
Computergraphik und
Multimediasysteme

EFFICIENT RENDERING AND SIMULATION OF
FLUID TRANSPORT AND PHASE TRANSITIONS

IN SPH-BASED FLUIDS

DISSERTATION
zur Erlangung des Grades eines

Doktors der Ingenieurswissenschaften (Dr.-Ing.)

vorgelegt von
Dipl.-Inf. Hendrik Hochstetter

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät
der Universität Siegen

Siegen 2018

Betreuer und erster Gutachter
Prof. Dr. Andreas Kolb

Universität Siegen

Zweiter Gutachter
Prof. Dr. Rüdiger Westermann

Technische Universität München

Tag der mündlichen Prüfung
22. Mai 2019

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

0

Abstract

PParticle based fluid simulation using the smoothed particle hydrodynam-
ics (SPH) method has gained much attention in recent years. Due to

its flexible discretization, inherent mass preservation and its ability to stably
simulate free surface flows and complex interactions with boundaries, SPH
has found its way into many fields of research and application. While many
phenomena including the transport of substances such as salt or dye, and
melting and solidification can already be described in SPH, interactions with
the air phase are commonly omitted. Typically, SPH liquids are rendered only
in terms of their surface. However, with the growing complexity of simulations
there arises a need for complementary rendering and visualization techniques
that take transport of substances in the fluid’s bulk into account. The goal of
this work is to improve fluid animation of surface dynamics and the rendering
and visualization of fluid transport.

First, a simulation of evaporation and condensation of SPH based fluids
is introduced. Therefore, the air phase is simulated on a coarse grid and ex-
changes mass with the particle based liquid phase. Condensation only takes
place on surfaces of rigid objects and is realized using textures into which mass
can be condensed and from which particles can be generated. In order to
achieve high visual detail of condensed liquids at surfaces, an implicit surface
model is developed that allows to render moving liquid droplets at sub-particle
detail including dynamic contact angles.

Second, an efficient adaptive volume ray casting of SPH-based scalar fields
is developed. In order to achieve fast spatial access to particle data, particles
are mapped to cells of a view-aligned perspective grid. By applying a sampling
error analysis to the volume rendering equation inside of each grid cell, the
sampling rate can locally be adjusted according to a user-defined screen space
error tolerance yielding substantial speedups without sacrificing image quality.

Third, this work presents a vector field visualization of advective-diffusive
flows of scalar quantities. Therefore, the advective, diffusive and total flow are
each decomposed into a scalar quantity and a velocity component of transport.
By introducing the novel visual metaphor of stream feathers, all flow compo-
nents can be simultaneously visualized allowing for an intuitive insight into
complex flow scenarios.

0

Zusammenfassung

PPartikelbasierte Flüssigkeitssimulation mit der Smoothed Particle Hydrody-
namics (SPH) Methode hat in den letzten Jahren große Aufmerksamkeit

erfahren. Aufgrund ihrer flexiblen Diskretisierung, ihrer inhärenten Masseer-
haltung und ihrer Stärke, Strömungen an freien Oberflächen und komplexe
Fluid-Struktur-Kopplung stabil zu simulieren, hat die SPH-Methode Einzug
in viele Forschungs- und Anwendungsbereiche gehalten. Während viele Phä-
nomene wie der Transport von Substanzen wie Salz oder Farbstoff und das
Schmelzen und Erstarren bereits in SPH umgesetzt werden, werden Wech-
selwirkungen mit der umgebenden Luftphase im Allgemeinen vernachlässigt.
Üblicherweise werden nur Oberflächenrenderings von SPH-basierten Flüs-
sigkeiten zur Darstellung verwendet. Mit der wachsenden Komplexität von
Simulationen geht allerdings auch der Bedarf an entsprechenden Techniken
des Renderings und der Visualisierung einher, die auch den Transport von
Substanzen im Inneren des Fluids miteinbeziehen. Das Ziel dieser Arbeit ist es,
sowohl die Fluidanimation von Oberflächenprozessen als auch das Rendering
und die Visualisierung von Fluidtransportphänomenen weiterzuentwickeln.

Zuerst wird eine Simulation der Verdunstung und Kondensation SPH-basier-
ter Flüssigkeiten vorgestellt. Dazu wird die Luftphase auf einem groben Gitter
simuliert, über das ein Masseaustausch mit der partikelbasierten Flüssigkeits-
phase erfolgt. Kondensation findet ausschließlich an Oberflächen von Festkör-
pern statt und wird mittels Texturen realisiert, in die Masse kondensieren kann
und von der Partikel erzeugt werden können. Um kondensierte Flüssigkeit in
hoher visueller Auflösung zu erreichen, wird ein implizites Oberflächenmodell
entwickelt, das es ermöglicht, sich bewegende Partikel in Subpartikelauflösung
mit dynamischen Kontaktwinkeln darzustellen.

Zweitens wird ein effizientes adaptives Volumen-Raycasting für SPH-basierte
Skalarfelder entwickelt. Um dabei schnellen räumlichen Zugriff auf Partikel-
daten zu erhalten, werden Partikel auf Zellen eines perspektivischen Gitters
abgebildet, das mit dem Sichtfrustum ausgerichtet ist. Durch eine Analyse des
Samplingfehlers der Volumenrenderinggleichung innerhalb jeder Gitterzelle
kann die Samplingrate lokal an eine benutzerdefinierte Bildfehlertoleranz an-
gepasst werden. Dadurch lässt sich eine große Beschleunigung erreichen, ohne
die Bildqualität zu beeinträchtigen.

Drittens wird in dieser Arbeit eine Vektorfeldvisualisierung von advektiv-
diffusiven Flüssen von skalaren Größen vorgestellt. Dazu werden der advektive,
der diffusive und der totale Fluss jeweils in eine skalare und eine Geschwindig-
keitskomponente des Transports zerlegt. Mit Hilfe der neuen graphischen Me-
tapher der Stream Feathers können alle Komponenten von Flüssen gleichzeitig
dargestellt werden, was einen intuitiven Zugang zu komplexen Flussszenarien
erlaubt.

0

Acknowledgments

FFirst of all, I would like to thank my supervisor Prof. Dr. Andreas Kolb for
giving me the opportunity to do research in the highly exciting field of

SPH-based fluids, for his steady support and working late into the night before
deadlines. I am also very thankful that Prof. Dr. Rüdiger Westermann from the
Technical University of Munich agreed to read and review this thesis.

During my research in Siegen, I was surrounded by a group of highly competent
and friendly colleagues. It has been a great pleasure working with them.

I am deeply grateful to Dr. Jens Orthmann for co-authoring two great papers
and commenting on large parts of this thesis. If it weren’t for Jens’ support and
his contagious enthusiasm, I probably would have overlooked much of the
beauty and joy of doing research in SPH.

I am very thankful to Markus Kluge and Dr. Martin Pätzold who helped produc-
ing two videos.

Special thanks go to Ulrich Schipper for his steady technical support even on
vacation.

I am very grateful to Willi Gräfrath for his assistance in all administrative tasks,
regular proofreading and for turning videos into something special by lending
them his voice.

Last but not least, I want to express my deep gratitude to my girlfriend, parents,
family, and friends for their encouragement and support.

-2

Contents

Notations xiii

List of Figures xviii

List of Tables xix

List of Algorithms xxi

1 Introduction 1

1.1 Motivation . 2

1.2 Methodology . 3

1.3 Challenges . 4

1.4 Contributions . 6

1.5 Overview . 7

2 Foundations 9

2.1 Theoretical Background of Fluid Transport 10

2.1.1 Conservation of Momentum 10

2.1.2 Eulerian vs. Lagrangian Point of View 11

2.1.3 Concentration Transport 12

2.1.4 Heat Transport . 12

2.2 Overview of Fluid Simulation Approaches 13

2.2.1 Mesh-based Approaches . 14

2.2.2 Particle-based Approaches 15

2.2.3 Hybrid Approaches . 16

2.2.4 Comparison Between Different Approaches 17

2.3 Time Integration . 18

2.4 Rendering and Visualization . 19

2.4.1 Surface Rendering . 19

2.4.2 Volume Rendering . 20

2.4.3 Vector Field Visualization 22

ix

x Contents

3 SPH-based Simulation of Fluid Transport 25

3.1 SPH Interpolation and Kernel Functions 26

3.1.1 Derivatives in SPH . 28

3.1.2 Calculating the Fluid Density and Volume 29

3.1.3 Corrected SPH Interpolation 29

3.2 Discretizing Fluid Transport in SPH 30

3.2.1 Non-pressure Accelerations 31

3.2.2 Pressure Acceleration and Incompressibility 33

3.2.3 Transport of Concentrations and Heat 34

3.3 Adaptive Simulation . 35

3.4 Efficient and Parallel Implementation 36

4 Simulation of Evaporation and Condensation 39

4.1 Foundations and Prior Work . 40

4.1.1 Equations of Fluid Flow . 41

4.1.2 Evaporation and Condensation 42

4.2 Algorithm Overview . 42

4.2.1 Particle Simulation . 43

4.2.2 Grid Simulation . 44

4.2.3 Texture-based Rigid Surface Representation 45

4.2.4 Neighborhood Search . 45

4.3 Heat Transfer . 45

4.3.1 Heat Transfer Between Grid and Particles 46

4.3.2 Heat Transfer to Texture . 46

4.4 Evaporation and Condensation . 47

4.4.1 Modeling Evaporation and Condensation 47

4.4.2 Texel Evaporation and Condensation 48

4.4.3 Evaporation and Condensation of Particles 48

4.4.4 Dynamic Particle Adjustment 49

4.5 Surface Rendering . 50

4.6 Results . 53

4.7 Conclusions . 57

5 Adaptive Volume Ray Casting 59

5.1 Foundations and Prior Work . 61

5.1.1 Adaptive Volume Rendering 61

5.1.2 Interval Arithmetic . 62

Notations xi

5.2 Proposed Adaptive Ray Casting Pipeline 63

5.3 Sampling Error Analysis Framework 65

5.3.1 Lateral Quantity and Sample Bounds 66

5.3.2 Cell Bounds . 68

5.3.3 Screen Space Error Analysis 69

5.3.4 Greedy Optimization of Sampling Levels 70

5.4 Analysis and Performance Optimizations 70

5.4.1 Relaxed Error Estimation 71

5.4.2 Lateral Adaptive Sampling Using Super-Pixels 72

5.4.3 Combined Greedy Optimization 73

5.5 Implementation Details . 73

5.5.1 Particle Access via Perspective Grids 73

5.5.2 Cell Merging . 74

5.5.3 Adaptive Ray Casting . 75

5.6 Results and Discussion . 77

5.7 Conclusions . 82

6 Visualization of Advective-Diffusive Flows 83

6.1 Foundations and Prior Work . 85

6.1.1 Advective and Diffusive Flux 85

6.1.2 Visualization of Advective-Diffusive Flow 86

6.1.3 Visualization of SPH Fluid Simulations 86

6.2 Overview . 87

6.3 A Framework for Tracing Advective-Diffusive Fluxes 88

6.3.1 Decomposition of Diffusive Flux 88

6.3.2 Unified Model of Advective-Diffusive Flux 90

6.4 Visualization of Fluxes Using Stream Feathers 92

6.5 Advective-Diffusive Fluxes in SPH 93

6.6 Results and Discussion . 93

6.7 Conclusions . 100

7 Conclusions 101

7.1 Summary . 101

7.2 Future Work . 102

Bibliography 105

-2

Notations

This nomenclature gives all necessary symbols as used throughout this thesis.
Despite striving for uniqueness, some symbols are still used redundantly in dif-
ferent meanings. This is true, e.g., for T which in general denotes temperature
but denotes transparency in the context of ray casting in Chapter 5. Thus, the
nomenclature below is grouped into general quantities and special quantities
that are used only in specific contexts and chapters. In case of redundancy, the
specific meaning should always be clear from context.

Acronyms and abbreviations

APIC Affine Particle-in-Cell method

CFL Courant-Friedrichs-Lewy

CSPH Corrected SPH

EOS Equation of state

FLIP Fluid-Implicit-Particle method

IISPH Implicit Incompressible SPH

MAC Marker-and-Cell

PBF Position-based fluids

PCISPH Predictive Corrective Incompressible SPH

PIC Particle-in-Cell method

RK4 The Runge-Kutta method (of order 4)

SPH Smoothed Particle Hydrodynamics method

WCSPH Weakly Compressible SPH

Mathematical and Physical Notations

∇ Gradient operator
(

∂
∂x , ∂

∂y , ∂
∂z

)T

∇· Divergence operator
(

∂
∂x + ∂

∂y + ∂
∂z

)

∇2 Laplace operator
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)

τ, ∆τ Time, time step

xiii

xiv Notations

m Mass

A Area

V Volume

ρ Density

p Pressure

T Temperature

c Concentration

x Position

~v Velocity

~a Acceleration
~F , ~f Force, force density ~f = ~F

V

~g , ĝ Gravitational acceleration and its normalized direction

η , ν Dynamic viscosity, kinematic viscosity

κ Surface curvature

δ Surface delta function

σ Surface tension

Σ Surface stress tensor

ζ Viscous stress

D Diffusivity

kB Boltzmann constant

C Specific heat capacity

κ Heat conductivity

U Overall heat transfer coefficient

Rw Specific gas constant of water

SPH notations

x i Position of particle i

~x i j , xi j Vector x i −x j between particles i and j and its length

~vi j Velocity difference vector ~vi −~v j between particles i and j

W Kernel function

Ŵ Corrected SPH kernel function

h Kernel support radius

ni Particle number density

Qi Quantity Q, e.g., temperature or concentration, of particle i

φ(x) Implicit surface function

δi Smoothed surface delta

Notations xv

Evaporation and Condensation

c Cell index

t Texel index

i , j Particle index

s Surfel, i.e., either a surface particle or a texel index

wi Weighting term of particle i , wi ∈ [0,1]

Volume Ray Casting

Ie , σα Emitted radiance, absorption of light

x⊥> Interval x⊥> = [
x⊥, x>]

w(x⊥>) Width of interval x⊥>

E I Error tolerance for radiance in the final image ∈ [0,1]

Erelax Relaxation parameter for relaxed error estimation ∈ [0,1]

Qi , Qk Quantity of particle i , of ray sample k

Q⊥>
k Quantity bounds at sampling depth k

i⊥>,l
k , t⊥>,l

k Radiance, transparency sample bounds at sampling depth k
and level l

I⊥>,l
c , T ⊥>,l

c Radiance, transparency cell bounds of cell c and level l

ISP , TSP Radiance, transparency of a super-pixel

I
⊥>,~l
L , T

⊥>,~l
L Radiance, transparency ray bundle bounds for cell sequence

l0, . . . ,lL

c Cell

C Cell indexing function

l max
c Maximum sampling level of cell c

~l Vector of sampling levels of cell sequence l0, . . . ,llast

Dx y , Dz Resolution of a cell in xy- and z-directions

∆il = 2l Discrete sampling step size at level l

tf Transfer function

Advection-Diffusion Visualization

ca , cd , ct , cm Advective, diffusive, unified mean and unified maximum
concentration

~va ,~vd ,~vt ,~vm Advective, diffusive, unified mean and unified maximum
velocity

~ja ,~jd ,~jt ,~jm Advective, diffusive, unified mean and unified maximum
concentration fluxes

-2

List of Figures

2.1 A mesh-based simulation using a staggered grid 14

2.2 A Lagrangian simulation using particles 15

2.3 A hybrid simulation using both particles and grid cells 16

2.4 Different simplifications of the volume rendering model 21

2.5 Volume rendering using a Riemann sum approximation 22

2.6 Vector field visualization using streamlines 23

3.1 SPH-interpolation . 26

3.2 The poly6, spiky and cohesion kernel functions 27

3.3 Comparison of standard and corrected SPH-interpolation 30

4.1 Mass and heat transfer between different systems 44

4.2 Adjustment of distance function according to advancing αadv and
receding αrec angles . 51

4.3 A drop of one particle is modified using the proposed approach 52

4.4 Uncorrected surface rendering (left) and the proposed modifica-
tion to render dynamic contact angles (right). 53

4.5 A spherical drop of water evaporates on a hot surface 54

4.6 A mirror is steamed by humid air revealing the impregnated SCA
logo. 55

4.7 Blowing moist air onto the impregnated SCA logo causes particles
to condense. 56

4.8 A glass filled with cold liquid surrounded by moist air (left) causes
water to condense at the glass surface (right). 57

5.1 The fluid letters HPG 2016 are dropped into a basin 59

5.2 Sparse access structure . 65

xvii

xviii List of Figures

5.3 A radially increasing concentration profile rendered with a com-
plex transfer function . 67

5.4 Calculation of quantity bounds and sample bounds 68

5.5 Computation of radiance bounds 69

5.6 Back to front exchange of sampling levels 71

5.7 Two iterations of the cell merging 75

5.8 3D checker board of increasing concentrations 77

5.9 A mixer is causing a stream of green dye to mix with solvent in
the fluid tank . 78

5.10 A frame of the flubber scene and the respective sparse grid . . . 79

5.11 Errors of the simulation frames of the Mixer scene 79

5.12 Timings of the simulation frames of the Mixer scene 81

6.1 A drop of green dye is dripped into water 83

6.2 Diffusion follows concentration gradients 89

6.3 Construction of the direction of unified maximum velocity flux . 92

6.4 Stream feathers . 92

6.5 Stream feather visualization of advective and diffusive fluxes cor-
responding to the unified mean velocity flux in Fig. 6.1, right. . . 94

6.6 Advective, unified mean velocity and diffusive fluxes after impact
of dye in solvent . 95

6.7 Advective, diffusive and unified mean velocity fluxes at impact of
a solvent drop in a tank of dye . 96

6.8 Advective, diffusive and unified fluxes of the flow in a t-sensor . 97

6.9 Unified mean velocity flux of the checker board scene over three
time steps . 99

-1

List of Tables

1.1 Methodological foci and directions in different fields of research 4

2.1 Comparison of different fluid solvers 17

4.1 Scene characteristics and run times 54

5.1 GPU timings, speed-ups and errors of adaptive and non-adaptive
volume rendering . 80

5.2 Error statistics of the adaptive sampling 81

6.1 GPU timings of streamline integration and stream feather rendering 99

xix

0

List of Algorithms

3.1 A generic SPH simulation loop . 31

4.1 Overview over the proposed simulation of evaporation and con-
densation . 43

4.2 Evaporation from and condensation into textures 49

5.1 The proposed sampling error analysis 66

5.2 Thread-coherent volume ray casting 76

xxi

1

11
Introduction

This chapter briefly describes the challenges of fluid simulation and rendering
in the context of computer graphics and motivates the investigation of complex
phenomena involving fluid transport and thermodynamic processes. The chap-
ter closes by outlining the contributions that have been made to different fields
of computer graphics.

IIn the field of computer graphics, Research in
computer graphics

a wide range of topics is studied. This
includes 3D modeling as it is used in computer-aided design, animation

and rendering of dynamic scenes including fluid simulation, and visualization
of simulated or scanned data. Especially in rendering and animation, many de-
velopments are driven by the computer games and film industries which strive
for ever-growing levels of realism in physical simulations and visual effects. For
games, real-time constraints additionally have to be fulfilled which require the
development of highly efficient methods that often exploit massively parallel
processors like GPUs. Animation includes the simulation of liquids and gases
which are rendered to produce high-quality visual results. In visualization,
computer graphical methods are developed that focus on visually conveying
insight into often large amounts of data instead of striving only for realism.
Visualization most often addresses medical and scientific applications, e.g., the
visual presentation of simulated scalar fields by means of volume rendering.

In animation, rendering and visualization, Fluid animation and
rendering

liquids are usually only de-
scribed in terms of their convective motions. Additional effects like advective-
diffusive fluid transport, interactions with the air phase and thermodynamic
processes have only rarely been considered. The goal of this thesis is to fill
some of these gaps and to introduce a simulation approach for the thermody-
namic processes of evaporation and condensation, an efficient rendering of
volumetric scalar data, and a vector field visualization method that intuitively
conveys advective-diffusive transport phenomena.

1

2 Introduction

1.1 Motivation

Every newCFD methods in
computer graphics

generation of hardware leads to an increase in performance and
memory space and thus allows for simulations and renderings at higher resolu-
tions as well as with more realistic and more detailed models. While early fluid
simulation models in computer graphics rather focused on imitating the visual
appearance of fluids, it is desirable to derive simulation models in close accor-
dance with the laws of physics. The parameters involved, e.g., density, viscosity
and surface tension, can be interpreted very intuitively. Thus, techniques in
computer graphics are increasingly adopted from the field of computational
fluid dynamics (CFD). For efficiency reasons, models in computer graphics are
often reduced and only encompass a small subset of underlying physical laws.

In fluid transport,Fluid transport the fluid acts as a carrier of substances which are trans-
ported by two distinct modes of transport. On the microscopic level, substances
are transported by diffusion, i.e., through random collisions between neighbor-
ing molecules. On the macroscopic level, transport is due to the advective flux
which follows the velocity field of the fluid and hence its bulk movement. Both
processes occur simultaneously and are key processes in a large number of
engineering problems such as chaotic microscopic mixing. A lot of interesting
phenomena both from the fluid simulation and engineering perspective occur
mainly at the fluid surface and the interface with rigid objects. These include
the effect of wetting in combination with surfactants, i.e., soluble substances
that have a higher affinity to the fluid surface than the fluid volume.

Many phenomenaModeling complex
phenomena

encountered in day to day life are due to an intricate
interplay between different influences. For example, the tears of wine inside
a glass are due to the mixture of water and alcohol which both have different
dew points at which they turn into a gaseous state and due to the fact that the
surface concentration of alcohol in water reduces surface tension. Because al-
cohol evaporates faster than water, a gradient in surface tension is maintained
that is able to pull liquid up the glass wall against the influence of gravity. Sim-
ulating such visually appealing effects using physically-based models strongly
motivates the contributions of this thesis.

Even withEfficient parallel
simulation and

visualization

physically-based models it is, however, not trivial to achieve a
desired fluid behavior. Animators often have to spend a large amount of time
in tweaking artificial parameters. Efficient simulations in which results can
be visually inspected on-the-fly and parameters can be interactively adjusted
are thus invaluable. These visual tools encompass surface, volume and flow
visualizations that are able to convey the shape of the fluid, as well as the
distribution and transport of concentrations and other fluid properties.

1.2 Methodology 3

1.2 Methodology

In fluid simulation, Fluid simulation
methods

there have traditionally been two main approaches, i.e.,
grid-based approaches [FSJ01, Sta99] that follow the Eulerian point of view
and grid-free approaches like smoothed particle hydrodynamics (SPH) [Luc77,
GM77] which follow the Lagrangian point of view. Eulerian models describe flu-
ids with respect to a fixed frame of reference, while in Lagrangian methods the
points of discretization, i.e., the particles, are moved along with the fluid. Thus,
particle-based discretizations allow fluids of arbitrary shape and especially free
surface flows to be very naturally described. In SPH, Smoothed particle

hydrodynamics
physical processes are

described in terms of interactions between particles which cause particles to
change their physical properties, e.g., their position. Due to its simplicity, its
inherent mass-preservation and its suitability to be efficiently parallelized on
GPUs, this work adopts the Lagrangian point of view using SPH as method of
choice for simulating liquids.

Depending on CFD simulation and
visualization

the area of research, the requirements both to the simulation
and the rendering or visualization of results can differ considerably. In CFD,
the focus usually lies on a precise modeling of the underlying phenomena and
on quantitatively evaluating results. As CFD simulations often generate large
amounts of data [CCB∗08], visualization techniques are employed that allow
for an interactive navigation through data sets at the cost of offline preprocess-
ing [FSW09].

For simulations in Fluids in computer
graphics

the area of computer graphics, coarser simplified sim-
ulation models are often preferred that can be evaluated more efficiently. By
not simulating the air phase and assuming isothermal conditions, the simu-
lation complexity is significantly reduced. While in computer animation, the
goal usually is to derive physically plausible models, the focus in real-time
fluids [MMCK14, CMK15] lies on achieving the simulation and rendering at
interactive frame rates. Thus, physical plausibility often has to be traded for
coarse approximations that yield only visually plausible results. Physical mod-
els have even been replaced by predicting particle positions and velocities
using machine learning techniques and massive training from precomputed
offline simulations [LJS∗15].

The visual presentation Rendering of fluidsof fluids in computer graphics follows similar goals.
The rendering of real-time fluids has to obey strict frame rate constraints,
thus, approximate methods like screen space splatting [vdLGS09] of particles
are mainly employed. For computer animation purposes, fluids are often
rendered offline using mesh based intermediate representations that allow for
photo-realistic rendering like ray tracing [AIAT12]. Nonetheless, interactive
rendering methods are still important tools for an on-the-fly investigation of

4 Introduction

simulation runs and an interactive steering of simulation parameters. Tab. 1.1
shows examples of particle-based simulations from different areas of research
and compares the respective goals of the applied methods with respect to
simulation and graphical presentation of results.

Table 1.1: Methodological foci and directions of the simulation (following Or-
thmann [Ort14]) and visual presentation of fluids in different fields of research.

Computational Physics Computer Graphics
Computational fluid
dynamics

Chatelain et al. [CCB∗08]1

Fluid animation

© 2014 IEEE

Ihmsen et al. [ICS∗14]

Real-time fluids

© 2015 IEEE

Chentanez et al. [CMK15]
Simulation:

• Physical accuracy
• Numerical

precision
• Quantification

Simulation:
• Physical basis
• Numerical

robustness

Simulation:
• Visual plausibility
• Numerical

efficiency
• Interactivity

Visual presentation:
• Volume

visualization
• Flow visualization

Visual presentation:
• High-quality

offline rendering
• Photo-realism

Visual presentation:
• Approximate, fast

rendering
• Interactivity

1.3 Challenges

Although SPH-based fluid animation is already able to simulate and render
highly realistic and astonishingly beautiful artistic scenes, numerous challenges
still remain, both in simulation and rendering of particle-based fluids.

Especially for the movie industry, a physically plausibleScalability of
parameters

behavior of fluids is
desirable because scenes are not always rendered from scratch but instead only

1Reprinted from Computer Methods in Applied Mechanics and Engineering, 197, Chate-
lain, Philippe; Curioni, Alessandro; Bergdorf, Michael; Rossinelli, Diego; Andreoni, Wanda;
Koumoutsakos, Petros “Billion vortex particle direct numerical simulations of aircraft wakes”,
pp. 1296–1304, © 2008, with permission from Elsevier.

1.3 Challenges 5

parts of recorded scenes may be simulated. At different spatial and temporal
resolutions, simulations may yield substantially different fluid motion due to
the fact that SPH parameters are not invariant to scaling [PICT15, WHK17].
Although the behavior can always be adjusted by manual tweaking, parameters
should be intuitive and independent of the resolution.

In order to achieve high visual detail, Robust adaptivitya high particle resolution is usually
preferred. Large particle counts, however, lead to computationally expensive
simulations. Adaptive simulations in which high resolution is limited to areas
of interest save computational resources [SG11, OK12, WHK17]. Although flu-
ids can already be described with highly adaptive particle systems [WHK17],
the boundary conditions need to be adjusted as well in order to guarantee for
versatile simulations including complex interactions like cleansing or deposit-
ing paint [OHB∗13] on static and dynamic bodies. Moreover, manual tweaking
of scale dependent parameters gets even more difficult as adaptive simulations
can contain particles of different sizes that dynamically change over time.

For most simulations in computer graphics, the assumption Comprehensive
simulation

of isothermal
conditions is made and the air phase is neglected although a large number of
physical phenomena is only due to temperature differences and the interaction
with an air phase. While some works have taken heat transport into account in
order to simulate, e.g., melting and solidification [SSP07], a dynamic coupling
with an air phase suffers from instabilities due to the large density difference
between air and liquid which have only partly been alleviated [SP08, IOS∗14].
The air phase has only been mimicked by sampling ghost particles around the
liquid surface [SB12] or as a constant external velocity field that causes friction
at the liquid surface [GBP∗17a, GBP∗17b]. For the simulation of phase changes
of water to steam, i.e., the simulation of evaporation and condensation, both
temperature and the air phase have to be taken into account. Moreover, the air
phase has to be modeled such that it allows for a conservative transfer of mass
and heat between air and liquid.

Research in fluid rendering is mainly Surface renderingconcerned with conveying the geo-
metric shape of the fluid, i.e., with surface rendering. Increasing the particle
resolution at the surface does, of course, also increase the detail in render-
ing. Yet, lower resolutions are preferable in interactive or real-time applica-
tions [MMCK14]. Although surface reconstruction is able to yield smooth
surfaces [YT10, AIAT12], the collision of liquids with rigid boundaries still
causes problems. For mesh based fluid representations, vertices of the fluid
surface can be shifted to closest point on the boundary to resolve intersec-
tions [HKK07b], which, however, can cause self-intersections in the resulting
mesh. By mirroring particles to the opposite side of boundaries, static contact
angles can be modeled [MWE16]. This, however, induces a costly sampling of
additional particles. By taking rigid boundaries into account, surface rendering

6 Introduction

quality can be increased and interactions of the liquid with rigid objects can be
conveyed that don’t even have to be present in the simulation data.

The more parameters are involved in simulations,On-the-fly volume
rendering

the more sophisticated
methods of visually presenting the data are necessary. Volume rendering of
additional parameters like concentrations of substances can create visually
appealing effects and, moreover, allows to examine simulation data for their
plausibility. Even though there are methods that address the volume rendering
of particle-based fluids, they mostly depend on preprocessing and rely on
rasterization hardware [FAW10] or they are built around object space data
access structures which limits parallelism due to traversal logic [OKK10]. For
interactive applications that allow for a direct steering of parameters, however,
an on-the-fly presentation of volumetric scalar data is of great importance.

Apart from volume rendering, applying vector fieldVector field
visualization

visualization also adds
an invaluable tool to inspect the time-dependent behavior of fluid flows. While
there has been research addressing the visualization of pathlines that are di-
rectly derived from particle trajectories [FW12], vector field visualization of
concentration and heat transport has not yet been investigated.

1.4 Contributions

In this thesis, three major contributions to the field of computer graphics in
fluid animation, volume rendering of particle-based data and in flow visualiza-
tion are presented. The contributions address the challenges of comprehensive
simulation, surface rendering, on-the-fly volume rendering and vector field
visualization and are components of a larger framework that combines fluid
simulation with rendering and visualization capabilities and allows for effi-
cient GPU-based computation of incompressible SPH fluids and their visual
presentation. The contributions are summarized in the following.

Evaporation and Condensation are both thermodynamic processes and,
thus, depend on the temperature of the involved substances. As heat makes
liquid water turn into a gaseous state, an air phase has to be simulated explicitly.
To that end, the air phase is efficiently simulated on a coarse regular grid in
which vapor mass is transported. Using a novel physically-based model of
evaporation and condensation, liquid particles can be evaporated by trans-
ferring their mass to the air phase. Condensation takes place on surfaces of
rigid objects using textures that store liquid mass. If sufficient mass is accu-
mulated, it is transformed back to new liquid particles. The small-scale details
of condensation using textures are complemented by an improved implicit

1.5 Overview 7

surface definition for rendering the particle-based liquid phase. By taking
rigid surfaces into account, dynamic contact angles of moving particles can be
rendered. Even at low particle counts, the method is able to achieve convincing
high-quality results.

Adaptive Volume Ray Casting: Most fluid rendering focuses on surface ren-
dering techniques. The depiction of scalar quantities like concentration and
temperature, however, requires a volumetric rendering. While in general, parti-
cle quantities can be mapped onto grids and rendered using standard volume
rendering methods, this introduces interpolation errors, requires additional
memory and also limits the rendering performance due to the resampling. In
this thesis, a novel volume rendering method is introduced that operates di-
rectly on raw particle data. In order to speed up rendering, a hierarchical error
analysis based on interval arithmetic is proposed that allows to locally adjust
sampling rates while obeying a user-controlled screen space error tolerance.
The volume ray casting is also used to ray cast surfaces yielding an efficient
high-quality on-the-fly rendering.

