
Scheduling Event-Triggered and
Time-Triggered Applications with

Optimal Reliability and Predictability on
Networked Multi-Core Chips

DISSERTATION

zur Erlangung des akademischen Grades

eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)

vorgelegt Dissertation von:

Ayman Murshed

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät

der Universität Siegen

Siegen− Januar 2018

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

Betreuer und erster Gutachter

Prof. Dr. Roman Obermaisser, Universität Siegen

Zweiter Gutachter

Prof. Dr. Kristof Van Laerhoven, Universität Siegen

Prüfungskommission:
Prof. Dr. Roman Obermaisser

Prof. Dr. Kristof Van Laerhoven

Prof. Dr. Roland Wismüller

Prof. Dr. Marcin Grzegorzek (Vorsitz der Prüfungskommission)

Tag der mündlichen Prüfung: 23. March 2018

Printed with the support of the German Academic Exchange Service.

In loving memory of my father

To my mother

To my beloved wife and our precious kids Ghazel and Nageeb

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Dr-Ing. Roman Obermaisser

for the continuous support of my Ph.D. research, for his patience, motivation, and constructive

criticism throughout my study. His guidance helped me in all the time of research and writing

of this thesis.

I would especially like to thank my family. My sincere greeting is to my late father,

who always believed in my ability to be successful in the academic arena. You are gone but

your belief in me has made this journey possible. I would also like to thank my mother and

my brother Amjed for their support and good wishes. My wife, Sajaa has been extremely

supportive of me throughout this entire process and has made countless sacrifices to help me

get to this point. My children, Ghazel and Nageeb, have continually provided the requisite

breaks from philosophy and the motivation to finish my degree.

I would gratefully acknowledge the funding received towards my PhD from the German

Academic Exchange Service (DAAD).

Last but not the least, my gratitude is extended to all my friends and colleagues thank

you for your motivation and encouragement.

Abstract

Multi-core processors are gaining increasing importance in safety-relevant embedded real-

time systems, where temporal guarantees must be ensured despite the sharing of on-chip

resources such as processor cores and networks-on-chip (NoC). At the same time, many

applications comprise workloads with different timing models including time-triggered and

event-triggered communication.

The first contribution is a scheduling model based on Mixed Integer Linear Programming

(MILP) supporting the allocation of computational jobs to processing cores as well as the

scheduling of messages and the selection of paths on NoC. The model supports dependencies

between computational jobs and it combines both time-triggered and event-triggered mes-

sages. Phase alignment of time-triggered messages is performed while avoiding collisions

between time-triggered messages and satisfying bandwidth constraints for event-triggered

messages. Example scenarios are solved optimally using the IBM CPLEX optimizer yielding

minimal computational and communication latencies.

Real-time communication and reliability are two important requirements in the devel-

opment of safety-critical embedded systems, which benefit from the inherent fault isolation

and temporal predictability of time-triggered networks. These systems depend on redundant

communication schedules that contain global time-based information of message transmis-

sions with conflict-free paths through the switches. In these systems, the use of redundancy

to handle communication errors requires the preallocation of communication resources. The

second contribution introduces a novel scheduler for redundant time-triggered networks that

assigns messages to redundant paths. The scheduler considers the link reliability along with

physical and logical models and produces a schedule where each message is assigned to two

different paths along the switches. We also discuss and validate the approach with results

from a prototype implementation.

SoS consist of complex interconnections of large numbers of networked embedded

systems that are characterized by operational and managerial independence of constituent

systems, geographical separation, and emergent behavior in a constantly changing environ-

ment. The support for real-time communication is crucial for many SoS application areas

such as medical, business, and military systems. The third contribution is a conceptual model

vii

and a scheduling algorithm for supporting real-time requirements in SoS. The search for a

feasible schedule is computed incrementally upon the introduction of new applications in

the SoS. The distributed computation of the schedule using the different constituent systems

considers the lack of global knowledge and control in the SoS, while also reducing the

overall scheduling time. Concurrent scheduling activities are supported to deal with the

uncoordinated and possibly simultaneous introduction of multiple applications.

The dissertation introduces also a simulation framework with real-time support of SoS

that supports high-level scheduling as well as low-level scheduling for each constituent

system. A time-triggered Ethernet (TTEthernet) simulation framework was extended by

adding a scheduler layer to perform incremental scheduling among Constituent System

Managers (CSMs). The simulation framework enabled the evaluation of the proposed

algorithms in terms of schedulability, run-time, and worst-case latency for time-triggered

and rate-constrained messages.

Kurzfassung

Mehrkernprozessoren gewinnen zunehmend an Bedeutung in sicherheitsrelevanten eingebet-

teten Echtzeitsystemen, bei denen trotz der gemeinsamen Nutzung von On-Chip-Ressourcen

wie Prozessorkernen und On-Chip-Netzwerken zeitliche Garantien gewährleistet sein müssen.

Gleichzeitig umfassen viele Anwendungen Arbeitsbelastungen mit unterschiedlichen Timing-

Modellen, einschließlich zeitgesteuerter und ereignisgesteuerter Kommunikation.

Der erste Beitrag der Dissertation ist ein Planungsmodell, das auf der gemischt-ganzzahligen

linearen Programmierung basiert und die Zuweisung von Rechenaufträgen an Prozessorkerne

sowie die Planung von Nachrichten und die Auswahl von Wegen auf NoCs unterstützt.

Das Modell unterstützt Abhängigkeiten zwischen Rechenjobs und kombiniert sowohl zeit-

gesteuerte als auch ereignisgesteuerte Nachrichten. Die Phasenausrichtung zeitgesteuerter

Nachrichten wird durchgeführt, während Kollisionen zwischen zeitgesteuerten Nachrichten

und die Verletzung von Bandbreitenbeschränkungen für ereignisgesteuerte Nachrichten ver-

mieden werden. Beispielszenarien werden optimal mit dem IBM CPLEX-Optimierer gelöst,

wobei minimale Rechen- und Kommunikationslatenzen garantiert werden.

Echtzeitkommunikation und Zuverlässigkeit sind zwei wichtige Anforderungen bei der

Entwicklung sicherheitskritischer eingebetteter Systeme, die von der inhärenten Fehlerisolierung

und zeitlichen Vorhersagbarkeit zeitgesteuerter Netzwerke profitieren. Als Grundlage für

Fehlertoleranz benötigen diese Systeme außerdem redundante Kommunikationspläne, die

globale zeitbasierte Informationen von mehrfachen Nachrichtenübertragungen mit konflikt-

freien Pfaden durch die Switches enthalten. In diesen Systemen erfordert die Verwendung

von Redundanz zur Behandlung von Kommunikationsfehlern die Vorbelegung von Kommu-

nikationsressourcen. Der zweite Beitrag der Dissertation stellt einen neuartigen Scheduler

für redundante zeitgesteuerte Netzwerke vor, der Nachrichten redundanten Pfaden zuweist.

Der Scheduler berücksichtigt die Verbindungszuverlässigkeit zusammen mit physischen und

logischen Modellen und erstellt einen Zeitplan, bei dem jede Nachricht zwei verschiedenen

Pfaden entlang der Switches zugewiesen wird. Wir diskutieren und validieren den Ansatz

mit den Ergebnissen einer Prototypimplementierung.

Systeme von Systemen (SoS) bestehen aus komplexen Zusammenschaltungen einer

großen Anzahl von vernetzten eingebetteten Systemen, die durch betriebliche Unabhängigkeit

ix

von Teilsystemen, geografische Trennung und emergentes Verhalten in einer sich ständig

verändernden Umgebung gekennzeichnet sind. Die Unterstützung für Echtzeitkommunika-

tion ist für viele Anwendungsbereiche wie medizinische, geschäftliche und militärische

Systeme von entscheidender Bedeutung. Der dritte Beitrag der Dissertation ist ein konzep-

tionelles Modell und ein Planungsalgorithmus zur Unterstützung von Echtzeitanforderungen

in SoS. Die Suche nach einem realisierbaren Zeitplan wird schrittweise nach der Einführung

neuer Anwendungen im SoS berechnet. Die verteilte Berechnung des Zeitplans unter Ver-

wendung der verschiedenen Teilsysteme berücksichtigt den Mangel an globalem Wissen und

Kontrolle im SoS, während gleichzeitig die Gesamtplanungszeit verringert wird. Gleichzeit-

ige Terminierungsaktivitäten werden unterstützt, um die unkoordinierte und möglicherweise

gleichzeitige Einführung mehrerer Anwendungen zu bewältigen.

Die Dissertation stellt auch ein Simulationsframework mit Echtzeit-Unterstützung von

SoS vor, das sowohl die High-Level-Planung als auch die Low-Level-Planung für jedes

Teilsystem unterstützt. Ein Simulationsframework für zeitgesteuertes Ethernet (TTEthernet)

wurde um eine Scheduler-Schicht erweitert, um eine inkrementelle Planung unter Constituent

System Managern (CSMs) durchzuführen. Das Simulationsframework ermöglichte die

Evaluierung der vorgeschlagenen Algorithmen hinsichtlich der Planbarkeit, der Laufzeit und

der Worst-Case-Latenz für zeitgesteuerte und ratenbeschränkte Nachrichten.

Table of contents

List of figures xiv

List of tables xv

1 Introduction 1
1.1 Research Scope . 3

1.2 Thesis Contributions . 4

1.3 Thesis Structure . 4

2 Concepts and Terms 6
2.1 Real-time Systems . 6

2.2 Distributed Real-time Systems . 7

2.2.1 Timing Models in Distributed Real-Time Systems 8

2.2.2 Classification of Real-time Distributed Systems 9

2.2.2.1 Hard Real-time versus Soft Real-time Systems 10

2.2.2.2 Fail-safe versus Fail-operational Systems 10

2.2.2.3 Time-Triggered versus Event-Triggered Systems 10

2.2.3 Timing Concepts . 11

2.2.4 Precedence Constraints . 11

2.2.5 Real-time Scheduling . 13

2.3 Linear Programming . 13

2.4 Dependability . 15

2.4.1 Faults and Fault-Tolerance . 15

2.4.2 Dependability Means . 17

2.4.3 Dependability Attributes . 17

2.5 Fault Hypothesis . 19

2.6 Systems-of-Systems . 20

2.6.1 Characteristics of SoS . 21

Table of contents xi

3 Related Work 22
3.1 Classification of Scheduling Algorithms 22

3.2 Scheduling of Distributed Systems . 23

3.3 Research Gap in the State of the Art . 27

4 Scheduling and Allocation of TT and ET Services for Multi-Core Processors
with NoC 28
4.1 Network-on-Chip Architecture . 28

4.1.1 Multi-Core Platform . 28

4.1.2 Topology . 29

4.1.3 Application and Jobs . 30

4.2 Scheduling Model . 31

4.2.1 Decision Variables . 33

4.2.1.1 Job Allocation . 33

4.2.1.2 Hop Count . 33

4.2.1.3 Injection Time . 34

4.2.1.4 Path and Visited Nodes 34

4.2.2 Scheduling Constraints . 34

4.2.2.1 Connectivity Constraint 34

4.2.2.2 Collision Avoidance Constraint 35

4.2.2.3 Job Dependency Constraint 35

4.2.2.4 Job Assignment Constraints 36

4.2.2.5 Message Deadline Constraints 37

4.2.2.6 Bandwidth Constraints 37

4.2.2.7 Other Constraints . 38

4.2.3 Objective Function . 38

4.3 Graph Generation . 38

4.3.1 Stanford Network Analysis Platform (SNAP) 39

4.4 Results . 39

5 Optimized and Reliable Scheduling Algorithm 45
5.1 Improved Scheduling Model for Time-Triggered and Event-Triggered Messages 45

5.1.1 Optimized Variables . 46

5.1.1.1 Job Allocation . 47

5.1.1.2 Message Path . 47

5.1.2 Optimized Constraints . 48

5.1.2.1 Job Assignment Constraints 48

Table of contents xii

5.1.2.2 Connectivity Constraint 49

5.1.2.3 Collision Avoidance Constraint 49

5.1.3 Experimental Evaluation . 50

5.2 Reliable Scheduling Model for Time-Triggered Messages 51

5.2.1 Scheduling Model For Fault-Tolerant Communication 52

5.2.1.1 Constants . 53

5.2.1.2 Decision Variables . 53

5.2.1.3 Scheduling Constraints 55

5.2.1.4 Reliability Constraints 56

5.2.1.5 Transmission Delay Constraints 56

5.2.1.6 Objective Function . 57

5.2.2 Experimental Evaluation . 57

6 Scheduling Model in Systems-of-Systems 62
6.1 System-of-Systems Architecture . 62

6.2 Incremental, Distributed, and Concurrent Scheduling 65

6.3 Problem Description . 66

6.3.1 Platform Description . 66

6.3.2 Application Description . 67

6.4 Formal Description of Scheduling and Allocation in SoS 68

6.4.1 High-Level Allocation of an Application 68

6.4.2 Low-Level Allocation and Scheduling in Constituent Systems and

Network Domains . 68

6.5 Scheduling and Allocation Algorithm . 69

6.6 Scheduling Model of SoS . 69

6.6.1 Input . 73

6.6.1.1 Input Model . 73

6.6.1.2 Resource Information of CS 73

6.6.1.3 Scheduler State . 74

6.6.2 Decision Variables . 74

6.6.2.1 New Schedule . 74

6.6.2.2 Reserved Resources . 76

6.6.3 Scheduling Constraints . 76

6.6.3.1 Distributed Scheduling Constraints 76

6.6.3.2 Incremental Scheduling Constraints 77

6.6.3.3 Connectivity Constraint 78

6.6.3.4 Collision Avoidance Constraint 79

Table of contents xiii

6.6.3.5 Job Dependency Constraint 80

6.6.3.6 Job Assignment Constraints 81

6.6.4 Objective Function . 81

6.7 Experimental Evaluation . 82

6.7.1 Generator for Example Scenarios 82

6.7.2 High-Level Scheduler . 82

6.7.3 Results . 83

7 Validation Framework for Time-Triggered Systems-of-Systems 86
7.1 SoS Simulation Framework . 86

7.1.1 SoS models . 87

7.1.1.1 TTEthernet Nodes . 87

7.1.1.2 Configuration Files . 88

7.1.1.3 Constituent System Manager 89

7.2 Tool Chain . 89

7.2.1 Post-Processing . 89

7.2.2 OPNET Simulation . 90

7.3 Coordination Protocol of Time-Triggered Scheduling in SoS 91

7.3.1 Message-based Interfaces between Building Blocks 91

7.3.2 Sequence of Activities to Introduce a new Application 92

7.4 Experimental Evaluation . 97

8 Conclusion 102

References 104

List of figures

2.1 Real-time system . 8

2.2 Real-time parameters . 12

2.3 Precedence relations among three jobs. 12

2.4 Dependability Tree . 16

2.5 System of Systems . 20

4.1 Example NoC Topology (Mesh) . 30

4.2 Model example with 7 Nodes, 5 Jobs and 5 msgs 40

5.1 Physical Model of 5 end-systems and 2 switches. 46

5.2 Parallel-Series Redundancy Model . 53

5.3 Model example with 13 Nodes, 5 Jobs and 5 messages 57

6.1 Physical and Logical Viewpoint of the SoS 63

6.2 Logical Viewpoint of Local Scheduler. 71

6.3 Generated Platform and Application . 83

7.1 Simulation Chain . 90

7.2 Block diagram of CSM in TTEthernet End system 92

7.3 Different phases of requests managements in SoS 95

7.4 Message sequence diagram . 96

7.5 Description of CSM messages . 97

7.6 Example of SoS with 4 CSs . 98

7.7 Medical Scenario Use Case . 99

7.8 Model example for medical scenario . 100

7.9 Effect of BI for TT . 101

7.10 Effect of BI for RC . 101

List of tables

4.1 Overview table with constants . 32

4.2 CPLEX Input constants for model in Figure 4.2 42

4.3 Results for model example . 43

4.4 Results of 22 case studies. 44

5.1 Comparison of the enhanced model with the previous one. 51

5.2 Overview table with constants for the CPLEX-based model 54

5.3 CPLEX Input constants for model in Figure 5.3 58

5.4 Results for example model . 60

6.1 Overview Input Table . 72

6.2 Results of Different SoS Scenarios . 84

7.1 OPNET Configuration Files . 88

7.2 Use case result in OPNET simulation environment 98

7.3 Characteristics and assignment of jobs to End-systems 100

Chapter 1

Introduction

The advances of the semiconductor industry resulted in a trend towards multi-core processors

in safety-critical real-time systems. The performance improvement of single-core processors

is roughly proportional to the square root of the increase in the number of transistors, while

multi-core processors promise a linear performance gain [BC11]. The required parallelism of

the application software is common in most embedded systems, where numerous concurrent

activities are required such as sensing, control, actuation and diagnostic functions.

A major challenge towards the use of multi-core processors in real-time systems is the

temporal interference between cores. Cores require access to shared resources such as

input/output devices, external memory, and the on-chip interconnect. The dynamic resolving

of this resource contention significantly complicates Worst-Case Execution Time (WCET)

analysis and results in pessimistic upper bounds of execution times [ABD+13]. Experimental

evaluations have shown that the WCET on a commercial off-the-shelf (COTS) multi-core

processor can be multiple times higher than the WCET of the same application on a single

core without other interfering cores [NP12].

At present, two different approaches are perceived to enable the use of multi-core pro-

cessors in safety-critical real-time systems. Firstly, development methods for deploying

COTS multi-core processors in safety-relevant systems have been introduced, e.g., by per-

forming probabilistic WCET analysis [KQA+14] and randomization techniques [Dav13].

Secondly, several researchers propose multi-core architectures targeted towards temporal

predictability, whereas COTS processors for consumer applications are optimized for average

execution times. These real-time architectures are based on Time-Triggered Network-on-

Chips (TTNoCs) with short and predictable WCET. Examples are the GENESYS MPSoC

using the time-triggered Network-on-Chip (NoC) [OKP10], COMPSoC with the AEthereal

NoC [GAC+13] and PARMERASA [UBG+13].

2

Likewise, many distributed embedded systems are based on multiple clusters and time-

triggered networks with complex topologies. Examples are electronic systems in industrial

control, the automotive domain and avionics. In these systems, a large number of end-

systems is required, which are connected to switches using stars while switches themselves

are interconnected using different topologies [DT03], [DYN03a]. Furthermore, there is a

trend to combine complex network topologies with different timing models including rate-

constrained and periodic communication. Examples are large-scale systems based on Time

Sensitive Networking (TSN) [IEE15b] and Time-Triggered Ethernet (TTEthernet) [AS611].

The TTNoCs in multi-core architectures as well as in distributed embedded systems

depend on scheduling and allocation algorithms in order to guarantee that the communication

and computational activities meet the deadlines. In case of NoCs using Time-division

Multiple Access (TDMA), conflict-free sending slots need to be assigned to the message-

exchanges between the cores. For event-triggered communication activities, worst-case

delays imposed by competing messages with given predefined minimum interarrival times

need to be analyzed.

In general, scheduling and allocation techniques from the area of distributed systems

cannot directly be applied to multi-core architectures due to differences between on-chip

and off-chip networks. These differences include the differences in the network topologies

(e.g., regular distributed topologies vs. customized on-chip topologies), different routing

protocols (source-based vs. distributed routing) and control schemes (e.g., granularity of

communication, interleaving of virtual networks).

In order to ensure reliability in time-triggered networks, there should be a mechanism

to guarantee the timely message delivery in the presence of communication link faults.

Generally, most of the common faults can be masked using redundancy techniques [BK00].

Depending on the system type, there are two main techniques to overcome communication

errors: temporal and spatial redundancy [NSL09]. The first technique transmits messages

over the same link in different time intervals, while the second method sends the message

copies through different links.

Furthermore, the field of embedded systems is faced with the trend of an increasing inter-

connection of independently developed embedded systems to each other and to the cloud. The

resulting Systems-of-Systems (SoSs) are networked together for a period of time to achieve

a certain higher goal [Jam09]. Examples of SoSs include smart cities [ZBC+14], intelligent

factories [Jaz14] and integrated healthcare systems [WCBM07]. SoSs are characterized by

operational and managerial independence of constituent systems, geographical distribution,

emergent behavior and evolutionary development processes [Mai98]. In addition, many SoSs

1.1 Research Scope 3

depend on support for stringent real-time requirements for time-critical application services.

Examples are medical monitoring and telemedicine in healthcare systems.

Real-time support in SoSs is an open research challenge due to the lack of central control

as well as the evolving and dynamic nature of the interactions between the constituent

systems. In monolithic systems, the dynamic introduction of new applications is performed

using schedulability tests in order to ensure that accepted applications meet their real-time

requirements and new applications do not affect existing ones.

1.1 Research Scope

This thesis presents time-triggered scheduling models and optimal scheduling algorithms

that support real-time and reliability requirements for NoCs as well as SoSs. This thesis

addresses time-triggered systems, because the temporal interference between the cores

of event-triggered multi-core processors significantly complicates the analysis of WCETs.

For example, due to the interference at the level of input/output devices, external memory

and on-chip interconnects, event-triggered multi-core processors are not recommended in

safety-critical avionic systems [CASTCA16].

Time-triggered networks exhibit a predictable temporal behavior of communication

systems as well as fault containment where end-systems are working based on a permitted

behavior with respect to a global time base. The challenge is how to guarantee the timely

message delivery in a multi-hop time-triggered networks with the presence of communication

link faults. Moreover, some applications have event-triggered communication in addition to

time-triggered, which requires minimizing the end-to-end delay of event-triggered messages

while ensuring the timing requirements for time-triggered messages. Previous research work

either presented temporal redundancy mechanism which requires schedule change when a

message dropped or did not introduce a complete model that provides a reliable schedule;

i.e., including job allocation, precedence constraints, and link failure.

The end-to-end communication with real-time requirements in SoS imposes a number

of challenges such as managerial independence of constituent systems, emergent behavior,

and evolutionary development processes. The scheduling of these large-scale networked

embedded systems requires a decentralized algorithm in which each constituent system is

only aware of its own resources at the same time the introduction of new applications requires

a model that considers the allocation of reserved resources for the previous applications in

order to avoid resource contention with the new applications to be scheduled.

1.2 Thesis Contributions 4

1.2 Thesis Contributions

The scientific contributions of this thesis beyond the state of the art are as follows:

1. Scheduler for Distributed Systems with Time-Triggered Networks: We introduce a

system model for distributed systems deployed with time-triggered networks that

supports time-triggered and event-triggered communications. The system model is

mapped to a Mixed-Integer Linear Programming (MILP) problem for optimizing the

allocation and scheduling of computational and communication activities. Constraints

ensure correct allocations based on a given distributed system architecture and applica-

tion model (e.g., dependencies between communication and computational activities,

limited connectivity between routers). The MILP problem also expresses real-time

constraints and avoids collisions between time-triggered messages.

2. Extension of Time-Triggered Networks scheduler for reliability: We extend the

scheduler model from (1) to optimize the reliability as part of the objective func-

tion. This is done by generating redundant messages each with different paths. As a

consequence, communication reliability is improved compared to the failure rates of

individual communication links.

3. Scheduler for SoSs with real-time requrements: We presents an SoS architecture

with support for real-time requirements based on managed traffic and dynamic configu-

ration. Each constituent system is equipped with a Constituent System Manager (CSM),

which not only configures the local communication networks within the constituent

systems but also interacts with the CSMs of other constituent systems and the backbone

infrastructure of the SoS to establish resource reservations. This is done by formulating

an incremental, distributed and concurrent scheduling problem for the CSMs. The

computed schedules lead to resource reservations for time-triggered communication

and computational activities.

1.3 Thesis Structure

The remainder of the dissertation is structured as follows.

Chapter 2 contains the main concepts and terms that are used throughout the dissertation.

First, it outlines the background of real-time system focusing on distributed systems explain-

ing their timing models and their main classifications. Then, an introduction on real-time

scheduling problem is introduced with the focus on linear programming method to solve such

problems. After that, the concept of dependability and its main classifications is explained

1.3 Thesis Structure 5

followed by an introduction on the fault hypothesis concept. Finally, an overview of SoS

with its main characteristics is presented.

Chapter 3 starts with the classifications of scheduling algorithms and followed by an

overview of the state of the art in the scheduling of distributed systems. Afterwards, the

research gaps in the state of the art are outlined with the proposed solutions.

In Chapter 4 the system model for safety critical embedded systems based on multi-core

architecture is introduced. The introduced model is then mapped into a scheduling model

where jobs are mapped to end-systems and messages of different criticality are optimally

scheduled. Finally, example scenarios and optimization results are presented.

Chapter 5 provides an optimized model presented in the previous chapter where the search

space of the model is reduced and consequently scheduling execution time is less compared

to the previous model. After that, the reliability concept in time-triggered embedded systems

is highlighted focusing on the parallel-series model as a redundancy technique. The explained

model is then mapped into a scheduling model that integrates a redundant model for safety

critical embedded system based on multi-core architecture. The proposed model is then

evaluated using example scenarios.

Chapter 6 presents a conceptual model of an SoS. Based on the described model, a

scheduling model for an SoS architecture is explained based on incremental, distributed,

and concurrent scheduling principles. The proposed model is then formulated and evaluated

using example scenarios.

Chapter 7 describes a simulation framework for SoS model to validate the previously

described SoS scheduling model. It starts with a detailed description of the building blocks

in an SoS simulation framework. Then, a simulation tool chain is presented which consists

of the main processes of the simulation framework. After that, example scenarios and

simulation results are presented using OPNET simulation. Finally, the previously described

SoS building blocks are extended where the SoS scheduling model is integrated inside the

end-system process model of the simulation.

Chapter 8 concludes the dissertation and summarizes the main outcomes of the contribu-

tions presented in the previous chapters.

Chapter 2

Concepts and Terms

This chapter provides definitions and background highlights about the main concepts and

terms that are used throughout this dissertation. It starts with the fundamental concept of

real-time system including its important characteristics and its main components. Then, an

overview of the basic principles of a distributed real-time system is presented explaining its

timing models in addition to its significant classifications. After that, a general review about

the timing concept in real-time system followed by a brief notion about real-time scheduling

and linear programming. Next, the attributes and means of the dependability concept are

outlined with a background about the fault-hypothesis. Finally, definitions and a quick review

of the term SoS are given highlighting its main characteristics.

2.1 Real-time Systems

A system is a collection of dependent components that interact to produce a desired emergent

behavior. The functionalities of a system depend on the structural parts of their components,

connections and relationships between the interacting components, and the behaviors of the

overall system.

