

5.2.1.4 Reliability Constraints

The scheduling of the redundant time-triggered messages is done using pre-determined values
of link-pair reliability LPR, where these values are calculated before CPLEX is invoked. If a
pair of links is chosen for a message with its redundant copy, the reliability is determined for

the specified hop.
Vmy e {1,...m}:
Vrie{l,..,Maxg}:
Vil €{1,..., Links} : (5.13)

ll ;é l2 A hml >T A CheCk(pml,rl s Pmry,ry s l17 l2>

— rely, = lpr(l,l2)

The function check(pm, vy, Pmri 101, 12) tests whether the link-pair, /; and lo, is traversed
by a message m1 and its redundant copy mry.

5.2.1.5 Transmission Delay Constraints

The typical objective in the scheduling of a time-triggered network is to generate a schedule
where the makespan must be below the deadline. Therefore, the execution times of the jobs
i and the message transmission delays h,,, on the critical path, the message with the longest

path, should be less than a real-time constraint /N as shown in Equation (5.14)

VYmy € {1,...,m} :
CPlma] = (im, + hm,) (5.14)
mazximum(CP) < N.
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(a) Physical Model (b) TT Logical Model

Fig. 5.3 Model example with 13 Nodes, 5 Jobs and 5 messages

5.2.1.6 Objective Function

The optimal scheduling for a reliable time-triggered network is to maximize the reliability of
jobs. This is done by summing all the link-pair reliabilities for each message and its redundant

copy along the whole path Sum(rel,,) and maximizing it as shown in Equation (5.15).

VYm, € {1,...,m} :
CR[m1] = Sum(rely,) (5.15)

maximize (minimum(C’R)) :

5.2.2 Experimental Evaluation

This section evaluates the MILP model described in section 5.2.2. The experiments are based
on scenarios established using SNAP library which is widely used in numerous academic
researches [L.es]. The scheduler takes the scenarios and provides a redundant schedule of the
messages injected by jobs allocated to end-systems in such a way to maximize the reliability
of the received messages. Since the scheduler is aimed to deal with time-triggered messages,
the implemented constraints ensure the timing and satisfy the precedence requirements.

Consider a network with 13 nodes, 8 switches and 5 end-systems, where 5 jobs need to
send 5 time-triggered messages. The corresponding physical and logical models are shown in
Figure 5.3, where Figure a depicts the physical connection among nodes with bi-directional
links and Figure b depicts the logical model. The nodes represent the jobs and the arrows
represent the messages sent from one job to another one.

Table 5.3 summarizes the input constants for the physical and logical models illustrated
in figure 5.3. The first row shows the number of end-systems, switches, jobs, and messages

respectively. The second constant describes the link reliability of the node connectivity in



5.2 Reliable Scheduling Model for Time-Triggered Messages 58

the network with 0 < R; < 1. Most of the links have higher reliability except the links that
connect nodes 8 and 11 as well as nodes 10 and 12 which have very low values 0.1. Constant
3 shows the jobs that send the messages, where each job can send more than one message.
For example, job 1 is the sender of the first message and job 3 is the sender of the third and
fourth messages. The last constant describes the receiving jobs of messages. For example,

job 0 is the receiver of the first two messages.

Constant | Constant | Data
No. Name
1 e, s, J,m | [58,5,5]

[[0,0,0,0,0,0.9,0.9,0,0,0,0,0,0],

[0,0,0,0,0,0,0.9,0.9,0,0,0,0,0],

0,0,0,0,0,0,0,0,0.9,0.9,0,0,0],

0,0,0,0,0,0,0,0,0,0.9,0.9,0,0],
0,0,0,0,0,0,0,0,0.9,0,0.9,0,0],
0.9,0,0,0,0,0,0,0,0,0,0,0.9,0.9],
0.9,0.9,0,0,0,0,0,0,0,0,0,0.9,0.9],
0,0.9,0,0,0,0,0,0,0,0,0,0.9,0.9],
0,0,0.9,0,0.9,0,0,0,0,0,0,0.1,0.9],
0,0,0.9,0.9,0,0,0,0,0,0,0,0.9,0.9],

[0,0,0,0.9,0.9,0,0,0,0,0,0,0.9,0.1],

[0,0,0,0,0,0.9,0.9,0.9,0.1,0.9,0.9,0,0],

[0,0,0,0,0,0.9,0.9,0.9,0.9,0.9,0.1,0,0]]

[1,2,3,3,4]

[0,0,1,2,2]

[
[
[
[
[
[
[
[

w2

Table 5.3 CPLEX Input constants for model in Figure 5.3

As illustrated in the previous section, the solution of a reliable scheduling problem in
real-time distributed systems gives the best link-pairs for each message that maximizes the
reliability. Since the number of link-pairs increases significantly with the number of links in
the network, this makes the search space quite large for realistic network topologies which is
illustrated in this section. The times of CPU calculation were obtained with CPLEX 12.6.1
running on a 12-core processor Intel(R) Xeon(R), 2.2 GHz server with the operating system
Linux Ubuntu 14.04.1.
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Table 5.4 depicts the results of the MILP model solved by CPLEX. It gave an optimal
solution for the problem within 1400 seconds in which 1698 constraints are evaluated. More-
over, the output presented the values of the decision variables described in Section 5.2.1.2.
The scheduler allocates end-systems for all jobs and generates a schedule for all messages as
well as for the redundant copies. Here, job 1, which is allocated to end-system 3, sends one
time-triggered message to job 0 which is allocated to end-system 2. This message is initiated
at time 1545 in end-system 3 and passes through switches 9,12, and 8 and is then received
by end-system 2 with a total of four hops between the sender and the receiver. Since link
transmission times are assumed to be constant for all links (3ps), the message is received
at 15+ (4 x 3) = 27us. Its redundant message is also initiated at time 15us in end-system
3 and passes through switches 10,11, and 9 before end-system 2 receives it. Thus, every
redundant message takes a different path between the sender and receiver compared to the
first redundant message. Moreover, the scheduler did not choose the links between nodes [8,
11] and [10, 12], because they have a very low reliability.

To compare the reliable scheduling algorithm, the previous scenario was also solved
using a random algorithm that does not take into account the link reliability. The right-hand
side of Table 5.4 shows the results of this naive algorithm. Some messages (2,,4, and 4,)
use the low reliability links in their paths which reduces the probability of their successful
arrival. This is clearly shown in the reliability field for message 4, where the reliability of the
naive algorithm is 0.82 compared to the reliability of the proposed algorithm 0.98.