Vector Field Visualization of Advective-Diffusive Flows: Although a combi-
nation of surface and volume rendering techniques is well able to convey static
distributions of scalar quantities, their dynamic behavior can only be revealed
by time sequences. Especially in advective-diffusive transport processes, it is
desirable not only to visualize the quantity distribution but also the direction in
which transport takes place, and which mode of transport, advection or diffu-
sion, dominates. In this thesis, a novel method to visualize advective-diffusive
flows is developed. By introducing a new visual metaphor, the stream feather,
superposed advective-diffusive flows and their respective components can be
intuitively presented. Although it is demonstrated only for SPH-based fluids,
the method describes a general framework and can be applied to simulation
data from different sources.

1.5 Overview

Most of the content presented in the following chapters has already been
published. The structure of this work thus follows these publications which are
complemented by two chapters that cover foundations and a final chapter that
concludes this thesis.

Chapter 2 introduces the theoretical foundations of fluid transport. General
concepts of mesh-based and particle-based fluid simulations are outlined as

8 Introduction

necessary to understand later chapters. As a visual representation of fluid
simulations is usually desired, general rendering and visualization techniques
for fluid surfaces, volumetric data, and general vector field visualization tech-
niques for flow visualization are reviewed.

Chapter 3 introduces the theoretical foundations of SPH-based simulation
and describes how fluid transport can be modeled with SPH. As SPH sim-
ulations can be computationally expensive, different adaptive methods are
presented as well as algorithmic means to efficiently solve them on parallel
platforms like GPUs.

Chapter 4 explains how the “Simulation of Evaporation and Condensa-
tion of SPH-based Fluids” is realized. It is based on the work presented at
the Symposium on Computer Animation 2017 [HK17] and includes both the
physically-based model of evaporation and condensation and the improved im-
plicit surface definition that takes interactions of the liquid with rigid surfaces
into account and allows for a rendering of dynamic contact angles.

Chapter 5 describes an “Adaptive Sampling for On-The-Fly Ray Casting of
Particle-based Fluids” presented at High Performance Graphics 2016 [HOK16].
The adaptive sampling is shown to speed up volume rendering while preserving
visual features. The screen space error of the resulting renderings is limited by
a user-controlled error tolerance.

Chapter 6 presents a “Vector Field Visualization of Advective-Diffusive
Flows” that has been presented at EuroVis 2015 and published in Computer
Graphics Forum [HWK15]. The combined visualization of advection and diffu-
sion using stream feathers as a novel visual metaphor allows for an expressive
and intuitive graphical presentation of complex flow scenarios.

Chapter 7 summarizes this thesis, draws conclusions and gives hints for
possible directions of future works.

2

22
Foundations

This chapter introduces the governing equations of fluid transport including
advective-diffusive flows of concentration and heat transport. In the following,
particle-based, grid-based and hybrid simulation approaches are presented
and compared. Subsequently, a brief discussion of time integration schemes is
presented. As simulation results will be visually conveyed, foundations of surface
rendering, volume rendering and vector field visualization are outlined.
For further details the reader is referred to the following textbooks on fluid
simulation by Bridson [Bri08], transport phenomena by Bird et al. [BSL07],
volume rendering by Engel et al. [EHK∗06], and visualization by Johnson and
Hansen [JH04].

TTransport phenomena typically encompass three main components, i.e.,
fluid dynamics, the transport of heat, and mass transport. All these com-

ponents are very closely related [BSL07]. While the governing equations are
described assuming a continuous medium, the fundamental processes behind
these models occur on a molecular level. Sec. 2.1 covers both the molecular
intuition and the mathematical formalisms that constitute fluid transport.

Fluid transport can be described from two distinct viewpoints. In the Eule-
rian viewpoint, the fluid moves according to a fixed coordinate system and in
the Lagrangian viewpoint, the fluid elements themselves follow the flow. Both
viewpoints lead to distinct simulation methods as presented and discussed in
Sec. 2.2. In order to simulate the time evolution of fluid transport phenom-
ena, different time integration schemes can be applied as will be discussed in
Sec. 2.3.

At the end of each simulation pipeline, renderings and visualizations of the
simulated data are usually generated to present simulation results. In liquid
simulations, these are mainly surface renderings and in case of volumetric
scalar fields, such as the concentration of solutes, also volume rendering and
vector field visualization as outlined in Sec. 2.4.

9

10 Foundations

2.1 Theoretical Background of Fluid Transport

In general, a fluid volume can be described by a set of smaller parcels of fluid
volumes that interact with each other. Each of these parcels carries mass m,
has volume V and thus a density ρ = m

V and is centered at a position x in space.
The fluid motion is described by the velocity ~v that evolves over time according
to the momentum equation (see Sec. 2.1.1). Additionally concentrations of sub-
stances and heat can be transported along with the fluid flow and be diffused
between different fluid parcels (see Secs. 2.1.3 and 2.1.4).

2.1.1 Conservation of Momentum

Fluid parcels are moved through space by velocity ~v , which changes over time
τ through the influence of other fluid parcels and external forces as described
byMomentum

equation
the momentum equation

ρ
D~v

Dτ
=−∇·Σ+ ~f ext (2.1)

where Σ denotes the surface stress, and ~f ext external forces. D()
Dτ

denotes the
material derivative and will be discussed in Sec. 2.1.2.

TheSurface stress surface stress Σ transfers momentum across the fluid and is due to
molecular collisions that depend on the free space between molecules and
their respective velocities. The stress can be subdivided into viscous stress ζ

and stress due to pressure p as Σ = ζ−p1, where 1 denotes the 3×3 identity
matrix. In incompressible fluids, the pressure term ensures a divergence free
velocity fieldIncompressibility

∇·~v = 0 (2.2)

and the viscous stress can further be simplified to∇·ζ=∇η∇~v = η∇2~v assuming
a constant viscosity η throughout the medium. The viscosityViscosity acts as diffusion
of momentum which in turn locally smoothes the velocity field.

External forces usually compriseGravity gravitation ~g and in case of liquids surface

tension as ~f ext = ρ~g + (σκn̂ +∇n̂σ)δ, where κ is the surface curvature,Surface tension σ the
strength of surface tension, n̂ the unit surface normal, and δ the surface delta
function which is one exactly at the surface and zero everywhere else. Surface
tension acts to minimize the surface area of the liquid phase. Additionally,
gradients in surface tension can causeMarangoni

convection
Marangoni convection that induces a

fluid motion tangentially to the surface as described by the surface gradient
∇n̂ =∇− n̂(n̂ ·∇), i.e., the gradient’s orthographic projection onto the surface.

2.1 Theoretical Background of Fluid Transport 11

While the formulation above was derived using force densities ~f = ~F
V , it is

more easy to reformulate it to accelerations according to Newton’s second law
~F = m~a = m D~v

Dτ
. Plugging the simplified stress into Eq. (2.1) and dividing by ρ,

Navier-Stokes
equation

gives the well-known Navier-Stokes equation [Bri08]

D~v

Dτ
= ν∇2~v︸ ︷︷ ︸

Viscosity

− 1

ρ
∇p

︸ ︷︷ ︸
Pressure

Acceleration

+ ~aext
︸︷︷︸

External
Acceleration

, (2.3)

where ν= η
ρ is the kinematic viscosity, and ~aext = ~F ext

m = ~f ext

ρ describes external
acceleration.

2.1.2 Eulerian vs. Lagrangian Point of View

There are two distinct viewpoints from which fluid transport can be described.
In the Eulerian viewpoint, Eulerian viewpointa fixed frame of reference is adopted that can be
compared to describing the flow of a river while standing on a bridge. More
formally speaking, the fluid is described in terms of volume elements that are
fixed in space but exchange physical quantities over their faces that connect
them to neighboring volume elements. In the Lagrangian viewpoint, Lagrangian

viewpoint
the frame

of reference always moves with the fluid flow. Imagine the flow of a river de-
scribed from a boat that is carried along with the flow. More formally, the fluid
is again discretized as volume elements, however, in the Lagrangian viewpoint,
the fluid elements themselves are moved to describe the flow.

Mathematically, both viewpoints are related by the material derivative Material derivativeD()
Dτ .

Using the global frame of reference of the Eulerian viewpoint, the material
derivative reads D()

Dτ
= ∂()

∂τ
+∇() · d x

dτ
= ∂()

∂τ
+∇() ·~v and comprises an unsteady

and a convective derivative. In the Lagrangian viewpoint D()
Dτ equals the total

differential d()
dτ because it is calculated according to a local frame of reference

that moves with the flow.

From the Eulerian viewpoint, the convective derivative has to be calculated
explicitly as

∂~v

∂τ
+ ~v ·∇~v︸ ︷︷ ︸

Convective
Derivative

= ν∇2~v︸ ︷︷ ︸
Viscosity

− 1

ρ
∇p

︸ ︷︷ ︸
Pressure

Acceleration

+ ~aext
︸︷︷︸

External
Acceleration

, (2.4)

while in the Lagrangian Navier-Stokes in
Lagrangian frame

viewpoint in which fluid parcels travel with the flow,
the momentum equation simplifies to

d~v

dτ
= ν∇2~v − 1

ρ
∇p +~aext (2.5)

12 Foundations

as the convective derivative vanishes.

Throughout this thesis, both the Lagrangian and the Eulerian point of view
will be adopted in different places.

2.1.3 Concentration Transport

While the fluid motion can be described by the momentum equation (cf.
Eq (2.3)), additional quantities can also be transported with the flow. Transport
of concentration c of solved substances inside the fluid generally follows the
advection-diffusion equationAdvection-diffusion

equation
as [BSL07]

∂c

∂τ
=∇· (D∇c)︸ ︷︷ ︸

Diffusion

−∇· (~vc)︸︷︷︸
Advection

+ Rc︸︷︷︸
Sinks and
Sources

, (2.6)

where Rc denotes source and sink terms due to, e.g., chemical reactions. D
denotes the diffusivity which is either scalar in case of isotropic diffusion or a 3×
3-matrix for anisotropic diffusion. D depends on the material components as
well as the temperature. The diffusive term of Eq. (2.6) followsFick’s law Fick’s law [ALS09]
and is due to the random movements of molecules that causes concentration
gradients to vanish over time.

Considering a LagrangianConcentration
transport in

Lagrangian frame

frame of reference, Eq. (2.6) simplifies to

dc

dτ
=∇· (D∇c)+Rc , (2.7)

so that the advection term vanishes. In Chapter 6, a vector field visualization to
simultaneously convey advection and diffusion of field quantities is presented.

2.1.4 Heat Transport

The transport of heat is usually made up of three modes of transport: conduc-
tion, convection and radiation. HeatRadiation radiation takes place without a connecting
medium due to emission and absorption of electromagnetic waves. In the fol-
lowing, however, only convection and conduction of heat will be considered
that obey similar laws like concentration transport.

Heat Q is transported following an advection-diffusion equation. For the
diffusive part, i.e., the conduction, Fourier’s law [BSL07]Fourier’s law relates the heat flux q
to the temperature difference as q =−κ∇T . On a molecular level, conduction
is due to collision of molecules, atoms and electrons by which internal energy,
i.e., heat, is dispersed and temperature differences are equalized.

2.2 Overview of Fluid Simulation Approaches 13

Heat convection can generally describe the fluid movement induced by
temperature differences. These cause for differences in density and hence for
buoyancy. Here, however, only the passive Heat advectionadvection of heat is considered in
which volumes of different heat are transported with the velocity field.

Assuming a homogeneous medium, heat Q can be related to temperature
T by the simple relation T = Q

ρC , where C is the specific heat capacity of the

medium so that only temperatures appear in the following equations. Heat transport in
Eulerian frame

The time
rate of change of temperature in the Eulerian frame can then be expressed as

∂T

∂τ
= 1

ρC
∇· (κ∇T)︸ ︷︷ ︸

Conduction

−∇· (~vT)︸ ︷︷ ︸
Advection

+ RT︸︷︷︸
Sinks and
Sources

, (2.8)

where RT describes sources and sinks of heat. In the Lagrangian Heat transport in
Lagrangian frame

frame the heat
transport equation simplifies to

dT

dτ
= 1

ρC
∇· (κ∇T)+RT (2.9)

as the advective component vanishes again because the temperature is carried
by the moving fluid parcels.

2.2 Overview of Fluid Simulation Approaches

While the underlying equations of fluid motion have been discussed, the
methodology to discretize the equations is yet to be described. Mainly, there
exist mesh-based methods that take on the Eulerian viewpoint and mesh-free
or particle-based methods that follow the Lagrangian viewpoint. Additionally,
there are hybrid methods that try to take advantage of the strengths of both
representations.

Although simulation approaches can vary considerably, Requirements to
fluid solvers

they all should
fulfill a common set of requirements in order to allow for convincing interactive
applications:

• conservation of quantities, especially in free surface flows,
• ability to enforce incompressibility,
• computational efficiency,
• results have to be visually plausible

In the following, common mesh-based, particle-based and hybrid fluid simula-
tion approaches will be outlined and discussed. There exist many optimizations
to each simulation method that are able to alleviate specific shortcomings that
are out of the scope of this thesis.

14 Foundations

2.2.1 Mesh-based Approaches

Fluid animation started out with Eulerian methods that discretize the simu-
lation domain using regular grids [FM96].Staggered grid Staggered grids store fluid prop-
erties in cell centers and velocities at cell faces in order to increase stabil-
ity [Har64, FSJ01]. Most solvers follow the concept of splitting [Bri08],Splitting i.e.,
velocities are first updated according to external forces and viscosity before
quantities and velocities are advected. Lastly, velocities are projected onto a
divergence-free field by efficiently solving the pressure Poisson equation. While
a direct forward advection [FM96] is easy to implement, the unconditionally
stable semi-Lagrangian advection (SLA)SLA alleviates time step restrictions by
tracing the velocity back in time to calculate the advection [Sta99]. Advection
is still highly dissipative andNumerical

dissipation
leads to a visible damping of the fluid motion and

loss of mass and volume. The blurring of sharp features causes small droplets
and splashes to disappear.

To alleviate volume lossVolume loss at free surfaces, the surface resolution should
generally not be restricted to the grid resolution [FM96]. In order to track
liquid surfaces, massless marker particles that are passively advected with
the flow have been employed [Har64, FM96]. A combined surface tracking
using particles and a level-set representation (PLS) [FF01, EMF02]Particle level-set more stably
advects liquid surfaces. Moreover, numerical dissipation has been addressed
by using higher order [SFK∗08] andConservative

advection
conservative advection schemes [LAF11,

CM14]. Fig. 2.1 shows a schematic simulation using semi-Lagrangian advection
and the particle level-set surface representation.

Figure 2.1: A mesh-based simulation using a staggered grid. Quantities are
stored in cell centers (dark green points) while velocity components are stored
on cell faces (red). The liquid surface is tracked using the particle level-set
method (white points).

Although semi-Lagrangian advectionSimulation of gases suffers from numerical dissipation, it
is in widespread use due to its simplicity especially when simulating gaseous
substances [FM97, FSJ01, PTC∗10]. Vorticity confinement is used to inject fine

2.2 Overview of Fluid Simulation Approaches 15

turbulent swirling motion back to the simulation that has been damped [FSJ01].
Marker particles are often employed for rendering smoke [Bri08] and turbu-
lence particles increase the details of simulations on coarse grids [PTC∗10].

2.2.2 Particle-based Approaches

Lagrangian methods like SPH have become very popular in computer graph-
ics [DC96, MCG03] due to their flexibility and their ability to stably handle free
surfaces and dynamic boundaries. In SPH, SPHparticles are used as carriers of mass
that is automatically preserved throughout the simulation. Advection is solved
correctly by moving particles according to the velocity field. Fig. 2.2 shows a
schematic particle-based simulation.

Figure 2.2: A Lagrangian simulation using particles. The particles carry all in-
formation and are moved with velocity field in order to calculate the advection.

While grid-based methods can efficiently access Particle
neighborhoods

neighborhoods as they are
implicitly defined by the mesh, in particle-based methods neighborhoods have
to be tracked explicitly. To that end, background grids [HKK07c, Gre09], com-
pact spatial hashing [IABT11] or hierarchical [ATO16] data access structures are
employed into which the particles get sorted. As interpolations of quantities
and their derivatives are based on the particle neighborhood, irregular sam-
pling and underresolved neighborhoods can cause instable behavior [Mon05].
In order to increase stability, artificial viscosity is usually employed, which, how-
ever, damps the fluid motion [Mon05, IOS∗14]. In order to achieve more turbu-
lent fluids, vorticity Turbulence

modeling
confinement [MMCK14] or a micropolar model [BKKW17]

in which particles also carry a rotational component have been employed.

Although Incompressibilitythe advection term is easily solved in SPH, solving the pressure
term depends on derivatives and is more involved. It can either be solved
for compressible fluids using an equation of state [BT07, MCG03] or for in-
compressible fluids using iterative [SP09b] and implicit [ICS∗14, BK15] or
constraint-based solvers [MM13]. Pressure has also been solved by coupling
SPH to a grid [RWT11] or using a coarse incompressible SPH simulation that is
coupled to finer FLIP particles [CIPT14].

16 Foundations

2.2.3 Hybrid Approaches

Hybrid approaches, originating from the Particle-in-cell (PIC) method [EH57],
PIC solve the pressure projection on a grid and use particles to solve the advection

step. Therefore, quantities and velocities are interpolated between particles
and grid cells. While this alleviates the loss of mass and numerical dissipation
of grid-based advection, direct interpolation between particles and grid intro-
duces a damping of the dynamics and a loss of momentum.Loss of momentum Fig. 2.3 shows a
schematic hybrid particle-grid-based approach. By updating particle veloci-

Figure 2.3: A hybrid simulation using both particles and grid cells. Quantities
and velocities are advected using particles (green points) while the velocity
is projected onto a divergence free field using the grid (red) and interpolated
back to the particles.

ties according to the time rate of change of grid velocities theFLIP Fluid-Implicit-
Particle method (FLIP) [BR86] eliminates the damping of PIC simulations. This,
however, comes at the cost of particle resampling [ATW13]Particle resampling due to clustering
or void space between particles as there is no interaction between particles.
Using a combination of PIC and FLIP interpolation is widely used in com-
puter graphics [ZB05] as it increases stability compared to pure FLIP at lower
numerical damping than PIC. The numerical damping due to interpolating

Extensions to PIC between grid and particles in PIC has also been addressed by storing locally
affine (APIC) [JSS∗15] or polynomial (PolyPIC) [FGG∗17] descriptions of the
velocity field. While conservation of momentum can well be improved, both
methods have large memory requirements. In narrow-band FLIP [FAW∗16], the
use of FLIP particles is restricted to a smallNarrow-band FLIP region around the liquid surface to
reduce both the memory footprint and the computational cost. Chentanez et al.
[CMK15] couple a shallow water simulation for large scale fluid scenarios with
a grid and a particle-based surface simulation to locally resolve fine details.

In contrast to vorticity confinement which only amplifiesVortex methods existing vortices,
vortex methods are based on the curl of the Navier-Stokes equations [SRF05,
CCB∗08] and can simulate highly turbulent phenomena like explosion. Vortex

2.2 Overview of Fluid Simulation Approaches 17

particles carry the vorticity while the pressure is solved on a grid. The approach,
however, is quite expensive as the Poisson equation becomes vector valued.

2.2.4 Comparison Between Different Approaches

Simulation methods perform differently well according to the requirements
formulated in Sec. 2.2. Tab. 2.1 gives a short summary of the general strengths
and weaknesses as discussed above.

Table 2.1: Comparison of different fluid solvers. Advantages of solvers with
respect to the requirements are highlighted in green, disadvantages in red and
general properties in black.

Requirement

Method SLA PIC-FLIP/APIC SPH

Conservation
Numerical
dissipation

Conservative advection

Incompressibility Efficiently solvable on grid
Stable gradients are
difficult

Efficiency
Unconditionally
stable, efficient
incompressibility

Interpolation
between grid and
particles

Costly search for
neighbors and
incompressibility

Plausibility
Visible loss of mass
and momentum

Damped dynamics,
particle clustering

Plausible if
incompressible

A recent user study of the visual plausibility Visual plausibility
study

of different methods [UHT17]
revealed that incompressible SPH simulation was superior to grid-based and
hybrid methods at comparable spatial resolutions. Hybrid solvers, especially
APIC, however, yielded more plausible results when the simulation resolution
was adjusted to a given time budget. There was no simulation method that
generally outperformed the remaining approaches, yet, comparisons of more
specialized simulation methods under more versatile scenarios still have to be
conducted.

In the following, all liquids are simulated using incompressible SPH while
the gas phase used in Chapter 4 is simulated using a grid-based solver using
semi-Lagrangian advection and vorticity confinement.

18 Foundations

2.3 Time Integration

As analytic solutions cannot be found in most cases, the time evolution of, e.g.,
a particle’s quantities like its position due to its changing velocity

xτ+∆τ = xτ+
τ+∆τ∫

τ

~v (s, x s)d s (2.10)

has to be numerically solved using time discretization schemes.Explicit numerical
integration

The simplest
method is a direct numerical integration using a forward Euler scheme as

xτ+∆τ = xτ+~v (τ, xτ)∆τ, (2.11)

where the derivative ~v = ∂x
∂τ is approximated as a piecewise constant func-

tion.Runge-Kutta
method

By predicting intermediate steps, the Runge-Kutta method achieves a
consistency of fourth order (RK4). The final approximation of a function

xτ+∆τ = xτ+ ∆τ

6
(~v1 +2~v2 +2~v3 +~v4) (2.12)

is a weighted sum of individual approximations ~v1 =~v (τ, xτ),~v2 =~v (τ+ ∆τ
2 , xτ+

∆τ
2 ~v1),~v3 =~v (τ+ ∆τ

2 , xτ+ ∆τ
2 ~v2),~v4 =~v (τ+∆τ, xτ+∆τ~v3) that is able to reduce

the accumulated error [BZBP09].

Generally, the propagation of a signal, i.e., the displacement of a particle in
one time step may not exceed the spatial resolution, i.e., the particle size. To
prevent such cases, Courant-Friedrichs-Lewy (CFL) conditionsCFL conditions can be defined
that limit time steps according to the current particle configuration. Usually
the current forces and velocities are used in order to adjust ∆τ so that

∆τ≤λ~a

√
h

‖~amax‖ and ∆τ≤λ~v
h

‖~v max‖ , (2.13)

where ~v max and ~amax are the maximum velocity and acceleration of all particles
and λ~v = 0.4 and λ~a = 0.25 are empirically determined constants [Mon05,
IAGT10]. CFL conditions for heat and concentration transport can also be
defined, however, in most cases they are not necessary, because the particle
movement is the limiting factor at the scales of interest [CM99].

Another family of numerical integrationImplicit numerical
integration

schemes, i.e., implicit integra-
tion, has already been mentioned in the context of pressure solvers. Although
implicit integration does not increase the rate of convergence, it yields un-
conditionally stable approximations and thus allows for large time steps in
simulations. The backward Euler scheme is simply expressed as

xτ+∆τ = xτ+~vτ+∆τ∆τ, (2.14)

2.4 Rendering and Visualization 19

where the derivative ~v of the next time step is used instead of the derivative of
time τ in the explicit Euler scheme [BZBP09].

For the integration of Euler-Cromer
scheme

equations of motion, semi-implicit methods like the
Euler-Cromer scheme are often used. Therefore, the velocity is first integrated
using a forward Euler step as ~vτ+∆τ =~vτ+∆τ~aτ. The position is then implicitly
updated using the already updated velocity as xτ+∆τ = xτ+∆τ~vτ+∆τ [IOS∗14].

In this thesis, the Euler-Cromer scheme is adopted for SPH simulations
while the Runge-Kutta method is used in Chapter 6 to trace streamlines.

2.4 Rendering and Visualization

Simulation results are displayed via rendering and visualization. In render-
ing, the focus usually lies on the visually plausible appearance of a scene.
Fluid rendering can be divided into surface and volume rendering techniques.
Visualization, in contrast, aims at revealing important processes, e.g., the spa-
tial distribution or temporal evolution of quantities, that otherwise would be
missed. Visualization typically uses scalar or vector fields that are visualized as
volumes or as glyphs, characteristic lines and surfaces. Sections 2.4.1 to 2.4.3
describe surface and volume rendering as well as vector field visualization
techniques with a focus on particle data.

2.4.1 Surface Rendering

Rendering of particle-based surfaces can be subdivided into high-quality offline
methods and into interactive screen space methods.

Fluid surfaces Implicit surface
reconstruction

are usually implicitly described and rendered indirectly us-
ing a Marching Cubes triangulation [LC87]. Early descriptions used meta-
balls [Bli82] or iso-surfaces of the color field [MCG03] which, however, yield
quite blobby surfaces. Taking particle radii ri into account and calculating
the distance between the weighted average particle position x̄ and the current
position x as [ZB05]

φ(x) = ‖x − x̄‖− r̄ (x) (2.15)

r̄ = ŵi (x)ri (2.16)

x̄ = ŵi (x)xi , (2.17)

yields a smooth signed distance function, where ŵi (x) = wi (x)∑
j w j (x) with wi (x) =

w(‖x −x i‖) is a corrected kernel function (see Sec. 3.1.3). The zero level set
of φ yields the fluid surface. Between small splashes that are separated by a

20 Foundations

distance of about r̄ ,Spurious artifacts spurious fluid artifacts can appear. These can be alleviated
by modifying the distance r̄Artifact correction according to the largest Eigenvalue of the Jacobian
of x̄ which is large in proximity to artifacts [SSP07], by density decay func-
tions [OCD11] or by using anisotropic smoothing kernels [YT13]. The resulting
level set can be tessellated using uniform Marching Cubes [LC87, AIAT12] or
with adaptive methods [AAOT13]. Direct ray casting [GSSP10, OCD11] and ray
tracing [MWE16, BSS∗18, WTYH18] of iso-surfaces has also been presented but
is limited to small sets of particles if interactive frame rates are desired.

In order to achieve smooth surfacesScreen space
rendering

in interactive applications, screen
space approaches are usually employed. Particles are either splatted onto the
screen as spheres [vdLGS09] or as ellipsoids that are calculated according to
the particle’s anisotropy [YT13, MM13]. Smoothing is achieved by applying
separable binomial filtering [MSD07] or screen space curvature flow [vdLGS09]
to the splatted depth values. However, as only the foremost surface can be
displayed, depth perception of transparent renderings is limited especially in
complex fluid scenes. For moderate particle numbers, multiple surface layers
can be rendered using a perspective grid of binary voxels that is constructed
on-the-fly and smoothed in screen space [ZD15, ZD17].

Large data sets of opaque particlesLarge data sets can be efficiently rendered using P-k-
d-trees [WJP14]. Hierarchical binary volume representations have been used
to efficiently render surfaces of very large particle data which however have to
be preprocessed offline [RCSW14]. Particles have also been mapped to sparse
voxel structures that are used for volume and iso-surface ray tracing [Hoe16].

An implicit surface definition that is able to render dynamic contact angles
for liquids in contact with rigid surfaces will be presented in Chapter 4.

2.4.2 Volume Rendering

In direct volume rendering (DVR), a physically-based model of light transport
through a participating medium is evaluated that can comprise emission, ad-
sorption and scattering. While the former two do not change the direction
of light, scattering causes light rays to be diffracted and sent off in different
directions. The volume rendering integral assumes viewing rays are cast from
the viewer at x0Volume rendering

integral
through the medium to exit point xD as

I (xD ,~ω) =
∫xD

x0

I (x ′,~ω) ·T (x0, x ′)d x ′ + Ibg(x0,~ω)T (x0, xD),

T (x i , x j) = e−
∫x j

xi
σα(x ′)d x ′

,

(2.18)

where I (x ,~ω) = Ie (x)+ Is(x ,~ω) models emitted and scattered radiance in direc-
tion ~ω towards the viewer, Ibg the background radiance, and T the transparency

2.4 Rendering and Visualization 21

Emission

Absorption

x0

xD

(a) At each point, light is
emitted and absorbed
on the way to the viewer

Ambient occlusion

(b) Light is attenuated by
absorption in the local
neighborhood

Multiple scatterin
g

Sing
le sc

atte
ring

(c) External and internal
light emission is scat-
tered towards the viewer

Figure 2.4: Different simplifications of the volume rendering model. The
volume is shown in green. Black arrows indicate light traveling towards the
viewer on the left. Emission is highlighted in yellow and absorption in red.

that is attenuated due to the medium’s absorption σα [JSYR14].

Multiple scattering means to recursively Volume illuminationevaluate Eq. (2.18) with Is(x ,~ω) =∫
Ω s(x ,~ωi ,~ω)I (x ,~ωi)d~ωi taking scattered contributions s from all directions ~ωi

on the unit sphere Ω into account. Due to its computational effort, scattering is
usually simplified or omitted. Single scattering of external light approximates
Is by local illumination models like BRDFs using the gradient of the scalar
field as normal vector [Lev88, EHK∗06, HLSR08]. Local ambient occlusion
attenuates light contributions according to the absorption of surrounding

Volume shadowingsamples [HLY10] and deep shadow maps approximate transparency as seen
from a light source in a multi-layer texture to render shadows [HKSB06]. Global
illumination can be approximated by simulating light transport as a convection-
diffusion problem [ZM13]. Fig. 2.4 illustrates different simplifications of volume
rendering integral. For a detailed overview, the reader is referred to the survey
papers by Max and Chen [MC10] and Jönsson et al. [JSYR14].

A widespread simplification for interactive applications Emission-
absorption
model

only considers
emission and absorption of the medium. As Eq. (2.18) is analytically solvable
only for few cases [MC10], it is often expressed as a Riemann sum as shown in
Fig. 2.5. DiscretizationThe ray path 0. . .D is therefore subdivided into N segments of equal
length ∆s = D/N , where the i -th segment spans the interval [si , si+1]. The
radiance of segment i is approximated as Ii = Ie (si)∆s and the transparency

as Ti = e−σα(si)∆s , so that T (0,D) simplifies to e−
∫D

0 σα(t)d t ≈ e−
∑N−1

i=0 σα(si)∆s =∏N−1
i=0 e−σα(si)∆s =∏N−1

i=0 Ti [Max95]. The approximation of Eq. (2.18) then reads

I (D) ≈
N−1∑

i=0
Ii

i−1∏

j=0
T j + Ibg

N−1∏

j=0
T j . (2.19)

While higher Adaptive volume
rendering

order integration techniques can be applied, their accuracy is

22 Foundations

· · ·
s0 s1 s2 s3 s4 s5 s6 sN−1 sN

s

f (s)

0 D

Figure 2.5: Volume rendering of a signal using a Riemann sum approximation
that subdivides the interval [0,D] into N segments. The viewer is placed in the
origin and background illumination is emitted from outside the medium.

restricted due to discontinuities, e.g., at material boundaries. Thus, sampling
techniques in which segment lengths are adapted to the properties of the
integrand are preferred [EHK∗06, MC10].

Visual attributes, i.e.,Transfer functions
and classification

radiance and transparency, are calculated from the
medium’s scalar quantities via transfer functions. Pre-classification directly
maps quantities at each data point to visual attributes. As features of non-linear
transfer functions can be missed when interpolating pre-classified values at
ray samples, post-classification applies transfer functions after interpolating
quantities [EHK∗06]. Moreover,Pre-integration the volume rendering integral can be pre-
integrated for each pair of quantities and stored in lookup tables [EKE01].

While SPH simulationsApplication to SPH evaluate field quantities only at particle positions,
direct volume rendering requires a continuous sampling along rays. To prevent
costly sampling,Particle splatting particles can be splatted in any order with an emission-only
model [FSW09] or using depth-sorted particles to approximate the emission-
absorption model [HE03]. When directly splatting particles onto the screen,
only pre-classification can be applied. Particle quantities can also be splat into
an intermediate volumetric grid for ray casting [KC05, FAW10], which allows
for post-classification, but can cause interpolation artifacts and imposes severe
memory traffic. Direct rendering ofParticle access unstructured particle data requires efficient
access structures. Object space data structures like octrees [OKK10, RTW13,
HE03] can be used as well as perspective data structures that align with the
viewing rays [FAW10].

The emission-absorption volume rendering presented in Chapter 5 uses a
perspective data structure, adaptive sampling step sizes and post-classification.

2.4.3 Vector Field Visualization

While surface and volume rendering are able to convey mass and concentration
distributions, vector field visualization techniques are necessary in order to

2.4 Rendering and Visualization 23

convey directional information of the fluid flow.

General General
visualization
primitives

vector field visualizations use regularly sampled geometric primi-
tives like arrows and lines that may vary in size according to the vector mag-
nitude [JH04]. In line integral convolution (LIC) noise textures are convolved
with vector fields to yield a dense representation [CL93]. By mapping vector
fields to scalar data, volume rendering can be applied as discussed in Sec. 2.4.2.

