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Chapter 0

Introduction

0.1 Constructive Mathematics

Almost all proofs in traditional mathematics invoke the law of excluded middle (LEM) at some point.
Sometimes this use is as obvious as starting a proof of ϕ by “let us assume ϕ is false” followed by a
derivation of a contradiction, and sometimes this use is subtly hidden in details, as it is in the usual interval-
halving proof of the intermediate value theorem.1 One should remember though that any application of
LEM comes at a price. Sometimes the price to pay is that what is really going on is obfuscated. Sometimes
the price is as low as leading to inefficient programs, since a proof might use unbounded search. Often
enough, though, the price to pay is that a proof provides no algorithmic information at all. We believe that
in all these cases it is a price we should not pay.

It is one of the criminally underrated insights of 20th century mathematics that we can capture the
idea of constructiveness not by adding layers of notions onto traditional mathematics but simply by
removing layers—namely barring the use of LEM. Doing so one might expect to end up stuck in a barren
mathematical landscape devoid of any interesting results; or in the words of Hilbert:

Taking away this law of excluded middle from the mathematician is about the same as taking
away the telescope from the astronomer or forbid the boxer the use of his fists.2

It was Bishop who showed us that this concern is unfounded, and that mathematical life can thrive
in the absence of LEM. It can be, arguably, even a much richer existence than traditional mathematics,
extending our horizons to places previously hidden by LEM. Continuing in Hilbert’s own analogy: Bishop
discovered unknown galaxies without any astronomical equipment.

0.2 Constructive Reverse Mathematics

The focus of reverse mathematics—as opposed to normal, everyday mathematics—is not to find what
theorems we can prove from certain axioms, but to ask which axioms are also necessary to prove
certain theorems. As such the idea is neither new nor revolutionary. However, applying this approach
systematically to some fragment of mathematics is a fairly recent development. Maybe the best known
and most developed of these reverse approaches is “Simpson style” reverse mathematics [102] (initiated
by H. Friedmann [55]), whose goal is to examine which set existence axioms need to be added to classical
second order arithmetic to prove theorems in mathematics (where objects are coded by natural numbers).

1In each halving step one needs to decide whether at the midpoint c we have f (c)> 0 or not.
2In the original German: “Dieses Tertium non datur dem Mathematiker zu nehmen, wäre etwa, wie wenn man dem Astronomen

das Fernrohr oder dem Boxer den Gebrauch der Fäuste untersagen wollte.”

1



CHAPTER 0. INTRODUCTION 2

Approaching from a very different point of view, but resulting in a somewhat similar hierarchy, is the theory
of Weihrauch reducibility [21]. The question there is: “which theorems can be computably transformed
into others?”

The aim of Constructive Reverse Mathematics is, to borrow Ishihara’s description from [68],

"to classify [over intuitionistic logic] various theorems in intuitionistic, constructive recur-
sive and classical mathematics by logical principles, function existence axioms and their
combinations."

Interestingly enough, all three of these schools of reverse mathematics share common themes. For example,
in all of these approaches one can identify a hierarchical level corresponding to LPO and one to WKL,
which have a remarkable number of theorems being categorised into the same levels.

We will describe some of the foundational aspects of Constructive Reverse Mathematics in the next
section, but before doing so, we would like to approach the question of why one would be interested
in pursuing it. Naturally, most of these remarks also apply to other the kinds of reverse mathematics
mentioned above.

1. Probably the foremost aim of reverse mathematics is to gain insight into various theorems and
principles, and in particular see whether certain assumptions are really necessary. Mathematicians
generally try to be as economical with their assumptions as possible and dispense with unused ones.3

Reverse results show that a theorem is optimal in this sense.

2. Naturally, as with any other form of mathematics, the intrinsic challenge can be reason enough
for pursuing it. In our opinion, the proofs and techniques in CRM are more diverse and can be
more intricate than in standard Bishop style constructive mathematics. One reason for this is that,
since the latter is very minimal in its assumptions most proofs are somewhat “synthetic”—that is
information gets combined straightforwardly to get some result. The absence of LEM means there
are very few general, non-trivial disjunctions,4 which means that proofs tend to be of a very “linear
shape.” However, in CRM there are general, non-trivial disjunctions coming from the principles
themselves, thus breaking this linear pattern.

3. (Constructive) reverse mathematics allows one to explore the foundations of mathematics by
analysing what consequences which axioms have. More importantly it allows us to do so without
having to actually accept these principles.

4. As described in the next section, results in constructive reverse mathematics often involve a Brouw-
erian Counterexample. As such they provide details of why certain statements cannot be proved
constructively. Often, this gives us the exact information needed to “constructivise” a theorem. For
example if a theorem is shown to be equivalent to the uniform continuity theorem (see Section 3.5)
it is most likely to be true constructively if we assume that all functions involved are uniformly
continuous. Similarly if an existence statement is equivalent to weak König’s Lemma (see Section
1.4), experience has shown that the addition of the assumption that there is at most one solution
frequently leads to a fully constructive theorem [98]. Of course, these are only heuristics, but they
seem to provide a very natural and fruitful way of constructivising classical results.

3This is very reminiscent of the principle of Chekhov’s gun, as explained by the well-known playwright Anton Chekhov himself:
“Remove everything that has no relevance to the story. If you say in the first chapter that there is a rifle hanging on the wall, in the
second or third chapter it absolutely must go off. If it’s not going to be fired, it shouldn’t be hanging there.”

4See [46] for some notable exceptions.
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0.3 A very Short History of Constructive Reverse Mathematics

It is generally accepted that the following 1984 result by Julian and Richman is the first result in constructive
reverse mathematics [71, Theorem 2.4].5

Proposition. The fan theorem for decidable bars (FAN∆) is equivalent to the statement that every uniformly
continuous, positively valued function f : [0,1]→ R has a positive infimum.

Julian and Richman noticed that in Russian recursive mathematics ([75, 1], see also Section 7.1) one
could actually construct a positively valued, uniformly continuous function f : [0,1]→ R with inf f = 0
(that is a uniformly continuous function f : [0,1]→ R which, in particular, does not attain its minimum)
and they were wondering what principles exactly were responsible for assuring the existence or ruling out
the existence of such a strange object. After classifying this statement in a logical form it was easy to settle
this question.

Many principles we consider in CRM these days were used long before 1984. Historically, Brouwer
started the tradition of using sequences such as

αn =

{
0 an+2 +bn+2 = cn+2 has no integer solutions
1 an+2 +bn+2 = cn+2 has an integer solution,

or

βn =

{
0 2n is the sum of two primes
1 otherwise,

to show that if a theorem T constructively implies, for example,

∀n ∈ N : αn = 0 ∨ ∃n ∈ N : αn = 1 , (1)

then there cannot be a constructive proof of T , since otherwise we would have a constructive proof of 1.
Since, under the BHK interpretation [39, Chapter 5] of the logical connectives this implies that we have
either proved Fermat’s last theorem or found a counterexample, Brouwer rejected such theorems T .

Sequences like αn and βn might become obsolete for this purpose, since the underlying problem might
get solved; indeed, since Andrew Wiles’ 1995 proof we know that

∀n ∈ N : αn = 0 .

Most mathematicians believe that there will always be important, unsolved problems which we can use in
the place of Fermat’s last theorem, but that, in general, there is no algorithmic way, given an arbitrary
binary sequence γn, to decide whether

∀n ∈ N : γn = 0 ∨ ∃n ∈ N : γn = 1 .

It was Bishop who grandiosely named this principle the “limited principle of omniscience” (LPO).
And indeed, one can see that from the 1970s on Brouwerian “unstable” examples of the kind

T =⇒ (∀n ∈ N : αn = 0 ∨ ∃n ∈ N : αn = 1) ,

were more and more replaced6 by “stable” ones of the form

T =⇒
(
∀γ ∈ 2N : (∀n ∈ N : γn = 0 ∨ ∃n ∈ N : γn = 1)

)
;

5A new, alternative, proof can be found in [12].
6There seems to be a certain tendency to stick with the sort of specific Brouwerian counterexamples in papers with a general

audience (for example the first half of [86]), since paradoxically a classical mathematician will be more suspicious of being able to
decide the Goldbach conjecture than of making the arbitrarily phrased decision in LPO.
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that is, by
T =⇒ P ,

where P is a general, constructively dubious statement such as LPO. Because of this, some authors have
cited Brouwerian counterexamples as the first instances of CRM. Strictly speaking, this is not CRM since
the forward direction of the classification is missing. Indeed, as Iris Loeb has argued in [77], Brouwer
would have seen no point in proving P =⇒ T , and that these results therefore can not be claimed as the
beginning of CRM. While agreeing that this is formally correct, we would like to point out that often the
implication P =⇒ T is very easy or even trivial and that most of the work and the interesting constructions
are happening in the proof of T =⇒ P. So a Brouwerian counterexample T =⇒ P is, with regards to
mathematical content, more than half of a full equivalence. We would also like to add that if the point
of an Brouwerian counterexample were only to show that some statement T implied an unacceptable
statement and is therefore unacceptable itself, then there would be no point in distinguishing between, say,
LPO and LLPO and simply work with the weakest one. The fact that researchers were using different
taboo-statements hints that they, at least implicitly, were thinking reversely.

The main group of results in Constructive Reverse Mathematics were proved from around 1988 on,
with the—in our personal opinion—deepest results and notions (such as BD-N) being due to Hajime
Ishihara. He has also authored the only overview of the area [68], which is slightly harder to get hold of,
but also contains more results than its predecessor [67].

Apart from Ishihara, and the author of this thesis himself, many people have contributed to the area,
and we hope to have cited most of their relevant articles. These people are, in alphabetical order, J. Berger,
D.S. Bridges, M. Hendtlass, I. Loeb, M. Mandelkern, J. Moschovakis, T. Nemoto, F. Richman, P. Schuster,
and W. Veldman.7

0.4 Foundational Aspects

In the tradition of Bishop-style constructive mathematics [19, 20, 37] we will be working informally, in
the same sense that most mathematicians work informally. That is not to say that we will be vague or
imprecise, but that we are happy to skip details for the sake of readability and clarity of ideas. However,
we are as sure as every other mathematician that all our results can be (almost mechanically) formalised in
an appropriate system.

In this vein we will abstain from choosing one of the many possible set-theoretic or type-theoretic
foundations such as [2], or [87], or one of the more restricted formal systems that could serve as the basis
for our endeavours such as W. Veldmann’s Basic Intuitionistic Mathematics (BIM) [110], or Heyting
arithmetic in all finite types and related systems [73].

We believe that it is not necessary to choose a formal system, but at the same time believe that anybody
preferring to work in one of these systems will be able to easily read our results and translate them into their
preferred style. A good analogy to justify this approach might be to compare it to the use of pseudo-code
over choosing a specific programming language.

Choosing a particular framework also seems to be against the spirit of constructive mathematics: As
constructivists, we are very happy to live with the fact that for a real number x we cannot decide whether
x ∈ [0,1] or x /∈ [0,1]. It seems just as dubious to be able, on the meta-level, to answer the question of
what, for example, a function N→ N is. Notice that this does not stop us from developing interesting
mathematics. Just as there are numbers which are definitely members of [0,1] and numbers which are
definitely not, there are things that we definitely believe are functions N→ N such as primitive recursive
functions, and things that we definitely cannot define a priori, such as a discontinuous function. Notice
that, however, we do not rule out the existence of the latter. We would like to call this approach humble

7We would like to point out explicitly that W. Veldman, in particular, has many (sometimes unpublished) results in constructive
reverse mathematics that have, unfortunately, not made it into this thesis.
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foundations. That is, we demand a maximal burden of proof for us when it comes to showing the existence
of an object outright, but make minimal assumptions on arbitrary objects.

Even though there is no reason not to take a humble approach with a formal system, we believe that
there is a danger of getting distracted, and, continuing the above example, switch from assuming that every
primitive recursive function N→ N exists to assuming also the reverse, namely that these are the only
functions.

Related to this, there is also a danger of getting distracted and studying properties of the chosen formal
system rather than doing mathematics. It is one of the enduring strengths of Bishop’s approach to skip
past foundational details and “do mathematics”. It also gave his results a robustness to survive changing
foundational fashions.

There is one aspect in this sometimes heated debate about how much formalism is appropriate, where
we have to concede that more precision is needed. Even though the full axiom of choice is a definite
constructive taboo, since it implies LEM [42, 57], traditionally the use of the axioms of countable and
dependent choice has been more or less tacitly accepted in Bishop style constructive mathematics. These
are the following principles.

ACC If S is a subset of N×B, and for each n ∈ N there exists b ∈ B such that (n,b) ∈ S, then there is a
function f : N→ B such that (n, f (n)) ∈ S for each n ∈ N.

ADC If a ∈ A and S⊂ A×A, and for each x in A there exists y in A such that (x,y) ∈ S, then there exists
a sequence of elements a1,a2, . . . of A such that a1 = a and (an,an+1) ∈ S for each n ∈ N.

We conjecture that the reason why the use of these choice principles is such a divisive topic might be
that there are two fundamentally different ways in which they get used in constructive mathematics:

• Often ACC or ADC is applied to get a representation of an object.

For example, given a real number x, we often need a binary sequence (an)n>1 such that

an = 0 =⇒ x <
1
2n ,

an = 1 =⇒ x >
1

2n+1 .

One might assume that real numbers are Cauchy sequences of rationals with a fixed modulus of
Cauchyness, or fast converging Cauchy sequences. Let us simply call these reals “represented” and
denote the set of them by Rr. For these represented reals we can easily find a binary sequence
(an)n>1 as above with minimal (primitive recursive) effort.

However, if one makes the minimal “humble” axiomatic assumption that the real numbers R are not
of a specific form but merely satisfy

∀x ∈ R, n ∈ N : ∃q ∈Q : |x−q|< 1
2n

then we cannot guarantee the existence a sequence (an)n>1 as above (see Section 7.2). Of course
this difference is minute, and under the assumption of ACC we have R= Rr.

Now, if we have a result that relies on the existence of sequences (an)n>1 as above we can use ACC
to show it. Formally

ACC ` ∀x ∈ R : . . . ;

But if ACC was only used to ensure that R= Rr, we could also restate our result as

` ∀x ∈ Rr : . . . .
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These kinds of use of ACC can therefore be seen as simply a matter of style and simplicity. Large
parts of traditional Bishop style constructive mathematics could be rendered choice-free by switching
to represented reals and making similar definitions and arguments for other objects such as point-wise
continuous functions and so on.

• However, there are also uses of ACC and ADC of a more structural kind. The proof that LLPO
implies WKL needs ACC not because we do not assume that we have a nice representations of
binary trees, but because we need to use LLPO countable many times.

To gain more insights into phenomena of the second kind, attempts have been made to simply move
choice principles into the list of principle studied [16]. And indeed, the original plan for this thesis was
to work choice-sensitive and distinguish, for example, between the sequential version of LPO and the
real version. However this quickly turned out to be too ambitious a project. The big picture (Section 6.5)
is already very complicated and the number of principles would multiply in the absence of choice. Any
attempt to do CRM without the use of ACC or ADC would need to find a way to present results in a
way that highlights the interesting issues of the second kind and somehow manages to not give too much
prominence to issues of the first kind.

0.5 Overview and Plan

Contrary to Simpson style reverse mathematics, in which most theorems fall into one of the “big five”
categories,8 there is a plethora of principles that have been considered in constructive reverse mathematics,
with a quick count totalling about 17 major ones. We believe that the presentation we will give is a sensible
way to group them. If we consider the big three varieties CLASS, INT, RUSS (see Section 7.1) there are
seven possible combinations of these varieties such that a principle is true in at least one of them and
possibly fails to hold in others. Five of these combinations form our first five chapters.

Chapter 1: Omniscience principles which are true clas-
sically, but not in INT or RUSS. CLASS

RUSS INT

Chapter 2: Markov’s principle and its weakenings
which are true in CLASS and RUSS. Actually, WMP
is true everywhere, but fits better into this chapter than
into the chapter about BD-N.

CLASS

RUSS INT

Chapter 3: The Fan theorems, which are true in CLASS
and INT. CLASS

RUSS INT

Chapter 4: BD-N which is true in all varieties.
CLASS

RUSS INT

8Although recent work has shown that there are more than the big five.
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Chapter 5: Recursive principles, which are only true
in RUSS, and might be the strangest of all principles
considered.

CLASS

RUSS INT

There are two combinations of varieties that are missing: Principles that are only true in INT and
principles that are only true in INT and RUSS. The reason is that even though there are principles that
fall into these two categories—namely continuous choice (see Section 6.3) in the first and the negation of
WLPO (see Section 8.7) in the second one—there are simply not enough equivalences known to warrant
their having a chapter by themselves.

After the five principle-chapters, we talk about

relationships between these principles in Chapter 6 and sketch

techniques to separate them in Chapter 7.

We finish with collecting some leftover but intellectually appetizing bits
in the last Chapter 8.



Chapter 1

Omniscience Principles

1.1 LEM and WLEM

The possibly strongest of all omniscient principles is the law of excluded middle1 itself.

(LEM) If ϕ is any syntactically correct statement, then

ϕ ∨¬ϕ .

Over intuitionistic logic LEM is equivalent2 to double negation elimination, also known as stability or
proof by contradiction, that is that for any syntactically correct statement ϕ

¬¬ϕ =⇒ ϕ . (1.1)

LEM’s slightly weaker sibling is the weak law of excluded middle.

(WLEM) If ϕ is any syntactically correct statement, then

¬ϕ ∨¬¬ϕ .

We will start with the well-known and simple observation that constructively the notion of a set S being
inhabited, that is ∃x : x ∈ S is stronger than being non-empty, that is ¬( /0 = S); in fact the equivalence of
both notions is equivalent to the law of excluded middle.

Proposition 1.1.1. LEM is equivalent to the following statement.
For all S⊂ {0}

¬(S = /0) =⇒ S 6= /0 .

Proof. LEM implies that either 0 ∈ S or 0 /∈ S. The second alternative is ruled out, since it implies S = /0.
Hence the first alternative holds and we are done.

1Often, such as in [107], it is called the principle of excluded middle—PEM. Of course it also well known under its Latin name
tertium non datur.

2To be a tiny bit pedantic, this is not an instance-wise equivalence. If ϕ ∨¬ϕ , then for this ϕ also ¬¬ϕ =⇒ ϕ . The converse

(¬¬ϕ =⇒ ϕ) =⇒ (ϕ ∨¬ϕ) ,

however, does not hold in intuitionistic logic. Nevertheless, for an arbitrary formula ϕ one can easily see that ¬¬(ϕ ∨¬ϕ) holds. So
if 1.1 holds for any formula, we can obtain ϕ ∨¬ϕ .

8
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Conversely let ϕ be any syntactically correct closed statement and consider the set

S = {x |x = 0∧ (ϕ ∨¬ϕ)} .

Then the assumption that S = /0 leads to a contradiction and thus, S 6= /0. So there exists x ∈ S such that
x = 0 and more importantly ϕ ∨¬ϕ .

The construction of the set S above is an instance of a very common trick in the toolbox of a constructive
(reverse) mathematician. It can be found in many different variations—see for example the next proposition.
Interestingly enough, in our experience, mathematicians without a strong background in formal logic are
very uncomfortable when they first encounter this construction and will either dispute its validity or at
best judge it “pathological”. We assure the reader that there is, though, no problem from a set-theoretic
viewpoint as long as one has some form of set comprehension at one’s disposal, which is the case in the
big (constructive) mainstream set theories (ZF, IZF, CZF).

It is also worth highlighting that S is actually a family of sets Sϕ , and that the fact that non-emptyness
does not imply inhabitedness is not due us actually having a specific counterexample, but to it failing in a
uniform fashion. Nevertheless it is common and productive to think of this sort of family of sets as one
concrete example of a set, albeit a fairly fuzzy one.

A variation of this construction can also be seen in the next Proposition.

Proposition 1.1.2. LEM is equivalent to the statement that the supremum3 of every bounded, inhabited
subset of reals exists.

Proof. One direction is a well-known result (or even an axiom) in basic, classical analysis. For the other
direction consider the set

S = {0}∪{x |x = 1∧ (ϕ ∨¬ϕ)} .

Notice that for the set S of the previous proof we can actually show that the supremum cannot be
distinct from 1; in other words the supremum of ¬¬S exists. However, as the part 1 of the next proposition
will show, this is not always possible. Part 2 improves upon a result of Mandelkern [82], who showed that
it implies WLPO.

Proposition 1.1.3. The following are equivalent to WLEM

1. If S is a bounded, inhabited subset of real number, then sup¬¬S exists.

2. Whenever two inhabited open subsets U,V of a bounded interval are disjoint there exists a point
x /∈U ∪V .

Proof. We will first show that WLEM implies 1. To this end let S⊂ R and B ∈ N be such that

∀s ∈ S :−B6 s6 B .

By [20, Proposition 4.3, Chapter 1] it suffices to show that ¬¬S is order located; that is for all a,b ∈ R
with a < b

(¬∀s ∈ S : s6 a) ∨ (∀s ∈ S : s < b) ;

but this follows easily from WLEM applied to the formula ∀s ∈ S : s6 a.
It is also easy to see that 1 implies 2: if U and V are as stated, then x = sup¬¬U exists, by 1. Since U

and V are open, both x ∈U as well as x ∈V lead to contradictions, and hence x /∈U ∪V .

3Notice that we use Bishop’s definition of the supremum [20, Chapter 2, Defintion 4.2], which constructively differs from the
usual least upper bound one. In fact the set from this proposition’s proof shows that both definitions being equivalent is equivalent to
LEM.
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Finally let ϕ be any syntactically correct statement. Let

U =

(
0,

1
3

)
∪
{

x ∈
(
0, 2

3

)∣∣ϕ }
and

V =
{

x ∈
( 1

3 ,1
)∣∣¬ϕ

}
∪
(

2
3
,1
)

.

Then 0 ∈U and 1 ∈ V so they are inhabited. They are also easily seen to be open and disjoint. Now
assume there exists x /∈U ∪V . If x < 2

3 , then ¬ϕ leads to the contradiction x ∈ V , so ¬¬ϕ . Similarly
x > 1

3 implies ¬ϕ . Hence WLEM holds.

The rules known as De’Morgan’s laws are

¬(ϕ ∧ψ) ⇐⇒ ¬ϕ ∨¬ψ , (DM1)

and
¬(ϕ ∨ψ) ⇐⇒ ¬ϕ ∧¬ψ . (DM2)

where ϕ and ψ are syntactically correct statements. It is easy to see that DM2 is provable in intuitionistic
logic. The same is true for the direction from the right to the left of DM1. However, we have

Proposition 1.1.4. WLEM is equivalent to DM1.

Proof. First assume DM1 and let ϕ be arbitrary. Since ¬(¬ϕ ∧ϕ) is provable in intuitionistic logic we
have ¬¬ϕ ∨¬ϕ; that is WLEM holds.

Conversely assume that ¬(ϕ ∧ψ). By WLEM either ¬ϕ or ¬¬ϕ . It is easy to see that in the second
case the assumption that ψ holds leads to a contradiction. Hence ¬ψ and we are done.

Sometimes De Morgan’s laws are stated slightly differently—in its “substitution form”—in which case
we get an equivalence to LEM:

Proposition 1.1.5. LEM is equivalent to the following versions of De Morgan’s law

¬(¬ϕ ∧¬ψ) ⇐⇒ ϕ ∨ψ (DM1′)

as well as to
¬(¬ϕ ∨¬ψ) ⇐⇒ ϕ ∧ψ (DM2′)

Proof. Of course, LEM implies both versions. Conversely let ϕ be a syntactically correct statement. In
intuitionistic logic we have ¬(¬ϕ ∧¬¬ϕ), so DM1′ implies ϕ ∨¬ϕ . We also have

¬(¬(ϕ ∨¬ϕ)∨¬(ϕ ∨¬ϕ)) ,

so DM2′ also implies ϕ ∨¬ϕ . Thus in both cases LEM holds.

There are quite a few other basic logical principles equivalent to LEM over intuitionistic logic. (See,
however, Section 8.5 for (ϕ =⇒ ψ)∨ (ψ =⇒ ϕ))

Proposition 1.1.6. The following are equivalent to LEM

1. ((ϕ =⇒ ψ) =⇒ ϕ) =⇒ ϕ (Peirce’s law)

2. (ϕ =⇒ ϑ) =⇒ (((ϕ =⇒ ψ) =⇒ ϑ) =⇒ ϑ) (generalisation of Peirce’s law)
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3. (¬ϕ =⇒ ϕ) =⇒ ϕ

4. (ψ =⇒ ϕ)∨ (ϕ =⇒ ϑ) (Linearity)

5. (ϕ =⇒ ψ)∨¬ψ

6. (¬(ϕ =⇒ ψ)) =⇒ (ϕ ∧¬ψ) (the counterexample principle)

Proof. Clearly all of these can be proved in classical logic, i.e. follow from LEM. Furthermore 3 is a
special case of 1 (ψ ≡⊥), which in turn is a special case of 2. To see that 3 implies LEM we will show
that it implies 1.1. Clearly ¬¬ϕ implies (¬ϕ =⇒ ϕ), and hence ϕ . To see that 4 implies LEM, we simply
take ψ ≡> and ϑ ≡⊥. Similarly 5 implies LEM by choosing ϕ ≡>. Lastly, 6 implies 1.1 and therefore
LEM if one chooses ψ ≡⊥ (and weakens the consequence).

1.2 LPO

The ubiquitousness of the limited principle of omniscience (LPO) in analysis might only be rivalled by
LLPO’s. This is mainly due to the fact, that real numbers and sequences feature prominently in analysis,
and LPO tells us everything we want to know about both.

(LPO) For every binary sequence (an)n>1 we can decide whether

∀n ∈ N : an = 0∨∃n ∈ N : an = 1.

Basic equivalencies of LPO

Mostly taken directly from [69] are the following equivalences:

Proposition 1.2.1. The following are equivalent to LPO

1. ∀x ∈ R : x < 0 ∨ x = 0 ∨ 0 < x

2. For every binary sequence (an)n>1 we can decide whether

∃N : ∀n> N : an = 0∨∃kn ∈ NN : ∀n ∈ N : akn = 1.

3. Every bounded monotone sequence of real numbers converges.

4. (Bolzano-Weierstraß theorem) Every sequence in a compact (totally bounded and complete) set has
a convergent subsequence.

5. Every sequence of closed subsets of a compact metric space with the finite intersection property has
nonempty intersection.

6. Ascoli’s Lemma.

Proof. The equivalence of LPO to 1 is standard. 2 obviously implies LPO. Conversely we can show 2 by
applying LPO countably many times: using LPO (and unique choice) construct a binary sequence bn such
that

bk = 0 =⇒ ∃n> k : an = 1 ,

bk = 1 =⇒ ∀n> k : an = 0 .
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Now, using LPO again, either ∃N : bN = 1 or ∀k : bk = 0. In the first case ∀n> N : an = 0. In the second
case we can use dependent choice to find kn ∈ NN such that ∀n ∈ N : akn = 1.

The equivalence of LPO to 3 can be found in [85], the one to 4 in [34], the one to 5 in [67], and the
one to 6 in [48].

Proposition 1.2.2. LPO is equivalent to the following statements:

• Every real number is either rational or irrational.

• Every real number is either algebraic or transcendental.

• For all sequences rn of reals and for all x ∈ R either there exists n such that x = rn or x 6= rn for all
n ∈ N.

Proof. First notice that using LPO and countable choice, we can, for every n ∈ N and x ∈ R, decide
whether x = rn or x 6= rn. So using (unique) countable choice there exists a binary sequence (an)n>1 such
that an = 0 ⇐⇒ ¬(x 6= rn). By LPO either an = 0 for all n ∈ N or there exists n ∈ N such that an = 1.
That is we can decide whether x 6= rn for all n ∈ N or whether there exists n ∈ N such that x = rn.

Conversely let (an)n>1 be a decreasing binary sequence. Define

a = ∑
n>1

an

n!
.

Notice that if an = 1 for all n ∈ N, then a = e, and thus transcendental (irrational). If a is algebraic
(rational) there exists ε > 0 such that |e−a|> ε . Hence we can easily find n such that an = 0.

Proposition 1.2.3. LPO is equivalent to the statement that the transitive closure of a decidable relation
R⊂ N×N is, again, decidable.

Proof. Let (an)n>1 be a binary sequence. We define a decidable relation R on N by (n,m) ∈ R for all
n,m> 2 and (1,n) ∈ R if an = 1. Now it is easy to see that (1,2) ∈ R+ (the transitive closure) if and only
if there exists n such that an = 1.

Conversely let R be a decidable relation on N and assume that LPO holds. Furthermore let k, ` be
arbitrary natural numbers. Now define a binary sequence (an)n>1 by

an =

{
1 ∃k1, . . . ,k j 6 n : (k,k1) ∈ R∧ (k1,k2) ∈ R∧·· ·∧ (k j, `) ∈ R
0 otherwise.

Then, if there exists n such that an = 1 we have (k, `) ∈ R+ and if an = 0 for all n ∈ N we have (k, `) /∈
R+.

Proposition 1.2.4. LPO is equivalent to the statement, that if A∪B is infinite (i.e. there is an injection
N→ A∪B), then either A or B is infinite.

Proof. Let f : N→ A∪B an injection. Using countable choice we can assume that there is a binary
sequence such that

an =

{
0 =⇒ f (n) ∈ A
1 =⇒ f (n) ∈ B

Using LPO and countable choice iteratively we can fix another binary sequence (bn)n>1 such that

bn =

{
0 ∃k > n : ak = 0
1 ∀k > n : ak = 1
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One final application of LPO yields that either there is N ∈ N such that bN = 1, in which case n 7→
f (N +n+1) is an injection of N into B, or bn = 0 for all n ∈ N, in which case we can find an injection of
N into A. Conversely assume that (an)n>1 is an, without loss of generality increasing, binary sequence.
Define the sets A = {n |an = 0} and B = {n |an = 1}. Then A∪B =N is infinite and A and B are disjoint.
Now if A is infinite there cannot be a n with an = 1, and thus an = 0 for all n ∈ N. If B is infinite it is, in
particular, inhabited and so we can find n ∈ N with an = 1.

The last proposition iterated finitely many times also shows that LPO is equivalent to the infinite
pigeonhole principle.

(IPP) For every f : N→ {1, . . . ,k} there exists an infinite set A ⊂ N and
16 K 6 k such that f (x) = K for all x ∈ A.

Proposition 1.2.5. LPO is equivalent to the statement that every countable subset of the natural numbers
is decidable.

Proof. It is clear that LPO is enough to prove the statement. Conversely, if (an)n>1 is a binary sequence,
then the set A = {an |n ∈ N} countable. If this set is decidable, then either 1 ∈ A or 1 /∈ A. In the first
case there exists n ∈ N with an = 1. In the second case there cannot be such an n. Hence, in that case,
∀n ∈ N : an = 0.

Metastability

In a program suggested by Tao [105], it is proposed to recover the “finite” (constructive) content of
theorems by replacing them with logically (using classical logic) equivalent ones that can be proved by
“finite methods.” For example, since there often is no way to attain the Cauchy condition it is replaced with
the following notion of meta-stability. A sequence (xn)n>1 in a metric space (X ,d) is called metastable if

∀ε > 0, f : ∃m : ∀i, j ∈ [m, f (m)] : d(xi,x j)< ε ,

where [k, `] denotes the set {k,k+1, . . . , `}. One can trivially show that a Cauchy sequence is metastable.
However, as we will see metastability contains almost no constructive content.

As noted in [3] every non-decreasing sequence of reals bounded by B ∈ R is metastable since it is
impossible that d(xm,x f (m))>

ε

2 for all 16 m6 2B
ε

. The converse fails constructively, since we can show:

Proposition 1.2.6. LPO is equivalent to the statement that every metastable, increasing sequence of
rationals is bounded.

Proof. Assume (xn)n>1 is non-decreasing and metastable. Then, using LPO, we can, for every n decide
whether n is an upper bound or not. Using LPO again, we can thus either find an upper bound or a function
f : N→ N such that x f (n) > xn + 1 for all n ∈ N. Without loss of generality we may assume that f is
increasing. Furthermore

d(xn,x f (n))> 1 ;

a contradiction to the metastability, and hence xn is bounded.
Conversely, let (an)n>1 be a binary sequence that has, without loss of generality, at most one 1. Now

consider

xn =
n

∑
i=1

iai .

It is easy to see that xn is metastable: if f : N→ N is increasing, then either ai = 0 for all i ∈ [1, f (1)] or
ai = 0 for all i ∈ [ f (2), f ( f (2))]. In both cases xi is constant.
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Now if xn is bounded, there is N ∈ N with xn < N. If there was i > N with ai = 1, then xi = i > N
which is a contradiction. Hence ai = 0 for all i > N, that is we only need to check finitely many entries to
see if (an)n>1 consists of 0s or whether there is a term equalling 1.

One might thus hope that there is maybe a chance that every bounded, metastable sequence converges.
However, also this statement is equivalent to LPO.

Proposition 1.2.7. LPO is equivalent to the statement that every bounded, metastable sequence of reals
converges.

Proof. Assume that LPO holds and that (xn)n>1 is a bounded and metastable sequence of reals. Since
LPO implies the Bolzano Weierstraß theorem (see Theorem 1.2.1) there exists x ∈ R and kn ∈ NN such
that xkn converges to x. Now let ε > 0 be arbitrary and using LPO fix a binary sequence (λn)n>1 such that

λn = 0 =⇒ |x− xn|< ε ,

λn = 1 =⇒ |x− xn|> ε .

By Theorem 1.2.1 either there exists N such that λn = 0 for all n> N or there exists a strictly increasing
`n ∈ NN such that λ`n = 1 for all n ∈ N. We will show that the second alternative is ruled out by the
metastability: fix M such that |xkn − x|< ε

2 for n>M and hence

|xkn − x`n |>
ε

2
for n>M . (1.2)

Now define f : N→ N by f (n) = max{kn+M, `n+M}. Then f is increasing. Since (xn)n>1 is metastable
there exists m such that for all i, j ∈ [m, f (m)] we have |xi− x j|< ε

2 . Since km+M, `m+M ∈ [m+M, f (m)]
we get the desired contradiction to 1.2.

Conversely let (an)n>1 be a binary sequence with at most one 1. We will show that (an)n>1 is
metastable. So let f : N→ N an increasing function. Now either there exists i ∈ [1, f (1)] such that
ai = 1 or for all i ∈ [1, f (1)] we have ai = 0. In the first case, since (an)n>1 has at most one 1, for all
i ∈ [ f (1)+1, f ( f (1)+1)] we have ai = 0. In both cases there exists m such that, regardless of ε > 0, we
have

∀i, j ∈ [m, f (m)] : |ai−a j|= 0 < ε ;

that is (an)n>1 is metastable. Now if this sequence converges it must converge to 0. So there exists N ∈ N
such that for all n> N we have aN = 0. So we only need to check finitely many indices n ∈ N for an = 1,
and hence LPO holds.

Hillam’s theorem

Hillam’s theorem [62] states that if f : [0,1]→ [0,1] is a continuous map and one defines a sequence by
choosing an arbitrary x0 ∈ [0,1] and then taking xn+1 = f (xn) for all n > 0, then

|xn− xn+1| → 0 ⇐⇒ (xn)n>1 is Cauchy .

The interesting direction here is the one from the left to the right, since the converse holds trivially. Notice
that if the sequence in the theorem converges, it converges to a fix-point. Hillam’s theorem is therefore
very interesting, since it is a fix-point theorem not equivalent to LLPO (cf. Section 1.4).

Proposition 1.2.8. Hillam’s theorem is equivalent to LPO. (Even for uniformly continuous functions).
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Proof. It is easy to see that the non-constructive steps in original proof [62] hold under the assumption of
LPO; and that therefore the latter is enough to prove Hillam’s theorem. To prove the converse let a ∈ R be
a non-negative real number. Without loss of generality assume that a < 1. Now define f : [0,1]→ [0,1] by

f (x) = (1−a)x+a ;

that is f is the linear function through (0,a) and (1,1). Now define a sequence of real numbers by
xn = f n(0). It is easily shown by induction that xn = 1− (1−a)n and that xn 6 xn+1. We want to show
that |xn− xn+1| → 0 as n→ ∞. For an arbitrary ε > 0 either a < ε or a > ε

2 . In the first case, since for any
x ∈ [0,1]

|x− f (x)|6 a ,

for any n ∈ N also |xn− xn+1| < ε . In the second case choose N such that (1− a)N < ε . Now for any
n> N we get

|xn− xn+1|6 xn+1− xn 6 1− xn = (1−a)n 6 (1−a)N < ε .

In both cases there exists N ∈N, such that |xn−xn+1|< ε for all n> N; therefore, by assumption, (xn)n>1
is a Cauchy sequence and hence converges to a point x∞. Either x∞ < 1, in which case a = 0, or x∞ > 0. In
the second case we can find N such that xN > x∞/2. Then, by Bernoulli’s inequality

x∞/2 < xN = 1− (1−a)N 6 1−1−N(−a) = Na.

Hence a > x∞/(2N), after dividing by N, and therefore a > 0.