Since the scheduler deals with time-triggered messages, the scheduling of these messages
is calculated in such a way that their transmissions are done without collisions. Moreover,
there is a dependency between job 1 and job 3, where job 1 needs to send message O to job
0 while the former has to wait for job 3 to receive message 2. Thus, the transmission of
message 0 in job 1, allocated to node 3, starts at the end of the transmission of message 2 in
job 3 allocated to node 0. Thus, the injection time of message 0 should be after the reception
time of message 2 and the execution time of this message in job 1 as shown in the following:

io = (ig+ ho-us+eq)
=(0+4-3+3)
= 15us
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In this chapter, extensions of the proposed model described in chapter 4 were given. First,
optimizations to the previous model are presented in order to reduce the problem search
space which minimizes the overall execution time of the scheduler as well as memory space.
The experimental evaluation showed that the optimized model is more than 10 times faster
than the previous model. This allows the scheduler to analyze example scenarios with a
larger number of nodes.

After that, a reliable scheduling model for safety critical systems is presented in which
messages are replicated and sent through different reliable paths. This model provides fault
tolerance mechanisms in the presence of communication link failures and ensures reliable
delivery of time-triggered messages. Moreover, the scheduling model obtains optimal
schedules where the paths of the scheduled messages along with their redundant messages

are guaranteed to have minimum end-to-end latency.



Chapter 6
Scheduling Model in Systems-of-Systems

This chapter provides an extended scheduling model explained in Chapter 4 that is used in
the scheduling of real-time SoS applications. It starts with a conceptual model of the SoS
architecture with its main two models namely, physical platform and logical application.
Afterwords, the idea of incremental, distributed, and concurrent scheduling is discussed
which gives an introduction to our proposed model [OM15]. Next, a formal description of
SoS model in terms of physical as well as logical viewpoints. After that, a formal description
of the allocation and scheduling functions in SoS is defined. Then, the SoS scheduling model
is described using MILP. Finally, experimental evaluation for the proposed SoS model is

discussed.

6.1 System-of-Systems Architecture

This section describes the SoS from logical and physical viewpoints. The introduced struc-
tural models are the basis for the subsequent formulation of the dynamic scheduling and
allocation problem.

The overall conceptual model of the SoS is depicted in Figure 6.1. The SoS is comprised
of constituent systems, where each constituent system is a distributed embedded systems,
which is under the control of a given organization. Each constituent system consists of end-
systems that are interconnected by real-time networks. Networks can include communication
networks with different protocols and topologies (e.g., multi-star topology as depicted in
Figure 6.1).

The interconnection of constituent systems occurs using a backbone communication
infrastructures consisting of network domains. In analogy to the constituent systems, each
network domain is within the responsibility of an organization that controls the resource

allocations and their use by application subsystems. Technically, this control is realized by
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Fig. 6.1 Physical and Logical Viewpoint of the SoS
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management services named Network Management Systems (NMS) of the network domains.
The NMS configures the switches in the network domain, while also coordinating with other
network domains and constituent systems.

Likewise, each constituent systems contains management services named CSM. The
CSM performs the local configuration of the end-systems and networks within the constituent
system. In addition, the CSM is responsible for the coordination with other constituent
systems and network domains.

From a logical point of view, the SoS consists of applications, each of which is a hierar-
chical DAG with subsystems and services. The messages between subsystems and services
represent the dependencies in the DAG. As an example, consider a medical application for
health monitoring and patient care. This application involves different subsystems with re-
spective services. A constituent system ’patient home’ hosts a subsystem ’health monitoring’
with local services (e.g., sensors, user interfaces). A constituent system "hospital’ can provide
a subsystem ’health alarm’ including local services for health records, the analysis of sensory
data and the issuing of emergency treatment. A constituent system ’caregiver’ would offer a
subsystem “emergency response’ with services for remote interaction with patients.

From this example, we see the dynamic nature, large-scale, heterogeneity and lack of
central control. Numerous of these medical applications will run in parallel for different
patients, while sharing the infrastructure (e.g., network domains) and the constituent systems
(e.g., hospitals, caregivers). In addition, other types of applications (e.g., energy management)
will be active at the same time. The SoS is highly dynamic, e.g., when new patients are
integrated into the system. The resource allocation also involves the coordination between
different organizations (e.g., providers of network domain, hospitals, patients).

While the discovery and peering of services is addressed in previous work (e.g., service-
oriented architectures [MTCM12], IoT-A [SCC " 12], FIWARE IoT Discovery [FIW 15]), the
end-to-end resource allocation and scheduling for SoS involving real-time, reliability and
safety requirements is an open research problem.

In this chapter, we provide a solution to this end-to-end resource allocation and scheduling
based on the assumption of time-triggered protocols within the constituent systems and the
network domains. This assumption is justified given the widespread use of time-triggered
protocols in safety-relevant embedded systems (e.g., TTP in railway, TTEthernet in avionics,
FlexRay in automotive) and the ongoing standardization activities for IEEE 802.1 [[EE15a],
which introduces scheduled traffic based on time-triggered communication plans, while
also offering run-time configurability and management capabilities. Likewise, TDMA with
dynamic configuration capabilities is employed in protocols for the network domain (e.g.,

MPLS) for the resource allocation and quality-of-service guarantees.
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The SoS is characterized by its dynamic nature, where applications are introduced at
run-time. Therefore, communication resources and computational resources of the platform
have to be dynamically allocated to the application. More precisely, the following decisions

need to be taken for a new application:

» SoS-level allocation: Each application subsystem must be allocated to a constituent

system.

* SoS-level communication: Messages between application subsystems must be mapped

to paths between constituent systems along network domains.

* Allocation within constituent systems: Jobs must be allocated to end-systems within

each constituent system.

* Communication within constituent systems: Messages between jobs of an application
subsystem must be scheduled using paths between end-systems along switches.

In many safety-relevant systems, the inherent determinism of the time-triggered paradigm
comes at the expenses of significantly reducing flexibility when adaptation to new events is
required. For SoS, it is of crucial importance to dynamically adapt to the addition, change
and removal of application services and physical building blocks (e.g., constituent systems,
network domains). At the same time, we need to retain real-time and safety properties.
Overcoming this limitation implies the ability of modifying the time-triggered schedule
during runtime rather than precalculating offline schedules.

