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Abstract

Present-day requirements on efficiency and quality of manufacturing processes
necessitate constant monitoring of machine tools and machining processes. Al-
though automated, sensor-based machine monitoring techniques are described
in literature, real-world production shops still exhibit a high degree of human in-
tervention, which tends to be both expensive and error-prone. This is due to three
challenges that such machine monitoring systems are confronted with which this
thesis will address:

First of all, long-term deployable systems require robust predictive models.
The models need to generalize across user-initiated adjustments of process param-
eters and changes of workpiece types, such that trained models still match the dis-
tribution of newly incoming test data by independence of covariate shift among
training and testing data distributions. The variance in sensor data is often more
influenced by such parameter adjustments and workpiece changes than by actual
anomalies. This dominance of covariate shift over class-discriminative informa-
tion in sensor data is challenging. Secondly, most performant predictive models
are (semi-)supervised, requiring large sets of labeled sensor data. Annotation of
anomalous data is expensive and comes with a severe risk of machine damages
when deliberately provoking anomalies. Finally, high-performant models rely
on high memory resources, long training and model execution times or specific
hardware for training (e.g., GPUs). These requirements conflict with the desire
of companies for industrially robust and compact embedded sensor systems and
short model execution times (allowing timely alerts of and quick responses to
potentially critical anomalies). Evaluation directly on embedded sensor systems
allows for an increased data security, compactness allows to retrospectively equip
machines with these sensor systems.

The first part of the thesis is concerned with defining features tailor-made for
specific machine monitoring tasks that generalize across covariate shift. To that
end, domain expertise about machine and process characteristics is included in
custom-built preprocessing models for segmentation of sensor data and track-
ing of discrete frequency components. The second part of the thesis focuses on
low-cost annotation and detection of “in-the-wild” recorded anomalies. A proto-
typical evaluation system was developed specifically for harsh industrial environ-
ments and deployed there. The system enables data recording, on-system evalua-
tion and reporting of potential anomalies, both supporting operators in decision
processes and allowing for annotation of sensor data by operators’ feedback to
anomaly propositions. Evaluations of this prototypical system and the resulting
data suggested that involved anomaly detection models were overly simple, so
more sophisticated unsupervised neural anomaly detection models were tested.
In addition, two semi-supervised extensions trained with expert labels and auto-
matically generated, therefore weak labels were compared. Both unsupervised
and semi-supervised neural anomaly detectors prove to be well-suited, generaliz-
ing across several weeks of data exhibiting covariate shift. All presented methods
respect constraints imposed by embedded systems used for machine monitoring
and the need of timely responses to anomalies.
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Zusammenfassung

Heutige Anforderungen an Effizienz und Qualität von Fertigungsprozessen be-
dingen eine ständige Überwachung von Werkzeugmaschinen und Bearbeitungs-
prozessen. Obwohl automatisierte, sensorbasierte Maschinenüberwachungssyste-
me in der Literatur bestehen, sind reale Produktionsstätten weiterhin durch einen
hohen Anteil menschlicher Beteiligung gekennzeichnet, was teuer und fehleran-
fällig zu sein tendiert. Dies ist durch drei Herausforderungen bedingt, denen sich
solche Überwachungssysteme ausgesetzt sehen und welche in dieser Arbeit adres-
siert werden:

Zunächst einmal erfordern Überwachungssysteme im Langzeitbetrieb robu-
ste, prädiktive Modelle. Die Modelle müssen über nutzerbedingte Anpassungen
von Prozessparametern und Wechsel von Werkstücktypen hinweg generalisie-
ren, sodass trainierte Modelle weiterhin zur Verteilung neu aufgenommener Test-
daten passen und damit unabhängig gegenüber des Covariate Shifts zwischen
Trainings- und Testdatenverteilungen sind. Die Varianz in Sensordaten ist häufig
stärker von derartigen Parameteranpassungen und Werkstücktypwechseln beein-
flusst als von tatsächlichen Anomalien. Diese Dominanz des Covariate Shifts ge-
genüber signalklassenunterscheidender Information in Sensordaten ist herausfor-
dernd. Zweitens sind die leistungsstärksten prädiktiven Modelle (teil)überwacht
und erfordern große Mengen annotierter Sensordaten. Die Annotation von An-
omalien in Sensordaten ist teuer und bedingt mögliche Folgeschäden an den Ma-
schinen, wenn die Anomalien bewusst herbeigeführt werden. Zu guter Letzt be-
nötigen die leistungsfähigsten Modelle viel Speicherplatz, lange Trainings- und
Modellausführungszeiten oder spezielle Hardware wie GPUs im Trainingspro-
zess. Diese Anforderungen stehen im Widerspruch zu fertigungsbetrieblichen
Wünschen nach industriell robusten, kompakten eingebetteten Sensorsystemen
und kurzen Modellausführungszeiten, welche sowohl zeitnahe Warnungen von
als auch schnelle Reaktion auf potentiell kritische Anomalien ermöglichen. Die
Datenauswertung innerhalb des eingebetteten Sensorsystems ermöglicht eine hö-
here Datensicherheit, die Kompaktheit des Systems erlaubt nachträgliche Aus-
stattung von Maschinen mit diesen Sensorsystemen.

Der erste Teil der Arbeit umfasst die Definition maßgeschneiderter Merkma-
le, welche über den Covariate Shift der Daten hinweg generalisieren, für spezi-
fische Maschinenüberwachungsaufgaben. Dafür wird Fachexpertenwissen über
Maschinen- und Prozesscharakteristika in maßgeschneiderten Vorverarbeitungs-
modellen zur Segmentierung von Sensordaten und Nachverfolgung diskreter Fre-
quenzkomponenten abgebildet. Der zweite Teil konzentriert sich auf die kosten-
günstige Annotation und Erkennung von im realen Bearbeitungsprozess aufge-
nommenen Anomalien. Ein prototypisches Auswertungssystem, welches speziell
auf raue industrielle Umgebungen abgestimmt ist, wurde entwickelt und in einer
solchen Umgebung eingesetzt. Dieses System ermöglicht Datenaufnahme, Daten-
auswertung im System und Meldung potentieller Anomalien. Damit unterstützt
es sowohl Maschinenbediener in Entscheidungsprozessen und ermöglicht eine
Annotation der Sensordaten über die Rückmeldung der Bediener auf gemeldete
Anomalien. Auswertungen dieses prototypischen Systems und der resultieren-
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x Zusammenfassung

den Daten legten eine allzu simple Art der eingesetzten Anomalieerkennungs-
modelle nahe, weswegen ausgefeiltere, unüberwachte neuronale Anomalieerken-
nungsmodelle getestet wurden. Zusätzlich wurden zwei teilüberwachte Modeller-
weiterungen mit Expertenlabels sowie automatisch generierten und damit schwä-
cheren Labels trainiert. Sowohl die unüberwachten als auch die teilüberwachten
neuronalen Anomalieerkennungsmodelle bewiesen sich als geeignet, sie generali-
sierten über einige Wochen von Daten und den auftretenden Covariate Shift hin-
weg. Alle vorgestellten Methoden beachten die Einschränkungen, welche durch
die für die Maschinenüberwachung eingesetzten eingebetteten Systeme und den
Bedarf an zeitnahen Reaktionen gegenüber Anomalien bedingt sind.
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1
Introduction

Today’s efficiency demands in modern factory workshops require permanent mon-
itoring of both the production efficiency and health state of the production ma-
chines. This monitoring involves evaluation of data gathered via sensors. Apart
from image- and video-based modalities, sensors attached to machine key points
of interest have become state of the art in machine monitoring. Among most
popular sensor types are acoustic emission, force and vibration sensors [252].

This thesis is situated in monitoring of machine tools by evaluation of data
recorded with vibration and acceleration sensors attached to such machines. Mon-
itoring of machine health and production efficiency based on these sensor mea-
surements involves various steps [47]: Raw sensor data is typically preprocessed
in order to get rid of signal artifacts or emphasize the relevant information in the
time series. This is typically approached by filter methods, which detect and filter
out discrete spurious frequency components or shape the relevant signal informa-
tion by (multiple) broad-band filters. Afterwards, time series are segmented into
subregions. Depending on the application, segmentation can be motivated by cut-
ting out subregions of interest (e.g., segments of data containing the phenomena
one wants to detect) or finding comparable regions in a recurrent stream of data
(e.g., in machine tool applications, as outlined in the following section). After de-
tecting the most relevant regions in frequency domain and time domain by apply-
ing preprocessing and segmentation techniques, characteristics of the data that
help to detect the phenomena of interest have to be defined. In the pattern recog-
nition community, these data characteristics are often referred to as features. In
addition to emphasizing relevant and discriminative signal information, feature
extraction often comes with a drastic concentration of information content, thus
allowing downsampling of the data. Such features can be either handcrafted by
human experts or learned directly from the data. Finally, the features can be used
as information fed to a classifier model which decides whether the phenomena

1



2 1 Introduction

Figure 1.1: Typical measurement setup considered for the data evaluations
in this thesis. MEMS sensors are attached to key points of interest at the
machine tool (colored points in second figure), most commonly the grinding
wheel housing (red point in middle figure, first figure), workpiece support
(green point in second figure, third figure) and dressing tool (blue point in
second figure, fourth figure). These MEMS sensors are connected by a gate-
way system (i.e., an embedded computer) which is capable of performing
data processing and connectivity tasks. Second subfigure adapted from [97].

of interest are apparent in the current segment of the data. Such classifiers can
either yield a binary decision (phenomena present?→ yes/no) or multi-class de-
cision (which of the different types of phenomena of interest is present?). When
the phenomena of interest are assumed to be highly under-represented in the
data compared to other signal classes, one often refers to an anomaly detection
(binary problem) or anomaly classification (multi-class problem).

Training of anomaly detection or classification models were historically subdi-
vided into two categories. When the data used for training the model are accom-
panied by annotations (labels) of the signal class the model can be learned from
the labeled examples. This setting is categorized as supervised training/learning.
When no annotations are given, one has to rely on other properties of the training
data. Common strategies include identifying clusters or high density regions of
values in the training feature data. Such a scenario of inaccessibility of labels for
the training data is referred to as unsupervised training/learning.

For detection of anomalies in the health state or production process of ma-
chines, finding sensible positions to which sensors are attached to is a key task in
order to obtain an effective machine monitoring system. In addition, a mechan-
ically solid attachment is of vital importance in order to avoid damping effects
that would limit the effective bandwidth of the attached sensors. Thus, the sensor
systems have to be screwed tightly to the machine parts of interest.

For so-called centerless external grinding machines which are in the focus
of this thesis, typical positions are illustrated in Fig. 1.1. The positions cover
the most important grinding machine parts involved in the process of machin-
ing workpieces. The process of machining workpieces is visually summarized in
Fig. 1.2. The workpiece is situated between grinding wheel and control wheel on
the workpiece support. The grinding wheel approaches the workpiece and starts
machining of the workpiece. Workpiece support and control wheel decelerate
the workpiece. This difference in velocity of grinding wheel and control wheel
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Grinding wheel

Control wheel

Workpiece support

Workpiece

Figure 1.2: Process of external cylindrical grinding. Figure inspired
from [241].

applies a force to the workpiece which induces the material removal. After a
certain number of machined workpieces, the grinding wheel becomes dull and
has to be sharpened again. This sharpening process is referred to as dressing and
performed by a dressing tool/wheel.

1.1 Goal and Focus of Thesis

The overall goal of this thesis is developing algorithmic approaches for monitor-
ing the health state and production efficiency of machine tools via embedded
sensor systems. For this, data from sensors attached to key points of the machine
tools are processed. Throughout the course of this thesis, multiple data sets were
recorded. Each data set consists of multiple data records. Data records consist of
sensor signals recorded for the duration of machining a single workpiece. In this
thesis, trigger signals from the machine control program were used for subdivid-
ing sensor streams into successive data records. Each of the sensor signals in a
data record illustrates multiple segments. The segments are due to the sequence
of processing steps applied during the machining of successive workpieces with
a profiled grinding wheel. Thus, segment borders depict the different stages of
machining a single workpiece. Finally, each segment consists of multiple blocks
with fixed length (e.g., 1024 raw data samples). The terminology is visually illus-
trated in Fig. 1.3 for a clear and concise understanding of the terms data set, data
record, segment and block which are frequently used in later chapters.

The overall goal of this thesis can be located more clearly regarding different
aspects:

• Regarding machine tool types, an emphasis is put on grinding machines.
Grinding machines cover a large fraction of machine tools found in mod-
ern factory workshops. The reason for this is the variety of different work-
piece geometries that can be processed by grinding machines and their high
productivity. The latter is especially true for centerless grinding machines.

• Algorithmic approaches are researched for different predictive tasks. In
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Figure 1.3: Hierarchical structure of data considered in this thesis. Each
recorded data set consists of multiple data records. These records in turn
contain sensor signals with multiple successive segments. Each segment in
turn consists of multiple block of fixed length (e.g., 1024 raw data samples).

part I of this thesis, several specific monitoring tasks are considered. The
most important ones are tool condition monitoring and detection of im-
balances in rotating machinery. In part II of this thesis, generic (binary)
anomaly detection approaches focusing on detecting deviations from the
machine’s normal (health or production) state are discussed rather than spe-
cific tasks as in part I.

• Finally, the focus of sensor types is set on microelectromechanical systems
(MEMS) vibration and acceleration sensors. Compared to industrially estab-
lished acoustic emission sensors, MEMS sensors have a smaller sampling
rate and are thus expected to have lower energy demands but have a lim-
ited bandwidth in comparison. In addition, MEMS sensors are typically
cheaper and smaller than acoustic emission sensors. Each of the sensor
nodes illustrated in Fig. 1.1 contains both a MEMS single-axis vibration
sensor and a MEMS tri-axial acceleration sensor. All attached sensor nodes
are connected by a gateway system (i.e., an embedded computer). This gate-
way system has multiple purposes. Firstly, its major task is to connect the
sensors to a data recording device. For measurements conducted for this
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Table 1.1: Technical data of the two sensor types used throughout this thesis

Sensor type Sampling rate Sensitivity Axes

Acceleration 2 kHz ±2 g at 12 bit 3
Vibration 62.5 kHz ±96 g at 10 bit 1

thesis, this was either a portable measurement case (used for recording of
data evaluated in part I of this thesis) or a self-developed signal visualiza-
tion and labeling prototype attached to the outside of machine tools (used
for recording of data evaluated in part II of this thesis). Secondly, the gate-
way system exhibits more computational resources than the sensor nodes,
allowing for simple, edge-based data processing tasks.

Technical characteristics of the MEMS vibration and acceleration sensors used
in this thesis are listed in Table 1.1. The vibration sensor has a higher bandwidth
than the acceleration sensor and is used throughout most chapters in this thesis,
as many anomaly types manifest in high-frequency bands. Only in Chapter 4,
measurements from acceleration sensors are evaluated, as the discrete frequency
components that shall be detected are located in the bandwidth of 1 kHz pro-
vided by the acceleration sensors. Furthermore, the sensitivity of these accelera-
tion sensors is higher, which is important for the methods discussed in Chapter 4.

1.2 Challenges of Thesis

Although automated, sensor-based monitoring of the machine’s health state and
production efficiency is highly relevant for production companies and such ap-
proaches exist in literature, real-world production shops still exhibit a high de-
gree of human intervention and lack of automated machine monitoring systems.
This is due to three major challenges that such monitoring systems are con-
fronted with.

The first challenge is given by the structure of the data itself: The variance in
the measured sensor data records is typically dominated by type and geometry of
the workpiece as well as user initiated process adaptations, not by the type of a po-
tential anomaly. This makes generalizing prediction of specific anomaly classes
across data sets challenging: Differences in workpiece types and process param-
eter settings can induce a significant difference in the distributions of recorded
data used during training of the models and during prediction, thus the trained
model does not match the altered distribution of newly incoming test data any-
more. Such differences in training and test data distributions are referred to as
covariate shift [38] and represent the first major challenge for machine monitoring
systems striving for long-term deployment: Dominance of covariate shift over
class-discriminative information in the recorded sensor data. This dominance
makes the standard approach of detecting anomalous signal deviations with a
large set of generic features questionable, as scores for these generic features are
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typically dominated by the covariate shift in the sensor data distributions and not
by the type of a potentially present anomaly. For several types of anomalies how-
ever, it is possible to use domain knowledge about physical cause and effect of the
anomaly type for the design of specific features custom-built for these anomaly
types and thus independent from covariate shift. In part I of this thesis, such
features tailor-made for the most important and most common anomaly types of
interest are introduced. Classification with these tailor-made features can then
typically be performed unsupervised, i.e., without dependency on labels (i.e., an-
notations of data records).

Such an independence from labels is desirable, as sparsity of high-quality
labels constitutes the second challenge that automated, model-based machine
monitoring systems are confronted with. Most performant machine learning (es-
pecially deep learning) models however necessitate large sets of annotated data
records. In the second part of this thesis, methods that allow for collecting large
sets of labels for the measured sensor data records while introducing a minimum
necessary interaction with the annotators and thus minimum additional costs
for annotation are proposed. Furthermore, advanced anomaly detection models
making optimal use from sparse labels and approaches to estimate the quality of
labels before incorporating them into the models are described.

Finally, this thesis aims at performing data evaluation directly on the embed-
ded sensor system (consisting of sensor nodes and gateway system) wherever pos-
sible. The main reason for embedded data evaluation is given by an increased
data security. Furthermore, reducing the data rate as soon as possible in the time
series processing chain reduces the overall system’s energy consumption. In ad-
dition to constraints imposed by embedded data evaluation, the risk of machine
anomalies to cause severe machine damages requires short execution times of
trained predictive models in order to allow for fast responses by machine op-
erators (e.g., adjustments of process parameters). The goal of embedded data
evaluation and the necessity of timely responses to anomaly reports induce con-
straints regarding memory space occupation and model execution time which
constitute the third challenge of this thesis. These constraints are taken into ac-
count both in part I of this thesis during the task of proposing computationally
simple but effective features custom-made to specific machine monitoring tasks
and II of this thesis by designing powerful but scalable neural anomaly detection
models.

1.3 Contributions

The two parts of this thesis focus on different challenges of sensor data evalua-
tion as well as various stages of the time series processing chain mentioned in the
beginning of this chapter. In Fig. 1.4, these successive stages of the time series
processing chain are summarized for the concrete sensor and evaluation scenario
considered in this thesis. Here, raw data measured with sensor nodes S1, . . . , Sk
at k sensor positions are first preprocessed (e.g., filtered or detrended) and seg-
mented. Afterwards, features are extracted from the segmented data. Finally,



1.3 Contributions 7

4
k
 d

im
e
n
s
io

n
s

S1

S2

Sk

t sec

Figure 1.4: Time series processing chain for evaluation of the sensor data
considered in this thesis. Part I of this thesis (highlighted in blue) focuses on
simple-to-compute but effective feature extraction by finding a tailor-made
segmentation for the specific structure of the sensor data and recovering dis-
crete frequency components related to specific machine parts. Part II (red)
focuses on learning features and classifiers directly from the data via generic
unsupervised anomaly detection models. In addition, a live annotation ap-
proach for low-cost collection of large labeled data sets is introduced and
techniques for learning semi-supervised model extensions from sparse and
unreliable labels are proposed. Figure inspired from [47].

classification of time series is performed dependent on these features. As stated
earlier, each sensor node consists of a single-axis vibration sensor and a tri-axial
acceleration sensor (cf. Table 1.1).

In this thesis, extensions and adaptations of different parts of the time series
processing chain are presented in order to match the specific characteristics of the
considered data and evaluation systems. The focus of the extensions presented
for part I are highlighted in blue in Fig. 1.4, for part II in red (part). In detail, the
following alterations of the processing chain are contributed in this thesis.

For the sensor nodes attached to process-related machine parts, data streams
illustrate a cyclostationary structure. This is best observable when considering
the sensor attached to the workpiece support. The reason for this cyclostationary
structure is the same sequence of successive processing steps being applied dur-
ing the machining of each workpiece. Although expected to occur at determinis-
tic relative locations in the data records due to the fixed machine control program,
segment borders do not occur at perfectly similar locations in each data record
due to reasons such as package loss during data communication, thus disallowing
simple segmentation by hard-coded time instances. In Chapter 3, various exist-
ing approaches for signal segmentation are compared and two extensions which
incorporate the specific cyclostationary structure of the data in this thesis for a
more robust signal segmentation are introduced.
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Being able to identify recurrent segments induced by the cyclostationary data
structure is beneficial for two reasons: A recurrent segmentation allows to com-
pute features in comparable signal regions in order to construct health indicators
for the detection of anomalies with a long-term drifting character. Furthermore,
detecting deviations from the stationary, recurrent segment structure observed
during normal process behavior introduces a computationally efficient approach
for detection of suddenly occurring, process-related anomalies.

In addition, investigating time-frequency (TF) energy distributions which can
be computed from the sensor data proved beneficial for specific prediction tasks.
This becomes most obvious for the methods discussed in Chapter 4. There, meth-
ods are discussed for recovering discrete frequency components in these time-
frequency distributions (TFDs) via estimation of parameters of an imposed signal
model per each TFD frame and subsequent tracking of frequency components
throughout the temporal course of these frames. Tracking of discrete frequency
components and identifying the machine parts they originate from allows for con-
dition monitoring of specific rotating machine parts. This is outlined exemplary
for the specific tasks of imbalance detection in rotating machinery (i.e., grind-
ing wheels and dressing wheels) as well as the detection of machined workpieces
with an insufficient roundness.

The two chapters that constitute the first part of this thesis are mainly related
to comparing and extending various (frequency) preprocessing and segmentation
techniques for the sake of extracting tailor-made features for specific machine
monitoring tasks. These features allow for a computationally efficient classifica-
tion for these specific tasks which generalizes across variations of process param-
eters and workpieces. However, this approach necessitates the predictive tasks to
be known in advance. Furthermore, for the design of such tailor-made features,
a sufficient amount of data for these tasks has to be accessible in order to analyt-
ically study the effect of these anomalies on the data. Often, this is not possible,
as potential anomaly types are not known in advance and data is not sufficiently
present. On the contrary, detecting deviations from a normal (machine health
/ production efficiency) state in long-term production floor measurements (i.e.,
without deliberately provoking anomalies) is often easier to realize. Finally, track-
ing alterations in the signal segment structure and the location or amplitude of
discrete frequency components allows for a computationally efficient detection of
certain anomalies. However, anomalies are constrained to manifest in these very
phenomena, thus effectively excluding other anomalous phenomena not related
to segment structure alterations or drifts of discrete frequency components (e.g.,
alterations in broader frequency bands or subtle deviations in the signal form not
leading to changes in the segment structure).

In part II of this thesis, the focus is thus put on learning time series represen-
tations that are independent from covariate shift and can be used for a generic
detection of “in-the-wild” recorded anomalies. For this, various anomaly detec-
tion models are evaluated on in-the-wild recorded sensor data in Chapters 5 and
6. These algorithms comprise both unsupervised and semi-supervised methods.
In order to collect a sufficiently large set for training of semi-supervised anomaly
detectors, three approaches are compared.
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A typical approach considered in industrial monitoring literature is retrospec-
tive annotation of measurement data by domain experts. Anomalies are pro-
voked artificially during measurement campaigns dedicated for specific anomaly
types by deliberately altering process parameters. This approach allows to study
the influence of certain anomaly types analytically and detached from other phe-
nomena in the data. When domain experts are equipped with additional (e.g.,
optical) measurements as meta information during annotation, this approach can
yield high-quality labels. This is the approach considered during part I of this the-
sis. However, high quality of annotations is payed dearly for by high annotation
costs due to additional time spent by domain experts during retrospective anno-
tation of the sensor data. Furthermore, this approach can only be performed for
known types of anomalies and often comes with a risk of causing severe machine
damages due to altering process parameters deliberately to insensible values. Fi-
nally, the anomalies do not evolve “in the wild”. Thus, it is non-trivial to state
whether observed signal deviations are restricted to the specific adjusted parame-
ter settings or representative of anomalies as they might appear during everyday
machine and process behavior. Ultimately, provoking anomalies always yields a
trade-off between predictive quality of anomaly classifiers and annotation costs:
While high-performant models rely on huge amounts of labeled data during train-
ing, measurement and especially (retrospective) annotation of these data come
with non-neglectable costs.

In Chapter 5 of this thesis, a novel live and in situ annotation approach for
in-parallel labeling of data records during recording time is suggested as an alter-
native to the retrospective annotation procedure described above. Sensors are
mounted at key points of interest to a grinding machine in a real-world pro-
duction environment for long-term measurements (several months). Generic
anomaly detection algorithms are used to propose suspicious data records for
annotation to the end user (i.e., machine operator). As only a small fraction of
the data is supposed to be anomalous, depicting only suspicious data records for
annotation results in a drastic decrease of annotation effort for the user while of-
fering additional meta information during annotation given by the possibility to
inspect both the machine and produced workpieces directly during the annota-
tion process. Both visualization of data records proposed for annotation and the
annotation process itself are realized by a self-developed labeling prototype.

The labeling prototype and several design considerations for the prototype
are discussed in a user study presented in Chapter 5. In addition, results on the
feasibility of the proposed live annotation approach regarding labeling reliabil-
ity are presented. One of the major findings of this live annotation study is that
only anomaly types with a clear, well-known and characteristic signal pattern are
identified reliably by the machine operators. Anomaly types manifesting in more
subtle and unknown deviating signal patterns however are seemingly harder to
identify, resulting in a higher fraction of rejected anomaly propositions and effec-
tively introducing a higher amount of “noise” into the annotation process due to
the increased uncertainty of the machine operators. Thus, live annotation comes
with low-cost and realistic (i.e., in-the-wild recorded) labels for large sets of data
but a higher degree of uncertainty regarding annotation correctness.
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In Chapter 6, the focus is on improving quality of annotations by finding
more advanced anomaly proposing algorithms than applied in Chapter 5. Var-
ious unsupervised neural architectures are discussed and evaluated on the pre-
sented data. In addition, a third approach for label collection by automatic gen-
eration of probabilistic labels is discussed. Then, novel methods for incorporat-
ing the automatically generated, therefore weaker (non-expert) labels into semi-
supervised extensions of the unsupervised anomaly detection models are pre-
sented. Finally, the benefit of including these labels for creating semi-supervised
extensions is compared to both unsupervised models and semi-supervised mod-
els trained with expert labels. With these semi-supervised extensions, an end-to-
end approach for machine learning based machine monitoring covering all fields
of data measurement, data annotation and anomaly detection is created.

1.4 Summary of Contributions and Thesis Outline

The contributions of this thesis can be summarized as follows:

Chapter 3
Different algorithms for segmentation of the cyclostationary structured sen-
sor data evaluated in this thesis are compared. An approach mimicking
hidden Markov models (HMMs) by a computationally simpler combination
of Gaussian Mixture Models (GMMs) and finite state machines (FSMs) is in-
troduced. Furthermore, an extension to the Bayesian online changepoint de-
tection (BOCPD) algorithm [5] is presented. This extension allows to model
the specific, cyclostationary structure in the sensor data. This, in turn, can
be used for a more robust segmentation of signals and the successive extrac-
tion of health indicators for anomalies with a drifting character as well as
the detection of suddenly occurring anomalies in the production process.
This will be outlined for two specific types of suddenly occurring anoma-
lies and by the introduction of a novel health indicator for tool condition
monitoring.

Chapter 4
Several features custom-built for the specific machine monitoring tasks de-
tection of imbalances in rotating machinery and detection of machined
workpieces with an insufficient roundness are presented. For this, methods
for recovery of discrete frequency components and successive assignment
to machine parts are discussed and evaluated on the sensor data.

Chapter 5
A user study exploring how to collect large sets of labels for rare abnor-
mal events in industrial scenarios and introducing a novel approach for
live annotation of sensor streams is presented. To the best of the author’s
knowledge, no comparable study exists. Other than in the frequent studies
on labeling in medical and social applications, labels are not collected via a
smartphone-based human–machine interface but via a self-developed visu-
alization and labeling prototype custom-made for harsh industrial environ-
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ments. Insights are shared from the process of designing the visualization
and labeling interface gathered by exchange with industrial end users (i.e.,
machine operators). Measures to judge the reliability of reported anoma-
lies and online label feedback in a scenario where neither ground truth la-
bels are accessible nor comparison of labels of multiple annotators is an
option are proposed. These assumptions are evaluated on a large corpus
(123,942 data records) of in-the-wild recorded industrial sensor data and
labels which were collected throughout several weeks. Furthermore, char-
acteristics of anomaly types that can be labeled reliably via live annotation
at the proposed visualization and labeling prototype are evaluated.

Chapter 6
A performance comparison of various unsupervised neural anomaly detec-
tion models for the detection of anomalies of a grinding machine situated
in a real-world factory floor is conducted. Furthermore, a combination of
various neural architectures with the Deep SVDD loss function [207] tailor-
made to anomaly detection is presented. This combination was not dis-
cussed in machine monitoring applications before. In addition, a novel
weakly supervised anomaly detection loss function building on the Deep
SVDD loss function [207] is discussed. This loss function allows incorpo-
rating estimates of label uncertainty inherent to the automatically gener-
ated probabilistic labels into the process of learning semi-supervised neu-
ral anomaly detection models. The loss function was first discussed in a
master’s thesis [110] supervised by the author of this thesis.





2
Theoretical Background and Related

Work

In this chapter, a brief overview of the state of the art research in methods applied
throughout this thesis is presented. First, machine health monitoring (MHM) in
general and most common MHM tasks as well as related features and models
are discussed. A focus is put on the predictive tasks of tool condition moni-
toring (TCM) and imbalance detection, which are considered among the most
important MHM tasks and thus emphasized on in this thesis. Afterwards, dif-
ferent methods from the areas of signal segmentation and estimation of discrete
frequencies are discussed, as related preprocessing techniques are extended and
applied in Chapters 3 and 4. Sections 2.4 and 2.5 focus on describing the variety
of anomaly detection models and human annotation specifics related to the live
annotation approach in part II of this thesis. Finally, Section 2.6 describes types
of weakly supervised learning and how to improve the quality of weak labels.

2.1 Machine Health Monitoring

The field of sensor-based MHM is inspired by many methodological fields and
consequently reached a high and confusing diversity [252]. In order to get an
overview of common approaches, the field of methods can be partitioned regard-
ing different criteria. Firstly, one can distinguish between the type of manufac-
turing process a proposed method can be applied to. An overview of manufac-
turing processes according to norm DIN 8580 [1] is illustrated in Fig. 2.1. Our
focus in this study is mainly in the field of cutting with geometrically undefined
cutting edges (e.g., grinding). Secondly, one can group MHM techniques into con-
dition monitoring and process monitoring. While condition monitoring focuses
on evaluating the condition of machine parts or the overall machine health state,
process monitoring is related to judging quality and efficiency of the machining
process. Both fields are in the focus of this thesis. When the goal is not on judging

13
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Figure 2.1: Overview of manufacturing processes (classification according
to DIN 8580). The methods applied and proposed in this thesis focus on
grinding and turning.

the current state of the machine, machine part or production process (diagnosis)
but predicting some action based on this state (prognosis), both fields are often
subsumed under the term predictive maintenance.

Finally, one can divide methods into the stage of the data processing chain
they focus on. Jardine et al. propose to distinguish the data processing chain
into the three fields of data acquisition, data processing and maintenance deci-
sion making [111]. While the first part of this thesis focuses mainly on data
processing (i.e., hand-engineering appropriate features for process and condition
monitoring), the second part of this thesis focuses on all three of these fields (i.e.,
how to obtain high-quality measurement data and related annotations, defining
advanced models capable of automatically learning appropriate indicators for
machine health and process state as well as using them in powerful maintenance
decision models).

For data acquisition via condition-based maintenance (CBM) systems, vibra-
tion sensors and acoustic emission sensors are the most typical sensor types [111].
Industrially established monitoring systems typically rely on recordings of high-
frequency autoencoder (AE) sensors (up to several MHz) [176] and evaluation
of the AE root mean square (RMS) signal [175] rather than MEMS sensor evalu-
ation. Regarding the type of data evaluated in CBM systems, the actual sensor
data measured via sensors attached to the machines under review are typically
in the focus of measurements while context information regarding anomalous
events and process adaptations (e.g., minor repairs or machine part changes) is
often neglected [111].

Data processing approaches can be further categorized into time domain, fre-
quency domain and TFD techniques. For time domain methods, time synchronous
averaging (TSA) and autoregressive models (e.g., autoregressive moving average
(ARMA)) are among most widely applied methods [111]. Time synchronous av-
eraging finds the ensemble average of a certain amount of successive raw sensor
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signals, attempting to reduce noise, signal fluctuations and other undesired ef-
fects, in order to more clearly represent the signal components of interest. The
advantage of frequency domain analysis compared to time domain methods is
the ability to identify and isolate certain frequency components more clearly
than in time domain representations [111]. Frequency domain methods in turn
are disadvantageous to TFD methods in that they discard temporal information,
which is often relevant in MHM applications, e.g., due to the non-stationary be-
havior of machine components. Teti et al. complement this generic discrimi-
nation into domains of information extraction by a survey on common features
applied throughout a diverse set of MHM tasks [252]. A compact overview of
the most common feature listed in [252] is given in Table 2.1. As confirmed by
the table, most features are general purpose features not tailor-made for specific
MHM tasks but relying on statistical measures (e.g., central moments, peak-to-
peak values, crest factor and RMS values), time series models (e.g., autoregres-
sive (AR), moving average (MA) and ARMA models), principal component anal-
ysis (PCA), singular spectrum analysis (SSA) and frequency domain (FD) trans-
formations (e.g., fast Fourier transform (FFT)) or TFDs (e.g., short-time Fourier
transform (STFT), wavelet-based or Hilbert-Huang transforms (HHTs)). These
features are opposed to the custom-built features presented in part I of this the-
sis.

Finally, Tax et al. conducted a study on machine vibration analysis [250] for
evaluation of the Support Vector Data Description (SVDD) method introduced
by them [249]. As SVDDs are among the most typical outlier detection models
until today (cf. recent deep learning publications [207, 208]) and are additionally
applied as anomaly detection loss functions in this thesis (cf. Section 6.2), that
study is considered relevant to the work presented here. For the evaluation of
SVDDs, Tax et al. considered a 64-dimensional vector spanning features based
on standard power spectra, envelope spectra, AR models, the MUSIC spectral esti-
mator [219] for estimation of discrete frequencies and classical statistical features
(RMS of power spectrum, kurtosis of time domain signal sample distribution and
crest factor of this signal). Some of the methods discussed and presented through-
out the first part of this thesis are related to similar features, although typically
considering slightly different approaches (e.g., estimation of discrete frequencies
via more recent non-stationary signal estimators than the outdated MUSIC spec-
tral estimator (cf. Section 2.3)).

Finally, a wide range of maintenance decision making models exists. Among
most common choices are HMMs, clustering approaches, support vector machines
(SVMs), artificial neural network (ANN)-based approaches, genetic algorithms,
Kalman filters and time-dependent proportional hazard models for different prob-
ability distributions (e.g., Weibull distributions) [111]. Many of these model
types are still being applied in today’s MHM literature as confirmed by the more
recent survey by Liu et al. [149]. Additional to SVMs and shallow ANN archi-
tectures, Liu et al. expanded the list of common MHM classifiers by k-nearest
neighbors (kNN) and naive Bayes classifiers. Finally, they outlined the advent of
deep learning methods in the field of rotating machinery fault analysis, with an
emphasis on AEs as well as deep Boltzman machines and deep belief networks. A
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Table 2.1: Overview of most common MHM feature domains

Feature domain Feature group Common features

General purpose Statistical, peak-to-peak,
crest factor, RMS-related
[69, 82, 230]

Time series AR, MA, ARMA coefficients
models [69, 141, 191, 217]

PCA-based 2D orbit diagrams [228],
Time domain feature transforms [2]

SSA-based Signal decomposition
(trend, detrended signal)
[14, 210, 211]

Entropy-based Permutation entropy [142]

FFT-based RMS- [245], energy- [15] and
Frequency domain statistical measures [39] for

frequency bands/peaks

STFT-/wavelet- RMS- [251], energy- [273] and
based statistical measures [112, 217]

Time-frequency domain for STFT/wavelet coefficients

HHT-based Energy-related [26, 185]
measures for Hilbert spectra

recent survey on deep learning in MHM tasks [288] confirmed these deep model
types stated in [149], additionally discussing convolutional and recurrent net-
work architectures.

As outlined in this section, the field of MHM methods both regarding data
processing (preprocessing, features) and applied models is quite diverse. In the
next two sections, a more detailed overview of two specific predictive tasks being
in focus of the first part of this thesis is given: Tool condition monitoring (cf.
Subsection 3.3.5) and imbalance detection (cf. Subsection 4.3.2).

2.1.1 Tool Condition Monitoring

The goal of TCM is to find an appropriate health indicator reliably measuring the
state of the chipping tool. Typically, appropriateness is measured by a smooth
and monotonic change of this health indicator across the lifetime of a tool [138].
Based on this health indicator, one can judge the current tool state by classifiers
(in the simplest case a fixed threshold) or predict its remaining useful lifetime
(RUL).

Additional to these steps of data acquisition, health indicator construction
and RUL prediction, Lei et al. discussed dividing the tool lifetime into health
stages prior to RUL prediction [138]. Such a subdivision of the lifetime into
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health stages is beneficial for a wide range of RUL tasks, e.g., the degradation pro-
cess of ball bearings [136, 169]. The reason for this subdivision is the creation of
separate degradation models incorporating the different degradation statistics in
these health stages more precisely. Chipping tools for machine tools like grinding
wheels however typically expose a single, continuous health stage as illustrated
before for milling tools [10] and presented for grinding tools in Subsection 3.3.5.
Thus, a single model is typically sufficient to describe the complete life time of a
chipping tool (grinding wheel, milling tool, etc.).

The construction of health indicators can be categorized into physical and vir-
tual health indicators. Physical health indicators are given by measures for phys-
ical properties of rotating machinery and most widely applied in the RUL com-
munity. Among popular choices are common signal processing measures (RMS
values, wavelet and FFT-related coefficients as well as spectral flatness) or statis-
tical time domain measures (e.g., kurtosis of samples, correlation coefficients be-
tween successive time series, residual errors and entropy measures) [138]. Virtual
health indicators on the other hand are constructed from fusing multiple phys-
ical health indicators or multiple signals from different sensors. Common vir-
tual health indicators build mostly on PCA [29, 138], ANNs like self-organizing
maps (SOMs) [108, 193], multilayer perceptrons (MLPs) [83] or recurrent neural
networks (RNNs) [89] as well as HMMs [174].

Finally, the health indicator can be used either to judge the current tool state
(via classification methods) or for RUL prediction. The former and latter dif-
fer fundamentally regarding applied methods: While classification for a single
health indicator can in the simplest case be performed by a fixed-value thresh-
old, RUL estimation typically involves much more complex models. The latter
field of RUL estimators can be subdivided into four groups of approaches: Physi-
cal model-based approaches, statistical approaches, data-driven approaches and
hybrid approaches [138].

Physical model-based approaches describe the degradation process of the ma-
chinery under review by a mathematical model inspired by the underlying physi-
cal failure mechanisms. When such failure mechanisms are well understood and
can be modeled in detail then physics-based RUL models are highly competitive
to other RUL estimators. For many real-world applications however, the under-
lying mechanical systems are either too complex to be modeled efficiently by a
mathematical model (often involving complex particle filter approximations) or
not fully understood. This explains the small fraction of physics-inspired models
among RUL estimators in the current literature (around 10% according to [138]).

Statistical approaches, on the other side are among most prominent choices
for RUL prediction [138]. The most common representatives of this group of
statistical approaches are AR methods [192], Markov models [120, 121], pro-
portional Hazard models [61, 131] as well as models based on stochastic pro-
cesses like the Wiener [229], Gamma [256] or inverse Gaussian process [57, 263].
Among the latter subgroup of stochastic processes, Wiener processes are the most
common assumed process behavior as the underlying assumptions match the na-
ture of typical RUL applications (e.g., ball bearing degradation): Wiener process
models are represented by a weighted sum of a drift term and a Brownian motion
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diffusion term [138].
Instead of building physics-inspired or statistical models describing the degra-

dation process appropriately, one can learn the degradation behavior from given
observations with data-driven approaches. Prominent approaches are based on
SVMs [50, 70, 235], ANN architectures [108, 154], Gaussian process regression
(GPR) models [19, 145] and fuzzy logic methods [55, 262]. Among these meth-
ods, GPR approaches are often considered most powerful for RUL estimation due
to their high adaptability and the capability to infer sensible and robust degrada-
tion models even from a small amount of observations [138].

Finally, hybrid approaches combine methods from all of the above groups at-
tempting to milder the disadvantages of the different groups. Typically, methods
from the groups of statistical and data-driven approaches are combined in order
to create models which can be learned from existing data but are constrained by
an underlying stochastic process model [138].

2.1.2 Imbalance Detection

Although being one of the main reasons for unwanted machine vibrations, the
literature on imbalance detection for machine tools is rather sparse. Among
published approaches, typical imbalance detection techniques include parame-
ter evaluation for numerical models of rotor and bearing behavior [137, 234],
empirical mode decomposition [271, 278] or AR model based features extracted
from multi-sensor systems and fused via ANNs [148].

This sparsity in literature is in contrast to the demand in real-world factory
floors, where machine tools are typically equipped with industrially established,
tailor-made imbalance detection and balancing devices [67]. Such commercially
available imbalance-related products are expensive and often involve mechani-
cal modifications at the machine tool in order to place specific sensor nodes at
the most convenient places for a high-quality imbalance detection. Thus, the de-
mand in such non-academical industrial environments for a sensor system being
able to detect imbalances in combination with other important predictive tasks
(like TCM, cf. Subsection 2.1.1) and without the necessity to include any addi-
tional sensor devices for this specific task of imbalance detection is high. This
necessity is revisited in later sections, where features for imbalance detection are
proposed. These features are computed from signals recorded at the generic sen-
sor positions that are used throughout all experiments conducted for this thesis.
Thus, the proposed features come without the necessity to include any additional,
specifically imbalance-related sensor devices.

2.2 Signal Segmentation

Disclaimer: Parts of this section were taken verbatim from own previous publica-
tion [202] ©2019 IEEE.

Popular signal segmentation approaches comprise piecewise linear approx-
imation methods [118], clustering-based methods [143, 212], Hidden Markov
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Models [78, 100, 282] and algorithms involving a penalized likelihood function
of the data [74, 150, 180].

2.2.1 Piecewise Linear Approximation

Signal segmentation can be approached by segment-wise linear approximation
of the signals, i.e., segment borders are found at end points of linearized seg-
ments. Piecewise linear segmentation was originally approached either by slid-
ing window approaches, bottom-up or top-down approximation of signal seg-
ments [118]. In sliding window approaches, segments are extended starting from
a starting raw data point (anchor point) until some threshold on an approxima-
tion cost measure (e.g., Euclidean distance) is exceeded. The previous segment
is then defined to have ended at the previous raw data point and a new segment
ist started from the current raw data point. While this simple technique has the
advantage of being online-operable (i.e., working on streaming data) it can not
produce a globally optimal solution as only points in a local neighborhood fol-
lowing the anchor point can be considered for segmentation [33].

Bottom-up approaches address this disadvantage of sliding window approach-
es by iteratively merging cheapest pairs of segments until a cost threshold is met.
These approaches thus take the whole data set into account and can often be
found to be more accurate than sliding window approaches [118]. However, due
to the necessity of the whole data being present for iterative merging of segment
pairs, the segmentation can no longer be performed online. Also, the complexity
increases from O(n) to O(n2) (with n being the length of the signal considered for
segmentation).

In [118] a combination of bottom-up approximation of a buffer of raw data
samples and a sliding window step for adding raw data points to the buffer was
proposed. Due to only considering raw data samples buffered in the sliding win-
dow, an online-capable bottom-up approach emerged. Consequently, due to the
combination of sliding window and bottom-up methods, the method was termed
SWAB.

The applicability of piecewise linear approximation (PLA) approaches relies
heavily on the nature of the data: Piecewise linear approximations are justified
for signals with a rather low-varying information content in the segments. This
is not the case for the raw sensor data in this thesis. Thus, PLA approaches are
not further considered for signal segmentation.

2.2.2 Clustering-based Approaches

Signal segments can be identified by clustering approaches after transformation
of successive signal subsequences into a potentially high-dimensional feature
space. First, each signal is divided into fixed-length blocks of a prespecified
length and features are extracted for each of these blocks. Then, for each feature
vector extracted from a single block the most probable membership to any of
the clusters is estimated, thus ending up with a vector of most probable cluster
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memberships for successive feature vectors extracted from each signal. Finally,
segment borders are assigned at transitions between cluster memberships.