An embedded system is a combination of hardware and software which is designed to

accomplish a particular task or several tasks. There are many definitions for embedded

systems. [Kam11] defined an embedded system as a system that has two main components;

particularly computer-hardware and embedded software that are combined together for a

specific application or part of a larger system. In another definition by [Shi09], an embedded

system is a combination of special-purpose hardware and embedded software, that may

consist of electro-mechanical parts, which is designed to perform a specific function.

Real-time systems have a number of characteristics that are different compared to other

computer systems. The correctness of real-time systems does not only depend on the

2.2 Distributed Real-time Systems 7

delivery of the logical results of computation but also on the time at which these results are

delivered [Sta88], [Kop11]. The important characteristic of these systems is the real-time

operation which is defined by the German industry standard DIN 44300 [Kav92] as ‘the

operating mode of computer systems in which the programs for the processing of data

arriving from the outside are permanently ready, so that their results will be available within

predetermined periods of time; the arrival times of the data can be randomly distributed or be

already a priori determined depending on the different applications’.

A real-time application is composed of a set of tasks that have different levels of criticality.

The consequence of missing deadlines in hard real-time tasks is catastrophic and may results

to deadly results. On the other hand, soft real-time tasks can miss deadlines without severe

damage and the system still work correctly [MJ95].

A system that consists of set of job tasks, J = {j1, j2, . . . , jn} where their finish times are

F = {f1,f2, . . . ,fn} consecutively is said to be real-time iff there exists at least one job ji

relates to J in which its execution should not be more than the given deadline di; i.e., fi < di

To better understand the concept of real-time system, consider the example of a nuclear

power plant monitoring system, where the nuclear core temperature and pressure are continu-

ously monitored by the sensors of a real-time control system. Based on periodic readings

from the sensors, a coolant is fed to keep the nuclear core below a certain temperature while

controlling the pressure inside the reactor using a pilot-operated relief valve (PORV).

As illustrated in the above example, a real-time system changes as a function of physical

time. Generally, a real-time system can be decomposed into a set of self-contained clus-

ters, namely the computational cluster and its environment, such as controlled cluster and

operator cluster as shown in Figure 2.1. In the nuclear plant monitoring system example,

the temperature and pressure are part of the controlled cluster, the system that monitors the

readings of pressure and temperature and invokes real-time actions is the computational

cluster, and the operator cluster is represented by the observer who keeps track of the readings

and actions taken by the system. Thus, a real-time computational cluster must analyze the

input taken from the controlled cluster and react within a specified time interval dictated by

its environment.

2.2 Distributed Real-time Systems

A distributed system is defined by [CDK05] as a collection of networked computers, in

which each computer consists of hardware and software components, that communicate and

coordinate together by using message transmissions. Another definition of a distributed

2.2 Distributed Real-time Systems 8

Computational Cluster

Operator
Cluster

Controlled
Cluster

Environment

InterfaceInterface

Fig. 2.1 Real-time system

system by [Tan95], is a collection of autonomous computers that collaborate together to give

the perception of a single system.

A distributed real-time system performs activities that have specific time bounds. Hence,

the difference between distributed real-time systems and ordinary distributed systems is the

time bounds of the performed activities.

Distributed real-time systems interact with the environment through application tasks

that perform activities. This is realized by reading the received data form sensors and

consequently reacting by means of actuators. In order to achieve the time bounds of the

aforementioned activities, both processing and communication events associated with those

activities should be constrained in time domain by means of task and message scheduling

2.5.

2.2.1 Timing Models in Distributed Real-Time Systems

Due to many different and partially contradicting requirements in embedded systems, multiple

timing models exist for building a communication system. Well-known trade-offs are

predictability versus flexibility or resource adequacy versus best-effort strategies. According

to these requirements, we distinguish between two types of communication networks [Edi12]:

• Time-triggered communication of messages ensures predictability and resource ade-

quacy by a priori scheduled transmission times of periodic messages. This transmission

is characterized by a period and a phase with respect to a global time base. By dedi-

cating a priori defined bandwidth to time-triggered messages, timely delivery of all

messages is guaranteed. Time-triggered NoCs (e.g., TTNoC [Pau08]) are beneficial in

safety-critical systems, because they help in managing the complexity of fault-tolerance

and analytical dependability models. The static schedule of a time-triggered system

2.2 Distributed Real-time Systems 9

maximizes predictability, while the schedule in an event-triggered network unfolds

dynamically at run-time depending on the occurrence of events.

• Event-triggered communication supports the transmission of messages that are trig-

gered by the occurrence of significant events in the environment or inside a core. For

example, a core requests the transmission of a message whenever an interrupt arrives

from a sensor. We can distinguish between two types of event-triggered messages:

rate-constrained and best-effort messages. Rate-constrained communication is used

by applications with less stringent timing requirements, compared to time-triggered.

These messages have sufficient bandwidth allocation for each transmission with de-

fined limits for delays and temporal deviations. The arrival times of rate-constraint

messages are not specifically known but they have minimum time intervals between

consecutive instances and it is called the Bandwidth Allocation Gap (BAG). The

best-effort transmission of messages there is no guarantee whether or when the mes-

sage will arrive at the destination where they are transmitted during the idle periods

where no time-triggered nor rate-constrained messages are being transmitted. Priorities

determine how contention with other event-triggered messages is resolved.

Time-triggered and rate-constrained messages have unique identifiers called Virtual

Links (VLs) which are virtual transmission channels that make them known while they

are transmitted through the network. The communication in TTEthernet is based on VLs

where each defines the necessary reserved resources of one message for end-to-end trans-

mission [SAE]. In other words, VLs define the bandwidth allocation of the communication

network in order to provide certain level of temporal message delivery.

Event-triggered networks provide flexibility and high resource utilization and suit non-

critical applications very well. However, there are some NoCs such as AEthereal [GDR05]

that support both event-triggered and time-triggered communication. AEthereal supports both

guaranteed services based on TDMA as well as event-triggered Best Effort Services (BESs).

Guaranteed services need resource reservations in order to increase resource utilization.

2.2.2 Classification of Real-time Distributed Systems

Real-time systems can be classified according to [Kop11] from different perspectives. In

this thesis, three main important classifications are defined in this subsection. Based on

the laxities of tasks and severity of consequences of missed deadlines, real-time systems

can be classified into hard real-time and soft real-time systems. Laxity is the amount of

time tolerated by a task while still meeting its deadline and avoiding severe consequences.

Hard-real-time systems can also be classified according to how they react to failures. These

2.2 Distributed Real-time Systems 10

classifications are fail-safe and fail-operational systems. In addition, real-time systems can

be classified based on the triggering mechanism for activities, which can be time-triggered or

event-triggered.

2.2.2.1 Hard Real-time versus Soft Real-time Systems

Hard real-time systems have strict timing constraints and a temporal failure of a critical

service can lead to deadly results, human life loss, high economic loss, or extensive envi-

ronmental damage. These systems have little laxity and provide full deadline compliance.

Systems that incorporate this feature are called safety-critical systems. These systems require

predictable, reliable, and real-time communication between the end-systems to ensure safety

and reliability. These systems are found in many domains such as military applications,

automotive applications, and flight control applications.

Soft real-time systems have less stringent timing constraints in which temporal failures

do not lead to catastrophic results, but result in performance degradation. They have greater

laxity and can tolerate certain amounts of deadline misses. In other words, the usefulness of

the result is degraded as a consequence of deadline misses. Examples of these systems are

multimedia applications.

2.2.2.2 Fail-safe versus Fail-operational Systems

A fail-safe system has two important characteristics: high probability of error-detection and a

pre-determined safe state. When the system detects a component failure, it forces the system

to a safe state to prevent damage. For example, some machines are designed to switch off

operation if they detect a component failure.

A system that must continue to provide an acceptable level of services even in the

occurrence of failures in order to avoid a catastrophe is called a fail-operational system.

These systems require fault-tolerance mechanisms to mask component failures. For instance,

computer-based flight control systems are designed with redundancy so that if one fails the

other system continues operation to avoid an airplane crash.

2.2.2.3 Time-Triggered versus Event-Triggered Systems

Time-triggered systems depend on interrupts triggered by a periodic real-time clock for the

communication and processing activities. A time-triggered schedule contains information

about the real-time instances for every system activity, such as initiation of a job execution or

message transmission. Distributed real-time systems must have a global time base where the

clocks of all nodes are synchronized.

2.2 Distributed Real-time Systems 11

On the other hand, event-triggered systems perform communication and processing

activities based on control signals created by events. These events are initiated either inside

the computer system (e.g., task completion) or outside the computer system (e.g., message

receipt).

2.2.3 Timing Concepts

Most hard real-time systems are based on periodic tasks which are invoked after fixed time

intervals [Kop11]. The attributes of these periodic tasks must be known a priori, such as

period, deadline, and required resources [HS97]. On the other hands, there are sporadic tasks

where the invocation times are unknown but they have known inter-arrival times. The third

type of tasks is called aperiodic and it has neither invocation times, nor inter-arrival times.

The release time is the instant of time at which a task becomes ready for execution [But11]

The execution time, also called computation time, is the time required by the processor

for executing the task without interruption [But11]. The estimation of the execution time

depends mainly on system resources and inter-task dependencies.

Real-time systems perform computational and communication activities with temporal

constraints that must be met in order to ensure their desired behavior. A temporal constraint

of a real-time activity is called a deadline, which denotes the latest point of time when the

system should produce a correct result.

In order to guarantee the deadlines of all real-time tasks, the maximum duration latency of

all computation and communication activities in all components of a real-time system must be

known a priori. A WCET is defined as the maximum latency required between task initiation

and task termination. Also, a Worst-Case Communication Time (WCCOM) is defined as the

maximum latency required between a sending action and the receipt action [Kop11].

The end-to-end delay of a message in a distributed system is the duration between the

time the message is injected by the sender component till the delivery at the destination

component through multiple hops along routers and communication links.

2.2.4 Precedence Constraints

Certain applications consists of jobs that respect precedence relations that describes the

execution order. These jobs cannot be executed in random order and have to start their

execution after the completion of all its predecessor jobs. The precedence relations are

described by using a Directed Acyclic Graph (DAG) where jobs are represented by nodes

and precedence relations by arrows [But11]. A directed path from node Ja to node Jb, means

that job Ja is a predecessor of job Jb and can be described by the notation Ja ≺ Jb.

2.2 Distributed Real-time Systems 12

job1 job2

job1 job2

job1 job2

execution
time

release time release time

period

Sender
 task

receiver
task

communication

Deadline
of job 1

period

Communication
time

time

Fig. 2.2 Real-time parameters

J1

J2

J3

Fig. 2.3 Precedence relations among three jobs.

2.3 Linear Programming 13

The precedence constraints among three jobs is illustrated as a DAG in figure 2.3. The

Job J1 is the only job that does not have predecessors and it can start execution first. The

second job J2 can start execution only when job J1 is completed, whereas J3 must wait for

J1 and J2 to complete.

2.2.5 Real-time Scheduling

The solution of a scheduling problem of a set of tasks requires an ordered list according to

which the tasks are to be executed where a number of constraints are satisfied. Throughout

this thesis, the scheduling problems are represented by a set of jobs J = j1, j2, . . . , jn and

a set of End-systems (Processing machines) P = p1,p2, . . . ,pm that are used to process the

jobs. The solution of the scheduling problem is called scheduling which is related to the

assignment of End-systems from the set P to jobs from J so that all jobs are successfully

completed under certain dependent constraints. In our work, it is assumed that each job is to

be processed by at most one End-system at a time and each End-system can only process one

job per unit of time.

The solution of the scheduling problem is to find out a schedule for the set of given jobs,

where a message schedule is incorporated that guarantee the requirements of the planned

real-time system by satisfying the reliability and predictability characteristics of the time-

triggered network. A schedule need not to be only valid but feasible and in best cases optimal

is given. A valid schedule for a set of jobs considers exclusive job assignments to End-

systems, satisfying all precedence constraints, and guaranteeing inter-task communication

by message transmission according to precedence dependencies. A valid schedule is said

to be feasible only if the time constraints of the respective jobs are met; i.e., arrival and

deadline of each job. An optimal schedule is the best feasible schedule according to some

measures [Mal09]. For example, if the objective of a scheduling problem is to minimize the

end-to-end latency of the overall jobs, the optimal schedule is the one that has the minimal

end-to-end- latency.

2.3 Linear Programming

Linear Programming (LP) problems contain a set of unknown quantities to be optimized

called decision variables. These variables are subject to certain requirements and restrictions

by means of constraints. Each constraint requires that a linear function of the decision

variable is either equal to, not less than, or not more than, a scalar value. The quality of

the variables to be optimized is assessed by a linear function, which is called an objective

2.3 Linear Programming 14

function. The objective function is either a minimization or a maximization linear function.

In MILP, some, but not all, variables are restricted to be integer [Baz92]. LP model is

used to model different types of problems, such as routing, scheduling, and assignment.

Various industries make use of LP models including transportation, telecommunications, and

manufacturing.

In general, a linear programming problem can be represented as:

minimize/maximize
x1x2...xn

c1x1 + c2x2 + . . .+ cnxn

subject to a11x1 +a12x2 + . . .+a1nxn (≤,=,or ≥) b1

a21x1 +a22x2 + . . .+a2nxn (≤,=,or ≥) b2

. . .

am1x1 +am2x2 + . . .+amnxn (≤,=,or ≥) bm

xj ≥ 0 ∀j = 1, . . . ,n

Values cj ,∀j = 1, . . . ,n, are the objective coefficients, and denote the costs associated

with their corresponding decisions in minimization problems, or the profit generated from the

corresponding decisions in maximization problems. The values b1, . . . , bm represent amounts

of available resources (in case of ≤ constraints) or requirements (in case of ≥ constraints).

The amount of resources consumed or requirements needed are typically represented by the

values aij .

A solution in which all constraints are satisfied is called a feasible solution. An optimal

solution is a feasible solution that gives the best objective function value. In case no solution

exists to an MILP problem, the MILP problem is called infeasible.

MILP problem are generally solved using branch-and-bound algorithm in which the

search space of the problem is divided into a sequence of subproblems. A MILP problem

has a search space that can be represented by a tree where its root represents the original

problem and its nodes are subproblems that are generally derived from the root.

The branch-and-bound algorithm starts with calculating the relaxation of the MILP

problem which represents the optimal solution of the relaxed MILP problem using one

of the standard linear programming techniques. The relaxation of a MILP is taking the

same constraints and the objective function in the LP model while dropping the integrality

requirements of the variables. If the optimal LP solution contains integer values for the

variables, then the optimal solution of the MILP is also the optimal solution of the relaxed

MILP problem. Otherwise, we need to perform a rounding procedure that transforms x̄i into

an integral value xi. The procedure divides the problem into two subproblems, called active

2.4 Dependability 15

nodes, where each subproblem is identical to the original subproblem with a new constraint

related to the branching variable xi: xi ≤ �x̄i� in the first subproblem and xi ≥ �x̄i	 [AS05].

After that, the algorithm chooses one of the active nodes and starts solving the LP

relaxation of its subproblem. If the solution is non-integer feasible, then the algorithm

defines two new subproblems similar to the predecessor divisions. If the subproblem can

result to a solution that generates an integer, then the solution is checked for feasibility.

Infeasible solution requires the algorithm to drop the current subproblem, i.e., the active

node is fathomed. The objective value of a feasible solution provides an upper bound for the

objective value in the MILP problem. This upper bound, in case of minimization, is used to

drop active nodes that have lower bounds higher than an existing upper bound.

MILP problems are generally non-deterministic polynomial-time hard (NP-hard), in

which the solution time needed to solve a MILP problem grows exponentially with the size

problem size. The branch-and-bound algorithm has been improved to speed up the search

progress where heuristics methods are implemented for improving the upper bounds by

finding feasible solutions. Moreover, preprocessing technique reduces the problem size

and enhances the problem solvability by tightening the linear relaxation [LG11]. Other

improvement is called cutting planes technique that adds constraints to the subproblem which

cut-off the optimal LP solution while keeping one or more optimal integer solution. Cutting

planes technique tends to reduce the relaxed feasible region and in optimal cuts part of the

MILP feasible region may be removed which results in lower bound improvement.

2.4 Dependability

One of the most important non-functional attributes of real-time systems is dependability. It

is defined as a measure of the ability of a system to provide its agreed level of service to its

users [Dub13]. Another broader definition is provided by the International Electrotechnical

Commission (IEC) IEV 191-02-03: "dependability is the collective term used to describe the

availability performance and its influencing factors: reliability performance, maintainability

performance and maintenance support performance". According to [ALR+01], the concept of

dependability consists of three classifications: faults, means, and attributes of dependability.

2.4.1 Faults and Fault-Tolerance

Distributed systems are used to offer a dependable service to the users of the system. When

the user does not receive the intended service, i.e., the system behavior deviates from its

intended service, a system failure event exists. Failures happen due to an unintended state

2.4 Dependability 16

Attributes

Threats

Means

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Faults
Errors
Failures

Dependability

Fig. 2.4 Dependability Tree

within the system, which is called an error. An error is the result of an incorrect computation

that may be the cause of a failure if not detected before altering a service by one of the error

detection mechanisms. The main origin of errors are faults. A fault is an adverse phenomenon

that can occur in the system such as a bit change in a memory or an uninitialized variable

in software. A fault is active when it results in an error, otherwise it is dormant [Kop11]

[ALR+01].

To better understand the above mentioned terms, consider a sensory input data, which

contains information about the current wheel speed in an ABS system of an automobile. The

DRAM memory storing this sensor data can encounter a bit flip of its cells, e.g., due to a

rowhammer effect. Assuming the memory is not protected by a parity bit the system will

produce an incorrect brake pressure value (computation error) which causes a failure that

results in a longer stopping distance of the car. However, the faulty value is called dormant if

the driver does not trigger the brake.

Faults can be classified into three main groups depending on duration, nature and

scope [Nel90]. The fault’s duration can be transient, intermittent, or permanent. A transient

fault occurs at short duration and it is non-periodic. An intermittent fault is a sporadic

occurrence of faults due to unstable component operation. A permanent fault remains a fault

and is not corrected by time due to component failures or damage. The unintended system

behavior determines the nature of a fault that may be logical or indeterminate. The error

produced by determinate faults are easy to model since they can be represented as logical

2.4 Dependability 17

values compared to indeterminate faults which do not have a digital representation, such

as the floating of a signal voltage between logic 1 and 0. The last classification of faults

relates to the area that is affected at the considered level of abstraction. It is classified into

two sub-categories: local faults that affect only one module and distributed faults that have

effect on more than one module and may affect the entire system [Avi76].

2.4.2 Dependability Means

The means to attain dependability are grouped into four classes [ALRL04]. Fault prevention
includes methods and techniques that are applied to eliminate the occurrence of faults. These

techniques represent the quality control techniques that are employed during the design phase

of hardware and software.

During system operation, faults can occur at any time in any part or component of the

system and disrupt the delivery of correct services. Fault tolerance is responsible for keeping

the system operational and providing reasonable services in the presence of faults. The

implementation of fault tolerance consists of detecting errors followed by a system recovery

mechanism that transforms the faulty state of the system into a state without errors. Fault-

tolerant systems must be based on a clear understanding of the fault assumptions as specified

by the a fault hypothesis which is covered in section 2.5.

Fault removal is a repeated process, which is performed in the development phase as

well as in the maintenance phase, consisting of three main steps: verification, diagnosis,

and correction. The first step concerns observing the system to detect any violation of the

specified verification conditions. If such a deviation exists, a diagnosis process is triggered,

which identifies the fault(s) that caused the occurrence of the detected violation. The last

step concerns performing corrective actions to eliminate faults.

Fault forecasting is an evaluation and estimation of the possible future occurrences of

faults with their consequences on the system behavior. It consists of a set of methods to

evaluate the system behavior regarding faults occurrences and activations. The evaluation

can be qualitative where failure types are identified and classified, or quantitative where a

study of the satisfaction of the dependability attributes is based on a probabilistic evaluation.

2.4.3 Dependability Attributes

The expected properties of the system are called the dependability attributes. There are six

major attributes of dependability: availability, reliability, safety, confidentiality, integrity,

and maintainability. The importance of each one of these attributes depends on the intended

application of the system.

2.4 Dependability 18

Reliability is the continuity of correct service delivery, also called up-time. It is defined

as the probability of the system to provide correct and continuous behavior during a period

of system operation. In other words, reliabilityy is a function of time and the considered

interval of time depends on the nature of the system being considered. For example, the

mission time of a spacecraft is significantly longer than the mission time of an aircraft flight.

Alternatively, unreliability is the probability of failure, which is the probability that the

system fails to deliver correct services during a time period. Safety-critical systems, such as

modern aircrafts, have failure rates in the order of 10−9 critical failures per hour [Bow00].

while critical failure of a system must be infinitly avoided, sn infinite failure-free operation

of a component is impractical due to high cost [Nel90]. Systems subject to failures need

to have low repair time in order to minimize downtime. Availability is the probability that

the system is in an operational state and provides correct services when needed [Sho01].

It is measured by the fraction of time that the system is ready to provide correct services.

Availability can be calculated based on the reliability (uptime) and the repair time (downtime)

as follows:

A = Uptime

Uptime + Downtime

Compared to reliability that considers that all failures are equal, safety partitions failures

into two main groups namely: fail-safe which is a noncritical failure and fail-unsafe which

causes disastrous results. For example, an intrusion alarm system might malfunction in which

it fails to function properly in case an unauthorized access occurs (fail-unsafe), or it may

give a wrong alarm when no danger exists (fail-safe). Safety is the reliability with respect

to critical failure types [Kop11]. In other words, safety is the probability of the system to

avoid the occurrence of a catastrophic failure within a certain period of time. Safety-critical

applications, in which a failure may have catastrophic results such as human injury, life

loss, or environmental damage, demand high safety measures. Examples are trains, avionics,

medical systems, and military systems.

Security is related to the confidentiality and integrity of information. It is defined as the

ability of the system to prevent unauthorized access to data and avoid data modification

by unapproved access or component/communication error [Gas88]. Generally, security

aims to protect the system against attacks that aim to harm system component hardware,

cause information loss /damage, and disrupt services provided by the system. Most research

in the field of embedded systems focuses on protocol and communication issues in the

context of reliability and safety, while security remains an open challenge in present day of

embedded systems. The study presented by [WWP06] stated that the internal communication

connecting the embedded system components inside modern vehicles is insecure against

2.5 Fault Hypothesis 19

malicious attacks. Moreover, these internal communication networks may even encounter

external security attacks when coupled with Bluetooth or car multimedia networks, i.e.,

Media Oriented System Transport (MOST) or GigaStar.

Maintainability is a measure of the time required to restore a system after a failure

occurrence. It is defined as the probability that the system is repaired within an interval of

time.

2.5 Fault Hypothesis

Safety-critical systems are designed based on fault-tolerant architectures. The key point for

designing a fault-tolerant architecture is the specification of a fault hypothesis. The fault

hypothesis states assumptions about the types and the rates of faults and how end-systems

may fail [OP06].

A fault hypothesis divides the fault-space into two partitions, namely normal faults

and rare faults. The former set contains faults that must be tolerated by the fault-tolerance

mechanisms to bring the system back into a correct state. The latter set contains faults that are

outside the fault hypothesis and are not covered by the provided fault-tolerance mechanisms.

However, a never-give-up strategy is used to bring the system back (without assurance) to its

correct state [Kop11].

The principle of fault tolerance in safety-critical systems is based on the assumptions of

failure independence among redundant units [BCDV91]. A Fault Containment Region (FCR)

is defined as a set of components that operate correctly regardless of any arbitrary logical or

electrical fault outside the region [LH94]. According to another definition given by [Kop11],

a FCR is a set of subsystems that share one or more common resources that can be affected

by a single fault. The assumption of failure independence among these FCRs can be justified

by using independent power supplies and electrically isolated interfaces that connect these

FCRs.

Moreover, error propagation by sending erroneous messages from one FCR to another one

must be prohibited in order to prevent fault occurrence in healthy FCRs and thus disrupting

the failure independence assumption [Zur04]. Error propagation can be either in the time

domain where the send/receive instants of a message are not in agreement with the agreed

schedule, or in the value domain where a message contains incorrect data. Error detection

in the time domain can be performed by the architecture whereas the responsibility of

performing error detection in the value domain is typically within the host. To ensure that a

faulty FCR does not impact the error detection mechanism, the latter must be in different

FCRs than the message sender.

2.6 Systems-of-Systems 20

Subsystems

System 2System 1

System 4
System 3

SoS

Emergent Behaviors

Fig. 2.5 System of Systems

2.6 Systems-of-Systems

A system is a set of interconnected components that interact in order to achieve a designed

service which cannot be produced by components individually. These systems are basically

managed by a central authority in which its behaviors are requested. When a number of

these systems, each operated and managed independently, interact to fulfill an integrated

overall goal, we speak of SoSs [Mai98]. This means that each constituent system in the SoS

can still operate and produce useful results to fulfill its own purpose if separated from the

SoS, while the main goal of coordinating these systems into an SoS is to deliver emergent

services. Also, the management of each system is performed by its own when it is working

independently as well as inside an SoS. The main reasons for the rising focus on SoS

are the realization of different and emergent functionality that reach beyond the capability

achieved by a single system, and the control of the complexity growth of large systems due

to continuous evolution [Kop11].

There exist several definitions in the literature of SoSs that are based on the viewpoint of

certain applications. [SJS07] defined SoSs as large-scale complex systems in which these

systems are concurrent and distributed. Another definition by [ISO15] states that a "SoS

brings together a set of systems for a task that none of the systems can accomplish on its own.

Each constituent system keeps its own management, goals, and resources while coordinating

within the SoS and adapting to meet SoS goals".

2.6 Systems-of-Systems 21

2.6.1 Characteristics of SoS

Autonomy is defined as "the ability to complete one’s own goals within limits and without

the control of another entity" [BS09]. An autonomous system is described by [SMG00]

as a system that can operate and provide services independently and without any form of

external help. Hence, managerial and operational independence are the main subsets of the

autonomy property. In addition, an autonomous system must react to external stimuli in order

to achieve the SoS purpose [Zei90].

Compared to the design of monolithic systems where the components can operate as

an integral part of the whole system, each system in a SoS is considered as an autonomous

system that can decide and choose to participate in a SoS. The choice to belong to a SoS and

to accept cooperation with other systems to achieve higher goals is based on the own needs

and benefits [GGS11]. Thus, the term belonging in a SoS refers to the acceptance ability and

need to make a valued contribution to the goal of the larger entity [BS09].

