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Abstract
Quantum entanglement is a useful resource for many quantum informational tasks. In this

context, enlarging the number of participating systems as well as increasing the system di-

mension has proven to enhance the performance. In order to successfully use this resource,

it is crucial to have a consistent theoretical description of the different kinds of entanglement

that can occur within those systems. This thesis studies the classification of entanglement

in special families of multipartite and higher dimensional quantum systems. Furthermore,

attention is put to the detection of entanglement within these systems.

There are three main projects addressed within this thesis. The first is concerned with the

detection of entanglement between multiple systems based on the construction of entangle-

ment witnesses. Here, a one-to-one connection between SLOCC-witnesses and entanglement

witnesses within an enlarged Hilbert space is made. The form of the witness operator is such

that it can be constructed from any representative state of the corresponding SLOCC class

and its maximal overlap with the set of separable states or the set of states within another

SLOCC class.

Within the second part, a special family of multipartite quantum states, the so-called qubit

hypergraph states, is generalized to arbitrary dimensions. Following the definition of the

basic framework, relaying strongly on the phase-space description of quantum states, rules

to categorize qudit hypergraph states with respect to SLOCC- as well as LU-equivalence are

determined. Interestingly, there exist close connections to the field of number theory.

Furthermore, a full classification in terms of SLOCC and LU is provided for tripartite systems

of dimension three and four. Within the subsequent section, rules for local complementation

within graph states of not-neccssarily prime dimension are presented. Finally, an extension

to weighted hypergraphs is made and, for some particular cases, SLOCC equivalence classes

are determined.

The third and last part of this thesis is dedicated to the question of how to reasonably define

genuine multilevel entanglement. Starting from an example, a discrepancy of the widely used

term of a maximally entangled state and the practical resources needed to produce such a

state is shown. This motivates a definition of genuine multilevel entanglement that adapts

to the fact that genuine d-level entangled states should need at least d-dimensional resource

states. Based on this, the set of entangled multilevel states is then divided into three classes:

decomposable (DEC-) states that can be generated from lower dimensional systems, genuine

multilevel, multipartite entangled (GMME-) states, whose correlations cannot be reproduced

by lower dimensional systems and multilevel, multipartite entangled (MME-) states which

lie in between. That is, the last class covers the set of states, which are decomposable with

respect to some bipartition. Naturally, within the bipartite scenario, the set of MME-states

coincides with the set of decomposable states. Having set the framework, examples for all

three classes are provided, as well as methods to distinguish between those. In the bipartite

scenario, an analytical criterion is presented that additionally can be used to differ MME from

GMME in the multipartite case. To distinguish MME-states from DEC- states has proven to

be more involved, nonetheless there exist successful numerical optimization protocols as well

as an necessary but not sufficient analytical criterion.





Zusammenfassung
Quantenverschränkung hat sich als eine wertvolle Ressource für viele Aufgaben der Quanten-

informationstheorie etabliert. Eine zunehmende Zahl von miteinander verschränkten Syste-

men sowie eine größere Anzahl verfügbarer Dimensionen bewirkt in diesem Zusammenhang

eine Steigerung des Leistungsvermögens und der Effizienz. Um diese Ressource erfolgreich

zu nutzen, ist es zuvorderst notwendig, einen konsistenten theoretischen Formalismus zu ent-

wickeln, der die verschiedenen Arten von Verschränkung korrekt beschreibt und zwischen

ihnen differenziert. Die vorliegende Arbeit widmet sich der Klassifikation von Verschränkung

in speziellen Familien hochdimensionaler Vielteilchensysteme sowie der Detektion von Ver-

schränkung innerhalb dieser.

Diese Dissertation stellt die Forschungsergebnisse aus drei Projekten vor. Der erste Teil

handelt von der Konstruktion eines Operators, eines sogenannten Verschränkungszeugen,

der es ermöglicht Verschränkung innerhalb von Vielteilchensystemen zu detektieren. Der

Hauptaspekt besteht hierbei in der Entwicklung einer Eins-zu-eins-Korrespondenz zwischen

SLOCC-Zeugen und Verschränkungszeugen innerhalb eines erweiterten Hilbertraums. Die

Form dieses Zeugen ist derart, dass er mit Hilfe eines Zustandes innerhalb der zu detektieren-

den SLOCC-Klasse und dem maximalen Überlapp dessen mit Zuständen einer inäquivalenten

SLOCC-Klasse konstruiert werden kann.

Das zweite Projekt basiert auf der Erweiterung einer speziellen Familie von Vielteilchenzustän-

den, den Qubit-Hypergraphzuständen. Sie werden auf beliebige Dimensionen verallgemeinert

und als Qudit-Hypergraphen definiert. Diese Zustände werden hinsichtlich SLOCC- und LU-

Äquivalenzklassen untersucht und Methoden entwickelt um zwischen diesen zu unterscheiden.

Interessanterweise konnte hier eine enge Verbindung zum Feld der Zahlentheorie festgestellt

werden. Für tripartite Systeme in den Dimensionen drei und vier wird eine vollständige Klas-

sifizierung unter SLOCC und LU angegeben. In den folgenden Abschnitten werden Regeln

für die lokale Komplementation für Graphenzustände in nicht notwendigerweise Primzahl-

Dimensionen entwickelt. Den Abschluss dieses Themas bildet eine Erweiterung der Qudit

Hypergraphenzustände hin zu sogenannten gewichteten Hypergraphzuständen. Für spezielle

Fälle davon werden SLOCC- und LU-Äquivalenzklassen determiniert.

Der dritte und letzte Teil dieser Arbeit beschäftigt sich mit der Frage, auf welche Art Mehr-

levelverschränkung sinnvoll definiert werden kann. Die Motivation dazu resultiert aus der

Tatsache, dass es Zustände gibt, die als maximal verschränkt hinsichtlich ihrer Dimension gel-

ten, aber trotzdem durch Systeme niedrigerer Dimension generiert werden können. Basierend

darauf werden drei inäquivalente Klassen von Mehrlevelverschränkung definiert: 1) Zerlegbare

Zustände (DEC), deren Korrelationen vollständig durch niedriger-dimensionale Systeme re-

produziert werden können, 2) Echt mehrlevel-, mehrteilchenverschränkte Zustände (GMME),

für deren Produktion man Kontrolle über Systeme der entsprechenden Dimension haben muss,

3) Mehrlevel-, mehrteilchenverschränkte Zustände (MME), die zerlegbar bezüglich einer bes-

timmten Bipartition sind. Nach den grundlegenden Definitionen werden Beispiele für jede

der drei Klassen diskutiert und Methoden entwickelt, die zwischen den Klassen unterschei-

den können. Im bipartiten Fall, sowie für die Unterscheidung zwischen GMME und MME,

kann die Frage der Klassenzugehörigkeit analytisch beantwortet werden. Die Differenzierung

hinsichtlich MME und DEC basiert weitgehend auf numerischen Methoden, wobei auch ein

analytisches Kriterium existiert, das notwendig, aber nicht hinreichend ist.
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1

Chapter 1

Introduction

One of the most striking feature emerging from quantum mechanics is - next to the superpo-

sition principle - without doubt entanglement. Entanglement, named by Erwin Schroedinger

in a paper published in 1935 [1], enables correlations between not locally connected parties,

which are impossible to be described or reproduced within the realm of classical physics.

Earlier in the same year Einstein, Podolsky and Rosen published their famous EPR-paper

[2] that deals with a hypothetical scenario regarding local measurement outcomes and their

correlations within entangled systems. The results and possible explanations to solve the

paradox emerging from the aforementioned scenario were discussed quite controversy among

the scientific community. Einstein was an advocate of the concept that the worth and the

correctness of any physical theory should be directly related to its connectivity regarding the

elements building up physical reality. Thus, he was most inclined, out of the two elements,

that were shown not to exists simultaneously (completeness (meaning: reality) and locality)

to decline the completeness of quantum mechanics, proposing there had to exist hidden vari-

ables inherent in physical systems that are not encompassed by the quantum description.

In 1964 John Bell contributed an important milestone. In his paper [3], he pursued EPRs

thought experiment, transferring it to spin measurements on electrons and formulating a

mathematical framework for the locality - as well as the reality-assumption. Thereby he

developed an inequality, consisting of the measurement outcomes of the two systems, that de-

fines clear bounds on the values that can be reached within classical physics and furthermore

even within local hidden variable theories. Solely quantum mechanics being able to produce

theoretically predictable violation of those bounds. The CHSH inequality [4] specifies this

original inequality and represents the nowadays most commonly used inequality. Since then,

there have been many experimental tests, showing a violation of Bells, (i.e. the CHSH or

some modified version [5]) inequality. The first one being done in 1972 by Freedman and

Clauser [6] by measuring correlations in entangled photon pairs, which were also used in a

series of experiments done by Alain Aspect et al. from 1981-1982 [7], [8]. In 1998 the locality

loophole still present in the earlier experiments was closed for the first time [9]. A new level

within this field of experimental Bell tests was reached by including systems consisting of

more than two parties, e.g. by using the tripartite GHZ-entangled state [10] Even though not

all experimental loopholes - concerning e.g. locality, detection and free choice of measurement

- have been simultaneously fully closed yet, these experiments strongly emphasize the fact,

that quantum mechanics does provide correct predictions of the measurable reality.

Once the existence of non local properties inherent in this special branch of quantum mechan-

ics, manifesting themselves in entangled quantum states, was sufficiently proven, the question

of utility came to the focus of the scientists: Is it possible to exploit the non local structure

of entanglement and use it for technological tasks? The answer to this was a manifold “yes”.
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The first application of entanglement was theoretically proposed by Wiesner [11] within the

field of cryptography. In 1984 Bennet and Brassard extended Wiesners ideas and presented

a practically feasible usage of quantum mechanics within this branch. They developed the

first quantum key distribution (QKD) based on polarization states of a single photon, a tech-

nique to be used for producing secure keys for encrypting and decrypting messages. Within

their famous BB84 protocol [12] they consistently show - based on the “No-Cloning-Theorem”

[13], [14] - how it is actually possible to increase the classically accessible level of security

within cryptographic mechanisms. Two years later, Bennetts B92 [15] protocol generalized

the BB84 such that now it was possible to use non-orthogonal states, thereby simplifying

the experimental implementation considerably. A new approach to quantum cryptography

protocols was contributed by Ekert [16] in 1991, presenting the first quantum key distribution

based on entangled states. Further applications of entanglement within the quantum com-

munication sector were found to be, for example, in 1992 the concept of super dense coding

[17]. Another growing field of applied entanglement can be found in the sector introduced

in 1993 by Bennett [18] : quantum teleportation - the transfer of quantum states from one

entangled partner particle to the, spatially separated, other. The first practical realizations,

reporting a successful teleportation of quantum states, are going back to experiments done

independently by two groups [19], [20] in 1997. Whereas at the beginning the teleportation

distance was mere centimeters, the progress in recent years shows teleportation over tenth

of kilometers and more [23], [24]. Furthermore, in 2004 teleportation of single atom states

was experimentally shown to be possible [21], [22]. Today quantum cryptography poses as an

important feature used by high security level organizations. The further development within

this sector being of strong interest, as especially in modern times a secure way of transmitting

information can become crucial. Another field, where entanglement has found an application,

is quantum computing. In 1985, David Deutsch [25] laid the groundwork by showing that it

is in principal possible to simulate important phenomena by a quantum computer. Further

research resulted in the remarkable proof that a quantum algorithm, the Shor-Algorithm [26],

can do the factorization of large numbers with higher efficiency than it is possible with any

known classical algorithm. It has been practically realized with photonic qubits [27]. An

algorithm providing a speedup compared to all classical accessible options was developed by

Grover [28]. It covers the search of an unknown data base with N entries and was successfully

tested experimentally with the aid of cluster states [29].

In conclusion, the importance and utility of quantum entanglement has, without doubt, been

demonstrated by defining entanglement as physical resource that can help to overcome classi-

cal restrictions and thereby increase the profitableness of some important fields in the sector

of technology and information theory.

From these manifold applications rises the urging need to understand entanglement in its

essential structure. Especially, the question what kinds of entanglement exist and which of

them may or may not be used for the same tasks is of interest. This is due to the fact that

it might be practically more easy to prepare one special entangled state than another.

Additionally, for practical uses, the knowledge how to detect, if a given state is entangled and

a way to quantify the entanglement within a state, is of interest. Those queries are mostly

solved for low dimensional (2× 2 and 2× 3) systems built up out of not more than two parties,

by the Peres-Horodecki-Criterion [30], [31].

Whereas the entanglement properties and structure of bipartite systems is quite well under-

stood, the same is not true for high dimensional and multipartite systems. As multipartite
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entanglement has the potential to further increase the efficiency of quantum information task

and already has found practicable applications, for example in quantum cryptography [32],

the interest in a mathematically sound description and its implications is strong.

The involved nature of the structure of multipartite and high dimensional entangled states

eludes a general description that is analogous to the bipartite case up to now. Nonetheless, by

restricting ourselves to special families of states, it is possible to reduce the complexity and

hence the subclasses allow for full or partial characterization regarding their entanglement

properties. Within this field, the graph states [33] and their generalization to hypergraph

states [34] are a famous example that has already proven its usefulness in practical applica-

tions, i.e. in error correcting codes [36], measurement based quantum computation [35] and

violation of realism in Bell inequalities [37].

This thesis is dedicated to the characterization and detection of entanglement in multipar-

tite and high dimensional quantum systems. It is largely based on the following publications:

1. ’Qudit hypergraph states, F.E.S. Steinhoff, C. Ritz, N. Miklin and O. Gühne, Phys.

Rev. A 95, 052340 (2017).

2. ’Characterizing genuine multilevel entanglement’, C. Ritz, T. Kraft, N. Brunner,

M. Huber and O. Gühne, Phys. Rev. Lett. 120, 060502 (2018)

3. ’Tensor Witness’, C. Ritz, C. Spee and O. Gühne: soon to be published

The focus is subdivided into three main parts: the detection of entanglement via entan-

glement witnesses (see 3.), the characterization of entanglement properties within the class of

qudit hypergraph states (see 1.) and the definition of multilevel entanglement in an experi-

mentally consistent context (see 2.)

Within the first topic, we establish a one-to-one connection from SLOCC witnesses to en-

tanglement witnesses acting on a larger Hilbert space. Whereas entanglement witnesses are

an important tool for verifying, if a given quantum state is entangled, SLOCC witnesses can

give testimony of membership of a given state to a certain kind of SLOCC class, i.e. they

distinguish between different kinds of entanglement. This is especially of importance for an

increasing number of participating systems and dimensions. The relation between those types

of witnesses enables us to reduce the question of entanglement type to verifying entanglement

in general on a doubled Hilbert space. That is, from any SLOCC witness in a lower dimen-

sional Hilbert space, a valid entanglement witness acting on the doubled Hilbert space can

be constructed. The witness construction is based on the maximal squared overlap of a rep-

resentative state of the respective SLOCC class we want to verify a state to be in and the set

of states we want to separate this class from.

The second topic focuses on the generalization of qudit hypergraph states to systems of ar-

bitrary dimension. The entangling multi- qudit operations are generalizations of the qubit

Pauli-gates. A defining property emerging from the structure of those higher-dimensional

Z-gates manifests itself in a rich structure of different kinds of hyperedges. To characterize

equivalence classes with respect to LU-(local unitary) and SLOCC-(stochastic local operations

and classical communication) operations, we exploit a close connection of the entangling op-

erations, i.e. the associated hyperedge structure, to the field of number theory. Furthermore,

we discuss a possible extension to so-called weighted hypergraphs. For qubits, a subclass of

those were defined in [39] and found to be within the class of LME (locally maximal entan-

gled) states [38]. For qubit graph states as well as qudit graphs of prime dimension [42] a
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powerful tool to find LU equivalent states is a method denoted as local complementation (LC)

[41]. We present a similar method, valid also for non-prime dimensions.

The last topic of this thesis is dedicated to a definition of multilevel entanglement that gives

consideration to the experimental scenario. Up to now, a system was often times determined

to possess high dimensional entanglement, when maximizing entanglement monotones, e.g.

based on entropic measures. We show a contradiction based on the fact that in this way

many states declared to be high dimensional are, in fact, reproducible by lower dimensional

systems. Aiming to revoke this contraction, we define multilevel entangled states as those,

whose correlations can not be reproduced, if one has not access to the corresponding multilevel

systems. Based on this, the set of entangled multilevel states is divided into three classes:

1) decomposable (DEC-) states that can be generated from lower dimensional systems, 2)

genuine multilevel, multipartite entangled (GMME-) states, whose correlations cannot be re-

produced by lower dimensional systems and 3) multilevel, multipartite entangled (MME-)

states, which lie in between. That is, the last class covers the set of states, which are decom-

posable with respect to some bipartition. We derive analytical as well as numerical methods

to distinguish between the different classes. In the bipartite case, MME coincides with DEC

and an analytical criterion that distinguishes between DEC and GMME, based on the rank

of a matrix build up by the states Schmidt coefficients, is provided. The same criterion is

naturally useful for deciding, if a multipartite state is within the MME- or GMME set. To

distinguish MME-states from DEC-states has proven to be more involved, and though no

general analytical criterion could be found, there exist successful numerical optimization pro-

tocols as well as an analytical criterion providing a necessary but not sufficient condition for

decomposability. based on the subspace ranks of the coefficient matrix.

OVERVIEW of the THESIS

This thesis is organized as follows: Chapter 2 gives an introduction to the mathematical

framework of quantum theory as well as a review of the most important results and tools

used for characterizing quantum states, especially regarding their entanglement properties.

Chapter 3 is based on the results of a joint work with Cornelia Spee and Otfried Gühne soon to

be published. Following an introduction to semidefinite programming (SDP) in Sec. 3.1, Sec.

3.2 covers the main result, i.e. establishing a one-to-one connection of SLOCC witnesses and

entanglement witnesses acting on a doubled Hilbert space. We discuss a possible relaxation to

the set of PPT-states, which allows for a formulation as an SDP. Furthermore, we investigate a

2×3×3 system in detail regarding SLOCC equivalence classes and their underlying hierarchic

structure. We furthermore mention possible entanglement witnesses that can be constructed

from the SLOCC representatives. Chapter 4 is dedicated to the theory of qudit hypergraphs.

Following an introduction into the phase-space picture in Sec. 4.1, Sec. 4.2 presents the work

done in collaboration with Frank E. S. Steinhoff, Nikolai Miklin and Otfried Gühne published

in [185]. It covers the definition of qudit hypergraph states and their characterization with

respect to SLOCC and LU equivalence classes. In Sec. 4.3, a method similar to LC in prime

dimensions is derived for arbitrary dimensional graph states. Within Sec. 4.4, we extend the

class of qudit graph states by introducing weights to the hyperedges. This corresponds to

allowing for a more general version of Z-gates inhibiting complex phase parameters. Chapter

5 covers the definition and characterization of multilevel entanglement within bipartite as well

as multipartite systems. In Sec. 5.1 the results published in [186], are presented. This work
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was done in collaboration with Tristan Kraft, Nicolas Brunner, Marcus Huber and Otfried

Gühne. In 5.2, a necessary but not sufficient analytical criterion to decide between DEC and

MME is given. Sec. 5.3 shows a generic way to write graph states within a lower dimensional

encoding and, finally, Sec. 5.3 discusses an alternative way of distributing subsystems within

a lower dimensional encoding that is closely related to quantum networks. 6 concludes this

thesis with a summary of the main results and an outlook concerning further questions of

interest to be investigated.
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Chapter 2

Preliminaries

Within this chapter, the fundamental concepts of quantum information theory are intro-

duced. The main focus lies on the description of entangled systems and the mathematical

tools needed to characterize, classify, quantify and detect entanglement in the bipartite as

well as the multipartite- qudit scenario. Starting with the mathematical description of single

quantum states in Hilbert spaces as well as the according operations that can be used to ma-

nipulate those, the focus is then shifted to multipartite systems. The notion of entanglement

is introduced followed by the most important tools which allow for a characterization and

detection. As they play an important role throughout large parts of this thesis, the last part

of this introductory chapter is dedicated to a special class of multipartite quantum systems of

arbitrary dimension: graph- and hypergraph states. In this context the stabilizer formalism,

a useful way to describe quantum states from another perspective, is introduced.

2.1 Mathematical framework

This section will cover the basic mathematical notions and definitions of quantum states,

the space they live in as well as the description of operations that can be applied to those.

Here we differ between global and local operations with the main focus on different classes of

local operation. These have the inherent property of preserving entanglement and as such are

important and most useful in many aspects of entanglement characterization that are covered

by this thesis. For a more detailed overview of those concepts, see [46], [47].

2.1.1 Hilbert space

The underlying mathematical structure that defines the operating framework of quantum

mechanics is a complex vector space of finite or infinite dimension and an inner product that

is complete with respect to the norm induced by said inner product: the Hilbert space H.

From the general definition of the dual space V ∗ of a vector space V over a field K as the

space of linear functionals Λ over V that map elements of V back to K

Λ(V ,K) : V −→ K (2.1)

one can infer that in case of V = H the inner product creates a bijection V ←→ V ∗ and

thereby Dirac notation presents a valid formal language. The inner - or scalar- product hence

is defined as the product of an element within the Hilbert space, some vector |ψ〉, and the

complementary element 〈ϕ| = (|ϕ〉)† of some vector |ϕ〉 within the dual space H∗ , such
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that

〈ϕ|ψ〉 = 〈ψ|ϕ〉∗ =
d−1∑
i=0

ϕiψi ∈ C (2.2)

for d = dim(H) = dim(H∗). The inner product is anti-linear in the first- and linear in the

second argument:

〈αϕ1 + βϕ2|ψ〉 = α∗ 〈ϕ1|ψ〉+ β∗ 〈ϕ2|ψ〉

〈ϕ|αψ1 + βψ2〉 = α 〈ϕ|ψ1〉+ β 〈ϕ|ψ2〉 .
(2.3)

Furthermore, the inner product of a vector with its dual complement is positive semi-definite,

that is 〈ψ|ψ〉 ≥ 0 and 〈ψ|ψ〉 = 0 if and only if |ψ〉 = 0.

From the definition and properties of the inner product a definition of the norm directly

emerges as the square root of the inner product, allowing for geometrically based distance

measures within the space:

|| |ψ〉 || =
√
〈ψ|ψ〉 ∈ R (2.4)

Completeness then is satisfied if for any Cauchy sequence of elements |ψn〉 in H there exists

an unique element |ψ〉 in H such that:

lim
n−→∞

|| |ψn〉 − |ψ〉 || −→ 0. (2.5)

In case of composite systems consisting of more that one party the operating space of the

combined system can then be defined by the tensor product of all participating single-system

Hilbert spaces, that is

Hcomposite = H1 ⊗H2 ⊗ ...⊗Hn =
⊗
n

Hn (2.6)

for an n-partite system. The overall dimension of the total system is calculated to be

dim[Hcomposite] = dim[H1]× dim[H2]× ...× dim[Hn] =
∏
n

dim[Hn]. (2.7)

At this point it is important to mention the fact that this work concentrates exclusively

on the case of finite dimensions, many mathematical tools we will make use of are solely valid

within this case.

2.1.2 Quantum states in Hilbert space

Pure quantum states

Normalized elements of the Hilbert space define the class of pure quantum states. For a single

system, the vector |ψ〉 associated with a d-dimensional pure state can always be written as a

decomposition w.r.t. a set of orthonormal basis vectors |v〉 of H:

|ψ〉 =
d−1∑
v=0

cv |v〉 (2.8)

The weighting prefactor cv ∈ C restricted to values satisfying
∑
v |cv|2 = 1 assures normal-

ization of |ψ〉. In case of composite systems the associated vector describing a pure quantum

state is the tensor product of the single system vectors. Then for n particles, the vector of a
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pure state in some orthonormal basis {v1, v2, ..., vn} is

|ψn〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉 =
d1−1∑
v1=0

d2−1∑
v2=0

...
dn−1∑
vn=0

cv1v2...vn |v1v2...vn〉 , (2.9)

where we use |v1〉 ⊗ |v2〉 ⊗ ....⊗ |vn〉 ≡ |v1v2...vn〉 to keep the notation simple.

It is worth remarking that often times for simplicity in calculations, the choice of basis

falls to a special kind of orthonormal basis, the so-called ’computational’ basis, where the

basis vectors γi are built such that they have zeros in all places except the i− th position -

thus |γ1〉 = (1, 0, ..., 0)T , |γ2〉 = (0, 1, ..., 0)T ,..., |γn〉 = (0, 0, ..., 1)T and

|ψγ〉 =
d1−1∑
γ1=0

d2−1∑
γ2=0

...
dn−1∑
γn=0

cγ1γ2...γn |γ1γ2...γn〉 . (2.10)

The coefficient matrix of pure quantum states

From the decomposition of a multipartite pure quantum state in computational basis Eq.

(2.10) we can construct a matrix with coefficients cγ1γ2...γn which contains all information

about the state. Because of the two-dimensionality of a matrix regarding its division into

rows and columns, there is more than one way to define the coefficient matrix for systems

that are composed of more than two subsystems.

In order to illustrate the general concept, let us start with two subsystems A and B and their

combined system (AB)

|ψAB〉 =

dA−1∑
γA=0

dB−1∑
γB=0

cγAγB |γAγB〉 . (2.11)

In this case, the row index of the coefficient matrix would correspond to the levels of

system A, the column index to those of system B. The dimension of the matrix is determined

by the dimension of the subsystems. The coefficient matrix CγAγB now takes the form:

CγAγB =

dA−1,dB−1∑
γA,γB=0

cγAγB |γA〉 〈γB | =


c00 c01 . . . c0dB−1

c10
. . . c1dB−1

...
. . .

...

cdA−10 . . . . . . cdA−1dB−1

 (2.12)

where the convention is dim(A) = dA = # rows

and accordingly dim(B) = dB = # columns

Generalizing this concept to systems consisting of more than two parties, one immediately

notices that there is more than one way to define its coefficient matrix, as the choice which

systems are displayed by the rows and which ones by the columns is arbitrary. This origins

therein that for multipartite states the equivalent of a coefficient matrix is a coefficient tensor.

Such a tensor has different unfoldings, i.e. for a three partite state, the coefficient tensor

Tijk can be unfolded to the matrices in the respective bipartite splits Tij|k, Tik|j and Tjk|i.

Therefore all possible bipartite splits of the whole systems can be considered to define a valid



10 Chapter 2. Preliminaries

coefficient matrix, each of which can provide different complementary insights in the systems

structure.

Schmidt decomposition

For the special case of bipartite pure states, any state of the form Eq. (2.9) can be written

in the so-called Schmidt decomposition

Theorem 2.1. Schmidt decomposition [50], [49]

Let |ψAB〉 be a normalized state in HAB. Then there exist ortonormal bases {ai}dA−1
i=0 ,

{bi}dB−1
i=0 of HA, HB respectively such that

|ψAB〉 =

min(dA−1,dB−1)∑
i

√
λi |ai〉 |bi〉 (2.13)

where the Schmidt coefficients {
√
λi} are real, non-negative and satisfy the normalization

condition (λi ≥ 0, ∀i,
∑
i λi = 1).

Within Eq. (2.13), the number of non-zero Schmidt coefficients
√
λi 6= 0 is defined as

the Schmidt rank of the state |ψAB〉. The Schmidt decomposition is an important tool in

quantum information theory regarding the classification and characterization of entanglement

of pure bipartite quantum states. Note that for more than two parties, the existence of a

Schmidt decomposition is not given for arbitrary states [55]. This is due to the fact that the

Schmidt decomposition necessarily demands equal spectra of the reduced density matrices

which is not given in general.

Mixed quantum states

For practical uses, one needs to broaden the notion of pure quantum states. The description

of a system by its pure state vector is only possible if perfect knowledge about which state

was being prepared is accessible. In experiments, this knowledge is typically not available.

Instead, one can only identify a set of possible states the system can be in, together with the

relative probabilities of occurrence. Those states, which incorporate the incomplete knowledge

about the system, are named mixed quantum states. The density matrix, a linear, bounded

operator ρ on H has the mathematical properties which appropriately grasps the concept of

a statistical ensemble {pi, |ψi〉} of potential states. It can be written as a weighted sum of

projectors on all pure states within the ensemble:

ρ =
∑
i

pi |ψi〉 〈ψi| . (2.14)

which is a quadratic matrix of the dimension of the Hilbert space they act on. Here the pi

define the probability with which the system actually is in state |ψi〉, thus they have to be

real, they satisfy 0 ≤ pi ≤ 1 as well as
∑
i pi = 1. Then the density matrix ρ is normalized,

as tr(ρ) =
∑
i pi = 1 and positive semi-definite 〈ϕ| ρ |ϕ〉 ≥ 0 ∀ϕ ∈ H leading to exclusively

non-negative eigenvalues {λi}. From these properties hermiticity (ρ = ρ†) follows. Note that

the decomposition of a density matrix in a statistical ensemble of pure states is not unique

as the {|ψi〉} need not be orthonormal. Though it is always possible to find a decomposition

where the set of pure states {|ψi〉} from a complete orthonormal basis, that is 〈ψi|ψj〉 = δij

and
∑
i(|ψ〉 〈ψ|)i = 1. Hence, within the orthonormal decomposition of ρ, the probabilities
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pi coincide with the eigenvalues of the density matrix, as: ρ =
∑
i λi |ηi〉 〈ηi|. From the

density operator, one can deduce full information on the quantum state and all possible

decompositions of ρ will lead to the same predictions in terms of measured observables. Thus

two different ensembles which share the same density matrix are physically indistinguishable.

Within the density operator formalism the class of pure states emerges as an ensemble where

there is only one probability not equal to zero pi = 0 ∀i\{i = j}. Thus only one element

of the sum in (2.14) survives. As a direct consequence it follows that in case ρ = ρpure the

density matrix has rank one and thus

ρpure = |ψj〉 〈ψj | with: ρtr(ρ2) = 1, ρ2 = ρ (2.15)

A tool to quantize the ’purity’ of a density matrix is the trace of ρ2. It takes the maximal

value of one for pure states (Tr(ρ2
pure) = 1) and its minimal value (Tr(ρ2

mm) = 1
d ) for the

state that displays equally weighted probabilities pi = 1
d ∀ i for a d-dimensional system. We

call this the ’maximally mixed state’ with respect to particle number and system dimension.

Reduced quantum states

The coupling of two or more quantum systems is achieved by the tensor product of the

respective Hilbert spaces, e.g. their elements. Suppose now that, given a multiparticle system,

one is interested in only one or some parts of the whole. For example, it may be that the

systems are spartially divided and the accessibility is restricted to specified subsystems. Thus,

the need for an operation contrary to the tensor product arises. It is called the partial trace,

which maps an element of the whole Hilbert space to an element of the whole Hilbert space

minus the outtraced subsystem. As such it disregards the parts of the systems, in which one

is not interested in, by averaging them out. For example, if we have a tripartite quantum

system ρABC , consisting of the subsystems A, B and C, we can obtain a state that is an

element of HB ⊗HC by taking the partial trace over subsystem A. It is then denoted as a

reduced state described by the reduced density matrix ρBC

ρBC = trA(ρABC) =

dA−1∑
k=0
〈ψA|i ρABC |ψA〉i (2.16)

where {|ψA〉i , i ∈ [0, ..., dA − 1]} forms an orthonormal basis of HA and ρBC is now the

reduced density operator describing the combined system BC.

Note that in case the state of the whole system is a pure state, the reduced states hold

informations on the entanglement properties of the original system. For pure product states

(for readability, let us look at a bipartite system, the generalization to more parties is straight-

forward) |ψAB〉 = |ψA〉 ⊗ |ψB〉, the reduced state obtained by tracing out system A reads

ρB = TrA(ρAB) = TrA((|ψ〉 〈ψ|)AB = TrA(|ψA〉 〈ψA| ⊗ |ψB〉 〈ψB |)

= Tr(|ψA〉 〈ψA|) |ψB〉 〈ψB | = 1× |ψB〉 〈ψB |

= |ψB〉 〈ψB | ,

(2.17)

which is again a density matrix for a pure quantum state of subsystem B.

Contrary to this for an (again bipartite) entangled state, say |ψAB〉 =
∑
ij cij |ij〉 6= |ψA〉 ⊗
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|ψB〉, tracing out system A gives

ρB = TrA(ρAB) = TrA(
∑
iji′j′

cijc
∗
i′j′ |ij〉 〈i

′j′|)

=
∑
ijj′

cijc
∗
ij′ |j〉 〈j

′|
(2.18)

which clearly describes a mixed state of system B.

Thus, by looking at the reduced states of a systems, one can decide on separability of the

original system. It is important to again emphasize that this criterion works solely for pure

states of the whole system.

2.1.3 Quantum operations

The term quantum operation defines the class of transformations that describe any valid

evolution principally possible for a quantum system. The properties such an operation has

to satisfy emerge from the condition that the evolved state still has to fulfill all qualities of

a proper quantum state, e.g. the physicality is to be preserved. Within the density matrix

formalism, this means that a quantum operation is an operation Λ on the space of density

operators that maps one quantum state ρinitial to another quantum state ρevolved.

Λ[ρinitial] = ρevolved (2.19)

From the aforementioned condition of perseverance of physicality, the map Λ is necessarily

characterized by the following properties:

• Due to the ensemble interpretation, it is to be demanded that the probabilistic inter-

pretation of the initial density matrix is still valid for the evolved state. Therefore any

map representing a valid quantum operation has to satisfy

Λ[
∑
i

piρi] =
∑
i

piΛ[ρi] (2.20)

that is, the ensemble {pi, ρi} is be mapped to the ensemble {pi, Λ[ρi]}. In other words,

Eq. (2.20) demands Λ to be a linear map.

• Furthermore, as the prefactors {pi} in Eq. (2.14) refer to probabilities, a quantum

operation generating evolution has to preserve the trace. In case of Λ describing a mea-

surement, the trace does not need to be preserved, as the trace of the post measurement

state tr(ρ′) = tr(Λ[ρ]) then attribute to the probability with which the measurement

outcome does occur and normalization restores the unit trace ρn = Λ[ρ]
tr(Λ[ρ])

. In summary,

any quantum operation has to be non-trace-increasing

0 ≤ Tr(Λ[ρ]) ≤ 1 ∀ ρ ∈ H (2.21)

• As the density matrix is an hermitean operator, a quantum operation has to preserve

hermiticity

Λ[ρ] = [Λ[ρ]]† ∀ ρ ∈ H (2.22)
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• Any density operator ρ representing a quantum state is hermitean and has positive,

real eigenvalues. To preserve this properties, Λ has to be completely positive. Pos-

itivity alone does not suffice for composite systems, as it can lead not negativity when

considering exentions of the original system. Thus

ρAB ≥ 0 ⇔ ΛA[ρAB ] = (ΛA ⊗ 1B)[ρAB ] ≥ 0 ∀ ρAB ∈ H. (2.23)

Consequently, all operations describing a physical process a quantum state can undergo, are

described by completely positive, trace preserving linear maps (CPTP-maps).

An elegant way to describe CPTP-maps is the operator-sum, or Kraus-, representation

[54] [53]. To show this equivalence, firstly the Stinespring dilation theorem is needed

Theorem 2.2. Stinespring dilation theorem [52]

Let Λ : S(H) −→ S(H) be a completely positive, trace preserving linear map that maps

density matrices to density matrices. Then there exists a unitary operation U and a Hilbert

space HE with U acting on the combined space H ⊗HE such that:

Λ(ρ) = TrE [U(ρ⊗ ρE)U †] ∀ ρ ∈ S(H) (2.24)

where ρE is a fixed state within the extension Hilbert space HE which can opted to be pure

without loss of generality. Furthermore, considering the dimensionality of HE , it can chosen

to be such that dim(HE) ≤ [dim(H)]2.

In other words, the Stinespring dilation theorem states that any valid quantum operation

can be rewritten as a unitary evolution of an extended system and the consecutive tracing

out of the extended part.

From Stinesprings theorem, the representation by Kraus operators readily follows. It reverses

the representation of an CPTP map back to having to consider only the original system

without having to take care of extensions.

Theorem 2.3. Kraus representation of CPTP-maps [54]

Let Λ : S(H) −→ S(H) be a linear map. Then Λ is completely positive if and only if its

action on a density matrix ρ in S(H) can be decomposed in terms of the Kraus operators Ki

as follows:

Λ[ρ] =
∑
i

K†i ρKi with:
∑
i

K†iKi = 1. (2.25)

Here the {Ki} form a finite set acting on the systems Hilbert space. Note that the trace

preserving property is assured by
∑
iK
†
iKi = 1 and for trace decreasing maps this condition

will read
∑
iK
†
iKi < 1.

Proof. By Theorem 2.2, the state of the extended system can chosen to be pure. Hence,

without loss of generality, let ρE = |ηj〉 〈ηj | where the set {|ηi〉} form an orthonormal basis

(ONB) of HE , that is 〈ηi|ηk〉 = δik and
√
〈ηi|ηi〉 = 1 for 0 ≤ (i, k) ≤ dE − 1 with dE =
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dim(HE). Then Eq. (2.24) takes the form

Λ[ρ] = TrE [U †(ρ⊗ ρE)U ]

=
∑
i

〈ηi| (U †ρ⊗ (|ηj〉 〈ηj |)U |ηi〉

=
∑
i

K†i ρKi,

(2.26)

where in the last equality the operator Ki is defined as Ki = 〈ei|Uej〉 and acts on the Hilbert

space H of the original system ρ. In order to be trace preserving, Λ has to satisfy

1 ≡ Tr(Λ[ρ])

= Tr(
∑
i

K†i ρKi) =
∑
i

Tr(K†i ρKi)

=
∑
i

Tr(KiK
†
Iρ) = Tr(

∑
i

KiK
†
i ρ),

(2.27)

where the permutability of sum and trace as well as the invariance of the trace under cyclic

permutations was used. As Eq. (2.27) has to hold for all density operators ρ on H, it follows

1 =
∑
i

K†iKi, (2.28)

which proves the claim. Note that an analogous argumentation is valid for trace-decreasing

maps.

Furthermore, note that the operator-sum representation is not unique.

Consecutively, all valid quantum operations can be written in operator- sum representation

and there are two main classes to consider:

• Trace preserving quantum operations with
∑
iK
†
iKi = 1

Within this category all reversible operations can be found. As any unitary operator

satisfies U−1 = U †, UU−1 = 1, they represent such reversible transitions, for example

a change of basis, rotations or simply an identity transformation for U being the identity

operator. Furthermore, trace operations of the form Λ[ρ] = Tr(ρ |ψ〉 〈ψ|) fall into this

class of CPTP maps.

• (Strictly) trace decreasing quantum operations with
∑
iK
†
iKi < 1

These kind of operations describe measurements of all kinds, e.g. projective measure-

ments, positive operator valued measurements (POVMs).

Global and local quantum operations on multipartite systems

Considering systems containing two or more subsystems, an important distinction to be made

is between global and local quantum operations. As will be shown in Sec. 2.3, local operations

cannot increase the amount of entanglement present within a system whereas global operations

are necessary to create entanglement between two or more subsystems. Mathematically, one

can formulate the class of quantum operations on an n-partite system transforming the state

ρ −→ ρ′ = Λ[ρ]
Tr(Λ[ρ])

as the action of the linear CP(TP)-map Λ on the whole Hilbert space

e.g. its element ρ. In case of local operations, Λ can be written as tensor product of linear

CP(TP)-maps Λ(i) : S(H(i)) −→ S(H(i)) acting on all subsystems respectively, that is
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Λ = Λ1 ⊗Λ2 ⊗ ...⊗Λn.

In the operator-sum representation, it follows that any local quantum operation on a density

matrix ρ can be represented in terms of the Kraus operators {Ki,ti} by

Λ[ρ] =
∑

t1,...,tn
K7

1,t1† ⊗K
†
2,t2 ⊗ ...⊗K†n,tnρK1,t1 ⊗K2,t2 ⊗ ...⊗Kn,tn (2.29)

Here in case of trace preserving operations
∑
ti
K†i,tiKi,ti = 1 and for trace decreasing oper-

ations
∑
ti
K†i,tiKi,ti < 1. The former are also named deterministic local operations, as the

probability with which the transformation occurs is equal to one.

Following, local unitary (LU) operations and (stochastical) local operations assisted by clas-

sical communication ([S]LOCC) are discussed in more detail, as they are important tools for

this thesis.

Measurements

Within the category of non-trace-preserving CP-maps, one can classify the quantum opera-

tions describing a measurement process. The most basic form of measurements are projective

(or von-Neumann-) measurements [56]. When measuring an observable O, described by an

hermitean operator in H with spectral decomposition O = λiΠi, the Kraus operators describ-

ing a projective measurement are projectors Πi = Π†i on the eigenvalues λi. The projectors

can always be written as a sum of rank one projectors, Πi =
∑
j(|ϕj〉 〈ϕj |)i, of O. They sum

up to identity,
∑
i Pi = 1, and are orthogonal, ΠiΠj = δij1. Then the probability with which

a measurement outcome λi occurs is given by Borns rule [57]

pi = tr(Πiρ) e.g. for pure states: pi = 〈ψ|Πi |ψ〉 . (2.30)

The normalized state ρ′, in which the system can be found after a projective measurement

has been performed, is of the form

ρ′ =
ΠiρΠi

tr(Πiρ)
=

ΠiρΠi

pi
e.g. for pure states: |ψ′〉 =

Πi |ψ〉√
〈ψ|Πi |ψ〉

=
Πi |ψ〉√

pi
(2.31)

The aforementioned projective measurements cover only a part of the whole class of pos-

sible measurements on a quantum system. The most general measures are positive operator

valued measures (POVMs) [58]. They can be useful to distinguish non-orthogonal states, for

which projective measurements provide no option for perfect distinctness [59], [60]. A POVM

A is described by a set A = {Ei} of positive semi-definite operators Ei ≥ 0, also known as

effects, that sum up to identity,
∑
iEi = 1. Each effect Ei is associated with some outcome

of the measurement, thus they can be decomposed as Ei = A†iAi. The main difference to

projective measurements is that POVM elements, or effects need not be orthogonal. Then,

the probability for a measurement outcome corresponding to Ei is:

pi = tr(Eiρ), e.g. for pure states: pi = 〈ψ|Ei |ψ〉 (2.32)

And the normalized post measurement state becomes

ρ′ =
AiρA

†
i

Tr(Eiρ)
=
AiρA

†
i

pi
, e.g. for pure states: |ψ′〉 =

Ai |ψ〉√
〈ψ|Ai |ψ〉

=
Ai |ψ〉√
pi

. (2.33)
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As a consequence of non-orthogonality of the POVM elements, the same holds for ρ′ in (2.33).

Hence, POVM measurements are not repeatable, that is, another measurement round could

produce different outcomes and thus it is obvious that the post measurement state is not

accessible, as it is dependent on the POVM elements Mi. Of great importance, especially

considering physical realizability, in context with POVMs is Naimarks theorem which states

that every POVM can be performed as a projective measurement on an enlarged Hilbert

space. More formally

Theorem 2.4. Naimarks theorem [61]

Let A = {Ei} be a POVM acting on HA with an element ρA. Then there exist a projective

measurement {Πi} acting on the enlarged Hilbert space HA ⊗HB and a pure state ρB =

|ψB〉 〈ψB | in HB such that:

pi = Tr[(ρA ⊗ |ψB〉 〈ψB |)Πi] = Tr[EiρA] (2.34)

where for the projectors Πi can be expressed as a unitary operation acting on the combined

space, followed by a projective measurement on HB, that is Πi = U †i,AB(1A ⊗Πi,B)Ui,AB.

Local Unitary operations

Unitary operations belong to the class of deterministic operations as U−1 = U †, thus
∑
i U
†
i Ui =

1, and are as such represented by trace preserving linear CP-maps. And important feature

of unitaries acting on a quantum system is that they induce a change of basis. In case of

local unitaries, this means a change of the local basis within the subsystem they are acting

on. For global unitaries, the basis of the Hilbert space corresponding to the whole system

is changed. As states as well as observables are subjected to this basis change, the systems

description is invariant under such kind of local or global unitary transformations. A second

fundamental role of unitaries is due to the nature of the Schroedinger equation which states

that the systems dynamical behaviour is to be described by unitary time evolutions.

Definition 2.1. LU equivalence

Two n-partite states ρ, ρ′ ∈ H are said to be equivalent under local unitary operations if

and only if there exists a linear CPTP map Λ with Λ[ρ] = ρ′ which allows for an operator-

sum-representations where all Kraus operators are zero except for one. By definition, this is

then an unitary operator that can be written as a tensor product of unitaries with respect to

all subsystems.

ρ LU←−−−−→ ρ′ iff: ρ′ = U †ρU and: U = U1 ⊗ ...⊗Un (2.35)

If ρ = |ψ〉 〈ψ| describes a system in a pure state, then local unitary equivalence between

|ψ〉 and another pure n-partite state |ψ′〉 with |ψ〉 , |ψ′〉 ∈ H implies:

|ψ〉 LU←−−−−→ |ψ′〉 iff ∃ Uk, k ∈ [1, ...n] such that: |ψ′〉 = U1 ⊗ ...⊗Un |ψ〉 (2.36)

Prominent examples for local unitary operations are e.g. the Pauli matrices σi, i = x, y, z in

case of qubits

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.37)



2.1. Mathematical framework 17

which, together with σ0 ≡ 1, form a complete basis for the vector space of complex matrices

in C2 ⊗C2. Their generalizations to higher dimensional systems which will be discussed in

more detail in Chapter 4 on the topic of qudit hypergraph states.

LOCC-Operations

An important class of operations to manipulate a given quantum state are local operations

assisted by classical communication, called LOCC-operations. Those operations are able to

answer the question whether it is possible to deterministically transform one quantum state ρ

into another ρ′ in case each party of a multipartite system has access exclusively to their own

subsystem. Here, the local operations that can be applied include all quantum operations

described by Eq. (2.29) that satisfy the trace-preserving property. That is, local unitary

operations, local measurements and coupling to auxiliary systems and their removal. The

classical part of those operations induces the option of classically correlated subsystem, where

these correlations can be seen as a classical global operation on more than one subsystem.

Thus the action a certain party decides to perform on their subsystem may depend on e.g.

the classically communicated measurement outcome of another party. As a consequence, the

Kraus operators of an LOCC map ΛLOCC can depend on each other and consecutively such

LOCC maps are in general very hard to formulate.

Definition 2.2. LOCC equivalence

Two quantum states ρ, ρ′ are equivalent under LOCC operations if and only if they are

deterministically interconvertible by the use of CPTP-maps inducing LOCC transformations.

Formally

ρ LOCC←−−−−−−−−→ ρ′ iff: ∃ ΛLOCC , Λ′LOCC such that: ΛLOCC [ρ] = ρ′

and Λ′LOCC [ρ′] = ρ.
(2.38)

For the restricted set of pure quantum states it was shown in [62] that LOCC-equivalence

coincides with LU-equivalence. Therefore two pure n-partite states |ψ〉 , |ψ′〉 can be converted

into each other with certainty if and only if they are LU-equivalent in terms of Definition 2.1

|ψ〉 LOCC←−−−−−−−−→ |ψ
′〉 iff: |ψ′〉 = (U1 ⊗ ...⊗Un) |ψ〉 (2.39)

The question of whether or not a bipartite pure state |ψ〉 can be transformed into another

|ψ′〉 has been answered by Nielsons theorem [51]. Before stating the theorem itself, the

definition of majorization is needed.