Simple parametric models like GMMs can be powerful methods for identifica-
tion of coherent clusters in the feature space. However, they lack in modeling the
temporal latent behavior of successive signal samples: While GMMs treat succes-
sive feature vectors as independent and identically distributed (iid), they are actu-
ally temporally correlated for the given data. Thus, cluster membership is highly
probable to stay similar among multiple successive feature vectors. Clustering
approaches that model correlations between successive feature scores extracted
from the signals lend themselves naturally for the given time series segmenta-
tion problem, as features allow to flexibly capture the underlying statistics of the
data-generating process and its changes across time. One of the most prominent
representatives of this class of time-dependent clustering methods is the HMM.

Signal Segmentation based on Hidden Markov Models

HMMs are widely used models for time series classification and come with inher-
ent segmentation of the signals [40]. They are suited for a wide range of tempo-
rally structured prediction tasks by allowing to incorporate prior knowledge into
the learning process.

Formally, any HMM model θ = {A,B,π} can be defined by the following pa-
rameters [232]:

• An S × S transition matrix A, where S specifies the number of states. The
matrix entry Aij specifies the probability for a transition from state i to
state j. If the transition probabilities aij are constant, i.e., independent of
time t, the Markov process is a stationary one.

• An observation model B for each of the S states s1, . . . , sS . When assuming
normally distributed observations, each observation model B is parameter-
ized by multivariate normal distributions {µ,Σ}. For a dimension M of the
features space µ is an M ×1 mean vector and Σ an M ×M covariance matrix.

• An S×1 probability vector π, which defines prior probabilities of the HMM’s
initial states.

The parameters θ = {A,B,π} of the HMM model are typically learned via max-
imum likelihood methods. This is specified in the next paragraph. The parame-
ters are learned relying on the following quantities for N training data records:

• An M × T observation matrix Oi per each of N training data records. Each
Oi consists of a sequence of T entries o1, . . . , oT . Each observation vector ot
is represented by an M-dimensional feature vector.

• A T × 1 vector of hidden HMM states zi = z1, . . . , zT for all training observa-
tion matrices O1, . . . ,ON .
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Learning of Model Parameters Learning the parameters {A,B,π} of the HMM
model being given an observation sequence O is classically performed via the
Baum-Welch algorithm [195]. The objective being optimized for maximum likeli-
hood parameter learning is:

θ∗ = arg max
θ

p
(
O|θ

)
(2.1)

As the observations are not considered independent and identically distributed
(iid), the likelihood objective does not factorize into p(O|λ) =

∏T
t=1 p(ot |θ). In-

stead, the Baum-Welch algorithm makes use of expectation-maximization (EM)
techniques, an iterative method to find either maximum likelihood or maximum
a posteriori (MAP) parameter estimates θ∗ = {A,B,π}. When assuming normal
distributed observation models B as specified above, µj and Σj have to be learned
for each of the j hidden states. The Baum-Welch algorithm consists of two alter-
nating steps and is described here for maximum likelihood parameter estima-
tion [168]:

1. E step: The expectation (E) step consists of computing a functionQ(θ|θ(n−1))
which represents the expectation value E of the log likelihoods L(θ; Oi , zi) =
p(Oi , zi |θ) for the i = 1, . . . , N training observations Oi and hidden states zi
based on the current parameter estimates θ(n−1):

Q(θ|θ(n−1)) , E
[

log p(Oi , zi |θ)
]

(2.2)

2. M step: The maximization (M) step aims at finding an approximate esti-
mate of the maximum of the log marginal likelihood L(θ; O) = p(O|θ) =∫
p(O, z|θ)dz utilizing the function Q(θ|θ(n−1)) found during the E step:

θ(n) = arg max
θ

Q(θ|θ(n−1)) (2.3)

Closed form update rules for parameters θ = {A,B,π} can be specified as
follows [40]:

π
(n)
j =

1
N

N∑
i=1

p(zi,1 = j |Oi ;θ
(n−1)) (2.4)

A
(n+1)
jk =

∑N
i=1

∑T
t=2 p(zi,t−1 = j, zi,t = k)|Oi ;θ(n−1)∑N
i=1

∑T
t=2 p(zi,t−1 = j |Oi ;θ(n−1)

(2.5)

B
(n+1)
j (k) =

∑N
i=1

∑T
t=1 p(zi,t = j)|Oi ;θ(n−1)I(oi,t = k)∑N
i=1

∑T
t=1 p(zi,t = j)|Oi ;θ(n−1)

(2.6)

where zi,t refers to the t-th element of the i-th hidden state vector zi and
I(c) to an indicator function with elements being 1 if the condition c holds
and 0 otherwise.
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Figure 2.2: 5-state-example of a circular L2R HMM architecture. The L2R
architecture allows modeling a recurrent structure in the data.

After convergence, the final parameter set can be used to estimate the cluster
membership of new data points. These membership estimates are given as poste-
rior probabilities and the amount of similarity between the probability estimates
of different classes can be interpreted as an uncertainty measure to design a soft
threshold for assigning class labels. Compared to k-means, the additional covari-
ance terms allow learning clusters of different expansion.

By initializing elements of the state transition matrix A to zero one can enforce
constraints on state transitions to follow a strict temporal order. This allows,
for example, learning a left-to-right (L2R) structure as depicted in Fig. 2.2. By
allowing a transition from the last state to the first a circular L2R structure can
be obtained.

During parameter learning, the number of states S can be considered constant.
In general however, this is a further model hyperparameter which needs to be
optimized. Finding this optimal number S of states to explain the data is typically
referred to as model selection.

Model Selection Model selection for HMMs is typically performed via informa-
tion-theoretical criteria (Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC) and others) or likelihood ratio tests [60]. All of these meth-
ods impose iid generated data by performing model selection via maximizing a
regularized version of the likelihood p(O|θ).

Thus, the temporal correlation of the successive signal samples is not taken
into account. This can be disadvantageous for a scenario like the one summarized
in Fig. 2.3: When neglecting the temporal dependency of successive observations,
a 3-state HMM is identified as the optimal model, as feature scores of the obser-
vations overlap for cluster S3. Consequently, the model can not learn the correct
state transition possibilities as it would be possible when considering the tem-
poral structure of the data by the 4-state HMM (Fig. 2.3, right). This scenario
is close to the signal segmentation problem for the data considered in this thesis
and illustrates the benefit of incorporating the temporal structure of the data into
model selection.

Siddiqi et al. proposed STACS (Simultaneous Temporal and Contextual Split-
ting), an efficient top-down algorithm for HMM model selection by repeated
state-splitting [231]. Beginning from an prespecified number S0 of initial states,
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Figure 2.3: Left: Sequence of feature scores and histogram of feature score
occurrences. Middle: Models only considering contextual properties fail to
identify the correct state transition behavior (by modeling similar feature
scores as one state) for sequential data. Right: STACS considers both contex-
tual and temporal properties during model selection and identifies a sensible
set of states. Figure inspired from [231].

during each state-splitting step i potentially better candidate models are cre-
ated by splitting either of the Si = S0 + i states. These candidate models θi =
θ1, . . . ,θSi are created by constraining θi to the model λ = θ∗i from the former
state-splitting step except the observation model parameters Bi of offspring state
si and all its input and output transition probabilities in A. The candidate mod-
els θi are compared to each other regarding the partially observed Viterbi path
likelihoods p(O, z∗\Di |θi). Here, Di denotes the subset of observations ot owned
by state si in the Viterbi path and \Di specifies that all observations are fixed at
their optimal Viterbi path states z∗ during this parameter estimation step except
the ones in Di [231].

From models θi scored regarding their partially observed Viterbi path like-
lihoods, the best-scoring model is compared to the un-split model λ based on
the information criterion BIC. Finally, λ is updated with the best-scoring model
θi if the latter’s BIC is lower than the one of λ. Otherwise, model selection is
terminated and the current λ is returned as the final, optimal model.

2.2.3 Changepoint Approaches

When the data-generating process is assumed to be piecewise stationary, change-
point methods represent an additional family of approaches to divide signals into
segments resembling this piecewise stationarity. Changepoints are defined as
point in the signal where abrupt changes in the parameters of this data-generating
process occur. In the following sections, different strategies for changepoint de-
tection are summarized and well-known representatives of these different algo-
rithmic families are named. This work focuses on unsupervised, online com-
putable segmentation models. A broad overview of changepoint detection meth-
ods additionally covering subspace models [42, 116, 277], kernel-based [93] and
graph-based [56] methods can be found in [16].
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Methods based on Likelihood Ratios of the Data

A large fraction of changepoint methods is based on either direct or indirect esti-
mation of ratios of likelihood p(x) and p′(x) of the data x in adjacent signal subse-
quences. A detailed overview of different algorithms focusing on these strategies
can be found in [150]. Among most prominent representatives of indirect den-
sity ratio estimators are CUSUM [180], GLR [268] and Change Finder [246], most
popular direct density ratio estimators are KLIEP [244], uLSIF [115] and RuL-
SIF [276]. Although in general appealing and successful in a wide range of time
series segmentation applications, neither of these likelihood ratio based meth-
ods proved suitable for the data evaluated in this thesis. Thus, as these methods
are not further considered in this thesis, the author refrains from explaining the
methods in detail.

Bayesian Online Changepoint Detection (BOCPD)

Similar to likelihood ratio based methods in the previous paragraph, the BOCPD
algorithm introduced in [5] allows dividing signals into non-overlapping seg-
ments of stationary generative data distributions between changepoints. Other
than the likelihood ratio based methods, BOCPD relies on methods from the
field of Bayesian statistics for modeling of the probability distributions in con-
secutive data segments and thus in finding changepoints. Different work extend-
ing BOCPD to model data-generating distributions more flexibly [209, 253] or to
use changepoint information for the sake of robust time series predictions [80]
emerged quickly.

Assume the goal is predicting future samples xt+1 depending on previously
observed samples x1:t from a sensor stream up to the current time step t. In a
Bayesian context, this involves a predictive distribution p(xt+1|x1:t). When the
sensor stream exhibits a piecewise stationary sample-generating process, then
the predictive distribution should rely on the samples from the current stationary
segment only. In a Bayesian context, this can be done elegantly by conditioning
the predictive distribution on a latent variable. BOCPD seizes this idea by intro-
ducing a latent run length variable rt [5], which is defined as the distance to the
last changepoint having occurred in the data. Then, the predictive distribution
p(xt+1|x1:t) is obtained by integrating over the posterior distribution p(rt |x1:t) on
the current run length rt :

p
(
xt+1|x1:t

)
=

∑
rt

p
(
xt+1|rt , x

(r)
t

)
p
(
rt |x1:t

)
(2.7)

Here, x(r)
t are observations associated with the current run rt , i.e., the last rt obser-

vations of x1:t [209]. When the focus of interest is on finding the most probable
estimate of the current run length rt , this can be done efficiently by finding the
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maximum of the conditional posterior distribution

p
(
rt |x1:t

)
=
p
(
rt , x1:t

)
p
(
x1:t

) . (2.8)

Henceforth, this conditional posterior distribution is referred to as run length
distribution. As probability mass of the run length distribution is highly concen-
trated at a few peaks, pruning of run lengths with a probability below a threshold
(e.g., ε = 10−4) can be applied. For equally-spaced changepoints, this reduces run
time from O(T 2) to O(T ) as outlined in [209, 253]. The approach was initially
suggested in [5].

The distribution p(rt , x1:t) can be found recursively [5]:

p
(
rt , x1:t

)
=

∑
rt−1

p
(
rt |rt−1

)
p
(
xt |rt−1, x

(r)
t

)
p
(
rt−1, x1:t−1

)
(2.9)

The right-hand side of Eq. 2.9 consists of three terms:

1. The predictive distribution p(xt |rt−1, x1:t) collapses to p(xt |rt−1, x
(r)
t ), thus

depending only on recent x(r)
t .

2. A joint distribution p(rt−1, x1:t−1) from time step t − 1.

3. A conditional prior distribution p(rt |rt−1) on changepoints (i.e., rt = 0).
Adams et al. proposed to define it as follows for efficient computation
(nonzero probability mass only for outcomes rt = 0 and rt = rt−1 + 1) [5]:

p
(
rt |rt−1

)
=


H

(
rt−1 + 1

)
if rt = 0

1 − H
(
rt−1 + 1

)
if rt = rt−1 + 1

0 otherwise

The function H(τ) is named hazard function [75]. In the simplest case, an un-
informative constant hazard function H(τ) = 1/λ can be chosen as discussed
in [5]. This results in making changepoint estimates p(rt = 0|rt−1) independent
of rt−1. Here, λ is a constant timescale parameter which has to be defined in
advance or can be treated as a further model hyperparameter which has to be
optimized [209, 253].

For the experiments presented in this thesis, iid normal observations xt and
a Normal-Inverse-Gamma parameter prior p(µ, σ2|µ0, κ, α, β) are assumed in ac-
cordance with [5, 209]:

xt ∼ N
(
µ, σ2

)
(2.10)

µ ∼ N
(
µ0, σ

2/κ
)

(2.11)

σ−2 ∼ Gamma
(
α, β

)
(2.12)
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(a) Segment 1 (b) Segment 2 (c) Segment 3

(d) Segment 4 (e) Segment 5 (f) Segment 6

Figure 2.4: Distribution of signal samples xt across all segments 1 to 6 of
an exemplary signal of the measurement data considered in this study. All
segments illustrate stationary unimodal distributions which can be reason-
ably well approximated by univariate normal distributions for computa-
tional convenience.

Here, α and β are the shape parameter and rate parameter of the Gamma distribu-
tion and κ acts as a scaling factor for the variance σ2. The choice of a univariate
normal distribution as prior distribution for the data xt is sensible for the sensor
data considered in this thesis as verified in Fig. 2.4: The data illustrate piecewise
stationary and unimodal distributions across 6 signal segments which can be rea-
sonably well approximated by a univariate normal distribution. Samples of an
exemplary envelope signal are illustrated, as this is the representation of sensor
signals which is used for segmentation in later chapters.

In addition, these choices of data and parameter priors are computationally
convenient: As prior p(µ, σ2|µ0, κ, α, β) and posterior p(µ, σ2|x1:t) form a conju-
gate pair for the assumptions made above, updates of parameters {µ0, κ, α, β}
yield a closed form solution [167].

BOCPD Extensions Relying on Further Assumptions of the Data Structure

Different approaches to robustify BOCPD changepoint estimation have been pro-
posed. In addition to theoretically well-founded but computationally expensive
generalized bayesian inference (GBI) methods as described in [126], approaches
incorporating assumptions about the data structure into the changepoint estima-
tion process were introduced, which typically come with a lower computational
effort than GBI methods.

In [269], Wilson et al. proposed a hierarchical extension of the BOCPD ap-
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proach. Their approach allows inferring both (globally) constant or (locally)
adaptive estimates of the typical frequency (hazard rate) of changepoints and
thus allows creating a more informative run length prior distribution p(rt |rt−1)
than the one in [5]. However, it does not allow to model a recurrent behavior of
run length patterns, i.e., a vector of run lengths rt that reoccurs for each recorded
sensor signal.

Maslov et al. proposed an approach explicitly dedicated to modeling recur-
rence of changepoints in [159]. Here, recurrence was defined by quasi-periodicity,
i.e., by assuming periodic recurrence of changepoints while allowing small devi-
ations of individual changepoints from this periodic behavior. For this purpose,
a predictive change confidence function (PCCF) was embedded into the Bayesian
changepoint detector. The PCCF was used as a more informative hazard rate h
to be included into the run length prior p(rt |rt−1) than the constant hazard rate
proposed in [5]. However, the approach does not allow to model a generic recur-
rent (but non-periodic) structure of data like the changepoint recurrence distri-
bution (CPRD) estimator introduced in later sections does.

2.3 Modeling Non-Stationary Frequency Components

As outlined in Section 2.1, machine health monitoring (MHM) features for ma-
chine-part-related condition monitoring can be related to the detection of sta-
tionary or tracking of non-stationary discrete frequency components. The main
steps of this approach are estimation of parameters of an imposed signal model
and subsequent connection of spectral peaks based on these parameter estimates
in order to obtain frequency component tracks.

2.3.1 Parameter Estimation

Superpositional sinusoidal signal models are the most common signal model as-
sumptions imposed in the generic field of line spectrum estimation [239]. Meth-
ods like the distribution derivative method (DDM) [36] allow estimating the
complex parameters α of this signal model and thus specifying amplitude, fre-
quency and phase of the generalized sinusoidal frequency components in the
signal model in a convenient way (cf. Subsection 4.2.1 for details). Amplitude,
frequency and phase estimates in turn prove useful in the following step of fre-
quency component tracking, where the frame-wise signal estimates s(t) have to
be connected in a sensible way to identify the desired non-stationary evolving
frequency components.

Sinusoidal parameter estimation is a generic problem arising in multiple ap-
plication domains involving radar [51], wireless communications [25] or direc-
tion of arrival estimation for sensor arrays [156, 178]. The goal of estimating
parameters of a signal model of superposed (complex) sinusoids is referred to by
the term of line spectrum estimation. When assuming stationary behavior, the
line spectrum estimation problem and respective signal model can be defined as
follows [92]:
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Definition 2.1 (Stationary line spectrum problem) For a stationary signal model

x(t) =
Rk∑
j=1

ψ(θj )αj , (2.13)

estimate the model order Rk alongside the normalized frequencies θj ∈ [0, 1] and
complex coefficients αj ∈ C for each signal component j = 1, . . . , Rk .

Here, ψ(θj ) : [0, 1) → CN×1 is a vector of Fourier components with nth entry
[ψ(θj )]n , exp(i2π(n − 1)θj ) indexed by the frequencies θj for n = 1, . . . , N .

Early approaches for solving this stationary line spectrum estimation prob-
lem were suggested by subspace methods, among which multiple signal classi-
fication (MUSIC) [219] and the Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT) approach [206] are prominent representatives.
Both methods estimate the line spectrum parameters based on covariance char-
acteristics of signals and successive eigenvalue decomposition. They rely on
prior knowledge of the model order or estimating it in a separate estimation step
(i.e., additionally to estimating frequency components and mixture parameters).
When the model order is mis-specified, these methods illustrate large decreases
in estimation performance.

Addressing this problem of model order mis-specification, grid-based sparse
estimation approaches were introduced with [156], [107] and SPICE [240] among
their most prominent representatives. Grid-based sparse estimators are inspired
by compressive sensing (CS) techniques and simplify former line spectrum esti-
mation techniques by inducing a sparse reconstruction problem where frequen-
cies are constrained to a finite grid. These methods are advantageous compared
to subspace methods in that they implicitly estimate the model order Rk . How-
ever, they come with an inherent trade-off between accuracy of frequency estima-
tion and computational complexity, governed by the grid resolution (i.e., spectral
resolution defined by the Rayleigh limit 1

N ) [92]. Consequently, off-the-grid ex-
tensions like GLS [280], AST [37] and its extension WANM [281] were suggested.
These come with the same advantages of grid-based methods (inherent model
order estimation, sparsity-inducing) but are not limited to a fixed grid. Unfor-
tunately, these off-the-grid extensions scale at least cubically in size N of the
spectral elements [92].

Complementary to the latest directions of line spectrum estimation being for-
mulated as finite sparse reconstruction problems, Bayesian estimation approaches
entered the field of line spectrum estimation. Compared to (stochastic) maxi-
mum likelihood approaches as in [178], they allow modeling assumptions about
the structure of the line spectrum estimation approaches in prior distributions on
the signal model coefficients. Zachariah et al. [283] built upon this possibility of
including prior assumptions into a probabilistic formulation very similar to the
model suggested in 2.13. They related their work to the subspace-based approach
in [270], but mentioned that this approach implies deterministic knowledge of a
subset of frequencies while assuming no prior knowledge about the remaining
frequencies. They explicitly referred to the sparse amount of literature on proba-
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bilistic treatment of the line spectrum estimation problem [45, 71]. The work of
Zachariah et al. in [283] inspired a multitude of extensions like variational line
spectral estimation (VALSE) [22] and its extensions MVALSE [293] and VALSE-
EP [294]). Many more recent approaches model these assumptions by sparsity-
inducing priors (a list of references can be found in [92]). Such sparsity-inducing
priors yield inherent model order estimation opposed to the stochastic maximum
likelihood approaches and early subspace approaches but illustrate a high com-
putational complexity (cubic in the number of signal model components).

Finally, in [92], an approach combining the ideas of Bayesian approaches and
off-the-grid methods promising computational complexity of O(N log2 N ) was
introduced.

The above approaches typically built on the signal model 2.13 that assumes
stationary behavior of frequency components. In [36], Betser et al. discussed
a generalized sinusoidal signal model similar to Eq. 2.13 capable of capturing
non-stationary behavior both in location and amplitude of these frequency com-
ponents:

Definition 2.2 (Non-stationary line spectrum estimation problem) For a non-
stationary signal model

x(t) =
Rk∑
j=1

exp

 Q∑
i=0

αij t
i

, (2.14)

estimate the model order Rk alongside the complex coefficients αij ∈ C for each
signal component j = 1, . . . , Rk .

Thus, the Fourier vector ψ(θj ) : [0, 1) → CN×1 from the stationary line spec-
trum estimation problem in Def. 2.1 is replaced by a sum of monomials ti of
order Q weighted by the complex coefficients αij . The weighted sum of mono-
mials allows to approximate frequency components that generalize sinusoidal
components. The terms

∑Q
i=0 αij t

i are thus referred to as generalized sinusoids.
The methods for estimation of non-stationary sinusoidal parameters intro-

duced in [36] built on constructing a linear equation system via DDM. This DDM-
based approach has become state of the art for non-stationary sinusoidal param-
eter estimation in frequency component tracking applications [171, 243] and are
also used in the conducted experiments to model the non-stationary behavior of
discrete frequency components.

2.3.2 Frequency Component Tracking

When aiming to track non-stationary frequency components, TF peaks detected
in each TFD frame have to be connected in a sensible way. In the following sec-
tion, an overview over methods for tracking of frequency components leveraging
the information obtained during parameter estimation as presented in the previ-
ous subsection is given.

Early literature on tracking of time-evolving, discrete frequency components
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focused mainly on linear prediction techniques [133] or probabilistic state space
models like Kalman filters [162, 214] and HMMs [64]. The seminal works of
McAulay et al. [160] and Depalle et al. [64] introduced approaches for frequency
component tracking in sinusoidal signal models via matching of successive spec-
tral peaks based on their related parameter estimates. Both methods estimate
peaks and related parameters from STFT spectrograms. For matching of suc-
cessive spectral peaks, they impose constraints on the continuity of parameter
slopes. McAulay et al. used a greedy algorithm to identify peaks and connected
them based on a matching criterion favoring small differences of frequency esti-
mates of successive peaks [160]. Depalle et al. on the other hand formulated the
matching criterion as a HMM (trajectory) optimization problem and relied both
on amplitude and frequency estimates [64].

Kereliuk et al. extended the work of Depalle et al. by augmenting the HMM
matching criterion with explicit chirp rate estimates [119]. In order to find these
chirp rate estimates, Wigner-Ville transform (WVT) and Hough transform (HT)
were combined for parameter estimation. Making the matching criterion depen-
dent on chirp rate estimates improved the tracking quality compared to [64]
for different scenarios, e.g., in order to resolve close-by frequency component
tracks [119].

In [243], Stowell et al. extended the previous methods in [64, 119, 160] by
relying on the DDM for parameter estimation as initially described in [36]. Ap-
plication of the DDM method improves over simple spectrogram representations
or generalized reassigned spectrogram representations [267] and can use any lin-
ear transform (e.g., Fourier transform or Wavelet transform) or combinations of
them [36]. In addition, Stowell et al. relied on using a Markov renewal pro-
cesss (MRPs) for matching of detected peaks via related parameter estimates.
Compared to HMMs, MRP come with a natural way to allow discontinuities of
frequency components (so-called ”sleep states”) during matching of successive
spectral peaks. Being able to model such discontinuities is valuable when signals
expose a high noise level and consequently result in frequent spurious spectral
peaks (cf. Subsection 4.3.1). Such spurious peaks lead to a decrease in concen-
tration of TFD energy along the wanted frequency components and thus many,
small-length and randomly directed frequency component tracks in the TF plane.

The above methods building on Markov state estimation problems (HMMs,
MRPs) can quickly become computationally intractable as the number of states
grows exponentially with the number of peaks detected per analysis frame [119]
leading to an overall factorial complexity [73]. For noisy signals as in the con-
sidered measurement data, spurious detected peaks lead to a high amount of
detected peaks. Neri et al. proposed an alternative to these robust Markov-based
estimators by framing the task of matching successive spectral peaks via a linear
optimization problem [171]. Solving this linear optimization problem is faster
than the Markov methods described above (only polynomial complexity in over-
all [73]) and is thus applied in this work as method of choice due to the computa-
tional constraints mentioned in Chapter 1. Similar complexity is reached with the
linear programming methods applied for frequency component tracking in [73].

The above methods for frequency component tracking were mainly proposed
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for application in the audio domain [64, 73, 119, 171, 243, 267]. For industrial
applications, the majority of literature on frequency component tracking focuses
on order tracking, where integer multiples (orders) of a fundamental frequency
instead of absolute frequencies (Hz) are used as basic atoms of frequency analysis
techniques [79]. Among the most popular applications for order tracking are
monitoring of rotating machinery [79, 289] and monitoring of gearboxes, e.g. in
wind turbines [18, 81] or helicopters [179].

There are three major fields of methods applied for order tracking [43]: Meth-
ods based on computed order tracking [79], on Vold-Kalman filtering [260] and
integral transforms (typically the Fourier transform) that directly estimate the
order domain from the time domain signal [41]. The most similar application to
the MHM scenario in this thesis is given in [81]. Authors aimed to perform condi-
tion monitoring for a wind turbine by extracting spectral peaks via the approach
of McAulay et al. [160], which were subsequently connected to create frequency
component tracks. Spectral peak extraction as proposed in [81], however, comes
without estimation of complex parameters α like in [36] and thus misses impor-
tant information concerning amplitude of these peaks in the matching criterion
for frequency component tracking. Furthermore, the approach in [160] assumes
stationary frequency component behavior. Finally, authors constrain frequency
components to form a set of harmonics, which is less general than the approach
in [36].

2.4 Anomaly Detection

Disclaimer: Parts of this section were taken verbatim from own previous publica-
tion [201].

Different types of anomalies can be distinguished regarding their relation to
the rest of the data. In this thesis, the focus is on collective anomalies [53]. This
type of anomalies is characterized by a collection of signal samples being inter-
preted as anomalous behavior and opposed to point anomalies, which manifest in
single outlying signal samples. Furthermore, anomalies considered in this study
manifest as contextual anomalies, where the context of signal samples (e.g., rel-
ative position in the signal) is relevant for an outlying segment of data being
labeled anomalous.

For this intersection of collective and contextual anomalies, a large corpus
of potential anomaly detection models can be considered. These models can be
distinguished based on the representation of the data used as input for the model:

• One-dimensional representation: Anomaly detection models rely on the
data being given as one-dimensional vectors. These vectors can be given
either as raw signals or a transformation of the data to another, one-dimen-
sional representation. Popular transformations are envelope signals [35],
wavelet-based representations [227] or other spectral transformations based
on singular value decompositions [144].

• Multi-dimensional representations: These representations emerge when the
sensor data are projected to a dual space by extraction of features. When
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aiming for a generic anomaly detection model, the major challenge is given
by the choice of a generic but expressive set of features [181]. Among
popular choices are statistical measures and wavelet-based features [252]
or filter bank features (e.g., Mel-frequency cepstral coefficient (MFCC) fea-
tures) [30]. The latter yield similar information to anomaly detection ap-
proaches based on TFDs.

• TFD representations: This group of two-dimensional representations can
be interpreted as a subgroup of the former list item of multi-dimensional
representations. Recently, different powerful deep learning approaches ca-
pable of learning the latent representations of the underlying, data-gen-
erating process have been introduced (with a focus on two-dimensional
representations, typically images). Among these, deep generative models
like variational autoencoders (VAEs) [124], generative adversial networks
(GANs) [86], auto-regressive generative models like PixelRNN/CNN [177]
and non-autoregressive flow-based models [65, 66, 123] supersede earlier
AE approaches [204, 258, 298] which come with a compressed latent rep-
resentation of the data but without the possibility of generating samples
from the latent representation. It is this ability to sample from the gener-
ative process of the data which seems to allow deep generative models to
capture details of the data flexibly without any access to labels.

2.4.1 Shallow Models

Methods based on one-dimensional representations Approaches of direct clus-
tering and classification of one-dimensional time series representations rely on
the computation of pairwise time series distance measures. The most common
measures are euclidean distance (ED) and dynamic time warping (DTW) dis-
tance [34] as well as its extensions (soft-DTW (SDTW) [63], DTW barycenter aver-
aging (DBA) [186], etc.). While Euclidean distances are calculated directly based
on the samples at corresponding signal locations, DTW-related measures come
with an additional, preceding step for optimal alignment of signals via nonlinear
warping of the time series. This flexibility allows comparison of signals with
different lengths or non-uniformly, affine transformed signals. Unfortunately,
DTW measures involve solving the optimization problem for signal alignment
with dynamic programming techniques, thus trading off their flexibility with an
increased computational complexity compared to simple Euclidean distance mea-
sures: DTW scales quadratically with the length n of the time series. In order to
reduce this computational cost, several approximation techniques were proposed.
Among these, LB_Keogh is one of the most popular [117]. LB_Keogh scales lin-
early with the length n.

For classification, kNN and especially 1NN evolved as a common baseline [63].
Multiple evaluations showed that 1NN is hard to beat in time series classification,
especially when combined with the DTW measure [23, 274]. For large training
data sets, it was shown that the predictive quality with euclidean distance ap-
proaches that of elastic measures such as DTW [264]. Unfortunately, kNN suffers
from high memory costs and long prediction times as all training examples have
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to be stored (both O(NT ) for training set size N and signal length T in a naive im-
plementation). To make a prediction on a new time series, the DTW measure has
to be computed for all these training examples, resulting in high computational
demands and long prediction times. In [187], nearest centroid (NC) combined
with DBA was shown to be competitive with kNN at a much smaller compu-
tational cost (i.e., prediction time) and reduced memory space demand across
multiple data sets. This was confirmed in [63] for barycenter averaging with the
Soft-DTW measure. NC methods rely on each anomaly class being sufficiently
representable by a single centroid. For a binary anomaly detection, finding out-
liers can then be approached by comparison of test signals to the normal class
centroid.

Multi-dimensional representation based methods Feature space methods yield
a powerful way to reduce the information given by raw samples in sensor sig-
nals. As mentioned above, these approaches come with the challenge to identify
a sensible set of features when aiming for a generic anomaly detection: For a
generic anomaly detection, it is typically infeasible to specify the most relevant
features a priori. Thus, a potentially large set of features has to be computed. As
discussed in [7], high-dimensional feature spaces result in increasing distances
between all data points, which makes common approaches of finding anomalies
by large distances to normal data points or in regions with a small density of data
points increasingly less appropriate. This is known as the curse of dimensionality
and was described first in [9] for applications of high dimensional outlier detec-
tion. Thus, feature space approaches in anomaly detection have to come with
an implicit or explicit feature selection (e.g., decision tree based approaches), di-
mensionality reduction (e.g., subspace methods) or have to be robust to irrelevant
features and the high dimensionality of the feature space (e.g., robust covariance
estimators [205]). The challenge of defining the most relevant features a priori
for feature space based methods might alternatively be circumvented by relying
on feature learning techniques. Apart from sparse dictionary techniques like non-
negative matrix factorization (NMF), neural network based methods dominated
the field of feature learning. Despite their dominance in image classification,
their application in time series anomaly detection fields is rather seldom.

Purely unsupervised, multi-dimensional anomaly detection methods model
anomalies as outlying points from dense regions of data points [129]. Dense
normal regions can be identified either by model-based approaches like one-
class classifiers [207, 220, 249] and probabilistic models [205] or proximity-based
approaches. The latter group of algorithms can further be distinguished into
distance-based methods (often kNN-based approaches like ODIN [94]) and den-
sity-based approaches like LOF [46] and its extensions [96, 224, 248]. Other
popular proximity-based approaches are INFLO [113], LoOP [128], LDOF [286],
LDF [135] and KDEOS [223]. More advanced, hierarchical density-based ap-
proaches were introduced by DBSCAN [72] and extensions like OPTICS [17] or
HDBSCAN [49].

Many of the former methods relied on data being given as complete batch,
i.e., data have been considered in an offline classification scenario. Recently,
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the streaming data scenario (i.e., online classification) received more attention
triggered by the position papers of Aggarwal [6] and Zimek [297]. Dominant
techniques relied on ensemble methods based on the early success of isolation
forests [146] and the theoretical analysis of anomaly ensembles in [8]. Recent
work on outlier ensembles in streaming data scenarios is listed in [157] and
given by the subsampling techniques in [296], ensembles of randomized space
trees [272] or half-space trees [247], selective [198] and sequential [199] anomaly
ensembles, histogram-based ensembles like LODA [188] and subspace hashing
ensembles like RS-Hash [215] or xStream [157].

2.4.2 Deep Models

Deep anomaly detection models can be distinguished regarding the representa-
tion used as input for the model, regarding the architecture of the model and the
anomaly detection loss. Here, any neural network with more than one hidden
layer is considered a deep model.

Input Representations for Deep Anomaly Detection Deep learning based meth-
ods are most prominently applied in image modeling tasks. In general, two-
dimensional representations open up perspectives for making use of the numer-
ous methods applied in this field. For time series data, this involves finding a
reasonable two-dimensional embedding. Despite embeddings based on Gramian
angular fields [265] or Markov transition fields [48, 265], the field of 2D time se-
ries embeddings is dominated by TFDs: Starting in applications for acoustic mod-
eling in speech recognition [99] and speech generation [105, 106], TFDs started
to enter the field of MHM applications [147]. Compared to more traditional ap-
proaches in MHM often building on computationally efficient (e.g., statistical)
features (cf. Section 2.1), TFDs introduce a non-negligibly larger additional run-
ning cost during prediction time.

Architectures for Deep Anomaly Detection Among deep models based on one-
dimensional time series embeddings, approaches based on RNNs [155, 285] dom-
inated the field over the course of many years [24]. Due to the problem of van-
ishing gradients [28], long short-term memory (LSTM) [102] and gated recurrent
unit (GRU) architectures [58, 132] replaced simpler RNN architectures to a large
extent. More recently, non-RNN approaches, e.g., based on VAEs [275] with MLP
layers started to gain interest. Especially the advent of temporal convolutional
networks (TCNs) [24] led to the belief that RNNs should not be considered with-
out any alternative in the field of time series modeling tasks.

In [24], Bai et al. introduced a generic temporal convolutional network (TCN)
architecture which they applied to a wide range of sequence modeling tasks.
They found, that TCNs often outperformed diverse RNN architectures (state of
the art LSTMs and GRUs among others) and suggested replacing RNN archi-
tectures as the canonical starting point for sequence modeling tasks (like time
series modeling) by TCNs. They justified this suggestion not only by the bet-
ter predictive performance but multiple other advantages like the TCN-inherent
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parallelism for processing of sequences both during training and prediction, the
flexibility in controlling the models’ effective memory (i.e., the TCN’s receptive
field), the better stability of gradients during learning (compared to the vanishing
gradients problem for many RNNs architectures [28]) and the smaller memory
requirements during training compared to RNNs [24]. On the downside, they
argued that TCNs might possibly expose higher memory requirements during
evaluation and come with a higher dependency of the necessary memory size
(i.e., receptive field) on the application domain. Extending TCNs to be competi-
tive to stochastic RNN architectures [27, 88] is part of ongoing research and dealt
with in [13, 134] among others.

Loss Functions for Deep Anomaly Detection Regarding loss functions for deep
anomaly detection models, autoencoder (AE) approaches dominated the field for
many years [207], whereas other unsupervised representation learning methods
like GANs [86] are rarely applied [218]. AEs are constructed from an encoder
and decoder part and try to learn the identity function (i.e., try to learn an input-
output mapping which allows for the reconstruction of the input with minimal
reconstruction error) [207]. The encoder-decoder structure paired with a reduced
intermediate dimension or sparsity regularization yields a computational bottle-
neck in the middle part of the network which forces the network to extract a
meaningful set of latent features. When the training of the model succeeds, it is
capable of learning the latent features necessary for explanation of normal data
in order to reconstruct them properly. Anomalous data samples however, which
are outliers with respect to this normal data, are expected to expose data varia-
tions not fully captured by this latent intermediate representation, thus yielding
a higher reconstruction error ‖x − x̂‖22 between input x and reconstruction x̂. The
learned intermediate embedding can either be used as plug-in feature embed-
ding for classical anomaly detection approaches (cf. Subsection 2.4.1) or in a
fully deep anomaly detection by applying the reconstruction error as anomaly
score [207].

Extensions of classical AE approaches in anomaly detection include denoising
AEs [257, 259], sparse AEs [153], AE approaches leveraging additional informa-
tion from the latent representation for construction of an anomaly score [298]
and VAEs [124]. Although these AE-based anomaly detection approaches are
predominant in image-based modeling and thus favor two-dimensional data rep-
resentations, especially VAEs were more recently applied to time series data in
direct or other one-dimensional embeddings [12, 114, 275]. Typically, VAE-based
anomaly detection models rely rather on the reconstruction probability than on
the reconstruction error, which is more independent from the characteristics of a
given data set [12].

Both GANs-based and (V)AE-based approaches rely on reconstruction mea-
sures as anomaly scores. Although the assumption that anomalies might reflect
in a higher reconstruction error or reconstruction probability, neither of them
represent a loss function custom-built for anomaly detection. On the other hand,
anomaly detection based on one-class neural network loss functions are a promis-
ing direction for deep anomaly detection which come with a tailor-made anomaly
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detection loss function [52, 207]. In this thesis, the Deep SVDD approach intro-
duced in [207] is focused on, due to being theoretically well-founded and empir-
ically approved by its shallow counterparts (OC-SVMs, SVDDs) over the course
of many years. The approach is closely related to existing OC-SVM [220] and
SVDD [249] approaches but comes without the necessity of handcrafted feature
engineering and other drawbacks related to construction and manipulation of the
kernel matrix (like at least quadratical computational scaling in the number of
samples) and its nonparametric nature (potentially large number of support vec-
tors to be kept permanently in memory) [207]. In addition, the authors most re-
cently proposed a semi-supervised extension to the Deep SVDD approach (which
they term Deep SAD) showing promising results even when being provided with
only a small number of labeled training data examples [208].

2.5 Annotations by Human Users

A vast amount of literature on the specifics of human annotations exists. Among
the most typical application fields are medical applications like smoking detec-
tion [3], sleep detection [4] or affect recognition [233] and the large field of activ-
ity recognition [163, 261]. While earlier work focused on collecting labels from
diaries filled out by study participants, smartphone apps took over the field of
human annotation [59, 62, 254, 284]. The main advantage of collecting labels
online via smart phones is timely labeling triggered by events (e.g., from sensor
data) paired with visualization and accessibility of context data in order to give
the user a sensible amount of information during annotation.

Online annotation of sensor signals in industrial manufacturing surroundings
was so far not yet considered in the research community. Thus, for discussion of
state-of-the-art online annotation methods in this section, other, related applica-
tion fields are considered.

In [189], authors proposed a procedure for the synchronization of wearable
accelerometers and video cameras for automatic ground truth annotation of ac-
celeration sensor signals. This allowed them to estimate time delays between
these two sensor modalities with a minimal level of user interaction and thus im-
prove the annotation of acceleration sensor signals via video footage inspection.

Authors of [165] proposed an online active learning framework to collect user-
provided annotations, as opposed to the typical retrospective analysis of video
footage used in human activity recognition (HAR). Only highly critical annota-
tions were prompted to the user, which is similar to the live annotation approach
in Chapter 5 which prompts only anomalous signals for online annotator feed-
back.

In examining their results, Miu et al. claimed that users of activity recog-
nition systems themselves are sources of ground truth labels that are often ne-
glected [165]. This makes sense for the field of activity recognition, where users
have a good knowledge of their own activities. For MHM applications as con-
sidered in this thesis, it is less clear in advance if human annotators (i.e., ma-
chine operators) have a good knowledge of the current machine behavior such
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that they are reliable annotation sources and their labels can be considered as
ground truth.

In [221], Schroeder et al. performed an analysis of existing live annotation
systems and suggested then an own online annotation system based on their find-
ings about basic requirements for annotation systems. This online annotation sys-
tem was generated automatically based on a database schema. In addition, their
setup allowed to include annotation constraints, which can be used for causal
correction of given annotations.

In [164], Miu et al. assumed the existence of a fixed, limited budget of an-
notations a user is willing to provide and discussed different strategies for best
spending this budget. This is related to the assumptions described in later sec-
tions, that the quality of human annotations relies both on the quality of signals
proposed as abnormal to the user (i.e., small false positive (FP) rate) and (visual)
clarity of anomalies prompted to the user for annotation.

In [84], authors proposed a technique for online activity discovery based on
clustering assumptions of labels in successive signal windows. Although their ap-
proach is memory efficient and has constant time complexity, it is not applicable
for live annotation of signals as proposed in later sections due to the fact, that re-
occurring activities lead each time to a newly created cluster segment. This does
not allow to model normal behavior as a single class in reoccurring cluster seg-
ments and distinguishing it from other, abnormal signal classes. This is however
crucial for the live annotation approach relying on prompting only outliers from
this single normal signal class for user annotation.

In general, the authors of [165, 189, 221] showed that online annotation by
user feedback can yield comparable or even better results to retrospective anno-
tation (e.g., via video footage), even when considering a fixed budget of annota-
tions [164]. This is reasonable for the typically considered task of human activity
recognition, where the user is an expert for his own activities. For the task of
detecting different types of machine health anomalies, it is a priori less clear if
and for which anomaly classes the human annotators (e.g., machine operators)
can be considered experts yielding a reliable ground truth labeling.

2.6 Weakly Supervised Learning

Most performant models in machine learning across a wide range of predictive
tasks are dominated by supervised approaches. The performance of these meth-
ods increases typically with the amount and quality of given labels. However,
large sets of high-quality labels come with non-neglectable costs due to an ad-
ditional time effort spent on annotation. In order to obtain a high quality, the
process of creating label sets typically involves expensive domain expert annota-
tions. Thus, supervised techniques come with an inherent quality-cost trade-off
due to the annotation process: Additional annotations are expensive.

In order to reduce the cost of annotations, different strategies were proposed.
These were recently summarized by the umbrella term weakly supervision and are
thus explicitly contrasted to the traditional strong supervision techniques (i.e.,
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providing complete sets of high-quality ground truth labels for the set of data
points). Weak supervision techniques can be classified as follows [292]:

• Incomplete supervision: The core idea of this class of weak supervision ap-
proaches is reducing the amount of annotated data instances. The two most
prominent representatives of this class are semi-supervised learning [54,
295] and active learning [226]. Semi-supervised learning aims at combin-
ing large amounts of unlabeled data with a smaller subset of labeled data
instances during the model learning process. Active learning aims at find-
ing an optimal strategy for selecting only the most valuable data instances
to be proposed for annotation. High value can be defined, among other
strategies, by high uncertainty of the predictive model regarding classifica-
tion of the given data (which is referred to as uncertainty sampling [139])
or by the scarcity of assumed labels (i.e., rare labels are more valuable).

• Similar to the former class of methods, inexact supervision methods reduce
the amount of annotations. Other than incomplete supervision methods,
inexact supervision groups data instances and then queries for annotations
of these groups, resulting in a more coarse-grained annotation [292]. The
most typical approaches are multiple instance learning [76, 158] and label
proportions learning [98]. Multiple instance learning groups data instances
into bags and queries labels for these bags, thus effectively reducing the la-
beling effort. Typically, a bag of data instances is labeled as positive when
at least one instance in the bag is considered positive [292]. Label propor-
tions learning additionally assumes knowledge about the proportions of
label classes in a bag and uses this information for supervision.

• Finally, inaccurate supervision provides complementary methods to the for-
mer two groups of incomplete and inexact supervision: In contrast to reduc-
ing the amount of data instances that are proposed for annotation, inaccu-
rate supervision decreases labeling costs by tolerating a higher amount of er-
roneous labels, thus effectively reducing the quality of annotations by intro-
ducing more noise into the labeling process. A typical reason for the higher
amount of label noise is the waiver of domain expert labeling sacrificed in
order to reduce the cost of annotation. A typical alternative to domain ex-
pert labeling is given by crowd source annotations [44]. As crowd sourcer
annotations are known to be of lower annotation quality and thus introduce
a higher amount of noise into the labeling process, many of the proposed ap-
proaches try to estimate reliability of the label feedback. When no ground
truth labels are present, the most typical strategy is rating reliability by in-
ter annotator agreement. Despite several proposed statistical measures [90],
approaches leveraged label proportions [194], Bayesian nonparametric esti-
mators [166] or adversial models [279] for estimating label reliability from
inter annotator agreement. In addition to techniques for label reliability
estimation and denoising, inaccurate supervision techniques necessitate an
appropriate design of annotation protocols and interfaces [292].