In order for the systems belonging to the SoS to cooperate and achieve common goals,

there should be some form of connectivity between them. The ability for a system to

connect to a SoS and stay connected during the required time period to exchange data is a

connectivity characteristic [BS09]. In other words, the connectivity property is the ability

to achieve interoperability amongst the systems forming the SoS [BS06]. The connectivity

determination for each system in an SoS, how and when interfaces and links are formed with

other systems, is based on the system’s needs.

Although autonomy refers to the capability of the connected systems to achieve a common

goal, it does not explain the number of methods and capabilities available to perform such

connections. The cooperation of these heterogeneous systems in an SoS requires a variety

of capabilities in order to survive for a long time despite the introduction of different and

emergent technologies. An SoS that has a variety of capabilities is called a diverse system

and this property increases the overall capability of the SoS achieved by autonomy, belonging,

and connectivity.

The behaviors and capabilities of a system are deliberately and intentionally designed.

However, evolving behaviors and capabilities can be developed inside the SoS based on

the other factors, such as autonomy of the related systems, belonging feature, enriched

connectivity, and diverse behavior commitment of SoS [BS06]. Emergence is a term that

refers to behaviors and services that result from the interaction of systems in an SoS and that

are not inherent in any individual system. Emergence is defined by [Jam08] as "something

unexpected in the collective behavior of an entity within its environment, not attributed to

any sub-set of its parts, that is present (and observed) in a given view and not present (and

observed) in any other view".

Chapter 3

Related Work

Distributed systems consist of a set of end-systems that share a communication network.

Application’s tasks compete for the shared physical resources in order to deliver a specific

service of the system. Scheduling is the process of the temporal and spatial allocation of the

shared resources for tasks and messages. This chapter gives an overview of related work in

the area of scheduling algorithms.

3.1 Classification of Scheduling Algorithms

Task computations and message transmissions are the main operations that describe the

functionality of real-time systems. These activities are described in terms of a precedence

constraints graph according to which the operations need to be executed. The process of

effectively assigning computation and communication activities to shared resources, such

as CPU s and communication links, is the function of scheduling algorithms. According

to [But11], scheduling algorithms can be classified as follows.

Static scheduling algorithms are those in which all decisions are based on fixed parameters,

assigned to tasks before their activation [But11]. Thus, static scheduling requires a priori

knowledge of all task attributes and it is considered less flexible. On the other hand, a

dynamic scheduling algorithm is based on dynamic parameters that may change over time in

the generation of scheduling decisions. This type of algorithm has the advantage of better

resource utilization and support for unpredictable events, but its runtime is higher compared

to static scheduling.

Scheduling algorithms are divided into two groups based on the time at which scheduling

decisions are made. Offline scheduling algorithms generate scheduling decisions and store

them in a dispatcher table before the system is deployed [But11]. The dispatcher table

contains temporal properties of all participating tasks, such as the time instants at which

3.2 Scheduling of Distributed Systems 23

each message is injected by the sending node till it is received by the received node. Offline

scheduling is used to manage distributed applications with complex constraints where all

system activities and properties are a priori known with deterministic time bounds. The

second type is called on-line scheduling where scheduling decisions are determined at run-

time. Generally, it is impossible to design an optimal on-line scheduling algorithm since

less information and time are available, but an offline scheduling algorithm can guarantee

deadlines where optimal ordering of tasks are found [Kop11].

Preemptive scheduling algorithms use the task priority characteristic in task scheduling

where lower priority tasks can be suspended by tasks with higher priorities. This type of

scheduling is more complex and requires more resources where poorly designed preemption

strategies can lead to starvation of low priority tasks [GGLR98]. The priorities of tasks

are determined randomly or based on the system design goal. The order of task selection

is based on the priority given either statically or dynamically depending on their informa-

tion availability. Non-preemptive scheduling algorithms are based on uninterrupted task

executions [But11].

3.2 Scheduling of Distributed Systems

Due to the fact that embedded systems are used for specific purposes, they are different from

general-purpose computers in terms of functionality. Consequently, embedded systems have

restricted resources (e.g., power consumption, memory size, processing speed). In addition,

embedded system users do not only expect its correct logical operation, but functions also

need to be finished in a timely manner and with high reliability. Thus, Extra-Functional

Properties (EFPs) such as reliability, energy-efficiency, and scalability have to be considered

in the design of embedded system to address the trade-off between reliability and limited

resources.

These EFPs are competing against each other. For example, a system that is designed

for best performance can have high power consumption. Also, a system which is the best

from the reliability view point tends to be the worse in terms of latency. As a consequence,

one of the main problems in the design of embedded system is to find the optimal solutions

for these EFPs in order to get the best property trade-offs. Multi-criteria optimization is

the process of fine-tuning EFPs in order to get the best solutions possible. This is done by

exploring the points in the Pareto curve [AHU], which is used to select the best property

value under other property constraints. For example, the optimization challenge is to reduce

the power consumption under a performance constraint which can be solved by finding the

Pareto curve. However, the Pareto curve is found after a full search, where all points in the

3.2 Scheduling of Distributed Systems 24

design space have to be explored. This search process tends to be unfeasible since it needs a

long simulation time for function evaluation.

Numerous methods have been suggested to explore the system design space. The authors

in [BAB96] proposed a toolset called SimpleScalar, which consists of a number of MIPS-

based simulators for computing the influences of high level architectural trade-offs. It is

specifically designed to find the architectures of processor and memory without considering

the energy. SimplePower is suggested by [VKI+00], based on SimpleScalar to evaluate

the power of several aspects at the system-level. It computes the energy consumption

considering several aspects of memory (I-cache, D-cache, address and data busses, and

off-chip main memory) and the data path of the cores. An extension to the SimpleScalar

simulator, called Wattch, is proposed by [BTM00] that integrates energy evaluation at the

architectural level with a good level of accuracy for processor and memory subsystems. It

is a low level estimation approach to evaluate energy consumption relating to performance

trade-offs. It also supports finding different system optimization strategies to reduce power

consumption. A framework called Avalanche, proposed by [LH98], explores the trade-offs

between performance and power consumption for embedded systems in terms of software,

memory and hardware.

In [GV02], the authors proposed an optimization structure, called Platune, to find estima-

tions for Pareto curves without delving into the whole design space. This is specifically done

by introducing the concept of parameter independence where each space can be analyzed

separately which leads to short simulation time. However, the independencies of parameters

needs to be defined by the user using a dependency graph and not by the framework itself. An

extension to the Platune framework is designed by [PG02] which integrates genetic algorithm

analysis for the optimization of dependent parameters. Similarly, the user needs to define the

parameters independencies using a dependency graph. The work presented in [PSZ] exploits

heuristic algorithms (i.e., Random Search Pareto (RSP), Pareto Simulating Annealing (PSA)

and Pareto Reactive Tabu Search (PRTS)) to explore the design space and to find the Pareto

curve for EFPs in short time. The analysis results showed that those algorithms minimize the

time needed to get an approximate Pareto curve up to three orders compared to a full search.

The Tri-criteria Scheduling Heuristic (TSH) is developed by [AGK12] and creates a static

multiprocessor schedule as an output given a software application graph and a multiprocessor

architecture as inputs. The produced schedule has three optimized characteristics: small

schedule length, reliability and low power consumption. The length of the schedule is reduced

by exploiting power efficient schedule pressure as a cost function. Its reliability is enhanced

through the use of active replication of operations while the lower power consumption is

accomplished by using dynamic voltage scaling.

3.2 Scheduling of Distributed Systems 25

The work done by [Ram90] presents the allocation problem as a global view, where the

allocation algorithm aims to schedule periodic tasks to processors while taking into account

precedence constraints. The proposed static algorithm assumes a TDMA protocol for a shared

broadcast bus where all processors are connected to. Heuristics are used to allocate tasks to

processors according to their communication overhead. Tasks which communicate with each

other are moved to the same processor and preventing task allocations to non-schedulable

processors.

[ACP04] explores the use of genetic algorithms to resolve the mapping problem. It

finds an accurate approximation of the Pareto-optimal front of the mappings that minimize

the amount of communication delay and the average power consumption. It is based on

the SPEA2 algorithm [ZLT01] for mapping space exploration. The mapping solution is

evaluated using a NoC simulator that shows the performance to be optimized and determines

the fitness of the provided solution. The above two steps are iteratively executed till a stop

criterion is met. The main drawback of this approach is the time required by the simulator to

evaluate each solution where a high confidence on average delay and power consumption

takes a long time by the simulator.

An automatic schedule generation algorithm for tasks and messages is introduced

by [Far06]. The algorithm is based on the so-called Logical Execution Time (LET) ab-

straction, which abstracts from physical execution time and thereby from both the underlying

execution platform and the communication topology. The idea of LET follows a timed-

model; in which computational and communication activities are independent of the physical

execution times and take a fixed amount of time. Thus, the temporal behaviors of a given

program, such as task initialization and computational results, are determined previously and

independent from the executing platform. This concept provides determinism and predictabil-

ity where the program behavior depends only on the task property and the environment.

The scheduling of tasks and messages is done in two steps. First, the messages are sched-

uled based on a heuristic algorithm called Latest Release Time (LRT). Then, the tasks are

scheduled using Earliest Deadline First (EDF) with a precedence constraint algorithm. Task

scheduling is based on the timing constraints of the corresponding messages. The messages

are scheduled as late as possible in order to guarantee that producer task will finish before the

corresponding message is sent on the bus. The LET concept introduces a so-called unit-delay,

in which dependent tasks exchange information only at the LET boundaries and previous

execution values remain in the outputs between LET.

An online scheduling algorithm for time-triggered messages is proposed by [MVPA13]

that takes advantage of temporal redundancy to mask message errors due to transient faults.

The proposed scheduling algorithm is in contrast to offline scheduling algorithms that always

3.2 Scheduling of Distributed Systems 26

assume worse-case scenarios and consume bandwidth independently of the actual occurrence

of errors. The proposed technique only consumes bandwidth when error occurs. The devised

mechanism takes advantage of distinguishing features of the Flexible Time-Triggered (FTT)

CAN protocol that has a built-in omission detection mechanism. In order to combine

Event-Triggered (ET) and time-triggered communication with temporal isolation, the FTT-

CAN protocol uses the dual-phase Elementary Cycle (EC) that is composed of two windows.

Moreover, it relies on a periodic server to reschedule error messages which are then integrated

into the time-triggered traffic. Although the implemented mechanism offers error recovery

using much less extra bandwidth than typical techniques, it fails to reschedule messages that

have short deadlines because the rescheduling process takes a considerable amount of time.

Other research generates a reliable time-triggered-message schedule called (k, l)-resistant
schedule, based on the assumption of the degree of the link failures in the network [AGRN16].

A schedule is (k, l)-resistant if at least l messages are delivered by the global deadline when

k edge crashes occur in the network. The problem was solved using an Satisfiability Modulo

Theories (SMT)-based solver. It uses a CEGAR-like procedure to find a (k, l)-resistant
schedule. First, it randomly selects the source and destination nodes for each message

taking into account that the selected nodes are different. Then, it peaks an arbitrary message

and finds the shortest path between the source and destination nodes by running Dijkstra’s

algorithm. After that, it computes second paths that represent the alternatives for the first

path. This is done by having for each traversed node v on the first path, a second path that is

the shortest path from v to the destination node while avoiding heavily loaded edges.

A simultaneous co-synthesis of network and application schedules with preemptive time-

triggered tasks communicating in a switched time-triggered network is addressed in [CO14].

The scheduling constraints are formulated using SMT and solved using a SMT solver called

Yices v2.2.1. The algorithm defines two types of tasks to be scheduled, communicating

tasks that have dependencies and free tasks that do not require any network messages. An

Incremental scheduling is performed where only communicating tasks are scheduled and

then adding the free tasks to the end-system and checking whether the resulting model

is schedulable in terms of end-system utilization. The communicating tasks are allocated

to randomly selected end-systems. If the resulting schedule is unfeasible, the problem is

backtracked and the increment size is increased by adding those free tasks that result in

unfeasibility. The procedure is incrementally repeated until either a solution is found or all

the free tasks have been added to the scheduling problem.

3.3 Research Gap in the State of the Art 27

3.3 Research Gap in the State of the Art

A scheduling model for multi-core architectures based on network on chip as well as for dis-

tributed systems with support of real-time characteristics, fault-tolerance, and different timing

models is missing in the state of the art. Previous research works outlined in section 3.2

either provide scheduling model for time-triggered communication without considering rate-

constrained communication or their models do not support fault tolerance of communication

links.

To the best of our knowledge, a scheduling model for SoS architectures that support

real-time communication is still missing due to the lack of central knowledge and control.

Also, the overall computation for the whole constituent systems of the SoS creates another

issue that requires a huge memory size and processing time.

Moreover, a simulation framework for validating SoS models is not available in the state

of the art. Because of its dynamic nature of interaction between the constituent systems, it is

impossible to validate SoS scheduling model in real networks.

This dissertation advances the state of the art by introducing a scheduling model for a

networked multi-core architecture that supports real-time communications as well as rate-

constraints. Moreover, the proposed model finds optimal end-to-end paths of application

communications while taking into account collision avoidance and precedence constraints

of dependent jobs. Moreover, a fault tolerance technique is integrated into the introduced

model to maximize the reliability of message delivery. This is done in the form of redundant

messages where each message is sent through different paths in which their communication

links have good reliability.

Furthermore, the proposed scheduling model is further extended to allow scheduling of

SoS applications. A so called incremental, distributed, and concurrent scheduling model

is proposed to schedule applications that need to be executed in a number of differently

managed constituent systems.

Finally, a simulation framework for SoS consisting of the main building blocks (end-

systems and switches) is proposed. This simulation framework is used to evaluate and

validate the scenario results of the proposed SoS scheduling model.

Chapter 4

Scheduling and Allocation of
Time-Triggered and Event-Triggered
Services for Multi-Core Processors with
Networks-on-a-Chip

This chapter proposes a scheduling model that supports different timing models and inter-job

dependency for networked multi-core chips [MOAK15]. First, a conceptual model of the

NoC architecture where its physical platform (in which network interfaces are connected to

switches) as well as logical model (in which a number of jobs have precedence relationships

in the form of message transmissions) are described. Then, an optimization model for the

scheduling problem is formulated as a MILP model. Finally, an evaluation for the presented

model is conducted and its results are discussed.

4.1 Network-on-Chip Architecture

As communication has become the bottleneck in many of today’s digital systems, the

interconnection is a dominant factor in determining performance and timeliness in real-time

embedded systems [MB06]. In this section, we introduce the system model of a multi-core

architecture for safety-relevant embedded systems.

4.1.1 Multi-Core Platform

The bus-based architectures have been substituted by NoCs in the past decades as today’s

Socket-on-Chips (SoCs) demand more and more interconnection capacity. A typical NoC is

4.1 Network-on-Chip Architecture 29

mainly composed of the on-chip Network Interfaces (NIs) and on-chip switches. An Network

Interface (NI) serves as the interface to the NoC for the processing cores by injecting the

messages from the cores into the NoC as well as delivering the received messages from

theNoC to the cores. Switches are responsible to relay the flits – fractions of messages – from

the sender’s NI to the destination NIs. Physical links serve for the interconnection among

NIs and switches.

We can distinguish between autonomous and source-controlled NoCs. In autonomous

NoCs, the switches have their own configurations that determine the temporal control and the

distributed routing of flits. In source-controlled networks in contrast, the information about

the complete path through the network is injected alongside with the message. This routing

paradigm is known as source-based routing [DYN03b].

An on-chip message consists of packets, each of which includes flits, typically starting

with a head flit, successive data flits and a tail flit. The head flit, in case of source-based

routing includes the complete path to the destination and in case of an autonomous network,

the head flit will include the destination address. Each flit traverses a path on the NoC starting

from the sender’s NI, taking multiple hops via switches until reaching the destination NI.

4.1.2 Topology

The number of input and output units at each switch and the connection pattern of these

units represent the topology of the NoC. We can distinguish between topology-dependent

and topology-independent NoCs. While multicore SoCs tend to use topology-independent

structures, a topology-dependent NoC offers a considerable degree of flexibility in arbitration,

routing, flow control and queue size [M. 09].

There are several well-known topologies for NoCs, each of which offer beneficial prop-

erties in different applications. For instance, n-dimensional meshes or tori, are common

examples of point-to-point NoC solutions with regularity, scalability, and conceptual sim-

plicity. Despite a relatively large diameter and average distance, regular, low dimensional,

point-to-point NoCs benefit from this cost-effective topology for regular use-cases. However,

the large diameter of the mesh has a negative effect on the communication latency. Therefore,

the Spidergon topology has been introduced [CLM+04] to enhance the network diameter

and consequently to offer less communication latency by offering a simple bidirectional ring

with extra cross links from each switch to its diagonally opposite neighbor. This topology

has been employed by STNoC in order to offer cost and performance enhancements and a

simple switch architecture [M. 09]. The ring topology on the other hand offers symmetry

and a low node degree at the cost of a high average distance.

4.1 Network-on-Chip Architecture 30

Fig. 4.1 Example NoC Topology (Mesh)

Figure 4.1 shows an example topology with a 2-dimensional n × n mesh where each

core is connected to a single switch. This topology consists of n2 cores arranged in a

two-dimensional n×n grid.

4.1.3 Application and Jobs

An SoC serves as the platform for the realization of an embedded application (e.g., automotive

control functions in an in-vehicle system). We model an application as a set of jobs, which

depend on each other due to input/output relationships. Formally, the jobs are represented by

a DAG.

In this thesis we assume that each core hosts at most one job. In this way, we establish

a one-to-one mapping between the cores and the jobs. The communication between the

jobs is performed via the NoC. Each job needs to wait for the information provided by

4.2 Scheduling Model 31

other jobs (located on other cores). Likewise, it needs to deliver the processed data to

other jobs via messages on the NoC. In case of time-triggered messages, the dependency

means that a job needs to have the requested data ready before the deadline defined by the

time-triggered schedule. This defines dependencies among jobs and consequently cores –

due to the one-to-one mapping between jobs and cores.

Since the NIs add the routing information to the messages, cores do not need to be

aware of the physical routes. Each message has a predefined path to the destination. Hence,

we bind messages to paths represented as predefined links. This information is part of

the configuration parameters at NIs. The time-triggered schedule as well as the temporal

characteristics of event-triggered messages will also be stored at the NIs.

4.2 Scheduling Model

This section introduces a system model for a multi-core processor deployed with a NoC for

time-triggered and event-triggered communication. We support both periodic communica-

tion with a fixed period and phase with respect to a global time base, as well as sporadic

communication with rate-constraints.

The system model is mapped to a MILP problem for optimizing the allocation and

scheduling of computational and communication activities. Arbitrary application graphs

and NoC topologies are supported in order to permit the instantiation for different processor

architectures and application-specific multi-core chips. Constraints ensure correct allocations

based on a given multi-core architecture and application model (e.g., dependencies between

communication and computational activities, limited connectivity between on-chip switches).

The MILP problem also expresses real-time constraints and avoids collisions between time-

triggered messages. Thereby, TDMA-based communication without dynamic arbitration is

supported for time-triggered messages.

In the scheduling problem, two models are distinguished. A physical model describes the

on-chip resources including the cores, the switches and their connectivity via the NoC. The

second model is a logical model of the application that defines jobs and their dependencies

based on exchanged messages. The term end-system will be used instead of core during the

remaining parts of the thesis.

Table 4.1 summarizes the constants with the associated value domains. In the physical

model, we consider a system with n nodes consisting of switches SW and end-systems ES.

The nodes are connected using bi-directional physical communication links which can be

described by a two-dimensional array C, in which the n2 values of the matrix are either 0
(not connected) or 1 (connected).

4.2 Scheduling Model 32

Domain Constant name Type/size Description

n N Number of nodes

Physical C

⎡
⎢⎢⎢⎣

c1,1 . . . c1,n
...

. . .
...

cn,1 . . . cn,n

⎤
⎥⎥⎥⎦ ∈ {0,1}n×n Node Connectivity

Model ALLOC [al1 . . .aln]T ∈ {0,1}n Allocability

U [u1 . . .um]T ∈ N
m H-to-H transmission time

j N Number of jobs

m N Number of messages

Logical S [s1 . . . sm]T ∈ {0, ..., j −1}m Sender jobs

Model D

⎡
⎢⎢⎢⎣

d1,1 . . . d1,j
...

. . .
...

dm,1 . . . dm,j

⎤
⎥⎥⎥⎦ ∈ {0,1}m×j Destination jobs

T [t1 . . . tm]T ∈ N
m Interarrival time

E [e1 . . . ej]T ∈ N
j Job’ execution time

MT [mt1 . . .mtm]T ∈ {0,1}m Message type

Table 4.1 Overview table with constants

The logical model comprises a set of j jobs and a set of m messages to be exchanged. The

vector S denotes the sender job of each message. Each job can send one or more messages,

while a message is sent to only one receiving job. The input/output relationships between

jobs as imposed by the messages are captured using a two-dimensional array D. For example,

d2,3 = 1 denotes that message 2 is transmitted to job 3.

Depending on the timing model, either a period and phase of a time-triggered message or a

minimum interarrival time of an event-triggered message is expressed by the timing parameter

T . To differentiate between time-triggered and event-triggered messages, a message type

is expressed in the boolean array MT where the value of one is set for the time-triggered

messages while event-triggered messages are set to zero.

Each message requires a certain time, depending on the size of the message, to be

transmitted on one link (from one hop to another hop). Thus, every time a message is sent

from one hop to another, its time is advanced by a Hop-to-Hop (H-to-H) transmission time U .

The computational time of jobs E is the execution time needed by the receiving job before

sending a subsequent message.

4.2 Scheduling Model 33

In order for jobs to be allocated to only end-systems, allocability data is defined by

ALLOC where a value of 1 is set for end-systems and 0 for switches. The maximum number

of hops a message can travel between the source and the destination is found by counting the

number of switches SW .

4.2.1 Decision Variables

4.2.1.1 Job Allocation

These variables are used to denote the allocation of jobs to nodes of the physical platform

model. The maximum value is determined by the number of nodes n.

A =

⎡
⎢⎢⎢⎣
a1
...

aj

⎤
⎥⎥⎥⎦ ∈ {1, ...,n}j

To ensure that each job is allocated to exactly one end-system, a boolean matrix ALLOCM

is used where the rows relate to jobs and columns to nodes. For example, mat3,1 = 1 means

that job 3 is allocated to node 1.

ALLOCM =

⎡
⎢⎢⎢⎣
mat1,1 . . . mat1,n

...
. . .

...

matj,1 . . . matj,n

⎤
⎥⎥⎥⎦ ∈ {0,1}j×n

4.2.1.2 Hop Count

A message is injected at the source end-system, where the sender job was allocated. The

message needs to be transported along one or more switches to the end-system of the

destination job. In order to express the number of visited switches for each message, the

vector hop count H is used and the maximum value of its elements denotes the critical path

length. In the absence of cyclic paths, the maximum path length is MaxH = SW +1.

H =

⎡
⎢⎢⎢⎣

h1
...

hm

⎤
⎥⎥⎥⎦ ∈ {1, ...,MaxH}m

4.2 Scheduling Model 34

4.2.1.3 Injection Time

This one-dimensional array represents the times by which the messages are injected in the

network-on-a-chip.

I =

⎡
⎢⎢⎢⎣

i1
...

im

⎤
⎥⎥⎥⎦ ∈ {N}m

4.2.1.4 Path and Visited Nodes

To record the path between the message’s source and destination end-system, the path array

P is used. Each row represents the path of a message starting from the node which allocates

a source job to the node in which the destination job is allocated. For example, p1,3 = 5
means that the third node in which message number 1 visits is node number 5. The maximum

number of nodes in a path equals the maximum number of hops along with the source

end-system.

P =

⎡
⎢⎢⎢⎣

p1,1 . . . p1,z
...

. . .
...

pm,1 . . . pm,z

⎤
⎥⎥⎥⎦ ∈ {1, ...,n}m×z

where z = MaxH +1.

For the purpose of calculating the end-to-end latency, a matrix O is used to denote the

switches that are passed by a message. For example, o2,3 = 1 means that message 2 meets

node 3.

O =

⎡
⎢⎢⎢⎣

o1,1 . . . o1,n
...

. . .
...

om,1 . . . om×n

⎤
⎥⎥⎥⎦ ∈ {0,1}m×n

4.2.2 Scheduling Constraints

This part describes the constraints that are used in the scheduling of time-triggered and

event-triggered messages.

4.2.2.1 Connectivity Constraint

The first constraint considers the path topology of the network based on the node connectivity

C. If there is no direct connection between two nodes a and b, then the path of a message

4.2 Scheduling Model 35

must not include a hop from a to b.

∀m1 ∈ {1, ...,m},∀a ∈ {1, ...,n},∀B ∈ {a+1, ...,n},

∀r ∈ {1, ...,MaxH} :
ca,b = 0 → (r +1 > hm1)
∨ ((a
= pm1,r ∨ b
= pm1,r+1)∧ (b
= pm1,r ∨a
= pm1,r+1))

(4.1)

4.2.2.2 Collision Avoidance Constraint

To ensure that no collision occurs, the scheduling of time-triggered messages ensures that no

two messages are transmitted in one link at the same time. Thus, the messages should be

transmitted in different paths or one needs to be scheduled before or after the transmission of

the other one.
∀m1 ∈ {1, ...,m},m2 ∈ {m1 +1, ...,m},

∀r1, r2 ∈ {1, ...,MaxH} :
mtm1 = 1∧mtm2 = 1
→ (pm1,r1
= pm2,r2 ∨pm1,r1+1
= pm2,r2+1

∨ r1 +1 > hm1 ∨ r2 +1 > hm2

∨ im1 +(r1 +1) ·um1 < im2 + r2 ·um2

∨ im2 +(r2 +1) ·um2 < im1 + r1 ·um1)

(4.2)

4.2.2.3 Job Dependency Constraint

Depending on the precedence constraints between the jobs, jobs may need to wait for the

output of the transmission of other jobs before they begin transmission. This constraint

ensures that if a job sends a message m1 to another job that needs the output of m1 in order

to send m2, the start time of m2 must be after the end of the transmission and execution of

m1.

∀m1,m2 ∈ {1, ...,m},∀j1 ∈ {1, ..., j} :
dm1,j1 = 1 ∧ sm2 = j1

→ im1 +hm1 ·um1 + ej1 < im2)
(4.3)

Each message must reach the destination node within its path and the selected number of

hops.

