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Abstract

The dissertation at hand is concerned with the scientific solutions for the problems of

visual object tracking and image-based railway quality control. In the tracking scenario,

an object of interest is followed automatically. The type, size and, general features of

the object are not known and the system does not have any knowledge of it. The object

tracking schemes are studied based on three different sensors namely rectangular, om-

nidirectional and, 360-degree cameras. For the rectangular videos, two object-detection-

based methods are proposed. The first tracker uses a pre-trained object detector and

does not update, whereas the second one is updated during the tracking. These sys-

tems compare five famous training based object detectors. The results demonstrate the

trackers’ efficiency and show the preference of offline tracker to the online one.

The polar cameras - namely omnidirectional and 360-degree sensors - provide videos

with a wider field of view than the conventional normal rectangular ones. Replacing

conventional security cameras with 360-degree ones allows a significant reduction of

hardware costs as well as software license and maintenance costs. There are many

trackers based on conventional rectangular videos in the literature, whereas the number

of polar object following systems, in comparison, is very limited and they are not yet

matured. Most of the projects which are going to be discussed in this work are processing

the 360-degree videos. Two proposed methods unwrap the polar videos using image

rectification; then a modified version of Tracking Learning Detection tracker and another

state-of-the-art detector are applied. To increase the speed of the process, a trapezoidal

tracker is proposed to eliminate the rectification part. In another proposed scheme, a

SURF based algorithm is used to improve performance. This tracker uses two learning

based modules for interesting points matching and challenges recognizing respectively.

The other proposed method combines a polar candidates generation method and color

binary features to improve its accuracy and speed. The experiments show that the last

method has the best accuracy and speed among the proposed methods and it outperforms

the state-of-the-art polar trackers.

In the second part of the dissertation, a vision-based quality control method of con-
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crete railroad sleepers is presented. This system captures an image sequence by a high

resolution, fast and moving camera from railway top view and applies a proposed image-

based crack detector to control the railway sleepers quality. This scheme first locates the

sleepers within the images and then, generates crack candidates on the sleeper images

and finally, detects and classifies the cracks and by applying a supervised classifier on the

candidates. The classifier uses geometrical features to detect and classify the cracks on

the concrete sleepers. The experimental results show that the crack detector successfully

finds the cracks.
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Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Problematik der visuellen Objektver-

folgung und bildbasierte Bahnqualitätskontrolle. Im Objektverfolgungsszenario wird

ein Objekt von Interesse automatisch verfolgt. Hierbei sind Art, Größe und im Allge-

meinen die Eigenschaften ebendiesen Objekts nicht bekannt und der Tracker hat kein-

erlei Kenntnis über das Objekt. Die Objektverfolgung wird auf der Grundlage von

drei verschiedenen Sensoren untersucht, nämlich rechteckigen, omnidirektionalen und

360-Grad-Sensoren. Für die rechteckigen Videos werden zwei auf Objekterkennung

basierende Tracker vorgeschlagen. Der erste Tracker verwendet einen vortrainierten

Objektdetektor und aktualisiert nicht, während der zweite während des Tracking aktu-

alisiert wird. Anhand dessen werden fünf bekannte trainingsbasierte Objektdetektoren

verglichen. Die Ergebnisse zeigen die Effizienz der Tracker und die Präferenz des Offline-

gegenüber dem Online-Tracker.

Die Polarsensoren, d.h. omnidirektionale und 360- Grad-Sensoren, liefern polare

Videos. Sie verfügen über ein breiteres Sichtfeld als die herkömmlichen rechteckigen

Sensoren. Der Austausch herkömmlicher Sicherheitskameras durch 360-Grad Kameras

reduziert die Kosten für Hardware, Softwarelizenzierung und Wartung erheblich. In der

Literatur finden sich viele Tracker, die auf herkömmlichen rechteckigen Videos basieren,

während die Anzahl der Polar-Tracker im Vergleich dazu sehr begrenzt ist und diese noch

nicht ausgereift sind. Die meisten Projekte, die in dieser Dissertation behandelt werden,

verarbeiten Videos von 360-Grad-Sensoren. Zwei vorgestellte Tracker wandeln die po-

laren Videos mittels Bild-Rektifizierung in ein rechteckiges Format um. Anschließend

erfolgt die Anwendung einer modifizierten Version des Tracking- Learning-Detection

Tracker für die erste Objektverfolgungsmethode. Die Tracking- Geschwindigkeit soll

erhöht werden, indem ein trapezförmiger Tracker vorgeschlagen wird, um den Rekti-

fikationsprozess zu vermeiden. In einem anderen Vorschlag wird ein SURF-basierter

Tracker verwendet, um die Trackingleistung zu verbessern. Dieser verwendet zwei

lernbasierte Module, um interessante Punkte abzugleichen und Herausforderungen zu

erkennen. Schließlich werden ein Polar-Kandidaten-Erzeugungsverfahren und Farb-



binärmerkmale verwendet, um deren Genauigkeit und Geschwindigkeit zu verbessern.

Die Experimente zeigen, dass diese Methode die beste Genauigkeit und Geschwindigkeit

unter den vorgeschlagenen polaren Trackern bietet und die modernen Polar-Tracker

übertrifft.

Im zweiten Teil dieser Dissertation wird ein visionsbasiertes Qualitätskontrollver-

fahren für Eisenbahnschwellen aus Beton dargelegt. Hierbei wird eine Bildsequenz von

einer hochauflösenden und sich schnell bewegenden Kamera von Draufsicht auf die

Eisenbahn aufgenommen und der vorgeschlagene bildbasierte Rissdetektor überprüft

den Zustand der Schwellen. Die vorgeschlagene Methode findet zunächst die Schwellen

in den Bildern. Anschließend werden auf den Schwellenbildern Riss-Kandidaten erzeugt

und schließlich werden Risse anhand geometrischer Merkmale erkannt und klassifiziert,

indem ein überwachter Klassifizierer auf die Kandidaten angewendet wird. Die experi-

mentellen Ergebnisse zeigen, dass der Rissdetektor die Risse erfolgreich findet.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Nowadays, cameras are everywhere and provide a huge amount of information. The

number of smart-phone users in the world is forecast to grow from 2.1 billion in 2016

to around 2.5 billion in 20191. The number of video surveillance cameras was globally

more than 245 million in 2014 and is increasing very fast2. The visual data themselves

do not provide directly the users with any added value and they need to be semantically

interpreted in a particular application context to become useful.

This chapter is structured as follows: Section 1.1 presents the basic concept of this

dissertation. In Section 1.2, the motivation behind this thesis is outlined. Afterwards,

the contribution of this dissertation to the two main areas of this thesis, namely object

tracking and railroad quality control, is given in Section 1.3. Section 1.4 presents an

overall structure of the thesis.

1.1 Fundamental Concept

This dissertation presents novel scientific methods in the area of visual data under-

standing. Visual data understanding systems processes digital videos to add valuable

information to the raw videos. The thesis is composed of two main following parts:

• Visual Object Tracking: By knowing the location of a certain object in the first frame

of a video, the task of following this object is a fascinating task in the area of visual

data understanding. This task becomes scientifically more interesting when certain

real world challenges are involved in object tracking.

1https://www.statista.com/
2https://ihsmarkit.com/index.html
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• Image-based Quality Control: Digital image processing extracts valuable knowl-

edge from raw image-based data. This knowledge may be used in various sub-

disciplines namely quality control in industrial productions. The task of digital

video processing is scientifically interesting when some challenges are included.

1.1.1 Fundamental Concept of Visual Object Tracking

Visual object tracking plays an important role in the real world. An object tracker follows

an object in consecutive video frames. The human brain uses tracking in order to perform

one of its most important tasks: detecting and recognizing an object. For instance, when

a faraway object is approaching, it is tracked continuously in the brain. As the object

reaches a maximum distance, it can be recognized. In the area of digital data processing,

there are many applications which are benefiting from object tracking. For instance,

medicine, military, security systems and, intelligent transport systems are using object

tracking to find solutions for the problems in their applications. 360-degree cameras are

new sensors containing excellent features such as wide field-of-view 360-180-180 degree,

low-weight and easy moving, high-quality and high-resolution videos. These wonderful

features dedicate new fields to improve the application of visual data understanding in

the real world. This thesis presents scientific methods for object tracking in 360-degree

videos and undertakes the object tracking task independently of type and size of the

objects.

1.1.2 Fundamental Concept of Image-based Quality Control

A railroad sleeper is the underlying infrastructure of the railroad. Due to the weight of

the railroad as well as the trains passing over it, some cracks appear on the sleepers over

time. The aim of this thesis is to develop novel scientific methods to control the quality

of the images of sleepers. A high-quality camera with high-resolution images is used

for quality control of the railway sleepers. This dissertation performs the task of quality

control of the railway sleeper not only for detection of cracks but also for classification

of them based on a pre-defined damaging level.

1.2 Motivation

This thesis presents scientific algorithms in two major areas namely object tracking and

a vision-based railway monitoring system. Generally, object tracking systems try to

handle the following challenges:
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• Occlusion: the object of interest becomes hidden by another object in the scene.

• Object rotation: the object of interest has out-of-plane rotation compared to the

2d-plane of the lens of the camera.

• Tracking speed limitation: the quantity of tracked frames in a time unit is limited

by the speed of the tracker.

• Size variation: when the object of interest departs the camera, it becomes smaller

and when it approaches the camera, it becomes bigger.

• Background clutter: the scene is very complicated and non-smooth.

• Similar objects: the scene has at least one object which is similar to the object of

interest.

• Scene departure: object of interest leaves the scene and may appear later.

The motivation of this thesis is raised from the following limitations/shortages in

science and technology:

(M1) Rectangular Tracking: None of the available trackers can handle all the mentioned

challenges simultaneously. Most trackers are able to handle a simplified scenario.

New trackers based on new solutions are still required to improve the tracking

task.

(M2) Polar-Rectangular Tracking: The rectangular trackers cannot be applied to the

360-degree videos. The available trackers are not able to follow the object when

the object is rotated and distorted. They are also slow in the case of high-resolution

360-degree videos. The available state-of-the-art trackers are not able to track the

object of interest in the presence of challenges which are involved in the 360-degree

videos. For instance, TLD [KMM12] loses the object of interest, in the case of polar

videos.

(M3) Polar Tracking: The image rectification process is very slow especially in high-

resolution 360-degree videos. Slow tracking, in turn, may lead to an object loss.

Some fast trackers for the 360-videos must be developed. If the tracker can bypass

the rectification process, the processing load is drastically saved.

(M4) Challenge-Detecting Tracking: Each challenge in the 360-degree videos has its

own solution. If the challenges can be detected separately, a distinct solution can be

applied to a certain challenging situation. For instance, challenges like in-plane and
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out-of-plane rotation should be detected and handled by using rotation-resistance

features.

(M5) Fast Polar Tracking: The available polar trackers for high-resolution 360-degree

videos work slowly. These videos require fast algorithms for object tracking to

decrease the probability of the object lost. In other words, faster tracking leads to

more stable tracking.

(M6) Railway Monitoring: Since heavy trains are passing over the railroad, the sleepers

are destroyed gradually. This process starts with appearing short and thin cracks on

the sleepers. If the tiny cracks on the sleepers can be detected early, the probability

of railway damage and consequent railroad accidents is decreased. The shortage

of staff for manual monitoring of the long railroads in different countries shows the

necessity of an automatic system for railway monitoring. The quantity of available

scientific methods for automatic sleeper monitoring is very limited and focused on

crack detection on wooden sleepers. There is a gap in the area of automatic crack

detection and classification on concrete sleepers.

(M7) Training-based Railway Monitoring: The vision-based sleeper detection using

a rule-based method is very sensitive to the variable environmental conditions.

Novel training-based methods for the sleeper location and crack detection are

required. These methods have more generality than rule-based methods.

1.3 Contribution

This thesis contributes to science and technology by proposing the following scientific

algorithms to overcome the problems stated in the section of motivation. The scientific

contributions of this thesis have been published in internationally visible journals and

conferences.

(C1) Rectangular Tracker: The author’s contributions to rectangular object tracking

have been published in MDPI Sensors journal [DPG18]. This method proposes

scientific multi-modal trackers for rectangular videos which handle the tracking

challenges very well. First, synthetic data from the object of interest are generated

and then a deep-learning based object detector is trained using the data. The

object detector finds the object of interest in the following frames. The detector is

updated by using the recently detected object at certain intervals. The proposed

online tracker based on train-based object detectors is proposed for the first time

in this thesis.
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(C2) Modified-TLD Tracker: The contribution of this thesis to object tracking in 360-

degree videos as a modified version of a famous tracker (TLD) [KMM12] has been

adapted to 360-degree videos and published in International Conference on Pattern

Recognition (ICPR2016) [Del+16b]. MTLD restricts the searching area of the object

of interest to decrease the computation load. By proposing a FIFO data structure

for the training data to adapt the tracker to the last appearances, the stability of the

proposed tracker is increased. This method can track objects even when they have

the out-of-plane rotation and varying environment.

(C3) Trapezoid-shape Tracker: The author’s contribution to object tracking in 360-

degree videos by using a polar trapezoid-shape method of candidate generation

and color-classifiers in HSV domain has been published in the proceedings of the

International Symposium on Multimedia in (ISM 2016) [Del+16a]. This method

first generates trapezoid-shape candidates on the polar images and then using

three classifiers namely variance classifier, color-max classifier and, color num-

ber classifier finds the object of interest. The color-based classifiers and the polar

trapezoid-shape candidate generation method are the contributions of this pa-

per [Del+16a].

(C4) SURF Tracker: The author’s contribution to object tracking in 360-degree videos

by using SURF (Speeded Up Robust Features) extraction and matching has been

published in the proceedings of the International Symposium on Multimedia in

(ISM 2017) [DG15]. This method first finds interesting points on the object of inter-

est and the scene. Then, it matches the interesting points in the object and the scene

by using a proposed classifier. Another classifier is proposed for detecting the chal-

lenging situation (i.e., occlusion, out-of-plane-rotation, departing or approaching

the camera). The proposed challenge detector, as well as the matching classifier,

are the contributions of this paper [DG15].

(C5) Polar Color-binary Tracker: The contributions of the thesis to the polar object

tracking namely new circular polar object selection and region of interest selection

as well as the proposed color binary classifiers have been published in the Journal

of Multimedia Tools and Application [Del+18] in 2018. This tracker first generates

overlapped polar candidates in the polar area of interest, then uses a hierarchical

structure of classifiers in which each classifier rejects irrelevant candidates and

passes the rest to the next classifier. The hierarchical structure is composed of

variance and color-binary classifiers. This method is able to handle the challenges
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involved in 360-degree videos namely occlusion, object rotation, tracking speed,

size variation, background clutter, similar objects, and scene departure.

(C6) Railway Monitoring: In this paper [Del+17] first, the sleeper within a given image

is located. Then, some candidates for cracks on the image of the sleeper are gen-

erated and two methods identify the cracks among the candidates and finally, the

cracks are classified. The contributions to the sleeper monitoring system have been

published in the proceedings of the 10th International Conference on Computer

Recognition Systems, 2017 [Del+17]. This publication won the Best Paper Award.

The scientific methods for automatic detection and classification of tiny cracks on

concrete railway sleepers are proposed, tested and evaluated for the first time in

this thesis.

(C7) Training-based Railway Monitoring: The proposed system in [Tab+18] also uses

the two-steps of sleeper location and crack detection similar to (C6), but it gen-

erates some candidates for the sleeper; then, by using a supervised classifier, the

sleeper is detected. This contribution to the sleeper monitoring system has been

published in the International Journal of Pattern Recognition and Artificial Intelli-

gence, 2018 [Tab+18].

1.4 Overview

The dissertation is divided into two main domains: The first one presents a deep scientific

work contributing to the area of object tracking using different cameras, while the second

one is a scientific work for an application of video understanding in the railway industry.

The thesis is organized into five chapters. After the general information given in this

chapter, Chapters 2 and 3 present a scientific view to the object tracking problem and the

fourth chapter deals with scientific methods for the application of video understanding

in the industry. The fifth chapter concludes this dissertation.

Chapter 2 shows the problem of object tracking in rectangular videos. First, a litera-

ture review of object tracking methods including the state of the art methods is given. In

the next Section, object detection is investigated. Despite object detection and tracking

having very similar terms, they are different in concept and application levels when re-

viewed in detail. As a solution, object detection can be used as a basis for object tracking.

Well-known object detection methods then will be presented and compared in detail and

two frameworks for tracking are proposed to use the mentioned object detectors for the

tracking purpose. In fact, the frameworks are a tool to convert the detectors to trackers.
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The mentioned detectors then are compared in the context of tracking in terms of tracker

stability and speed.

Chapter 3 presents object tracking in the polar videos captured from 360-degree and

omnidirectional cameras. A literature review of object tracking methods in available

polar videos including the state of the art methods is given. 360-degree cameras versus

omnidirectional cameras are compared and their features are explained. Then, the pro-

posed modified method on the TLD (Tracking-learning-Detection) tracker is presented.

In the next step, the proposed object tracking method based on deep learning is pre-

sented and then, the proposed polar object tracking method in 360-degree videos using

the trapezoid-shape object definition is presented. In the next section, the proposed

object tracking method using SURF feature descriptor and matching is presented and

finally, the proposed polar model for fast object tracking in the 360-degree videos is

explained.

Chapter 4 proposes scientific algorithms for an industrial system for railway sleeper

quality monitoring using video processing technology. A literature review of available

methods in crack detection methods in roads, bridges and wooden sleepers is given.

Then, the proposed methods for sleeper location in the images are explained and in the

next section, the proposed methods for crack detection on the sleepers and finally, the

experiments and conclusion are given.

In Chapter 5, first a summary of the proposed tracking methods in Chapters 2 and 3

as well as the proposed sleeper monitoring system in Chapter 4 is presented. Then, the

scientific methods proposed in this dissertation are concluded and the possible future

trends are proposed.
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Chapter 2

Object Tracking in Rectangular
Video

Extracting and analyzing object trajectories from videos are basic problems in computer

vision and have important applications in the event understanding, robot localization,

video surveillance, etc. Trajectories of objects represent high-level semantic features,

which can be used to automatically understand object activities in different kinds of

videos.

This chapter proposes scientific approaches for rectangular object tracking, including

author’s contributions and is based on the author’s journal paper (C1) [DPG18] recently

published in MDPI Sensors journal. The organization of this chapter is as follows:

Section 2.1 states the problem of object tracking and motivates its practical importance.

A literature overview of object tracking in rectangular images is given in Section 2.2. The

investigated training-based object detectors are presented and discussed in Section 2.3.

In Section 2.4, two proposed algorithms for object tracking based on object detection are

introduced. Experiments and results are presented in Section 2.6. Finally, conclusions

are drawn and further possible research directions are listed in Section 2.7.

2.1 Problem Statement

By knowing the location of a desired object in the first frame, tracking this object becomes

a fascinating topic for video processing from both scientific and industrial viewpoints.

This task becomes scientifically more interesting when there is complexity involved

in video sequences. This complexity can include a moving camera, object uncertainty,

background clutter, small size and low resolution of the object, size variation, appearance
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Figure 2.1: Challenges in two videos: First line (David) and second line (Panda) show

illumination change, out-of-plane rotation, appearance change and background clutter

changes, occlusion, articular objects, illumination change, and out-of-plane rotation.

Some of the challenges are shown in Figure 2.1.

2.2 Related Work

In this section, an overview of the available object tracking methods in rectangular videos

is given. The trackers are categorized into the following four groups:

1. Feature-based Trackers: The methods identify objects by extracting features from

some interesting points and track the object of interest by matching the interesting

points in the successive frames.

2. Filter-based Trackers: These trackers follow the object of interest in the coming

frames by finding the maximum of the output of a filter function like correlation

or convolution between the image of the interesting object and the next frame of

the video.

3. Learning-based Trackers: The trackers use a training-based structure for example

to find the object of interest within the coming frames.

4. Hybrid Trackers: There are some trackers which combine the mentioned techniques

to handle the tracking problem.

In the following, the tracking methods including the state of the art based on the

aforementioned classes are explained.



2.2. RELATED WORK 10

2.2.1 Feature-based Trackers

Recently, many methods have been developed to overcome the challenging object track-

ing problem in videos. Some trackers focus on human tracking with various techniques

such as common energy minimizing [MSR15; MRS14] and data association [WYX14], and

other trackers focus on object tracking using various methods like point tracking [Bou00]

and feature descriptors [Sak+15]. Multiple cues such as color, shape, and position are

selected as human tracking features. In the case of the fixed cameras, the background is

still. Thus, background detection and subtraction allow foreground object detection. In

other words, looking for only moving objects in a limited area allows finding objects of

interest. There are many other methods for human detection and tracking in the litera-

ture [Lin+07; WZM12; LSS05; WYX14; MSR15; MRS14; WN07; WY10]. These methods

often use very simple features to detect humans. The human body is usually described

by some simple shapes such as a circle for the top part and a cylindrical shape for other

body parts. Thus, a very commonly used method is modeling the human appearance to

2d shapes [WZM12] or 3d shapes [LSS05]. Some other methods use offline-trained ob-

jects for the human tracking problem [WYX14]. In [WN07], the authors use Edgelet-base

detectors for human tracking.

Object tracking can be formulated in terms of object detection. For example, SURF

features [Bay+08], which were originally proposed for object detection, can be used for

object tracking. In [Sak+15], the authors employ and compare SURF and SIFT features

for object tracking and show that SURF features show better results. SURF-based object

tracking methods are presented in [SNH12; Mia+11]. These methods are unable to

handle occlusion and are fragile to background clutter. The SURF-tracker is usually

combined with other methods to improve the performance of tracking. In [Li+11], a

combination of the SURF features and camshift methods was used for object tracking in

an indoor environment. In [ZH13] the authors combine mean-shift, SURF and a two-

stage matching for tracking. In [Gup+13], a dynamic object model and the surf features

are used for human tracking.

2.2.2 Filter-based Trackers

In [Wan+18], the authors propose a kernel cross-correlator to improve the robustness of

linear cross-correlator based trackers. The method can handle affine transformations.

Multiple-object tracking is an important task in automated video surveillance systems.

In [WYX14], the authors present a multiple-human-tracking approach that takes the

single-frame human detection results as input and associates them to form trajectories
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while improving the original detection results by making use of reliable temporal infor-

mation in a closed-loop manner. First, it forms tracklets from which reliable temporal

information is extracted and then refines the detection responses inside the tracklets,

which also improves the accuracy of the tracklets. After this, local conservative tracklet

association is performed and reliable temporal information is propagated across tracklets

so that more detection responses can be refined. The global tracklet association is done

to resolve association ambiguities.

Although correlation filters are not commonly used, they can track complex objects

through rotations, occlusions, and other distractions at over 20 times more than the rate of

current state-of-the-art techniques. The oldest and simplest correlation filters use simple

templates and generally fail when applied to the tracking procedure. More modern

approaches such as ASEF and UMACE perform better, but their training needs are

poorly suited to the tracking process. A visual tracker requires robust filters to be trained

from a single frame and dynamically adapted as the appearance of the target object

changes. The author in [Bol+10] presents a new type of correlation filter, a minimum

output sum of squared error (MOSSE) filter, which produces stable correlation filters

when initialized using a single frame. A tracker based upon MOSSE filters is robust

to variations in lighting, scale, pose, and nonrigid deformations while operating at 669

frames per second. Occlusion is detected based upon the peak-to-side-lobe ratio, which

enables the tracker to pause and resume where it left off when the object reappears.

Detection and tracking of humans in video streams are important for many appli-

cations. In [WN07], the authors present an approach to automatically detect and track

multiple, possibly partially occluded humans in a walking or standing pose from a single

camera, which may be stationary or moving. A human body is represented as an assem-

bly of body parts. Part detectors are learned by boosting a number of weak classifiers

which are based on edge-let features. Responses of part detectors are combined to form

a joint likelihood model that includes an analysis of possible occlusions. The combined

detection responses and the part detection responses provide the observations used for

tracking. Trajectory initialization and termination are both automatic and rely on the

confidences computed from the detection responses. An object is tracked by data asso-

ciation and mean-shift methods. This system can track humans with both inter-object

and scene occlusions with static or non-static backgrounds.

The core component of most modern trackers is a discriminative classifier, tasked

with distinguishing between the target and the surrounding environment. To cope with

natural image changes, this classifier is typically trained with translated and scaled

sample patches. Such sets of samples are riddled with redundancies any overlapping
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pixels are constrained to be the same. Based on this simple observation, an analytic model

for data sets of thousands of translated patches proposed in [Hen+15]. By showing that

the resulting data matrix is circulant, it can be diagonalized with the discrete Fourier

transform (DFT), reducing both storage and computation by several orders of magnitude.

Interestingly, for linear regression, the formulation is equivalent to a correlation filter,

used by some of the fastest competitive trackers. For kernel regression, however, a new

kernelized correlation filter (KCF), unlike other kernel algorithms, has the exact same

complexity as its linear counterpart. Building on it also, a fast multi-channel extension

of linear correlation filters, via a linear kernel is proposed.

The kernelized correlation filter (KCF) is one of the state-of-the-art object trackers.

However, it does not reasonably model the distribution of the correlation response dur-

ing tracking, which might cause the drifting problem, especially when targets undergo

significant appearance changes due to the occlusion, camera shaking, and/or deforma-

tion. In [Zha+17], the authors propose an output constraint transfer (OCT) method

that by modeling the distribution of the correlation response in a Bayesian optimization

framework is able to mitigate the drifting problem. OCT builds upon the reasonable

assumption that the correlation response to the target image follows a Gaussian distri-

bution, which selects training samples and reduces model uncertainty. OCT is rooted

in a new theory which transfers the data distribution to a constraint of the optimized

variable, leading to an efficient framework to calculate correlation filters.

Correlation filter-based trackers have recently achieved excellent performance, show-

ing great robustness to challenging situations exhibiting motion blur and illumination

changes. However, since the model that they learn depends strongly on the spatial lay-

out of the tracked object, they are notoriously sensitive to deformation. Models based

on color statistics have complementary traits: they cope well with variation in shape,

but suffer when illumination is not consistent throughout a sequence. Moreover, color

distributions lonely cannot be discriminative. In [Zha+17], the authors show a simple

tracker combining complementary cues in a ridge regression framework can operate fast.

Learning a large-scale regression model has been used for visual tracking as in recent

correlation filter (CF)-based trackers [CT18]. Different from the conventional CF-based

algorithms in which the regression model is solved based on circulant training samples,

authors in [CT18] propose learning linear regression models via a single-convolutional

layer and the gradient descent (GD) technique. In this convolution-based approach,

the samples are cropped from an image in a sliding-window manner rather than being

circularly shifted from one base sample. As a result, the abundant background context in

the images can be fully exploited to learn a robust tracker. The proposed tracker is based
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on two independent regression models, namely a holistic regression model and a texture

regression model. The holistic regression model is trained based on the entire object patch

to predict the object location, whereas the texture regression model is trained based on

the local object textures. The foreground map outputted by the texture regression model

is not only helpful to boost the location prediction in the case of large variations, but

it is also an important clue for estimating the object size. With the foreground map

outputted by the texture regression model, this method is able to estimate the object size

by optimizing a novel objective function based on the object-background contrast.

The extraction of moving objects from their background is a challenging task in

visual surveillance systems. Object detectors with a single threshold often fail to re-

solve ambiguities and correctly segment the object. In [WY10], the authors propose a

method that uses three thresholds to accurately classify pixels as the foreground or back-

ground. These thresholds are adaptively determined by considering the distributions

of differences between the input and background images and are used to generate three

boundary sets. These boundary sets are then merged to produce a final boundary set

that represents the boundaries of the moving objects. The merging step proceeds by first

identifying boundary segment pairs that are significantly inconsistent. Then, for each in-

consistent boundary segment pair, its associated curvature, edge response, and shadow

index are used as criteria to evaluate the probable location of the true boundary. The

resulting boundary is finally refined by estimating the width of the halo-like boundary

and referring to the foreground edge map. This method consistently performs well un-

der different illumination conditions, including indoor, outdoor, moderate, sunny, rainy,

and dim cases.

2.2.3 Learning-based Trackers

In [WY13], the authors propose an object tracking method based on transfer learning.

They train an autoencoder by using auxiliary natural images as feature extractor offline

and then use an additional classification layer online. In [NH16], the authors use transfer

learning for object tracking. Some layers in an offline-trained CNN are transferred to

an online classifier with an updating layer of a binary classifier. This classifier produces

some candidates around the previous target which are further evaluated to output the

target. In [OP16], the authors use recurrent neural networks for the task of object tracking

in 2D laser data for robotics applications. In [Zha+17], the authors use oblique random

forests for object tracking. This method uses HOG features and deep neural network

based models as the features. Incremental steps update the tracker.

Online multi-object tracking aims at estimating the tracks of multiple objects in-
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stantly with each incoming frame and the information provided up to the moment. It

still remains a difficult problem in complex scenes, because of the large ambiguity in

associating multiple objects in consecutive frames and the low discriminability between

objects’ appearances. In [BY18], the authors propose a robust online multi-object track-

ing method that can handle these difficulties effectively. First, the tracklet confidence is

defined using the detectability and continuity of a tracklet. In this way, a multi-object

tracking problem decomposed into small sub-problems based on the tracklet’s confi-

dence. Then, the online multi-object tracking problem is solved by associating tracklets

and detections in different ways according to their confidence values. Based on this

strategy, tracklets sequentially grow with online-provided detections, and fragmented

tracklets are linked up with others without any iterative and expensive association steps.

For the more reliable association between tracklets and detections, a deep appearance

learning method learns a discriminative appearance model using large training data sets,

since the conventional appearance learning methods cannot distinguish multiple objects

with large appearance variations. In addition, online transfer learning for improving

appearance discriminability is combined by adapting the pre-trained deep model during

online tracking.

An efficient visual tracker is proposed in [YC18], which directly captures a bounding

box containing the target object in a video by means of sequential actions learned using

deep neural networks. The deep neural network to control tracking actions is pre-trained

using various training video sequences and fine-tuned during actual tracking for online

adaptation to a change of target and background. Pre-training is done by utilizing deep

reinforcement learning (RL) as well as supervised learning. The use of RL enables even

partially labeled data to be successfully utilized for semi-supervised learning.

An attention network for object tracking is proposed in [KP18]. To construct the

attention network for sequential data, long-short-term memory (LSTM) and a residual

framework into a residual LSTM (RLSTM) are combined. The LSTM, which learns

temporal correlation, is used for temporal learning of object tracking. In the RLSTM

method, the residual framework, which achieves the highest accuracy in ImageNet large

scale visual recognition competition (ILSVRC) 2016, learns the variations of spatial inputs

and thus achieves the spatio-temporal attention of the target object. Also, rule-based

RLSTM learning is used for robust attention.

An effective combination of discriminative and generative tracking approaches is

proposed in [AG17] in order to take the benefits from both. This algorithm exploits the

discriminative properties of Faster R-CNN which helps to generate target specific region

proposals. A new proposal distribution is formulated to incorporate information from
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the dynamic model of moving objects and the detection hypotheses generated by deep

learning. The generative appearance model from the region proposals and perform

tracking through sequential Bayesian filtering by variable rate color particle filtering

(VRCPF) is constructed.

A novel event-triggered tracking framework is proposed in [GW18] for fast and robust

visual tracking in the presence of model drift and occlusion. The resulting tracker not

only operates in real-time but also is resilient to tracking failures caused by factors such as

fast motion and heavy occlusion. Specifically, the tracker consists of an event-triggered

decision model as the core module that coordinates other functional modules, including

a short-term tracker, occlusion and drift identification, target re-detection, short-term

tracker updating, and online discriminative learning for a detector. Each functional

module is associated with a defined event that is triggered when the conditions are met.