2.6 Weakly Supervised Learning 39

Label reliability estimation and denoising techniques aim at revealing the la-
tent underlying true labels from the observed noisy labels, often making use of
additional knowledge about domain-specific characteristics of the label structure.
For example, time series label sequences often exhibit a low-varying and/or piece-
wise stationary structure. Temporally noisy positive labels are thus considered to
appear close (in a temporal sense) to the true positive examples [3]. Then, la-
bel denoising can be approached by methods like alignment of the label vector
with class scores predicted by the model, either in a single instance (i.e., align
single labels with data), multiple instance (i.e., align bags of labels with data) or
label proportion setting (i.e., use information of fraction of positive labels in a
bag during alignment with data). Other approaches leverage assumptions about
the non-iid structure of temporal data in order to extend classical iid classifier or
outlier detection models [87]. A more elaborate denoising approach for tempo-
rally adjacent instances is stated in [3], where the information about order and
positions of positive instances is retained and used during label denoising (as
opposed to multiple instance and label proportions approaches stated above).

Another group of methods learns user-specific models, in order to more pre-
cisely capture the subjective labeling behavior of annotators and possibly sort out
“spammers” (i.e., annotators with a close-to-random labeling behavior) or “ad-
versaries” (i.e., annotators deliberately assigning incorrect labels) [292]. Several
approaches like proposed in [103, 182, 237] explicitly estimated user-specific reli-
ability models or tried to improve the annotation quality by imposing additional
assumptions on the characteristics of labels (e.g., correlations between adjacent
labels [3, 4]).

Finally, non-expert labels can be synthesized from weak information sources
by means of a generative model. Label generative models can be represented ef-
ficiently by a probabilistic graphical model (PGM) [21]. These allow to learn the
dependencies between weak information sources like domain heuristics, features,
weak classifiers or non-reliable human annotators, and estimate more reliable la-
bels by combining the weak information obtained from these dependent sources.
In data programming settings [196], such weak information sources are typically
termed labeling functions (LFs). Learning the reliability of the label-generating
LFs is a problem which has been tackled by a variety of approaches in supervised
settings [161, 197]. In unsupervised settings however (i.e., when true labels are
never observed), the problem of structure learning of graphical models becomes
more challenging, as the true labels have to be modeled as latent variables [21].
In order to reduce the complexity of the structure learning task and circumvent
approximations for the gradient of the learning objective (e.g., Gibbs sampling or
variational methods), simplifications like assuming conditional independence of
the labeling functions or maximizing a pseudo-likelihood instead of the marginal
likelihood [21] are popular. Chapter 6 presents a more detailed discussion on
these topics.
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2.7 Summary

• In Section 2.1, related work in the diverse field of MHM applications was
summarized. A focus was put on tool condition monitoring (TCM) and im-
balance detection. Throughout this thesis, related work is extended by sev-
eral contributions. First, a novel TCM health indicator is proposed. Further-
more, methods for automated detection of imbalances in different rotating
machine parts (grinding wheel, dressing tool, etc.) are described. Finally,
the fact that in condition-based monitoring systems context information re-
garding process adaptations, machine part changes and anomalous events
is often neglected was discussed. This concern is addressed by the proto-
typical labeling system developed for the live annotation proof-of-concept
study to be presented in Chapter 5, which allows annotating such events by
domain experts parallel to recording of measurement data.

• Section 2.2 summarized different methods for segmentation of sensor sig-
nals. Changepoint approaches were emphasized in this summary due to
assumptions imposed by these methods fulfilled by the nature of the sen-
sor data in this thesis. It was pointed out however, that no computationally
efficient method incorporating the cyclostationary structure of this sensor
data exists. In this thesis, an empirical estimator of generic cyclostationary
data structures is presented which addresses this research gap. The recur-
rent segment borders found by this approach can be used both to detect
several suddenly occurring anomalies in the production process of machine
tools and for definition of comparable signal regions in which health indica-
tors for anomalies with a drifting character (e.g., the TCM health indicator
mentioned in the former list item) are extracted.

• In Section 2.3, methods for recovery of discrete frequency components from
time frequency distributions computed for the sensor data were discussed.
Knowledge of this discrete frequency components is used in this thesis for
condition monitoring of specific rotating machine parts (e.g., imbalance de-
tection of rotating machinery mentioned in the first item of this summary
list).

• Section 2.4 gave an overview over several generic anomaly detection ap-
proaches, both deep architectures and shallow models. Different shallow
models are compared in this thesis in order to select an appropriate model
for the live annotation approach presented in Chapter 5. Furthermore, sev-
eral neural architectures are compared for detection of anomalies in data
recorded during conducting the proof-of-concept study of this live annota-
tion approach.

• In Section 2.5, specifics of human annotations were discussed, with a focus
on disadvantages and advantages of online annotation in activity recogni-
tion applications. The basic idea of annotating hard-to-interpret raw (ac-
celeration) sensor signals by considering human-interpretable meta infor-
mation (e.g., video footage) is adopted for the live annotation approach
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in that direct, human-interpretable context/meta information is presented
(e.g., being able to view and hear the processing of workpieces) while being
given sensor signals for review.

• Section 2.6 gave an overview of different weak supervision methods. The
Deep SAD loss function [208], which is applied in this thesis for anomaly de-
tection with neural architectures, is extended to include probabilistic labels
in Chapter 6. These probabilistic labels are obtained by weakly supervised
approaches.
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The features stated in the related work section 2.1 are mostly general purpose
features which proved useful in a wide range of industrial applications but are
not specific for a certain prediction task at hand. In addition, phenomena like
sensor drifts, user-initiated adjustments of process parameters and changes of
workpiece types that are not related to the actual prediction task influence or
even dominate the scores of such generic features. Consequently, when the sensor
data used for training of models illustrates different process parameter settings
or workpiece types than in-field recorded test data on which these models are
executed on, a reduction of the predictive expressiveness of these features and
thus predictive quality occurs.

In the following part of this thesis, it is demonstrated how to include domain
expertise into the process of engineering features for selected predictive tasks
that are less affected by the covariate shift problem described above: The benefit
both of signal segmentation (Chapter 3) for detection of sudden process-related
anomalies and tool condition monitoring, as well as estimation of discrete fre-
quencies for condition monitoring tailor-made to certain machine parts (Chap-
ter 4) is outlined. Extensions on existing approaches for signal segmentation are
introduced, the applicability of estimation and tracking of discrete frequencies
for condition monitoring purposes is discussed and tailor-made features for spe-
cific MHM tasks are suggested.





3
Signal Segmentation

In this chapter, various methods for segmentation of time series in machine con-
dition monitoring and process monitoring are discussed and compared regard-
ing their performance on the measured sensor data. In Fig. 3.1, exemplary data
recorded from a vibration sensor mounted at the workpiece support during ma-
chining a workpiece are illustrated.

The depicted sensor data stream illustrates a hierarchical recurrent structure,
i.e., exhibits repetitive patterns on various levels: Firstly, the data stream can be
segmented into four recurrent high-level data records (depicted by different color
shadings in Fig. 3.1). Each of these four data records is related to the machining
of a single workpiece. Identifying this high-level recurrent structure is not in
focus of this thesis, as trigger signals are provided that allow deterministically
subdividing the data stream into records related to the machining of single work-
pieces. Thus, the data sets in this thesis consist of data records, each of which is
related to the machining of a single workpiece. These data records are referred
to as signals in the following. Furthermore, a second, low-level recurrent struc-
ture can be identified in each of the four data records related to the machining of
a single workpiece. This low-level recurrent structure originates from the same
sequence of processing steps applied during machining of each workpiece with a
profiled grinding wheel: First, the grinding wheel approaches the workpiece. Af-
ter initial contact of grinding wheel and workpiece, successive processing steps
are performed (roughing, finishing, etc.). While the amount of material removal
is defined by the processing step, locations of material removal are defined by
the profile of the grinding wheel. The low-level recurrent structure caused by the
repetitive sequence of processing steps and machining with a profiled grinding
wheel can consequently be identified in sensor nodes attached to process-related
machine parts. The sensor node attached to the workpiece support depicts these
process-related specifics of the signals.
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Figure 3.1: Hierarchical recurrent structure of sensor data, recorded with a
sensor attached to the workpiece support of a grinding machine. The col-
ored shading highlights the high-level recurrent structure of data records
(machining of four workpieces). Each high-level record illustrates a low-
level recurrent segment structure (similar segments due to same processing
steps applied during machining of each workpiece), illustrated exemplary
for the recurrent segment s1.

Various methods and benefits for automatically identifying this low-level re-
current segment structure in sensor signals are discussed in the following chap-
ter. In Section 2.2, an overview over the wide field of signal segmentation meth-
ods was presented, including piecewise linear approximation (PLA) methods,
clustering models (GMM and HMM) and changepoint detection methods. PLA
based methods and likelihood ratio based changepoint methods are excluded
from the detailed comparison. This is due to empirical evaluations in a mas-
ter’s thesis [172] supervised by the author, suggesting both groups of methods
not to be suitable for the sensor data. Clustering-based models and Bayesian
changepoint detection approaches (with a focus on the Bayesian Online Change-
point Detection (BOCPD) algorithm [5]), being best suited for the nature of the
measured sensor data, are discussed deeper in Section 3.2.

A computationally convenient approximation of HMM-based signal segmen-
tation is presented by combining GMMs and FSMs (Subsection 3.2.1). In Subsec-
tion 3.2.2, an extension to the BOCPD algorithm is introduced. This extension
which was termed changepoint recurrence distribution (CPRD) allows estimat-
ing recurrent signal segments more robustly than via standard BOCPD and can
additionally be used for a computationally efficient detection of process-related
anomalies.

In Section 3.3, signal segmentation by HMMs, GMMs and BOCPD is com-
pared both regarding quality and computational cost of signal segmentation. Fur-
thermore, the capability of the presented CPRD extension to distinguish change-
points provoked by the repetitive processing steps from changepoints caused by
process-related anomalies is discussed. In addition, a novel tool condition health
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indicator relying on recurrent segments identified by the proposed CPRD exten-
sion is introduced. Finally, conclusions regarding the optimum choice of the sig-
nal segmentation method are drawn in Section 3.4.

3.1 Motivation

Automatically identifying recurrent segments in the sensor data is of high inter-
est for two reasons:

1. In recurrent low-level segments, similar processing steps result in station-
ary statistical behavior of the data-generating process (cf. Fig. 2.4). Thus,
recurrent segments in successive records exhibit similar statistics, i.e., cyclo-
stationary behavior. Modeling this cyclostationary behavior allows extract-
ing comparable feature scores for detection of drifting anomalies. This is
illustrated exemplary for the prediction task of tool condition monitoring
(TCM).

2. In addition, being able to describe normal behavior of the processing step
sequence allows for detection of deviations caused by suddenly occurring
anomalies that manifest in changes in the normal segment structure. This
is illustrated for the exemplary tasks of detecting abnormal machine part
contacts and signal form deteriorations (here due to a grinding wheel im-
balance).

Identifying recurrent segments in a data stream is a non-trivial task as outlined
in the following chapter. As discussed in Section 2.2, different approaches based
on piecewise linear approximation of signals, clustering-based models and al-
gorithms involving a penalized likelihood function of the data are among most
popular choices. With the BOCPD approach introduced in [5], a new direction
based on recursive Bayesian estimation of signal changepoints emerged. These
changepoints happen to occur at points of significant changes in the statistical
parameters of the underlying data-generating process. During normal process-
ing behavior, changepoints tend to coincide with processing step changes. How-
ever, changepoints additionally occur due to abnormal machining behavior (e.g.,
abnormal machine part contacts) or signal fluctuations.

In order to identify recurrent signal segments more robustly and being able
to distinguish between normal (recurrent) and abnormal (non-recurrent) change-
points, an estimator for the probability of changepoints to be recurrent is intro-
duced. The dependence of the probability of changepoint recurrence on the rel-
ative position of the changepoint in the signal allows defining a distribution of
probability of changepoint recurrence across the signal length. The estimate of
this changepoint recurrence distribution (CPRD) can then be used to incorporate
the domain knowledge of the data’s recurrent structure into a more informative
(i.e., non-uniform) prior distribution of the BOCPD changepoint estimator or in
a separate step on classifying BOCPD changepoints regarding their probability
to be recurrent.
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3.2 Methods

In this section, methods which are applied for signal segmentation in the upcom-
ing experiments are outlined in more detail than in Section 2.2. These methods
can be categorized into two groups, clustering-based signal segmentation and
Bayesian changepoint detection.

Clustering-based approaches (GMMs, HMM) assign a most probable cluster
membership estimate to successive data samples. Segmentation of the data sam-
ple stream can then be obtained by finding transitions in these successive cluster
membership estimates. Typically, the original time series data is transformed
to a dual space by extraction of features from these time series. This is moti-
vated by a better observability of clusters in this feature space than in the origi-
nal time series data. Then, a clustering model of appropriate complexity has to
be trained, where complexity refers to the number of clusters assumed by the
model. Thus, the quality of signal segmentation relies both on a choice of ap-
propriate features and model selection (i.e., estimation of the optimal number
of clusters). For GMM model selection, information-theoretical criteria AIC and
BIC are compared. In addition, an FSM for post-processing of GMM cluster mem-
bership estimates is proposed. FSM post-processing allows to constrain cluster
estimates to follow a certain temporal order and thus mimic the behavior of an
HMM but at reduced computational effort.

For Bayesian changepoint detection, the generic BOCPD changepoint estima-
tor is extended in order to capture the specific, recurrent nature of the sensor
data in this thesis. For this, the CPRD estimator of changepoint recurrence is
proposed. Additional to a robust estimation of signal segments, the CPRD allows
for a computationally efficient unsupervised anomaly detection.

3.2.1 Modeling Recurrent Signal Segments with Gaussian
Mixture Models

HMMs are widely applied in time series applications and generally appealing for
identifying the structure of time series. Their capability to model latent, hidden
states that generate the observed data samples allows to infer the data-generating
process and its cyclostationary behavior in a powerful way: Recurrent segments
can conveniently be defined as piecewise constant state sequences in the Viterbi
path (i.e., the estimated most likely sequence of hidden states). However, HMMs
can be computationally challenging on resource-constrained embedded systems:
Parameter learning of HMMs is computationally expensive but has to be per-
formed only once. Time-critical online prediction (i.e., computing the Viterbi
path) with the learned HMM however involves solving a dynamic programming
problem per each sensor signal.

GMMs are computationally less expensive and model the state memberships
by probabilistic means similar to HMMs. However, they do not encompass the
temporal dependency of successive signal samples. Thus, after predicting most
likely cluster membership with the GMM, postprocessing these cluster estimates
by an additional L2R FSM is proposed to mimic an HMM’s structure.
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The proposed algorithm for signal segmentation via a combination of GMMs
and FSM is summarized in Algorithm 1. Based on extraction of M features,
M ×1-dimensional observation vectors oi,1, . . . , oi,T per each of T successive fixed
length blocks of data records reci are computed. These T observation vectors are
concatenated in M × T -dimensional observation matrices Oi per data record reci .
This is repeated for N training data records reci .

Afterwards, K GMM model candidates θj = θ1, . . . ,θK are learned based on
the training observation matrices O1, . . . ,ON . For GMMs, these models are pa-
rameterized by θj = {π1:j , µ1:j ,Σ1:j }, where π1:j are the j × 1 mixture proportions,
µ1:j consists of j M × 1 mean vectors and Σ1:j are j M ×M covariance matrices
for each of a mixture of j normally distributed clusters [168].

Among these model candidates θj , model selection is performed via a prede-
fined information criterion IC. In this thesis, the Akaike Information Criterion
(AIC) [11] and Bayesian Information Criterion (BIC) [225] as the most common
criteria for GMM model selection [60] are compared. Both criteria consist of two
terms: a goodness of fit term and a term penalizing model complexity. While
AIC measures complexity only by the number of model parameters q, BIC incor-
porates the sample size into the penalty term:

AICj = −2 log L(θj ; O) + 2q (3.1)

BICj = −2 log L(θj ; O) + q · log(N · T ) (3.2)

where L( · ) represents the likelihood function and θj = {π1:j , µ1:j ,Σ1:j } is the set
of learned parameters for a GMM with j clusters. The sample size is given by
N · T , i.e., the product of the number of training data recordsN times the number
of fixed length blocks T per data record reci .

The optimal model is typically found either at the minimum IC value or the
“knee point” [287]. For a more detailed explanation of knee point computation
the reader is referred to [287]. Put in a nutshell, knee point detection identi-
fies the optimal model candidate at the point where the decrease of successive
IC values starts to flatten, i.e., the point where the dominance of the negative
log likelihood term −2 log L(θj ; O) vanishes in favor of the regularization term
q · log(N · T ). Assigning the optimal model at this knee point can perform bene-
ficial to simple assignment at minimal IC values: Depending on the sample size
N · T , IC values might decrease across all model candidates θj , thus favoring the
most complex model. Finally, the optimal matching hidden state vector zi for ob-
servation matrices Oi is identified with this optimal model θsel by computation
of posterior probabilities of the mixture components.

Both information criteria AIC and BIC identify the GMM explaining feature
score observations oi,t in the most sensible way according to the assumptions
made by their formulation as regularized maximum likelihood estimators. How-
ever, neither of both criteria allows identifying the temporal order of these clus-
ters. Furthermore, the following step of GMM cluster membership estimation
does not incorporate temporal information inherent to successive observations
oi,t . When aiming for segmentation of original time domain data records reci
by finding transitions in successive cluster membership estimates zi,t , not incor-
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porating the temporal meta information during cluster membership estimation
might favor estimating insensibly many cluster transitions. This results directly
in an over-segmentation of the data records reci . HMMs, on the other hand, use
this temporal meta information of successive observations oi,t in order to con-
strain cluster transitions to follow a feasible temporal order of clusters. This
reduces the risk for over-segmentation of signals due to erroneous assignments
of cluster transitions.

The following approach is proposed in order to address these shortcomings
of a purely GMM-based signal segmentation. First, the temporal order seqj of
GMM clusters of θsel has to be identified. This is done by computing the median
t̃i,j of block indices t associated with GMM clusters j per each hidden state vector
zi and then again computing the median indices t̃j across all N training records.
This allows to identify the temporal order seqj of the GMM clusters by sorting
them regarding their median block indices t̃j . Then, an L2R FSM can be defined
using these temporally ordered GMM clusters as states. This L2R FSM mimics the
effect of an L2R HMM as illustrated in Fig. 2.2 in that it assigns GMM clusters
to the temporally ordered FSM states s1, . . . , s5 (representing the deterministic
sequence of processing steps). The L2R FSM can then finally be used to post-
process the GMM hidden state vectors zi by constraining transitions between
GMM clusters to follow a temporal L2R order. Thus, the L2R FSM reduces the
space of admissible state transitions for the optimal GMM θsel , finally allowing
to find a temporally constrained estimate zFSM,i of the GMM hidden state vector
zi .

3.2.2 Bayesian Estimation of Recurrent Signal Segments

Disclaimer: Parts of this section were taken verbatim from own previous publications
([202, 203] ©2019 IEEE).

Bayesian changepoint estimation via BOCPD relies on fundamentally differ-
ent principles to identify signal segments than the clustering approaches illus-
trated in the previous section. One of the main advantages is that BOCPD does
not necessitate an explicit and static model selection. Instead, BOCPD updates
sufficient statistics of the data-generating process model directly based on as-
sumptions specified about the data structure in the prior distribution p(x) and
assumptions concerning the occurrence of changepoints specified in the condi-
tional run length prior distribution p(rt |rt−1). In the original BOCPD approach
as introduced in [5], the quite conservative assumption of probabilities of change-
point occurrence being independent from former changepoints and distances
between them is made. This assumption on the structure of the conditional
prior p(rt |rt−1) is imposed by choosing the uninformative constant hazard func-
tion H(τ) = 1/λ which was discussed in Section 2.2. In the following section,
a straightforward and effective way to empirically estimate a changepoint prior
from the run length distribution p(rt |x1:t) is introduced. This so-called CPRD
extension is more tailor-made to the characteristic, recurrent structure of MHM
data.

Throughout all experiments conducted for signal segmentation via Bayesian
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Algorithm 1: GMM+FSM signal segmentation model
Input: N training sensor data records rec1, . . . , recN

Feature functions Φ1, . . . ,ΦM
Type of information criterion IC
Upper bound K on number of states

Output: Hidden state vectors zFSM,i
1: for each reci do . Construct observation matrices O1, . . . ,ON
2: for each blockt in reci do
3: oi,t = [Φ1(blockt), . . . ,ΦM (blockt)]T

4: end for
5: end for
6: for a max. number j = 1, . . . , K of GMM states do
7: θj ←GmmTrain(O1:N , j) . Train GMM with j components
8: ICj = InformationCrit(θj , N )
9: end for

10: θsel ← KneePoint(θ1...K , IC1...K ) . Select best-fit GMM model θsel
11: for each reci do . Temporal ordering of GMM clusters
12: zi ← GmmPredict(θsel ,Oi) . Infer hidden state vectors zi
13: for all clusters j of GMM θsel do
14: t̃i,j ←Median(SelectIndices(zi,t == j))
15: end for
16: end for
17: t̃j ←Median(t̃i,j )
18: seqj ← Sort(t̃j )
19: θFSM ← FsmTrain(j, seqj ) . Train L2R FSM
20: zFSM,i ← FsmPredict(θFSM , zi) . Constrain temporal order of zi
21: return zFSM,i

changepoint estimators, a simple signal representation of the raw sensor sam-
ples is computed from average rectified valuess (ARVs). Average rectified values
are computed by the mean of absolute values in non-overlapping fixed blocks
of M raw samples yt , i.e., 1

M

∑M
i=1|yi | in each successive signal block compris-

ing M = 1024 raw data samples yi . These ARV representations are referred to
as envelope signals in the following. The main reason for this is the piecewise
unimodal distribution of envelope signal samples which can effectively approxi-
mated by normal distribution. This was illustrated in Subsection 2.2.3. Further-
more, the decimation induced by the envelope extraction results in a reduced
computational effort for signal segmentation.

Changepoint Recurrence Distribution (CPRD)

This section presents the CPRD estimator on changepoint recurrence. In the
BOCPD algorithm this CPRD estimator builds upon, changepoints are identified
from the run length distribution p(rt |x1:t). Due to the typical concentration of
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probability mass of the run length distribution at a dominant peak, the most
probable run length estimate r̂t can be approximated sensibly at the maximum a
posteriori (MAP) estimate of the run length distribution, i.e.,

r̂t = arg max
rt

p
(
rt |x1:t

)
(3.3)

According to [5], changepoints can be assigned at r̂t = 0. However, for machine
tool data with potentially smooth transitions between signal segments, change-
points at these segment borders do not necessarily lead to r̂t = 0, but to a major
drop in this most probable run length estimate r̂t . Drops in r̂t (i.e., where r̂t does
not increase by one) can then be interpreted as changepoints with a non-zero
changepoint probability

p
(
ct |x1:t

)
, p

(
r̂t |x1:t

)∣∣∣∣∣ ∂r̂t
∂t ,1

(3.4)

where ∂
∂t denotes a derivative with respect to t. Changepoints ct occur not neces-

sarily due to recurrent changes of process steps, but can also be due to signal fluc-
tuations or anomalies. This motivates the necessity to separate recurrent change-
points from the set of all changepoints. In order to achieve this separation, the
following approach on estimating a distribution over recurrence of changepoint
locations is proposed:

Changepoint probability vectors p(c(n)
t |x1:t) as shown in Fig. 3.2 (third sub-

plot) of N training signals are summed up across time steps t = 1 . . . T . For each

training signal n = 1 . . . N , the cumulative probability mass
∑N
n=1 p(c(n)

t |x1:t) in-

creases at locations t of changepoints c(n)
t (i.e., locations t with non-zero probabil-

ities p(c(n)
t |x1:t)) while staying the same at other time steps t where p(c(n)

t |x1:t) = 0.
Finally, dividing by N yields a distribution of empirically expected changepoint
probabilities for each possible location t. The resulting distribution is depicted in
the bottom subplot of Fig. 3.2 and henceforth referred to as changepoint recurrence
distribution (CPRD):

p
(
c

(1:N )
t |c(n)

t

)
,

∑N
n=1 p

(
c

(n)
t |x1:t

)
N

(3.5)

Recurrence of changepoints c(n)
t at locations t across signals n = 1 . . . N is denoted

by the term c
(1:N )
t . The distribution p(c(1:N )

t |c(n)
t ) thus gives an empirical estimate

how likely changepoints c(n)
t at locations t were present in all former N signals.

The CPRD allows incorporating further prior information. For instance, if
time instants of processing step changes are available from the machine’s control
program, this deterministic prior knowledge can be utilized to complement the
empirical information of observed changepoints. The information about change-
point recurrence incorporated in the CPRD can be utilized for a changepoint
estimation more tailor-made to the given MHM data in two ways:
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Figure 3.2: CPRD estimation. Top: Exemplary envelope signal. Second:
Pruned BOCPD solution. Run length log probabilities log(p(rt |x1:t)) depicted
in gray, MAP estimates r̂t as bold blue line. Third: Single changepoint prob-

ability vector p(c(n)
t |x1:t) for signal from top. Bottom: Final CPRD estimate

after accumulation and normalization of N training changepoint probability
vectors.

CPRD as Informative Hazard Function The CPRD can be used to replace the
uninformative hazard function H(τ) = 1/λ introduced in [5]. This allows incor-
porating empirical information about the recurrence of observed changepoints
directly into the changepoint prior p(rt |rt−1) and thus more robust estimations of
recurrent signal segments in future signals by suppressing non-recurrent change-
points.

CPRD for Classification of BOCPD Changepoints An alternative approach is
estimating all changepoints via BOCPD and using the CPRD to separate recur-
rent from non-recurrent changepoints in a subsequent step: By multiplying ini-

tial BOCPD changepoint estimates p(c(n)
t |x1:t) with empirical CPRD probabilities

p(c(1:N )
t |c(n)

t ), a classification of changepoint estimates regarding their probability
of being recurrent is obtained. This can be interpreted as applying Bayes’ theo-
rem:
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p
(
c

(n)
t |c

(1:N )
t , x1:t

)
=
p
(
c

(1:N )
t |c(n)

t

)
p
(
c

(n)
t |x1:t

)
p
(
c

(1:N )
t

) (3.6)

The CPRD p(c(1:N )
t |c(n)

t ) acts as an estimate of the likelihood of changepoint re-

currence. Initial BOCPD changepoint probabilities p(c(n)
t |x1:t) are interpreted as

prior estimates of recurrent changepoints for signal n. As the goal of the pre-

sented approach is finding non-zero probabilities p(c(n)
t |c

(1:N )
t , x1:t), normaliza-

tion to p(c(1:N )
t ) does not have to be considered:

p
(
c

(n)
t |c

(1:N )
t , x1:t

)
∝ p

(
c

(1:N )
t |c(n)

t

)
p
(
c

(n)
t |x1:t

)
(3.7)

Then, non-zero probabilities p(c(n)
t |c

(1:N )
t , x1:t) can be used to indicate recurrent

changepoints. Non-recurrent changepoints are then found as symmetric set dif-

ference between BOCPD changepoints p(c(n)
t |x1:t) and recurrent changepoints.

For stationary behavior of normal changepoints, estimating the CPRD with a
large number of normal training signals results in a smooth distribution. For a
smaller number of training signals, postprocessing of the CPRD by fitting a ker-
nel density estimator or GMM can similarly increase smoothness of the CPRD
and thus yields more robust changepoint classification results. In the following
sections, smoothing is performed by fitting a GMM, as this yields meaningful
features (distance of changepoints to cluster centers, cluster membership proba-
bilities, etc.) for a changepoint-related anomaly detection.

3.3 Experiments on Signal Segmentation

Disclaimer: Parts of this section were taken verbatim from own previous publications
([200] ©2018 IEEE, [202, 203] ©2019 IEEE).

This section first illustrates why cluster-based approaches are limited regard-
ing their applicability to the given machine tool sensor data. Afterwards, cost
and quality of signal segmentation via HMMs, the proposed GMM+FSM combi-
nation and BOCPD are compared. Finally, the benefit of signal segmentation via
the CPRD extension of BOCPD is outlined for the predictive tasks of TCM and
detection of sudden, process-related anomalies.

3.3.1 Data for Signal Segmentation

Signal segmentation results in this section are illustrated for five different data
sets. Data sets DS_GM1, DS_GM2, DS_GM3 and DS_GM4 were recorded at a
grinding machine, DS_TM data at a turning machine. All data sets were recorded
with a vibration sensor attached to workpiece rest (DS_GM1,. . . ,DS_GM4) or
turning tool holder (DS_TM), respectively. Exemplary raw data records are de-
picted in Fig. 3.3. Most important characteristics of all data sets are summarized
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Figure 3.3: Exemplary raw data records for various grinding machine data
sets (DS_GM1 to DS_GM4) and a turning machine data set (DS_TM)

in Table 3.1. Here, each data set consists of multiple data records. Each data
record represents a sensor signal recorded during the machining of a single work-
piece.

Data sets DS_GM1 and DS_GM2 consist of data recorded both for normal
machining behavior as well as abnormal machining behavior. DS_GM1 data
were recorded for the machining of a geometrically complex workpiece type. It
consists of 312 normal sensor data records (recorded for a grinding wheel with
normal behavior) and 118 data records for different degrees of severity of grind-
ing wheel imbalance. DS_GM2 data are related to a less complex workpiece
than DS_GM1. The DS_GM2 data set comprises 350 normal data records and
149 data records with machine part collisions. The collisions result in a single
impulse-like artifact and thus one additional abnormal changepoint for abnor-
mal DS_GM2 data records. DS_GM3 and DS_GM4 consist of only normal behav-
ior data records. DS_GM3 data were included due to their small signal ampli-
tudes, which are assumed challenging for signal segmentation methods due to
the decreased signal-to-noise ratio (SNR) caused by coarse quantization.

DS_TM turning data illustrate the different segment structure for turning
data compared to grinding data: Machining of workpieces with grinding ma-
chines is performed by a grinding wheel in a single stroke with different process-
ing steps (roughing, finishing, etc.) and a workpiece kept still. Workpiece ma-
chining with turning machines is performed by rotating the workpiece (clamped
between spindle chuck and tailstock) and gradually positioning the turning tool
at the necessary positions relative to the workpiece during successive turning



58 3 Signal Segmentation

Table 3.1: Data sets and characteristics

Data set Source Data records Normal Abnormal

DS_GM1 Grinding machine 430 312 118
DS_GM2 Grinding machine 499 350 149
DS_GM3 Grinding machine 97 97 -
DS_GM4 Grinding machine 1921 1921 -
DS_TM Turning machine 66 66 -

strokes. The successive turning strokes can be identified easily in the depicted
DS_TM signal and result in a highly different segment structure than that for
grinding machine data sets.

3.3.2 Signal Segmentation by Clustering-based Methods

Features for Signal Segmentation

Clustering-based signal segmentation methods (GMM, HMM) rely on finding a
sensible set of features where clusters of observations can be detected well. For
the experiments in this thesis, power-related features proved to represent the
information related to segment changes best. Suitable features are for example:

• Variance σ2 = 1
M−1

∑
i(xi − x̄)2

• Average rectified values µabs = 1
M

∑
i |xi |

• RMS RMS =
√

1
M

∑
i x

2
i

• Frequency domain (FD) power PFD = 1
F

∑
j |Uj |2

Here, xi specifies the i-th raw signal sample and |Uj | the j-th of F = M
2 spectral

magnitudes. x̄ = 1
M

∑
i xi is the average of samples xi . Each time domain feature

is extracted for M raw signal samples xi . A fixed block length of M = 1024 raw
signal samples proved to be suitable in the experiments. In the following section,
the features µabs and PFD are used for clustering-based signal segmentation. The
features scores are normalized (z-scores).

GMM Model Selection

Apart from selecting a suitable set of features, the second challenge in clustering-
based signal segmentation is selection of the optimal clustering model. In Fig. 3.4,
exemplary GMM model selection results are depicted for the two features µabs
and PFD extracted from DS_GM3 signals. GMMs are trained for a number of
cluster components K = 1 . . . 10. AIC and BIC estimates are shown in the left
part of Fig. 3.4. Assigning the optimal number of clusters in the knee point [287]
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Figure 3.4: GMM model selection results. Left: Best fit for AIC and BIC is
found for three clusters (black circles). Middle: Scores for features µabs and
PFD . Equiprobability estimates for mixture component membership found
with the best-fit GMM are plotted as contour lines. Right: Segment borders
assigned for an exemplary signal (top: raw signal, bottom: spectrogram).

of AIC and BIC plots results in an estimate of the best-fit model for three clus-
ters. Segment borders assigned with this best-fit GMM match the differences in
time domain (TD) envelope amplitude and FD energy distribution depicted in
the right subfigure of Fig. 3.4.

Drawbacks of Clustering-Based Signal Segmentation

Two main drawbacks were identified for clustering-based signal segmentation
methods: The interdependency of suitable (power-related) features for signal seg-
mentation and the dependency of these features on tool condition.

Both effects become apparent in Fig. 3.5. Here, two features µabs and PFD ex-
tracted from successive blocks of two exemplary data records are depicted. The
left subfigure shows feature scores for a data record related to a sharp grind-
ing wheel and the right subfigure for a data record related to a dull grinding
wheel. Feature scores in both subfigures are depicted for DS_GM1 data, as both
drawbacks are most clearly identifiable in these data. For other data sets (e.g.,
DS_GM3 in Fig. 3.4), the effects are visually less obvious but effect the same prob-
lems as described in the following.

For both subfigures, feature scores cluster along a nonlinear function. The rea-
son is the nonlinear dependency of both features µabs and PFD . This dependency
between the features leads to clusters collapsing along the nonlinear dependency
function, which is disadvantageous for cluster identification by GMMs. Although
decorrelation of features or relying on a single feature for cluster identification
can mitigate this effect, the problem remains that no further relevant information
is added by either of these adaptations.

A second major drawback of clustering-based signal segmentation is given
by the drifting of scores for features extracted from successive data records. The
drift of feature scores is due to worse tool condition: For dull grinding wheels, the
signal power increases in certain frequency bands. This is outlined more detailed
in later subsections. Thus, feature scores of successive data records continuously
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Figure 3.5: Scores of features µabs and PFD extracted from two DS_GM1
records related to a sharp grinding wheel (left) and a dull grinding wheel
(right)

drift along the nonlinear dependency function between sharp and dull grinding
wheels. Accordingly, the GMM clusters statically learned for the feature scores
in Fig. 3.5a do not match the distribution of feature scores for a decreased tool
condition in Fig. 3.5b anymore.

These effects of collapsing feature spaces as well as dependency of feature
scores both on tool condition and signal segments illustrate why clustering meth-
ods relying on feature scores are not the optimal choice for signal segmentation.
Although HMMs seem to be able to cope with both effects, resulting in a decent
segmentation of signals, Bayesian changepoint detectors like BOCPD are a better
match for the given sensor data. This is outlined in the following section.

3.3.3 Quality and Cost of Signal Segmentation

In this subsection, both quality and cost of signal segmentation via clustering-
based approaches (GMM+FSM, HMM) and BOCPD are compared. The combina-
tion of GMM with FSM (GMM+FSM) is trained as described in Algorithm 1, the
HMM model is selected via STACS as outlined in Section 2.2. Only the normal
data subsets of data sets mentioned in Table 3.1 are considered for these compar-
isons. For a high-performant signal segmentation algorithm, segment borders
are then assumed to be caused by processing step changes and thus expected to
occur at similar block indices instances across all measurements. Non-recurrent
segment borders are considered spurious. Additional recurrent segment borders
(as observable for the BOCPD segment border estimates) are not considered spu-
rious: The detailedness of signal segmentation (i.e., number of detected recur-
rent segments) is influenced by the choice of hyperparameters for the different
segmentation approaches. Thus, detailedness of signal segmentation is not con-
sidered a quality measure but only recurrence of signal segments.

Fig. 3.6 illustrates a comparison of the quality of segmentation approaches
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Figure 3.6: Signal segment borders assigned by different algorithms for nor-
mal data of DS_GM1 (top row) and DS_GM2 (bottom row)

(GMM+FSM, HMM and BOCPD). Segment border estimates are illustrated as
black dots for all successive data records. Here, segment borders for BOCPD are
assigned at changepoint estimates.

Across all data sets, BOCPD and HMM result in a more reliable segment bor-
der estimation than the GMM+FSM combination, i.e., segment border estimates
occur at highly similar block indices in successive data records. In addition, the
BOCPD approach can be elegantly extended to a computationally efficient dis-
crimination of changepoints into recurrent (i.e., related to normal recurrent be-
havior of the repetitive processing step sequence) and non-recurrent (i.e., due to
signal fluctuations or abnormal machining behavior) as will be discussed in the
following section. This extension is not possible with the HMM-based approach
as the HMM model does not adapt to alterations in the segment structure in a
similarly implicit manner as the BOCPD model does: Abnormal changepoints
would result in a decrease in predictive performance of signal segmentation, as
the HMM model does not match the data and segment structure anymore. Thus,
the main advantage of BOCPD is the fact that it comes without the necessity to
explicitly relearn the segmentation model when the segment structure of the data
changes (as opposed to clustering-based approaches).

Fig. 3.7 illustrates measurements of average computation time of the com-
pared algorithms for segmentation of a single data record. The reported times
are prediction times only, i.e., for already trained models. Time measurements
were performed on an Intel Core i7-6700 with 3.4 GHz without any optimization
of MATLAB code or parallelization. HMMs shows a slight computational advan-
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Figure 3.7: Costs of signal segmentation by clustering-based and Bayesian
changepoint detection methods. Time measurements performed in [172].

tage compared to BOCPD. The GMM and FSM combination proposed in Subsec-
tion 3.2.1 illustrates a much smaller computational expense both than HMM and
BOCPD but worse signal segmentation quality across all data sets (cf. Fig. 3.6).

3.3.4 Signal Segmentation by Bayesian Online Changepoint
Detection and Extensions

In this subsection, the superiority of BOCPD to clustering-based signal segmen-
tation is demonstrated in detail. The advantage is due to a combination of two
phenomena:

1. BOCPD comes without the necessity of explicitly selecting an optimal model
or to adapt the model to alterations in the segment structure like GMM-
and HMM-based segmentation approaches. Thus, BOCPD yields reliable
segmentation results even when the segment structure of the data changes.
When aiming for a detection of similar and comparable segments even af-
ter alterations in the segment structure (due to additional, spurious change-
points), the CPRD extension to BOCPD introduced in Subsection 3.2.2 can
be used. CPRD allows defining a more informative hazard function than
the standard BOCPD hazard function in [5]. The resulting segmentation is
more robust than using standard BOCPD and yields comparable segments.
The benefit of comparable segments is outlined for the exemplary task of
TCM in subsequent sections.

2. Thus, using the CPRD extension for defining an informative hazard func-
tion suppresses spurious changepoints. However, alterations in the signal
segment structure causing these spurious changepoints are often a marker
for abnormal machine behavior. Detecting these spurious changepoints
thus allows for a computationally efficient detection of anomalies. Such
a detection of spurious changepoints can be obtained based on the infor-
mation of recurrent changepoint patterns represented by the CPRD. With
an additional changepoint classification step after detecting changepoints
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with standard BOCPD this CPRD information can be utilized in order to dis-
tinguish abnormal from normal changepoints. Exemplary features based
on this ability to distinguish between normal and abnormal changepoints
are presented, allowing for a low-cost but effective anomaly detection.

Fig. 3.8 illustrates these two approaches on utilizing the CPRD information:
Figures 3.8a and 3.8b present CPRDs (black lines) estimated for DS_GM1 and
DS_GM2. These CPRD estimates can be used as an informative hazard func-
tion in the BOCPD changepoint estimator as depicted in Figures 3.8c and 3.8d.
Alternatively, the CPRDs can be utilized as a probability distribution to judge
changepoints estimated via standard BOCPD regarding their probability of be-
ing recurrent. This is illustrated in Figures 3.8e and 3.8f.

Fitting GMMs (red line) to CPRD estimates (black line) in Figures 3.8a and 3.8b
results in a smoother probability distribution for the limited number of train-
ing examples as discussed in Subsection 3.2.2. Thus, for the experiments in the
following sections, this GMM fit is used instead of the original CPRD estimate.
Figures 3.8a and 3.8b visualizing the CPRD estimates are truncated in vertical
direction for better visibility of the GMM fits.

CPRD as Informative Hazard Function

Results of utilizing these GMM fits as an informative hazard function in the
BOCPD changepoint estimator are depicted in Fig. 3.8c. The top figure in Fig. 3.8c
depicts an exemplary, abnormal DS_GM1 signal. The abnormal changepoint
at block index 355 which is assigned when using the uninformative, standard
BOCPD hazard function (middle figure of Fig. 3.8c) is suppressed by the informa-
tive hazard function (i.e., GMM fitted to CPRD) in the bottom figure of Fig. 3.8c.
A similar behavior is illustrated in Fig. 3.8d for the abnormal changepoint at
index 55 of an abnormal DS_GM2 signal. This confirms the validity of an infor-
mative CPRD hazard function for robust signal segmentation purposes (i.e., sup-
pressing abnormal changepoints). Using the CPRD as more informative hazard
function allows for a segmentation of signals only relying on recurrent change-
points, but does not allow the use as computationally efficient detector of sudden,
process-related anomalies as discussed in the following section. Furthermore, the
CPRD changepoint classification approach in the following section yields more
robust estimates of recurrent changepoints. The reason for this is that, similar
to the uninformative hazard function proposed in [5], likelihood and frequency
of changepoints predicted with the CPRD hazard function depend on the ampli-
tudes of the CPRD. Thus, a suitable factor for scaling CPRD amplitudes similar
to the constant timescale parameter λ for the hazard function in [5] has to be
found, either empirically or by hyperparameter optimization like in [209, 269].

CPRD for Classification of BOCPD Changepoints

As an alternative to suppressing non-recurrent changepoints leveraging an infor-
mative hazard function as proposed in the previous section, recurrent change-
points can be separated from changepoints found via standard BOCPD. Results
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Figure 3.8: (a), (b): CPRDs and GMM fits for data sets DS_GM1 and
DS_GM2. (c), (d): Recurrent changepoint estimation with different hazard
functions. Top: Abnormal envelope signal. Middle/bottom: Run length log
probabilities (gray) and MAP estimates r̂t (blue line) for standard BOCPD
and GMM hazard functions. (e), (f): Classification of recurrent (black dots)
and non-recurrent (red dots) changepoints. The blue shading illustrates the
records used for estimating the CPRDs in the left column, the red shading
marks data records consisting of abnormal signals.
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of classifying BOCPD changepoints with the GMM fitted to the DS_GM1 CPRD
are depicted in Fig. 3.8e. Normal data consist of records nr. 1 to 91. Records nr.
1 to 60 (blue overlay) are used for estimation of the CPRD (Fig. 3.8a, black line).
Recurrent changepoints likely under the GMM fitted to the CPRD are depicted as
black dots. They allow dividing records into recurrent segments more robustly
than via initial BOCPD changepoints (both black and red dots) similar to the
approach in the previous section. For imbalanced grinding wheel anomalies (red
overlay), additional non-recurrent changepoints occur between block indices 300
to 400 or block indices 970 to 1040.

For DS_GM2, abnormal machining (records nr. 201 to 350, red overlay) fre-
quently effects machine part collisions, resulting in additional changepoints close
to index 55 (red dots) (Fig. 3.8f).

These alterations in the changepoint pattern of DS_GM1 and DS_GM2, which
were not detectable by the CPRD hazard approach in the previous section, sup-
port the benefit of being able to distinguish between recurrent and non-recurrent
changepoints for a detection of sudden anomalies. At the end of this chapter, fea-
tures including this knowledge of non-recurrent changepoints are proposed for
the sake of detection of sudden anomalies.

3.3.5 Selected Predictive Tasks

As stated in the beginning of this chapter, signal segmentation is beneficial in
MHM systems for the detection of both drifting as well as sudden anomalies. This
is outlined in the following sections for the exemplary tasks of continuous TCM
as well as detection of abnormal machine part contacts and signal form deterio-
ration due to grinding wheel imbalances (sudden anomalies). For all predictive
tasks illustrated in this subsection, data recorded at the workpiece support of
grinding machines are used.

Tool Condition Monitoring

To maximize efficiency in machining sequences of modern workshops, processing
time has to be minimized under the constraint of a specified minimum workpiece
quality. The most important influencing factor for workpiece quality is the condi-
tion of the cutting tool, gradually getting dull by processing of workpieces. Thus,
the cutting tool has to be resharpened (dressed). Being able to assess the necessity
of dressing is thus beneficial for the sake of optimizing processing efficiency.

