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Chapter 1

Introduction

1.1 Preliminary notes

In many fields of human activity one faces the necessity of decision making. In production

planning one should decide how many product units to produce in each period, and in

manufacturing one should decide, for instance, how to schedule jobs. In other words, one

should select one of many possible variants, of many solutions, and all of them are of different

quality which can be measured by different criteria like cost or time needed to implement a

solution. Obviously, it is reasonable to choose the best one, i.e., an optimal solution. When

we deal with a single quality parameter, say, production cost, which we want to minimize

or maximize, it is usually easy to determine whether one solution is better than another. If

we additionally have a small number of alternatives, we can make an exhaustive search to

determine the best one. It would be an acceptable way, but there is a serious obstacle – time

required to perform the necessary amount of computations. For instance, provided that we

use the exhaustive search, we must explore more than (n − 2)! paths in a complete graph

with arbitrary positive edge weights to find a shortest path (i.e., one of minimum weight)

connecting two given nodes. If n = 50, we need billions of years to search all paths even

using a fastest computer. But most often we cannot afford even a couple of days just to reach

such a modest aim as a solution having minimum cost. Therefore, we need a better way.

For the shortest path problem we have mentioned there is a simple algorithm designed by
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Dijkstra [20] which needs only αn2 arithmetic operations where α is a constant. This means

that a common personal computer will need less than a second to find a shortest path for

n = 50. The algorithm of Dijkstra is a good illustration both to the concept of polynomial

algorithms and to the fact that sometimes problems that seem to be not solvable in the

period of entire human life require seconds to be solved provided that we use an appropriate

algorithm. This also reflects the main purpose of combinatorial optimization, the branch of

applied mathematics, studying algorithms which are ”better than finite” [23].

Combinatorial optimization problems have deterministic nature, i.e., all problem param-

eters are known in advance, whereas in many real situations necessary information is often

not completely available. However, combinatorial optimization models and methods can

successively be applied even in this case, fore instance, if model parameters such as demand,

costs, job release dates, job processing times, etc. are forecasted. Here different methods

from statistics and probability theory may be used to guess these values. After making

a forecast, a model can be treated as deterministic and then corresponding combinatorial

optimization problems are simply formulated using forecast values. Then, having obtained

an optimal or approximately optimal solution, one can use them when planning certain ac-

tivities. Every time when additional and more precise information comes, it is reasonable to

correct the problem formulation and solve the problem once more taking into account that

a part of the previous solution has been already implemented.

There are many combinatorial optimization problems originating from economics and

having various applications there. Some of them, like lot-sizing and scheduling problems,

are studied in this thesis.

Let us consider the thesis structure. In Chapter 2, different kinds of a well known single-

item capacitated economic lot-sizing problem are studied and different classes of algorithms,

like polynomial, subexponential, and approximate, are designed for this problem. In the

first sections, we begin with a classical formulation where inventory at the end of every time

period is equal to the inventory at the end of the previous period (or, equivalently, at the

beginning of the present period) plus a production level in the considered period, and minus

the demand in this time period. At the end of Chapter 2, we consider a more complicated
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case where the effort needed to produce a product unit may vary not only from period to

period, but also within an individual period. While the general case of this problem is shown

to be non-approximable, there exist interesting special cases possessing fully polynomial time

approximation schemes, a sort of polynomial algorithms finding a solution with any desired

precision of approximation.

Chapter 3 is devoted to scheduling problems with parallel machines. A scheduling prob-

lem can roughly be formulated as follows. Given processing times for some jobs, schedule

this jobs so as a) to meet certain restrictions taking into account a machine environment and

additional restrictions like release or due dates; and b) to minimize an objective function,

say, the total average completion time.

In the first section of Chapter 3, we will discuss a local search approach based on large-

scale neighborhoods. Finding local optima in some of such neighborhoods may be an NP-

hard problem. Apart polynomially searchable neighborhoods having exponential size, we

consider a neighborhood searchable in pseudopolynomial time by a dynamic programming

algorithm which may be converted into a fully polynomial time approximation scheme. We

will also discuss some numerical experiments with randomly generated and real-world in-

stances.

The second section of Chapter 3 deals with a two-machine problem where the objective

is to minimize a nonlinear function. It is shown, that this scheduling problem generalizes

many of those previously considered in the literature. We design an FPTAS for this problem.

The algorithm is based on a relaxation of the feasible domain, changing the objective func-

tion, and studying properties of the recursive formulation of the problem obtained. Unlike

the single-item capacitated lot-sizing problem, we need, apart monotony, some additional

assumptions on the cost functions. The reason is that a recursive function upon which

our dynamic programming algorithm is based has more than one variable which may take

non-polynomially many values on the feasible domain. This leads to a more complicated

approach than in the case of the lot-sizing problem.

One can see from the thesis structure that the thesis mostly concerns polynomial ap-

proximation algorithms. The methods used in the thesis are mostly based on analyzing how
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costs of optimal solutions react to changes in problem data, i.e., on a sort of sensitivity anal-

ysis. It will be shown by different examples that additional information hidden in so-called

recursive formulations of optimization problems is useful when designing algorithms having

some desired efficiency properties.

1.2 Lot-sizing and scheduling models

To introduce a sort of application areas where optimization problems considered in the thesis

may arise, in the following two subsections we will discuss informally lot-sizing and scheduling

models and optimization problems connected with them 1. We postpone the more detailed

and formal discussion about lot-sizing and scheduling problems to introductory sections of

the corresponding chapters.

Production and scheduling models and optimization problems related to them correspond

to different levels of decision making. While production models deal with questions like how

many of which items should be produced in different time periods, scheduling models are

intended to find out in which order and by which equipment these items should be produced.

Let us discuss basic notions of lot-sizing and scheduling more extensively.

1.2.1 Lot-sizing models

Production and inventory management are some of those areas where the study of lot-sizing

models is originating from. One of simplest lot-sizing models assumes stationarity of the

demand rate and production costs. It is called an Economic Order Quantity (EOQ) model.

One of those who developed a corresponding EOQ formula to find an optimal production

quantity was Harris [32] who introduced it in 1913. (One can also refer to a paper by Zangwill

[62] and a technical note by Stadtler [53] for analysis of EOQ formula.) In this thesis, we will

1One can consider a model as a collection of fixed and variable parameters, with perhaps interrelations

between them, describing different processes or phenomenons, while a problem contains additionally a ques-

tion asking how to tune model parameters in order to attain certain goals. In optimization problems such

goal is minimizing or maximizing some function, called objective function, depending on model parameters.
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consider so-called dynamic lot-sizing models where demand, costs, and production capacities

may change from period to period. One of the first publications on such dynamic single-

item economic lot-sizing problems was a paper of Wagner and Whitin [59] which appeared

in Management Science in 1958. In that paper, Wagner and Whitin designed a dynamic

programming algorithm for a case with unlimited production capacity at every time period.

It is convenient to begin the discussion of lot-sizing models with the common terminology

of inventory and production management which includes such notions as planning horizon,

time period, production level, production capacity, inventory level, backlogging, setup costs,

production costs, demand, etc.

Assume for a while that only a single product is produced.

A planning horizon is usually defined as the length of time the model projects into the

future. A planning horizon is subdivided into time periods. For example, if a planning

horizon is one year, then it can be subdivided into quarters or months. A production plan

contains information about how many product units should be produced in each period. In

other words, for every period a production plan determines a production level or, equivalently,

lot-size.

At every time period a production level is upper bounded by a production capacity

which is a maximum amount of product units that can be produced in a corresponding

period. Production capacity depends on the amount of resources needed for production like

machines and working power. If production capacity remains the same from period to period

we deal with a so-called constant capacity. In many cases economic lot-sizing problems with

constant capacities are easier to solve than more general variants where capacity varies over

time. (See for instance an efficient algorithm of van Hoesel and Wagelmans [58] for the case

of constant production capacities). It may happen that production capacity is unlimited.

Lot-sizing problems with unlimited capacity are called uncapacitated. It is not hard to see

that this is a special case of lot-sizing problems with constant capacities. (We just assume

production capacity to be sufficiently large).

In the deterministic lot-sizing models that we are considering demand is known in advance

for every time period (it can be also some expected value). Due to influence of different
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factors, it is often reasonable to produce more than is required at the moment. This means

that some amount of the product is not demanded immediately after it has been produced.

In this case it forms inventory which should be stored using storage facilities maintaining

conditions like temperature and humidity necessary for holding the inventory.

Sometimes there is not enough of a product to satisfy demand or it is even not possible

to satisfy demand due to insufficient production capacity, i.e., in other words, an inventory

level is negative. In this case we are talking about backlogging, which can be interpreted

as an amount of a product produced or acquired at future periods to satisfy demand of the

present period.

Any production plan has its own cost consisting in turn of such components as production,

inventory, and holding-backlogging costs. The structure of these cost components may differ

from one manufacturing system to another. The most basic ingredients of production costs

are setup costs and unit production costs. A setup cost is usually incurred when production

takes place. This is a fixed cost which can be related to the necessity of setting up or

adjusting the equipment before the production starts. Unit production costs are calculated

per product unit. They may include costs of resources and labor used to produce it.

Holding costs are those which arise when using storage facilities for inventory. These

costs may include both fixed components and those that depend on the inventory level. In

many manufacturing models holding costs are linear and therefore can be incorporated in

the production cost structure provided that the model does not admit backlogging. Let us

explain this more precisely. Let ht be a cost of holding a product unit during period t. Let

It =
∑t

i=1(xi − di) be the inventory level (xi are production levels in corresponding periods

and di are demand values), i.e., the difference between the total production level
∑t

i=1 xi

by the end of period t and the total demand
∑t

i=1 di by this period. Then the holding cost

is equal to htIt =
∑t

i=1 htxi − ht
∑t

i=1 di. The term ht
∑t

i=1 di is constant for a particular

model and can be omitted when solving the related optimization problem. Terms htxi can

be added to the corresponding production costs in periods i. In that way, this model reduces

to one without holding costs.

As we have mentioned before, in some lot-sizing models inventory levels can be negative.



Lot-sizing and scheduling models 7

In this case backlogging costs should be included into the cost structure. These costs are

often interpreted as a kind of penalty taken because demand has been not satisfied on

time. Setting backlogging costs to be sufficiently large, we may come to a lot-sizing problem

without backlogging since in this case it is more profitable to satisfy demand on time.

The objective function consists so far of two main types of cost functions: production

cost functions (they may include setup costs and unit production costs) depending on pro-

duction levels and holding-backlogging cost functions depending on inventory levels. These

cost functions are known in advance at each time period. The shape of these functions may

depend on different factors. In many situations concavity of cost functions seems to be a

reasonable assumption due to the effect of economies of scale when the per unit production

cost decreases as the production level increases. Sometimes however the opposite effect of

diseconomies of scale takes place. In this case, the per unit production cost grows beginning

with a certain production level. Then a production cost function looks like in Figure 1.1

where Q is a production level after which the per unit production cost grows. The circum-

stances under which this effect may show up depend on a management structure, the size

of the company, its age, the situation at the market, etc. For instance, a firm may need to

modernize the equipment to increase productivity or to employ additional personnel which

is not yet familiar with specifics of the manufacturing at the firm and therefore requires

learning. All this implies additional expenses per product unit. More information about

economic properties of production costs and more examples can be found in the work of

Canbäck [12].

The described model reflects basic common features of a huge variety of economic lot-

sizing problems where the objective is to find an optimal production plan (i.e., one having

minimum cost) satisfying all the restrictions imposed by a corresponding production model.

Note that a related optimization problem can be described in different ways depending on

the supposed methods for solving it.

One distinguishes between single-item and multi-item economic lot-sizing problems (see

for instance the book by Tempelmeier [55] for more information). In single-item economic

lot-sizing problems only a single product type is considered. This is exactly the problem we
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Figure 1.1: Economies and diseconomies of scale.

have already described. Multi-item lot-sizing problems cover more general models with many

product types. Usually they have additional restrictions linking product items. The reason

is that production of different product types may require the same resources. For instance, a

plant produces seamless steel pipes and welded steel pipes. (Seamless steel pipes are usually

used to transport gas, while welded pipes can be used in the construction of buildings.) For

both of these product types steel is used. Since steel is a limited resource, one should think

about how to share it between these two product items at every time period, i.e, there is a

restriction linking them.

Both single- and multi-item economic lot-sizing problems are NP-hard in their general

form (the complexity results concerning lot-sizing problems can be found in the paper written

by Bitran and Yanasse [7]). Branch-and-bound methods are most popular for multi-item

lot-sizing problems (see for instance papers of Constantino [18] and [19], Pochet [46], Pochet

and Wolsey [47], and a survey of Belvaux and Wolsey [5]), while different variants of dynamic

programming algorithms are mostly used for single-item cases (see a paper of Chen et al.

[13], and papers of van Hoesel and Wagelmans [57] and [58]). Note that, since single-item

economic lot-sizing problems are included in the structure of multi-item ones, one can use

methods for solving single-item problems as local search algorithms for multi-item economic

lot-sizing problems.
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Figure 1.2: Return to scale.

The classical lot-sizing model [59] does not take into account the effect of returns to scale.

Remind that returns to scale refer to technical properties of production showing how output

changes if we increase the quantity of all input factors by the same amount. Decreasing

returns to scale mean that the output grows by less than that amount. If the output

increases by more than that amount, we deal with increasing returns to scale. (Examples for

both cases are depicted in Figure 1.2.) In other words, production levels may be functions

depending on the mentioned amount by which we increase input factors. This leads to a

generalization of the classical economic lot-sizing problem which we will study in Section

2.6.

1.2.2 Scheduling models

When planning a manufacturing process, a common question arising among others is which

job (or operation), at which time, and by which machine should be processed. In other

words, the question is how to schedule jobs under certain conditions like machine or re-

source availability. Different schedules have different values of, say, the average completion

time of all jobs or the completion time of the last job. Optimization of these parameters

allows to considerably increase effectiveness of a manufacturing system. Nowadays many

books on management science, logistics, and production planning include basic information
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about scheduling problems, i.e., optimization problems connected with scheduling models

(see for instance the book of Domschke and Drexl [21] on operations research and the book

of Thonemann [56] on operations management). There is a huge variety of such problems,

and their classification contains a huge amount of optimization criteria. Having not in mind

to discuss a classification of scheduling problems in detail, we will rather sketch their basic

features. More classification details as well as algorithms to solve scheduling problems can

be found, for instance, in the books by BÃlażewicz et al. [9] and Pinedo [45].

A scheduling model usually includes a certain amount of jobs which are to be processed

by several machines or a single machine. Each job possesses its own processing time which

may vary depending on a machine which is assigned to process the job. A machine may only

process a single job at a time. We may think about a machine as a single unit of a resource

which is available at every time. In this case every job requires one unit of resource. (We may

extend the model to the case when different jobs require different amounts of resource. Then

we come to more general project scheduling models which are not considered in the present

thesis.) Depending on the model restrictions, jobs should be processed either preemptively

or non-preemptively. If jobs are allowed to be processed preemptively, then processing a job

can be interrupted at any time and continued after a while. Otherwise, no interruptions

of job processing are allowed which means that once a machine begins to process a job, it

should be competed without any interruptions.

There are different reasons which cause such subdivision of scheduling models into those

with preemptions and those without them. For instance, in semiconductor industry it is

usually not allowed to interrupt the process of annealing a wafer both in the case of a so-

called rapid thermal anneal and in the case of a furnace anneal. This is an example of how

production technology influences restrictions of a scheduling model.

An example of the case when preemptions are not only allowed but often seem to be

a most reasonable issue comes from the area of multitasking computer operating systems.

These systems execute software processes in such a way that they seem to run at the same

time. This illusion is attained by scheduling processes preemptively: an operating system

allows a processor to execute a small portion of one process, then a small portion of another
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process, and so on until all processes are completed. Since these portions are not too big,

this creates an illusion that the processes are running simultaneously. If these processes were

allowed to be executed only one after another, i.e., non-preemptively, it would be annoying

for a user since he could not, for instance, quickly switch between different applications

and easily transfer the data from one application to another. This is an example of how

optimization goals (in this case convenience for a user) may influence scheduling model

restrictions.

Apart processing times, release and due dates are important characteristics of jobs. A

release date is the time at which a job is available to be processed. Due dates are often

included into optimization criteria which impose a sort of penalty if a completion time of a

job exceeds a corresponding due date.

Scheduling models may also differ by machine types used to process jobs. Machines are

identical if they have the same characteristics and are able to process the same set of jobs.

Uniform machines are those which may differ from each other by their speed. In the case of

uniform machines processing times of a job at different machines may differ only by a factor

depending on a machine. (In Subsection 3.3.3 we will consider a generalization of the notion

of uniform machines to the case when machine speed may vary over time.) For unrelated

machines this factor may also depend on a job. One can say that unrelated machines are

specialized in contrast to uniform machines.

Observe now common optimization criteria for scheduling problems. One of them is the

makespan (schedule length). This is the maximum job completion time in a schedule. The

makespan has to be minimized provided that we would like to process all the jobs a soon as

possible. A flow time of a job in some schedule is a difference between a completion time

of this job and its release date. I.e., a flow time is simply the time that a job spends in the

system. Average flow time of jobs is an important optimization criterion when scheduling

manufacturing processes. Note that minimizing total flow time is equivalent to both mini-

mizing average completion time and total completion time which is a sum of job completion

times.
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1.3 Notation and terminology

In this section, we give some background needed to understand the subsequent chapters.

We use standard terminology and notation, and therefore we will rather sketch definitions

than give them formally. More details, especially on complexity theory, can be found, for

instance, in the book of Korte and Vygen [39].

1.3.1 Sets

We will use notation [a, b] for a set {a, a+1, . . . , b} of integers. If a > b, then [a, b] is empty.

We will call such sets intervals of integers or simply intervals.

By R, Z, and Q we denote the set of real, integer, and rational numbers, respectively. If

we write S+ or S++ for a set S ⊆ R, this means that we take only nonnegative or positive

elements of this set, respectively. In the same way we use notations S− and S−− for subsets

of nonpositive and negative elements.

In algorithms and computer programs implementing these algorithms, different combi-

natorial structures are applied to represent sets. Lists, priority queues, and heaps are used

to store them. These structures allow to access elements of the sets efficiently. With respect

to the present thesis, from the algorithmic point of view, it is not so important which data

structure is selected. In most of the algorithms that we will consider, the order in which

elements of sets are accessed does not play any role and therefore if we apply a certain oper-

ation to all elements of a set, then we may assume that each of its elements may be accessed

in a single elementary step.

1.3.2 Algorithms and complexity

An algorithm may informally be defined as a sequence of elementary (or basic) steps (or op-

erations) which transform valid input data (or simply input) to output data (or output). An

elementary step may be a variable assignment, random access to a variable, and any of simple

arithmetic operations like addition, subtraction, multiplication, division, and comparison of

numbers.
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For instance, an input for the simplex method consists of a set of linear inequalities and

a linear objective function. The simplex method generates an optimal solution, if it exists,

or recognizes that there is no feasible solution or the linear problem is unbounded.

Let A be an algorithm for a set of valid inputs P and let f : P → Z++ be a positive

function defined on all these inputs. If there exists a constant α such that A terminates

computation after at most αf(I) elementary steps for any input I, then we say that A runs

in O(f) time or, equivalently, the running time (or time complexity) of A is O(f). (One can

say that notation O(·) suppresses a constant.) Function O(f) is called the time complexity

estimation function of algorithm A.

Let us consider some examples. Assume that there exists an algorithm for some linear

programming problem which performs at most 5n + 1 elementary steps to find an optimal

solution to any instance with n variables. This means that this algorithm runs in O(n) time.

Dijkstra’s algorithm makes at most αn2 steps where α is constant to find a path of minimum

weight in a graph with n nodes and without cycles of negative weight. This means that

Dijkstra’s algorithm runs in O(n2) time.

Further, we rely upon such widely known computational model as a RAM machine.

(Abbreviation RAM stands for Random Access Memory.) The RAM machine consists of

an infinite array of memory cells, each possessing infinite capacity. Any memory cell may

contain an integer number. (Remind that rational numbers can be encoded as pairs of

integers.) Thus, any input I in this computational model is just some sequence of integers

(a1, . . . , an). A length size(a) of a (0, 1)−string encoding some integer number a is called

the size of integer a. To encode a, one needs dlog(|a|+ 1)e bits and one additional bit for a

sign. Thus, size(a) = dlog(|a|+1)e+1 = O(log(|a|+1)). (Further we often write O(log a) to

shorten notation.) A size size(I) of an input I is a total length of all integers forming this

instance. By this definition, if I = (a1, . . . , an), then size(I) = O(
∑n

i=1 log ai). Input data

of many algorithms consist of combinatorial objects like graphs, matrices, and polyhedra

that can be described by sequences of numbers. A size of such an object is a binary length

of a corresponding sequence of integer numbers. (We will use notation size(X) for the size

of some combinatorial object X.) For instance, an integer-valued m × n matrix A = (aij)
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can be written as a sequence

m,n, a11, . . . , a1n, a21, . . . , a2n, . . . , am1, . . . , amn

which can be encoded using

size(A) =
m∑

i=1

n∑

j=1

size(aij) + size(m) + size(n)

bits. Analogously, the size of an m−vector b is equal to
∑m

i=1 size(bi) + size(m), and the

size of n−vector c equals
∑n

j=1 size(cj) + size(n). Therefore, we need at most size(A) +

size(b) + size(c) bits to encode an input consisting of a linear program

min cx

s.t. Ax ≤ b.

Consider an example where A =


 1 2

3 4


 , b =


 1

2


 , and c = [1, 1]. Values 1, 2, 3, and

4 can be encoded as (0, 1)−strings 1, 10, 11, and 100, respectively. The following sequence

contains complete information about this linear program:

10, 10,︸ ︷︷ ︸
m,n

1, 10, 11, 100,︸ ︷︷ ︸
A

1, 10,︸ ︷︷ ︸
b

1, 1︸︷︷︸
c

Let poly(·) be some polynomial with positive coefficients. If the complexity function f(·)

mentioned earlier is defined as f(I) = poly(size(I)) over valid inputs I, then a corresponding

algorithm is said to be polynomial. Equivalently, one says that such an algorithm runs in

polynomial time. While polynomial algorithms are usually considered to be efficient ones,

there are algorithms which may perform exponentially many (of the instance size) basic steps

for some problem instances.

One also distinguishes pseudopolynomial algorithms. An algorithm is said to run in

pseudopolynomial time if for any valid input I = (a1, . . . , an) it finds an optimal solution

in O(poly(
∑n

i=1 |ai|)) time where poly(·) is some polynomial. All polynomial algorithms

are also pseudopolynomial. There exist pseudopolynomial algorithms for some of NP-hard

problems.
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1.3.3 Optimization problems

Informally, a problem is a set of instances and a task. In combinatorial optimization, one

distinguishes between decision and optimization problems. In a decision problem a task is

to verify if a certain predicate holds. For instance, given a system of linear inequalities,

verify if there is a vector satisfying this system. In an optimization problem a task is to find

a solution which optimizes (minimizes or maximizes) a function on a given set. Both the

classes, optimization and decision problems, are closely related to each other. It is often that

solving optimization problems boils down to solving decision problems and vice versa.

An instance of a minimization problem can be written as

minF (x)

s.t. x ∈ D

where function F (·) belongs to a family F(D) of polynomially computable functions and D

belongs to a family D of polynomially computable sets. (Under polynomially computable

sets we understand those for which we may verify if a given object belongs to it in time

polynomial of the instance size.) The abbreviation ”s.t.” in the above description stands

for ”subject to”. Each element x of the set D is called a feasible solution. Thus, D is a set

of feasible solutions, and the objective is to minimize F (x) subject to x ∈ D. Sometimes a

set of feasible solutions is called a feasible domain or a feasible set. F(·) is a mapping from

the family D of feasible domains to a set of functions. Such dependence of an objective

function set on a feasible domain is necessary to provide compatibility of objective functions

and feasible sets. For instance, if D is a subset of integer n−vectors, then F(D) may be the

set of all rational linear functions of n arguments.

In the described problem the task is to find a feasible solution x with minimum objective

value F (x). A feasible solution minimizing the function F (·) is called optimal.

An optimization problem P so far is a set

P = {(F,D, goal)|F ∈ F(D), D ∈ D}

of instances (F,D, goal) where goal may be equal to min or max depending on the kind
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of optimization problems we consider: minimization or maximization ones. We will use

notation OPT (I) to denote an optimal value (the minimum or maximum objective value of

a feasible solution) of a problem instance I. In the present thesis, we will mostly consider

minimization problems.

Assume that D is a family of all polyhedra D = {x ∈ Qn|Ax ≤ b} where n,m ∈ Z++,

b ∈ Qm, and A ∈ Qn×m. For every such polyhedron D define F(D) as a family of all

functions of the form min
∑n

j=1 cjxj, where cj ∈ Q for all j ∈ [1, n], defined on the set of

integer n−vectors x. Then we might deal with an integer linear problem each instance of

which may be presented in the form

min
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi, ∀i ∈ [1,m],

xj ∈ Z, j ∈ [1, n].

where aij, i ∈ [1,m], j ∈ [1, n], are coefficients of matrix A.

We will also use sometimes the notation min{F (x)|x ∈ D} for optimization problems.

In this case the above mentioned integer linear problem is written as min{cx|Ax ≤ b}.

Polynomial algorithms are usually considered to be the best we can hope for when dealing

with optimization problems. For not many of them polynomial algorithms are known. Basi-

cally, the problems arising in practical situations are NP-hard2. An NP-hard problem is that

to which any optimization problem reduces in polynomial time. (We say that optimization

problem P ′ polynomially reduces to optimization problem P , if there exists some algorithm

A for problem P ′ performing polynomially many basic operations and calls of an algorithm

solving problem P . In other words, algorithm A uses an oracle (i.e., the algorithm for P) to

access optimal solutions of instances of problem P . ) There is a famous mathematical prob-

lem which can roughly be formulated as follows: does there exist a polynomial algorithm

for any optimization problem?3 When a problem is known to be NP-hard, which means

2Abbreviation ”NP” stands for ”Nondeterministic polynomial”. More detailed information may be found

in the book of Garey and Johnson [28].
3Further NP will denote the whole class of optimization problems. Notation P will stand for polynomially

solvable ones. The above mentioned open problem consists in verifying if P=NP.
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that any optimization problem can be polynomially reduced to it, then any proof showing

that there is a polynomial algorithm to this NP-hard problem is in the same time a proof of

that famous mathematical problem which is still open and seems to be very difficult to deal

with. In that way, NP-hardness is an indicator by which we can judge about computational

difficulty of solving an optimization problem.

1.3.4 Dynamic programming

Most algorithms in the thesis are based on a technique called dynamic programming. To

explain what dynamic programming is, consider a well known Knapsack Problem. Any

instance of this problem contains nonnegative integers c1, . . . , cn, w1, . . . , wn and W. The

objective is to find a subset S ⊆ [1, n] maximizing value
∑

i∈S ci subject to constraint
∑

i∈S wi ≤ W. A set S ⊆ [1, n] is uniquely defined by its characteristic vector (x1, . . . , xn)

where xi = 1 if i ∈ S and xi = 0, otherwise. An instance of this Knapsack Problem can

be written as an equivalent mathematical program

max
∑n

i=1 cixi

s.t.
∑n

i=1wixi ≤ W,

xi ∈ {0, 1}, ∀i ∈ [1, n],

where xi, i ∈ [1, n] are considered as variables. For any t ∈ [1, n] and s ∈ [0,W ] define a

reduced instance It,s getting rid of variables xt+1, . . . , xn :

max
∑t

i=1 cixi

s.t.
∑t

i=1wixi ≤ s,

xi ∈ {0, 1}, ∀i ∈ [1, t].

Let φt(s) = OPT (It,s). This is a function of arguments t and s. It is easy to verify that

max
s∈[0,W ]

φn(s) = OPT (I)
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where I is the original problem instance. Let φ0(s) = 0 if s ≥ 0 and φ0(s) = −∞, otherwise.

Value φt(s) can be expressed by the formula

φt(s) = max
xt∈{0,1}

{φt−1(s− wtxt) + ctxt}. (1.1)

In this formula, values of function φt−1(·) are used, i.e., the formula uses values of function

φ to calculate function φ. In other words, function φ is defined through itself. I.e., function

φ belongs to the class of so-called recursive functions. Formulas like (1.1), where some

terms require computation of ”previous” terms, are called recursive formulas. Informally,

a dynamic programming algorithm is that which is based on computations of a recursive

function and which follows the structure of a corresponding recursive formula.

Normally, a dynamic programming algorithm consists of two stages. At the first stage

values of a recursive function are calculated and corresponding values of arguments, at

which these function values are attained, are identified. At the second stage a dynamic

programming algorithm derives an optimal solution of the corresponding problem instance.

The first stage is often called recursion. The second stage is called backtracking. At this

stage, the information obtained at the first stage is used. The first stage of a dynamic

programming algorithm for Knapsack Problem may look as follows.

for t = 1 to n do

for s = 0 to W do

compute φt(s) by formula (1.1);

store a value of xt at which the maximum in formula (1.1) is attained;

end do

end do

To store the values of variables xt delivering a maximum in formula (1.1), one can use

an n × (W + 1)−array. Then, at the backtracking stage, whenever we need a value of

xt at which function value φt(s) is attained, we may get it in constant time reading a

corresponding location in the array. The backtracking stage constructs a characteristic

vector x0 = (x0
1, . . . , x

0
n) of an optimal set S :
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s := argmaxs∈[0,W ] φn(s);

for t = n down to 1 do

let x0
t be the value of xt at which the maximum in formula (1.1) is attained;

s := s− wtx
0
t ;

end do

The above algorithm runs in O(nW ) time which is pseudopolynomial. Many of the algo-

rithms we consider in subsequent sections follow this simple algorithmic scheme.

