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Abstract

The knowledge of the external load acting on the structure under investigation is impor-

tant for Structural Health Monitoring (SHM). The history of the external load can be

used for updating the earlier lifetime prediction of the structure. An easy and direct way

to get the external load information is to measure it directly using a certain type of force

transducer. However, there are still many practical cases in which a direct measurement

of the external load is physically or economically not feasible. For those cases, a possible

solution is to reconstruct the external load using structural response measurements, e.g.

displacement, strain, velocity, and acceleration. This process is defined as force recon-

struction. It is a kind of inverse problem which often tends to be ill-posed, in the sense

that the measurement noise and the modeling error can be amplified and can cause large

deviations in the reconstructed force. Online force reconstruction is a research topic which

studies how to realize force reconstruction in real-time. The thesis focuses on online force

reconstruction.

The basic idea which is adopted in this thesis for online force reconstruction is to apply

a real-time executable state and input estimation algorithm. The methodology for online

force reconstruction consists of two stages, an offline stage and an online stage. In the

offline stage, the modal parameters of the structure are identified, and a state-space model

of the structure is constructed. If it is possible to apply an artificial force on the structure,

the modal parameters of the structure can be identified using the Experimental Modal

Analysis (EMA) technique. In case it is difficult or not possible to apply an artificial

force on the structure, the modal parameters of the structure can be identified using the

Operational Modal Analysis (OMA) technique. For this case, a model updating process

is performed to get the correctly scaled mode shape vectors. In the online stage, a real-

time executable state and input estimation algorithm is applied to provide an estimate

of the force. The ill-posedness in the process of force reconstruction is relaxed by the

convergence of the estimate error of the force. Together with the force, the structural

responses at different positions can be reconstructed, too.

In this thesis, modifications to some of the available real-time executable state and in-

put estimation algorithms are proposed, so that these algorithms are theoretically more

suitable for online force reconstruction. These proposed algorithm modifications are as

follows. The Unknown Input Observer (UIO) based Simultaneous State and Input Es-

timator (SS&IE) is modified to be suitable for linear systems. This modified SS&IE is

named as SS&IE L. To simplify the implementation of the Kalman Filter and a Recur-

sive Least-Squares Estimator (KF+RLSE), the filter equations of the KF+RLSE at the

steady-state are derived. The Kalman Filter with Unknown Inputs (KF-UI) is general-

ized to be compatible with the case that the process noise and the measurement noise
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are correlated. The generalized KF-UI is named as G-KF-UI. The Steady-State Kalman

Filter with a Least-Squares Estimator (SSKF+LSE) is modified to include the covariance

matrix of the input and the covariance matrix of the measurement noise. This modified

SSKF+LSE is named as MSSKF+LSE.

In the earlier research studies, some algorithms have already been proposed for online force

reconstruction. All the available algorithms, including the proposed modified algorithms,

are potential candidates for online force reconstruction. In case there is a practical need

for online force reconstruction, it is reasonable to raise the question which algorithm to

choose. In this thesis, a study on application-oriented algorithm selection is performed.

The assumptions and the mathematical conditions in the algorithms are translated into

practical requirements. A benchmark study is performed in which a laboratory structure

is taken as the benchmark structure. The modal parameters of this benchmark structure

is identified using the EMA technique. Two types of widely used sensors are installed

on this benchmark structure, including strain gauge and accelerometer. Three different

types of input forces are considered, including a quasi-static force, impact forces, and a

wind load which is generated by an electric fan. In total eight different algorithms are

tested. Based on the results from the benchmark study, an application oriented guidance

for algorithm selection is extracted.

As an example of practical application, the presented methodology for online force re-

construction is applied for wind load reconstruction for the 600 meter tall Canton Tower.

The field measurement data are recorded by the SHM system of the Canton Tower, in-

cluding the data which were recorded during the Typhoon Nanmadol in 2011 and the

Typhoon Kai-tak in 2012. The modal parameters of the Canton Tower during the Ty-

phoon Nanmadol are identified by using an OMA technique. The available reduced-order

Finite Element (FE) model of the Canton Tower is first modified to reflect the height

adjustment of the Canton Tower, and then is updated according to the identified modal

parameters. In consideration of the characteristics of the wind load and the sensor avail-

ability in the SHM system, the MSSKF+LSE algorithm is selected. The wind load on the

Canton Tower during the Typhoon Kai-tak is reconstructed. The mean value of the wind

load is calculated with the wind speed measurements and the aerodynamic force coeffi-

cients which are identified from a wind tunnel test. The dynamic part of the wind load is

reconstructed by using the MSSKF+LSE algorithm and the acceleration measurements.

To validate the reconstruction results, two acceleration channels are selected. The accel-

eration measurements from these two channels are not used in wind load reconstruction.

The strategy for the validation is to compare the reconstructed acceleration for these two

channels with the real acceleration measurements. The validation results show that the

reconstructed wind load is acceptable.

Finally, a summary of this thesis is provided, and some open topics are described. These

open topics can be considered in future study on online force reconstruction.
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Kurzfassung

Für Structural Health Monitoring (SHM) ist die Kenntnis der externen Belastungen auf

die zu untersuchende Struktur von großer Bedeutung. Der Kraftverlauf kann z.B. verwen-

det werden, um eine frühere Lebensdauervorhersage der Struktur zu aktualisieren. Der

direkteste Weg diese Lasten zu bestimmen, ist die unmittelbare Messung mittels geeigneter

Kraftsensoren. Für viele praktische Anwendungen ist eine direkte Kraftmessung allerdings

physikalisch nicht möglich oder wirtschaftlich nicht sinnvoll. Eine mögliche Lösung ergibt

sich in diesen Fällen durch die Rekonstruktion der Kräfte anhand der gemessenen Struk-

turantworten, wie z.B. Verschiebungen, Dehnungen, Geschwindigkeiten und Beschleuni-

gungen. Dieser Prozess wird als Kraftrekonstruktion bezeichnet und zählt zu den in-

versen Problemen. Kraftrekonstruktion ist oftmals ein schlecht-gestelltes Problem. Kleine

Störungen durch Messrauschen und Modellfehler können verstärkt werden, sodass große

Abweichungen in der rekonstruierten Kraft auftreten. Online-Kraftrekonstruktion ist ein

Forschungsgebiet, welches sich mit Methoden auseinandersetzt das schlecht-gestellte Prob-

lem zu lösen und somit eine Kraftrekonstruktion in Echtzeit zu ermöglichen. Der Fokus

dieser Dissertation liegt auf der Online-Kraftrekonstruktion.

Die Grundidee dieser Arbeit zur Online-Kraftrekonstruktion besteht in der Anwendung

von Zustands- und Eingangsschätzalgorithmen, welche echtzeitfähig sind. Die Methodolo-

gie zur Online-Kraftrekonstruktion besteht aus zwei Phasen, einer Offline-Phase und einer

Online-Phase. In der Offline-Phase werden die modalen Parameter der Struktur identifiz-

iert, und ein Zustandsraummodell (State-Space Model) der Struktur wird konstruiert. Für

den Fall, dass es möglich ist, eine künstliche Kraft auf die Struktur anzuwenden, können

die modalen Strukturparameter mit der experimentellen Modalanalyse identifiziert wer-

den. Falls es allerdings schwierig oder nicht möglich ist, eine künstliche Kraft auf die

Struktur anzuwenden, wird die operationelle Modalanalyse zur Bestimmung der modalen

Strukturparameter herangezogen. Für diesen Fall muss ein Model-Updating-Verfahren

angewendet werden, um die Skalierungsfaktoren der Vektoren für die Eigenschwingungs-

formen zu erhalten. In der Online-Phase, wird ein Zustands- und Eingangsschätzalgorith-

mus, welcher echtzeitfähig ist, angewendet, um die Kraft zu ermitteln. Das schlecht

gestellte Problem im Prozess der Kraftrekonstruktion wird durch die Konvergenz des

Schätzfehlers der Kraft gelöst. Zusammen mit der Kraft können die Strukturantworten

an verschiedenen Positionen auch rekonstruiert werden.

In dieser Arbeit werden Modifikationen an einigen der bereits verfügbaren Zustands-

und Eingangsschätzalgorithmen vorgeschlagen, so dass diese Algorithmen für die Online

Kraftrekonstruktion theoretisch besser geeignet sind. Die vorgeschlagenen Modifikationen

sind wie folgt: Der
”
Unknown Input Observer (UIO)“-basierte

”
Simultaneous State and

Input Estimator (SS&IE)“ Algorithmus wird modifiziert, um für lineare Systeme geeignet
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zu sein. Das modifizierte SS&IE wird als SS&IE L bezeichnet. Um die Implementierung

des
”
Kalman Filter and a Recursive Least-Squares Estimator (KF+RLSE)“ Algorithmus

zu vereinfachen, werden die Filtergleichungen des KF+RLSE im Steady-State abgeleitet.

Der
”
Kalman Filter with Unknown Inputs (KF-UI)“ wird verallgemeinert, um mit dem

Fall, dass das Prozessrauschen und das Messrauschen korreliert sind, kompatibel zu sein.

Das verallgemeinerte KF-UI wird als
”
Generalized KF-UI (G-KF-UI)“ bezeichnet. Das

”
Steady-State Kalman Filter with a Least-Squares Estimator (SSKF+LSE)“ wird so modi-

fiziert, um eine Schätzung der Kovarianzmatrix des Eingangs und eine Schätzung der Ko-

varianzmatrix des Messrauschens zu berücksichtigen. Das modifiziert SSKF+LSE wird

als MSSKF+LSE bezeichnet.

In früheren Forschungsstudien wurden bereits einige Algorithmen vorgeschlagen. Alle

verfügbaren Algorithmen, einschließlich der vorgeschlagenen modifizierten Algorithmen,

sind potentielle Kandidaten für die Online-Kraftrekonstruktion. Falls es einen prakt-

ischen Bedarf für eine Online-Kraftrekonstruktion gibt, ist es vernünftig, die Frage zu

stellen, welcher Algorithmus zu wählen ist. In dieser Arbeit wird eine Untersuchung

zur anwendungsorientierten Algorithmusauswahl durchgeführt. Die Annahmen und die

mathematischen Bedingungen in den Algorithmen werden in praktische Anforderungen

übersetzt. Eine Untersuchung ist durchgeführt, bei der eine Laborstruktur als Benchmark-

Struktur herangezogen wird. Das modell dieser Benchmarkstruktur wird mit Hilfe der

experimentellen Modalanalyse identifiziert. Zwei Arten von Sensoren sind auf dieser

Benchmark-Struktur installiert, einschließlich DMS und Beschleunigungssensor. Drei ver-

schiedene Belastungsarten werden berücksichtigt, einschließlich quasistatische Kräfte, Im-

pulslasten, und einer von einem elektrischen Ventilator erzeugten Windlasten. Insges-

amt werden acht verschiedene Algorithmen getestet. Basierend auf den Ergebnissen der

Benchmark-Untersuchung wird eine anwendungsorientierte Empfehlung zur Algorithmu-

sauswahl gegeben.

Als Beispiel für die praktische Anwendung wird die vorgestellte Methodologie zur Online-

Kraftrekonstruktion zur Rekonstruktion der Windlast für den 600 Meter hohen Canton

Tower verwendet. Die Feldmessdaten stammen aus dem SHM-System des Canton Towers,

einschließlich der Daten, die während des Taifuns Nanmadol im Jahr 2011 und des Taifuns

Kai-tak im Jahr 2012 aufgezeichnet wurden. Die modalen Parameter des Canton Towers

während des Taifun Nanmadol werden mit Hilfe der operationellen Modalanalyse identifiz-

iert. Das verfügbare Finite-Elemente-Modell des Canton Towers wird an die identifizierten

modalen Parameter durch sogenanntes Model-Updating angepasst. Unter Berücksichti-

gung der Eigenschaften der Windlasten und der Sensorverfügbarkeit des SHM-Systems

wird der MSSKF + LSE-Algorithmus ausgewählt. Die Windlasten auf den Canton Tower

während des Taifun Kai-tak wird rekonstruiert. Der Mittelwert der Windlasten wird

mit den Windgeschwindigkeitsmessungen und den aerodynamischen Koeffizienten berech-

net. Die aerodynamischen Koeffizienten werden aus einem Windkanalversuch ermittelt.
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Der dynamische Teil der Windlasten wird mit dem MSSKF + LSE-Algorithmus und der

Beschleunigungsmessungen rekonstruiert. Zur Validierung der Rekonstruktionsergebn-

isse werden zwei Beschleunigungskanäle ausgewählt. Die Beschleunigungsmessungen von

diesen beiden Kanälen werden bei der Rekonstruktion der Windlasten nicht verwendet.

Die Strategie für die Validierung besteht darin, die rekonstruierten Beschleunigungen für

diese zwei Kanäle mit den entsprechenden Beschleunigungsmessungen zu vergleichen. Die

Validierungsergebnisse zeigen, dass die rekonstruierten Windlasten akzeptabel sind.

Abschließend wird eine Zusammenfassung dieser Dissertation gegeben, und einige offene

Themen werden beschrieben. Diese offenen Themen können in zukünftigen Forschungen

zur Online-Kraftrekonstruktion berücksichtigt werden.

Schlüsselwörter: Online-Kraftrekonstruktion, Zustands- und Eingangsschätzer, inverses

Problem, Experimentelle Modalanalyse, Operationelle Modalanalyse, Model-Updating,

Structural Health Monitoring (SHM)
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1. Introduction

1.1. Introduction to Structural Health Monitoring (SHM)

“Structural Health Monitoring (SHM) aims to give, at every moment during the life of a

structure, a diagonosis of the ’state’ of the constituent materials, of the different parts,

and of the full assembly of these parts constituting the structure as a whole” (Balageas,

2006). Farrar and Worden (2007) describes SHM as “the process of implementing a dam-

age identification strategy for aerospace, civil and mechanical engineering infrastructure”.

According to the level of the information about the damage, four levels on the damage

assesment scale are defined (Rytter, 1993).

• Level I: Damage detection. (Is there a damage?)

• Level II: Damage localization. (Where is the damage?)

• Level III: Damage quantification. (To what extent is the damage?)

• Level IV: Prognosis of remaining service life. (How much service life remains?)

The goal of SHM is to answer the question above in the parenthesis at each level. It is

worth mentioning that some researchers also consider answering the question, “what kind

of damage is present?”, as an extra step between Level II and Level III (Sohn et al., 2004;

Worden and Dulieu-Barton, 2004).

A possible classification of SHM methods is to divide them into local methods and global

methods (Fritzen, 2006). Local methods inspect the structure in a relatively small area

where it is known that the structure is highly loaded and it is likely that e.g. fatigue

damage or cracks might occur. Local methods often work in high frequencies, e.g. ul-

trasonics waves, for diagnosis, so that small damages can be detected. Global methods

uses the fact that the local damage has an influence on the global behavior of the struc-

ture. Global methods usually work with vibrations in the lower to the middle frequency

range. Prognosis of remaining service life is the most sophisticated level in SHM. It re-

quires the combination the global structural model with local damage models to predict

the evolution of damage (Farrar et al., 2003; Inman et al., 2005; Dettmann and Söffker,

2011).

1.2. Motivation

Farrar and Lieven (2007) describes Damage Prognosis (DP) as the future of SHM, and

states that “DP attempts to forecast system performance by assessing the current dam-

age state of the system (i.e. SHM), estimating the future loading environments for that
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system, and predicting through simulation and past experience the remaining useful life of

the system”. Here it is also worth mentioning usage monitoring which is the process of

acquiring the information of operational loading on a structure. Figure 1.1 illustrates the

relationship between usage monitoring, SHM, and DP in the form of a block diagram.

Figure 1.1. The relationship between usage monitoring, Structural Health Monitoring (SHM)
and Damage Prognosis (DP) (Farrar et al., 2005).

The block diagram in figure 1.1 shows that SHM needs the load information from usage

monitoring. In other words, the knowledge of the external load is important for SHM. An

easy and direct way to get the information of the external load is to measure it directly

using a certain type of force transducer. However, there are still many practical cases

where a direct measurement is physically or economically not feasible. For example, it is

still an engineering challenge to measure directly the traffic load, the rail-wheel contact

force, and the wind load. For such practical cases, a possible solution is to reconstruct

the force from the measured structural responses, e.g. displacement, strain, velocity, and

acceleration. This process is defined as force reconstruction, and it often tends to be

ill-posed. If the ill-posedness in force reconstruction can be relaxed, the structure itself

actually becomes its own force sensor (Stevens, 1987).

1.3. Basic idea of online force reconstruction

Online force reconstruction is the research topic which studies how to realize force re-

construction in real-time. The basic idea which is adopted in this thesis for online force

reconstruction is to apply a real-time executable state and input estimation algorithm.
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This basic idea is described in the form of a block diagram in figure 1.2. Consider the

structure under investigation as a system, the force which needs to be reconstructed as the

input to the system, and the structural response as the output from the system. Given

structural response measurements, the applied algorithm can provide an estimate of the

input, i.e. the reconstructed force, in real-time. The ill-posedness in the force reconstruc-

tion process is relaxed through the convergence of the estimate error of the force, and

the force reconstruction is realized in real-time. To apply this basic idea, the relationship

between the force and the structural response is needed. In other words, a model of the

structure is needed.

Figure 1.2. Basic idea of online force reconstruction

1.4. State of the art

Before the publication of this thesis, there are already available studies on online force re-

construction. According to the author’s knowledge, these available studies can be grouped

as follows.

• Proportional-Integral observer (PI observer). For example, Söffker (1999) estimated

the contact forces of the nonlinear rail-wheel contact; and Krajcin and Söffker (2003)

showed both simulation and experimental results for the contact force between the

blade and the housing of a rotating machine.

• Kalman Filter and a Recursive Least-Squres Estimator (KF+RLSE). For example,

Ma et al. (2003) estimated the input forces acting on a cantilever beam in a simula-

tion study; Deng and Heh (2006) applied this method to reconstruct a distributed

force in a numerical simulation; Chen and Lee (2008) studied the capability of this

method for moving force estimation through several simulations; Wu et al. (2009)

adopted this method in the identification of the soil force resulted from the soil-pile

interaction in a shaking table test.

• Extended Kalman Filter and a Recursive Least-Squares Estimator (EKF+RLSE).

For example, Ma and Ho (2004) proposed the EKF+RLSE method which is suitable
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for nonlinear structural systems. The performance of this method is verified in

numerical simulations for input force estimation of non-linear lumped-mass systems.

• Augmented Kalman Filter (AKF). Lourens et al. (2012b) proposed the AKF in the

work for the estimation of impact force on an instrumented steel beam. The AKF

augments the state vector with the input vector, and estimates the augmented state

vector with the help of the state estimation function of the Kalman filter. In AKF,

an estimate of the covariance matrix of the increment of the input is needed. Perisic

et al. (2012) used the same method for the gearbox fatigue load estimation. Ji and

Liang (2000) applied a method similar to the AKF, but without considering the

direct feed-through in the output equation of the system model. A simulation study

is performed for the estimation of forces on a rod. Berg and Miller (2010) adopts

the same method in a simulation study for estimating the forces on a wind turbine

blade.

• Unknown Input Observer (UIO). Ha and Trinh (2004) proposed a UIO design

method for simultaneous state and input estimation for a class of non-linear sys-

tems. Klinkov and Fritzen (2006) named this UIO design method as SS&IE and

adopted it for online force reconstruction. Furthermore, the SS&IE was also applied

for wind load estimation on a 5MW wind energy plant (Klinkov and Fritzen, 2009;

Fritzen et al., 2013).

• Recursive Three-Step Filter (RTSF). Gillijns and De Moor (2007) proposed an algo-

rithm for unbiased minimum-variance input and state estimation for linear discrete-

time systems with direct feed-through. Hsieh (2009) named this algorithm as RTSF.

Lourens et al. (2012a) applied the RTSF for the estimation of the load on a labora-

tory suspended beam and the estimation of the load on a footbridge.

• Steady-State Kalman Filter and a Least-Squares Estimator (SSKF+LSE). Hwang

et al. (2009a) proposed this algorithm and applied it in modal load estimation in a

simulation study, and further tested this algorithm on a rectangular shaped concrete

chimney in a wind tunnel test (Hwang et al., 2011).

• Auto-Regressive model with eXogenous input (ARX) . Müller et al. (2011) applied

this algorithm for impact force estimation.

• Bayesian regression with Gaussian processes. Torres-Arredondo et al. (2011) adopted

this algorithm to find the relationship between the impact force and the structural

response, and applied it for impact force estimation.

1.5. Original contributions

This thesis focuses on online force reconstruction. Inspired by the available work on this

topic, the basic idea in figure 1.2 is adopted in this thesis. The methodology for online
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force reconstruction is presented in the form of block diagrams in chapter 3. The author’s

original contributions in this thesis are summarized blow.

• A modification to the SS&IE is proposed. The SS&IE was originally proposed for a

class of non-linear systems. The structural model in the modal domain is linear. To

make the SS&IE suitable for linear models, a modification to the SS&IE is proposed.

This proposed modification is named as SS&IE L, short for Simultaneous State and

Input Estimation for Linear systems.

• The filter equations of the KF+RLSE in steady-state are derived. These derived

filter equations can simplify the implementation of the KF+RLSE.

• The Kalman Filter with Unknown Inputs (KF-UI), which was proposed in Pan

et al. (2011), is for the first time adopted for online force reconstruction. The filter

equations of the KF-UI are proved to be equivalent with the filter equations of the

RTSF. The necessary and sufficient conditions for the existence of the KF-UI are

updated. Furthermore, the KF-UI is generalized to be compatible with the case

that the process noise and the measurement noise are correlated.

• A modification to the SSKF+LSE is proposed. The SSKF+LSE was proposed in

Hwang et al. (2009a). This algorithm assumes the input forces all have the same

variance and are uncorrelated, and it assumes the measurement noises from the

sensors all have the same variance. In practical applications, it might be not the

case. In this thesis, a modified SSKF+LSE (MSSKF+LSE) is proposed, which

suggests using the estimate of the covariance matrix of the forces and the estimate

of the covariance matrix of the sensor measurement noise.

• An application-oriented guidance is proposed for algorithm selection for online force

reconstruction. This proposed guidance is extracted based on a benchmark study,

and it may assist the algorithm selection for a specific application.

• A wind load reconstruction study is performed using the SHM data from the 600

meter tall Canton Tower. The applied methodology and the reconstruction results

are presented.

1.6. Organization of the thesis

Chapter 2 provides the theoretical foundations which are needed in this thesis for struc-

tural model construction, and the principle of the state estimation techniques, including

the observer technique, Kalman filter, Unknown Input Observer (UIO), etc. To support

the discussion in later chapters, the available real-time executable state and input esti-

mation algorithms are briefly reviewed. Furthermore, the topic on the correlation of the

process noise and the measurement noise is also covered.
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Force reconstruction is the process to reconstruct the forces from structural response

measurement. This process is a kind of inverse problem which often tends to be ill-posed.

Online force reconstruction is the research topic which studies how to realize force recon-

struction in real-time. Chapter 3 explains the ill-posedness in the force reconstruction

process, and discusses the importance of the observability of the state and the impor-

tance of the convergence of the state estimate error and the force estimate error for the

transformation from an ill-posed problem to a well-posed problem in online force recon-

struction. The methodology for online force reconstruction is presented. Two different

practical cases are considered, with one case having the possibility to apply an artificial

excitation and the other case without such possibility. For each of these two practical

cases, the methodology is described accordingly in the form of a block diagram. The

presented methodology is capable of reconstructing both the force and the structural re-

sponses. Furthermore, the methodology for the reconstruction of distributed forces is also

presented.

In consideration of the practical requirements in online force reconstructions, some mod-

ifications to some of the available algorithms are proposed. Chapter 4 provides the pro-

posed modifications. Chapter 5 presents the results from a study on application-oriented

algorithm selection. The assumptions and the mathematical conditions in the available

algorithms are translated to practical requirements. A benchmark study is performed. A

laboratory structure is taken as the benchmark structure, on which two types of widely

used sensors are installed. Three different types of input forces are considered. In total

eight different algorithms are tested. Based on the results from the benchmark study, a

guidance for algorithm selection is extracted and presented.

In chapter 6, the presented methodology is applied to the 600 meter tall Canton Tower

for wind load reconstruction. Field measurements from two different typhoon events are

analyzed. The results from Operational Modal Analysis, model updating, and wind load

reconstruction are presented.

Chapter 7 provides a summary of the contents in this thesis. Furthermore, some open

topics are proposed. According to the author’s understanding on the topic of online force

reconstruction, these proposed open topics can be considered as an extension of the work

in this thesis.
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2. Theoretical foundations

The basic idea, which is adopted in this thesis for online force reconstruction, is to apply

a real-time executable state and input estimation algorithm. This basic idea has been

presented in the form of a block diagram in figure 1.2. It is worth mentioning that the

applied algorithm needs the relationship between the force and the structural response.

Thus, a reliable model of the structure is needed in order to successfully apply this basic

idea. This chapter provides the theoretical foundations which are needed in this thesis, in-

cluding structural model construction, observer, Kalman filter, Unknown Input Observer

(UIO), and the available real-time executable state and input estimation algorithms. Fur-

thermore, the topic on the correlation of the process noise and the measurement noise is

also covered.

2.1. Structural model construction

A reliable model of the structure is important for a successful application of the basic idea

in figure 1.2. This section provides the theoretical foundations which are needed in this

thesis for structural model construction, including the transformation of the structural

model from the nodal domain to the modal domain, the transformation of the structural

model from the second-order form to the state-space from, Experimental Modal Analysis

(EMA), Operational Modal Analysis (OMA), and the principle of model updating.

2.1.1. Second-order structural model

Assuming a structure is linear and with viscous damping, the forced motion of this struc-

ture can be represented by (Gawronski, 2004; De Silva, 2007)

Mnq̈n(t) +Cnq̇n(t) +Knq(t) = f(t). (2.1)

In equation (2.1), qn(t) ∈ R
nDOF denotes the displacement vector in the nodal coordinates,

with nDOF equal to the number of nodal Degrees Of Freedom (DOF); f(t) ∈ R
nDOF is

the force vector; Mn ∈ R
nDOF×nDOF , Cn ∈ R

nDOF×nDOF , and Kn ∈ R
nDOF×nDOF are

the mass matrix, the damping matrix, and the stiffness matrix, respectively.

Denote y(t) ∈ R
p as the output vector, where p represents the number of sensors. Intro-

duce the matrix Cds ∈ R
pds×nDOF which defines the positions of the displacement sensors

(or the strain gauges), Cv ∈ R
pv×nDOF defining the positions of the velocity sensors, and

Ca ∈ R
pa×nDOF defining the positions of the accelerometers. The value of pds is equal to

the number of the displacement sensors (or the strain gauges), the value of pv is equal
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to the number of the velocity sensors, and the value of pa is equal to the number of the

acceleration sensors. The values of p , pds , pv, and pa fulfill the condition

p = pds + pv + pa. (2.2)

Assume the damping matrix Cn can be expressed as

Cn = αMn + βKn, (2.3)

where α is the constant of mass proportionality and β is the constant of stiffness pro-

portionality. Equation (2.1) can be transformed to the canonical form (uncoupled modal

equation)

q̈m(t) +Cmq̇m(t) +Kmqm(t) = Φ
Tf(t), (2.4)

with

qn(t) = Φqm(t). (2.5)

In equations (2.4) and (2.5), qm(t) ∈ R
mDOF represents the displacement vector in the

modal coordinates, with the value of mDOF fulfilling the condition mDOF ≤ nDOF ;

and Φ ∈ R
nDOF×mDOF is the modal matrix which is mass normalized so that the condition

ΦTMnΦ = ImDOF (2.6)

holds. The modal matrix Φ has the form

Φ =

[
φ1 φ2 · · · φmDOF

]
, (2.7)

where φi ∈ R
nDOF represents the i -th column vector of Φ, with the value of i fulfilling

the condition 1 ≤ i ≤ mDOF . Matrix Cm represents the modal damping matrix and has

the form

Cm =




2ζ1ω1 0 · · · 0

0 2ζ2ω2 · · · 0

...
...

. . .
...

0 0 · · · 2ζmDOFωmDOF




. (2.8)
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Matrix Km denotes the modal stiffness matrix and has the form

Km =




ω2
1 0 · · · 0

0 ω2
2 · · · 0

...
...

. . .
...

0 0 · · · ω2
mDOF




. (2.9)

In this thesis, Cm is named as modal damping matrix; andKm is named as modal stiffness

matrix. In equation (2.7), φi represents the real mode shape vector. In equation (2.8),

ζi denotes the damping ratio for the i-th mode. In equations (2.8) and (2.9), ωi is the

circular natural frequency for the i-th mode. The values for φi, ζi, and ωi can be identified

by using Experimental Modal Analysis (EMA) or Operational Modal Analysis (OMA).

A brief review of the EMA and the OMA are provided in section 2.1.4 and section 2.1.5,

respectively.

The force input vector f(t) in equations (2.1) and (2.4) can be represented by

f(t) = Bod(t), (2.10)

where the i-th column of the matrix Bo ∈ R
nDOF×m describes the spatial distribution of

the i-th force, and the i-th element of d(t) ∈ R
m represents the weighting value of the

spatial distribution of the i-th force in time.

2.1.2. Continuous-time state-space structural model

Define a state vector x(t) ∈ R
n

x(t) =



qm(t)

q̇m(t)


 . (2.11)

The structural model which is described by equation (2.4) can be transformed to its

state-space form

ẋ(t) = Acx(t) +Gcd(t) (2.12)

and

y(t) = Ccx(t) +Hcd(t), (2.13)

where Ac represents the state transition matrix; Gc denotes the input matrix; Cc is the

output matrix; Hc is the direct feed-through; and y (t) ∈ R
p denotes the output vector;
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The matrices Ac, Gc, Cc, and Hc have the following forms (Gawronski, 2004),

Ac =




0mDOF×mDOF ImDOF

−Km −Cm


 , (2.14)

Gc =




0mDOF×m

ΦTBo


 , (2.15)

Cc =




CdsΦ 0 pds×mDOF

0 pv×mDOF CvΦ

−CaΦKm −CaΦCm



, (2.16)

and

Hc =




0 pds×m

0 pv×m

CaΦΦ
TBo



. (2.17)

2.1.3. Discrete-time state-space structural model

The state-space model in equations (2.12) and (2.13) can be transformed into its discrete-

time form

xk+1 = Adxk +Gddk (2.18)

and

yk = Cdxk +Hddk, (2.19)

where xk, dk, and yk are the values of x(t), d(t), and y(t) at the time instant tk = k△t,

respectively, with △t denoting the sampling interval. Matrices Ad, Gd, Cd, and Hd are

calculated with

Ad = eAc△t, (2.20)

Gd = (

ˆ △t

0

eAcηdη)Gc, (2.21)

Cd = Cc, (2.22)

and

Hd =Hc. (2.23)
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2.1.4. Experimental Modal Analysis (EMA)

Experimental Modal Analysis (EMA) is a procedure of extracting the natural character-

istics of a structure, i.e. natural frequencies, damping ratios, mode shapes, and modal

participation factors, from the measured excitation and the measured structural responses

(Avitabile, 2001). If the force f(t) and the response y(t) are both measurable, a dynamic

model for the structure can be experimentally identified by using the EMA. This is a

type of system identification problem which can be described by the block diagram in

figure 2.1.