The occlusion and drift identification module is intended to perform an online evaluation

of short-term tracking. When a model drift event occurs, the target re-detection module

is activated by the event-triggered decision model to relocate the target and reinitialize

the short-term tracker. The short-term tracker updating is carried out at each frame

with a variable learning rate depending on the degree of occlusion. A sampling pool is

constructed to store discriminative samples that are used to update the detector model.

This tracker can effectively detect model drift and restore the tracking process.

2.2.4 Hybrid Trackers

In [ZS18], the authors combine 6 different trackers in a winner-take-all framework to

improve the strength of the overall tracker against various challenges compared to the

individual trackers. The selection method of the trackers is based on a performance pre-

diction model. The authors propose a long-term motion tracker for intelligent vehicles.

A set of independent classifiers were trained sequentially on different small data sets.

In [LSS05], the authors address the problem of detecting pedestrians in crowded real-

world scenes with severe overlaps. This problem is too difficult for any type of model or

feature alone. Instead, an algorithm that integrates evidence in multiple iterations and

from different sources is presented. The core part of the method is the combination of

local and global cues via probabilistic top-down segmentation. Altogether, this approach

allows examining and comparing object hypotheses with high precision down to the pixel

level. This method is able to reliably detect pedestrians in crowded scenes, even when

they overlap and partially occlude each other. In addition, the flexible nature of the

approach allows it to operate on very small training sets.

Local part-based human detectors are capable of handling partial occlusions effi-
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ciently and modeling shape articulations flexibly, while global shape template-based

human detectors are capable of detecting and segmenting human shapes simultane-

ously. In [Lin+07], the authors describe a Bayesian approach to human detection and

segmentation combining local part-based and global template-based schemes. The ap-

proach relies on the key ideas of matching a part-template tree to images hierarchically

to generate a reliable set of detection hypotheses and optimizing it under a Bayesian

MAP framework through global likelihood re-evaluation and fine occlusion analysis. In

addition to detection, the approach is able to obtain human shapes and poses simulta-

neously.

In [YL18], the authors propose a semantics-aware visual object tracking method,

which introduces semantics into the tracking procedure and extends the model of the

object with explicit semantics prior to enhance the robustness of three key aspects of the

tracking framework, i.e., appearance model, search scheme, and scale adaptation. First,

a semantic object proposal generation method for the input video sequence to generate

high-quality category-oriented object proposals is presented. Then a hybrid semantics-

aware tracking algorithm with semantic compatibility is proposed. This algorithm takes

full advantages of globally sparse semantic object proposal prediction and locally dense

prediction with a template model and semantic distractor-aware color appearance model.

Further, the tracker exploits semantics to localize the object accurately via an energy

minimization framework based scale adaptation method, which jointly integrates dense

location prior, instance-specific color and category-specific semantic information.

An implicit assumption in many generic object trackers is that the videos are blur

free. However, motion blur is very common in real videos. The performance of a

generic object tracker may drop significantly when it is applied to videos with severe

motion blur. In [DH16], the authors propose a new Tracking-Learning-Data approach

to transfer a generic object tracker to a blur-invariant object tracker without de-blurring

image sequences. Before object tracking, a large set of unlabeled images is used to learn

the objects’ visual prior knowledge, which is then transferred to the appearance model

of a specific target. During object tracking, online training samples are collected from

the tracking results and the context information. Different blur kernels are involved with

the training samples to increase the robustness of the appearance model to severe blur,

and the motion parameters of the object are estimated in the particle filter framework.

There is a progress in the area of object detection by using learning-based techniques

like deep learning. However, this progress was not extended to trackers. In this chapter,

five famous training based object detectors i.e., ACF [Dol+14], R-CNN [Gir+14], fast R-

CNN [Gir15], faster R-CNN [Sha+17] and YOLO [RF17] are considered for object tracking
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Table 2.1: Distribution of object tracking properties over related methods.
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Ding et al. [DH16] X X

Yao et al. [YL18] X X X

Leibe et al. [LSS05] X X X

Zheng et al. [ZS18] X X X

Guan et al. [GW18] X X X X

Milan et al. [MSR15] X X X X

Milan et al. [MRS14] X X X X

Akok et al. [AG17] X X X

Zhang et al. [KP18] X X X

Yun et al. [YC18] X X X

Bae et al. [BY18] X X X X X

Zhang et al. [Zha+17] X X X

Ondruska et al. [OP16] X X X

Nam et al. [NH16] X X X

Wang et al. [WY13] X X

Chen et al. [CT18] X X X

Henriques et al. [Hen+15] X X X X

Wu et al. [WN07] X X X X

Bolme et al. [Bol+10] X X X X

Wang et al. [Wan+18] X X

Wang et al. [WYX14] X X X

Sakai et al. [Sak+15] X X

and a comparative study among the detectors is done in this context. Two methods for

offline tracking (training before tracking) and online tracking (training while tracking)

are proposed. The former uses a pre-trained model for object detection in the space

dimension (i.e., still images) and another offline trained classifier for the association

of the objects in the time dimension. The latter is a short-term tracker with an online

training procedure which updates the detector over time. In other words, the offline

tracker divides the tracking task into two separate tasks: detection of objects in frames

and finding the object of interest among the objects of each frame. The object detector

performs the first part and the second part is a time series analyzer for tracking. The

online tracker trains a detector with the positive and negative data generated from the

first frame and then the detector is applied to the next frames of a certain part of the
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Figure 2.2: Block diagram of the steps of the ACF detector [Dol+14]

video; the detector is re-trained with the recently detected objects within the video part.

To the best knowledge of the authors, the five mentioned detectors have not previously

been compared in online and offline trackers. The online tracker is far different from

two-step trackers [YC18; AG17; KP18; BY18] which first detect objects in images and

then associate the detected objects using another classifier. In contrast to [WY13; NH16],

the proposed online tracker does not have any offline phase.

2.3 Training-based Object Detection

This section highlights some state-of-the-art object detectors namely aggregated channel

features (ACF) [Dol+14], region-based convolutional neural network (R-CNN) [Gir+14],

fast R-CNN [Gir15], faster R-CNN [Sha+17], and YOLO [RF17] which are exploited for

object tracking in the author’s research in this chapter.

For ACF, a channel refers to a certain component that defines pixel values in the

image [Dol+14]. For example, a color image is an aggregation of three channels (red,

green and blue). The color data of an image are stored in three arrays of values, known as

channels. By extracting specific information from the original image or by manipulating

the input image, a desired channel is generated. After obtaining the channels from an

input image, some features from the channels are extracted. These features are called

channel features [Dol+14]. ACF uses decision trees for object detection and classification.

The sum of every single channel is calculated to form the channel features. The procedure

steps for ACF are shown in Figure 2.2. Given an input image, the procedure of ACF

detection is as follows:

1. Several channels are computed by using the input image.

2. Sum of every block of pixels in the channels is calculated.

3. The resulting lower resolution channels are vectorized.

4. Boosting is used to learn decision trees over these features to distinguish the object

from the background. Each parent node in the tree stores a binary function. The
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binary function in the root node is evaluated on the data for each data point. The

function value determines which child node is visited next. This continues until

reaching a leaf node. The leaf node contains the response.

5. A multistage sliding-window approach is employed to localize the exact position

of the object in the image. A sliding window determines whether it has the desired

object or not. Therefore, the desired object is detected.

ACF [Dol+14] uses positive instances of objects in images that are used for training

and it also automatically collects negative instances from the images during training.

Region-based convolutional neural network (R-CNN) is an object detector based on

the convolutional neural network (CNN) and performs convolution products on small

patches of its input and extracts local patterns [Li+18]. The input can be the image pixels

or the output of the last layer. A typical CNN has the following layers [ON15]:

1. Input layer: The input layer is the input image given to the network or the output

of the last layer.

2. Convolutional layer: Convolutional layers apply a convolution operation.

3. Pooling layer: Pooling reduces the dimensions of each feature map but retains

the most important information. The output from the convolutional and pooling

layers represent high-level features of the input image.

4. Fully connected layer: The purpose of the fully connected layer is to use these

features for classifying the input image into various classes based on the training

data set.

5. ReLU layer: ReLU stands for Rectified Linear Unit. The purpose of ReLU is to

introduce non-linearity to CNN. Since most of the real-world data is non-linear,

non-linearity in the network is necessary.

6. Softmax layer: It takes a vector of arbitrary real-valued scores and maps it to a

vector of values between zero and one and the sum of the values in the vector is

equal to one.

R-CNN combines region proposals with features computed by a CNN. First, R-CNN

computes the region proposal using a selective search technique [Uij+13]. Selective

search generates around 2000 region proposals that have the highest probability of

containing an object. After coming up with a set of region proposals, these proposals

are then warped into an image size that can be fed into a trained CNN that extracts a
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feature vector for each region. The image region which is located within the bounding

box (selected by a user) is a positive example and the background is a region which

does not have the object of interest, is a negative example. In order to decide whether

to label a region as a positive or negative example, an IoU (Intersection over Union)

threshold is used. The region proposals with greater than or equal to 0.5 IoU overlap

with a ground-truth are positives and the rest are negatives. CNN of R-CNN has 3

convolutional layers and 2 fully connected layers. The procedure steps for R-CNN are

shown in Figure 2.3 (left). R-CNN is slow because it performs a CNN for each object

proposal, without sharing the computation.

Fast R-CNN improves the original R-CNN to increase the processing speed. To

find out the reason for the slow implementation of R-CNN, suppose there are N region

proposals, then R-CNN runs CNN N times that takes a lot of time. Fast R-CNN feeds

the input image directly to CNN [Gir15]. It is able to solve the problem of the speed by

sharing the computation of the convolution layers between different proposals, swapping

the order of generating region proposals and running CNN. Since the convolutional

layer does not change the spatial relationship between the adjacent pixels, it projects the

coordinates in the raw image to the corresponding neuron in the convolution network.

Therefore, the image can be computed through the convolution network once and the

processing time is saved [Gir15]. The fast R-CNN is up to ten times faster than the R-

CNN but it is not real-time. The procedure steps for fast R-CNN are shown in Figure 2.3

(middle) and described as follows:

1. The input image is fed to a convolution layer.

2. From each candidate, some features are extracted and then they are fed to an RoI

pooling layer to decrease the dimension of the feature map.

3. Fully connected layers are applied for classification.

4. A softmax layer detects the object and a regression layer determines the object

location.

Faster R-CNN [Sha+17] brings object detection toward the real-time application.

It uses a region proposal network (RPN) after the last convolutional layer as shown

in Figure 2.3 (right). RPN takes an image feature map as input and outputs a set of

rectangular object proposals, each with an objectness score. Faster R-CNN models this

process with a fully convolutional network. RPN detects whether the current region,

which is generated from a sliding window and different anchors (for each location, some

proposals with different aspect ration are parameterized relative to their reference boxes
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Figure 2.3: From left to right: The steps of R-CNN [Uij+13], fast R-CNN [Gir15] and

faster R-CNN [Sha+17]

.

called anchors), is the desired object. When Faster R-CNN finds an object, the bounding

box regression (regression determines how should a bounding box change to become

more similar to the ground truth box) determines the location of the object. Faster R-CNN

is up to ten times faster than fast R-CNN and it is real-time.

YOLO is state-of-the-art in object detection and based on deep networks [RF17],

where a hierarchical structure was used for the sake of object labeling and classification.

It stands for You Only Look Once, meaning that it only looks at the image one time

and simultaneously processes the whole image. It performs detection and classification

in real time. Instead of a large softmax in the Imagenet (another deep-learning-based

object detector [Rus+15]), YOLO uses a group of softmax as a hierarchical tree of visual

concepts, each softmax is deciding for a similar group of objects. In this way, YOLO

classifies objects more accurately than Imagenet. It operates very fast due to its using

much fewer floating point operations compared to VGG-16 [SZ14]. It applies a single

CNN to the full image. This network divides the image into regions and predicts

bounding boxes and probabilities for each region. These bounding boxes are weighted

by the predicted probabilities. Like Faster R-CNN, it adjusts priors on bounding boxes

instead of predicting the width and height outright. However, it still predicts the x and y
coordinates directly. Best results are achieved when the image size (input layer) is equal

to 544× 544; as the size decreases, so does the accuracy; however, the speed increases.

YOLO is faster and more precise than faster R-CNN.
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Figure 2.4: Block diagram of the proposed online tracker. In the first frame, from

this selected object, synthetic data is generated. Then a detector (i.e., R-CNN, fast R-

CNN, faster R-CNN or ACF) is trained using the generated data and applied to the

first segment of frames G1 to detect the objects of interest in them. The detected objects

and the synthetic data added to the training vector Tv which is then used to update the

detector. This process is continued until the end of the video.

2.4 Online Tracker

The steps of the proposed online object tracking method are shown in Figure 2.4. In

the first frame, a user selects an object of interest. From this object, the online tracker

generates synthetic data and trains a detector using synthetic data. It then segments

the video frames into unequal-length groups of frames {G1,G2, ...,Gn}. Each group

is composed of several frames i.e., G1 = {F2, ...,Fm1},G2 = {Fm1+1,Fm1+2, ...,Fm2}, ...,Gn =

{Fm(n−1)+1,Fm(n−1)+2, ...,Fmn}.The trained detector tracks the first group G1 by detecting the

object of interest within G1. The list of the objects of interest for the videos of this research

is given in Table 2.4 in Section 2.6. At the end of the first iteration, the online tracker

copies the detected objects within G1 as well as synthetic data to a training vector Tv (see

Figure 2.4). The tracker uses the training vector Tv to train the detector for the second

time and then applies the detector to the second segment G2 and then concatenates

the detected objects within this segment to the training vector Tv. The tracker steadily

updates the training vector prior to each training iteration until the last frame of the

video. It updates the detector by using a first input first output (FIFO) procedure. Thus,
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the tracker follows recent appearances of the object. Section of the experiments and

results investigates the length of the training vector in terms of accuracy.

Let Ix,y
t denote the pixels of a single frame t, the following equation expresses the

output Tn
t of the online tracker for this frame:

Tn
t = D(Ix,y

t ,Wn(t)) (2.1)

In this equation, D(.) is the detector response which is a function of the image pixels

and a trained network with the weights of Wn(t). The tracker calculates initial weights

for detection of the object of interest in the second frame using N synthetic positive and

negative samples generated from the first frame (i.e., Wn(1) = F1(I1
1, I2

1, ..., IN
1 )). While

updating the detector D in a certain interval ∆t (shown in Figure 2.4), the weights Wn(t)
are updated by using synthetic data as well as the detected objects from the first frame

to the frame before the current frame (t−1).

Wn(t) = F2(I1
1, I2

1, ..., IN
1 , Id

2, Id
3, ..., Id

t−1) (2.2)

Where Id
i is the object of interest for the frame i. By using the online tracker and the

four detectors of ACF, R-CNN, fast R-CNN and faster R-CNN, four online trackers are

made. These trackers are compared in Section 2.6.

To have an effective tracker, the detectors must be trained using enough number of

training data. The variety of data is also an important factor in the training process. To

have such diversity, the following process is proposed:

1. Rotated copies of the object of interest using the rotating angles {-10, -9.9, -9.8, ... ,

0 , ... , 9.9, 10}.

2. Additive salt and pepper noise, with noise densities {0.001, 0.002, ... , 0.008 }.

3. The enhanced version of the rotated images in item 1 using the contrast adjustment.

4. The enhanced version of the rotated images in item 1 using the histogram equal-

ization.

5. Increasing and decreasing of the image brightness with brightness factors {0.81,

0.82, 0.83, ... ,1.29 , 1.3}.

6. Resized version of the object of interest using the resizing factor {0.555, 0.560, 0.565,

... , 1.55}.

The tracker combines the mentioned items to generate various data. Different total

numbers of synthetic data in the experiments are used (i.e., 500, 800, 1000, 2000, 4000
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Figure 2.5: Synthetic data for the training of the detectors with their objects of interest; the

first frame of "Pedestrain1"(a), this frame with additive salt and pepper noise, with noise

density 0.008(b), rotated version of (a) with -10 and 9 degrees (c,d), rotated version of

the enhanced image (a) using histogram equalization (e,f) and using contrast adjustment

(g,h)

and 10000) to investigate the effect of this parameter on the tracker’s accuracy. The

number and types of synthetic data are given in Table 2.2. The parameters in this table

are selected in an optimized way to preserve the tracker’s accuracy and speed. Initially,

a small training set was chosen and poor results were obtained. Then, the parameters

were gradually optimized to maximize the tracker’s accuracy and speed. Therefore, they

are independent of the type of objects and videos.

Figure 2.5 shows examples of synthetic data for "Pedestrain1". Figure 2.5(a) shows

the first frame and the selected object (object of interest), this frame is added by the salt

and pepper noise, with a noise density 0.008 (Figure 2.5(b)) and rotated with -10 and

9 degrees (shown in Figure 2.5(c,d)), enhanced using histogram equalization and then

rotated with 9 and -10 degrees (shown in Figure 2.5(e,f)) and enhanced using contrast

adjustment and then rotated with 5 and -5 degrees (shown in Figure 2.5(g,h)). The object

of interest for the selected frames is shown below each image.

The detected objects within frames of the first group G1 (i.e., {Id
2, Id

3, ..., Id
m1}) are

concatenated to the training vector Tv = {syntheticdata,Id
2,I

d
3, ...,I

d
m1}. By using the updated

vector Tv, the tracker retrains the detector. The updated detector is then used for tracking
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Table 2.2: The number and types of synthetic data are given. The first row shows the

total number of synthetic data and each column shows the number and types of synthetic

data for a certain number of synthetic data.

Total number of synthetic data 500 800 1000 2000 4000 10000

First Frame 1 1 1 1 1 1

Additive Noise 2-9 2-9 2-9 2-9 2-9 2-9

Rotation 10-200 10-200 10-200 10-200 10-200 10-200

Rotation + Intensity Adjustment 201-400 201-599 201-400 201-400 201-400 201-400

Rotation + Contrast Enhancing 401-500 600-800 401-601 401-601 401-601 401-601

Brightness Change - - 602-1000 602-1000 602-1000 602-1000

Brightness Change + Resizing - - - 1001-2000 1001-2000 1001-2000

Rotation + Brightness Change - - - - 2001-4000 2001-4000

Last Row + Intensity Adjustment - - - - - 4001-10000

Table 2.3: Parameter sets for the online trackers

t1 t2 t3 t4 t5 t6 l1 l2 l3 l4 l5 l6 l7

SET1 200 300 500 1000 2000 5000 10 20 50 100 500 1000 -

SET2 200 410 450 500 1000 2000 20 30 40 50 100 500 1000

of frames (detection of the object of interest) in the second group G2. The detected objects

within frames of G2 are again concatenated to the training vector Tv and updated vector

Tv is used for tracking in the third group G3. The length of the groups {G1,G2, ...,Gn}

is obtained from Equation 2.3. During training, when Tv becomes full, the data at

the beginning of Tv is replaced by data from the current image (FIFO). This process

continues until the end of the video. The length of Tv is investigated in terms of the

tracker’s accuracy in Section 2.6.

The length of each group ls is a crucial parameter for this algorithm. Long segments

decrease the tracker’s stability, and on the other hand, short segments decrease the

tracker’s speed. After extensive experiments, the optimum lengths of segments were

obtained. They are calculated using the following equation:
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ls =



l1 : k < t1

l2 : t2 > k ≥ t1

l3 : t3 > k ≥ t2

l4 : t4 > k ≥ t3

l5 : t5 > k ≥ t4

l6 : t6 > k ≥ t5

NoUpdate : k ≥ t6

(2.3)

Where l1, ..., l6 are the lengths of the group of frames, k is the frame index, and t1, ..., t6

are the thresholds of the segments’ lengths according to Table 2.3. In the experiments

for ACF, 2 sets of parameter SET1 and SET1 (shown in Table 2.3) are chosen and called

ACF1 and ACF2 respectively. For R-CNN, fast R-CNN and faster R-CNN, SET2 is used.

2.5 Offline Tracker

The steps of the offline tracker are shown in Figure 2.6. This tracker feeds the video

frames to YOLO-detector and the Kalman filter. The output of the offline tracker (T(.)) is

the YOLO response with the maximum IoU of the estimated pose by the Kalman filter. If

there is no intersection between the two responses, the offline tracker selects the YOLO

response with the lowest Euclidean distance to the Kalman filter response. The response

of the Kalman filter is a point with the maximum probability of the object presence in

the frame. A bounding box with the same size of the object in the last frame is drawn

around the point to represent the object region. The output of the offline tracker T f
t can

be expressed using the following equation:

T f
t = T(D(Ix,y

t ,Wd),K(Ix,y
t )) (2.4)

Where D(.) is the output of YOLO and K(.) is the response of the Kalman filter. YOLO

is a function of the pixels (Ix,y
t ) and weights of a deep network. Contrary to the online

tracker, the weight of the offline detector Wd is not updated during tracking.

Detailed information about the Kalman filter is available in [Zor17b; Zor17a]. To

estimate the position of the object of interest in the next frame Pk−1, the Kalman filter uses

the object position P(px,py) (center of mass) and its velocity V(vx,vy) (see the following

equations).

vk = pk−pk−1 (2.5)
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Figure 2.6: Block diagram of the proposed offline tracker. All frames are fed to YOLO

and the Kalman filter. The offline tracker outputs the YOLO response which has the

maximum IoU with the estimated pose of the Kalman filter. The YOLO response also

updates the Kalman filter.

Where Pk and Pk−1 are the position of the object of interest in the current and last

frames respectively.

If YOLO does not detect any object in a frame or if the Euclidean distance between the

response of the Kalman filter and the nearest YOLO response is more than a predefined

threshold (100 pixels), the object is considered to be occluded with other objects or to

have left the scene. YOLO threshold value is set to 0.15 to minimize the probable object

missing. Lower and higher values lead to the high false alarm rate and the object missing

respectively. Since YOLO has a strong pre-trained model for the object detection1 and

due to its slow training, YOLO is used in the offline tracker. The initial experiments

showed that the detection rate of YOLO is high for the data set, but its classification

accuracy is not precise. Therefore, the output labels of YOLO are ignored. Intermediate

results of the offline tracker are shown in Figure 2.7. First, YOLO detects all the objects

in the scene. Then, the Kalman filter selects the object of interest within each frame

and associates them. Figure 2.7(a) shows three successive frames of "Volkswagen". The

results of YOLO on the frames are shown in Figure 2.7(b). Figure 2.7(c) shows the Kalman

filter’s results on the detected objects of Figure 2.7(b) and Figure 2.7(d) shows the final

results of the offline tracker.
1https://pjreddie.com/darknet/yolo/



2.5. OFFLINE TRACKER 28

Figure 2.7: Intermediate results of the proposed offline tracker: (a) Three frames of

"Volkswagen" (b) The results of YOLO detector are shown on the frames. YOLO detects

all the cars in the scene. (c) The Kalman filter estimates the location of the object of

interest in the next frame. The offline tracker selects the nearest object to the output of

the Kalman filter. (d) The final results of the offline tracker. The Kalman filter converts

YOLO from a detector to a tracker.
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2.6 Experiments and Results

Figure 2.8: Snapshots of videos in the experiments. The figures from (a) to (j) show

"David", "Jump", "Pedestrain1", "Pedestrain2", "Pedestrain3", "Car", "Motocross", "VW",

"Car chase" and "Panda" respectively. The ground truth is shown on each image with a

green rectangle.

Table 2.4: The characteristic of the TLD data set [KMM12]

Video Frames Moving Object part. full Appea. Illum. Scale Similar

# Occlusion Occlusion change change change objects

David 761 Moving Human Yes No Yes Yes Yes No

Jumping 313 Moving Human No No No No No No

Pedestrian1 140 Moving Human No No No No No No

Pedestrian2 338 Moving Human(top view) Yes Yes No No No Yes

Pedestrian3 184 Moving Human(top view) Yes Yes No No No Yes

Car 945 Moving Car Yes Yes No No No Yes

Motocross 2665 Moving Motorcycle(rear view) Yes Yes Yes Yes Yes Yes

Volkswagen 8576 Moving Car(rear view) Yes Yes Yes Yes Yes Yes

Car Chase 9928 Moving Car(top view) Yes Yes Yes Yes Yes Yes

Panda 3000 Moving Panda Yes Yes Yes Yes Yes No

To validate the proposed trackers, a set composed of 10 videos from TLD [KMM12]

and VOT2 data sets including more than 26800 frames and various objects of interest are

selected. The data sets contain various types of tracking challenges like moving camera,

long videos, object partial and full occlusion and appearance, illumination, scale change

and similar objects which are listed in Table 2.4. Some videos in TLD data set are also

available in other data sets like "Car chase" and "Pedestrain1" in VOT2018. Some videos

are similar to others in the VOT2018. For instance, "Volkswagen" is similar to "Liver run",

"Car1". "Yamaha" and "Traffic" are similar to "Motocross" and so on. They include various

objects of interest for tracking like a car, a motorcycle, a car, a pedestrian, the human face,

2http://www.votchallenge.net/challenges.html
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the human body and a panda as shown in Figure 2.8 and Table 2.4. Green rectangles in

Figure 2.8 show the objects of interest. Among the objects of interest, "Car" is rigid and the

other objects are articular. The data sets include short and long videos. To evaluate the

proposed trackers, the sequences were manually annotated as ground truth [KMM12].

The plane rotation more than 50% was annotated as not visible [KMM12].

Table 2.5: Parameter set 1 regarding the online trackers.

Methods Length of Tv Length of synthetic data Stage Epoch

ACF1 614 210 5 -

ACF2 1000 500 3 -

RCNN1, f astRCNN& f asterRCNN 1000 500 - 3

RCNN2 4000 4000 - 10

The parameters concerning online trackers are set according to Table 2.5. These pa-

rameters were selected using initial experiments to preserve the accuracy and speed of

the trackers. Since the data sets contain various types of objects with different sizes and

shapes, in different scenes, backgrounds, illumination conditions and different degrees

of occlusion, the generality of the selected parameters is guaranteed. To generate syn-

thetic data, the first frame of the video is exposed to a salt and pepper noise, rotation,

intensity adjustment, histogram equalization, brightness change, resizing and contrast

enhancement. The total number and the types of synthetic data are shown in Section 2.4.

The experiments in this section use the following evaluation procedure. The trackers

are initialized in the first frame of the video and track the object of interest (shown in

Figure 2.8) up to the end. The produced trajectory is then compared to ground truth

using the recall r, the precision p and the F-measure f . The F-measure is calculated using

f = 2×p× r/(p + r). For each frame with a detected object, the object is considered to be

correctly detected if the common area between the detected object and the ground truth

is more than 50 percent [KMM12]. The number of the videos in this experiment is equal

to the number of the videos used in other outstanding tracking methods like [KMM12].

The detailed results of the proposed trackers on the data sets in terms of Recall, Precision

and F-measure are shown in Table 3.8.

The online R-CNN1 and online R-CNN2 trackers are trained with SET1 and SET2

(see Section 2.4) respectively. R-CNN2 is better than R-CNN1 for most videos. This

experiment shows the preference of SET2 to SET1. ACF2 shows a better performance

than ACF1 for most videos. It shows that the minimum segment size of frame groups

should be set to 20 (discussed in Section 2.4). The parameter SET2 shows a better result
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Table 2.6: Comparison of the trackers in terms of Recall (left number), Precision (left

number) and F-measure (right number), the abbreviations of the videos are pi: pedestrian

i, Moto: motocross, VW: Volkswagen and Carc: Car chase

Method David Jump P1 P2 P3 Car Moto VW Carc Panda

ACF1 1/0.98/0.99 0.96/1/0.98 0.96/0.88/0.92 0.90/1/0.95 0.94/0.85/0.89 0.97/0.95/0.96 0.87/0.35/0.50 0.14/0.13/0.13 0.4/0.74/0.52 0.83/0.69/0.75

ACF2 0.99/0.99/0.99 0.87/0.99/0.93 0.96/0.82/0.88 0.84/1/0.91 0.93/0.96/0.94 0.93/0.98/0.95 0.97/0.56/0.71 0.78/0.65/0.71 0.78/0.64/0.70 0.84/0.85/0.85

R-CNN1 0.69/0.27/0.39 0.96/0.22/0.36 0.95/0.15/0.26 0.61/0.25/0.35 0.99/0.69/0.81 0.97/0.35/0.51 1/0.42/0.59 1/0.35/0.52 0.95/0.37/0.53 0.99/0.11/0.20

R-CNN2 0.97/0.48/0.64 0.96/0.36/0.52 0.74/0.15/0.25 0.75/0.56/0.64 0.99/0.67/0.80 0.99/0.90/0.94 0.98/0.40/0.57 0.96/0.57/0.72 0.94/0.45/0.61 0.99/0.37/0.54

fast R-CNN 0.90/0.19/0.31 1/0.01/0.02 1/0.29/0.45 0.80/0.21/0.33 1/0.73/0.84 0/0/0 1/0.31/0.47 1/0.13/0.23 0.99/0.29/0.45 0.40/0.07/0.12

Faster R-CNN 0.36/0.17/0.23 0.95/0.41/0.57 1/0.33/0.5 0.90/0.81/0.85 1/0.62/0.77 1/0.86/0.92 0.95/0.16/0.27 0.75/0.09/0.16 0.92/0.52/0.66 1/0.07/0.13

Offline ACF 0.72/0.49/0.58 0.30/1/0.46 0.40/0.49/0.44 0.20/1/0.33 0.89/0.99/0.93 0.59/0.81/0.68 1/0.39/0.56 0.43/0.66/0.52 0.45/0.68/0.54 0.08/0.83/0.15

YOLO 1/0.99/0.99 1/1/1 1/0.77/0.87 1/0.43/0.60 1/0.59/0.74 0.99/0.0.93/0.96 0.89/0.82/0.85 0.99/0.86/0.92 0.97/0.92/0.94 0.99/0.78/0.88

Figure 2.9: Tracker comparison in terms of F-measure

than SET1 and the smaller change in the step size (i.e., 20, 30, 40) shows better results.

At the beginning of the video, the online tracker is not well-trained. Therefore, it should

be updated in shorter intervals. The online tracker gradually adapts itself to the object

of interest and the scene and therefore a longer interval for updating is enough. SET2

was chosen for the other online trackers i.e., fast R-CNN and faster R-CNN. Fast R-CNN

and faster R-CNN show worse results than R-CNN and ACF for most of the videos. For

the videos "Car chase", "Jump", "Pedestrain1" and "Pedestrain2", faster R-CNN shows

a better result than R-CNN and fast R-CNN, but for 6 other videos, R-CNN is better.

Faster R-CNN shows a better performance in the presence of similar objects. Among the

online trackers, ACF2 has the best overall robustness, but YOLO is even more stable than

ACF2. Figure 2.9 compares the performance of the trackers in terms of the F-measure.

In another experiment, the training vector length Tv, the number of training iterations
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Figure 2.10: The tracker’s performance versus the synthetic data length (left number),

the training iteration number (middle number) and the training vector Tv length (right

number).

and the total number of synthetic data are changed. To find the best accuracy of the

trackers, different lengths of the synthetic data i.e., 500, 1000, 2000, 4000, 10000, and

different training iterations i.e., 3 and 10 are tried and F-measure is calculated. The

trackers’ stability using average F-measure is shown in Figure 2.10. When the length

of synthetic data is increased from 500 to 4000, the performance increases. But for the

numbers longer than 4000, the performance decreases. Thus, the optimum length of the

synthetic data is equal to 4000. With a training iteration increasing from 3 to 10, the

trackers’ stability increases. With a further increase, the tracker’s speed decreases but

its accuracy improves slightly. The training vector length Tv is increased from 1000 to

10000. In this case, when Tv exceeds 4000 (other parameters do not change) the accuracy

falls down. Thus, the optimum Tv length is equal to 4000.