Definition 2.3. Majorization

Let ~u = (u1,u2, ...,udu), ~v = (v1, v2, ..., vdv ) be vectors in Rdu , Rdv describing a probability

distribution, that is
∑du
i=1 ui =

∑dv
i=1 vi = 1 as well as ui, vi ≥ 0. Furthermore, let ~v↓, ~u↓

denote the same vectors but with the entries ordered as a descending sequence, i.e. u↓1 ≥ ... ≥
u↓du and v↓1 ≥ ... ≥ v↓dv . Then ~u↓ is majorized by ~v↓, that is ~u↓ ≺ ~v↓, if and only if

k∑
i=1

u↓i ≤
k∑
i=1

v↓i ∀ k ∈ [1, ..., min(du, dv)] (2.40)

Then Nielsons theorem can be formulated as follows
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Theorem 2.5. Nielsons theorem [51]

A bipartite pure quantum state |ψ〉 is convertible to another state |ϕ〉 with certainty by LOCC-

operations if an only if their ordered Schmidt coefficients satisfy

n∑
i=1

λψn �
n∑
i=1

λϕn ∀ n ∈ [0, ..., d] and d = min(dimψ, dimϕ) (2.41)

that is, |ψ〉 has to majorize |ϕ〉.

Consecutively, from Nielsens theorem a criterion to classify entanglement can be intro-

duced. States within the same LOCC class have to interconvertible by LOCC operations,

thus majorization has to go both ways, leaving equality of Eq. (2.41) as the the only pos-

sible option. Then, it is obvious that LOCC equivalent states are those and only those,

which possess the same Schmidt coefficients, which, in turn, means,they are related by local

unitaries.

SLOCC-operations

Convertibility between two quantum states via LOCC is, as demonstrated in the section be-

fore, a hard task. This is due to the fact that their mathematical description is not easy to

handle and often a clear statement regarding convertibility can not be made. Therefore, it is

sensible to take a look at a broadened class of operations named stochastic local operations as-

sisted by classical communication (SLOCC). Two states are convertible via SLOCC operation

if they can be transformed into each other by using LOCC with non-vanishing probability.

Definition 2.4. SLOCC equivalence I [113]

Two quantum states ρ, ρ′ are equivalent under SLOCC operations if and only if they are

interconvertible with non-vanishing probability by the use of not necessarily trace preserving

CP maps inducing LOCC transformations:

ρ SLOCC←−−−−−→ ρ′ iff: ∃ ΛLOCC , Λ′LOCC s.t.:
ΛLOCC [ρ]

Tr(Λ[ρ])
= ρ′, p = Tr(Λ[ρ]) > 0

and
Λ′LOCC [ρ′]

Tr(Λ′[ρ′])
= ρ, p′ = Tr(Λ′[ρ′]) > 0

(2.42)

where p and p′ are not necessarily equal. referring to the fact that the probability of a successful

transformation need not be equal in both directions.

Note that a SLOCC transformation, due to its probabilistic nature, converts any pure

state, which it is applied to, into some mixture. SLOCC operations allow for post-selection

of the various measurement outcomes and the LOCC map inducing the transformation can

now be trace-decreasing. Within an SLOCC operation the LOCC protocol is divided in many

different branches, where for each branch, post selection keeps only the desired outcome.

Therefore only one Kraus operator is used per round. This poses as an enormous advantage,

as it is now possible to characterize SLOCC-operations in a mathematically closed description.

That is, they are induced by local operators only restricted by the demand of invertibility.

For pure states it follows

Definition 2.5. SLOCC-equivalence II

Two pure n-partite quantum states |ψ〉, |ψ′〉 in H = H1 ⊗ ...⊗Hn are interconvertible by

stochastic local operations and classical communication if and only if there exist invertible
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square matrices {Ai} acting on each subsystem, such that

(A1 ⊗ ...⊗An) |ψ〉 = |ψ′〉 and: (A−1
1 ⊗ ...⊗A−1

n ) |ψ〉 = |ψ′〉

where: det(Ai) 6= 0 ∀ i ∈ [1, ...,n], and dim[Ai] = di × di, di = dim(Hi)
(2.43)

Having set the formal framework of quantum states and quantum operations in Hilbert

spaces, the next section of this chapter concentrates on the concept of entanglement, e.g. its

definition, characterization, classification and quantization.

2.2 Entanglement

Entanglement is a feature possible for quantum states to own that in no way can be described

or reproduced by classical means. Concretely, entanglement is a word to describe non-classical

correlations between two or more systems. These kinds of correlations cannot be predicted

within local classical models, not even when allowing for the inclusion of hidden variables, i.e.

variables inherent to the systems but inaccessible to the observer.

This failure of local, classical probabilistic approaches to explain the character of entangled

states, can be shown with e.g. Bell inequalities [3]. They bond certain combinations of

probabilities originating from local measurement outcomes of two or more systems for all

classical theories. Quantum mechanics is able to exceed those bounds due to their special

kind of structure and correlations arising from it.

From a quantum mechanical point of view, combined systems are described by one single

state vector. Thus any measurement causes an implicit state update of the whole system. It

can be viewed as an actualization of the whole systems state using only information already

present. Therefore, in quantum mechanics, unlike in attempts to find classical, local theories,

there is no such thing as instant information transfer needed to explain the way measurement

outcomes of entangled states display correlations.

Consecutively, entangled states are mathematically described by a single state vector, or a

single density matrix for mixed states, combining two or more systems, that do not factorize

as a product state. This can bee seen as follows: Factorizing as a product state means that a

local measurement (quantum operation) acting on one subsystem gives a specific value for the

measured observable, that is completely uncorrelated to the measurement results one would

get when measuring the same observable on other subsystems of the whole system. That is,

from measurement of one system we can infer nothing about the measurement results of the

other systems. This very property is violated by entangled states.

For entanglement, there exists a vast field of applications, e.g. ultra-precise clocks [63],

[64], quantum random number generators [66], [67], quantum computers [65] and enhanced

interferometry techniques [68]. At the end of this section, the role of entangled states as a

resource is illustrated for the field of quantum cryptography as well as quantum metrology

processes.

2.2.1 Bipartite entanglement

Defining entanglement is usually done by defining what it is not. Or, in other words, by

characterizing all bipartite states that originate from correlations which can be simulated

classically. The set of entangled states emerges as those state not fitting within this category.
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Consider two parties A and B each preparing a pure quantum state, |ψA〉 ∈ HA and |ψB〉 ∈
HB respectively, within their own laboratory. Then the whole system living on HAB =

HA ⊗HB is described by the tensor product of the uncorrelated single-system states, that is

|ψAB〉 = |ψA〉 ⊗ |ψB〉. States of this kind consist of totally independent subsystems and are

called product states.

As mentioned before, the notion of pure states is a theoretical ideal which often times will

fail for practical purposes. The situation when considering mixed states ρA, ρB gives an

analogous description of the whole system as ρAB = ρA⊗ ρB . Furthermore, it is also possible

to take statistical mixtures of product states without violating the classical nature of the

used correlations. Then, the most general way to describe an exclusively classically correlated

bipartite system is a convex combination of product states

ρAB =
∑
i

pi(ρA,i ⊗ ρB,i) with: pi ≥ 0, and
∑
i

pi = 1. (2.44)

States of this type are called separable states. The class of pure states emerges from the class

of separable state for only one non-zero weight, that is pi = 0 ∀ i 6= j. From the form of

Eq. (2.44) it is obvious that the set of all separable states builds the convex hull to the set

of all product states. Having found the condition any purely classically correlated bipartite

state satisfies, it is now natural to define entangled state as those not fitting into the category

defined by Eq. (2.44)

Definition 2.6. Bipartite entanglement

Let ρAB be a density operator on HAB describing a bipartite quantum state. Then ρAB is

said to be entangled if and only if it cannot be rewritten as convex combination of product

states [48]

ρAB := entangled, iff: ρAB 6=
∑
i

pi(ρi,A ⊗ ρB,i) ∀ ρAB ∈ HAB

∀ pi with: pi ≥ 0,
∑
i

pi = 1
(2.45)

In case ρAB is a pure state, all possible classical correlations are included in the tensor product

of the states of the subsystems. From Eq. (2.45), for pi = 0 ∀ i 6= j, it follows

|ψAB〉 := entangled, iff: |ψAB〉 6= |ψA〉 ⊗ |ψB〉 ∀ |ψAB〉 ∈ HAB (2.46)

The question if a given pure bipartite state |ψAB〉 is entangled or separable is fully an-

swered by the Schmidt decomposition, see Theorem 2.1. Due to the fact that the Schmidt

coefficients {
√
λi} are unique and the Schmidt basis {|ai, bi〉} is given by separable states, one

can infer from the number of non-zero
√
λi the entanglement properties of the state:

A pure bipartite state is separable if and only if the Schmidt decomposition exhibits

one and only one non-vanishing Schmidt coefficient. Otherwise the state is entangled.
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Remark 2.1. Evaluating the reduced density matrices ρA|B of a pure bipartite state in

Schmidt-decomposition gives:

ρA = TrB(ρAB) = TrB [
∑
ij

√
λiλj |ai〉 〈aj | ⊗ |bi〉 〈bj |]

=
∑
n

〈bn|
∑
ij

√
λiλj |ai〉 〈aj | ⊗ |bi〉 〈bj | |bn〉

= δinδjn
∑
ij

√
λiλj |ai〉 〈aj |

=
∑
i

λi |ai〉 〈ai|

and accordingly: ρB =
∑
i

λi |bi〉 〈bi|

(2.47)

Thus the eigenvalue spectrum of the reduced states is given by the squared Schmidt coefficients.

As separability demands all except one Schmidt-coefficient to be zero, entanglement can be

related to the purity of the reduced density matrices

tr[(ρA|B)2) = 1 ⇐⇒ |ψAB〉 = separable

tr[(ρA|B)2) < 1 ⇐⇒ |ψAB〉 = entangled
(2.48)

Prominent examples of entangled states are the generalized Bell states[3]

|ψBELLAB 〉 =
1√
dmin

dmin−1∑
i=0

|aibi〉 , where: dmin = min(dA, dB). (2.49)

For dA = dB = 2, e.g. two qubit states the original four orthogonal Bell states, realized e.g.

in spin systems, emerge

|ψ+〉 =
1√
2

(|00〉+ |11〉) |ψ−〉 =
1√
2

(|00〉 − |11〉)

|ϕ+〉 =
1√
2

(|01〉+ |10〉) |ϕ−〉 =
1√
2

(|01〉 − |10〉)
(2.50)

The set of Bell states additionally defines the maximally entangled states within a bipartite

system. Maximally entangled here means that the reduced density operator is a multiple of

the identity matrix, representing complete randomness, i.e. ignorance of the reduced state.

In Chapter 5, the reasonableness of the term in connection with generalized Bell states in

systems of dimension higher than three will be questioned and discussed.

In case of bipartite mixed states, the Werner state of two qubits, that is the probabilistic

mixture of a Bell state and a completely mixed state:

ρW = p |ψ+〉 〈ψ+|+ (1− p)1
41 (2.51)

may display entanglement. Whether this state is entangled or separable is decided by the

value of p, that is, entanglement is present if p > 1
3 .

2.2.2 Multipartite entanglement

Turning to systems consisting of an arbitrary number of parties, a more complex structure

emerges. Due to this involved composition, we consider pure states and statistical mixtures
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in a separated discussion.

Pure states

Considering pure states first, the subsequent generalization of Definition 2.6,e.g. Eq. (2.45)

gives [48]

Definition 2.7. Multipartite entanglement, pure states

An n-partite pure state |ψ〉 in H = H1 ⊗ ...⊗Hn is entangled if and only if it cannot be

written as tensor product of single subsystem states |ψi〉 in Hi for all i ∈ [1, ...,n]

|ψ〉 := entangled, iff: |ψ〉 6=
n⊗
i=1
|ψi〉 . (2.52)

Due to the richer structure of multipartite systems, Definition 2.7 does not take into

account all possible scenarios. To be more precise one can think of it as follows: whereas for

a bipartite system, there are in principle only two options - separable or entangled- this is not

the case for more than two parties. Here, the situation could be that of an n-partite systems an

arbitrary number of subsystems are entangled but no entanglement is present between other

parts. As such, those systems are separable with respect to a certain partition but entangled

with respect to another. These considerations lead to the definition of k-separability [69]:

Definition 2.8. k-separability

An n-partite pure state |ψ〉 in H = H1 × ...×Hn is said to be k-separable with respect to a

specific k-partite split if and only if it can be written as tensor product of k factors of subsystem

states, i.e.

|ψ〉 := k-separable, iff: |ψ〉 =
k⊗
i=1
|ψi〉 k ∈ [1, ...,n]. (2.53)

Note that here the factors |ψi〉 may consist of more than one subsystem where the maximum

is limited by the specific values of n and k, i.e. max(n, k) = n− k + 1. This corresponds to

the situation of (k− 1) single subsystems and one (n− k + 1) particle system.

From Definition 2.8 it follows that Eq. (2.52) emerges as two special cases for k = n and

k = 1. States with the former property are called fully separable whereas the latter ones are

called genuinely multipartite entangled.

Mixed states

For mixed states the definition of k-separability can be done in two different ways. Either

going with the conditioned or the unconditioned option [70].

The conditioned separability defines a mixed state to be separable with respect to a certain

partition P, if it can be written as convex sum of pure k-separable states, which are all

separable with respect to the same partition P. Although this definition of separability is the

logical and intuitive extension of bipartite separability, it does not give concrete information

about the amount of entanglement within the state. Thus, it is no good candidate to bring

forth a quantification of separability. From Definition 2.9

Definition 2.9. Conditioned k-separability of mixed states [70]

A mixed n-partite quantum state ρ in H⊗n is called k-separable with respect to a specific k-

partition P, if and only if it can be written as convex sum of pure states , {(ρk−sep|Ppure )i)}, that
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are all k-separable with respect to the partition P

ρ := k-separable, iff: ρ =
k∑
i=1

pi(ρ
k−sep|P
pure )i with: k ≤ n (2.54)

one sees that this is due to the fact that states, which are k-separable conditioned on

different partitions P and P’, give rise to incomparable classes.Therefore, when talking about

a definition for the separability of mixed states, which gives valid information within the

quantification sector, the unconditioned k-separability is more useful:

Definition 2.10. Unconditioned k-separability of mixed states [70]

A mixed n-partite quantum state ρ in Hn is called k-separable if and only if it can be written

as convex sum of pure states, where every one of those is k-separable with respect to some

arbitrary partition Pi, e.g. (ρ
k−sep|Pi
pure )i = (ρk−seppure )i

ρ := k-separable, iff: ρ =
k∑
i=1

pi(ρ
k−sep
pure )i with: k ≤ N (2.55)

Of course, in this case one has to be careful with the notation and implications of k-

separability. For the unconditioned option k-separability does not mean, that there exists a

specific decomposition showing k-separability with respect to any specific partition.

The different classes of k-separable states build a convex set, with the cone of fully separable

states lying in the middle, the cone of genuine multipartite states being the outermost one.

This is due to the fact that any k-separable state has to be (k-1)-separable as well.

Figure 2.1: Convex Set of k-Separable States [71]

To conclude this section covering the basic definitions concerning entanglement, e.g. sep-

arability of pure and mixed multipartite quantum states, some prominent examples for en-

tangled states in both categories are given:

For pure two-level systems, an example of a genuine 3-partite entangled state is the W-state

[113]:

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) (2.56)
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A pure state that is k-separable with k = 2 for a four level system could take, e.g., either one

of the following forms:

|ψ1|3〉 = (|0〉 ⊗ |W 〉) bipartite split with 1 vs. 3 subsystems

|ψ2|2〉 = (|ψ+〉 ⊗ |ϕ−〉) bipartite split with 2 vs. 2 subsystems
(2.57)

Candidates for a mixed multipartite entangled states are the generalized n-partite Werner

states [72] [73], given as

ρW = p |ψmaxE〉 〈ψmaxE |+ (1− p) 1
2n 1. (2.58)

Whereas in case of bipartite systems, the minimal value of p for ρ to still be entangled can

be determined, it is not that easy in the multipartite case. Nonetheless, for example the [74]

characterizes entanglement properties of three-qubit Werner states for ψmaxE = |GHZ〉 that

is: ρW ,3qubit = p |ψGHZ〉 〈ψGHZ |+ 1−p
8 1.

2.2.3 Applications of entanglement

Following, there will be a short overview about two of the most important applications of

entangled states nowadays: quantum cryptography, to be more precise, quantum key distri-

bution and quantum metrology.

Quantum key distribution

Within the field of quantum cryptography, entanglement is a powerful tool within the field of

quantum key distribution (QKD). Imagine two parties A and B wanting to exchange a private

key to encode messages sent over an insecure classical information channel. Furthermore A

and B are connected via a classical as well as a quantum channel, which may both be subjected

to intervention of some third party E. The aim now is to create a private key in such a way

that A and B are able to deduce any interference made by E and consecutively dismiss the

key as insecure. The first method to generate such a private key by using quantum mechanics

was proposed by Charles Bennett and Gilles Brassard in 1984 [12]. It is a measurement based

protocol where security relies on the no-cloning theorem [46].

Here, the basic idea of another protocol using entangled pairs of photons proposed by Arthur

Eckert in 1991 [16] will be reviewed. The Ekert protocol is based on quantum teleportation.

That is, a source may create an Einstein Podolsky Rosen (EPR-)pair of photons, e.g. one

of the four Bell states presented in Eq. (2.50). Then, both A and B, are sent one photon

of each EPR-pair and, each randomly choosing a measurement basis, perform a polarization

measurement on their own photon. The choice of basis may then be communicated through

a classical channel. In case the bases coincide, the result, which displays perfect correlation

or anti-correlation - depending on the state the source produces - is used for key generation.

Otherwise, the result is discarded. The schematic setting of the protocol is illustrated in the

Fig. 2.2



2.2. Entanglement 25

  

A B
classical 
channel

quantum 
channel

EPR-pair source 
creating 
   |ψ>

Bell

1 Bell-photon each

E

can access

can access

Figure 2.2: Schematic setting of a QKD protocol based on entanglement

The working principle of the protocol is based on some important properties of entangled

states. First, the option to create perfectly correlated states in crucial. Then, the non-locality

of entangled states enables A to deduce B’s result of some polarization measurement with

higher than average (random) probability leading to correlations strictly stronger than all

classical limits. Furthermore regarding a possible intervention of E, any attempt to do so

will weaken those correlations and thus any action of E can be detected by A and B. Hence,

to verify security of the protocol, A and B test Bell inequalities. As entangled states should

show a violation of those, if no violation is detected, A and B can infer that the original state

was not entangled, which implies an intervention of E.

Quantum metrology

Within the field of metrology, quantum effects, like entanglement, can be used to enhance the

precision of measurements on physical parameters. A promising and actual application is the

detection of gravitational waves [75]. As an example for the usefulness of entangled states in

quantum metrology, consider the estimation of the angel, or phase ϕ within a so special kind

of entangled state of N particles, the so-called NOON-state [76]

|ψNOON 〉 =
1√
2

(|N〉A ⊗ |0〉B + eiNϕ |0〉A ⊗ |NB〉). (2.59)

A NOON-state is a superposition of N particles in mode A and zero particles in mode B

and vice versa. When used in an optical interferometer and measuring the observable O =

|0N〉 〈N0|+ |N0〉 〈0N |, the NOON-state enables a highly precise measurement of the phase

ϕ which beats classical limits by far. More detailed, the insecurity within ϕ is estimated to

scale with the reciprocal particle number N :

∆(ϕ) =
∆(O)

|dOdϕ |
=

1
N
≤ 1√

N
≡ classical limit (2.60)

Thus, an entangled N-partite state was shown to exhibit far better scaling than possible when

using any non entangled, N-partite state.
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2.3 Entanglement classification and quantification

2.3.1 Classification

Due to entanglement being used as an important tool and resource for many processes in

the field of quantum information theory, the need to identify states of identical entanglement

properties arises from the fact that states inheriting an equivalent type of entanglement should

possess the same complexity level regarding their producibility. For practical uses, in which

the non-local properties of entanglement are exploited, oftentimes one has the situation of

spatially separated, entangled states. Then, at each location the observer has access to one

subsystem of the state, which he can manipulate via local operations. Additionally, the option

of communication with the other observers at different locations is realizable via classical

channels. Thus, it makes sense to classify the entanglement properties of a state based on

those criteria.

As we know for a fact that an interaction described by a coherent quantum operation on all

subsystems is necessary for the generation of entanglement, it is clear that operations applied

on each system separately, i.e. purely local operations, cannot enhance the entanglement level

of the whole system. Nonetheless, it is of course possible to transform one entangled state into

another one by local means at hand for each subsystem respectively, if both states share the

same kind and amount of entanglement. It is important to notice that the non-entanglement-

generating property of locally applied quantum operations also implies that the entanglement

level is not allowed to decrease under such local operations we want to use to categorize

classes of the same kind of entanglement. This factum directly arises if one takes into account

the need for the inverse transformation mapping the transformed state back to the original

one. The operation initiating the reverse process would need to enhance entanglement, if the

original one causes a decreasing.

As a consequence, those local operations that define an entanglement class as a class of

states that can be transformed into each other back and forth, cannot manipulate the kind

of entanglement within a given state in any direction. Therefore, as means for a proper and

useful classification of entanglement, the equivalence of two quantum states under

• Local unitary operations (LU)

• Local operations and classical communication (LOCC)

• Stochastical local operations and classical communication (SLOCC)

are good and sensible candidates to define categories of states sharing the same entanglement.

In the following, equivalence classes of states under the aforementioned local operations will be

discussed for bipartite and multiparite systems. As will be shown, LU and LOCC-equivalence

classes are in most cases hard to characterize in a mathematically closed way. Therefore

SLOCC-equivalence takes an emphasized role in the discussions and will shown to be very

useful to give deeper insight and better understanding of the structure and complexity of

entangled states, especially in the multipartite scenario.

2.3.2 Quantification

As mentioned before, quantum entanglement is used as resource for various quantum infor-

mational tasks. From this, naturally the need for a tool that can quantify the amount of

entanglement - and thereby give an important scale for the performance level of a state with
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respect to a given task - arises. As seen in the previous section, entanglement cannot be gen-

erated by applying SLOCC-operations. Thus two states that are interconvertible via SLOCC

should pricipally be able to perform the same quantum informational tasks. However, within

an SLOCC class, not all states perform equally well at a given task. Hence, to quantify

entanglement, behaviour under LOCC will first and foremost pose as the keystone towards

quantifying the entanglement present within a given quantum state. Therefore, entanglement

monotones, introduced by Vidal [77], will be defined before moving on to the definition of

valid and good entanglement measures [78], [79], [80], [48]. Note that whereas there are some

general conditions necessarily to be satisfied, there are additional ones, which might or might

not be satisfied, depending on the task to be performed. Further note that whereas for bi-

partite states the existence of a maximally entangled state allows for a unique ordering, the

same is not true for multipartite states.

Definition 2.11. Entanglement monotone

An entanglement monotone M is a function which maps density operators ρ in H to the field

of real, positive numbers R+ and satisfies monotonicity:

M[ΛLOCC [ρ]) ≤M(ρ) ∀ ρ, ΛLOCC ↔ M is non-increasing under LOCC (2.61)

One could impose an even stronger version of montonicity, i.e. demand M to be non-

increasing under LOCC on average, i.e.∑
i

ppM(ΛLOCC [ρ])i ≤M(ρ) ∀ ρ, ΛLOCC (2.62)

where the LOCC-map ΛLOCC maps the initial state ρ to the state (ΛLOCC [ρ])i with proba-

bility pi and naturally
∑
i pi = 1.

For an entanglement monotoneM to classify as a proper entanglement measure, addition-

ally to monotonicity, a measure has to vanish on all separable states. Note that monotonicity

already implies a constant value for any M as all states within the set of separable state are

inteconvertible via LOCC.

Definition 2.12. Entanglement measure

An entanglement measure M is an entanglement monotone that vanishes on all separable

states, that is

1) M is an entanglement monotone according to Definition 2.11

2) M(ρ) = 0 ∀ ρ in {ρSEP }
(2.63)

It is important to mention that a vanishing value for an entanglement measure does not

imply separability per se. Thus, there can be entangled states for which M = 0. Physically

this indicates e.g. that such a state would not exhibit the kind of entanglement measured by

the special respective measure, i.e. the state is not useful for some task ( but could for some

other measured by some other entanglement measure).

Additionally to the necessary conditions in Definition 2.12 , there are other properties desir-

able for entanglement measures that might or might not be satisfied depending on the specific

measure, i.e.
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3) Invariance under local unitary operations: 1

M(U †ρU) =M(ρ) ∀ ρ and ∀ local unitaries: U =
n⊗
i=1

Ui (2.64)

4) Faithfulness, i.e. M is tight on the set of separable states:

M(ρ) = 0 if and only if ρ is separable (2.65)

5) Convexity, i.e. M is non-increasing under mixing of quantum states: 2

M(
∑
i

piρi) ≤
∑
i

M(ρi) (2.66)

6a) Additivity under the tensor product, that is:

M(ρ⊗n) = n ·M(ρ) (2.67)

6b) Sometimes, this is extended to strong additivity:

M(
⊗
i

ρi) =
∑
i

M(ρi) (2.68)

7) Continuity, i.e. from closeness of the entanglement measure, closeness of the corresponding

states necessarily follows:

M(ρ)−M(ρ′) −→ 0 =⇒ ||ρ− ρ′|| −→ 0 (2.69)

An entanglement monotone defined for mixed states M′(ρ) has to reduce to the form

defined for pure states in case ρ ≡ ρpure = |ψ〉 〈ψ|. Here, convexity is an important property,

as this implies non-increasing ofM under mixing of quantum states. A common way one can

construct a mixed state entanglement monotone out of a valid one for pure states is by the

convex roof extension [90]

M′(ρ) = inf
{pi,ψi}

M(|ψ〉) (2.70)

Where the minimization goes over all possible decompositions {pi,ψi} of ρ.

In the following, an overview considering some of the post popular and important en-

tanglement measures is given [78]. For pure states, the Entropy of Entanglement [81] is

defined as the von Neumann entropy of the reduced density matrix. That is

ME(ρ) = S(ρRED) = −Tr(ρREDlog(ρRED) = −
n−1∑
i=0

λilog(λi) (2.71)

where {λi} denote the eigenvalues of ρRED and in case of a bipartite system those coincide

with the Schmidt coefficients. Notice that for pure bipartite statesME(ρ) has proven [91] to

be the only existing ’good’ measure in the sense thatME(ρ) = 0 if and only if ρ is separable.

1Note that LU invariance is satisfied by any entanglement monotone by definition. Deterministic intercon-
vertibility as induced by local unitary transformations directly leads to M(ρ) =M(ρ′) if ρ′ = U†ρU .

2Convexity can be viewed as making note of the loss of information happening from the left to the right
side of Eq.(2.3.2).
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That is, ME is a faithful measure (see Eq. (2.65)) and furthermore is gives its maximal

value (normed to one) if and only if ρ is the density operator corresponding to the maximally

entangled state |ψBell〉: max(ME(ρ)) =ME(ρBell) = 1
3

The extension of ME to mixed states via the convex roof construction gives the Entangle-

ment of Formation [83], [82]:

MF (ρ) = inf
|ψi〉,pi

∑
i

piME(ψi), pi ≥ 0,
∑
i

pi = 1, ρ =
∑
i

pi |ψi〉 〈ψi| (2.72)

Hence, MF (ρ) gives the minimal averaged entanglement over all decompositions of ρ. One

can interpret the entanglement of formation as a measure of how many maximally entangled

states are needed to create one copy of ρ.

The Distillable Entanglement [83], [82] of a state ρ addresses the question of the rate at

which maximally entangled states may be prepared from ρ using an LOCC-map Λ. Then:

MD(ρ) = sup{r : lim
n→∞

[inf
Λ
D(Λ[ρ⊗n], (|ψmax〉 〈ψmax|)rn)] = 0} (2.73)

where |ψmax〉 is the maximally entangled state to be produced, D is some suitable distance

measure, e.g. the trace, and r is some constant related to the dimension of the system. In

a more compact form, Eq. (2.73), can be rewritten as ratio within the asymptotic limit for

n → ∞ between the number n of copies of the input state ρ and the number m of copies of

the output state |ψmax〉, i.e.: MD(ρ) = supLOCC limn→∞
m
n .

The corresponding counterpart toMD(ρ) is the Entanglement Cost. It targets the opposite

problem of how many maximally entangled states are needed to prepare some noisy state.

Thus it can be formalized as

MC(ρ) = inf{r : lim
n→∞

[inf
Λ
D(ρ⊗n, Λ[(|ψmax〉 〈ψmax|)rn)] = 0}. (2.74)

This corresponds to the rate between input- and desired output state in the asymptotic

limit with m input states |ψmax〉 and n output states ρ: MC(ρ) = infLOCC limn→∞
m
n =

limn→∞
MF (ρ⊗n)

n . Note that for pure states, entanglement cost and entanglement of forma-

tion coincide.

Measures based on quantifying the distance of a given state to the set of all separable state

are, e.g. the Relative Entropy of Entanglement [88] and the Geometric Measure of

Entanglement. The former is defined as

MR(ρ) = inf
σ∈{ρSEP }

S(ρ||σ) = inf
σ∈{ρSEP }

[tr(ρ log(ρ)− ρ log(σ))] (2.75)

The latter, rather that on entropies, is based on the maximal squared overlap of a given pure

state with the set of product states

MG(|ψ〉) = 1− max
|ϕ〉∈{|ψproduct〉}

| 〈ψ|ϕ〉 |2 (2.76)

The extension to a measure for mixed states can be done via the convex roof extension [90]

Another measure of entanglement introduced by Wooters is the Concurrence [86]. For a

3Note that with the entropy of entanglement, an unique measure of entanglement for pure bipartite state
is provided. This can be seen by the fact that a pure bipartite state ρ can be converted into ρ′ via LOCC if
and only if the entropies satisfy: ME(ρ′) ≥ME(ρ).
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two qubit system in a pure state it is defined as the overlap of a given state |ψ〉 with its

respective spin-flipped state |ψ̃〉, that is

C(|ψ〉) = 〈ψ|ψ̃〉 where: |ψ̃〉 = σy ⊗ σy |ψ∗〉 (2.77)

The concurrence can be extended to mixed ensembles ρ =
∑
i pi |ψi〉 〈ψi| via the convex roof

construction

C(ρ) = inf
|ψi〉,pi

∑
i

piC(|ψi〉) = max(0,
√
λ1,−

√
λ2,−

√
λ3,−

√
λ4) (2.78)

where λi are the eigenvalues sorted in decreasing order,
√
λi ≥

√
λi+1, of the hermitean

matrix ρρ̃ with ρ̃ = σy ⊗ σyρ∗σy ⊗ σy. For dimensions d > 2 a possible generalization of the

concurrence reads

C(ρ) =
√

(2(1− Tr(ρRED)) (2.79)

Furthermore, based on the concurrence, an entanglement measure for multipartite states can

be defined, the n-tangle[85]. In case of three qubit systems, the three-tangle [84] can be

written in terms of the bipartite concurrences as follows

τ3(ρ) = C2
A|BC(ρ)−C2

AB(ρ)−C2
AC(ρ) (2.80)

The three-tangle is invariant under permutations of the three subsystems. The power of this

criterion is shown by its ability to distinguish between the GHZ- and the W-state. To be

more specific, the three-tangle is zero for the latter and gives its maximal value of τ3 = 1 for

a pure GHZ-state. A non-zero value for τ3 for any mixed 2× 2× 2 state ρ then indicates that

there is no decomposition of ρ without at least one summand of GHZ-nature.

An entanglement monotone measuring the amount of violation of the PPT-criterion [92] is

the Negativity [87]:

N(|ψ〉) =
||ρTA ||1 − 1

2 with the trace norm: ||ρTA ||1 =
√

(ρTA)†ρTA) (2.81)

It is possible to rewrite the negativity in terms of the eigenvalues of ρTA which lead to the

following formulation of N :

N(ρ) =

∑
i |λi| − λi

2 (2.82)

2.3.3 Classification of bipartite entanglement

The classification of entanglement within bipartite states is done by finding equivalence classes

under SLOCC. As mentioned before, LU- as well as LOCC operations can also provide a useful

division into different categories. But even for bipartite systems, a mathematically closed

analysis is only possible in some lower dimensional cases. Some of these will be discussed

shortly at the end of this subsection. In contrast to the aforementioned problems regarding LU

and LOCC, SLOCC provides a way to fully characterize all different classes of entanglement

in a neat way and as it turns out, bipartite entanglement classification under SLOCC is fully

determined by the existence of the Schmidt decomposition and we can formulate the following

statement:
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Theorem 2.6. Bipartite entanglement classification

Let {|ψAB〉} be the set of all bipartite pure quantum states in HAB of dimension d = dA× dB.

Then, for a given state |ψAB〉 the SLOCC-class is completely determined by the Schmidt

number nS of the state. Furthermore, the total number of SLOCC inequivalent classes is

equivalent to the value of nS . As for nS = 1 the state is of product form, the number of

entanglement classes not interconvertible by SLOCC then is (nS − 1).

Proof. The most powerful tool when analyzing bipartite systems regarding their entangle-

ment properties is the Schmidt decomposition, see Theorem 2.1. Recapitulating the main

statement, any bipartite pure state |ψAB〉 of arbitrary dimension dAB = dA × dB in HAB
can, by means of local basis transformations, be written in Schmidt form:

(UA ⊗UB) |ψAB〉 =
∑
i

√
λi |aibi〉 := |ψAB,S〉 (2.83)

Furthermore, as was shown in [93], the free parameters {λi} in Eq. (2.83) can be further

reduced, more precisely they will disappear by the application of SLOCC-operations on each

subsystem:

A⊗B |ψAB,S〉 =
1
√
nS

nS−1∑
i=0
|ii〉 (2.84)

Then, the number of non-vanishing Schmidt coefficients nS is obviously sufficient to charac-

terize the respective SLOCC class of the state, which proves Theorem 2.6.

Note that Eq. (2.84) can be identified with the generalized Bell-state in arbitrary di-

mensions (Eq. (2.49)), which were mentioned to mark the maximally entangled state in each

dimension. From the equation above it follows that any state can be mapped to |ψBell〉 within

the respective dimension by use of SLOCC, that is with non-vanishing probability depending

on the Schmidt coefficients {λi}. For the other direction, i.e. mapping |ψBell〉 to any state

with the same nS it holds that the transformation takes place with certainty. This poses as

a reasonable argument for the generalized bipartite Bell states define the set of maximally

entangled states. It is worth mentioning that the number of non-zero Schmidt coefficients is

closely related to the rank of the coefficient matrix Eq. (2.12), which thereby can identified

to be invariant under SLOCC as well.

Remark 2.2. Rank of the coefficient matrix and SLOCC classes

All bipartite states |ψAB〉 with equal rank rC of their respective coefficient matrix C|ψAB〉
belong to the same SLOCC-class. For rc = 1 the corresponding state is a product state, for

rC = min(dA, dB) the state is SLOCC-equivalent to the generalized Bell state.

This connection will be used frequently in context with SLOCC classification of qudit

hypergraph states in Chapter 4.

Finally, note that the notion of maximally entangled states will be revisited in Chapter 5. The

need for discussion arises because, though the generalized Bell state is a sensible candidate

for reasons shown above, there are scenarios that contradict the term in a fundamental way.

Following, classification in terms of LU and LOCC equivalence classes are reviewed for two

qubit states.

LU and LOCC classification of bipartite qubit states

As mentioned before, LU as well as LOCC operations in most cases fail to give a deeper insight

into entanglement structures and properties of states simply due to either their number of
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free paramters (LU) or the complex structure of the transformation protocol (LOCC).

For LUs, with increasing system dimension, the number of parameters of the general state

vector rises much quicker then the number of parameter describing the LU. Thus, in most cases

the equivalence classes under LU will contain families with one ore more free parameters. To

illustrate the problem, the most simpe example of two qubits suffices. Obviously, the Schmidt

decomposition of a two-qubit state has only one free parameter

|ψAB〉 =
√
λ0 |00〉+

√
λ1 |11〉 with: λ0 + λ1 = 1 (2.85)

Thus we can rewrite Eq. (2.85) in terms of a new parameter θ as

|ψAB〉 = cos(θ) |00〉+ sin(θ) |11〉 (2.86)

Therefore, any two qubit state can, under LU, be transformed to Eq. (2.86). Obviously there

is still one continuous parameter, i.e. θ, left. Hence, even for the lowest possible dimension

and particles, the number of equivalence classes under LU is infinite.

In terms of LOCC equivalence, it is known that LOCC equivalence coincides with LU

equivalence for single copies of states.

For multiple round of LOCC-protocols it was shown in [18] that for an infinite number

of copies there exist LOCC-protocols that transform every entangled two qubit state to the

maximally entangled Bell state, i.e.

|ψAB〉⊗n
LOCC−protocol−−−−−−−−−−−−→ |ψAB〉⊗mBell =

1√
2

(|00〉+ |11〉). (2.87)

This process is called entanglement distillation. The transition rate, i.e. the number of

maximally entangled states m that can be obtained from n copies of a lesser entangled state,

is determined by the amount of entanglement within the original state. Likewise, the reverse

process can be initiated, denoted as entanglement dilution. Therefore, the entanglement of

any pure bipartite state can be seen as equivalent to that of the maximally entangled state

in the asymptotic limit (n −→∞).

2.3.4 Classification of multipartite entanglement

In the multipartite case, entanglement classification is not solvable for arbitrary dimension

and particle number. This is mostly due to the fact that there is no generalization of the

Schmidt decomposition for systems consisting of more that two parties [55]. Nonetheless,

special cases have been studied extensively and following an overview regarding those will be

given.

Starting with the most simple multipartite system, that is a pure three-qubit state, it has

been shown that any state |ψABC〉 in H = HA ×HB ×HC of dimension d = dA × dB×C =

2× 2× 2 is LU-equivalent to [95]

(UA ⊗UB ⊗UC |ψABC〉 = λ0 |000〉+ λ1e
iϕ |100〉+ λ2 |101〉+ λ3 |110〉+ λ4 |111〉 (2.88)

where {λi} and ϕ are continuous real parameters. Notice that a consideration of the free

parameters the three unitaries have in comparison with those inherent in a normalized three
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qubit state already determines the appearance of continuous parameters in Eq. (2.88) 4

Regarding equivalence under SLOCC, the seminal paper, published in 2000 [113] presents a

full classification of entanglement of a multipartite system for the first time. It yielded the fa-

mous result stating that there are two inequivalent ways of genuine multipartite entanglement

within a (2× 2× 2) system - impossible to transform into each other via SLOCC operations:

the W-state and the GHZ-state. 5.

The complete SLOCC classification, including the fully separable product state (A|B|C) and

biseparable states (A|BC), (B|AC), (C|AB) was shown to encompass a total of six inequiv-

alent SLOCC classes:

|ψA|B|C〉 = |000〉 ,

|ψA|BC〉 =
1√
2
|000〉+ |011〉), |ψB|AC〉 =

1√
2

(|000〉+ |101〉), |ψC|AB〉 =
1√
2

(|000〉+ |110〉),

|GHZ〉 =
1√
2

(|000〉+ |111〉), |W 〉 =
1√
3

(|001〉+ |010〉+ |100〉),

(2.89)

The hierarchy of those, that is, the option of obtaining states from one SLOCC class with

lower entanglement from one with higher entanglement when applying non-invertible local

operations, was presented. Its conclusion being that every three qubit state can be generated

from the W-or the GHZ-state, identifying them as the ones with the highest entanglement

level. The hierarchy of those six classes is illustrated in Fig. 2.3

Figure 2.3: Hierarchy of three qubits SLOCC classes [113]. The arrows
denote convertibility of two classes, that is the states within those classes,
under non-invertible local operations. It is clear that from the GHZ and the

W-state one can reach all states within the three qubits class.

The study of the maximally entangled state in the three qubit case is not as straightforward

as in the bipartite case. This is due to the fact that there are the above-mentioned two

classes, from which one can reach all states within the three qubit realm. It has been shown,

that the GHZ-state maximizes entanglement monotones, like the three-tangle, whereas this

measure vanishes for the W-state. Thus the GHZ state satisfies in many ways the properties

a maximally entangled state should own. On the other hand, the W-state was identified

as the one with the most residual bipartite entanglement. This refers to the amount of

4Each qubit unitary has four free, real valued parameters, factoring out a global phase reduces the number
to three. This gives nine in total for UA, UB , UC . A general three-qubit state however has 2× 2× 2 = 8
complex parameters. Makes 16 real valued ones, minus one for global phase and normalization respectively
gives 14.

5The method used by [113] to identify SLOCC classes is mainly based on the study of the rank of the
reduced density matrices, which is known not to change under SLOCC. Additionally the range of the reduced
density matrix is utilized, e.g. the inequivalent way the range can be built up. Further details: seeApp)
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entanglement left within the state, when one subsystems is traced out. In contrast to the

W-state, tracing out one party completely destroys all entanglement within the GHZ-state.

Hence, the robustness of entanglement regarding the loss of one qubit is certainly higher within

the W state. Therefore, one can conclude that the definition of the maximally entangled state

is related to the question of maximal usefulness for quantum informational tasks, which can

only be answered by: ’it depends’. Depends, on which feature one is interested in using.

Turning the focus to systems of higher dimension and more parties, it was shown that the

last systems for which a finite classification under SLOCC is possible are those of the form

2× 3× n with n arbitrary but finite. In [126], representative states and hierarchy are given.

The proof is based on the idea of matrix pencils. 6. For the most simple four-partite system,

i.e. four qubits, infiniteness under SLOCC was shown in [96]. For 3× 3× 3 systems simple

dimension arguments exclude the option of a finite classification. 7

2.4 Entanglement detection

Despite the clear mathematical definition of entanglement as the impossibility of a decompo-

sition into a convex sum of tensor products, it is by no means an easy task to decide whether

a given state ρ is entangled or not. While for pure quantum states the Schmidt decomposi-

tion provides an operational method to detect entanglement, the task becomes more involved

when considering mixed states. This whole topic is referred to as separability problem in quan-

tum information theory. The complexity shows already in simple systems, in fact, even for

the bipartite case, the question of separability was proven to be NP-hard [97]. Nonetheless,

there exist approaches, both operational and non-operational, which tackle the problem and

have proven to be useful tools. ’Operational’ here means that a direct application to a given

density matrix is possible. Separability criteria usually base on defining special properties

satisfied by all separable states. A violation of the criterion thus indicates the presence of

entanglement. Here, it is of importance to stress the fact that non-violation is not equal to

separability, as it could likely be the case that the criterion is not ’strong’ enough to detect

the kind of possible entanglement within the state. A variety of some of the most successful

and important separability criteria will be reviewed in the following section.

2.4.1 PnCP-maps

A non-operational criterion to detect entanglement within a given state ρ is based on the

notion of positive but not completely positive maps (PnCP-maps)

Definition 2.13. PnCP-maps

A linear map Λ is said to be positive if and only if it preserves positivity of a positive (semi-)

definite operator A, that is Λ[A] ≥ 0 ∀ A ≥ 0. Furthermore, Λ is k-positive if and only if

positivity is preserved when acting on a subsystem of an enlarged Hilbert space, i.e.

(1k ⊗Λ)[A] ≥ 0 ∀ A ≥ 0 (2.90)

Then, it follows that a map is completely positive if and only if it is k-positive for all k whereas

a PnCP-map may lead to negative eigenvalues when acting on A.

6An alternative proof for 2×3×3 systems can be found in Appendix A. Furthermore, a proof for infiniteness
for 2× 4× 4 and higher dimensions is given

7Each invertible 3× 3 matrix has 2× (3× 3− 1) real parameters, adding up to 48. A general three qutrit
state possesses 2× (3× 3× 3− 1) = 52 free real parameters.
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Recalling that density operators are positive semi-definite and considering the action of a

positive but not completely positive map acting on a separable density operator of the form

ρAB =
∑
i piρA,i ⊗ ρB,i, one finds

(1A ⊗ΛB)ρAB =
∑
i

piρA,i ⊗ΛB [ρB,i] (2.91)

Then, as {ρB,i} is the reduced density matrix with respect to subsystem B and therefore, as

a valid density operator, positive semi-definite: Λ[ρB,i] ≥ 0 for all i. Thus, ρA,i ⊗ΛB [ρB,i]

is a positive semi-definite operator and finally the same is true for
∑
i piρA,i ⊗ ΛB [ρB,i].

In conclusion, if the action of (1A ⊗ ΛB) produces at least one negative eigenvalue, one

can exclude separability of ρAB with certainty. Furthermore it has been shown [121] that

preservation of positivity under any positive map is a necessary and sufficient criterion for

separability.

Theorem 2.7. Preservation of positivity

Let ρAB be a density operator on HA ⊗HB and let Λ be a positive map acting on HB. Then

ρAB is separable if and only if

(1A ⊗ΛB)ρAB ≥ 0 ∀ Λ ≥ 0 (2.92)

To see that this criterion, while mathematically giving a closed way to distinguish the set

of separable states from entangled states, is non-operational, i.e. not directly computable,

notice that there exists an infinite variety of PnCP-maps, whose set has not been characterized

up to now.

PPT-criterion

One of the first and most known entanglement criteria based on PnCP-maps introduced by

Peres and Horodecki [30], [121] is the positive partial transpose (PPT) -criterion. The positive

map used in this case is the transposition map, T . Then the partial transposition-map, i.e.

the transposition with respect to a certain subsystem of a composite density matrix ρAB can

be written as (1A ⊗ TB) (for the transposition to be performed on subsystem B). A density

operator is said to have a positive partial transpose if and only if it stays positive under

the action of the partial transpose map on any subsystem, i.e. ρTBAB = (1A ⊗ TB)[ρAB ] ≥ 0
and ρTAAB = (TA ⊗ 1B)[ρAB ] ≥ 0. Moreover, positivity under transposition of one subsystem

implies the same for the other subsystem: ρTAAB ≥ 0 ⇔ ρTBAB ≥ 0. The action of the partial

transpose map on the density matrix can be illustrated best when decomposing ρAB into a

certain product basis, i.e. ρ =
∑
ijkl ρijkl |i〉 〈j| ⊗ |k〉 〈l|. Then it follows

ρTAAB =
∑
ijkl

ρjikl |i〉 〈j| ⊗ |k〉 〈l| , and ρTBAB =
∑
ijkl

ρjilk |i〉 〈j| ⊗ |k〉 〈l| (2.93)

Theorem 2.8. PPT-criterion

Let ρ be the density matrix describing a mixed quantum state. If ρ is located within the set of

separable states, its partial transpose with respect to any subsystem is positive definite, i.e.

ρ ∈ {ρSEP } =⇒ ρTi ≥ 0 ∀ i (2.94)
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Furthermore, if ρ = ρAB corresponds to a bipartite system of dimension C2 × C2 or

C2 ×C3 it was shown in [30], [121] that the positivity of the partial transpose is a necessary

and sufficient criterion for detecting entanglement. That is, from ρTi ≥ 0 with i = A,B
separability of ρAB follows. For higher dimensions the PPT-criterion is necessary, but not

sufficient, the first example of an entangled state with positive partial transpose was found

within a C2×C4 and a C3×C3 system by [117]. Those states fall into the category of bound

entangled states. Bound entanglement defined as undistillable entanglement, i.e. no pure

entangled states can be obtained by means of LOCC from a bound entangled state.

Reduction criterion

Theorem 2.9. Reduction criterion [99]

If a given bipartite state ρAB is separable, it stays positive under application of the reduc-

tion map Λr(ρ) = tr(ρ)1− ρ, i.e. (1A ⊗Λreduction,B)ρAB ≥ 0. Positivity under action of

Λreduction is equivalent to the fulfillment of the following conditions:

1A ⊗ ρB − ρAB ≥ 0 and ρA ⊗ 1B − ρAB ≥ 0 (2.95)

where ρA,B denote the reduced density matrices of ρAB. 8

Majorization criterion

The majorization criterion is a necessary but not sufficient criterion for entanglement, it

states:

Theorem 2.10. Majorization criterion [100]

For all separable states ρAB the sum of the decreasingly ordered eigenvalues of the reduced

and full density matrices satisfy

d−1∑
i=0

λ↓i (ρAB) ≤
d−1∑
i=0

λ↓i (ρA,B) where d = dA · dB (2.96)

Range criterion

The range criterion is one of the first criteria which was able to detect bound entangled states,

that is state, which were not detected by the PPT-criterion.