Excitation
Structure

Response

( )tf ( )ty

KnownKnown Unknown

Figure 2.1. System identification problem

The block diagram in figure 2.1 can be mathematically represented by

Y (s) =H(s)F (s), (2.24)

where s denotes the Laplace variable; F (s) is the Laplace transform of f(t); Y (s) is the

Laplace transform of y(t); and H(s) represents the transfer function of the structure.

If the condition

s = jω (2.25)

holds, equation (2.24) can be expressed as

Y (ω) =H(ω)F (ω), (2.26)

where ω denotes the circular frequency; F (ω) is the Fourier transform of f(t); Y (ω) is the

Fourier transform of y(t); andH(ω) represents the Frequency Response Function (FRF).

The standard steps of EMA are provided in the flowchart in figure 2.2 in which the FRF

is the input to the modal parameter estimation algorithm. In order to remove the random

noise and the nonlinearity, the FRF is actually calculated using the tri-spectrum averaging

which is illustrated in figure 2.3.

In figure 2.3, FFT is the abbreviation of Fast Fourier Transform; APS is short for Auto

Power Spectrum; and XPS denotes cross Power Spectrum. The Fourier transform assumes

that the transform window captures the entire signal, or the measured data is periodic

in the transform window. If it is not the case, a serious distortion will occur when the

data is transformed to the frequency domain. This is called leakage. In order to minimize

such distortion, windows which is also called weighting functions are often applied to
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Excitation
measurements

Response
measurements

Frequency response function
(FRF)

Modal parameter estimation
algorithm

?

?

?

?

Natural frequencies
Damping ratios
Normalized mode shapes
Modal participation factor

Figure 2.2. Standard steps of EMA (De Silva, 2007)

the data before performing FFT. In EMA, there are two commonly used types of input

excitations: impact excitation and shaker excitation. Depending on the type of applied

excitation signals, suitable windows need to be selected. For example, the force and

exponential windows are often selected when an impact excitation is performed; and the

Hanning window is usually considered when a random excitation is applied in a shaker

testing. More details on the selection of windows may refer to e.g. Schwarz and Richardson

(1999) and Avitabile (2001).

After calculating the average APS Gyy(ω), the average APS Gff (ω), and the average XPS

Gyf (ω), an estimate of the FRF can be obtained.

In case that the extraneous noise and the randomly excited nonlinearity are added into

the output, the FRF can be calculated by

H1 =
Gyf (ω)

Gff (ω)
. (2.27)

It is proved that equation (2.27) provides the least-squares estimate of the FRF when the

extraneous noise and randomly excited nonlinearities are modeled as Gaussian (Rocklin

et al., 1985).

For the case that the noise is added to the input and the case that the noise is added

to both the input and output, the corresponding estimates of the FRF can be found

in Rocklin et al. (1985).

The degree of correlation of the response y(t) and the excitation f(t) is represented by

the ordinary coherence function Cyf (ω) which can be calculated by

Cyf (ω) =

∣∣Gyf (ω)
∣∣2

Gyy(ω)Gff (ω)
, (2.28)
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Start

Sample
Excitation

and
Response

( )tf

( )ty

Apply windows
(if necessary)

FFT

( ) ( )t wÞy Y

( ) ( )t wÞf F

Calculate
APS

and
XPS

( )yy
wG ( )ff

wG

( )yf
wG

Update
Average spectra

( )yy
wG ( )ff

wG ( )yf
wG

More
Averages ?

Calculate
FRF and coherence

No

Yes

Figure 2.3. Tri-spectrum averaging loop (Schwarz and Richardson, 1999)

where the operator |·| denotes the Euclidean norm operator.

Assume that the zero initial condition holds for the structural model in section 2.1.1, the

Laplace transform of equation (2.4) leads to

Qm(s) =




1
s2+2ζ1ω1s+ω2

1

0 · · · 0

0 1
s2+2ζ2ω2s+ω2

2

· · · 0

...
...

. . .
...

0 0 · · · 1
s2+2ζmDOFωmDOF s+ω2

mDOF




ΦTF (s), (2.29)

where Qm(s) is the Laplace transform of qm(t). Performing Laplace transform on equa-

tion (2.5) leads to

Qn(s) = ΦQm(s), (2.30)

where Qn(s) is the Laplace transform of qn(t). Substituting equation (2.29) into equa-

tion (2.30) leads to

Qn(s) =Hnf (s)F (s), (2.31)
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where Hnf (s) denotes the transfer function and has the form

Hnf (s) = Φ




1
s2+2ζ1ω1s+ω2

1

0 · · · 0

0 1
s2+2ζ2ω2s+ω2

2

· · · 0

...
...

. . .
...

0 0 · · · 1
s2+2ζmDOFωmDOF s+ω2

mDOF




ΦT . (2.32)

Denote the qr-th element ofHnf (s) as Hnf qr(s) which defines the transfer characteristics

between the force input in the r-th DOF in the nodal coordinates and the displacement

of the q-th DOF in the nodal coordinates. The analytical expression of Hnf qr(s) appears

as

Hnf qr(s) =
mDOF∑

i=1

φq,iφr,i

s2 + 2ζiωis+ ω2
i

, (2.33)

where φq,i denotes the q-th element of the real mode shape vector φi, and φr,i denotes

the r-th element of the real mode shape vector φi. Detailed steps on the derivation of

equation (2.33) can be found in e.g. De Silva (2007).

By substituting equation (2.25) into equation (2.33), the analytical expression of the FRF

Hnf qr(ω) appears as

Hnf qr(ω) =
mDOF∑

i=1

φq,iφr,i

−ω2 + j2ζiωiω + ω2
i

. (2.34)

In equation (2.34), the circular natural frequencies ωi , the modal damping ratios ζi, and

the elements in the real mode shape vectors φi can be estimated by minimizing the squared

error between the experimentally calculated FRF from the tri-spectrum averaging and the

analytical expression of FRF in equation (2.34). This modal parameter estimation process

is named as curve fitting (Schwarz and Richardson, 1999). There are many different curve

fitting (or modal parameter estimation) algorithms. All these available algorithms can be

grouped into the following four categories.

• Local SDOF.

• Local MDOF.

• Global.

• Multi-Reference (Poly-Reference).

SDOF denotes single degree of freedom; and MDOF represents multiple degrees of free-

dom. These four categories are organized in the order of increasing complexity. The

SDOF methods can estimate the modal parameters of only one mode at a time, while the

MDOF, Global and Multi-Reference (Poly-Reference) methods can estimate the modal
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parameters of two or more modes at a time. The Local methods can be applied to only

one FRF at a time, while the Global and Multi-Reference (Poly-Reference) methods are

applicable to the entire set of FRFs at a time. Furthermore, the Multi-Reference (Poly-

Reference) methods have the ability to identify very closely coupled modes (Schwarz and

Richardson, 1999).

In this thesis, the PolyMAX method, which is shipped with LMS Test.Labr, is applied

for the EMA. The PolyMAX method is also called Poly-reference least-squares complex

frequency-domain method, and it belongs to the Multi-Reference (Poly-Reference) cat-

egory. More details on the PolyMAX algorithm can be found in e.g. Guillaume et al.

(2003).

2.1.5. Operational Modal Analysis (OMA)

The EMA is an often-used tool in extracting modal parameters. However, it still has some

limitations in some practical application cases.

• In EMA, an artificially applied force is usually needed to excite the structure and

to measure the inputs. This is very difficult or not possible in field tests or for

large-scale structures.

• The EMA is often performed in the lab environment which may differ from the real

operational conditions of the structure.

• In EMA, it is often the component, not the complete system, to be tested. This

requires the boundary conditions to be well concerned.

Operational Modal Analysis (OMA), which is also known as output-only modal analysis,

is a group of modal parameter estimation methods, which use only structural reponse

measurements that are recorded under operational rather than laboratory conditions.

Expressing equation (2.26) in the form of Power Spectra Density (PSD) leads to

Gyy(ω) =H(ω)Gff (ω)H
∗(ω), (2.35)

where Gff (ω) denotes the cross power spectral density matrix of the excitation f(t);

Gyy(ω) is the cross power spectral density matrix of the response y(t); and H∗(ω) repre-

sents the conjugate transpose of H(ω). In OMA, the excitation is modelled as stochastic

white noise, which indicates that Gff (ω) is assumed to be constant with respect to ω,

and Gyy(ω) contains all the information for estimating natural frequencies, damping ra-

tios and mode shapes. Zhang et al. (2005) provides an overview on the OMA; Peeters

et al. (2006) discuss the evolution and the applications of the OMA from an industry

point of view; Reynders (2012) reviews and compares different OMA approaches in an

extensive Monte Carlo simulation. Compared with EMA, OMA mainly has the following

advantages (Zhang et al., 2005).
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• In OMA, the artificial excitation is not needed.

• With OMA, the dynamic characteristics of the complete system, instead of the

component, can be obtained under real boundary conditions and at much more

representative working points.

• With OMA, the closely-spaced or repeated modes can be identified, which is very

suitable for real world complex structures.

All these advantages above make OMA a good complement to EMA.

Kraemer and Fritzen (2010) proposed a Vector AutoRegressive models (ARV) method

and applied it in the study of dynamic characteristics of offshore wind energy plants. In

this thesis, this ARV method is adopted for OMA. To support the discussion in later

chapters, a brief review of the ARV method is provided below.

The measurements yk ∈ R
p can be modeled by

yk = barv +
h∑

l=1

Aarv,lyl−1 + εarv,k, (2.36)

where h is the order of this AR model; Aarv,l ∈ R
p×p are the coefficient matrices of the

AR model, with the value of l fulfilling the condition 1 ≤ l ≤ h; barv ∈ R
p is an intercept

vector; and εarv,k ∈ R
p is assumed to be an uncorrelated zero-mean random vector,

representing the residual between the real measurements and the AR model. Assuming

barv is a zero vector, the h-th order AR model, named as AR(h), can be transformed to

the state-space form

xarv,k+1 = Aarvxarv,k +warv,k (2.37)

and

y = Carvxarv,k, (2.38)

where xarv,k ∈ R
ph, Aarv ∈ R

ph×ph, warv,k ∈ R
ph, and Carv ∈ R

p×ph are expressed by

xarv,k =




yk

yk−1

...

yk−h+1




, (2.39)
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Aarv =




Aarv,1 Aarv,2 · · · Aarv,(h−1) Aarv,h

Ip 0 · · · 0 0

0 Ip · · · 0 0

...
...

. . .
...

...

0 0 · · · Ip 0




, (2.40)

warv,k =




εarv,k+1

0 p×p

...

0 p×p




, (2.41)

and

Carv =

[
Ip 0p×p · · · 0 p×p

]
. (2.42)

In equation (2.40), the coefficient matricesAarv,l are estimated with the help of the ARFIT

MATLABr package which is presented in Schneider and Neumaier (2001) and Neumaier

and Schneider (2001). The dynamic characteristics of the investigated structure can be

extracted by solving

Aarv = Ψ arvΛarvΨ
T
arv, (2.43)

where Λarv ∈ R
(ph)×(ph) is a diagonal matrix of the associated discrete-time eigenvalues

λd,h,i , i = 1, · · · , hp, and Ψ arv ∈ R
(ph)×(ph) contains the corresponding eigenvectors ψarv,i

in its i-th column. With

λc,h,i =
ln(λd,h,i)

△t
, (2.44)

the discrete-time eigenvalue λd,h,i can be transformed to its continuous-time counterpart

λc,h,i. In equation (2.44), △t denotes the sampling interval. For the i-th mode of the h-th

order AR model in equation (2.36), the natural frequency fh,i, the damping ratio ζh,i and

the complex mode shape vector ψh,i ∈ C
p can be calculated with

λc,h,i = −ζh,iωh,i + jωh,i

√
1− ζ2h,i, (2.45)

fh,i =
|λc,h,i|

2π
, (2.46)

ζh,i = −
Re(λc,h,i)

|λc,h,i|
, (2.47)

and

ψh,i =

[
0p×p, · · · , 0 p×p, Ip

]
ψarv,i. (2.48)
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As aforementioned, the ARV method is a parametric method. An advantage of the para-

metric methods is that a so-called stabilization diagram can be constructed to objectively

seperate the physical modes from the spurious ones which are caused by noise and numer-

ical errors. To construct the stabilization diagram, three criteria are applied, including

the percentage frequency difference fdiff , the percentage damping ratio difference ζdiff ,

and the Modal Assurance Criterion (MAC) value between the modal properties from the

AR(h) model and those from the AR(h− 1) model. fdiff , ζdiff , and MAC are defined as

fdiff =
|fh,q − fh−1,r|

fh−1,r

≤ ftol, (2.49)

ζdiff =
|ζh,q − ζh−1,r|

ζh−1,r

≤ dtol, (2.50)

and

MAC =
(ϕT

h,qϕ
∗
h−1,r)

2

(ϕT
h,qϕ

∗
h,q)(ϕ

T
h−1,rϕ

∗
h−1,r)

≥ MACtol, (2.51)

where (·)T represents the transpose operator and (·)∗ denotes the conjugate operator. In

equations (2.49) through (2.51), the conditions h ≥ 2, 1 ≤ q ≤ ph, and 1 ≤ r ≤ p(h− 1)

hold.

The mode shape vectors which are identified from the EMA fulfills the orthogonality con-

dition in equation (2.6). This means the model in equation (2.4) can be assembled using

the EMA results. However, it is not the case for the OMA, because the identified mode

shape vectors are not correctly scaled. This is due to the missing excitation information

in OMA. Fortunately, a Finite Element (FE) model is often available for a complicated

or large-scale structure. The scaled mode shape vectors, which fulfill the othogonality

condition in equation (2.6), can be obtained from the updated FE model of the structure.

2.1.6. Model updating

Model updating is defined as the process of quantifying the discrepancy between the ana-

lytical prediction from the Finite Element Analysis (FEA) and the test results, and then

adjusing certain parameters in the FE model to obtain a valid and reliable model which is

capable of representing the dynamics of the real structure (Dascotte, 2007; Mottershead

et al., 2011). The principle which is adopted in this thesis for model updating is described

below.

For the i-th mode of a structure, define fa,i as the natural frequency from FEA, fe,i the

experimentally identified natural frequency, φa,i the mode shape vector from FEA, and

φe,i the experimentally identified mode shape vector. For the i-th mode, rf,i represents
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the residual of the natural frequency, and rφ,i denotes the residual of the mode shape.

The value of rf,i can be calculated with

rf,i =
|fe,i − fa,i|

fe,i
. (2.52)

The value of rφ,i can be obtained with

rφ,i = 1−
(φT

a,iφ
∗
e,i)

2

(φT
a,iφ

∗
a,i)(φ

T
e,iφ

∗
e,i)

. (2.53)

Define rf as the residual vector of natural frequency, and rφ as and the residual vector of

mode shape. The vector rf can be assembled as

rf =

[
rf,1, rf,2, · · · , rf,i, · · · , rf,mDOF

]T
. (2.54)

The vector rφ has the form

rφ =

[
rφ,1, rφ,2, · · · , rφ,i, · · · , rφ,mDOF

]T
. (2.55)

Introduce the objective function

J = Jr + λ2Jθ, (2.56)

where Jr and Jθ are calculated with

Jr =

[
rTf rTφ

]



W f 0mDOF×mDOF

0mDOF×mDOF W φ






rf

rφ


 (2.57)

and

Jθ = △θT△θ. (2.58)

In equation (2.56), Jr denotes the measurement residual; Jθ represents the side constraint;

and λ is the regularization parameter. In equation (2.57), W f ∈ R
mDOF×mDOF denotes

the weighting matrix for rf , and W φ ∈ R
mDOF×mDOF represents the weighting matrix

for rφ. In equation (2.58), △θ represents the change of the updating parameters. The

FE model is updated by minimizing the objective function J .

2.2. Observer

For state control design it is assumed that the system state is available for feedback.

However, in many cases this assumption is rarely satisfied. Either the cost of sensors for
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measuring the state may be prohibitive, or it is even not possible to physically measure the

state. An approach which accounts for this issue is to design a system which can provide

an estimate of the system state. When such designed system is in a deterministic setting,

it is called an observer. In 1964, David G. Luenberger first proposed and developed the

observer (also named as Luenberger observer) which can estimate the system state using

the output measurements (Luenberger, 1964).

Consider a system which is described by

ẋ (t) = Acx (t) +Bcu (t) (2.59)

and

y (t) = Ccx (t) , (2.60)

where x (t) ∈ R
n denotes the system state; u (t) ∈ R

r represents the known control

input vector; y (t) ∈ R
p is the output; and Ac, Bc, and Cc are the system matrices with

appropriate dimensions.

The observer is described by

˙̂x (t) = Acx̂ (t) +Bcu (t) +Lc (y (t)−Ccx̂ (t)) (2.61)

and

ŷ (t) = Ccx̂ (t) , (2.62)

where x̂ (t) ∈ R
n denotes the estimate of the system state x (t), ŷ (t) ∈ R

p represents the

estimate of the system output y (t), and Lc ∈ R
n×p is the gain matrix which needs to be

designed.

The operation of the observer can be illustrated by the block diagram in figure 2.4. It can

be seen that the inaccessible system state within the dynamic system becomes accessible

with the help of the observer.

Figure 2.4. Description of the observer in the form of a block diagram (Luenberger, 1964)
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Define the state estimate error x̃ (t) ∈ R
n

x̃ (t) = x (t)− x̂ (t) . (2.63)

The dynamics of x̃ (t) can be described by

˙̃x (t) = (Ac −LcCc) x̃ (t) . (2.64)

If a gain matrix Lc exists so that the eigenvalues of the matrix (Ac −LcCc) are all on

the Left Half-Plane (LHP), x̃ (t) will decay to zero independant of the initial condition of

x̂ (t). The observer can be designed to have arbitrary dynamics if and only if the system in

equations (2.59) and (2.60) is observable. More details on the derivation of equation (2.64)

and the observer design can be found in e.g. Luenberger (1971) and Franklin et al. (2006).

2.3. Unknown Input Observer (UIO)

Yang and Wilde (1988) proposed a direct design procedure for a type of full-order observer

for linear systems with unknown inputs. Darouach et al. (1994) showed that the design

for this type of full-order observer can be reduced to the Luenberger observer design.

Darouach (2009) further generalized his earlier work by considering the unknown inputs

appearing in both state equation and output equation. This type of full-order observer

is called Unknown Input Observer (UIO). The UIO is also named as robust observer

(O’Reilly, 1983).

Consider the system

ẋ (t) = Acx (t) +Bcu (t) +Gcd (t) (2.65)

and

y (t) = Ccx (t) +Hcd (t) , (2.66)

where x (t) ∈ R
n denotes the state; u (t) ∈ R

r represents the (known) control input;

d (t) ∈ R
m is the disturbance (unknown input); y (t) ∈ R

p is the output; and Ac, Bc, Gc

, Cc, and Hc are the system matrices with appropriate dimensions.

The UIO has the form

ξ̇ (t) =Nuioξ (t) +Luioy (t) +Huiod (t) (2.67)

and

x̂ (t) = ξ (t) +Quioy (t) , (2.68)

where ξ (t) ∈ R
n denotes the state vector in the UIO; x̂ (t) ∈ R

n is the estimate of x (t);

and Nuio, Luio, and Quio are the matrices which need to be determined. The UIO can be
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described by the block diagram in figure 2.5.

Figure 2.5. Description of the UIO in the form of a block diagram (O’Reilly, 1983)

Define matrix P uio as

P uio = I −QuioCc. (2.69)

The full-order UIO in equations (2.67) and (2.68) will estimate (asymptotically) x (t) if

all the following conditions hold.

(1) The eigenvalues of matrix Nuio are all on the LHP.

(2) Condition P uioAc −NuioP uio −LuioCc = 0 holds.

(3) Condition P uioGc +NuioQuioHc −LuioHc = 0 holds.

(4) Condition QuioHc = 0 holds.

(5) Condition Huio = P uioBc holds

Introduce the matrices

Σuio =



CcGc Hc

Hc 0


 , (2.70)

Θuio =

[
−Gc 0

]
, (2.71)

Auio = Ac +ΘuioΣ
+
uio



CcAc

Cc


 , (2.72)
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and

C =
(
I −ΣuioΣ

+
uio

)


CcAc

Cc


 , (2.73)

where Σ+
uio denotes the left inverse of Σuio. Define the state estimate error x̃ (t) as

x̃ (t) = x (t)− x̂ (t) . (2.74)

The dynamics of x̃ (t) can be described by

˙̃x (t) = (Auio −ZuioCuio) x̃ (t) . (2.75)

If a gain matrix Zuio exists so that the eigenvalues of the matrix (Auio −ZuioCuio) are

all on the LHP, x̃ (t) will decay to zero independent of the initial condition of x̂ (t). More

details on the derivation of equation (2.75) and the UIO design can be found in Darouach

(2009).

2.4. Kalman filter

Kalman (1960) published a recursive solution to estimate the system state. The recursive

nature of this solution makes it very practical for implementation. Together with the

advances of digital computing, this recursive solution was extensively studied and found

itself in many applications, e.g. navigation (Maybeck, 1979; Brown and Hwang, 1997).

This recursive solution is named as Kalman filter.

Consider the disrete-time time-variant stochastic system

xk+1 = Akxk +Bkuk +Υkwk (2.76)

and

yk = Ckxk + vk, (2.77)

where xk ∈ R
n denotes the state; uk ∈ R

r is the control (known) input; yk ∈ R
p is the

output; wk ∈ R
m is the process noise; vk ∈ R

p is the measurement noise; and Ak, Bk,

Υk, and Ck are matrices with appropriate dimensions.

Assume wk and vk are zero-mean Gaussian white-noise processes, which means the con-

ditions

E
[
wkw

T
j

]
=





0

Qk

k 6= j

k = j
(2.78)
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and

E
[
vkv

T
j

]
=





0

Rk

k 6= j

k = j
(2.79)

hold. In equations (2.78) and (2.79), E [·] represents the expectation operator, Qk denotes

the covariance matrix of the process noise wk, and Rk is the covariance matrix of the

measurement noise vk. wk and vk are assumed mutually uncorrelated.

Define x̂k|k−1 ∈ R
n as the a priori state estimate at the step k using the information of

the process priori to the step k; x̂k|k ∈ R
n as the a posteriori state estimate at the step

k using the measurement yk; x̃k|k−1 ∈ R
n as the a priori state estimate error; x̃k|k ∈ R

n

as the a posteriori state estimate error; P x
k|k−1 the covariance of x̃k|k−1 ; and P x

k|k the

covariance of x̃k|k . The definition for x̃k|k−1, x̃k|k, P
x
k|k−1 and P x

k|k are given as

x̃k|k−1 = xk − x̂k|k−1, (2.80)

x̃k|k = xk − x̂k|k, (2.81)

P x
k|k−1 = E

[
x̃k|k−1x̃

T
k|k−1

]
, (2.82)

and

P = E
[
x̃k|kx̃

T
k|k

]
. (2.83)

The discrete-time Kalman filter is comprised by

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1, (2.84)

P x
k|k−1 = Ak−1P

x
k−1|k−1A

T
k−1 +Υk−1Qk−1Υ

T
k−1, (2.85)

Kk = P
x
k|k−1C

T
k

(
CkP

x
k|k−1C

T
k +Rk

)−1
, (2.86)

x̂k|k = x̂k|k−1 +Kk

(
yk −Ckx̂k|k−1

)
, (2.87)

and

P x
k|k = (I −KkCk)P

x
k|k−1, (2.88)

where the matrix Kk ∈ R
n×p denotes the Kalman gain.

The operation of the discrete-time Kalman filter is illustrated in figure 2.6. If an initial

conditon x̂0 and P x
0 are given to the time update stage, P x

0|0 = P x
0 and x̂0|0 = x̂0, the

time update stage project the state estimate and the error covariance forward to get the

a priori estimates, while the measurement update stage correct the state estimate and

the error covariance using the measurement to yield the a posteriori estimates. In such a

predictor-corrector form operates the discrete-time Kalman filter.
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Figure 2.6. Operation of the discrete-time Kalman filter (Welch and Bishop, 2006)

Substituting equations (2.88) and (2.86) into equation (2.85) leads to the Riccati recursion

P x
k+1|k = AkP

x
k|k−1A

T
k −AkP

x
k|k−1C

T
k

(
CkP

x
k|k−1C

T
k +Rk

)−1
CkP

x
k|k−1A

T
k +ΥkQkΥ

T
k .

(2.89)

If Ak, Bk, Υk, Ck, Qk and Rk are constant matrices, the system in equations (2.76) and

(2.77) will be discrete-time time-invariant with stationary noise, and the Riccati recursion

in equation (2.89) will reach a steady-state and appears as the discrete-time algebraic

Riccati equation

P x
d,ss = AdP

x
d,ssA

T
k −AdP

x
d,ssC

T
d

(
CdP

x
d,ssC

T
d +Rd

)−1
CdP

x
d,ssA

T
d +ΥdQdΥ

T
d , (2.90)

where P x
d,ss is the steady-state value of P x

k|k−1, and Ad, Υd, Cd, Qd and Rd are the

constant versions of Ak, Υk, Ck, Qk and Rk . By solving equation (2.90), P x
d,ss can be

determined.

Introduce Kd,ss as the steady-state of Kk. Then Kd,ss can be calculated with

Kd,ss = P
x
d,ssC

T
d

(
CdP

x
d,ssC

T
d +Rd

)−1
. (2.91)

The matrixKd,ss is also named as the steady-state Kalman gain. Such a constant Kalman

gain can significantly simplify the implementation and reduce the computational load.

With Kd,ss, the dynamics of x̃k|k can be derived as

x̃k+1|k+1 = (Ad −Kd,ssCdAd) x̃k|k + (Υk −Kd,ssCdΥk)wk −Kd,ssvk+1. (2.92)
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2.5. Kalman-Bucy filter

Kalman and Bucy (1961) presented a continuous-time counterpart to the discrete-time

Kalman filter. This type of filter is named as Kalman-Bucy filter.

Consider the continuous-time time-variant stochastic model

ẋ (t) = A (t)x (t) +B (t)u (t) +Υ (t)w (t) (2.93)

and

y(t) = C (t)x (t) + v (t) , (2.94)

where x (t) ∈ R
n represents the state; u (t) ∈ R

r denotes the control (known) input;

y (t) ∈ R
p is the output; and A (t), B (t), Υ (t) and C (t) are the system matrices with

appropriate dimensions; w (t) ∈ R
m and v (t) ∈ R

p are zero-mean Gaussian white-noise

processes, which indicates that the conditions

E
[
w (t)wT (τ)

]
= Q (t) δ (t− τ) (2.95)

and

E
[
v (t)vT (τ)

]
= R (t) δ (t− τ) (2.96)

hold. In equations (2.95) and (2.96), δ (t) represents the Dirac delta function. w (t) and

v (t) are assumed uncorrelated, which means the condition

E
[
w (t)vT (t)

]
= 0 (2.97)

holds.

The Kalman-Bucy filter is comprised by

K (t) = P x (t)C (t)R−1 (t) , (2.98)

Ṗ x (t) = A (t)P x (t)+P x (t)AT (t)−P x (t)CT (t)R−1 (t)C (t)P x (t)+Υ (t)Q (t)ΥT (t) ,

(2.99)

and
˙̂x (t) = A (t) x̂ (t) +B (t)u (t) +K (t) (y (t)−C (t) x̂ (t)) , (2.100)

where K (t) ∈ R
n×p represents the Kalman gain; x̂ (t) ∈ R

n denotes the estimate of the

state; and P x (t) ∈ R
n×n is the estimate error covariance .

If the matrices A (t), B (t), Υ (t), C (t), Q (t) and R (t) are constant, the system which

is described by equations (2.93) through (2.97) will be time-invariant with stationary
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zero-mean white noise, and can be represented by

ẋ (t) = Acx (t) +Bcu (t) +Υ cw (t) , (2.101)

y(t) = Ccx (t) + v (t) , (2.102)

E
[
w (t)wT (τ)

]
= Qcδ (t− τ) , (2.103)

and

E
[
v (t)vT (τ)

]
= Rcδ (t− τ) , (2.104)

where Ac, Bc, Υ c, Cc, Qc and Rc are the constant values of A (t), B (t), Υ (t), C (t),

Q (t) and R (t), respectively. In this case, equation (2.99) will reach a steady-state and

appears as the continuous-time algebraic Riccati equation

0 = AcP
x
c,ss + P

x
c,ssAc − P

x
c,ssCcR

−1
c CP

x
c,ss +Υ cQcΥ c, (2.105)

where P x
c,ss is the steady-state value of P x (t). Equation (2.100) appears as

˙̂x (t) = Acx̂ (t) +Bcu (t) +Kc,ss (y (t)−Ccx̂ (t)) , (2.106)

where Kc,ss denotes the steady-state continuous-time Kalman gain. By solving equa-

tion (2.105), P x
c,ss can be determined. The steady-state Kalman gain can be calculated

with

Kc,ss = P
x
c,ssCcR

−1
c . (2.107)

In the steady-state, the Kalman-Bucy filter operates like a Luenberger observer, but with

an optimal feedback gain. Define the state estimate error x̃ (t) as in equation (2.63), then

the dynamics of x̃ (t) can be described by

˙̃x (t) = (Ac −Kc,ssCc) x̃ (t) +Υ cw (t)−Kc,ssv (t) . (2.108)

2.6. Real-time executable state and input estimation

algorithms

In this section, the available state and input estimation algorithms are briefly reviewed.

These algorithms are all real-time executable, which indicates that an online operation

of these algorithms is possible. Figure 2.7 describes the principle of real-time state and

input estimation in the form of a block diagram.
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Figure 2.7. Principle of real-time state and input estimation

2.6.1. Proportional-Integral observer (PI observer)

Söffker et al. (1995) presented a design method for Proportional-Integral observer (PI

observer). In this paper, it is stated that without exact knowledge about the dynamic

behavior of the unknown input, a very general approach is possible by assuming the

unknown input as piece-wise constant.

Consider the nonlinear system which is described by

ẋ (t) = Acx (t) +Bcu (t) +N cd (t) (2.109)

and

y (t) = Ccx (t) , (2.110)

where x (t) ∈ R
n represents the state; u (t) ∈ R

r denotes the (known) control input;

d (t) ∈ R
m is the disturbance (unknown input); y (t) ∈ R

p is the output; and Ac, Bc, N c

and Cc are the system matrices with appropriate dimensions.