In an ablative study on the online ACF tracker, the updating/training process is

removed. The results of this study are shown and compared in Figure 2.11. According to

this figure, the tracker updating process increases accuracy. In another experiment, the

synthetic data generation was removed. In this case, trackers cannot follow the object of

interest.

The visualization comparison of the trackers for selected frames of the 10 videos and
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Figure 2.11: For the ACF tracker, the updating process was removed. The results of the

online tracker and the ablative study are compared.

the ground truth is shown in Figure 2.12. From each video, two frames were randomly

selected and shown in different rows.

The sequence in Figure 2.12(a) "Pedestrain1" has similar and articular objects and

pose change. YOLO and ACF can follow the pedestrian very well but, R-CNN, fast

R-CNN, and faster R-CNN miss it. The video in Figure 2.12(b) "Volkswagen" is a long

video which contains similar objects (cars), occlusion and illumination change. R-CNN,

ACF and YOLO show better results than faster R-CNN, and fast R-CNN is tracking

the background. In the first frame except for fast R-CNN, the rest of the trackers can

follow the car (the object of interest), but in the second frame only YOLO and ACF keep

tracking the car. YOLO is more stable than ACF in this case. In this video, there are

many frames without the desired car, but R-CNN and fast R-CNN trackers mistakenly

follow another car in the scene. The sequence in Figure 2.12(c) "Motocross" includes

appearance, illumination and scale change. In this example, except for R-CNN, the

rest of the trackers show good results. The video in Figure 2.12(d) "David" contains

partial occlusion, scale, and strong illumination change. In this case, R-CNN, fast R-

CNN and faster R-CNN have poor results but ACF and YOLO show precise results.

The sequence in Figure 2.12(e) "Panda" has occlusion, out-of-plane rotation, appearance

and scale change. Fast R-CNN follows an incorrect object for both frames and R-CNN

tracks one frame correctly and the other one incorrectly. The others i.e., YOLO, ACF,

and fast R-CNN work well. The video in Figure 2.12(f) "Car chase" is a long video
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Figure 2.12: The visualization results of the proposed trackers are shown and compared.

The results of R-CNN, fast R-CNN, faster R-CNN, ACF, YOLO and Ground truth are

shown with red, yellow, blue, magenta, cyan and green frames respectively.

which includes occlusion, similar objects, scale and illumination change. R-CNN and

fast R-CNN mistakenly follow another object whereas faster R-CNN, YOLO and ACF

track the correct object. Figure 2.12(g) shows a sequence "Car" which has occlusion and

similar objects. In this case, since the object (the white car) is leaving the scene, there is

no ground truth for this frame. But R-CNN, YOLO, and ACF track the object of interest.

Thus, this is considered as a false positive. Faster R-CNN tracker follows a similar object

and fast R-CNN Tracker misses the object in both frames. The sequence in Figure 2.12(h)

"Pedestrain3" includes similar objects and object occlusion. All the trackers except for

YOLO can track the object of interest. In the first selected frame, YOLO partially detects

the human, but it misses the object of interest in the second frame. In this case, YOLO

cannot detect the human from the top view. Figure 2.12(i) shows a video "Pedestrain2"

which has occlusion and similar objects. For the first frame, fast R-CNN, YOLO, and

ACF can track the object correctly but R-CNN follows another human and faster R-CNN

tracks a part of a car instead of the human. In the second frame, there is no human in

the scene, but faster R-CNN tracks a point in the background. The video in Figure 2.12(j)

"Jumping" contains a strong movement and blurring. In this case, ACF and YOLO track
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Table 2.7: The specification of the hardware system for the experiments

Brand Specification

CPU Intel Core i7-7700K CPU @ 4.20GHz

GPU GeForce GTX 1080 Ti/PCIe/SSE2

Ram Kingston 15.6 GB

correctly. Generally, among the tested trackers, ACF and YOLO trackers show better

results.

The proposed trackers have been implemented on a hardware system with a spec-

ification as shown in Table 2.7. ACF, R-CNN, fast R-CNN and faster R-CNN were

implemented using MATLAB. Except for ACF, the other trackers use GPU. The detec-

tion part of YOLO was implemented using C++ on a GPU machine, and the Kalman

filter was implemented using C++ on CPU.

For each tracker, the average run time of all 10 videos has been measured and shown

in Figure 2.13. The average fps (frame per second) for R-CNN, fast R-CNN, faster

R-CNN, ACF and YOLO trackers are 0.2, 0.5, 0.24, 4 and 9 respectively. As shown in

Figure 2.13, YOLO tracker has the fastest implementation because it does not use training

while tracking. Among the online trackers, ACF-tracker (implemented in CPU) shows

an effective implementation than R-CNN, fast R-CNN and faster R-CNN (implemented

in GPU). Thus, ACF-tracker is faster than the rest of the online trackers. The main

difference among the online trackers’ speed happens in the training phase and therefore

ACF is even faster than faster R-CNN in this phase.

2.7 Conclusions and Future Trends

A comprehensive comparative study in the context of object tracking using five famous

recently proposed detectors was done in this chapter. Two trackers based on online and

offline tracking were proposed. The online tracker first generates positive and negative

synthetic data from the first frame and then trains the detectors. The detectors detect

online the object of interest in the next frames and put the object in a training vector. The

detector is updated at certain intervals using the training vector. The detector detects the

objects of interest in the next frames. This procedure continues until the last frame. The

ACF tracker showed the best results among the examined methods for online tracking

from the speed and accuracy perspectives. In the offline scenario, YOLO generates some
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Figure 2.13: Comparison of Trackers in terms of run time is shown. Yolo tracker is the

fastest tracker and ACF is the fastest one among the online trackers.

candidates, then the Kalman filter tracks the object of interest. Extensive experiments

showed that YOLO outperforms the rest of the trackers.

This chapter is concluded as follows:

• The ACF tracker has the best results among the online trackers from both accuracy

and speed viewpoints.

• Among the online trackers, ACF is the fastest tracker even though it has been

implemented in CPU whereas the other trackers run on the CPU machine.

• Among the R-CNN based trackers (i.e., R-CNN, fast R-CNN, and faster R-CNN),

R-CNN shows the best accuracy of tracking. Although fast R-CNN and faster

R-CNN are very fast in the test phase, their tracking process is slow because they

are very slow in the training phase. Since YOLO was implemented offline, it is the

fastest tracker. YOLO is not qualified for online tracking, because it is very slow in

the training phase.

• For human tracking from the front and side views, the combination of YOLO and

the Kalman filter shows the best results. The use of the ACF tracker in unknown

objects is recommended for tracking because YOLO does not detect these objects

whereas the ACF tracker does.



2.7. CONCLUSIONS AND FUTURE TRENDS 37

• Compared to YOLO and ACF, the R-CNN based trackers show less accuracy be-

cause they do not have a very deep structure (i.e., 3 convolutional layers and 2

fully connected). By using a deeper convolutional neural network like YOLO the

accuracy is dramatically increased. The training vector length was investigated

and showed that the online tracker follows the recent appearances of the object of

interest. The length should be set to an optimal value, for if it exceeds this value,

the average accuracy decreases. On the other hand, the selection of shorter lengths

leads to under-fitting and low accuracy.

• The results of this research are not limited to tracking. For instance, YOLO detects

cars from the top view, but the precision of the object classification is low. For

human detection, since YOLO was biased to the data from the front view, although

the YOLO detection performance from this view is very good, the classification

results are also disappointing.

For future work, YOLO detector will be trained using an updated data set to improve

the detection results from the top view. The methods will be extended for multiple object

tracking because all the detectors i.e., ACF, R-CNN, fast R-CNN, faster R-CNN and YOLO

have the capability of multiple object detection. For the online trackers in each iteration

of the training phase, instead of a single object, the future system will define multiple

objects and the detectors will output different labels for different objects. In the case of

offline tracking, YOLO is able to detect multiple objects as shown in this chapter. For

each object, one Kalman filter will be used for tracking.
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Chapter 3

Object Tracking in Polar Video

In this chapter, the proposed methods based on the author’s contributions for object

tracking in polar videos are described. Nowadays, the use of 360-degree cameras is

intensively increasing. Object tracking by using these cameras is a potential task that

needs to be viewed. The previous chapter proposed two methods for rectangular object

tracking using an offline tracker and an online tracker based on training oriented object

detectors. Due to the distortion and circularized shapes of the polar videos, the common

methods for rectangular tackers do not apply to polar videos. This chapter presents the

approaches for polar object tracking and is based on the author’s following publications:

• The author’s paper (C5) has recently been published in 2018 in the journal of

Multimedia Tools and Applications [Del+18]. The contributions of this paper to

object tracking are a new circular polar object selection method, a region of interest

selection technique, and the proposed color binary classifiers.

• The author contributes to object tracking in 360-degree videos by using SURF

(Speeded Up Robust Features) and a training-based matching method (C4) has

been published in the International Symposium on Multimedia in 2017 [DG15].

• The author’s paper has published a paper (C2) [Del+16b] in the proceedings of

the International Conference on Pattern Recognition in 2016. This paper modifies

a famous tracker (TLD) [KMM12] to employ it for object tracking in 360-degree

videos.

• The author’s contribution to object tracking in 360-degree videos by using a polar

trapezoid-shape method has been published in the proceedings of the International

Symposium on Multimedia (C3) [Del+16a].
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This chapter has the following organization: Section 3.1 states the problem of object

tracking in 360-degree videos and Section 3.2 then shows a literature review of object

tracking in rectangular and polar videos. Videos from 360-degree and omni-directional

cameras are compared in Section 3.3. Section 3.4 presents a modified training-learning-

detection method to increase the robustness and speed of the TLD [KMM12] tracker es-

pecially against tracking challenges. A rectification-based object tracking method using

YOLO (You Only Look Once) detector is then given in Section 3.5. Section 3.6 proposes

a polar tracker which directly applies on polar videos and uses a trapezoid-shape tech-

nique for generating object candidates. Section 3.7 presents the author’s proposed polar

tracker based on SURF features and two training based classifiers for object matching

and challenge detection. Section 3.8 presents the proposed polar tracker with a polar can-

didates generator and a combination of color information and binary features of videos.

The experiments of the proposed polar trackers are given in Section 3.9. Section 3.10

concludes this chapter and states future work for polar object tracking.

3.1 Problem Statement

A 360-degree camera provides high-resolution videos with a wide field of view. The

wide field of view allows the required number of installed cameras to be significantly

decreased in comparison with the case of commonly used rectangular cameras. Thus,

replacing conventional security systems with 360-degree cameras allows a significant

reduction of hardware costs, software license, and maintenance costs. The wider field

of view for conventional cameras increases their applications. For instance, the use of

360-degree cameras is growing in areas such as robotics, car traffic control, and intelligent

surveillance systems.

With knowing the location of an object of interest in the first frame, the task of

tracking this object becomes a fascinating topic for video processing from both scientific

and industrial viewpoints. This task becomes scientifically more interesting when some

complexities are involved in the videos. The complexities can include a moving-camera,

uncertainty of the object, in- and out-of-the-plane rotation of the object, background

clutter, small size and low resolution of the object, appearance changes, partial and full

occlusion, and size variation within a video sequence caused by the object departing and

approaching to the sensor. The object of interest is a unique object which the tacker is

looking for. Figure 3.1 shows some objects of interest used in this chapter.

In this chapter, novel and scientific object tracking methods in the high convexity

polar images from a high-resolution 360-degree camera are considered. This chapter
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Figure 3.1: Some snapshots of 360-degree videos: Polar objects show the desired objects.

is composed of scientific projects with various techniques for object tracking in polar

videos. A high-overlapping polar object selection is proposed to facilitate effective ob-

ject selection (C3,C4). Also, a color binary classifier is introduced (C5) to address the

robustness and speed issues. This system can track arbitrary objects when the camera

is moving and handle occlusion and scene leaving-returning issues. The first two pro-

posed methods use an image rectification to convert the polar videos to rectangular ones

and apply MTLD (C2) and YOLO-based trackers to the rectified videos. The proposed

polar methods take new approaches as compared to the other methods based on image

rectification. The theoretical improvements are validated by experiments in Section 3.9.

3.2 Related Work

This section lists and shortly summarizes most related approaches for object tracking,

starting with those using rectangular video followed by algorithms working with polar

videos. Generally, object tracking methods based on their applications are grouped into

the following categories:

1. Human Trackers: Most rectangular trackers have been fitted for human tracking.

They usually simplify the object tracking problem for the easy case of human

tracking.

2. Arbitrary Object Trackers: Some rectangular trackers aimed to track arbitrary

objects. The object can be car, airplane, animal, human and so on.
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3. Object Tracking for Robotics: Polar object trackers usually are used for navigating

a robot, a vehicle, a helicopter and so on.

4. Object Tracking for Video Surveillance: Due to the wide field of polar cameras

especially pan-tilt-zoom (PTZ) and fisheye cameras, the polar object trackers are

also employed for the surveillance applications for monitoring humans or objects.

3.2.1 Rectangular Object Tracking for Human Following

Recently, some methods have been developed to overcome the challenges of object track-

ing in rectangular videos. Most of them focus on the same problem and the same data

sets and gradually improve the tracking performance. There are many other methods

for human detection and tracking in literature [Lin+07; WYX14; LSS05; WY10; MRS14;

MSR15]. These methods often use very simple features to detect humans. The human

body is usually described by some simple shapes such as a circle for the human’s head

and a cylindrical shape for other body parts. Thus, a very commonly used method is

modeling the human appearance to 2d shapes [Lin+07] or 3d shapes [WY10]. Some other

methods use offline-trained object detection for human tracking [LSS05]. In [X.W+16],

tracking of different kinds of interacting objects is formulated as a network-flow integer

program. This is made possible by tracking all objects simultaneously using intertwined

flow variables and expressing the fact that one object can appear or disappear at locations

where another is in terms of linear flow constraints.

There are some trackers focusing on human tracking like the tracker proposed

in [XSL15]. This method uses an adaptive clustered decision tree for single object tracking

and selects the minimum combination of necessary features to represent each target in

frames. This method can successfully track various objects in the challenging condition

of rectangular videos.

Correlation-based trackers (KCF) [Hen+15; Bol+10; Din+18] have gained an excellent

performance and show robustness to challenging situations like motion blurring and

illumination changes. In [Din+18], the authors recently improved the scalability of the

KCF tracker. However, since KCF trackers depend strongly on the spatial layout of the

tracked object, they are fragile to deformation, occlusion and camera shaking [Ber+16;

Zha+17]. This drawback can be compensated by combining the correlation-based system

to color information [Ber+16] or adding some output constraints [Zha+17] to the KCF

tracker.

Common methods of object tracking are not able to track the object in the presence

of some or all of the mentioned complexities. The problem of polar object tracking is
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much more complicated than rectangular tracking. Due to the distortion of polar images

caused by natural convexity, concavity, and rotation of objects in the polar images, the

conventional rectangular object selection [MRS14; MSR15; KMM12] does not apply.

Moreover, since no information about the object of interest is available, template-based

and offline-trained object tracking methods are not possible. Instead, other methods

based on energy minimizing and online-training techniques are more practical [MRS14;

MSR15]. The online-training method is usually fragile to the out-of-plane rotation and

background clutter. A Gaussian dynamical model and an annealed particle filtering

were used for human motion tracking in [Liu+12; Cui+13].

In [Wen+16], an algorithm is proposed that formulates the multi-object tracking task

as one to exploit hierarchical dense structures on an undirected hyper-graph constructed

based on tracklet affinity. The dense structures indicate a group of vertices that are

interconnected with a set of hyper-edges with high affinity values. The appearance and

motion similarities among multiple tracklets across the spatio-temporal domain are con-

sidered globally by exploiting high-order similarities rather than pairwise ones, thereby

facilitating the distinguishability of spatially close targets with a similar appearance. In

addition, the hierarchical design of the optimization process helps the proposed tracking

algorithm handle long-term occlusions robustly.

In object tracking, it is critical to explore the data associations by exploiting the tempo-

ral information from a sequence of frames rather than the information from the adjacent

two frames. Since straightforwardly obtaining data associations from multi-frames is an

NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve

this MDA problem by either developing complicated algorithms or simplifying MDA

as a 2D assignment problem based upon the information extracted only from adjacent

frames. In [He+16], it is shown that the relation between associations of two observations

is the equivalence relation in the data association problem, based on the spatial-temporal

constraint that the trajectories of different objects must be disjoint. Therefore, the MDA

problem can be equivalently divided into independent sub-problems by equivalence

partitioning. In contrast to existing works for solving the MDA problem, the authors

of [He+16] developed a connected component model (CCM) by exploiting the constraints

of the data association and the equivalence relation on the constraints. Based upon CCM,

the global solution of the MDA problem for object tracking can be efficiently obtained

by optimizing a sequence of independent data association sub-problems.

The task of tracking multiple targets is often addressed with the so-called tracking-

by-detection paradigm, where the first step is to obtain a set of target hypotheses for

each frame independently. Tracking can then be regarded as solving two separate, but
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tightly coupled problems. The first is to carry out data association, i.e., to determine the

origin of each of the available observations. The second problem is to reconstruct the

actual trajectories that describe the spatio-temporal motion pattern of each individual

target. The former is inherently a discrete problem, while the latter should intuitively be

modeled in a continuous space. Dealing with an unknown number of targets, complex

dependencies, and physical constraints are all challenging tasks on their own and thus,

most previous work focuses on one of these sub-problems. In [MSR15], a multi-target

tracking approach is presented that explicitly models both tasks as minimization of a

unified discrete-continuous energy function. Trajectory properties are captured through

global label costs, a recent concept from multi-model fitting, which is introduced to

tracking. Specifically, label costs describe physical properties of individual tracks, e.g.,

linear and angular dynamics, or entry and exit points. Furthermore, the paper intro-

duces pairwise label costs to describe mutual interactions between targets in order to

avoid collisions. By choosing appropriate forms for the individual energy components,

powerful discrete optimization techniques can be leveraged to address data association,

while the shapes of individual trajectories are updated by gradient-based continuous

energy minimization.

Many recent advances in multiple target tracking aim at finding a (nearly) optimal

set of trajectories within a temporal window. To handle the large space of possible tra-

jectory hypotheses, it is typically reduced to a finite set by some form of data-driven

or regular discretization. In [MRS14], an alternative formulation of multitarget tracking

as minimization of a continuous energy was proposed. Contrary to recent approaches,

in [MRS14], authors focus on designing an energy that corresponds to a more complete

representation of the problem, rather than one that is amenable to global optimization.

Besides the image evidence, the energy function takes into account physical constraints,

such as target dynamics, mutual exclusion, and track persistence. In addition, the partial

image evidence is handled with explicit occlusion reasoning and different targets are

disambiguated with an appearance model. Nevertheless to find the strong local min-

ima of the proposed non-convex energy, a suitable optimization scheme that alternates

between continuous conjugate gradient descent and discrete trans-dimensional jump

moves is constructed. These moves, which are executed so that they always reduce the

energy, allow the search to escape weak minima and explore a much larger portion of

the search space of varying dimensionality.
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3.2.2 Rectangular Object Tracking for Arbitrary Object Following

In [WK16] a multi-cue object tracking framework using the particle filter has been pro-

posed to more efficiently handle various dynamic environment conditions such as partial

or full occlusion, illumination changes, weather-related obstructions, and poor visibil-

ity. In [WZM12], the authors also use particle filter and Markov Chain Monte Carlo to

improve the tracking robustness and speed. A method which uses Hough transform for

hand detection and SIFT for generating and matching of key-points has been proposed

in [WK16] for fingertip tracking. Authors in [Cho+15] propose a geogram-based fea-

ture descriptor to improve the tracking robustness and a hybrid technique of geogram-

histogram to control the convergence of the mean-shift based tracker. In [Mia+11;

SNH12] a SURF feature descriptor was used for object tracking in rectangular images.

Visual attention is a crucial indicator of the relative importance of objects in visual

scenes to human viewers. In [Kar+15], an algorithm to extract objects which attract visual

attention from videos is proposed. As human attention is naturally biased towards high

level semantic objects in visual scenes, this information can be valuable to extract salient

objects. The proposed algorithm extracts dominant visual tracks using eye tracking data

from multiple subjects on a video sequence by a combination of mean-shift clustering

and Hungarian algorithm. These visual tracks guide a generic object search algorithm

to obtain candidate object locations and extend it to every frame. Further, [Kar+15]

proposes a multiple object extraction algorithm by constructing a spatio-temporal mixed

graph over object candidates. Bounding box based object extraction inference is per-

formed using binary linear integer programming on a cost function defined over the

graph. Finally, the object boundaries are refined using grab-cut segmentation. Feature

pooling in a majority of sparse coding based tracking algorithms computes final feature

vectors only by low-order statistics or extreme responses of sparse codes. The high-

order statistics and the correlations between responses to different dictionary items are

neglected. In [Ma+16], a more generalized feature pooling method for visual tracking

is presented which utilizes the probabilistic function to model the statistical distribution

of sparse codes. Since immediate matching between two distributions usually requires

high computational costs, the Fisher vector to derive a more compact and discriminative

representation for sparse codes of the visual target is introduced. The approach encodes

target patches by local coordinate coding, utilizes a Gaussian mixture model to compute

Fisher vectors, and finally trains semi-supervised linear kernel classifiers for visual track-

ing. In order to handle the drifting problem during the tracking process, these classifiers

are updated online with current tracking results.

Under a tracking framework, the definition of the target state is the basic step for
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automatic understanding of dynamic scenes. More specifically, far object tracking raises

challenges related to the potentially abrupt size changes of the targets as they approach

the sensor. If not handled, size changes can introduce heavy issues in data association

and position estimation. This is why adaptability and self-awareness of a tracking

module are desirable features. The paradigm of cognitive dynamic systems (CDSs) can

provide a framework under which a continuously learning cognitive module can be

designed. In particular, CDS theory describes a basic vocabulary of components that can

be used as the founding blocks of a module capable of learning behavioral rules from

continuous active interactions with the environment. This quality is fundamental to

deal with dynamic situations. In [Maz+16], a general CDS-based approach for tracking

is proposed. It is shown that such a CDS-inspired design can lead to the self-adaptability

of a Bayesian tracker in fusing heterogeneous object features, overcoming size change

issues.

In [XSL15], the authors present a method for single target tracking of arbitrary objects

in challenging video sequences. Targets are modeled at three different levels of granular-

ity i.e., pixel level, parts-based level, and bounding box level, which are cross-constrained

to enable robust model relearning. This work presents an adaptive clustered decision

tree method which dynamically selects the minimum combination of features necessary

to sufficiently represent each target part at each frame, thereby providing robustness

with computational efficiency. The adaptive clustered decision tree is implemented in

two separate parts of the tracking algorithm: firstly to enable robust matching at the

parts-based level between successive frames and secondly to select the best super-pixels

for learning new parts of the target.

Semantic object segmentation in a video is an important step for the large-scale

multimedia analysis. In many cases, however, semantic objects are only tagged at video-

level, making them difficult to be located and segmented. To address this problem,

in [Zha+15] an approach to segment semantic objects in weakly labeled videos via object

detection is proposed. In this approach, a video segmentation-by-detection framework

is introduced, which first incorporates object and region detectors pre-trained on still

images to generate a set of detection and segmentation proposals. Based on the noisy

proposals, several object tracks are then initialized by solving a joint binary optimization

problem with min-cost flow. As such tracks actually provide rough configurations of

semantic objects, the object segmentation is refined while preserving the spatio-temporal

consistency by inferring the shape likelihoods of pixels from the statistical information

of tracks.
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3.2.3 Polar Object Tracking for Robotics Application

An omnidirectional camera (from “Omni”, meaning all) is a camera with a 360-degree

field of view in the horizontal plane, or with a visual field that covers (approximately) the

entire sphere. While it is not limited to a single viewpoint and can observe a large area,

it distorts the objects in the scene. For this reason, existing methods for object tracking

in 2D rectangular videos cannot be applied for these data without appropriate modifi-

cations. There are some methods using a similar type of polar camera (omnidirectional)

in various applications. They are based on conventional low-resolution omnidirectional

cameras. Many of them have achieved good performances in a simple scenario and spe-

cial application like robotics. In [SS08] a SIFT-based tracking method is used to compute

the motion (odometry) of a robot for image mosaicing outside. It uses image rectification

(unwrapping) for low-resolution omnidirectional camera images. Due to application

type (odometry), there is enough time to compensate for the likely errors of the tracker

by using the next frames. Thus, the perfect precision of the tracker is not necessary in

this case.

A technique for applying visual tracking algorithms to omnidirectional videos is

presented in [Ram+07]. The method is based on a spherical image representation which

allows taking into account the distortions and nonlinear resolution of omnidirectional

images.

Using stereo disparity or depth information to detect and track moving objects has

received increasing attention in recent years. However, this approach suffers from some

difficulties, such as synchronization between two cameras and doubling of the image-

data size. Besides, traditional stereo-imaging systems have a limited field of view (FoV),

which means that they need to rotate the cameras when an object moves out of view.

In [Xio+12], the authors present a depth-space partitioning algorithm for performing ob-

ject tracking using a single-camera Omni-stereo imaging system. The proposed method

uses a catadioptric omnidirectional stereo-imaging system to capture Omni-stereo image

pairs. This imaging system has 360-degree FoV, avoiding the need for rotating cameras

when tracking a moving object. In order to estimate Omni-stereo disparity, the authors

present a depth-space partitioning strategy. It partitions three-dimensional depth space

with a series of co-axial cylinders models the disparity estimation as a pixel-labeling

problem and establishes an energy minimization function to solve this problem using

graph cuts optimization. Based on the Omni-stereo disparity-estimation results, the

authors detect and track-moving objects based on Omni-stereo disparity motion vector,

which is the difference between two consecutive disparity maps.

Equipping mobile robots with an omnidirectional camera is very advantageous in
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numerous applications as all information about the surrounding scene is stored in a single

image frame. [MCP14] is concerned with detection, tracking and following of a moving

object with an omnidirectional camera. The camera calibration and image formation are

based on the spherical unified projection model thus yielding a representation of the

omnidirectional image on the unit sphere. Detection of moving objects is performed by

calculating a sparse optical flow in the image and then lifting the flow vectors on the

unit sphere where they are discriminated as dynamic or static by analytically calculating

the distance of the terminal vector point to a great circle arc. The flow vectors are

then clustered and the center of gravity is calculated to form the sensor measurement.

Furthermore, tracking is posed as a Bayesian estimation problem on the unit sphere

and the solution based on the Mises-Fisher distribution is utilized. Visual servoing is

performed for the object following task where the control law calculation is based on the

projection of a point on the unit sphere.

In a method presented in [ZLS17], the authors utilize background subtractor from

OpenCV Library which creates a continuously updating background model for motion

detection. The model is subtracted from the current frame leaving contours symbolizing

the movement observed in the camera view. These contours are then analyzed and

processed so that the system can track the largest contour. The tracked movement is

outlined and directed to the user via virtual reality (VR) headset. The VR headset only

displays a 60-degree portion of the camera view to the user which provides more realistic

situational awareness of the surroundings for the user. These activities are a part of a

larger effort to establish a foundation for autonomous unmanned vehicle systems with

situational awareness capabilities.

A real-time algorithm for computing the ego-motion of a vehicle relative to the road

is described in [SS08]. The algorithm uses as input only those images provided by a

single omnidirectional camera mounted on the roof of the vehicle. The front ends of

the system are two different trackers. The first one is a homography-based tracker that

detects and matches robust scale-invariant features that most likely belong to the ground

plane. The second one uses an appearance-based approach and gives high-resolution

estimates of the rotation of the vehicle. This planar pose estimation method has been

successfully applied to videos from an automotive platform. An example of camera

trajectory estimated purely from omnidirectional images over a distance of 400m is

given. For performance evaluation, the estimated path is superimposed onto a satellite

image. In the end, image mosaicing is used to obtain a textured 2-D reconstruction of

the estimated path.

The design and implementation of an omnidirectional vision system used for
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sideways-looking sensing on an autonomous helicopter are proposed in [HS03]. To

demonstrate the capabilities of the system, a visual servoing task was designed which

required the helicopter to locate and move towards the centroid of a number of visual

targets. Results are presented showing that the task was successfully completed by

a Pioneer ground robot equipped with the same omnidirectional vision system, and

preliminary test flight results show that the system can generate appropriate control

commands for the helicopter.

The authors in [KS07] present a moving obstacle detection method using optical

flow in a mobile robot with an omnidirectional camera. Because an omnidirectional

camera consists of a nonlinear mirror and CCD camera, the optical flow pattern in

an omnidirectional image is different from the pattern in a perspective camera. The

geometry characteristic of an omnidirectional camera has influences on the optical flow

in an omnidirectional image. When a mobile robot with an omnidirectional camera

moves, the optical flow is not only theoretically calculated in an omnidirectional image

but also investigated in omnidirectional and panoramic images. The panoramic image

is generalized from an omnidirectional image using the geometry of an omnidirectional

camera. In particular, focus of expansion (FoE) and focus of contraction (FoC) vectors

are defined from the estimated optical flow in omnidirectional and panoramic images.

FoE and FoC vectors are used as reference vectors for the relative evaluation of optical

flow. The moving obstacle is turned out through the relative evaluation of optical flows.

Detecting moving objects based on the camera attached in a mobile robot is not

trivial since both background and object are moving independently. For moving ob-

ject detection the movement of moving object needs to be extracted by considering the

background which has also changed by the ego-motion of the mobile robot. Affine

transformation is widely used to estimate the background transformation between im-

ages. However, when using an omnidirectional camera, the mixed motion of scaling,

rotation, and translation appears in local areas and single affine transformation is not

sufficient to describe those mixed nonlinear motions. The method presented in [Oh+12]

divides the image into grid windows and obtains each affine transform for each window.

This method can obtain a stable background transformation when the background has

few corner features. The area of moving objects can be obtained from the background

transformation-compensated frame difference using every local affine transformation

for each local window.

A simple yet effective method for online and real-time multi-object tracking in 360-

degree equirectangular panoramic videos is proposed in [LL18]. Based on the current

state-of-the-art tracking-by-detection paradigm, several improvements have been made
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to overcome the challenges of full field-of-view (FoV) of spherical panoramic cameras

(SPC). In addition, two data sets are presented for evaluation.

The nonuniform resolution of the omnidirectional camera has been used in [Sco+04]

for human tracking based on a dual camera system. Multiple cues such as color, shape,

and position are selected as human tracking features. The background of images in the

fixed camera scenarios is still. Thus, by using background detection and subtraction, one

can easily detect foreground objects. In such a case, the area of interest is dramatically

limited. Therefore, finding the object of interest in the limited area can be precise and fast.

For object tracking in omnidirectional videos, trackers in the literature [MCP14; Dem+12;

KS07; Oh+12; SS08] are not applicable to the 360-degree images. In fact, they design

their approach for a specific condition/application as it will be explained in the next

paragraphs. The methods focus on an indoor environment for chasing objects [MCP14;

Dem+12; KS07; Oh+12; HS03].

For the polar object tracking some methods [KS07; Oh+12; HS03; Del+16b; SS08] use

image rectification for all frames prior to the tracking process and then an optical flow

for tracking. The computational load for rectification is manageable in this case due to

the limited resolution of the omnidirectional camera (less than 0.3 MP). However, the

computation time becomes non-trivial for the image resolution of 2.25 MP in 360-degree

data set1, (it is around 2ms per frame in [Del+16b]). The computational load will become

increasingly important as the resolution of this type of camera is also rapidly increasing

(e.g., the 360fly-4k camera provides videos around 9MP resolution). Therefore, the

need to optimize the algorithms is essential. The problem is even more relevant for

non-optimized and non-parallel computational environments.

