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Zusammenfassung

Das in der Mitte des letzten Jahrhunderts etablierte Forschungsgebiet der Optimierung unter
Unsicherheit hat in den letzten beiden Jahrzehnten viel Aufmerksamkeit erhalten. Der Umgang
mit unsicheren Daten in Optimierungsproblemen bleibt aber trotz (oder gerade wegen) der Zei-
ten grofler Datenmengen und Cloud-Lésungen eine grofle Herausforderung. Die bekanntesten
Ansétze um mit solchen Optimierungsproblemen umzugehen sind stochastische Programmie-
rung und robuste Optimierung. Um ein realistischeres Abbild des zugrunde liegenden Problems
zu ermoglichen, kénnen dabei auch mehrstufige Modelle zum Einsatz kommen. Wahrend es eini-
ge echt-mehrstufige stochastische Ansétze gibt, gehen die meisten mehrstufigen Erweiterungen
der robusten Optimierung nicht iiber ein zweistufiges Modell hinaus. Noch weniger Aufmerk-
samkeit wird der Beriicksichtigung von entscheidungsabhéngiger Unsicherheit geschenkt. Um
diese Liicke zu schlieflen, wurden in dieser Arbeit mehrstufige Optimierungsprobleme auch mit
entscheidungsabhéngiger Unsicherheit mittels quantifizierter Programme untersucht.

Mit quantifizierten Programmen kénnen mehrstufige Optimierungsprobleme unter Unsicher-
heit formuliert werden. Dabei handelt es sich um lineare Programme, deren Variablen mit jeweils
einem Existenz- oder einem Allquantor versehen sind und eine feste Reihenfolge aufweisen. Die
erzielten Fortschritte fiir quantifizierte lineare Programme gaben Anlass zur ndheren Untersu-
chung von quantifizierten ganzzahligen Programmen (QIP) in dieser Arbeit. Wahrend sich ein
Grofiteil der Forschung in diesem Bereich der komplexitétstheoretischen Untersuchung spezi-
eller QIP-Erfillbarkeitsprobleme widmet, war das vorrangige Ziel dieser Arbeit neue Losungs-
techniken und Unsicherheitskonzepte fiir das QIP-Optimierungsproblem zu erforschen.

QIPs kénnen durch eine Spielbaumsuche gelost werden, welche durch Techniken aus den Berei-
chen des SAT-, QBF- und MIP-Losens erweitert werden kénnen. Weitere Losungstechniken, die
in eine solche Spielbaumsuche mit einfliefen, wurden in der vorliegenden Arbeit entwickelt und
fundiert. Insbesondere wurde die Strategic Copy-Pruning Heuristik etabliert. Diese erlaubt es die
Existenz einer Strategie in linearer Zeit implizit sicherzustellen, ohne diese explizit durchlaufen
zu miissen. Auflerdem konnte gezeigt werden, dass die Umsetzung der erlangten Ergebnisse den
Suchprozess erheblich beschleunigen kann.

Um die Ausdrucksfiahigkeit von QIPs zu erhéhen, wurden dariiber hinaus QIPs mit polyedri-
scher Unsicherheitsmenge eingefiihrt. Infolge dieser Erweiterung konnten verschiedene mehr-
stufige kombinatorische Optimierungsprobleme deutlich schneller gelost werden. Durch eine
zusétzliche Erweiterung wurde auflerdem ein allgemeiner Rahmen fiir mehrstufige Optimierungs-
probleme unter entscheidungsabhéngiger Unsicherheit geschaffen. In dieser Arbeit wurden dafiir
Losungstechniken theoretisch fundiert, Implementierungsdetails bereitgestellt und explizite Po-

lynomzeitreduktionen hergeleitet.
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Abstract

The research field of optimization under uncertainty, even though already established in the
middle of the last century, gained much attention in the last two decades. The necessity to deal
with uncertain data remains a major challenge despite (or because of) the times of big data and
cloud solutions. The most prominent modeling paradigms dealing with such optimization tasks
are stochastic programming and robust optimization. Sometimes, in order to obtain an even more
realistic description of the underlying problem, multistage models can be used. While there are
some real multistage stochastic approaches, most multistage extensions to robust optimization
hardly ever consider more than two stages. Even less attention is paid to the consideration
of decision-dependent uncertainty. To overcome these shortcomings, we explored multistage
optimization under decision-dependent uncertainty via quantified programming.

Quantified programs, which are linear programs with ordered variables that are either exis-
tentially or universally quantified, provide a convenient framework for multistage optimization
under uncertainty. While considerable research has been conducted with regard to quantified lin-
ear programming (QLP) this thesis focused on quantified integer programming (QIP). Whereas
most research in this area is concerned with complexity results regarding the QIP satisfiability
problem, we concentrate on solution and modeling techniques for the QIP optimization problem,
which we tested and implemented in our open-source solver.

One way to solve a QIP is to apply a game tree search, enhanced with non-chronological
backjumping. We developed and theoretically substantiated further solution techniques for QIPs
within a game tree search framework and established the strategic copy-pruning mechanism,
which allows to implicitly deduce the existence of a strategy in linear time (by static examination
of the QIP-matrix) without explicitly traversing the strategy itself. We also showed that the
implementation of our findings can massively speed up the search process.

Furthermore, in order to enhance the expressive power of QIPs, we introduced QIPs with
a polyhedral uncertainty set. We showed that by exploiting this extension, we were able to
significantly speed up our solver on various multistage combinatorial optimization problems.
Additionally, we established QIPs with interdependent domains and thereby provide a gen-
eral framework for multistage optimization problems under decision-dependent uncertainty. We
theoretically substantiated solution techniques, provided implementation details and derived

polynomial-time reduction functions mapping both extensions to the basic QIP.
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1. Introduction

1.1. Motivation

Planning under uncertainty is our everyday life. We try to plan ahead, cope with (un)expected
incidents and even try to optimize small parts of our daily schedule, e.g. by minimizing the time
it takes to leave the house in the morning in order to maximize the time we can sleep. We
hedge against uncertain events by adding time buffers, packing an additional bottle of water or
keeping the umbrella in the car—just in case. But it goes even further than just preparing for
unexpected events, as we have the ability to actively alter the set of expected events: When
doing the weekly groceries shopping on Wednesday evenings we can expect deserted corridors
but also empty vegetable counters. Doing the same on Friday afternoon the opposite can be
expected. Planning (usually) does not happen once a day but in episodes as we adapt to our
surroundings as new input data emerges, e.g. we decide to skip a quick stop at the clothing
store when the bus is 30 minutes late, in order to attend other appointments in time. Thus, our
daily decisions are part of a multistage optimization task under decision-dependent uncertainty,
which we (heuristically) try to master. Similar processes occur in game playing and—with wider
implications—in operations research.

From the very beginning of the rise of mathematical optimization in the 1940s the need of
understanding and dealing with uncertain data was apparent and rapid progress was made early
on [Danb5, Beabb, Bel57]. In addition to understanding that input data is not deterministic
and static, multistage optimization under uncertainty further considers the recurring alterna-
tion between the occurrence of uncertain events and planning decisions. Pioneering work was
done in the research area of stochastic programming [BL11, Sha08], where uncertain data is
assumed to obey a distribution and the average case is optimized. In the area of robust op-
timization [BTGN09, BBC11, GMT14], where an uncertainty set is considered and the worst
case is optimized, the multistage approach only gained more interest with the beginning of the
new millennium. Decision-dependent uncertainty has received more attention in the last ten
years, but is certainly not the focus of optimization under uncertainty. This may be due to the
fact that most researchers do not see the additional complexity as being proportionate to the
improvement, or generally question the necessity of such an advanced optimization framework.
However, as outlined above, most decision processes are multistage processes under—potentially
decision-dependent—uncertainty, and computational complexity results should not prevent us
from advancing our understanding and handling of such problems.

The consideration of uncertainty in optimization problems, in general, often results in an

increased computational complexity: many problems in the classes P or NP become PSPACE-
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complete if the input data is not deterministic [Pap85]. Thus, a trade-off between a complex,
but (potentially) more realistic and a simplified, but tractable problem description is made.
In application-oriented areas where good results must be found quickly, trading complexity for
computability is reasonable and appropriate. Nevertheless, a quickly obtained solution becomes
worthless if it does not reflect reality. Therefore, we stress the importance of researching solution

techniques for theoretically hard problems, despite their potentially deterrent complexity:

“Perhaps only because we were so naive were we willing to try to solve set partitioning
problems with several thousand variables, and I may add with some success. Had we known
about computational complexity and NP-completeness, we might not have tried.”

(George L. Nemhauser, 1994 [Nem94, p. 6])

One should always keep in mind that a) hardness can also be viewed as synonym for “very com-
pact problem description”, b) computational complexity only considers worst-case performance
and gives little indication of the computability of relevant and real-world instances and finally
c¢) despite the NP-completeness of mixed integer programming, nowadays large-scale MIPs of
practical-relevance with up to millions of variables and constraints can be solved, which was
unthinkable 50 years ago. Thus, technological progress and intensive research is able to move
computational boundaries, which is why we are not deterred from tackling PSPACE-complete
problems algorithmically.

We are interested in PSPACE-complete quantified integer programming (QIP), which is integer
programming with specifically ordered quantified variables. A variable is either existentially (3)
or universally (V) quantified and we frequently use the interpretation of a game between the
so-called existential and universal player. The term QIP was coined in [Sub04] only referring
to the satisfiability problem and later was extended to an optimization problem by adding
an objective function in [ELT11a]. Thus, QIPs are multistage optimization problems under
uncertainty where the objective function is optimized with respect to the worst possible case.
Jan Wolf’s work on quantified linear programs provides the basis for this research [Woll5] and
advancing and enhancing the open-source! QIP solver Yasol [EH'17] was the incentive of this
thesis.

In this thesis, QIP-specific solution techniques are presented and theoretically consolidated,
and fundamental theoretical research regarding two extensions of QIPs that allow a) a poly-
hedral uncertainty set and b) a decision-dependent uncertainty set are presented. Explicit
polynomial-time reduction functions for both extensions do not only provide insight into their
close connection to the basic QIP but also illustrate that they remain PSPACE-complete. We the-
oretically elaborate an alpha-beta based solution approach for these extensions and implement
it for an application-oriented subclass within the existing framework of the open-source solver
Yasol. This (still PSPACE-complete) subclass demands that potential realizations of uncertain
events can be “easily determined” and that the planner is not able to “obliterate” uncertainty,

which can be a reasonable restriction when dealing with environmental influences and uncertain

"ttp://www.q-mip.org (accessed May 3, 2020)
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input data. In this thesis, several experimental results are provided that show potentials and

(current) limits of quantified integer programming and its extensions.

1.2. Structure of the Thesis

This introduction is followed by seven chapters, which are structured as follows:

e Chapter 2: Multistage Optimization under Uncertainty. The concept of quantified
mixed integer programming is introduced and the connections and differences to other
areas of research are presented. The chapter concludes with illustrating examples how

real-world problems can be modeled using quantified integer programs.

e Chapter 3: Algorithmic Properties of QIPs. New insights into algorithmic proper-
ties of QIPs are presented and known properties are pointed out for use in later chapters.
The novel strategic copy-pruning mechanism is introduced, which allows to implicitly de-
duce the existence of a strategy in linear time (by static examination of the QIP-matrix)
without explicitly traversing the strategy itself. Furthermore, the deterministic equiva-
lent program and known relaxations are reviewed and new relaxations that incorporate

enhanced information regarding potential realizations of uncertain variables are presented.

e Chapter 4: Quantified Integer Programming with Polyhedral Uncertainty Set.
The possibility to restrict the uncertainty set of a quantified program to some polytope,
instead of the hypercube created by variable bounds, is introduced. A polynomial-time
reduction function, allowing the conversion to a standard QIP, is presented and several

examples illustrate how this modeling option can be utilized.

e Chapter 5: Quantified Integer Programming with Interdependent Domains.
This chapter covers a further extension allowing the interaction of planning decisions with
the uncertainty set, resulting in an interdependence of the variable domains. Substanti-
ating theoretical results and a polynomial-time reduction function back to the standard
QIP are presented. Furthermore, possible relaxations and general solution techniques are
discussed, which are also applicable for the QIP with polyhedral uncertainty set. Addi-

tionally, it is shown to what extent QIP pruning techniques are applicable.

e Chapter 6: Simply Restricted QIPIP. As the possible influence of planning decisions
on the uncertainty set is not too excessive in real-world examples, a restricted version of
the interdependence presented in the previous chapter is considered. The benefits of the
assumptions made for the solution process are discussed and examples where they apply

are outlined.

e Chapter 7: Implementation Details and Experimental Results. Details on how
our open-source solver was enhanced in order to deal with the previously introduced exten-
sions are presented. In a computational study the performance of models utilizing these

extensions with the equivalent standard QIP and the robust counterpart are evaluated.
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e Chapter 8: Conclusion and Outlook. A summary of the findings and an outlook on

future research in the field of quantified programming conclude the thesis.

1.3. Own Contribution to Knowledge

The contribution of this thesis can be summarized as follows:

e We develop two extensions of quantified integer programming: We introduce the quan-
tified integer program with polyhedral uncertainty set QIPYY, which allows the modeler
to restrict universal variables to some polytope instead of the hypercube created by the
variable bounds. Furthermore, the quantified integer program with interdependent do-
mains QIP'P is presented in which existential variable assignments in early decision stages
restrain universal variable assignments later on. We further provide explicit reduction

functions mapping each extension back to the standard QIP.

e We present the novel strategic copy-pruning mechanism (SCP) for QIP, which allows to
implicitly deduce the existence of a winning strategy in linear time (by static examination
of the QIP-matrix) without explicitly traversing the strategy itself. We provide proof that
SCP can also be applied during the solution process for QIPP.

e We substantiate relaxations for QIP, QIPFY and QIP'® and present solution techniques
for QIP'P. We further introduce the simply restricted QIP'P in which the possible inter-
dependencies are limited. We motivate its relevance and demonstrate how this limitation

can be integrated in the existing alpha-beta framework of our solver.

e We provide several examples for QIP as well as QIPPY and QIP'® and compare different
modeling techniques and solution approaches in a detailed computational study. Therefore,
we enable the open-source solver Yasol to deal with QIPTY and simply restricted QIP'™P.
We demonstrate that SCP can massively boost the solution process for some problem

types, while in cases where it is not applicable, it has no significant negative effects.

This thesis is based on the following publications, in which the work was done in close cooperation

with the respective co-authors:

e M. Hartisch, T. Ederer, U. Lorenz and J. Wolf. Quantified integer programs with polyhe-
dral uncertainty set. In Computers and Games - 9th International Conference, CG 2016,

pages 156-166, Springer International Publishing, Cham, 2016.

e T. Ederer, M. Hartisch, U. Lorenz, T. Opfer and J. Wolf. Yasol: An open source solver
for quantified mixed integer programs. In 15th International Conference on Advances in
Computer Games, ACG 2017, pages 224-233. Springer International Publishing, Cham,
2017.

e M. Hartisch, A. Herbst, U. Lorenz, and J. B. Weber. Towards resilient process networks -
designing booster stations via quantified programming. In Applied Mechanics and Mate-
rials, volume 885, pages 199-210. Trans Tech Publ, 2018.
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e M. Hartisch and U. Lorenz. Mastering uncertainty: Towards robust multistage optimiza-
tion with decision dependent uncertainty. In Pacific Rim International Conference on
Artificial Intelligence, pages 446—458. Springer International Publishing, Cham, 2019.

e M. Hartisch and U. Lorenz. Robust multistage optimization with decision-dependent

uncertainty. To appear in: Operations Research Proceedings 2019.

e M. Hartisch and U. Lorenz: Game tree search in a robust multistage optimization frame-
work: Exploiting pruning mechanisms. arXiv preprint arXiv:1811.12146; To appear in:
16th International Conference on Advances in Computer Games, ACG 2019.






2. Multistage Optimization under Uncertainty

2.1. Quantified (Mixed) Integer Programming

2.1.1. Problem Statement and Notation

Quantified integer programming (QIP) is an extension of integer programming (IP) where some
variables are existentially and others are universally quantified. The term was introduced by
Subramani in [Sub04] who also coined the term quantified linear programming (QLP) [Sub03].
The semantics of universally quantified variables is that some linear constraint system must be
fulfilled for all possible realizations of such variables. Hence, a solution of a quantifed program
is a strategy [PdBO1] for assigning existentially quantified variables such that the underlying
constraint system is satisifed. By adding a minimax objective function the aim is to find the
best strategy [ELT11a, Woll5]. QIPs are known to be PSPACE-complete [Woll5] and can be
interpreted as two-person zero-sum games between an existential and a universal player on the
one hand, or multistage optimization problems under uncertainty on the other hand.

We adapt the notation used in [HL19b] to formally introduce quantified programming. Let
n € N be the number of variables and = = (z1,...,2,)" € Q" a vector? of (ordered) variables.
Let Z C {1,...,n} denote the (ordered) index set of integer variables. For each variable x; its
domain £; with l;,u; € Q, l; <w;, 1 <i<n,isgivenby L;={y € Q| <y<wuANiel=
y € Z}. For each integer variable i € Z we further demand the integrality of its bounds, i.e.
li,u; € Z. Consequently, £; # () for each variable i € {1,...,n}. The domain of the variable
vector is described by £ = {y € Q" | Vi € {1,...,n} : y; € L;}. Let Q € {3,V}" denote the
vector of (ordered) quantifiers. We call each maximal consecutive subsequence in ) consisting of
identical quantifiers a quantifier block. The quantifier corresponding to the i-th quantifier block
is given by Q") € {3,V} and the corresponding i-th variable block is given by the (ordered) index
set B; C{1,...,n}. Let 8 € N, 8 < n, denote the number of variable blocks and thus 5 — 1 is
the number of quantifier changes. Note that By UBsU...UBg = {1,...,n} with B; N By =
for i #£4'. Let p(i,j) = Z};ll |B| + 7, which maps the j-th variable of block i to its original
index. The variable vector of variable block B; is referred to as (! and its range is given by

LO = {y e QP | y; € Lo}

Definition 2.1.1 (Quantified Mixed Integer Linear Program (QMIP)).
Let A7 € Q™3™ and b € Q™ for mg € N. Let £ and Q be given as described with QY =
QP =3, Let c € Q" be the vector of objective coefficients, for which ¢\9 denotes the vector of

coefficients belonging to variable block B;. The term Q ox € L with the component wise binding

2We suppress transposes when they are clear from the context to avoid excessive notation.
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operator o denotes the quantification sequence QMz™M e £M) = QBB ¢ £B) such that

every quantifier QW) binds the variables 'V of block i ranging in their domain £L©. We call
(A3,07, ¢, L, Q) with

zZ = min (c(l):c(l)—l- max <c(2)x(2)+ min <c(3)93(3)+... min c(ﬁ)x(ﬁ))>)
+Mer® +@er®@ +Ber® 2B er®

st.QoxeL: Az <b? (2.1)

a quantified mixed integer linear program (QMIP) with objective function.

We call A3z < b7 the (existential) constraint system and € = {k € {1,..., 8} | Q*) =3} the
set of existential variable blocks and A = {k € {1,..., 3} | Q®) =V} the set of universal variable
blocks. Further, we call variable x; an existential (universal) variable if the corresponding
quantifier @Q; is 3 (V).

By adding dummy variable blocks one can obtain the structure as shown above, i.e. existential
first and last variable block, without altering the complexity and result of the problem instance
[Woll5]. In this case &€ = {1,3,...,5} and A = {2,4,...,5 — 1}. There are two reasons
for demanding QW = QP = 3. With existential first and final variable block the min/max
function starts and ends with a minimization term making the problem statement independent
of the instance, immediately allowing S = 1, in which case the instance is a mized integer
program (MIP). Furthermore, if the final variable block consists of universal variables they
can be eliminated by setting them in a worst-case manner for each constraint separately (see
[Woll5]).

Existential variables can be interpreted as decision variables under control of the (minimizing)
decision-maker or planner. Universal variables on the other hand cannot be controlled by the
planner, who must be prepared for any realization within the universal variable domain. Hence,
universal variables represent uncertain events or actions of a (maximizing) opponent. The
question is whether there is a strategy to assign existential decision variables in such a way
that the fulfillment of the constraint system can be guaranteed for each realization of universal
variables. If such a strategy exists, we search for the best one, i.e. the strategy that minimizes the
objective value regarding ¢ in the worst case. The quantifier alternation specifies the timing of
actions by the decision-maker and the opponent. Therefore, QMIP is a multistage optimization
problem under uncertainty and in particular a robust multistage optimization problem, as the
goal is to hedge against the worst-case scenario.

For easier notation we explicitly distinguish the existential and universal components of a
QMIP. Let ng = |Ugee Bi| be the number of existential variables and ny = n — ng the number

of universal variables.

Definition 2.1.2 (Index Mapping Function p,).

Let g € {3,V} and let ig: {1,...,ne} — {1,..., B} map the k-th existential (universal) variable
to its corresponding variable block, i.e. ig(k) = max{i € {1,...,8} | Xy qu—y|Bel < k}.
Let jq : {1,...,ng} = {1,....n}, Jo(k) = k — Xoci (), Qoy=q | Bel, i.e. the k-th existential
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(universal) variable is the j3(k)-th (jy(k)-th) variable of its corresponding variable block B,y
pg AL ngy = {L ... n} pg(k) = plig(k), jo(K))

maps the k-th variable with quantifier q to its original index.
We can now define the existential and universal variable domains.

Definition 2.1.3 (Existential and Universal Variable Domain £3).
We call

La={yeQ|vke{l,..na}: ys € Lpy}

the existential variable domain and

Lo={yeQ|vke{l,..nv}: us € Lwy}
the universal variable domain.

We further split up the coefficient matrix A7 as well as the objective vector ¢ into their com-
ponents: Let Ag (A@) denote the matrix containing only the columns of A7 corresponding to
existential (universal) variables. Similarly, we define c¢3 (cy) as the vector of the objective coeffi-
cients containing the entries of ¢ corresponding to existential (universal) variables. Furthermore,
x3 and xy denote the entries of the variable vector x that are quantified existentially or univer-
sally, respectively. As already introduced, the vector of objective coefficients belonging to block
i is denoted by ¢ and the entries of row k of the coefficient matrix belonging to block i are
denoted by Az,(i).

Example 2.1.4 (QMIP Notation).
Consider a QMIP with n = 4 binary variables, i.e. T = {1,2,3,4} and L = {0,1}*. The objective
c'x, the quantification sequence Q o x € L and the constraint system Az < b with m3 = 3

constraints are given as follows:
min {—3z1 + max {4ze — x3}}

s.t. Jx1 € {0,1} Vag € {0,1} Vas € {0,1} Fz4 € {0,1}:

I

1 -1 1 -1 1
T2

-1 0 -1 -1 <|-2
Z3

0 1 1 1 2
T4

In future examples we often omit the min/maz alternation in the objective and only specify the
optimization orientation for the existential variables, which in this example is minimization.
There are B = 3 wvariable blocks given by By = {1}, By = {2,3} and B3 = {4} with £ = {1,3}
and A = {2}. The number of existential and universal variables is two each, i.e. ng = ny = 2.

Further, the existential domain is the same as the universal domain: L3 = Ly = {0,1}2. The
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optimal value is 1, which can be achieved with the optimal first-stage solution r1 = 1, which is

demonstrated in Example 2.1.18 on page 14.

In [Woll5] QLPs, i.e. QMIPs with Z = (), were thoroughly examined. In this thesis, we focus

on the case where no continuous variables are present.

Definition 2.1.5 (Quantified Integer Linear Program (QIP)).
A QMIP (A3,b7,¢, L, Q) is called a quantified integer (linear) program (QIP) if T = {1,...,n}
and thus L C Z™.

Definition 2.1.6 (Set of Variables).
For a QIP we call T the (ordered) set of variables. The (ordered) set of existentially quantified

variables is given by
I3 ={keZl|Qy=13}

and the (ordered) set of universally quantified variables is given by
T, = {keT|Qy="}.

A QIP with ¢ = 0 is closely related to the quantified boolean formula problem (QBF) and ex-
tends it by allowing general integer variables and arbitrary linear constraints, rather than binary
variables and clauses. The quantified constraint satisfaction problem (QCSP) is a generalization
of QBF and QIP by allowing arbitrary constraints. Both QCSP and QBF, however, are mainly

investigated as satisfiability problems, while we consider an optimization problem.

Remark 2.1.7. In other literature (e.g. [Sub03, Sub04]) the terms QLP and QIP often refer
to the satisfiability problem instead of the optimization problem. Obviously, with ¢ = 0 the
satisfiability problem is a subproblem of the presented optimization problem and therefore we use
the terms QLP, QIP and QMIP for the more general optimization problems.

The general QMIP with 8 = 2 (8 = 3) is closely related to (two-stage) robust discrete
optimization with interval uncertainty (see e.g. [KY97, BTN98, KZ16]). Note that “two-stage”
robust optimization problems are similar to QMIPs with quantifier alternation 3vd, i.e. a QIP
with three variable blocks. We, however, use the term stage as synonym for variable block, rather
than solely referring to existential variable blocks as it is commonly used in robust optimization.
Therefore, we call a QMIP with quantifier alternation 3Vd a three-stage problem.

In the course of this thesis, we often restrict ourselves to the cases that integer variables are

further restricted to be only 0 or 1, resulting in a binary QIP.

Definition 2.1.8 (Binary QIP).
A QIP (A?,b7,¢, L, Q) is called a binary QIP if £ = {0,1}".

A QIP with binary universal variables and integer existential variables can easily be converted
to a binary QIP by expressing each non-binary variable xy, via |logy(ug —Ix)] +1 binary auxiliary

variables and adding auxiliary bound constraints. Note that such a transformation of integer
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universal variables is in general invalid, as the additional bound constraint would alter the
problem itself: the bound constraint consists of only binary universal variables and provides an
easy way for the universal player to violate the constraint system. This can be avoided by either
a) adding the arising bound constraint to a universal constraint system (see Chapter 4) or b)
clever modeling. The main reason for the frequent limitation to binary variables is that our
solver indeed binarizes general integer variables and is (or rather was) only able to cope with
binary universal variables. Further information regarding our solver can be found in Subsection
2.1.3 and Section 7.1.

2.1.2. Quantified Integer Programming as Two-Person Zero-Sum Game

A QIP instance can be interpreted as a two-person zero-sum game between an existential player
setting the existentially quantified variables and a universal player setting the universally quan-
tified variables with payoff z. The variables are set in consecutive order according to the variable
sequence Zi,...,T,. We say that a player makes the move (! = vy, if she fixes the variable
vector (" of block i to y € L. At each such move, the corresponding player knows the settings

of (M, ..., 2= before taking her decision z(¥.

Remark 2.1.9. In the course of this thesis, we frequently use the terms universal and existential
player. From now on the existential player is referred to as “he” and the universal player as

“she”. If we do not refer to a specific player we also use “she”.

Each fixed vector x € L, that is, when the existential player has fixed the existential variables
and the universal player has fixed the universal variables, is called a play. If x satisfies the linear
constraint system A7z < b7, the existential player pays z = ¢’z to the universal player. If x
does not satisfy A3z < b3, we say the existential player loses and the payoff is +00. This is
a small deviation from conventional zero-sum games, but using® oo + (—00) = 0 also fits for
zero-sum game. Therefore, it is the existential player’s primary goal to ensure the fulfillment
of the constraint system, while the universal player tries to violate some constraints. If the
existential player is able to ensure that all constraints are fulfilled he tries to minimize ¢'z,
whereas the universal player tries to maximize her payoff. A game tree can be used to represent

the chronological order of all possible moves, given by the quantification sequence QQ ox € L.

Definition 2.1.10 (Game Tree).

Consider a QIP (A3,17, ¢, £, Q). Its game tree G = (V, E, €) is an edge-labeled finite arborescence
(a directed, rooted tree, e.g. [KV18]) with a set of nodes V.= V3 U Vg U Vg, unique root node
r € V3, a set of edges E and a vector of edge labels e € QEI. The disjoint sets V5, Vi and V7,
contain existential decision nodes, universal decision nodes and leaf nodes, respectively. The
level of a node v € V is the number of edges in the path from r to v. Inner (non-leaf) nodes with
the same level are either all existential decision nodes or all universal decision nodes. The j-th
variable is represented by inner nodes with level j — 1. Therefore, outgoing edges from a mode

v €V in level j — 1 represent moves from L; of the corresponding player, the edge labels encode

3Since this is only a matter of interpretation the consequences of this are not discussed further.
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the corresponding variable assignments. The set Vi, contains all nodes without outgoing edges,
which represent completely filled variable vectors. We define L(v) = {v' € V | (v,v') € E} as
the set of successors of an inner node v € V3 U Vi at level j — 1, which is implicitly given by the

corresponding variable domain L;.

Remark 2.1.11. Throughout this thesis, we assume a minimizing existential player and a
mazximizing universal player. Therefore, V3 is the set of minimizing (MIN) nodes and Vi the set
of maximizing (MAX) nodes.

A path from the root to a leaf represents a play of the QIP and the sequence of edge labels

encodes its moves and hence the assignment of the corresponding variables.

Definition 2.1.12 (Variable Assignment z,, Corresponding to Node v).

Consider a QIP (A%,b°,¢, L, Q), its game tree G = (V,E,e) and any node r # v € V. Then,
z, € Qlvellv) denotes the variable assignment corresponding to v defined by the edge labels of
the path from the root to v.

For any play & € L we call the corresponding universal variable assignments Zy € Ly a
scenario. Note that for a general QMIP infinitely many edges would be required for nodes
representing continuous variables, which is why we restricted ourselves to QIP in this subsection.

The most relevant term in order to describe solutions are so-called strategies.

Definition 2.1.13 (Existential Strategy).

A strategy (for the assignment of existential variables) S = (V' E' e') is a subtree of a game
tree G = (V,E,e). V' contains the unique root node r € V3, each node vy € V' N'V3 has exactly
one child in S, and each node vy € V' NV has as many children in S as in G, i.e. as many as

there are values in the corresponding variable domain.

An existential strategy defines how to react to each possible move by the universal player.
Similarly, a universal strategy can be defined, but from now on the term strategy always refers
to the existential strategy, while a universal strategy is called as such. A strategy is called a
winning strategy if all paths from the root to a leaf represent a vector z such that A3z < b3
[LMW10].

Definition 2.1.14 (Winning Strategy).
Consider a QIP (A3,b7, ¢, L, Q) and its game tree G = (V,E,e). A strategy S = (V',E',¢') is
called winning strategy if Az, < b’ for any leaf v € V' NV},

A QIP is called feasible if (2.1) is true, i.e. if a winning strategy for the assignment of existential
variables exists. Therefore, a winning strategy is also referred to as solution of a feasible QIP.

If there is more than one solution, the objective function aims for a certain (the “best”) one.

Definition 2.1.15 (Minimax Value and Value of a Strategy).
Let S = (V',E',€') be a subtree of the game tree G = (V, E,e) of a QIP, with either S = G or
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S is a strategy. For any node v € V' the minimax value with respect to S is recursively defined

by

ez, ,ifveVy and Az, < b3
o S 400 ,ifve Vi and Az, £ b3
minimax® (v) =
min{minimax® (V') | (v,v') € E'} | ifv € V3
max{minimaz®(v') | (v,v') € E'} , ifve V.

The minimaz value of the root r € V' with respect to S defines the value of S denoted by
minimaz(S) = minimaz®(r). For S = G and any node v € V we call minimax(v) =
minimaz®(v) the minimax value of v, which is the outcome if the remaining variables are

assigned optimally starting from this node, i.e. the outcome of optimal play by both players.

Note that minimaz®(v) = minimaz(v) applies for any leaf v € V7 and any strategy S.
However, this does not generally apply to inner nodes. We recall Stockman’s theorem [PdB01,

Sto79], which connects the value of a strategy to the maximum value at its leaves.

Theorem 2.1.16 (Stockman’s Theorem [Sto79]).

The value of a strateqgy S = (V', E',€') is equal to the maximum value at its leaves, i.e.

minimazx(S) = max minimaz(v).
veV/NVy,
As a leaf v not fulfilling A%z, < b7 is represented by the value +oco, a strategy S is a
winning strategy if and only if minimaz(S) # +oco. Furthermore, for any node v € V' with
minimax(v) = +oo there exists no winning substrategy. The optimal value of a feasible QIP is

the value of the optimal solution, i.e. the winning strategy with the smallest value.

Definition 2.1.17 (Optimal Winning Strategy of a QIP).

Consider a feasible QIP P = (A3,b7, ¢, £, Q) and its game tree G = (V, E,e). A winning strategy
S = (V' E',¢) is called optimal winning strategy if minimaz(S) < minimax(S) for all other
winning strategies S. Then minimax(S) = minimaz(G) applies and we call minimaz(G) the
optimal value of P. We call the variable assignment x, corresponding to a leaf v € V' NV in
S with minimax(S) = ¢'x, principal variation (PV) [CMS83], which is a sequence of variable

assignments being chosen during optimal play in G.

The PV also contains the first-stage solution—the optimal assignment of z(M)—which is in-
dependent of the realization of universal variables. In the "real world“, this decision should
be implemented “here and now”. As the entire optimal winning strategy might be too space-
consuming or simply not available, the adapted QIP with 5 — 2 variable blocks can be solved
after the realization of the universal variables 2(2) in order to obtain the subsequent optimal
decision. Note that as long as the universal variables are assigned according to the global PV
no adapted QIP has to be solved.
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Example 2.1.18 (Continuation of Example 2.1.4).
The game tree of the binary QIP presented in Fxample 2.1.4 is depicted in Figure 2.1. FEdges

eV

e W

0}
@ evy

+oo| €V

Figure 2.1.: Game tree with rectangular leaves, circular universal (MAX) nodes, and pentagonal
existential (MIN) nodes. Values in the nodes are the corresponding minimax values.
Dashed gray lines indicate the end of a variable block.

to the left stand for setting the corresponding variable to 0 and edges to the right for assigning
the value 1. The edges connecting the optimal winning strategy are drawn thicker, and the edges
corresponding to the PV, given by x1 =1, xo =1, x3 = 0 and x4 = 1, are additionally dashed.
The optimal value of this instance is 1, which corresponds to the leaf in the optimal solution with
the highest value. At (inner) nodes marked with oo no winning strategy exists in the underlying
subtree and in particular the assignment x1 = 0 ultimately results in a loss for the existential

player, if the universal player plays optimally.

2.1.3. The Open-Source QMIP Solver Yasol

The open-source solver Yasol* is a search based solver for QMIPs [EH'17]. While the solver
is novel in the sense that there are no other general QMIP solvers that we know of, most
basic ingredients are not new at all. The heart of the search algorithm is an arithmetic linear
constraint database together with an alpha-beta algorithm, which has been successfully used
in gaming programs, e.g. chess programs for many years [KM75, DL04]. In order to realize
fast backjumps—as typically performed in SAT- and QBF-solvers (e.g. [GNT03, CVBO01])—
the alpha-beta algorithm was extended as roughly described in [EHT17]. Yasol deals with
constraint learning on the so-called primal side as known from SAT- and QBF-solving (e.g.
[MSLMO09, GN*02]), as well as with constraint learning on the dual side known from MIP (e.g.
[CCT98]). Several other techniques from various research fields are implemented, e.g. the killer
heuristic [AN77], restart strategies [Bie0O8] and strong branching [AKMO05]. Yasol is currently

able to solve multistage quantified mixed integer programs with the following properties:

4Sources and further information regarding the solver can be found on http://www.q-mip.org (accessed May
3, 2020).
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e The basic structure must be a QMIP as in Definition 2.1.1, i.e. linear constraints and ob-
jective function, existentially or universally quantified variables, all variables are bounded

from below and above and finally Q)1 = @,, = 3.
e Integer variables are allowed in all existential and universal variable blocks.
e Continuous variables are allowed only in the last closing stage, i.e. we assume Uiﬁ;f B; CT.

For further information regarding the input format we refer to Section 7.1. Yasol makes intensive
use of a linear program solver like the LP-solver of CPLEX. These tools are black-box used, while
not exploiting the integer solving abilities of these foreign solvers.

As one of the results of this thesis, an extension of the solver is developed, which allows to
enter an explicit universal constraint system the universal player must satisfy. This implicitly
allows the input of general integer universal variables, which now can be binarized as the arising

bound constraint can be added to the universal constraint system.

2.2. Related Work

This section provides an overview of related work. A very thorough overview in the context of
quantified programs can be found in [Woll5] and therefore mainly relevant literature published
after 2014 is presented in this section. Further, as a significant part of this thesis deals with the
restriction of the uncertainty set—the domain of universally quantified variables—an emphasis

is placed on the topic of decision-dependent uncertainty.

2.2.1. Quantification of Variables

Quantified Linear/Integer Programming and Quantified Linear/Integer Implication The
course of quantified programming until 2014 is surveyed very thoroughly in [Woll5]. In fur-
ther publications Wolf and his co-authors extended the framework of quantified programming
by the aspect of optimization by introducing an objective function [ELT11a]. Additionally,
they conducted a geometric analysis for QLPs [LMW10], presented several results regarding the
computational complexity of QLPs [Woll5] and closely connected quantified programming to
modeling games [ELT11b, LOW13]. Furthermore, algorithms for general QLPs (with objective
function) were developed and implemented: an alpha—beta nested Bender’s decomposition was
proposed to solve the quantified linear optimization problem and tested in a computational study
[LW15, Woll5]. After 2014 new complexity results were obtained for variants of the quantified
linear satisfiability problem (cf. Remark 2.1.7) [WES17]. In [WSE16, NP20] the computational
complexity of special quantified integer satisfiability programs were examined and in [CH17] it
was shown that the quantified integer satisfiability program with £ alternating variable blocks
is complete for the S-th level of the polynomial hierarchy. In [BW19] and [AGV18| quantified
programs were utilized to obtain complexity bounds.

The quantified linear implication problem (QLI) was introduced in [ERT12], which extends

quantified programming to implications of linear systems:
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Definition 2.2.1 (Quantifed Linear/Integer Implication).
QoxeR": (Bxr<d= Ax <b)

where Q) is the vector of quantifiers, x the vector of variables, A and B are matrices and b and d
are column vectors of appropriate size, is called the quantified linear implication problem (QLI).

If the integrality of the variables is required it is called the quantified integer implication problem

(QlI).

QLI can be viewed as adding a constraint system that the universal variables have to satisfy,
as Bx £ d immediately results in a true implication. Complexity results were shown for special
sublasses of QLI and in particular it was shown that the general QLI is PSPACE-hard [ER 12,
ER'14]. For the general QII and a subclass only few computational complexity results were

obtained in [WSE16].

In contrast to the results mentioned above regarding QLI and QII, the extensions of quantified
programming presented in this thesis refer to the optimization problem, rather than the satisfi-
ability problem, and we focus on algorithmic properties and solution techniques. Furthermore,
we deal differently with the case that the constraint systems on both sides of the implication
are violated (see Remarks 4.2.6 and 5.2.5).

Quantified Boolean Formula The quantified boolean formula problem (QBF) can be viewed
as a boolean QIP with ¢ = 0 and each constraint being a clause, i.e. A7 € {—1,0,1}*" and
bvP=|{jeT| A?J = 1}| — 1 for each <-constraint ¢ € {1,...,m3}. Beside being the prototypi-
cal PSPACE-complete problem [Sto76] QBF allows a very compact problem description and thus
several areas of application arise [SBT19]. Within the last few years several new techniques for
solving QBF were developed and enhanced, such as clause selection [JMS15], clause elimination
[HJ*15], quantified blocked clause elimination [LB*15], counter example guide abstraction re-
finement [JK*16], dependency learning [PSS19al, long-distance Q-resolution [PSS19b] as well as
several preprocessing techniques [WR™17, LE19]. Further, nested SAT solvers were utilized for
solving QBF [BJT16] and even machine learning techniques were succesfully adapted [Jan18].
Several solvers evolved and emerged [RT15, LE17, Ten19] and a competitive evaluation of solvers
was revived [PS19, LSvG16].

Further, the dependency quantified boolean Formula problem (DQBF) generalizes the QBF by
allowing an explicit specification of variable dependencies [PRA01, BCJ14], which corresponds
to the henkin quantifier [HK65]. They can be interpreted as a game between a single universal
player and multiple non-cooperative existential players with incomplete information, whereat
each existential player observes universal variables assignments on which their further own deci-
sions depend. The so-called Skolem function describes the evaluation of an existential variable
under the possible assignments to its dependencies [BCT16]. DQBF allow elegant encoding and

are very expressive, resulting in a recent surge of novel research results [Rab17, WK*17, SJ*19].
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Quantified Constraint Satisfaction The quantified constraint satisfaction problem (QCSP) is
a generalization of the QIP with arbitrary, instead of only linear constraints [CK04, FO07]. A
framework for quantified constraint optimization was presented in [BLVO08]. After 2014 (see
[Woll5] for overview of preceding years) only few publications on QCSP can be found. A survey
on non-boolean QCSP was presented in [Marl7]. In [CS14] nested constraint programs were
introduced, which include QCSP as special case. The detection and certification of the falsity of
QCSP were discussed [Chel4, MOQ15] and further pruning mechanisms [BS14] and branching
rules were examined [GW'20]. QCSP was used to render the design space for complex systems
[HAW14] and schedulability tests [Zhal6]. Further, QCSP is examined on finite monoids [CM16]
and on semicomplete digraphs [DMM17]. Regarding our focus on the restriction of universal
variables the results obtained in [BC09] should be mentioned, as they studied QCSPs in which
the domains for each variable can be arbitrarily restricted. Additionally, we want to mention
constraint games, which provide a constraint satisfaction framework for more than two players
[LBT13, Pall9].

2.2.2. Optimization under Uncertainty

Immediately after the advent of mathematical programming the topic of incomplete information
on input data gave rise to the research area of optimization under uncertainty. Seminal works
of Dantzig [Dan55], Beale [Beab5] and Bellman [Bel57] were followed by numerous approaches
regarding the handling of uncertainty. The most prominent—but fundamentally different—
approaches are stochastic programming and robust optimization. While uncertain input data is
assumed to follow a probability distribution in the former approach, the latter approach deals
with deterministic set-based uncertainties [BBC11]. Other solution approaches for (optimiza-
tion) problems under uncertainty include dynamic programming [Bel57, Ber01], fuzzy program-
ming [CF12], interval programming [Hla12], approximation techniques [CF 93, MSU99, MV06],
sampling [GP704] and monte carlo tree search methods [BP*12, SST17]. For more informa-
tion we also want to refer to recent surveys regarding optimization under uncertainty [KA19,
NY19, BDN19] and the references therein. In the following paragraphs we briefly review robust

optimization and stochastic programming with focus on multistage problems.

Robust Optimization Robust optimization problems are mathematical optimization problems
with uncertain data, where a valid solution is sought for any (anticipated) realization of that
data [BTN02, BS07, Zha07, GMT14]. We focus on robust linear optimization problems (e.g.
[BTGN09, BBC11]), i.e. when the underlying optimization problem is a mixed integer linear
optimization problem [Sch86, NW88|. A survey regarding nonlinear robust optimization was
conducted in [LM*20]. In robust optimization one is interested in finding “good” solutions that
are immune to all realizations of the uncertain data within the so-called uncertainty set, even

for the worst-case realization [BBC11].
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Definition 2.2.2 (Robust Counterpart).
Consider a mized integer linear program with n variables, m constraints and variable domain
X CR"™:

géi/{fl{c—rx | Az < b} (2.2)

Let U CR™*™ x R™ x R"™ be the so-called uncertainty set. We call

xelgfli?eR {t | (t >clzANAz < b) V(A,b,c) € U}

the robust counterpart of (2.2).

Solving the robust counterpart ensures feasibility of the solution regarding U but results in a
high price of robustness [BS04], i.e. the solution is often too conservative. Different concepts were
developed to overcome this problem, e.g. a reliability-index [BTNO0O0], minimax regret [KY97],
flexible adjustment to the level of conservatism [BS04], the concepts of light robustness [FMO09],
soft robustness [BTBB10], adjustable robustness [BTG 04, YGdH19] and recoverable robustness
[LLT09], lexicographic a-robustness [KLV12], decision-dependent uncertainty (see the paragraph
starting on page 20) or explorable uncertainty (see the paragraph starting on page 21). In [CG16]
the authors discuss which approach is suitable for the problem at hand. A compact overview of
prevailing uncertainty sets and robustness concepts can be found in [GYdH15, GS16] where the
latter focusses on the algorithm engineering methodology with regard to robust optimization.
Furthermore, in [KZ16] a survey on robust discrete optimization is presented.

Two-stage models, e.g. adjustable robust optimization (ARO) and recoverable robust op-
timization, are often challenging to compute as even for rather simple cases the problem is
NP-hard [BTG*04]. Nevertheless, within the last few years several results regarding multistage®
models were obtained (e.g. [BTGT04, BBC11, BC10, BTGN09, DI15]) and a tutorial-like survey
on robust multitstage decision-making was conducted in [DI15]. An interesting discussion on
multistage optimization can be found in [BTGNO09, pp. 408-410] where the authors acknowl-
edge its “extreme applied importance” but point out the computational problems that arise and
question the usefulness of most approximation techniques. Besides frequently used variants of
lot sizing problems (e.g. [BTG105, BTGS09, BG15, PdH16, dRBT 17, BSZ19]) robust multi-
stage optimization has been used for the daily operation of power systems [LST16] as well as
planning and scheduling problems [LG16, NY17, MNL19]. Dynamic programming techniques
can be use to solve such multistage problems under uncertainty [Shall], but often suffer from
the curse of dimensionality. Other solution methods include variations of Bender’s decompo-
sition [TTE09] and Fourier-Motzkin elimination [ZDHS18]. Additionally, iterative splitting of
the uncertainty set is used to solve robust multistage problems in [PdH16] and a partition-and-
bound algorithm is presented in [BD16]. By considering specific robust counterparts a solution
can be approximated and sometimes even guaranteed [BTG 104, BTGS09, CZ09]. Furthermore,
several approximation schemes based on (affine) decision rules can be found in the literature
(e.g. [BIP10, KWGI1, ISS13, BG15, GKW19]). Also worth mentioning is the generalization

SWe critically remark that the term “multistage” is frequently used as synonym for “two-stage”.
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of adaptive distributionally robust linear optimization to multistage problems [BSZ19], where

uncertainty sets contain probability measures [GS10, WKS14].

Quantified programming can be viewed as a general framework for robust multistage linear
optimization with interval uncertainty, as variables are solely bound within the hypercube given
by the variable bounds. Also, QIP with polyhedral uncertainty set (see Chapter 4) can be

interpreted as multistage discrete optimization with polyhedral uncertainty.

Stochastic Programming In contrast to robust optimization, a stochastic uncertainty model
is used in stochastic programming, i.e. a probability distribution over the uncertain parameters
is assumed. Instead of ensuring that a solution is applicable for any data realization within the
considered uncertainty set, here the solution must be valid (and optimal) in a probabilistic sense
regarding stochastic uncertainty [BGS11]. An overview of application areas can be found in
[WZ05]. For a general and comprehensive review of stochastic optimization we refer to [BL11,
Sha08, SDR09] and the references therein. We focus on multistage stochastic (mized) integer
linear optimization and for an overview regarding such problems we recommend reading [Sch03,
Sen05, EG112, ZAS19]. If only discrete probabilities are considered, a multistage stochastic
problem is also referred to as a game against nature [Pap85]. In this case a scenario tree can be
used to describe the multistage uncertainty [HR09, SDR09]. This concept is very similar to the

use of game trees for quantified programs (see Subsection 2.1.2) as also pointed out in [Woll5].

Similiar to theoretical results for robust multistage optimization the computational complex-
ity explodes in the number of stages [SN05, DS06]. The equivalent deterministic program (DEP)
[Wet74] can be used to reformulate the stochastic program into a traditional MIP but often
cannot be solved using standard solvers, as their size grows exponentially with the input size.
Hence, decomposition schemes [Bir85, Rus97, SZ14] gained in importance for large-scale in-
stances. There are essentially two decomposition-based strategies: decomposition by time stages,
e.g. the Bender’s or L-shaped decomposition [Ben62, VSW69, QS17], and decomposition by sce-
nario, e.g. progressive hedging [RW91, GH"16] and dual decomposition [CS99]. Recently a
multistage scenario decomposition approach for mixed binary programs was published [EGU16].
Furthermore, the so-called branch-and-fix coordination method gained in importance, which
is used to generate independent scenario clusters and coordinates the selection of branching
nodes and variables (e.g. [AET17]). Other recent advances for stochastic mixed integer pro-
grams consider decision rules (e.g. [BL18, DBL20]), sampling-based techniques (e.g. [PWB19])
and stochastic dual dynamic programming (e.g. [ZAS19]).

Quantified integer programming can be interpreted as worst-case multistage stochastic mixed
integer linear programming with discrete probabilities for uncertain right-hand side parameters.
In particular, in QIPs the worst case—and not the expected value—is optimized with regard
to the set of scenarios (the uncertainty set). However, in Subsection 2.3.2 we present a QMIP
model in which the uncertainty set contains a set of scenarios that appear with specific relative
frequencies (i.e. probabilities) with the optimization goal to minimize the overall (expected)

costs.
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2.2.3. Optimization under Decision-Dependent Uncertainty

Uncertainty can be classified as endogenous and exogenous, whereby endogenous uncertainties
can be affected by planning decisions and exogenous uncertainties cannot [LG18a]. In opti-
mization under uncertainty in general it is frequently assumed that the occurring uncertainty is
embedded in a predetermined uncertainty set or that it obeys a fixed random distribution, i.e.
it is assumed to be exogenous. We use the term decision-dependent uncertainty for problems
in which realizations of uncertain parameters can be manipulated by decisions made be the
planner. Others stick with the term endogenous uncertainty (e.g. [GG14]) or use other terms
like variable uncertainty (e.g. [Pos14]) or adjustable uncertainty set [ZK17]. For both stochas-
tic as well as robust optimization under uncertainty several results were obtained regarding

decision-dependent uncertainty.

Robust Optimization with Decision-Dependent Uncertainty Decision-dependent uncertainty
in (adjustable) robust optimization ((A)RO) results in an uncertainty set U(z), which depends
on the decision variables z. One of the first applications of RO with decision-dependent uncer-
tainty was a software partitioning problem [SW™12] with uncertain execution order and unknown
frequency of segment calls, where code segments must be assigned to different nodes. Poss intro-
duced decision-dependent budgeted uncertainty and applied them to robust knapsack problems
[Pos13] and RO with cost uncertainty [Pos14], and further provided results for RO with knap-
sack uncertainty [Pos18]. In [LRS*19] decision-dependent polyhedral uncertainty sets for the
multitasking scheduling problem were constructed. In [LG18a] a generic polyhedral form with
decision-dependence in both left- and right-hand sides is presented and the robust counterpart
is derived. A more general framework for RO with decision-dependent uncertainty is presented
in [NS18] and illustrated using the example of disaster control, where for a shortest path prob-
lem with uncertain edge lengths the edges to be reinforced must be determined. Combinatorial

problems with uncertain costs were studied in [Con19].

In [AP19a] mixed integer ARO with decision-dependent uncertainty is interpreted as tri-level
problem, allowing the adoption of algorithms for tri- and multilevel problems (e.g. [AP19b]). For
process scheduling with uncertain processing-time of the jobs, an ARO model is used in [LG16],
whereat the range of the uncertain processing-time parameters depend on the scheduling time
of the job itself. The selection of specific scheduling times therefore actively determine the range
in which the uncertain processing-times are expected. A general framework for resilient supply
chain optimization is proposed in [ZY19] using an ARO model with decision-dependent uncer-
tainty. Solution techniques for robust problems under decision-dependent uncertainty include
(repeatedly) solving deterministic reformulations [Pos18, NS18|, column and constraint gener-
ation algorithms [MGK19], decomposition techniques [Conl9] and approximation algorithms
[Pos18]. Further application-driven areas of robust optimization where decision-dependent un-
certainty was deployed include the distribution-free dynamic pricing problem [BV17], schedul-
ing problems [LG16, LG18b, VGM16], design of resilient networks [MGK19], radiation therapy
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[NR17], adaptive water resources planning [EPH20] and robust kidney exchange [MBD19]. Also

worth mentioning is the use of decision-dependent sets for robust optimal control [ZK*17].