Flow visualization can be expressively conveyed through integral lines, i.e.,
Integral linesstreamlines, pathlines, and streaklines. Integral lines are based on the velocity

field ~v (x ,τ) that maps positions to velocities for each point in time τ. By tracing
massless marker particles from a position x0 at starting time τ0 through the
velocity field, an arbitrary position on a streamline is found as [JH04]

xstream(τ, x0,τ0) = x0 +
τ∫

τ0

~v (xstream(s, x0,τ0),τ0)d s, (2.20)

and on a pathline as

xpath(τ, x0,τ0) = x0 +
τ∫

τ0

~v (xpath(s, x0,τ0), s)d s. (2.21)

For a streakline, marker particles are released at subsequent points in time
τ ∈ [τ0,τend] and integrated to time τend as

xstreak(τ, x0,τend) = x0 +
τend∫

τ

~v (xpath(s, x0,τ), s)d s. (2.22)

Connecting subsequent positions over time yields the actual integral lines.
While streamlines assume a steady velocity field, pathlines and streaklines are
traced assuming an unsteady flow. Fig. 2.6 shows a schematic visualization of

Figure 2.6: Vector field visualization using streamlines. Lines are seeded from
the red points and traced along the velocity field as depicted by the green
points.

24 Foundations

a set of streamlines that are seeded from a line of seed points. The precision of
the results and the rendering performance depend both on the time integration
scheme andAdaptive integration the time-step. Thus, adaptive sampling of integral lines can be
employed [CPK09].

Integral lines are usually visualized by geometric means like tubes and
ribbons [MLP∗10]. Additionally, illustrative techniques enhance renderings by
adding directional information, by reducing cluttering or by improving depth
perception [BCP∗12]. Surfaces of integral linesStream surfaces can be interactively rendered by
connecting neighboring lines to meshes [BFTW09] or by densely seeding lines
according to the current viewpoint [MSE14].

While it isOcclusion and
cluttering

desired to capture all important flow features, especially in 3D
flows, dense representations cause occlusion and cluttering. Several techniques
have been proposed to improve the visual presentation by automatically ad-
justing opacities in LIC [FW08] and in line-based rendering according to the
current viewport [GRT13, GTG17]. By automatically seeding linesAutomatic line

seeding
or surfaces

only in important flow regions [ELM∗12] and by a hierarchical clustering and
splitting of streamline bundles [HCCC12] followed by an adjustment of the line
thickness in screen space [KFW16] cluttering can be avoided.

In Chapter 6 a vector field visualization for advective-diffusive flows is
presented which is based on streamlines.

3

33
SPH-based Simulation of

Fluid Transport

This chapter describes the theoretical foundations of SPH-based simulations
and presents models to discretize the fluid transport equations as they are used
throughout the remainder of this thesis. The chapter closes by presenting adap-
tive methods and implementation strategies for efficient and parallel simula-
tions.
For a comprehensive introduction to the SPH method, the reader is referred to
the survey papers by Monaghan [Mon05] and Ihmsen et al. [IOS∗14].

TThe Lagrangian smoothed particle hydrodynamics method (SPH) has been
introduced by Lucy [Luc77] and Gingold and Monaghan [GM77] for the

simulation of astrophysical problems. While the first simulations of liquids
in fluid animation were based on compressible fluid models [MCG03, BT07],
SPH has progressed rapidly. Since then, the simulation of highly deformable
bodies [DC96], incompressible fluids [SP09b, MM13, ICS∗14, BK15], multi-
phase flows [SP08, RLY∗14] and surface tension effects [BT07, AAT13] have been
realized and SPH is easily able to interact with static [HKK07c] and dynamic
rigid [BTT09, AIA∗12] and elastic bodies [MMCK14, YCL∗17]. The principle
idea of SPH is to represent a continuous medium in terms of a discrete number
of particles which act as carriers of physical quantities. Continuous fields are
reconstructed at arbitrary positions from quantities of neighboring particles
using a weighting kernel. The momentum and transport equations can then
be discretized in terms of interactions between neighboring particles.

In the following, the theoretical foundations of SPH simulations are dis-
cussed in Sec. 3.1 before describing how fluid transport equations are dis-
cretized using SPH in Sec. 3.2. In Sec. 3.3, adaptive simulation methods are
presented that aim at reducing the computational overhead by adapting parti-
cle sizes or time steps and Section 3.4 discusses algorithmic means to achieve
efficient simulation especially on massively parallel platforms like GPUs.

25

26 SPH-based Simulation of Fluid Transport

3.1 SPH Interpolation and Kernel Functions

The derivation of the SPH interpolation starts by assuming an infinite number
of sampling points x in the simulation domain Ω. A function Q can then be
described in integral form as

Q(x) =
∫

Ω
Q

(
x ′)δ

(∥∥x −x ′∥∥)
d x ′, δ(x) =

{
∞ x = 0

0 else,
(3.1)

where d x ′ is the differential volume element and δ the Dirac delta function. For
computations, the Dirac delta function is approximated by a weighting kernel
W as

Q(x) ≈
∫

Ω
Q

(
x ′)W

(∥∥x −x ′∥∥ ,h
)
d x ′, (3.2)

where h denotes theSmoothing length h smoothing length. Finally, the field is discretized for an
arbitrary position x by replacing the volume integral with a sum over a finite
number of interpolation points, the particles, using particle quantities Q j as

Q(x) ≈ 〈Q(x)〉 =
∑

j
Q j V j W

(∥∥x −x j
∥∥ ,h

)
, (3.3)

where V j is a particle’s dynamic volume and 〈·〉 denotes the SPH-interpolation.
The discretization around another particle i as shown in Fig. 3.1 is usually

x ih xi j
.............................

........
......
......
......
....
....
......
......
........
...

W (xi j)

Figure 3.1: SPH-interpolation for a particle i weights contributions of neigh-
boring particles (green) inside its support radius h (green circle) by the kernel
function Wi j according to their distance.

written as 〈Qi 〉 = 〈Q(xi)〉 =∑
j Q j V j W

(∥∥xi −x j
∥∥ ,h

)
. In the following, however,

angle brackets will be omitted as is usually done in literature [Mon05, IOS∗14].

The kernel function

W
(
xi j ,h

)=Wi
(
x j ,h

)=Wi j (3.4)

weights contributions of particles j in the neighborhood of particle i depending
on their distance xi j =

∥∥~x i j
∥∥=

∥∥xi −x j
∥∥. The kernelKernel properties function usually should

satisfy the following properties [Mon05]

3.1 SPH Interpolation and Kernel Functions 27

• Normalization, i.e.,
∫h
−h W (x,h)d x = 1

• Even function, i.e., W (x,h) =W (−x,h)
• Converges to Dirac delta, i.e., limh→0 W (x,h) = δ(x)
• Non-negativity, i.e., W (x,h) ≥ 0
• Compact support, i.e., x > h =⇒ W (x,h) = 0.

While for physical correctness it is best to assume a Gaussian kernel [Mon92,
GM77], Small support radiiefficient simulations require a compact support radius as the compu-
tational cost of simulations is directly linked to the number of neighbors that
have to be considered. The number of neighbors, however, determines the
stability of interpolation and, in particular, derivatives are prone to errors if
there are only few neighbors [IOS∗14].

In practice, spline functions, e.g., the cubic spline, the poly6 or the Common kernel
functions

spiky
kernels are preferred. Especially in computer graphics the poly6 kernel is
very popular because the particle distance only appears squared so that no
square roots have to be calculated [MCG03]. Computing pressure forces, how-
ever, causes particles to clump together because its derivative vanishes as x
approaches zero so that there is too little repulsion between close particles.
Thus, for pressure calculations the spiky kernel has been proposed [DC96].
Fig. 3.2 shows the poly6 and spiky kernels and their first derivatives that will
be used throughout this thesis if not stated otherwise. Depending on the sim-
ulated physical quantity, more specialized kernel functions have also been
proposed. The cohesion kernel shown in Fig. 3.2(c) is employed to simulate
surface tension effects (see Sec. 3.2.1).

x

1-

2-

−2-

−3-

1

∂
∂xWpoly6(x)

Wpoly6(x)

(a) Poly6 kernel

x

5-
2.5-

−15-

−10-

1

∂
∂xWspiky(x)

Wspiky(x)

(b) Spiky kernel

x

0.2-

0.1-

−0.1-

−0.2-

0
1

C (x)

(c) Cohesion kernel

Figure 3.2: The poly6 and spiky kernel functions (red) and their first derivatives
(green) and the cohesion kernel (right). The particle distance is plotted on the
x-axis, the kernel weight on the y-axis. The support radius is h = 1.

28 SPH-based Simulation of Fluid Transport

3.1.1 Derivatives in SPH

As SPH interpolates fieldFirst derivatives quantities only in terms of particle quantities Q,
spatial derivatives only have to be applied to the kernel function as

∇Qi =
∑

j
Q j V j∇Wi j , (3.5)

where ∇Wi j is short for ∇xi W
(∥∥x i −x j

∥∥ ,h
)= ~x i j

xi j

∂
∂xi j

W
(
xi j ,h

)
. While this for-

mulation is a valid first derivative, it does not vanish for constant field values
and also the sum of gradients of all particles is not zero which, however, is
necessary if, e.g., pressure accelerations should be calculated in a momentum
preserving way.

Monaghan [Mon05] therefore proposed two different discretizations of
gradients in SPH by introducing an additional term in the derivative as ∇(ΦQ),
where Φ is any differentiable function. After applying the product rule and
rearranging, the gradient can be written as ∇Q = 1

Φ (∇(ΦQ)−Q∇Φ).Vanishing gradient
for constant fields

By applying
the standard SPH gradient from Eq. (3.5) on the right hand side and simply
assuming Φ= 1, the gradient definition

∇Qi =
∑

j

(
Q j −Qi

)
V j∇Wi j (3.6)

is obtained that vanishes for constant fields [Mon05]. For deriving the accel-
eration due to pressure differences,Antisymmetric first

derivatives
Φ= 1

ρ
can be used which after using the

quotient rule yields ∇Q
ρ =∇

(
Q
ρ

)
+ Q∇ρ

ρ2 and by applying SPH interpolation and

rearranging reads

∇Qi = ρi
∑

j
m j

(
Q j

ρ2
j

+ Qi

ρ2
i

)
∇Wi j . (3.7)

This antisymmetric formulation has been shown to conserve both angular and
linear momentum when used to calculate pressure acceleration, i.e., when
Q = p is used [Mon05].

For the standard Laplace operatorSecond derivatives ∇2 which in SPH formulation is given as

∇2Qi =
∑

j
Q j V j∇2Wi j , (3.8)

a similar problem arises, i.e., the Laplacian does not vanish for constant Q.
This causes loss or gain of quantities if it is applied to diffusion equations.
Additionally, the formulation is very sensitive to particle disorder [Mon05].Antisymmetric

second derivatives
In-

stead of directly using the second derivative of the kernel, Morris et al. [MFZ97]

3.1 SPH Interpolation and Kernel Functions 29

proposed a more stable formulation:

∇2Qi = 2
∑

j

(
Qi −Q j

xi j

)
V j

x i −x j

xi j
·∇Wi j = 2

∑

j

(
Qi −Q j

)
V j

∥∥∇Wi j
∥∥

xi j
, (3.9)

in which a first derivative of the kernel and a finite difference scheme for the
quantities is used.

3.1.2 Calculating the Fluid Density and Volume

While the particle’s mass mi is an intensive property of each particle i , it does
usually not change during a simulation so that mass preservation is implic-
itly guaranteed. However, the standard SPH interpolation does depend on
the volume of each particle which is an extensive property and thus has to
be recomputed every time the particle configuration changes. According to
Monaghan, the volume is generally expressed as Vi = mi

ρi
= mi∑

j m j Wi j
[Mon05].

If, however, multiple fluids of different rest densities are simulated, this
formulation leads to severe clumping at fluid interfaces [SP08]. Hence, a di-
mensionless formulation based on Particle number

density
the particle number density

ni =
∑

j
v j Wi j (3.10)

can be used to Dynamic volumecalculate the dynamic volume V as

Vi =
vi

ni
, (3.11)

where v is the rest volume of a fluid particle [OHB∗13]. The density is then
calculated as ρi = mi

Vi
. This formulation will be assumed in all later SPH inter-

polations. In the case of constant rest density, however, the above formulations
are equal.

3.1.3 Corrected SPH Interpolation

Although the standard SPH interpolation (see Eq. (3.3)) is commonly used in
simulations, it is not even able to reconstruct a constant field if the particle dis-
tribution is not perfectly regular. Irregular

neighborhoods
The evaluation of field quantities, especially

at the fluid surface or at arbitrary non-particle positions, can result in severe
under- or overestimation of quantities as shown in Fig. 3.3. In order to be able

30 SPH-based Simulation of Fluid Transport

x

1

.................

.

....

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..
..
..
..
..
..
..
..
..
...............
........................

.

..

..
..
..
..
..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

.................................
..
..
..
..
..
..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

.

....

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..
..
..
..
..
..
..
....................................

..

..
..
..
..
..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.............

∑
j V jW j (x)

∑
j V jŴ j (x)

Figure 3.3: Comparison of the reconstruction of a constant quantity field using
standard SPH-interpolation (red) and corrected SPH-interpolation (green).

to reconstruct constant quantity fields, Corrected SPH (CSPH) interpolation
uses a normalizedShepard filter kernel [BK02]

Ŵi (x) = Wi (x)∑
j V j W j (x)

(3.12)

based on the Shepard filter [She68]. In the following, the corrected SPH in-
terpolation will be used whenever field quantities have to be calculated for
non-particle positions as done in Chapter 5 for volume rendering and in Chap-
ter 6 for vector field visualization.

3.2 Discretizing Fluid Transport in SPH

In the following, the discretization of the Navier-Stokes equation (see Eq. (2.5))
and the fluid transport equations (see Eq. (2.7) and Eq. (2.9)) in terms of in-
teractions between SPH particles will be described. In order to allow for an
efficient evaluation of the incompressibility, which is mandatory for visually
plausible fluid motion,Splitting non-pressure and pressure accelerations are usually cal-
culated separately following the splitting approach [Bri08]. The non-pressure
accelerations are first evaluated and used to predict particle velocities

~v∗ = ~v (τ)+∆τ~anon-pressure, (3.13)

which are used to derive pressure values to reduce the density deviations from
the rest density. The pressure acceleration is used to calculate the final velocity
as

~v (τ+∆τ) = ~v∗+∆τ~apressure. (3.14)

The incompressibility can be enforced using any of the pressure solvers that
will later be described. Additionally, transport of heat and concentrations can
be simulated. Alg. 3.1 gives a description of a splitting-based SPH simulation.

3.2 Discretizing Fluid Transport in SPH 31

1: while Simulating do
Particle neighborhoods and volumes

2: for all Particle i do
3: Ni ← Neighborhood of particle i . see Sec. 3.4
4: end for
5: for all Particle i do
6: Vi ← Calculate dynamic volume . see Sec. 3.1.2
7: end for

Particle interactions

8: for all Particle i do
9: ~anon-pressure

i ← Gravity, viscosity, etc. . Non-pressure acceleration
10: ~v∗

i ←~v (τ)+∆τ~anon-pressure . Predict velocity

11:
dQi
dτ ← Fluxes due to, e.g., diffusion . Heat and concentration fluxes

12: end for
Calculate pressures

13: for all Particle i do
14: ~apressure

i ← Resolve compression . Pressure acceleration
15: end for
Time integration

16: for all Particle i do
17: ~vi ←~v∗

i +∆τ ·~apressure
i . Correct velocities

18: x i ← x i +∆τ ·~vi . Advect particles
19: Qi ←Qi +∆τ · dQi

dτ . Integrate fluxes
20: end for
21: end while

Algorithm 3.1: A generic SPH simulation loop following the splitting approach.
The neighborhood search allows for efficient interpolation of particle quanti-
ties. Accelerations (green) and quantity fluxes (red) are calculated and finally
integrated.

3.2.1 Non-pressure Accelerations

Non-pressure accelerations mainly comprise gravity, viscosity, surface tension,
and interactions with rigid bodies.

Viscosity: Although viscosity is quite low for liquids like water, it is an integral
component of the equations of fluid motion. The most widespread model
of viscosity is the artificial viscosity [Mon05] which has been introduced to

32 SPH-based Simulation of Fluid Transport

computerArtificial viscosity graphics by Becker and Teschner [BT07] as

~aviscosity
i =




−∑

j m jν
~vi j ·~x i j

xi j+0.01h2∇Wi j ~vi j ·~x i j < 0

0 ~vi j ·~x i j ≥ 0
, (3.15)

where ν is an arbitrary parameter that loosely corresponds to the kinematic
viscosity and where 0.01h2 in the denominator is used to prevent divisions by
zero. Even though there are SPH models of viscosity that are more physically
plausible [MFZ97], the artificial viscosity is often preferred because it increases
stability [IOS∗14]. For highly viscous fluids like, e.g., tooth paste, implicit
viscosity formulations have been derived which are computationally expensive
and are not applicable to simulate fluids of low viscosity [PICT15].

Surface Tension: Surface tension is mostly simulated using inter-particle
interaction forces (IIF) or continuum surface forces (CSF).Inter-particle

interaction forces
IIF models [BT07,

TM05, YML∗17] are motivated by molecular attraction between particles that
cancels out in the fluid volume but causes a net force at fluid surfaces. CSF
models, in contrast, aim at minimizing the surface curvatureContinuum surface

forces
(CSF) [BKZ92,

MCG03, BPHK13] and often only influence particles at the fluid surface which
can be detected, e.g., by thresholding a color field gradient [MCG03]. According
to a comparison of different surface tension models, no model is equally suited
for all use cases and models should be chosen according to the desired fluid
effects [HRWE15].

Throughout this thesis, the combined model of Akinci et al. [AAT13] is
employed as

~atension
i =−

∑

j
Ki jγm j C

(
xi j

)~x i j

xi j
−

∑

j
Ki jγ(~ni −~n j), (3.16)

where surface normal ~ni = h
∑

j V j∇Wi j , Ki j = 2ρ0
ρi+ρ j

is a density dependent

weighting term, and γ a user-defined parameter. The first term uses the spe-
cially designed cohesion kernel C (see Fig. 3.2(c) in Sec. 3.1) that causes a
repulsion for close particles and an attraction between farther particles with a
maximum attraction at rest distance. The second term aims at minimizing the
surface curvature.

Boundary Handling: Static rigids such as the scene geometry can be effi-
ciently modeled using signed distance functions [HKK07c]Static rigid

boundaries
or by explicitly cal-

culating distances between particles and triangle geometries that are efficiently
accessed through, e.g., OpenVDB [ATO16]. Distance-based penalty forces can

3.2 Discretizing Fluid Transport in SPH 33

then be applied to particles [Mon05] or particle velocities and positions can be
adjusted by direct forcing approaches [BTT09, IAGT10].

Particle-based representations of rigid objects allow for a consistent dy-
namic two-way coupling. Two-way rigid

coupling
Rigids can be represented as a single layer of particles.

The dynamic particle volume is calculated as the inverse number density as
Vk = 1∑

l Wl
, where k and l are only rigid particles. The fluid-rigid interaction

is realized by mirroring fluid particle pressures to the rigid particles so that
these exert a pressure force on the fluid and vice versa. Additionally, friction
between rigid and fluid particles can be modeled using artificial viscosity (see
Eq. (3.15)) [AIA∗12]. Also for secondary effects like heat transfer between the
fluid and rigid objects [SSP07], a consistent particle-based representation is
advantageous. In this thesis, rigid objects are thus represented as particles.

Although the air phase is commonly ignored, Fluid-air interactionrandomly sampled ghost
particles around the fluid surface [SB12] or an external pressure [HWZ∗14]
have been used to mimic an air phase. Gissler et al. [GBP∗17a, GBP∗17b]
simulate liquid-air interaction in terms of a constant external velocity field that
causes friction at the fluid’s surface.

Many substances like surfactants [FAB∗11] behave differently on the fluid
surface than Consistent surface

model
in the bulk. Orthmann et al. [OHB∗13] introduced a consistent

surface model that assigns a value to each particle estimating its surface area.
By applying a one-sided tent kernel

δi =
{

1
d

(
1+ φi

d

)
if φi < 0

0 else
(3.17)

to the implicit surface definition φi =φ(x i) =
∥∥x i −

∑
j x j V j Ŵi j

∥∥−d [ZB05], a
smoothed surface delta value can be derived. The surface distance d matches
the particle radius. Using corrected SPH interpolation yields the particle’s
surface area as

Ai =Vi
∑

j
δ j V j Ŵi j . (3.18)

This allows to formulate conservative transport processes at the surface like
cleansing of rigid objects [OHB∗13] and to stably detect surface particles and
will be used in Chapter 4 for the simulation of evaporation and condensation.

3.2.2 Pressure Acceleration and Incompressibility

The last acceleration ~apressure
i = ∇pi

ρi
is due to pressure gradients which are

commonly calculated using the antisymmetric formulation of Eq. (3.7) in order
to guarantee conservation of linear and angular Momentum

conservation
momentum [Mon05, IOS∗14]

34 SPH-based Simulation of Fluid Transport

(see Sec. 3.1.1). Although this answers the question how pressures lead to an
acceleration of fluid particles, the question remains, how to obtain pressure
values to enforce incompressibility.

First methods to calculate pressure usedEquation of state
solvers

equations of state that relate parti-
cle densities to pressures. Equations of state for compressible fluids are based
on the ideal gas equation [MCG03] and for weakly compressible fluids on Tait’s
equation [BT07]. Even though equations of state are easily implemented, re-
ducing compressibility requires very small time steps due to their stiffness.

Solenthaler and Pajarola [SP09b] alleviated the time step restrictions by
Predictive-corrective

incompressibility
introducing predictive-corrective incompressible SPH (PCISPH) in which the
pressure is iteratively accumulated until particle densities converge to the rest
density. In implicit incompressible SPH (IISPH) [ICS∗14]Implicit pressure

solvers
the density invariance

condition is discretized by predicting densities due to non-pressure forces
and solving for pressures that restore constant rest density after time integra-
tion [ICS∗14]. Instead of the density invariance, the divergence-free condition
of the velocity field is addressed in divergence-free SPH (DFSPH) [BK15]. In
position-based fluids (PBF) [MM13]Position-based

fluids
particle positions are directly optimized

assuming a quasi-static problem to resolve density constraints. The reader is
referred to the survey by Ihmsen et al. [IOS∗14] for a thorough discussion of
pressure solvers.

Throughout this thesis, incompressibility in SPH-based fluids is enforced
using PCISPH.

3.2.3 Transport of Concentrations and Heat

While the above models only considered the equations of fluid motion, addi-
tional fluid properties can be advected with and diffused inside the fluid as
discussed in Secs. 2.1.3 and 2.1.4.

The time rate of change ofHomogeneous
diffusion

concentration c due to diffusion follows Fick’s
second law [ALS09]. Assuming a homogeneous medium it can be expressed
as [Mon05, CM99]

dci

dτ
= 2D

∑

j

(
ci − c j

)
V j

∥∥∇Wi j
∥∥

xi j
. (3.19)

Heat transfer follows the very similar law of Fourier. However, heat transport
is usually not restricted to a homogeneous liquid phaseHeterogeneous

materials
but also encompasses

heat transport in rigid objects. Cleary and Monaghan [CM99] arrive at

dTi

dτ
= Vi

mi Ci

∑

j

4κiκ j

κi +κ j

(
Ti −T j

)
V j

∥∥∇Wi j
∥∥

xi j
(3.20)

3.3 Adaptive Simulation 35

to model heat conduction, where C denotes the specific heat capacity and κ

the heat conductivity. By using
4κi κ j

κi+κ j
as the effective heat conductivity, hetero-

geneous materials with substantially varying conductivities can be simulated
in SPH [CM99]. In both cases, the discretization of the Laplacian of Eq. (3.9)
has been applied.

3.3 Adaptive Simulation

Apart from the proper modeling of the fluid transport equations, visually plau-
sible simulations also depend on the spatial resolution. As larger numbers of
particles increase both the memory consumption and the computation time,
adaptive methods have been introduced that limit the particle refinement to
certain areas of interest, e.g., the fluid’s surface.

Spatial Adaptivity: A simple but Two-scale
simulation

effective method to achieve high resolution
at the surface and lower resolution in the fluid’s bulk is to use separate simula-
tions in each area and indirectly couple the resolutions by artificial forces [SG11,
HS13]. However, separate simulations can diverge and mass-preservation is
not guaranteed. Instead, splitting and merging of directly interacting particles

Splitting and
merging

has been applied in order to adjust particle sizes [APKG07, DC99]. Direct re-
placement of particles, however, causes instabilities in incompressible fluids.
These have been alleviated with the concept of Temporal Blending [OK12] by
smoothly adjusting resolutions over time. Recently, the concept of Continuous particle

mass
continuous

adjustment of particle masses has been introduced [WHK17], where local im-
portance criteria are mapped to an optimal mass mopt

i each particle should

take on. The ratio mrel
i = mi

mopt
i

is then used to classify particles into categories.

Particles that are far too large can be split. Far too small particles can be merged
with neighbors, and among other particles, mass can be smoothly redistributed
to meet the optimal particle mass [WHK17]. A derived approach is used in
Chapter 4 to continuously evaporate particles.

Temporal Adaptivity: As discussed in Sec. 2.3, time Global vs. local time
steps

steps should be chosen
according to CFL conditions that depend on the current particle configura-
tion. CFL conditions can also be defined to vary in space according to the
configuration of the local particle neighborhood. By locally adjusting time
steps, computational resources can be saved. Locally adaptive time stepping
can either freeze particles in quiet areas [GP11] or use integer multiples of a
global time step [GB14] or freely adjustable time steps [RHEW17] that locally
adapt to the fluid properties. Local time stepping methods, however, have not

36 SPH-based Simulation of Fluid Transport

been applied to incompressible fluids because they cause instabilities. In order
to improve efficiency in incompressible fluids, time steps are often globally
adapted [IAGT10].

The reader is referred to the survey of Manteaux et al. [MWN∗16] for further
details on adaptive methods.

3.4 Efficient and Parallel Implementation

When using a Gaussian kernel as proposed by Monaghan [Mon05],Complexity of SPH SPH sim-
ulations can have quadratic cost in case every particle has to interact with
every other particle like in astrophysical gravitational problems. In case of
incompressible fluids and compact support radii, however, pressure forces
keep particles apart so that the problem can be reduced to linear cost as only a
maximum number of particles is in the neighborhood of every other particle.
As interactions between neighboring particles can be formulated indepen-
dently for each particle, SPH can be trivially parallelized and is well-suited to
massively parallel architectures like GPUs [Gre09].

The question of how to compute dynamically changing particle neighbor-
hoods so that no unnecessary particle pairs have to be considered lies at the
heart of every efficient simulation. In simulations with varyingNeighborhood

search
particle sizes, hi-

erarchical data structures like kd-trees [KAG∗06, APKG07] or OpenVDB [ATO16]
are often used to sort and efficiently access particles according to their spatial
position. For uniform particle sizes, uniform grids are preferred because of
their simplicity [Gre09, GSSP10, IABT11, WHK16]. For every uniform grid cell,
memory needs to be reserved even if it is empty, thus, for large scale simula-
tions, compact hashing can be employed in which memory is only occupied
for non-empty cells [THM∗03, IABT11]. In order to efficiently simulate FLIP
on GPUs, voxel data structures are applied to calculate pressures and access
particles [WTYH18].

TheseNeighborhood lists data structures can either be accessed in every SPH interpolation
to iterate over particle neighborhoods on-the-fly or neighborhood lists can
be computed. Interpolations then only have to loop over each particle’s list
of neighbors and the access data structure can be discarded after the lists
have been generated [DCGG13]. Neighborhood lists are able to increase per-
formance considerably, especially if many interpolations are necessary like
in iterative pressure solvers, however, they also drastically increase memory
consumption [WHK16]. As the calculation of neighborhood lists itself imposes
a computational overhead, the fact that particles usually don’t move much
between time steps can be exploited by recomputing neighborhood lists only

3.4 Efficient and Parallel Implementation 37

every n-th time step [IABT11, ATO16].

For GPU-based GPU-based
implementations

implementations there are two distinct options: particles
can either be scattered onto evaluation points which incurs write collisions
or they are gathered at sampling positions which requires access to particle
neighborhoods. In early GPU-based approaches, Scatteringscattering of particle data into
textures was usually applied as it maps well to the programmable rasterization
pipeline [HKK07c, HKK07a, ZSP08]. Scattering does not rely on acceleration
data structures and is still attractive for rendering [vdLGS09, FAW10, FGE10].
Gathering approaches, Gatheringin contrast, are better able to exploit massive paral-
lelism but rely on generic APIs like OpenCL or CUDA in order to calculate
data structures for neighborhood search [Gre09, GSSP10, MMCK14]. Neigh-
borhood search is usually realized using uniform grids and spatial index-
ing [Gre09, WHK16] in combination with data-parallel sort [SHG09], and scan
and compact primitives [SHZO07]. Neighborhood lists can be calculated in
one pass using preallocated Neighborhood listsmemory assuming a fixed maximum number of
neighbors per particle [WHK16] or in two-passes by first counting the number
of neighbors and in the second pass collecting the indices of neighboring par-
ticles to reduce memory consumption [OK12]. In constrained neighborhood
lists [WHK16], particle support radii are iteratively reduced to achieve a user-
defined number of particle neighbors. This both increases performance and
reduces memory consumption as necessary on GPUs due to limited VRAM.

4

44
Simulation of Evaporation

and Condensation

This chapter presents a method to simulate evaporation and condensation of
liquids. Therefore, both the air and liquid phases have to be simulated. A coarse
grid is employed for the air phase, as a carrier of vapor, and mass-preservingly
coupled to an SPH-based liquid and rigid body simulation. Since condensation
only takes place on rigid surfaces, it is captured using textures that carry water to
achieve high surface detail. The textures can exchange water with the air phase
and are used to generate new particles due to condensation effects yielding a full
two-way coupling of air phase and liquid. In order to allow gradual evaporation
and condensation processes, liquid particles can take on variable sizes.
In order to improve the rendering of liquids in contact with rigid surfaces, e.g.,
of condensed droplets, a modified implicit surface definition is proposed that
is able to render dynamic contact angles for moving droplets and yields highly
detailed fluid renderings.
The methods described in this Chapter have been published [HK17] and pre-
sented at the Symposium of Computer Animation (SCA) 2017 in Los Angeles,
USA.

EEvaporation and condensation are ubiquitous phenomena encountered
in everyday life, yet, they have not been modeled and simulated in a

comprehensive way. While there are some works in which liquid and gaseous
fluids are coupled, e.g., to simulate burning oil [LSSF06, MMCK14], no two-
way coupling of water and its vapor in air has been proposed so far. In the
context of SPH-based fluids there have been models of evaporation due to boil-
ing [MSKG05, PCPW15, VTT∗18] while Tillmann and Bohn [TB15] simulated
condensation on rigid surfaces by generating explicitly meshed droplets from
vapor transported in a grid.

In this chapter, a simulation of evaporation and condensation is proposed
that uses a coarse Eulerian grid to simulate the air phase while the liquid
phase is simulated using SPH particles. Condensation only takes place on
rigid surfaces and is realized in sub-particle detail using textures to deposit
mass into, and to generate new particles from. In order to allow for gradual
evaporation, particles use variable sizes. In reality, fluids in close contact with

39

40 Simulation of Evaporation and Condensation

rigid surfaces take on distinct contact angles. In order to allow for a rendering of
SPH fluids with dynamic contact angles a modified implicit surface description
is proposed.

In summary the contributions areContributions

• a physically-based model of evaporation and condensation that allows
for

• mass-preserving coupling of grid, and particle system to simulate evapo-
ration and condensation,

• sub-particle detail of surface wetting using textures to contain mass and
• rendering of dynamic contact angles using an improved implicit surface

representation for SPH fluids.

The remainder of this chapter is structured as follows. Sec. 4.1 discusses
related work and introduces necessary foundations for the proposed algorithm
that is outlined in Sec. 4.2. The heat coupling between different systems is
discussed in Sec. 4.3, and Sec. 4.4 presents the method to simulate evapora-
tion and condensation. In Sec. 4.5 the improved implicit surface definition
is introduced. Results are presented in Sec. 4.6, before Sec. 4.7 draws final
conclusions.