∀m1,m2 ∈ {1, ...,m},∀j1 ∈ {1, ..., j},∀r1 ∈ {1, ..., z} :
dm1,j1 = 1
→ (pm1,r1 = aj1 ∧ r1 < hm1)

(4.4)

4.2 Scheduling Model 36

Where z = MaxH +1.

4.2.2.4 Job Assignment Constraints

These constraints ensure that each job is assigned to exactly one node (end-system). This is

done by having the sum of each row in ALLOCM, i.e., each job, equal to 1. The allocated

end-systems are stored in the allocation array A.

∀j1 ∈ {1, ..., j} :⎛
⎝ n∑

r1=1
matj1,r1

⎞
⎠ = 1

⎛
⎝ ES∨

r1=1
(matj1,r1 = 1∧aj1 = r1)

⎞
⎠

(4.5)

For jobs to be assigned only to end-systems and not to switches, the following constraints

check the allocability constant (ALLOC), where nodes with a value of 0 must not be allocated

jobs. This is done by requiring the sum of the switches columns in the ALLOCM matrix to

be zero. To allow only one job to be allocated to an end-system, the sum for each end-system

must be less than or equal to one.

∀r1 ∈ {1, ...,n} :

alr1 = 1 →
⎛
⎝ j∑

j1=1
matj1,r1

⎞
⎠ ≤ 1

alr1 = 0 →
⎛
⎝ j∑

j1=1
matj1,r1

⎞
⎠ = 0

(4.6)

In order to start the path of each message with the end-system that was allocated the job,

the first node for each message path p1,1 . . .pm,1 is set to the allocated node.

∀m1 ∈ {1, ...,m},∀j1 ∈ {1, ..., j} :
sm1 = j1

→
⎛
⎝ ES∨

r1=1
(aj1 = r1 ∧pm1,1 = r1

⎞
⎠

(4.7)

4.2 Scheduling Model 37

4.2.2.5 Message Deadline Constraints

These constraints define the restrictions for the end-to-end message durations in order to

ensure the temporal delivery of strictly periodic behavior of time-triggered messages as well

as the less stringent rate-constrained messages. This is done by evaluating the end-to-end

latency in addition to the execution time in the message sink job where the result must not

exceed the message period.

∀m1 ∈ {1, ...,m} :
∀j1 ∈ {1, ...,j}

dm1,j1 = 1
→ im1 +hm1 ·um1 + ej1 < tm1)

(4.8)

4.2.2.6 Bandwidth Constraints

The bandwidth constraints avoid discarding of messages due to insufficient bandwidth and

buffer capacity of switches. First we need to express the visitation of nodes by messages:

ox,y.

∀r1 ∈ {1, ...,MaxH},∀m1 ∈ {1, ...,m},∀r2 ∈ {1, ...,n} :
(r2 = pm,r1 ∧ r1 < hm1)
→ om1,r2 = 1

(4.9)

∀m1 ∈ {1, ...,m},∀r1 ∈ {1, ...,n} :⎛
⎝ hm∨

r2=1
(r1
= pm1,r2)

⎞
⎠

→ om1,r1 = 0

(4.10)

Then, the bandwidth at each node is determined by summing up the utilization (i.e., ratio

of transmission time and minimum interarrival time) imposed by each message visiting the

node:

∀r1 ∈ {1, ...,n} :
⎛
⎝ m∑

m1=1

um1

tm1
·om1,r1 < 1

⎞
⎠ (4.11)

4.3 Graph Generation 38

4.2.2.7 Other Constraints

A value of 0 is required for all elements of the path after the hop count in order to ensure that

the path finishes at the destination node.

∀m1 ∈ {1, ...,m},∀r1 ∈ {1, ..., z} :
r1 > hm1

→ pm1,r1 = 0
(4.12)

where z = MaxH +1.

In order to reduce scheduling time, loops should be avoided in each message such that a

node is not visited more than once in the search process.

∀m1 ∈ {1, ...,m},∀r1 ∈ {1, ...,MaxH} :⎛
⎝

hm1∨
r2=r1+1

(pm1,r1
= pm1,r2)
⎞
⎠ (4.13)

4.2.3 Objective Function

The objective is to minimize the maximum transmission time over the time-triggered mes-

sages (i.e., minimization of critical path). This is done by first finding the transmission times

of each time-triggered message, expressed as the sum of the injection time im and the number

of hops hm multiplied by the transmission duration of a message um. Then, the objective

function minimizes the highest value among all these messages.

∀m1 ∈ {1, ...,m} :
mt[m1] = 1 → CP [m1] = (im1 +hm1 ·um1)

minimize max(CP)
(4.14)

4.3 Graph Generation

The scenarios generated in the analysis of the work in this thesis are based on the Stanford

Network Analysis Platform (SNAP) library which is widely used in numerous academic

researches [Les]. The SNAP is extended to enable the creation of physical and logical graphs

in terms of undirected and directed graphs, respectively. The following is a brief introduction

of the SNAP library.

4.4 Results 39

4.3.1 Stanford Network Analysis Platform (SNAP)

The SNAP library has the ability to modify graph structures and to provide fast execution of

graph algorithm. It provides its efficient operations in adding, deleting, editing nodes and

edges in graph while having a limited overhead on graph algorithms. It is used in the analysis

of large graphs since it requires a smaller amount of RAM than alternative representations.

SNAP is provided as an open-source library in C++ as well as in python for major operating

systems [LS16]. .

The SNAP library defines graph as a set of nodes and edges where each edge connects

two nodes. Two types of edges can be drawn, directed and undirected. It can generate

and analyze large networks with hundreds of millions of nodes and edges. The SNAP can

generate regular as well as random graphs with detailed attributes and metadata on each node

and edge.

SNAP is based on fundamental classes, called graph and network containers, that are

used to provide several types of graphs and networks. The generated graphs and networks

can be directed and undirected graphs with the ability to create multi-graphs. Each node

and edge connecting two nodes can have several attributes that define its characteristics in

terms of color, position, and time. The graph and network containers can be accessed using a

unified interface that is implemented with a number of generic methods. These methods are

used to generate, manipulate, and analyze specific graph statistics.

Each node in the generated graph has a unique non-negative integer number called unique

identifiers. These unique identifies do not have to be sequentially ordered from one to the

number of nodes, but arbitrary integers. Edges of multi-graphs have a unique identifiers

similar to the nodes. However, edges of simple graphs have no unique identifiers and can be

accessed by providing the IDs of the pair of nodes that connect the edge.

The nodes in a graph are represented by a hash table. In case of undirected graphs, the

hash table stores the unique identifiers of the graph nodes where each node is associated with

a vector of adjacent nodes connected to it. In case of directed graphs, the hash table contains

a list of node unique identifiers and each node is associated with an outgoing nodes vector

and an incoming nodes vector.

4.4 Results

This section discusses the results of the MILP model described in 4.1. The main focus is to

perform the scheduling and allocation of jobs and messages, while minimizing the critical

path delay. In addition, we evaluate the computational time required to compute the schedule

in CPLEX.

4.4 Results 40

(a) Physical Model (b) TT Logical Model

(c) ET Logical Model

Fig. 4.2 Model example with 7 Nodes, 5 Jobs and 5 msgs

Each example scenario consists of the constants explained in Table 4.1 in which both the

physical and the logical models are defined. Consider an on-chip network with 7 nodes, 2

switches and 5 end-systems, where 5 jobs communicate and need to send 5 messages. The

corresponding physical and logical models are shown in Figure 4.2, where figure a depicts

the physical connection among nodes with bi-directional links and figures b and c depict

the time-triggered and event-triggered logical models. The nodes represent the jobs and the

arrows represent the messages sent from one job to another job. It should be noted that the

first two messages are time-triggered while the other messages are event-triggered.

Table 4.2 shows the CPLEX input constants for the model in Figure 4.2 according to

Section 4.1. The first constant describes the network model (7,5,5) in which the model

consists of 7 nodes and 5 jobs sending 5 messages. The second constant defines the node

connectivity in the network C with bi-directional links. For example, the first node is

connected to node 5 and the last node is connected to nodes 2,3,4 and 5. Constant 3 shows

the jobs that send the messages, where each job can send more than one message. For

example, job 1 is the sender of the fifth message and job 3 is the sender of the messages 1, 2

and 3.

4.4 Results 41

The fourth constant describes the receiving jobs of messages. For example, job 0 and job

2 are the receivers of the time-triggered messages 0 and 1 respectively, whereas job 4 is the

receiver of event-triggered messages 3 and 4. Then, periods of time-triggered messages as

well as the BAG for rate-constrained messages are described. The hop-to-hop transmission

time U is defined in constant 6. For simplicity and better understanding of the example, all

times of U are set to a constant with the value of 3 μs. Constant 7 describes the job execution

times E and also here we set them all to a constant value of 2 μs.

The constant ALLOC defines the ability of nodes to be allocated jobs where switches

(i.e., the last two nodes) cannot be allocate jobs, while end-systems (i.e., nodes 0,1,2,3 and 4)

can allocate jobs at a maximum of one job per end-system.

The last constant differentiates the type of the message to be transmitted. The value of 1 is

set for time-triggered messages and 0 is used for event-triggered messages. In the examples,

the first two messages are set to be time-triggered messages and the other messages are set to

be event-triggered.

As illustrated in the previous section, the solution of the scheduling problem in on-chip

time-triggered networks requires a large number of constraints. This makes the search space

quite large for realistic network topologies which is illustrated in this section. The times

of CPU calculation were obtained with CPLEX 12.6.1 running on a 12 processor Intel(R)

Xeon(R), 2.2 GHz server with the operating system Linux Ubuntu 14.04.1.

Table 4.3 depicts the results of the MILP model solved by CPLEX. It gave an optimal

solution for the problem within 5.99 seconds in which 498 constraints are evaluated. More-

over, the output presented the values of the decision variables described in Section 4.2.1. The

allocation of jobs to end-systems is done in such a way that it minimizes the maximum trans-

mission time of the time-triggered messages. Here, job 3, which is allocated to node 4, sends

one time-triggered message to job 2 which is allocated to node 2, and two event-triggered

messages to jobs 1 and 4 which are allocated to end-systems 1 and 0, respectively. The

message with VL 1 is initiated at time 0 in end-system 4 and passes through switch 6 and is

then received by end-system 2 with a total of two hops. Since only the first two messages are

time-triggered, their scheduling is calculated in such a way that their transmissions are done

without collisions. The last three messages can be scheduled without taking into account

the collision constraints, which can be noticed in messages 2 and 3. They are scheduled to

pass through the links between nodes 4, 6 and 5 and it is the job of the switches to resolve

the contention between these event-triggered messages. Moreover, there is a dependency

between job 2 and job 3 in the time-triggered messages and between job 3 and job 1 in

the event-triggered messages. In the case of time-triggered messages, the transmission of

message of VL 0 in job 2, allocated to end-system 2, starts at the end of the transmission of

4.4 Results 42

Constant-No. Constant Name Data

1 n, j, m [7,5,5]

[[0,0,0,0,0,1,0],

[0,0,0,0,0,1,0],

[0,0,0,0,0,0,1],

2 C [0,0,0,0,0,0,1],

[0,0,0,0,0,0,1],

[1,1,0,0,0,0,1],

[0,0,1,1,1,1,0]]

3 S [2,3,3,3,1]

[[1,0,0,0,0],

[0,0,1,0,0],

4 D [0,1,0,0,0],

[0,0,0,0,1],

[0,0,0,0,1]]

5 T/BAG [20,20,30,30,30]

6 U [3,3,3,3,3]

7 E [2,2,2,2,2]

8 ALLOC [1,1,1,1,1,0,0]

9 MT [1,1,0,0,0]

Table 4.2 CPLEX Input constants for model in Figure 4.2

message 1 in job 3 allocated to node 4. Thus, the injection time of message of VL 0 should

be after the reception time of message of VL 1 and the execution time of this message in job

2 as shown in the following equation:

iV L0 → (i1 +h1 ·u1 + e2)
→ (0+2 ·3+2)
→ 8μs

Moreover, the temporal constraints for time-triggered messages are preserved in which

all of these messages finish before their deadlines.

4.4 Results 43

Job-No. Alloc. VL Msg. Period Path Start Finish

Node Type BAG Time Time

0 3

1 1 4 ET 30 1-5-0 14 -

2 2 0 TT 20 2-6-3 8 14

1 TT 20 4-6-2 0 6

3 4 2 ET 30 4-6-5-1 3 -

3 ET 30 4-6-5-0 6 -

4 0

Table 4.3 Results for model example

rV L0 → (i0 +h0 ·u0 + e3) < T0

→ (8+2 ·3+2)
→ 16μs < 30μs

Table 4.4 shows the execution times for different physical and logical topologies. It is

evident that the solution time of the problem depends on the number of constraints which is

affected by the number of nodes, jobs, and messages.

The proposed model in this chapter provides mapping of applications that have inter-job

dependencies as well as supports different traffic classes such as time-triggered for periodic

events and rate-constrained for sporadic events. The provided functions in the proposed

scheduling model are of main requirements for mixed criticality systems. The mapping of

jobs to end-systems and scheduling messages to communication paths are selected to obtain

minimum overall end-to-end message latencies.

Moreover, the proposed model obtains an optimal solution to the scheduling problem that

results in a guaranteed best minimization of end-to-end latency for periodic time-triggered

messages. On the other hand, the injection times of rate-constrained messages are ensured

to be sufficiently scheduled on the bandwidth gap left after time-triggered messages are

scheduled.

4.4 Results 44

Physical Model Logical Model No. of Optimal? Time

Sw Es Job Msgs Constraints (s)

2 4 3 2 175 Yes 1.04

2 5 3 2 218 Yes 1.66

2 6 3 2 267 Yes 2.58

2 4 3 3 245 Yes 1.63

2 5 3 3 307 Yes 2.77

2 4 4 3 251 Yes 1.74

2 5 4 3 313 Yes 3.24

2 4 4 4 320 Yes 2.05

2 5 4 4 402 Yes 4.28

2 4 4 5 409 Yes 2.37

2 5 4 5 492 Yes 4.16

2 6 4 5 609 Yes 13.50

2 5 5 4 408 Yes 4.28

2 5 5 5 498 Yes 5.99

2 6 5 5 616 Yes 9.27

2 5 4 6 583 Yes 9.26

2 5 5 6 590 Yes 9.75

2 5 5 7 681 Yes 12.17

2 5 5 8 770 Yes 9.85

2 6 6 5 622 Yes 22.22

3 6 4 4 776 Yes 212.90

3 7 4 3 703 Yes 150.98

Table 4.4 Results of 22 case studies.

Chapter 5

Optimized and Reliable Scheduling
Algorithm

This chapter introduces an improved scheduling model for a multi-core processors as well as

for distributed systems with time-triggered and event-triggered communication. The new

model reduces the search space of the scheduling problem and provides optimal solution

with less time compared to the previous one. Moreover, reliability is integrated into the

scheduling model in the form of redundant messages to mask link failures of time-triggered

messages [MO17].

5.1 Improved Scheduling Model for Time-Triggered and
Event-Triggered Messages

The solution of an MILP problem using a branch-and-bound algorithm requires to list all

possible integer combinations of the decision variables and then selects the best feasible

point. Such explicit enumeration is exhaustive and becomes impossible when evaluating

a large number of variables. As a result, a number of enhancements to the branch-and-

bound algorithm have been designed, such as preprocessing, heuristics, and cutting planes

as described in section 2.3. These methods tend to implicitly consider all integer variable

combinations for the general problem without necessarily evaluating them thoroughly. These

implicit enumeration methods tend to reduce the search space of the problem to be solved

and they are already integrated into most MILP solvers [AS05] [SAS].

Another way of reducing the problem search space is to add user-defined constraints that

optimize the model to be solved. These user-defined constraints should not oppose the main

46

Fig. 5.1 Physical Model of 5 end-systems and 2 switches.

constraints which define the model but need to tighten the variables to be evaluated in order

to reduce the time to obtain the optimal solution.

Consider the physical model in figure 5.1 which was used in the scenario model in the

previous chapter. The allocation of jobs is only allowed on end-systems but not switches.

Moreover, each end-system is connected to only one switch. This type of connectivity allows

the scheduling model to consider only the network between switches while neglecting the

end-systems.

Thus, the improved model provides the following enhancements.

• The search space of nodes allocability is reduced to include only end-systems. This

restriction tightens the decision variables as well as the constraints associated with the

allocation of jobs to end-systems.

• The end-to-end path calculation for each message will include only the path from the

switch connected to the source’s end-system to the switch connected to the destination’s

end-system. We call the switch that is connected to an end-system as a neighbor switch,

listed in a vector DSwitch, which is determined by the connectivity matrix C. The

introduction of neighbor switch to the previous model results in a massive reduction of

the search space in the path decision variables as well as their related constraints.

5.1.1 Optimized Variables

The previously described model in section 4.2.1 defines a number of decision variables to be

optimized according to the objective function. The most important variables to be optimized

are the job allocation and the message path.

47

5.1.1.1 Job Allocation

These variables are used to denote the allocation of jobs to nodes of the physical platform

model. Jobs cannot be allocated to switches, but only to end-systems. Thus, the maximum

value is determined by the number of end-systems ES.

A =

⎡
⎢⎢⎢⎣
a1
...

aj

⎤
⎥⎥⎥⎦ ∈ {1, ...,ES}j

Also, the boolean matrix ALLOCM is optimized to have a length of the number of end-

systems ES instead of n.

ALLOCM =

⎡
⎢⎢⎢⎣
mat1,1 . . . mat1,ES

...
. . .

...

matj,1 . . . matj,ES

⎤
⎥⎥⎥⎦ ∈ {0,1}j×ES

To keep track of switches via which a job can transmit a message we use a vector SR.

The vector SR denotes for each job a neighbor switch that is directly accessible from the

end-system where the job is located. All other switches can only be reached by more than

one hop. For example, sr2 = 14 denotes that the switch with ID 14 is the neighbor switch for

the end-system hosting the job 2.

SR = [sr1 . . . srJ]T ∈ {Z, ...,n}J

where Z = ES +1.

5.1.1.2 Message Path

The rows in the path array P will now record the paths where each path starts from the

neighbor switch of the end-system that allocates the source job to the neighbor switch of the

end-system which allocates a sink job. The maximum value of these array elements is the

maximum number of switches SW .

P =

⎡
⎢⎢⎢⎣

p1,1 . . . p1,z
...

. . .
...

pm,1 . . . pm,z

⎤
⎥⎥⎥⎦ ∈ {1, ...,SW}m×z

where z = MaxH .

48

5.1.2 Optimized Constraints

After optimizing the decision variable, the constraints related to these changed variables

needs to be altered. These constraints are the connectivity, collision avoidance, and job

assignment constraints.

5.1.2.1 Job Assignment Constraints

These constraints assign jobs to end-systems. A job must be allocated to exactly one end-

system and each end-system can process at most one job. The ALLOC matrix is used to

allow the aforementioned restrictions where its rows represent jobs to be allocated and its

columns denote the available end-systems.

To allocate each job to only one end-system, the sum of each row in ALLOCM (i.e., for

each job) equal to 1. Then, the allocated end-systems are stored in the allocation array A and

the neighbor switches of the end-systems are stored in SR.

∀j1 ∈ {1, ..., j} :⎛
⎝ ES∑

r1=1
matj1,r1

⎞
⎠ = 1

⎛
⎝ ES∨

r1=1
matj1,r1 = 1 → (aj1 = r1 ∧ srj1 = drr1)

⎞
⎠

(5.1)

To allow only one job to be allocated to an end-system, the sum for each end-system

must be less than or equal to one.

∀r1 ∈ {1, ...,ES} :⎛
⎝ j∑

j1=1
matj1,r1

⎞
⎠ ≤ 1

(5.2)

The path of each message starts with the neighbor switch of the end-system that hosts the

job, the first node for each message path p1,1 . . .pm,1 is required to be the neighbor switch.

∀m1 ∈ {1, ...,M},∀j1 ∈ {1, ...,J} :
sm1 = j1

→
⎛
⎝ ES∨

r1=1
(aj1 = r1 ∧pm1,1 = drr1

⎞
⎠

(5.3)

49

5.1.2.2 Connectivity Constraint

The path topology of the network is considered by these constraints based on the node

connectivity C. Since an end-system is connected to only one switch, the connectivity

constraints can be reduced by considering only the switches. If there is no direct connection

between two switches a and b, then the path of a message must not include a hop from a to b.

∀m1 ∈ {1, ...,M},∀r ∈ {1, ...,MaxH} :
hm1 ≥ r +1

→
⎛
⎝ B∨

a,b=ES+1
ca,b = 1 → Connected(a,b)

⎞
⎠

(5.4)

where the function Connected() states that a message’s path is allowed to pass through the

link between the two switches a and b.

Connected(a,b) = (pm1,r = a∧pm1,r+1 = b)

5.1.2.3 Collision Avoidance Constraint

These constraints are divided into three groups:

• Constraints to avoid collisions between a sending node and its neighbor switch

• Constraints to avoid collisions between switches

• Constraints to avoid collisions between a receiving node and its neighbor switch

The first constraints apply when a job sends more than one message. Since, there is only one

link between any end-system and its neighbor switch, the constraints ensure that transmission

times following the injection times I do not overlap.

∀m1 ∈ {1, ...,M},m2 ∈ {m1 +1, ...,M},

sm1 = sm2

→ (im1 ≥ im2 +um2

∨ im2 ≥ im1 +um1)

(5.5)

To prevent collisions of transmissions between switches, the scheduling of time-triggered

messages ensures that no two messages are transmitted on one link at the same time. Thus,

50

the messages should be transmitted on different paths or one needs to be scheduled before or

after the transmission of the other message.

∀m1 ∈ {1, ...,M},m2 ∈ {m1 +1, ...,M},

∀r1, r2 ∈ {1, ...,MaxH} :
(pm1,r1
= pm2,r2 ∨pm1,r1+1
= pm2,r2+1

∨ r1 +1 > hm1 ∨ r2 +1 > hm2

∨ im1 +(r1 +1) ·um1 ≤ im2 + r2 ·um2

∨ im2 +(r2 +1) ·um2 ≤ im1 + r1 ·um1)

(5.6)

The third type of constraints is used when a job receives more than one message. Since

there is only one link between an end-system and its neighbor switch, these constraints ensure

that the transmission times of the messages from the neighbor switch to the end-system do

not overlap.

∀m1 ∈ {1, ...,M},m2 ∈ {m1 +1, ...,M},

j1 ∈ {1, ...,J} :
dm1,j1 = 1∧dm2,j1 = 1
→ (im1 +(hm1 +1) ·um1 ≤ im2 +hm2 ∗um2

∨ im2 +(hm2 +1) ·um2 ≤ im1 +hm1 ∗um1)

(5.7)

5.1.3 Experimental Evaluation

Table 5.1 illustrates a comparison of the improved model against the previous model where

the same scenarios conducted in section 4.3 are used. The table depicts the number of

constraints as well as the execution time in seconds for both models for 22 different scenarios.

The results show that the improved model has a significant reduction in constraints that

leads to much less execution time. For example, scenario 12 consists of 2 switches and 6

end-systems where 4 jobs send 5 time-triggered messages. The number of constraints is

reduced from 607 for the old model to 77 for the enhanced one and resulted in 0.25 seconds

execution time compared to the previous model which needed 13.5 seconds. The last scenario

shows a significant execution time reduction where the improved model finishes in 0.29

seconds whereas 150.98 seconds were needed by the previous model.

5.2 Reliable Scheduling Model for Time-Triggered Messages 51

No. Physical Model Logical Model Previous Model Enhanced Model

Sw Es Job Msgs Constraints Time (s) Constraints Time (s)

1 2 4 3 2 175 1.04 31 0.08

2 2 5 3 2 218 1.66 35 0.04

3 2 6 3 2 267 2.58 39 0.04

4 2 4 3 3 245 1.63 44 0.18

5 2 5 3 3 307 2.77 44 0.09

6 2 4 4 3 251 1.74 44 0.10

7 2 5 4 3 313 3.24 49 0.06

8 2 4 4 4 320 2.05 55 0.16

9 2 5 4 4 402 4.28 60 0.25

10 2 4 4 5 409 2.37 67 0.28

11 2 5 4 5 492 4.16 72 0.25

12 2 6 4 5 609 13.50 77 0.25

13 2 5 5 4 408 4.28 65 0.14

14 2 5 5 5 498 5.99 76 0.17

15 2 6 5 5 616 9.27 82 0.19

16 2 5 4 6 583 9.26 86 0.17

17 2 5 5 6 590 9.75 91 0.3

18 2 5 5 7 681 12.17 105 0.34

19 2 5 5 8 770 9.85 122 0.27

20 2 6 6 5 622 22.22 88 0.15

21 3 6 4 4 776 212.90 65 0.47

22 3 7 4 3 703 150.98 60 0.29

Table 5.1 Comparison of the enhanced model with the previous one.

5.2 Reliable Scheduling Model for Time-Triggered Messages

Hard real-time systems have one feature in common; a failure of a critical service can lead

to deadly results, human life loss, high economic loss, or extensive environmental damage.

Systems that incorporate this feature are called safety-critical systems. These systems require

predictable, reliable, and real-time communication between the end-systems to ensure safety

and reliability.

5.2 Reliable Scheduling Model for Time-Triggered Messages 52

Reliability is defined as the likelihood of the failure-free operation of a system for a

duration of mission in a specified environment [ALR+01]. Fault tolerant systems are based

on the concept of FCRs where a system is partitioned into a set of subsystems, each of

which will operate correctly regardless of any arbitrary fault outside the region [Kop11]. The

goal of fault containment is to prevent the propagation of errors among system regions. A

time-triggered network ensures the partitioning of the system into a set of independent FCRs,

namely end-systems and time-triggered switches. One of the challenges is to tolerate faults

introduced by communication links.

A parallel-series architecture can be used for reliability enhancement as depicted in

Figure 5.2, where the links of a message path are shown in series with a certain number of

redundant messages in parallel. In this paper, one redundant message is generated for every

time-triggered message (x = 2). If Ri is the reliability of the i-th link of the message path

with 0 � Ri � 1 then (1−Ri)xi is the failure rate if the i-th link is chosen with a redundancy

degree expressed by xi. Then, 1− (1−Ri)xi is the reliability of the i-th link and hence the

message reliability Rs is [GLH+11]:

Rs =
n∏

i=1

[
1− (1−Ri)xi

]
(5.8)

Based on this formula, the use of the links over time can be optimized to maximize the

reliability of each message. In order to find an optimum solution within a reasonable time,

the above formula needs to be adopted to enable a linear optimization as follows [San15]:

n∑
i=1

ln
[
1− (1−Ri)xi

]
(5.9)

Moreover, the values in ln
[
1− (1−Ri)xi

]
can be calculated before the scheduler is

invoked. These pre-calculated values are given to the scheduler to simplify the scheduler

functionality.