Stochastic Optimization with Decision-Dependent Uncertainty One of the first results on
decision-dependent uncertainty in stochastic processes can be found in [Pfl90] where a Markov
chain with control-dependent transition is examined. Later, algorithmic procedures for solv-
ing a specific class of stochastic problems, where the distribution of random parameters de-
pends on decision variables, was presented in [JWW98]. A framework in which decisions affect
the disclosure time of uncertain parameters is introduced in [GGO06]. Furthermore, decision-
dependent ambiguity sets for distributionally robust stochastic programming are examined (e.g.
[RW17, NRL18]) and computational strategies for non-convex, nonlinear stochastic programs
with decision-dependent uncertainty are presented in [TGG13]. The classification of the differ-
ent types of decision-dependent uncertainty in stochastic programming is surveyed in [HBT18].

Solution techniques for general multistage stochastic programs under decision-dependent un-
certainty are decomposition algorithms [GG14, CC18], algorithms for the generation and ex-
ploitation of bounds [GG05, CC18, ZC19], and other heuristics [GG11, VKR11, HM16, Conl7,
EG™20]. There also are several application-oriented results: Stochastic programming is used
for planning oil and gas field infrastructure, where uncertainties depend on design and opera-
tion decisions [Jon98, TGG09]. In [GP106] preventive maintenance actions are optimized that
can change future failure distributions with the goal of minimizing planned maintenance costs
and unplanned repair costs. To strengthen an urban highway system against earthquakes, a
stochastic optimization problem is used in [PS*10], where investment decisions decrease the
likelihood of link failure by altering the probability distribution. The optimization of project
portfolios is examined in [SCT10]. In [WSP12] a stochastic dynamic programming formula-
tion is used to model global climate policy under decision-dependent uncertainty and dynamic
programming techniques are applied. A stochastic model for a vehicle routing problem is exam-
ined in [HKM16], where the uncertain customer demand is disclosed if the customer is visited.
The optimal selection of thermal and wind power units is examined in [ZZ18]. For a general
introduction and a further detailed literature review regarding stochastic programming under

decision-dependent uncertainty we recommend [Apal7].

Explorable Uncertainty Instead of allowing to change the nature of an uncertainty set, ez-
plorable uncertainty investigates the exploration of the uncertainty set: by querying parts of
the uncertainty set, the decision-maker can gain better understanding of what to expect; but at
a price. Hence, the question is which queries are indeed beneficial in order to obtain a better
or even optimal solution. Such problems arise when more precise input data can be obtained
with additional effort. This research question was first raised for a selection problem in [Kah91].
Other research deals with finding the median [FM™00], the shortest path problem [FM*07], find-
ing a minimal spanning tree [EH 08, MMS17], selection problems [GSS11, EHK16], scheduling
problems [Erl18, LMS19], knapsack problems [GGT15], sorting [HdL19], the computation of
function values [KT01] and computing the convex hull [BH*05]. Further, a survey of queryable
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uncertainty was published [EH15]. Most of these publications aim at minimizing the number of
queries to guarantee optimal solutions. For a caching problem a trade-off between performance
(few queries) and the precision of the solution is investigated in [OWO00]. For scheduling prob-
lems the trade-off between the benefit of a query (a scheduled job) and the resulting increase in
the objective value is examined in [Erl18, DE*18].

2.3. Examples

2.3.1. Robust Runway Scheduling

Deviations in aircraft arrival times have an enormous impact on air traffic planning. An initial
plan quickly becomes useless if it cannot be implemented in the real world, due to disturbances.
The question whether quantified programs could be used for robust runway scheduling problems
as in [HH"16] came up in a conversation with colleagues [LL16]. Under my supervision, a
preliminary model was developed [Gnal6], which served as the basis for further refinements and
implementations.

Assume there are b runways at an airport and all arriving airplanes have to be assigned to
exactly one time slot and runway for the landing. Each airplane is expected to arrive within
some time window and hence the assigned time slot must be contained in this time window.
Finding an initial matching, even an optimal one considering some objective function, can be
modeled and solved using mixed integer programming techniques [Helll]. However, the time
windows are uncertain due to adjusted airspeed or operational problems and an initial schedule

might become invalid (e.g. Figure 2.2). Thus, one is interested in a robust initial plan that can

Plan obeying |New time window Realization
initial time restrictions after fixing
windows
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Figure 2.2.: Process of runway scheduling for b = 1: An initial plan is made (left) in which each
airplane A; is scheduled within its predicted time window. If the predicted time
windows differ from the disclosed time windows (middle), the initial plan becomes
invalid and a new scheduling must be found (right).

be adapted cheaply, e.g. the initial and adapted time slot of each airplane should not be too
far apart [HH'16]. These uncertain events, however, do not uncover all at the same time: final
time slots must be assigned to some airplanes while for other airplanes the actual time window

is still unknown. We use a QIP to model and solve such a matching problem.
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The problem is a b-matching: Each airplane must be assigned to one time slot and at most b
airplanes can be assigned to one time slot. Further, the assigned time slot of an airplane must
lie within the time window in which the airplane can land. Let S be the set of time slots and
A the set of airplanes. For each airplane i € A the actual time window in which it must land
is given by the first time slot s; € S; € S and the length of the window d; € D; C N, i.e. the
number of time slots within the time window (minus one). The realization of this time window
{Siy...,8; + d;} is uncertain and therefore the variables s; and d; are universal variables. The
potential starting time slots S and their lengths D are the domain of the universal variables
and obviously must be chosen carefully. The existential player first has to specify an initial
plan, using variables x; ; that indicate whether airplane i € A is assigned to time slot j € S.
Then the universal player first reveals the actual time windows for certain airplanes and the
existential player then has to present the fixed plan (the final assignments) for those airplanes
via indicator variables y; ;. This can happen in a multistage manner, i.e. revealing and fixing
occurs repeatedly until all airplanes are assigned to time slots within their actual time window.

The resulting costs are composed of the costs for the initial plan and the fixing costs. The
costs for the initial plan only depend on the initial assignment of planes to time slots regarding
predetermined costs. For the composition of the fixing costs several models can be applied, e.g.
rescheduling an airplane results in a fixed fee, rescheduling an airplane results in costs depending
on the newly selected time slot, or rescheduling an airplane results in costs depending on the
initial and the newly selected time slot. There are several other options for the objective function,
e.g. minimizing the workload of the air traffic controllers [KB™19], which aims at keeping the
landing sequence of the airplanes unchanged. For a more general presentation, the cost of
replacing airplane ¢ depends on a cost function c¢(z;,yi.) representing the (linear) relation
between initial plan, fixed plan and fixing costs.

For simplicity the model below has only one universal variable block, i.e. all time windows are
revealed simultaneously. The only aspect that needs to be changed in order to obtain a (real)
multistage instance is the order of the variables and thus the quantification sequence, as briefly

described below.

min > > ¢ jx;; +max g min < > (@i, Vi) (2.3)
icAjes i€A

st. 3z € {0,118 vseS de D Jye{o,1}AxIS
Z.’E@j =1 Vie A (2.4)
jes
1€A
> iy =1 Vie A (2.6)
jeSs
> yij <b Vies (2.7)
€A
SiSZj'yi,j§S¢+di Viec A (2.8)

JeS
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Constraints (2.4) and (2.5) as well as (2.6) and (2.7) ensure, that both the initial plan as well
as the final fixed plan is a b-matching. Constraint (2.8) ensures that the finally assigned time
slot for each airplane is contained in its time window given by the universal player. Note that
we do not explicitly consider separation requirements between consecutive airplanes (see e.g.
[S6112]). But since we are using time slots, rather than actual landing times, this requirement
can either be added by demanding a certain time slot distance, or the time slot length itself
ensures that separation requirements are met. The Objective (2.3) aims at the minimization of
the overall costs, consisting of costs for the initial plan and the costs for adapting the initial
plan according to the disclosed time windows. For example, if there is a fixed fee for replanning
an airplane, further existential variables Z € {0, 1}41%5] are added to the final existential stage

and the following constraints would be added:

Zi g > Yij — Tij Vi€ A,j es (2.9)
(T, Yin) = Y Ti%ij Vie A (2.10)
jes

In this case, variable z;; indicates whether airplane ¢ is ultimately scheduled in time slot j
(yi,; = 1) but was not initially scheduled there (z;; = 0), resulting in rescheduling cost 7;.

If the time windows are not revealed simultaneously, more than one universal variable block
arises. In this case, the set of airplanes A as well as the universal domains S and D are split up
according to the groups of airplanes with simultaneously disclosed time windows.

The variables for the time windows, s and d, and the planning variables y are then ordered
in the quantification sequence according to these groups. Hence, such a multistage runway
scheduling problem under uncertainty can have up to |A| universal variable blocks if for each

airplane the time window is revealed individually.

2.3.2. Resilient Booster Stations

On the following pages the goal is to generate cost-efficient, resilient booster stations out of
predefined non-resilient ones, as proposed in [HH'18]. The requirements for the case of resilient
booster stations are manifested in the DVGW? code of practice "DIN 1988-500: Pressure boost-
ing stations with RPM-regulated pumps” [DIN11]. It states that booster stations must have at
least one stand-by pump. If one pump breaks down, the system must be able to satisfy the
peak flow and thus all demanded loads at any time. In order to avoid stagnation water, an
automatic, cyclic interchange between all pumps including the stand-by pumps is necessary.
Therefore, all pumps have to operate at least once in 24 hours. This additional requirement is
strongly connected to the cost-efficiency goal.

The relevant costs in the considered case are the investment costs for the additional pumps as
well as the operational costs of the overall system over a predefined lifespan. As the breakdown
cases are expected to only take place in a small amount of time compared to the lifespan, due

to short repair times, they do not significantly affect the operational costs of the system and are

6German Technical and Scientific Association for Gas and Water.
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therefore neglected. However, the requirement for all pumps to operate once in 24 hours, i.e. in
at least one of the daily repeating load scenarios, massively affects the operational costs. Given
this circumstance, it is not a trivial task to determine by which stand-by pumps the system
should be extended in order to obtain a cost-optimal system. Theoretically, a set of pumps or
entire subsystems can be connected either in parallel or in series. However, according to today’s
practice only parallel connections are favorable from a technical point of view and we therefore

assume a parallel arrangement (for further details we refer to [HH18]).

The QMIP consists of 3 = 5 stages. The first existential block primarily represents the
investment decision concerning the additional pumps. In the universal second variable block
the load scenario is selected. The existential third variable block is used to determine the cost-
optimal operating point of the available pumps for the given scenario. In the following universal
variable block one of the initial pumps is chosen for breakdown. The final existential block is
used to check whether the remaining pumps (without the broken one) are able to fulfill the

selected load scenario.

As the handling of the breakdown- and standard-control is independent—and only depends
on the first-stage investment decision—we could also have built a three-stage model: investment
decision (first stage), selection of a load and a breakdown scenario (second stage), and finally
computing the standard- and breakdown-control (third stage). However, using five stages has
severe advantages. First, the chosen variable sequence indicates the processing order more
accurately: for any scenario, we must provide a standard-control first and subsequently valid
breakdown-controls must be ensured for the particular scenario. Second, the corresponding
deterministic equivalent program contains significantly less variables, since the standard-control
decision variables do not have to be duplicated for each breakdown scenario [Woll5]. A similar
argument is valid for game tree search methods: if modeled as a three-stage QMIP the standard-
control found for one breakdown scenario must be rediscovered for another breakdown scenario,

even though it could simply stay the same. Table 2.1 displays the parameters and Table 2.2 the

Table 2.1.: Parameters of the QMIP for the design of resilient booster stations.

parameter description

I={1,...,n} set of initial pumps

A={n+1,...,n+m} set of purchasable additional pumps
P=AUI set of all available pumps

S={1,...,5} set of scenarios

C e Rf Cp: investment cost for pump p

Q€ ]Ri Qi: demanded volume flow in scenario ¢

H e Rf_ H;: demanded pressure increase in scenario i
Re0,1)° R;: relative frequency of scenario i

CFWh c Ry costs per kilowatt hour of electricity

H™ e Ry general upper bound for pressure increase
QM e Ry general upper bound for volume flow
TeRy projected operational lifespan of the system

used variables. For the sake of compact presentation, we do not explicitly state the quantification
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sequence Q o x. However, in Table 2.2 both the corresponding stage and thus the order of the

variables, as well as the variable quantification is given.

Table 2.2.: Variables of the QMIP for the design of resilient booster stations.

variable stage  description
ye{0,1}* 1(3)  yp : indicates buying decision of pump p
u€{0,1}7*%  1(3)  wp,s: indicator whether pump p is used in scenario s
ceR} 1(3) ¢t operational costs in scenario ¢
ses 2(V)  s: variable for selection of the load scenario
o€ {0,1}° 3(3) oy indicator whether scenario ¢ was selected
z€{0,1}F 3(3)  xp: indicator whether pump p is used
g€ RY 3(3)  gp: volume flow through pump p
h e Ri 3(3) hp: pressure increase by pump p
p € RY 3(3)  pp: power consumption of pump p
n € 0,17 3(3)  np: rotational speed of pump p
bel 4(V)  b: variable for selection of the broken pump
ge{o1}! 5(3)  Bp: indicator whether initial pump p is broken
=B e{0,1}" 5(3)  zF: indicator whether pump p is used in case of disturbance
% € Ri 5(3) qf : volume flow through pump p in case of disturbance
nP e Ri 5(3) hf : pressure increase by pump p in case of disturbance
min ZRiCi + Z Cpyp (2.11)
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upi>1 Vpel (2.14) S upi >y, VpeA (2.15)
ieS 1€S
Y o<1 (2.16) Y ioi=s (2.17)
€S €S
Y Bp<1 (2.18) > pBy=10 (2.19)
pel pel
B 48,<1 Vpel (220 = py( ) ¥YpeP (2.21)
~ p < p . Pp = Pp\dp, p p :
B B/ B
hp = hp(gp,npy) Vpe P (2.22) h, =h;(q,) VpeP (2.23)
hp=xp» Hio; VYpeP (224) hl=al> Hio; VpeP (2.25)
€S €S
B
> 1 =>_Qioi (2.26) > gy =3 Qioi (2.27)
peP i€S peP i€S
@p < Q" x, VpeP (2.28) hy < H™ g, Vpe P (2.29)
qp <Q™xl VpeP (2.30) h} < H™™ gzl vpeP (2.31)
M1 —o0;)+¢>CWhTY pp, Vies (2.32)

The Objective Function (2.11) aims at minimizing the weighted operational costs in the scenarios
as well as the costs resulting from buying additional pumps. Constraint (2.12) links the first
and third variable block as well as the first and fifth variable block by demanding that only
purchased pumps can be used. The feature that each pump must be used in at least one of

the appearing load scenarios is guaranteed by Constraints (2.13), (2.14) and (2.15). Constraints
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(2.16)—(2.19) link the universal variable decision of the selected scenario and the selected broken
pump with the corresponding existential variables while Constraint (2.20) prohibits the use of
a broken pump. The operating point of a used pump must lie on its characteristic curve, which
describes the nonlinear relation between hy, gp, n, and p,. This coherence is outlined in (2.21)
and (2.22) and must be linearized. As the power consumption of the booster station in the
case of a breakdown is not subject of the optimization the nonlinear relation between hf and
qf can be modeled more easily: (2.23) ensures that the selected operating point (hf , qf ) lies
somewhere within the characteristic map without specifying the speed of the pump. Hence,
linearizing the boundaries of the map and checking their fulfillment suffices. Constraints (2.24) -
(2.27) ensure that the demanded volume flow and pressure increase of the selected load scenario
are fulfilled in both the standard-control and the breakdown-control. Note that resolving the
nonlinearity in (2.24) and (2.25) is a trivial task by using a Big M formulation. Constraints
(2.28)—(2.31) set bounds on the volume flow and the pressure increase of a used pump and deal
with unused pumps in particular. In (2.32) the power consumption resulting from the selected
standard-control is transformed into energy costs. Note that the cost variables ¢; are first-stage
variables. This is necessary in order to be able to compute the overall costs instead of only
obtaining the costs in each scenario.

The universal integer variables s and b and the existential binary variables o and 3 are very
similar and closely linked through Constraints (2.16)—(2.19). One might suggest that the binary
variables ¢ and  could just as well be universal variables and thus replacing s and b. However,
exactly one load and one breakdown scenario each must be selected. This would lead to a re-
striction of these variables as it is done in Constraint (2.16) and (2.18). But restricting universal
variables using linear constraints (instead of simple variable bounds) cannot be done straight-
forward using standard QIP (see Chapter 4). In Subsection 4.4.2 we present the corresponding
model with constraints restricting such binary universal variables.

Our solver Yasol can only deal with continuous variables in the final (existential) stage (see
Subsection 2.1.3). Thus, the above model cannot be solved via this solver. However, by building
the deterministic equivalent program (DEP) (see Subsection 3.1.1) and utilizing a standard
MIP solver this QMIP can be solved. Further, in order to be able to use Yasol directly for this
problem one could do the following: The continuous cost variable ¢ in the first stage could be
converted into an integer variable, which only leads to a minor limitation. Furthermore, as the
continuous operating variables in stage 3 are independent of the universal variables in stage 4
the entire QIP could be turned into a 3-stage instance, as discussed before. Consequently, all

continuous variables would be in the third and final stage, making Yasol applicable.






3. Algorithmic Properties of QIPs

3.1. Solution Techniques and Pruning Mechanisms

There are two different ways known how to tackle a QIP: A deterministic equivalent program—
also called robust counterpart—can be built, similar to the ones known from stochastic pro-
gramming [Wet74] and robust optimization [BTN99], and solved using standard integer pro-
gramming solvers. On the other hand, the more direct approach is to conduct a game tree
search [Alt88, All94, FMM92, DL04, SH"16]. We are particularly interested in the latter, as
our solver combines techniques known from game tree search, linear programming and (quan-
tified) boolean formula within an alpha-beta framework [EH"17, KM75]. During such a game
tree search we are interested in quickly evaluating or estimating the minimax value of nodes, in
order to find the optimal (existential) strategy of the corresponding subtree. To speed up the
search process, limiting the number of subtrees that need to be explored is extremely beneficial.
Such pruning operations are applied in many search based algorithms, e.g. the alpha-beta al-
gorithm [KMT75], branch-and-bound [NW88] and the Davis-Putnam-Logemann-Loveland algo-
rithm [DLL62, GNTO03]. In the following subsections we first revisit the deterministic equivalent
program for QIPs and then present three approaches that allow pruning in a QIP game tree

search.

3.1.1. Deterministic Equivalent Program

Building a deterministic equivalent for problems under uncertainty is a powerful tool both in
stochastic programming [Wet74, BL11] and in robust optimization [BTN99, LDF11, BBC11].
For quantified programs a deterministic equivalent can be built in some cases: If only continuous
variables are present, i.e. a QLP, the corresponding exponentially grown DEP can be tackled by
exploiting the resulting matrix structure by using decomposition techniques [Woll5]. For QMIPs
with only continuous existential variables and only discrete universal variable the corresponding
QLP-relaxation yields the optimal solution [Woll5] and hence relaxing the integrality of the
universal variables and building the DEP of the QLP-relaxation is a suitable way to solve such
problems. For QMIPs in general, however, it is not possible to utilize a deterministic equivalent:
It no longer suffices to consider the lower and upper bounds of universal variables, as a convex
combination of the corresponding winning strategies no longer yields a winning strategy in

general.

Example 3.1.1. Consider the following QMIP without objective function:

Vap €[0,1] 3z € {0,1}: 1+ 22 =1
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Obuviously for both x1 = 0 and x1 = 1 there is a fulfilling existential assignment xo = 1 — x7.
However, for any x1 €]0,1] the constraint cannot be fulfilled. Thus, the existence of a strategy

cannot be deduced from the consideration of the bounds.

For pure QIPs it is possible to derive a deterministic equivalent. We first briefly revisit the
DEP of a QIP. For further details on the DEP we refer to [Woll5], but note that we introduce

a slightly different notation in order to reuse it in Section 5.6.1.

Definition 3.1.2 (Deterministic Equivalent Program of a QIP).
Let P = (A%,b7,¢,L£,Q) be a QIP. For a given scenario s € Ly and existential variable block

i € & we call X(s,1) the set of scenarios similar to s up to block i given by

N(s,i) =_0 € Ly|Vj<
keA: k<i

Z ’Bk‘ Sj:O'j} .

For s € Ly the vector xs € L represents a variable vector in which the universal variables are

fized according to scenario s. Then the deterministic equivalent program of P is given as follows:

min & (3.1)
st.elzy <k Vs e Ly (3.2)
Az < b7 Vs € Ly (3.3)
(xs)y = s Vs e Ly (3.4)
(xs)3 € L3 Vs e Ly (3.5)
() = 200 Vie&, s,0€ Ly, s# 0,0 € X(s,1) (3.6)

The presented deterministic equivalent is a split-view formulation [BH92] where the existential
constraint system is replicated for each scenario. It must be ensured that scenarios with a
common history must have the same set of decisions. This nonanticipativity property (also see
[BH92] and [Wet74]) is ensured by Constraint (3.6): the existential variables 2

block i in the presence of scenarios s and o, respectively, have to be invariant, if the scenario s

and xgl ) of

and o are similar up to block 7.

Example 3.1.3. Consider the following QIP with binary variables. We use the block notation,
i.e. 2D for variable block i instead of x; for each variable j, in order to avoid rampant indexes,

even though each block contains only a single variable.

min x(l) +x(2) _x(3) _x(4) _m(5)
st 3z vz@ 3200 vz 3200 ¢ {0,1}°

The set of possible scenarios is given by Ly = {(0,0),(0,1),(1,0),(1,1)}. The corresponding
deterministic equivalent with the fized universal scenarios variable (zs)y already incorporated

into the right-hand side value looks as follows:
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min k
1) (3) (5)

s.t. :Ug%o) —xgg’)o) —(0) ( -k <0
mgo,l) Z(0,1) ~T(0,1) -k <1
fﬂg};o) _9”(?;0) ~2(1% : —k =1

1 3 5
x2131) " L) ~T(1,1) —k <0
1 3
x2070) +:1:§070) +x(0,0) <2
ﬂfgfl)?n +(on) +(oh) =1
o o .
1 3 5
952170) +xELO) +x(170) <2
293531) ”;?n =-1
95531) +x(i’?1) +$8?1) <1
LU o))
5330) Eg,)l) (1,0) (1,1)
RO X
ffgm )
2 € {0,1} Vi€€E, se Ly

The invariant variables—linked through the Nonanticipativity Constraint (3.6)—already (vi-
sually) share the same column. Hence, if this link is realized explicitly by replacing them by
surrogates, the DEP is equal to the compact-view formulation [RW91] (also see [Woll5]).

min k
s.t. A —$§§§ —mgg?o) . -k <0
G (3) ey (5) o
3 5
—22M) —i—:rggi <0
) —1—3:%3; —i—mgg?o) <2
e ol
—2z(1) +x§i’§ < -1
3 5
zM —i—xélg —i—a:gl?o) <2
70 ) +a() <1
(3) (3) (5) (5) (5) 5)
2D wg, T Toor Teny Ty T €{0,1}

3.1.2. Monotone Variables

For QIPs a rather simple argument exists such that certain variable assignments never need to
be checked as they are worse than their counterparts. This concept of monotone variables is well

known in the field of quantified boolean formulas [CST02] and integer programming [NWS8S].
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Definition 3.1.4 (Monotonicity in a QIP).
A variable xy, is called positive (negative) monotone if it occurs with only positive (negative) sign
in the matriz and objective, i.e. if the entries of A% and ¢ belonging to xj are all non-negative

(non-positive).

First, we show that there is a relation between two leaves in the game tree corresponding
to completely assigned variable vectors that only differ in the entry of a monontone (binary)
variable. After that we show that for monotone (binary) variables only one assignment must be

considered during a game tree search.

Lemma 3.1.5. Given a binary QIP, its game tree G = (V, E,e) and a positive monotone vari-
able xy,, k € I. For any two leaves v'% and vV of the game tree represented by the fized variable
vectors ©0) = (&1,...,8x_1,0,Zpq1,...,2n) € L and TV = (Z1,...,Tp_1,1, Fp1s ..., %) € L,

respectively, it is minimaz(v(®)) < minimax(v™M).

Proof. If A3 £ b then minimaz(v(®)) = +00. Hence, a constraint i € {1,...,m3} exists
with b7 < Ai*iﬁ(o). Due to the monotonicity of variable £ it is AE*SNU(O) < Ai*iﬁ(l) and hence
also minimaz(v()) = +o00. If, on the other hand, A7) < b7 it is minimaz(v®) = Tz <

"2 < minimaz(vM). O

Theorem 3.1.6. Given a binary QIP, its game tree G = (V,E,e) and a positive monotone
variable xy, k € T. For any node v € V with level(v) = k—1 and its two successors v© and v
representing the assignments zj, = 0 and xj, = 1, respectively, minimax(v(®) < minimaz(v™®)

applies.

Proof. Let there be an optimal winning strategy for the subtree below v(!). Due to Lemma 3.1.5
this strategy is also a winning strategy for the subtree below v(?) with all leaf values being less
than or equal to the leaves of the strategy below v(1). Hence, minimaz(v(®)) < minimaz(v™).

If no winning strategy below v(1) exists it is minimaz(v(®)) < 400 = minimaz(vM). O

Obviously, similar conclusions can be drawn from negative monotone variables. Note that this
monotonicity is a valid argument for both universal and existential variables: A positive mono-
tone existential variable can be fixed to its lower bound in order to obtain an optimal solution.
For a positive monotone universal variable its upper bound always yields the correct minimax
value. In particular, it suffices to detect a winning existential substrategy for this universal
variable assignment, because if there is one, the monotonicity ensures the existence of win-
ning substrategy with smaller minimax value for the remaining universal variable assignments.
We also refer to [HL19a] where we utilized robust runway scheduling instances as presented in

Section 2.3.1 to show the impact of monotonicity in a small study.

3.1.3. Strategic Copy-Pruning

In contrast to such usage of prior knowledge we also can gather deep knowledge during the

search process: found strategies in certain subtrees can be useful in order to assess the minimax
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value of related subtrees rapidly. The idea is based upon the observation that typically in only a
rather small part of the game tree a distinct and crafty strategy is required in order to ensure the
fulfillment of the constraint system: in the right-hand side subtree of Figure 3.1 it suffices to find
a fulfilling existential variable assignment for only one scenario (universal variable assignment)

and reuse it in the other branches.

¥ =0 z¥ =1

7\
(V4

Figure 3.1.: The universal assignment z¥ = 1 entails a simple winning strategy: regardless of
future universal decisions existential variables can be set in a certain simple way,
e.g. the existential decisions in the dashed ellipse are all the same. On the other
hand, 27 = 0 calls for a more clever strategy: the existential decisions in the dotted
ellipse differ depending on previous universal decisions.

An optimization task is often split up into two parts: finding the optimal solution itself and
proving that no better solution can exist. For the latter, it turned out that applying backjumping
techniques as utilized by QBF-solvers [Zha03, GNTO03] and cutting planes as commonly used in
integer programming [NW88]| are also highly beneficial for QIPs in order to assess that no (better)
strategy can exist in certain subtrees. For the first task, however, it seems that the exponential
number of leaves belonging to a strategy must be traversed explicitly. This is certainly true in
the worst case. However, as practical game trees are often structured irregularly, typically there
are “difficult” parts of a game tree where a very deliberated substrategy must be found but
also other parts where a less sophisticated substrategy suffices. We present a procedure, called
strategic copy-pruning (SCP), that is capable of recognizing such subtrees making it possible
to implicitly deduce the existence of a winning strategy therein. In contrast to similar ideas
in QBF, as e.g. counterezample guided abstraction refinement [JKT16] and solution directed
backjumping [GNTO03] the fulfillment of linear constraints, rather than SAT clauses, must be
ensured. Moreover, we consider an optimization process over a minimax objective rather than
guaranteeing the mere satisfiability. For solving quantified constraint satisfaction problems a
technique called solution directed pruning is used [GNT08], which has similarities to our proposed
technique, but is also not applicable for an optimization problem. SCP draws its power not from
memory-intensive learning, but from deep findings in the search tree. This perspective has led
to remarkable achievements in the past [CHH99, vdHNLO05, Sch13].

The effect of SCP is reinforced if the sequence of variable assignments predicted as optimal
by minimax for both sides, called the principal variation [CM83], is traversed in an early stage
of the tree search. Detecting and verifying this particular variable assignment is essential in

order to obtain the objective value. Thus, having reasonable knowledge of which universal
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variable assignments are particularly vicious can massively boost the search process. Several
heuristics exist to analyze and find such promising moves in a game tree search environment
[AN77, WvdW ™04, Sch89, PS*96].

For game tree search there are already several algorithms trying to rapidly show the existence
of winning strategies such as Kawano’s simulation [Kaw96], sss* [Sto79], MTD(f) [PST96] and
(nega)scout [Rei83]. They, however, always have to traverse an exponential number of leaves. In
our experiments, SCP often allows to conclude the existence of a winning strategy with a linear
number of algebraic operations and in particular, in those cases it is not necessary to examine an
exponential number of leaves resulting in a significant performance improvement both in time
and number of solved instances (see page 153).

We first explain the basic idea of SCP using the example displayed in Figure 3.2. Consider

A3z < b? and minimax value < %

Figure 3.2.: Schematic display of SCP in a binary game tree.

a binary QIP and let the tree search have reached universal node v € V4 corresponding to the
variable assignment Z1, ..., Z;_1. Keep in mind that this is a MAX node as the universal player is
trying to maximize the objective. Assume the search first evaluates the left subtree below w € V3
corresponding to setting z; = T and assume the optimal solution is found for this subtree with

T# = 2. The existential variable

principal variation Zy,...,Z,. In particular, minimaz(w) = ¢
assignments of this principal variation are stored, as they seemed to have been the most effective
in this subtree. Next up, in order to completely evaluate v, the existence of a winning strategy
in the subtree below 1w, corresponding to setting xx = & = 1 — &%, must be ensured. Before
searching the subtree explicitly we boldly attempt whether the strategy arising by adopting the
existential assignments from the principal variation below @ is a winning strategy. If A%z < b7
for each leaf of this strategy, obviously a winning strategy for @ and thus for v is found. If

further for each leaf the payoff is less than or equal to Z we even do not have to investigate this
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subtree any further: a winning strategy has been found below @ with value less than or equal to
Z. Hence, minimax () < Z, because there might exist even a better (existential) strategy. But
since minimax(v) = max(minimaz(w), minimaz(w)) no further search is required to validate
minimazx(v) = Z.

The following Theorem 3.1.7 states the conditions necessary for a binary QIP such that this
technique can be utilized. A similar result can be achieved for general QIPs, which we state in
Theorem 3.1.8. But since our solver binarizes integer variables, only this following Theorem is

practically used.

Theorem 3.1.7 (Strategic Copy-Pruning (SCP)).

Let k € Ty and let (&1,...,%5_1) € {0,1}*71 be a fized variable assignment of the variables
T1,...,Tk_1. Let v € Vi be the corresponding node in the game tree. Let w € V and w € V be
the two children of v corresponding to the variable assignment Ty, and T = 1—2Zx of the universal
variable xy, respectively. Let there be an optimal winning strategy for the subtree below W with
minimaz value minimax(w) = Z defined by the variable assignment & = (Z1,...,Ty,) € {0,1}",

T&. If the minimax value of the copied strategy for the subtree below w—obtained by

l.e.Z=c
adoption of future” existential variable assignments as in & —is not larger than 2 and if this

copied strategy constitutes a winning strategy, then minimaz(v) = Z. Formally: If both

Ck(.fk — ii'k) + Z Cj(l — fj) — Z Cji’j <0 (37)
JE€Ly: JE€ELy:
j>kAc; >0 >k Ac;j<0
and
Yoo ALE+ALE+ Y AL <Y Vie{l,...,m3} (3.8)
JET: j€Ty:
JEI3V i<k j>k N AT >0

then minimax(v) = 2.

For clarification note that Condition (3.7) ensures that the change in the minimax value of the
copied strategy, resulting from flipping x; and using the worst-case assignment of the remaining
future universal variables, is not positive, i.e. that its minimax value is still less than or equal
to Z. Condition (3.8) verifies that every constraint is satisfied in each leaf of the copied strategy

by ensuring the fulfillment of each constraint in its specific worst-case scenario.

Proof. 1f (3.8) is satisfied there automatically exists a winning strategy for the subtree of v
corresponding to x = & with root node , since for any future universal variable assignment
the assignment of upcoming existential variables as in Z fulfills the constraint system. This

is ensured, since for each constraint the worst-case setting of the future universal variables is

7 future means variable blocks with index > k.
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chosen. Hence, if (3.8) is fulfilled each leaf fulfills A%z < b7. Furthermore, the minimax value 2

of this strategy is less than or equal to Z due to Condition (3.7):

(3.7)
z = Z T + cpxy + Z cj < Z ;T + cpxy + Z CjT; = Z
JEL: JE€ELy: J€EI: JELy:
JjEIZVi<k j>kAc;>0 JEIV <k >k

Hence, if (3.7) and (3.8) are fulfilled there exists a winning strategy in the subtree below @
with value less than or equal to Z. Thus, the (still unknown) optimal solution for the subtree
below @ has a minimax value less than or equal to Z, i.e. minimaz(w) < 2 < Z = minimazx ().

Therefore, with Definition 2.1.15, minimax(v) = minimax(w) = Z. O

Note that Condition (3.8) is trivially fulfilled for any constraint i € {1,...,m3} with Ai ;=0
for all j € Zy,j > k, i.e. constraints that are not influenced by future universal variables do not
need to be examined. Hence, only a limited number of constraints need to be checked in case
of a sparse matrix. Furthermore, Condition (3.7) is fulfilled if ¢; = 0 for all j € Zy, j > k, i.e. if
the future universal variables have no direct effect on the objective value. If even ¢ = 0, i.e. it
is a satisfiabilty problem rather than an optimization problem, Condition (3.7) holds trivially.

In Theorem 3.1.8 we present how SCP can come into effect for more general QIPs.

Theorem 3.1.8 (SCP for Integers).

Let k € Ty and let (Z1,...,Tk—1) € L1 X---X Li_1 be a fired variable assignment of the variables
T1,...,Tk_1. Let v € Vi be the corresponding node in the game tree. Let w € V and w € V be
two children of v corresponding to the variable assignment Ty € L and &y € Ly, Ty # Tk, of
the universal variable x, respectively. Let there be an optimal winning strategy for the subtree
below w with minimax () = Z defined by the variable assignment & = (Z1,...,%,) € L, i.e.
z=c"z. If both

cr(@r =)+ D, elui =3+ D ¢llj—3;) <0 (3.9)
JELy: JELy:
Jj>kNc;>0 j>kAc;j<0

and

3 - ER 3 3 3 '
JET: J€Ly: JELy:
JEI3V j<k J>kNAF >0 J>k A A7 ;<0
then minimaz(v) > minimaz(®) > minimaz(w) and hence the subtree of v corresponding to

assigning xp = ) does not need to be investigated.

The proof of Theorem 3.1.8 is similar to the proof of Theorem 3.1.7. Note that in the situation
described in Theorem 3.1.8 one is not able to determine the minimax value of v, but it can be
ensured that a certain subtree (the one below @) does not yield the principal variation and hence

does not need to be searched explicitly, as the existence of a winning strategy is guaranteed.
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SCP Implementation Details When implementing the theoretical result from Theorem 3.1.7
the most crucial part is not the checking of Conditions (3.7) and (3.8), but ensuring the opti-
mality of Z for minimaxz(w) demanded in the theorem. Consider Figure 3.3 representing the

final four variables of a binary QIP with strictly alternating quantifiers. We assume the search

MAX
MIN
MAX

MIN

Figure 3.3.: Illustrative game tree: pentagonal existential decision nodes, circular universal deci-
sion nodes and rectangluar leaves. The dashed lines indicate that those underlying
subtrees might be omitted if Theorem 3.1.7 applies.

has found the variable assignment = # (represented by node G) with A%z < b7. Further-
more, assume rg = Ig is the optimal assignment for the final variable block with regard to
1 = T1,...,88-1 = Tg_1, i.e. minimax(E) = minimaz(G). If the requirements of Theorem
3.1.7 for k = B—1 are fulfilled it is minimax(D) = minimax(FE) and we do not have to calculate
minimax(F') explicitly as the existence of a winning strategy below F is ensured. If this attempt
is successful the application of Theorem 3.1.7 at node A would be attractive. However, one must
ensure, that minimax(C) = minimaz(D), i.e. that setting x3_o = T3_2 is indeed optimal in
this stage. If this optimality cannot be guaranteed, but Conditions (3.7) and (3.8) are fulfilled
at node A, we still can conclude the existence of a winning strategy for the subtree at B but
we cannot yet specify minimax(A). However, storing the information minimaz(B) < % and
minimax(A) < Z can be advantageous. In Algorithm 1 such a node A is marked as “potentially
finished”, as minimax(C) = minimax(D) might not yet be ensured. If it turns out, that indeed

setting xg_o = 1 — T3_o is optimal at C' such a marking is deleted.

As soon as a leaf v is found during the tree search with the corresponding variable assignment
x, being a potentially new PV for this subtree the mechanism described in Algorithm 1 is
invoked: the two Conditions (3.7) and (3.8) of Theorem 3.1.7 are checked at each universal
node starting from this leaf towards the root (Line 5). While both conditions are fulfilled the
corresponding universal nodes are marked as potentially finished. If one of the conditions is not
satisfied the remaining universal nodes above are marked as unfinished. If a level is closed during
the tree search and the above universal node is marked as potentially finished this level also can
be closed immediately as a strategy is guaranteed in the other branch with worse objective

value (from the universal player’s point of view). The unmarking of universal nodes (Line 9) is
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Algorithm 1: Marking of potentially finished universal nodes.

Input: leaf node v
1: checkSCP=TRUE
2: repeat
3:  v=parent(v)

4 if v € V4 then
5 if checkSCP and v fulfills Conditions (3.7) and (3.8) then

6 mark v as potentially finished

7 else
8 checkSCP=FALSE
9: mark v as unfinished

10: end if

11:  end if

12: until v is root node

necessary since Theorem 3.1.7 demands x, to be the actual PV and hence previous markings

were made based on a false assumption.

Proposition 3.1.9. Consider a QIP and let v € Vi be a node with level(v) = k — 1, i.e. v
represents the decision on universal variable xy. In order to evaluate line 5 in Algorithm 1 for
node v O(my, - n) operations are sufficient, with my = |{i € {1,...,m3} | Aik # 0}| being the

number of constraints in which variable k is present.

Proof. The plain computation of the left-hand side of Condition (3.7) requires O(n) operations.
However, the two sums in Condition (3.7) can be updated and stored for each loop and hence it
suffices to carry out O(1) operations: check the increase in the objective if x = ) by computing
ck(Zx — &) and adding the increase from choosing the worst-case setting of future universal
variables computed in the previous loops. If the resulting increase is non-positive Condition
(3.7) is fulfilled and we can update these sums by incorporating zj; accordingly. For Condition
(3.8) to be fulfilled the fulfillment of each constraint in the worst-case setting of future universal
variables must be ensured. In the setting of Algorithm 1 it suffices to check only constraints in
which variable xj is present, i.e. those constraints ¢ € {1,...,m3} with Aik # (0: Constraints
with Aiﬂ,j = 0 for each j € Ty, j > k, are trivially fulfilled, since A7% < b”. Constraints with
A = 0 and A?’ ; 7 0 for some future universal variable j € Zy, j > k, are fulfilled as they have

1y

been checked in a previous loop. Therefore, O(my - n) operations are required in each loop. [

Obviously, in the worst case in each iteration mg - n operations must be performed. In our
experiments, however, where each of the universal variables occur in only a few rows and the
matrix is sparse, the runtime of the heuristic is negligible. When exploiting Theorem 3.1.7 via
Algorithm 1 it is especially advantageous if the search first investigates the PV as Condition
(3.7) is more likely to be fulfilled. Hence, its applicability highly depends on the implemented

diving and sorting heuristic.
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Example 3.1.10. Consider the following binary QIP (The min/maz alternation in the objective
is omitted):

min 2z +3x2 —2x3 —2x4 x5

st. I Vay FJag Vay, Jzz €{0,1}°:

1 -1 1 3 -1 2
r <
(3 2 3 1 —2) (1)

Starting at the root node of the corresponding game tree in Figure 3.4, we can immediately omit
the subtree corresponding to x1 = 1, as x1 is positive monotone. Keep in mind that the result of
Theorem 3.1.7 is particularly beneficial if the search process of a QIP solver first examines the

principal variation, i.e. the variable assignment defining the actual minimax value. Assume the

MIN
MAX
MIN
MAX

MIN

Figure 3.4.: Optimal winning strategy for the stated QIP. Circular nodes are existential decision
nodes, rectangular nodes are universal decision nodes and pentagonal nodes are
leaves. The values given in the leaves constitute the objective value corresponding
to the variable assignment along the path from the root to this leaf. The dashed
lines indicate that those existential decisions were simply copied from the path
drawn thicker.

search process follows the path drawn thick in Figure 3.4 to node vg, i.e. the path corresponding
to the variable assignment x1 =0, o =1, x3 =0 and x4 = 0. Setting x5 = 1 is optimal in this
case, as x5 = 0 would violate the second constraint. Hence, the minimax value of vg is 4. On
the way up in the search tree we then want to determine minimax(vs). As (3.7) and (3.8) are
fulfilled for k =4, Z =4 and £ = (0,1,0,0,1) we know that minimaz(vs) = 4. That means we
have (easily) verified a winning strategy starting from vy with minimax value less than or equal to
4. In node vs setting x3 = 1 is obviously to the detriment of the existential player, as the second
constraint would become unfulfillable. Hence, minimax(vs) = minimaz(vs) = 4. In node vq
we once again try to apply Theorem 3.1.7 by copying the existential decisions of xs and x5 in
the thick path to the not yet investigated subtree associated with xo = 0. As (3.7) and (3.8) are
fulfilled for k =2, Z =4 and & = (0,1,0,0,1) this attempt is successful and minimaz(v1) = 4.
Note that by applying Theorem 3.1.7 the minimaz value of the subtrees below vo and vy are not
known exactly: in particular we only obtain minimax(vy) < 2 = 1, whereas a better strategy

exists resulting in minimaz(vy) = 0 (Setting x5 = 0 in node vg).
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Hence, by finding the principal variation first (thick path), exploiting monotonicity of x1 at
node vy, Theorem 3.1.7 at node v1 and vs and some further reasoning from linear programming
at node vs and vg the minimazx value at the root node vy was found to be 4 with optimal first-stage

solution x1 = 0.

In [HL19a] we showed that utilizing SCP in our solver resulted in a massive boost in both the
number of solved instances and the runtime (about 4 times faster) on robust runway scheduling
instances as presented in Section 2.3.1. In Section 7.3 we provide further evidence on the positive
impact of SCP on several test sets and the results also indicate that the time for checking the
Conditions (3.7) and (3.8) is indeed negligible.

3.1.4. Dominance Relations

Exploiting dominance relations is a common procedure in mixed integer programming [GK15].
However, as shown below, one must be cautious when applying such techniques to QIPs. We
first present the definition of a dominance relation in a QIP, which is similar to the one used
in mixed integer programming. Then, we present an example how exploiting this property in a

similar fashion as used for MIPs leads to wrong results for QIPs.

Definition 3.1.11 (Dominance Relation).

Given a binary QIP and two variables x; and xy,. We say x; dominates xy (z; = xi), if
a) ¢j < ci, and

b) A?J < Aik for each constraint i € {1,...,m3}.

Example 3.1.12. Consider the following QIP
min x1 + x9 + T3

s.t. dxy € {0,1} Vg € {0,1} Fz3 € {0,1}:

Z1
-3 2 =2 0
To | <
1 -2 1 0
z3
x1 dominates x3, i.e. x1 = x3. Hence, one might expect (as it is valid for MIPs) that x1 = 0
and x3 = 1 cannot be part of an optimal winning strategy, i.e. no branch of the optimal solution
contains the edges representing 1 = 0 and x3 = 1. However, in the above example the principal
variation itself, given by & = (0,1,1), contradicts this assumption: x1 must be set to 0 as
otherwise an immediate threat of a violation of the second constraint arises. Then the universal
player chooses xo = 1 in order to maximize the objective by also forcing x3 = 1 due to the first
constraint. Hence, adding the constraint xs < x1 to the constraint system, which is the usual
procedure for binary variables in a MIP environment (or using this information implicitly in a
conflict graph [GK" 15]), would make this instance even infeasible. Now consider the DEP of
the above QIP:
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min k
-1 1 1 0 0
-1 1 0 1 k -1
0o -3 -2 0 T
s.t. (0) S
0 1 1 0[]z} 0
0 -3 0 -2 \af" —2
0 1 0 1 2

z1, xgo), xél) € {0,1}

For this MIP obviously x1 ¥ xéo) and x1 ¥ ;1::())1). This example demonstrates that different

conclusions have to be drawn from dominance relations than we are used to for MIP.

By using the insights obtained in the above example it becomes apparent that identifying
dominances of existential variables in different variable blocks is not advantageous. However,
the dominance relation of existential variables in the same variable block still is useful in order

to easily avoid unnecessary computing time:

Proposition 3.1.13. Consider a feasible binary QIP and i,j € By for some k € &, i.e. i and
J are existential variables in the same block. Let x; = x;. Then there always exists an optimal
winning strategy S = (V', E', €’) with (xy); > (xy); for all leaf nodes v e V' NV,

Proof. Let S = (V' E',&) be an optimal winning strategy with some leaf & € V' NV, with
(z5)i < (w5);, i-e. (v5); = 0 and (v5); = 1. Let t = min{4, j} and v; € V' be the node at level
t — 1 on the path from the root to @ in S. For any leaf o € V/ NV, in the subtree below vy it is
(3)i < (x3); as only a single node for each level i —1 and j — 1 is present in this substrategy (as
both variables belong to the same variable block). Consider the strategy S* obtained by adapting
the strategy S by flipping the two existential decisions below v; corresponding to variable i and
j. As x; = x; for any leaf in S* below v; the system A7z < b7 is also fulfilled with objective
value not larger than at their counterpart in S. Therefore, S* is a winning strategy with value

not larger than the value of S. Thus, either S is not optimal or S* is also optimal. O

If a dominance as described in Proposition 3.1.13 is identified, the information that the com-
bination z; = 0 and z; = 1 never has to be investigated, can be exploited. Note that the reason
why dominance relations of variables in different blocks cannot be exploited as in Proposition
3.1.13 is that it cannot be guaranteed (in general) that for the node v; all leaves in its subtree
have the demanded property (cf. Example 3.1.12).

A similar result can be obtained for dominance relations of universal variables in the same

block. In preparation for this we first prove following lemma.

Lemma 3.1.14. Let P = (A%, 0%, ¢,£,Q) and P = (AH,IN)H,C,C,Q) be two QIPs with b3 < b3.
Then for the optimal values z of P and % of P it is z < Z.

Proof. Consider the game trees G = (V, E, e) and G= (‘7, E, é) of P and P, respectively. For any

leaf v € V}, C V there exists a leaf o € Vi, C V with z, = 3 and minimaz(v) < minimaz ()
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with Definition 2.1.15. Therefore, any strategy S in G can be adopted to be a strategy S in G

with minimaxz(S) < minimax(S). O

Proposition 3.1.15. Consider a feasible binary QIP and its game tree G = (V,E,e). Let
i,j € By, for some k € A, i.e. i and j are universal variables in the same block k. Let x; > ;.
Then there exists an optimal winning strateqgy S = (V', E',€’) for which the PV is defined by at
least one path from the root to a leaf v € V' N VL, with (xy); < (zy);.

Proof. Let j = i + 1 (Resorting within blocks does not change the nature of the problem).
Consider any node v € V with level(v) = i — 1 representing the universal variable z;. Let w € V
be the node reached by setting x; = 0 and z; = 1 and @w be the node reached by setting x; = 1
and z; = 0 starting from v, with x,, and x4 being the corresponding partial variable assignments.
Let ¢, = Zi:l ck(xyw)k and ¢ = Zi:l ck(zp)k. Due to z; > x; it is ¢y < ¢p. Both w and @
represent QIPs (A, b, ¢, £/, Q') and (A",¥,¢, L', Q') with offset ¢,, and cg, respectively. Then

¥ < ¥ applies due to z; > xj. Hence, with Lemma 3.1.14 it is minimaz () < minimax(w). O

Surprisingly, we are also able to exploit dominance relations between universal and existential
variables: An existing dominance relation z; > z; states that ; = 1 and z; = 0 is better for
the existential player than z; = 0 and x; = 1 (if all other variables stay the same). Assume z;
is a universal variable in a variable block before the existential variable z;. Assume after setting
xj = 1 the variable z; is forced to be set z; = 0 but an optimal winning strategy exists. Then
setting x; = 0 is to the detriment of the universal player, as the strategy from the branch z; =1
can be adapted by setting x; = 0, which results in a winning strategy with better objective value

(for the existential player).

Proposition 3.1.16. Consider a binary QIP and let j € Zy. Let v € Vg be the node in the
game tree representing a fized variable sequence Z1,...,%j_1. Let i € I3, 1 > j, with x; = x;.
Let there be an optimal winning strategy S = (V', E', €’) with minimax(S) = z for the subtree

of 0 corresponding to x; = 1 and let (z,); = 0 in every leaf v € V' NVy. Then minimaz(?) = z.

Proof. We construct a winning strategy S = (V’ VB E ) for the subtree of ¥ corresponding to
z; = 0 with minimaz(S) < z. For each leaf w € V' NV, we construct a leaf node w € V’

defined by the variable assignment x; given by

) @)k ke T\{i,j}
(za)r = { -
1—(.’17w)k ) ke{l,j}-

Since z; > z; for each leaf pair (w,w) it is
Ay < Az, <7 (3.11)

and

minimax(w) > minimax(0) . (3.12)
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The strategy S consists of all such leaves @ and every path from its root to such a leaf. Due
to Equation (3.11) S constitutes a winning strategy and due to Equation (3.12) this strategy
has a minimax value not larger than z. Hence, the optimal winning strategy for the sub-
tree corresponding to ; = 0 has a minimax value not larger than z. Since minimax(v) =
max(minimaz(S), minimaz(S)) it is minimaz(v) = 2. O

As it is often too memory-intensive to store the entire strategy in order to check the require-
ments of Proposition 3.1.16 it is hardly usable, in general. However, if the considered existential
variable x; is an element of the subsequent variable block of the universal variable x; and if z; is
the last variable within its block (by rearrangement of the variables within this block) only one
path must be considered: the PV of the optimal winning strategy of the subtree corresponding

to T = 1.

3.2. Relaxations

In an alpha-beta search as well as in a branch-and-bound setting assessing the potential of a
subtree is crucial for the search process. This can be done by relaxing some problem conditions
in order to obtain a bound on the optimal value of a (sub)problem. In mixed integer linear
programming, variants of the LP-relaxation of a problem are employed [Bal01]. In this section
we briefly discuss relaxations applicable for QIPs. We first revisit relaxations discussed in [Wol15]
and then present extended LP-relaxations with embedded scenarios.

A straightforward way to relax a QIP is to enlarge the variable domain by relaxing the

integrality resulting in a QLP.

Definition 3.2.1 (QLP-Relaxation of a QIP).
Let P = (A%,b%,¢,L£,Q) be a QIP (with integer bounds). By omitting the requirement that each

variable must take integer values the relaxzed variable domain is given by
£relax:{y€@n|Vi€Z:li§yi§ui}-

The QLP-relaxation of P is given by (A%,07, ¢, Lretaz; Q).
For the QLP-relaxation the following was shown in [Woll5]:
Proposition 3.2.2. Given a QIP P and its QLP-relaxation R. Then the following holds:

a) If R is infeasible, then also P is infeasible.

b) If R is feasible with optimal value zg, then either P is infeasible or P is feasible with

optimal value zp > zp, i.e. zr constituted a lower bound.

In addition to relaxing constraints or the integrality of variables, the quantification sequence
can be altered by changing the order of the variables or the quantification of variables. An
LP-relaxation of a QIP can be built by additionally dropping universal quantification, i.e. each
variable is considered to be an existential variable with continuous domain. If the universal

quantification but not the integrity is relaxed, the IP-relaxation arises.
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Definition 3.2.3 (LP- and IP-Relaxation of a QIP).
Let P = (A%,b7,¢,L£,Q) be a QIP and let L,e1q, be given as in Definition 3.2.1.

a) The IP-relaxation of P is given by (A%,b7, ¢, £,3").
b) The LP-relaxation of P is given by (A3,07, ¢, Lyejar, 37).