Cardinality

It is a well known exercise in first year mathematics to prove that there is a bijection between [0,1), and
(0,1) and that therefore both sets have the same cardinality.

Proposition 1.2.9. LPO is equivalent to the existence of a strongly extensional bijection4 f : [0,1)→ (0,1).

Proof. It is easy to see that with the help of LPO

f (x) =


1
2 if x = 0

1
n+1 if x = 1

n
x else

is a well-defined, strongly extensional bijection from [0,1)→ (0,1).
Conversely assume that such a function f exist. Then 0 < f (0)< 1. Since f is surjective there exist

a,b such that 0 < f (a)< f (0)< f (b)< 1. Since f is strongly extensional either 0 < a < b or 0 < b < a.
Without loss of generality assume the first. Setting a1 = a and b1 = b and using the usual interval halving
technique (notice that since f is injective we have f (x) < f (0)∨ f (x) > f (0) for x 6= 0 ), we construct
sequences (an)n>1 and (bn)n>1 such that

• 0 < an 6 an+1 < bn+1 6 bn

• f (an)< f (0)< f (bn)

• |an−bn|<
( 1

2

)n

4To be precise: by bijection we obviously mean surjective and injective. Furthermore, a function f : X → Y is injective, if
f (x) 6= f (y) whenever x 6= y. This is a stronger requirement than x = y whenever f (x) = f (y). The latter is called weakly injective by
Bishop [20, p. 63].
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Both sequences converge to the same limit z > 0. Now, by injectivity, f (z) 6= f (0), so either f (z)> f (0)
or f (z)< f (0). Without loss of generality assume the first alternative holds and let ε = f (z)− f (0)> 0.
Using Ishihara’s tricks (see [46] or the original [64]) either | f (an)− f (z)| < ε infinitely often or LPO
holds. The first alternative is ruled out, since

| f (an)− f (z)|= f (0)− f (an)+ ε > ε ,

and hence LPO holds.

1.3 WLPO

Slightly weaker than LPO is the weak limited principle of omniscience.

(WLPO) For every binary sequence (an)n>1 we can decide whether

∀n ∈ N : an = 0∨¬∀n ∈ N : an = 0.

WLPO has fewer equivalences than LPO or LLPO. The following are taken straight from [68].

Proposition 1.3.1. The following are equivalent to WLPO:

1. For all x,y ∈ R we have x> y or ¬(x> y).

2. For all x,y ∈ R we have x = y or ¬(x = y).

3. The existence of a discontinuous function from NN→ N.

4. The existence of a discontinuous function [0,1]→ R.

The following is the analogue of Proposition 1.2.2.

Proposition 1.3.2. WLPO is equivalent to the statement that every real number is either irrational or not.
More general: if rn is a sequence of real numbers, then for all x ∈ R either

∀n ∈ N : ¬(x = rn)∨¬∀n ∈ N : ¬(x = rn)

Proof. The proof of Proposition 1.2.2 easily adapts to this case.

The proof of the next proposition requires a lemma.

Lemma 1.3.3. A set A ⊂ R is located if and only if it is inhabited and for all a < b and ε > 0 we can
decide

∀x ∈ [a,b] : x /∈ A ∨ ∃x ∈ [a− ε,b+ ε] : x ∈ A .

Proof. Straightforward.

Proposition 1.3.4. The following are equivalent to WLPO.

1. The zero-set
Z f = {x ∈ [0,1] | f (x) = 0}

of a point-wise continuous function f : [0,1]→ R is located (and therefore compact since it is
closed).
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2. The “weak support”
Sw

f = {x ∈ [0,1] |¬( f (x) = 0)}

of a point-wise continuous function f : [0,1]→ R is located whenever it is inhabited.

3. (Strong Intermediate Value Theorem) For any point-wise continuous function f : [0,1]→ R such
that f (0)6 0 and f (1)> 0

inf f−1({0})

exists.

Proof. We will show the implications in the following order:

WLPO

1

2

3

WLPO

First assume WLPO. Note that since WLPO implies LLPO which in turn implies that f is uniformly
continuous (see Proposition 6.1.3). LLPO also implies that a uniformly continuous | f | attains its minimum
z and maximum z′ (see section 1.4). Now either | f (z)|= 0 or ¬(| f (z)|= 0). In the second case, since z is
minimal, there cannot be an x ∈ [a,b] such that | f (z)|= 0. In particular, we can therefore decide

∀x ∈ [a,b] : x /∈ Z f ∨∃x ∈ [a,b] : x ∈ Z f .

By the previous lemma Z f is located.
Similarly either | f (z′)|= 0 or ¬(| f (z′)|= 0) and therefore, again by the previous Lemma Sw

f is located.
Altogether we have shown that WLPO implies 1 as well as 2.

Since the infimum of a totally bounded set of real numbers exists [37, Proposition 2.2.5] we have
1 =⇒ 3.

To see that 3 =⇒ WLPO holds, consider an arbitrary real number a. Construct the piecewise linear
function f by

f (x) =


(3−3|a|)x−1 x ∈ [0, 1

3 ]

−|a| x ∈ [ 1
3 ,

2
3 ]

3(1+ |a|)x−2−3|a| x ∈ [ 2
3 ,1]

By our assumption there exists x such that f (x) = 0 and for all y with y < x we have ¬( f (y) = 0). Now
either x < 2

3 or x > 1
3 . In the first case a must be 0 as the assumption |a|> 0 implies that f (x)<−|a|< 0,

which is a contradiction to f (x) = 0. In the second case assume that a = 0, but then f ( 1
3 ) = 0 which

contradicts x > 1
3 . Thus we have decided whether a = 0 or ¬(a = 0).

Finally, to see that 2 =⇒ WLPO we can use the same construction as before. Since Sw
f is located the

distance r = d(1,Sw
f ) exists. If r < 1

3 we cannot have a = 0, which would imply that r = 2
3 . If r > 0, then

a = 0, since |a|> 0 implies r = 0.

Similarly, we can get the following equivalence.
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Figure 1.1: We think of a> 0 as being very small. The function f is a variation on the standard example
that shows that the intermediate value theorem implies LLPO.

Proposition 1.3.5. LPO is equivalent to the statement that if f : [0,1]→ R is a point-wise continuous
function, then its support

S f = {x ∈ [0,1] | f (x) 6= 0}

is located, provided it is inhabited.

Proof. One direction is clear by Proposition 1.3.4, the fact that LPO ⇐⇒ WLPO∧MP (see Section 2.1
for details on MP), and the fact that under the assumption of MP

S f = {x ∈ [0,1] |¬( f (x) = 0)} .

For the other direction it is enough to show that the statement implies MP. To this end let a ∈ R be a real
number such that ¬(a = 0). Now consider f : [0,1]→ R defined by

f (x) =

{
a for x ∈

[
0, 1

2

]
(1−a)2x−1+2a for x ∈

[ 1
2 ,1
]

Then f (1) = 1, so 1 ∈ S f . If the support is located that means that δ = d(0,S f ) exists. Now either δ > 0
or δ < 1

2 . In the first case we must have f (0) = 0, since f (0) 6= 0 implies δ = 0; but this cannot happen
since f (0) = a. So we must have δ < 1

2 . That means, by the definition of the infimum, that there exists
x ∈ [0, 1

2 ] with x ∈ S f ; and hence a = f (x) 6= 0.

A result by Richman from [95] characterises a well know classical result about functions of bounded
variation.

Proposition 1.3.6. If every uniformly continuous function on [0,1] of bounded variation5 is the difference
of two increasing functions, then WLPO holds. The converse holds in the presence of countable choice.

As the last result of this Section we have the following, which is the obvious analogue of Proposition
1.2.9. What is interesting though is that the function f is injective in the sense that f (x) 6= f (y)→ x 6= y,
and one would not expect to see that x 6= y without the help of the MP-part of LPO.

5Here a function f : [a,b]→ R has bounded variation if the set

S =
{

∑
n−1
i=1 | f (xi)− f (xi+1)|

∣∣a = x1 6 x2 6 · · ·6 xn = b
}

is bounded. A result by Bridges [24] shows that if one assumes that the supremum (in Bishop’s sense) of the set S exists and that the
function f is strongly extensional (no continuity assumption), then it can be written as the sum of two increasing functions. This
result was improved upon by Richman, who showed that one can work without the assumption of strong extensionality [95].
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Proposition 1.3.7. WLPO is equivalent to the existence of a bijection6 f : [0,1)→ (0,1).

Proof. The proof will be omitted, since it is basically the same as the one of Proposition 1.2.9. One
technical point worth pointing out is that one needs to use a variation of Ishihara’s tricks [46].

As a direct consequence of this we also have that the Cantor–Bernstein–Schröder theorem implies
WLPO, even when restricted to functions between subsets of R, since x 7→ 1+x

2 and the identity are
injections between [0,1) and (0,1).

Question 1. Which principle is the Cantor–Bernstein–Schröder theorem equivalent to? It seems likely
that the answer heavily depends on the precise formulation.

The Rising Sun Lemma, and LPO and WLPO

We can use Proposition 1.3.4 to show two more equivalences of LPO and WLPO; namely (versions of) the
Rising Sun Lemma, which can be used to prove the Hardy-Littlewood maximal inequality [106, pp. 143].

Proposition 1.3.8. LPO is equivalent to the following statement.
Consider a continuous function f : [0,1]→ R, and let E be the set

E = {x ∈ [0,1] |∃y > x : f (y)> f (x)} .

Then one can find a, at most countable, family of disjoint, open, non-empty intervals In in [0,1] such that
E ∩ (0,1) =

⋃
In.

The name “Rising Sun Lemma” is due to imagining the graph of f as a mountain range which the
rising sun shines on to from the right. Viewed this way, the set E consists of the areas which are in the
shade.

Before we prove the above proposition, we will make a couple of comments.

• Since we assume LPO (and therefore MP) in the forward direction it doesn’t make a difference
whether we assume that our intervals are non-empty or inhabited. In fact, if (a,b) is nonempty, then
¬(b6 a), and hence because of MP a < b. Thus b−a

2 ∈ (a,b).

• Unlike in many other results in Constructive Reverse Mathematics the Brouwerian counterexample
part (i.e. the proof that the Rising Sun Lemma implies LPO) is fairly straightforward, but the reverse,
classical direction takes some effort. This is due to the fact that the standard proof (like the one in
[106]) uses the fact that classically “any open subset U of R can be written as the union of at most
countably many disjoint non-empty open intervals, whose endpoints lie outside of U.” However, this
statement is equivalent to LEM: Consider the set

U =
{

x ∈ (0,1)
∣∣x < 1

2 ∨ϕ
}
,

for a syntactically correct statement ϕ . Now let U =
⋃

n∈I In, as above, where I is either finite or
countable. It is easy to see that I must have (exactly) one element, say i and Ii = (a,b). If b > 1

2 we
must have ϕ if b < 1 the assumption that ϕ holds leads to a contradiction.

• Notice that even classically we cannot assume that the In are increasing or decreasing. To see this
consider the piece-wise linear function f : [0,1]→ [0,1] defined by

f (x) =


−2x+1 x ∈ [0, 1

3 ]

x x ∈ [ 1
3 ,

2
3 ]

−2x+2 x ∈ [ 2
3 ,1] .

6See the footnote in Proposition 1.2.9 for the exact definition of bijection.
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For this function the set E from the Rising Sun Lemma is
[ 1

6 ,
2
3

]
. Now define a functions g,h :

[0,1]→ [0,1] by placing a copy of f in each of the squares Gn and Hn indicated in Figure 1.2. It is

11
3

2
3

0

1

H1

H2

H3

H4

G1

G2

G3
G4

Figure 1.2: An iterated construction.

clear that g’s E-set cannot be written as a sequence of open disjoint increasing intervals, and the
same holds for h and decreasing intervals. Obviously, we could iterate this construction to see that
we cannot write E as a decreasing union of increasing disjoint, open, non-empty intervals, or even
further.

Finally, it is time to prove Proposition 1.3.8.

Proof. Assume the Rising Sun Lemma holds and let a ∈ R be a real number. Now define a piece-wise
linear function f : [0,1]→ R by

f (x) =

{
(2−2|a|)x x ∈ [0, 1

2 ]

2|a|x+1−2|a| x ∈ [ 1
2 ,1]

11
2

0

1

Figure 1.3: Depending on a the function f is either “in the shadow” or flat on [1/2,1].

Notice that if x ∈ [ 1
2 ,1], then 1−|a|6 f (x)6 1. Now let E be the “areas in the shade” as in the Rising

Sun Lemma, and assume that E =
⋃

In, where In = (an,bn) are open, nonempty, and disjoint. It is easy to
see that the family (In)n>1 must consist of exactly one element, say (a,b). Now either b > 1/2 or b < 1. In
the second case the assumption that |a|> 0 leads to the contradiction that E = [0, 1

2 ), so in that case a = 0.
In the first case we have z = b+1/2

2 ∈ E. So by definition there exists y > z such that f (y)> f (z). But that
means that

1−|a|6 f (z)< f (y)6 1 ,
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which implies that |a|> 0. With both cases taken together we have decided LPO.
Conversely let f : [0,1]→ R be a continuous function. First notice that LPO allows us to make

the following decision. Since LPO implies that f is uniformly continuous (see 6.1.3) and therefore
Sx = sup[x,1] f exists, we can decide whether f (x) = Sx, or f (x)< Sx. In the second case, using Proposition
1.3.4.3, we can find bx = inf{z> x | f (z) = Sx }. Using Proposition 1.3.4.3 again we can also find ax =
sup{z6 x | f (z) = Sx }.

Now let rn be an enumeration of all rationals in [0,1] and consider

F = {n ∈ N | f (rn)< Srn ∧∀i < n : rn /∈ (ari ,bri)} .

Using LPO we see that F is decidable and using LPO again we can decide whether F is finite or countable.
By construction the intervals ((arn ,brn))n∈F are non-empty and disjoint. We also have that if x ∈ (arn ,brn)
for some n, then f (x) < Srn , since, by the definition of brn we cannot have f (x) > Srn . Using (an
approximate version of) the intermediate value theorem we can find a point y such that x < y < brn and
f (x)< f (y)< Srn .

It remains to show that if x∈E there exists n∈F such that x∈ (arn ,brn). If x∈E, then there exists y> x
with f (x)< f (y)< Sx. Now find (again an approximate version of the intermediate value theorem suffices)
a rational rn such that x < rn < y and f (x) < f (rn) < f (y). If for all i < n we have rn /∈ (ari ,bri), then
x ∈ (arn ,brn) and therefore x ∈

⋃
n∈F(arn ,brn). If there is j < n with rn ∈ (ar j ,br j), then also x ∈ (ar j ,br j)

and therefore also in this case x ∈
⋃

n∈F(arn ,brn).

The classification of the Rising Sun Lemma is very dependent on its precise formulation. If we had
followed Tao’s formulation [106] more closely we get an equivalence to WLPO. Luckily, we can reuse
most of the proof above.

Proposition 1.3.9. WLPO is equivalent to the following statement.
Consider a continuous function f : [0,1]→ R. Then one can find a, at most countable7, family of disjoint,
open, non-empty intervals In in [0,1] such that

1. f (an) = f (bn) unless an = 0, in which case f (bn)> f (an), and

2. if x /∈
⋃

In and x > 0, then f (x)> f (y) for all y> x.

Proof. We will only proof the “counterexample direction”, since the converse direction is analogous to the
one above.

So let a ∈ R be a real number. Now define a piece-wise linear function h : [0,1]→ R by

h(x) =


3
2 x x ∈ [0, 1

3 ]
1
2 x ∈ [ 1

3 ,
2
3 ]

1
2 + |a|(3x−2) x ∈ [ 2

3 ,1] .

Again it is easy to see that the “area in the shade” consists of exactly one interval (0,b). If b < 2
3 , then

|a|> 0 leads to a contradiction, since then E = (0,1). So we must have a = 0. If b > 1
3 , then a = 0 leads

to a contradiction, since that in that case E = (0, 1
3 ). Together we can decide whether a = 0 or ¬(a = 0),

which means that WLPO holds.

7This is one of the places we actually have to be tediously precise. In this case, by a “at most countable” set A we mean that
A = λ−1({0}) for an increasing binary sequence λ .
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11
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2
3

0

1

1.4 LLPO and WKL

The final limited omniscience principle is the lesser limited principle of omniscience.

(LLPO) If (an)n>1 is a binary sequence with at most one 1, then

∀n ∈ N : a2n = 0∨∀n ∈ N : a2n+1 = 0.

LLPO is often presented in the following form which is often actually used as the definition of LLPO; for
example in [68].

Proposition 1.4.1. LLPO is equivalent to one of the De Morgan’s laws for simply existential statements.
That is for α,β ∈ 2N

¬(∃n : α(n) = 1∧∃n : β (n) = 1) =⇒ ¬(∃n : α(n) = 1)∨¬(∃n : β (n) = 1)

Proof. Straightforward.

Proposition 1.4.2. The following are equivalent to LLPO

1. ∀x ∈ R : 06 x∨ x6 0

2. (The intermediate value theorem) For every sequentially non-discontinuous function f : [0,1]→ R
with f (0)6 06 f (1) there exists x ∈ [0,1] such that f (x) = 0

3. Every real number has a binary expansion.

4. If x,y are real numbers such that xy = 0, then either x = 0 or y = 0; that is R is an integral domain.

5. If x,y are real numbers, then {x,y} is a closed set.

Proof. All equivalencies are very well known; see for example [36] for the first 4 and [84, Theorem 4.2]
for the last one. The equivalence LLPO ⇐⇒ 4 is also proved in a more general form in Proposition
8.1.2.
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Completeness of Finite Sets

In Proposition 1.4.2 we cited a paper by Mandelkern [84] that among many other insights shows that
LLPO is equivalent to every two-element set of reals being closed. That is constructively we cannot show
that for any two reals a,b

{a,b}= {a,b} .

Analysing Mandelkern’s proof one might hope that constructively we have at least

{a,b}= {a,b, inf{a,b},sup{a,b}} .

However, as the next result shows this statement is still equivalent to LLPO.

Proposition 1.4.3. LLPO is equivalent to the statement that for all a,b ∈ R the set

{a,b, inf{a,b},sup{a,b}}

is the closure of {a,b}.

Proof. As mentioned above it is well known [84, Theorem 4.2] that LLPO implies (is equivalent to) that
for all a,b the set {a,b} is closed.

Conversely let (an)n>1 be a binary sequence with at most one 1. Let a = ∑
an
2n and define a sequence

(zn)n>1 in {0,a} by

zn =


0 ∀m < n : am = 0
0 ∃m < n : am = 1∧m is odd
a ∃m < n : am = 1∧m is even .

Using the fact that (an)n>1 has at most one term equal to 1, it is easy to see that zn is a Cauchy sequence
converging to a point z∞. Now if z∞ ∈ {a,b, inf{a,b},sup{a,b}} we can make the following decisions:

z∞ = 0: there cannot be an even m such that am = 1, since in that case a 6= 0 and zn→ a.

z∞ = a: there cannot be an odd m such that am = 1, since in that case a 6= 0 and zn→ 0.

z∞ = inf{a,b}: there cannot be an even m such that am = 1, since in that case a 6= 0 = inf{a,b}= 0 and
zn→ a.

z∞ = sup{a,b}: there cannot be an odd m such that am = 1, since in that case a 6= 0 = sup{a,b}= a and
zn→ 0.

In any case we can decide whether ∀n ∈ N : a2n = 0∨∀n ∈ N : a2n+1 = 0. So we have shown LLPO.

Actually we can even show the similar result that

Proposition 1.4.4. LLPO is equivalent to the statement that for all a,b ∈ R the closure of {a,b} is a
finitely enumerable set with 3 elements.

Proof. Again, as above LLPO implies that {a,b} is closed, so the only interesting direction is the converse.
Let an and a be as above. Since {0,a} ⊂ {0,a} we may assume that the closure of {0,a} is of the form
{0,a,b}. Now define zn as above, but also z′n analogously, but with the odd and even case switched. If
z∞ = 0 or z∞ = a we are done as above. Similarly we are done if z′∞ = 0 or z′∞ = a. The only interesting
and genuinely new case is that z∞ = z′∞ = b. But in that case the assumption that there is m with am = 1
leads to the contradiction z∞ 6= z′∞, both in the odd and the even case. Again in all cases we have decided
∀n ∈ N : a2n = 0∨∀n ∈ N : a2n+1 = 0. So we have shown LLPO.
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We conjecture that the above proposition can be generalised to any finite number and possibly the
countable case. Notice that there exists a realisability model (based on infinite time Turing machines) in
which there is a surjection N→ NN [5], which means that the closure of {a,b} is countable, but that in
that model also LPO and therefore LLPO holds.

WKL, Minima, and Fixed Points

The one principle in Constructive Reverse Mathematics that is possibly best known by non-constructivists
is Weak Kőnig’s Lemma.

(WKL) Every infinite and decidable tree admits an infinite path.

A decidable tree is a subset T ⊂ 2∗ of all binary finite sequences which is closed under restrictions, that is
if u ∈ T and v is a prefix of u, then also u ∈ T . A tree is infinite, if it is infinite as a set, which in this case
is equivalent to containing arbitrarily long finite sequences. Finally, a tree admits an infinite path, if there
exists an infinite binary sequence α ∈ 2N such that every finite prefix of α is in T .

It was, to our knowledge, Ishihara who first pointed out the equivalence of LLPO and WKL over
intuitionistic logic and countable choice. If one is thinking in a resource sensitive way, then one can view
WKL as countable many versions of LLPO [21]. If one wants to factor out choice, then one can view
WKL as LLPO plus a choice principle [16].

Proposition 1.4.5. WKL and LLPO are equivalent.

Proof. This proof has been given many times; see for example [16]. It relies on repeatedly using the fact
that, given an infinite tree, LLPO allows us to decide whether the left or the right subtree are infinite.
We will repeat the proof for completeness sake, and since we are going to reuse the argument in similar
situations further on. Let T ⊂ 2∗. For u ∈ 2∗ let Tu denote the set {w ∈ 2∗ |u∗w ∈ T }; i.e. Tu is the subtree
“below” u. Now if T is an infinite decidable tree, then we can define a binary sequence (an)n>1 by

a2n = 0 ⇐⇒ ∃u ∈ 2n : 0∗u ∈ T , (1.3)
a2n+1 = 0 ⇐⇒ ∃u ∈ 2n : 1∗u ∈ T . (1.4)

Notice that, since T is infinite there cannot n,m ∈ N such that a2n = 1 and a2m+1 = 1. Hence by 1.4.1
LLPO implies that either all even or all odd terms of an are zero. That means that either T0 or T1 is infinite.
Of course, both are also still decidable trees. Thus we can, using dependent choice, iteratively define a
sequence α ∈ 2N such that Tαn is a infinite, decidable tree for all n ∈ N. In particular αn ∈ T .

Remark 1.4.6. Analysing the above proof we can see that WLPO implies WKL, only assuming unique
choice.

Proposition 1.4.7. The following are equivalent to WKL

1. Every uniformly continuous function f : 2N→ R attains its minimum.

2. Every uniformly continuous function f : X → R on a compact metric space X attains its minimum.

3. Every uniformly continuous function f : [0,1]→ R attains its minimum.

4. (Brouwer’s fix point theorem) Every uniformly continuous function f : [0,1]2→ [0,1]2 has a fixed
point.
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Proof. That 1 implies 2 follows that for every compact space X there exists a surjection G : 2N→ X [107,
Corollary 4.4]. Clearly 2 implies 3. That 3 implies 1 follows from Lemma 3.1.3. Finally a proof of the
equivalence of 4 and WKL can be found in [60].

Remark 1.4.8. Using Proposition 6.1.3 we can replace uniform by point-wise continuity in the above
proposition.

This last proposition above also allows the following heuristic.

Heuristic 1.4.9. Many fix point theorems are equivalent to WKL.

Of course this is just a heuristic, which actually fails in some situations such as Proposition 1.2.8 or
3.3.4. It does, however, work for many well known ones such as Brouwer’s fix point theorem mentioned
above and many others [60]. We can even give a “proof” for our heuristic.

Proof. The reason that our heuristic is a good one is that often fix point theorems consider a point-wise
continuous function f on a compact space X , and one can construct approximate fix points with constructive,
often discrete, arguments. Thus if we consider the function g : X → R defined by g(x) = d(x, f (x)) we
can see that having approximate fix points translates into infg = 0, and thus the above proposition means
that WKL implies the existence of a fix point. Since WKL also implies UCT (see Proposition 6.1.3) and
therefore FAN∆, this argument is still valid, even if our original function is only point-wise continuous, or
if we need a mild version of the fan theorem to prove the existence of approximate fix points.

Conversely most fix point theorems imply the intermediate value theorem as a very simple instance.
Thus, by 1.4.2, they imply LLPO and therefore WKL.

As the “proof” above shows this also implies that if we add the additional assumption that there is
uniformly at most one solution to a fix point theorem we often get a purely constructive theorem. This
phenomenon is exhaustively treated in [15] and [98].

Space-filling curves

The content of this section might well be folklore among some constructivists. We do not claim
to be the first to prove these results, but we are also not aware that they have been written
down anywhere else.

One of the stranger objects in (classical) analysis are space-filling curves, which are continuous
functions [0,1]→ [0,1]2 that are surjective. The first such curve was discovered by Peano in 1890, and
since then numerous variants have been described. One of these variants which is very similar but slightly
easier than Peano’s one, is a construction by Hilbert from 1891. We are not going to repeat the well-known
ideas here, but simply include a pretty picture of the first 4 steps in the construction and otherwise refer to
the exhaustive monograph [97] for details.

n = 1 n = 2 n = 3 n = 4

Figure 1.4: The first 4 steps in Hilbert’s construction. (Latex code from www.texample.com).

http://www.texample.net/tikz/examples/hilbert-curve/


CHAPTER 1. OMNISCIENCE PRINCIPLES 26

Technically speaking, both the Hilbert curve and the Peano curve are described as the uniform limit of
uniformly continuous functions. It is not hard to see that even constructively we can follow Hilbert’s or
Peano’s construction, and obtain uniformly continuous functions H,P : [0,1]→ [0,1]2. One can also easily
see that points in [0,1]2 that have a binary expansion have a pre-image. Therefore P([0,1]) and H([0,1])
are dense in [0,1]2. However, we cannot prove that H and P are surjective. As a matter of fact:

Proposition 1.4.10. LLPO is equivalent to the statement that Hilbert’s space-filling curve or Peano’s
space-filling curve is surjective.

Proof. We will only focus on H, since the case of P can be treated similarly. LLPO implies that every real
number has a binary expansion (Proposition 1.4.2). Thus, as already remarked above we can actually find
the pre-image of any point in [0,1]2.

Conversely note that

H ([0,1/4])⊂ [0,1/2]× [0,1/2] ,

H ([1/4,3/4])⊂ [1/2,1]× [0,1] ,
H ([3/4,1])⊂ [0,1/2]× [1/2,1] ,

since these relations are satisfied at every stage of the construction of H and preserved under limits. Now let
a ∈ R arbitrary. Without loss of generality |a|< 1/2. Consider the point p = (0,1/2+a). If H is surjective,
then there exists t such that H(t) = p. Now either t < 3/4 or t > 1/4. In the first case it is impossible that
a > 0, since then p /∈ H([0,3/4]). Similarly in the second case it is impossible that a < 0. Thus we can
decide whether a6 0 or a> 0; hence LLPO holds.

Since a space-filling curve cannot be injective classically it is also not injective constructively. The
question of whether we can prove a stronger version of non-injectiveness for an arbitrary space-filling
curve constructively appears to be a tricky one.

Question 2. Is every space-filling curve non-injective? More precise: if f is a space-filling curve, then
does there exist x 6= y with f (x) = f (y)?

It seems feasible to alter the constructions of H and P slightly by using overlapping square decomposi-
tions to obtain constructively surjective space-filling curves. However, there is a more straightforward and
cleaner construction, which follows an idea of Lebesgue.

Lemma 1.4.11. There exists a space-filling curve.

Proof. As we will see in a later section (Lemma 3.1.1) there exists a uniformly continuous, surjective
function F : 2N→ [0,1]. If we compose this function with the uniformly continuous bijection ϕ : 2N→(
2N
)2 defined by

ϕ(α1α2α3 . . .) = (α1α3 . . . ,α2α4 . . .)

we get a uniformly continuous surjection f : 2N → [0,1]2. By Lemma 3.1.3 we can extend this to a
uniformly continuous function f̃ : [0,1]→ [0,1]2. Obviously f̃ is still surjective.

Lemma 1.4.12. There exists a uniformly continuous surjection f : R→ R2

Proof. Straightforward with the previous lemma.

Corollary 1.4.13. In RUSS there exists a continuous surjection f : [0,1]→ R2.

Proof. In RUSS there exists an unbounded point-wise continuous surjective map h : [0,1]→ R (see
Proposition 5.4.4). That map, composed with the one from the previous lemma gives us the desired
result.
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We can use the above construction of a space-filling curve to partially answer a question posed
by K. Weihrauch, who asked whether in TTE [112] there exist computable curves connecting pairs of
diagonally opposite points of the unit square that do not intersect at a computable point. Such functions
exist in RUSS, however the original paper (1976 by S.N. Manukyan) is in Russian and hard to obtain, so
the details of the construction are not clear. The result below is transferrable to TTE and shows that there
cannot be an algorithm taking such curves as inputs and computing the point of intersection.

Proposition 1.4.14. LLPO is equivalent to the following statement: If g,h : [0,1]→ [0,1]2 are point-wise
continuous such that g(0) = (0,0), g(1) = (1,1), h(0) = (0,1), and h(1) = (1,0), then they intersect, that
is there exist points t1, t2 such that g(t1) = h(t2).

Proof. For one direction we will show that the statement implies the intermediate value theorem (see
Proposition 1.4.2.2). So let f : [0,1]→ R be continuous such that f (0)< 0 and f (1)> 0. Without loss
of generality we may assume that f ([0,1]) ⊂ [−1,1] and that f (0) = −1 and f (1) = 1. Now define
h,g : [0,1]→ [0,1]2 piecewise linearly by

h(x) =


− 3

2 x+1 if 06 x6 1
3

1
2 if 1

3 6 x6 2
3

− 3
2 x+ 3

2 if 2
3 6 x6 1

and

g(x) =


x if 06 x6 1

3
1
6 f (3x−1)+ 1

2 if 1
3 6 x6 2

3
x if 2

3 6 x6 1 .

11
3

2
3

0

1
h g

Figure 1.5: A scaled copy of f is placed in the middle third square of the unit square. The roots of f are
then linearly related to the points of intersection of h and g.

It is easy to see that if t 7→ (t,h(t)) and t 7→ (t,g(t)) intersect, then they must do so for t ∈ [ 1
3 ,

2
3 ], which

implies that f (3t−1) = 0. Thus we have found a root of f .
Conversely assume that LLPO holds, and let h and g be as in the statement of the proposition. Then

we can use the space-filling curve f̃ constructed in the previous lemma to consider the function and define
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the function M : [0,1]→ R by
M(x) = d(h( f̃1(x)),g( f̃2(x)) .

By construction M is uniformly continuous. It is also easy to see that infM = 0. Thus by 1.4.7 there exists
x ∈ [0,1] such that M(x) = 0, and hence the two curves intersect.

The Greedy Algorithm

A matroid (E,F ) consists of a finite set E together with a collection F of subsets E, such that

I.1 /0 ∈F

I.2 A ∈F ∧B⊂ A =⇒ B ∈F

I.3 A,B ∈F ∧|B|= |A|+1 =⇒ ∃x ∈ B : A∪{x} ∈F .

In the following, we will also assume that all the sets in F are decidable. A nice introduction to matroids
is [92]. The standard example of a matroid are the linear independent subsets of a finite set of vectors in
a vector space. Property (I.3) then is the Steinitz exchange lemma. This also justifies the terminology
of calling a set A ∈F independent. A maximal independent set A is one that is independent and such
that there is no B ∈F with A ( B. Matroids are also important since they provide the minimal setting8

on which a Greedy algorithm yields an optimal solution. A Greedy strategy is the most naïve strategy
possible: build up your solution by always choosing the most tantalising looking element next. In the
following we assume that there is also a weighting function w : E → R. The goal is to find a maximal
independent set A ∈F that has minimal weight i.e. that is such that the sum

∑
a∈A

w(a)

is smaller than that for any other maximal independent set.

Proposition 1.4.15. The following are equivalent:

1. LLPO

2. If {x1, . . . ,xn} ⊂ R, then there exists 16 i6 n with xi 6 x j for all 16 j 6 n.

3. The Greedy algorithm. I.e. if (E,F ) is a matroid and w : E → R a function, then there exists a
maximal independent subset with a minimal weight.

Proof. (1) =⇒ (2) can be proved using induction and 1.4.2. (2) =⇒ (3): a maximal independent set
with minimal weight is just constructed by the Greedy algorithm:

1: Let F0 = /0.
2: for i> 0 do
3: Let Zi = {zi ∈ E \Fi |Fi∪{zi} ∈F }.
4: if Zi = /0 then terminate and return Fi .
5: else
6: choose y ∈ Zi such that w(y)6 w(zi) for all zi ∈ Zi
7: let Fi+1 = Fi∪{y}
8: end if
9: end for

8One can actually do without the property (I2). Such structures are known as greedoids.
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Notice, that in step 6 we need (2). For (3) =⇒ (1) let x,y ∈ R. Then

M = ({1,2},{ /0,{1},{2}})

is a matroid. Now define w : {1,2} → R by setting w(1) = x and w(2) = y. If the Greedy algorithm
works, then either {1} or {2} has minimal weight. But that means that either x = w(1) 6 w(2) = y or
w(2) = y6 x = w(1).

Remark 1.4.16. It is almost trivial to see that adapting the Greedy algorithm, we can, for every ε > 0
efficiently find a maximal independent set A such that

∑
a∈A

w(a)− ε < ∑
b∈B

w(b) .

Sharkovskii’s Theorem

Sharkovskii’s9 Theorem from 1964 is, in our opinion, one of the most entertaining results in mathematics:
simple to state yet utterly surprising. It concerns itself with a very rudimentary type of dynamical system,
namely a point-wise continuous function f acting on R. We are interested in fix points of f and (prime)
k-periodic points which are points x such that f k(x) = x but ¬( f i(x) = x). Let us now define a total order
. on the natural numbers as indicated below

3.5.7.9. · · ·.2 ·3.2 ·5.2 ·7. . . .22 ·3.22 ·5.22 ·7.
. . .23 ·3.23 ·5.23 ·7. . . .2n+1 .2n . . . .8.4.2.1 .

Sharkovskii’s Theorem states:

(ST) If f has a k-periodic point and k . `, then f has points of prime period `.

In particular, if a function has a 3-periodic point it has points of all periods. The only non-constructive part
in the usual proof [41] is the following technicality, which is actually equivalent to LLPO.

Proposition 1.4.17. LLPO is equivalent to the statement that if f : [0,1]→R is a uniformly continuous map
and [a,b] an interval such that f ([0,1])⊃ [a,b], then there exists [c,d]⊂ [0,1] such that f ([c,d]) = [a,b].

Proof. To see that this principle implies LLPO let (an)n> be a binary sequence with at most one 1. Let

a = ∑
n≥1

(−1)nan

2n

and define a piecewise linear function f : [0,1]→ [0,1] by

f (x) =


(3+3a)x, x ∈ [0, 1

3 ];
−(3+6a)x+2+3a, x ∈ [ 1

3 ,
2
3 ];

(3+3a)x−2−3a, x ∈ [ 2
3 ,1].

As f ([0, 1
3 ])⊃ [0, 2

3 ] and f ([ 2
3 ,1])⊃ [ 1

3 ,1] we see that f ([0,1])⊃ [0,1]. So assume there exists an interval
[c,d]⊂ [0,1] such that f ([c,d]) = [0,1]. Now either c> 0 or c< 1

6 . In the first case a≥ 0 as the assumption
a < 0 implies that for all x ∈ [c,1] f (x) > 0. In the second case either d < 1 or d > 5

6 . If d < 1 we can

9There are various alternative ways of spelling Sharkovskii. Among them Sharkovsky [53], Sarkovskii [41], Sarkovski [16].
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f

Figure 1.6: We think of a as being very small. Depending on a f crosses the lines y = 0 and y = 1 or
misses both.

conclude as before that a≥ 0. In the only case left that d > 5
6 and c < 1

6 we must have that a≤ 0 as the
assumption a > 0 would imply that there are x ∈ [c,d] such that f (x)> 1. So we can decide whether a≤ 0
or a≥ 0. In the first case we must have that for all n α2n = 0. In the second case we must have that for all
n α2n+1 = 0.
To see that the converse holds assume LLPO holds. Furthermore let f : [0,1]→ R be a uniformly
continuous map and [a,b] an interval such that f ([0,1]) ⊃ [a,b]. Choose a0 and b0 such that f (a0) = a
and f (b0) = b. Without loss of generality a0 ≤ b0.
We will define a sequence of nested intervals ([an,bn]) such that

1. |an+1−bn+1| ≤ 1
2 |an−bn|

2. sup{ f ([a0,an])} ≤ b and sup{ f ([a0,bn])} ≥ b

3. f (an)≤ b and f (bn)≥ b.