The object tracking methods presented in [KS07; Oh+12; MCP14] were based on

the easy case of a low-resolution omnidirectional camera installed on a slow-moving

robot in indoor environments. These methods are not applicable to more complicated

conditions with outdoor filming, fast-moving objects, and occlusion. In [KS07] the

authors exploited optical flow for object tracking. The method has been combined with a

Bayesian prediction correction method for navigating a robot to an object [MCP14]. It can

follow a human when the camera is moving without using image rectification [MCP14],

but the distance between the person and camera is limited (around 1 meter). In addition,

since this algorithm is sensitive to the object size, even in light-isolated environments in

a room where the background is very smooth, the object must be non-moving in some

intervals and turned to the camera to prevent missing the object of interest [MCP14].

Thus, they can be used only in simple applications like slow human chasing. In a

1https://www.youtube.com/channel/UCjS9DSZpPzfMwyDCp1Xai1Q/videos?viewas=subscriber
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method presented in [LL18], YOLOv2 and Kalman filtering were combined for multi-

human tracking in rectified 360-degree panoramic videos.

In [ZLS17], the authors utilize background subtraction and continuously updates the

background model for motion detection in omnidirectional videos for an autonomous

unmanned vehicle systems application. For omnidirectional object tracking, many works

use normal object tracking techniques. For example in [Dem+12] cameras were installed

in a way that the movement direction is similar to the easy case of a rectangular camera.

Thus, most of the conventional object tracking methods can easily be applied to this data

set. In [Dem+12], the authors exploit known tracking methods such as interest point

tracking [Cal+10] and rectangular bounding box-based matching method [ZH06]. These

methods cannot be applied to the 360-degree images. In addition, since the resolution is

low, the application of this camera has been limited to indoor environments [Dem+12]

where the distance is limited. In this case, a normal camera with a wide view and small

focal-length lens could also be used.

3.2.4 Polar Object Tracking for Surveillance Application

Omnidirectional cameras have a lot of potential for surveillance and ambient intelligence

applications, since they provide increased coverage with fewer cameras. A BOMNI data

set is introduced in [Dem+12] and collected with two omnidirectional cameras simulta-

neously. The data set contains various scenarios, as well as actions relevant for ambient

assisted living, such as falling down. The authors describe evaluation protocols on this

data set and provide benchmarking baseline results for two tracking systems based on

bounding box and interest point matching after foreground-background segmentation,

respectively.

In a method proposed in [Dem+12], the authors proposed a method for multiple

human tracking using omnidirectional cameras in the simple case of an indoor environ-

ment and still camera. It exploits variational Bayesian inference for tracking and uses

rectangular object description similar to object tracking in normal images. It can handle

occlusion well and perform tracking when the camera is fixed. In this work, a data set

from a fixed and low-resolution omnidirectional camera for the indoor environment was

introduced [Dem+12].

An integrated multi-camera video-sensor (panoramic catadioptric vision tracker plus

- PCVT+) is presented in [Sco+04] for surveillance systems. In this setup, an omnidirec-

tional imaging device is used in conjunction with a PTZ camera leading to an innovative

kind of sensor that is able to automatically track any moving object within the guarded

area at a higher zoom level. In particular, the catadioptric sensor is firstly calibrated and



3.2. RELATED WORK 51

used in order to track every single object that is moving within its 360-degree field of

view. Omnidirectional image portions are eventually rectified and pan, tilt and zoom

parameters of the moving camera are automatically adjusted by the image processing

system in order to track detected objects. A cooperative strategy was developed for the

selection of the object to be tracked by the PTZ sensor in the case of multiple targets.

Harabar et al. [HS03] utilized such an optic to automatically pilot a small traffic

surveillance helicopter by using a GPS system and a low-resolution omnidirectional

camera. Outside, they used GPS for navigation, while inside they used many large

landmarks with a black and white "H" on it. They used simple image thresholding to

detect the H’s for stabilization.

Dual-camera systems have been widely used in surveillance systems because of the

ability to explore the wide field of view (FoV) of the omnidirectional camera and the

wide zoom range of the PTZ camera. Most existing algorithms require prior knowledge

of the omnidirectional camera’s projection model to solve the nonlinear spatial corre-

spondences between the two cameras. To overcome this limitation, in [Che+08], two

methods are proposed: geometry and homography calibration, where polynomials with

automated model selection are used to approximate the camera projection model and

spatial mapping, respectively. The proposed methods not only improve the mapping

accuracy by reducing its dependence on the knowledge of the projection model but also

feature reduced computations and improved flexibility in adjusting to varying system

configurations. Although the fusion of multiple cameras has attracted increasing at-

tention, most existing algorithms assume comparable FoV and resolution levels among

multiple cameras. Different FoV and resolution levels of the omnidirectional and PTZ

cameras result in another critical issue in practical tracking applications. The omnidirec-

tional camera is capable of multiple object tracking while the PTZ camera is able to track

one individual target at a time to maintain the required resolution. It becomes necessary

for the PTZ camera to distribute its observation time among multiple objects and visit

them in sequence. Therefore, this paper addresses a scheme where an optimal visiting

sequence of the PTZ camera is obtained so that in a given period of time the PTZ camera

automatically visits multiple detected motions in a target-hopping manner.

Table 3.1 shows the distribution of common object tracking properties over the pre-

sented methods.
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Table 3.1: Distribution of object tracking properties over related methods.
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Wang et al. [X.W+16] X X X X X X

Wen et al. [Wen+16] X X X X X

He et al. [He+16] X X X X X

Ma et al. [Ma+16] X X X

Mazzu et al. [Maz+16] X X X X

Milan et al. [MSR15] X X X X X

Milan et al. [MRS14] X X X X X

Xiao et al. [XSL15] X X X X

Zhang et al. [Zha+15] X X X X

Karthikeyan et al. [Kar+15] X X

Chen et al. [Che+08] X X X X

Scotti et al. [Sco+04] X X X

Rameau et al. [Ram+07] X X X

Xiong et al. [Xio+12] X X

Markovic et al. [MCP14] X X

Zirakchi et al. [ZLS17] X X

Demiroz et al. [Dem+12] X X X X X

Scaramuzza et al. [SS08] X X X X

Hrabar et al. [HS03] X X X X X

Kim et al. [KS07] X X

Oh et al. [Oh+12] X X

Liu et al. [LL18] X X X X

3.3 360-degree versus Omnidirectional Camera

The samples of images of a 360-degree camera are presented in this section. From the

data set, several videos are used whose snapshots are shown in Figure 3.2 and Figure 3.1.

The characteristics of the videos are as follows:

1. Natural in-plane rotation,

2. Out-of-plane rotation,

3. Moving camera,

4. Various types of objects,
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Figure 3.2: A 360-degree image

5. High image resolution,

6. Complex background.

The top region of a rectangular image is mapped to the center of the corresponding

360-degree image and other regions to the peripheral regions around the center. On the

other hand, almost all videos contain out-of-plane rotation which means the camera is

looking at the diverse sides of the same object in different times. The 360-degree data set

consists of some videos from moving and fixed cameras wherein the objects of interest

are human, airplane, car, and motorcycle with diverse shapes and features. Applying

conventional polar and rectangular trackers to the 360-degree data set is very costly and

slow.

The 360-degree data set has been considered in this section. Many challenging

conditions are involved in these videos. The variety of objects of interest, diversity of

occlusion, and illumination variation from the outdoor applications makes the tracking

task more challenging than seen in the other data set in the literature.

Compared to the omnidirectional cameras (in Figure 3.3 (right)), the emerging 360-

degree camera has a higher resolution and a wider FoV. 360-degree cameras do not

have a blind region in the center of the image. 360-degree cameras also provide a

wider field of view as compared to traditional fish-eye cameras providing maximum
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Figure 3.3: A 360-degree image (left) is bigger than a catadioptric omnidirectional image

(Right). The catadioptric omnidirectional camera cannot cover the center region of the

images.

180-degree view (Half spherical). This means that the fish-eye cameras cannot see the

area behind the camera whereas the 360-degree cameras can. This ability opens up

additional applications for these cameras as opposed to the traditional omnidirectional

ones. However, the high resolution limits the algorithm speed necessary to maintain real-

time capability. Without the capability, tracking of objects which rapidly move far away

from the scene is not possible. From the output videos of the omnidirectional camera,

it appears that a circle image has been cropped from a rectangular image. In contrast,

360-degree cameras have convexity even in the center part of the images. In other words;

the field of view and the convexity of 360-degree cameras are higher than the fish-eye

and omnidirectional cameras. Therefore, many omnidirectional-based tracking methods

do not work on these videos, especially, when the objects are far away or have in-plane

rotation. Since there are a wide variety of challenges in this data set, the mentioned

methods are incompatible. In the next sections, new methods to allow tracking on this

challenging data set are developed.
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3.4 Object Tracking by Modified TLD

This section reviews a popular and robust approach in this category called Tracking-

Learning-Detection [KMM12]. Then, the problem of object tracking in 360-degree videos

is addressed. This method is based on the author’s paper (C2) published in International

Conference on Pattern Recognition (ICPR2016) [Del+16b].

A very popular and robust approach for object tracking in rectangular videos is pre-

sented in [KMM12]. It is called Tracking-Learning-Detection (TLD). TLD is a framework

designed for long-term tracking of an unknown object in a video stream. The main idea

of [KMM12] is to let tracking and detection algorithms work together. Moreover, it also

incorporates a learning module observing the performance of both tracker and detector.

The authors of [KMM12] start the motivation of their own approach stating the fact

that most of the existing long-term tracking algorithms apply either tracking or detection

and do not combine these two strategies. The trackers require only initialization, are fast

and produce smooth trajectories. On the other hand, they accumulate errors during run-

time (drift) and typically fail if the object disappears from the camera view. Research

in tracking aims at developing increasingly robust trackers that track “longer”. The

post-failure behavior is not directly addressed. Detection-based algorithms estimate the

object location in every frame independently. Detectors do not drift and do not fail if the

object disappears from the camera view. However, they require an offline training stage

and therefore cannot be applied to unknown objects. The components of the framework

are characterized as follows:

Tracker estimates the object’s motion between consecutive frames under the assumption

that the frame-to-frame motion is limited and the object is visible. The tracker is

likely to fail and never recover if the object moves out of the camera view.

Detector treats every frame as independent and performs full scanning of the image to

localize all appearances that have been observed and learned in the past. As any

other detector, the detector makes two types of errors: false positives and false

negatives.

Learning observes the performance of both, tracker and detector, estimates the detec-

tor’s errors and generates training examples to avoid these errors in the future.

The learning component assumes that both the tracker and the detector can fail.

By the virtue of learning, the detector generalizes to more object appearances and

discriminates against the background.
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In the next part of the current section, an approach is proposed that extends TLD towards

object tracking in polar video.

Below, the MTLD [Del+16b], an accordingly modified version of the TLD summa-

rized earlier in this section, is described. The general MTLD processing pipeline is

depicted in Figure 3.4. Its modifications compared to TLD are as follows:

Figure 3.4: Block diagram of the proposed MTLD method.

Image Rectification: First, a rectification transformation is applied converting polar im-

ages into rectangular ones (see example in Figure 3.5).

Figure 3.5: A rectified polar image

Classifier Modification: By the image rectification, in-plane rotation is mostly removed.

However, in some cases, the desired object is not detected robustly due to the

out-of-plane rotation problem. To resolve this issue, the nearest neighbor classifier

performing this detection is modified in such a way to accept more variance in

the appearance of the candidate objects. This strategy improves the detection

performance of the objects of interest. However, it also increases the number of false
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positives. To tackle this problem, objects with a high replacement in consecutive

frames are ignored. The block diagram of the proposed MTLD detector is depicted

in Figure 3.6.

Figure 3.6: Block diagram of the modified object detector.

Search Area Restriction: The MTLD approach attempts to decrease the computational

cost of the TLD method. For this reason, the object searching area in MTLD is

restricted to a region around the object location in the previous frame. Due to the

wide field of view in 360-degree images, even when the camera is moving, the object

location in successive frames does not change significantly. Thus, the limitation of

the searching area does not negatively influence the tracking performance.

Detection Strategy Modification: TLD uses the tracker output to train the detector.

However, it has been observed that it does not play an important role in up-

dating the detector output. To improve the detection performance, the currently

detected object is included in the positive example set rather than the tracker out-

put. Usually, the object size varies in a very limited way between two successive

frames of a polar video. MTLD assumes the size difference to be lower than 25%

which additionally optimizes the algorithm.

3.5 Object Tracking using YOLO Detector

This section presents the proposed deep learning based tracker. This method uses YOLO

(You Only Look Once) to find the location of the object of interest in an image. Most of

the object detection systems fail to detect objects directly in polar images because they

were trained using data sets of rectangular images. When this object detector is applied

to a polar image, the precision falls down. Assuming that the objective conditions are

realistic and correspond to those of a rectangular image, the object recognizer will make

correct decisions about the presence and location of the object. However, this does
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Figure 3.7: When YOLO is applied directly to the polar image, it cannot detect any object

due to the object orientation.

not happen in the case of polar images. In 360-degree videos, the pixels are arranged

in a circle, where the top of a scene is mapped to the center of the polar image. The

circular orientation of the pixels causes an object distortion (Figure 3.7). To overcome

the difficulty related to the polar object representation, all pixels of a polar image need

to be transformed to a rectangular arrangement. (see Figure 3.8)

Figure 3.8: After image rectification, YOLO is able to state the correct position and size

of the objects.

The rectangular version of the polar image can be obtained by converting polar

coordinates to Cartesian coordinates using an unwrapping approach [KM11]. However,

during this unwrapping process, the resolution of the output image is not uniform,

negatively affecting the object detection precision. To counteract this issue, a bilinear

interpolation is used to estimate the value of empty pixels in the image. For image

rectification first, a polar coordinate system is created by shifting the image origin from
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the top left towards the center of the image. Each point is initially identified by its

coordinates (x, y). After translating the origin, each point in the image is redefined

based on the new origin. The points are now described with (x’, y’) and calculated

by subtracting the coordinates of the center: x’=x-xc and y’=y-yc, where xc and yc are

the coordinates of the image center. In the next step, corresponding polar coordinates

describing the points are created. A polar coordinate system is two-dimensional, in

which every point is described by a distance from a reference point and an angle from a

reference direction. In this case, the reference point is the image center. The image pixels

are described using an angle, θ and a distance p between the image center and the pixels

in the image. p and θ are calculated using the following equations [KM11].

p =

√
x′2 + y′2 (3.1)

θ = tan−1(x′/y′) (3.2)

The new Cartesian coordinates are obtained according to the following equa-

tion [KM11]:

xn = α ∗ (rm−p), yn = β ∗ (p ∗θ) (3.3)

Where rm is the polar image radius, α and β are scaling factors affecting the out-

coming resolution and are in the range of [0,1], where 1 means that the output image

has the maximum resolution. After the unwrapping step, the outcome image has a

rectangular form; However, it still has distortion caused by missing pixels. To overcome

the distortion issue, this system uses the information of four known neighboring pixels.

After this step, the image borders are cropped, so that the border distortion is resolved.

To overcome challenges like occlusion or disappearance of the object of interest in the

data set, the proposed system uses the tracking-by-detection paradigm. Obscuration and

disappearances of objects often arise in complex videos, due to the movement of multiple

objects or non-stationary camera. The recognition of objects in a video is done by a state-

of-the-art object detector YOLO [RF17] proposed by Redmon et al. . YOLO stands for

You Only Look Once referring to the evaluation for predicting bounding boxes and class

probabilities over the entire image. YOLO uses a single convolutional neural network

for object detection while previous object detectors are applied to several locations on

the image or use a sliding window approach, where a classifier is applied on evenly

spaced locations over the image. Therefore, YOLO is able to predict the objects’ presence

and location significantly faster and is avoiding a complex pipeline. It takes a look at
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the entire image once and rates it globally to decide whether the object is a part of the

background. YOLO uses pre-trained features to predict all bounding boxes of objects

in the image. YOLO segments the input image into an sxs grid. Every grid cell detects

an object if the center of the object falls into that cell. Then, the grid cell predicts the

bounding box of the object and a confidence score for the bounding box. The confidence

score shows the confidence of the system for the object presence and the accuracy of

the predicted bounding box. If a cell does not contain an object, the confidence score

should be zero. YOLO provides the object coordinates (i.e., location), an output class

(i.e., the object type) and the confidence score. The visual output of YOLO is represented

in Figure 3.10. Each cell also predicts conditional class probabilities, YOLO is evaluated

using the PASCAL VOC data set [Eve+15]. YOLO is composed of 24 convolutional

layers followed by 2 fully connected layers. A convolutional layer basically convolves

an image in a kernel to form a filtered image. The kernel is a matrix containing specific

object features. By convolving the original image with the kernel, the output is a filtered

image containing statements about where a possible object can be and how confident

the system is. Fully connected layers are then used to vote whether an object exists at

a certain position. Fast YOLO uses 9 convolutional layers and is faster than Yolo, but

has lower accuracy. YOLO uses ImageNet 1000-class data set [Rus+15] for training. In

this data set, each image was manually labeled, describing the depicted object. YOLO

pretrains a convolutional neural network containing 20 convolutional layers followed by

an average-pooling layer and a fully connected layer. Pooling layers are used to shrink

the images based on certain window size. To improve the recognition performance, four

additional convolutional layers and two fully connected layers with randomly initialized

weights are added. The final layer then predicts class probabilities and bounding box

coordinates. YOLO9000 is another version of YOLO detecting over 9000 object categories

in real time. YOLOv3 is also an updated version of YOLO that has a bigger network than

YOLO and more accuracy. For the proposed tracker, the information about higher-level

object categories such as people, cars, or airplanes is sufficient and the specific object

categories like car models are not necessary. That is why YOLO9000 was not used in

the proposed tracker. After the rectification step, the resolution shrinks. Due to the high

field of view of 360-degree cameras, objects in the correspondent image become relatively

small and have an abnormal aspect ratio compared to the data set YOLO trained on. In

this case, YOLO occasionally fails to recognize objects. This drawback can, however,

be improved by a tracker (i.e., Kalman filter). The pure Kalman filter cannot generate

any information about the object position and size. Therefore, this tracker needs the

information extracted by YOLO in order to facilitate the later tracking process.
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Figure 3.9: Convolutional neural network with 24 convolutional layers followed by 2

fully connected layers [RF17]

Figure 3.10: An example of the YOLO visual output with correct labeling

The proposed object tracking system uses two separate tracking approaches namely

Kalman filter and Lucas-Kanade methods. The Kalman filter uses the previously ex-

tracted information of the object of interest to determine the object’s position. The

Lucas-Kanade method, however, requires no prior information for object tracking. In

the following, first the procedure of the two mentioned tracker is explained and then the

combination of them is presented.

The Kalman filter is a linear state estimator receiving measurements over a time pe-

riod to describe the object state. It is used in different application areas like guidance,

vehicles control and navigation, robots, autonomous driving, interaction with persons

or object tracking. The Kalman filter is an optimal recursive data processing algo-

rithm [May82]. Optimal in this context means that it incorporates all of the provided

series of measurements, regardless of their precision to estimate unknown variables that

are more accurate than those based on a single measurement. Unknown variables are
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Figure 3.11: The visual outputs of the Kalman filter and YOLO are shown. Green

rectangles show the YOLO output and red rectangles are the Kalman filter estimation.

able to describe the past, present and future state, even if there is no information about the

true nature of the model [BW01]. By combining multiple measurements, mean squared

estimation errors are minimized. In order to estimate one of the aforementioned states,

the Kalman filter considers two phases. In the first step, a predictor estimates a state,

based on the previously given data. Then, the update phase, the Kalman filter corrects

the prediction when a new measure is available. Thus, the Kalman filter is alternating

between the update and the prediction phase (see Figure 3.13).

Figure 3.12: YOLO failed to find the object of interest. Nevertheless, the position of the

object could be estimated with a slight deviation by the Kalman filter.

The proposed system uses the Kalman filter to predict the object’s future location

using a history of objects’ location and speed. The Kalman filter uses the location in-

formation extracted by YOLO. The proposed system uses a six-dimensional state vector,

with the following values: x, y,w,h,vx,vy where x and y are the position coordinates,

vx,vy are the object’s velocity in horizontal and vertical directions and w,h are the size of

the object. There is also a four-dimensional measurement vector containing {ix, iy, iw, ih}
only used when YOLO provides information about the location of the object of interest,

during the update phase.
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Figure 3.13: The cycle of the Kalman filter: If object information to correct the prediction

is available, the update phase is started. The prediction phase estimates the object

position using its history.

Due to the fact that the Kalman filter does not rely on object information continuously

and can estimate the future object state even without measurement, it provides good

results in case of the detector’s failure. Even if an object is occluded over a short

period, the filter predicts the future position based on a linear model and can update the

measurements as soon as the object becomes visible again. Visual output of the filter is

shown in Figure 3.11.

Lucas-Kanade is a well-known tracker relying on the optical flow of a video se-

quence [Roj10]. It assigns a two-dimensional movement vector to a point of interest to

track it from one frame to the next. In order to calculate this vector, first, unique points are

found. These points are edges or corners within the image. There is a strong gray-scale

intensity change near the edges of an image. A corner pixel is characterized by two dom-

inant edge directions in its neighborhood. The corner and edge can be calculated using

different methods like Canny edge detector. Corners are locally unique, distinguishable

from the background and insensitive to noise. These features make the corners better

candidates than edges. Lucas-Kande considers a small region around the desired point

and assumes that the flow within this region is constant. If the interval between two

successive images is too long or the object moves too fast so that the position has changed

significantly, Lucas-Kanade may lose the interesting point. Lucas-Kanade calculates the

optical flow using the gradients inside a region of movement and the movement direc-

tion is a two-dimensional vector. This method works best when the object moves slowly.

The interesting points are only found at edges or preferably corners. However, if an

object has a uniform surface, such points cannot be found and therefor Lucas-Kanade

misses the object of interest. The Kalman filter and Lucas-Kanade methods have their

own advantages and disadvantages. The Kalman filter has very good results, but only
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if the YOLO detector regularly detects the desired object and provides associated infor-

mation. Thus, if the detector misses the object, the overall tracking performance falls

down. The quality of the image can have a strong influence on the results of the Lucas-

Kanade method. If the points of interest over several images cannot be clearly identified,

Lucas-Kanade may either track a wrong point or lose the object of interest. The different

combinations of Lucas-Kanade and the Kalman filter were tested. In the first scenario,

Lucas-Kanade performs mainly detection of the object by continuously calculating the

optical flow and the Kalman filter runs in the background and predicts the object’s size

and position.

Based on initial experiments, the previously extracted information is more important

since the tracking-by-detection paradigm is used and YOLO offers a higher precision

than Lucas-Kanade for most videos. Therefore, the combination of the Kalman filter and

YOLO shows better results than the single Lucas-Kanade tracker. In the second scenario,

the combination of YOLO, Kalman filter and Lucas-Kanade is proposed. The Kalman

filter performs the prediction phase and YOLO updates the Kalman filter. However, if

YOLO misses the interesting object over several frames, the Lucas-Kanade method is

used for detection instead of YOLO. Because if the estimated values are not renewed

over a longer time and the object of interest does not move linearly, the tracker may drift

off and miss the object. This combination shows the best overall performance.

3.6 Polar Object Tracking in 360-degree Video

In this section, a polar high-overlapping object selection method is proposed to allow

the object selection and tracking in 360-degree videos. Also, a color classifier in an

energy minimizing framework is introduced to concern the complex background issue

and out-of-plane rotation. The author’s contribution to object tracking in 360-degree

videos by using a polar trapezoid-shape method has been published in the proceedings

of the International Symposium on Multimedia in 2016 (C3) [Del+16a].

This method selects an object of interest in the first frame. Based on the location of

this object, an area of interest is selected in the second frame, in which some overlapped

candidates are generated. These are candidates for the object of interest. Finally, the

candidates are forwarded to the object detection module to find the object of interest in

the current frame. This process is automatically repeated for the next frames.

The contribution of this section is defining a polar area of interest and a polar

trapezoid-shape candidate selection. To have an efficient and fast object tracker, a region

of interest (RoI) around the object of interest in the first frame is extracted. The proposed
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area of interest is a region surrounded by a sector containing the center of mass (CoM) of

the object of interest in the bisecting radius indicated by a reference line (see Figure 3.14).

Using this approach, only this area of interest is considered for searching the object of

interest reducing the computational load significantly. For the sake of candidate gener-

ation, similar to RoI selection, a polar-based strategy is proposed. The region which is

surrounding the object of interest, is represented by using a sector made by two concen-

tric circles. Two radii and two circles are selected in a way that the region completely

circumscribes the object of interest. A candidate is represented by two radii r1, r2, and

the angle α1 between the two radii. As depicted in Figure 3.14 the region of interest

is highlighted with blue color and the rest with green. The RoI containing the selected

object of a video is shown at the bottom of Figure 3.14.

For the sake of candidate generation, the polar objects can be approximated by

trapezoid ones and the difference between polar and trapezoidal objects is ignorable.

Figure 3.15 shows some polar overlapped candidates. To have a clear presentation of the

polar object selection, only 5 candidates have been shown. In real practice, the number

of candidates is much more than 5 and they are strongly overlapped. According to

Figure 3.15, the candidate (a) shows the last desired object. Candidates (b) and (c) have

the same aspect ratio and radius but different angles. On the other hand, candidates

(d) and (e) have the same aspect ratio and angle but different radii. To increase the

chance of correct object detection, the scanning process is repeated by {0.8,0.9,1.1,1.2}

as coefficient of the aspect ratio of the last desired object. This procedure compensates

probable out-of-plane rotation of the object.

By using the same angle α and radii r1 and r2 as the first frame, overlapped candidates

are selected by an incremental step ∆Θ degree relative to the horizontal radius.

Also by increasing the radius length by ∆r steps, the region of interest can be scanned.

The choice of these parameters is due to optimality.

The building blocks of the proposed method are shown in Figure 3.16, showing the

proposed hierarchical construction for object detection. The aim of this module is to

select the object of interest among the polar candidates. Prior to the first step, the size of

all candidates, as well as the last desired object, is normalized to allow comparison. The

candidates are normalized in a way that the size of its pad image becomes a square of

size 60×60 (see Figure 3.17)

To extract the features of the frames first, the polar candidates are fed to the variance

classifier, wherein the variance of a gray-scale candidate is calculated. Then, this value is

compared to the image variance of the object of interest in the last frame or last detected

object. The comparison is performed by using the following condition:
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Figure 3.14: Polar ROI selection

α1×vd
i−1 < vi < α2×vd

i−1 (3.4)

Where vd
i−1 and vd

i are the variance of the last object of interest and variance of the image

candidate in the current frame respectively and α1 and α2 are adjusting parameters

specified experimentally. If the input candidate satisfies the above equation, it will be

forwarded to the next block; otherwise, it is rejected by the classifier. By using this

classifier, the smoother regions like sky, street, snow, etc in one side, and candidates from

very complex backgrounds like trees, bushes, and leaves on the other side are removed.

The experiments show that this classifier is implemented faster than two other classifiers.

Thus, to increase the performance of the system, this classifier is used in the first step. In

the next two steps, each candidate is divided into 9 segments as shown in Figure 3.18.

To proceed with the classification, a color-max classifier as the second classifier is

applied on the rest of the candidates. To this aim, each segment of the above candidates

is converted to HSV space and 6 colors (channel) of green, white, red, brown + purple,

blue + green and yellow. The exploited thresholds for color identification are as follows.
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Figure 3.15: Overlapping trapezoid-shape candidate selection method is shown. Each

candidate is defined by a trapezoid-shape region around the object of interest.

Figure 3.16: Block diagram of the proposed trapezoid-shape tracker is shown.

Furthermore, the number of each resulted channels is counted and the color which is

used by the majority number of pixels is considered for that segment. The system repeats

this procedure for other segments. Therefore, for each candidate there is a codeword.

The code alphabet comes from the color number presented in the last row of Table 3.2.

Finally, by using the following rule, many wrong candidates are rejected:

9∑
j=1

S j > t (3.5)

Where

S j =

1, if C j
i = C j

d

0, otherwise
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Figure 3.17: Object normalization by their pad

Figure 3.18: Object normalization and segmentation

Figure 3.19: Object tracking true positive results

In this equation C j
i and C j

d are the codeword of the segment j (the color of the given

segment) for the current candidate and last desired object and t is the user-defined

threshold value respectively. By this classifier, most of the wrong candidates are rejected

and then few remaining candidates are forwarded to the next block. In the next classifier,

i.e. color-pixel classifier, the decision on the correct candidate will be finalized where

in each mentioned segment, the area or the number of pixels of the representative color

using its codewords is counted. As a result of each candidate i, there are nine segments

j. By using the following rule, the object of interest is detected:

d∗ = {i|di < ts} (3.6)
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Table 3.2: Thresholds of different colors

Yellow Green White Red Purple Blue

HueLowTh 0.035 0.15 0 0.05 0.76 0.4

HueHighTh 0.14 0.48 1 0.97 0.94 0.75

SatLowTh 0.4 0.03 0 0.3 0.33 0.21

SatHighTh 1 0.97 0.1 1 0.67 0.98

ValLowTh 0.15 0.04 0.6 0.01 0.1 0.35

ValHighTh 1 0.8 1 1 0.7 1

Colornom 1 2 3 4 5 6

Where

di =

9∑
j=1

|A j
i −A j

d|

In the latter equation d∗ is the index of the new desired object and A j
d is the area of

the last desired object for the specific color in the jth segment and ts is a user-defined

threshold value respectively. In fact, in Equation 3.6, the energy function between

two frames is minimized. In cases where there are multiple accepted candidates or no

accepted candidates at all, another tracking method called Lucas-Kanade [Bou00] is used

to estimate the location of the desired object in the next frame. The Lucas-Kanade (LK)

method supposes that the displacement of the image contents between two successive

frames is small and approximately constant. The integrator compares the output of this

tracker and the proposed hierarchical classifiers to make the final output.

If the hierarchical processing routine does not find any object, it is supposed that the

desired object either has been gone out of the scene or occluded by other objects. In such

a case, the system keeps the characteristics of the last detected object to compare it with

the coming frames in the next frames. Therefore, the desired object is detected. This

procedure will be repeated for all of the remaining frames. In the section of experiments,

the results of this method are presented. If the hierarchical processing routine finds one

object, the integrator outputs this object and otherwise the object with the minimum

distance with the LK branch is outputted.
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3.7 Object Tracking using Feature Descriptor and Matching

In this section the proposed method for object tracking in polar videos using SURF

(Speeded Up Robust Features) extraction and matching is presented. This method is

based on the author’s paper (C4) published in the proceedings of the International

Symposium on Multimedia in (ISM 2017) [DG15]. The problem of object tracking is

formulated as finding a given query object in the next frame (scene). For this aim, SURF

first finds interesting points in both the query image and the frame and extracts a couple

of features from each point. Then, by minimizing a distance function, finds the matched

points between the images. A polar object is selected manually in the first frame and it

is searched automatically in the next frames. The steps of the proposed method are as

follows. In the first frame, a trapezoid-shape polar shape is drawn around the manually

selected object by a user. Based on the location of the object, a region of interest (RoI)

is drawn around the object location in the next frame. The polar RoI and trapezoid-

shape object selection are similar to the methods presented in Section 3.6. But here the

overlapped candidate selection is not used. The RoI is represented by a sector limited

between two concentric arcs and two radii. The radii and arcs are selected in such a way

that the RoI completely circumscribes the object of interest and is located in the center of

RoI. In this section, the angle between two radii of RoI is set to 90 degrees. The RoI and

object selection method are shown in Figure 3.20. Both the object and the scene (the RoI)

are then enhanced by using histogram equalization and resized by factor 3. By using

SURF descriptor, interesting points are detected from the object and the scene and then

from each interesting point, a couple of SURF features are extracted. For each interesting

point in the object and scene, the SURF features as well as the interesting points location

and intensity are calculated and fed to a supervised classifier (Random Forest) to find

the matching points in the object and scene. In the scene, a polar trapezoid-shape object

region is then drawn around the points and therefore a new object is obtained. In each

tracking iteration, whenever two points are matched, the features of these points are

saved in the challenging vector. During tracking, an SVM (Support Vector Machine)

classifier is used to see if a challenging situation (i.e., occlusion, out-of-plane-rotation,

departing or approaching the camera) occurs or if it is a normal tracking situation. The

classifier uses the intensity and location information of the current object as well as the

same information from all members of the challenging vector. For each challenge, a

correspondent algorithm is exploited to handle it. The tracker repeats the above steps

for the next frames of the video. The updating method of the challenging vector is

explained later.