The relaxation of quantification can be viewed as taking control of the opponents variables,
i.e. such a relaxation constitutes a single-player game. It was shown in [Wol15] that Proposition
3.2.2 is also valid if R is the LP-relaxation. Furthermore, Proposition 3.2.2 is valid if R is the
IP-relaxation as the same gaming arguments as used in [Woll5] for the LP-relaxation apply.

A useful relaxation must be well balanced with regard to the quality of the resulting bound and
its computing time. The IP-relaxation often provides a better bound than the LP-relaxation but
with increased theoretical computational complexity. The same holds for the QLP-relaxation in
comparison with the LP-relaxation. Despite the better runtime of the LP-relaxation compared
to the QLP-relaxation, one major drawback of the LP-relaxation is that it totally neglects the
uncertainty arising from universal variables: transferring the responsibility of universal variables
to the existential player and solving the single-player game has nothing to do with the worst-case
outcome in most cases. This, however, can easily be improved by arbitrarily fixing the universal
variables. This can be interpreted as knowing the (deterministic) opponent moves beforehand
and adapting one’s own moves for this special game. As the original QIP optimizes the worst

case, arbitrarily fixed universal variables also must be dealt with.

Definition 3.2.4 (LP-Relaxation with Fixed Scenario).
Let P = (A%,b7,¢,L£,Q) be a QIP and let &y € Ly be a fized scenario. The LP

min {ch | z € Lrelar N Ty = By A Ax < ba}

1s called the LP-relaxation with fixed scenario Zy.

Similarly, the IP-relaxation with fixed scenario can be defined, the interpretation of which is
that the universal player discloses her (future) moves right at the beginning and the existential
player can adjust his moves accordingly. The following V3-S-relaxation can be interpreted as
repeatedly solving the IP-relaxation for each scenario in the scenario set S in order to improve

the resulting bound.

Definition 3.2.5 (V3-S-Relaxation).
Let P = (A%,b%,¢,L£,Q) be a QIP. Let S C Ly. The QIP

max (cvxv + mig 03333) st.Vay €S Jage Ly: Az <b?
r3€EL]

Ty ES
1s called its V3-S-relaxation.

For S = Ly the V3-S-relaxation is simliar to the V3-relaxation as presented in [Woll5] with
the slight difference that we deal with QIPs and they examine QLPs. Nevertheless, very similar

results can be obtained for such a relaxation:
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Proposition 3.2.6. Let P = (A%,07,¢,£,Q) be a QIP. Let S C Ly and let R be the corre-
sponding Y3-S-relazation. Then the following holds:

a) If R is infeasible, then also P is infeasible.

b) If R is feasible with optimal value zg, then either P is infeasible or P is feasible with

optimal value zp > zp, i.e. zr constituted a lower bound.

Proof.

a) If @ is infeasible there exists some scenario 2y € S C Ly such that
ﬂl’g € L3 Agxg < b3 — A@i’v,

and since Zy € Ly there cannot exists a winning strategy for P. As a gaming argument we
can interpret this the following way: If there is some move sequence of the opponent we
cannot react to in a victorious way—even if we know the sequence beforehand—the game
is lost for sure.

T

b) Let &y € S be the scenario defining zp = ¢'Z, i.e. the worst-case scenario for R, and let

Z3 be the corresponding fixation of the existential variables. It is

&3 = arg min {c§x3 | ASz3 < b7 — A@i"v} . (3.13)

r3€LS
If P is feasible, scenario 2y must also be present in the corresponding winning strategy.
Let & be the corresponding game, i.e. Zy = Zy. With Equation (3.13) obviously zr =
¢'# < "7 and thus with Theorem 2.1.16 zr < zp. O

Proposition 3.2.6 also proves the usability of the IP- and LP-relaxation with fixed scenario, as
for | S| = 1 the V3-S-relaxation is an IP with fixed universal variables, which can be relaxed—by
dropping the variable integrality—yielding an LP-relaxation with fixed scenario.

A V3-S-relaxation can be solved by repeatedly solving the LP-relaxations for each scenario in
S and selecting the worst outcome. Although now several scenarios can be considered, which to
some extent takes the uncertainty arising from universal variables into account, some existential
variables must be fixed for more than one scenario: the V3-S-relaxation allows fixations of the
existential variables exactly matched for each single scenario (see Equation (3.13)). This is due
to the altered order of the variables. Reintroducing the original order of the variables while

taking the same subset of scenarios S € Ly into account, can improve the resulting bound.

Definition 3.2.7 (S-Relaxation).
Let P = (A%,b7,¢,L£,Q) be a QIP. Let S C Ly and let Lg = {x € L | zy € S}. We call

Z = min g + max 2?2 + min B3 z3) + ... min cB) (B
el e@eL) e®er) e®eLy)

st. Qox € Lg: Az < b (%)
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the S-relaxation of P.

Note that this S-relaxation is not a standard QIP, as the individual universal variable domains
are not given by simple bounds. In particular, the local domain of a universal variable block

i € A depends on previous variable assignments #2070 and is given by
D@, 300y = (30 e £0 ] 3z = @O, 3070 20 204D 20) e £}

Nevertheless, an S-relaxation can be solved by building a deterministic equivalent program.

Example 3.2.8. Consider the following binary QIP (The min/max alternation in the objective

is omitted for clarity):

min —2x; +x2 —T3 —I4
st. 3Jx; VYae Jaz Vay €{0,1}*:
1 4xo Hx3 +x4 <3
—ry —x3 +x4 <0

The optimal first-stage solution is &1 = 1, the PV is (1,1,0,0) and hence the optimal value is
—1. Let S = ({1,0},{1,1}) be a set of scenarios. The V3-S-relaxation can be solved by solving
the two emerging IPs as shown in Table 3.1 when fizing the universal variables as in S and

selecting the larger objective value of both instances. This V3-S-relaxation yields a lower bound

Table 3.1.: Solutions of the single IPs with fixed scenarios.

scenario ro=1,24=0 o =1, 24 =1
min —2x1 —x3 +1 min —2x1 —x3 +0
IP s.t. r1 +xz <2 s.t. r1 +zxz <1
—z3 <1 —z3 <0
solution r1=1,23=1 r1=1,23=0
objective -2 -2

of -2. The first-stage variable is set to 1 in both scenarios but note that even though in both
scenarios xo = 1 the solutions of the IPs differ in xs. This is due to the prior knowledge of
the fixation of x4. This obviously does not reflect the original QIP well, as x3 should be set to
exactly one value in the subtree corresponding to t1 = 1 and xo = 1. Now consider the DEP of

the S-relazation in which x3,) represents the assignment of x3 after xo is set to To:

min k

s.t. —21; —3(1) +1 <k
T1 +r30) <2 Scenario (1,0)

—Z3(1) <1

—2z1 —z3) +0 <k
Ty +w31) <1 Scenario (1,1)

—T3(1) <0

r1 , 31y €10,1}
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In the S-relaxation it is ensured that variables following equal sub-scenarios are set to the same
value. As xo is set to 1 in each considered scenario in S, x3 must be set to the same value in
both cases. The solution of the DEP is x1 = 1, x31) = 0 and k = —1. Thus, the S-relazation
yields the lower bound -1 for the original QIP. This is not only a better bound than the one
obtained by the IV-S-relaxation but it is also a tight bound.

The DEP of the S-relaxation can easily be weakened by turning it into a feasibility problem
rather than an optimization problem by dropping the k variable (see Example 3.2.8). This might
result in a better runtime but no bound is computed if found feasible. Nevertheless, it might
be helpful to quickly assess that no winning strategy can exist for a subtree. Further, dropping
the integrality in this DEP results in a standard LP, which can be solved quickly using standard
solvers.

Both for the JV-S-relaxation as well as the S-relaxation the selection of scenarios for S is
crucial. If too many scenarios are chosen, solving the relaxations might consume too much time.
In particular, for S = Ly the S-relaxation is identical to the underlying QIP. If S only consists
of scenarios that are ‘easy to handle’ the resulting bound might not be very helpful. Adding
the scenario corresponding to the PV, however, seems particularly advantageous. Therefore,
information collected during the search [AN77, Sch83] is used in order to approximate the PV.

For more information on implementation and experiments, we refer to Section 7.2.3.






4. Quantified Integer Programming with
Polyhedral Uncertainty Set

4.1. Motivation

In optimization under uncertainty—in general—uncertain events and variables must be mod-
eled and selected cautiously as their influence might become too powerful. In the worst-case
optimization framework provided by QIPs the modeler must ensure that the modeled worst case
is not undesirable or too conservative, i.e. the price of robustness must be appropriate [BS04].
For example consider the optimization task of finding an optimal machine scheduling. Expand-
ing this problem by considering the possibility of failing machines yields a robust optimization
problem. However, in order to obtain a reasonable instance, the modeler must cautiously spec-
ify the number (or set) of machines that may fail: allowing the failure of all machines at the
same time would render any robust optimization pointless as in the worst case all machines are
broken all the time. In classic robust optimization the modeler therefore has the option to spec-
ify the considered uncertainty set. Common are polyhedral uncertainty sets [BB09], ellipsoidal
uncertainty sets [BTN99] or budgeted uncertainty sets [BS04]. Further, one can describe an un-
certainty set by general norms [BPS04]. Another approach is to define a finite set of anticpated
scenarios [MVZ95, RW91] e.g. given through historical data. For QIPs, the use of a finite set
of scenarios is easy to apply and one approach has been demonstrated in [ELO14]. Thus, as
for the mentioned machine scheduling, limiting the number of non-functional machines can be
dealt with by introducing explicit scenarios, the universal player can pick from. This, however,
either requires the existence of historical data in order to support the selected scenarios or the
scenario set consists of more generic scenarios that can be described by (linear) constraints, e.g.
if only scenarios with a maximum of two simultaneous machine failures are considered. Thus,
having the ability to restrict the universal variables to be within their own polyhedral set rather
than simply using a cubic uncertainty set—given by variable bounds—can be advantageous: it
simplifies the modeling itself and in some generic cases bypasses the need of building or selecting
scenarios explicitly. We therefore introduced a second linear constraint system A"z < b" that
restricts the universal variables to a polytope resulting in the QIP with polyhedral uncertainty
set (also see [HET16]).
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4.2. Problem Statement QIPPY

Polyhedral uncertainty sets are easily applicable, straightforward usable and therefore frequently
examined in robust optimization [BTN99, BB09]. Thus far, QIPs only allow a cubic uncertainty
set, requiring the modeler to carefully implement the uncertainty. We extend the idea of quanti-
fied variables by restricting the universal variables to a polytope, described through a universal
constraint system, given by A%z < b” with AY € Q™*" and b” € Q™ for my € Ng. We restrict
the universal variables in such way that their range only depends on other universal variables.
In other words, we assume that existential variables have no influence on the domain of universal

variables. We therefore demand
Ay = Vie{l,...,my}, ke13, (4.1)

i.e. each entry of AY belonging to an existential variable is zero. The case, where Restriction
(4.1) is omitted is discussed in Chapter 5. We use the same notation as for standard QIPs (see
Section 2.1).

Definition 4.2.1 (QIP with Polyhedral Uncertainty Set (QIPYY)).

Let A7 € Qma*™ and b@ € Q™2 for mg € N. Let £ and Q be given as in Section 2.1 with
Z={1,...,n} and QW =QW =3. Let c € Q" be the vector of objective coefficients, for which
¢ denotes the vector of coefficients belonging to variable block B;. Let my € N, b¥ € Q™ and
AY € Q™" complying with Restriction (4.1) and we define D = {x € L | A%z <b"} # 0. The
term Q ox € D with the component wise binding operator o denotes the quantification sequence
QWzM e DM QP22 € DA (M) ... QW) e DB (M), . 2B such that every quan-
tifier QW binds the variables 9 of block i ranging in their domain DO (M) ... z0=D) with

£ Jifie&

D(z)(‘%(l)u cee 7‘%(1.71)) = . . .
e £ Ip= G0, 70Dy 0D 2Oy eDy | ific A

We call
z = min (c(l)x(l) + max (c(g)xm + min (C(S)x(g) + ... min c(ﬁ)x(ﬁ)))>
2+ ep) +(eD@) 23 ep(3) 2B eD(®)
st.QoxeD: Az <b. (4.2)

a QIP with polyhedral uncertainty set (QIP"Y) given by the tuple (A%, A¥,b7,b%, ¢, L, Q).

In case of a standard QIP any variable x; (existential or universal) must be integer and within
its bounds [l;, u;], i.e. x; € L;, in order to constitute a valid variable assignment. In a QIPPU,
however, the assignment options for universal variables also depend on the assignment of previous
(universal) variables: when assigning a value to the universal variable z; there must exist a series
of future assignments for ;4 1, ..., x, such that the resulting vector z fulfills A"z < b". In other

words: such an assignment must not make it impossible to satisfy the system A%z < bY.
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Definition 4.2.2 (Legal Variable Assignment for QIPTY).

A legal assignment of an existential variable x; demands this variable to be integer and within
its bounds [l;,u;]. The legal assignment of a universal variable additionally depends on the
(legal) assignment of previous variables x1, ..., x;—1, i.e. when assigning a value to the universal

variable x; there must exist a series of legal moves Tiy1,...,xy such that the resulting vector x

fulfills A%z < bY.

The legal domain D® (:Z‘(l), ceey i‘(i_l)) of a universal variable block z(V can be determined by
Fourier-Motzkin elimination (extended to integers) [Wil76] of the domain D and fixating the pre-
vious variable assignments Z1,...,Z;_1, or by explicitly computing the set D(i)(:i'(l), ces ,i'(i_l))
by checking the feasibility of |[,(i)\ linear constraint systems.

In Definition 4.2.1 we demand D # (), i.e. we demand the existence of at least one fixation
of universal variables zy € Ly that fulfills the universal constraint system. This is equal to
demanding a non-empty uncertainty set, which is a common condition in robust optimization.
With D # () the universal player always has a strategy to fulfill AYz < b”. Therefore, one does
not have to deal with plays (completely assigned vectors & € £) with A7% £ b7 and A"Z £ b”
as such a play cannot be optimal. Furthermore, if D = () the first universally quantified variable
in the quantification sequence has an empty variable domain. This results in a vacuous truth
[Qui54, BFT05] and hence the evaluation of Condition (4.2) is independent of the subsequent

logical statement.

Definition 4.2.3 (Vacuous Truth).

Let P(z) be some logical statement which depends on x. The statement
Vee A: P(x)
is vacuously true if A = ().

Intuitively, the truth of such a statement might come as a surprise. However, as Vo € A: P(x)

is equivalent to Vz : (x € A = P(z)) the evaluation in case of A = () is trivial.
Remark 4.2.4. The statement 3x € A: P(z) is vacuously false if A = 0.

In order to understand the impact in a QIP setting, a simple game argument can help to
understand the meaning of such a vacuous statement: Let £; = () for a universal variable x;.
Hence, at some place in the winning condition it is asked whether Va; € 00 : P(z;) which is
vacuously true, resulting in a direct win for the existential player. Similarly, if an existential
variable domain is empty a vacuously false statement would appear in the winning condition
and hence, if this point is reached in the game the existential player loses. This can be restated

to “If a player has no legal move she loses immediately”.

Example 4.2.5. Let there be three binary variables, £ = {0,1}® and Q = (3,¥,3). Let c =0

and let the two constraint systems be given by a single universal constraint ro < —1 and a
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single existential constraint 1 + xo + x3 > 4. Obviously D = () since Pxo € {0,1} : x9 < —1.
Furthermore, fx € £ : Az <b>. Thus, the winning condition states

dzq €{0,1} Voo € 0 Ju3€{0,1}: o1+ 2+ 23 > 4.

With Definition 4.2.3 the statement Yy € () : F(y) is true for any logical statement F. There-
fore, the presented instance is feasible, resulting in a win for the existential player, even though
he never had any chance fulfilling his constraint. This is due to the asymmelry arising when
connecting the (local) universal variable domain to the possible fulfillment of the universal con-
straint system, whereas the existential variable domain remains independent of the fulfillment of
the existential constraint system. This asymmetry can be prevented either by prohibiting D = ()
or by restricting the existential variable domain to variable assignments that do not make the
existential system unfulfillable. This however results in a massive overhead and is not neces-
sary for QIPYY, as having the notion of an uncertainty set in mind, demanding D = () is the

straightforward decision.

Remark 4.2.6 (Connection between QIPTV and QII).

The left-hand side system Bx < d of a QII (see Definition 2.2.1) can be interpreted as a con-
straint system for the universal player. If all entries corresponding to an existential variable are
zero the QII is similar to the satisfiabilty QIPTY: it is the primary goal of the universal player

to fulfill Bx < d and if she does not manage to do so the existential player wins.

A QIPPY can also be represented by a game tree as given in Definition 2.1.10 on page 11.
However, one has to adapt the term strategy as only legal universal variable assignments are of

interest.

Definition 4.2.7 (Existential Strategy for QIPTY).

A strategy for a QIPYY (for the assignment of existential variables) S = (V', E',€') is a subtree
of the game tree G = (V,E,e) of a QIPPY. V' contains the unique root node r € V3, each node
vy € V' N V3 has exactly one child in S, and each node vy € V' N V& has all the children that
represent legal variable assignments.

PPU. which is a strategy for

Similar to QIPs we now can define a winning strategy for a QI
the QIPPY where all leaves represent a vector z such that A7z < b3. With Definition 4.2.7 and
D # (), also A"z < b” is fulfilled at such a leaf. Hence, for any strategy as defined in Definition
4.2.7, we can reuse the minimax value presented in Definition 2.1.15. However, in order to
enable a minimax search on the entire game tree, one slightly has to adapt the minimax value

for QIPPVY:

Definition 4.2.8 (Minimax Value for QIPYY).
Let S = (V',E',¢') be a subtree of the game tree G = (V, E,e) of a QIPPY, with either S = G
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or S is a strategy. For any node v € V' the minimax value under polyhedral uncertainty with

respect to S is recursively defined by

—00 ,ifv eV and A%z, £ b

¢z, Lifv e Vg and A3z, < b3 and A%z, < b7
minimaxjsaU(v) = 4 +o0 ,ifv e Vy and APz, £ b7 and A%z, < b7

min{minimaz3; (') | (v,v') € E'} , ifv € V3

max{minimazp; (V') | (v,v') € B’} ifve Vy.

The minimazx value under polyhedral uncertainty with respect to S of the root v € V' defines
the value of S. For any node v € V minimazpy(v) = minimaxz$%y;(v) is the outcome if the

remaining variables are assigned optimally starting from v.

For a leaf v € Vi, with A3z, £ b and A"z, £ b” we define minimazpy(v) = —oo, i.e. we
mark this leaf as a loss for the universal player: as described above with D # () there always
exists a universal strategy in the game tree in order to ensure A”z < b and reaching such a leaf
can only be accomplished by an illegal universal variable assignment. Hence, regardless of the
existential system, the universal player loses this game. In order to evaluate a winning strategy
of a QIPPY it suffices to have the basic minimax value presented in Definition 2.1.15 in mind, as
the fulfillment of the universal constraint system is ensured for any strategy in Definition 4.2.7.
Similar to QIP, a winning strategy is called optimal if the minimax value at its root is less than
or equal to the minimax values of all other winning strategies and the vector I representing
the path which obeys the minimax rule is again referred to as the principal variation (PV) (see
Definition 2.1.17).

4.3. Reduction QIPPY <, QIP

Obviously, any given QIP can be interpreted as a QIPPY by adding a trivial constraint system
yielding D = Ly. Thus, PSPACE-hardness of the QIPYU is immediately given. The question
arises, whether by adding the polyhedral uncertainty set—whereby universal variable assign-
ments become dependent on earlier universal decisions in the game—a more complex problem
was created (in the sense of complexity theory). We show that the altered uncertainty set has
no effect on the complexity and QIPTY remains PSPACE-complete. We provide a polynomial-
time reduction function making it possible to transform any given QIPFY into a QIP and hence
proving the PSPACE-completeness of QIPYY. This is done by creating a collection of additional
variables and constraints which have the impact that in the arising QIP the universal player
may violate the encoded constraints (given by A%z < b"), at the price of basically abandoning
the game: after such an illegal move the existential player can force a win regardless of what
the universal player does afterwards, and the existential player receives a large payoft.

By explicitly providing a polynomial-time reduction function, we do not solely want to verify
PSPACE-completeness but further grasp the tight entanglement between QIP and QIPFY. Ad-
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ditionally it provides a (potentially ineffective) solution approach and further a deterministic
equivalent program can be computed much more easily if a corresponding QIP is at hand. We
also do not want to ignore that other arguments exist in order to classify QIPPY with regard

to its computational complexity. We briefly present two of them. First, the QIPFU

-game can
directly be modeled by an alternating Turing machine [CKS81] working in polynomial time.
Since AP = PSPACE [AB09] the claim holds. Second, as a QIPPY can be represented by a game
tree we can solve it with the minimax algorithm or the alpha-beta algorithm. Both algorithms
do not require the entire game tree in the memory but only the current path. Hence, despite
the exponential size of the game tree, it can be solved using only polynomial space [KM75].

The reduction aims at transferring the additional condition A%z < b" (from the QIPTY) out
of the domain of the variables into the system of constraints of the arising QIP. Note that we
cannot simply add A¥z < b" as this would not restrict the universal player but tighten the
conditions the existential player has to meet. In particular, this would give the universal player
an easy way to win by selecting zy € Ly that does not fulfill A¥z < b". Instead, the fulfillment
of the universal constraints is not enforced a priori. We introduce auxiliary constraints and
variables that ensure that a violation of A%z < b¥ is detected, with the effect that the existential
player’s constraints are relaxed and the payoff is altered to the detriment of the universal player,
i.e. in addition to making all constraints trivially fulfilled, the universal player is penalized via
the objective function. This can be rephrased in the terms of two-person games: “the existential
player wins by default with huge payoff if the universal player cheats”.

In order to do this each row of the universal constraint system is checked. Let us consider the

k-th row, k € {1,...,my}, of the system A"z < b", which is given by

SOAL @i < b (4.3)
1€T
It is solely the universal player’s task to meet this condition as the existential player cannot

influence the left-hand side (due to Condition (4.1)). In case of a violation of row k it is

SALwi>bl = Y Al w >bl+e (4.4)
i€T i€l
for some €, > 0. To select the parameter €, we need to find the smallest possible gap between
the sum of integer multiples of the coefficients A};i and b}. It is sufficient to underestimate
this smallest possible gap in order to ensure Equivalence (4.4). This can be achieved by us-
ing the reciprocal of the (lowest) common multiplier of the denominators—the lowest common

denominator (LCD)—of the universal constraint’s coefficients.

Lemma 4.3.1. Let a,b,a,8 € Z, o, 8 > 0. The smallest positive integer combination of the
rational numbers ¢ and % can be underestimated by the reciprocal of the lowest common multiple
(LCM) of o and j3, i.e.

min {

a b a b 1
— —y| : Z and |— — 0y > ————
crt g mv ez and [Go el 0> o
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Proof. Since af > LCM («, ) there exists ¢ € Z with ¢ = [/C']\(jliﬁxﬁ) In particular, ¢ is a factor
of both o and 5. Therefore,

o, b, _ afetbay | Fatley | aetby

a B af oB LCM(a, )

C

with &, 8 € Z. Hence, In order to obtain an underestimate of the smallest positive value of the
above term it suffices to underestimate the smallest positive value of the numerator az + by.
This numerator is an integer combination of integers and thus @z +by > 1 applies for its smallest
positive value. O

Note that in Lemma 4.3.1 it is LCM (c, 8) = LOD(%, %). We henceforth use the LCD, as
the denominators are not given explicitly. Let RFCP = (LC’D(bZ,AZJ,...,A\,Zm))*l be the
reciprocal of the LCD of b} and the coefficients AZ’ .- Then

iy

STAL; x> b+ RECP (4.5)
i€
is fulfilled if and only if the original Constraint (4.3) is not satisfied by the assignment of the
universal variables. Note that RﬁCD = 1 if all entries of row k are integer. In order to detect a
violation of constraint k it thus suffices to check, whether Condition (4.5) is fulfilled. For this
purpose, we introduce a new binary existential variable y;, € {0,1}, which is forced to be 0 if

constraint k is fulfilled, and can be set to 1, if the constraint is violated, i.e.

=0 ,ifZIAZ’i-xigbZ

i€ (4.6)
€{0,1} ,if ZIA\,ZZ:I:, > by

1€

In the second case y, is set to 1 in optimal play, as the existential player is interested in pointing

out misconduct by the universal player. In order to establish Property (4.6) of yj the constraint

DAL @i = L+ (=L + b + BEP) -y (4.7)
€L
is introduced, with
Ly = glelg (AZ’*x> = Z AZ,Z- Su; 4 Z AZJ iy (4.8)
€L 1€L
AY ;<0 A} ;>0

which is the smallest possible value of the left-hand side of Constraint (4.3) with respect to £. Let
us take a closer look at (4.7). If y,, = 0 the constraint is always fulfilled, since ;.7 szi -x; > Lg
is trivially fulfilled due to the definition of L;. On the other hand, setting yr = 1 in (4.7)
results in (4.5). Hence, if and only if the original constraint is violated yj also can take the
value 1. However, if the original constraint is satisfied y; has to be set to 0. Thus, we embedded

the variable yj in a new constraint such that Property (4.6) is fulfilled. As one must check the
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fulfillment of each of the rows of the universal system my many of such binary indicator variables
are needed. Furthermore, the auxiliary existential variable p € {0,1} is introduced, which has

the ability to indicate the non-compliance of any row of the universal system, i.e.

=0 ,if A%z < b7
(4.9)
€{0,1} ,if A%z £b".
Using the introduced ¥ variables this property can easily be embedded via the constraint
my
P<D k- (4.10)
k=1

Hence, if p = 1 the system A"z < b" is violated in at least one constraint and thus the existential
player should win by default. Thus, in this case it must be ensured, that the constraint system
of the existential player is fulfilled in any case: if the universal player did not abide by her
rules the existential player should not be punished for a violation of his system. Therefore, the

existential constraint system is modified as follows
APz — Mp < b, (4.11)

This corresponds to the standard Big-M modeling technique often used in mixed integer linear
programming (see e.g. [CRT90, ST08]), in the sense that if M is “large enough” constraint (4.11)
is trivially fulfilled if p = 1. This is ensured if the parameter vector M € Q™3 fulfills

Mj, > max A7 ,x — b7 (4.12)
€L ’
= > AL+ > AR w0 (4.13)
i€ 1€L
AR <0 A}, >0
for each existential constraint k& € {1,...,m3}. Hence, by setting p = 1 (which is only possible

if the universal player did not comply with her constraint system) the existential player does no
longer need to fulfill his original constraint system. The global indicator p is now further used
to punish the universal player by massively reducing the payoff. Since the universal player is
trying to maximize the objective function we can penalize a violation of universal constraints by
subtracting this new variable p with a sufficiently large coefficient M in the innermost term of
the objective function. This final variable block is an existential block and thus the existential

player sets this variable to 1 if possible. For M we choose

M:Zci'(li_ui)+Zci'<ui_li)+1 (4.14)
€L €L
;<0 c; >0
with

maxc' 'z — M < minc' . (4.15)
zel zeL
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Therefore, when subtracting this value the objective function definitely yields a better value
for the existential player than he could have achieved without it. However, since D # (), the
universal player can always prevent this, by meeting her system of equations and thus forcing p

to be zero. The presented variables and constraints are utilized in the following QIP.

Definition 4.3.2 (Reduced QIPY).

Let P = (A3, A", 07,b",¢,L£,Q) be a QIPPU. Let L € Q™ be a vector with entries according
to Equation (4.8). Let RYCP € Q™ be a vector where each entry R,%CD, Ee{l,...,my}, is
positive and less than or equal to the reciprocal of the lowest common denominator of the entries
of A\,;* and bY. Let M and M be given as in Conditions (4.14) and (4.13), respectively. Then
the reduction function fFY(P) maps the QIPY P to the following QIP:

min AWz 4+ max | e@z® + min oot min (c(ﬁ)x(ﬁ) — Mp)
+Mer@) @ er® =B er®) 2B eL®) yefo,13mv,
pe{0,1}

st.Qox e LIye{0,1}"™ Ipe {0,1}:

APz — Mp < b’ (4.16)

— A"z — (L —b" — RLCP)yy < L (4.17)
My

pP—> Y <0 (4.18)
k=1

We show that fF'V indeed constitutes a polynomial-time reduction function.
Lemma 4.3.3. Let P = (A3, AV, b°,b",¢,L,Q) be a QIPPY. Then fPY(P) is a standard QIP.

Proof. Let fPY(P) = (A,b,¢,L,Q). Ttis £ = £ x {0,1}™+! and thus each variable is bound by
integer lower and upper bound and must be integer, i.e. £ is a cubical integer lattice. Further, the
first and final quantifier is existential, as Q = (Q, 3™ *1). The objective vector é = (¢, 0™¥, — M),

as well as the constraint system Az < b, given through (4.16)—(4.18), have all rational entries. [J

First, we show that fFUV (P) can be computed in polynomial time with respect to the size of

the input, which is given through n, m3 and my.

Theorem 4.3.4. Let P = (A3, AV, 03,07, ¢,L,Q) be a QIP'Y. Then the QIP fU(P) as given

in Definition 4.3.2 can be computed in polynomial time.

Proof. Let fPY(P) = (A,b,¢,L£,Q). For ¢ = (¢,0™%,—M) the entry M can be calculated
by using the upper and lower bound given in £ appropriately, depending on the sign of the
corresponding entries in ¢ and hence requires O(n) operations (see Condition (4.14)). The
computation of L requires O(my - n) operations (see Condition (4.8)). Similarly, M can be
computed in O(my-n) (see Condition (4.13)). As the entries of R¥“P only need to underestimate

the lowest common denominator of the corresponding row’s entries it suffices to multiply the
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denominators of the non-zero entries and take its reciprocal. Hence, a valid assignment of
RYCD can be computed in O(my - n). Therefore, each entry of A, b, and ¢ can be computed in
polynomial time. Further, there are my + 1 auxiliary binary variables y and p and hence the
resulting QIP has n 4+ my + 1 variables. The number of constraints is m3 4+ my + 1, and A has

O((n + my) - (m3 + my)) entries. O

In order to constitute a reduction function we must show that the QIPYY P and the trans-
formed QIP fFV(P) are closely connected. For further investigations the variable vector of the
transformed problem fPY(P) is denoted by z = (x,y,p) € £ x {0,1}™ x {0,1}. The following

Lemma 4.3.5 shows that a solution for fF'V(P) always contains a solution for P.
Lemma 4.3.5. Any winning strategy of f*V(P) contains a winning strategy for P as a subgraph.

Proof. Obviously the game tree G = (V, E, e) of P is a subgraph of the game tree G = (V, E, €)
of fPY(P): considering only the nodes until level n of G yields G. Assume S = (V/, E' &) is
a winning strategy of fFV(P) in G, i.e., in each leaf the system of Constraints (4.16)—(4.18) is
fulfilled. Note that this arborescence has a depth of n +my + 1. We consider the arborescence
S = (V' E'e)in G with V! C V', E' C E" and ¢ ((v,w)) = &((v,w)) for each (v,w) € E'.
V' contains no node of a level larger than n and E’ contains no edges leading to such nodes.
Further, edges describing illegal assignments (see Definition 4.2.2) in terms of the QIPTY are
deleted as well as their entire underlying subtrees. This designed arborescence S describes a

strategy for P, because
e the depth is n and thus for each variable a decision level exists.
e nodes of universal variables have only legal assignment options leading out.
e the remaining strategy properties are adopted from S.

This strategy S is also a winning strategy for P, since each path from the root to a leaf represents
a vector z such that A7z < b?: Let us consider such a path z1,...,z, in S and the unique®
associated overlying path z = (21,...,Zn,y1,...,Ymy,p) in S. As A"z < b" holds, since illegal
universal assignments were deleted, and due to the fulfillment of the Constraints (4.16)—(4.18)
we conclude p = 0 and y; = 0 for all ¢ € {1,...,my} since S is a winning strategy. Thus,
because of Constraint (4.16), also A%z < b3 holds and hence S is a winning strategy for the
QIPFU P, O

Note that the first-stage solution of the transformed QIP is identical® to the first-stage solution
of such a constructed QIPYV. The following two theorems prove that f'U indeed is a reduction.
In particular, we show that P is feasible with optimal value z,,; if and only if fPU(P) is feasible

with the same optimal value.

Theorem 4.3.6. Let the QIPPY P = (A7, A7, b7,b", ¢, £, Q) have an optimal winning strategy
with PV % and optimal value ¢c"Z. Then the transformed QIP fPU(P) has an optimal winning

8The path is unique, because all nodes with level > n belong to existential variables and thus have only one
successor in a strategy.

9except for auxiliary variable p in single-stage instances.
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strateqy with PV zZ = (Z,9,p) with §; = 0 for i = 1,...,my and p = 0 with the same optimal

value.

Proof. Let fPY(P) = (A,b,¢,L£,Q). As outlined in the proof of Lemma 4.3.5 the tree G =
(V,E,e) of P is a subgraph of the game tree G = (V, E,é) of fFU(P). In particular, G can
be created by adding a perfect binary tree of depth my + 1 to each leaf G representing the
assignment of the auxiliary binary variables y and p. First we show that the optimal winning
strategy S = (V/, E',¢') of P can easily be expanded into a winning strategy for fFV(P). Each
leaf v € V'’ of S has the property Az, < b> and A"z, < b”. Hence, by choosing y = 0 and
p = 0in fPY(P) results in z, = (2,,0,...,0,0) with Az, < b. Further, a winning strategy
in G must take all possible universal variable assignments from £ into account, not only the
legal ones (cf. Definition 2.1.13 and Definition 4.2.7). Consider any universal decision node
of the optimal winning strategy for P with less successors than elements in the corresponding
variable domain £;. Let Z; € L; be a variable assignment not considered in the strategy of P,
i.e. setting this universal variable to Z; at this node is not a legal variable assignment according
to Definition 4.2.2. Starting from this node, the winning strategy of P can be extended into a

winning strategy for fPU(P) as follows:
a) at existential nodes in V' add an arbitrary successor.
b) at universal nodes in V' add all successors.

¢) at nodes in V \ V select one constraint of A%z < b that is not met (according to the
assignments along the given path) and set the corresponding y; variable to 1, the other

variables of y to 0 and finally set p = 1.

Each leaf of such an additional substrategy fulfills Az < b as with p = 1 and at least one
yr = 1 the Constraints (4.16) and (4.18) are obviously fulfilled. As the subtree arises from an
illegal variable assignment, the assignments of the universal variables along the path cannot
fulfill A"z < b" and hence there exists at least one constraint that is not fulfilled. For such
a constraint the corresponding yj variable was set to 1 and thus the k-th Constraint of (4.17)
is fulfilled. As the remaining y variables were set to 0 the entire constraint system is fulfilled.
Using this procedure a strategy for the QIP fP'V(P) arises. It also constitutes a winning strategy
for fPU(P) since for each leaf v and its corresponding variable assignment z, = (z,y,p) it is
Az, < b and further

T = clx , if there is a leaf v in S with z, =«
c' z
< mingesc'x , if x is not represented in S, since A¥z £ b¥.
Thus, with Theorem 2.1.16, the value of the constructed winning strategy is equal to ¢'# and

the PV is z = (%,0,...,0,0).

We now must show, that this constructed winning strategy for fF'V(P) indeed is the optimal
winning strategy. Let 2 = (&, 3, p) be the PV of the optimal winning strategy of the transformed
problem and thus ¢ 2 — Mp < ¢'z. If # ¢ D 2 would also fulfill p = 1, since at least one row of

the system A"# < b" is violated. However, because of Condition (4.15) the resulting value of the
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objective function is less than any other solution obeying AY# < b". This is a contradiction to
the minimax optimality of Z since the universal player can avoid this by assigning her variables
such that AYZ < b holds. Therefore, # € D and A%# < b" and hence § = 0 and p = 0. With
T T 5

z. O

Lemma 4.3.5 and the optimality of Z for P it is ¢'2 > ¢'# and therefore ¢'2 = ¢

Theorem 4.3.7. If a QIPYY P has no winning strategy, then fPY(P) is also infeasible.

Proof. The claim follows immediately with Lemma 4.3.5. O

Corollary 4.3.8. QIP"Y is in PSPACE. Since the QIP with cubical uncertainty set is a special
case of the QIPPY it is even PSPACE-complete.

4.4. Examples

4.4.1. Weighted Dynamic Graph Reliability

We consider a simple graph game where one player has to traverse a given graph while the
opponent is allowed to erase some edges. However, the opponent is not allowed to erase edges
arbitrarily but must obey some rules. This problem is closely related to the dynamic graph
reliability problem [Pap85] with the difference that edges have weights and an objective function
should be minimized. Further, edges are erased depending on the point in time instead of the
location of the player. We investigate the problem examplarily for the graph given in Figure

4.1, present its QIPTV formulation and apply the reduction function presented in Section 4.3.
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Figure 4.1.: Directed acyclic weighted graph with starting node 0 and target node 7.

The graph consists of eight nodes and the starting node is labeled with 0 and the target node
with 7. The existential player, starting at node 0, wants to reach node 7 in the cheapest possible
way (in terms of edge weights), whereas the universal player can delete certain edges in order
to either prevent the existential player from reaching node 7, or to force him on an expensive
path. Hence, the following questions arise: Is there a strategy for the existential player which
allows him to reach the target node no matter how the opponent acts? And if there are multiple:

which one is the winning strategy with the cheapest worst-case path to the target node?
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Let G = (V, E,c) describe the graph given in Figure 4.1 with V being the set of vertices, F
the set of edges and ¢ : E — Q a function assigning weights to each edge. Let z;; € {0,1}
be variables indicating whether the existential player uses edge (i,j) € E or not. For each
edge (i,7) € E with i # 0 let d;; € {0,1} indicate whether the universal player deleted this
edge or not. The existential player has the first move and can choose between node 1, 2 or 3.
Subsequently, the universal player can delete certain edges. Both players take turns, whereat
the existential player selects one edge per move and the universal player is allowed to deactivate
upcoming edges. The entire turn order is given by the following quantifier string, omitting the

binary variable domains for better readability:

dxo,1, 02,703 Vdi4,d24,d25,do6,d3e 3214,724,T25, 726,736

Vdayr,das,dsz,dse,de7 347,045,757, 756, Te,7

The minimax objective function adds up the weights of the edges selected by the existential
player. The variables active in each min/max block are given by the order and are abbreviated

by their corresponding variable block B(:

. 2 3 . 7 2 5
Iél(llr)l <3$0,1 + zo2 + §$0,3 + %g}){ <%1<131>1 <3331,4 + 5562,4 + 5952,5 + T2 + 6$3,6

. 3 2 4
st i (B B 0))

The existential player’s system of equations A7z < b7 is given as follows:

> @y =1 (4.19)

(0,5)€E

> zig=1 (4.20)
(i,7)eE

Soomin= Y, iy, Vke{l,...,6} (4.21)
(i.k)EE (kj)EE
zij+dij <1 V(i,j) € E,i#0 (4.22)

Constraints (4.19)—(4.21) ensure the flow from node 0 to 7 and Constraint (4.22) forbids the use
of edges that have been deleted by the universal player. The universal player on the other hand
is restricted by her system A"z < b" as follows:

. 3 .
Z dm‘ S 3, Z C(Z,j) . di,j > 5, Z C(Z,]) : dm’ S 2 (4.23)
(i.J)EE (i.4)eE (i,5)€E
i#0 i#£0 i#£0
This system states that the universal player is allowed to delete at most 3 edges and the sum of
the weights of the deleted edges must be between 1.5 and 2. Note that we did not convert either
system into a “less or equal” system in order to make their actual use more clear. This, however,

is necessary in order to use the transformation described in Section 4.3: each of the Equations
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(4.19), (4.20) and (4.21) must be split up into two <-constraints and the >-Constraint (4.23)
must also be flipped. This is an important step in order to obtain the correct values for M and
L using Conditions (4.13) and (4.8), respectively. The reduced QIP is displayed below. Again,
for convenience, the repeating variable domains {0, 1} are omitted in the quantifier string and

in the objective we abbreviate the original variables active by their block B(®.

. (2 3 (7 1 2 5
min <3960,1 TTo2 T 503+ max (Ifrgl(lgr)l <39€1,4 T T2t 3725 + 26 + 5736

. 3 2 4
R )

s.t. 3201, 70,2, 703 Vd14,d24,do5,d26,d36 3T1,4,T24, 725,726,236

Vdar,das,dsz,dse,de7 347,045,757, 756,267, Y1, Y2, Y3, P

- > wo-p<-1, > w;—2p<1 (4.24)
(0.4)eE (0.5)eE
- Y wmg—p<-1, Y mmz—2p<l1 (4.25)
(&,7)eE (i,7)€E
> wign— Y, ak;—deg (k)-p<0 Vke{l,...,6} (4.26)
(i,k)EE (k,j)eEE
. A +
S oaki— > wip—degt (k) p<0 Vke{l,...,6} (4.27)
(k,j)eE (i,k)eE
Tij+dij—p<1 V(i,j) €E,i#0 (4.28)
4y1 — Z di,j S 0 (4.29)
(i,))eE
i#0
. 65
Z c(i,j) - dij+9.5y2 < — (4.30)
< 6
(3,7)€EE
i#0
. 13
= > i) dig+Hus <0 (4.31)
(i,))eE
i#0
3
p—Y y <0 (4.32)
k=1

Obviously, the resulting QIP is less comprehensibly than simply stating the two constraint
systems A%z < b and A"z < b" separately. Constraints (4.24)—(4.28) describe the transformed
existential system (cf. Constraint (4.16)), Constraints (4.29)—-(4.31) are the embedded universal
constraints (cf. Constraint (4.17)) and Constraint (4.32) is similar to Constraint (4.18). In
Constraints (4.26) and (4.27) the coefficients of p are the number of incoming edges deg(k)™ =
{(i,7) € E'| j = k}| and the number of outgoing edges of node k deg(k)™ = |{(i,j) € E | i = k}|,
respectively. These values arise when computing the corresponding values of M and guarantee

the trivial fulfillment for these rows if p = 1. In Constraint (4.30) the coefficients result from
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Ly = —%5, RECD = L and by = —%. This standard QIP is easily solved by our solver. It turns
out that there is a winning strategy for the existential player. The objective value of the PV
is % and the optimal first-stage decision is moving from the starting node 0 to node 2. The
(perfect) universal player then deletes the edge between 2 and 4. The existential player is forced
to move to node 5: directly moving to node 6 would result in a loss, as deleting edge (6, 7) then
perfectly fits into the universal player’s budget. After that edge (5,7) is deleted and finally the

target node is reached by taking the detour via node 6.

4.4.2. Resilient Booster Stations with QIPPY

Consider the example given in Subsection 2.3.2 where a booster station is made more resilient
by adding additional pumps. Among other things, the system must be able to cope with any
load scenario, even if one of the initial pumps is malfunctioning. Both the selected load scenarios
s € S as well as the selected broken pump b € [ are modeled via integer universal variables.
Those universal decisions are transformed into existential binary indicator variables ¢ and [,
via Constraints (2.16)—(2.19), i.e.

Zaigl, Ziai:s, Zﬁpgl and Zpﬂp:b.

1€S 1€S pel pel

Even just for modeling reasons it would be advantageous if this workaround was not necessary
and instead o and 8 could be directly used as the universal variables indicating the selected load
scenario and the broken pump. This, however, is not straightforward possible with regular QIP,
as without the condition 3 ,; 3, < 1 all pumps would fail simultaneously in the worst case,
which does not correspond to the problem description. With the QIPPY framework, however,
the universal constraint system can be utilized: by adding the two constraints > ,c; 8, < 1 and
> ies 0i < 1 to the system A"z < bY, the universal player has to fulfill them. Consequently, the
model presented in Subsection 2.3.2 could be restated as QIPFY by

1. leaving out the integer universal variables s and b,
2. converting ¢ and [ into universal variables of the second and fourth stage, respectively,
3. removing the Constraints (2.17) and (2.19),

4. marking the Constraints (2.16) and (2.18) as universal constraints.

Therefore, less constraints and fewer variables are required in order to grasp the problem as a
QIPPY. An additional advantage of the QIPV is its better adaptability, e.g. if the requirements
for a special booster station make it necessary to protect against the failure of two pumps
simultaneously, the universal constraint system could simply be altered. This, in contrast,
would require massive changes in the presented QIP as a scenario number would have to be

transferred into a specific pump combination rather than a single pump.
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4.4.3. Robust Runway Scheduling with Restricted Universal Options

In the robust runway scheduling problem presented in Subsection 2.3.1 the universal variables
define the set of anticipated arrival time windows of the airplanes. If they are only restricted by
their bounds, it is difficult to create meaningful scenarios: for example one might want to allow
the time windows for a few airplanes to consist of only one time slot, but this should certainly
not be the case for all airplanes. One conceivable demand for the time windows could be that
they have a length of 2 on average (i.e. consist of three time slots). Therefore, the universal
variables d;, which specify this duration for each airplane i € A, should not only obey their
bounds, but also should fulfill the following condition:
1

T Z d; >2 (4.33)
icA
Constraint (4.33) can either be added to a universal constraint system A"z < b" resulting in a
QIPPY. Or the rules regarding the universal variables can be enforced implicitly as shown in
Definition 4.3.2: In a final existential block the fulfillment of such a constraint is checked and if a
violation is detected the remaining constraint system is relaxed and the objective value is reduced
drastically. This has the effect that a violation provoked by the assignment of universal variables
results in a very good objective value (regarding the existential objective of minimization) and is
thus unfavorable with respect to the universal maximization objective. To achieve this, we first
rewrite Condition (4.33) to — > ;cadi < —2|A|. Then the constraint is in the desired <-form

RLYCD — 1 for this constraint, as each coefficient is integer. Let the domain of the

and further
time window lengths be given by D = {d € NEAl |Vie A: a; <d; <b;}, with a;,b; € Ny and
a; < b;. Let Mp =) ;c 4 b;. Then the lowest value of the left-hand side is —Mp. Note that the
anticipated lengths in D should not immediately contradict Restriction (4.33), i.e. it should be

Mp > 2|A|. We can add constraint

> di+ (Mp —2|A| + 1)p < Mp (4.34)

€A
to the existential constraint system and the checking variable p € {0,1} to the final existential
variable block. For p = 0 Constraint (4.34) is always fulfilled. On the other hand, p can be
set to 1 only if ﬁ > iead; < 2. Further, p is added to the objective function with coefficient
M, which highly depends on the selected fixing costs (see Equation (4.14) and Objective (2.3)).
Further, it is necessary to relax the existential constraint system, if the universal variables do
not fulfill Constraint (4.33). But note that it is not necessary to relax each of the Constraints
(2.4)—(2.8). It suffices to relax Constraint (2.7) for each time slot j € S in the following way:
'ZA Yi,j < b+ |Alp. This way, there always exists a final schedule y if p can be set to 1, because
ic

all airplanes can simply be planned in the same slot if necessary.

In Subsection 7.3.1 we present the results of computational experiments on robust runway

PPU

scheduling instances and compare the performance of our solver on the QI with its perfor-

mance on the equivalent QIP.
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4.4.4. Multistage Selection Problem
Consider a combinatorial problem of the form
n
min Zcixi st.xe X C{0,1}".
i=1

In this section we examine the selection problem, i.e. X = {x € {0,1}" : > | x; = p}, where p
out of n items must be selected, such that the costs are minimized. We assume that uncertainty
is only present in the objective, and a discrete list of NV € N potential cost vectors is given. A
thorough overview of the two-stage robust selection problem can be found in [CG*18]. The two-
stage robust problem is given by min,cy max.cc cx with C being the set of anticipated scenarios.
We build a robust counterpart, i.e. an equivalent MIP. Therefore, let ¢; ;, € Ng be the cost for
item i € {1,...,n} in scenario k € {1,..., N} and let z; be the variable indicating the selection

of item 7. The robust counterpart is given as follows:

min z (4.35)
s.t. chkajz <z Vke{l,...,N} (4.36)
i=1
Z x;=p (4.37)
i=1
z; € {0,1} Vie{l,...,n} (4.38)

This can be formulated as a QIPTY by introducing universal variables ¢ that indicate whether
cost scenario k is selected. As only one scenario can occur, the universal constraint 3 | g, =1
is used. Therefore, the universal variable domain D established in this chapter is given by
D= {qe {0,1}N | XN q = 1}. A first straightforward attempt to model the objective
function results in the nonlinear expression > 1 ; Z,]fv:l qk (Ci,kiﬁi)- This nonlinearity is avoided

by using the auxiliary variable z, which bundles the costs, and Constraint (4.41), which connects

the selected scenario to the resulting costs using the Big-M method. The entire QIPPY model
for the robust selection problem is given as follows:
min z (4.39)

st. 32 €{0,1}" Vq¢eD 3FzeNg:
ai=p (4.40)
i=1

n
Zc@kazi < z+ Mip(1l—qr) Vke{l,...,N} (4.41)

i=1
If My, is selected appropriately for each potential scenario k (e.g. My > > ¢; 1), all but one of
the Constraints (4.41) are trivially fulfilled for a realization of ¢ € D: if scenario k is selected by

the universal player (¢; = 1) the corresponding costs c, ;, are decisive for the cost calculation.
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The presented selection problem can be extended to a multistage decision problem: In the

first (existential) decision stage a set of items can be selected for fixed costs ¢’

. Then, in a
universal decision stage, a cost scenario is selected and in the subsequent existential decision
stage further items can be selected. Those two stages can be repeated iteratively several times.
If an item is selected, it cannot be selected again in a later stage and the goal remains to select
p items such that the resulting costs are minimized. Let S € N be the number of iterations
and thus S is the number of universal decision stages. The universal domain for each universal
stage s € {1,...,S} is given by Ds = {¢® € {0,1} | =0, ¢} = 1} and ¢* € D; is the vector
indicating the selected scenario. Let again N be the number of scenarios, i.e. at each iteration
one of N scenarios is revealed. The cost of item ¢ in scenario k of iteration s are given by ¢f .
This multistage selection problem under uncertainty can be modeled as a quantified program

with a polyhedral uncertainty set (SELQFY) as follows:
Problem SELQFUY
n S
min Z A2 + Z Zs (4.42)
i=1 s=1
st. 30 € {0,1}* V¢l €Dy Tzt €{0,1}" --- V¢® € Dg Fz¥ € {0,1}" Iz € N§:

n S
Z Z x;=p (4.43)

i=1s=0

S

doap <1 Viec{l,...,n} (4.44)
s=0

> ocprl <z + M(1—qf) Vke{l,...,N},se{1,...,5} (4.45)
=1

The Objective Function (4.42) consists of the expenses from the first stage with invariable costs
and the expenses of subsequent iterations in which the cost for each item depend on the selected
scenario. The first Constraint (4.43) demands that overall exactly p items must be selected.
Constraint (4.44) prevents that an item is selected more than once. Constraint (4.45) enforces
the link between the selected scenario, selected items and resulting costs in each iteration s. Note
that for potential future models with cost vectors containing rational numbers the existential
variables z also could be continuous. As our solver can only deal with (existential) continuous
variables in the very last variable block, we put the z variables at the end of the quantification
sequence. Here, however, the cost variables z; also could be placed immediately after the
corresponding selection in iteration s. Additionally, when explicitly stating the model one has
to specify an upper bound on z,, which easily can be computed by taking the cost vectors of the
corresponding scenarios into account. Note that in generated SELQFY instances we actually did
use continuous variables for z as they have two immediate advantages: a) continuous variables are
not binarized in our solver and b) the LP-relaxation immediately yields the optimal assignment

for zs after ¢° and x® are assigned.
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In order to build an equivalent QIP one does not need to use the presented reduction function.
Instead of using universal indicator variables ¢° € Dy the universal player can use a single integer
variable {5 € {1,..., N} in order to select one of N scenarios in each iteration. This integer can

then be transformed into existential indicator variables:

Problem SELQ

n S
min Z Azl + Z Zs (4.46)
i=1 s=1

st. 320 € {0,1}" Vb e {1,...,N} 3F¢' {0, 1}V 3Tzl ec{0,1}" ---
o Wls e {1,...,N} 3¢° €{0,1}V F25€{0,1}" 3z € N5:

n S
Z Z x;=p (4.47)

i=1s=0

S

dap<i Vie{l,...,n} (4.48)
s=0

> ocpas <z + M(1—gf) Vke{l,...,N},se{l,...,S} (4.49)
=1

N

Zqzzl Vsed{l,...,S} (4.50)
k=1

N

S kg =1L Vsed{l,...,S} (4.51)

e
Il
—_

The variables ¢°, which were universal variables in SELQFVY, are now used as existential variables
indicating the selected scenario. Constraints (4.50) and (4.51) ensure that the selected scenario
number /¢ is transformed correctly into a corresponding assignment of ¢®. Thus, the number of

variables and constraints in SELQ increased compared to SELQFY.