Theorem 2.11. Range criterion [121]

If ρAB is a separable state, then there exists a set of product vectors {|ψi〉 , |ϕi〉} which spans

the range 9 of ρAB. Furthermore, the set {|ψ∗i 〉 , |ϕi〉} spans the range of ρTAAB. Here |ψ∗i 〉 is

the ket whose entries are the complex conjugates of those within |ψi〉. Naturally the same is

true under permutation A↔ B, i.e. {|ψi〉 , |ϕ∗i 〉} spans the range of ρTBAB.

Matrix realignement criterion

The matrix realignement criterion is a necessary but not sufficient criterion for separability.

It has its origin in another, stronger separability criterion, which is necessary and sufficient

but hard to compute, the cross norm criterion[ref] which states that for a separable state

8Similar to the PPT-criterion, the reduction criterion is necessary for all dimensions, but sufficient only
for d ≤ 6.

9The range of ρ is defined as the set of pure states {|Ψ〉} for which there exists a pure state |Φ〉 such that
|Ψ〉 = ρ |Φ〉.
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ρ the cross norm ||ρ||γ = 1 where ||ρ||γ = infai,bi
∑
i ||ai||1||bi||1 and ai, bi satisfying ρ =∑

i ai ⊗ bi. From this, a weaker version omitting the difficult search for the infimum, the

matrix realignement criterion, also referred to as computable cross norm emerges:

Theorem 2.12. Matrix realignement criterion [101]

Any bipartite separable state ρ decomposed in a specific product basis ρ =
∑
ijkl ρijkl |ij〉 〈kl|

has to satisfy

||ρR||1 ≤ 1 with the realigned matrix: ρR =
∑
ijkl

ρikjl |ij〉 〈kl| (2.97)

2.4.2 Entanglement witnesses

Though there exists many different necessary criteria to distinguish entangled states form

separable ones, computability and sufficiency remains a problem in many cases. Furthermore,

there is one major disadvantage common to all separability criteria considered in the precedent

parts of this section: the application of those require complete knowledge of the quantum state

and as such the need for full state tomography arises. This, in turn, requires a large number of

measurements. Detecting entanglement via entanglement witnesses reduces the measurement

to one observable. Thus, if one is interested not in the concrete form of the given state but

only in a statement regarding the entanglement properties, this constitutes as a big advantage,

especially regarding practical realizability. Analytically based on the Hahn-Banach-Theorem

[102],[103], entanglement witnesses can be defined as follows:

Definition 2.14. Entanglement witnesses [121]

Entanglement Witnesses are (non)-linear hermitean operators W that have at least one neg-

ative eigenvalue within their spectrum and satisfy

∀ ρSEP : tr(WρSEP) ≥ 0

∃ ρENT : tr(WρENT) < 0
(2.98)

As the set of separable states as well as the set of mixed states is convex and the expectation

value of any observable 〈A〉 = tr(Aρ) is linear dependent on the state, the set of states for

which Tr(Wρ = 0 defines a hyperplane within the whole state space. It divides the states

in “left” and “right”, the states on each side sharing the same algebraic sign “+” or “-”. Thus

the situation can be illustrated in a geometrical picture as shown in Fig. 2.4

Figure 2.4: Entanglement witnesses. Illustrated are the optimal witnesses,
which are defined by being tangent to the set of fully separable states
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Construction of entanglement witnesses

There are different ways to construct an entanglement witness. One is by using the relation

between PnCP-maps and witnesses via the Choi-Jamiolkowski-isomorphism [104]. It states

that every linear map Λ : L(HA) 7→ L(HB) is associated to an operator R acting on L(HA⊗
HB) by the following relation

Λ(Y ) = trA(RY TA ⊗ 1B) ∀ Y ∈ HA (2.99)

The inverse relation to construct the operator from the map is

R = (1A′ ⊗ΛA)(|ψ〉 〈ψ|) (2.100)

Where |ψ〉 =
∑
i |ii〉 is the unnormalized maximally entangled state on HA′ ⊗HA. Then the

connection between CnCP-maps and entanglement witnesses follows from the properties of

the isomorphism. That is, Λ is a CP-map if and only if R is a positive semidefinite operator

and Λ is a PnCP-map if and only if R is an entanglement witness, i.e. the following relations

for a witness operator W and a PnCP-map Λ hold

Λ(ρ) = trA(WρTA ⊗ 1B)

W = (1A′ ⊗ΛA)(|ψ〉 〈ψ|)
(2.101)

Another powerful and simple way to construct an entanglement witness for any given pure

entangled state |ψENT〉 uses the maximal overlap with the set of separable states {|ψSEP〉}.
The idea being that states close to |ψENT〉 should be entangled as well. Witnesses of such form

are also referred to as projector based witnesses and will be used frequently within subsequent

parts of this thesis.

Definition 2.15. Projector based entanglement witness

Let |ψE〉 be an n-partite, entangled state of arbitrary dimension and let α denote the maximal

squared overlap of |ψE〉 with the set of all separable states. Then one can define an operator

W with

W = α1− |ψE〉 〈ψE | with: α = max
|ϕ〉 ∈ {|ψSEP〉}

| 〈ϕ| |ψE〉 |2 (2.102)

that hence witnesses for tr(ρW ) < 0 non-membership with respect to the convex set of sepa-

rable states.

Due to the fact that large parts of this thesis deal with entanglement classification via

SLOCC operations, following, the generalization of the concept to operators witnessing mem-

bership to a specific SLOCC-class is described.

SLOCC witnesses

Based on the notion of projector based entanglement witnesses, one can generalize the idea to

construct an SLOCC witness, that is, an operator, which can decide if for a given state |ϕ〉 it

is possible to be an element of S|ψ〉, i.e. the SLOCC-class corresponding to the representative

state |ψ〉.
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Definition 2.16. SLOCC-witness

A hermitian operator W is a SLOCC witness for class S|ψ〉 if and only if

tr(ρS|ψ〉W ) ≥ 0 for all states ρS|ψ〉 in the SLOCC orbit of |ψ〉

tr(ρW ) < 0 for at least one state not in the SLOCC orbit of |ψ〉
(2.103)

holds.

Thus, in this case W detects for tr(ρW ) < 0 states that are not within the convex set

of all states within S|ψ〉. The concrete form of the (|ϕ〉 ,S|ψ〉)-SLOCC witness then reads

W = λ1− |ϕ〉 〈ϕ|, where λ denotes the maximal squared overlap

λ = sup
|η〉
| 〈ϕ|η〉 |2. (2.104)

Here, the supremum is taken over all states |η〉 =
⊗

iAi |ψ〉 in the SLOCC class S|ψ〉, where

{Ai} denote ILOs on the respective subsystem, and |ϕ〉 is a representative state of SLOCC

class S|ϕ〉. A special class of witnesses are those verifying the Schmidt rank of a given pure

state. As the Schmidt rank is invariant under SLOCC, such witnesses are very useful to

distinguish between SLOCC classes of biparite systems or bipartite splits of multipartite

systems.

2.5 Graph states, Hypergraph states and the Stabilizer

formalism

The last section is dedicated to a special family of (multipartite) quantum states referred

to as graph states [33], e.g. their generalization to hypergraph states [34], which will be

frequently used within Chapter 4 and Chapter 5. As has been shown in the previous sections,

entanglement within the multipartite (and high dimensional) regime is highly non-trivial and a

closed classification and characterization is, due to the fast growing number of free parameters,

not possible in general. Hence, it is sensible to redirect the focus on particular systems,

circumventing the difficulty of high parameter quantity by enforcing restrictions on initial

state and/or entanglement generating operations. Furthermore, graph - and hypergraph

states are are so-called stabilizer states, thus, within this context, the stabilizer formalism

is reviewed as an alternative way to describe a quantum state by the operations leaving

it unchanged rather than by the traditional way of the common state vector. The diverse

perspective on the characterization of a quantum system is in some cases easier to handle as

no complete knowledge of the state is necessary. Furthermore it has proven to be useful in a

vast field of applications, e.g. in the area of quantum error codes.

2.5.1 Graph states

A qudit graph state [105]-[109] is a multipartite quantum state of n qudits that can be rep-

resented by a graph G of n vertices {Vi} and a set of edges {Eij} = {(Vi,Vj)} connecting

vertices Vi an Vj , in short one writes G(V ,E). A crucial difference to qubit graph states

and graph states in prime dimensions, occurs when considering non-prime dimensions. Here,

additionally to the options of either an edge or no edge between two vertices, edges may

appear with a certain multiplicity me. This is a consequence of the behaviour of powers of
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the generalized Pauli-Z-gate. Whereas in prime dimension Zk just gives permutations of the

diagonal elements of the original Z-gate, in non prime dimension the situation is more evolved.
10

To connect the graphical description with the formal state vector, the following rules are

applied: at each vertex, there is initially a qudit in an equal superposition of all levels in

computational basis, i.e. |+d〉 = 1
d

∑d−1
i=0 |i〉 which is an eigenstate of the generalized Pauli-

X-operator in d dimensions, that reads

X =
∑
k

|(k + 1) mod d〉 〈k| for d=4
=


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 . (2.105)

Then, the initial state |G0〉, i.e. the state corresponding to an empty graph with no edges,

can be written as the tensor product of the single vertex states, i.e.

|G0〉 =
n−1⊗
i=0
|+d〉i (2.106)

for an n-partite graph of dimension d. The edges representing the entangling operation

are described by the controlled Pauli-Z-operators Zij in d dimensions, depending on the

multiplicity me of the edge, that is

Zmeij =
d−1∑
k=0
|k〉 〈k|i ⊗ (Zmej )k

= (|0〉 〈0|)i ⊗ 1j + (|1〉 〈1|)i ⊗Zmej + ... + (|n− 1〉 〈n− 1|)i ⊗ (Zmej )n−1

(2.107)

where Zi is the generalized Pauli-Z-gate in d dimensions applied to the qudit at the i− th
vertex defined as

Z =
∑
k

ωk |k〉 〈k| =


1 0 · · · 0

0 ω
. . .

...
...

. . .
. . . 0

0 · · · 0 ωd−1

 with the root of unity ω = e
2πi
d (2.108)

The generalized Pauli-X-and Z-gates satisfy, in an analogous fashion to the two dimensional

matrices Xd = Zd = 1, Zdij = 1ij . Additionally, one can define the commutation relation

between the single vertex X and Z gates as

ZaXb = XbZaωab. (2.109)

If one wishes to switch from computational (Z-) basis, {|k〉}, to the eigenbasis of the X

operator denoted by {|k̃〉}, the transformation is mediated by the fourier operator defined as

F =
1√
d

d−1∑
k,k̃=0

|k〉 〈k̃| and thus: |k̃〉 = F † |k〉 (2.110)

10For a detailed derivation of the characteristic behaviour and rules of Zk w.r.t the dimension, see intro-
ductory part of Chapter 4.
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A more detailed overview regarding the phase space representation, the Heisenberg-Weyl

group containing the symplectic operations, which will be of importance when considering

operations on- and local equivalence of higher dimensional (hyper-)graph states, will be given

in the introductory part of Chapter 4.

Finally, an arbitrary graph state can be defined as:

Definition 2.17. Graph state

Given a d-dimensional graph G(V ,E) consisting of a set of n vertices and edges of multiplicity

me connecting two vertices (vi, vj)0, the associated graph state |G〉 takes the form

|G〉 =
∏
e∈E

(Zmee ) |+d〉V , where: |+d〉V = |+d〉⊗n =
n−1⊗
i=0
|+〉i . (2.111)

Alternatively, one can rewrite Eq. (2.121) in computational basis as

|G〉 =
d−1∑

ijkl...=0

∏
ea∈E

ωmeaea |ijkl...〉 . (2.112)

Exemplary, a six-dimensional graph of five vertices and a set of edges of multiplicity

me = 1, 2, 3 is illustrated in Fig. (2.5). The corresponding graph states can be determined to

be

|G〉 = Z2
12Z34Z25Z

3
35 |+6〉⊗5

=
5∑

ijklm=0
ω2ijωklωimω3km |ijklm〉

(2.113)
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Figure 2.5: Qudit graph of five vertices with dimesnionality six.

Graph states as stabilizer states

As mentioned, there exists an alternative way to characterize a quantum state. Instead of

using state vectors themselves, the operators leaving them unchanged can be utilized. This

works as follows: first defined for qubits, a stabilizer group S(n) is a commutative subgroup

of the Pauli group P, e.g. P\ for an n-partite state, which does not contain −1 an thus

guarantees hermiticity of its elements Si = S†i . Generalization to qudits are based on the

generalized Pauli group. The generator of a stabilizer group is the set of elements within

S defined by the maximal number of independent Si, that is, every element of S can be

generated by multiplying elements of the generator. The qubit Pauli group P2 is generated

by G2 = {cXaZb|a, b ∈ (Z mod d), c ∈ [±1,±i]} and the generalized Pauli group Pg has



42 Chapter 2. Preliminaries

the generator Gg = {ωcXaZb|a, b, c ∈ Z mod d, ω = e
2πi
d } . Then, for a given state |ψ〉 the

stabilizer group is defined by all operators Si stabilizing the state, i.e. all Si have |ψ〉 as a

common eigenstate with eigenvalue +1:

Si |ψ〉 = +1 |ψ〉 ∀ Si ∈ S (2.114)

For an n partite qudit-system, a cardinality of dn for S is needed to define the state uniquely.

Graph states are a special kind of stabilizer states, their definition in terms of stabilizers is

formulated in the following Definition 2.18.

Definition 2.18. Stabilizer of graph states [134]

For a graph G(V ,E), the associated graph state |G〉 is the unique common eigenvector with

eigenvalue +1 of the set of commuting operators {Ki} defined as

Ki = Xi

∏
j∈N (i)

Z
m

(ij)
e

j ∀ i ∈ V 11 (2.115)

where N (i) denotes the neighbourhood of vertex i, i.e. all vertices connected to vertex i via

an edge.

As an example, consider the graph in Fig. (2.5). The five stabilizer generators Ki,

i ∈ [1, ..., 5] are then given by

K1 = X1Z
2
2 K2 = X2Z

2
1Z2 K3 = X3Z4Z

3
5

K4 = X4Z3 K5 = X5Z
3
3Z4

(2.116)

Associated with a certain graph G(V ,E) is a graph state basis defined as the collection of

orthonormal states of the form

|a〉 = Za |G〉 =
∏
i

Zaii |G〉 (2.117)

where a is the n-tuple (a0, a1, ..., an−1) with each ai taking integer values within [0, ..., d− 1]

and the dn different states |a〉 = |ao, a1, ..., an−1〉 form an orthonormal basis of the correspond-

ing Hilbert space. Furthermore, the states |a〉 are the eigenstates of the stabilizers Ki accord-

ing to different eigenvalues ωk, k ∈ [0, ..., d− 1] defined by the value ai, i.e. Ki |a〉 = ωai |a〉.
The projector onto a certain graph state |G〉 〈G| can be written in terms of the stabilizing

operators:

PG = |G〉 〈G| = 1
dn

∑
si ∈ S

si, S = stabilizer group of |G〉 (2.118)

Concluding this subsection, it is worth mentioning that it was shown in [41] that each sta-

bilizer state corresponds to certain graph. Hence, when analyzing the properties of stabilizer

states, it suffices to do so for graph states.

Local complementation of qubit graph states

For qubit graph states, there exists a powerful tool to identify graph states that are equiv-

alent under local unitaries, local complementation (LC) [110]. Generally, according to Defi-

nition (2.1), two n-partite graph states |G〉 and |G′〉 are LU-equivalent if and only if |G′〉 =

11The influence of the multiplicity on the form of the stabilizer will be proven in the introductory part of Chapter 4
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⊗n
i=1 Un |G〉. An interesting subgroup of the group of local unitaries are the local Clifford

operations denoted here and in the following by C. The Clifford group is the normalizer of the

Pauli group, which means it is build up by those operations mapping elements of the Pauli

group to elements of the Pauli group. The Pauli group P is build up by the n-fold tensor

products of the three Pauli matrices and the identity together with the prefactors ±1 and ±i
for group closure:

P = {±1,±i1,±σx,±iσx,±σy,±iσy,±σz,±iσz} (2.119)

Formally, the Clifford group then consist of two matrices mapping P to itself, that is

C = { 1√
2

(
1 1
1 −1

)
,
(

1 0
0 i

)
} then: CσiC

† = σj for C ∈ C and σi,σj ∈ C. (2.120)

The local Clifford group then consists of the tensor product of all single Clifford groups of

all participating qubits. Practically, local complementation of a graph can be done solely by

staying in ’graph-language’, i.e. one need not do any mathematical calculation on the state

vectors but rather follow the graphical rules for local complementation. Those rules were

proven to be quite simple [40]: local complementation on a certain vertex vi of a graph goes

as follows: for each pair of unconnected vertices in the neighbourhood of vi, a new edge is

created. Consequently, a previously existing one is then deleted, as applying the edge twice

is nothing but the identity matrix acting on those two vertices. Here, the neighbourhood of a

vertex vi is defined as the set of vertices that are connected to vi via an edge.

Then, two graph states |G〉, |G′〉 are said to be LC-equivalent if and only if there exists a

finite sequence of local complementations converting one into the other. Exemplary the local

complementation rule is illustrated in Fig. (2.6)
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Figure 2.6: Local complementation, graphical rule.

In the case of qudit graph states, local complementation rules can be derived as will be

shown in Chapter 4. These are based on studying the action of the generalized local Clifford

operations, denoted as symplectic operations, on qudit graph states. Without going into detail

at this point, it is worth mentioning that due to the multiplicity of edges within non-prime

dimensions, LC rules for those state show a more complex structure and are difficult to derive

in a general framework.

Concluding the graph state section, two special kinds of graph states which will be frequently

used during this thesis are to be mentioned:

• Star graph states: graph states, where there is one distinguished vertex to which all other

vertices are connected and where there is no other edge between the other vertices of

the graph.
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• Cluster states: graph states, which are aligned in a one-or two dimensional lattice. Edges

then are necessarily and exclusively present between neighbouring qudits in horizontal

as well as vertical direction.

2.5.2 Hypergraph states

Hypergraph states emerge from the family of graph states as a natural generalization, in

which edges are allowed that may connect an arbitrary number of vertices, named hyperedges.

In analogy to qubit graph states, a qubit hypergraph state can be defined as follows:

Definition 2.19. Hypergraph state

Given a two-dimensional hypergraph H consisting of a set of n vertices, V , and a set of

(hyper-)edges, E, connecting an arbitrary number of vertices, the associated hypergraph state

|H〉 takes the following form:

|H〉 =
∏
e∈E

(Ze) |+d〉V where: |+d〉V = |+d〉⊗n =
n−1⊗
i=0
|+〉i (2.121)

that is, the difference to graph states lies purely within the refined and broadened set of

edges.

The entanglement generating gate of an hyperedge connecting m vertices is the controlles

Z-gate for m qubits, which is recursively defined based on the two-qubit controlled Z gate,

which takes the form

ZI =
d−1∑
k=0

(|k〉 〈k|)i ⊗ZI\i, (2.122)

where I denotes the index set of all m vertices. Again, in analogy to the graph state case,

qubit hypergraph states are stabilizer states.

Definition 2.20. Stabilizer of qubit hypergraph states

For a hypergraph H described by a set of vertices and edges, (V,E), the associated hypergraph

state |H〉 is the unique common eigenvector with eigenvalue +1 to the set of commuting

operators {Ki} defined as:

Ki = Xi

∏
j∈N (i)

Zj ∀ i ∈ V (2.123)

However, due to the multi-qubit edges, the stabilizing operators of a hypergraph state are

no longer local: the Z-gates acting on the neighbourhood of the i− th vertex are again acting

on more then one qubit depending on the number of qubits the original edge had enclosed.

Thus many advantages present in the smooth description and characterization of graph states

in terms of stabilizers are no longer accessible. In Fig. (2.7) an example of a hypergraph of

seven qubits is given, associated with the hypergraph state

|H〉 = Z125Z23567Z26Z45Z46 |+2〉⊗7 =
1∑

ijklmno=0
ωijmωjkmnoωjnωlmωln |ijklmno〉 . (2.124)
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Figure 2.7: Qudit hypergraph of seven vertices.

Concerning LU-equivalence classes of hypergraph states, a rule for hypergraph states sim-

ilar to the local complementation within the field of graph states was proposed in [43].12

Furthermore, it can give useful insight to consider all hypergraph states which can be trans-

formed into each other by application of local X-gates on a qubit. For example, in case of

hypergraphs that have one big hyperedge connecting all vertices, successive application of

Pauli-X on the participating qubits can generate arbitrary (hyper-)edges between any num-

ber of qubits.

The generalization of hypergraph states to arbitrary dimensions, i.e. qudit hypergraph states

is a main topic of this thesis and will be presented in detail in Chapter 4.

2.5.3 One way quantum computer - a graph state application

Graph states are the resource for an important application of quantum phenomena paving

the way to a quantum computer. Here, the key points regarding the mode of operation

of a so-called one way quantum computer [133] are reviewed shortly. One way quantum

computation is viewed as a basic and fundamental concept among the general idea referred to

as measurement based quantum computation, which uses measurements rather than unitary

transformations (as in quantum circuit models) as main computational force. Within a one-

way quantum computer, a highly entangled graph state, to be more precise a two-dimensional

cluster state 13, is used as initial resource state. By a sequence of measurements on single

qubits within the lattice of the cluster along different measurement axis, it is possible to

achieve universal quantum computation. That is, all qubit gates can be simulated by this

method. The next measurement step, i.e. the next choice of measurement basis, within the

sequence may be dependent on the measurement results of the foregoing one. For universality,

e.g. the Hadamard gate (H), a single qubit rotation gate, the (π8 )-gate RZ(π4 ) and a CNOT-

gate (controlled X-gate), are needed with:

H =
1√
2

(
1 1
1 −1

)
, RZ(

π

4 ) =

(
1 0
0 e

iπ
4

)
, CNOT = X12 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.125)

12Note that in general the complementation of a hypergraph demands the presence of nonlocal gates.
Though there are special configurations where all non-local gate chancel out and therefore the total operation
can again be performed by exclusively local gates. (see [44] for examples)

13A cluster state is a special kind of graph state, where the vertices are arranged in a kind of lattice. In the
one dimensional case these state are also called chain-graph states or linear cluster.
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Whereas for realizing arbitrary one qubit gates, a linear cluster state is sufficient, realizing

two qubit gates demands a two-dimensional arrangement of the cluster. The term one-way

quantum computation pays respect to the nature of the computing process that results in the

destruction of the resource state as any measurement disentangles the corresponding qubit

on which it is preformed upon from the cluster. In Fig. (2.8) the schematic principle of a

cluster state used for one way quantum computation is illustrated.

  

Figure 2.8: Schematic procedure of one way quantum computing [111].
(a): A sequence of adaptive one-qubit measurements M is implemented on
certain qubits in the cluster state. (b): Within each step of the computation,
the measurement bases depend on the utilized program (that is specified by

the classical input) and on the outcomes of the previous measurements.
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Chapter 3

Tensor witness

This chapters covers the first project of this thesis, the construction of a SLOCC-witness

that is one-to-one correspondent to an associated entanglement witness in a Hilbert space of

doubled dimensionality. Before presenting the main result in section 3.2, there will be a short

introduction to semidefinite programming, which we used in context with the PPT-relaxation

in the following parts of this chapter.

3.1 SDP - introduction

Within this section, we give a short introduction into the field of semidefinite programming

[151]. In the field of convex optimization problems, semidefinite programming (SDP) is a

subclass that seeks to optimize a linear function over the cone of positive semidefinite matrices.

That is, an SDP can be seen as a generalization of a linear program where the inequality

constraints are exchanged for semidefinite constraints on matrix variables. In its primal form,

a semidefinite program for an optimization of a vector x can be written as

min
x

cTx ≡ p

subject to: F (x) ≥ 0,

F0 +
m∑
i=1

xiFi ≥ 0

(3.1)

Here, the vector c ∈ Rm as well as the (m+ 1) elements in the set {Fi} of symmetric matrices

with Fi ∈ Rn ×Rn represent the data of the specific problem. The constraint F (x) ≥ 0
ensures that F (x) is positive semidefinite, i.e. for any vector z ∈ Rn zTF (x)z ≥ 0 holds.

The optimization is performed over all vectors x ∈ Rm. To any primal SDP, a dual problem

of the following form can be constructed

max
Z

−Tr(F0Z) ≡ d

subject to: Tr(FiZ) = ci ∀ i ∈ [1,m]

Z ≥ 0

(3.2)

where now the optimization is performed over the cone of all positive semidefinite n× n-

matrices Z. The importance of the dual problem becomes clear when considering the impli-

cations of feasibility. Consider both, the primal and the dual problem to be feasible, i.e. there

exists a solution to both, then min(p) ≥ max(d) which can be seen by calculating
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p− d = cTx+ Tr(F0Z) = Tr(cxT )−Tr(F0Z) = Tr(cxT + F0Z)

=
∑
i

cixi + Tr(F0Z)
ci=Tr(FiZ)

=
∑
i

(Tr(FiZ)xi + Tr(F0Z))

= Tr(
∑
i

([Fixi + F0]Z))

= g ≥ 0 as: F0 +
∑
i

Fixi ≥ 0

(3.3)

Eq. (3.3) is the weak duality theorem and the value g of the difference is called duality gap.

By this, one can see that the primal an the dual problems impose bounds on each other, if

and only if feasibility is presumed. Concretely, the primal problem imposes an upper bound

on the dual problem and the dual problem a lower bound on the primal one. In case g = 0,

that is the primal and dual problem reach the same optimal value p = d, then we have strong

duality. This is the case for strong feasibility for both, the primal and the dual problem,

which means the semidefinite constrains become definite: F (x) > 0 and Z > 0.

3.2 Tensor witness

Witness operators serve as a prominent tool to detect entanglement or to distinguish among

the equivalence classes under stochastic local operations assisted by classical communication

(SLOCC) which represent different classes of entanglement. We show a one-to-one correspon-

dence between SLOCC witnesses and entanglement witnesses in an extended Hilbert space for

arbitrary multipartite systems. As a concrete application we use this relation to (re)derive

the maximal squared overlap between a n-qubit GHZ state and an arbitrary state in the

n-qubit W class. Possible issues and perspectives of the relaxation of the set of separable

states to states with positive partial transpose for the construction of the considered type of

entanglement witnesses are discussed. Considering 2× 3× 3-dimensional systems we numer-

ically evaluate the maximal squared overlap between the representative state of a SLOCC

class and arbitrary states of another SLOCC class. This does not only provide information

about the hierarchical structure of the SLOCC classes in such systems but also allows to

construct projector-based SLOCC witnesses and (employing the relation shown in this work)

entanglement witnesses for 4× 6× 6-dimensional systems.

3.2.1 Introduction

Entanglement has proven to be an important resource for a vast field of applications and

processes within quantum information theory. This includes the task of its characterization,

to distinguish between principally different classes of entanglement, and its quantification.

Entanglement is a resource if parties are spatially distributed and therefore restricted to

local operations assisted by classical communication (LOCC). It can neither be generated nor

increased by (deterministic) LOCC transformations. Hence, convertibility via LOCC imposes

a partial order on the entanglement of the states. A sensible way to define entanglement

classes for pure states is then their equivalence under Stochastic local operations assisted by

classical communication (SLOCC). That is, an SLOCC-class is formed by those states that

can be converted into each other via local operations and classical communication with non-

zero probability of success [113]. SLOCC classes have been characterized for small system
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sizes [113, 114, 115] and it has been shown that for multipartite systems there are finitely

many SLOCC classes for tripartite systems with local dimensions of up to 2 × 3 ×m (m

arbitrary but finite) and infinitely many otherwise [116].

Another important problem in entanglement theory is the separability problem, i.e., the

task to decide whether a given quantum state is entangled or separable. Even though several

criteria have been found (see e.g. [117, 118, 119]), which can decide separability in many

instances, the question whether a general multipartite mixed state is entangled or not, re-

mains highly non-trivial. On the contrary, the separability problem has been proven to be

computationally NP-hard [120].

One method to certify entanglement within a physical system is by using entanglement

witnesses [121, 122]. An entanglement witness is a hermitian operator which has a positive

expectation value for all product states but gives a negative value for at least one entangled

state. In opposition to other criteria, one main advantage of witnesses lies in the fact that

in principle no prior knowledge of the state is necessary as the certification is being done

by measuring an accordingly constructed observable - the witness operator. A special type

of witnesses are projector based witnesses of the form W = λ1− |ξ〉 〈ξ|, with λ being the

maximal squared overlap between the entangled state |ξ〉 and the set of all product states.

Such projector based witnesses can also be used to distinguish between different SLOCC

classes [123, 124]. In that case λ is the maximal squared overlap between a given state |ξ〉
in SLOCC-class S|ξ〉 and the set of all states within another SLOCC class S|ϕ〉. The witness

then decides if for a given state |ψ〉 it is possible to be within S|ϕ〉 or if it is definitely not

an element of S|ϕ〉. In this context it is important to note that without extensive knowledge

about the hierarchic structure of SLOCC-classes in the respective system, it is not possible to

draw any conclusions of |ψ〉 to be in class S|ξ〉 upon measuring an negative expectation value

or class S|ϕ〉 in case of positive or zero value.

In this section, we establish an one-to-one correspondence between SLOCC-witnesses for

multipartite systems of arbitrary dimension and entanglement witnesses within a higher (dou-

bled) dimensional system built by two copies of the original one. This extends the results

of [125] from the bipartite setting to the multipartite one. Such equivalence provides not

only a deeper insight in the structure of SLOCC classes but enables to construct whole sets

of entanglement witnesses for high dimensional systems from the SLOCC-structure of lower

dimensions and vice versa. As such, from the solution for one problem, the solution to the

related one readily follows.

The section is organized as follows. In Section 3.2.2, we will briefly revise the notion of

SLOCC-operations, entanglement witnesses and SLOCC-witnesses. Section 3.2.3 will state

the main result of our work, the one-to-one correspondence among entanglement-and SLOCC

witnesses. Starting from the equation for the maximal overlap between two states under

SLOCC this section will take the reader step by step through all key points of our method.

Furthermore, as optimizing the overlap λ is in general a hard problem and as such often not

feasible analytically, a possible relaxation of the set of separable states to states with positive

partial transpose is discussed. Section 3.2.4 focuses on systems consisting of one qubit and

two qutrits. Using numerical optimization, we find the maximal overlaps between all pairs of

representative states of one SLOCC class and arbitrary states of another SLOCC class. The

implications of these results for the hierarchic structure of SLOCC classes are then discussed.

Section 3.2.5 concludes the section and provides an outlook.



50 Chapter 3. Tensor witness

3.2.2 Preliminaries

In this section the basic notions and definitions needed in the following sections of the chapter

are briefly reviewed. We start with the notion of SLOCC equivalence of two states and then

move on to the definition of entanglement witnesses. Finally, we will relate both concepts

by recapitulating the notion of witness operators that are able to separate between different

SLOCC classes.

SLOCC classes

As mentioned before two pure states are within the same SLOCC class if one can convert

them into each other via LOCC with a non-zero probability of success. It can be shown that

this implies the condition phrased in the following definition [113].

Definition 3.1. SLOCC-equivalence

Two n-partite pure quantum states |ψ〉, |ϕ〉 are equivalent under SLOCC if and only if there

are matrices {Ai| det(Ai) 6= 0; i ∈ [1,n]} such that:

|ϕ〉 =
n⊗
i=1

Ai |ψ〉 and due to invertibility of all Ai: |ψ〉 =
n⊗
i=1

A−1
i |ϕ〉

That is, an SLOCC class - or orbit- includes all states that are related by local, invertible

operators. To extend this definition to mixed states one defines the class S|Ψ〉 (containing a

representative state |Ψ〉) as those states that can be built as convex combinations of pure states

within the SLOCC orbit of |Ψ〉 and of all pure states that can be approximated arbitrarily

close by states within this orbit [123, 124].

Entanglement witnesses

An operator acting on a Hilbert space H that can be used to distinguish between different

classes of entanglement is called a witness operator. A witness operator that can certify

entanglement has to fulfill the following properties [121, 122]:

Definition 3.2. Entanglement witness

A hermitian operator W is an entanglement witness if and only if

tr(ρsW ) ≥ 0 or all separable states ρs

tr(ρeW ) < 0 for at least one entangled state ρe

holds.

Hence, W witnesses non-membership with respect to the convex set of separable states.

If tr(ρW ) < 0 for some state ρ, then W is said to detect ρ. A special class of witness

operators are projector based witnesses. Their construction is based on the maximal value

λ of the squared overlap between a given entangled state |ψ〉 with the set of all product

states {|ψs〉}. More precisely, W = λ1− |ψ〉 〈ψ| with |ψ〉 being some entangled state and

λ = sup{|ψs〉} | 〈ψ|ψs〉 |
2 is a valid entanglement witness.

SLOCC witnesses

Based on the notion of projector based entanglement witnesses, one can generalize the idea

and thereby construct an SLOCC witness. An SLOCC-witness then is an operator, which
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can decide if for a given state |ϕ〉 it is possible to be an element of S|ψ〉 with representative

state |ψ〉 [123, 124].

Definition 3.3. SLOCC witness

A hermitian operator W is a (|ϕ〉 ,S|ψ〉)-SLOCC witness if and only if

tr(|η〉 〈η|W ) ≥ 0 for all states |η〉 in the SLOCC orbit of |ψ〉

tr(|ϕ〉 〈ϕ|W ) < 0 for at least one state |ϕ〉 not in the SLOCC orbit of |ψ〉

holds.

Thus W detects for Tr(ρW ) < 0 states that are not within S|ψ〉. One can construct a

(|ϕ〉 ,S|ψ〉) SLOCC witness via W = λ1− |ϕ〉 〈ϕ|, where λ denotes the maximal squared over-

lap between all states in the SLOCC class S|ψ〉, that is |η〉 =
⊗

iAi |ψ〉 and the representative

state |ϕ〉 of SLOCC class S|ϕ〉, i.e. λ = sup|η〉 | 〈ϕ|η〉 |2. A special class of witnesses are those

verifying the Schmidt rank of a given pure state. As the Schmidt rank is an SLOCC- invariant,

such witnesses are very useful to distinguish between SLOCC classes of bipartite systems and

a one-to-one correspondence between Schmidt number witnesses and entanglement witnesses

in an extended Hilbert space has been found [125]. In the next section we will show that in

fact there is a one-to-one correspondence between SLOCC- and entanglement witnesses for

arbitrary multipartite systems.

3.2.3 One-to-one correspondence between SLOCC- and entangle-

ment witness

In the following we will show how to establish a one-to-one correspondence between SLOCC

witnesses and entanglement witnesses within a higher dimensional Hilbert space for arbitrary

multipartite systems. In order to improve readability, our method will be presented for the

case of tripartite systems, however, the generalization to more parties is straightforward.

Let us start with formulating the problem as follows: Consider the pure state |ψ〉, which

is a representative state of the SLOCC-class S|ψ〉. Then all pure states, |η〉, within the

SLOCC-orbit of S|ψ〉 can be reached by applying local invertible operators A,B and C, that

is |η〉 = A⊗B ⊗C |ψ〉. The aim will be to maximize the overlap between a given state |ϕ〉
and a pure state |η〉 within S|ψ〉:

sup
|η〉∈S|ψ〉

| 〈ϕ|η〉 | = sup
A,B,C

| 〈ϕ|A⊗B ⊗C|ψ〉 |
||A⊗B ⊗C |ψ〉 ||

(3.4)

Or stated differently, the quantity of interest is the minimal value λ, such that:

sup
A,B,C

| 〈ϕ|A⊗B ⊗C|ψ〉 |
||A⊗B ⊗C |ψ〉 ||

≤
√
λ (3.5)

It can easily be seen that this equation holds if and only if:

λ 〈ψ|A†A⊗B†B ⊗C†C|ψ〉

− 〈ψ|A†B†C† |ϕ〉 〈ϕ|ABC|ψ〉 ≥ 0
(3.6)
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One can then define an (witness-)operator W = λ1− |ϕ〉 〈ϕ| which, with the definition of |η〉
from before, satisfies:

〈η|W |η〉 ≥ 0 (3.7)

Thus, in case the maximal overlap between |ϕ〉 and |ψ〉 under SLOCC is smaller than one

(λ < 1), which implies |ϕ〉 and |ψ〉 belong to different SLOCC-classes, the operator W is not

positive semidefinite and is able to distinguish between the representative state of class S|ϕ〉,

that is |ϕ〉 and the SLOCC-class S|ψ〉. It is hence a (|ϕ〉 ,S|ψ〉) witness. It is important to note

that whereas the witness enables a discrimination between the chosen representative state |ϕ〉
and S|ψ〉, it is clearly not possible to distinguish all states within the SLOCC-orbit of S|ϕ〉.

Furthermore, note that the hierarchy of the SLOCC classes plays an important role here. If

S|ψ〉 ⊂ S|ϕ〉, then starting from |ϕ〉 it is possible to get arbitrary close to any state in S|ψ〉 via

SLOCC.

Let λmax be the maximal overlap of S|ψ〉 and |ϕ〉. Then, if λ > λmax (where λ is the

maximal overlap between a given state |α〉 and |ϕ〉 under SLOCC operations on |α〉), one can

exclude |α〉 to be element of S|ψ〉 but from λ > λmax it is not possible to deduce that |α〉 is in

S|ϕ〉. This is due to the fact that there could be some intermediate class S|ξ〉 (see Fig. 3.1).

Hence, one cannot obtain from this a finer distinction of classes in between S|ϕ〉 and S|ψ〉
as it does not provide the necessary information about the structure and depends on the exact

geometrical position of the witness.
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Figure 3.1: Witness that distinguishes |ϕ〉 ∈ S|ϕ〉 and S|ψ〉 in case that
some intermediate class S|ξ〉 exists

In the next step, we establish a connection between the SLOCC-witness W and an en-

tanglement witness W̃ for a suitable extended system. More precisely, as stated in the fol-

lowing theorem, one can show that if Eq.(3.7) holds, then there exists an operator W̃ =

W ⊗ |ψ∗〉 〈ψ∗|, which is positive on all separable states |ξ〉SEP and vice versa.

Theorem 3.1. The operator W = λ1− |ϕ〉 〈ϕ| is a (|ϕ〉 ,S|ψ〉)-SLOCC witness, if and only

if the corresponding operator W̃ = W ⊗ |ψ∗〉 〈ψ∗| is an entanglement witness with respect to

the split (A1A2|B1B2|C1C2):

〈η|W |η〉 ≥ 0 ⇔ 〈ξSEP |W̃ |ξSEP 〉 ≥ 0 (3.8)

where |ξSEP 〉 are product states within an enlarged system consisting of two copies of each

original system, that is they are of the form |ξSEP 〉 = |ξA1A2〉 ⊗ |ξB1B2〉 ⊗ |ξC1C2〉 and |η〉 ∈
S|ψ〉.

Proof. The “only if” part( “=⇒”) of the proof can be shown as follows:

We will use that one can always write the witness operator W in some diagonal basis, i.e.

W =
∑
n λn |αn〉 〈αn|, and therefore (neglecting normalization and with the definition of |η〉
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from before)

〈η|W |η〉 =
∑
n

λn| 〈ψ|A† ⊗B† ⊗C†|αn〉 |2 ≥ 0. (3.9)

Moreover, it holds that

〈ψ|A† ⊗B† ⊗C†|αn〉 = tr(A† ⊗B† ⊗C† |αn〉 〈ψ|). (3.10)

Using then the following representation of the SLOCC operations A, B, C and the state |ψ〉,
rewritten as A =

∑
ij Aij |i〉 〈j|, B =

∑
i′j′ Bi′j′ |i′〉 〈j′|, C =

∑
i′′j′′ Ci′′j′′ |i′′〉 〈j′′|,|αn〉 =∑

kk′k′′ α
n
kk′k′′ |kk

′k′′〉 and |ψ〉 =
∑
ll′l′′ ψll′l′′ |ll′l′′〉, one can rewrite each summand in Eq.

(3.9) via

tr(A† ⊗B† ⊗C† |αn〉 〈ψ|) = A∗ijB
∗
i′j′C

∗
i′′j′′α

n
ii′i′′ψ

∗
jj′j′′

= A∗ijB
∗
i′j′C

∗
i′′j′′α

n
ii′i′′ψ

∗
jj′j′′(〈ii

′i′′| ⊗ 〈jj′j′′|)(|ii′i′′〉 ⊗ |jj′j′′〉)

≡ 〈〈A12 ⊗B12 ⊗C12|αn1 ,ψ∗2〉〉 (3.11)

and in the same way:

tr(|ψ〉 〈αn|A⊗B ⊗C) ≡ 〈〈αn1 ,ψ∗2 |A12 ⊗B12 ⊗C12〉〉 (3.12)

where here and in the following the ket-vectors |Y12〉〉 =
∑
ij Yij |ij〉 = (Y ⊗ 1) |Φ+〉 with

|Φ+〉 =
∑dim[H(Y1)]−1
i=0 |ii〉 are elements of the two-copy Hilbert space of the first subsystem,

that is H(Y1)⊗H(Y2) for Y ∈ {A,B,C}. Thus, Eq.(3.9) can now be written as

〈〈A12 ⊗B12 ⊗C12|X1 ⊗ (|ψ∗〉 〈ψ∗|)2 |A12 ⊗B12 ⊗C12〉〉

≥ 0.
(3.13)

Note that the operators A,B and C leading to the states |ξSEP 〉 =
⊗

Y =A,B,C |Y12〉〉 with

|Y12〉 = (Y ⊗ 1) |Φ+〉 in the equation above are invertible. Note further that any state in

H(Y1)⊗H(Y2) can be written as |Y12〉 = (Y ⊗ 1) |Φ+〉, however, Y might be not invertible.

It hence remains to show that the equation above holds true also for states |ξSEP 〉 whose

structure corresponds to some non-invertible matrix Y . In order to do so, it is sufficient

to show that for such states |ξSEP 〉 there always exists an invertible |ξ′SEP 〉 for which the

expectation value of X1 ⊗ (|ψ∗〉 〈ψ∗|)2 is arbitrarily close. Making use of the singular value

decomposition, one finds that for each Y = UDV that is non-invertible, there exists an

invertible Y ′ = UD′V for which the entries of D′ are arbitrary close to those of D. As the

expectation value of X1 ⊗ (|ψ∗〉 〈ψ∗|)2 is a continuous (polynomial) function in the entries of

D 1. This shows that Eq. (3.13) has to hold true for an arbitrary product state |ξSEP 〉. Let

us finally note that it is straightforward to see that if W is not positive semidefinite (λ < 1)

then W̃ = W ⊗ |ψ∗〉 〈ψ∗| is not positive semidefinite as well which completes the “only if”

part of Theorem 3.1.

In order to see that the ”if” part of theorem (⇐=) holds true first recall that any state

in H(Y1)⊗H(Y2) can be written as |Y12〉 = (Y ⊗ 1) |Φ+〉. Using then the relations in Eqs.

(3.11) and (3.12) and that W̃ = W ⊗ |ψ∗〉 〈ψ∗| being not positive semidefinite implies that

W is not positive semidefinite the ”if” part readily follows.

With this we have shown a one-to-one correspondence between W as SLOCC-witness and

W̃ as entanglement witness which completes the proof of Theorem 3.1.

1Note that we do not assume here that the states are normalized.
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In addition to etablishing a connection between the SLOCC-witness W acting on the

Hilbert space H and the entanglement witness W̃ operating on an enlarged Hilbert space

H̃ = H⊗H, Theorem 3.1 provides the possibility to consider the problem of maximizing

the overlap of two states under SLOCC from a different perspective. That is, by solving

the problem of finding the minimal value of λ, for which W̃ = (λ1− |ϕ〉 〈ϕ|)⊗ |ψ∗〉 〈ψ∗| is

an entanglement witness for the respective partition, we likewise have found the value of the

maximal overlap between |ϕ〉 and |ψ〉 under SLOCC-operations. In order to provide a concrete

application of Theorem 3.1, we derived the maximal squared overlap between a n-qubit GHZ

state and an arbitrary state in the n-qubit W class using the relation derived above (see

Section 3.2.6) which is shown to be 3/4 for n = 3 (see also [123]) and 1/2 for n ≥ 4 2. Note

that the separability problem as well as the problem of deciding whether two tripartite states

are within the same SLOCC class are both computationally highly non-trivial. In fact, they

were shown to be NP-hard [120, 126]. In the following section we will discuss the relaxation

of the set of separable states to states having a positive partial transpose for the construction

of entanglement witnesses of the form W̃ = (λ1− |ϕ〉 〈ϕ|)⊗ |ψ∗〉 〈ψ∗|.

PPT-relaxation

In general it can be very difficult to find an analytical solution for the minimal value of λ such

that the expectation value of W̃ is positive on all product states |ξSEP 〉. To circumvent this

problem without resorting to numerical optimization protocols, one can try to broaden the

restrictions on the set of states on which W̃ is positive in a way that the new set naturally

includes the original set of separable states. One way to do this would be to demand that

W̃ is positive on the whole set of states which have positive partial transposition (are PPT)

with respect to all subsystems in the considered bipartite splittings, i.e.,

tr(ρW̃ ) = tr(ρ(W ⊗ |ψ∗〉 〈ψ∗|)) ≥ 0

∀ ρA12B12C12 with : ρTY12 ≥ 0, Y = {A,B,C}.
(3.14)

Though the set of PPT-states is known to include PPT-entangled states, this relaxation

of the initial conditions offers an advantage, as we are now able to formulate the problem of

minimizing λ as a semi-definite program and as such provides a way for an analytical result:

minimize tr(ρW̃ )

subject to ρ ≥ 0,

ρTi ≥ 0, i = A,B,C

(3.15)

It should, however, be noted that states of the form

σp(|φ〉 , |ψ∗〉) = 1−p
(d1−1)(d2−1)

(11 − |φ〉1 〈φ|)⊗ (12 − |ψ∗〉2 〈ψ∗|)

+p |φ〉1 〈φ| ⊗ |ψ∗〉2 〈ψ∗| , (3.16)

are in general PPT-entangled (with respect to bipartite splittings Γ1Γ2|A1A2 . . . Z1Z2 with

Γ ∈ {A, . . . ,Z}) for a suitable choice of 1 > p > 0 [128]. More precisely, it has been

shown in [128] if for a considered bipartition Γ1Γ2|A1A2 . . . Z1Z2 the Schmidt coefficient

of |φ〉 and |ψ∗〉 do not coincide and neither of the two states is separable with respect to

2For 4-qubit states this value has been already found in [124].
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that splitting, then the state σp(|φ〉 , |ψ∗〉) with a suitable choice of 1 > p > 0 is positive

under the partial transpose with respect to subsystems Γ1Γ2, but it is not separable with

respect to the considered splitting. Note that states of the form given in Eq. (3.16) lead to

tr{(λ11 − |φ〉1 〈φ|)⊗ |ψ∗〉2 〈ψ∗|)σp(|φ〉 , |ψ∗〉)} < 0 for any λ < 1. Hence, the relaxation to

states that are PPT does not allow to determine possible values of λ for which W̃ (with the

above mentioned conditions on |φ〉 and |ψ∗〉) is an entanglement witness. However, note that

considering other relaxations of the set of separable states might provide a way to estimate

the maximal SLOCC overlap using a semi-definite program. Note further that if the Schmidt

coefficients of |φ〉 and |ψ∗〉 coincide for at least one bipartite splitting, using the relaxation

to PPT-states, one still might be able to provide a non-trivial upper bound on λ using the

semidefinite program specified above.