So assume we have constructed an and bn. As we assume LLPO either

sup{ f [a0,
1
2
(an +bn)]} ≥ b or sup{ f ([a0,

1
2
(an +bn)])} ≤ b.

In the first case set an+1 = an and as we assumed LLPO the minimum principle holds [63] and so we
can choose bn+1 ∈ (a0,

1
2 (an +bn)) such that f (bn+1)≥ b. In the second case set bn+1 = bn and choose

an+1 ∈ (a0,
1
2 (an+bn), such that f (an+1)≤ b. Both sequences converges to the same limit d = a∞ = b∞ and

furthermore sup{ f ([a0,d])} ≤ b, sup{ f ([a0,d])} ≥ b, f (d)≤ b and f (d)≥ b. Hence sup{ f ([a0,d])}= b
and f (d) = b. A similar argument shows that there is a c ∈ [a0,d] such that inf{ f [c,d]}= a and f (c) = a.
Hence f [c,d] = [a,b]

Of course this still leaves the possibility that there is a fully constructive proof of Sharkovskii’s theorem.
However, as the next Brouwerian counteraxample shows such a proof does need to use LLPO.

Proposition 1.4.18. For all natural numbers n the following holds: If every (uniformly) continuous map
that has a 3-periodic point has a fixpoint, then LLPO holds.

Proof. Again let αn be binary sequence with at most one 1. Let

a = ∑
n≥1

(−1)nαn

2n
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and define a piecewise linear function f : [0,1]→ [0,1] by

f (x) =


3x+ 1

4 , x ∈ [0, 1
4 ];

(4a−2)x+ 3
2 −a, x ∈ [ 1

4 ,
2
4 ];

x+a, x ∈ [ 2
4 ,

3
4 ];

(−3−4a)x+3+4a, x ∈ [ 3
4 ,1].

f (0) = 1
4 , f ( 1

4 ) = 1 and f (1) = 0 so f has a 3–periodic point. If f has a fixed point x, then either x < 3
4

1
4

2
4

3
4 1

1

0

f

Figure 1.7: We cannot decide whether the graph of f between 2
4 and 3

4 lies above or below the diagonal.

or x > 2
4 . In the first case a≤ 0, as the assumption a > 0 implies that f (x)> x for all x ∈ [0, 3

4 ]. Then for
all α2n+1 = 0 for all n. Similar in the second case a≥ 0 and α2n = 0 for all n.

Putting these two results together we get the following corollary.

Corollary 1.4.19. Sharkovskii’s Theorem is equivalent to LLPO.

Graph colourings

We assume that the reader is familiar with basic graph theoretic definitions. A nice little theorem by Erdős
and Bruijn [52, Theorem 8.1.3], reminiscent of the compactness theorem in logic. is

(EBk) Let G = (V,E) be a countable graph and k ∈ N. If every finite subgraph
of G is k-colourable, then so is k.

We will show that the countable case is equivalent to WKL.

Proposition 1.4.20. EBk is equivalent to WKL for every k > 2.

Proof. To see that WKL implies EBk is straightforward. Since we assume countability, V = {v1,v2, . . .}.
Every u ∈ k∗ of length m can be seen as a (not necessarily admissible) colouring of the subgraph
G[v1, . . . ,vm] and every α ∈ kN as a (not necessarily admissible) colouring of G. Now simply consider

T = {u ∈ 2∗ |u is an admissible colouring of G} .
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T is easily seen to be a tree and the assumption that every finite subset of G has an admissible k-colouring
translates into T being infinite. By WKL T has an infinite path α , which represents an admissible colouring
of G. Conversely, we will first show that EB2 implies LLPO. So let (an)n>1 be a binary sequence with at
most one term equal to 1. Now, let G = (N,E), with

E = {{n,n+2}|∀m6 n : am = 0}∪{{n,n+1}|an = 1} .

That is, as long as an = 0, G can be drawn as two parallel lines. Should we hit an = 1, we connect the
upper and the lower strand. The way this graph is constructed if there is an odd (even) n with an = 1,
then the vertices 1 and 2 are connected by a path of odd (even) length. It is easy to see that every finite

1 3 5

2 4 6

Figure 1.8: G consists of two separate strands as long as an = 0. If there is n with an = 1, then G is one
strand of even or odd length depending whether n is odd or even.

sub-graph can be 2-coloured. If all of G can be coloured, then if the vertices 1 and 2 get the same colour
there cannot be an even n with an = 1, which means ∀n : a2n = 0. Similarly if 1 and 2 are coloured with
different colours, then ∀n : a2n+1 = 0. For an arbitrary k > 2 we simply add one copy of the complete
graph Kn−2, and connect every one of its vertices with every vertex of G. Thus we ensure, that the “original”
G still gets coloured with exactly two colours. If one is happy to use countable choice, then LLPO implies
WKL and we are done. We can, however, adapt the construction above to show that EBk implies WKL
instance-wise and without countable choice. To this end assume that T ⊂ 2∗ is a decidable infinite tree.
We can fix a binary sequence (b(u)n )n>1 by

b(u)n = 1 ⇐⇒ ∀w ∈ 2n : u∗w /∈ T .

To turn the b(u) into sequences with at most one 1, we consider

d(u)
2n = b(u0)

n and d(u)
2n+1 = b(u1)

n

and
a(u)n = d(u)

n −max
i<n

{
d(u)

i

}
.

If Tu =
{

v ∈ 2N
∣∣u∗ v ∈ T

}
is infinite, then there cannot be n,m such that b(u0)

n = 1 and b(u1)
m = 1. Therefore

if Tu is infinite and a(u)2n = 0 for all n ∈ N, then b(ui)
n = 0 for all n ∈ N, and if a(u)2n+1 = 0 for all n ∈ N, then

b(ui)
n = 0 for all n ∈ N.

We can construct a graph G(u) for every a(u) as done above. The formal sum (disjoint union) of these
graphs

H =
⊕
u∈T

G(u)

is also such that every finite subgraph can be coloured with k colours.
If there is an admissible colouring of H, then we can, as above, decide whether a(u)n is zero for all even

or for all odd terms, which means that if Tu is infinite we can decide whether Tu0 or Tu1 is infinite.
So we can recursively construct α such that Tαn is infinite. In particular αn ∈ T for all n ∈ N, which

means we have found a path through T .
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Variations of WKL

Reminiscent of the way WWKL (Section 3.2) is a weakening of FAN∆ is the following weakening of
WKL.10 Let k < 1. We now require that for each n our tree not only have at least one sequence of length n,
but for a certain percentage of all sequences of length n to be in the tree.

(WKL′(k)) If T is a binary decidable tree such that

|{u ∈ T | |u|= n}|
2n > k ,

then T admits an infinite path.

Of course, if r < k < 1, then WKL′(r) =⇒ WKL′(k), and WKL′(k) is implied by WKL. We can prove
the following converse.

Proposition 1.4.21. For any k 6 1
2 , we have WKL′(k) =⇒ LLPO.

Proof. Let (an)n>1 be a binary sequence with at most one term equal to 1. Now define a set T ⊂ 2∗ by

T = {0u |∀m6 |u| : a2m = 0}∪{1u |∀m6 |u| : a2m+1 = 0} .

Then it is easy to see that T is a tree and that |{u ∈ T | |u|= n}|/2n > 1
2 > k. Hence, by our assumptions,

T admits an infinite path α ∈ 2N. Now if α(1) = 0, then there cannot be an even n with an = 1. Similarly
if α(1) = 1 there cannot be an odd n with an = 1.

So under the assumption of countable choice WKL′(k) is actually equivalent WKL, at least for k < 1
2 .

It remains an open question whether the same holds for k > 1
2 .

Question 3. To what principle is WKL′(k) equivalent to for k > 1
2 ?

Notice that this question seems to be related to the question whether LLPOn (which will be introduced
in Section 8.1).

Compactness of Propositional logic

The language of first order logic is, as usual, defined inductively via

1. Every proposition symbol A0,A1,A2, . . . is a formula.

2. If α,β are formulas, then so is ¬α , α ∧β , α ∨β , α → β .

It is straightforward to show that an truth assignment B from the set of all proposition symbols to the set
of truth values {f, t} can be uniquely extended to one defined on all formulas. As usual we also assume
that B(A0) = f, and write ⊥ instead of A0. A truth assignment is called a model of a set of formulas Γ,
when B(α) = t for all α ∈ Γ. In this case we write B � Γ. Notice that in this propositional case we have
B � ϕ ∨¬ϕ for any formula ϕ and any B.

If a set Γ has a model it is called satisfiable. A basic result of logic, known under the name compactness,
is that if every finite subset of a set Γ is satisfiable, then so is Γ itself. The proof generally uses König’s
Lemma. It is thus not surprising that:

10This version was communicated to us by M. Hendtlass by Email. We do not know who deserves credit for proposing it.
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Proposition 1.4.22. WKL is equivalent to the statement that if every finite subset of a set Γ is satisfiable,
then so is Γ.

Proof. One direction is the usual proof, such as the one in [103, Chapter III.1], which apart from using
WKL, is actually constructive.

Conversely assume T is an infinite decidable tree, so that there exists u ∈ T with |u|= n for each n,
and define

αn =
∨
u∈T
|u|=n

∧
16i6n

Bu,i ,

where

Bu,i =

{
Ai if u(i) = 1
¬Ai otherwise;

We are going to show that for every m ∈ N the subset {α1, . . . ,αm} of Γ has a model. Since T is infinite
there exists v ∈ T with |v|= m. Define B′ by

B′(Ai) =

{
t if v(i) = 1 and i6 m
f otherwise.

For all j 6 i6 m, sinceT is a tree ui ∈ T , and therefore we have that B′ (Bui, j) = t. Hence B′(αi) = t for
all i6 m, which means that B′ is a model of {α1, . . . ,αm}.

Now assume that B is a model of Γ = {α1,α2 . . .}. We claim that σ ∈ 2N defined by

σ(i) = 1 ⇐⇒ B(Ai) = t

is a path through T .



Chapter 2

MP and Below

We will start this chapter by introducing some notation. If a number x ∈ R is such that ¬¬(0 < x) we
say that x is almost positive and write 0l x. Furthermore, we write yl x instead of 0l x− y and xm y
interchangeably with yl x. Note that since x6 y is, constructively, defined as ¬(y < x) [20], we have that

xl y ⇐⇒ ¬(y6 x) .

Real numbers x that satisfy
∀y ∈ R : 0l y∨ yl x (2.1)

are called pseudo-positive. If we apply the pseudo-positiveness property to a number x itself the right
disjunct is always ruled out and we get that x is almost positive.

So we have the following notions for a number being positive.

positive =⇒ pseudo-positive =⇒ almost positive =⇒ non-negative ,

or in symbols, for x ∈ R

0 < x =⇒ (x pseudo-positive =⇒ ) 0l x =⇒ 06 x .

Lemma 2.0.1. For all x,y,z ∈ R

1. ¬(¬(x > y)∧¬(x = y)∧¬(x < y)).

2. if x6 y and yl z, then xl z. (This implies that l is transitive).

3. If x = max{y,z} and ¬(x = y), then x = z.

Proof. 1. If ¬(y > x) and ¬(y < x), then x = y, since both the assumption that x < y and y < x lead to
contradictions. But this in turn contradicts ¬(x = y).

2. Assume that x6 y and yl z. Furthermore assume that z6 x. Then z6 y, which is a contradiction.
Hence ¬(z6 x), which is what we wanted to show.

3. By definition x > z. Assume that x > z. Then y = x: since either y > x as well as y < x leads to a
contradiction. The first one since x> y, the second one as then we could find r such that x > r > z
and x > r > y and therefore x > r >max{y,z}= x. Altogether x > z is a contradiction and therefore
z6 x, which means that x = z.

35
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2.1 MP

Markov’s principle is a weak form of double negation elimination.

(MP) Every almost positive number is positive: xm0 =⇒ x > 0.

It was also called LPE1 by Mandelkern. It is generally accepted by recursive schools of constructive
mathematics, where it embodies the strategy of an “unbounded search.”

Proposition 2.1.1. The following are equivalent to MP:

1. If (an)n>1 is a binary sequence such that ¬(∀n ∈ N : an = 0), then ∃n ∈ N : an = 1.

2. ∀x ∈ R : ¬(x = 0) =⇒ x 6= 0.

3. If A⊂ N is countable and so is its complement A, then A is decidable.

4. Every weakly injective2 map f : [0,1]→ R is injective.

5. Every mapping from a metric space into a metric space is strongly extensional.

Proof. The equivalences between MP, 1, and 5 are from [32] and [68]. The equivalence between 2 and
MP is obvious.

To see that 3 is equivalent to 1 consider a set A⊂ N such that A = {a1,a2, . . .} and A = {b1,b2, . . .}.
Given m ∈ N we can consider the following binary sequence cn defined by

cn =

{
0 if m /∈ {a1,b1, . . . ,an,bn}
1 otherwise .

Now we have ¬∀n ∈ N : cn = 0, since the assumption ∀n ∈ N : cn = 0 leads to the contradiction that
m /∈ A∧m /∈ A. So we can use MP to get n such that cn = 1, which immediately tells us that m ∈
{a1,b1, . . . ,an,bn} which allows us to decide whether m∈ A or not. Conversely let an be a binary sequence
such that ¬∀n ∈ N : an = 0. We may assume that a1 = 0. Then the set A = {2 |∃n : an = 1}∪ {1} is
countable, as well as its complement. So we can decide whether 2 ∈ A. But the assumption that 2 /∈ A
limplies that ∀n ∈ N : an = 0. Thus we must have 2 ∈ A, which means ∃n : an = 1.

Finally we are going to show that 4 is equivalent to 2. Notice that if f is a weakly injective map and
x,y are such that f (x) 6= f (y), then ¬(x = y) which implies that also ¬(x− y = 0). Thus, using 2 we
have x− y 6= 0, which means that x 6= y. So f is injective. Conversely let x be such that ¬(x = 0). Now
consider the linear map f (y) = xy. It is easy to see that this map is weakly injective, for consider y,z with
¬(y = z). Now assume f (y) = f (z), which means xy = xz. But then the assumption that y 6= z implies that
x = 0, which is a contradiction. So we must have ¬(y 6= z)) which is equivalent to y = z. This contradicts
our initial assumption that ¬(y = z), so we have proved ¬( f (y) = f (z)). By 4 f is injective, and thus
0 = f (0) 6= f (1) = x.

1Limited Principle of Existence
2A map is called weakly injective if f (x) = f (y) =⇒ x = y, as opposed to injective which means x 6= y =⇒ f (x) 6= f (y).

Notice that a map is weakly injective if and only if ¬(x = y) =⇒ ¬( f (x) = f (y)), by the stability of equality.
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2.2 WMP

Weak Markov’s Principle states that every pseudo-positive number is positive:

(WMP) For all x ∈ R, if

∀y ∈ R : (ym0 ∨ yl x) , (2.2)

or equivalently, if
∀y ∈ R : ¬(y6 0) ∨ ¬(y> x) , (2.3)

then 0 < x.

This principle was also called WLPE3 and ASP4 by Mandelkern. U. Kohlenbach has shown that it does
not hold in a certain intuitionistic formal system [72]. This was improved upon by M. Hendtlass and B.
Lubarsky who have recently given a topological model satisfying full IZF as well as dependent choice in
which WMP fails (see Corollary 7.2.13).

Proposition 2.2.1. The following are equivalent to WMP:

1. Every pseudo-positive number is positive.

2. If ¬(a = b) and {a,b} is complete, then |a−b|> 0.

3. Every mapping from a complete metric space into a metric space is strongly extensional.

4. Every real-valued function which is non-decreasing and approximates intermediate values is point-
wise continuous.

Proof. The proofs for these equivalences can be found in [84], [64], [83], respectively.

The following lemmas provide a stepping stone to characterise WMP in terms of elements of Cantor
space.

Lemma 2.2.2. A non-negative real number x is pseudo-positive if and only if

∀y ∈ R : ¬(x = y)∨¬(y = 0) .

Proof. Since alb =⇒ ¬(a = b) one direction is clear. To prove the other direction let us first assume
that y ∈ [0,x], that is y > 0 and y 6 x. By our assumption either ¬(y = 0) or ¬(x = y). In the first case
ym 0 by Lemma 2.0.1. In the second case yl x as well by Lemma 2.0.1. Next consider y ∈ (−∞,x].
Then y′ = max{0,y} ∈ [0,x]. Hence by what was just proved either y′m 0 or y′l x. In the first case,
by part 3 of Lemma 2.0.1, y′ = y and therefore ym 0. In the second case, since y 6 y′ also yl x by
part 2 of Lemma 2.0.1. So we can perform the final step and consider an arbitrary y ∈ R. Consider a
x′ = min{x,y} ∈ (−∞,x]. With the previous step we know that either x′m 0 or x′l x. In the first case,
since y> x′, by part 2 of Lemma 2.0.1, we have ym0. In the second case, by part 3 of Lemma 2.0.1, we
have x′ = y and therefore yl x.

Even though it seems most of the work for the next proposition is contained in the last lemma, its proof
is not at all that straightforward and, interestingly, we need countable choice in both directions.

3Weak Limited Principle of Existence
4Almost Separating Principle
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Proposition 2.2.3. WMP is equivalent to the following statement. For every α ∈ 2N such that

∀β ∈ 2N : (¬(α = β ) ∨ ¬(β = 0)) (2.4)

there exists n such that α(n) = 1.

Proof. Let us assume WMP holds and let α ∈ 2N be as described. Without loss of generality we may
assume that α is increasing. We claim that x = ∑n∈N

α(n)
2n is pseudo-positive. To this end let y ∈ R

be arbitrary. Using countable choice construct a flagging sequence (λn)n>1, such that if α(n) = 1 and
therefore x > 1

2n+1 , then

λn = 0 =⇒ |x− y|< 1
2n+2 ,

λn = 1 =⇒ |y|> 1
2n+3 .

Again, without loss of generality we may assume that λ is increasing. Define β ∈ 2N by

β (n) = min{α(n),λ (n)}

If y = 0, then β = 0 and if y = x, then β = α . So either ¬(β = 0) or ¬(α = β ).
Conversely let x be a pseudo-positive number. Using countable choice construct α such that

α(n) = 0 =⇒ |x|< 1
2n ,

α(n) = 1 =⇒ |x|> 1
2n+1 .

We claim that α has the property 2.4. To see this consider β ∈ 2N. Define a sequence (yn)n>1

yn =

{
x if ∀i6 n : α(i) = β (i)
0 otherwise

.

It is easy to see that (yn)n>1 is a Cauchy sequence converging to a limit y. Since x is pseudo-positive by
Lemma 2.2.2 either ¬(0 = y) or ¬(x = y). In the first case β = α , since otherwise y = 0. Hence ¬(β = 0)
since it is easy to see that ¬(α = 0). In the second case ¬(α = β ), since α = β implies that yn→ x and
therefore x = y a contradiction.

As mentioned above WMP is equivalent to the statement that every map on a complete metric space
is strongly extensional. In fact, there are many specific spaces X such that if every map defined on X is
strongly extensional, then WMP holds.

Lemma 2.2.4. Let X be an arbitrary metric space. Every function f : X → R is strongly extensional if
and only if for every metric space Y we have that every function f : X → Y is strongly extensional.

Proof. One direction is trivial. To prove the converse let f : X→Y be an arbitrary function and let a,b∈ X
be such that f (a) 6= f (b). Then g(x) = d( f (a), f (x)) defines a function g : X → R. By assumption g is
strongly extensional, and g(a) = 0 6= g(b) = d( f (a), f (b)). Hence a 6= b.

Lemma 2.2.5. Assume f : {a,b}→ R is a function such that f (a) 6= f (b).

1. If 0 < p < q < 1, then we can, for any x ∈ R, decide whether

x> pd(a,b) or x6 qd(a,b) .
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2. For any x∈ [0,d(a,b)] and for any n∈N there exists 06 i6 2n−2 such that x∈ [ i
2n d(a,b), i+2

2n d(a,b)].

3. There exists a function g : [0,1]→ R such that g(0) = f (a) and g(d(a,b)) = f (b).

Proof. 1. Use the axiom of countable choice to get a (increasing) sequence λn such that

λn = 0 =⇒ d(a,b)<
1

2n
,

λn = 1 =⇒ d(a,b)>
1

2n+1
.

Define a sequence (xn)n>1 in {a,b} by the following algorithm. As long as λn = 0 set xn = a. If
λn = 1 for the first time we can decide whether x > pd(a,b) or x < qd(a,b). In the first case we set
xn = a from then on, in the second case we set xn = b from then on. It is easy to check that (xn)n>1
is Cauchy. Considering its limit x∞ we can check whether f (x∞) 6= f (a) or f (x∞) 6= f (b). In the
first case the assumption that x < pd(a,b) leads to the contradiction that d(x∞,a) = 0 and therefore
x∞ = a. So x> pd(a,b). Similarly in the second case x6 qd(a,b).

2. This can be decided by a finite iteration of the previous part.

3. Given x ∈ [0,1] we consider zx = max{x,d(a,b)}. Using countable choice and the preceding part
of the lemma we fix a sequence h : N→ N such that zx ∈ [ h(n)

2n d(a,b), h(n)+2
2n d(a,b)]. It is easy to

see that the limit

rx = lim
n→∞

h(n)
2n ∈ [0,1]

is independent of the choice of h. In this way we can define a function g(x) = rx f (b)+(1− rx) f (a).
Furthermore, it is easy to check that r0 = 0 and rd(a,b) = 1 and therefore g(0)= f (a) and g(d(a,b))=
f (b).

As a corollary of the first part we also get the following insight.

Corollary 2.2.6. Assume f : {a,b} → R is a function such that f (a) 6= f (b), then d(a,b) is pseudo-
positive.

This has already been proved by Ishihara [64, Lemma 4]. In the same paper he has also shown that
WMP is equivalent to the statement that every every real-valued function on a complete metric space is
strongly extensional. In the following we are going to extend this result.

Proposition 2.2.7. The following are equivalent to WMP.

1. Every real-valued function on a complete metric space is strongly extensional.

2. Every real-valued function on NN is strongly extensional.

3. Every real-valued function on 2N is strongly extensional.

4. Every real-valued function on N∗ is strongly extensional; where N∗ denotes the space of all
increasing binary sequences.

5. Every real-valued function on [0,1] is strongly extensional.

6. If X = {a,b}, then any function f : X → R is strongly extensional.
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Proof. Obviously 1 implies 2.
Assume f : 2N → R is a function with f (α) 6= f (β ) If γ ∈ NN, then let γ01 ∈ CS be the sequence

γ(n) = min{γ(n),1}. Then γ01 = γ for any γ ∈ 2N. So define f̃ (γ) = f (γ01). Altogether f̃ (α) 6= f̃ (β )
and if we assume 2 we get α 6= β and thus in this case also 3 holds.

Now assume 3 and let f : N∗→ R be such that f (α) 6= f (β ) for some α and β . For any γ ∈ 2N let γ↑

denote the binary sequence defined by γ↑(n) = maxi6n γ(i). It is obvious that γ↑ ∈ N∗ and that for γ ∈ N∗
we have γ = γ↑. Thus by setting g(γ) = f (γ↑) we get a function g : 2N→ R with g(α) 6= g(β ). Hence
α 6= β and 4 holds.

To see that 4 implies 6 we need to use the axiom of countable choice to get a (increasing) sequence λn
such that

λn = 0 =⇒ d(a,b)<
1
2n

,

λn = 1 =⇒ d(a,b)>
1

2n+1
.

To a given sequence µ ∈ N∗ we associate the sequence (xµ
n )n>1 in {a,b} by

λn = 0∧µn = 0 =⇒ xn = a ,

λn = 1∨µn = 1 =⇒ xn = b .

It is easy to see that xµ
n is a Cauchy sequence and thus converges to a limit xµ

∞. Now we can consider the
function g : N∗→ R defined by g(α) = f (xα

∞). Furthermore, it is easy to see that x(000...)
∞ = a and xλ

∞ = b.
Hence λ 6= 000 . . . and thus a 6= b.

Next, we will show that 6 implies 1. So let f : Y →R be a function and a,b ∈Y such that f (a) 6= f (b).
Considering the restriction f �{a,b} we can therefore conclude that a 6= b.

Of course, 1 implies 5, so if we can prove that 5 implies 6 we are done. Unfortunately this is the
trickiest part of the implications, however most of the work has been done in the preceding lemma. Given
f : X→R with f (a) 6= f (b) we can find a g as in that lemma. By our assumption g(0) 6= g(d(a,b)), which
means that 0 6= d(a,b) which in turn means that a 6= b.

2.3 MP∨

The disjunctive version of Markov’s principle MP∨ can be seen as an instance of de’Morgan’s laws
(see Section 8.6) as well as another weakening of MP. It states that every almost positive number is
pseudo-positive.

(MP∨) For all x ∈ R

0l x =⇒ (∀y ∈ R : 0l y∨ yl x) .

This principle was also called LLPE5 by Mandelkern. Berger, Ishihara, and Schuster have suggested
WLLPO as a name [16], since it can be viewed as a weakening of LLPO. Finally in [107] it also appears
under the name of SEP.

Notice that MP∨ bears resemblance to the well-known statement

0 < x =⇒ (∀y ∈ R : 0 < y∨ y < x) ,

5Lesser Limited Principle of Existence
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which is—in contrast—provable in Bishop style constructive mathematics [20, Corollary 2.17], or included
as one of the axioms of constructive real analysis [23]

Before we state some equivalences of MP∨ we would like to point out the fact that

MP ⇐⇒ MP∨+WMP ,

which is obvious considering the following diagram illustrating which versions of Markov’s principle
allow one to “upgrade” between the different notions of positiveness of a real number.

positive pseudo-positive almost positiveMP∨WMP

MP

Proposition 2.3.1. The following are equivalent to MP∨:

1. For any binary sequence (an)n>1 with at most one 1 and ¬∀n : an = 0 either

∀n ∈ N : a2n = 0∨∀n ∈ N : a2n+1 = 0 .

2. If α is a binary sequence such that ¬∀n ∈ N : α(n) = 0, then for any β we have

∀β ∈ 2N : ¬(α = β )∨¬(β = 0)

3. For α,β ∈ 2N

¬(∀n : αn = 0∧∀n : βn = 0) =⇒ ¬∀n : αn = 0∨¬∀n : βn = 0 .

(That is the De Morgan law for Π0
1 formulae).

4. For all x,y ∈ R with ¬(x = y) we have ¬(x6 y)∨¬(y6 x)

5. For all x,y ∈ R with ¬(x = y) we have x6 y∨ y6 x

6. For all x,y,z ∈ R we have ¬(x = y) =⇒ ¬(x = z)∨¬(y = z).

7. For all x,y ∈ R with xm y, {x,y} is a closed subset of R

8. For any x ∈ R with |x|m0 either |x|= x or |x|=−x.

Proof. Most of these equivalences to MP∨ (1,7,8) are taken from [84]. The equivalences between 5,6,3
are due to Josef Berger6. The proof of 5 =⇒ 6, surprisingly, seems to necessitate countable choice. The
equivalence that 4 ⇐⇒ 5 is simply because ¬(x6 y) ⇐⇒ x> y given that ¬(x = y). Clearly, 3 implies
1. To see that 1 =⇒ 2 let α be a binary sequence such that ¬∀n ∈ N : αn = 0, and β ∈CS be arbitrary.
Now define γ ∈ 2N by

γ2n = 1 =⇒ αn 6= βn ,

γ2n+1 = 1 =⇒ βn = 1 .

6currently unpublished, talk at CiE2012 in Cambridge
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We have that ¬(∀n ∈ N : γn = 0), since the assumption that ∀n ∈ N : γn = 0 implies that α = β and
β = 000 . . ., which contradicts the assumption that ¬(α = 000 . . .). Now consider γ ′ defined by

γ
′(n) = γ(n)−max

i<n
{γ(i)} ,

so that γ ′ contains at most one 1. Furthermore we also have ¬(γ ′ = 000 . . .). So applying 1 we get that
either ∀n ∈ N : γ ′2n = 0 or ∀n ∈ N : γ ′2n+1 = 0. In the first case the assumption that β = 000 . . . leads to the
following contradiction. Then γ2n+1 = 0 for all n∈N, which means that we must have ¬(∀n ∈ N : γ2n = 0).
But this contradicts ∀n ∈ N : γ ′2n = 0. In the second case the assumption that α = β leads to the following
contradiction. Then γ2n = 0 for all n ∈ N which means that we must have ¬(∀n ∈ N : γ2n+1 = 0). But this
contradicts ∀n ∈ N : γ ′2n+1 = 0. So we have decided

¬(α = β )∨¬(β = 000 . . .) .

To see that 2 =⇒ 3 let α,β be a binary sequences such that

¬(∀n : αn = 0∧∀n : βn = 0) .

Now consider the sequences
γ = α0β0α1β1α2β2 . . .

and
µ = 0β00β10β2 . . . .

Then we can apply 2 to decide whether ¬(µ = 000 . . .) which means that ¬(β = 000 . . .) or ¬(γ = µ) in
which case ¬(α = 000 . . .). Thus we have shown 3.

As we have seen above WKL is equivalent to LLPO. Because of the similarity of LLPO and MP∨ it is
not surprising that we can find a weakening of WKL that is equivalent to the latter.

(WKL!!!) If T is an infinite decidable tree that

1. has at most one path in the weak sense that if α and β are paths through the
tree, then α = β ,

2. and for every infinite subtree it is impossible not to admit an infinite path,

then it actually has an infinite path.

Notice that our notion of WKL!!! differs only slightly from the one of J. Moschovakis, who first considered
it [89]. In her version, named WKL!!, condition (2) is missing. She also showed that

WKL!! ⇐⇒ ¬¬WKL∧MP∨ .

By, vaguely speaking, moving Condition (2) from ¬¬WKL into WKL!!!, we can strengthen this result: in
this way we get a version of weak Kőnig’s Lemma that holds in recursive models!

Proposition 2.3.2. MP∨ is equivalent to WKL!!!.

Proof. The proof is essentially the same as the one for Proposition 1.4.5. However it is worth noticing that
this one only requires unique choice. Consider a tree T satisfying the conditions of WKL!!!. As in the
proof of Proposition 1.4.5 define

a2n = 0 ⇐⇒ ∃u ∈ 2n : 0∗u ∈ T ,

a2n+1 = 0 ⇐⇒ ∃u ∈ 2n : 1∗u ∈ T .
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Notice that, since T is infinite there cannot n,m ∈ N such that a2n = 1 and a2m+1 = 1. However it is also
not possible that an = 0 for all n ∈ N, since that would imply (second condition) that it is impossible for
T0 and T1 not to admit infinite paths. Thus it is impossible that there not two infinite and not-equal paths
through T , which would contradict the first condition of WKL!!!.

Hence by 2.3.1 MP∨ implies that either all even or all odd terms of an are zero. That means that either
T0 or T1 is infinite. Also both subtrees satisfy the first and second condition of WKL!!! and are decidable
and infinite. Thus we can, using dependent choice, iteratively define a sequence α ∈ 2N such that Tαn is a
infinite, decidable tree satisfying both conditions of WKL!!! for all n ∈ N. In particular αn ∈ T .

Conversely consider a binary sequence (an)n>1 with at most one 1 and such that ¬∀n ∈ N : an = 0.
Now consider the decidable tree T defined by

u ∈ T ⇐⇒ ∃n : u = 0n∧∀i6 n : a2i = 0∨∃n : u = 1n∧∀i6 n : a2i+1 = 0 .

It is straightforward to see that T satisfies the conditions of WKL!!!. Thus, by WKL!!!, it admits an infinite
path α . Now either α(1) = 0, in which case we have α = 000 . . . and therefore ∀n : a2n = 0 or α(1) = 1,
in which case we have α = 111 . . . and therefore ∀n : a2n+1 = 0. Hence MP∨ holds.

Remark 2.3.3. Condition (2) cannot be weakened by removing “for every infinite subtree”.

Proof. Let us assume that there exists a Kleene tree K (for example in RUSS). So there exists un ∈ K with
|un|= n. Furthermore let (an)n>1 be an increasing binary sequence.

Define a set T ⊂ 2∗ by u ∈ T if and only iff

(an = 0∧ (u = 1n∨∃w ∈ T : u = 0w))∨
(
an = 1∧

(
u = um1n−m∨∃w ∈ T : u = 1mw

))
where |u|= n and m is the smallest number i6 n such that ai = 1. The idea is that as long as an = 0, T
looks like a copy of K below 0 and just a single path 111 . . . on the right hand side. If we ever hit an m such
that am = 1 we continue only one path on the left hand side and glue a copy of K on the path 1m on the
right hand side of the tree. Now, clearly, T is an infinite tree. It is also impossible not to admit an infinite
path (if ∀n : an = 0 there is an infinite path, and if ∃n : an = 1 there is an infinite path; furthermore, by the
double negation tranlation, constructively we have ¬¬(∀n : an = 0∨∃n : an = 1). Finally, it is also easy to
see that T has at most one path. However if T actually admits a path α we can check whether α(1) = 0, in
which case ¬∀n : (an = 0), or α(1) = 1, in which case ∀n : an = 0. Thus WLPO holds, which contradicts
the existence of a Kleene tree.
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...
...

um

K

K

Figure 2.1: As long as an = 0 the tree consists of a copy of K on the left side and a single path on the right.
If there is m with am = 1 from then on a copy of K is attached to the single path on the right and another
single path to one of the elements um on the left side.



Chapter 3

The Fan Theorems

As a way to re-capture the unit interval’s compactness—that is cover compactness—which was lost when
rejecting the law of excluded middle, L.E.J. Brouwer made generous use of the fan theorem. Since he
also made free use of the principle of continuous choice the complexity of the sets involved did not make
a difference to his mathematics—as we will see in Section 6.3. In the absence of continuous choice we
do, however, have to make some careful distinctions. This explains why we talk about the fan theorems
in the plural, since we are going to distinguish between different versions, all of which are interesting
in constructive (reverse) mathematics. What all fan theorems have in common is that they enable one to
conclude that a given bar is uniform. Here a bar is a subset B⊂ 2∗ that “bars” every infinite path in 2N,
that is

∀α ∈ 2N : ∃n ∈ N : αn ∈ B.

A bar is called uniform if this “barring” occurs before a uniform height N, that is if

∃N ∈ N : ∀α ∈ 2N : ∃n6 N : αn ∈ B

If a bar B is closed under extensions, that is if

u ∈ B =⇒ ∀w ∈ 2∗ : u∗w ∈ B ,

then it is uniform if and only if
∃N ∈ N : ∀α ∈ 2N : αN ∈ B .

The difference between the fan theorems lies in the required complexity of the bar B. This ranges from
the very strongest requirement—decidable—to no restriction on the bar at all. Here, a set S is decidable, if,
for every x, we can decide whether

x ∈ S∨ x /∈ S .

Of course, in the absence of the law of excluded middle, this might not always be possible. A weaker
requirement than decidability is the notion of a c-bar. A bar C ⊂ 2∗ is called a c-bar, if there exists a
decidable set C′ ⊂ 2∗ such that

u ∈C ⇐⇒ ∀w ∈ 2∗ :
(
u∗w ∈C′

)
.

A bar B⊂ 2∗ is called Π0
1-bar, if there exist a countable family of decidable sets (Bn)n>1 that are all closed

under extension such that
B =

⋂
n>1

Bn .

The Π0
n-nomenclature allures to the arithmetical hierarchy in recursion theory. We can now formally state

the four versions of the fan theorem, that are going to be of interest to us.

45
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(Fan theorems)
FAN∆: Every decidable bar is uniform.
FANc: Every c-bar is uniform.
FAN

Π0
1
: Every Π0

1-bar is uniform.
FANfull: Every bar is uniform.

It is mostly trivial that

FANfull =⇒ FAN
Π0

1
=⇒ FANc =⇒ FAN∆ ,

with the exception of the middle implication which does require a modicum of trickery. It follows indirectly
from [43, Proposition 4.1.6], but we can also give a direct construction.

Proposition 3.0.1. For every c-bar C there exists is a Π0
1-bar B such that C is a uniform bar only if B is.

Proof. Let C ⊂ 2∗ be a c-bar. So there exists a decidable set C′ ⊂ 2∗ such that

u ∈C ⇐⇒ ∀w ∈ 2∗ :
(
u∗w ∈C′

)
.

Now, for every n ∈ N define decidable sets Bn ⊂ 2∗ by

Bn =
{

u ∈ 2N
∣∣∀w ∈ 2∗ : |w|6 n−|u| =⇒ w ∈C′

}
.

The antecedent “|w|6 n−|u|” ensures that Bn is closed under extensions (this is the modicum of trickery
that we referred to earlier). The set

B =
⋂
n>1

Bn

is a bar. For let α ∈ 2N be arbitrary. Since C is a bar there exists m such that αm ∈C, which, by definition
means that αm ∗w ∈C′ for all w ∈ 2∗. So this is the case, in particular, for any n and any w such that
|w|6 n−m. Hence αm ∈ Bn for all n, which means that αm ∈ B. Thus B is a Π0

1-bar.
Now if B is uniform there exists M such that

∀α ∈ 2N : αM ∈ B ,

since Π0
1-bars are closed under extensions. But now let α ∈CS and w ∈ 2∗ be arbitrary. Since αM ∈ B,

in particular, αM ∈ BM+|w|. Since |w|6 (M+ |w|)−M, we have αM ∗w ∈C′, and since w was arbitrary
that means that αM ∈C. Thus C is a uniform bar.