We also want to provide a robust counterpart, i.e. an equivalent MIP, for which each possible
scenario sequence must be listed explicitly. The set containing all possible sequences of scenarios
is R = {1,...,N}*. For one such sequence r € R and an iteration s € {1,...,5} the scenario
in iteration s is denoted by r[s]. The entire sub-sequence up to iteration s is denoted by
sub(r,s) € {1,...,N}*. For each item i € {1,...,n}, iteration s € {1,...,S} and sequence
r € R, the variable £ Sub(rs)

i indicates the decision of selecting item 4 in iteration s after the

subsquence sub(r, s) of r occurred.

Example 4.4.1. For N =4 and S = 6 a possible sequence of scenarios is r = (1,4,2,3,1,1).
The sub-sequence until iteration s = 4 is sub(r,4) = (1,4,2,3). The variable indicating whether

item 1 is selected after 4 iterations and the occurrence of this particular sub-sequence is denoted

fob(rA) = x§1’4’2’3) and the scenario in iteration 4 for this sequence is r[4] = 3. The cost of item i
in iteration s = 4 does not depend on the entire sequence, but only on the occured scenario and is

given by c;

rls] = cﬁg. For the sequence of scenarios # = (1,4,2,3,2,4) it is sub(r,4) = sub(#,4)
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and therefore, the variables fob(M) and :chb(M) are the same. With the DEP of a QIP in mind,
this ensures the nonanticipativity property (cf. Constraint (3.6)): even for different scenario
sequences r and T the selection decisions must be the same, as long as the subsequences are

identical.

The robust counterpart of SELQFV is called SELRC and is given as follows.

Problem SELRC

min Z A2 + 2 (4.52)
=1
stoz>) Y CiT[S]xfub(r’s) VreR (4.53)
i=1s=1
n S
Z (x? + Z fob(T’s)> =p VreR (4.54)
=1 s=1
S
2432 < Vie{l,....n},7r€R (4.55)
s=1
22 € {0,1} Vie{l,...,n} (4.56)
2) e 10,1} Vie{l,....n},reR, se{l,....S} (4.57)
zeR (4.58)

Constraint (4.53) now must ensure that the expenses from the worst-case scenario sequence
appear in the objective function. Constraint (4.54) ensures for each scenario sequence that
exactly p items are selected in the end, whereas Constraint (4.55) ensures that each item is
selected at most once. We use this compact robust counterpart for a comparison between our
solver and the general MIP solver CPLEX for which the results are presented in Subsection
7.3.2. We already refer to Appendix B.2 where statistics regarding sizes of selected instances of
the three models SELQPY, SELQ and SELRC for various n, p, S and N are presented.

When it comes to such multistage problems under uncertainty, the question arises to what
extent their solution is superior to applying heuristics and whether there are simple online
decision strategies that come close to the optimal solution. Therefore, we present three online

decision strategies in order to be able to grasp the relevance of the optimization model.

Strategy 1: Buy All Now The easiest strategy is to neglect any knowledge of future events
and buy the p cheapest items right away. The resulting costs of this strategy in terms of the
presented models are
n n
min{Zc?x? | x?:p} .
i=1 i=1
Since knowledge of future iterations and scenarios is not taken into account this trivial strategy

almost always leads to significantly worse results.
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Strategy 2: Buy Now, If Never Cheaper in Worst Case In this decision strategy partial
knowledge of future scenarios is incorporated: Items are sorted according to their lowest guar-
anteed costs incurred in the current or in future iterations. Starting with the cheapest, an item
is bought if its best price is the current price. Let P be the set of already bought items. Let
s € {0,...,S} be the current iteration and k € {1,..., N} the current scenario (if s > 0). In
such a situation we propose to look at the p — | P| cheapest items according to their best worst-
case price and buy such an item now, if there is no future iteration in which this item is cheaper

in the worst case as shown in Algorithm 2. By applying this strategy, obviously detrimental

Algorithm 2: Selection strategy 2: “Buy Now, If Never Cheaper in Worst Case”.

Input: target p, current iteration s, current scenario k, costs ¢, set of bought items P

1: for each item i € {1,...,n} do

2 b =cjy // best price of item ¢ initialized to current price
3. d; =“Buy Now” // initialize decision for item 1
4: if i € P then

5: b; = x

6: d; =“Already bought”

7 continue loop with s =7+ 1

8: end if

9:  for each future iteration s > s do

10: if b; > maxy <<y cf_’]—C then

11: b, = Max) cj< N cil—§

12: d; =“Buy Later”

13: end if

14:  end for

15: end for

16: Sort b and d in ascending order according to the values in b

17. for i =1 to p — |P| do // the cheapest items according to b
18:  if d;=“Buy Now” then

19: P=PuU{i}
20:  end if
21: end for

purchases are prevented, i.e. if it is guaranteed that the same item is available later for a cheaper

price. However, other items are not considered.

Strategy 3: Don’t Buy, If Others Will Be Cheaper Similar to Strategy 2 a buying decision
depends on the worst-case costs in future scenarios, but incorporates prices of all remaining
items. Let min(a,b) be the function returning the value of the b-smallest element of vector a.
Let a(R) € Q!fil be the entries of vector a € Q" corresponding to indexes as in set R C {1,...,n}.
Let again s € {0,...,S} be the current iteration, k € {1,..., N} the current scenario (if s > 0)
and P the set of already bought items. In such a situation we propose to look at the p — | P)|
cheapest items according to ¢, and buy the cheapest item as long as no future iteration is
found in which p — | P| items are cheaper, even in the worst case. In Algorithm 3 this strategy is

presented. This way it is prevented that by buying an item now an obviously cheaper selection
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Algorithm 3: Selection strategy 3: “Don’t Buy, If Others Will Be Cheaper”.

Input: target p, current iteration s, current scenario k, costs ¢, set of bought items P

1: Remove the items in P from each cost vector

2: Resort the not yet selected items according to the current costs ¢j

3: fori=1top—|P| do // the p—|P| cheapest items according to cj,
4 R={l,...,n}\P

5: if ¢? i in(c¢? (R — |P|) th
if ciy < ming max min(cl(F),p~ |P[) then

6: P=PU {Z}
7. else

8: return

9: end if

10: end for

in the future is no longer possible. In particular, if only a single item remains to be bought it is

checked whether there is a guaranteed cheaper item in a later iteration.

Example 4.4.2. Letn =6, p=3, S =2 and N = 2. The costs in the initial stage and each

scenario is given in Table 4.1.

a)

b)

Table 4.1.: Cost scenarios for an instance of the multistage selection problem.
) 1 2 3 4 5 6
& 84 14 76 61 31 45

cl, 40 24 29 41 90 71
cly 45 30 15 18 44 44

¢y 13 25 12 11 75 50
¢, 80 10 29 32 64 30

Strategy 1: “Buy All Now”
Buying the three cheapest items in the first stage yields costs of 90.

Strategy 2: “Buy Now, If Never Cheaper in Worst Case”

In the first decision stage the vector b—containing the best worst-case costs of each item—
is filled with the values (45,14,29,32,31,45). The three smallest values are examined
resulting in the decision of buying items 2 and 5 now. Item 3 is not bought in this iteration,
as a better price is guaranteed later on. If in iteration 1 scenario 1 occurs, the vector b
holds the values (40, 00,29, 32, 00,50). Since only one item must be bought to reach p = 3
only the cheapest item is considered, but again item 3 is not bought, as later on the same
price is ensured. If scenario 2 occurs in iteration 1, item 3 would be bought. The overall

worst-case costs when this strategy is applied is T4.

Strategy 3: “Don’t Buy, If Others Will Be Cheaper”
In the first decision stage items 2, 5 and 6 are considered. Item 2 costs 14. Note that if the

first scenario of iteration 2 occurs, buying item 2 right away would be bad as there would
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be three cheaper items. However, this is the best cast scenario. Hence, the question is
whether buying item 2 now eliminates the option of buying three cheaper items in a single
future iteration, even in the worst case. Therefore, the worst-case third cheapest cost of
each iteration is calculated, which are 40 in iteration 1 and 30 in iteration 2. Since both
values are larger than 14 item 2 is bought in the first stage. For item 5 this procedure is
repeated, but now the second cheapest of the remaining items are considered. Those are
40 in dteration 1 (since item 2 is excluded) and 30 in iteration 2. Therefore, item 5 is
not bought, as it is ensured, that in another future scenario two cheaper items exist. If
in iteration 1 scenario 1 occurs, items 3 and 1 are considered and only item 3 is bought.
If scenario 2 occurs in iteration 1, both items 3 and 4 are bought. The overall worst-case

costs when this strategy is applied is 73.

In the optimal strategy no item is bought in the first stage and the overall worst-case costs are
69. The explicit strategies of the three heuristics, as well as the optimal solution can be found

in Appendiz A.2 on page 172.

Even for such a small example the optimal value is less than the worst-case outcome after
applying the presented heuristic strategies. A general comparison between optimal solutions of
the (robust) multistage selection problem and the results of the presented heuristics is given in
Subsection 7.3.2 on pages 159ff. and box plots regarding the relative deviation from the optimal

value of the two more sophisticated heuristics 2 and 3 are presented in Appendix B.4.

4.4.5. Multistage Assignment Problem

Another frequently consulted combinatorial problem is the assignment problem: Given a com-
plete bipartite graph G = (V, E) with V.= AU B, n = |A| = |B|. For each edge (i,7) € E it is
i € A< j € Banda cost value ¢; j € Ny is associated with each edge. The assignment problem
consists of determining a perfect matching of minimum total costs. Research on the min-max
and min-max regret assignment problems can be found in [ABV05] and further complexity re-
sults are obtained in [DWT06]. We want to extend the already investigated robust approach to
a multistage problem. In a first decision stage the existential player can select edges with known
costs. Then, iteratively, new costs of the edges are presented (by the universal player) which
then can be selected (by the existential player). Similar to the preceding subsection, the costs
selected by the universal player come from a predefined scenario pool. Let N be the number of
scenarios and S the number of iterations. We use the universal variable gj; to indicate whether
cost scenario k is selected in iteration s. As only one scenario can occur at each iteration the
universal constraint &, ¢; = 1 must be fulfilled and thus at each iteration s € {1,...,S}
the universal variables have to obey the domain Dy = {¢* € {0,1} | X+, ¢f = 1}. The cost
for edge (i,7j) € F in scenario k in iteration s is given by cf7j7k € Np. The objective remains

minimizing the costs for a perfect matching and once again auxiliary variables zs are used to
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bundle the costs incurred in iteration s and to avoid a nonlinear term in the objective function.
The QIPPY model for this multistage assigment problem (ASSQFV) is given below.

Problem ASSQFUY

min ZZCH ”—G—Zzs

s.t.

(4.59)
=1 5=1

32 € {0,1}" Vgl € Dy Fa! € {0,1}" ... Vg® € Dy 3z¥ € {0,1}"*"

vie{l,...,n} (4.60)

Vjie{l,...,n} (4.61)

S < ze+ M(1—q}) Vke{l,...,N},se{l,...,S} (4.62)

The Objective Function (4.59) consists of the expenses from the first stage with fixed costs and

each iteration with uncertain costs. Constraints (4.60) and (4.61) ensure that the found solution

is indeed a perfect matching. Constraint (4.62) linearizes the dependence between selected

scenario and incurred costs. Similar as we did it for the multistage selection problem, in order

to build an equivalent QIP we represent the universal player’s decision as an integer variable

b e{l,...

, N} and then convert it into existential indicator variables ¢* € {0,1}":

Problem ASSQ

min ZZCM T; Zzs (4.63)
i=17=1
st. 320 € {0, 1} v e {1,...,N} F¢' e {0, 1}V 3z e {0, 1} ...
~Wls e {l,...,N} 3¢ €{0,1} 3Fz¥ € {0,1}"*" 32 € N§:
n S
SN ;= Vie{l,...,n} (4.64)
7j=1s=0
n S
oS ap =1 vie{l,...,n} (4.65)
=1 s=0
SN e iprl; <z + M(1—qf) Vke{l,...,N},sc{l,...,S} (4.66)
i=17=1
N
dap=1 Vse{l,...,S} (4.67)
k=1
N
S kg =4 Vse{l,...,S} (4.68)

e
Il
—



Examples 73

Regarding the positioning and the domain of the variables z5, we refer to the discussion on
page 66 in context of the multistage selection problem.

Again, we are interested in a robust counterpart that can be solved using standard MIP solvers.
Similar to the notation used in the previous subsection, R denotes the set of all possible sequences
of scenarios and sub(r, s) denotes the sub-sequence of scenario sequence r up to iteration s (see
Example 4.4.1). The variable mfgb(r’s) indicates the decision of selecting edge (7, j) in iteration
s after the subsquence sub(r, s) of r occurred. The robust counterpart of ASSQPV is referred to

as ASSRC and is given below.

Problem ASSRC

min » 0 c)ag;+ 2 (4.69)
=1 j5=1
n n S
stoz>> 33 et vreR (4.70)
i=1j=1s=1
n S
SN et =1 Vie{l,....n},r€R (4.71)
j=1s5=0
n S b
S atY = Vjie{l,....n},r€R (4.72)
7j=1s=0
z}; € {0,1} Vi, je{l,...,n} (4.73)
i e 40,1} Vi, je{l,...n},reR se{l,....S}  (474)
z€R (4.75)

In Subsection 7.3.3 we compare the performance of the general MIP solver CPLEX on the
ASSRC model with our solver on the ASSQPY and ASSQ models.






5. Quantified Integer Programming with
Interdependent Domains

5.1. Motivation

A QIP is inherently asymmetric, as even though the min-max semantic of the objective is sym-
metric, the universally quantified variables are only restricted to the domain £, whereas the
existential player—in addition to having to obey the variable bounds—also must ensure the
fulfillment of the constraint system A%z < b>. In other words: only the existential player has
to cope with a polytope influenced by the opponent’s decisions whereby an interdependence
between existential and universal decisions can only be represented in one direction through
Az < b7. The previously presented QIPYU does not change this, as only the hypercube domain
L is replaced by a polyhedral domain D, where an existential influence on the universal domain
is explicitly prohibited. Thus, in either setting it is difficult to model most two-person games
as moves by either player almost always depend on previous own and opponent decisions. But
also from the viewpoint of operations research this asymmetry does not always reflect reality.
For example consider the task of finding an optimal machine scheduling. A robust optimization
problem arises when the possibility of machine failures is also taken into account, in which case
the modeler must cautiously specify the number (or set) of machines that may fail, e.g. by using
QIPPY or a budgeted uncertainty set in standard robust optimization. By also taking mainte-
nance into account an advanced optimization approach is needed, which allows an influence of
planning decisions in earlier stages on possible uncertain events later on: machine maintenance
will prevent machine failure for a certain amount of time. Such interdependence of planning
decisions and uncertain events is rarely dealt with in the literature and has only recently received

more attention in the field of robust optimization (see page 20).

In the following section, a novel extension for QIP is introduced and investigated, which allows

PPU presented in Chapter 4,

the modeling of decision-dependent uncertainty: similar to the QI
a universal constraint system A%z < bY is added to the problem statement, with the essential
difference that existential variables can now occur in the universal constraint system, i.e. exis-
tential player’s decisions can alter the polytope the universal player must comply with. Note
that QIPPY is a subproblem of this extension and therefore the results regarding its algorithmic

properties are also valid for QIPYY.



76 Quantified Integer Programming with Interdependent Domains

5.2. Problem Statement QIP'P

We consider a second constraint system A"z < b7, AY € Q™*" and b¥ € Q™, my € N,

PPU presented in Chapter 4 we no

the universal player must satisfy. In contrast to the QI
longer restrict the universal constraint system to be only dependent on universal variables (cf.
Condition (4.1)). Thus, in contrast to the QIPTY | the universal player does not necessarily
have a strategy in order to fulfill her system. Therefore, situations where a completely assigned
variable vector & € £ does not fulfill either system, i.e. A7z £ b2 and A%z £ b", must be dealt
with explicitly. We conduct the following preliminary considerations in order to adequately deal

with such situations:

1. The superordinate goal of each player is to fulfill their own constraint system. In particular,
one player should not be allowed to make her own system unfulfillable in order to violate

the opponent’s system.

2. The subordinate goal for both players remains trying to optimize the objective function:
the existential player is trying to minimize and the universal player is trying to maximize

the objective value.

3. If A%z £ b” and Az < b7 for a play (a filled variable vector = € £) the payoff is —oo, i.e.

the universal player “loses”.
4. If A%z < b and A3z £ b7 for a play the payoff is +o00, i.e. the existential player “loses”.
5. If A%z < b” and A7z < b7 for a play the payoff is ¢ z.

6. If AYz £ b” and A%z £ b7 for a play the player whose system became unfulfillable first

loses.

Hence, our intention is that an illegal move (making one’s own system unfulfillable) immediately
results in a loss for this player. However, this remains rather vague and in particular the term

“unfulfillable” must be specified. The following characterizations come into mind:

a) A constraint system is unfulfillable, if for a partially filled variable vector no single assign-

ment of the remaining variables exists such that the system is met.

b) A constraint system is unfulfillable, if for a partially filled variable vector no strategy for

the assignment of the remaining variables exists such that the system is met.

Even though they capture core ideas of “unfulfillable”, these two characterizations still remain
imprecise. We pursue a) and elaborate a formal definition. But note that we also considered b)
in order to define legal moves: it turned out that the resulting problems are essentially identical
(see Remark 5.3.20).

For the following considerations assume that the first & — 1 variables are already (legally)
assigned and assume that QQ =V, i.e. the next move—assigning x;—is a move by the universal
player. According to the above considerations and a), this next move by the universal player
should be legal if afterwards there still is an assignment of the remaining variables such that

the universal constraint system can be fulfilled. Obviously, such an assignment should adhere
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to the global variable domain £. But the question arises, whether such an assignment of future
variables must itself consist of legal moves (by both players). However, the existence of a legal
counter move for the existential player should not be of interest when determining the set of legal
assignments of the universal variable x;. In particular, a move by the universal player should
not be made illegal by the fact that the existential player has no legal counter move. Thus,
only the future universal variables should be required to correspond to legal moves, whereas
the existential variables only must obey £. Such an implicit definition, however, is also not
necessary since any assignment of future variables fulfilling A”z < b” must consequently consist
of legal universal assignments. Hence, it is reasonable that the assignment of future variables

must only obey £ and we therefore define a legal variable assignments as follows.

Definition 5.2.1 (F - Legal Assignment of Variable xy).
The set of legal assignments F (&1, ...,%x_1) C L of variable x) depends on the assignment of

previous variables T1,...,Tp_1 and is given by
.F(.f'l,...,.fkfl) = {.f'z € ﬁk ’ dzr = (@1,...,ik,l,ﬁck,karl,...,xn) eLl: Aka' < ka}.

Therefore, after assigning variable xp there still must exist an assignment of the remaining
variables according to their bounds such that the system of the responsible player Qi € {3,V} is

fulfilled. The dependence on the previous variables Z1,...,Tx_1 is omitted when clear.

With this definition the legal domain for a variable depends on previous decisions, and moves
that eliminate any chance of fulfilling one’s own constraint system are explicitly excluded. Sim-
ilar to the range £ of the i-th variable block we define the set of legal variable assignments of

variable block 1.

Definition 5.2.2 (F() - Legal Assignment of Variable Block 7).
The set of legal assignments of variable block i (dependent on the assignment of previous variable
blocks) FO(zM ... 201 is given by

FO) — {@(i) e L3 =W, .., 30D 30 D LGy e, ARY < bQ(i)}
i.e. after assigning the variables of block i there still must exist an assignment of x such that the
system of Q(i) € {3,V} is fulfilled. The dependence on the previous variable blocks O 0D

is omitted when clear.

In particular, ) = () means that there is no move such that the own constraint system still

can be satisfied, which is interpreted as a loss for the player in turn.

Definition 5.2.3 (Quantified Integer Program with Interdependent Domain).

Let A7 € Q3™ gnd b3 € Q™2 for mg € N. Let £ and Q be given as in Section 2.1 with
Z ={1,...,n}. We further demand > 2, i.e. there are at least two variable blocks, with
QW =3 and Q¥ =V. Let ¢ € Q" be the vector of objective coefficients, for which ¢¥) denotes
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the vector of coefficients belonging to variable block B;. Let b € Q™ and AY € Q™ *" for
my € N with
{zec| Az <’} 0. (5.1)

We call

z = min (0(1)1:(1)+ max (c(z)x(2)+ min <0(3)x(3)+... max c(ﬂ)x(5)>>) (5.2)
2D eF@) 22 eF@) 23 e FG) 2B e FB)

st. Iz e FO vz e 72 3,00 ¢ 7O va® e FO . 43 <7 (5.3)
a QIP with interdependent domains (QIP™?) given by the tuple (A3, A7, 67,07, ¢, L, Q).

Note that if there is no legal variable assignment for an existential variable block, the objective
value is +oco, whereas F() = ) for Q) = V results in the objective value —oco (see Definition
4.2.3 and the subsequent discussion). Hence, the case of both systems being violated is bypassed:
if both systems are not satisfied there must have been an illegal variable assignment at some
earlier point.

Definition 5.2.3 contains three restrictive conditions:
a) {x€£|Avx§bv}7é®

b) QM =3Jand QW) =V

c) f>2

We demonstrate that these restrictions are necessary to avoid undesirable properties and at
the same time are not too restrictive. As c) follows from b) we only consider b). The first
demand is related to the restriction D # () for QIPPV. However, in contrast to the QIPTV, this
restriction does not automatically result in the existence of a strategy for the universal player to
fulfill A%z < b", as now the existential player’s decisions affect the universal constraint system.
Further, since now the existential player’s variable assignments also must be legal, the situation
described in Example 4.2.5, where the existential player wins while violating his system, no
longer poses a problem. However, another undesirable effect occurs if {x € £ | A%z < b"} = {):
the optimal value can change if a dummy variable—a variable with only zero-entries in A3, AY
and c—is added up front (see Example 5.2.4). Such behavior in itself is undesirable, but it
becomes more drastic with respect to b): If adding dummy variables up front can change the
result of an instance, the demanded property QW = Jis not always attainable without changing
the problem itself. Hence, {z € £ | Az < b"} # () is added to the definition and the following

simple arguments even show that this demand is consistent:

e Assume the QIP™® describes not an entire game, but a certain game situation. With
Q™ = 3 it is the existential player’s turn. Then {z € £ | A%z < b"} = () would imply
that the previous universal move was illegal and hence, such a game situation cannot be

reached via legal play.

e From the OR perspective the universal player often describes events that are by nature

uncertain. Therefore, even when the existential player is able to restrict possible universal
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actions, the planner cannot (and probably should not) “defeat” uncertainty by taking away
all options. In particular, it makes little sense to allow uncertainty to be “defeated” from

the outset.

e If we allow both constraint systems to have no solution from the start, then the outcome
of such instance only depends on who the starting player is (see Example 5.2.4). This,

however constitutes neither a meaningful game, nor a reasonable optimization task.

Example 5.2.4. Let there be three binary variables, £ = {0,1}3 and Q = (¥,3,V). Let c =0

and let the two constraint systems be given as follows

Adp < b? A%z < b7
1 1 0 T 1 0 1 1 T 1
0o -1 -1 zo | < | -2 -1 0 -1 zo | < | -2
-1 0 -1/ \x3 -2 -1 -1 0 x3 -2

Both constraint systems have no solution. Therefore, F) = () and the instance constitutes a
loss for the starting universal player as she has no legal move in the first place. If an existential
dummy variable is added upfront—in order to bring this instance into the demanded form with
QW = I—suddenly the instance constitutes a loss for the existential player as no legal move for

the dummy variable exists.

This minimal example illustrates that excluding the special case—with both constraint sys-
tems being a priori unfulfillable—is important for the well-defined character of QIP®. Note
that demanding {z € £ | A%z < b"} # 0 is also in line with robust optimization, where an
empty uncertainty set is usally neglected (e.g. [BTNO9S]).

The restriction Q) = 3 in b), simplifies forthcoming definitions and proofs, without losing
generality: by adding an existential dummy variable upfront in order to ensure Q) = 3 the
result of the QIP'® remains unchanged (if {x € £ | A2 < b"} # (). In addition, consistency
with the QIP is established, which also requires a first existential variable block.

On the other hand, the restriction Q®) =V is more crucial and its necessity is of technical
nature. After a play of a QIP® instance, the fulfillment of A%2 < b7 for the fixed variable
vector x € £ must automatically be checked (due to Condition (5.3)). The compliance with the
universal constraint system, however is only checked during variable assignments by the universal
player herself. In particular, if the existential player has the final move, a legal assignment of the
corresponding existential variables could result in a violation of the universal constraint system.
This, however, would remain undetected both in the Objective (5.2) as well as Condition (5.3),
resulting in the objective value ¢z rather than —oco. In this situation, adding a universal dummy
variable at the end has an important effect: If the universal constraint system is fulfilled up to
this point the corresponding legal variable domain F B) = £®) # (), i.e. the dummy variable
can take any value. If, however, the final (legal!) existential variable assignment results in a
violation of A%z < b” it is F(®) = (), resulting in a loss for the universal player and the payoff
—o00. Hence, adding a universal variable at the end—such that, QW) = V—ensures the detection

of late game losses for the universal player.
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Remark 5.2.5 (Connection between QIP® and QII (cf. Remark 4.2.6)).

The general QII (see Definition 2.2.1) is also asymmetric, but in the other direction as the
original QIP: if the left-hand side system Bx < d is not satisfied the statement is immediately
true, regardless of the right-hand side system. Hence, the existential player in a QII aims at
violating Bx < d without having to obey “his own” right-hand side constraint system. Hence, a

QIP™ allows a more immediate description of an interdependence.

5.3. Use of Game Trees for QIP'P

Similar to QIPs and QIPPY we want to use game trees in order to describe and solve QIPP.
Again, we can refer to Definition 2.1.10 for a valid definition of a game tree for any QIP
instance. This game tree, however, also contains illegal moves according to Definition 5.2.1.
Therefore, both the term strategy and minimax value must be adjusted in order to describe
and find solutions of this problem type, as a play of a QIP™® might end before all variables are
assigned, if a player has no legal moves left (F (@) = (). Furthermore, strategies for QIP™® must
not consider all possible moves from £ but only all legal moves F(@). For sake of simplicity we
transfer the set of legal moves into the game tree terminology such that for each node the set of

legal successors is formally defined.

Definition 5.3.1 (F(v) - Legal Successors of Node v).
Let G = (V,E,e) be the game tree of a QIP'Y and let v € V' \ V, i.e. level(v) = k < n. Let
Zy, = (Z1,...,%) be the partial variable assignment along the path from the root to v. The set

of legal successors of v is given by
Fw)={0eV|(v,0) e E N e((v,0)) € F(Z1,...,%k)} .

In a legal play of a QIP™® only edges to legal successors can be used. In particular, the game
tree contains subtrees that can never be reached during legal play. Therefore, a strategy must

not contain such subtrees, which is why they are truncated.

Definition 5.3.2 (Truncated Existential Strategy).

A truncated strategy for the assignment of erxistential variables, is a subtree T = (V'  E' ') of
a game tree G = (V,E,e) of a QIP'P. V' contains the unique root node r € V3. Each node
vz € V' NV3 has either a) exactly one child if and only if the corresponding legal domain is not
empty, i.e. F(v3) # 0, or b) no child if and only if F(v3) = 0. Each node vy € V' NV has
all the children as in G for which at least one leaf in their corresponding sub-tree in G exists
with A%z < b7, i.e. as many as there are in the legal domain F(vy). Thus, each edge in T must

represent a legal variable assignment according to Definition 5.2.1.
A truncated universal strategy can be defined similarly:

Definition 5.3.3 (Truncated Universal Strategy).
A truncated universal strategy, is a subtree T = (V',E' ¢') of a game tree G = (V,E,e) of a
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QIPP. V' contains the unique root node v € V5. Each node vy € V' N Vy has either a) evactly
one child if and only if the corresponding legal domain is not empty, or b) no child if and only
if F(vy) = 0. Each node v3 € V' N V3 has all the children as in G for which at least one leaf in

their corresponding sub-tree in G exists with A3z < b3, i.e. as many as in F(v3).

The term truncated strategy refers to a truncated existential strategy, whereas a truncated
universal strategy will be called as such. In truncated strategies some nodes have no successor

even though they are not leaves in G. We call such nodes terminal nodes.

Definition 5.3.4 (Terminal Nodes).
Let S = (V,E,e) be an edge-labeled finite arborescence. We call

TS)={veV|ueV:(vu) € E}

the set of terminal nodes in S, i.e. the set of nodes without any successor in S.

Note that for any strategy S of a QIP (see Definition 2.1.13) it is 7(S) C V. This is also true
for strategies of QIPFU (see Definition 4.2.7). For a truncated strategy T of a QIP'P the set of
terminal nodes 7(7T") might also contain inner nodes from Vi or V5. Therefore, for a winning
truncated strategy it must be ensured that no terminal node represents a loss for the existential

player.

Definition 5.3.5 (Winning Truncated (Existential) Strategy).
A truncated existential strategy T = (V', E',€) is called a winning truncated existential strategy,
if for all terminal nodes © € T (T) it holds

(ﬁeVL/\Aaxﬁgba)\/@EVv,

i.e. terminal nodes of T either represent a fully assigned vector x € L with A3z < b3 or a

partially filled vector &1, ..., %1 with Qr =V and F(Z1,...,Tx_1) = 0.

Similar to QIP and QIPYY, we call a QIP'P instance feasible if a winning truncated existential
strategy exists, and sometimes call such a winning truncated existential strategy a solution of

the QIP'P. Furthermore, we define winning truncated strategies for the universal player:

Definition 5.3.6 (Winning Truncated Universal Strategy).
A truncated universal strategy T = (V', E’,¢€) is called a winning truncated universal strategy,
if for all terminal nodes © € T(T') it holds

(ﬁGVL/\AvxﬁSbV)\/ﬁEVg.

The existence of a winning truncated strategy ensures that there is always a legal move if
it is one’s turn and that one’s constraint system is fulfilled after a play. Thus, the utmost
goal of either player—to fulfill their constraint system and to perform only legal moves—can be
achieved. Furthermore, if it is possible to ensure a loss for the opponent we call the corresponding

strategy destructive.
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Definition 5.3.7 (Destructive Strategy).
Let G = (V,E,e) be a game tree of a QIP'P.

a) A winning truncated existential strategy T = (V', E’',€') is called destructive, if for each
terminal node © € T(T) it holds (0 € Vi, N A%z £ b7) Vo € V.

b) A winning truncated universal strateqgy T = (V' E',€') is called destructive, if for each
terminal node © € T(T) it holds (0 € Vi, AN APxy £ b7) Vo € V3.

In particular, the existence of a winning truncated strategy for one player is closely connected

to the existence of a destructive strategy for the opponent.

Corollary 5.3.8. A winning truncated existential strateqy exists if and only if no destructive

universal strateqy exists.

Remark 5.3.9. Similar to a QIP, a winning existential (universal) strategy can be defined
for QIP™P. Hence, a winning existential (universal) strategy S = (V', E' €') is an existential
(universal) strategy in which each leaf v € VL NV fulfills A%z, < b ( A¥x, < b") but does not
necessarily fulfill A%z, <b" (Az, <b?).

Corollary 5.3.10. The existence of a winning existential (universal) strategy for a QIP™ im-

plies the existence of a winning truncated existential (universal) strategy.

Since the outcome “universal player loses” can occur for QIP™P the value —oo must be added
as possible outcome in order to be able to apply an adapted minimax search. Furthermore, if
both constraint systems are violated for a fixed variable vector x € L, the corresponding leaf
node itself does not hold the information who made the first illegal move, i.e. who loses. The

symbolic value +oo is introduced for such nodes.

Definition 5.3.11 (Extended Minimax Value).
Let G = (V, E,e) be a game tree for a QIP™P and S = (V' E',e') some subtree of G, with either
S =G or S is a strategy. Let w(v) : Vi, - QU {+00, —00,+o0} be a weighting function with

clay , Az, <b? and A%z, < b7
+oo , Az, £ b7 and Az, < bY
—o0 , Az, < b? and Az, £ b7

+oo , Az, £ b7 and Az, £ .

For any node v € V' the extended minimax value with respect to S is defined recursively by

w(v) cifve Vg

nimazS (o) min{minimaz? (v') | (v,v') € E' A minimax? (v') # o0}, if v € V3 \ Vi
minimazx? (v) =
‘ max{minimaz3 (v') | (v,v') € E' A minimaz? (v') # +oo} , if v € Vy \ Vi

+oo }ifUEViOO'
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with the set Vi, given by
View={veV\V, |V €V:(v,0)€E = minimaz.(v') = £oo}. (5.4)

The extended minimaz value of the root r € V' with respect to S defines the value of S denoted
S

by minimaxe(S) = minimazx3(r). For S = G we denote minimazx.(v) = minimaz& (v).

The nodes in set Vi, represent partial variable assignments after which neither constraint
system can be fulfilled. Thus, it contains nodes that cannot be reached via legal variable

assignments, but note that Vi does not contain all nodes resulting from illegal moves.

Corollary 5.3.12. Let G = (V, E,e) be the game tree of a QIP'P. Then minimaz.(v) = o0
forv eV, if and only if every leaf © € VI, in the subtree below v has the property w(0) = to0.

The restriction {x € £ | A%z < b"} # 0 for a QIPP—discussed in the previous section—mnow
reveals another positive characteristic: with the above Corollary 5.3.12 the extended minimax

value of the root cannot be +o0o, as in at least one leaf of the game tree A¥z < b¥ is fulfilled.

Corollary 5.3.13. For a QIP™® as in Definition 5.2.3 and its corresponding game tree G =
(V, E,e), minimaze(r) # +oo holds for the root node r € V.

Therefore, with {z € £ | A"z < b} # (), the root node can have any extended minimax value
within Q U {400, —oco}. This can be interpreted as follows:

e Root node has extended minimax value z = ¢’z € Q:

Both the universal as well as the existential player have a winning truncated strategy to

satisfy their system. The payoff if both players play optimally is z.

e Root node has extended minimax value +oo:

The existential player has no winning truncated strategy to satisfy his system: The uni-

versal player can enforce Az £ b2. We call this instance infeasible.

e Root node has extended minimax value —oo:

The universal player has no winning truncated strategy to satisfy her system: The exis-

tential player can enforce A"z £ b”.

We now investigate the properties of the extended minimax value at the terminal nodes in

order to eventually adapt Stockman’s theorem for truncated strategies.

Lemma 5.3.14. Let G = (V,E,e) be the game tree of a QIP'Y and let T = (V', E',€') be a

truncated strategy in G. For every terminal node v € T(T) it holds minimazl (v) # +oo.

Proof. Let v € T(T) with minimaz.(v) = £oo. With Corollary 5.3.13 we know that v is not
the root and therefore an edge (u,v) € E' must exist. Thus, v € F(u) # 0. Hence, there exists

some leaf w € Vi, below v with minimax.(v) # foo, which contradicts the assumption using
Corollary 5.3.12. O

Lemma 5.3.15. Given a truncated strategy T = (V', E',€) in the game tree G = (V, E,e) of a
QIP'P. For any terminal node v € T(T) the following statements hold:
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a) v € Vi, = minimazx.(v) = w(v).

b) v e Vg = minimaz.(v) = —oo.

c) v € V5 = minimax.(v) = +00.
Proof.

a) See Definition 5.3.11.

b) Let k € Zy and Z1,...,Z) be the variable assignment along the path from the root to wv.
Since v has no child in T it is F (%1, ..., %) = 0 with Definition 5.3.2. Therefore, for each
leaf 0 € V7, in the corresponding subtree below v in G it is w(?) € {—o0, o0}, because the

universal constraint system is violated in each leaf. Therefore, minimax.(v) € {—o00, £o0}.

If minimaz.(v) = +oo it is w(0) = foo for each such leaf. Hence, Ty & F(Z1,...,Tk—1),
which contradicts v € V’. Thus, minimaz.(v) = —oo.
¢) Analogous to b) with w(?9) € {400, +00}. O

The above results are now utilized to adapt Stockman’s theorem [PdBO01] for QIP™P, which
links the extended minimax value of a truncated strategy to the largest value of its terminal

nodes.

Theorem 5.3.16 (Extended Stockman’s Theorem).
The extended minimazx value of a truncated strategy S = (V',E' ') is equal to the largest

extended minimazx value at the terminal nodes of the truncated strategy, i.e.

minimaz.(S) = max minimaze(vy) . (5.5)

v:€T(S)
Proof. For any truncated strategy S = (V', E’, ¢’) and any terminal node v € T(5) it is w(v) €
Q U {400, —o0} due to Lemmas 5.3.14 and 5.3.15. Thus, computing the extended minimax
with respect to S is equivalent to computing the conventional minimax value with the small
extension of also having leaves with minimax values —oo and +o0o. Therefore, similar to the
results stated in [Sto79, PABO01], the (extended) minimax value of a truncated strategy is given

by the maximum value at its leafs, i.e. its terminal nodes. ]

Definition 5.3.17 (Optimal Solution of a QIP'P).

Consider a feasible QIP™ P and its game tree G. A winning truncated strategy S is called
G

optimal if minimaz.(S) = minimazC(r). In particular, minimaz.(S) < minimaz.(S) applies

for all other winning truncated strategies S and we call minimaz(S) the optimal value of P.
For QIP and QIPTY the PV represents the path within the optimal solution from the root to
the leaf with largest minimax value, i.e. the move sequence chosen during optimal play. This

has to be adapted for QIP™P as optimal play might end in an inner terminal node rather than

an actual leaf.
Definition 5.3.18 (Principal Variation of a QIPP).
Let G = (V,E,e) be a game tree of a feasible QIP'™P P. Let S = (V' E',¢') be an optimal

winning truncated existential strategy.
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a) If minimaz.(S) € Q then the variable assignment x,, € L corresponding to the path from
the root 1 to a leaf node v € Vi NV’ in S with c'x, = minimaz.(v) = minimax.(S), is

called principal variation of P.

b) If minimazx.(S) = —oo for the root node r then the (possibly) partial variable assignment
corresponding to any path from r to a terminal node t € T(S) with minimazx.(t) = —oo
is called a truncated principal variation. A variable assignment T, corresponding to a leaf
v e Vg below t with A%, < b7 and minimazx.(v) = —oo s called the principal variation
of P.

Case a) is analogous to the PV for QIP and QIPYY. In case b) the truncated PV contains
the path from the root to the corresponding terminal node, while the PV further provides the
path to an underlying leaf with A%, < b2, which confirms that the existential player indeed

used legal moves in order to violate the universal player’s system.

Example 5.3.19. Let ¢ = (—-1,-1,-2)", Q = (3,V,V), £1 = {1,2,3} and Lo = L3 = {0,1}

and the two constraint systems given as follows:

Agx < bg . T + o + x3 < 3
T 2 — 3ay < 3
Az <7 - —x1 + 219 + w3 > 0

The game tree of this QIP'P instance is give in Figure 5.1. The values at the leaves are

xr1 =

Tro —

Figure 5.1.: Game tree for the given QIP® with rectangular leaves, circular universal nodes,
and pentagonal existential root node. The values given in the nodes are the corre-
sponding extended minimax values. Illegal moves are indicated as dotted lines. The
optimal winning truncated strategy is indicated by thicker arrows.

assigned using the weighting function w(v). The value of inner nodes were received by applying
the extended minimax value. Hence, node values show the value according to optimal play starting
from this node, whereat 00 denotes an illegal game situation that cannot occur during legal play.
In the first existential stage F(1) = {1,2} and in particular, 3 & FU) since the existential system
cannot be fulfilled for xs = 3 (all leaves in the subtree beneath the decision x3 = 3 have the

property +o0o or +£00). Note that if 1 = 2 the universal variable x2 cannot be set to 0, since a
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violation of the universal system would become inevitable. In particular, F*(2) = {(1,0),(1,1)}.
Furthermore, even though the extended minimaz value of the node resulting from setting r1 = 2
is +o00 this mowve itself is not illegal; it only results in a game situation where no winning strategy
for the existential player exists. Thus, even though x1 = 2 is a bad mowe, it is still legal. The
optimal course of play (the principal variation) is 1 = 1, x9 = 1, x5 = 0 with objective value
cle=-2.

Remark 5.3.20. At the very beginning of our research regarding QIP'™® we assumed that a
move should only be legal, if a strategy exists—which itself consist of legal moves—such that the
satisfiability of one’s own constraint system is ensured. This has the obvious drawback that in
this case a legal move can only be wvalidated by solving a PSPACE-complete problem. We then
realized that it suffices to use the set of legal moves as given in Definition 5.2.1 without changing
the outcome. This solely changes the notion from being an illegal move to being a bad mowve, if
no such strategy is available. Due to Condition (5.3) both players already aim for such a strategy
and hence, rather than explicitly forbidding such moves we exploit that they eventually result in
the correct extended minimaz value 400, —oo or £o0o. Demanding this during the legality check

solely anticipates that outcome at a high computational price.

5.4. Computational Complexity of QIP'P

5.4.1. Complexity Results

The NP-hardness of determining the set of legal variable assignments F in each game position
raises the question whether the presented extension results in a more difficult problem in the
sense of complexity theory. However, a few simple arguments show that indeed QIP™® remains
in the same complexity class as the original QIP. Clearly a polynomial-time reduction function
can be developed to show QIP <, QIP™P: by adding a trivial universal constraint system and a
universal dummy variable at the end a QIP can be reduced to a QIP'® The non-trivial reduction
function proving QIPP <p QIP is presented in Subsection 5.4.2. Nevertheless, the existence of
an extended minimax algorithm is already sufficient to show that QIPP is in PSPACE.

Theorem 5.4.1. QIP'P is PSPACE-complete.

Proof. PSPACE-hardness is established via the outlined trivial reduction QIP <, QIP'™® and the
PSPACE-completeness of QIP [Wol15]. To show that QIP® is in PSPACE, we can solve it with an
extended minimax algorithm, that performs the evaluation of minimax.(v) for each node (cf.
Algorithm 4 on page 107). When using a depth-first search one does not have to keep the entire
game tree in memory, but only the current path. Therefore, only polynomial space is required

in order to evaluate an exponentially sized game tree [All94, KMT75]. O

However, PSPACE is a large class, and we are interested in the connection between QIP™® and
QIP: How can a QIP be utilized in order to describe the interdependence of legal moves and in

particular the problem of distinguishing between legal and illegal variable assignments. In the
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following subsection we present a reduction function in order to explicitly prove the non-trivial
relationship QIP'P <p QIP. The presented reduction gives us further structural insights into
the nature of QIP'® and helps us understand how a solution process in the Yasol framework is
realizable and reasonable. Second it provides a checking routine for implementations: we want
to solve QIP'P via an extended game tree search, and the results can be checked by solving the
DEP of the reduced QIP or directly solving the QIP via Yasol.

5.4.2. Reduction QIP'® <, QIP

The presented problem QIP'P has one major difficulty compared to the QIP: In order to know
whether a variable assignment is legal one has to solve an NP-complete subproblem, i.e. one has to
check the feasibility of several integer programs in order to create the set F(*) (a:(l), . ,a:“‘”),
instead of simply ensuring compliance with the variable bounds. Hence, in order to transform
a QIP® into a QIP, the resulting QIP has to ensure that setting one of the original variables
illegally (i.e. outside of the specific F-domain) cannot occur or would be detrimental to the
player conducting such move. We take the latter path and therefore the QIP must be enabled
to to detect illegal moves and penalize the respective player by allowing the opponent to get a
much better payoff than usual. Hence, it is in each player’s best interest to make moves that
stay within the legal domain F.

For a better understanding we first roughly sketch the functional principal of the reduction.
The original variables (%) of a variable block are also used in the arising QIP and in between some
further auxiliary variables are added in order to ensure that illegal moves are disadvantageous
compared to legal ones. For each existential variable block z(*) a verification vector v(*) is added
to check, whether the existential system still can be satisfied. If for some assignment of z(®
the system A3z < b can no longer be fulfilled then no appropriate assignment of v() exists,
resulting in a violation of the global constraint system of the QIP, which is to the detriment
of the existential player. Hence, a legal existential variable assignment @ e FO ig preferred
for which a corresponding assignment of v() is available. Note, however, that this must only
come into effect, if in each earlier stage only legal moves were selected. A similar approach is
used for universal variable blocks: If there is no assignment of the verification vector v(9 that
fulfills the universal system, i.e. if 2 ¢ F() | the objective value can be reduced massively and
the constraint system of the QIP is fulfilled trivially. Auxiliary variables y(*) and t; are used to
detect and indicate such illegal assignments for universal variable block i. Hence, selecting the
universal variable () from F(® is preferable for the universal player.

The presented reduction function allows the coefficients of the resulting QIP to range in given

intervals. There are the following reasons for the reduction function to be not unique:

1. By specifying bounds on certain parameters rather than fixing them to specific values this
reduction leaves more leeway for application and simultaneously does not lose theoretical

value.

2. There are technical reason as the proof for Theorem 5.4.4 is inductive and the structure

of a subproblem and its reduction is not maintained if the parameters are fixed.
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3. When proving that such a reduction can be computed in polynomial time we argue in

Theorem 5.4.14 that “some” reduction can be computed in linear time.

Several observations from Section 4.3 can be reused in order to build the reduction, but an
additional difficulty, in contrast to the QIPTY reduction, is that now in each stage the legality
of a variable block assignment has to be ensured, and it no longer suffices to conduct a single
check at the end of a play in order to determine whether the universal player complied with
A"z < bY. This is necessary as the first illegal move must be detected in order to determine
the losing player. Let the first ¢ — 1 variable blocks be assigned with z(!), ..., 20~ and assume
those assignments are all legal according to Definition 5.2.2. Let ¢ € £. In this situation, an
assignment 2() € £ is legal if there exists some verification vector v(i+1) = (:?(“‘1), ey f(ﬂ)) €
L0+ % ..o % £ such that for the resulting vector s = (2(M),...,z0-D 20 6+ 28))
the existential system is satisfied, i.e. A7s < b7. If, on the other hand no verification vector can
be found the assignment 2(® is not legal. Hence, for each existential variable block i € £ the
sub system A3s() < b7 is added to the arising QIP with s = (21, ... z0=D 20 @) being
the vector consisting of the previous and current variable assignments as well as the verification
vector. Therefore, in each existential block 4 the corresponding variable vector (¥ should be
assigned legally as else the entire constraint system would become infeasible, resulting in a
loss for the existential player. However, a slight adjustment must be made as the assumption
that 21, ..., z0~1 are legal assignments is not always true. If one of the previous variable
assignments already was illegal the current ¢-th variable block does not have any effect on the
outcome as the loser is already determined. In particular, a previous illegal move could render
each assignment of (V) illegal. Therefore, in such a case the mentioned sub system is relaxed
via the indicator variable ¢;_;, which signals whether some previous universal variable block
was illegally assigned. In order to detect an illegal universal variables assignment we reuse
findings of Subsection 4.3 and in particular Equivalence (4.4) together with Lemma 4.3.1 and
Constraint (4.5). Note that for i € A, and 2! € £ it is the universal player’s obligation to
provide an assignment for () in order to prove the legality of her move. If she cannot (or does
not) provide the validation that 2@ e F) at least one of the universal player’s constraints is
violated by s = (i(l), R Gl i(i),v(i)), which eventually allows the existential player to set
the corresponding indicator ¢; = 1.

In the following definition we present the reduction function mapping any QIP'P instance to
a set of QIPs. We show in Theorem 5.4.14 that it is possible to compute one of those QIP

instances in polynomial time.

Definition 5.4.2 (Reduction Function QIPP <, QIP ).
The reduction function f'° maps a given QIP'P P = (A3, AV, 67,07, ¢, L, Q) to a QIP with the

following form:

min (c(l)x(l) + max (C(z)l‘(z) + ...+ max (c(ﬁ):v(ﬁ) — min Mp)))
DL +@er@ =B er® pef{0,1}
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s.t. 3z e £ 3oW e £@ 5 % £®
ve® e £® vo@ e B« xc® 34 {01} Fty € {0,1}
320 e £® 390 e LW 5 x £®
vae® e £@ vo® e £® x  x£® 3yW e{o,1}™ Tty € {0,1}

va® e £® 340 ¢ {0,133tz e {0,1} Ipe{0,1}:

A7 — Mt < b7 Vie& (5.6)
APz — Mp < b (5.7)
— A" — (L —p" — RFCPY ) < [, Vie A (5.8)
p—> t<0 (5.9)
€A
my .
t; —t;_o — Z y,(:) <0 Vie A (5.10)
k=1

The symbol sV is the abbreviation for the vector (l'(l), . ,x(i),v(i)). M, M, L, RECD gnd ¢t
are parameters that must fulfill the following criteria: to = 0, L € Q™ with

n
Ly gmi?Azy*:r: SNoOAL ui+ > ALl Vke{l,...,my}, (5.11)
e i€l icT
AY ;<0 AY 20

being less than the smallest possible value of the left-hand side of row k of the universal constraint
system resulting in A%z > L being valid for any x € L. M € Q™3 must fulfill

3 3 3 3 3
M, > rgrcleaE(Ak’*x —b, = E Apili+ E Aji - ui — by, Vk € {1,...,m3}, (5.12)
(SVA (1SVA
A7 <0 A7 >0

i.e. My must be a bound on the largest possible violation of row k of the existential system,
resulting in A3z < b3 + M being valid for all x € £L. M € Q is set such that

maxc'z — M < minc' z (5.13)
zeL xeL
for example
n
1€L 1€L
c;<0 c; >0

RLCD ¢ Q™ s a vector with positive entries less than or equal to the reciprocals of the lowest

common denominators of the rows of AY and b, ensuring for any row k € {1,...,my} and any
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x € L that AZ7*1‘ L bZ & AZ’*LE > bZ + RIQCD. In particular, 0 < RﬁCD < 1 suffices if all entries
in row k are integer. We call f'P(P) the set of QIPs corresponding to the QIP'P P.

Remark 5.4.3. For the entries of L and RYCP only upper bounds are given. Hence, for smaller
values the operating principle is still intact. For M and M lower bounds are given. Therefore,

RLCD

the result of the above mechanism is not unique, since the parameters L, M, M and only

have to satisfy the given bounds.

Note that the number of variable blocks of a resulting QIP in f™P(P) is increased by one
compared to the QIPP. This final additional variable block is needed to check the fulfillment
of the universal constraint system after the final variable block has been set. A result of the

reduction of the QIP'P given in Example 5.3.19 can be found in Appendix A.1.

5.4.3. Correctness of the Reduction QIP'® <, QIP

The close relationship between a QIP™® and the corresponding QIPs resulting from the reduction

function is given in the following theorem:
Theorem 5.4.4 (Correctness of f1P).
The following equivalences hold:

1. The QIP'P instance P is feasible with optimal value z € Q
<= VR € fP(P): The QIP instance R is feasible with optimal value zZ = z.

2. The QIP'P instance P is feasible with optimal value z = —oo

<= VR € fP(P): The QIP instance R is feasible with optimal value z < mizl clw.
re

3. The QIP'P instance P is infeasible
<= VYR € f°(P): The QIP instance R is infeasible.

In preparation for the proof of Theorem 5.4.4 some further considerations are required.