4.1 Foundations and Prior Work

This section briefly describes closely related works to the contributions in
this Chapter and gives necessary foundations of fluid flow and evaporation
and condensation that have not been covered in Chapter 2. As discussed in
Chapter 3, thereSPH-based

simulation
is a wide array of phenomena that have successfully been

described in SPH, like the thermodynamic processes of melting and solidifi-
cation [SSP07]. Evaporation has been modeled by stochastically transforming
liquid to air particles after reaching a critical temperature [MSKG05] or using
a physically-based model of boiling [PCPW15]. Villa Salazar et al. [VTT∗18],
published after the work presented here, simulate boiling and condensation by
directly transforming liquid to gas particles and vice versa using a latent heat
model. The model, however, does note take the surrounding air phase into
account and is not able to address other evaporative phenomena than boiling.
Ren et al. [RLY∗14] allow particles to carry volume fractions of different fluid
phases that can mix, unmix and react. Although the model is able to simulate
chemical reactions of two liquids to form a gaseous product, all particles have
a constant mass so that the volume of gas particles drastically increases which
impairs simulation stability. Moreover, the fluid mixture is not incompressible,
hence, the pressure term has to rely on an equation of state. Yang et al. [YCL∗17]

4.1 Foundations and Prior Work 41

extend the approach by including heat transport and model continuous phase
changes using a volume fraction model. Although the model is supposed to
capture phase changes between solid, liquid and gaseous states, only melting
and solidification is considered.

In the context of mesh-based methods, Grid-based
simulation

versatile interactions of liquids,
solids and gases have been realized by Losasso et al. [LSSF06] and very detailed
interaction of water with surfaces has been simulated by Wang et al. [WMT05].
Tillmann and Bohn [TB15] first used a grid to simulate an air phase that trans-
ports vapor which can be condensed to static droplets on rigid surfaces using
explicit meshes.

High-quality rendering of SPH fluids is mainly achieved using implicit
surface definitions [ZB05, SSP07, YT10, OCD11] Surface renderingas discussed in Sec. 2.4.1. Al-
though these methods are able to yield smooth liquid surfaces, interactions
with rigid objects can cause visually unplausible interpenetration. For mesh
based surface representations, vertices can just be moved to closest point on

Interaction with
rigid objects

the rigid surface to resolve intersections [HKK07b]. This however can cause
self-intersections in the resulting mesh and is, like all mesh optimization strate-
gies, not applicable to direct rendering approaches. Approaches that directly
modify the implicit surface definition, in contrast, can also be applied in direct
rendering. In that way, Huber et al. [HEW15] successfully prevent the liquid
surface from penetrating cloth and Morgenroth et al. [MWE16] enforce a pre-
scribed static contact angle between liquid and solid surfaces which greatly
enhances optical realism. However, dynamic contact angles that are formed
between moving liquids and rigid surfaces have not yet been addressed.

4.1.1 Equations of Fluid Flow

For grid simulations, usually an incompressible, inviscid fluid is assumed which
can be described using the Navier-Stokes equations (see Eq. (2.4) in Sec. 2.1).
Temperature T and density ρ are just advected with the flow according to

∂T

∂τ
= − (~v ·∇)T (4.1)

∂ρ

∂τ
= − (~v ·∇)ρ. (4.2)

In order to make warm air rise and dense air sink, an explicit Buoyancybuoyancy can be
introduced into the external acceleration as an additional term

~abuoy =−αρĝ +β (T −Tamb) ĝ , (4.3)

where ĝ is the normalized direction of gravity, ρ the density and α and β are
user-defined parameters [FSJ01].

42 Simulation of Evaporation and Condensation

4.1.2 Evaporation and Condensation

Evaporation and condensation depend on the states of the liquid and air phase
and follow the difference between the saturation vapor pressure at the surface
temperature and the partial pressure of the vapor in the air phase, i.e., the vapor
pressure [SLJ94, Sha14]. At saturation vapor pressure, the liquid and gaseous
state of water are just at an equilibrium so that no net phase change occurs.
If the actual vapor pressure is larger, condensation sets in, else evaporation
takes place. TheVapor pressure vapor pressure can easily be described using the ideal gas
equation [RY96] as

pc =
mc Rw (Tc −273.15 ◦C)

Vc
, (4.4)

where mc is the water vapor mass in the air, Vc its volume, Tc the temperature
in ◦C and Rw the specific gas constant of water. The saturation vapor pressure
at surface temperature Ts can be calculatedSaturation vapor

pressure
from Magnus’ formula [RY96] as

psat
s = 611.2Pa ·exp

(
17.62 ·Ts

243.12 ◦C+Ts

)
. (4.5)

To calculate the time rate of change of mass of a liquid surface due to evapora-
tion, Smith et al. [SLJ94] proposed the followingEvaporation rate formula based on empirical
data

∂ms

∂τ
= As(a +b · ‖~v‖)

(
psat

s −pc
)
. (4.6)

It depends on the surface of contact As , the saturation vapor pressure of the
liquid surface psat

s , the vapor pressure of the air phase pc , the air velocity at the
interface ~v , and two parameters a and b.

4.2 Algorithm Overview

The proposed algorithm can be subdivided into three phases.

Phase 1 comprises a standard SPH-simulation including rigid particles and
adaptive particle sizes.

Phase 2 is a standard grid-based simulation of the air phase with vapor and
temperature advection.

Phase 3 realizes the couplings between the grid based air phase, the SPH-
based liquid phase and rigid objects. The coupling comprises heat trans-
fer (see Sec. 4.3) and mass transfer due to evaporation and condensation
(see Sec. 4.4). In order to add sub-particle details of evaporation and

4.2 Algorithm Overview 43

condensation, rigid objects use textures into which water can condense
and evaporate from.

1: while Simulating do
Phase 1 - Simulate particles (liquid and rigid)

2: Move particles according to forces of last iteration
3: Neighborhood search
4: Heat transport
5: External forces
6: Pressure solve

Phase 2 - Simulate grid (air phase)

7: Classify cells as air or liquid/rigid
8: Add forces, enforce boundary conditions
9: Advection of velocity, vapor and temperature

10: Diffusion of heat, vapor
11: Pressure projection

Phase 3 - Coupling of grid, particles, texture

12: Neighborhood search: texture ↔ (rigid) particles ↔ grid ↔ texture
13: Heat transfer: (rigid) particles ↔ grid
14: Temperature interpolation: rigid particles → texture
15: Particle evaporation: particles → grid
16: Sub-particle evaporation and condensation: grid ↔ texture
17: Particle condensation: texture → particles
18: Mass redistribution and merging of particles
19: Particle path force
20: end while

Algorithm 4.1: Overview over the proposed simulation of evaporation and
condensation. Colored parts are added for the approach. Red color denotes
heat transport and green color denotes mass transport. Coupling directions
are highlighted in bold face.

Alg. 4.1 gives an overview over the proposed algorithm. Fig. 4.1 shows the
paths of heat transport and mass transport in more detail. Except for the
deposition of mass, no dynamic behavior of water inside textures is simulated.
However, there are different approaches to simulate texture-based water flows
on surfaces which could be included [WMT07, EJGP09].

4.2.1 Particle Simulation

The SPH-simulation is based on standard components and comprises a PCISPH
pressure solver [SP09b], rigid particles [AIA∗12] and surface tension and adhe-

44 Simulation of Evaporation and Condensation

Condensation / Ev
ap

or
at

io
n

Evaporation
C
on

de
ns
at
io

n

Transfer
In
te
rp
ol
at
io

n

G
rid

Particle

Te
xt
ur
e

Figure 4.1: Mass transfer (outer green circle) and heat transfer (inner red circle)
between different systems. Arrows indicate in which direction transfer can
take place.

sion [AAT13]. As evaporation and condensation takes place at surfaces, the ap-
proach depends on a stable measure of a particle’s surface area Ai which is cal-
culated as proposed by Orthmann et al. [OHB∗13] (see Eq. (3.18) in Sec. 3.2.1).

As the simulation of evaporation causes particles to loseAdaptive particle
mass

mass, particles are
allowed to have adaptive sizes. In literature, particle sizes are usually adjusted
by modifying the support radius. If particles of different support radii interact,
this can, however, lead to severe instabilities [OK12, WHK17]. Thus, the support
radius is left unchanged and only particle masses are scaled using a weighting
term wi ∈ [0,1]. Due to the fact that the weighted mass mwi = wi mi is used in
the density calculation, the fluid volume is automatically scaled accordingly. In
order to achieve an efficient simulation it is desirable to use larger particles of
w = 1, therefore, smaller particles are allowed to merge.

4.2.2 Grid Simulation

The grid is mainly used as a means to simulate the air phase and transport
water vapor, thus, a coarse grid with a cell size larger than two times the particle
support radius is employed. The grid simulation uses semi-Langrangian ad-
vection [Sta99], a simple conjugate gradient solver to enforce a divergence-free
velocity field and vorticity confinement [FSJ01] to retain fine details of the flow
dynamics. The liquid and rigid particles are considered as boundary condition

4.3 Heat Transfer 45

for the grid simulation, i.e., cells are classified as air or solid/liquid.

4.2.3 Texture-based Rigid Surface Representation

To allow for a sub-particle detail evaporation and condensation at rigid sur-
faces, textures are used as a means to describe condensed water mass. For
the approach to work, several static textures are precomputed, i.e., textures
that store the world position xt of each texel t and surface area spanned by
the texel At . In order to transfer mass from the texture to particles, Particle seed texturea texture
that stores particle seeding positions is used. These are created using Poisson
disk sampling [Bri07] to prevent overlapping seeding positions which cause
instabilities if particles are simultaneously emitted at very close positions. Ad-
ditionally, a texture that stores the maximum amount of mass that is allowed to
be deposited in each texel mmax

t is used.

The only dynamic textures are the mass texture which stores the actual
amount of water at each texel mt , the temperature texture Tt and a wetting
history [WMT05]. The latter allows particle paths along surfaces to be rendered
and to prevent emitting particles in the neighborhood of texels that are already
covered by particles.

4.2.4 Neighborhood Search

As depicted in Fig. 4.1, the simulation includes direct interactions between
every pair of systems, thus, neighborhoods for grid-cells, texels and rigid and
liquid particles have to be calculated. As rigids are static in the simulation and
textures are fixed to their rigid bodies, neighborhoods between rigid particles,
grid cells and texels have to be calculated only once. For liquid particles,
however, neighborhoods have to be recomputed in every time step. In order to
calculate neighborhoods between grid cells, particles and texels, the cell-based
approach of Green [Gre09] is adopted.

4.3 Heat Transfer

Thermodynamic processes like evaporation and condensation depend on the
temperatures of the different phases. Thus, all components of the simulation
first have to be coupled in terms of heat transport to achieve realistic behavior.
Heat transport between particles is realized according to Cleary and Mon-
aghan [CM99] (see Eq. (3.20) in Sec. 3.2.3). Heat, however, has to be transferred

46 Simulation of Evaporation and Condensation

across phase transitions between grid cells and particles and to the surface
textures.

4.3.1 Heat Transfer Between Grid and Particles

The transfer of heat between grid cells and particles follows a form of Fourier’s
law that resembles Newton’s law of cooling and reads

dT

dτ
=

dQ
dτ

ρ ·C = U A∆T

ρ ·C , (4.7)

where A is the interface area over which heat is transferred, and U is the overall
heat transfer coefficient which is a constant for each pair of materials and
can be calculated from the respective materials’ heat conductivities κ and the
distance the heat transfer has to bridge [LL16, BSL07].

Particles i can interact with more than one neighboring cell c, and cells
interact with more than one particle, thus, neighborhoods have to be iterated
in order to calculate heat transfer.Time rate of change

of temperature
The time rate of change of temperature due

to heat transfer across the air-liquid or air-rigid interface then can be expressed
as

dTi

dτ
= 1

ρi Ci
Ai

∑
c

Ui cαi c (Ti −Tc) (4.8)

for particles i and

dTc

dτ
= 1

ρcCc

∑

j
A jU j cα j c

(
Tc −T j

)
(4.9)

for cells c. The coefficients αi c denote trilinear interpolation weights for po-
sition xi that are used to weight cell-particle interactions. The heat transfer
coefficient is calculated in accordance with the heat transfer between particles
(see Eq. (3.20)) as Ui c = 2κi κc

h(κi+κc) by assuming the transfer has to bridge the

support radius h until the air phase is reached2. Note that the temperature flux
is not antisymmetric as the actual physical quantity transferred is heat.

4.3.2 Heat Transfer to Texture

Textures are only used as a means to increase the surface detail of rigid bodies.
Thus, they should not add too much computational overhead. To that end,

2In the original manuscript [HK17], the heat conductivity κ was directly used whereas the
distance over which heat is transported erroneously was neglected. This is corrected by taking
the overall heat transfer coefficient U = κ

∆x [LL16]. Note, the presented simulation results were
not affected as ∆x corresponds to the particle support which was set to h = 1.

4.4 Evaporation and Condensation 47

instead of directly including textures in heat transport, Interpolation of
texel temperatures

rigid particle tempera-
tures are only interpolated onto the texels in each time step using a corrected
SPH interpolation, see Eq. (3.12).

4.4 Evaporation and Condensation

As evaporation and condensation only take place at rigid and liquid surfaces,
the simulation model is based on the general notion of surface elements or
surfels. Surfels will be denoted with s which can mean texel or liquid particle
and cell values are denoted with c. First, the general model of evaporation
and condensation is described before the specific algorithmic solution is de-
tailed that allows for a mass-preserving coupling between texels, grid cells and
particles.

In order to allow evaporation and condensation to transfer variable amounts
of mass between air and liquid, particles of variable size are used. However, in
order to prevent a system of a lot of very tiny particles and to prevent too small
particles to penetrate rigid surfaces [WHK17], particles are kept as close as
possible to wi = 1. This is done by allowing particles to exchange mass among
each other and by merging neighboring particles.

4.4.1 Modeling Evaporation and Condensation

Although the time rate of change of mass in Eq. (4.6) originally only described
evaporation, it will also be used to model condensation. Depending on the
sign of ∂ms

∂τ
, either evaporation or condensation Initial evaporation

and condensation
rates

takes place which allows to
separately describe both rates as

evaRate(c, s) = max

(
∂ms

∂τ
,0

)
, (4.10)

condRate(c, s) = −min

(
∂ms

∂τ
,0

)
, with b = 0, (4.11)

for a cell c and a surfel s. To get spatially smooth values, trilinear interpola-
tion of cell quantities at position xs is used. As the velocity term in Eq. (4.6)
introduces energy, it can only cause an increase of evaporation but not of con-
densation, thus, its contribution is removed in case of a condensation process
by setting b = 0. In order to guarantee mass preservation, the same amount of
mass that is taken from the liquid has to be transferred to the air phase and
vice versa, i.e., ms←c =−mc←s has to be enforced.

48 Simulation of Evaporation and Condensation

4.4.2 Texel Evaporation and Condensation

As the model of evaporation and condensation is based mainly on temper-
atures, it can easily calculate evaporation or condensation rates that would
cause either negative masses or make texels exceed their maximum allowed
mass mmax

t . Thus, a balancing step is necessary that guarantees that both the
cell’s vapor mass and the surfel’s water mass stay non-negative. Additionally,
the maximum amount of mass mmax

t of texels must not be exceeded.

The proposed approach works by taking the evaporation and condensation
rates aboveCorrection of initial

rates
only as initial estimates and correcting them using scaling factors.

Alg. 4.2 gives a detailed description of evaporation and condensation using
textures. First the texel mass is bounded. Evaporation is scaled by factor w eva

t ∈
[0,1] which enforces non-negativity of texel masses while the factor w cond

t ∈
[0,1] is applied to condensation and enforces a maximum texel mass of mmax

t .
After properly scaling the mass transfer to respect the texel bounds, a third
scaling factor w cond

c is applied to condensation that enforces non-negativity of
vapor mass in cells. After scaling, the masses of cells and texels are updated.
Alg. 4.2 ensures that the total mass in the simulation is preserved.

4.4.3 Evaporation and Condensation of Particles

While particles can directly evaporate by transferring mass to the grid, con-
densation is only realized through the texture. In order to generate particles
from texels due to condensation, the precomputed texture that stores particle
seeding positions is used. Particle condensation directly takes mass from texels
and only takes place if sufficient mass is present, thus, no special balance has
to be calculated.

The same is not true for particle evaporation for which a similar correction
as outlined in Alg. 4.2 is applied. However, adaptive particle masses are deter-
mined using weighting terms wi , which thus have to be adjusted instead of
changing the particle mass, directly.

When a texelWetting history has just been in contact with a particle, the texel is excluded
from condensation for a small amount of time. This achieves two goals: Firstly,
it prevents fluctuating evaporation and condensation of particles back and
forth into the texture and, secondly, it allows for a realistic rendering of particle
paths down surfaces. To keep track of excluded texels, the time of the last con-
tact between texels and particles is stored in a wetting history texture [WMT05].

4.4 Evaporation and Condensation 49

Phase 1 - Initial estimate

1: for all Texel t do
2: for all Cell c do
3: meva

c←t ← evaRate(c, t) ·dτ . see Eq. (4.10)
4: mcond

t←c ← condRate(c, t) ·dτ . see Eq. (4.11)
5: end for
6: end for

Phase 2 - Balance

7: for all Texel t do
8: weva

t ← min
(

mt∑
c meva

c←t
,1

)
. Keep texel non-negative

9: wcond
t ← min

(
mmax

t −mt∑
c mcond

t←c
,1

)
. Keep texel mass below mmax

t

10: for all Cell c do
11: meva

c←t ← meva
c←t ·weva

t . Scale mass transport
12: mcond

t←c ← mcond
t←c ·wcond

t
13: end for
14: end for
15: for all Cell c do
16: wcond

c ← min
(

mc−
∑

t meva
c←t∑

t mcond
t←c

,1
)

. Keep cell non-negative

17: end for
Phase 3 - Update mass

18: for all Texel t do
19: mt ← mt +

∑
c (mcond

t←c ·wcond
c −meva

c←t)
20: end for
21: for all Cell c do
22: mc ← mc −

∑
t (mcond

t←c ·wcond
c −meva

c←t)
23: end for

Algorithm 4.2: Evaporation from and condensation into textures. Because
the initial evaporation and condensation rates in Phase 1 may cause negative
mass or may exceed mass bounds, they have to be corrected in Phase 2 before
updating the masses Phase 3.

4.4.4 Dynamic Particle Adjustment

As particles can shrink due to evaporation, particles of different sizes may
interact. Recently, an adaptive SPH simulation with continuously adjustable
particle sizes has been presented [WHK17] that builds on particle merging
and redistribution of mass among neighboring particles in order to arrive
at prescribed sizes. In order to prevent particles from interacting that have
strongly different sizes, a similar idea is adopted.

In this approach, however, particles of uniform size wi = 1 should be
achieved, thus, particles are allowed to merge if the sum of their weights does

50 Simulation of Evaporation and Condensation

not exceed 1, else mass between particles of different size can be redistributed
in order to make particle sizes more uniform. Uniform particles achieve better
stability and are able to prevent liquid particles from penetrating rigid objects
that are also uniformly sampled.

In order to merge neighboring particles i and j to form a newParticle merging particle n,
their weights are used. The new weight is the sum of the old weights wn =
wi +w j . All other quantities, except for the mass which remains constant, are
determined using a weighted average as

xn = xi wi +x j w j

wn
(4.12)

to guarantee conservation of momentum [WHK17]. After merging only particle
n remains and i and j are removed. In case of mass redistribution, only the
fraction wi − wi+w j

2 of the larger particle i is redistributed to the smaller particle
j . And only the remaining quantities of particle j are updated like above.

4.5 Surface Rendering

In order to achieve a realistic fluid appearance, it is crucial to have a proper
interaction of fluids with rigid surfaces. This can either be achieved by simu-
lating the interaction of liquid particles with the rigid at costly high particle
resolution [BPHK13] or by approximating the appearance only in the render-
ing step. Although fluid rendering that uses implicit surface definitions is not
new, only recently Morgenroth et al. [MWE16] proposed a method to achieve
prescribed static contact angles at rigid surfaces. Starting from the original
zero level-set surface definition described in Sec. 2.4.1 in the following two
subsequent correction steps to φ(x) are proposed in order to achieve dynamic
contact angles depending on the velocity of the fluid.

Deserno [Des04]Parametric fluid
meniscus

derived a parametric description for the fluid meniscus at
a vertical solid wall for arbitrary angles between the horizontal plane and the
fluid surface ψ0 as

x(s,ψ0) = l
s
l cosh s

l + (s
l cos ψ0

2 − (1−cosψ0))sinh s
l

cosh s
l +cos ψ0

2 sinh s
l

y(s,ψ0) = l
2sin ψ0

2

cosh s
l +cos ψ0

2 sinh s
l

, (4.13)

where x(s,ψ0) describes the distance to the wall in normal direction, y(s,ψ0)
the vertical offset from the horizontal plane and s is the arc length of the

4.5 Surface Rendering 51

meniscus starting at the wall with s = 0. l is the capillary length which in this
work is set to the particle radius. x(s,ψ0) is close to identity, i.e., s ≈ x(s,ψ0) for
moderate angles ψ0 so that y(s,ψ0) can be used to correct the surface distance
function as proposed by Morgenroth et al. [MWE16].

As the derivation in Eq. (4.13) only describes Static contact anglean offset from the horizontal
plane, in practice, the correct initial contact angle between fluid and rigid has
to be enforced. Therefore, Morgenroth et al. [MWE16] mirror ghost particles
across solid walls which, however, can cause problems if fluid particles are on
both sides of thin rigid walls and is costly due to the sampling of additional
particles. Instead, in this work an explicit correction is presented which in turn

Projected footprintextrudes a projected footprint of the fluid onto the wall. Fig. 4.2 (left) shows
a schematic of the proposed approach. Assume a fluid is in close vicinity to a
wall with unit normal ~n, the weighted average position is x̄ and the grid point
to evaluate the signed distance for is x . Then the distance function is adjusted
according to

φ(x) = ‖x − x̄(x)‖−
(

r̄ (x)

sin(β)
+d(x)

)
, with

β = arccos

(
max

(
x̄ −x

‖x̄ −x‖ · n̂,0

))
. (4.14)

As particle sizes vary, the CSPH interpolated radius r̄ (x) is used (see Eq. (3.12)).
The max in β restricts the correction to work in the direction of the solid wall.
In a next step the term d(x) is calculated which allows to enforce dynamic

~n

r̄

r̄
sin(β)

xxp

x̄x̄p

β

~n

~v

ψ0 = π
2 −α

αrec

αadv

xxp

x̄x̄p

Figure 4.2: Adjustment of distance function according to advancing αadv and
receding αrec angles yields nicely rendered details at the surface (red) and
dynamic appearance even for single particles (green outline).

wetting angles as depicted in Fig. 4.2 (right). In general, there is a dependency
between the capillary number, which relates viscosity and velocity to surface
tension, and the third power of the dynamic contact angle [Kis93]. Dynamic contact

angle
As surface

52 Simulation of Evaporation and Condensation

tension and viscosity are constant, the receding and advancing contact angles
can be described as functions of the velocity as

αrec(~v) = π

2
− Arec‖~v‖

1
3

αadv(~v) = π

2
+ Aadv‖~v‖

1
3 , (4.15)

where Arec and Aadv control the influence of the velocity. Using two different
control parameters allows to capture hysteresis effects that can cause advancing
and receding angles to differ.

The actual dynamic contact angle to achieve is determined by the relative
projected positions of the weighted average particle position x̄ and the grid
position of evaluation x . These are orthogonally projected onto the surface
to yield x̄p and xp . The distance between these points is projected onto the

velocity vector as p =
(

(xp−x̄p)·~v
‖(xp−x̄p)‖·‖~v‖

)
. The sign of p determines if x is located at

the receding or advancing front of the droplet. The contact angle α is then inter-
polated between the static contact angle αbase and the receding and advancing
angles αrec and αadv as

α(p) =
{

p4 ·αrec(~v)+ (1−p4) ·αbase if −1 ≤ p < 0

p
1
4 ·αadv(~v)+ (1−p

1
4) ·αbase if 0 ≤ p ≤ 1

. (4.16)

The power terms force the receding angle to form a narrow tail and the advanc-
ing front to form a more drop-like shape. Finally the corrections

d(x) = y
(
‖xp −x‖,

π

2
−α(p)

)
(4.17)

are plugged into Eq. (4.14). Fig. 4.3 shows how a droplet consisting of a single
particle is modified using the proposed method. In order to not make the

Figure 4.3: A drop of one particle is modified using the proposed approach.
Left: Unmodified Drop, middle left: drop with projected footprint, middle right:
drop at moderate downward velocity, right: drop at fast downward velocity.

surface correction expand from fluids far awayInfluence radius of
rigid surface

to the surface, in practice the

4.6 Results 53

correction terms are restricted to distances ‖x̄ − x̄p‖ < r̄ which has, however,
been omitted in Fig. 4.3 to make the corrections more articulate. Fig. 4.4 shows
a comparison of an uncorrected surface extraction and the proposed method
in one of the demo scenes.

Figure 4.4: Uncorrected surface rendering (left) and the proposed modification
to render dynamic contact angles (right).

4.6 Results

The proposed simulation was tested on four different scenes. In order to evalu-
ate evaporation, a liquid drop was put on a hot surface (see Fig. 4.5). In the SCA
Logo Tex scene, humid air is blown onto an impregnated mirror. It uses purely
texture-based evaporation and condensation (see Fig. 4.6) while in the SCA
Logo scene, particles are emitted from the texture seeding points (see Fig. 4.7).
In the Glass scene, the outside of a glass filled with a cold liquid is steamed
with a stream of warm vapor from the left hand side while the liquid inside
remains at rest (see Fig. 4.8). All simulations have been carried out using an
NVIDIA GeForce GTX Titan with 6 GiB VRAM. The simulation framework has
been implemented using C++, CUDA 8.0. Tab. 4.1 shows a summary of the
resolutions and timings of the demo scenes. All scenes have been rendered
using Mitsuba [Jak10] and the proposed modified surface extraction. Surface
steaming effects have been rendered using a rough material where the rough-

54 Simulation of Evaporation and Condensation

Table 4.1: Scenes with particle ‘#Ptcl’ and rigid particle ‘#RigPtcl’ counts, grid
‘#Cell’ and texture ‘#Texel’ resolution and run times. ‘Ptcl’ gives the time spent
for the SPH simulation, ‘Grid’ the run time of the grid simulation. The remain-
ing timings describe the coupling: ‘Neigh’ denotes the time for neighborhood
searches, ‘Heat’ for heat transfer and interpolation, and ‘Eva’ for evaporation
and condensation, dτ denotes the corresponding simulation time step.

Scene Resolution Run time per step (ms)

#P
tc

l

#R
ig

P
tc

l

#C
el

l

#T
ex

el

P
tc

l

G
ri

d

N
ei

gh

H
ea

t

E
va

d
τ

Drop (no tex) 1207 5108 643 − 18 65 2 6 1 4
Drop 1207 5108 643 5122 18 65 11 6 26 4
SCA Logo Tex − 28 K 643 10242 − 60 − 16 15 5
SCA Logo 135 28 K 643 10242 13 60 8 17 31 5
Glass 174 K 89 K 643 10242 210 31 32 23 40 2

ness was controlled by the water mass textures. The impregnation of the SCA
logo has been realized by adjusting the maximum mass texture.

Figure 4.5: A spherical drop of water is dripped onto a hot surface, evaporates
and transfers its mass into the grid simulation. The sequence progresses from
left to right and from top to bottom.

In the drop scene (see Fig. 4.5),Evaporation of a
drop

the initial liquid and air temperatures were

4.6 Results 55

set to 20◦C while the ground plane was set to a temperature of 150◦C causing a
fast evaporation of the liquid. In order to assess the overhead of using textures,
two versions of the drop scene were simulated, while the general simulation
outcome was not changed. Due to the comparably low number of particles, the
run time was mainly determined by the grid solver which took 65 ms per time
step while the particle simulation only took 18 ms and the coupling between
air and liquid phase only 9 ms (see line ‘Drop (no tex)’ in Tab. 4.1). When
adding textures to the simulation (see line ‘Drop’ in Tab. 4.1), the timings for
the coupling increased to 53 ms. However, due to the fact that heat is only
interpolated from rigid particles to texels, the run time for heat transfer does
not measurably increase when using textures.

Figure 4.6: A mirror is steamed by humid air revealing the impregnated SCA
logo.

Also for the SCA Logo scene two versions were simulated, Condensation on a
mirror

one that uses
only textures and no liquid particles (SCA Logo Tex, see Fig. 4.6) and one
that uses the full simulation including liquid particles (see Fig. 4.7). In the

56 Simulation of Evaporation and Condensation

Figure 4.7: Blowing moist air onto the impregnated SCA logo causes particles
to condense.

logo scene, moist air at 20◦C is blown onto a cold mirror at 4◦C which causes
condensation to set in. The SCA Logo Tex scene demonstrates that very fine
surface detail can be captured using the proposed coupling. The run time was
again dominated by the grid solver with 60 ms per time step while the coupling
only took 31 ms in total. As the neighbor search for rigid-texel coupling is done
in a preprocessing step it did not introduce any additional cost per time step.
When additionally introducing liquid particles into the scene, neighbor search
has to be performed in each step increasing the run time for the coupling to
56 ms.

The glass scene (see Fig. 4.8) demonstratesBalanced
evaporation and

condensation

that the proposed method is
able to properly work in a well balanced way, i.e., allowing to simulate a cold
fluid at rest that does not evaporate while particles in the vicinity condense at
the outside of the glass. The liquid simulation for the glass scene took 210 ms
per time step and dominated the overall run time. The grid solver only took
31 ms and the coupling took 95 ms in total.

The marching cubes [LC87] based rendererSurface rendering runs solely on the CPU. Render-
ing times for the Glass scene are 31.7 s using the original surface definition and
53.8 s using the proposed approach, i.e., the proposed modification lead to an
overhead of 70%. For the SCA Logo scene rendering times were 9.3 s per frame
without and 14.6 s with modification, i.e., an overhead of 60%.

4.7 Conclusions 57

Figure 4.8: A glass filled with cold liquid surrounded by moist air (left) causes
water to condense at the glass surface (right).

Limitations As evaporating particles can become very small, they sometimes
are able to penetrate rigid bodies. This a known limitation of current adaptive
approaches [WHK17]. Since explicit meshes of large triangle counts are used to
represent rigid surfaces, the overhead for the proposed implicit surface defini-
tion was quite big. It could be reduced by using more efficient representations
for rigid surfaces.

4.7 Conclusions

This chapter described the modeling and simulating of the evaporation and
condensation of SPH-based fluids. The air phase is modeled using a coarse
Eulerian grid solver while the liquid phase is based on an adaptive SPH solver.
In order to achieve very fine surface detail, textures are used on rigid objects
into which mass can be transferred. The texels exchange mass with the grid
solver and if sufficient mass has been gathered, are used to generate particles.
Particles can evaporate by transferring mass into grid cells which in turn yields
a mass preserving cycle of evaporation and condensation. In order to achieve
realistic high-quality surface renderings of fluids, a modified implicit surface
definition has been presented that is able to enforce static and dynamic contact
angles of fluids at rigid surfaces. The use of textures in combination with the
novel implicit surface model allows for a rendering of rigid-fluid interactions at
very high spatial resolution even at moderate particle sizes.

5

55
Adaptive Volume Ray

Casting

Figure 5.1: The fluid letters HPG 2016 (left) are dropped into a basin and cause
a splashing effect (right). The sparse, perspective particle access grid adapts to
the scene (middle).

This chapter presents a fast and accurate ray casting technique for unstructured
and dynamic particle sets. The technique focuses on efficient, high quality vol-
ume rendering of fluids for computer animation and scientific applications.
The novel adaptive sampling scheme allows to locally adjust sampling rates
both along rays and in lateral direction and is driven by a user-controlled screen
space error tolerance. In order to determine appropriate local sampling rates,
a sampling error analysis framework based on hierarchical interval arithmetic
is proposed. The approach leads to significant rendering speed-ups with con-
trollable screen space errors. Efficient particle access is achieved using a sparse
view-aligned grid which is constructed on-the-fly without any pre-processing.
The basic principle of the adaptive ray casting approach has first been described
by Orthmann [Ort14] and is introduced in Sec. 5.2 and 5.3. In order to achieve
competitive rendering performance, the approach was significantly improved
as presented in Sec. 5.4. The resulting method has been published [HOK16] and
presented at High Performance Graphics (HPG) 2016 in Dublin, Ireland.