FAN∆, and therefore all of the fan theorems, fail in RUSS, since there one can construct a Kleene tree,
that is an infinite decidable binary tree that blocks every infinite path [4]. The complement of such a tree is
by itself a ready-made counterexample to FAN∆. One implication in analysis that the existence of a Kleene
tree has (see Section 5.3) is the existence of a Specker sequence, that is a sequence of real numbers in a
compact set X that is bounded away from every point of X . To distinguish whether such a strange object
exists in a space or not we say that a subspace X of a metric space Y satisfies the anti-Specker property
relative to Y if

(ASY
X ) any sequence in Y that is eventually bounded away from any point in X

is eventually bounded away from the entire set X .



CHAPTER 3. THE FAN THEOREMS 47

Here a sequence (xn)n>1 in a metric space (Y,d) is eventually bounded away from a point x (a set X), if
there exists a natural number N such that d(xn,x)> 2−N for all n> N (and for all x ∈ X). It is easily seen
that ASY

X holds, whenever X is a subspace of Y and satisfies the Heine-Borel property.1 Notice that for
any two one-point extensions Y and Y ′ of a space X the principles ASY

X and ASY ′
X are equivalent. So in

that case we can combine them into a generic principle labeled AS1
X . Notice that some early papers on the

topic have used a more refined notation: what is labeled AS there is what we label ASR
[0,1], and which is

equivalent to AS1
[0,1].

3.1 Linking 2N and [0,1]

In the following we want to establish strong links between 2N and [0,1]. We will first adapt Cantor’s
middle third set construction for our purposes. First consider a fixed p ∈ (0,1). Let

Ip
u = [ap

u ,b
p
u ] =

[
(1− p) ∑

n6|u|
pn−1u(n),(1− p) ∑

n6|u|
pn−1u(n)+ pn

]
.

Furthermore, let Ip
()

be the unit interval. It is easy to see that Ip
u0 is the left p of Ip

u , and Ip
u1 is the right p of

Ip
u . With this notation the Cantor middle third set is

C p =
⋂
n>0

⋃
u∈2n

Ip
u ,

where p = 1
3 . It is easy to see that F p : 2N→ [0,1] defined by

F p(α) = (1− p) ∑
n>1

pn−1
α(n)

is well defined. It has many nice properties.

Lemma 3.1.1.

1. For α,β ∈ 2N and n> 1 we have

αn = βn =⇒ |F p(α)−F p(β )|6 pn .

In particular, F p is uniformly continuous.

2. (Variation on Bishop’s Lemma)
Assume 0 < p < 1

2 . For all x ∈ [0,1] there exists α ∈ 2N such that

∀β < α : F p(β )< x and ∀α < β : x < F p(β ) . (3.1)

In particular, F p is injective and

d(x,F p(α))> 0 =⇒ d(x,F p(2N))> 0 . (3.2)

3. Assume 1
2 < p < 1. Then for every u ∈ 2∗ and y ∈ Iu there exists α ∈ 2N such that α|u| = u and

F p(α) = y; in particular F p is surjective.

1Depending on the variety of constructive mathematics, the class of spaces satisfying the Heine-Borel property may, of course,
be drastically smaller than in classical mathematics. Nevertheless, maybe surprising, even in BISH there are infinite spaces that
satisfy the Heine-Borel property: a prototypical example of such a space is the closure of {2−n |n ∈ N}
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Proof. 1. Assume α,β ∈ 2N and n ∈ N such that αn = βn. Then

|F p(α)−F p(β )|6 (1− p)∑
i>1

pi−1|α(i)−β (i)|

6 (1− p)∑
i>n

pi

= (1− p)pn
∑
i>0

pi

=
1− p
1− p

pn = pn .

2. Consider 0 < p < 1
2 . We will define subsets Jp

u and positive numbers ε
p
n such that

Jp
u = Jp

u0∪ Jp
u1 , (3.3)

and
Ip
u ⊂ Jp

u as well as Ip
u + ε

p
n < Jp

v < Ip
w− ε

p
n ,

for u < v < w of length n; according to the lexicographic order. First we will introduce (partial)
functions next : 2∗ → 2∗ and prev : 2∗ → 2∗, mapping u ∈ 2∗ to the element of the same length
succeeding and preceding it, again in the lexicographical order. Next, set

• cp
0|u|

= 0, dp
1|u|

= 1,

• cp
u = au− 2

3 (a
p
u −bp

prev(u)), and

• dp
u = bp

u +
1
3 (a

p
next(u)−bp

u) for 0|u| 6= u 6= 1|u|.

It is easy to see that the intervals Jp
u = [cp

u ,d
p
u ] have the desired properties.

I0 I1

I00 I01 I10 I11

J0
J1

J00
J01

J10
J11

Figure 3.1: Schematic of the first couple of intervals for p = 1
3 .

Given x ∈ [0,1], we can, using dependent choice and Property 3.3, find α ∈ 2N such that

∀n ∈ N : x ∈ Jp
αn .

Now let β ∈ 2N be such that β < α , which means there exists n ∈ N such that βn < αn. Since
F(β ) ∈ Ip

βn
and x ∈ Ip

αn, by 3.1 we have F(β ) < x. The case α < β can be treated analogously.

To see that F p is injective let γ 6= β . Now let α be as constructed above for x = F p(β ). Then
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the assumption that α 6= β leads to a contradiction: if α < β we get F p(β ) < x = F p(β ) and if
β < α we get F p(β ) = x < F p(β ). Therefore F p(α) = F p(β ), and therefore, again by 3.1, also
F p(γ) 6= F p(β ). Finally assume that d(x,F p(α))> 0. Since F p is uniformly continuous by the first
part of the proposition, there exists n such that

βn = αn =⇒ d(F p(β ),F p(α))<
d(x,F p(α))

2
.

Now for any γ ∈ 2N either γn 6= αn, or γn = αn. In the first case either γn < αn or γn > αn, but in
both cases d(x,F p(β ))> ε

p
n . In the second case

d(x,F p(β ))> |d(F p(β ),F p(α))−d(x,F p(α))|> d(x,F p(α))

2
.

In any case

d(x,F p(β ))> min
{

d(x,F p(α))

2
,ε p

n

}
> 0 .

3. Let 1
2 < p < 1. Notice that

Ip
u = Ip

u0∪ Ip
u1 . (3.4)

Similar to above, given x ∈ [0,1], we can, using dependent choice and Property 3.4, find α ∈ 2N

such that
∀n ∈ N : x ∈ Ip

αn .

It is easy to see that therefore F p(α) = x, which means we have shown surjectivity.

Remark 3.1.2. Notice that for p = 1
2 the function F p cannot be shown to be surjective, constructively,

since that would be a restatement of the fact that every real number x ∈ [0,1] has a binary expansion and
therefore equivalent to LLPO (see Proposition 1.4.2).

We are now in the position to prove a technical but utterly central lemma.

Lemma 3.1.3. Assume 0 < p < 1
2 . If f : 2N→ R is a point-wise continuous function, then there exists a

point-wise continuous function f̃ : [0,1]→ R such that

f = f̃ ◦F p

Moreover, f̃ is uniformly continuous, (bounded, has a positive infimum, attains its infimum) if f is (does).

Proof. The idea of the embedding were simple if we assumed classical logic: for elements F p(α) in the
Cantor set C p ⊂ [0,1] we obviously want to set f̃ (F p(α)) = f (α). If an element is not in C p there exist
unique α,β ∈ 2N such that F p(α)< x < F p(β ) and C p∩ (F p(α),F p(β )) = /0. For such an x we set

f̃ (x) = tα,β (x) = f (α)+
x−F p(α)

F p(β )−F p(α)
f (β ) ; (3.5)

that is we simply interpolate linearly between F p(α) and F p(β ). However, constructively, we can, of
course, not show that x ∈ [0,1] is either in the Cantor set or is in its metric complement. Nevertheless one
can, surprisingly, give a construction of f̃ without the use of LEM. The construction can be found in [29].

Since C p∪−C p is dense in [0,1] it easily follows from Equation 3.5 that all the properties listed above
are preserved.
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It is well known ([108, Chapter 7 Corollary 4.4]) that constructively every compact, that is a complete
and totally bounded, space is the uniformly continuous image of 2N. Below, we need a slightly stronger
version of this result.

Definition 3.1.4. A map g : X → Y between to metric spaces X and Y is called uniformly surjective if

∀ε > 0 : ∃δ > 0 : ∀x,y ∈ Y : d(x,y)< δ =⇒ ∃α,β ∈ Y : d(α,β )< ε ∧ x = g(α)∧ y = g(β ) (3.6)

Lemma 3.1.5. For p > 1
2 the function F p : 2N→ [0,1] is uniformly surjective.

Proof. Let n ∈ N be arbitrary. Since p > 1/2, neighbouring intervals Iu with u ∈ 2n are overlapping by
(2p−1)pn. Now consider the slightly smaller intervals

I′u = [au +δ ,bu−δ ]

where δ = (2p−1)pn/3, as a special case we also set I′0n = [0,b0n ]−δ and I′1n = [a1n +δ ,1]. By our choice
of δ we still have

[0,1] =
⋃

u∈2n

I′u .

Consider x,y ∈Y such that d(x,y)< δ . First, find u ∈ 2n such that x ∈ I′u. Since d(x,y)< δ we have y ∈ I′u,
and also by construction, x ∈ I′u ⊂ Iu. So using Lemma 3.1.1.3 we can find α,β with αn = βn = u, and
F(α) = x and f (β ) = y.

More generally we have:

Proposition 3.1.6. If X is a compact set, then it is the uniform surjective image of a uniformly continuous
function f : 2N→ X.

Proof. This follows from [108, Proposition 7.4.3.vi].

It is worth taking the time for a little detour via constructive analysis here. We remind the reader
that even classically the continuous image of complete space is not necessarily complete. However the
continuous image of a cover-compact space is again cover-compact. Now constructively we traditionally
use totally boundedness + completeness as a useful notion of compactness in metric spaces. Unfortunately
neither totally boundedness, nor completeness are preserved under point-wise continuous maps. If we
switch to uniformly continuous maps at least totally boundedness is preserved, but completeness is still
not (the graph of 1

x is complete, but its image under the projection onto the x-axis is not). As the standard
recursive counterexample (cf. Proposition 5.3.1) shows we cannot even rule out the existence of a uniformly
continuous function f : [0,1]→ R such that f ([0,1]) = (0,1]. But the situation is actually much worse
since even a function as well behaved and canonical as F p with p > 1/2 doesn’t have the property of
mapping complete sets to complete sets.

Lemma 3.1.7. If, for p > 1/2, the function F p : 2N→ [0,1] maps complete sets to complete sets (i.e. is a
closed map), then LLPO holds.

Proof. Let x∈R be arbitrary. We may assume, without loss of generality that |x|< 1
2 . Let x+ = max{x,0}

and x− = max{−x,0}. Consider

A = (F p)−1
([

0,
1
2
− x+

])
∩{0}∗2N

and

B = (F p)−1
([

1
2
+ x−,1

])
∩{1}∗2N .
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Both sets are closed and by Lemma 3.1.1.3 we have F p(A) = [0, 1
2 − x+] and F p(B) = [ 1

2 + x−,1]. It is
easy to see that 1

2 ∈ F p(A∪B). However, assume that there exists α ∈ A∪B with F p(α) = 1
2 . If α(0) = 0

we cannot have x > 0, since then F(β )< 1
2 , similarly, if α(0) = 1 we cannot have x < 0. Thus we can

decide x6 0 or x> 0, which means LLPO holds.

Question 4. Is there a general principle that ensures that complete sets are mapped to complete sets? The
above example suggests that connectedness may play a role.

Definition 3.1.8. We call a sequence (xn)n>1 tail-located if the distances d(x,{xn,xn+1, . . .}) exist for
every n> 1 and x ∈ R.

Lemma 3.1.9. If (xn)n>1 is a sequence of real numbers that is eventually bounded away from every point
in [0,1], then there exists a c-bar B⊂ 2∗ such that

1. B is uniform, if (xn)n>1 is eventually bounded away from [0,1],

2. B misses arbitrarily long finite sequences, that is

∀n ∈ N : ∃v ∈ 2∗ : v /∈ B∧|v|> n ,

if xn ∈ [0,1] infinitely often, and

3. if (xn)n>1 is tail-located, then B is decidable.

Proof. Assume that (xn)n>1 is a sequence that is eventually bounded away from every point in [0,1].
Notice first, that since (xn)n>1 is eventually bounded away from 0 and 1 we can, for a tail but without loss
of generality for the whole sequence, decide whether xn ∈ [0,1] or not. Since F1/2(2N) is dense in [0,1] we
can, using countable choice, find a sequence wn ∈ 2∗∪{ω} such that

wn ∈ 2∗ =⇒ xn ∈ [0,1]∧
∣∣∣F1/2(wn)− xn

∣∣∣< 2−n ,

and
wn = ω =⇒ xn /∈ [0,1] .

Define

vn =


wnn if wn ∈ 2∗∧|wn|> n ,

wn0n−|wn| if wn ∈ 2∗∧|wn|< n,
ω if wn = ω .

that is if wn is not ω either chop of wn after n places or fill it up to length n with zeroes. Then, by part 1 of
Lemma 3.1.1

wn ∈ 2∗ =⇒
∣∣∣F1/2(vn)−F1/2(wn)

∣∣∣6 2−n

for all n ∈ N. Hence
wn ∈ 2∗ =⇒

∣∣∣F1/2(vn)− xn

∣∣∣< 2−n+1 (3.7)

for all n ∈ N. Since |vn|= n for all n, the set D = {v1,v2, . . .}∩2∗ is decidable. Therefore the set

B = {u ∈ 2∗ |¬∃w ∈ 2∗ : u∗w ∈ D}

is a c-set. It is also a bar. To see this let α ∈ 2N be arbitrary. There exists M,N ∈N such that |F1/2(α)−xn|>
2−M for all n> N. Let K = max{N,M}+2. We are going to show that for all w ∈ 2∗ we have αK ∗w /∈D.
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For assume there was such a w with αK ∗w ∈ D In this case αK ∗w = v j for some j > K (for j = K + |w|
to be precise). But then

2−M < |F1/2(α)− x j|

6 |F1/2(v j)− x j|+ |F1/2(v j)−F1/2(α)|
6 2− j+1 +2−K

6 2−K+1 +2−K

6 2−K+2 6 2−M ;

a contradiction. Thus αK ∗w /∈ D for all w ∈ 2∗ and therefore αK ∈ B.

1. Assume now that B is uniform. That is there N ∈ N such that αN ∈ B for all α ∈ 2N. Now there
cannot be n > N such that xn ∈ [0,1], since in that case wn ∈ 2∗ and therefore vn ∈ D. Since
|vn|= n> N this would be a contradiction.

2. By construction, if (xn)n>1 is in [0,1] infinitely often, then vn ∈ 2∗ infinitely often. This implies that
vn /∈ B infinitely often. Since, furthermore, |vn|= n we are done.

3. Assume that (xn)n>1 is tail-located, and let u ∈ 2∗ be arbitrary. Let a,b be the endpoints of F1/2(Bu)
that is a = F1/2(u) and b = F1/2(u∗1∗1∗ . . .).2 Choose N and δ > 0 such that xn is bounded away
from a and b by δ , that is such that

∀n> N : |xn−a|> δ ∧|xn−b|> δ .

Choose M such that 2−M+1 < δ , and let K = max{M,N} Since

F1/2(Bu) =
{

F1/2(u∗w)
∣∣w ∈ 2∗

}
is compact (as the uniform image of a compact set) the distance

ρ = d
(

F1/2(Bu),(xn)n>K

)
exists. Now either ρ > 2−(K+1) or ρ < 2−K . In the first case there cannot be n > K with u = vn|u|,
since that would imply that vn ∈ 2∗, which implies that wn ∈ 2∗ and therefore∣∣∣F1/2(vn)− xn

∣∣∣< 2−n+1 < δ .

This in turn implies that d(xn,F
1/2(Bu))< 2−(K+1) which is a contradiction. Thus we only need to

check v1, . . . ,vK to check whether u ∈ B or not. In the second case there must be n such that vn ∈ cS
and F1/2(vn) ∈ [a+δ ,b−δ ]. This ensures that u = vn|u|, which means that u ∈ B. Altogether we
have shown that B is decidable.

Lemma 3.1.10. If B is a c-bar, then there exists (xn)n>1 a sequence of real numbers that is eventually
bounded away from every point in [0,1] such that

1. if (xn)n>1 is eventually bounded away from [0,1], then B is uniform,

2. if xn ∈ [0,1] infinitely often, then there are arbitrarily large w such that w /∈ B, and

2That is with the notation of Section 3.1 a = a
1/2
u and b = b

1/2
u .
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3. if B is decidable and closed under extensions, then (xn)n>1 is tail-located.

Proof. Assume that B⊂ 2∗ is a c-bar, and C′ is a decidable set as in the definition. Let η : N→ 2∗ be a
bijection. In particular, that means that we have

∀n ∈ N : ∃m ∈ N : i> m =⇒ |η(i)|> n . (3.8)

We may also assume that i6 j =⇒ |η(i)|6 |η( j)|.3 Define

xn =

{
F1/3(η(n)) if η(n) /∈C′

2 otherwise.

We want to show that this sequence is eventually bounded away from every x ∈ [0,1]. To this end choose
α ∈ 2N as in Lemma 3.1.1.2. Since B is a bar there exists n ∈ N such that αn ∈ B, which means, that
for all w ∈ 2∗ we have αn∗w ∈C′. Furthermore, let m be as in Equation 3.8. For every i> m we have
αn 6= η(i)n whenever η(i) /∈C′ (notice that |η(i)|> n), which implies that∣∣∣F1/3(η(i))−F1/3(α)

∣∣∣> 3−(n+1) ,

for such η(i). Since xi = 2 when wi = ω we get that∣∣∣xi−F1/3(α)
∣∣∣> 3−(n+1) ,

for all i> m. Now either
∣∣F1/3(α)− x

∣∣< 3−(n+2) or
∣∣F1/3(α)− x

∣∣> 3−(n+3). In the first case

|xi− x|> 3−n+1

for all i> m. In the second case by Lemma 3.1.1.2 we have that d(x,F1/3(2N))> δ for some δ > 0. In
both cases |xi− x| > min{δ ,3−(n+2)} for all i > m, so (xn)n>1 is eventually bounded away from every
x ∈ [0,1].

So let us tackle the three numbered assertions.

1. Assume that (xn)n>1 is eventually bounded away from the entire set [0,1]; say xn /∈ [0,1] for all
n>M on. Set K = max{|η( j)| |16 j < M }. Then for all v ∈ 2∗ such that |v|> K we must have
v /∈C′, since otherwise wη−1(v) ∈ 2∗, and therefore xη−1(v) ∈ [0,1]. Hence for all α ∈ 2N we have
αK ∈ B; that is B is uniform.

2. If xn ∈ [0,1] infinitely often we must have wn ∈ 2∗ infinitely often. This in turn implies that wn /∈C′

infinitely often. Since C′ ⊂ B we have that there are arbitrarily large w with w /∈ B.

3. It suffices to show that the sets

An = {η(i) | i> n∧η(i) /∈ B}

are either empty or totally bounded as subsets of 2N , since

{xn,xn+1, . . .}= F1/3(An)∪{2} ,
3The function mapping a natural number n> 1 to the string of its binary expansion without the leading 1 would be a suitable

bijection.
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and the uniformly continuous image of a totally bounded set is also totally bounded and therefore
located [37, Proposition 2.2.6 and 2.2.9]. Choose

M = 1+{|η(i)| |16 i < n} ,

which ensures that
|η( j)|>M =⇒ j > n . (3.9)

Furthermore for any m we can choose km > k large enough such that

km >max{ i ∈ N | |η(i)|= m} . (3.10)

Set
Fn,m = {η(i) |km > i> n∧η(i) /∈ B} .

The sets Fn,m are, for m>M, a finite 2−m-approximation of An: for let i> n with η(i) /∈ B and let j
be such that η( j) = η(i)m. By 3.9 and 3.10 we have n6 j 6 km. Since B is closed under extensions
η( j) /∈ B. Hence η( j) ∈ Fn,M and d(η( j),η(i))6 2−m.

The same argument shows that An is empty if and only if Fn,M is.

3.2 WWKL

We start with a principle that is a weakening of FAN∆. The so called weak weak König’s lemma (WWKL)
plays a role in Simpson style reverse mathematics [114]. The name is somewhat misleading since it is
not resembling weak König’s lemma (see Section 1.4) but rather its contrapositive i.e. the fan theorem.4

WWKL does not assure that a decidable bar is uniform, that is that there is a level at which all sequences
of that length have been barred, WWKL only assures that the ratio of all the sequences of a given length
that are in the bar over all sequences of a given length tends to 0.

(WWKL) If B⊂ 2∗ is a decidable bar that is closed under extensions, then

lim
n→∞

|{u /∈ B | |u|= n}|
2n = 0.

In constructive reverse mathematics two publications have involved WWKL. Their main results are
combined in the next proposition.

Proposition 3.2.1. The following are equivalent to WWKL

1. Every positive, uniformly continuous function f : [0,1]→ R satisfies the following property: For
any ε > 0, there exists δ > 0 such that

µ({x | f (x)< δ })

is defined and
µ({x | f (x)< δ })< ε .

2. Vitali’s theorem: Let ε > 0 be arbitrary. If V is a countable Vitali cover of [a,b], then there exists a
finite set {I1, . . . , Im} of pairwise disjoint intervals of V such that

µ

(
[a,b]\

m⋃
i=1

Ii

)
< ε .5

4Of course in Simpson style reverse mathematics which is based on classical logic this distinction is unimportant.
5Where by µ we denote the usual measure, which we can obviously define, at least for sets that are finite unions of intervals.
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Proof. The first equivalence can be found in [91], the second one in [47].

It seems reasonable to conjecture that WWKL has more equivalents in measure theory, which at the
moment has not received much attention in constructive analysis.

Proposition 3.2.2. WWKL is equivalent to the following “weaker” version for every k > 0

(WWKL (k)) If B⊂ 2∗ is a decidable bar that is closed under extensions, then

|{u /∈ B | |u|= n}|
2n < k

eventually.

Proof. We will show that if WWKL(k) holds, then also WWKL(k2). This then shows that WWKL(k) is
independent of the choice of k, by a suitable number of iterations. So let B be a decidable bar that is closed
under extensions. A first application of WWKL(k) yields a natural number N such that

|{u /∈ B | |u|= N }|
2N < k .

Let u1, . . . ,um ∈ 2N be all the finite sequences with u1, . . . ,um /∈ B; so we have m < k2n. It is clear that for
all of these u1, . . . ,um the sets

B(i) = {w ∈ 2∗ |uiw ∈ B}
are again decidable bars that are closed under extensions. So applying WWKL(k) m times we can find Ni
such that ∣∣∣{u /∈ B(i)

∣∣∣ |u|= Ni

}∣∣∣
2Ni

< k .

Set M = max{N1, . . . ,Nm}. Since all B(i) are closed under extensions this implies that∣∣∣{u /∈ B(i)
∣∣∣ |u|= M

}∣∣∣< k2M .

Now, if u ∈ 2N+M is such that u /∈ B, then it must be of the form u = uiw with w /∈ B and w ∈ 2M . Hence∣∣{u ∈ 2N+M
∣∣u /∈ B

}∣∣= ∣∣∣∣∣ m⋃
i=1

{
uiw ∈ 2N+M

∣∣∣w /∈ B(i)
}∣∣∣∣∣

=
m

∑
i=1

∣∣∣{w ∈ 2M
∣∣∣w /∈ B(i)

}∣∣∣
< mk2M < k2Nk2M = k22N+M ,

and we are done.

As conjectured above WWKL is likely to play an important role in measure theory. One could, of
course, also consider the principles which are weakenings of FANc and FAN

Π0
1

(and even UCT) in the
same way that WWKL is a weakening of FAN∆.

Question 5. What are the following principles equivalent to?
If B⊂ 2∗ is a c-bar (or Π0

1-bar), then

lim
n→∞

|{u /∈ B | |u|= n}|
2n = 0 .

eventually.
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3.3 FAN∆

As mentioned in the introduction FAN∆ deserves the prominence of being involved in the first “proper”
equivalence of constructive reverse mathematics. It is also a fairly robust statement, as the next lemma
shows.

Lemma 3.3.1. If B is decidable bar, then there exists a decidable bar B′ that is closed under extensions,
such that B is uniform only if B′ is.

Proof. If B is a decidable bar, then it is easy to see that

B′ = {u ∈ 2∗ |∃n6 |u| : un ∈ B}

is also a decidable bar that has the required properties.

Another interesting result is the following lemma. Surprisingly it has, to our knowledge, not found
many uses apart from [36, Chapter 6.2].

Lemma 3.3.2. If B is a countable bar, then there exists a decidable bar B′ which is uniform only if B is.

Proof. Let B = {bn}n>1 a countable bar. Then it is easy to see that

B′ = {u ∈ 2∗ |∃i ∈ N : ∃v ∈ 2∗ : (i6 |u|∧u∗ v = bi)}.

has the desired properties.6

Proposition 3.3.3. The following are equivalent to FAN∆

1. (POS). Every uniformly continuous, positive-valued function f : [0,1]→ R+ has a positive infimum.

2. Every uniformly continuous, positive-valued function f : 2N→ R+ has a positive infimum.

3. Two compact subsets A,B of a metric space that are such that d(a,b)> 0 for all a ∈ A and b ∈ B
are a positive distance apart.

4. The Heine-Borel theorem for compact metric spaces and countable coverings with open balls.

5. Dini’s theorem: If ( fn)n>1 : [0,1]→ R is an increasing sequence of uniformly continuous functions
converging point-wise to a uniformly continuous f : [0,1]→ R, then the convergence is uniform.

Proof. The equivalence of FAN∆ to POS is, as already mentioned, the first result in CRM and is proved
in [71] and [36, Section 6.2]. The equivalence of 1 and 2 follows from Lemmas 3.1.3 and 3.1.1. The
equivalence of FAN∆ to 4 is in [43, Section 4.2].

It is easy to see that 3 implies 1, by applying the latter to the graph of a uniformly continuous, positive-
valued function f and the unit interval [0,1]×{0} as subsets of the Euclidean plane. To see that 2 implies
3 let A,B be subsets such that d(a,b) > 0 for all a ∈ A and b ∈ B. By [108, Chapter 7 Corollary 4.4]
there exists surjective, uniformly continuous functions g1 : 2N→ A and g2 : 2N→ B. Then the function
h : 2N→ R defined by

h(α) = d(g1(α
e),g2(α

o)) ,

where, αe = α0α2α4 . . . and αo = α1α3α5 . . . . Then h is easily seen to be continuous, and such that
h(α) > 0 for all α ∈ 2N. Applying 2 implies that there exists ε > 0 such that h(α) > ε for all α ∈ 2N.
Since g1 and g2 are surjective also d(a,b)> ε for all a ∈ A and b ∈ B.

The equivalence to Dini’s theorem is proved in [17].
6The full proof can be found in [43, Lemma 4.1.1].



CHAPTER 3. THE FAN THEOREMS 57

Even though UCT has not been introduced yet, this seems to be a good place to ask the following
question.

Question 6. Is Dini’s theorem [17] for point-wise continuous functions equivalent to UCT?

Proposition 3.3.4. FAN∆ is equivalent to the following statement: Consider a uniformly continuous
f : [0,1]→ R such that 0 < f (x)< x for all x ∈ (0,1). Now let x0 ∈ (0,1) be arbitrary and consider the
sequence defined by xn+1 = f (xn) = f n(x0). The sequence (xn)n>1 converges to 0.7

Proof. Clearly (xn)n>1 is strictly decreasing. Now assume FAN∆ and let ε > 0 be arbitrary. We want to
show that there is n ∈ N such that xn < ε . The function g : [ε,x1]→ R defined by

g(x) = x− f (x)

is uniformly continuous. It is also such that g(x)> 0 for all x ∈ [ε,x1]. So by POS, which as we have seen
above is equivalent to FAN∆, there exists δ > 0 such that g(x)> δ for all x ∈ [ε,x1]. Now choose n such
that 1−nδ < ε . Then clearly xn < ε and we are done.

Conversely consider a decidable bar B⊂ 2N. Let un be an enumeration of all elements of B such that
un[:−1] = un(|un|−1) /∈ B. Notice that either un = 0∗ · · ·∗0 or we can find its immediate “left” neighbour
uL(n) that is there exists w such that un = w∗1∗0k and uL(n) = w∗0∗1` for some k, `> 0. We may assume
that u1 = 1∗ · · · ∗1. Now define a function f (0,1)→ R by interpolating linearly between the points

(F(un),F(uL(n))) ,

where F = F
1
2 as defined in Section 3.1, which simply maps every binary sequence onto the real with the

matching binary expansion. Then f satisfies the condition above. Thus we can consider the sequence xn,
again defined as above, where x0 = F(u1) < 1. Let k be such that uk = 0 ∗ · · · ∗ 0. If xn converges to 0,
then there must be N such that f N(x0)< 2−(|uk|+1). It is clear that the sequences u1,uL(1) . . . ,uLN(1) = uk

describe a cover of 2N. In other words their maximum length is a uniform bound for B.

Proposition 3.3.5. FAN∆ is equivalent to the statement that every tail-located sequence in R that is
eventually bounded away from every point in [0,1] is eventually bounded away from the entire set.

Proof. Immediate consequence of Lemmas 3.1.9 and 3.1.10.

Next, we extend the results of Berger in [7]. First we need a lemma, whose proof idea is based on the
proof of the main result in the paper mentioned.

Lemma 3.3.6. For every f : 2N→ R that has a continuous (functional) modulus of continuity and for
every e ∈ N, there exists a decidable bar B that is uniform only if there exists N ∈ N such that

αN = βN =⇒ | f (α)− f (β )|< 2−e .

Proof. Say f : 2N→R has a continuous modulus that is there exists a continuous function µ : 2N×N→N
such that

∀α,β ∈ 2N : ∀e > 0 :
(

αµ(α,e) = β µ(α,e) =⇒ | f (α)− f (β )|< 2−e
)
.

Now let e ∈ N be arbitrary and define

B = {u ∈ 2∗ |µ(u∗000 . . . ,e)6 |u|} .
7This is Exercise K8—one of many in a very entertaining classical book on analysis [74].
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Clearly B is decidable. It is also a bar: for let α ∈ 2N be arbitrary. Since µ is continuous itself there exists
M such that µ(α,e) = µ(β ,e) for all β ∈ 2N with αM = βM. For M′ = max{M,µ(α,e)} we must have

µ(αM′ ∗000 . . . ,e) = µ(α,e)6M′ ,

and therefore αM′ ∈ B.
Next, assume B is uniform. So there exists N ∈ N such that

∀α ∈ 2N : ∃n6 N : αn ∈ B .

So for any α ∈ 2N there is n 6 N such that µ(αn ∗ 000 . . . ,e) 6 n 6 N, and hence for all β ∈ 2N with
αN = βN we have | f (α)− f (β )|< 2−e.

Proposition 3.3.7. The following are equivalent to FAN∆

1. Every continuous function f : X → Y , with a continuous modulus of continuity is uniformly continu-
ous, where X is a compact and Y an arbitrary metric space.

2. Every continuous function f : 2N→ R with a continuous modulus of continuity is uniformly continu-
ous.

3. Every continuous function f : 2N→ N with a continuous modulus of continuity is uniformly continu-
ous.

Proof. It is clear that 2 implies 3 and that 1 implies 2. In [7] it is shown that if B is a decidable bar, then

f (α) = min{n ∈ N |αn ∈ B}

is a continuous function with itself (!) as a continuous modulus of continuity. Furthermore it is shown that
if f is uniformly continuous then B is uniform. Hence 3 implies FAN∆. Next, with the help of Lemma
3.3.6, we can show that FAN∆ implies 2.

So we are done if we can show that 2 implies 1. To this end let f : X → Y be a uniformly continuous
map with a continuous modulus of continuity µ : X×N→ N such that

∀x,y ∈ X : ∀e ∈ N : d(x,y)< 2−µ(x,e) =⇒ d( f (x), f (y))< 2−e .

Let g : 2N→ X the mapping from Proposition 3.1.6. Using countable choice we can therefore construct
τ : N→ N such that

∀α,β ∈ 2N : ∀n ∈ N : ατ(n) = βτ(n) =⇒ d(g(α),g(β ))< 2−n .

Furthermore, for α ∈ 2N let αe = α(0)α(2)α(4) . . . and αo = α(1)α(3)α(5) . . . . Now consider the
function h : 2N→ R defined by

h(α) = d( f (h(αe)), f (h(αo))) .

It is straightforward to show that η : 2N×N→ N defined by

η(α,n) = 2τ(µ(g(αe),n))

is a continuous modulus of continuity for h. By 2 it is also uniformly continuous. So for an arbitrary ε > 0
there exists n such that αn = βn implies |h(α)−h(β )|< ε . By Lemma 3.1.5 there exists δ > 0 such that
for x,y ∈ X with d(x,y)< δ there exist α,β ∈ 2N such that

αn = βn∧ x = g(α)∧ y = g(β ) .
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Now define γ and γ ′ by
γ = α(0)β (0)α(1)β (1) . . .

and
τ = α(0)α(0)α(1)α(1) . . . .

That way γe = τe = τo = α and γo = β . Furthermore γn = τn, and hence

ε > |h(γ)−h(τ)|
= |d( f (h(γe)), f (h(γo)))−d( f (h(τe)), f (h(τo)))|
= |d( f (h(α)), f (h(β )))−d( f (h(α)), f (h(α)))|
= d( f (h(α)), f (h(β ))) = d( f (x), f (y)) .

That means that δ is a modulus of uniform continuity for ε , and we are done.

Definition 3.3.8. We will call a function f : [0,1]→R fully located if, f ([a,b]) is located for every a < b.

Classically every function is fully located. Constructively every uniformly continuous function
[0,1]→ R is fully located, however the converse does not hold, as is shown in Proposition 5.3.3, which
will be a consequence of the following lemmas.

Lemma 3.3.9.

1. Assume f : [0,1]→R is fully located. Then f is point-wise continuous if it is sequentially continuous.

2. If f (x)> 0 for all x ∈ [0,1], then f is fully located if and only if 1
f is.

Proof. 1. Let x ∈ [0,1] and ε > 0 be arbitrary. Using our locatedness assumption, we can decide for
every n ∈ N whether ∃y ∈ B2−n(x) : | f (y)− f (x)|< ε or whether ∀y ∈ Bx(2−n) : | f (y)− f (x)|> ε

2 .
So using countable choice we can construct a binary sequence (λn)n>1 and a sequence of reals
(xn)n>1 such that |xn− x|< 1

2n and

λn = 0 =⇒ | f (xn)− f (x)|> ε

2
,

λn = 1 =⇒ ∀y : |x− y|< 1
2n =⇒ | f (y)− f (x)|< ε .

Since xn converges to x and f is sequentially continuous there exists N such that for all n> N we
have | f (xn)− f (x)| < ε

2 . This in turn implies that λN = 1, which immediately yields the desired
property. Hence f is point-wise continuous.

2. Straightforward.

Lemma 3.3.10. For every decidable bar B there exists a point-wise continuous, fully located function
f : [0,1]→ R such that f is bounded if and only if B is uniform; and vice versa.

Proof. First, start with a decidable bar B that is without loss of generality closed under extension. We are
going to adapt the construction in [36, Theorem 2.2.7]. Even though, given a bar, we could also define a
function f : 2N→ N from it and extend it to a function f̂ : [0,1]→ R, proving that if f is fully located,
then f̂ is seems tedious, so we are going to go a different route. Since B is decidable so is T = ¬B, and
since B is closed under extensions T is closed under restriction, i.e. a tree. Furthermore T does not admit
infinite paths. Now consider the set

S =
{
(F1/3(u),2−|u|) ∈ R2

∣∣u ∈ T
}
.
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It is easy to see that S is totally bounded and therefore located. Hence the function f : [0,1]→ R defined
by f (x) = d((x,0),S) exists and is uniformly continuous. So, since [a,b] is totally bounded, its image
under f also totally bounded and therefore located. Just as in [36, Theorem 2.2.7] the fact that T does not
admit infinite paths implies that f is positively valued. Furthermore if inf f > 0, then B is uniform. By the
previous lemma 1

f is fully located, and is such that it is bounded if B is uniform.
Conversely assume that f : [0,1]→ R is fully located, and point-wise continuous. Hence, using

countable choice, we can fix a decidable set B⊂ 2∗ such that

u /∈ B =⇒ ∃x ∈ Iu : f (x)> 2|u| ,
u ∈ B =⇒ ∀x ∈ Iu : f (x)< 2|u|+1 ;

where Iu are the intervals I
2/3
u defined above. We want to show that B is a bar, so let α ∈ 2N be arbitrary.