Definition 5.4.5 (Verification Set V).
Let P = (A7, AV b7,b%,¢,£,Q). For1 < i < § and fized 2V € £D, ... 20 e £O the

verification set V(z(), ... 2®)) is given by
V(W . 20 = {U(i) e LD x ... x LB A4Q% (M, 2@ ) < me},
i.e. V(e ... ™) contains those vectors that verify that ) € FO (M) 201,
Corollary 5.4.6. For 1 <i < f and given (Y € £ ... 20D ¢ £6=1 4t holds
FOW 200 == vz e £ p® 207D 50y =9

Definition 5.4.7 (Valid Variable Assignment until Stage k).
Let P = (A3, A7, 07,07,¢,£,Q), R € fIP(P) and 1 < k < . An assignment of the variables
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29 € £0) and v0) € LU x ... x LB) for all j < k and y) € {0,1}™ and t; € {0,1} for all
je A, j<k, is called valid until stage k for R, if the following constraint system is fulfilled

APs® — Mt < b Vie& i<k
— AW — (L — " — RLCDY ) < VieA i<k
my )
ti—tia—Y yt) <0 Vic A i<k
k=1
with s = (:v(l), . ,x(i),v(i)) € L. Such an assignment is denoted by (x,v,y,t)k.

Lemma 5.4.8. Let P = (A3, A", 07,0, ¢,£,Q), R € f/°(P) and 1 < k < B with k € £. For
a given valid variable assignment (z,v,y,t)x_1 until stage k — 1 with tx,_1 = 0 and an arbitrary
) € LK) the constraint system of R is violated for v*) ¢ V(™. .. 2(*),

Proof. Constraint (5.6) of R for i = k states A%s) < b3, For st = (21, ... 2 (*)) with
v g V(W 2W) it is A3 £ b? by definition of V(z(M), ..., z*)). O

Corollary 5.4.9. Let P = (A7, A", b7,0",¢,£,Q), R € fI°(P) and 1 < k < B with k € &.
For a given valid variable assignment until stage k — 1 with tx_1 = 0 and z®* € £K*) \]:(k) the
system of R cannot be fulfilled.

Lemma 5.4.10. Let P = (A3, AY,07,07,¢,£,Q), k € {1....,my} and L and RY“P complying
with the bounds as given in Definition 5.4.2. Let & € L. For

— AL & — (L, = b = RE“Pyy < —Ly, (5.15)

the following holds:
a) Condition (5.15) is valid for & with y, = 0.

b) Condition (5.15) is valid for & with y, = 1 < AZ’*:Z' > by.

Proof.

a) Since L < mi? AY x the statement is true.
TE ’

b) “=" Let —AZ,*.QNZ — (Lg — b] — RECP) < — L, be true. Hence, A}i*a? > by + RECD . Since
RECP >0t is Af 7 > by

“«<" Let AZ,*HNZ > by,. Hence, there is an € > 0 with AZ7*£ > by, + €. With Lemma 4.3.1 and
€= RﬁCD , i.e. € selected less than or equal to the reciprocal of the lowest common
denominator of b;, and entries in AZ, . it is AZ7 > b + RECP. O

Lemma 5.4.11. Let P = (A%, AV, b°,b",¢,£,Q), R € fIP(P), and 1 < k < 3 with k € A. For
a given valid variable assignment until stage k — 1 with ty_o = 0 and an arbitrary x*) € £K)
the following holds: For v®) e (LD x . x LN\ V(W ... 2®)) o winning strategy exists

to fulfill the constraint system of R with minimaxz value less than minc' z.

zeLl
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This lemma shows that if existential variables in R up to stage k — 1 represent legal variable
assignments with respect to the underlying QIP'® P and if the universal player fails to provide
a correct legality validation v(®), then optimal play results in a very small payoff, which is to

the detriment of the universal player.

Proof. Since the given variable assignment is valid until stage k& — 1 the Constraints (5.6),
(5.8) and (5.10) of R are fulfilled for ¢ < k — 1 and in particular with ¢;_o = 0 we know
Ask=1) < p3. Therefore, we only have to consider the remaining constraints of R. Since
k) ¢ V(a;(l), e ,x(k)) and with s = (x(l), .. .,m(k),v(k)) it is AYs(*) £ bY. Thus, a universal
constraint j € {1,...,my} exists with >_1" ; Axisgk) > b]v-. Hence, y](-k) =1 and yy,k) = 0 for all
j' # j is a valid assignment such that

_Avs(k) _ (L _ bV _ RLCD)y(k‘) < .y

is fulfilled as show in Lemma 5.4.10. Therefore, t; = 1 is valid with Constraint (5.10) for ¢ = k
and Constraint (5.6) for i = k+1 is fulfilled for any 2(*+1) and v*+1). For any z(*+2) and v(*+2)
Constraint (5.8) for i = k + 2 is fulfilled with y**2 = 0 (Lemma 5.4.10). Since t; = 1 we can
set tg1o = 1 according to (5.10). This argument can be used recursively until the final stage is
reached such that Constraints (5.6), (5.7), (5.8), (5.10) are fulfilled. For p = 1 Constraint (5.9)

is fulfilled resulting in z = ¢ — Mp < rnelg ¢"x due to the selection of M (see (5.13)). O

Corollary 5.4.12. Let P = (A3, AV, b°,b%,¢,£,Q), R € f'°(P) and 1 < k < B with k € A.
For a given valid variable assignment until stage k — 1 with tj_o = 0 and fized %) e £F) \.F(k)

the constraint system of R can be fulfilled and a winning strategy exists with minimazx value less

than minc' .

€L

Lemma 5.4.13. Let P = (A3, A7, b7,0",¢,£,Q) be a QIP™Y with f > 4 and R € f'°(P) a
corresponding QIP according to Definition 5.4.2.

a) For already fized variables &1 € FV and &y € }"(2)(55(1)) the subproblem P of P

min B ) + max (0(4)x(4) +... max C(B)SU(B)>
2@ eFB) (3D 52) e@ e F@ (2D 72 2(3)) 2(B) e F(B)

s.t. 320 € FO M 52y va® e FWGEM 52 20 vae® e FO L 47 < b7
is a QIP™P according to Definition 5.2.3 with B — 2 variable blocks.
b) For the subproblem R of R with already fized variables zV) = (1 (1) ¢ Y(z(V), z(2) =

i@, 5@ e vEW, 2@, y@ =0 and ty = 0 it holds R € f'P(P) for P as in a).

Proof. Let B =|B; U By| and 7 = n — |B|.
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a) For already fixed #; € F(I and 5 € F® (1)) the right hand side vectors b7, for ¢ € {3,V},

of the two constraint systems are given by

~ | B1] | Ba| @
?:b?_; Ju(lz ZAJH(21)~Z Vied{l,...,my}

and the left-hand side matrix A7 € QMa*™ is the submatrix of A% without the columns

belonging to By and By. Q € {3,V}" and & € Q" are the subvectors of QQ and ¢, respectively,

Wlthout the entries belonging to By and By. Let £ = {z € Z" | z; € £|B|+Z} Hence,
= (A, A%,0",07%,¢, L, Q) is a QIP'® with 3 — 2 variable blocks. Furthermore, Q)

Q(ﬁ 2 =Vand {z € L| A% <"} # 0 since 2?) ¢ F@(z1).

b) For fixed x(l) = j}(l)7 ﬁ(l) [= V(j}(l))7 x(2) = j(2)7 @'(2) c V(j(l),j}(Q)), y(z) = 07 t2 = 07
Constraint (5.6) for ¢ = 1 is satisfied, and also Constraints (5.8) and (5.10) are satisfied
for 4 = 2. Omitting these constraints and inserting the fixed variables, using the notation

as in a), yield:

AP0 — pMt; oy < b Vie &\ {1} (5.16)
APz — Mp < b’ (5.17)
— AY39 — (L —b" — RFOP)y < L Vie A\ {2} (5.18)
> <0 (5.19)
i€A\{2}
ti—tio — % gt <0 Vie A\ {2}, (5.20)
k=1

with 2 = (®,...,2®), 80 = (G 20 @) and L = L —b" +b". Constraints (5.19)
and (5.20) obviously are the corresponding constraints of any instance from f™°(P). For
Constraints (5.16) and (5.17) one must consider the vector M. For any k € {1,...,m3} it

is
My > max A7 ,x — b,
zel ’

= > AL L+ > AL ui— b

1€ 1€T

3 3
A} <0 Aj >0
| B1] W | B2| @
3 -~ E|

> D AL+ Y AL uﬁZAkw z; +ZA e = b

i€Z,igB i€, i¢B

Ak,i<0 AMEO
_ i3 B e 73 _ i3 73
- Z Alm"lz'+|B|Jr Z Ak,i'ui+|B|_bk = max Ap x — by

1<i< 1<i< zel

A3 A3
A3 <0 A3 >0
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Hence, Constraints (5.16) and (5.17) are valid for f'°(P). Further, for k € {1,...,my} it

is

i€Z i€z
AY <0 AY >0
|B1] W | Ba| @
_ Voo v %
= 2 ALt ) Al ZAkullx ZA,W z;
i€Z i€z
AY <0 AY >0
iV . iV )
< Z Ak,i'ui+|B|+ Z Ak,i'li+|B|
1<i<h 1<i<n
A} ;<0 A} >0

and obviously RECP still fulfills the demanded property. Hence, the entire constraint
system (5.16), (5.17), (5.18), (5.19) and (5.20) is valid for f'°(P). Further, since

| B1] | B2|

max ¢ m—M—i—Zc 1,0 T 1 +Zc 2,i)T 2
zel i—1
|B1 | Bz
<minc :c—i—Zc 1,i)L 1 +Zc 2,4)T 2
el i—1
the value of M fulfills the demanded property and therefore R € fP(P). O

We are now able to prove the “=" implications of all three equivalences of Theorem 5.4.4.

Proof. (Theorem 5.4.4, third equivalence, direction “=")
Let P be infeasible, i.e.

v e FO 32 ¢ 7O ve®) ¢ FO ATz 207

Consider any R € fP(P). Proof by induction in the number of variable blocks 3. Remember

that by definition the number of variable blocks is even.

Basis: The statement is true for 5 = 2.

Case 1: F) =0

With Corollary 5.4.6 and 5.4.9 the constraint system of R cannot be fulfilled. Therefore, R is
infeasible.

Case 2: F(1) £ ¢

With Corollary 5.4.9 a fulfilling assignment of the first-stage variables must have the property
M e FO . For any 21 € FU we must select v(V) € V(M) in order to be part of a winning
strategy according to Corollary 5.4.8. Since P is infeasible we know Jz(2) e F(2) (i'(l)) c Az £
b7, Let 22 € F@(2(1) be such an assignment. Therefore,

(1)
v (T %
A <@(2)> <b
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and y? = 0 is enforced as shown in Lemma 5.4.10 and consequently ¢, = 0 and p = 0. Due to

the selection of £(2)
5 (1) :
4 @] Mp £ b
and therefore the universal player can always enforce a violation of Constraint (5.6) and R is

infeasible.

Inductive Step: Let the statement be true for any instance with k£ € N stages, k > 2, k even.
Let us consider an instance with k + 2 stages.

Case 1: F) =)

With the same argument as above R is infeasible.

Case 2: F(U) £ ()

In order to have a winning strategy the existential player must select () € F1) and () ¢
V(2M). Since P is infeasible

322 e FAEWYvz® e FO 320 e FW | ATz £ 7.

The universal player can select such 2?2 € F@ (M) and 3 ¢ V(2 () (following the
same reasoning as above). Hence, in a winning strategy the existential variables y? and t, must
be set to 0 (Lemma 5.4.10). As shown in Lemma 5.4.13 the subproblem P of P with 2(1) = 2(1)
and 2 = £? already fixed is a QIP'™® with k stages. Since o must be set to 0 in a potential
winning strategy for the subproblem R of R with z(V) = 20 oM =M 22 = 32) (@) = 53,
y® = 0 and ty = 0 fixed it holds R € f°(P) (also Lemma 5.4.13). Since P is infeasible and

according to the selection of z() = 2(1) and 2®? = 22 we know:
vz® e FO W 22y 3.0 ¢ FO ATz 2 b7
Hence, P is infeasible. Thus, by inductive hypothesis, R is also infeasible. Hence,
vz vo 322 302 vy vi, : no strategy exists to fulfill (5.6)-(5.10)

and therefore R is infeasible. O

Proof. (Theorem 5.4.4, first equivalence, direction “=-")

Let P = (A7, A7,b7,0",¢,£,Q) have an optimal winning truncated strategy S with optimal
value Z = ¢'Z € Q given by the PV 7 = (1), ..., ®). We show that any R € f'°(P) has an
optimal winning strategy with PV 6 = (j(l),v(l),i’@), v@ y@ gy 7O 5B ) tg,p), with
p=0,v® V@, ... i) y® =0and t; =0 for all i € {1,...,3} and optimal value z = 2.
First we show that a winning strategy for R € f'P(P) exists with value 2. Since Z € Q the PV
T = (:E(l), . ,:f:(ﬁ)) is represented by a leaf v € V;, within the winning truncated strategy of P.
In particular, A"Z < b” and A% < b. Therefore, V(z(),... @) £ for all i € {1,...,5}.

Thus, 6 as given above obviously satisfies the constraint system of any R € f°(P) with objective
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T

value ¢'# — Mp = Z. The remaining branches of the strategy are built inductively as follows

depending on the node type:

Root node:
At the existential root node the children are selected as in the PV 8: #(1) and v as

described above. Hence, this path represents a valid variable assignment until stage 1.

Universal node representing z(*), k € A:

Let us consider a universal node emerging from a valid variable assignment until stage
k — 1 with t;_o = 0. For children representing (¥} ¢ F*) we know with Corollary 5.4.12
that a winning strategy exists such that the constraint system of R is fulfilled resulting

in an objective value less than minc¢' 2. For any 2 € F*) we then must consider any

BAS
selection of v®). For v(*) ¢ V(a:(l), .. ,x(k)) we know from Lemma 5.4.11 that a winning
strategy exists with value less than mi? c'z. For o) ¢ V(x(l), . ,x(k)) the subsequent
e

existential decision in a winning strategy for R must be y*) = 0 and t;, = 0. If k = 3 we
also set p = 0. Therefore, only existential nodes resulting from paths representing valid
variable assignments until stage k with ¢, = 0, z®) € F®) and o) ¢ V(x(l), .. .,x(k))

need to be considered.

Existential node representing z(¥), k € &:

Let us consider an existential node emerging from a valid variable assignment (Z, v, y, )1
until stage k — 1 with t;,_; = 0, 2D ¢ FE=D and o®) ¢ Y@M, ... z®). Hence,
0 e FO@EM . z0-D)foralli € {1,...,k—1} and a node in the truncated strategy for
P exists representing this variable assignment. As successor we select the path representing
£ asin S and any v¥) € V(i:(l), . ,f(kfl),x(k)) # (). Hence, this path represents a valid

variable assignment until stage k with t;_o = 0.

Note that all leaves of a strategy built as described above represent variable assignments of R
with objective values less than or equal to Z, since they either represent variable assignments
with p = 1 or a variable assignment with p = 0 and x as in some path of S. Hence, the minimax

value of the built strategy is 2.

Let now 6 = (&,,9,%,p) be the PV of the optimal winning strategy O of R and thus ¢' 2 —
Mp < '@ =z If A% £ b" it holds p = 1. However, since maxzecrc' — M < minges c'
the resulting value of the objective function is less than any other path obeying A"z < bY. This
is a contradiction to the minimax optimality of 6 since there exists a strategy for assigning the
universal variables such that A%z < b” is fulfilled: if there were no such strategy there would be
a destructive winning strategy for the existential player and thus the optimal value of P would
be —co. Thus, A¥Z < b”. Hence, p = 0, 9 = 0 and #; = 0 for all i € A and consequently
A3z < b?. Thus, & represents a legal path from the root to a leaf of the game tree of P. Further,
all other leaves of O have values less than or equal to 2. Hence, for any leaf (Z,0,7,t,p) of O it

is either

e A"z <" and A7z < b7
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e or argmin {F@ (M, ... z0-D)=0}c Aand p=1.
i€{1,....8}

Thus, O can be converted to a winning truncated strategy for P by adopting the branches

representing legal moves. Therefore, z > Z and consequently z = Z. O

Proof. (Theorem 5.4.4, second equivalence, direction “=-")

Let there be a destructive winning truncated strategy S for P. We show that in any leaf of
the optimal winning strategy for R € f'°(P) the objective value of the corresponding variable
assignment is less than gcnelg ¢' x. Therefore, we build a strategy using the same procedure as in
the proof of the first equivalence. Any path from the root to a leaf in this built strategy represents

a variable assignment resulting in an objective value less than mig ¢!z, as there always exists a
S

stage where no verification vector v*) € V can be found. Thus, a winning strategy exists with
PV less than mi? ¢ x. Therefore, the optimal winning strategy for R must also have a PV with
S
objective value less than mig clx. O
S

Proof. (“«<” implications of Theorem 5.4.4)

The proof of the “<=” implications shortly works as follows: Let A < X be the abbreviation for
Theorem 5.4.4 item 1, B < Y for item 2 and C < Z for item 3. Since the cases A, B, C and X,
Y, Z, respectively, are disjoint, we additionally know'® AY BY C and X VY V Z. Surprisingly,
as a consequence the proof is complete: For example in order to show X = A it suffices to show
—-A = —-X. —-A implies B Y C which itself implies Y ¥V Z (as shown in the proofs before) and
hence = X. O

In order to constitute a polynomial-time reduction function we also must show that one can

find an element from f!P(P) within polynomial time regarding the input size.

Theorem 5.4.14. Let P = (A3, AV, b°,b0",¢,L£,Q) be a given QIP'P. An element of the set
fIP(P) of the reduction function given in Definition 5.4.2 can be computed in polynomial time

with respect to the input size.

Proof. The size of the input P = (AH, AY b3 b7 ¢, L, Q) only depends on the number of variables
n and the number of constraints of both systems m3 and my. Obviously, values for the vectors
L and M and the value for M can be computed in polynomial time with respect to n, mg and
my by computing the bounds given in (5.11), (5.12) and (5.14), respectively. For the entries
of RLCP it is not necessary to find the lowest common denominator, i.e. it suffices to simply
multiply the denominators of the non-zero entries of row k and take its reciprocal for RﬁD c
which can be computed in polynomial time. If the denominators are not at hand it suffices to
determine the largest number of decimal places d of the entries in row k£ and select RﬁD ¢ =101,
The number of variables in the resulting QIP is in O(n +n? +n-my): O(n) x and t variables,
O(n?) v variables, O(n - my) y variables and one p variable. The number of constraints is

O(n-m3+n-my): O(n-m3) constraints in (5.6), mg constraints in (5.7), O(n - my) in (5.8)

10V is used for the exclusive disjunction.
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and 1 and O(n) constraints in (5.9) and (5.10), respectively. Hence, an element of fI°(P) can

be computed in polynomial time. ]

We have shown the connection between the solution of a QIP™® P with the solution of any
element in f'°(P) in Theorem 5.4.4 and with Theorem 5.4.14 we proved that the mapping of
P to some element in f°(P) can be done in polynomial time. Together with the trivial claim
QIP <, QIP'P this shows that QIP'P is indeed PSPACE-complete.

5.5. Relaxations

As already outlined in in Section 3.2, relaxations are a powerful tool to generate bounds on
the optimal value of a (sub)problem and sometimes even to find valid solutions. Most relax-
ations presented in Section 3.2, however, are only applicable under very specific circumstances
for QIP'P. For example, the LP-relaxation that only considers the existential constraint system,
generally does not produce any usable information for a QIPP as its objective value does not
necessarily constitute a bound on the optimal value and not even its infeasibility allows unequiv-
ocal conclusions. We propose several relaxations for QIP'P and investigate what conclusions can

be drawn from them. The relaxations are obtained by
e relaxing the integrality of variables,
e altering the quantification of variables,
e alternating the order of the variables,
e ignoring the interdependence,

e omitting one of the constraint systems, or

shrinking the set of considered scenarios.

First, we investigate relaxations that arise by clustering equally quantified variables, ignoring the
interdependence of variable domains and further omitting one of the constraint systems. Four
relaxations arise, each containing only two variable blocks. We start with the two relaxations
scrutinizing the satisfiability of A3z < b7 in Definitions 5.5.1 and 5.5.3 and then present in
Definitions 5.5.6 and 5.5.7 relaxations that focus on the fulfillment of the universal constraint

system.
Definition 5.5.1 ((3¥)>-Relaxation).
For a QIP™P P = (A3, AY,b,0",¢,L,Q) the QIP

min <03x3 4+ max (cvxv)> st.Jag € LaVay € Ly: Az <’
r3€LS Ty ELY

is called its (3V)3-relaxation.

For the (3V)7-relaxation the variable sequence is altered such that the existential variables

must be set first within their rigid bounds £3 (in particular not within some interdependent
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domain) and subsequently the universal variables are assigned. Thus, a single fixation of the
existential variables x3 must exist, such that the existential constraint system holds for all

assignments of the universal variables. The universal constraint system is completely neglected.

Proposition 5.5.2. Given a QIP'P P and its (3¥)>-relazation R. If R is feasible with optimal

first-stage solution T3 and optimal value Zr then P is also feasible with optimal value Zp < ZR.

Proof. As R is feasible with first-stage solution Z3 the following holds:
Vay € Ly : Ajwy < b7 — AdZs. (5.21)

Consider the truncated strategy T' = (V' E', ¢’) arising from applying the variable assignment at
existential nodes as in 3. This truncated strategy constitutes a winning truncated strategy: For
each existential node vz € V' NV5 it is F(v3) # 0 because of (5.21) and furthermore for each leaf
vy, € VNV it is AH:J:”L < b? and thus minimaz.(vy) € {cT:rvL, —o0}. As z,, also corresponds
to a leaf in the optimal winning strategy for R we know minimaz.(vy) < Zg. Furthermore,
for any other terminal node o € T(T) \ V¢ it is © € Vi with minimazx.(0) = —oco. Hence, for
any terminal node v € T(7T) it is minimaz.(v) < Zr and therefore minimax.(T) < Zg with
Theorem 5.3.16. O

Note that this relaxation is closely linked to SCP (see Section 3.1.3 and 5.6.3), as a single
existential variable assignment is searched such that the existential constraint system is fulfilled,
regardless of the universal variable assignment. Unfortunately, the infeasibility of an (3V)7-
relaxation provides no useful information about the underlying QIP™® and even the decision
problem of finding such an existential variable assignment remains NP-complete [Woll5].

The following (V3)7-relaxation differs from the (3V) -relaxation in the order of the variables.

Definition 5.5.3 ((V3)7-Relaxation).
For a QIP™P P = (A3, AY,b,0b",¢,L,Q) the QIP

max (cvxv + min (03x3)> st.Vay € Ly oz e L3: Az <V’
ryELY r3€L3

is called its (V3)3-relaxation.

Again, the universal constraint system is neglected in the (¥3)7-relaxation and for any assign-
ment of the universal variables it suffices to find an assignment of the existential variables such
that A3z < b7. In constrast to the VY3-relaxation of a QIP (see [Woll15]), one cannot conclude

the infeasibility of a QIP® instance, if its (¥3)>-relaxation is infeasible.

Example 5.5.4. Let n = 3, L = {0,1}3, Q = (3,V,3) and ¢ = 0. The universal constraint
system only contains x1+x2 < 1. The two existential constraints are x1+x2 < 1 and x1+x3 > 2.
The (V3)F-relazation of this QIP'P is infeasible, as fx1, 23 € {0,1} : 21 < 0 and x1+x3 > 2. The
QIP'P itself, however, is feasible with first-stage solution &y = 1, since F®)(z1) = {0} # L),

Furthermore, the optimal value of a feasible (V3)7-relaxation generally does not yield a lower

bound on the optimal value of an underlying feasible QIPP.
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Example 5.5.5. Let n = 4, £L = {0,1}*, Q = (3,V,3,V) and c = (0,1,—1,0). The universal
constraint system only contains xo +x3 < 1. The only existential constraint is x1 + xo +x3 > 2.
By the way: x4 is just an auxiliary universal variable in order to detect a violation caused by xs.
The (V3)3-relazation of this QIP'P is feasible, with first-stage solution &y = (1,0) and optimal
value 0. The optimal value of the QIP'P, however, is —1.

So far the relaxations aimed at scrutinizing the fulfillment of the existential constraint system.
Similar relaxations can be defined with focus on Az < b”. For the sake of completeness we
define the (V3)"-relaxation, even though—similar to the (V3)7-relaxation—it also does not yield

any useful information for the underlying QIP'P in general.

Definition 5.5.6 ((v3)"-Relaxation).
For a QIP™P P = (A3, AY,b,b",¢,L,Q) the QIP

min <03x3 + max (cva?v)> st.Vras € L Tay € Ly: A%z < b’
r3€L3 Ty ELY

is called its (V3)"-relaxation.

The (V3)"-relaxation has similar properties as the (¥3)7-relaxation: one cannot conclude the
feasibility (infeasibility) of a QIP'P if its (V3)"-relaxation is feasible (infeasible) and no general
statements about upper bounds can be made. But by solving its counterpart—presented in the

following definition—valuable information can be obtained.

Definition 5.5.7 ((3V)"-Relaxation).
For a QIP™P P = (A3, AY,b,0",¢,L,Q) the QIP

max <cvy:v + min (63x3)> st.Jay € LyVag € Ly: Az <b”
Ty ELY r3€ELY

is called its (3V)"-relaxation.

Proposition 5.5.8. Given a QIP'™® P and its (3V)"-relazation R. If R is feasible then either

P is infeasible or for the optimal value Zp of P Zp # —oo applies.

Proof. Let G = (V, E,e) be the game tree of P and let &y be the optimal first-stage solution
of R. We show, that for any truncated strategy T = (V', E’,€’) of P there exists a terminal
node w € T(T') with minimaz.(w) # —oo. This is done by traversing 7' along the (unique)
path arising from selecting edges according to the universal decisions as in Zy. We start at
level £ = 0 and the root node wy € V5. If F(wg) = 0 it is wy € T(T') and with Lemma 5.3.15
minimaz.(wy) = +oo. If F(wg) # 0 there exists exactly one wy € V' with (wg,w1) € E'. The
remaining path is now constructed inductively. Let 0 < £ < n be the current level and wy the

current node.

o If wy € V3 it is either F(wy) = 0 and thus wy € T(T) resulting in minimazx.(wy) = +0o0,

or we select the unique successor node wyyq € V.



Relaxations 101

o If wy € V5 it is F(wy) # () since previous universal variables were set according to Zy. We

select wyy1 € V' according to the universal decision as in Zy.

o If wy € VL, it is (ww,) (k) = (Zv)k for each k € {1,...,ny}, i.e. each universal variable is
set as in Zy along the path from the root to wy by construction. Since Iy is a first-stage

solution of R it is AV:L‘W < b and hence minimazx.(wy) # —oo.

Therefore, for any truncated strategy T' = (V', E’, €’) of P there exists a terminal node w € T(T)

with minimaz.(w) # —oo and with Theorem 5.3.16 minimazx.(T) # —oc. O

We now exploit the set of first-stage solutions of the (3¥)"-relaxation, because such universal
variable assignments can also be used in order to obtain a bound on the optimal value of a
feasible QIP™P. We call such universal variable assignments unavoidable scenarios, since the

existential player is not able to remove these assignments from the set of legal moves.

Definition 5.5.9 (Set of Unavoidable Scenarios).
For a QIP™P P = (A3, AY,b,b",¢,L,Q) we call

UZ{xveﬁv’Vx;|€[,3: Avxﬁbv}

the set of unavoidable scenarios.

Obviously, with Proposition 5.5.8, if U # () there exists a winning truncated universal strategy
and the extended minimax value of the root note is not —oco. Such unavoidable scenarios can

now be used in an adapted (v3)-relaxation.

Definition 5.5.10 (U-Relaxation).
Given a QIP™® P and let ) # U CU. We call

max (cv:cv + min (Caxg)) st.Voy €U Jzz € L3: Az <b?
vaU I3€E5|

a U-relaxation of P.

A U-relaxation is related to the (V3)3-relaxation with the important difference that useful

information can be obtained from solving a U-relaxation.

Proposition 5.5.11. Given a feasible QIP'™® P. Consider a U-relazation R with ) # U C U

and optimal value Zr. Then Zg is a lower bound on the optimal value Zp of P, i.e. Zr < Zp.

Proof. Since P is feasible R is also feasible and Zp # —oo since U # (). Let Zy be the optimal
first-stage solution of R. Further, as U # (), obviously the (3V)"-relaxation of P is feasible and
Zp # —oo with Proposition 5.5.8. In the optimal winning truncated strategy 7' = (V' E’ ¢/)
for P there exists a path from the root to a terminal node v € T(T) N VL with the universal

decisions as in Zy (Construction as in Proof 5.5.8) and

minimaze(v) = ¢’ z, = ey(zy)y + c3(xy)3

= Cva—i—Cg(.%’U)a > oydy + min c3r3 = ZR.
x3€Ly: A3x<b3



102 Quantified Integer Programming with Interdependent Domains

Therefore, with Theorem 5.3.16, Zp > minimax.(v) > Zg. O

Proposition 5.5.12. Given a QIP'P P and a U-relazation R with O # U CU. If R is infeasible

then also P is infeasible.

Proof. If R is infeasible there is &y € U such that Va3 € £L3: Az £ b7. Consider the game tree
G = (V,E,e) of P and any path r,v1,...,v, from the root to a leaf v, € V, with the universal
variables along the path being assigned as in Zy. Then F(v;—1) # 0 for each i € Zy because
#y € U. Furthermore, A%z, £ b> and thus minimaz.(v,) = 4+00. Since any truncated strategy

must contain such a (partial) path there cannot be a winning truncated strategy in G. O

Remark 5.5.13. For a QIP'™P P = (A3, AY, 07,07, ¢, L,Q) with AY =0 and b” = 0, i.e. a basic
QIP, it is U = Ly. Thus, one obtains a valid U-relaxzation by selecting any subset of the set of
scenarios Ly for U, which is similar to the Y3-S-relaxation (see Definition 3.2.5).

If all entries in AY corresponding to existential variables are zero, the QIP™P is a QIPFU.
In this case U = D. Hence, in case of a QIPTY, relaxations that take unavoidable scenarios
into account can be particularly useful, as the set of unavoidable scenarios is potentially more

accessible.

We can also relax a QIP'™P by entirely dropping the quantification of the variables, or rather
by turning every quantifier in to an existential quantifier. This way we are no longer interested

in strategies but in particular variable assignments from which we want to draw conclusions.

Definition 5.5.14 (IP-¢g-Relaxation).
For a QIP™P P = (A3, AY,b,b",¢,L,Q) and q € {3,V} its IP-g-relaxation is given by

min 15(¢)c' z — Ly(q)c' =
s.t. Alx < b4

x e L,
with indicator function 15(q) =1, if g =G and 15(q) = 0, otherwise.

In terms of games the IP-J-relaxation can be interpreted as a single player game, where the
existential player both sets his own variables, as well as the variables of the universal player,
trying to fulfill the existential constraint system and minimizing the objective value. Relaxing

the integrality of the variables yields the LP-¢-relaxation.

Definition 5.5.15 (LP-g-Relaxation).
For a QIP™P P = (A3 AY,b7,b",¢,L,Q) and q € {3,V} its LP-g-relaxation is given by

min 15(¢)c' z — Ly(q)c' =

s.t. Alx < b4

[ <z <u.
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Unfortunately, within a game tree search, both the IP-¢- and LP-¢-relaxation do not yield a
lower bound or allow extensive conclusions about the feasibility of the QIP'® in general. With
Condition (5.1) an infeasible IP- or LP-3-relaxation yields the infeasibility of the QIP'P instance,
i.e. applying this relaxation at the root during a tree search is reasonable. However, as Condition
(5.1) is only valid at the root, such a relaxation can no longer be interpreted unambiguously
within the search tree: if at an arbitrary inner game tree node v € V' the corresponding IP- or
LP-3-relaxation is infeasible one can only conclude minimaz.(v) € {£oo,+0c0}. In order to rule
out +oo the satisfiability of the universal constraint system must be shown, i.e. the feasibility
of the IP-V-relaxation at this node must be checked.

In case of a feasible LP-3-relaxation one would hope for a lower bound on the optimal value.
Unfortunately, this is not the case either as z;,p € Q, whereas the underlying QIP™® might still
constitute a loss for the universal player, i.e. the optimal value could be —oo. This is also true
at the root node. Nevertheless, there are some special cases where an IP-g- or LP-g-relaxation

can yield more valuable results.

Proposition 5.5.16. Given a QIP'P P and its game tree G = (V, E,e). Consider an existential
nodev € V3. Let the corresponding IP-3-relaxation (with previous variables fized according to the
edge labels along the path from the root to v) be infeasible. If the corresponding IP-Y-relazation

is feasible then minimax.(v) = 400.

Proof. As the IP-3-relaxation is infeasible it is F(v) = @ and no legal move for the exis-
tential player exists. Hence, minimaz.(v) € {£oo,+oc0}. With the feasibility of the IP-V-
relaxation there exists some leaf node w € Vi, below v with A%z, < 7. With Corollary 5.3.12

minimax,(v) # too. O

Proposition 5.5.17. Given a QIP'™® P and its IP-3-relaxation R. Let U # () and let R be
feasible with optimal value Zr. Then either P is infeasible or Zg is a lower bound on the optimal

value Zp of P, i.e. Zr < Zp.

Proof. With U # () and Proposition 5.5.8 it is Zp # —oco. Let Zy € U. For any leaf v € V[, C V
in the game tree G = (V, E,e) of P with (z,)y = Zv it is minimaz.(v) # —oco. A winning
truncated strategy for P must contain a path r,vi...,vp from the root r to a terminal node
ve € T(G) with universal decisions as in Zy. Since &y € U it is F(v;—1) # 0 for each i € Ty, i < £.
Hence, either vy € V5 and thus minimax.(vy) = +o0 > Zg or v, € V. If] in the latter case,
Aaxw £ b3 then minimaz.(vs) = +00 > Zgp and if AHJ:W < b7 then minimaz,(ve) = CTJ/‘W >
min _c'x, = Zg. With Theorem 5.3.16 Zp > Zp. O
veVy: A3x,<b3
Remark 5.5.18. If U # () the IP-3-relaxation can be strengthened by assigning the universal
variables according to an unavoidable scenarios within the relaxation explicitly. This is similar to
the LP-relazation with fized scenarios for QIPs (Definition 3.2.4). Hence, rather than letting the
LP decide on the assignment of universal variables in a best-case manner the universal variables

are fized to some (hopefully worst-case) scenario, for which a solution is sought.
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If U = () incorporating information of both constraint systems into the relaxation can be
beneficial in order receive useful bounds on the optimal value. The following IP-(3AV)-relaxation
is probably the most straightforward relaxation that does this, but it can only be used to a limited

extend.

Definition 5.5.19 (IP-(3 A V)-Relaxation of QIP'P).
For a QIP™P P = (A3, AY,b7,b", ¢, L, Q) its IP-(3 A Y)-relaxation is given by

min ¢' 2

s.t. A7z < b A A < b’

rvel.

In order to be able to use this relaxation the existence of a winning truncated universal

strategy must be ensured.

Proposition 5.5.20. Given a QIP'P P and its IP-(3 \Y)-relazation R. Let there be a winning

truncated universal strategy for P, i.e. for the optimal value Z of P we know Zp € QU {4o00}.
a) If R is infeasible, then P is also infeasible.

b) If R is feasible with optimal value Zr then, Zp > Zp with Zp = minimax.(r).

Proof. Let G = (V, E,e) be the game tree corresponding to P.

a) If R is infeasible, then for each leaf v € V7, in G it holds w(v) € {+00, —00,+00}. Since
there is a winning truncated universal strategy for P the root node has the extended

minimax value +0o and hence P is infeasible.

b) If R is feasible then Zp = min{w(v) | v € Vi, and w(v) € Q} (see Definition 5.3.11). If P
is infeasible +00 = Zp > Zg. If P is feasible then Zp € Q, since there exists a winning

truncated universal strategy for P. Therefore, with Theorem 5.3.16, it is Zp > Zg. ]

By relaxing the integrality of the IP-(3 A V)-relaxation we obtain the LP-(3 A V)-relaxation,
which has the same properties as described in Proposition 5.5.20.

All presented relaxations have advantages and disadvantages. Some can only be applied in
a rather restricted setting, while others remain generally hard to solve in terms of complexity
theory. Nevertheless, exploiting information gathered through relaxations can massively boost

the search process. In Subsection 146 we discuss the relaxations implemented in our solver.

5.6. Solution Techniques for QIP'P

5.6.1. Use of a Partial Deterministic Equivalent Program

In contrast to QIP, for QIPP it is not straightforward possible to build a DEP. The problem
is that the legality of each variable block (both existential and universal) depends on previous

variable assignments (again both existential and universal). Further, there is only a set of
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potential scenarios Ly and a scenario can only take place under certain conditions: it must be
created by legal universal moves from F. Due to the interdependence of universal and existential
legal variable assignments it is also not sufficient to check a posteriori whether a scenario was
legal. Furthermore, one cannot allow arbitrary existential variable assignment from L3 as their
legality might depend on the present scenario and previous existential decisions. The detour via
the reduced QIP and the DEP thereof, however, yields a legitimate equivalent. The reduced QIP
assures that illegal existential moves immediately result in the unsatisfiability of the constraint
system, whereas illegal universal moves result in the trivial satisfiability of the constraint system
and an undesirable small objective objective. Thus, illegal moves are possible in principle, but

are obviously detrimental compared to legal moves.

Definition 5.6.1 (Deterministic Equivalent Program of a QIPI).
Let P = (A3, AV, b°,b",¢,L£,Q) be a QIP™® and let R € fP(P) be a QIP as given in Definition
5.4.2. We call the DEP of R (see Definition 3.1.2) the deterministic equivalent program of P.

The massive overhead of utilizing the reduction function and building the DEP of the re-
sulting QIP prevents the practical applicability of this approach. However, it is possible to
exploit a smaller partial deterministic equivalent program during a tree search for QIP'P by

only considering unavoidable scenarios (see Definition 5.5.9).

Definition 5.6.2 (U-DEP-Relaxation).

Let P = (A3, AV, 67,07, ¢, L£,Q) be a QIP'P withU # 0. Let ) # U C U be a non-empty subset
of unavoidable scenarios. For a given unavoidable scenario s € U and existential variable block

i € & we call X(s,1,U) the set of scenarios similar to s in U up to block i given by

Z(s,z’,U):{anng > Bk|:sj:aj}.

keA: k<i

The U-DEP-relaxation of P is given as follows:

min k (5.22)
st.elay <k VseU (5.23)
Azg <b Vs e U (5.24)
(xs)y = s Vs e U (5.25)
(xs)3 € L3 VseU (5.26)
2l = 2z Vie&, s,oe€U s#oa, 0¢€X(s,i,U) (5.27)

A U-DEP-relaxation is closely linked to the S-relaxation of a QIP (see Definition 3.2.7) where
only a subset S C Ly is considered. For a QIP, i.e. a QIP® with AY = 0 and b” = 0, obviously
U = Ly and the Ly-DEP-relaxation of a QIP is simply its ordinary DEP. Further, for any subset
U C Ly the U-DEP-relaxation is the DEP of its S-relaxation with S = U.

Proposition 5.6.3. Let P = (A7, A7,b7,0",¢,£,Q) be a QIP™® and let 0 # U CU. Let R be
the U-DEP-relaxation of P. If R is infeasible then P is infeasible.
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Proof. Consider the game tree G = (V, E, ) of P and the subgraph G = (V, E, &) of G defined
as follows: For any leaf node v € Vi, of G with (x,)y € U the path from the root to v is part of
G. Hence, for any leaf 0 € Vi, N Vit is A%z, < b Obviously, finding a solution to R is equal
to finding a winning truncated existential strategy in G. Since R is infeasible there exists no
winning truncated existential strategy in G and thus there is a destructive universal strategy D
in G. Since for each existential node in G all successors as in G are present, D also constitutes

a destructive strategy in G and P is infeasible with Corollary 5.3.8. O

Proposition 5.6.4. Let P = (A7, AY,b7,0",¢,£,Q) be a QIP™® and let ) # U CU. Let R be
the U-DEP-relazation of P and let R be feasible with objective value 2 = ¢'&. Then either P

1s infeasible or Zgr is a lower bound on the optimal value Zp of P, i.e. Zr < Zp.

Proof. Let G = (V, E,e) be the game tree of P. If P is infeasible, then minimaz.(G) = +o00 >
Zg. Therefore, let P be feasible. Since U # () it is zp # —oc with Proposition 5.5.8. Consider the
subgraph G = (\7, E, é) of G as defined in the proof of Proposition 5.6.3. Since R is feasible there
exists a winning truncated existential strategy in G. A winning truncated existential strategy
in G must have a winning truncated existential strategy of Gasa subgraph, i.e. in order to win
in G one must be able to win in G. Thus, any winning truncated existential strategy in G has
aleaf v € VNV with z, being the principal variation of the corresponding strategy in G with
w(v) > Zg. Hence, with Theorem 5.3.16, it is Zg < Zp. O

By relaxing the integrality in Constraint (5.26) an LP arises that has grown linearly in the
number of considered scenarios |U| compared to the original existential constraint system. In
particular, for |U| = 1 the LP-relaxed U-DEP-relaxation has the same size as the LP-3-relaxation
with the benefit that universal variables are fixed to the scenario s € U (and therefore cannot be
set as if they aim at minimizing the objective). Hence, the resulting objective value constitutes
a better (or at least not worse) bound on the optimal value of the underlying QIP'P. Therefore,
if U # (), fixing universal variables to one of the unavoidable scenarios always yields a not worse
relaxation compared to solving the pure LP with potentially less runtime (since there are less
open variables). In practice—similar to the observations for the S-relaxation of a QIP—one
has to choose U wisely: a possibly better bound might arise if more scenarios are considered
while simultaneously the runtime of the resulting IP (or further relaxed LP) increases with more
incorporated scenarios. Furthermore, if the “wrong” scenarios are selected the bound does not

even improve.

5.6.2. The Extended Minimax Algorithm and Alpha-Beta Pruning

As a QIP'P can be represented via a game tree as shown in Section 5.3 we want to present
an extended minimax search capable of solving QIP'P instances. A minimax tree is a game
tree in which each inner node—representing a decision for one of the players—is marked as a
MIN or a MAX node. In a QIP'P the existential player is trying to minimize the objective
and consequently nodes representing existential variable decisions are MIN nodes. MAX nodes

represent decisions by the universal player. In contrast to a QIP we have to ensure a winning



Solution Techniques for QIPP 107

truncated strategy for the existential player in order to show the feasibility of a QIP™®. Due to
the special nature of the QIP'™® one must cope with leaves and inner nodes having the symbolic
value o0, but note that the restriction {x € £ | A%z < b} # 0 for any QIP™® prohibits that
the root note takes this value (see Corollary 5.3.13). The extended minimax value presented
in Definition 5.3.11 already outlines the extended minimax algorithm (see Algorithm 4). This
algorithm recursively computes the extended minimax value for each inner node, starting with
the values of the leaves (given by the weighting function w(v)). Nodes with value +o00 are omitted
when calculating the minimum or maximum value of a node’s successors. If all successors have

the value oo the node itself receives this value. Algorithm 4 is also applicable for the special

Algorithm 4: Extended minimax algorithm: ExtendedMinimax(v)

Input: node v
1: if v € V, then
2:  return w(v)
3: end if
4: P = (b
5. for v € {u e V| (v,u) € E} do
6: if ExtendedMinimax(v') # +oo then
7 P := P UExtendedMinimax(v’) // Only nodes not in Vi, are added
8: end if
9: end for
10: if P = () then
11:  return oo
12: else if v € Vi then
13:  return max (P)
14: else
15:  return min(P)
16: end if

cases where the considered QIPP is in fact a QIP or a QIPPY. In those cases the possible values
at the leaves are within Q U {400, —0o} and hence the set P always contains as many values as
there are successors.

The extended minimax algorithm must traverse the entire game tree and evaluate every leaf
in order to compute minimaz.(r) of the root r. In mixed integer programming branch-and-cut
procedures are used in order to prune subtrees that cannot contain the optimal solution [PR91].
For game tree search the alpha-beta algorithm can be used in order to prune away branches
during the search [KM75, PABO01]. In this setting, subtrees are pruned that might be part of an
optimal strategy but that cannot influence the minimax value, i.e. subtrees that do not contain
the PV. This technique also can be used for QIPs [Woll5]. The values « and (3, maintained

during the search, have the following purpose at any given node v € V in the game tree:

e « is the maximum value of all MAX nodes above v that were already visited. Assume
v € V3, i.e. v is a MIN node. If any child v' € £(v) yields a value less than or equal to
« the remaining children can be omitted, because v cannot be part of the PV since at an

earlier stage the universal (MAX) player has a better move yielding the value «.
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e (3 is the minimum value of all MIN nodes above v that were already visited. Assume
v €V, i.e. vis a MAX node. If any child v € L(v) yields a value larger than or equal to
[ the remaining children can be omitted, because v cannot be part of the PV since at an

earlier stage the existential (MIN) player has a better move yielding the value £.

The alpha-beta algorithm is particular advantageous if the PV is visited first as the emerging
values for v and 8 more frequently lead to cutoffs. Hence, the order in which the nodes are
evaluated has an enormous impact on its performance. The search order used in Algorithm
4 on the other hand is completely irrelevant, since every leaf has to be visited anyway. Just
like the minimax algorithm, the alpha-beta algorithm can be made applicable for QIP™® by
making a small change regarding the possible leaf value +00. We provide the basic framework
in Appendix A.4 on page 176: Algorithm 11 is called as the main function, which results in a
recursive call of Algorithm 12, where nodes having the value oo are dealt with as if they were
not visited at all.'’ If, however, only the legal successors F(v), instead of all successors £(v),
of the current node v are explored (Lines 6 and 18 in Algorithm 12), no returned value will be
+oo. Additionally, querying F(v) immediately detects terminal nodes with value +o0o or —oo.

This way a more compact alpha-beta algorithm can be stated in Algorithm 5, Algorithm 12.

Algorithm 5: Alpha-beta call for QIP'P with legality check: AlphaBetar (v,a,3).

Input: node v, value «, value
1: if v € V, then

2:  return w(v) // weighting function w(v), see Definition 5.3.11
3: end if

4: if v € Vi then // v is a MAX node

5. for all v € F(v) do // only legal successors are considered

6: a = max{a, AlphaBetar, (v, a, 8)}

7 if a > 8 then

8 return (

9 end if

10: end for
11: return o

12: end if

13: if v € V5 then // v is a MIN node

14:  for all v' € F(v) do // only legal successors are considered
15: f = min{f, AlphaBetar (v', o, )}

16: if 5 < a then

17: return «

18: end if

19: end for
20 return J
21: end if

This algorithm is very similar to the standard alpha-beta algorithm with the main difference

that for some inner nodes v € V'\ V1, no successors need to be evaluated. If in such a case v € V3,

1 Algorithm 11 is only given for the sake of completeness and Algorithm 12 is replaced in the following lines,
which is why both are only listed in the appendix.
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Algorithm 5 returns the current S value. Note that for a yet unmodified 5 this is consistent
with the actual value of this terminal node, as 5 is initialized to 4oc0.

The efficiency of the legality checks in Lines 5 and 14 is crucial to the performance of Algorithm
5. To verify the legality of a particular variable assignment an IP-satisfiability problem has to
be solved (see Definition 5.2.1), which is NP-complete in general. In Chapter 6 it is discusses in

which cases the distinction between legal and illegal assignments can be done efficiently.

Example 5.6.5. Consider a QIP'® with four binary variables and Q = (3,¥,3,V). The leaf
values in the game tree in Figure 5.2 are deliberately chosen to show possible effects of Algorithms
5 and 12. If Algorithm 5 is utilized dotted lines (illegal moves) are not considered. Algorithm
12 traverses dotted lines as usual but does never takes children that return oo into account
when updating « or B values. For example the second leaf (counting from the left) is visited and
evaluated if Algorithm 12 is used but is not even considered in Algorithm 5. The selected move
order has an enormous impact on the performed cutoffs. If, for example, the two suggested nodes

at the bottom left were visited in reverse order, no cutoff would occur in this subtree.

—2| [+o00| |0

Figure 5.2.: Game tree with rectangular leaves, circular MAX nodes, and pentagonal MIN nodes.
Values in the nodes are the actual extended minimax values. Gray nodes are not
visited by the alpha-beta algorithm if the search order always picks the left successor
first. Dotted lines indicate illegal moves. The most important updates(—) and
transfers(—) of @ and [ values are indicated next to the respective edges.

5.6.3. Strategic Copy-Pruning for QIP'P

The strategic copy-pruning mechanism presented in Subsection 3.1.3 can be used in QIPs in
order to quickly verify the existence and optimality of (sub)strategies. For QIPP this idea can
be adopted, given that the optimal extended minimax value Z of the already examined subtree is
rational and in particular not —oo, 400 or +00. The question is whether the existential variable
assignments as in the corresponding PV can be used in the neighboring subtree, immediately
resulting in a strategy for the existential player that is better than the already found optimal

substrategy in the first searched subtree. For QIP this is done by verifying the fulfillment of each
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(existential) constraint using the constraint-specific worst-case universal variable assignments
and checking that the objective value at each leaf of the resulting strategy is less than or equal
to Z. Similarly, we can check the fulfillment of the existential constraint system in order to verify

the existence of a winning truncated substrategy of a QIP'P.

Proposition 5.6.6. Given a binary QIP'™® P and let v € V be an inner node of the correspond-

ing game tree G = (V, E, e), reached via the partial variable assignment (Z1,...,Tx) with k € T.
Consider a leaf below v corresponding to & = (T1,..., Tk, Tht1,--.,2g) € L with Az < b3 If
k
YoALE+ Y AR+ > AL < Vie{l,...,m3} (5.28)
Jj=1 JEIs: JELy:
Jj>k j>kAAiJ>0

the substrategy below v arising when always setting future existential variables according to & is

a winning existential substrateqy and

k
minimaze(v) <Y E+ Y cidj+ Y C;_ (5.29)
Jj=1 jE€I3: JETy:
7>k 7>k

with cj+ = max(c;,0) being the positive part of c;.

Proof. Let T = (V', E', ¢') be the arising substrategy. In each leaf £ € Vi, NV’ it is A7z, < b°
with (5.28) and therefore minimaz.(f) = w(f) € {c'xy, —o0}. Therefore, T is a winning
strategy. With Corollary 5.3.10 T implies a winning truncated strategy 7" for the existential
player, which is a subgraph of T" without parts reached via illegal universal variable assignments.

With Theorem 2.1.16 minimaz’ (v) is equal to the largest value at the leaves and hence

k
minimaz.(v) < minimaz! (v) < minimaz” (v) = Z cLTj + Z c;xj + Z c;r. O
Jj=1 jEI3: JETy:
>k >k

In the above proposition the universal constraint system is neglected and therefore leaves
having the value —oo are not recognized as such. Therefore, the bound on minimax.(v) can be
rather conservative, as illegal universal variable assignments are not prohibited in 7. Further,
some winning truncated existential substrategies are not detected, as illegal universal variable
assignments can lead to a violation of Condition (5.28). However, as we are aiming for a
computationally quick verification of a substrategy, we accept that Condition (5.28) is only
sufficient. This result can be used in order to show the applicabilty of SCP in QIPP.

Theorem 5.6.7 (Strategic Copy-Pruning (SCP) for QIPIP).

Consider a binary QIP™P and its game tree G = (V,E,e). Let k € Ty and let (Zy,...,2Zp_1) €
{0,1}*=1 be a fized legal variable assignment of the variables 1, ... ,xp_1. Let v € Vi be the
corresponding node in the game tree. Let w € V and w € V be the two children of v correspond-

ing to the variable assignment Ty and T = 1 — Iy of the universal variable xj., respectively.
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Let there be an optimal winning truncated existential strategy for the subtree below w with ex-
tended minimax value Z € Q defined by the variable assignment & = (Z1,...,&y,) € {0,1}", i.e.

T&. If the value of the copied strategy for the subtree below w—obtained by adoption of

zZ=c
future existential variable assignments as in T—is not larger than Z and if this copied strategy

constitutes a winning strategy’® then minimaz.(v) = 2. Formally: If both

Ck(fk - fk) + Z Cj(l - fj) — Z c;z; < 0 (530)
JELy: JE€Ly:
J>kANc;>0 J>kAc;j<0
and
S Alm+ Ala+ YD A < Vie{l,...,ma} (5.31)
JET: J€Ly:
JeI3V j<k J>kAAF ;>0

then minimax.(v) = Z.