1.3.5 Approximation algorithms

NP-hard optimization problems are subdivided in turn into many classes distinguishing from

each other by different complexity aspects. For instance, NP-hard optimization problems

differ with respect to their computational difficulty of obtaining a solution the objective value

of which is within a certain percentage of an optimum value. One of the most important

classes of approximation algorithms are fully polynomial time approximation schemes. This

name, which is usually abbreviated as FPTAS, originates from Garey and Johnson [27] and

stands for a polynomial algorithm of certain kind delivering a solution in polynomial time

with any desired precision of approximation. The systematic research on approximation

algorithms began, in many respects, with the work by Ibarra and Kim [35], who developed

the first FPTAS for the knapsack problem, and Garey and Johnson [27] who presented mostly

negative results saying that there are NP-hard problems to which a fully polynomial time

approximation scheme does not exist unless all NP-hard problems are polynomially solvable.

Let us give a formal definition. A fully polynomial time approximation scheme for a

minimization problem P is a family {Aε}ε>0 of algorithms, each solving any instance I =

(F,D,min) ∈ P with a corresponding relative error ε > 0 in time polynomial of the instance

size and 1/ε. In other words, an algorithm Aε delivers a feasible solution x ∈ D with the

objective value F (x) ≤ (1 + ε)OPT (I) in poly(size(I), 1/ε) time where poly(·, ·) is some

polynomial of two variables. Such solution x is called an ε−approximate solution of instance



Notation and terminology 20

I.

If P is a maximization problem, ε−approximation solutions x to its instances I are

defined as those which satisfy condition (1 + ε)F (x) ≥ OPT (I). The remaining part of the

definition of an FPTAS for maximization problems is the same as for minimization ones.

The subclass of NP-hard optimization problems for which fully polynomial time approx-

imation schemes have been designed is not very big. For many problems it has been proven

that there is no polynomial algorithm solving them with a constant or polynomially bounded

relative error unless P=NP. Such problems are called nonapproximable with a relative error

of corresponding type.

The FPTAS of Ibarra and Kim can be adapted to some special cases of the single-item

capacitated economic lot-sizing (CELS) problem. Compared with the knapsack problem, the

CELS problem has a more complex structure requiring specific techniques to investigate. For

the CELS problem there had no polynomial algorithm been known with a guaranteed perfor-

mance until the year 2000, when van Hoesel and Wagelmans [58] developed the first FPTAS

for the case with concave holding costs and piecewise concave backlogging and production

costs with a polynomial number of pieces. The concavity conditions are however not critical

for the existence of an FPTAS for the CELS problem, as we will see later. The technique we

will discuss relies upon analysis of a recursive function related to a dynamic programming

algorithm. As we will show, similar techniques may also be used to analyze some schedul-

ing problems. The analysis of recursive functions is also useful to design polynomial and

exponential algorithms which are discussed in the next chapter.

1.3.6 Sensitivity analysis

Let us discuss the first part of the thesis’ title. This part contains the words ”sensitivity

analysis”. Speaking very generally, sensitivity analysis is a procedure which is used to find

out how output parameters of a model depend on input parameters. In this thesis we mostly

use a technique which satisfies this definition. Let us briefly sketch the idea by means of

the example of a dynamic programming algorithm from Subsection 1.3.4. That dynamic

programming algorithm relies on solving reduced instances of a given problem instance.
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Values of the recursive function φt(·) on which the dynamic programming algorithm in

Subsection 1.3.4 is based are optimal values of corresponding reduced instances. (Note

that the optimal value of the instance can be interpreted as the output of the model.)

Formulations of reduced instances differ from each other by values of some input parameters.

Optimal values of different reduced instances may however be close or equal. For instance,

it may happen that function φt(·) is constant on some interval [s1, s2]. In this case it is

sufficient to store end points of this interval and the corresponding function value to have

the complete information about function φt(·) on interval [s1, s2]. If we know how to efficiently

derive a relatively small set to which such end points must belong, this would help us to

compute function φt(·) with less effort. As it will be shown in the subsequent chapters, a

sensitivity analysis of this kind is a valuable tool either for developing polynomial exact or

approximation algorithms.

1.4 Bound improvement procedure

In the subsequent chapters we describe fully polynomial time approximation schemes for

different combinatorial optimization problems. In each of them we use a so-called bound

improvement procedure devised by Kovalyov [43].

1.4.1 Bound improvement procedure

Let P be some minimization problem. Assume that an algorithm Aε(L,U) possesses the

following properties.

(i) If L and U satisfy 0 < L ≤ OPT (I) ≤ U where I ∈ P and ε > 0, then algorithm

Aε(L,U) generates a feasible solution with objective value less than or equal to U + εL;

(ii) The time complexity of Aε(L,U) is bounded by a polynomial poly(size(I), U/(εL))

for any instance I ∈ P .

Bound improvement procedure [43]

Step 1. Set k = 1.
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Step 2. Calculate F (k) = 2k−1L and apply the algorithm A1(F
(k), 2F (k)). If it finds a solu-

tion with a value FA ≤ 3F (k), then set F 0 = F (k) and stop. Otherwise, set k = k + 1

and repeat Step 2.

Theorem 1.4.1 ([43]) If 0 < L ≤ OPT (I) ≤ U and algorithm Aε(L,U) satisfies proper-

ties (i) and (ii), then the bound improvement procedure generates a value F 0 satisfying

F 0 ≤ OPT (I) ≤ 3F 0

in O(poly(size(I), 2) log(U/L)) time.

1.4.2 Modified bound improvement procedure

An algorithm described in this subsection has been reported by Tanaev, Kovalyov, and

Shafransky in the monograph [54]. This is an improved variant of Kovalyov’s bound im-

provement procedure described in the previous subsection. In the subsequent chapters, in

most cases we use this modified variant, i.e., the name ”bound improvement procedure” will

stand most often for the modified variant.

We describe the procedure for an arbitrary minimization problem. The procedure allows

to find such a value F 0 that F 0 ≤ F ∗ ≤ 3F 0, where F ∗ is the minimum objective function

value. The procedure is based on applying a specific approximation algorithm. Below we

describe properties of this algorithm required for the procedure to be correct and efficient.

Let F ∗ > 0 and assume there exists an approximation algorithm Y (A,B) that satisfies

the following properties:

(i) For any positive numbers A and B and any problem instance, algorithm Y (A,B) finds

a feasible solution with value F Y ≤ B + A, if F ∗ ≤ B;

(ii) The running time of algorithm Y (A,B) is bounded by a polynomial poly(size, B/A)

of two variables, where size is the problem instance size in binary encoding.

Assume that lower and upper bounds are known such that 0 < L ≤ F ∗ ≤ U . If U > 3L,

then the proposed procedure finds a value F 0 such that F 0 ≤ F ∗ ≤ 3F 0.
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Hereby, a modification of a bisection search is applied to the interval [L,U ].

Bound improvement procedure (Modified)

Step 1 Set F 0 = L, j = 1, and aj = 0. Find an integer number bj such that 2bj−1L < U ≤

2bjL.

Step 2 Compute kj = d(aj + bj)/2e and F
(kj) = 2kj−1L.

Step 3 Apply algorithm Y (F (kj), 2F (kj)). There are two cases to consider.

(a) It finds a solution with value F Y ≤ 3F (kj). In this case, reset F 0 := F (kj), and if

kj = bj, then the procedure stops. If kj < bj, then set aj+1 = aj and bj+1 = kj.

(b) It finds no solution with value F Y ≤ 3F (kj). In this case, the procedure stops if

kj = bj. If kj < bj, then set aj+1 = kj and bj+1 = bj.

In both cases (a) and (b), if the procedure does not stop, then reset j := j + 1 and go

to Step 2.

Theorem 1.4.2 If values L and U satisfy 0 < L ≤ F ∗ ≤ U and algorithm Y (A,B) satisfies

properties (i) and (ii), then the bound improvement procedure finds a value F 0 such that

F 0 ≤ F ∗ ≤ 3F 0 in time O (poly(size, 2) log log(U/L)).

Proof. We first show by induction that either 2ajL ≤ F ∗ ≤ 2bjL for each j used in the

procedure or there exists an index j such that F (ki) ≤ F ∗ ≤ 3F (ki) for each i ≥ j such

that algorithm Y (F (ki), 2F (ki)) finds a solution with value F Y ≤ 3F (ki). It is clear that

2a1L ≤ F ∗ ≤ 2b1L. Assume 2ajL ≤ F ∗ ≤ 2bjL and consider an application of algorithm

Y (F (kj), 2F (kj)) for kj = d(aj + bj)/2e. If the algorithm finds no solution with value F Y ≤

3F (kj), then property (i) implies

2aj+1L = 2kjL < F ∗ ≤ 2bjL = 2bj+1L.

If it finds a solution with value F Y ≤ 3F (kj), then there are two cases to analyze: F ∗ ≤ 2F (kj)

and 2F (kj) < F ∗ ≤ F Y . In the former case,

2aj+1L = 2ajL ≤ F ∗ ≤ 2F (kj) = 2bj+1L.



Notation and terminology 24

In the latter case,

F (kj) ≤ 2F (kj) < F ∗ ≤ 3F (kj)

and bj+1 = kj. Then, for any i ≥ j + 1, inequality ki ≤ kj is satisfied. Thus, if algorithm

Y (F (ki), 2F (ki)) finds a solution, then F ∗ ≤ F Y ≤ 3F ki and

F (ki) ≤ 2F (ki) ≤ 2F (kj) < F ∗ ≤ 3F (ki).

Consider the last iteration determined by the equation kj = bj. In this case, bj = aj + 1.

By the induction assumption, we have F (kj) = 2kj−1L = 2ajL ≤ F ∗ ≤ 2bjL = 2F (kj) or

F 0 = F (ki), where i is the last iteration in which algorithm Y (F (ki), 2F (ki)) has found a

solution with value F Y ≤ 3F (ki). In the latter case, the correctness of the procedure is

proved. In the former case, by property (i), algorithm Y (F (kj), 2F (kj)) will find a solution

with value F Y ≤ 3F (kj), and therefore, F 0 = F (kj). Thus, value F 0 found by the procedure

satisfies F 0 ≤ F ∗ ≤ 3F 0.

Let us determine the time complexity of the bound improvement procedure. Since bisec-

tion search is performed in the interval [a1, b1], the number of iterations of the procedure does

not exceed O(log(b1 − a1)). From U > 2b1−1L we conclude that b1 ≤ log(U/L) + 1. In each

iteration, algorithm Y (F (kj), 2F (kj)) is applied once. Property (ii) implies that the running

time of this algorithm is O(poly(size, 2)) for any kj. Thus, the overall time complexity of

the bound improvement procedure is O(poly(size, 2) log log(U/L)).



Chapter 2

Single-item capacitated economic

lot-sizing problems

2.1 Preliminary notes

In this chapter, we consider a manufacturing system producing a single product over n time

periods. Demand dt is known in advance for every time period t ∈ [1, n]. We will mostly

concentrate on a case where product shortage is allowed. Since we consider a sort of penalty

costs on product shortage, this case is more general than one where demand at every period

should be satisfied by production in this period or in previous ones.

If It−1 denotes the inventory level at the end of time period t − 1, xt is the amount of

product produced in period t (production level), and dt is the demand in this period, then

the inventory level at the end of period t is determined through the equation

It = It−1 + xt − dt.

One can see that from the point of view of the network flow theory this is simply a flow

conservation equation: It−1 plus xt is ingoing flow, It is outgoing flow, and dt is the demand.

This is illustrated in Figure 2.1 for four time periods.

At the end of this chapter we will also consider more complex dependencies of inventory

levels on production and inventory coming from previous periods.
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Figure 2.1: Lot-sizing model with four time periods

One considers sometimes the case with additional restriction It ≥ 0. This restriction

ensures that there are no product shortages. Equivalent restrictions may include only pro-

duction levels:
t∑

i=1

xi ≥
t∑

i=1

di, ∀t ∈ [1, n].

The word ”capacitated” in the problem name reflects restrictions imposed on production

levels xt in each period t ∈ [1, n]:

0 ≤ xt ≤ ut.

An upper bound ut on production level xt is called production capacity. A production

capacity at some time period is a maximum amount of product units a manufacturing system

is able to produce. Production levels xt may be assumed to be integer which is practically

reasonable since in most cases we can choose a unit of measure that fits us best. It can be,

for instance, a batch of semiconductor chips or a barrel of oil or a single car in the automobile

industry.

For every period, there are cost functions related to production and inventory levels.

These costs are called production and holding costs, respectively. If a shortage of a product

is allowed, i.e., inventory levels are allowed to be negative, so-called backlogging costs depend-

ing on negative inventory levels are considered. (These costs may be interpreted as a kind
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Figure 2.2: Cost functions.

of penalty.) In this case both backlogging and holding costs are combined in a single func-

tion for every time period. This function is called holding-backlogging cost function. Some

production and holding-backlogging cost functions are depicted in Figure 2.2 where function

Rt(·) is a production cost function at time period t, and Ht(·) is a holding-backlogging cost

function. It is assumed that all cost functions are computable in polynomial time at any

point of their domains. Sometimes, only to simplify the exposition, we will assume that cost

functions are computable in constant time. In other words, function computation will often

be considered as a basic operation. When we consider some special cases of the lot-sizing

problem, in order to emphasis that additional restrictions on the cost structure are imposed,

we will often use small letters for production and holding-backlogging cost functions, i.e.,

sometimes we write rt(·) and ht(·) instead of Rt(·) and Ht(·).

The task in the single-item capacitated economic lot-sizing (CELS) problem is to find a

production plan (how much to produce in each period) with minimum cost.

The above formulation is a classical formulation of the CELS problem. The following

results are available. Florian et al. [26] proved that this problem is NP-hard for the case

when no backlogging is allowed, holding costs are linear and each production cost function

is a sum of a fixed setup cost (arising every time when production takes place, i.e., xt > 0)

and a linear function. More precisely, the problem they consider has the following form:
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min
∑n

t=1 rt(xt) + htIt,

s.t. It = It−1 + xt − dt, ∀t ∈ [1, n],

I0 = In = 0,

It ≥ 0, ∀t ∈ [1, n]

0 ≤ xt ≤ ut, ∀t ∈ [1, n],

xt ∈ Z, ∀t ∈ [1, n].

where rt(·) is a production cost function taking value st + ctxt if the value of argument xt is

positive and 0, otherwise. In this formulation coefficients ht are holding costs of a product

unit for each period t, values st are setup costs arising whenever the production level xt is

positive, and ct are costs of production of a product unit. Florian et al. also proved NP-

hardness of the problem under much more restrictive assumptions about cost and capacity

structure. Florian and Klein [25] developed an O(n4) algorithm for the CELS problem

where production and holding cost functions are concave. Bitran and Yanasse [7], Rosling

[48], Chung and Lin [17] and van Hoesel and Wagelmans [58] developed polynomial time

algorithms for special cases of the above formulated version of the CELS problem. The O(n3)

algorithm of van Hoesel and Wagelmans is also able to solve that problem for a more general

case when production costs rt(·) are assumed to be concave without additional structural

properties. Dynamic programming algorithms for the CELS problem were derived by Kirka

[37], Chen et al. [13] and van Hoesel and Wagelmans [58]. Branch-and-bound approaches

were suggested by Baker et al. [3], Erenguc and Aksoy [24], Chung et al. [13] and Lotfi

and Yoon [42]. Approximation algorithms were proposed by Bitran and Matsuo [6], Gavish

and Johnson [29] and van Hoesel and Wagelmans [57]. The strongest theoretical result on

approximation algorithms for the CELS problem was obtained in the latter paper. Van

Hoesel and Wagelmans developed a fully polynomial time approximation scheme (FPTAS)

for the CELS problem with piecewise concave production and backlogging cost functions

having a polynomial number of concave pieces.
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2.2 An algorithm for the case with linear costs

2.2.1 Problem formulation

We consider the following instance of the CELS problem with a linear objective function:

min
∑n

t=1 ctxt

s.t. It = It−1 + xt − dt, ∀t ∈ [1, n],

I0 = 0,

It ≥ 0, ∀t ∈ [1, n],

0 ≤ xt ≤ ut, ∀t ∈ [1, n],

xt ∈ Z, ∀t ∈ [1, n].

If the instance is feasible, i.e., the set of feasible solutions is not empty, then d1 ≤ u1 due

to the requirement that inventory levels should be nonnegative. If dt > ut at some period

t ∈ [2, n], then, without changing the set of feasible solutions one can redefine demands at

the previous and at the present period as dt−1 := dt−1 + (dt − ut) and dt := ut. Therefore,

without loss of generality we may assume that

dt ≤ ut

for every time period t ∈ [1, n]. As a consequence, if
∑t

i=1 di =
∑t

i=1 ui, then xi = ui for

all i ∈ [1, t] in every feasible solution (x, I) and we may consider an equivalent lot-sizing

problem for periods t+ 1, . . . , n. Therefore, without loss of generality, we will assume that
t∑

t=1

di <

t∑

t=1

ui

for all t ∈ [1, n].

In the above formulation coefficients ct are per unit production costs. Note that a prob-

lem with linear holding cost functions reduces to a CELS problem instance of the above

form. Namely, a cost function
∑n

t=1 atxt +
∑n

t=1 htIt (where at are production costs) can be

rewritten as
n∑

t=1

atxt +
n∑

t=1

ht

t∑

i=1

(xi − di) =
n∑

t=1

(at +
n∑

i=t

hi)xt −
n∑

t=1

ht

t∑

i=1

di.
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The term −
∑n

t=1 ht
∑t

i=1 di can be omitted without changing a set of optimal solutions. If

we denote at+
∑n

i=t hi by ct for every t ∈ [1, n], then we come to a problem with an objective

function
∑n

t=1 ctxt.

In the paper of Girlich et al. [30] it is shown that Edmonds’ greedy algorithm to solve

linear problems on polymatroids can be adapted for the CELS problem with a linear objec-

tive function. That implementation of Edmonds’ algorithm runs in O(n log n) time. (Note

that some special cases of the linear CELS problem can be solved by an O(n log n) algorithm

of Janiak and Kovalyov [36] that has been suggested for knapsack type problems.) In the

present subsection we will show that there is an alternative way exploiting sensitivity prop-

erties of the problem. A simple dynamic programming algorithm that we will consider also

runs in O(n log n) time.

2.2.2 Sensitivity analysis

For every s ∈ [0,
∑t

i=1(ui− di)] (this interval consists of all those values that inventory level

It may take provided that a solution is feasible) define φt(s) as an optimal value of a partial

instance of the form

min
∑t

i=1 cixi

s.t. Ii = Ii−1 + xi − di, ∀i ∈ [1, t],

I0 = 0,

Ii ≥ 0, ∀i ∈ [1, t],

It = s,

0 ≤ xi ≤ ui, ∀i ∈ [1, t],

xi ∈ Z, ∀i ∈ [1, t].

We will assume that φ0(0) = 0. The following recursive formula is immediately implied by

the above formulation:

φt(s) = min{ctxt + φt−1(s
′)|s = s′ + xt − dt, s

′ ∈ [0,
t−1∑

i=1

(ui − di)], xt ∈ [0, ut]}. (2.1)
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(Note that we suppose
∑0

i=1(ui− di) = 0 in this formula for t = 1.) Let [b1, b2] be an integer

interval. A function ψ : [b1, b2] → R is called convex on the integer interval [b1, b2] if and

only if an inequality

ψ(a− 1) + ψ(a+ 1)− 2ψ(a) ≥ 0, (2.2)

holds for all a ∈ [b1 + 1, b2 − 1]. Remind that, provided that ψ(·) is convex, amin is a point

at which ψ(·) attains its minimum if and only if

ψ(amin) = min{ψ(a) | a ∈ [b1, b2] ∩ [amin − 1, amin + 1]}.

Lemma 2.2.1 For every t ∈ [1, n], function φt(·) is convex and piecewise linear with the

number of pieces not exceeding t. Moreover, the following statements are true.

1. s < Qt−1 − dt ⇒ φt(s) = φt−1(s+ dt).

2. Qt−1 − dt ≤ s ≤ ut +Qt−1 − dt ⇒ φt(s) = ct(s−Qt−1 + dt) + φt−1(Qt−1).

3. s > ut +Qt−1 − dt ⇒ φt(s) = ctut + φt−1(s− ut + dt).

where

Qt−1 = max

{
Q ∈ [1,

t−1∑

i=1

(ui − di)] | φt−1(Q)− φt−1(Q− 1) ≤ ct

}
∪ {0}.

Proof. We will prove the lemma by induction.

It is easy to see that function φ1(·) is linear. A function value φ1(s) has the form

φ1(s) = c1s+ c1d1.

Let us make the following inductive assumptions for the time period t ≥ 2 :

(i) Function φt−1(·) is convex.

(ii) Function φt−1(·) is piecewise linear, each piece having a form ciα+b where i ∈ [1, t−1].

(iii) Statements 1,2, and 3 hold for the time period t− 1.
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Enumerate all linear pieces of φt−1(·) with integer numbers from 1 to some kt. Let cij be the

slope value of the linear piece with number j. The convexity of function φt−1(·) implies that

ci1 ≤ . . . ≤ cikt .

Choose index l so that

ci1 ≤ . . . ≤ cil ≤ ct ≤ cil+1
≤ . . . ≤ cikt . (2.3)

We assume that l = 0 if ct ≤ cij for all j ∈ [1, kt]. Let ∆t−1,p denote a length of an integer

interval corresponding to a linear piece of function φt−1(·) with a slope value cp. (Note that

the minimum length of such interval is equal to one.) One can see from the definition of Qt−1

that Qt−1 =
∑l

j=1 ∆t−1,ij . (If l = 0, then this value is equal to zero.) Speaking informally,

this is the point after which we should pay at least ct for every additional inventory unit at

the end of period t− 1.

Now we prove the first statement. Let s′ and xt > 0 deliver a minimum in formula (2.1).

Since s < Qt−1 − dt and s = s′ + xt − dt, we have s′ < Qt−1 − xt ≤ Qt−1. This implies the

following inequality chain:

0 ≤ ct(xt − 1) + φt−1(s
′ + 1)− (ctxt + φt−1(s

′)) =

= −ct + φt−1(s
′ + 1)− φt−1(s

′) ≤ [s′ < Qt−1] ≤ −ct + ct = 0.

According to these inequalities we may conclude that, increasing s′ by one and decreasing xt

by one we obtain new values of inventory level s′ at the end of period t− 1 and production

level xt also delivering a minimum in (2.1). In that way, among all pairs (xt, s
′) at which a

minimum is attained there is one with xt = 0. This implies the first statement.

We prove the second statement. Let some s′ such that s′ 6= Qt−1 and xt deliver a minimum

in (2.1). Since Qt−1 − dt ≤ s ≤ ut +Qt−1 − dt, value s−Qt−1 + dt belongs to the set [0, ut].

Consider two cases.

a) s′ ≤ Qt−1.
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Note that in this case s′ < Qt−1 due to our assumption that s′ 6= Qt−1. Due to the

choice of Qt−1 we have
φt−1(Qt−1)− φt−1(s

′)

Qt−1 − s′
≤ ct

and consequently

φt−1(Qt−1) ≤ ct(Qt−1 − s′) + φt−1(s
′)

which implies

ct(s−Qt−1 + dt) + φt−1(Qt−1) ≤ ct(s−Qt−1 + dt) + ct(Qt−1 − s′) + φt−1(s
′) =

= ct(s− s′ + dt) + φt−1(s
′) = ctxt + φt−1(s

′).

b) s′ > Qt−1.

In this case we have
φt−1(s

′)− φt−1(Qt−1)

s′ −Qt−1

≥ ct

from which we conclude that

ct(s
′ −Qt−1) ≤ φt−1(s

′)− φt−1(Qt−1).

Taking into account this inequality, we may write

ct(s−Qt−1 + dt) + φt−1(Qt−1) = ct(s
′ + xt −Qt−1) + φt−1(Qt−1) ≤

≤ ctxt + φt−1(s
′)− φt−1(Qt−1) + φt−1(Qt−1) = ctxt + φt−1(s

′).

It follows from both cases that xt = s − Qt−1 + dt and s′ = Qt−1, as well as the previous

values of xt and s
′, are among those at which a minimum in formula (2.1) is attained.

Statement 3 says that if we set the production level xt at capacity ut, then we have a

minimum in formula (2.1) provided that inventory level s exceeds value ut + Qt−1 − dt. To

prove this statement, we show that if the minimum in (2.1) is attained at xt < ut, then

decreasing s′ by one and increasing xt by one does not increase the overall cost. Notice that,

since condition s > ut + Qt−1 − dt holds, we have s′ + xt − dt > ut + Qt−1 − dt from which
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we deduce s′ > ut +Qt−1 − xt > Qt−1 using our assumption that xt < ut. Therefore, due to

the fact that s′ > Qt−1, we have

φt−1(s
′)− φt−1(s

′ − 1) ≥ ct.

This inequality implies

φt−1(s
′) + ctxt − (φt−1(s

′ − 1) + ct(xt + 1)) = φt−1(s
′)− φt−1(s

′ − 1)− ct ≥ 0.

Thus, decreasing s′ by one and increasing xt by one we still get a minimum in formula (2.1).

This implies the statement 3.

Note that further we will widely use the notation introduced in the proof of the above

lemma as well as statements 1-3 proved there.

2.2.3 Dynamic programming algorithm

We may represent function φt(·) as a list Lt each item of which corresponds to a linear piece.

A slope value of each linear piece is one of the coefficients ci, i ∈ [1, t], from Lemma 2.2.1.

At each list item it is therefore sufficient to store only a corresponding period number i to

have the information about a slope value. Moreover, we will not further need an explicit

computation of function φt(·) but only its slope. Therefore we store only the following

parameters at every item of list Lt :

• number of period i, and

• value ∆t,i.

The dynamic programming algorithm described below follows Lemma 2.2.1. At each

iteration of the for-loop of Step 1 it constructs list Lt representing function φt(·) using the

previously constructed list Lt−1. Step 2 of the algorithm is a backtracking step at which an

optimal solution is constructed.

Algorithm DP

Step 1 Q0 := 0;
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∆1,1 := u1 − d1;

L1 := {(1,∆1,1)}; //φ1(·) consists of a single linear piece

for t = 2 to n do

let (i,∆t−1,i) be a head of list Lt−1;

insert a new item (t, ut) into this list

so that list items remain sorted in the nondecreasing order of coefficients ci;

s := ∆t−1,i;

while s < dt do

delete head (i,∆t−1,i) of list Lt−1;

s := s+∆t−1,i;

end do

if s > dt then

(i,∆t−1,i) := (i, s− dt);

end if

denote the obtained list by Lt;

if t < n then compute Qt; end if

end do

Step 2 s := 0;

for t = n down to 1 do

if s < Qt−1 − dt then xt := 0; s := s+ dt;

else if Qt−1 − dt ≤ s ≤ ut +Qt−1 − dt then xt := s−Qt−1 + dt; s := Qt−1;

else if s > ut +Qt−1 − dt then xt := ut; s := s− ut + dt; end if

end if

end if

end do

The second step of the algorithm uses the proof of statements 1-3 in the proof of Lemma

2.2.1. Just before the while loop of Step 1 starts, the current list Lt−1 represents function

φt(s) as this function would look like provided that there would be no restriction s ≥ 0 for its
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argument s. The while loop takes into account this restriction by removing an appropriate

number of first list items. Recall that without loss of generality we have assumed dt ≤ ut.

The value ut +Qt−1 − dt is therefore nonnegative. This means, by the second statement of

Lemma 2.2.1, that an item of the form (t,∆) is contained in the list Lt constructed at the

tth iteration of the while loop. If Qt−1 − dt > 0, then, by Lemma 2.2.1, ∆ = ut.

Note that it is easy to calculate Qt in O(n) time by exploring list Lt at every iteration of

the for loop at Step 1. There is however a better way allowing to spend only O(log n) time

for calculation of Qt at each iteration. To show this, we will later assume that the set of

items of list Lt−1 is maintained at the same time as a 2-3 tree. The 2-3 trees form a subclass

of so-called B-trees which were developed by Bayer and McCreight [4]. Let us discuss in

more detail what a 2-3 tree is.

Any 2-3 tree may contain three different kinds of nodes:

a) leaves (data nodes),

b) 2-nodes, and

c) 3-nodes.

Leaves of a 2-3 tree contain the data we want to store and access. Others, both 2- and

3-nodes, are so-called information nodes that are only intended to guide us if we want to

access leaves, delete them, or insert a new one.

We suppose that every leaf is uniquely identified with a key value k (or simply a key). We

will assume that every leaf also contains an integer number that we call a data parameter.

Later, when using a 2-3 tree to store the items (i,∆i) of lists Lt, we will suppose that key

values k of leaves are slope values ci of corresponding linear pieces. Data parameter values

will be equal to corresponding values ∆i.

A 2-node has two children. For each of them there are links that we denote as l and

r. (We will also refer to corresponding subtrees using the same symbols l and r.) For every

2-node a value v is given. (It is called a value of this node.) The following condition should

hold:
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(c1): Every value appearing in subtree l must be less than v; and every value appearing

in subtree r must be not less than v.

Subtree l is called left subtree, and subtree r is called right subtree of a corresponding

node.