Let us finally mention that in [128] operators of the form (λ1− |φ〉 〈φ|)1 ⊗ (|ψ∗〉 〈ψ∗|)2

with an appropriate choice of λ have been shown to be bipartite entanglement witnesses for

the case where the local Schmidt rank of |ψ∗〉 is smaller than the Schmidt rank of |φ〉 for

the considered bipartite splitting. This can be easily understood using our result (see also

[125]) as in this case |φ〉 and |ψ〉 are in different bipartite SLOCC classes and |φ〉 cannot be

approximated arbitrarily close by a state in the SLOCC class of |ψ〉.

3.2.4 Numerical values for 2× 3× 3
Systems consisting of one qubit, one qutrit and one system of arbitrary dimension mark the

last cases, which still have a finite number of SLOCC-classes. For one qubit and two qutrits

there are 17 different classes with 12 of these being truly tripartite entangled and six of them

containing full-rank entangled states [116]. Finding the maximal overlap of the representative

states of the different classes not only indicates towards a hierarchy among them but, as shown

in Section 3.2.3, can give insight in the entanglement properties of states in an enlarged (two-

copy) system. To be precise, by evaluating λmax(|ψn〉 ,S|ψm〉), in addition to the SLOCC-

witness for (|ψn〉 ,S|ψm〉), W = λmax(|ψn〉 ,S|ψm〉)1− |ψn〉 〈ψn|) with 〈κ|W |κ〉 ≥ 0 for all |κ〉
in S|ψm〉 and lower classes, one can construct an entanglement witness, W̃ = W ⊗ |ψ∗m〉 〈ψ∗m|
which detects entanglement within states of dimension 4× 6× 6, that is 〈ξ|W̃ |ξ〉 ≥ 0 for all

separable |ξ〉 = |ξA1A2〉⊗ |ξB1B2〉⊗ |ξC1C2〉. Thus, for all pairs of representatives and SLOCC

classes where λmax 6= 1 one can construct a specific W̃ . The unnormalized representative

states of the SLOCC classes (not including the (bi-)separable classes) within a 2×3×3 system

are [116],(see also Appendix A)

|ψ6〉 = |000〉+ |111〉

|ψ7〉 = |000〉+ |011〉+ |101〉

|ψ8〉 = |000〉+ |011〉+ |102〉

|ψ9〉 = |000〉+ |011〉+ |120〉

|ψ10〉 = |000〉+ |011〉+ |122〉

|ψ11〉 = |000〉+ |011〉+ |101〉+ |112〉

|ψ12〉 = |000〉+ |011〉+ |110〉+ |121〉

|ψ13〉 = |000〉+ |011〉+ |102〉+ |120〉

|ψ14〉 = |000〉+ |011〉+ |112〉+ |120〉

|ψ15〉 = |000〉+ |011〉+ |100〉+ |122〉

|ψ16〉 = |000〉+ |011〉+ |022〉+ |101〉

|ψ17〉 = |000〉+ |011〉+ |022〉+ |101〉+ |112〉 .

(3.17)
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The values of the numerical maximization of the SLOCC-overlap for the different SLOCC

classes with respect to the representative states from above is given in the following cross

table: Note, that we rely on numerical precission of 10−12.

Table 3.1: Numerical values for the maximal squared overlap α =
| 〈ψi|ψj〉 |2 for i, j ∈ [6, 17]. Here, |ψi〉 (column) denotes the initial state
(representative state of SLOCC class S|ψi〉), which, under application of
SLOCC operations, can be transformed to the final state |ψj〉 (representa-

tive state of SLOCC class S|ψj〉 (row) with probability accordingly to α.

From Table 3.1, we can deduce a hierarchy of SLOCC classes, illustrated in Fig. 3.2.
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Figure 3.2: Hierarchic structure of SLOCC-classes within a 2× 3× 3 sys-
tem. If the orbit of one class is completely within the orbit of another one,
all states belonging to the class of the inner orbit can be reached by the rep-
resentative state of the class of the outer orbit via SLOCC with probability
numerically close to one. Furthermore, if a state ρ can be found outside
the SLOCC- orbit of a certain state, one needs terms proportional to the
representative state of the respective outer orbit to construct this state. As
can be seen from Table (3.1), |ψ15〉 is the most powerful class in the sense
that any other state |ψi〉 with 6 ≤ i ≤ 16 can be reached from |ψ15〉 via
SLOCC operation with certainty, that is α = 1 within the numerical limits.
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3.2.5 Conclusions

For arbitrary numbers of parties and local (finite) dimensions we showed a one-to-one corre-

spondence between an operator W able to distinguish between different SLOCC classes of a

system and another operator W̃ that detects entanglement within a system which consists of

two copies of the original system. This correspondence thereby enables us to directly transfer

a solution for one problem to the other. Though the relaxation to PPT-states in order to

construct the entanglement witness did not prove to be helpful for reasons stated in Section

3.2.3, it very well might be that other possible relaxations on the set of separable states will

give more insight and a good approximation for an upper bound on the maximal overlap.

As an concrete application of the presented relation we derived the maximal overlap between

the n-qubit GHZ state and states within the n- qubit W class. The numerical calculations

in section IV for the qubit-qutrit-qutrit system do not only indicate a hierarchy among the

SLOCC classes but also provides us with the option to construct a whole set of entanglement

witnesses for the doubled system of dimensions 4× 6× 6.

3.2.6 Appendix

Example

In this Appendix we will provide an example of how the relation among SLOCC witnesses

and EWs can be employed and compute the maximal squared overlap between the GHZ-state

of n-qubits, |GHZn〉 = 1/
√

2(|00 . . . 0〉+ |11 . . . 1〉, and a normalized n-qubit state in the W-

class (with representative |Wn〉 = 1/
√
n(|10 . . . 0〉+ |010 . . . 0〉+ . . .+ |0 . . . 010〉+ |0 . . . 01〉)).

We show that for n = 3 the maximal squared overlap is given by 3
4 (see also [123]), whereas

for n ≥ 4 it is given by 1
2

2.

In order to do so we consider Wn = (λn1− |GHZn〉 〈GHZn|)⊗ |Wn〉 〈Wn| and show that

it is an EW (for 2n-qubit states) with respect to the splitting (A1A2|B1B2|C1C2| . . . |Z1Z2)

iff 1 > λ3 ≥ 3
4 ≡ λC3 and 1 > λn ≥ 1

2 ≡ λCn for n ≥ 4. Using Theorem 3.1 this implies

that 〈Ψn
W | (λn1− |GHZn〉 〈GHZn|) |Ψn

W 〉 ≥ 0, where |Ψn
W 〉 denotes a normalized state in the

n-qubit W-class, iff 1 > λn ≥ λCn . Recall that 〈Ψn
W | (λn1− |GHZn〉 〈GHZn|) |Ψn

W 〉 ≥ 0 is

equivalent to λn ≥ | 〈GHZn|Ψn
W 〉 |2 and therefore the maximal squared overlap is given by

λCn .

Before considering the problem of finding the range of λ for which Wn is an EW let us first

present a parametrization of states in the W-class that will be convenient for our purpose

and then relate it to the parametrization of product states that have to be considered. It

is well known that any state in the W-class 3 can be written as [113]
⊗

i Ui(x0 |00 . . . 0〉+

x1 |10 . . . 0〉 + x2 |010 . . . 0〉 + . . . + xn−1 |0 . . . 010〉 + xn |0 . . . 01〉) with x0 ≥ 0, xi > 0 for

i ∈ {1, . . . ,n} and Ui unitary or equivalently as U1D1⊗U2D2⊗ . . .⊗Un−2Dn−2⊗Un−1gn−1⊗
UnDn |Wn〉 where Di = diag (1, x̃i) with x̃i = xi/xn > 0 and

gn−1 =

(
xn x0

0 xn−1

)
. (3.18)

For the local unitaries we will use the parametrization Ui = Uph(γi)X(αi)Uph(βi) with

X(δ) = eiδX , Uph(δ) = diag (1, eiδ) and αi,βi, γi ∈ R. In order to simplify our argu-

mentation we will use that ⊗iUph(δ) |Wn〉 = eiδ |Wn〉 and choose βn = 0, βi = βi − βn for

3Note that we will consider unnormalized states.
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i ∈ {1, . . . ,n− 2} and xj = xje
−iβn for j = 0,n− 1. Using that (Uph(δ1)⊗Uph(δ2)⊗ . . .⊗

Uph(δn−2)⊗Uph(−
∑
i∈I0

δi)⊗Uph(δn) |GHZn〉 = |GHZn〉 where here and in the following

I0 = {1, 2, . . . ,n− 2,n} one can easily see that when computing the maximal SLOCC overlap

between the GHZ state and a W-class state one can equivalently choose γi = 0 for i ∈ I0 and

γn−1 =
∑n
i=1 γi.

We will now make use of the fact that 〈η| (λn1− |GHZn〉 〈GHZn|) |η〉 ≥ 0 for |η〉 = A⊗B⊗
. . .⊗ Z |Wn〉 iff 〈ξSEP | [λn1− (|GHZn〉 〈GHZn|)1]⊗ (|Wn〉 〈Wn|)2 |ξSEP 〉 ≥ 0 for |ξSEP 〉 =

|A12〉 ⊗ |B12〉 ⊗ . . . |Z12〉 with |Γ12〉 = (Γ1⊗ 12) |Φ+〉, Γ ∈ {A,B, . . . Z} and |Φ+〉 =
∑1
i=0 |ii〉

(see proof of Theorem 3.1). As any state in the W-class can be parametrized as explained

above we only have to consider product states of the form |ξSEP 〉 = ⊗ni=1 |φi〉 with |φi〉 =

(UiDi ⊗ 1) |Φ+〉 = (Ui ⊗ 1)(|00〉+ x̃i |11〉) for i ∈ I0 and |φn−1〉 = (Un−1gn−1 ⊗ 1) |Φ+〉 4.

Note that 〈ξSEP |Wn |ξSEP 〉 ≥ 0 for all |ξSEP 〉 as defined above iff w̃n ≡ 〈ζSEP |Wn |ζSEP 〉 ≥
0, that is w̃n is positive semidefinite, for all |ζSEP 〉 = ⊗i∈I0 |φi〉 with |φi〉 as defined above.

This is due to the fact that the parameters of |ζSEP 〉 and |φn−1〉 can be chosen independently

and |φn−1〉 is an arbitrary state. One obtains for the respective terms of w̃n that

〈ζSEP | [11 ⊗ (|Wn〉 〈Wn|)2] |ζSEP 〉 =
1
n
1Γ1 ⊗ [1Γ2 +

n−2∑
i=1

x̃2
i (|0〉 〈0|)Γ2 ], (3.19)

where Γ refers to party n−1 and 〈ζSEP | (|GHZn〉 〈GHZn|)1⊗ (|Wn〉 〈Wn|)2 |ζSEP 〉 = (|ϕ〉 〈ϕ|)Γ1Γ2

with

|ϕ〉Γ1Γ2
= 1√

2n{[
∑
j∈I0

(−i sin(αj)x̃je−iβj
∏
k∈I0\{j} cos(αk)) |0〉Γ1

(3.20)

+
∑
j∈I0

(cos(αj)x̃je−iβj
∏
k∈I0\{j}(−i sin(αk))) |1〉Γ1

]⊗ |0〉Γ2

+[
∏
j∈I0

cos(αj) |0〉Γ1
+
∏
j∈I0

(−i sin(αj)) |1〉Γ1
)]⊗ |1〉Γ2

}

≡ |ϕ0〉Γ1
|0〉Γ2

+ |ϕ1〉Γ1
|1〉Γ2

.

Hence, we have that w̃n = λn
n 1Γ1 ⊗ [1Γ2 +

∑n−2
i=1 x̃

2
i (|0〉 〈0|)Γ2 ]− (|ϕ〉 〈ϕ|)Γ1Γ2 . Defining µ =

||ϕ0|| and ν = ||ϕ1|| we can write |ϕ〉 = µ |Φ0〉Γ1
|0〉Γ2

+ ν |Φ1〉Γ1
|1〉Γ2

where ||Φi|| = 1. We

construct now the following orthonormal basis

|Ψ0〉 = µ√
µ2+ν2 |Φ0〉Γ1

|0〉Γ2
+ ν√

µ2+ν2 |Φ1〉Γ1
|1〉Γ2

(3.21)

|Ψ1〉 = ν√
µ2+ν2 |Φ0〉Γ1

|0〉Γ2
− µ√

µ2+ν2 |Φ1〉Γ1
|1〉Γ2

(3.22)

|Ψ2〉 = |Φ⊥0 〉Γ1
|0〉Γ2

(3.23)

|Ψ3〉 = |Φ⊥1 〉Γ1
|1〉Γ2

, (3.24)

where 〈Φi|Φ⊥i 〉 = 0 for i ∈ {0, 1}. It can be easily seen that w̃n =
∑1
i,j=0 Λij |Ψi〉 〈Ψj |+

λn
n (1 +

∑n−2
i=1 x̃

2
i ) |Ψ2〉 〈Ψ2|+ λn

n |Ψ3〉 〈Ψ3| with

Λ =

 λn
n (1 +

∑n−2
i=1 x̃

2
i

µ2

µ2+ν2 )− (µ2 + ν2)
∑n−2
i=1 x̃

2
i

λnµν
n(µ2+ν2)∑n−2

i=1 x̃
2
i

λnµν
n(µ2+ν2)

λn
n (1 +

∑n−2
i=1 x̃

2
i

ν2

µ2+ν2 )

 . (3.25)

Note that as we consider the case λn > 0 (otherwise Wn ≤ 0 which implies that it cannot be

an EW) and as x̃i ∈ R we have that w̃n ≥ 0 iff Λ ≥ 0. In order to determine for which values of

4As before the expectation value ofWn for states with some separable |φi〉 can be approximated arbitrarily
close by the expectation value for a state |ξSEP 〉 for which all |φi〉 are entangled.
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λn the matrix Λ is a positive semidefinite matrix we impose that Tr(Λ) ≥ 0 and det(Λ) ≥ 0.

It can be easily seen that det(Λ) ≥ 0 implies Tr(Λ) ≥ 0 and one straightforwardly obtains

that Λ ≥ 0 iff λn
n ≥

µ2∑
i∈I0

x̃2
i

+ ν2. Hence, the minimal λn for which Wn is an EW is given

by

λCn = sup
x̃i,αi,βi∈R

n(
µ2∑
i∈I0

x̃2
i

+ ν2). (3.26)

One can easily derive from Eq. (3.20) that

µ2 =
1

2n [|
∑
j∈I0

sin(αj)x̃je
−iβj

∏
k∈I0\{j}

cos(αk))|2 + |
∑
j∈I0

(cos(αj)x̃je−iβj
∏

k∈I0\{j}
sin(αk))|2](3.27)

and

ν2 =
1

2n [
∏
j∈I0

cos2(αj) +
∏
j∈I0

sin2(αj)]. (3.28)

Note that as |
∑
i ai| ≤

∑
i |ai| for any complex numbers ai (and as any possible pair of values

of | sin(δ)| and | cos(δ)| is attained for δ ∈ [0,π/2] and sin(δ) ≥ 0 and cos(δ) ≥ 0 for this

parameter range) one obtains that the supremum in Eq. (3.26) is attained for βi = 0 and

αi ∈ [0,π/2].

We will in the following distinguish between n = 3 and n ≥ 4 and first discuss the case n = 3.

Inserting the corresponding expressions for µ2 and ν2 in Eq. (3.26) and using β1 = β3 = 0
one straightforwardly obtains that

λC3 = sup
x,α1,α3∈R

1
2 (1 +

x

1 + x2 sin(2α1) sin(2α3)). (3.29)

It is easy to see that therefore the supremum is obtained for α1 = α3 = π/4 and x = 1 which

implies that λC3 = 3
4 . Hence, if λ3 is larger than 3

4 w̃3 is positive semidefinite. However, it

should be noted that W3 is only an EW if λ3 < 1 as for λ3 ≥ 1 W3 is positive semidefinite

and there exists no state, |Ψ〉, such that 〈Ψ|W3 |Ψ〉 < 0. A state that attains the maximum

overlap of 3/4 is given by 1/
√

3(|+ + +〉+ |−−+〉+ |+−−〉) with |±〉 = 1/
√

2(|0〉 ± |1〉).
Using λ3 = 3/4, β1 = β3 = 0, x = 1 and α1 = α3 = π/4 the remaining parameters for a

state in the W-class that attains the maximum can be obtained by calculating the eigenvector

of w̃3 for the eigenvalue 0 5.

We will proceed with n ≥ 4 and will use that the supremum is attained for βi = 0. Note that

then µ2∑
i∈I0

x̃2
i

can be equivalently written as

(~v0 · ~v1)2 + (~v0 · ~v2)2, (3.30)

5In order to obtain the state presented here symmetries of the GHZ and W state are used.
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where

~v0 =
1√∑
i∈I0

x̃2
i

(x̃1, x̃2, . . . , x̃n−2, x̃n)

~v1 = (y1, . . . , yn−2, yn) with: yj =
1√
2n

sin(αj)
∏

k∈I0\{j}
cos(αk)

~v2 = (z1, . . . , zn−2, zn) with:zj =
1√
2n

cos(αj)
∏

k∈I0\{j}
sin(αk).

(3.31)

Hence, one obtains

λCn = sup
x̃i,αi∈R

n[(~v0 · ~v1)2 + (~v0 · ~v2)2 + ν2] ≤ sup
αi∈R

n[|~v1]2 + |~v2|2 + ν2] (3.32)

as ~v0 is a normalized vector. Inserting the expressions for ~v1,~v2 and ν we have that

λCn ≤ sup
αi∈R

1
2 (
∑
j∈I0

cos2(αj)
∏

k∈I0\{j}

sin2(αk) +
∑
j∈I0

sin2(αj)
∏

k∈I0\{j}

cos2(αk)

+
∏
j∈I0

cos2(αj) +
∏
j∈I0

sin2(αj))

= sup
αi∈R

1
2 (

∑
j∈I0\{n}

cos2(αj)
∏

k∈I0\{j}

sin2(αk) +
∑

j∈I0\{n}

sin2(αj)
∏

k∈I0\{j}

cos2(αk)

+
∏

j∈I0\{n}

cos2(αj) +
∏

j∈I0\{n}

sin2(αj))

≤ sup
αi∈R

1
2 (

∑
j∈I0\{n}

cos2(αj)
∏

k∈I0\{j,n}

sin2(αk) +
∑

j∈I0\{n}

sin2(αj)
∏

k∈I0\{j,n}

cos2(αk)

+
∏

j∈I0\{n}

cos2(αj) +
∏

j∈I0\{n}

sin2(αj))

≤ sup
αi∈R

1
2 (

∑
j∈{1,2,3}

cos2(αj)
∏

k∈{1,2,3},k 6=j

sin2(αk) +
∑

j∈{1,2,3}

sin2(αj)
∏

k∈{1,2,3},k 6=j

cos2(αk)

+
∏

j∈{1,2,3}

cos2(αj) +
∏

j∈{1,2,3}

sin2(αj))

=
1
2 .

(3.33)

Note that for the second inequality we used that 0 ≤ cos2(αi) ≤ 1 and 0 ≤ sin2(αi) ≤ 1
and then repeatedly applied the same argumentation. Note further that the upper bound

obtained in the last line is equal to 1/2 independent of the value of the parameters αi for

i ∈ {1, 2, 3}. As the state |00 . . . 0〉 which can be approximated arbitrarily close by a state in

the W-class has a squared overlap with the GHZ-state of 1/2 we also have that λCn ≥ 1/2.

Hence, one obtains λCn = 1/2 for n ≥ 4. Note that this is also the maximal squared overlap

between the GHZ-state and an arbitrary separable state.
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Chapter 4

Hypergraph states in arbitrary,

finite dimension

Within this chapter, the second main result of this thesis, encompassing the definition, charac-

terization and classification of hypergraph states in arbitrary dimension, is presented. Qubit

hypergraph states have been introduced in [34] as a generalization of qubit graph states. For

practical applications, hypergraph states were proven to pose an advantage compared to graph

states within the field of measurement based quantum computation [133]. Furthermore, qubit

hypergraph states are really equally weighted states and as such have applications within the

Grover-[28] and Deutsch-Joza [25] algorithm. As a part of the broader class of locally maxi-

mally entangled (LME-) states, qubit hypergraph states can be used for fingerprint protocols

[143]. A special class of qubit hypergraph states, the k-uniform qubit hypergraph states, are

useful for applications in quantum metrology. Additionally inequalities, e.g. Bell inequalities,

have been constructed and a violation for some hypergraph states which is exponentially in-

creasing with the number of qubits has been shown [140, 141].

This chapter is organized as follows. First, there will be an introductory part in Section 4.1

covering the structure of quantum states in finite Hilbert spaces and their representation in

phase space based on the work of [144]. Within this framework, the emergence of position-

and space operators as well as the characterization of important groups of transformations are

derived to explain the structure of the generalized X-, Z- and symplectic operations, which

are of crucial importance within the following parts of the chapter. Furthermore, it highlights

the reason for the fundamental difference between qudit hypergraph states in prime and in

non-prime dimensions as a consequence of the basic properties of those structures. The sec-

ond part will mainly cover the work published in [185] on the definition of qudit hypergraph

states as well as their classification in terms of LU- and SLOCC equivalence. The following

sections deal with unpublished results in the field of local complementation rules for qudit

graph states of arbitrary dimension 4.3 as well as with weighted qudit hypergraph states 4.4.

4.1 Phase space representation of quantum systems in

finite Hilbert spaces

A harmonic oscillator is a well studied system within the quantum mechanical context. Char-

acterized by the dual variables position and momentum, methods were developed to suc-

cessfully analyze and use the structure of the related phase space. Within this realm, those

variables usually are continuous, that is, they are allowed to take values within the field of

real numbers R. Due to the well working formalism it seems a promising idea to try and
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transfer it to a more restricted class of quantum systems and thereby gain powerful tools to

better understand and describe those. The work of, e.g. Vourdas [144] develops an analogous

formalism for quantum systems within a finite Hilbert space, where the restriction to discrete

values of X (position) and P (momentum) demands them to be integers modulo d where d

refers to the ring denoted as Z(d). The phase-space structure of those systems is a toroidal

lattice Z(d)×Z(d). Note, that the existence of a finite geometry is an exclusive a property

in case the dimension of the Hilbert space is a prime number. Then, Z(d) is a field (instead

of a ring for non-prime dimension) and the additional structure allows for e.g. the formation

of groups of certain operators acting in phase-space.

Within this setting, through position and momentum two orthonormal bases can be de-

fined which are related by the finite Fourier transformation with the dimension-related phase

parameter ω defined as

F =
1√
d

d−1∑
m,n=0

ωmn |Xm〉 〈Xn| where: ωx = e
2πi
d x, x ∈ Z(d) (4.1)

and the set {|Xm〉} is an orthonormal basis in position space, that is 〈Xm|Xn〉 = δmn and∑
n |Xn〉 〈Xn| = 1. The dual basis of momentum states {|Pm〉} can be reached from {|Xn〉}

via F :

|Pm〉 = F |Xm〉 =
1√
d

d−1∑
m′,n=0

ωm
′n |Xn〉 〈Xm′ | |Xm〉 =

1√
d

d−1∑
n=0

ωmn |Xn〉 (4.2)

and an arbitrary state within Hd then always has a decomposition in position and momentum

basis, e.g. |ψ〉 =
∑
n λn |Xn〉 =

∑
m µm |Pm〉. The coefficients {λn}, {µn} are directly related

by Eq. (4.2). The operators of position and momentum, x, p read

x =
d−1∑
n=0

n |Xn〉 〈Xn| , p =
d−1∑
n=0

n |Pn〉 〈Pn| (4.3)

and again the Fourier transformation conducts the conversion between those two:

FXF† =
1
d

d−1∑
m=0

mF |Xm〉 〈Xm| F†

=
1
d

d−1∑
m=0

m

d−1∑
m′,n,o,p=0

ωm
′n |Xn〉 〈Xm′ | |Xm〉 〈Xm| |Xo〉 〈Xp| (ωop)∗

=
1
d

d−1∑
m=0

m

d−1∑
n,p=0

ωmn |Xn〉 〈Xp| (ωmp)∗

Eq. (4.2)
=

d−1∑
m=0

m |Pm〉 〈Pm| = P

(4.4)

and, vice versa , FPF† = −X. Position and momentum operators are principally gen-

erators of infinitesimal displacements along position the and momentum axis in phase space.

For this reason, to describe a displacement within a finite dimensional Hilbert space, discrete

quantum systems related operators are used that fit into this kind of phase-space structure.

As mentioned, of importance for the remainder of this section, that is, the description of
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qudit hypergraph states, are primarily those operators, which conduct finite displacements

along the x− and p− axis of the underlying phase space they are embedded in - the gen-

eralization of the Pauli-operators: σ(x|z) → (X|Z) acting on a single system as well as the

corresponding controlled gates as their multi-system pendant. The single qudit displacement

operators are defined as

Z = e
2πi
d x and: X = e

2πi
d p (4.5)

with x, p defined as in Eq. (4.3) and naturally XX† = ZZ† = 1. Then, the action of X and

Z on states in position- and momentum basis gives those displacements on the respective axis

that show the right properties to be in analogy to the qubit case. Precisely, one has the fol-

lowing relations, symmetric when exchanging basis and associated operators simultaneously:

Za |Xm〉 = ωam |Xm〉 Za |Pm〉 = |Pm+a〉

Xa |Xm〉 = |Xm+a〉 Xa |Pm〉 = ω−ma |Pm〉
(4.6)

Obviously, the d− th power of X and Z return identity Xd = Zd = 1 and in general:

Za = Za mod d and: Xa = Xa mod d for a ∈ Z (4.7)

Furthermore, the commutation rule between X and Z is of utmost significance when working

with qudit hypergraph states, especially within the area of determining equivalence classes

under local unitaries. For the single system operators, one finds:

XbZa = ω−abZaXb ∀ a, b ∈ Z (4.8)

which can be generalized to controlled X− and Z− gates acting on arbitrary index sets1.

Eq. (4.6) enables a compact form of the X- and Z- operators which will we used frequently

in many calculations and proofs later on:

Za =
d−1∑
n=0

ωaq |q〉 〈q| Za =
d−1∑
n=0
|p⊕ a〉 〈p|

Xa =
d−1∑
n=0
|q⊕ a〉 〈q| Xa =

d−1∑
n=0

ω−ap |p〉 〈p|

(4.9)

Where from now on, for better readability, the double indexing is dropped and the position-

and momentum states are denotes by bases |Xm〉 → |q〉 and |Pm〉 → |p〉, respectively. The

values of p and q are in analogy to m dimension dependent and reach from 0 to d− 1. Again,

q = q mod d and in the following, ⊕ denotes the modular addition, that is, q ⊕ a = (q + a)

mod d. Xa, Za, a ∈ [0, .., d− 1] are referred to as generalized Pauli operators and are gener-

ators of the generalized Pauli group.

An important set of transformation within this phase-space description are operators from

the symplectic group. They go back to the Bogoliubov-transformations [129] for an harmonic

oscillator. Within a Z(d)×Z(d) phase-space, the symplectic transformations denoted by S,

X
S−→ X ′ and P

S−→ P ′, can be defined by their action on the displacement operators along

1The generalization is part of the main section for some special cases. Additionally, section 3.4. proves a
commutation rule for the most general case of arbitrary index sets and arbitrary powers of X and Z.
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the axis, X and P :

X ′ = SXS† = XκZλω2−1κλ

P ′ = SPS† = XµZνω2−1νµ
(4.10)

Where S−1 = S†, i.e. S is a unitary operator and the parameters λ,κ,µ, ν are element of

Z(d) and additionally have to satisfy:

κν − λµ mod d
= 1 (4.11)

This restriction on the transformation parameters is necessary to ensure that all possible

displacements are finite. Furthermore, in Eq.(4.10) the factor ’2−1’ denotes the multiplicative

inverse of 2. In general the multiplicative inverse of some arbitrary number k in Zd is defined

as the corresponding number k−1 such that kk−1 mod d
= 1. To systematically calculate the

multiplicative inverse of some d, with d being prime, one can use the Carmichael function

[159] λ(d).

Definition 4.1. Carmichael function

The Carmichael function has its origin within the field of number theory. It assigns to every

integer d with d ≥ 0 a positive integer λ(d), which is defined as the smallest λ(d) such that

kλ(d) mod d
= 1 ∀ k with gcd(k, d) = 1 (4.12)

Notice that gcd(k, d) = 1 is always true for d = prime and d > 2. Using Eq. (4.12)

one finds k−1 = kλ(d)−1. As an example, consider the case d = 3. Then the multiplicative

inverse is given by k−1 = kλ(3)−1 = k2−1 = k. For a value of k = 2, one can calculate

kk−1 = 2× 2 = 4 and going backwards, one verifies 4 mod 3
= 1 as demanded.

For d 6= prime the multiplicative inverse cannot be defined in such a way for an arbitrary

value of k, which is clear from the definition (k and d must not have a common divisor). If a

multiplicative inverse does not exist, it is, in some cases, possible to broaden the termination

over the field of rational numbers. Then, with the usual definition of a negative exponent, we

have that k−1 = 1
k . Thus, the expression for k−1 becomes independent of the dimension, for

example for k = 3, one finds k−1 = 1
3 for any d with gcd[3, d] 6= 1. It is important to state

that for the non-prime case, according to the missing geometrical structure of the phase-space,

one has to be careful when transferring methods and operations defined for prime dimensions.

It is necessary to consider each case separately and determine structure and rules, as e.g. the

one referring to the multiplicative inverse defined by the fraction, individually step by step .

Furthermore, notice that the operators X ′, P ′ can be written in terms of a general displace-

ment operator D(a, b) with D(a, b) = ZaXbω2−1ab and [D(a, b)]† = D(−a,−b) which are

again unitary operators referring to the Heisenberg-Weyl2 group for finite quantum systems.

Concluding the section concerning the phase-space description of finite quantum systems, in

the realm of symplectic transformations, there are three special operations S(κ,λ,µ), which

play an important role for the classification of qudit hypergraph states.

• S(κ,λ,µ) = S(ξ, 0, 0) : when applied to X (Z), they create the ξ− th (ξ−1− th) power

of the original gate

2for further details on the Heisenberg-Weyl group in the context of finite quantum systems, see [144]
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• S(κ,λ,µ) = S(1, 0, ξ) : when applied to Z, they will leave Z unchanged and additionally

create a X−gate of ξ − th power.

• S(κ,λ,µ) = S(1, ξ, 0) : when applied to X, they will leave X unchanged and addition-

ally create a Z−gate of ξ − th power.

As will be shown, S(ξ, 0, 0) refers to permutations of elements for diagonal matrices within

X-or P -basis and thus is a helpful tool for the classification of qudit hypergraphs w.r.t. local

unitary equivalence. S(1, 0, ξ) and S(1, ξ, 0) will prove to pose as a mediator for local unitary

transformations between qudit- graph states that are in analogy to the local complementation

rule [40] valid in the qubit case. In fact, for d = 2 and ξ = 1
2 , S(1, 0, ξ) corresponds to the

operation conducting the local complementation, that is, application of
√
X on the LC-vertex

and
√
Z on all vertices within the neighbourhood. The concrete form of the aforementioned

symplectic transformations can be calculated by Eq. (4.10) and their action on the basis

states |q〉 and |p〉. Thus, using Eq. (4.2) and the relation

1
d

d−1∑
n=0

ωn(m−l) = δm,l as:
d−1∑
n=0

ωd = 0 (4.13)

one finds in position-and momentum basis, respectively:

S(ξ, 0, 0) =
∑
q

|ξq〉 〈q| S(ξ, 0, 0) =
∑
p

|ξ−1p〉 〈p|

S(1, 0, ξ) =
∑
q

ω−2−1ξp2 |q〉 〈q| S(1, 0, ξ) =
∑
p

ω−2−1ξp2 |p〉 〈p|

S(1, ξ, 0) =
∑
q

ω2−1ξq2 |q〉 〈q| S(1, ξ, 0) =
∑
p

ω2−1ξq2 |p〉 〈p|

(4.14)

One easily verifies that Eq.(4.14) implies:

S(ξ, 0, 0)XS(ξ, 0, 0)† = Xξ S(ξ, 0, 0)ZS(ξ, 0, 0)† = Z−ξ

S(1, 0, ξ)XS(1, 0, ξ)† = X S(1, 0, ξ)ZS(1, 0, ξ)† = ZXξω−2−1ξ

S(1, ξ, 0)XS(1, ξ, 0)† = XZξω2−1ξ S(1, ξ, 0)ZS(1, ξ, 0)† = Z

(4.15)

where the displacement operators X and P are defined according to Eq. (4.9). In case of

non-prime dimensions or d = 2, one can find analogous representations of the symplectic

operators. Starting with Eq. (4.15) as desired transformation rules and using a slightly

changed version of Eq. (4.14), where the phase factor is arbitrary, i.e. 2−1 −→ α with α

being from the field of rational numbers, one can verify the mentioned re-definition of the

multiplicative inverse as a simple fraction.3

With the basic framework and most important operators and relations within the phase-space

of finite quantum systems in general and their useful applications on the way towards defining

hypergraph states in arbitrary dimension explained, the next subsection will cover the main

results regarding definition and classification of qudit hypergraph states.

3Concrete examples for d = 3, 4 can be found in Section 4.2.
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4.2 Qudit hypergraph states

The results within this subsection are based on the work of [185]

The main goal of this project was the generalization of the class of hypergraph states defined

for qubits [34] to systems of arbitrary dimension. To define hypergraphs for multipartite

systems of qudits, we use constructions based on the d-dimensional Pauli group and its nor-

malizer within a phase-space description of finite quantum systems. For simple hypergraphs,

the different equivalence classes under local operations are shown to be governed by a greatest

common divisor hierarchy. Moreover, the special cases of three qutrits and three ququarts

are analysed in detail and equivalence classes under local unitary transformations as well as

SLOCC transformations are listed.

4.2.1 Introduction

The physical properties of multipartite systems are highly relevant for practical applications

as well as foundational aspects. Despite their importance, multipartite systems are in general

very complex to describe and little analytical knowledge is available in the literature. Well-

known examples in many-body physics are the various spin models, which are simple to write

down, but where typically not all properties can be determined analytically. The entanglement

properties of multipartite systems are no exception and already for pure states it is known

that a complete characterization is, in general, not a feasible task [130, 174]. This motivates

the adoption of simplifications that enable analytical results or at least to infer properties in

a numerically efficient way.

One approach in this direction with broad impact in the literature is that based on a

graph state encoding [132]. Mathematically, a graph consists of a set of vertices and a set of

edges connecting the vertices. Graph states are a class of genuinely multipartite entangled

states that are represented by graphs. This class contains as a special case the whole class

of cluster states, which are the key ingredients in paradigms of quantum computing, e.g. the

one-way quantum computer [133] and quantum error correction [134] or for the derivation

of Bell inequalities [135]. Interestingly, results and techniques of the mathematical theory

of graphs can be translated into the graph state framework: one prominent example is the

graph operation known as local complementation. The appeal of graph states comes in great

part from the so-called stabilizer formalism [134]. The stabilizer group of a given graph state

can be constructed in a simple way from local Pauli operators and is abelian; the stabilizer

operators associated to a given graph state are then used in a wide range of applications

such as quantum error correcting codes [134], in the construction of Bell-like theorems [135],

entanglement witnesses [136], models of topological quantum computing [137] and others.

Recently, there has been an interest in the generalization of graph states to a broader

class of states known as hypergraph states [138]. In a hypergraph, an edge can connect more

than two vertices, so hypergraph states are associated with many-body interactions beyond

the usual two-body ones. Interestingly, the mathematical description of hypergraph states

is still very simple and elegant and in Ref. [140] a full classification of the local unitary

equivalence classes of hypergraphs states up to four qubits was obtained. Also, in Refs. [140,

141], Bell and Kochen-Specker inequalities have been derived and it has been shown that

some hypergraph states violate local realism in a way that is exponentially increasing with

the number of qubits. Finally, recent studies in condensed matter theory showed that this

class of states occur naturally in physical systems associated with topological phases [139].
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Originally, hypergraph states were defined as members of an even broader class of states known

as locally maximally entangleable (LME) states [142], which are associated to applications

such as quantum fingerprinting protocols [143]. Hypergraph states are then known as π-LME

states and display the main important features of the general class of LME states.

Up to now, hypergraph states were defined only in the multi-qubit setting, while graph

states can be defined in systems with arbitrary dimensions. In higher dimensions, graph states

have many interesting properties not present in the two-dimensional setting. For instance,

there are considerable differences between systems where the underlying local dimensions are

prime or non-prime [144]. Another difference is the construction of Bell-like arguments for

higher-dimensional systems [145].

In the present work, we extend the definition of hypergraph states to multipartite systems

of arbitrary dimensions (qudits) and analyse their entanglement properties. Especially, we

focus on the equivalence relations under local unitary (LU) operations and under stochastic

local operations assisted by classical communication (SLOCC). In particular, the possible local

inter-conversions between different entangled hypergraph states are governed by a greatest-

common-divisor hierarchy. Note that the whole class of qudit graph states is a special case of

our formulation.

This section is organized as follows: In Section 4.2.2, we start by giving a brief review of the

concepts and results that are at the basis of our formulation. This includes a description of the

Pauli and Clifford groups in a d-dimensional system, as well as a general look on qudit graph

states. In Section 4.2.3, we introduce the definitions associated with qudit hypergraph states.

Section 4.2.4 presents some properties of the stabilizer formalism used for qudit hypergraph

states. Sections 4.2.5 and 4.2.6 introduce the problem of classifying the SLOCC and LU classes

of hypergraph states, first describing the different techniques employed and then proving a

series of results on this classification. Finally, we present some concrete examples in low

dimensional tripartite systems in Sections 4.2.7 and 4.2.8, where already the main differences

between systems of prime and non-prime dimensions become apparent. We reserve the related

subjects of a phase-space description and local complementation of qudit graphs for the

Appendices 4.2.10.

4.2.2 Background and basic definitions

Let us give a short review of the definition of graph-and hypergraph states given in Chapter

2. We consider an N -partite system H =
⊗N

i=1Hi, where the subsystems Hi have the same

dimension d. A graph is a pair G = (V ,E), where V is the set of vertices and E is a set

comprised of 2-element subsets of V called edges. Likewise, a hypergraph is a pairH = (V ,E),

where V are the vertices and E is a set comprised of subsets of V with arbitrary number of

elements; a n-element e ∈ E is called a n-hyperedge. Thus, in some sense, a hyperedge is

an edge that can connect more than two vertices. A multi-(hyper)graph is a set where the

(hyper)edges are allowed to appear repeated. An example of a multi-graph can be found in

Fig. 4.1, while one of a multi-hypergraph can be found in Fig. 4.2. Given two integers m and

n, their greatest common divisor will be denoted by gcd(m,n). The integers modulo n will

be denoted as Zn.

The Pauli group and its normalizer

Taking inspiration in the formulation of qubit hypergraph states, we adopt here the description

based on the Pauli and Clifford groups in finite dimensions. In a d-dimensional system with
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Figure 4.1: Example of a graph state represented by the
multi-graph G = (V ,E), where V = {1, 2, 3, 4} and E =
{{1, 2}, {1, 3}, {1, 3}, {1, 3}, {1, 4}, {1, 4}, {2}, {2}, {3}}. The graph state in

this case is |G〉 = Z12Z
3
13Z

2
14Z

2
2Z3|+〉V .

Figure 4.2: Hypergraph state represented by the multi-
hypergraph H = (V ,E), with V = {1, 2, 3, 4, 5, 6} and E =
{{1, 2, 3}, {1, 2, 3}, {1, 6}, {1, 6}, {5}, {5}, {3, 4, 5, 6}}. The correspond-

ing hypergraph state is then |H〉 = Z2
123Z

2
16Z

2
5Z3456|+〉V .

computational basis {|q〉}d−1
q=0, let us consider the unitary operators given by

Z =
d−1∑
q=0

ωq|q〉〈q|; X =
d−1∑
q=0
|q⊕ 1〉〈q| (4.16)

with the properties Xd = Zd = I and XmZn = ω−mnZnXm, where ω = e2πi/d is the d-th

root of unity and ⊕ denotes addition modulo d. The group generated by these operators is

known as the Pauli group and the operators XαZβ , for α,β ∈ Zd are referred to as Pauli

operators. For d = 2, these operators reduce to the well-known Pauli matrices for qubits.

In general, these operators enable a phase-space picture for finite-dimensional systems, via

the relations Z = e
2πi
d Q, X = e−

2πi
d P , where Q =

∑d−1
q=0 q|q〉〈q| and P =

∑d−1
q=0 q|pq〉〈pq|

are discrete versions of the position and momentum operators; here, |pq〉 = F |q〉 and F =

d−1/2∑d−1
q′,q=0 ω

q′q|q′〉〈q| is the discrete Fourier transform. Thus, X performs displacements in

the computational (position) basis, while Z performs displacements in its Fourier transformed

(momentum) basis.

Another set of important operators are the so-called Clifford or symplectic operators,

defined as

S(ξ, 0, 0) =
d−1∑
q=0
|ξq〉〈q|; (4.17)

S(1, ξ, 0) =
d−1∑
q=0

ωξq
22−1 |q〉〈q|; (4.18)

S(1, 0, ξ) =
d−1∑
q=0

ω−ξq
22−1 |pq〉〈pq|. (4.19)
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These operators are invertible and unitary whenever the values of ξ and d are coprime (see

proof of Lemma 4.1) and generate the normalizer of the Pauli group, which is usually referred

as the Clifford group. Throughout the text, if not stated otherwise, by a symplectic operator

(or Clifford operator) S we will mean an arbitrary symplectic operator, which can be decom-

posed as a product of operators from Eqs. (4.17,4.18,4.19). The interested reader can check

a more broad formulation in terms of a discrete phase-space in the Appendix A, Section 4.1

or in the Ref. [144].

Qudit graph states

We briefly review the theory of the so-called qudit graph states, which is well established

in the literature [146]. The mathematical object used is a multi-graph G = (V ,E); we call

me ∈ Zd the multiplicity of the edge e, i.e., the number of times the edge appears. Given a

multigraph G = (V ,E), we associate a quantum state |G〉 in a d-dimensional system in the

following way:

• To each vertex i ∈ V we associate a local state |+〉 = |p0〉 = d−1/2∑d−1
q=0 |q〉.

• For each edge e = {i, j} and multiplicity me we apply the unitary

Zmee =
d−1∑
q=0
|qi〉〈qi| ⊗ (Zmej )q (4.20)

on the state |+〉V =
⊗

i∈V |+〉i. Thus, the graph state is defined as

|G〉 =
∏
e∈E

Zmee |+〉V . (4.21)

We allow among the edges e ∈ E the presence of “loops”, i.e., an edge that contains only a

single vertex. A loop of multiplicity m on vertex k means here that a local gate (Zk)m is

applied to the graph state. An example of a qudit graph state in a system with dimension

d > 3 is shown in Fig. 4.1.

An equivalent way of defining a qudit graph state is via the stabilizer formalism [146].

Given a multi-graph G = (V ,E), we define for each vertex i ∈ V the operator Ki =

Xi
∏
e∈E∗ Ze\{i}, where E∗ denotes all edges containing i. The set Ki generates an abelian

group known as the stabilizer. The unique +1 common eigenstate of these operators is pre-

cisely the state |G〉 associated to the multi-graph G. Moreover, the set of common eigenstates

of these operators forms a basis of the global state space, the so-called graph state basis.

The local action of the generalized Pauli group on a graph state is easy to picture and

clearly preserves the graph state structure. As already said, the action of Zml corresponds

to a loop of multiplicity m on the qubit l, while the action of Xm
l corresponds to loops of

multiplicity m on the qubits in the neighbourhood of the qubit m; this last observation is a

corollary of Lemma 4.1.

The action of the local Clifford group is richer and enables the conversion between differ-

ent multi-graphs in a simple fashion. For prime dimensions, the action of the gate Sk(ξ, 0, 0)

enables the conversion between edges of different multiplicities, while the gate Sk(1,−1, 0)

is associated to the operation known as local complementation - see Appendix B. Moreover,
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in non-prime dimensions, the possible conversions between edges are governed by a great-

est common divisor hierarchy, as shown in more generality ahead - see Proposition 4.1 and

Theorem 4.1.

4.2.3 Qudit hypergraph states

We now introduce the class of hypergraph states in a system with underlying finite dimension

d. Before proceeding, we first need a concept of controlled operations on a multipartite

system. From a given local operation M , one can define a controlled operation Mij between

qudits i and j as

Mij =
d−1∑
q=0
|qi〉〈qi| ⊗M q

j (4.22)

Likewise, a controlled operation between three qudits i, j and k is defined recursively as

Mijk =
d−1∑
q=0
|qi〉〈qi| ⊗M q

jk (4.23)

and, in general, the controlled operation between n qudits labeled by I = {i1i2 . . . in} is given

by

MI = Mi1i2...in =
d−1∑
q=0
|qi1〉〈qi1 | ⊗M

q
i2...in

(4.24)

A prominent example is the CNOT operation, which is simply the bipartite controlled oper-

ation generated by the X gate - CNOT =
∑
q |q〉〈q| ⊗Xq. Although our formulation can be

done in terms of this gate and its multipartite versions, it is preferable to use an equivalent

formulation in terms of controlled-phase gates ZI , since these gates are mutually commuting

and thus are easy to handle. Explicitly, the controlled phase gate for a hyperedge e on n

particles is given by

Ze =
d∑

q1=0
. . .

d∑
qn−1=0

|q1 . . . qn−1〉 〈q1 . . . qn−1|Zq1·...·qn−1

=
d∑

q1=0
. . .

d∑
qn=0

|q1 . . . qn〉 〈q1 . . . qn|ωq1·...·qn (4.25)

The mathematical object used here to represent a given state is a multi-hypergraph G =

(V ,E); as usual, we call me ∈ Zd the multiplicity of the hyperedge e, i.e., the number of

times the hyperedge appears. Given a multi-hypergraph H = (V ,E), we associate a quantum

state |H〉 in a d-dimensional system in the following way:

• To each vertex i ∈ V we associate a local state |+〉 = d−1/2∑d−1
q=0 |q〉.

• For each hyperedge e ∈ E with multiplicity me we apply the controlled-unitary Zmee on

the state |+〉V =
⊗

i∈V |+〉i. Thus, the hypergraph state is defined as

|H〉 =
∏
e∈E

Zmee |+〉V . (4.26)
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Among the hyperedges e ∈ E, we allow the presence of “loops”, i.e., an edge that contains

only a single vertex. Also empty edges are allowed, they correspond to a global sign. A loop

of multiplicity m on vertex k means here that a local gate (Zk)m is applied to the graph

state. An example of hypergraph state is illustrated in Fig. 4.2.

Equivalently, one can define a hypergraph state as the unique +1 eigenstate of a maximal

set of commuting stabilizer operators Ki which can be defined in a similar way as for graph

states. The principal concept was already introduced in the Chapter 2. We will explain this

approach and the concrete formulation for the case of qudit hypergraph states within the next

section, that is, directly following the proof of Lemma 4.1 below.

For completeness, we cite alternative formulations of hypergraph states that are potentially

useful in other scenarios. First, we notice that the multiplicities of the hyperedges can also

be encoded in the adjacency tensor Γ of the multi-hypergraph H, defined by Γi1i2...in =

m{i1,i2,...,in}, where {i1, i2, . . . , in} ∈ E. For graph states, for example, the Γ tensor is a

matrix, the well-known adjacency matrix of the theory of graphs. Many local quantum

operations, especially those coming from the local Clifford group, are elegantly described as

matrix operations over the adjacency matrix of the multi-graph G.

One can also work in the Schrödinger picture: the form of the state in the computational

basis is then given by:

|H〉 =
d−1∑
q=0

ωf (q)|q〉, (4.27)

where q ≡ (q1, q2, . . . , qn). f is a function fromZd toZd defined by f(q) =
⊕
{q1,...,qk}∈E

∧
k qk.