Proof. Similar reasoning as in the proof of Proposition 5.6.6 is used. If (5.31) is fulfilled a
winning strategy exists below w, which implies a winning truncated strategy. The extended
minimax value of this winning truncated strategy is less than or equal to the minimax value of
the winning strategy. Hence, if Condition (5.30) is fulfilled, the value of this winning strategy is

less than or equal to Z and therefore minimax.(w) < z. Consequently, minimaz.(v) = 2. [

Similar to results obtained in Theorem 3.1.8, SCP can also be adapted for general QIPP that
are not restricted to binary variables. The implementation of SCP as presented in Algorithm
1 can also be used for QIP'P, since the universal constraint system is neglected and the same
conditions must be checked at each universal node. In particular, Conditions (5.30) and (5.31)
in the above theorem exactly match Conditions (3.7) and (3.8) of Theorem 3.1.7. We refer to
page 37 for implementation details. However, depending on the used data structure for storing
the current path in the search tree and the corresponding partial variable assignment, one must
keep in mind that Line 3 of Algorithm 1 is based on the actual game tree. In particular, only
considering the branching variables can be problematic for the use of SCP in a QIP™P: In order
to ensure the fulfillment of the universal constraint system—and thus the legality of universal
moves—the assignment of a universal variable can be implied in a QIP'P if the fulfillment of
some universal constraint is only possible with a certain fixation of this variable. This is never
the case for QIP, where each universal variable assignment within Ly can occur. Line 3 must
refer to the parent node within the actual game tree, rather than only the previous branching
variable. Omitting implied universal variables in Line 3 leads to incorrect results, if in Line 5
only those constraints are checked in which the universal variable corresponding to the current

node is present (cf. Proposition 3.1.9).

Example 5.6.8. Consider a QIP™® with four variables with £ = {0,1}*. The parameters

describing the instance can be found in Table 5.1. and its game tree is given in Figure 5.3.

2Not a truncated winning strategy.
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Table 5.1.: Parameters of Example 5.6.8.

e’ Qozx Az < b Az <Y
1 —x2 4x3 —z4 <1 (a)
min —3z3 —x4 Vo1 Vo Fxz Tz4 —x2 4x3 +xa <1 (b) 1 4x2 =1
T2 —z4 <0 (c)

—4

Figure 5.3.: Example for the use of SCP in a QIP'P. Game tree with rectangular leaves, circular

universal (MAX) nodes, and pentagonal existential (MIN) nodes. Edges to the
left and right represent setting the corresponding variable to 0 and 1, respectively.
Values in the nodes are the actual extended minimax values. Green lines indicate
an optimal winning truncated strategy. Writing beneath certain leaves indicate the
violated existential constraint and/or the value of ¢’z at this node.

a) Assume the search first traverses the solid red path. After setting x1 = 0 immediately xo = 1

can be implied—as this is the only way to fulfill A%z < b”—and no explicit branching step
might be executed for xo. In this case setting xrs = 1 and x4 = 1 is optimal resulting in
the objective value —4. Hence, SCP might be applicable and Algorithm 1 traverses the tree
towards the root. If, however, parent(vs) = vg—i.e. if implied variables are not explicitly
stored as nodes—and if in Line 5 only those (existential) constraints are checked in which
the variable corresponding to vg, i.e. x1, occurs, SCP produces an incorrect result: x1
is only present in Constraint (a) and for 3 = 1 and T4 = 1 this constraint is fulfilled
regardless of the assignment of the universal variables. Further, the worst-case objective
remains —4. Therefore, the two Conditions (5.30) and (5.31) seem to be fulfilled. Thus,
there appears to be a strategy for the right-hand side subtree (dashed red lines) with objective
—4 and the use of SCP falsely yields minimazx.(vy) = —4. There are two options to bypass

this mistake:

1. Always check the entire existential constraint system in Line 5 of Algorithm 1 in
order to ensure Condition (5.31). Then the violation of Constraint (b) is detected
while checking Line 5 at the root vy.
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2. Ensure that in Line 3 implied variables are not omitted. If parent(vs) = vy then the
query of Condition (5.31) in Line 5 checks the worst-case fulfillment of Constraints
(a), (b) and (c), since x2 is present in each of them. Hence, the violation of Constraint

(b) is detected and no node is marked as finished.

b) Assume the search first follows the solid blue path, which indeed is the PV of the instance.
For vy the query in Line 5 returns TRUE, as setting T3 = 0 and T4 = 1 is also applicable
in the subtree corresponding to x1 = 1 and xo = 1 with objective value —1. Thus, SCP is
checked at the above universal root node vy = parent(ve). Again T3 =0 and T4 = 1 yield
a winning strategy in the left subtree (see dashed blue lines) with objective value equal to

—1. This winning strategy implies a winning truncated strategy (solid green lines).

Note that the optimal solution indicated be green lines is not unique: In the left-hand subtree
setting xs = x4 = 1 yields a better (local) payoff of —4. However, as the (global) optimal value
solely depends on the PV, an optimal winning truncated strategy does not have to consist of all

(locally) optimal substrategies.

SCP as presented in Theorem 5.6.7 and implemented as in Algorithm 1 demands a winning
strategy, instead of a winning truncated strategy, which is a rather strong condition for QIP™P. If
the two outer dashed blue lines would not yield a fulfilled existential system or an objective larger
than —1 SCP would not be applicable; even though these leaves belong to subtrees only reachable
via illegal moves by the universal player. The reason for this is that Conditions (5.30) and (5.31)
examine the worst-case universal variable assignment according to £, which in case of QIP™® does
not necessarily reflect legal play by the universal player. However, incorporating the worst-case
legal scenario in these conditions would require the evaluation of several subproblems, thwarting
the polynomial evaluation time (see Proposition 3.1.9). We are able to show in Chapter 7, and
in particular on pages 153ff., that the use of SCP has an extraordinary impact on the runtime

of our solver on certain instances.

5.6.4. Monotone Variables

The monotonous occurrence of a variable in the existential constraint system and the objective
can be exploited in a QIP as presented in Subsection 3.1.2. In the presence of universal con-
straints, however, this procedure is no longer valid and must be adapted. Again, we restrict
ourselves to the case that only binary variables are present. The basic idea remains that certain
fixations of a monotone variable can be omitted during the search as setting it the other way

never yields a worse optimal value.

Definition 5.6.9 (Monotonicity in a QIPP).

In a QIP'™P a variable x}, is called positive (negative) monotone if it occurs with only positive
(negative) sign in the existential constraint system and objective and with only negative (positive)
sign in the universal constraint system i.e. if the entries of A% and ¢ belonging to xj, (Afk and cy,)

are all non-negative (non-positive) and the entries in AYJC are all non-positive (non-negative).
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First we point out the relation between two leaves in the game tree of a QIP™P corresponding

to completely assigned variable vectors that only differ in the entry of such a monontone variable.

Corollary 5.6.10. Consider a QIP™® and its corresponding game tree G = (V,E,e). Let
variable xi, k € I, be positive monotone. Consider any two leaves v,0 € Vi with (x5) =
0,(z3)r = 1 and (z3); = (x5); for any other index j # k. Then AV2x; > A%y and APz < Adxg

and ¢"x5 < ¢ xg.

This corollary already shows the main idea of monotonicity in QIP'P: Setting z;, = 0 is
“better” for the existential system and the objective value and it is to the detriment of the
universal constraint system. Thus, the existential player would set it to 0 and the universal

player would set it to 1.

Proposition 5.6.11. Consider a QIP™ and its corresponding game tree G = (V, E,e). Let
variable xy, k € I3, be positive monotone. For any node v € V3 with level(v) = k — 1 and its
two successors v\ and v(Y) representing the assignment of xj, = 0 and x;, = 1, respectively, it

holds: minimaz.(v) = minimaz.(v®) or F(v) = 0.

Proof. Let F(v) # (. We distinguish the four options for the extended minimax value of v,

a) minimaz.(v) = foo, i.e. vV € Vi,
With Corollary 5.3.12 for any leaf £ € V, below v(1) it is A%z, £ b3. Thus, since F(v) # 0,
there must exist a leaf ¢ € V; below v(©) with Aaxg < b?. With Corollary 5.3.12 it is

minimaze(v(®)) # oo and with Definition 5.3.11 minimaz.(v) = minimaz(v®).

b) minimaz.(v)) = +oo.
Since F(v) # 0, there exists a leaf £ € Vi, below v(® with A3z; < b7 and thus it
is minimaz.(v®)) # +oo. Therefore, minimaz.(v®)) < minimaz.(v())) and hence

minimaze(v) = minimaze(v(©®).

¢) minimaz.(v!)) = —oc.
Then there exists an optimal winning truncated existential strategy T below v} and
for each terminal node v € T(T) it is minimaz.(v) = —oo (due to Theorem 5.3.16).
Consider the truncated strategy T below v(?) which results from selecting the edges with
the same labels as in 7. Hence, for each terminal node o € T(T) of this strategy there
exists a terminal node v € T(T) with (z5); = (z3); for any index j # k. If v € Vp, it is
A¥z5 £ b7 and Az; < b7 and with Corollary 5.6.10 this is also true for the corresponding
terminal node © and therefore minimax.(0) = —oo. If v € Vi then F(v) = (). Again, with
Corollary 5.6.10 for the corresponding terminal node @ € T(T) also F(#) = § and thus
minimaz.(0) = —oo. Hence, T is a winning truncated existential strategy below v(*) and

minimaze(v(?) = minimaz,(vV) = minimaz(v).

d) minimaz.(v) € Q.

Then there exists an optimal winning truncated existential strategy T below v and for

T

each terminal node v € T (T) C Vy, it is minimax.(v) = ¢' x5 and in particular A7z; < b°

and A"z; < b”. Analogous to case c), a strategy T below v can be build. With
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Corollary 5.6.10 for each terminal node o € T(T) we know A%z; < b7 and ¢z < ¢ 5.
Hence, T is a winning (potentially truncated) existential strategy and with Theorem 5.3.16

minimaze(vM) > minimaz,(v(?) = minimaz(v). O

Remark 5.6.12. In Proposition 5.6.11 the case F(v) = 0 is treated separately. If F(v) =0 for
v € V3 then minimaz.(v) € {+oo,to0}. In case minimaz.(v) = +oo this node v cannot be
reached via legal play. If minimaz.(v) = +oo the claim minimaz.(v) = minimaz.(v?) is not

always true, as minimaz,(v\")) = +o0o and minimazx.(vM) = +o0o can occur.

By applying Proposition 5.6.11 certain subtrees can be omitted a priori when solving QIPP.
Obviously, similar results can be achieved for negative monotone variables and furthermore
Proposition 5.6.11 can be restated for monotone universal variables. Additionally, in case of

integer variables similar results can be achieved by only considering the variable’s bounds.






6. Simply Restricted QIP'P

The general QIP'P has the drawback that determining the set of legal moves F() at any stage
constitutes an NP-complete problem. In order not to slow down the search excessively, a quick
evaluation of F® would be advantageous. In this chapter we motivate why certain restrictions
on the universal constraint system are reasonable and lessen the hardness of evaluating F(?). We
present a weakened version of the QIP™® and discuss the consequences both for the modeling

possibilities as well as the solution process.

6.1. Motivation

In Section 5.2 the definition of the set of legal variable block assignments F(*) was established.
The evaluation of F(®) requires the solution of several IP-satisfiability problems. Intuitively,
however, the resulting theoretical complexity appears unnatural and artificial: In terms of game
playing determining the set of legal actions defined by the rules of the game is mostly a result
of evaluating some if-then-else rules. Hence, after reading and understanding the rulebook a
move by a player can instantly be classified as legal or illegal. This is certainly true in classic
games like chess or go and a fast classification is possible in all—or in at least most—two-person
zero-sum games, regardless of the game type. What remains hard is to evaluate the quality of
a move.

Another argument why the general QIP™® might be too comprehensive can be found in real-
world planning tasks under uncertainty. Here the “uncertainty” is the occurrence of a scenario
selected by an often intangible decision-maker, represented by universal variables. Thus, the
universal player can be considered to be the one who decides which uncertain event occurs,
the scope of which depends on previous planning decisions. We—as the planner (represented
by existential variables)—do not have the ability to make planning decisions that obliterate
uncertainty in the sense that there is no further legal assignment for universal variables such that
uncertainty “loses”. Hence, even though in a general QIPP it can occur that the universal player
has no strategy in order to ensure the fulfillment of A%z < b", this might never be necessary in
operations research. In particular, for i € A and legal variable assignments 21, ... 201 we
assume that there always exists a legal move for the universal player, i.e. F(®) £ (.

Whether the above claim F®) # () for each universal variable block i € A is reasonable for a
two-person zero-sum game highly depends on the modeling approach. An intuitive way when
modeling a game is to interpret the two constraint systems A3z < b3 and A%z < b" as the

T

“rulebook” for each player and the objective ¢' x as the quality measure of a completed match,

e.g. 0 represents a win for the existential player and 1 a loss. But some games end because one
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player has no legal move left (e.g. chess) and most games have strongly varying match lengths
as they terminate when a specific event occurs (e.g. Tic Tac Toe or again chess). There are two
straightforward modeling approaches for the end of a play in a QIP™®: As soon as the game

terminates (due to the lack of legal moves or due to the occurrence of the game ending event)

a) the losing player is determined (via special constraints and variables) resulting in an empty

set of legal moves for the losing player in her next (auxiliary) turn.

b) the game score is calculated and fed to the objective value. The remaining variables

(present for potential longer matches) can be set trivially, not affecting the objective value.

Both approaches have their advantages and disadvantages. Certainly approach b) should be
used if the outcome of a play is not only “win or loss”, but a payoff for the players, since in
a) the result of the QIP'P is 400 or —oco if the game ends due to the lack of legal moves. In
particular, when using b), the existence of a winning universal (truncated) strategy is ensured
a priori. Keep in mind that “winning strategy” only means, that there is always a way to play
legally and hence ensure A%z < bY; it does not ensure a “win” with respect to the game. The
remaining question is which one is the best strategy regarding the objective function.
Therefore, we argue that the assumption that the universal player always has a winning
(truncated) strategy can be realized in models of robust multistage OR problems as well as
models of two-person zero-sum games. Furthermore, in both settings, determining whether a

move by the universal player is legal is not NP-complete but rather trivial.

6.2. The Simply Restricted QIP'P and its Properties

We want to specify which simplifications make sense for a weakened, but highly applicable

QIP™P. In this section, we examine the consequences of applying the following requirements:
a) there always exists a winning truncated universal strategy.

b) the legality of a universal variable assignment can be checked by separately examining the

universal constraints.

c) illegal existential moves do not have to be detected explicitly, but are uncovered by the

search as such.

If these requirements are fulfilled, the alpha-beta algorithm as presented in Algorithm 5 can
be simplified: The verification of the legality of universal moves can be done in polynomial
time by checking the universal constraints separately (cf. Line 5 of Algorithm 5) and existential
variables assignments can be chosen from £ rather than F (cf. Line 14).

To elaborate the requirements needed in order to achieve the mentioned goals, we start
from the basic idea that the universal player should always have a legal move. Hence, for
i € A and each partial variable assignment #() e F) . 20-1 ¢ FG-1) it ghould be
F@ (i'(l), e ,i’(i_l)) # (). This requirement also immediately ensures the existence of a win-

ning truncated universal strategy.
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Lemma 6.2.1. Giwen a QIP™? P. If FO(zW ... 20-D) £ @ for every universal variable
block i € A and any partial assignment of the previous variable blocks resulting from legal play

M e .7:(1), R =1 ¢ f(i_l), then there exists a winning truncated universal strategy.

Proof. Let G = (V, E,e) be the game tree of P. We explicitly construct a winning truncated

universal strategy S = (V/, E',¢’) via Algorithm 6. The selection conducted in Line 8 is always

Algorithm 6: Building a truncated universal strategy.
Input QIP'P (A3, AY,b7,b", ¢, £,Q), game tree G = (V, E, )

V' ={r} // r is the unique root node of the game tree
2: N {7“}

3 B'=10

4: T = @

5. while N # () do

6: v = Extract(N) // Select and Remove any element out of N
7. if v € V4 then

8: Select any w € F(v)

9: E' =F U{(v,w)} // Add edge leading to w
10: V' =V'U{w} // Add w to the set of nodes
11: N = NU{w}

12:  end if
13: if v € V53 then
14: if F(v) =0 then
15: T=TU{v}
16: end if
17: for all w € F(v) do
18: E' =FE U{(v,w)}
19: V' =V'u{w}
20: N =NU{w}
21: end for
22:  end if
23: if v € V, then
24: T =TU{v}
25:  end if

26: end while

valid, as F(v) # 0 due to the Lemma’s condition. With values in ¢ € Q¥ set according to
the edges’ original values in e, the constructed graph S = (V', E’|€’) is obviously a truncated
universal strategy. The constructed set T is the set of terminal nodes of S, as no edges are
added that originate from elements of T'. Hence, for any terminal node v € T it is either v € V3
or v € V. If v € V, this node was reached via an edge (v',v) starting from a universal node
v' € V§ (as the final variable block is a universal block, as demanded in Definition 5.2.3). In
particular, v € F(v') and thus A"z, < b”. Therefore, S is also a winning truncated universal

strategy. O

Therefore, if the legality of existential variable assignments is ensured, there always exists a

legal universal variable assignment. But as mentioned in the goals, we do not want to explicitly
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keep track of the legality of existential variable assignments, since this would also require the
frequent solution of NP-complete subproblems. Therefore, we strengthen the condition in Lemma
6.2.1 and demand that there always should be a legal assignment for universal variables even if

the existential player selects illegal moves from L.

Corollary 6.2.2. Given a QIP™P P. If FO(z(V .. 20-1) £ § for every universal variable
block i € A and any partial assignment of the previous variable blocks resulting from legal play
by the universal player 2V e £V 22 ¢ F@ 30-2) ¢ F(=2) 30-1 ¢ £6=1) then there

exists a winning truncated universal strategy.

As the requirements of Lemma 6.2.1 are also fulfilled in Corollary 6.2.2 we omit the specific
proof. In order to reach all the goals we still want to make sure that the legality of universal
variable assignments can be decided in polynomial time. In particular, we do not want to solve
an IP in order to ensure (V) € F( but rather examine the universal constraints one by one
and deduce legality from this local information. Therefore, we demand that an illegal universal
variable assignment always has the consequence that at least one universal constraint can no
longer be fulfilled.

Definition 6.2.3 (Simply Restricted QIP™P).
Let P = (A3, AV, 67,07, ¢, L,Q) be a QIP™. If the two following conditions are fulfilled, we call
P a simply restricted QIPIP.

a) For each universal variable block i € A we demand
v (50(1) e LW 22 e FO 3072 ¢ Fli=2) 30-1) ¢ E(i_l)) L FO £, (6.1)

b) Let i € A and let M e M 20D e £ pe g partial variable asstgnment up to
block i. If #) ¢ FOM .. & ( ), then

Jke{l,...,my}: ;AV 29 + AY ;2@ +Z$(}§1€12(J>Ak ;e? o). (6.2)

Condition (6.1) requests, that there always exists a legal move for the universal player, even

if the existential player does not play legally. In particular, previous variable assignments—
although they can restrict the set of legal moves—can never make A%z < b” unfulfillable. In
Condition (6.2) we demand that a universal variable assignment z(") € £() is illegal, if there is
a universal constraint that cannot be fulfilled, even in the best case. Therefore, it is sufficient
to separately check the constraints in which variables of block i are present in order to ensure
£ e FO as outlined in Algorithm 7. If Condition (6.2) is satisfied, Algorithm 7 always returns
FALSE if () is illegal and TRUE if £ e FO_ Hence, in case of a simply restricted QIPP, there
always exists a strategy for the universal player to fulfill A%z < b" (due to (6.1) and Corollary
6.2.2) and further checking (¥ € F(®) can be done in polynomial time (due to (6.1) and (6.2))
for universal variable blocks. The legality of existential variable assignments does not have to
be checked immediately and can be left to the search, as illegal moves by the existential player

can never yield a loss for the universal player (due to Condition (6.1)).
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Algorithm 7: Legality check of variable block assignment for simply restricted QIPP.

Input: universal variable block assignment 7@ partial assignment Z up to block ¢ — 1
1: for all k € {1,...,my} with AZ@) #0 do

2 if (Zj<i AZ,(j)i(]) +AZ,(i)fE(l) + 2055 MiNG) e £6) A\,Z’(j)a:(])) Z b” then

3 return FALSE

4: end if

5: end for

6: return TRUE

Remark 6.2.4. Condition (6.2) only ensures that the legality of an entire universal variable
block can be ensured by checking the corresponding constraints. A stronger requirement would
be that for each single universal variable such a violation can be detected this way. Consider for
example two binary universal variables x1 and xo which occur in the same variable block and
assume there are two universal constraints r1 + xo < 1 and x1 — 9 < 0. For each assignment
of (z1,72) € {0,1}2 it is easy to verify its legality, i.e. whether the mentioned constraints are
satisfied or not, and Condition (6.2) holds. However, if xo is not yet assigned, the verification
of the legality of x1 = 1 cannot be guaranteed this way, since both constraints still can be fulfilled

separately, although no solution of the universal constraint system ezxists.

Since our implementation, as well as the previously presented variants of the alpha-beta
algorithm, branch on variables and not entire variable blocks, Algorithm 7 cannot be called at
each search node. Therefore, we introduce Algorithm 8 which checks, whether a single universal

variable assignment immediately violates one of the universal constraints. As mentioned in

Algorithm 8: Preliminary legality check of a single variable assignment for simply
restricted QIP™: SeemsLegal(Z, ).

Input: universal variable assignment Z,, partial assignment Z up to variable £ — 1
: for all k € {1,...,my} with AZ,E #0 do

2. if (Zjd A} &y + Ay T+ X s ming e r; AZij) £ b" then
3 return FALSE

4: end if
5

6

—_

. end for
: return TRUE

Remark 6.2.4 this does not guarantee that all illegal universal variable assignment are detected.

However, due to the following Lemma, we still can employ this local check.

Proposition 6.2.5. Let i € A be a universal variable block and & € LY x -+ x L0~V ¢ partial
variable assignment up to block (i—1). For ) e £ the following holds: Algorithm 7 with input
(f(i),if) returns TRUE, if and only if Algorithm 8 returns TRUE for each of the inputs (j?gi),g%),
@, @2, @ @20, w0 ), . @ @Y ).

Proof. Assume Algorithm 7 returns TRUE. Then for each constraint in which variables of block

1 are present, fulfilling assignments of future variable blocks exist after the variables of block
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are assigned according to #(). Assume there exists an ¢ € {1,...,|B;|} for which at the input
of (i'éi), (%, :f(li), e :Z'EZ_)I)) Algorithm 8 returns FALSE. Then there exists a constraint in which
variables of block ¢ are present, which cannot be fulfilled even in the best case and even if only a
portion of the variables of block i are assigned according to #(). Hence, this constraint can also
not be fulfilled after the entire variable block is assigned according to (), which contradicts
the assumption that Algorithm 7 returns TRUE. Now assume Algorithm 7 returns FALSE. Then
there exists a constraint k € {1,...,my} which can no longer be fulfilled after the variables of
block i are assigned according to (). Let £ € {1,...,|B;|} be the index of the entry in Z(*) that

corresponds to the last variable of block ¢ present in the violated constraint k. Then

Z Akjwj + ZAku ,L])jf(l + Ak‘ U('L g)xg + Z ml? Ak].r]

J<nis) i<t jntint) IS
Jj€Bi
V A V ~ V
7<t
Hence, for input (icy), (%, igi), ce igl_)l)) Algorithm 8 returns FALSE. O

Therefore, Algorithm 7 can be imitated by consecutive calls of Algorithm 8: Instead of check-
ing the assignment of an entire universal variable block via Algorithm 7 it suffices to call Algo-
rithm 8 for each single universal variable assignment in order to ensure that no illegal universal
variable block assignment is investigated further. In Algorithm 9 the requirements of a simply

restricted QIP'P and the result of Proposition 6.2.5 are exploited in the alpha-beta framework.

Theorem 6.2.6. For a simply restricted QIP™P Algorithm 9 yields the correct extended minimax

value.

Proof. Consider a universal node w € Vi with parent(w) € V3 and (level(w) + 1) € Ba, ie. w
represents the first universal variable within the second variable block, which is by Definition
5.2.3 a universal variable block. Due to Condition (6.1) F*)(z,,) # 0, i.e. there exists a legal
assignment for the universal variable block. Consider any universal node v € V4 below w with
v' € L(v) € VaUuUV, and (level(v) + 1) € Bs, i.e. v represents the final universal variable
within the second variable block. If F(v) = ), due to Proposition 6.2.5 and Condition (6.2),
either SeemsLegal(e(v,v'),z,) returns FALSE for each successor v’ € L(v) or there is a node y
within the path (w,...,y,9/,...,v) from w to v for which SeemsLegal(e(y, y'),z,) returns FALSE.
Consequently, if F(v) = @), Algorithm 9 never visits any of the nodes v' € L(v). Therefore, paths
corresponding to illegal universal variable block assignments are detected due to Proposition
6.2.5 and Condition (6.2) within the same universal variable block and at the same time have
no effect on the returned values.

By induction over the universal variable blocks, any node z € V53U V[, reached by Algorithm 9
represents a partial variable assignment x, consisting of only legal universal variable assignments.
Furthermore, illegal existential variable assignments selected in Line 14 always yield f = +o0
in Line 15, as for each leaf ¢ € Vi, reached during the search the universal constraint system is

fulfilled. Condition (6.1) ensures that for any reached universal block (even via illegal existential
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Algorithm 9: Alpha-beta call for simply restricted QIP'P: AlphaBetag(v,a,3).
Input: node v, value «, value 3
1: if v € V;, then

2:  return w(v) // weighting function w(v), see Definition 5.3.11
3: end if

4: if v € Vi then // v is a MAX node

5. for all ' € £(v) with SeemsLegal(e(v,v'),x,) do

6: a = maz{a, AlphaBetag(v', o, 5) }

7 if a > [ then

8 return [

9 end if

10: end for
11: return o

12: end if

13: if v € V5 then // v is a MIN node

14:  for allv' € L(v) do // also illegal successors are considered
15: B = min{ B, AlphaBetag(v', a, 8)}

16: if 5 < a then

17 return o

18: end if

19:  end for
20: return [
21: end if

variable assignments) there exists a path that represents a legal assignment for this universal
variable block, which will be traversed by the search.

Therefore, illegal universal variable block assignments are detected and omitted during the
search and illegal existential variable assignments result in the correct extended minimax value of

400, while paths representing legal variable assignments by both players are freely traversed. [

Consquently, in order to solve simply restricted QIP'P the alpha-beta Algorithm 5 can be
adapted by querying Algorithm 8 as shown in Algorithm 9. Since our solver uses such an

alpha-beta algorithm as shown in [EH"17] we can adapt it to solve simply restricted QIPIP,

Remark 6.2.7. In the proof of Theorem 6.2.6 Condition (6.1) is needed to ensure that illegal
existential variable assignments do not have to be detected right away. Instead it is ensured, that
a path to an underlying leaf will be traversed yielding +o0o. Hence, if it is ensured that in Line 1}
only legal existential assignments are selected (i.e. v/ € F(v) rather than v’ € L(v)) Condition

(6.1) either can be dropped, or weakened by demanding for any universal variable block i € A
v (2 e FW,2® € FO, . 307D ¢ Fi-D) 500 ¢ FO-D) . FO 29,

in order to still comply with the requirement that there always should be a winning truncated

universal strategy.
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In addition to the applicability of a slightly adapted alpha-beta algorithm in the solver Yasol
there are several other properties that can be used in order to solve QIP'® more efficiently within
the Yasol framework. Due to Condition (6.1) in Definition 6.2.3 the LP-relaxation, which only
contains A%z < b7, is a valid relaxation at each existential search node. This is not true for

general QIP™P | as discussed starting on page 103.

Proposition 6.2.8. Consider a simply restricted QIP™. At any node v € V3 reached via
Algorithm 9 the result of the LP-3-relazation 2 = min{c'z | (I <z <u) A (A%z < b) A (V) €

{1,... level(v)} : x; = (zy);)} is a lower bound on the extended minimaz value of v.

Proof. With Corollary 6.2.2 there is a winning truncated universal strategy. Algorithm 9 only
visits existential nodes that are part of a winning truncated universal strategy as shown in the
proof of Theorem 6.2.6. Therefore, at each visited existential node v € V5 it is minimaz.(v) &
{—00, 400} and hence there exists a leaf £ below v with w(¢) € {¢"zy, 400} and consequently
zZ < w(¢). With Theorem 5.3.16 Z < minimax,(v). O

Remark 6.2.9. The result of Proposition 6.2.8 is not entirely satisfactory as it only holds for
existential nodes. Universal nodes still could be reached via illegal universal moves and thus the

LP-3-relaxation does not provide a valid bound (see Example 6.2.10).

For QIP™ in general one cannot arbitrarily assign universal variables within the LP-3-
relaxation and still obtain a valid relaxation, which turned out to be very useful and important
for solving QIP (see Definition 3.2.4). In order to use a universal variable assignment in the
LP-relaxation one must find unavoidable scenarios (see Definition 5.5.9) and even if U # ) the
available unavoidable scenarios are often not very useful as they are likely some kind of trivial
best case assignments that ensure the existence of a winning universal strategy as demanded in
Condition (6.1): For example in a machine scheduling problem in which maintenance prevents
the failure of machines the only unavoidable scenario might be that no machine fails, which is
likely the resulting universal variable assignment in the plain LP-J-relaxation. However, the
IP-(3 A V)-relaxation as well as the LP-(3 A V)-relaxation can be used, since, the conditions
of Proposition 5.5.20 are fulfilled, as the existence of a winning truncated universal strategy
is ensure at the root by Corollary 6.2.2 and at each existential node v € V3 of the game tree
when applying Algorithm 9. Hence, by adding the universal constraints to the relaxation the

interdependence of universal and existential variables is partially included.

Example 6.2.10. For universal nodes, in general, it is not guaranteed, that they are always
reached via legal universal variable assignments in Algorithm 9. Hence, the LP-3-relaxation can
yield misleading results when applied at universal nodes reached via illegal universal variable

assignments. Consider a QIP'P with quantification sequence

dx1 €{0,1} Vag € {0,1} Va3 € {0,1} x4 € {0,1}, (6.3)
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universal constraint system

2+ 23 <1 (6.4)
To—x3 <0, (6.5)
existential constraint system
1+ a0 +24 <1, (6.6)
and objective function
min —2x; — x4 . (6.7)

Note that in this case a closing universal variable block is not needed, as the existential variable
x4 is not present in the universal constraint system. This is a simply restricted QIP'P as a) a
winning (truncated) universal strategy exists (regardless of any existential variable assignment)
and b) the legality of an assignment of the entire universal variable block can be checked by
separately checking the constraints. Assume the search first traverses the edge corresponding to
x1 = 1. Note that in this case xo = 1 is illegal. Algorithm 8, however, returns TRUE, for the
input (1, (1)) since Constraint (6.4) can still be fulfilled with x5 = 0 and Constraint (6.4) with
x3 = 1. The existential constraint system, on the other hand, is violated and the corresponding
LP-3-relazation is infeasible. However, the extended minimaz value of the current node is +00
and therefore it is wrong to conclude that a destructive winning universal strateqy exists if x1 is

set to 1. In particular, x1 = 1 is the optimal first-stage solution.

Corollary 6.2.11. Consider a simply restricted QIP™. Assume only legal universal successors
are visited during Algorithm 9, i.e. if in Line 5 v' € F(v) is ensured. Then for any given node
v € V reached during this search the result of the LP-3-relaxation 2 = min{c'z | (I < z <
u) A (APx < V) A (V) € {1,... level(v)} : zj = (24);)} is a lower bound on the extended

minimaz value of v, i.e. Z < minimaz.(v).

Proof. Each visited node is part of a winning truncated universal strategy, due to Condition (6.1)
and the requirement that only legal universal variable assignments are considered. Hence, by

adopting the proof of Proposition 6.2.8, the conclusion follows immediately. O

6.3. Structural Requirements

Our solver utilizes the LP-3-relaxation at every search node in order to asses the quality of a
branching variable (e.g. [AKMO5]), the satisfiability of the existential constraint system in the
current subtree or for the generation of bounds. In order to use those mechanisms for simply
restricted QIP'™® we are interested in ensuring that the requirements of Corollary 6.2.11 are
fulfilled, i.e. only legal successors of universal nodes should be visited during the search. There

are two obvious options:
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a) Ensure that the routine SeemsLegal() in Line 5 of Algorithm 9 returns FALSE, if and only

if the universal variable assignment is illegal.
b) Ensure that v € F(v) by solving the IP-V-relaxation in Line 5 of Algorithm 9.

The former highly depends on the structure of the universal constraint system and might cause
considerable restrictions to the modeling option. However, we show that universal constraint
systems in many relevant cases possess this characteristic. In this section we provide insight
into the structural requirements of A"z < b” in order to ensure Conditions (6.1) and (6.2) and
further we present properties which guarantee that Algorithm 9 only traverses legal universal
nodes. First, we provide further results on the connection of the structure of A%z < b and the
Conditions (6.1) and (6.2).

Proposition 6.3.1. Let P be a QIP™ and let Conditions (6.1) and (6.2) be fulfilled, i.e. P is
a simply restricted QIP'P. Any universal constraint k € {1,...,my} can be rewritten such that
Q¢ =V for the variable with highest index ¢ = max{j € I|AZ,;‘ # 0} present in the constraint,
without changing the optimal solution found by Algorithm 9.

Proof. Assume there is a universal constraint k& € {1,...,my} in which the largest index ¢ =
max{j € Z \AZ’ j # 0} belonging to a non-zero entry corresponds to an existential variable, i.e.
¢ =15 Leti € {1,...,3} be the last variable block present in constraint k, i.e. £ € B; and QW =
3. If ¢« = 1, this universal constraint consists of only first-stage existential variables and must be
trivially fulfilled due to Condition (6.1). Hence, constraint k can be excluded from the universal
constraint system without changing the optimal solution of P, since it does not constitute a
restriction. Let 7 > 3. Constraint &£ has the form 23;21 AZ7(j)3}(j) + AZ’(i_l)x(i_l) + Azy(i)w(i) <
bZ. Let 2 e £W 2@ ¢ 7@ 203 ¢ Fl=3) 3(0-2) ¢ £G=2) he any partial variable
assignment visited during Algorithm 9 and let b = by — ;;21 AZ’( j)it(j ). With Condition (6.1)
Fu=D@M o 30-2)) £,

a) Let 20-1 ¢ FO-1_ Then for any () ¢ £® it is A} (iil):f:(i_l) + AY (i)x(i) < b since
there cannot exist an assignment z(¥ € £ resulting in a terminal universal node, due to
Condition (6.1).

b) Let 20-1 e £\ F@=D je 20-1) is an illegal universal variable block assignment.
Then there exists a universal constraint k € {1,...,my} that can no longer be fulfilled
due to Condition (6.2). If k = k, it is AZ’(i_l):ﬁ(i_l) + AZ,(i)x(i) £ b for any 2 e £,

Hence, when deciding the legality of 20— with regard to constraint k it always suffices to
consider any particular (9 € £@): If, on the one hand, 2~ is legal then constraint k is fulfilled
for any D € £®_ If, on the other hand, 20~V is illegal then there either exists another universal
constraint indicating 201 ¢ FU-1 or constraint k is violated for any z® e £®. Thus,
changing constraint k to 23;21 AZ’(j)x(j) +AZ’(i_1)x(i_l) < EZ with BZ = bZ—minz(i)GL(i) Azj(i)a}(i)
does not change the legality of 2~ if the legality of previous universal variable assignments
is ensured. Further, constraint k has no influence on the legality of future variable blocks
j €{i,...,8} and for previous universal variable blocks A 3 j < ¢ — 2 it suffices to consider the

chosen minimizing assignment due to Condition (6.2). O
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The above proposition shows that if the modeler created a universal constraint that closes
with an existential variable block this constraint either can be rewritten such that the closing

variable block is universal, or the modeled QIP™® is not a simply restricted QIPP.

Proposition 6.3.2. Let P = (A%, A", b7, 0", ¢, £, Q) be a QIP'P. If for each universal constraint
ke{l,...,my} the two conditions

a) e A A]  #0NYs > i Af =0
are fulfilled, then Condition (6.2) is fulfilled for P.

The two requirements in Proposition 6.3.2 demand that in each universal constraint only
variables of one universal variable block are present and that this universal variable block is the

last present variable block.

Proof. For each universal variable block i € A there exists a subset p; C {1,...,my} of con-
straints in which variable block i is present. Due to Condition b) those subsets are distinct, i.e.
pi N pj =0 for each 4,5 € A, i # j. Hence, the legality of a universal variable block assignment
2@ can be checked using the constraints in p; and due to Condition a) the fulfillment of the
constraints in p; is immediately obvious. Furthermore, if () ¢ F() there exists a constraint
k€ i with 32 AT 120 + A7 30 £ b7, O

Note that in Example 6.2.10 the requirements of Proposition 6.3.2 are fulfilled, but since the
legality check via Algorithm 8 does not detect every illegal universal variable assignment the LP-
J-relaxation is not applicable at universal nodes. In the following proposition we present several
conditions under which only legal universal variable assignments are visited during Algorithm 9.
In such a case the requirements of Corollary 6.2.11 are fulfilled and therefore the LP-3-relaxation

is applicable at general nodes.

Proposition 6.3.3. Consider a simply restricted binary QIP™P. If A%x < b¥ fulfills one of the

following conditions, then for each universal node v € Vi wvisited by Algorithm 9 it holds:
SeemsLegal(e(v,v'), x,) in Line 5 returns TRUE, if and only if v' € F(v).

a) AY >0, i.e. each entry is non-negative.
b) AY <0, i.e. each entry is non-positive.

¢) For each universal variable { € Iy, at most one universal constraint k € {1,...,my} ezists
with AZ,K # 0.
d) For each universal constraint k € {1,...,my} at most one universal variable ¢ € Ty, exists

with A} , # 0.

e) For each universal constraint k € {1,...,my} there exists another unique constraint k €
1,...,my} with0 < bl = —bY and 0 < A , = —AY  with A} _ € {0,1}". Further, with

k k,*x k.x kx
Sy, ={0eT| AZ,Z # 0} being the set of variables present in constraint k, we demand
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SkNS; =0 for each ke {1,...,my}, k #k, k #£ k and for each entry £ € Sy, it is Q= V.
Hence, the constraint system consists of “3* equations of the form 3 s, T4 = bZ and each
variable with non-zero coefficient is universally quantified and only present in at most one

equation (i.e. two constraints).

Proof. Keep in mind that {x € £ | A%z < b"} # (). Assume the search has reached node v € V&
with z, being composed of () e £M) 22 ¢ FO 202 ¢ Fli=2) 3(-1) ¢ £0-1) with
i € A. Let £ = level(v) + 1 = min B;, £ € Zy, be the index of the universal variable represented

by v.

Due to Condition (6.1) F(x,) # (. Obviously, SeemsLegal(e(v,v’),z,) returns TRUE for

each legal successor v/ € F(x,). What remains to be shown is that SeemsLegal(e(v,v"),z,)
returns FALSE if v’ & F(z,).

a)

Assume there is 7y € £y \ F(z,) for which SeemsLegal(Z¢,x,) returns TRUE. Hence, for
each universal constraint k € {1,..., my} with AZI #01it is

VoA vV o~ : \ v
D Aiti + Al e+ ) min Af jzj < b
j<t g>e77

Due to AY > 0 each considered constraint can be fulfilled by setting upcoming variables
with index j > ¢ to their lower bound ;. Due to F(z,) # 0 and AY > 0 any other
universal constraint also can be fulfilled by setting x; = [; for each future variable j > /.
Therefore, a single assignment of future variables exists after setting xy = Z,, that fulfills

the universal constraint system and thus Z, € F(z,), which contradicts the assumption.

Inductively, for any other variable ¢ € B;, £ < £, the search has reached the corresponding
node via legal variable assignments. Therefore, F # () and by using the same arguments

as above the claim is proven.

Same as the proof of a) with the difference that future variables are all set to their upper

bound in order to prove the legality.

Assume there is 7y € L, \ F(z,) for which SeemsLegal(Z/,z,) returns TRUE. If AZ! =0,
for each universal constraint it is Z, € F(z,) due to F(z,) # 0, which contradicts the
assumption. Hence, let k € {1,...,my} be the unique universal constraint with AZ’Z #0

and due to the return of SeemsLegal(Z/,x,) we know
S Aoy + Al @+ Y- min A ja; <bf. (6.8)
j<e G IS

We now construct a legal variable block assignment (V) that contains Z,. Let y(?) &
F@(z,) # 0 be any legal variable block assignment. Let (9 € £() be given by

Z Jifj=1
(@) _ . v e v
T = qargming e o AfupTuig T FLand A g # 0

yj(.i) , else,
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i.e. 2 contains the variable block assignment needed in order to fulfill constraint k and
the remaining universal variables are set similar as y(*). Since &, & F (xy) we know z0) ¢
F@(z,). With Condition (6.2) there must exist a constraint k € {1,...,my} for which

V =(7) 4
ZAk ) 20 AL )T +Zz(1)eﬁ(9) )T ) g by . (6.9)

i<t

Due to the selection of Z() it is k # k, as the universal variables present in constraint k
were set such that Constraint (6.8) is fulfilled. Since all universal variables not present in
constraint k are set as in y(® € F()(z,), Condition (6.9) is also not fulfilled for any other
universal constraints due to Condition (6.2), the selection of ) and the empty intersection

of the constraints regarding the presence universal variables. Thus, the assumption is false.

Inductively, for any other variable £ € B;, £ < /, the search has reached this node via legal
variable assignments. Therefore, F # () and by using the same arguments as above the

statement holds.

d) Let k € {1,...,my} be any of the universal constraints. With Proposition 6.3.1 we can
assume that ezactly one universal variable ¢ is present in k and that for each variable j > ¢
with higher index AZJ = 0. Thus, the conditions of Proposition 6.3.2 are fulfilled even
more restrictively. Hence, by adapting the proof of Proposition 6.3.2 we see that if &, & F

for £ € Iy it is §<: Ak &5+ Ak Lo L bk for its unique universal constraint k.
J

e) If variable ¢ is not present in any universal constraint, each assignment from L, is legal.
Let k and k be the two constraints representing the equation in which variable ¢ is present
and let K = b} = |bZ|. Due to Condition (6.1) K € {0,...,|Sk|}. Assume there is &, €
L\ F(xy). Since each variable j € S = Si has coefficient zero in all the other universal
equations the illegality must be due to the unique equation in which variable ¢ is present.
If the number of variables set to 1 exceeds K, i.e. } icq, jcp®j + T¢ £ K, Algorithm 8
returns FALSE due to constraint k. If the number of yet unassigned variables present in
the equation are not enough to reach K, i.e. if 3 jeq. jopdj + T¢ + HieS|j>} 2K,
Algorithm 8 returns FALSE due to constraint k. Further, if both }".cq, ;o + 3¢ < K <
Yjesp.j<e Bj+Te+{j € S1j > £}, ie. if SeemsLegal() returns TRUE, there exists an actual

assignment fulfilling both constraints, due to the binary coefficients and variables. O

Remark 6.3.4. The stated cases in Proposition 6.53.3 obviously describe only a small subset
of structural properties that ensure the desired behavior of the subroutine. For example the
restriction that only universal variables are allowed in case €) can be softened, as Condition (6.1)
must be ensured, anyway. Hence, existential variables present in such an equation can be seen as
modifiable right-hand side value. But note that the condition of only boolean variables and boolean
coefficients in case e) is crucial: the universal equation x1 + 2x9 = 2 with two boolean universal
variables is represented by the two universal constraints x1 + 2xo < 2 and —x1 — 2x9 < —2.
Setting x1 = 1 is obviously illegal, but for each constraint a fulfilling assignment of xo exists and

hence this illegal assignment is not detected.
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Furthermore, in case e) the demand that universal variables appear in at most one universal
equation is crucial, e.g. for the two universal constraints r1 + xo =1, xo = 1 setting x1 to 1 is

not detected as illegal.

To avoid unnecessary computational overhead by repeatedly solving the IP-V-relaxation in
order to ensure the legality of each universal assignment, we propose to check whether the
universal constraint system fulfills either of the conditions in Proposition 6.3.3. If this is the
case, the quick check SeemsLegal() suffices to ensure only legal universal variable assignments.
If no known structure is found the IP-V-relaxation has to be called in order to ensure the legality

of each single universal variable assignment.

Remark 6.3.5. All examples in Section 4.4, except the first one, fulfill at least one of the stated
conditions. Thus, the LP-3-relaxation can be applied at every search node during Algorithm 9

when solving such instances.

6.4. Examples

6.4.1. Tic-Tac-Toe

From a didactic point of view we first want to consider the simple game tic-tac-toe. This game
can be modeled very compactly as QIP™® and it is intended to serve as illustrative example for
the structure of a QIP™® and the interdependence of the legal domains.

We consider the classic tic-tac-toe game on a 3 x 3 board in which two players alternate placing
pieces trying to have three own pieces in a row (horizontally, vertically or diagonally). It is well
known that the second player always can achieve a tie [HAL63, BB08], i.e. if both players play
optimally neither one is able to place three own pieces in a row.

In [ELT11b] the rules of the closely related game Gomoku (5 in a row on a 19 x 19-board) were
modeled via linear constraints and the connection to quantified integer programming was drawn.
However, it was neglected how exactly a QIP looks like, which forces the universal player to
follow the rules. Instead they stated that auxiliary existential variables (and constraints) could
be added in order to achieve this. Due to the introduction of a universal constraint system we
are now able to provide a very compact formulation of tic-tac-toe, which can be extended to
several connection games.

The basic playing rule of tic-tac-toe can be stated as follows: “When it is your turn, place
exactly one of your pieces in an empty cell”. The game ends if either one player manages to put
three own pieces in a row (resulting in a win for this player), or if all cells are filled (resulting
in a draw). In order to model tic-tac-toe as a QIP'P we interpret the existential player as the
starting player and the universal player as the second player. Let k € {1,...,9} indicated the
number of the current turn. If £ is odd it is an existential player’s turn, and if k is even it is
the universal player’s turn. The existential player assigns the variables A* € {0,1}3*3 and the

universal player assigns B¥ € {0,1}%*3 in the k-th turn. Aﬁ ; = 1 indicates that cell (7, j) is
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filled with a piece from the existential player after turn k. Bgfj = 1 indicates a universal player’s

piece at (7,j) after turn k. Thus, the quantification sequence already can be outlined:
JA € {0,1}3*3 vB% € {0,1}>*3 343 € {0,1}>*3 ... ¥B® € {0,1}**3 34% € {0,1}**3 (6.10)

Let P = {1,2,3} x {1,2,3} be the set of board positions. According to the game’s rules the

following constraints must be observed by the existential player:

Bij'+ A <1 V(i,j) € P, k € {3,5,7.9} (6.11)
AL = AL <0 V(i,j) € P, k € {3,5,7,9} (6.12)
k
> 4t =5]+1 Vk e {1.3,5.7,9) (6.13)
(i,j)€P

The universal player must obey similar constraints:

k—1 k .o
Ay + B =1 V(i,j) € P, k €{2,4,6,8} (6.14)
k—2 k ..
By "= Bi; <0 VY (i,j) € P, k € {4,6,8)} (6.15)
k
> Bij=j Vk € {2,4,6,8) (6.16)
(i,4)EP

Constraints (6.11) and (6.14) ensure that at most one piece is placed in each cell. In particular,
it is not allowed to place a piece in an already occupied cell. Constraints (6.12) and (6.15) ensure
that previously placed pieces remain on the board. Constraints (6.13) and (6.16) demand that at
each turn exactly one own piece is added to the board. With the above universal and existential
constraints and the preliminary quantification sequence as in (6.10) the filling of the board
according to the basic rules is ensured. However, the detection of a win must be incorporated,
which we illustrate using the example of horizontal lines: After a new piece is placed, auxiliary
existential variables are used to check whether this piece created a row. If three pieces of the
existential player form such a row, the variable wy can be set to 1 indicating the win. If the
universal player manages to place three in a row, the existential constraint system is violated
resulting in a loss for the existential player. Consider any row i € {1,2,3} of the board. For
each row we add the auxiliary variable h¥ with ¥ = 1 indicating that after turn k row i contains

three pieces of the existential player. This link is established with the following constraint:

> Al =shy Vi€ {1,2,3}, ke {1,3,57,9) (6.17)
(i,5)EP

k
J

either of those variables indicate three in a row for the existential player, the variable wy is

This is also done for vertical rows (via auxiliary variables v7) and diagonal rows (via d;“) If

allowed to be set to 1:

3 3
SOhF4+> ok +df +ds > wy Vke{1,3,5,7,9} (6.18)
i=1 j=1
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For the detection of a win for the universal player, no additional variables are used. Instead,
we add constraints to the existential constraint system that are automatically violated if the

universal player first manages to place three pieces in a row:

> Bf; <2+ wi Vie {1,2,3}, k € {2,4,6,8)} (6.19)
(i,7)EP

This is also done for the vertical and diagonal rows. Thus, by merging the auxiliary variables

k

wy, h*, v* and d* into the symbolic variable C* the actual quantification sequence (without

variable domains) is given by:
3A'3CctvB?343 303 ... vB834%3¢C° (6.20)

The only variable present in the maximizing objective function is wy. The complete QIP'P is

given in Appendix A.3. The outcome of this QIP'™ can be interpreted in the following way:
a) If the instance is infeasible, the second player can ensure a win.
b) If the instance is feasible with value 1, the starting player can ensure a win.
c) If the instance is feasible with value 0, the second player can always achieve a tie.

Hence, the solution of this QIPP is expected to be “feasible with objective value 0”. Indeed,
our solver is able to solve this QIP™® within less than a second with the anticipated result. Note
that the first-stage solution differs from run to run as for any first move by the existential player
the universal player can ensure a tie. Hence, the first existential player’s move and thus the
first-stage solution, does not change the result.

When expanding this model for general board sizes, even three-dimensional ones (e.g. see
[BB08]), and various sizes of the winning row (e.g. 5 in Gomoku), one has to deal more specifically
with the detection of a win, as is does no longer suffice to count pieces in a row, but their
connection must also be ensured. We refer to [ELT11b] for a nice approach.

Note that this QIP™® is not simply restricted according to Definition 6.2.3: Condition (6.1)
is not fulfilled since illegal existential moves can result in an inevitable violation of the uni-
versal constraint system, e.g. if the existential player fills the entire board with own pieces in
his first turn the universal player cannot fulfill (6.16) due to (6.14). Furthermore, even though
Condition (6.2) is fulfilled the assignment of a single universal variable cannot be checked via
Algorithm 8. In particular, none of the conditions mentioned in Lemma 6.3.3 are fulfilled. But
there is a surprising twist. If the existential variables are always assigned legally, the fulfill-
ment of Constraints (6.14)—(6.16) can always be achieved. Due to the rather simple existential
and universal constraint system an implication procedure in our implemented search immedi-
ately detects existential (universal) variables that can be fixed to particular values, in order to
maintain the satisfiability of the existential (universal) constraint system. For more details on
the implication of variables we refer to pages 142-143. As a result, existential variables are
always assigned legally and each illegal universal variable assignment is immediately detected
by Algorithm 8:
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Example 6.4.1. Consider the game position given in Figure 6.1 right after turn 7. It is now the

universal player’s turn to place an O at one of the empty cells. The relevant variable assignments

O/X 0
XX
X0

Figure 6.1.: Game position with upcoming move by second player placing an O.

in order to asses the legality of the upcoming universal variable block, consisting of the variables
B8, are BS and A7, which represent the placement of Os and Xs, respectively, after turn 7.
The assignment of 7 universal variables in B® can be implied immediately, due to universal
Constraints (6.14) and (6.15):

101 010 10 1
B®=10 0 0 AT=111 0 —  B°=|[0 0 BS,
010 100 0 1 B,

Hence, the universal player only can decide on the assignment of Bg’g and B§73. With the implied
variables already assigned, the universal constraints in which those variables are present simplify

to:

0< B§73 <1 originating from Constraints (6.14) and (6.15)
0< B§,3 <1 originating from Constraints (6.14) and (6.15)
B§73 + ngg =1 originating from Constraint (6.16)

Obuviously, only the last constraint restricts the set of legal assignments. Since this matches the

case €) in Lemma 6.3.3 Algorithm 8 immediately detects illegal universal moves.