At present, tool condition is typically monitored via manual inspection by
the machine operator. This is suboptimal, as manual inspection takes valuable
time in which additional workpieces could be processed otherwise. In addition,
manual inspection can be quite subjective and is thus error-prone. Automatic
monitoring of process quality leads to a more stable quality of workpieces while
freeing the operator from manual quality inspections.

As discussed throughout this chapter, machine tool data is characterized by
its recurrent structure. Identifying these recurrent segments allows to extract
features in parts of signals where they are related to each other. In addition
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Algorithm 2: Learning of Discriminative Frequency Bands
Input: Multiple segmented data records segdull , segsharp
Output: Selected frequency bands FBsel

1: Y ← Init(0) . Initialize half spectrum Y
2: for each pair (segi,dull , segi,sharp) do
3: Xi,dull =

∣∣∣Fft(segi,dull)∣∣∣
4: Xi,sharp =

∣∣∣Fft(segi,sharp)
∣∣∣

5: ∆Xi = Xi,dull(1 : M/2) − Xi,sharp(1 : M/2) . Addition assignment
6: Y += ∆Xi � ∆Xi . Hadamard product
7: end for
8: Ȳ = 1

M/2
∑M/2
j=1 Yj . Average of half spectrum Y

9: ∆Y ← Select(Y > Ȳ )
10: FBsel ← ContigRegions(∆Y) . Select contiguous regions of ∆Y
11: return FBsel

to finding comparable signal segments, automatically detecting most discrimi-
native frequency bands between sharp and dull grinding wheels proved benefi-
cial. So computing features in recurrent signal segments and in most discrimina-
tive frequency bands yields a tailor-made health indicator for tool condition. It
can be calculated computationally efficient, nevertheless it describes the contin-
uous degradation in tool condition well. Learning of frequency bands involves
a unique additional computational burden but reduces running computational
cost, as the health indicator is given by a feature of simple computational com-
plexity and the monotonic trend of the health indicator allows to assess the grind-
ing wheel condition via simple threshold-based classification.

Learning of discriminative frequency bands For signal segmentation, the CPRD
extension of the BOCPD algorithm is used, which allows detecting recurrent seg-
ments segi across successive data records reci . The algorithm proposed for learn-
ing of discriminative frequency bands is summarized in Algorithm 2. The algo-
rithm aims at identifying discriminative differences in distribution of spectral
power for segments segi,dull and segi,sharp of data records reci related to dull and
sharp grinding wheels. These discriminative differences can be found by comput-
ing the element-wise distance ∆Xi of FFT magnitude spectra Xi,dull and Xi,sharp
for these segments segi,dull and segi,sharp. After element-wise squaring, discrim-
inative spectra ∆Xi for multiple pairs (segi,dull , segi,sharp) are accumulated. This
is in order to compute a more robust estimate Y of discriminative differences in
spectral power which generalizes across multiple pairs (segi,dull , segi,sharp). Most
discriminative frequency bands FBsel are then selected in contiguous regions
above the average Ȳ of the half spectrum Y. Contiguous regions are selected
with a minimum length of 1 % of the width of half spectrum Y (312.5 Hz), in
order to avoid creating a meaningless multitude of scattered, narrow discrimina-
tive frequency bands FBsel . The resulting FBsel can afterwards be used to filter
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Figure 3.9: Element-wise distance curve (solid black line) and selected fre-
quency band (green patch) for DS_GM4. The frequency band is found rela-
tive to the half spectrum’s average (dotted red line).

the data records regarding most discriminative information for TCM.
Labels for sharp and dull grinding wheels are allocated via a sensor node

attached to the dressing motor: For data recorded directly before dressing, the
grinding wheel is assumed to be dull, while for data recorded directly after dress-
ing, the grinding wheel is assumed to be sharp.

Resulting selected frequency bands FBsel are illustrated in Fig. 3.9 exemplary
for DS_GM4. For these data, only a single frequency band FBsel is found, which
is marked with a green patch. As outlined above, this frequency band FBsel was
found in contiguous regions of the normalized half spectrum Y (solid black line)
exceeding the average of the half spectrum (dotted red line).

Online Processing: Extraction of TCM health indicator After segmentation of
signals and determination of frequency bands FBsel , the feature µabs = 1

L

∑
i |xi |

measuring the intensity of the signal samples in these comparable, recurrent sig-
nal segments and the most discriminative frequency bands FBsel are extracted.
For all data sets, the feature µabs is extracted across blocks of fixed length L at
the beginning of the second of the found signal segments. The first segment in
each signal involves the grinding wheel approaching the workpiece, where no
contact between workpiece and grinding wheel exists (air grinding). The second
segment is the one where most of the material removal takes place (roughing) and
which evolved empirically as the segment where dulling of grinding wheels can
be observed best.

The benefit of extracting the health indicator feature µabs only in compara-
ble signal segments and most discriminative frequency bands FBsel is visual-
ized qualitatively in Fig. 3.10 (right subfigure): A monotonic feature score trend
among examples of classes dull (red dots) and sharp (blue dots) evolves which re-
sembles the continuous dulling of the grinding wheel. Also, labeled data points
(red and blue dots) are separated more clearly compared to extracting µabs for the
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Figure 3.10: Benefit of signal segmentation and learning of discriminative
frequency bands for DS_GM4 data. Left: Normalized scores of feature µabs
(gray) for complete data records and total frequency range. Dressing times
are plotted as vertical dashed lines, feature scores for dull and sharp grind-
ing wheels in red and blue, respectively. Right: µabs extracted in comparable,
recurrent signal segments and discriminative frequency bands.

complete spectral range and across records comprising all segments (left subfig-
ure). Both effects in combination allow to define a simple threshold classifier in
order to assess the point in time when dressing has to be applied. The threshold
value can be chosen by the machine operator to steer the trade-off between opti-
mal workpiece quality (early dressing) and long life time of the grinding wheel
(late dressing), which in turn results in reducing the grinding cost per workpiece.
The differences in terms of feature scores when dressing was applied (vertical
dashed lines after red points) illustrate the non-optimality of choosing the point
in time of dressing by visual inspection even for experienced machine opera-
tors: If dressing would have been applied always for the same tool condition,
one would assume to observe highly similar features scores for the red points.

A quantitative evaluation of the benefit of preprocessing (i.e., signal segmen-
tation and learning of frequency bands) is summarized in Table 3.2 for data sets
DS_GM1, DS_GM3, DS_GM4 and DS_TM. DS_GM2 was omitted in the quantita-
tive evaluation, as dressing was only applied two times in the complete data set
and between both of these dressing events, multiple process adaptations were ap-
plied in order to make the machining process stable. This led to frequency band
changes in between dressing events not related to dulling of the grinding wheel,
which in turn led to inconsistencies in the feature score trends that are aimed to
reveal and measure here.

Three performance measures are listed. Monotonicity of the feature score
trend can be measured with the root mean squared error (RMSE) between fea-
ture scores and the fit of a trend function to these data. As evaluations revealed
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Table 3.2: Performance measures for TCM health indicator: Root mean
squared error (RMSE), Cumulative squared distances (CSD), Trendability
(Tre2)

No preprocessing With preprocessing

Data set RMSE CSD Tre2 RMSE CSD Tre2

DS_GM1 1.842e-2 1.041e-2 0.9807 1.757e-2 5.578e-4 0.9176
DS_GM3 0.3004 5.263e-3 0.4253 0.1201 3.236e-4 0.8429
DS_GM4 0.1635 2.727e-3 0.6476 0.1537 4.710e-5 0.6752
DS_TM 0.9449 0.0520 7.016e-2 0.7652 0.0165 0.3449

a restricted exponential growth of feature score trends (saturation effects due
to restricted dulling of grinding wheel), feature scores are fit to the function
y = a − bc−dn+e with n being the data record indices.

In addition, monotonicity can be measured by the cumulative squared dis-
tance (CSD) of feature scores: The squared differences between successive fea-
tures scores are accumulated throughout a dressing cycle (i.e., between two dress-
ing events). This favors on average small distances between adjacent feature
scores and thus monotonic feature trends with a minimum amount of feature
score outliers.

Finally, a trendability measure of feature scores is reported. This measure
Tre2 ∈ [0, 1] is computed from the Spearman coefficient between the index of
data records and related feature scores. The Spearman coefficient is a nonlinear
correlation measure which identifies the long-term dependency of the feature
scores and the time of their extraction, thus judging the sensibility of the feature
scores regarding their capability to identify long-term trends. The Tre2 measure
is frequently applied in the TCM community [138].

In Table 3.2, smaller scores for measures RMSE and CSD and larger scores for
measure Tre2 represent enhanced monotonicity and trendability. Except Tre2 for
DS_GM1, extracting the feature µabs only in recurrent segments and frequency
bands FBsel (i.e., preprocessing) consistently results in better monotonicity and
trendability of the computed tool condition health indicator. These quantitative
results confirm the qualitative results depicted in Fig. 3.10.

Detection of Sudden Process Anomalies

Additional to benefiting the robustness of identifying recurrent segments for ex-
traction of a TCM health indicator, changepoint recurrence estimation allows for
an unsupervised detection of sudden process-related anomalies. This is outlined
in the following section for two exemplary tasks: Detection of workpiece sur-
face deteriorations (here due to imbalances in the grinding wheel, DS_GM1) and
detection of abnormal machine part contacts (DS_GM2). For this, exemplary fea-
tures are presented. These features build on the results for CPRD estimation and
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Table 3.3: F1 scores for changepoint-related features (©2019 IEEE [202])

Data Feature N AN1 AN2 AN3 AN4 F1 score

Nnc 0 3 3 3 2 87.51 %
DS_GM1 Dc 13.12 29.41 30.04 33.38 36.86 97.14 %

Pca 42.23 99.99 99.99 99.99 100.0 94.29 %

All 99.05 %

Nnc 0 1 85.88 %
DS_GM2 Dc 3.78 30.63 84.80 %

Pca 1.76 99.63 83.93 %

All 97.86 %

classification of BOCPD changepoints presented in Subsection 3.3.4.
The discrimination of BOCPD changepoints into recurrent and non-recurrent

obtained by the changepoint classification approach in Subsection 3.3.4 can be
used for an unsupervised detection of process-related anomalies. The following
exemplary features are considered to be useful for a changepoint-related anomaly
detection:

• Nnc: Number of non-recurrent changepoints in a signal.

• Dc: Average distance of BOCPD changepoints in a signal to closest cluster
centers of the GMM fitted to CPRD estimates.

• Pca: Maximum probability of all changepoints in a signal detected by BOCPD
to be abnormal. This probability is calculated as follows: For all BOCPD
changepoint locations tc in this signal under review, calculate the comple-
mentary probability under the GMM fitted to the CPRD and take the maxi-
mum of these probabilities: max(1 − pGMM (tc)).

The results of using these exemplary features for unsupervised anomaly de-
tection are summarized in Table 3.3. Feature scores (columns N–AN4) are stated
as medians of normal class (N) and abnormal (AN) classes. In DS_GM1, different
degrees of grinding wheel imbalances yield multiple AN classes. F1 scores for
anomaly detection with each feature are stated in the last column. F1 scores are
computed as harmonic mean of precision and recall. An anomaly is classified for
feature scores more than two normal class standard deviations distant from the
normal class median.

Scores for single features show clear differences between normal and abnor-
mal classes (columns N and AN) and result in a decent predictive quality as con-
firmed by the F1 scores. When the full feature set (i.e., a three-dimensional fea-
ture space) is considered, F1 scores improve to 99.05 % (DS_GM1) and 97.86 %
(DS_GM2).
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3.4 Conclusions

In this chapter, various methods for segmentation of sensor signals recorded from
assorted types of machine tools were compared. Signal segmentation proved use-
ful in order to find comparable segments in successive records for extraction of a
tool condition health indicator feature. In addition, changes in the signal statis-
tics can be used for a detection of sudden anomalies in the processing step se-
quence.

When comparing segmentation methods regarding quality and computational
cost, the following findings can be stated:

• The proposed combination of GMMs with L2R FSMs yielded fast but unre-
liable signal segmentation results. Firstly, segment border estimates even
during normal machining behavior frequently occurred at non-recurrent
locations in data records, and can thus be considered spurious segment bor-
der estimates not representing the wanted processing step changes. Sec-
ondly, the challenge of finding a suitable set of features further complicates
segmentation: Power-related features which proved most suited for segmen-
tation are also correlated to a decreasing tool condition. This leads to a drift
of test feature scores during each dressing cycle and consequently a progres-
sive mismatch between the learned GMM-FSM segmentation model and the
test data distribution.

• While HMM-based methods proved more robust to covariate drift than
GMMs and were even on par with Bayesian Online Changepoint Detection
(BOCPD) both regarding predictive quality and computation time, they can
not adapt to long-term changes in the signal segment structure. This is due
to the necessity to perform an explicit model selection step. Thus, when the
segment structure changes, e.g., due to adjustments in the processing step
sequence or changes of workpiece type, the trained HMM-based segmenta-
tion model does not fit the adapted signal statistics anymore.

• BOCPD on the other hand refrains from one-time learning a static segmen-
tation model and is thus robust both to changes in the signal segment struc-
ture and the inherent drifting character of the sensor data, e.g., due to de-
creasing condition of the grinding wheel. In addition, BOCPD comes with-
out the necessity to identify a suitable set of features.

Although BOCPD segmentation proved more robust to drifts and changes in the
signal segment structure than GMMs and HMMs, standard BOCPD does not al-
low to explicitly model the cyclostationary behavior of the data-generating pro-
cess and the resulting recurrent segment structure. When desiring to model this
cyclostationary behavior, the introduced CPRD extension can be utilized in ei-
ther of two ways: As an informative hazard function replacing the uniform haz-
ard function in the standard BOCPD changepoint detector, or in an additional
changepoint classification step after performing standard BOCPD changepoint
detection. The latter approach yields a separation of changepoints into two sub-
sets:
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• Recurrent changepoints caused by the repetitive processing step sequence
yield comparable signal segments for feature extraction. This proved useful
for designing a novel tool condition health indicator. Extracting this health
indicator only in recurrent signal segments and most relevant frequency
bands increased scores for common monotonicity measures and trendabil-
ity measures across evaluated data sets.

• Non-recurrent changepoints can indicate process-related anomalies, mani-
festing in a sudden alteration of the recurrent changepoint pattern. Design-
ing features based on non-recurrent changepoints allows for an unsuper-
vised detection of such anomalies. This was outlined for exemplary features
and two predictive tasks, where F1 scores of 99.05 % and 97.86 % confirmed
the sensibility of a changepoint-related detection of process anomalies.
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4
Modeling Non-Stationary Discrete

Frequency Components

In Chapter 3, methods for encoding domain expertise concerning recurrent pro-
cessing steps into the processing chain for designing tailor-made features were
proposed. This allowed constructing meaningful health indicators for tool con-
dition monitoring and for detection of sudden anomalies in the machining pro-
cess. Tool condition monitoring is considered among most influential factors for
quality of machined workpieces. Thus, the previous chapter focused mainly on
process monitoring. This chapter will instead focus on modeling and understand-
ing the spectro-temporal behavior of machine components in order to encode
domain expertise in the process of feature engineering: During the measurement
campaigns conducted for this thesis, different parts of machine tools were ob-
served to be related to discrete frequency components (DFCs). Tracking of these
non-stationary DFCs and subsequent assignment to machine parts allows for de-
signing simple features custom-made for condition monitoring of these specific
machine parts.

In order to identify the non-stationary behavior of DFCs during start-up of a
grinding machine, a two-step approach is used:

1. First, peaks are identified in each frame of the time frequency distribution
(TFD) computed for the sensor signals and the parameters amplitude and
frequency related to these peaks are estimated. This task will be denoted in
short as parameter estimation in this chapter.

2. Afterwards, the peaks are connected across successive frames in order to
recover DFC tracks.

Both steps of parameter estimation and DFC tracking are explained in detail
in Section 4.2. In Section 4.3, results on the quality of parameter estimation and
DFC tracking for noisy data and the use of both techniques for selected predictive
tasks are presented. As outcomes are known to be dependent on the amount of

73
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noise in signals, the robustness of DFC tracking to noise (cf. Subsection 4.3.1) and
its behavior for high noise levels are studied first. In order to be able to control
the noise level, these experiments are performed for artificial signals mimicking
the nature of the sensor data. In Subsection 4.3.2, results for parameter estima-
tion and DFC tracking using the actual recorded sensor data are presented. First,
parameter estimates and detected DFCs for these sensor data as well as their
relation to certain machine parts are presented. Afterwards, techniques are pro-
posed on leveraging the information about DFCs and their assignment to specific
machine parts for the sake of exemplary condition monitoring tasks (mainly de-
tection of imbalances in rotating machinery parts).

4.1 Motivation

Tracking of DFCs and assignment to related rotating machine components allows
for creation of simple but expressive features for condition monitoring of these
machine parts. This has been shown in previous studies for rotating parts like
motors [213] and ball bearings [81]. Exemplary rotating parts in the focus of this
thesis are grinding wheel, control wheel and dressing tool as well as the machined
workpiece itself. For rotating machine parts related to machining of workpieces
however, these discrete frequencies are typically concealed by the broadband and
high-level energy distribution due to the machining of workpieces. When no
workpieces are machined, the distribution of energy is more concentrated at the
DFCs of interest. Such a non-machining phase occurs during start-up of the indi-
vidual machine components, where the TF energy is clearly dominated by DFCs
related to the machine parts of interest.

During start-up, these DFCs behave non-stationary, as rotating machine parts
cannot directly be switched to full operational speed but are slowly accelerated
until reaching the final velocity. Being able to track the non-stationary behavior
of these DFCs and assigning them to related rotating parts is thus an important
precedent step to extracting condition monitoring features as described above.

A sequential start-up of the machine parts would highly benefit this approach,
as each DFC could be identified separately. Each DFC could then be assigned to
the related rotating machine part currently started. For a typical machine tool as
in focus of this chapter however, several rotating parts are started up in parallel,
which makes the assignment task more difficult. In addition, spurious DFCs can
further complicate the assignment of DFCs to rotating parts.

The individual identification of rotating parts despite of simultaneous start-
up can be addressed by additional constraints on feasible velocities of rotating
machine parts: Often, maximum permissible operational speeds are specified
in the machine manual and can be used to upper-bound the search space for
assignment of DFCs to potentially matching machine parts.

The challenge of spurious DFCs can be addressed by the capability of be-
ing able to track the non-stationary behavior of DFCs before becoming constant:
Components being constant during the complete machine start-up are not related
to rotating machine parts of interest and can thus be excluded from the assign-
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Table 4.1: Sequence of machine parts being switched on during start-up

Index Start-up step Index Start-up step

1 Return pump for 8 Home drive
cooling lubricant 9 Loading drive

2 Elec. main switch 10 Gr. wheel (no-load) 0→ 900 rpm
3 Pneumatics 1 11 Gr. wheel (no-load) 900→ 3000 rpm
4 Pneumatics 2 12 Warm-up drives
5 Feed pump for 13 Handler and gripper start-up

cooling lubricant 14 Handler slide-in linear
6 Display on 15 Handler feed air
7 Control voltage on

ment of DFCs to potential matching rotating machine parts.
An exemplary start-up process of a grinding machine illustrating non-station-

ary DFCs is depicted in Fig. 4.1. TFDs for acceleration sensors and two sensor
positions (workpiece support, grinding wheel housing) are illustrated. The TFDs
in this chapter are spectrograms illustrated logarithmically in decibels. Num-
bers printed in the figure state the sequence of machine parts being switched on.
The related machine parts and start-up steps are listed in Table 4.1. First, sev-
eral components not related to rotating processes are started up (start-up steps
1 to 7), e.g., return pump and feed pump for cooling lubricants, electrical com-
ponents and pneumatic components. During the home drive (start-up step 8),
the compound slides carrying rotating machine parts are moved to the mechan-
ical null point of the machine. Afterwards, the compound slides are driven in a
manner simulating the default loading of workpieces for machining and back to
the null point (start-up step 9). Then, the grinding wheel is accelerated to oper-
ational speed in two steps (start-up steps 10 and 11). No workpiece is loaded or
machined during start-up of the grinding wheel, thus DFCs related to the work-
piece cannot be tracked during start-up of the machine. The same is true for
the dressing tool, which is started only during dressing cycles. After start-up of
the grinding wheel, so-called warm-up drives are performed (start-up step 12),
which simulate the movements of compound slides during standard machining
behavior, but without grinding of workpieces. Finally, additional pneumatically
operated parts related to the handlers and grippers are started up in steps 13 to
15. Handlers and grippers automatically position workpieces in the grinding gap
for machining.

The positions and orientations of sensors used in this chapter are depicted in
Fig. 4.2. Throughout this chapter, signals are evaluated for acceleration sensors
only, which come with a better sensitivity than vibration sensors (cf. Table 1.1).
In addition, all DFCs related to machine parts of interest are located in the accel-
eration sensors’ bandwidth (1 kHz).

In general, detecting non-stationary DFCs and assigning them to machine
parts is beneficial for two reasons:
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(a) Acc. sensor, axis 1, gr. wheel housing
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(b) Acc. sensor, axis 1, workpiece support
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(c) Acc. sensor, axis 2, gr. wheel housing
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(d) Acc. sensor, axis 2, workpiece support
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(e) Acc. sensor, axis 3, gr. wheel housing
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(f) Acc. sensor, axis 3, workpiece support

Figure 4.1: TFDs illustrating DFCs related to different machine parts during
start-up of a grinding machine. Columns specify the sensor position (left:
grinding wheel housing, right: workpiece support), rows the axes of acceler-
ation sensors.
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(a) Acceleration sensor,
grinding wheel housing

(b) Acceleration sensor,
workpiece support

(c) Acceleration sensor,
dressing wheel motor

Figure 4.2: Positions and orientations of acceleration sensors used in this
chapter

• A semantic segmentation of the spectrograms depicted in Fig. 4.1 allows
for an understandable visualization of the current machine state to ma-
chine operators: Tracked DFCs and related machine parts can be plotted
as overlay on computed TFDs. This allows for a better understanding of
the current machine behavior and earlier detection of machine or process
anomalies.

• Tracking and assigning DFCs to specific rotating parts allows for a tailor-
made condition monitoring of these machine parts. Here, machine parts
condition monitoring is outlined for the specific tasks of imbalance detec-
tion in rotating machine parts like grinding wheels and dressing wheels.
The methods discussed for imbalance detection are extendable to other ro-
tating machinery like control wheels, when additional sensors are used (e.g.,
attached to the control wheel housing). In addition, the presented methods
are expandable to process monitoring tasks. For example, tracking and
assigning DFCs related to the rotational speed of the workpiece and its har-
monics allow for the detection of workpieces with and insufficient round-
ness.

In the following section, estimation of parameters amplitude and frequency
as well as tracking methods being the fundamental building blocks for approach-
ing the two tasks in the previous list are presented.

4.2 Methods

As briefly discussed above, semantic segmentation of spectrograms computed
during start-up of machine parts can be tackled by a multiple step approach.
First, TFD peaks and their related parameters (amplitude and frequency) are
estimated via non-stationary line spectrum estimation methods for each TFD
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Figure 4.3: Illustration of finding features for condition monitoring of spe-
cific machine parts employed in this chapter

frame. Then, these successive peaks are connected across TFD frames by fre-
quency tracking approaches in order to recover DFCs tracks. Afterwards, addi-
tional constraints regarding upper bounds of feasible rotational speeds for ma-
chine components are used in order to assign tracked DFCs to specific machine
parts. This assignment step is best performed during start-up, due to the concen-
tration of TF energy at the DFCs. Finally, assignment of DFC tracks to rotating
machine parts allows to judge the health state of these machine parts with simple
but effective features for the presented specific monitoring tasks. The approach
is summarized in Fig. 4.3.

In the following section, methods applied for parameter estimation and DFC
tracking in the upcoming experiments are outlined in detail. The derivation of
both methods is in large parts inspired from the publications in [36] (for sinu-
soidal parameter estimation) and [171] (for DFC tracking) and reproduced here
as a compressed version, for convenience of the reader. The derivations are out-
lined in time-continuous domains for reasons of generalizability and ease of ex-
planations.

4.2.1 Estimation of Signal Model Parameters

Assume modeling each k-th frame of sensor signal x(t) as a superposition of
Rk generalized sinusoids xj (t), each of them representing a non-stationary DFC.
Each generalized sinusoid xj (t) is represented by

xj (t) = exp

 Q∑
i=0

αijmi(t)

 (4.1)

with t being time, mi(t) being Q+1 basis functions and αij being complex weight-
ing parameters. Choosing monomials mi(t) = ti as basis functions allows approx-
imating arbitrary functions with a Taylor expansion.

The parameters αij of this model can be effectively estimated via the distri-
bution derivate method (DDM) [36]: As outlined in the following paragraphs,
DDM allows to formulate a linear equation system for estimation of the complex
parameters αij for elements i = 1, . . . , Q of the j-th generalized sinusoid.

For application of DDM, assume the component xj being analyzed by a linear
transform Tψ (e.g., discrete Fourier transform (DFT) or discrete wavelet trans-
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form (DWT)) with a set of basis functions ψ(t) : R → C and finite time domain
support Iψ (i.e., ψ(t) = 0 outside Iψ) [36]:

Tψ(xj ) = 〈xj , ψ〉 =

+∞∫
−∞

xj (t)ψ̄(t)dt =
∫
Iψ

xj (t)ψ̄(t)dt (4.2)

Here, ψ̄ denotes complex conjugates of basis functions ψ and 〈 · , · 〉 the inner
product operator. The basis functions ψ are assumed to be normalized (i.e.,
Tψ(ψ) = 〈ψ, ψ〉 = 1) and being part of the set of all continuously differentiable
functions C1 on the interval Iψ . Then, using integration-by-parts on the inner
product related to the linear transform in Eq. 4.2, one obtains[

xj (t)ψ̄(t)
]∞
−∞

= 〈x′j (t), ψ(t)〉 + 〈xj (t), ψ′(t)〉, (4.3)

where the apostrophe ( · )′ denotes differentiation. For finite time domain support
Iψ one has lim

t→±∞
ψ̄ = 0, thus the left-hand side equals zero and the distribution

derivate rule is obtained:

〈x′j (t), ψ(t)〉 = −〈xj (t), ψ′(t)〉 (4.4)

Substituting Eq. 4.1 into Eq. 4.2 and using mi(t) = ti , Eq. 4.4 is rewritten as

Q∑
i=1

αij

∫
Iψ

m′i(t)xj (t)ψ̄(t)dt = −
∫
Iψ

xj (t)ψ̄
′(t)dt (4.5)

Using the definition of Tψ in Eq. 4.2, one can rewrite the equation as

Q∑
i=1

αijTψ(xj ·m′i) = −Tψ′ (xj ), (4.6)

or, expanded to an equation system linear in the complex parameters αij , as:
Tψ1

(xjm′1) · · · Tψ1
(xjm′Q)

...
. . .

...
TψR(xjm′1) · · · TψR(xjm′Q)

︸                                  ︷︷                                  ︸
A

·


α1j
...
αQj

︸︷︷︸
αj

=


−Tψ′1(xj )

...
−Tψ′R(xj )

︸       ︷︷       ︸
b

(4.7)

Again, ψ1, . . . , ψR are the basis functions of transform Tψ , A is an R × Q matrix,
αj a vector of length Q and b a vector of length R. Then, αj has a single unique
solution

αj = A+b = (AHA)−1AHb (4.8)
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where A+ denotes the Moore-Penrose pseudoinverse of matrix A.
Thus, by computing Tψ(xjm′i) for elements i = 1, . . . , Q and Tψ′ (xj ) for all

derivatives of basis functions ψ′1, . . . , ψ
′
R, the complex coefficients αij can be re-

covered efficiently. Note, however, that due to the differentiation of xj in Eq. 4.4,
the parameter α0j vanished from the sum in Eq. 4.1. This parameter has to be
estimated separately after the parameters αij for i = 1, . . . , Q have been obtained
via Eq. 4.8. Betser proposes two approximate least square estimators, of which
the first alternative relying on the basis function ψr̂ covering the largest energy
proportion of xj is applied in the following sections [36]:

r̂ = arg max
r

|Tψr (xj )| (4.9)

α̂0j = log(Tψr̂ (xj )) − log(Tψr (γ)) (4.10)

Here, γ is defined as the signal parts not relying on α0j :

xj (t) = eα0jγ(t) (4.11)

The instantaneous log-amplitude, phase and normalized angular frequency of
each sinusoid j can be obtained from the complex coefficients αij via

a
(k)
j (t) =<

 Q∑
i=0

αij t
i

 (4.12)

φ
(k)
j (t) ==

 Q∑
i=0

αij t
i

 (4.13)

f
(k)
j (t) =

fs
2π

dφ
(k)
j (t)

dt
=
fs
2π
=

 Q∑
i=0

αij it
i−1

 (4.14)

like specified in [171]. Here and in the following equations, the superscript (k) is

used to denote parameter estimates in frame k. The parameter estimates a(k)
j and

f
(k)
j estimated for each frame k are used in the successive step of DFC tracking.

4.2.2 Discrete Frequency Component (DFC) Tracking

For DFC tracking, the signal model x(t) defined in Eq. 2.14 modeling the signal
as a superposition of Rk generalized sinusoids per each frame k of an STFT spec-
trogram of the sensor signal x(t) is reconsidered [171]:

x(t) ≈
Rk∑
j=1

xj (t) =
Rk∑
j=1

exp

 Q∑
i=0

αij t
i

, (4.15)

where i is the degree of monomial ti , αij are the complex parameters of gener-
alized sinusoid j and Rk the number of generalized sinusoids in frame k. DFC
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tracking can then be approached by connecting best-matching TFD peaks of
each frame k found during the parameter estimation step. Matching criteria
are typically based on continuity of parameter estimates found in the previous
section for the complex parameters αij . As discussed in Subsection 2.3.2, track-
ing methods formulate matching criteria based on HMMs [119], Markov renewal
processes [243] or linear programming [73, 171] among others. In this thesis the
linear optimization approach presented in [171] is applied, as the approach is
computationally efficient and considered robust to noise in sensor signals.

For the assignment of TFD peaks u in frame k − 1 to peaks v in frame k, Neri
et al. [171] specify multivariate Gaussian cost functions

Auv = 1 − exp

 − (
∆a2

uv

2σ2
a

+
∆f 2

uv

2σ2
f

) (4.16)

for useful assignments and

Buv = 1 − (1 − δ)Auv (4.17)

for spurious assignments. Standard deviations σa and σf as stated in Eq. 4.16 are
defined by

σ2
a = ζ2

a /(2 ln(δ − 2) − 2 ln(δ − 1)) (4.18)

σ2
f = ζ2

f /(2 ln(δ − 2) − 2 ln(δ − 1)) (4.19)

The parameters δ, ζa and ζf determine the points of transition between useful
and spurious assignments as outlined in the following paragraphs.

Useful assignments are defined as those assignments which satisfy continuity

constraints of parameter values a(k)
j (t) and f (k)

j (t) across successive frames k [171].
The continuity across frames is measured by amplitude assignment gaps ∆auv
and frequency assignment gaps ∆fuv . For computation of ∆auv and ∆fuv , param-

eter values a(k)
j (t) and f

(k)
j (t) always at time indices t = 0 located at the center

of frames k are considered. The dependency on t can thus be dropped in all
following equations.

Assignment gaps ∆auv and ∆fuv are defined as

∆auv = ak−1
u (H/2) − akv(−H/2) (4.20)

∆fuv = f k−1
u (H/2) − f kv (−H/2) (4.21)

Amplitude estimates aku and frequency estimates f ku per peak u are computed as
presented in Equations 4.12 and 4.14, respectively. H denotes a so-called hop
size such that time steps of parameter estimation are tk = kH/fs, with fs being
the sampling frequency. The hop size H in turn is defined by N/Hf , where N is
the number of signal samples per TFD frame and Hf a so-called hop factor. For
Hf , 1, successive TFD frames overlap, which allows estimating parameters at
smaller time distances than specified by the inverse of frame rate 1/N .
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Figure 4.4: Illustration of peak connection like proposed in [171] for a poly-
nomial order Q = 2. Small assignment gaps for amplitudes ∆auv (Eq. 4.20)
and frequencies ∆fuv (Eq. 4.21) make connection of related peaks more
likely. Figure adapted from [171] with kind permission of the authors.

A visual interpretation of the meaning of amplitude and frequency gaps is
sketched in Fig. 4.4 for a polynomial order of Q = 2 (i.e., considering monomi-
als up to a degree of 2). Due to the at most linearly evolving nature of DFCs in
our data, a polynomial order of Q = 2 is sufficient: Q = 2 assumes linear con-
nections of per-frame frequency parameter estimates between TFD frames and a
superposition of linear and quadratic connections between per-frame amplitude
estimates (cf. Equations 4.12 and 4.14). Furthermore, for Q = 2, the DDM-based
parameter estimation described in Subsection 4.2.1 is related to so-called reas-
signed spectrograms as outlined in [36]. Reassigned spectrograms exhibit desired
characteristics for the estimation of DFCs: They can be applied to compensate
for the spreading of TF energy (caused by STFT computation) by reassigning the
energy to the true frequency values. Reassignment methods were pioneered by
Kodera et al. in [127] for spectrograms and generalized in [77] to other bilinear
TFDs.

Useful matrix elements Auv and spurious matrix elements Buv are combined
in a single cost matrix with elements Cuv which will ultimately be considered
during optimization of the peak assignment problem. Elements Cuv are obtained
as follows:

Cuv = min{Auv , Buv} (4.22)

Both Eq. 4.22 and the influence of parameters δ, ζa and ζf on the transition
between useful and spurious assignments are illustrated in Fig. 4.5.

Optimal assignments are finally found via the following linear programming
problem:

min
R∑
u=1

R∑
v=1

CuvXuv (4.23)

subject to
R∑
u=1

Xuv = 1 v = 1 . . . R and
R∑
v=1

Xuv = 1 u = 1 . . . R (4.24)
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Figure 4.5: Illustration of the influence of parameters δ and ζf on the points
of transition between useful cost Auv and spurious cost Buv in the combined
cost Cuv . Figure adapted from [171] with kind permission of the authors.

which can be solved in polynomial time by the Hungarian algorithm [130]. Here,
Xuv are binary variables that equal 1 if peak u is assigned to peak v and 0 oth-
erwise [171]. R = max{Rk−1, Rk} is the largest of the two numbers of peaks Rk−1
and Rk .

4.3 Results

In this section, experiments for designing tailor-made features for condition mon-
itoring of rotating machine parts are presented. The performance of the param-
eter estimation and DFC tracking methods described in the previous section are
illustrated for artificial data (Subsection 4.3.1) and data measured with sensors at-
tached to a grinding machine (Subsection 4.3.2). For the experiments producing
these results, Neri et al.’s implementation of these parameter estimation and DFC
tracking methods was adapted to the nature of the given sensor data. The origi-
nal implementation written for their publication [171] can be accessed via [170].
Afterwards, features for monitoring of rotating machine parts are presented.

As outlined in [171], the success and quality of DFC tracking is highly depen-
dent on the amount of noise present in the computed TFDs being used as basis
for parameter estimation. For high amounts of noise, detected tracks illustrate
random directions, whereas TFD regions being dominated by signal components
expose aligned tracks. The first major question in this chapter is thus, whether
the high amount of noise present in the spectrograms for the recorded sensor
data (cf. Fig. 4.1) hinders a proper recovery of DFCs. Thus, in Subsection 4.3.1,
the effect of an increasing amount of noise onto the performance of parameter es-
timation and DFC tracking is studied. For this, the RMS value of additive white
Gaussian noise (AWGN) added to artificial signals mimicking the recorded sensor
data is varied.

The second major question is which machine parts can be identified from
spectrograms and DFC tracks. In Subsection 4.3.2, this is discussed for the start-
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up process of an exemplary grinding machine. The grinding wheel rotational
speed can be distinguished from other DFCs by leveraging upper bounds on fea-
sible rotational velocities. A similar approach for detecting imbalances in the
dressing wheel is outlined.

Finally, the third major question is how to use the knowledge of rotating
parts and assigned DFCs for the sake of a tailor-made feature extraction. An
approach for the task of detecting grinding wheel imbalance is proposed and
discussed in detail, similar approaches for the tasks of detecting dressing wheel
imbalance and detection of workpieces with insufficient roundness are outlined.

4.3.1 Noise Variations for Artificial Data

This subsection covers the first of the major questions formulated in the former
subsection, the robustness of DFC tracking to high amounts of noise in the sen-
sor data. In [171], Neri et al. demonstrate the robustness of their DFC tracking
approach to noise by adding AWGN to artificial data. Their findings are of in-
terest for this thesis as the sensor data presented here illustrate high noise levels
especially during start-up of the grinding machine (cf. Fig. 4.1).

In this subsection, the tracking methods of Neri et al. are validated on arti-
ficial data mimicking the nature of the recorded sensor data. During start-up,
the frequency of each discrete component is restricted to be either constant or to
evolve linearly (cf. Fig. 4.1). After run up to operational speed, the DFCs related
to started rotating machine parts become constant. The robustness to AWGN
is thus validated on an artificial test signal constructed from a superposition of
equally weighted constant DFCs and linear chirp signals (i.e., showing linearly
evolving frequencies).

In Figure 4.6, parameter estimates (left column) and tracked DFCs (right col-
umn) are presented for this test signal with different SNR values. Amplitude
estimates akj in the left column are visualized in yellowish and reddish colors as
values normalized to the maximum amplitude estimate encountered, thus map-
ping them to the range [0, 1]. Amplitude estimates of TFD peaks are shown as
overlay plot to noisy spectrograms (visualized in gray color scaling). As the chirps
constituting the artificial test signal have constant amplitude, all peaks illustrate
the same yellowish color. For DFC tracking (right column), marginal histograms
of tracked DFCs are additionally plotted. They are created by accumulating DFC
tracks over time. Thus, peaks of the histograms occur in frequency bins where
tracks are most often observed. Leveraging marginal histograms proved useful
for tracking of stationary DFCs in noisy sensor data as outlined in the following
paragraphs for artificial data described above and in Section 4.3.2 for measured
sensor data.

For an SNR of 15 dB (top row), the signal energy clearly dominates the TF
plane as verified by spectrograms in both subfigures. For higher amounts of
noise (SNR = 5 dB, middle row), the same DFC tracks are found as for an SNR of
15 dB, but DFC tracks start to illustrate discontinuities. For even higher amounts
of noise (SNR = 0 dB, bottom row), DFC tracks become even more fractionated.
In addition, one observes randomly directed DFC tracks constructed between
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(a) Parameter estimates, SNR = 15 dB (b) Frequency component tracks,
SNR = 15 dB
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(c) Parameter estimates, SNR = 5 dB (d) Frequency component tracks,
SNR = 5 dB

(e) Parameter estimates, SNR = 0 dB (f) Frequency component tracks,
SNR = 0 dB

Figure 4.6: Results of parameter estimation for detected peaks (left column)
as well as tracked DFCs and related marginal histograms (right column) for
an artificial superposition of order 2 generalized sinusoids (i.e., linear chirps)
and different SNRs. Higher noise levels result in more fractioned frequency
component tracks. In the marginal histograms however, peaks for constant
frequencies can still be identified reliably.
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spurious peaks caused by the high noise. This is in accordance with the results
presented in [171]: High amounts of noise make a continuous tracking of DFCs
challenging.

In the right column of Fig. 4.6, the marginal histograms of DFC track values
are plotted. Even for high amounts of noise (SNR = 0 dB, right column), the
marginal histogram allows to robustly detect the constant DFC at 100 Hz. This
fact will be used in the following section during the experiments with real-world
data.

4.3.2 DFC Tracking and Assignment for Measured Sensor Data

In this subsection, the second major question formulated in the beginning of Sec-
tion 4.3 is considered: The set of machine parts which can be identified from
detected DFC tracks. For this, results for parameter estimation and DFC track-
ing during start-up of machine tools and other machine states (sharpening of
grinding wheels, machining of workpieces) are presented. For parameter estima-
tion, TFD peaks are picked by a heuristically found magnitude threshold like
in [170, 171].

Figure 4.7 illustrates parameter estimates (top row) and tracked DFCs (bot-
tom row) for signals recorded with acceleration sensors attached to grinding
wheel housing (left column) and workpiece support (right column) of a grinding
machine during start-up. TFDs for both sensors illustrate multiple DFCs start-
ing to occur with the start-up of the grinding wheel around second 120. Some of
these components become temporarily stationary around second 150 occupying a
frequency band between 350 and 550 Hz. This is a point in time between start-up
steps 10 and 11, where the grinding wheel is accelerated first from 0 to 900 rpm
and then from 900 to 2400 rpm, respectively (cf. Table 4.1 and Figures 4.1b to
4.1f). These DFCs are thus related to machine components involved with the
control chain of the grinding wheel (i.e., grinding wheel, motor, etc.). The signals
behave stationary beginning with start-up step 12 at second 220 (warm-up drives,
cf. Table 4.1). As all of these machine parts are started at the same point in time,
they can not be distinguished without leveraging additional information.

Additional information for assignment of machine parts to detected DFCs
can be defined by regions on feasible operational speeds of machine parts. This
is exemplary outlined in detail for grinding wheels. For the grinding machine
being the source of sensor data presented in this chapter, grinding wheel ro-
tational speeds are upper-bound by a value of 7200 rpm which corresponds to
120 Hz [216]. The region of permissible grinding wheel rotational speeds is
marked by a green patch in the marginal histograms in Figures 4.7c and 4.7d.
One can observe, that the 50 Hz component is the only detected DFC in this re-
gion which can thus be assigned to the grinding wheel rotational speed. Further-
more, the 50 Hz component is not constantly present but evolves linearly before
reaching constancy at 50 Hz. The 50 Hz component can thus safely be excluded
from being a spurious (e.g., power line frequency) component.

For both acceleration sensors, this 50 Hz component can be detected in the
marginal histograms (cf. Figures 4.7c and 4.7d), although the related DFC track
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(a) Parameter estimates, sensor at
grinding wheel housing

(b) Parameter estimates, sensor at
workpiece support

(c) Frequency component tracks, sensor at
grinding wheel housing

(d) Frequency component tracks, sensor at
workpiece support

Figure 4.7: Results of parameter estimation for detected peaks (top row) as
well as tracked DFCs and related marginal histograms (bottom row) for the
complete start-up of a grinding machine. The left column depicts a signal
from the acceleration sensor attached to the grinding wheel housing, the
right column for a sensor mounted at the workpiece support.
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itself illustrates many discontinuities. The assignment of this DFC track to the
grinding wheel rotational speed will be used in Subsection 4.3.2 for the sake of
grinding wheel imbalance detection.

In a similar manner, one can upper bound the region of permissible control
wheel rotational speeds by 500 rpm = 8.33 Hz. However, DFCs related to the con-
trol wheel are detectable neither for the acceleration sensors attached to grinding
wheel housing nor workpiece support due to mechanical decoupling of the con-
trol wheel from both these machine parts. For an acceleration sensor directly
attached to the control wheel housing, one might detect the DFC related to the
control wheel rotational speed in a similar way as described above for the grind-
ing wheel rotational speed.

Detection of Imbalances in Rotating Machinery

The former paragraphs illustrate, that assigning DFCs tracked during start-up to
related rotating parts can be difficult, as DFCs often start to appear simultane-
ously. Only the grinding wheel DFC was identified from the multitude of DFCs
leveraging upper bounds on permissible rotational speeds. Building on this as-
signment between grinding wheel rotational speed and its related DFC track, a
workflow for constructing tailor-made features for imbalance detection is illus-
trated in this subsection. The same workflow is subsequently applied for detec-
tion of dressing wheel imbalance detection. These workflows thus cover the third
major question formulated in the beginning of Section 4.3.

Imbalanced Grinding Wheel In order to understand the effect of imbalances
in grinding wheels on recorded sensor data, spectrograms and related DFCs for
both a balanced and an imbalanced grinding wheel are visualized in Fig. 4.8. The
region of permissible grinding wheel rotational speeds is again marked by green
patches in Figures 4.8b and 4.8d. While for the balanced grinding wheel (top
row) only a dominant DFC at 143 Hz already observed during start-up is visible,
the dominant frequency for an imbalanced grinding wheel is relocated at the
50 Hz component related to the grinding wheel rotational speed. Both dominant
DFCs in Figures 4.8b and 4.8d are represented by a single track (illustrated in
blue). This single continuous track is caused by amplitude estimates of constant
height as visualized by the constantly yellow peaks in Figures 4.8a and 4.8c.