5.2.1 Scheduling Model For Fault-Tolerant Communication

This section illustrates a scheduling model that generates a schedule for a time-triggered

network where each message is duplicated and sent to the destination through different hops.

The implemented scheduling model is formulated using an MILP problem and solved by

IBM CPLEX. This model comprises input constants for the network architecture along with

the application in addition to the scheduling constraints.

5.2 Reliable Scheduling Model for Time-Triggered Messages 53

1

2

Xn

1

2

Xi

1

2

X1

1 i n
R

ed
un

da
nc

y
Message Path

Fig. 5.2 Parallel-Series Redundancy Model

5.2.1.1 Constants

Table 5.2 shows the network architecture and the application model that are used as inputs

in the formulation of the MILP problem. The physical model consists of the n nodes that

are a set of s switches and e end-systems, thus n = e+ s. These nodes are connected with

bi-directional links in which a boolean two-dimensional array C of size (n · n) is used.

This matrix is sorted where all end-systems come first before the switches. This helps to

reduce the search space of the decision variables as well as the number of constraints, hence

minimizing the computation time for scheduling [OM15]. Moreover, a link reliability matrix

is introduced to capture the reliability of each link between two nodes. On the other hand,

the logical model consists of the number of jobs denoted by j that send m messages where

one end-system can be allocated to at most one job. The sender jobs can be represented as a

one-dimensional array S. The receiving jobs are also described as a one-dimensional array

D. The constant T denotes the period of the message according to the timing model of the

time-triggered activities. The execution time of a job is denoted by E and assumed to be

equal for all jobs.

5.2.1.2 Decision Variables

5.2.1.2.1 Neighbor switches To increase the reliability of the schedule, each end-system

is connected to two switches where each message is injected into these neighbor switches.

These neighbor switches can be expressed by a matrix with two rows for each allocated

5.2 Reliable Scheduling Model for Time-Triggered Messages 54

Domain Constant name Description

Physical n Number of nodes

Model C Nodes Connectivity

R Links Reliability

j Number of jobs

Logical m Number of messages

Model S Sender jobs

D Destination jobs

Table 5.2 Overview table with constants for the CPLEX-based model

end-system NS.

NS =
⎡
⎣ns1,1 . . . nsj,1
ns1,2 . . . nsj,2

⎤
⎦ ∈ {N}j×2

5.2.1.2.2 Hop Count Each message is injected from the end-system that allocates a

sender job to one of the neighbor switches along the intermediate switches and then to the

allocated end-system of the destination job. The hop count H denotes the number of visited

switches. In the absence of cyclic paths, the maximum hop count is MaxH = s−1.

H =
[
h1 . . .hm

]T ∈ {1, ...,MaxH}m.

5.2.1.2.3 Injection Time The time by which the neighbor switch of the source job trans-

mits a message is called the injection time which can be expressed using a one-dimensional

array of size m.

I =
[
i1 . . . im

]T ∈ {N}m.

5.2.1.2.4 Path The path P denotes the switches that a message visits. A two-dimensional

array is used where the rows denote the messages, and the columns represent the visited

switches.

P =

⎡
⎢⎢⎢⎣

p1,1 . . . p1,s
...

. . .
...

pm,1 . . . pm,s

⎤
⎥⎥⎥⎦ ∈ {1, ...,n}m×s

5.2.1.2.5 Link-Pair Reliability Every message, along with its redundant copy, traverses

from the source node that allocates the sending job along a number of switches till it reaches

5.2 Reliable Scheduling Model for Time-Triggered Messages 55

the destination node. The scheduler keeps track of each link-pair a message and its redundant

copy traverse and records its reliability in the decision variable REL.

REL =

⎡
⎢⎢⎢⎣

rel1,1 . . . rel1,MaxH
...

. . .
...

relm,1 . . . relm,MaxH

⎤
⎥⎥⎥⎦

T

∈ R
m×MaxH

5.2.1.3 Scheduling Constraints

This part describes the constraints that are used in scheduling time-triggered messages.

5.2.1.3.1 Connectivity Constraints These constraints use the connectivity constants C

in order to consider the network path topology. A message can traverse the link between two

nodes a and b, only if there is a direct connection between them. These constraints are only

executed for switches in order to reduce the number of constraints in the model.

∀m1 ∈ {1, ...,m},∀a ∈ {s, ...,n},∀b ∈ {s, ...,n} :
ca,b = 1
→ (hm1 < 1)∨ Traversed(m1,a,b),

(5.10)

where m1, a, and b are non-negative integers and Traversed states that a message m can visit

the link between switches a and b.

5.2.1.3.2 Collision-Free Constraints These constraints ensure that only one message is

processed by any node (end-system or switch). Each switch must receive only one message

at a specific time from its directly connected switches. If more than one message must be

sent from a certain switch and received by another switch, these messages need to be sent in

disjoint time intervals.

∀m1 ∈ {1, ...,m},m2 ∈ {m1 +1, ...,m},

∀r1, r2 ∈ {1, ...,MaxH} :
→ (pm1,r1
= pm2,r2 ∨pm1,r1+1
= pm2,r2+1

∨ im1 +(r1 +1) ·um1 < im2 + r2 ·um2

∨ im2 +(r2 +1) ·um2 < im1 + r1 ·um1)

(5.11)

To prevent collisions between end-systems and their directly connected neighbor switches,

different messages need to be injected/received at disjoint intervals.

5.2 Reliable Scheduling Model for Time-Triggered Messages 56

5.2.1.3.3 Job Dependency Constraints When a message is sent to a job that needs to

send another message, the latter message must be injected after the arrival of the former

message. The start time of the message of the dependent job m2 is after the receipt and

execution for message m1 of the relied upon job.

∀m1,m2 ∈ {1, ...,m},∀j1 ∈ {1, ..., j} :
dm1 = j1 ∧ sm2 = j1

→ (im1 +hm1 + ej1 +1 < im2),
(5.12)

where m1,m2 denote the message numbers and j1 denotes the job number as non-negative

integers.

5.2.1.4 Reliability Constraints

The scheduling of the redundant time-triggered messages is done using pre-determined values

of link-pair reliability LPR, where these values are calculated before CPLEX is invoked. If a

pair of links is chosen for a message with its redundant copy, the reliability is determined for

the specified hop.

∀m1 ∈ {1, ...,m} :
∀r1 ∈ {1, ...,MaxH} :
∀l1, l2 ∈ {1, ...,Links} :
l1
= l2 ∧hm1 > r1 ∧ check(pm1,r1 ,pmr1,r1 , l1, l2)
→ relm1,r1 = lpr(l1, l2)

(5.13)

The function check(pm1,r1 ,pmr1,r1 , l1, l2) tests whether the link-pair, l1 and l2, is traversed

by a message m1 and its redundant copy mr1.

5.2.1.5 Transmission Delay Constraints

The typical objective in the scheduling of a time-triggered network is to generate a schedule

where the makespan must be below the deadline. Therefore, the execution times of the jobs

im and the message transmission delays hm on the critical path, the message with the longest

path, should be less than a real-time constraint N as shown in Equation (5.14)

∀m1 ∈ {1, ...,m} :
CP [m1] = (im1 +hm1)

maximum(CP) < N.

(5.14)

5.2 Reliable Scheduling Model for Time-Triggered Messages 57

es 0

es 1

SW 5

SW 6

SW 7

SW 11

SW 12

SW 8

SW 9

SW 10

es 2

es 3

es 4

SW 5

SW 6

SW 7

SW 11

SW 12

SW 8

SW 9

SW 10

(a) Physical Model (b) TT Logical Model

Fig. 5.3 Model example with 13 Nodes, 5 Jobs and 5 messages

5.2.1.6 Objective Function

The optimal scheduling for a reliable time-triggered network is to maximize the reliability of

jobs. This is done by summing all the link-pair reliabilities for each message and its redundant

copy along the whole path Sum(relm) and maximizing it as shown in Equation (5.15).

∀m1 ∈ {1, ...,m} :
CR[m1] = Sum(relm1)

maximize
(

minimum(CR)
)

.

(5.15)

5.2.2 Experimental Evaluation

This section evaluates the MILP model described in section 5.2.2. The experiments are based

on scenarios established using SNAP library which is widely used in numerous academic

researches [Les]. The scheduler takes the scenarios and provides a redundant schedule of the

messages injected by jobs allocated to end-systems in such a way to maximize the reliability

of the received messages. Since the scheduler is aimed to deal with time-triggered messages,

the implemented constraints ensure the timing and satisfy the precedence requirements.

Consider a network with 13 nodes, 8 switches and 5 end-systems, where 5 jobs need to

send 5 time-triggered messages. The corresponding physical and logical models are shown in

Figure 5.3, where Figure a depicts the physical connection among nodes with bi-directional

links and Figure b depicts the logical model. The nodes represent the jobs and the arrows

represent the messages sent from one job to another one.

Table 5.3 summarizes the input constants for the physical and logical models illustrated

in figure 5.3. The first row shows the number of end-systems, switches, jobs, and messages

respectively. The second constant describes the link reliability of the node connectivity in

5.2 Reliable Scheduling Model for Time-Triggered Messages 58

the network with 0 � Ri � 1. Most of the links have higher reliability except the links that

connect nodes 8 and 11 as well as nodes 10 and 12 which have very low values 0.1. Constant

3 shows the jobs that send the messages, where each job can send more than one message.

For example, job 1 is the sender of the first message and job 3 is the sender of the third and

fourth messages. The last constant describes the receiving jobs of messages. For example,

job 0 is the receiver of the first two messages.

Constant Constant Data

No. Name

1 e, s, j, m [5, 8, 5, 5]

[[0,0,0,0,0,0.9,0.9,0,0,0,0,0,0],

[0,0,0,0,0,0,0.9,0.9,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0.9,0.9,0,0,0],

2 R [0,0,0,0,0,0,0,0,0,0.9,0.9,0,0],

[0,0,0,0,0,0,0,0,0.9,0,0.9,0,0],

[0.9,0,0,0,0,0,0,0,0,0,0,0.9,0.9],

[0.9,0.9,0,0,0,0,0,0,0,0,0,0.9,0.9],

[0,0.9,0,0,0,0,0,0,0,0,0,0.9,0.9],

[0,0,0.9,0,0.9,0,0,0,0,0,0,0.1,0.9],

[0,0,0.9,0.9,0,0,0,0,0,0,0,0.9,0.9],

[0,0,0,0.9,0.9,0,0,0,0,0,0,0.9,0.1],

[0,0,0,0,0,0.9,0.9,0.9,0.1,0.9,0.9,0,0],

[0,0,0,0,0,0.9,0.9,0.9,0.9,0.9,0.1,0,0]]

3 S [1,2,3,3,4]

4 D [0,0,1,2,2]

Table 5.3 CPLEX Input constants for model in Figure 5.3

As illustrated in the previous section, the solution of a reliable scheduling problem in

real-time distributed systems gives the best link-pairs for each message that maximizes the

reliability. Since the number of link-pairs increases significantly with the number of links in

the network, this makes the search space quite large for realistic network topologies which is

illustrated in this section. The times of CPU calculation were obtained with CPLEX 12.6.1

running on a 12-core processor Intel(R) Xeon(R), 2.2 GHz server with the operating system

Linux Ubuntu 14.04.1.

5.2 Reliable Scheduling Model for Time-Triggered Messages 59

Table 5.4 depicts the results of the MILP model solved by CPLEX. It gave an optimal

solution for the problem within 1400 seconds in which 1698 constraints are evaluated. More-

over, the output presented the values of the decision variables described in Section 5.2.1.2.

The scheduler allocates end-systems for all jobs and generates a schedule for all messages as

well as for the redundant copies. Here, job 1, which is allocated to end-system 3, sends one

time-triggered message to job 0 which is allocated to end-system 2. This message is initiated

at time 15μs in end-system 3 and passes through switches 9,12, and 8 and is then received

by end-system 2 with a total of four hops between the sender and the receiver. Since link

transmission times are assumed to be constant for all links (3μs), the message is received

at 15 + (4× 3) = 27μs. Its redundant message is also initiated at time 15μs in end-system

3 and passes through switches 10,11, and 9 before end-system 2 receives it. Thus, every

redundant message takes a different path between the sender and receiver compared to the

first redundant message. Moreover, the scheduler did not choose the links between nodes [8,

11] and [10, 12], because they have a very low reliability.

To compare the reliable scheduling algorithm, the previous scenario was also solved

using a random algorithm that does not take into account the link reliability. The right-hand

side of Table 5.4 shows the results of this naive algorithm. Some messages (2r,4, and 4r)

use the low reliability links in their paths which reduces the probability of their successful

arrival. This is clearly shown in the reliability field for message 4, where the reliability of the

naive algorithm is 0.82 compared to the reliability of the proposed algorithm 0.98.

Since the scheduler deals with time-triggered messages, the scheduling of these messages

is calculated in such a way that their transmissions are done without collisions. Moreover,

there is a dependency between job 1 and job 3, where job 1 needs to send message 0 to job

0 while the former has to wait for job 3 to receive message 2. Thus, the transmission of

message 0 in job 1, allocated to node 3, starts at the end of the transmission of message 2 in

job 3 allocated to node 0. Thus, the injection time of message 0 should be after the reception

time of message 2 and the execution time of this message in job 1 as shown in the following:

i0 = (i2 +h2 ·u2 + e1)
= (0+4 ·3+3)
= 15μs

5.2 Reliable Scheduling Model for Time-Triggered Messages 60

R
el

ia
b

il
it

y
al

g
o

ri
th

m
R

an
d

o
m

al
g

o
ri

th
m

Jo
b

A
ll

o
c.

M
sg

P
at

h
S

ta
rt

F
in

is
h

R
el

.
Jo

b
A

ll
o

c.
M

sg
P

at
h

S
ta

rt
F

in
is

h
R

el
.

N
o

d
e

T
im

e
T

im
e

N
o

d
e

T
im

e
T

im
e

0
2

0
0

1
3

0
3

-9
-1

2
-8

-2
1

5
2

7
0

.9
8

1
4

0
4

-8
-1

2
-5

-0
1

5
2

7
0

.9
8

0 r
3

-1
0

-1
1

-9
-2

1
5

2
7

0 r
4

-1
0

-1
1

-6
-0

1
5

2
7

2
1

1
1

-6
-1

2
-8

-2
1

8
3

0
0

.9
8

2
2

1
2

-8
-1

2
-5

-0
1

8
3

0
0

.9
8

1 r
1

-7
-1

2
-9

-2
1

8
3

0
1 r

2
-9

-1
1

-6
-0

1
8

3
0

3
0

2
0

-5
-1

2
-9

-3
0

1
2

0
.9

8
3

1
2

1
-6

-1
2

-8
-4

0
1

2
0

.9
0

2 r
0

-6
-1

1
-1

0
-3

0
1

2
2 r

1
-7

-1
2

-1
0

-4
0

1
2

3
0

-5
-1

2
-6

-1
3

1
5

0
.9

8
3

1
-6

-1
1

-8
-2

3
1

5
0

.9
0

3 r
0

-6
-1

2
-7

-1
0

1
2

3 r
1

-7
-1

2
-9

-2
3

1
5

4
4

4
4

-8
-1

2
-6

-1
0

1
2

0
.9

8
4

3
4

3
-9

-1
1

-8
-2

0
1

2
0

.8
2

4 r
4

-1
0

-1
1

-7
-1

0
1

2
4 r

3
-1

0
-1

2
-9

-2
0

1
2

T
ab

le
5

.4
R

es
u

lt
s

fo
r

ex
am

p
le

m
o

d
el

5.2 Reliable Scheduling Model for Time-Triggered Messages 61

In this chapter, extensions of the proposed model described in chapter 4 were given. First,

optimizations to the previous model are presented in order to reduce the problem search

space which minimizes the overall execution time of the scheduler as well as memory space.

The experimental evaluation showed that the optimized model is more than 10 times faster

than the previous model. This allows the scheduler to analyze example scenarios with a

larger number of nodes.

After that, a reliable scheduling model for safety critical systems is presented in which

messages are replicated and sent through different reliable paths. This model provides fault

tolerance mechanisms in the presence of communication link failures and ensures reliable

delivery of time-triggered messages. Moreover, the scheduling model obtains optimal

schedules where the paths of the scheduled messages along with their redundant messages

are guaranteed to have minimum end-to-end latency.

Chapter 6

Scheduling Model in Systems-of-Systems

This chapter provides an extended scheduling model explained in Chapter 4 that is used in

the scheduling of real-time SoS applications. It starts with a conceptual model of the SoS

architecture with its main two models namely, physical platform and logical application.

Afterwords, the idea of incremental, distributed, and concurrent scheduling is discussed

which gives an introduction to our proposed model [OM15]. Next, a formal description of

SoS model in terms of physical as well as logical viewpoints. After that, a formal description

of the allocation and scheduling functions in SoS is defined. Then, the SoS scheduling model

is described using MILP. Finally, experimental evaluation for the proposed SoS model is

discussed.

6.1 System-of-Systems Architecture

This section describes the SoS from logical and physical viewpoints. The introduced struc-

tural models are the basis for the subsequent formulation of the dynamic scheduling and

allocation problem.

The overall conceptual model of the SoS is depicted in Figure 6.1. The SoS is comprised

of constituent systems, where each constituent system is a distributed embedded systems,

which is under the control of a given organization. Each constituent system consists of end-

systems that are interconnected by real-time networks. Networks can include communication

networks with different protocols and topologies (e.g., multi-star topology as depicted in

Figure 6.1).

The interconnection of constituent systems occurs using a backbone communication

infrastructures consisting of network domains. In analogy to the constituent systems, each

network domain is within the responsibility of an organization that controls the resource

allocations and their use by application subsystems. Technically, this control is realized by

6.1 System-of-Systems Architecture 63

Logical Viewpoint (Applications)

Application

Subsystem 0Subsystem 1

Subsystem 3

Subsystem 2

Job 1/4

Job 1/3

Job 1/2

Job 1/1

Job 1/5

Job 1/0

Job 0/4
Job 0/3

Job 0/1 Job 0/2Job 0/5

Job 0/0

Job 2/5

Job 2/4

Job 2/3

Job 2/2 Job 2/1

Job 2/0

Job 3/4

Job 3/3

Job 3/2

Job 3/5

Job 3/1

Job 3/0

IDM

 Constituent
System

Constituent System

Router

Network Domain

Routers

Routers Routers

Routers

Network Domain

Routers

RoutersRouters

RouterES

ES

ES

ES

ES

ES

ES

ES

ES

ES

ES

ES

Router

ES

Router

SO

ES

ES ES

ES

Constituent System

Router

Physical Viewpoint (Platform)

CSM NMS NMS

CSM CSM

Constituent
System

CSM

RouterES

Router

SO

ES

ES ES

Scheduling
 and

Allocation

Fig. 6.1 Physical and Logical Viewpoint of the SoS

6.1 System-of-Systems Architecture 64

management services named Network Management Systems (NMS) of the network domains.

The NMS configures the switches in the network domain, while also coordinating with other

network domains and constituent systems.

Likewise, each constituent systems contains management services named CSM. The

CSM performs the local configuration of the end-systems and networks within the constituent

system. In addition, the CSM is responsible for the coordination with other constituent

systems and network domains.

From a logical point of view, the SoS consists of applications, each of which is a hierar-

chical DAG with subsystems and services. The messages between subsystems and services

represent the dependencies in the DAG. As an example, consider a medical application for

health monitoring and patient care. This application involves different subsystems with re-

spective services. A constituent system ’patient home’ hosts a subsystem ’health monitoring’

with local services (e.g., sensors, user interfaces). A constituent system ’hospital’ can provide

a subsystem ’health alarm’ including local services for health records, the analysis of sensory

data and the issuing of emergency treatment. A constituent system ’caregiver’ would offer a

subsystem ’emergency response’ with services for remote interaction with patients.

From this example, we see the dynamic nature, large-scale, heterogeneity and lack of

central control. Numerous of these medical applications will run in parallel for different

patients, while sharing the infrastructure (e.g., network domains) and the constituent systems

(e.g., hospitals, caregivers). In addition, other types of applications (e.g., energy management)

will be active at the same time. The SoS is highly dynamic, e.g., when new patients are

integrated into the system. The resource allocation also involves the coordination between

different organizations (e.g., providers of network domain, hospitals, patients).

While the discovery and peering of services is addressed in previous work (e.g., service-

oriented architectures [MTCM12], IoT-A [SCC+12], FIWARE IoT Discovery [FIW15]), the

end-to-end resource allocation and scheduling for SoS involving real-time, reliability and

safety requirements is an open research problem.

In this chapter, we provide a solution to this end-to-end resource allocation and scheduling

based on the assumption of time-triggered protocols within the constituent systems and the

network domains. This assumption is justified given the widespread use of time-triggered

protocols in safety-relevant embedded systems (e.g., TTP in railway, TTEthernet in avionics,

FlexRay in automotive) and the ongoing standardization activities for IEEE 802.1 [IEE15a],

which introduces scheduled traffic based on time-triggered communication plans, while

also offering run-time configurability and management capabilities. Likewise, TDMA with

dynamic configuration capabilities is employed in protocols for the network domain (e.g.,

MPLS) for the resource allocation and quality-of-service guarantees.

6.2 Incremental, Distributed, and Concurrent Scheduling 65

The SoS is characterized by its dynamic nature, where applications are introduced at

run-time. Therefore, communication resources and computational resources of the platform

have to be dynamically allocated to the application. More precisely, the following decisions

need to be taken for a new application:

• SoS-level allocation: Each application subsystem must be allocated to a constituent

system.

• SoS-level communication: Messages between application subsystems must be mapped

to paths between constituent systems along network domains.

• Allocation within constituent systems: Jobs must be allocated to end-systems within

each constituent system.

• Communication within constituent systems: Messages between jobs of an application

subsystem must be scheduled using paths between end-systems along switches.

In many safety-relevant systems, the inherent determinism of the time-triggered paradigm

comes at the expenses of significantly reducing flexibility when adaptation to new events is

required. For SoS, it is of crucial importance to dynamically adapt to the addition, change

and removal of application services and physical building blocks (e.g., constituent systems,

network domains). At the same time, we need to retain real-time and safety properties.

Overcoming this limitation implies the ability of modifying the time-triggered schedule

during runtime rather than precalculating offline schedules.

6.2 Incremental, Distributed, and Concurrent Scheduling

A naive approach relies on centrally computing new time-triggered schedules upon requests.

However, the computation time needed to generate such a global schedule makes this

approach unfeasible for fast-changing systems. In addition, SoS lack central information

about the internal structure of all constituent systems.

Therefore, the following three principles are the foundation for the scheduling and

allocation in SoSs:

• Incremental scheduling. In incremental scheduling, the transmission schedules of

specific sending entities in the network are extended or modified whenever additional

scheduled messages are required or whenever communication parameters are modified.

An incremental transmission schedule thus does not completely replace an existing

6.3 Problem Description 66

transmission schedule. However, it may modify some aspects of an existing trans-

mission schedule to facilitate an incremental scheduling step. In order to achieve

this, the incremental approach for deterministic networks should not require global

knowledge about the overall network topology. The trade-off is that increasing the

level of information about the network will result in better schedules at the expense of

increased computation resources and network traffic for scheduling.

In this contribution, the incremental scheduling is driven by the dependencies imposed

by the DAG of an application. An application subsystem can be scheduled after the

relied upon subsystems have been scheduled. The dependencies comprise the messages

between the application subsystem, where the transmission times determine the earliest

possible start times for the dependent subsystems.

• Distributed Scheduling. Distributed scheduling reduces the overall scheduling time

by parallelizing the search for a feasible solution using horizontal, vertical and diagonal

partitioning schemes. We distribute the scheduling by computing the schedule of each

application subsystem at the respective constituent system. The vertical partitioning of

the scheduling problem results from the incremental scheduling steps of an application.

In addition, the scheduling problem is horizontally partitioned along the different

applications.

• Concurrent Scheduling. In a SoS many change requests can be requested and pro-

cessed in parallel. Therefore, a SoS inherently requires concurrent scheduling of

change requests while preserving the consistency in the configurations of constituent

systems and network domains. For example, several new applications can be intro-

duced at the same time as indicated in the medical monitoring scenario described

above.

6.3 Problem Description

6.3.1 Platform Description

For the formal description of the physical viewpoint we introduce a set of end-systems

ES, a set of constituent systems C, a set of network domains N and a set of switches SW .

The elementary physical building blocks B (called nodes henceforth) are the switches and

end-systems, whereas constituent systems and network domains are composite structures.

B = ES ∪SW (6.1)

6.3 Problem Description 67

The platform is described by the following graph:

GP =< VP ,EP >,VP = B,EP = B ×B (6.2)

Vertices are end-systems and switches, while edges represent the communication links

between switches and constituent systems.

Each node either belongs a constituent system or it is part of a network domain of the

SoS backbone infrastructure. This mapping is described by the following function f :

fP : B �→ C ∪N (6.3)

For a given constituent system or network domain, the nodes and the edges between these

nodes must form a connected sub-graph of GP .

Based on the constituent systems and network domains, we can define a high-level

physical graph GHP of the SoS.

GHP =< VHP,EHP >,VHP = C ∪N

EHP = {(e1, e2)|∃α,β ∈ EP : fP (α) = e1 ∧fP (β) = e2}

6.3.2 Application Description

From a logical point of view, the SoS consists of applications, where each application consists

of jobs J that interact via the exchange of messages. An application A is described by the

following DAG:

GA =< VA,EA >,VA = J,EA ⊆ J ×J (6.4)

The edges between the jobs are messages, which are exchanged between jobs.

Each application consists of application subsystems AS, which are connected sub-graphs

of GA. The mapping of jobs to application subsystems is described by the following function

fA:

fA : J �→ AS (6.5)

Based on the application subsystems, we can define a high-level logical graph GHA of

an application. This graph does not include jobs, but only application subsystems and the

messages (i.e., edges) between application subsystems.