Since f ◦F2/3 is point-wise continuous there exists N ∈N such that | f ◦F2/3(α)− f ◦F2/3(β )|< 1 whenever
αN = βN. Now choose M > N such that f ◦F2/3(α)< M. Now assume that αM /∈ B. Then, by the choice
of B there exists y ∈ IαM such that f (y)> 2M. Since F2/3 is surjective on IαM (Lemma 3.1.1) there exists
β ∈ 2N such that F2/3(β ) = y and βM = αM. But that means that

f ◦F2/3(α)+ | f ◦F2/3(α)− f ◦F2/3(β )|> f ◦F2/3(β )> 2M

which implies that f ◦F2/3(α)> 2M−1; but this is a contradiction to f ◦F2/3(α)< M 6 2M−1.
By definition B is also closed under extensions. Therefore, if B is uniform there exists N such that

αN ∈ B for all α ∈ 2N. Since [0,1]
⋃

u∈2N Iu that means that f (x)< 2N +1 for all x ∈ [0,1].

Corollary 3.3.11. FAN∆ is equivalent to every sequentially continuous, fully located function f : [0,1]→R
being bounded.

Remark 3.3.12. In RUSS there exists a point-wise continuous, fully located function f : [0,1]→ R which
fails to be bounded.

Proof. See Proposition 5.3.3.

3.4 FANc

In [8] in order to answer the question what kind of fan theorem is equivalent to the uniform continuity
theorem for functions 2N→N Berger introduced the notion of a c-bar. Not much later, the resulting princi-
ple FANc turned out to be equivalent to the “anti-Specker”-principle, which was conceived independently
from Berger’s work [11].

Proposition 3.4.1. The following are equivalent to FANc.

1. ASR
[0,1]

2. AS1
[0,1]

3. AS1
2N

4. For every compact X and every one-point extension Y ASY
X holds.

5. Every point-wise continuous function f : 2N→ NN is uniformly continuous.

6. Every point-wise continuous function f : 2N→ N is uniformly continuous.
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7. Every point-wise continuous function f : 2N→ 2 is uniformly continuous.

8. Every point-wise equicontinuous sequence of mappings of [0,1] into R is uniformly sequentially
equicontinuous.

9. Every point-wise continuous mapping of [0,1] into a metric space is uniformly sequentially continu-
ous.

Proof. Even though the equivalence FANc ⇐⇒ ASR
[0,1] has been shown in [11] it also follows from

Lemmas 3.1.9 and 3.1.10. For the equivalence between ASR
[0,1] and 4 see [44], for the one between ASR

[0,1]

and AS1
[0,1] see [30], and for the one between FANc and AS1

2N see [43]. The equivalence between 6 and
FANc has been shown by Berger in [8]. Clearly 5 =⇒ 6 =⇒ 7. To see that also 7 =⇒ 5 let f : 2N→NN

be a point-wise continuous function and ε > 0 arbitrary. First choose N such that 2−N < ε . Now define
g : 2N→{0,1} by

g(α) =

{
0 if ∀i6 N : f (αe)(i) = f (αo)(i)
1 otherwise,

where, as before, αe = α0α2α4 . . . and αo = α1α3α5 . . . . The function g is continuous, since for an
arbitrary α there exists M such that for arbitrary β we have∣∣ f (αeM ∗β )− f (αe)

∣∣< 2−N and
∣∣ f (αoM ∗β )− f (αo)

∣∣< 2−N ,

which means that for all i6 N

f (αeM ∗β )(i) = f (αe)(i) and f (αoM ∗β )(i) = f (αo)(i).

So either f (αo)(i) = f (αe)(i) for all i 6 N or not. In the first case g(α) = 0 and in the second case
g(α) = 1. But by the choice of M, also for any β we have g(α(2M)∗β ) = g(α), and hence g is point-wise
continuous. By our assumption it is therefore uniformly continuous, which means we can find an M as
above which is independent of α , which immediately gives us uniform continuity of f .

Finally, the equivalences between ASR
[0,1], 8, 9 are proved in [25].

Notice that, unlike in the case of variations of UCT, AS and many other principles it is not possible to
replace 2N with [0,1] in 6 and 7 above, since a point-wise continuous function f : [0,1]→ N is necessarily
constant.

Proposition 3.4.2 (Variant of POS). FANc is equivalent to every point-wise continuous function f : 2N→N
being bounded.

Proof. Clearly, this statement is implied by Part 6 of the above proposition and therefore follows from
FANc. Conversely we can directly see that it implies FANc. Given a c-bar B with C ⊂ 2∗ such that

u ∈ B ⇐⇒ ∀w ∈ 2∗ : (u∗w ∈C) ,

we can define f : 2N→ N by
f (α) = max{n ∈ N |αn /∈C} .8

The fact that B is a c-bar and C is decidable ensures that this is a well-defined and point-wise continuous
function. If f is bounded by N, then this N also gives us a uniform bound for B.

8Notice that f (α) = min{n ∈ N |αn ∈ B} would not be well-defined, unless B would actually be a decidable bar.
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3.5 UCT

The uniform continuity theorem is the standard first step in numerous theorems of classical analysis. It
states:

(UCT) Every point-wise continuous function f : [0,1]→ R is uniformly con-
tinuous.

Its importance in shaping the development of constructive mathematics cannot be overrated. It is not
provable with purely constructive methods (i.e. in BISH), which led Brouwer to the notion of bar induction,
in order to be able to prove it. Bishop sneakily avoided such additional assumptions by simply building it
into his definition of a continuous function.

It is surprising, that UCT for real-valued functions on [0,1] suffices to show the most general conceiv-
able one, as proved in [29]

Proposition 3.5.1. UCT is equivalent to the statement that every point-wise continuous map X → Y on a
compact metric space X and into an arbitrary metric space Y is uniformly continuous.

Also in [29], and maybe even more surprising, it is shown it is also equivalent to some weaker versions

Proposition 3.5.2. UCT is equivalent to the following

1. Every point-wise continuous function f : [0,1]→ R is bounded. (That is [0,1] is pseudo-compact.)

2. Every point-wise continuous function f : 2N→ R is bounded.

3. Every point-wise continuous mapping of [0,1] into R is integrable.

Notice that the construction to prove the last equivalence in the above proposition relies on creating a
function that has “very high peaks.” An interesting question is therefore:

Question 7. Is there a version of the fan theorem equivalent to the following statement: every bounded
point-wise continuous function f : [0,1]→ R is integrable.

It is folklore that the following holds.

Proposition 3.5.3. UCT is equivalent the statement that every point-wise continuous f : [0,1]→ R can
be uniformly approximated with polynomials.

Proof. Of course, if f can be uniformly approximated with polynomials, then f is uniformly continuous,
since polynomials are. Conversely the only non-constructive step in the normal proof that uses Bernstein
polynomials [59, Section 4.2.2] is to conclude that f is uniformly continuous, which is exactly what UCT
enables us to do.

Although the following proposition seems like a harmless variant of the previous one, it is actually very
different: Notice that for the converse direction the functions are not assumed to be uniformly continuous.
Somehow, just the fact that there are countably many of them suffices.

Proposition 3.5.4. UCT is equivalent to C([0,1]) being separable.
More precise: UCT is equivalent to the statement that there exists a sequence of point-wise continuous
functions fn : [0,1]→ R such that for all ε > 0 and all point-wise continuous f : [0,1]→ R there exists
n ∈ N with

∀x ∈ [0,1] : | fn(x)− f (x)|< ε .
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Proof. Obviously UCT implies that C([0,1]) is separable, just as in the classical proof. The interesting
part is the proof of the converse: Consider ( fn)n>1 dense in C([0,1]). By Proposition 3.5.1 it suffices to
show that every point-wise continuous g : [0,1]→ R is bounded. To this end consider the functions gn
defined by

gn(x) = max{0,1−|g(x)−n|} .

These have the property that gn(x)> 0 ⇐⇒ g(x)∈ (n−1,n+1). Thus the function G : [0,1]→R defined
by

G(x) = ∑
n∈N

gn(x)(max{ f1(x), . . . fn(x)}+1)

is well defined, and continuous. So there exists M ∈ N such that

∀x ∈ [0,1] : | fM(x)−G(x)|< 1 .

Now there cannot be x such that g(x)> M, since in that case gM(x) = 1 and gi(x) = 0 for all i 6= M. Hence
G(x) = max{ f1(x), . . . fn(x)}+1> fM(x)+1, which is a contradiction. Thus g(x)6M for all x ∈ [0,1]
and we are done.

Corollary 3.5.5. In RUSS, C([0,1]) is not separable.

In [49] the following variations were considered in the context of differential equations.

Proposition 3.5.6. The following are equivalent to UCT

1. (BUCT). Every bounded, continuous function f : [0,1]→ R is uniformly continuous.

2. (LUCT). Every continuous function f : [0,1]→ R is locally uniformly continuous.

3.6 FAN
Π0

1
and FANstable

We will start this subsection with an attempt to remove some confusion about principles running under
the name FAN

Π0
1
. Above we defined a Π0

1-bar to be a bar that is the intersection of decidable sets that are

closed under extension. Equivalently one often finds the following definition for a Π0
1-bar B. There exists

a decidable set S⊂ 2∗×N such that

1. u ∈ B ⇐⇒ ∀n ∈ N : (u,n) ∈ S

2. If (u,n) ∈ S, then for any w ∈ 2∗ also (u∗w,n) ∈ S.

However, some authors9 have also referred to bars only satisfying the first condition as Π0
1-bars. In

the following we will call these bars stable bars. Notice that stable bars are exactly bars that are the
complement of a countable set. Of course another complexity of a bar leads to another fan theorem.

(FANstable) Every stable bar is uniform.

Trivially,
FANfull =⇒ FANstable =⇒ FAN

Π0
1
,

but the converses seem unlikely. The unproven (and probably false) assumption that FANstable and FAN
Π0

1
are equivalent can be explained by Lemma 3.3.1 taken together with the following observation.

9Including ourself.
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Proposition 3.6.1. If a stable bar B is closed under extensions, then B is a Π0
1-bar.

Proof. This proof is based on one by J. Berger.10 Notice that a similar construction is also used in the
proof of Theorem 2 of [48] as well as in the proof of Proposition 2 of [44] and in the proof of Proposition
3.6.2. Assume that the bar B is the intersection of the decidable sets Bn. Now define

B̃n = {u ∈ 2∗ |∀w : (|w|6 n−|u| =⇒ u∗w ∈ Bn)} .

By construction every B̃n is closed under extensions. We want to show that

B =
⋂
n>1

B̃n .

To see that “⊂” holds let u ∈ B, which means that u∗w ∈ B for all w ∈ 2∗. This implies that for all w ∈ 2∗

and all n ∈ N we have u∗w ∈ Bn and in particular that u∗w ∈ B̃n. For the other direction “⊃” consider
u such that u ∈

⋂
n>1 B̃n, and consider an arbitrary m ∈ N. If m6 |u|, then write u = um∗w. For this w

we have |w|6 m−|u|, and therefore, since u ∈ B̂m, also u ∈ Bm. If m > |u|, then taking the ε , the empty
sequence, as w we get u∗w = u ∈ Bm. Altogether u ∈ Bm for any m and therefore u ∈

⋂
n>1 Bn = B.

With the help of this proposition it seems as if we can show that for every stable bar there exists an
equivalent Π0

1 bar. However, the missing step is to prove that for every stable bar there exists an equivalent
stable bar that is closed under extensions. The proof of Lemma 3.3.1 does not generalise to this case, even
if it seems on first glance easy to adapt the proof somehow. Notice that it would be enough to show that
the closure (under extensions) of a stable bar is stable.

Our first FAN
Π0

1
-equivalence is a sequential version of 3.3.3.1.

Proposition 3.6.2. FAN
Π0

1
is equivalent to the following statement:

Every equi-continuous, and equi-positive,11 sequence of functions ( fk)k>1 : 2N→ R is such that there
exists δ > 0 such that

fk(α)> δ for all α ∈ 2N and k ∈ N .

Proof. First, assume that FAN
Π0

1
holds. Using countable choice fix decidable sets Bn,k ⊂ 2∗ such that

u /∈ Bn,k =⇒ ∃w ∈ 2∗ : |w|+ |u|6 n∧ fk(u∗w)< 2−|u| , (3.11)

u ∈ Bn,k =⇒ ∀w ∈ 2∗ : |w|+ |u|6 n =⇒ fk(u∗w)> 2−(|u|+1) . (3.12)

We will show that B=
⋂

n,k∈N Bn,k is a bar. To this end let α ∈ 2N be arbitrary. Since ( fk)k>1 is equi-positive
there exists N such that fk(α)> 2−(N−1) for all k ∈ N. Now choose M ∈ N such that

∀β : βM = αM =⇒ | fk(β )− fk(α)|< 2−N .

Let K = max{N,M}. For any k ∈ N and w ∈ 2∗ we get that

fk(αK ∗w)> fk(α)−| fk(αK ∗w)− fk(α)| ,

> 2−(N−1)−2−N

> 2−N > 2−K .

10Personal Correspondence, 18th Mar 2011.
11We call a sequence of functions ( fk)k>1 : X →R equi-positive if for every x ∈ X there exists ε > 0 with fk(x)> ε for all k ∈N.
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Hence αK ∈ Bn,k, since case 3.11 is ruled out. Therefore B is a bar. By construction it is also closed under
extensions and we can apply FAN

Π0
1
, to get L ∈ N such that u ∈ B for all u ∈ 2L. So for all α ∈ 2N we get,

by continuity, fk(α)> 2−(L+1), which concludes one direction of the proof.
Conversely, let B =

⋂
k∈N Bk a stable bar, with decidable sets Bk that are closed under extensions.

Define fk : 2N→ R by
fk(α) = 2−min{` ∈ N |α` ∈ Bk } .

We will show that ( fn)k>1 is equi-continuous and equi-positive. To this end let α ∈ 2N be arbitrary. Since
B is a bar there exists n ∈ N such that αn ∈ B, which means that for all k ∈ N we can find the minimal
nk 6 n such that αnk ∈ Bk. This, in turn, implies that if βn = αn, then βnk = αnk and therefore

fk(α) = fk(β ) = 2−nk > 2−n > 0 .

Thus we have both shown equi-positivity and equi-continuity. By our assumptions there exists N ∈ N
such that fk(α)> 2−N for all k ∈ N and α ∈ 2N. This translates back, for all α ∈ 2N, into the existence of
m6 N such that αm ∈ Bk. Since the sets Bk are closed under extensions also αN ∈ Bk for all n ∈ N and
α ∈ 2N. Therefore αN ∈ B for all α ∈ 2N, which means B is uniform.

Proposition 3.6.3. The following are equivalent to FAN
Π0

1

1. Every locally constant function f : X → Y is uniformly locally constant; where X is a compact and
Y an arbitrary metric space.

2. Every locally constant function f : 2N→ R is uniformly locally constant.

Proof. The equivalence of FAN
Π0

1
to 2 is shown in [10]. The direction 1 =⇒ 2 is trivial. To see that

the converse is valid let f : X → Y be a locally constant function. As usual, we can find a surjective and
uniformly continuous function g : 2N→ X [108, Chapter 7 Corollary 4.4]. Now consider the function
h : 2N→ R defined by:

h(α) = d( f (αe), f (αo)) ,

where αe is the sequence of all even terms of α and αo the one of all odd ones (compare the proof of
Proposition 3.3.7). Since f is locally constant so is h. By our assumption that means that h is globally
constant, so there exists N such that αN = βN implies that h(α) = h(β ). Now given α,β with αN′ = βN′

where N′ > N/2 consider γ = α0β0α1β1 . . . and η = α0α0α1α1 . . . . By that construction γN = ηN, so
h(γ) = h(η). So

0 = d( f (α), f (α)) = d( f (ηe), f (ηo)) = h(η) = h(γ) = d( f (γe), f (γo)) = d( f (α), f (β )) .

In other words f (α) = f (β ). Hence f is globally constant.

Remark 3.6.4. Notice that for functions f : 2N→ N the notion of (uniformly) locally constant coincides
with the one for (uniformly) point-wise continuous. For such functions the statement that “every locally
constant function is uniformly locally constant” is therefore equivalent to FANc.

Maybe the most interesting equivalence is the following, involving a notion well known from the
Arzela-Ascoli-Theorem in analysis. A proof can be found in [48].

Proposition 3.6.5. FAN
Π0

1
is equivalent to the statement that every equi-continous sequence of functions

[0,1]→ R is uniformly equicontinuous.
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It seems feasible to also prove this theorem for functions functions of type 2N→ R and for functions
f : X → Y , where X is an arbitrary compact and Y is an arbitrary metric space. This is a common theme
throughout a lot of the results in this chapter; namely that 2N and [0,1] are often interchangeable without
changing the classification. However, with the anti-Specker principle we have to be a bit careful. Here the
space that 2N or [0,1] are embedded in makes a difference, as was shown in [44].

Proposition 3.6.6. The following are equivalent to FAN
Π0

1
.

1. ASR2

[0,1]

2. ASY
X for any compact subspace X of a metric space Y

3.7 FANfull

There is, maybe surprisingly, hardly any equivalence to the full, unrestricted, fan theorem. The only one,
which is almost a kind of restatement, is that 2N is cover-compact.

Proposition 3.7.1. The following are equivalent

1. FANfull

2. Every compact (totally bounded and complete) metric space is cover compact.

3. 2N is cover compact.

Proof. Trivially 2 implies 3. To see that 3 implies 1 let B be an arbitrary bar. The sets Bu =
{

α ∈ 2N
∣∣α|u|= u

}
form an open cover of 2N. If this cover can be refined to a finite cover Bu1 , . . . ,Bun , then max{u1, . . . ,un}
is a uniform bound for B. Finally, assume 1 and let X be totally bounded and complete. We can find a
continuous g : 2N→ X [108, Chapter 7 Corollary 4.4]. Now if (Ui)i∈I is an open cover of X let

B =
{

u ∈ 2N
∣∣∃i ∈ I : ∀β ∈ 2N : u∗β ∈ g−1(Ui)

}
.

For every α ∈ 2N there exists i ∈ I such that g(α) ∈Ui, or equivalently α ∈ g−1(Ui). Since g−1(Ui) is
open there exists n such that αn∗β ∈ g−1(Ui) for all β ∈ 2N. So B is a bar. Applying FANfull yields n
such that u ∈ B for all u ∈ 2n. That means we can find finitely many iu such that (g−1(Uiu))u∈2n covers 2N.
But since g is surjective this means that (Uiu)u∈2n cover X .

Given the similarities between them we might be tempted to try and replace 2N with [0,1] in the above
proposition. However, the work in [88] shows that [0,1] being cover compact is strictly weaker than
FANfull. This is a very subtle distinction since in the case of a countable cover with basic opens the cover
compactness of [0,1] is equivalent to the one of 2N (and both are equivalent to FAN∆ [43]).
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3.8 Comparing the Fan Theorems

The differences between the fan theorems are overall very subtle and often confusingly minute. Since many of the results in this section are variations
of each other, we hope that the following table might highlight some of the differences.

FAN∆ FANc UCT FAN
Π0

1

Uniform conti-
nuity

Every pwc. fully located f :
[0,1]→ R is uc.
Every f : [0,1] → R with a
pwc. modulus of cont. is uc.

Every pwc. f : 2N→ N is uc.
Every pwc. f : [0,1]→ R is
usc.

Every pwc. f : [0,1] → R is
uc.
Every pwc. f : 2N→ R is uc.

Anti-Specker ASR
[0,1] for tail-located se-

quences
ASR

[0,1], AS1
[0,1], AS1

2N , ASR2

[0,1]

Boundedness
statements

POS Every pwc. f : 2N → N is
bounded.

Every pwc. f : 2N→ R or f :
[0,1]→ R is bounded.

Equicontinuity Every ec. fn : [0,1] → R is
usec.

Every ec. fn : [0,1]→R is uec.

constancy Every locally const. f : 2N→
N is globally const.

Every locally const. f : 2N→
R is globally const.

The following abbreviations are used:

pwc: point-wise continuous

uc: uniformly continuous

usc: uniformly sequentially continuous

ec: equicontinuous (i.e. point-wise equicontinuous)

uec: uniformly equicontinuous

usec: uniformly sequentially equicontinuous

We can recognise the following themes.

• FANc is involved whenever sequential continuity or sequences of real numbers are involved.

• FAN
Π0

1
is involved in sequences of functions.

• Introducing locatedness assumptions reduces principles to FAN∆.



Chapter 4

BD-N and Below

Together with Weak Markov’s principle (Section 2.2), BD-N occupies a special and rare place in construc-
tive mathematics: it is accepted in CLASS, in INT, as well as in RUSS. However, it is not accepted in
Bishop style constructive mathematics (BISH). One might think that after reading Proposition 4.1.1, which
says that BD-N is equivalent to every sequentially continuous function on a separable metric space being
point-wise continuous, one fully understands this principle. However BD-N does appear in some quite
unexpected places, and has an entire zoo of weaker principles below it.

4.1 BD-N

A subset S of N is pseudobounded if
lim
n→∞

sn

n
= 0

for each sequence (sn)n>1 in S. This is equivalent to assuming that for every sequence (sn)n>1 in S we
have

sn < n

eventually.
Trivially, every bounded set is pseudobounded, but the converse is more subtle and the content of our

next principle.

(BD-N) Every inhabited, countable, pseudobounded subset of N is bounded.

One can readily show that when dealing with a decidable set one can establish the consequence:

Proof. Let S be a inhabited, decidable and pseudobounded subset of N. Choose s0 ∈ S and define a
sequence by

sn+1 =

{
n+1, n+1 ∈ S;
s0, n+1 /∈ S.

As S is pseudobounded there is M such that for all i≥M si < i. We claim that S⊂ {1, . . . ,M}. For assume
that there is a k ∈ S such that k > M. Then k = sk < k a contradiction.

F. Richman has done a wonderful job of showing that there are many alternative equivalent notions for
pseudobounded [96]. The most surprising one may be that a subset A of N is pseudobounded if and only if
every nonempty subset of A that is detachable from N is finite.

68
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The reason for H. Ishihara to investigate BD-N was the question whether constructively there is a
difference between sequential and point-wise continuity. The following result is a slight improvement of
his original result [65], since there he showed that for every pseudobounded and countable set there exists
a separable space and a sequentially continuous function such that if that function is point-wise continuous,
then the set is bounded. Our construction BD-N ⇐⇒ 2 is not only, arguably, simpler it also shows that it
suffices to concentrate on Baire space.1

Proposition 4.1.1. The following are equivalent to BD-N.

1. Every sequentially continuous map on a separable metric space is point-wise continuous.

2. Every sequentially continuous map f : NN→ N is point-wise continuous.

3. Every sequentially continuous map f : NN→ N is locally bounded.

Proof. BD-N ⇐⇒ 1 is shown in [65]. Moreover, it is clear that 1 =⇒ 2, and that 2 =⇒ 3, so it
remains to show that 3 =⇒ BD-N. Let A = {an} be a countable, pseudobounded subset of the natural
numbers. We may assume that an is non-decreasing. Notice that for all α ∈ NN the sequence α̂ defined by
α̂(n) = ∑

n
i=1 α(i)+1 is strictly increasing. In particular 0̂ = id. Conversely, for every strictly increasing

β ∈ NN there exists γ with γ̂ = β , but we will not use this fact.
Since A is pseudobounded, the function f : NN→ N defined by

f (α) = max
{

n ∈ N
∣∣∣aα̂(n) > n

}
is well-defined. It is also easy to see that f is strongly extensional and that LPO implies that it is sequentially
continuous. Hence, using a corollary to Ishihara’s tricks [46, Corollary 3.4.], we get that f is sequentially
continuous. (Alternatively, sequential continuity also follows from the uniform sequential continuity of f
as proved directly below.) Our assumptions then imply that f is locally bounded. So there exist N,K such
that, if αN = 0, then f (α)6 K. That means that if we take M = max{N,K} we have that if αM = 0, then
f (α)6M.
We will show that there cannot be i > M with ai > M+1. If there were we could consider β ∈ 2N defined
by

β = 0 . . .0︸ ︷︷ ︸
M

(i−M)0 . . . ,

so that βM = 0 and β (M+1) = i−M. This way β̂ (M+1) = i, which means that a
β̂ (M+1) = ai > M+1

and therefore f (β )>M+1. But this gives a contradiction, since βM = 0, which means that f (β )6M,
by our choice of M. That means that max{a1, . . . ,aM,M+1} is an upper bound of A and therefore BD-N
holds.

Proposition 4.1.2. The following are equivalent to BD-N.

1. Every uniformly sequentially continuous mapping of a separable metric space into a metric space is
uniformly continuous.

2. Every uniformly sequentially continuous map f : NN→ N is uniformly continuous.

3. Every uniformly sequentially continuous map f : NN→ N is locally bounded.

1Since every separable metric space is a continuous image of Baire space one could probably get the same result by lifting the
original equivalence. However, that would involve not only showing that every separable metric space is the continuous image of
Baire space [108], but also that this embedding has some sort of openness property.
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Proof. In [35] it is shown that BD-N is equivalent to 1. Clearly 1 =⇒ 2, and 2 =⇒ 3, so it remains to
show that the latter implies BD-N. To this end let A = {an} be a countable, pseudobounded subset of the
natural numbers, and define f in the same way as in the proof of Proposition 4.1.1. We want to show that f
is uniformly sequentially continuous. Let αn and βn be sequences such that d(αn,βn)→ 0 as n→∞. More
specificly, with the help of countable choice, we can choose a modulus µ : N→ N such that αin = βin for
all i> µ(n). Now, for every n we can decide whether there is an i with

µ(n)6 i < µ(n+1)∧ f (αi) 6= f (βi)

or not. In the first case there must be kn such that akn > n: for assume there is such i with f (αi) 6= f (βi) such
that αin = βin. Then either f (αi)> n or f (βi)> n, since if both were 6 n we would have f (αi) 6= f (βi).
But that means that there is ` > n such that either

aα̂i(`)
> ` > n or a

β̂i(`)
> ` > n .

In the first case let kn = α̂i(`), in the second case let kn = β̂i(`).
Now define

γn =

{
kn in the first case
n otherwise.

Since A is pseudobounded there exists N such that for all n> N we have aγ(n) 6 n. But that means that for
all n> N we cannot be in the first case, which means that we must have f (αn) = f (βn). So f is uniformly
sequentially continuous.

That means that if can apply 3 to get that f is locally bounded, and continue as in the proof of
Proposition 4.1.1.

We can also show that 3 of Proposition 4.1.1 implies 2 of Proposition 4.1.2 directly without referring
to BD-N, by using the following lemma. This might seem like a fairly obscure point to make, however the
construction itself is quite interesting and the result also works for 2N.

Lemma 4.1.3. If f : NN → N (or 2N → N) is uniformly sequentially continuous, then there exists a
g : NN→ N (respectively 2N→ N) such that

• g is sequentially continuous, and

• if g is locally bounded at 000 . . ., then f is uniformly continuous.

Proof. We will only treat the case NN; the case of 2N can be treated analogously. We first need to introduce
some notation. We assume that we have fixed a bijection ϕ : N2→ N. Given γ ∈ NN, we can slice up γ

into countably many sequences and turn it into a double sequence (' γ) : N×N→ N defined by

(' γ)(m,n) = γ(ϕ(m,n)) .

We can also zip a double indexed sequence σ : N×N→ N up into a single indexed sequence (. σ) ∈ NN

by setting
(. σ)(n) = σ(ϕ−1

1 (n),(ϕ−1
2 (n)) .

These operations are inverses, so we have

'. σ = σ and .' γ = γ .

Again, consider an arbitrary γ ∈ NN, and define two sequences of sequences α(n) and β (n) by

α
(n) =' γ(2n, ·), and β

(n) = ' γ(2n, ·)(n)∗ ' γ(2n+1,n+1)∗ γ(2n+1,n+2)∗ . . . .
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These sequences are constructed such that

α(n)(n) = β (n)(n) ,

that means d(α(n),β (n))→ 0. Since f is uniformly sequentially continuous f (α(n)) = f (β (n)) eventually.
That means the number ∣∣∣{n ∈ N

∣∣∣ f (α(n)) 6= f (β (n))
}∣∣∣ (4.1)

exists. So we can define a function g : NN → N that maps γ to that number. It is easy to see that g is
strongly extensional and that it is point-wise continuous provided LPO holds. Thus, using a corollary to
Ishihara’s tricks [46, 64] we can conclude that g is sequentially continuous.

Assume that g is locally bounded at 000 . . .. So there exists N,K such that for all α ∈ NN we have
g(0N ∗α)< K. Since ϕ is bijective there exists M such{

ϕ
−1
1 (i)

∣∣ i6 N
}

is bounded by 2M.
We claim that L = M +K is a modulus of constancy for f . Let µ,η such that µ(L) = η(L), but

f (µ) 6= f (η). Now consider the following sequence of sequences:

000 . . . ,000 . . . , . . . ,000 . . .︸ ︷︷ ︸
2M

,µ,η ,µ,η , . . . ,µ,η︸ ︷︷ ︸
2K

,000 . . . ,000 . . . , . . . .

If we combine these with . into a sequence ϑ we have the following properties:

1. ϑ(N) = 0 . . .0, and

2. ' ϑ(2i, ·) = µ for M < i6 L

3. ' ϑ(2i+1, ·) = ν for M < i6 L.

This is set up such that g(ϑ) = K, which is a contradiction to K being a local bound at 000 . . .. That means
that for any µ,η ∈ BS such that µ(L) = η(L), we have f (µ) = f (η).

From [33]

Proposition 4.1.4. The following are equivalent to BD-N

1. If T is a nonzero bounded linear mapping of a separable Hilbert space H into itself such that T ∗

exists and ran(T ) is complete, then T is open.

2. Every one-one self-adjoint sequentially continuous linear mapping from a Hilbert space onto itself
is bounded.

In [14] a weakened form of the usual Cauchy condition is considered. There a sequence (xn)n>1 in a
metric space (X ,d) is called almost Cauchy, if for any strictly increasing f ,g : N→ N

d(x f (n),xg(n))→ 0

as n→ ∞. A closer analysis of this and equivalent conditions can be found in [50]. The main theorem
proved in [14] is the following.

Proposition 4.1.5. BD-N is equivalent to the statement that every almost sequence in a semi-metric space
is Cauchy.
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Here a semi-metric space is a metric space not necessarily satisfying the triangle-inequality condition.
Notice that the statement is not provable in BISH for metric spaces (see [50] referring to [80]). Another
equivalence of BD-N concerns a lesser known fact of analysis. It together with its proof can be found in
[13]

Proposition 4.1.6. BD-N is equivalent to the statement that for all conjugate exponents p and q, if a is any
sequence of complex numbers such that ∑

∞
n=1 anxn converges for each x ∈ lp, then ∑

∞
n=1 |an|q has bounded

partial sums.

Lastly, we would like to mention that in [70] it is shown that BD-N is equivalent to two important
spaces being complete.

4.2 Below BD-N

Between, approximately, 2007 and 2010 a couple of statements were considered by researchers working
in CRM for which a proof in BISH could not be found, but that were all implied by BD-N. Naturally a
considerable amount of time was spent trying to prove that they were in fact equivalent to BD-N. As it
turned out around 2011 for most of them it could be shown that that could not be done, but that also they
could not be proved within BISH. These statements, and some additional ones, are the following:

Proposition 4.2.1. BD-N implies the following statements.

1. If X is separable, then AS1
X implies ASY

X for any Y ⊃ X.

2. FANc is equivalent to FAN
Π0

1
.

3. FANc is equivalent to UCT.

4. The anti-Specker property is closed under products in the sense that if AS1
X and AS1

Y holds, then also
AS1

X×Y holds.

5. The anti-Specker property implies pseudo-compactness. That is, if AS1
X and X is separable, then any

point-wise continuous function f : X → R is bounded.

6. The anti-Specker property implies totally boundedness That is, if AS1
X and X is separable, then X is

totally bounded.

7. A converse of the Riemann permutation theorem: if (an)n>1 is a sequence of real numbers such that
for all σ permutations the series

∞

∑
n=1

aσ(n)

converges, then (an)n>1 converges absolutely.

8. Every almost Cauchy sequence in a metric space is Cauchy.

Furthermore, 1 implies both 2 and 5, 2 implies 3, and 5 and 6 are equivalent and they also imply 3.

Proof. To see that 1 follows from BD-N let (xn)n>1 be a dense sequence in X ; without loss of generality
we can assume that every point is repeated infinitely often in the sequence (xn)n>1. Furthermore, consider
a sequence (zn)n>1 in Y that is bounded away from every point in X ⊂ Y . Now define the set

A =
{

n ∈ N
∣∣∃i, j > n : d(zi,x j)< 2−n

}
∪{0} .
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The set A is easily seen to be countable; and, unsurprisingly, we are going to show that it is also
pseudobounded. To this end let an be a sequence in A and with the use of countable choice define a
sequence (yn)n>1 in X ∪{ω}2 such that

an < n ⇐⇒ yn = ω ,

an > n ⇐⇒ yn = x j, j > n, ∃i> n : d(zi,x j)< 2−n .

The sequence (yn)n>1 is eventually bounded away from every point in x: for let x in X be arbitrary.
Since (zn)n>1 is eventually bounded away from x there exists N such that

d(x,zk)> 2−N for all k > N (4.2)

We claim that d(x,yk)> 2−(N+2) for all k > N. For assume d(x,yk)< 2−(N+1). Then we must have ak > k,
and therefore yk = x j for some j > k and d(zi,x j)< 2−k for some i> k. Hence

d(x,zi)6 d(x,x j)+d(x j,zi) = d(x,yk)+d(x j,zi)< 2−(N+1)+2−k 6 2−N ,

but this is a contradiction to 4.2. Hence we have shown that the sequence (yn)n>1 is eventually bounded
away from x. Since we assumed AS1

X it is therefore bounded away from the entire set X , which means
there must exist N such that yn = ω for all n> N and therefore an < n for all n> N. Hence A is bounded,
say by a number M. Now there cannot be an x ∈ X and i >M with d(x,zi) < 2−(M+2), since otherwise
by the density we can find j >M with d(x j,x) < 2−(M+2), which would imply that d(xi,x j) < 2−(M+1)

and therefore M+1 ∈ A, which is a contradiction. So for all x ∈ X and i>M we have d(x,zi)> 2−(M+2),
which means that (zn)n>1 is eventually bounded away from the set X .

That 2 follows from 1 is an immediate consequence of Propositions 3.4.1 and 3.6.6.
To see that 1 implies 5 let f : X→R be a point-wise continuous function and (xn)n>1 a dense sequence

in X . We may assume that f (x)> 1 for all x ∈ X . Hence g(x) = 1/ f (x) is well defined and also point-wise
continuous. Furthermore we have that g(x) > 0 for all x ∈ X . Hence, together with the continuity, the
sequence ((xn,g(xn)))n>1 in X×R is eventually bounded away from every point in X (embedded in X×R
as X×{0}). Since we assume AS1

X and therefore by assumption also ASY
X , this sequence is also eventually

bounded away from the entire set X ×{0}. So there exists M such that d((x,0),(xi,g(xi))) > 2−M for
all i>M and x ∈ X . In particular, |g(xi)|> 2−M for all i>M, which is equivalent to f (xi)< 2M . Since
(xn)n>1 is dense and f continuous f (x)6 2M for all x ∈ X , and thus f is bounded.

The equivalence of BD-N to the statements 4 and 5 were proved in [26] and [30] respectively.
To see that 5 and 6 are equivalent notice, for one direction, that pseudo-compactness implies totally

boundedness [22, Theorem 2]. For the other direction notice that if f : X → R is point-wise continuous,
then f (X) is also separable and that AS1

f (X) follows from AS1
X , whence f (X) is totally bounded and

therefore, in particular, bounded (also see [30, Theorem 11]).
To see that 1 implies 4 let zn be a sequence in X ×Y ∪{ω}, where AS1

X and AS1
Y . Let yn be the

sequence in Y ∪{ω} that is, basically, the projection of zn onto Y . More precisely:

yn =

{
πY (zn) if zn ∈ Y
ω if zn = ω .

We want to show that yn is bounded away from every point in Y . So let y ∈ Y be arbitrary. By 1 we have
ASZ

X , where we think of X being embedded in X ×Y ∪{ω} by x 7→ (y,x). In other words, we consider
X ×{y} ⊂ X ×Y ∪{ω}. Since zn is bounded away from every point in X ×{y} there exists δ > 0 and
N ∈ N such that d(zn,(x,y))> δ for all x ∈ X and n> N. Hence dY∪{ω}(yn,y)> δ for all n> N. So yn

2We choose a metric on X ∪{ω} that is equivalent to the one on X and is such that d(x,ω)> 1.
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is bounded away from every point in Y . By AS1
Y that means that there exists K such that yn = ω for all

n> K, but that implies, by construction of yn, that zn = ω for all n> K.
The implications 2 implies 3, and 6 implies 3 are trivial.
Finally, the proof of the equivalence of BD-N and 7 is sketched in [46] and that BD-N implies 8 is

simply Proposition 4.1.5 restricted to metric spaces and without the converse.