The dominant DFC at 50 Hz can be understood when considering the physi-
cal nature of (static) imbalances of the grinding wheel: For a balanced grinding
wheel, the center of mass of the wheel and its geometrical center (i.e., its axis of
suspension) are co-located. For an imbalanced grinding wheel however, the force
applied from the grinding wheel to the grinding wheel housing is no longer tem-
porally constant but becomes dependent from the relative position of the center
of mass to the geometric center. More specifically, the applied force oscillates
with the grinding wheel rotational speed. This results in a modulation of the
envelope of the raw sensor signal, which in turn can be observed as a dominant
DFC in the frequency domain.
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(a) Parameter estimates, sensor at grind-
ing wheel housing, balanced wheel

(b) Frequency component track, sensor at
grinding wheel housing, balanced wheel
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(c) Parameter estimates, sensor at grind-
ing wheel housing, imbalanced wheel

(d) Frequency component track, sensor
at grinding wheel housing, imbalanced
wheel
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(e) Parameter estimates, sensor at work-
piece support, imbalanced wheel

(f) Frequency component tracks, sensor at
workpiece support, imbalanced wheel

Figure 4.8: Parameter estimates (left column) and DFC tracks (right column)
for a balanced (top row) and an imbalanced (middle and bottom row) grind-
ing wheel. For the balanced wheel, a DFC at 143 Hz dominates. For the
imbalanced wheel, TF energy is dominated by its rotational speed of 50 Hz
(grinding wheel housing sensor, middle row) and related harmonics (sensor
at workpiece support, bottom row).
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(a) RMS of grinding wheel rotational
speed, sensor at grinding wheel housing

(b) RMS of grinding wheel rotational
speed and first two harmonics, sensor at
workpiece support

Figure 4.9: Two exemplary features for detection of imbalances: RMS value
for grinding wheel rotational speed (50 Hz, left) and RMS value for grinding
wheel rotational speed and harmonics (right). Gray shadings depict different
degrees of grinding wheel imbalances.

This is illustrated in the middle row of Fig. 4.8: The dominant frequency re-
locates from the 143 Hz component to the rotational speed at 50 Hz. This suggests
imbalance-related features depending on the energy of this rotational speed. Fea-
tures building on increased energy at the grinding wheel rotational speed allow
for detection of imbalances in the grinding wheel before machining workpieces,
i.e., before the grinding wheel imbalance affects the quality of machined work-
pieces.

For spectrograms of acceleration sensors attached to the workpiece support
(bottom row), DFC tracks at the grinding wheel rotational speed of 50 Hz and
harmonics at 100 Hz and 150 Hz are observable. Similar to the explanation of
the force applied from imbalanced grinding wheels to the grinding wheel hous-
ing described above, the force applied from the grinding wheel to the workpiece
is no longer temporally constant. However, forces here do not behave purely si-
nusoidal. Thus, harmonics equidistant to the grinding wheel’s rotational speed
evolve. This suggests features related to these harmonics’ energies.

In Fig. 4.9, two exemplary features related to the energy of the grinding wheel
rotational speed (for the acceleration sensor attached to the grinding wheel hous-
ing, Fig. 4.9a) and related to the energies of this rotational speed and its harmon-
ics (for the acceleration sensor attached to the workpiece support, Fig. 4.9b) are
illustrated. The features are RMS values for TD signals where other DFCs than
the grinding wheel rotational speed or its harmonics are filtered out. Both fig-
ures depict feature scores for data records with successively increasing degrees
of imbalance severity (0, 0.5, 1, 3 and 6 µm). The different degrees of imbalance
severity as illustrated by the differences in gray shading are clearly observable in
the feature scores.



4.3 Results 91

Imbalanced Dressing Wheel Similar to the approach sketched in the previous
section, imbalances in other rotating machine parts can be detected. In Fig. 4.10,
the effect of an imbalanced dressing wheel on the related TFDs of acceleration
sensor signals is depicted. The acceleration sensor was attached to the dressing
wheel motor (cf. Fig. 4.2). Similar to the effects of an imbalanced grinding wheel,
a single dominant DFC at 58.33 Hz becomes apparent. This dominant DFC is
related to the rotational speed of the dressing wheel. The DFC can be identified
from the marginal histogram illustrated in Fig. 4.10d. Building on this dominant
DFC at 58.33 Hz related to the dressing wheel rotational speed, custom-built fea-
tures for a detection of dressing wheel imbalances can be defined: Similar to
the features proposed for imbalanced grinding wheels in the previous subsec-
tion, RMS values are extracted from TD signals where other DFCs than the dress-
ing wheel rotational speed are filtered out. Feature scores for balanced dressing
wheels (light gray) and imbalanced dressing wheels (dark gray) are visualized in
Fig. 4.11. The difference in feature scores verifies the relevance of this feature for
dressing wheel imbalance detection.

Detection of Workpieces with Insufficient Roundness

In addition to detecting imbalances in rotating machinery, detection of machined
workpieces with an insufficient roundness is a predictive task where the detection
of DFCs is relevant. As outlined in [97], workpieces with an insufficient round-
ness typically occur due to an instable choice of the grinding gap geometry, i.e.,
the arrangement of the workpiece in between grinding wheel, control wheel and
workpiece support. For centerless grinding machines, the grinding gap geometry
is mainly influenced by the height of the workpiece support hw and its support
angle β, i.e., the angle of elevation of the workpiece support. β = 0 means the
workpiece support surface is horizontal. The grinding gap geometrical parame-
ters hw and β are visualized in Fig. 4.12.

When choosing an insensible combination of hw and β, the machining pro-
cess becomes unstable, resulting in an increasing oscillation of workpieces on the
workpiece support. This oscillation results in higher amplitudes of undesired
modulation of the workpiece surface. In machine tool literature, the modulation
of the workpiece surface is typically referred to as polygon surfaces [125]. Such
polygon surface modulations result in an appearance of harmonics of the work-
piece rotational speed in the time frequency domain. The specific combination
of hw and β determines the actually observable order and amplitude of polygons
and thus harmonics. In general, a superposition of different polygons / harmon-
ics occurs.

Typically, small degrees of modulation of the workpiece surface appear for all
choices of process parameters hw and β. The goal of finding an optimal choice of
hw and β is establishing a stable machining process, which leads to a maximum
reduction of the existing roundness error during machining of workpieces such
that predefined minimum requirements on roundness errors are reached. Reduc-
ing the roundness error has been shown to be mainly influenced by reducing the
amplitudes at polygons of lower order [125].
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(a) Parameter estimates, dressing wheel
housing, balanced wheel
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(b) Parameter estimates, dressing wheel
housing, imbalanced wheel

(c) Frequency component tracks, dress-
ing wheel housing, balanced wheel

(d) Frequency component tracks, dress-
ing wheel housing, imbalanced wheel

Figure 4.10: Parameter estimates (top row) and detected DFC tracks (bot-
tom row) for a balanced (left column) and an imbalanced dressing wheel
(right column). For balanced dressing, the TF energy is dominated by high-
frequency TFD regions. For the imbalanced dressing wheel, the TF energy
is concentrated at a dominant DFC track of 58.33 Hz, which is related to the
rotational speed of the dressing wheel.
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Figure 4.11: Exemplary feature for detection of dressing wheel imbalances:
RMS value for dressing wheel rotational speed. Gray shadings differentiate
between a balanced dressing wheel (light gray) and an imbalanced dressing
wheel (dark gray).

In order to study the effects of instable process parameter choices on the
roundness error of workpieces and energy distribution in TFDs, the height hw
of the workpiece support was deliberately raised by 1 mm compared to the sta-
ble normal height, which was the maximum possible height for the workpiece
support without risking severe machine damage.

In order to verify the occurrence of harmonics of the workpiece rotational
speed in the TFDs, the rotational speed of the workpiece fwp has been computed
using values of control wheel rotational speed fctrl = 0.667Hz, control wheel
diameter dctrl = 237mm and workpiece diameter dwp = 3mm:

vctrl = fctrl ·π · dctrl = 0.667 s−1 ·π · 237mm = 496.620mm/s (4.25)

fwp =
vwp
dwp ·π

=
vctrl

3.084mm ·π
= 51.258Hz (4.26)

Here, the fact that circumferential velocities of control wheel vctrl and workpiece
vwp are the same was used. Building on the workpiece rotational speed and its
harmonics, one can design tailor-made process monitoring features similar to
the approach outlined in the previous subsections: Extracting the RMS value at
harmonics related to the workpiece rotational speed allows to detect the change
in energy at these frequencies due to machining workpieces with an insufficient
roundness.

In Fig. 4.13, TFDs for the standard grinding gap geometry (left column) and
the increased height hw of the workpiece support (right column) are illustrated.
Sensor data were recorded with the acceleration sensor attached to the workpiece
support. As observable, the energy at already existent DFCs at 143 Hz and re-
lated harmonics at 286 Hz and 429 Hz increase. These components were already
observed during start-up of the machine (cf. Fig. 4.7d) and are thus no harmonics
of the workpiece rotational frequency. The reason for not being able to identify
harmonics of the workpiece rotational speed could lie in the deliberate change
of workpiece support height hw not producing a sufficiently instable grinding
gap geometry in order to effect lower-order polygon surfaces and thus harmonics
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Grinding wheel

Control wheel

Workpiece support

Workpiece

β hw

Figure 4.12: Geometrical parameters hw and β of the grinding gap

with high amplitudes. This assumption was confirmed by optical measurements,
which illustrated no relevant roundness error of the measured workpieces. Thus,
although the approach of tracking harmonics effected by workpieces with an in-
sufficient roundness and subsequent extraction of features related to the energy
at these harmonics might in general be valid, it can not be validated empirically
here.
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(a) Parameter estimates, workpieces pro-
cessed with normal hw
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(b) Parameter estimates, workpieces pro-
cessed with increased hw

(c) Frequency component tracks, work-
pieces processed with normal hw

(d) Frequency component tracks, work-
pieces processed with increased hw

Figure 4.13: Parameter estimates (top row) and detected DFC tracks (bot-
tom row) for normal processed workpieces (left column) and workpieces
processed with a deliberately increased height hw of the workpiece support
(right column). The spectrograms are computed for data measured with the
acceleration sensor attached to the workpiece support. For normal process-
ing, the TF energy is dominated by high-frequency TFD regions. For an
increased workpiece support height, the TF energy at a DFC of 143 Hz and
its harmonics increases.
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4.4 Conclusions

This chapter presented condition monitoring features for specific rotating ma-
chine parts. Features were designed based on DFCs and assigned rotating ma-
chine parts. Assigning a single DFC to its matching machine counterpart proved
challenging, as a multitude of DFCs is observable during every operation state of
the machine. Thus, additional meta information was used to constrain the search
space on possible DFC candidates for assignment to a specific machine compo-
nent. This meta information was given by upper bounds on maximum permissi-
ble rotational speeds (e.g., of a grinding wheel) and the non-stationary behavior
of DFCs during start-up of the machine tool (which allowed to sort out persis-
tently constant, spurious DFCs). Leveraging these additional constraints led to
convincing results for the task of detecting imbalances in rotating machinery.

In general however, the approach proved both vulnerable to considering spu-
rious DFCs during assignment and highly dependent on the capability to detect
the DFCs of machine parts in the computed TFDs. The former was illustrated
for detecting workpieces of insufficient roundness, where spurious DFCs were lo-
cated in a similar region as harmonics related to the workpiece rotational speed
are expected. The latter proved especially challenging for low-frequent DFCs and
when the sensor from which measurement data was evaluated is not attached to
the machine part of interest (e.g., control wheel rotational velocity not detectable
with sensor attached to grinding wheel housing).

In summary, knowledge of DFC tracks assigned to rotating machine parts
like grinding wheels and dressing wheels allows to design tailor-made features
for imbalance detection. However, the condition monitoring approach presented
in this chapter necessitates additional meta information during the assignment
step. Even when such additional meta information can be formulated, the pro-
posed approach is still vulnerable to spurious DFCs. In addition, handcrafted
design of condition monitoring features in the proposed way necessitates a de-
tailed understanding of machine tools and the parts they are assembled from.

Several adaptations of the approach visualized in Fig. 4.3 for increasing the
quality of parameter estimation or DFC tracking would be possible: Regarding
an automated way to choose the peak picking threshold during parameter esti-
mation (e.g., based on the difference of distribution of TFD magnitudes for noise
and signal samples) or a DFC tracking approach being able to deal better with
noisy signals (e.g., based on computationally more expensive Markov renewal
processes that allow modeling gaps in consistent tracks as “sleep states” [243],
thus reducing the effect of fragmentation of component tracks discussed in Sub-
section 4.3.1). However, extracting features from DFCs still remains vulnerable
to spurious components and still struggles with assigning a single DFC from a
multitude of possible candidates to a dedicated rotating machine part.

In part II of this thesis, complementary approaches on including domain ex-
pertise into the detection of machine tool anomalies are presented. These ap-
proaches aim at collecting low-cost but high-quality annotations for the sensor
data from domain experts and learning of anomaly detection models directly
from the sensor data, i.e., without handcrafted design of tailor-made features.



Part II

Low-Cost Annotation and
Robust Detection of Generic

Machine Tool Anomalies
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In part I of this thesis, a focus was put on designing tailor-made features
for specific process monitoring tasks (e.g., tool condition monitoring) and con-
dition monitoring tasks (e.g., imbalance detection in rotating machine parts) by
explicitly modeling domain expertise in dedicated preprocessing algorithms (i.e.,
signal segmentation and estimation of discrete frequency components). This ap-
proach allows designing computationally simple but expressive features, custom-
built for these tasks and generalizing to data recorded for other workpiece/para-
meter settings due to explicitly modeling physically understood cause-effect rela-
tionships. The approach, however, comes with several drawbacks:

• Concrete monitoring tasks have to be specified a priori in order to delib-
erately provoke the related anomaly types during dedicated measurement
campaigns. This is often not possible.

• In addition, large data sets for different workpiece/parameter settings have
to be collected and analyzed by data scientists in cooperation with domain
experts. Afterwards, features have to be hand-engineered building on the
cause-effect relations found and understood from data analysis. This in-
volves a high human effort and thus high costs. In addition, the expertise
of various groups (both domain experts and data analysts) is necessary in
order to create such features, which might not be available (e.g., small pro-
duction companies typically do not employ data analysts).

• Finally, provoking anomalies by deliberately choosing insensible machine
parameter settings involves risking consequential machine damage.

Detection and labeling of anomalies during normal machine operation yields
an alternative approach. Potential anomalies found by the anomaly detection
models are proposed to domain experts for annotation. The resulting feedback
(confirmation/rejection) yields labels for these proposed data records. Due to a
concentration on potential anomalies, the labeling effort and thus cost is highly
reduced: Machine tools on real production floors are typically well-regulated,
resulting in only few data records representing abnormal machine behavior. Such
human-in-the-loop collection of expert labels for reported anomalies constitutes
a complementary approach of introducing domain expertise into the time series
classification pipeline in Fig. 1.4 to the methods in part I of this thesis.

Despite generating labeled data sets for training of task-specific models, the
obtained labels can be used to create semi-supervised extensions of the anomaly
detection models. In machine monitoring scenarios, the benefit of including la-
bels can be reasoned by the necessity to distinguish (often frequent) process pa-
rameter adjustments from (rare) real anomalies, as both parameter adjustments
and anomalies result in signals deviating from the normal state.

In Chapter 5, a live and in situ annotation approach which allows to collect
“in the wild” and low-cost labels for sensor data streams as outlined above is pro-
posed. The approach is summarized in Fig. II.1. Building on a suitable represen-
tation of the raw sensor data (e.g., envelope signals, hand-engineered features or
data representations learned via neural network models), data records under re-
view are evaluated by a generic anomaly detection model regarding their degree
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Figure II.1: Visual summary of the live annotation approach

of outlierness compared to formerly observed normal data or a representative
model of the normal data. The degree of outlierness is measured by an anomaly
score. For high anomaly scores exceeding a predefined threshold, a prototypical
live annotation system which is attached to the outside of the machine tool can
generate both a visual and acoustic alarm signal. This prototypical annotation
system was developed in the context of this thesis. The visual and acoustic alarm
triggers human feedback, i.e., the data record under review is annotated by the
domain expert (machine operator).

In addition, Chapter 5 presents a proof-of-concept study regarding the va-
lidity of this approach. Building on the evaluation of obtained annotations and
annotator behavior, advantages and disadvantages of the approach are discussed.
The major findings suggest that live annotations are only in some cases of compa-
rable or better quality than retrospective annotations by domain experts. Among
possible explanations is the suspicion that the simple anomaly detector applied
in the proof-of-concept study does not model normal behavior of the machine
(as represented by the recorded data) sufficiently well, resulting in many false
positives. Thus, in Chapter 6, advanced unsupervised neural anomaly detection
models are discussed, which capture this normal behavior of the grinding ma-
chine better, even when the appearance of normal data evolves throughout the
course of data recording. In addition, semi-supervised extensions of these neural
anomaly detection models are studied. Both unsupervised and semi-supervised
neural anomaly detection models are compared to the simple anomaly detector
applied in Chapter 5 regarding their capability of more reliably proposing data
records as abnormal.

Furthermore, a third alternative labeling approach (i.e., in addition to retro-
spective and live annotations by domain experts) is presented. This third ap-
proach allows to automatically generate labels from domain heuristics and hand-
engineered features. Such automatically generated labels represent a second low-
cost labeling alternative next to live annotations. Finally, semi-supervised neural
anomaly detection models trained both with high-cost retrospective domain ex-
pert labels and low-cost automatically generated labels are compared.
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User Study: Quality of Live

Annotations and Influencing Factors

Disclaimer: The contents of this chapter have been published as [201].

This chapter presents a proof-of-concept study on the live and in situ anno-
tation approach as summarized and visualized on the previous pages: Annota-
tions for sensor data are collected directly (live) during their recording via a self-
developed annotation prototype. This annotation prototype is attached to the
outside of a demo grinding machine in a real-world production environment and
allows considering both the current sensor data and additional meta information
about the current machine state and workpiece quality which can be obtained by
visual and auditory inspection of machine and workpieces (in situ).

First, details about the setup for data measurement (Section 5.2) as well as the
design process and functionality of the proposed labeling prototype (Section 5.3)
are described. Afterwards, methods for the evaluation of live annotations are dis-
cussed: Several assumptions for the evaluation of quality of the human label feed-
back collected via this labeling prototype are introduced in Section 5.4. These as-
sumptions address the challenges of rating label feedback quality without being
provided either reliable ground truth labels as gold standard for comparison or
more than one live annotation per data record (in order to rate agreement among
annotators). Then, results for the experiments conducted in order to select an
appropriate anomaly proposing model and in order to rate the quality of labels
collected via the proposed live annotation approach are stated in Section 5.5. The
latter evaluation of live annotations is guided by the assumptions formulated be-
fore. Finally, the results are summarized and the strengths and weaknesses of the
proposed live annotation approach in comparison to retrospective annotation are
discussed critically.
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5.1 Motivation

While a large amount of studies on collecting rare event labels in medical or
social applications exists, studies concerned with annotation in industrial manu-
facturing surroundings are rare. Collecting labels for the rare anomalous events
in such manufacturing surroundings is notoriously difficult. Often, frequent spu-
rious signal outliers dominate seemingly detected anomalies and shadow the few
real anomalies. This is even more difficult when anomalies are characterized by
more subtle signal deviations than these spurious signal outliers. Depending
on the chosen anomaly detection algorithm, this dominance of spurious outliers
typically results in either a high false positive rate (FPR) or high false negative
rate (FNR). This is even more the case for purely unsupervised models.

In the chosen machine tool monitoring application, spurious outliers are given
by frequent process adaptations while real anomalies are typically rare. The rea-
son for the latter is that machines in a real-world production surrounding are
typically used for processing the same type of workpiece over a long period of
time spanning several months to years. Thus, robust process parameter settings
are known due to the well-understood machine behavior for this exact workpiece
type, which in turn results in anomalies appearing only rarely.

In order to train anomaly detection models for a subset of specific known
anomalies (e.g., imbalances in rotating machine parts, wear of ball screw drives or
spindles), one can intentionally choose insensible process parameters to provoke
these types of anomalies. Then, dedicated measurement campaigns for these
anomaly types allow collecting labels and studying how these types of anoma-
lies manifest regarding change of signal behavior. This approach was applied for
the evaluations described in Part I of this thesis. The approach comes with short
measurement campaigns (as the precious anomalous labels can be provoked in-
tentionally) and thus only a small amount of additional costs due to loss of pro-
duction time. Furthermore, high-quality ground truth labels can be obtained for
these anomalies as the anomaly-causing machine parameters are under control.
Several drawbacks arise:

• Provoking anomalies is still expensive, as retooling the machine for these
provocations can be time consuming. Furthermore, precious production
time is lost as the anomalously processed workpieces cannot be used after
the experiment. Thus, annotating data sets with anomaly labels via dedi-
cated measurement campaigns always comes with a trade-off: The higher
the amount of labeled data, the better the performance of (semi-)supervised
classifiers trained with such labels but also the higher the loss in production
time and thus increase in costs.

• Many anomalies cannot be provoked intentionally, either due to unknown
cause-effect relations of these anomalies or due to severe risks of consequen-
tial machine part damages.

• If anomalies can be provoked intentionally, the anomalies do not emerge in
a natural way. As it is often non-trivial to distinguish between cause and
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effect in the signal behavior, it is unclear whether the studied abnormal
behavior generalizes to real-world anomalies.

• Finally, only anomaly types known in advance can be provoked.

Thus, collecting data and corresponding annotations “in the wild” (as op-
posed to an artificial provocation of anomalies) has the potential to yield more
realistic labels. The disadvantages of labeling in the wild are high costs due to
long data collection campaigns (as a high fraction of measured data does not il-
lustrate anomalous machine behavior) and domain expert labeling afterwards.
Furthermore, precious context knowledge for data annotation represented by the
machine behavior during data collection is lost.

In this chapter, a third alternative approach is proposed: Prompting anoma-
lous events to the machine operators for label feedback directly during every-
day processing of workpieces. This live annotation approach allows collecting
anomaly labels in the wild for low costs, as one does not have to rely on separate
measurement campaigns but collects data during normal operation of the ma-
chine tools. Furthermore, the possibility to visually and auditory inspect the ma-
chine in situ gives the machine operators valuable additional information during
live annotation of the collected data. Limitations to this approach are anticipated
by the necessity of giving timely feedback to proposed anomalies (i.e., reduction
of label quality due to time pressure).

For the proof-of-concept study presented in this chapter, a grinding machine
in a real-world production surrounding was equipped with multiple MEMS vi-
bration sensors for long-term measurements. In addition, both hardware and
software of a labeling prototype, including the design of a suitable graphical user
interface (GUI), for live and in situ annotation of sensor data records were devel-
oped and integrated. This physical prototype device was attached to the outside
of the machine and connected to these sensors. This is visualized in Fig. 5.1.

Potential abnormal events are detected by a generic anomaly detection model.
The anomaly detection model can then rise an alarm (both acoustically and by
activation of a flash light) to trigger feedback of the human machine operator to
the proposed anomaly. The visualization of sensor data records at the prototype
comes with a GUI which guides the labeling process and additionally allows for
user-initiated labeling of anomalies and process adaptations. Thus, the goal is to
achieve a large data set of several weeks of sensor data records and related labels
annotated by domain experts directly in the setting they were recorded.

The major challenge of this approach from an algorithmic point of view lies
in the choice of an appropriate generic anomaly detection models. Guided by the-
oretically formulated constraints given by the embedded nature of the proposed
system, the characteristics of the data and low latencies required by the appli-
cation, tests on a labeled subset of the data are performed for an initial choice
of anomaly detection models. The best-performing algorithm is then chosen for
deployment on the proposed demonstrator system.

From a human-machine interface point of view, estimating the reliability both
of anomaly propositions of the chosen anomaly detection model and of human
label feedback is challenging due to the fact that for most of the data no ground
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Figure 5.1: Live and in situ annotation of sensor data records: A self-
developed prototype visualizes sensor data records and allows for live and
in situ annotation of anomalies (reactive to predictions by anomaly detection
algorithms or initiated by the machine’s operator). An exemplary screenshot
of the default screen is illustrated in the lower left corner.

truth labels exist. Furthermore, one cannot rely on comparison of labels from
multiple annotators as typical crowd labeling methods do, because label feed-
back is collected from a single annotator (i.e., the current machine operator).
Several assumptions both on label reliability and annotator motivation are in-
troduced and validated. For this, the amount and distribution of label mismatch
between anomaly propositions and live label feedback, labeling behavior of dif-
ferent annotators (inter-annotator agreement) during a second retrospective sig-
nal annotation phase and temporal evolution of labeling behavior of annotators
are evaluated. Furthermore, the influence of certainty of the anomaly detection
algorithm of its anomaly propositions (measured in height of anomaly scores),
the familiarity of machine operators with the labeling user interface and other
measures regarding user motivation on the reliability of live label feedback are
investigated.

In summary, the main questions which are aimed to address in this chapter
are as follows:

• Can high-quality but low-cost labels for machine tool anomalies be gener-
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Figure 5.2: Left: Basic parts of a centerless external grinding machine. Right:
Positions of mounted sensors at the grinding machine in this study. Three
separate grinding/control wheel pairs allow for efficient machining of com-
plex workpieces with successive processing steps.

ated by incorporating machine operators’ live label feedback to anomalies
proposed by a generic unsupervised anomaly detection algorithm?

• Can a sensible and understandable human-machine interface for the live
labeling prototype be developed by taking the opinion of end users (i.e.,
machine operators) into account during the design process?

• Can simple anomaly detection models respecting hardware constraints of
the proposed embedded labeling prototype yield sensible anomaly proposi-
tions?

• How does the reliability of label feedback depend on the type of anomaly,
the kind of signal visualization and the clarity of proposed anomalies (mea-
sured in height of anomaly scores)?

• How can reliability of the annotator label feedback be measured sensibly
without access to ground truth labels for most of the data and with label
feedback for only one annotator at a time (i.e., the current operator of the
machine tool)?

5.2 Measurement Setup

In this section, information about the measurement setup is presented. This in-
cludes specifications about the used sensor types and positions. All data were
collected from the centerless external cylindrical grinding machine illustrated in
Fig. 5.1 which was equipped with the proposed labeling prototype.

The data of this study were recorded using MEMS vibration sensors as de-
scribed in Table 1.1. For the measurement of process-related anomalies, the



106 5 User Study: Quality of Live Annotations and Influencing Factors

workpiece support as depicted in Fig. 5.2a proved to be a suitable sensor mount-
ing position. The grinding machine examined in this study was rather complex
and encompassed three workpiece supports. These allowed for three subsequent
processing steps and thus machining of geometrically complex workpieces.

An overview of the measurement setup is illustrated in Fig. 5.2b. The three
workpiece supports are depicted in white with workpieces depicted in gray. Grind-
ing wheels and control wheels associated to the three successive processing steps
are shown in red and blue, respectively. The successive processing of the work-
pieces starts on the bottom workpiece support, proceeds to the middle workpiece
support and is finished on the top workpiece support. This processing order of
the workpieces is indicated by the direction of depicted arrows. Each workpiece
support is equipped with a sensor (green). The bottom sensor is termed OP1, the
middle sensor OP2 and the top sensor OP3. The most relevant sensor positions
for anomaly detection are OP1 and OP2, where most of the material removal
from the workpiece happens. Each sensor is connected to an embedded PC (gray)
acting as gateway system for local preprocessing and data handling. The gateway
systems are in turn connected to the labeling prototype.

5.3 Description of the Visualization and Labeling
Prototype

In order to understand the design considerations of the proposed labeling proto-
type, the characteristics of the labeling surrounding and how these are addressed
during the design of the visualization and labeling prototype are described in
this section. Furthermore, the intended use of the labeling prototype is sketched.
The final design of the prototype is visualized in Fig. 5.3.

5.3.1 Design Process of the Labeling Prototype

The design of the labeling tool evolved both through many interviews with the
machine operators and design considerations deducted from the typical working
conditions on the factory floor. The characteristics of the industrial surrounding
and the design considerations with which these characteristics are aimed to be
addressed can be summarized as follows:

• First general impressions of the surrounding included its loudness and the
necessity of the machine operator to be capable of handling multiple tasks
in parallel.

• In order to draw the attention of the machine operator to the labeling pro-
totype display while being involved with other tasks, an alarm flash light
and red coloring of proposed abnormal signals was triggered. Furthermore,
an acoustic alarm signal was activated. This alarm signal had to be rather
loud due to the noisy surrounding of the machine.
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(a) Screen 1: Cont. visualization (b) Screen 2: Anomaly (binary)

(c) Screen 3: Anomaly (multi-class) (d) Screen 4: Process adaptation (multi-
class)

Figure 5.3: Screens of the visualization and labeling prototype (English ver-
sion). The figures illustrate screenshots of the developed labeling prototype
which was deployed on the factory floor.

• To address the expected uncertainty of annotators in the annotation process
which occurred due to handling multiple tasks in parallel, an opportunity
to skip the labeling when uncertain was included (buttons “Don’t know /
skip” on screens in Fig. 5.3). In addition, switching between the successive
labeling screens manually to review the visualized signals again during the
labeling process was allowed (buttons “Back to last screen”). Finally, void
class buttons (“Other anomaly” and “Other process adaptation”) allowed
to express uncertainty about the class of anomaly / process adaptation or
giving a label for an anomaly / process adaptation which was not listed
among the label choices.

In addition, the end users of the proposed labeling prototype (i.e., the ma-
chine operators and their shift leader) were included at multiple stages of the
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design process in order to allow for a design of the labeling prototype guided by
optimal user experience.

• In order to define an initial version of the labeling prototype screen design,
a first meeting with the shift leader was arranged. In this meeting, a first
version of the labeling prototype design was proposed and adapted. In
addition, the most accustomed way for presentation of sensor data was dis-
cussed: Industrially established solutions typically depict the envelope sig-
nals rather than the raw sensor data, TFD representations or feature scores.
Thus, this well-known form of envelope signal representation was chosen.
Finally, the most frequent anomaly types and process adaptations to be in-
cluded as dedicated class label buttons (screens 3 and 4 in Fig. 5.3) were
discussed.

• After implementation of the labeling GUI from the adapted design of the
initial meeting, the user experience of the proposed labeling GUI was dis-
cussed in a second meeting with the shift leader. This involved a live demo
of the suggested labeling GUI in order to illustrate the intended use of the
labeling prototype and resulted in a second rework of the labeling proto-
type.

• After this second rework of the labeling prototype, a meeting was arranged
including both the shift leader and all machine operators. This meeting
included a live demo of the labeling prototype directly at the grinding
machine and a discussion of the terms chosen for the labeling buttons on
screen 3 and 4 depicted in Fig. 5.3. In addition, an open interview gave the
opportunity to discuss other ideas or concerns regarding the design or use
of the labeling prototype.

• In order to address remaining uncertainties about the intended use of the
labeling prototype after deployment at the demo grinding machine, a short
instruction manual was written and attached next to the labeling prototype
at the machine.

The final visualization and labeling prototype GUI is shown in Fig. 5.3. Back-
ground colors of the screens were changed to white (black on the original screens)
for better perceptibility of visual details. The terms stated on the screens were
translated verbatim to English in these figures for convenience of the reader.
Apart from the translated terms and the change in colors, the screens depicted in
Fig. 5.3 are identical to the original screens. The GUI with original background
colors and language descriptions can be found in the appendix.

To the best of the author’s knowledge, no previous work has focused on col-
lecting data annotations via direct human feedback in industrial applications like
described here. Furthermore, the industrially robust prototypical annotation tool
used here is different from typical off-the-shelf smartphone or tablet devices and
involves different design implications, which are described here for the first time.
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5.3.2 Functionality of the Labeling Prototype

In this subsection, a brief overview of the intended use of the labeling prototype
is presented. The default screen (screen 1) as depicted in Fig. 5.3a illustrates the
sensor envelope signals.

When the anomaly detection algorithm detects an anomalous signal behavior
an alarm is generated: The signal is colored in red, furthermore both an acoustic
alarm and a flash light are activated and the anomaly counter to the right of the
alarm-causing signal is incremented. By pressing this counter button, the user
is guided to the second screen as shown in Fig. 5.3b. On this second screen, the
user can review the alarm-causing signal and the signals of the other sensors by
switching between the tab buttons “OP1”, “OP2” and “OP3”. If the signal is con-
sidered normal, the user can return to screen 1 by pressing the button “Normal”.
If the signal is considered abnormal, the user should press the button “Not nor-
mal” and is be guided to screen 3 as shown in Fig. 5.3c for specifying the type of
anomaly.

On screen 3 then, the user is prompted a choice of the most typical anomaly
types. A button “Other anomaly” allows specifying that either the anomaly type
is not listed or that only vague knowledge exists that the signal is anomalous but
that the type of anomaly is unknown. This button might for example be pressed
in case of a common form of envelope signal that is known by the operator to
typically appear before certain machine anomalies or by clear signal deviations
with an unfamiliar signal pattern. By pressing the button “Back to last screen”
the user can return to screen 2 for re-considering the potentially abnormal signal
under review. By pressing the button “Process adaptation”, the user is guided to
screen 4 as illustrated in Fig. 5.3d, where the signal under review can be labeled
as showing a process adaptation. The reason for this is that a generic unsuper-
vised anomaly detection model can typically not distinguish between signal out-
liers due to a real anomaly or major process adaptations and might report both
as a potential anomaly. On screen 4, the user is again prompted with a selection
of most typical process adaptations and the possibility to specify “Other process
adaptation” if the type of process adaptation is not listed.

On each screen, the user has the possibility to abort the labeling process by
pressing the “Don’t know / skip” button. This allows returning to the default
screen (screen 1) when uncertain about the current annotation. Higher quality
labels are assumed to be possible by these buttons allowing to express annotator
uncertainty.

On screen 1, the user is given three more buttons for self-initiated activities.
“Report anomaly” allows the user to specify an abnormal signal not reported
by the anomaly detection models. These false negatives are the most precious
anomalies as they are the ones that could not be detected by the anomaly de-
tection algorithms. The button “Report process adaptation” allows reporting pro-
cess adaptations, which both gives useful meta information for later signal review
by the data analyst and allows to learn distinguishing between signal outliers due
to (normal) process adaptations and anomalies. The button “Start learning” fi-
nally allows initiating a re-learning of the anomaly detection model. This button
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Figure 5.4: Explanation of measures for inter-annotator agreement and
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must be considered after major process adaptations or when the learning process
was initiated during abnormal signal behavior, as then the learned normal ma-
chine behavior is not represented well and consequently results in frequent false
positives. The state of learning is depicted by a counter in the upper left corner
of screen 1, which allows the user to consider re-learning (i.e., if abnormal events
occurred during learning) and in general makes the state of learning apparent to
the user.

5.4 Assumptions on Evaluation Measures

In this section, the assumptions on evaluation of online label feedback which are
introduced with this work are discussed.

5.4.1 Assumptions on Measures for Quality of Label Feedback

As mentioned in the former section, this study is confronted with the challenge
of rating label reliability without access to ground truth labels. In addition, only
one label feedback per proposed data record is received (assigned by the current
machine operator), which makes rating reliability of online label feedback via
inter-annotator agreement (consistency between labels of multiple annotators)
impossible. Thus, alternative strategies and assumptions for rating reliability of
online label feedback are imposed:

• Assumption 1: Reliable online annotations are assumed to coincide with
a low mismatch between anomaly propositions of the anomaly detection
model and online annotator feedback (i.e., a high confirmation rate). The
amount of confirmed anomalies per class yields information about which
types of anomalies can be identified reliably by annotators: Frequently con-
firmed anomaly types are assumed to be identifiable well from the sensor
signals visualized with the proposed labeling prototype.

• The confirmation rate of a reliable online label feedback is assumed to be
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dependent on anomaly scores and time of proposing data records for anno-
tation.

– Assumption 2a: Reliable label feedback is assumed to coincide with
a high confirmation rate of data records with high anomaly scores (as-
signed by the anomaly proposing anomaly detection model), as anoma-
ly scores reflect the degree of outlierness of signals under review. Thus,
signals with high anomaly scores deviate more clearly from normal sig-
nals.

– Assumption 2b: In addition, a higher degree of confirmed anomaly
propositions is assumed to be observable for days with visually con-
firmed anomalies (e.g., due to machine inspection by the operators).
On the other hand, if anomaly propositions for clearly outlying signals
are rejected although anomalous machine behavior was confirmed af-
terwards, small reliability of this label feedback is assumed.

• For a high mismatch between anomaly proposition and online label feed-
back it is hard to decide whether proposition or feedback is more trustwor-
thy. In order to still be able to assess reliability of online label feedback,
a second period of retrospective signal annotation is introduced: Signals
proposed as anomalous to the machine operators during online annotation
are considered for a second review. Multiple annotators are then asked
to inspect these signals again retrospectively. Comparison of online label
feedback with this second set of retrospective labels allows rating inter-
annotator agreement (i.e., consistency between retrospective labels of mul-
tiple annotators) and intra-annotator agreement (i.e., consistency of anno-
tations between first (online) and second (retrospective) labeling period):

– Assumption 3a: Reliable retrospective labels are assumed to coincide
with a high inter-annotator agreement.

– Assumption 3b: Reliable online label feedback is then assumed to coin-
cide with a high intra-annotator agreement between online label feed-
back and (the majority vote of) retrospective labels (assumption 3b).
The majority vote of the multiple retrospective labels per proposed
signal has to be computed in order to make the single online label feed-
back comparable with multiple retrospective labels. A subject-specific
annotator agreement cannot be computed, as access to shift plans can-
not be granted (due to local data protection laws).

For a better understanding, different scenarios of inter- and intra-annotator
agreement are visualized in Fig. 5.4. Here, retrospective annotators 1 to 5 are
shown the signals proposed as anomalous during online annotation for a second
review. Inter-annotator agreement can be judged from these 5 annotations per
proposed signal. The majority vote found from these 5 annotations per signal is
depicted in row 6 and allows for comparison of retrospective annotations with
online annotations (row 7). This in turn allows for judging intra-annotator agree-
ment, i.e., consistency between both labeling periods for each signal proposed as
anomalous.
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Additional to the assumptions stated above, high label reliability is related to
high annotator motivation. Annotator motivation, on the other hand, is estimated
by the assumptions stated in the following.

5.4.2 Assumptions on Measures for Annotator Motivation

• Assumption 4a: High annotator motivation is assumed for a high reaction
rate during online annotation to labels proposed by the anomaly detection
algorithm. The reaction rate is measured by the ratio of anomaly proposi-
tions which the annotator reacted to by either confirming an anomaly or
rejecting the proposed label (by assigning a “Normal” label). Furthermore,
an intentional skipping of the current anomaly proposition by pressing the
“Don’t know / Skip” button is rated as a reaction.

• Assumption 4b: A small reaction latency during online annotation to labels
proposed by the anomaly detection algorithm is assumed to be a sign of
high annotator motivation.

• Assumption 5: Finally, a high degree of user-initiated actions for days with
visually confirmed anomalies is assumed to correlate with a high user mo-
tivation. This is due to a higher necessity of process adaptations after con-
firmed anomalies and a higher necessity of reporting anomalies missed by
the anomaly detection model during time periods of abnormal machine be-
havior. The degree of user-initiated actions is measured by the number of
clicks of any of the buttons for user-initiated actions on the proposed visu-
alization and labeling prototype (cf. Fig. 5.3a, buttons “Report anomaly”,
“Report process adaptation” and “Start learning”).

5.5 Experiments

This section presents experiments conducted both for the initial choice of an
anomaly detection model and for evaluations regarding the assumptions imposed
on label quality and annotator motivation in Section 5.4.

5.5.1 Selection of a Generic Anomaly Detection Algorithm

A sensible choice of anomaly proposing algorithm (i.e., anomaly detection model)
had to be found among the rich potential choice of models. The anomaly de-
tection model of choice should both fulfill requirements regarding predictive
quality and address the computational constraints (restricted memory space, re-
stricted computational time during predictions) arising from the embedded na-
ture of the custom-built, deployed labeling prototype and the nature of the appli-
cation (fast reporting of potentially high-risk anomalies).
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Evaluation Data

For selection of a suitable anomaly detection algorithm, the challenge is how to
measure predictive quality of models without reliable ground truth labels for
the data. In fact, the very motivation of installing the visualization and labeling
prototype at the grinding machine observed in this study was that critical pro-
cess problems occurred at this machine but the cause of them remained widely
unknown.

The data sets chosen for estimation of predictive quality of anomaly detection
candidates (data sets DS1 and DS2) were recorded at two successive days with
visually confirmed machine damages. Multiple successive workpieces were pro-
cessed with a non-optimal interaction between grinding wheel and control wheel,
which resulted in “whirring workpieces” and finally a damage of the grinding
wheel. Whirring of workpieces is typically caused by the workpiece not being
decelerated properly by the control wheel. A whirring workpiece is then acceler-
ated to the speed of the grinding wheel and ejected from the workpiece support,
flying through the machine housing - thus the term whirring workpiece. This
type of anomaly is referred to as whirr anomaly in the following text.

DS1 and DS2 data were recorded during initial test measurements prior to
the online annotation experiments involved with this study. The visual confirma-
tion of machine damages allowed for a labeling of whirr anomalies and grinding
wheel damages in discussion with the domain experts and can thus be interpreted
as ground truth labels. DS1 (3301 data records, 293 anomalies) includes a higher
proportion of anomalies than DS2 (3692 data records, 22 anomalies). Thus, pre-
dictive results for DS1 were assumed to be more informative regarding choice of
an appropriate anomaly detection algorithm.

Exemplary signal envelopes for the different classes present in data sets DS1
and DS2 are illustrated in Fig. 5.5. An exemplary normal signal of sensor OP1 is
depicted in Fig. 5.5a. The most severe class of anomaly at the considered grind-
ing machine was whirring of workpieces. An exemplary signal is depicted in
Fig. 5.5c. As mentioned above, whirring workpieces can result in severe damage
of machine parts, especially of grinding wheel and control wheel. An exemplary
signal of a visually confirmed damage in the grinding wheel due to multiple
successive whirring workpieces is illustrated in Fig. 5.5d. Warm-up signals as
depicted in Fig. 5.5b can be observed typically after machine part changes due
to detected anomalies or when the machine is started after a longer down-time.
Warm-up is the most frequent type of signal related to process adaptations. In
order to create a binary classification scenario for selection of a generic (binary)
anomaly detection algorithm, labels for all anomaly classes were merged into a
single anomalous label class.

Anomaly Detection Models and Features

Additional to comparison of predictive quality of anomaly detection model candi-
dates on labeled data sets DS1 and DS2 the following requirements for the choice
of an anomaly detection algorithm can be formulated due to the constraints im-
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Figure 5.5: Exemplary envelope signals for different classes of normal be-
havior (Fig. 5.5a), process adaptations (Fig. 5.5b) and anomalies (Fig. 5.5c,
Fig. 5.5d). Damage of the grinding wheel occurred due to multiple, succes-
sive whirring workpieces.

posed by data characteristics and embedded nature of the deployed labeling pro-
totype:

• The algorithm is not provided with any labels during the conducted live
annotation experiments and must thus allow for completely unsupervised
learning.

• The algorithms must allow for fast predictions (due to computational con-
straints and the goal of creating timely alerts for potential anomalies) and
have low memory occupation (embedded system with restricted memory
space).

• Frequent process adaptations necessitate fast re-learning or fast transfer
learning capabilities of the models in order to retain an appropriate repre-
sentation of the normal state.
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In Tables 5.1 and 5.2, results for comparison of different anomaly detection
models on data sets DS1 and DS2 both regarding predictive quality (precision, re-
call and F1 score) and predictive cost (training time, prediction time, memory oc-
cupation) are stated. The predictive measures are stated as class-weighted scores,
i.e., class imbalance is taken into account. Memory occupation is stated in kilo
bytes, training time in seconds, prediction time in milliseconds. All experiments
were evaluated on an Intel Core i7-6700 with 3.4 GHz without any optimization
of code or parallelization. The upper part of the tables are occupied by meth-
ods relying on one-dimensional data representations, the lower parts by methods
relying on multi-dimensional (i.e., feature space) representations. For feature
space methods, the implementations of scikit-learn [184] and PyOD [290] were
used where available.

Most anomaly detection algorithms stated here rely on an assumption of the
outlier fraction. The real outlier fraction was provided which was computed from
DS1 and DS2 ground truth labels. For Half Space Trees (HSTrees), 100 estimators
with a maximum depth of 10 were used. For xStream, 50 half-space chains with a
depth of 15 and 100 hash-functions were used. All other parameters were chosen
as the default values provided with the scikit-learn and PyOD implementations.
For SDTW, γ = 1.0 was chosen as proposed in [63] due to their observation that
DTW (which can be recovered by setting γ = 0) or SDTW with low γ values can
get stuck in non-optimal local minima.