GHA =< VHA,EHA >,VHA = AS,EHA ⊆ AS ×AS

EHA = {(e1, e2)|∃α,β ∈ EA : fA(α) = e1 ∧fA(β) = e2}

6.4 Formal Description of Scheduling and Allocation in SoS 68

6.4 Formal Description of Scheduling and Allocation in
SoS

Two levels of scheduling and allocation can be distinguished in SoSs. Firstly, application

subsystems must be mapped to constituent systems. Secondly, the detailed scheduling and

allocation of the jobs within each application subsystem can be performed.

6.4.1 High-Level Allocation of an Application

The first step of the allocation is the mapping of application subsystems to constituent

systems:

ALLOCAS : AS �→ C (6.6)

Thereafter, each edge < α,β > (i.e., message) of the high-level application graph GHA

must be allocated to a path p in the high-level physical graph. Such a path in the high-level

physical graph consists of a sequence of network domains from the constituent system of the

sender α to the constituent system of the receiver β.

ALLOCm : EHA �→ p,EHA =< α,β >,p = (p1,p2, . . . ,pn)
p1 = ALLOCAS(α)
pn = ALLOCAS(β)

∀i ∈ {1,2, . . . ,n−1} :< pi,pi+1 >∈ EHP

6.4.2 Low-Level Allocation and Scheduling in Constituent Systems and
Network Domains

For each application subsystem that is allocated to a constituent system c, the jobs J̄ need to

be allocated to the end-systems ES of c:

ALLOCjob,c : J̄ �→ ES (6.7)

J̄ = {j ∈ J |fA(j) = as∧ ALLOCAS(as) = c}
ES = {es ∈ ES|fP (es) = c}

6.5 Scheduling and Allocation Algorithm 69

Likewise, for each application subsystem that is allocated to a constituent system c the

respective messages M must be mapped to paths and schedules:

SCHEDULEm,c : M �→ p,

M = {< α,β >∈ EA|fA(α) = fA(β) = as∧ ALLOCAS(as) = c}
p = (p1,p2, . . . ,pn)

p1 = ALLOCjob,c(α)
pn = ALLOCjob,c(β)

∀i ∈ {1,2, . . . ,n−1} :< pi,pi+1 >∈ EP ,fP (pi) = fP (pk) = c

A message is an edge < α,β > in the DAG of the logical viewpoint. The respective jobs

α and β must belong to the same application subsystem as that is allocated to a constituent

system c. The links along the path p1,p2, . . . ,pn must be connected according to the graph

GP of the physical viewpoint.

6.5 Scheduling and Allocation Algorithm

The scheduling and allocation algorithm is summarized in Algorithm 1. The scheduling pro-

cess is triggered by the arrival of a new application A. Initially, the allocation of subsystems

to constituent systems ALLOCAS and the paths between constituent systems ALLOCm

are determined. Thereafter, an enabled message is retrieved from the high-level applica-

tion graph. A message is enabled if the relied upon application subsystems were already

scheduled or if there are no relied upon application subsystems. In this case, the allocation

and scheduling of the jobs and messages within the sending application subsystem as1 is

performed (i.e., ALLOCjob,c and SCHEDULEm,c). After the messages are scheduled on the

network domains, the jobs and messages within the receiving application subsystem as2 are

scheduled.

6.6 Scheduling Model of SoS

This part presents the scheduling model for the incremental scheduling steps as introduced in

the previous section. The model serves for the scheduling of an application subsystem in a

constituent system according to Algorithm 1. Hence, the presented scheduling model serves

for the local scheduling problem that needs to be solved by a CSM.

6.6 Scheduling Model of SoS 70

trigger :new application A with GHA =< VHA,EHA >
determine ALLOCAS

determine ALLOCm

Mu = EHA // set of unscheduled messages

Ma = VHA // set of unscheduled application subsystems

while Mu
= ∅ do
determine enabled messages Me ⊆ Mu

pick a message m =< as1,as2 >∈ Me

// retrieve path

p ← ALLOCm(m)
// schedule sending application subsystem as1
// at constituent system c = p1 (if unscheduled)

if as1 ∈ Ma then
incremental update of ALLOCjob,c for jobs in as1
incremental update of SCHEDm,c for msgs. in as1
Ma ← Ma �as1

end
// schedule network domains

for i ← 1 to n−1 do
incremental update of SCHEDm,n for <pi, pi+1 >

end
// schedule receiving application subsystem as2
// at constituent system c = pn (if unscheduled)

if as2 ∈ Ma then
incremental update of ALLOCjob,c for jobs in as2
incremental update of SCHEDm,c for msgs. in as2
Ma ← Ma �as2

end
Mu ← Mu �m

end
Algorithm 1: Scheduling algorithm for new application A

The CSM needs to interact with other CSM as part of the distributed and incremental

scheduling. In general, a subsystem will depend on messages from other subsystems and

provide relied-upon messages to other subsystems. We denote these messages as border

messages (red arrows in Figure 6.1) and we distinguish between incoming and outgoing

border messages.

Figure 6.2 depicts an overview about the local scheduler in each CSM. In order for a CSM

to schedule its allocated subsystem, it is required to have three main types of information.

Namely, Logical and physical model of its located constituent system, reserved resources

for previously scheduled application, and precedence constraints information about the

6.6 Scheduling Model of SoS 71

dependent border messages from the other subsystems. After the CSM generates its local

schedule, it updates its previous reserved resources database and notifies the other dependent

constituent systems by sending timing information of their dependent border messages.

Table 6.1 depicts a summary of the constants with their associated domains. A typical

constituent system based on switched Ethernet consists of a number of switches SW that

can be interconnected in different topologies. Each of these switches has a number of end-

systems that are connected in a star topology to the switch. The total number of end-systems

is ES and the number of nodes of a constituent system is B = ES +SW . These nodes are

interconnected using bi-directional physical communication links which can be described

by a two-dimensional boolean array C, in which the B2 values of the matrix are either 0
(not connected) or 1 (connected). In this work, the connectivity matrix is sorted where all

end-systems come first and then the switches. This helps to reduce the computation time for

scheduling.

New Reserved Resources

Border
 Messages

3. Border
 Messages

1. Logical and Physical Input Model

CSM

(CSn)

CSM

(CSn-1)

2. Reserved Resources of CSn

CSM

(CSn+1)

Fig. 6.2 Logical Viewpoint of Local Scheduler.

6.6 Scheduling Model of SoS 72
D

o
m

ai
n

C
o

n
st

an
t

n
am

e
T

y
p

e
D

es
cr

ip
ti

o
n

E
S

N
N

u
m

b
er

o
f

en
d

-s
y

st
em

s

S
W

N
N

u
m

b
er

o
f

sw
it

ch
es

B
E

S
+

S
W

∈
N

N
u

m
b

er
s

o
f

n
o

d
es

(E
S

+
S

W
)

C
o

n
st

it
u

en
t

B
S

N
N

u
m

b
er

o
f

b
o

rd
er

sw
it

ch
es

S
y

st
em

C

⎡ ⎢ ⎢ ⎢ ⎣c 1
,1

..
.

c 1
,B

. . .
. .

.
. . .

c B
,1

..
.

c B
,B

⎤ ⎥ ⎥ ⎥ ⎦∈
{0

,1
}N

×N
N

o
d

e
co

n
n

ec
ti

v
it

y

D
S

w
it

ch
[d

r 1
..

.d
r E

S
]T

∈
{E

S
+

1,
..
.,

B
}E

S
S

w
it

ch
co

n
n

ec
te

d
to

an
en

d
-s

y
st

em

U
[u

1
..

.u
M

]T
∈
N

M
H

o
p

tr
an

sm
is

si
o

n
ti

m
e

J
N

N
u

m
b

er
o

f
jo

b
s

M
N

N
u

m
b

er
o

f
m

es
sa

g
es

S
[s

1
..

.s
M

]T
∈

{1
,.

..
,J

}M
S

en
d

er
jo

b
s

A
p

p
li

ca
ti

o
n

D

⎡ ⎢ ⎢ ⎢ ⎣d
1,

1
..

.
d

1,
J

. . .
. .

.
. . .

d
M

,1
..

.
d

M
,J

⎤ ⎥ ⎥ ⎥ ⎦∈
{0

,1
}M

×J
D

es
ti

n
at

io
n

jo
b

s

S
N

[s
n

1,
..

.,
sn

M
]T

∈
{0

,1
}M

V
ec

to
r

d
en

o
ti

n
g

fo
r

ea
ch

m
sg

.
w

h
et

h
er

o
f

lo
ca

l
o

ri
g

in

S
u

b
sy

st
em

D
N

[d
n

1,
..

.,
d
n

M
]T

∈
{0

,1
}M

V
ec

to
r

d
en

o
ti

n
g

fo
r

ea
ch

m
sg

.
w

h
et

h
er

w
it

h
lo

ca
l

d
es

ti
n

at
io

n

IN
C

N
N

u
m

b
er

o
f

in
co

m
in

g
b

o
rd

er
m

es
sa

g
es

O
U

T
N

N
u

m
b

er
o

f
o

u
tg

o
in

g
b

o
rd

er
m

es
sa

g
es

E
[e

1
..

.e
J
]T

∈
N

J
Jo

b
ex

ec
u

ti
o

n
ti

m
e

G
ID

[g
id

1,
..

.,
g
id

M
]T

G
lo

b
al

m
es

sa
g

e
ID

T
ab

le
6

.1
O

v
er

v
ie

w
In

p
u

t
T

ab
le

6.6 Scheduling Model of SoS 73

6.6.1 Input

6.6.1.1 Input Model

To simulate the transmission and reception of border messages between applications in the

proposed model, border switches BS are introduced in each constituent system. These

switches are the access-points of constituent systems to the respective network domain.

Conceptually, these switches allocate the jobs that either send or receive border messages.

For better understanding and simplicity of the model, one border switch is introduced in each

constituent system.

The connection of switches to end-systems is listed in a vector DSwitch that is determined

by the connectivity matrix C. Each message requires a certain time, depending on the size of

the message, to be transmitted on a link. Thus, every time a message is sent from one link to

another one, its time is advanced by a hop transmission time U .

The application subsystem consists of a number of jobs J that communicate with each

other by the exchange of M messages. These uni-directional messages are sent by the

sending jobs, which are denoted by the vector S, where one job can send more than one

message. These messages are received by jobs which can be specified in a two-dimensional

boolean array D, where rows represent messages and columns represent receiving jobs. For

example, d2,4 = 1 denotes that message 2 is sent to job 4.

When a message is transmitted inside a subsystem, the sender of this message is an

end-system. On the other hand, when the message originates from outside the subsystem,

then the sender of the message is modeled as a border switch in the scheduling problem.

A boolean vector SN is used to specify whether a message is locally injected (snm = 1)

or from another constituent system (snm = 0). Similarly, a boolean vector DN is used to

differentiate between locally received messages (dnm = 1) or outgoing border messages

(dnm = 0).

To keep track of the number of incoming border messages and outgoing border messages

in each subsystem the constants INC and OUT are used respectively. Every message in the

SoS has a unique identifier GID called the global message ID.

The computation time of jobs E is the execution time needed by the receiving job before

sending a subsequent message.

6.6.1.2 Resource Information of CS

The introduction of a new application subsystem in a constituent system triggers dynamic

reconfiguration by requiring a schedule for the additional jobs and messages. The CSM

needs to calculate a new schedule for these jobs taking into account the reserved resources of

6.6 Scheduling Model of SoS 74

previous schedules. Therefore, a multi-dimensional array Res is used to keep track of these

reserved resources. The first and the second dimensions refer to the indices of the two nodes

connecting the link (i.e., range 1 . . .B). Finally, the third dimension denotes the index of the

reservation of this link. Each link can have more than one reservation.

6.6.1.3 Scheduler State

Incremental scheduling in an SoS is the scheduling of messages that are transmitted between

different subsystems. This requires information about transmission times of border messages

in each subsystem in order to schedule these messages in the next subsystem.

A set of tuples BM is used that records the finish times of all border messages sent

between subsystems. Each tuple contains two non-negative numbers, namely a global

message ID and a finish time (ft). The finish time denotes the time by which an incoming

border message is received at the border switch towards the other constituent systems.

BM = {(gid1,ft1),(gid2,ft2), . . .}
with gidi ∈ {1,2, . . . ,M},fti ∈ N

6.6.2 Decision Variables

The local scheduler of the CSM generates two types of output information. A new schedule

state for the new jobs and updated information about reserved resources. The latter is used to

update the reserved resource database for subsequent scheduling steps.

6.6.2.1 New Schedule

This output information contains the schedule of the new jobs and messages. It consists of a

schedule for time-triggered messages (i.e., mapping of jobs to end-systems, message paths)

taking into account the dependencies with other local messages and border messages.

6.6.2.1.1 Job Allocation These variables denote the allocation of jobs to the nodes of

the physical platform model. Jobs that send and receive local messages can only be allocated

to end-systems while jobs that either send or receive border messages are allocated to the

border switch. Since nodes are sorted with end-systems and border switches coming first, the

maximum value ai of an allocation variable is the sum of the numbers of end-systems and

border switches.

A = [a1 . . .aJ]T ∈ {1, ...,ES +BS}J

6.6 Scheduling Model of SoS 75

To ensure that each job is allocated to exactly one end-system, a boolean matrix ALLOCM

is used where the rows relate to jobs and columns to end-systems. For example, mat3,2 = 1
means that job 3 is allocated to end-system 2.

ALLOCM =

⎡
⎢⎢⎢⎣

mat1,1 . . . mat1,ES
...

. . .
...

matJ,1 . . . matJ,ES

⎤
⎥⎥⎥⎦ ∈ {0,1}J×ES

To keep track of switches via which a job can transmit a message we use a vector SW .

The vector SW denotes for each job an access-point switch that is directly accessible from

the end-system where the job is located. All other switches can only be reached by more

than one hop. For example, sr2 = 14 denotes that the switch with ID 14 is the access-point

switch for the end-system hosting the job 2.

SR = [sr1 . . . srJ]T ∈ {Z, ...,B}J

where Z = ES +BS +1.

6.6.2.1.2 Hop Count A message is injected at the source end-system, where the sender

job was allocated. It is then transported along one or more switches before being received by

the end-system of the destination job. In order to express the number of visited switches for

each message after the access-point switch the vector hop count H is used and the maximum

value of its elements denotes the critical path length. In the absence of cyclic paths, the

maximum path length is maxH = SW −1.

H = [h1 . . .hM]T ∈ {1, ...,max
H

}M

6.6.2.1.3 Injection Time This one-dimensional array represents the times by which the

messages are injected in the network of the constituent system. To reduce the search space of

the model and since there is only one path between any node and its neighbor switch, this

variable records the transmission time of a message starting from the neighbor switch of the

sender’s end-system where it is rescaled when a schedule is generated.

I = [i1 . . . iM]T ∈ {1, ...,N}M

6.6.2.1.4 Path and Visited Switches To record the path between the message’s source

and destination end-system, the path array P is used. Since the sending and the receiving

6.6 Scheduling Model of SoS 76

jobs are known beforehand, each row represents the path of a message starting from the

switch connected to the end-system which allocates a source job to the switch connected

to the end-system in which the destination job is allocated. For example, p1,2 = 14 means

that the second switch that message number 1 visits is the node with ID 14. The maximum

number of nodes in a path equals the maximum number of hops.

P =

⎡
⎢⎢⎢⎣

p1,1 . . . p1,SW
...

. . .
...

pM,1 . . . pM,SW

⎤
⎥⎥⎥⎦ ∈ {Z,...,B}M×SW

where Z = ES +1.

For the purpose of calculating the end-to-end latency, a boolean matrix O is used to

denote the switches that are passed by a message. For example, o2,3 = 1 means that message

2 travels through a switch with ID 3.

O =

⎡
⎢⎢⎢⎣

o1,1 . . . o1,SW
...

. . .
...

oM,1 . . . oM×SW

⎤
⎥⎥⎥⎦ ∈ {0,1}M×SW

6.6.2.2 Reserved Resources

After a schedule is generated, the transmission links for paths of all messages are used to

update a reserved resources database Res. Each entry in this database consists of the IDs of

the end-systems and/or switches connecting the reserved link in addition to the start time of

a message at the specified link. For example, Res3,5,2 = 10 denotes that the link connecting

nodes 3 and 5 has two reservations. The second reservation starts at 10 ms and has a duration

of the transmission time of the message um.

6.6.3 Scheduling Constraints

This part describes the constraints that are used in the scheduling of time-triggered messages

in a constituent system.

6.6.3.1 Distributed Scheduling Constraints

As a prerequisite for the distributed scheduling, the CSM requires information about the

transmission times of border messages that are exchanged between different application

subsystems.

6.6 Scheduling Model of SoS 77

The injection times of local messages (snm = 1) as well as incoming border messages

(snm = 0) in a subsystem can be evaluated as follows:

∀mi ∈ {1, ...,M} :
snmi = 1 → imi ≥ umi

snmi = 0 → imi ≥ ftmi where (gidmi ,ftmi) ∈ BM

(6.8)

6.6.3.2 Incremental Scheduling Constraints

New applications introduce additional jobs where the new schedule must take into account

the reserved resources of the previous schedule as denoted by Res. These corresponding

constraints can be divided into three groups:

• Constraints for links between sending end-systems and their access-point switches

• Constraints for links among switches

• Constraints for links between receiving end-systems and their access-point switches

6.6.3.2.1 Reserved resources between sending end-systems and their access-point switches
End-systems are connected to switches in a star topology. Hence, if the sender is an end-

system, it means that there is only one link where the first node is an end-system and the

second node is its access-point switch.

∀m1 ∈ {1, ...,M},∀r1, r2 ∈ {1, ...,B} :
(Resr1,r2,0 ≥ 0)∧ (r1 ≤ ES)∧ (snm1 = 1)

→
⎛
⎝(asm1
= r1 ∨pm1,0
= r2)

∨
(M∧

z=1
(im1 +um1 ≤ Resr1,r2,z)

∨ (im1 −um1 ≥ Resr1,r2,z)
)⎞

⎠

(6.9)

6.6.3.2.2 Reserved resources among switches Since the connections of the switches

can have different topologies, all possible paths need to be checked regarding the reserved

6.6 Scheduling Model of SoS 78

resources.
∀m1 ∈ {1, ...,M},∀r1, r2 ∈ {1, ...,B} :
(Resr1,r2,0 ≥ 0)∧ (r1 > ES)∧ (r2 > ES)

→
⎛
⎝ R∨

r3=2

(
(pm1,r3−1
= r1 ∨pm1,r3
= r2)

∧ (pm1,r3−1
= r2 ∨pm1,r3
= r1)
)

∨ (hm1<r3)

∨
(M∧

z=1
(im1 + r3 ·um1 ≤ Resr1,r2,z)

∨ (im1 +(r3 −1) ·um1 ≥ Resr1,r2,z +um1)
)⎞

⎠

(6.10)

6.6.3.2.3 Reserved resources between receiving end-systems and their access-point
switches Again, if the receiving node is an end-system, it means that there is only one link

where the first node is an end-system and the second node is its access-point switch.

∀m1 ∈ {1, ...,M},∀r1, r2 ∈ {1, ...,B} :
(Resr1,r2,0 ≥ 0)
→ ∀j1 ∈ {1, ...,J} :

dm1,j1 = 1

→
⎛
⎝(aj1
= r1 ∨pm1,0
= r2)

∨
(M∧

z=1
(im1 + r3 ·um1 ≤ Resr1,r2,z)

∨ (im1 +(r3 −1) ·um1 ≥ Resr1,r2,z +um1)
)⎞

⎠

(6.11)

6.6.3.3 Connectivity Constraint

The first constraint considers the path topology of the network based on the node connectivity

C. Since an end-system is connected to only one switch, the connectivity constraints can

be reduced by considering only the switches. If there is no direct connection between two

6.6 Scheduling Model of SoS 79

switches a and b, then the path of a message must not include a hop from a to b.

∀m1 ∈ {1, ...,M},∀r ∈ {1, ...,MaxH} :
hm1 ≥ r +1

→
⎛
⎝ B∨

a,b=ES+1
ca,b = 1 → Connected(a,b)

⎞
⎠

(6.12)

where the function Connected() states that a message’s path is allowed to pass through the

link between the two switches a and b.

Connected(a,b) = (pm1,r = a∧pm1,r+1 = b)

6.6.3.4 Collision Avoidance Constraint

These constraints are divided into three groups:

• Constraints to avoid collisions between a sending node and its access-point switch

• Constraints to avoid collisions between switches

• Constraints to avoid collisions between a receiving node and its access-point switch

The first constraints apply when a job sends more than one message. Since there is only

one link between any end-system and its access-point switch, the constraints ensure that

transmission times following the injection times I do not overlap.

∀m1 ∈ {1, ...,M},m2 ∈ {m1 +1, ...,M},

sm1 = sm2

→ (im1 ≥ im2 +um2

∨ im2 ≥ im1 +um1)

(6.13)

To prevent collisions of transmissions between switches, the scheduling of time-triggered

messages ensures that no two messages are transmitted on one link at the same time. Thus,

the messages should be transmitted on different paths or one needs to be scheduled before or

6.6 Scheduling Model of SoS 80

after the transmission of the other message.

∀m1 ∈ {1, ...,M},m2 ∈ {m1 +1, ...,M},

∀r1, r2 ∈ {1, ...,MaxH} :
(pm1,r1
= pm2,r2 ∨pm1,r1+1
= pm2,r2+1

∨ r1 +1 > hm1 ∨ r2 +1 > hm2

∨ im1 +(r1 +1) ·um1 ≤ im2 + r2 ·um2

∨ im2 +(r2 +1) ·um2 ≤ im1 + r1 ·um1)

(6.14)

The third type of constraints is used when a job receives more than one message. Since

there is only one link between an end-system and its access-point switch, these constraints

ensure that the transmission times of the messages from the access-point switch to the

end-system do not overlap.

∀m1 ∈ {1, ...,M},m2 ∈ {m1 +1, ...,M},

j1 ∈ {1, ...,J} :
dm1,j1 = 1∧dm2,j1 = 1
→ (im1 +(hm1 +1) ·um1 ≤ im2 +hm2 ∗um2

∨ im2 +(hm2 +1) ·um2 ≤ im1 +hm1 ∗um1)

(6.15)

6.6.3.5 Job Dependency Constraint

Depending on the precedence constraints between the jobs, jobs may need to wait for the

output of the transmission of other jobs before they begin the transmission. This constraint

ensures that if a job sends a message m1 to another job that needs the output of m1 in order

to send m2, the start time of m2 must be after the end of the transmission and execution of

m1.

∀m1,m2 ∈ {1, ...,m},∀j1 ∈ {1, ..., j} :
dm1,j1 = 1 ∧ sm2 = j1

→ im1 +(hm1 +1) ·um1 + ej1 < im2

(6.16)

Each message must reach the destination node within its path and the selected number of

hops.

∀m1 ∈ {1, ...,M},∀j1 ∈ {1, ...,J}
dm1,j1 = 1

→
⎛
⎝ W∨

r1=1
(pm1,r1 = srj1 ∧ r1 = hm1)

⎞
⎠

(6.17)

6.6 Scheduling Model of SoS 81

6.6.3.6 Job Assignment Constraints

These constraints ensure that a job can be assigned to only one end-system. This is done

by having the sum of each row in ALLOCM (i.e., for each job) equal to 1. Then, the

allocated end-systems are stored in the allocation array A and the access-point switches of

the end-systems are stored in SR.

∀j1 ∈ {1, ..., j} :⎛
⎝ ES∑

r1=1
matj1,r1

⎞
⎠ = 1

⎛
⎝ ES∨

r1=1
matj1,r1 = 1 → (aj1 = r1 ∧ srj1 = drr1)

⎞
⎠

(6.18)

To allow only one job to be allocated to an end-system, the sum for each end-system

must be less than or equal to one.

∀r1 ∈ {1, ...,ES} :⎛
⎝ j∑

j1=1
matj1,r1

⎞
⎠ ≤ 1

(6.19)

In order to start the path of each message with the access-point switch of the end-system

that hosts the job, the first node for each message path p1,1 . . .pm,1 is required to be the

access-point switch.

∀m1 ∈ {1, ...,M},∀j1 ∈ {1, ...,J} :
sm1 = j1

→
⎛
⎝ ES∨

r1=1
(aj1 = r1 ∧pm1,1 = drr1

⎞
⎠

(6.20)

6.6.4 Objective Function

The objective is to minimize the maximum transmission time of the time-triggered messages

(i.e., minimization of critical path). This is done by first finding the transmission time of

each time-triggered message, expressed as the sum of the injection time im and the number

6.7 Experimental Evaluation 82

of hops hm multiplied by the transmission duration of a message um. Then, the objective

function minimizes the highest value among all these messages.

∀m1 ∈ {1, ...,M} :
CP [m1] = (im1 +hm1 ·um1)

minimize max(CP)
(6.21)

6.7 Experimental Evaluation

This section discusses the experimental evaluation. A generator for example scenarios and a

high-level scheduler were implemented to validate the scheduling problem.

6.7.1 Generator for Example Scenarios

A generic SoS generator was realized to build example scenarios for the evaluation of the

proposed scheduling models. Based on input parameters, the generator creates random

platforms and applications according to the conceptual model introduced in Section 6.1. The

input parameters for the physical viewpoint include the desired number of constituent systems

and network domains, the average number of end systems and switches per constituent system,

and the average node degree of the switches. In the logical viewpoint, input parameters are

the desired number of applications, the average number of subsystems per application, the

number of jobs per application subsystem and the average node degree of jobs.

The SNAP [Les] library was used for the generation of DAGs and undirected graphs in

the generations. A DAG is required for the graph of jobs in each application subsystem as

well as for the interconnection of application subsystems. The undirected graphs describe the

connectivity of the switches in constituent systems as well as the interconnection of network

domains and constituent systems. The outputs are visualized using the GraphViz library.

An example of a generated scenario is shown in figure 6.3. The figure depicts in detail

one of the constituent systems with 20 end-systems and switches where node ID 15 is a

border switch; it has also one of the application subsystems with 6 jobs. The jobs of the

application subsystem 1 send 6 local messages and one border message. In addition, one

incoming border message is received from another constituent system.

6.7.2 High-Level Scheduler

A high-Level scheduler was implemented to evaluate the conceptual model and the scheduling

problem. This high-level scheduler implements Algorithm 1 by performing a random

6.7 Experimental Evaluation 83

Fig. 6.3 Generated Platform and Application

allocation of application subsystems to constituent systems. The paths between application

subsystems are determined by computing the shortest paths. An extension of the high-

level scheduler with support for an optimized allocation of application subsystems and path

determination at the SoS-level is planned as future work.