The PI observer has the form




˙̂x (t)

˙̂
d (t)


 =



Ac −Lpio,1Cc N c

−Lpio,2 0






x̂ (t)

d̂ (t)


+



Bc

0


u (t)+



Lpio,1

Lpio,2


y (t) (2.111)

and

ŷ (t) = Ccx̂ (t) , (2.112)

where x̂ (t) represents the estimate of x (t); d̂ (t) denotes the estimate of d (t); ŷ (t) is the

estimate of y (t); and Lpio,1 and Lpio,2 are the matrices which need to be determined.

Figure 2.8 describes the PI observer in the form of a block diagram. Compared with the

Luenberger observer, the PI observer uses not only the proportional but also the integral

information of the difference between the measured output y (t) and the reconstructed

output ŷ (t), so that both the current and the past information can be used to correct the

state estimate.
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Figure 2.8. Description of the PI observer in the form of a block diagram (Söffker et al., 1995)

Define the state estimate error x̃ (t) and the input estimate error d̃ (t) as

x̃ (t) = x (t)− x̂ (t) (2.113)

and

d̃ (t) = d (t)− d̂ (t) . (2.114)

The dynamics of the estimate error can be described by




˙̃x (t)

˙̃
d (t)


 = [Apio −LpioCpio]



x̃ (t)

d̃ (t)


+




0

I


 ḋ (t) , (2.115)

where Apio, Cpio and Lpio are calculated with

Apio =



Ac N c

0 0


 , (2.116)

Cpio =

[
Cc 0

]
, (2.117)

and

Lpio =



Lpio,1

Lpio,2


 . (2.118)
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In equation (2.115), ḋ (t) acts as the error input.

Assume that the unknown input d (t) is bounded, a high-gain PI observer exists such that

the state estimate error x̃ (t) goes to zero for any initial states x (0), x̂ (0) , and d̂ (0), if

the following sufficient conditions are fulfilled.

(1) Matrix pair (Apio, Cpio) is observable.

(2) The condition rank






Ac N c

Cc 0





 = n+m holds.

(3) The conditionCcA
i
cN c = 0 (i = 0, 1, 2, · · · , k−2) holds, where k is the observability

index of the matrix pair (Ac, Cc).

In this thesis, the gain matrix Lpio is calculated using the Loop Transfer Recovery (LTR)

design method which is suggested in Krajcin and Söffker (2005). The main steps for

calculating Lpio are provided below.

Introduce the matrices

N pio =




0 n×m

Im×m


 , (2.119)

Qpio = I(n+m)×(n+m) + qN pioN
T
pio, (2.120)

and

Rpio = Im×m. (2.121)

By solving the continous-time algebraic Riccati equation

ApioP + PAT
pio +Qpio − PC

T
pioR

−1
pioCpioP = 0 , (2.122)

a solution of the matrix P can be obtained, and the gain matrix Lpio is determined with

Lpio = PC
T
pioR

−1
pio. (2.123)

In Equation (2.120), q denotes the LTR design parameter. For fast changing input where

ḋ (t) is large, the value of q needs to be set very large in order to get satisfactory results.

2.6.2. Simultaneous State and Input Estimator (SS&IE)

Ha and Trinh (2004) proposed a UIO design which can realize simultaneous state and

input estimation for a class of nonlinear systems. Klinkov and Fritzen (2006) named this



Chapter 2. Theoretical foundations 31

method as Simultaneous State and Input Estimator (SSNIE), and adopted it for online

force reconstruction.

Consider the system which is described by

ẋ (t) = Acx (t) +Gcd (t) + f ((x (t) ,u (t)) , y (t)) (2.124)

and

y (t) = Ccx (t) +Hcd (t) , (2.125)

where x (t) ∈ R
n represents the state; d (t) ∈ R

m denotes the unknown input; y (t) ∈ R
p is

the output; andAc,Gc , Cc andHc are the system matrices with appropriate dimensions.

In equation (2.124), f ((x (t) ,u (t)) , y (t)) is a nonlinear vector and is expressed by

f ((x (t) ,u (t)) , y (t)) = fL ((x (t) ,u (t)) , y (t)) +W ssiefU ((x (t) ,u (t)) , y (t)) ,

(2.126)

where fL ((x (t) ,u (t)) , y (t)) ∈ R
n and fU ((x (t) ,u (t)) , y (t)) ∈ R

n are, respectively,

the nonlinear term satisfying Lipschitz condition and the unknown nonlinear term; and

W ssie ∈ R
n×d is a constant matrix with full column rank.

Introduce an augmented state vector xaug (t) as

xaug (t) =



x (t)

d (t)


 . (2.127)

The nonlinear term fL ((x (t) ,u (t)) , y (t)) is assumed to be Lipschitz in xaug (t) with a

Lipschitz constant γ, and fulfills the condition

‖fL (xaug (t) , y (t))− fL (x̂aug (t) , y (t))‖ ≤ γ ‖xaug (t)− x̂aug (t)‖ , (2.128)

where x̂aug (t) is the estimate of xaug (t); γ is a positive real scalar; and ‖·‖ denotes the

Euclidean norm. The matrix [Dc, CcW ssie] is assumed to have full column rank, which

indicates the condition y ≥ m+ d holds.

Introduce the matrices

Essie =

[
In 0 n×m

]
, (2.129)

M ssie =

[
Ac Gc

]
, (2.130)

and

Hssie =

[
Cc Hc

]
. (2.131)
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The system which is described by equations (2.124) and (2.125) can be transformed to

Essieẋaug (t) =M ssiexaug (t) + fL (xaug (t) , y (t)) +W ssiefU (xaug (t) , y (t)) (2.132)

and

y (t) =Hssiexaug (t) . (2.133)

The SSNIE is described by

ξ̇aug (t) =N ssieξaug (t) +Lssiey (t) + T ssiefL (x̂aug (t) , y (t)) (2.134)

and

x̂aug (t) = ξaug (t) +Qssiey (t) , (2.135)

whereN ssie, Lssie, T ssie and Qssie are the matrices which need to be designed. Figure 2.9

describes the SSNIE in the form of a block diagram.

Figure 2.9. Description of the SSNIE in the form of a block diagram (Ha and Trinh, 2004)

Introduce the notations

Sssie =



Essie W ssie

Hssie 0


 , (2.136)
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J ssie =

[
In+m 0

]
S+

ssie



In

0


 , (2.137)

Φssie = J ssieM ssie, (2.138)

Gssie =
(
In+p − SssieS

+
ssie

)


In

0


 , (2.139)

Ψ ssie = GssieM ssie, (2.140)

V ssie =

[
In+m 0

]
S+

ssie




0

Ip


 , (2.141)

and

Kssie =
(
In+p − SssieS

+
ssie

)



0

Ip


 , (2.142)

where S+
ssie denotes the left inverse of Sssie.

The vector x̂aug (t) will asymptotically approach xaug (t), if there exist matrices P ssie =

P+
ssie > 0 ,Xssie, Y ssie, and positive scalars δ1 and δ2, so that the following Linear Matrix

Inequality (LMI)




Φ
T
ssieP ssie +Ψ ssieY

T
ssie −H

T
ssieX

T
ssie P ssieJ ssie Y ssieGssie

+P ssieΦssie + Y ssieΨ ssie −XssieHssie

+γ2 (δ1 + δ2) I

JT
ssieP ssie −δ1I 0

GT
ssieY

T
ssie 0 −δ1I




< 0 (2.143)

is satisfied. The LMI above can be solved in a computationally efficient manner using

e.g., MATLAB LMI Control Toolbox.

Introduce the matrices Zssie and F ssie as

Zssie = P
−1
ssieY ssie (2.144)

and

F ssie = P
−1
ssieY ssie. (2.145)
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The matrices N ssie, Lssie, T ssie and Qssie can be determined respectively with

N ssie = Φssie +ZssieΨ ssie − F ssieHssie, (2.146)

Lssie = F ssie +N ssieQssie, (2.147)

T ssie = J ssie +ZssieGssie, (2.148)

and

Qssie = V ssie +ZssieKssie. (2.149)

When f ((x (t) ,u (t)) , y (t)) includes only fU ((x (t) ,u (t)) , y (t)), x̂aug (t) will asymp-

totically approach xaug (t), if there exist matrices Zssie and F ssie so that the eigenvalues

of the matrix N ssie are all on the LHP.

2.6.3. Kalman Filter and a Recursive Least-Squares Estimator

(KF+RLSE)

Tuan et al. (1996) presented a state and input estimation algorithm to solve two-dimensional

inverse heat conduction problems. This algorithm is named as Kalman Filter and a Re-

cursive Least-Squares Estimator (KF+RLSE).

Consider the discrete-time time-invariant system which is described by

xk+1 = Adxk +Gddk +wk (2.150)

and

yk = Cdxk + vk, (2.151)

where xk ∈ R
n represents the state; dk ∈ R

m denotes the unknown input; yk ∈ R
p is

the output; and Ad, Gd and Cd are the system matrices with appropriate dimensions;

wk ∈ R
n is the process noise; vk ∈ R

p is the measurement noise. wk and vk are assumed

as stationary zero-mean Gaussian white-noise processes, with covariance matrices Qd and

Rd, respectively.

The KF+RLSE algorithm consists of the following two part, a Kalman filter part which

includes

x̂k|k−1 = Adx̂k−1|k−1, (2.152)

P x
k|k−1 = AdP

x
k−1|k−1A

T
d +Qd, (2.153)

Sk = CdP k|k−1C
T
d +Rd, (2.154)

Kk = P k|k−1C
T
dS

−1
k , (2.155)

P x
k|k = (I −KkCd)P

x
k|k−1, (2.156)
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ỹk = yk −Cdx̂k|k−1, (2.157)

and

x̂k|k = x̂k|k−1 +Kkỹk. (2.158)

and a recursive least-squares estimator which includes

Bk = Cd (AdM k−1 + I)Gd, (2.159)

M k = (I −KkCd) (AdM k−1 + I) , (2.160)

Kd
k = γ−1P d

k−1B
T
k

(
Bkγ

−1P d
k−1B

T
k + Sk

)−1
, (2.161)

P d
k =

(
I −Kd

kBk

)
γ−1P d

k−1, (2.162)

and

d̂k = d̂k−1 +K
d
k

(
ỹk −Bkd̂k−1

)
. (2.163)

In equations (2.152) through (2.163), x̂k|k−1 denotes the a priori state estimate; x̂k|k−1

is the a posteriori sate estimate; d̂k is the estimate of dk; P
x
k|k−1 represents the estimate

error covariance of x̂k|k−1; P
x
k|k is the estimate error covariance of x̂k|k; P

d
k is the estimate

error covariance of dk; Bk andM k denote sensitivity matrices; Sk, Kk and Kd
k are gain

matrices; and γ(0 < γ < 1) is a forgetting factor which prevents Kd
k from shrinking to

zero and to compromise between the fast adaptive capability and the loss of estimate

accuracy. A necessary condition for the existence of the KF+RLSE algorithm is that the

matrix pair (Ak, Ck) should be observable.

2.6.4. Recursive Three-Step Filter (RTSF)

Gillijns and De Moor (2007) proposed an unbiased minimum-variance input and state

estimation algorithm for linear discrete-time systems with direction feedthrough. This

algorithm is named as Recursive Three-Step Filter (RTSF) (Hsieh, 2010).

Consider the linear discrete-time time-variant system which is described by

xk+1 = Akxk +Gkdk +wk (2.164)

and

yk = Ckxk +Hkdk + vk. (2.165)

where xk ∈ R
n represents the state; dk ∈ R

m denotes the unknown input; yk ∈ R
p is

the output; and Ak, Gk, Ck and Hk are system matrices with appropriate dimensions;

wk ∈ R
n and vk ∈ R

p represent the process noise and the measurement noise, respectively.

It is assumed that wk and vk are stationary, mutually uncorrelated, zero-mean and white,
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with known covariance matrices

Qk = E
[
wkw

T
k

]
(2.166)

and

Rk = E
[
vkv

T
k

]
. (2.167)

Introduce the a priori state estimate x̂k|k−1, the a posteriori state estimate x̂k|k and the

input estimate d̂k. The a priori state estimate error x̃k|k−1, the a posteriori state estimate

error x̃k|k , the input estimate error d̃k , and their covariances are defined by

x̃k|k−1 = xk − x̂k|k−1, (2.168)

x̃k|k = xk − x̂k|k, (2.169)

d̃k = dk − d̂k, (2.170)

P x
k|k−1 = E

[
x̃k|k−1x̃

T
k|k−1

]
, (2.171)

P x
k|k = E

[
x̃k|kx̃

T
k|k

]
, (2.172)

P d
k = E

[
d̃kd̃

T

k

]
, (2.173)

and

P xd
k = E

[
x̃k|kd̃

T

k

]
. (2.174)

Assume the estimate of the initial state, x̂0|0, is unbiased with known covariance P x
0|0.

The filter equations of the RTSF consist of three steps:

• Estimation of unknown input, which includes

R̃rtsf,k = CkP
x
k|k−1C

T
k +Rk, (2.175)

M rtsf,k =
(
HT

k R̃
−1

rtsf,kHk

)−1

HT
k R̃

−1

k , (2.176)

d̂k =M rtsf,k

(
yk −Ckx̂k|k−1

)
, (2.177)

and

P d
k =

(
HT

k R̃
−1

rtsf,kHk

)−1

. (2.178)

• Measurement update, which includes

Krtsf,k = P
x
k|k−1C

T
k R̃

−1

rtsf,k, (2.179)

x̂k|k = x̂k|k−1 +Krtsf,k

(
yk −Ckx̂k|k−1 −Hkd̂k

)
, (2.180)
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P x
k|k = P

x
k|k−1 −Krtsf,k

(
R̃rtsf,k −HkP

d
kH

T
k

)
KT

rtsf,k, (2.181)

and

P xd
k =

(
P dx

k

)T
= −Krtsf,kHkP

d
k. (2.182)

• Time update, which includes

x̂k+1|k = Akx̂k|k +Gkd̂k (2.183)

and

P x
k+1|k =

[
Ak Gk

]


P x

k|k P xd
k

P dx
k P d

k






AT

k

GT
k


+Qk. (2.184)

The existence of the RTSF requires that the following necessary and sufficient conditions

should be fulfilled.

(1) The unbiased estimate of the initial state is available;

(2) Matrix pair (Ak, Ck) is observable;

(3) Matrix Hk has full column rank.

2.6.5. Kalman Filter with Unknown Inputs (KF-UI)

Pan et al. (2011) proposed a Kalman Filter with Unknown Inputs (KF-UI) algorithm by

using the weighted least-squares estimation method.

Consider the same system which is described by equations (2.164) and (2.165) and the

same definitions which are introduced in equations (2.168) through (2.174).

The KF-UI algorithm consists of the following three steps:

• Step 1: Compute the time update for estimated states, which includes

x̂k|k−1 = Ak−1x̂k−1|k−1 +Gk−1d̂k−1. (2.185)

• Step 2: Calculate the gain matrices Kkfui,k and Skfui,k, which includes

Kkfui,k = P
x
k|k−1C

T
k

[
Rk +CkP

x
k|k−1C

T
k

]−1
(2.186)

and

Skfui,k =
[
HT

kR
−1
k (I −CkKkfui,k)Hk

]−1
. (2.187)

In equation (2.186), P x
k|k−1 is determined by

P x
k|k−1 = Ak−1P

x
k−1|k−1A

T
k−1 +Gk−1H

T
k−1R

−1
k−1Ck−1A

T
k−1



38 Chapter 2. Theoretical foundations

+Ak−1C
T
k−1R

−1
k−1Hk−1G

T
k−1 +Gk−1Skfui,k−1G

T
k−1 +Qk−1, (2.188)

where P x
k−1|k−1 is calculated with

P x
k−1|k−1 = (I+Kkfui,k−1Hk−1Skfui,k−1H

T
k−1R

−1
k−1Ck−1)(I−Kkfui,k−1Ck)P

x
k−1|k−2.

(2.189)

• Step 3: Compute the input estimate d̂k and the a posteriori state estimate x̂k|k,

which includes

d̂k = Skfui,kH
T
kR

−1
k (Ip −CkKkfui,k)(yk −Ckx̂k|k−1) (2.190)

and

x̂k|k = x̂k|k−1 +Kkfui,k

[
yk −Ckx̂k|k−1 −Hkd̂k

]
. (2.191)

The existence of the KF-UI requires that the following necessary and sufficient conditions

should be fulfilled.

(1) Condition p > m holds.

(2) Matrix

[
CT

1 , AT
1C

T
2 , · · · , AT

1A
T
2 · · ·AT

k−1C
T
k

]T
has full column rank.

(3) Matrix
[
H i −CiA

−1
i Gi

]
has full column rank, (i = 1, 2, . . . , k − 1).

(4) Matrix Hk has full column rank.

2.6.6. Augmented Kalman Filter (AKF)

Lourens et al. (2012b) proposed an Augmented Kalman Filter (AKF) method for the

estimation of impact force on an instrumented steel beam. The main steps of the AKF

are provided below.

Consider the linear discrete-time system which is described by

xk+1 = Adxk +Gddk +wk (2.192)

and

yk = Cdxk +Hddk + vk, (2.193)

where xk ∈ R
n represents the state; dk ∈ R

m denotes the unknown input; yk ∈ R
p is the

output; Ad, Gd, Cd and Hd are system matrices with appropriate dimensions; wk ∈ R
n

and vk ∈ R
p represent the process noise and the measurement noise, respectively. It is

assumed that wk and vk are stationary, mutually uncorrelated, zero-mean and white,

with known covariance matrices

Qd = E
[
wkw

T
k

]
(2.194)
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and

Rd = E
[
vkv

T
k

]
. (2.195)

Assume the dynamics of the input dk can be described by

dk+1 = dk + ηk, (2.196)

where ηk ∈ R
m represents the increment of the unknown input dk. ηk is assumed to

be a stationary zero-mean stochastic process which is uncorrelated with wk and has the

covariance matrix

Q
input
d = E[ηkη

T
k ]. (2.197)

Introduce an augmented state xaug,k as

xaug,k =



xk

dk


 . (2.198)

The system which is described by equaitons (2.192) and (2.193) can be transformed to

xaug,k+1 = Aakfxaug,k +waug,k (2.199)

and

yk = Cakfxaug,k + vk, (2.200)

where Aakf and Cakf are defined as

Aakf =



Ad Gd

0 I


 (2.201)

and

Cakf =

[
Cd Hd

]
, (2.202)

and waug,k ∈ R
n+m denotes the augmented process noise.

By applying the Kalman filter, which has been reviewed in section 2.4, to the system

which is described by equation (2.199) and equation (2.200), the estimates of the state

and the unknown input can be obtained.

The existence of the AKF requires that the matrix pair (Aakf , Cakf ) should be observable.

2.6.7. Steady-State Kalman Filter and a Least-Squares Estimator

Hwang et al. (2009a) proposed a procedure for input estimation based on Kalman filter
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scheme. This procedure includes a Steady-State Kalman Filter and a Least-Squares Es-

timator (SSKF+LSE). To support the discussion in later chapters, a brief review of the

SSKF+LSE is provided below.

Consider the system which is described by

ẋ (t) = Acx (t) +Gcd (t) (2.203)

and

y (t) = Ccx (t) +Hcd (t) + v (t) , (2.204)

where x (t) ∈ R
n represents the state; d (t) ∈ R

m denotes the unknown input; y (t) ∈ R
p

is the output; v (t) ∈ R
p is the measurement noise and the noise from higher modes which

are not considered in the structural model; and Ac, Gc, Cc, and Hc are the system

matrices with appropriate dimensions. Vectors d (t) and v (t) are assumed to be mutually

uncorrelated and white stationary processes, with the covariance matrices Qinput and

Qmeas, respectively.

The state update is described by

˙̂x (t) = Acx̂ (t) +Ksskf+lse (y (t)−Ccx̂ (t)) (2.205)

and the input estimate is calculated by

d̂ (t) = G+
c Ksskf+lse (y (t)−Ccx̂ (t)) , (2.206)

where x̂ (t) ∈ R
n represents the state estimate; d̂ (t) ∈ R

m denotes the input estimate;

G+
c is the generalized inverse of Gc and is calculated by

G+
c =

(
GT

cGc

)−1
GT

c ; (2.207)

and Ksskf+lse is the gain matrix and is determined by

Ksskf+lse =
(
GcQinputH

T
c + PCT

c

) (
HcQinputH

T
c +Qmeas

)−1
, (2.208)

where the matrix P is determined by solving the algebraic Ricatti equation

AcP + PAT
c −

(
GcQinputH

T
c + PCT

c

) (
HcQinputH

T
c +Qmeas

)−1 (
CcP +HcQinputG

T
c

)

+GcQinputG
T
c = 0 .

(2.209)

In Hwang et al. (2009b), the values of the covariance matrices Qinput and Qmeas are
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considered to be unknown, and are set as

Qinput = Im (2.210)

and

Qmeas = γIp. (2.211)

By adjusting the value of γ, the values of P and Ksskf+lse are determined by solving

equations (2.209) and (2.208).

Define the state estimate error x̃ (t) as in equation (2.212),

x̃ (t) = x (t)− x̂ (t) . (2.212)

The dynamics of x̃ (t) can be described by

˙̃x (t) = (Ac −Ksskf+lseCc) x̃ (t) + (Gc −Ksskf+lseHc)d (t)−Ksskf+lsev (t) . (2.213)

The existence of the SSKF+LSE indicates that the following necessary conditions are

fulfilled.

(1) Matrix Gc has full column rank.

(2) Matrix pair (Ac, Cc) is observable.

2.7. Correlation of the process noise and the

measurement noise

Assume the structure under investigation can be modeled in the form of a continuous-time

state-space model as in equations (2.12) and (2.13). If the process noise (or the modeling

error) and the measurement noise are considered, the state-space structural model appear

as

ẋ(t) = Acx(t) +Gcd(t) +w (t) (2.214)

and

y(t) = Ccx(t) +Hcd(t) + v (t) , (2.215)

where the vectors x (t), d (t) and y (t) and the matrices Ac, Gc, Cc and Hc are defined

the same as in section (2.1.2); w (t) ∈ R
n denotes the process noise with the form

w (t) =




0mDOF×1

wmodel (t)


 , (2.216)
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where wmodel (t) ∈ R
m denotes the modeling error, and v (t) ∈ R

p represents the process

noise with the form

v (t) =




vds (t)

vv (t)

va (t)



, (2.217)

with vds (t) ∈ R
p ds, vv (t) ∈ R

p v and va (t) ∈ R
p a representing respectively the noise in

the displacement (or strain) measurement, the velocity measurement, and the acceleration

measurement, respectively. The va (t) can be expressed as

va (t) = va,sensor (t) + va,model (t) , (2.218)

where va,sensor (t) represents the noise from the sensor, and va,model (t) denotes the noise

from the modeling error. With equations (2.14) through (2.17), va,model (t) can be deter-

mined with

va,model (t) = [CaΦwmodel (t)] . (2.219)

In equation (2.219), the linear relationship between va,model (t) and wmodel (t) actually

indicates that wmodel (t) and va,model (t) are correlated. The covariance matrix of the

process noise w (t) can be calculated with

E
[
w (t)w (t)T

]
=




0mDOF×mDOF 0mDOF×m

0m×mDOF E
[
wmodel (t)wmodel (t)

T
]


 (2.220)

and the covariance matrices of the measurement noise v (t) can be calculated with

E
[
v (t)v (t)T

]
=




E
[
vds (t)vds (t)

T
]

0 pds×pv 0 pds×pa

0 pv×pds E
[
vv (t)vv (t)

T
]

0 pv×pa

0 pa×pds 0pa×pv E
[
va (t)va (t)

T
]




+




0 pds×pds 0 pds×pv 0pds×pa

0 pv×pds 0 pv×pv 0pv×pa

0 pa×pds 0 pa×pv CaΦE
[
wmodel (t)wmodel (t)

T
]
ΦTCT

a



.

(2.221)

Assume wmodel (t) is uncorrelated with vds (t), vv (t) and va,sensor (t). The crosscorrelation
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of w (t) and v (t) can be calculated with

E
[
w (t)v (t)T

]
=




0mDOF×pds 0mDOF×pv 0mDOF×pa

0mDOF×pds 0mDOF×pv E
[
wmodel (t)wmodel (t)

T
]
ΦTCT

a


 .

(2.222)

With equation (2.222) it can be concluded that the process noise w (t) and the mea-

surement noise v (t) are correlated if acceleration responses are considered in the output

equation of the state-space structural model.

The structural model which is described by equations (2.214) and (2.215) can be trans-

formed to its discrete-time counterpart as

xk+1 = Adxk +Gddk +wk (2.223)

and

yk = Cdxk +Hddk + vk, (2.224)

where Ad, Gd, Cd, and Hd represent the system matrices; the process noise wk is deter-

mined by

wk =

ˆ (k+1)△t

k△t

eAc△tw (t) dt (2.225)

and the measurement noise vk is determined by

vk =
1

△t

ˆ k△t

(k−1)△t

v (t) dt. (2.226)

The covariance matrix of wk is calculated with

E
[
wkw

T
k

]
=

ˆ (k+1)△t

k△t

ˆ (k+1)△t

k△t

(
eAc△t

)
E
[
w (ξ)w (η)T

] (
eAc△t

)T
dξdη (2.227)

and the covariance matrix of vk is calculated with

E
[
vkv

T
k

]
=

1

(△t)2

ˆ k△t

(k−1)△t

ˆ k△t

(k−1)△t

E
[
v (t)v (t)T

]
dξdη. (2.228)

For the discrete-time model, the cross-correlation of the process noise and the measure-

ment noise is calculated with (Brown and Hwang, 1997)

Sk = E
[
wk−1v

T
k

]
. (2.229)

Substituting equation (2.225) and equation (2.226) into the right side of equation (2.229)
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leads to

Sk =
eAc△t

△t

ˆ k△t

(k−1)△t

ˆ k△t

(k−1)△t

E
[
w (ξ)v (η)T

]
dξdη. (2.230)

It can be proved that if the matrix Ca in equation (2.222)is a non-zero matrix, Sk will

be a non-zero matrix. As introduced in section (2.1.1), Ca defines the positions of the

acceleration sensors. This means that if acceleration responses are considered in the output

equation of the state-space structural model, the process noise and the measurement noise

will be correlated.
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3. Problem formulation and

methodology

Force reconstruction is the process to reconstruct the forces from structural response

measurements. This process is a kind of inverse problem which often tends to be ill-

posed. Online force reconstruction is the research topic which studies how to realize force

reconstruction in real-time. Thus, online force reconstruction needs to solve the following

two problems.

(1) How to relax the ill-posedness in the process of force reconstruction?

(2) How to realize force reconstruction in real-time?

In section 3.1, force reconstruction is classified as a kind of inverse problem. The ill-posed

nature in the force reconstruction process is described in section 3.2. Section 3.3 discusses

the observability of the state and the convergence of the estimate error of the force.

The basic idea which is adopted in this thesis for online force reconstruction has been

introduced in section 1.3. It is clearly stated that the structural model is needed in the

design of the real-time executable state and input estimation algorithm. In this thesis,

the methodology for online force reconstruction is composed of an offline stage and an

online stage. In the offline stage, the structural model is identified. In the online stage, a

simultaneous reconstruction of the external force and the structural response is realized.

In practice, it is often one of the following two cases:

• Case I: It is possible to apply an artificial excitation force on the investigated struc-

ture.

• Case II: It is difficult or not possible to apply an artificial excitation force on the

investigated structure.

In this chapter, the methodology for each of the above two practical cases is presented in

the form of block diagram in section 3.4 and section 3.5. Furthermore, the method which

is applied in this thesis for the reconstruction of a distributed force with unknown spatial

distribution is explained in section 3.6.

3.1. Force reconstruction is a kind of inverse problem

“We call two problems inverses of one another if the formulation of each involves all or

part of the solution of the other. Often, for historical reasons, one of the two problems

have been studied extensively for some time, while the other is newer and not so well
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understood. In such cases, the former is called the direct problem, while the later is called

the inverse problem.” (Keller, 1976).

Consider a linear problem which can be formulated in the following very general form

(Hansen, 1998),
ˆ

Ω

input × system dΩ = output. (3.1)

The direct problem is to compute the output, with known input and mathematical de-

scription of the system. Figure 3.1 describes the direct problem in the form of a block

diagram. The inverse problem is to determine either the input or the system which gives

rise to the (noisy) measurements of the output. There are two kinds of inverse problem.

One is to determine the unknown input, as described in figure 3.2a. The other one is to

identify a model for the unknwon system, as described in figure 3.2b.

Input
System

Output

Unknown

Figure 3.1. Description of the direct problem in the form of a block diagram

Consider a structure which is assumed as linear and is at rest at time t = 0. If an arbitrary

force f (t) is applied on this structure at time t = 0, the response of this structure to the

arbitrary force f (t) can be expressed using the Duhamel integral (Clough and Penzien,

2003)

y (t) =

ˆ t

0

f (τ)h (t− τ) dτ, (3.2)

where y (t) denotes the structural response, f (τ) is the value of the force f (t) at time

t = τ , and h (t− τ) represents the impulse response function of the structure with a

unit impulse applied at time t = τ . The impulse response function h (t) is actually a

mathematical description of the structure. Force reconstruction is the process to determine

the force f (t), given the known structural model h (t) and the measurements of the

structural response y (t). This process can be described by the block diagram in figure 3.3.

By comparing figure 3.3 with figure 3.2a, it can be concluded that force reconstruction

belongs to the inverse problem in figure 3.2a.

Input
System

Output

Unknown

(a)

Input
System

Output

Unknown

(b)

Figure 3.2. Description of the two kinds inverse problems in the form of block diagrams
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Force
( )f t

Structure
( )h t

Response
( )y t

Unknown

Figure 3.3. Description of the force reconstruction process in the form of a block diagram

3.2. Ill-posed nature in force reconstruction

The concept of well-posedness dates back to Hadamard (1902). Hadamard (1923) pro-

posed the following three postulates.

(1) Existence of a solution.

(2) Uniqueness of the solution.

(3) Continuous dependence of the solution on the data.

If a problem satisfies the three postulates above, it is called well-posed. Otherwise, the

problem is said to be ill-posed. According to this definition, there are the following three

types of ill-posedness (Kress, 1989).

(a) Nonexistence of a solution, i.e. the problem is not solvable.

(b) Nonuniqueness of the solution, i.e. there are more than one solution.

(c) Instability of the solution, i.e. the solution does not depends continuously on the

data.