Since in every topological model (Section 7.2) UCT holds (consequence of [54, Theorem 3.2]) and
there is a model in which BD-N fails [78], Statement 2 cannot imply BD-N. In [79] it is shown that it
cannot be proved in BISH. That 4, 7, and 8 are strength-wise also between BD-N and unadorned BISH
was shown in [80]. It is unknown, whether this also holds for 1 and 5, but it seems likely.

Another natural principle which falls into the same category is

(wBD-N) Every sequentially continuous mapping f : 2N → N is point-wise
continuous.

Proposition 4.2.2. wBD-N is equivalent to the statement that every sequentially continuous mapping
f : 2N→ N is locally bounded.

Proof. One direction is clear. Conversely, consider f : 2N→ N and let α ∈ 2N. Notice that on complete
spaces sequential continuity implies strong extensionality and so we can, for every β ∈ 2N, if f (β ) 6= f (α)
find the minimal n such that α(n) 6= β (n). So define

g(β ) =

{
n where f (β ) 6= f (α) and n is as above
0 otherwise.

Similar to proofs above, it is easy to see that g is strongly extensional and that it is point-wise
continuous provided LPO holds. Thus, using a corollary to Ishihara’s tricks [46, 64] we can conclude that
g is sequentially continuous.

Now if g is locally bounded around α there exists N,K such that αN = βN, then g(β )6 K. If we use
M = maxN,K we get that if αM = βM, then g(β )6M. But that means that there cannot be any β such
that αM = βM such that f (β ) 6= f (β ), since in that case g(β )> M. Thus f is point-wise continuous.

Remark 4.2.3. It does not seem to be possible to extend the above result analogously to Proposition
4.1.1 and show that wBD-N is equivalent to sequentially continuous functions 2N→ R being point-wise
continuous. Moreover, it even seems impossible to get an equivalence analogous to the one of Proposition
4.1.2.

Proposition 4.2.4. wBD-N implies that every uniformly sequentially continuous mapping f : 2N→ N is
uniformly continuous.

Proof. This follows easily from the next lemma, or alternatively, from Lemma 4.1.3.

Lemma 4.2.5. If f is a function 2N→ N, and f is both uniformly sequentially continuous and point-wise
continuous, then f is uniformly continuous.

Proof. Let un be an enumeration of all finite binary sequences. Then the set of all sequences αn =
un ∗ 000 . . . is dense in 2N. We will also consider the related sequences βn = un ∗ 1 ∗ 000 . . .. Since for
all m there exists N such that |un| > m for all n > N (a fact which holds for any enumeration, but in
particular for the obvious one enumerating the sequences by length and then lexicographically), we have
that d(αn,βn)→ 0. Since f is uniformly sequentially continuous we also have that d( f (αn), f (βn))→ 0,
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which means that there exists K such that f (αn) = f (βn) for n> K. Now choose L = max{|u1|, . . . , |uK |}.
We claim that if α ∈ 2N arbitrary, then f (αL∗0∗ . . .) = f (αL∗β ) for all β ∈ 2N; which means that f is
uniformly continuous. For assume there exists α,β ∈CS such that f (αL∗0∗ . . .) 6= f (αL∗β ). Since f
is point-wise continuous there exists M such that

f (αL∗βM ∗000 . . .) = f (αL∗β ) .

We must have M > L, so for M′ = M−L we have

f (αL∗βM′ ∗000 . . .) = f (αL∗β ) 6= f (αL∗000 . . .) .

By checking all finitely many prefixes of βM′ we can find w ∈ 2∗ such that

f (αL∗w∗000 . . .) 6= f (αL∗w∗1∗000 . . .) .

Let k be such that uk = αL∗w. Since |uk|> L we must have k > K and therefore f (αk) = f (βk). But this
is a contradiction, since

f (αk) = f (αL∗w∗000 . . .) 6= f (αL∗w∗1∗000 . . .) = f (βk) .

Altogether L is a modulus of constancy and therefore for uniform continuity of f .

It seems worth noting that the above proof does not work for functions defined on NN.
It is unknown if wBD-N is equivalent to, or implies, or is implied by any of the statements of Proposition

4.2.1.

Question 8. Are there any other equivalences to wBD-N? Can the issues outlined in Remark 4.2.3 be
resolved?

We finish this section with a diagram summing up all these statements and their known interactions.
Here a double headed arrow means that the implication is strict. The numbers are the ones from Proposition
4.2.1.

BD-N

1

2

3

5, 6

4 7 8 wBD-N

>



Chapter 5

The recursive side

5.1 Introduction

Let us assume that K ⊂ 2∗ is a decidable tree (i.e. it is closed under restriction) that does not admit infinite
paths; that is

∀α ∈ 2N : ∃n ∈ N : αn /∈ K .

Then the complement B⊂ 2∗ has the following properties:

• B is decidable, since K is decidable,

• B is a bar, since K does not admit infinite paths, and

• B is closed under extension, since K is a tree and therefore closed under restriction.

In other words B is a decidable bar that is closed under restriction. Conversely, the complement of such a
bar is a decidable tree that does not admit infinite paths.1 Now in RUSS (and other recursive varieties of
constructive mathematics) there exists a Kleene tree, which is a tree having the above properties that is
also infinite as a set. The latter condition is actually equivalent to

∀n ∈ N : ∃u ∈ T : |u|> n .

With the above observation we see that the complement of a Kleene tree fails to be a uniform bar and
therefore provides a counterexample to FAN∆. This gives rise to the idea of considering “Anti-Fan”-
principles.

(Anti-FAN�) There exists a�-bar B such that there is a sequence (un)n>1 with

• |un|> n and

• un /∈ B.

As already pointed out in [43, Proposition 4.5.2.] Anti-FANfull is actually equivalent to Anti-FANc: for if
B is an arbitrary bar and (un)n>1 as above, then the complement B′ of {u1,u2, . . .} is actually a c-bar and
a superset of B. Furthermore, by construction, un /∈ B′. Therefore there are actually only two Anti-Fan
principles to consider: Anti-FAN∆ and Anti-FANc.

In a similar spirit we can also define Anti-WWKL for k ∈ (0,1):

1Note that the complement of a decidable set is again decidable.
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(Anti-WWKL (k)) There exists a decidable bar B that is closed under extension
such that

∀n ∈ N :
|{u /∈ B | |u|= n}|

2n > k

As we will see in the following section this principle is actually independent of the choice of k, and we
will therefore simply refer to it as Anti-WWKL.

So we have the following hierarchy of recursive principles:

Anti-WWKL(SC) =⇒ Anti-FAN∆(KT) =⇒ Anti-FANc(SS) .

In the following sections we are going to show that most recursive counterexamples in analysis are
equivalent to one of these three, which will also lead to better names (already bracketed).

Although we are going to cite details later on we would like to point out that W. Veldmann has
considered equivalences to the existence of a Kleene tree [110].

5.2 Singular Covers

By slightly extending, in an obvious way, the observation at the start of Section 5.1 we can see that
Anti-WWKL(k) is equivalent to

(KTs(k)) There exists a decidable binary tree T such that

∀n ∈ N :
|{u ∈ T | |u|= n}|

2n > k , (5.1)

and
∀α ∈ 2N : ∃n ∈ N : αn /∈ T . (5.2)

Lemma 5.2.1.
KTs(k) =⇒ KTs((2− k)k)

Proof. For the following we are going to introduce some notation for slicing sequences.2 If u ∈ 2N,
|u| > m > n, then u[n : m] is the sequence u(n)u(n+ 1) · · ·u(m). Furthermore, u[n : ] = u[n : |u|] and
u[ : n] = u[1: n]. Finally, u[n : −m] = u[n : |u|−m] and in particular u[ : −1] is the sequence u cut short by
the last element. Naturally, apart from the last two, these notations also make sense for infinite sequences.

Let T be a decidable Kleene Tree with property 5.1. Define

Kn = |{u ∈ T | |u|= n}| ·2n .

By 5.1 we know that Kn > k2n for every n ∈ N. The set B of all sequences u ∈ 2∗ such that u /∈ T , but
u[:−1] ∈ T is decidable. Notice that for every u ∈ 2∗ either u ∈ T or there exists at exactly one n such that
u[ : n] ∈ B, which means that

S = T ∪
⋃
u∈B

{u∗ v |v ∈ T } .

is a disjoint union. The idea behind this construction is to attach to every leaf of T another copy of T .
As it contains T this set S is still an infinite tree. It also blocks every path: for let α ∈ 2N be arbitrary.

Since T blocks α there is n1 ∈ N such that α[ : n1] ∈ B. Since also α[n1 +1: ] gets blocked there exists n2
such that α[n1 +1: n2] ∈ B, which means that α[ : n2] /∈ S.

2Basically be the Python programming language list notation.
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Last, we need to count the nodes at a level n in S. There are finitely many u1, . . . ,um ∈ B such that
|ui|6 n and for every w ∈ 2n either w ∈ T , or there exists a unique i such that ui v w. For every 16 i6 m
there are Kn−|ui| Elements w ∈ 2n with ui v w and w[|ui|+1: ] ∈ T , which means there kn−|ui| Elements
w ∈ S with ui v w. Furthermore there are exactly 2n−Kn sequences of length n starting with a sequence
from B. Altogether:

|{u ∈ S | |u|= n}|= |{u ∈ 2n |u ∈ T }|+
m

∑
i=1
|{w ∈ 2n |ui v w∧w[|ui|+1: ] ∈ T }|

= Kn +
m

∑
i=1

Kn−|ui|

> Kn + k
m

∑
i=1

2n−|ui|

= Kn + k(2n−Kn)

= (1− k)Kn + k2n

> (1− k)k2n + k2n = (2− k)k2n

But that is exactly the inequality we wanted.

Corollary 5.2.2. KTs(k) is independent of the choice of k > 0.

Proof. For any k ∈ (0,1) the sequence defined by x0 = k, and xn = (2− k)k converges to 1. Therefore for
yn = 1− xn we have yn+1 = (yn)

2. That shows that yn converges to 0.

We can actually view a tree T that does not admit infinite paths as an open cover of Cantor space. If we
collect all of the finite sequences wn that are just barely not in T , i.e. wn /∈ T but wn(|wn|−1) ∈ T , then
these give us basic open sets Un =Uwn where Uw =

{
α ∈ 2N

∣∣α|w|= w
}

. These form a cover of Baire
space because for every α ∈ 2N we can find n such that wn is a prefix of α . Moreover, this cover has a
small measure in the sense that

n

∑
i=1

µ(Un)< k ,

where µ(Uw) = 2−|w|.3 This seems paradoxical, since µ(2N) = 1. However, such a strange topological
behaviour is well-known in RUSS [6, Theorem 6.1]: an α-singular cover is a sequence of intervals (Jn)n>1
with rational endpoints such that

SC1 ∑
n
i=1 |Jn|< α for all n,

SC2 any two Jn are disjoint or have only an endpoint in common,

SC3 for any x ∈ [0,1] there exists n,m ∈N such that the intervals Jn = [an,bn] and Jm = [am,bm] are such
that am = bn and x ∈ [an,bm].

Remark 5.2.3. Any cover satisfying SC1 cannot be refined to a finite one.4

After all this build-up the following proposition is no surprise.

Proposition 5.2.4. The following are equivalent

3We are not getting into deep waters of constructive measure theory here and are not saying that µ is a measure in the traditional
sense.

4Regardless of whether by cover we mean open cover or one in the sense of SC3.
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1. KTs(k) for any 06 k < 1

2. For 0 < α < 1 there exists a sequence of open intervals (Jn)n>1 covering [0,1] and satisfying SC1

3. The existence of an α-singular cover of [0,1] for any 0 < α < 1

Proof. Let 1 > α > 0 be arbitrary. Now let T be a tree as in KTs(1−α/2), and let (wn)n>1 be an
enumeration of all the finite sequences such that wn /∈ T , but wn(|wn−1|) ∈ T .

Define, similarly as in Section 3.1 inductively for every u ∈ 2∗ intervals Iu such that

• Iu = Iu0∪ Iu1

• |Iu|= 1
2|u|

+ α

22|u|+1

We claim that Jn = Iwn is the desired sequence of open intervals.
So let x ∈ [0,1] be arbitrary. Using dependent choice we can construct a sequence α ∈ 2N such that

x ∈ Iαn for all n ∈ N. Now, since T does not admit infinite paths, there exists m such that wm = αM where
M = |wm|. This means that

x ∈ Iwm ⊂
⋃

n∈N
Iwn .

Now let n ∈ N be arbitrary and choose N = max{|w1|, |w2|, . . . , |wn|}. First notice that

1
2|wi|

= ∑
u∈2N
wivu

1
2N

and that for such u we also have u /∈ T . We have,

n

∑
i=1
|Ii|=

n

∑
i=1

(
1

2|wi|
+

α

22|wi|+1

)
6

n

∑
i=1

1
2|wi|

+ ∑
u∈2∗

α

22|u|+1

=
n

∑
i=1

1
2|wi|

+ ∑
n∈N

2n α

22n+1

=
n

∑
i=1

1
2|wi|

+α ∑
n∈N

1
2n+1

6
n

∑
i=1

∑
u∈2N
wivu

1
2N +

α

2

6 ∑
u∈2N

u/∈T

1
2N +

α

2

6 2N(1− (1−α/2))
1

2N +
α

2
= α .

Thus we have shown that 1 implies 2. Now assume that 2 holds and let 0 < α < 1 be arbitrary. We will first
show that we may assume that the intervals in 2 have rational endpoints. To start, we may assume, Without
loss of generality, that α is rational. Now let In = (an,bn) a sequence of open intervals covering [0,1] and
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satisfying SC1 for α/2. Now choose rationals a′n and and b′n such that a′n 6 an, bn 6 b′n, |a′n−an|< α

2n+2 ,
and |b′n−bn|< α

2n+2 . Then I′n = (a′n,b
′
n) are obviously still a cover of [0,1] and for any n ∈ N

n

∑
i=1
|I′n|6

n

∑
i=1
|In|+2

n

∑
i=1

α

2i+2 6
α/2+α/2 .

It is clear that by shrinking the intervals I′n and possibly cutting up into subintervals we can obtain a
singular cover (with the same constant α). Thus 3 follows from 2.

Finally let 1 > k> 0 and assume that we have an α-singular cover (Jn)n>1, where α = 1−k. Let Iu be
the intervals defined in Section 3.1 for p = 1/2. Now define a set T by

T =
{

u ∈ 2∗
∣∣∣ Iu 6⊂

⋃|u|
i=1 Ji

}
.

Since Ji have rational endpoints the set T is decidable. It is also closed under restriction, since, for wv u
and u ∈ T we have Iu ⊂ Iw and

|w|⋃
i=1

Ji ⊂
|u|⋃

i=1

Ji .

Therefore, the assumption that Iw ⊂
⋃|w|

i=1 Ji implies Iu ⊂
⋃|u|

i=1 Ji; a contradiction. Thus Iw 6⊂
⋃|w|

i=1 Ji, which
means that w ∈ T . Hence T is a tree. Now, consider α ∈CS arbitrary. By SC3 there exists n,m such that
bn = am and F1/2(α) ∈ [an,bm]. Since all the intervals in a singular cover are proper |bm−an|> 0, which
implies that there exists N such that IαN ⊂ [an,bm]. Thus, for K = max{N,n,m} we have IαK ⊂

⋃K
i=1 Ji,

which implies αK /∈ T . Hence T does not admit infinite paths.
So the only item left to consider is to show that T satisfies Equation 5.1. First notice that by definition

of T for n ∈ N

∑
u/∈T
|u|=n

|Iu|6
n

∑
i=1
|Ji| .

So

∑
u∈T
|u|=n

1
2|u|

= 1− ∑
u/∈T
|u|=n

1
2|u|

= 1− ∑
u/∈T
|u|=n

|Iu|= 1−
n

∑
i=1
|Ji|> 1−α = k .

Thus Equation 5.1 is fulfilled and therefore KTs(k).

Corollary 5.2.5. If there exists a α-singular cover for a specific 0 < α < 0, then there exists a α ′-singular
cover for any 0 < α ′ < 0.

Thus the following principle is independent of the choice of α .

(SC) There exists a singular cover (for some 0 < α < 0).

5.3 Kleene Trees

As already mentioned in the introduction of Chapter 3, in some schools of constructive mathematics there
exists a Kleene tree. In this section we want to investigate equivalences of the existence of such an object.
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(KT) There exists a decidable binary tree T such that

∀n ∈ N : ∃u ∈ T : |u|> n

and
∀α ∈ 2N : ∃n ∈ N : αn /∈ T .

In the presence of countable choice5 we can also assume that there is a sequence (un)n>1 with |un|= n
and un ∈ T . The principle KT was also named Anti-FT∆ in [43, Section 4.5] for obvious reasons. There,
also, parts of the following proposition are proved.

Proposition 5.3.1. The following are equivalent to KT.

1. There exist two compact subsets A,B of a metric space such that

∀a ∈ A : ∀b ∈ B : d(a,b)> 0

but
inf{d(x,y) : x ∈ A,y ∈ B}= 0.

2. There is a uniformly continuous map f : 2N→ R+ with inf f (2N) = 0.

3. There is a uniformly continuous map f : [0,1]→ R+ with inf f ([0,1]) = 0.

4. There exists an countable open cover of 2N of basis sets that does not admit a finite subcover.

Proof. These equivalences can be proved with the same arguments as in the proof of Proposition 3.3.3.

Proposition 5.3.2. KT is equivalent to the existence of a homeomorphism ϕ : 2N→ NN with a continuous
modulus of continuity given by a function µ : 2N×N→ N; i.e.

∀α ∈ 2N,n ∈ N : β µ(α,n) = αµ(α,n) =⇒ ϕ(β )n = ϕ(α)n .

Proof. One direction is well known [6, IV.13], at least for the inverse mapping NN→ 2N, and will be easy
to adapt it to our purposes. Assume that KT holds, so assume that T is a decidable infinite tree that blocks
ever infinite path. In particular we can find {u1,u2, . . .} an injective enumeration of all u /∈ T such that
u(|u|−1) ∈ T . In particular, for every α ∈ 2N there exist unique kα ,mα ∈ N such that αkα = umα

. Now
define (αn)n>1 recursively by

α0 = α ,

αn+1 = αn[kαn :] ;

that is we keep chopping off unique um prefixes of α . Now ϕ : 2N→ NN can be succinctly defined by

ϕ(α)(n) = mαn .

We still need to show that ϕ is surjective, injective, and has a continuous modulus if continuity. The easiest
is surjectivity: if γ ∈ NN, then

ϕ(uγ(0) ∗uγ(1) ∗uγ(2) ∗ . . .) = γ .

5Actually countable choice is too much.
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It is easy to see, that by the way it is constructed ϕ is injective. To see that ϕ has a continuous modulus of
continuity let e ∈ N and α ∈ 2N be arbitrary. Let N = ∑

e
i=0 kαi . Then

α = umα0
∗umα1

∗ · · · ∗umαe ∗αe+1 ,

and for any β such that αN = βN we have that

β = umα0
∗umα1

∗ · · · ∗umαe ∗βe+1 .

That means that for i 6 e we have that ϕ(α)(i) = ϕ(β )(i). Hence µ(α,e) = ∑
e
i=0 kαi is a modulus

of continuity, which by construction only depends on a finite initial prefix of α and therefore is itself
continuous.

Conversely let ϕ : 2N→ NN be a homeomorphism between Cantor and Baire space with µ as stated
above. Now define

T = {u ∈ 2∗ |∀i6 |u| : µ(ui∗000 . . . ,1)> |i|} .

By definition T is decidable and closed under restriction. We claim that it does not admit infinite paths, but
is infinite. To see that T does not admit infinite paths let α ∈ 2N arbitrary. Then there exists, since µ is
continuous itself, M such that µ(α,1) = µ(αM ∗β ,1) for all β ∈ 2N. Now let N = max{M,µ(α)}. Then
the assumption that αN ∈ T implies that µ(αN ∗000 . . . ,1)> N. But

N > µ(α,1) = µ(αN ∗000 . . . ,1)> N

a contradiction and hence αN /∈ T .
Assume that n bounds the height of T that is that αn /∈ T for all α ∈ 2N. That means that µ(αn ∗

000 . . .) 6 n for α ∈ 2N, which means that ϕ(αn ∗ 000 . . .)(1) = ϕ(α)(1). This in term implies that
ϕ(α)(1) 6 maxu∈2∗:|u|=n {ϕ(u∗000 . . .)(1)}. So ϕ cannot be surjective; a contradiction. We conclude
that T is infinite.

Proposition 5.3.3. KT is equivalent to the existence of a point-wise continuous, fully located function
f : [0,1]→ R that fails to be uniformly continuous.

Proof. This follows from Lemma 3.3.10.

5.4 Specker Sequences

In the seminal article [104] E. Specker showed that in recursive mathematics there exists an increasing,
computable sequence of rationals (rn)n>1 in [0,1] that does not converge to a computable number. More
than that, he showed that it does not converge to a computable number in the strong sense that it is
computably eventually bounded away from every computable real. Interpreted in RUSS, this shows that
the following principle holds there.

(SS) There exists a sequence (xn)n>1 in [0,1] that is bounded away from every
point in [0,1].

It is worth pointing out that we have not forgotten about the fact that Specker’s original sequence is
rational, as the next lemma clarifies. The fact that Specker’s sequence is increasing is discussed in Section
8.4.

Lemma 5.4.1. If (xn)n>1 is a sequence in [0,1] that is bounded away from every point in [0,1], then there
exists a sequence of rationals with the same property.
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Proof. Straightforward.

Proposition 5.4.2. KT implies that there exists an increasing Specker sequence of rationals.

Proof. The construction, naturally, is a variation of the one in Lemma 3.1.10. Let T be a Kleene tree. Now
construct a sequence (wn)n>1 ∈ T such that for all n ∈ N

1. |wn|= n, and

2. (u ∈ T ∧|u|= n) =⇒ wn 6lex u.

Notice that then wn06lex wn+1. Define xn = F1/3(wn). Then (xn)n>1 is an increasing sequence of rationals
in [0,1]. We want to show that it is eventually bounded away from every x ∈ [0,1]. To this end choose
α ∈ 2N as in Lemma 3.1.1.2. Since T blocks every infinite path there exists N ∈ N such that αN /∈ T .
Hence, for every n> N we must have αN 6= wnN, which means that∣∣∣F1/3(wn)−F1/3(α)

∣∣∣> 3−(N+1) .

Now either
∣∣F1/3(α)− x

∣∣< 3−(N+2) or
∣∣F1/3(α)− x

∣∣> 3−(N+3). In the first case∣∣∣F1/3(wn)− x
∣∣∣> 3−N+1

for all n> N. In the second case by Lemma 3.1.1.2 we have that d(x,F(2N))> δ for some δ > 0. In both
cases |xn− x|> min{δ ,3−(N+2)} for all n> N.

In the following we want to weaken the requirement of decidability on a Kleene tree. Just as a decidable
tree is the complement of a decidable set that is closed under extensions, we define a c-tree to be the
complement of a c-set that is closed under extensions. More formally a tree T ⊂ 2∗ is a c-tree, if there
exists a decidable set D⊂ 2∗ such that

u ∈ T ⇐⇒ ∃w ∈ 2∗ : u∗w ∈ D .

A c-Kleene tree is then simply a Kleene tree, that is a c-tree instead of a decidable one. Obviously every
Kleene tree is a c-Kleene tree.

Proposition 5.4.3. The following are equivalent.

1. There exists a Specker sequence in [0,1].

2. There exists a c-Kleene tree.

3. There exists a continuous surjection ϕ : 2N→ N

4. There exists a continuous surjection Φ : 2N→ NN.

Proof. The equivalence 1 ⇐⇒ 2 follows from Lemmas 3.1.9 and 3.1.10 and the above mentioned fact
that a c-Kleene tree is just the complement of a c-bar and vice-versa.

To see that 2 implies 3 let T be a c-Kleene tree. Now consider the function g : 2N→ N defined by

g(α) = min{n ∈ N |αn /∈ T } .

The fact that T does not admit infinite paths ensures that this is well-defined. It is also easily seen to
be point-wise continuous. Unfortunately it might not be a surjection. However, the image R = g(2N) is
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decidable and infinite, which means we can find a surjection h : R→ N. So the composition ϕ = h◦g is
the desired function.

Next, will now show that 3 implies 2: for assume ϕ : 2N → N is a continuous surjection. Let
αn = ϕ−1(n). Using continuity and (unique) countable choice, we can find wn ∈ 2∗ such that ϕ(wn) = n.
Without loss of generality we may also choose wn such that |wn|> n, so that {w1,w2, . . .} is a decidable
subset of 2∗. We want to show that

u ∈ T ⇐⇒ ∃w ∈ 2∗ : uw ∈ {w1,w2, . . .}

is a c-Kleene tree. It is clear that it is a c-tree by definition, and that it is infinite, since wn ∈ T and |wn|> n
for all n ∈ N. So it remains to show that T does not admit any infinite path. To this end let α ∈ 2N be
arbitrary. Set

m = ϕ(α) ,

and, by continuity, choose M such that αM = βM implies that ϕ(β ) = m; which implies that for all such
β and i > m we must have αiM 6= βM. Set k = max{M, |w1|, . . . , |wm|}+1. Now assume that αk ∈ T ;
that is that there is w ∈ 2∗ and j ∈ N such that αk ∗w = w j. Since |αk ∗w|> k we must have j > k. But
for all j > k also j > m,M and we have

w jM = α jM 6= αM = αk ∗wM

and therefore w j 6= αk ∗w. That means that αk /∈ T .
It is clear that 4 implies 3. Conversely assume ϕ : 2N→ N is a continuous surjection. Now consider a

bijective pairing function π = (π1,π2) : N→ N2. Define Φ : 2N→ (N→ N) by

Φ(α)(m) = ϕ(α ◦ (π−1(m, ·))) .

We want to show that Φ is surjective. So let γ ∈ NN be arbitrary. Using countable choice and continuity
we can find wn ∈ 2∗ such ϕ(αn) = γ(n), where αn = wn ∗000 . . .. Now for β ∈ 2N defined by

β (i) = απ1(i)(π2(i))

we have that β ◦(π−1(m, ·)) = αm and therefore Φ(β )(m) = ϕ(αm) = γ(m). Thus Φ(β ) = γ , which means
Φ is surjective. It is also straightforward to show that it is continuous.

The last proposition together with Proposition 5.3.2 raises an interesting question.

Question 9. Is the existence of a bijection NN→ 2N equivalent to SS or KT (or neither)?

Analysing the proofs of the two propositions mentioned it seems as if KT is too strong an assumption,
whereas SS is just barely not enough.6

Proposition 5.4.4. The following are equivalent

1. There exists a Specker sequence in [0,1].

2. There exists a point-wise continuous function f : [0,1]→ R that is unbounded.

3. There exists a surjection f : [0,1]→ R

4. There exists a point-wise continuous function f : [0,1]→ [0,1] that is not uniformly continuous.

5. There exists a point-wise continuous function f : [0,1]→ R+ with inf f = 0.

6A good candidate might actually be iSS as in Section 8.4.
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Proof. The equivalences between 1, 2, and 4 are proved in [43, Proposition 4.5.2]. It is also clear that the
proof between 1 and 2 there can be extended to show the equivalence of 1, 3. Finally, if f : [0,1]→ R+

is a function with inf f = 0, then 1/ f is well defined, point-wise continuous and unbounded. Conversely
if f : [0,1]→ R is point-wise continuous and unbounded, then h = 1/max{| f |,1} is also point-wise
continuous and such that h(x)> 0 for all x ∈ [0,1] but infh = 0. Thus 2 ⇐⇒ 5.



Chapter 6

Relationships Between the Principles

6.1 Basic Relations

It has long been known that WKL implies FAN∆ [69]. In [9] Berger has shown that it also implies FANc.
This result in turn was again slightly improved upon in [45] where we showed that it also implies UCT.
For completeness’ sake we will include the proof here.

Lemma 6.1.1. LLPO/ WKL implies that the image of a sequentially continuous map f : 2N→ R is order
located.

Proof. Let f : 2N→R be a map and a < b two arbitrary real numbers. Using countable choice and LLPO1

fix µ : 2∗→{0,1} such that

µ(u) = 0 =⇒ f (u∗000 . . .)6 b ,

µ(u) = 1 =⇒ f (u∗000 . . .)> b .

Let � denote the decidable order on 2∗ such that

u� v ⇐⇒ |u|< |v|∨ (|u|= |v|∧u≤Lex v),

where ≤Lex is the lexicographic order. For convenience and readability’s sake we define decidable
predicates Λ and F on 2∗ by

Λ(u) ⇐⇒ ∀v ∈ 2∗ : (v� u =⇒ µ(v) = 0) ,
F(u) ⇐⇒ µ(u) = 1∧ (∀v ∈ 2∗ : µ(v) = 1 =⇒ u� v) .

In words, if we imagine searching for a finite binary sequence u with µ(u) = 1, then as long as we have
not been successful Λ holds and F only holds for the first such sequence. Now define a decidable set T by

T = {u ∈ 2∗ |Λ(u)}∪{u ∈ 2∗ |∃v : (F(v)∧u = v∗0∗ · · · ∗0)} .

Notice that for every n ∈ N either µ(u) = 0 for all u ∈ 2∗ with |u| 6 n or there exists v ∈ 2∗ such that
|v|6 n and F(v) holds.

Therefore, if u ∈ T either Λ(u) holds or there exists v with F(v) such that u = v ∗ 0 ∗ · · · ∗ 0. In the
first case also Λ(u(n)) for all 1≤ n≤ |u|, whence u(n) ∈ T . In the second case and if 1≤ n < |v|, then

1This application of LLPO is actually not necessary, since the proof still works with a slightly modified definition of µ (namely
µ(1) =⇒ f (u)> b− (b−a)2−|u| ). It is, however, convenient and since LLPO is used later in the proof, nothing seems to be gained
from dropping it here.
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v(n) = u(n) and therefore Λ(u(n)) holds which in return implies that un ∈ T . Finally in the second case
and if |v| ≤ n≤ |u|, then un = v∗0∗ · · · ∗0 which means that un ∈ T . This shows that T is closed under
restriction and hence is a tree. It also contains elements of arbitrary lengths and therefore, by WKL, this
tree admits an infinite path α ∈ 2N. Now either f (α)> a and we are done, or f (α)< b. We claim that in
this second case µ(u) = 0 for all u ∈ 2∗. For assuming that there exists u ∈ 2∗ with µ(u) = 1, we can find
v� u such that F(v) holds, which means that α = v∗0∗ . . . by the construction of T . But this leads to the
contradiction

b6 f (v∗000 . . .) = f (α)< b.

By sequential continuity, the fact that f (u ∗ 000 . . .) 6 b for all u ∈ 2∗ now implies f (α) 6 b for all
α ∈ 2N.

Lemma 6.1.2. FANc implies that an order located image of a point-wise continuous map f : 2N→ R is
bounded.

Proof. Define a sequence (αn)n>1 in 2N∪{ω} such that

αn ∈ 2N =⇒ f (αn)> n−1 ,

αn = ω =⇒ ∀α ∈ 2N : f (α)6 n .

Since f is point-wise continuous it is locally bounded. Hence (αn)n>1 is eventually bounded away from
every point in 2N. In [43] it is shown that FANc implies what is know as the anti-Specker property for
2N: namely that every sequence in 2N∪{ω} that is bounded away from every point in 2N is eventually
bounded away from the entire set. So there exists N such that αN = ω , which means that f is bounded.

Proposition 6.1.3. LLPO/WKL implies UCT .2

Proof. J. Berger’s work in [9] shows that LLPO =⇒ FANc. So combining the previous lemmas we get
that under the assumption of LLPO every point-wise continuous map f : 2N→ R is bounded. Moreover,
this last statement was shown to be an equivalent of UCT in [29].

This result enables us to replace “uniformly continuous” by “point-wise continuous” thereby improving
the well known characterisation of WKL [63].

Corollary 6.1.4. WKL is equivalent to the statement that every point-wise continuous map on a compact
space attains its minimum.

More general, this means that we can replace “uniformly continuous” by “point-wise continuous” in
any of the equivalences to LPO, WLPO, and LLPO in Chapter 1.

It is also clear that WLPO implies FANstable, so we get the following diagram of implications:

LPO WLPO LLPO/WKL

FANstable UCT FANc FAN∆

There is a possibility to improve on these results:

Question 10. Does WKL imply FANstable or FAN
Π0

1
?

2M. Hendtlass has given a direct proof of this result (unpublished). There is also a generalisation [60, Proposition 30].
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6.2 Kripke’s Schema and the Principle of Finite Possibility

Kripke’s Schema, somewhat accepted by intuitionists, states that

(KS) for every statement ϕ there exists a binary sequence (an)n>1 such that

ϕ ⇐⇒ ∃n ∈ N : an = 1 . (6.1)

This amounts to saying that every statement is simply existential. The philosophy behind it is that, if there
is a proof for ϕ , somebody will eventually find it. Kripke’s Schema was introduced by Myhill [90] to
capture the idea of Brouwer’s creating subject and to formalise the rejection of Markov’s principle see
Proposition 6.2.1. A weakening of KS which restricts the complexity of the formulas ϕ is the Principle of
Finite Possibility (PFP). It was introduced by Mandelkern in [82] (also named the Principle of Inverse
Decision (PID) in one of Mandelkern’s later papers).

(PFP) For every binary sequence (an)n>1 there exists a binary sequence (bn)n>1
such that

∀n ∈ N : an = 0 ⇐⇒ ∃n ∈ N : bn = 1 . (6.2)

To reject MP the following weaker version is in fact sufficient

(WPFP) For every binary sequence (an)n>1 there exists a binary sequence
(bn)n>1 such that

∀n ∈ N : an = 0 ⇐⇒ ¬∀n ∈ N : bn = 0 . (6.3)

Trivially
KS =⇒ PFP =⇒ WPFP .

WPFP was also named WPID (weak principle of Inverse Decision) by Mandelkern. The “rejection” of MP
using WPFP is of course only convincing if one agrees with the latter and disagrees with LPO.

Proposition 6.2.1. WPFP+MP ⇐⇒ LPO

Note that a proof of this fact has already been sketched in [82, page 258]. It will, however, also follow
from Proposition 6.2.3 below.

Proposition 6.2.2. KS is equivalent to the statement that every inhabited subset of N is countable.

Proof. Let ϕ be any syntactically correct closed statement and let

A = {x ∈ N |x = 0∨ (x = 1∧ϕ)} .

Then A is inhabited, since 0∈ A. If A is countable there exists a, without loss of generality binary, sequence
(an)n>1 such that A = {an |n ∈ N}. In particular, Equation 6.1 holds. Conversely, if A is an inhabited
subset of N and Kripke’s schema holds, then for every m ∈ N there exists a binary sequence (am,n)n>1
such that

m ∈ A ⇐⇒ ∃n ∈ N : am,n = 1 .

Using countable choice we can write this as a double sequence. Now, using a standard bijection π :N→N2,
it is easy to see that the function

f (n) =

{
π(n)1 if aπ(n) = 1
a otherwise,
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where a is an arbitrary fixed element of A, enumerates A.

Exercise 1.17 [37, page 21] requires one to fill in the (essentially above proposition) easy proof that
the statement that “every inhabited subset of N is countable” implies PFP. As M. Hendtlass has pointed
out3 LLPO+WPFP ⇐⇒ WLPO. Although on first glance WPFP seems to be the perfect puzzle piece
bridging the gap between LLPO and WLPO it is somewhat to strong as the following result shows. We
remind the reader that LLPO is strictly stronger than MP∨.

Proposition 6.2.3. WPFP + MP∨ ⇐⇒ WLPO .4

Proof. Let (an)n>1 be a binary sequence and let (bn)n>1 be as in 6.3. Then

¬∀n ∈ N : (an = 0∧bn = 0) .

Thus by MP∨ either an = 0 for all n ∈ N or bn = 0 for all n ∈ N. In the latter case it is impossible that
an = 0 for all n ∈ N. Thus WLPO holds.

Conversely, it is clear that WLPO implies MP∨. To see that it also implies WPFP let (an)n>1 be a
binary sequence. By WLPO either an = 0 for all n ∈ N or there it is impossible that an = 0 for all n ∈ N.
In the first case set (bn)n>1 ≡ 1, in the second case set (bn)n>1 ≡ 0. It is clear that the so defined sequence
satisfies Equation 6.3.

The following can be found in [81].

Proposition 6.2.4. KS is equivalent to the following

1. Every open subspace of a separable metric space is separable.

2. Every open subset of a separable metric space is a countable union of open balls.

6.3 Collapsing the Fan Theorems

As we have seen in Proposition 4.2.1 under the assumption of BD-N we have FANc =⇒ FAN
Π0

1
. This

result was first proved in [43]. It is still interesting to give a direct proof, in order to understand the subtle
difference between FANc and FAN

Π0
1
. J. Berger has given such a proof, however has not published it. The

following proof of FANc =⇒ FAN
Π0

1
follows basically Berger’s argument.

Proposition 6.3.1. BD-N implies that FANc =⇒ FAN
Π0

1
.