PParticle-based methods like smoothed particle hydrodynamics (SPH) of-
fer several advantageous properties. Due to their high spatial flexibility,

convection-driven free surface flows, and interactions with dynamic objects

59

60 Adaptive Volume Ray Casting

can naturally be described [IOS∗14]. Moreover, the flow of concentrations
and heat, i.e., advective-diffusive transport can easily be incorporated [CM99,
Mon05, OHB∗13]. However, ad hoc rendering of large unstructured and dy-
namic particle sets is still a challenging task.

As discussed in Sec. 2.4, there are several methods to reconstruct smooth
surfaces from particle-based data [SSP07, vdLGS09, OCD11, AIAT12, YT13,
RCSW14, ZD15, ZD17]. While surface rendering is able to convey the fluid’s
geometric shape, it does, however, not provide any information about inter-
nal fluid structures, e.g., in advection-diffusion scenarios. In order to provide
insight into fluid transport phenomena, volume rendering [EHK∗06, HLSR08]
has to be applied. Volume rendering of particle data has been realized using
hybrid splatting-slicing approaches [FGE10, FAW10] that scatter particle con-
tributions [Wes90] onto axis-aligned [SP09a] or view-aligned [FGE10, FAW10,
NMM∗06] texture slices. Compositing these slices in front-to-back order yields
the final image. Because texture-slicing approaches are tailored for the rasteri-
zation pipeline of the GPU, incorporating adaptive sampling techniques is very
difficult. Ray casting, in contrast, constitutes a more generic volume rendering
approach for which, however, efficient means to directly access particle data
are necessary. Moreover, in case of dynamic particle sets, these data structures
must not rely on any kind of costly preprocessing. In the following an on-the-fly
volume ray casting for unstructured particle data sets is proposed. The ray
casting makes use of an adaptive sampling scheme to allow for an efficient
rendering of large dynamic particle sets as shown in Fig. 5.1. In detail, the
proposed rendering approach incorporates the following contributions:Contributions

• An on-the-fly sampling error analysis framework based on hierarchical
interval arithmetic for ray bundles which is able to derive strict bounds
to the screen space error resulting from locally adapting sampling rates
in lateral and viewing directions.

• A greedy algorithm that optimizes the degree of adaptivity both in viewing
and lateral directions to yield significant speed-ups for a user-controlled
screen space error.

• The perspective, view-aligned grid known from texture-slicing [FAW10]
is enhanced to an efficient sparse access structure for particle data that
is constructed on-the-fly.

The remainder of this chapter is structured as follows: Sec. 5.1 discusses
foundations and prior work in adaptive volume ray casting and introduces in-
terval arithmetic. Sec. 5.2 gives an overview of the ray casting pipeline. Sec. 5.3
and 5.4 describe the proposed sampling error analysis framework and how it
is able to determine local sampling rates. Implementation details are given in
Sec. 5.5. Sec. 5.6 discusses the results before conclusions are drawn in Sec. 5.7.

5.1 Foundations and Prior Work 61

5.1 Foundations and Prior Work

5.1.1 Adaptive Volume Rendering

As introduced in Sec. 2.4.2, volume ray casting evaluates a physically-based
model of light transport by treating quantity fields as a participating medium.
Each viewing ray x(sk) is sampled at integer coordinates k = 0, . . . ,N −1 which
are distributed at distances sk ∈ [snear, sfar] from the camera, where snear and
sfar are the distances to the near and far clipping planes of the view frustum.
The SPH-based quantity field is evaluated using corrected interpolation [BK02]
(see Eq. (3.12)). Interpolated samples Qk =Q(x(sk)) along rays are mapped to
radiance and transparency values as ik = tfI (Qk) and tk = tfT (Qk), respectively,
where tfI , tfT : [0,1] → [0,1] are material dependent transfer functions. The
volume rendering equation composites radiance and transparency samples to
yield the ray’s radiance and transparency as [EHK∗06]

I =
N−1∑

k=0
ik

k−1∏

j=0
t
∆s j

j , and T =
N−1∏

k=0
t∆sk

k . (5.1)

In contrast to the previously presented volume rendering equation (2.19) which
assumed uniform step sizes, the transparency values given for a unit reference
length are corrected in Eq. (5.1) to match the sampling step size ∆sk . In the
following, opacity correction terms will be omitted to improve readability but
in practice they have to be applied appropriately.

Adaptive Rendering of Grid Structures Adaptive sampling is mainly applied
for data on regular grids [BHMF08, GS04, KHW∗09]. Danskin and Hanrahan
use importance sampling in order to locally adapt sampling rates [DH92]. Al-
though it is possible to substantially speed up rendering using importance
sampling, it is a stochastic approach and hence it is difficult to calculate ex-
plicit bounds for the screen space error. Ledergerber et al. [LGM∗08] introduce
a Moving-Least-Squares (MLS) approach to reconstruct higher order continu-
ous field functions, which can also be applied to irregular grids. Similar to the
proposed approach, Guthe and Strasser [GS04] estimate screen space errors
due to adaptive sampling when uncompressing wavelet representations. How-
ever, their approach requires a costly wavelet transform as precomputation,
which is unfeasible for on-the-fly visualization of dynamic particle data sets.

Volume Rendering for Particle Sets In contrast to Object-aligned data
structures

sampling in regular grids,
efficiently accessing unstructured particle data that contribute to a sampling

62 Adaptive Volume Ray Casting

position poses quite a challenge. This is commonly addressed using spacial
subdivision structures such as object-aligned octrees [OKK10]. As all object-
aligned access structures require cell finding logic and may introduce thread
divergence, parallelism can be drastically reduced [PGSS07].

In order to increase rendering performance, the particle countParticle upsampling can be re-
duced by upsampling operators [APKG07, ZSP08, HHK08] that approximate
particle subsets by fewer larger particles [HE03, FSW09, FAW10]. As upsam-
pling can introduce visual artifacts [BOT01, KAG∗06], it should only be used to
prevent under-sampling in case the particle size falls below the pixel size.

Perspective, view-aligned grids can be employed to achieve memory coher-
ence and to remove traversalView-aligned grids efforts [HM08]. Starting from a precomputed mul-
tiresolution particle representation Fraedrich et al. [FAW10] resample particle
sets to a perspective grid for further texture-based ray casting. Their approach
adjusts the sampling step size in viewing direction to be consistent with the
perspectively increasing lateral resolution (see also Sec. 5.5.1). In a follow up
work, Reichl et al. [RTW13] preprocess the SPH particle set by resampling it
onto an object-aligned octree hierarchy before ray casting. Orthmann [Ort14]
used a perspective grid to directly access particle data and applied an adaptive
ray casting. As the error analysis was very pessimistic, speed ups could only be
achieved for very large error tolerances. By deriving screen space error bounds
from interval arithmetic and separating lateral from longitudinal contributions,
the sampling error analysis proposed in the following very tightly follows the
error tolerance and yields large speed-ups.

5.1.2 Interval Arithmetic

Interval arithmetic is a common tool that helps to put bounds on, e.g., numeri-
cal approximations of mathematical calculations [MKC09]. Instead of working
on real valued variables, a whole interval is used in calculations in order to
bound all possible results of computations for a range of input values. In the
following, interval variables will be marked with ⊥> and the corresponding up-
per and lower bounds with superscripts > and ⊥, respectively. The width of an
interval x⊥> = [x⊥, x>] will be denoted as

w(x⊥>) := x>−x⊥. (5.2)

In order to perform calculations using intervals, arithmetic operations have
to be extended, accordingly.Arithmetic

operations
For any operation • ∈ {+,−, ·,/}, the lower bound of

x⊥>
1 •x⊥>

2 can be determined as min
{

x⊥
1 •x⊥

2 , x⊥
1 •x>

2 , x>
1 •x⊥

2 , x>
1 •x>

2

}
. The upper

bound is determined accordingly as the maximum. Some operations can,
however, be expressed more efficiently. The addition operation can be defined

5.2 Proposed Adaptive Ray Casting Pipeline 63

by adding the lower and upper bounds separately

x⊥>
1 +x⊥>

2 = [
x⊥

1 +x⊥
2 , x>

1 +x>
2

]
.

As, in general, negative bounds have to be considered, the multiplication oper-
ation can not be simplified. In the case of only non-negative values, which is
true for radiance and transparency values, it can however be simplified to

x⊥>
1 x⊥>

2 = [
x⊥

1 x⊥
2 , x>

1 x>
2

]
.

As neither subtractions nor divisions are used in the following, they are omitted.

Calculating output intervals Monotonically
increasing functions

of general functions can be very costly as results
to all potential inputs have to be considered as f (x⊥>) = { f (x)|x ∈ x⊥>}. In con-
trast, monotonically increasing functions are efficiently evaluated as [MKC09]

f (x⊥>) = [
f (x⊥), f (x>)

]
. (5.3)

As the volume rendering equation (5.1) takes only non-negative radiance and
transparency values as input and is composed only of addition and multipli-
cation operations, Application to

volume rendering
it is monotonically increasing in each argument. For a set

of input radiance and transparency intervals it, thus, has to be evaluated only
twice in order to calculate interval bounds. This makes interval arithmetic a
perfect tool for the proposed screen space error analysis.

5.2 Proposed Adaptive Ray Casting Pipeline

Even though the proposed on-the-fly ray casting is used for dynamic SPH
data sets in this work, the scheme can be applied to any kind of unstructured
particle sets based on local operators for recovering continuous quantity fields.
However, particle sizes are assumed to not fall below pixel size in screen space,
thus, particle upsampling cannot be applied.

The proposed ad hoc on-the-fly ray casting of dynamic SPH particle sets
uses the original particle set “as is” to prevent any additional error due to re-
sampling or interpolating particle quantities onto intermediate data structures
such as grids or coarser particles. Also, any other kind of prohibitive and costly
precomputation is omitted.

The proposed ray casting pipeline comprises five components:

Sparse View-Aligned Grid Structure: An enhanced perspective grid that sub-
divides the view frustum into cells that are aligned with view rays. In
contrast to Fraedrich et al. [FAW10], who resample particle quantities

64 Adaptive Volume Ray Casting

into a dense grid, a sparse data structure to access the original particle
data is used. Figure 5.2 shows the resulting sparse grid structure. The grid
is built from scratch in every frame using only raw particle data as input.
The particles are assigned to all cells that intersect their volume and only
cells that contain particles are present in the final grid. During ray casting
each cell is traversed by a ray bundle covering Dx y ×Dx y pixels in screen
space. As the cells are aligned with the view rays, all rays of a bundle
traverse the same set of cells in viewing direction. Using an inverse per-
spective mapping, the perspectively distorted sampling positions in view
space are described in uniform sample space (see Sec. 5.5.1).

Initially each cell contains Dx y ×Dx y ×Dz samples, with Dx y > 1 and
Dz > 1. Each ray samples Dz positions inside of each cell, however, the
sampling error analysis allows to locally reduce the number of samples in
powers of 2. Thus, the sampling level lc corresponds to Dz/2lc sampling
positions per ray in cell c.

Sampling Error Analysis: To locally adapt the sampling rate for each cell, a
formulation of the rendering equation based on hierarchical interval
arithmetic is introduced. Inside of each cell, upper and lower bounds
to radiance and transparency values due to adaptive sampling are de-
termined. This is efficiently realized by mapping particle data onto one
representative ray that is cast through the cell instead of sampling all Dx y

2

rays. The cell bounds are then composited in front-to back to efficiently
predict screen space errors due to adaptive sampling and to compute an
optimal combination of per-cell sampling levels (see Sec. 5.3).

The interval arithmetic is further extended so that adaptive sampling in
viewing and lateral directions can be combined. To that end, a repre-
sentative radiance and transparency is calculated for each cell. Lateral
adaptivity is then realized by rendering the cell’s radiance and trans-
parency as a super-pixel that spans all pixels the cell covers in screen
space (see Sec. 5.4).

Greedy Optimization: In order to achieve an efficient adaptive ray casting, the
degree of adaptivity has to be maximized for each cell for a user-defined
screen space error tolerance (see Sec. 5.3.4). To yield higher speed-ups,
the error prediction can be relaxed by removing the lateral error in the
sampling error analysis. This leads to a performance optimized greedy
algorithm which practically still satisfies the error bounds while allowing
for higher sampling levels in viewing direction and for an alternative
super-pixel rendering (see Sec. 5.4).

Cell Merging: Consecutive cells in viewing direction that support higher sam-
pling levels are merged to reduce the number of particles to be sampled

5.3 Sampling Error Analysis Framework 65

σ

Mz

My

Mx

Dz

c1

cL

Dxy
Dxy

z
x

y

Figure 5.2: Sparse access structure. Cell merging ensures a constant number
of Dx y ×Dx y ×Dz samples per cell. The image plane is split into ray bundles
of size Dx y ×Dx y each storing cells c1 and cL in a look-up table. Mx ×My ×Mz

is the maximum number of cells present in a dense grid.

and keep a constant number of samples per cell (see Sec. 5.5.2).

Adaptive Ray Casting: The final volume ray casting algorithm simplifies to an
entirely thread-coherent front-to-back traversal of cells. Cells are either
rendered as super-pixels or else all rays only sample the necessary subset
of particles that has been assigned to the cell (see Sec. 5.5.3).

5.3 Sampling Error Analysis Framework

The goal of the sampling error analysis is to determine sampling levels for each
cell so that a user-defined error tolerance E I Error toleranceis not exceeded by the screen
space error. Therefore, a hierarchical interval arithmetic scheme is proposed to
determine upper and lower bounds to the radiance and transparency on the
level of ray bundles. These bounds determine the screen space error via the
volume rendering equation (Eq. (5.1)).

The error analysis works hierarchically on the level of samples, Error analysis
overview

of cells and
finally of whole ray bundles. Inside each cell, bounds to the quantity field at
each sampling depth along the ray bundle are first calculated. The quantity
bounds Q⊥> are mapped to radiance and transparency sample bounds i⊥>, t⊥>

that bound the radiance and transparency at each sampling depth for all rays
of the bundle (see Sec 5.3.1). Sample bounds are composited inside cells to cell
bounds I⊥>,T ⊥> (see Sec. 5.3.2). The screen space error analysis (see Sec. 5.3.3)
composites bounds of traversed cells in viewing direction to ray bounds I⊥>,T⊥>

66 Adaptive Volume Ray Casting

using different combinations of cell sampling levels. Note that only Dz lower
and upper bounds have to be composited inside each cell to yield cell bounds
and only one upper and lower cell bound has to be composited per cell along
the cell sequence to efficiently calculate the bounds for all rays of a ray bundle.

Based on the error analysis,Greedy optimization cell sampling levels l opt
c are determined for all

cells c for the final adaptive ray casting. As a direct or analytic identification
of the optimal sampling levels is not possible, sampling levels are greedily
optimized while keeping the width of the error bound below a user defined
error tolerance E I (see Sec. 5.3.4). Alg. 5.1 gives pseudocode of the sampling
error analysis.

1: for all cell c ∈ perspective grid do
Sample bounds

2: for all Sample 0 ≤ k < Dz do
3: Q⊥>

k = lateral_quantity_bounds(particle quantities Q jc)
4: [i⊥>k , t⊥>k] = sample_bounds (Q⊥>

k)
5: end for

Cell bounds

6: for all Sampling level l do
7: [I⊥>,l

c ,T ⊥>,l
c] = cell_bounds ({i⊥>k }, {t⊥>k }, l)

8: if w(I⊥>,k
c) > E I or w(T ⊥>,k

c) > E I then
9: l max

c = max(l −1,0) . Error tolerance exceeded, last level is maximum
10: break
11: end if
12: end for
13: end for
Greedy optimization

14: for all Ray bundle b do
15: ~l = greedy_optimization(E I , {I⊥>,l

c }, {T ⊥>,l
c }, {l max

c })
16: end for

Algorithm 5.1: The proposed sampling error analysis determines bounds for
particle quantities and samples in cells, composites sample bounds to cell
bounds and finally composites cell bounds along ray bundles to determine
ray bundle bounds and thus to the screen space error. The greedy algorithm
finally returns appropriate cell sampling levels~l .

5.3.1 Lateral Quantity and Sample Bounds

First, the maximum and minimum of all Dx y
2 samples at each sampling depth

sk inside of cells are determined. Since CSPH quantities are affine combina-

5.3 Sampling Error Analysis Framework 67

tions of particle quantities (cf. Sec. 3.1.3), sample quantities are bounded by
the particle quantities contributing to Lateral quantity

bounds
the lateral neighborhood at depth sk , i.e.

Q>
k = max

|z j−sk |<h j

Q j , Q⊥
k = min

|z j−sk |<h j

Q j ,

where z j is the z-coordinate of particle j in view space and h j its radius. As
transfer functions can introduce high frequencies (see Fig. 5.3), the bounds Q⊥>

k

Figure 5.3: A radially increasing concentration profile rendered with a complex
transfer function. The center of the concentration profile is in the upper right
of all images. High-frequency transfer functions introduce visible artifacts if
sampling rates are naïvely reduced (left). The proposed screen space error
analysis locally adjusts sampling rates to retain visible features (right). Only
the volume covered by gray cells has to be sampled at the highest sampling
rate to give correct rendering results, yellow cells are rendered as super-pixels
and green cells by reducing the sampling rate in viewing direction (bottom).

of the quantity field are mapped to radiance bounds Radiance sample
bounds for level 0

using exhaustive search
for extremes in tfI (Q) as shown in Fig. 5.4:

i>k = max
Q∈[Q⊥

k ,Q>
k]

tfI (Q), i⊥k = min
Q∈[Q⊥

k ,Q>
k]

tfI (Q).

In practice, i>, i⊥ are accessed from a dynamically calculated 2D-texture using
Q⊥ and Q> as lookup coordinates. Analogously, transparency bounds t⊥>k are

68 Adaptive Volume Ray Casting

computed and stored by analyzing tfT (Q). Note that only Dz sample bounds
are calculated each of which strictly bounds the Dx y

2 samples of the ray bundle
passing through the cell. By reducing the Dx y

2 ray samples to sample bounds,
the following stages of the sampling error analysis has to be performed only on
the Dz representative radiance and transparency sample bounds.

tfI

Q

i

Q⊥
k Q>

k

i⊥k

i>k
Q⊥

k

Q>
k

sk z

Figure 5.4: For each sampling depth sk , quantity bounds Q>
k ,Q⊥

k are deter-
mined by finding the maximum and minimum quantities of the particles that
contribute to sk depicted by the red arrows (left). The transfer function’s maxi-
mum and minimum i>k , i⊥k is searched in the parameter range

[
Q⊥

k ,Q>
k

]
(right).

5.3.2 Cell Bounds

The second stage of the hierarchical interval arithmetic calculates bounds for
cell c at sampling level l . For l = 0, cell radiance and transparency bounds
I⊥>,0

c , T ⊥>,0
c are found by compositing sample bounds i⊥>k , t⊥>k using the volume

rendering Eq. (5.1). Note that the sample bounds already include the lateral
variation of the ray bundle.

If a cell is sampled at a higher level l , less samples are used. Each of these
coarser samples, however, represents a larger span ofSampling level and

step size
∆l = 2l samples of level

0 along the ray. Thus, samples of higher levels are bounded by the minimum
and maximum of the original samples at level 0 they span. For samples k =
0, . . . ,Dz −1 thisRadiance sample

bounds for higher
levels

yields

i>,l
k = max

j∈
{⌊

k
∆l

⌋
·∆l ,...,

⌈
k
∆l

⌉
·∆l

}
{

i>j
}

.

For i⊥,l
k , min is used instead of max. Analogously, t⊥>,l

k is calculated using
transparency samples. After determining the proper set of sample bounds
for level l in cell c, the samples are composited using the volume rendering
Eq. (5.1), to yield cell bounds I⊥>,l

c and T ⊥>,l
c as shown in Fig. 5.5.

As large radiance variations, i.e. w(I⊥>,l
c) À 0, strongly influence the error

bounds, the sampling level of each cell c is limited according to the cell’s

5.3 Sampling Error Analysis Framework 69

i>,0
0

i⊥,0
0

∆ic = 1

I⊥>,0
c

s0 s1 s2 s3 s4

(a) Level l = 0

i>,1
0

i⊥,1
0

∆ic = 2

I⊥>,1
c

s0 s1 s2 s3 s4

(b) Level l = 1

i>,2
0

i⊥,2
0

∆ic = 4

I⊥>,2
c

s0 s1 s2 s3 s4

(c) Level l = 2

Figure 5.5: Computation of radiance bounds of cell c for three sampling levels.
With larger sampling step sizes ∆ic = 4, bounds (right, green area) differ from
accurate bounds at ∆ic = 1 (left, gray area) to the signal (red area). This may
lead to sampling errors. Compositing sample bounds i⊥>,l

k and t⊥>,l
k yields cell

radiance and transparency bounds I⊥>,l
c , T ⊥>,l

c .

maximum potential error to l max
c = argmaxl

{
w(I⊥>,k

c) < E I

}
. Preventing that

coarser sampling of a single cell exhausts the error tolerance, yields a better
distribution of the error tolerance between cells. The more cells are sampled
coarsely the higher the speed-up.

An important aspect is the handling of Surface cellscells c which contain surface par-
ticles. As particles only model the fluid but not the air phase, radiance and
transparency bounds cannot be computed correctly. Surface particles are de-
tected using the approach of Orthmann et al. [OHB∗13]. Assume one particle
covers all sampling depths inside a cell but is only hit by some rays while all
other rays pass through empty space, then the cell bounds yield w(I⊥>,0

c) = 0 al-
though errors are introduced into the image. As only the particle’s z-component
is used to calculate sample bounds, empty space in the lateral neighborhood is
not detected. In order to prevent erroneous adaptive sampling in surface cells,
l max

c = 0 is set. Apart from this, surface particles are treated like bulk particles.

5.3.3 Screen Space Error Analysis

The final stage of the hierarchical interval arithmetic computes bounds for
ray bundles by compositing cell bounds. As ray bundle bounds automatically
bound each single ray of the bundle, they also naturally bound the screen space
error. To calculate ray bundle bounds over a cell sequence c1, . . . ,cL with cell
sampling levels Interval volume

rendering
~l = (l1, . . . ,lL), the volume rendering equation is applied as

I
⊥>,~l
L =

L∑
c=1

I⊥>,lc
c

c−1∏
D=1

T ⊥>,lD
D , T

⊥>,~l
L =

L∏
c=1

T ⊥>,lc
c . (5.4)

70 Adaptive Volume Ray Casting

The width of the ray bundle bounds w(I⊥>,~l
L) is an upper bound to the screen

space error that sampling at cell sampling levels~l may introduce. However, still
an optimal choice of~l has to be found that satisfies the user’s error tolerance

w(I⊥>,~l
L) < E I . Therefore, the following greedy algorithm is proposed.

5.3.4 Greedy Optimization of Sampling Levels

The algorithm starts by compositing bounds from Eq. (5.4) using lc = 0 for all
cells c, i.e.,~l =~0 = (0, . . . ,0). Walking backwards from cell cL , . . . ,c1, sampling
levels are then greedily increased, while the error tolerance E I for the ray bundle
is not exceeded. While finding an optimal combination of sampling levels on-
the-fly is infeasible, greedily increasing sampling levels back-to-front allows
to skip many samples without introducing visible errors into the final image.

Given bounds I
⊥>,~0
L , T⊥>,~0

L over the full cell sequence, Eq. (5.4) is decomposed by
splitting off the last cell and replacing it by coarser sampling level lL to get the
new bounds I⊥>,(0,...,0,lL)

L . The sampling level is increased while w(I⊥>,(0,...,0,lL)
L) < E I

until level l max
L is reached. Hence, it sets

l opt
L = arg max

lL≤l max
c

{
w(I⊥>,(0,...,0,lL)

L) < E I

}
. (5.5)

Having decided on the sampling level for cell cL , the final results are collected

for cell cL in background radiance I⊥>back = I
⊥>,l opt

L
L . As shown in Fig. 5.6, the

algorithm proceeds backwards sequentially testing coarser sampling levels lc

in cell c in back-to-front order:

I
⊥>,(0,...,0,lc ,l opt

c+1,...,l opt
L)

L = I
⊥>,~0
c−1 +T

⊥>,~0
c−1 · (I⊥>,lc

c +T ⊥>,lc
c · I⊥>back).

Analogously to Eq. (5.5) the optimal level l opt
c is computed and, finally, the

background radiances are updated:

I⊥>back ← I⊥>,l opt
c

c +T ⊥>,l opt
c

c · I⊥>back

The derivation of error bounds usingStrict screen space
error bounds

interval arithmetic guarantees, if w(I⊥>,~l) <
E I , the screen space error stays below E I for levels~l .

5.4 Analysis and Performance Optimizations

Although the sampling error analysis framework of Orthmann [Ort14] de-
scribed in Secs. 5.2 and 5.3 reveals proper bounds to the screen space error, it
suffers from severe limitations; see [Ort14] and Tab. 6.1 in there:

5.4 Analysis and Performance Optimizations 71

I
⊥>,(0,...,lc ,...,l

opt
L)

L

I
⊥>,(0,...,0)
c−1 I⊥>back

c1 . . . c . . . cL

Figure 5.6: Back to front exchange of sampling levels for an unknown signal
(red). In the depicted step, the greedy algorithm estimates the screen space
error (green and gray areas) for different sampling levels lc of cell c, i.e. by

compositing cell bounds I⊥>,lc
c with foreground radiances I

⊥>,~0
c−1 and the already

adaptively sampled background I⊥>back.

• Due to the pessimistic estimation, the error tolerance has to be large in
order to achieve any speedups.

• The large difference between the screen space error and the error toler-
ance leads to poor error control.

• Speedups are very limited as adaptivity is restricted to the viewing direc-
tion.

In this section, major improvements to the error analysis framework are pro-
posed that are necessary to alleviate these shortcomings and achieve a compet-
itive rendering. By relaxing the error estimation, the error tolerance is utilized
more exhaustively which leads to large gains in performance and more precise
control over the screen space error. Moreover, combining adaptive sampling in
viewing direction with lateral adaptivity using super-pixels yields additional
large speedups at controlled screen space error.

5.4.1 Relaxed Error Estimation

Cells with a large width w(I⊥>,0) strongly increase the error estimation along
rays. However, they do not introduce any screen space error if they are sampled
at the highest sampling rate. Thus, instead of interpreting the width on level
l = 0 as a measure of error introduced due to adaptive sampling, the width
w(I⊥>,0

c) can be more appropriately considered as a measure of lateral variation
due to the reduction of Dx y

2 samples to sample bounds (see Sec. 5.3.1). By re-

72 Adaptive Volume Ray Casting

moving w(I⊥>,0
c) from the interval widths of higher levels,Remove influence of

lateral variation
the effects of adaptive

sampling in viewing direction can be separated from the influence of lateral
variation. The proposed relaxation approach partially subtracts w(I⊥>,0) from
the lower bounds of l = 0 as

I⊥,0
c,relax := I>,0

c − (1−Erelax)w(I⊥>,0
c),

and for higher levels l > 0 as

I⊥,l
c,relax := I⊥,0

c,relax + (I⊥,l
c − I⊥,0

c).

The user-defined relaxation parameter Erelax ∈ [0,1] controls the influence of
cell bounds on level l = 0 on the error estimation of ray bundles. Erelax = 1
completely removes the influence of the width of level l = 0 and Erelax = 0
gives a strict error estimation without relaxation. Transparency is adjusted
analogously.

As relaxing, i.e. decreasing, the upper transparency bound could lead to
severe underestimates for the errors behind the current cell, the upper error
bounds are left unchanged. Thus, it is ensured that errors in the background
remain visible and are adequately accounted for in the error analysis.

Note, that the relaxation approach does not affect the maximum sampling
levels l max

c per cell, as they also account for the lateral error in the ray bundle
(cf. Sec. 5.3.2).

5.4.2 Lateral Adaptive Sampling Using Super-Pixels

In cells that contain large differences in viewing direction but sample bounds
i⊥> of small width, reducing the sampling rate in viewing direction causes large
errors. In these cases, adapting the lateral sampling rate instead, i.e., the
number of cast rays, is a promising alternative. To this end, the non-relaxed

cell bounds can directly be used by rendering the mean radiance I>,0
c +I⊥,0

c
2 =: ISP

and transparency T >,0
c +T ⊥,0

c
2 =: TSP as super-pixelsSuper-pixel radiance

and transparency
in the final image. Instead of

sampling any particles, (ISP,TSP) is just composited to the accumulated image
for all pixels covered by the cell. This approach optimally reuses the previously
calculated cell bounds and can, thereby, drastically reduce the number of
sampling operations of the final ray casting.

Apparently, super-pixel rendering is by far faster than sampling particles
Error estimation of

super-pixels
but causes larger screen space errors. To estimate this error, the relaxation
scheme cannot be used. By relaxing bounds, the lateral error is removed from
the error estimation, however, rendering super-pixels introduces exactly these
lateral errors. To properly bound errors due to the reduced lateral resolution of
super-pixels, the original cell bounds of level 0 have to be used.

5.5 Implementation Details 73

5.4.3 Combined Greedy Optimization

The lateral sampling optimization using super-pixels can be combined effi-
ciently with the adaptivity in viewing direction using the proposed error estima-
tion. In order to decide between super-pixel rendering and adaptive sampling
in viewing direction, the relaxed cell bounds I⊥>,l

c,relax, l = 0, . . . ,l max and the non-

relaxed cell bound I⊥>,0
c are sorted in ascending order. The greedy algorithm just

works as described in Sec. 5.3.4, only if I⊥>,0
c is found to be the largest acceptable

error, the super-pixel will be used during ray casting.

In Fig. 5.3, a radially increasing concentration profile was rendered using
both optimizations. Areas where concentration gradient and viewing rays run
perpendicularly have small sample bound widths, hence, they are rendered
using super-pixels (yellow cells). In other areas only adaptive sampling in
viewing direction is applicable (green cells).

5.5 Implementation Details

The algorithm was implemented using NVIDIA CUDA 7.5 and OpenGL. First,
the details of the particle-to-cell mapping are given which in fact constructs
the perspective grid as particle access structure (Sec. 5.5.1). Then, the cell
merging approach will be presented which allows to reduce the sampling rate
at a constant number of samples per cell and prevents unnecessary duplicate
particle accesses (Sec. 5.5.2). Last, some details of the ray casting are presented
(Sec. 5.5.3).

5.5.1 Particle Access via Perspective Grids

In the perspective grid structure [Ort14], each cell c stores references to parti-
cles that overlap the cell’s volume Ωc := {x |C (x) = c} which is defined via the
indexing function C : R3 →N0

C (x) = (Cx(x) My +Cy (x)) Mz +Cz(x), (5.6)

which subdivides the view space into Mx ×My ×Mz view-aligned cells. The
cell Perspective cell

index
coordinates (Cx(x),Cy (x),Cz(x)) at position x = (x, y, z)T in view space are

given as



⌊

x

γα(z)
+ Mx

2

⌋
,

⌊
y

α(z)
+ My

2

⌋
,

ÌÌÌÊMz




ln
(

z
snear

)

ln
(

sfar
snear

)



ÍÍÍË


 . (5.7)

74 Adaptive Volume Ray Casting

Here, Cz is derived using the inverse of the following perspective transforma-
tion that maps samples from uniform sampling space to non-uniform view
space [FAW10]:

si = snear

(
sfar

snear

) i
N

. (5.8)

Cx and Cy are defined by the window’s aspect ratio γ. α(z) = 2z
My

tan
(
σ
2

)
is the

cell height at distance z, which depends also on the current field of view σ of
the view frustum.

Assigning particles j to cells c yields a list of particle-cell-pairs (j ,c). Sorting
the particle-cell pairs by the cell index c yields cell-particle-pairs that describe
the perspective access structure. Only cells are referenced to which at least
one particle contributes and only particles are present that contribute to at
least one cell. Thus, empty cells are skipped implicitly and frustum culling is
performed (cf. Fig. 5.2).