In the proposed SURF-tracker scenario, the precise location of the object region is
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Figure 3.20: Polar RoI selection (left) and polar object selection (right) for the proposed

SURF-tracker

very important. Because if a region with a smaller area than the real object (ground

truth) is selected, some SURF interesting points might be missed. In contrast, if the

cropped region is larger than the object of interest, irrelevant points in the background

might be detected as the interesting point. In this case, instead of the object of interest, an

irrelevant region in the background is tracked and the tracker misses the object. When

interesting points within the object match to the correspondent points in the scene, a

region around the detected points in the scene is depicted which forms the new object of

interest in the next frame. To form the new object of interest, the tracker first calculates

center of mass (CoM) of the matched points in the query object using the points mean

(function). Then, 4 polar distances (i.e., radius differences (δri) and angle differences

(δθi) between the 4 corners and their corresponding CoM (rcm,θcm)) are calculated. The

4 distances are then used to make the newly found object in the scene. By using the

following equation, polar locations of the corners (rci,θci) of the new object of interest in

the scene are obtained:

rci = δri + rcm,θci = δθi +θ
cm, i = 1,2,3,4 (3.7)

To find the matched points between scene and object, traditional matching methods

like Sum Squared Distance (SSD) and Sum Absolute Distance (SAD) were examined.

The drawback of these methods is that even by using the best parameter set and high

image quality, there is a considerable mismatching rate (Figure 3.21 shows an example).
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In other words, the matching problem does not have a linear solution in the feature

space. Thus, the information from SURF features seems insufficient. To handle the

mismatching problem, a random forest classifier is used, because this classifier can solve

the challenging classification problems. Also, this classifier has fast response during

training and test phases which is important for fast object tracking. Other classifiers like

neural networks (even deep structure) and support vector machines were also tested,

the best results were obtained using the random forest classifier. Suppose, there are l
and m interesting points in the object and the scene respectively.

Figure 3.21: An example of mismatching for SAD. Two near points in an object mis-

matched to two far points in the scene.

The total number of possible pair-points would be l×m. For each pair-point, totally

150 features are extracted. The feature vector is expressed as {so,ss, io, is, lo, ls}where so and

ss denote 64 SURF features for the object and scene, io and isshow intensity of interesting

pair-points as well as their 9 neighbor points (18 features) and lo, ls show the interesting

point location respectively (x, y of the interesting points of the object and the scene form

4 features). To the best knowledge of the author, it is the first time that the information of

location and intensity is fused to SURF features for object tracking. This combination is

able to handle the matching problem in challenging situations like illumination variation,

environment change, and background clutter very well.

In this section a supervised classifier is used to detect and classify the tracking. The

system classifies the situation into tree states including out-of-plane rotation, occlusion

and a normal situation.

Based on the initial experiments, when the object of interest rotates in an out-of-plane
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direction, the matched points quantity decreases, because some interesting points be-

come hidden from the camera view. This, in turn, increases the object missing chance.

This situation needs a precise mechanism. To handle the situation, each object is com-

pared to the last frame and the members of the occlusion vector which contain diverse

appearances of the desired object. The parameters of the matching classifier are modified

in a way that the matching sensitivity increases so that even with a minimum number of

matching points (i.e., one pair) the query object and the scene is considered as matched.

As a result, the tracker’s overall precision rises. By modifying δαi in (3.9), the aspect-ratio

of the surrounding trapezoid is accordingly modified to completely surround the object.

When the normal situation is detected by the challenging classifier (SVM), this process

is truncated and the normal tracker (i.e., the matching classifier (RF) with the original

parameters) is activated.

As the tracker is going on, the challenging vector becomes bigger and consequently,

tracking robustness increases. To handle occlusion and out-of-plane rotation, a memory-

based algorithm is used. Based on a SAD threshold, a data structure is defined. During

tracking in diverse frames, the object in the first frame, as well as other frames which

qualified in the following circumstance are saved in an occlusion vector.∑
i

s(Oc,Oi)/n < th (3.8)

Where n is the length of the occlusion vector, s is SAD (Sum of Absolute Difference),

Oi and Oc denote the center of an object in the vector and current object respectively. It

means that the objects with minimum similarity have been saved in the occlusion vector.

There is an upper limit for n(n = 20) and a FIFO updating method is exploited.

When an occlusion occurs, the RoI extends to the whole image because the object

can reappear everywhere in the image. Instead of the last object of interest, all members

in the challenging vector are compared with the current object. Whenever an object has

been matched i.e., an object has been found, the searching process (over the challenging

vector) is truncated and in the next frames, the normal tracking procedure is taken.

In the case of departing or approaching the camera, the object size is changed. SURF

misses some interesting points when the object gets smaller. Based on the remaining

interesting points, the interesting object is located and tracked.

3.8 Polar Model for Fast Object Tracking in 360-degree Video

The proposed tracker in this section has been established on the polar object tracking

in Section 3.6. This section is based on the author’s paper C5 published in the Journal
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of Multimedia Tools and Application [Del+18] in 2018. In this section, modifications

to improve the robustness and the speed of the tracker are presented. The trapezoid-

shaped candidate generation method in Section 3.6 is improved by concentric-arcs shape

describer in this section. The candidate generation for the central part of the image is

completely reconstructed in this section. To the best knowledge of the author, binary

features have not previously been exploited in the color planes. This section presents a

pixel comparison method for color binary features which is different from the previous

work in Section 3.6 which compares the pixel-groups in HSV color channels. The HSV

based tracker proposed in Section 3.6 is slower than the proposed method in this section.

The building blocks of the proposed color binary tracker have been shown in Figure 3.22.

The proposed tracker selects a region of interest (RoI) using the position of the last object

of interest. Then, within this RoI, it selects overlapping polar candidates. All polar

candidates are then forwarded to hierarchical classifiers. The task of the classifiers is to

select more similar candidates to the last object of interest. The proposed tracker uses

two classifiers namely variance and color-based binary classifiers for object detection.

Finally, the tracker applies an ancillary tracker and selects the object of interest using an

integrator.

Figure 3.22: Block diagram of the proposed tracker is shown. Polar candidates are

selected in a RoI. Then, they are fed to the hierarchical classifiers including a variance

classifier and the proposed color-based binary classifier. In some cases, an ancillary

tracking method is applied on the video frames. Finally, integrator outputs the object of

interest.

One of the commonly-used methods to decrease the computational load is to restrict

the search area of the image. In this regard, instead of the whole image, the tracker

searches for the object of interest a small region (RoI) with a high probability of object

presence. This RoI is similar to the RoI presented in Section 3.6, but they are different
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when the object of interest is located in the center of the image. The RoI is represented by

{rroi
1 ,r

roi
2 ,θ

roi
1 ,θ

roi
2 } which is composed of two radii rroi

1 , rroi
2 and their correspondent polar

angles of θroi and θroi. To achieve more robust and faster object tracking, the tracker

draws in the second frame an area of interest around the location of the object of interest

in the first frame. The proposed area of interest is a region surrounded by a sector

wherein the center of mass of the object of interest is located along the bisecting radius.

Using this approach, only this area is considered for searching the object of interest

reducing the computational load significantly. Figure 3.23 shows the RoI containing the

selected object. In this case, the center and angle of the RoI and the last object of interest

are the same. During tracking, the RoI is updated by using the following formula:

rroi
1 = Max(rd

1−0.5× rd
1,0)

rroi
2 = Min(rd

2 + 0.5× rd
2,750)

θroi
1 = θd

1 + 15

θroi
2 = θd

2−15

(3.9)

Where rd
1 and rd

2 are two radii (rd
1 < rd

2), representing the small and big arcs of the

object of interest and θd
1 and θd

2 are their correspondent polar angles, and 750 is the

image radius. In the case of the full occlusion, the whole image is considered as RoI.

This method is different from the last work presented in Section 3.6 which contains some

drawbacks when the object is located in the center of the polar image. In this work, this

drawback is resolved by exploiting a circular RoI in a center with the same center as the

image and a radius, less or equal to twice of the radii surrounding the object of interest

(See Figure 3.27).

Similar to the RoI selection method, a polar-based strategy is proposed for object

selection. Each candidate is a confined region defined by two radii and two concentric

circles and therefore can be expressed by {ri
1,r

i
2,θ

i
1,θ

i
2}. Where θi

1 and θi
2 are the angle of

the right and left radii representing the polar candidate. By using the same angles and

radii r1 and r2 as the first frame, overlapped candidates are selected by the incremental

step of ∆Θ degree relative to the horizontal radius. Also, by incrementing the radius

length by ∆r pixels steps, the region of interest can be scanned. Figure 3.24 and Fig-

ure 3.25 show polar object detection for overlapped sample objects. Figure 3.25 shows

the methods of overlapped polar object selection and normalization by their pad image.

In this figure, object (1) shows the last object of interest. Objects of (2) and (3) have the

same angle but different radii, and objects of (4) and (5) have the same radius but different

angles. To increase the chance of object detection, the scanning process is repeated by
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Figure 3.23: A polar sector around the object of interest shows the polar region of interest

(RoI).

{0.8,0.9,1.1,1.2} as a coefficient of the aspect ratio of their pad image. This procedure

facilitates a stable tracking in two cases of out-of-plane rotation and abrupt size variation

(when a target is approaching the camera). Once the candidates are identified, they

are forwarded to classifiers for object detection. To have a clear presentation of polar

object selection in Figure 3.25, only 5 candidates have been shown. In real practice, the

number of candidates is normally higher and they are strongly overlapped. To facilitate

the comparison, the size of all candidates is normalized. To perform this process, all the

candidates are grouped according to their angle θi = θi
1 + (θi

2/2). Each group is labeled

with its angle θi. In each group, the object with the same radii {ri
1,r

i
2} is considered as

index object of the group. Then, the objects with the same angle are normalized to the

size of the index object of the group j. Figure 3.26 shows this normalization process.

First, the size of the pad image (shown in Figure 3.25) is resized to pad of the index object

(see Figure 3.26). By using the normalization in the group, the rotation of candidates is

unnecessary. Therefore, the computation load is reduced.

When the object lies in the center of the image (i.e., a circle with the same center as

the image and a radius with a length of one-third of the image), a circle with a radius

maximum two times longer than the longest radius of Max(ri
1,r

i
2) is considered as the RoI

and the center of the RoI is the same as image center. For candidate selection, instead
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Figure 3.24: Overlapped polar candidate generation is shown. Some overlapped candi-

dates have been shown. In this case, the region of interest (RoI) is the surrounded region

among two arcs and two radii.

of two radii, two non-center-crossing chords are selected. This prevents the candidates

from deformation. Figure 3.27 visualizes this technique.

The aim of engaging two classifier modules is to select the object of interest among

the polar candidates. Figure 3.22 shows the proposed hierarchical construction for object

detection. The hierarchical classifiers provide robustness without sacrificing computa-

tional efficiency. To extract the features of the candidates, they are first fed to a variance

classifier similar to Section 3.6, wherein the input image is converted to a gray-scale

image and the variance of the image is calculated. Then, this value is compared to the

image variance of the last detected object.

In fact, using this classifier, smoother regions like the sky, street, snow, etc. as well

as complicated candidates (with high variance images) like trees, bushes, and leaves

are removed. The experiments show that this classifier can be implemented faster than

the color classifier. Thus, to increase the performance of the architecture, the variance

classifier is used in the first step.

Algorithm 1 explains the steps of the color binary feature extraction. In algorithm 1

R(.),G(.),B(.) are the R, G, and B planes of an RGB image respectively. Due to their

simplicity and robustness, binary features are well-suited for fast processing tasks of

video processing including object matching and tracking. In this section, the tracker

robustness is improved by combining the binary features with the color information of
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Figure 3.25: Five overlapped objects of "Rob" with their pads are shown. The pad is an

inscribed rectangle surrounding the object. Objects are normalized by resizing their pad.

Figure 3.26: (a) Normalization process for three groups of candidates are shown. Can-

didates are categorized with their angle. In each group, the index candidate (i.e., the

candidate with the same radii as the last object of interest) is selected. All candidates

of the same group are then resized to the size of the index image. (b) shows the pixel

selection process for comparison. Correspondent pixels are shown with similar shapes

(i.e., square, circle, triangle, and diamond), when two objects are compared, the pair

pixels are compared according to their position to the reference point of the object.

the candidates. Giving two objects to be compared, first pixel pairs within two objects

are selected using a pseudo random set of pixel locations, then a set of pixel comparisons

are performed (See Figure 3.26(b)). The number of comparisons m is set to 40% of the

total number of points in the object N. Higher values increase the probability of object

identification but also increase the computational load. The pseudo random generator

generates a new set of pixels for each frame. In this way, the probable error of the pseudo

random generator is minimized and the generality of the procedure is preserved. Due

to non-conformity of the points of the polar (non-real) images to the Cartesian system

in digital (real) images, in each line, the point with the nearest Euclidean distance in

the Cartesian system to the corresponding polar point is chosen as the binary feature.

Suppose Po is a single plane (i.e., color planes of red, green or blue) of a polar candidate,

the pixel comparisons for binary features can be expressed as follows:
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Figure 3.27: The selection method for a central candidate is shown. The central candidate

is shown on the right, is circumscribed among two chords and two concentric arcs as

shown in the left image.

Bk =

1, if Pok > Pok+1

0, otherwise
(3.10)

Where BP is the binary feature of a polar plane Po and k is the pixel index which has

been pseudo randomly selected from the all possible candidate pixels by using a pseudo

random generator. By using the pseudo random generator, the same order of pixels are

chosen in all candidates and the candidates are correctly compared. Suppose the total

number of selected pixels is m and the total number of pixels of candidates is n. For a

given pixel, if the output of all planes (Bk
r ,Bk

g, and Bk
b) is equal to one, the final output

pixel BOk is set to one. As a result, B would be a binary vector [0,1] with the length of m.

To compare two objects, the similarity score s is used. Given two objects with the same

length of n, the similarity score is the numbers of 1 in B(k) divided by the total numbers

of pixel comparisons m.

s(Bok,Ok
d) =

∑
k

(Bok & Ok
d)/m (3.11)

This similarity score s is a basis for a decision strategy including detection of the object
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Algorithm 1: color binary classifier
1: Input: Polar candidates from variance classifier Cv and last detected object of

interest Od

2: Cr← R(Cv),Or← R(Od)

3: Cg← G(Cv),Og← G(Od)

4: Cb← B(Cv),Ob← B(Od)

5: for k=1: m do

BM is the number of comparing pixels.

6: Bk
r ← BP(Cr)

7: Bk
g← BP(Cg)

8: Bk
b← BP(Cb)B BP() is the pixel comparison with Eqn. 3.10.

9: Bok
← 0

10: if Bk
r = 1&Bk

g = 1&Bk
b = 1 then

11: Bok
← 1

12: end if

13: end for

14: Output: BokB Color Binary Feature

of interest or the case of object occlusion or scene departure. For a given candidate, if

the similarity score s is more than 0.8, the candidate is accepted.

To address the case of multiple accepted candidates, another tracker is employed. For

this ancillary tracker, the well-known tracking methods of Lukas-Kanade (LK) [Bou00]

and (Speeded Up Robust Features) SURF-tracker [SNH12] were separately investigated.

To improve the speed of the tracker, the mentioned trackers are applied only on the

polar RoI. LK is a famous method for object tracking in rectangular videos. It supposes

that the displacement of the objects in the image between two successive frames is small

and approximately constant. SURF descriptors were originally proposed in [Bay+08].

They are fast and robust. Since a fast and rotation-robust method is needed for the

high resolution and polar videos, the SURF descriptors were chosen as the ancillary

tracker. The experiments show that the SURF-tracker in general has better results than

LK. In addition, the experiments show that whenever the ancillary methods or the

hierarchical branch are employed individually, tracking performance declines. Thus,

the two classifiers should be integrated.

The integrator compares the output of the ancillary tracker and the proposed hier-

archical classifiers to select the final object candidate. Let n denote the number of the
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detected object by the hierarchical branch. To decide on the final object of interest Od,

the following rule is proposed.

Od =


NoObject, if n = 0

Oh, if n = 1

O∗h, if n > 1

(3.12)

Where O∗h = {Oh|Min(d(Oi
h,Oa))} and d(., .) is the Euclidean distance and Oi

h and Oa

are the output(s) of hierarchical and ancillary tracker branches respectively. Since the

ancillary trackers show less robustness compared to the hierarchical branch, they are

not recommended to be used in the two other cases of a single candidate or no detected

candidate. To improve the robustness of the tracker an object model Mo containing

a history of the object appearances is proposed. Let Oi
d denote the current object of

interest, the object model Mo is then expressed as Mo = {O1
d, ...,O

j−1
d ,O j

d,O
j+1
d , ...}. If n = 0,

the tracker assumes no object was found by the hierarchical processing routine. In this

case, the object of interest possibly has been gone out of the scene, occluded by other

objects, rotated in an out-of-plane direction or its appearance has changed. In this case,

each candidate with a similarity score s more than 0.7 (i.e., 0.7 < S < 0.8) is compared

to all members of an object model as will be discussed later. The candidate with the

maximum sum of similarity scores to the model (i.e., Od = {Oq|Max(
∑20

k=1 s(Ok
d,Oq))} and

Ok
d and Oq are a member of the object model and a query object respectively) is selected

as a retrieved object Od. If the similarity score s is less than 0.7, the object of interest is

assumed to have either gone out of the scene or been occluded by other objects. In this

case, the system keeps the characteristics of the last detected object to compare it with

the next frames and the RoI is extended to the whole image as the occluded or exited

object may reappear in any other region of the image. The tracker updates the model

when it satisfies the following criterion:

Mo←Oi
d i f {∀O j

d ∈Mo|s(O j
d,O

i
d) < 0.6} (3.13)

By using this model, the tracker preserves the diversity of the object’s appearance in the

model and increases the overall precision. As a result, rather than only information from

two adjacent frames, the temporal information from a sequence of frames is exploited.

Once the number of the model members reaches 20, the second member is omitted,

preserving the object of interest in the first frame i.e., O1
d. This reduces the deleterious

effect of incorrect candidates or target drifting. The maximum model length can be set

to preserve both accuracy and speed of the tracker.
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3.9 Experiments and Results

In order to validate the polar object tracking methods, one set of 15 360-degree videos2

and one set of 10 catadioptric omnidirectional videos3 including more than 30000 frames

have been selected. In the data sets, the video lengths are different and the image size is

1500×1500 pixels for 360-degree videos and 850×850 for omnidirectional videos. They

include various objects of interest like a car, a motorcycle, a pedestrian, the human head,

the human hand, the human body, an airplane and a balloon. The videos contain both

in-plane and out-of-plane rotations. Except for "NYC" (a video with some pedestrians

in New York City), in other videos, the camera is moving (some of them have drastic

moving). Almost all videos have diverse degrees of occlusion, from partial to full

occlusion. Sometimes the object moves out the scene and then comes back.

Table 3.3: Comparison results between the proposed MTLD and TLD in terms of recall

and precision are shown. The proposed modified TLD method outperforms original

TLD.

Video TLD TLD MTLD MTLD

Recall Precision Recall Precision

Snorkeling 0.038 1.0 0.84 0.87

Snowboard 0.516 0.516 0.67 0.67

Rob 0.76 0.76 0.76 0.74

Street1 0.65 1.0 1.0 1.0

NYC 0.64 0.64 0.86 0.86

Harley 1.0 1.0 1.0 1.0

Car Racing 1.0 1.0 1.0 1.0

Street2 0.92 1.0 1.0 1.0

Motocross 1.0 1.0 1.0 1.0

Ice sailing 0.78 0.96 0.85 0.88

A Lap 1.0 1.0 0.89 0.94

Balloon 0.95 0.97 0.93 0.91

Caio Afeto 0.75 0.90 0.58 0.60

200 MPH 0.94 0.98 0.87 0.92

Shredding 1.0 1.0 0.95 0.92

The experiments showed that TLD cannot track objects in 360-degree images due to

the lack of the rectification step. Thus, at first the input frames have been rectified and

2https://www.youtube.com/channel/UCjS9DSZpPzfMwyDCp1Xai1Q/videos?viewas=subscriber
3http://cvrg.iyte.edu.tr/datasets.htm
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then inputted by TLD as done in MTLD modules. To evaluate the performance, recall

r = tp/(tp + fn) and precision p = tp/(tp + fp) have been used.

Where tp, fn, and fp indicate true positive, false negative and false positive respec-

tively. In this case, precision p is the number of true positives divided by the number of

all responses and recall is the number of true positives divided by the number of object

occurrences that should have been detected [KMM10]. The proposed method is still

sensitive to the background clutter. The results of the evaluation of the MTLD method

and the TLD method in terms of recall and precision measures are listed in Table 3.3. To

evaluate the proposed methods in this chapter, the F-measure (or f1) is also used. It is

calculated by using the following equation.

f1 =
2× r×p

p + r
(3.14)

According to the information on this table, the proposed MTLD method outperforms

the TLD method significantly. The mean recall rate has been improved by more than 20%

while the precision rate stays in the same range as for the TLD method. Also, TLD is not

successful in object tracking in the case of a high rate of out-of-plane rotation in videos

of "Snowboard", "Street1", "Street2", and "Pedestrians". However, MTLD shows better

results in these sample videos. Moreover, the TLD method fails to track the diver’s head

when he goes underwater. Therefore, TLD is very sensitive to environment changing,

while the MTLD method can handle this variation. In the video of "Rob", in some

frames, the object of interest goes to a region with a complex background which has

some patterns similar to the object. Thus, neither MTLD nor TLD can track the object in

those frames. The proposed MTLD method has a discriminating capability of spatially

close targets with similar appearance especially in crowded scenes like "NYC". In the

long videos, the proposed method can track the object with a high-performance rate.

Therefore, MTLD is efficient in handling long-term occlusions. As one can see, MTLD

outperforms TLD significantly. While the average precision has remained similar in both

cases, the average recall has been improved by 20%.

To evaluate individual effect of the proposed modifications, each module was applied

on "Snorkeling", because it has maximum recall difference between the MTLD and TLD.

Restricting the search area does not have any negative effect on the recall rate and just

increases the implementation speed. Let threshold modifier, distance classifier, integrator

modification, changing the input source of the trainer and using the FIFO strategy for

fulling the training queue be denoted by NN, Dis, Int, T and FIFO respectively. Table 3.4

shows the result of the above experiment.
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Table 3.4: Effect of each modified module on the recall rate of "Snorkeling" is given. NN,

Dis, Int, T and FIFO show threshold modifier, distance classifier, integrator modification,

changing the input source of the trainer and using the FIFO strategy for fulling the

training queue respectively.

Modules Recall

TLD 0.038

TLD + NN 0.282

TLD + NN + Dis 0.761

TLD + NN + Dis + Int 0.770

TLD + NN + Dis + Int + T 0.821

TLD + NN + Dis + Int + T + FIFO 0.840

The results of the evaluation of recall measure for both methods of TLD and MTLD

have been shown in a bar graph in Figure 3.28. According to Figure 3.28, MTLD has

improved the recall variable for most of the video samples. For other video samples the

recall value remains unchanged.

As indicated, the implementation speed has been efficiently increased in MTLD for all

video samples except for the "Snorkeling" video. Since TLD mostly rejects all candidates

of "Snorkeling" in the first steps of the detector, the candidates do not pass through all

steps of the detector. Thus, some modules of TLD are not involved in most frames of

this video and therefore the total time consumption is limited.

In another experiment, the average computational time per frame for both MTLD

and TLD was measured. The comparison result is shown in Figure 3.29. According to

the figures, MTLD searches the object of interest in a more limited area than TLD. By

searching the object of interest in a limited area of the image, the number of candidates

is dramatically reduced. Thus, MTLD tracks objects in a lower period as shown in

Figure 3.29.

Figure 3.30 shows the whole image and the area of interest for "Rob" respectively.

The probability of the presence of the object of interest in this region of interest (RoI) is

higher than the rest of the image. By using this ROI the FP rate of the proposed MTLD

tracker is decreased and the computation speed is increased.

To comparatively evaluate the TLD and the proposed MTLD method, the set of

360-degree videos has been used. Initial experiments showed that TLD cannot track

objects in 360-degree images due to the lack of the rectification step. For this reason, all

frames have first been rectified and then passed to the TLD and the MTLD method for

processing.
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Figure 3.28: Results of recall measures for MTLD and TLD are shown.

Figure 3.29: Computation time comparison between MTLD and TLD is given. MTLD

is faster than TLD for all videos except for "Snorkelling". Because for this video TLD

cannot track the object of interest and first steps of the detector reject all candidates in

the image.

Figure 3.31 shows some examples of polar images used for the experiments. The

objects of interest are represented by a polar representation.
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Figure 3.30: TLD searches the whole image to find the object of interest. This image

shows rectified frame from the "Rob" video (top image). Limited searching area in

MTLD is shown (bottom image). The probability of the presence of the object of interest

in this region of interest (RoI) is higher than the rest of the image.

Figure 3.31: Examples of 360-degree images and objects of interest are given.

The YOLO-based trackers proposed in Section 3.5 have been implemented in C++

using OpenCV. For the YOLO-based trackers, the 360-degree data set has been used.

The snapshots of the videos used are shown in Figure 3.32, where the following

videos are shown respectively:

first row (from left to right): "200MPH", "A Lap", "Balloon", "Caio Afeto", second row: "Ice

sailing", "Motor", "NYC", "Park", third row: "Rob", "Shredding", "Snorkeling", "Snow-

boarding" and finally the fourth row shows "Sonoma" and "TPittsburgh".
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Figure 3.32: The object of interest is marked by green rectangles in 360-degree videos.

The results of the Lucas-Kanade tracker, the combination of YOLO and the Kalman

filter, and the combination of the Lucas-Kanade and Kalman-YOLO are shown in Fig-

ure 3.33.

Figure 3.33: Results of the Kalman filter, Lucas-Kanade and their combination are shown.
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According to the information in the table and figure, the combination of the Kalman

filter and YOLO outperforms the Lucas-Kanade tracker.

Table 3.5: Tracking results for the Kalman-YOLO (left), the Lucas-Kanade (middle) and

Kalman-YOLO-LK (right) are given.

Video Desired Object Frames Recall Precision F-Measure

Rob Red Airplane 600 0.57/1.00/1.00 0.64/0.86/0.75 0.60/0.92/0.86

Snorkeling Diver 920 0.97/0.64/1.00 0.85/0.58/0.86 0.91/0.61/0.91

Shredding Woman 897 1.00/1.00/1.00 0.89/0.21/0.93 0.94/0.35/0.96

Park Car 60 1.00/1.00/1.00 0.42/0.55/0.42 0.59/0.71/0.59

NYC Person 94 1.00/1.00/1.00 0.78/0.57/0.69 0.85/0.73/0.82

Harley Driver 307 1.00/1.00/1.00 0.92/0.21/0.92 0.96/0.35/0.96

TPittsburgh Car 302 1.00/1.00/1.00 0.93/0.46/0.96 0.98/0.63/0.98

Sonoma Driver 1100 1.00/1.00/1.00 0.94/0.66/0.98 0.97/0.80/0.98

200_MPH Driver 998 1.00/1.00/1.00 0.99/0.49/0.99 0.99/0.66/0.99

A Lap Driver 1655 0.98/0.63/1.00 0.79/0.45/0.80 0.87/0.53/0.89

Ice_sailing Person 1252 1.00/1.00/1.00 0.86/0.25/0.86 0.92/0.40/0.92

Caio_Afeto Person 998 1.00/1.00/1.00 0.96/1.00/0.99 0.98/0.98/0.99

Snowboarding Person 797 0.95/1.00/1.00 0.82/0.19/0.82 0.88/0.32/0.90

Balloon Balloon 400 0.00/1.00/1.00 0.00/0.94/0.94 0.00/0.97/0.97

Mean - 10380 0.93/0.91/1.00 0.83/0.51/0.89 0.88/0.61/0.94

Because the YOLO detector provides better results than the Lucas-Kanade tracker

in terms of object detection. On the other hand, the Lucas-Kanade tracker cannot track

objects with uniform texture, because the interesting points with strong corners do not

exist. In addition, LK misses the objects when large leaps occur within a few frames due

to fast movements and non-stationary cameras. This issue is understood from Table 3.5

in the videos "Snowboarding", "Shredding" and "Harley" where the object of interest has

sudden movement, Lucas-Kanade loses it.

However, the Lucas-Kanade method performs slightly better than the Kalman filter for

some videos. For instance, YOLO does not distinguish the object category of "balloon"

and therefore, it cannot give any object information to the Kalman filter. For the "Park"

and "Rob" videos, YOLO is also not able to give useable information about the object

of interest to the Kalman filter and thus, the accuracy falls down. However, the Lucas-

Kanade tracker is able to track the object well due to the constant movement of the objects

of interest and unique surface.

Both methods contain their own advantages and disadvantages; the Kalman filter is

bound to the results of YOLO, while the Lucas-Kanade method is sensitive to the move-

ment speed and the texture of the object of interest. To improve the overall tracking

accuracy, the two mentioned trackers are combined. The results of the experiment are

shown in Table 3.5. According to this table, the performance is improved by the combi-
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nation of both trackers. On average, the precision and F-Measure have been improved in

comparison to the Kalman filter based tracker or the Lucas-Kanade tracker individually.

This combination improves the results especially in a case such as the "Rob" video when

YOLO misses the object, Lucas-Kanade tracks the object. In the combination case, even

videos with good results using the Kalman filter show better results or the same results.

The parameters of the proposed polar object tracking in Section 3.6 including the

number of overlapping candidates and the thresholds of the variance classifier and color

classifiers specify the precision and recall rate. The optimal parameters have been found

to give the best tradeoff between the precision and recall variables. By selecting more

overlapping candidates in a specific region, the F-measure rate increases. However,

the processing time also increases showing a trade-off between the accuracy and the

computational cost of the proposed method.

To find the optimal value for ∆Θ and ∆r, the "Rob" video is chosen to perform the

experiment. Figure 3.34 shows the calculated F-measure for this experiment. According

to Figure 3.34, the optimal values for ∆Θ and ∆r are 1 degree and 4 pixels respectively. The

higher values decrease the F-measure. However, the lower values of ∆r do not change

the F-measure significantly but the computational cost. Similar results are achieved for

the other videos. Accordingly, the parameters concerning the variance classifier are set

to α1 = 0.7 and α2 = 1.5 respectively. Finally the threshold for the number of matched

segments is set to tr = 6 and the threshold for the area difference to ts = 50 as well.

Figure 3.34: Scanning parameters for "Rob" for trapezoid-shape tracker are shown.

In the proposed trapezoid-based tracker, LK tracker is used in parallel which increases

the total mean detection rate of individual frames and therefore, facilitates the long-term

tracking ability. Compared to MTLD, this method shows faster implementation, because

the rectification process could be removed [Del+16b]. Yet, the recall measure has been
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Table 3.6: Evaluation results for the proposed trapezoid-shape tracker are shown.