For qubits, for example, the function f is a Boolean function and this encoding is behind ap-

plications such as Deutsch-Jozsa and Grover’s algorithms [138]. Furthermore, we can identify

f(q) within the framework of an n-partite qudit hypergraph-states as

|H〉 =
k∏
a=1

ZmaIa
|+〉⊗n =

d−1∑
ci=0, i∈[1,...,n]

k∏
a=1

ω
(ma

∏
i, i∈Ia

ci)
n⊗
i=1
|ci〉 , (4.28)

where Ia denotes the index set on which the different (hyper-)edges are applied to with the

corresponding multiplicity ma. For clearity, let us consider a concrete example:

Example 4.1. Hypergraph of n = 4 qudits in dimension d = 6
Consider the hypergraph given in Fig. (4.3), that is, a system of four qudits, where certain

subsets are connected by three (hyper-)edges of some multiplicity. Precisely, we have an hy-

peredge of multplicity me = 5 connecting all four qubits, an hyperedge of multiplicity me = 1
connecting qudits 1,2 and 4 and finally a two-edge of multiplicity me = 2 between qudits 1

and 3. Then the whole state, according to Eq. (4.26), can be written as

|H〉 = Z5
1234Z124Z

2
13 |+ + ++〉 =

3∑
ijkl=0

ω5ijklωijlω2ik |ijkl〉 (4.29)

where the controlled Z-gates, the phase ω and the initial qudits in state |+〉 are of the form

given in Fig. (4.3).

An important special class of hypergraph states are the so-called n-elementary hypergraph

states, which are those constituted of exclusively one single hyperedge e between all n qudits

of the system. Thus, such a state has the simple form |H〉 = Zmee |+〉V . For this subclass,



72 Chapter 4. Hypergraph states in arbitrary, finite dimension

• Z = diag(1, e
iπ
3 , e

2iπ
3 , e

4iπ
3 , e

5iπ
3 )

• |+〉 = |0〉+ |1〉+ |2〉+ |3〉+ |4〉+ |5〉
• Z124 = (|0〉 〈0|)1124 + (|1〉 〈1|)1Z24 + ... + (|5〉 〈5|)iZ5

24

Z5
1234 = (|0〉 〈0|)11234 + (|1〉 〈1|)1Z5

234 + ... + (|5〉 〈5|)iZ
(5·5=25

mod 6
= 1)

234

Z2
13 = (|0〉 〈0|)112 + (|1〉 〈1|)1Z2

2 + ... + (|5〉 〈5|)iZ
(2·5=10

mod 6
= 4)

2

Figure 4.3: Four qudit hypergraph in dimension six

the main entanglement properties depend on the multiplicity me of the hyperedge, as shown

in the next sections.

4.2.4 Properties of hypergraph states and the stabilizer formalism

In the following sections, we derive some properties of hypergraph states, the controlled-Z

operation on many qudits and the stabilizer formalism. These tools will later be used for the

SLOCC and LU classification.

Local action of Pauli and Clifford groups

We now consider the effect of unitaries from the Pauli and Clifford groups on a hypergraph

state. First, we need some simple relations:

Lemma 4.1. The following relations hold:

X†kZIXk = ZI\{k}ZI (4.30)

ZIXkZ
†
I = XkZI\{k} (4.31)

Proof. We prove the lemma by induction on the cardinality n of the index set I, i.e., on the

number of qudits. For n = 2, remembering the relation X†ZX = ωZ, we see that

X†kZjkXk = X†k

d−1∑
q=0
|qj〉〈qj | ⊗Zqk

Xk

=
d−1∑
q=0
|qj〉〈qj | ⊗ (X†kZ

q
kXk)

=
d−1∑
q=0
|qj〉〈qj | ⊗ (ωqZqk)

=

d−1∑
q=0

ωq|qj〉〈qj | ⊗ Ik

d−1∑
q=0
|qj〉〈qj | ⊗Zqk


= ZjZjk

and the relations are valid. Now, let us consider the set I having cardinality n and the set

I ′ = I ∪ {j}, with j 6= k. Then we have
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X†kZI′Xk = X†k

d−1∑
q=0
|qj〉〈qj | ⊗ZqI

Xk

=
d−1∑
q=0
|qj〉〈qj | ⊗ (X†kZ

q
IXk)

=
d−1∑
q=0
|qj〉〈qj | ⊗ (ZI\{k}ZI)

q

=

d−1∑
q=0
|qj〉〈qj | ⊗ZqI\{k}

d−1∑
q=0
|qj〉〈qj | ⊗ZqI


= ZI′\{k}ZI′

i.e., if the relations are valid for n, then they are also valid for n+ 1. The proof of the second

statement, i.e. Eq. (4.31), then follows straightforward.

The effect of applying the gate X†k on an elementary hypergraph is then given by the

creation of a hyperedge of same multiplicity on the neighbourhood of the qudit k:

X†k|H〉 = X†kZ
me
e |+〉V = Zme

e\{k}Z
me
e X†k|+〉

V = Zme
e\{k}|H〉.

It is important to note that the hyperedges induced on the neighbourhood of k by repeated

applications of X†k have multiplicities that are divisible by me. Depending on the primality

of the underlying dimension d, there are restricted possibilities of inducing hyperedges on

neighbouring qudits via this procedure, a difference in relation to the qubit case.

Moreover, since the local Zk gate commutes with any ZI , it can always be locally removed

by applying Z†k. As explained previously, we adopt the convention of representing any Zk

acting on a hypergraph state as a loop - a 1-hyperedge - around the vertex k; higher potencies

(Zk)m are represented by m loops around k. Thus, the action of the local Pauli group

constituted of the unitaries Xm
k Z

n
k is to create n loops on the vertex k and m-hyperedges on

the neighbourhood of k.

Let us now turn to the action of the local Clifford group. The local gate from Eq. (4.17)

performs (see also Eq. (4.15)) permutations on the computational basis via the mapping

S(ξ−1, 0, 0)ZS†(ξ−1, 0, 0) = Zξ, where Z acts on a single particle. Based on this, we can

derive the action on multiparticle Ze gates, corresponding to a hyperedge e. It turns out that

for d prime, it is always possible to convert a k-hyperedge of multiplicity m (m 6= 0 mod d) to

another k-hyperedge of multiplicity m′ (m′ 6= 0 mod d). For non-prime d, the k-hyperedges

that are connectable via permutations are those whose multiplicities have an equal greatest

common divisor with the dimension d. In detail, we can formulate

Proposition 4.1. Let k, k′ ∈ Zd be such that gcd(d, k) = gcd(d, k′) = g. Then there exists

a Clifford operator S defined in Eq. (4.17) such that S(Ze)kS† = (Ze)k
′
.

Proof. One can find the proof of this proposition in Ref. [147]. For completeness, we provide

alternative proofs of this Proposition in Appendix C.

As an example, consider a system of dimension six. There, we have three different classes

with respect to the greatest common divisor, that is gcd(me, d) = [1, 2, 3]. This then re-

lates to permutation-equivalence of the Z-gates of multiplicity me = [1, .., 5] within the same
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gcd−class; precisely, we have: for gcd(me, d) = 1, the class includes the gates Z1 and Z5, for

gcd(me, d) = 2 we have the gates Z2 as well as Z4 and finally the class for gcd(me, d) = 3
has only one element, namely Z3.

Furthermore, the symplectic operator conducting the permutation of diagonal elements within

Z-power gates according to Proposition (4.1) is, as defined in Eq. (4.17), given by S(ξ, 0, 0).

To find the corresponding value of ξ for given k, k′ with gcd(k, d) = gcd(k′, d), we use the

first line in Eq. (4.15) and deduce from S(ξ, 0, 0)ZS(ξ, 0, 0)† = Zξ
−1

S(ξ, 0, 0)ZkS(ξ, 0, 0)† = (ξ, 0, 0)ZS(ξ, 0, 0)†S(ξ, 0, 0)ZS(ξ, 0, 0)†...︸ ︷︷ ︸
k−times

= Zkξ
−1 ≡ Zk′ (4.32)

and thus, kξ−1 = k′. For the example above, exemplary the operator transforming Z2 to

Z4 in dimension d = 6 has a ξ−value satisfying 2ξ−1 mod 6
= 4. Thus, ξ−1 = 5 and as

ξξ−1 mod 6
= 1, it follows that ξ = 5. Notice, that per definition of the Carmichael function,

i.e. Eq. (4.12), ξ−1 = 2 does not work properly as gcd(2, 6) 6= 1.

Let us anticipate the next section and already mention at this point that Prop.(4.1) is of

great importance when considering local equivalence of elementary hypergraphs in arbitrary

dimension. This is mainly due to the fact that it is possible to directly connect the gcd−
hierarchy to the entanglement properties of the state via the reduced rank, which will be

shown in the section covering local measurements. The subsequent consequences regarding

local equivalences of n-elementary hypergraph states are given in section 2.1.5.

For a more detailed discussion on the Clifford group see Ref. [148]. As mentioned in Chapter

2, the local Clifford gates, or sympletic operators, in Eq. (4.18) and Eq. (4.19) are associated

with the local complementation of qudit graphs, which is explained in detail in the next section

as well as in Appendix B. Furthermore, rules for local complementation of qudit graph states

within a more general framework are derived in Section 4.3.

Stabilizer formalism

From relation (4.31) we can construct the stabilizer operator on a vertex i:

|H〉 =
∏
e∈E

Ze|+〉V =
∏
e∈E

ZeXiZ
†
eZe|+〉V (4.33)

= Xi

∏
e∈E∗

Ze\{i}|H〉 = Ki|H〉 (4.34)

with Ki = Xi
∏
e∈E∗ Ze\{i} and where E∗ denotes all edges containing i. Hence, the operators

Ki stabilize the hypergraph state |H〉. An equivalent way is expressing the stabilizer operator

in the compact form Ki = XiZNi , where ZNi ≡
∏
j∈Ni Zj , where Ni is the neighbourhood of

i. Moreover, these operators are mutually commuting:

KiKj = (Xi

∏
e∈E

Ze\{i})(Xj

∏
e∈E

Ze\{j}) (4.35)

= (
∏
e∈E

ZeXi

∏
e∈E

Z†e)(
∏
e∈E

ZeXj

∏
e∈E

Z†e) (4.36)

=
∏
e∈E

ZeXiXj

∏
e∈E

Z†e (4.37)

=
∏
e∈E

ZeXjXi

∏
e∈E

Z†e = KjKi (4.38)
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Indeed, these operators generate a maximal abelian group on the number n of qudits. The

group properties of closure and associativity are straightforward, while the identity element

comes from Kd
i = I and the inverse of Ki simply being K†i . Each operator in this group has

eigenvalues 1,ω,ω2, . . . ,ωd−1 and their dn common eigenvectors form an orthonormal basis

of the total Hilbert space, the hypergraph basis with elements given by

|Hk1,k2,...,kN 〉 = Z−k1
1 Z−k2

2 . . . Z−kNN |H〉 (4.39)

where the kis attain values in Zd. Notice also that

|H〉〈H| = 1
dN

∏
i∈V

(I +Ki +K2
i + . . .+Kd−1

i ) (4.40)

In the qubit case, these non-local stabilizers are observables and were used for the develop-

ment of novel non-contextuality and locality inequalities [140, 141]. For d > 2, these operators

are no longer self-adjoint in general, but we believe techniques similar to Ref. [155] could be

used to extend the results of the qubit case to arbitrary dimensions. We conclude the topic of

defining (hyper-)graph states within the stabilizer formalism by giving two short examples:

1) three qudit graph in dimension d=3

• state: |G〉 = Z2
12Z23 |+ + +〉

• stabilizers: K1 = X1Z
2
2 K2 = X2Z

2
1Z3 K3 = X3Z2

• e.g. look at:

K1 |G〉 = Z2
2 X1Z

2
12︸ ︷︷ ︸

=Z2Z2
12X1

Z23 |+ + +〉

= Z2
2Z2Z

2
12Z23X1 |+ + +〉 = |G〉

(4.41)

2) four qudit hypergraph in dimension d=6

• state: |H〉 = Z5
1234Z

3
124 |+ + ++〉

• stabilizers: (non-local)

K1 = X1Z
3
24Z234

K2 = X2Z
3
14Z134

K3 = X3Z124

Local measurements in Z basis and ranks of the reduced states

It is possible to give a graphical description of the measurement of a non-degenerate observable

M =
∑
qmq|q〉〈q| on a hypergraph state in terms of hypergraph operations. Obtaining

outcome mq when measuring M on the qudit k of the hypergraph state |H〉 =
∏
e Z

me
e |+〉V

amounts to performing the projection P
(k)
q |H〉, where P

(k)
q = |qk〉〈qk|. The state after the

measurement is then |qk〉 ⊗ |H ′〉, where |H ′〉 =
∏
e Z

meq
e\{k}|+〉

V \{k}. For the example shown

in Fig.(4.4) with |H〉 = Z2
123Z

2
13 |+〉

⊗3 and local dimension d = 4, when measuring in Z-basis
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on qudit 2, we have the post measurement states:

|q2〉 ⊗ |H ′13〉 = |q2〉 ⊗Z2q
13Z

2
13 |++13〉 = |q2〉 ⊗Z

2(q2+1)
13 |++13〉 . (4.42)

Therefore, for outcomes mq with q = [0, ..., 3] the reduced states |H ′〉 (mq) are

• q2 = 0: |02〉 ⊗ |H ′(m0)13〉 = |02〉 ⊗Z2
13 |++13〉

• q2 = 1: |12〉 ⊗ |H ′(m0)13〉 = |12〉 ⊗Z
(4 mod 4

= 0)
13 |++13〉 = |12〉 ⊗ |++13〉

• q2 = 2: |22〉 ⊗ |H ′(m0)13〉 = |22〉 ⊗Z
(6 mod 4

= 2)
13 |++13〉 = |22〉 ⊗Z2

13 |++13〉

• q2 = 3: |32〉 ⊗ |H ′(m0)13〉 = |32〉 ⊗Z
(8 mod 4

= 0)
13 |++13〉 = |32〉 ⊗ |++13〉

and a subsequent measurement on qudit 1 gives for the cases q1 = 0 and q1 = 2

|q1〉 ⊗ |q2〉 ⊗ |H ′′3 〉 = |q1〉 ⊗ |q2〉 ⊗Z
2(q2+1)q1
3 |+3〉 , (4.43)

and the fully separable states after measurements on qudits 1 and 2 are

• q1 = q2 = 0: |01〉 ⊗ |02〉 ⊗Z0
3 |+3〉 = |00+123〉

• q1 = 2, q2 = 0: |21〉 ⊗ |02〉 ⊗Z
(4 mod 4

= 0)
3 |+3〉 = |00+123〉

• q1 = 0, q2 = 2: |01〉 ⊗ |22〉 ⊗Z0
3 |+3〉 = |02+123〉

• q1 = 2, q2 = 2: |21〉 ⊗ |22〉 ⊗Z
(4 mod 4

= 0)
3 |+3〉 = |20+123〉

• q1 = 1, q2 = 0: |11〉 ⊗ |02〉 ⊗Z2
3 |+3〉

• q1 = 3, q2 = 0: |31〉 ⊗ |02〉 ⊗Z
(6 mod 4

= 2)
3 |+3〉

• q1 = 1, q2 = 2: |11〉 ⊗ |22〉 ⊗Z2
3 |+3〉

• q1 = 3, q2 = 2: |31〉 ⊗ |22〉 ⊗Z
(6 mod 4

= 2)
3 |+3〉

Hence, the reduced density matrix ρ3 consists of a superposition of two linear independent

terms: ρ3 ∝ |+3〉 〈+3|+ (Z2
3 |+3〉 〈+3|Z2

3 ) = |+3〉 〈+3|+ |+1〉 〈+1| and thus, rank(ρ3) = 2.

Moreover, the calculation of ranks of reduced states can be done graphically as shown in

Fig.(4.4). Now, we prove a lemma that will be important in future derivations:

Lemma 4.2. For a d-dimensional system, the rank of any reduced state of an n-elementary

hypergraph state is d/gcd(d,me) where me is the multiplicity of the hyperedge.
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1
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31

2

3

1

2

31

2

3

Figure 4.4: Measurements in Z-basis on the hypergraph state |H〉 =
Z2

123Z
2
13|+〉V (d = 4). Measurement on qudit 2 results in (a) for outcomes

m0 or m2 and (b) for outcomes m1 or m3. Now, measuring on qudit 1
results in (c) for outcomes m0 or m2 and (d) for outcomes m1 or m3. It is

clear that any reduced state has rank 2.

Proof. An n-elementary hypergraph state is given by

|H〉 = Zmee |+〉V =
d−1∑
q=0
|q〉〈q| ⊗ (Zme

e\{1})
q|+〉V , (4.44)

where e = {12 . . . n} is the n-hyperedge. Let us first consider the case where only a single

system is traced out. Tracing out subsystem 1, we arrive at

ρe\{1} = Tr1(|H〉〈H|) =
d−1∑
q=0
〈q|H〉〈H|q〉 (4.45)

=
1
d

d−1∑
q=0
|H(1)

q 〉〈H
(1)
q | (4.46)

where

|H(1)
q 〉 = (Ze\{1})

qme |+〉V \{1}. (4.47)

The number of different values (modulo d) of the product qme, with q = 0, 1, 2, . . . , d− 1 is

d/gcd(d,me), since in Zd one has meq = meq
′ iff q = q′ modulo d/gcd(d,me).

Moreover, the d/gcd(d,me) different vectors |H(1)
q 〉 are linearly independent. We prove

this via induction on the number of vertices of V \ {1}. For V \ {1} composed of one vertex,

we see that |H(1)
q 〉 = Zqme2 |+2〉 and∑

q

αq|H
(1)
q 〉 = (

∑
q

αqZ
qme
2 )|+〉2 (4.48)

where αq are arbitrary complex numbers. Then,
∑
q αq|H

(1)
q 〉 = 0 iff (

∑
q αqZ

qme
2 ) = 0.

To see this, note that the operators Zqme2 are diagonal in the computational basis and the

vector |+〉2 is an equal superposition of all basis elements. Therefore, (
∑
q αqZ

qme
2 )|+〉2 = 0.

already implies (
∑
q αqZ

qme
2 ) = 0.
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Since the Pauli operators form a basis of the Lie algebra sld(C) and are thus linearly inde-

pendent, and given that the operators Zqme are Pauli operators, we have that (
∑
q αqZ

qme
2 ) =

0 implies that αq = 0 for all q, i.e., the vectors |H(1)
q 〉 are linearly independent.

For V \ {1} composed of two vertices, |H(1)
q 〉 = Zqme23 |+, +〉2,3. By the same argument as

above, |H(1)
q 〉 are linearly independent iff Zqme23 are linearly independent operators. We have∑

q

αqZ
qme
23 =

∑
q,q′
|q′2〉〈q′2| ⊗ (αqZ

q′qme
3 ) (4.49)

=
′∑
q

|q′2〉〈q′2| ⊗ (
∑
q

αqZ
q′qme
3 ) (4.50)

= |02〉〈02| ⊗ (
∑
q

αqI3) (4.51)

+ |12〉〈12| ⊗ (
∑
q

αqZ
q
3) + . . . (4.52)

and hence,
∑
q αqZ

qme
23 = 0 can be satisfied only if αq = 0 for all q, since this is the only way to

have a null term |12〉〈12| ⊗ (
∑
q αqZ

q
3), given that the Zq3 operators are linearly independent.

Thus, |H(1)
q 〉 are linearly independent for V \ {1} composed of two vertices as well. The

general induction argument is now clear and it is obvious that the vectors |H(1)
q 〉 are linearly

independent in general. Hence, the rank of ρe\{1} is d/gcd(d,me).

One can directly check, using the representation in Eq. (4.25), that if more than one

qudit is traced out, the same arguments apply. Thus, the rank of any reduced state is

d/gcd(d,me).

4.2.5 SLOCC and LU classes of hypergraphs

SLOCC and LU transformations

Let us shortly review the basic definitions of equivalence of quantum states under local unitary

and SLOCC operations. For more details, the Chapter 2 provides a broader overview. The

phenomenon of entanglement is a consequence of the physical restriction to local operations by

agents separated by space-like distances. It is thus important to identify when it is possible to

inter-convert two different quantum states by means of local operations or, more specifically,

characterize their equivalence under SLOCC or LU operations. Finding the SLOCC/LU

classes to which a given hypergraph state belongs is in general a cumbersome task even in

the qubit case. However, in the following, we will present several results and ideas that can

be used for tackling this task.

Let us first define the basic notation. Two pure n-partite states |φ〉 and |ψ〉 are equivalent

under local unitaries if one has a relation like

|φ〉 =
n⊗
i=1

Ui|ψ〉, (4.53)

where the Ui are unitary matrices, acting on the i-th particle. The question whether two

multiqubit states are LU equivalent or not can be decided by bringing the states into a

normal form under LU transformations [156].
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More generally, the states are equivalent under stochastic local operations and classical

communication (SLOCC) iff there exist invertible local operators (ILOs) Ai such that

|φ〉 =
n⊗
i=1

Ai|ψ〉. (4.54)

Physically, this means that |φ〉 can be reached starting from |ψ〉 by local operations and

classical communication with a non-zero probabilitiy.

Although general criteria for SLOCC equivalence of multiparite states do not exist, it is

possible to find necessary conditions that are useful as exclusive constraints. For instance,

SLOCC transformations clearly can not change the rank of a reduced state ρi. Moreover, for

special classes of states, sufficient conditions for SLOCC-equivalence can be found.

Tools for SLOCC classification

In this section, we will explain some more refined criteria for proving or disproving SLOCC

equivalence. As already mentioned, the rank of the reduced states, r(ρi) = r(trS\{i}(ρS))

(where S denotes the set of all subsystems) is a simple way of identifying inequivalences.

To find a finer distinction we employ a method based on Ref. [152] that uses a (1|23 . . . n)

split of the system to identify types of inequivalent bases of the (2, 3, . . . ,n)-subspace, which

results in a lower bound on the number of actual SLOCC-classes. As we want to infer for a

given state its SLOCC-class, there remains the following problem to be solved: identifying

the basis which has minimal entanglement in its basis vectors. Accordingly, we refer to this

tool as minimally entangled basis (MEB) criterion. A major disadvantage of this method

is that with growing number n of subsystems, the entanglement structure within the bases

becomes more complex, as it arises recursively from the total number of SLOCC-classes of

the (n− 1)-partite systems.

The MEB of an n-partite quantum state is defined as follows:

Definition 4.2. MEB

Consider a state

|ψ12...n〉 =
d−1∑

a1,a2,...,an=0
ca1,a2,...,an |a1, a2, . . . , an〉

in a d⊗n system. According to Ref. [152], we define the d× (dn−1) coefficient-matrix C1|2...n
as follows:

C1|2...n =
d−1∑

a1,a2,...,an=0
ca1,a2,...,an~a1(~aT2 ⊗ . . .⊗~aTn )

where the basis {~ai}d−1
i=0 in Rd represents the basis {|ai〉}d−1

i=0 of a d-dimensional Hilbert space.

In other words, C1|2...n is a reshaped matrix of coefficients ca1,a2,...,an with rows corresponding

to the same value of a1. This matrix holds all information about the entire state. From the

singular value decomposition (SVD) of this matrix, C1|2...n = U1DV
†

2...n, we can identify a

basis {vk} of the right subspace (2, . . . ,n), where individual basis vectors |vk〉 might be entan-

gled.

Within this framework, we define a minimally entangled basis (MEB) {vk}MEB of
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|ψ12...n〉 as the one within which the number of full product vectors is maximal under the

condition that it spans the same subspace as {vk}.

With this definition, we can state:

Lemma 4.3. Two n-partite quantum states |φ〉 , |ψ〉 of the same subsystem-dimensionality

and equal reduced ranks are SLOCC-inequivalent, if their MEBs have a different number of

product vectors.

Proof. The action of the ILOs Ai, where i = 1, 2, . . . n, on C1|2...n in its SVD is identified to

be

A1U1D[(A2 ⊗ . . . An)V2...n]†. (4.55)

We analyse the basis {vk} of the right subspace. The Schmidt rank of each basis vector can

be changed by A1 exclusively, which corresponds to a basis transformation of the subspace.

If the states |φ〉 , |ψ〉 are SLOCC equivalent, by definition, there exist ILOs Ai which map

|φ〉 into |ψ〉 and thus, map the basis of the right subspace of |φ〉 into the basis of the right

subspace of |ψ〉. The MEB of |ψ〉 will be then a valid MEB for |φ〉, implying that the number

of product vectors is the same.

In the above Lemma, we consider states |φ〉 , |ψ〉 that have equal reduced ranks, because

otherwise these states are automatically SLOCC-inequivalent and there is no point in calcu-

lating their MEBs.

Notice that inequivalent MEBs can exclude SLOCC equivalence, but an equivalence of

MEBs does not, in general, guarantee SLOCC-equivalence. An exception is the case where

the right subspace is spanned by a complete product basis. The reason is that in this case,

they are SLOCC equivalent to a generalized GHZ state:

Lemma 4.4. Two genuine n-partite entangled quantum states |φ〉, |ψ〉 of the same subsystem-

dimensionality and equal reduced single-particle ranks are SLOCC-equivalent, if their MEBs

are complete product bases.

Proof. We show that the existence of a complete product basis within the right subspace

is sufficient to find ILOs that transform |ψ〉 (and |φ〉) to the GHZ type state |ψGHZ〉 ∼∑r
k=0

⊗n
i=1 |k〉i, where r is the rank of the reduced single-particle states.

Let us assume that the basis vectors |vk〉 are all product vectors. Therefore, they can be

written as

|vk〉 =
n⊗
i=2
|φ(k)
i 〉 (4.56)

In order to map this onto the GHZ state, we only have to find ILO A(i) on the particles

i = 2, . . . ,n such that for any particle the set of states {|φ(k)
i 〉} is mapped onto the states

{|k〉i}. This is clearly possible: since the reduced state ranks are all r, the set {|φ(k)
i 〉} consists

of r linearly independent vectors. Finally, on the first particle, we have to consider the left

basis |uk〉. These vectors are orthogonal, and hence, we can find a unitary transformation

that maps it to {|k〉1}.

Based on the Lemmata presented in this subsection, we wrote computer programs which

we regard as tools which we use later for classification of tripartite hypergraphs of dimension

3 and 4. A coarse overview follows about the structure of those programs, for further details

on the structure of such programs, see [161].
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• Program 1:

The first program checks whether there exist a state % in the subspace spanned by a

given set of pure states |vi〉 for i = 1, . . . ,K, K ≤ d that has a positive partial transpose

(PPT) with respect to any bipartition [157]. This problem can be formulated as an SDP:

min
λ

0 (4.57)

subject to % =
K∑
ij

λij |vi〉〈vj |,

% ≥ 0,

∀ bipartitions M |M , %TM ≥ 0,

λ† = λ, Tr(λ) = 1,

where last condition means λ is a hermitian K ×K matrix with trace 1, and %TM

denotes partial transpose of matrix % with respect to the subsystem M . We use this to

prove nonexistence of a product vector in the right subspace (2, . . . ,n) of an n-partite

state |φ〉, where K is the number of basis vectors in the right subspace. If the above

SDP is infeasible, it implies that there is no separable state in the subspace (2, . . . ,n),

which in turns implies that there is no product vector. If for some other n-partite state

|ψ〉 there is a product vector in the right subspace (2, . . . ,n), the two states |φ〉 and |ψ〉
are SLOCC-inequivalent according to Lemma 4.3.

• Program 2

The second program is a slight modification of the first one and it checks whether there

exists a PPT state of rank K in the subspace spanned by K linearly independent vectors

|vi〉, i = 1, . . . ,K, K ≤ d. If the optimal value ε of the following semidefinite program

min
λ,ε

ε (4.58)

subject to % =
∑
ij

λij |vi〉〈vj |,

% ≥ 0,

∀ bipartitions M |M , %TM ≥ 0,

% ≥ ε

(∑
i

|vi〉〈vi|

)
,

λ† = λ, Tr(λ) = 1,

is greater than 0, and if the found PPT state % can be proven to be (fully) separable,

then by the range criterion (see Ref. [158]) it means that in the subspace spanned by

|vi〉, there are K product states which span the same subspace. This program can be

used to prove SLOCC-equivalence of states |φ〉 and |ψ〉 according to Lemma 4.4, if for

both states the above conditions are satisfied for their right subspace of at least one

bipartition.

• Program 3

Finally, it is convenient to perform a numerical optimization in order to find product

states |vpi 〉, i = 1, . . . ,K ′, K ′ ≤ K in the subspace spanned by the given set of vectors

|vi〉 for i = 1, . . . ,K, K ≤ d. This can be done by maximizing the purity of the
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reduced states (that is, 1− Tr(%2
M ), where %M = TrM (%) is the reduced state of the

subsystem M) for each bipartition and minimizing the scalar product
∣∣∣〈vpi |vpj 〉∣∣∣2 between

the product vectors for each unique pair {i, j}, i, j ∈ {1, . . . ,K ′}. Minimizing the scalar

products makes the program look for linearly independent vectors which, in the best

case, are orthogonal.

As we will see in the next section, for most of the tripartite hypergraph states of dimension

3 and 4, numerical optimization (Program 3) gives an explicit form of product states in the

right subspace if they exist. Moreover, knowing the exact form of product states for the case

where a full product basis exists for both states |φ〉 and |ψ〉 allows us to find an explicit

SLOCC transformation between these states.

Tools for LU-classification

Let us now discuss how LU equivalence can be characterized. In principle, this question can

be decided using the methods of Ref. [156], but for the examples in the next section some

other methods turn out to be useful.

If LU equivalence should be proven, an obvious possibility is to find the corresponding LU

transformation directly. This has been used in Theorem 4.1. For proving non-equivalence,

one can use entanglement measures such as the geometric measure [149], since such measures

are invariant under LU transformations. Another possibility is the white-noise tolerance of

witnessing entanglement [150]. The latter method works as follows: For an entangled state

which is detected by a witness one can assign an upper limit of white noise which can be added

to the state, such that the state can still be detected by that witness. Clearly, if two states

are equivalent under LU, they have the same level of white-noise tolerance of entanglement

detection. Now, if one considers a class of decomposable witnesses, the estimation of this level

for a given state can be accomplished effectively by means of semidefinite programming [151].

Below, we use a method described in Ref. [150] to witness genuine multipartite entanglement

of hypergraph states and to determine the corresponding white-noise tolerance of that witness.

4.2.6 Classification of qudit hypergraphs under SLOCC and LU

Using the tools described above and Lemmata 4.2,4.3,following, we present a classification in

terms of SLOCC- and LU-equivalence. For special classes of qudit hypergraphs, e.g. elemen-

tary hypergraphs, we develop general rules valid for any number of particles and arbitrary

dimension. Additionally, for tripartite hypergraph states in dimensions 3 and 4, a full clas-

sification of all states within this category considering LU- as well as SLOCC- equivalence is

given.

Elementary hypergraphs

We now address the problem of SLOCC classification of n-elementary hypergraph states. The

classification depends on the greatest common divisor between the underlying dimension and

the hyperedge multiplicity, as show in the following theorem:

Theorem 4.1. Elementary hypergraphs under LU and SLOCC For a d-dimensional n-partite

system, two n-elementary hypergraph states with hyperedge multiplicities k and k′ are equiv-

alent under LU, and hence also under SLOCC if and only if gcd(d, k) = gcd(d, k′). In case

gcd(d, k) 6= gcd(d, k′), the states are inequivalent under SLOCC (and LU).
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Proof. If gcd(d, k) = gcd(d, k′), we can, according to Proposition 4.1 find a local Clifford

transformation with SZkS† = Zk
′ . So we have S |H〉 = SZk |+〉n = Zk

′
S |+〉n = Zk

′ |+〉n =

|H ′〉 since S |+〉n = |+〉n . For the other implication, note that, if gcd(d, k) 6= gcd(d, k′), the

single-system reduced states have different ranks by Lemma 4.2 and thus the states are not

SLOCC equivalent which implies LU inequivalence.

In other words, the number of different elementary hypergraph SLOCC classes is the

number of different values (modulo d) of gcd(d, k), which is obviously the number of divisors

of d. It is remarkable that, in this case, SLOCC equivalence is the same as equivalence under

Local Clifford operations, by Proposition 4.1. For d being prime, all values k ∈ Zd are

obviously coprime with d and hence the following implication is straightforward:

Corollary 4.1. For d being of prime value, all n-elementary hypergraph states are equivalent

under SLOCC.

In the non-prime case, e.g. dimension d = 15, a four-qudit elementary hypergraph of the

form |H〉 = Z5
1234 |+〉

⊗4 is equivalent to another elementary hypergraph |H ′〉 with |H ′〉 =

Z10
1234 |+〉

⊗4: it is me(H) = 5, me(H ′) = 10 and thus gcd(me(H), d) = gcd(5, 15) = 5 =

gcd(10, 15) = gcd(me(H ′), d), see Fig. 4.5.

Figure 4.5: Elementary hypergraphs in dimension d = 15 of me(H) = 5
(left) and me(H

′) = 10 (right) are equivalent under local unitary transfor-
mation due to the fact that the multiplicities of their hyperedges are within
the same gcd-class. The local unitary conducting the transformation is the

symplectic operation S(ξ, 0, 0) with ξ−1 · 5
mod 15
≡ 10 and thus ξ = 8.

Hypergraphs LU-equivalent to elementary hypergraphs

For elementary hypergraphs, there are also some other hypergraph states belonging to the

same equivalence class under local unitary transformations. From Lemma 4.1 and the discus-

sion that followed, one sees that the action of the local gate X†i on an n-elementary hypergraph

state creates a n− 1-hyperedge on the neighbourhood of i with equal multiplicity me of the n-

hyperedge e. Acting k times with this local gate, i.e., application of (X†i )k results in inducing,

in the neighbourhood of the qudit i, a n− 1-hyperedge of multiplicity kme

(X†1)k |H〉 = (X†1)kZme12...n |+〉
⊗n = Zme12...nZ

kme
2...n |+〉

⊗n (4.59)

As shown in the proof of Lemma 4.2, the number of different values of the product kme

is given by d/gcd(d,me).

kme = (kme) mod d = g[(km′e) mod
d

g
] with: g ≡ gcd(d,me), m′e = gme (4.60)

Hence, only those edges can be created where the multiplicity of the new edge and the

multiplicity of the original edge share g as common divisor with d.
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Conclusion 4.1. For a given n-partite elementary hypergraph state of multiplicity me with

gcd(d,me) = g, an (n-1)-edge of multiplicity m̃e with gcd(d, m̃e) = g̃ can be locally created if

and only if g̃ = x× g for x ∈ N. Therefore for d being of prime value, all hypergraph states

with an n-edge are equivalent under LU.

Thus, the higher the value g = gcd(d,me), the smaller the number of possible n− 1-

hyperedges that can be created (or erased) within an elementary hypergraph state.

Following, we give two examples showing local creation of an (n-1)-edge from an n-edge depen-

dent on the gcd-class of the original n-edge. Consider a four-partite elementary hypergraph

in dimension d = 8. Fig. 4.6 sketches the corresponding LU equivalence classes.

Figure 4.6: LU-equivalence classes of four-partite elementary hypergraphs
in d = 8 with n-edge multiplicity me. There are three gcd-classes, g1 =
gcd(8,me) = 1, g2 = gcd(8,me) = 2 and g3 = gcd(8,me) = 4. For
gcd(8,me) = 1, (n-1)-edges of arbitrary multiplicity can be created locally

by application of the appropriate power of X†i . If gcd(8,me) = 2, the options
are limited to (n-1)-edges of gcd-classes g2 and g3.

4.2.7 Classification of 3⊗ 3⊗ 3

The first example we consider is a tripartite system with dimension d = 3. In the following,

we give a full classification w.r.t. LU as well as SLOCC equivalence. In the case of a tripartite

system of qutrits, there is only one SLOCC equivalence class of hypergraph states and two LU

equivalence classes: the GHZ state and the 3-elementary hypergraph state. These two states

are inequivalent by LU as they give different values for the geometric measure of entanglement

and white noise tolerance (see Table 4.1).

These classes can be derived as follows: Let us first consider the GHZ state. From Ap-

pendix B it follows that the GHZ state can be converted to the graph state represented by the

local complementation of the GHZ graph via local symplectic unitaries. To see this, consider

the transformation from the first graph in Table 4.1 to the second, that is, the creation of an

edge Z13 in the neighborhood by performing LC on the second qutrit. First, notice that the

creation of Z13 from the original graph state |G〉 = Z12Z23 |+〉⊗3 can be done by applying

X2
12 on |G〉. Using (4.30), we then have

X2
12Z23 = (|0〉 〈0|)1 ⊗Z23 + (|1〉 〈1|)1 ⊗X2

2Z23 + (|2〉 〈2|)1 ⊗X2Z23

= (|0〉 〈0|)1 ⊗Z23 + (|1〉 〈1|)1 ⊗Z23Z3X
2
2 + (|2〉 〈2|)1 ⊗Z23Z

2
3X2

= Z23Z13X12

(4.61)

Now, to locally create the necessary controlled X-gateX12, we can use symplectic operations of

the form S(1, 0, ξ). From Eq.(4.15), we get S(1, 0, 2)ZcS†(1, 0, 2) = ZcX(2c) mod 3ω(2−1×2c) mod 3



4.2. Qudit hypergraph states 85

with 2−1 = 2 in dimension three and thus,

S(1, 0, 2)2Z12S(1, 0, 2)†2 = (|0〉 〈0|)1 ⊗ 12 + (|1〉 〈1|)1 ⊗Z2X
2
2ω + (|2〉 〈2|)1 ⊗Z2

2X2ω
2

= Z12Z1X
2
12.

(4.62)

Then, application of S(1, 0, 2)2 on |G〉 gives the desired locally complemented graph up to

local unitaries Z1 and Z3

S(1, 0, 2)2 |G〉 = S(1, 0, 2)2Z12S(1, 0, 2)†2S(1, 0, 2)2Z23S(1, 0, 2)†2S(1, 0, 2)2 |+〉⊗3

= Z12Z1X
2
12Z23Z3X

2
23 |+〉

⊗3

= Z1Z3Z12Z23Z13 |+〉⊗3 = Z2
1Z

2
3 |G〉LC

(4.63)

From Proposition 4.1, we see that a hyperedge of arbitrary multiplicity can be converted to

an hyperedge of any other multiplicity via local symplectic permutations. Thus, the tripartite

GHZ state is equivalent to any other tripartite graph state via local symplectic unitaries.

If we consider the elementary hypergraph state, a 3-hyperdege can be converted to an-

other 3-hyperedge of arbitrary multiplicity via symplectic permutations. In addition, the

3-elementary hypergraph is equivalent to any other 3-hypergraph since edges (2-hyperedges)

of arbitrary multiplicities can be created via repeated application of the X† gate in a neigh-

bouring qutrit. Finally, in order to show the SLOCC equivalence, local invertible operations

connecting these two LU subclasses can be achieved by applying A1 to one of the qutrits of

the graph state and A2,3 to the other two, where

A1 =
1

4
√

3

 −2
√

3− 2i 4i 4i
−4
√

3 + 4i
√

3 + i −5
√

3 + 7i
−6
√

3− 2i −
√

3− 5i −
√

3 + 7i

 , A2,3 =
1
3

 ei2π/3 1 1
√

3eiπ/6 √
3eiπ/6 √

3eiπ/6

ei2π/3 ei2π/3 5−
√

3i
2

 .

(4.64)

These local operations were found with the help of Program 3 (numeric optimization program

described in the previous section), which, in this case, gives full product basis for the right

subspaces of all states from Table 4.1.

C
la

ss Schmidt
ranks

Representatives
Geom. mea-
sure/ w-noise
tolerance

1
1|23 3
2|13 3
3|12 3

∼ 0.66
62.5%

∼
0.53
∼
76.0%

Table 4.1: Table of SLOCC and LU classes of 3-qutrit hypergraph states.
States, which are equivalent to these up to permutations of qutrits, local
loops on each qudit and changes of (hyper)edge multiplicities 1→ 2, are not

shown.
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4.2.8 Classification of 4⊗ 4⊗ 4

As a second example, we consider a tripartite system of the smallest non-prime dimension, i.e.

d = 4. As before, we give a full classification w.r.t. LU as well as SLOCC equivalence. In the

case of a tripartite system of ququarts, there are five SLOCC and six LU equivalence classes

of hypergraph states. All possible states with respect to permutations and equivalence of

edge multiplicities (local Clifford permutation S converts the multiplicity of the 3-hyperedge

from 1 to 3 (since 3 = 3−1 modulo 4, see Proposition 4.1), see also Fig. 4.7b.), are shown in

Table 4.2 and the interconversion between representatives within the same class are explained

in detail in what follows.

Class 1

Class 1 contains hypergraph states with at least two edges of multiplicity 1 and with either

no hyperedges, or with a hyperedge of multiplicity 2. All these states belong to the same

LU-equivalence class.

LU-equivalence among the first three state of class 1 (see Table 4.2) is governed by standard

local complementation operations, which can be used to create a new edge of multiplicity 1 in

the neighborhood of qudit 2, while applying these operations twice generates an edge of mul-

tiplicity 2 in the neighborhood of qudit 2. In principle, local complementation works similar

to the three qutrit case (see Appendix B for more details). As mentioned in Definition 4.1 and

the discussion thereafter, in dimension d = 4, the multiplicative inverse 2−1 does not exist. By

the following argument, it is possible to use 2−1 = 1
2 : Let S(1, 0,α) =

∑3
m=0 ω

2−1ξm2 |m〉 〈m|
with 2−1ξ ≡ α, Zc =

∑3
k=0 |k⊕ c〉 〈k| and Xc =

∑3
i=0 ω

−ic |i〉 〈i| be the relevant operations

in position basis {|p〉}. For local complementation, controlled X−gates Xc
12 need to be cre-

ated locally by a local symplectic transformation of the form S(1, 0, ξ)ZS(1, 0, ξ)† = ZXξωξb.

The calculation for ξ = 1 gives

S(1, 0, 1)ZS(1, 0, 1)† =
3∑

k=0
ω−α(2k+1) |k⊕ 1〉 〈k|

XZωb =
3∑

k=0
ω−(k+1)+b |k⊕ 1〉 〈k| .

(4.65)

Thus, −α(2k+ 1) = −(k+ 1) + b, i.e. (2α− 1)k = −α− b+ 1 has to be satisfied for all values

of k and we have α = 2−1 ∨ α = 1
2 . From there, also b = 1

2 follows. For generation of an

edge of multiplicity 1 in the neighborhood, we then can use S(1, 0, 3) =
∑3
k=0 ω

− 3
2k

2 |k〉 〈k|
and equivalently, for the generation of an edge of multiplicity 2, we apply it twice and have

for |G〉 = Z12Z23 |+〉⊗3, |G〉LC(1) = Z12Z13Z23 |+〉⊗3 and |G〉LC(2) = Z12Z2
13Z23 |+〉⊗3

S2(1, 0, 3) |G〉 = Z
3
2
1 Z

3
2
3 Z12Z13Z23 |+〉⊗3 LU

= |G〉LC(1)

S2(1, 0, 3)2 |G〉 = S2(1, 0, 3)Z
− 3

2
1 Z

− 3
2

3 |G〉LC(1) = |G〉LC(2) .
(4.66)

The same local complementation is responsible for LU equivalence among the three last

states of the first LU class. To prove LU equivalence between these two subgroups of states

(with no hyperedge and with a 2-hyperedge) we find the explicit form of their MEBs, which

appear to consist of product vectors, using Program 3. It can then be shown that local

transformation between these states is unitary. Here, we present such a local unitary for
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transformation shown in Figure 4.7e :

U1,2,3 =
1
2


1 + i 0 1− i 0

0 0 0 −2
1− i 0 1 + i 0

0 −2 0 0

 . (4.67)

Class 1′

Class 1′ contains all hypergraph states which have a 3-hyperedge of multiplicity 1. LU equiva-

lence of the states within this class is governed by the unitary (X†)m, which, when applied to

some qudit, generates edges of multiplicity m on the neighbourhood of the qudit (see Lemma

4.1).

Class 2

Class 2 consists of two LU equivalence classes. The representative of the first LU-equivalence

class are the graph states composed of two and three edges of multiplicity 2, while the repre-

sentatives of the second LU class are the hypergraph state with a 3-hyperedge of multiplicity

2 with possible edges of multiplicity 2.

We can perform some form of “local complementation” between two states from the first

LU class by applying the following unitaries in the basis {|p0〉, |p1〉, |p2〉, |p3〉}:

U1,3 =
1√
2


1 0 i 0
0
√

2 0 0
−i 0 −1 0
0 0 0

√
2

 ; U2 =


i 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (4.68)

Applying the local (X†)m unitary to some qudit of the states from the second LU class

generates edges of multiplicity 2m (i.e., 0 or 2) on the neighbourhood of that qudit.

Using Program 3, one can find the local operation corresponding to SLOCC equivalence

between these LU classes. For the representatives shown on the Fig. 4.7d the corresponding

LO is

A1,2,3 =
1
2


−i(1 + 3√4) 0 (1− 3√4) 0

0 2 0 0
i 0 −1 0
0 0 0 2

 . (4.69)

One can easily check that A1,2,3 is invertible but not unitary. To show that there is no local

unitary transformation possible, one can look at the entanglement measures for these LU

classes (see Table 4.2).

Class 3

The representatives of class 3 are the elementary hypergraph states with a 3-hyperedge of

multiplicity 2, one edge of multiplicity 1 and possible edges of multiplicity 2. These three

states are in the same LU class and the local transformation between them is (X†) applied

on one of the qudits.
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Class 4

The representatives of class 4 are graph states composed of one or two edges of multiplicity 2
and one edge of multiplicity 1. Applying the local unitaries U1 = (S(1, 1, 0))4, U2 = S(1, 0, 1),

U3 = S(1, 1, 0) to the first state creates an edge of multiplicity 2 between qudits 2 and 3.

SLOCC-inequivalence of Classes 1-4,1’

To prove the SLOCC-inequivalence of states of most of the classes it is sufficient to look at

their Schmidt ranks for each bipartition (see Table 4.2). Exceptions are pairs of classes 1, 1′

and 3, 4. To prove that there is no SLOCC transformation between states from classes 3 and 4
let us consider the vectors from the right subspace for bipartition 2|13 for two representatives

from each class. From the Schmidt decomposition of the state from class 3 one finds directly

that there is at least one product vector in the right subspace of parties 13, i.e. MEB contains

at least one product vector. For the state from class 4, we can prove that in the corresponding

subspace there are no product vectors in the MEB using Program 1. Thus, from Lemma 4.3

it follows that these states belong to different SLOCC classes. Unfortunately, we were not

able to prove SLOCC-inequivalence of states from classes 1 and 1′ using the tools presented

above. In fact, using Program 3, we found that the states from class 1 have a full product

basis in their right subspace for each bipartition and Program showed that for the states

from class 1′ there are states with PPT and full rank in their right subspace. However, the

optimal value ε of the SDP of Program 2 for the states in class 1′ had an order magnitude

of 10−5. Besides, the direct numerical search for SLOCC transformation bringing a states in

class 1 to some state in class 1′ returned states of fidelity of almost 1, though the numerical

search for SLOCC transformation in the opposite direction, from a state in 1′ to some state

in 1, succeed in returning states of fidelity of only 0.875. This difference in fidelities of local

transformations in different directions is typical for the three-qubit states of GHZ and W

classes, which suggests that classes 1 and 1′ are inequivalent.
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Figure 4.7: SLOCC and LU equivalence among representative states of the
same SLOCC-class. Picture a): LU-equivalence of two states in SLOCC-

class 1’ via creation of an (n-1)-edge from an n -edge by the LU (X†2)2.
Picture b): LU-equivalence between states in SLOCC-class 1’ of 3-edges with
multiplicity me = 1 and m′e = 3 as a consequance of Proposition 4.1 and
Theorem 4.1, the unitary mediating the transformation, S3 = S3(3, 0, 0)
is from the symplectic group. Picture c): creation of an (n-1)-edge from

an n-edge within SLOCC-class 2 via the LU-operation X†2 . Picture d):
SLOCC equivalence between representatives of different LU-classes within
SLOCC-class 2 via the invertible, but non-unitary local operation A defined
in Eq.(4.69) applied to all ququarts. Picture e): LU-equivalence within
SLOCC-class 1 by creation of an 3-edege of multiplicity two from 2-edges of

multiplicity one via the local unitaries U as defined in Eq.(4.67).
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C
la

ss Schmidt
ranks

Representatives
Geom. mea-
sure/ w-noise
tolerance

1
1|23 4
2|13 4
3|12 4

0.75
∼ 84.2%

1’
1|23 4
2|13 4
3|12 4

∼ 0.58
∼ 87.1%

2
1|23 2
2|13 2
3|12 2

0.50
∼ 91.4%

∼ 0.32
∼ 88.7%

3
1|23 4
2|13 2
3|12 4

0.75
∼ 86.1%

4
1|23 4
2|13 2
3|12 4

0.75
∼ 88.8%

Table 4.2: Table of SLOCC and LU classes of 3-ququart hypergraph states.
States, which are equivalent to these up to permutations of ququarts, local
loops on each qudit and changes of (hyper)edge multiplicities 1→ 3, are not

shown.
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4.2.9 Conclusions

In this work, we generalized the class of hypergraph states to systems of arbitrary finite

dimensions. For the special class of elementary hypergraph states we obtained the full SLOCC

classification in terms of the greatest common divisor, which also governs other properties

such as the ranks of reduced states. For tripartite systems of local dimensions 3 and 4, we

obtained all SLOCC and LU classes by developing new theoretical and numerical methods

based on the original concept of MEBs.