As ray bundles always sample a whole cell sequence in viewing direction,
the indices of the first and last cell of the sequence are also stored. To allow for
a fast access to particles inside cells, the first index jc and the number Nc of
the relevant cell-particle-pairs for each cell are stored. During error estimation
and ray casting, the “traversal logic” reduces to a simple loop over the relevant
cells in the sequence of cell-particle pairs.

5.5.2 Cell Merging

Although the adaptive sampling can increase the sampling level along rays
inside cells, this results in a different number of samples per cell and com-
plicates the ray casting. Furthermore, particles in subsequent cells often are
redundantly sampled. Thus, a pairwise merging of neighboring cells [Ort14] is
performed that allows for sampling at a higher level. Thus, overlapping particle
references in the newly merged cellConstant number of

cell samples
can be removed and, instead of adjusting

the number of samples per cell, only the sampling distance is adjusted. This
both simplifies the ray casting and reduces the number of particles that have
to be sampled redundantly.

Merging of cells is realized level by level, starting from level 0. Figure 5.7
shows two subsequent merging steps. Neighboring cells are only merged if
they both allow for sampling at the next higher level. During the process
of setting up the grid, the linear cell index c is bit-shifted one bit to the left
and the least significant bit is setRemove redundant

particles
iff a particle contributes to samples of the

subsequent cell c +1. The cell index then also directly indicates if a particle is
redundantly referenced in the subsequent cell. After sorting the particle-cell-

5.5 Implementation Details 75

pairs, all redundantly referenced particle indices of a cell contiguously lie in
memory and can be removed easily.

Figure 5.7: Two iterations of the cell merging. The number of samples remains
constant inside the merged cells, however, the distance between samples (red)
is doubled. Redundant particle references (rose) between cells are removed
and uniquely referenced in the merged cell (white).

Only cells are merged that are sampled adaptively in viewing direction. Cells
that are rendered as a super-pixel would not benefit from merging because no
particles are accessed during ray casting.

5.5.3 Adaptive Ray Casting

Alg. 5.2 depicts the pseudocode of the proposed ray casting algorithm as de-
scribed by Orthmann [Ort14] that has been extended to support the rendering
of super-pixels. Since consecutive cells in viewing direction are neighbors in
memory, no specific cell finding logic is required. Either a super-pixel can be
rendered or particles have to be sampled. As all rays then have to sample the
same set of particles, particle data for all Dx y ×Dx y adjacent rays can efficiently
be cached using shared memory (cf. red lines in Alg. 5.2) and each particle has
to be read only once per cell. Using a small thread-local cache, particles scatter
their data to Dz samples of a ray at once to further reduce memory traffic. In

76 Adaptive Volume Ray Casting

the GPU-implementation of Alg. 5.2, Dx y = 8 and Dz = 16 were used so the
maximum sampling level is log2 Dz = 4.

1: I = 0,T = 1, . initialize ray radiance and transparency
2: x[Dz] = 0 . sampling positions
3: Q[Dz] = 0, V [Dz] = 0 . sampled quantities and volumes
4: for all Cell c in c1, . . . ,cL do
5: jc , Nc . index to particle array and number of particles (cf. Sec. 5.5.1)
6: ic , ∆ic . linear cell index (cf. Eq. (5.6)) and cell sampling distance
7: [jc , Nc , ic ,∆ic] = read_celldata(c)

Super-pixel Rendering

8: if c can be rendered as Super-pixel then
9: [I ,T] = composite(I ,T, ISP,TSP)) . cf. Sec. 5.4.2

10: continue
11: end if
Sampling

12: for all Sample k in 0, . . . ,Dz −1 do
13: Q[k] =V [k] = 0 . initialize sampled quantity and volume
14: x[k] = x(s(ic +∆ic k)) . get ray sampling position x in view space
15: end for
16: for all Particle j in jc , . . . , jc +Nc −1 do
17: [x j ,h j ,Q j ,V j] = read_particledata(j)
18: for all Sample k in 0, . . . ,Dz −1 do
19: Q[k] =Q[k]+Q j V j W j (x[k])
20: V [k] =V [k]+V j W j (x[k])
21: end for
22: end for
23: for all Sample k in 0, . . . ,Dz −1 do
24: if (V [k] > 0) Q[k] =Q[k]/V [k] . CSPH normalization (cf. Eq. (3.12))
25: end for
Compositing

26: for all Sample k in 0, . . . ,Dz −1 do
27: ∆sk = s(ic +∆ic (k +1))− s(ic +∆ic k) . view space distance
28: [I ,T] = composite(I ,T, tfI (Q[k]), tfT (Q[k])∆sk)
29: end for
30: end for

Algorithm 5.2: Thread-coherent volume ray casting with adaptive sampling
step sizes (green), super-pixel rendering and efficient shared memory access
(red). Particles contribute to Dz ray samples at once using a thread-local cache.

5.6 Results and Discussion 77

5.6 Results and Discussion

In order to demonstrate the performance and to evaluate the image quality, the
proposed adaptive ray casting has been tested in five scenarios: The Checker
Board scene with cubes of varying concentrations that diffuse over time (see
Fig. 5.8), the Mixer scene simulating the mixing of solvent with dye streaming

Figure 5.8: 3D checker board of increasing concentrations from left to right
and front to back.

from an inlet (see Fig. 5.9), the HPG 2016 scene with fluid letters splashing to
the ground (see Fig. 5.1), the static Radial Concentration scene of a fluid with
radially increasing concentrations rendered with an extreme transfer function
(see Fig. 5.3), and the Flubber scene with two fluids mixing while orbiting a
virtual center of gravity (see Fig. 5.10). The relaxation factor for the error
analysis was set to Erelax = 1 in all examples and super-pixel rendering was
enabled if not stated otherwise. Simulations and renderings were carried out
on an NVIDIA GeForce GTX Titan with 6 GB of VRAM. All scenes were rendered
on a 10242 viewport. Surfaces were also ray cast using the view-aligned access
structure. However, to get smoothed surfaces, an increased particle support
radius was employed. As the focus of this chapter lies on the adaptive volume
ray casting, timings for surface rendering are not included.

Tab. 5.1 shows particle counts, timings and speed-ups as well as errors
using different tolerances E I averaged over all frames of the respective scene.
Errors are given as maximum absolute difference over all pixels in any color or
alpha channel ∈ [0,1] compared to the non-adaptive rendering E I =‘–’. Values
of {0.001,0.004,0.01} relate to error values {0.255,1.02,2.55} in the respective
8-bit value range [0,255], respectively.

The following discussion addresses the image quality and the performance

78 Adaptive Volume Ray Casting

(a) Frame 130 (b) Frame 330 (c) Frame 530

(d) Frame 642 (e) Frame 930

Figure 5.9: A mixer is causing a stream of green dye to mix with solvent in the
fluid tank. Above, five of the 1000 frames that were rendered are shown. The
sequence progresses from left to right and from top to bottom.

characteristics of the adaptive volume ray casting approach and will also com-
pare the method to previous work.

Regarding image quality, the errors due to theImage quality adaptive volume ray casting
of the Flubber, the Checker Board, and the Radial Concentration scenes always
stayed below the error tolerance. For both the Mixer and HPG 2016 scenes,
errors of all frames stayed below the error tolerance for E I = 0.01 and E I = 0.004.
For E I = 0.001, however, the error exceeded the tolerance for 1 of the 1200
frames of the Mixer scene and for 1 of the 1500 frames of the HPG 2016 scene.
Table 5.2 summarizes the errors of the approach for all frames of all scenes.
Figure 5.11 shows the error behavior for the Mixer scene over the full 1200
simulation frames. The sampling error analysis allowed the adaptive sampling
to very precisely exhaust the error tolerance E I . Additionally, the Mixer scene
was rendered using l max

c for all cells c (cf. Sec. 5.3.2), i.e., the sampling level
for each cell was limited separately without applying the greedy algorithm to

5.6 Results and Discussion 79

(a) Flubber (b) Sparse grid

Figure 5.10: A frame of the Flubber scene and the respective sparse grid show-
ing the large surface to volume ratio of this scene.

control the screen space error along cell sequences of rays. The error of 0.016
exceeded the user-defined tolerance E I = 0.004 (cf. row ‘No greedy alg.’ in
Tab. 5.1) which indicates that the error estimation has to consider the whole
cell sequence along ray bundles.

200 400 600 800 1000 1200
0

0.001

0.004

0.01

Im
a
g
e
er
ro
r
(M

a
x
im

u
m

p
ix
el

d
iff
er
en

ce
)

Error EI = 0.001
Error EI = 0.004
Error EI = 0.01

Figure 5.11: Errors of the 1200 simulation frames (x-axis) of the Mixer scene.
Errors are displayed as dotted lines against the y-axis.

Considering performance, Rendering
performance

the adaptive sampling yields total speed-up fac-
tors between 1.08 and 1.62 in all scenes (cf. Tab. 5.1).

80 Adaptive Volume Ray Casting

Table 5.1: GPU timings and speed-ups of adaptive (E I ≥ 0) and non-
adaptive (E I = ‘–’) volume rendering. ‘Grid’ is the particle-cell assignment
and setting up the view-aligned grid, ‘Adapt’ is the sampling error analysis and
the merging of cells, ‘RC’ is the ray casting and ‘Total’ gives the total time to
render. ‘Error’ is given as maximum absolute single pixel difference in any
color or alpha channel compared to the non-adaptive rendering. ‘Speedup’
relates the timing to timings for E I = ‘–’. Results are averaged over all frames of
the given scenes.

Image quality Timing (in ms) Speedup
Scene (#Part.) E I Error ∈ [0,1] Grid Adapt RC (Total) RC (Total)
Flubber – –

7
– 66 (73) 1 (1)

(500 K) 0.004 7.2e-04 5 44 (56) 1.5 (1.3)
No surface 0.004 À E I 7 8 19 (34) 3.5 (2.15)

Checker
– –

23

– 134 (157) 1 (1)

Board
0.001 3.3e-05 14 109 (146) 1.23 (1.08)

(1.2 M)
0.004 2.1e-04 15 87 (125) 1.54 (1.26)
0.01 0.0011 16 75 (114) 1.79 (1.38)

Mixer

– –

49

– 297 (346) 1 (1)
0.001 7.4e-04 28 181 (254) 1.64 (1.36)

(2.5 M)
0.004 0.0027 29 164 (242) 1.81 (1.43)
0.01 0.0056 29 152 (230) 1.95 (1.5)

No greedy alg. 0.004 0.016 49 23 121 (193) 2.45 (1.79)
Object space 0 75 – 981 (1056) 0.3 (0.33)

HPG2016
– –

71

– 317 (388) 1 (1)

(5.3 M)
0.001 5.4e-04 31 217 (319) 1.46 (1.21)
0.004 0.002 32 191 (294) 1.66 (1.32)
0.01 0.0035 33 173 (280) 1.83 (1.38)

Radial
– –

79

– 598 (677) 1 (1)

Concentrations
0.001 6.2e-04 49 460 (588) 1.3 (1.15)

(10 M)
0.004 0.0013 50 340 (469) 1.76 (1.44)
0.01 0.002 50 290 (419) 2.06 (1.62)

Only z-Adapt 0.004 0.0014 59 389 (527) 1.54 (1.28)

Figure 5.12 shows the detailed time analysis of the Mixer scene. Speed-up
factors of about 2 were observed for all values of E I within the first 100 frames.
With increasing scene complexity (appearance of iso-surfaces and spreading
of dye) the speed-up factors for E I = 0.001 drop to 1.15 and for E I = 0.01 to
between 1.18 and 1.4. Towards the end of the sequence, the scene complexity
decreases again (cf. Fig. 5.9, right) allowing for increasing speed-ups.

Apparently, the variation in the speed-up factors depends on the homogene-
ity of the radiance and transparency and the given error tolerance. Also, large
surface to volume ratios impair speed-up factors as surface cells are excluded

5.6 Results and Discussion 81

200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400
T
im

e
(i
n
m
s)

Non-Adaptive
Adaptive EI = 0.001
Adaptive EI = 0.004
Adaptive EI = 0.01

Figure 5.12: Timings of the 1200 simulation frames (x-axis) of the Mixer scene.
Timings are displayed using solid lines against the y-axis.

Table 5.2: Error statistics of the adaptive sampling for different scenes and
tolerances E I . ‘Errmax’ gives the maximum single pixel error of all frames,
‘%Rays>E I ’ gives the maximum percentage of erroneous rays over the total
number of cast rays for the respective frame and ‘#Rays>E I ’ gives the number
of frames of the scene that exceeded the error tolerance.

Scene E I Erelax Errmax %Rays>E I #Frames>E I

Flubber * 1 < E I 0 0
Checker Board * 1 < E I 0 0

Mixer
0.001 1 0.00106 0.0125 % 1/1200

0.004, 0.01 1 < E I 0 0

HPG 2016
0.001 1 0.00101 0.0004 % 1/1500

0.004, 0.01 1 < E I 0 0
Radial Concentrations * 1 < E I 0 0

from adaptive sampling. To show this effect, the Flubber scene was rendered
with surface detection disabled (cf. row ‘No surface’ in Tab. 5.1) and achieved
a speed-up of 2.21 for E I = 0.004. Although this causes visible artifacts where
super-pixels are rendered for cells that are not fully covered with particles, it
indicates that there is potential for further speed-ups.

In order to demonstrate the benefits of combined lateral adaptivity and
adaptivity in viewing direction, the Radial Concentration scene was rendered
using only adaptivity in viewing direction with Erelax = 1 and E I = 0.004 and
achieved a speed-up of 1.28 (cf. row ‘Only z-Adapt’ in Tab. 5.1). The speed-up
with lateral adaptivity using super-pixels was 1.44 at an even lower screen space

82 Adaptive Volume Ray Casting

error.

A comparison to previous work was doneComparison to
previous works

for the Mixer scene which was
rendered using an object space particle access structure [OKK10] (cf. row ‘Ob-
ject space’ in Tab. 5.1). A speed-up of about 3 was observed using only the
view-aligned access structure.

A comparison to the adaptive ray casting of Orthmann [Ort14] was made in
order to assess the benefits of the optimizations of Sec. 5.4. Although different
scenes were used, they were of similar complexity and should serve as a fair
basis for comparison. While the screen space error and the error tolerance dif-
fered at least by an order of magnitude in all scenes as shown Tab. 6.1 [Ort14]3,
the optimizations of Sec. 5.4 gave more precise control over the screen space
error and, thus, yielded higher speedups for lower values of E I (see Tab. 5.1).
Even for large tolerances of E I = 0.2, the maximum speedup4 was only be-
tween 0.94 and 1.04 and rendering was even slowed down in one scene (see
Tab. 6.1 [Ort14]). In contrast, the relaxation in combination with super-pixels
yielded speedups of at least 1.28 for E I = 0.004 (see Tab. 5.1).

5.7 Conclusions

In this chapter an adaptive on-the-fly volume ray casting for unstructured
particle data has been presented. The approach employs a sparse perspective,
view-aligned grid as access structure for particles and does not require any
precomputations. Inside each grid cell, sampling rates can locally be adapted
both in viewing and lateral direction. The presented on-the-fly sampling error
analysis for volume rendering of SPH-based quantity fields allows to precisely
estimate screen space errors due to adaptive sampling. A greedy algorithm
optimizes the adaptive sampling for each cell according to a user-defined error
tolerance. The per-cell sampling information is used during ray casting to shift
computational resources to salient regions of the fluid volume. The proposed
algorithm leads to significant rendering speed-ups without sacrificing image
quality.

3Table 6.1 appears on page 101 in the thesis of Orthmann which can be retrieved
from the University Library Siegen under the following link: http://dokumentix.ub.uni-
siegen.de/opus/volltexte/2015/911/pdf/Dissertation_Jens_Orthmann.pdf.

4The speedup is calculated as the ratio of non-adaptive rendering time over adaptive ren-
dering time.

http://dokumentix.ub.uni-siegen.de/opus/volltexte/2015/911/pdf/Dissertation_Jens_Orthmann.pdf
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2015/911/pdf/Dissertation_Jens_Orthmann.pdf

6

66
Visualization of

Advective-Diffusive Flows

Figure 6.1: A drop of green dye is dripped into water. Before impact, only advec-
tion plays a role (left). Directly after impact, the drop’s velocity, i.e. advection,
still dominates concentration transport (middle), but diffusion increasingly
becomes the main mode of transport (right). Red and blue indicate advection
and diffusion dominated flow, respectively.

In this chapter a framework for unified visualization of advective and diffusive
concentration fluxes is presented. These play a key role in many phenomena
like, e.g. Marangoni convection and microscopic mixing. The main idea is to
decompose fluxes into their concentration and velocity parts. Using this flux
decomposition, advective-diffusive concentration transport can be conveyed
using integral lines. In order to visualize superposed flux effects, a new graphical
metaphor, the stream feather, is introduced which adds extensions to stream
tubes pointing in the directions of deviating fluxes. The resulting unified visual-
ization of macroscopic advection and microscopic diffusion allows for deeper
insight into complex flow scenarios that cannot be achieved with current volume
and surface rendering techniques alone.
The approach presented in this Chapter has been published in Computer Graph-
ics Forum [HWK15] and presented at EuroVis 2015 in Cagliari, Italy.

UUnderstanding the behavior of concentration transport in fluid flows is a
challenging task. There exists a wide array of scientific visualizations to

aid in gaining insight into experimental and simulated flow data. The most

83

84 Visualization of Advective-Diffusive Flows

important approaches are volume rendering of concentration fields [EHK∗06],
vector field visualization of advection by means of line integral convolu-
tion [CL93], by tracing integral lines, and also by flow based surfaces [MLP∗10].
However, so far mainly advective flows have been investigated while the com-
plex flow of concentrations inside fluids, which additionally depends on diffu-
sive flux, has not been considered in the context of integral line visualizations
but only in direct volume rendering [KSW∗12] and visualization of topological
features [SKE14] of dye-advection. Concentrations in the fluid have an impact
on important physical quantities like surface tension, which, e.g., leads to the
effect of Marangoni convection. Many real-world applications depend on the
complex interplay between advection and diffusion although their respective
contributions to an observed behavior are not always clear. The presented
visualization of advective-diffusive transport aims at filling this gap, enabling
researchers to identify and understand the driving forces in complex transport
scenarios encountered in, e.g. microscopic mixing [KWFY99], and dynamic
wetting [FAB∗11].

In this chapter a visualization framework for advection and diffusion is
proposed that is based on tracing integral lines. The main idea is to provide
insight into the intrinsic structure of the concentration transport consisting of
both, the diffusive and the advective component. In order to combine both
components to a unified flux of concentration, concepts for decomposing
the diffusive flux into a velocity and a concentration part are proposed. The
visualization then uses integral lines that provide means for disclosing the
intrinsic diffusive and advective components of the combined flux. The main
contributions of the presented approach are:Contributions

• A generic framework to describe arbitrary types of fluxes that is based on
the decomposition of fluxes into velocity and concentration.

• A decomposition of diffusive flux based on the concept of mean and max-
imum diffusion velocity allows for integral line visualization of diffusive
transport.

• Vector field visualization of combined advection-diffusion processes
introducing stream feathers to visualize diffusion and advection simulta-
neously.

The proposed visualization approach is applied to Smoothed Particle Hydrody-
namics (SPH) simulations of incompressible fluids. The contribution in this
context is

• a stable reconstruction of continuous advective and diffusive flux fields
in SPH as required for stream feather visualization.

Note that the proposed decomposition of fluxes and thus the visualization ap-
proach for advective-diffusive flows can be applied to any kind of (simulation)

6.1 Foundations and Prior Work 85

data as long as velocity and concentration data are available.

The remainder of the chapter is structured as follows: Sec. 6.1 discusses
the relevant theory and related work. Sec. 6.2 gives a general overview of the
visualization framework. Sec. 6.3 shows how to decompose fluxes to make them
available for integral line visualization. The resulting fields can be rendered
using the proposed novel stream feather metaphor introduced in Sec. 6.4.
Details of the SPH-based simulation and visualization framework are described
in Sec. 6.5. Results are presented and discussed in Sec. 6.6. Sec. 6.7 concludes
the chapter.

6.1 Foundations and Prior Work

In this section, a brief overview of advective and diffusive flux (Sec. 6.1.1) and on
respective visualization techniques (Sec. 6.1.2) is given. As the proposed generic
advective-diffusive flux visualization will later be applied to SPH-based flow
simulations, visualization techniques applied to SPH fluids are also discussed
(Sec. 6.1.3).

6.1.1 Advective and Diffusive Flux

Advective flux carries concentration c(x) with the velocity field ~v(x) through
unit area per unit time at position x as

~ja(x) = c(x)~v (x). (6.1)

In the presence of concentration gradients, a net transport from areas of higher
concentrations to areas of lower concentrations takes place. This diffusive flux
is calculated according to Fick’s law as

~jd (x) =−D∇c(x), (6.2)

where D is the molecular diffusivity. The total flux of Total flux of
concentration

concentration through
unit surface per unit time at position x

~jt (x) =~jd (x)+~ja(x) (6.3)

is the sum of advective and diffusive fluxes and follows the direction of maxi-
mum transport [BSL07].

86 Visualization of Advective-Diffusive Flows

6.1.2 Visualization of Advective-Diffusive Flow

While general vector field visualization methods have been covered in Sec. 2.4,
the focus here lies on advective-diffusive flows. LIC [CL93] has been extended
by a model of non-linear diffusion which, however, is not part of the simulation
data but is, for example, applied to segment the resulting flow fields [BPR01,
DPR00]. Advective-diffusive flows have been visualized using surface ren-
derings of clouds of concentration spreading. However, the diffusive part
does not follow a gradient but just extends streamlines that follow advection
to cone-shaped clouds [MS93]. Several approaches have been proposed for
visualization of diffusion tensors that describe the behavior of anisotropic
diffusion. Hyperstreamlines follow the direction of the major eigenvector
of the diffusion tensor field [DH93] and have been extended to Tensorlines
to increase the stability in isotropic regions where all eigenvalues are nearly
identical [WKL99]. Other approaches have employed tensor glyphs [KW06]
and tensor volumes [KWH00] to visualize diffusion tensors. None of these
approaches, however, visualized actual transport of concentrations.

Advective-diffusive flow has been visualized using direct volumetric visual-
izations of dye-advection [KSW∗12]. Topological features of advective-diffusive
flows have been examined, however, the advection-diffusion equation has only
been solved in form of a secondary simulation step on top of a purely advective
flow [SKE14].

The proposed visualization approach is based on the geometric construc-
tion of integral lines from advection-diffusion simulation data. To the best
of the author’s knowledge, neither the effects of diffusion nor the combined
advective-diffusive transport have been considered in the context of integral
line based visualization, so far.

6.1.3 Visualization of SPH Fluid Simulations

In the context of SPH-based fluid simulations, concentrations can be visualized
using volume rendering as presented in Chapter 5 whereas surface rendering
reveals the fluid’s geometric shape [AIAT12]. SPH data can always be visualized
by sampling field quantities on a grid and applying standard techniques. How-
ever, resampling can introduce artifacts in undersampled regions and increases
computational complexity in case of unnecessary oversampling [SFBP09]. Pure
advection has been visualized by directly rendering particle trajectories in com-
bination with space-time hierarchical clustering to reduce visual clutter [FW12].
This, however, only allows to render path lines at the resolution of particles. For
higher spatial and temporal resolution, interpolation between particle posi-

6.2 Overview 87

tions of subsequent time steps can be employed [COJ15]. Vortex core lines have
been visualized directly from SPH-data using Hermite splines to interpolate
between particle positions in time [SFBP09].

As the time dependent behavior of fluids and the distinct roles of advec-
tion and diffusion to concentration transport cannot be captured by current
visualization techniques, we propose an integral line based approach to simul-
taneously visualize advective and diffusive concentration transport. In order
to achieve an interactive visualization that does not rely on any preprocess-
ing or resampling, the flux-related quantities are directly computed within
the SPH simulation. In this context, it is not sufficient to trace SPH particles
to deduce concentration transport comprising diffusion and advection. As
diffusion is a microscopic phenomenon modeled as concentration exchange
between SPH particles, concentration transport has to be traced along arbitrary,
i.e. inter-particle spacial positions.

6.2 Overview

The proposed visualization framework for advection and diffusion using inte-
gral lines requires a velocity field and a scalar concentration field which both
may be unsteady. Firstly, Sec. 6.3 discusses how to compute advective and
diffusive fluxes directly from velocity and concentration data without any pre-
processing. One main Flux decompositionchallenge here is the requirement to express a flux ~j as
decomposition of velocity ~v and concentration c, i.e.

~j = c ·~v (6.4)

in order to trace integral lines of fluxes. The advective flux is already given in
this form. For diffusion, however, this kind of decomposition is not unique.
Two different decomposition schemes of diffusive flux are proposed, according
to the mean velocity of molecules [Ein05] and to the maximum velocity, as for
instance applied in environmental sciences in the context of the spreading of
toxic waste [Sch96], which are common interpretations to diffusive processes
(see Sec. 6.3.1).

Using the flux decomposition in Eq. (6.4) and the interpretations for the
diffusive flux, the unified flux is calculated consisting of the advective and the
diffusive component. The mean diffusive velocity, which follows the direction
of maximum transport, yields the so-called total flux ~jt , and the maximum
diffusive velocity, which follows the direction of fastest advancing concentration
front, yields the maximum velocity flux (see Sec. 6.3.2).

Based on the velocity components for the advective, diffusive and unified
fluxes the tracing of integral lines over time is demonstrated (see Sec. 6.4).

88 Visualization of Advective-Diffusive Flows

Integral lines are visualized geometrically using stream tubes the thickness of
which can be varied, e.g. according to the transported concentration in order to
convey the actual magnitude of flux. As the goal is to visualize the relation of all
three, potentially divergent fluxes, the geometric primitive of the stream tube
is extended by introducing stream feathers. Stream feathers are appendages of
the integral line indicating the directions and magnitude of deviating fluxes. In
this thesis, only streamlines are visualized. However, in general, the presented
approach is able to visualize any kind of integral lines.

6.3 A Framework for Tracing Advective-Diffusive Fluxes

The core concept of the proposed visualization approach is an extension of the
concept of integral lines, as introduced in Sec. 2.4.3, in order to achieve insight
into multi-component, i.e. advective-diffusive fluxes. Standard integral lines
are streamlines, pathlines and streaklines. Even though the visualization con-
cept directly applies to all types of integral lines, the focus lies on streamlines
in this chapter.

The position xstream(τ, x0,τ0) of samples moving along a streamline seeded
at position x0 at time τ0 is determined by time integration of the velocity field
~v(x ,τ0) (see Eq. (2.20) in Sec. 2.4.3). As the advective flux ~ja already is in a
separated form, i.e. ~ja = c ·~va , it has a velocity component that can directly be
used to trace integral lines over time [JH04].

The same does not hold for diffusive flux as there is no uniqueAmbiguous
decomposition of

diffusion

definition
of a velocity which could be used to determine streamlines. In order to make
diffusive flux ~jd and total flux ~jt available for integral line visualizations, they
have to be expressed in a decomposed form just as the advective flux, i.e. as
~jd = cd ·~vd and ~jt = ct ·~vt .

Note that although the flux is unchanged by the way it is decomposed, the
resulting integral lines may depend on the decomposition, i.e. on the velocity
part.

In the following, the decomposition of the diffusive flux is discussed in
Sec. 6.3.1. Afterwards, Sec. 6.3.2 describes how to derive a similar form of the
unified flux.

6.3.1 Decomposition of Diffusive Flux

One major challenge with diffusion is its random nature. As diffusion arises
from Brownian molecular motion, there is no unique way to define a diffusion

6.3 A Framework for Tracing Advective-Diffusive Fluxes 89

velocity for the decomposition of diffusive flux [Cus09].

Assuming that solute molecules move at a mean velocity vmol
d in solu-

tion Brownian molecular
motion

and randomly change their direction due to collisions with neighboring
molecules and assuming further that the mean free path until a collision with
neighboring molecules occurs is ∆x, then the position of molecules after some
time τ can only be described in terms of density distributions. Based on this
consideration, the molecular diffusivity is defined as (see also Eq. (6.2))

D = vmol
d ∆x. (6.5)

Even though movement occurs as a random process, transport from areas
of higher concentrations to areas of lower concentrations is more likely than
in the opposite direction causing a net diffusive flux ~jd in the presence of
concentration gradients as depicted in Fig. 6.2.

There are two major interpretations of diffusion related velocity. The mean
velocity considers the average speed of diffusing molecules, whereas the maxi-
mum velocity seeks to capture the advancing front of diffusion transport.

~j d
~j d⊥= 0

Figure 6.2: Diffusion follows the random movement of molecules, here de-
picted as the black molecule trajectories. The high concentration left of the
blue plane leads to a net flux to the right. However, there is no net flux through
the gray plane as the concentration on either side is the same.

Mean Velocity: According to Einstein, the mean velocity depends on the local
concentration as well as the concentration gradient [Ein05]. At low Reynolds
numbers, which is the case for small solute molecules in Decomposition of

mean velocity
diffusion

solvents like water,
the mean molecular velocity of diffusion is proportional to the force due to the
gradient of the chemical potential µ as

~v mean
d =−σ∇µ=−σ

kB T

c
∇c =−D

c
∇c =

~jd

c
, (6.6)

where σ is a temperature-dependent friction coefficient. kB is the Boltzmann
constant and T the temperature which is also considered constant, here. As

90 Visualization of Advective-Diffusive Flows

the force due to the chemical potential gradient acts the same on all molecules,
all molecules are assumed to move at mean velocity in Einstein’s model, i.e. the
full concentration c is diffused resulting in cmean

d = c. Nevertheless, in reality
there will always be a fraction of molecules that move faster than the mean.

Einstein’s model relates the mean diffusion velocity inversely proportional
to the concentration, see Eq. (6.6), thus, the practical problem arises that for
c → 0 velocity diverges. Therefore, the mean velocity is bounded by the user-
defined maximum velocity vmax

d > 0. The value vmax
d will also be used for the

maximum diffusion velocity.

Maximum Velocity: The maximum velocity obviously depends on the diffu-
sivity, see Eq. (6.5). However, even if the molecular velocity vmol

d is known, it
cannot be taken as maximum diffusion velocity as the free length until molecu-
lar collision ∆x needs to be taken into account, i.e. no molecule travels without
collision. Practically, this length can hardly be determined.

Thus, the user can control the magnitude of diffusion velocity vmax
d , which is

the same already used to clamp the mean velocity in case of low concentration
values. Assuming a fractionDecomposition of

maximum velocity
diffusion

of molecules moves always at this speed in the flux
direction, a corresponding concentration is deduced as

cmax
d =

∥∥~jd
∥∥

vmax
d

, ~v max
d =

~jd

cmax
d

= −D∇c

cmax
d

. (6.7)

Comparing the mean and the maximum velocity interpretation for the dif-
fusive flux, the main difference is that the mean velocity sets the concentration
to the maximum value, i.e. to the total concentration, whereas the maximum
velocity approach fixates the velocity. For the diffusive flux the choice of the
maximum velocity vmax

d affects the speed a sample travels along the integral
line, the line itself does not change, except for numerical integration errors. The
user controlled maximum velocity does actually enhance the evaluation, as for
a fixed integration time the length and thickness of the diffusion streamline can
be adapted. Figs. 6.8(c) and 6.8(d) show flow fields with the diffusive flux using
Einstein’s mean velocity and maximal diffusive velocity, respectively. However,
considering the unified maximum velocity flux as defined in Sec. 6.3.2, the
choice of vmax

d also influences the direction of maximum velocity; see also
Fig. 6.3.

6.3.2 Unified Model of Advective-Diffusive Flux

As the goal is to visualize advection and diffusion in a unified approach, the
unified flux has to be decomposed in the same way as the diffusive flux. Simi-

6.3 A Framework for Tracing Advective-Diffusive Fluxes 91

larly to the mean and maximum diffusion velocities decompositions for the
unified fluxes for both interpretations of diffusion are derived.

Unified Flux of Mean Velocity / Total Flux: In the case of mean diffusive ve-
locity, the whole concentration at a Decomposition of

unified fluxes
point in space ct = ca = cmean

d is transported
at the same velocity which is just the superposition of the advection and diffu-
sion velocities. The resulting unified mean velocity flux or total flux can thus
directly be decomposed as

~jt = ct~vt = ct (~va +~v mean
d) (6.8)

and follows the direction of maximum transport of concentration.