Video Frames Recall Precision F-measure

1 Rob 734 0.97 0.95 0.95

2 Car Racing 330 0.91 0.89 0.89

3 Motocross 250 0.76 0.84 0.76

4 Motor cycles 293 0.93 0.87 0.93

5 NYC 465 0.64 0.53 0.57

6 Snorkeling 683 0.63 0.67 0.64

7 Street1 58 1.0 1.0 1.0

8 Street2 294 0.92 0.87 0.89

9 Snowboarding 524 0.71 0.67 0.68

10 Surfboarder 974 0.91 0.96 0.93

Mean - 0.82 0.81 0.81

a little degraded. According to the information given in Table 3.6, the proposed polar

object tracking method shows promising performance on various objects and scenes.

The mean of F-measure for the data set is more than 81%. This value is different for

different video samples, due to the image quality, the size of the object of interest in the

videos, their length, and background.

The parameters concerning the SURF detector have been set in a manner in which

the maximum interesting points are extracted (i.e., s f t = 10). s f t is the strongest feature

threshold. Since the database contains various type of objects, objects with different sizes

and shapes, diverse scenes, variable illuminations and different degrees of occlusion, the

generality of the selected parameters is guaranteed. To train the matching classifier

of the proposed SURF-tracker, 9486 pair-objects from 2081 frames were selected and

then features were extracted for training. The frames for the training were selected

from "Snorkeling", "Snowboard", "Rob" and "NYC" videos. These frames were not used

Table 3.7: Performance evaluation of the proposed SURF based tracker is shown.

Video Desired Object Frames Recall Precision F-Measure

Snorkeling Diver’s head 2450 0.88 0.84 0.85

Snowboard Snowboarder 1087 0.82 0.86 0.83

Rob Airplane 7468 0.81 0.82 0.81

NYC Pedestrian 341 0.94 0.96 0.94

Park Car 58 1.0 1.0 1.0

Motorcycles Motor cycle 293 1.0 0.98 0.98

Car Racing Driver’s head 330 1.0 1.0 1.0

TPittsburgh Car 294 1.0 1.0 1.0

Ride Driver’s head 4194 0.94 0.93 0.93

Shredding Woman’s face 974 0.87 0.85 0.85

Average 0.868 0.865 0.860
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during the evaluation. The SURF features were extracted and then matched by using

SSD and SAD, and mismatched pair points were used as negative samples and matched

points were used as positive samples. This selection improves the performance of the

matcher classifier in the real world. To make a uniform sample set, some other negative

points manually created and added to the previous negative set.

The detailed results of the proposed SURF tracker in terms of Recall, Precision and

F-measure is shown in Table 3.7. According to this table, the proposed method has a

discriminating capability of spatially close targets. In the video of "Snorkeling", even

when the scene environment is changed several times, the tracker does not miss the object.

Therefore, the proposed method is robust with respect to the environment change.

The proposed SURF tracker was implemented on an Intel Core i7-4600 CPU @ 2.10

GHz, using Matlab code (linked also to some C++ components and OpenCV func-

tions). This non-optimized implementation on a standard PC machine achieves near

the real-time with the mean performance of approximately 10 fps (varying somewhat

with different test videos). The proposed method displays promising results even for the

videos which did not use in the training phase. It shows the generality of the classifier.

For the "Snowboard video", the proposed tracker is robust when the object departs

the camera and when it rotates in an out-of-plane direction.

Figure 3.35: Examples where the color-binary tracker (red frame) cannot locate the object

of interest (green frame), are shown.
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Almost all videos have diverse degrees of occlusion from partial to full occlusion. In

addition, for some videos, the object goes out of the scene and then comes back. The

parameters concerning the variance classifier for trapezoid-shape tracker are set to α1 =

0.7 and α2 = 1.5 respectively. These parameters were selected using initial experiments to

preserve both accuracy and speed of the tracker. Since the data sets contain various types

of objects with different sizes and shapes, in diverse scenes, backgrounds, illumination

conditions and different degrees of occlusion, the generality of the selected parameters

is guaranteed. Figure 3.35 shows some failure detections of the proposed tracker. From

left to right, in the first image ("NYC"), another person with a similar shirt and bag

color is mistaken as the object of interest, is located near to the object of interest (within

the polar RoI), although in the next frames when it disappears from the scene, the real

object of interest is tracked. For the second and the third examples ("Snorkeling" and

"Snowboard"), the same thing happens, i.e., some pseudo objects with a similar color in

the proximity of the last object of interest are identified. However, when the object is

moving and the background changes, the object of interest is identified. For the fourth

case ("Rob"), the tracker mistakenly chooses a region with a similar color to the object of

interest. This non-desired object could pass the color binary classifier but this problem

is rare.

Table 3.8: Evaluation results of the proposed color binary tracker are shown.

Video Desired Object Frames Recall Precision F-measure

Snorkeling diver’s head 2652 0.81 0.75 0.78

Snowboard snowboarder 1319 0.71 0.66 0.68

Rob airplane 9000 0.78 0.75 0.76

Park silver car 58 1.00 1.00 1.00

NYC pedestrian 465 0.90 0.87 0.88

Harley motor cycle 293 0.99 0.95 0.97

Sonoma driver’s head 330 1.00 1.00 1.00

TPittsburgh white car 294 1.00 1.00 1.00

Ride driver’s head 4194 1.00 0.89 0.94

Shredding woman’s face 974 0.99 0.95 0.97

Balloon white balloon 4761 0.99 0.96 0.97

A Lap driver’s head 2149 0.98 0.97 0.97

200 MPH driver 1173 0.99 0.99 0.99

Caio Afeto person’s hand 1347 0.72 0.59 0.65

Ice sailing person’s body 1583 0.93 0.87 0.90

Mean - 0.885 0.837 0.857

The evaluation results of the proposed method when SURF ancillary tracker is used,

in terms of the recall, the precision and the F-measure are listed in Table 3.8. Color features
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Table 3.9: Results of the color binary tracker on omnidirectional videos are shown.

Video Frames Recall Precision F-measure

car101 83 0.98 0.94 0.962

car105 83 1 0.88 0.936

car108 83 1 0.92 0.963

car110 83 1 0.96 0.980

car112 83 0.98 0.91 0.947

car114 83 1 0.94 0.972

car117 82 0.98 0.92 0.955

car119 83 1 0.89 0.946

car123 83 1 0.85 0.918

car124 83 0.98 0.92 0.954

increase the discriminating capability of spatially close targets with similar appearance,

especially in crowded scenes like NYC. In addition, the proposed SURF tracker is effective

in handling long-term occlusions as is contained in some parts of "Rob". Generally, this

method has excellent performance in short videos and fair performance in long videos

like "Rob". In the video of "Snorkeling", even when the scene environment changes

several times, the tracker does not miss the object. Therefore, the proposed method is

robust with respect to the environment change. In "Caio Afeto", when a small object like

a person’s hand has a significant change in appearance, the performance of the tracker

is fair.

The results of applying the binary tracker on the omnidirectional data set are listed

in Table 3.9. Since this data set has fewer challenges as compared to the 360-degree data

set (e.g., the camera is fixed and the object is a non-rigid car and without occlusion), the

average tracker F-measure is higher than 360-degree data set.

With the aim of demonstrating the efficiency of the color binary classifier and prefer-

ence of SURF-tracker for the ancillary branch, within the proposed framework various

combinations of SURF-tracker versus LK-tracker as the ancillary branch and gray vs.

color binary classifier as the hierarchical branch classifier were investigated to identify

the best combination. The results in terms of F-measure are listed in Table 3.10. The table

shows that the best results are achieved from the integration of the color binary classifier

with the SURF tracker. Generally, the ancillary tracker is necessary to identify an object

in the case of multiple candidate detections by the hierarchical branch. Without the

ancillary tracker there is no reference to select the object and therefore the tracker misses

the object and tracker performance is substantially degraded for most of the videos in

the data set.

To compare the performance of the color binary classifier with the gray-based one, the

candidates within a given frame are first filtered by the variance classifier and then both
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gray and color-based binary classifiers were applied to all of the remaining candidates.

The similarity value S is calculated and plotted in Figure 3.36.

Figure 3.36: The similarity score for all candidates (after variance classifier) of "Snow-

boarding" for color and gray binary features is presented.

The plot shows that color binary yields less S-variation than the gray-one. In this

example, for the same candidates, there are three maximums for color binary S-vector

while there are five maximums for the gray one. Therefore, the discrimination capability

of color-based binary features is higher than the gray one. Similar results are achieved

from analysis of other videos, thus confirming the preference of the color-based classifier.

Table 3.10: Comparison results in terms of F-measure for LK and Gray-based and Color-

based for the proposed color binary tracker are shown.

Video Gray(SURF) Color(LK) Color(SURF)

Snorkeling 0.74 0.77 0.78

Snowboard 0.65 0.68 0.68

Rob 0.73 0.74 0.76

Park 1.0 1.0 1.0

NYC 0.86 0.87 0.88

Harley 0.92 0.96 0.97

Sonoma 1.0 1.0 1.0

TPittsburgh 1.0 1.0 1.0

Ride 0.89 0.93 0.94

Shredding 0.95 0.95 0.97

Balloon 0.95 0.97 0.97

A Lap 0.95 0.94 0.97

200 MPH 0.99 1 0.99

Caio Afeto 0.62 0.57 0.65

Ice sailing 0.90 0.92 0.90

Mean 0.829 0.844 0.857



3.9. EXPERIMENTS AND RESULTS 95

To compare the primal object tracking algorithms, the algorithms presented in [KMM10;

KMM12; Del+16b; Del+16a; SNH12; Hen+15] have been selected. These methods were

selected since they are similar to the proposed method and have better performance on

the polar data set than the other conventional rectangular trackers. Other open-source

methods can be added to this list.

Table 3.11: Comparison of similar tracking methods in terms of F-measure is shown.

The proposed color binary tracker has the best performance for most videos.

Video SURF PNL TLD MTLD POT KCF Proposed tracker

Snorkeling 0.46 0.19 0.19 0.74 0.59 0.32 0.78

Snowboard 0.52 0.43 0.51 0.67 0.63 0.65 0.68

Rob 0.54 0.56 0.43 0.63 0.69 0.39 0.76

Street1 0.89 0.76 0.78 1.0 1.0 1.0 1.0

NYC 0.63 0.64 0.62 0.81 0.57 0.96 0.88

Harley 0.84 0.91 0.93 0.95 0.93 0.95 0.97

Car Racing 0.78 1.0 1.0 1.0 0.89 1.0 1.0

TPittsburgh 0.74 0.92 0.95 1.0 0.89 1.0 1.0

Ride 0.87 0.86 0.94 0.96 0.78 0.57 0.94

Shredding 0.89 0.89 0.96 1.0 0.93 1.0 0.97

Balloon 0.79 0.97 0.97 0.96 0.92 0.43 0.97

A Lap 0.76 0.90 0.91 1.0 0.91 1.0 0.97

200 MPH 0.83 0.92 0.91 0.96 0.89 1.0 0.99

Caio Afeto 0.21 0.64 0.69 0.81 0.59 0.28 0.65

Ice sailing 0.69 0.64 0.68 0.86 0.86 0.84 0.9

Mean 0.656 0.696 0.679 0.822 0.767 0.557 0.857

For selected rectangular methods [KMM10; KMM12; Del+16b; Hen+15], the images

were first rectified [Del+16b] to fairly compare the results to those of the polar meth-

ods, as the results were very poor without rectification. In Table 3.11 the comparison

results among PNL (Positive-Negative-Learning) [KMM10], TLD (Training-Learning-

Detection) [KMM12], KCF (Kernelized Correlation Filters) [Hen+15], MTLD (Modified-

TLD) [Del+16b] and POT (Polar-Object-Tracking) [Del+16a] as well as the proposed

scheme and SURF-tracker(Speeded Up Robust Features) [SNH12] are considered for the

comparison. Table 3.11 lists the results of the comparisons. As shown in the table, the

proposed color binary tracker obviously outperforms PNL and TLD which use gray-

binary features for all of the videos. The proposed method even outperforms MTLD for

most videos. Although, for some videos, MTLD shows a better performance. When the

ancillary trackers are used independently, (i.e., LK and SURF) the tracker becomes weak.

Especially in the case of occlusion or disappearance, the false positive detection rate

increases. On the other hand, when the hierarchical detector branch is used separately,
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Figure 3.37: Visualizations for PNL, TLD, MTLD, POT and the color binary tracker are

shown by yellow, red, green, pink and blue respectively. The color binary tracker has

the best performance.

the average of F-measure falls down around 5 percent. Because in this case, when

more than two objects are detected by this branch, the tracker misses the object in

the current frame and also some of the next successive frames until it can retrieve the

object again. Here, the importance of a hybrid architecture appears. The comparison of

the proposed method with POT demonstrates preference of binary features and polar

candidate selection proposed in this section. For a certain pixel, by color binary features,

the probability of the false object detection when 3 pair values (from red, green and,

blue planes) are compared, is less than a single comparison in gray binary features. The

visualization comparisons of the methods for selected frames of the Snowboard video
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are shown in Figure 3.37. According to this figure, the proposed method can track the

object of interest better than the other methods.

Figure 3.38: Algorithm speed comparison in terms of computation time and fps (written

above the bars) is given. The color binary tracker is faster than the tested trackers.

The proposed color binary tracker has been implemented on an Intel Core i7-4600

CPU @ 2.10 GHz, using Matlab code (linked also to some C++ components and OpenCV

functions). This non-optimized implementation on a standard PC machine using a

single core achieves near real-time performance with a mean speed of approximately 9

fps (varying somewhat with different test videos). The results of the speed comparison

among the mentioned methods are shown in Figure 3.38.

The comparison was performed under similar conditions, i.e., with the same hard-

ware features and hybrid development environment of Matlab and C++ and with the

same level of optimization. Unlike MTLD, TLD and PNL, the proposed color binary

tracker does not require the costly rectification process and is therefore faster. It is also

faster than POT because it extracts the point-based fast binary features from candidates

instead of extracting information from the complete area of a candidate as used in POT.

It should also be noted that POT does not use binary features. Finally, the color bi-

nary tracker method is three times faster than MTLD which is the third fastest in this

comparison.
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3.10 Conclusions and Future Trends

In Section 3.4, an efficient method for tracking unknown objects in 360-degree images has

been proposed. The state-of-the-art method of TLD has been improved to overcome the

tracking problems in the challenging conditions of 360-degree images. The resolution

of the 360-degree images is much higher than the TLD data set, thus the searching area

is restricted to decrease the computation load in the MTLD method. The experimental

results show that proposed MTLD method outperforms the state-of-the-art method of

TLD. This method can track objects even when they have out-of-plane rotation and

varying environment. However, like TLD, the MTLD tracker is fragile to complex

backgrounds when the desired object is similar to a part of the background. Therefore,

future work will address this concern.

Section 3.6 has proposed a polar tracker to track polar objects directly in 360-degree

images. This tracker restricts the searching area to decrease the computation load.

Moreover, a hierarchical structure with color-based classifiers has been presented. The

experimental results show that the proposed method can track various objects in diverse

scenes in a promising level.

A training-based matching method for SURF-based object tracking in 360-degree

videos has also been proposed in Section 3.7. This method has another training-based

mechanism for automatic detection of challenging situations like out-of-plane-rotation,

occlusion and departing the camera. The algorithm adapts itself to handle these situa-

tions. The experimental results demonstrate the robustness of the proposed tracker.

A polar model for object definition in the 360-degree data set was also proposed in

this chapter. This method first segments the input frame into a polar region around the

labeled object and then selects overlapped polar candidates within the polar region. The

polar candidates are then classified by two hierarchical classifiers of variance and color

binary. The discriminatory of binary features was improved by combining them with

color information. The experiments on the 360-degree and a catadioptric omnidirectional

data set show that the proposed color binary method boosts the tracking performance

for diverse objects in challenging real-world scenarios and outperforms similar trackers

(i.e., TLD, MTLD, POT, KCF, SURF, and PNL). The proposed method has comparable

tracking performance to MTLD but is faster than MTLD. The proposed method is also

faster and more precise than POT because it uses binary features.

In the future, the proposed trackers will be extended to multiple object tracking.

The parallel processing will be employed to reduce the computational cost. In addition,

the use of HSV color space in binary features will be considered. Furthermore, the

tracker sometimes mistakes a similar object near the desired object. This fault can be
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improved by adding more features to the feature vector. For rigid objects, the tracker

is often able to retrieve the desired object in the next frames; however, this is not the

case for articular objects. The future work will also focus on articular object tracking by

dividing the articular object into smaller parts (like body parts in humans) and applying

the tracker to each part. The real-time capability can be achieved by optimizing the

implementation of this approach. In fixed-camera scenarios, the use of background

detection and subtraction methods between the RoI selection and object detection parts

is suggested.
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Chapter 4

Railway Crack Detection

This chapter proposes scientific methods for crack detection and classification on concrete

sleepers. The chapter is based on the author’s papers (C6) and (C7) recently published in

the International Journal of Pattern Recognition and Artificial Intelligence, 2018 [Tab+18]

and the proceedings of the 10th International Conference on Computer Recognition

Systems, 2017 [Del+17]. This paper received the best paper award at this conference.

The organization of this chapter is as follows: Section 4.1 states the problem of crack

detection on the concrete sleepers of the railway system. Section 4.2 shows a literature

overview of the crack detection methods on streets, bridges and wooden sleepers. Two

proposed algorithms for sleeper location and crack detection and classification based on

image processing and machine learning are introduced in Section 4.3. Experiments and

results of the proposed methods are presented in Section 4.4. Finally, conclusions are

drawn and further possible research directions are listed in Section 4.5.

4.1 Problem Statement

Railway structure is subjected to dis-formation and damage because of weather con-

dition, traffic and, topographic situation. Sleepers are the infrastructure under the

railroad made from wood or concrete. The damage occurs in the form of cracks on

the sleepers and can introduce dangerous situations depending on the daily traffic

load and the crack type which would require immediate actions. Conventionally, the

railway sleepers are inspected manually which is an extremely time-consuming and

labor-intensive-maintenance task, because the inspection areas include non-accessible

locations or limited visible points due to their geometry. Similar problems exist in huge

and tall structures like cable bridges, high rising towers and dams as well [JWKN15].

To overcome the aforementioned problems, several approaches have been presented in
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the literature in the form of research works and industrial solutions. In this chapter an

integrated system including hardware and software solutions based on a vehicle called

"rail mapper" 1 is employed to acquire data followed by the proposed crack detection

process. Data acquiring and crack detection include capturing the sleeper frames in

several locations and automatic detection of the sleepers and the cracks throughout. The

final output of the detection module is an identifier which indicates whether the sleeper

is a healthy one, otherwise the cracks are detected and classified for further actions.

Some pre-processing methods enhancing the captured frames quality are applied prior

to sleeper location. The sleeper body is extracted in the first step and the cracks are

detected and classified in the second step. To extract the sleeper body, different methods

are employed in this chapter in which each comes with some cons and pros. Template

matching and a generic feature-based method are the main approaches for the first step.

The second step detects the possible cracks and classifies them using geometric features

and supervised classifiers. The SVM and random forest classifiers are employed to select

the right candidates in both steps.

4.2 Related Work

Few industrial works exist in the literature addressing the problem of quality control

for crack and damage detection and classification with different use-cases. The applica-

tions and use-cases include crack detection in the texture of the structures like streets,

pavement, bridges and wires [YNH08; Pra+16; OC13; FMH06; SF06].

In this section, an overview of the available structures’ quality control methods is

given. Based on the quality control methods, they can be categorized in the following

two groups:

1. learning-based quality control methods

2. Non learning-based quality control methods

In the following sections, some quality control methods including the state of the art

based on the aforementioned classes are explained.

4.2.1 Learning-based Quality Control Methods

Detection of cracks on bridge decks is a vital task for maintaining the structural health

and reliability of concrete bridges. Robotic imaging can be used to obtain bridge sur-

face image sets for automated on-site analysis. In [Pra+16], a novel automated crack

1http://www.igi-systems.com/railmapper.html
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detection algorithm using the STRUM (Spatially Tuned Robust Multi-feature) classifier

and results on real bridge data with a state-of-the-art robotic bridge scanning system

are presented. By using machine learning classification, the need for manually tuning

threshold parameters is eliminated. The algorithm uses a robust curve fitting method to

spatially localize potential crack regions even in the presence of noise. Multiple visual

features that are spatially tuned to these regions are computed. Feature computation

includes examining the scale-space of the local feature in order to represent the infor-

mation of the crack. The classification results are obtained with real bridge data from

hundreds of crack regions over two bridges. In order to create a composite global view

of a large bridge span, an image sequence from the robot is aligned together to create a

continuous mosaic. A crack density map for the bridge mosaic provides a computational

description as well as a global view of the spatial patterns of bridge deck cracking. The

bridges surveyed for data collection and testing include Long-Term Bridge Performance

program’s (LTBP) pilot project bridges at Haymarket, VA, USA, and Sacramento, CA,

USA [Pra+16].

A fully integrated system for the automatic detection and characterization of cracks

in road flexible pavement surfaces, which does not require manually labeled samples,

is proposed in [OC13] to minimize the human subjectivity resulting from traditional

visual surveys. The first task addressed, i.e., crack detection, is based on learning from

samples paradigm, where a subset of the available image database is automatically

selected and used for unsupervised training of the system. The system classifies non-

overlapping image blocks as either containing crack pixels or not. The second task deals

with crack type characterization, for which another classification system is constructed,

to characterize connect components of the detected cracks. Cracks are labeled, with

appropriate labels. Moreover, a novel methodology for the assignment of crack severity

levels is introduced, estimating for the width of each detected crack.

Rail inspection is a very important task in railway maintenance for traffic safety

issues and in preventing dangerous situations. Monitoring railway infrastructure is an

important aspect in which the periodical inspection of the rail rolling plane is required.

Railway structure can have different types of anomalies such as defects of rail surface

and sleepers, missing of fastening elements and deviations in the contour of the ballast.

Up to the present days, the inspection of the railroad is operated manually by trained

personnel. A human operator walks along the rail track searching for rail anomalies.

This monitoring way is not more acceptable for its slowness and subjectivity. A vision

based technique is presented in [Maz+05] to automatically detect the presence or absence

of the fastening elements (also named bolts) that fix the rail to the sleepers. The images
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are acquired by a digital line scan camera installed under a train. Subsequently these

images are pre-processed by using the wavelet transform with Haar and Daubechies

approximation coefficients. The obtained coefficients are fed as input to two different

neural networks: the first one identifies the bolts candidates and the second one validates

the bolt recognition process. The final detecting system has been applied to a long

sequence of real images showing high robustness and good performances.

In [Ste+02], another vision-based technique for automatically detecting the absence

of the fastening bolts that secure the rails to the sleepers is presented. The inspection

system uses images from a digital line scan camera installed under a train. The images

are preprocessed by using several combinations of wavelet transform and principal

component analysis methods. Two different types of classifiers analyze the images in

order to evaluate the pre-processing technique that gives the highest rate in detecting the

presence of the bolts. The final detecting system (the best combination pre-processing

technique and classifier) was applied on a long sequence of real images showing a high

reliability and robustness.

In [Moh08], a machine vision algorithm is designed and applied for the visual inspec-

tion of railway sleepers to identify the flaws associated with the sleepers such as cracks

on the sleepers, and condition of the rail fastenings in the scene, etc. This machine vision

algorithm is experimentally evaluated using 200 real images of the railway sleepers to

determine the condition of those wooden railway sleepers. In this process image acqui-

sition, the first stage of any vision system, is carried to capture the real images. Next

to the image acquisition process, a machine vision algorithm using various methods of

image processing techniques is applied to the image data collected in order to extract its

features such as the number of cracks, length of the crack, width of the crack, and length

of the metal plate. Finally, these extracted features using a machine vision algorithm are

then stored in separate feature vectors and were used further for the classification task

using pattern recognition techniques. Classification of the features extracted is carried

out by using classifiers like Support vector machines (SVM) and Radial Basis function

(RBF), though there are several other classifiers available.

4.2.2 Non Learning-based Quality Control Methods

Crack detection on concrete surfaces is the most popular subject related to the inspection

of the concrete structures. The conventional method of crack detection is performed by

experienced human inspectors who sketch the crack patterns manually. Some automated

crack detection techniques utilizing image processing have been proposed. Although

most of the image-based approaches pay attention to the accuracy of the crack detection
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results, the computation time is also important for the practical use, because the size

of the digital images reaches even more than 10-mega pixels, negatively affecting the

processing time. In [YNH08], an efficient and high-speed method for crack detection

employing image processing is proposed. To reduce the computation time, the authors

use the ideas of the sequential similarity detection algorithm and active search (SSDA).

According to the concept of SSDA, some parts of the process are terminated or skipped.

Interest in automatic crack detection on concrete structure images for non-destructive

inspection has been increasing. In general, there are various noises such as irregularly

illuminated conditions, shading, blemishes and divots in the concrete images. These

lead to difficulties for automatic crack detection. Two pre-processings in order to remove

such noises for crack detection are presented in [FMH06]. First, slight variations like

irregularly illuminated conditions and shading are removed from concrete images by

the subtraction pre-processing with the smoothed image. Secondly, a line filter based on

the Hessian matrix is used to emphasize line structures associated with cracks. Finally,

thresholding processing is used to separate cracks from the background.

The problem of deteriorating pipeline infrastructure is widely apparent. Since a

complete rebuilding of the piping system is not financially realistic, municipal and

utility operators require the ability to monitor the condition of buried pipes. Thus,

reliable pipeline assessment and management tools are necessary to develop long term

cost effective maintenance, repair, and rehabilitation programs. In [SF06] a simple,

robust and efficient image segmentation algorithm for the automated analysis of scanned

underground pipe images is presented. The algorithm consists of image pre-processing

followed by a sequence of morphological operations to accurately segment pipe cracks,

holes, joints, laterals, and collapsed surfaces, a crucial step in the classification of defects

in underground pipes. The approach can be completely automated and has been tested

on five hundred scanned images of buried concrete sewer pipes from major cities in

North America.

In [Bab09], computer vision methods for measurement of rail gauge, and reliable

identification and localization of structural defects in railroad tracks are presented. The

rail gauge is the distance between the innermost sides of the two parallel steel rails. Two

methods for evaluation of rail gauge are proposed which were designed for different

hardware setups: the first method works with two pairs of unaligned video cameras

while the second method works with depth maps generated by paired laser range scan-

ners. A method for detection of rail defects such as damaged or missed rail fasteners, tie

clips, and bolts, based on correlation and MACH filters is developed. Lastly, to make the

algorithms perform in real-time, the GPU based library for parallel computation of the
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above algorithms is developed. Rail gauge is the most important measurement for track

maintenance, because deviations in gauge indicate where potential defects may exist.

A vision-based method for rail gauge estimation from a pair of industrial laser range

scanners is developed. In this approach, the method starts with building a 3D panorama

of the rail out of a stack of input scans. After the panorama is built, the FIR circular

filtering and Gaussian smoothing are applied to the panorama buffer to suppress the

noise component. In the next step, the rail heads in the panorama buffer are segmented.

The method which detects railroad crossings or forks in the panorama buffer is used. If

they are not present, the rail edge using robust line fit is found. If they are present an

alternative solution is taken: the rail edge positions are predicted using the Kalman filter.

In the next step, common to both fork/crossings conditions, the adjusted positions of rail

edges using additional clustering in the vicinity of the edge are found. The rail head

surface is approximated by the third degree polynomial and then two plane surfaces are

fitted to find the exact position of the rail edge. Lastly, using rail edge information, the

rail gauge is calculated and it smoothes it with 1D Gaussian filter.

Over the last few years research has been oriented toward developing a machine

vision system for automatically locating and identifying defects on rails. Rail defects

exhibit different properties and are divided into various categories related to the type

and position of flaws on the rail. Several kinds of interrelated factors cause rail defects

such as type of rail, construction conditions, and speed and/or frequency of trains using

the rail. In [Man+04] an experimental comparison among three filtering approaches

based on texture analysis of rail surfaces is presented to detect the presence/absence of a

particular class of surface defects (corrugation).

Periodic inspections are necessary to keep railroad tracks in the state of good repair

and prevent train accidents. Automatic track inspection using machine vision technology

has become a very effective inspection tool. Because of its non-contact nature, this

technology can be deployed on virtually any railway vehicle to continuously survey

the tracks and send exception reports to track maintenance personnel. However, as

appearance and imaging conditions vary, false alarm rates can dramatically change,

making it difficult to select a good operating point. In [GPC15] extreme value theory

(EVT) is used within a Bayesian framework to optimally adjust the sensitivity of anomaly

detectors. By approximating the lower tail of the probability density function (PDF) of

the scores with an Exponential distribution (a special case of the Generalized Pareto

distribution), and using the Gamma conjugate prior learned from the training data, it is

possible to reduce the variability in false alarm rate and improve the overall performance.
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This method has shown an increase in the defect detection rate of rail fasteners in the

presence of clutter.

An automated video inspection system of joint bars is developed in [oTr06] to detect

cracked joint bars. The system utilizes high-resolution scan line cameras and two joint

bar detection laser sensors mounted on a hi-railer. In two field demonstrations, the

system detected cracks in joint bars with acceptably low false alarm rates (40 percent of

detected cracks were confirmed and 60 percent were rejected by the system operators).

Though the system missed 15 percent of the cracks, none of the missed cracks were

center cracks. The crack detection algorithm is being refined and tested to reduce the

number of missed cracks and false detections caused by high ballasts and vegetation,

grease, mud, or other conditions on or near joint bars.

4.3 Sleeper and Crack Detection

The proposed sleeper processing method consists of two steps namely sleeper detection

and crack detection. First, this module detects the sleeper within the input image and

the second module then finds the cracks on the sleeper and classifies it according to the

crack width. For each module, 2 different algorithms are proposed and compared. An

overall map linking the proposed algorithms is presented in Figure 4.1. The input frames

are captured by using a high-resolution camera installed on the rail mapper, the frames

are then forwarded to image processing based modules for detecting the sleepers and

possible cracks on them. After the sleeper and crack detection, a partial classification task

is performed. The tasks of detection and partial classification of the cracks are performed

in two different and sequential steps. First, the valid images wherein the whole sleeper

is contained are labeled. In the proposed application a valid image is an image in which

the whole sleeper concerning the position of the camera appears and is not covered by

gravel, garbage or other road metal. Also, each frame must contain just one full sleeper.

After automatic labeling of the valid images, the possible existing cracks are detected

and classified further from the cropped sleeper images. Figure 4.4 shows some sample

images of valid and invalid images in terms of the presence of the sleeper.

Different technical and scientific challenges emerge in each aforementioned step. The

first challenge is the illumination problem in which the light of the illumination system is

not uniformly emitted and distributed on the whole sleeper surface due to environmental

effects (e.g., weather and light condition). To solve this problem, besides the physical

adjustment of the illumination set, the proposed system uses a pre-processing step to

enhance the quality of the input images. The camera frame rate is tuned so that the
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Figure 4.1: An overall view linking the proposed algorithms and general framework is

shown. The input frames are captured using a camera installed on the rail mapper, the

frames are then forwarded to the next modules for detecting the sleepers and possible

cracks on them. After the sleeper and crack detection, the partial classification task is

performed.

full sleeper appears in more than one frame and the camera setup has been adjusted

to achieve high quality image sequences with the lowest possibility of blurring and

to maximize the image brightness. Another challenge is the existence of background

clutter due to gravels, leaves, garbage or coating algae. This problem cannot be avoided

easily. However, the proposed training-based approach for sleeper detection addresses

this problem by increasing the accuracy of the candidate selection phase and mitigating

false decisions.

Two different methods have been used for filtering the valid images and detecting

the sleepers. The methods use some image pre-processing techniques in order to reduce

the image noise and adjust the contrast for further detection tasks. The description of

each method is given sequentially.