For earlier universal variable blocks the resulting constraint system basically looks similarly
with additional constraints that influence the legality of future universal variables (Constraint
(6.15) ). Nevertheless, if all implied variables are properly assigned, the only constraint relevant
regarding the legality of the current variable block always simplifies to to to a single equation

demanding to “place exactly one O in exactly one of the empty cells’.

The above example shows that, even if none of the conditions of Lemma 6.3.3 are fulfilled for
the basic instance, in some cases applying simple implication techniques can result in a structure
of a locally valid universal constraint system, for which Algorithm 9 only visits legal universal
successors, without calling the IP-V-relaxation. For the tic-tac-toe QIP'P this is always the
case due to the very simple structure of both constraint systems, which allows bypassing illegal

existential and universal variable assignments by fixing implied variables.
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6.4.2. Explorable Uncertainty in the Multistage Selection Problem

The research area of explorable uncertainty has recently received more attention (see Subsec-
tion 2.2.3), and we believe that QIP'™® can play an important role therein. In order to provide
insights into how QIP™ can be employed for such problems we modify the selection problem as
stated in Subsection 4.4.4, where the universal player must select exactly one cost scenario at
each iteration and the existential player has to anticipate all of the scenarios. Here we discuss
the option of querying the upcoming scenario, in which case the universal player must disclose
the scenario of a specific future iteration and the existential player can incorporate knowledge
of future events in his decision-making. Such a query, however, is associated with costs that
increase the objective value. Hence, a query might not always be part of a cost-optimal strategy.

In contrast to the cheapest set problem [Kah91, EHK16] we are considering a multistage
optimization problem and do not assume that there is a pre-fixed (unknown) cost for each
item. In particular, rather than discovering the cheapest set with as few queries as possible, we
are interested in a strategy to select a fixed number of items, which costs depend on the cost
scenario selected by the universal player, while minimizing the arising costs consisting of query-

and buying-costs.

Example 6.4.2. Assume there are four items to choose from, of which two must be selected. The
cost for selecting one of the items right away is 20€ per item. After this initial selection option,
the universal player chooses one of the cost scenarios listed in Table 6.1 and the existential player

can select further items according to the scenario costs.

Table 6.1.: Cost scenarios for Example 6.4.2.

cost of item 1  cost of item 2  cost of item 3  cost of item 4

scenario 1 1€ 100€ 100€ 100€
scenario 2 100€ 1€ 100€ 100€
scenario 3 100€ 100€ 1€ 100€
scenario 4 100€ 100€ 100€ 1€

For this instance the overall costs solely depends on the number of selected items in the first

decision stage:
a) If two items are selected, the overall costs are 40€.

b) If one item is selected, the worst-case scenario is the one in which the already selected item

costs 1€ and the remaining items cost 100€, resulting in overall costs of 120€.
c) If no items are selected in the initial selection phase, the overall costs are 101€.

Now let us assume that the universal player can be forced to disclose the future scenario for
10€ before making the initial selection option. Then the optimal solution is to query the future
scenario for 10€, buy one of the items that will cost 100€ in the disclosed future scenario right
away for 20€, and finally buy the 1€-item. Hence, although costs were incurred due to the query,

the total costs of 31€ are smaller in comparison with the optimal solution without query.
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Based on problem SELQFV (see page 66) we model this problem with explorable uncertainty as
QIPP. We adopt the existential variables x; indicating the selection of item ¢ and the universal
variables ¢j, indicating the occurrence of scenario k in iteration s. We add boolean existential
query variables a; and boolean universal variables dj, for the disclosure of the future scenarios. In
addition to the requirement that exactly one scenario must be selected (see Constraint (6.21)),
the universal constraint system now also contains constraints that enforce the disclosure of one
of the scenarios if demanded by the existential player (Constraint (6.22)), and constraints that

ensure the compliance with the previously disclosed scenario (Constraint (6.23)).

N
dgi=1 Vse{l,...,S} (6.21)
k=1
N
> di = a, Vse{l,...,S} (6.22)
k=1
di < qi Vse{l,...,S}, ke{l,...,N} (6.23)

The query and disclosure variables are added to the quantification sequence as follows:

Jay € {0,1} vd' e{0,1}¥  F2e{0,1}" V¢ e{0,1}V
Jag € {0,1} vVd?2e{0,1}¥  3Fzte{f0,1}" Ve {o0,1}V
V¢ e {0,1}Y  3Fa25e{0,1}" FzeR}

Note that instead of the legal variable domain F, the basic variable domain L is given in the

above order for clarity. The objective function is extended by the costs a; for a performed query.

n S
clx= Z Az + Z(zs + asas) (6.24)
i=1

s=1

The existential constraint system remains unaffected:

n S

Zme =p (6.25)
i=1s5=0

S

< Vie{l,...,n} (6.26)
s=0

Zcf’kxfgszrM(lfqz) VkEe{l,...,N}, se{l,...,S}. (6.27)
i=1

Hence, if the existential player decides to query the scenario of the upcoming iteration s by
setting as = 1, the universal player is forced to set exactly one of her variables dj to 1 to disclose
which scenario she selects later on. The existential player then can incorporate this information

when selecting items in iteration s — 1.

Note that the requirements of a simply restricted QIP'P are fulfilled, since a) the universal

player always has a legal move in order to fulfill her constraint system (6.21)—(6.23) and b) an
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illegal variable block assignment would be immediately apparent due to the simply nature of
A"z < bY. Following a similar explanation as in Example 6.4.1 in the previous subsection, the
application of simple implication techniques results in a structure of the remaining universal
constraint system, for which Algorithm 9 only visits legal universal successors, without calling
the IP-V-relaxation.

One obvious variant would be to allow the existential player to query the scenario of any
future iteration rather than only the upcoming one. Further, the same concept of explorable
uncertainty within the QIP™P framework can be applied to various other optimization problems,
e.g. the assignment problem (see Subsection 4.4.5), the robust knapsack problem (cf. [GGT15])
or shortest path problems with uncertainty (cf. [FM107]).

6.4.3. Further Examples

We briefly describe a few other examples where QIPP can be used in order to grasp the relevance
of robust optimization with decision-dependent uncertainty. We do not explicitly specify how
the described problems can be translated into linear constraints, but note that all the upcoming
examples can be modeled as QIP'® while meeting the requirements of a simply restricted QIP'P.
Further, keep in mind that QIP™P is a multistage optimization framework. Therefore, rather
than adhering to adjustable robust programming with only a single response stage, planning

problems with multiple decision stages are realizable.

Maintenance Reduces Downtime Consider a job shop problem with several tasks and ma-
chines. One is interested in a robust schedule as machines can fail for a certain amount of time.
Universal variables indicate which machines fail and how long they fail. The basic problem
can be enhanced by adding maintenance work to the set of jobs: the maintenance of a ma-
chine prevents its failure for a certain amount of time at the expense of the time required for
maintenance and the maintenance costs. Therefore, the universal constraint system contains
constraints describing the relationship between maintenance and failure: With existential vari-
able m; ; indicating the maintenance of machine 7 at time ¢ and universal variable f;; indicating
the failure of machine i at time ¢ the (universal) constraint f;;4; < 1 —m;, prohibits the failure
of machine i for each of the j € {0,..., K} subsequent time periods. We also refer to [GPT06]
where a related stochastic program is discussed with the aim of minimizing the costs resulting
from planned maintenance and unplanned repair work.

The universal constraint system also could contain further restrictions regarding the number of
machines allowed to fail at the same time, similar to (variable) budget constraints (e.g. [Pos13].
This budget amount also can depend on other previous planning decisions, e.g. the overall
machine utilization. Furthermore, reduced operation speed might reduce wear and therefore

increase durability and lessen the risk of failure.

Workers’ Skills Affect Sources of Uncertainty The assignment of employees to various tasks
may have significant impact on potential occurring failures, processing times and the quality

of the product. For example, it might be cheaper to have a trainee carry out a task, but the
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risk of error is higher and the processing time might increase. Further, some workers might
work slower but with more diligence—resulting in a long processing-time but a high quality
output—than other faster, but sloppier, workers. Hence, the decision which worker performs a
particular task has an impact on the anticipated uncertain events. In a more global perspective
staff training and health-promoting measures affect the skills and availability of a worker, and

thereby affecting potential risks.

Road Maintenance for Disaster Control In order to mitigate the impact of a disaster, road
rehabilitation can improve traveling time as the damage of such roads can be reduced (see
[NS18]). Again, a budget for the deterioration of travel times for all roads could be implemented,
whereat the budget amount could be influenced by the number of emergency personal, emergency

vehicles and technical equipment made available.

Time-Dependent Factors in Process Scheduling In [LG16] the authors present a process
scheduling approach with uncertain processing-times of the jobs, whereat the range of the un-
certain processing-time parameters depend on the scheduling time of the job itself. The selec-
tion of specific scheduling times therefore actively determines the range in which the uncertain
processing-times are expected. For a QIP this influence on uncertainty could be achieved by
adding universal constraints as follows: Let x;; be the existential binary indicator whether task
¢ is scheduled to start at time ¢ and let y; be the universal variable indicating the occuring
processing-time of task . Let [;; and u;; indicate the range of the processing-time of task i if
scheduled at t. Adding >, litxir < yi < >, uitxiy to the universal constraint system would

establish the intended interdependence.






7. Implementation Details and Experimental
Results

7.1. QLP File Format for QIP'® and General Input Requirements for

Yasol

The QLP file format used for QMIPs in our solver was presented in [Woll5]. It extends the
CPLEX LP-file format'3 by adding the keywords ALL, EXISTS and ORDER, which enable the
identification of universal and existential variables as well as the order of the variables. So far,
universal variables were only restricted by their bounds and their type (binary, general integer,
or continuous variable). In order to allow universal constraints we introduce the convention that

such a constraint must be explicitly named and its name must begin with “U_".

Example 7.1.1. Consider a binary QIP™ given as follows:

¢’z : min T1 — 229 + 223 + 14

QoL : 3w €{0,1} Izy € {0,1} Vas € {0,1} Tz € {0,1}

1
ey, (121 1) |w| (1
11 1 —1) |2 9
T4
o)
Az<o”: (111 0)%] < (2
<o ( ) =)
T4

Bhttp://1psolve.sourceforge.net/5.1/CPLEX-format.htm (accessed May 3, 2020)
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The optimal value of this instance is —1 with PV (1,1,0,0). The corresponding QLP file looks

as follows:

MINIMIZE

1l — 222+ 223 + 24

SUBJECT TO

Constraintl: 1 — 222+ 23 — 24 <=1
Constraint2: 1 4+ 22 4+ 23 — x4 <=2
U_Constraintl: 1 + 22 + 23 <=2
BOUNDS

0<=2l<=1

0<=22<=1

0<=23<=1

O<=zd4<=1

BINARIES

xl 2 x3 x4

EXISTS

zl 2 x4

ALL

z3

ORDER

zl 22 23 z4

END

No name is required for existential constraints, and in particular unnamed constraints are
considered part of A7z < b7. A QIP'® must be a simply restricted QIP™P (see Definition 6.2.3)
for Yasol to solve it correctly at this point in time. We are currently not able to explicitly
check whether the given QIPP indeed is a simply restricted one. We refer to Section 6.3, where
structural requirements are discussed.

Currently, the general QLP-file has to fulfill the following properties in order to be solvable

with our solver:

e The first and final variable block must be existential, i.e. Q1 = Q, = 3 or rather Q) =
Q¥ =13

e Continuous variables, i.e. variables not listed below the BINARIES or GENERAL keyword,
have to be part of the final (existential) variable block.

e The right-hand side of each constraint may only contain a single parameter, i.e. all variables
have to be on the left-hand side.
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Demanding Q¥ = 3 seems to contradict the definition of a QIP™®. However, by adding an
existential dummy variable at the end of the quantification sequence, a QIP'™® instance can be
transformed without changing the outcome (cf. discussion starting on page 78). Additionally,
for simply restricted QIP'P a final existential variable cannot lead to a violation of the universal
constraint system anyway: as the final existential variable x4 in Example 7.1.1 is not present in
the universal constraint system nothing has to be done.

It should also be mentioned, that internally general integer variables are first transformed to
have the lower bound 0 and are subsequently binarized. Therefore, upper bound constraints for
such binarized variables are explicitly added to the constraint system. For universal variables
this was not possible until universal constraints were added to the solver. Now, general universal
variables are also permitted, as after a binarization the upper bound constraint can be added

to the universal constraint system.

7.2. Main Maodifications and Enhancements of Yasol

7.2.1. Implementation of the Reduction Function

The reduction function presented in Section 5.4 does not only explicitly prove the PSPACE-
completeness of QIP™P, but also provides a solution approach and checking routine: a QIP™P
can be transformed into a QIP and either be solved directly using Yasol, or the resulting QIP
can be transformed into its DEP and solved via standard MIP solvers.

A first implementation draft of the reduction was implemented by Tobias Marx within the
scope of a seminar [Marl8] and subsequently served as the basis for further refinements and
adjustments. The reduction is implemented in our solver and can be executed be adding the
keyword “Reduce”:

.\Yasol <instance name> Reduce
The reduced QIP is then written to the file instance name.reduced. The QIP™® instance must

meet the following conditions:

o The first variable block has to be an existential variable block. Otherwise the reduced QIP

also has a leading universal variable block, which currently prohibits the solution via Yasol.

o The final variable block does not necessarily have to be a universal block. Otherwise an
artificial final check of the universal constraint system is added; similar to adding an

auxiliary universal variable at the end.

e Continuous variables are only allowed in a final existential stage. The reduced QIP would

also have continuous variables in inner blocks prohibiting the solution via Yasol.

o Continuous variables must not be present within universal constraints. The reduction

would become invalid, since Constraint (5.8) is not designed to handle continuous variables.

Note that the orientation of the objective in the resulting reduced QIP is always "MINIMIZE".
For the selection of RﬁCD of row k € {1,...,my} the coefficient with the most decimal places in

AZ, , and bZ is detected. Let pg be the largest number of decimal places and hence py, = min{p €
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Ny | Vd € {bV,AZ?l,...,AZ’n} : d-10° € Z}. Then we select RECD = 1077, as this value
underestimates the reciprocal of the lowest common multiple of the coefficients denominators
(see Lemma 4.3.1). The remaining parameters L, M and M are set to the threshold values given
by (5.11), (5.12) and (5.14), respectively.

7.2.2. Deduction Techniques in the Presence of Universal Constraints

Our solver Yasol is specialized on solving QMIPs in which universal variables were only restricted
to lie within their bounds. The addition of universal constraints therefore requires a modification
of various routines. We outline the most important changes, using only the term QIPP, which
of course also includes QIPTY.

Monotonicity of Variables The monotonicity of a variable as presented in Definition 3.1.4 is
no longer valid for a QIP'P: the universal constraint system must also be taken into account (see
Subsection 5.6.4). If the solver detects a QIP'P the check for monotone variables also traverses
the universal constraint system (see Definition 5.6.9) and during the search Proposition 5.6.11
is applied, i.e. only one fixation of such a variable must be investigated. The case that there
is no legal move when trying to set a monotone variable poses no problem (cf. Remark 5.6.12)
due to Condition (6.1) of simply restricted QIPP.

Implication of Variables due to Existential Constraints After making an assignment decision
for a variable within the alpha-beta search of a QIP an implication procedure is invoked. This
procedure takes already assigned variables into account and detects unassigned variables that
are implicitly fixed to a particular value, as all other values within the variable’s domain result
in the inevitable violation of at least one existential constraint. In particular, if this procedure
detects a universal variable that must be assigned to a certain value, the search does not need
to traverse this subtree as the universal player would immediately have the ability to violate the

existential constraint system.

Example 7.2.1. Consider the following QIP
min —3x, — 2x3

s.t. 3z1 € {0,1} Vg € {0,1} Jzg € {0,1} Yy € {0,1} :
Ty
10 0 1 T2 1
<
01 -1 0 T3 0
T4

After setting x1 = 1 the implication x4 = 0 is found. Since x4 is a universal variable and no
universal constraints are present this immediately leads to the conclusion that x1 = 1 cannot be

part of a winning existential strategy. The PV is (0,0,1,1) with objective value —2.

If universal constraints are present this implication might be invalid as shown in Example 7.2.2.
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Example 7.2.2. Consider the QIP™® which arises by adding the universal constraint xz+x4 < 1
to the QIP in Example 7.2.1. Setting x1 = 1 is legal and regardless of xo the existential player can
set xg3 = 1. This, however, renders x4 = 1 illegal. Therefore, the implication x1 =1 = x4 =0
does not allow the conclusion that the subtree corresponding to r1 = 1 cannot contain a winning
truncated strategy. Indeed the PV of this QIP™P is (1,1,1,0) with objective value —5.

Therefore, the following adaptations must be made within this implication procedure if univer-
sal constraints are present: the implication of a universal variable does not lead to the abortion
of the search, if the universal variable is present within a universal constraint and a) belongs to
a higher variable block or b) setting it the other way would immediately violate the universal
constraint system. The implication procedure for existential variables does not need to be al-
tered since we demand a simply restricted QIP'™® and therefore implied higher block existential

variable assignments cannot alter the legality of earlier universal variables.

Implication of Variables due to Universal Constraints The assignment of variables present
within A¥z < b” can lead to the implication of yet unassigned universal variables, if the fulfill-
ment of a universal constraint can only be achieved with a particular fixation of a yet unassigned
universal variable. Such an implication already anticipates the detection of illegal universal vari-
able assignments via Algorithm 8 and thus leads to a restriction of the subtrees to be examined.
As we only consider simply restricted QIPP, a universal constraint can never cause the implica-
tion of an existential variable: Condition (6.1) demands that no existential variable assignment
can result in a violation of a universal constraint if universal variables are assigned legally.

Let us suppose variable zj, with a non-zero entry in A\Z,k is assigned legally during the search.
Then each universal constraint in which zy, is present is examined, in order to check whether its
fulfillment depends on a particular assignment of another (universal) variable. If a yet unassigned
universal variable is found that has to take on a certain value in order to ensure the fulfillment
of the universal constraint system, it is added to a queue. If this implied variable is in the same
variable block as the originally assigned variable the fixation is executed immediately. If the
implied variable is part of a later variable block the assignment is postponed, until the search
has reached this variable block. This postponement is in fact not necessary for simply restricted
QIP™P: Assigning future universal variables in the way the universal player intends to do it
anyway does not change the optimal course of play. Due to Condition (6.1) this only remaining

option for this universal variable cannot be prohibited by existential variable assignments.

Simplification of Constraints In a QIP a constraint can be simplified if the variables with the

highest block present in this constraint are universal variables:

Example 7.2.3. Consider a QIP with the SAT-constraint x1 +x3 > 1 and let x1 be an existen-
tial and x3 be a universal binary variable. If x3 succeeds x1 in the quantification sequence, the
existential player must anticipate the local worst-case assignment of xs, which is x3 = 0. There-
fore, this constraint can be simplified by locally assigning x3 = 0, which results in the constraint

x1 > 1. Hence, in any winning strateqy, r1 must be set to 1.
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This simplification is based on the fact that the universal player only must obey the variable
bounds. In case of a QIP'P such a simplification leads to false results, as the assumption that
universal variables are unrestricted is no longer true. In particular, in the above example, a
universal constraint could allow the existential player to force x3 = 1, e.g. o + x3 > 1 with

existential variable zo. Therefore, this simplification procedure is deactivated in case of a QIPP.

Strategic Copy-Pruning In Subsection 5.6.3 we have shown that SCP can be applied to QIP™
straightforward. However, in the implementation of Algorithm 1 the selection of the parent
node in Line 3 is sensitive: nodes within the game tree that belong to implied variables are not
nodes of the search tree and therefore cannot be marked as finished or unfinished. However, not
checking Conditions (5.30) and (5.31) for implied variables leads to incorrect results, as shown
in Example 5.6.8. Therefore, Conditions (5.30) and (5.31) are also checked for implied universal
variable, i.e. in Line 3 of Algorithm 1 the parent with respect to the game tree is selected, rather

than the last branching variable (cf. Example 5.6.8).

Learning Conflict Clauses As outlined in [EH"17] our solver uses backjumping techniques
when a contradiction is encountered during the search. Furthermore, a constraint—a conflict
clause—is learned containing the variables causing this conflict (e.g. see[ GNT03, GN108]). This
conflict clause, however, is not necessarily valid in every part of the search tree if universal
constraints are present, as the assumption that universal variables are free to take any value
within their bounds is no longer true: a conflict can arise due to a certain assignment of previous

universal variables which allow (or prohibit) a particular assignment of future universal variables.

Remark 7.2.4. In this paragraph the term “clause” is used frequently. A clause can also be
represented via a linear constraint, e.g. the clause (aV—bV—c) is equivalent to a—b—c > —1 with
binary variables a, b and c¢. The right-hand side of the equivalent constraint results automatically
from the number of negated variables n and is given by (1 —n). Therefore, it suffices to state

the left-hand side of such a constraint if it is known to represent a clause.

Example 7.2.5. Consider a QIP'P satisfiability instance with existential constraint system

x1 —y1 <0 (7.1)
zy —y2 < 0 (7.2)
z3 —yz < 0 (7.3)
-9 — 11 — Tg — x3 < =2 (7.4)

and a universal constraint system with the single constraint
—y1 — Y2 — ys < —1. (7.5)
All variables are boolean and the quantification sequence is given by

E|{L‘0 Vy1 Y2 31’1 xT9 \V/yg E|:L'3.



Main Modifications and Enhancements of Yasol 145

The instance is feasible, as xo = 1 and x; = y; for i = 1,2,3 constitutes a winning truncated
strategy, since at least one y; must be set to 1. Note that without the universal Constraint (7.5)
y;i = 0 for i =1,2,3 would be a legal universal assignment which would ultimately result in the
violation of Constraint (7.4). Now assume the search takes the following course, where “="

indicates the implication of variables:

Assign xg =1

Assign y1 =0 = x1 =0 due to Constraint (7.1)

Assign yo = 1

Assign x9 =0 = 3 =1 due to Constraint (7.4)
= ys =1 due to Constraint (7.3)

= found conflict due to implied universal variable ys

The conflict found is valid as ys is not restricted by the universal Constraint (7.5) in this subtree
and it would be a legal universal move to set ys = 0. Hence, this implication indeed constitutes a
conflict to the universal player’s intention. The conflict clause (y1 V z2) is generated similiar to
the conflict-driven clause learning method as described in [Zha03, ELW13]. This conflict clauses
however, is not globally valid for the QIPP.

In the conflict-driven clause learning the information “which branching variables contributed
to the conflict” is gathered. For QIP'™P, however, the question “in what cases is the universal
player allowed to do this” has to be considered. In the presented case, the conflict clause is
only valid, if the implication y3 = 1 constitutes a conflict to the universal player’s intention. In
particular, if the implication y3 = 1 does not restrict the set of legal assignments of this universal
variable, no conflict would arise. For our example this is the case if y1 = yo = 0 and therefore
this conflict clause is only valid if y1 = 1 orys = 1. Since the assignment of y1 to 0 is involved in

this specific conflict, solely adding —ys to the conflict clause yields the globally valid restriction

(y1V—y2 V), (7.6)

for which the following statements holds:
a) If y1 = y2 = 0, Clause (7.6) is fulfilled (due to the added literal).
b) If y1 = 0 and yo = 1, Clause (7.6) is only fulfilled if xo = 1.
c) If y1 =1 and yo =0, Clause (7.6) is fulfilled (even without the added literal).
d) If y1 = yo = 1, Clause (7.6) is fulfilled (even without the added literal).

Hence, by adding y1 — y2 + x2 > 0 to the existential constraint system the search can not revisit
the conflicting path (due to case b)) and the search is not restricted if the originally detected

conflict is no longer attainable (due to case a) ).

In general, however, it is not that simple to determine the cases in which a conflict is invalid.

Therefore, if a clause is generated for which either
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a) a universal variable xj, with AY, # 0 is the conflicting variable, or
b) a universal variable z; with Az’k = 0 is present in the clause,

it is modified by Algorithm 10. Note that for the initially found conflict clause in Example

Algorithm 10: Adapting a found conflict clause.
Input: Conflict clause Y ;' ; a;x; > n with a; € {—1,0,+1} for each i € 7.
Partial variable assignment Z representing the selected path in the game tree.

Variable z. that caused the conflict.
1. for k =1 to n with ((ax #0 and Qp =V) or (k=c¢ and Q.=V)) do

2 forjzltomvwithA;k#Odo

3 forizltonwithA]Vﬂ-#O and ¢ # k do
4 if A;i >0 and Z; = 0 then

5: a; = +1

6: else if AZZ- <0and 7; =1 then

7 a; = —1

8 end if

9 end for

10:  end for

11: end for

7.2.5, Algorithm 10 results in the proposed Clause (7.6). This algorithm alters the learned
conflict clause by adding literals that make the clause automatically fulfilled if the validity of
the underlying conflict cannot be guaranteed. In particular, a variable is added to the clause,
if it is currently set beneficial for a universal constraint (see Line 4 and 6) in which conflicting
universal variables are present: if such a binary variable was set the other way the legal domain
of a conflicting variable might become more restricted and thereby preventing the conflict. By
adding such a variable to the original conflict clause as in Line 5 and 7, the arising clause will
be trivially fulfilled in subtrees where the occurrence of the original conflict is not guaranteed:
this clause is only active within certain subtrees, in which the validity of the original conflict
clause is ensured. Hence, if the search later on enters a subtree in which the legal domain of the
conflicting variable might be more restricted (and thereby making the conflict non-existent), this
clause becomes fulfilled due to the flipped assignment of an added variable affecting this legal
domain. Therefore, Algorithm 10 is rather conservative as the original conflict clause might in
fact be valid in several other subtrees.

Note that the conflict-based backjumping mechanism is not affected, as the backjumping itself

solely ensures that the (valid) conflict in the current subtree is evaded.

7.2.3. Used Relaxations

During the search process in our solver at multiple occasions a relaxation is called in order to asses
the quality of a branching variable (e.g. [AKMO05]), the satisfiability of the existential constraint
system in the current subtree or for the generation of bounds. The dilemma arises of having to

choose between the quality of the solution and the runtime for solving the relaxation. In Yasol
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two relaxation techniques are used for QIPs: the LP-relaxation with fixed scenario (see Definition
3.2.4) and the S-relaxation (see Definition 3.2.7). For the latter the corresponding DEP is built
(see Example 3.2.8) and the integrality condition is relaxed. For both used techniques a set of
scenarios is required for which an improvement of the relaxation’s quality can be expected. For
this purpose universal scenarios S C Ly are stored, that either frequently led to the violation of
the existential constraint system or that contributed to the current PV. Among other heuristic
approaches, the killer heuristic [AN77] is utilized to assemble such scenarios.

The S-relaxation is rebuilt each time the search restarts at the root node. The objective
function of this relaxation reflects the worst-case objective value regarding the considered sce-
narios, as shown in Example 3.2.8. Since new information about (supposedly) crucial scenarios
is continuously generated during the search, the set S containing the scenarios considered deci-
sive, changes dynamically over time. By rebuilding the S-relaxation, this gained knowledge is
also incorporated into the relaxation, which (hopefully) increases its benefit. For the considered
number of scenarios we currently demand |S| < min{log(?’;ﬁ, 16}. This bound, however, has
been adapted several times and is part of ongoing research.

The S-relaxation is only used in the very first variable block: as soon as the search dives
deeper and universal variables are assigned along the search path, it is not ensured that the
scenarios in S are still relevant in the current subtree. Therefore, as soon as a variable within
the second variable block (or higher) is reached, the LP-relaxation with fixed scenario is applied,
for which the incorporated scenario is adapted constantly.

If universal constraints are present, the problem arises that one cannot simply select scenarios
S C Ly, but must ensure that the scenarios are unavoidable scenarios (see Definition 5.5.9)
and hence a U-DEP-relaxation is required (Definition 5.6.2). The generation of unavoidable

PPV i.e. universal constraints consist

scenarios is divided into two cases: a) the instance is a QI
only of universal variables, and b) the instance is a QIP'P, i.e. existential variables are present

in universal constraints.

Generation of Unavoidable Scenarios for QIPPY  For the generation of unavoidable scenarios
we highly benefit from the demand that the instance has to be simply restricted. We consider
a scenario Ty € S C Ly proposed by our heuristics and check whether it fulfills the universal
constraint system. Note that such scenarios are not necessarily unavoidable, as their entries are
sometimes collected independently during the search process. If A"Zy £ b” we utilize Algorithm
7 in order to incrementally find legal variable block assignments starting with the first universal
variable block: in a local search we flip entries and detect resulting implied variables until
Algorithm 7 returns TRUE and then move on to the next universal variable block and repeat.
We try to stick as close as possible to the proposed universal variable assignment Zy. Of course
there is still much room for improvement here, but for the universal constraint systems we have

considered thus far, this worked very well.

Generation of Unavoidable Scenarios for QIP'® For a general QIP'P the same procedure

cannot be used, as existential variable assignments can be crucial for the legality of universal
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variable assignments. Hence, if there still are unassigned existential variables at the current
search node, we generally have no chance of finding unavoidable scenarios within reasonable
time. But in the following cases we can apply the same procedures as used for QIPYY, to

generate an unavoidable scenario during the search for QIP'P:

a) All existential variables z; with A\ZJ # 0 are already assigned. Hence, the local subproblem
is a QIPTY,

b) All unassigned universal variables x; do not occur in any universal constraint, i.e. AY ;=0.

In this case the remaining universal variables can be assigned as in any scenario Ty € S.

In order to improve the general LP-relaxation—which must be applied cautiously even for simply
restricted QIPIP (see Corollary 6.2.11)—universal variables z; with A\ZJ = 0 can be assigned
arbitrarily within £; in the relaxation. Hence, such universal variables can be fixed similarly as
it is done for general QIP. Furthermore, implied, but not yet assigned, universal variables (see

page 143) can be fixed in the relaxation.

7.3. Computational Experiments

In this section we present computational studies carried out on several test problems. With

these experiments we

e validate the effectiveness and correctness of the techniques presented in Section 3.1 and
Section 5.6.

e compare the performance of our open-source solver Yasol solving quantified programs with

a standard MIP solver solving the corresponding robust counterparts.

14

e investigate how well our solver performs on QIPP instances'* compared to equivalent QIP

instances.

All experiments were run on an Intel(R) Core(TM) i7-4790 with 3.60 GHz and 32 GB RAM.
Our solver Yasol uses CPLEX (12.6.1) as LP solver. The runtime of Yasol is measured using
wall-clock time rounded to seconds. We use CPLEX (12.9.0) as MIP solver in order to solve
robust counterparts. Even though CPLEX provides more accurate options to measure time we
used wall-clock time and rounded it to seconds in order to improve comparability. Furthermore,
CPLEX was restricted to only one thread, as our algorithm is not parallelized. Additional
information on this subject can be found on page 155.

The use of CPLEX (12.6.1)—rather than CPLEX (12.9.0)—as LP solver is due to the fact that
a better comparability with our older results can be guaranteed and that the main algorithmic
framework was built around CPLEX (12.6.1). In principle, however, the use of CPLEX (12.9.0)

as LP solver is supported.

MEven though all investigates instances in this section are QIPTY, i.e. a special type of QIP'®, we use the term
QIPP as the solution techniques presented for the general QIP™ are applied.
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7.3.1. Runway Scheduling

In this subsection, we investigate the multistage runway scheduling problem as introduced in
Subsection 2.3.1 in which the universal player decides on the time windows in which airplanes
must land. When selecting the lengths of the time windows the universal player is restricted
as described in Subsection 4.4.3 on page 64. We compare the performance of our solver on the
QIP™® and the equivalent QIP. As no compact robust counterpart was built, we only briefly
compare the performance of our solver with the performance of CPLEX on the DEP. We also
refer to [HL19a] where we utilized the corresponding QIP to show the effectiveness of SCP and

the impact of monotonicity in a small study.

Generation of Instances A multistage runway scheduling instance is defined via the number
of airplanes |A|, the number of time slots |S|, the number of runways b, the initial planning
costs ¢; j, the costs of rescheduling an airplane c(x; 4, ;) and the sets S and D describing the
starting time slots and length of the time window the universal player is allowed to choose from.
Furthermore, if the time windows of the airplanes do not become known all at the same time, an
order of the airplanes is needed. Instances are created using a Java application and each random
value is generated by the function Java.util.Random.nextInt(). The cost when an airplane
needs to be rescheduled is set to (@i, Yix) = B| X jesiTij — 2 jes jYijl, where R € {1,...,5}
is a random value, i.e. for each slot that the airplane is moved away from its originally planned
time slot, a cost of R is incurred. For fixed |A| and |S| the initial planning costs are generated

as follows:

1. For each airplane ¢ € A an original time slot o; € S is randomly selected and the initial

planning cost of this time slot is set to 0, i.e. ¢;,, = 0.

2. The initial planning costs of the remaining time slots are generated using ¢; ; = [j —o;| +U
with U € {—1,0,1} randomly selected.

In order to specify the set of starting time slots S; for each airplane ¢ € A, a basic starting time
slot b; € {0; —2,0; — 1,04,0; + 1,0; + 2} € S is randomly selected. Then one of the following

eight cases is chosen at random for the universal domain (+ and — are different cases) :

)
b) S; = {b;,b; £1,b; £2}
C) Si:{bi,biil,biizbiﬂ::ﬂ}
d) S; = {b;,b; £2}

Similarly, for the duration of the time window a base length ¢; € {0,1,2} is randomly selected.

Then one of the following four cases is randomly chosen for the corresponding universal domain:
a) D; = {l;,0; +1}
b) D; ={l;,¢; +1,¢; + 2}
c) Dy ={l;, ;i +1,0; +2,0+ 3}
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d) D; = {4;,4; + 2}

The airplanes are then ordered with regard to their original time slot 0; and randomly split up
into as many stages as required. The sorting is intended to ensure that the actual time windows
for airplanes originally expected at similar times are revealed in chronological order. Finally, the
universal constraint—restricting the set of lengths the universal player is allowed to choose—is
given by

Zdi > [r-|Al] . (7.7)
1€EA
For each instance, r is selected at random from the open interval [1.5,2[. The QIPP is built by
adding Constraint (7.7) as a universal constraint. The corresponding QIP is built as outlined
in Subsection 4.4.3, i.e. we do not explicitly utilize the reduction function, but only add the
required variables and constraints that detect and punish the universal player’s misconduct, and
only relax Constraint (2.7) to ensure a winning existential strategy in case of a violation of the

universal constraint system.

QIP'® vs. DEP For building and solving the DEP of a robust runway scheduling QIP we
can use the built-in option of Yasol, which internally builds the DEP and directly passes it
to CPLEX. For each airplane 2 to 4 universal binary variables are required to represent the
demanded time window. Therefore, the DEP grows rapidly for an increasing number of airplanes

and consequently CPLEX has little chance to compete with the compact QIP. In Table 7.1 we

Table 7.1.: Comparsion of CPLEX (12.9.0) solving the DEP with our solver solving the QIPP
for randomly selected instances. Runtimes are given in seconds.

QIP™ instance data runtime runtime
[A] |S| b B nvy n3 ms3 QIP'®  DEP
3 6 2 3 9 49 37 1 2
4 8 2 3 12 81 49 1 63
5 6 2 3 13 81 53 1 355
4 10 3 7 13 97 53 1 130
5 7 2 5 13 91 53 3 1257
4 5 3 3 14 57 43 1 623
5 7 3 3 14 91 55 3 1532
5 7 3 3 18 91 55 13 > 3600

present the results for a very small number of randomly chosen (not handpicked) instances.
As the DEP is solved by a call to CPLEX within our solver, we compiled our solver with
CPLEX (12.9.0) for these computations. The results show that solving the corresponding DEP
is considerably slower even for rather small instances. For instances with even more universal
variables (ny) the results indicate that only very few instances can be solved in reasonable time
and therefore no further detailed experiments concerning the DEP are carried out. But note

that an explicitly stated compact robust counterpart might be better manageable for CPLEX,
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since building the DEP does not take domain-specific information into account, which could be

done for an explicit MIP model.

QIP'® vs. QIP In order to assess the benefit of using a universal constraint system instead of
the equivalent QIP we created 3360 instances: for various numbers of airplanes |A| € {2,...,8},
available timeslots |S| € {3,...,10} and runways b € {2, 3,4} 20 instance for each constellation
were created. We demanded 8 = 3, i.e. the time windows of all airplanes are revealed simulta-
neously in those instance. This resulted in 3360 QIP and QIP'P instances, which we solved with
a time limit of 200 seconds. The number of solved instances according to the used model, the
average runtimes of those instances for which both models were solved as well as the resulting
runtime difference in seconds (runtime of QIP™® — runtime of QIP), are presented in Tables 7.2
and 7.3. As the infeasibility of an instance often can be detected significantly faster (in less than
one second on average), compared to finding and proving the optimal solution, we subdivided

the instances. Overall, for growing |A| or |S| more QIP'P than QIP instances are found to be

Table 7.2.: Number of solved instances (within 200 seconds), the average runtime and runtime
difference (in seconds) of solved instances with two to eight airplanes.

Al=2 |A[=3 [A[=4 [Al=5 |Al=6 |A[=7 [A[=38

solved as infeasible

solved QIP™Ps 0 12 29 81 112 192 230
solved QIPs 0 12 29 81 112 192 230
time difference - 0 .0.3 0.06 -0.07 -0.14 0.03
solved as feasible

solved QIP™Ps 480 468 451 399 367 272 179
solved QIPs 480 468 451 399 365 226 115
runtime QIP® 0.12 0.31 0.65 2.71 8.80 19.35 26.27
runtime QIP 0.14 0.26 0.93 4.53 19.31 42.80 51.13
time difference -0.02 0.04 -0.28 -1.81 -10.51  -23.45  -24.87

Table 7.3.: Number of solved instances (within 200 seconds), the average runtime and runtime
difference (in seconds) of solved instances with three to ten available time slots.

IS|=3 |S|=4 [S|=5 |S|=6 |S|=7 |S|=8 |S|=9 |S|=10

solved as infeasible

solved QIP™Ps 221 138 80 59 53 41 35 29
solved QIPs 221 138 80 59 53 41 35 29
time difference 0.01 -0.22 -0.03 0.07 0 0.22 -0.26 0.07
solved as feasible

solved QIP™Ps 199 281 335 353 351 363 365 369
solved QIPs 199 280 330 346 333 336 340 340
runtime QIPP 0.38 1.88 4.68 7.81 5.74 4.02 5.91 5.94
runtime QIP 0.48 3.26 7.60 12.93 12.26 10.53 12.82 14.62
time difference -0.1 -1.38 -2.92 -5.12 -6.52 -6.51 -6.91 -8.68

feasible. The number of instances found to be infeasible are the same for both models. Due to
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the smaller average runtime for finding infeasibilities, the time difference fluctuates around zero.
Note, however, that we observed a slight superiority of the QIP model on (other) larger instances
when it comes to infeasible instances. This is probably due to the adapted S-relaxation and
deduction techniques (see Subsection 7.2.3 and 7.2.2) that had to be weakened for general QIPP
instances. For feasible instances, however, more QIPP instances were solved in significantly less
time: for those instances solved in both cases, the runtime of the QIP'P is about half the runtime
of the equivalent QIP.

We also compared the QIP® model with the QIP on actual multistage instances, i.e. on
instances where the time windows for the airplanes are not disclosed simultaneously. For b = 3,
|Al € {4,...,8}, S| € {5,...,12} and 5 € {5,7,9} (i.e. two to four universal variable blocks)
we created five instances for each configuration resulting in 600 instances. With a time limit of
600 seconds per instance our solver was used for both models. Only 14 instances were (detected
to be) infeasible, which is mainly due to the better balance of airplanes and available time
slots. For a concise comparison, the performance profiles [DMO02] of these tests are displayed in
Figure 7.1. It can be seen that the QIP'™® model is solved fastest for about 83% of the instances.

Figure 7.1.: Performance profiles for tests on multistage runway scheduling instances modeled
as QIP'™P and QIP with logarithmic 7-axis scale.

Overall, 85% of the QIP'P and 75% of the QIP instances are solved within the time limit (10
minutes). The time to solve the QIP is less than four times the runtime of the corresponding
QIP'P in about 50% of all instances. Only 18 QIP instances are solved in less time than the
corresponding QIPP.

Remark 7.3.1 (Performance profiles as introduced in [DMO02]).
Let S be the set of considered solvers, P the set of instances and t, s the runtime of solver s on

instance p. The performance ratio of solver s on instance p is given by

tp,s

mint, s
ses P°

Tp78 -
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We assume t), s is set to infinity (or large enough) if solver s does not solve instance p within
the time limit. The percentage of instances for which the performance ratio of solver s is within

a factor T > 1 of the best ratio of all solvers is given by

1
{peP: rmps <7} .

ps(T) = ﬁ =

Hence, the function ps can be viewed as the distribution function for the performance ratio,
which is plotted in a performance profile for each solver. For each future performance profiles
in this thesis we calculate ps(T) for T = 1+ 0.5t with t € Ny and t large enough until ps(7) is

constant.

Impact of SCP For the robust runway scheduling problem SCP can be interpreted as follows:
Assume for a given realization of universal variables, i.e. the demanded time windows, a valid
schedule is found. SCP is then used to check whether the same schedule can be reused for other
realizations of the universal variables, i.e. other time windows. Here it becomes intuitively clear
that in some cases a schedule is still valid even if several universal variables are changed, as
long as the specified time windows contain the planned time slot for each airplane. We restrict
ourselves to the case with |A| = 7 airplanes, |S| = 12 time slots and b = 3 runways, as for this
setting the results of the previous paragraph showed that insightful results could be obtained
in reasonable time. For each instance the time limit is set to 1800 seconds. We created 300
instances with one universal variable block, i.e. for all airplanes the realization of their demanded
time window is revealed at the same time. In Table 7.4 a performance comparison is given for

those instances. The immense benefit SCP brings to QIP'P instances is astonishing, as not only

Table 7.4.: Number of instances solved, overall runtime of the experiments and the average
runtime for those instances solved in all four setting (170 instances).

number of solved overall computation average runtime
instances time in hours in seconds
QIP™® with SCP 300 3.00 10.42
QIP™ without SCP 244 52.87 172.64
QIP with SCP 232 46.41 124.28
QIP without SCP 176 86.37 477.98

all instances are solved, but the runtime is significantly reduced to less than a tenth compared
to the runs without SCP. Furthermore, we can see again that the QIPP is far superior on these
runway scheduling instances compared to the equivalent QIP, as 68 more instances are solved
and solving the QIP also requires more than ten times as much time: the average runtimes
on all 232 instances solved in these two cases are 16 seconds for QIP™® and 193 seconds for
QIP. As already observed in previous tests [HL19a], using SCP to solve such QIPs results in a
reduction of the runtime by a factor of about 4. Figure 7.2 shows the progression of the number
of instances solved during the four tests as well as the performance profiles. Note that only the

endpoints of the progression curves are significant, since their course depends strongly on the
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order of the instances. The very steep increase for the number of solved QIP™® instances with
SCP is quite remarkable compared to the other three tests and the performance profile shows a
clear superiority. The performance profile for solving QIP™ without SCP proceeds very similar
to the one for QIP with SCP, while more QIP'P instances are solved this way but in more time.
With SCP the QIP™ was solved first in all but three instances and never took more than a
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Figure 7.2.: Progression of the number of instances solved (left) and the performance profiles
(right) for solving the QIP or QIP'® model with or without the use of SCP.

factor of 2 longer. In fact in two of those cases the runtime of the QIP™® was 2 seconds and the
fastest runtime was 1 second, which both are rounded values. The number of QIPP-instances
solved first without SCP slightly exceeds the number of QIPs solved fastest with SCP.

These results show that SCP has a massive impact if a single universal variable block is present.
We now want to examine the impact of SCP if there is more than one universal variable block.
We randomly divided the seven airplanes into groups, for which the time windows are disclosed
simultaneously. We build 300 instances with each 1, 2, 3 and 4 groups, i.e. each 300 instances
with overall 3, 5, 7 and 9 variable blocks. For each setting we compare the performance of our
solver with and without SCP on the arising QIP'P. In Table 7.5 the results are displayed. For

Table 7.5.: Number of instances solved and average runtime for instances solved in both cases.

number of solved average runtime
instances (in seconds)
8=3 QIP'™® with SCP 300 20.28
QIP™® without SCP 244 366.95
8=5 QIP™ with SCP 276 139.60
QIP™® without SCP 232 403.73
B8=17 QIP™ with SCP 260 180.63
QIP™® without SCP 210 383.91
8=9 QIP™ with SCP 252 237.43

QIP™® without SCP 221 373.85
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B = 3 we used the results of the previous comparison with the QIP. For increasing 8 the number
of solved instances tends to decrease while our solver is always able to solve more instances,
when SCP is enabled. The runtimes on the instances for which a solution is found with and
without SCP seem to converge for increasing 5. Overall, SCP also contributes massively to the
optimization process if multiple stages are considered, while its impact is most impressive on

instances with few stages.

7.3.2. Multistage Selection Problem

In this subsection, we investigate the multistage selection problem as introduced in Subsection
4.4.4 in which p out of n items must be selected. We compare the performance of our solver
on the quantified models SELQFY and SELQ with the performance of CPLEX on the robust
counterpart SELRC.

Generation of Instances An instance is given by the number of available items n, the number
of items p to be selected, the number of iterations S and the number of scenarios N per iteration.
We limit ourselves to instances with n = 2p and thus, the value of p is omitted from now on. The
remaining parameters of an instance are the costs ¢ of each each item ¢ in scenario k of iteration
s, which are randomly selected from the range 0,1,...,99. Those values are created using the

C++ function rand () from the standard general utilities library and the modulo operator.

CPLEX as Solver for the Robust Counterpart We use CPLEX (12.9.0) as MIP solver in order
to solve the robust counterpart. Since Yasol currently only uses a single thread we also wanted
to restrict CPLEX to a single thread in order to obtain a more fair comparison. However,
CPLEX turned out to be even faster on our instances if restricted to a single thread. This
is illustrated in Table 7.6 for multistage selection instances with N = 4 , S = 6 and various

numbers of items n € {10, 20, 30,40,50} with a time limit of 1800 seconds per instance. Even

Table 7.6.: Number of instances solved and average runtime for those instances solved with both
settings for CPLEX (12.9.0) restricted to one thread and with default settings.

number of solved average runtime number of instances
instances (in seconds) solved first
1 thread  default 1 thread  default 1 thread  default
n =10 50 50 13.28 15.70 35 13
n =20 50 50 54.74 70.66 41 9
n =30 48 50 101.04 159.02 44 6
n =40 50 50 232.29 263.37 39 11
n =50 49 50 241.57 293.36 42 8

though default CPLEX was able to solve three more instances, the runtimes on those instances
solved by both configurations is significantly larger in comparison to CPLEX on a single thread.
Overall, default CPLEX could only solve less than a fifth of the instances faster than CPLEX

restricted to a single thread. Similar behavior was observed for other instances of the multistage
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selection problem as well as the multistage assignment problem. We have thus unintentionally

somewhat fine tuned CPLEX for those instances.

Memory Usage The first thing one notices when creating multistage selection instances is the
enormous difference in the file sizes of instances of the three presented models. This is certainly
not surprising, but it is quite impressive when a few instance of the robust counterpart blow up
the hard drive, whereas the same instances as QIP or QIP'P do not even require one megabyte.
For example, for an instance with n = 10, S = 5 and N = 32 the QIP'™ requires about 28
KB, the QIP requires 36 KB and the robust counterpart LP requires more than 91 GB. Thus,
it becomes obvious that solving the robust counterpart of such instances may already fail when
trying to import the LP-file into the solver. We refer to Appendix B.2 on pages 178ff. for a data
table of selection instances with ten items, which also contains information about the file size of
such instances.

In addition to this very compact problem description of the SELQFY and SELQ models, our
solver does not excessively make use of memory during the search process. The same cannot be
said about CPLEX when solving SELRC. This is partially due to the sheer number of variables
and constraints in the robust counterpart but also due to the fact that our solver does not

explicitly store the search tree. In Figure 7.3 the average maximum RAM used during the entire
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Figure 7.3.: Average of the maximum RAM required during the solution process (time limit 1800
seconds) of the different models for N = 4. 250 instances for each S € {1,...,8}.

search process is depicted. Similar to the increasing size of the instance itself, the memory
usage of CPLEX solving the robust counterpart increases dramatically for increasing number
of iterations and scenarios, while the memory usage of our solver only slightly increases. The
data can be found in Table B.1 on page 177. The memory usage when solving SELQFVY is
slightly higher compared to the solution process for SELQ. This is partially due to the overhead
of having to maintain the universal constraint system A"z < b”. Furthermore, as described in
Subsection 7.2.3, the size of the built S-relaxation depends on the number of universal variables,

which is larger for SELQFY and hence the required memory for the relaxation is increased.
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Fixed Number of Scenarios, Various S and n  We now fix the number of scenarios in each
iteration to N = 4 and vary the number of item n € {10, 20, 30,40,50} and the number of
iterations S € {1,...,8}. For each setting 50 instances of each of the three models SELQPY,
SELQ and SELRC are created. The quantified programs are solved using our solver and the
robust counterpart is solved using CPLEX with a maximum time limit of 1800 seconds. We are
interested in the number of instances solved within the time limit and the runtimes. In Table

7.7 the number of solved instances for each setting is display.

Table 7.7.: Number of solved multistage selection instances for fixed number of scenarios N = 4
and various n and S within 1800 seconds.

model S=1 S=2 S=3 S=4 S=5 S=6 S=7 S=8

SELRC 50 50 50 50 50 50 49 30
n=10 SelQ 50 50 50 50 50 50 50 50
SELQFV 50 50 50 50 50 50 50 50
SELRC 50 50 50 50 50 50 32 0
n=20 SelQ 50 50 50 50 50 50 50 50
SELQFY 50 50 50 50 50 50 50 50
SELRC 50 50 50 50 50 48 21 0
n=30 SelQ 50 50 50 50 50 50 50 49
SELQFY 50 50 50 50 50 50 50 50
SELRC 50 50 50 50 50 50 15 0
n=40 SelQ 50 50 50 50 50 50 49 34
SELQFY 50 50 50 50 50 49 50 41
SELRC 50 50 50 50 50 49 7 0
n="50 SelQ 50 50 50 50 50 46 31 15
SELQFY 50 50 50 50 50 48 33 20

As expected, the number of solved instances within the time limit tends to decrease for
increasing n and S. With the exception of S = 6, n > 40 we can observe that a) the number of
solved robust counterparts is never higher than the number of solved quantified programs and
b) the number of solved instances with universal constraints (SELQYY) is always the highest.
The number of solved robust counterparts in particular tends to decrease significantly faster for
an increasing S. In most cases all 50 instances are solved and thus the average runtimes—of

those instances for which all three models are solved—are shown in Table 7.8.