The output of the high-level scheduler are CPLEX scheduling models with the constants,

constraints and decision variables as introduced in Section 6.5.

6.7.3 Results

Table 6.2 depicts the scheduling time for three different SoSs. Every SoS consists of seven

applications each containing four application subsystems. The computation times were

obtained with CPLEX 12.6.1 running on a 12 processor Intel(R) Xeon(R), 2.2 GHz server

with the operating system Linux Ubuntu 14.04.1. CPLEX was used for the local scheduling

in each constituent system, either stopping after a feasible solution is found or computing an

optimal local schedule.

The scheduling time is measured in seconds to find a feasible solution as well as an

optimal solution. The finish times in the table denote the makespans of the respective

applications in ms. As can be seen in the table, in some cases the optimal local schedule

leads to increased makespans of later applications. The reason is the unavailability of early

time slots for messages of subsequent applications.

The results have demonstrated that hard real-time constraints can be satisfied using

time-triggered messages in SoS. This is done using incremental, distributed, and concurrent

scheduling.

6.7 Experimental Evaluation 84

S
ce

n
ar

io
L

o
g

ic
al

V
ie

w
p

o
in

t
P

h
y
si

ca
l

V
ie

w
p
o
in

t
F

in
is

h
T

im
e

E
x
ec

u
ti

o
n

T
im

e

A
p

p
li

ca
ti

o
n

s
Jo

b
s

M
es

sa
g

es
C

S
E

n
d

sy
st

em
s

S
w

it
ch

es
F

ea
si

b
le

O
p

ti
m

al
F

ea
si

b
le

O
p

ti
m

al

1
3

0
3

0
3

9
3

6
3

.0
8

3
.4

8

2
3

0
3

8
5

1
4

8
1

1
.9

6
2

7
.7

6

3
3

0
3

0
6

9
4

2
1

4
.4

2
1

3
.5

5

S
o

S
1

4
3

0
2

6
4

7
5

2
1

6
3

4
2

1
9

.4
7

9
5

.3
1

5
3

0
3

0
8

7
8

4
1

1
2

.5
3

3
1

.2
3

6
3

0
3

0
1

1
4

1
0

2
1

3
6

.9
5

5
2

2
.3

6

7
3

0
3

0
9

6
9

0
2

3
6

.2
1

7
3

7
.3

1
3

0
3

0
3

9
3

3
3

.7
2

6
.4

1

2
3

0
3

0
4

8
6

0
1

0
.6

9
1

1
.8

6

3
3

0
3

0
4

5
3

6
1

0
.3

4
1

7
.9

1

S
o

S
2

4
3

0
3

0
4

8
5

2
3

1
2

3
1

1
7

4
9

.6
1

5
0

.4
1

5
3

0
2

6
6

0
5

4
8

1
.7

5
9

8
.7

4

6
3

0
2

6
9

0
6

9
3

9
.1

8
4

1
.3

9

7
3

0
2

6
7

5
8

1
2

9
8

.7
6

5
4

5

1
3

0
2

6
5

4
5

1
2

.5
9

2
.9

3

2
3

0
3

0
7

2
7

2
4

.5
2

6
.4

5

3
3

0
3

8
7

8
6

0
3

3
.5

6
1

0
5

.5

S
o

S
3

4
3

0
3

0
4

7
4

2
1

6
6

6
6

3
2

.3
4

5
2

0
.3

5
3

0
2

6
9

0
8

4
2

1
.2

5
1

1
1

.3
3

6
3

0
2

6
7

2
8

1
1

0
8

.3
7

4
5

2
.1

9

7
3

0
2

6
8

1
9

3
3

5
1

.8
6

9
2

T
ab

le
6

.2
R

es
u

lt
s

o
f

D
if

fe
re

n
t

S
o

S
S

ce
n

ar
io

s

6.7 Experimental Evaluation 85

The incremental scheduling allows the scheduler to reserve the resources from previous

applications such as end-system processing intervals and communication link transmission

times in order to avoid contention with the newly generated application schedules. The dis-

tributed cooperation among the different CSMs is a prerequisite for supporting the autonomy

and lack of central control in SoS on one hand and simplifying the scheduling problem on

the other hand by executing each application subsystem in its allocated constituent system

which reduces the overall execution time and memory usage.

Chapter 7

Validation Framework for
Time-Triggered Systems-of-Systems

Compared to monolithic systems, SoSs are based on a number of operationally and ad-

ministratively independent, evolutionary developed, and graphically distributed constituent

systems [Mai98]. Thus, it is difficult to set up such systems and a simulation environment

approach is needed for verifying such complex systems. This chapter describes a simulation

framework of SoSs where time-triggered application schedules can be verified and analyzed.

First, it gives an introduction for simulation framework to be described. Then, the models of

the SoS models are explained, namely the generic building blocks for TTEthernet system

elements, the configuration file of nodes, and the CSM unit. After that, a description of

the tool chain that is used to generate understandable information schedule for every ap-

plication request, configures the related constituent system nodes, and analyzes provided

results [MAO17]. Next, the integration of the SoS scheduling model in the CSM is presented

in which the scheduled applications are fed to the simulation framework during its execution.

This simulates the execution of SoS applications and enhances the analysis of the incremental

schedule. Finally, experimental scenarios are conducted and their results are evaluated.

7.1 SoS Simulation Framework

A naive approach for scheduling SoS applications relies on centrally computing new time-

triggered schedules upon requests. However, the computation time needed to generate such a

global schedule makes this approach unfeasible for fast-changing systems. In addition, SoS

lack central information about the internal structure of all constituent systems.

7.1 SoS Simulation Framework 87

Real-time support in SoSs is an open research challenge due to the lack of central control

as well as the evolving and dynamic nature of the interactions between the constituent

systems. Real-time support is essential in many safety-relevant application areas such as

smart city, medical, military and industrial SoS. This SoS architecture is realized using a

TTEthernet model building blocks (e.g., TTEthernet switches and TTEthernet end-systems)

that are used to provide real-time requirements and mixed criticality applications [AO13].

This simulation environment uses the OPNET tool suite for discrete event simulations of

TTEthernet communication networks [OPN]. Simulation models in OPNET are organized

hierarchically consisting of four main levels: the SoS network, constituent systems, node

models and process models.

The top level refers to the SoS network which contains a number of constituent system

models and a network domain, that connects these constituent systems with each other,

using building blocks from the standard library and user-defined components. At this level,

statistics about the network are collected, the simulation is executed and results are viewed.

The second level is the constituent system that is implemented using the time-triggered nodes

(i.e. end-systems and switches). The node models are at the third level in the hierarchy

and have a modular structure. The node is defined by connecting various modules with

packet streams. The connections between modules allow packets and status information to

be exchanged between modules. The modules in the nodes are implemented by using process

models, the lowest level in the hierarchy. Process models are represented by finite state

machines, and a process interface that defines the parameters for interfacing other process

models and configuration attributes. Finite state machine models are described as embedded

C or C++ code blocks. The hierarchical structure of the models, coupled with support for C

and C++ code, allows for easy development of communication or networking models.

7.1.1 SoS models

7.1.1.1 TTEthernet Nodes

The main simulation building blocks are generic building blocks of the infrastructure elements

of a TTEthernet-system, which can be configured and extended to create an application-

specific simulation model:

• Generic model of a TTEthernet switch. TTEthernet switches are central building

blocks of a TTEthernet-based system. A generic simulation model of a TTEthernet

switch supporting time-triggered, rate-constraint, and best effort communication is

developed. In order to construct the overall simulation model, the user can perform

multiple instantiations of the generic switch, establish connections to end-systems

7.1 SoS Simulation Framework 88

Switch Configuration File

Traffic VL-ID Period Phase/ Sender Receiver Size

Type Port Port

End-systems Configuration File

Node ID VL-ID Period Phase/ Size

Jitter

Table 7.1 OPNET Configuration Files

and other switches, and assign to each switch instantiation a corresponding configura-

tion. The switch configuration defines the message timing including a time-triggered

communication plan.

• Generic model of a TTEthernet end-system. TTEthernet end-system are the commu-

nication end points within the TTEthernet system. The user can perform instantiates

of the generic TTEthernet end-system and connect each instantiation to TTEthernet

switches. End-system can be configured to produce messages according to application-

specific parameters (e.g., interarrival time, distributions of rate constraint messages,

periods of time-triggered messages). In addition, nodes can be extended with the

application behavior (e.g., C++ application code).

7.1.1.2 Configuration Files

Table 7.1 illustrates the fields of a configuration file for each switch and for end-systems.

In a switch configuration, a traffic type, either time-triggered or rate-constrained, is needed

to determine the traffic policy of the message. Then, a virtual link ID and a period need

to be assigned for each message. After that, the phase time of time-triggered messages or

minimum inter-arrival time for rate-constrained messages is needed when the message arrives

to the switch. At this time, detailed information is required about the switch’s sending and

receiving port for this message. Finally, the size of each message needs to be specified.

On the other hand, the node configuration file represents the reserved resources for all

end-systems in the SoS. Each row represents a message transmission or reception for an

end-system. The first field is an end-system’s ID and then the virtual link ID of the message.

Then, the period of the message and the time by which a message is injected/received are

specified. The fifth parameter is the message size.

7.2 Tool Chain 89

7.1.1.3 Constituent System Manager

This unit is located in each constituent system and is responsible for assigning the config-

uration parameters to the end-systems and switches. These configuration parameters are

generated using an off-line scheduler as explained in section 6.5. These parameters include

node reserved resources for messages (i.e. time-triggered and rate-constraint) within the

constituent system or border messages that are exchanged between the constituent systems.

The configuration parameters contain schedules of several applications which emulate the

real time SoS applications. The communication schedules are extended whenever additional

scheduled messages are required. In order to achieve this, the incremental approach for

deterministic networks should not require global knowledge about the overall network topol-

ogy. The incremental scheduling is driven by the dependencies imposed by the DAG of an

application. An application subsystem can be scheduled after the relied upon subsystems

have been scheduled.

7.2 Tool Chain

The SoS simulation framework involves multiple tasks to be executed in series which can

be described as a tool chain. Figure 7.1 illustrates the processes and shows the results after

each stage of the chain. The first process is responsible for generating scenarios in terms of

SoS topology as well as applications to be simulated. This data is fed to a scheduler process

which performs incremental scheduling of each application based on the physical platform

and generates incremental schedules. The third step is executed by a post processor which

takes the generated schedules from the scheduler in addition to the physical and logical

models taken from the generator and produces node configuration files suitable for OPNET

simulation. The last process is the OPNET simulation execution and results generation.

These processes are described in details in the following.

7.2.1 Post-Processing

The previously described scheduler generates schedules for all applications based on the

physical SoS topology. These schedules include allocating jobs to end-systems, scheduling

local and global messages to paths, and providing timely schedules for time triggered

messages. However, the generated schedules do not include port assignments for the switches

in the constituent systems as well as in the interaction domains. Moreover, the OPNET

simulation works on configuration files which are used to setup the resources for each node.

Thus, the schedules generated by the scheduler need to be processed first before the OPNET

7.2 Tool Chain 90

Generator IBM CPLEX
Scheduler

Post-Processor

Physical Platform
Logical graph
(Applications)

Generated Schedules

OPNET
Simulation

CSV Nodes Configuration

Output Results

Fig. 7.1 Simulation Chain

simulation starts. The data produced in this stage consist of a trace of the different schedules

which are used as an input for the simulation.

7.2.2 OPNET Simulation

The last phase in the tool chain is the OPNET simulation execution process and results

generation. First of all, the physical network topology including node connectivity and port

assignments need to be specified using the physical platform produced by the network gener-

ator. Then, these nodes (end-systems and switches) are configured with the configuration

files generated by the post processor described above. After execution finishes, the OPNET

simulation checks the correctness of the generated schedules by keeping track of packet

collisions and drops during the whole period of the scenario execution and produces the

results regarding the worst-case latency for time-triggered and rate-constrained messages.

7.3 Coordination Protocol of Time-Triggered Scheduling in SoS 91

7.3 Coordination Protocol of Time-Triggered Scheduling
in SoS

The previous section demonstrates the required steps to update the configuration files of the

SoS nodes using a tool chain. However, the schedules for the interested applications must be

manually generated and then deployed to the related nodes before the simulation starts.

An SoS application can be scheduled where the CSMs in the constituent systems com-

municate with each other while generating their distributed schedules and then deploying the

resulting schedule. This section presents the rules and mechanisms that are used between the

constituent systems of the SoS. It defines a list of steps required whenever a new application

is introduced. Moreover, it includes the control and the operational interfaces between the

building blocks (end-systems, switches, and CSMs).

7.3.1 Message-based Interfaces between Building Blocks

Figure 7.2 illustrates the integration of the scheduler layer inside the block diagram of a

TTEthernet end-system [AO13]. Besides the generic source that generates all traffic types

(i.e., time-triggered, rate-constrained and best-effort), a scheduler is added to accept new

application requests, communicate with other CSMs to generate the incremental schedules,

and configures the nodes inside its constituent system with the generated schedule. The

configuration messages sent and received by the scheduler layer are of best-effort type.

The job of the scheduler layer is summarized in Algorithm 2. The interested node sends

a new application request to the broker of the CS, which forwards the request to the CSM

with complete information about the high-level allocation of this application. After that,

the root CSM sends this information to all CSMs related to the participating application

subsystems which are allocated to constituent systems and waits for their acknowledgement

messages. Moreover, the root CSM starts generating low-level allocation and scheduling

of the jobs and messages within its application subsystem. After these CSMs received

the application dependency information and send back the acknowledgement to the root

CSM, the latter starts sending the global messages to those CSMs. A CSM will perform

low-level allocation and scheduling of its jobs and messages if and only if the times of all

dependent global messages have arrived. When all CSMs received acknowledgments about

the completion of schedule generations from all participating CSMs, they will configure the

interested end-systems and switches within the constituent system.

7.3 Coordination Protocol of Time-Triggered Scheduling in SoS 92

Generic SourceScheduler

Fork Layer

TTE Controller

BE
Queue

RC
Shaper

TT
Clock

MAC Interface

MAC Layer

Physical Layer

Sink

Fig. 7.2 Block diagram of CSM in TTEthernet End system

7.3.2 Sequence of Activities to Introduce a new Application

The interactions between the constituent system managers in the SoS, as well as, interactions

between the requested application in a constituent system with its constituent system manager

are classified into four main operations. The first operation consists of finding the high-

level application subsystems of the application requests. The next operation is to perform

a mapping of the high-level application subsystems to high-level physical models. This is

followed by the scheduling of the low-level logical model in each mapped constituent system.

Finally, the generated schedules are deployed in the selected physical models that necessitate

the configuration of the end-systems in each constituent system by its constituent system

manager CSM. The aforementioned operations can be explained in details using nine phases

as depicted in figure 7.3.

Phase 0: A user, connected to an end-system, logs into the system and requests a service

from the SoS. For example, in tele-health monitoring and patient service where a number of

sensors are used to keep track of the status of a patient and send emergency requests in case

of abnormal readings. The request is delivered to the operating system of the end-system.

Phase 1: An application in an end-system sends a request for a particular service to its

CSM. It is assumed that any request made by an application includes information about the

7.3 Coordination Protocol of Time-Triggered Scheduling in SoS 93

switch Type do
case Request to Root CSM

Add new APP

Send APP Dependency to all participating CSMs

// perform low-level allocation and scheduling to AS allocated to the root CS
incremental update of ALLOCjob,c for jobs in AS
incremental update of SCHEDm,c for msgs. in AS
break

case Exchange of APP Dependency
Send APP Dependency ACK to Root CS

break

case APP Dependency ACK
Send Times of Dependent Msgs. to requester CSM

break

case Exchange Global Messages
if ALL Dependent Msgs Received then

// perform low-level allocation and scheduling to AS allocated to this CS
incremental update of ALLOCjob,c for jobs in AS
incremental update of SCHEDm,c for msgs. in AS

end
break

case Schedule Generated ACK
if ALL other Schedules of ASs Generated then

Configure the PEs and SWs inside CS
end
break

otherwise
Do Nothing

end
endsw

Algorithm 2: Interaction of the Scheduler layer to configuration messages

specific application subsystems, i.e., high-level logical models, which serve the intended

request.

Phase 2: In this phase the CSM then consults the broker in the constituent system in order

to procure the suitable constituent systems, i.e., high-level physical models, and perform a

high-level allocation for the specific application subsystems defined in the request.

Phase 3: The CSM performs preliminary calculations to obtain the predecessor- and

successor constituent systems for each of the involved constituent systems, i.e., high-level

application dependencies.

7.3 Coordination Protocol of Time-Triggered Scheduling in SoS 94

Phase 4: In phase 4 the root CSM sends messages to all CSMs of the involved constituent

systems about the high-level-application dependencies. Thus, every CSM is aware when to

start its low-level scheduling.

Phase 5: The CSM performs a low-level scheduling algorithm. This includes the

allocation of local jobs to end-systems as well as computing the optimal paths for all local

and global messages of the first application subsystem.

Phase 6: When all CSMs receive a high-level-application dependency information

message, they send back to the root CSM an acknowledgement message. This message

confirms that all CSMs of successor constituent systems are ready to receive messages about

finish time of high-level dependent messages.

Phase 7: In phase 6 the finish times of the global messages are sent to the CSMs of

successor constituent systems. This information is used as an input, in addition to its low-level

logical model, for the received CSMs in order to start their low-level scheduling algorithm.

Phase 8: When the CSMs of the successor constituent systems receive the predecessor

message, they start computing their low-level schedule.

Phase 9: After the CSMs of the successor constituent systems generate the schedule,

they hand in the results of their global messages to their successors’ constituent system.

Phase 10: When the CSMs of the last successors receive the predecessor message, they

compute their low-level schedule.

Phase 11: When the CSMs of the last successor constituent systems have finished with

the generation of their low-level schedules, they send their global messages to the first CSM.

This message indicates the end of the incremental scheduling for all involved constituent

systems of the request.

Phase 12: The last phase is concerned with the deployment procedure of the request

with the actual reconfiguration of the interested constituent systems based on the generated

schedules.

Figure 7.4 illustrates the timing diagram of the application request management messages

that are sent to schedule the application subsystems and to reconfigure the related constituent

systems’ nodes, namely end-systems and switches. The deployment of a new application

schedule to the interested nodes is executed in the next global period in order to ensure its

correct execution and to avoid negative interference with the running applications.

7.3 Coordination Protocol of Time-Triggered Scheduling in SoS 95

Co
ns

tit
ue

nt
 S

ys
te

m

N
et

w
or

k
Do

m
ai

n
Co

ns
tit

ue
nt

 S
ys

te
m

N

et
w

or
k

Do
m

ai
n

Ro
ut

er

ES

ES

CS
M

Ro
ut

er

ES

ES

Ro
ut

er

ES

ES

CS
M

Ro

ut
er

ES

ES

Ro
ut

er

Ro
ut

er

Ro
ut

er

N
M

S Ro
ut

er

Ro
ut

er

Ro
ut

er

Ro
ut

er
 N

M
S

Ro
ut

er

Co
ns

tit
ue

nt
 S

ys
te

m

Ro
ut

er

ES

ES

CS
M

Ro

ut
er

ES

ES

Co
ns

tit
ue

nt
 S

ys
te

m

Ro
ut

er

ES

ES

CS
M

Ro

ut
er

ES

ES

B
ro

ke
r

B
ro

ke
r

0

1

2

3

B
ro

ke
r

4

4
4

5
6

6
6

12

128

8
10

9

7

7

B
ro

ke
r

12

12

7
9

11

F
ig

.
7

.3
D

if
fe

re
n

t
p

h
as

es
o

f
re

q
u

es
ts

m
an

ag
em

en
ts

in
S

o
S

7.3 Coordination Protocol of Time-Triggered Scheduling in SoS 96

CS 1

CS N

CS 2

1

 Network Domains Communication

 CS Network Communication

 CS Network Communication

 CSM Task

 CSM Task

 CSM Task

 CS Network Communication

4

5

8

9

10

11

12

t

32

7

12

12

12

12

12

6

Fig. 7.4 Message sequence diagram

Figure 7.5 depicts the description of the messages transferred when a request is made by

an end-system.

The Service Request message is an Ethernet message initiated by the requester end-system.

It consists of the ID of the request and the high-level logical models that will serve the

intended request. The logical models contains a vector of the required application subsystems

and the adjacency matrix for the dependencies between the application subsystems.

The Exchange of Dependencies message is an Ethernet message that is sent by the base

CSM to the CSMs of the selected constituent systems. It consists of the ID of the request and

a unique application number which is a combination of the ID of the requester end-system

and a sequence number generated by the CSM. Moreover, it contains the logical models and

the selected constituent systems that will allocate the application subsystems.

The Exchange of FinishTime message is an Ethernet message that is sent by the CSMs

of the predecessor constituent systems. In addition to the request ID and the application ID,

this message consists of the sender constituent system’s ID and the finish time of the global

messages that are sent by this constituent system.

However, there are a number of assumptions to be considered in the proposed model.

7.4 Experimental Evaluation 97

Service Request (TT)

Application Subsystems IDs [1,...]

Adjacency Matrix [1,...][1,...]

Exchange of Dependencies (TT)

Initiator CS ID [1]

Application ID [1]

Application Subsystems IDs [1,...]

Chosen CSs [1,...]

Adjacency Matrix [1,...][1,...]

Exchange of FinishTime (TT)

Initiator CS ID [1]

Application ID [1]

Sender CS ID [1]

Global Message IDs [1,...]

Finish time of Global Messages [1,...]

Fig. 7.5 Description of CSM messages

• Each Constituent System has a unique ID called CS-id. This ID is used for mapping

the high-level application subsystems to constituent systems.

• All CSMs have clear information on the required maximum computation time of each

job (WCET) where this value is constant.

• All CSMs have clear information on link maximum transmission time of a message

(Duri) and it is a constant.

• The broker is implemented inside the CSM. Every CSM has a database with logical

models that are used to serve requests. Depending on the type of a request the CSM

looks-up a suitable logical model which is used as an input for local scheduling.

7.4 Experimental Evaluation

This section discusses the experimental evaluation of the implemented simulation using

input scenarios. These scenarios are generated using the tool chain described in the previous

section. Each scenario consists of a number of applications and each application consists of a

number of time-triggered and rate-constrained messages that are scheduled to the constituent

systems of the physical platform of the SoS. The SoS physical topology consists of 15
switches and 60 end-systems in the constituent systems in addition to 4 networked switches

in the network domain as depicted in figure 7.6.

7.4 Experimental Evaluation 98

Fig. 7.6 Example of SoS with 4 CSs

No. of cases WC latency of TT Msgs WC latency of RC Msgs

5 0.017 ms 0.041 ms

Table 7.2 Use case result in OPNET simulation environment

The time-triggered messages are executed periodically and the rate-constrained messages

are executed sporadically. The SNAP library is responsible for building the dependencies

between these local as well as border messages. The schedules which are generated using

CPLEX are the optimal solutions for the MILP problem explained in section 6.5. A total of

5 different logical models are generated and their schedules have been collected. Table 7.2

shows the results of the simulation environment. It summarizes the results of the 5 logical

scenarios with the observed worst-case (WC) latencies for both time-triggered as well as

rate-constrained messages.

To test the effect of faulty nodes on the schedule, consider an emergency room system in a

hospital as shown in figure 7.7. The system provides medical diagnosis and treatment in case

of emergency situations. A number of medical diagnosis sensors, such as Electrocardiography

(ECG) (which is a time-triggered traffic) and blood pressure and motion detection (which are

7.4 Experimental Evaluation 99

rate-constrained traffic) are placed in each patient’s room. These sensors record the physical

parameters of the patient and send them to a data acquisition system for data collection.

These statistics are digitally tested by a pre-analyzer to check for abnormal conditions and

then critical cases are sent to the central health administrator as well as to the central medical

server [BDM14]. The administration section of the hospital gathers the patient’s statistics

along with the file of the patient and directs them to a general physician. Finally, a required

medical expert is chosen to check the patient.

Administation

Physician

Administation

Physician

ECG

Blood
Pressure

Motion
Sensor Pre-

Analyzer

Camera

Patient Room

Fig. 7.7 Medical Scenario Use Case

Figure 7.8 illustrates the physical as well as the logical models for the medical scenario.

Table 7.3 lists the traffic generated by the running jobs in which they are statically allocated to

nodes. The ECG sampling traffic is transmitted as time-triggered messages with a rate of 200

samples per second [NHRRT+17]. The allocated end-system to the ECG job reads an input

file that contains temporal heartbeat information and transmits them to the pre-analyzer. The

blood pressure job is transmitted as rate-constrained messages in 5msec intervals. Camera

service transmits compressed video frames with a rate of 512Kb per second in which a

packet of size 512 bits is transmitted every 1msec.

The evaluation scenario consists of two parts, a scenario where the ECG sensor data

are sent as a time-triggered traffic in a fault-free network and then with the introduction

of a Bubbling Idiot (BI) failure as the video camera becomes faulty and starts flooding the

network with messages. The behavior of the time-triggered messages of the ECG output is

not affected by the camera failure. The simulated behavior of the ECG outputs is shown in

figure 7.9.

The second scenario where the ECG sensor data are sent as a time-triggered traffic in

a fault-free network and then with the introduction of a BI failure. The behavior of the

rate-constraints messages in the ECG output is affected by the camera failure in which the

shape of ECG output is affected as depicted in figure 7.10.

7.4 Experimental Evaluation 100

es 5

es 6

SW 2

SW 3

es 8

SW 0

SW 10SW 1 es 4

es 4
es 7

Patient Room

(a) Physical Model

Camera

Per-analyzer

Health
Center

Time-triggered Traffic

Blood
Pressure

Per-analyzer

Health
Center

Rate-Constrained Traffic

(b) TT and RC Logical Model

Fig. 7.8 Model example for medical scenario

Job Name Assgned end-system Period/BAG Traffic Type

ECG 4 5 ms TT

Blood pressure 5 5 s RC

Pre-analyzer (ECG) 8 5 ms TT

Pre-analyzer (other) 8 10 s RC

Camera 7 1 ms BE

Table 7.3 Characteristics and assignment of jobs to End-systems

The simulation framework for safety critical applications in an SoS is an excellent

tool to evaluate and validate schedule results of SoS applications. The simulation chain

creates physical platform and logical application models for an SoS that are scheduled using

incremental, distributed, and concurrent scheduler. The provided schedule is fed into the

proposed SoS real-time Ethernet simulation framework after pre-processing of the scheduled

applications (i.e., temporal switch port assignments, virtual link generations, and end-system

injection time schedules) to generate the OPNET configuration files for both end-systems

and switches.