NC methods come with the necessity to specify a decision threshold between
normal and abnormal behavior. This value was specified based on the Euclidean
distances of envelope signals observed during training: First, a normal centroid
was computed from training examples by Euclidean averaging of training enve-
lope signals [63]. The anomaly detection threshold was then chosen as the mean
plus nstd = 10 times the standard deviations of Euclidean distances of these train-
ing examples to the normal centroid. During prediction, Euclidean distances to
the trained normal centroid were computed and compared to this threshold value
in order to predict whether the current test envelope signal is normal or abnor-
mal. As of now, these Euclidean distances of test envelope signals to the trained
normal centroid are referred to as “anomaly scores”. The normal centroid is kept
up to date to the latest normal data by weighted averaging with the incoming en-
velope signals classified as normal. Optionally, envelope signals can be aligned
via cross correlation before computation of the ED measure. Signal alignment
yields translation invariance (TI) of envelope signals.

As mentioned in the related work chapter, multi-dimensional anomaly detec-
tion methods introduce the additional challenge to find a generic, expressive set
of features. A set of features consisting of a combination of statistical features and
wavelet-based features was chosen as these are both generic and prominent in
many machine health monitoring applications [252]. Statistical time domain fea-
tures consist of the first four central moments (mean, standard deviation, skew-
ness and kurtosis). Wavelet-based frequency domain features were computed by
a simple discrete wavelet transform for a db4 wavelet family base and a decom-
position level of 8. This resulted in a 13-dimensional feature vector per each data
record.
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Results

The results in Tables 5.1 and 5.2 illustrate - in accordance with literature on time
series classification (TSC) - that supervised 1NN and anomaly detection meth-
ods based on one-dimensional signal representations in general (i.e., the various
compared NC models) are highly expressive. Furthermore, the high-quality pre-
dictive results confirm that envelope signals expose enough information for de-
tection of the anomaly types present in data sets DS1 and DS2. The latter is in
accordance with the observation of the capability of experienced machine oper-
ators to estimate non-optimal machine behavior for many anomaly classes from
the typical envelope signals displayed for commercially available industrial sen-
sors.

1NN performed only acceptable in a supervised setting, at least without fur-
ther (clustering/density) assumptions being introduced. On the other hand, NC
methods illustrated excellent predictive performance for both data sets DS1 and
DS2. In this study, the ED measure was competitive to DTW and SDTW while
resulting in faster training/prediction as stated in Tables 5.1 and 5.2.

NC models combined with ED measures (NC (ED)) performed especially well
when signals were aligned to the normal centroid via cross correlation before
computation of the ED measure (NC (ED+TI)). The reason for this is the nature
of the presented data: Applying the same processing steps to each workpiece re-
sults in a highly similar envelope signal for each (normally) processed workpiece
and thus in no need to warp signals before computation of distance measures as
done via DTW. Signal alignment via cross correlation however yields a compu-
tationally efficient translation invariance of signals, which takes typical process
adaptations (like changing the point in time of initial contact between grinding
wheel and workpiece) into account. This in turn results in these signals during
process adaptations not being falsely proposed as anomalies, thus effectively re-
ducing the false positive rate.

While anomaly detection methods based on envelope signals performed well
on both data sets, basic feature space methods failed to capture normal behavior
especially for DS1. The reason for this is assumed to be given by the more com-
plex anomalies present in DS1 than in DS2. Among feature space methods, only
more advanced methods like HDBSCAN and streaming feature ensemble meth-
ods (LODA, HSTrees, RSForest, RSHash and xStream) illustrated a reasonable
predictive quality. Nonetheless, these methods yielded worse predictive quality
while occupying more memory and/or revealing longer prediction times than NC
methods.
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Choice of Anomaly Detection Model for Deployment

In accordance with the requirements for an anomaly detection algorithm formu-
lated at the beginning of Subsection 5.5.1, the NC model combined with the ED
distance measure and signal alignment (NC (ED+TI)) was chosen to be deployed
in the labeling prototype due to its excellent performance on data sets DS1 and
DS2, the small and constant memory requirements as well as fast (re-)training
and prediction times. Furthermore, this model states an intuitive anomaly score
per each considered data record as described above, which is made use of in the
following section on label evaluation results.

In order to allow for quick reaction in case of whirring workpieces, a simple
threshold heuristic which yields an alarm signal when a prespecified signal am-
plitude threshold is exceeded was additionally deployed. This allowed generat-
ing timely warnings not only on the level of complete signals (as via the decision
threshold of the NC model) but for each signal envelope sample. Furthermore,
this amplitude threshold heuristic allowed for alarms during re-learning of the
NC model.

Thus, the threshold heuristic was implemented mainly to allow for timely
alarms of safety-critical whirring workpieces, even when the NC model was not
available (i.e, during (re-)learning). However, parallel anomaly detection by both
models additionally allowed comparing the simple threshold heuristic with the
more advanced NC model (having the potential to judge anomalous behavior
of signals both on sample and sequence level by taking signal forms into ac-
count). For whirr anomalies with their characteristic and well-understood high-
amplitude peak pattern as illustrated in Fig. 5.5c, a good detection rate with the
threshold heuristic was assumed. For subtle anomalies however, a better detec-
tion rate with the NC model was assumed. Furthermore, a smaller FP rate was
assumed for the simple threshold heuristic as it only generates alarms for char-
acteristic high-energy peak patterns (i.e., whirring workpieces), while the NC
model also generates alarms for other more subtle anomalies (e.g., manifesting
in small amplitude deviations in multiple signal locations or across complete sig-
nals). These subtle anomalies were assumed to be visually harder to identify by
the machine operators, thus yielding a higher FP rate for the NC model. In gen-
eral, among the most interesting questions regarding evaluation of online signal
annotations collected via direct human feedback were:

• Can online annotations yield reliable signal labels (in comparison to retro-
spective annotations)?

• Which types of anomalies can a human annotator detect by reviewing sen-
sor signal envelopes (both during online annotation and retrospective anno-
tation)?

• Can human operators identify subtle anomalies proposed by the NC model?

• On which factors does the reliability of label feedback depend?

These questions are addressed in the following subsection.
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5.5.2 Evaluation of Label Feedback

As mentioned in Subsection 5.5.1, the NC (ED+TI) anomaly detection model and
the threshold heuristic were deployed on the visualization and labeling proto-
type in order to allow for online proposition of potential abnormal signals from
sensors OP1, OP2 and OP3. In the following section, the quality both of these
anomaly propositions and online label feedback by machine operators are eval-
uated based on the assumptions made in Section 5.4. Furthermore, annotations
obtained during this (first) online label feedback are compared to annotations
obtained during a (second) retrospective label feedback where possible.

For evaluation of retrospective annotations, access to labels from multiple
annotators per each proposed signal as mentioned in Section 5.4 is possible. The
machine operators agreed to give these second retrospective annotations for a rea-
sonable amount of signals. The anomaly propositions between 12th and 24th of
April were chosen for a second retrospective annotation, as these data comprise
the most interesting signals (introduction of the labeling prototype, visually con-
firmed anomalies around the 16th of April). In order to make the retrospective
labels comparable to the single online label, the mode (i.e., majority vote) of ret-
rospective labels is considered in Figures 5.6b, 5.7b and 5.11.

Assumption 1 (Amount and Distribution of Label Feedback)

In Fig. 5.6, the class distribution of anomalies confirmed (true positives) and
rejected (false positives) by annotators are stated for both label-proposing algo-
rithms, the NC model and the threshold heuristic. The results are stated both
for online label feedback (Fig. 5.6a) and the second retrospective label feedback
(Fig. 5.6b). Signals proposed as anomaly but not reacted to during online an-
notation are thus not displayed in Fig. 5.6a. For retrospective annotation results
illustrated in Fig. 5.6b, however, every anomaly proposition was either confirmed,
rejected, or labeled with “Don’t know” by the annotators.

Considering online annotations in Fig. 5.6a, the threshold heuristic resulted
in a smaller degree of false positives than the NC model and less uncertain la-
bels (“Don’t know”). Furthermore, clear anomaly types like “Whirr” and “Grind-
ing wheel anomaly” were more frequently identified by the threshold heuristic.
Other confirmed anomalies were labeled as unknown types of anomaly (“Other
anomalies”) and typically identified in reaction to anomaly propositions of the
NC model. It is assumed that annotators recognized these data records labeled
“Other anomalies” being outliers but were uncertain about the cause and type of
these anomalies due to a more subtle deviation across larger parts of the signal
than for characteristic “Whirr” and “Grinding wheel anomaly” patterns. This
confirms the expectations stated in the last paragraphs of Subsection 5.5.1, that
NC models result in a smaller confirmation rate than threshold heuristics, as the
latter only propose clearly deviating (high-energy peak) patterns as anomalies
but are not capable of considering more subtle signal deviations as anomalies.

For retrospective labeling, different results are observed (cf. Fig. 5.6b): Signals
labeled as “Don’t know” during online annotation (cf. Fig. 5.6a) were typically
labeled either “Normal” or given an anomaly label (“Whirr”, “Misplaced work-
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Figure 5.6: Distribution of annotator feedback across classes (cf. assumption
1): During retrospective annotation (subfigure b), labels are given more con-
fidently to clear classes (“Normal”, “Whirr”) than during online annotation
(subfigure a).

piece” or “Other anomaly”). It is assumed that the possibility to review signals
without time pressure and without the necessity to handle other tasks in paral-
lel encouraged the annotators to take more time during annotation, whereas the
daily routine while working at the grinding machine necessitated a more timely
reaction to proposed labels. The main difference between online and retrospec-
tive annotations was thus found in the redistribution of uncertain labels to more
confidence in clearer decisions about the signal being normal or abnormal.

Assumption 2a (Dependency of Label Feedback on Anomaly Scores)

In the former subsection, a high proportion of the online confirmed threshold
model anomaly propositions being of clear anomaly types (“Whirr” and “Grind-
ing wheel anomaly”) was described. In addition, a dependency of the confirma-
tion rate of NC anomaly propositions on the height of NC anomaly scores as
shown in Fig. 5.7 and the time of anomaly proposition as illustrated in Fig. 5.8
was observed.

For anomaly propositions by the NC model, high anomaly scores coincide
with high distances between the signal under review and the learned normal
centroid. Anomaly scores are thus a measure for the clarity of deviation of a
signal under review from the learned normal centroid of the NC model. As more
clearly deviating signals proposed as anomalous are assumed to be confirmed an
anomaly more frequently, higher accordance between anomaly propositions and
label feedback (i.e., both labeled abnormal) is expected for increasing anomaly
scores. The confirmation rate is quantified by precision and F1 scores in the
following paragraphs.
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Figure 5.7: Dependency of metric scores (precision, F1 score) for label feed-
back on the height of anomaly scores of the NC model (cf. assumption 2a):
For online labels (subfigure a), the dependency between likelihood of confir-
mation of proposed anomalies and height of anomaly scores is clearer than
during retrospective annotation (subfigure b).

In Fig. 5.7, precision and F1 scores between NC anomaly proposition and la-
bel feedback are illustrated across the height of anomaly scores. Precision and
F1 scores were computed for binary labels (i.e., all anomaly types are considered
a single anomaly class), as the NC model only proposes binary labels (normal
vs. abnormal signal). Annotator label feedback was considered as ground truth
and anomaly propositions as predicted labels. NC anomaly propositions with
label feedback “Don’t know” were not considered for computation of the metric
scores, as they cannot be assigned either of these binary labels. Anomaly proposi-
tions by the threshold model were also not considered in this figure as they come
without an intrinsic anomaly score: Neither height nor width nor position of high-
amplitude peaks alone seem to be sole reasons for human annotators to confirm
a “Whirr” anomaly (as outlined in upcoming evaluations regarding assumption
3b), thus neither of these measures qualifies as anomaly score. NC anomaly de-
tection on the other hand yields a built-in anomaly score based on the distance
of test signals to the learned normal centroid, which is additionally related to the
visually observable degree of outlierness of a test signal.

The data considered for computation of the metric scores in Fig. 5.7 consists
of (label proposition, label feedback, anomaly score) triplets. Going from left to right
in Figures 5.7a and 5.7b, the triplet with lowest anomaly score from the current
set of triplets is successively dropped and F1 score and precision score (between
anomaly proposition and label feedback) are computed for the remaining triplets.
Thus, the amount of data considered for computation of both metric scores de-
creases from left to right: While the leftmost plotted point considers all triplets,
the rightmost point considers only a single triplet (i.e., the one with the highest
anomaly score). For a perfect dependency between the likelihood of confirma-
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tion of anomaly propositions and height of NC anomaly score, one would expect
a monotonic increase of metric scores from left to right.

For online label feedback, both F1 scores and precision scores increase almost
monotonically from left to right and thus with the height of anomaly scores as-
signed by the NC model. This is interpreted as a confirmation of assumption
2a, that clearer types of anomalies can be detected more reliably by online anno-
tators. For retrospective labeling, a similar dependency of metric scores on the
height of NC anomaly scores is observable in Fig. 5.7b when considering a compa-
rable range of anomaly scores as in Fig. 5.7a (anomaly scores between 4 and 13).
However, the two rightmost data points in Fig. 5.7b which illustrate the highest
anomaly scores were rejected as being normal by retrospective annotators. These
rejections effect a sudden decrease in metric scores. The triplets responsible for
these two plotted points were not considered in Fig. 5.7a, as they were labeled
“Don’t know” online and could thus not be judged either as confirmed or rejected
anomaly. Thus, a similarly clear dependency between the likelihood of anomaly
confirmation and height of NC anomaly scores during retrospective annotation
as observed for the online label feedback cannot be found.

Assumption 2b (Dependency of Online Label Feedback on Time)

When illustrating anomaly propositions and online label feedback across time,
one observes a temporal dependency of both anomaly propositions and label feed-
back as illustrated in Fig. 5.8.

Firstly, both anomaly propositions and label feedback cluster at certain days.
This is most obviously the case for April 16th and the surrounding days. Annota-
tors confirmed several anomaly propositions with labels “Whirr” and “Grinding
wheel anomaly” during online annotation. Visual inspection of the machine val-
idated the annotators’ labels: Multiple successive whirring workpieces damaged
the grinding wheel and finally resulted in a change of the grinding wheel. Thus,
label feedback at these days can be interpreted as reliable. This scenario illus-
trates an advantage of the live annotation approach: The possibility to consider
context information given by the ability to visually inspect the machine during
annotation allows for gathering reliable labels of the earliest beginning of grind-
ing machine damages (i.e., the multiple successive whirring workpieces resulting
in increasing damages at the grinding wheel surface). This context information
cannot be accessed with the common retrospective annotation approaches, where
anomalies have to be judged solely relying on the information given by review of
sensor signals (as additional information like optical measurements are not avail-
able in this study’s scenario). As an additional benefit, being able to detect the
earliest beginnings of damages in the grinding wheel surface (due to alarm gen-
eration for whirring workpieces) allows for the adaptation of process parameters
before more severe damages in the grinding wheel damage would necessitate a
change of the grinding wheel.

Secondly, an exceptionally high amount of rejected anomaly propositions is
observed on the day of introducing the labeling prototype (April 12th), while ma-
chine operators never expressed uncertainty about the signal class (label “Don’t
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Figure 5.8: Anomaly propositions and online label feedback across time (cf.
assumption 2b). Confirmed anomalies are observed especially around April
16th, where an actual damage of the grinding wheels was confirmed by vi-
sual machine inspection.

know”) at all. While the amount of “Don’t know” labels increases across time, the
amount of label rejections decreases. It is assumed that anomaly rejections were
more often replaced by “Don’t know” labels due to an increased trust of human
annotators in anomaly propositions of the labeling prototype, i.e., small signal
deviations were more often rated as potentially abnormal than clearly rejected.
Furthermore, the human annotators might have learned new characteristic pat-
terns for signals formerly considered normal due to the anomaly propositions
for subtle signal deviations since introduction of the labeling prototype. These
effects are considered a “calibration” phase of human annotators having to get
accustomed with the labeling prototype before being able to give reliable online
label feedback.

Assumption 3a (Inter-Annotator Agreement between Multiple Retrospective
Annotators)

In addition to assuming high label reliability for visual clear signal deviations
(i.e., high anomaly scores) and days of visually confirmed machine damages,
high label reliability was assumed to coincide with a high amount of inter- and
intra-annotator agreement in Section 5.4.1. The results both for inter-annotator
agreement (among multiple annotators during retrospective labeling) and intra-
annotator agreement (between online label feedback and retrospective labels) are
illustrated qualitatively for each anomaly proposition of either the NC model or
the threshold heuristic in Fig. 5.9. This qualitative evaluation allows judging both
class-specific and annotator-specific differences of annotation agreement. Colors
encode the class of annotator feedback. Rows 1 to 3 illustrate retrospective labels
of multiple annotators. Row 4 depicts the majority vote among these annotators
(i.e., mode of rows 1 to 3 per each column). Online label feedback is illustrated
in the last row (row 5). Examples of samples with high and low inter-annotator
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Figure 5.9: Qualitative evaluation of agreement between multiple retro-
spective annotators and with online label feedback for signals proposed as
anomaly (cf. assumptions 3a and 3b). While annotators show high agree-
ment during retrospective annotation, agreement between in situ online la-
bel feedback (row 5) and the majority vote of retrospective annotations (row
4) is low.

agreement during retrospective labeling are depicted in Fig. 5.10.
Fig. 5.9 confirms a high inter-annotator agreement during retrospective la-

beling in general and thus validates interpreting retrospective labels as ground
truth labels. The examples with low inter-annotator agreement depicted in Fig-
ures 5.10b and 5.10e visually confirm the subtlety of signal deviations in compar-
ison to the depicted normal envelopes in Figures 5.10a and 5.10d. Examples
for high inter-annotator agreement as depicted in Figures 5.10c and 5.10f on
the other hand illustrate clear anomalous “Whirr” patterns. This confirms the
findings for assumption 1 that clear anomalies with well-known characteristics
(e.g., whirring workpieces) are identified more reliably.

Assumption 3b (Intra-Annotator Agreement between Online Label Feedback
and the Mode of Retrospective Annotations)

Fig. 5.11 summarizes the mismatch between online label feedback and the mode
of retrospective labels (i.e., row 4 in Fig. 5.9) as confusion matrix in a multiclass
setting. This illustration allows to observe class-specific annotation differences
quantitatively, while the annotator-specific information from Fig. 5.9 is lost. As
in the above evaluations, high annotation agreement was interpreted to coincide
with high annotation reliability.

Similar to the qualitative results reported in Fig. 5.9, a small agreement be-
tween online label feedback and retrospective annotations is observed. In ad-
dition, the confusion matrix allows to detect class-specific differences in intra-
annotator agreement. Signals labeled as “Whirr” during online labeling were
confirmed during retrospective labeling or labeled “Don’t know”. These “Don’t
know” labels were given for signals with a characteristic high-amplitude peak
but at an untypical position (second 9) in the signal. Thus, both a typical posi-
tion (seconds 3–5 for sensor OP2 and seconds 7–8 for sensor OP1 as depicted in
Figures 5.10c and 5.10f) and a certain minimum height of high-amplitude peaks
seemed to have been internalized by the operators as necessary conditions to clas-
sify a signal as “Whirr”.

Signals labeled as “Grinding wheel anomaly” during online annotation were
labeled as “Whirr” by all retrospective annotators. This might be due to the fact
that grinding wheel damages as observed at the 16th of April typically result
from multiple successive whirring workpieces. Thus, a smooth transition be-
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Figure 5.10: Example signals for high and low inter-annotator disagreement.
Examples with high agreement illustrate typical “Whirr” patterns, while ex-
amples with low agreement are characterized by more subtle signal devia-
tions.

tween signal patterns from “Whirr” to “Grinding wheel anomaly” exists. This
finding illustrates that context information during (online) annotation was neces-
sary to detect the (visually confirmed) grinding wheel damages.

Signals labeled “Don’t know” or “Normal” during online annotation were, in
most cases, also given either of these two labels during retrospective annotation
or labeled as “Whirr”. For these two classes “Don’t know” and “Normal”, the
highest mismatch of online and retrospective labels is observed (i.e., lowest intra-
annotator agreement). The high mismatch is understandable for the class “Don’t
know”, which is characterized by a high degree of annotator uncertainty by def-
inition. Reasons for the high mismatch of class “Normal” might be given by a
limited visualization of signals on the labeling prototype (i.e., anomaly patters
better observable during retrospective annotation) and the necessity to annotate
timely during online annotation (resulting in an increased annotation error).

Signals labeled “Other anomaly” during online annotation were either con-
firmed as “Other anomaly” or rejected as “Normal”. One of the signals labeled
“Other anomaly” during online label feedback was more clearly specified to be
illustrating a wrong type of workpiece being processed by the grinding machine
by one of the annotators. As this label was not provided among the class but-
tons during online annotation (cf. Fig. 5.3c), the annotator labeled it as “Other
anomaly” during retrospective labeling but left a note specifying the more de-



5.5 Experiments 127

Do
n't
 kn

ow
No
rm
al

Oth
er 
a.

Wh
irr

Mis
pla

ced
 W
P

Gri
nd
. w
h. 
a.

Retrospective label

Don't know

Normal

Other a.

Whirr

Misplaced WP

Grind. wh. a.

On
lin

e 
la
be

l

3 5 1 6 1 0
1 4 0 5 0 0
0 1 2 0 0 0
4 0 0 1 0 0
0 0 0 0 0 0
0 0 0 3 0 0

Figure 5.11: Quantitative comparison of online label feedback and retro-
spective label feedback (cf. assumption 3b). Similar to the qualitative evalu-
ation in Fig. 5.9, small agreement between online label feedback and retro-
spective annotations occurs (i.e., most elements are not situated on the main
diagonal of the confusion matrix).

tailed anomaly class specification. This note also specified that the wrong type
of workpiece was identified due to a shorter signal length with a characteristic
pattern in the end of the signal. Thus, although the signal deviation was small, a
characteristic signal pattern could be identified by the retrospective annotator. A
personal communication with this annotator confirmed, that having more time
during retrospective annotation of this signal was helpful in order to identify the
subtle deviation.

In summary, the major findings on label reliability are as follows:

• Dependency of online label feedback on types of anomaly (assumption 1):
Clear anomaly types (whirring workpieces, grinding wheel damages) were
more often confirmed and typically proposed by the threshold model, where-
as subtle anomalies were confirmed more seldom in general and typically
proposed by the NC model. This is illustrated in Fig. 5.6.

• Dependency of label feedback on height of anomaly scores (assumption 2a):
Higher anomaly scores for anomaly propositions of the NC model resulted
in higher precision and F1 scores (cf. Fig. 5.7). This is interpreted to be
due to clearer signal deviations that were better observable by the human
annotators, resulting in more certain and thus reliable annotations. This
dependency was more clearly observable for live annotations than for retro-
spective annotations.

• Dependency of online label feedback on time (cf. assumption 2b): High
amounts both of anomaly propositions and online label feedback clustered
at days of visually confirmed machine damages as confirmed by Fig. 5.8.
This verifies the sensibility of anomaly propositions at these days and relia-
bility of the high amount of anomaly labels assigned at these days. Further-
more, one observed a “calibration” phase of users getting accustomed with
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the labeling prototype, where the labeling behavior of users changed from
tending to reject anomaly propositions to reacting with labeling signals as
uncertain (“Don’t know”). This latter finding is interpreted as increased
trust of human annotators in anomaly propositions prompted via the label-
ing prototype.

• Reliability of retrospective annotations (assumption 3a): Retrospective an-
notations illustrated high inter-annotator agreement especially for the class
“Whirr” (cf. Fig. 5.9). This confirms high reliability of retrospective labels
especially for this “Whirr” class characterized by clearly deviating signals.
Furthermore, signal examples illustrated in Fig. 5.10 visually confirm that
signals with high inter-annotator agreement were clearly identifiable as sig-
nal outliers and depict a typical “Whirr” signal pattern. On the other hand,
examples with low inter-annotator agreement were characterized by more
subtle deviations.

• Reliability of online annotator feedback (cf. assumption 3b): Similarly, on-
line label feedback showed a high agreement with retrospective labels for
the visually clearly identifiable signal deviations of class “Whirr” (cf. Fig-
ures 5.9 and 5.11). Subtle and uncertain signal outliers were more likely
to be labeled an anomaly during retrospective annotation (cf. Figures 5.6b
and 5.9). This clear type of “Whirr” anomalies is thus interpreted to be
labeled most reliably during online annotation.

Additional to assumptions on annotation reliability (assumptions 1 to 3) the
assumptions on user motivation (assumption 4 to 5) are evaluated.

Assumptions 4a and 4b (Reaction Rate and Reaction Latency during Online
Label Feedback)

High user motivation was assumed to coincide with a high reaction rate to anoma-
ly propositions (assumption 4a) and small reaction latencies of feedback to anoma-
ly propositions (assumption 4b). Here, reaction is defined by any feedback by the
operator (confirmation, rejection, or label “Don’t know”). Fig. 5.12 states reaction
rates for both the threshold heuristic and the NC model and illustrates the distri-
bution of observed reaction latencies. Latencies were measured in signals, i.e.,
a latency of 0 signals represents direct annotator feedback. Reaction rates were
measured by the fraction of anomaly propositions which the machine operator
reacted to. Both models show a similarly small reaction latency with direct feed-
back given to most anomaly propositions. For the NC model, a single outlying bin
at a reaction latency of 177 signals was omitted due to reasons of visualization of
the histogram. These 177 successive NC anomaly propositions with high-latency
feedback were prompted on April 23rd and 24th and were characterized by oc-
curring as burst of small anomaly scores (i.e., visually subtle signal deviations). It
is assumed that missing feedback for these successive propositions is due to thor-
ough reviewing of subtle signal deviations throughout these episodes of anomaly
propositions, i.e., the reviewing spanned multiple of these successive anomaly
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Figure 5.12: Reaction rates (cf. assumption 4a) and histograms of reaction
latencies (cf. assumption 4b) for online label feedback: Reaction latencies
are small for both anomaly detection models. The reaction rate is smaller for
the NC model (subfigure b) than for the threshold model (subfigure a).

propositions. When omitting this single outlying latency value of 177 signals,
the NC reaction rate computes to 0.508 (cf. Fig. 5.12b). When considering the
outlying latency value, an NC reaction rate of only 0.127 is computed. In both
cases, the reaction rate of the NC is smaller compared to the threshold heuristic
(0.730, cf. Fig. 5.12a). This is again assumed to be related to the visual clarity of
“Whirr” and “Grinding wheel anomaly” patterns in the signals proposed by the
threshold heuristic.

Assumption 5 (Dependency of User-initiated Actions on Time)

Finally, Fig. 5.13 illustrates the amount of user-initiated actions during online
annotation and its change across time. Similar to Fig. 5.8, one observes a cluster-
ing of user-initiated annotations and relearnings close to the visually confirmed
grinding wheel damage at April 16th. This is interpreted as a sign of high user
motivation, as the amount of user-initiated activity increases when necessary,
i.e., for high densities of real anomalies and resulting process adaptations.

In summary, the major findings on user motivation are:

• Relation between user motivation and user reaction latency/rate (assump-
tions 4a and 4b): Reaction latencies for online label feedback were small for
both anomaly proposing models (Fig. 5.12), which is interpreted as a sign
of high user motivation. The smaller reaction rate to NC anomaly propo-
sitions might be related to the more thorough reviewing of subtle signal
deviations which characterized many of the NC anomaly propositions.

• Relation between user motivation and time (assumption 5): User-initiated
actions were observed mainly during days of visually confirmed machine
damages and resulting machine part changes (i.e., damage and change of
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Figure 5.13: User-initiated actions across time (cf. assumption 5): Reported
anomalies, reported process adaptations and user-triggered relearning. Sim-
ilar to clusters of anomalies in Fig. 5.8, user-initiated actions cluster around
April 16th, where damage of the grinding wheels was visually confirmed.

grinding wheel on April 16th) (Fig. 5.13). This is interpreted as a sign of
high user motivation to annotate signals.

5.6 Conclusions

This chapter presented an alternative approach to retrospective annotation of sen-
sor streams in industrial scenarios. Retrospective annotations cause high costs
(due to the additional time spent by domain experts for data annotation) and
allow only a small amount of context information to be considered during anno-
tation (neither workpieces nor machine tools are accessible for inspection). On
the other hand, the proposed live and in situ annotation approach enables highly
reduced annotation cost (in-parallel annotation of signals at recording time by do-
main experts) while exposing a higher amount of meta information for consider-
ation during annotation (possibility to assess both machine tool and workpieces).
A drawback of live annotation however is the reduced time for annotation.

The goal of the study presented in this chapter was to examine if and for
which types of anomalies live and in situ annotation proves superior to retrospec-
tive annotation by the same group of domain experts (machine operators). This
was assessed via comparison of live annotations (i.e., machine operator’s direct
feedback to anomaly propositions) and retrospective annotations (by multiple
domain experts) gathered in real-world industrial manufacturing environments.
In addition to estimating reliability of live annotations, influential factors on reli-
ability were aimed to be identified. These influential factors were summarized in
multiple assumptions and tested on validity with the data collected in this study.

For data collection, a grinding machine in a real-world manufacturing setting
was equipped with vibration sensors for long-term measurements. In addition,
both hardware and software of a prototypical system for visualization and in situ
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annotation of sensor signals were developed. The development process included
the design of a suitable GUI for in situ signal annotation, which was guided by
end user experience at several steps of the design process. Generic unsupervised
anomaly detection algorithms were deployed on the labeling prototype to pro-
pose signals for annotation. Operators of the grinding machines reacted to these
anomaly propositions with in situ label feedback. This live annotation approach
allowed assembling a corpus of 123,942 real-world manufacturing sensor data
records with domain expert annotations for various anomaly types.

As expected, a simple threshold heuristic on signal amplitude found the most
typical and severe type of anomaly in this study (whirring workpieces) reliably,
as amplitude thresholds are tailor-made for its exact type of manifestation in the
signals (high-amplitude peaks). Furthermore, anomalies caused by multiple suc-
cessive whirring workpieces (grinding wheel damages) were detected reliably as
confirmed by visual machine inspections. However, many of the signals proposed
as anomalous by the threshold model were rejected (FPs) or labeled uncertain re-
garding the presence of an anomaly (label “Don’t know”). This is assumed to be
due to operators judging data records as representing whirring workpieces not
only dependent on the presence but also a minimum height and expected posi-
tion of high-amplitude peaks (cf. evaluations in Section 5.5.2, assumption 3b).

The Nearest Centroid (NC) model was deployed as a second anomaly detec-
tion model in order to find more subtle types of anomalies with less characteristic
patterns than whirring workpieces by means of a sequence-level Euclidean dis-
tance measure. A small amount of anomaly propositions was confirmed online
with the label “Other anomaly”. Most signals proposed as potential anomalies
however were labeled as normal (FPs) or uncertain (“Don’t know”). The likeli-
hood of a proposed signal to be confirmed as anomaly increased with the height
of the NC anomaly score, i.e., the clarity of its signal deviation. All of the above
illustrates that it is hard for operators to specify types of subtle anomalies with-
out having internalized a characteristic pattern of manifestation in signals. It is
assumed that operators can learn such characteristic patterns over time by being
shown multiple examples of these subtle anomalies (as the proposed prototypical
system does). However, complementary types of signal representation by TFDs
or feature scores might be necessary in order to represent signals in a form where
these subtle anomaly types manifest more clearly and in characteristic patterns.

Both the amount of anomaly confirmations and user-initiated actions (report-
ing anomalies and process adaptations, triggering re-learning of the anomaly de-
tections models after process adaptations) during live annotation clustered with
days of visually confirmed machine damages (April 16th), which is interpreted as
a sign of reliable labels for the reported anomaly types (“Whirr” and “Grinding
wheel anomaly”) and good user motivation. The latter was confirmed by small
reaction latencies and high reaction rates to online anomaly propositions.

High inter-annotator agreement of multiple annotators during a second, retro-
spective annotation phase confirmed a higher reliability of annotations for anoma-
ly types with a clear and unique signal pattern: Signals labeled as “Whirr” or
“Grinding wheel anomaly” during online annotation were similarly identified as
one of these classes during retrospective labeling. Furthermore, being able to in-
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spect the grinding machine after the occurrence of whirring workpieces allowed
to identify resulting damages in the grinding wheel damages at an early state (i.e.,
before severe damages require a change of the grinding wheel). It is this context
information given by the possibility of machine tool inspection which allows for a
reliable annotation of (early) grinding wheel damages in the data. This possibility
to inspect the machine tool during emergence of an anomaly is not given during
retrospective annotation and verifies the benefit of the presented approach for
early identification of and response to these types of clear anomalies.

On the other hand, large differences between retrospective labels and live an-
notations occurred mainly for subtle anomaly types. This confirms the findings
from above that subtle anomaly types are hard to identify without a characteristic
internalized pattern of manifestation. For these subtle anomalies, having enough
time for an extensive review of signals (as present during retrospective annota-
tion) seems to outweigh the benefit of context information given by inspection
of machine tools and workpieces during live and in situ annotation. This was
confirmed in discussions with the annotators. Thus, the restricted time for signal
review during live annotation was identified as a limiting factor to the proposed
live annotation approach when the signals under review illustrated only subtly
deviating and unknown, non-characteristic signal patterns.

In summary, the main insight of the study is that anomaly types manifesting
in clearly deviating and well-known, characteristic signal patterns can be identi-
fied reliably via the proposed live annotation approach. However, other signals
proposed as potential anomalies that illustrated an unknown, less characteristic
or more subtly deviating signal pattern were mostly rejected, i.e., labeled as nor-
mal. The question remains whether the small amount of confirmations of subtle
anomalies is caused by insufficient representation of discriminative signal infor-
mation in envelope signals, the simplicity of the anomaly detection models not
being able to detect or even cluster these subtle anomalies or simply seldom oc-
currences of these types of anomalies in general. This question shall be clarified
in the following chapter, where neural network methods are leveraged for a more
sophisticated anomaly detection. In detail, the focus in the next chapter is on:

• Finding advanced anomaly detection models which learn a more descrip-
tive and reliable latent embedding representation of the normal class data.
The goal of this is reducing the FP rate of the anomaly proposing model in
the live annotation approach.

• In addition, semi-supervised and weakly supervised extensions of these
deep anomaly detection models are evaluated in order to clarify whether
including labels allows to better align anomaly propositions with the oper-
ator’s concept of what an anomaly is.

5.7 Related Publications

C. Reich, A. Mansour, and K. Van Laerhoven. Collecting labels for
rare anomalies via direct human feedback — an industrial application
study. Informatics, 6(3):article nr. 38, September 2019.



6
Neural Anomaly Detection

This chapter presents a comparison of neural anomaly detection models defined
by various combinations of neural network encoders and anomaly detection re-
lated loss functions. Anomaly detection in this chapter is restricted to binary clas-
sification scenarios, i.e., it assumes two classes of normal and abnormal data. The
main goal is finding a more powerful model for proposition of potential anoma-
lies than the models presented in the previous Chapter 5 (nearest centroid mod-
els and threshold heuristics). For this purpose, the neural anomaly detection
models presented in this chapter need to learn a more descriptive time series
representation of the sensor data.

First, Section 6.2 outlines loss functions which are popular in neural anomaly
detection applications. Then, various hidden layer types which have proven pow-
erful across a wide range of time series representation learning tasks [24, 266] are
discussed. From these layer types, various encoder networks are constructed and
combined with the loss function types presented before. Afterwards, details on
training and optimizing these encoder-loss function combinations are outlined.
Finally, an existing approach for automatic generation of labels from weak infor-
mation sources [21] is discussed.

Then, experiments for evaluation of these encoder-loss function combinations
are performed in Section 6.3 regarding their capability to learn a sensible repre-
sentation of the normal data and to detect outliers from these normal data (i.e.,
anomalies). After description of the evaluation data (consisting of several days
with in-the-wild recorded anomalies) and definition of a generic model size for
all encoder types, visualizations of the learned time series representations and
anomaly scores predicted with the learned encoders are presented for various un-
supervised model combinations. These qualitative results are complemented by
a quantitative evaluation of these models via performance metrics. Afterwards,
semi-supervised and weakly supervised extensions of these models are compared
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via the same visualizations and metrics. The weakly supervised model utilizes au-
tomatically generated labels as mentioned in the previous paragraph. Finally, the
unsupervised, semi-supervised and weakly supervised models are benchmarked
on the live annotation data collected in the previous chapter regarding their ca-
pability to more reliably present potential anomalies for annotation (i.e., reduce
the high FP rate observed for the simple anomaly detection models in Chapter 5).

The weakly supervised model extension is trained via a novel loss function
custom-built for anomaly detection from weakly labeled data. Both this loss func-
tion and a subset of the methods and experiments presented in this chapter were
first presented in the master’s thesis [110] supervised by the author.

6.1 Motivation

Among the most interesting findings from the user study conducted in Chapter 5
is the large disagreement between recorded data proposed as abnormal by the ap-
plied anomaly detection models and the feedback to these propositions both by
live annotators and retrospective annotators. This high disagreement was visual-
ized in Fig. 5.9. The high disagreement suggests the operators not recognizing the
subtlety of signal deviations or not knowing the type of the proposed anomalies.
Alternatively, the high FP rate might be caused by the simple applied anomaly
detection models not being capable of capturing the complex normal behavior
of the evaluated grinding machine from which the data was recorded. The high
agreement among retrospective annotators suggested the latter explanation to be
more likely: The applied nearest centroid (NC) anomaly detector sacrifices histor-
ical knowledge about normal behavior incorporated in previously observed data
for having an always up-to-date representation of the normal data (captured by
the iteratively updated normal centroid). Thus, the NC model is not capable of
storing historical information about the machine’s normal behavior given by the
vast amount of previously analyzed data in a memory-efficient way.

This chapter compares various alternative anomaly detection models with the
goal of finding a sophisticated model being able to better represent the normal be-
havior of the analyzed grinding machine than the simple NC models, ultimately
reducing the high FP rate observed for these simple models. Several unsuper-
vised models, defined by various combinations of neural time series encoder
types and popular anomaly detection loss functions, are compared on a large
set of sensor data recorded from the same grinding machine as in the previous
chapter. This large data set illustrates a high degree of covariate shift of normal
data, i.e., the manifestation of normal behavior in the data evolves throughout the
successive days of recording. This covariate shift is caused both by process adap-
tations and (e.g., temperature-related) drift. Keeping an up-to-date representa-
tion of the normal data despite the large covariate shift of the data constitutes
the biggest challenge for the compared models. In addition, the models have to
obey constraints imposed by the embedded nature of the evaluation system (re-
stricted memory space) and application (timely responses to potential anomalies
necessitate short model execution times).
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In addition to these unsupervised models, semi-supervised extensions pro-
vided with a small fraction of expert labels are compared to the purely unsu-
pervised anomaly detectors in order to evaluate the benefit of including label
information. Finally, a weakly supervised extension provided with automatically
generated labels and trained with a novel anomaly detection loss function is eval-
uated. These semi-supervised and weakly supervised model extensions prove
to be superior both to simple anomaly detection models applied in the previous
Chapter 5 and the purely unsupervised models evaluated in this chapter.

6.2 Methods

This section outlines details of the main building blocks for defining neural ano-
maly detection models. These are subdivided into loss functions as outlined in
Subsection 6.2.1 and network layers as discussed in Subsection 6.2.2. Network
layers in turn are used to define various types of encoders and decoders for cre-
ating several neural anomaly detection models. Encoders and decoders are de-
scribed in Subsections B.1 and B.2, respectively. Finally, a variety of encoder-
decoder architectures is presented in Subsection 6.2.3, accompanied by an expla-
nation of routines applied for training these models and performing hyperparam-
eter optimization.

In addition, methods for automatic generation of labels are discussed in Sub-
section 6.2.4. For this, PGMs are defined which allow estimating a final reliable
label estimate from automated weak labeling functions.

6.2.1 Loss Functions

There are various loss functions applied in the upcoming experiments and in
neural anomaly detection applications in general. Autoencoder [101] and vari-
ational autoencoder [124] loss functions represent the most frequently chosen
types of loss functions in anomaly detection applications [207]. These loss func-
tions judge the degree of a data record to be anomalous by the reconstruction
error and reconstruction probability, retrospectively. Although both are reason-
able assumptions for anomalous behavior, one-class loss functions like the Deep
SVDD loss [207] represent a more direct way of modeling the central idea inher-
ent to most anomaly detection tasks [7]: Abnormal data manifest as outliers from
the majority of data. The following section thus puts an emphasis on different
formulations of the Deep SVDD loss and a semi-supervised extension of these.
Finally, a novel weakly supervised extension of the Deep SVDD loss function is
proposed.

Autoencoder

Autoencoders (AEs) are among most popular representation learning methods
and a typical starting point for anomaly detection in various application do-
mains [207]. AEs consist of an encoder f and a decoder g , both represented
by neural networks. Predicting anomalies via AEs is performed by interpreting
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the reconstruction error ‖x − x̂‖2 between a data record x and its reconstruction
x̂ = g(f (x)) as an anomaly score. The (mean) reconstruction error is also used
during training of AEs, where the following loss function is minimized for the
training data DN = {x1, . . . , xN }:

L(W ; xi) =
1
N

N∑
i=1

‖xi − g(f (xi))‖22 +
λ
2

L∑
l=1

‖Wl‖2F (6.1)

Here, W = {W1, . . . ,WL} are the weights Wl of layers l of the network. The au-
toencoder loss function is defined as a regularized optimization problem, with
the first term being the mean reconstruction error of the training data records
xi ∈ DN and the second term a weight regularizer which penalizes overfitting of
the network weights to the training data. λ is a hyperparameter for trading off
the influence of both terms, ‖ · ‖F indicates the Frobenius norm computed for the
weights Wl . The encoder f is typically enforced to learn a compact intermediate
representation p of the data by imposing a compression factor 1 ≤ cf = d

p ≤ d
defined by the input layer dimension d and the dimension p of the intermediate
representation p.

Thus, the optimal AE model is found by minimizing L(W ; xi) denoted as reg-
ularized mean reconstruction error across the training data. Minimizing this AE
loss function can result in a compact representation of the data but does not
capture the generative process of the data. This in turn can result in a poor gen-
eralization performance of the learned AE model to unseen test data. Such poor
generalization applies especially in domain adaptation scenarios, where a non-
neglectable difference between the distributions of training data and test data is
assumed [104, 105]. One of the main types of domain adaptation scenarios is
the necessity to handle covariate shift of the data. As mentioned in the begin-
ning of this chapter, large degrees of covariate shift represent the main challenge
for the representation learners compared in this study, thus making this poten-
tially poor generalization performance of AEs an actual problem. The drawback
of potentially poor generalization performance is addressed by deep generative
models. Among deep generative models, variational autoencoders (VAEs) are one
of the most popular model families.

Variational Autoencoder

Other than traditional AE approaches, VAEs do not aim at finding a compact
intermediate representation of the data but to model the data-generating distri-
bution p(x) [124]. If the data records x are mainly from the normal data class,
anomaly detection can effectively be framed as the problem of estimating the
probability density function of the data-generating distribution p(x): The proba-
bility of abnormal records under this distribution is low.

Often, directly estimating the density of p(x) by marginal likelihood maxi-
mization is hard due the complexity and high dimensionality of the data x. VAEs
circumvent the challenge of directly estimating p(x) by introducing latent vari-
ables z. The basic idea is to combine a latent distribution p(z) which can be easily
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sampled from (like a normal distribution) with a nonlinear decoder function g(z)
which allows to produce samples x̂ closely resembling the true records x by pass-
ing samples z through g(z). The complexity of the decoder function g(z) which is
necessary to mimic the complexity of p(x) can be represented by a neural network
g(z;θ), where θ are learnable parameters of the network.

Estimating the density of p(x) can then be interpreted as leveraging Bayes’
rule p(x) =

∫
pθ(x|z)p(z)dz. Here, g(z;θ) was replaced by the distribution pθ(x|z)

which allows to explicitly formulate the dependency of x on z [68]. The distri-
bution p(x) can be approximated by an empirical expectation for samples zi , i.e.,
p(x) =

∫
pθ(x|z)p(z)dz ≈ 1

m

∑
i pθ(x|zi). For complicated distributions p(x), a large

number of samples zi might be necessary to approximate p(x) as many of the sam-
ple probabilities pθ(x|zi) might be close to zero [68]. Thus, finding a good pro-
posal distribution zi ∼ q(z) that minimizes the number of samples zi necessary
for approximating p(x) is crucial. For this, the proposal distribution q(z) should
approximate p(z) as closely as possible in order to generate such samples zi with
pθ(x|zi) >> 0. VAEs address this challenge by leveraging variational methods
for learning the proposal distribution q(z) directly from the data x with a second
neural network qφ(z|x). This second network with learnable parameters φ can be
interpreted as an encoder network.