A linear Fredholm integral equation of the first kind can be written in the form

ˆ

Iτ

K (t, τ) f (τ) dτ = y (t) , t ∈ It, (3.3)

where K (t, τ) is called the kernel. If the norm

‖K (t, τ) ‖2 =



ˆ

It

ˆ

Iτ

K (t, τ)2 dτdt




1/2

(3.4)

exists, the kernel K (t, τ) is said to be square integrable and can be expressed in the form

of a Singular Value Expansion (SVE) as

K (t, τ) =
∞∑

i=1

µiui (t) vi (τ) , t ∈ It, τ ∈ Iτ , (3.5)

where µi represents the i -th singular value of the kernel K (t, τ), ui (t) denotes the i -th

left singular function of K (t, τ), and vi (τ) is the i -th right singular function of the kernel
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K (t, τ) (Hansen, 1988). The singular values have the property µ1 ≥ µ2 ≥ µ3 · · · ≥ 0. The

singular functions ui (t) and vi (τ) are orthonormal.

The Duhamel integral in equation (3.2) can be formulated into the form of the linear

Fredholm integral equation of the first kind in equation (3.3). Assume the structural

response y (t) is known, and the impulse response function h (t− τ) in equation (3.2) is

square integrable. Then there is a solution of the force f (τ) to the Duhamel integral in

equation (3.2), if and only if the condition

∞∑

i=1




´

It

y (t) ui (t) dt

µi




2

< ∞ (3.6)

holds. In this case the solution of f (τ) is given by

f (τ) =
∞∑

i=1




´

It

y (t) ui (t) dt

µi


 vi (τ) . (3.7)

The above statement can be proved with the help of the Picard criterion (or the Picard

condition) in e.g. Kress (1989) and Engl et al. (1996).

In practice, the structural response y (t) is measured by sensors, which indicates that the

measured y (t) will be contaminated by unavoidable measurement noise. Besides this, if

a structure is modeled in its modal form which includes only limited number of modes, it

leads to a difference between the modeled structural response and the measured structural

response. Assume the structural response y (t) is perturbed as

yperturb (t) = y (t) + δun (t) , (3.8)

where yperturb (t) denotes the perturbed y (t), and δ, together with the left singular function

un (t), forms a small perturbation δun (t). Introduce fperturb (t) as the reconstructed f (t).

With equation (3.7) and equation (3.8), the following relationship can be obtained,

‖fperturb (t)− f (t) ‖2
‖yperturb (t)− y (t) ‖2

=
1

µn

. (3.9)

As the singular value µn tends to zero, the left side of equation (3.9) can be extremely large.

This means that a small perturbation in the measured structural response can cause a

very large deviation in the reconstructed force. If yperturb (t) is inserted into equation (3.7),

the value of fperturb (t) can be arbitrarily large. In this case, the reconstructed force does

not depend continuously on the measured structural response, or the reconstructed force

is lack of stability. This contradicts with the Hadamard’s postulates of well-posedness,

and demonstrates the ill-posed nature in force reconstruction.
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Thus, one main task in force reconstruction study is to find a stable approximate solution

of this ill-posed problem, so that the reconstructed force depends on the measured struc-

tural response continuously, or a small perturbation in the measured structural response

causes a small deviation in the reconstructed force.

3.3. From ill-posedness to well-posedness in online force

reconstruction

The basic idea which is adopted in this thesis for online force reconstruction is to apply

a real-time executable state and input estimation algorithm. Figure 1.2 describes this

basic idea in the form of a block diagram. Consider the structure under investigation

as a system, the force which needs to be reconstructed as the input to the system, and

the structural response as the output from the system. Given structural response mea-

surements, the applied algorithm can provide an estimate of the force in real-time. The

ill-posedness in the force reconstruction process is relaxed through the convergence of

the estimate error of the force. To apply this basic idea, the system, i.e. the structural

model, should be observable. Section 3.3.1 gives the definition of observability and the

mathematical test for determining observability. In section 3.3.2 the convergence of the

estimate error of the force is discussed.

3.3.1. Observability

The concept of observability was introduced in Kalman (1959). It is the ability to deduce

information about all the modes of the system by monitoring only the sensed outputs

(Franklin et al., 2006). When applying the basic idea in figure 1.2 for online force recon-

struction, the observability should be checked first.

Consider the continuous-time state-space structural model which is described by equa-

tion (2.12) and equation (2.13). The mathematical test for determining the observability

is that the matrix

Obc =




Cc

CcAc

CcA
2
c

...

CcA
n−1
c




(3.10)

must have independent columns. In other words, the condition rank (Obc) = n should

hold, where n represents the dimension of the state vector. The matrix Obc is called
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the observability matrix. For the case that the state-space structural model is in its

discrete-time form, the observability matrix appears in the form

Obd =




Cd

CdAd

CdA
2
d

...

CdA
n−1
d




. (3.11)

The mathematical test for determining the observability is that the condition rank (Obd) =

n should hold.

3.3.2. Stability and convergence

In section 3.2, the ill-posed nature in force reconstruction has been discussed. It is con-

cluded that one main task in force reconstruction study is to find a stable solution of

this ill-posed problem, so that reconstructed force depends on the measured structural

response continuously. As it is described in figure 1.2, the basic idea which is adopted

in this thesis for online force reconstruction is to apply a real-time executable state and

input estimation algorithm. If the input estimation can provide an estimate of the force

which converges to the true value of the force, the ill-posedness in force reconstruction is

relaxed.

In case the state-space structural model is deterministic, i.e. in the form of equations

(2.12) and (2.13), the estimate error of the force should converge to zero.

In case the state-space structural model includes stochastic information, e.g. the modeling

errors and the measurement noise, the covariance matrix of the estimate error of the force

should converge.

The requirements on stability and convergence can be fulfilled by proper structural model

construction, proper sensor selection, and proper sensor placement.
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3.4. Methodology for online force reconstruction with

structural modal parameters identified by

experimental modal analysis

For practical cases where it is possible to apply an artificial force on the structure, the

methodology for online force reconstruction is presented in figure 3.4. This methodology

is composed of two stages, an offline stage and an online stage.

In the offline stage, Experimental Modal Analysis (EMA) is applied to identify the modal

parameters of the structure, including natural frequencies, damping ratios, mode shape

vectors, and modal participation factors. With the identified modal parameters, a state-

space structural model in the modal coordinates can be constructed. The principle of the

EMA has been briefly reviewed in section 2.1.4. The steps for constructing the state-space

structural model in the modal coordinates have been provided in section 2.1.1 through

section 2.1.3. It is noted here that the mode shape vectors which are identified from the

EMA do not correspond to the columns of the modal matrix Φ but the columns of the

matrix M 1/2
n Φ.

In the online stage, a suitable real-time executable state and input estimation algorithm

is applied to reconstruct the force. Furthermore, this methodology is also capable of

reconstructing the structural responses at selected positions.

Figure 3.4. Block diagram of the methodology for online force reconstruction with structural
modal parameters identified by experimental modal analysis
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3.5. Methodology for online force reconstruction with

structural modal parameters identified by

operational modal analysis

For practical cases where it is difficult or not possible to apply an artificial force on the

structure, the methodology for online force reconstruction is presented in figure 3.5. This

methodology is composed of two stages, an offline stage and an online stage.

In the offline stage, Operational Modal Analysis (OMA) is applied to identify the modal

parameters of the structure, including natural frequencies, damping ratios, and mode

shape vectors. The principle of OMA has been briefly reviewed in section 2.1.5. Each

of the identified mode shape vectors is proportional to one of the columns of the modal

matrix Φ. However, the scaling factor for the identified mode shape vector is missing.

According to equation (2.6), the columns of Φ are mass normalized. This indicates that

if the mass matrix of the structural model is available, it is still possible to correctly scale

the identified mode shapes. In practice, an FE model of the structure under investigation

is often available. The mass matrix of the FE model usually reflects the mass distribution

of the structure with good accuracy. In this methodology, the FE model of the structure

is updated according to the modal parameters which are identified from the OMA. The

mode shape vectors which are calculated from the FE model are already correctly scaled,

and usually have high spatial resolution than the mode shape vectors which are identified

from the OMA. With the natural frequencies and the damping ratios which are identified

from the OMA and the mode shape vectors which are calculated from the FE model, the

state-space structural model in the modal coordinates can be constructed by following

the steps which have been provided in section 2.1.1 through section 2.1.5.

In the online stage, a suitable real-time executable state and input estimation algorithm

is applied to reconstruct the force. Furthermore, this methodology is also capable of

reconstructing the structural responses at selected positions.

3.6. Methodology for the reconstruction of a distributed

force with unknown spatial distribution

A distributed force is characterized by

f (x, t) =
m∑

i=1

Boi (x) di (t) , (3.12)

where Boi (x) represents the i-th spatial distribution, and di (t) denotes the weighting

value of Boi (x) in time. If m is equal to one, it means that the spatial distribution of
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Figure 3.5. Block diagram of the methodology for online force reconstruction with structural
modal parameters identified by operational modal analysis

the force does not change, and only the weighting value changes with time. If m is larger

than one, the distributed force f (x, t) is a combination of several distributed forces, and

the weighting values di (t) all change with time. If Boi (x) is described by Dirac’s delta

function, Boi (x) describes the spatial distribution of a concentrated force. If the spatial

distribution function Boi (x) is known, di (t) can be estimated in real-time by using the

basic idea in figure 1.2. Then the distributed force f (x, t) can be reconstructed with

equation (3.12) online. In case the spatial distribution of the force f (x, t) is unknown, a

suitable mathematical description for Boi (x) needs to be defined first. Then di (t) can be

estimated in real-time by by using the basic idea in figure 1.2, and the distributed force

f (x, t) can be reconstructed with equation (3.12) online. For this case, the selection of

the mathematical description for the spatial distribution Boi (x) will have an effect on the

reconstruction results.

In practice, structures are usually complicated and a FE model of the structure is often

available. Thus it is of more interest to consider the equivalent forces on the nodes of the

FE model of the structure. In this case, equation (3.12) can be expressed in the form of

equation (2.10).

If the spatial distribution of the force is known in advance, the online reconstruction of

the distributed force can be realized through a real-time estimation of the weighting value

of the spatial distribution of the force. However, there are still many cases where the

spatial distribution of the force is not known in advance. This thesis focuses on the cases

where the force is distributed on the structure. In practice, a FE model of the structure

is often available, and it is usually of more interest to consider the distributed force in
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the form of equivalent nodal loading. According to section 2.1.1, when the second-order

structural model is transformed from the nodal coordinates to the modal coordinates, the

force f(t) is transformed to the modal force fm (t) as

fm (t) = ΦTf(t). (3.13)

Substituting equation (2.10) into equation (3.13) leads to

fm (t) = ΦTBod(t), (3.14)

where Φ ∈ R
nDOF×mDOF represents the modal matrix, and the j-th column of the matrix

Bo ∈ R
nDOF×m describes the spatial distribution of the j-th force. The j-th element of

d(t) ∈ R
m is the weighting value of the spatial distribution of the j-th force. Here, nDOF

represents the number of nodal Degrees of Freedom (DOF), mDOF denotes the number

of modes which are considered in the model, and the value of nDOF and the value of

mDOF fulfill the condition mDOF ≤ nDOF . m denotes the number of input forces,

and the value of j is in the range 0 ≤ j ≤ m. If the elements in the i-th row of the matrix

ΦTBo are all zero, there is no excitation to the the i-th mode of the structure. The value

of i is in the range 0 ≤ i ≤ mDOF . Thus, the columns of Φ actually works as a kind of

filter. Only when the inner product of the i-th row of ΦT and the j-th column of the Bo

is not zero, or the j-th column of the Bo has a projection on the i-th row of ΦT , the j-th

force has effect on the i-th mode of the structure.

For cases where the spatial distribution of the external force is unknown, the method

which is applied in this thesis is to set

Bo =MnΦ, (3.15)

where Mn ∈ R
nDOF×nDOF denotes the mass matrix of the structural model. If the

condition mDOF = nDOF holds, which means the number of modes is equal to the

number of DOF in the nodal coordinates, Bo will be a square matrix with full rank.

Then any spatial distribution vectors with nDOF elements can be expressed by a linear

combination of the columns of Bo. In most practical cases, the condition mDOF <

nDOF holds, which means only limited modes are considered in the structural model. In

these cases, the distributed force can only be spatially partly reconstructed.
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4. Proposed algorithm modifications

In chapter 3, the methodology for online force reconstruction has been presented. This

methodology is composed of two stages, an offline stage and an online stage. In the

offline stage, a state-space structural model is constructed. In the online stage, a real-

time executable state and input estimation algorithm is applied to provide an estimate

of the force. The available state and input estimation algorithms have been reviewed in

section 2.6. In this chapter, modifications to some of the available algorithms are proposed,

so that these algorithms are theoretically more suitable for online force reconstruction.

In section 4.1, the SS&IE is modified so that it is suitable for linear structural models.

In section 4.2, the filter equations of the KF+RLSE in steady-state are presented. These

presented filter equations can simplify the implementation of the KF+RLSE. According to

the discussion in section 2.7, the usage of accelerometers means the process noise and the

measurement noise are correlated. To be compatible with such correlation, a generalized

KF-UI (G-KF-UI) is proposed in section 4.3. In section 4.4, the SSKF+LSE is modified

to consider an estimate of the covariance matrix of the force and an estimate of the

covariance matrix of the measurement noise.

4.1. Simultaneous State and Input Estimator for Linear

systems (SS&IE L)

The SSNIE, which has been reviewed in section 2.6.2, was originally proposed for a class

of nonlinear systems. In the SSNIE, it is assumed that there is a known nonlinear term

which fulfills a Lipschitz condition and an unknown nonlinear term. As introduced in

section 2.1.1 through section 2.1.3, the structural model in the modal coordinates is linear.

Based on the work in Ha and Trinh (2004), the SSNIE is modified to be suitable for linear

systems. In this thesis, this modified SSNIE is named as SSNIE L which is short for

Simultaneous State and Input Estimator for Linear systems.

Consider the structural model which is described by equations (2.12) and (2.13). Introduce

the augmented state xaug (t) as in equation (2.127). With the matrix definition in equa-

tions (2.129) through (2.131), the structural model which is described by equations (2.12)

and (2.13) can be transformed into

Essieẋaug (t) =M ssiexaug (t) (4.1)

and

y (t) =Hssiexaug (t) . (4.2)
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Figure 4.1. Description of the SS&IE L in the form of a block diagram

The UIO is described by

ξ̇aug (t) =N ssieLξaug (t) +LssieLy (t) (4.3)

and

x̂aug (t) = ξaug (t) +QssieLy (t) , (4.4)

where x̂aug (t) represents the estimate of xaug (t), and N ssieL, LssieL and QssieL are the

matrices which need to be designed. Figure 4.1 describes the SS&IE L in the form of a

block diagram.

Introduce the notations

SssieL =



Essie

Hssie


 , (4.5)

J ssieL = In+mS
+
ssieL



In

0


 , (4.6)

ΦssieL = J ssieLM ssie, (4.7)

GssieL =
(
In+p − SssieLS

+
ssieL

)


In

0


 , (4.8)

ΨssieL = GM ssie, (4.9)
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V ssieN = In+mS
+
ssieN




0

Im


 , (4.10)

and

KssieL =
(
In+p − SssieNS

+
ssieN

)



0

Ip


 , (4.11)

where S+
ssieL represents the left inverse of SssieL. Define x̃aug (t) as

x̃aug (t) = xaug (t)− x̂aug (t) . (4.12)

The dynamics of x̃aug (t) can be described by

˙̃xaug (t) =N ssieLx̃aug (t) , (4.13)

where N ssieL is determined by equation (4.14),

N ssieL = ΦssieL −

[
ZssieL F ssieL

]



−Ψ ssieL

Hssie


 . (4.14)

If the eigenvalues ofN ssieL all have negative real part, x̃aug (t) will asymptotically converge

to zero. In equation (4.14) matrices ΦssieL, Ψ ssieL, and Hssie are all known. If solutions

for matrices ZssieL and F ssieL exist, matrices QssieL and LssieL can be calculated with

QssieL = V ssieL +ZssieLKssieL (4.15)

and

LssieL = F ssieL +N ssieLQssieL. (4.16)

In equations (4.15) and (4.16), the matrices ZssieL and F ssieL can be obtained a pole-

placement method in which the eigenvalues of the matrix N ssieL are all set with negative

real part. An introduction to the pole-placement method can be found in e.g. Franklin

et al. (2006).

The existence of the SSNIE L requires that the following sufficient conditions should be

fulfilled.

(1) The eigenvalues of matrix N ssieL should be all with negative real part.

(2) The direct feed-through Hc should have full column rank.
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(3) The matrix pair (ΦssieL,




−Ψ ssieL

Hssie


) should be observable.

The derivation of the SSNIE L is provided in appendix A.

4.2. Steady-state of KF+RLSE

The KF+RLSE algorithm has been reviewed in section 2.6.3. Assume the KF+RLSE can

reach a steady-state. Introduce Kx
ss,kf+rlse as the steady-state of Kk and Kd

ss,kf+rlse as

the steady-state of Kd
k. Then the steady-state of KF+RLSE can be represented by



x̂k|k

d̂k


 = Ass,kf+rlse



x̂k−1|k−1

d̂k−1


+Lss,kf+rlseyk, (4.17)

where the matrices Ass,kf+rlse and Lss,kf+rlse have the form

Ass,kf+rlse =



Ad −K

x
ss,kf+rlseCdAd 0 n×m

−Kd
ss,kf+rlseCdAd Im −Kd

ss,kf+rlse


 (4.18)

and

Lss,kf+rlse =



Kx

ss,kf+rlse

Kd
ss,kf+rlse


 . (4.19)

The steady-state form in equation (4.17) can simplify the implementation the KF+RLSE

and can reduce the computational load.

4.3. Generalized Kalman filter with unknown inputs

(G-KF-UI)

Pan et al. (2011) proposed a Kalman Filter with Unknown Inputs (KF-UI) algorithm. A

brief review of the the KF-UI has been provided in section 2.6.5. In the derivation of the

KF-UI, it is assumed that the process noise and the measurement noise are uncorrelated.

According to the discussion in section 2.7, the usage of accelerometers means the process

noise and the measurement noise will be correlated. To be compatible with such corre-

lation, a generalized KF-UI (G-KF-UI) is proposed in this section. In section 4.3.1, the

difference and the relationship between the KF-UI and the Recusive Three-Step Filter
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(RTSF) are discussed. Based on the discussion in section 4.3.1, some modifications to the

KF-UI are proposed in section 4.3.2. The filter equations of the G-KF-UI are presented

in section 4.3.3. In section 4.3.4, the steady-state of the G-KF-UI is discussed, and the

G-KF-UI in steady-state is presented.

4.3.1. Difference and relationship between the KF-UI and the RTSF

The KF-UI and the RTSF have been reviewed in section 2.6.5 and section 2.6.4, respec-

tively. The difference between the KF-UI and the RTSF can be summarized as below.

• The KF-UI and the RTSF have different filter equations.

• The KF-UI and the RTSF have different necessary and sufficient conditions.

• The RTSF assumes the unbiased estimate of the initial state is available, while the

KF-UI do not have such assumption on the initial state estimate.

Both the KF-UI and the RTSF are derived based on the same system model, and both

algorithms can provide the unbiased estimate of the state and the unbiased estimate of

the input. In this thesis, the filter equations of the KF-UI are proved to be equivalent to

those of the RTSF. The proof is provided in appendix B. If the direct feed-through matrix

Hk is set as zero matrix, the filter equations of both algorithms end up with the same

form as the discrete-time Kalman filter.

4.3.2. Proposed modifications to the KF-UI

Equation (2.188) can be transformed to

P x
k+1|k =

[
Ak Gk

]



P x
k|k CT

kR
−1
k Hk

HT
kR

−1
k Ck Skfui,k






AT

k

GT
k


+Qk. (4.20)

By comparing equation (4.20) with equation (2.184), it is noticed that these two equations

have similar form but with different element matrices, e.g. the element matrix CT
kR

−1
k Hk

in equation (4.20) is not equivalent with the covariance matrix P xd
k in the RTSF. According

to the proof in appendix B, the filter equations of the KF-UI are equivalent to those of

the RTSF. This leads to a contradiction. So it is concluded that the derivations in the

appendix in Pan et al. (2009) are correct, and there is a typing error in the filter equations

of the KF-UI in the context in Pan et al. (2009).

Based on the above discussion, a modification to the KF-UI is proposed. Equation (2.188)
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is modified to the form

P x
k|k−1 =

[
Ak−1 Gk−1

]



P x
k−1|k−1 −Kkfui,k−1Hk−1Skfui,k−1

−ST
kfui,k−1H

T
k−1K

T
kfui,k−1 Skfui,k−1






AT

k−1

GT
k−1




(4.21)

Furthermore, the necessary and sufficient conditions for the existence of the KF-UI are

updated and provided below.

(1) Condition p > m+ n/2 should be fulfilled.

(2) Matrix

[
CT

1 , AT
1C

T
2 , · · · , AT

1A
T
2 · · ·AT

k−1C
T
k

]T
should have full column rank.

(3) Matrix
[
H i −CiA

−1
i Gi

]
should have full column rank, with i = 1, 2, . . . , k − 1.

(4) Matrix Hk should have full column rank.

It is noted here that the change from p > m to p > m+n/2 actually gives a more accurate

constraint for the sensor number.

4.3.3. Generalized form of the KF-UI

In the derivation of the KF-UI, it is assumed that the process noise and the measurement

noise are not correlated. For the existence of the KF-UI, one of the necessary and suffi-

cient conditions is that the direct feed-through Hk should have full column rank. With

equation (2.17) and equation (2.23), it can be concluded that a direct feed-through Hk

with full column rank means acceleration responses are considered in the output equation

of the state-space structural model. According to the discussion in section (2.7), if acceler-

ation responses are considered in the output equation of the state-space structural model,

the process noise and the measurement noise will be correlated. This is contradicted with

the assumption which is made in the derivation of the KF-UI. Figure 4.2 describes such

contradiction. In this section, a generalized KF-UI is presented which is compatible with

the correlation of the process noise and the measurement noise.
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KF-UIhas full column rank
k

H

Acceleration measurement

Process noise and

measurement noise

are correlated

Process noise and

measurement noise

are NOT correlated

Contradiction

Figure 4.2. Noticed contradiction

Consider the system which is represented by

xk+1 = Akxk +Bkuk +Gkdk +wk (4.22)

and

yk = Ckxk +Dkuk +Hkdk + vk, (4.23)

where xk ∈ R
n represents the state; uk ∈ R

r denotes the (known) control input; dk ∈ R
m

is the unknown input; yk ∈ R
p is the output; Ak, Bk, Gk, Ck, Dk and Hk are systems

matrices with appropriate dimensions; wk ∈ R
n and vk ∈ R

p represent the process noise

and the measurement noise, respectively. It is assumed that wk and vk are stationary,

zero-mean and white, with known covariance matrices

Qk = E
[
wkw

T
k

]
(4.24)

and

Rk = E
[
vkv

T
k

]
. (4.25)

The cross-correlation of the process noise and the measurement noise is determined as in

equation (2.229).

The generalized KF-UI (G-KF-UI) consists of equation (4.26) through equation (4.35).

• Time update, which includes

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1 +Gk−1d̂k−1 (4.26)

and

P x
k|k−1 =

[
Ak−1 Gk−1

]


P x

k−1|k−1 P xd
k−1

P dx
k−1 P d

k−1






AT

k−1

GT
k−1


+Qk−1. (4.27)
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• Estimation of unknown input, which includes

R̃gkfui,k = CkP
x
k|k−1C

T
k +Rk +CkSk + S

T
kC

T
k , (4.28)

M gkfui,k =
(
HT

k R̃
−1

gkfui,kHk

)−1

HT
k R̃

−1

gkfui,k, (4.29)

d̂k =M gkfui,k

(
yk −Ckx̂k|k−1

)
, (4.30)

and

P d
k =

(
HT

k R̃
−1

gkfui,kHk

)−1

. (4.31)

• Measurement update, which includes

Kgkfui,k =
(
P x

k|k−1C
T
k + Sk

)
R̃

−1

gkfui,k, (4.32)

x̂k|k = x̂k|k−1 +Kgkfui,k

(
yk −Ckx̂k|k−1 −Dkuk −Hkd̂k

)
, (4.33)

P x
k|k = P

x
k|k−1 −Kgkfui,k

(
R̃gkfui,k −HkP

d
kH

T
k

)
KT

gkfui,k, (4.34)

and

P xd
k =

(
P dx

k

)T
= −Kgkfui,kHkP

d
k. (4.35)

In equation (4.28), Sk denotes the cross-correlation of the process noise and the measure-

ment noise. Given the initial conditions x̂0, d̂0, P
x
0 , P

d
0, and P

xd
0 , the unbiased estimate

of the state and the unbiased estimate of the input can be determined with the G-KF-UI.

The existence of the G-KF-UI requires that the following necessary and sufficient condi-

tions should be fulfilled.

(1) Condition p > m+ n/2 should hold.

(2) Matrix

[
CT

1 , AT
1C

T
2 , · · · , AT

1A
T
2 · · ·AT

k−1C
T
k

]T
should have full column rank.

(3) Matrix
[
H i −CiA

−1
i Gi

]
should have full column rank, with i = 1, 2, . . . , k − 1.

(4) Matrix Hk should have full column rank.

4.3.4. Steady-state of G-KF-UI

In case the parameters of the structural model are constant, the state-space structural

model is a time-invariant system. Assume the process noise and the measurement noise

are stationary, and the G-KF-UI can reach steady-state. Introduce Ad, Bd, Gd, Cd,

Dd, Hd, Qd, Rd, and Sd as the values of Ak, Bk, Gk, Ck, Dk, Hk, Qk, Rk, and Sk

in steady-state, respectively. Denote M as the value of M gkfui,k in steady-state, and

Kss,gkfui as the value of Kgkfui,k in steady-state. Then the G-KF-UI in steady-state can
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be represented by



x̂k|k

d̂k


 = Ass,gkfui



x̂k−1|k−1

d̂k−1


+Lss,gkfuiyk +Dss,gkfuiuk +Bss,gkfuiuk−1, (4.36)

where matrices Ass,gkfui, Lss,gkfui, Dss,gkfui, and Bss,gkfui are expressed by

Ass,gkfui =



Ass,gkfui(1, 1) Ass,gkfui(1, 2)

Ass,gkfui(2, 1) Ass,gkfui(2, 2)


 , (4.37)

with

Ass,gkfui(1, 1) = (I −Kss,gkfuiCd +Kss,gkfuiHdM ss,gkfuiCd)Ad, (4.38)

Ass,gkfui(1, 2) = (I −Kss,gkfuiCd +Kss,gkfuiHdM ss,gkfuiCd)Gd, (4.39)

Ass,gkfui(2, 1) = −M ss,gkfuiCdAd, (4.40)

Ass,gkfui(2, 2) = −M ss,gkfuiCdGd, (4.41)

Lss,gkfui =



Kss,gkfui −Kss,gkfuiHdM ss,gkfui

M ss,gkfui


 , (4.42)

Dss,gkfui =




−Kss,gkfuiDd

0m×r


 , (4.43)

and

Bss,gkfui =




(I −Kss,gkfuiCd +Kss,gkfuiHdM ss,gkfuiCd)Bd

−M ss,gkfuiBd


 . (4.44)

The steady-state form of the G-KF-UI can simplify the implementation and reduce the

computational load. If the matrices Bd and Dd are set as zero matrices, equation (4.36)

represents the KF-UI in steady-state.

4.4. Modified Steady-State Kalman Filter and a

Least-Squares Estimator

A brief review of the SSKF+LSE method has been provided in section 2.6.7. In the

algebraic Riccati equation in equation (2.209), the input covariance matrix Qinput and the
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measurement noise covariance matrix Qmeas work as two weighting matrices. The values

of Qinput and Qmeas affect the calculated P . In equation (2.208), the value of P affects

the gain matrix Ksskf+lse. Thus, it can be concluded that the values of Qinput and Qmeas

affect the calculated gain matrix Ksskf+lse and subsequently the reconstruction results.

The SSKF+LSE considers the covariance matrices Qinput and Qmeas to be unknown, and

sets Qinput as an identity matrix Im and Qmeas as γIp, where γ is a tuning parameter.

The matrix P and the gain matrix Ksskf+lse are determined by adjusting the value of

γ. As the covariance matrix of the input force, Qinput actually includes the information

on the intensity difference and the correlation of different input forces. Each of the

diagonal elements of Q1 is the variance of each input force, and the off-diagonal elements

of Qinput reflect the correlation of different forces. If the covariance matrix Qinput is set as

an identity matrix, it indicates that the input forces all have the same variance and are

uncorrelated. In some practical applications, it might be not the case. Thus, it is proposed

to consider an estimate of the covariance matrix Qinput which provides the information on

the difference of the intensity of the input forces and the correlation of the input forces,

and to consider an estimate of the covariance matrixQmeas which includes the information

on the difference of the measurement noise from different types of sensors. To differentiate

with the SSKF+LSE, this proposed modification is named as MSSKF+LSE.

The necessary conditions of for the existence of the MSSKF+LSE are the same as those

of the SSKF+LSE. The improvement which can be brought by this proposed modification

will be demonstrated by test results in section 5.2.9.
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5. Study on application-oriented

algorithm selection

The methodology which is adopted in this thesis for online force reconstruction has been

presented in chapter 3. According to figure 3.4 and figure 3.5, a real-time executable

state and input estimation algorithm is needed in the online stage of the methodology. In

section 2.6, a brief review of the available real-time executable state and input estimation

algorithms have been provided. To be theoretically suitable for online force reconstruction,

some algorithm modifications are proposed in chapter 4. Given a practical need for online

force reconstruction, it is reasonable to raise the following questions.

(i) Which algorithms are suitable for the reconstruction of the force?

(ii) If the structure under investigation has already been instrumented with some sensors

for some other monitoring purposes, can the force be reconstructed with the available

sensors?

This chapter intends to contribute some ideas in answering the questions above.

Each of the available algorithms has some assumptions and requires some mathematical

conditions to be fulfilled. The discussion in section 5.1 focuses on the translation of these

assumptions and mathematical conditions into practical requirements for the application

of these algorithms. In section 5.2, a benchmark study is performed. A laboratory two-

story structure is taken as the benchmark structure on which two types of widely used

sensors are installed, including strain gauge and accelerometer. Three different types

of input forces are considered, including quasi-static force, impact force, and wind load

generated by an electric fan. The methodology in figure 3.4 is applied. In the offline stage

of the adopted methodology, the structural model of the benchmark structure is identified

with the help of the Experimental Modal Analysis (EMA) technique. In the online stage

of the adopted methodology, in total eight different algorithms are tested. The goal of this

benchmark study is to find the suitable algorithms for the reconstruction of the considered

force types with considered sensor types. Based on the results from the benchmark study,

a guidance for algorithm selection is is extracted and presented in section 5.3.