A 3-node has three children which means that it contains three links, denote them as l,

m, and r, each pointing to a root of a so-called left, middle, and right subtree, respectively.

Values vl and vr should be identified for each 3-node so that the following condition holds:

(c2): Every value appearing in subtree l must be less than vl; every value appearing in

subtree m must be not less than vl and less than vr; and every value in subtree r must be

not less than vr.

In both the conditions (c1) and (c2) under values appearing in a tree we mean values v,

vl, and vr of nodes belonging to this subtree, and key values of leaves contained in it.

The following condition is also necessary for any 2-3 tree.

(c3): All paths from a root of any subtree to a leaf must be of equal length.

A 2-3 tree is so far a tree satisfying conditions (c1-c3).

Further, if we say ”a subtree corresponding to a node N” or ”a subtree induced by a

node N”, we mean a part of the tree consisting of N (this is a root of a subtree) and all its

successors linked in the same way as in the original tree. (Remind that N ′ is a successor of

N if there is a sequence of nodes N,N1, . . . , Nk, N
′ such that every node of this sequence,

except N, is a child of a previous one.)

To refer to a component of a node we will use a symbol denoting a node and a name

of this component. For instance, a record like N.r will mean a link to the root of the right

subtree of information node N. A record like L.k will mean a key value of a leaf L. Notation

L.d will be used for a data parameter value of a leaf L.

If N1 and N2 are children of a node N, then N1 is called a sibling of N2, and, vice versa,

N2 is called a sibling of N1. If N is for instance a 3-node, then its children N.l, N.m, and

N.r are siblings of each other.

Due to the construction of a 2-3 tree, a number of nodes at every level is at most a half

of a number of nodes at the lower level. This means that if p is the number of tree leaves,
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then the height of the tree is upper bounded by O(log p). This also implies that the number

of information nodes is not larger than the number of leaves.

We will use a 2-3 tree for the purpose of efficiently computing a sum Q of all data

parameter values at leaves whose key values k do not exceed some given value. Therefore,

we assume that a value sum(N) is stored at every node N, which is a sum of all data

parameter values at leaves of the subtree with root N. If N is a leaf, then sum(N) is a value

of the data parameter. More precisely,

sum(N) =
∑

L is a leaf of the subtree induced by N

L.d

where the sum is taken over all leaves of the subtree induced by node N. The following

algorithm computes the mentioned value Q in O(log p) time.

Algorithm 2.2.1

let N be a leaf with maximum key value which is not greater than a given value;

Q := sum(N);

while N is not the root node do

N̂ := N ; // store current node

let N be a parent node of N̂ ; // go to the next node

if N.r = N̂ then // if N̂ is a root of the right subtree

Q := Q+ sum(N.l) + sum(N.m);// assume sum(N.m) = 0 if N is a 2-node

end if

if N.m = N̂ then // if N̂ is a root of the middle subtree

Q := Q+ sum(N.l);

end if

end do

In this algorithm, we move along a path from a leaf to the root and therefore the while-

loop performs at most O(log p) iterations which is an upper estimate of the tree height.
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Figure 2.3: A 2-3 tree.

In an example of a 2-3 tree in Figure 2.3, big rectangles correspond to information nodes.

For 2-nodes, numbers inside rectangles indicate values v. In the case of 3-nodes both values

vl and vr are given. Data nodes, i.e., tree leaves, are depicted in the form of pairs of small

rectangles. An upper number of each pair is a key value and a lower number is a value of

the data parameter. It can be seen from the picture that sum(N) = 1 + 3 + 1 + 2 + 1 = 8

for the node N with N.v = 5.

Deletion and insertion operations for 2-3 trees make sense only with respect to data

nodes, i.e., leaves. Both insertion of a new item into a 2-3 tree and deletion of a node takes

O(log p) time. Although these operations are well described in the literature concerning

algorithms and data structures, we need to discuss them here in order to show the way how

values sum(N) are maintained at tree nodes N.

We will not discuss how values v, vl, and vr are recalculated during insertion and deletion

operations because the detailed algorithms for handling 2-3 trees can be found in the litera-

ture. We will just observe tree nodes in the order in which they are processed by standard

insertion/deletion procedures and show how to compute values sum(·).

An insertion of a new leaf L into a 2-3 tree begins with processing an appropriate terminal

node which is a node whose children are leaves. Denote this node by N. If it is a 2-node, then

L becomes one of the children of this terminal node. (Node N becomes a 3-node in this case.)
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If it is a 3-node, then we need to apply more efforts since a 2-3 tree must remain a 2-3 tree

after an insertion operation. Node N is split then into two ones, denote them as N1 and N2,

each receiving two children. Sums sum(N1) and sum(N2) are easily computable using the

values sum(·) for their children. A parent node of N, denoted by P, becomes a parent node

for nodes N1 and N2. If P has been a 2-node, then we correct values sum(·) of nodes along

the path from P to the root by adding value sum(L). Otherwise, we split it into two 2-nodes

P1 and P2 in the same way as node N. Then sum(P1) takes value sum(P1.l) + sum(P1.r)

and sum(P2) takes value sum(P2.l) + sum(P2.r). We proceed until the root is processed. If

the root must be split, then we form a new root having two children. Since every time we

move to a higher level of the tree, an insertion takes O(log p) time. Note that one has to

explore all nodes on the path to the root node since information about the sums must be

corrected for each of these nodes. An insertion operation with the recalculation of values

sum(·) takes so far O(log p) time.

Let us now discuss how deletion works. Suppose that we want to delete some leaf L

whose parent is node P. Set δ := sum(L). Two situations may occur:

1. Node P is a 3-node. In this case, recalculate sum(N) as

sum(N) := sum(N)− δ

for every node on the path from P to the root node. Delete L.

2. Node P is a 2-node. Recalculate sum(P ) as sum(P ) := sum(P )− δ. Delete L.

a. A sibling P̂ of P has three children. In this case we may take an appropriate child

L̂ from node P̂ and make L̂ a child of node P. Recalculate sum(P̂ ) as sum(P̂ ) :=

sum(P̂ )− sum(L̂). Recalculate sum(P ) as sum(P ) := sum(P ) + sum(L̂).

b. The sibling of P has only two children. In this case we make L̂, a sibling of L,

a child of P̂ , recalculate sum(P ) as sum(P ) := 0 and sum(P̂ ) as sum(P̂ ) :=

sum(P̂ ) + sum(L̂), and make the following variable reassignment: L := P, and

P := parent node of P.
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If case 2b took place and P is not a root node, proceed the actions suggested by items 1 and

2 for the new nodes L and P. Otherwise, if P is a root node, delete both L and P. (In this

case a sibling of L becomes a root node.) If not, recalculate sum(N) for all nodes on the

path from P to the root node in the same way as in the case 1.

Using the fact that the tree height is upper bounded by O(log p), we may conclude that

the deletion operation takes at most O(log p) time. Both described procedures for insertion

and deletion provide correct values sum(N) for all information nodes N.

As we have already mentioned, we will use 2-3 trees to store items of lists Lt. Each list

item of the form (t,∆) will be stored at some leaf L whose key value and data parameter

value are defined as L.k = ct and L.d = ∆, respectively. It might happen that there are two

equal coefficients among costs ct. Therefore, we should adapt a 2-3 tree for this case. This

can easily be done if we allow to store a sorted list of items with equal values ct at each leaf.

(Assume that we sort items in the order in which they stand in list Lt.) Then, if we need

to delete an item from the tree, we first look whether this list contains a single item. If it

does, we perform the deletion procedure for a 2-3 tree which has been already described.

Otherwise, we just delete that item from the mentioned sorted list of items corresponding

to the same coefficients ct. The insertion operation works in the same way as before, but at

first determines if an item with a key value ct exists in the tree. If it is the case, then the

item we want to insert has to be added to a sorted list of items corresponding to the equal

coefficients ct. Note that, after such adaptation, deletion and insertion operations have the

same complexity estimations as before since we may access an item of a sorted list in the

time upper bounded by a logarithm of the number of items in this list.

Theorem 2.2.1 Algorithm DP can be implemented to run in O(n log n) time.

Proof. Let us assume that at every iteration of the for loop of Step 1 of algorithm DP

items of list Lt−1 are organized as a 2-3 tree, i.e., each of the items of this list is a leaf of

a 2-3 tree. Denote this tree by T . Assume that for every list item (i,∆t−1,i) coefficient ci

is taken as a key value of a corresponding leaf. Let us also assume that ∆t−1,i is a value

of data parameter of this leaf. Whenever we delete an item from or insert an item into list
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Figure 2.4: Recursive functions.

Lt−1, we will perform an appropriate insertion and deletion in tree T . Note that, in the

for loop of Step 1, an item corresponding to a certain time period is deleted only once and

never appears at further iterations. This means that the algorithm performs at most O(n)

deletions at Step 1. The same can be said with respect to insertion operations. The insertion

of item (t, ut) can be performed in O(log n) time using the binary search in tree T . (Remind

that we want list items to be sorted in nondecreasing order of coefficients ci.) Taking into

account the previous discussion about 2-3 trees, we may conclude that the total time needed

to maintain tree T after deletion operations in the for loop is upper bounded by O(n log n).

The values Qt by definition in Lemma 2.2.1 are sums of those components ∆t,i of items

(i,∆t,i) of list Lt which correspond to coefficients ci which do not exceed ct+1. Following the

discussed properties of 2-3 trees and Algorithm 2.2.1, we can calculate such Qt in O(log n)

time at every iteration. Hence, provided that we use a 2-3 tree in the described way, Step

1 runs in O(n log n) time. Therefore, since Step 2 runs in O(n) time, we may conclude that

algorithm DP can be implemented to run in O(n log n) time.

Consider an example of the linear lot-sizing problem with c = (4, 1, 2, 3), u = (2, 3, 3, 2),

and d = (1, 0, 2, 2). The functions φ1, φ2, and φ3 are depicted in Figure 2.4. From the

graph of function φ3 it can be seen that it is obtained by placing a linear piece with the

slope value c3 = 2 between two linear pieces of function φ2 and reducing the length of the
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t s Qt−1 dt xt

4 0 4 2 0

3 2 3 2 1

2 3 0 0 3

1 0 0 1 1

Table 2.1: An example of how the backtracking step works.

interval corresponding to the first linear piece by the demand d3 = 2. This is exactly what

algorithm DP suggests to do when constructing function φ3. The values arising in the course

the backtracking phase of the algorithm are enclosed in Table 2.1.

2.3 Exponential algorithm

2.3.1 Motivation

Many NP-hard problems can be solved by exhaustive search. Complete enumeration of all

tours for an instance of the travelling salesman problem yields an O(n!) algorithm where n

is the number of cities. All solutions of an instance of the Knapsack Problem can be

enumerated in O(2n) time where n is the number of items to put into the knapsack. If input

coefficients are sufficiently large, these enumeration methods seem to be more preferable

exact methods than those running in pseudopolynomial time. From the first point of view

there is nothing to do in the area of enumerative algorithms; just enumerate all solutions

and output a result. Nevertheless, for many problems there exist algorithms which are

exponentially better than other ones. This difference is indeed similar to the difference

between polynomial and exponential algorithms. Consider just a few results in the area of

exact algorithms.

A simple dynamic programming algorithm of Held and Karp (see [33]) finds an opti-

mal tour for the travelling salesman problem in O(2n) time. This complexity estimation is

considerably better than O(n!) time needed for the exhaustive search of all solutions. The
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algorithm of Held and Karp yields the best theoretical complexity estimation among all

algorithms for the travelling salesman problem known till now.

The algorithm of Horowitz and Sahni [34] for any instance of the Knapsack Problem

with n items runs in O(n2n/2) time. For those instances where some coefficients are greater

than or comparable with 2n/2, this algorithm can be more attractive then those running

in pseudopolynomial time. An O(2n) enumeration algorithm exploring all feasible solutions

differs by an exponential factor from the running time of the algorithm of Horowitz and Sahni.

Therefore algorithms like the one of Horowitz and Sahni are often called subexponential.

In the next subsection we design a subexponential dynamic programming algorithm for

the CELS problem. At the same time this dynamic programming algorithm is pseudopoly-

nomial.

2.3.2 The CELS problem with piecewise linear cost functions

We consider the capacitated economic lot-sizing problem of the following form.

min F (x, I) =
∑n

t=1(rt(xt) + ht(It)),

subject to It = It−1 + xt − dt, ∀t ∈ [1, n], (2.4)

I0 = In = 0 (2.5)

0 ≤ xt ≤ ut, ∀t ∈ [1, n], (2.6)

xt ∈ Z, ∀t ∈ [1, n]. (2.7)

Note that in this formulation we consider the additional restriction In = 0 which is common

for lot-sizing models. Due to this restriction, there exists a feasible solution if and only if

n∑

t=1

ut ≥
n∑

t=1

dt. (2.8)

Thus without loss of generality we may assume that this condition holds.

In this section, we consider an instance I of the above problem where cost functions

are piecewise linear. Suppose that for all t ∈ [1, n] functions rt(·) and ht(·) may only be

not linear at points from some sets Rt and Ht, respectively. To simplify the exposition, we
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assume that |Rt| is equal to some value R and |Ht| is equal to some value H for any time

period t. We assume that function rt(·) is defined on the interval [0, ut] and function ht(·)

is defined on some interval [bt1, b
t
2] (later we specify bounds bt1 and bt2 as the minimum and

the maximum value at which a function φt(·) is defined, respectively). This means that Rt

contains end points 0 and ut of the interval [0, ut] and Ht contains end points bt1 and bt2.

Therefore R and H are greater than or equal to 2. The number of linear pieces of functions

rt(·) and ht(·) is equal to R− 1 and H − 1, respectively.

We define the function value φt(s) as the optimal value of the reduced instance

min F t(x, I) =
∑t

i=1(ri(xi) + hi(Ii)),

subject to Ii = Ii−1 + xi − di, ∀i ∈ [1, t], (2.9)

It = s, (2.10)

I0 = 0, (2.11)

0 ≤ xi ≤ ui, ∀i ∈ [1, t], (2.12)

xi ∈ Z ∀i ∈ [1, t]. (2.13)

for every s ∈ [bt1, b
t
2] where bounds bt1 and bt2 are the minimum and maximum values such

that there exists a feasible solution (x, I) of the original instance I satisfying It = s.

Let us show that

bt1 = −
t∑

i=1

di +max{0,
n∑

i=1

di −
n∑

i=t+1

ui} (2.14)

and

bt2 = min{
t∑

i=1

(ui − di),
n∑

i=t+1

di}. (2.15)

For every feasible solution (x, I),

0 = In = In−1 + xn − dn = . . . = It +
n∑

i=t+1

(xi − di),

from which we conclude that

It =
n∑

i=t+1

(di − xi).
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Constraints 0 ≤ xi ≤ ui, ∀i ∈ [1, n], imply that inequalities

n∑

i=t+1

(di − ui) ≤ It ≤
n∑

i=t+1

di

hold. Moreover,

−
t∑

i=1

di ≤ It ≤
t∑

i=1

(ui − di)

hold. This inequality system is equivalent to

max{−
t∑

i=1

di,
n∑

i=t+1

(di − ui)} ≤ It ≤ min{
t∑

i=1

(ui − di),
n∑

i=t+1

di}.

It remains to show that there are feasible solutions satisfying It = bt1 and It = bt2. It is

sufficient to consider solutions (x1, I1) and (x2, I2) where

x1 = (0, . . . , 0,
n∑

i=1

di −
n∑

i=τ

ui, uτ , . . . , un), τ − 1 = max{j ∈ [1, n]|
n∑

i=1

di −
n∑

i=j+1

ui ∈ [0, uj ]},

and

x2 = (u1, . . . , uτ ,
n∑

i=1

di −
τ∑

i=1

ui, 0, . . . , 0), τ + 1 = min{j ∈ [1, n]|
n∑

i=1

di −

j−1∑

i=1

ui ∈ [0, uj ]}.

The existence of such solutions is provided by feasibility condition (2.8). One may make

sure that

I1
t = max{−

t∑

i=1

di,
n∑

i=t+1

(di − ui)}

and

I2
t = min{

t∑

i=1

(ui − di),
n∑

i=t+1

di}.

This implies (2.14) and (2.15).

We need an algorithm efficiently computing function φt(·) not only at a single point in

the feasible interval, but at all its points at a time. Note that if for some function ψ(·) we

know that it is linear on an interval [s1, s2], then, to completely describe the function ψ(·)

on the interval [s1, s2], it is sufficient to have information about its values at the end points

of the interval. This simple observation shows that to have complete information about a

piecewise linear function it is sufficient to compute it at ends of linear pieces.



Exponential algorithm 47

Let Si denote the set of all points where φi(·) may be nonlinear. Set S0 := {0}. The

following theorem yields an algorithm to find values of function φt(·) at points of the set St.

Theorem 2.3.1 Let all values of φt−1(·) at all points from St−1 be given. Then the set St

with associated function values φt(s), s ∈ St, can be found in O(R|St−1|+H) time.

Proof. Suppose that Rt = {α1, . . . , αR}, Ht = {β1, . . . , βH}, and St−1 = {s1, . . . , sS}, where

s1 ≤ . . . ≤ sS. For all k ∈ [2, R] and l ∈ [2, S] define auxiliary functions ψkl(·) as

ψkl(s) = min
s′∈[sl−1,sl]

{φt−1(s
′) + rt(s− s′ + dt) + ht(s)|s− s′ + dt ∈ [αk−1, αk]}.

Function value ψkl(s) is defined for all

s ∈ [αk−1 + sl−1 − dt, αk + sl − dt]. (2.16)

The functions ψkl(·) can be used to calculate φt(s) at any feasible point s by the formula

φt(s) = min
k,l

ψkl(s).

The set of all values ψkl(s), where s belongs to St and is feasible for ψkl(·), can be found

in O(|St−1|) time using the fact that functions rt(·) and φt−1(·) are linear on the intervals

[αk−1, αk] and [sl−1, sl], respectively. Note that a function value φt(s) is computable in

O(R|St−1|) time provided that necessary values ψkl(s) have been already found.

Let the slope value of function φt−1(·) on interval [sl−1, sl] be equal to a and the slope

value of function rt(·) on interval [αk−1, αk] be equal to b. Then we may write

ψkl(s) = min
s′∈[sl−1,sl]

{(a− b)s′|s− s′ + dt ∈ [αk−1, αk]}+ b(s+ dt) + ht(s). (2.17)

One can see that

s′ ∈ [max{sl−1,−αk + s+ dt},min{sl,−αk−1 + s+ dt}].

The minimum of value (a − b)s′ in formula (2.17) is attained at one of the end points of

this interval. Taking additionally into account (2.16), we may conclude that the function

ψkl(·) may be nonlinear only at points of the form s = αp + sq − dt, where p ∈ [1, R] and
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q ∈ [1, |St−1|], or s ∈ Ht. Therefore there are at most O(R|St−1|+H) points where function

φt(·) may violate linearity. If values of functions φt−1(·) at points of set St−1 are given, then

the set St with associated function values φt(s), s ∈ St, can be found in O(R|St−1| + H)

time.

Corollary 2.3.1 The cardinality of set St is upper bounded by value O(RtH).

Proof. It follows from the proof of the above theorem that |St| is upper bounded by

R|St−1|+H. Therefore, since |S0| = |{0}| = 1, we have

|St| ≤ Rt +Rt−1H + . . .+RH +H.

The value Rt−1 + . . .+R+ 1 does not exceed Rt as R ≥ 2. Thus the cardinality of set St is

upper bounded by 2RtH.

Let τ = dn/2e. We will use a dynamic programming algorithm based on the recursive

function φt(·) only to find a part of an optimal solution corresponding to periods 1, . . . , τ.

The remaining part will be found by a dynamic programming algorithm based on functions

φ̃t(·), t ∈ [1, n, ] such that a function value φ̃t−1(s), t ∈ [2, n+1] is equal to an optimal value

of a reduced instance

min F̃ t(x, I) =
∑n

i=t(ri(xi) + hi(Ii)),

subject to Ii = Ii−1 + xi − di, ∀i ∈ [t, n], (2.18)

It−1 = s, (2.19)

In = 0, (2.20)

0 ≤ xi ≤ ui, ∀i ∈ [t, n], (2.21)

xi ∈ Z ∀i ∈ [t, n]. (2.22)

Function φ̃t(·) is defined on the interval [bt−1
1 , bt−1

2 ], i.e., on the set of all feasible values of

the variable It−1.

Function φ̃t(·) can be calculated recursively by the formula

φ̃t−1(s) = min
s′∈[bt1,b

t
2]
{φ̃t(s

′) + rt(s
′ − s+ dt) + ht(s

′)|s′ − s+ dt ∈ [0, ut]}
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at any feasible s.

Let S̃i denote the set of all points where φ̃i(·) may be nonlinear. Set S̃n+1 := {0}.

Properties of the function φ̃t(·) are much the same as those of φt(·). In particular, if values of

φ̃t+1(·) at all points from S̃t+1 are given, then one can find all function values φ̃t(s), s ∈ S̃t,

in O(R|S̃t+1| + H) time. The cardinality of the set S̃t is upper bounded by O(Rn−t+1H).

The proof is completely analogous to that for function φt(·).

The optimal value of the instance I we consider is calculated as

OPT (I) = min
s∈[bτ1 ,b

τ
2 ]
{φτ (s) + φ̃τ (s)}.

This value is a minimum of function φτ (·) + φ̃τ (·) on its feasible set [bτ1, b
τ
2]. This function

may be nonlinear only at points of the set Sτ ∪ S̃τ . Piecewise linear functions attain their

optima at points where linearity conditions are violated (note that end points of feasible

intervals also are among these points). Therefore, provided that functions φτ (·) and φ̃τ (·)

have been evaluated on the sets Sτ and S̃τ , respectively, the value OPT (I) is computable in

O(|Sτ |+ |S̃τ |) time. Hence the above mentioned computability properties of functions φt(·)

and φ̃t(·) and sets St and S̃t imply that OPT (I) can be computed in O(nRn/2+1H) time.

A backtracking procedure finding an optimal solution is easily implementable to run in

O(nRn/2+1H) time. Thus we have the following theorem.

Theorem 2.3.2 The instance I is solvable in O(nRn/2+1H) time.

If we additionally consider restrictions It ≥ 0, t ∈ [1, n], then for any t ∈ [1, n] function

φt(·) is nondecreasing.

Consider a special case of this problem where production cost functions are defined as

rt(α) =





gt, α > 0,

0, otherwise,
(2.23)

and holding costs are zero.

Using the fact that φt(·) is monotone and the number of different values this function

may take is upper bounded by 2t, we may deduce |St| ≤ O(2t) for any t ∈ [1, n]. Function

φ̃t(·) is also monotone and therefore |S̃t| ≤ O(2n−t).
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Using these estimates for sets St and S̃t and the previous discussion, we have the following

theorem.

Theorem 2.3.3 If additional restrictions It ≥ 0 are imposed in the formulation of the CELS

problem being considered, holding costs are zero, and production cost functions have the form

(2.23), then any instance of such problem can be solved in O(n2n/2) time.

Note that the Knapsack Problem can be polynomially reduced to the special case of the

CELS problem mentioned in the above theorem.

The time complexity of our algorithm can be estimated more precisely. To do it, we

just note that |St| ≤
∑n

i=1 di. Therefore our algorithm runs in O(min{nRn/2+1H,n
∑n

i=1 di})

time.

2.4 A polynomial algorithm for a capacitated eco-

nomic lot-sizing problem with piecewise concave

cost functions

2.4.1 Introduction

In this section, we study a CELS problem with piecewise concave cost functions. All capac-

ities as well as the points at which holding-backlogging cost functions may violate concavity

are assumed to be nonnegative integer linear combinations of positive integers from some

given sets. We prove that if the number of elements in these sets is upper bounded by a

constant and holding-backlogging cost functions have polynomially many concave pieces,

then there is a polynomial-time algorithm for the problem. (Besides these assumptions,

coefficients in the mentioned integer linear combinations are considered to be polynomially

bounded.)

Some piecewise concave functions are depicted in Figure 2.5. In that picture, the pro-

ductions cost function rt(·) consists of two concave pieces, and the holding-backlogging cost
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Figure 2.5: Piecewise concave cost functions.

function ht(·) consists of four pieces, the holding cost function (the part of ht(·) corresponding

to nonnegative values of argument) consisting of only one, i.e., being completely concave.

Florian and Klein [25] developed an O(n4) algorithm to solve CELS problem with concave

production and holding cost functions and with constant capacities (here the word ”constant”

means that in every period capacities are the same and equal to a given value being a part of

the input data). In the case of linear holding cost functions, there exists an O(n3) algorithm.

This algorithm has been designed by van Hoesel and Wagelmans [58].

Van Hoesel and Wagelmans as well as Florian and Klein use concavity of cost functions

to obtain certain properties of optimal solutions allowing to decompose the whole problem

into simpler subproblems. A similar issue is used by Atamtürk and Hochbaum [1] for some

polynomially solvable extensions of the CELS problem with constant capacities. In our

approach, we use the fact that a recursive function on which a simple dynamic programming

procedure is based has properties repeating in some way those of cost functions.

In the subsequent sections, we will show that there is a polynomial algorithm for a variant

of the CELS problem generalizing special cases with constant capacities and concave cost

functions previously discussed in the literature.

The present section relies on paper [14] by Chubanov.
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2.4.2 Problem formulation

Let [b1, b2] := {b1, . . . , b2} be an integer interval. A function ψ : [b1, b2]→ R is called concave

on the interval [b1, b2] of integers if and only if an inequality

ψ(a− 1) + ψ(a+ 1)− 2ψ(a) ≤ 0, (2.24)

holds for all a ∈ [b1 +1, b2− 1]. We will say that ψ(·) is concave at a point a ∈ [b1 +1, b2− 1]

if (2.24) holds for function ψ(·) at this point. Function ψ(·) violates concavity (or is not

concave) at end points of its feasible interval and at all points a of interval [b1 + 1, b2 − 1]

where condition (2.24) does not hold.

We will use the following easily verifiable properties:

• Let ψ1(·) and ψ2(·) both be concave functions defined on an interval [b1, b2]. A function

ψ(·) defined on [b1, b2] as a sum of functions ψ1(·) and ψ2(·) is concave on [b1, b2].

• If a function ψ(·) defined on an interval [b1, b2] is concave on this interval, then it

attains its minimum at one of the points b1 or b2.

Consider the following special case of the single-item capacitated economic lot-sizing

problem:

min F (x, I) =
∑n

t=1(rt(xt) + ht(It)),

subject to It = It−1 + xt − dt, ∀t ∈ [1, n], (2.25)

I0 = 0, (2.26)

0 ≤ xt ≤ ut, ∀t ∈ [1, n], (2.27)

xt ∈ Z, ∀t ∈ [1, n]. (2.28)

Here, given integer coefficients dt, t ∈ [1, n], are interpreted as demands in corresponding

periods. Notice that if dt < 0, then |dt| may be interpreted as a supply in the corresponding

period t. A production capacity ut at each period t is assumed to be a nonnegative integer

linear combination of points from a given set C = {c1, . . . , c|C|} of nonnegative integers with
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coefficients upper bounded by a positive integer value W. I.e., for every period t ∈ [1, n] we

have

ut =

|C|∑

i=1

αici

where αi, i ∈ [1, |C|], are coefficients from [0,W ].

We make the following assumptions on the cost functions:

• For any t ∈ [1, n] the production cost function rt(·) may violate the concavity condition

(2.24) only at points having the form
∑|C|

i=1 αici where αi ∈ [0,W ] for all i ∈ [1, |C|].

• For any t ∈ [1, n] the holding-backlogging cost function ht(·) may violate the concavity

condition (2.24) only at points having the form
∑|E|

i=1 βiei where βi ∈ [−V, V ], i ∈

[1, |E|], for some given positive integer V, and E = {e1, . . . , e|E|} is a given set of

nonnegative integers.

• Any cost function is computable in constant time at any point in its feasible domain.

The third assumption means that we consider a function computation as a basic operation.

Of course, our discussion remains true for the case of polynomially computable cost functions.

We will call the described problem Capacitated Lot-Sizing.

A solution for an instance of Capacitated Lot-Sizing is a pair (x, I), where x =

(x1, . . . , xn) and I = (I1, . . . , In). Notice that It =
∑t

i=1(xi − di), t = 1, . . . , n. We call a

solution (x, I) feasible if it satisfies (2.25)-(2.28). The objective is to find a feasible solution

(x, I) with the minimum value of the objective function F (·, ·) which is the sum of the

production cost functions rt(·) and the holding-backlogging cost functions ht(·). On positive

values of the argument, function ht(·) is referred to as a holding cost function; and on negative

values of its argument this function represents a backlogging cost function.

Notice that we do not impose the restriction In = 0 upon feasible solutions. However,

our algorithm can easily be modified to deal with this additional restriction. Another way of

including the equation In = 0 into the model is imposing sufficiently high costs on nonzero

inventory levels at the last time period. For instance, we may define function hn(·) so that it

is equal to 0 at a zero value of the argument, and equals a sufficiently large value, otherwise.
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Then, after deleting equation In = 0 from the problem formulation, the set of optimal

solutions remains the same. Note that hn(·) defined in this way is not concave only at a

zero value of the argument. The case without backlogging can be analogously modelled with

sufficiently high backlogging costs.

A simple dynamic programming algorithm is able to solve the problem in pseudopolyno-

mial time. As it will be seen from the discussion in the next section, if |C| and |E| are upper

bounded by a constant and values V and W are polynomially bounded, then a straightfor-

ward pseudopolynomial dynamic programming algorithm can be converted into a polynomial

one since a polynomial number of states is sufficient to identify an optimal solution in this

case.