Proof. Assume B is a bar and such that there are decidable Bn such that B = ∩Bn, and is such that B is
closed under extensions. Hence the set

A = {n ∈ N |∃u ∈ 2∗ : |u|= n∧u /∈ B}

is countable. We want to show that it is also pseudobounded. To this end let (an)n>1 be a sequence in A.
By definition there exists a sequence (wn)n>1 in 2∗ such that |wn|= an and wn /∈ B. The complement C of

{wn |an > n}

is decidable. We claim that
D = {u ∈ 2∗ |∀v ∈ 2∗ : u∗ v ∈C}

3Personal correspondence 4. Aug. 2010
4This was also pointed out in [60, Proposition 25].
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is a bar. But we know that C ⊂ B, and since C is decidable we can reverse this inclusion to see that B⊂C.
This immediately tells us that C is a bar that is closed under extensions, which in turn implies that D is a
bar. Applying FANc we get a uniform bound N for D. Now there cannot be i> N such that ai > i: in that
case we would have wi such that |wi| /∈C and |wi|> N. But then also wi /∈ D, which is a contradiction to
N being a uniform bound for D. Altogether we get that A is pseudobounded. Now we can use BD-N to
conclude that A is bounded, which immediately translates into B being uniform.

Remark 6.3.2. Notice that the previous proof relies on the assumption that B is closed under extension
and therefore does not work for FANstable.

Since BD-N is a very weak principle already FAN
Π0

1
and FANc are intuitively “close”. Since UCT lies

between these two, it is, still intuitively speaking, even closer to FANc. As a matter of fact the author has
spend considerable time during his PhD, trying to prove FANc =⇒ UCT and has to admit to sometimes
believe to actually having found such a proof. However, all these proofs turned out to be faulty, and often
relied on implicitly using the following harmless looking choice principle (majorised choice).

(MC) For every point-wise continuous function f : 2N → R there exists a
point-wise continuous function f̃ : 2N→ N such that

∀α ∈ 2N : f (α)6 f̃ (α) .

Proposition 6.3.3. UCT ⇐⇒ FANc +MC

Proof. One direction is clear. Conversely it suffices to show (Proposition 3.5.2) that any point-wise
continuous f : 2N → R is bounded. So consider such a function f . By MC there exists a point-wise
continuous f̃ : 2N→ N that bounds f . By FANc this function is uniformly continuous (Proposition 3.4.1).
That means that f̃ is bounded, and therefore so is f .

Question 11. Is there a (topological) model in which MC fails?

As already mentioned, Brouwer never distinguished between different version of the fan theorem, since
he assumed the principle of continuous choice. Following the notation of [36] continuous choice can be
split into two parts.

(CC) Continuous choice.

CC(1) Any function from NN→ N is point-wise continuous.

CC(2) If P⊂NN×N, and for each α ∈NN there exists n∈N such that (α,n)∈P,
then there is a function f : NN→ N such that (α, f (α)) ∈ P for all α ∈ NN.

Proposition 6.3.4. Under the assumption of CC we have FAN∆ =⇒ FANfull.

Proof. Let B⊆ 2∗ be an arbitrary bar. Let P = {(α,n) |αn ∈ B} and apply CC (2). So there is a function
f : 2N→ N such that α f (α) ∈ B for all α . Now define

B′ = {u ∈ 2∗ | f (u∗0 . . .)6 |u|} .

B′ is decidable. It is also a bar, since for α ∈ 2N we have, by CC (1) that f is continuous at α ; that is there
exists N such that αN = βN implies that f (α) = f (β ). Now let M = max{N, f (α)}. Then

f (αM ∗000 . . .) = f (α)6M .
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So αM ∈ B′.
Applying FAN∆ we get a uniform bound K for B′. It is easy to see that this bound K is also a uniform

bound for B.

Proposition 6.3.5. Under the assumption of KS we have FAN∆ =⇒ FANfull.

Proof. If B is an arbitrary bar, then, using KS, there exists, for every u ∈ 2∗ a sequence (au
n)n>1 such that

u ∈ B ⇐⇒ ∃n ∈ N : au
n = 1 .

So B is countable (notice that any bar is inhabited, since 000 . . .n must be in B for some n). By Lemma
3.3.2 there exists a decidable bar B′ that is uniform only if B is. Hence, using FAN∆, is enough to give us a
uniform bound for B.

Proposition 6.3.6. Under the assumption of PFP we have FAN∆ =⇒ FANstable.

Proof. The proof is similar to the one above. Starting with a stable bar B we can use PFP to conclude that
B is countable. Using Lemma 3.3.2 and FAN∆ again, we can conclude that B is uniform.

Summarising all these implications in a diagram we get:

FAN∆ FANc UCT FAN
Π0

1
FANstable FANfullMC

BD-N

PFP

CC/KS

6.4 Other Implications

Proposition 6.4.1. WMP implies that LPO and WLPO are equivalent.

Proof. Consider x ∈ R, such that x > 0. By WLPO we know that either x = 0 or ¬(x = 0); or with the
notation introduced in Chapter 2 whether x = 0 or 0l x. In the second case we can, using WLPO again,
for any y ∈ R decide whether

z = 0∨¬(z = 0) ,

where z = max{x− y,0}. In the first case z6 0, which implies that x6 y. Since 0l x, also 0l y (Lemma
2.0.1). In the second case 0l z, which implies that yl x. Altogether we can decide, for arbitrary y ∈ R
whether

0l y∨ yl x .

So, using WMP, we can conclude that x > 0; and hence LPO holds.

Remark 6.4.2. Therefore WMP also implies that ¬LPO and ¬WLPO are equivalent. Here’s an analytical
proof for the latter: We only need to show that ¬LPO implies ¬WLPO. So assume ¬LPO and WLPO.
Hence there exists a function f : [0,1] such that f (0) = 0 and f (x) = 1 for ¬(x = 1). By WMP this function
is strongly extensional. Using Ishihara’s tricks [46] LPO holds; a contradiction.

A principle that collapses WLPO and LLPO is PFP.
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Proposition 6.4.3. WPFP implies that WLPO and LLPO are equivalent.

Proof. Let (an)n>1 be a binary sequence with at most one 1. By WPFP there exists a binary sequence
(bn)n>1, such that

∀n ∈ N : an = 0 ⇐⇒ ¬(∀n ∈ N : bn = 0) .

We may also, without loss of generality assume that (bn)n>1 contains at most one 1. It is, furthermore easy
to see that it cannot be the case that both sequences contain a 1. So we can use LLPO to decide whether
∀n ∈ N : an = 0 or ∀n ∈ N : bn = 0. In the second case ¬(∀n ∈ N : an = 0) and hence WLPO holds.

Proposition 6.4.4. CC (1) implies BD-N.

Proof. A simple consequence of Proposition 4.1.1.

6.5 The Big Picture

As a handy overview of the relationship between most of the principles discussed we include the following
diagram. Dotted lines indicate contradictions.

LEM WLEM

LPO WLPO LLPO/WKL MP∨

MP

WMP

FANstableFANfull FAN
Π0

1 UCT FANc FAN∆ WWKL

SS KT SC

BD-N



Chapter 7

Separating Principles

7.1 The Big Three

The easiest and most convenient way to see that principle A does not imply principle B, or more general,
that theorem T is not provable in BISH is to show that theorem T is false in classical mathematics (CLASS),
Brouwer’s intuitionism (INT), or in Markov’s recursive school of mathematics (RUSS). The view that all
three of these varieties of mathematics can be seen as models of BISH has slowly evolved over the years
until it was cemented by the publication of [36]. Of course, we use the term model somewhat loosely here,
since none of BISH, CLASS, INT, or RUSS are fully formalised systems.1 Nevertheless, experience has
shown that any proof given in BISH can be immediately interpreted and is acceptable by a practitioner
of any of the three varieties. We should stress that one should not make the mistake of characterising
BISH as the intersection of these three varieties, since there are statements namely BD-N, WMP, and
possibly others, that are acceptable in CLASS, INT, and RUSS, but for which there is no compelling
reason to accept them in BISH. The three varieties are all well understood so they immediately show
many separations between the principles we have discussed so far. For example MP does not imply FAN∆,
since the first one is true in RUSS, but the second one is false. Many more separations can be read off the
diagram below.

1Is countable choice accepted in BISH? Is Kripke’s Schema part of INT? Is the continuum hypothesis true in CLASS?

93
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RUSS

CLASS

INT

MP, MP∨

¬LPO

FAN, KS

BD-N, WMP

LPO,WLPO,LLPO,WKL

CC¬FAN, KS, SS, SC

7.2 Topological and Heyting-valued Models

Topological models are a natural setting to interpret formalised intuitionistic theories. By “intuitionistic”
we mean theories using intuitionistic logic; it is worth noting though, that topological models also have
a distinct intuitionistic flavour a’la Brouwer. For example they all validate FANfull (Proposition 7.2.16).
Even though they have a long history starting with several publications around 1970 [100, 101, 58, 54],
according to our personal judgement, there is no good introduction available (the subsection in van Dalen’s
chapter on intuitionistic logic in [56] is probably the most accessible text). This section will not remedy
this situation; its aim is to give a decent overview and starting point for researchers working in constructive
reverse mathematics. To poach a famous booktitle the theme for this section is “Topological models for
the working constructivist.”

Notice that, for this section, we work with classical logic in the meta-theory.2

Propositional Logic

The basic idea of topological models is to use open sets the truth values. As usual, the propositional case is
a lot easier and cleaner to deal with than the predicate case.

A topological model for propositional intuitionistic logic consists of a topological space (T,τ), and a
function J·K that maps all propositional symbols of the underlying language to elements of τ and is such

2This is almost unavoidable for our purposes. For a lot of omniscience principles we have the rule of thumb that if the principle
holds in the model it also holds in the meta-theory. If one was only interested in principles from INT one could potentially develop
topological models in BISH (or INT). Notice, however, that then one would have to deal with problems such as Lemma 7.2.1 not
being available.
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that J⊥K = /0. We can then extend this function to one defined on all propositional formulas by setting

JA∧BK = JAK∩ JBK ,
JA∨BK = JAK∪ JBK ,

JA→ BK = Int
(
(JAK)′∪ JBK

)
.

We assume, as usual, that negation is defined as ¬ϕ ≡ ϕ →⊥, so

J¬ϕK = Int
(
(JϕK)′

)
.

We say that T models ϕ , if JϕK= T . In this case we use the notation T  ϕ . As common, the interpretation
J·K should be clear from the context and is therefore omitted from the notation.

Lemma 7.2.1. T  ϕ → ψ if and only if we have JϕK⊂ JψK

Proof. Straightforward. Notice, however, that we need LEM to prove that JϕK⊂ JψK implies T  ϕ →
ψ .

One can easily show that we have soundness, that is if ϕ is a propositional formula that is derivable in
intuitionistic logic from a set of propositional formulae Γ, i.e. Γ `i ϕ , then T  ϕ for any topological space
T that models every formula in Γ. Therefore, we can use topological models to show the unprovability of
many statements.

Proposition 7.2.2. LEM and WLEM are not derivable in intuitionistic logic.

Proof. Let T = R with the usual topology. Furthermore let J·K be such that JPK = (−∞,0). Then
J¬PK = (0,∞) and therefore J¬¬PK = (−∞,0). However R 6= J¬P∨¬¬PK = (−∞,0)∪ (0,∞).

This space T is actually not the simplest model showing that WLEM is not derivable in intu-
itionistic logic. Such a model must contain at least three points: in fact, if a space only contains
two points there are only three topologies: the trivial one, the discrete one, and the Sierpinski space
Σ = ({0,1} ,{ /0,{1} ,{0,1}}). The trivial and the discrete one satisfy LEM, the Sierpinski one validates
WLEM but not LEM. Hence Σ shows that WLEM does not imply LEM.

The simplest topology not validating WLEM is T2 = ({1,2,3} ,{ /0,{1} ,{2} ,{1,2} ,{1,2,3}}). Then,
if P is a propositional symbol such that JPK = {1} we get that

J¬PK = Int
(
({1})′

)
= {2}

and similarly
J¬¬PK = Int

(
({2})′

)
= {1} .

Thus
T2 1 ¬P∨¬¬P .

In this sense we can talk about R or Σ as a topological model being a counterexample to LEM. However,
we have to be careful that there are two ways a statement can fail to hold. We will say that T is a weak
counterexample for ϕ if T 1 ϕ . It is a strong counterexample if T  ¬ϕ . Since we can prove `i ¬(ϕ ∧¬ϕ)
we will never be able to find a strong counterexample to LEM or WLEM. Nevertheless for weaker
principles such as LPO we can, as we will see, find topological models that are strong counterexamples.
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Predicate Logic

To extend the topological interpretation to predicate logic we also need some universe U to interpret
constants and variables. A predicate JP(x1, . . . ,xk)K should be mapped to a function U k → τ . It is
convenient for d ∈U and a formula ϕ(x) to simply write Jϕ(d)K for the truth value of Jϕ(x)K evaluated at
d.

Since we want to interpret equality, we also assume that Jx = yK maps to a function U 2→ τ , such that

Ja = bK = Jb = aK

and
Ja = bK∩ Jb = cK⊂ Ja = cK .

Now all predicate symbols P(x1, . . . ,xk) should be mapped to a function JP(x1, . . . ,xk)K : U k→ τ such
that equality is respected; that is

Jx = yK∩ JP(x)K = Jx = yK∩ JP(y)K .

Remark 7.2.3. We can extend every predicate evaluation that is defined on V ⊂U and that respects the
equality.

Proof. Assume that k ∈ N is fixed. Now extend Jϕ(~x)K : V k→ τ to a function U k→ τ by setting

Jϕ(~b)K =
⋃

~a∈V k

(
J~a =~bK∩ Jϕ(~a)K

)
.

It is routine to check that this definition is in fact an extension and that it respects equality.

Finally we can give the interpretation of the quantifiers:

J∃x : ϕ(x)K =
⋃

d∈U
Jϕ(d)K ,

J∀x : ϕ(x)K = Int

( ⋂
d∈U

Jϕ(d)K

)
.

All of this naturally extends to first order predicate logic with types. Since it will not affect the following,
we will not distinguish between having a logic with different types or having some sort of set theory.

Again one can easily show soundness, by induction over deductions. Notice that in general we do not
have an existence property, that is we do not have that if T  ∃x : ϕ(x), then there exists d ∈U such that
T  ϕ(d).

Topological Models of Arithmetic and of Analysis

Naturally, we want to consider models that validate, at least, Heyting arithmetic. To be precise, we assume
that our language contains a constant 0 and function symbols s,+, · and that a model validates the axioms

H1 ∀x : ¬(x = s(0))

H2 ∀x,y : s(x) = s(y)→ x = y

H3 ∀x : x+0 = x

H4 ∀x,y : x+ s(y) = s(x+ y)

H5 ∀x : x ·0 = 0

H6 ∀x,y : x · s(y) = x · y+ y

H7 (ϕ(0)∧∀x : ϕ(x)→ ϕ(x+1))→∀x : ϕ(x).
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Here the last axiom is, as usual, actually an axiom schema for all statements ϕ . And, of course, all
variables are of a fixed natural number type.

We have a natural embedding of the external natural numbers into the language of the model, via

n 7→ sn(0) .

To distinguish the external and the internal natural numbers we will denote the embedded ones by n̆.
Internally there might be more natural numbers than externally: Given any set S equipped with the discrete
topology, it is easy to check that the functions S→ N with the obvious interpretation form a model of
Heyting arithmetic. So, for example, in the case that S = {0,1} the identity function is a natural number
with name, say c, which is not of the form sn(0). That is there is no n such that S  n̆ = c. Of course
locally we have

{0}  c = 0̆ and {1}  c = 1̆ ,

so these new numbers are not really adding any interesting new behaviour. There might, however, also
be more internal numbers locally—just think of any non-standard model. We would like to exclude this
non-standard case. To be precise, we would like to exclude the case that the internal and the external
numbers differ locally—if we assume non-standard numbers in the meta-theory we also have these in the
model. One way of ensuring this is by assuming that our model is full in the sense that we have have
names for all predicates that we can define on the topological space.

Proposition 7.2.4. Consider (T,τ,J·K) a model of Heyting arithmetic and assume that there exists a
predicate N(x) where x is of type N such that

JN(x)K =
⋃

n∈N
Jx = n̆K.

Then, if t ∈ Jϕ(x)K, where x is of type N, there exists n such that t ∈ Jϕ(n̆)K. In other words, we can
export natural numbers locally.

Proof. It is enough to use natural induction (H7) to show that

T  x ∈ N→ N(x) .

The case x = 0 is obviously fine. So let x be an arbitrary variable symbol of the natural number type, and
let t ∈ T be arbitrary.

By the induction hypothesis there exists a neighbourhood U of t and an external natural number n such
that U  x = n̆. So we also have U  s(x) = s(n̆). If we can show that T  s(n̆) = ˘n+1 we are done. But
that holds by natural induction (in the metatheory) using H2.

From now on we are only going to consider topological models, that are models of HA and that satisfy
the conclusion of the previous proposition. The full models introduced in the next subsection are such
models.

Let us move on to models of the real numbers. That is our language contains constants 0,1 binary
function symbols +, ·, unary function symbols −,−1 and a binary relation > such that the usual axioms are
satisfied (for a detailed list of axioms see [23]).

If we have a model T of the real numbers in this sense any internal real can be thought of as a
continuous function T → R.

Proposition 7.2.5. Consider (T,τ,J·K) a model of Heyting arithmetic and of real numbers. If x is of type
R, then there exists a continuous function f : T → R such that

Jr̆ < x < s̆K = { t ∈ T |r < f (t)< s} , (7.1)
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for all r,s ∈Q. Therefore also, in particular,

Jx > 0K = { t | f (t)> 0} ,
Jx = 0K = Int({ t | f (t) = 0}) ,
Jx> 0K = Int({ t | f (t)> 0}) ,

J¬(x = 0)K = Int
(
(Int({ t | f (t) = 0}))′

)
.

Proof. First, in order to define f , we will show that for t0 ∈ T the set

Dt0 = {q ∈Q | t0 ∈ Jq̆ < xK} ,

is a Dedekind cut.

• Dt0 is bounded and inhabited: since

T  ∃q, p ∈Q : q < x < p ,

we can use Proposition 7.2.4 to export the rationals (as pairs of natural numbers) locally. That is
there exists a neighbourhood U of t0 and q, p ∈Q3 such that

U  q̆ < x < p̆ .

Clearly q ∈ Dt0 and p /∈ Dt0 .

• Dt0 is downward closed: if q ∈ Dt0 and p < q then T = Jp̆ < q̆K and therefore

t0 ∈ Jq̆ < xK⊂ Jp̆ < xK .

Thus p ∈ Dt0 .

• Even though we are working with a classical meta-theory it seems worth pointing out that, similarly,
we can also show that Dt0 is order located.

Now consider the function f that maps every t ∈ T to the real given by the Dedekind cut Dt . We want
to show that this function is point-wise continuous. It suffices to show that, given ε > 0, we can find an
open neighbourhood U of t0 such that

∀t, t ′ ∈U,q ∈ f (t) : ∃p ∈ f (t ′) : |q− p|< ε .

So let ε > 0 and t0 ∈ T be arbitrary. We may, without loss of generality, assume that ε ∈Q. Since

T  ∃r ∈Q : x− ε̆ < r < x ,

there exists an open neighbourhood U of t0 and r ∈Q such that

U  x− ε̆ < r̆ < x .

Now let t, t ′ ∈U and q ∈ f (t). The latter implies that V  q̆ < x for some open neighbourhood V of t and
therefore V  q̆− ε < r̆. Since we are dealing with imported reals that means that q− ε < r. Now set
p = q− ε . Then p < r, which means that U  p̆ < r̆ < x, and therefore p ∈ f (t ′).

We will show 7.1 by showing that the left hand side set is a subset of the right hand one and vice
versa. So let t ∈ Jr̆ < x < s̆K. Similar to above, we can find a neighbourhood U of t and p,q ∈Q such that

3Here and below we abuse our notation slightly by reusing the same name for external and internal variables.
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U  r̆ < p̆ < x < q̆ < s. Then, in terms of Dedekind cuts p ∈ f (t) and q /∈ f (t) for all t ∈U and therefore,
seen as reals r < f (t)< s.

Conversely, let t0 ∈ T such that r < f (t0)< s. By continuity, we may choose a neighbourhood U of t0
and q ∈Q such that r < f (t)< q < s for all t ∈U . (The asymmetry in needing q on the right hand side, but
no rational on the left comes from the fact that Dedekind cuts are somewhat asymmetric). Since r < f (t)
on U that means that for any t ∈U we have r ∈ Dt0 , which in turn means that U ⊂ Jr̆ < xK. Similarly we
can show that for any t ∈U we have t /∈ Jx < q̆K. Thus

U ⊂ J¬(q̆ < x)K⊂ (Jq̆ < xK)′ ⊂ Jx < s̆K;

because we have assumed that T is a model for the constructive reals and therefore

T = Jq̆ < x ∨ x < s̆K = Jq̆ < xK ∪ Jx < s̆K .

Together t0 ∈ Jr̆ < x < s̆K.

At this point we have not assumed that we also have the converse, that is that for every continuous real-
valued function f : T → R we have a constant symbol which has this real as its representative. However,
we will do so in the next section. To our knowledge, models that are not full in this sense have not been
considered as models of analysis.

The Full Model and Countable Choice

The commonly used models are the “full” ones, whose existence is guaranteed by the following.

Proposition 7.2.6. For any topological space (T,τ) there exists a model such that

1. It is a model of IZF (therefore also of CZF, HA, and the real numbers).

2. For every V ∈ τ there is a proposition PV such that JPV K =V .

In particular, that means that we can use Propositions 7.2.4 and 7.2.5, which imply that any internal real
number x is represented by a continuous function fx : T → R. Fullness also guarantees the converse,
namely that for every continuous function f : T → R there exists a name for a real number x f such that
fx f = f .

Proof. See the section “Topological Models” in [61].

We should note that the first point does not cover any form of choice. As a matter of fact, even
countable choice often fails in topological models. We therefore need to be a bit careful when talking
about, for example, LPO being satisfied, since we need to specify whether we mean the sequential version
LPOσ or the one for the real numbers LPOR. We have that LPOR implies LPOσ , but the converse is only
true in the presence of countable choice, as we can see by considering the topological model over the reals.
There LPOR fails: Let z be the real given by the identity function, then

J¬(z = 0)K = Int
(
(Jz = 0K)′

)
= Int

(
(Int({0}))′

)
= Int(R) = R ,

but
Jz 6= 0K = (−∞,0)∪ (0,∞) .

On the other hand if m is an (internal) natural number, then, it is represented by a point-wise continuous
function fm : R→ N. But since the only such functions are the constant ones we have that for every name
of a natural number m there exists an external natural number n such that R  m = n̆. Extending this
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argument to binary sequence we get that the internal binary sequences are exactly the external ones. Thus
LPOσ holds, since we are working with a classical metatheory.

Together we have
R  LPOσ but R 1 LPOR ,

and therefore
R 1 ACC .

Reverse Reverse Mathematics

In the following we can give some characterisation of properties of topological spaces, such that the full
model satisfies certain principles. This is actually quite a natural question to consider, and is helpful to
find custom separations of principles. We have—not entirely seriously—named this area “Reverse Reverse
Mathematics”. The assumption that we are working with full models is essential for this approach.

It is easy to characterise the spaces that satisfy LEM.

Proposition 7.2.7. A topological space (X ,τ) validates LEM if and only if every open set is also closed.

Corollary 7.2.8. For the Sierpinski space Σ = ({0,1} ,{ /0,{1} ,{0,1}}), we have Σ  LPO4 but also
Σ 1 LEM. And hence also Σ 1 KS.

Proof. To see that Σ satisfies LPO, simply note that all continuous functions f : Σ→ R are constant.5

Remark 7.2.9. The Sierpinski space also validates Σ WLEM.

Proof. Assume ϕ is an arbitrary formula. If either JϕK = /0 or JϕK = Σ we have Σ  ¬ϕ ∨¬¬ϕ . But also
in the case that JϕK = {1} we have that J¬ϕK = Int({0}) = /0 and therefore X  ¬¬ϕ .

Proposition 7.2.10. Assume (T,τ) is a first countable, normal space. Then either T  LEM or T 1 MP∨.

Proof. Either {t} is open for all t ∈ T , or there exists t0 ∈ T such that for all neighbourhoods U of t0 there
exists p ∈U with p 6= t0. In the first case {{t}| t ∈ T } is an open cover of T and therefore T  LEM. So
let us now concentrate on the second case. We can, inductively, find a sequence tn and a basis of open
neighbourhoods Un such that tn ∈Un and tn /∈Un+1

6. Now let rn be a sequence of reals such that ∑n∈N rn
converges absolutely. We claim that there is a continuous function g : T → R such that g(tn) = rn.

Notice that {tn} and {t1, . . . , tn−1}∪{t0, tn+1, tn+2, . . .} are disjoint and closed sets, so by Urysohn’s
Lemma there exists a continuous gn : T → [0,1] such that gn(tn) = 1 and gn(ti) = 0 for i 6= n. Since the
series rn converges absolutely

g = ∑
n∈N

rngn

is well-defined everywhere and continuous. Furthermore g(tn) = rn.
Now let rn = (−1)n/2n and construct g as above, and consider the real xg given by g. Since every

neighbourhood of t0 can be shrunk to an inhabited one where g 6= 0, we have that for every neighbourhood
U of t0

U  ¬(xg = 0) .

However t0 /∈ Int({ t ∈ T |g(t)> 0}) and t0 /∈ Int({ t ∈ T |g(t)6 0}), and therefore

T 1 ¬(xg = 0)→ (xg 6 0∨ xg > 0) .

4The real number version of LPO, and hence also the sequential version.
5As M. Hendtlass has pointed out, actually, every finite topological model satisfies LPO.
6remember that T is assumed to be normal
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Fred Richman has shown that weak Markov’s principle (WMP) holds in the sheaf model on every
metric space [94]—a result which translates to this being true for every topological model over a metric
space. To be precise we should also mention that we consider WMP in the following form:

For all x ∈ R, if
∀y ∈ R : ¬¬(y > 0)∨¬¬(y < x)

then 0 < x.

We can extend Richman’s result mentioned above (basically using the same idea).

Proposition 7.2.11. Assume (T,τ) is a first countable, normal space. Then T WMP.

Proof. Let the real x be given by the continuous function f : T → R. Now consider a point and a
neighbourhood such that

t0 ∈ J∀y ∈ R : ¬¬(y > 0)∨¬¬(y < x)K .

we want to show that t0 ∈ J0< xK. Now if f (t0)> 0 we are done, so it suffices to concentrate on and exclude
the case that f (t0) 6 0. A sub-case that is then easily excluded is that there is an open neighbourhood
U of t0 such that f (t ′) 6 0 for all t ′ ∈U , since then U  x 6 0, but for y = x the antecedent of WMP
implies ¬(x6 0). So finally we can assume that there is sequence of points tn such that f (tn) > 0 and
tn ∈ Un; where Un is a base of open neighbourhoods of t0. With the same construction as above we
can find g : T → R such that g(t2n) = f (t2n) and g(t2n+1) = 0. Now let y be given by g. Then neither
t0 ∈ J¬¬(y > 0)K nor t0 ∈ J¬¬(y < x)K.

This nicely fits in with a result of Lubarsky and Hendtlass who showed in [61] that there is a topological
model satisfying LLPO, but not LPO.

Their space XU is defined to consist of N and an added point ω , where a base of the topology is given
by

• {n} for n ∈ N;

• {ω}∪A for A ∈U ; where U is an ultrafilter on N.

In particular every set that doesn’t contain ω is open.
We also assume that U is non-principal, i.e. it contains the Fréchet filter of cofinite subsets of N.

Proposition 7.2.12.

1. XU 1 MP

2. XU WLEM

Proof. 1. Consider the real x given by f (n) = 1
2n and f (ω) = 0. f is continuous since our filter is non-

principal and therefore contains sets A∈U such that A∩{1, . . . ,n}= /0. Since Int({ t | f (t) = 0}) =
Int({ω}) = /0 we conclude that J¬(x = 0)K = XU . But ω /∈ Jx 6= 0K, since f (ω) = 0. Hence
XU 1 ¬(x = 0) =⇒ x 6= 0.

2. Consider an arbitrary ϕ . We distinguish three cases:

• JϕK ⊂ N. Then either JϕK ∈ U or N \ JϕK ∈ U . In the first case J¬ϕK = Int
(
(JϕK)′

)
= /0

and therefore J¬¬ϕK = XU . In the second case J¬ϕK = Int
(
(JϕK)′

)
= {ω}∪ (N\ J¬ϕK) and

J¬¬ϕK = JϕK. In both cases we get XU  ¬ϕ ∨¬¬ϕ .

• If JϕK = {ω}∪A, then A ∈ U . Therefore J¬ϕK = N \A and J¬¬ϕK = JϕK. So also in this
case XU  ¬ϕ ∨¬¬ϕ .
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Corollary 7.2.13. XU 1 WMP.

Proof. Since MP ⇐⇒ MP∨∧WMP and WLEM =⇒ MP∨.

Corollary 7.2.14. 0 WLPO =⇒ MP.

Proof. Since WLEM =⇒ WLPO.

Remark 7.2.15. The space XU is not first countable but normal.

Proof. Assume that Un is a base of open neighbourhoods of ω . We may assume that Un ⊃Un+1. Since
U contains cofinite, and since U does not contain the emptyset, sets we can find a strictly increasing
sequence yn of natural numbers and a strictly increasing f : N→ N, such that yn ∈U f (n) and yn /∈U f (n+1).
Now consider the set A = {y2n |n ∈ N}. Either A ∈U or A /∈U . We will only treat the first case, since
the second one can be handled similarly. Then {ω}∪A is open and should hence contain UN for some
N ∈ N. Consider M such that f (2M+1)> N. Since y2M+1 ∈U f (2M+1) ⊂UN ⊂ A, we get a contradiction.

Next, consider two disjoint closed subsets A,B⊂ XU . If A,B⊂ N there is nothing to show since, then
A and B are also open. So let us without loss of generality assume that ω ∈ A. But B is closed, which
implies that N\B ∈U . Hence we have found an open set containing A namely (N\B)∪{ω}, which is
disjoint from B, which it itself open anyway.

The following is actually a special case of [54, Theorem 3.2], where it is shown that in any spatial
topoi 2N is (cover) compact. Nevertheless, in the spirit of this section, a direct proof seems well fitted.

Proposition 7.2.16. In any topological model FANfull holds.

Proof. Let T be a topological model such that

T  “B is a bar” .

Now consider an arbitrary t ∈ T .7 Define an external set Bt ⊂ 2∗ by

u ∈ Bt ⇐⇒ t ∈ Ju ∈ BK .

Bt is a bar, since we can internalise any α ∈ 2N and know that

t ∈ J∃n ∈ N : αn ∈ BK .

We can externalise this n locally by Proposition 7.2.4, so there exists n ∈ N such that

t ∈ Jαn ∈ BK .

Externalising again, we can conclude that αn ∈ Bt , which means that Bt is a bar. Using the Fan theorem in
the meta-theory we can therefore find a uniform bar Nt for Bt . It is straightforward to show that

t ∈ J“Nt is a uniform bound for B”K .

Altogether
T =

⋃
n∈N

J“N is a uniform bound for B”K ,

which means that
T = J“B is uniform”K .

7This is the exact point, at which this argument fails for certain Heyting valued models; namely for some which are not spatial.
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Overview

The following quick overview might be useful to compare the big three varieties and three topological
models, discussed above.

LEM WLEM LPO WLPO LLPO MP WMP MP∨

CLASS 3 3 3 3 3 3 3 3
INT 7 7 7 7 7 7 3 7
RUSS 7 7 7 7 7 3 3 3
[0,1] 7 7 7 7 7 7 3 7
Σ 7 3 3 3 3 3 3 3
XU 7 3 7 3 3 7 7 3

We conclude this section by pointing out that topological models have been used to give models that

• do not satisfy BD-N [78],

• separate LPO, WLPO, MP and various variations of these [61],

• separate various principles below BD-N (see Section 6.3).

Analysing the definition of a topological model one can see that the points of the space actually are
never mentioned, and that is only the open sets that matter. Therefore we can just as well consider models
over algebras that behaves like the open sets of a topological space do. Such algebras are known as Heyting
algebras and have, indeed, been used for this purpose. Since there are Heyting algebras that cannot be
defined in terms of the open of a topological space this is a richer model theory. These non-spatial Heyting
valued models can be used to separate FANfull and FAN

Π0
1

[79].

7.3 Realizability and Other Methods

In a realizability model we extend intuitionistic logic by allowing witnesses of statements to be attached to
statements. This is, in particular, interesting in a constructive context, where we want to attach computable
objects (“realizers”) that describe the computational content of a formula. For example, we would like
to express the fact that a formula ∃m ∈ N : P(~x,m) is realized (witnessed) by a computable function f
when P(~x, f (~x)) holds for all~x. There are many different ways to fix details of how the logical connectives
and quantifiers are handled, leading to very different interpretations.8 Most realizability models have a
distinct recursive flavour and so we can say that, vaguely speaking, realizability models are to RUSS what
topological models are to INT. We will not go into any details and only point the reader to [6, Chapter 7]
and [109] for further details.

Realizability models have been used to show that BD-N is not derivable in intuitionistic logic [76], and
we would conjecture that they are the natural tool to separate SC, KT, SS.

As in the case of topological models, with realizability models one generally works in a classical
meta-theory. This also means that there are strange realizability models, such as one based on infinite time
turing machines [5], in which non-constructive principles like LPO are validated. The model mentioned
also has the curious property that NN is countable.

Finally, one can also use various proof interpretations [73], which can also be seen as types of
realizabilities, to separate principles. This, for example and as was mentioned in the respective chapter,
was used to show that WMP is not derivable [72], which implies that WLPO does not imply MP.

8To mention some of the more famous realizability interpretations: there is Kleene’s original version, modified realizability,
Scott’s graph model, models based on relativized computations, . . .



Chapter 8

Bits’n’Pieces

8.1 LLPOn

In [93] Richman introduced a natural weakening of LLPO.

(LLPOn) If (Pi)16i6n is a partition of N and (an)n>1 is a binary sequence with
at most one 1, then there exists m such that ai = 0 for all i ∈ Pm.

In [95] we find the following version

(LLPO′n) If (an)n>1 is a binary sequence with at most one 1, then there exists
06 m < n such that ani+m = 0 for all i ∈ N.

It is clear that the first version implies the second if one considers the partition

Pm = {mn+ r |r ∈ N} .

A proof of the converse is not completely straightforward and is, to our knowledge, nowhere to be found
in the literature, so we include one here.

Proposition 8.1.1. LLPO′n implies LLPOn for every n ∈ N.

Proof. Let (Pi)16i6n be a partition of N and (am)m>1 a binary sequence with at most one 1. Define a
binary sequence (bm)m>1 by

brn+i =

{
1 if r ∈ Pi and ar = 1
0 otherwise,

for every r ∈ N and i ∈ {0, . . . ,n−1}. Then (bm)m>1 has at most one 1. Thus there exists m such that
bni+m = 0 for all i ∈ N. Hence, by the definition of the sequence, there cannot be i ∈ Pm with ai = 1.

The reader has probably already noticed that LLPO2 is simply LLPO.

Proposition 8.1.2. LLPOn is equivalent to the statement that if x1, . . . ,xn are real numbers such that
xix j = 0 for i 6= j, then there is m such that xm = 0.

104
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Proof. Assume LLPOn and let x1, . . . ,xn are real numbers such that xix j = 0 for i 6= j. Using countable
choice we fix binary increasing sequences (a(i)m )m>1 such that

a(i)m = 0 =⇒ xi <
1

2m ,

a(i)m = 1 =⇒ xi >
1

2m+1 .

Now let b(i)m = a(i)m+1−a(i)m , such that for every i the sequence b(i) has at most one 1 and that only if a(i) has
one. Finally combine all of these into one binary sequence (cm)m>1 by setting

cin+m = b(i)m

for every m ∈ N and 1 6 i 6 n. Then (cm)m>1 has at most one 1: For assume ci = c j = 1 with i 6= j.
Furthermore choose p, p′ ∈ N and 1 6 r,r′ 6 n such that i = pn+ r and j = p′n+ r′. If p = p′, then
b(p)

r = b(p)
r′ , which means that r = r′ and therefore i = j; a contradiction. So p 6= p′ and b(p)

r = b(p′)
r′ = 1.

Hence a(p)
r = a(p′)

r′ = 1, which means that xp > 0 and xp′ > 0. So finally xpxp′ > 0, contradicting our

assumptions. An application of LLPOn yields 16 p6 n such that cpn+m = 0 for all m∈N. Hence b(p)
m = 0

for all m ∈ N and therefore a(p)
m = 0 for all m ∈ N.

Conversely let (am)m>1 and for 16 i6 n define a real number

xi = ∑
m>1

ain+m

2m .

It is easy to check that these numbers have the desired property. Now if there is i such that xi = 0, then
there cannot be m ∈ N such that ain+m = 1, since in this case xi > 0.

Remark 8.1.3. One might also consider the question whether the following is an interesting statement:

If x1, . . . ,xn are real numbers such that x1x2 . . .xn = 0, then there is a i such that xi = 0

However this is trivially equivalent to LLPO. If x1x2 . . .xn = 0, then by LLPO either x1x2 . . .xn−1 or xn = 0.
Using LLPO possibly up to n− 1 times again we get that x1 = 0, x2 = 0, . . . , or z = 0. Conversely, if
xy = 0, then also x . . .xy = 0, so either x = 0 or y = 0.