6.2 Incremental, Distributed, and Concurrent Scheduling

A naive approach relies on centrally computing new time-triggered schedules upon requests.
However, the computation time needed to generate such a global schedule makes this
approach unfeasible for fast-changing systems. In addition, SoS lack central information
about the internal structure of all constituent systems.

Therefore, the following three principles are the foundation for the scheduling and

allocation in SoSs:

* Incremental scheduling. In incremental scheduling, the transmission schedules of
specific sending entities in the network are extended or modified whenever additional
scheduled messages are required or whenever communication parameters are modified.

An incremental transmission schedule thus does not completely replace an existing
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transmission schedule. However, it may modify some aspects of an existing trans-
mission schedule to facilitate an incremental scheduling step. In order to achieve
this, the incremental approach for deterministic networks should not require global
knowledge about the overall network topology. The trade-off is that increasing the
level of information about the network will result in better schedules at the expense of

increased computation resources and network traffic for scheduling.

In this contribution, the incremental scheduling is driven by the dependencies imposed
by the DAG of an application. An application subsystem can be scheduled after the
relied upon subsystems have been scheduled. The dependencies comprise the messages
between the application subsystem, where the transmission times determine the earliest

possible start times for the dependent subsystems.

* Distributed Scheduling. Distributed scheduling reduces the overall scheduling time
by parallelizing the search for a feasible solution using horizontal, vertical and diagonal
partitioning schemes. We distribute the scheduling by computing the schedule of each
application subsystem at the respective constituent system. The vertical partitioning of
the scheduling problem results from the incremental scheduling steps of an application.
In addition, the scheduling problem is horizontally partitioned along the different

applications.

* Concurrent Scheduling. In a SoS many change requests can be requested and pro-
cessed in parallel. Therefore, a SoS inherently requires concurrent scheduling of
change requests while preserving the consistency in the configurations of constituent
systems and network domains. For example, several new applications can be intro-
duced at the same time as indicated in the medical monitoring scenario described

above.

6.3 Problem Description

6.3.1 Platform Description

For the formal description of the physical viewpoint we introduce a set of end-systems
E'S, a set of constituent systems C, a set of network domains /N and a set of switches STV.
The elementary physical building blocks B (called nodes henceforth) are the switches and

end-systems, whereas constituent systems and network domains are composite structures.

B=ESUSW (6.1)



6.3 Problem Description 67

The platform is described by the following graph:
Gp=<Vp,Ep>Vp=B Ep=BxB (6.2)

Vertices are end-systems and switches, while edges represent the communication links
between switches and constituent systems.
Each node either belongs a constituent system or it is part of a network domain of the

SoS backbone infrastructure. This mapping is described by the following function f:
fp:B—CUN (6.3)

For a given constituent system or network domain, the nodes and the edges between these
nodes must form a connected sub-graph of G'p.
Based on the constituent systems and network domains, we can define a high-level

physical graph Gyp of the SoS.

Gup =< Vap, Enp >,Vap =CUN
Eup = {(e1,€e2)|3a,8 € Ep: fp(a) =e1 A fp(B) = e}

6.3.2 Application Description

From a logical point of view, the SoS consists of applications, where each application consists
of jobs J that interact via the exchange of messages. An application A is described by the
following DAG:

Gpa=<Vuy,Eq>Vy=J E4CJxJ (6.4)

The edges between the jobs are messages, which are exchanged between jobs.

Each application consists of application subsystems AS, which are connected sub-graphs
of G 4. The mapping of jobs to application subsystems is described by the following function
fa:

fa:J— AS (6.5)

Based on the application subsystems, we can define a high-level logical graph Gya of
an application. This graph does not include jobs, but only application subsystems and the

messages (i.e., edges) between application subsystems.

GuA =< VHa, Ena >, VA = AS, Ega € AS < AS
Eua = {(e1,e2)|3a,8 € Ea: fala) =e1 A fa(B) = ea}
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6.4 Formal Description of Scheduling and Allocation in
SoS

Two levels of scheduling and allocation can be distinguished in SoSs. Firstly, application
subsystems must be mapped to constituent systems. Secondly, the detailed scheduling and

allocation of the jobs within each application subsystem can be performed.

6.4.1 High-Level Allocation of an Application

The first step of the allocation is the mapping of application subsystems to constituent
systems:
ALLOCas : AS — C (6.6)

Thereafter, each edge < «, 5 > (i.e., message) of the high-level application graph Gya
must be allocated to a path p in the high-level physical graph. Such a path in the high-level
physical graph consists of a sequence of network domains from the constituent system of the

sender « to the constituent system of the receiver /3.

ALLOC,, : Eya — p, Eya =< o, >,p= (p1,p2,---,Pn)
p1 = ALLOC,s(@)
pn = ALLOCxs(3)

Vie{l,2,....,n—1} :<p;,pit1 >€ Enyp

6.4.2 Low-Level Allocation and Scheduling in Constituent Systems and
Network Domains

For each application subsystem that is allocated to a constituent system c, the jobs .J need to

be allocated to the end-systems ES of c:

ALLOCjop : J — ES (6.7)
J=1{j € J|fa(j) = as NALLOCs(as) = c}
ES={ese ES|fp(es)=c}
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Likewise, for each application subsystem that is allocated to a constituent system c the
respective messages M/ must be mapped to paths and schedules:

SCHEDULE, .. : M > p,
M ={<a,p >€ E4|fa(a) = fa(B) = as NALLOCas(as) = c}

p=(p1,p2,---,Pn)

p1 = ALLOCjob ()

Pn = ALLOCjob.¢(f3)

Vie{1,2,....n—1}:<pi,piv1 >€ Ep, fr(pi) = fpr(pr) =c

A message is an edge < «, 5 > in the DAG of the logical viewpoint. The respective jobs
« and 5 must belong to the same application subsystem as that is allocated to a constituent
system c. The links along the path py,p2,...,p, must be connected according to the graph
G p of the physical viewpoint.

6.5 Scheduling and Allocation Algorithm

The scheduling and allocation algorithm is summarized in Algorithm 1. The scheduling pro-
cess is triggered by the arrival of a new application A. Initially, the allocation of subsystems
to constituent systems ALLOCs and the paths between constituent systems ALLOC,,
are determined. Thereafter, an enabled message is retrieved from the high-level applica-
tion graph. A message is enabled if the relied upon application subsystems were already
scheduled or if there are no relied upon application subsystems. In this case, the allocation
and scheduling of the jobs and messages within the sending application subsystem as; is
performed (i.e., ALLOC;jqp . and SCHEDULE,,, ). After the messages are scheduled on the
network domains, the jobs and messages within the receiving application subsystem asg are
scheduled.