Prior to state the basic results regarding the computation of optima, let us discuss the

cost structure and other problem features in more details.

Piecewise concave cost functions frequently arise in production and inventory models.

Such functions have been studied in details by Zangwill [64]. In his earlier paper Zangwill

[63] considers a lot-sizing model where cost functions are piecewise concave.

Assume that production in each period stands for product ordering (this is one of common

interpretations). Then values taken by variables xt, t ∈ [1, n], may mean order volumes.

Suppose that there are |C| suppliers and an element ci of the set C indicates for every supplier

i a batch volume within which discounts are possible. (The sizes of batches may differ at

different suppliers.) More precisely, the more we acquire within a batch, the less we pay for

a product unit. Therefore the acquisition cost function, denote it by f it (·) for the supplier

i and period t, will be concave in the interval [0, ci]. This property of the acquisition cost

function f it (·) applies to every interval [αci, (α + 1)ci] where α is a nonnegative integer. So,

the function f it (·) may violate concavity at multiples of the batch volume ci. The described

situation is similar to one considered by Li, Hsu, and Xiao [41] for a lot-sizing model without

production capacities.

Further we assume that we may order at most W batches at every supplier. Of course,

whenever an order volume is determined at some period t ∈ [1, n], we can decide to distribute

the order among suppliers so as to minimize the order cost. In other words, we would like
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to calculate

gt(xt) := min





|C|∑

i=1

f it (ai) |

|C|∑

i=1

ai = xt, ai ∈ [0,Wci]∀i ∈ [1, |C|]



 (2.29)

for the order volume xt. The following observation shows that function gt(·) has exactly the

structure suggested by our assumptions on the production cost function rt(·).

Observation 2.4.1 The function gt(·) may violate the concavity condition (2.24) only at

points xt having the form

xt =

|C|∑

i=1

αici

where αi ∈ [0,W ] for all i ∈ [1, |C|].

Proof. Let a0 = (a0
1, . . . , a

0
|C|) be a point where the minimum in the formula (2.29) is

attained. Then

gt(xt) =

|C|∑

i=1

f it (a
0
i ).

Suppose that xt =
∑|C|

i=1 a
0
i does not have the form mentioned in the formulation of the

observation. Then for some k ∈ [1, |C|] the component a0
k is not in the set {0, ck, . . . ,Wck}.

Thus fkt (·) is concave at a0
k. Notice that

gt(xt + 1) ≤

|C|∑

i=1

f it (a
0
i ) + fkt (a

0
k + 1)− fkt (a

0
k)

and

gt(xt − 1) ≤

|C|∑

i=1

f it (a
0
i ) + fkt (a

0
k − 1)− fkt (a

0
k)

due to the fact that the points

(a0
1, . . . , a

0
k−1, a

0
k + 1, a0

k+1, . . . , a
0
|C|)

and

(a0
1, . . . , a

0
k−1, a

0
k − 1, a0

k+1, . . . , a
0
|C|)

are among the points a over which the minimum in formula (2.29) is taken when evaluating

gt(xt + 1) and gt(xt − 1), respectively. Hence, the following inequality chain holds:
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Figure 2.6: Example of a piecewise function gt.

gt(xt − 1)+gt(xt + 1)− 2gt(xt) ≤

≤ 2
∑|C|

i=1 f
i
t (a

0
i ) + fkt (a

0
k−1)− fkt (a

0
k) + fkt (a

0
k + 1)− fkt (a

0
k)− 2

∑|C|
i=1 f

i
t (a

0
i ) =

= fkt (a
0
k − 1) + fkt (a

0
k + 1)− 2fkt (a

0
k) ≤ 0.

Thus gt(·) is concave at xt. The proof is complete.

Consider an example of such function gt. Assume that there are two suppliers and c1 = 3

and c2 = 6 are corresponding batch sizes. Suppose that we may order at most one batch

of each type, i.e., W = 1. This means that altogether we may acquire c1 + c2 = 9 product

units. Assume that a cost of a product unit is equal to one, and transportation cost is equal

to 2 for the first supplier and to 3 for the second one. Therefore f 1
t (a) = 2 + a if a > 0

and f 1
t (a) = 0, otherwise. For the second supplier, f 2

t (a) = 3 + a if a > 0, and f 2
t (a) = 0,

otherwise. Then a corresponding function gt has a form shown in Figure 2.6. It can be

seen from the picture that function gt is not concave at points 0c1 + 0c2 = 0, c1 + 0c2 = 3,

0c1 + c2 = 6, and c1 + c2 = 9. (Points 0 and 9 are end points of the interval on which the

functions is defined.) In the picture, neighboring points in the function graph are connected

with line segments.

So, we have an interpretation of the structure of function rt(·). Functions like rt(·) can also

be useful to approximate real costs. The piecewise concave structure of holding-backlogging
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costs can be interpreted using similar arguments.

Note that by a simple enumeration procedure solving a concave problem for all possible

combinations of concave pieces of functions f it (·), i ∈ [1, |C|], a value gt(xt) may be computed

in polynomial time if these functions are in turn polynomially computable, the value W is

polynomially bounded, and |C| is upper bounded by a constant.

In the classical CELS problem, the inventory level It in period t is determined by the

inventory level in the previous period, the production level xt, and the demand dt through

the equation

It = It−1 + xt − dt

for all t ranging from 1 to n. (I0 is equal to zero.) If It is allowed to be negative, then we

deal with so-called backlogging. Atamtürk and Hochbaum [1] define inventory levels more

generally through the equation

It = It−1 + xt + yt − dt

with an additional nonnegative variable yt. This variable expresses an additional capacity

that is ”acquired”. Atamtürk and Hochbaum consider a concave cost function related to

the variable yt. In one of the problems in [1], called constant capacity lot-sizing and subcon-

tracting problem, only the presence of an additional variable yt makes the problem different

from one considered by van Hoesel and Wagelmans. Atamtürk and Hochbaum develop an

O(n5) algorithm for the constant capacity lot-sizing and subcontracting problem.

If we insert a new time period before each period t, set the demand and holding-

backlogging costs to zero in this new period, and assume yl to express production levels

in the new periods l, then we come to an equivalent standard lot-sizing problem where pro-

duction levels are upper bounded by some capacity c at even periods and unbounded at odd

periods (corresponding to the new periods inserted). Actually, since In = 0 in the problem of

Atamtürk and Hochbaum, we can restrict yl by the sum of all demands
∑n

i=1 di. This means

that capacities are taken from the set {c,
∑n

i=1 di}. Thus we have a special case of Capac-

itated Lot-Sizing. The algorithm introduced in this paper is able to solve this problem,

and thus the problem of Atamtürk and Hochbaum, in polynomial time. One can extend the
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problem with two kinds of capacities to the capacities that take their values from any given

set of nonnegative integers. This is again a special case of Capacitated Lot-Sizing. If we

assume that the capacities take values from a set with cardinality bounded by a constant,

then, due to the problem properties which we formulate later, there is a polynomial time

algorithm for the corresponding CELS problem with concave production, backlogging, and

holding cost functions (concave backlogging and holding cost functions mean that it may

only happen that functions ht(·) violate concavity at the point 0).

2.4.3 Algorithm

In this section, we first discuss properties of a recursive function on which a straightfor-

ward algorithm is based. Our analysis includes estimating the number of intervals where

the recursive function is concave and determining where to find points at which concavity

properties are violated.

Consider an instance I of problem Capacitated Lot-Sizing. Let OPT (I) denote the

optimal value of the instance I. For any time period t and a nonnegative integer value s we

construct a reduced instance It,s as follows.

min F t(x, I) =
∑t

i=1(ri(xi) + hi(Ii)),

subject to Ii = Ii−1 + xi − di, ∀i ∈ [1, t], (2.30)

I0 = 0, (2.31)

It = s, (2.32)

0 ≤ xi ≤ ui, ∀i ∈ [1, t], (2.33)

x ∈ Zt. (2.34)

In this mathematical program, only the first t out of n time periods are considered and an

additional restriction It = s is imposed on the inventory level at the end of period t. Feasible

solutions of It,s are partial solutions for the original instance I.

For any t and s at which the set of feasible solutions of It,s is nonempty, define φt(·) as

φt(s) := OPT (It,s).
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Obviously, the function φt(·) is defined on the set [at1, a
t
2] where

at1 = −
t∑

i=1

di

and

at2 =
t∑

i=1

(ui − di).

We set φ0(0) := 0 and a0
1 = a0

2 = 0. For any t ∈ [1, n] function φt(·) is evaluated recursively

by the formula

φt(s) = min
s′∈[at−1

1 ,at−1
2 ]
{rt(s− s′ + dt) + ht(s) + φt−1(s

′)|s− s′ + dt ∈ [0, ut]} (2.35)

at any point s from [at1, a
t
2]. This formula is similar to the one presented by Florian et al. [26]

for a variant of problem CELS with no backlogging. The formula follows immediately from

the problem formulation. Furthermore, it immediately yields a simple dynamic programming

algorithm with running time O(
∑n

t=1 ut
∑t

i=1 ui) for problem Capacitated Lot-Sizing.

In the sequel, we refer to this algorithm as a straightforward algorithm.

The following theorem implies that if the cost functions have a polynomial number of

concave pieces and both values |C| and |E| are upper bounded by a constant, then functions

φt(·), t ∈ [1, n], also have a polynomial number of concave pieces.

Theorem 2.4.1 For any t ∈ [1, n], every point at which the function φt(·) is not concave

has the form
|C|∑

i=1

αici +

|E|∑

i=1

βiei −
t∑

i=t′

di

where t′ ∈ [1, t + 1],
∑t

i=t+1 di = 0, αi ∈ [0, tW ] for all i ∈ [1, |C|], and βi ∈ [−V, V ] for all

i ∈ [1, |E|]. There are at most

(tW + 1)|C| · (2V + 1)|E| · (t+ 1)

such points.

Proof. Denote by S the set of points mentioned in the formulation of the theorem. Let

S = {s1, . . . , sp} where s1 < . . . < sp.
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Let s belong to [sq−1+1, sq−1] for some q ∈ [2, p]. We further prove that φt(·) is concave

at s.

Consider an optimal solution (x, I) of instance It,s. Select the maximum index k ∈ [1, t]

such that xk is not a nonnegative integer linear combination of points from set C with

coefficients upper bounded by W, i.e., xk 6=
∑|C|

i=1 αici for any αi ∈ [0,W ], i ∈ [1, |C|]. Such

an index exists since otherwise the point

s = It =
t∑

i=1

(xi − di)

belongs to S. For all j ∈ [k, t] the equation

Ij = Ik +

j∑

i=k+1

(xi − di)

must hold. Since It = s, we have

Ik = s−
t∑

i=k+1

(xi − di)

and, consequently,

Ij = s−
t∑

i=j+1

(xi − di)

for all j ∈ [k, t]. (We consider that
∑t

i=t+1(xi − di) = 0.)

If Ij is an integer linear combination of points from the set E with coefficients from

[−V, V ], then, since
∑j

i=k+1 xi is an integer linear combination of points c1, . . . , c|C| due to

the choice of k, s has the form

s =

|C|∑

i=1

αici +

|E|∑

i=1

βiei −
t∑

i=j+1

di

where αi ∈ [0, tW ] for all i ∈ [1, |C|], and βi ∈ [−V, V ] for all i ∈ [1, |E|]. This contradicts our

assumption that s does not belong to S. Thus, by the assumptions on the cost structure,

hj(·) is concave at the point Ij for any j ∈ [k, t].

Generate a feasible solution (x1, I1) for the instance It,s−1 from solution (x, I) by means

of decreasing xk by 1 (to preserve feasibility, we also make appropriate changes of values
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Ij, j ∈ [k, t]). This transformation is legitimate because xk > 0 due to the fact that xk is

not a nonnegative integer linear combination of points from the set C with coefficients upper

bounded by W. The objective value of (x1, I1) is

F t(x1, I1) = F t(x, I) + rk(xk − 1)− rk(xk) +
t∑

i=k

(hi(Ii − 1)− hi(Ii)). (2.36)

Now increase xk and inventory levels Ii, i ∈ [k, t] by 1. As xk is not a nonnegative integer

linear combination of points from the set C with coefficients upper bounded by W, we have

xk < uk and thus the obtained solution, denoted by (x2, I2), is feasible for It,s+1. Its objective

value is evaluated as

F t(x2, I2) = F t(x, I) + rk(xk + 1)− rk(xk) +
t∑

i=k

(hi(Ii + 1)− hi(Ii)). (2.37)

Let us check if the concavity property (2.24) holds for φt(·) at point s. As it has been

already seen, hj(·) is concave at the point Ij for all j ∈ [k, t]. Function rk(·) is concave at xk

by construction. Therefore equations (2.36) and (2.37) and property (2.24) yield

φt(s− 1)+φt(s+ 1)− 2φt(s) ≤ F t(x1, I1) + F t(x2, I2)− 2F t(x, I) =

rk(xk − 1) + rk(xk + 1)− 2rk(xk) +
∑t

i=k(hi(Ii − 1) + hi(Ii + 1)− 2hi(Ii)) ≤ 0.

Thus φt(·) is concave at the point s. This means that concavity of φt(·) may be violated

only at a point from S. To complete the proof, we notice that the cardinality of the set S is

bounded by (tW + 1)|C| · (2V + 1)|E| · (t+ 1).

The complete information about every function φt(·) is not necessary to find an optimal

solution. To see this, we prove the next corollary which shows where the minimum of (2.35)

is to find.

Corollary 2.4.1 A minimum in formula (2.35) is attained at a point s′ = ŝ either having

the form

ŝ = s−

|C|∑

i=1

αici + dt
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where αi ∈ [0,W ] for all i ∈ [1, |C|] or the form

ŝ =

|C|∑

i=1

αici +

|E|∑

i=1

βiei −
t−1∑

i=t′

di

where t′ ∈ [1, t],
∑t−1

i=t di = 0, αi ∈ [0, tW ] for all i ∈ [1, |C|], and βi ∈ [−V, V ] for all

i ∈ [1, |E|].

Proof. Assume that the minimum in formula (2.35) is attained at a point s′ = ŝ which is

not among the points mentioned in the formulation of the corollary. (Note that the point

s′ is not then an end point of the feasible interval [at−1
1 , at−1

2 ] of function φt−1(·).) Therefore

function rt(·) is concave at s− ŝ+dt according to the assumptions on the cost structure and

φt−1(·) is concave at ŝ by Theorem 2.4.1. Thus, either increasing or decreasing ŝ by one,

we may obtain a point which is not worse than ŝ. In other words, either for s′′ = ŝ + 1 or

s′′ = ŝ− 1, we have

rt(s− s′′ + dt) + ht(s) + φt−1(s
′′) ≤ rt(s− ŝ+ dt) + ht(s) + φt−1(ŝ)

due to concavity properties. The proof is complete.

Notice that for every t ∈ [1, n] there are O((tW + 1)|C| · (2V + 1)|E| · t) points of the form

mentioned in the corollary.

Let for any j ∈ [1, n] a set Sj be defined as the set of all points

|C|∑

i=1

αici +

|E|∑

i=1

βiei −

j∑

i=j′

di

where j ′ ∈ [1, j + 1],
∑j

i=j+1 di = 0, αi ∈ [(j − n)W,nW ] for all i ∈ [1, |C|], and βi ∈ [−V, V ]

for all i ∈ [1, |E|].

We assume S0 = {0}.

The following theorem implies that to find

OPT (I) = min{φn(s)|s ∈ [an1 , a
n
2 ]}

it is sufficient to know values of each function φt(·) at feasible points from St.
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Theorem 2.4.2 If s is feasible for φt(·) and s ∈ St, then a minimum in (2.35) is attained

at a point s′ ∈ St−1.

Proof. The theorem is an implication of Corollary 2.4.1. Let s ∈ St. Then

s =

|C|∑

i=1

α′ici +

|E|∑

i=1

β′iei −
t∑

i=t′

di

where t′ ∈ [1, t + 1],
∑t

i=t+1 di = 0, α′i ∈ [(t− n)W,nW ] for all i ∈ [1, |C|], and β ′i ∈ [−V, V ]

for all i ∈ [1, |E|]. If the minimum in formula (2.35) is attained at a point s′ = ŝ having the

form

ŝ = s−

|C|∑

i=1

αici + dt

where αi ∈ [0,W ] for all i ∈ [1, |C|], then

ŝ =

|C|∑

i=1

(α′i − αi)ci +

|E|∑

i=1

β′iei −
t−1∑

i=t′

di.

Let us note that (t−1−n)W ≤ α′i−αi ≤ nW for all i ∈ [1, |C|] and thus ŝ ∈ St−1. The second

alternative in Corollary 2.4.1 suggests to take ŝ directly from St−1. The proof is complete.

Using this theorem, we may rewrite formula (2.35) as

φt(s) = min
s′∈[at−1

1 ,at−1
2 ]∩St−1

{rt(s− s′ + dt) + ht(s) + φt−1(s
′)|s− s′ + dt ∈ [0, ut]} (2.38)

at any point s ∈ St.

To find min{φn(s)|s ∈ [an1 , a
n
2 ]} (equal to OPT (I)), it is enough to consider only those

points at which φn(·) is not concave. By Theorem 2.4.1, these points are found in Sn.

Together with formula (2.38), this observation leads to a simple dynamic programming (DP)

algorithm to solve the problem.

Algorithm DP

Input: An instance I of Capacitated Lot-Sizing;

Output: An optimal solution (x0, I0) of I.

Step 0 Set S0 := {0}.

Step 1 for t = 1 to n do
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Using (2.38), evaluate φt(·) at each point from St;

For every s ∈ St store s
′ at which a minimum is attained;

end do

Step 2 Find s = argmin{φn(s)|s ∈ [an1 , a
n
2 ] ∩ Sn};

I0
n := s;

for t = n− 1 down to 1 do

Take s′ where a minimum in formula (2.38) is attained;

I0
t := s′;

s := s′;

end do

Set I0
0 := 0;

for t = 1 to n do

x0
t := I0

t − I0
t−1 + dt;

end do

In Step 1, the algorithm evaluates functions φt(·), t ∈ [1, n] at points which may

arise during the computation of an optimal solution. Step 2 is a backtracking step in

which an optimal solution (x0, I0) is constructed. Due to the fact that |St| is bounded by

O((2nW )|C|(2V + 1)|E|n) for all t ∈ [1, n], the algorithm runs in O((2nW )2|C|(2V + 1)2|E|n3)

time. Hence, we have proven the following theorem.

Theorem 2.4.3 An optimal solution to any instance of Capacitated Lot-Sizing can be

found in O((2nW )2|C|(2V + 1)2|E|n3) time.

This theorem immediately implies the main result of the section:

Corollary 2.4.2 If in some instance I of Capacitated Lot-Sizing values V and W are

bounded by polynomials of the instance size and |C| and |E| are upper bounded by a constant,

then I can be solved in polynomial time.
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2.4.4 Conclusions

We have considered a special case of the well known capacitated economic lot-sizing problem.

The polynomial solvability of this special case has been proven under the assumption that the

cost functions consist of a polynomial number of concave pieces and some additional restric-

tions generalizing the cases with constant capacities and concave costs previously considered

in the literature. The further research may be done in the direction of complexity improve-

ment and deriving additional properties which would be useful for better understanding of

the simple recursive formulation studied in this section.

2.5 An FPTAS for a single-item capacitated economic

lot-sizing problem with a monotone cost structure

2.5.1 Introduction

We consider again the capacitated economic lot-sizing problem (which we denoted as Ca-

pacitated Lot-Sizing) as in the previous section (but without piecewise concavity as-

sumptions and without restrictions on the capacity structure):

min F (x, I) =
∑n

t=1(Rt(xt) +Ht(It)),

subject to It = It−1 + xt − dt, ∀t ∈ [1, n], (2.39)

I0 = 0, (2.40)

0 ≤ xt ≤ ut, ∀t ∈ [1, n], (2.41)

x ∈ Zn. (2.42)

Remind that this problem describes a production of a single product over n time periods.

Variables It and xt represent an inventory level and a production level in time period t,

respectively. The production level in each period t is bounded from above by the given

production capacity ut. Parameters dt describe given demands for the product in each time
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period t. All values ut and dt are assumed to be non-negative integers.

In the above formulation, Rt(·) and Ht(·) denote production cost functions and holding-

backlogging cost functions, respectively. Remind that on positive values of the argument,

function Ht(·) is referred to as a holding cost function; and on negative values of its argument

this function represents a backlogging cost function.

We make the following assumptions about the cost structure.

(i) The holding-backlogging cost functions Ht(·) are nonincreasing on the set Z− of non-

positive integers, nondecreasing on the set Z+ of nonnegative integers, and satisfy the

condition Ht(0) = 0 for all t ∈ [1, n].

(ii) The production cost functions Rt(·) are nondecreasing on Z+ and satisfy the condition

Rt(0) = 0 for all t ∈ [1, n].

(iii) Each cost function is computable in constant time at every point in its feasible domain.

To the best of our knowledge, assumptions (i)-(ii) cover all cost structures for problem

Capacitated Lot-Sizing encountered in the literature. There is no practical reason to

consider other cost structures since production costs should grow as production levels grow,

higher stock levels imply higher expenses, and in the case of shortage of the product (negative

inventory levels) penalty costs at least do not decline as the product shortage grows.

Problem Capacitated Lot-Sizing is NP-hard for many special cases, see Bitran and

Yanasse [7]. We present a fully polynomial time approximation scheme (FPTAS) for this

problem under assumptions (i)-(iii).

The following approximation results are available for variants of problem Capacitated

Lot-Sizing. Fast heuristic algorithms were developed by Bitran et al. [8] and Axäter

[2] for some polynomially solvable cases. The authors assert that these heuristics are use-

ful for large-scale instances. For NP-hard special cases, Bitran and Matsuo [6] suggested

approximation formulations solvable in pseudopolynomial time. They provided worst-case

performance estimations for some special cases.

It is worth mentioning that Woeginger [61] proved that if a dynamic programming algo-

rithm for some optimization problem has a certain structure, then it can be converted into an
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FPTAS. The method of Woeginger is applicable to a large variety of optimization problems,

especially to those which come from scheduling, but he explicitly mentions the single-item

capacitated economic lot-sizing problem as an example of an optimization problem to which

this method does not apply.

Van Hoesel and Wagelmans [57] developed the first FPTAS for the CELS problem. They

considered the case of concave (convex) production and backlogging cost functions satisfy-

ing the assumptions (i) and (ii). Their method can be extended to the case where either

production cost functions or holding cost functions are piece-wise concave (convex) with

a polynomially bounded number of pieces. In this case, either backlogging cost functions

or production cost functions remain concave (convex). They also considered a restriction

In ≥ 0. In our case, this restriction can be modelled by means of sufficiently large backlogging

cost Hn(In) (for negative values of inventory level In).

Van Hoesel and Wagelmans assumed that the cost functions are polynomially com-

putable. Our FPTAS is also applicable in this case. We assume that the cost functions

are computable in a constant time just in order to shorten complexity estimation formulas.

Our primary aim in this section is to develop an FPTAS for problem Capacitated

Lot-Sizing under the assumptions (i)-(iii) (without imposing any additional conditions on

the cost structure). Our secondary aim is to show that a standard dynamic programming

approach yields an FPTAS for this problem. Van Hoesel and Wagelmans stated that such

an approach is unlikely to be useful in deriving an FPTAS for problem Capacitated Lot-

Sizing. Our results disprove this statement.

The rest of this section is organized as follows. In the next section, we present a rounded

formulation of problem Capacitated Lot-Sizing and a straightforward dynamic program-

ming algorithm for this formulation. We further establish properties of the corresponding

recursive function, which allow us to shrink the state space of the dynamic programming

algorithm. The detailed algorithm is presented in Subsection 2.5.3. We convert it into an

FPTAS for problem Capacitated Lot-Sizing. A bound improvement procedure needed

for the conversion has been described in the introductory chapter. Concluding remarks are

given in Subsection 2.5.4.
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The present section is based on the paper of Chubanov, Kovalyov, and Pesch [15].

2.5.2 A rounded problem

Let I# be an instance of Capacitated Lot-Sizing. Note that assumptions (i) and (ii)

imply OPT (I#) ≥ 0. In Subsection 2.5.3, we will show that the case OPT (I#) = 0 can be

identified in polynomial time. Furthermore, if OPT (I#) > 0, a positive lower bound L on

the optimal value OPT (I#) can be found in polynomial time.

In this subsection, we assume that lower and upper bounds are known such that

0 < L ≤ OPT (I#) ≤ U.

The value of any feasible solution can be taken as an upper bound U. It can be calculated

in O(n) time.

Let us scale the objective function of instance I# to obtain a rounded instance denoted

by I. Given ε > 0, define scaling parameter δ such that

δ =
εL

2n
.

The rounded instance I is as follows.

min f(x, I) =
∑n

t=1(bRt(xt)/δc+ bHt(It)/δc), subject to (2.39)-(2.42).

All the assumptions (i)-(iii) are satisfied for the new production costs rt(xt) := bRt(xt)/δc

and holding-backlogging costs ht(It) := bHt(It)/δc.

Theorem 2.5.1 An optimal solution for the rounded problem instance I is an

ε−approximate solution for the original instance I#.

Proof. Let (x0, I0) be an optimal solution of instance I and (x∗, I∗) be an optimal solution

of the original instance I#. Since both the instances have the same feasible domain, the

following chain of inequalities holds.

F (x0, I0) =
n∑

t=1

(Rt(x
0
t ) +Ht(I

0
t )) ≤ δ

n∑

t=1

(rt(x
0
t ) + ht(I

0
t )) + 2nδ ≤
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((x∗, I∗) is feasible for the rounded instance)

≤ δ
n∑

t=1

(rt(x
∗
t ) + ht(I

∗
t )) + 2nδ ≤ F (x∗, I∗) + εL ≤ (1 + ε)OPT (I#).

Remark 2.5.1 An upper bound V on the optimal value OPT (I) of the rounded instance can

be computed as V = bU/δc. If V = 0, then we can apply a technique of Section 2.5.3 to find

an optimal solution of the rounded problem. Therefore, we assume V > 0. Furthermore, we

assume that for any feasible solution (x, I) of problem Capacitated Lot-Sizing inequali-

ties rt(xt) ≤ V + 1 and ht(It) ≤ V + 1, t = 1, . . . , n, hold. This assumption does not restrict

the class of problems we consider: if rt(a) > V for some a ∈ [0, ut], then, without changing

the set of optimal solutions, function rt(·) can be re-defined as rt(a) := min{rt(a), V +1} for

all a ∈ [0, ut]. Function ht(·) can be re-defined in a similar way.

We solve the rounded instance I by a modification of a straightforward dynamic program-

ming algorithm. In the course of this algorithm, functions φt(·), t ∈ [1, n], are calculated.

Value φt(s) is defined as the optimal objective function value of the following mathematical

programming problem.

min f t(x, I) =
∑t

i=1(ri(xi) + hi(Ii)),

subject to Ii = Ii−1 + xi − di, ∀i ∈ [1, t], (2.43)

I0 = 0, (2.44)

It = s, (2.45)

0 ≤ xi ≤ ui, ∀i ∈ [1, t], (2.46)

x ∈ Zt. (2.47)

In this program, only the first t out of n time periods are considered and an additional

restriction It = s is imposed on the inventory level in the time period t. Feasible solutions of

this instance are partial solutions of the original rounded instance I.We denote this instance

by It,s.
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Function φt(·) is defined on the set [at1, a
t
2] where a

t
1 = −

∑t
i=1 di and a

t
2 =

∑t
i=1(ui−di).

We set φ0(0) := 0 and a0
1 = a0

2 = 0. For any t ∈ [1, n], function φt(·) is evaluated recursively

as

φt(s) = min
s′∈[at−1

1 ,at−1
2 ]
{rt(s− s′ + dt) + ht(s) + φt−1(s

′)|s− s′ + dt ∈ [0, ut]} (2.48)

at any point s from [at1, a
t
2]. This formula is the same as presented in the previous section. It

follows immediately from the problem formulation. Remind that it yields a simple dynamic

programming algorithm with running time O(
∑n

t=1 ut
∑t

i=1 ui) for the rounded instance I.

As well as in the previous section, we refer to this algorithm as a straightforward algorithm.

Let ψ(·) be some function over an interval [a, b] of integers. We say that s is a nonstable

point of this function if s ∈ {a, b} or ψ(s) 6= ψ(s − 1). If ψ(s) = ψ(s − 1) for some s ∈

[a+1, b− 1], then we call s a stable point of the function ψ(·). Denote a set of the nonstable

points of the function ψ(·) as Bψ. We have

Bψ := {s ∈ [a+ 1, b− 1] | ψ(s) 6= ψ(s− 1)} ∪ {a, b}.

Note that if values ψ(s), s ∈ Bψ, are stored in a heap, each value ψ(s), s ∈ [a, b], can be

calculated in O(log |Bψ|) time. The heap can be constructed in O(|Bψ| log |Bψ|) time.

Further we assume that for any t ∈ [1, n] function rt(·) is defined on interval [0, ut], and

therefore Brt ⊆ [0, ut] and the end points 0 and ut are contained in Brt . We also assume that

ht(·) is defined on interval [at1, a
t
2] and therefore end points at1 and at2 belong to Bht.

The straightforward algorithm makes some superfluous computations to solve instance

It,s. The following theorem is a step towards its complexity improvement.