The first method is a generic feature-based method in which the sleeper is extracted

based on some geometrical and statistical features. In this method, three sequential

operations are applied to each frame after the image pre-processing step:

• image binarization,

• binary object extraction,

• extracting geometrical features.
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Figure 4.2: Samples of valid and invalid images are shown. (a) shows a valid sleeper, (b)

an image with a part of sleeper and stones around it, and (c) a part of a wooden sleeper

as well as a metal object, (d) a part of a sleeper and stones around it, (e) only a part of a

sleeper and, (f) gravel without a sleeper.
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In the image binarization part, the common widely used Otsu’s method is em-

ployed [Ots79] wherein after applying the threshold, a binary image is generated. The

biggest connected object out of the generated binary image is extracted throughout the

next operation. In the valid de-noised images, the sleeper is supposed to be the biggest

connected object. Thus, the approximate area containing the sleeper is specified. The

exact location of the biggest detected object is determined based on some thresholds

imposed by the sleeper size. In practice, different threshold values corresponding to

the size and the shape of the sleeper are used to filter out the non-sleeper objects. The

description of this method is given in Algorithm 2.

Algorithm 2: Sleeper detection and extraction based on the shape features

1 Input: Moving camera frame I, threshold values t1, t2, ...

2 Output: Full sleeper frame from sleeper containing frames or NULL

J = imgPre(I)

Ib = imgBin(J)

Ie = imgObj(Ib)

[x1, y1,x2, y2] = imgSmooth(Ie)

if Ie satisfies the sleeper size characteristic specifies by t1, t2, ... then

Io = imgCrop(I,x1, y1,x2, y2)

Return Io

else

Return NULL

end if

The main drawback of the above algorithm emerges in the connected binary object

extraction (imgObj(Ibin)) function due to a high intrinsic similarity between the sleeper

and ballast textures. As a result, the extracted connected object might include ballast

texture partially or fully. To prevent this situation, some morphological operations are

applied before object selection. According to the performed experiments the combination

of closing and opening operations outperforms each operation individually. However,

this modification does not diminish the drawback completely.

To enhance the accuracy by strengthening the detection part, a candidate selection

phase is added based on the support vector machine (SVM) classifier on top of the

Algorithm 2. During this phase, the frames containing the sleepers are tried to be

selected from the output of the first part. Several features are used to build the feature

vector as follows:
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1. mean of the frame pixel intensities,

2. standard deviation of the frame pixel intensities,

3. mean of the gradient magnitude values of the frame,

4. standard deviation of the gradient magnitude values of the frame,

5. mean of the gradient directional values of the frame,

6. standard deviation of the gradient directional values of the frame.

The selected frames are then forwarded to the crack detection module which is

described later.

The second solution for the sleeper detection problem searches a common template

object among the sleepers and performs the task of template matching. The template

matching is performed on each pixel of the input image and similarity between the

template and the source image is computed. To calculate the similarity (matching)

score, the sum of square differences (SSD) and cross correlation (CC) based matching

algorithms are used. The selected 2D template used for sleeper detection is a sleeper

fastener shown in Figure 4.3 (right). The fastener is always a part of the sleeper even for

the damaged sleepers. To detect a sleeper in a frame, the template is traversed over the

entire input image from top-left to bottom-left. The matching measure is determined on

each pixel of the input image lying under the template. An exhaustive search (i.e., on

entire image) is performed only in the first frame of the video. In the preceding frames,

the temporal information of the detected location of the sleeper region is exploited to

limit the search area in the succeeding frames.

Let the input image be indicated as I and template image as T with size h×w. In

the template image, a pixel is indicated as T(i, j) where i and j represent the horizontal

and vertical positions of the pixel respectively. Assume that T is being matched with a

rectangular region in the input image I, where a pixel in I is represented as I(x, y). SSD

is stated as:

S(x, y) =

m∑
i=1

n∑
j=1

(
I(x + i, y + j)−T(i, j)

)2
(4.1)

The template scans the fastener side of the sleeper from top to bottom, wherever this

equation reaches its maximum, it would be the location of the sleeper.

The second step of the proposed approach concerns crack detection and classification.

In this step, the main sleeper image from the sleeper detection module is enhanced using
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Figure 4.3: The fastener of a sleeper is shown inside a rectangle in the left side of the

left image. The template matching algorithm finds the location of this fastener. The

right image shows the template used for sleeper detection. It is the image of a railway

fastener. The proposed algorithm searches for the location of the sleeper by scanning

this template in the input image.

the histogram equalization method and low pass filtering. Then, the enhanced image is

converted to a binary image by using an adaptive threshold method and then, tiny noisy

particles of the resulting binary image are removed by using some area circumstances

(i.e., filtering out the particles with a small area). The resulted binary image can include

a crack. To remove non-crack holder candidates, two different decision scenarios are

proposed below.

1. hierarchical structure method,

2. learning based method.

In the hierarchical scenario, the enhanced image is covered using the binary image

and consequently some crack candidates are generated and the normalized density pixel

intensity (D) of the enhanced image in the regions where the correspondent binary mask

pixels are equal to one (i.e., B(x, y) = 1), is calculated. The NPDI of candidate i is expressed

as follows.

Di =
∑
x,y

Ei(x, y)
Ai

, if B(x, y) = 1 (4.2)

In this equation, B is the binary image and Ai is the area of the ith crack candidate.

Therefore, for each candidate in the binary image, the D number is calculated from the

enhanced gray-scale image. To enhance the accuracy of the crack detection module

and avoid false rejection, an auxiliary morphological opening operation with a window
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size of [10 1] is applied to separate the sticking non-crack component(s) from the real

crack in the vertical direction. Suppose the sleeper image is I and O1, ...,Ok are the

crack candidates of I, Hi stands for the height and Xi is the bounding box of Oi, the

algorithm for crack detection based on the hierarchical structure decision scenario is

given in Algorithm 3.

Algorithm 3: Hierarchical method for filtering the crack holder sleepers

1 Input: Sleeper frame I and threshold values tA, tN, tHU, tHL, tBU, tBL

2 Output: 0, 1

3 for i=1: k doif Ai ≤ tA then Return 0

else if Di > tN then

Return 0

else if Hi ≤ tHL∨Hi ≥ tHU then

Return 0

else if tBL ≤ Xi ≤ tBU then

Return 0

else

Return 1

end if

It is worth mentioning that the two classes of the cracks and non-cracks are not linearly

discriminated in the feature space which causes the hierarchical method to incorrectly

classify non-crack sleepers as crack-holders. This problem can be mitigated by using

a supervised classifier for the detection task. In this approach, after applying adaptive

thresholding and morphological operations, a connected component analysis (CCA) is

performed for the candidate generation (i.e., to give a unique label to each candidate) and

then from each candidate some features are calculated and fed to a pre-trained classifier.

Suppose, imgEnh is the image enhancement function, imgAdp is the adaptive threshold

function, imgMor is the function for applying morphological operations and imgCCA
applies CCA on Imor for labeling the candidates, the description of this approach comes

in Algorithm 4.

The list of features is as follows:

1. Location of top-left point each object on the sleeper, normalized by the height and

width of the sleeper,

2. Location of right-down point each object on the sleeper, normalized by the height

and width of the sleeper,
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Algorithm 4: Supervised learning-based method for crack detection

1 Input: Sleeper frame S

2 Output: The candidate is a crack (1) or non-crack (0)

Se = imgEnh(S)

Sa = imgAdp(Se)

Sm = imgMor(Sa)

Sc = imgCCA(Sm)

Extract the features of Im as vector Vt
Im

= (v1, ...vn).

Apply supervised classifier on Vt.

if Sc contains cracks

Return 1

else

Return 0

3. Area of the objects,

4. NPDI of the objects,

5. Aspect-Ratio of the objects,

6. Length of the objects.

For detecting the cracks, two types of the classifiers namely a random forests and a

SVM with the radial basis function kernel (SVM-RBF) are applied. After the crack detec-

tion process, a crack classification method is performed using the maximum thickness of

cracks and the traffic of the railroad (loading weights per day) as the main determining

parameters for both horizontal and vertical cracks. Due to a fixed distance between the

camera and sleeper, and the fixed focal length of the lens, each pixel covers a fixed area

on the sleeper surface. Based on this observation, the damaging class thresholds are set

in terms of the number of pixels.

4.4 Experiments and Results

All experiments have been performed on the visual data sets provided by the rail mapper

vehicle. Different data sets have been generated in several rounds however, few data

sets have been found useful for processing, applying image processing operations, and

training. The cameras have been installed in five locations of the railroad including

outer right, inner right, center, inner left and, outer left of the vehicle to capture the
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Figure 4.4: Sample of enhanced image frames captured from five different locations in

order from outer right (a), center (b), inner right (c), inner left (d), and outer left (e). The

original frames quality are too poor to be visible.

whole area of the sleeper as shown in Figure 4.4. The first approach for sleeper detection

has been implemented on a sample set of 1500 images wherein 1000 images contain the

full sleeper.

According to the experiment, the task of sleeper body detection in the central frames

is not challenging, so that the first method is applied achieving a perfect accuracy.

However, sleeper detection task in the other frames (i.e., right and left frames) is not

as straightforward as in the central frames due to the existence of different objects

(e.g., railway, fastener and so on.). Here, for visualizing the research results, the most

challenging part (i.e., the sleeper bodies captured on the outer right side of the rail

tracks) is investigated. As mentioned before, the sleeper body detection step can be

implemented via two different approaches. The intermediate results of a successful

detection example are shown in Figure 4.5. The achieved accuracy rate for sleeper

detection via Algorithm 2 is not efficient and has not crossed 75%. To increase the

detection rate and make the features more discriminative, an auxiliary morphological

opening operation has been applied. To filter out the wrong frames, a candidate selection

step was applied. To train the SVM classifier, 936 images from both classes including

520 sleeper container frames and 416 non-sleeper or partial sleeper container frames are
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Figure 4.5: Intermediate and final results of a successful sleeper detection in the feature

based approach are shown. (a) shows the enhanced image of input using Otsu threshold-

ing method, (b) shows the binary image of (a), (c) presents the candidate with maximum

area of (b) and (d) shows the detected sleeper.

used as a training sample whose aforementioned features have been extracted. A set of

564 frames including both classes were used to test the algorithm. The kernel function

used in the classifier is RBF with a Gamma equal to 1.81. The lower values for Gamma

decrease the accuracy whereas higher values do not change it. The second approach for

the sleeper detection module is based on the template matching method. The selected

template is the sleeper fastener which is common in all sleepers as shown in Figure 4.3.

This method outperforms the rule-based method (without the candidate selection step)

in terms of accuracy and detection rate however its computational cost is much higher.

The summary result indicating the accuracy performance of the candidate selection step

and first phase is shown in Table 4.1. In this scenario a true positive (TP) occurs when a

full sleeper exists in the image and the system detected it correctly and a false positive

(FP) happens when the system detects a non-sleeper object as the sleeper and a false

negative (FN) occurs when a sleeper exists in the image and the system cannot detect it.

To compare the performances of sleeper detection methods, recall R = TP/(TP + FN) and

precision P = TP/(TP + FP) are used.

Two classifiers SVM and random forest have been trained to detect the cracks on

sleepers for the candidate selection procedure of the second step. Similar to the first step,
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Method Recall Precision

SVM-RBF 0.968 0.978

Template matching 0.923 0.906

Table 4.1: A performance comparison of the sleeper detection step between the template

matching and and the training-based methods is shown.

Training parameter Value

Max number of trees in the forest 100

Min sample count 5

Max depth 25

Forest accuracy 0.01

Min sample count 15

Number of variables randomly selected to find the best split 4

Table 4.2: Training parameters for the random forest classifier are shown. Various

parameter sets were examined and with this set the best result was obtained.

RBF kernel parameter (Gamma) is set to 0.1 found by a greedy search. Also the training

parameters for the random forest classier are shown in Table 4.2.

To train the classifiers, a set of 1042 samples is used wherein nearly 50% of the set

contains the crack holder images while the rest do not. More than 95% of the cracked

sleepers came from wooden sleepers. The test set includes 649 images, 235 out of which

are cracked. The performance result of the second step is shown in Table 4.3. The visual

results of the second step of the detection mechanism including the intermediate results

are shown in Figure 4.6.

To evaluate the whole pipeline of the crack detection mechanism, the accuracy analy-

sis and detection rate of each step are taken into account and linked to each other. A false

positive happens when a wrong frame (non-sleeper body in the first step or a healthy

sleeper in the second step) is detected and identified. A false negative happens when a

right frame (a sleeper-body containing frame in the first step or a crack holder sleeper in

Classifier type Recall Precision F-measure

SVM-RBF 93% 97% 94.9%

Random Forest 94% 97% 95.5%

Table 4.3: Performance results of the crack detection step are shown. Two classifiers

namely random forest and SVM were used. Their results are almost identical.
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Figure 4.6: Intermediate and final results of a successful crack detection (second step)

are shown. (a) shows a sleeper image, (b) shows binary image using adaptive thresh-

olding, (c) shows the result of applying the area conditions (removing small candidates),

(d) presents removing border candidates and (e) shows a found crack using machine

learning.

Step 1 Step 2 Recall Precision Accuracy

Algorithm 2-SVM-RBF Algorithm 4-RF 0.726 0.735 74.1%

Template matching method Algorithm 4-RF 0.923 0.885 87.4%

Table 4.4: Performance comparison of the whole system pipeline is shown. Step 1 shows

sleeper detection using the rule-based method and the template matching method. Step

2 presents crack detection using random forest.

the second step) is not detected. The latter event is a dangerous event depending on the

damage level and generally must be avoided. The parameters are set in such an order

to minimize the false negative event. The modest performance (lower bounds) of the

whole system is shown in Table 4.4 wherein RF stands for the random forest classifier.

Since RF shows slightly better results than SVM, it is chosen for this experiment.

It must be noted that occurring the cracks in the sleepers is not expected in the

majority of the sleepers and in fact, it is a rare event. Also, according to the second

approach of the sleeper detection step, a sleeper body can be ignored if the fastener is

covered or broken. Similarly, this is also a rare event.

The proposed algorithm has been implemented on an Intel Core i7-4600 CPU @

2.10 GHz, using Matlab code. The hardware setup has been adjusted to achieve high

quality image sequences with the lowest possible overlap between the frames suitable for

machine learning tasks. The non-optimized software implementation on a standard PC
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machine using a single core CPU takes 37 (ms), 87 (ms) and 24 (ms) for sleeper detection

(template matching method), crack detection, and crack classification respectively in

average per image. The software can be significantly improved towards an optimal

implementation on the same platform.

4.5 Conclusions and Future Trends

In this chapter, a vision-based method for detecting the cracks in concrete sleepers

of the railway tracks has been presented. The presented method has been given via

different approaches in two successive steps corresponding to sleeper detection and

crack detection respectively. For the first step, two techniques namely template-based

and rule-based sleeper detection methods have been used. The template matching

technique uses a railway fastener as the template image.

The performance of the method has been analyzed and a comparison result between

the approaches has been shown. The template-based sleeper detector and RF-based

crack detector show better results than the other examined methods. To the best of

the author’s knowledge, this work is the only work which scientifically tackles the

problem of crack detection in the concrete sleepers. The use of the fastener template and

candidate generation and the type of the features in the crack detection part are the other

contributions of this work.

Expanding the method toward a more accurate, improved, scalable and interoperable

system and including a wider range for crack type classification will be considered as

future work. This track can be followed by adapting the classifiers or using new classifiers

and sophisticated features for a better performance as well. The improvement of the crack

detection generality using deep neural networks will be considered in particular.
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Chapter 5

Conclusion and Future Work

In this dissertation, scientific algorithms for object tracking and an automatic system for

railway sleepers inspection were proposed. The details of the proposed methods, as

well as their results were given in the previous chapters. This chapter concludes the

whole thesis and collects the most interesting solutions and findings based on the au-

thor’s contributions obtained during the development of the projects reflected in the last

chapters. In addition, an overview of the possible future works for both methodological

and application based parts are given at the end of this chapter.

This chapter starts with Section 5.1 which presents a summary of the algorithms

presented in this thesis. The author’s proposed methods for rectangular and polar object

tracking, as well as vision-based sleeper monitoring are summarized in Section 5.1. Then,

Section 5.2 concludes this thesis. The points obtained from the results of the previous

chapters are given in this section. Finally, the book closes with future visions towards

improving or generalizing the proposed methods, in Section 5.3.

5.1 Thesis Summary

The dissertation is summarized as follows:

Object Tracking in Rectangular Videos: A comparative study among five famous

training based detectors (i.e., Aggregated Channel Feature (ACF), RCNN (Region-based

Convolutional Neural Network), FastRCNN, FasterRCNN and You Only Look Once

(YOLO)) in the object tracking context were undertaken. For the comparison, two

methods of online and offline trackers were proposed. The online tracker generated

synthetic data using the object of interest in the first frame and segmented the video
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frames into certain parts. Then, it employed synthetic data to train the object detectors.

The online tracker used the trained detectors to detect the object of interest in each

frame of the first group in video frames. The tracker used the detected objects as

well as synthetic data to train the detectors in the second iteration. The online tracker

updated/trained the detectors at the end of each video segments and this procedure

continued to the end of the video. The experiments showed that ACF tracker is the

fastest and the most stable tracker among the online trackers. The proposed online

tracker and the comparative study are two contributions to this part. In the second part

of rectangular object tracking, an offline tracker was proposed. For a given frame, the

YOLO detector first generated some candidates in the scene. The offline tracker then used

a two dimension Kalman filter to select the object of interest among the object candidates.

This method uses tracking by detection algorithm. The experimental results showed the

YOLO tracker outperforms all other investigated online and offline rectangular trackers.

The combination type of the deep-learning based object detector (i.e., YOLO version2)

with a 2D Kalman filter is the contribution of offline tracker.

Polar Object Tracking Using Video Unwrapping: The rectangular trackers on the

polar videos have very weak performance and a process before the rectangular track-

ing methods is necessary to increase the tracking precision. The proposed tracker in

this part first rectified the polar video and then applied a modified version of a fa-

mous tracker i.e., Training-Learning-Detection (TLD). The modified training-learning-

detection tracker (MTLD) was proposed to increase the tracker robustness and speed

compared to the TLD tracker, especially robustness against out of plane rotation. It

composed of modules which were added to TLD such as a rectangular region of interest

(ROI) definition, the nearest neighbor (NN) threshold modification in TLD, proposing a

distance classifier, the integrator modification, changing the input source of the trainer

in the original TLD and using the FIFO strategy for fulling the training queue. The

results confirmed the accuracy and speed improvement of MTLD compared to the TLD

tracker. The mentioned modifications (i.e., ROI, NN and integrator modification, dis-

tance classifier and FIFO defecation and changing the trainer input) are contributions of

this part.

Polar Object Tracking Directly on Polar Videos: Although, the MTLD was much

better than TLD from speed and precision perspectives, it is still slow. To increase the

tracking speed, three polar object tracking methods were proposed to directly follow the

object of interest in polar videos and bypass the slow rectification (unwrapping) process.
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Both trackers selected a region of interest around the object of interest using a proposed

polar region of interest (PROI) selection. The first tracker extracted interesting points

using SURF descriptor from the enhanced version of the last object of interest and scene.

Then, it fed the SURF features as well as the location and intensity of the interesting points

in the object and in the scene to a Random Forest classifier. The classifier found matched

points in the object and the scene and drew a polar object region around the points to

obtain a new object. The tracker used an SVM classifier to detect challenges type (i.e.,

out of plane rotation, occlusion and etc.) and used a correspondent algorithm to handle

the challenge. The feature vector used in this part, the training based matching classifier

and the training based challenge detector classifier were three contributions of this part.

The second tracker generated trapezoid-shape candidates in the polar region of interest

(PROI) and selected the object of interest using two proposed color-based classifiers. The

first classifier i.e., color max classifier segmented each candidate into 9 polar segments.

Each segment is then converted to HSV space and 6 colors (channels) of green, white,

red, brown + purple, blue + green and yellow. Furthermore, the number of each resulted

channels is counted. The color used by the majority number of pixels is considered for

that segment. The second color classifier (color pixel classifier) found the desired object

based on the area for the specific color. The third tracker generated the polar candidates

(exactly polar shapes) in the polar region of interest (PROI) and combined binary features

with RGB color information of pixels. The combination incenses the correctness of the

correct candidate finding among all the candidates. This method outperforms the other

three polar trackers (i.e., MTLD, SURF tracker and the tracker with trapezoid-shape

candidates) from both accuracy and speed viewpoints as the results showed. The polar

selection of area of interest, polar candidate selection, the using type of color information

i.e., the color pixel classifier, the color max classifier as well as the color binary classifier

are the contributions of the proposed color-based trackers. The mentioned contributions

were effective to increase the precision and speed of the polar trackers.

Railway Sleeper Inspection: A system was proposed to automatically capture

valuable frames from the top view of railway sleepers and a machine learning based

system to detect the possible cracks and find their locations and to classify the cracks

according to a standard of predefined categories of the crack damaging level. The

proposed algorithm first enhanced the input video frames using classical histogram

equalization; then, it finds the sleeper location by finding the fastener location using

an object matching technique. It then converted the resulting sleepers to binary images

using an adaptive thresholding method to generate some crack candidates. It extracted
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some features from the binary image and used a supervised classifier like Random

Forest or SVM for the detection of the cracks among the crack candidates. After crack

detection, it classified the cracks according to their thickness. It is an application of image

processing which provides a very precise system for the concrete sleeper inspection for

railroads.

5.2 Thesis Conclusion

This section reviews the contribution of the proposed methods and concludes the the-

sis. The contributions are listed in the following three parts namely rectangular object

tracking, polar object tracking and railway quality control.

1. A comprehensive comparative study in the context of object tracking among 5 fa-

mous recently proposed detectors was executed. Two trackers based on online and

offline tracking were used. A comparison of the five train-based detectors namely

ACF, RCNN, FastRCNN, FasterRCNN and YOLO was proposed for the first time

in this thesis to find out the best detector for tracking. The ACF tracker has the

best results among the online trackers from both accuracy and speed viewpoints.

ACF has effective implementation, because it runs on the CPU machine instead of

GPU for the other online trackers. Among the RCNN based trackers (i.e., RCNN,

FastRCNN, and FasterRCNN), RCNN has the best tracking accuracy. FastRCNN

and FasterRCNN are very fast in the test phase, their tracking process is slow

because they are very slow in training phase. Since the YOLO tracker was trained

offline, it is the fastest tracker. YOLO is not qualified for online tracking, due to

its very slow training phase. For human tracking from the front and side views,

the combination of YOLO and Kalman filter shows the best results. For tracking

of unknown objects, the ACF tracker is better than the YOLO tracker. Compared

to YOLO and ACF, the RCNN based trackers show less accuracy because they do

not have a very deep structure (i.e., 3 convolutional layers and 2 fully connected).

By using a deeper CNN like YOLO, the accuracy is increased. The training vector

length was investigated and showed that the online tracker follows the recent

appearances of the object of interest. The length should be set to an optimal value;

if it exceeds the value, the average accuracy decreases. On the other hand, selection

of the shorter lengths leads to the under-fitting and low accuracy.

The results of this research are not limited to tracking. They have interesting points

for object detection. For instance, from top view YOLO detects cars, but it often
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cannot identify them. Although YOLO detects the humans well from the top view,

its classification results are disappointing. In the training phase, YOLO was bi-

ased to the human data from the front view. Although object detection based on

deep learning has recently improved, further improvement is still necessary. For

instance, YOLO detector should be trained using a big data set including more var-

ious views of the objects. ACF detector with a non-deep-learning structure shows

better results than some of the deep-learning-based detectors namely RCNN, Fas-

tRCNN, and FasterRCNN. Extensive experiments showed that the YOLO tracker

outperforms the rest of the trackers.

2. To solve the problem of object tracking in 360-degree videos a couple of methods

with different contributions were proposed. An efficient polar tracker was pro-

posed to follow unknown objects in 360-degree videos. A state-of-the-art tracker

i.e., Tracking-Learning-Detection (TLD) was promoted to overcome the tracking

problems in the challenging conditions of 360-degree videos. The resolution of

these videos is much higher than the TLD data set, thus the searching area was re-

stricted to decrease the computational load in the TLD method. The experimental

results showed that the proposed MTLD method outperforms TLD. MTLD tracks

objects even when they have an out-of-plane rotation and varying environment

in which cases TLD losses the object of interest in the cases. A polar tracking

scheme (POT) was proposed to follow polar objects in 360-degree videos and to

bypass the slow rectification process in MTLD. A polar area was proposed to limit

the searching region and to decrease the computational load. The removing of

the rectification process and the color-based classifiers are two contributions of

this tracker. A training-based matching method was proposed for SURF-based

object tracking. This method proposed a train-based classifier for object matching

and another train-based mechanism for automatic detection of challenges namely

out-plane-rotation, occlusion and departing the camera. The tracker then adapted

itself to handle these situations. The proposed training-based object matcher and

challenging classifier find the correspondent interesting points in the scene and

object of interest which could not be found using traditional distance functions.

The other polar tracker first segmented the input frame into a polar region around

the labeled object and overlapped polar candidates were selected within the re-

gion. The polar candidates were then classified using two hierarchical variance

and color-binary classifiers. The discriminatory of binary features was improved

by adding color information. Experiments on the 360-degree and catadioptric om-

nidirectional data sets showed that the proposed color-binary tracker boosts the
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tracking performance for diverse objects in various and challenging real-world sce-

narios and outperforms similar trackers i.e., TLD, MTLD, POT, and SURF-tracker.

This method has comparable tracking performance to MTLD but it is much faster

than MTLD. It is also faster and more precise than POT because it uses binary

features.

3. An automatic visual system for railway monitoring was proposed. To the best

of the author’s knowledge, this work is the only scientific work which tackles the

problem of crack detection in the concrete sleepers. The use of the fastener template

and the type of the features in the crack detection part are the other contributions

of this work.

5.3 Future Trends

For each proposed method a couple of improvements are planned as future work. For

the proposed rectangular trackers, YOLO detector will be trained using an updated data

set to improve the detection results from the top view. The experiments will be extended

to other videos in the VOT benchmark. The proposed trackers will be extended for

multiple object tracking because all the detectors i.e., ACF, RCNN, FastRCNN, Faster-

RCNN, and YOLO can detect multiple objects. For the online trackers in each iteration

of the training phase, instead of a single object, multiple objects will be defined and the

detectors will output different labels for different objects. In the case of offline tracking,

YOLO is able to detect multiple objects for each object.

For the proposed trackers in polar videos the following is planned for future work.

For the MTLD tracker, the future work will address tracking in complex backgrounds.

Because like TLD, MTLD is also fragile to background clutter when the object of interest

is similar to a part of the background. The color binary tracker will be extended to mul-

tiple object tracking. Parallel processing will be employed to reduce the computational

cost. In addition, the use of HSV color space in binary features will be considered. For

rigid objects, the tracker is often able to retrieve the object of interest in the next frames;

however, this is not the case for articular objects. The future work will also focus on

articular object tracking by dividing the articular object into smaller parts (like body

members in human) and applying the tracker to each part. Real-time processing can be

achieved by optimizing the implementation of this approach. In fixed-camera scenarios,

the use of background detection and subtraction between the RoI selection and object

detection parts is suggested. This process improves the speed of the tracker and reduces
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the probable similar objects tracking.

For the proposed railway monitoring method, expanding towards a more accurate,

improved, scalable and interoperable system and with a wider range for crack type clas-

sification will be considered as future work. This track can be followed by adapting the

classifiers or engaging new classifiers and sophisticated features for a better performance

as well.