Some open questions are worth mentioning. In the multiqubit case, hypergraph states

are a special case of LME states; it would be interesting to generalize the class of LME

states to arbitrary dimensions and see if a similar relation holds. Nonlocal properties of

qudit hypergraph states were not a part of this work and deserve a separate consideration.

Finally, possible applications of these states as a resource for quantum computing should be

investigated.

4.2.10 Appendix

Phase-space picture

Infinite-dimensional systems are often described through position and momentum operators

Q and P in a phase-space picture. Displacements in this quantum phase-space are performed

by unitaries

D(q, p) = ei(pQ−qP ) (4.70)

where q and p are real numbers. These unitaries satisfy

D(q, p)D(q′, p′) = e−i(qp
′−pq′)D(q′, p′)D(q, p) (4.71)

, characterizing a faithful representation of the Heisenberg-Weyl Lie group. Performing the

transformations

Q→ κQ+ λP ; (4.72)

P → µQ+ νP , (4.73)

subjected to the condition κν − λµ = 1, map the Heisenberg-Weyl group onto itself. In

other words, unitaries that perform these transformations will generate the normalizer of the

Heisenberg-Weyl group. This group constitutes the so-called symplectic group in continuous

variables and is related to important concepts in quantum optics such as squeezing.

In finite-dimensional systems it is possible to give an analogous description in terms of

a discrete phase-pace, whenever the Hilbert space dimension is a power of a prime number

[144]. A general displacement in this discrete phase-space is then performed by an operator

D(m,n) = ωmn2−1
XnZm; the set of these displacement operators form an unitary represen-

tation of the discrete Heisenberg-Weyl group through the multiplication rule

D(m,n)D(m′,n′) = ω(m′n−mn′)2−1
D(m+m′,n+ n′).
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Symplectic transformations in a discrete-phase space act over the Pauli operators in the

following fashion

SXS† = ωκλ2−1
XκZλ, (4.74)

SZS† = ωµν2−1
XµZν , (4.75)

subjected to the condition κν − λµ = 1 (mod d). An arbitrary symplectic operator S(κ,λ,µ)

can be decomposed as

S(κ,λ,µ) = S(1, 0, ξ1)S(1, ξ2, 0)S(ξ3, 0, 0) (4.76)

where the operators on the right-hand side are given in (4.17), (4.18), (4.19) and

ξ1 = µκ(1 + λµ)−1; (4.77)

ξ2 = µκ−1(1 + λµ); (4.78)

ξ3 = κ(1 + λµ)−1. (4.79)

The actions of gates (4.18) and (4.19) are given by

S(1, ξ, 0)XS(1,−ξ, 0) = ωξ2
−1
XZξ; (4.80)

S(1, ξ, 0)ZS(1,−ξ, 0) = Z; (4.81)

S(1, 0, ξ)ZS(1, 0,−ξ) = ω−ξ2
−1
ZXξ; (4.82)

S(1, 0, ξ)XS(1, 0,−ξ) = X. (4.83)

Local complementation of qudit graphs in prime dimension

The graph operation known as local complementation of a graph G = (V ,E) at the vertex

a ∈ V consists of the following mapping:

G→ G′ = (V ,E ]ENa) (4.84)

where ENa are the edges in the neighbourhood of a and ] denotes the set operation of

symmetric sum, i.e., A ]B = {A ∪B} \ {A ∩B}. The implementation of such an operation

for qudit graph states is known in the literature [146] and is restricted to prime-dimensional

systems. Here, we give a simpler derivation of this implementation, which is also valid for

some special cases in non-prime dimensional systems. Note that we consider only graphs with

edges of multiplicity one, which are equivalent to graphs with edges of multiplicity coprime

with the underlying dimension d.

From the section on stabilizers of a hypergraph state, we get, as a special case, that the

operators

Ki = Xi

∏
e∈E∗

Ze\{i} = XiZNi , i ∈ V (4.85)

generate the stabilizer group of the graph state |G〉 represented by the graph G = (V ,E).

The graph state |G〉 is thus the unique +1 eigenstate of the operators Ki.

Theorem 4.2. Given a graph state |G〉 composed of edges with multiplicity one, let Ua =

Sa(1, 0,−1)SNa(1,−1, 0). Then, Ua|G〉 = |G′〉, where G′ is the local complementation of G
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at the vertex a ∈ V .

Proof. Let {Ki}i∈V denote the set of stabilizer operators of G and let S be the stabilizer

group generated by them. It is clear that UaKiU
†
a = Ki if i is not in Na, while for c ∈ Na we

have UaKcU
†
a = K−1

a K ′c, where K ′c is the stabilizer operator for the vertex c of G′. We have

then that UaSU †a = S ′, where S ′ is the group generated by the stabilizer operators of G′.

Another way of proving this result is to consider the action of Sa(1, 0,−1), which is simply

Sa(1, 0,−1)|G〉 = SNa(1, 1, 0)|G′〉 (4.86)

Thus, applying SNa(1,−1, 0) on the state above maps G to its local complementation G′.

Proofs of Proposition 4.1

Let us first state the proposition once more:

Propos. 4.1. Let k, k′ ∈ Zd be such that gcd(d, k) = gcd(d, k′) = g. Then there exists a

Clifford operator S defined in Eq. (4.17) such that S(Ze)kS† = (Ze)k
′
.

Alternatively to the proof given in the main section, we present two different ways to prove

Proposition 4.1:

Proof. Alternative proof 1

We define k = αg and k′ = βg and consider first a single particle gate Z. Looking at the

action of S, S† and Z on a basis vector |x〉 one sees that a corresponding S can be found, iff

we can find an ξ such that
kx

ξ
= k′x mod d (4.87)

holds for any x. Dividing by g, this is equivalent to αx = βxξ mod (d/g). The value of

ξ is found by considering first ξ′ = α/β mod (d/g). This is well defined, since β and

d/g are coprime. It remains to construct a final ξ that is coprime with d. The ξ′ fulfills

βξ′ = α + y(d/g) for some y. It follows that ξ′ does not have any prime factors already

contained in (d/g) since α and d/g are coprime, but ξ′ may still have prime factors present

in g (but absent in d/g). If this is the case, we choose ξ = ξ′ + d/g. This is allowed since

ξ′ was defined mod (d/g). Now, ξ has no prime factors contained in g (but absent in d/g),

and still no prime factors contained in d/g. So, it is coprime to d, and S is unitary.

Finally, if a multiparticle gate Ze is considered, the proof is the same, starting from the

representation in Eq. (4.25).

Proof. Alternative proof 2

For gcd(d, k) = 1, i.e., k is coprime with d, there exists a k−1 such that kk−1 = 1; this

multiplicative inverse is given by k−1 = kλ(d)−1, where λ(d) is the Carmichael function [159].

The function f : Zd → Zd given by f(q) = qk is injective [160], since qk = q′k iff q = q′.

But it is also surjective since it is a function from Zd to itself. Hence, f is a bijection, the

unitary Sk =
∑d−1
q=0 |q〉〈qk| is well-defined and Sk−1ZS

†
k−1 = Zk; notice that this corresponds

to the Clifford gate (4.17). Defining the Clifford operator S = Sk′−1S
†
k−1 , it follows that

SZkS† = Sk′−1(S†
k−1Z

kSk−1)S†
k′−1 = Sk′−1ZS

†
k′−1 = Zk

′
.

If gcd(d, k) = g > 1, then there exists c coprime with d such that k = gc. In order

to prove this, let us take the prime decomposition of d, i.e., d = pn1
1 pn2

2 . . . pnNN . Let us

consider the decomposition [154, 153] Zd ≈ Zd1 ×Zd2 × . . .ZdN , where di = pnii . Under this
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decomposition, any m ∈ Zd is expressed as m = (m1,m2, . . . ,mN ), where mi = m(mod di).

Given c coprime with d, it is straightforward to show that c = (c1, c2, . . . , cN ), where each

component ci is coprime with di; indeed, these values c are formed by all possible different

combinations of the component values ci. The only values k = gα which are not already in

the form k = gc satisfy g = p
nj
j , for some fixed j and α = pnj , for fixed 1 ≤ n ≤ nj . The

decomposition of k = gα is simply k = (k1, k2, . . . , kj = 0, . . . , kN ), and the non-zero values

ki, i 6= j, are coprime with di. Thus, the values c coprime with d for which ci = ki for all

i 6= j yields gc = gα = k.

Let gcd(d, k) = gcd(d, k′) = g; then there exist c, c′ coprime with d such that k = gc

and k′ = gc′ as proved in the discussion above. Let S be the Clifford operator such that

SZcS† = Zc
′
. Then, SZkS† = S(Zc)gS† = (Zc

′
)g = Zk

′
.

4.3 Local complementation of qudit graph states in ar-

bitrary dimension

Within this section, we derive rules under which local complementation is possible for qudit

graph states in arbitrary dimension. Let us start with defining local complementation (LC)

within graph states not necessarily of prime dimension. We distinguish between the ’usual’

LC and the ’extended’ LC which we refer to as ELC. The first allows exclusively for edges of

equal multiplicity to be present and created within the graph. The extended version analyzes

the case of arbitrary multiplicities which are a unique feature of non-prime dimensional graph

states. The aforementioned symplectic operations (SO) with S = (1, 0, ξ) can be used for LC

and ELC under the following conditions:

Proposition 4.2. LC und ELC for qudit graph states

Via application of local symplectic operations of the form

S(1, 0, ξ) =
d−1∑
k=0

ω2−1ξk2 |k〉 〈k| (4.88)

we derive the following rules for local complementation

• LC for prime dimensions.

Furthermore, LC for all non-prime dimensions, if and only if the multiplicity me of the

edges and the system dimension d satisfy

gcd(m2
e, d) = g or equivalently gcd(

d

g
, g) = 1 with: g := gcd(d,me) (4.89)

The value of ξ associated with the concrete SO is then determined by solving

(−ξm2
e)

mod d
= me (4.90)

and in case me = 1, ξ = −1 follows for all dimensions d.

• ELC for all dimensions. ELC describes the generation of edges of multiplicity m′′′e = kgg̃

with k ∈ Rc( d
mem′′e

) (where Rc( d
mem′′e

) denotes all values within the modulo-restclass

and g̃ = gcd( dg ,m′′e )) in the neighborhood of existing edges of multiplicities me and m′′e .

Here, the concrete SO depends on both, the multiplicity of the new edge to be created



4.3. Local complementation of qudit graph states in arbitrary dimension 95

and the multiplicities of the already present edges. Precisely, to generate an edge of

multiplicity m′′′e from edges of multiplicities me and m′′e , ξ is determined by solving

(−ξmem
′′
e )

mod d
= m′′′e (4.91)

Following, we will prove the proposition above and give some examples for LC as well as

ELC for tripartite systems.

Proof. Let us start with stating the two key points, on which the method of LC and ELC via

SO of the form S(1, 0, ξ) is based on:

1. We first need the local generation of a controlledX−gate on qudits i and j of multiplicity

m′e, i.e. X
m′e
ij , from an existing Z−edge connecting qudit i and j of multiplicity me, i.e.

Zmeij , while leaving the latter unchanged. The operations performing transformations

of this kind are the local symplectic operations Si(1, 0, ξ) on qudit i with:

Si(1, 0, ξ)Zmei Si(1, 0, ξ)† = Zmei X
m′e
i ω−2−1mem′e

Si(1, 0, ξ)Zmeij Si(1, 0, ξ)† = Zmeij X
m′e
ij Z

−2−1mem′e
j

(4.92)

where 2−1 = 1
2 if and only if the system dimension is such that the multiplicative inverse

does not exist, that is d is even except for d = 2.

2. The generated X
m′e
ij -gate from 1. then creates a new edge between qudits i and k of

multiplicity m′′′e , i.e. Z
m′′′e
ik , when applied to an existing edge between qudits i and k of

multiplicity m′′e , i.e. Z
m′′e
jk , as

X
m′e
ij Z

m′′e
jk = Z

m′′e
jk Z

m′′′e
ik Xme′

ij (4.93)

From 1. it follows that only X
m′e
ij −gates of multiplicity equal to the multiplicity of the

Z-edge they are generated from ,or multiples thereof, can be created.

Lemma 4.5. Let S(1, 0, ξ) be the symplectic operation that acts on a Z-gate as

S(1, 0, ξ)ZmeS(1, 0, ξ)† = ZmeXm′eω2−1mem′e (4.94)

where 2−1 is the multiplicative inverse for odd dimension and d = 2 and 2−1 = 1
2 otherwise.

Then S(1, 0, ξ) exists if and only if the values of m′e satisfy m′e = nme with n ∈N

Proof. Restrictions on the values of m′e arise from demanding that

S(1, 0, ξ)(Zme)
d
me S(1, 0, ξ)† ≡ 1 (4.95)

needs to be satisfied due to unitarity of S(1, 0, ξ) and Zd = 1. Then, for all dimensions,

necessity follows from

S(1, 0, ξ)(Zme)
d
me S(1, 0, ξ)† = (ZmeXm′e)

d
me ω2−1dm′e ∝ Xd

m′e
me (4.96)

with Xa = 1 if and only if a = nd with n ∈ N and thus, m′e
me

= nd. To prove that the

restriction is sufficient, we have to consider the phases ωy resulting from the commutation
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Xm′eZme = ZmeXm′eω−mem
′
e . The total number of commutations is calculated using Gauss’

sum function

(ZmeXm′e)
d
me = (Zme)

d
me︸ ︷︷ ︸

=1

(Xm′e)
d
me︸ ︷︷ ︸

=1

(ω−mem
′
e)

f (d)
me

with: f(d) =
d(d− 1)

2 .

(4.97)

Combining the phases from the commutation relation and from Eq.(4.96), we have

ωy = ω2−1dm′e(ω−mem
′
e)

d(d−1)
2me = ω2−1dm′eω−

m′ed(d−1)
2

=

ω−
m′e

2 d2
= ωkd = 1, k ∈N d : even, d 6= 2

ω−m
′
e( d−1

2 +2−1) = ωk
′d = 1, k′ ∈N d : odd, d = 2.

(4.98)

Furthermore, from the structure of S(1, 0, ξ) given in Eq.(4.80), we identify the value of ξ

as

ξ
mod d

=
m′e
me

=
nme

me
= n where: n ∈N. (4.99)

Statement 2. is based on the commutation relation (see also Eq.(4.8))

Xm′eZm
′′
e = Zm

′′
eXm′eω−m

′′
em
′
e = Zm

′′
eXm′eω−nm

′′
eme (4.100)

and its generalization to arbitrary index sets:

X
m′e
I′ Z

m′′e
I′′ = Z

m′′e
I′′ Z

d−m′em′′e
I′′′ X

m′e
I′

where: I ′′′ =

{} t(X
m′e
I′ ) /∈ {I ′′}

(I ′′ ∪ I ′)− t(Xm′e
I′ ) t(X

m′e
I′ ) ∈ {I ′′}

and: t(X
m′e
I′ ) := target index of the set I’.

(4.101)

These rules give clear restrictions as to which edges may or may not be created from existing

ones within the original graph. As m′e
mod d

= ξme (see 1.), because of, 2. the multiplicities

m′′′e of the new edge Z
m′′′e
I′′′ are restricted to the solutions of

m′′′e (ξ) = d− [(ξmem
′′
e mod d] = d− g[(ξ

me

g
m′′e ) mod (

d

g
)]

= d− gg̃[(ξ
me

g

m′′e
g̃

) mod (
d

gg̃
)

where we used g̃ = gcd(
d

g
,m′′e ).

(4.102)

Let us first consider the consequences of Eq. (4.102) for usual LC. For m′′e = m′′′e = me, Eq.

(4.102) becomes

me(ξ) = d− (ξm2
e mod d) = (−ξm2

e mod d)

= g(−ξx2g mod y) = gx

⇐⇒

(−ξx2g mod y) = x

(4.103)
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where we used g = gcd(d,me) and thus me = xg and d = yg with gcd(x, y) = 1. Analyzing

the term (−ξx2g mod y), we need to differ between two possible cases:

• A) gcd(g, y) = 1

• B) gcd(g, y) 6= 1 −→ g = g′r, y = g′s with r, s ∈ N

In case A), for ξ ∈ N, D ≡ (−ξx2g mod y) covers all modulo-restclasses Rc(y) of y, that is

D = Rc(y), i.e. D ∈ [0, y− 1]. Hence, Eq. (4.103) simplifies to gD
mod d

= gx and obviously,

a solution is always possible. For the special case of me = 1, we have g = x = 1 and y = d.

Hence, Eq.(4.103) takes the form (−ξ mod d) = 1 and the the value of ξ is ξ = −1 for any

dimension d.

In case B), Eq. (4.103) takes the form

me(ξ) = gx = g(−ξx2g′r mod g′s) = gg′(−ξx2r mod s)

⇐⇒

g′(−ξx2r mod s) = x

(4.104)

where again (−ξx2r mod s) takes values within the modulo-restclass of s, i.e., within the

interval [0, s− 1]. As we know that gcd(x, y) = 1, it follows that gcd(x, g′) = gcd(x, ys ) = 1.

Thus, x 6= g′n with n ∈ N and Eq.(4.104) has no solution which leaves case A) as the

unique possible option for performing LC. Note that from gcd( dg , g) = 1 it readily follows

that gcd(m2
e, d) = g as

gcd(m2
e, d) = gcd(x2g2, yg) = g · gcd(y, g) = g · gcd(

d

g
, g).

This concludes the proof of the first part of the proposition concerning normal LC.

Let us now turn once more to the conditions under which ELC is possible. From Eq. (4.102)

it is obvious that only multiplicities m′′′e (ξ) = gg̃ or multiples thereof can be generated. To

be precise, m′′e (ξ) = kgg̃ where k may take all values within the modulo-restclass of d
mem′′e

.

The value of ξ then follows from solving (−ξmem
′′
e )

mod d
= m′′′e . Finally, notice that for

mem
′′
e = d there is no option of ELC. This can be seen directly from Eq.(4.102), where then

gg̃ = mem
′′
e = d = m′′′e . A multiplicity of value d is equal one of value zero and hence no

edge is created.

Following, we will give some examples for LC as well as ELC.

Example 4.2. : LC, tripartite system, d = 6, me = 3
From gcd(d,me) = gcd(6, 3) = 3 and gcd(m2

e, d) = gcd(9, 3) = 3 = g it follows that LC is

possible. The value of ξ is determined by (−ξm2
e)

mod d
= me, i.e., (−9ξ) mod 6

= 3 and therefore

ξ = −1. The symplectic transformation performing LC is S(1, 0, ξ = −1) = S(1, 0, 5). From

the initial graph state |G〉 = Z3
12Z

3
23 |+〉

⊗3, applying S(1, 0, 5) ≡ S2 to qudit two gives:

S2 |G〉 = (S2Z
3
12S
†
2S2Z

3
23S
†
2) |+〉⊗3 = (Z

−3
2

1 Z
−3
2

3 Z3
12X

−3
12 Z

3
23) |+〉⊗3

= (Z
−3
2

1 Z
−3
2

3 Z3
12Z

3
23Z

(6−3·(−3))
13 X−3

12 ) |+〉⊗3 = (Z
−3
2

1 Z
−3
2

3 Z3
12Z

3
23Z

15
13 |+〉)⊗3

(4.105)

Where the powers of the local gates Z
−mem′e

2
1|3 are determined by m′e

mod d
= ξme, i.e., m′e

mod 6
=

−3 and therefore −mem
′
e

2 = 9
2

mod 6
= −3

2 . Furthermore, in dimension six, 15 mod 6
= 3 and
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thus, the resulting graph state S2 |G〉 is LU-equivalent to the locally complemented graph

|GLC〉 = Z3
12Z

3
23Z

3
13 |+〉

⊗3:

S2 |G〉 = Z
−3
2

1 Z
−3
2

3 Z3
12Z

3
23Z

3
13 |+〉

⊗3 LU
= |GLC〉 . (4.106)

Example 4.3. : ELC, tripartite system, d = 40, me = m′′e = 12
From gcd(d,me) = gcd(40, 12) = 4 and gcd(m2

e, d) = gcd(144, 40) = 8 6= g it follows that

LC is not possible. Considering ELC, we have g̃ = gcd( dg ,m′′e ) = gcd(10, 12) = 2. Thus,

the generation of edges with multiplicity m′′′e = kgg̃ = 8k with k ∈ Rc( 40
8 ) = Rc(5), i.e.

0 ≤ k ≤ 4, is possible. For k = 1, we solve (−ξ122)
mod 40

= 8, which results in ξ = 3. The

symplectic transformation performing ELC is S(1, 0, ξ = 3). From the initial graph state

|G〉 = Z12
12Z

12
23 |+〉

⊗3, applying S(1, 0, 3) ≡ S2 to qudit two gives:

S2 |G〉 = (S2Z
12
12S
†
2S2Z

12
23S
†
2) |+〉⊗3 = (Z24

1 Z24
3 Z12

12X
36
12Z

12
23 ) |+〉⊗3

= (Z24
1 Z24

3 Z12
12Z

12
23Z

(40−12·(36))
13 X36

12 ) |+〉⊗3 = (Z24
1 Z24

3 Z12
12Z

12
23Z

−392
13 |+〉)⊗3

(4.107)

Where the powers of the local gates Z
−mem′e

2
1|3 are determined bym′e

mod d
= ξme, i.e., m′e

mod 40
=

36 and therefore −mem
′
e

2 = −216 mod 40
= 24. Furthermore, in dimension d = 40, −392 mod 40

=

8 and thus, the resulting graph state S2 |G〉 is LU-equivalent to the ELC graph |GLC〉 =

Z12
12Z

12
23Z

8
13 |+〉

⊗3:

S2 |G〉 = Z24
1 Z24

3 Z12
12Z

12
23Z

8
13 |+〉

⊗3 LU
= |GLC〉 . (4.108)

Example 4.4. : ELC, tripartite system, d = 30, me = 2, m′′e = 3
Here, me 6= m′′e rules out the option for normal LC. We have g = gcd(30, 2) = 2 and g̃ =

gcd(15, 3) = 3, which allows for the creation of a new edge of multiplicities m′′′e = kg̃g = 6k
with 0 ≤ k ≤ 4. For k = 3, we solve (ξ62)

mod 30
= 18 and find ξ = 2. The symplectic

transformation performing ELC is S(1, 0, ξ = 2). Furthermore, m′e = 4 and −mem
′
e

2 = −4
From the initial graph state |G〉 = Z2

12Z
3
23 |+〉

⊗3, applying S(1, 0, 2) ≡ S2 to qudit two gives:

S2 |G〉 = (S2Z
2
12S
†
2S2Z

3
23S
†
2) |+〉⊗3 = (Z−4

1 Z−4
3 Z2

12X
4
12Z

3
23) |+〉⊗3

= (Z−4
1 Z−4

3 Z2
12Z

3
23Z

(30−3·(4))
13 X4

12) |+〉⊗3 = (Z−4
1 Z−4

3 Z2
12Z

3
23Z

18
13 |+〉)⊗3.

(4.109)

The resulting graph state S2 |G〉 is LU-equivalent to the ELC graph |GLC〉 = Z2
12Z

3
23Z

18
13 |+〉

⊗3:

S2 |G〉 = Z−4
1 Z−4

3 Z2
12Z

3
23Z

18
13 |+〉

⊗3 LU
= |GLC〉 . (4.110)

With these examples, we conclude the section, having found conditions under which, for a

given graph state in arbitrary dimension, LC and a broadened version, ELC, is possible. Here,

it is important to stress that for cases which do not allow for LC or ELC under the conditions

according to Proposition 4.2, there might still be an option to locally create edges. This is

due to the fact that the argumentation within this section is based on LC (or ELC) to be

generated by application of local symplectic operations of the form S(1, 0, ξ). This still leaves

the option for other local operations to create edges, even though it might not be possible for

S(1, 0, ξ). Although we do not have a general way to determine those operations, or make a

general statement about their existence, we can give an example in dimension d = 4.

Consider the initial graph state with me = m′′e2, |G〉 = Z2
12Z

2
23 |+〉

⊗3. As g = gcd(4, 2) = 2
and gcd(m2

e, d) = 4 6= g, there is no option for LC via S(1, 0, ξ). Furthermore, for ELC, edges
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with m′′′e = kgg̃ = 4k could be created with 0 ≤ k ≤ 1. Thus, m′′′e is limited to multiples of

d and as Zd = 1 this corresponds to no edge at all. Despite this, we found local unitaries U1

and U3 of the form given in Eq. (4.68) generating an edge of multiplicity m′′′e = me = 2.

4.4 Weighted hypergraphs

Within this section, we extend the family of (hyper-)graph states by exchanging the gener-

alized Pauli-Z-gate for the Z-phase gate, Zϕ. The phase gate depends on weights in form of

complex phases eiϕ with arbitrary, real valued ϕ and is defined as

Zϕ = diag(1, eiϕ, e2iϕ, ..., e(d−1)iϕ) with: ϕ ∈ R (4.111)

where Zϕ[Zϕ]† = 1 as [Zϕ]−1 = [Zϕ]† = diag(1, eiϕ, e−2iϕ, ..., e−(d−1)iϕ). Consequently, a

weighted (hyper-)graph state, |Hϕ〉 can be written as

|Hϕ〉 =
∏
I∈E

ZϕII |+〉
⊗V (4.112)

where, as before, E denotes the set of (hyper-)edges, V the set of vertices and I all sets of

vertices connected by an (hyper-)edge. Alternatively, we can in analogy to Eq. (4.28), write

the state in computational basis

|Hϕ〉 =
k∏
a=1

ZϕaIa |+〉
⊗n =

d−1∑
ci=0, i∈[1,...,n]

k∏
a=1

e
(iϕ
∏
i∈Ia

ci)
n⊗
i=1
|ci〉 (4.113)

In analogy to the unweighted graph states, we can describe weighted graph states within the

stabilizer formalism. Using the commutation relation XiZ
ϕ
ij = Zϕj Z

−ϕ
ij , the n−th element Kn

within the set of stabilizers {Kn} of an n-partite weighted qubit graph state is constructed

by

Kn =
∏
i

Zϕin Xn

∏
m̄

Xm̄Z
ϕm̄
m with: m̄ := ∀ m 6= n in neighborhood of n. (4.114)

Thus, in case of a three qubit weighted graph with not necessarily equal weights ϕ, ϕ′ and

ϕ′′, the operators stabilizing the corresponding state

|G〉 = Zϕ12Z
ϕ′

13Z
ϕ′′

23 |+〉
⊗3 =

1∑
ijk=0

(eiϕ)ij(eiϕ
′
)ik(eiϕ

′′
)jk (4.115)

have the following form:

K1 = Zϕ1 Z
ϕ′

1 X1X2Z
−ϕ
2 X3Z

−ϕ′
3 ,

K2 = X1Z
−ϕ
1 Zϕ2 Z

ϕ′′

2 X2X3Z
−ϕ′′
3 ,

K3 = Zϕ
′

1 X2Z
−ϕ′′
2 Zϕ

′

3 Zϕ
′′

3 X3.

(4.116)
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Straightforward calculation gives Kn |G〉 = |G〉 for n = (1, 2, 3). For instance, applying K1

to |G〉 gives

K1 |G〉 = Zϕ1 Z
ϕ′

1 X1X2Z
−ϕ
2 X3Z

−ϕ′
3 Zϕ12Z

ϕ′

13Z
ϕ′′

23 |+〉
⊗3

= Zϕ1 Z
ϕ′

1 X2Z
−ϕ
2 X3Z

−ϕ′
3 Zϕ2 Z

ϕ′

3 Z−ϕ12 Z−ϕ
′

13 Zϕ
′′

23 |+〉
⊗3

= Zϕ1 Z
ϕ′

1 Z−ϕ1 Z−ϕ
′

1 Zϕ12Z
ϕ′

13Z
ϕ′′

23 |+〉
⊗3 = |G〉 .

(4.117)

Since this introduced generalization gives rise to a significantly bigger family of states,

classification of equivalence classes becomes complex even for small dimensions. This is mainly

because Zϕ, in contrary to the ’normal’ Z-gate, has lost the property of the d−th power to

equal identity, i.e. [Zϕ]d 6= 1. Thus, there exists no commutation relation of the form

XZϕ = ZϕXc with c ∈ C on which many rules regarding locally generating or deleting edges

are based on. Nonetheless, it is possible to make some statements about SLOCC-equivalent

(hyper-)graphs as well as the creation of edges from existing ones by using a slight variation

of the X−gate. Following, we will start with the latter and then move on to special cases, for

which we can prove SLOCC-equivalence.

4.4.1 Elementary weighted hypergraphs

In analogy to the class of unweighted hypergraphs, we define an n-partite elementary weighted

hypergraph, that is, a hypergraph |Hϕ〉elem within which the set of hyperedges has only one

element: an hyperedge of some weight ϕ that connects all vertices

|Hϕ〉elem = Zϕ12...n |+〉
⊗n . (4.118)

Then we can define a class of states LU-equivalent to |Hϕ〉elem. For dimension d and n qudits,

this class is defined by the fact that it is possible to create an edge of a defined weight (d− 1)ϕ

connecting (n-1) vertices from the existing n-hyperedge of weight ϕ. The main difference to

the unweighted case is that simultaneously, the weight of the original hyperedge is changed

to −ϕ.

Theorem 4.3. LU-equivalence of elementary weighted hypergraphs

Let |Hϕ〉 = Zϕ
(1...n):=I |+〉

⊗n be an n-partite , d-dimensional elementary weighted hypergraph.

Then, the class of weighted hypergraph states defined by

|H ′ϕ〉 = Z
(d−1)ϕ
I\{k} Z−ϕI |+〉⊗n k ∈ I (4.119)

is LU-equivalent to |Hϕ〉.

Proof. We give the proof in detail for d=3, the generalization to arbitrary dimensions is then

straightforward. Let X̃ be a variation of the X-gate, i.e.

X̃
d=3
= |0〉 〈2|+ |1〉 〈1|+ |2〉 〈0| =

0 0 1
0 1 0
1 0 0

 and in general: X̃ =
d−1∑
j=0
|j〉 〈(d− 1)− j|

(4.120)

with X̃−1 = X̃† = X̃, that is, X̃ is unitary and selfadjoint, thus X̃2 = 1. Furthermore, with

X̃ |+〉 = |+〉, X̃ inhibits a property that is crucial for staying within the class of weighted
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hypergraph states. We then have

X̃ZϕX̃† = e2iϕ

1 0 0
0 e−iϕ 0
0 0 e−2iϕ

 = e2iϕZ−ϕ (4.121)

The phase e2iϕ generates the new hyperedge in case X̃ is applied to a controlled Z-phase gate.

To see this, consider the action of X̃ on Zϕ12:

X̃1Z
ϕ
12X̃

† = (|0〉 〈0|)1 ⊗Z2ϕ
2 + (|1〉 〈1|)1 ⊗Zϕ2 + (|2〉 〈2|)1 ⊗ 12

= Z2ϕ
2 [(|0〉 〈0|)1 ⊗ 1+ (|1〉 〈1|)1 ⊗Z−ϕ2 + (|2〉 〈2|)1 ⊗Z−2ϕ

2

= Z2ϕ
2 Z−ϕ12 .

(4.122)

The recursive definition of the controlled Z-phase gate acting on an arbitrary index set I then

directly allows for the following rule

X̃kZ
ϕ
I X̃
† = Z

(d−1)ϕ
I\{k} Z−ϕI (4.123)

and thus, applying X̃ on the k−th qudit of an elementary weighted hypergraph leads to

X̃k |Hϕ〉 = X̃ZϕI X̃
†X̃ |+〉⊗n

= Z
(d−1)ϕ
I\{k} Z−ϕI |+〉⊗n LU

= |Hϕ〉
(4.124)

which hereby proves Theorem 4.3.

4.4.2 SLOCC equivalence of weighted hypergraphs

Here, we show SLOCC equivalence of all elementary qubit weighted hypergraph states for

different weights ϕ. Additionally, we prove SLOCC equivalence for some chosen tripartite

qubit weighted graph-and hypergraph states via a method denoted as ’basis mapping’.

SLOCC equivalence of elementary weighted hypergraphs with different weights

Following, the key points of the used method will be presented in detail for the case of three

qubits. The generalization to an arbitrary number of qubits will be motivated by showing that

the crucial structure of the proof remains unchanged when the number of qubits increases.

Theorem 4.4. SLOCC equivalence of elementary weighted hypergraphs

Let |H〉 be an n-qubit elementary hypergraph state of weight ϕ and let |H ′〉 be an n-qubit

elementary hypergraph state of weight ϕ′. Then,

|H〉 = Zϕ123 |+〉
⊗3 SLOCC

= Zϕ
′

123 |+〉
⊗3

∀ ϕ,ϕ′ ∈ R \ {(ϕ = nπ ∧ϕ′ 6= nπ) ∨ (ϕ′ = nπ ∧ϕ 6= nπ), n := even}.
(4.125)
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Proof. Consider |H〉 = Zϕ123 |+〉
⊗3 in dimension d = 2. Then, the coefficient matrix in the

split (1|23) describing |H〉 is given by

CH =

(
1 1 1 1
1 1 1 eiϕ

)
and: C†H =


1 1
1 1
1 1
1 eiϕ

 . (4.126)

We prove SLOCC equivalence by showing that the right subspace of CH , i.e. the matrix V †

within the singular value decomposition of CH , CH = UΣV †, is spanned by two product

vectors for any weight ϕ. The singular values σi are the roots of the eigenvalues λi of CHC
†
H .

Solving det(CHC
†
H − λ1) = 0 gives λ1|2 = 4±

√
10 + 6cos(ϕ), and hence, the eigenvectors

are ~u1|2 = (±
√

10+6cos(ϕ)

3+eiϕ
, 1)T . The vectors ~v1|2 spanning the right subspace read:

~v1|2 =
1
σ1|2

C†H ~u1|2 =
1
σ1|2


±γ(ϕ) + 1
±γ(ϕ+ 1)

±γ(ϕ) + 1
±γ(ϕ) + e−iϕ

 where: γ(ϕ) =

√
10 + 6cos(ϕ)

3 + eiϕ
. (4.127)

Performing a basis transformation such that ~v′1|2 = σ1 ~v1 ± σ2 ~v2 and a second one, we get

~v′′1 = 0× ~v′1 +
1

2γ
~v′2 = (1, 1, 1, 1)T

~v′′2 = γ(ϕ) ~v′1 − ~v′2 = (0, 0, 0, 2γ(ϕ)(eiϕ − 1))T
(4.128)

which are obviously both product vectors, that is ~v1 = (|0〉+ |1〉)2 ⊗ (|0〉+ |1〉)3 and ~v2 =

2γ(ϕ)(eiϕ − 1) |11〉23. As this is valid for arbitrary ϕ, using Lemma 4.4, SLOCC equivalence

follows readily. Thus, in case of three qubits, all elementary weighted hypergraph states are

within the GHZ-class. Naturally, if ϕ = nπ with even valued n, it follows that σ2 = 0 and

hence, the right subspace is spanned by a single product vector, i.e., the state is fully separable

(1|2|3).

Increasing the number of qubits does not change the structure of CHC
†
H , i.e., for n parties

dim(CHC
†
H)= (2× 2n−1) · (2n−1 × 2). Thus,

CHC
†
H =

(
2n−1 (2n−1 − 1) + e−iϕ

(2n−1 − 1) + e−iϕ 2n−1

)
(4.129)

A calculation analogous to the n = 3 case gives a full product basis for arbitrary weights ϕ,

thus, all elementary weighted hypergraphs are SLOCC-equivalent to the generalized n-qubit

GHZ-state |GHZn〉 =
⊗n

i=1 |0〉i +
⊗n

i=1 |1〉i

Note that this also proves that the structure of the vectors spanning the right subspace

can be read out easily by recognizing that CH = ( 1
2
~v′1, 1

2γ(ϕ)
v′2). This property is very useful.

To determine their product structure of the basis vectors, one can use CH directly.

SLOCC-equivalence via basis mapping

Another way of proving SLOCC equivalence, which additionally gives the local operation

realizing the transformation from a ϕ-edge to a ϕ′-edge, we denote by basis mapping. The
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term becomes clear when looking at the most simple example of two qubits.

Lemma 4.6. Let |G〉, |G′〉 be bipartite weighted qubit graph states with corresponding weights

ϕ and ϕ′. Then, there exist invertible local operations (ILOs) M1, M2 such that:

(M1 ⊗M2) |G〉 = (M1 ⊗M2)Zϕ12 |++〉 = Zϕ
′

12 |++〉 = |G′〉

∀ ϕ,ϕ′ ∈ R \ {(ϕ = nπ ∧ϕ′ 6= nπ) ∨ (ϕ′ = nπ ∧ϕ 6= nπ), n := even}.
(4.130)

Proof. W.l.o.g, let ϕ′ = π. Then, Zπ = Z corresponds to the Pauli Z-gate. Now consider the

associated graph states

|Gπ〉 = Zπ12 |++〉 = Z12 |++〉 = |0+〉+ |1−〉

|Gϕ〉 = Zϕ12 |++〉 = |0+〉+ |1〉Zϕ2 |+〉 = |0+〉+ |1ϕ〉 with: |ϕ〉 = |0〉+ eiϕ |1〉
(4.131)

Comparing |Gπ〉 and |Gϕ〉 in Eq. (4.131), we have to solve the following pair of equations to

find the ILOs M1, M2 such that Eq. (4.130) is satisfied:

M |+〉 = |+〉 ←→ M−1 |+〉 = |+〉

M |ϕ〉 = |−〉 ←→ M−1 |−〉 = |ϕ〉 .
(4.132)

The solution to Eq. (4.132) is given by

M =

(
1 0

−1+eiϕ

1−eiϕ
2

1−eiϕ

)
and thus: M−1 =

(
1 0

1+eiϕ

2
1−eiϕ

2

)
. (4.133)

This proves Lemma 4.6 for M1 = 1 and M2 = M .

We can now use this result to show SLOCC equivalence between all three qubit weighted

graph states with all existing edges of same weight and accordingly for hypergraph states.

The argument goes as follows: via basis mapping (or Theorem 4.4) we show that all three

qubit weighted hypergraph states are SLOCC equivalent to |H〉 = Z123 |+ + +〉 which, in

turn, is SLOCC-equivalent to the graph state |G〉 = Z12Z13Z23 |+ + +〉. E.g., the locally

complemented graph |GLC2〉 = Z12Z13 |+ + +〉, which can be shown to be SLOCC-equivalent

to |G2
ϕ,ϕ′〉 = Zϕ12Z

ϕ′

13 |+ + +〉. Then, we are left with proving SLOCC equivalence between

|G3
ϕ,ϕ′,ϕ′′〉 = Zϕ12Z

ϕ′

13Z
ϕ′′

23 |+ + +〉 and |G〉.

Proposition 4.3. All weighted three qubit (hyper-)graph states are SLOCC equivalent to the

GHZ-state

Proof. The first part of the argument is in principal already covered by Theorem 4.4. Nonethe-

less, via basis mapping, we can determine the concrete ILO: Consider

|Hπ〉 = Z123 |+ + +〉 = |0〉 |++〉+ |1〉Z23 |++〉 = |0〉 |++〉+ |1〉 |Gπ〉

|Hϕ〉 = Zϕ123 |+ + +〉 = |0〉 |++〉+ |1〉Zϕ23 |++〉 = |0〉 |++〉+ |1〉 |Gϕ〉
(4.134)
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We know from Eq. (4.133) that (1⊗M−1) |Gπ〉 = M−1
23 |Gπ〉 = |Gϕ〉. Furthermore, this ILO

leaves |++〉 unchanged,i.e., M23 |++〉 = |++〉 and thus,

M−1
23 |Hπ〉 = (112 ⊗M−1

3 ) |Hπ〉 = |0 + +〉+ |1〉 (1⊗M−1 |Gπ〉

= |0 + +〉+ |1〉 |Gϕ〉 = |Hϕ〉 .
(4.135)

For the SLOCC equivalence of |GLC2〉 and |G2
ϕ〉 consider

|GLC2〉 = |0 + +〉+ |1〉 (Z2 ⊗Z3) |++〉 = |0 + +〉+ |1−−〉

|G2
ϕ〉 = |0 + +〉+ |1〉 (Zϕ2 ⊗Z

ϕ′

3 ) |++〉 = |0 + +〉+ |1ϕϕ′〉 .
(4.136)

Therefore, we can use the same ILOs M−1
2 (ϕ), M−1

3 (ϕ′) of the form given in Eq.(4.132) to

transform |GLC2〉 to |G2
ϕ〉

(11 ⊗M−1
2 (ϕ)⊗M−1

3 (ϕ′)) |GLC2〉 = |0 + +〉+ |1〉 (M−1
2 (ϕ)⊗m−1

3 (ϕ′) |−−〉 = |G2
ϕ〉 .
(4.137)

The last part, showing SLOCC equivalence between an unweighted three-edge graph state

and a weighted graph with arbitrary weights for each edge Zij is more complex and not easily

seen by basis mapping. Thus, we make use of the fact that |G〉 = Z12Z13Z23 is SLOCC

equivalent to |GHZ〉 for three qubits. Then, any state is within the GHZ- class if and only if

the minimally entangled basis spanning the right subspace of the coefficient matrix is a full

product basis (see Lemma 4.4). The coefficient matrix of |G3
ϕ,ϕ′,ϕ′′〉 within the split (1|23) is

given by

CH(|G3
ϕ,ϕ′,ϕ′′〉) =

(
1 1 1 eiϕ

1 eiϕ
′

eiϕ
′′

ei(ϕ+ϕ′+ϕ′′)

)
with: ϕ,ϕ′,ϕ′′ ∈ R. (4.138)

Hence, a basis transformation on systems (23), realizable by an ILO A =

(
a b

c d

)
on

system (1), gives the new basis vectors

|v′1〉 = a |v1〉+ c |v2〉 = (a+ c, a+ eiϕ
′
c, a+ eiϕ

′′
c, aeiϕ + ei(ϕ+ϕ′+ϕ′′)c)T

|v′2〉 = b |v1〉+ c |v2〉 = (b+ d, b+ eiϕ
′
d, b+ eiϕ

′′
d, beiϕ + ei(ϕ+ϕ′+ϕ′′)d)T

(4.139)

where |v1〉 = (1, 1, 1, eiϕ)T and |v2〉 = (1, eiϕ′ , eiϕ′′ , ei(ϕ+ϕ′+ϕ′′))T . To guarantee product

structure of |v′1〉 and |v′2〉, there have to exist a, b, c, d in C, such that

det(V1) = det(

(
a+ c a+ eiϕ

′
c

a+ eiϕ
′′
c aeiϕ + ei(ϕ+ϕ′+ϕ′′)c

)
≡ 0

det(V2) = det(

(
b+ d b+ eiϕ

′
d

b+ eiϕ
′′
d beiϕ + ei(ϕ+ϕ′+ϕ′′)d

)
≡ 0

(4.140)

and, as A has to be invertible, det(A) = ab− ac 6= 0 has to hold. From Eq. (4.140) we derive

the following quadratic equation for a,c and, due to the equivalent structure, the same for b,d.

This in turn demands two inequivalent solutions, such that det(A) = 0. From Eq. (4.140)

we get:

a2(eiϕ − 1) + ac(ei(ϕ+ϕ′+ϕ′′) − eiϕ′) + c2(ei(ϕ+ϕ′+ϕ′′) − ei(ϕ+ϕ′)) ≡ 0. (4.141)
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The solutions exist and are of the form

a1|2 = − c

2(eiϕ − 1)
[(ei(ϕ+ϕ′+ϕ′′) − eiϕ′)

±
√
ei(ϕ+ϕ′+ϕ′′) − eiϕ′)2 − 4(ei(ϕ+ϕ′+ϕ′′) − ei(ϕ+ϕ′))(eiϕ − 1)]

(4.142)

where we can use a1 = a and a2 = b for c ⇔ d. Note that for ϕ = ϕ′ = ϕ′′ = π, i.e.

CH =

(
1 1 1 −1
1 −1 −1 −1

)
, Eq. (4.142) takes the form a1|2 = ±ic. Then, for c = d = 1,

A =

(
i −i
1 1

)
. The basis transformed vectors of the right subspace thus read

|v′1〉 = a |v1〉+ c |v2〉 = − 2
i− 1 (1, i, i,−1) ∝ (|0〉+ i |1〉)⊗ (|0〉+ i |1〉)

|v′2〉 = b |v1〉+ c |v2〉 = − 2
i+ 1 (−1, i, i, 1) ∝ (i |0〉+ |1〉)⊗ (i |0〉+ |1〉).

(4.143)

With this, we have proven that all three qubit graph and hypergraph states, even when

allowing for arbitrary weighted edges, are within the same SLOCC class with representative

state |GHZ〉.

Within the final observation in the field of SLOCC-equivalence classes, we turn the focus

on systems of arbitrary dimension d > 2. The method of basis mapping, presented in detail in

the forgoing part of this section, also proves to be useful when considering two qudit weighted

graphs as well as three qudit weighted graphs occupying two edges of not necessarily the same

weight.

Proposition 4.4. SLOCC equivalence of bipartite weighted qudit graphs

All two qudit graph states of dimension d > 2 with an edge of weight ϕ are SLOCC equivalent

to the corresponding unweighted, i.e. ϕ = π, graph state

|Gϕ〉 = Zϕ12 |+0+0〉
SLOCC

= Z12 |+0+0〉 = |Gπ〉 (4.144)

where |+0〉 =
∑d−1
n=0 |n〉.

Proof. Consider |Gϕ〉 and |Gπ〉 in some dimension d > 2

|Gϕ〉 = Zϕ12 |+0+0〉 = |0+0〉+ |1ϕ〉

|Gπ〉 = Z12 |+0+0〉 = |0+0〉+ |1+1〉
(4.145)

where |+1〉 = Z |+0〉 =
∑d−1
n=0 ω

n |n〉 with ω = e
2πi
d and |ϕ〉 = Zϕ |+0〉 =

∑d−1
n=0(eiϕ)n |n〉.