Theorem 2.5.2 The function φt(·) has at most O(t2V 2) nonstable points in its feasible

domain [at1, a
t
2].

Proof. Define set Bh0 := {0}. Recall that for any time period k, Bhk is the set of nonstable

points of the holding-backlogging cost function hk(·). Construct a set

S = {b−
t∑

l=k+1

dl | b ∈ Bhk , k ∈ [0, t]}, where
t∑

l=t+1

dl = 0.
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Let S = {s1, . . . , sp} where s1 < . . . < sp. We start with showing that function φt(·) is

nondecreasing over each interval [sj−1, sj − 1], j ∈ [2, p].

Suppose that s 6∈ S. Consider an optimal solution (x, I) for instance It,s. By definition,

It = s and f t(x, I) = φt(s). If x = (0, . . . , 0), then It = −
∑t

l=1 dl ∈ S. Hence, x 6= (0, . . . , 0).

Take the maximum index k ∈ [1, t] such that xk > 0. For all j ∈ [k, t], the inventory level Ij

can be calculated using the value Ik :

Ij = Ij−1 − dj = Ij−2 − dj−1 − dj = . . . = Ik −

j∑

l=k+1

dl.

From s = It = Ik −
∑t

l=k+1 dl, we obtain Ik = s +
∑t

l=k+1 dl. For all j ∈ [k, t], we get

Ij = Ik −
∑j

l=k+1 dl = s+
∑t

l=j+1 dl. Thus, since s 6∈ S, Ij does not belong to Bhj . Then, by

construction,

hj(Ij − 1) = hj(Ij) (2.49)

for all j ∈ [k, t]. Decrease xk by 1 to obtain a feasible solution (x̂, Î) of instance It,s−1 from

the optimal solution (x, I) of instance It,s. It holds Îl = Il for all l ∈ [1, k− 1] and Îl = Il− 1

for all l ∈ [k, t]. Taking into account (2.49), we deduce

hl(Îl) = hl(Il), ∀l ∈ [1, t].

Furthermore, rl(xl) = rl(x̂l) for all l ∈ [1, t] \ {k} and rk(x̂k) ≤ rk(xk). Hence,

f t(x̂, Î) ≤ f t(x, I).

Denote by (x̄, Ī) an optimal solution of instance It,s−1. Then

φt(s− 1) = f t(x̄, Ī) ≤ f t(x̂, Î) ≤ f t(x, I) = φt(s).

Therefore, function φt(·) is nondecreasing over each interval [sj−1, sj−1], j ∈ [2, p]. Since

this function is integer-valued and bounded by O(tV ) according to Remark 2.5.1, it has at

most O(tV ) nonstable points in any interval where it is nondecreasing. The number of such

intervals does not exceed |S| − 1. By construction and by Remark 2.5.1, we have

|S| ≤
t∑

j=1

|Bhj | ≤ O(tV ).
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Hence, function φt(·) has at most O(t2V 2) nonstable points over its feasible domain [at1, a
t
2].

We now prove a lemma that shows where to find nonstable points of functions φt(·),

t ∈ [1, n]. We use the following notation. If D is a set and a is a number, then D+a denotes

the set {d + a|d ∈ D}. Analogously, if D1 and D2 are sets, then D1 + D2 denotes the set

{d1 + d2|d1 ∈ D1, d2 ∈ D2}.

Lemma 2.5.1 The set Bφt is a subset of the set (Bφt−1 + Brt + {−1, 0} − dt) ∪ Bht .

Proof. Assume that s is in the feasible domain of the function φt(·) and

s 6∈ (Bφt−1 + Brt + {−1, 0} − dt) ∪ Bht . (2.50)

We show that s is a stable point of the function φt(·), namely, φt(s− 1) = φt(s). Let (x
1, I1)

be an optimal solution of instance It,s−1 and (x2, I2) be an optimal solution of instance It,s.

Consider the following cases.

1. I1
t−1 + 1 6∈ Bφt−1 .

Let (x′, I ′) be an optimal solution of instance It−1,I1t−1+1. Construct solution (x0, I0)

such that (x0
t , I

0
t ) = (x1

t , I
1
t + 1) and (x0

i , I
0
i ) = (x′i, I

′
i) for all i ∈ [1, t− 1]. Taking into

account I0
t = I1

t + 1 = s and s 6∈ Bht , we obtain

f t(x0, I0) = φt−1(I
1
t−1 + 1) + rt(x

0
t ) + ht(I

0
t ) = φt−1(I

1
t−1) + rt(x

1
t ) + ht(I

1
t ) = f t(x1, I1).

Since solution (x0, I0) is feasible for instance It,s,

φt(s) ≤ f t(x0, I0) = f t(x1, I1) = φt(s− 1).

2. I1
t−1 + 1 ∈ Bφt−1 .

We have s − 1 = I1
t = I1

t−1 + x1
t − dt. Therefore, s belongs to Bφt−1 + x1

t − dt. If

x1
t + 1 ∈ Brt , then s ∈ Bφt−1 + Brt − 1 − dt, which contradicts assumption (2.50).

Hence, x1
t + 1 6∈ Brt . This implies rt(x

1
t + 1) = rt(x

1
t ). Since set Brt contains 0 and ut,

relations 0 < x1
t + 1 < ut must hold. Construct (x0, I0) such that (x0

i , I
0
i ) = (x1

i , I
1
i )
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for all i ∈ [1, t − 1] and (x0
t , I

0
t ) = (x1

t + 1, I1
t + 1). From I0

t = I1
t + 1 = s 6∈ Bht , we

deduce ht(I
1
t ) = ht(I

0
t ). Thus, f

t(x0, I0) = f t(x1, I1). Since solution (x0, I0) is feasible

for instance It,s, we obtain φt(s) ≤ φt(s− 1).

3. I2
t−1 6∈ Bφt−1 .

Let (x′, I ′) be an optimal solution of instance It−1,I2t−1−1. By definition, I ′t−1 = I2
t−1−1.

Construct (x0, I0) such that (x0
i , I

0
i ) = (x′i, I

′
i) for all i ∈ [1, t − 1] and (x0

t , I
0
t ) =

(x2
t , I

2
t − 1). Solution (x0, I0) is feasible for instance It,s−1. Taking into account that

I2
t = s and therefore ht(I

2
t − 1) = ht(I

2
t ) since s is a stable point of function ht(·) by

(2.50), we obtain

f t(x0, I0) = φt−1(I
2
t−1 − 1) + rt(x

0
t ) + ht(I

0
t ) = φt−1(I

2
t−1) + rt(x

2
t ) + ht(I

2
t ) = f t(x2, I2).

Similarly to the previous cases, we get φt(s− 1) ≤ f t(x0, I0) = f t(x2, I2) = φt(s).

4. I2
t−1 ∈ Bφt−1 .

Notice that s = I2
t = I2

t−1+x
2
t −dt. It implies x2

t > 0 because otherwise, since 0 belongs

to Brt , s belongs to the set Bφt−1 + Brt − dt, which contradicts assumption (2.50). We

deduce that (x0, I0) with (x0
i , I

0
i ) = (x2

i , I
2
i ) for all i ∈ [1, t−1] and (x0

t , I
0
t ) = (x2

t−1, I
2
t−

1) is feasible for instance It,s−1. Taking into account rt(x
0
t ) ≤ rt(x

2
t ), I

0
t = I2

t −1 = s−1,

I2
t = s, and ht(s− 1) = ht(s), we obtain φt(s− 1) ≤ f t(x0, I0) ≤ f t(x2, I2) = φt(s).

Cases 1 and 2 imply φt(s) ≤ φt(s− 1) and cases 3 and 4 imply φt(s) ≥ φt(s− 1). Thus,

φt(s) = φt(s − 1), which means that s is a stable point of the function φt(·). Since this

statement is valid for all s 6∈ (Bφt−1 + Brt + {−1, 0} − dt)∪Bht , set Bφt is a subset of the set

(Bφt−1 + Brt + {−1, 0} − dt) ∪ Bht .

2.5.3 The algorithm

In this section, we describe an algorithm that constitutes an FPTAS for problem Capac-

itated Lot-Sizing. Our algorithm assumes that bounds L and U are given such that

0 < L ≤ OPT (I#) ≤ U.
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Finding a lower bound

As we already mentioned, OPT (I#) ≥ 0. The case OPT (I#) = 0 can be identified as

follows. Let us bound each variable xt by γt = max{a|a ∈ [0, ut], Rt(a) = 0} from above,

and bound each variable It by αt = min{b | b ∈ [at1, 0], Ht(b) = 0} from below and by

βt = max{b | b ∈ [0, at2], Ht(b) = 0} from above. Here at1 and at2 are the minimum and

maximum values of the variable It, see Subsection 2.5.2. The feasible domain of problem

Capacitated Lot-Sizing with the additional bounds, denoted as D, can be written as

the following system.

It = It−1 + xt − dt, ∀t ∈ [1, n],

I0 = 0,

αt ≤ It ≤ βt, ∀t ∈ [1, n],

0 ≤ xt ≤ γt, ∀t ∈ [1, n],

xt ∈ Z, ∀t ∈ [1, n].

It is easy to see that F (x, I) = 0 for (x, I) ∈ D, and equation OPT (I#) = 0 is equivalent

to D 6= ∅. The above problem reduces to finding a feasible flow in some network which is a

polynomially solvable problem. Nevertheless, for the sake of completeness, we show in more

detail how to solve the above system.

Since It =
∑t

i=1 xi −
∑t

i=1 di, t ∈ [1, n], the above system is equivalent to the following

system.

pt ≤
∑t

i=1 xi ≤ qt, ∀t ∈ [1, n], (2.51)

0 ≤ xt ≤ γt, ∀t ∈ [1, n], (2.52)

xt ∈ Z, ∀t ∈ [1, n]. (2.53)

Here pt = αt +
∑t

i=1 di and qt = βt +
∑t

i=1 di. Notice that qt ≥ 0, t ∈ [1, n].

By the definition, αt ≤ βt and, hence, pt ≤ qt, t ∈ [1, n].

The following transformation leads to an equivalent system. Since
∑t

i=1 xi ≤
∑t+1

i=1 xi,

t ∈ [1, n − 1], for any feasible x, we can reset qt := min{qi | i = n, n − 1, . . . , t}, t ∈ [1, n].

Such a resetting incurs the condition q1 ≤ · · · ≤ qn. Assume that this condition is satisfied.
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Lemma 2.5.2 If system (2.51)-(2.53) has a solution, then there exists a solution x0 of this

system, in which x0
1 = min{γ1, q1}.

Proof. Let x = (x1, . . . , xn) be a solution of the system (2.51)-(2.53) and x1 < min{γ1, q1}.

Let i0 ≥ 2 be the smallest index such that xi0 > 0. If such an index does not exist, then,

since q1 ≤ · · · ≤ qn, increasing x1 up to min{γ1, q1} does not change the feasibility of x.

Calculate ξ = min{xi0 ,min{γ1, q1} − x1}. Increase x1 by ξ and decrease xi0 by ξ. The

new solution remains feasible because
∑t

i=1 xi = x1 ≤ q1 ≤ qt for t = 1, . . . , i0 − 1 and sums
∑t

i=1 xi, t = i0, . . . , n, do not change. If the inequality x1 < min{γ1, q1} is still satisfied,

repeat the described transformation for the new solution. After a finite number of iterations

we will obtain a feasible solution x0, in which x0
1 = min{γ1, q1}.

Let us formulate a reduced system (2.51)-(2.53) by removing variable x1 and resetting

pi := pi−x
0
1, qi := qi−x

0
1, i = 2, . . . , n. By Lemma 2.5.2, if the reduced system (2.51)-(2.53)

has no solution, then the original system (2.51)-(2.53) has no solution as well. Furthermore,

if (x2, . . . , xn) is a solution for the reduced system (2.51)-(2.53), then (x0
1, x2, . . . , xn) is a

solution to the original system (2.51)-(2.53).

From the above discussion, it follows that system (2.51)-(2.53) has a solution if and only

if vector x0 is feasible such that

x0
t = min{γt, qt −

t−1∑

i=1

x0
i }, t = 1, . . . , n,

0∑

i=1

x0
i := 0.

Thus, when coefficients αt, βt, and γt are known for all t ∈ [1, n], the case OPT (I#) = 0

can be identified in O(n) time. If OPT (I#) = 0, then the corresponding solution can be

found in O(n) time as well. Therefore, taking into account assumptions (i) and (ii) which

can be used to evaluate coefficients αt, βt, and γt, we have O(
∑n

t=1(log ut + log(at2 − at1)))

time complexity for verifying the condition OPT (I#) = 0.

Now assume that OPT (I#) > 0. In this case, for any feasible solution (x, I), there exists

t ∈ [1, n] such that at least one of the following three inequalities is satisfied: xt > γt, It < αt,

or It > βt. Therefore, any feasible solution (x, I) satisfies the inequality

F (x, I) ≥ min{ψ(a) | ψ(a) 6= 0, ψ ∈ {Rt, Ht | t ∈ [1, n]}}.
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The right-hand side of this inequality can be taken as a positive lower bound L for the

value OPT (I#). Under assumptions (i) and (ii), this lower bound can be calculated in

O(
∑n

t=1(log ut + log(at2 − at1))) time.

Adjusting recursive formula and dynamic programming algorithm for the

rounded instance

For each function ψ(·) over an interval [a, b] and every point c0 ∈ [a, b], define a value4(ψ, c0)

as the length of the maximal interval [c0, c1] ⊆ [a, b] where ψ(·) is constant, i.e.,

4(ψ, c0) = max
[c0,c1]⊆[a,b]

{c1 − c0 | ψ(c) = ψ(c0) ∀c ∈ [c0, c1]}.

Let us go back to the recursive formula (2.48). Rewrite it as

φt(s) = ht(s) + min
s′∈[at−1

1 ,at−1
2 ]
{rt(s− s′ + dt) + φt−1(s

′) | s− s′ + dt ∈ [0, ut]}. (2.54)

Note that the minimum in the formula (2.54) is attained at a point s′ = ŝ such that

b ≤ ŝ ≤ b+4(φt−1, b),

a ≤ s− ŝ+ dt ≤ a+4(rt, a)

for some b ∈ Bφt−1 and a ∈ Brt . This system of inequalities is equivalent to

max{b, s+ dt − a−4(rt, a)} ≤ ŝ ≤ min{b+4(φt−1, b), s+ dt − a}.

Since rt(·) is constant over [a, a +4(rt, a)] and φt−1(·) is constant over [b, b +4(φt−1, b)],

each value from

[max{b, s+ dt − a−4(rt, a)},min{b+4(φt−1, b), s+ dt − a}]

delivers the minimum in the formula (2.54) and, consequently, in the formula (2.48). This

fact leads to the equation

φt(s) = ht(s) + min
a∈Brt , b∈Bφt−1

{rt(s− sab + dt) + φt−1(sab)}, (2.55)
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where sab is an arbitrary point from the interval [max{b, s + dt − a − 4(rt, a)},min{b +

4(φt−1, b), s + dt − a}], if it is not empty. If this interval is empty, we set the expression

under the above minimum to be equal to ∞ for corresponding a and b.

Thus, φt(·) can be calculated by a simple enumeration of all pairs (a, b) such that b ∈ Bφt−1

and a ∈ Brt . If sets Bφt−1 and Brt are maintained as sorted lists, then the value φt(s) can be

calculated in O(|Bφt−1 ||Brt |) time for any s ∈ [at1, a
t
2].

The above discussion justifies the following dynamic programming algorithm, denoted as

DP. It outputs an optimal solution (x0, I0) for rounded instance I.

Algorithm DP

Step 0 For all t ∈ [1, n] generate sets Brt and Bht as sorted lists;

Set Bφ0 := {0};

Step 1 for t = 1 to n do

for s ∈ (Brt + Bφt−1 + {−1, 0} − dt) ∪ Bht do

initialize (â, b̂) with (a, b) ∈ Brt × Bφt−1

such that max{b, s+ dt − a−4(rt, a)} ≤ min{b+4(φt−1, b), s+ dt − a};

for (a, b) ∈ Brt × Bφt−1 do

if max{b, s+ dt − a−4(rt, a)} ≤ min{b+4(φt−1, b), s+ dt − a} and

rt(â) + φt−1(b̂) + ht(s) > rt(a) + φt−1(b) + ht(s)

then (â, b̂) := (a, b); end if

end do

φt(s) := rt(â) + φt−1(b̂) + ht(s);

end do

Let B := (Brt + Bφt−1 + {−1, 0} − dt) ∪ Bht ;

Transform B into Bφt and maintain Bφt as a sorted list;

end do

Step 2 s1 := argmin{φn(s)|s ∈ Bφn};

s2 := s1 +4(φn, s1);

I0
0 := 0;

for t = n down to 1 do
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ŝ := any point from [s1, s2];

I0
t := ŝ;

initialize (â, b̂) with (a, b) ∈ Brt × Bφt−1

such that max{b, ŝ+ dt − a−4(rt, a)} ≤ min{b+4(φt−1, b), ŝ+ dt − a};

for (a, b) ∈ Brt × Bφt−1 do

if max{b, ŝ+ dt − a−4(rt, a)} ≤ min{b+4(φt−1, b), ŝ+ dt − a} and

rt(â) + φt−1(b̂) + ht(ŝ) > rt(a) + φt−1(b) + ht(ŝ)

then

(â, b̂) := (a, b);

end if

end do

s1 := max{b̂, ŝ+ dt − â−4(rt, â)};

s2 := min{b̂+4(φt−1, b̂), ŝ+ dt − â};

end do

for t = 1 to n do

x0
t := I0

t − I0
t−1 + dt;

end do

Remark 2.5.2 In Step 2, we assume that function value ψ(s) is stored with each point

s ∈ Bψ for ψ ∈ {rt, ht, φt | t ∈ [1, n]}. We also assume that sets Bψ are scanned in increasing

order of their elements.

In Step 1, the algorithm calculates values of the functions φt(·), t ∈ [1, n], at their

nonstable points and builds sets Bφt . To find set Bφt , set B = (Brt+Bφt−1+{−1, 0}−dt)∪Bht

is maintained as a sorted list in each iteration of the main loop of Step 1. To transform B

into Bφt , we may remove all stable points of function φt(·) from the set B as follows. Starting

with the first element s, scan set B in increasing order of its elements until element s′ is found

such that φt(s
′) 6= φt(s). Remove all elements found between elements s and s′ because they

are stable points of function φt(·). Proceed in the same way, starting with s′, until all stable
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points of this function are removed from the set B. By Lemma 2.5.1, the resulting set B

coincides with the set Bφt .

An optimal solution is found in Step 2. This step uses nonstable points of the functions

φt(·), t ∈ [1, n], found in the first step. In the last loop of Step 2, production levels x0
t are

calculated using optimal inventory levels I0
t and I0

t−1 for all t ∈ [1, n].

Determine the time complexity of the algorithm. Using assumptions (i) and (ii),

one can generate sets Brt and Bht and maintain them as sorted lists in O(|Brt| log ut)

and O(|Bht | log
∑t

i=1 ui) time, respectively. Therefore, the running time of Step 0 is

O
(∑n

t=1

[
|Brt| log ut + |Bht | log

∑t
i=1 ui

])
.

The cardinality of the set (Brt+Bφt−1 +{−1, 0}−dt)∪Bht is bounded by O(|Brt ||Bφt−1 |+

|Bht |) from above. Therefore for every t ∈ [1, n], the set B can be generated and maintained

as a sorted list in O((|Brt||Bφt−1 | + |Bht |) log(|Brt||Bφt−1 | + |Bht |)) time. Then, by Remark

2.5.1 and Theorem 2.5.2, Step 1 runs in O(V 6n5) time.

Since sets Brt and Bφt−1 are maintained as sorted lists and scanned in increasing order of

their elements (see Remark 2.5.2), values 4(rt, a) and 4(φt−1, b) are computable in constant

time in the course of the algorithm DP. Thus, Step 2 runs in O
(∑n

t=1 |Brt ||Bφt−1 |
)
time,

which does not exceed the complexity estimation of Step 1.

Finally, taking into account |Brt| ≤ O(V ) and |Bht | ≤ O(V ), the overall time complexity

of algorithm DP can be estimated as

O

(
V 6n5 + V

n∑

t=1

log
t∑

i=1

ui

)
.

Converting algorithm DP into an FPTAS

Recall that we can set V = bU/δc. Therefore, rounded instance I can be solved in

O

((
U

εL

)6

n11 +

(
U

εL

)
n

n∑

t=1

log
t∑

i=1

ui

)

time, which is pseudopolynomial.

The bound improvement procedure of Tanaev, Kovalyov and Shafransky [54] can be

used to find lower and upper bounds such that U/L = 3. This procedure is an improved
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modification of the procedure given by Kovalyov [43]. While the procedure in [43] performs

a bisection search over the range L,L+ 1, . . . , U, the improved procedure in [54] performs a

bisection search over the range 0, 1, . . . , k, where L2k−1 < U ≤ L2k. In each iteration of any

of the two procedures, algorithm DP can be applied. It uses an artificial upper bound from

the interval 2L, 2L + 1, . . . , U , a lower bound being a half of the upper bound, and ε = 1.

The running time of the bound improvement procedure [54] for problem Capacitated

Lot-Sizing is

O

((
n11 + n

n∑

t=1

log
t∑

i=1

ui

)
log log

U

L

)
.

A detailed description of the bound improvement procedure and the proof of its validity is

given in Section 1.4.

Theorem 2.5.1, properties of algorithm DP, and the bound improvement procedure imply

the following theorem, which is the main result of this section.

Theorem 2.5.3 Algorithm DP in combination with the bound improvement procedure is an

FPTAS for problem Capacitated Lot-Sizing under assumptions (i)-(iii). This FPTAS

runs in

O

(
n11

(
1

ε6
+ log log

U

L

)
+ n

(
1

ε
+ log log

U

L

) n∑

t=1

log
t∑

i=1

ui

)

time for any ε > 0.

2.5.4 Conclusions

We presented an FPTAS for a capacitated economic lot-sizing problem with a monotone

cost structure. Unlike earlier approaches to constructing FPTASes for such problems, we do

not change the feasible domain of the problem. Instead, we exploit combinatorial properties

of the recursive function in a straightforward dynamic programming algorithm applied to a

rounded problem.

Future research can be undertaken to apply ideas of this section to other NP-hard com-

binatorial optimization problems with similar feasible domains. An improvement of the time

complexity of the presented FPTAS is of interest as well.
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2.6 Generalizations of the CELS problem

This section is based on the paper [16] by Chubanov, Kovalyov, and Pesch.

2.6.1 Problem formulation

As well as in the previous sections, where we dealt with the classical single-item Capaci-

tated Economic Lot-Sizing (CELS) problem, we consider a single product that has to be

manufactured by a single facility within the planning horizon consisting of n time periods.

Previously we considered variables xt to be production levels at every period t. In the

model we consider in this section, it is much more convenient to interpret xt as amount of

a resource used for production. Actually, this value may involve several resource types. For

instance, if a product unit requires a units of resource A and b units of resource B, then

under xt units of the resource we imply xta units of resource A and xtb units of resource B.

In this case the resource is a sort of a compound resource.

In many real situations it may happen that the same production efforts yield different

results at different time moments. There are many reasons influencing this; productivity

may vary over time, or some part of the product is defective and thus cannot be used

to satisfy demand. In other words, there are external factors not allowing an ideal case

when we know exactly that consuming A units of resource results in B units of product.

Namely, a total production level at each period t (the amount of product units we have

produced by the end of period t) may be expressed by some, in general nonlinear, function

gt(·) depending on resource consumption levels x1, . . . , xt. Later we will describe some more

natural assumptions about the structure of this function. Now let us formulate the problem

which we call capacitated economic lot-sizing problem with a non-uniform resource (which we

further call Non-uniform Lot-sizing). The word ”non-uniform” reflects not only the fact

that gt(·) may be in general nonlinear, but also a restriction that a resource consumption

level xt takes values from some given set of integers. This restriction is reasonable, for

instance, if the resource goes into the manufacturing system in batches (which may be of

different size).
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So problem Non-uniform Lot-sizing is formulated as follows.

min F (x) = F (x1, . . . , xn) =
∑n

t=1(Rt(xt) +Ht(Jt)),

s.t. Jt = gt(x)−Dt, t ∈ [1, n],

xt ∈ At, t ∈ [1, n]. (2.56)

Parameters of problem Non-uniform Lot-sizing can be defined and interpreted as

follows.

• xt – resource value in time period t, a decision variable.

• At = {0, αt1, . . . , α
t
kt
} – set of feasible resource values in time period t such that 0 <

αt1 < αt2 < · · · < αtkt .

• Rt(·) – resource (usage) cost function in time period t.

• gt(·) – function representing the total number of product units manufactured up to the

end of time period t.

• Ht(·) – holding-backlogging cost function.

• Dt – total demand by the end of period t.

• Jt – inventory level at the end of time period t, Jt = gt(x)−Dt.

Note that if we use notation di for demand at each period i ∈ [1, t] as it was in the

previous sections, then Dt =
∑t

i=1 di.

It is not hard to see that the classical CELS problem is a special case of problem Non-

uniform Lot-sizing, in which one unit of the resource gives rise to one unit of the product,

that is gt(x) =
∑t

i=1 xi, and At = [0, ut], t ∈ [1, n].

We call vector x = (x1, . . . , xn) feasible if conditions (2.56) are satisfied. Let x∗ be an

optimal solution to problem Non-uniform Lot-sizing and let F ∗ be its optimal value,

i.e., F ∗ = F (x∗).

Similar to the literature on the classical CELS problem, we make the following realistic

assumptions.
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Assumption 2.6.1 Resource cost functions Rt(·) are positive and non-decreasing on Z++,

and Rt(0) = 0, t ∈ [1, n].

Assumption 2.6.2 Holding-backlogging cost functions Ht(·), t ∈ [1, n], are positive and

non-increasing on Z−− and positive and non-decreasing on Z++. Furthermore, Ht(0) = 0,

t ∈ [1, n].

Let g0(x0) denote an initial inventory level, i.e., the number of product units available

at the beginning of the first time period t = 1. To simplify the exposition, we assume that

g0(x0) = 0.

The following assumption, along with the constraints xt ∈ At, t ∈ [1, n], makes problem

Non-uniform Lot-sizing different from the classical CELS problem.

Assumption 2.6.3 Functions gt(x) are defined for x ≥ 0 and recursively computed by the

formula

gt(x) = Gt(gt−1(x), xt), t ∈ [1, n],

where Gt is a non-negative integer function increasing in each argument such that Gt(β, γ) =

0 if and only if (β, γ) = (0, 0).

Assumption 2.6.3 implies that function gt(x) solely depends on the first t components of

vector x. Furthermore, gt(x) = 0 if and only if x1 = · · · = xt = 0.

Assumption 2.6.4 Each function Rt, Ht and Gt, t ∈ [1, n], is computable in a constant

time at every single point of its feasible domain. Furthermore, given value v and one of the

parameters β and γ, the equation Gt(β, γ) = v can be solved in a constant time with respect

to the unknown parameter, t ∈ [1, n].

Notice that problem Non-uniform Lot-sizing admits an equivalent formulation, in

which each restriction xt ∈ At = {0, αt1, . . . , α
t
kt
} is replaced by a simpler restriction xt ∈

[0, kt] (the same as in the classical CELS problem) and each function gt(x) is re-defined

as gt(x) := Gt(gt−1(x), α
t
xt), where α

t
0 = 0. As far as we know, problem Non-uniform

Lot-sizing (at least in the general form) was never addressed in the literature.
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The remainder of the section is organized as follows. In the next subsection, we demon-

strate that under Assumptions 2.6.1-2.6.4 problem Non-uniform Lot-sizing and several

of its special cases cannot be approximated in polynomial time within any polynomially

computable relative error unless P=NP. This implies that an FPTAS does not exist for the

general case of problem Non-uniform Lot-sizing and some special cases. In Subsection

2.6.3, we describe an exact dynamic programming algorithm for problem Non-uniform

Lot-sizing. Approximation algorithms for special cases are derived in Subsection 2.6.4

where the dynamic programming algorithm is modified to be an approximation algorithm

with a guaranteed absolute error under specific conditions. It is further modified to provide

an FPTAS for a special case of problem Non-uniform Lot-sizing with separable functions

gt(x) and linear holding and backlogging cost functions with polynomially related slopes and

to obtain an FPTAS for problem Non-uniform Lot-sizing with zero holding costs. Sub-

section 2.6.5 addresses the related problem of minimizing maximum cost. Subsection 2.6.6

deals with a case when product losses are possible due to defects or other factors.

2.6.2 Non-approximability

One of the main results of this section is the following theorem.

Theorem 2.6.1 Let Π(·) be an arbitrary positive polynomially computable nondecreasing

function. If P 6= NP, then there exists no polynomial algorithm delivering a Π(size(I))-

approximate solution for any instance I of problem Non-uniform Lot-sizing under As-

sumptions 2.6.1-2.6.4 even if

1) xt ∈ {0, at}, Rt(xt) = xt, Gt(β, γ) = β + γ, t ∈ [1, n]; and

2) Ht(Jt) = 0, Dt = 0, t ∈ [1, n− 1], Hn(Jn) = K|Jn|.

Proof. Consider the following NP-hard problem Partition, see Garey and Johnson [28].

Partition: Given m+1 positive integers s1, . . . , sm and S such that
∑m

i=1 si = 2S, is there

a subset X ⊆M := {1, . . . ,m} such that
∑

i∈X si = S?