LIST OF FIGURES 126

List of Figures

2.1 Challenges in two videos: First line (David) and second line (Panda)
show illumination change, out-of-plane rotation, appearance change and
background clutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Block diagram of the steps of the ACF detector [Dol+14] . . . . . . . . . . 18
2.3 From left to right: The steps of R-CNN [Uij+13], fast R-CNN [Gir15] and

faster R-CNN [Sha+17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Block diagram of the proposed online tracker. In the first frame, from

this selected object, synthetic data is generated. Then a detector (i.e., R-
CNN, fast R-CNN, faster R-CNN or ACF) is trained using the generated
data and applied to the first segment of frames G1 to detect the objects of
interest in them. The detected objects and the synthetic data added to the
training vector Tv which is then used to update the detector. This process
is continued until the end of the video. . . . . . . . . . . . . . . . . . . . . . 22

2.5 Synthetic data for the training of the detectors with their objects of interest;
the first frame of "Pedestrain1"(a), this frame with additive salt and pepper
noise, with noise density 0.008(b), rotated version of (a) with -10 and 9
degrees (c,d), rotated version of the enhanced image (a) using histogram
equalization (e,f) and using contrast adjustment (g,h) . . . . . . . . . . . . 24

2.6 Block diagram of the proposed offline tracker. All frames are fed to YOLO
and the Kalman filter. The offline tracker outputs the YOLO response
which has the maximum IoU with the estimated pose of the Kalman filter.
The YOLO response also updates the Kalman filter. . . . . . . . . . . . . . 27

2.7 Intermediate results of the proposed offline tracker: (a) Three frames of
"Volkswagen" (b) The results of YOLO detector are shown on the frames.
YOLO detects all the cars in the scene. (c) The Kalman filter estimates
the location of the object of interest in the next frame. The offline tracker
selects the nearest object to the output of the Kalman filter. (d) The final
results of the offline tracker. The Kalman filter converts YOLO from a
detector to a tracker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Snapshots of videos in the experiments. The figures from (a) to (j) show
"David", "Jump", "Pedestrain1", "Pedestrain2", "Pedestrain3", "Car", "Mo-
tocross", "VW", "Car chase" and "Panda" respectively. The ground truth is
shown on each image with a green rectangle. . . . . . . . . . . . . . . . . . 29

2.9 Tracker comparison in terms of F-measure . . . . . . . . . . . . . . . . . . . 31



LIST OF FIGURES 127

2.10 The tracker’s performance versus the synthetic data length (left number),
the training iteration number (middle number) and the training vector Tv
length (right number). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 For the ACF tracker, the updating process was removed. The results of
the online tracker and the ablative study are compared. . . . . . . . . . . . 33

2.12 The visualization results of the proposed trackers are shown and com-
pared. The results of R-CNN, fast R-CNN, faster R-CNN, ACF, YOLO
and Ground truth are shown with red, yellow, blue, magenta, cyan and
green frames respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.13 Comparison of Trackers in terms of run time is shown. Yolo tracker is the
fastest tracker and ACF is the fastest one among the online trackers. . . . . 36

3.1 Some snapshots of 360-degree videos: Polar objects show the desired objects. 40
3.2 A 360-degree image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 A 360-degree image (left) is bigger than a catadioptric omnidirectional

image (Right). The catadioptric omnidirectional camera cannot cover the
center region of the images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Block diagram of the proposed MTLD method . . . . . . . . . . . . . . . . 56
3.5 Omnidirectional camera image after rectification . . . . . . . . . . . . . . . 56
3.6 Block diagram of the modified object detector . . . . . . . . . . . . . . . . . 57
3.7 When YOLO is applied directly to the polar image, it cannot detect any

object due to the object orientation. . . . . . . . . . . . . . . . . . . . . . . . 58
3.8 After image rectification, YOLO is able to state the correct position and

size of the objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.9 Convolutional neural network with 24 convolutional layers followed by

2 fully connected layers [RF17] . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.10 An example of the YOLO visual output with correct labeling . . . . . . . . 61
3.11 The visual outputs of the Kalman filter and YOLO are shown. Green

rectangles show the YOLO output and red rectangles are the Kalman filter
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.12 YOLO failed to find the object of interest. Nevertheless, the position of
the object could be estimated with a slight deviation by the Kalman filter. 62

3.13 The cycle of the Kalman filter: If object information to correct the pre-
diction is available, the update phase is started. The prediction phase
estimates the object position using its history. . . . . . . . . . . . . . . . . . 63

3.14 Polar ROI selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.15 Overlapping trapezoid-shape candidate selection method is shown. Each

candidate is defined by a trapezoid-shape region around the object of
interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.16 Block diagram of the proposed trapezoid-shape tracker is shown. . . . . . 67
3.17 Object normalization by their pad . . . . . . . . . . . . . . . . . . . . . . . . 68
3.18 Object normalization and segmentation . . . . . . . . . . . . . . . . . . . . 68
3.19 Object tracking true positive results . . . . . . . . . . . . . . . . . . . . . . 68
3.20 Polar RoI selection (left) and polar object selection (right) for the proposed

SURF-tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



LIST OF FIGURES 128

3.21 An example of mismatching for SAD. Two near points in an object mis-
matched to two far points in the scene. . . . . . . . . . . . . . . . . . . . . . 72

3.22 Block diagram of the proposed tracker is shown. Polar candidates are
selected in a RoI. Then, they are fed to the hierarchical classifiers including
a variance classifier and the proposed color-based binary classifier. In
some cases, an ancillary tracking method is applied on the video frames.
Finally, integrator outputs the object of interest. . . . . . . . . . . . . . . . . 74

3.23 A polar sector around the object of interest shows the polar region of
interest (RoI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.24 Overlapped polar candidate generation is shown. Some overlapped can-
didates have been shown. In this case, the region of interest (RoI) is the
surrounded region among two arcs and two radii. . . . . . . . . . . . . . . 77

3.25 Five overlapped objects of "Rob" with their pads are shown. The pad is
an inscribed rectangle surrounding the object. Objects are normalized by
resizing their pad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.26 (a) Normalization process for three groups of candidates are shown. Can-
didates are categorized with their angle. In each group, the index candi-
date (i.e., the candidate with the same radii as the last object of interest)
is selected. All candidates of the same group are then resized to the size
of the index image. (b) shows the pixel selection process for comparison.
Correspondent pixels are shown with similar shapes (i.e., square, circle,
triangle, and diamond), when two objects are compared, the pair pixels
are compared according to their position to the reference point of the object. 78

3.27 The selection method for a central candidate is shown. The central candi-
date is shown on the right, is circumscribed among two chords and two
concentric arcs as shown in the left image. . . . . . . . . . . . . . . . . . . . 79

3.28 Results of recall measures for MTLD and TLD are shown. . . . . . . . . . . 85
3.29 Computation time comparison between MTLD and TLD is given. MTLD

is faster than TLD for all videos except for "Snorkelling". Because for this
video TLD cannot track the object of interest and first steps of the detector
reject all candidates in the image. . . . . . . . . . . . . . . . . . . . . . . . . 85

3.30 TLD searches the whole image to find the object of interest. This image
shows rectified frame from the "Rob" video (top image). Limited searching
area in MTLD is shown (bottom image). The probability of the presence
of the object of interest in this region of interest (RoI) is higher than the
rest of the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.31 Examples of 360-degree images and objects of interest are given. . . . . . . 86
3.32 The object of interest is marked by green rectangles in 360-degree videos. 87
3.33 Results of the Kalman filter, Lucas-Kanade and their combination are shown. 87
3.34 Scanning parameters for "Rob" for trapezoid-shape tracker are shown. . . 89
3.35 Examples where the color-binary tracker (red frame) cannot locate the

object of interest (green frame), are shown. . . . . . . . . . . . . . . . . . . 91
3.36 The similarity score for all candidates (after variance classifier) of "Snow-

boarding" for color and gray binary features is presented. . . . . . . . . . . 94



LIST OF FIGURES 129

3.37 Visualizations for PNL, TLD, MTLD, POT and the color binary tracker are
shown by yellow, red, green, pink and blue respectively. The color binary
tracker has the best performance. . . . . . . . . . . . . . . . . . . . . . . . . 96

3.38 Algorithm speed comparison in terms of computation time and fps (writ-
ten above the bars) is given. The color binary tracker is faster than the
tested trackers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 An overall view linking the proposed algorithms and general framework
is shown. The input frames are captured using a camera installed on
the rail mapper, the frames are then forwarded to the next modules for
detecting the sleepers and possible cracks on them. After the sleeper and
crack detection, the partial classification task is performed. . . . . . . . . . 107

4.2 Samples of valid and invalid images are shown. (a) shows a valid sleeper,
(b) an image with a part of sleeper and stones around it, and (c) a part of a
wooden sleeper as well as a metal object, (d) a part of a sleeper and stones
around it, (e) only a part of a sleeper and, (f) gravel without a sleeper. . . . 108

4.3 The fastener of a sleeper is shown inside a rectangle in the left side of
the left image. The template matching algorithm finds the location of this
fastener. The right image shows the template used for sleeper detection.
It is the image of a railway fastener. The proposed algorithm searches for
the location of the sleeper by scanning this template in the input image. . 111

4.4 Sample of enhanced image frames captured from five different locations
in order from outer right (a), center (b), inner right (c), inner left (d), and
outer left (e). The original frames quality are too poor to be visible. . . . . 114

4.5 Intermediate and final results of a successful sleeper detection in the fea-
ture based approach are shown. (a) shows the enhanced image of input
using Otsu thresholding method, (b) shows the binary image of (a), (c)
presents the candidate with maximum area of (b) and (d) shows the de-
tected sleeper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6 Intermediate and final results of a successful crack detection (second step)
are shown. (a) shows a sleeper image, (b) shows binary image using
adaptive thresholding, (c) shows the result of applying the area conditions
(removing small candidates), (d) presents removing border candidates
and (e) shows a found crack using machine learning. . . . . . . . . . . . . 117



LIST OF TABLES 130

List of Tables

2.1 Properties of state-of-the-art object tracking techniques . . . . . . . . . . . 17
2.2 The number and types of synthetic data are given. The first row shows

the total number of synthetic data and each column shows the number
and types of synthetic data for a certain number of synthetic data. . . . . . 25

2.3 Parameter sets for the online trackers . . . . . . . . . . . . . . . . . . . . . . 25
2.4 The characteristic of the TLD data set [KMM12] . . . . . . . . . . . . . . . 29
2.5 Parameter set 1 regarding the online trackers. . . . . . . . . . . . . . . . . . 30
2.6 Comparison of the trackers in terms of Recall (left number), Precision (left

number) and F-measure (right number), the abbreviations of the videos
are pi: pedestrian i, Moto: motocross, VW: Volkswagen and Carc: Car
chase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 The specification of the hardware system for the experiments . . . . . . . . 35

3.1 Properties of state-of-the-art object tracking techniques . . . . . . . . . . . 52
3.2 Thresholds of different colors . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Comparison results between the proposed MTLD and TLD in terms of

recall and precision are shown. The proposed modified TLD method
outperforms original TLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Effect of each modified module on the recall rate of "Snorkeling" is given.
NN, Dis, Int, T and FIFO show threshold modifier, distance classifier,
integrator modification, changing the input source of the trainer and using
the FIFO strategy for fulling the training queue respectively. . . . . . . . . 84

3.5 Tracking results for the Kalman-YOLO (left), the Lucas-Kanade (middle)
and Kalman-YOLO-LK (right) are given. . . . . . . . . . . . . . . . . . . . . 88

3.6 Evaluation results for the proposed trapezoid-shape tracker are shown. . . 90
3.7 Performance evaluation of the proposed SURF based tracker is shown. . . 90
3.8 Evaluation results of the proposed color binary tracker are shown. . . . . 92
3.9 Results of the color binary tracker on omnidirectional videos are shown. . 93
3.10 Comparison results in terms of F-measure for LK and Gray-based and

Color-based for the proposed color binary tracker are shown. . . . . . . . 93
3.11 Comparison of similar tracking methods in terms of F-measure is shown.

The proposed color binary tracker has the best performance for most videos. 95

4.1 A performance comparison of the sleeper detection step between the tem-
plate matching and and the training-based methods is shown. . . . . . . . 116



LIST OF TABLES 131

4.2 Training parameters for the random forest classifier are shown. Various
parameter sets were examined and with this set the best result was obtained.116

4.3 Performance results of the crack detection step are shown. Two classifiers
namely random forest and SVM were used. Their results are almost
identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Performance comparison of the whole system pipeline is shown. Step 1
shows sleeper detection using the rule-based method and the template
matching method. Step 2 presents crack detection using random forest. . . 117



BIBLIOGRAPHY 132

Bibliography

[AG17] B. Akok and F. Gurkan. “Robust Object Tracking by Interleaving Variable
Rate Color Particle Filtering and Deep Learning”. In: IEEE International
Conference on Image Processing (2017), pp. 3665–3669.

[Bab09] P. Babenko. VISUAL INSPECTION OF RAILROAD TRACKS. [online]
Available: http://crcv.ucf.edu/papers/theses/BabenkoPavel.pd f , 2009.

[Bay+08] H. Bay, A. Ess, T. Tuytelaars, and L. Gool. “Speeded up robust features
(Surf)”. In: Journal of Computer Vision and Image Understanding 110.3 (2008),
pp. 346–359.

[Ber+16] L. Bertinetto, J. Valmadre, S. Golodetz, O.Miksik, and P.H.S. Torr. “Staple:
Complementary learners for real-time tracking”. In: IEEE International
Conference on Computer Vision and Pattern Recognition (2016), pp. 1401–
1409.

[Bol+10] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. “Visual object
tracking using adaptive correlation filters”. In: IEEE International Confer-
ence on Computer Vision and Pattern Recognition (2010), pp. 2544–2550.

[Bou00] J. Y. Bouguet. “Pyramidal implementation of the Lucas Kanade feature
tracker”. In: Intel Corporation, Microprocessor Research Labs (2000).

[BW01] G. Bishop and G. Welch. “An introduction to the Kalman filter”. In: Proc
of SIGGRAPH, Course 8.27599-3175 (2001), p. 59.

[BY18] S. H. Bae and K. J. Yoon. “Confidence-Based Data Association and Dis-
criminative Deep Appearance Learning for Robust Online Multi-Object
Tracking”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2018), pp. 2239–2252.

[Cal+10] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. “Brief: Binary robust
independent elementary features”. In: European Conference on Computer
Vision (2010), pp. 778–792.

[Che+08] C. H. Chen, Y. Yao, D. Page, B. Abidi, A. Koschan, and M. Abidi. “Hetero-
geneous Fusion of Omnidirectional and PTZ Cameras for Multiple Object
Tracking”. In: IEEE Transactions on Circuits and Systems for Video Technology
18.8 (2008), pp. 1052–1063.

[Cho+15] G. Choe, T. Wang, F. Liu, G. Li, H. O, and S. Kim. “Moving object tracking
based on geogram”. In: Multimedia Tools and Applications 74.21 (2015),
pp. 9971–9794.



BIBLIOGRAPHY 133

[CT18] K. Chen and W. Tao. “Learning Linear Regression via Single Convolu-
tional Layer for Visual Object Tracking”. In: IEEE Transactions on Multime-
dia (2018), pp. 1–13.

[Cui+13] J. Cui, Y. Liu, Y. Xu, H. Zhao, and H. Zha. “Tracking Generic Human
Motion via Fusion of Low- and High-Dimensional Approaches”. In: IEEE
Transactions on Systems, Man, and Cybernetics: Systems 43.4 (2013), pp. 996–
1002.

[Del+16a] A. Delforouzi, S. A. H. Tabatabaei, K. Shirahama, and M. Grzegorzek.
“Polar Object Tracking in 360-Degree Camera Images”. In: International
Symposium on Multimedia (2016), pp. 347–352.

[Del+16b] A. Delforouzi, S. A. H. Tabatabaei, K. Shirahama, and M. Grzegorzek.
“Unknown Object Tracking in 360-Degree Camera Images”. In: 23rd In-
ternational Conference on Pattern Recognition (2016), pp. 1799–1804.

[Del+17] A. Delforouzi, S. A. H. Tabatabaei, M. H. Khan, and M. Grzegorzek. “A
Vision-Based Method for Automatic Crack Detection in Railway Sleep-
ers”. In: 10th International Conference on Computer Recognition Systems
CORES (2017), pp. 130–139.

[Del+18] A. Delforouzi, S. A. H. Tabatabaei, K. Shirihama, and M. Grzegorzek. “A
Polar Model for Fast Object Tracking in 360-degree Camera Images”. In:
Multimedia Tools and Applications (2018).

[Dem+12] B. E. Demiroz, I. Arı, O. Eroglu, A. A. Salah, and L. Akarun. “Feture-Based
Tracking on a Multi-Omnidirectional Camera Dataset”. In: International
Symposium on Communications, Control and Signal Processing (2012), pp. 1–
5.

[DG15] A. Delforouzi and M. Grzegorzek. “An Object Tracking System Based
on SIFT and SURF Feature Extraction Methods”. In: 18th International
Conference on Network-Based Information Systems (2015), pp. 561–565.

[DH16] J. Ding and Y. Huang. “Severely Blurred Object Tracking by Learning Deep
Image Representations”. In: IEEE Transactions on Circuits and Systems for
Video Technology (2016), pp. 319–331.

[Din+18] G. Ding, W. Chen, S. Zhao, J. Han, and Q. Liu. “Real-Time Scalable Vi-
sual Tracking via Quadrangle Kernelized Correlation Filters”. In: IEEE
Transactions on Intelligent Transportation Systems 19.1 (2018), pp. 140–150.

[Dol+14] P. Dollar, R. Appel, S. Belongie, and P. Perona. “Fast Feature Pyramids for
Object Detection”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 36.8 (2014), pp. 1532–1545.

[DPG18] "A. Delforouzi, B. Pamarthi, and M. Grzegorzek". “Training-based Meth-
ods for Comparison of Object Detection Methods for Visual Object Track-
ing”. In: Sensors (2018).

[Eve+15] M. Everingham, S. M. Eslami, L. V. Gool, C. K. Williams, J. Winn, and A.
Zisserman. “The pascal visual object classes challenge: A retrospective”.
In: International journal of computer vision 111.1 (2015), pp. 98–136.



BIBLIOGRAPHY 134

[FMH06] Y. Fujita, Y. Mitani, and Y. Hamamoto. “A Method for Crack Detection on a
Concrete Structure”. In: 18th International Conference on Pattern Recognition
3 (2006), pp. 901–904.

[Gir+14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (2014), pp. 580–587.

[Gir15] R. Girshick. “Fast R-CNN”. In: IEEE International Conference on Computer
Vision (2015), pp. 1440–1448.

[GPC15] X. Gibert, V.l M. Patel, and R. Chellappa. “Sequential Score Adaptation
with Extreme Value Theory for Robust Railway Track Inspection”. In:
CoRR abs/1510.05822 (2015).

[Gup+13] A. M. Gupta, B. S. Garg, C. S. Kumar, and D. L. Behera. “An on-line visual
human tracking algorithm using SURF-based dynamic object model”. In:
IEEE International Conference on Image Processing (2013), pp. 3875–3879.

[GW18] M. Guan and C. Wen. “Real-Time Event-Triggered Object Tracking in the
Presence of Model Drift and Occlusion”. In: IEEE Transactions on Industrial
Electronics (2018), pp. 1–11.

[He+16] Z. He, X. Li, X. You, D. Tao, and Y. Y. Tang. “Connected Component Model
for Multi-Object Tracking”. In: IEEE Transactions on image processing 25.8
(2016), pp. 3698–3711.

[Hen+15] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. “High-Speed Track-
ing with Kernelized Correlation Filters”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 37.3 (2015), pp. 583–596.

[HS03] S. Hrabar and G. S. Sukhatme. “Omnidirectional vision for an autonomous
helicopter”. In: IEEE International Conference on Robotics and Automation 1
(2003), pp. 558–563.

[JWKN15] J. C. Park J. W. Kim S. B. Kim and J. W. Nam. “Development of Crack Detec-
tion System with Unmanned Aerial Vehicles and Digital Image Process-
ing”. In: Advances in Structural Engineering and Mechanics (2015), pp. 25–
29.

[Kar+15] S. Karthikeyan, T. Ngo, M. Eckstein, and B.S. Manjunath. “Eye tracking as-
sisted extraction of attentionally important objects from videos”. In: IEEE
Conference on Computer Vision and Pattern Recognition (2015), pp. 3241–
3250.

[KM11] O. E. Kadmiri and L. Masmoudi. “An omnidirectional image unwrapping
approach”. In: Multimedia Computing and Systems (ICMCS), 2011 Interna-
tional Conference on. IEEE. 2011, pp. 1–4.

[KMM10] Z. Kalal, J. Matas, and K. Mikolajczyk. “P-N Learning: Boot-strapping Bi-
nary Classifiers by Structural Constrains”. In: IEEE Conference on Computer
Vision and Pattern Recognition (2010), pp. 49–56.



BIBLIOGRAPHY 135

[KMM12] Z. Kalal, K. Mikolajczyk, and J. Matas. “Tracking-Learning-Detection”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 34.7 (2012),
pp. 1409–1422.

[KP18] H. I. Kim and R. H. Park. “Residual LSTM Attention Network for Object
Tracking”. In: IEEE Signal Processing Letters 25 (2018), pp. 1029–1033.

[KS07] J. Kim and Y. Suga. “An omnidirectional vision-based moving obstacle
detection in mobile robot”. In: International Journal of Control, Automation,
and Systems 5.6 (2007), pp. 663–673.

[Li+11] J. Li, J. Zhang, Z. Zhou, W. Guo, B. Wang, and Q. Zhao. “Object track-
ing using improved Camshift with SURF method”. In: IEEE International
Workshop on Open-source Software for Scientific Computation (2011), pp. 136–
141.

[Li+18] F. Li, K. Shirahama, M. A. Nisar, L. Koeping, and M. Grzegorzek. “Com-
parison of Feature Learning Methods for Human Activity Recognition
Using Wearable Sensors”. In: Sensors 18 (2018).

[Lin+07] Z. Lin, L. S. Davis, D. Doermann, and D. DeMenthon. “Hierarchical Part-
Template Matching for Human Detection and Segmentation”. In: IEEE
11th International Conference on Computer Vision (2007), pp. 1–8.

[Liu+12] Y. Liu, J. Cui, H. Zhao, and H. Zha. “Fusion of Low-and High-Dimensional
Approaches by Trackers Sampling for Generic Human Motion Tracking”.
In: 21st International Conference on Pattern Recognition (2012).

[LL18] G. Liu and S. Liu. “Object Tracking in Vary Lighting Conditions for Fog
Based Intelligent Surveillance of Public Spaces”. In: IEEE Access 6 (2018),
pp. 29283–29296.

[LSS05] B. Leibe, E. Seemann, and B. Schiele. “Pedestrian Detection in Crowded
Scenes”. In: IEEE Computer Society, 2005, pp. 878–885.

[Ma+16] B. Ma, H. Hu, J. Shen, Y. Liu, and L. Shao. “Generalized Pooling for
Robust Object Tracking”. In: IEEE Transactions on image processing 25.9
(2016), pp. 4199–4208.

[Man+04] C. Mandriota, M. Nitti, N. Ancona, E. Stella, and A. Distante. “Filter-
based feature selection for rail defect detection”. In: Machine Vision and
Applications 15.4 (2004), pp. 179–185.

[May82] P. S. Maybeck. Stochastic models, estimation, and control. Vol. 3. Academic
press, 1982.

[Maz+05] P. L. Mazzeo, M. Nitti, E. Stella, and A. Distante. “Visual Recognition of
fastening Bolt in Railway Maintenance Context by using Wavelet Trans-
form”. In: International Journal on Graphics, Vision and Image Processing SI1
(2005), pp. 25–32.

[Maz+16] A. Mazzu, P. Morerio, L. Marcenaro, and C. S. Regazzoni. “A Cognitive
Control-Inspired Approach to Object Tracking”. In: IEEE Transactions on
image processing 25.6 (2016), pp. 2697–2711.



BIBLIOGRAPHY 136

[MCP14] I. Markovic, F. Chaumette, and I. Petrovic. “Moving object detection,
tracking and following using an omnidirectional camera on a mobile
robot”. In: IEEE International Conference on Robotics and Automation (2014),
pp. 5630–5635.

[Mia+11] Q. Miao, G. Wang, C. Shi, X. Lin, and Z. Ruan. “A new framework for on-
line object tracking based on SURF”. In: Pattern Recognition Letters 32.13
(2011), pp. 1564–1571.

[Moh08] S. P. Mohammad. “Machine Vision for Automating Visual Inspection of
Wooden Railway Sleepers”. In: Department of Computer Science, Dalarna
University (2008).

[MRS14] A. Milan, S. Roth, and K. Schindler. “Continuous Energy Minimization
for Multitarget Tracking”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 36.1 (2014), pp. 58–72. issn: 0162-8828. doi: 10.1109/
TPAMI.2013.103.

[MSR15] A. Milan, K. Schindler, and S. Roth. “Multi-Target Tracking by Discrete-
Continuous Energy Minimization”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 38.10 (2015), pp. 2054–2068.

[NH16] H. Nam and B. Han. “Learning Multi-domain Convolutional Neural Net-
works for Visual Tracking”. In: IEEE Conference on Computer Vision and
Pattern Recognition (2016), pp. 4293–4302.

[OC13] H. Oliveira and P. L. Correia. “Automatic Road Crack Detection and Char-
acterization”. In: IEEE Transactions on Intelligent Transportation Systems 14.1
(2013), pp. 155–168.

[Oh+12] C.M. Oh, Y.C. Lee, D.Y. Kim, and C.W. Lee. “Moving object detection in
omnidirectional vision-based mobile robot”. In: IEEE Annual Conference
of Industrial Electronics Society (2012), pp. 4232–4235.

[ON15] K. OShea and R. Nash. “An Introduction to Convolutional Neural Net-
works”. In: CoRR (2015), pp. 1–11.

[OP16] P. Ondruska and I. Posner. “Deep Tracking: Seeing Beyond Seeing Using
Recurrent Neural Networks”. In: Proceedings of the Thirtieth Conference on
Artificial Intelligence (2016), pp. 3361–3367.

[oTr06] U.S. Department of Transportation. “Research Results: Video System for
Joint Bar Inspection”. In: Federal Railroad Administration RR06-03 (2006).

[Ots79] N. Otsu. “A Threshold Selection Method from Gray-Level Histograms”.
In: IEEE Transactions on Systems, Man and Cybernetics 9.1 (1979), pp. 62–66.

[Pra+16] P. Prasanna, K. J. Dana, N. Gucunski, B. B. Basily, H. M. La, R. S. Lim,
and H. Parvardeh. “Automated Crack Detection on Concrete Bridges”.
In: IEEE Transactions on Automation Science and Engineering 13.2 (2016),
pp. 591–599.

[Ram+07] F. Rameau, D. Sidibe, C. Demonceaux, and D. Fofi. “Tracking moving
objects with a catadioptric sensor using particle filter”. In: IEEE 11th In-
ternational Conference onComputer Vision Workshops (2007), pp. 328–334.



BIBLIOGRAPHY 137

[RF17] J. Redmon and A. Farhadi. “YOLO9000: Better, Faster, Stronger”. In: IEEE
Conference on Computer Vision and Pattern Recognition (2017), pp. 6517–
6525.

[Roj10] R. Rojas. “Lucas-kanade in a nutshell”. In: Freie Universit at Berlinn, Dept.
of Computer Science, Tech. Rep (2010).

[Rus+15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. “Ima-
geNet Large Scale Visual Recognition Challenge”. In: International Journal
of Computer Vision 115.3 (2015), pp. 211–252.

[Sak+15] Y. Sakai, T. Oda, M. Ikeda, and L. Barolli. “An Object Tracking System
Based on SIFT and SURF Feature Extraction Methods”. In: 18th Interna-
tional Conference on Network-Based Information Systems (2015), pp. 561–565.

[Sco+04] G. Scotti, L. Marcenaro, C. Coelho, F. Selvaggi, and C. S. Regazzoni.
“A novel dual camera intelligent sensor for high definition 360 degrees
surveillance”. In: IEE Intelligent Distributed Surveilliance Systems (2004),
pp. 26–30.

[SF06] S. K. Sinha and P. W. Fieguth. “Segmentation of buried concrete pipe
images”. In: Automation in Construction 15.1 (2006), pp. 47 –57.

[Sha+17] S. Shaoqing, K. He, R. Girshick, and J. Sun. “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 39.6 (2017), pp. 1137–
1149.

[SNH12] H. Shuoa, W. Nab, and S. Huajunc. “Object Tracking Method Based on
SURF”. In: Applied Mechanics and Materials (2012), pp. 351–356.

[SS08] D. Scaramuzza and R. Siegwart. “Appearance-Guided Monocular Om-
nidirectional Visual Odometry for Outdoor Ground Vehicles”. In: IEEE
Transactions on Robotics 24.5 (2008), pp. 1015–1026.

[Ste+02] E. Stella, P. Mazzeo, M. Nitti, G. Cicirelli, A. Distante, and T. D’Orazio.
“Visual recognition of missing fastening elements for railroad mainte-
nance”. In: IEEE 5th International Conference on Intelligent Transportation
Systems (2002), pp. 94–99.

[SZ14] K. Simonyan and A. Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: IEEE Conference on Computer Vision and
Pattern Recognition (2014), arXiv preprint arXiv:1409.1556.

[Tab+18] "S. A. H. Tabatabaei, A. Delforouzi, M. H. Khan, T. Wesener, and M.
Grzegorzek". “Automatic Detection of the Cracks on the Concrete Rail-
way Sleepers”. In: International Journal of Pattern Recognition and Artificial
Intelligence (2018).

[Uij+13] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeul-
ders. “Selective search for object recognition.” In: International Journal of
Computer Vision (2013).



BIBLIOGRAPHY 138

[Wan+18] C. Wang, L. Zhang, L. Xie, and J. Yuan. “Kernel Cross-Correlator”. In:
arXiv:1709.05936 (2018).

[Wen+16] L. Wen, Z. Lei, S. Lyu, S. Z. Li, and M. H. Yang. “Exploiting Hierar-
chical Dense Structures on Hypergraphs for Multi-Object Tracking”. In:
IEEE Transactions on pattern analysis and machine intelligence 38.10 (2016),
pp. 1983–1996.

[WK16] G. S. Walia and R. Kapoor. “High-Speed Tracking with Kernelized Corre-
lation Filters”. In: Multimedia Tools and Applications 75.23 (2016), pp. 583–
596.

[WN07] B. Wu and R. Nevatia. “Detection and Tracking of Multiple, Partially
Occluded Humans by Bayesian Combination of Edgelet based Part De-
tectors”. In: International Journal of Computer Vision 75.2 (2007), pp. 247–
266.

[WY10] L. Wang and N. H. C. Yung. “Extraction of Moving Objects From Their
Background Based on Multiple Adaptive Thresholds and Boundary Eval-
uation”. In: IEEE Transactions on Intelligent Transportation Systems 11.1
(2010), pp. 40–51.

[WY13] N. Wang and D. Y. Yeung. “Learning a Deep Compact Image Represen-
tation for Visual Tracking”. In: Advances in Neural Information Processing
Systems (2013), pp. 809–817.

[WYX14] L. Wang, N. H. C. Yung, and L. Xu. “Multiple-Human Tracking by Iter-
ative Data Association and Detection Update”. In: IEEE Transactions on
Intelligent Transportation Systems 15.5 (2014), pp. 1886–1899.

[WZM12] D. Wang, Q. Zhang, and J. Morris. “Distributed Markov Chain Monte
Carlo kernel based particle filtering for object tracking”. In: Multimedia
Tools and Applications 56.2 (2012), pp. 303–314.

[X.W+16] X.Wang, E. Tueretken, Franc, O. Fleuret, and P. Fua. “Tracking Interacting
Objects Using Intertwined Flows”. In: IEEE Transactions on pattern analysis
and machine intelligence 38.11 (2016), pp. 2312–2326.

[Xio+12] Z. H. Xiong, I. Cheng, W. Chen, A. Basu, and M. J. Zhang. “Depth space
partitioning for omni-stereo object tracking”. In: IET Computer Vision 6.2
(2012), pp. 153–163. issn: 1751-9632.

[XSL15] J. Xiao, R. Stolkin, and A. Leonardis. “Single target tracking using adaptive
clustered decision trees and dynamic multi-level appearance models”. In:
IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp. 4978–
4987.

[YC18] S. Yun and J. Choi. “Action-Driven Visual Object Tracking With Deep
Reinforcement Learning”. In: IEEE Transactions on Neural Networks and
Learning Systems 29 (2018), pp. 2239–2252.

[YL18] R. Yao and G. Lin. “Semantics-Aware Visual Object Tracking”. In: IEEE
Transactions on Circuits and Systems for Video Technology (2018), pp. 1–14.



BIBLIOGRAPHY 139

[YNH08] T. Yamaguchi, S. Nakamura, and S. Hashimoto. “An efficient crack de-
tection method using percolation-based image processing”. In: 3rd IEEE
Conference on Industrial Electronics and Applications (2008), pp. 1875–1880.

[ZH06] Z. Zivkovic and F. v. d. Heijden. “Efficient adaptive density estimation per
image pixel for the task of background subtraction”. In: Pattern Recognition
Letters 27.7 (2006), pp. 773–780.

[ZH13] D. Zhou and D. Hu. “A robust object tracking algorithm based on SURF”.
In: International Conference on Wireless Communications and Signal Processing
(2013), pp. 1–5.

[Zha+15] Y. Zhang, X. Chen, J. Li, C. Wang, and C. Xia. “Semantic Object Segmen-
tation via Detection in Weakly Labeled Video”. In: 2015, pp. 3641–3649.

[Zha+17] B. Zhang, Z. Li, X. Cao, Q. Ye, C. Chen, L. Shen, A. Perina, and R. Ji. “Out-
put Constraint Transfer for Kernelized Correlation Filter in Tracking”. In:
IEEE Transactions on Systems, Man, and Cybernetics: Systems 47.4 (2017),
pp. 693–703.

[ZLS17] A. Zirakchi, C. L. Lundberg, and H. E. Sevil. “Omni Directional Mov-
ing Object Detection and Tracking With Virtual Reality Feedback”. In:
Conference on Dynamic Systems and Control (2017).

[Zor17a] M. Zorzi. “Convergence analysis of a family of robust Kalman filters based
on the contraction principle”. In: SIAM Journal on Optimization Control 55
(2017), pp. 3116–3131.

[Zor17b] M. Zorzi. “Robust Kalman Filtering Under Model Perturbations”. In: IEEE
Transactions on Automatic Control 62 (2017), pp. 2902–2907.

[ZS18] F. Zheng and L. Shao. “A Winner-Take-All Strategy for Improved Object
Tracking”. In: IEEE Transactions on Image Processing 27 (2018), pp. 4302–
4313.


	Title page
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Fundamental Concept
	1.2 Motivation
	1.3 Contribution
	1.4 Overview

	2 Object Tracking in Rectangular Video
	2.1 Problem Statement
	2.2 RelatedWork
	2.3 Training-based Object Detection
	2.4 Online Tracker
	2.5 O�ine Tracker
	2.6 Experiments and Results
	2.7 Conclusions and Future Trends

	3 Object Tracking in Polar Video
	3.1 Problem Statement
	3.2 RelatedWork
	3.3 360-degree versus Omnidirectional Camera
	3.4 Object Tracking by Modified TLD
	3.5 Object Tracking using YOLO Detector
	3.6 Polar Object Tracking in 360-degree Video
	3.7 Object Tracking using Feature Descriptor and Matching
	3.8 Polar Model for Fast Object Tracking in 360-degree Video
	3.9 Experiments and Results
	3.10 Conclusions and Future Trends

	4 Railway Crack Detection
	4.1 Problem Statement
	4.2 RelatedWork
	4.3 Sleeper and Crack Detection
	4.4 Experiments and Results
	4.5 Conclusions and Future Trends

	5 Conclusion and Future Work
	5.1 Thesis Summary
	5.2 Thesis Conclusion
	5.3 Future Trends

	List of Figures
	List of Tables
	Bibliography