Unified Flux of Maximum Velocity: In the case of a constant maximum dif-
fusion velocity, the direction of maximum transport of concentration is actually
not of interest but rather the direction of preferred concentration spreading.
Thus, instead of visualizing the total flux as ~jt = ~ja +~jd , the direction of flux
with maximum velocity is followed as

~vm =~va +~v max
d . (6.9)

To find the decomposition of constant velocity flux

~jm = cm~vm , (6.10)

the amount of transported concentration cm in direction ~vm still has to be
determined. As cm should be physically plausible, cm ≥ 0 is required as well
as compliance with the total flux in Einstein’s mean velocity consideration, i.e.
for ct = ca = cmean

d = c , cm = c must hold, too. Considering Fig. 6.2, it is obvious
that the diffusive flux changes its magnitude depending on the considered
direction of flow through a local plane. If a linear model is applied, the effective
concentration flow through a unit area with normal n̂ with respect to the flux
direction v̂ is proportional to (n̂ · v̂) [BSL07]. All of the required properties are
fulfilled by defining

cm =
max(0, v̂a · v̂m)ca ‖~va‖+max(0, v̂d · v̂m)cmax

d ‖~vd‖
max(0, v̂a · v̂m)‖~va‖+max(0, v̂d · v̂m)‖~vd‖

. (6.11)

The clamping of the inner product in Eq. (6.11) guarantees positive contri-
butions to concentration transport. Fig. 6.3 shows the different directions of
unified mean and maximum velocity fluxes for ca 6= cd .

This decomposition allows to trace integral lines of advective, diffusive, and
unified fluxes in the same way.

92 Visualization of Advective-Diffusive Flows

~j t =~j a +~j d
~vm =~va +~vd

~vd~j d = cd~vd

~j a = ca~va

~va

Figure 6.3: Construction of the direction of unified maximum velocity flux.
If cd 6= ca , the directions of unified mean velocity flux ~ja +~jd and maximum
velocity ~va +~vd are different.

6.4 Visualization of Fluxes Using Stream Feathers

The final visualization uses the velocity and concentration values deduced from
the advective, diffusive and unified fluxes. Integral lines can now be calculated
which follow either of the fluxes using numerical integration. The resulting
polylines are visualized using stream tubes which are constructed in an OpenGL
geometry shader.

In case advection and diffusion carry concentrations in different directions,
the stream tube is extended to a novel visualization metaphor, the stream
feathers. Stream feathersSimultaneous

visualization of
diverging fluxes

provide a convenient way to visualize additional,
diverging fluxes in a unified manner. As the unified fluxes are a combination
of diffusive and advective flux, ~jt (~jm), ~ja , and, ~jd are coplanar. If ~jd or ~ja

~j d
~j a
~j t

Figure 6.4: Stream feathers are able to capture different flux components in
an intuitive combined view. The barbs of the feathers point in the direction of
fluxes strongly deviating from the flux visualized as stream tube.

strongly deviate from ~jt or ~jm in case of the mean or maximum diffusion
velocity, respectively, small planar appendages like barbs of a feather are drawn
to the stream tubes pointing in the direction of the deviating fluxes as shown
in Fig. 6.4. This way, attention can be steered to areas of strongly divergent
advective and diffusive fluxes.

In order to show the flux direction,Illustration of flux
direction

stream tubes are textured with arrows.
The size and spacing of arrows is proportional to the velocity of transport. The
stream tube thickness is scaled according to the transported concentration.

6.5 Advective-Diffusive Fluxes in SPH 93

By mapping velocity and concentration to different visual qualities, not the
magnitude but also the ratio of velocity and concentration of the flux can be
conveyed. To prevent visual clutter, feather barbs are only displayed if the
angle between fluxes exceeds a user-defined threshold ε> 1−

∥∥(ĵt · ĵd)
∥∥. Presentation of flux

magnitude
The

length of barbs is scaled with their respective flux magnitude. Additionally,
stream tubes can be colored according to the flux that most contributes to the
unified flux so that the driving transport mechanism can easily be identified as
shown in Fig. 6.1. A fix color pattern is applied to highlight advective (red) and
diffusive (blue) contributions.

6.5 Advective-Diffusive Fluxes in SPH

The proposed advective-diffusive flux visualization framework was applied
to SPH-based simulation. While the simulation was carried out using the
formalisms outlined in Chapter 3, the reconstruction of fluxes from simulated
data has to be derived for arbitrary points in space. The advective flux is
reconstructed from simulated data at arbitrary positions as

~ja (x) =
(
∑

j
c j V j Ŵi (x)

)(
∑

j
~v j V j Ŵi (x)

)
. (6.12)

In order not to underestimate field quantities in areas of neighborhood defi-
ciency, corrected SPH (CSPH) interpolation is applied (see Eq. (3.12)).

The diffusive flux first is evaluated at particle positions as

~jd (xi) =−D
∑

j

(
ci − c j

) Vi +V j

2
∇W j (xi) (6.13)

and is then approximated at arbitrary positions using corrected SPH

~jd (x) =
∑

j

~jd
(
x j

)
V j Ŵ j (x). (6.14)

Note that while the simulation uses Fick’s second law of diffusion (see Sec. 2.1.3)
in order to find the time rate of change of concentrations, here, Fick’s first law
of diffusion has to be calculated as it yields the diffusive flux [ALS09].

6.6 Results and Discussion

In order to demonstrate the benefits of the proposed novel advection-diffusion
visualization, several example scenes were set up.

94 Visualization of Advective-Diffusive Flows

The first scene simulates dripping a solute dye into a tank of solventAdvection and
diffusion in similar

directions

(see
Figs. 6.1, 6.5, 6.6). At first, diffusion and advection of dye work in the same
direction. After impact, advection slows down due to water pressure and the
water begins to bounce back around the site of impact. Fig. 6.5 shows the
advective and diffusive fluxes shortly after impact, corresponding to the unified
mean velocity flux on the right hand side of Fig. 6.1. Diffusion transports
concentration perfectly radially away from the site of impact. Stream feathers
nicely accentuate areas of divergent advective and diffusive fluxes which would
have not been revealed otherwise.

(a) Advective flux with diffusion feathers (b) Mean velocity diffusive flux with ad-
vection feathers

Figure 6.5: Stream feather visualization of advective and diffusive fluxes corre-
sponding to the unified mean velocity flux in Fig. 6.1, right.

Fig. 6.6 shows the situation about 6 s after impact when the water is still
bouncing. The advective movement clearly slows down and diffusion domi-
nates the total transport. At this point in time, advection and diffusion work in
the same direction around the site of impact, hence, stream feathers are not
visible in that region. The coloring according to the dominating flux is still able
to convey the respective contributions of advection and diffusion to the total
transport.

In the second scene pure solvent is dripped into a tank of solute dyeOpposite advection
and diffusion

as
an example for counteracting advection and diffusion. Fig. 6.7 shows the
situation shortly after impact of the solvent drop. At that point in time, diffusion
transports dye into the drop (Fig. 6.7(b)) at nearly the same velocity as the drop’s
downward advective motion (Fig. 6.7(a)) so that the unified mean velocity flux

6.6 Results and Discussion 95

(a) Advective flux with diffusion feathers (b) Unified mean velocity flux with advec-
tion and diffusion feathers

(c) Diffusive flux with advection feathers

Figure 6.6: Advective, unified mean velocity and diffusive fluxes after impact
of dye in solvent (see Fig. 6.1). Diffusion radially transports concentration away
from the site of impact and dominates the flow farther away from the impact
site. Advection due to bouncing water dominates the flow near the impact site.

nearly gets perpendicular to both the advective and diffusive fluxes as shown
in Fig. 6.7(c). The stream feathers and the colored stream tubes are able to
intuitively convey this situation of opposite fluxes.

The third scene shown in Fig. 6.8 demonstrates the utility of Complex
superposed fluxes

the visual-
ization in a real-world application. The mixing of solute dye and solvent in a
t-sensor [KWFY99] was simulated. In the t-sensor the dye and solvent streams
on the left are accelerated by pressure. The two streams meet at the junction of
the t-sensor and merge to one stream which can be analyzed. In the lower left

96 Visualization of Advective-Diffusive Flows

(a) Advective flux (b) Diffusive flux

(c) Unified mean velocity flux with advection and diffusion
feathers

Figure 6.7: Advective, diffusive and unified mean velocity fluxes at impact
of a solvent drop in a tank of dye. Advection and diffusion work in opposite
direction.

of the t-sensor, back-diffusion of concentration in the opposite direction of the
advection of the solvent stream takes place.

A standard stream tube visualization of the velocity field (Fig. 6.8(a)) can
not convey the magnitude of advective flux. In contrast, the presented visual-
ization of advection (Fig. 6.8(b)) intuitively shows the magnitude of transport
by scaling the tube thickness according to the transported concentration while

6.6 Results and Discussion 97

(a) Stream tube visualiza-
tion of the velocity field

(b) Advective flux with dif-
fusion feathers

(c) Mean velocity diffusive
flux with advection
feathers

(d) Maximum velocity dif-
fusive flux with advec-
tion feathers

(e) Unified mean velocity
flux with advection and
diffusion feathers

(f) Unified maximum veloc-
ity flux with advection
and diffusion feathers

Figure 6.8: Advective, diffusive and unified fluxes of the flow in a t-sensor.
Note how advective and diffusive fluxes transport concentration in nearly
perpendicular directions.

the velocity is captured by the arrow size and spacing. The additional stream
feathers show the diverging direction of diffusive flux. The visualization of max-
imum velocity diffusion (Fig. 6.8(d)) can give insight into diffusive transport in
regions in which the Einstein model smoothes velocities (Fig. 6.8(c)) causing
stream tubes to degenerate. In both visualizations of diffusion, stream feathers
intuitively reveal the diverging direction of advection. The unified maximum
velocity flux (Fig. 6.8(f)) more clearly reveals the back-diffusion that takes place
in the lower left stream compared to the visualization of unified mean velocity
flux (Fig. 6.8(e)). The stream feathers are scaled according to the magnitude of
their respective fluxes and nicely capture the nearly perpendicular directions

98 Visualization of Advective-Diffusive Flows

of advection and diffusion.

Compared to simple glyph-based renderings the stream tubes do not only
encode magnitude and direction of flux but can reveal the ratio of velocity and
concentration of transport by mapping these entities to stream tube thickness
and arrow spacing, respectively. Important additional information is added by
simultaneously showing deviating flux directions as feathers. A drawback of
the approach, however, is the fact that the length of stream feathers, i.e. the flux
magnitude, and the spacing between arrows, i.e. the velocity, cannot directly
be compared.

The last scene is an artistic setup of a tank containing a 3D checker board
pattern of different dye concentrations in solvent. From above, a quad of
solute dye drops into the tank. Thus, the advection follows a classic dam break
scenario. The checker board pattern of concentrations in the fluid bulk causes
a distinct pattern of diffusion. Fig. 6.9 shows the development of the scenario
over time for three different time steps. At first (Fig. 6.9(a)), diffusion and
advection take place in separated areas: Diffusion is restricted to the fluid bulk
and advection to the falling fluid quad. As soon as the fluid quad hits the tank
(Fig. 6.9(b)), fluid in the tank gets displaced. Hence, the diffusive flux in the
tank is superposed by a strong advective flux. The regions of strongly diverging
fluxes at the edges of the checker board pattern are again emphasized by the
stream feather rendering. The red coloring of the stream tubes clearly indicates
that advection is the driving force in the upper half of the fluid. In the lower half,
however, diffusion still is dominant. The movement of the quad continues to
displace fluid and effectively creates a wave that travels to the right (Fig. 6.9(c)).
The stream feathers and the coloring still clearly indicate that diffusion plays an
important role for total transport and should not be neglected in visualization.

All integral lines are directly computed from raw simulationVisualization
performance

data using a
CUDA implementation. Time integration of streamlines has been realized us-
ing a fourth order Runge-Kutta scheme with fixed time step for a fixed duration
of time. Streamlines have been generated from a planar grid of seed points
that can be interactively controlled by the user. Calculations have been carried
out on an Intel Core i7 930 at 2.8 GHz with 24 GiB RAM and on an NVIDIA
GTX Titan with 6 GiB of VRAM. Table 6.1 gives timings of both the integral
line calculations and the renderings of stream feathers. The timings denoted
by ‘Drop’ in the table apply to both drop scenarios. The timings clearly show
that in all scenes interactive frame rates were achieved both for the generation
of streamlines and the rendering of stream feathers allowing for a direct ex-
ploration of simulation data. As the approach operates directly on raw data,
the visualization can already be used during simulation. The computation
time for streamlines is mainly dominated by the amount of samples along a

6.6 Results and Discussion 99

(a) t = 0.84 s (b) t = 2.21 s (c) t = 4.44 s

Figure 6.9: Unified mean velocity flux of the checker board scene over three
time steps. The quad of solute dye (Fig. 6.9(a)) moves downward and hits
the surface of the tank (Fig. 6.9(b)) causing a superposition of the initially
separated advective and diffusive fluxes. The impact causes a wave to form
(Fig. 6.9(c)) that travels to the right causing a strong advective flux.

Table 6.1: GPU timings of streamline integration and stream feather rendering
for the test scenarios. The first column names the scenario and gives the
number of simulated particles (in Mio.). Res. is the seeder plane resolution.
The duration (integration time) of the streamline and the step size for the
Runge-Kutta integration are given in Dur. and Step, respectively. Int. denotes
the calculation time for the streamlines and Vis. is the frame rate of rendering
stream feathers.

Scene (#Mio. ptcls) Res. Dur. (s) Step (ms) Int. (ms) Vis. (fps)
T-Sensor (0.58) 64×64 0.75 2.5 270 32

Drop (1.16)
4×4 2

5
240 60

64×64
1 145 32
2 240 16

Checker Board (1.34)
32×32

1

7.5

171 60
2 300 60

64×64
1 171 46
2 305 23

streamline and not by the number of streamlines which is due to the parallel
CUDA implementation.

100 Visualization of Advective-Diffusive Flows

6.7 Conclusions

This chapter presented a framework for simultaneous visualization of advec-
tive, diffusive and unified fluxes based on integral lines. The main goal is to
provide insight into the intrinsic structure of the concentration transport and
the relation between the diffusive and the advective components. As integral
lines require a velocity field, the diffusive and the unified flux are decomposed
into a velocity and a concentration part based on the concept of mean and
maximum diffusion velocity, yielding the unified mean and maximum velocity
fluxes, respectively. Using the new metaphor of stream feathers, combined
advection-diffusion processes can simultaneously be visualized.

The proposed decomposition of fluxes and the visualization for advective-
diffusive flows can be applied to any kind of (simulation) data which provides
velocity and concentration data. It was applied to SPH-based flow simulations
and methods for a stable reconstruction of continuous advective and diffusive
flux fields in SPH were presented.

Benefits: Evaluating the new visualization approach shows that it nicely re-
veals situations with divergent advective and diffusive fluxes. Both approaches,
the unified mean and maximum velocity fluxes, give clear hints to the intrinsic
nature of the superposed concentration transport mechanisms. In cases of
high concentrations the Einstein model strongly decreases velocities. Here, the
unified maximum velocity flux more clearly reveals effects like back-diffusion.
Thus, both approaches complement each other in their expressiveness.

Limitations: By tracing either mean or maximum velocity diffusive fluxes,
the random nature of diffusion is not fully reflected, as it statistically spreads
concentrations uniformly. In areas of high concentration and small diffusion
gradients, stream tubes of mean diffusive flux can degenerate. In this case using
the maximum velocity diffusion model can still reveal all relevant information
of diffusion.

7

77
Conclusions

This chapter summarizes the contributions and concludes the thesis. A brief
discussion of limitations also directly opens up possible directions for future
work.

SSPH-based fluid transport poses highly exciting research topics. In this thesis
new methods for simulating and rendering SPH-based fluids have been

presented. These include the physically-based simulation of phase changes
between the liquid and gaseous states, adaptive volume rendering and vector
field visualization of advective-diffusive flows. Although the contributions leave
room for improvement, they also fill major gaps of current research. Especially
surface dynamics and the visual presentation of transport phenomena have a
large potential. Hopefully, this work will find applications and inspire further
research.

7.1 Summary

Although phase-changes between solid and liquid states have been discussed
in many works, this work is the first to realize evaporation and condensation
in SPH-based fluids. Grid and particle

coupling
The air phase is therefore simulated on a coarse Eulerian

grid into which mass evaporates. Evaporation is realized by adaptively scal-
ing particles according to the amount of transferred mass. As condensation
takes place on surfaces in very fine spatial detail, textures are employed as an
intermediate medium to condense liquid mass into and to generate particles
from. Conservative phase

changes
Using a consistent SPH surface model, mass and energy preserving phase

changes and heat transport have been realized between liquid and air phase.

Interactions of liquids and rigid surfaces at small scales require a high spa-
tial resolution to yield convincing results. Rendering at

sub-particle detail
Using textures as an intermediate

medium allows for straight-forward data-parallel simulation and direct render-
ing of wetted surfaces at sub-particle resolution. By taking rigid boundaries
into account, the presented implicit surface definition allows even single parti-
cles to be rendered with dynamic contact angles yielding high visual details at

101

102 Conclusions

moderate particle counts.

Rendering of particle-based fluids is often restricted to surfaces,Efficient volume
rendering

although
volume rendering enhances the visual impression of fluids and is mandatory
in order to convey concentration transport. A performance-critical aspect of
volume rendering is the number of sampling operations to consider. Previ-
ously, particle data sets have been either re-sampled onto grids and rendered
by view-aligned slicing using rasterization hardware or have been directly ren-
dered through ray casting using object space particle access structures. While
object space structures incur a complex ray traversal logic, rasterization pro-
hibits adaptive sampling and often leads to a memory bottleneck. Employing a
view-aligned particle access data structure,Adaptive sampling in contrast, allows for an on-the-fly
data-parallel thread-coherent traversal of rays and locally adaptive sampling.
The introduced screen space error analysis applies hierarchical interval arith-
metic to the volume rendering equation in order to establish local sampling
rates while enforcing a user-defined error tolerance. Adaptive ray casting
avoids unnecessary sampling operations and is able to substantially speed up
rendering without sacrificing image quality.

The visual presentation of fluid flow can naturally be captured by charac-
teristic lines.Decomposition of

fluxes
Fluid transport, however, follows a superposition of advection

and diffusion and thus eludes direct vector field visualization. The presented
decomposition of fluxes is able to derive separate velocity and concentration
components for the superposed, advective, and diffusive fluxes making them
available to visualization. By introducing the novel metaphor of stream feath-
ers,Stream feathers superposed concentration transport and its components can intuitively
be captured. The presented visualization works on raw simulation data and
allows to interactively inspect concentration transport.

Without being restricted to specific hardware features, theData-parallel
implementation

contributions of
this thesis were all designed such that they can be efficiently implemented in a
data-parallel fashion. Thus, interactive simulation and on-the-fly rendering
and visualization as well as interactive steering of parameters can easily be
realized on GPUs.

7.2 Future Work

There is a wide array of directions for further research based on the contribu-
tions presented in this work.

Instead of relying on a coarse grid to simulate the air phase,Consistent unified
simulation

recent develop-
ments in adaptive SPH fluid simulation [WHK17] might be adopted in order to
simulate the air phase in a consistent manner. Although the presented coupling

7.2 Future Work 103

between air and liquid phases Transfer of
momentum

features conservative heat and mass transfer,
transfer of momentum could lead to interesting new effects like waves and air
turbulence. It is, however, a challenging problem to dynamically couple two
phases of such large density differences as water and air [SP08]. In a first step,
this could be solved by simulating both phases separately and by applying a
more loose coupling as has been previously done to simulate liquids at locally
different spatial resolutions [SG11, HS13], albeit at the cost of physical plausi-
bility. Employing an efficient GPU-based implementation, this could yield a
unified adaptive SPH simulation with coupled air, liquid and solid phases as
well as phase transitions at interactive frame rates.

Furthermore, small-scale scenarios like the condensation Surface tension with
Marangoni effects

of droplets de-
pend on strong surface tension forces for which the influence of temperature
and concentrations so far has been neglected [BT07, AAT13]. Therefore, a new
surface tension model has to be devised. The model should be able to yield
controllable contact angles between liquid surfaces and rigid object. Addi-
tionally, the model has to capture Marangoni effects [FAB∗11] that cause a
convective motion on the fluid surface and follows gradients in surface tension.
A fully dynamic coupling with the air phase would also allow for a more natural
modeling of bubbles and surface tension related effects like tears of wine.

Although the adaptive sampling presented in this thesis Adaptive volume
illumination

is able to consid-
erably speed up volume ray casting, it has only been demonstrated using the
emission-absorption model. Extending adaptive ray casting to support light
scattering from external light sources would greatly enhance the visual ap-
pearance [JSYR14]. Furthermore, by adaptively sampling transparency as seen
from the light source, an efficient rendering of shadows might be incorporated,
e.g., using Deep Shadow Maps [HKSB06] that can also be included in the error
analysis.

Recently, ray tracing has gained much momentum and first approaches pur-
sue Adaptive on-the-fly

ray tracing
ray tracing of particle-based liquid surfaces [MWE16, BSS∗18, WTYH18].

The liquid’s volume, however, has so far been neglected. A generalized hier-
archical error analysis that estimates sampling errors for rays from arbitrary
directions would allow to devise a direct adaptive volume rendering approach
that supports refractions at liquid surfaces. In combination with the proposed
implicit surface definition, a highly efficient direct surface and volume ray
tracing of particle-based fluids could be achieved.

While the proposed visualization of advective-diffusive flows has been
demonstrated to give valuable insight into complex phenomena, the metaphor
of stream feathers causes occlusions and the seeding also had to be steered
manually. Automatic stream

feather seeding
Even though there are methods to automatically seed streamlines in

advective flows [ELM∗12], new seeding criteria have to be investigated when

104 Conclusions

diffusion is involved and visual clutter of stream feathers has to be addressed.
An interestingAdvective-diffusive

LIC
alternative visualization approach that allows more dense rep-

resentations of advection-diffusion scenarios is to interactively seed stream
surfaces [BFTW09, MSE14] that trace the total flux and use line integral convo-
lution to superpose the advective and diffusive contributions.

7

Bibliography

[AAOT13] AKINCI G., AKINCI N., OSWALD E., TESCHNER M.: Adaptive surface
reconstruction for sph using 3-level uniform grids. In Proceedings
of the International Conference on Computer Graphics, Visualiza-
tion and Computer Vision (WSCG) (2013), pp. 195–204. 20

[AAT13] AKINCI N., AKINCI G., TESCHNER M.: Versatile surface tension
and adhesion for SPH fluids. ACM Transactions on Graphics (TOG)
32, 6 (2013), 182:1–182:8. 25, 32, 44, 103

[AIA∗12] AKINCI N., IHMSEN M., AKINCI G., SOLENTHALER B., TESCHNER

M.: Versatile rigid-fluid coupling for incompressible SPH. ACM
Transactions on Graphics (TOG) 31, 4 (July 2012), 62:1–62:8. 25, 33,
43

[AIAT12] AKINCI G., IHMSEN M., AKINCI N., TESCHNER M.: Parallel surface
reconstruction for particle-based fluids. Computer Graphics Forum
(CGF) 31 (2012), 1797–1809. 3, 5, 20, 60, 86

[ALS09] ADAM G., LÄUGER P., STARK G.: Physikalische Chemie und Bio-
physik. Springer-Lehrbuch. Springer, 2009. 12, 34, 93

[APKG07] ADAMS B., PAULY M., KEISER R., GUIBAS L. J.: Adaptively sampled
particle fluids. ACM Transactions on Graphics (TOG) 26 (2007). 35,
36, 62

[ATO16] ALDUÁN I., TENA A., OTADUY M. A.: DYVERSO: A versatile multi-
phase position-based fluids solution for VFX. Computer Graphics
Forum (CGF) 36, 8 (sep 2016), 32–44. 15, 32, 36, 37

[ATW13] ANDO R., THÜREY N., WOJTAN C.: Highly adaptive liquid simula-
tions on tetrahedral meshes. ACM Transactions on Graphics (TOG)
(July 2013). 16

[BCP∗12] BRAMBILLA A., CARNECKY R., PEIKERT R., VIOLA I., HAUSER H.:
Illustrative Flow Visualization: State of the Art, Trends and Chal-
lenges. In Eurographics 2012 - State of the Art Reports (2012), pp. 75–
94. 24

105

106 Bibliography

[BFTW09] BÜRGER K., FERSTL F., THEISEL H., WESTERMANN R.: Interactive
Streak Surface Visualization on the GPU. IEEE Transactions on
Visualization and Computer Graphics (TVCG) 15, 6 (nov 2009),
1259–1266. 24, 104

[BHMF08] BEYER J., HADWIGER M., MÖLLER T., FRITZ L.: Smooth mixed-
resolution GPU volume rendering. In Proceedings of the Euro-
graphics/IEEE VGTC Symposium on Point-Based Graphics (2008),
pp. 163–170. 61

[BK02] BONET J., KULASEGARAM S.: A simplified approach to enhance the
performance of smooth particle hydrodynamics methods. Journal
of Applied Mathematics and Computation 126, 2-3 (2002), 133–155.
30, 61

[BK15] BENDER J., KOSCHIER D.: Divergence-free smoothed particle hy-
drodynamics. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA) (2015), pp. 147–155. 15,
25, 34

[BKKW17] BENDER J., KOSCHIER D., KUGELSTADT T., WEILER M.: A micropo-
lar material model for turbulent SPH fluids. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA) (2017), pp. 1–8. 15

[BKZ92] BRACKBILL J. U., KOTHE D. B., ZEMACH C.: A continuum method
for modeling surface tension. Journal of Computational Physics
100, 2 (June 1992), 335–354. 32

[Bli82] BLINN J. F.: A generalization of algebraic surface drawing. ACM
Transactions on Graphics (TOG) 1, 3 (jul 1982), 235–256. 19

[BOT01] BØRVE S., OMANG M., TRULSEN J.: Regularized smoothed particle
hydrodynamics: A new approach to simulating magnetohydrody-
namic shocks. The Astrophysical Journal Supplement Series 561
(2001), 345–367. 62

[BPHK13] BREINLINGER T., POLFER P., HASHIBON A., KRAFT T.: Surface
tension and wetting effects with smoothed particle hydrodynamics.
Journal of Computational Physics 243 (jun 2013), 14–27. 32, 50

[BPR01] BÜRKLE D., PREUSSER T., RUMPF M.: Transport and anisotropic
diffusion in time-dependent flow visualization. In Proceedings of
the IEEE Conference on Visualization (2001), pp. 61–68. 86

Bibliography 107

[BR86] BRACKBILL J. U., RUPPEL H. M.: Flip: A method for adaptively
zoned, particle-in-cell calculations of fluid flows in two dimen-
sions. Journal of Computational Physics 65, 2 (Aug. 1986), 314–343.
16

[Bri07] BRIDSON R.: Fast poisson disk sampling in arbitrary dimensions.
In SIGGRAPH sketches (2007), p. 22. 45

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics. A K Pe-
ters/CRC Press, 2008. 9, 11, 14, 15, 30

[BSL07] BIRD R., STEWART W., LIGHTFOOT E.: Transport Phenomena. Wiley,
2007. 9, 12, 46, 85, 91

[BSS∗18] BIEDERT T., SOHNS J.-T., SCHRÖDER S., AMSTUTZ J., WALD I.,
GARTH C.: Direct Raytracing of Particle-based Fluid Surfaces Using
Anisotropic Kernels. In Proceedings of the Eurographics Symposium
on Parallel Graphics and Visulization (EGPGV) (2018), pp. 1–11. 20,
103

[BT07] BECKER M., TESCHNER M.: Weakly compressible SPH for free
surface flows. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA) (2007), pp. 209–217. 15,
25, 32, 34, 103

[BTT09] BECKER M., TESSENDORF H., TESCHNER M.: Direct forcing for
lagrangian rigid-fluid coupling. IEEE Transactions on Visualization
and Computer Graphics (TVCG) 15, 3 (2009), 493–503. 25, 33

[BZBP09] BUNGARTZ H.-J., ZIMMER S., BUCHHOLZ M., PFLÜGER D.: Modell-
bildung und Simulation: Eine anwendungsorientierte Einführung.
Springer-Verlag, Berlin, Mar. 2009. 18, 19

[CCB∗08] CHATELAIN P., CURIONI A., BERGDORF M., ROSSINELLI D., AN-
DREONI W., KOUMOUTSAKOS P.: Billion vortex particle direct nu-
merical simulations of aircraft wakes. Computer Methods in Ap-
plied Mechanics and Engineering 197, 13-16 (feb 2008), 1296–1304.
3, 4, 16

[CIPT14] CORNELIS J., IHMSEN M., PEER A., TESCHNER M.: IISPH-FLIP for
incompressible fluids. Computer Graphics Forum (CGF) 33, 2 (may
2014), 255–262. 15

[CL93] CABRAL B., LEEDOM L. C.: Imaging vector fields using line integral
convolution. In Proceedings of SIGGRAPH (1993), pp. 263–270. 23,
84, 86

108 Bibliography

[CM99] CLEARY P. W., MONAGHAN J. J.: Conduction modelling using
smoothed particle hydrodynamics. Journal of Computational
Physics 148 (1999), 227–264. 18, 34, 35, 45, 60

[CM14] CHENTANEZ N., MÜLLER M.: Mass-conserving eulerian liquid
simulation. IEEE Transactions on Visualization and Computer
Graphics (TVCG) 20, 1 (jan 2014), 17–29. 14

[CMK15] CHENTANEZ N., MÜLLER M., KIM T.-Y.: Coupling 3d eulerian,
heightfield and particle methods for interactive simulation of large
scale liquid phenomena. IEEE Transactions on Visualization and
Computer Graphics (TVCG) 21, 10 (oct 2015), 1116–1128. 3, 4, 16

[COJ15] CHANDLER J., OBERMAIER H., JOY K. I.: Interpolation-based path-
line tracing in particle-based flow visualization. IEEE Transactions
on Visualization and Computer Graphics (TVCG) 21, 1 (jan 2015),
68–80. 87

[CPK09] CUNTZ N., PRITZKAU A., KOLB A.: Time-adaptive lines for the
interactive visualization of unsteady flow data sets. Computer
Graphics Forum (CGF) 28, 8 (2009), 2165–2175. 24

[Cus09] CUSSLER E.: Diffusion: Mass Transfer in Fluid Systems. Cambridge
Series in Chemical Engineering. Cambridge University Press, 2009.
89

[DC96] DESBRUN M., CANI M.-P.: Smoothed particles: A new paradigm
for animating highly deformable bodies. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA) (1996), pp. 61–76. 15, 25, 27

[DC99] DESBRUN M., CANI M.-P.: Space-Time Adaptive Simulation of
Highly Deformable Substances. Tech. Rep. 3829, INRIA, 1999. 35

[DCGG13] DOMÍNGUEZ J. M., CRESPO A. J. C., GÓMEZ-GESTEIRA M.: Op-
timization strategies for {cpu} and {gpu} implementations of a
smoothed particle hydrodynamics method. Computer Physics
Communications 184, 3 (2013), 617–627. 36

[Des04] DESERNO M.: The shape of a straight fluid meniscus, 2004. 50

[DH92] DANSKIN J., HANRAHAN P.: Fast algorithms for volume ray tracing.
In Proceedings of the Workshop on Volume Visualization (VVS)
(1992), vol. I, pp. 91–98. 61

Bibliography 109

[DH93] DELMARCELLE T., HESSELINK L.: Visualizing second-order ten-
sor fields with hyperstreamlines. IEEE Computer Graphics and
Applications 13, 4 (July 1993), 25–33. 86

[DPR00] DIEWALD U., PREUSSER T., RUMPF M.: Anisotropic diffusion in
vector field visualization on euclidean domains and surfaces. IEEE
Transactions on Visualization and Computer Graphics (TVCG) 6, 2
(Apr. 2000), 139–149. 86

[EH57] EVANS M. W., HARLOW F. H.: The Particle-in-Cell Method for
Hydrodynamic Calculations. Tech. Rep. LA-2139, Los Alamos Sci-
entific Lab., N. Mex., 1957. 16

[EHK∗06] ENGEL K., HADWIGER M., KNISS J. M., REZK-SALAMA C.,
WEISKOPF D.: Real-time Volume Graphics. A. K. Peters, Ltd., Natick,
MA, USA, 2006. 9, 21, 22, 60, 61, 84