Given an instance IP of Partition and the value Π(size(I)) > 0, we will now construct

an instance INU of problem Non-uniform Lot-sizing. Set n := m. Define problem
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parameters according to 1) and 2) so that at := st, for all t ∈ [1, n], Dn := S, and K :=

(1+Π(c ·size(IP )))S where constant c is defined as follows. Note that one needs a string of a

length which is not greater than size(IP ) to encode all cost functions for instances satisfying

1) and 2). Therefore there is a positive integer constant c such that size(INU) does not

exceed c · size(IP ). (This constant can be equal to at most 4 which corresponds to encoding

three types of functions in the problem formulation and vector (a1, . . . , an).) Instance INU

can be constructed in time polynomial of size(IP ).

Let x∗ be an optimal solution of instance INU and let F ∗ be the corresponding objective

value. Denote X∗ = {t|x∗t > 0, i ∈M}. Using 1) and 2), we obtain

F ∗ =
n∑

t=1

(Rt(x
∗
t ) +Ht(gt(x

∗)−Dt)) =
∑

t∈X∗

st +K|
∑

t∈X∗

st − S|.

It is easy to see that F ∗ = S ≤ K if problem Partition has a solution and F ∗ > K if

problem Partition has no solution.

Assume that there exists a polynomial algorithm that for any instance I of problem

Non-uniform Lot-sizing finds a Π(size(I))-approximate solution. If it finds a solution

for instance INU with value F 0 > K, then from

F 0 ≤ (1 + Π(size(INU)))F
∗ ≤ (1 + Π(c · size(IP )))F

∗

we obtain

F ∗ ≥ F 0/(1 + Π(c · size(IP ))) > K/(1 + Π(c · size(IP ))) = S.

In this case, instance IP of problem Partition has no solution. Conversely, if it finds a

solution with value F 0 ≤ K, then F ∗ ≤ F 0 ≤ K and instance IP has a solution.

Thus, our assumption implies the existence of a polynomial time algorithm for the NP-

hard problem Partition, which is impossible unless P=NP.

The proof of Theorem 2.6.1 can easily be modified to prove the following corollaries.

Corollary 2.6.1 There exists no polynomial algorithm that for any instance I of prob-

lem Non-uniform Lot-sizing finds a Π(size(I))-approximate solution under Assumptions

2.6.1-2.6.4 and the “no backlogging” assumption such that Ht(Jt) =∞ for Jt < 0, t ∈ [1, n],

unless P = NP.
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Corollary 2.6.2 There exists no polynomial algorithm that for any instance I of prob-

lem Non-uniform Lot-sizing finds a Π(size(I))-approximate solution under Assumptions

2.6.1-2.6.4 and assumptions xt ∈ {0, 1}, Gt(β, γ) = β + ctγ, t ∈ [1, n], unless P = NP.

Corollary 2.6.3 There exists no polynomial algorithm delivering a Π(size(I))-approximate

solution for any instance I of the modification of the classical CELS problem where con-

straints xt ∈ [0, ut] are substituted with xt ∈ {0, ut}, t ∈ [1, n], unless P = NP.

Notice that the non-existence of a polynomial time approximation algorithm with a poly-

nomially computable relative error for any problem implies its NP-hardness and nonexistence

of an FPTAS for this problem unless P=NP.

Thus, efficient approximation algorithms like FPTASs can only be constructed for some

special cases of the problems considered in this section.

2.6.3 Dynamic programming algorithm

In this subsection, we describe a dynamic programming algorithm, denoted as DP, to solve

problem Non-uniform Lot-sizing. Denote Ft(x) =
∑t

i=1(Ri(xi) +Hi(gi(x)−Di)). Algo-

rithm DP recursively computes the value Ft(g), which is the minimum value of Ft(x), subject

to the condition that the values for the first t variables x1, . . . , xt are determined, xi ∈ Ai,

i = 1, . . . , t, and gt(x) = g. A formal description of algorithm DP is given below.

Algorithm DP

Step 1 (Initialization) Set F0(0) = 0 and t = 1.

Step 2 (Recursion) For g = 0, 1, . . . , Ut, where Ut = gt(α
1
k1
, α2

k2
, . . . , αtkt), compute the fol-

lowing:

Ft(g) =

{
min{Ft−1(g

′) +Rt(xt) +Ht(g −Dt) | (g
′, xt) ∈ Qt(g)}, if Qt(g) 6= ∅,

∞, otherwise,

where

Qt(g) = {(g
′, xt) | Gt(g

′, xt) = g, g′ = 0, 1, . . . , Ut−1, xt ∈ At}.

If t < n, then set t = t+ 1 and repeat Step 2. Otherwise, go to Step 3.



Non-uniform resource 87

Step 3 (Optimal solution) Calculate an optimal solution value

F ∗ = min{Fn(g) | g = 0, 1, . . . , Un}.

A corresponding optimal solution x∗ can be found by backtracking.

Let us show the optimality of algorithm DP.We say that a partial solution x = (x1, . . . , xt)

is in the state (t, g) if xi ∈ Ai, i = 1, . . . , t, and gt(x) = g. Consider partial solutions in the

same state (t, g). A solution with minimum value of Ft(x) dominates all other solutions in

the same state in the following sense: it can be extended to a complete feasible solution in

the same way as any other solution in the same state and will have smaller or equal value

of the objective function. Therefore, it is optimal to select only a dominant solution in each

state, as algorithm DP does.

The time complexity of algorithm DP can be estimated as O(nUmax(|Qmax| + Bmax)),

where Umax is the maximum value of Ut, Qmax is the set Qt(g) of maximum cardinality and

Bmax is the maximum time to calculate an arbitrary set Qt(g) in Step 2. Since function

Gt(β, γ) is increasing in each argument, the equation Gt(g
′, xt) = g has a unique solution

with respect to g′ or xt if one of these parameters and value g are fixed. Therefore, |Qmax| ≤

min{Umax, |Amax|} where Amax is the set of maximum cardinality among sets At. Let us

estimate Bmax. Given t and g, set Qt(g) can be calculated by one of the following two

techniques. Initiate Qt(g) = ∅.

1) Enumerate g′ = 0, 1, . . . , Ut−1. Given g′, find xt such that Gt(g
′, xt) = g. If there exists

such xt, then it can be found in O(log |At|) time by a bisection search over the set At using

the assumption that Gt(·, ·) is monotone in the second variable. If an appropriate xt has

been found, then add (g′, xt) to Qt(g). In this case, Bmax ≤ O(Umax log |Amax|).

2) Enumerate xt ∈ At. Given xt, find g′ such that Gt(g
′, xt) = g and check g′ ∈

{0, 1, . . . , Ut−1}. The latter condition can be checked in a constant time. If it is satisfied,

then add (g′, xt) to Qt(g). In this case, Bmax ≤ O(|Amax|).

Thus, the overall time complexity of algorithm DP can be estimated as

O(nUmax min{Umax log |Amax|, |Amax|}). It is a pseudopolynomial algorithm for problem

Non-uniform Lot-sizing if Assumption 2.6.4 is satisfied.
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Thus, problem Non-uniform Lot-sizing, while NP-hard and non-approximable with

any polynomially computable relative error in polynomial time, is pseudopolynomially solv-

able.

2.6.4 Approximation algorithms

In this section, we present at first a heuristic approach for the general problem Non-uniform

Lot-sizing. After that, we specify some assumptions and show that this approach provides a

solution with a guaranteed absolute error. Further this approach is converted into an FPTAS

for a special case of problem Non-uniform Lot-sizing with separable functions gt(x) =
∑t

i=1 ρi(xi), where ρi are positive integer functions, and linear holding and backlogging cost

functions

Ht(Jt) =





−νBt Jt, if Jt < 0,

0, if Jt = 0,

νHt Jn, if Jt > 0,

(2.57)

where νHt and νBt are given positive numbers such that the ratio

νmax

νmin

:=
max{νHt , ν

B
t | t ∈ [1, n]}

min{νHt , ν
B
t | t ∈ [1, n]}

is bounded by a polynomial in the problem input length in binary encoding.

An FPTAS for problem Non-uniform Lot-sizing with zero holding costs is also pre-

sented in this subsection.

An algorithm with a guaranteed absolute error

Algorithm DP in the previous section can be modified to be an approximation algorithm

for problem Non-uniform Lot-sizing as follows. Given a positive number δ, introduce

auxiliary recursively computable functions

gδt (x) = δb
Gt(g

δ
t−1(x), xt)

δ
c, gδ0(x0) := 0. (2.58)

In algorithm DP, replace function Gt(·, ·) by δbGt(·, ·)/δc. Find Qt(g) by the technique

1) enumerating those g and g′ which are multiples of δ that do not exceed Ut and Ut−1,

respectively.
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Denote problem Non-uniform Lot-sizing with functions gδt , t ∈ [1, n], as problem

Non-uniform Lot-sizingδ. Denote an optimal solution to this problem as xδ and algo-

rithm DP modified for this problem as DPδ. Feasible domains of both problems coincide.

Theorem 2.6.2 Given m > 0, δ > 0 and functions gδt satisfying (2.58), if holding-

backlogging cost functions satisfy

|Ht(g
δ
t (x)−Dt)−Ht(gt(x)−Dt)| ≤ mδ, t = 1, . . . , n, (2.59)

for any feasible x, then xδ is an approximate solution to the original problem Non-uniform

Lot-sizing with an absolute error 2mnδ, i.e.,

F (xδ) ≤ F (x∗) + 2nmδ. (2.60)

Furthermore, the running time of algorithm DPδ can be estimated as

O

(
n

(
Umax

δ

)2

log |Amax|

)
.

Proof. The following chain of relations proves inequality (2.60).

F (xδ) =
n∑

t=1

(Rt(x
δ
t ) +Ht(gt(x

δ)−Dt)) ≤
n∑

t=1

(Rt(x
δ
t ) +Ht(g

δ
t (x

δ)−Dt)) + nmδ ≤

n∑

t=1

(Rt(x
∗
t ) +Ht(g

δ
t (x

∗)−Dt)) + nmδ ≤ F (x∗) + 2nmδ.

The first and third inequalities “≤” follow from (2.59). The second inequality “≤” follows

from the fact that x∗ is a feasible solution for problem Non-uniform Lot-sizingδ.

Since values of auxiliary functions gδt (x) are multiples of δ, the running time

of algorithm DPδ can be estimated as O(n(U δ
max)

2 log |Amax|) where U δ
max =

maxt=1,...,n{bg
δ
t (α

1
k1
, α2

k2
, . . . , αtkt)/δc}. Note that gδ0(x0) = g0(x0) = 0 and gδ1(x) =

δbg1(x)/δc ≤ g1(x) for any feasible x. It is easy to show by induction that gδt (x) ≤ gt(x),

t ∈ [1, n], for any feasible x. Then

U δ
max ≤ max

t=1,...,n
{bgt(α

1
k1
, α2

k2
, . . . , αtkt)/δc} = b max

t=1,...,n
{gt(α

1
k1
, α2

k2
, . . . , αtkt)/δ}c = bUmax/δc

and we deduce that the indicated running time of algorithm DPδ is correct.
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Corollary 2.6.4 Let Z be the input length of problem Non-uniform Lot-sizing in binary

encoding. If for any ε > 0 value δ can be chosen such that inequalities (2.59) are satisfied,

εF ∗/(2Z ln) ≤ δ ≤ εF ∗/(2mn) and Umax/F
∗ ≤ Zk, where powers l and k are some constants,

then algorithms DPδ constitute an FPTAS for problem Non-uniform Lot-sizing with

running time O(Z2(l+k)n3 log |Amax|/ε
2) of each algorithm.

Proof. If δ ≤ εF ∗/(2mn), then inequality (2.60) can be extended to the inequality F (xδ) ≤

F (x∗)+2nmδ ≤ (1+ ε)F (x∗). Therefore, xδ is an ε−approximate solution to problem Non-

uniform Lot-sizing. The running time of algorithm DPδ can be estimated as follows. If

δ ≥ εF ∗/(2Z ln) and Umax/F
∗ ≤ Zk, we have Umax/δ ≤ 2UmaxZ

ln/(εF ∗) ≤ 2Z l+kn/ε. It

follows from Theorem 2.6.2 that algorithm DPδ runs in O(Z2(l+k)n3 log |Amax|/ε
2) time.

An FPTAS for the case of separable functions gt(x) and linear holding and back-

logging cost functions with polynomially related slopes

Assume that gt(x) =
∑t

i=1 ρi(xi), where ρi are positive integer functions, functions Ht(·),

t ∈ [1, n], are determined according to (2.57), and νmax/νmin is bounded by a polynomial of

the problem input size. Using Theorem 2.6.1, it is easy to show that this special case of

problem Non-uniform Lot-sizing is NP-hard even if all resource cost functions Rt(·) are

equal to zero and all coefficients νHt and νBt are equal to one.

We will use the same scaling approach as before. Determine

gδt (x) =
t∑

i=1

δ

⌊
ρi(xi)

δ

⌋
, t ∈ [1, n].

Note that we have Gt(β, γ) = β + ρt(γ) and thus

δ

⌊
Gt(g

δ
t−1(x), xt)

δ

⌋
= δ

⌊∑t−1
i=1 δbρi(xi)/δc+ ρt(xt)

δ

⌋
= gδt (x).

Thus, condition (2.58) is satisfied. Furthermore, |gδt (x)−gt(x)| ≤ tδ for any feasible x, which

implies

|Ht(g
δ
t (x)−Dt)−Ht(gt(x)−Dt)| ≤ νmaxtδ.
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The latter inequality is equivalent to (2.59) for m = νmaxt. Therefore, algorithm DPδ can be

applied to find an approximate solution with an absolute error 2n2νmaxδ. Let us modify it to

provide an FPTAS for the considered special case of problem Non-uniform Lot-sizing.

In the development of this FPTAS and an FPTAS in the next section, we shall use lower

and upper bounds on the optimal value F ∗ of problem Non-uniform Lot-sizing. Below

we show how to determine such bounds.

Let LB and UB be such numbers that 0 < LB ≤ F ∗ ≤ UB. For an upper bound,

the value of a feasible solution can be taken. For example, UB = F (xmax), where xmax =

(α1
k1
, α2

k2
, . . . , αnkn). Let us show how to verify whether F ∗ = 0 or F ∗ > 0 and, if F ∗ > 0, how

to find a positive lower bound.

Lemma 2.6.1 Let Assumptions 2.6.1-2.6.4 be satisfied. Then F ∗ > 0 if and only if Dt > 0

for some t ∈ [1, n].

Proof. Assume Dt = 0, t ∈ [1, n]. Then by Assumptions 2.6.1-2.6.4, F ∗ = F (0, . . . , 0) = 0.

Now let Dt > 0 for some t. Consider two cases: 1) there exists x∗t > 0, t ∈ [1, n], and 2)

x∗ = 0. If there exists x∗t > 0, then

F ∗ ≥ Rt(x
∗
t ) ≥ LB1 := min{Rk(α

k
1)|k = 1, . . . , n}.

Assumption 2.6.1 implies LB1 > 0. If x∗ = 0, then

F ∗ = LB2 :=
n∑

t=1

Ht(−Dt).

Assumption 2.6.2 implies LB2 > 0. Thus, if there exists Dt > 0, we can set LB =

min{LB1, LB2}. This lower bound can be computed in O(n) time.

For the special case of problem Non-uniform Lot-sizing that we consider, set

δ = εLB/(2n2νmax).

Denote f(x) =
∑n

t=1(Rt(x) +Ht(g
δ
t (x)−Dt)). From relation (2.60), it is easy to see that an

optimal solution xδ to the problem of minimizing f(x), subject to xt ∈ At, t ∈ [1, n], is an ε-

approximate solution to the considered special case of problem Non-uniform Lot-sizing.
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Observe that f(xδ) ≤ F ∗ + 2n2νmaxδ ≤ UB′ := UB + 2n2νmaxδ. Therefore, Ht(g
δ
t (x

δ) −

Dt) ≤ UB′, which implies

Dt −
UB′

νBt
≤ gδt (x

δ) ≤ Dt +
UB′

νHt
.

We deduce that
Dt

δ
−
UB′

δνBt
≤

t∑

i=1

⌊
ρi(x

δ
i )

δ

⌋
≤
Dt

δ
+
UB′

δνHt

and, since the middle part of the above relation is integer, we get

gδt (x
δ) ∈ Bt := {δ

⌈
Dt

δ
−
UB′

δνBt

⌉
, δ

(⌈
Dt

δ
−
UB′

δνBt

⌉
+ 1

)
, . . . , δ

⌊
Dt

δ
+
UB′

δνHt

⌋
}.

Denote N := νmax/νmin. We have

|Bt| ≤ O

(
UB′

δνmin

)
= O

(
UB

εLB
n2N

)
, t ∈ [1, n].

Algorithm DPδ can be modified to find xδ. At iteration t of Step 2 of this algorithm, we

can enumerate only values g ∈ Bt and g′ ∈ Bt−1. In this case, the time complexity of this

algorithm becomes

O

(
n5N2 log |Amax|

(
UB

εLB

)2
)
.

This time estimation can be decreased to

O

(
n5N2 log |Amax|

(
1

ε2
+ log log

UB

LB

))
(2.61)

if we use the second version of the bound improvement procedure (see Section 1.4) before

running DPδ.

If N is bounded by a polynomial of the input size, then the described modification of

algorithm DPδ with incorporated bound improvement procedure constitutes an FPTAS for

the considered special case of problem Non-uniform Lot-sizing.

An FPTAS for problem Non-uniform Lot-sizing with zero holding costs

Now we study problem Non-uniform Lot-sizing under the following assumption.

Assumption 2.6.5 Ht(Jt) = 0 for Jt > 0, t ∈ [1, n].
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Theorem 2.6.1 can be easily modified to show that problem Non-uniform Lot-sizing

with zero holding costs is NP-hard. This problem can be used for modelling situations when

holding costs are negligibly small as compared with the resource usage and backlogging

costs. An important special case of this problem arises when one would like to minimize

the resource usage costs, subject to the no backlogging requirement when all the demands

must be satisfied. The latter problem can be formulated as the following generalization of

the well-known knapsack problem.

min
∑n

t=1Rt(xt),

s.t. gt(x) ≥ Dt, t = 1, . . . , n,

xt ∈ At, t = 1, . . . , n.

No FPTAS is reported in the literature for the above generalized knapsack problem.

However, for some practical situations this problem can provide more adequate mathematical

modelling than studied in the literature on knapsack problems.

Consider an instance of problem Non-uniform Lot-sizing with zero holding costs. Let

F ∗ and x∗ denote the optimal value and an optimal solution of this instance, respectively.

Assume that bounds LB and UB such that 0 < LB ≤ F ∗ ≤ UB are given. Define

δ = εLB/(2n) and formulate the following rounded instance as follows:

min f(x) =
∑n

t=1

⌊
Rt(xt)
δ

⌋
+
⌊
Ht(gt(x)−Dt)

δ

⌋
,

s.t. xt ∈ At t = 1, . . . , n.

All rounded instances of the above form constitute the problem which we call the rounded

problem. We now establish a relation between the original problem Non-uniform Lot-

sizing with zero holding costs and the rounded problem.

Theorem 2.6.3 An optimal solution to the rounded instance is an ε-approximate solution to

the corresponding original instance of problem Non-uniform Lot-sizing with zero holding

costs.

Proof. Denote an optimal solution to the rounded instance as x0. Since feasible domains

of both instances coincide, x0 is feasible for the corresponding instance of problem Non-
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uniform Lot-sizing and x∗ is in turn feasible for the rounded instance. It remains to

show that F (x0) ≤ (1 + ε)F (x∗). We have

F (x0) ≤ δ
n∑

t=1

(b
Rt(x

0
t )

δ
c+ b

Ht(gt(x
0)−Dt)

δ
c) + 2nδ ≤

(x∗ is feasible for the rounded instance)

δ

n∑

t=1

(b
Rt(x

∗
t )

δ
c+ b

Ht(gt(x
∗)−Dt)

δ
c) + 2nδ ≤ F (x∗) + 2nδ ≤ (1 + ε)F (x∗).

Let us describe a dynamic programming algorithm, denoted as DP(ROU), to solve the

rounded instance. Denote ft(x) =
∑t

i=1(b
Ri(xi)
δ
c+bHi(gi(x)−Di)

δ
c). In the algorithm DP(ROU),

we recursively compute the value Et(v), which is the maximum value of gt(x), subject to the

condition that the values for the first t variables x1, . . . , xt are determined such that xi ∈ Ai,

i = 1, . . . , t, and ft(x) = v. An upper bound V on the optimal solution of the rounded

instance is used in the algorithm. It is determined as follows:

f(x0) ≤ f(x∗) ≤ bF (x∗)/δc ≤ V := bUB/δc.

A formal description of the algorithm DP(ROU) is given below.

Algorithm DP(ROU)

Step 1 (Initialization) Set E0(0) = 0 and t = 1.

Step 2 (Recursion) For v = 0, 1, . . . , V, compute the following:

Et(v) = max{Gt(Et−1(b), x
(v,b)
t ) | b = 0, 1, . . . , v},

where x
(v,b)
t is a number that satisfies x

(v,b)
t ∈ At and

bRt(x
(v,b)
t )/δc+ bHt(Gt(Et−1(b), x

(v,b)
t )−Dt)/δc = v − b,

if any such number exists. If it does not exist, set Gt(Et−1(b), x
(v,b)
t ) = −∞.

If t < n, then set t = t+ 1 and repeat Step 2. Otherwise, go to Step 3.
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Step 3 (Optimal solution) Calculate an optimal solution value

f(x0) = min{v | En(v) > −∞}.

A corresponding optimal solution x0 can be found by backtracking.

The optimality of this algorithm with respect to the rounded problem can be shown

as follows. Consider partial solutions x = (x1, . . . , xt) in the same state (t, v) such that

ft(x) = v. Let an arbitrary partial solution in this state be extended to a complete feasible

solution. Then a solution with maximum value of gt(x) can also be extended in the same

way to a complete feasible solution with the same or smaller value of the (rounded) objective

function f(x). Algorithm DP(ROU) selects such a solution in each state.

A partial solution in the state (t, v) can be obtained from a partial solution in the state

(t − 1, b), b ≤ v, by selecting an appropriate value α ∈ At satisfying bRt(α)/δc = a,

bHt(Gt(Et−1(b), α) − Dt)/δc = c and a + c = v − b. Such a value is denoted by

x
(v,b)
t in the algorithm. It can be calculated through an enumeration of v − b + 1 pairs

(a, c) = (0, v − b), (1, v − b− 1), . . . , (v − b, 0) as follows. Consider a fixed pair (a, c). Equa-

tions bRt(α)/δc = a and bHt(Gt(Et−1(b), α)−Dt)/δc = c are equivalent to

δa ≤ Rt(α) < δ(a+ 1) (2.62)

and

δc ≤ Ht(Gt(Et−1(b), α)−Dt) < δ(c+ 1). (2.63)

Since function Rt(α) is non-decreasing and function Ht(Gt(Et−1(b), α)−Dt) is non-increasing

in α, the system consisting of (2.62), (2.63), and α ∈ At can be solved with respect to α in

O(log |At|) time by applying a bisection search over the set At. Thus, the existence of the

required x
(v,b)
t and its value can be determined in O((v− b) log |At|) ≤ O(V log |Amax|) time.

It is easy to see that the time complexity of algorithm DP(ROU) is bounded by

O(V 2nD), where D is the maximum time to calculate x
(v,b)
t . Thus, it is bounded by

O((UB/LB)3n4 log |Amax|/ε
3). This estimation can be decreased to O(n4 log |Amax|(1/ε

3 +

log log(UB/LB))), if we use the bound improvement procedure given by Tanaev, Kovalyov

and Shafransky [54] before running DP(ROU).
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The time complexity of algorithm DP(ROU) can be improved if the functions have ad-

ditional properties like the one indicated below.

Assumption 2.6.6 For each t ∈ [1, n], functions Gt(gt−1(x), xt) and Rt(xt) are concave

(convex) in xt and function Ht(·) is concave (convex) on Z−.

If this assumption is satisfied, then one can choose δ = εLB/n in the formulation of

the corresponding rounded problem, and round down the summation of Rt and Ht. Under

Assumption 2.6.6, value x
(v,b)
t can be found in O(log |At|) time because the function Rt(α)+

Ht(Gt(Et−1(b), α) − Dt) is either convex or concave in α and we do not need to consider

pairs (a, c) of values of functions Rt and Ht. The time complexity of algorithm DP(ROU)

for problem Non-uniform Lot-sizing with zero holding costs under Assumption 2.6.6

reduces to O(n3 log |Amax|(1/ε
2 + log log(UB/LB))).

2.6.5 The problem of minimizing maximum cost

In this section, we briefly discuss theminmax version of problem Non-uniform Lot-sizing,

in which the objective is to minimize

M(x) = max
1≤t≤n

{Rt(xt) +Ht(Jt)}.

The minmax problem has a practical interest if a maximum budget in each time period

is critical. Let Assumptions 2.6.1-2.6.4 be satisfied for this problem.

Denote by xM and M∗ an optimal solution of the minmax problem and its value, re-

spectively. It is easy to see that equation M ∗ = 0 is equivalent to F ∗ = 0, where F ∗ is the

optimal solution value for the original problem Non-uniform Lot-sizing. Therefore, by

Lemma 2.6.1, M ∗ = 0 if and only if Dt = 0, t ∈ [1, n]. If it is not the case, then M ∗ > 0 and

one can see that

0 < M∗ ≤ F ∗ ≤ F (xM) ≤ nM ∗.

Let xεM and M ε be an ε-approximate solution to the minmax problem and its value,

respectively. We have

M ε/(1 + ε) ≤M ∗ ≤ F ∗ ≤ F (xεM) ≤ nM ε.
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Thus, exact and ε-approximate solutions to the minmax problem can be used to calculate

good lower and upper bounds for the original problem Non-uniform Lot-sizing.

In some cases, the minmax problem can be easier than the corresponding problem Non-

uniform Lot-sizing. However, it is not much easier in general. The proof of Theorem

2.6.1 can be modified to show that the minmax problem cannot be approximated in polyno-

mial time with any polynomially computable relative error unless P=NP. In the new proof,

maxt{st} < S can be assumed and the same instance INU can be constructed for the minmax

problem.

The proof of Theorem 2.6.1 can be used to demonstrate that the considered NP-hard

special cases of problem Non-uniform Lot-sizing are NP-hard for the minmax problem

as well. FPTASs can be constructed for these special cases of the minmax problem. Similar

ideas can be used in their development. However, better time complexities can be obtained

because the value of δ will not be accumulated as it does when we sum up the rounded values

in the objective function of problem Non-uniform Lot-sizing.

2.6.6 An FPTAS for the case with product losses

In this section, we consider the special case where product losses are possible during the

manufacturing process. We will assume that no backlogging is allowed.

Let xt be the amount of product which is produced in period t. The production capacity

in each period t is restricted by a nonnegative integer ut. It may happen that some of

the product units that have been produced cannot be used to satisfy the demand due to

detected defects. The defective units should be recycled. Units without defects are sent to a

warehouse. Recycling costs as well as unit production and unit holding costs contribute to

the total cost of expenses in each period. Obviously, the more product units are produced,

the more units have defects. This means that recycling costs must grow as the production

level xt grows. Assume that the amount of units without defects is expressed by a given

function pt(·) depending on variable xt. In our model, this function is nondecreasing and

such that pt(β + 1) ≤ pt(β) + 1 (i.e., production of an additional unit does not increase the

number of units without defects by more than one which is most reasonable to assume). The
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total cost in period t looks as follows:

recycling cost(xt − pt(xt)) + production cost(xt) + holding cost(Jt −Dt)

where Jt is the total amount of product units without defects produced by the end of period

t. The inventory level of non-defective product units is equal to Jt−Dt where Dt is the total

demand by the end of period t (the sum of all demands by the end of this period). The

value Jt is identified through the equation Jt = Jt−1 + pt(xt). In the above cost formula,

recycling costs grow as the production level grows. Both recycling and production costs may

be expressed by a single nondecreasing function Rt(·) that we sometimes call production cost

function.

Let us formulate the described model as an optimization problem.

Formally, we consider the following assumptions:

Assumption 2.6.7 At = [0, ut], ut > 0, for all t ∈ [1, n].

Assumption 2.6.8 Gt(α, β) = α+pt(β) where pt(·) is a nondecreasing function computable

in constant time and satisfying the inequality pt(β + 1) ≤ pt(β) + 1 and equation pt(0) = 0.

Assumption 2.6.9 Functions Rt(·) and Ht(·) are increasing.

Assumption 2.6.10 All functions participating in problem formulations are integer-valued.

We can formulate our optimization problem describing the situation with product losses as

a subproblem of Non-uniform Lot-sizing without backlogging:

min
∑n

t=1(Rt(xt) +Ht(Jt −Dt)) (2.64)

s.t. Jt = Jt−1 + pt(xt), t ∈ [1, n], (2.65)

Jt ≥ Dt, t ∈ [1, n], (2.66)

J0 = 0, (2.67)

xt ∈ [0, ut], t ∈ [1, n]. (2.68)

Further we will refer to this problem as Lot-sizing with Product Waste.