5.1. From mathematics to practical requirements

The methodology in chapter 3 shows that a real-time executable state and input estima-

tion algorithm is needed for the reconstruction of the force and the reconstruction of the

structural response. The available real-time executable state and input estimation algo-

rithms have been reviewed in section 2.6, and some algorithm modifications have been
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proposed in chapter 4. In these algorithms, there are some mathematical assumptions,

e.g. on the input, on the initial state estimate, on the direct feed-through, etc. Fur-

thermore, the existence of those algorithms requires that some mathematical conditions

should be fulfilled. These mathematical conditions often appear in the form of necessary

conditions, or sufficient conditions, or necessary and sufficient conditions. What do these

mathematical assumptions and conditions actually mean for the practical application of

those algoirthms? The discussion in this section tries to translate these mathematical

assumptions and conditions into practical requirements.

5.1.1. Assumption on inputs

The basic idea which is adopted in this thesis for online force reconstruction has been

illustrated by the block diagram in figure 1.2. The input estimate in the algorithm cor-

responds to the force estimate. Therefore, the assumption on the inputs is actually the

assumption on the input forces.

In the PI observer design method which is proposed by Söffker et al. (1995), the inputs are

assumed to be piece-wise constant. In combination with the high-gain approach in Söffker

et al. (1995), this allows the reconstruction of dynamical effects under certain conditions.

In the AKF method which is proposed by Lourens et al. (2012b), the inputs are assumed

to be stationary zero-mean stochastic processes, with a known covariance matrix of the

increment of the inputs. When the AKF is applied for online force reconstruction, this

assumption indicates that the input forces should have zero-mean, and an estimate of the

covariance matrix of the increment of the input forces should be available.

In the SSKF+LSE method which is proposed by Hwang et al. (2009a), the co-variance

is the input is set as an identity matrix. Such a setting assumes that different inputs

have the same variance and are uncorrelated. When this method is applied for online

force reconstruction, the input forces are assumed to have the same variance and are

uncorrelated with each other. In practice, it might not always be the case. In consideration

of this, a modification to this algorithm is proposed in section 4.4, where it is suggested

to take the covariance of the inputs into account.

5.1.2. Assumption on initial state estimate

According to the definition in equation (2.11), the elements of the state vector x(t) in the

continuous-time state-space structural model are composed of the modal displacement

vector qm(t) and the first derivative of qm(t). According to equation (2.5), the nodal

displacement vector qn(t) can be expressed as the product of the modal matrix Φ and

the modal displacement vector qm(t). Thus the state vector x(t) can be expressed by the

nodal displacement vector qn(t) and its first derivative. In some algorithms, the initial
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state estimate is assumed to be unbiased. When these algorithms are applied for online

force reconstruction, such an assumption actually means that an unbiased estimate of the

initial displacement of the structure should be available. The structural displacement can

be measured by displacement sensors, or can be derived from strain measurements. If

there is no available displacement sensors or strain gauges on the structure, it is often

difficult to get an unbiased initial state estimate, and the application of those algorithms

is dependent on the practical applications. If the structure has no bending deformation

in the initial condition, the unbiased initial state estimates can be set as zero. If the

structure does have a bending deformation in the initial condition, the unbiased initial

state estimates can not be set as zero. A biased initial state estimate might cause a biased

estimate of the force.

5.1.3. Assumption on direct feed-through

In the continuous-time state-space structural model which is represented by equation (2.12)

and equation (2.13), the direct feed-through Hc has the form in equation (2.17). The

form of Hc shows that the input forces are directly related with the structural response

by CaΦΦ
TBo in which Ca defines the positions of acceleration sensors; Φ represents the

mass normalized modal matrix; and Bo describes the spatial distribution of the input

forces. Both Φ and Bo are non-zero matrices. If the direct feed-through is assumed to be

a non-zero matrix, it means that Ca is a non-zero matrix and the rank condition require-

ment for the direct feed-through is also the rank condition requirement for CaΦΦ
TBo.

When Φ and Bo are known, the rank conditions for the direct feed-through can be trans-

formed to some mathematical conditions for Ca. The fulfillment of the mathematical

conditions for Ca actually sets constraints for the number of acceleration sensors and

their positions. For example, if the direct feed-through is assumed with full column rank,

the row number of Ca should be larger than or equal to the column number of Bo. This

means that the number of acceleration sensors should be larger than or equal to the num-

ber of input forces. The fulfillment of the full column rank condition sets constraints for

the positions of the acceleration sensors.

5.1.4. Mathematical conditions on system matrices

The existence of the available algorithms requires that some mathematical conditions

should be fulfilled. These mathematical conditions come from the derivation of the state

estimation and the input estimation, e.g. by fulfilling the observability condition and

the stability condition, and are often in the form of necessary conditions, or sufficient

conditions, or necessary and sufficient conditions. The fulfillment of such mathematical

conditions actually sets some practical constraints in the selection of sensor type, sensor

number, and sensor position.
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5.2. Benchmark study

According to the methodology in chapter 3, a real-time executable state and input esti-

mation algorithm is needed. There are already some available real-time executable state

and input estimation algorithms. A brief review of those algorithms have been provided

in section 2.6. Furthermore, some modifications to some of these algorithms have been

proposed in chapter 4. Then it is reasonable to raise the question which algorithm to

choose. In this section, a benchmark study is performed. A laboratory two-story struc-

ture is taken as the benchmark structure. For measuring the structural responses, two

types of widely used sensors, strain gauge and accelerometer, are instrumented on this

structure. Three different types of forces are considered, including a quasi-static force,

impact forces, and wind load which is generated by an electric fan. In total eight different

real-time executed state and input estimation algorithms are tested. This benchmark

study intends to find the answers to the following questions.

(a) Can the three types of considered forces be reconstructed?

(b) Which algorithms are suitable for the reconstruction of the three types of forces?

(c) In case several algorithms are suitable, which algorithm needs less sensors?

An introduction to the benchmark structure is given in section 5.2.1. Considering that

it is possible to apply an artificial excitation force on the laboratory two-story structure,

the methodology in figure 3.4 is adopted in this benchmark study. The modal parame-

ters of the benchmark structure are identified using the EMA technique. The identified

natural frequencies, damping ratios, and mode shapes are presented in section 5.2.2. The

position and the time history of each of the three different types of forces are provided in

section 5.2.3. The obtained reconstruction results from using eight different algorithms

are presented in section 5.2.4 through section 5.2.9, where the reconstructed forces are

compared with the measured (or true) forces in the form of a direct comparison in time

history plot and in the form of calculated Root Mean Square Error (RMSE).

5.2.1. Introduction to the benchmark structure

In this benchmark study, a laboratory two-story structure is taken as the benchmark

structure. Figure 5.1 shows this benchmark structure and the connection of the test

instruments. This benchmark structure consists of one upper mass block, one lower mass

block, and one base. The upper block, the lower block, and the base are all made of

aluminum, and are connected by four steel bars. The base is fixed. Table 5.1 lists the

related parameters for the benchmark structure.

For measuring the structural response, two strain gauges and two accelerometers are in-

strumented on the laboratory two-story structure. The two acceleromters are PCB model
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M353B15, with the sensitivity as 10mV/g and the frequency range from 1 Hz to 10 kHz.

These two accelerometers are connected with a Kistler type 5134A coupler for power sup-

ply and signal conditioning. The two strain gauges are of the type HBM 1-LY11-0.6/120.

In order to eliminate the temperature effect, half-bridge configuration is applied. These

two strain gauges are connected with a PICAS amplifier from PEEKEL Instruments. The

Kistler coupler and the PICAS amplifier are connected with a dSPACE DS1104 R&D con-

troller board where the real-time executable state and input algorithms are implemented

for the online reconstruction of the external force. The sampling frequency is 1000 Hz.

Figure 5.1. Benchmark structure and the connection of the test instruments

Table 5.1. Parameters for the laboratory two-story structure

Name Value Unit

Mass of the upper mass block 1.95 kg

Mass of the lower mass block 1.95 kg

Diameter of the steel bar 0.00396 m

Young’s modulus of the steel bar 210 GPa

Length of the steel bar between
the upper mass block and the lower mass block

0.232 m

Length of steel bar between
the lower mass block and the base

0.232 m
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5.2.2. Structural model construction for the benchmark structure

On the benchmark structure in figure 5.1, it is possible to apply an artificial excitation

force. This case belongs to Case I in chapter 3. According to the methodology in figure 3.4,

the structural model of the benchmark structure can be constructed with the help of the

EMA technique. The principle of the EMA technique has been reviewed in section 2.1.4.

In this benchmark study, a Kistler type 9722A impulse hammer is used to apply the

excitation force on the benchmark structure. The applied force is measured by a quartz

sensor which is instrumented on the impulse hammer. The structural response is measured

by two accelerometers. Figure 5.2 shows the position where the excitation force is applied

and the positions of the two accelerometers. The excitation force is applied in the x-z

plane. This will activate the vibration modes of the benchmark structure in the x-z plane.

The measured force and the measured structural response are recorded and processed by

the LMS Test.Labr. The modal parameters of the benchmark structure are identified

using the PolyMAX algorithm which is shipped together with the LMS Test.Labr. The

PolyMAX algorithm is capable of estimating modal parameters of two or more modes

at one time (Peeters et al., 2004). Table 5.2 lists the identified natural frequencies and

damping ratios of the first two modes of the benchmark structure in the x-z plane. The

identified mode shapes of these two modes are scaled and plotted in figure 5.3.

Following the steps in section 2.1.1, a second-order structural model in the modal coor-

dinates is constructed for the benchmark structure. This model includes the two modes

in table 5.2, and it assumes that the damping matrix is a linear combination of the mass

matrix and the stiffness matrix. The modal displacement vector is of order two. Two

input forces are considered, with one force being applied on the lower mass block and the

other one on the upper mass block. This means the input vector has two elements. In

this benchmark study, the matrix Bo in equation (2.10) is set as

Bo =




1 0

0 1


 . (5.1)

Define the state vector which includes the modal displacement vector and the modal

velocity vector. Thus the state vector is of order four. Following the steps in section 2.1.2,

the second-order structural model is transformed to a state-space form, and the state

transition matrix Ac and the input matrix Gc are assembled. The output matrix Cc and

the direct feed-throughHc are in the output equation of the state-space structural model,

and are related with the sensor type, sensor number, sensor position. These two matrices

will be determined specifically for each real-time executable state and input estimation

algorithm.
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Figure 5.2. Positions of excitation force and accelerometers for EMA

Table 5.2. Identified natural frequencies and damping ratios of the first two modes of the
benchmark structure in the x-z plane

Mode Natural frequency (Hz) Damping ratio (-)

1 5.911 0.0017

2 15.983 0.0009

(a) 1st mode in the x-z plane (b) 2nd mode in the x-z plane

Figure 5.3. Scaled mode shapes of the first two modes in the x-z plane
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5.2.3. Considered forces

In this benchmark study, the following three different types of forces are considered.

(1) Quasi-static force.

(2) Impact force.

(3) Wind load which is generated by an electric fan.

The quasi-static force is applied on the upper mass block of the benchmark structure,

and is measured by a force transducer, a HBM S9M load cell. Figure 5.4 shows the

position where the force transducer is installed. The force transducer is instrumented on

the upper mass block. The quasi-static force is applied by hand directly on the force

transducer which not only transmits the force but also measures the force. This type of

force transducer is based on strain measurements and can transform strain measurements

into force information. Figure 5.5 provides the time history of the applied quasi-static

force. When the quasi-static force is applied on the upper mass block, no force is applied

on the lower mass block in the x direction.

The impact force is applied on the lower mass block by using a Kistler type 9722A impulse

hammer. Figure 5.6 shows the position where the impact force is applied. The applied

impact force is measured by a quartz sensor which is instrumented on the impulse hammer.

The time history of measured impact force is plotted in Figure 5.7, where a zoom-in of the

time window from 11.9 seconds to 12.1 seconds is provided. In the zoom-in, the first peak

is the impact that is intended to be applied, while the second peak and the third peak

are caused by the interaction between the impulse hammer and the lower block. When

the impact force is applied on the lower mass block, no force is applied on the upper mass

block in the x direction.

The wind load is generated by an electric fan. To collect the generated wind load, an

aluminum plate is applied. The aluminum plate is connected with the upper mass block

through a force transducer which is an HBM S9M load cell. Figure 5.8 shows how the

aluminum plate, the force transducer, and the upper mass block are connected. The force

transducer works not only as an adapter for connecting the aluminum plate and the upper

block but also as a sensor for measuring the wind load which is applied on the upper mass

block. Figure 5.9 provides the time history of the measured wind load, including a zoom-

in of the time window from 80.5 seconds to 81.0 seconds. When the wind load is applied

on the upper mass block, no force is applied on the lower mass block in the x direction.
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Figure 5.4. Position of the applied quasi-static force

Figure 5.5. Time history of measured quasi-static force
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Figure 5.6. Position of the applied impact force

Figure 5.7. Time history of measured impact force
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Figure 5.8. Position of the applied wind load

Figure 5.9. Time history of measured wind load
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5.2.4. Test using PI observer

Söffker et al. (1995) proposed a design method for the Proportional-Integral observer (PI-

observer). This design method was adopted for force reconstruction, e.g. reconstruction

of contact forces of the nonlinear rail-wheel contact (Söffker, 1999), and reconstruction of

the contact forces on a one side clamped elastic beam and on a all side clamped elastic

plate (Krajcin and Söffker, 2005), etc. A short review of this PI observer design has been

provided in section 2.6.1.

Within this benchmark study, the PI observer design that was proposed in Söffker et al.

(1995) is applied for reconstructing the three different types of forces which have been in-

troduced in section 5.2.3. In Söffker et al. (1995), it is stated that without exact knowledge

about the dynamic behavior of the unknown input, a very general approach is possible by

assuming the unknown input as piece-wise constant. Furthermore, this paper provides the

sufficient conditions for the existence of a high-gain PI observer for any initial conditions

of the state and the input, under the assumption that the unknown input is bounded.

When this PI observer design is adopted for online force reconstruction, it assumes that

the input forces are quasi-static and are bounded. An unbiased initial estimate of the

state is not needed. As in equation (2.110), the direct feed-through is not considered in

the output equation of the system model. According to equation (2.17), this indicates

that the acceleration response of the benchmark structure is not considered in the output

equation of the state-space model of the benchmark structure. Inspired by the work in

Krajcin and Söffker (2005), the gain matrix Lpio in the PI observer design is calculated

with the Loop Transfer Recovery (LTR) design method. . The main steps for calculating

Lpio have been provided in section 2.6.1. In this benchmark study, the MATLAB function

care is applied to solve the continuous-time algebraic Riccati equation in equation (2.122).

This indicates that the following two sufficient conditions need to be fulfilled (Arnold and

Laub, 1984).

(1) Matrix pair (Apio, Cpio) is observable.

(2) Condition



Qpio 0

0 Rpio


 > 0 holds.

The definitions for matricesApio, Cpio, Qpio, andRpio have been provided in section 2.6.1.

After checking the fulfillment of the above two sufficient conditions, the sensors in table 5.3

are selected. Table 5.4 provides the dimension of the state, the input, and the output of

the state-space model of the benchmark structure.
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Table 5.3. Selected sensors in test using PI observer

Sensor type Selected sensors

Only strain gauge Strain gauge 1

Strain gauge 2

Table 5.4. Dimension of the state, the input, and the output of the state-space model of the
benchmark structure in test using PI observer

Name Symbol Dimension

State x(t) 4×1

Input d(t) 2×1

Output y (t) 2×1

The dynamics of the estimate error is described by equation (2.115) in which the first

derivative of the unknown input appears as the input to the dynamics equation of the

estimate error. When this PI observer design is applied for online force reconstruction,

the first derivative of the input force will be an input to the estimate error. If the force is

constant, the first derivative of the force will be zero, and the estimate error will converge

to zero. If the force is not constant, the first derivative of the force will be non-zero.

In this case, the estimate error still may converge, but to a non-zero value. For forces

with fast dynamics, the LTR design parameter q needs to be set very large to in order

to achieve a satisfactory result. However, the value of the LTR design parameter q can

not be arbitrarily large due to the amplification effects from the measurement noise and

the model uncertainty (Krajcin and Söffker, 2005). This indicates that this PI observer

design may have some limitation on the reconstruction of forces with fast dynamics. In

this benchmark study, three different settings are considered for the LTR design parameter

q. Table 5.5 lists the values of these settings. The reconstruction results are plotted in

figure 5.10 through figure 5.12. The values of the RMSE between the reconstructed forces

and the measured (or true) forces are calculated and are plotted in form of bar plot in

figure 5.13 through figure 5.15.

The reconstruction results show that the PI observer design which was proposed in Söffker

et al. (1995) is suitable for the reconstruction of the quasi-static force, but not suitable for

the reconstruction of the impact force. Furthermore, it is suitable for the reconstruction

of the static part of the wind load, but not the dynamic part.
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Table 5.5. Settings for the LTR design parameter q in test using PI observer

Case Parameter Setting Unit

Case 1 q 1× 1018 (−)

Case 2 q 1× 1017 (−)

Case 3 q 1× 1015 (−)

Figure 5.10. Reconstruction results for the quasi-static force in test using PI observer (with
two strain gauges)
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Figure 5.11. Reconstruction results for the impact force in test using PI observer (with two
strain gauges)
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Figure 5.12. Reconstruction results for the wind load in test using PI observer (with two strain
gauges)
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Figure 5.13. Calculated RMSE in the reconstruction of the quasi-static force in test using PI
observer (with two strain gauges)

Figure 5.14. Calculated RMSE in the reconstruction of the impact force in test using PI
observer (with two strain gauges)

Figure 5.15. Calculated RMSE in the reconstruction of the wind load in test using PI observer
(with two strain gauges)

5.2.5. Test using KF+RLSE

The Kalman Filter and a Recursive Least-Squares Estimator (KF+RLSE) is proposed in

Tuan et al. (1996) for solving online two-dimensional inverse heat conduction problems.

This algorithm was later adopted for force reconstruction by several researchers. For

example, Ma et al. (2003) used this method to estimate the input forces acting on a
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cantilever beam; Chen and Lee (2008) applied this method for moving force estimation

through several simulations; and Wu et al. (2009) adopted this method in the identification

of the soil force resulted from the soil-pile interaction in a shaking table test, etc. A short

review of the KF+RLSE algorithm has been provided in section 2.6.3.

Within this benchmark study, the KF+RLSE algorithm is applied for reconstructing the

three different types of forces which have been introduced in section 5.2.3. This algorithm

does not need a priori information on the dynamics of the inputs, and does not require that

the initial state estimate has to be unbiased. The direct feed-through is not considered

in the output equation of system model. According to equation (2.17), this indicates

that acceleration response of the benchmark structure is not considered in the output

equation of the state-space model of the benchmark structure. The necessary condition

for the existence of the KF+RLSE has been provided in section 2.6.3. After checking

the fulfillment of this necessary condition, the sensors in table 5.6 are selected. Table 5.7

lists the dimension of the state, the input, and the output of the state-space model of

the benchmark structure. Table 5.8 provides the parameter settings which are applied

in this study. The stability of this method is achieved through the convergence of the

covariance matrix of the state estimate error and the convergence of the covariance of

the force estimate error. The reconstruction results are plotted in figure 5.16 through

figure 5.18. The values of the RMSE between the reconstructed forces and the measured

(or true) forces are calculated and are plotted in form of bar plot in figure 5.19 through

figure 5.21. The reconstruction results show that the KF+RLSE method is suitable for

the reconstruction of the quasi-static force, but not suitable for the reconstruction of the

impact force. Furthermore, it is suitable for the reconstruction of the static part of the

wind load, but not the dynamic part.

Table 5.6. Selected sensors in test using KF+RLSE

Sensor type Selected sensors

Only strain gauge Strain gauge 1

Strain gauge 2

Table 5.7. Dimension of the state, the input, and the output of the state-space model of the
benchmark structure in test using KF+RLSE

Name Symbol Dimension

State x(t) 4×1

Input d(t) 2×1

Output y (t) 2×1
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Table 5.8. Parameter settings in test using KF+RLSE

Parameter Setting Unit

Qd 1× 10−10I4




(m2/s2) (m2/s2) (m2/s3) (m2/s3)

(m2/s2) (m2/s2) (m2/s3) (m2/s3)

(m2/s3) (m2/s3) (m2/s4) (m2/s4)

(m2/s3) (m2/s3) (m2/s4) (m2/s4)




Rd 1.5× 10−13I2

[
(−) (−)

(−) (−)

]

γ 1× 10−1 (−)

x̂0|0

[
0 0 0 0

]T [
(m) (m) (m/s) (m/s)

]T

d̂0

[
0 0

]T [
(N) (N)

]T

P x
0|0 1× 10−4I4




(m2) (m2) (m2/s) (m2/s)

(m2) (m2) (m2/s) (m2/s)

(m2/s) (m2/s) (m2/s2) (m2/s2)

(m2/s) (m2/s) (m2/s2) (m2/s2)




P d
0 1× 10−4I2

[ (
N2

) (
N2

)
(
N2

) (
N2

)
]

M 0 1× 10−4I4




(−) (−) (−) (−)

(−) (−) (−) (−)

(−) (−) (−) (−)

(−) (−) (−) (−)




Figure 5.16. Reconstruction results for the quasi-static force in test using KF+RLSE (with
two strain gauges)
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Figure 5.17. Reconstruction results for the impact force in test using KF+RLSE (with two
strain gauges)
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Figure 5.18. Reconstruction results for the wind load in test using KF+RLSE (with two strain
gauges)
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Figure 5.19. Calculated RMSE in the reconstruction of the quasi-static force in test using
KF+RLSE (with two strain gauges)

Figure 5.20. Calculated RMSE in the reconstruction of the impact force in test using KF+RLSE
(with two strain gauges)

Figure 5.21. Calculated RMSE in the reconstruction of the wind load in test using KF+RLSE
(with two strain gauges)

5.2.6. Test using SSNIE L

Ha and Trinh (2004) proposed a UIO based method which can realize simultaneous state

and input estimation for a class of nonlinear systems. Klinkov and Fritzen (2006) named

this method as SSNIE and adopted it for online force reconstruction. The SSNIE was

applied in a study for the reconstruction of the wind load on a 5 MW wind energy

plant (Klinkov and Fritzen, 2009; Fritzen et al., 2013). In this thesis, this method is
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named as SSNIE N which is short for Simultaneous State and Input Estimation for a

class of Nonlinear systems. A short review of the SSNIE N algorithm has been provided

in section 2.6.2. In the SSNIE N, a Linear Matrix Inequality (LMI) needs to be solved. Ha

and Trinh (2004) suggested to use MATLAB LMI Control Toolbox as a computationally

efficient manner to solve the LMI. However, it is noticed that the solution of the LMI

may have convergence problem, when the number of the inputs is larger than two. In

many practical cases, a structure can be assumed to be linear. Motivated by this practical

assumption, a modification to the SSNIE N is proposed in section 4.1, so that the modified

algorithm is suitable for linear systems. In this thesis, this modified algorithm is named as

SSNIE L which is short for Simultaneous State and Input Estimation for Linear systems.

Some preliminary results from a simulation study on online force reconstruction using the

SSNIE L has been presented in Niu et al. (2010).

Within this benchmark study, the SSNIE L is applied for reconstructing the three different

types of forces which have been introduced in section 5.2.3. The SSNIE L do not need

a priori information on the dynamics of the input forces, and does not require that the

initial estimate of the state has to be unbiased. The direct feed-through is considered

in the output equation of the system model. The necessary and sufficient conditions for

the existence of the SSNIE L have been provided in section 4.1. The SSNIE L requires

that the direct feed-through should have full column rank. According to equation (2.17),

this indicates that acceleration sensors should be applied and the number of acceleration

sensors should be equal to or larger than the number of input forces. After checking

the fulfillment of those necessary and sufficient conditions, the sensors in table 5.9 are

selected. Table 5.10 lists the dimension of the state, the input, and the output of the

state-space model of the benchmark structure. To filter out the low frequency drift in

the acceleration measurements, a second-order Butterworth filter is applied, with the

cutoff frequency being set at 0.5 Hz. The matrices ZssieL and F ssieL in equation (4.14)

are calculated with the help of the MATLAB function place. The eigenvalues of matrix

N ssieL are all placed on the LHP of the s-plane at -1. The stability of this method is

achieved by the convergence of x̃aug (t) which is the estimate error of the augmented state

xaug (t). The reconstruction results are plotted in figure 5.22 through figure 5.24. The

values of the RMSE between the reconstructed forces and the measured (or true) forces

are calculated and are plotted in form of bar plot in figure 5.25 through figure 5.27. The

reconstruction results show that the SSNIE L is suitable for the reconstruction of the

quasi-static force, the impace force and the wind load.
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Table 5.9. Selected sensors in test using SS&IE L

Sensor type Selected sensors

Strain gauge & accelerometer Strain gauge 1

Strain gauge 2

Accelerometer 1

Accelerometer 2

Table 5.10. Dimension of the state, the input, and the output of the state-space model of the
benchmark structure in test using SSNIE L

Name Symbol Dimension

State x(t) 4×1

Input d(t) 2×1

Output y (t) 4×1

Figure 5.22. Reconstruction results for the quasi-static force in test using SSNIE L (with two
strain gauges and two accelerometers)
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Figure 5.23. Reconstruction results for the impact force in test using SSNIE L (with both strain
gauges and accelerometers)
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Figure 5.24. Reconstruction results for the wind load in test using SSNIE L (with both strain
gauges and accelerometers)
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Figure 5.25. Calculated RMSE in the reconstruction of the quasi-static force in test using
SSNIE L (with two strain gauges and two accelerometers)

Figure 5.26. Calculated RMSE in the reconstruction of the impact force in test using SSNIE L
(with two strain gauges and two accelerometers)

Figure 5.27. Calculated RMSE in the reconstruction of the wind load in test using SSNIE L
(with two strain gauges and two accelerometers)

5.2.7. Test using AKF

Lourens et al. (2012b) proposed the Augmented Kalman Filter (AKF) and applied this

method for the estimation of an impact force which was applied on a laboratory steel

beam. A brief review of the the AKF has been provided in section 2.6.6. In this method,

the state vector is augmented with the input vector, and the augmented state vector is
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estimated with the help of the Kalman filter. The direct feed-through is considered in the

output equation of the system model. Perisic et al. (2012) applied the same method as

the AKF for gearbox fatigue load estimation for condition monitoring of wind turbines.

In some previous studies, a method which is similar to the AKF has already been used

for force reconstruction, e.g. in Ji and Liang (2000) and Berg and Miller (2010). In these

two studies, the state vector is augmented with the input vector, and the augmented state

vector is estimated with the help of the Kalman filter, too. The difference between this

method and the AKF is that this method does not consider the direct feed-through in the

system model while the AKF does consider the direct feed-through.

In this benchmark study, the AKF is applied for reconstructing the three different types

of forces which have been introduced in section 5.2.3. The AKF assumes the matrix

Q
input
d , which is the covariance matrix of the increment of the inputs, is known. It does

not require that the initial estimate of the state has to be unbiased. The direct feed-

through is considered in the output equation of the system model. This makes it possible

to use acceleration sensors. As stated above, the AKF needs the information of Qinput
d ,

the covariance matrix of the increment of the inputs. However, such information is not

always available in practice. In order to check the influence ofQinput
d on the reconstruction

results, two different settings for Qinput
d are considered for each of the three different types

of forces, with one being calculated based on the measured (or true) forces and the other

one being set as an identity matrix. Table 5.11 lists the settings for Qinput
d . The common

parameter settings are provided in table 5.12.

Table 5.11. Settings for Qinput
d in test using AKF

Case No. Force Type Parameter Setting Unit

1 Quasi-static Q
input
d

[
1× 10−10 0

0 1.029× 10−4

] [ (
N2

) (
N2

)
(
N2

) (
N2

)
]

2 Quasi-static Q
input
d I2

[ (
N2

) (
N2

)
(
N2

) (
N2

)
]

3 Impact Q
input
d

[
2.64× 10−2 0

0 1× 10−10

] [ (
N2

) (
N2

)
(
N2

) (
N2

)
]

4 Impact Q
input
d I2

[ (
N2

) (
N2

)
(
N2

) (
N2

)
]

5 Wind load Q
input
d

[
1× 10−10 0

0 9.44× 10−2

] [ (
N2

) (
N2

)
(
N2

) (
N2

)
]

6 Wind load Q
input
d I2

[ (
N2

) (
N2

)
(
N2

) (
N2

)
]
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Table 5.12. Common parameter settings in test using AKF

Parameter Setting Unit

x̂0|0

[
0 0 0 0

]T [
(m) (m) (m/s) (m/s)

]T

d̂0|0

[
0 0

]T [
(N) (N)

]T

Qd 1× 10−10I4




(m2/s2) (m2/s2) (m2/s3) (m2/s3)

(m2/s2) (m2/s2) (m2/s3) (m2/s3)

(m2/s3) (m2/s3) (m2/s4) (m2/s4)

(m2/s3) (m2/s3) (m2/s4) (m2/s4)




Results from using only strain gauges

The necessary condition for the existence of the AKF has been provided in section 2.6.6.

After checking the fulfillment of the necessary condition, the sensor in table 5.13 are

selected. Table 5.14 lists the dimension of the state, the input, and the output of the

state-space model of the benchmark structure. The setting for the covariance matrix of

the measurement noise is provided in table 5.15. The stability of this method is achieved

through the convergence of the covariance matrix of the estimate error of the augmented

state xaug,k. The reconstruction results are plotted in figure 5.28 through figure 5.30. The

values of the RMSE between the reconstructed forces and the measured (or true) forces

are calculated and are plotted in form of bar plot in figure 5.31 through figure 5.33.

The reconstruction results show that the AKF with only strain gauge is suitable for the

reconstruction of the quasi-static force, but not suitable for the reconstruction of the

impact force. It is suitable for the reconstruction of the static part of the wind load,

but not the dynamic part. Furthermore, with a correct setting for the matrix Qinput
d , the

AKF can provide better reconstruction results for the mass block where actually no force

is applied in the x direction.

Table 5.13. Selected sensors in test using AKF with only strain gauges

Sensor type Selected sensors

Only strain gauge Strain gauge 1

Strain gauge 2
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Table 5.14. Dimension of the state, the input, and the output of the state-space model of the
benchmark structure in test using AKF (with two strain gauges)

Name Symbol Dimension

State x(t) 4×1

Input d(t) 2×1

Output y (t) 2×1

Table 5.15. Setting for the covariance matrix of the measurement noise in test using AKF
(with two strain gauges)

Parameter Setting Unit

Rd


 1.5× 10−13 0

0 1.5× 10−13





 (−) (−)

(−) (−)




Figure 5.28. Reconstruction results for the quasi-static force in test using AKF (with two strain
gauges)
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Figure 5.29. Reconstruction results for the impact force in test using AKF (with two strain
gauges)
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Figure 5.30. Reconstruction results for the wind load in test using AKF (with two strain
gauges)
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Figure 5.31. Calculated RMSE in the reconstruction of the quasi-static force in test using AKF
(with two strain gauges)

Figure 5.32. Calculated RMSE in the reconstruction of the impact force in test using AKF
(with two strain gauges)

Figure 5.33. Calculated RMSE in the reconstruction of the wind load in test using AKF (with
two strain gauges)
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Results from using both strain gauges and accelerometers

The necessary condition for the existence of the AKF has been provided in section 2.6.6.