6.6 Scheduling Model of SoS

This part presents the scheduling model for the incremental scheduling steps as introduced in
the previous section. The model serves for the scheduling of an application subsystem in a
constituent system according to Algorithm 1. Hence, the presented scheduling model serves

for the local scheduling problem that needs to be solved by a CSM.
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trigger : new application A with Gyga =< Vg a, Ega >

determine ALLOC g

determine ALLOC,,,

M,, = Ex 4 /] set of unscheduled messages

M, = Vi 4 Il set of unscheduled application subsystems

while M,, # @ do

determine enabled messages M, C M,

pick a message m =< asy,ase >€ M,

// retrieve path

p + ALLOC,,(m)

/l schedule sending application subsystem as

/[ at constituent system ¢ = p; (if unscheduled)

if as; € M, then
incremental update of ALLOC]q  for jobs in asy
incremental update of SCHEDy;, ¢ for msgs. in asg
M, < My~ asy

end

/I schedule network domains

fori< 1ton—1do
| incremental update of SCHED, , for <p;, pj+1 >

end

// schedule receiving application subsystem asa

/[ at constituent system ¢ = p,, (if unscheduled)

if aso € M, then
incremental update of ALLOC)qp  for jobs in aso
incremental update of SCHEDy, ¢ for msgs. in as>
My +— M, aso

end

My — My ~m

end

Algorithm 1: Scheduling algorithm for new application A

The CSM needs to interact with other CSM as part of the distributed and incremental
scheduling. In general, a subsystem will depend on messages from other subsystems and
provide relied-upon messages to other subsystems. We denote these messages as border
messages (red arrows in Figure 6.1) and we distinguish between incoming and outgoing
border messages.

Figure 6.2 depicts an overview about the local scheduler in each CSM. In order fora CSM
to schedule its allocated subsystem, it is required to have three main types of information.
Namely, Logical and physical model of its located constituent system, reserved resources

for previously scheduled application, and precedence constraints information about the
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dependent border messages from the other subsystems. After the CSM generates its local
schedule, it updates its previous reserved resources database and notifies the other dependent
constituent systems by sending timing information of their dependent border messages.
Table 6.1 depicts a summary of the constants with their associated domains. A typical
constituent system based on switched Ethernet consists of a number of switches SW that
can be interconnected in different topologies. Each of these switches has a number of end-
systems that are connected in a star topology to the switch. The total number of end-systems
is S and the number of nodes of a constituent system is B = 'S+ SW. These nodes are
interconnected using bi-directional physical communication links which can be described
by a two-dimensional boolean array C, in which the B? values of the matrix are either 0
(not connected) or 1 (connected). In this work, the connectivity matrix is sorted where all
end-systems come first and then the switches. This helps to reduce the computation time for

scheduling.
2. Reserved Resources of CSn
N
New Reserved Resources
\V4
CSM " Neenaes | CSM [nessnges | CSM
N N
7 7~

CS,.i CS, CSpi
(CS,) S (CS,) (CSpi)

L 1. Logical and Physical Input Model

Fig. 6.2 Logical Viewpoint of Local Scheduler.
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6.6.1 Input
6.6.1.1 Input Model

To simulate the transmission and reception of border messages between applications in the
proposed model, border switches BS are introduced in each constituent system. These
switches are the access-points of constituent systems to the respective network domain.
Conceptually, these switches allocate the jobs that either send or receive border messages.
For better understanding and simplicity of the model, one border switch is introduced in each
constituent system.

The connection of switches to end-systems is listed in a vector D g,,;¢.p that is determined
by the connectivity matrix C'. Each message requires a certain time, depending on the size of
the message, to be transmitted on a link. Thus, every time a message is sent from one link to
another one, its time is advanced by a hop transmission time U.

The application subsystem consists of a number of jobs J that communicate with each
other by the exchange of M messages. These uni-directional messages are sent by the
sending jobs, which are denoted by the vector S, where one job can send more than one
message. These messages are received by jobs which can be specified in a two-dimensional
boolean array D, where rows represent messages and columns represent receiving jobs. For
example, ds 4 = 1 denotes that message 2 is sent to job 4.

When a message is transmitted inside a subsystem, the sender of this message is an
end-system. On the other hand, when the message originates from outside the subsystem,
then the sender of the message is modeled as a border switch in the scheduling problem.
A boolean vector SN is used to specify whether a message is locally injected (sn,, = 1)
or from another constituent system (sn,, = 0). Similarly, a boolean vector DN is used to
differentiate between locally received messages (dn,, = 1) or outgoing border messages
(dny, = 0).

To keep track of the number of incoming border messages and outgoing border messages
in each subsystem the constants / NC and OUT are used respectively. Every message in the
SoS has a unique identifier GI D called the global message ID.

The computation time of jobs E is the execution time needed by the receiving job before

sending a subsequent message.

6.6.1.2 Resource Information of CS

The introduction of a new application subsystem in a constituent system triggers dynamic
reconfiguration by requiring a schedule for the additional jobs and messages. The CSM
needs to calculate a new schedule for these jobs taking into account the reserved resources of
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previous schedules. Therefore, a multi-dimensional array Res is used to keep track of these
reserved resources. The first and the second dimensions refer to the indices of the two nodes
connecting the link (i.e., range 1... B). Finally, the third dimension denotes the index of the

reservation of this link. Each link can have more than one reservation.

6.6.1.3 Scheduler State

Incremental scheduling in an SoS is the scheduling of messages that are transmitted between
different subsystems. This requires information about transmission times of border messages
in each subsystem in order to schedule these messages in the next subsystem.

A set of tuples BM is used that records the finish times of all border messages sent
between subsystems. Each tuple contains two non-negative numbers, namely a global
message ID and a finish time (ft). The finish time denotes the time by which an incoming

border message is received at the border switch towards the other constituent systems.

BM ={(gidy, ft1), (gidy, ft2),...}
with gid; € {1,2,...,M}, ft,; e N

6.6.2 Decision Variables

The local scheduler of the CSM generates two types of output information. A new schedule
state for the new jobs and updated information about reserved resources. The latter is used to

update the reserved resource database for subsequent scheduling steps.

6.6.2.1 New Schedule

This output information contains the schedule of the new jobs and messages. It consists of a
schedule for time-triggered messages (i.e., mapping of jobs to end-systems, message paths)
taking into account the dependencies with other local messages and border messages.