The SoS simulation framework provides feedback on the temporal behavior of the SoS

nodes, namely TTEthernet end-systems and switches. It keeps track of packet collisions and

drops during the simulation run-time, records end-to-end latency for time-triggered as well

as rate-constrained messages, and analyze the received messages in the application level.

7.4 Experimental Evaluation 101

Fig. 7.9 Effect of BI for TT

Fig. 7.10 Effect of BI for RC

Chapter 8

Conclusion

The field of embedded systems based on multi-core processors is facing new challenges

due to applications with mixed-criticality. Moreover, the increasing importance of Systems-

of-Systems (SoSs) with real-time requirements demands techniques for scheduled end-to-

end communication with resource reservations and temporal guarantees. This dissertation

introduced a scheduling model for mixed-criticality systems based on multi-core processors

that supports different traffic types and fault tolerance. The scheduling model was designed

first to work at the level of local networks and then was extended to support Systems-of-

Systems (SoSs). The formulation of these models was based on Mixed Integer Linear

Programming (MILP) and their example scenarios are solved optimally using the IBM

CPLEX optimizer.

At the level of a single network of multi-core processors the scheduling model was

designed to support both event-triggered and time-triggered multi-hop communication with

precedence constraints. The combination of these two timing models is significant in many

applications, where regular subsystems (e.g., control functions, alarm monitoring) coexist

with sporadic subsystems (e.g., user interfaces, event-driven activities). The selected message

paths avoid collisions between time-triggered messages and consider the utilization of

switches for event-triggered messages. The proposed model minimizes the latencies and

provides an optimal allocation and schedule of the computational jobs and communication

activities.

A spatial redundancy technique was integrated in the proposed model to guarantee the

timely delivery of time-triggered messages in the presence of communication link faults. The

implemented model maximizes the reliability of time-triggered messages using redundant

paths. The proposed model generates redundant schedules for time-triggered messages while

taking into account message dependencies, collision-avoidance and real-time constraints of

message transmissions.

103

The scheduling of SoS requires that the end-to-end communication channels need to span

constituent systems with operational and managerial independence, while also supporting

an evolutionary development and the dynamic introduction of new applications. The pro-

posed scheduling model solves this challenge by performing an incremental, distributed and

concurrent scheduling of applications. Each constituent system and each network domain

is equipped with management services for incrementally computing local schedules for the

respective application subsystems. The resulting timing information of relied upon messages

is exchanged between constituent systems to satisfy the temporal dependencies between

application subsystems. The distributed scheduling reduces the overall computation time by

splitting the scheduling problem of the whole SoS network into a number of sub-networks

(constituent systems) and at the same time solves the problem of independent management

and lack of centralized global knowledge about the internals of constituent systems. The

evaluation demonstrates the achievable real-time guarantees and the computation time for

scheduling based on example scenarios.

The thesis also introduced an SoS simulation and verification environment which supports

real-time requirements. The simulation environment performs automatic generation of ran-

dom application scenarios consisting of time-triggered and rate-constrained messages which

are solved used the previously proposed SoS scheduling model. The generated schedules are

then fed into the simulation. The simulation environment verifies the correctness of the gen-

erated schedules and evaluates the worst-case message latencies. Moreover, the importance

of time-triggered messages for critical applications is verified by introducing a babbling Idiot

(BI) failure where the behavior of the service when scheduled as a time-triggered message is

not affected compared to a rate-constraint message. Moreover, generic simulation building

blocks for SoS were implemented and integrated with the scheduling model to allow the

generation and verification of example scenarios at run-time.

References

[ABD+13] Andreas Abel, Florian Benz, Johannes Doerfert, Barbara Dörr, Sebastian
Hahn, Florian Haupenthal, Michael Jacobs, AmirH Moin, Jan Reineke, Bern-
hard Schommer, and Reinhard Wilhelm. Impact of resource sharing on
performance and performance prediction: A survey. In P.R. D’Argenio and
H. Melgratti, editors, CONCUR 2013 – Concurrency Theory, volume 8052 of
Lecture Notes in Computer Science, pages 25–43. Springer Berlin Heidelberg,
2013.

[ACP04] Giuseppe Ascia, Vincenzo Catania, and Maurizio Palesi. Multi-objective
mapping for mesh-based noc architectures. In Proceedings of the 2nd
IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, pages 182–187. ACM, 2004.

[AGK12] Ismail Assayad, Alain Girault, and Hamoudi Kalla. Scheduling of real-
time embedded systems under reliability and power constraints. In Complex
Systems (ICCS), 2012 International Conference on, pages 1–6. IEEE, 2012.

[AGRN16] Guy Avni, Shibashis Guha, and Guillermo Rodriguez-Navas. Synthesizing
time-triggered schedules for switched networks with faulty links. In Em-
bedded Software (EMSOFT), 2016 International Conference on, pages 1–10.
IEEE, 2016.

[AHU] Alfred V Aho, John E Hopcroft, and Jeffrey D Ullman. Data structures and
algorithms, 1983.

[ALR+01] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental
concepts of dependability. University of Newcastle upon Tyne, Computing
Science, 2001.

[ALRL04] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE transactions
on dependable and secure computing, 1(1):11–33, 2004.

[AO13] M. Abuteir and R. Obermaisser. Simulation environment for time-triggered
ethernet. In Industrial Informatics (INDIN), 2013 11th IEEE International
Conference on, pages 642–648, July 2013.

[AS05] Alper Atamtürk and Martin WP Savelsbergh. Integer-programming software
systems. Annals of operations research, 140(1):67–124, 2005.

[AS611] SAE AS6802. Time-triggered ethernet. SAE International, 2011.

References 105

[Avi76] Algirdas Avizienis. Fault-tolerant systems. IEEE Trans. Computers,
25(12):1304–1312, 1976.

[BAB96] Doug Burger, Todd M Austin, and Steve Bennett. Evaluating future micro-
processors: The simplescalar tool set. University of Wisconsin-Madison,
Computer Sciences Department, 1996.

[Baz92] M Bazarra. Linear programming and network flows, 1992.

[BC11] S. Borkar and A.A. Chien. The future of microprocessors. Communications
of the ACM, 54(5):67–77, 2011.

[BCDV91] Ricky W Butler, James L Caldwell, and Ben L Di Vito. Design strategy for
a formally verified reliable computing platform. In Computer Assurance,
1991. COMPASS’91, Systems Integrity, Software Safety and Process Security.
Proceedings of the Sixth Annual Conference on, pages 125–133. IEEE, 1991.

[BDM14] S. S. Bhunia, S. K. Dhar, and N. Mukherjee. ihealth: A fuzzy approach for
provisioning intelligent health-care system in smart city. In Wireless and
Mobile Computing, Networking and Communications (WiMob), 2014 IEEE
10th International Conference on, pages 187–193, Oct 2014.

[BK00] Günther Bauer and Hermann Kopetz. Transparent redundancy in the time-
triggered architecture. In Dependable Systems and Networks, 2000. DSN
2000. Proceedings International Conference on, pages 5–13. IEEE, 2000.

[Bow00] Jonathan Bowen. The ethics of safety-critical systems. Commun. ACM,
43(4):91–97, April 2000.

[BS06] John Boardman and Brian Sauser. System of systems-the meaning of of. In
System of Systems Engineering, 2006 IEEE/SMC International Conference
on, pages 6–pp. IEEE, 2006.

[BS09] W Clifton Baldwin and Brian Sauser. Modeling the characteristics of system
of systems. In System of Systems Engineering, 2009. SoSE 2009. IEEE
International Conference on, pages 1–6. IEEE, 2009.

[BTM00] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations, volume 28. ACM,
2000.

[But11] Giorgio C Buttazzo. Hard real-time computing systems: predictable schedul-
ing algorithms and applications, volume 24. Springer Science & Business
Media, 2011.

[CASTCA16] Position Paper Certification Authorities Software Team CAST-32A, FAA.
Multi-core Processors, May 2016.

[CDK05] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems:
concepts and design. pearson education, 2005.

References 106

[CLM+04] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra. Spi-
dergon: a novel on-chip communication network. In System-on-Chip, 2004.
Proceedings. 2004 International Symposium on, page 15, 2004.

[CO14] Silviu S Craciunas and Ramon Serna Oliver. Smt-based task-and network-
level static schedule generation for time-triggered networked systems. In
Proceedings of the 22nd International Conference on Real-Time Networks
and Systems, page 45. ACM, 2014.

[Dav13] R. Davis. Static Probabilistic Timing Analysis for Multicore Processors with
Shared Cache, pages 3–5. 2013.

[DT03] William James Dally and Brian Patrick Towles. Principles and practices of
interconnection networks. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

[Dub13] Elena Dubrova. Fault-tolerant design. Springer, 2013.

[DYN03a] Jose Duato, Sudhakar Yalamanchili, and Lionel M Ni. Interconnection
networks: an engineering approach. Elsevier, 2003.

[DYN03b] José Duato, Sudhakar Yalamanchili, and Lionel M. Ni. Interconnection
networks: An engineering approach. Morgan Kaufmann, San Francisco, CA,
rev. print edition, 2003.

[Edi12] Editted by: Roman Obermaisser. Time-Triggered Communication. Embedded
Systems. CRC Press, USA, 2012.

[Far06] Emilia Farcas. Scheduling multi-mode real-time distributed components. PhD
thesis, PhD thesis, Department of Computer Sciences, University of Salzburg,
2006.

[FIW15] FIWARE. IoT Discovery – User and Programmers Guide, 2015.

[GAC+13] Kees Goossens, Arnaldo Azevedo, Karthik Chandrasekar, Manil Dev
Gomony, Sven Goossens, Martijn Koedam, Yonghui Li, Davit Mirzoyan,
Anca Molnos, Ashkan Beyranvand Nejad, Andrew Nelson, and Shubhendu
Sinha. Virtual execution platforms for mixed-time-criticality systems: The
compsoc architecture and design flow. SIGBED Rev., 10(3):23–34, October
2013.

[Gas88] Morrie Gasser. Building a Secure Computer System. Van Nostrand Reinhold
Co., New York, NY, USA, 1988.

[GDR05] K. Goossens, J. Dielissen, and A. Radulescu. Aethereal network on chip:
concepts, architectures, and implementations. Design & Test of Computers,
IEEE, 22(5):414–421, 2005.

[GGLR98] Alex Gantman, Pei-Ning Guo, James Lewis, and Fakhruddin Rashid. Schedul-
ing real-time tasks in distributed systems: A survey. 1998.

References 107

[GGS11] S Jimmy Gandhi, Alex Gorod, and Brian Sauser. A systemic approach
to managing risks of sos. In Systems Conference (SysCon), 2011 IEEE
International, pages 412–416. IEEE, 2011.

[GLH+11] Qiang Guo, Xuhong Li, Lipo Huang, Jianjun Gao, and Xia Xiao. Research
on reliability optimization of weapon system based on heuristic arithmetic.
In 2011 International Conference on System science, Engineering design and
Manufacturing informatization, volume 2, pages 24–26, Oct 2011.

[GV02] Tony Givargis and Frank Vahid. Platune: a tuning framework for system-on-a-
chip platforms. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 21(11):1317–1327, 2002.

[HS97] Chao-Ju Hou and Kang G. Shin. Allocation of periodic task modules with
precedence and deadline constraints in distributed real-time systems. IEEE
transactions on computers, 46(12):1338–1356, 1997.

[IEE15a] IEEE. IEEE 802.1Qbv – Enhancements for Scheduled Traffic, Draft 2.4,
2015.

[IEE15b] IEEE. Ieee 802.1qbv. enhancements for scheduled traffic. Draft 3.1, 2015.

[ISO15] Iso/iec/ieee international standard - systems and software engineering – sys-
tem life cycle processes. ISO/IEC/IEEE 15288 First edition 2015-05-15,
pages 1–118, May 2015.

[Jam08] Mo Jamshidi. Systems of systems engineering: principles and applications.
CRC press, 2008.

[Jam09] M. Jamshidi. Systems of Systems Engineering – Principles and Applications.
CRC Press, 2009.

[Jaz14] N. Jazdi. Cyber physical systems in the context of industry 4.0. In Automation,
Quality and Testing, Robotics, 2014 IEEE International Conference on, pages
1–4, May 2014.

[Kam11] Raj Kamal. Embedded systems: architecture, programming and design. Tata
McGraw-Hill Education, 2011.

[Kav92] Krishna M Kavi. Real-Time Systems, Abstractions, Languages, Design
Methodologies, and Tools. IEEE Computer Society Press, 1992.

[Kop11] Hermann Kopetz. Real-time systems: design principles for distributed em-
bedded applications. Springer Science & Business Media, 2011.

[KQA+14] L. Kosmidis, E. Quinones, J. Abella, T. Vardanega, I. Broster, and F.J. Ca-
zorla. Measurement-based probabilistic timing analysis and its impact on
processor architecture. In Digital System Design (DSD), 2014 17th Euromicro
Conference on, pages 401–410, Aug 2014.

[Les] J. Leskovec. Stanford Network Analysis Package(SNAP). http://snap.
stanford.edu/. [Online; accessed 26-February-2015].

References 108

[LG11] Ricardo M Lima and Ignacio E Grossmann. Computational advances in
solving mixed integer linear programming problems. 2011.

[LH94] Jaynarayan H Lala and Richard E Harper. Architectural principles for safety-
critical real-time applications. Proceedings of the IEEE, 82(1):25–40, 1994.

[LH98] Yanbing Li and Jörg Henkel. A framework for estimation and minimizing
energy dissipation of embedded hw/sw systems. In Proceedings of the 35th
annual Design Automation Conference, pages 188–193. ACM, 1998.

[LS16] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and
graph-mining library. ACM Trans. Intell. Syst. Technol., 8(1):1:1–1:20, July
2016.

[M. 09] M. Coppola, M. D. Grammatikakis, R. Locatelli, G. Maruccia, L. Pieralisi.
Design of Cost-efficient Interconnect Processing Units: Spidergon STNoC.
CRC Press, USA, 2009.

[Mai98] M.W. Maier. Architecting Principles for Systems-of-Systems – Systems Engi-
neering. 1998.

[Mal09] Rajib Mall. Real-time systems: theory and practice. Pearson Education India,
2009.

[MAO17] A. Murshed, M. Abuteir, and R. Obermaisser. Validation framework for
time-triggered system-of-systems. In Promising Electronic Technologies
(ICPET), 2017 International Conference on, pages 103–108. IEEE, 2017.

[MB06] G. de Micheli and L. Benini. Networks on Chips: Technology and Tools.
Elsevier Science, 2006.

[MJ95] Joseph Mattai and Mathai Joseph. Real-Time Systems: specification, verifica-
tion, and analysis. Prentice Hall PTR, 1995.

[MO17] A. Murshed and R. Obermaisser. Scheduler for reliable distributed systems
with time-triggered networks. In 2017 IEEE 15th International Conference
on Industrial Informatics (INDIN), pages 425–430, July 2017.

[MOAK15] A. Murshed, R. Obermaisser, H. Ahmadian, and A. Khalifeh. Scheduling
and allocation of time-triggered and event-triggered services for multi-core
processors with networks-on-a-chip. In Industrial Informatics (INDIN), 2015
IEEE 13th International Conference on, pages 1424–1431. IEEE, 2015.

[MTCM12] D. Mora, M. Taisch, A.W. Colombo, and J.M. Mendes. Service-oriented
architecture approach for industrial system of systems: State-of-the-art for
energy management. In 10th IEEE International Conference on Industrial
Informatics (INDIN), pages 1246–1251, July 2012.

[MVPA13] Luis Marques, Verónica Vasconcelos, Paulo Pedreiras, and Luis Almeida.
Error recovery in time-triggered communication systems using servers. In In-
dustrial Embedded Systems (SIES), 2013 8th IEEE International Symposium
on, pages 205–212. IEEE, 2013.

References 109

[Nel90] Victor P. Nelson. Fault-tolerant computing: Fundamental concepts. Computer,
23(7):19–25, 1990.

[NHRRT+17] David Naranjo-Hernández, Laura M Roa, Javier Reina-Tosina, Gerardo
Barbarov-Rostan, and Omar Galdámez-Cruz. Smart device for the deter-
mination of heart rate variability in real time. Journal of Sensors, 2017,
2017.

[NP12] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architectures
in avionics. In Dependable Computing Conference (EDCC), 2012 Ninth
European, pages 132–143, May 2012.

[NSL09] N Navet and F Sommot-Lion. Automotive embedded systems handbook.
industrial information technological series, 2009.

[OKP10] R. Obermaisser, H. Kopetz, and C. Paukovits. A cross-domain multiprocessor
system-on-a-chip for embedded real-time systems. Industrial Informatics,
IEEE Transactions on, 6(4):548–567, Nov 2010.

[OM15] R. Obermaisser and A. Murshed. Incremental, distributed, and concurrent
scheduling in systems-of-systems with real-time requirements. In Computer
and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and
Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference
on, pages 1918–1927. IEEE, 2015.

[OP06] Roman Obermaisser and Philipp Peti. A fault hypothesis for integrated archi-
tectures. In Intelligent Solutions in Embedded Systems, 2006 International
Workshop on, pages 1–18. IEEE, 2006.

[OPN] OPNET Technologies. OPNET Modeler 17.1 Documentation.

[Pau08] Christian Peter Paukovits. The time-triggered system-on-chip architecture:
Vienna University of Technology, PhD thesis. 2008.

[PG02] Maurizio Palesi and Tony Givargis. Multi-objective design space exploration
using genetic algorithms. In Hardware/Software Codesign, 2002. CODES
2002. Proceedings of the Tenth International Symposium on, pages 67–72.
IEEE, 2002.

[PSZ] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. Multi-objective
design space exploration of embedded systems. Journal of Embedded Com-
puting, 1(3).

[Ram90] Krithi Ramamritham. Allocation and scheduling of complex periodic tasks.
In Distributed Computing Systems, 1990. Proceedings., 10th International
Conference on, pages 108–115. IEEE, 1990.

[SAE] SAE International. AS-6802 – Time-Triggered Ethernet.

[San15] Imad Sanduka. A modelling framework for systems-of-systems with real-time
and reliability requirements. PhD thesis, University of Siegen, 2015.

References 110

[SAS] SAS Institute Inc. SAS/OR® 13.2 User’s Guide: Mathematical Programming.

[SCC+12] D. Suparna, G. Cassar, B. Christophe, S.B. Fredj, M. Bauer, N. Santos,
T. Jacobs, R. de las Heras, G. Martin, G. Völksen, and A. Ziller. Internet of
things architecture. concepts and solutions for entity-based discovery of iot
resoures and managing their dynamic associations. Technical report, 2012.

[Shi09] KV Shibu. Introduction to Embedded Systems. Tata McGraw-Hill Education,
2009.

[Sho01] Martin L Shooman. Reliability of computer systems and networks: Fault
tolerance. Analysis, and Design, Wiley-Interscience, 2001.

[SJS07] Ferat Sahin, Mo Jamshidi, and Prasanna Sridhar. A discrete event xml based
simulation framework for system of systems architectures. In System of
Systems Engineering, 2007. SoSE’07. IEEE International Conference on,
pages 1–7. IEEE, 2007.

[SKBMO15] C. Schöler, R. Krenz-Bååth, A. Murshed, and R. Obermaisser. Optimal
sat-based scheduler for time-triggered networks-on-a-chip. In 10th IEEE
International Symposium on Industrial Embedded Systems (SIES), pages 1–6,
Jun 2015.

[SKBMO16] C. Schöler, R. Krenz-Bååth, A. Murshed, and R. Obermaisser. Computing
optimal communication schedules for time-triggered networks using an smt
solver. In 2016 11th IEEE Symposium on Industrial Embedded Systems
(SIES), pages 1–9, May 2016.

[SMG00] Ricardo Sanz, Fernando Matía, and Santos Galán. Fridges, elephants, and
the meaning of autonomy and intelligence. In Intelligent Control, 2000.
Proceedings of the 2000 IEEE International Symposium on, pages 217–222.
IEEE, 2000.

[Sta88] J. A. Stankovic. Misconceptions about real-time computing: a serious prob-
lem for next-generation systems. Computer, 21(10):10–19, Oct 1988.

[Tan95] Andrew S Tanenbaum. Distributed operating systems. Pearson Education
India, 1995.

[UBG+13] T. Ungerer, C. Bradatsch, M. Gerdes, F. Kluge, R. Jahr, J. Mische, J. Fer-
nandes, P.G. Zaykov, Z. Petrov, B. Boddeker, S. Kehr, H. Regler, A. Hugl,
C. Rochange, and Ozaktas. parmerasa - multi-core execution of parallelised
hard real-time applications supporting analysability. In DSD, pages 363–370.
IEEE, 2013.

[VKI+00] Narayanan Vijaykrishnan, Mahmut Kandemir, Mary Jane Irwin, Hyun Suk
Kim, and Wu Ye. Energy-driven integrated hardware-software optimizations
using simplepower. ACM SIGARCH Computer Architecture News, 28(2):95–
106, 2000.

References 111

[WCBM07] N. Wickramasinghe, S. Chalasani, R.V. Boppana, and A.M. Madni. Health-
care system of systems. In System of Systems Engineering, 2007. SoSE ’07.
IEEE International Conference on, pages 1–6, April 2007.

[WWP06] Marko Wolf, André Weimerskirch, and Christof Paar. Secure in-vehicle
communication. Embedded Security in Cars, pages 95–109, 2006.

[ZBC+14] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of
things for smart cities. Internet of Things Journal, IEEE, 1(1):22–32, Feb
2014.

[Zei90] Bernard P Zeigler. High autonomy systems: concepts and models. In AI,
Simulation and Planning in High Autonomy Systems, 1990., Proceedings.,
pages 2–7. IEEE, 1990.

[ZLT01] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving the
strength pareto evolutionary algorithm. 2001.

[Zur04] Richard Zurawski. The industrial information technology handbook. CRC
Press, 2004.

Acronym

BAG Bandwidth Allocation Gap

BI Bubbling Idiot

COTS commercial off-the-shelf

CSM Constituent System Manager

DAG Directed Acyclic Graph

ECG Electrocardiography

EFP Extra-functional Properties

FCR Fault Containment Region

LP Linear Programming

MILP Mixed-Integer Linear Programming

MOST Media Oriented System Transport

MPSoC Multi-Processor-System-on-a-Chip

NI Network Interface

NMS Network Management Systems

NoC Network-on-Chip

SMT Satisfiability Modulo Theories

SNAP Stanford Network Analysis Platform

SoC Socket-on-Chip

References 113

SoS System-of-Systems

TDMA Time-division Multiple Access

TSN Time Sensitive Networking

TTEthernet Time-Triggered Ethernet

TTNoC Time-Triggered Network-on-Chip

VL Virtual Link

WCCOM Worst-Case Communication Time

WCET Worst-Case Execution Time

List of Publication

1. A. Murshed, R. Obermaisser, H. Ahmadian, and A. Khalifeh. Scheduling and allocation

of time-triggered and event-triggered services for multi-core processors with networks-

on-a-chip. In Industrial Informatics (INDIN), 2015 IEEE 13th International Conference
on, pages 1424–1431. IEEE, 2015

2. R. Obermaisser and A. Murshed. Incremental, distributed, and concurrent scheduling

in systems-of-systems with real-time requirements. In Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and
Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM),
2015 IEEE International Conference on, pages 1918–1927. IEEE, 2015

3. A. Murshed, M. Abuteir, and R. Obermaisser. Validation framework for time-triggered

system-of-systems. In Promising Electronic Technologies (ICPET), 2017 International
Conference on, pages 103–108. IEEE, 2017

4. A. Murshed and R. Obermaisser. Scheduler for reliable distributed systems with

time-triggered networks. In 2017 IEEE 15th International Conference on Industrial
Informatics (INDIN), pages 425–430, July 2017

5. C. Schöler, R. Krenz-Bååth, A. Murshed, and R. Obermaisser. Optimal sat-based sched-

uler for time-triggered networks-on-a-chip. In 10th IEEE International Symposium on
Industrial Embedded Systems (SIES), pages 1–6, Jun 2015

6. C. Schöler, R. Krenz-Bååth, A. Murshed, and R. Obermaisser. Computing optimal

communication schedules for time-triggered networks using an smt solver. In 2016
11th IEEE Symposium on Industrial Embedded Systems (SIES), pages 1–9, May 2016

	Title page
	Acknowledgements
	Abstract
	Kurzfassung
	Table of contents
	List of figures
	List of tables
	Chapter 1 - Introduction
	1.1 Research Scope
	1.2 Thesis Contributions
	1.3 Thesis Structure

	Chapter 2 - Concepts and Terms
	2.1 Real-time Systems
	2.2 Distributed Real-time Systems
	2.3 Linear Programming
	2.4 Dependability
	2.5 Fault Hypothesis
	2.6 Systems-of-Systems

	Chapter 3 - Related Work
	3.1 Classification of Scheduling Algorithms
	3.2 Scheduling of Distributed Systems
	3.3 Research Gap in the State of the Art

	Chapter 4 - Scheduling and Allocation of Time-Triggered and Event-Triggered Services for Multi-Core Processors with Networks-on-a-Chip
	4.1 Network-on-Chip Architecture
	4.2 Scheduling Model
	4.3 Graph Generation
	4.4 Results

	Chapter 5 - Optimized and Reliable Scheduling Algorithm
	5.1 Improved Scheduling Model for Time-Triggered and Event-Triggered Messages
	5.2 Reliable Scheduling Model for Time-Triggered Messages

	Chapter 6 - Scheduling Model in Systems-of-Systems
	6.1 System-of-Systems Architecture
	6.2 Incremental, Distributed, and Concurrent Scheduling
	6.3 Problem Description
	6.4 Formal Description of Scheduling and Allocation in SoS
	6.5 Scheduling and Allocation Algorithm
	6.6 Scheduling Model of SoS
	6.7 Experimental Evaluation

	Chapter 7 - Validation Framework for Time-Triggered Systems-of-Systems
	7.1 SoS Simulation Framework
	7.2 Tool Chain
	7.3 Coordination Protocol of Time-Triggered Scheduling in SoS
	7.4 Experimental Evaluation

	Chapter 8 - Conclusion
	References
	Acronym
	List of Publication