After checking the fulfillment of the necessary condition, the sensor in table 5.16 are

selected. Table 5.17 lists the dimension of the state, the input, and the output of the

state-space model of the benchmark structure. To filter out the low frequency drift in the

acceleration measurements, a second-order Butterworth filter is applied, with the cutoff

frequency being set at 0.5 Hz. The setting for the matrix Rd, which is the covariance

matrix of the measurement noise, is provided in table 5.18. The unit of the matrix Rd is

provided in table 5.19. The stability of this method is achieved through the convergence

of the covariance matrix of the estimate error of the augmented state xaug,k. The recon-

struction results are plotted in figure 5.34 through figure 5.36. The values of the RMSE

between the reconstructed forces and the measured (or true) forces are calculated and are

plotted in form of bar plot in figure 5.37 through figure 5.39.

The reconstruction results show that the AKF with both strain gauges and accelerometers

is suitable for the reconstruction of the quasi-static force, the impact force, and the wind

load. Furthermore, with a correct setting for the matrix Qinput
d , the AKF can provide

better reconstruction results for the mass block where actually no force is applied in the

x direction.

Table 5.16. Selected sensors in test using AKF with both strain gauges and accelerometers

Sensor type Selected sensors

Strain gauge & accelerometer Strain gauge 1

Strain gauge 2

Accelerometer 1

Accelerometer 2

Table 5.17. Dimension of the state, the input, and the output of the state-space model of the
benchmark structure in test using AKF (with two strain gauges and two accelerometers)

Name Symbol Dimension

State x(t) 4×1

Input d(t) 2×1

Output y (t) 4×1
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Table 5.18. Setting for the covariance matrix of the measurement noise in test using AKF
(with two strain gauges and two accelerometers)

Parameter Setting

Rd




1.5× 10−13 0 0 0

0 1.5× 10−13 0 0

0 0 3× 10−3 0

0 0 0 3× 10−3




Table 5.19. Unit of the covariance matrix of the measurement noise in test using AKF (with
two strain gauges and two accelerometers)

Parameter Unit

Rd




(−) (−) (m/s2) (m/s2)

(−) (−) (m/s2) (m/s2)

(m/s2) (m/s2) (m2/s4) (m2/s4)

(m/s2) (m/s2) (m2/s4) (m2/s4)




Figure 5.34. Reconstruction results for the quasi-static force in test using AKF (with two strain
gauges and two accelerometers)
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Figure 5.35. Reconstruction results for the impact force in test using AKF (with both strain
gauges and accelerometers)
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Figure 5.36. Reconstruction results for the wind load in test using AKF (with two strain gauges
and two accelerometers)
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Figure 5.37. Calculated RMSE in the reconstruction of the quasi-static force in test using AKF
(with two strain gauges and two accelerometers)

Figure 5.38. Calculated RMSE in the reconstruction of the impact force in test using AKF
(with two strain gauges and two accelerometers)

Figure 5.39. Calculated RMSE in the reconstruction of the wind load in test using AKF (with
two strain gauges and two accelerometers)

5.2.8. Test using KF-UI and G-KF-UI

Pan et al. (2011) presented a Kalman Filter with Unknown Inputs (KF-UI) approach

for joint input and state estimation for discrete-time stochastic systems with direct feed-

through. This approach is derived with the weighted least-squares estimation method, and

the state estimate and the input estimate are proven optimal in the minimum-variance
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and unbiased sense. Niu et al. (2011) noticed the input estimation capability of the KF-

UI approach and adopted it for online force reconstruction. A brief review of the the

KF-UI has been provided in section 2.6.5, where it is listed that the existence of the

KF-UI requires that the direct feed-through should have full column rank. According to

equation (2.17) and equation (2.23), this requirement actually means that acceleration

response should be considered in the output equation of the state-space structural model.

According to the discussion in section 2.7, the consideration of acceleration in the out-

put equation indicates that the process noise and the measurement noise are correlated.

However, In the derivation of the KF-UI approach, the process noise and the measure-

ment noise are assumed to be uncorrelated. To make the KF-UI theoretically suitable for

online force reconstruction, Niu and Fritzen (2012) presented a generalized KF-UI which

is compatible with the correlation of the process noise and the measurement noise. This

generalized KF-UI is abbreviated as G-KF-UI. The filter equations of the G-KF-UI have

been provided in section 4.3.3.

In this benchmark study, both the KF-UI and the G-KF-UI are applied for reconstructing

the three different types of forces which have been introduced in section 5.2.3. A brief

review of the KF-UI has been provided in section 2.6.5. Furthermore, some modifications

to the KF-UI have been proposed in section 4.3.2. The filter equations of the G-KF-UI

have been presented in section 4.3.3. Both the KF-UI and the G-KF-UI do not need a

priori information on the dynamics of the input, and do not an unbiased initial state

estimate. Section 4.3.2 presentsthe necessary and sufficient conditions for the existence

of the KF-UI. These mathematical conditions are applicable to the G-KF-UI, too. Both

methods require that the direct feed-through should have full column rank. According

to equation (2.17), this indicates that acceleration sensors should be applied and the

number of acceleration sensors should be equal to or larger than the number of input

forces. After checking the fulfillment of those necessary and sufficient conditions, the

sensors in table 5.20 are selected. Table 5.21 lists the dimension of the state, the input,

and the output of the state-space model of the benchmark structure. To filter out the

low frequency drift in the acceleration measurements, a second-order Butterworth filter is

applied, with the cutoff frequency being set at 0.5 Hz.

Table 5.20. Selected sensors in test using KF-UI and G-KF-UI

Sensor type Selected sensors

Strain gauge & accelerometer Strain gauge 1

Strain gauge 2

Accelerometer 1

Accelerometer 2
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Table 5.21. Dimension of the state, the input, and the output of the state-space model of the
benchmark structure in test using KF-UI and G-KF-UI

Name Symbol Dimension

State x(t) 4×1

Input d(t) 2×1

Output y (t) 4×1

Table 5.22. Parameter settings in test using KF-UI and G-KF-UI

Parameter Setting

x̂0|0

[
0 0 0 0

]T

d̂0

[
0 0

]T

P x
0|0 1× 10−4I4

P d
0 1× 10−2I2

P xd
0


 0 0 0 0

0 0 0 0




T

P dx
0


 0 0 0 0

0 0 0 0




Qd 1× 10−10I4

Rd




1.5× 10−13 0 0 0

0 1.5× 10−13 0 0

0 0 3× 10−3 0

0 0 0 3× 10−3




Sd




0 0 0 0

0 0 0 0

0 0 3.1681× 10−10 4.8094× 10−10

0 0 1.0435× 10−10 −6.7825× 10−11



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Table 5.23. Parameter unit in test using KF-UI and G-KF-UI

Parameter Unit

x̂0|0

[
(m) (m) (m/s) (m/s)

]T

d̂0

[
(N) (N)

]T

P x
0|0




(m2) (m2) (m2/s) (m2/s)

(m2) (m2) (m2/s) (m2/s)

(m2/s) (m2/s) (m2/s2) (m2/s2)

(m2/s) (m2/s) (m2/s2) (m2/s2)




P d
0




(
N2

) (
N2

)

(
N2

) (
N2

)




P xd
0


 (Nm) (Nm) (Nm/s) (Nm/s)

(Nm) (Nm) (Nm/s) (Nm/s)




T

P dx
0


 (Nm) (Nm) (Nm/s) (Nm/s)

(Nm) (Nm) (Nm/s) (Nm/s)




Qd




(m2/s2) (m2/s2) (m2/s3) (m2/s3)

(m2/s2) (m2/s2) (m2/s3) (m2/s3)

(m2/s3) (m2/s3) (m2/s4) (m2/s4)

(m2/s3) (m2/s3) (m2/s4) (m2/s4)




Rd




(−) (−) (m/s2) (m/s2)

(−) (−) (m/s2) (m/s2)

(m/s2) (m/s2) (m2/s4) (m2/s4)

(m/s2) (m/s2) (m2/s4) (m2/s4)




Sd




(m/s) (m/s) (m2/s3) (m2/s3)

(m/s) (m/s) (m2/s3) (m2/s3)

(m/s2) (m/s2) (m2/s4) (m2/s4)

(m/s2) (m/s2) (m2/s4) (m2/s4)



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In section 4.3.4, a steady-state form of the G-KF-UI has been presented. With the steady-

state form of the G-KF-UI, the steady-state form of the KF-UI can be obtained by setting

the covariance matrix Sd to be a zero matrix. In this test, the steady-states of the KF-

UI and the G-KF-UI are calculated in advance, and then are applied for online force

reconstruction. Table 5.22 lists the parameter settings which are applied in the test, and

table 5.23 provides the units of those parameters. The stability of the KF-UI and the

G-KF-UI is achieved by the convergence of the covariance matrix of the state estimate

error and the convergence of the covariance matrix of the force estimate error. The

reconstruction results are plotted in figure 5.40 through figure 5.42. The values of the

RMSE between the reconstructed forces and the measured (or true) forces are calculated

and are plotted in form of bar plot in figure 5.43 through figure 5.45. The reconstruction

results show that both the KF-UI and the G-KF-UI are suitable for the reconstruction of

the quasi-static force, the impact force, and the wind load. Furthermore, the difference

between the reconstruction results from using the KF-UI and from using the G-KF-UI is

not obvious.

Figure 5.40. Reconstruction results for the quasi-static force in test using KF-UI and G-KF-UI
(with two strain gauges and two accelerometers)
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Figure 5.41. Reconstruction results for the impact force in test using KF-UI and G-KF-UI
(with two strain gauges and two accelerometers)
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Figure 5.42. Reconstruction results for the wind load in test using KF-UI and G-KF-UI (with
two strain gauges and two accelerometers)
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Figure 5.43. Calculated RMSE in the reconstruction of the quasi-static force in test using
KF-UI and G-KF-UI (with two strain gauges and two accelerometers)

Figure 5.44. Calculated RMSE in the reconstruction of the impact force in test using KF-UI
and G-KF-UI (with two strain gauges and two accelerometers)

Figure 5.45. Calculated RMSE in the reconstruction of the wind load in test using KF-UI and
G-KF-UI (with two strain gauges and two accelerometers)
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5.2.9. Test using SSKF+LSE and MSSKF+LSE

Hwang et al. (2009a) presented an analytical procedure for the estimation of modal loads.

The same method was applied in a study for modal wind load identification using the

wind tunnel test data (Hwang et al., 2011). This method adopts the steady-state of

a continuous-time Kalman filter for state estimation. This principle is similar to the

Kalman-Bucy filter which has been reviewed in section 2.5. The difference is that this

method considers direct feed-through in the system model. The input is estimated with

the help of a least-squares estimator. In this thesis, this method is named as Steady-

State Kalman Filter with a Least-Squares Estimator (SSKF+LSE). A brief review of the

SSKF+LSE has been given in section 2.6.7.

The SSKF+LSE assumes the input covariance matrix Qinput and the measurement noise

covariance matrix Qmeas as unknown, and sets Qinput as an identity matrix Im and Qmeas

as γIp, where γ is a tuning parameter. If the input covariance matrix Qinput is set as

an identity matrix, it actually assumes that the input forces all have the same variance

and are uncorrelated. In practice, it might not always be the case. Considering this,

the author has proposed a modification to the SSKF+LSE in section (4.4), where it is

suggested to use the estimate ofQinput and the estimate ofQmeas. To differentiate with the

SSKF+LSE, the proposed modification is noted as MSSKF+LSE in which the covariance

matrix Qinput is set to include at least the information on the intensity difference and the

correlation of different input forces, and the covariance matrix Qmeas is set to reflect the

intensity difference in the measurement noise covariance of different types of sensors.

In this benchmark study, both the SSKF+LSE and the MSSKF+LSE are applied for re-

constructing the three different types of forces which have been introduced in section 5.2.3.

Both the SSKF+LSE and the MSSKF+LSE assume the input forces to be stationary and

white. In the SSKF+LSE, the covariance matrix of the input forces is assumed to be un-

known and is set as an identity matrix. In the MSSKF+LSE, it is suggested to consider

an estimate of the covariance matrix of the input forces. As least, the information on

the intensity difference and the correlation of different input forces should be considered.

The SSKF+LSE and the MSSKF+LSE do not require that the initial conditions have to

be known a priori. Both methods consider the direct feed-through in the system model.

However, these two methods do not require that the direct feed-through has to have full

column rank. The test results with different sensor options are provided below.
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Results from using only strain gauges

The necessary conditions for the existence of the existence of the SSKF+LSE have been

provided in section 2.6.7. The same necessary conditions are applicable to the MSSKF+LSE,

too. After checking the fulfillment of those necessary conditions, the sensors in table 5.24

are selected. Table 5.25 lists the dimension of the state, the input, and the output of the

state-space model of the benchmark structure. Table 5.26 through table 5.28 provide the

parameter settings which are applied in the test. The units of those parameters are given

in table 5.29. The stability is achieved by the convergence of the state estimate error x̃ (t)

and a stable G+
c . The reconstruction results are plotted in figure 5.46 through figure 5.48.

The values of the RMSE between the reconstructed forces and the measured (or true)

forces are calculated and are plotted in form of bar plot in figure 5.49 through figure 5.51.

The reconstruction results show that with only strain gauges both the SSKF+LSE and the

MSSKF+LSE are suitable for the reconstruction of the quasi-static force, but not suitable

for the reconstruction of the impact force; and are suitable for the reconstruction of the

static part of the wind load, but not the dynamics part. Furthermore, by considering

reasonable values for the matrices Qinput and Qmeas, the MSSKF+LSE provides better

reconstruction results for the mass block where no force is applied in the x direction,

especially for the cases of impact force and wind load.

Table 5.24. Selected sensors in test using SSKF+LSE and MSSKF+LSE with only strain
gauges

Sensor type Selected sensors

Only strain gauge Strain gauge 1

Strain gauge 2

Table 5.25. Dimension of the state, the input, and the output of the state-space model of the
benchmark structure in test using SSKF+LSE and MSSKF+LSE (with two strain gauges)

Name Symbol Dimension

State x(t) 4×1

Input d(t) 2×1

Output y (t) 2×1
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Table 5.26. Parameter settings in the reconstruction of the quasi-static force in test using
SSKF+LSE and MSSKF+LSE (with two strain gauges)

Parameter SSKF+LSE MSSKF+LSE

Qinput I2


 0 0

0 3.2171× 100




Qmeas I2


 1.5× 10−13 0

0 1.5× 10−13




γ 5× 101 5× 101

Table 5.27. Parameter settings in the reconstruction of the impact force in test using
SSKF+LSE and MSSKF+LSE (with two strain gauges)

Parameter SSKF+LSE MSSKF+LSE

Qinput I2


 2.54× 10−2 0

0 0




Qmeas I2


 1.5× 10−13 0

0 1.5× 10−13




γ 5× 101 1× 100

Table 5.28. Parameter settings in the reconstruction of the wind load in test using SSKF+LSE
and MSSKF+LSE (with two strain gauges)

Parameter SSKF+LSE MSSKF+LSE

Qinput I2


 0 0

0 9.96× 10−2




Qmeas I2


 1.5× 10−13 0

0 1.5× 10−13




γ 5× 101 1× 100
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Table 5.29. Parameter units in test using SSKF+LSE and MSSKF+LSE (with two strain
gauges)

Parameter Unit

Qinput




(
N2

) (
N2

)

(
N2

) (
N2

)




Qmeas


 (−) (−)

(−) (−)




γ (−)

Figure 5.46. Reconstruction results for the quasi-static force in test using SSKF+LSE and
MSSKF+LSE (with two strain gauges)
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Figure 5.47. Reconstruction results for the impact force in test using SSKF+LSE and
MSSKF+LSE (with two strain gauges)
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Figure 5.48. Reconstruction results for the wind load in test using SSKF+LSE and
MSSKF+LSE (with two strain gauges)
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Figure 5.49. Calculated RMSE in the reconstruction of the quasi-static force in test using
SSKF+LSE and MSSKF+LSE (with two strain gauges)

Figure 5.50. Calculated RMSE in the reconstruction of the impact force in test using
SSKF+LSE and MSSKF+LSE (with two strain gauges)

Figure 5.51. Calculated RMSE in the reconstruction of the wind load in test using SSKF+LSE
and MSSKF+LSE (with two strain gauges)
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Results from using both strain gauges and accelerometers

The necessary conditions for the existence of the existence of the SSKF+LSE have been

provided in section 2.6.7. The same necessary conditions are applicable to the MSSKF+LSE,

too. After checking the fulfillment of those necessary conditions, the sensors in table 5.30

are selected. Table 5.31 lists the dimension of the state, the input, and the output of

the state-space model of the benchmark structure. To filter out the low frequency drift

in the acceleration measurements, a second-order Butterworth filter is applied, with the

cutoff frequency being set at 0.5 Hz. Table 5.32 through table 5.34 provide the param-

eter settings which are applied in the test. The units of those parameters are given in

table 5.36. The stability is achieved by the convergence of the state estimate error x̃ (t)

and a stable G+
c . The reconstruction results are plotted in figure 5.52 through figure 5.53.

The values of the RMSE between the reconstructed forces and the measured (or true)

forces are calculated and are plotted in form of bar plot in figure 5.55 through figure 5.57.

The reconstruction results show that with both strain gauges and accelerometers the

MSSKF+LSE are suitable for the reconstruction of the quasi-static force, the impact

force, and the wind load, while the SSKF+LSE is suitable only for the reconstruction of

the impact force and the dynamic part of the wind load. Furthermore, by considering

reasonable values for the matrices Qinput and Qmeas, the MSSKF+LSE provides better

reconstruction results for the mass block where no force is applied in the x direction.

Table 5.30. Selected sensors in test using SSKF+LSE and MSSKF+LSE with both strain
gauges and accelerometers

Sensor type Selected sensors

Strain gauge & accelerometer Strain gauge 1

Strain gauge 2

Accelerometer 1

Accelerometer 2

Table 5.31. Dimension of the state, the input, and the output of the state-space model of the
benchmark structure in test using SSKF+LSE and MSSKF+LSE (with two strain gauges and
two accelerometers)

Name Symbol Dimension

State x(t) 4×1

Input d(t) 2×1

Output y (t) 4×1
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Table 5.32. Settings for Qinput and γ in the reconstruction of the quasi-static force in test
using SSKF+LSE and MSSKF+LSE (with two strain gauges and two accelerometers)

Parameter SSKF+LSE MSSKF+LSE

Qinput I2


 0 0

0 3.2171× 100




γ 1× 10−2 1× 100

Table 5.33. Settings for Qinput and γ in the reconstruction of the impact force in test using
SSKF+LSE and MSSKF+LSE (with two strain gauges and two accelerometers)

Parameter SSKF+LSE MSSKF+LSE

Qinput I2


 2.54× 10−2 0

0 0




γ 1× 10−2 1× 100

Table 5.34. Settings for Qinput and γ in the reconstruction of the wind load in test using
SSKF+LSE and MSSKF+LSE (with two strain gauges and two accelerometers)

Parameter SSKF+LSE MSSKF+LSE

Qinput I2


 0 0

0 9.96× 10−2




γ 1× 10−2 1× 100

Table 5.35. Settings for Qmeas in test using SSKF+LSE and MSSKF+LSE (with two strain
gauges and two accelerometers)

Parameter SSKF+LSE MSSKF+LSE

Qmeas I4




1.5× 10−13 0 0 0

0 1.5× 10−13 0 0

0 0 3× 10−3 0

0 0 0 3× 10−3



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Table 5.36. Parameter units in test using SSKF+LSE and MSSKF+LSE (with two strain
gauges and two accelerometers)

Parameter Unit

Qinput




(
N2

) (
N2

)

(
N2

) (
N2

)




Qmeas




(−) (−) (m/s2) (m/s2)

(−) (−) (m/s2) (m/s2)

(m/s2) (m/s2) (m2/s4) (m2/s4)

(m/s2) (m/s2) (m2/s4) (m2/s4)




γ (−)

Figure 5.52. Reconstruction results for the quasi-static force in test using SSKF+LSE and
MSSKF+LSE (with two strain gauges and two accelerometers)
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Figure 5.53. Reconstruction results for the impact force in test using SSKF+LSE and
MSSKF+LSE (with two strain gauges and two accelerometers)
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Figure 5.54. Reconstruction results for the wind load in test using SSKF+LSE and
MSSKF+LSE (with two strain gauges and two accelerometers)
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Figure 5.55. Calculated RMSE in the reconstruction of the quasi-static force in test using
SSKF+LSE and MSSKF+LSE (with two strain gauges and two accelerometers)

Figure 5.56. Calculated RMSE in the reconstruction of the impact force in test using
SSKF+LSE and MSSKF+LSE (with two strain gauges and two accelerometers)

Figure 5.57. Calculated RMSE in the reconstruction of the wind load in test using SSKF+LSE
and MSSKF+LSE (with two strain gauges and two accelerometers)

Results from using only accelerometers

The necessary conditions for the existence of the existence of the SSKF+LSE have been

provided in section 2.6.7. The same necessary conditions are applicable to the MSSKF+LSE,

too. After checking the fulfillment of those necessary conditions, the sensors in table 5.37

are selected. Table 5.38 lists the dimension of the state, the input, and the output of

the state-space model of the benchmark structure. To filter out the low frequency drift
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in the acceleration measurements, a second-order Butterworth filter is applied, with the

cutoff frequency being set at 0.5 Hz. Table 5.39 through table 5.41 provide the param-

eter settings which are applied in the test. The units of those parameters are given in

table 5.42. The stability is achieved by the convergence of the state estimate error x̃ (t)

and a stable G+
c . The reconstruction results are plotted in figure 5.58 through figure 5.60.

The values of the RMSE between the reconstructed forces and the measured (or true)

forces are calculated and are plotted in form of bar plot in figure 5.61 through figure 5.63.

The reconstruction results show that with only accelerometers the SSKF+LSE and the

MSSKF+LSE are suitable for the reconstruction of the impact force and the dynamic

part of the wind load, but not suitable for the reconstruction of the quasi-static force and

the static part of the wind load. Furthermore, by considering reasonable values for the

matrices Qinput and Qmeas, the MSSKF+LSE provides better reconstruction results for

the mass block where no force is applied in the x direction, especially for the cases of

impact force and wind load.

In figure 5.60, a bias exists between the mean of the reconstructed wind load and the mean

of the measured wind load. If an estimate of the mean of the wind load is available, then

it can added to the reconstructed wind load to compensate the bias. After applying this

idea, figure 5.64 shows the reconstructed wind load, and figure 5.65 provides the calculated

RMSE. Based on the results in figure 5.64 and figure 5.65, it can be concluded that the

MSSKF+LSE can be used for reconstructing the wind load with only accelerometers, if

an estimate of the mean of the wind load is available.

Table 5.37. Selected sensors in test using SSKF+LSE and MSSKF+LSE (with two accelerom-
eters)

Sensor type Selected sensors

Accelerometer Accelerometer 1

Accelerometer 2

Table 5.38. Dimension of the state, the input, and the output of the state-space model of the
benchmark structure in test using SSKF+LSE and MSSKF+LSE (with two accelerometers)

Name Symbol Dimension

State x(t) 4×1

Input d(t) 2×1

Output y (t) 2×1



124 Chapter 5. Study on application-oriented algorithm selection

Table 5.39. Parameter settings in the reconstruction of the quasi-static force in test using
SSKF+LSE and MSSKF+LSE (with two accelerometers)

Parameter SSKF+LSE MSSKF+LSE

Q1 I2


 0 0

0 3.2171× 100




Q2 I2


 3× 10−3 0

0 3× 10−3




γ 5× 101 2× 102

Table 5.40. Parameter settings in the reconstruction of the impact force in test using
SSKF+LSE and MSSKF+LSE (with two accelerometers)

Parameter SSKF+LSE MSSKF+LSE

Q1 I2


 2.54× 10−2 0

0 0




Q2 I2


 3× 10−3 0

0 3× 10−3




γ 1× 100 2× 10−2

Table 5.41. Parameter settings in the reconstruction of the wind load in test using SSKF+LSE
and MSSKF+LSE (with two accelerometers)

Parameter SSKF+LSE MSSKF+LSE

Q1 I2


 0 0

0 9.96× 10−2




Q2 I2


 3× 10−3 0

0 3× 10−3




γ 1× 101 1× 100
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Table 5.42. Parameter units in test using SSKF+LSE and MSSKF+LSE (with two accelerom-
eters)

Parameter Unit

Q1




(
N2

) (
N2

)

(
N2

) (
N2

)




Q2


 (m2/s4) (m2/s4)

(m2/s4) (m2/s4)




γ (−)

Figure 5.58. Reconstruction results for the quasi-static force in test using SSKF+LSE and
MSSKF+LSE (with two accelerometers)
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Figure 5.59. Reconstruction results for the impact force in test using SSKF+LSE and
MSSKF+LSE (with two accelerometers)
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Figure 5.60. Reconstruction results for the wind load in test using SSKF+LSE and
MSSKF+LSE (with two accelerometers)
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Figure 5.61. Calculated RMSE in the reconstruction of the quasi-static force in test using
SSKF+LSE and MSSKF+LSE (with two accelerometers)

Figure 5.62. Calculated RMSE in the reconstruction of the impact force in test using
SSKF+LSE and MSSKF+LSE (with two accelerometers)

Figure 5.63. Calculated RMSE in the reconstruction of the wind load in test using SSKF+LSE
and MSSKF+LSE (with two accelerometers)
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Figure 5.64. Reconstruction results for the wind load in test using MSSKF+LSE (with only
accelerometers and mean compensation)
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Figure 5.65. Calculated RMSE in the reconstruction of the wind load in test using
MSSKF+LSE (with two accelerometers and mean compensation)

Table 5.43. Summary of the suitability of the tested algorithms for the reconstruction of the
quasi-static force

Algorithm
For the reconstruction of the quasi-static force with

two strain gauges two strain gauges and
two accelerometers

two
accelerometers

PI observer Suitable. N/A. N/A.

KF+RLSE Suitable. N/A. N/A.

SSNIE L N/A. Suitable. N/A.

AKF Suitable, if an
estimate of the
covariance matrix of
the increment of the
forces is available.

Suitable, if an
estimate of the
covariance matrix of
the increment of the
forces is available.

N/A.

KF-UI N/A. Suitable. N/A.

G-KF-UI N/A. Suitable. N/A.

SSKF+LSE Suitable. Not suitable. Not suitable.

MSSKF+LSE Suitable, if an
estimate of the
covariance of the
forces is available.

Suitable, if an
estimate of the
covariance of the
forces is available.

Not suitable.
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5.2.10. Summary

In this benchmark study, a laboratory two-story structure is taken as the benchmark

structure. Two types of widely used sensors, strain gauge and accelerometer, are instru-

mented on this structure for measuring the structural response. Three different types of

forces are considered, including a quasi-static force, impact forces, and a wind load which

is generated by an electric fan. With the measured structural response data, in total

eight different algorithms are tested. The goal is to study the suitability and the potential

of these algorithms for the reconstruction of the considered three types of forces. The

reconstruction results from the benchmark study are summarized in table 5.43 through

table 5.45. These results actually answer the questions which are raised in the beginning

of section 5.2.

Table 5.44. Summary of the suitability of the tested algorithms for the reconstruction of the
impact force

Algorithm
For the reconstruction of the impact force with

two strain gauges two strain gauges and
two accelerometers

two accelerometers

PI observer Not suitable. N/A. N/A.

KF+RLSE Not suitable. N/A. N/A.

SSNIE L N/A. Suitable. N/A.

AKF Not suitable. Suitable, if an
estimate of the
covariance matrix of
the increment of the
forces is available.

N/A.

KF-UI N/A. Suitable. N/A.

G-KF-UI N/A. Suitable. N/A.

SSKF+LSE Not suitable. Suitable. Suitable.

MSSKF+LSE Not suitable. Suitable, if an
estimate of the
covariance of the
forces is available.

Suitable, if an
estimate of the
covariance of the
forces is available.
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Table 5.45. Summary of the suitability of the tested algorithms for the reconstruction of the
wind load

Algorithm
For the reconstruction of the wind load with

two strain gauges two strain gauges and
two accelerometers

two accelerometers

PI observer Suitable only for
reconstructing the
static part of the
wind load.

N/A. N/A.

KF+RLSE Suitable only for
reconstructing the
static part of the
wind load.

N/A. N/A.

SSNIE L N/A. Suitable. N/A.

AKF Suitable only for
reconstructing the
static part of the
wind load, if an
estimate of the
covariance matrix of
the increment of the
forces is available.

Suitable, if an
estimate of the
covariance matrix of
the increment of the
forces is available.

N/A.

KF-UI N/A. Suitable. N/A.

G-KF-UI N/A. Suitable. N/A.

SSKF+LSE Suitable only for
reconstructing the
static part of the
wind load.

Suitable only for
reconstructing the
dynamic part of the
wind load.

Suitable only for
reconstructing the
dynamic part of the
wind load.

MSSKF+LSE Suitable only for
reconstructing the
static part of the
wind load, if an
estimate of the
covariance of the
forces is available.

Suitable, if an
estimate of the
covariance of the
forces is available.

Suitable only for
reconstructing the
dynamic part of the
wind load, if an
estimate of the
covariance of the
forces is available.
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5.3. Proposed guidance for algorithm selection

In case there is a need for online force reconstruction, it can be one of the following cases.

(1) The type of the force which needs to be reconstructed is known. Which algorithm

can reconstruct the force with less sensors?

(2) There are already some sensors on the structure, e.g. strain gauges or accelerometers.

Which type of force can be reconstructed with the available sensors?

(3) The type of the force which needs to be reconstructed is known, and there are

already some sensors on the structure, e.g. strain gauges or accelerometers. Which

algorithm can reconstruct the force with the available sensors?

Based on the results from the benchmark study in section 5.2.10, an algorithm selection

guidance is extracted and provided in table 5.46 through table 5.48. This guidance can

be used as an assistant for algorithm selection in the cases which are listed above.

Table 5.46. Suggested algorithms for the reconstruction of impact force

Suggested algorithms for the reconstruction of impact force

with only strain gauge No suitable algorithm.

with strain gauge and
accelerometer

The following algorithms can be considered.

• SSNIE L.

• If an estimate of the covariance matrix
of the increment of the forces is
available, the AKF is suitable, too.

• Both the KF-UI and the G-KF-UI are
suitable, and provide similar results.

• Both the SSKF+LSE and the
MSSKF+LSE are suitable. If an
estimate of the covariance matrix of
the forces is available, the
MSSKF+LSE provides better results
than the SSKF+LSE.

with only
accelerometer

The following algorithms can be considered.