6.6.2.1.1 Job Allocation These variables denote the allocation of jobs to the nodes of
the physical platform model. Jobs that send and receive local messages can only be allocated
to end-systems while jobs that either send or receive border messages are allocated to the
border switch. Since nodes are sorted with end-systems and border switches coming first, the
maximum value a; of an allocation variable is the sum of the numbers of end-systems and
border switches.

A=Ta...a5)" €{1,...ES+BS}’
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To ensure that each job is allocated to exactly one end-system, a boolean matrix ALLOC M
is used where the rows relate to jobs and columns to end-systems. For example, matz s =1

means that job 3 is allocated to end-system 2.

matyy ... matyps
ALLOCM =| : . : e {0,1}/*FS

mat‘]’l AN mat(LES

To keep track of switches via which a job can transmit a message we use a vector ST
The vector SW denotes for each job an access-point switch that is directly accessible from
the end-system where the job is located. All other switches can only be reached by more
than one hop. For example, sro = 14 denotes that the switch with ID 14 is the access-point

switch for the end-system hosting the job 2.
SR=1sr...srj)" €{Z,...B}’

where Z = ES+ BS +1.

6.6.2.1.2 Hop Count A message is injected at the source end-system, where the sender
job was allocated. It is then transported along one or more switches before being received by
the end-system of the destination job. In order to express the number of visited switches for
each message after the access-point switch the vector hop count / is used and the maximum
value of its elements denotes the critical path length. In the absence of cyclic paths, the

maximum path length is maxy = SW — 1.
H=h. hyl"e {1,...,m}z}X}M

6.6.2.1.3 Injection Time This one-dimensional array represents the times by which the
messages are injected in the network of the constituent system. To reduce the search space of
the model and since there is only one path between any node and its neighbor switch, this
variable records the transmission time of a message starting from the neighbor switch of the

sender’s end-system where it is rescaled when a schedule is generated.
I=[i1...ipg) " € {1,.. . N}M

6.6.2.1.4 Path and Visited Switches To record the path between the message’s source

and destination end-system, the path array P is used. Since the sending and the receiving
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jobs are known beforehand, each row represents the path of a message starting from the
switch connected to the end-system which allocates a source job to the switch connected
to the end-system in which the destination job is allocated. For example, p1 2 = 14 means
that the second switch that message number 1 visits is the node with ID 14. The maximum

number of nodes in a path equals the maximum number of hops.

P11 ... PLSW
P=1: . : e{Z,..., ByM*SW

PM,1 .-+ PM,SW

where Z = ES + 1.

For the purpose of calculating the end-to-end latency, a boolean matrix O is used to
denote the switches that are passed by a message. For example, 02 3 = 1 means that message
2 travels through a switch with ID 3.

011 ... O15W

OM1 -+ OMxSW

6.6.2.2 Reserved Resources

After a schedule is generated, the transmission links for paths of all messages are used to
update a reserved resources database Res. Each entry in this database consists of the IDs of
the end-systems and/or switches connecting the reserved link in addition to the start time of
a message at the specified link. For example, Res3 5 2 = 10 denotes that the link connecting
nodes 3 and 5 has two reservations. The second reservation starts at 10 ms and has a duration

of the transmission time of the message .

6.6.3 Scheduling Constraints

This part describes the constraints that are used in the scheduling of time-triggered messages
in a constituent system.

6.6.3.1 Distributed Scheduling Constraints

As a prerequisite for the distributed scheduling, the CSM requires information about the
transmission times of border messages that are exchanged between different application

subsystems.
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The injection times of local messages (sn,,, = 1) as well as incoming border messages
(sny, = 0) in a subsystem can be evaluated as follows:

VYm; €{1,....M}:
SNy = 1 = Uy > Uy, (6.8)

SN, =0 = Gy, > fty,, where (gidy,,, ft,m,) € BM

6.6.3.2 Incremental Scheduling Constraints

New applications introduce additional jobs where the new schedule must take into account
the reserved resources of the previous schedule as denoted by Res. These corresponding

constraints can be divided into three groups:
* Constraints for links between sending end-systems and their access-point switches
 Constraints for links among switches

* Constraints for links between receiving end-systems and their access-point switches

6.6.3.2.1 Reserved resources between sending end-systems and their access-point switches
End-systems are connected to switches in a star topology. Hence, if the sender is an end-
system, it means that there is only one link where the first node is an end-system and the

second node is its access-point switch.

Ymy € {1,.... M}, ¥ri,rog €{1,...,B}:
(Resy, rp0 > 0)A(r1 < ES)A(snp, =1)

— ((Olsm1 F#T1V Py 0 # 72)

I (6.9)

v ( /\ (imy +um; < Resﬁﬂ’z,z)

z=1

v (im1 — Umy > R€5T17T272)))

6.6.3.2.2 Reserved resources among switches Since the connections of the switches
can have different topologies, all possible paths need to be checked regarding the reserved
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resources.
Vmi € {1,...,M},V7‘1,T2 S {1,...,3} :

(Resy, rp,0 > 0)A(r1 > ES) A (r2 > ES)

R
— ( \/ ((pml,rgl 7£r1 mel,rg 7£7"2)

rg=2

/\ (pml,rgfl 7£ 7”2 \/pm1,7‘3 7£ 7”1))

v (hm1 <7’3)
M
v ( /\ (iml +73 - Upy < Res?“h?”z,Z)

z=1

(6.10)

\ (im1 +(r3—1)- Umy = Resy ry 2 +um1))>

6.6.3.2.3 Reserved resources between receiving end-systems and their access-point
switches Again, if the receiving node is an end-system, it means that there is only one link

where the first node is an end-system and the second node is its access-point switch.

VYm € {1,...,M},VT1,7’2 S {1,...,3} :
(Resr a0 2 0)
— V€ {1,...,J} :

dmhjl =1

- ((% 771V Py 0 7 72) (6.11)

M
\% ( /\ (iml +73 Uy, < Resmﬂ“z,z’)

z=1

\ (2.7711 + (T3 - 1) *Umy > Resrlﬂ“%z +um1))>

6.6.3.3 Connectivity Constraint

The first constraint considers the path topology of the network based on the node connectivity
C. Since an end-system is connected to only one switch, the connectivity constraints can

be reduced by considering only the switches. If there is no direct connection between two
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switches a and b, then the path of a message must not include a hop from a to b.