A more interesting equivalence is the following:

Proposition 8.1.4. LLPO3 is equivalent to the statement that whenever x,y, and z are real number such
that xyz = 0,

xy = 0∨ yz = 0∨ xz = 0 .

Proof. The forward direction is easy: assume that x,y,z are such that xyz = 0 and let a = xy, b = yz, and
c = xz. Then ab = bc = ac = xyz = 0. So we can apply LLPO3 to decide whether a = 0, b = 0, or c = 0;
but that is exactly what we wanted to do.

For the converse let x,y,z be such that

xy = 0,yz = 0, and xz = 0 . (8.1)

Now let a = |x− y|, b = |y− z|, and c = |x− z|. Now we must have abc = 0, since otherwise x 6= y, y 6= z,
and x 6= z. And in that case at least two out of x,y,z must be non-zero contradicting the assumption that
their pair-wise product is zero. Thus we can decide whether ab = 0, bc = 0, or ac = 0. Assume that w.l.o.g
the first one holds. If ab = 0, then y = 0. Otherwise the assumption that y 6= 0 leads to a contradiction: if
y 6= 0 we must have x = z = 0 by Equation 8.1, but then ab = |y|2 6= 0.
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Question 12. What about the general principle? Is LLPOn equivalent to the statement that whenever
x1, . . . ,xn are reals such that ∏

n
i=1 xi = 0, there exists j such that

n

∏
i=1, i6= j

xi = 0 ?

The forward direction is trivial. However the converse does not generalise straightforwardly

The reason that LLPOn does not feature more prominently in Constructive Reverse Mathematics is,
that it has yet failed to have interesting equivalencies. So far it has actually only been used as a tool to
show that certain results are non-construtive [93, 31]; that is it has been shown that some statements imply
LLPOn, but not the converse. The reason given for LLPOn to be non-constructive is that it fails in RUSS
[93, Theorem 5]. An alternative refutation relies on an argument about stable solutions by Beeson, which
one could call “a bit handwavey” [95, p. 112]. Here we will show that it fails in the sheaf model of NN,
which also validates dependent choice.

Proposition 8.1.5. If a metric space X has an accumulation point, then LLPOn fails in the topological
model over X.

Proof. The proof builds on the one of Proposition 7.2.10. So let x0,x1, . . . and r1,r2, . . . as there. Fur-
thermore let f (i) : R+

0 → R be defined to be piecewise linear through the points (r3n j+3i+1,
1
2 j ) and (ri′ ,0)

for i′ 6= 3n j+3i+1. Furthermore let zi be the reals in the sheaf model given by f̃ (i) = f ◦d(x0, ·). Then
ziz j = 0 for i 6= j, since at every point at most one of the f (i) is non-zero. But also in every neighbourhood
U of x0 and for every i there exists t such that f̃ (t)> 0, so

U 1 ∃i : zi = 0 ,

and hence
X 1 ∃i : zi = 0 .

Altogether X 1 LLPOn.

Corollary 8.1.6. LLPOn fails in the sheaf model of R on NN.

Proof. Dependent choice is validated by the sheaf model of R on NN. Also NN has an accumulation
point.

8.2 Open Induction

Coquand [38], U. Berger [18], Schuster [99], and others have all investigated aspects of open induction.
This principle is interesting, since, heuristically speaking, invocations of Zorn’s Lemma in a classical
proof can be replaced by using open induction. Now open induction is constructive at least for some sets,
which also depends on the flavour of constructivism one practices. Thus, if open induction instance-wise
implies a theorem, one can easily read off its constructive content up to exactly the level that one deems
constructive.

We would also like to point out that Veldmann has done some work on open induction, however, the
results are, at this stage, only partially published [111].

In classical mathematics, if A⊂ [0,1] such that A is open, and progressive that is such that

∀x : ((∀y < x : y ∈ A) =⇒ x ∈ A) (8.2)

then A is actually the whole unit interval (notice that necessarily 0 ∈ A).
There does not seem to be a good constructive theory of strict orders; or even any treatment of this

theory. However, since in this section we will only deal with specific examples namely
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• the usual order < on (subsets of) R and

• the (strict) lexicographic order on (subsets of) 2N

we actually do not need to fix a definition to state the principle of open induction for arbitrary strictly
ordered sets.

(OIX ) Assume X is a strictly ordered set equipped with the order topology and
minimum element ⊥. If A⊂ X is open and progressive, then A = X .

Notice that such a set X must necessarily contain all minimal elements ⊥, since 8.2 is vacuously
satisfied.

Veldmann has shown that OI[0,1] is implied by bar induction and in turn implies the fan theorem (that
is the fan theorem for decidable bars.1)

Proposition 8.2.1. OI2N implies FANfull.

Proof. Let B be a bar. We will write Bu for the set {u}∗2N∩B. Then

A =
{

α ∈ 2N
∣∣∃u1, . . . ,un ∈ 2N : ∀β < α : β ∈

⋃n
i=1 Bui

}
.

We want to show that A is open and progressive. So let α ∈ A. Now there exists m such that γ ∈ B, as long
as γm = αm. Furthermore there exists u1, . . . ,un such that

∀β < α : β ∈
n⋃

i=1

Bui ,

and therefore, with un+1 = γm also

∀β < γ : β ∈
n+1⋃
i=1

Bui ,

that is γ ∈ A.
Along similar lines assume that α is such that β ∈ A for all β < α . Again choose m such that αm ∈ B.

Now either αm = 0m and we are done, or αm = u10 . . .0 for some u ∈ 2∗. Then γ < α for γ = u011 . . . .
By our assumptions there exists u1, . . . ,un such that

∀β < γ : β ∈
n⋃

i=0

Bui .

Since, for any β < α we can decide whether βm = αm or β 6 γ we have that

∀β < α : β ∈
n+1⋃
i=1

Bui ,

for un+1 = αm. Hence α ∈ A.
Since B is a bar there exists k such that 1k = 111 . . .k ∈ B.
By OI2N we have A = 2N, and in particular 111 . . . ∈ A; therefore there exists u1, . . . ,un such that

β ∈
⋃

i6n Bui for any β < 111 . . .. Now for any γ ∈ 2N we can decide whether γk = 1k or γ < 111 . . ., and
hence

2N =
n⋃

i=0

Bui ,

where u0 = 1k. But this means that B is a uniform bar.
1We are unsure to what degree continuous choice is used in these, to our knowledge unpublished, proofs.
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For some sets X we can prove OIX in pure BISH.

Proposition 8.2.2.

1. If X is a decidable subset of N, then OIX holds.

2. Let N∗ be the set of all increasing binary sequences (with the order and metric of Cantor space).
Then OIN∗ holds.

Proof.

1. Let A ⊂ X progressive (since N has the discrete topology openness is irrelevant here). We need
to show that X ⊂ A. So let x ∈ X be arbitrary. Since X is decidable we can find natural numbers
a1 < · · ·< an such that {y ∈ X |y6 x}= {a1, . . . ,an}, where a1 =⊥X and an = x. Now a1 ∈ A by
the observation above. Therefore, since A is progressive also a2 ∈ A and similarly after n steps we
have an = x ∈ A.

2. As an abbreviation we write n = 0n111 . . . and ω = 000 . . .. Now let A ⊂ N∗ be progressive and
open. We can, as above, show that n ∈ A for every n ∈ N. We can also show that ω ∈ A, since for
every y < ω we can find n ∈ N such that n = y. It might be surprising that we are not done yet,
and in fact we actually need to show that every x ∈ N∗ is also in A, and not just the top element!2

However, since A is open there exists k ∈ N such that if y > k (that is if y is in the neighbourhood of
ω given by k), then y ∈ A. Furthermore for every y ∈ N∗ we can decide whether y6 k and therefore
y = n for some n ∈ N or y > k. In both cases we already know that y ∈ A.

Proposition 8.2.3. The following are equivalent

1. OI2N

2. OI[0,1]

3. OIR+
0

Proof. Assume OI2N holds and let A⊂ [0,1] be open, progressive and such that 0 ∈ A. Furthermore let
F2/3 : 2N→ [0,1] be the function from Section 3.1. Consider the set

E =
{

α ∈ 2N
∣∣F2/3(α) ∈ A

}
.

Now 0 ∈ E, since F2/3(0) = 0. Since E is the preimage of an open set under a continuous function it is
also open. To see that it is progressive let α ∈ 2N be such that ∀β < α : β ∈ E. It suffices to show that for
all y < F2/3(α) we have y ∈ A, since then F2/3(α) ∈ A by virtue of A being progressive. By Lemma 3.1.1
there is γ ∈ 2N with F2/3(γ) = y and γ < α . Hence γ ∈ E and therefore y ∈ A. We are now in the position
to apply OI2N to show that 1 ∈ E; and therefore F(1) = 1 ∈ A.

Next, assume OI[0,1] and let E ⊂ 2N be open, progressive, and such that 0 ∈ E. We will consider the set

A =
{

x ∈ [0,1]
∣∣∀α ∈ 2N : F1/3(α)6 x =⇒ α ∈ E

}
,

where F1/3 is the canonical embedding of 2N into the Cantor middle third set from Lemma 3.1.1. It is easy
to see that 0 ∈ A. We are going to show that if y ∈ A for all y < x, then A contains an open neighbourhood
of x. Since A is also downward closed this will show at the same time that A is progressive as well as open.

2Of course classically we have N∗ = {n |n ∈ N}∪{ω}, but constructively we cannot prove this; to be precise this equality holds
if and only if LPO holds.
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So let x ∈ [0,1] such that y ∈ A for all y < x. Let α be as in Lemma 3.1.1.2. We first want to show
that β ∈ E for all β < α . It is easy to see that if β < α , then F1/3(β )< F1/3(α). Now either F1/3(β )< x
and therefore F1/3(β ) ∈ A which in turn implies that β ∈ E, or x < F1/3(α). In the second case Lemma
3.1.1 yields ∀β < α : F1/3(β )6 x, and thus, by the definition of A, β ∈ E. So in all cases we have β ∈ E
for β < α , and thus, since E is progressive, α ∈ E. Since E is open there exists n ∈ N such that γ ∈ E
whenever αn = γn. If αn = 1n we are done, since then A = [0,1] and thus contains an open neighbourhood
of x. In the case that αn = u01m for some u ∈ 2∗ and some m ∈ N we have that for all β < γ = u11m0 . . .
we have that β ∈ E and also x < F1/3(γ). Hence also in this case A contains an open neighbourhood of x.
Thus OI[0,1] implies OI2N .

To see that OI[0,1] implies OIR+
0

, we can use scaling: assume that A ⊂ R+
0 is open and progressive,

and let z ∈ R+
0 be arbitrary. Then it is easy to see that A∩ [0,z] is progressive and open (in [0,z]). Clearly

OI[0,1] implies OI[0,z], so A∩ [0,z] = [0,z] which means that [0,z]⊂ A. In particular z ∈ A.
Conversely Let A⊂ [0,1] be open, progressive, and such that 0 ∈ A. Then

A′ = (A∩ (0,1))∪
{

x ∈ R+
0

∣∣A = [0,1]
}
.

Then trivially A′ is open. It is also progressive, since for x ∈ A′ either x ∈ A, in which case we can
use the progressiveness of A, or x ∈

{
x ∈ R+

0

∣∣A = [0,1]
}

, in which case A′ = R+
0 , which is also clearly

progressive. This means we can use OIR+
0

to conclude that A′ = R+
0 . In particular 1 ∈ A′, which means

that A = [0,1].

8.3 The Limited Anti-Specker Property

Douglas Bridges, James Dent, and Maarten McKubre-Jordens [28, 40] have considered various weakenings
of the Anti-Specker property. One of them is the so-called Limited Anti-Specker property.

(ASL
X ) If X ∪{ω} is a one-point extension of a metric space X and (xn)n>1 is a

sequence in X ∪{ω} is eventually bounded away from each point of X , then there
exists n such that xn = ω .

Proposition 8.3.1. ASL
[0,1] ⇐⇒ ASL

2N

Proof. Let F1/3 : 2N→ [0,1] denote the canonical embedding of 2N onto the Cantor middle third set as in
Section 3.1. We may assume that d([0,1],ω) = 2. Let (αn)n>1 be a sequence in 2N∪{ω} that is bounded
away from every point in 2N and set

xn =

{
ω if αn = ω

F1/3(αn) if αn ∈ 2N .

We want to show that it is eventually bounded away from every point in [0,1]. To this end let x ∈ [0,1] be
arbitrary. By Proposition 3.1.1.2 there exists α ∈ 2N such that

F1/3(α) 6= x =⇒ ∃ε > 0 : d(x,F1/3(2N))> ε .

Now find N,M ∈ N such that for all n> N we have αM 6= αnM. It is an easy calculation3 to see that for
all such n we have

|F1/3(α)−F1/3(αn)|> 3−M = 2δ .

3If βK 6= γK, then |F p(β )−F p(γ)|> (1−2p)pM−1
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Now either |x− F1/3(α)| < δ or |x− F1/3(α)| > 0. In the second case there exists ε > 0 such that
d(x,F1/3(2N)) > ε , which implies that |x− xn| > ε for all n ∈ N with αn ∈ 2N. In the first case for all
n> N for which αn ∈ 2N we get

|x− xn|= |x−F1/3(αn)|> |F1/3(α)−F1/3(αn)|− |x−F1/3(α)| ,

> 2δ −|x−F1/3(α)|> δ .

Notice that for n with αn = ω we have |x− xn| > 1 > 1
2 . So in all cases we have the desired |xn− x| >

min{ε,δ , 1
2}> 0 for all n> N. Therefore xn is bounded away from every point in [0,1]. Furthermore, if

there exists m such that xm = ω , then αm = ω . Thus ASL
[0,1] =⇒ ASL

2N .
To see that the converse holds we can use [30, Lemma 0.3] and the fact that there exists a point-wise

continuous surjection 2N→ [0,1] (see Section 3.1).

As was shown in [27] ASL
X is equivalent to the following version of POS (remember that POS is the

same with the assumption that f is uniformly continuous, which ensures that inf f exists).

(POSpw
X ) If f is a point-wise continuous, positive-valued mapping on a metric

space, and if infX f exists, then infX f > 0.

Lemma 8.3.2. If f is a point-wise continuous, positively valued mapping on a metric space, then g = 1
f is

also a point-wise continuous, positively valued mapping; furthermore

• inf f exists if and only if g(X) is upper order located, and

• inf f > 0 if and only if g is bounded.

Proof. Straightforward.

Corollary 8.3.3. The following are equivalent:

1. ASL
[0,1]

2. POSpw
[0,1]

3. Every point-wise continuous function f : [0,1]→ R such that f ([0,1]) is located is bounded.

Remember that in Corollary 3.3.11 it was shown that FAN∆ is equivalent to every fully located,
point-wise continuous function [0,1]→ R being bounded.

Therefore we get the following nice characterisations of POS, POSX
p and UCT being equivalent to all

point-wise continuous functions on [0,1] with an additional property being bounded.

additional property X

POS, FAN∆ f ([a,b]) is located for all a6 b (that is f is fully located)

POSpw
[0,1], ASL

[0,1] f ([0,1]) is located

UCT no assumption on f
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8.4 Increasing Specker Sequences

As mentioned above Specker’s original sequence is increasing. So it is natural to follow Dent [40] and
consider the following principle.

(iAS) Every increasing sequence xn in R that is eventually bounded away from
every point in [0,1] is eventually bounded away from the entire interval.

If, for a sequence as in iAS, we ever find n∈N such that xn > 1, then from then on we have xm > xn > 1
for all m> n. Therefore ASL

[0,1] implies iAS. In turn, we can show the following.

Proposition 8.4.1. iAS =⇒ FAN∆

Proof. Let B be a decidable bar that is closed under extensions. Notice that we can decide for every n ∈N,
whether n is a uniform bound of B. Now define a sequence un ∈ 2∗∪{ω} by

un =

{
ω if n is a uniform bound
u if u ∈ 2n is the (lexicographically) smallest element such that u /∈ B

It is easy to show that xn defined by

xn =

{
2 if un = ω

F(un) if un ∈ 2∗

is an increasing sequence, that is eventually bounded away from every point in [0,1]. Thus there exists a n
such that xn > 1, which translates back into n being a uniform bound of B.

Thus we have shown that

FANc =⇒ ASL
[0,1] =⇒ iAS =⇒ FAN∆ ,

which of course raises the following question.

Question 13. Are all of the implications FANc =⇒ ASL
[0,1] =⇒ iAS =⇒ FAN∆ strict?

Rather than focussing on the “anti-Specker”-side of things we could, of course, ask the same question
about the recursive side and consider the following principle.

(iSS) There exists an increasing sequence

Obviously we have that iSS =⇒ SS. So together with Proposition 5.4.2 we have

KT =⇒ iSS =⇒ SS .

Question 14. Does SS imply iSS? And does iSS imply KT?

Notice that even if we start with a Specker sequence there is no hope to construct a monotone sequence
as a subsequence of the original sequence.

Proposition 8.4.2. If SS holds and every sequence in [0,1] that is bounded away from every point in [0,1]
contains a monotone subsequence, then LPO holds.
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Proof. Let (an)n>1 be a binary increasing sequence and (xn)n>1 be a sequence in [0,1] that is eventually
bounded away from every point in [0,1]. By our assumption there exists a monotone subsequence (xkn)n>1.
Without loss of generality this sequence is increasing. Using dependent choice we may construct a
subsequence (xk`n )n>1 of the subsequence such that

xk`n < xk`n+1
.

Now define a sequence (yn)n>1 by

yn =

{
xk`n if an = 0
1− xk`n

if an = 1 .

Given x ∈ [0,1] there exists N and ε > 0 such that for all n> N

|xk`n − x|, |xk`n − (1− x)|> ε ,

which means that also |(1−xk`n )−x|> ε . In both cases |yn−x|> ε , and so (yn)n>1 is eventually bounded
away from every point in [0,1]. Now assume that there exists a monotone subsequence ykn . If it is
decreasing, then ak2 = 1, since otherwise yk1 < xk2 . Similarly, if it is increasing, then an = 0 for all n ∈ N.
In other words LPO holds.

8.5 Dirk Gently’s Principle: (ϕ =⇒ ψ)∨ (ψ =⇒ ϕ)

One statement that is notably missing from the list of the “paradoxes of material implication” equivalent to
LEM (see Proposition 1.1.6) is Dirk Gently’s Principle4

(DGP) If ϕ and ψ are any syntactically correct statements, then

(ϕ =⇒ ψ)∨ (ψ =⇒ ϕ) .

DGP is listed as Proposition 5.13 in Principia Mathematica [113]. As a matter of fact the proof there is
actually skipped and Russel and Whitehead “merely indicate the proposition[] used in the proofs.” We can
be a little bit more precise here.

Proposition 8.5.1. DGP is implied by LEM and implies WLEM.

Proof. The proof from LEM is straightforward: either ψ or ¬ψ holds. In the first case ϕ =⇒ ψ

(weakening) and in the second case ψ =⇒ ϕ (ex falso quodlibet). To see that it implies WLEM apply the
principle to ϕ and ¬ϕ . Now either ϕ =⇒ ¬ϕ or ¬ϕ =⇒ ϕ . In the first case the assumption that ϕ holds
leads to a contradiction, whence ¬ϕ . Similarly, in the second case the assumption that ¬ϕ holds leads to a
contradiction, and hence ¬¬ϕ .

We can also show that it is equivalent to yet another “paradox of material implication”.

Proposition 8.5.2. DGP is equivalent to the statement that

((ϕ ∧ψ) =⇒ ϑ) =⇒ ((ϕ =⇒ ϑ)∨ (ψ =⇒ ϑ)) , (8.3)

4The name is based on the guiding principle of the protagonist of Douglas Adam’s novel Dirk Gently’s Holistic Detective Agency
who believes in the “fundamental interconnectedness of all things.”
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to the statement that

((ϕ =⇒ ϑ)∧ (ψ =⇒ β )) =⇒ ((ϕ =⇒ β )∨ (ψ =⇒ ϑ)) , (8.4)

and to the statement that

(ϕ =⇒ ψ ∨ϑ) =⇒ (ϕ =⇒ ψ)∨ (ϕ =⇒ ϑ) . (8.5)

Proof. To see the equivalence with the first statement assume that (ϕ ∧ψ) =⇒ ϑ . Now if DGP holds,
then either ϕ =⇒ ψ or ψ =⇒ ϕ . In the first case, if ϕ holds, then also ϕ ∧ψ , and hence ϑ holds.
Together that means that in the first case we have ϕ =⇒ ϑ . In the second case, similarly, we can show
that ψ =⇒ ϑ .

Conversely, apply the statement to ϑ ≡ ϕ ∧ψ . Then the antecedent is always satisfied, which means
that (ϕ =⇒ (ϕ ∧ψ))∨ (ψ =⇒ (ϕ ∧ψ)). Hence the desired (ϕ =⇒ ψ)∨ (ψ =⇒ ϕ) holds.

For the second statement assume that (ϕ =⇒ ϑ)∧ (ψ =⇒ β ). By DGP either ϕ =⇒ β and we are
done, or β =⇒ ϕ . But in that second case if we assume ψ also β holds, which in turn implies ϕ , which
in turn implies ϑ . Together, in the second case, ψ =⇒ ϑ .

Conversely we can apply the statement to ϑ ≡ ϕ and β ≡ ψ , which yields

((ϕ =⇒ ϕ)∧ (ψ =⇒ ψ)) =⇒ ((ϕ =⇒ ψ)∨ (ψ =⇒ ϕ)) .

But since the antecedent is always satisfied, we get the desired (ϕ =⇒ ψ)∨ (ψ =⇒ ϕ).
The last statement is implied by DGP: For either q =⇒ r or r =⇒ q . . . . Conversely we can apply

8.5 to ϕ ∧ψ , ϕ , and ψ to get:

(ϕ ∧ψ =⇒ ϕ ∨ψ) =⇒ ((ϕ ∧ψ =⇒ ϕ)∨ (ϕ ∧ψ =⇒ ψ)) .

Now clearly the antecedent is always satisfied. So we have that

(ϕ ∧ψ =⇒ ϕ)∨ (ϕ ∧ψ =⇒ ψ) ,

which is equivalent to the desired
(ψ =⇒ ϕ)∨ (ϕ =⇒ ψ) .

Hence DGP holds.

What makes the principle DGP interesting for our point of view is that we can actually show that it lies
strictly between LEM and WLEM.

Proposition 8.5.3. There exist topological models S and T such that

S 1 LEM and S  DGP ,

and
T 1 DGP and T WLEM .

Proof. Let X = {1,2,3,4} and let the topological space S = (X ,σ) be given by the base

{{1} ,{1,2} ,{3} ,{3,4}} .

Then S 1 LEM, since if ϕ is such that JϕK = {1} we have

J¬ϕK = Int
(
({1})′

)
= Int({2,3,4}) = {3,4} .
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Figure 8.1: A base of the space S
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Figure 8.2: A base of the space T

Hence Jϕ ∨¬ϕK = {1,3,4} 6= X . Conversely we can check by hand, or simply with the aid of a computer
(see Appendix B.1) that S  DGP.

Now consider the topological space T = (X ,τ) be given by the base {{1} ,{1,2} ,{1,3} ,{1,2,3,4}}.
Again either through checking by hand, or simply with the aid of a computer (see Appendix B.1) that
T WLEM. To see that DGP fails consider ϕ and ψ such that JϕK = {1,2} and JψK = {1,3}. Then

Jϕ =⇒ ψK = Int
(
((JϕK)′∪ JψK)

)
= Int({3,4}∪{1,3}) = {1,3} ,

and similarly Jψ =⇒ ϕK = {1,2}. Hence

J(ϕ =⇒ ψ)∨ (ψ =⇒ ϕ)K = {1,2,3} 6= X .

Thus we get the following simple hierarchy:

LEM DGP WLEM

As a final remark we would like to note that it seems that all simple propositional axiom schemata
containing only few propositional symbols, and which are classically true (also see Propositions 1.1.4,
1.1.5, and 1.1.6) fall in one of these three categories (also see [51]).

8.6 Π0
1 and Σ0

1

The purpose of this overview is to tie in some of our principles with other presentations such as [107, 108,
66].

In the style of computability theory (of sets) we define a statement ϕ to be a Σ0
1 statement if there exists

a binary sequence (an)n>1 such that

ϕ ⇐⇒ ∃n ∈ N : an = 1 ,
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and a a Π0
1 statement if there exists a binary sequence (bn)n>1 such that

ϕ ⇐⇒ ∀n ∈ N : bn = 0 .

We can then identify fragments of logical principles by restricting them to Σ0
1 statements or Π0

1 statements
respectively. It easy, for example, to see that Σ0

1–LEM is just LPO. Overall we get:

Proposition 8.6.1. The following equivalences hold, where `i means equivalence to >, i.e. provable in
intuitionistic logic.

Σ0
1 Π0

1 Σ0
1–Π0

1
LEM (P∨¬P) LPO WLPO
WLEM (¬P∨¬¬P) WLPO WLPO
Stability (¬¬P =⇒ P) MP `i
DM1 (¬(P∧Q) =⇒ (¬P∨¬Q)) LLPO MP∨ WLPO
DM2 (¬(P∨Q) =⇒ (¬P∧¬Q)) `i `i `i
DM1′ (¬(¬P∧¬Q) =⇒ (P∨Q)) MP LLPO LPO
DM2′ (¬(¬P∨¬Q) =⇒ (P∧Q)) MP `i MP
DGP (P =⇒ Q)∨ (Q =⇒ P) LLPO LLPO WLPO

Proof. Most of these equivalencies are trivial. Notice that Π0
1 statements are stable, that is we can eliminate

preceding double negations.
The equivalencies for the restricted versions of DGP are non-trivial, and the proofs are entertaining:

First assume that LLPO holds. And consider two binary sequences an and bn. Now let α be the sequence

a1b1a2b2 . . . ,

and let α ′ be the sequence

α
′
n =

{
1 if ∑

n
i=1 αn = 1

0 otherwise;

that is α ′ has at most one term equal to 1. Since we assume LLPO

∀n ∈ N : α
′
2n = 0∨∀n ∈ N : α

′
2n+1 = 0 . (8.6)

In the first case assume that n ∈ N is such that bn = 1. Without loss of generality let n be minimal. Then
there must be m 6 n such that am = 1, since if am = 0 for all m 6 n, and bk = 0 for all k < n we have
αk = 0 for all k < 2n and α2n = bn = 1, which means that α ′2n = 1 contradicting our assumption. Hence in
the first case we have ∃n ∈ N : bn = 1 =⇒ ∃n ∈ N : an = 1. Symmetrically in the second case we have
that ∃n ∈ N : an = 1 =⇒ ∃n ∈ N : bn = 1. Thus we have shown that LLPO implies DGP restricted to
Σ0

1-formulas.
Conversely let an be a binary sequence with at most one term equal to 1. By Σ0

1-DGP we get that

(∃n ∈ N : a2n = 1 =⇒ ∃n ∈ N : a2n+1 = 1)∨ (∃n ∈ N : a2n+1 = 1 =⇒ ∃n ∈ N : a2n = 1) .

In the first case we see that ∀n ∈ N : a2n = 0, since the assumption that ∃n ∈ N : a2n = 1 leads to the
contradiction that there is more than one term equalling 1. Similarly in the second case we can show that
∀n ∈ N : a2n+1 = 0. Thus we have shown that Σ0

1-DGP implies LLPO.
Next, let an and bn be binary sequences and construct α and α ′ as above. Using LLPO we can, again,

make the decision in Equation 8.6. Furthermore, let us assume that the first alternative is the case, and
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assume that ∀n ∈ N : an = 0. Also assume that there exists n ∈ N such that bn = 1; and without loss of
generality n is the minimal such number. Then α ′2n = 1, contradicting our assumption. Together we have
that in case the first alternative holds we have

∀n ∈ N : an = 0 =⇒ ∀n ∈ N : bn = 0 .

Similarly, in case the second alternative holds we can show that

∀n ∈ N : bn = 0 =⇒ ∀n ∈ N : an = 0 .

That means that .
Conversely let an be a binary sequence with at most one term equal to 1. By Π0

1-DGP we get that

(∀n ∈ N : a2n = 0 =⇒ ∀n ∈ N : a2n+1 = 0)∨ (∀n ∈ N : a2n+1 = 0 =⇒ ∀n ∈ N : a2n = 0) .

In the first case assume that there is n such that a2n+1 = 1. Then, since there is at most one term equal to 1
we have that ∀n ∈ N : a2n = 0, which together with the case we are in means that ∀n ∈ N : a2n+1 = 0; a
contradiction. Hence in that case we must actually have ∀n ∈ N : a2n+1 = 0. Similarly in case the second
alternative holds we can show that ∀n ∈ N : a2n = 0. Thus Π0

1-DGP implies LLPO.
Interestingly, the mixed case is equivalent to WLPO: let an and bn be binary sequences (the sequence bn

actually plays no role in what follows). By WLPO either ∀n ∈ N : an = 0 or ¬∀n ∈ N : an = 0. In the first
case, also ∃n ∈ N : bn = 1 =⇒ ∀n ∈ N : an = 0. In the second case ∀n ∈ N : an = 0 =⇒ ∃n ∈ N : bn = 1,
since the antecedent contradicts our assumption.

Conversely, let an be an arbitrary binary sequence, and apply Σ0
1−Π0

1-DGP to this sequence (and
itself). This yields

∃n ∈ N : an = 1 =⇒ ∀n ∈ N : an = 0∨∀n ∈ N : an = 0 =⇒ ∃n ∈ N : an = 1 .

In case the first alternative holds we must have an = 0 for all n ∈ N, since the assumption that there is n
with an = 1 leads to the contradiction that an = 0 for that same n. In case the second alternative holds the
assumption that ∀n ∈ N : an = 0 leads to a contradiction, hence in that case ¬∀n ∈ N : an = 0.

Question 15. Which principles are Σ0
1−Σ0

1–PP, Π0
1−Π0

1–PP, Π0
1−Σ0

1–PP, and Σ0
1−Π0

1–PP equivalent
to, where PP is Peirce’s law, as in Proposition 1.1.6.1? (It is easy to see that the Σ0

1 and Π0
1 versions of the

special case (¬ϕ =⇒ ϕ) =⇒ ϕ of Peirce’s law is equivalent to MP and provable in intuitionistic logic
respectively.)

8.7 ¬WLPO and ¬LPO

Proposition 8.7.1. ¬WLPO is equivalent to the statement that every mapping of a complete metric space
into a metric space is non-discontinuous.

Proof. This proof can be found in [65].

The next proposition relies on a property proposed by M. Escardó. A set X is called searchable,5 if we
can decide any predicate on it. That is if for any p : X → 2

∀x ∈ X : p(x) = 0∨∃x ∈ X : p(x) = 1 .

Proposition 8.7.2. The following are equivalent:

5Notice that Escardó’s definition is slightly different, but is equivalent to this one in the presence of unique choice.
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1. ¬LPO

2. Every searchable subset of N is not unbounded.

3. Every searchable subset of N is bounded.

Proof. Assume ¬LPO and let S⊂ N be searchable. Assume furthermore that S is unbounded, that is, with
a bit of work, there exists an bijection s : N→ S. Then, if an is an arbitrary binary sequence consider
p : S→ 2 defined by

p(n) = as−1(n) .

Since S is searchable we can therefore decide, whether ∀n : an = 0 or whether ∃n : an = 1. In other words
LPO holds; a contradiction and hence S is not unbounded.

Even though ¬LPO and ¬WLPO do not seem to have many natural equivalences they extend the
recursive hierarchy nicely.

SC =⇒ KT =⇒ iSS =⇒ SS =⇒ ¬WLPO =⇒ ¬LPO



Appendix A

List of Open Questions

Question 1. Which principle is the Cantor–Bernstein–Schröder theorem equivalent to? It seems likely
that the answer heavily depends on the precise formulation.

Question 2. Is every space-filling curve non-injective? More precise: if f is a space-filling curve, then
does there exist x 6= y with f (x) = f (y)?

Question 3. To what principle is WKL′(k) equivalent to for k > 1
2 ?

Question 4. Is there a general principle that ensures that complete sets are mapped to complete sets? The
above example suggests that connectedness may play a role.

Question 5. What are the following principles equivalent to?
If B⊂ 2∗ is a c-bar (or Π0

1-bar), then

lim
n→∞

|{u /∈ B | |u|= n}|
2n = 0 .

eventually.

Question 6. Is Dini’s theorem [17] for point-wise continuous functions equivalent to UCT?

Question 7. Is there a version of the fan theorem equivalent to the following statement: every bounded
point-wise continuous function f : [0,1]→ R is integrable.

Question 8. Are there any other equivalences to wBD-N? Can the issues outlined in Remark 4.2.3 be
resolved?

Question 9. Is the existence of a bijection NN→ 2N equivalent to SS or KT (or neither)?

Question 10. Does WKL imply FANstable or FAN
Π0

1
?

Question 11. Is there a (topological) model in which MC fails?

Question 12. What about the general principle? Is LLPOn equivalent to the statement that whenever
x1, . . . ,xn are reals such that ∏

n
i=1 xi = 0, there exists j such that

n

∏
i=1, i6= j

xi = 0 ?

The forward direction is trivial. However the converse does not generalise straightforwardly
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Question 13. Are all of the implications FANc =⇒ ASL
[0,1] =⇒ iAS =⇒ FAN∆ strict?

Question 14. Does SS imply iSS? And does iSS imply KT?

Question 15. Which principles are Σ0
1−Σ0

1–PP, Π0
1−Π0

1–PP, Π0
1−Σ0

1–PP, and Σ0
1−Π0

1–PP equivalent
to, where PP is Peirce’s law, as in Proposition 1.1.6.1? (It is easy to see that the Σ0

1 and Π0
1 versions of the

special case (¬ϕ =⇒ ϕ) =⇒ ϕ of Peirce’s law is equivalent to MP and provable in intuitionistic logic
respectively.)



Appendix B

Source Code

B.1 Topological Models

The Python1 program used to check all possibilities in the proof of Proposition 8.5.3 is

1 # finite topological models
2 class topology:
3 def __init__(self,subbase):
4 self.X = frozenset.union(*subbase)
5 self.base= {i.intersection(j) for i in subbase for j in subbase}
6 top = self.base
7 topa, topb = len(top), 0
8 while topa > topb:
9 top = {i.union(j) for i in top for j in top}

10 topb = topa
11 topa = len(top)
12 self.top = top
13

14 def interior(self,A):
15 L = [U for U in self.top if U <= A]
16 if len(L)> 0: return frozenset.union(*L)
17 else: return frozenset('')
18 def compl(self,A): return frozenset({x for x in self.X if x not in A})
19 def neg(self,A): return self.interior(self.compl(A))
20 def impl(self,A,B):
21 return self.interior( self.compl(A) | B )
22

23 def LEM(self):
24 return all([self.X == (U | self.neg(U)) for U in self.top])
25 def WLEM(self):
26 return all([self.X == (self.neg(U) | (self.neg(self.neg(U)))) for U in

self.top])↪→

27 def PimpQ(self):

1Version 2.7 or 3.x
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28 return all([self.X == (self.impl(U,V) | self.impl(V,U) ) for U in
self.top for V in self.top])↪→

29

30 def testallprop(self):
31 print("")
32 print("LEM: " + str(self.LEM()))
33 print("P->Q v Q->P: " + str(self.PimpQ()))
34 print("WLEM: " + str(self.WLEM()))
35 print("")
36

37 T = topology({ frozenset('1'), frozenset('12'), frozenset('3'), frozenset('34')
})↪→

38 S = topology({ frozenset('12'), frozenset('13'), frozenset('1234')})
39

40 T.testallprop()
41 S.testallprop()
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admits an infinite path, 24
almost positive, 35
Anti-FAN�, 76
anti-Specker property relative to Y , 46
ASP, see WMP

bar, 45
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closed under restrictions, 24

De’Morgan’s laws, 10
Dirk Gently’s Principle, 112
disjunctive version of Markov’s principle, 40
double negation elimination, 8

equi-positive, 64
eventually bounded away, 47

Fan theorems, 45
full, 97
fully located, 59

Heyting algebras, 103
humble foundations, 5

infinite pigeonhole principle, 13
IPP, 13

law of excluded middle, 8
lesser limited principle of omniscience, 22
Limited Anti-Specker property, 109
limited principle of omniscience, 11
LLPE, see MP∨

LPE, see MP

model, 33
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models, 95

PEM, see LEM
principle of excluded middle, 8
progressive, 106
proof by contradiction, 8
pseudo-positive, 35
pseudobounded, 68

realizability model, 103

satisfiable, 33
searchable, 116
SEP, see MP∨

singular cover, 78
space-filling curves, 25
stability, 8
stable bars, 63
strong counterexample, 95

tail-located, 51
tertium non datur, 8

uniform, 45
uniformly surjective, 50

weak counterexample, 95
weak law of excluded middle, 8
weak weak König’s lemma, 54
WLLPO, see MP∨

WLPE, see WMP
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