Then, we need to find 3× 3 ILOs M =
∑
ijmij |i〉 〈j| such that

I) M |+0〉 = |+0〉 and: II) M |+1〉 = |ϕ〉 (4.146)

From I) we get the linear equations
∑d−1
j=0 mkj = 1 for all k ∈ [0, d−1]. II) yields

∑d−1
j=0 mkje

ijϕ =

ωj for all k ∈ [0, d− 1]. Solving the system of linear equations gives

m00 = 1, m0j = 0 for 1 ≤ j ≤ d− 1

−mi0 = mi(d−1) for 1 ≤ i ≤ d− 1

mil =
1

d− 2 for 1 ≤ i ≤ d− 1, 1 ≤ l ≤ d− 2

(4.147)
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where the matrix elements mi(d−1), for 1 ≤ i ≤ d− 1 are determined by

mi(d−1) =
1

(1− e(d−1)iϕ)

(
1− ωi +

d−2∑
n=0

1
d− 2 (einϕ − 1)

)
. (4.148)

As this solution exists for all values of ϕ and all dimensions d > 2, this proves Proposition

4.4:

(11 ⊗M2) |Gπ〉 = |0〉 ⊗M2 |+0〉+ |1〉 ⊗M2 |+1〉

= |0+0〉+ |1ϕ〉 = |Gϕ〉
(4.149)

From Proposition 4.4 we can directly conclude SLOCC equivalence of all three qudit graph

states with weighted edges ϕ and ϕ′. This can be seen as follows: consider |Gϕ,ϕ′〉 and |G2
π〉

with

|Gϕ,ϕ′〉 = Zϕ12Z
ϕ′

13 |+0 +0 +0〉 = |0 +0 +0〉+ |1ϕϕ′〉

|G2
π〉 = Z12Z13 |+0 +0 +0〉 = |0 +0 +0〉+ |1 +1 +1〉

(4.150)

Then, via the invertible local matrices M(ϕ) on qudit 2 and M(ϕ′) on qudit 3 with matrix

elements satisfying Eq. (4.147) and Eq. (4.148), we can perform the transformation from

|G2
π〉 to |Gϕ,ϕ′〉 for any value of ϕ and ϕ′ and dimensions three or higher:

(11 ⊗M2(ϕ)⊗M3(ϕ′) |G2
π〉 = |Gϕ,ϕ′〉 . (4.151)

Let us conclude this section with an observation, which is a direct consequence of Propo-

sition 4.4 and its generalization to n-partite qudit systems.

Observation 4.1. SLOCC equivalence of qudit star-graphs

All n-partite qudit star-graph states with not necessarily equivalent weighted edges Z
ϕj
ij with

{ij} in the set of edges E are SLOCC equivalent to the associated unweighted star-graph:

n−1∏
j=1

Z
ϕj
ij |+〉

⊗n SLOCC
=

n−1∏
j=1

Zij |+〉⊗n (4.152)

The term ’star-graph’ denotes a graph within which one vertex i is connected to all others

and there are no edges apart from those. Furthermore, the ILOs for the SLOCC transforma-

tion are of the form given in Eq. (4.147) and Eq. (4.148).
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Chapter 5

Characterizing genuine

multilevel entanglement

This chapter is dedicated to a novel definition of entanglement within multilevel quantum

systems. Whereas high dimensional entanglement hierarchy was up to now mostly charac-

terized by the ability of the state to violate certain inequalities or maximize entanglement

monotones, e.g. the entropy of entanglement, it turns out that this definition conducts con-

tradictions when focusing on experimental realization. That is, some of the states classified

as highly entangled with respect to the system dimension, are in fact realizable through lower

dimensional systems. This poses the question, why one should denote such states as d-level

entangled, if there is no need to have access to any d-level system to correctly reproduce all

correlations characterizing the state. Based on this, we aim to find a way to define genuine

multilevel entanglement, such that it is in accordance to an experimental context. I.e., to

generate genuine d-level entangled states, it should be necessary to have access to d-level sys-

tems. The chapter is organized as follows: Section 5.1 covers the work published in the paper

[186], that is, the general theory of defining and characterizing genuine multilevel entangled

states in bipartite as well as multipartite scenarios. The following Section 5.2 presents an

unpublished analytical method, which allows for a necessary but not sufficient criterion to

differ between decomposable and multilevel entangled states. Furthermore, in Section 5.3,

we present a generic way to find the lower dimensional representation of qudit-graph states

of dimension d = dki . Within the last part of this chapter (Section 5.4), an alternative con-

figuration of distributing the lower dimensional qudits is shown. We denote this as network

configuration.

5.1 Genuine multilevel entanglement

Entanglement of high-dimensional quantum systems has become increasingly important for

quantum communication and experimental tests of nonlocality. However, many effects of

high-dimensional entanglement can be simulated by using multiple copies of low-dimensional

systems. We present a general theory to characterize those high-dimensional quantum states,

for which the correlations cannot simply be simulated by low-dimensional systems. Our ap-

proach leads to general criteria for detecting multi-level entanglement in multiparticle quan-

tum states, which can be used to verify these phenomena experimentally.
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5.1.1 Introduction

Entangled quantum systems are now routinely prepared and manipulated in labs all around

the world, using all sorts of physical platforms. In particular, there has been tremendous

progress for creating high-dimensional entangled systems, which can in principle contain a very

large amount of entanglement [162, 163, 164]. This makes such systems extremely interesting

from the perspective of quantum information science, as they can enhance certain protocols

in particular in quantum communications [165, 166]. At first sight, it seems that the tools

of entanglement theory can readily be applied to experiments generating high-dimensional

entangled states. After a closer look, however, one realizes that this is not the case in general.

Let us illustrate our argument via a simple example.

Imagine an experimentalist who wants to demonstrate his ability to entangle two high-

dimensional quantum systems. He decides to prepare the optimal resource state, the maxi-

mally entangled state, in increasingly large dimensions. First, he successfully entangles two

qubits in the state |ψ2〉 = (|00〉 + |11〉)/
√

2 and two qutrits in the state |ψ3〉 = (|00〉 +

|11〉+ |22〉)/
√

3. While preparing the two ququart maximally entangled state |ψ4〉 = (|00〉+
|11〉+ |22〉+ |33〉)/2 he realizes that he could also prepare the two-qubit Bell state |ψ2〉 twice,

see Fig. 5.1(a). Clearly, the two copies are equivalent to the maximally entangled state of

two ququarts when identifying |00〉A1A2
7→ |0〉A, |01〉A1A2

7→ |1〉A, |10〉A1A2
7→ |2〉A and

|11〉A1A2
7→ |3〉A. Furthermore, using the source n times, the experimentalist prepares the

state |ψ2〉⊗n, which is equivalent to a maximally entangled state in dimension 2n × 2n. The

experimentalist is thus enthusiastic, as he now has access to essentially any entangled state

with an entanglement cost of at most n ebits. In particular this should allow him to imple-

ment enhanced quantum information protocols based on high-dimensional entangled states,

which are proven to boost the performance of certain protocols.

Clearly, the view of the experimentalist is too simplistic and key aspects have been put

under the carpet. In order to use the full potential of the state, and thus really claim to

have access to high-dimensional entanglement, the experimentalist should be able to perform

arbitrary local measurements, including joint measurements between the two subspaces (e.g.

photons), which can be non-trivial to implement in certain experimental setups. Ideally,

the experimentalist should be able to implement arbitrary local transformations on the local

four-dimensional space.

If one focuses on the generated state, however, the known methods of entanglement veri-

fication support the naive view of the experimentalist. For instance, there are tools to certify

the Schmidt rank of the state [167, 168], but these do not distinguish between many copies

of a Bell state and a genuine high-dimensional state. Bell inequalities have been proposed as

dimension witnesses for quantum systems [169], but recently it has turned out that these do

not recognize the key feature, as independent measurements on two Bell pairs can mimic the

statistics of a high-dimensional system [170, 171]. So they just characterize the Schmidt rank

in a device-independent manner.

In this work, we characterize the high-dimensional quantum states which give rise to

correlations that can not be simulated many copies of small-dimensional systems. This leads

to the notion of genuine multi-level entanglement and we show how this can be created and

certified. Then we extend this idea to the multiparticle case. Our results imply that many

of the prominent entangled states in high dimensions can directly be simulated with small-

dimensional systems.
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Figure 5.1: Left: The four-dimensional maximally entangled state |ψ4〉
shared by the parties A and B directly decomposes in two entangled pairs of
qubits shared by A1B1 and A2B2. Right: More generally, we ask whether a
high-dimensional entangled state can be decomposed into pairs of entangled
systems of smaller dimension, up to some local unitary operations. We show
that this is not always possible and characterize those states carrying genuine

multi-level entanglement.

5.1.2 The scenario

To explain the scenario, we discuss two entangled four-level systems, also called ququarts. A

general two-ququart entangled state can be written in the Schmidt decomposition as

|ψ〉 = s0 |00〉AB + s1 |11〉AB + s2 |22〉AB + s3 |33〉AB , (5.1)

where we assume here and in the following the Schmidt coefficients to be ordered, i.e., s0 ≥
s1 ≥ s2 ≥ s3 ≥ 0 and

∑
i s

2
i = 1. One can replace each ququart with two qubits, so the

total state may also be considered as a four-qubit state. The question we ask is whether it is

possible to reproduce any correlations in the two-ququart state by preparing two entangled

pairs of qubits only (see Fig. 5.1).

A first approach is to replace on Alice’s side |0〉 7→ |00〉, |1〉 7→ |01〉, |2〉 7→ |10〉, and

|3〉 7→ |11〉 and similarly for Bob. Note that this is, so far, not guaranteed to be the optimal

assignment of basis states on two qubits to the basis states {|0〉 , |1〉 , |2〉 , |3〉}. This replacement

leaves us, after a reordering, with the four-qubit state

|ψ〉 = s0 |00〉A1B1
|00〉A2B2

+ s1 |00〉A1B1
|11〉A2B2

+ s2 |11〉A1B1
|00〉A2B2

+ s3 |11〉A1B1
|11〉A2B2

. (5.2)

Now we ask under which conditions on the Schmidt coefficients this state can be decomposed

in the form

|ϕ〉 = (α0 |00〉A1B1
+ α1 |11〉A1B1

)

⊗ (β0 |00〉A2B2
+ β1 |11〉A2B2

). (5.3)

For the coefficients it must hold that s0 = α0β0, s1 = α0β1, s2 = α1β0 and s3 = α1β1. If

|ψ〉 can be written in this form, we call |ψ〉 decomposable and otherwise genuinely four-level

entangled.
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An interesting example is the maximally entangled state of two ququarts, |ψ4〉 = (|00〉AB +

|11〉AB + |22〉AB + |33〉AB)/2. Here si = 1/2 and for α0 = α1 = β0 = β1 = 1/
√

2 we

have |ψ〉 = |ϕ〉. Thus the maximally entangled state is decomposable, its correlations are

reproducible by two pairs of entangled qubits, and the state is not sufficient to certify genuine

four-level entanglement.

In order to decide decomposability for a general |ψ〉 we compute the maximal overlap

between |ψ〉 and all decomposable states |ϕ〉:

max
|φ〉
|〈ψ〉ϕ| = max

αi,βi
{s0α0β0 + s1α0β1 + s2α1β0 + s3α1β1}

= max
α,β
〈β|S |α〉 = max singval(S), (5.4)

where |α〉 = (α0,α1)T , |β〉 = (β0,β1)T and

S =

[
s0 s1

s2 s3

]
, (5.5)

and singval(S) denotes the singular values.

Note that up to now, we have not determined the optimal choice for the basis assignment,

that is, we used the simple assignment |0〉 7→ |00〉 etc. introduced above. The optimal assign-

ment can be determined by optimizing over local unitaries on the ququarts. In Appendix A

[172] we show that the maximal singular value is obtained if the states |ψ〉 and |ϕ〉 have the

same Schmidt basis and the remaining freedom encompasses permutations in the assignment

of basis elements. As it turns out, the choice of basis we made in the beginning is already

optimal. From this we can make the following observation:

Observation 1. The two-ququart state |ψ〉 is decomposable if and only if max singval(S) = 1.

This is equivalent to det(S) = 0. The proof is given in Appendix A [172].

The extension of decomposability to mixed states is straightforward. We define a mixed

state to be decomposable, if it can be written as % =
∑
i pi |ψi〉 〈ψ| where the |ψi〉 are de-

composable, and genuine four-level entangled otherwise. The set of decomposable states D is

convex by definition. This allows to construct witnesses for four-level entanglement. Recall

that an operator W is called an entanglement witness, iff tr(σW) ≥ 0 for all separable states

σ and tr(%W) < 0 for at least one entangled state % [173]. Special types of witnesses are the

projector-based witnesses which are of the form W = α1− |ξ〉 〈ξ|, where α is the maximal

squared overlap between |ξ〉 and the decomposable states [174]. In order to detect as many

states as possible, we chose |ξ〉 to be the state with the largest distance to D, meaning that α

is as small as possible. The state |ξ〉 can be determined by minimizing the maximal singular

value of S according to Eq. (5.4). According to the derivation of Observation 1 the maximal

overlap is a function of the squared determinant. Thus we have to distinguish between posi-

tive and negative values of the determinant, giving two interesting states |ξi〉, see Appendix

B [172] for details:

Observation 2. The following two states locally maximize the distance to the decomposable

states: For det(S) < 0 the Schmidt-rank three state

|ξ1〉 =
1√
3

(|00〉+ |11〉+ |22〉) (5.6)
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has the largest distance with α = [(3 +
√

5)/6]
1
2 ' 0.934 to the set of decomposable states.

For det(S) > 0 the Schmidt-rank four state

|ξ2〉 =

√
3
4 |00〉+ 1

2
√

3
(|11〉+ |22〉+ |33〉) (5.7)

maximizes the distance with a value of α = [(3 + 2
√

2)/6]
1
2 ' 0.986 to the set of decomposable

states.

5.1.3 General theory for bipartite systems

Let us start by considering only decompositions in two lower-dimensional states. In this case

the results from the previous section still hold, only the matrix S increases according to the

dimensions of the subsystems. This leaves us with the problem that the maximal singular

value depends on the encoding, which defines the arrangement of Schmidt coefficients in the

matrix S.

As an example we consider the embedding of the rank-four state from Eq. (5.1) in a

6× 6 dimensional system, that is, each party has a qubit and a qutrit. Using the encoding

|0〉 7→ |00〉 , |1〉 7→ |01〉 , |2〉 7→ 02, |3〉 7→ |10〉 , |4〉 7→ |11〉 , |5〉 7→ |12〉 we obtain the matrix S1

whereas using |0〉 7→ |00〉 , |1〉 7→ |01〉 , |2〉 7→ 10, |3〉 7→ |11〉 , |4〉 7→ |02〉 , |5〉 7→ |12〉 we obtain a

different matrix S2. The matrices are given by

S1 =

[
s0 s1 s2

s3 s4 s5

]
, S2 =

[
s0 s1 s4

s2 s3 s5

]
(5.8)

and can lead to different singular values. For instance, if we embed the two-ququart state

|ψ4〉 in this configuration, i.e., s0 = s1 = s2 = s3 = 1/2 and s4 = s5 = 0, we find that

max singval(S1) 6= 1, whereas max singval(S2) = 1. Consequently, when deciding decompos-

ability, it is crucial to optimize over all possible permutations of entries in S. As the number

of permutations grows super-exponentially, it is in general hard to compute this for increasing

dimensions.

Nevertheless, the complexity can be reduced, as we have to consider only those permuta-

tions, which lead to different maximal singular values. First, note that given two probability

distributions {pi} and {qi} the sum over the products
∑
i
√
piqi is maximal iff both are or-

dered in the same way. We can further assume in Eq. (5.4) that α0 ≥ α1 and similarly for βi,

since exchanging the components of α and β correspond to exchanging rows or columns of

S, which does not change its singular values. This implies that the entries of |α〉 〈β| decrease

in each row and column. Different values for αi and βi thus lead to different arrangements.

Consequently, we have to optimize S under the constraints that the entries of S must be

non-increasing in each row from left to right and in each column from top to bottom. From

the theory of Young tableaux [175] it follows that under these constraints for a decomposition

into d = d1 × d2 there are at most

N =
(d1 × d2)!∏d1

i=1
∏d2
j=1(i+ j − 1)

(5.9)

different matrices that could lead to different singular values (see Appendix C [172]). Fur-

thermore, the Master thesis of Tristan Kraft gives a more detailed discussion regarding Young

tableaux and the connection to the rank of the Schmidt matrix. Examples of this approach
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for maximally entangled states embedded in higher dimensions can be found in Appendix B

[172].

Furthermore, if one is only interested in decomposability, it suffices to check whether there

exists an arrangement such that S has rank one. This adds further restrictions since the rows

and columns must be linearly dependent. The number of possible arrangements reduces to

at most (see Appendix C [172])

N ′ = (d1 + d2 − 2)!
(d1 − 1)!× (d2 − 1)!

. (5.10)

It should be noted that an equivalent problem and solution has been considered in quantum

thermodynamics, where one may ask whether the correlations in a bipartite system can drop

to zero under global unitaries [176].

To complete the discussion, one may also take into account a decomposition of the system

into more than two lower-dimensional subsystems. In this case, the matrix S becomes a tensor

and thus deriving an analytical expression, equivalent to the singular value decomposition, is

difficult. However, there is an iterative algorithm ,which can be used to calculate the maximal

overlap between the original state and a given set of decomposable states (see Appendix E

[172]).

5.1.4 Multiparticle systems

We call an N -partite pure state |ψ〉 in (CD)⊗N fully decomposable iff there exist N -partite

states |ϕ〉, |ϕ′〉 of dimension d, d′ such that:

|ψ〉 = U1 ⊗ · · · ⊗UN |ϕ〉 ⊗ |ϕ′〉 , (5.11)

for some d× d′ = D. Here, the Ui denote the unitaries each party applies to their local

subsystems. This definition is in analogy to full separability in entanglement theory [174]. A

state that is not fully decomposable is multipartite multi-level entangled (MME).

If a state is non-decomposable according to Eq. (5.11), there might exist partitions under

which such states are decomposable. For instance, a state may be decomposable, if the unitary

on the first two particles is allowed to be nonlocal, i.e., we may set U1 ⊗ U2 7→ Unl
12. More

generally, there may be a bipartition of the N particles for which the state is decomposable.

Observation 3. Consider an N -particle state |ψ〉. If there exists a bipartition M |M ′ of the

N particles for which the state is decomposable, the state is called bidecomposable. Otherwise

the state is genuinely multipartite multi-level entangled (GMME). Verifying GMME for pure

states can be done by applying the methods for bipartite systems to all bipartitions.

To show that a pure multiparticle state is not fully decomposable is, however, not straight-

forward, as there is in general no Schmidt decomposition for systems consisting of more than

two parties [177]. Nevertheless, an iterative algorithm can be utilized, which we explain in

Appendix E [172]. Note that within the optimally decomposed state, the largest block that

cannot be decomposed any further identifies the minimal number of parties and dimensions

needed to reproduce the correlations in the original state. Also, the definitions above can

be readily generalized to mixed states by considering convex combinations. In the following

sections, we discuss examples, which are relevant for current experiments.
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Figure 5.2: Examples of weighted graph states. Left: The four-ququart
chain-graph state from Eq. (5.14) can be encoded into a weighted graph
state of eight qubits, see Eq. (5.16). Right: After application of the unitaries
UA1A2 and UD2D1 the state exhibits decomposability with respect to the
bipartitions A|BCD, D|ABC and AD|BC [see Eq. (5.17)] and thus the

original ququart state is bidecomposable and not GMME.

Example 1: Generalized GHZ states.— Motivated by our result from the bipartite case that

the maximally entangled state is decomposable, we start with studying Greenberger-Horne-

Zeilinger (GHZ) states, |GHZ(D)〉 = 1√
D

(|0 · · · 0〉+ |1 · · · 1〉+ · · ·+ |(D− 1) · · · (D− 1)〉) for

N particles with local dimension D.

First, we observe that the GHZ state is fully decomposable. In fact, it is decomposable with

respect to the finest factorization of the local dimension D, given by the prime decomposition

D =
∏k
j=1 dj of D, as we can write:

|GHZ(D)〉 enc.=
⊗k

j=1
|GHZ(dj )〉 , (5.12)

where |ϕj〉 represents the N -partite state of the subsystem with dimension dj .

The proof of Eq. (5.12) is straightforward. We just have to replace each level |i〉 (with

i ∈ [0,D− 1]) of the original state with its respective encoding into the lower levels |i1, . . . , ik〉
where each ij has dimension dj and as such values ∈ [0, dj − 1] for all j. The ordering of

the encoding is chosen such that the value within the respective number system is increas-

ing, that is it corresponds to a binary encoding for qubits (dj = 2), ternary for qutrits

(dj = 3), and similarly for higher dimensions. This leads to |0〉 7→ |0 . . . 0〉 , ..., |D− 1〉 7→
|
⊗

j(dj − 1), . . . ,
⊗

j(dj − 1)〉. Following this encoding process, a reordering, that is

(A1 . . . An,B1 . . . Bn, . . . ) 7→ (A1B1 . . . , . . . ,AnBn . . . ),

directly reveals the tensor structure of the encoded state with respect to every factor dj . In

Appendix D [172] we give the calculation for a six-dimensional GHZ state. Furthermore we

show there that the absolutely maximally entangled state of six qubits represents a decom-

posable three-ququart state in the GHZ class.

This example shows that all the correlations of a GHZ state in high dimensions, although

having a high Schmidt-rank for the bipartitions, can be simulated by low-dimensional systems.

This is distinct from other approaches that have been made, such as the Schmidt number

vectors from Ref. [178] or the criterion in Ref. [179], where the GHZ state was used to detect

higher-order entanglement. For completeness, a proof of the LU-equivalence between GHZ-

and the star-type graph states used in Ref. [179] is given in Appendix D [172].

Example 2. Graph states.— A D-dimensional weighted graph state can be written as

[180, 181]

|G〉 =
∏
{ij}∈E

Zα{ij} |+
D〉⊗ V , (5.13)
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where V denotes the set of vertices, E the set of edges connecting two vertices i and j and

|+D〉 is given by |+D〉 ∝ |0〉+ |1〉+ ... + |D− 1〉. Entanglement is created by the controlled

Z-gates Zα{ij} =
∑d−1
g=0(|g〉 〈g|)i ⊗Zgαj , where Zq =

∑D−1
q=0 ωq |q〉 〈q| (with ω = e2πi/D) defines

the single-qudit Z-gate. For α = 1 the structure reduces to non-weighted graph states, for

α = 1
2 the weighted edges can be graphically represented by dashed lines.

As an example for a state which is MME but not GMME, let us consider the chain graph

state of four ququarts:

|G(4)〉 = ZABZBCZCD |+4〉⊗4 . (5.14)

Encoding to eight qubits gives us the state (see Fig. 5.2, detailed calculations can be found

in Appendix D [172]):

|G(2)〉 = ZA1B1ZB1C1ZC1D1ZA2B2ZB2C2ZC2D2

×Z
1
2
A2B1

Z
1
2
B1C2

Z
1
2
C2D1

|+2〉⊗8 . (5.15)

Now we apply two-qubit unitaries of the form Uij = |+〉 〈+|i ⊗ 1j + |−〉 〈−|i ⊗ Z
3/2
j with

|±〉 = (|0〉 ± |1〉)/
√

2 on the two qubits of system A and D respectively and end up with

UA1A2UD2D1 |G
(2)〉 = Z

1
2
B1C2

|G(2)
D 〉 , (5.16)

where

|G(2)
D 〉 = ZA1B1ZB1C1ZC1D1ZA2B2ZB2C2ZC2D2 |+

2〉⊗8
(5.17)

is a fully decomposable state with no diagonal edges.

Thus for the bipartitions A|BCD or D|ABC the state is decomposable and thereby not

GMME. In fact, for the given state we find decomposability with respect to every possible

bipartition (see Appendix D [172]). For claiming multi-level entanglement, we still have to

exclude full decomposability. As mentioned before, this is a difficult task. We applied a

numerical algorithm (Appendix E [172]) which strongly indicates non-decomposability with

an maximal overlap of 0.8536 with the set of fully decomposable states.

Example 3. A genuine multilevel entangled state.— As a final example, consider the three

ququart state

|ψ(4)〉 =
3∑
j=0
|uj〉 |j〉 |uj〉 − 2 |3〉 |3〉 |3〉 , (5.18)

where |u0〉 = |0〉 + |1〉 + |2〉 + |3〉, |u1〉 = |0〉 − |1〉 + |2〉 − |3〉, |u2〉 = |0〉 + |1〉 − |2〉 −
|3〉, |u3〉 = |0〉 − |1〉 − |2〉 + |3〉. This state corresponds to the six-qubit state |ψ(2)〉 =

Z123456Z13Z35Z24Z46 |+(2)〉, a graph state with an additional hyperedge connecting all ver-

tices [182]. For this state we found for all bipartitions the Schmidt coefficients to be s0 = 0.551,

s1 = s2 = 0.5, s3 = 0.443 which leads to a non-zero determinant of det(S) = −0.0059. Hence,

rank(S) 6= 1 for all bipartitions and the state is non-decomposable for any bipartition. Con-

clusively this state is GMME, to be exact, genuine 3-partite 4-level entangled.

5.1.5 Conclusion

In conclusion, we have introduced the notion of genuine multi-level entanglement. This for-

malizes the notion of high-dimensional entanglement that cannot be simulated directly with

low-dimensional systems. We have provided methods to characterize those states for the

bipartite and multipartite case, including the construction of witnesses for an experimental
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test. The results can be interpreted as a cautionary tale with regards to naively employing

standard entanglement characterization tools. Whereas under general local operations and

classical communication, multiple copies of small dimensional systems are universal, this is

not the case anymore in restricted scenarios, even having access to all possible local unitaries.

This suggests that in practice, high-dimensional quantum systems do present a fundamentally

different resource under realistic conditions.

For future research there are different topics to address. First, one may consider network

scenarios, where a high-dimensional quantum state is distributed between several parties,

and the correlations should be explained by low-dimensional states shared between subsets of

the parties. Second, it would be desirable to develop a resource theory of high-dimensional

entanglement, where not only the state preparation, but also the local operations (like filters)

of the parties are considered. This may finally lead to a full understanding of quantum

information processing with high-dimensional systems.

5.1.6 Appendix

A: Proof of Observation 1

Here we prove Observation 1, which states that a two ququart state is decomposable iff

max sinval(S) = 1, where

S =

[
s0 s1

s2 s3

]
. (5.19)

First, let us consider two bipartite ququart states |ψ〉 and |ϕ〉. We prove that the maximal

overlap between |ψ〉 and |ϕ〉, where each party is allowed to perform local unitary operations,

is given by:

Fmax = max
UA,UB

|〈ψ|UA ⊗UB |ϕ〉| =
D−1∑
i=0

ηiσi (5.20)

where η0 ≥ · · · ≥ η3 ≥ 0 are the Schmidt coefficients of the state |ψ〉 and σ0 ≥ · · · ≥ σ3 ≥ 0
are the Schmidt coefficients of the state |ϕ〉. This was already shown in Ref. [183], but we add

this here for completeness. We start by writing the overlap in terms of coefficient matrices

of the states |ψ〉 and |ϕ〉, that is, we write |ψ〉 =
∑
i,j C

ij
ψ |ij〉 as Cψ =

∑
ij C

ij
ψ |i〉 〈j|, and

similarly for |ϕ〉. We have

Fmax = max
UA,UB

|〈ψ|UA ⊗UB |ϕ〉|

= max
UA,UB

|tr(C†ψUACϕU
T
B )|

=
D−1∑
i=0

si(Cψ)si(Cϕ). (5.21)

In the last step of Eq. (5.21) we used von Neumann’s trace inequality:

|tr(ΛΓ)| ≤
∑
i

λiγi (5.22)

which holds for all complex n× n matrices Λ and Γ with ordered singular values λi ≤ λi−1

and γi ≤ γi−1. It was proven in Ref. [184] that equality in Eq. (5.22) can only be reached

when Λ and Γ are simultaneously unitarily diagonalizable and hence both states need to have
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the same Schmidt basis. Therefore it is optimal to choose the encoding between the four-

dimensional systems and the qubits in the Schmidt basis. Furthermore note that the singular

values of the coefficient matrices are nothing but the Schmidt coefficients of the state. For

the 2× 2 matrix S the maximal singular value is given by

α =

√
1
2 (1 +

√
1− 4 det(S)2). (5.23)

Hence, we find that max singval(S) = 1 iff det(S) = 0, which finishes the proof of Observation

1. Other encodings lead to the same result since changing the encoding, can, for the special

case of two qubits, be described by swapping rows or columns of S, which does not change its

singular values. Note that for higher-dimensional systems (e.g., a qubit and a qutrit) the last

point is not true, and this is the reason, why we have to consider different matrices S there

[see Eq. (5.8) in the main text].

B: Witnesses for the bipartite case

Here we show how to construct a witness operator for four-level entanglement. We are seeking

for the state |ξ〉 which has the largest distance to the set of decomposable states and the

smallest coefficient α such that the witness W = α1− |ψ〉 〈ψ| is positive on all decomposable

states. Note that since D is a convex set, it is sufficient to optimize over all pure decomposable

states. In order to find |ξ〉 we compute

α = min
S

[max singval(S)]

s. t.: det(S) 6= 0,

s2
0 + s2

1 + s2
2 + s2

3 = 1,

s0 ≥ s1 ≥ s2 ≥ s3 ≥ 0. (5.24)

First note that the maximal singular value of a 2× 2 matrix is of the form of Eq. (5.23). In

the following we separately analyse the cases det(S) < 0 and det(S) > 0.

For det(S) < 0 we have to minimize det(S) = s0s3 − s1s2. Since s3 is by definition the

smallest coefficient we choose s3 = 0. Then we are left with max s1 · s2. For fixed s0, we have

that

s2
1 + s2

2 = const. (5.25)

which is the equation of a circle. Therefore the problem is equivalent to maximizing the

area of a rectangle with one corner at the origin and the other one on the circle defined by

Eq. (5.25). The obvious solution is therefore s1 = s2. Since s0 ≥ s1 the maximum is obtained

at s0 = s1 = s2 = 1√
3 .

For det(S) > 0 we have to maximize det(S) = s0s3 − s1s2. Therefore we have for any

given s0, s3 to minimize f(s1) = s1 · s2 = s1

√
C − s2

1 such that s0 ≥ s1 ≥ s2 ≥ s3 ≥ 0
and C = 1− s2

0 − s2
3. The minimum of the function f(s1) is obtained at the boundary for

s1 = s3, which implies s2 = s3. Therefore the maximum of the determinant is obtained at

s1 = s2 = s3 = 1
2
√

3 and s0 =
√

3/4.

We see that for dimension four the state with the largest distance to the set of decompos-

able states is the maximally entangled state of two qutrits. We observe that for increasing

dimensions the distance between the maximally entangled states with lower dimension and

the set of decomposable states decreases. Some analytical and numerical values are shown in
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Source rank overlap

2× 2 (4) 3
√

1
6 (3 +

√
5) ' 0.934

2× 3 (6) 5
√

1
10 (5 +

√
17) ' 0.955

2× 4 (8)
5

√
1
10 (5 +

√
17) ' 0.955

7
√

1
14 (7 +

√
37) ' 0.966

3× 3 (9)
5

√
1
10 (5 +

√
17) ' 0.955

7
√

1
14 (7 +

√
33) ' 0.954

8
√

1
16 (7 +

√
48) ' 0.965

2× 4 (10)
7

√
1
14 (7 +

√
37) ' 0.966

9
√

1
18 (9 +

√
65) ' 0.973

2× 6 (12)
7

√
1
14 (7 +

√
37) ' 0.966

9
√

1
18 (9 +

√
65) ' 0.973

7× 7 (49) 11
√

1
22 (11 +

√
101) ' 0.9781

Table 5.1: This table shows the analytical and numerical fidelities of the

maximally entangled state |ψ〉 = 1/
√
D
∑D−1
i=0 |ii〉 with all decomposable

states for a given dimension of the source.

Table 5.1. This might lead to the conclusion that the multi-level entangled states get closer

to the set of decomposable states for larger dimensions. However, a proof that the maximally

entangled states are the ones having the largest distance to the set of decomposable states is

still missing.

C: Connection to the theory of Young tableaux

In this section we want to discuss the relation between the number of arrangements of Schmidt

coefficients in the matrix S and the number of standard Young tableaux. First let us recall

the definition of a Young diagram. Given some number N ∈ N we call λ = (λ1,λ2 · · · ,λn)

a partitioning of the number N , that is
∑
k λk = N , λ1 ≥ λ2 ≥ · · · ≥ λn, and λi ∈N. Then

a Young diagram is an arrangement of left-justified rows, where the number of boxes in the

k-th row is given by λk (see Fig. 5.3).

A Young tableau of shape λ is a filling of the numbers 1, 2, · · · ,n into the boxes of the

Young diagram such that every number appears exactly once. A Young tableau is called

standard if the numbers are increasing in each row and each column. From here it is straight-

forward to see that this problem is equivalent to the problem of finding the number of possible

arrangements of the Schmidt coefficients in the matrix S under the constraints that we dis-

cussed in the main text. The number of possible arrangements that could lead to different

maximal singular values is simply given by the number of standard Young tableaux consisting

of d1× d2 boxes, arranged in a single block. This number is given by the so-called hook-length

formula [175]

N =
n!∏

(i,j) hi,j
, (5.26)

where hi,j is called a hook-length of the box (i, j). For a given box (i′, j′), its hook consists

of all boxes with either (i = i′, j > j′) or (i > i′, j = j′) and the box itself. The length of the

hook is then given by the number of boxes in the hook. For a Young tableau of d1× d2 boxes
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Figure 5.3: This figure shows an example of a standard Young tableau for
N = 8 and a partitioning λ = (4, 3, 1). The numbers 1, . . . , 8 are arranged

in such a way that their values increase in each row and each column.

this simplifies to

N =
(d1 × d2)!∏d1

i=1
∏d2
j=1(i+ j − 1)

. (5.27)

In case one is only interested whether or not a state is decomposable, the number of

different matrices that lead to a maximal singular value of one can be further reduced. This

is due to the additional constraint that, if the matrix S has rank one, all the rows as well as

the columns must me mutually linearly dependent. Then, it is easy to see that the following

algorithm can solve the problem. We start again by filling the Schmidt coefficients in an array

such that their values are non-increasing in each row and each column. We can fix the upper

left entry to be the largest element. Whenever we get in a situation, in which we fix the

constant between two rows or columns we check whether there are some remaining Schmidt

coefficients which lead to linearly dependent rows or columns. If this is the case, we fill the

array with the appropriate number and continue. If these numbers do not exist, we abort and

have to start all over again with a different arrangement. It is obvious that, if there exists an

arrangement which leads to a matrix with rank one, then the algorithm will find it. Using

the formalism of Young tableaux we can again calculate the maximum number of different

matrices that we need to check. First note that when we apply the algorithm, we always fix

the values of the entries in the first row and the first column. The only thing that changes

is the order in which we fill the entries. The number of all possible ways to do this is again

given by a number of standard Young tableaux consisting of a single row and a single column.

By applying the hook length formula we obtain

N ′ =
(d1 + d2 − 1)!

(d1 + d2 − 1)× (d1 − 1)!× (d2 − 1)!

=
(d1 + d2 − 2)!

(d1 − 1)!× (d2 − 1)!
. (5.28)

D: Examples

In this section, we provide some notes on Example 1 (fully decomposable state) as well as a

detailed proof for Example 2 (MME state) for the multipartite exemplary states given in the

main text. Furthermore we present another interesting fully decomposable state of six qubits.

Example 1. GHZ States

LU-equivalence of GHZ- and star-type graph states. Here we show the equivalence

of star-type graph states and GHZ states in arbitrary dimension and system size under local

unitary (LU) operations. Decomposability is a property of a state, which does not change
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under LU-operations on the original state, therefore it is sufficient to show that |Gstar〉
LU
=

|GHZ(D)〉 for any dimension D and any number of qudits N .

Star-type graphs are graphs where one central vertex is connected to any other vertex

by an edge, and no other edges are present. For the corresponding quantum state we have

according to Eq. (5.13) in the main text |Gstar〉 =
∏N
q=2 Z1q |+〉⊗N . This can be simplified

to:

|Gstar〉 =
N−1∑
p=0
|p〉1

N⊗
q=2
|+p〉q

∝ |0〉1 |+0〉2 . . . |+0〉N + |1〉1 |+1〉2 . . . |+1〉N
+ · · ·+ |D− 1〉1 |+D−1〉2 . . . |+D−1〉N .

(5.29)

Here we use the (D-dimensional) single qudit states |+i〉 = 1√
D

∑D−1
k=0 ω

ki |k〉 with ω =

e2πi/D, note that |+0〉 = |+D〉 in our previous notation. Since 〈+i|+j〉 = δij , the set {|+i〉}
forms a basis of CD. Eq. (5.29) is, up to local rotations on all subsystems except the first,

equal to |GHZ(D)〉.

Full decomposability of a 6× 6× 6 system To clarify the proof of Eq. (5.12) in the main

text, we exemplary do the complete calculation for a system of three parties each of which

has dimension six, such that the prime decomposition D = 2× 3 equals access to a qubit and

a qutrit. The state, up to normalization, reads |GHZ(6)〉 =
∑5
`=0 |```〉. The encoding and

resorting of the order, which groups the subsystems of the qubits and qutrits respectively,

then gives the six-partite state

|GHZ(6)〉 enc.= |000000〉+ |010101〉+ |020202〉

+ |101010〉+ |111111〉+ |121212〉
res.
= |000000〉+ |000111〉+ |000222〉

+ |111000〉+ |111111〉+ |111222〉

= (|000〉+ |111〉)⊗ (|000〉+ |111〉+ |222〉),

(5.30)

which shows decomposability into |GHZ(2)〉 and |GHZ(3)〉. The generalization to an arbitrary

number of systems N and arbitrary dimension D follows straightforward.

Example 2: Graph states

Here we present the calculation for the four-ququart graph states, see also Fig. 5.4 and Fig. 5.2

in the main text. To start, the chain graph state of N = 4 ququarts is given by

|G(4)〉 = Z̃ABZ̃BC Z̃CD |+4〉⊗4

=
3∑

ABCD=0
ωAB(4) ω

BC
(4) ω

CD
(4) |ABCD〉 .

(5.31)

Here Z̃ij = diag(1, i,−1,−i) is the ququart controlled Z-gate and ω(4) = e2πi/4 = i. We

use the computational basis |ABCD〉 to simplify the encoding process. The ququarts cor-

responding to (A,B,C,D) are decomposed into two qubits each with the following labels

(A1,A2,B1,B2,C1,C2,D1,D2) = (1, 2, 4, 3, 5, 6, 8, 7), see Fig. 5.4(a).
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Figure 5.4: Example of a state that is MME but not genuine MME. The
four-ququart chain-type graph is encoded into LU-equivalent eight-qubit
states. (a): The equivalence to this state has already been shown in the
main text, see Fig. 5.2. (b): The state is also equivalent to this configura-
tion, see Eq. (5.37). (c) and (d): These equivalences follow from Eq. (5.35).
In summary, the state is decomposable with respect to all possible biparti-

tions.

To represent the ququart state, we make the replacements: A→ 2A1 +A2, B → 2B2 +B1,

C → 2C1 + C2 and D → 2D2 +D1, as this reproduces for an additional replacement of the∑3
A,B,C,D=0 →

∑1
A1...D2=0 the same exponents as in Eq. (5.31). Then we have:

|G(4)〉 enc.= |G(2)〉

=
1∑

A1...D2=0
ω

(2A1+A2)(2B2+B1)
(4)

ω
(2B2+B1)(2C1+C2)
(4)

ω
(2C1+C2)(2D2+D1)
(4)

|A1A2B1B2C1C2D1D2〉 .

(5.32)

We furthermore use ω(4) = e
iπ
2 = ω

1
2
(2)

and ω2c
(2) = 1, c ∈N and can simplify Eq. (5.32)

|G(2)〉 =
2∑

A1...D2=0
ωA1B1

(2)
ωA2B2

(2)
ωB2C2

(2)
ωB1C1

(2)
ωC1D1

(2)
ωC2D2

(2)

ω
A2B1

2
(2)

ω
B1C2

2
(2)

ω
C2D1

2
(2)

|A1A2B1B2C1C2D1D2〉

= ZA1B1ZA2B2ZB2C2ZB1C1ZC1D1ZC2D2

Z
1
2
A2B1

Z
1
2
B1C2

Z
1
2
C2D1

|+2〉⊗8 .

(5.33)

Here, Zij = diag(1,−1) is the qubit-controlled Z-gate, this state is shown in left side of

Fig. 5.2 in the main text. We then apply VA1A2 , V
3
2
B1B2

and V
3
2
D1D2

to |G(2)〉. Those are for

the further analysis in this example defined as

VX1X2 = (|+〉 〈+|)X1 ⊗ 1X2 + (|−〉 〈−|)X1 ⊗ZX2 , (5.34)

where for X = A,B,C,D all VX1X2 are included in the set of vertical unitaries {UVert}. By

straightforward calculation, one verifies:

(VA1A2V
3
2
B1B2

V
3
2
D1D2

) |G(2)〉 = VA1A2B2 |G
(2)
D 〉 ,

(VD1D2V
3
2
C1C2

V
3
2
A1A2

) |G(2)〉 = VC1D1D2 |G
(2)
D 〉 .

(5.35)
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Figure 5.5: The maximally entangled state on six qubits represents a de-
composable three ququart state.

This means that for the question of decomposability the weighted diagonal edges have the

same effect on the decomposable state |G(2)
D 〉 as one hyper-edge connecting three qubits either

one or the other end of the chain, see Fig. 5.4(c) and Fig. 5.4(d). The mentioned hyper-edge

is formally a three-qubit unitary of the form

VX1X2Y1 = (|+〉 〈+|)X1 ⊗ 1X2Y1 + (|−〉 〈−|)X1 ⊗ VX2Y1 (5.36)

with VX2Y1 as defined in Eq. (5.34) and |G(2)
D 〉 is a decomposable state, defined in Eq. (5.17)

in the main text.

Furthermore, one can directly check that we can replace the three weighted Z-gates (Z
1
2
ij )

in Eq. (5.33) by one weighted edge acting on qubits A1 and C2

|G(2)〉 = U
3
2
A1A2

U
3
2
B1B2

UA1C2 |G
(2)
D 〉 (5.37)

with UA1C2 = (|+〉 〈+|)A1 ⊗ 1C2 + (|−〉 〈−|)A1 ⊗ ZC2 and two vertical unitaries U
3
2
A1A2

and

U
3
2
B1B2

[see Fig. 5.4(b)].

From Eq. (5.35) and Eq. (5.37) we see that, whereas this state is not decomposable, there

exists for every bipartition a representation of this state, for which the S-matrix has rank

one. In Fig. 5.4, the different equivalent representations of the state are shown graphically.

Each option presents decomposability with respect to another bipartite split, such that all

possible ones are covered. However, to exclude genuine MME, let us once again stress that

the existence of one split exhibiting decomposability is enough.

The maximally entangled state of six qubits

We have already seen that the highly entangled GHZ states are not necessarily multi-level

entangled. Therefore one might ask the following question: Are there other highly entangled

states which are not multi-level entangled? One example is the three-ququart state that

corresponds to the absolutely maximally entangled state of six qubits (see Fig. 5.5). The

six-qubit state is given by

|G(2)〉 = Z12Z34Z56Z23Z36Z45Z24Z35Z16 |+〉⊗6 (5.38)
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Figure 5.6: We ask whether the state on the left can be constructed by
first preparing states |Q〉 and |R〉 and then applying local unitary operations
UA, . . . ,UD. Since this is not possible the state is not decomposable, it is

MME.

and corresponds to a graph state. Nevertheless, this state is fully decomposable. To prove

this, we first mention that via local complementation [181] (LC), we can obtain:

|G(2)〉 LC−−−−−−→
on 1,2,5,3

Z12Z56Z14Z23Z36Z45Z15Z26 |+〉⊗6 (5.39)

Comparing Eq. (5.38) and Eq. (5.39), the difference between those is depicted in Fig. 5.5 on

the right side. Whereas the first equation contains diagonal connections (which contradicts

a direct decomposition), the second form shows that these can be replaced by vertical and

horizontal ones. Therefore we can reach the original state by starting from a decomposable

state.

E: Algorithm for testing full decomposability

In this section we explain the algorithm that we used to test whether or not the four ququart

chain-graph state |ψ〉 in Eq. 5.14 in the main text. The aim is to test whether or not the

state |ψ〉 can be written as |ψ〉 ?
= UA ⊗UB ⊗UC ⊗UD |Q〉 ⊗ |R〉, see also Fig. 5.6. Thus, we

want to compute

max
UA···UD
|Q〉|R〉

|〈Q| 〈R|UA ⊗UB ⊗UC ⊗UD |ψ〉|. (5.40)

The idea is to choose initial states |Q〉 and |R〉, as well as unitaries UA, . . . ,UD at random

and then optimize the states and unitaries iteratively, until a fix-point is reached. The point

is that any of the iteration steps can be performed analytically. In order to optimize the

state |Q〉, we fix the unitaries UA, . . . ,UD and the state |R〉. We obtain the optimal choice of

|Q〉 by computing maxQ |〈Q| (〈R|UA ⊗UB ⊗UC ⊗UD |ψ〉)| = maxQ | 〈Q〉 ψ̃|. We have that

|Q〉 ∝ |ψ̃〉 is optimal up to normalization. The similar argument holds for |R〉. For optimizing

the local unitaries we fix any unitary, but the one we want to optimize, say UA. Then, we

have

max
UA
|〈Q| 〈R|UA ⊗UB ⊗UC ⊗UD |ψ〉|

= max
UA
|〈Q| 〈R|UA ˜|ψ〉|

= max
UA
|tr(UA ˜|ψ〉 〈Q| 〈R|)|

= max
UA
|trA(UA%A)| =

∑
i

si(%A) (5.41)
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where %A = trBCD( ˜|ψ〉 〈Q| 〈R|). We write %A in the singular value decomposition and we get

%A = UDV †. Then we choose UA = V U † and hence

|trA(UA%A)| = |tr(D)| =
∑
i

si(%A). (5.42)

5.2 Distinguishing MME from DEC

Within this section, we present a method to analytically decide whether for a given mul-

tipartite state of dimension d =
∏
i di it is possible to be within the set of decomposable

states. Note that this criterion is only necessary but not sufficient. Nonetheless, it has proven

to be useful, e.g. for the state from Example 2 in the foregoing Section 5.1 (see Eq.(5.14))

decomposability can be excluded.

The idea behind the method to be presented in the following is based on the rank of the

coefficient matrix, rank(C) (Eq.(2.12)). Remember that rank(C) is invariant under SLOCC

operations, which is a crucial property for this method to work.

Whereas in general for a d-dimensional state |ψ〉, the rank can take all values between

rank(C) = 1 and rank(C) = d, this is not the case for the DEC-class when switching to

a representation by lower dimensional systems. We show that the possible ranks of the state

|ψdec〉 are dependent on the factors di within the chosen division of subsystems. That is, the

rank values are limited to the product of the subsystem dimensions and we can formulate the

following theorem:

Theorem 5.1. Rank values of the coefficient matrix

If the rank of the coefficient matrix of a state is not equal to the product of the 0− th or 1− th
power of the subsystem dimensions in the chosen split, then the state is not decomposable.

Proving Theorem 5.1 reduces to proving the following Lemma 5.1:

Lemma 5.1. Let |ψ〉 be an n-partite pure state of dimension d =
∏
i di. Furthermore, let

d =
∏
k dk be an arbitrary, k-partite split of each qudit into lower dimensional systems of

dimension dk with |ψk〉 being the encoded state associated with the chosen split. If |ψk〉 is

within the set of decomposable states {|ψdec〉}, i.e. |ψk〉 =
⊗k−1

j=0 |ψj〉 (dj) ≡ |ψdec〉 with

|ψj〉 (dj) denoting the n-partite state of dimension dj , then the rank of the corresponding

coefficient matrix Cdec can take the values

rank(Cdec) = {
n∏
k=1

dxkk }, where: xk ∈ [0, 1] (5.43)

Proof. For better readability, let us start with proving Lemma 5.1 for the most simple system

of two ququarts. Let A and B denote the parties of the ququart system and A 7→ A1A2,

B 7→ B1B2 represents the only possible split of the original system is into two qubits each.