The values with asterisk are less significant as they are based on fewer instances, as not all
three models were solved to optimality. Keep in mind that all runtimes have been rounded
to seconds and hence very small average runtimes may also not be too significant. For most
settings the average runtime of the quantified program with universal constraints SELQFV is
lower than for the pure QIP SELQ. For fixed S and increasing number of items n the runtime
of the robust counterpart does not grow as quick as the runtime of the quantified programs.
In particular, for S = 6 SELQ and SELQFU are solved faster on average up to n = 40. For
n = 50 CPLEX can display its strength and the (average) runtime even decreases compared to
the average runtime for instances with n = 40. This decrease, however, is owed to the only 44
instances for which all three models with n = 50 are solved. Note that for S = 6 and n = 50 the
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Table 7.8.: Average runtime (in seconds) of multistage selection instances with N = 4 for which
each model was solved. Values marked with an asterisk resulted from less than 20
solved instances. A hypen indicates that for no instance all three models were solved.

model S=1 S=2 S=3 S=4 S=5 S=6 S=7 S=38

SELRC 0.0 0.0 0.0 0.0 1.5 13.3 186.6 1016.7
n=10 SELQ 0.1 0.1 0.2 0.3 0.7 2.6 7.5 32.1
SELQFY 0.1 0.1 0.1 0.2 0.6 1.2 4.2 9.7
SELRC 0.0 0.0 0.0 0.7 4.3 54.7 587.5 -
n=20 SELQ 0.1 0.2 0.7 1.4 5.5 12.1 40.9 -
SELQFY 0.1 0.2 0.5 0.9 2.6 7.5 26.2 -
SELRC 0.0 0.0 0.0 1.1 8.6 101.0 859.8 -
n =230 SELQ 0.2 0.5 2.7 7.9 15.5 38.4 88.5 -
SELQFY 0.2 0.4 1.7 8.1 14.3 36.5 65.9 -
SELRC 0.0 0.0 0.0 1.6 11.6 232.3 1029.2* -
n=40 SELQ 1.3 1.8 5.6 28.3 35.1 136.5 177.6* -
SELQFY 1.3 1.9 3.7 14.3 46.9 113.5 162.9* -
SELRC 0.0 0.0 0.0 2.1 17.0 206.4 1538.2* -
n=>50 SELQ 1.4 3.0 13.9 55.8 112.6 350.3 290.6* -
SELQFY 14 2.6 8.0 35.1 94.6 281.6 462.2% -

SELRC model already has more than a quarter of a million variables and more than 200,000
constraints, while SELQFY only needs 380 variables and 81 constraints to represent the same
instance. For fixed n and increasing S, however, there always exists a threshold S’ for which
the quantified programs outperform the robust counterpart: the vertical lines indicate in which
area the robust counterpart is solved faster (on average) than SELQFY. The conjecture that
this dominance remains true for even larger S is strongly supported by the pure growth of the
instance itself and the resulting difficulty of CPLEX to manage the needed RAM or even load the
LP-file. In summary, CPLEX is able to solve the robust counterpart faster for a large number of
items and our solver can better handle a large number of iterations in the quantified programs.
For a better comparison of the perfomances of our solver on SELQFY and SELQ we refer to
Table B.2 in the appendix on page 177, which shows the average runtimes of those instances for
which both quantified models were solved. The main observation remains, that instances with
universal constraints are solved faster on average than the pure QIPs.

Furthermore, for each model we consider the number of instances for which this model was
solved the fastest. Figure 7.4 shows the percentage of instances where the other models were
solved slower. Note that the numbers do not necessarily add up to 100% due to instances with
two or more models with the same runtime and due to unsolved instances.

These graphs further support the claim that the higher the number of items, the better CPLEX
performs compared to our solver on the same instance. On the other hand, the more iterations
are considered within an instance, the better our solver performs compared to CPLEX.

Finally we provide the performance profiles (see Remark 7.3.1) for all three models in Figure
7.5. We also refer to Appendix B.3 for further very insightful performance profiles, where the
instances are separated according to m and S. Note that for each instance with runtime of 0

seconds we used the runtime of 1 second in order to be able to generate useful performance
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Figure 7.4.: Percentage of instances per model where it was solved the fastest, i.e. if both other
models took more time to solve. Plot for each number of items n (left-hand side)
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Figure 7.5.: Performance profile for all examined multistage selection instances with N = 4 and
each modeling variant.

profiles. The robust counterpart as well as the QIP with universal constraints is solved fastest
on about 60% of all instances. Furthermore, the performance profile for SELQFY remains above
the other two profiles and our solver is able to solve more than 87% of the SELQFY instances
within a factor of 4 compared to the fastest solved instance. In the performance profiles provided
in the Appendix B.3 the deterioration of CPLEX solving the robust counterpart for increasing
number of iterations as well as the deterioration of our solver on the quantified programs for

increasing number of items is clearly visible.

Comparison to Simple Heuristics In order to emphasize the benefit of solving the robust
multistage optimization problem we now compare the worst-case outcome of the three online
strategies (see pages 68ff.) with the optimal solution of the multistage selection problem. As a
reminder: In strategy 1 the p cheapest items in the initial stage are bought. In strategy 2 the

lowest guaranteed future price for an item is compared to its current price. In strategy 3 an
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item is bought only if there exists no future iteration in which the remaining number of items
can be bought for a cheaper price.

We use the instances as above with fixed number of N = 4 scenarios and various constellations
of n € {10,20,30,40,50} and S € {1,...,8} with 50 instances per constellation resulting in
2000 instances. In order to detect the worst-case outcome when using one of the presented
heuristics a tree search is implemented in Python. For any instance it took only seconds to
determine the worst-case outcome of any strategy, which is the obvious advantage of a heuristic.
Determining the worst-case outcome of strategy 1 was the fastest (< 1 second per instance),
followed by strategy 2 (< 1 second per instance) and strategy 3 (/ 1 second per instance). The
computational times for the optimal solution was discussed in the previous paragraph and in
general significantly exceed these times.

Note that for 45 of the 2000 instances no optimal solution was found or ensured by either
model. All three heuristic strategies managed to outperform the best known value for 7 instances,
in which case only a (very trivial) starting solution was found during the optimization process
of each of the three models SELQFY, SELQ and SELRC. From now on we disregard the 45
instances of which we do not know the optimal solution. Strategy 1 never resulted in the
optimal value, while strategy 2 reached the optimal value in 19 cases and strategy 3 in 143
cases. Those 143 optimally solved instances by using Strategy 3, however, are either instances
with a single iteration, or with at most 20 items. In general we can say that the more items and
the more iterations are considered, the larger is the relative deviation from the optimum for all
three heuristics. In Appendix B.4 we provide box plots of the relative deviation of strategy 2

and 3 for each number of iterations and items. In Table 7.9 the average relative deviation from

Table 7.9.: Average relative deviation of the worst-case outcome when applying each strategy
from the instance’s optimal value. 50 instances per cell with the exception of (n = 40,
S = 8: 43 instances), (n = 50, S = 7: 38 instances) and (n = 50, S = 8 24

instances).
strat. S=1 S=2 S=3 S=4 S=5 S=6 S=7 S=8
1 0.66 0.80 1.16 1.28 1.38 1.34 1.71 1.80
n=10 2 0.29 0.32 0.50 0.55 0.56 0.62 0.66 0.68
3 0.04 0.08 0.14 0.22 0.20 0.23 0.30 0.31
1 0.68 1.04 1.38 1.60 2.13 2.06 2.06 2.56
n=20 2 0.33 0.49 0.72 0.80 1.02 1.00 0.98 1.21
3 0.05 0.13 0.26 0.27 0.38 0.41 0.45 0.57
1 0.64 1.18 1.69 2.01 2.30 2.57 2.75 2.96
n=30 2 0.35 0.59 0.85 1.02 1.16 1.32 1.43 1.48
3 0.06 0.14 0.24 0.34 0.45 0.58 0.65 0.77
1 0.78 1.32 1.79 2.30 2.53 2.94 3.22 3.42
n=40 2 0.40 0.69 0.99 1.14 1.30 1.48 1.64 1.70
3 0.06 0.18 0.31 0.42 0.54 0.69 0.74 0.88
1 0.80 1.38 1.90 2.25 2.79 2.99 3.60 3.94
n=>50 2 0.41 0.71 1.00 1.23 1.41 1.63 1.82 2.02
3 0.06 0.16 0.30 0.47 0.63 0.81 0.87 1.01

the optimum are shown to give a rough idea. Strategy 3 is always closest to the optimal value
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on average and the average relative deviation almost always increases for increasing number
of items and iterations. We expect similar behavior for a growing number of scenarios. Note
that even though strategy 3 is the best on average there are 7 instances in which strategy
2 results in a better worst-case outcome. Obviously, further improvements are possible, and
other online strategies could lead to even smaller deviations from the optimal value, but with
potentially higher computing time. Due to the negligible computational effort and the good
results, strategy 3 is suitable as a generator of good starting solutions for a domain-specific

solver for the multistage selection problem.

Impact of SCP For the robust runway scheduling problem we have already shown that SCP
significantly benefits the optimization process. For the multistage selection problem we do not
expect such a positive impact since a different assignment of a universal variable block represents
a totally different cost scenario. In particular, keeping the assignments of existential variables—
indicating the bought items—unchanged for several scenarios of a single iteration cannot result
in an optimal winning strategy in the vast majority of cases. For SELQ we can even a priori
rule out that SCP has a positive effect: different assignments of the universal variable ¢,—
indicating the number of the selected scenario in iteration s—call for different assignments of
the subsequent existential indicator variables ¢j due to Constraint (4.51). Hence, for any two
different universal variable assignments the subsequent existential variables must not be assigned
to the same value making SCP inapplicable. We are therefore curious to what extent SCP has
a positive effect on the QIP™® SELQFY and whether the constant querying of SCP without any
prospect of success is unfavorable for the QIP SELQ. For n =50, S =4 and N = 4 we created
1000 instances and solved SELQ and SELQPV using our solver with SCP turned on and off

with a time limit of 1800 seconds. The results in Table 7.10 show surprisingly clearly what we

Table 7.10.: Number of instances solved, overall runtime of the experiments and the average
runtime for those multistage selection instances solved with and without SCP for
each model.

number of solved overall computation average runtime
instances time (in hours) (in seconds)
SELQFY with SCP 997 10.52 32.32
SELQ"Y without SCP 996 12.43 37.62
SELQ with SCP 998 16.60 56.27
SELQ without SCP 998 16.51 55.95

expected: the use of SCP has a positive impact on SELQFY, but not as impressive as for the
runway scheduling instances. For SELQ the use of SCP does not significantly affect the runtime,
which is also a very positive result, as it shows that the computational overhead of repeatedly

checking the applicability of SCP is negligible.

Fixed Number of Items, Various S and N So far the number of scenarios was fixed to N = 4,

but we also want to examine how the different approaches deal with instances with various
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numbers of scenarios. It is expected that with an increasing number of scenarios the approach
of solving the quantified program is superior to solving the robust counterpart. We fix the
number of items to n = 10, which is quite small but necessary in order to allow large values of
S and N and still be able to find the optimal solution for many instances in reasonable time.
For various S € {1,...,8} and N € {2',22 ... 28} again 50 instances are created for most
constellations. Note that not all constellations are considered, since the prospects of finding
the optimal solution within the time limit of 1800 seconds is very small, if both S and N are

large. The following Table 7.11 shows the number of instances solved. For cells marked with

Table 7.11.: Number of solved multistage selection instances for fixed number of items n = 10
and various N and S within 1800 seconds.

model S=1 S=2 S=3 S=4 S=5 S=6 S=7T S=38

SELRC 50 50 50 50 50 50 50 50
N =2' SELQ 50 50 50 50 50 50 50 50
SELQFY 50 50 50 50 50 50 50 50
SELRC 50 50 50 50 50 50 49 26
N =22 SELQ 50 50 50 50 50 50 50 50
SELQYY 50 50 50 50 50 50 50 50
SELRC 50 50 50 50 48 4 0 0¥
N=2% SELQ 50 50 50 50 50 50 47 0
SELQFY 50 50 50 50 50 50 50 38
SELRC 50 50 50 44 0 0* 0* -
N =2* SELQ 50 50 50 50 50 0 0 -
SELQFY 50 50 50 50 50 36 8 -
SELRC 50 50 50 3 0* 0¥ - -
N =2° SELQ 50 50 50 50 0 0 - -
SELQFY 50 50 50 50 23 1 - -
SELRC 50 50 32 0* 0* - - -
N =2° SELQ 50 50 50 0 0 - - -
SELQFY 50 50 50 27 2 - - -
SELRC 50 50 0 0* - - - -
N=2" SELQ 50 50 14 0 - - - -
SELQFY 50 50 48 3 - - - -
SELRC 50 48 0* - - - - -
N =2% SELQ 50 50 0 - - - - -
SELQFY 50 50 11 - - - - -

a hyphen no experiments were conducted as it is expected that none (or very few) instances
would be solved in the given time limit. The 0 entries with an asterisk indicate that we tried
to create and solve these robust counterparts, but they exceeded our available RAM, simply
due to their enormous file size (see Table B.3 in Appendix B.2). For most entries with largest
N for each S—not listed in Table B.3—the instance sizes of SELRC (well) exceeded 200GB in
which case we stopped the file creation. As expected, for increasing N and S the number of
quantified programs solved by Yasol tends to be larger than the number of robust counterpart
solved by CPLEX. For each configuration, the number of solved SELQFVY models is highest and

at least one SELQPV instance is always solved. On 243 of the 303 instances where no model
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was solved to optimality, SELQFU resulted in the best incumbent solution. On 175 of those
instances SELQFY was the only model for which any solution was found at all. On additional
23 instances the optimal solution of SELQFY was found while for the other models not even an

incumbent solution was found.

Furthermore, we are interested in the runtimes of CPLEX and Yasol on the robust counterpart
and the quantified programs, respectively. In Table 7.12 we present the average runtimes on

instances of which all models were solved. For configurations with too few or no instances solved

Table 7.12.: Average runtime (in seconds) of multistage selection instances with n = 10 for which
each model type was solved. Values marked with an asterisk show the average
runtime on all solved instances of that model type.

model S=1 S=2 S=3 S=4 S=5 S=6 S=7 S=38

SELRC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

N =2' SELQ 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.4
SELQFY 0.1 0.1 0.1 0.1 0.0 0.2 0.3 0.5
SELRC 0.0 0.0 0.0 0.1 1.5 10.8 191.1 1023.7

N =22 SELQ 0.1 0.1 0.2 0.2 0.7 2.2 8.7 28.6
SELQFY 0.0 0.1 0.2 0.2 0.5 1.1 4.1 6.3
SELRC 0.0 0.0 0.3 7.3 306.3 1261* - -

N =2 SELQ 0.0 0.2 0.4 2.0 13.9 103.9* 848.2% -
SELQFY 0.1 0.1 0.4 1.0 3.9 26.2%* 146.8* 678.8%
SELRC 0.0 0.0 6.3 396.3 - - - -

N =2* SELQ 0.1 0.2 2.2 30.8 557.5% - - -
SELQFY 0.0 0.3 1.1 7.3 111.7* 816.9* 895% -
SELRC 0.0 0.8 102.4 1667.7% - - - -

N =2° SELQ 0.1 0.8 19.7 600* - - - -
SELQFY 0.2 0.5 5.3 129.3% 644.6* 970* - -
SELRC 0.0 4.2 807.5 - - - - -

N =2° SELQ 0.3 3.6 222.7 - - - - -
SELQFY 0.2 1.4 38.7 800.9% 1490.5% - - -
SELRC 0.0 25.4 - - - - - -

N =27 SELQ 0.4 20.0 1221.9*% - - - - -
SELQFY 0.4 6.8 358.3%* 398.7* - - - -
SELRC 0.0 187.6 - - - - - -

N =2% SELQ 1.0 147.5 - - . - - _
SELQFY 1.0 45.0 621.1%* - - - - -

for all models, we use the average runtime of all solved instances of that model type. Those
value are marked with an asterisk. We highlight the modest increase of the runtime of SELQFY
models for increasing S and IV, even compared to SELQ. These two tables show in an impressive
manner, that a) for instances with many iterations and scenarios the use of quantified programs
is far superior to solving the robust counterpart, and b) utilizing universal constraints rather

than standard QIPs is of surprisingly great advantage in this setting.



164 Implementation Details and Experimental Results

7.3.3. Multistage Assignment Problem

In this subsection we briefly investigate the multistage assignment problem as introduced in
Subsection 4.4.5 in which a perfect matching in a bipartite graph with minimal costs has to be
determined. We compare the performance of our solver on the quantified models ASSQFY and
ASSQ with the performance of CPLEX on the robust counterpart ASSRC.

Generation of Instances FEach instance is given by the size n of each partition, the number
of iterations S and the number of scenarios NV per iteration. The remaining parameters of an
instance are the cost cf’j’k for each edge (i,7) in scenario k of iteration s which are randomly
selected from the range 0,1,...,99. Those values are created using the C++ function rand()

from the standard general utilities library and the modulo operator.

QIP'® vs. QIP vs. Robust Counterpart For each n € {4,...,10}, S € {1,...,4} and N ¢
{21,22,23} we created 50 instances for each model type ASSQFY, ASSQ and ASSRC. The
quantified models are solved with our solver and the robust counterpart is solved with CPLEX
with a time limit of 1800 seconds. We examine how the realization of n, S and N affects the
runtime and which model-solver combination is best suited for the different instances. Based
on the results of the multistage selection problem we expect that the runtime for ASSQFVY is
lower than for ASSQ. Furthermore, for increased S and N we expect a growing advantage for
the quantified models, while for increasing n CPLEX on ASSRC is expected to become more

competitive. In Table 7.13 for instances with N = 4 scenarios both the number of solved

Table 7.13.: Number of solved multistage assignment instances with N = 4 and average runtime.

model S=1 S=2 S=3 S=4
ASSRC 50  (0.0) 50 (0.0 50 (0.0) 50 (3.1)
n=4 ASSQ 50 (0.1) 50 (0.1) 50 (0.3) 50 (0.7)
ASSQFY 50 (0.1) 50 (0.1) 50 (0.2) 50 (0.5)
ASSRC 50  (0.0) 50 (0.0 50 (0.6) 50  (14.5)
n=5 ASSQ 50 (0.0) 50 (0.3) 50 (1.0) 50 (2.6)
ASSQFY 50 (0.1) 50 (0.2) 50 (0.5) 50 (1.8)
ASSRC 50 (0.0) 50 (0.0) 50 (2.0) 50 (46.9)
n=6  ASSQ 50 (0.2) 50 (1.0 50 (3.9) 50 (13.3)
ASSQFY 50 (0.2) 50 (0.6) 50 (1.9) 50 (6.4)
ASSRC 50  (0.0) 50 (0.0) 50 (8.9) 48 (152.7)
n=7 ASSQ 50 (0.2) 50 (5.3) 50  (19.4) 50 (72.7)
ASSQFY 50 (0.2) 50  (1.7) 50 (6.0) 50 (25.2)
ASSRC 50 (0.0 50 (0.1) 50 (26.1) 33 (470.7)
n=8 ASSQ 50 (0.4) 50 (14.4) 50 (76.3) 50 (257.5)
ASSQFY 50 (0.3) 50  (3.5) 50 (26.0) 50 (117.0)
ASSRC 50  (0.0) 50 (0.7) 50 (155.5) 15 (615.9)
n=9 ASSQ 50 (0.6) 50 (59.9) 50 (365.2) 33 (1070.9)
ASSQFY 50  (0.4) 50 (11.2) 50 (102.9) 49 (528.7)
ASSRC 50 (0.0) 50 (1.0) 47 (224.3) 8  (912.3)
n=10 ASSQ 50 (1.4) 50 (192.9) 36 (990.9) 1 (1440.0)
ASSQFY 50 (0.8) 50  (43.4) 48 (529.9) 12 (1339.3)
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instances as well as their average runtime is presented. We refer to Appendix B.5 on page 186
for similar tables for 2 and 8 scenarios. We would like to point out again that the average
runtime is not too revealing if only a few instances have been solved. For S = 2 all instances for
each model and configuration are solved and the expected strength of CPLEX is clearly visible:
the runtime barely increases for increasing n. For the quantified models the runtime increases
significantly faster, whereat ASSQFY models are solved considerably faster than ASSQ models.
For increasing S and N (cf. Appendix B.5), the ASSQFY model tends to yield the best results
but CPLEX (on ASSRC) remains highly competitive and is able to catch up with increasing

n. In Figure 7.6 the performance profile on all 4200 instances is given. It can be seen that

1 - —
0.8 B
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K
0.4 B
— ASSQFY
0.2 — ASSQ |
— ASSRC
| I I

| | | | | I
020 21 22 23 24 25 26 27 28 29 210
T

Figure 7.6.: Performance profile for all examined assignment instances and each model.

CPLEX is significantly faster on most ASSRC instances and is fastest on more than 75% of the
instances. However, overall more of the ASSQFY and ASSQ instances are solved. In comparison
with Figure 7.5, the benefit of using universal constraints instead of the standard QIP seems
to be even greater for this assignment problem than for the selection problem on the tested

instances, as the blue and black curves approach each other much more slowly.

Impact of SCP Just like for the multistage selection problem, the use of SCP can only affect
the solution process of ASSQFY because for ASSQ a change in the universal variable assignment
requires the change of subsequent existential variables. Hence, we only examined ASSQFY by
creating 500 instances with n = 8, S = 4 and N = 8 and solved them with and without the
use of SCP with a time limit of 1800 seconds. With the use of SCP 436 instances were solved.
428 instance were solved without SCP. The average runtime for those instances solved with and
without the use of SCP was 785.45 and 820.29 seconds, respectively. These results are very
similar to the ones obtained for multistage selection instances and show a positive impact of

SCP on the solution process.






8. Conclusion and Outlook

8.1. Conclusion

In this thesis we studied the concept of quantified integer programming which is a framework
for multistage optimization under uncertainty. Our main contributions are the theoretical sub-
stantiation of two extensions QIPPY and QIPP. and the development and implementation of
solution techniques for standard QIP as well as the extensions.

We adapted well-known solution techniques to QIP and developed strategic copy-pruning
(SCP), which makes it possible to omit certain subtrees during the search process by implicitly
verifying the existence of a strategy in linear time. Additionally, we introduced novel relaxations
that incorporate enhanced information regarding potential realizations of uncertain variables.

In our first extension universally quantified variables must obey a second constraint system
resulting in a QIP with polyhedral uncertainty set QIPYY. We presented a polynomial-time
reduction function and several examples illustrated how the pure modeling benefits from having
access to such explicit restrictions.

Our second novel extension QIP™P allows multistage optimization under decision-dependent
uncertainty for which we derived a well-defined problem statement. Based on this we exam-
ined the effects regarding the game tree interpretation and introduced the concept of a trun-
cated strategy. Then we established the PSPACE-completeness of the extension and developed
a polynomial-time reduction function. We further introduced several relaxation techniques,
adapted game tree search methods and also showed that pruning mechanism, and in particular
SCP, are also applicable for QIPP.

Due to a tremendous computational overhead when solving general QIP™® we proposed a
restricted version that allows a straightforward integration into our solver. We pointed out
advantages of the made assumptions for the solution process and illustrated examples where
they naturally apply.

Finally, we described how the general solver was adapted in order to be able to cope with
the presented extensions. In a detailed computational study we investigated the advantages
and disadvantages and compared the performance of models utilizing the explicit polyhedral
uncertainty set with the equivalent standard QIP and the robust counterpart, which we solved
using CPLEX. We demonstrated that our solver shows its strengths when there are multiple
stages and scenarios where the sheer size of the robust counterpart is no longer manageable for
CPLEX. In particular, the required RAM during the solution process of CPLEX increased expo-
nentially while our solver’s RAM usage only slightly increased for growing instances. However,

for an increased size of the underlying deterministic problem (e.g. more items to select from)
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the results showed that the IP abilities of CPLEX are currently more powerful. The comparison

PPU and QIP were very promising: The more compact formula-

PPU

of the solution processes of QI
tion of the polyhedral uncertainty set in the QI resulted in a (generally) decreased runtime
compared to the corresponding QIP. This was not necessarily expected, as the handling of a
second constraint system called for several cut backs in the implemented deduction techniques.
Furthermore, experiments showed that utilizing our developed pruning techniques resulted in a
massive improvement in both the number of solved instances and the runtime on several test
sets, while no significant negative effect regarding the computational overhead was observed.
With the development and theoretical substantiation of the extensions QIPYY and QIP™P, the
implementation of corresponding solution techniques in our open-source solver, and the algo-
rithmic advances in the solution of QIP, this thesis paves the way for practical use of quantified

programs.

8.2. Outlook

The intuitive and compact problem description of the general QIP™® as well as the promising
computational results indicate that quantified programs can be successfully applied for a variety
of optimization problems. In particular, problems in a multistage setting can easily be modeled
as QIP, QIPPY or QIP'P, for example combinatorial optimization problems and problems from
the OR research area, where the multistage nature of underlying real-world decision-making
processes is apparent. It will be interesting to see further applications of quantified programming
to multistage optimization problems under decision-dependent uncertainty. In particular, we see
great potential in the areas of explorable uncertainty and scheduling.

One major task when modeling problems under uncertainty is to find a description of possible
scenarios that one wishes to protect against. A balance must be struck between the benefit of the
achieved robustness and an increasing conservatism. Data-driven robust optimization techniques
can be adapted in order to construct relevant uncertainty sets for quantified programs, which
can be modeled using the universal constraint system introduced in this thesis. In times of big
data a multitude of real-world data sets is available that can be utilized in research oriented
multistage models in order to form the foundation for real-world applications.

The promising computational results of our solver on problems with several decision stages
demonstrate the power of compact modeling via quantified programs and our developed solution
methods. However, more development is needed to increase our solver’s IP abilities in order to be
able to solve even larger instances. Furthermore, research regarding the structural requirements

PP” is necessary. Results in these areas will further open

of the introduced “simply restricted QI
up possibilities towards modeling and solving real-world problems under decision-dependent
uncertainty.

Additional approaches to speed up the solution process through QIP-specific solution tech-
niques and heuristics are now realizable such as the use of cutting planes in the universal con-
straint system that implicitly prune irrelevant universal variable assignments. Furthermore, we

plan to apply and adapt techniques from other research areas to improve our handling of quan-
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tified programs, e.g. learning techniques can be implemented to gain a better understanding
of worst-case scenarios in order to speed up the detection of the principal variation. In addi-
tion, there are certainly a variety of methods for QBF, QCSP, MIP and RO that can be used
profitably in our game tree search with only slight modifications.

The exploration and testing of further algorithmic and heuristic methods specifically dealing
with QIPPY and QIP'P is necessary. Both problem types already benefited from crafty tech-
niques implemented for QIP but we showed that not all of them are applicable. In particular,
we see potential for improvement with regard to implication and conflict learning techniques, as
we have adapted the existing implementation rather conservatively. Further extensive compu-
tational studies of problems under decision-dependent uncertainty, e.g. the mentioned selection
problem with explorable uncertainty, will need to be done.

Another interesting aspect is the use of relaxations. In this thesis we theoretically substanti-
ated several relaxations that can be applied during a tree search. However, currently our solver
uses a more sophisticated relaxation only in the very first variable block and utilizes an only
slightly refined standard LP-relaxation in subsequent blocks. Practical implementations have to
be engineered, that allow the use of sophisticated relaxations, e.g. the S-relaxation, without a
significant computational overhead for adapting or rebuilding the relaxation in order to keep it
applicable. In combination with an improved understanding of important scenarios, our current
approach has great potential to be improved even further.

The development of domain-specific heuristics or algorithms for multistage problems can be
assisted by our open-source solver. On the one hand our solver can be adapted in order to
exploit problem-specific knowledge within the game tree search. On the other hand, we envision
the use of artificial neural networks that learn decision rules for multistage problems, where
optimal solutions of quantified programs can be used in the learning process. The multistage

combinatorial problems examined in this thesis could be used as a basis for this approach.






A. Examples and Algorithms

A.1. Example of Reduction QIP'® <, QIP

In order to compute the corresponding QIP of the QIP'P as given in Example 5.3.19 we need
to compute the bounds for the values L, M, M and RLCP. Tt is L; < —2, My > 2, My > 3,
M > 5 and RlLCD < 1. Hence, a possible equivalent QIP corresponding to the QIPP is given

as follows:

z = min (—ml + max (—332 — 2x3 — min 10p>>
z1€{1,2,3} z2,23€{0,1} pe{0,1}
st. Iz € {1,2,3} W € {0,1} TV € {0,1}
Vs €{0,1} Vas € {0,1} 3y1? € {0,1} 3, € {0,1} Ip € {0,1} :

T —i—vél) +v§1) <3
214 —3@51) <3
1 +x2 +z3  —2p <3
2r1 —3x9 —3p <3
—xy 420 4wy 43P <2
D —12 <0

to —y§2) <0
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A.2. Heuristic Strategies for Example 4.4.2

The three heuristic strategies and the optimal strategy with their worst-case outcome explored
in Example 4.4.2 are presented. The investigated problem is a multistage selection problem with
6 items of which 3 have to be selected. There are 2 additional selection phases (which we called
iterations) with each 2 scenarios. For better comprehensibility the costs in the initial stage and

each scenario as given in Table 4.1 on page 70 are again displayed in the following Table A.1.

Table A.1.: Cost scenarios for an instance of the multistage selection problem.

Tables A.2-A.5 describe the constructed strategies. Values in parentheses are the item’s cost,
when bough in the proposed iteration and scenario. Gray cells indicate that this cell represents
the second scenario of this iteration. The tables should be read from left to right, and can be

interpreted as following the paths in the scenario tree. Cells with a hyphen indicate that nothing

i 1 2 3 4 5 6

¢ 8 14 76 61 31 45
ciy 40 24 29 41 90 71
cio 45 30 15 18 44 44
¢y 13 25 12 11 75 50
¢, 80 10 29 32 64 30

should be done. The costs in the worst-case scenario are printed in bold.

Table A.2.: Selection strategy according to “Buy All Now”.

iteration 0 iteration 1 iteration 2 costs
- 920
select item 2(14) ) = 90
select item 5(31)
select item 6(45) B 20
) - 90

When buying the cheapest items in the initial stage, the resulting costs obviously do not

depend on the scenarios that occur in upcoming iterations.

Table A.3.: Selection strategy according to “Buy Now, If Never Cheaper in Worst Case”.

iteration 0 iteration 1 iteration 2 costs
select item 4(11) 56
select item 2(14) select item 3(29) 74
select item 5(31) _ 60
select item 3(15) - 60

The optimal solution as shown in Table A.5, is to select no items in the initial stage and wait

for the scenario in iteration 1. This was surprising, as buying item 2 in the initial stage seemed
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Table A.4.: Selection strategy according to “Buy Now, If Few are Cheaper”.

iteration 0 iteration 1 iteration 2 costs
select item 4(11) 54
select item 3(29) -
select item 6(30) 73
select item 2(14)
select item 3(15) ) 47
select item 4(18) - 47

Table A.5.: Optimal selection strategy for Example 4.4.2.

iteration 0 iteration 1 iteration 2 costs
4(11), 3(12) and 1(13) 36
2(10), 3(29) and 6(30) 69
select item 3(15) select item 1(13) 46
select item 4(18) select item 2(10) 43

inevitable due to the low cost of 14. In this example the costs after each realization of the
scenarios in each iteration are smaller when applying the optimal winning strategy compared to
the other heuristic strategies. Note that this does not have to be the case, as the sole aim of the

optimization is minimize the worst-case costs.
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A.3. Tic-Tac-Toe as QIP'DP

Table A.6.: Variables of the QIP® model of tic-tac-toe.

name domain blocks / quantifier

description

A* {0,1}***  {1,3,5,7,9} / 3
B* {0,1}**%  {2,4,6,8} / V

hk {0,1}3 {1,3,5,7,9} / 3
vk {0,1}* {1,3,5,7,9} / 3
d* {0,1}2 {1,3,5,7,9} / 3

placement indicator of Xs after turn k
placement indicator of Os after turn k
indicator for horizontal rows of Xs after turn &
indicator for vertical rows of Xs after turn k
indicator for diagonal rows of Xs after turn k

W {0,1} {1,3,5,7,9} / 3 winning indicator for the starting player after turn k
Objective: max wg
Variable order: JA' Bt vrd'wy VB2 - AT BT 0 d"wr VB 3 A% BY 0P d%w,

Existential constraint system Az < b7

B+ Af <1

Af?—Af; <0

> A=)

(i,j)EP
> AF; > 3hf

(i,5)er

Ak 231}
> A

(z,])GP

ZAk > 3d

ZAM . > 3db

3 3
SThF > ok +dl +ds > wy
i=1 =1

> BF,<2+w,
(4,7)EP

Z B < 24wk
(Z,J)EP

ZB <2+ wg

ZBM i < 24w

V(i,j) € P, k€ {3,5,7,9}
V(i,j) € P, k €{3,5,7,9}

Vk e {1,3,5,7,9}

Vie{1,2,3}, ke {1,3,5,7,9}

Vje{1,2,3}, ke {1,3,5,7,9}

Vke{1,3,57,9}

Vke{1,3,57,9}

Vke{1,3,57,9}

Vie {1,2,3}, k € {2,4,6,8}
Vje{l1,2,3}, k€ {2,4,6,8}
Vk e {2,4,6,8)

Vke{2,4,6,8)
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Universal constraint system A%z < b":

AT+ B <1
BY;?— B} <0

k
> sz,jzg

(i,4)EP

V(i,j) € P, k € {2,4,6,8}
V(i,j) € P, k € {4,6,8}

VEk e {2,4,6,8}
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A.4. Alpha-Beta Algorithm for QIP'®

Algorithm 11: Initial call of the alpha-beta algorithm for QIPP.
Input: QIP™P (43, AY,7,b", ¢, £, Q), game tree G = (V, E, €)

1: o« = —00

2: 5 = 400

3: for all v' € L(r) do

4:  wvalue =AlphaBeta(v', , 3)
5. if value # too then

6: B = min {3, value}

7. end if

8: end for

9: return f

Algorithm 12: Basic alpha-beta call for QIP'P: AlphaBeta(v,a,3).
Input: node v, value «, value 8
1: if v € V7, then

2:  return w(v) // weighting function w(v), see Definition 5.3.11
3: end if

4: NodeValue = £o00 // assume v € Vi

5. if v € V4 then // v is a MAX node

6: for all v € L(v) do

7: if AlphaBeta(v', «, 3) # oo then

8: a = max{a, AlphaBeta(v', o, §)}

9: NodeValue = « // in particular v ¢& Vi
10: if a >  then

11: return [

12: end if

13: end if

14: end for
15:  return NodeValue

16: end if

17: if v € V5 then // v is a MIN node

18:  for allv' € L(v) do

19: if AlphaBeta(v', «, ) # oo then

20: £ = min{ g, AlphaBeta(v', o, 5) }

21: NodeValue = // in particular v & Vi
22: if 8 < a then

23: return «

24: end if

25: end if

26: end for
27 return NodeValue
28: end if




B. Supplemental Data

B.1. Additional Data on Multistage Selection Experiments

Table B.1.: Average of the maximum RAM required during the solution process of the three
models with N = 4. Average of 50 instances per data point.

model S=1 S=2 S=3 S=4 S=5 S=6 S=7 S =38

SELRC 4.37 3.82 2.33 16.99 65.19 272.39 1111.5 4406.75
n=10 SELQ 619.76 621.78 624.59 628.19 630.27 629.87 632.44 637.24
SELQFY  619.84 621.85 623.61 629.85 718.47 719.76 720.53 721.99

SELRC 3.02 3.81 6.34 34.63 128.7 518.2 2181.64  5722.53
n=20 SELQ 620.61 623.68 627.62 633.57 632.83 634.99 637.21 643.46
SELQFY  620.57 623.51 626.55 633.47 722.77 724.0 727.36 729.31

SELRC 4.65 3.45 13.19 48.43 190.32 770.31 3080.61  8268.61
n=30 SELQ 621.43 624.92 629.56 635.3 636.88 639.44 642.93 654.28

SELQFY  621.34 625.3 628.65 635.3 726.4 729.8 733.83 739.23

SELRC 3.69 3.09 19.31 62.12 245.99 1040.35  4032.11  10838.5

n =40 SELQ 622.2 626.36 631.65 639.44 641.87 647.24 652.92 661.08
SELQFY  621.81 626.36 630.29 640.44 732.58 737.58 743.9 753.36

SELRC 4.66 4.05 221 77.03 307.31 1271.37  4893.63  13402.8
n=>50 SELQ 622.57 628.27 634.18 642.17 648.45 654.5 659.28 671.43
SELQFY  622.54 627.73 634.13 646.89 739.74 747.18 757.86 762.53

Table B.2.: Average runtime (in seconds) of multistage selection instances with N = 4 for which
both quantified model were solved. An asterisk indicates less than 20 solved in-

stances.
model S=1 S =2 S=3 S =4 S=5 S=6 S=7 S=8
n_10 SELQ 0.1 0.1 0.2 0.3 0.7 2.6 7.5 35.4
- SELQFY 0.1 0.1 0.1 0.2 0.6 1.2 4.2 10.8
n_op SELQ 0.1 0.2 0.7 1.4 5.5 12.1 43.1 149.7
- SELQFY 0.1 0.2 0.5 0.9 2.6 7.5 28.8 86.0
_ 3 SELQ 0.2 0.5 2.7 7.9 15.5 43.7 159.7 448.9
"= SELQFY 0.2 0.4 1.7 8.1 14.3 41.6 97.9 368.1
_ 4 SELQ 1.3 1.8 5.6 28.3 35.1 136.5 332.2 783.1
"= SELQFPY 1.3 1.9 3.7 14.3 46.9 113.5 304.0 643.4
neso SELQ 1.4 3.0 13.9 55.8 112.6 377.5 643.5 1021.0*

SELQFY 14 2.6 8.0 35.1 94.6 281.7 601.8 831.7*
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B.2. Data Table of Multistage Selection Instances

In Table B.3 we provide information on multistage selection instances with 10 items of which 5
must be selected. For each setting (number of iterations S, number of scenarios N) we provide
the data on a representative instance for the models SELQFY, SELQ and SELRC (see Subsection
4.4.4). Note that for any instance with fixed number of items, N and S, all entries in the table
are equal except for the file size: the file sizes vary only marginally due to the different random
cost parameters. The ambiguity of n, which was used in this local context as the number of
items and as the number of variables in the global context, is avoided by only using n as the
number of variables. Furthermore, the overall number of constraints m, as well as the number
of existential (m3) and universal constraints (my) is shown. The number of variable blocks 5 is

explicitly given, even though 8 =1+ 25 in all cases.

Table B.3.: Data table of multistage selection instances with 10 items.

items N S model n Ny n3 m my m3 I5] file size
SELRC 30 — — 24 - = - 2KB
10 2 1 SELQ 24 1 23 16 0 16 3 1KB
SELQFY 23 2 21 14 1 13 3 1KB
SELRC 50 - - 48 - — 3KB
10 4 1 SELQ 27 2 25 20 0 20 3 2KB
SELQFV 25 4 21 16 1 15 3 2KB
SELRC 90 - - 96 - — B5KB
10 8 1  SELQ 32 3 29 28 0 28 3 3KB
SELQFY 29 8 21 20 1 19 3 2KB
SELRC 170 - - 192 - - — 10KB
10 16 1 SELQ 41 4 37 44 0 44 3 4KB
SELQFY 37 16 21 28 1 27 3 3KB
SELRC 330 — — 384 - - — 21KB
10 32 1 SELQ 58 5 53 76 0 76 3 8KB
SELQFY 53 32 21 44 1 43 3 6KB
SELRC 650 - - 768 - - — 43KB
10 64 1 SELQ 91 6 85 140 0 140 3 15KB
SELQFY 85 64 21 76 1 75 3 11 KB
SELRC 1290 — - 1536 - - — 87KB
10 128 1 SELQ 156 7 149 268 0 268 3 29KB
SELQYY 149 128 21 140 1 139 3 21 KB
SELRC 2570 - — 3072 - - — 178 KB
10 256 1 SELQ 285 8 277 524 0 524 3 60 KB
SELQFY 277 256 21 268 1 267 3 42 KB
SELRC 170 - — 48 - - — b5KB
10 2 2 SELQ 38 2 36 21 0 21 5 2KB

SELQFY 36 4 32 17 2 15 5 2KB
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Extension of Table B.3: Data table of multistage selection instances.

items N S model n ny n3 m my m3 B file size
SELRC 210 - - 192 - - 17KB
10 4 2  SELQ 44 4 40 29 0 29 5 3KB
SELQFY 40 8 32 21 2 19 5 3KB
SELRC 730 - — 768 S — — 64KB
10 8 2 SELQ 54 6 48 45 0 45 5 KB
SELQFV 48 16 32 29 2 27 4 KB
SELRC 2730 - - 3072 - - — 262 KB
10 16 2 SELQ 72 8 64 77 0 77 5 8KB
SELQFY 64 32 32 45 2 43 5 6KB
SELRC 10570 - - 12288 - - — 1MB
10 32 2 SELQ 106 10 96 141 0 141 15 KB
SELQFY 96 64 32 77 2 75 11 KB
SELRC 41610 - - 49152 B — — 4MB
10 64 2 SELQ 172 12 160 269 0 269 29 KB
SELQFY 160 128 32 141 2 139 21 KB
SELRC 165130 - - 196608 - - — 18 MB
10 128 2 SELQ 302 14 288 525 0 525 5 58 KB
SELQFY 288 256 32 269 2 267 5 42 KB
SELRC 657930 - - 786432 - — 76 MB
10 256 2 SELQ 560 16 544 1037 0 1037 5 120 KB
SELQFY 544 512 32 525 2 523 5 83KB
SELRC 150 - - 96 - - 13 KB
10 2 3 SELQ 52 3 49 26 0 26 7 3KB
SELQFY 49 6 43 20 3 17 7 3KB
SELRC 850 — - 768 - - — 02KB
10 4 3 SELQ 61 6 55 38 0 38 7 4KB
SELQFY 55 12 43 26 3 23 7 4KB
SELRC 5850 - — 6144 B — — 716 KB
10 8 3 SELQ 76 9 67 62 0 62 7 TKB
SELQFY 67 24 43 38 3 35 7 6KB
SELRC 43690 - — 49152 - - 6 MB
10 16 3 SELQ 103 12 91 110 0 110 7 12KB
SELQFY 91 48 43 62 3 59 7 9KB
SELRC 338250 - - 393216 - = — 50 MB
10 32 3 SELQ 154 15 139 206 0 206 7 22KB
SELQFY 139 96 43 110 3 107 7 17KB
SELRC > 2-10° - — >3-10° — - — 409 MB
10 64 3 SELQ 253 18 235 398 0 398 7 43 KB
SELQFY 235 192 43 206 3 203 7 32KB
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Extension of Table B.3: Data table of multistage selection instances.

items N S model n ny n3 m my m3 B file size
SELRC  >21-10° — - >25-106 — - — 3GB
10 128 3 SELQ 448 21 427 782 0 782 7 87TKB
SELQFY 427 384 43 398 3 395 7 62KB
SELRC  >168-105 — - >201-10° — - — 29CB
10 256 3 SELQ 835 24 811 1550 0 1550 7 180 KB
SELQFY 811 768 43 782 3 779 7 124 KB
SELRC 310 - - 192 - - — 33KB
10 2 4 SELQ 66 4 62 31 0 31 9 4KB
SELQFY 62 8 54 23 4 19 9 4KB
SELRC 3410 - - 3072 - - — 489 KB
10 4 4 SELQ 78 8 70 47 0 47 9 6KB
SELQFY 170 16 54 31 4 27 9 5KB
SELRC 46810 - — 49152 B — — 8MB
10 8 4 SELQ 98 12 8 79 0 79 9 O9KB
SELQFY 86 32 54 47 4 43 9 T7KB
SELRC 699050 - - 786432 - - — 130 MB
10 16 4 SELQ 134 16 118 143 0 143 9 15KB
SELQFY 118 64 54 79 4 75 9 12KB
SELRC >10-10° — - >12.10° — - — 2GB
10 32 4 SELQ 202 20 182 271 0 2711 9 29KB
SELQFY 182 128 54 143 4 139 9 22KB
SELRC > 170-10° — — >201-10° — — — 36GB
10 64 4 SELQ 334 24 310 527 0 527 9 57KB
SELQFY 310 256 54 271 4 267 9 42 KB
SELRC 630 - - 384 - - — 84KB
10 2 5 SELQ 80 5 75 36 0 36 11 5 KB
SELQFY 75 10 65 26 5 21 11 5KB
SELRC 13650 - — 12288 - — 2MB
10 4 5 SELQ 95 10 85 56 0 56 11 7KB
SELQFY 85 20 65 36 5 31 11 6KB
SELRC 374490 - - 393216 - - — 78 MB
10 8 5 SELQ 120 15 105 96 0 96 11 11 KB
SELQYY 105 40 65 56 5 51 11 9KB
SELRC  >11-10° — — >12-10° — - — 3GB
10 16 5 SELQ 165 20 145 176 0 176 11 19KB
SELQFY 145 80 65 96 5 91 11 15 KB
SELRC  >346-10° — — >402-10° - — — 91GB
10 32 5 SELQ 250 25 225 336 0 336 11 36 KB

SELQFY 225 160 65 176 5 171 11 28 KB
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Extension of Table B.3: Data table of multistage selection instances.

items N S model n ny n3 m my m3 B file size
SELRC 1270 - - 768 - — 207 KB
10 2 6 SELQ 94 6 88 41 0 41 13 6 KB
SELQFY 88 12 76 29 6 23 13 5 KB
SELRC 54610 - — 49152 S — — 12MB
10 4 6 SELQ 112 12 100 65 0 65 13 8KB
SELQFY 100 24 76 41 6 35 13 T7KB
SELRC > 2-10° — — > 3.10° - — — 775 MB
10 8 6 SELQ 142 18 124 113 0 113 13 13KB
SELQFY 124 48 76 65 6 59 13 11 KB
SELRC > 178-10° — - >201-10° — - — b54GB
10 16 6 SELQ 196 24 172 209 0 209 13 23 KB
SELQFY 172 96 76 113 6 107 13 18 KB
SELRC 2550 - - 1536 B — — 499 KB
10 2 7 SELQ 108 7 101 46 0 46 15 7KB
SELQFY 101 14 87 32 7 25 15 6 KB
SELRC 218450 - - 196608 - — 60 MB
10 4 7 SELQ 129 14 115 74 0 74 15 9KB
SELQFY 115 28 87 46 7 39 15 8 KB
SELRC  >23-105 — - >25-10° — - — 8GB
10 8 7 SELQ 164 21 143 130 130 15 15KB
SELQFY 143 56 87 74 67 15 12 KB
SELRC 5110 - - 3072 - = - 1MB
10 2 8 SELQ 122 8 114 51 0 51 17 7KB
SELQFY 114 16 98 35 8 27 17 7KB
SELRC 873810 — - 786432 - - — 286 MB
10 4 8 SELQ 146 16 130 83 0 83 17 11 KB
SELQFY 130 32 98 51 8 43 17 9KB
SELRC  >191-10° — — >201-10¢ — — — T72GB
10 8 8 SELQ 186 24 162 147 0 147 17 17KB
SELQFY 162 64 98 83 8 75 17 14 KB
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B.3. Performance Profiles for Multistage Selection Experiments

We provide performance profiles (see Remark 7.3.1) for experiments on multistage selection
instances with N = 4 scenarios (see Subsection 7.3.2). We first compare the performance on all
instances with fixed number of items n and then for fixed number of iterations S. In Figure B.1
we see that for increasing n CPLEX is more often the fastest method (solving SELRC) but our
solver is able to solve more instances using the quantified models. In Figure B.2 we see that
for large S CPLEX cannot keep up with our solver on SELQFY and SELQ instances. For fewer
iterations (S < 5) we cannot outperform CPLEX solving SELRC but always solve all instances

within the time limit.
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Figure B.1.: Performance profiles for multistage selection models for various n.
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B.4. Optimal Robust Strategy vs. Heuristic Selection Strategy

For the heuristic selection strategies 2 and 3, presented in Subsection 4.4.4, box plots displaying
the relative deviation of the worst-case outcome when applying those heuristics from the optimal
value are shown for instances with various number of items and stages with a fixed number of
N = 4 scenarios per stage. Strategy 1 is not considered as it would distort the graphs without
gaining new insights, as strategy 1 is (obviously) significantly worse. Box plots (e.g. [MTL78])
are created using the macro psboxplot of the IMTEX package pst-plot!®. The interquantile
range factor, defining the area of outliers, is set to 1.5 by default. Each plot comprises of 50
instances, except for n = 40 with S = 8 as well as n = 50 with S =7 and S = 8. The maximum
range of each plot is set to 3.5 in order to allow a better comparability for the various n. Light

gray box plots represent strategy 2 and dark gray box plots represent strategy 3.
3.5
3.0
strategy 2
2.5
strategy 3

2.0

1.5

1.0 T
0.5

relative deviation from optimum

Figure B.3.: Relative deviation from the optimal value of the heuristic selection strategies 2 and
3 for n = 10 items.

strategy 2

strategy 3

relative deviation from optimum

Figure B.4.: Relative deviation from the optimal value of the heuristic selection strategies 2 and
3 for n = 20 items.

Yhttp://ctan.org/pkg/pst-plot (accessed May 3, 2020)
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Figure B.6.: Relative deviation from the optimal value of theheuristic selection strategies 2 and
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B.5. Additional Data on Multistage Assignment Experiments

Table B.4.: Number of solved multistage assignment instances with N = 2 and average runtime.

model S=1 S=2 S=3 S=4
ASSRC 50 (0.0) 50 (0.0) 50  (0.0) 50 (0.0)
n=4 ASSQ 50 (0.0) 50 (0.1) 50 (0.2) 50 (0.2)
ASSQFY 50 (0.1) 50  (0.1) 50 (0.2) 50 (0.2
ASSRC 50 (0.0) 50 (0.0) 50 (0.0) 50  (0.0)
n=5 ASSQ 50 (0.1) 50 (0.2) 50  (0.3) 50 (0.7)
ASSQFY 50 (0.1) 50 (0.1) 50 (0.2) 50 (0.4)
ASSRC 50 (0.0) 50 (0.0) 50 (0.0) 50 (0.0)
n=6 ASSQ 50 (0.1) 50 (0.3) 50 (0.7) 50 (1.7)
ASSQFY 50 (0.1) 50 (0.2) 50 (0.5) 50 (0.8)
ASSRC 50 (0.0) 50 (0.0) 50 (0.0) 50 (0.1)
n=7 ASSQ 50 (0.2) 50 (0.7) 50 (2.7) 50 (7.6)
ASSQFY 50 (0.1) 50 (0.4) 50 (0.9) 50 (2.1)
ASSRC 50 (0.0) 50 (0.0) 50 (0.0) 50 (0.5)
n=8 ASSQ 50 (0.2) 50 (2.0 50 (11.6) 50 (20.1)
ASSQFY 50 (0.2) 50 (0.6) 50 (2.6) 50 (5.1
ASSRC 50  (0.0) 50 (0.0) 50 (0.0) 50 (1.1)
n=9 ASSQ 50 (0.2) 50 (5.1) 50 (22.6) 50 (116.3)
ASSQFY 50 (0.2) 50  (1.7) 50 (7.7) 50 (21.4)
ASSRC 50  (0.0) 50 (0.0) 50 (0.0) 50 (2.1)
n=10 ASSQ 50 (0.6) 50 (10.0) 50 (98.0) 50  (351.6)
ASSQFY 50 (0.3) 50 (4.6) 50 (22.9) 50 (84.3)

Table B.5.: Number of solved multistage assignment instances with N = 8 and average runtime.

model S=1 S=2 S=3 S=4
ASSRC 50 (0.0) 50 (0.0) 50 (3.2) 50  (118.6)
n=4 ASSQ 50 (0.1) 50 (0.2) 50 (0.8) 50 (4.0)
ASSQFY 50 (0.1) 50 (0.2) 50 (1.3) 50 (5.8)
ASSRC 50 (0.0) 50 (0.2) 50 (11.8) 43 (349.0)
n=5 ASSQ 50 (0.1) 50  (0.6) 50 (2.5) 50 (13.9)
ASSQFY 50 (0.2) 50 (0.4) 50 (2.4) 50 (18.4)
ASSRC 50 (0.0) 50 (0.9) 50  (70.0) 25  (662.8)
n=6  ASSQ 50 (0.3) 50 (2.5) 50 (13.6) 50 (63.6)
ASSQFY 50 (0.2) 50 (1.7) 50 (8.4) 50 (70.0)
ASSRC 50 (0.0) 50 (1.4) 49 (215.2) 7 (762.7)
n=7 ASSQ 50 (0.4) 50 (11.3) 50  (58.8) 49 (310.7)
ASSQFY 50 (0.3) 50 (4.1) 50  (33.7) 50  (248.0)
ASSRC 50 (0.0) 50  (4.8) 41 (445.8) 2 (496.5)
n=8 ASSQ 50 (1.2) 50 (47.4) 50 (251.1) 39 (854.5)
ASSQFY 50 (0.5) 50 (13.5) 50  (110.8) 44 (869.4)
ASSRC 50 (0.0) 50 (21.9) 24 (470.5) 3 (991.3)
n=9 ASSQ 50 (2.9) 50  (228.8) 31 (1117.9) 7 (898.4)
ASSQFY 50  (1.5) 50  (45.8) 50 (598.5) 4 (1131.0)
ASSRC 50 (0.0) 50 (56.4) 15 (517.3) 1 (388.0)
n=10 ASSQ 50 (8.1) 43 (633.9) 7 (675.9) 1 (173.0)
ASSQFY 50  (3.0) 50  (266.5) 8  (1056.0) 1 (1154.0)
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