[Ein05] EINSTEIN A.: Über die von der molekularkinetischen Theorie
der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten
suspendierten Teilchen. Annalen der Physik 322, 8 (1905), 549–560.
87, 89

[EJGP09] EL HAJJAR J. F., JOLIVET V., GHAZANFARPOUR D., PUEYO X.: A
model for real-time on-surface flows. The Visual Computer 25, 2
(2009), 87–100. 43

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading. In Proceed-
ings of the ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware (2001), pp. 9–16. 22

[ELM∗12] EDMUNDS M., LARAMEE R., MALKI R., MASTERS I., CROFT T.,
CHEN G., ZHANG E.: Automatic stream surface seeding: A feature
centered approach. Computer Graphics Forum (CGF) 31, 3pt2
(2012), 1095–1104. 24, 103

[EMF02] ENRIGHT D., MARSCHNER S., FEDKIW R.: Animation and rendering
of complex water surfaces. ACM Transactions on Graphics (TOG)
21, 3 (July 2002), 736–744. 14

[FAB∗11] FELL D., AUERNHAMMER G. K., BONACCURSO E., LIU C., SOKULER

R., BUTT H.-J.: Influence of surfactant concentration and back-
ground salt on forced dynamic wetting and dewetting. Langmuir
27, 6 (2011), 2112. 33, 84, 103

110 Bibliography

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Efficient high-quality
volume rendering of SPH data. IEEE Transactions on Visualization
and Computer Graphics (TVCG) 16, 6 (2010), 1533–1540. 6, 22, 37,
60, 62, 63, 74

[FAW∗16] FERSTL F., ANDO R., WOJTAN C., WESTERMANN R., THUEREY N.:
Narrow Band FLIP for Liquid Simulations. Computer Graphics
Forum (CGF) 35, 2 (may 2016), 225–232. 16

[FF01] FOSTER N., FEDKIW R.: Practical animation of liquids. In Proceed-
ings of SIGGRAPH (2001), pp. 23–30. 14

[FGE10] FALK M., GROTTEL S., ERTL T.: Interactive image-space volume
visualization for dynamic particle simulations. In Proceedings of
SIGRAD (2010). 37, 60

[FGG∗17] FU C., GUO Q., GAST T., JIANG C., TERAN J.: A polynomial particle-
in-cell method. ACM Transactions on Graphics (TOG) 36, 6 (nov
2017), 1–12. 16

[FM96] FOSTER N., METAXAS D.: Realistic animation of liquids. Graphical
Models and Image Processing 58, 5 (Sept. 1996), 471–483. 14

[FM97] FOSTER N., METAXAS D.: Modeling the motion of a hot, turbulent
gas. In Proceedings of SIGGRAPH (1997), pp. 181–188. 14

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual simulation of smoke. In
Proceedings of SIGGRAPH (2001), pp. 15–22. 3, 14, 15, 41, 44

[FSW09] FRAEDRICH R., SCHNEIDER J., WESTERMANN R.: Exploring the
millennium run – scalable rendering of large-scale cosmological
datasets. IEEE Transactions on Visualization and Computer Graph-
ics (TVCG) 15, 6 (Nov. 2009), 1251–1258. 3, 22, 62

[FW08] FALK M., WEISKOPF D.: Output-sensitive 3d line integral convolu-
tion. IEEE Transactions on Visualization and Computer Graphics
(TVCG) 14, 4 (jul 2008), 820–834. 24

[FW12] FRAEDRICH R., WESTERMANN R.: Motion visualization of large
particle simulations. In Proceedings of IS&T/SPIE Electronic Imag-
ing 2012, Conference on Visualization and Data Analysis (2012),
pp. 82940Q–1 – 12. 6, 86

[GB14] GOSWAMI P., BATTY C.: Regional time stepping for SPH. In Euro-
graphics 2014 - Short Papers (2014), pp. 1–5. 35

Bibliography 111

[GBP∗17a] GISSLER C., BAND S., PEER A., IHMSEN M., TESCHNER M.: Approx-
imate air-fluid interactions for SPH. In Proceedings of the Workshop
on Virtual Reality Interaction and Physical Simulation (VRIPHYS)
(2017). 5, 33

[GBP∗17b] GISSLER C., BAND S., PEER A., IHMSEN M., TESCHNER M.: Gen-
eralized drag force for particle-based simulations. Computers &
Graphics 69 (dec 2017), 1–11. 5, 33

[GM77] GINGOLD R., MONAGHAN J.: Smoothed particle hydrodynamics:
theory and application to non-spherical stars. Notices of the Royal
Astronomical Society 181 (1977), 375–389. 3, 25, 27

[GP11] GOSWAMI P., PAJAROLA R.: Time adaptive approximate SPH. In
Proceedings of the Workshop on Virtual Reality Interaction and
Physical Simulation (VRIPHYS) (2011), pp. 19–28. 35

[Gre09] GREEN S.: Particle Simulation using CUDA. Tech. rep., NVIDIA,
2009. 15, 36, 37, 45

[GRT13] GÜNTHER T., RÖSSL C., THEISEL H.: Opacity optimization for 3d
line fields. ACM Transactions on Graphics (TOG) 32, 4 (July 2013),
120:1–120:8. 24

[GS04] GUTHE S., STRASSER W.: Advanced techniques for high-quality
multi-resolution volume rendering. Computers & Graphics 28, 1
(Feb. 2004), 51–58. 61

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B., PAJAROLA R.: Interac-
tive SPH simulation and rendering on the GPU. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (SCA) (2010), pp. 55–64. 20, 36, 37

[GTG17] GÜNTHER T., THEISEL H., GROSS M.: Decoupled opacity opti-
mization for points, lines and surfaces. Computer Graphics Forum
(CGF) 36, 2 (may 2017), 153–162. 24

[Har64] HARLOW F.: The particle-in-cell computing method for fluid dy-
namics. Methods in Computational Physics 3 (1964), 319–343. 14

[HCCC12] HONGFENG YU, CHAOLI WANG, CHING-KUANG SHENE, CHEN J. H.:
Hierarchical streamline bundles. IEEE Transactions on Visualiza-
tion and Computer Graphics (TVCG) 18, 8 (aug 2012), 1353–1367.
24

112 Bibliography

[HE03] HOPF M., ERTL T.: Hierarchical splatting of scattered data. In
Proceedings of the IEEE Conference on Visualization (2003), pp. 433–
440. 22, 62

[HEW15] HUBER M., EBERHARDT B., WEISKOPF D.: Boundary handling at
cloth-fluid contact. Computer Graphics Forum (CGF) 34, 1 (feb
2015), 14–25. 41

[HHK08] HONG W., HOUSE D. H., KEYSER J.: Adaptive particles for in-
compressible fluid simulation. The Visual Computer 24, 7 (2008),
535–543. 62

[HK17] HOCHSTETTER H., KOLB A.: Evaporation and condensation of SPH-
based fluids. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA) (2017), pp. 3:1–3:9. 8,
39, 46

[HKK07a] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.: Sliced data structure for
particle-based simulations on GPUs. In Proceedings of GRAPHITE
(2007), pp. 55–62. 37

[HKK07b] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.: Smoothed particle
hydrodynamics in complex shapes. In Proceedings of the Spring
Conference on Computer Graphics (SCCG) (2007), pp. 191–197. 5,
41

[HKK07c] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.: Smoothed particle
hydrodynamics on GPUs. In Proceedings of Computer Graphics
International (CGI) (2007), pp. 63–70. 15, 25, 32, 37

[HKSB06] HADWIGER M., KRATZ A., SIGG C., BÜHLER K.: GPU-accelerated
deep shadow maps for direct volume rendering. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Graphics Hard-
ware (2006), p. 49. 21, 103

[HLSR08] HADWIGER M., LJUNG P., SALAMA C. R., ROPINSKI T.: Advanced
illumination techniques for GPU volume raycasting. In SIGGRAPH
Asia Courses (2008). 21, 60

[HLY10] HERNELL F., LJUNG P., YNNERMAN A.: Local Ambient Occlusion in
Direct Volume Rendering. IEEE Transactions on Visualization and
Computer Graphics 16, 4 (jul 2010), 548–559. 21

[HM08] HUNT W., MARK W. R.: Ray-specialized acceleration structures for
ray tracing. In Proceedings of the IEEE/Eurographics Symposium
on Interactive Ray Tracing (2008), pp. 3–10. 62

Bibliography 113

[Hoe16] HOETZLEIN R. K.: GVDB: Raytracing Sparse Voxel Database
Structures on the GPU. In Proceedings of the ACM SIG-
GRAPH/Eurographics High Performance Graphics (HPG) (2016).
20

[HOK16] HOCHSTETTER H., ORTHMANN J., KOLB A.: Adaptive sampling for
on-the-fly ray casting of particle-based fluids. In Proceedings of the
ACM SIGGRAPH/Eurographics High Performance Graphics (HPG)
(2016), pp. 129–138. 8, 59

[HRWE15] HUBER M., REINHARDT S., WEISKOPF D., EBERHARDT B.: Evalu-
ation of surface tension models for SPH-based fluid animations
using a benchmark test. Proceedings of the Workshop on Virtual Re-
ality Interaction and Physical Simulation (VRIPHYS) (2015), 41–50.
32

[HS13] HORVATH C. J., SOLENTHALER B.: Mass Preserving Multi-Scale SPH.
Tech. rep., Pixar, Emeryville, CA, 2013. 35, 103

[HWK15] HOCHSTETTER H., WURM M., KOLB A.: Vector field visualization
of advective-diffusive flows. Computer Graphics Forum (CGF) 34, 3
(jun 2015), 481–490. 8, 83

[HWZ∗14] HE X., WANG H., ZHANG F., WANG G., ZHOU K.: Robust simulation
of sparsely sampled thin features in SPH-based free surface flows.
ACM Transactions on Graphics (TOG) 34, 1 (2014), 1–8. 33

[IABT11] IHMSEN M., AKINCI N., BECKER M., TESCHNER M.: A parallel SPH
implementation on multi-core CPUs. Computer Graphics Forum
(CGF) 30 (2011), 99–112. 15, 36, 37

[IAGT10] IHMSEN M., AKINCI N., GISSLER M., TESCHNER M.: Boundary han-
dling and adaptive time-stepping for PCISPH. In Proceedings of the
Workshop on Virtual Reality Interaction and Physical Simulation
(VRIPHYS) (2010), pp. 79–88. 18, 33, 36

[ICS∗14] IHMSEN M., CORNELIS J., SOLENTHALER B., HORVATH C.,
TESCHNER M.: Implicit incompressible SPH. IEEE Transactions on
Visualization and Computer Graphics (TVCG) 20, 3 (2014), 426–435.
4, 15, 25, 34

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B., KOLB A., TESCHNER

M.: SPH fluids in computer graphics. In Eurographics 2014 - State
of the Art Reports (2014), no. 2, pp. 21–42. 5, 15, 19, 25, 26, 27, 32,
33, 34, 60

114 Bibliography

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org. 53

[JH04] JOHNSON C., HANSEN C.: Visualization Handbook. Academic
Press, Inc., Orlando, FL, USA, 2004. 9, 23, 88

[JSS∗15] JIANG C., SCHROEDER C., SELLE A., TERAN J., STOMAKHIN A.:
The affine particle-in-cell method. ACM Transactions on Graphics
(TOG) 34, 4 (2015), 10. 16

[JSYR14] JÖNSSON D., SUNDÉN E., YNNERMAN A., ROPINSKI T.: A Survey of
Volumetric Illumination Techniques for Interactive Volume Ren-
dering. Computer Graphics Forum (CGF) 33, 1 (feb 2014), 27–51.
21, 103

[KAG∗06] KEISER R., ADAMS B., GUIBAS L. J., DUTRÉ P. P., PAULY M.: Mul-
tiresolution Particle-Based Fluids. Tech. rep., ETH, 2006. 36, 62

[KC05] KOLB A., CUNTZ N.: Dynamic particle coupling for GPU-based
fluid simulation. In Proceedings of the Symposium on Simulation
Technique (2005), pp. 722–727. 22

[KFW16] KANZLER M., FERSTL F., WESTERMANN R.: Line density control in
screen-space via balanced line hierarchies. Computers & Graphics
61 (dec 2016), 29–39. 24

[KHW∗09] KNOLL A., HIJAZI Y., WESTERTEIGER R., SCHOTT M., HANSEN C.,
HAGEN H.: Volume ray casting with peak finding and differen-
tial sampling. IEEE Transactions on Visualization and Computer
Graphics (TVCG) 15, 6 (2009), 1571–1578. 61

[Kis93] KISTER S. F.: Wettability. Surfactant Science Series. Marcel Dekker,
1993, ch. Hydrodynamics of wetting. 51

[KSW∗12] KARCH G. K., SADLO F., WEISKOPF D., MUNZ C.-D., ERTL T.: Visu-
alization of advection-diffusion in unsteady fluid flow. Computer
Graphics Forum (CGF) 31, 3pt2 (2012), 1105–1114. 84, 86

[KW06] KINDLMANN G., WESTIN C.-F.: Diffusion tensor visualization with
glyph packing. IEEE Transactions on Visualization and Computer
Graphics (TVCG) 12, 5 (Sept.-Oct. 2006), 1329–1335. 86

[KWFY99] KAMHOLZ A. E., WEIGL B. H., FINLAYSON B. A., YAGER P.: Quanti-
tative analysis of molecular interaction in a microfluidic channel:
the t-sensor. Analytical Chemistry 71, 23 (1999), 5340–5347. 84, 95

Bibliography 115

[KWH00] KINDLMANN G., WEINSTEIN D., HART D.: Strategies for direct
volume rendering of diffusion tensor fields. IEEE Transactions on
Visualization and Computer Graphics (TVCG) 6, 2 (Apr.–June 2000),
124–138. 86

[LAF11] LENTINE M., AANJANEYA M., FEDKIW R.: Mass and momentum
conservation for fluid simulation. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA)
(2011), pp. 91–100. 14

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high resolution
3d surface construction algorithm. Computer Graphics 21, 4 (Aug.
1987), 163–169. 19, 20, 56

[Lev88] LEVOY M.: Display of surfaces from volume data. IEEE Computer
Graphics and Applications 8, 3 (May 1988), 29–37. 21

[LGM∗08] LEDERGERBER C., GUENNEBAUD G., MEYER M. D., BÄCHER M.,
PFISTER H.: Volume MLS ray casting. IEEE Transactions on Visu-
alization and Computer Graphics (TVCG) 14, 6 (2008), 1372–1379.
61

[LJS∗15] LADICKÝ L., JEONG S., SOLENTHALER B., POLLEFEYS M., GROSS

M.: Data-driven fluid simulations using regression forests. ACM
Transactions on Graphics (TOG) 34, 6 (oct 2015), 1–9. 3

[LL16] LIENHARD IV J., LIENHARD V J.: A Heat Transfer Textbook, 4th ed.
Phlogiston Press, Cambridge, MA, 2016. Version 2.05. 46

[LSSF06] LOSASSO F., SHINAR T., SELLE A., FEDKIW R.: Multiple interacting
liquids. ACM Transactions on Graphics (TOG) 25, 3 (2006), 812–819.
39, 41

[Luc77] LUCY L. B.: A numerical approach to the testing of the fission
hypothesis. Astronomical Journal 82 (1977), 1013–1024. 3, 25

[Max95] MAX N.: Optical models for direct volume rendering. IEEE Transac-
tions on Visualization and Computer Graphics (TVCG) 1, 2 (1995),
99–108. 21

[MC10] MAX N., CHEN M.: Local and global illumination in the volume
rendering integral. In Scientific Visualization: Advanced Concepts
(2010), vol. 1, pp. 259–274. 21, 22

116 Bibliography

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-based fluid simu-
lation for interactive applications. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA)
(2003), pp. 154–159. 15, 19, 25, 27, 32, 34

[MFZ97] MORRIS J. P., FOX P. J., ZHU Y.: Modeling low reynolds number
incompressible flows using SPH. Journal of Computational Physics
136 (1997), 214–226. 28, 32

[MKC09] MOORE R. E., KEARFOTT R. B., CLOUD M. J.: Introduction to
Interval Analysis. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2009. 62, 63

[MLP∗10] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R., POST F. H., CHEN

M.: Over two decades of integration-based, geometric flow visual-
ization. Computer Graphics Forum (CGF) 29, 6 (2010), 1807–1829.
24, 84

[MM13] MACKLIN M., MÜLLER M.: Position based fluids. ACM Transactions
on Graphics (TOG) 32, 4 (jul 2013), 104:1–104:12. 15, 20, 25, 34

[MMCK14] MACKLIN M., MÜLLER M., CHENTANEZ N., KIM T.-Y.: Unified
particle physics for real-time applications. ACM Transactions on
Graphics (TOG) 33, 4 (jul 2014), 1–12. 3, 5, 15, 25, 37, 39

[Mon92] MONAGHAN J. J.: Smoothed particle hydrodynamics. Annual
review of Astronomy and Astrophysics 30 (1992), 543–574. 27

[Mon05] MONAGHAN J. J.: Smoothed particle hydrodynamics. Reports on
Progress in Physics 68 (2005), 1703–1759. 15, 18, 25, 26, 28, 29, 31,
33, 34, 36, 60

[MS93] MA K.-L., SMITH P.: Cloud tracing in convection-diffusion systems.
In Proceedings of the IEEE Conference on Visualization (Oct 1993),
pp. 253–260. 86

[MSD07] MÜLLER M., SCHIRM S., DUTHALER S.: Screen space meshes. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA) (2007), pp. 9–15. 20

[MSE14] MACHADO G. M., SADLO F., ERTL T.: Image-based streamsurfaces.
In Proceedings of the Conference on Graphics, Patterns and Images
(SIBGRAPI) (2014), pp. 343 – 350. 24, 104

Bibliography 117

[MSKG05] MÜLLER M., SOLENTHALER B., KEISER R., GROSS M.: Particle-
based fluid-fluid interaction. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA)
(2005), pp. 237–244. 39, 40

[MWE16] MORGENROTH D., WEISKOPF D., EBERHARDT B.: Direct raytracing
of a closed-form fluid meniscus. The Visual Computer 32, 6-8 (jun
2016), 791–800. 5, 20, 41, 50, 51, 103

[MWN∗16] MANTEAUX P.-L., WOJTAN C., NARAIN R., REDON S., FAURE F.,
CANI M.-P.: Adaptive physically based models in computer graph-
ics. Computer Graphics Forum (CGF) (jun 2016). 36

[NMM∗06] NEOPHYTOU N., MUELLER K., MCDONNELL K. T., HONG W., GUAN

X., QIN H., KAUFMAN A. E.: GPU-accelerated volume splatting
with elliptical RBFs. In Proceedings of the Eurographics/IEEE VGTC
Conference on Visualization (EuroVis) (2006), pp. 13–20. 60

[OCD11] ONDERIK J., CHLADEK M., DURIKOVIC R.: SPH with small scale
details and improved surface reconstruction. In Proceedings of the
Spring Conference on Computer Graphics (SCCG) (2011). 20, 41, 60

[OHB∗13] ORTHMANN J., HOCHSTETTER H., BADER J., BAYRAKTAR S., KOLB

A.: Consistent surface model for SPH-based fluid transport. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA) (2013), pp. 95–103. 5, 29, 33, 44, 60, 69

[OK12] ORTHMANN J., KOLB A.: Temporal blending for adaptive SPH.
Computer Graphics Forum (CGF) 31, 8 (2012), 2436–2449. 5, 35, 37,
44

[OKK10] ORTHMANN J., KELLER M., KOLB A.: Topology-caching for dy-
namic particle volume raycasting. In Proceedings of the Symposium
on Vision, Modeling and Visualization (VMV) (2010), pp. 147–154.
6, 22, 62, 82

[Ort14] ORTHMANN J.: Efficient SPH-based simulation and rendering of
fluid transport dynamics. PhD thesis, University of Siegen, 2014. 4,
59, 62, 70, 73, 74, 75, 82

[PCPW15] PRAKASH M., CLEARY P. W., PYO S. H., WOOLARD F.: A new
approach to boiling simulation using a discrete particle based
method. Computers & Graphics 53 (dec 2015), 118–126. 39, 40

118 Bibliography

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK P.: Stackless
KD-tree traversal for high performance GPU ray tracing. Computer
Graphics Forum (CGF) 26, 3 (2007), 415–424. 62

[PICT15] PEER A., IHMSEN M., CORNELIS J., TESCHNER M.: An implicit
viscosity formulation for SPH fluids. ACM Transactions on Graphics
(TOG) 34, 4 (jul 2015), 114:1–114:10. 5, 32

[PTC∗10] PFAFF T., THUEREY N., COHEN J., TARIQ S., GROSS M.: Scal-
able fluid simulation using anisotropic turbulence particles. ACM
Transactions on Graphics (TOG) 29, 6 (Dec. 2010), 174:1–174:8. 14,
15

[RCSW14] REICHL F., CHAJDAS M. G., SCHNEIDER J., WESTERMANN R.: Inter-
active rendering of giga-particle fluid simulations. In Proceedings
of the ACM SIGGRAPH/Eurographics High Performance Graphics
(HPG) (2014), pp. 105–116. 20, 60

[RHEW17] REINHARDT S., HUBER M., EBERHARDT B., WEISKOPF D.: Fully
asynchronous SPH simulation. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA)
(2017), pp. 1–10. 35

[RLY∗14] REN B., LI C., YAN X., LIN M. C., BONET J., HU S.-M.: Multiple-
Fluid SPH Simulation Using a Mixture Model. ACM Transactions
on Graphics (TOG) 33, 5 (sep 2014), 1–11. 25, 40

[RTW13] REICHL F., TREIB M., WESTERMANN R.: Visualization of big SPH
simulations via compressed octree grids. In Proceedings of the IEEE
International Conference on Big Data (2013), pp. 71–78. 22, 62

[RWT11] RAVEENDRAN K., WOJTAN C., TURK G.: Hybrid smoothed
particle hydrodynamics. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA)
(2011), pp. 33–42. 15

[RY96] ROGERS R. R., YAU M. K.: A short course in cloud physics, 3rd ed.
Butterworth-Heinemann, 1996. 42

[SB12] SCHECHTER H., BRIDSON R.: Ghost SPH for animating water. ACM
Transactions on Graphics (TOG) 31, 4 (2012), 61:1–61:8. 5, 33

[Sch96] SCHNOOR J.: Environmental modeling: fate and transport of pollu-
tants in water, air, and soil. Environmental science and technology.
J. Wiley, 1996. 87

Bibliography 119

[SFBP09] SCHINDLER B., FUCHS R., BIDDISCOMBE J., PEIKERT R.: Predictor-
corrector schemes for visualization of smoothed particle hydrody-
namics data. IEEE Transactions on Visualization and Computer
Graphics (TVCG) 15, 6 (2009), 1243–1250. 86, 87

[SFK∗08] SELLE A., FEDKIW R., KIM B., LIU Y., ROSSIGNAC J.: An uncondi-
tionally stable MacCormack method. Journal of Scientific Comput-
ing 35 (June 2008), 350–371. 14

[SG11] SOLENTHALER B., GROSS M.: Two-scale particle simulation. ACM
Transactions on Graphics (TOG) 30 (2011), 81:1–81:8. 5, 35, 103

[Sha14] SHAH M. M.: Methods for calculation of evaporation from swim-
ming pools and other water surfaces. ASHRAE Transactions 120, 2
(2014), 3–17. 42

[She68] SHEPARD D.: A two-dimensional interpolation function for
irregularly-spaced data. In Proceedings of the ACM National Con-
ference (1968), pp. 517–524. 30

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing efficient sort-
ing algorithms for manycore GPUs. In Proceedings of the IEEE
International Symposium on Parallel Distributed Processing (2009),
pp. 1–10. 37

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS J. D.: Scan prim-
itives for GPU computing. In Proceedings of the ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware (2007),
pp. 97–106. 37

[SKE14] SADLO F., KARCH G. K., ERTL T.: Topological features in time-
dependent advection-diffusion flow. In Topological Methods in
Data Analysis and Visualization III (Cham, 2014), Bremer P.-T.,
Hotz I., Pascucci V., Peikert R., (Eds.), Springer International Pub-
lishing, pp. 217–231. 84, 86

[SLJ94] SMITH C. C., LÖF G., JONES R.: Measurement and analysis of evap-
oration from an inactive outdoor swimming pool. Solar Energy 53,
1 (1994), 3–7. 42

[SP08] SOLENTHALER B., PAJAROLA R.: Density contrast SPH interfaces.
In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA) (2008), pp. 211–218. 5, 25, 29, 103

120 Bibliography

[SP09a] SCHLEGEL P., PAJAROLA R.: Layered volume splatting. In Proceed-
ings of the International Symposium on Visual Computing (ISVC)
(2009), vol. 5876, pp. 1–12. 60

[SP09b] SOLENTHALER B., PAJAROLA R.: Predictive-corrective incompress-
ible SPH. ACM Transactions on Graphics (TOG) 28 (2009), 40:1–40:6.
15, 25, 34, 43

[SRF05] SELLE A., RASMUSSEN N., FEDKIW R.: A vortex particle method
for smoke, water and explosions. ACM Transactions on Graphics
(TOG) 24, 3 (July 2005), 910–914. 16

[SSP07] SOLENTHALER B., SCHLÄFLI J., PAJAROLA R.: A unified particle
model for fluid solid interactions: Research articles. Computer
Animation and Virtual Worlds 18, 1 (2007), 69–82. 5, 20, 33, 40, 41,
60

[Sta99] STAM J.: Stable fluids. In Proceedings of SIGGRAPH (1999), pp. 121–
128. 3, 14, 44

[TB15] TILLMANN S.-T., BOHN C.-A.: Simulation of water condensation
based on a thermodynamic approach. In Proceedings of the Sym-
posium on Vision, Modeling and Visualization (VMV) (2015). 39,
41

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M., POMERANETS D.,
GROSS M.: Optimized spatial hashing for collision detection of
deformable objects. Proceedings of the Symposium on Vision, Mod-
eling and Visualization (VMV) (2003), 8. 36

[TM05] TARTAKOVSKY A., MEAKIN P.: Modeling of surface tension and
contact angles with smoothed particle hydrodynamics. Physical
Review E 72 (2005). 32

[UHT17] UM K., HU X., THUEREY N.: Perceptual evaluation of liquid simu-
lation methods. ACM Transactions on Graphics (TOG) 36, 4 (2017),
143:1–143:12. 17

[vdLGS09] VAN DER LAAN W. J., GREEN S., SAINZ M.: Screen space fluid ren-
dering with curvature flow. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (I3D) (2009),
pp. 91–98. 3, 20, 37, 60

[VTT∗18] VILLA SALAZAR S., TICONA J. A., TORCHELSEN R., NEDEL L., MA-
CIEL A.: Heat-based bidirectional phase shifting simulation using

Bibliography 121

position-based dynamics. Computers & Graphics 76 (nov 2018),
107–116. 39, 40

[Wes90] WESTOVER L.: Footprint evaluation for volume rendering. Com-
puter Graphics 24, 4 (Sept. 1990), 367–376. 60

[WHK16] WINCHENBACH R., HOCHSTETTER H., KOLB A.: Constrained neigh-
bor lists for SPH-based fluid simulations. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion (SCA) (2016), pp. 49–56. 36, 37

[WHK17] WINCHENBACH R., HOCHSTETTER H., KOLB A.: Infinite contin-
uous adaptivity for incompressible SPH. ACM Transactions on
Graphics (TOG) 36, 4 (jul 2017), 102:1–102:10. 5, 35, 44, 47, 49, 50,
57, 102

[WJP14] WALD I., JOHNSON G. P., PAPKA M. E.: CPU ray tracing large
particle data with balanced p-k-d trees. In Proceedings of the IEEE
Conference on Visualization (2014), pp. 57–64. 20

[WKL99] WEINSTEIN D., KINDLMANN G., LUNDBERG E.: Tensorlines:
Advection-diffusion based propagation through diffusion tensor
fields. In Proceedings of the IEEE Conference on Visualization
(1999), pp. 249–253. 86

[WMT05] WANG H., MUCHA P. J., TURK G.: Water drops on surfaces. ACM
Transactions on Graphics (TOG) 24, 3 (jul 2005), 921–929. 41, 45, 48

[WMT07] WANG H., MILLER G., TURK G.: Solving general shallow
wave equations on surfaces. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA)
(2007), Eurographics Association, pp. 229–238. 43

[WTYH18] WU K., TRUONG N., YUKSEL C., HOETZLEIN R.: Fast Fluid Simula-
tions with Sparse Volumes on the GPU. Computer Graphics Forum
(CGF) 37, 2 (may 2018), 157–167. 20, 36, 103

[YCL∗17] YANG T., CHANG J., LIN M. C., MARTIN R. R., ZHANG J. J., HU

S.-M.: A unified particle system framework for multi-phase, multi-
material visual simulations. ACM Transactions on Graphics (TOG)
36, 6 (nov 2017), 224:1—-224:13. 25, 40

[YML∗17] YANG T., MARTIN R. R., LIN M. C., CHANG J., HU S.-M.: Pairwise
Force SPH Model for Real-Time Multi-Interaction Applications.
IEEE Transactions on Visualization and Computer Graphics (TVCG)
23, 10 (oct 2017), 2235–2247. 32

122 Bibliography

[YT10] YU J., TURK G.: Reconstructing surfaces of particle-based flu-
ids using anisotropic kernels. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (SCA)
(2010), pp. 217–225. 5, 41

[YT13] YU J., TURK G.: Reconstructing surfaces of particle-based fluids
using anisotropic kernels. ACM Transactions on Graphics (TOG)
32, 1 (Feb. 2013), 5:1–5:12. 20, 60

[ZB05] ZHU Y., BRIDSON R.: Animating sand as a fluid. ACM Transactions
on Graphics (TOG) 24, 3 (2005), 965–972. 16, 19, 33, 41

[ZD15] ZIRR T., DACHSBACHER C.: Memory-efficient on-the-fly voxeliza-
tion of particle data. In Proceedings of the Eurographics Symposium
on Parallel Graphics and Visulization (EGPGV) (2015). 20, 60

[ZD17] ZIRR T., DACHSBACHER C.: Memory-efficient on-the-fly voxeliza-
tion and rendering of particle data. IEEE Transactions on Visual-
ization and Computer Graphics (TVCG), 99 (2017). 20, 60

[ZM13] ZHANG Y., MA K.-L.: Fast global illumination for interactive vol-
ume visualization. In Proceedings of the ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games (I3D) (2013), pp. 55–62.
21

[ZSP08] ZHANG Y., SOLENTHALER B., PAJAROLA R.: Adaptive sampling
and rendering of fluids on the GPU. In Proceedings of the Euro-
graphics/IEEE VGTC Symposium on Point-Based Graphics (2008),
pp. 137–146. 37, 62

	Title page
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	Notations
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Methodology
	1.3 Challenges
	1.4 Contributions
	1.5 Overview

	2 Foundations
	2.1 Theoretical Background of Fluid Transport
	2.2 Overview of Fluid Simulation Approaches
	2.3 Time Integration
	2.4 Rendering and Visualization

	3 SPH-based Simulation of Fluid Transport
	3.1 SPH Interpolation and Kernel Functions
	3.2 Discretizing Fluid Transport in SPH
	3.3 Adaptive Simulation
	3.4 Efficient and Parallel Implementation

	4 Simulation of Evaporation and Condensation
	4.1 Foundations and Prior Work
	4.2 Algorithm Overview
	4.3 Heat Transfer
	4.4 Evaporation and Condensation
	4.5 Surface Rendering
	4.6 Results
	4.7 Conclusions

	5 Adaptive Volume Ray Casting
	5.1 Foundations and Prior Work
	5.2 Proposed Adaptive Ray Casting Pipeline
	5.3 Sampling Error Analysis Framework
	5.4 Analysis and Performance Optimizations
	5.5 Implementation Details
	5.6 Results and Discussion
	5.7 Conclusions

	6 Visualization of Advective-Diffusive Flows
	6.1 Foundations and Prior Work
	6.2 Overview
	6.3 A Framework for Tracing Advective-Diffusive Fluxes
	6.4 Visualization of Fluxes Using StreamFeathers
	6.5 Advective-Diffusive Fluxes in SPH
	6.6 Results and Discussion
	6.7 Conclusions

	7 Conclusions
	7.1 Summary
	7.2 Future Work

	Bibliography