VYmye{l,...M}Vre{l,...Mazxg} :

hoy > 1+1
= (6.12)
B
— \/ Cq,p = 1 — Connected(a,b)
a,b=FES+1

where the function Connected() states that a message’s path is allowed to pass through the
link between the two switches a and b.

Connected(a,b) = (pm, r = A APy r+1 =D0)

6.6.3.4 Collision Avoidance Constraint

These constraints are divided into three groups:
 Constraints to avoid collisions between a sending node and its access-point switch
* Constraints to avoid collisions between switches
 Constraints to avoid collisions between a receiving node and its access-point switch

The first constraints apply when a job sends more than one message. Since there is only
one link between any end-system and its access-point switch, the constraints ensure that
transmission times following the injection times I do not overlap.

Ymy € {1,...,M},m2 S {m1 —I—l,...,M},

Smy = Smy 6.13)
= (i > Ty + U,

v imz > iml + uml)
To prevent collisions of transmissions between switches, the scheduling of time-triggered

messages ensures that no two messages are transmitted on one link at the same time. Thus,
the messages should be transmitted on different paths or one needs to be scheduled before or
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after the transmission of the other message.

Vmy €{1,...M},mae{mi+1,... M},
Vri,re €41,....Maxg} :
(Pmyry 7 Pmagira V Pimy iy +1 7 Pmgra+1
V141> hy Vg 4+1> hyp,
Vi, +(r1+1) -ty <lmy +72 Uy
Vi + (T2 +1) -ty <y +71- U, )

(6.14)

The third type of constraints is used when a job receives more than one message. Since
there is only one link between an end-system and its access-point switch, these constraints
ensure that the transmission times of the messages from the access-point switch to the

end-system do not overlap.

VYmye{l,...M},moe{mi+1,.... M},
jgref{l,...,J}:
Aoy =1 Ay j, = 1 6.15)
= (g + (hny 1) -y <limy + Ry * Uy
Vimy + (hmy +1) - tmy <'imy +hmy *tm,)

6.6.3.5 Job Dependency Constraint

Depending on the precedence constraints between the jobs, jobs may need to wait for the
output of the transmission of other jobs before they begin the transmission. This constraint
ensures that if a job sends a message m to another job that needs the output of m in order
to send mo, the start time of m9 must be after the end of the transmission and execution of
mi.
VYmi,mg € {1,..m},Vj €{1l,....j}:

Ay gy = 1A Smy = 1 (6.16)

= g+ (Pmy +1) Uy + €5y <'imy
Each message must reach the destination node within its path and the selected number of
hops.

Vmy € {1,... M}, Vi €{1,....J}

dmlajl =1

w
- ( \/ (pmlﬂ'l =815 AN T1= hml))

ri=1

(6.17)
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6.6.3.6 Job Assignment Constraints

These constraints ensure that a job can be assigned to only one end-system. This is done
by having the sum of each row in ALLOCM (i.e., for each job) equal to 1. Then, the
allocated end-systems are stored in the allocation array A and the access-point switches of

the end-systems are stored in SR.

Vi1 e{l,....j}:
ES
mat ; =1
nz::l e 6.18)
ES
\/ matj, r, =1— (aj, =r1 Asrj, =dry)
ri=1

To allow only one job to be allocated to an end-system, the sum for each end-system
must be less than or equal to one.

Vry € {1,...,ES} :
J (6.19)
Z matj, | <1
J1=1

In order to start the path of each message with the access-point switch of the end-system
that hosts the job, the first node for each message path p; 1...ps, 1 is required to be the

access-point switch.

Vmy € {1,...M} V5 €{1,...,J}:

5m1 - jl
2
b (6.20)
- \/ (aj, =71 Apmia = dryy
ri=1

6.6.4 Objective Function

The objective is to minimize the maximum transmission time of the time-triggered messages
(i.e., minimization of critical path). This is done by first finding the transmission time of

each time-triggered message, expressed as the sum of the injection time i,, and the number
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of hops h,,, multiplied by the transmission duration of a message w,,. Then, the objective

function minimizes the highest value among all these messages.

Vmy € {1,...,M} :
CPIm1] = (imy + himy - Umy) (6.21)

minimize max(CP)

6.7 Experimental Evaluation

This section discusses the experimental evaluation. A generator for example scenarios and a

high-level scheduler were implemented to validate the scheduling problem.

6.7.1 Generator for Example Scenarios

A generic SoS generator was realized to build example scenarios for the evaluation of the
proposed scheduling models. Based on input parameters, the generator creates random
platforms and applications according to the conceptual model introduced in Section 6.1. The
input parameters for the physical viewpoint include the desired number of constituent systems
and network domains, the average number of end systems and switches per constituent system,
and the average node degree of the switches. In the logical viewpoint, input parameters are
the desired number of applications, the average number of subsystems per application, the
number of jobs per application subsystem and the average node degree of jobs.

The SNAP [Les] library was used for the generation of DAGs and undirected graphs in
the generations. A DAG is required for the graph of jobs in each application subsystem as
well as for the interconnection of application subsystems. The undirected graphs describe the
connectivity of the switches in constituent systems as well as the interconnection of network
domains and constituent systems. The outputs are visualized using the GraphViz library.

An example of a generated scenario is shown in figure 6.3. The figure depicts in detail
one of the constituent systems with 20 end-systems and switches where node ID 15 is a
border switch; it has also one of the application subsystems with 6 jobs. The jobs of the
application subsystem 1 send 6 local messages and one border message. In addition, one

incoming border message is received from another constituent system.

6.7.2 High-Level Scheduler

A high-Level scheduler was implemented to evaluate the conceptual model and the scheduling

problem. This high-level scheduler implements Algorithm 1 by performing a random
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Fig. 6.3 Generated Platform and Application

allocation of application subsystems to constituent systems. The paths between application
subsystems are determined by computing the shortest paths. An extension of the high-
level scheduler with support for an optimized allocation of application subsystems and path
determination at the SoS-level is planned as future work.

The output of the high-level scheduler are CPLEX scheduling models with the constants,
constraints and decision variables as introduced in Section 6.5.

6.7.3 Results

Table 6.2 depicts the scheduling time for three different SoSs. Every SoS consists of seven
applications each containing four application subsystems. The computation times were
obtained with CPLEX 12.6.1 running on a 12 processor Intel(R) Xeon(R), 2.2 GHz server
with the operating system Linux Ubuntu 14.04.1. CPLEX was used for the local scheduling
in each constituent system, either stopping after a feasible solution is found or computing an
optimal local schedule.