Then, learning optimal parameters for both networks pθ(x|z) and qφ(z|x) can
be used to approximately maximize the intractable marginal likelihood p(x). For
this purpose, VAEs leverage variational methods by maximizing the evidence
lower bound (ELBO) on the log marginal likelihood log p(x) (also referred to as
log evidence). The ELBO is represented by the right-hand side of the following
inequality:

log p(x) ≥ Eqφ(z|x)[log pθ(x|z)] − DKL[qφ(z|x)||p(z)] (6.2)

Here, Eqφ(z|x)[log pθ(x|z)] denotes the empirical approximation of p(x) resembling
the form of an autoencoder, as qφ(z|x) encodes x into z and pθ(x|z) decodes x from
z [68]. This allows interpreting Eqφ(z|x)[log pθ(x|z)] as the expected negative recon-
struction error [124]. The second term denotes a distance measure between p(z)
and the proposal distribution qφ(z|x) that aims approximating p(z). The distance
between both distributions is measured by the Kullback-Leibler divergence DKL.
For a high-capacity neural encoder qφ(z|x), this distance can be brought close to
zero. Thus, by minimizing this second term, the empirical approximation in the
first term is allowed to approach the marginal likelihood p(x) on the left-hand
side of Eq. 6.2 as close as possible [68].

In summary, VAEs replace the problem of estimating the density of p(x) by
an optimization problem, where learning an encoder qφ(z|x) minimizing the di-
vergence DKL[qφ(z|x)||p(z)] and a decoder pθ(x|z) maximizing the empirical ex-
pectation Eqφ(z|x)[log pθ(x|z)] allow to maximize the variational lower bound on
p(x):

L(θ,φ; xi) = Eqφ(z|xi )[log pθ(xi |z)] − DKL[qφ(z|xi)||pθ(z)] (6.3)

The loss function defined in Eq. 6.3 can be optimized via stochastic gradient de-
scent (SGD) for the training data DN = {x1, . . . , xN }. In order to make the training
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Figure 6.1: Outline of the Deep SVDD approach. Deep SVDD aims to learn a
transform Φ( · ;W ) from input space X to output space F that maps the ma-
jority of the data (black dots) into an enclosing hypersphere with minimum
volume. The hypersphere is defined by its center c and a radius R. Outliers
(red dots) of this majority of (normal) data are separated by the enclosing
hypersphere. Figure inspired from [207].

procedure work, different adaptations of the loss function described in Eq. 6.3
have to be made during implementation. Most importantly, the non-continuous
sampling operation z ∼ qφ(z|x) has to be moved to an input layer in order to
be able to compute the gradients of both networks during backpropagation. This
technique is referred to as reparameterization trick [124]. For a detailed discussion,
the interested reader is referred to [68].

Deep Support Vector Data Description (Deep SVDD)

Although AEs and VAEs are among most popular applied anomaly detection
losses, both loss functions were originally proposed with other goals in mind.
In [207], Ruff et al. proposed the Deep SVDD loss function being specifically
tailored to anomaly detection applications.

Deep SVDDs try to find a mapping Φ( · ;W ) from the input data space X ⊆ Rd
to an output space F ⊆ Rp such that the majority of the mapped data is enclosed
by a hypersphere of minimum volume. Here, the output space represents the
embedding space for the time series representations that shall be learned. The
hypersphere is parameterized by its center c ∈ F and a radius R. The volume
of the hypersphere is thus minimized by minimizing R. This is summarized in
Fig. 6.1.

The mapping Φ( · ;W ) can be parameterized by a neural network. In order to
learn the parameters W = {W1, . . . ,WL} for L network layers, the following loss
function is defined and optimized for the training data DN = {x1, . . . , xN } [207]:

L(R,W ; xi) = R2 +
1
νN

N∑
i=1

max{0, ‖φ(xi ;W ) − c‖22 − R
2} + λ

2

L∑
l=1

‖Wl‖2F (6.4)

This equation is referred to as soft-boundary Deep SVDD loss function. The prob-
lem of minimizing R (first summand) is penalized by two other terms: A penalty
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term for data points φ(xi ;W ) situated outside the hypersphere (second term) and
the same weight regularizer (third term) as for the AE loss function in Eq. 6.1.
The second term penalizes data points depending on their distance ‖φ(xi ;W )− c‖
to the hypersphere center c if this distance is greater than the hypersphere ra-
dius R. The hyperparameter ν ∈ (0, 1] trades off the influence of the first two
terms, i.e., the volume of the hypersphere and violations of the SVDD boundary,
thus allowing some points to be mapped outside the hypersphere. This is similar
to the concept of slack variables in the soft-boundary loss function of classical
SVMs [40], thus the term soft-boundary SVDD loss function.

The center of the hypersphere c is not optimized via Eq. 6.4. This hyperpa-
rameter c is assumed to be fixed and can be computed as the average of all data
records xi mapped to the output space F after a forward pass through the net-
work. Thus, a sensible initialization of the network weightsW is crucial in order
to obtain a reliable estimate of c via this initial forward pass. In [207], this weight
initialization is performed by pre-training the Deep SVDD network with a vari-
ant of the AE loss function.

The soft-boundary Deep SVDD objective as defined in Eq. 6.4 can be simpli-
fied when the majority of the training data DN is considered to be of one class.
Then, the following objective can be defined [207]:

L(W ; xi) =
1
N

N∑
i=1

‖φ(xi ;W ) − c‖22 +
λ
2

L∑
l=1

‖Wl‖2F (6.5)

This objective is referred to as one-class Deep SVDD loss function. Its minimum
is found when all data points are mapped as close as possible to the center c of
the hypersphere. This approach of trying to map all the data close to the center
c is valid for training data consisting mainly of data from a single class. This
assumption in turn is justified in anomaly detection scenarios.

Semi-Supervised Deep SVDD

In [208], Ruff et al. extend their (unsupervised) Deep SVDD approach [207]
to a semi-supervised loss function. They refer to this extension as Deep Semi-
Supervised Anomaly Detection (SAD). Here, the training data is assumed to consist
of unlabeled dataDN = {x1, . . . , xN } and labeled dataDM = {(x̃1, ỹ1), . . . , (x̃M , ỹM )}.
The semi-supervised loss function is then defined as follows:

L(W ; xi) =
1

N + M

N∑
i=1

‖φ(xi ;W )−c‖22 +
η

N + M

M∑
j=1

(‖φ(x̃j;W )−c‖22)ỹj +
λ
2

L∑
l=1

‖Wl‖2F

(6.6)
This loss function consists of three terms. The first and third term are similar
to the one-class Deep SVDD loss defined in Eq. 6.5. The second term consid-
ers information given by the labels ỹj ∈ {+1,−1}, where ỹj = +1 indicates a nor-
mal data record and ỹj = −1 an abnormal data record. The label information
is used to minimize the distance of normal training data records x̃j = 1 ∈ DM
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to the hypersphere center c while maximizing the distance of abnormal training
data records x̃j = −1 ∈ DM to this center. Maximizing the distance of abnormal
training data records to the hypersphere center involves inversion of the term
(‖φ(x̃j;W ) − c‖22)ỹj due to ỹj = −1. For numerical stability, the authors of [208]
add an epsilon eps ≈ 10−6 to the denominator of this inverse. The second term
of Eq. 6.6 is weighted by a hyperparameter η, which governs the influence of the
unlabeled training data DN and the labeled training data DM . For M = 0, the
semi-supervised Deep SVDD loss function reduces to the one-class Deep SVDD
loss function defined in Eq. 6.5.

Weakly Supervised Deep SVDD

In this paragraph, a weakly supervised extension of the semi-supervised Deep
SVDD loss function defined in Eq. 6.6 is described. This weakly supervised Deep
SVDD loss function was originally proposed in the master’s thesis [110], which
was supervised by the author of this doctoral thesis. The extension allows to con-
sider label uncertainty for the training data records DM . Here, label uncertainty
can be quantified by probabilities p(ỹj ) ∈ [0, 1]. These probabilities are estimated
by the probabilistic graphical model (PGM) described at the very end of this sec-
tion.

Let probabilities p(ỹj ) be a measure for the certainty of a given class label
ỹj ∈ +1,−1, i.e., p(ỹj ) = 1 indicating absolute certainty of the label being correct.
Now, consider the second term in the semi-supervised Deep SVDD loss function
in Eq. 6.6, which comprises the information of the labeled training subset DM :

? =
η

N + M

M∑
j=1

(‖φ(x̃j ;W ) − c‖22)ỹj (6.7)

Not considering label uncertainties can then be interpreted as an implicit assump-
tion of all labels being correct, i.e., p(ỹj ) = 1 ∀ x̃j ∈ DM . This assumption can be
made explicit by adding the label uncertainty estimates p(ỹj ) in Eq. 6.7:

? =
η

N + M

M∑
j=1

p(ỹj ) · (‖φ(x̃j ;W ) − c‖22)ỹj (6.8)

Assuming absolute certainty of the labels, i.e., probabilities p(ỹj ) = 1 ∀ x̃j ∈ DM ,
results in an implicit sum of M of the individual weights p(ỹj ) in Eq. 6.8:

M∑
j=1

p(ỹj ) = M (6.9)

When allowing uncertainty in the labels by p(ỹj ) ∈ [0, 1], this sum reduces, im-
plicitly resulting in a lower weighting of the labeled loss term in Eq. 6.6 than
for the case of absolute label certainty (semi-supervised scenario). In order to
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recover the same weighting, a constant correction factor cM can be introduced:

cM =
M∑M

j=1 p(ỹj )
(6.10)

For absolute certainty of all labels p(ỹj ) = 1 ∀ x̃j ∈ DM (semi-supervised sce-
nario), the same weighting as in Eq. 6.6 is recovered:

∑M
j=1 p(ỹj ) = M, thus cM = 1.

For the assumption of weak labels p(ỹj ) ∈ [0, 1] ∀ x̃j ∈ DM however, the factor
cM corrects for the implicit smaller weighting of the labeled data term in Eq. 6.7
due to the probabilities p(ỹj ) inside the sum of Eq. 6.8: The sum of probabilities∑M
j=1 p(ỹj ) < M of weak labels is smaller than for strong labels

∑M
j=1 p(ỹj ) = M. If

the influence of the second, labeled data term in Eq. 6.6 shall further only be gov-
erned by the value specified for η, a factor cM allows correcting for the smaller
summed weights of the weak label probabilities p(ỹj ). Considering the correction
factor cM , the labeled loss term in Eq. 6.7 can then be rewritten as

? =
cMη

N + M

M∑
j=1

p(ỹj ) · (‖φ(x̃j ;W ) − c‖22)ỹj (6.11)

A weakly supervised Deep SVDD loss function can then be proposed as follows:

L(W ; xi) =
1

N + M

N∑
i=1

‖φ(xi ;W ) − c‖22 +
cMη

N + M

M∑
j=1

p(ỹj ) · (‖φ(x̃j ;W ) − c‖22)ỹj

+
λ
2

L∑
l=1

‖Wl‖2F (6.12)

In summary, defining the correction factor cM as proposed above allows trad-
ing off the mutual influence of the two first terms of Eq. 6.12 solely based on
the factor η for all cases of label uncertainty p(ỹj ). Most importantly, the semi-
supervised scenario of p(ỹj ) = 1 ∀ x̃j ∈ DM can be sensibly compared to weakly
supervised scenarios.

The weakly supervised Deep SVDD loss function allows considering individ-
ual uncertainty estimates p(ỹj ) accompanying labels ỹj for each data record j. In
Subsection 6.3.3, benefits of incorporating these per-record uncertainty estimates
are illustrated for a neural anomaly detection model trained with the loss func-
tion defined in Eq. 6.12. While label noise aware approaches have been defined
for shallow and deep classifiers [196] in class-balanced scenarios before, training
models with a label noise aware loss function tailor-made for anomaly detection
applications as proposed in Eq. 6.12 is novel to best of the author’s knowledge.

6.2.2 Network Layers

Aside from the choice of loss functions, the architecture of a neural network heav-
ily influences its learned internal time series representation. This is mainly due
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to the learning bias introduced by the type of chosen network layers. Thus, the
choice of network layers as building blocks of each neural network architecture
heavily influences performance and generalization of the trained network on new
and unseen test data. In the following subsections, input layers and a variety of
hidden layers as applied in the upcoming experiments are discussed.

A descriptive summary of the notation used for describing network layers and
encoder-decoder architectures built from these layers is given in Table 6.1.

Input Layer

The most straightforward input to network architectures is using the raw sensor
data records of (variable) length Tin. For sequential neural models, the perfor-
mance of models directly depends on the history of input data (i.e., information
given by previously seen input time series) they are able to store and consider for
prediction of incoming data. Architectures based on recurrent neural networks
are effective in storing this history of previous input data: It is summarized and
stored in hidden states which are kept through time, while original time series
can be discarded. Sequential neural models building on (dilated) convolutions
however (which are in focus of this chapter) have a history being directly influ-
enced by the length of stored input data: Predictions for newly incoming time
series rely on applying convolutional filters directly to stored original input time
series. Thus, the history that convolutional models are able to consider during
prediction (also referred to as their receptive field) by applying a set of convolu-
tional filters depends on the amount of previously stored input time series.

The number and length of stored time series thus directly influence required
memory resources and prediction time with the model. For high-performant con-
volutional models with a large receptive field, the necessary memory occupation
can quickly exceed the small memory budget given by the embedded nature of
the evaluation system. In order to milden memory requirements while still keep-
ing a reasonably large history, downsampling can be applied to raw input time
series. This reduces the actual memory size occupied by storage of (downsam-
pled) time series.

Downsampling has previously been approached by a combination of dilated
convolutions and skip connections for autoregressive networks [255]. This results
however in a large number of additional learnable parameters. Alternatively, de-
terministic downsampling operations can be applied. For comparability with
previous chapters, downsampling is implicitly performed by extraction of aver-
age rectified values (ARVs). ARVs are computed by the mean of absolute values
in non-overlapping fixed blocks of M = 1024 raw samples um, i.e., 1

M

∑M
m=1|um|

in every successive signal block comprising M raw data samples um. Similar to
previous chapters, these ARV representations are referred to as envelope signals
in the following.

ARV operations are performed on resampled and offset-freed raw time series.
Resampling to a fixed length Tin is applied to obtain fixed-length time series ne-
cessitated by some of the encoders presented below. Offset subtraction is applied
in order to reduce the influence of spurious (e.g., temperature-related) drifts.



6.2 Methods 143

Table 6.1: Notations used for description of network architectures

Notation Meaning Notation Meaning

x Input vector Nc Number of channels
y Output vector Nf Number of filters
T Signal length k Kernel size
p Embedding vector pd Padding size
p Embedding dimension s Stride
B Batch size d Dilation factor

Hidden Layer Types

Envelope extraction via ARV can be interpreted as input layer. Envelope signals
as extracted by this input layer are then fed to hidden layers. A descriptive sum-
mary of the hidden layer types considered in this chapter is illustrated in Fig. 6.2.
For all layer types, batch normalization [109] and dropout [238] (during train-
ing) are optional but common extensions being applied to the network layers.
For all network layers, leaky rectified linear unit (ReLU) activation functions are
used [152]. Bias terms of network layers are dropped in order to satisfy the re-
quirements imposed by loss functions building on the Deep SVDD loss [207].

Multilayer Perceptron (MLP) Layer MLP hidden layers are fully connected to
input vectors x ∈ RTin and output vectors y ∈ RTout . Thus, the layer’s transform
from an input vector x to an output vector y can be expressed by a weight matrix
W ∈ RTin×Tout , followed by batch normalization, passing through the nonlinear
Leaky ReLU activation function and dropout.

Convolutional Layer Other than for MLP layers, hidden 1D convolutional layers

transform input tensors X ∈ RTin×N
in
f to output tensors Y ∈ RTout×N

out
f leveraging

a 1D convolution followed by the same steps of batch normalization, Leaky ReLU
and dropout. Here, output tensors Y consist of output vectors y for N out

f output
channels. The free parameters of convolutional layers determining the output
sequence length Tout are kernel size k, padding size pd and stride s. The number
of output channels N out

f depends on the number of convolutional filters applied
in the layer. This is another free parameter of the network layer.

Temporal Convolutional Network (TCN) Residual Block TCN residual blocks
are the basic building elements of TCNs [24]. Similar to hidden convolutional

layers, they transform input tensors X ∈ RT×N
in
f to output tensors Y ∈ RT×N

out
f .

They consist of mainly two parts: A stack of dilated causal convolutional filters
and residual connections. These main elements are illustrated in Fig. 6.3.
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Figure 6.2: Various types of hidden network layers utilized for construc-
tion of network architectures. Top left: Multilayer perceptron (MLP) layer.
Bottom left: Convolutional layer. Right: Temporal convolutional network
(TCN) block. Figure adapted from [110].

The causality of the convolutions assures that during convolutional computa-
tions output values yt2 are only convolved with input values xt1 where t2 ≥ t1,
effectively assuring that there is no leaking of future information into the past.
Simple causal convolutions allow only for considering a history linear in network
depth [24]. Stacking dilated convolutions [255] allows to effectively create a large
receptive field with exponential dependency on the network depth. Dilated con-
volutions introduce a fixed step between two adjacent filter taps, which is defined
by the dilation factor d (cf. Fig. 6.3a). Considering this dilation factor d, dilated
convolutional operators F( · ) can be defined as follows [24]:

F(s) = (x ∗d f )(s) =
k−1∑
i=0

f (i) xs−d · i (6.13)
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Figure 6.3: Basic elements of TCN architectures as proposed in [24]. (a)
Stacked dilated causal convolutions with increasing dilatation factors d =
1, 2, 4 and filter kernel size k = 3. (b) Residual block using two stacked
dilated causal convolutional layers as depicted in Subfigure (a). The 1 × 1
convolution bypass allows directly adding inputs and outputs of the stacked
dilated causal convolutional layers when exposing different dimensions. (c)
Residual block with filter size k = 3 and dilation factor d = 1. Blue lines
are related to convolutional filters, the green line illustrates the 1 × 1 convo-
lution mentioned in Subfigure (b). Figure reproduced from [24] with kind
permission of the authors.

Here, a convolutional filter f : {0, . . . , k − 1} of kernel size k is applied to an input
vector x. The equation illustrates the dependency of the filtering result at index
s on input vector values at fixed step indices s − d · i, with i denoting indices
of the convolutional filter elements. The effective receptive field of this single
convolutional filter computes to (k −1)d. Typically, multiple convolutional filters
are stacked in a single TCN residual block in order to obtain a larger receptive
field (cf. Fig. 6.3b with two stacked dilated convolutional filters). Successive to
dilated convolutional filtering, batch normalization, Leaky ReLU activation and
dropout are applied similar to MLP layers and convolutional layers.

Residual connections [95] add a second branch in the TCN residual block,
creating a bypass to the series of transformations (i.e., dilated convolutional fil-
tering, batch normalization, Leaky ReLU activation and dropout) applied to in-
put tensors X. Residual connections allow to apply transformations similar to
the identity mapping to the input rather than the series of transformations men-
tioned before, which has recently shown to benefit the learning of very deep net-
works [95]. At the output of the TCN block, the outcomes of both branches (i.e.,
the series of transformations applied in the left branch and the unaltered input

tensor X) are summed element-wise. As unaltered input tensors X ∈ RT×N
in
f and

outcomes X̃ ∈ RT×N
out
f of the transformations in the left branch could have differ-

ent channel dimensions, a 1 × 1 convolution (i.e., with a kernel size k = 1) needs
to be added to the residual branch, which ensures that element-wise addition is
applied to tensors of the same dimension. This 1 × 1 convolution has a number
of output channels identical to the number of output channels N out

f of the trans-
formation series branch. Thus, when the output of the series of transformations
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Table 6.2: List of compared neural anomaly detection models

Model Loss function Network architecture

AE model AE loss (Eq. 6.1) MLP encoder-decoder

VAE model VAE loss (Eq. 6.3) Conv./FCN/TCN encoder-decoder

SVDD model

Soft-boundary (Eq. 6.4)

MLP/conv./FCN/TCN encoder
One-class (Eq. 6.5)
Semi-sup. (Eq. 6.6)
Weakly sup. (Eq. 6.12)

in the left branch has a different dimension than the inputs of the right residual
branch, residual inputs are downsampled in order to align to the output of the
left branch.

6.2.3 Training and Hyperparameter Optimization

Building on the hidden layer types introduced in the previous subsection, vari-
ous encoder and decoder networks are defined. The encoder’s main purpose is
finding a descriptive internal representation of the input time series x ∈ RT given
by an embedding vector p ∈ Rp, i.e., encoders function as the feature extractor
part of the network. The main purpose of decoder networks is to reconstruct
time series x̂ from the embedded representation vector p as closely as possible.
Such decoder networks are necessary when training with either the AE or VAE
loss function. For a detailed description of encoder networks and decoder net-
works, the interested reader is referred to Sections B.1 and B.2 in the appendix,
respectively.

Encoders and decoders are combined into networks with an encoder-decoder
architecture and pre-trained with the VAE loss function defined in Eq. 6.3. After-
wards, the encoders with weights initialized by this pre-training can be trained
with various loss functions derived from the Deep SVDD loss proposed in [207].
Thus, pre-training allows finding a good initialization of the network weights,
from which the estimate of the enclosing hypersphere center c is found by a for-
ward pass through the encoder network. A descriptive summary of network ar-
chitectures and loss functions considered in the upcoming experiments is listed
in Table 6.2. MLP encoder-decoder networks serve as baseline among neural net-
work architectures and are compared to multiple convolutional encoder-decoder
networks. For this, various convolutional encoder networks (standard convolu-
tional encoders, fully convolutional networks (FCNs) and TCNs) are combined
with the convolutional decoder.

Encoder-decoder architectures trained with the VAE loss function necessitate
a projection of the embedding vector p as output from the encoder network part
to a latent space where the latent stochastic vector z is defined. Then, a similar
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projection back to the embedding vector p which acts as input to the decoder
network part has to be found. Both projections could be included into the encoder
and decoder parts of the networks, but then the flexibility of combining encoders
and decoders with the various loss functions as listed in Table 6.2 is lost. Thus,
a separate projection network part is defined. For a detailed description of the
projection network, the reader is referred to Section B.3 in the appendix.

Finally, despite the chosen types of encoders, decoders and loss functions,
model performance is influenced by the applied training routine and hyperpa-
rameter optimization approach. Training as applied in this chapter closely resem-
bles standard training routines minimizing loss functions via mini-batch SGD
with a few adaptations. Hyperparameters are optimized either individually or
jointly depending on the type of hyperparameters. For details both on training
and hyperparameter optimization, the reader is again referred to Sections B.4
and B.5 in the appendix, respectively.

6.2.4 Label Generation via Probabilistic Graphical Models
(PGMs)

So far, the presented neural models were considered unsupervised, i.e., not using
any label information. Often, at least a small amount of labels is accessible. Deep
semi-supervised models have shown to be remarkably good in leveraging even
small amounts of label information. However, a good quality (i.e., reliability on
correctness) of labels is often crucial. In this thesis, labels were so far obtained
either via the live annotation approach or retrospective labeling by domain ex-
perts. Both labeling approaches were compared in Chapter 5. The evaluations in
that chapter suggested retrospective annotations to be of higher quality than live
annotations, thus better qualifying for inclusion in semi-supervised models.

In the former section, a weakly supervised extension of the semi-supervised
Deep SVDD loss was proposed. This loss function incorporates information about
label uncertainty when available by weighting labels regarding their probability
of correctness p(ỹj ). In order to generate labels in combination with such uncer-
tainty estimates, methods based on the recent data programming paradigm [196]
and probabilistic graphical models (PGMs) as label-generative models [21] can
be applied. These methods allow for generating labels automatically and thus
represent a third alternative labeling approach which comes without relying on
direct involvement of human domain experts.

Data Programming

With the advent of deep learning techniques as powerful, learnable feature ex-
tractors, the main effort of preparing data for training of predictive models has
shifted from hand-engineering features to labeling of data by human experts.
As deep learning models require large sets of labeled data, this process can be
quite expensive. Instead of human labeling of large data sets by domain experts,
Ratner et al. introduced the data programming paradigm in [196]. They rely
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Figure 6.4: Generic PGM modeling the structure of a label-generating pro-
cess relying on multiple LFs. LFs have possible inter-dependency factors
ΦDep. The true label y, which is never observed, is connected to the LFs via
accuracy factors ΦAcc. Figure inspired from [20].

on incorporating domain expertise of users into definition of labeling functions
(LFs).

These LFs allow labeling data sets in an automated and thus cheap manner
but typically introduce a larger amount of noise into the labeling process than
traditional domain expert labeling. In addition, LFs may conflict each other or
may be highly correlated. For solving these issues, Ratner et al. propose to model
the data set labeling process as a PGM, which allows modeling both accuracies
and inter-dependencies of LFs as factors in a graph. Learning these PGM factors
allows estimating final, more reliable labels by leveraging a multitude of noisy,
potentially correlated or conflicting LFs.

Assumptions on the Structure of Label-Generating PGMs

A generic PGM which is general enough to model various assumptions about
accuracies ΦAcc of and dependencies ΦDep between label-generating LFs is illus-
trated in Fig. 6.4.

The overall goal of estimating optimal values for the accuracy and depen-
dency parameters θ is approached by minimizing the negative log marginal like-
lihood − log pθ(Λ̄) from a matrix of observed LF outputs Λ̄ ∈ {−1, 0, 1}m×n [21]:

arg min
θ

− log
∑

Y

pθ(Λ̄,Y) (6.14)
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Here, Λ̄i1, . . . , Λ̄in are obtained from n user-specified LFs λ1, . . . , λn. In general,
LF outputs Λij are in {−1, 0, 1} for the binary classification case, corresponding
to labels false, abstaining and true. Here, Λij denote LF outputs in general, in
comparison to observed matrix outputs Λ̄ij Importantly, the true labels yi are
assumed to be never observed.

The joint probability pθ(Λ,Y) is modeled by the PGM being parameterized by
θ = {θAcc,θDep}, which quantify the accuracies of and dependencies between LFs,
respectively. More formally, the PGM joint probability can be defined by [21]:

pθ(Λ,Y) ∝ exp
( m∑
i=1

∑
t∈T

∑
s∈St

θtsφ
t
s(Λi , yi)

)
(6.15)

Here, T represents the set of considered dependency types. Dependencies φts ∈
{0, 1} exist both between true labels yi and LF outputs Λi (i.e., being accuracies)
as well as between LFs (correlations, conjunctions, etc.). St is a set of tuples of LF
indices, indicating the participating LFs for each dependency of type t ∈ T . The
factors θts ∈ [0, 1] quantify the degree of dependency t for the LF tuple s.

Optimizing the objective in Eq. 6.14 can be approached with standard SGD
techniques but is computationally challenging for a generic PGM with possible
interdependencies between LFs as defined in Eq. 6.15, as it involves Gibbs sam-
pling for approximate estimation of the gradients of objective 6.14. When con-
sidering a sufficiently large number of LFs, this approach can become quickly
computationally intractable, as the number of possible dependencies increases at
least quadratically in the number of LFs [21].

A typical assumption to ease the computational complexity is conditional in-
dependence of the LF outputs Λ given the true labels Y [21]. Graphically, this
results in omitting the dependency factors Dep between the LFs in Fig. 6.4. For-
mally, this results in accuracy dependencies φAccj (Λi , λi) , yiΛij between LF
outputs Λij and true labels yi being the only dependencies T further considered.
The joint probability then simplifies to

pθ(Λ,Y) ∝ exp
( m∑
i=1

n∑
j=1

θAccj φAccj (Λi , yi)
)

(6.16)

Optimizing parameters θAcc is then performed via the simplified negative log
marginal likelihood

arg min
θAcc

− log
∑

Y

pθ(Λ̄,Y), (6.17)

which is equivalent to Eq. 6.14 but has to optimized only for accuracy parameters
θAcc. The gradient of this marginal log likelihood objective 6.17 with respect
to parameters θAccj can be formulated in closed form under the assumption of
conditional independence of LF outputs [21].

Assuming conditional independence of the LF outputs given the true label in
such a way is common and allows convenient estimation of parameters θ without
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necessitating to approximate gradients via Gibbs sampling. However, the condi-
tional independence assumption is strong and often unjustified, e.g., LFs often in-
corporate similar information about the true label and are thus correlated. Then,
neglecting these dependencies results in overconfident estimates of accuracy pa-
rameters θAccj for accuracy dependencies φAccj of these correlated LFs.

Instead of minimizing the negative log marginal likelihood, Bach et al. pro-
pose to instead minimize the negative log marginal pseudolikelihood of the out-
puts of single LFs λj [21]. Restricting the minimization on a single LF λj can
be done by conditioning on the outputs of all other LFs λ\j . Here, the \ oper-
ator denotes the absolute complement of j. In order to induce sparsity in the
estimated parameters θ, Bach et al. add an `1 regularizer to the optimization
problem, which can finally be stated as follows [21]:

arg min
θ

− log pθ(Λ̄j |Λ̄\j ) + ε||θ||1 (6.18)

= arg min
θ

−
m∑
i=1

log
∑
yi

pθ(Λ̄ij , yi |Λ̄i\j ) + ε||θ||1 (6.19)

Here, ε > 0 is a hyperparameter which needs to be optimized. This pseudolikeli-
hood approach involving conditioning on all LFs but one allows computing gra-
dients in polynomial time with respect to the number of LFs, data points, and
dependency factors φts [21].

Weakly Supervised Deep Anomaly Detection

Based on a combination of label-generating PGMs with the weakly supervised
Deep SVDD loss function proposed in Eq. 6.12, a weakly supervised anomaly de-
tection model is described in the following paragraphs. The model is graphically
summarized in Fig. 6.5.

Assume an unlabeled training data set DN consisting of N raw data records
in total. Then, a subset DS of the training data is fed to the label-generative PGM
described in the previous section. Based on labeling functions λ1, . . . , λn, weak
labels Λi1, . . . ,Λin (i.e., single LF outputs) are estimated. The label-generating
PGM fuses these weak labels into stronger, probabilistic labels p(ỹi) ∈ [0, 1].
These probabilities can be interpreted as uncertainty estimates p(ỹi) for labels
ỹi . Tuples (ỹi , p(ỹi)) for data records x̃i ∈ DS are then used to train a weakly su-
pervised neural anomaly detection model based on minimization of the weakly
supervised Deep SVDD loss function (Eq. 6.12), which combines the information
of unlabeled training data DN with weakly labeled training data DS .

In this thesis, LFs are designed by individually thresholding n handcrafted
single feature functions. For defining a threshold, scores of single features for
the data set DS are first z-score normalized. Based on the absolute values of these
normalized feature scores, thresholds for each single feature LF are defined via
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Figure 6.5: Graphical summary of the proposed weakly supervised training
procedure. Weak labels are created for a subset DS of the unlabeled training
data DN .

Median Absolute Deviation (MAD) [140]:

Λij =


+1, λj (x̃i) ≤ 1.5 MAD(λj (x̃1), . . . , λj (x̃S ))

0, 1.5 MAD(λj (x̃1), . . . , λj (x̃S )) < λj (x̃i) < 2.5 MAD(λj(x̃1), . . . , λj(x̃S))
−1, λj (x̃i) ≥ 2.5 MAD(λj(x̃1), . . . , λj(x̃S))

(6.20)
LF outputs Λij ∈ {−1, 0, 1} are interpreted as weak labels for the data records
x̃i , where −1 denotes an anomaly and 1 normal data. x̃i = 0 means no label is
assigned.

6.3 Results

In the following section, results for computational cost and performance of pre-
dictions with various neural anomaly detection models are summarized. First,
the experimental setup is characterized, with a focus on describing the two evalu-
ation data sets and a generic model size defined for fair comparison of all neural
anomaly detection models applied. Afterwards, the performance of the various
models on the two data sets is reported. Here, the performance of unsupervised
models is compared to semi-supervised and weakly supervised model extensions.

Reported metric scores were originally presented in [110] supervised by the
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author. Furthermore, except for Subsection 6.3.4, similar visualizations of learned
embedding representations and predicted anomaly scores as illustrated in the up-
coming experiments were presented in [110].

6.3.1 Experimental Setup

The data considered during experiments in the results section are represented by
two data sets, a full data set considering all available data and a baseline data
subset consisting of four successive days of data records from the full data set.

The full data set illustrates a large covariate shift of the normal data, i.e., the
distribution of normal data during training and testing changes [242]. Learning a
single anomaly detection which generalizes despite this covariate shift (i.e., with-
out considering model adaptations in successive days) is challenging. Various
encoder-decoder architectures trained with different loss functions as presented
in Table 6.2 are considered in the upcoming experiments with the goal of finding
an optimal encoder-loss function combination for tackling this challenge.

These encoder-loss function combinations are first benchmarked on the base-
line data set, i.e., in a local subregion of the data with a reduced covariate shift.
The goal of this first benchmarking on the baseline data set is comparing encoder-
loss function combinations regarding their general capability to learn a powerful
time series embedding representation of the data. Here, powerful representa-
tions are defined by both being able to cluster normal data close to each other
and mapping abnormal data far away from these normal data.

The encoder-loss function combinations are then trained on the full data set.
Training on the full data allows to judge which encoder-loss function combina-
tions are optimal regarding handling the increased covariate shift in the full train-
ing data and generalizability of learned representations to previously unseen full
test data.

Data Characteristics

The data considered in the experiments of this section consist of various days of
vibration sensor data. The data were recorded with the vibration sensor at the
“OP1” position attached to the same grinding machine as presented in Chapter 5.
Data related to the warm-up class as presented in Chapter 5 were excluded from
the experiments by application of simple energy threshold heuristics in order to
avoid reporting overly optimistic performance results.

Characteristics of the data are listed in Table 6.3. The full data set consists
of 47,484 data records in total recorded at 13 days. These 13 days were chosen
due to a presence of machine damages or process anomalies visually confirmed
by domain experts. Days of recording 12 and 13 were recorded during the user
study conducted in Chapter 5. Expert-labeled days of recording 2 and 3 are the
same ones as considered in Chapter 5 for benchmarking of anomaly detection
algorithms.

Figure 6.6 illustrates the diversity of data for days of recording assembled in
the full data set. The depicted curves represent the ensemble average of enve-
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Table 6.3: Data sets considered in this chapter. The full data set consists of
13 days of recording. The baseline data subset is marked in gray. Expert
labeled days of recording are marked with 3.

Day of recording Date of recording Number of records Expert labels

1 18-09-23 443 7
2 18-09-24 2719 3
3 18-09-25 2943 3
4 18-09-26 5820 7
5 18-10-11 5760 7
6 18-10-12 4147 7
7 18-10-29 5575 7
8 19-01-29 4890 7
9 19-01-31 3563 7
10 19-02-13 1820 7
11 19-02-14 4830 7
12 19-04-15 2356 7
13 19-04-16 2618 7

lope signals extracted for these days of recording, the shaded areas mark the area
of one standard deviation for these ensemble averages. The shaded areas thus
illustrate the high intra-day variability of data records at several days of record-
ing, while the change of ensemble averages across successive days of recording
demonstrates the large covariate shift observed for the full data set. Being able
to learn a compact representation of the normal data which is invariant to this
covariate shift is the major challenge for the anomaly detection models evaluated
in this section.

From this full data set, a baseline data (sub)set consisting of four successive
days of recording is created. It is marked in gray in Table 6.3. This baseline data
subset illustrates a reduced covariate shift compared to the full data as depicted
in Fig. 6.7.

Both baseline data set and full data set are splitted into separate training,
validation and test subsets. Training, validation and test data subsets are listed in
Table 6.4. For the full data set, all available expert labeled data (days of recording
2 and 3) are used as test subset. 90% of the rest of the full data is considered
for training, 10% for validation (hyperparameter optimization). For the baseline
data set, 70% of the expert labeled data from days of recording 2 and 3 is used
to create a test subset. Again, 90% of the rest of the baseline data is used for
training, 10% for validation. Both training and hyperparameter optimization are
performed in an unsupervised manner, thus expert labels of days of recording 2
and 3 are considered only for benchmarking of the presented model types on the
test data.

As stated above, the fact that training, validation and test data for the baseline
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Figure 6.6: Diversity of envelope signals extracted from records in the full
data set. The curves represent ensemble averages of envelope signals of each
day of recording, shaded areas display one standard deviation from these
ensemble averages. A covariate shift across successive days of recording be-
comes apparent, most clearly for day 13.

data set consist of successive days of recording leads to a reduced covariate shift
and allows to evaluate the general capability of compared encoder-loss function
combinations to learn a powerful embedding representations (i.e., independent
from their capability to handle the large covariate shift in the full data).

Model Size

For the comparison of various combinations of encoder types and loss functions
on both baseline and full data, a generic model size applicable to all types of en-
coder networks has to be defined. The model size is chosen to consist of three

Table 6.4: Characteristics of training, validation and test data subsets of both
full data (a) and baseline data (b)

Data subset Number of records

Training 37,628
Validation 4194
Testing 5662

(a) Subsets of full data

Data subset Number of records

Training 7162
Validation 798
Testing 3965

(b) Subsets of baseline data
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Figure 6.7: Diversity of envelope signals extracted from records in the base-
line data set. A reduced covariate shift of the data compared to Fig. 6.6
becomes apparent.

Table 6.5: Predictive cost of various encoder types for the defined compact
model size (three hidden layers)

Encoder Training time [s] Prediction time [s] Number of parameters

Conv. 2.515 0.0429 37,648
TCN 12.52 0.1894 17,160
FCN 6.468 0.0711 17,936
MLP 0.234 0.00292 41,794

hidden layers only and an embedding dimension p = 64. This compact model
size is chosen in order to address the challenges imposed by the concrete appli-
cation: The risk of potential anomalies to cause severe machine damage necessi-
tates short model execution times and response times. In addition, the anomaly
detection model shall be deployed on the labeling prototype described in Chap-
ter 5. The embedded nature of the labeling prototype thus imposes additional
constraints on memory occupation. The compact model size values both compu-
tational and memory constraints.

The predictive cost of the considered compact models are listed in Table 6.5.
Here, training time, prediction time per data record and number of network pa-
rameters that have to be stored are summarized. Training was performed on a
CPU using an Intel Core i7-4810MQ processor with 32 GB RAM. Training times
are reported per batches of 256 data records and as average training time per
training epoch.

For convolutional, TCN and FCN encoders, the three hidden convolutional
layers have kernel sizes [32, 16, 16] and consist of 16 filters each. A compression
factor cf = 2 is used both for convolutional encoders and MLP encoders. When
training with AE and VAE loss functions, symmetrical decoders are applied both
for convolutional-type encoders and MLP encoders (i.e, expansion factor ef = 2,
same kernel sizes and amount of filters as for the encoders).
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6.3.2 Anomaly Detection with Unsupervised Models

Learned representations and predictive results are first reported for various un-
supervised neural anomaly detection models, whereas subsequent subsections
cover semi-supervised and weakly supervised extensions. Models are compared
quantitatively by reporting performance metric scores and qualitatively by vi-
sualizations of the learned embedding representations and predicted anomaly
scores. Anomaly scores are computed via loss functions except for VAEs, where
anomaly scores are represented by the reconstruction probabilities. In general,
powerful embedding representations should illustrate low intra-cluster variance
of normal data records and high distances of abnormal data to these normal data
both in visualized embedding representations and anomaly scores.

PCA transformation is applied to the high-dimensional embedding spaces in
order to allow for a meaningful visualization of the learned representations. In
order to have a comparable visualization for all compared encoder-loss function
combinations, the depicted PCA scores for the first and second principal compo-
nents are min-max-scaled in order to map all PCA visualizations to a value range
of [0, 1]. For anomaly scores, large outliers are removed via considering only the
first 99 percentiles of data points. Then, min-max-scaling is applied as for the
embedding space visualizations.

For quantitative comparison, F1 scores, precision, recall, average precision
and receiver operating characteristic (ROC) area under curve (AUC) are reported.
While average precision and ROC AUC are measures that summarize general per-
formance of a model in an average value without necessitating to find an optimal
choice of decision threshold on the computed anomaly scores, F1 scores, preci-
sion and recall necessitate choosing such a threshold. These thresholds are found
for min-max-scaled anomaly scores via randomized stratified cross-validation
with 5 folds and 100 runs on the test data sets of baseline and full data. F1
scores, precision and recall are then reported as average cross-validation scores.
All performance measures are computed as class-weighted scores and by their
scikit-learn implementations [184].

The various models are trained first on the baseline data set and on the full
data set afterwards. In both cases, encoder types and unsupervised loss functions
are varied in order to illustrate the differences in performance on the given data.

Training on Baseline Data Set

First, the embedding representations learned via unsupervised anomaly detec-
tion loss functions (AE, VAE, soft-boundary Deep SVDD and one-class Deep
SVDD) are compared. This comparison is performed for compact models with
FCN encoders. FCN encoders are chosen due to a combination of low memory /
prediction time demands as listed in Table 6.5 and their excellent predictive per-
formance as confirmed both by previous evaluations on a variety of time series
applications in [266] and in the upcoming experiments.

Performance metrics for compact FCN models trained with various unsuper-
vised loss functions are stated in Table 6.6. Here and in the following metric
score tables, average precision is abbreviated by avg. prec. and best results are
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Table 6.6: Predictive performance of a compact FCN encoder model (three
hidden layers) trained with various loss functions on the baseline data set

Metric Autoencoder Variational Soft-boundary One-class
Autoencoder Deep SVDD Deep SVDD

F1 0.4961 0.4961 0.9555 1.0
Precision 0.4922 0.4922 0.9987 1.0
Recall 0.5 0.5 0.9194 1.0
Avg. prec. 0.1354 0.4549 0.9985 1.0
ROC AUC 0.952 0.9161 1.0 1.0

reported in bold font. Loss functions based on Deep SVDD clearly outperform
AE and VAE loss functions, which are the most popular choices of anomaly de-
tection loss functions. The one-class Deep SVDD loss function shows a slight
performance advantage to the soft-boundary Deep SVDD loss function.

The learned embedding representations are visualized in Fig. 6.8. The results
confirm the findings for performance metric scores: Deep SVDD loss functions
(Fig.s 6.8a and 6.8b) being custom-built for anomaly detection succeed both in
finding a compact description of the normal data and an embedding that maps
anomalies far apart from these normal clusters. AE and VAE loss functions,
which are more tailored for finding a compact representation of the complete
data, map anomalous data close to normal clusters (AE, Fig. 6.8c) or seem trying
to model them as part of the normal clusters (VAE, Fig. 6.8d).

These differences in objectives of the loss functions are confirmed by the
anomaly scores illustrated in Fig. 6.9. The good separation of anomalies (red
patches) from normal data (gray patches) of Deep SVDD loss functions becomes
apparent (Figures 6.9a and 6.9b). The one-class Deep SVDD loss function adapts
better to the covariate shift in the normal data (smaller intra-cluster variance for
anomaly scores of normal data, maximum anomaly scores for normal data below
0.2). On the other hand, while AE and VAE loss functions succeed in identifying
anomalies by assigning high anomaly scores, normal data cannot be clearly sepa-
rated from these abnormal data (i.e., a subset of normal data records are assigned
high anomaly scores in the range of true anomalies).

In the following paragraphs, encoder types are varied in order to compare
their predictive performance on the baseline data set. All of them were trained
with the one-class Deep SVDD loss function, which proved most suited among
the previously compared loss functions (cf. Figures 6.8, 6.9 and Table 6.6) and
matches the characteristics of the data in this chapter well (the vast majority of
data is normal, thus learning an optimal representation focusing on the normal
data is sensible).

Training with the one-class Deep SVDD loss function resulted in perfect scores
of 1.0 for all encoder types (convolutional, FCN, MLP and TCN) and perfor-
mance metrics on the baseline data set. This result stresses the dominant influ-
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(a) One-class Deep SVDD loss
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(b) Soft-boundary Deep SVDD loss
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(c) Autoencoder (AE) loss
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(d) Variational autoencoder (VAE) loss

Figure 6.8: Embedding spaces (FCN encoders, baseline data set)
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(b) Soft-boundary Deep SVDD loss
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(c) Autoencoder (AE) loss
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Figure 6.9: Anomaly scores (FCN encoders, baseline data set)



6.3 Results 159

0.0 0.2 0.4 0.6 0.8 1.0
Principal component 1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
in

cip
al

 c
om

po
ne

nt
 2

Normal
Anomaly

(a) Multilayer perceptron (MLP)

0.0 0.2 0.4 0.6 0.8 1.0
Principal component 1

0.0

0.2

0.4

0.6

0.8

1.0

Pr
in

cip
al

 c
om

po
ne

nt
 2

Normal
Anomaly

(b) Temporal conv. network (TCN)
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(c) Convolutional encoder
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(d) Fully convolutional network (FCN)

Figure 6.10: Embedding spaces (One-class Deep SVDD loss, baseline data)

ence of choice of loss function: When an appropriate loss function tailor-made
to anomaly detection applications is chosen, design choices regarding encoder
types seem to be of minor influence.