Non-uniform resource 99

Let I be an instance of the related rounded problem ROU. Given an integer s, construct

a reduced rounded instance It,s by the instance I as

min
∑t

i=1(ri(xi) + hi(Ji −Di)) (2.69)

s.t. Ji = Ji−1 + pi(xi), i ∈ [1, t], (2.70)

Ji ≥ Di, i ∈ [1, t], (2.71)

J0 = 0, (2.72)

Jt = s, (2.73)

xi ∈ [0, ui], i ∈ [1, t]. (2.74)

where rt(·) and ht(·) are obtained from corresponding functions Rt(·) and Ht(·) by scaling

with parameter δ similar to the previous sections. Let s be such that the set of feasible

solutions of the instance It,s is not empty. Define φt(·) at any such point s as

φt(s) = OPT (It,s).

The value s may only be from an interval [Dt, Ut] where Ut =
∑t

i=1 pt(ut) is maximum

possible total level of product without defects. Let U be an upper bound on the optimal

value of the original problem instance. Then, as well as in the previous sections, we may

calculate an upper bound on OPT (I) as V = bU/δc. Since all solutions with objective values

greater than V + 1 are not needed, we may, without loss of generality, include this upper

bound into the following formula by which the value φt(s) may recursively be computed:

φt(s) = min{φt−1(s
′) + rt(xt) + ht(s−Dt)|xt ∈ [0, ut], s

′ ∈ [Dt−1, Ut−1]} ∪ {V + 1}, (2.75)

Since the value V is an upper bound on OPT (I), the inequality min{φn(s)|s ∈ [Dn, Un]} ≤

V + 1 holds.

Proposition 2.6.1 The function φt(·) is nondecreasing on its feasible integer interval

[Dt, Ut].

Proof. The proposition follows from two previously made assumptions. The first one is

that gt(0, . . . , 0) = 0 and the second one is Assumption 2.6.8. Consider a feasible solution
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x = (u1, . . . , ut) of It,Ut . Consider the component xt. Decrease it by one. Let s = gt(x).

The new solution x is feasible for It,s. Repeat until either xt = 0 or gt(x) − Dt = 0. If

gt(x) − Dt = 0, then proceed with period t − 1, otherwise stop. According to the two

mentioned assumptions, the value s should take all values from the interval [Dt, Ut] during

the described iterative process. Note that every time reducing components of the vector x

we come to a new vector x with objective value not exceeding the previous one. This proves

that φt(·) is nondecreasing on [Dt, Ut].

By definition, φt(·) is upper bounded by V on its feasible set [Dt, Ut]. In the recursive

formula 2.75, we do not need to calculate functions rt(·) and ht(·) at points where their

values exceed V. Thus we may accept the following assumption provided that ut and Ut are

redefined if necessary.

Assumption 2.6.11 rt(xt) ≤ V for all xt ∈ [0, ut] and ht(s−Dt) ≤ V for all s ∈ [Dt, Ut].

The bounds ut and Ut may be redefined in polynomial time using bisection search relying

on monotony of functions rt(·) and ht(·).

Consider some nondecreasing integer-valued function ψ : [a, b]→ Z+, where a, b ∈ Z. Let

Pψ be a partition of [a, b] into intervals [s1, s2] such that ψ(·) is constant over each of these

intervals and inequalities ψ(s1) > ψ(s1 − 1) and ψ(s2) < ψ(s2 + 1) hold in case s1 − 1 and

s2 + 1 belong to [a, b]. (In other words, [s1, s2] is maximal by inclusion.) Obviously, there is

a unique partition with such properties.

Proposition 2.6.2 Let ψ(·) be computable in constant time. If ψ(·) is nondecreasing and

upper bounded by B on [a, b], then |Pψ| ≤ O(B) and partition Pψ can be found in O(B log(b−

a)) time.

Proof. Set s1 = a. Let ψ(s1) = v. Using the fact that ψ(·) is nondecreasing, find s2 =

max{s ∈ [s1, b]|ψ(s) = v}. This can be done in O(log(b−a)) time by means of binary search.

Add the pair of end points (s1, s2) of the interval [s1, s2] to a list and proceed with s1 = s2+1.

Note that we can also store a corresponding value of function ψ(·) with every item of the

list. When s1 becomes greater than b, the list represents Pψ. Since ψ(·) is nonnegative,
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nondecreasing, and integer-valued, we have |Pψ| ≤ B + 1 which means that we need only

O(B) iterations to find Pψ.

Further, if we say that a partition Pψ is given, this means that Pψ is presented by a list

where each item corresponds to an interval [s1, s2] ∈ Pψ and a related value of function ψ(·).

In our consideration, the order of items in such lists does not play any role and therefore we

assume that we access their items in consecutive order. This means that every item can be

taken from a list in constant time.

Consider partition Pφt . The next proposition follows immediately from the fact that φt(·)

is upper bounded by V + 1, integer-valued, nonnegative, and nondecreasing.

Proposition 2.6.3 |Pφt | ≤ O(V ).

We assume that Pφ0 consists of a single set {0}.

Lemma 2.6.2 Let Pφt−1 be given. Then φt(·) can be computed in O(V log ut) time at any

point s ∈ [Dt, Ut].

Proof. To compute φt(·) we may perform an exhaustive search in the family Pφt−1 and take

the best feasible xt and s
′ in the formula 2.75. More precisely, let [s1, s2] ∈ Pφt−1 and v be

a value of the function φt−1(·) over the interval [s1, s2]. Solve an instance

min v + rt(xt) + ht(s−Dt) (2.76)

s.t. Gt(s
′, xt) = s,

s′ ∈ [s1, s2],

xt ∈ [0, ut],

as follows. Note that due to our assumptions

Gt(s
′, xt) = s′ + pt(xt).

Then the above instance can be rewritten as

min v + rt(xt) + ht(s−Dt)
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s.t. s′ + pt(xt) = s,

s′ ∈ [s1, s2],

xt ∈ [0, ut],

Since rt(·) is a nondecreasing function, the optimum value of this instance is attained at a

minimum feasible value xmin of variable xt. The function pt(·) can take all values from the

interval [0, s− s′] as long as s′ and s are feasible for functions φt−1(·) and φt(·), respectively.

Taking additionally into account that pt(·) is nondecreasing, we may write

xmin = min{α ∈ [0, ut]|pt(α) = s− s2}.

Using monotony of pt(·), this value can be found in O(log ut) time by binary search. To

find φt(s), we have to apply the described procedure for every interval [s1, s2] from partition

Pφt−1 and choose the optimum value of the instance (2.76). This gives a time complexity

estimation O(V log ut) to compute the function value φt(s) at any feasible point s.

Theorem 2.6.4 Let Pφt−1 be given. Then Pφt can be found in

O(V 2 log(Ut −Dt) log ut)

time.

Proof. By Proposition 2.6.3, the cardinality of Pφt is O(V ). Proposition 2.6.2 has been

proven under the assumption that function ψ(·) is computable in constant time. Changing

the constant time of function computation by the estimation O(V log ut) from Lemma 2.6.2

and applying Proposition 2.6.2 to function φt(·), we may conclude that partition Pφt can be

found in O(V 2 log(Ut −Dt) log ut) time.

Summarizing our discussion, we may write an algorithm to find an optimal solution of

instance I :

Algorithm 2.6.1

Step 1 Construct Pφ1 , . . . ,Pφn−1 ;

Let Pφ0 = {{0}};
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Step 2 s := 0;

for t = n down to 1 do

Select [s1, s2] ∈ Pφt−1 so that the optimum value of instance (2.76) is minimum;

s := s2;

x0 := min{α ∈ [0, ut]|pt(α) = s− s2};

end do

This algorithm runs in

O

(
n∑

t=1

V 2 log(Ut −Dt) log ut

)

time. Since V = bU
δ
c, we have an algorithm finding a ε−approximate solution for every

instance of the problem Lot-sizing with Product Waste in time bounded by a polyno-

mial of the instance size, 1/ε, and U/L. Applying the Bound improvement procedure implies

the following theorem.

Theorem 2.6.5 There exists a fully polynomial time approximation scheme for Lot-sizing

with Product Waste.

2.6.7 Conclusions

In the present subsection we have introduced and studied a single-item capacitated eco-

nomic lot-sizing problem with a single discrete non-uniform resource. This problem, denoted

as Non-uniform Lot-sizing, represents a generalization of the classical CELS problem.

We demonstrated that the general problem Non-uniform Lot-sizing and several of its

special cases cannot be approximated with any polynomially computable relative error in

polynomial time unless P=NP. We further derived a pseudopolynomial dynamic program-

ming algorithm for the general problem and suggested its modification that in some cases

provides an approximate solution with a given absolute error. We described FPTASs for

some NP-hard special cases of the problem.

Further research can be undertaken to improve the time complexities of the presented

approximation algorithms and to find other important NP-hard special cases of problem
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Non-uniform Lot-sizing, to which approximation techniques presented in this paper and

in the paper of van Hoesel and Wagelmans [57] can be applied.



Chapter 3

Multi-machine scheduling

3.1 Preliminary notes

Machine scheduling deals with only those scheduling problems where machines are allowed

to process at most one job at a time, unlike project scheduling problems where several jobs

(projects) may be processed simultaneously depending on resource availability.

To formulate a machine scheduling problem one needs to answer three questions:

• What kind of machine environment has the problem?

• In what kind of job environment should jobs be scheduled?

• Which objective function should be minimized?

A machine environment provides information about machines. It may describe the amount

of machines, their types, etc. A job environment is the data describing jobs. By default, any

job has to be processed non-preemptively (without interruptions). In this case the difference

between the completion time of the job and its start time equals the job processing time.

Graham, Lawler, Lenstra, and Rinnooy Kan [31] suggested a three-field notation α|β|γ in

order to classify machine scheduling problems briefly where field α corresponds to a machine

environment, β is related to a job environment, and γ describes an objective function.

If α = P, then we deal with parallel identical machines, and the number of machines is

considered as a part of the input data. If α = Pm, then the number of machines is equal
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to a constant m. In this case, the number of machines is considered not to be a part of an

input.

In many practical situations, a job should pass several stages with parallel machines

at each of them, and the order of stages is the same for every job. This means that we

may enumerate stages as 1, . . . , L so that a job should visit all stages in increasing order

of index before it is complete. (At every stage a job visits a machine only once. A job

may have different processing times for every stage.) Manufacturing systems with such

properties sometimes are called flexible flow shops and corresponding scheduling problems

are called flexible flow shop problems. Obviously, they are generalizations of standard flow

shop problems where a single machine is available at every stage. (For detailed review of

algorithmic approaches for both flow shop and flexible flow shop problems we refer to the

book by BÃlażewicz et al. [9] and to Kis and Pesch [38].)

For single-stage problems we use notation Mk to denote a machine with index k. For

multi-stage problems we also add a stage number to index a machine. Sometimes we will

omit letter ’M’ referring to machines. For instance, we may say ”consider a machine k”

which will mean ”consider a machine Mk”. Analogously, we sometimes refer to jobs using

only their indices.

Any schedule can be completely characterized by completion times of the jobs and job

assignments to machines. We use only a vector of completion times to denote a schedule.

With every schedule C = (C1, . . . , Cn) we associate a function AC : [1, n] → [1,m] whose

value AC(j) is a number of a machine executing job Jj in schedule C. If machines are

identical, then a vector of completion times allows to restore a schedule within a permutation

of machines in polynomial time. In other cases, information about machine assignment is

more important.

To illustrate our discussion, let us observe scheduling problem P2||
∑
Cj where jobs

J1, . . . , Jn should be scheduled on two parallel machines M1 and M2 subject to minimizing

the total completion time, i.e., the sum
∑n

j=1Cj of completion times Cj. An example of a

feasible schedule for an instance of problem P2||
∑
Cj with six jobs is given in the form of a

Gantt chart in Figure 3.1. There, each machine M1 and M2 processes jobs non-preemptively
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Figure 3.1: An example of a feasible schedule.

in increasing order of their indices. At the same time this is a nondecreasing order of

job processing times. The schedule in Figure 3.1 follows therefore a so-called Smith’s rule

known also under the name of shortest processing time (SPT) rule by which every machine

should process jobs in nondecreasing order of processing times. For a single machine, this

rule yields an optimal job sequence if the objective is to minimize total completion time
∑n

j=1Cj, or equivalently average completion time 1/n
∑n

j=1Cj. Hence, for any instance of

problem P2||
∑
Cj there is an optimal schedule where each machine follows the SPT rule.

This means that, for this problem, without loss of an optimal schedule, we may number jobs

so that p1 ≤ . . . ≤ pn and assume that each machine should process jobs in increasing order

of their index.

3.2 Local search in large-scale neighborhoods

3.2.1 Introduction

We will consider local search procedures in large scale neighborhoods for the scheduling

problem P |rj, sij|
∑
Cj where sij are setup times arising if jobs Ji and Jj are executed by

the same machine one after another. In a feasible schedule C all job start times should be

greater than or equal to corresponding release dates rj. No preemptions are allowed. The
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objective is to find a feasible schedule with minimum total completion time
∑n

j=1Cj. The

described problem is known to be strongly NP-hard.

In our procedures, the basic transformations of schedules are so-called swap, insertion,

and deletion moves. A swap move interchanges two jobs in a schedule. For instance, if jobs

Ji and Jj are processed by machines Ml and Mk, respectively, then after applying a swap

move Jj is replaced by Ji on the machine Mk and Ji is replaced by Jj on the machine Ml.

A swap move consists of two insertion moves each of which places a job in an appropriate

position on a corresponding machine. A deletion move removes a job from a schedule. It is

obvious that any swap move can be accomplished by two deletion and two insertion moves.

We will suppose that every move is concluded by shifting jobs as early as possible, without

changing their order or machine assignments.

Every transformation of a schedule may change the objective value. Let C ′ be a schedule

obtained from a schedule C by means of applying a swap move to jobs Ji and Jj. We call cij

the swap cost of jobs Ji and Jj if cij is a difference between objective values of schedules C ′

and C. If cij is negative, then this swap move improves schedule C.

Local search procedures for scheduling problems go from schedule to schedule exploring

a neighborhood of the current schedule at every iteration. A neighborhood of a schedule is

a set of schedules that can be obtained from this schedule by a sequence of moves following

certain rules. An example of a neighborhood of some schedule C is where all schedules

may be obtained from C by a single swap move. Provided that jobs processed by the same

machine are also allowed to be swapped, this neighborhood contains n(n− 1)/2 + 1 entries

(i.e, n(n− 1)/2 swap variants plus schedule C).

Using only single swap and insertion moves in order to obtain improved schedules is

not effective since only small neighborhoods (of polynomial size) are searched. Polynomial

search procedures in large-scale neighborhoods of exponential size usually yield much better

results. There are different techniques allowing to find reasonably good solutions in large-

scale neighborhoods. They can be divided into two big classes. Search procedures of the

first class find locally optimal solutions, and those of the second class search neighborhoods

approximately. For our problem, we will consider procedures of both classes.
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In conclusion, we will show on a real-life instance that the local search procedures for

single-stage scheduling problems are also able to essentially improve schedules for flexible

flow shop problems.

3.2.2 Exact and approximate search in exponential neighborhoods

Matching neighborhood

Let cij be the cost of the swap of jobs Ji and Jj in schedule C. Let S1 and S2 be disjoint subsets

of machine indices. Let for any l ∈ S1 and k ∈ S2 a value wlk be a minimum among costs cij

such that AC(i) = l and AC(j) = k. Denote by (i(l, k), j(l, k)) a pair of job indices delivering

such minimum. In other words, for every pair of machines we choose the most profitable swap

of jobs. Assume that P is a subset of S1 × S2 such that any two different pairs (l1, k1) ∈ P

and (l2, k2) ∈ P satisfy {l1, k1} ∩ {l2, k2} = ∅. Apply swaps of each job pair (Ji(l,k), Jj(l,k))

for any pair of machines (Ml,Mk) where (l, k) ∈ P . The total change in the current cost

of the schedule C is calculated as
∑

(l,k)∈P wlk. Let C
′ = (P ;C) denote a schedule obtained

from the schedule C by applying corresponding swaps. If
∑

j=1C
′
j −

∑
j=1Cj < 0, then we

came to a better schedule after our simultaneous swap moves. Denote the set of all such

schedules (P ;C) by matching(C).We call the move from C to a schedule C ′ ∈ matching(C)

a parallel swap move. We use such name due to the fact that one may perform independent

swaps to arrive C ′. To find the best parallel swap move, we can find a matching of minimum

(negative) weight in a weighted graph G = (N (G), E(G)) where N (G) = [1,m] is the set of

machine numbers and the set of edges E(G) = {{l, k}|wlk < 0} corresponds to all improving

moves.

The problem of finding a minimum cost matching in graph G can be formulated as the

following integer linear program.

min
∑

e∈E(G)wexe (3.1)

s.t.
∑

e∈E(G),e∩{v}6=∅ xe ≤ 1 ∀v ∈ N (G) (3.2)

xe ∈ {0, 1} ∀e ∈ E(G) (3.3)
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Unlike some formulations having exponential size, in this one we may not omit integrality

conditions. Running CPLEX on this formulation, in reasonable time we can find matchings

with costs differing from the optimal one by at most 0.1%. (Note that CPLEX might need

long time to solve the above integer linear program exactly and this is the reason that we

solve the problem approximately.)

The neighborhood matching(C) has an exponential size. One can see that

|matching(C)| ≥ 2bm/2c

for any schedule C.

Proposition 3.2.1 For any schedule C a local optimum in the neighborhood matching(C)

can be found in polynomial time.

Proof. The proposition is implied by the fact that the problem (3.1)-(3.3) can be rewritten

as a maximum weight matching problem if we reverse the sign in the objective function and

replace ”min” by ”max”. A matching of maximum weight can be found for instance by the

algorithm developed by Edmonds [22] in time polynomial of the instance size.

Assignment neighborhood

Consider a schedule C. For every machine Mk, select a job jk among jobs processed by this

machine so that the total completion time of jobs processed by Mk would be as small as

possible after deleting this job. We define a neighborhood assignment(C; j1, . . . , jm) as a set

of all schedules that can be obtained from C by interchanging jobs belonging to the selected

job set {j1, . . . , jm}. In any of these schedules, a machine processes exactly one of the jobs

j1, . . . , jm. Formally,

{AC′(j1), . . . , AC′(jm)} = [1,m]

for any C ′ ∈ assignment(C, j1, . . . , jm). Every schedule in this neighborhood can be con-

structed by deleting jobs j1, . . . , jm and reassigning machines processing them one per every

job. Thus, to find an optimal schedule in this neighborhood, one has to solve an assignment



Local search in large-scale neighborhoods 111

problem. This is the reason why we call the described neighborhood assignment neighbor-

hood.

A formulation of the related optimization problem reads as follows:

min
∑

j C
′
j

s.t. C ′ ∈ assignment(C, j1, . . . , jm)

We will call this problem Assignment Neighborhood.

Let wkl be the lowest cost of insertion of job jk into machine Ml. To calculate this value,

we may try to insert this job into the machine before or after every job that is to be processed

by machine Ml in schedule C, each time evaluating the value
∑n

j=1C
′
j −

∑n
j=1Cj where C

′

denotes the schedule obtained from C by the insertion of job jk into the new place. Then

we select the insertion variant where
∑n

j=1C
′
j −

∑n
j=1Cj is minimum. We will find so far

the most profitable place into which job jk can be inserted provided that this job is required

to be processed by machine Ml. If
∑n

j=1C
′
j −

∑n
j=1Cj is negative, then a corresponding

insertion improves the schedule. The problem Assignment Neighborhood boils down to

an assignment problem of the form

min
∑

(k,l)wklxkl

s.t.
∑m

k=1 xkl = 1, ∀l ∈ [1,m],

∑m
l=1 xkl = 1, ∀k ∈ [1,m],

xkl ∈ {0, 1}, ∀k, l ∈ [1,m].

Every component xkl taking value 1 in a feasible solution x of this problem corresponds

to assignment of job jk to machine l. An optimal solution yields an optimal reassignment of

jobs j1, . . . , jm to machines. Therefore, Assignment Neighborhood reduces to the above

assignment problem which is known to be polynomially solvable.

Let us show that it may happen that there is a schedule C that is a local optimum

in the matching neighborhood, but, at the same time, it is not optimal in the assignment

neighborhood.
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Figure 3.2:

Figure 3.3:

Consider six jobs with processing times (p1, . . . , p6) = (2, 4, 3, 4, 4, 4). Assume that all

setup times, except s24, are equal to some positive value S. Let r5 = 6 and all the other

job release dates are equal to zero. Suppose that there are three machines. Construct a

schedule C0 as indicated in Figure 3.2. Any pairwise interchange of jobs does not improve

the schedule. I.e., schedule C0 is optimal in the matching neighborhood. At the same time,

if we reassigned jobs J4, J5, and J6 to machines M2, M1, and M3, respectively, then we

would obtain a better schedule which is shown in Figure 3.3. Since jobs J4, J5, and J6

should be selected to be reassigned due to the definition of the assignment neighborhood,

this schedule belongs to assignment(C0; 4, 5, 6). Note that J4, J5, and J6 are exactly those

jobs after deleting of which we obtain a partial schedule with the smallest objective value

provided that we are allowed to delete only one job at each machine.
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Figure 3.4: Jobs may move only to the next machines in clockwise order.

Rotation neighborhood

To simplify the exposition, consider successor and predecessor functions succ and pred de-

fined on the set [1,m] such that succ(t) is equal to t+ 1, if t < m, and to 1, otherwise, and

pred(t) is equal to t− 1, if t > 1, and to m, otherwise.

Let C be a feasible schedule. Choose some subset of machines S ⊆ [1,m]. Let C ′ be a

schedule where some job is removed from each machine belonging to S and reassigned onto

the next machine. I.e., job j removed from machine AC(j) should be reassigned to machine

succ(AC(j)) in the new schedule. As one can see, if AC(j) = m, then Jj is reassigned onto

machine M1. If we imagine machines as parallel lines forming a prism in three dimensions

as shown in Figure 3.4 and if we enumerate them in clockwise order, then any schedule

belonging to the neighborhood we have defined may only be obtained by moves of the

chosen jobs to next machines in clockwise order. There are eight machines in the picture.

Due to this geometric analogy we call this neighborhood rotation neighborhood and denote

it as rotation(C) for every feasible schedule C. The related optimization problem is called

Rotation Neighborhood.

Provided that every machine processes some job, for each machine we may decide if

some job leaves this machine or not. The number of such variants is 2m, each providing a

schedule belonging to the rotation neighborhood. Hence, there are at least 2m schedules in
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this neighborhood.

There is however a polynomial algorithm allowing to find an optimal schedule for any

instance I of Rotation Neighborhood. Let a reduced instance Iht,i,j , where h, i, j ∈ [0, n]

and t ∈ [1,m], be formulated by instance I as

min
∑

l∈[1,n],AC′ (l)≤tC
′
l (3.4)

s.t. C ′ ∈ rotation(C), (3.5)

AC′(i) = t = succ(AC(i)), i > 0, (3.6)

AC(j) = t = pred(AC′(j)), j > 0, (3.7)
 AC′(h) = 1, h > 0,

AC(l) = AC′(l) ∀l, AC(l) = m, h = 0.
(3.8)

In this instance, only the first t machines are considered in the objective function. In the

above formulation, i and j may be zero. If i = 0, then only those schedules are considered

which do not require moving jobs from machine pred(t) to machine t. If j = 0, then jobs

being processed by machine t in schedule C must not leave this machine. A positive value of

an index i or j, due to restrictions (3.6) and (3.7), indicates that a corresponding job must

be moved to the next machine. The constraint (3.8) says that no job may leave machine m if

h = 0, and job h must move to machine 1, otherwise. This constraint is needed to compute

a recursive function that we introduce below. We can solve instance I by means of solving

instances Iht,i,j since

OPT (I) = min
h,i,j

OPT (Ihm,i,j).

This equation is followed by the fact that domains of instances Ihm,i,j , h, i, j ∈ [1, n] cover

the domain of instance I.

Let φht (i, j) = OPT (Iht,i,j). We assume that φht (i, j) = ∞ if the domain of the corre-

sponding reduced instance is empty. It is clear that φh1(i, j) = ∞ if and only if i 6= h and

φhm(i, j) =∞ if and only if j 6= h.

Recursive computation of function φ can be accomplished using the formulas

φh1(h, j) = c1hj,
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φh1(i, j) =∞ ∀i 6= h,

and

φht (i, j) = ctij + min
l∈[0,n]

{φhpred(t)(l, i)},

where ctij is the minimum total completion time of jobs processed on machine Mt provided

that job i processed on machine pred(t) is reassigned onto machine t and job j is reassigned

onto machine succ(t). (If i = 0, then no job leaves machine pred(t), and if j = 0, then no job

leaves machine t.) Let us define coefficients ctij precisely. Let i1, . . . , is be jobs at machine t

sequenced as

i1 → i2 → . . .→ is.

(Note that j has been moved to the next machine and thus is not among jobs i1, . . . , is.)

Insert job i such that job i becomes lth job in this sequence. The new sequence has the form

il1 → . . .→ ill → . . .→ ils+1.

where ill = i, ilk = ik for all k < l, and ilk+1 = ik for all k > l. There are s+1 jobs in the new

sequence. Taking the minimum over all possible variants of insertions of job i we have

ctij = min
l∈[1,s+1]

{
s+1∑

k=1

C ′il
k

}

where

C ′il1
= ril1 + pil1

and

C ′il
k
= max{ril

k
, C ′il

k−1
+ sil

k−1,i
l
k
}+ pil

k
, ∀k ∈ [2, s+ 1].

If i = 0, then no job is inserted to the above sequence and therefore ctij is the sum of

completion times of jobs i1, . . . , is under the condition that job j (if j 6= 0) has been moved

to the next machine. If machine pred(t) does not process job i in schedule C or machine t

does not process j, then value ctij is supposed to be equal to ∞.

To compute the function φ recursively, we may use equations

φht (i, j) = φht (i, 0)− cti0 + ctij (3.9)
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Figure 3.5: The example with five jobs.

which must hold for every job pair i, j ∈ [1, n] satisfying AC(i) = pred(t) and AC(j) = t.

The equations (3.9) lead to time complexity O(T ) where T is the total number of feasible

triples (t, i, j) (i.e., those for which φht (i, j) 6=∞.) This is best possible if we want to calculate

function φht at every feasible point. A corresponding schedule in rotation(C) can be found

by a standard backtracking procedure.

Consider an example with five jobs. Let job processing times and release dates be pre-

sented in the following table:

job 1 2 3 4 5

processing time 2 3 3 4 5

release date 0 1 0 3 0

Let s12 = 2, s34 = 1, and the other setup times are zero. Denote by C a schedule depicted

in Figure 3.5. The total completion time of jobs in this schedule is equal to 26.

Three tables below provide the information about how coefficients ctij are calculated.

c1ij c2ij c3ij

0 1 2

0 9 4 2

5 19 13 9

0 3 4

0 11 7 3

1 17 9 7

2 19 12 9

0 5

0 5 0

3 11 3

4 14 7

We explain how some of these coefficients are computed. Provided that job J1 moves

to machine M2 and job J3 leaves this machine, it is optimal to insert job J1 before job J4.
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Therefore,

c2,1,3 = r1 + p1 +max{r4, r1 + p1}+ p4 = 9

Similarly we obtain

c3,3,0 = r3 + p3 +max{r5, r3 + p3} = 11.

(Recall that, calculating coefficients ctij, we may only select the place where i should be

inserted in, without changing the order of jobs staying on machine Mt.)

The next tables contain values of function φ.

φ0
1(i, j) φ0

2(i, j) φ0
3(i, j)

0 1 2

0 9 4 2

0 3 4

0 20 16 12

1 21 13 11

2 21 14 11

0

0 25

3 24

4 25

φ5
1(i, j) φ5

2(i, j) φ5
3(i, j)

0 1 2

5 19 13 9

0 3 4

0 30 26 22

1 30 22 20

2 28 21 18

5

0 28

3 24

4 25

The minimum value of function φhm is equal to φ0
3(3, 0) = 24. Let us describe in more

detail the calculation of function values necessary to calculate φ0
3(3, 0).

φ0
1(0, 0) = c1,0,0 = 9

φ0
1(0, 1) = c1,0,1 = 4

φ0
1(0, 2) = c1,0,2 = 2

φ0
2(0, 3) = c2,0,3 + φ0

1(0, 0) = 16

φ0
2(1, 3) = c2,1,3 + φ0

1(0, 1) = 13

φ0
2(2, 3) = c2,2,3 + φ0

1(0, 2) = 14

φ0
3(3, 0) = c3,3,0 +min{φ0

2(0, 3), φ
0
2(1, 3), φ

0
2(2, 3)} = 24
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Figure 3.6: A locally optimal schedule.

Following these formulas, to obtain a corresponding schedule, we must move job J3 to ma-

chine M3 and job J1 to machine M2. This schedule is shown in Figure 3.6. It is a local

optimum in rotation(C).

Dynamic neighborhood

It is often the case that a problem of finding locally optimal solutions in some kind of

neighborhoods, like one we will consider, is NP-hard. Usually, we do not really need to know

an optimal solution in some neighborhood, but some approximate solution with guaranteed

quality. One of the most recent theoretical aspects of approximate local search have been

devised by Orlin, Punnen, and Schulz [44].

A neighborhood that we will consider below, and which we call dynamic neighborhood,

can be searched exactly in pseudopolynomial time by a dynamic programming algorithm. We

will show that such an algorithm can be converted into a fully polynomial time approximation

scheme.

Note that if processing times are relatively small, say, less than the number of jobs, it

makes sense to find an exact local optimum since the running time of a dynamic programming

algorithm will be polynomial in this case. Otherwise, one can search the neighborhood

approximately with a guaranteed precision using a fully polynomial time approximation

scheme.