• Both the SSKF+LSE and the MSSKF+LSE are
suitable. If an estimate of the covariance matrix
of the forces is available, the MSSKF+LSE
provides better results than the SSKF+LSE.
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Table 5.47. Suggested algorithms for the reconstruction of wind load

Suggested algorithms for the reconstruction of wind load

with only strain gauge The following algorithms can be considered,
but provide only an estimate of the static
part of the wind load.

• PI observer.

• KF+RLSE.

• If an estimate of the covariance matrix
of the increment of the forces is
available, the AKF is suitable.

• Both the SSKF+LSE and the
MSSKF+LSE are suitable. If an
estimate of the covariance matrix of
the forces is available, the
MSSKF+LSE provides better results
than the SSKF+LSE.

with strain gauge and
accelerometer

The following algorithms can be considered.

• SSNIE L.

• If an estimate of the covariance matrix
of the increment of the forces is
available, the AKF is suitable, too.

• Both the KF-UI and the G-KF-UI are
suitable, and provide similar results.

• Both the SSKF+LSE and the
MSSKF+LSE are suitable. If an
estimate of the covariance matrix of
the forces is available, the
MSSKF+LSE provides better results
than the SSKF+LSE.

with only
accelerometer

The following algorithms can be considered, but
provide only an estimate of the dynamic part of the
wind load.

• Both the SSKF+LSE and the MSSKF+LSE are
suitable. If an estimate of the covariance matrix
of the forces is available, the MSSKF+LSE
provides better results than the SSKF+LSE.
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Table 5.48. Suggested algorithms for the reconstruction of quasi-static force

Suggested algorithms for the reconstruction of quasi-static force

with only strain gauge The following algorithms can be considered.

• PI observer.

• KF+RLSE.

• If an estimate of the covariance matrix of the
increment of the forces is available, the AKF is
suitable.

• Both the SSKF+LSE and the MSSKF+LSE are
suitable. If an estimate of the covariance matrix
of the forces is available, the MSSKF+LSE
provides better results than the SSKF+LSE.

with strain gauge and
accelerometer

The following algorithms can be considered.

• SSNIE L.

• If an estimate of the covariance matrix
of the increment of the forces is
available, the AKF is suitable, too.

• Both the KF-UI and the G-KF-UI are
suitable, and provide similar results.

• If an estimate of the covariance matrix
of the forces is available, the
MSSKF+LSE is suitable, too.

with only
accelerometer

No suitable algorithm.
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6. Practical application to the Canton

Tower

6.1. Introduction

The Canton Tower has a height with 600 meters, and is located in a typhoon active

area. A long-term SHM system has been designed and integrated onto this tower (Ni

et al., 2009). These factors make the Canton Tower an ideal test-bed for wind load

reconstruction study. In this chapter, the online force reconstruction methodology in

figure 3.5 is adopted and applied to the Canton Tower. The field measurements which

were recorded during the Typhoon Nanmadol in 2011 and during the Typhoon Kai-tak

in 2012 are analyzed, and the reconstruction results are presented. This study is partly

sponsored by a grant from the Germany/Hong Kong Joint Research Scheme which is

sponsored by the German Academic Exchange Service (DAAD) and the Research Grant

Council (RGC) of Hong Kong (Reference No. G HK035/11).

6.1.1. Canton Tower

The Canton Tower, which was formerly known as Guangzhou New Television Tower

(GNTVT), is a 600 meter tall multi-purpose observation tower. It serves for the functions

of TV and radio transmission, sightseeing, cultural entertainment and offers an orbital

Ferris wheel, a ceremony hall, observatory decks, 4D cinemas, revolving restaurants, sky-

walk, etc. In November 2010, the Canton Tower was responsible for broadcasting the

16th Asian Games which was hosted in the same city, Guangzhou, China. Currently, the

Canton Tower is considered as the landmark of Guangzhou. Figure 6.1 provides a bird’s

eye view of the Canton Tower.

The Canton Tower comprises a 454 meter tall main tower and a 146 meter tall antenna

mast. The whole structure has a tube-in-tube geometry, including a reinforced concrete

inner structure and a steel lattice outer structure. Figure 6.2 describes the tube-in-tube

geometry of the Canton Tower. The reinforced concrete inner structure has an oval shape

and a constant dimension of 14 m x 17 m in plan. The steel lattice outer structure consists

of 24 Concrete-Filled-Tube (CFT) columns, which are uniformly spaced in an oval shape

and inclined in the vertical direction. With a dimension 50 m x 80 at the ground level,

the oval decreases to 20.65 m x 27.5 m at the height of 280 m, and increases to 41 m x 55

m at the top of the outer structure. All 24 CFT columns are interconnected transversely

by steel ring beams and bracings.
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The height of the Canton Tower was originally designed and constructed with a height of

618 meters. For aviation safety reasons, the height of the Canton Tower was reduced to

600 meters in July in 2010 by adjusting the length of the antenna mast. The comparison in

figure 6.3 shows the change of the antenna mast before and after the height adjustment.

After this height adjustment, an orbital Ferris wheel was installed on top of the main

tower.

Figure 6.1. A bird’s eye view of the Canton Tower (source: http://www.cantontower.com/en/)

Connection
girders

Closed
function

areas

Figure 6.2. Tube-in-tube geometry of the Canton Tower: Canton Tower (left); steel lattice
outer structure (middle); reinforced concrete inner structure (right) (Ni et al., 2009)
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Before After

Figure 6.3. Change of the antenna mast before and after the height adjustment

6.1.2. SHM system for the Canton Tower

Together with the attractive design of the Canton Tower, come not only nicknames e.g.

“Slim Waist”but also complex and challenging mechanics. To facilitate the life-cycle mon-

itoring and the assessment of this high-rise slender structure, a long-term SHM system has

been designed and instrumented by The Hong Kong Polytechnic University to the Can-

ton Tower for both in-construction and in-service real-time monitoring (Ni et al., 2009).

Figure 6.4 describes the modules of the SHM system for the Canton Tower. Figure 6.5

illustrates the deployment of the sensors and the sub-stations for the in-construction mon-

itoring. Figure 6.6 illustrates the depolyment of the sensors and the sub-stations for the

in-service monitoring. In figure 6.5 and figure 6.6, each sub-station represents one Data

Acquisition Unit (DAU), and the number inside the paranthesis after the name of each

sensor type indicate the total number of that type of sensors at the corresponding height

level.

module

1 Sensory System

module

2 Data Acquisition and Transmission System

module

3 Data Processing and Control System

module

4 Structural Health Data Management System

module

5 Structural Health Evaluation System

module
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Monitoring and
Control Room

Figure 6.4. Modules of the SHM system for the Canton Tower (Ni et al., 2009)
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Figure 6.5. Deployment of sensors and sub-stations for in-construction monitoring (Ni et al.,
2009)
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Figure 6.6. Deployment of sensors and sub-stations for in-service monitoring (Ni et al., 2009)
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6.1.3. SHM benchmark study for the Canton Tower

Under the auspices of the Asian-Pacific Network of Centers for Research in Smart Struc-

ture Technology (ANCRiSST), an SHM benchmark problem for high-rise structures is

developed by taking the instrumented Canton Tower as a host structure. This SHM

benchmark study aims to provide an open platform to the researchers and practition-

ers in the field of SHM for examining the applicability and reliability of their methods

to a real high-rise structure with the use of field monitoring data. To facilitate the

benchmark study, a benchmark website (http://www.cse.polyu.edu.hk/benchmark) has

been constructed, providing information for different research topics, including modal pa-

rameter identification, model updating, force identification, SHM-oriented optimal sensor

placement and damage detection (Ni et al., 2012).

6.1.4. Organization of this chapter

This chapter is organized as follows. The methodology which applied in the wind load

reconstruction study for the Canton Tower is presented in section 6.2. In section 6.3,

an Operational Modal Analysis (OMA) is performed using the field measurement data

which were recorded during the Typhoon Nanmadol, and the identified modal parameters

are presented. By taking these identified modal parameters as the reference, an available

reduced-order FE model of the Canton Tower is updated. The model updating results are

presented in section 6.4. In section 6.5, an suitable real-time executable state and input

estimation algorithm is selected. With the selected algorithm and the field measurement

data which were recorded during the Typhoon Kai-tak, the wind load on the Canton

Tower is reconstructed. The reconstruction results are provided in section 6.6. Finally, a

summary of this chapter is given in section 6.7.

6.2. Methodology for wind load reconstruction for the

Canton Tower

The methodology which is applied for the reconstruction of the wind load on the Canton

Tower is described in figure 6.7 . This methodology is a practical application of the one

in figure 3.5 to the Canton Tower.
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Figure 6.7. Methodology for the reconstruction of the wind load on the Canton Tower

6.3. Operational modal analysis for the Canton Tower

For the Canton Tower, a 600 meter tall high-rise structure, it is not feasible to apply

an a artificial excitation as in Experimental Modal Analysis (EMA). Operational Modal

Analysis (OMA) is capable of extracting the modal parameters of a structure under oper-

ational conditions with only structural response measurements. In this study, the OMA

is considered to be more suitable for the modal parameter identification for the Canton

Tower. The field measurement data which were recorded during the Typhoon Nanmadol

are used in the OMA. The applied OMA algorithm is the Vector AutoRegressive models

(ARV) method. The principle of the OMA and the ARV method has been briefly reviewed

in section 2.1.5.

6.3.1. Sensor deployment and field measurements

The field measurement data which are used in the OMA are

• twenty-four one-hour field measurement datasets which were recorded during the

Typhoon Nanmadol on 31 August 2011.

These field measurement datasets include information on acceleration, wind speed, and

wind direction. The acceleration were measured by twenty Tokyo Sokushin AS-2000C

uni-axial accelerometers which are installed on the reinforced concrete inner structure of

the Canton Tower. Figure 6.8 and figure 6.9 describe the positions and the measurement
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directions of these accelerometers. In figure 6.8, only the data from the accelerometers

whose channel number is in black are applied in the OMA. Figure 6.10 provides an example

of two of the twenty accelerometers. The wind speed and the wind direction were measured

by one RM Young 05103L anemometer which is installed at a height of 461 meters on the

Canton Tower. Figure 6.11 shows the position of this anemometer. The accelerometers

and the anemometer are sampled at 50 Hz. The 10-minute mean of the measured wind

speed and the measured wind direction are plotted in Figure 6.12. To represent the

distribution of the measured wind speed and the measured wind direction, a rose diagram

is generated and is provided in figure 6.13.

Figure 6.8. Data acquisition system for the accelerometers on the Canton Tower
(http://www.cse.polyu.edu.hk/benchmark)
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# 10, 20

# 01, 03, 05, 07,

11, 13, 15, 17

# 02, 04, 06, 09,

12, 14, 16, 19

# 08, 10

x

y

Figure 6.9. Positions and measurement directions of the accelerometers on the Canton Tower
(http://www.cse.polyu.edu.hk/benchmark)

Figure 6.10. An example of 2 accelerometers installed on the Canton Tower
(http://www.cse.polyu.edu.hk/benchmark)

Anemometer

(a) Position of anemometer (b) Anemometer

Figure 6.11. Anemometer on the Canton Tower (http://www.cse.polyu.edu.hk/benchmark/)
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Figure 6.12. 10-minute mean wind speed and wind direction recorded from 00:07:45 on 31
August 2011 to 00:07:45 on 1 September 2011
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Figure 6.13. Rose diagram of the wind measurements from 00:07:45 on 31 August 2011 to
00:07:45 on 1 September 2011
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6.3.2. Stationarity test

To identify the modal parameters of the Canton Tower, the ARV method is applied. A

brief review of the ARV method has been provided in section 2.1.5. This method assumes

that the field measurements are stationary. So before applying the ARV method, a station-

arity test is performed on the twenty-four one-hour acceleration datasets. This stationarity

test applies a multivariate outlier detection technique based on the Mahalanobis-distance

with the threshold provided by the F-distribution (Rencher, 2002). Only the datasets

which pass the stationarity test are processed by the ARV method.

6.3.3. OMA results

In this study, the ARV method is applied to identify the modal parameters of the Canton

Tower. The ARVmethod is a parametric method. An advantage of the parametric method

is that a stabilization diagram can be constructed, with which the physical modes of the

Canton Tower can be objectively separated from the spurious modes which are caused

by measurement noise or numerical errors. To construct the stabilization diagram, three

criteria are applied, including the percentage frequency difference fdiff , the percentage

damping ratio difference ζdiff , and the Modal Assurance Criterion (MAC). The definition

of these three criteria have been provided in section 2.1.5. In this study, the settings for

these three criteria are listed in table 6.1. With these three criteria, a stabilization dia-

gram is constructed for each of the one-hour acceleration datasets which have passed the

stationarity test in section 6.3.2. As an example, figure 6.14 provides the constructed sta-

bilization diagram for the one-hour dataset which was recorded from 02:07:45 to 03:07:45

on 31 August 2011. Table 6.2 lists the identified natural frequencies and the identified

damping ratios of the first twelve modes. The identified bending mode shapes of the main

tower of the Canton Tower are plotted in figure 6.15 through figure 6.20, where the black

dash line with square represents the reference, and the red solid line with star describes

the scaled mode shape.

Table 6.1. Settings of the criteria in the construction of the stabilization diagram

Criteria Setting Unit

fdiff 1% (-)

ζdiff 10% (-)

MAC 97% (-)
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Figure 6.14. Stabilization diagram for the dataset from 02:07:45 to 03:07:45 on 31 August
2011

Table 6.2. Identified natural frequencies and identified damping ratios of the first 12 modes of
the Canton Tower under Typhoon Nanmadol from 00:07:45 on 31 August 2011 to 00:07:45 on
1 September 2011

Mode Natural frequency
f (Hz)

Damping ratio
ζ (%)

Mode decription

1 0.0919 0.4114 1st short-axis bending of main tower

2 0.1356 1.2857 1st long-axis bending of main tower

3 0.3735 0.3791 -

4 0.4640 0.3466 -

5 0.4989 0.4560 1st torsion of main tower

6 0.5780 0.1568 2nd short-axis bending of main tower

7 0.6017 0.1731 2nd long-axis bending of main tower

8 0.8031 0.2827 3rd short-axis bending of main tower

9 0.9722 0.2648 3rd long-axis bending of main tower

10 1.2132 0.2271 -

11 1.2522 0.2256 2nd torsion of main tower

12 1.2881 0.1310 -
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Figure 6.15. Mode 1: the 1st short-axis bending mode

Figure 6.16. Mode 2: the 1st long-axis bending mode
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Figure 6.17. Mode 6: the 2nd short-axis bending mode

Figure 6.18. Mode 7: the 2nd long-axis bending mode
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Figure 6.19. Mode 8: the 3rd short-axis bending mode

Figure 6.20. Mode 9: the 3rd long-axis bending mode
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6.3.4. Discussion

The benchmark website of the SHM study for the Canton Tower provides the following

data.

• A reduced-order FE model of the Canton Tower;

• Twenty-four one-hour field measurement datasets which were recorded under normal

ambient excitation from 18:00 on 19 January 2010 to 18:00 on 20 January 2010.

With the mass matrix and the stiffness matrix from the reduced-order FE model of the

Canton Tower, the natural frequencies are calculated. Table 6.3 lists the calculated natural

frequencies of the first twelve modes and their corresponding mode descriptions. Niu et al.

(2012) performed an OMA for the Canton Tower using the ARV method and the field

measurement datasets which are listed above. The identified natural frequencies and the

identified damping ratios of the first twelve modes of the Canton Tower are provided in

table 6.4. With the results in table 6.2 through table 6.4, the following differences are

noticed.

(1) Differences in natural frequencies. Figure 6.21 plots the natural frequencies which

are calculated with the reduced-order FE model and the natural frequencies which

are identified using field measurement data. It is noticed that the identified natural

frequency for a certain modes show some obvious difference from the natural fre-

quency which is calculated from the FE model. For example, the identified natural

frequencies are larger than the calculated natural frequencies for the fourth mode

through the twelfth mode.

(2) Differences in damping ratios. Figure 6.22 plots the identified damping ratios us-

ing the field measurement data which were recorded under two different excitation

conditions. For a specific mode, some differences in damping ratios are noticed. For

the second mode, which is the first long-axis bending mode of the main tower, the

damping ratio that is identified with data from the Typhoon Nanmadol is much

larger than the damping ratio that is identified with data from the normal ambient

excitation. Such a damping ratio increase in the along-wind direction is also noticed

in Guo et al. (2012). According to the cross-sectional view of the main tower in

figure 6.9 and the rose diagram in figure 6.13, the dominant wind direction is in

parallel with the long axis (or y axis) of the main tower. A possible contribution to

this relatively larger damping ratio of the second mode could be the aerodynamic

damping.

(3) Differences in mode sequence. The sequence of the identified modes in table 6.4 is

in accordance with that in table 6.3, but not with that in table 6.2. In table 6.2, the

first torsion mode of the main tower appears as the fifth mode, the second short-axis

bending mode of the main tower appears as the sixth mode, and the second torsion
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mode of the main tower appears as the twelfth mode. The sequential positions of

these modes are not in accordance with those in table 6.3.

According to the methodology in figure 6.7, a state-space structural model of the Canton

Tower is needed. This structural model should be capable of representing the dynamics

of the Canton Tower. The differences which are listed above indicate that the available

reduced-order FE model of the Canton Tower should be updated before it is applied to

represent the Canton Tower under similar excitation conditions.

Figure 6.21. Comparison of the natural frequencies

Figure 6.22. Comparision of the damping ratios
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Table 6.3. Calculated natural frequencies of the first 12 modes from the reduced-order FEM

Mode Natural frequency f (Hz) Mode description

1 0.110 1st short-axis bending of main tower

2 0.159 1st long-axis bending of main tower

3 0.347 1st short-axis bending of mast

4 0.368 1st long-axis bending of mast

5 0.399 2nd short-axis bending of main tower

6 0.460 1st torsion of main tower

7 0.485 2nd long-axis bending of main tower

8 0.738 3rd short-axis bending of main tower

9 0.902 3rd long-axis bending of main tower

10 0.997 2nd short-axis bending of mast

11 1.038 2nd long-axis bending of mast

12 1.122 2nd torsion of main tower

Table 6.4. Identified natural frequencies and Identified damping ratios of the 12 modes of the
Canton Tower under normal ambient excitation

Mode Natural frequency
f (Hz)

Damping ratio
ζ (%)

Mode description

1 0.0936 0.68 1st short-axis bending of main tower

2 0.1384 0.39 1st long-axis bending of main tower

3 0.3659 0.34 -

4 0.4238 0.20 -

5 0.4747 0.12 2nd short-axis bending of main tower

6 0.5055 0.17 1st torsion of main tower

7 0.5224 0.19 2nd long-axis bending of main tower

8 0.7953 0.26 3rd short-axis bending of main tower

9 0.9648 0.27 3rd long-axis bending of main tower

10 1.1505 0.13 -

11 1.1909 0.12 -

12 1.2507 0.15 2nd torsion of main tower
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6.4. Model updating for the Canton Tower

The reduced-order FE model, which is available on the benchmark website for the Canton

Tower, was developed when the Canton Tower was with the height of 618 meters. Table 6.5

lists the vertical coordinates of the nodes in the reduced-order FE model. For aviation

safety reasons, the height of the Canton Tower was reduced to 600 meters in July 2010 by

adjusting the length of the antenna mast. After this height adjustment, an orbital Ferris

wheel was installed on top of the main tower. Such changes on the structure may cause

the modal parameters change, and the available reduced-order FE model will not be able

to represent the dynamics of the Canton Tower.

In this section, the available reduced-order FEM is first modified to better represent the

positions of the accelerometers and the current height of the Canton Tower. Then the

modified reduced-order FEM is updated according to the OMA results in table 6.2.

Table 6.5. Vertical coordinates of the nodes in the reduced-order FEM

Node No. z (m) Node No. z (m) Node No. z (m) Node No. z (m)

1 -10.00 13 168.00 25 417.45 37 598.00

2 0.00 14 204.25 26 427.85 38 618.00

3 12.00 15 225.20 27 438.25

4 22.25 16 272.00 28 443.60

5 27.60 17 308.25 29 480.00

6 58.65 18 329.20 30 497.60

7 84.65 19 344.65 31 505.20

8 95.05 20 355.05 32 520.70

9 105.45 21 375.85 33 531.20

10 116.20 22 381.20 34 545.20

11 147.05 23 396.65 35 565.20

12 157.45 24 407.05 36 580.70

6.4.1. Modified reduced-order FE model of the Canton Tower

The available reduced-order FE model of the Canton Tower is modified as below.

(1) The nodes for the main tower in the reduced-order FEM are adjusted to coincide

with the vertical coordinates of the accelerometers.
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(2) The nodes for the antenna mast in the reduced-order FEM are adjusted to reflect

the length adjustment.

After the modifications above, the number of the nodes is reduced from 38 to 36. Table 6.6

lists the vertical coordinates of the nodes of the modified reduced-order FE model. In

figure 6.23 the nodes of the modified reduced-order FE model are plotted. This modified

reduced-order FEM has in total 36 nodes and 35 beam elements, with 27 elements for

the main tower and 8 elements for the antenna mast. Each node has two horizontally

translated DOFs and three rotational DOFs. With the node 1 being constrained, the

modified reduced-order FEM has in total 175 unconstrained DOFs.

Table 6.6. Vertical coordinates of the nodes in the modified reduced-order FEM

Node No. z (m) Node No. z (m) Node No. z (m)

1 -10.00 13 171.10 25 417.45

2 0.00 14 204.25 26 427.85

3 12.00 15 228.50 27 438.25

4 22.25 16 275.30 28 446.80

5 30.63 17 308.25 29 480.00

6 58.65 18 332.15 30 497.60

7 84.65 19 344.65 31 502.00

8 95.05 20 355.05 32 520.70

9 105.45 21 375.85 33 547.20

10 119.30 22 384.24 34 562.70

11 147.05 23 395.65 35 580.00

12 157.45 24 407.05 36 600.00

6.4.2. Model updating method

The method which is applied in this study for updating the modified reduced-order FE

model is inspired by the work in Chung et al. (2012). Two updating parameters αx and αy

are assigned to each element stiffness matrix to represent the bending stiffness changes in

the x direction and in the y direction, respectively. The mass matrix are all kept constant.

For the modified reduced-order FE model of the Canton Tower, in total 35 pairs of αx

and αy need to be updated. Figure 6.24 shows a typical updated element stiffness matrix,

where Ke
U represents the updated element stiffness matrix, and Ki,j denotes the ij-th

element of the initial element stiffness matrix Ke, with 1 ≤ i ≤ 10 and 1 ≤ j ≤ 10.
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Figure 6.23. Modified reduced-order FEM of the Canton Tower
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Figure 6.24. An updated element stiffness matrix with updating parameters

The OMA results in section 6.3.3 are taken as the reference, and the model updating

procedure in section 2.1.6 is adopted. The weighting matrix W r is set as 1× 102I12 and

the regularization parameter λ is set as 1 × 10−1 . The MATLAB function fmincon is

applied to minimize the objective function.

6.4.3. Model updating results

Table 6.7 lists the natural frequencies and the calculated MAC values before and after

the model updating. The natural frequencies which are identified in section 6.3 are taken

as the reference. The values in the parentheses are the absolute values of the differences

from the OMA results in percent. Based on the model updating results in table 6.7, the

following conclusions can be obtained.

(1) After the model updating process, the differences in the natural frequencies for a

specific mode become smaller.



158 Chapter 6. Practical application to the Canton Tower

(2) After the model updating process, the calculated MAC values are closer to 100%.

This indicates that the mode shape vectors which are calculated from the modified

reduced-order FE model are more consistent with the mode shape vectors which are

identified using the field measurement data from the Typhoon Nanmadol. In such

a way, the differences in mode sequence are corrected.

The above conclusions indicate that the modified reduced-order FE model after the model

updating process can better represent the dynamics of the first twelve modes of the Canton

Tower under typhoon events which are similar to the Typhoon Nanmadol.

Table 6.7. Model updating results

Mode Natural frequency f (Hz) MAC value (%)

Reference Before
updating

After
updating

Before
updating

After
updating

1 0.0919 0.1129 (22.83) 0.0918 (0.09) 91.11 96.96

2 0.1356 0.1610 (18.73) 0.1355 (0.08) 90.62 99.12

3 0.3735 0.3670 (1.73) 0.3727 (0.21) 88.92 97.76

4 0.4640 0.4539 (2.18) 0.4647 (0.16) 90.43 97.07

5 0.4989 0.4777 (4.24) 0.4977 (0.23) 8.16 98.39

6 0.5780 0.5822 (0.73) 0.5817 (0.64) 87.38 96.63

7 0.6017 0.5875 (2.37) 0.5985 (0.53) 85.15 97.82

8 0.8031 0.7449 (7.25) 0.8036 (0.06) 82.22 94.01

9 0.9722 0.9220 (5.16) 0.9729 (0.07) 74.14 96.16

10 1.2132 1.0983 (9.47) 1.2096 (0.30) 18.17 95.98

11 1.2522 1.1628 (7.14) 1.2523 (0.01) 1.52 91.82

12 1.2881 1.2481 (3.10) 1.2921 (0.31) 53.60 95.10

Average (7.08) (0.2232) 64.29 96.40

6.5. Algorithm selection

In this practical application, the type of the force which needs to be reconstructed is

wind load. For the reconstruction of wind load, table 5.47 suggests different algorithms

for different cases with different sensor types. The Canton Tower has been instrumented

with an SHM system for in-service monitoring. Table 6.8 lists the sensors which are

deployed on the Canton Tower for in-service monitoring. In this section, the algorithm,
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which is considered to be suitable for the reconstruction of the wind load, is selected with

the help of the sensor information in table 6.8 and the algorithm selection guidance in

table 5.47.

In table 6.8, the sensor types which are considered as potential candidates to be used for

wind load reconstruction are categorized into the following three groups.

• Displacement sensors: GPS and digital video camera.

• Strain sensors: vibrating wire gauge and fiber optic sensor.

• Acceleration sensors: accelerometer.

In this study, only the accelerometers are selected for the reconstruction of the wind load.

The arguments are given below.

In the algorithm selection guidance in table 5.47, the suggested algorithms all require

that the total number of strain gauges should be larger than or equal to the total number

of modes which are considered in the structural model. This requirement applies not

only to strain sensors but also to displacement sensors. In table 6.8, there are in total 4

displacement sensors, including 2 GPS sensors and 2 digital video cameras. The modified

reduced-order FE model is updated by taking the identified modal parameters of the first

12 modes of the Canton Tower as the reference. The constructed structural model in the

modal domain includes the first 12 modes. It can be seen that the total number of the

modes which is considered in the structural model is larger than the total number of the

displacement sensors.

For measuring the strain responses of the Canton Tower, vibrating wire gauges and fiber

optic sensors are applied. The sampling frequency for the vibrating wire gauge is 0.1

Hz. The Nyquist frequency of such a sampling frequency is 0.05 Hz. This is even lower

than the identified natural frequency of the 1st mode of the Canton Tower. The sampling

frequency of the fiber optic sensor is 50 Hz. The Nyquist frequency of such a sampling

frequency is 25 Hz. This is higher than the identified natural frequency of the 12th mode.

However, all the fiber optic sensors are installed on the steel lattice outer structure of the

Canton Tower. Figure 6.25 provides an example of the installed fiber optic sensors. It is

very challenging to identify the relationship between the strain responses at such positions

and the modified reduced-order FE model with acceptable accuracy.

The accelerometers are sampled at 50 Hz, the Nyquist frequency of which is much higher

than the natural frequency of the 12th mode. The positions of the accelerometers coincide

with the nodes in the modified reduced-order FE model. Thus the acceleration responses

at the same positions as the accelerometers can be represented by the acceleration of the

nodes in the modified reduced-order FE model.

Based on the discussion above, only the accelerometers are selected for this wind load

reconstruction study. According to the algorithm selection guidance in table 5.47, both
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the SSKF+LSE and the MSSKF+LSE are suitable for the case with only accelerometers,

and in this case both algorithms are only capable of reconstructing the dynamic part of

the wind load . In this study, the MSSKF+LSE is selected. The covariance matrix of the

wind load is estimated with the help of a simulated wind field.

Table 6.8. Sensors on the Canton Tower for in-service monitoring (Ni et al., 2009)

No. Sensor type No. of
sensors

Sampling
frequency (Hz)

Monitoring items

1 Weather station 1 1 Temperature

Humidity

Air pressure

Rain

2 Anemometer 2 50 Wind speed

Wind direction

3 Tiltmeter 2 50 Inclination of tower

4 GPS 2 10 Displacement

5 Vibrating wire gauge 60 1/10 Strain

6 Thermometer 60 1/60 Temperature

7 Digital video camera 2 59 Displacement

8 Seismograph 1 100 Earthquake motion

9 Corrosion sensor 3 once per year Corrosion

10 Accelerometer 22 50 Acceleration

11 Fiber optic sensor 120 50 Strain

Temperature

Figure 6.25. An example of the fiber optic sensors on the steel lattice outer structure
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6.6. Wind load reconstruction for the Canton Tower

In this study, the wind load during the Typhoon Kai-tak is reconstructed. The field

measurement data which are applied in the study are

• eight one-hour field measurement datasets which were recorded during the Typhoon

Kai-tak from 05:00:00 to 13:00:00 on 17 August 2012.

These field measurement datasets include information on acceleration, wind speed, and

wind direction. The wind speed and the wind direction were measured by one RM Young

05103L anemometer which is installed at a height of 461 meters on the Canton Tower.

Figure 6.26 provides the 10-minute mean of the measured wind speed and the measured

wind direction. The distribution of the measured wind speed and the measured wind

direction is presented in the form of a rose diagram in figure 6.27. By comparing figure 6.27

and figure 6.13, it is noticed that the dominant wind direction during the Typhoon Kai-tak

is roughly in parallel with the dominant wind direction during the Typhoon Nanmadol.