This finding is confirmed by the embedding space visualizations in Fig. 6.10
and the anomaly scores illustrated in Fig. 6.11. The learned embedding repre-
sentations allow for a compact description of normal clusters while clearly sep-
arating anomalous data for all encoder types. Only for MLP encoders, a few
anomalous records are mapped close to the normal clusters. The most compact
normal clusters and clearest separation between normal and abnormal data are
obtained with FCN encoders and convolutional encoders. This is confirmed by
the anomaly scores depicted in Fig. 6.11, illustrating small normal intra-cluster
variance and high distances between anomaly scores for normal and abnormal
data.

Training on Full Data Set

The previous results suggested perfect performance of various encoder types
even with a compact (three-layer) model when being trained with the one-class
Deep SVDD loss function. However, the results reported might be overly opti-
mistic, as both training and test data for the baseline data set consist of envelope
signals from similar, successive days of recording. In the following experiments,
encoder-loss function combinations are thus evaluated on the full data set, in or-
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(a) Multilayer perceptron (MLP)
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(b) Temporal conv. network (TCN)
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(c) Convolutional encoder
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(d) Fully convolutional network (FCN)

Figure 6.11: Anomaly scores (One-class Deep SVDD loss, baseline data set)

der to obtain a more realistic evaluation of the capability of various encoder-loss
function combinations to learn embedding representations that generalize across
the increased covariate shift in the full data.

Similar as for the baseline data set, loss functions are varied for FCN encoders.
Metric scores for prediction with these models are summarized in the upper part
of Table 6.7 at the end of this subsection. The results show similar tendencies as
for the baseline data set in Table 6.6: The one-class Deep SVDD loss outperforms
other loss functions. This result is confirmed by visualizations of the learned em-
bedding representations and predicted anomaly scores in Figures 6.12 and 6.13,
respectively. AE and VAE encoders map both normal and most of the abnormal
data to similar clusters in the embedding space being illustrated in Fig. 6.12. This
finding is attributed to the objectives of AE and VAE loss functions to learn a com-
pact representation of the data. On the other hand, embedding representations
learned both by soft-boundary (SB) Deep SVDD loss function and one-class (OC)
Deep SVDD loss function succeed in better separating normal from abnormal
data. The separation with the latter loss function is again clearer than with the
former as similarly reported for the baseline data. This finding is confirmed by
the anomaly scores illustrated in Fig. 6.13, where only the one-class Deep SVDD
loss function allows to clearly separate normal data from abnormal data. How-
ever, all loss functions depict a decreased separability performance compared to
when being trained on the baseline data set (cf. Fig. 6.9). This is assumed to be
due to the increased covariate shift in the full data. Accordingly, the embedding
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representations being learned have to generalize across a much larger data set,
thus illustrating more realistically the necessary capabilities of an anomaly detec-
tion model in order to perform well when being deployed and applied in-field.
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(a) One-class Deep SVDD loss
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(b) Soft-boundary Deep SVDD loss
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(c) Autoencoder (AE) loss
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(d) Variational autoencoder (VAE) loss

Figure 6.12: Embedding spaces (FCN encoders, full data set)

When varying the encoder types and training with the one-class Deep SVDD
loss function on the full data set, metric scores as listed in the lower part of Ta-
ble 6.7 are obtained. The results are more expressive than those for the baseline
data, where all encoders reached perfect performance scores. For metric scores
relying on a concrete choice of decision threshold (F1, precision and recall scores),
FCN encoders and convolutional encoders outperform MLP encoders and TCN
encoders. This is especially the case for F1 scores and recall scores, whereas
precision scores are similar for all encoder types. Average precision and ROC
AUC scores illustrate similar performance for all encoder types. The better per-
formance of FCN encoders becomes understandable when considering the visu-
alizations of learned embedding representations and predicted anomaly scores
as illustrated in Figures 6.14 and 6.15. While MLP encoders and TCN encoders
map normal data and most of the abnormal data to similar regions in the em-
bedding spaces, convolutional encoders and especially FCN encoders succeed in
separating normal data and the majority of abnormal data. This is confirmed by
the anomaly scores depicted in Fig. 6.15, where convolutional encoders and FCN
encoders allow for sensibly specifying a decision threshold on scaled anomaly
scores for separation of normal and abnormal data while MLP encoders and TCN
encoders do not.
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(a) One-class Deep SVDD loss
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(b) Soft-boundary Deep SVDD loss
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(c) Autoencoder (AE) loss
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(d) Variational autoencoder (VAE) loss

Figure 6.13: Anomaly scores (FCN encoders, full data set)
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(a) Multilayer perceptron (MLP)
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(b) Temporal conv. network (TCN)
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(c) Convolutional encoder
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(d) Fully convolutional network (FCN)

Figure 6.14: Embedding spaces (One-class Deep SVDD loss, full data)
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Table 6.7: Predictive performance on the full data set. Upper part of ta-
ble: Compact FCN encoder model (three hidden layers) trained with various
loss functions. Lower part of table: Various compact encoder models (three
hidden layers) trained with the one-class (OC) Deep SVDD loss function.

F1 score Precision Recall Avg. prec. ROC AUC

Autoencoder 0.8733 0.9425 0.8232 0.8628 0.9974
Variational AE 0.4961 0.4922 0.5 0.8628 0.9609
SB Deep SVDD 0.4961 0.4922 0.5 0.7375 0.9516
OC Deep SVDD 0.9662 0.999 0.9375 0.922 0.9322

Conv. encoder 0.9595 0.9988 0.9261 0.9226 0.9492
FCN encoder 0.9662 0.999 0.9375 0.922 0.9322
MLP encoder 0.9120 0.9979 0.8636 0.9141 0.958
TCN encoder 0.9106 0.9824 0.8578 0.9028 0.9271

6.3.3 Utilizing Labels for Anomaly Detection Model Extensions

Neural models in general are known to highly benefit from including label in-
formation when accessible. Typically, a high quality of such labels is an im-
portant premise for an improvement of predictive performance of these (semi-
)supervised model extensions. In this subsection, two different extensions of the
unsupervised models evaluated in the former subsection are considered.

First, semi-supervised model extensions are presented. For semi-supervised
extensions, 20% of the expert labels are used for training encoder models with
the semi-supervised Deep SVDD loss function defined in Eq. 6.6. Afterwards,
a weakly supervised model extension relying on automatically generated labels
and trained with the weakly supervised Deep SVDD loss function proposed in
Eq. 6.12 is evaluated. The training of this weakly supervised extension is per-
formed as outlined in Subsection 6.2.4: For automatic generation of labels, LFs
are created based on generic features which are extracted from the raw sensor
data. The relevance of features is crucial for creating high-quality labels via these
LFs. Here, the six most relevant features were selected from a set of approxi-
mately 600 generic features via SHaP [151], a recent technique for assigning each
feature an importance value [110]. Then, a weak classifier is specified for each
of these six features by learning a static threshold dependent on the feature’s
Median Absolute Deviation value (Subsection 6.2.4). These single-feature weak
classifiers are then used as LFs.

Finally, a PGM as specified in [21] is learned to predict probabilistic label esti-
mates p(ỹ) by fusing the information from these LFs’ outputs. Here, probability
estimates p(ỹj ) can be specified for both label classes +1 (normal) and −1 (abnor-
mal). The class-conditional probabilities p(ỹj |ỹj = +1) and p(ỹj |ỹj = −1) are con-
nected via p(ỹj |ỹj = +1) = 1 − p(ỹj |ỹj = −1). Here, a probability p(ỹj |ỹj = −1) = 1
means the label-generating PGM is certain about the label estimate ỹj being an
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(a) Multilayer perceptron (MLP)
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(b) Temporal conv. network (TCN)
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(c) Convolutional encoder
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(d) Fully convolutional network (FCN)

Figure 6.15: Anomaly scores (One-class Deep SVDD loss, full data)

anomaly, for probabilities p(ỹj |ỹj = −1) = 0 the PGM is maximum uncertain
about the label estimate ỹj being an anomaly.

In the upcoming experiments, both predicting directly with the PGM by thresh-
olding label probabilities (i.e., p(ỹj |ỹj = −1) > 0.5 predicted as an anomaly) and
additionally incorporating the estimated label uncertainties inherent to the prob-
abilities p(ỹj |ỹj = +1) and p(ỹj |ỹj = −1) into the process of learning a neural
anomaly detection model with the weakly supervised Deep SVDD loss function
are compared.

Semi-Supervised Model

A qualitative comparison of unsupervised and semi-supervised versions of com-
pact FCN encoders is given by the learned embedding representations and pre-
dicted anomaly scores illustrated in Figures 6.16 and 6.17, respectively. For a
quantitative comparison of both model versions, the reader is referred to Ta-
ble 6.8 at the end of Subsection 6.3.3. There, a comprehensive comparison of
metric scores for the unsupervised, semi-supervised and weakly supervised ver-
sions of the compact FCN encoders is presented.

The embedding spaces of both unsupervised and semi-supervised compact
FCN encoders in Fig. 6.16 are difficult to compare. Both models map the normal
data to compact clusters while the majority of abnormal data is separated from
both of these normal clusters. Considering the anomaly scores in Fig. 6.17 allows
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for a better benchmarking of both model versions. As observable, using label
information for the semi-supervised extension has two main effects. Firstly, the
intra-class variance of anomaly scores for normal data is reduced compared to
unsupervised models. Secondly, anomaly scores for normal data are predicted
closer to zero for the semi-supervised version. This latter finding can be inter-
preted as an increased confidence of the semi-supervised model in its own pre-
dictions.
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(a) One-class Deep SVDD loss
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(b) Semi-supervised Deep SVDD loss

Figure 6.16: Embedding spaces (FCN encoders, full data set)
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(a) One-class Deep SVDD loss
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(b) Semi-supervised Deep SVDD loss

Figure 6.17: Anomaly scores (FCN encoders, full data set)

Weakly Supervised Model

When no expert labels are accessible, labels can automatically be generated as
outlined in the beginning of this subsection: A PGM as described in [21] can be
learned to estimate probabilistic labels p(ỹj ). Such a label-generating PGM is
learned based on the purely unlabeled training data from the full data set in this
subsection. Estimated probabilistic labels p(ỹj |ỹj = −1) for the full test data are
visualized in Fig. 6.18.

In Fig. 6.18a, the predicted label probabilities p(ỹj |ỹj = −1) for the test data to
be an anomaly are depicted. As described in the end of Subsection 6.2.4, the PGM
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(a) Probabilistic labels
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Figure 6.18: Left: Probabilistic labels p(ỹj |ỹj = −1) estimated by label-
generating PGM. Right: Histogram of label probabilities.

can refrain from assigning a label (i.e, ỹj = 0). This is observable in the reduced
number of test data records for which label probabilities are depicted. Sensible
label probability estimates can be confirmed especially for anomalies (red patch)
and the first day of normal test data (recording day 2 as listed in Table 6.3). This
finding matches the anomaly scores illustrated for unsupervised models in previ-
ous experiments, where anomaly scores for recording day 3 depicted in the latter
half of the anomaly score plots consistently illustrated higher anomaly scores and
variance of the data.

Fig. 6.18b depicts a histogram of these probabilities p(ỹj |ỹj = −1) illustrated
in Fig. 6.18a. As observable, the vast majority of data is predicted with proba-
bilities close to zero. Thus, the label-generating PGM is certain about the ma-
jority of test data records to be normal, which is sensible. Fig. 6.19 depicts the
same histogram divided into two parts for better visibility. Figure 6.19a is trun-
cated in vertical direction in order to better visualize less frequent probability
estimates than in Fig. 6.18b. Label probabilities p(ỹj |ỹj = −1) ≤ 0.5 as illustrated
in Fig. 6.19a can be considered normal, probabilities p(ỹj |ỹj = −1) > 0.5 as de-
picted in Fig. 6.19b as abnormal. It can be observed, that most of the probability
estimates concentrate at values of high certainty (i.e., 0 and 1). However, the label-
generating PGM succeeds in estimating probabilities in between both values and
can thus be interpreted as a well-calibrated probabilistic estimator [173].

The probabilistic labels as visualized in Fig. 6.18a can be used for prediction
of the full test data in two ways. As a first option, the PGM itself can be inter-
preted as a classifier and the probabilistic labels in Fig. 6.18a as anomaly scores.
When classifying an anomaly for scores p(ỹj |ỹj = −1) > 0.5, the metric scores
listed in the upper part of Table 6.8 at the end of this subsection are obtained.
The metric scores illustrate decent results but are inferior to the scores reported
for the unsupervised neural anomaly detection models in previous subsections.

As a second option, a compact FCN encoder is trained with the weakly su-
pervised Deep SVDD loss function proposed in Eq. 6.12. This necessitates tuples
(ỹj , p(ỹj )) for training data records xj , where p(ỹj ) ∈ [0, 1] is either of the probabil-
ities p(ỹj |ỹj = +1) or p(ỹj |ỹj = −1) based on the class of labels ỹj ∈ {+1,−1}. The
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Figure 6.19: Histograms of label probabilities p(ỹj |ỹj = −1). Left: Proba-
bilistic labels considered normal (p(ỹj |ỹj = −1) ≤ 0.5). Right: Probabilistic
labels considered abnormal (p(ỹj |ỹj = −1) > 0.5).

class label is again assigned by thresholding the probabilistic labels at 0.5 as spec-
ified before. Thus, neural anomaly detection encoders are provided with label
uncertainty estimates p(ỹj ) during training as opposed to when using the PGM
as classifier (first option described above). A random subset of 10,000 (ỹj , p(ỹj ))
tuples is used for training. Finally, predictions on the held-out test set of the full
data can be computed with the trained weakly supervised FCN encoder.

Training a compact FCN encoder with tuples (ỹj , p(ỹj )) as described results
in learning an embedding representation as visualized in Fig. 6.20b. Predic-
tions on the full test data with this weakly supervised FCN encoder results in
anomaly scores as depicted in Fig. 6.21b. Both results are quite similar to the
semi-supervised model extension: While the embedding spaces are difficult to
compare, anomaly scores for the weakly supervised model illustrate a smaller
variance in the anomaly scores for the normal data and higher confidence of the
model (as confirmed by many near-zero anomaly scores for normal data and an
increased distance between anomaly scores for normal and abnormal data).
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(a) One-class Deep SVDD loss
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(b) Weakly supervised Deep SVDD loss

Figure 6.20: Embedding spaces (FCN encoders, full data set)

Finally, Table 6.8 confirms that both semi-supervised and weakly supervised
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(a) One-class Deep SVDD loss
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(b) Weakly supervised Deep SVDD loss

Figure 6.21: Anomaly scores (FCN encoders, full data set)

Table 6.8: Predictive performance of partly supervised models on the full
data set. Upper part of table: Label-generating PGM used as a classifier (de-
cision threshold at probabilities p(ỹj |ỹj = −1) > 0.5). Lower part of table:
Compact FCN encoder models trained with unsupervised one-class (OC),
semi-supervised (SSL) and weakly supervised (WSL) Deep SVDD loss func-
tions.

F1 score Precision Recall Avg. prec. ROC AUC

PGM 0.8853 0.8327 0.9588 0.9082 0.9766

OC Deep SVDD 0.9662 0.999 0.9375 0.922 0.9322
SSL Deep SVDD 0.979 0.9994 0.9602 0.9456 0.9784
WSL Deep SVDD 0.979 0.9994 0.9602 0.9313 0.9716

extensions outperform the best-performing unsupervised FCN encoder (trained
with the one-class Deep SVDD loss function) across all metric scores. Interest-
ingly, training a model with automatically generated probabilistic labels and the
weakly supervised Deep SVDD loss function results in similar metric scores as
for the semi-supervised model trained with more than 1000 expert labels.

6.3.4 Anomaly Propositions with Neural Anomaly Detection
Models

The previous experiments focused on comparing several combinations of encoder
types and loss functions in order to find an optimal anomaly detection model.
This comparison was approached both quantitatively (based on several perfor-
mance metric scores) and qualitatively (based on visualizations of learned embed-
ding spaces and predicted anomaly scores). Both computation of metric scores as
well as visualizations of embedding spaces and anomaly scores were performed
for the same test data as used for choice of an appropriate anomaly proposing
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Figure 6.22: Upper matrix: Agreement between multiple retrospective an-
notators and with live annotations of signals proposed as an anomaly in
Chapter 5 (cf. Fig. 5.9). Lower matrix: Anomaly propositions by various
anomaly detection models.

model in the user study presented in the former chapter (cf. Subsection 5.5.1).
However, Tables 5.1 and 5.2 confirmed excellent performance of various simpler
models than the neural models presented in this chapter on these data. Then,
during evaluation of the live annotations in Subsection 5.5.2, several experiments
suggested these simple models not to be capable of reliably proposing actual ab-
normal data records, i.e., failed to model the complex normal behavior of the
demo grinding machine due to covariate shift sufficiently well.

In order to find a more appropriate anomaly detection model, the various neu-
ral encoder-loss function combinations proposed in this chapter are compared
with the simple NC_ED anomaly detector which was applied in Chapter 5. The
NC_ED anomaly detection model is a nearest centroid (NC) model relying on
Euclidean distance (ED) measures. The results of comparison with this model
are reported for the live annotations collected in Chapter 5. For the evaluations,
only the subset of live annotated data recorded with the “OP1” sensor position as
described in Chapter 5 is considered, as the models in this chapter were trained
and tested only for these OP1 sensor data.

Fig. 6.22 summarizes the agreement between human labels (retrospective and
live annotated data, upper matrix) and anomaly propositions by four different
models (lower matrix): The simple NC_ED anomaly detection model applied
during the user study in Chapter 5 and the unsupervised, semi-supervised and
weakly supervised neural anomaly detection models compared in the previous
Subsection 6.3.3. Results are visualized in a similar form as in Fig. 5.9.

When comparing data records proposed as abnormal by these four models
(black elements in lower matrix) with class labels assigned by the majority of
retrospective annotators (fourth row of upper matrix) as feedback to these propo-
sitions, a higher agreement of neural models with annotators than that for the
simple NC_ED models becomes apparent. The agreement increases when in-
corporating label information (lower matrix, third and fourth row), especially
for the weakly supervised model. Quantitatively, when considering the majority
vote of retrospective annotators as ground truth labels and comparing to anomaly
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propositions, both precision scores and recall scores of neural anomaly detection
models improve over scores of the simple NC anomaly detection model. Preci-
sion scores (as a measure for the false positive rate) improve from 24.24 % of
the NC model to 66.67 % (unsupervised), 70.06 % (semi-supervised) and 83.72 %
(weakly supervised) for the neural anomaly detection models. Similarly, recall
scores (as a measure for the false negative rate) improve from 24.24 % of the
NC model to 33.33 % (unsupervised), 48.48 % (semi-supervised) and 81.82 %
(weakly supervised) for the neural anomaly detection models. The agreement
with live annotations (upper matrix, fifth row) however stays low for all anomaly
detection models. This substantiates both the power of neural anomaly detection
models compared to the simple NC_ED anomaly detection model as well as the
allegation of low reliability of live annotations collected as feedback to proposi-
tions by the simple NC_ED model applied in Chapter 5.

The agreement between neural anomaly propositions and the majority vote of
retrospective annotators is especially high for the left part of the matrices, which
consist of data recorded at April 15th and 16th, 2019 (cf. Fig. 5.8). These days of
recording are characterized by visually confirmed machine damages as discussed
in Chapter 5.

6.4 Conclusions

The major goal of this chapter was improving anomaly detection models over
models from Chapter 5, using the ability of learning a time series representa-
tion that models the recorded normal data and thus normal state of the analyzed
grinding machine as well as deviations from this normal state more reliably.

For this, multiple combinations of neural time series encoders and loss func-
tions were compared. A compact (three-layer) model size was chosen, valuing
constraints on memory space caused by the embedded nature of the demo evalu-
ation system and the goal of short model execution times (due to the necessity of
quick responses to potentially harmful anomalies).

The main challenge the anomaly detection models had to tackle is retaining
an adequate representation of the normal data throughout the large observed co-
variate shift between days of recording in the evaluation data. But the compact
model size chosen in this chapter would optionally allow for a retraining or adap-
tation of the anomaly detection models even on the embedded evaluation system.

The evaluation of various encoder-loss function combinations proved the su-
periority of neural anomaly detection models over simple anomaly detection
models as applied in Chapter 5 on two data sets. Firstly, on a long-term (“full”)
data set which illustrates the large covariate shift in the normal data occurring
during in-field operation. The neural models learned on these full data suc-
ceeded in learning a representation generalizing the covariate shift as confirmed
by visualized embedding spaces, anomaly scores and reported performance met-
rics (e.g., F1 scores of 96.6 % for best-performing unsupervised models and 97.9 %
for best-performing semi-supervised and weakly supervised models). On the
other hand, the simple anomaly detection models in Chapter 5 apparently failed
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in generalizing this covariate drift as suggested by the high rejection rate of
anomaly propositions. For a direct comparison, neural and simple anomaly de-
tection models were compared on this second data set consisting of data records
proposed as anomalous during the user study in the previous chapter. The latter
data can be interpreted as the actual benchmark for appropriateness of anomaly
detection models when being used as anomaly proposing model in the live anno-
tation approach presented in Chapter 5: As evaluations of both retrospective and
live annotations in the previous chapter revealed, both types of annotations illus-
trated a large disagreement with the propositions of potential anomalies by sim-
ple anomaly detection models. This chapter revealed that propositions by neural
anomaly detection models align better with these retrospective annotations from
the previous chapter: Precision scores improved from 24.24 % for the simple NC
models applied in Chapter 5 to 83.72 % for the best-performing neural anomaly
detection models evaluated in this chapter. In addition, recall scores improved
from 24.24 % to 81.82 %.

The alignment increased when considering extensions of the unsupervised
neural anomaly detection models that incorporate label information. Surpris-
ingly, both semi-supervised extensions incorporating expert label annotations
and weakly supervised extensions incorporating automatically generated labels
showed a similar improvement. In addition, both semi-supervised models re-
sulted in a similar improvement over unsupervised models when being com-
pared on the full data set (F1 scores increased from 96.6 % to 97.9 % for both
semi-supervised models). This similarity in predictive performance for semi-
supervised and weakly supervised extensions occurred only when training the
neural anomaly detection model extensions with the weakly supervised Deep
SVDD loss function presented in this chapter.

Although neural anomaly detection models resulted in a higher agreement of
anomaly propositions with retrospective label feedback, the alignment with live
annotated data as collected in the previous chapter did not increase to a similar
extent. Thus, the question remains, if live annotated data in general is unreli-
able or if the high disagreement was due to the simplicity and high FP rate of
propositions. Alternative reasons encompass both a restricted visualization of
the data considered during live annotation at the labeling prototype presented
in Chapter 5 and restricted time during live annotation. All of these reasons can
be circumvented by collecting potential abnormal data records proposed by the
neural anomaly detection models in this chapter and presenting them for a retro-
spective annotation. This approach represents an alternative to live annotations
with a similar labeling cost/quality ratio. Especially when using the weakly su-
pervised neural anomaly detection model a near-optimal cost/quality ratio can
be obtained: The weakly supervised neural anomaly detection model both im-
proves the FP rate of the (lowest labeling cost) unsupervised neural models and
the labeling cost of the semi-supervised neural model (relying on domain expert
labels).





7
Summary

Present-day manufacturing processes in machine tool applications are exposed to
high standards regarding efficiency and quality of workpieces’ machining. Com-
plying with these standards necessitates constant monitoring of the machining
process and machine tools, as well as the machine parts they are assembled from.
Such machine monitoring relies on evaluation of data recorded from sensors at-
tached to key points of the machines.

Although sensor-based machine monitoring systems are already part of real-
world production environments, they often involve a high degree of human inter-
vention, which is both expensive and often error-prone. This lack of automation
is despite several automated machine monitoring approaches found in literature
and mainly due to three challenges:

• Machine monitoring systems striving for long-term deployment in real pro-
duction environments need to cope with a large covariate shift in sensor
data induced by changes of workpiece types and (frequent) process adjust-
ments. This necessitates learning sensor data representations that gener-
alize across this covariate shift, such that trained models still match the
distribution of newly incoming test data.

• In addition, most performant predictive models across a wide range of time
series applications proved to be (semi)-supervised, needing large sets of
data annotated with trustworthy labels. Collecting such labels can be ex-
pensive due to occupation of machine operators and machine tools in exper-
iments with non-standard process parameters, thus producing workpieces
that can not be sold afterwards. In addition, machining with non-standard
parameters can result in high risks of provoking severe machine damage.
Both cost and risk of collecting anomaly labels often result in recorded data
sets equipped only with sparse and often noisy (i.e., not always reliable)
labels.

173



174 7 Summary

• Finally, most performant models often have high memory requirements,
long training and model execution times or necessitate specific hardware
for training. This conflicts with the application demands for compact em-
bedded sensor evaluation systems, enabling retrospective equipment of
existing machines with such systems. In addition, the risk of anomalies to
cause machine damages induces requirements of short model execution
times.

This thesis aimed at presenting automated, sensor-based machine monitoring
systems addressing these challenges. Contributions made to that end are listed
in the following section. All of them value memory constraints imposed by em-
bedded evaluation systems and short model execution times required by the ap-
plication.

7.1 Summary of Contributions

Chapter 3
Various segmentation approaches were evaluated on own sensor data record-
ed in real production environments. First, a novel segmentation model de-
fined by a combination of GMMs and FSMs was introduced, mimicking
HMMs but at reduced computational cost. Furthermore, an extension to the
BOCPD [5] segmentation algorithm was presented. This extension aims at
improved representing the cyclostationary behavior of the data-generating
process in recurrent segments of the recorded sensor data. Modeling this
cyclostationary behavior allowed for a more robust segmentation of data
records and the successive extraction of features in the recurrent segments
for an improved unsupervised detection of anomalies in the production pro-
cess. In addition, a novel health indicator for tool condition monitoring rep-
resented by a custom-built feature relying on such recurrent segmentation
was presented. Both the introduced segmentation methods and the novel
tool condition health indicator claim to work independent from the choice
of machine tool, process parameters and workpiece types, thus generalizing
across the covariate shift observed in the recorded sensor data.

Chapter 4
Custom-built features were defined for condition monitoring of specific
rotating (machine) parts. These features built on tracking of discrete fre-
quency components related to rotating parts. Methods for a robust recov-
ery and assignment of discrete frequency components to machine parts
were presented. In addition, exemplary features for an unsupervised detec-
tion of imbalances in rotating machine parts and insufficient roundness of
machined workpieces were introduced. As the presented features rely on
domain expertise and physical understanding of the machine, they again
claim to generalize across the covariate shift of evolving sensor data. The
sensibility of these methods was again discussed for data recorded from a
grinding machine in a real production environment.
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Chapter 5
A novel approach for low-cost collection of large sets of expert labeled data
in industrial scenarios by live and in situ annotation of sensor streams was
presented. A longitudinal user study explored and evaluated the approach
on a several-weeks-collection of sensor data recorded in a real production
environment. Most importantly, the types of anomalies that can be labeled
reliably with this approach were identified and influential factors on anno-
tation reliability were discussed. A novel visualization and labeling proto-
type custom-made for annotation of sensor data in harsh industrial environ-
ments was presented, complemented by insights from the design process
of this prototype gathered by exchange with domain experts (i.e., the indus-
trial end users). This prototype deliberately deviates from the practice in
frequent studies on annotation in medical and social applications, where
labels are typically collected via a smartphone-based human–machine in-
terface.

The prototypical system was developed and verified in a series of interviews
with the industrial machine experts: Live visualization of the recorded sen-
sor data at the prototype combined with timely alerts for potential anoma-
lies (especially the severe classes whirring of workpieces and grinding wheel
damage) allowed for saving a five-figure AC amount per year in which the
prototype was deployed and used. These cost savings compute solely from
the absence of machine part changes, not having considered additional per-
sonal costs and expensive machine downtimes. The practical benefit the
prototype proved in the production shop motivated machine operators to
participate in live annotation of reported anomalies.

Chapter 6
As the user study from Chapter 5 suggested the applied anomaly detection
models to be overly simple, a wide range of unsupervised neural anomaly
detection models was evaluated. The models were defined from several
combinations of time series encoder networks and anomaly detection loss
functions, aiming at learning a time series embedding representation invari-
ant to covariate shift in sensor data. All models were evaluated on a large
corpus of sensor data recorded in the real production environment consid-
ered for the evaluations in Chapter 5, showing a large covariate shift. In ad-
dition, semi-supervised extensions of the models were evaluated. These ex-
tensions were both trained with expert labels and automatically generated
weak labels. A novel weakly supervised anomaly detection loss function be-
ing able to estimate the increased uncertainty of automatically generated la-
bels was used for training the latter of the semi-supervised extensions with
the automatically generated labels. Surprisingly, this weakly supervised
anomaly detection model proved competitive to the model trained with ex-
pert labels both regarding handling the covariate shift and in making better
anomaly propositions than the simpler models shown in Chapter 5.
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7.2 Conclusions and Outlook

The custom-built features proposed in Chapters 3 and 4 of this thesis allowed for
an unsupervised detection of several specific machine monitoring tasks.

The extension of the BOCPD algorithm proposed in Chapter 3 enabled a ro-
bust yet computationally convenient detection of recurrent segments. Features
extracted based on knowledge of these recurrent segments proved adequate both
for estimation of tool condition (consistent increase of monotonicity and trend-
ability performance measures) and unsupervised detection of sudden anomalies
in the machining process (F1 scores of 99.05 % and 97.86 % for two selected pre-
dictive tasks). In general, alternative segmentation approaches explicitly exploit-
ing the doubly cyclostationary structure of the data-generating process can be de-
signed: Both data records and segments in these data records depict a recurrent
structure. This could elegantly be represented in segmentation models with a hi-
erarchical structure, e.g., extending the BOCPD approach or using hidden (semi)
Markov models which are popular in speech segmentation applications [100].

In Chapter 4, the applicability of custom-built features for unsupervised de-
tection of imbalances in rotating machine parts was validated. However, the ap-
plied approach building on tracking of discrete frequency components (DFCs)
revealed susceptibility to spurious DFCs. Furthermore, recovering and assigning
the single correct DFC to the matching machine part from a multitude of possi-
ble DFC candidates proved challenging. The recovery of continuous DFC tracks
was complicated by the fractionation of tracks due to high amounts of noise in
the sensor data. In general, extensions to improve the continuity of tracking can
be possible by using more elaborate tracking methods like Markov renewal pro-
cesses (MRPs) [243]. MRPs allow sleep states (i.e., discontinuities) in DFC tracks,
thus potentially decreasing the fractionation of tracks and resulting in a smaller
amount of continuous tracks. However, the two above mentioned challenges dur-
ing the assignment of DFCs to matching machine parts (susceptibility to spuri-
ous DFCs and selecting the single correct DFC among a multitude of possible
candidates) persists. This ultimately renders the approach of designing features
building on DFCs being popular in the MHM community questionable.

The user study presented in Chapter 5 revealed diverging results on applica-
bility of the live annotation approach. Live annotations from experts succeeded
in identifying several actually confirmed anomalous events from the sensor data
depicted via the developed labeling prototype. These confirmed anomalies were
mainly representatives of anomaly classes with clearly deviating and well-known
signal patterns (whirring of workpieces, grinding wheel damages). Other, more
subtle signal deviations were typically not confirmed as anomalies by live an-
notators, resulting in a high rejection rate of potential anomalies proposed by
the rather simple models (nearest centroid model, energy threshold heuristics).
Besides the reduced time for annotations, main reasons for this high mismatch
between propositions of and feedback to potential anomalies are assumed in two
fields: The proposed anomalies being of classes with non-internalized patterns
of signal manifestation and a limited visualization of sensor data at the labeling
prototype screen. The former can be addressed by anomaly detection models be-
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ing able to identify clusters of recorded data. Identifying clusters would allow
for prompting a currently proposed potential anomaly together with similar for-
merly proposed and confirmed anomalous data records, allowing to internalize
new patterns of manifestation of anomaly types previously unknown to machine
operators. The limited visualization might be addressed by techniques highlight-
ing the signal subregions most contributing to the currently predicted class of a
data record under review. This highlighting of most abnormal signal subregions
endows annotators with additional explanatory meta-information about predic-
tion of potential anomalies, allowing for an enhanced visualization of more sub-
tly deviating anomaly types.

Both of these extensions of the live annotation approach can be tackled with
the advanced neural anomaly detection models presented in Chapter 6. Espe-
cially fully convolutional network (FCN) encoders combined with unsupervised,
semi-supervised and weakly supervised versions of the Deep SVDD loss func-
tion [207] succeeded in learning a time series embedding representation that
both generalizes across the observed covariate shift in the sensor data and allows
to identify clusters in the learned embedding space. In addition, FCN encoders
allow to use class activation mapping (CAM) [291] for highlighting of signal sub-
regions most contributing to the predicted class for the current data record un-
der review. The results in Chapter 6 revealed a good predictive performance
of several model variants on the large recorded (“full”) data set: The best unsu-
pervised model (FCN encoder trained with one-class Deep SVDD loss function)
reached an F1 score of 96.6 %, semi-supervised and weakly supervised FCN en-
coders both achieved F1 scores of 97.9 %. The increased predictive performance
of these models compared to the simple models in Chapter 5 resulted in more
reliable anomaly propositions: Precision scores improved from 24.24 % for the
simple NC models applied in Chapter 5 to 83.72 % for the best-performing neu-
ral anomaly detection models evaluated in Chapter 6. In addition, recall scores
improved from 24.24 % to 81.82 %. In general, other semi-supervised loss func-
tions can be evaluated in order to further improve the predictive performance.
Contrastive loss functions [91] and triplet loss functions [222] are among most
popular recent choices. However, neither of them is custom-built for anomaly de-
tection applications, typically necessitating data with more balanced classes than
in anomaly or outlier detection scenarios.

More interestingly, using live annotations as labels in training the weakly su-
pervised models would be appealing. Live annotations come without uncertainty
estimates however, which were shown to be an influencing factor for success of
training with the weakly supervised Deep SVDD loss function presented in Chap-
ter 6. Such uncertainty estimates might be obtained by including live annota-
tions as a labeling function in the label-generating probabilistic graphical model
(PGM) described in Chapter 6. Good labeling functions should fulfill the two
criteria of a good accuracy and good coverage of the data – both are not met by
live annotations. Consequently, including live annotations as labeling function
would reduce accessible data that can be used for PGM training, as live annota-
tions only cover a small fraction of the data with labels, while generic feature
labeling functions allow to estimate weak labels for all data records. This re-
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duced training data in turn would reduce the reliability of estimated accuracy
factors and labeling function inter-dependency factors. In addition, a live anno-
tation labeling function is likely to be of smaller accuracy than labeling functions
based on appropriate features as confirmed by the high mismatch between live
annotations and retrospective annotations illustrated in Chapters 5 and 6.
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Appendix for User Study (Chapter 5)

A.1 Original Version of Labeling Prototype Screens
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(a) Default screen: Cont. visualization (b) Screen 2: Anomaly (binary)

(c) Screen 3: Anomaly (multi-class) (d) Screen 4: Process adapt. (multi-
class)

Figure A.1: Screens of the visualization and labeling prototype (original Ger-
man version). A version of the screens translated to English can be found in
Figure 5.3. A detailed description of the functional workflow of the screens
can be found in Section 5.3.



B
Appendix for Neural Anomaly

Detection (Chapter 6)

B.1 Encoder Networks

In this subsection, various encoder architectures are described, building on the
hidden layer types introduced in the previous subsection. The encoder’s main
purpose is finding a descriptive internal representation of the input time series
x ∈ RT×Nc given by an embedding vector p ∈ Rp, i.e., encoders function as the fea-
ture extractor part of the network. The encoder architectures in this section are
adapted from the architectures mentioned in [266] (MLP, FCN) and [24] (TCN).
In addition, a simple convolutional architecture is described, which uses similar
1D convolutional layer types as the FCN but progressively decreases the input
sequence dimension T lin of each successive hidden layer l. Although the number
of channels Nc for the input data considered in this chapter is one, the discussed
architectures are general enough to be applied to arbitrary numbers of channels.

B.1.1 Multilayer Perceptron (MLP) Encoder

Fig. B.1 outlines the architecture of MLP encoders. Encoders are created by stack-
ing LMLP layers. The dimension of input x ∈ RT to the first layer is progressively
decreased by a fixed compression factor cf , such that for layer l the output length

computes to T lout =
T lin
cf

.

B.1.2 Fully Convolutional Network (FCN) Encoder

The architecture of FCN encoders is illustrated in Fig. B.2. FCNs consist of L
stacked convolutional layers, a global average pooling layer and a final 1 × 1 con-
volutional layer. FCNs were first used for time series applications in [266], where
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Figure B.1: MLP encoder architecture. Figure adapted from [110].

global averaging pooling was applied for the purpose of applying class activa-
tion mapping (CAM) [291], a technique allowing to identify subregions of time
series contributing to the predicted class label. Different than for MLP encoders,
the input sequence length T 1

in of the first convolutional layer is kept across all
hidden layers. The number of filters Nf and the number of hidden layers L are
set as recommended in [266]. The kernel size k is adapted in order to match the
characteristics of the given data.
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Figure B.2: FCN encoder architecture. Figure adapted from [110].

B.1.3 Convolutional Encoder

Similar to FCN encoders, convolutional encoders apply a series of L 1D convolu-
tional layer transformations to the input data as illustrated in Fig. B.3. Other than
for FCN encoders however, the output lengths T lout of layers l are progressively
reduced by applying a constant compression factor cf as for MLP encoders. The
last of these convolutional layers produces an output of size T Lout × N L

f , which is
flattened and passed to a fully connected layer in order to produce an embedding
vector p ∈ Rp.
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Figure B.3: Convolutional encoder architecture. Figure adapted from [110].

B.1.4 Temporal Convolutional Network (TCN) Encoder

Finally, the architecture of TCN encoders is depicted in Fig. B.4. Similar to FCN
encoders, TCN encoders consist of L hidden blocks of similar structure, a suc-
cessive global average pooling layer and a final 1 × 1 convolution. Also similar
to FCN encoders, the output sequence length is kept constant across all hidden
blocks. Other than for FCN encoders however, the hidden FCN blocks are re-
placed by TCN blocks, with the main difference of adding residual connections
to each hidden block.

Input
sequence �

� × 1

� 1

�
� �

�

Layers

2 … � − 1

1 × 1

� �
�

�

convolution
Embedding

vector+

1 × 1

� × � 1

�

+

� × � �−1

�
� × � �

�

1 × 1

Residual connectionResidual connection

TCN
block
   1

TCN
block
   L

Text

� �

Global average pooling

1 × � �
�

Figure B.4: TCN encoder architecture. Figure adapted from [110].

B.2 Decoder Networks

In this subsection, decoder network architectures considered in this chapter are
described. Decoder networks are necessary for autoencoding structures, thus
used only in combination with AE and VAE loss functions.

The main purpose of decoder networks is to reconstruct time series x̂ from the
embedded representation vector p as closely as possible. In order to reconstruct
time series x̂ ∈ RT , successive hidden layers need to perform an upsampling of

the lower-dimensional vector p. This is obtained by an expansion factor ef = T lout
T lin

that is kept constant for all layers l.
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B.2.1 Multilayer Perceptron (MLP) Decoder

Fig. B.5 illustrates the structure of MLP decoders as applied in this chapter. L
MLP layers with a constant expansion factor ef are stacked. The number L of
layers is chosen dependent on this expansion factor ef such that the original di-
mensions of the input time series x are reconstructed for output time series x̂.
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Figure B.5: MLP decoder architecture. Figure adapted from [110].

B.2.2 Convolutional Decoder

The considered convolutional decoder architecture is depicted in Fig. B.6. Up-
sampling is performed by transposed convolutional layers. Finally, a 1 × 1 con-
volution is applied to the output of the last transposed convolutional layer L in
order to assimilate the number of channels of the reconstructed output x̂ to the
number of channels Nc = 1 of the original input times series x.
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Figure B.6: Convolutional decoder architecture. Figure adapted from [110].



B.3 Variational Autoencoder (VAE) Projection Network 187

B.3 Variational Autoencoder (VAE) Projection
Network

The projection network as illustrated in Fig. B.7 implements the reparameteriza-
tion trick [124] by moving the sampling of z from hidden layers to an input layer.
For the sampling of z, two fully connected layers are implemented in order to
represent the mean vector µ and the standard deviation vector σ of the latent
stochastic variable z = µ + σ � ε. Here, � denotes an element-wise (Hadamard)
product. Thus, z is assumed to be sampled from a multivariate normal distribu-
tion qφ(z|x) = N (z; µ, σ2I) with diagonal covariance matrix [124], i.e., I denotes
the identity matrix. The actual sampling from qφ(z|x) is then represented by vec-
tors ε sampled from a standard normal distribution ε ∼ N (0, I). This standard
normal distribution is represented by another fully connected layer.
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Figure B.7: Projection network for the VAE encoder-decoder network. The
separation of projecting the embedding vector p to the stochastic latent vari-
able z and back from encoder and decoder parts of the network allows flex-
ible combination of encoders and decoders with various loss functions. Fig-
ure adapted from [110].

B.4 Training of Neural Anomaly Detection Models

Despite choice of loss function and network architecture, the applied training
routine and the employed optimizer influence model performance. The neural
models in this chapter are implemented in PyTorch [183]. Algorithm 3 summa-
rizes the applied training routine. It resembles standard training routines mini-
mizing loss functions via mini-batch SGD but illustrates a few adaptations.
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Algorithm 3: Training Routine for Neural Anomaly Detection Models

Input: DtrainN , DvalM
Output: W ∗

1: W ← Init(W ) . Uniform Xavier weight initialization
2: for each epoch do
3: for each mini-batch B in DtrainN do
4: Compute training loss LtrainB . Forward pass
5: Compute gradient ∆WLtrainB . Backpropagation
6: W ← Optimizer(W , ∆WLtrainB ) . Update weights
7: end for
8: for each mini-batch B in DvalM do
9: Compute validation loss LvalB . Forward pass

10: end for
11: Lvalµ ← Average(LvalB )
12: Ltrainµ ← Average(LtrainB )

13: Lval,∗µ , bStop← EarlyStopping(Lvalµ ) . Update Lval,∗µ and bStop
14: if bStop == TRUE then
15: Stop training
16: end if
17: end for
18: returnW ∗ ← W for Lval ∗µ

DtrainN is the training data set with N records in total and DvalM is the validation
data set with M records in total. The data consist of plain time series only, i.e.,
without providing any labels. Both training and validation data are split into a
set of fixed-size mini-batches B. For each epoch, training and validation losses
of the mini-batches B are computed and averaged. The training ends either after
having reached the prespecified number of epochs or when receiving a stop sig-
nal bStop. The value of this binary stop signal variable is specified by an early
stopping routine, which updates the best average validation loss Lval,∗µ observed
during training and stops the training process when no further improvement (i.e.,
reduction of best average validation loss) has been obtained for a prespecified
number of epochs. Early stopping thus acts as an additional regularizer to the
weight regularizers applied with the individual loss functions, preventing from
overfitting of the network parameters to the training data [190].

For each of the mini-batches B in DtrainN , the training loss is computed by
a forward pass through the network. Then, the gradients with respect to the
weights ∆W are computed by backpropagation, using automatic differentiation
capabilities of PyTorch [183]. Finally, the network weights are updated, using the
Adam optimizer [122]. Network weights are uniformly Xavier initialized [85].
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B.5 Optimization of Hyperparameters

The validation data DvalM as denoted in Algorithm 3 are also used for hyperparam-
eter optimization. Hyperparameters are optimized either individually or jointly
depending on the type of hyperparameters.

Hyperparameters related to network architectural elements are the number
of hidden layers L, the embedding dimension p, the latent dimension z and the
kernel size kl for convolutional filters of layer l. Except for the latter, these net-
work architecture hyperparameters are individually optimized by variation of
hyperparameter values and comparing to model performance. Kernel sizes kl are
optimized relying on best practices mentioned in [24, 266]. Then, network ar-
chitecture hyperparameters with a tied dependency can be computed from these
values of L, p, z and kl . These dependent hyperparameters are the compression
factor cf and the expansion factor ef as well as padding sizes pd l and dilation
factors d l of layers l.

After optimization of hyperparameters related to the network architecture,
hyperparameters related to loss functions and the training routine summarized
in Algorithm 3 are optimized. These hyperparameters are mainly the learning
rate η, size B of mini-batches B and the trade-off factor λ governing the influence
of the weight regularizer

∑L
l=1‖Wl‖2F utilized in most loss functions. These hyper-

parameters are tightly related [236], which is why they are jointly optimized by
an algorithm leveraging a tree of parzen estimators [31]. For joint optimization
of these latter hyperparameters, the Hyperopt [32] software package is used.
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