The scheduling time is measured in seconds to find a feasible solution as well as an
optimal solution. The finish times in the table denote the makespans of the respective
applications in ms. As can be seen in the table, in some cases the optimal local schedule
leads to increased makespans of later applications. The reason is the unavailability of early
time slots for messages of subsequent applications.

The results have demonstrated that hard real-time constraints can be satisfied using
time-triggered messages in SoS. This is done using incremental, distributed, and concurrent

scheduling.
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The incremental scheduling allows the scheduler to reserve the resources from previous
applications such as end-system processing intervals and communication link transmission
times in order to avoid contention with the newly generated application schedules. The dis-
tributed cooperation among the different CSMs is a prerequisite for supporting the autonomy
and lack of central control in SoS on one hand and simplifying the scheduling problem on
the other hand by executing each application subsystem in its allocated constituent system
which reduces the overall execution time and memory usage.



Chapter 7

Validation Framework for
Time-Triggered Systems-of-Systems

Compared to monolithic systems, SoSs are based on a number of operationally and ad-
ministratively independent, evolutionary developed, and graphically distributed constituent
systems [Mai98]. Thus, it is difficult to set up such systems and a simulation environment
approach is needed for verifying such complex systems. This chapter describes a simulation
framework of SoSs where time-triggered application schedules can be verified and analyzed.
First, it gives an introduction for simulation framework to be described. Then, the models of
the SoS models are explained, namely the generic building blocks for TTEthernet system
elements, the configuration file of nodes, and the CSM unit. After that, a description of
the tool chain that is used to generate understandable information schedule for every ap-
plication request, configures the related constituent system nodes, and analyzes provided
results [MAO17]. Next, the integration of the SoS scheduling model in the CSM is presented
in which the scheduled applications are fed to the simulation framework during its execution.
This simulates the execution of SoS applications and enhances the analysis of the incremental

schedule. Finally, experimental scenarios are conducted and their results are evaluated.

7.1 SoS Simulation Framework

A naive approach for scheduling SoS applications relies on centrally computing new time-
triggered schedules upon requests. However, the computation time needed to generate such a
global schedule makes this approach unfeasible for fast-changing systems. In addition, SoS

lack central information about the internal structure of all constituent systems.
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Real-time support in SoSs is an open research challenge due to the lack of central control
as well as the evolving and dynamic nature of the interactions between the constituent
systems. Real-time support is essential in many safety-relevant application areas such as
smart city, medical, military and industrial SoS. This SoS architecture is realized using a
TTEthernet model building blocks (e.g., TTEthernet switches and TTEthernet end-systems)
that are used to provide real-time requirements and mixed criticality applications [AO13].

This simulation environment uses the OPNET tool suite for discrete event simulations of
TTEthernet communication networks [OPN]. Simulation models in OPNET are organized
hierarchically consisting of four main levels: the SoS network, constituent systems, node
models and process models.

The top level refers to the SoS network which contains a number of constituent system
models and a network domain, that connects these constituent systems with each other,
using building blocks from the standard library and user-defined components. At this level,
statistics about the network are collected, the simulation is executed and results are viewed.
The second level is the constituent system that is implemented using the time-triggered nodes
(i.e. end-systems and switches). The node models are at the third level in the hierarchy
and have a modular structure. The node is defined by connecting various modules with
packet streams. The connections between modules allow packets and status information to
be exchanged between modules. The modules in the nodes are implemented by using process
models, the lowest level in the hierarchy. Process models are represented by finite state
machines, and a process interface that defines the parameters for interfacing other process
models and configuration attributes. Finite state machine models are described as embedded
C or C++ code blocks. The hierarchical structure of the models, coupled with support for C

and C++ code, allows for easy development of communication or networking models.

7.1.1 SoS models
7.1.1.1 TTEthernet Nodes

The main simulation building blocks are generic building blocks of the infrastructure elements
of a TTEthernet-system, which can be configured and extended to create an application-

specific simulation model:

e Generic model of a TTEthernet switch. TTEthernet switches are central building
blocks of a TTEthernet-based system. A generic simulation model of a TTEthernet
switch supporting time-triggered, rate-constraint, and best effort communication is
developed. In order to construct the overall simulation model, the user can perform

multiple instantiations of the generic switch, establish connections to end-systems
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Switch Configuration File
Traffic | VL-ID | Period | Phase/ | Sender | Receiver | Size
Type Port Port

End-systems Configuration File
Node ID | VL-ID | Period | Phase/ | Size
Jitter

Table 7.1 OPNET Configuration Files

and other switches, and assign to each switch instantiation a corresponding configura-
tion. The switch configuration defines the message timing including a time-triggered

communication plan.

* Generic model of a TTEthernet end-system. TTEthernet end-system are the commu-
nication end points within the TTEthernet system. The user can perform instantiates
of the generic TTEthernet end-system and connect each instantiation to TTEthernet
switches. End-system can be configured to produce messages according to application-
specific parameters (e.g., interarrival time, distributions of rate constraint messages,
periods of time-triggered messages). In addition, nodes can be extended with the

application behavior (e.g., C++ application code).

7.1.1.2 Configuration Files

Table 7.1 illustrates the fields of a configuration file for each switch and for end-systems.
In a switch configuration, a traffic type, either time-triggered or rate-constrained, is needed
to determine the traffic policy of the message. Then, a virtual link ID and a period need
to be assigned for each message. After that, the phase time of time-triggered messages or
minimum inter-arrival time for rate-constrained messages is needed when the message arrives
to the switch. At this time, detailed information is required about the switch’s sending and
receiving port for this message. Finally, the size of each message needs to be specified.

On the other hand, the node configuration file represents the reserved resources for all
end-systems in the SoS. Each row represents a message transmission or reception for an
end-system. The first field is an end-system’s ID and then the virtual link ID of the message.
Then, the period of the message and the time by which a message is injected/received are

specified. The fifth parameter is the message size.
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7.1.1.3 Constituent System Manager

This unit is located in each constituent system and is responsible for assigning the config-
uration parameters to the end-systems and switches. These configuration parameters are
generated using an off-line scheduler as explained in section 6.5. These parameters include
node reserved resources for messages (i.e. time-triggered and rate-constraint) within the
constituent system or border messages that are exchanged between the constituent systems.
The configuration parameters contain schedules of several applications which emulate the
real time SoS applications. The communication schedules are extended whenever additional
scheduled messages are required. In order to achieve this, the incremental approach for
deterministic networks should not require global knowledge about the overall network topol-
ogy. The incremental scheduling is driven by the dependencies imposed by the DAG of an
application. An application subsystem can be scheduled after the relied upon subsystems

have been scheduled.