Any pure ququart state can be written in Schmidt decomposition: |ψ〉 =
∑3
i=0 si |ii〉AB .

The rank r(CA|B) of the coefficient matrix then can take all values within [1, 2, 3, 4]. In

the bipartite case, the rank equals the number of non-zero Schmidt coefficients si. Now

consider a state out of the set of decomposable states, that is |ψdec〉 = |ψ〉A1B1⊗|ψ〉A2B2 with

|ψ〉 enc.
= |ψdec〉. Both again can be written in Schmidt decomposition: |ψA1B1〉 =

∑1
j=0 tj |jj〉

and |ψA1B1〉 =
∑1
k=0 rj |kk〉. The corresponding coefficient matrices CA1|B1 and CA2|B2 can

both be of either rank one or rank two as d1 = d2 = 2 and thus the rank of the coefficient
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matrix representing the complete system CA1B1|A2B2 can take the values

rank(CA1B1|A2B2) =
2∏

k=1
dxkk =



d0
1 · d0

2 = 1 x1 = x2 = 0

d0
1 · d2 = 2 x1 = 0, x2 = 1

d1 · d0
2 = 2 x1 = 1, x2 = 0

d1 · d2 = 4 x1 = x2 = 1

(5.44)

this can be seen when considering |ψdec〉 as tensor product of |ψ〉A1B1 ⊗ |ψ〉A2B2 in Schmidt

decomposition. Then

|ψdec〉 =
1∑

jk=0
tjrk |jkjk〉A1B1A2C2

and therefore: Cdec = CA1B1|A2B2 =


t0r0 0 0 0

0 t0r1 0 0
0 0 t1r0 0
0 0 0 t1r1


(5.45)

From this, it is obvious that if tj = 0 the rank is reduced by two as all diagonal elements

having ti as factor go to zero. Same is true for rk. Thus we infer rank(Cdec) 6= 3.

Lemma 5.1 directly proves Theorem 5.1, as a rank of three, i.e. rank(CA|B) = 3, of the

original ququart state excludes decomposability with respect to the split (A1B1|A2B2).

Generalizing this proof to arbitrary system size and number of participating particles is

straightforward. To see this, take into consideration that the coefficient matrix always rep-

resents some bipartite split within the system and as such the argumentation based on the

Schmidt decomposition is valid for the multipartite case. Moreover, the restriction on the

ranks has to be satisfied for any possible bipartite split AiBi|AIBI with I = {1, ...,n \ {i}}.
Regarding a higher dimension and thus more options for a k-partite split changes the number

of non-zero tj and rk as well as their possible values. The argumentation from above still

works, as full rank equals to all tj and rk non-zero. One coefficient equal to zero reduced the

number of non-zero diagonal components of Cdec to d
di

, which directly corresponds to possible

rank values determined by Eq. (5.43)
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5.3 Lower dimensional representation of qudit graph states

Within this section, we give a general method how to generate from a given qudit graph state

the associated (weighted) graph state within a lower dimensional encoding. The structure of

graph states hereby restricts the possible values of the original systems dimension to D = dk.

Otherwise, the encoded graph would consist of qudits with different dimensions and thus fall

out of the classical definition of graph states as well as their extension to weighted graphs.

Let us first clarify that the encoding of a D-dimensional system into k d-dimensional parties in

done by using d-ary ordering, i.e. |0〉D 7→ |0...0〉d︸ ︷︷ ︸
k−times

, |d− 1〉D 7→ |0...0d− 1〉d, |d〉D 7→ |0...10〉d

and |D− 1〉D 7→ |d− 1...d− 1〉d. The main statement of this section is formulated in the

following theorem:

Theorem 5.2. Encoding of graph states into lower dimensions

Let |GD〉 be an N -partite qudit graph state of dimension D = dk, i.e.

|GD〉 =
∏

(ij)∈E

Zij(D) |+D〉⊗N , with: Zij(D) =
D−1∑
a=0
|a〉 〈a|i ⊗Zj(D)a (5.46)

and the D-dimensional single qudit Z−gate Zj(D) =
∑D−1
α=0 ω

α
D |α〉 〈α|. Then, the n = k ·N -

partite weighted graph state of dimension d associated with the k−partite split of each D-

dimensional qudit into k d-dimensional qudits is of the form

|Gd〉 =
∏

(iljm)∈Ek;(l,m)∈[1,k]

Z
f (l,m)
iljm

(d) |+d〉⊗n with: Ziljm(d) =
d−1∑
b=0
|b〉 〈b|il ⊗Zjm(d)b

(5.47)

where Zjm(d) =
∑d−1
β=0(ω

f (l,m)
d )β |β〉 〈β|. The phases are related by ωd

k−1
D = ωd and the

mapping f(l,m) is defined as

f(l,m) =



1
d0 l > k−m, l+m = k + 1
1
d1 l > k−m, l+m = k + 2
...

...
1

dk−1 l > k−m, l+m = 2k
0 l ≤ k−m


≡

 1
dl+m−k−1 l > k−m

0 l ≤ k−m
(5.48)

Proof. We will give proof by considering the action of one controlled Z-gate Zij(D) on the

relevant qudits |++〉ij , using Eq. (2.112) we have

Zij(D) |++〉ij =
D−1∑
ij=0

ωijD |ij〉 (5.49)

We now seek to find a function f(l,m) that reproduces the same phases, such that the states

correlations remain unchanged after the encoding process, i.e. ωijD = ω
f (l,m)
D . The structure

of the chosen encoding directly gives for a two-partite split, i.e. k = 2, the partioning of the

form i = di1 + i2 and j = dj1 + j2. The generalization to arbitrary k then is found to be

i =
k∑
l=1

dk−lil and: j =
k∑

m=1
dk−mjm (5.50)
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Exemplary this is shown in Table 5.2 for k = 4 and d = 3.

i i1 i2 i3 i4 27i1 + 9i2 + 3i3 + i4
0 0 0 0 0 0

1 0 0 0 1 1

2 0 0 0 2 2

3 0 0 1 0 3
...

...
...

...
...

...

8 0 0 2 2 8

9 0 1 0 0 9
...

...
...

...
...

...

25 0 2 2 1 25

26 0 2 2 2 26
...

...
...

...
...

...

79 2 2 2 1 79

80 2 2 2 2 80

Table 5.2: Encoding of one qudit of D=81 into four qudits with d=3 and

mapping f(l,m) : i 7→
∑4
l=1 d

4−lil which gives the correct values for i,
analogously, this can be done for the index j. The equivalent values of the
first and last column show that f(l,m) leaves the phases unchanged, i.e.

ωij81 = ω
f (l,m)
81 .

Next, we replace the D−dimensional phase ωD by ωd to find the d−dimensional controlled

Z-gates and plug in f(l,m), i.e. make the replacements for i and j according to Eq.(5.50)

ωijD = ω
f (l,m)
D = ω

(
∑k

l=1 d
k−lil)(

∑k

m=1 d
k−mjm)

D

= ω

∑k

l,m=1 d
k−ldk−miljm

D = (ω

∑k

l,m=1 d
k−ldk−miljm

d )
1

dk−1

(5.51)

Keeping in mind that dk−l ∈ [d0, dk−1] and likewise dk−m ∈ [d0, dk−1] we can, by noticing

that

ωd
k+c

D = ω
dk+c

dk−1
d = ωd

c+1
d

mod d
=

ω
0
d = 1 c ≥ 0

ω
1

d−(c+1)

d = d−(c+1)√ωd c < 0,
(5.52)

identify the surviving terms in the product of sums in Eq.(5.51), i.e. all (l,m)-tupels with

l > k −m and thereby simplifying it further. The following table (Table 5.3) shows those

terms and the associated d-dimensional controlled Z-gates.

That is, for each (l,m)− tupel, a Z(d)-gate of power s = 1
l+m−k−1 emerges:

(l,m) 7→ Z(d)
1

l+m−k−1
iljm

∀ l > k−m, l,m ∈ [1, k]. (5.53)

which proves the Theorem.

For the example above with D = 81, k = 4, d = 3 the n = 4-partite chain graph state
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(l,m)-tupel related powers of ωD = ω
1

dk−1
d associated Zsiljm(d)-gate

(1,k) ωd
k−1d0i1jk
D Zi1jk (d)

(2,k) ωd
k−2d0i1jk
D Zi2jk (d)

1
d

(2,k-1 ) ω
dk−2d1i2jk−1
D Zi2jk−1(d)1

(3,k) ωd
k−3d0i3jk
D Zi3jk (d)

1
d2

(3,k-1) ω
dk−3d1i2jk−1
D Zi3jk−1(d)

1
d

(3,k-2) ω
dk−3d2i2jk−2
D Zi3jk−2(d)

...
...

...

(k,k) ωd
0d0ikjk
D Zikjk (d)

1
dk−1

(k,k-1) ω
d0d1ikjk−1
d Zikjk−1(d)

1
dk−2

...
...

...

(k,1) ωd
0dk−1ikj1
D Zikj1(d)

Table 5.3: For each tupel (l,m) the phases ω
f (l,m)
D 6= 0 and associated

controlled Z-gates Zd in the lower dimensional representation of a k−partite
split are assigned.

|GD〉 = Z(D)12Z(D)23Z(D)34 |+〉⊗4
D gives for each Z(d)xy with (xy) = [(12), (23), (34)]

Z(D)xy 7→ Z(d)x1y4Z(d)x2y3Z(d)x3y2Z(d)x4y1

Z(d)
1
3
x2y4Z(d)

1
3
x3y3Z(d)

1
3
x4y2

Z(d)
1
9
x3y4Z(d)

1
9
x4y3Z(d)

1
27
x4y4

(5.54)

The graphical representation of the encoded state is shown in Fig. 5.7
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33
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43

41
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44

Zij (Zij)
1/3 (Zij)

1/9 (Zij)
1/27

Figure 5.7: The encoded state |Gd〉 associated to the chain graph state of
four qudits, |GD〉 in D = 81 w.r.t the 4-partite split of each 81-dimensional

qudit into four 3-dimensional qudits.



128 Chapter 5. Characterizing genuine multilevel entanglement

5.4 Network configuration

Within this section, we indroduce an alternative way of distributing the subsystems when

splitting the original systems into a set of lower dimensional qudits. Here, each system, i.e.

its split into k parts, can be seen as a node of a quantum network. Entanglement is then

created by sources in between two nodes such that one part of each node is connected to

another part of the second node. We call this connection a (quantum) link. Spreading the

entanglement initially generated on the links over the whole network can then be done by

making non-local measurements on the nodes. In this way, a strongly correlated multipartite

entangled state is generated. Note, that for a network of N nodes, each having k subsystems,

at most genuine k−partite entangled states can be generated as the entanglement generating

operations on the nodes act on no more than k parties and the sources are taken to be

independent or - as an extension to the model - classical communication could be possible.

Applications for quantum networks exist i.e. in quantum processors, where information and

entanglement is exchanged between parties (nodes) via a quantum link, i.e., the entangled

source state. Furthermore, network states could be useful for long distance communications,

where quantum repeaters based on entangled photon sources and quantum memories are used.

This motivates to take a closer look at the properties of those network states. That is, from

the theoretical point of view, a first step is to characterize the set of states which can be

generated in such a network scenario.

As this field is ongoing work, we want to give an introduction to the framework and, based

on some interesting properties within a triangular network, motivate further investigation.

5.4.1 Triangular network configuration

As in the bipartite case (N = 2) the network configuration coincides with the original con-

figuration proposed in Sec. 5.1, the triangular network configuration is the most simple

realization of a quantum network. Here, we have three nodes, denoted by A,B and C which,

dependent on the dimension of the respective systems, are divided into two lower dimensional

subsystems. Furthermore, there are three independent sources Ã, B̃ and C̃ creating entangled

two-qudit states |α〉, |β〉 and |γ〉 between the nodes subsystems. The entanglement propaga-

tion, i.e. generating multipartite correlations, is then realized by allowing unitaries UA, UB

and UC to be performed by each party on their own node. These unitaries are local with

respect to each party but nonlocal with respect to their action on all subsystems of each node.

The graphical representation of such triangular network states with independent sources or

classically correlated sources is shown in Fig. 5.8.
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Figure 5.8: (Left) Triangular quantum network consisting of three indpen-
dent sources |α〉, |β〉 and |γ〉. (Right) Triangular quantum network where

classical communication (c.c) between the sources is allowed.



5.4. Network configuration 129

A general six-partite state |ψ〉 written in network notation, i.e. denoting the partites with

respect to their relation to being subsystems of a node, then is of the form

|ψ〉 =
d−1∑

a1a2b1b2c1c2=0
Ta1a2b1b2c1c2 |a1a2b1b2c1c2〉 . (5.55)

On the other hand, all states |ψN 〉 possible to be generated within the triangular network

configuration can be written as

|ψN 〉 = (UA ⊗UB ⊗UC) |α〉a1b1
|β〉b2c2

|γ〉c1a2

= (UA ⊗UB ⊗UC)
d−1∑

a1a2b1b2c1c2=0
αa1b2βb2c2γc1a2 |a1a2b1b2c1c2〉 .

(5.56)

Whether a given state |ψ〉 can be generated within a triangular quantum network, is then

answered by the question whether there exist source states |α〉a1b1
, |β〉b2c2

, |γ〉c1a2 and uni-

taries UA, UB , UC such that |ψ〉 = |ψN 〉.
To decide this, we employ a numerical algorithm similar to the one used for distinguishing

between DEC and MME, see 5.1.6. Choosing random source states |α〉, |β〉, |γ〉, we start the

optimization process by optimizing over each source state, i.e., for the finding the optimal

|α〉, we need to compute

max
α
〈αβγ|ψ〉 = max

α

〈α| d−1∑
a1a2b1b2c1c2=0

β∗b2c2γ
∗
c1a2 〈a2b2c1c2|Ta1a2b1b2c1c2 |a1a2b1b2c1c2〉


= max

α∗
a1b1

∑
a1b1

〈a1b1|α∗a1b1

∑
a2b2c1c2

Ta1a2b1b2c1c2β
∗
b2c2γ

∗
c1a2 |a1b1〉

 .

(5.57)

Then the optimal choice for each αa1b1 is found by:

α∗a1b1 =
∑

a2b2c1c2

β∗b2c2γ
∗
c1a2Ta1a2b1b2c1c2 (5.58)

and therefore the corresponding optimal state |α〉a1b1
is given by |α〉a1b1

∝ |ψ̄〉 up to normal-

ization and with |ψ̄〉 = 〈β|b2c2
〈γ|c1a2

|ψ〉. The optimization over |β〉b2c2
and |γ〉c1a2

is done in

analogous fashion. Following, the optimization process moves on to the unitaries. For a given

resource state |αa1b1βb2c2γc1a2〉 ≡ |αβγ〉, we optimize over each unitary separately, starting

with UA for fixed, randomly chosen UB , UC

max
UA
| 〈αβγ|(UA ⊗UB ⊗UC)ψ̃〉 |

= max
UA
|tr(UA |ψ̃〉 〈αβγ|)|

= max
UA
|trA(UAρA)|

(5.59)

where |ψ̃〉 = UB ⊗ UC |ψ〉 and the reduced density matrix ρA = trBC(|ψ̃〉 〈αβγ|). Further-

more, we can use the singular value decomposition of ρA = V DW † to rewrite Eq. (5.59)

as

max
UA
|trA(UAρA)| = max

UA
|trA(UAVADAW

†
A| (5.60)
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which gives an optimal unitary UA = WAV
†
A and finally can express the maximization over

UA in terms of the singular values {si} of ρA

max
UA
|trA(UAρA)| =

∑
i

di(ρA) (5.61)

Equivalently, we proceed for UB and UC which concludes the first optimization round. We go

on by repeating those rounds until a fixpoint is reached. Running this numerical optimization

algorithm over sufficiently many randomly chosen source states, there is a high probability

for obtaining the maximal overlap between a given state |ψ〉 and any state |ψN 〉 that can be

generated within the triangular network configuration.

Examples: GHZ-states and the network configuration

Let us now use the presented algorithm for calculating the maximal overlap for two concrete

given states within the GHZ class. As GHZ-states inhibit genuine multilevel entanglement, it

is clear that it can not be generated within the network scenario. Thus the maximal overlap

has to be smaller than one. In some cases, from the decomposition, we can directly derive

a lower bound on the overlap, which can then be a useful starting point for our algorithm.

As a first example state consider the tripartite GHZ state in dimension d = 2. The binary

encoding then gives

|GHZ2〉ABC =
1√
2

(|000〉+ |111〉)ABC
enc.
=

1√
2

(|000000〉+ |010101〉)a1a2b1b2c1c2

= |000〉a1b1c1
⊗ (|000〉+ |111〉)a2b2c2 = |000〉a1b1c1

⊗ |GHZ2〉a2b2c2

≡ |ghz2〉

(5.62)

From Eq. (5.62), we can infer that the maximal overlap has to be lower bounded by the

maximal overlap of a three-qubit GHZ-state and the set of biseparable states. To see this,

notice that the state |000〉 on systems (a1b1c1) is a product state and thus can always be

generated by the source states and therefore gives an overlap of one. Then the total overlap

is dependent only on 〈GHZ2|β ⊗ |0〉〉. Applying the algorithm then gives a maximal overlap

with the set of network states {|ψN 〉}

max
αβγ

UA,UB ,UC

| 〈ψN |ghz2〉 | =
1
2 (5.63)

which is equal to the overlap between the three qubit GHZ-state and the set of biseparable

states. Considering that in the network configuration the subspace of systems a2 b2 and c2

produces biseparable states with respect to the split (b2c2|a2), this result is to be expected.

As another example, we take the three-dimensional GHZ-state of two parties, i.e.

|GHZ3〉 =
1√
3

(|00〉+ |11〉+ |22〉)AB

enc.
=

1√
3

(|0000〉+ |0101〉+ |1010〉)a1a2b1b2 .
(5.64)
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Applying the numerical algorithm, we reach a maximal overlap of 4
9 for the source states and

unitaries given as

max
αβγ,

UAUBUC

| 〈GHZ3|ψN 〉 | =
4
9 for: |α〉 = |β〉 = |γ〉 =

√
2
3 |00〉+

√
1
3 |11〉

UA = UC = −i(|0〉 〈0|)a1 ⊗ (σy)a2 + (|1〉 〈1|)a1 ⊗ 1a2 ,

UB = 1b1b2

(5.65)

Lastly, we consider the bipartite GHZ-state in dimension four, which we know from Section

5.1.2 to be reproducible by preparing qubit-GHZ-states on (a1b1) and (a2b2) respectively

|GHZ4〉 =
1
2 (|00〉+ |11〉+ |22〉+ |33〉)AB

enc.
=

1
2 (|GHZ2〉a1b1

⊗ |GHZ2〉a2b2
)

(5.66)

The maximal overlap of |GHZ4〉 and the set of triangular network states is now lower bounded

by the product of the maximal overlaps for each |GHZ2〉. This would give a value of 1
2 ·

1
2 = 1

4 ,

as we know from Eq. (5.63). Using the algorithm, it turns out that the reachable overlap is

significant higher then the lower bound, i.e. we were able to determine a maximal overlap of
1
2 for Bell states generated by each source, such that:

max
αβγ,

UAUBUC

| 〈GHZ4|ψN 〉 | =
1
2 for: |α〉 = |β〉 = |γ〉 =

√
1
2 (|00〉+ |11〉)

UA = UC = −i(|0〉 〈0|)a1 ⊗ (1− σy)a2

+ (|1〉 〈1|)a1 ⊗ (1+ σy)a2 ,

UB = 1b1b2

(5.67)





133

Chapter 6

Summary and Outlook

Within this thesis, the structure and detection of entanglement within multipartite and high-

dimensional systems was investigated.

For the general scenario of arbitrary system size and dimensionality, a one-to-one connec-

tion between SLOCC witnesses and entanglement witnesses within a two-copy Hilbert space

was established. This connection can be exploited both ways, that is, solving one problem

directly provides a solution to the related one. Thus, it is possible to get insight in the entan-

glement properties and structure of complex systems, which can not be characterized directly.

Furthermore, a new class of multipartite quantum states was defined, arising from the gener-

alization of qubit hypergraphs to arbitrary dimension. In this context, methods were found,

which allow for classification of qudit hypergraph states with respect to LU and SLOCC

equivalence. For tripartite systems of dimension three and four, a full LU- and SLOCC clas-

sification is given, moreover, general criteria valid for arbitrary dimension and system size

were developed.

Beyond that, qudit hypergraphs were extended even further by introducing weighted hy-

peredges. This could be an interesting topic for further research. Combining the richer

structure arising from the weighted edges with applicable characterizing methods, derived for

the unweighted case, could lead to a better understanding of a larger class of multiparite,

high-dimensional entangled states. Furthermore, it could be interesting to investigate the

connection of weighted hypergraphs to LME states for higher dimensions. In addition, a

method was developed that identifies LU-equivalent graph states of arbitrary dimension by

using a method similar to LC of graph states in prime dimensions.

Finally, an experimentally consistent definition of multilevel entanglement was introduced.

This new method to identify genuine multilevel entangled states provides clear guidelines

for using high-dimensional entanglement as a resource. Hence, developing a resource theory

of multilevel entanglement poses a natural continuation of this work. Furthermore, in the

context of multilevel entanglement, a different distribution of subsystem was discussed. This

distribution is closely related to quantum network scenarios, which is a promising field to

investigate in more detail for future research.
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Appendix A

SLOCC classification of 233

systems

Within this section, we give an alternative way to classify 233 systems regarding the equiva-

lence under SLOCC. We analyze the stochastic local quantum transformations (SLOCC) of

states of tripartite quantum systems composed form one two-level system and two three-level

systems. We find that there are 17 inequivalent SLOCC classes of which six are genuine

233-entangled. In the SLOCC-hierarchy, only three of the six classes can converted to any of

the SLOCC classes which are not genuine 233-entangled.

1. INTRODUCTION

The most widely used classification of entanglement in multipartite quantum states

is based on the equivalence under stochastic local operations and classical communi-

cation (SLOCC) [187]. Two states are SLOCC-equivalent if they can be converted

to each other with a nonzero probability by means of local quantum operations such

as unitary operations and partial measurements. A landmark result in understanding

multipartite entanglement was the discovery [188] that three qubits have two different

SLOCC classes of genuine multipartite entanglement, the representatives of which are

the Greenberger–Horne–Zeilinger state (GHZ-state) [189] and the W-state [188]. The

SLOCC classification of other systems has attracted less attention, with the most no-

tably exception of the case where two parties hold a qubit and a third party holds an

arbitrary quantum system [190]. In such 22N -systems there are six SLOCC classes for

N = 2, nine for N = 3 and ten for N ≥ 4 [190]. In contrast, for the case of four qubits

it has been found that the number of SLOCC classes in uncountably infinite [191] and

hence the SLOCC classification of larger systems is less significant.

An SLOCC transformation from a pure tripartite states |ψ〉〈ψ| to another pure tripartite

state |ψ′〉〈ψ′| is possible if and only if there exist local operators α, β, and γ, such that

|ψ′〉 = (α⊗ β ⊗ γ) |ψ〉. This follows from the fact that any stochastic local operation is

necessarily of the form Λ : % 7→
∑
k Ak%A

†
k, where Ak = αk ⊗ βk ⊗ γk and

∑
A†kAk ≤ 1

and from the fact that any term k can be implemented—up to a factor 0 < p ≤ 1—as

a unitary and a postselected measurement. Consequently, if the local operators are

invertible (invertible local operators, ILOs), then the two states are SLOCC-equivalent

as also the backwards transformation can be achieved by SLOCC. This way, the set of

pure states decomposes into SLOCC-equivalent classes and each class can be represented

by a canonical vector |ψ〉, e.g., for the |001〉+ |010〉+ |100〉 for the W-class and |000〉+
|111〉 for the GHZ-class. For an SLOCC classification it is then possible to ask for

SLOCC transformations which are only possible in one direction. In this case, the
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k Ω ΨA ΞA type k Ω ΨA ΞA type
1 (1,1,1) (0,1) 1 separable 10 (2,3,3) (1,2) 3 Md
2 (1,2,2) (0,2) 2 biseparable 11 (2,2,3) (2,2) 2 A4
3 (1,3,3) (0,3) 3 biseparable 12 (2,3,2) (2,2) 2 A4
4 (2,1,2) (1,1) 1 biseparable 13 (2,3,3) (2,2) 3 Mc
5 (2,2,1) (1,1) 1 biseparable 14 (2,3,3) (2,2) 2 C
6 (2,2,2) (1,1) 2 GHZ 15 (2,3,3) (2,2) 3 Me
7 (2,2,2) (1,2) 2 W 16 (2,3,3) (1,3) 3 Mb
8 (2,2,3) (1,2) 2 A3 17 (2,3,3) (2,3) 3 Ma
9 (2,3,2) (1,2) 2 A3

Table A.1: Properties of the 17 SLOCC classes for 233. For each class k
and its representative vector |ψk〉 from Eq. (A.1) the Schmidt-rank charac-
teristics Ω, ΨA, and ΞA are provided, cf. Sec. 3. The column “type” refers

to prior classifications, cf. discussion below Eq. (A.1).

target is arguably less entangled than the original state and it emerges the hierarchy of

SLOCC classes.

Here we study the SLOCC classification of 2NM -systems. In Sec. 2, Sec. 3 and Sec. 4

we give a full classification of 233-systems and we provide the corresponding SLOCC-

hierarchy in Sec. 5. For 244-systems, the number of SLOCC classes is already uncount-

ably infinite, as we prove in Sec. 6 before we conclude in Sec. 7.

2. SLOCC classification of 233-systems

In this section we show that there are 17 SLOCC classes for 233-systems. Representative

vectors for these classes are given by

|ψ1〉 = |000〉 ,

|ψ2〉 = |000〉+ |011〉 ,

|ψ3〉 = |000〉+ |011〉+ |022〉 ,

|ψ4〉 = |000〉+ |101〉 ,

|ψ5〉 = |000〉+ |110〉 ,

|ψ6〉 = |000〉+ |111〉 ,

|ψ7〉 = |000〉+ |011〉+ |101〉 ,

|ψ8〉 = |000〉+ |011〉+ |102〉 ,

|ψ9〉 = |000〉+ |011〉+ |120〉 ,

|ψ10〉 = |000〉+ |011〉+ |122〉 ,

|ψ11〉 = |000〉+ |011〉+ |101〉+ |112〉 ,

|ψ12〉 = |000〉+ |011〉+ |110〉+ |121〉 ,

|ψ13〉 = |000〉+ |011〉+ |102〉+ |120〉 ,

|ψ14〉 = |000〉+ |011〉+ |112〉+ |120〉 ,

|ψ15〉 = |000〉+ |011〉+ |100〉+ |122〉 ,

|ψ16〉 = |000〉+ |011〉+ |022〉+ |101〉 , and

|ψ17〉 = |000〉+ |011〉+ |022〉+ |101〉+ |112〉 .

(A.1)

Clearly, class 1 are all product states and the states in the classes 2–5 are merely

bipartite entangled. Classes 1, 2, and 4–7 are the SLOCC classes for three qubits
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with class 6 the GHZ-class and class 7 the W-class. The case 322 has been studied

in Ref. [192] finding two additional classes represented by |A3〉 = |000〉+ |101〉+ |211〉
and |A4〉 = |000〉+ |101〉+ |110〉+ |211〉. For 223-systems, class 8 corresponds to the

A3-class and class 11 to the A4-class. Similarly, for 232-systems, class 9 corresponds to

the A3-class and class 12 to the A4-class. In Ref. [193] Sec. IIB, five inequivalent classes

for 233-systems have been introduced, Ma–Me, represented by vectors |ψa〉 to |ψe〉. We

mention that for 233-systems, 18 representative vectors have been found in Ref. [194],

which happen to be equivalent under ILOs to the vectors in Eq. (A.1), but three of the

vectors are equivalent to |ψ17〉 while representative vector of class 15 is missing. In the

column “type” of Table A.1 we summarize the different types outlined in this paragraph.

The proof of the classification is split into two parts. Within Sec. 3, we show that the

17 representative vectors are not interconvertible via ILOs and hence represent distinct

SLOCC classes. Then, within Sec. 4, we prove that for any 233-state |ψ〉〈ψ| there are

ILOs transforming |ψ〉 to at least one of the 17 representative vectors and hence the 17

classes are exhaustive.

3. Schmidt-rank classifications

Before proving that none of the 17 representative vectors can be interconverted by ILOs,

we introduce three criteria that allow a coarse-grained classification. Either criterion is

based on the Schmidt-rank of a vector |ϕ〉, i.e., on the rank rϕ of the matrix [〈ij|ϕ〉]ij .
The Schmidt-rank is independent of the choice of the local bases |i〉 and |j〉, even if the

basis vectors are not orthonormal. Consequently, rϕ does not change under ILOs. For

tripartite states, there are three bipartite splits, A|BC, B|AC, and C|AB, giving rise

to the triple Ω [195, 196] of Schmidt-ranks which then is invariant under ILOs.

We introduce two additional Schmidt-rank classifications. For that we consider all

possible decompositions |ψ〉ABC = |ξ〉A |η〉BC + |o〉A |θ〉BC . The pair (rη, rθ) which is

smallest in the lexicographic order is denoted by ΨA(ψ). Similarly, we consider the

maximal rank ΞA that can be achieved for rη. Both classifications are invariant under

ILOs, since the set of pairs (|η〉 , |θ〉) does not change under ILOs on the first party and

rη and rθ do not change under ILOs on the other parties.

In Table A.1 we list the Schmidt-rank triple Ω, the pair ΨA and the index ΞA for all

representative vectors. Note, that all these values are evident from Eq. (A.1). This

proves already large parts of the following.

Proposition A.1. Let |ψi〉 and |ψj〉 be two different representative vectors from Eq. (A.1).

Then there exist no ILOs α, β, and γ such that |ψi〉 = (α⊗ β ⊗ γ) |ψj〉.

Proof. Due to the Schmidt-rank classifications in Table A.1, it remains to consider the

case with i = 13 and j = 15. For this we define ΨB analogously to ΨA and from mere

inspection one finds that ΨB(ψ13) = (1, 1, 2), while ΨB(ψ15) = (1, 1, 1), and hence

both vectors cannot be interconverted by ILOs.

4. SLOCC transformation to the 17 classes

In order to show that the 17 classes are sufficient, we start with an arbitrary pure

233-state |ψ〉〈ψ|. If Ω(ψ) = (1, 3, 3), then the state is only bipartite entangled, has

Schmidt-rank 3, and therefore is in class 3. Otherwise, unless Ω(ψ) = (2, 3, 3), the state

can be interconverted according to the analysis of the 322-states provided in Ref. [192].
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In Ref. [193] the classes 10, 13, 15, 16, and 17 have been found to be sufficient if

Ω(ψ) = (2, 3, 3) and ΞA(ψ) = 3. For completeness, we show this using a simplified

argument in Appendix 8. The remaining cases can be interconverted to class 14.

Proposition A.2. Any 233-state |ψ〉〈ψ| with Ω(ψ) = (2, 3, 3) and ΞA(ψ) ≤ 2 is of

class 14.

Proof. We write |ψ〉 =
∑
ij Aij |0ij〉+

∑
ij Bij |1ij〉, which defines the 3×3 matrices A

and B. Since ΞA(ψ) ≤ 2, the rank of λA+µB is at most 2 for any λ,µ ∈ C. In addition,

Ω(ψ) = (2, 3, 3) excludes the existence of any nontrivial vector v with Av = 0 = Bv or

AT v = 0 = BT v. We can therefore apply Lemma A.1 and obtain the matrices Y and

Z. These define the ILOs β =
∑
ij Yij |i〉〈j| and γ =

∑
ij Zij |i〉〈j| which then achieve

(12 ⊗ β ⊗ γ) |ψ〉 = |ψ14〉.

Lemma A.1. Let A and B be complex 3×3 matrices, such that for all λ,µ ∈ C, the

matrix λA+ µB has at most rank 2. If Av = 0 = Bv and ATw = 0 = BTw implies

v = 0 and w = 0 for v,w ∈ C3, then there exist invertible matrices Y and Z, such that

Y AZT =

1 0 0
0 1 0
0 0 0

 and Y BZT =

0 0 0
0 0 1
1 0 0

 . (A.2)

The proof of this Lemma is provided in Appendix 9.

5. SLOCC-Hierarchy

Within this section, we present the hierarchic order of the 17 classes that we derived

within the foregoing analysis. The hierarchy is defined by convertibility under nonin-

vertible SLOCC and summarized in Fig. A.1. There exists an SLOCC transformation

form class i to class j if and only if there is a path from vertex i to vertex j in the

directed graph (no interconvertion between classes 8, 9, 11, and 12 is possible). Out of

the six genuine 233-entangled classes, cf. the top row in Fig. A.1, only the classes 13, 15,

and 17 are sufficiently entangled in order to reach all states which are not genuine 233-

entangled. We note, that from a preliminary numerical analysis, it seems that basically

all pure states (with respect to the Haar measure) are of class 15. The proof odf the

hierarchy goes as follows: In order to prove the allowed and forbidden transformations

as depicted in Fig. A.1, first note that the hierarchy for the classes 1,2, 4–9, 11, and

12 has already been established in Ref. [192], while clearly class 3 can only be con-

verted to class 2 and class 1. Using, that noninvertible SLOCC transformations lower

the Schmidt-rank of at least one subsystem as well as the constraints due to the fact

that any SLOCC operation may increase neither the first entry on ΨA nor ΞA, we can

already exclude many transitions. In particular, it is clear that no transition between

any of the classes in the top row of Fig A.1 (10 and 13–17) is admissible and that all

relations not shown between the top row and the second top row (3, 8, 9, 11, and 12)

are impossible, except for the following special case.

Proposition A.3. There is no SLOCC transformation from class 14 to class 11 or

class 12.

Proof. Since class 14 is invariant under exchange of the qutrit-systems while class 11

and class 12 interchange places, it is enough to consider 14 → 11. We assume the
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Figure A.1: SLOCC-hierarchy of 233-systems. Class k can be transformed
to class ` if and only if there is a path from vertex k to `. Representative
vectors for the 17 classes are given in Eq. (A.1). The classes 8 and 9 exchange
places under exchange of the qutrit-systems, and so the classes 11 and 12,

while all other classes are invariant under this exchange.
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contrary, that there are local operators α̃, β̃, and γ̃, such that (α̃⊗ β̃⊗ γ̃) |ψ15〉 = |ψ11〉.
Since Ω(ψ15) = (2, 3, 3), Ω(ψ11) = (2, 2, 3), and 〈i2j|ψ11〉 = 0 for any i and j, there

is an ILO β with β̃ = (|0〉〈0|+ |1〉〈1|)β, while α̃ and γ̃ must be invertible. Therefore,

there is a representative vector |φ〉 of class 15 such that |φ〉 = |ψ11〉 + |η〉 for some

|η〉 =
∑
ij xij |i2j〉. It is now straightforward to show that Ξ(φ) ≤ 2 holds for any η,

which is in contradiction to |φ〉 being a representative vector of class 15.

To demonstrate the allowed transitions between the two top rows in Fig A.1, we establish

convertibility by applying local operators α̃, β̃, and γ̃ to the representative vectors of

each pair of classes. In Appendix 10 we explicitly provide all of those 14 triples of

operators. This concludes the proof of the SLOCC-hierarchy.

6. SLOCC classification in higher dimensions

The number of SLOCC classes for LMN -systems with L,M ,N ≥ 3 is uncountably

infinite, as can be seen by comparing the number of parameters of the representative

vector and of the ILOs [188]. In addition, also the number of SLOCC classes for 2MN -

systems with M ,N ≥ 4 is uncountably infinite as it follows from the following result.

Proposition A.4. There is no countable set of 244-states from which all pure 244-states

can be generated by means of SLOCC.

Proof. We consider the family of vectors |ψp〉 = |0〉A |v〉BC + |1〉A |wp〉BC with param-

eter p ≥ 1, where

|v〉 = |00〉+ |11〉+ |22〉+ |33〉 , and (A.3)

|wp〉 = |00〉 − |11〉+ p |22〉 . (A.4)

Since Ω(ψp) = (2, 4, 4) for all p, none of the vectors |ψp〉 can be generated by local

operators from any other 244-vector. Also, as we show next, there are no ILOs α, β,

and γ, such that

(α⊗ β ⊗ γ) |ψp〉 = |ψq〉 , where p 6= q, (A.5)

and hence the assertion of the proposition holds.

We define the 3×3-matrices V = [〈ij|v〉]ij , Wp = [〈ij|wp〉]ij , Y = [〈i|β|j〉]ij , and

Z = [〈i|γ|j〉]ij . With α = a|0〉〈0|+ b|1〉〈0|+ c|0〉〈1|+ d|1〉〈1|, Eq. (A.5) is equivalent to

the conditions

Y (aV + cWp)Z
T = V , and (A.6)

Y (bV + dWp)Z
T = Wq. (A.7)

Writing D ≡ aV + cWp and noting that V = 14, Eq. (A.6) implies Y = (ZT )−1D−1.

Applying this to Eq. (A.7), we get that D−1(bV + dWp) has to be similar to Wq. (Two

matrices A and B are similar if there exists an invertible matrix R, such that RA = BR).

This is the case only if the eigenvalues of both matrices coincide (cf., e.g., Corollary 1.3.4

in Ref. [197]). Since all matrices are already diagonal, Eq. (A.5) can be satisfied, if and

only if

( b+da+c ,
b−d
a−c ,

b+pd
a+pc ,

b
a ) = π[(1,−1, q, 0)] (A.8)

can be solved for some permutation π of the 4 entries. In a lengthy, but straightforward

calculation, one finds that for p ≥ 1 and q ≥ 1 this implies p = q.
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The remaining cases which may have a finite number of SLOCC classes are hence

23N for N > 3. Note, that for N > 6, no new SLOCC classes can appear, since

clearly at most Ω = (2, 3, 6) can hold. A representative vector of such a state is

|ψ〉 = |000〉+ |011〉+ |022〉+ |103〉+ |114〉+ |125〉. In a case study, we were not able to

find an example demonstrating that in this case the number of SLOCC classes is infinite

and hence the cases 23N with N = 4, 5, 6 remain open.

7. Conclusions

We studied the entanglement classification of pure 2NM quantum states under stochas-

tic local quantum operations (SLOCC). We provided a full classification for the case 233,

yielding 17 entanglement classes, 12 of which are genuine multipartite entangled and six

begin genuine 233-entangled. Out of these six classes, states |ψ〉〈ψ| from class 14 are spe-

cial as in any decomposition |ψ〉 = |ξ〉A |η〉BC + |o〉A |θ〉BC , the vectors |η〉 and |θ〉 are

exactly 2×2-entangled. The other extreme case is class 17, where in any such decompo-

sition at least one of the vectors is 3×3-entangled. We calculated the SLOCC-hierarchy

for 233-systems, finding 23 new allowed and seven new forbidden transformations. We

also showed that for 244-systems the number of SLOCC classes is uncountably infinite,

while for 23N -systems the SLOCC classification remains open.

Recently, it has become possible to prepare genuine 233-entangled states, using the

orbital angular momentum of three photons [198]. The target state in this case was

of class 10. It would be interesting to aim for the exotic classes 14 and 17. Also,

since numerical evidence suggests that most states are in class 15, those will also be

interesting target states.

8. Appendix A: SLOCC classification of all 233-states with and ΞA = 3
In this section we prove that any 233-state |ψ〉〈ψ| with ΞA(ψ) = 3 can be transformed

by means of SLOCC to some of the classes 3, 10, 13, 15, 16, or 17. That is, we show that

there exist ILOs α, β, and γ such that (α⊗ β ⊗ γ) |ψ〉 = |ψk〉 for some corresponding

representative vector |ψk〉 from Eq. (A.1). We now proceed along the lines of Ref. [193].

Since ΞA(ψ) = 3, there exists some vectors |ξ〉A and |o〉B , such that |ψ〉 =
∑
ij Aij |ξ〉A |ij〉+∑

ij Bij |o〉A |ij〉 where the matrix A has rank 3. Then it suffices to find some invertible

matrices Y and Z, together with a, b, c, d ∈ C with ad 6= bc, such that

Y (aA+ cB)ZT = A(k) and (A.9)

Y (bA+ dB)ZT = B(k). (A.10)

Here A(k) = [〈0ij|ψk〉]ij and B(k) = [〈1ij|ψk〉]ij . Let S be an invertible matrix, such

that B′ = SA−1BS−1 has Jordan normal form. Then A′ ≡ SA−1AS−1 = 13 and B′ is
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in either of the following forms,

(a)

λ 1 0
0 λ 1
0 0 λ

 , (b)

λ 1 0
0 λ 0
0 0 λ

 ,

(c)

λ 1 0
0 λ 0
0 0 µ

 , (d)

λ 0 0
0 λ 0
0 0 µ

 ,

(e)

λ 0 0
0 µ 0
0 0 ν

 , (f)

λ 0 0
0 λ 0
0 0 λ

 ,

(A.11)

where λ 6= µ, λ 6= ν, and µ 6= ν.

Case (a) corresponds to class 17, case (b) to class 16, and case (f) to class 3 via Y =

SA−1, Z = (S−1)T , and (a, b, c, d) = (1,−λ, 0, 1). It can be verified that case (c)

corresponds to class 13 via

Y =

1 δ 0
0 0 δ

0 1 0

SA−1, Z =

0 1 0
0 0 1
1 0 0

 (S−1)T , (A.12)

and (a, b, c, d) = (−λ, δµ, 1,−δ), where δ = 1/(µ− λ). For case (d) we choose Y =

SA−1, Z = (S−1)T , and (a, b, c, d) = (δλ + 1,−δλ,−δ, δ) to transform |ψ〉 to |ψ10〉
Finally, case (e) corresponds to class 15 when we let

Y = diag(µ− ν,λ− ν,µ− λ)SA−1,

Z = (S−1)T/(µ− ν),

a = ν/(ν − λ), b = µ/(µ− λ),

c = 1/(λ− ν), and d = 1/(λ− µ).

(A.13)

9. Proof of Lemma A.1

We consider 3×3 matrices A and B with (i) det(λA+ µB) = 0 for all λ,µ ∈ C, and (ii)

Av = 0 = Bv and ATw = 0 = BTw implies v = 0 and w = 0 for v,w ∈ C3.

We first show that rankA = rankB = 2. For this we assume the contrary, B = x y† for

some x, y ∈ C3. Due to condition (i) there exists a vector v 6= 0 with Av + x y†v = 0,

and hence either Av = 0 and Bv = 0 or x is in the range of A. The latter implies

that for any vector w 6= 0 with ATw = 0, also xTw = 0 holds. Either case contradicts

condition (ii) and therefore both matrices have rank 2.

Using the singular value decomposition, it is always possible to find an invertible matrix

Y1 and a unitary matrix Z1, such that A′ = Y1AZT1 = diag(1, 1, 0) while B′ = Y1AZT1
still has arbitrary form. Then, the upper left 2×2 submatrix of B′ can always be brought

to Jordan normal form, resulting in from BJ1 or BJ2,

BJ1 =

b00 0 b02

0 b11 b12

b20 b21 b22

 , BJ2 =

b00 1 b02

0 b00 b12

b20 b21 b22

 , (A.14)
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where |b11| ≥ |b00| can always be achieved by interchanging both, the first and second

row and the first and second column. The matrix A′ is left unchanged under this

transformation. Note, that b22 = 0 as it follows from condition (i) via det(λA+B) =

λ2b22 +O(λ).

We use det(BJ1) = 0 and det(BJ2) = 0 to further restrict the entries bij , yielding 7

different cases:

B1 =

b00 0 b02

0 b11 b12

b20 b21 0

 , B2 =

 0 0 0
0 b11 b12

b20 b21 0

 ,

B3 =

 0 0 b02

0 0 b12

b20 b21 0

 , B4 =

0 0 b02

0 b11 b12

0 b21 0

 ,

B5 =

b00 1 b02

0 b00 b12

b20 b21 0

 , B6 =

 0 1 b02

0 0 0
b20 b21 0

 ,

and B7 =

0 1 b02

0 0 b12

0 b21 0

 .

(A.15)

where for B1, |b00| > 0 and b02b11b20 + b00b12b21 = 0 must hold and for B5 the conditions

|b00| > 0 and b00b02b20 − b12b20 + b00b12b21 = 0 are in place.

For simplicity, we restrict (Ỹ , Z̃), which defines the set of all pairs of invertible 3× 3
matrices, to a subset (Y ,Z) ⊂ (Ỹ , Z̃) such that Y A′ZT = A′ implies

Y =


1
z00

0 y02

− z01
z11z00

1
z11

y12

0 0 y22

 , Z =

z00 z01 z02

0 z11 z12

0 0 z22.

 (A.16)

For all Bk, k ∈ 1, 2, . . . , 9 one can, by solving the linear system of equations, find ILOs

(Y ,Z) such that Y BkZ
T = B̃n, where B̃n are the parameter free matrices

B̃1 =

1 0 0
0 1 0
0 0 0

 , B̃2 =

0 0 0
0 0 1
1 0 0



B̃3 =

0 0 1
0 0 0
1 0 0

 , B̃4 =

1 0 0
0 0 0
0 0 1



B̃5 =

0 0 0
0 1 0
0 0 1

 .

(A.17)

The case Y BkZ
T = B̃1 ≡ A′ is sorted out due to condition (ii). Similarly, the cases

Y BkZ
T = B̃n with n = 3, 4, 5 have det(A′ + B̃n) 6= 0, which contradicts condition (i).

Hence only the case Y BkZ
T = B̃2 ≡ A′ remains, which hereby proves Lemma A.1.
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10. Allowed transformations in Fig A.1

According to Fig. A.1, there are 14 SLOCC transformations from the classes 10, 13–17

to the classes 3, 8, and 11. In the table below, we provide for each of the transformations

matrices X, Y , and Z.

k → ` X Y Z

10 → 3

(
1 1
0 0

)
13 13

13 → 3

(
1 1
0 0

) 0 0 1
0 1 0
1 0 −1

 13

15 → 3

(
1 1
0 0

) 
1
2 0 0
0 1 0
0 0 1

 13

16 → 3

(
1 0
0 0

)
13 13

17 → 3

(
1 0
0 0

)
13 13

10 → 8 12

1 0 1
0 1 0
0 0 0

 13

13 → 8 12

1 0 0
0 1 0
0 0 0

 13

14 → 8 12

0 1 0
1 0 0
0 0 0


0 1 0

1 0 0
0 0 1



15 → 8 12

1 0 1
0 1 0
0 0 0


1 0 −1

0 1 0
0 0 1



16 → 8 12

1 0 0
0 0 1
0 0 0


1 0 0

0 0 1
0 1 0



17 → 8 12

1 0 0
0 0 1
0 0 0


1 0 0

0 0 1
0 1 0



13 → 11 12

0 1 1
1 0 0
0 0 0


0 1 0

1 0 0
0 0 1


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15 → 11 12

1 −1 0
1 0 1
0 0 0


0 −1 0

1 1 −1
0 0 1



17 → 11 12

1 0 0
0 1 0
0 0 0

 13

One verifies that with the local operators α̃ =
∑
ij Xij |i〉〈j|, β̃ =

∑
ij Yij |i〉〈j|, and

γ̃ =
∑
ij Zij |i〉〈j| a transformation k → ` of the representative vectors is given by

(α̃⊗ β̃ ⊗ γ̃) |ψk〉 = |ψ`〉. Finally, there are also 6 transformations from the classes 10,

13–17 to the classes 9 and 12. The according transformations can be constructed from

the transformations to classes 8 and 11, respectively, since the classes 10, 13–17 are

symmetric under exchange of the parties of B and C, while classes 8 and 9 as well as

classes 11 and 12 are interchanged.
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