Thus the Typhoon Kai-tak is considered as a similar typhoon event to the Typhoon

Nanmadol, and the modified reduced-order FE model which is updated in section 6.4 is

used to represent the dynamics of the Canton Tower during the Typhoon Kai-tak.
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Figure 6.26. 10-minute mean of the measured wind speed and the measured wind direction
from 05:00:00 to 13:00:00 on 17 August 2012
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Figure 6.27. Rose diagram of the wind measurements from 05:00:00 to 13:00:00 on 17 August
2012

6.6.1. Reconstruction of the wind load

At the height of z meters, the time-varying wind speed u (z, t) can be represented by

u (z, t) = ū (t) + ũ (z, t) , (6.1)

where ū (z) denotes the mean wind speed and ũ (z, t) represents the fluctuating wind

speed. According to Simiu and Scanlan (1996), the time-varying wind load f (z, t) at the

height of z meters can be calculated with

f (z, t) =
1

2
ρµawu

2 (z, t) , (6.2)

where ρ, µ and aw denote the air density, the aerodynamic force coefficient, and the

orthogonal exposed wind area for the considered section, respectively. By substituting

equation (6.1) into equation (6.2), the time-varying wind load f (z, t) can be expressed by

f (z, t) = f̄ (z) + f̃ (z, t) , (6.3)

where f̄ (z) can be calculated with

f̄ (z) =
1

2
ρµaw (z)

{
ū2 (z) + E

[
ũ2 (z, t)

]}
(6.4)

and f̃ (z, t)is represented as

f̃ (z, t) = ρµaw (z) ū (z) ũ (z, t) +
1

2
ρµaw (z)

{
ũ2 (z, t)− E

[
ũ2 (z, t)

]}
. (6.5)
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Table 6.9. Parameter settings for the calculation of the mean wind speeds at different heights

Terrain category Gradient height zg (m) Exponent α Air density ρ (kg/m3)

C 400 0.22 1.225

According to equation (6.3) through equation (6.5), the wind load f (z, t) is composed of

two components, the mean wind load f̄ (z) and the fluctuating wind load f̃ (z, t).

In this study, the mean wind load is calculated with the help of the wind speed measure-

ments and the aerodynamic force coefficients which are identified from a wind tunnel test.

The fluctuating wind load is reconstructed by using the methodology in figure 6.7.

6.6.1.1. Reconstruction of mean wind load

In addition to equation (6.4), the mean wind load can also be calculated with

f̄ (z, t) =
1

2
ρµ̄WTaw (z) ū2 (z) , (6.6)

where µ̄WT denotes the mean aerodynamic force coefficient. In this study, the mean aero-

dynamic force coefficients are identified through the wind tunnel test which is described

in Gu et al. (2006) and Zhou et al. (2010).

According to Simiu and Scanlan (1996), the mean wind speed at a given height follows

the power law

ū (z) = ūg

(
z

zg

)α

, (6.7)

where zg denotes the gradient height and ūg represents the mean wind speed at the

height of zg meters. In this study, the mean wind speed at the height of 461 meters is

calculated with the wind speed measurements. Then the wind speeds at other heights

can be calculated with equation (6.7) and the parameters in table 6.9 where the terrain

catgory, the gradient height zg, and the exponent α are set according to the Building

Structure Design Code of China (GB50009-2001, 2006).

According to table 6.6, the vertical coordinates of the nodes 3 to 36 all have positive

values. This means nodes 3 to 36 are all above the ground, and are under the effect of the

wind load. The orthogonal exposed area aw in equation (6.6) is calculated according to the

dimension of the Canton Tower. With equation (6.6), the mean wind load in x direction,

the mean wind load in y direction, and the mean moment around z direction are calculated

for each element of the updated modified reduced-order FE model. For each element, the

calculated mean wind load is evenly divided and concentrated to the connecting nodes of

the element. Figure 6.28 through figure 6.30 present the reconstructed mean wind load at

the nodes of the modified reduced-order FEM. In table 6.6, the tower section between 200
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meters and 350 meters has sparse nodes. This leads to relative larger orthogonal exposed

area values and in turn causes relative larger mean wind load (moment) in figure 6.28,

figure 6.29, and figure 6.30.

Figure 6.28. Reconstructed mean wind load at each node in x direction

Figure 6.29. Reconstructed mean wind load at each node in y direction
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Figure 6.30. Reconstructed mean wind moment at each node around z direction

6.6.1.2. Reconstruction of the fluctuating wind load

The fluctuating wind load is reconstructed by applying the methodology in figure 6.7.

The modified reduced-order FE model is updated by taking the modal properties, which

have been identified in section 6.3, as the reference. Following the steps in section 2.1.1,

a second-order structural model in the modal domain is constructed, where the first 12

modes of the Canton Tower are included. The matrix Bo, which describes the spatial

distribution of the input forces, are set according the methodology in section 3.6. Accord-

ing to the discussion in section 6.5, the MSSKF+LSE is selected for the reconstruction

of the fluctuating wind load. This algorithm requires that the total number of the ac-

celerometers should be larger than or equal to the total number of the modes which are

included in the structural model. In this study, in total 12 accelerometers are selected

for the reconstruction of the fluctuating wind load. In figure 6.31 the accelerometers

whose channel numbers are in green are selected for the wind load reconstruction. The

accelerometers whose channel numbers are in red are not used for the reconstruction of

the fluctuating wind load but only for the validation purpose. With the sensors being

selected, a state-space structural model of the Canton Tower is constructed. Table 6.10

lists the dimension of this state-space structural model.

With the wind speed measurements which were recorded by an anemometer at the height

of 461 meters on the Canton Tower, a wind velocity field is simulated by using the algo-

rithm in Ding et al. (2006). With the simulated wind velocity, an estimate of the matrix

Qinput is obtained. The matrix Qinput is the covariance matrix of the fluctuating wind

load at different nodes of the updated modified reduced-order FE model. The matrix
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Qmeas, which is the covariance matrix of the measurement noise, is set as 10−8I12.

Wind load is a type of distributed force, and the spatial distribution of the fluctuating

wind load is unknown. In this study, the columns of the force input matrix Bo include

the mode shape vectors of the first 12 modes of the Canton Tower. After applying the

MSSKF+LSE, the fluctuating wind load at node 3 through node 36 are reconstructed.

The boxplots in figure 6.32 through figure 6.34 show the distribution of the reconstructed

fluctuating wind load. For each node, the black dot inside the white circle represents

the median, the left and right edges of the narrow filled blue box indicate the 25th and

the 75th percentiles, and the blue circles denote outliers which are either less than 1.5

interquartile range of the 25th percentile or larger than 1.5 interquartile range of the 75th

percentile.

Figure 6.31. Positions of accelerometers for the reconstruction of the fluctuating wind load
(with green channel number) and positions of accelerometers for the validation of the reconstruc-
tion results (with red channel number)
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Table 6.10. Dimension of the state, the input, and the output of the state-space model of the
Canton Tower

Name Symbol Dimension

State x(t) 24×1

Input d(t) 12×1

Output y (t) 12×1

Figure 6.32. Boxplot of the reconstructed fluctuating wind load at each node in x direction
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Figure 6.33. Boxplot of the reconstructed fluctuating wind load at each node in y direction

Figure 6.34. Boxplot of the reconstructed fluctuating wind moment at each node around z
direction
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6.6.2. Validation of the reconstructed fluctuating wind load

For the laboratory structure in section 5.2, the reconstructed force can be validated by

the force measurements. However, it is not the case for the Canton Tower. There is no

direct measurements of the fluctuating wind load. In this study, the following procedure

is adopted for the validation of the reconstructed fluctuating wind load.

(1) Apply the reconstructed fluctuating wind load to the structural model to reconstruct

the acceleration response of the Canton Tower at the accelerometer channel 7 and

the accelerometer channel 20. The data from these two accelerometer channels are

not applied for the reconstruction of the fluctuating wind load but only for the

validation purpose.

(2) For the accelerometer channel 7 and the accelerometer channel 20, compare the

reconstructed acceleration with the real measurements. If the reconstructed accel-

eration fit the real measurements, the reconstructed fluctuating wind load can be

considered as acceptable.

Figure 6.35 provides a comparison of the reconstructed acceleration and the real mea-

surements for the accelerometer channel 7. Figure 6.36 provides a comparison of the

reconstructed acceleration and the real measurements for the accelerometer channel 20.

In figure 6.35 and figure 6.36, the reconstructed acceleration fit the measured acceleration

in both the time domain and the frequency domain. This actually indirectly demonstrates

that the reconstructed fluctuating wind load is acceptable.
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Figure 6.35. Measured and reconstructed acceleration in accelerometer channel 7
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Figure 6.36. Measured and reconstructed acceleration in accelerometer channel 20
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6.7. Summary

The 600 meter tall Canton Tower is located in a typhoon active area, and has been

instrumented with a long-term SHM system for in-service monitoring. These factors make

this high-rise structure an ideal test bed for the study of online wind load reconstruction.

In this chapter, the online force reconstruction methodology in figure 3.5 is applied to the

Canton Tower for the reconstruction of the wind load. The field measurements from the

following two typhoon events are analyzed in this study.

• Typhoon Nanmadol in 2011.

• Typhoon Kai-tak in 2012.

The two typhoon events above both happened in August and both have the dominant

wind direction in parallel with each other.

With the field measurements from the Typhoon Nanmadol in 2011, an Operational Modal

Analysis (OMA) is performed and the modal properties of the first 12 modes of the Canton

Tower are identified using the ARV method. These modal properties, including natural

frequencies, damping ratios, and mode shapes, are used to construct the second-order

structural model which can represent represent the dynamics of the Canton Tower under

the excitation of the Typhoon Nanmadol.

On the benchmark website for the Canton Tower, a reduced-order FE model of the Canton

Tower is provided. In this study, this reduced-order FEM is first modified to reflect the

height adjustment of the Canton Tower, and then is updated by taking the identified

modal properties as the reference.

The SHM system for the Canton Tower includes different types of sensors. Considering

different factors, including sensor type, sensor number, sensor position, sampling fre-

quency, only the accelerometers on the main tower are selected to be used in the wind

load reconstruction study. According to the algorithm selection guidance in table 5.47,

both the SSKF+LSE and the MSSKF+LSE are potential condidates to be used for the

reconstruction of the wind load. In this study, a wind velocity field is simulated with

the available wind speed measurements. With the simulated wind velocity at different

heights, an estimate of the covariance matrix of the wind load is obtained. According to

the results from the benchmark study, the MSSKF+LSE, with an estimate of the covari-

ance matrix of the force, can provide better reconstruction results than the SSKF+LSE.

Thus, the MSSKF+LSE is selected for this wind load reconstruction study.

The wind load is composed of two components, the mean wind load and the fluctuating

wind load. According to the results in section 5.2.9, the MSSKF+LSE is only capable of

reconstructing the fluctuating wind load, if only accelerometers are used. In this study,

the wind load during the Typhoon Kai-tak is reconstructed and the reconstruction results

are presented. The mean wind load is calculated with the mean wind speeds and the mean
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aerodynamic force coefficients which are identified from a wind tunnel test. The fluctu-

ating wind load is reconstructed with the MSSKF+LSE algorithm and the acceleration

measurements which were recorded during the Typhoon Kai-tak.

To validate the reconstruction results, the reconstructed fluctuating wind load is applied

back onto the structural model, and the acceleration responses of the Canton Tower are

reconstructed. The validation strategy is to compare the reconstructed acceleration re-

sponses with the real acceleration measurements which are not applied for the wind load

reconstruction. In this study, two accelerometer channels, i.e. channel 7 and channel 20,

are selected for the validation purpose. The acceleration measurements from these two

accelerometers are not applied in the reconstruction of the fluctuating wind load. The

reconstructed acceleration responses for these two accelerometer channels are compared

with the real acceleration measurements in the form of time history and power spectral

density. The comparison results show the reconstructed acceleration data fit the real accel-

eration measurements with acceptable accuracy. Based on this comparison results, it can

be concluded that the reconstruction results for the fluctuating wind load is acceptable.
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7. Summary and outlook

The knowledge of the external load acting on a structure plays a very important role in

Structural Heath Monitoring (SHM) and in Damage Prognosis (DP). In some practical

cases, a direct measurement of the external load is physically or economically not feasible.

For such practical cases, a possible solution is to get the information of the external load

by reconstructing it from the measured structural responses, e.g. displacement, strain,

velocity, acceleration, etc. This process is defined as force reconstruction, and it is a type

of inverse problem which tends to be ill-posed in the sense that the measurement noise and

the modelling error can be amplified and in turn cause large deviations in the reconstructed

force. Online force reconstruction is the research topic which studies the methods which

can relax the ill-posedness in the force reconstruction process and can realize the force

reconstruction in real-time. This thesis focuses on the online force reconstruction. A

summary of the work in this thesis is provided in section 7.1. In section 7.2, some open

topics are described. From the author’s point of view, these open topics can be considered

as the extension of the work in this thesis.

7.1. Summary

Online force reconstruction needs to solve the following two problems.

(1) How to relax the ill-posedness in the process of force reconstruction?

(2) How to realize force reconstruction in real-time?

To solve the two problems above, this thesis applies a methodology which needs a real-

time executable state and input estimation algorithm. This algorithm fulfills the following

three requirements.

(a) The system input (i.e. the excitation force) and the system states (i.e. displacement

vector in the modal coordinates and its first derivative) should be able to be inferred

from the system output (i.e. structural response measurements).

(b) The state estimator and input estimator should be stable.

(c) The estimation error of the excitation force should converge ideally to zero.

By fulfilling the three requirements above, the ill-posedness in the process of force recon-

struction can be relaxed. Meanwhile, the “real-time executable” ability of the algorithm

makes the force reconstruction “online”.

The methodology for online force reconstruction is composed of two stages, an offline

stage and an online stage. In the offline stage, a state-space model of the structure is
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constructed. If it is possible to apply an artificial excitation force on the structure, the

modal properties (i.e. natural frequencies, damping ratios, and mode shapes) of the struc-

ture are identified using the Experimental Modal Analysis (EMA) technique. In case it is

difficult or not possible to apply an artificial excitation force on the structure, the modal

properties of the structure can be identified with the help of the Operational Modal Anal-

ysis (OMA) technique. In this case, a Finite Element Model (FEM) of the structure is

needed to correctly scale the identified mode shapes. Once the modal properties of the

structure are available, a state-space structural model in the modal domain can be con-

structed. In the online stage, a real-time executable state and input estimation algorithm

is applied to provide an estimate of the force. The ill-posedness in the process of force re-

construction is relaxed through the convergence of the force estimate error. Together with

the reconstructed force, this methodology is also capable of reconstructing the structural

response.

Besides the algorithms which have been proposed or applied in earlier online force re-

construction studies, there are also some real-time executable state and input estimation

algorithms which were proposed for applications in other fields, e.g. inverse heat con-

duction, fault detection, robot control, etc. All these available algorithms are potential

candidates to be the algorithm for online force reconstruction. As theoretical foundations

for the discussion in this thesis, a brief review of these available algorithms is given in the

beginning of this thesis.

To be sure that the applied algorithm is theoretically suitable for online force reconstruc-

tion, the following modifications to some of the available algorithms are proposed in this

thesis.

• The structural models are often linear. Considering this, the Simultaneous State and

Input Estimation for a class of Nonlinear systems (SS&IE N), which was proposed

in Ha and Trinh (2004), is modified to be suitable for linear systems. To differen-

tiate with the SS&IE N, this modified algorithm is named as SS&IE L , short for

Simultaneous State and Input Estimation for Linear systems.

• The filter equations in the KF-UI, which was proposed in Pan et al. (2011), have been

proven to be equivalent with the filter equations of the RTSF, which was proposed

in Gillijns and De Moor (2007). The necessary and sufficient conditions of the KF-

UI algorithm is updated. The KF-UI algorithm assumes that the process noise and

the measurement noise are uncorrelated, and requires that acceleration response

has to be considered in the output equation of the state-space structural model.

However, it is proved that the consideration of acceleration response indicates that

the process noise and the measurement noise are correlated. This contradicts with

the assumption of the KF-UI. In this thesis, the KF-UI is generalized so that it is

compatible with the correlation of the process noise and the measurement noise.

This generalized KF-UI is named as G-KF-UI.
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• Hwang et al. (2009a) proposed a Steady-State Kalman Filter with a Least-Squares

Estimator (SSKF+LSE) for the estimation of modal loads. In the SSKF+LSE,

the covariance matrix of the forces is assumed to be an identity matrix. Such a

setting means the forces all have the same variance and are uncorrelated. In some

practical case, e.g. wind load, it is not the case. In this thesis, it is suggested, if

possible, to consider an estimate of the covariance of the forces. To differentiate

with the SSKF+LSE, this proposed modification is named as MSSKF+LSE, short

for modified SSKF+LSE.

In case there is a practical need for online force reconstruction, it is reasonable to raise

the following questions.

(i) Which algorithms are suitable for the reconstruction of the force?

(ii) If the structure under investigation has already been instrumented with some sensors

for some other monitoring purposes, can the force be reconstructed with the available

sensors?

To answer the questions above, a benchmark study is performed. A two-story laboratory

structure is taken as the benchmark structure, on which two types of widely used sensors

are installed, including strain gauge and accelerometer. Three different types of input

forces are considered, including quasi-static force, impact force, and wind load generated

by an electric fan. The above illustrated methodology is applied. In the offline stage,

the structural model of the benchmark structure is identified with the help of the EMA

technique. In the online stage, in total eight different algorithms are tested. The force

reconstruction results are validated by real force measurements. Based on the results from

the benchmark study, a guidance for algorithm selection is extracted and presented.

As an example of practical application, the above illustrated online force reconstruction

methodology is applied to the 600 meter tall Canton Tower for the reconstruction of wind

load. The Canton Tower is located in a typhoon active area, and has been instrumented

with a long-term SHM system for in-service monitoring. These two factors make this

high-rise structure an ideal test bed. The field measurements from the following two

typhoon events are analyzed.

• Typhoon Nanmadol in 2011.

• Typhoon Kai-tak in 2012.

In the offline stage, the structural model of the Canton Tower is constructed with the help

of the OMA technique and the available reduced-order FEM of the Canton Tower. The

Typhoon Nanmadol and the Typhoon Kai-tak happened both in August and have the

dominant wind direction in parallel with each other. Thus it is assumed that the modal

properties which are identified using field measurements from the Typhoon Nanmadol can

also be used to represent the dynamics of the Canton Tower under the excitation of the

Typhoon Kai-tak. With the field measurements from the Typhoon Nanmadol in 2011,
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the modal properties of the Canton Tower are identified using the ARV method. The

reduced-order FEM of the Canton Tower is first modified to reflect the height adjustment

of the Canton Tower, and then is updated by taking the identified modal properties as

the reference. In the SHM system for the Canton Tower, different types of sensors have

been applied. Through an evaluation of these available sensors from different aspects,

e.g. sensor type, sensor number, sensor position, sampling frequency, etc., only the ac-

celerometers on the main tower are selected for the reconstruction of the wind load. With

the help of the proposed guidance for algorithm selection, the MSSKF+LSE is selected

for the use in the online stage. In this study, the covariance matrix of the wind load is

estimated with the help of a simulated wind velocity field. The wind load is composed of

two components, the mean wind load and the fluctuating wind load. In this study, the

field measurement which were recorded during the Typhoon Kai-kai are applied, and the

wind load reconstruction results are presented. The mean wind load is calculated with the

mean wind speeds and the mean aerodynamic force coefficients which are identified from

a wind tunnel test. The fluctuating wind load is reconstructed with the MSSKF+LSE

algorithm and the acceleration measurements which were recorded during the Typhoon

Kai-tak. Different from the case in the benchmark study, there is no direct measurement

of the wind load. So it is not possible to compare the reconstructed wind load with real

wind load measurements. To validate the reconstruction results, the reconstructed fluctu-

ating wind load is applied back to the structural model, and the acceleration responses of

the Canton Tower are reconstructed. The validation strategy is to select some acceleration

channels which are not applied for the wind load reconstruction, and compare the recon-

structed acceleration responses with the real acceleration measurements. The comparison

results show that the reconstructed acceleration data fit the real acceleration measure-

ments with acceptable accuracy. Based on this comparison results, it can be concluded

that the reconstruction results for the fluctuating wind load is acceptable.

7.2. Outlook

It is already known that the modal properties of a structure is affected by environmental

conditions, e.g. Niu et al. (2012) noticed that the natural frequencies of the Canton Tower

changes as the temperature changes. Furthremore, the geometry of some structures is not

fixed but changes with time, e.g. wind turbines. To make the methodology for online

force reconstruction more robust, a model bank can be constructed instead of a single

model in the offline stage of the methodology. Each structural model in the model bank

corresponds to a specific Environmental and Operational Condition (EOC). According to

the real measurements of the EOC in the online stage, the suitable structural model can

be selected for online force reconstruction. Figure 7.1 provides the block diagram of this

extended methodology. This methodology has been applied in a simulation study for the
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Figure 7.1. Block diagram of the methodology for online force reconstruction with EOC con-
sideration

reconstruction of wind load on a rotating wind turbine (Ginsberg et al., 2013).

The knowledge of the history of external load on a structure allows the update of earlier

lifetime prediction of the structure (Fritzen et al., 2013). So another interesting topic is

to combine online force reconstruction with the prediction of the remaining service life of

the structure. This is also in accordance with the block diagram in figure 1.1
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A. Derivation of the SS&IE L

The proposed SS&IE L method is based on an UIO and can realize simultaneous state

and input estimation for linear systems. The derivation of the SS&IE L is based on the

work in Ha and Trinh (2004).

Consider the system which is described by

ẋ(t) = Acx(t) +Gcd(t) (A.1)

and

y(t) = Ccx(t) +Hcd(t), (A.2)

where x(t) ∈ R
n represents the state; d(t) ∈ R

m denotes the unknown input; y(t) ∈ R
p

is the output; and Ac, Gc, Cc and Hc are system matrices with appropriate dimensions.

Introduce an augmented state xaug (t) as

xaug (t) =



x (t)

d (t)


 . (A.3)

The system in equations (A.1) and (A.2) can be transformed to

Essieẋaug (t) =M ssiexaug (t) (A.4)

and

y (t) =Hssiexaug (t) , (A.5)

where matrices Essie, M ssie and Hssie are defined as

Essie =

[
In 0 n×m

]
, (A.6)

M ssie =

[
Ac Gc

]
, (A.7)

and

Hssie =

[
Cc Hc

]
. (A.8)

The SS&IE L has the form

ξ̇aug (t) =N ssieLξaug (t) +LssieLy (t) (A.9)
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and

x̂aug (t) = ξaug (t) +QssieLy (t) , (A.10)

where x̂aug (t) represents the estimate of xaug (t), and N ssieL, LssieL and QssieL are the

matrices which need to be determined.

Introduce the notations

SssieL =



Essie

Hssie


 , (A.11)

J ssieL = In+mS
+
ssieL



In

0


 , (A.12)

ΦssieL = J ssieLM ssie, (A.13)

GssieL =
(
In+p − SssieLS

+
ssieL

)


In

0


 , (A.14)

Ψ ssieL = GssieLM ssie, (A.15)

V ssieL = In+mS
+
ssieL




0

Im


 , (A.16)

and

KssieL =
(
In+p − SssieLS

+
ssieL

)



0

Ip


 , (A.17)

where S+
ssieL represents the left inverse of SssieL.

Theorem. Define x̃aug (t) as

x̃aug (t) = xaug (t)− x̂aug (t) . (A.18)

The dynamics of x̃aug (t)can be described by

˙̃xaug (t) =N ssieLx̃aug (t) , (A.19)

where N ssieL is determined by

N ssieL = ΦssieL −

[
ZssieL F ssieL

]



−Ψ ssieL

Hssie


 . (A.20)
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The eigenvalues of N ssieL can be arbitrarily set, if the following sufficient conditions are

fulfilled.

(1) Matrix Hssie has full column rank.

(2) Matrix pair (ΦssieL,




−Ψ ssieL

Hssie


) is observable.

Proof of the Theorem

Introduce the following lemma.

Lemma 1. The dynamics of x̃aug (t)can be described by equation (A.19), if the following

conditions hold.

Condition 1: T ssieLEssie +QssieLHssie = I.

Condition 2:




N ssieL = T ssieLM ssie − F ssieLHssie

F ssieL = LssieL −N ssieLQssieL

.

Proof of Lemma 1

Substituting equations (A.5) and (A.10) into equation (A.18) leads to

x̃aug (t) = (I −QssieLHssie)xaug (t)− ξaug (t) . (A.21)

With Condition 1, equation (A.21) can be transformed to

x̃aug (t) = T ssieLEssiexaug (t)− ξaug (t) . (A.22)

Taking the first derivative on both sides of equation (A.22) leads to

˙̃xaug (t) = T ssieLEssieẋaug (t)− ξ̇aug (t) . (A.23)

Substituting equations (A.4), (A.9) and (A.5) into equation (A.23) leads to

˙̃xaug (t) = T ssieLM ssiexaug (t)−N ssieLx̂aug (t)− (LssieL −N ssieLQssieL)Hssiexaug (t) .

(A.24)

With Condition 2, equation (A.24) can be transformed to equation (A.19). This finishes

the proof of Lemma 1.

Lemma 2. If matrix Hc has full column rank, Condition 1 of Lemma 1 is always

satisfied, and matrices T ssieL and QssieL are given by

T ssieL = J ssieL +ZssieLGssieL (A.25)
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and

QssieL = V ssieL +ZssieLKssieL, (A.26)

where ZssieL is an arbitrary matrix.

Proof of Lemma 2

With equation (A.11), Condition 1 of Lemma 1 can transformed to

[
T ssieL QssieL

]
SssieL = I. (A.27)

The necessary and sufficient condition for equation (A.27) to have a solution to matrices

T ssieL and QssieL is that SssieL has full column rank.

Substituting equations (A.6) and (A.8) into equation (A.11) leads to

SssieL =



In 0

Cc Hc


 , (A.28)

which indicates that the condition

rank (SssieL) = n+ rank (Hc) (A.29)

holds.

If Hc has full colum rank, SssieL will have full column rank. The solution to T ssieL and

QssieL are given by

T ssieL =
(
S+

ssieL +ZssieL

(
I − SssieLS

+
ssieL

))


In

0


 (A.30)

and

QssieL =
(
S+

ssieL +ZssieL

(
I − SssieLS

+
ssieL

))



0

Im


 . (A.31)

Substituting equations (A.12), (A.14), (A.16) and (A.17) into equations (A.30) and (A.31)

leads to equations (A.25) and (A.26). This finishes the proof of Lemma 2.

Lemma 3. If Matrix pair (ΦssieL,




−Ψ ssieL

Hssie


) is observable, the first equation in

Conditon 2 of Lemma 1 holds and the eigenvalues of N ssieL can be arbitrarily set.

Proof of Lemma 3
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Substituting equation (A.25) into the first equation of Conditon 2 of Lemma 1 leads to

N ssieL = J ssieLM ssie +ZssieLGssieLM ssieL − F ssieLHssie. (A.32)

Substituting equations (A.13) and (A.15) into equaiton (A.32) leads to the first equation

in Conditon 2 of Lemma 1. This finishes the proof of Lemma 3.

This finishes the proof of Theorem.
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B. Proof of the equivalence of filter

equations of the KF-UI and the RTSF

Within this section, the matrix inversion formula

(A1 +A2A3A4)
−1 = A−1

1 −A−1
1 A2

(
A−1

3 +A4A
−1
1 A2

)−1
A4A

−1
1 (B.1)

is used, where A1, A2, A3, and A4 are matrices.

By comparing the filter equations of the KF-UI in section 2.6.5 and the filter equations in

the RTSF in section 2.6.4, it can be concluded that the equivalence of the filter equations

of the KF-UI and the RTSF can be proved with the following 3 theorems.

Theorem 1. Introduce

R̃kfui,k ≡ R
−1
k (I −CkKkfui,k) (B.2)

and

R̃rtsf,k ≡ CkP
x
k|k−1C

T
k +Rk. (B.3)

Then the condition R̃kfui,k = R̃rtsf,k holds.

Proof of Theorem 1.

DefineKk which corresponds toKkfui,k in KF-UI orKrtsf,k in RTSF. For both the KF-UI

and the RTSF, Kk is determined by an equation with the form

Kk = P k|k−1C
T
k

(
CkP

x
k|k−1C

T
k +Rk

)−1
. (B.4)

Substituting equation (B.4) into the right side of equation (B.2) leads to

R̃kfui,k = R
−1
k −R−1

k CkP
x
k|k−1C

T
k

(
CkP

x
k|k−1C

T
k +Rk

)−1
. (B.5)

By applying the matrix inversion formula in equation (B.1), equation (B.3) can be trans-

formed to

R̃rtsf,k = R
−1
k −R−1

k CkP k|k−1C
T
k

[
R−1

k −
(
CkP

x
k|k−1C

T
k +Rk

)−1
CkP

x
k|k−1C

T
kR

−1
k

]
.

(B.6)

Lemma 1. If B1 and B2 are non-singular square matrices, then the condition

(
B−1

1 +B2

)−1
= B1 −

(
B−1

1 +B2

)−1
B2B1. (B.7)

holds.
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Proof of Lemma 1.

By applying the matrix inversion formula in equation (B.1), the left side of equation (B.7)

can be transformed to

(
B−1

1 +B2

)−1
=

[
I −B1

(
B−1

2 +B1

)−1
]
B1. (B.8)

If B1 and B2 are non-singular square matrices, the equation

(
B−1

2 B
−1
1 +B1B

−1
1

)−1
=

(
B−1

2 B
−1
1 +B−1

2 B2

)−1
(B.9)

can be obtained.

With the property of matrix inverse, equation (B.9) can be transformed to

B1

(
B−1

2 +B1

)−1
=

(
B−1

1 +B2

)−1
B2. (B.10)

Substituting equation (B.10) into equation (B.8), the right side of equation (B.7) can be

obtained. This finishes the proof of Lemma 1.

By applying equation (B.7) to the right side of equation (B.5) and the right side of

equation B.6, the equation R̃kfui,k = R̃rtsf,k can be obtained. This finishes the proof of

Theorem 1.

Theorem 2. Introduce

P x
kfui,k|k = (I +Kkfui,kHkSkH

T
kR

−1
k Ck)(I −Kkfui,kCk)P

x
k|k−1 (B.11)

and

P x
rtsf,k|k = P

x
k|k−1 −Krtsf,k

(
R̃k −HkP

d
kH

T
k

)
KT

rtsf,k. (B.12)

Then the equation P x
kfui,k|k = P

x
rtsf,k|k holds.

Proof of Theorem 2.

With equation (2.187) and equation (B.2), the right side of equation (B.11) can be trans-

formed to

P x
kfui,k|k = P

x
k|k−1−Kkfui,k

[
Ck −Hk

[
HT

k R̃kfui,kHk

]−1

HT
k R̃kfui,kCk

]
P x

k|k−1. (B.13)

With equation (2.179) and equation (B.3), the right side of equation B.12 can be trans-

formed to

P x
rtsf,k|k = P

x
k|k−1 −Krtsf,k

[
Ck −Hk

[
HT

k R̃rtsf,kHk

]−1

HT
k R̃rtsf,kCk

]
P x

k|k−1. (B.14)

With Theorem 1, the equivalence of P x
kfui,k|k and P x

rtsf,k|k can be proved. This finishes
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the proof of Theorem 2.

Theorem 3. In KF-UI, the cross-covariance of x̃k|k and d̃ is determined by

P xd
kfui,k = −P x

k|k−1C
T
k

(
CkP

x
k|k−1C

T
k +Rk

)−1
HkSk. (B.15)

Proof of Theorem 3.

Following the derivation steps 15, 25, A15 and A17 in Pan et al. (2009), equation (B.15)

can be obtained. This finishes the proof of Theorem 3.
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