7.2 Tool Chain

The SoS simulation framework involves multiple tasks to be executed in series which can
be described as a tool chain. Figure 7.1 illustrates the processes and shows the results after
each stage of the chain. The first process is responsible for generating scenarios in terms of
SoS topology as well as applications to be simulated. This data is fed to a scheduler process
which performs incremental scheduling of each application based on the physical platform
and generates incremental schedules. The third step is executed by a post processor which
takes the generated schedules from the scheduler in addition to the physical and logical
models taken from the generator and produces node configuration files suitable for OPNET
simulation. The last process is the OPNET simulation execution and results generation.

These processes are described in details in the following.

7.2.1 Post-Processing

The previously described scheduler generates schedules for all applications based on the
physical SoS topology. These schedules include allocating jobs to end-systems, scheduling
local and global messages to paths, and providing timely schedules for time triggered
messages. However, the generated schedules do not include port assignments for the switches
in the constituent systems as well as in the interaction domains. Moreover, the OPNET
simulation works on configuration files which are used to setup the resources for each node.
Thus, the schedules generated by the scheduler need to be processed first before the OPNET
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simulation starts. The data produced in this stage consist of a trace of the different schedules

which are used as an input for the simulation.

7.2.2 OPNET Simulation

The last phase in the tool chain is the OPNET simulation execution process and results
generation. First of all, the physical network topology including node connectivity and port
assignments need to be specified using the physical platform produced by the network gener-
ator. Then, these nodes (end-systems and switches) are configured with the configuration
files generated by the post processor described above. After execution finishes, the OPNET
simulation checks the correctness of the generated schedules by keeping track of packet
collisions and drops during the whole period of the scenario execution and produces the

results regarding the worst-case latency for time-triggered and rate-constrained messages.



7.3 Coordination Protocol of Time-Triggered Scheduling in SoS 91

7.3 Coordination Protocol of Time-Triggered Scheduling
in SoS

The previous section demonstrates the required steps to update the configuration files of the
SoS nodes using a tool chain. However, the schedules for the interested applications must be
manually generated and then deployed to the related nodes before the simulation starts.

An SoS application can be scheduled where the CSMs in the constituent systems com-
municate with each other while generating their distributed schedules and then deploying the
resulting schedule. This section presents the rules and mechanisms that are used between the
constituent systems of the SoS. It defines a list of steps required whenever a new application
is introduced. Moreover, it includes the control and the operational interfaces between the

building blocks (end-systems, switches, and CSMs).

7.3.1 Message-based Interfaces between Building Blocks

Figure 7.2 illustrates the integration of the scheduler layer inside the block diagram of a
TTEthernet end-system [AO13]. Besides the generic source that generates all traffic types
(i.e., time-triggered, rate-constrained and best-effort), a scheduler is added to accept new
application requests, communicate with other CSMs to generate the incremental schedules,
and configures the nodes inside its constituent system with the generated schedule. The
configuration messages sent and received by the scheduler layer are of best-effort type.

The job of the scheduler layer is summarized in Algorithm 2. The interested node sends
a new application request to the broker of the C'S, which forwards the request to the CSM
with complete information about the high-level allocation of this application. After that,
the root CSM sends this information to all CSMs related to the participating application
subsystems which are allocated to constituent systems and waits for their acknowledgement
messages. Moreover, the root CSM starts generating low-level allocation and scheduling
of the jobs and messages within its application subsystem. After these CSMs received
the application dependency information and send back the acknowledgement to the root
CSM, the latter starts sending the global messages to those CSMs. A CSM will perform
low-level allocation and scheduling of its jobs and messages if and only if the times of all
dependent global messages have arrived. When all CSMs received acknowledgments about
the completion of schedule generations from all participating CSMs, they will configure the

interested end-systems and switches within the constituent system.
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7.3.2 Sequence of Activities to Introduce a new Application

The interactions between the constituent system managers in the SoS, as well as, interactions
between the requested application in a constituent system with its constituent system manager
are classified into four main operations. The first operation consists of finding the high-
level application subsystems of the application requests. The next operation is to perform
a mapping of the high-level application subsystems to high-level physical models. This is
followed by the scheduling of the low-level logical model in each mapped constituent system.
Finally, the generated schedules are deployed in the selected physical models that necessitate
the configuration of the end-systems in each constituent system by its constituent system
manager CSM. The aforementioned operations can be explained in details using nine phases
as depicted in figure 7.3.

Phase 0: A user, connected to an end-system, logs into the system and requests a service
from the SoS. For example, in tele-health monitoring and patient service where a number of
sensors are used to keep track of the status of a patient and send emergency requests in case
of abnormal readings. The request is delivered to the operating system of the end-system.

Phase 1: An application in an end-system sends a request for a particular service to its
CSM. It is assumed that any request made by an application includes information about the
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switch Type do

case Request to Root CSM

Add new APP

Send APP Dependency to all participating CSMs

// perform low-level allocation and scheduling to AS allocated to the root C'S

incremental update of ALLOCjq,  for jobs in AS

incremental update of SCHEDy;, ¢ for msgs. in AS

break

ase Exchange of APP Dependency

Send APP Dependency ACK to Root CS

break

case APP Dependency ACK

Send Times of Dependent Msgs. to requester CSM

break

case Exchange Global Messages

if ALL Dependent Msgs Received then
/I perform low-level allocation and scheduling to AS allocated to this C'S
incremental update of ALLOCjq  for jobs in AS
incremental update of SCHED,, . for msgs. in AS

end

break

case Schedule Generated ACK

if ALL other Schedules of ASs Generated then

‘ Configure the PEs and SWs inside C'S

end

break

otherwise

| Do Nothing
end
endsw

e

Algorithm 2: Interaction of the Scheduler layer to configuration messages

specific application subsystems, i.e., high-level logical models, which serve the intended
request.

Phase 2: In this phase the CSM then consults the broker in the constituent system in order
to procure the suitable constituent systems, i.e., high-level physical models, and perform a
high-level allocation for the specific application subsystems defined in the request.

Phase 3: The CSM performs preliminary calculations to obtain the predecessor- and
successor constituent systems for each of the involved constituent systems, i.e., high-level

application dependencies.
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