Consider a feasible schedule C. Let Jk = {Jj1 , . . . , Jjτ} be all jobs processed by some
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machine Mk, k ∈ [1,m]. We will select Mk such that the total completion time of the job

sequence processed by this machine is maximum among the total completion times of those

processed by other machines. Let wlj be a minimum cost of swapping some job processed

by machine Ml, l 6= k, and job Jj processed by machine Mk. In other words,

wlj = min{cij|AC(i) = l}

where cij is a swap cost of corresponding jobs. Consider the following minimum weight

matching problem on a complete bipartite graph:

min
∑

l,j wljxlj

s.t.
∑

l∈[1,m]\{k}
∑

j∈Jk xlj = min{m, τ},

∑
j∈Jk xlj ≤ 1, ∀l ∈ [1,m] \ {k},

xlj ∈ {0, 1}, ∀l ∈ [1,m] \ {k}, j ∈ Jk.

Let x0 be an optimal solution to this problem instance. Define a set

L = {Jl1 , . . . , Jlτ}

where lt = l if there exists an l such that x0
l,jt

= 1, and lt = 0, otherwise. In the latter case

Jlt = J0 where notation J0 will further be used to indicate that there is no alternative for

job Jjt . If lt > 0, then the corresponding job Jlt will be considered as an alternative job for

job Jjt , i.e., jobs Jlt and Jjt will be allowed to be swapped. Denote by dynamic(C;Jk,L)

the neighborhood consisting of all possible schedules each of which is obtained from C by a

swap of jobs Jjt and Jlt where t belongs to a subset of the set [1, τ ].

For the previously considered matching neighborhood, a schedule is a local optimum if

and only if there are no single swaps decreasing the objective value. This criterion is not

true for the dynamic neighborhood. Let us consider an example to prove this statement.

Suppose that there are four jobs J1, J2, J3, and J4. Let all release dates be zero and job

processing times are defined as p1 = p2 = p4 = 4 and p3 = 3. Assume that s12 = 0 and the

other setup times are equal to 2. The number of machines in our example equals 3. Schedule

jobs as it is shown in Figure 3.7.
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Figure 3.7: Applying both the swaps marked in the picture with arrows leads to a better

schedule.

In this figure, jobs J1 and J2 are assigned to machines M3 and M2, respectively. The

remaining jobs J3 and J4 are assigned to machine M1 one after another. The time interval

between them is needed to setup machine M1 to process job J4 after processing job J3.

It is clear from the picture that there is no single move improving the objective value of

the schedule. This means that this schedule is locally optimal in matching and assignment

neighborhoods. If we swap jobs J1 and J3 and then jobs J2 and J4, then we obtain a schedule

with a better objective value since the setup time between jobs J1 and J2 is equal to zero.

This schedule is in a dynamic neighborhood where machine M1 is selected, and jobs J1 and

J2 are chosen as alternative jobs to jobs J3 and J4, respectively.

Consider an optimization problem related to a dynamic neighborhood:

min F (C ′) =
∑n

j=1C
′
j

s.t. C ′ ∈ dynamic(C;Jk,L)

We will refer to this problem as to Dynamic Neighborhood. An optimal schedule to an

instance I# of this problem is an optimal schedule in a neighborhood dynamic(C;Jk,L).

The objective value of this locally optimal schedule is equal to OPT (I#). To solve instance

I# approximately with a relative error ε > 0, we use scaling with a parameter δ = εL/n

where L is a positive lower bound on OPT (I#). In the instance I#, replace the objective
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function F (·) by a function f(·) defined as

f(C ′) =
n∑

j=1

⌊
C ′j
δ

⌋

for any schedule C ′. Denote the obtained instance by I.

Standard arguments yield the following theorem.

Theorem 3.2.1 If C ′ is an optimal solution of I, then C ′ is an ε−approximate solution of

I#.

Assume that the jobs on machine Mk are processed in the order

Jj1 → . . .→ Jjτ .

Let t ∈ [1, τ ] and j ∈ {jt, lt}, j 6= 0. Construct a reduced instance It,j,d as

min
∑

i∈Stb
C′

i

δ
c

s.t. C ′ ∈ dynamic(C;J t
k ,L

t),

C ′j ≤ d,

AC′(j) = k. (3.10)

where d is a nonnegative integer, set St is defined as

St = {j1, . . . , jt} ∪ {indices of all jobs on machines AC(jl1), . . . , AC(jlt)},

and J t
k = {Jj1 , . . . , Jjt} and Lt = {Jl1 , . . . , Jlt}.

One can see that

min
j∈{lτ ,jτ}

OPT (It,j,d) +
∑

j∈[1,n]\St

⌊
Cj
δ

⌋
= OPT (I)

provided that d is sufficiently large.

Note that V = bU/δc is an upper bound on the value OPT (I). Consider a function φ

such that

φtj(d) = min{OPT (It,j,d), V + 1}
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if j ∈ [1, n], and

φtj(d) =∞

if j = 0.

Proposition 3.2.2 Function φtj(·), j ∈ [1, n], is nonincreasing.

Proof. Note that increasing value d in the formulation of the reduced instance It,j,d, we

thereby enlarge the set of schedules feasible for this instance. This implies the proposition.

The above proposition implies that φtj(·) is a piecewise-constant function with at most

O(V ) pieces. I.e., the feasible interval of φtj(·) may be partitioned into a set of O(V ) intervals

on each of which φtj(·) is constant.

Let us take some t ∈ [1, τ ] and j ∈ {jt, lt}. Let d
t
min be the minimum d such that It,j,d

has a feasible solution. Let dtmax be the maximum feasible value of argument d. We base our

dynamic programming algorithm on a formula

φtj(d) = min
d′∈[dt−1

min,d
t−1
max],i∈{jt−1,lt−1}

{φt−1,i(d
′) + b(ctj +max{d′ + sij, rj}+ pj)/δc} (3.11)

where the minimum is taken over all d′ and i satisfying max{d′+sij, rj}+pj ≤ d, and ctj is a

sum of completion times of jobs processed on machine AC(lt) if j > 0 and ctj = 0, otherwise.

If j = lt, then ctj is calculated provided that jobs jt and lt has been swapped. The term

max{d′ + sij, rj} stands for the completion time of job j in the above formula. Value d

belongs to the set [dtmin, d
t
max].We assume that φ0j0(0) = 0, φ0l0(0) = 0, and d0

min = d0
max = 0.

We also suppose that sij = 0 if i ∈ {j0, l0}.

The minimum value of function φτj(·) on its feasible domain dom(φτj) = [dtmin, d
t
max] is

equal to OPT (I).

Let Ptj be a partition of interval [dtmin, d
t
max] into intervals [d1, d2] on each of which φtj(·)

is constant. They are at most O(V ) as we have previously mentioned. We suppose that

P0j = {{0}}.

Proposition 3.2.3 Given partitions Pt−1j , j ∈ {jt−1, lt−1}, one can calculate φtj(d) in

O(|Pt−1j|) time for any feasible d and j.
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Proof. This proposition follows from the recursive formula identifying φtj(d).

Proposition 3.2.4 The set {(dtmin, d
t
max)|t ∈ [1, τ ]} can be found in O(τ) time.

Proof. Simple dynamic programming arguments imply the proposition. Let d(0, j0) =

d(0, l0) = 0. Define

d(t, j) = min{max{d(t− 1, i) + sij, rj}+ pj|i ∈ {jt−1, lt−1}}

for every t ∈ [1, τ ] and j ∈ {jt, lt}. Value d
t
min can be derived as dtmin = min{d(τ, jτ ), d(τ, lτ )}.

If we use the described recursion to calculate d(·, ·), this needs O(τ) time. Similar recursive

equations can be used to obtain dtmax. (”min” should be replaced by ”max” in the recursive

formula.)

The following algorithm solves instance I.

Algorithm 3.2.1

Step 1 for t = 1 to τ do

find dtmin and dtmax

end do

construct Ptj, j ∈ {jt, lt}, t ∈ [1, τ ];

(For each interval in the partition a corresponding function value is stored.)

Step 2 d := dτmax;

j := arg minj∈{jt,lt}{φτjτ (d), φτlτ (d)};

for t = τ − 1 down to 1 do

Let minimum in formula (3.11) be attained at d′ = d̂ and i = î;

j = î;

if j = lt then swap jobs Jjt and Jlt in schedule C;

end do

Let C ′ be the obtained schedule.

Proposition 2.6.2 of the previous chapter, which must also hold for a nonincreasing function,

implies that given Pt−1j , j ∈ {jt−1, lt−1}, we can find a partition Ptj for any j ∈ {jt, lt} in
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O(V log(dtmax − dtmin)) time. Therefore Step 1 runs in O(nV log(dnmax − dnmin)) time. In the

same time this is a complexity estimation of Algorithm 3.2.1. Combined with the bound

improvement procedure this yields O(n
2

ε
log(dtmax− d

t
min)) algorithm to solve the instance I.

Thereby we come to the following theorem.

Theorem 3.2.2 An ε−approximate schedule in neighborhood dynamic(C;J ,L) can be

found in O(n
2

ε
log(dtmax − dtmin)) time.

The approximation algorithm can be useful if processing times are sufficiently large.

Modify formula (3.11) so as

φtj(d) = min

d′ ∈ [dt−1
min, d

t−1
max]

i ∈ {jt−1, lt−1}

{φt−1,i(d
′) + ctj + d|max{d′ + sij, rj}+ pj = d} (3.12)

Note that this modification leads to a dynamic programming algorithm whose running

time depends linearly on value dnmax − dnmin. This implies the following theorem.

Theorem 3.2.3 An optimal solution in neighborhood dynamic(C;Jk,L) can be found in

O(n(dnmax − dnmin)) time.

3.2.3 Local search algorithm

Combining search in neighborhoods of different types usually yields better solutions than if

we apply only moves in a neighborhood of a single type.

We tested our local search procedure for flexible flow shop instances with setup times

needed if jobs from different groups are processed one after another by the same machine.

Brah and Hunsucker developed a branch and bound algorithm [10] for the problem version

where the objective is to minimize the makespan. Their algorithm can easily be modified to

minimize total average flow time. That algorithm, which is designed to find exact solutions,

is almost useless for large-scale problem instances.

Another exact solution method was presented by Sawik [50]. He formulates the problem

as a mixed integer one and uses a linear integer solver to solve it. In that problem version,
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limited buffer capacities are considered as in the paper by Wardono and Fathi [60] who

developed a tabu-search heuristic. A survey on exact solution methods can be found in Kis

and Pesch [38].

Let us describe the problem precisely. There are n jobs J1, . . . , Jn. Every job consists of

m operations indexed by numbers 1, . . . ,m. Operations can only be executed in increasing

order of index. For every operation with index l ∈ [1,m], there are ml parallel machines

able to execute it. In other words, there are m stages with parallel machines at each stage,

and every job, to be complete, must pass through stages from 1 to m. For every job Jj its

processing times p1j, . . . , pmj at corresponding stages are given. For every pair of jobs Ji and

Jj there is a machine-independent setup time sij. The objective is to find a feasible schedule

in order to minimize total average flow time 1
n

∑n
j=1Cmj which is equivalent to minimizing

∑n
j=1Cmj that is the total completion time at the last stage. Further we will omit factor

1/n. This multiplier will be taken into account only in the tables presenting computational

results.

The problem can be written in the form of the following mixed integer problem.

min
∑n

j=1Cmj

s.t. ylj +
∑

i∈[1,n]\{j} xlij ≤ 1 ∀j ∈ [1, n],∀l ∈ [1,m] (3.13)

∑
j∈[1,n]\{i} xlij ≤ 1 ∀i ∈ [1, n],∀l ∈ [1,m] (3.14)

∑
j∈[1,n] ylj ≤ ml ∀l ∈ [1,m] (3.15)

Clj ≥ Cli + plj + sijxlij −Q(1− xlij) ∀i, j ∈ [1, n], i 6= j∀l ∈ [1,m] (3.16)

Cli ≥ Cl−1i + pli ∀i ∈ [1, n],∀l ∈ [1,m] \ {1} (3.17)

C1i ≥ p1i i ∈ [1, n] (3.18)

xlij ∈ {0, 1} ∀i, j ∈ [1, n], i 6= j,∀l ∈ [1,m] (3.19)

ylj ∈ {0, 1} ∀j ∈ [1, n], l ∈ [1,m] (3.20)

Here variables Clj represent job completion times for every stage with index l ∈ [1,m].

Variable yli takes value 1 if and only if job Ji must be the first in any job sequence on a

machine processing job Ji at stage l. A zero value of this variable indicates that there are
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some other jobs processed before Ji by this machine. Variable xlij takes value 1 if job Jj

is processed after job Ji by the same machine, and 0, otherwise. Inequalities (3.13) ensure

for every stage l that either job Ji is processed first by a machine at this stage, or there are

some other jobs processed before it by the same machine at stage l. According to inequalities

(3.14), at most one job may be processed immediately after a particular job. The number of

jobs being first on machines at stage l should not exceed ml for every stage index l ∈ [1,m].

This is guaranteed by inequalities (3.15). Inequalities (3.16) restrict schedules to those where

only one job may be processed by a machine at a time. Constant Q in this inequality is

chosen to be sufficiently large. Inequalities (3.17) indicate that a job completion time at

some stage with index l should be not less than a completion time of this job at the previous

stage plus the processing time at the present stage. At the first stage completion times

cannot be less than processing times which is guaranteed by inequality (3.18).

Our algorithm is based on a local search procedure applied separately to every stage.

Having a partial schedule in hand, we arrange the jobs at the current stage by list scheduling

(taking into account release dates), and improve the current average completion time by our

local search procedures. When a given criterion is met, say a given iteration limit is reached,

we proceed with another stage. As we will see later from the experimental results, the more

iterations of the local search procedure we make at every stage, the better solutions we may

obtain.

Algorithm 3.2.2

C0
j := 0 for all j ∈ [1, n];

Generate schedule C1 by list scheduling in nondecreasing order of processing times;

for l = 1 to m do

for k = 1 to Kl do

C l := argminC∈matching(Cl)

∑n
j=1Cj;

C l := argminC∈dynamic(Cl;Jk,L)

∑n
j=1Cj;

C l := argminC∈assignment(Cl,j1,...,jml )

∑n
j=1Cj;

C l := argminC∈dynamic(Cl;Jk,L)

∑n
j=1Cj;
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C l := argminC∈rotation(Cl;j1,...,jml )

∑n
j=1Cj;

C l := argminC∈dynamic(Cl;Jk,L)

∑n
j=1Cj;

end do

Generate release dates: rj := C l
j;

if l < m then

Generate schedule C l+1 by list scheduling in nondecreasing order of release dates;

end if

end do

Recall that a list scheduling procedure is a simple greedy algorithm which takes jobs in a

given order and assigns them to machines so that a start time of a job is as early as possible.

In the above algorithms, since jobs are sorted in nondecreasing order of release dates, a job

is always assigned to the end of the job sequence previously assigned to a corresponding

machine.

In the algorithm, provided that there are no setup times, the list scheduling procedure

constructs an optimal schedule for the first stage since it follows the shortest processing time

(SPT) rule known to yield an optimum for the problem of minimizing total completion time

in absence of release dates (see BÃlażewicz et al. [9]).

Values K1, . . . , Km in the description of the algorithm are input parameters. For every

stage l, Kl is the number of iterations on stage l.

We considered instances with three stages. For instances having up to 100 jobs one can

derive a satisfactory lower bound rather quickly (in a few minutes) using the linear relaxation

of the above mixed integer formulation. To solve the linear relaxation, we have used CPLEX.

To tighten our mixed integer formulation, we used valid inequalities of Schulz [51]:

∑

j∈S
mlpljClj ≥

1

2


∑

j∈S
mlp

2
lj +

(
∑

j∈S
plj

)2



for all stages l and subsets of job indices of the form S = [j1, j2]. For a real-life instance with

1437 jobs that we consider below, the objective value of this schedule is within about 61%
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# obj. val. LB deviation,%

1 22810,2 20807,131 9,626838991

2 22075,2 20743,1644 6,421564108

3 25940,4 23635,2841 9,752858862

4 22079,8 20030,0157 10,23356312

5 24112,6 22046,9735 9,369206617

6 23307,6 21068,4354 10,62805357

7 22247,5 20002,7552 11,22217803

8 23345,5 20687,5607 12,84800726

9 23310,3 21122,97 10,35521993

10 23403 21006,3733 11,40904556

average 23263,21 21115,06633 10,1866536

Table 3.1: Experimental results for 10 instances with 3 stages and 60 jobs.

of a trivial lower bound on the optimal value. This lower bound is obtained as follows. For

every stage l we solve the scheduling problem with ml machines and jobs having processing

times pl1, . . . , pln. No release dates are taken into account. Total job completion time is the

objective function in this problem. As it has been already mentioned, the SPT rule delivers

an optimal solution with respect to such objective function. Having solved the problem for

every stage, we choose the maximum among the optimal values. This maximum value is a

lower bound on the optimal value of the original multistage problem.

Table 3.1 presents experimental results for ten instances with 60 jobs and integer pro-

cessing times generated randomly within the interval [1, 10000] which most often exceeds

practical values of processing times. The number of machines at each of the three stages

is 10, 15, and 12, respectively. There is in that way at least 4-5 jobs per machine. In this

instance, the first stage is a bottleneck stage in this machine environment (i.e., this is the

stage l with the largest ratio
∑n

j=1 plj/ml per machine where ml is the number of machines

on stage l).

For the mentioned instances, we have set parameters Kl in our heuristic procedure as

K1 = 8, K2 = 16, and K3 = 32.

Table 3.2 describes experiments with 100 jobs and the same machine environment.

Information for an instance with 100 jobs, m1 = 10, m2 = 6, m3 = 20, (the second

stage is a bottleneck) and processing times randomly generated within an integer interval

[1, 10000] is presented in Table 3.3. For this instance, we have used the same value K for

all parameters K1,2,3. Objective values of resulting schedules are in the second column. The
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# Obj. val. LB deviation,%

1 28922,9 25321,6314 14,2221034

2 29452,4 25219,386 16,78476233

3 29157,1 24365,1375 19,66729102

4 28397 24272,0032 16,99487581

5 32076,2 27725,3218 15,69279603

6 28203,2 23814,1963 18,43019871

7 30276,6 26543,8183 14,06271569

8 29975,1 25758,5978 16,3693002

9 31496,2 26054,2585 20,88695597

10 35201,8 31072,811 13,28810902

average 30315,85 26014,71618 16,53346433

Table 3.2: Experimental results for 10 instances with 3 stages and 100 jobs.

Figure 3.8: Diagram for an instance with 100 jobs and three stages

third column contains estimations of percentage deviation from an optimal objective value.

The estimation is made using lower bounds obtained by CPLEX. Similar information is

presented in Table 3.4 for a real-world instance, coming from the semiconductor industry,

with 1437 jobs. In this instance, there are three stages. At the last stage there are five

machine types. Any job may only be processed by a given machine type. There are 15 job

groups in that instance. A setup time between two consequentially processed jobs belonging

to different groups is equal to 60.

Figures 3.8 and 3.9 visualize Tables 3.3 and 3.4, respectively. Vertical axes show objective

function values at corresponding values of the parameter K. In both examples increasing K

leads in most cases to improvements of the entire schedule. Since our local search procedures

are applied separately to different stages, we have however no guarantee that the objective

value of the entire schedule decreases as this parameter increases. This is seen from both

examples.
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K value deviation,%

0 34016,5 40,4827786

1 32445,8 33,9960354

2 31259,9 26,1811349

3 30847,5 29,0984554

4 30800,6 27,3953085

5 30553,5 27,2016189

6 30339 25,2952837

7 30255,6 24,9508549

8 30038,8 24,0555051

9 29990,1 23,8543818

10 30204,9 24,7414719

11 30015,6 23,9596927

12 29980,5 23,8147353

13 29972,8 23,7829355

14 29940,1 23,6478897

15 29890,3 23,4422235

16 29848,8 23,2708351

17 29833,6 23,2080615

18 29844,1 23,2514248

19 29836,4 23,219625

20 29824,5 23,1704799

21 29819,4 23,1494177

22 29817,3 23,140745

23 29816,2 23,1362022

24 29811,5 23,1167919

25 29809,9 23,1101842

26 29807,9 23,1019245

27 29804,5 23,087883

28 29797,9 23,0606261

Table 3.3: Experimental results for a particular instance with 100 jobs and three stages

K value deviation,%

0 2660.89 61,9679216

1 2610.8 58,9189518

2 2521.05 53,4558846

3 2510.37 52,8057948

4 2480.82 51,0070913

5 2479.33 50,9163953

6 2461 49,8006513

7 2479.07 50,9005691

8 2462.7 49,90413

9 2454.62 49,4123018

10 2452.22 49,2662142

11 2452.08 49,2576924

Table 3.4: Experimental results for the real-world instance
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Figure 3.9: Diagram for the real-world instance.

3.2.4 Conclusions

The numerical experiments introduced in this subsection show that the separate local opti-

mization of each stage of the considered three-stage manufacturing system yields an essential

improvement in the overall cost. The methods that has been used to find locally optimal so-

lutions for every stage are common for combinatorial optimization. The search in one of the

considered neighborhoods is based on a pseudopolynomial dynamic programming algorithm

which can be transformed into an FPTAS if it is necessary.

3.3 An FPTAS for a nonlinear scheduling problem

Consider a scheduling problem Pm||
∑
Fij(Cj). An input of this problem consists of non-

negative nondecreasing functions Fij(·), j = 1, . . . , n, i ∈ [1,m], and n jobs Jj (j = 1, . . . , n)

with positive integral processing times pj. Functions Fij(·), j = 1, . . . , n are assumed to be

computable in constant time. Each of m parallel machinesM1, . . . ,Mm can process only one

job at a time. No preemptions are allowed, i.e., processing of a job by a machine cannot be

interrupted until the job is complete. The goal is to schedule the jobs on m parallel machines

(note that m is fixed, it is not a part of the input) so as to minimize
∑n

j=1 FAC(j),j(Cj) where

Cj, j = 1, . . . , n, are job completion times.

An obvious special case is Pm||
∑
wjCj where the objective is to minimize the sum of

weighted job completion times. There exists a pseudo-polynomial dynamic programming
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algorithm for this NP-hard problem (Bruno, Coffman, and Sethi [11]). A fully polynomial

time approximation scheme for Pm||
∑
wjCj was developed by Sahni [49].

For any instance of Pm||
∑
wjCj it may be assumed without loss of generality that the

jobs are indexed so that p1/w1 ≤ p2/w2 ≤ . . . ≤ pn/wn. Simple interchange arguments show

that there always exists an optimum schedule which does not contain any idle time, and

where each machine processes jobs in nondecreasing order of their indices. Such property

can be formulated as a rule: on every machine schedule jobs in nondecreasing order of ratios

pj/wj. This rule is known as Smith’s rule [52].

Many pseudopolynomial dynamic programming algorithms essentially rely upon job se-

quencing rules similar to Smith’s rule. Later we will discuss other scheduling problems where

the following restriction may also be admitted without loss of an optimal solution provided

that for every instance jobs are sorted and enumerated in appropriate order.

Restriction 3.3.1 If jobs Ji and Jj are executed by the same machine and i < j, then Ji is

executed before Jj.

Note that machines may not be identical and can differ by costs of executing jobs. In the

case of identical machines the identity Fij(·) ≡ Fkj(·) holds for any i, k ∈ [1,m], j ∈ [1, n],

and then we omit the first index and refer to Fij(·) as to Fj(·) for every i ∈ [1,m] and

j ∈ [1, n]. If machines are identical, then the information about completion times of jobs is

enough to describe a schedule within a permutation of machines.

We will consider cost functions of an important class introduced in the following assump-

tion.

Assumption 3.3.1 There is a positive constant µ such that each function Fij(·) satisfies

the inequality

Fij(αβ) ≤ Fij(α)β
µ

for real values α ≥ 0 and β ≥ 1.

The above assumption says that if we increase the argument by the factor of β, then the

function value will grow by at most the factor of βµ. That is, value µ is a constant restricting
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the degree of the growth factor of function Fij(·). One can see that the objective function
∑n

j=1wjCj (total weighted completion time) satisfies this assumption.

A similar assumption was considered by Kubiak and Kovalyov for some nonlinear schedul-

ing and partition type problems [40].

The above assumption covers a wide class of functions. These functions can be used

to approximate or model real functions. For instance, functions like y(x) = axµ, where

a > 0 and µ < 1, can be used to model concave functions. Functions Fij(·) satisfying the

above assumption may also belong to a function class formed by nonnegative nondecreasing

functions f : R+ → R+ such that f(0) = 0 and function a(x) = f(x)/xµ defined on R++ is

nonincreasing. Indeed, we have

f(αβ) = a(αβ)(αβ)µ ≤ a(α)αµβµ = f(α)βµ

for α > 0 and β ≥ 1. If α = 0 and β ≥ 1, then

0 = f(αβ) = f(0) = f(0)βµ = f(α)βµ.

Let f(·) be differentiable on R++ and such that f(0) = 0. Assume that derivative f ′(x) does

not exceed µ at any point x > 0, and f(x) ≥ x. Then

a′(x) =
f ′(x)xµ − µxµ−1f(x)

x2µ
≤
µxµ − µxµ−1x

x2µ
= 0

for any x > 0 which means that a(x) is nonincreasing. Therefore, function f(·) belongs to

the mentioned class.

Unlike many approaches, we do not round processing times to obtain a required ap-

proximation. Instead, we round the objective function and then analyze properties of a

recursive function upon which a straightforward dynamic programming algorithm is based.

Using these properties, one may convert the dynamic programming algorithm into a fully

polynomial time approximation scheme.

Let I# be an instance of the scheduling problem Pm||
∑
Fij(Cj). Taking into account Re-

striction 3.3.1, we have a simple recursive function upon which a pseudopolynomial dynamic

programming algorithm may be based:

ψt(q) = min
k∈[1,m]

{ψt−1(q
′) + Fkt(Ct)|Ct = q′k + pt, qk = Ct, q

′
i = qi∀i ∈ [1,m] \ {k}},
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where q ∈ Zm
+ . The function value ψ0(q) is assumed to be equal to zero if q is zero and to∞,

otherwise. The value ψt(q) is an objective value of an optimal partial schedule of the first t

jobs with workloads qi on corresponding machines Mi, i ∈ [1,m].

Further we will say that a function is defined at a point if its value does not equal∞. All

points at which a function is not equal to ∞ constitute a feasible domain of this function.

Such points are also called feasible.

Obviously, the function ψt(·) is defined for all integer m−vectors q such that there exists

a feasible schedule of jobs J1, . . . , Jt with a workload qi of each machine i ∈ [1,m]. The

basic difficulty which comes from the function structure is that it is an NP-hard problem to

verify if an arbitrary nonnegative m−vector belongs to the feasible domain of this function.

Consider a decision problem where the question is whether one can find pairwise disjoint

sets Sl ⊂ [1, t], l ∈ [1,m], such that ∪l∈[1,m]Sl = [1, t], satisfying equations
∑

j∈Sl pj = P for

every l ∈ [1,m] and a given positive integer P. With respect to our scheduling problem, it

is required to check if there is a feasible schedule of jobs J1, . . . , Jt on m machines without

idle times and with machine workloads, each of which is equal to P. The answer is positive

if and only if m−vector (P, . . . , P ) belongs to the feasible domain of the function ψt(·). As

the mentioned decision problem is known to be NP-hard, it is an NP-hard problem to verify

if a certain point belongs to this feasible domain.

To overcome the mentioned difficulty, we transform the instance I# into an instance

of another optimization problem which dynamic programming formulation is based on a

recursive function with a rather simple feasible domain.

We relax feasibility conditions as follows. First of all, we allow each job to be executed

in parallel by several machines. Denote by xkt the part of the processing time pt which is

spent by the job Jt on the machine Mk, i ∈ [1,m]. Once a job Jt begins to be executed on a

machine Mk, k ∈ [1,m], the execution cannot be interrupted during xkt time units. An idle

time of a machine Mk, k ∈ [1,m] after the execution of job Jt will be denoted by Ikt.

Let U be an upper bound on OPT (I#) and Ũ = U((1 + ρ)µ + ρ) where ρ > 0 is a

parameter which will further control a relative error. Remind that constant µ indicates

how fast cost functions may grow. Consider the following optimization problem where the



An FPTAS for a nonlinear scheduling problem 135

Figure 3.10: An example of a schedule feasible for Parallel Machine Scheduling.

objective is to minimize a function

F (x, I) =
m∑

k=1

n∑

t=1

[
sign(xkt)

(
Ũ + 1 + Fkt

(
t−1∑

j=1

(xkj + Ikj) + xkt

))]
:

min F (x, I)

s.t.
∑m

k=1 xkt = pt, ∀t ∈ [1, n], (3.21)

xkt, Ikt ∈ Z+, ∀k ∈ [1,m], t ∈ [1, n]. (3.22)

We call this problem Parallel Machine Scheduling. There is a one-to-one correspon-

dence between instances of Parallel Machine Scheduling and instances of the schedul-

ing problem Pm||
∑

ij Fij(Cj). In this subsection, we denote by I the instance of Parallel

Machine Scheduling corresponding to the instance I# of Pm||
∑

ij Fij(Cj).

Figure 3.10 illustrates a feasible schedule for Parallel Machine Scheduling with

two jobs and two machines. In that schedule, job J1 is split into two operations, each of

nonzero length x11 and x21. Job J2 is processed completely by machine M2 and therefore x22

is equal to processing time p2.

Lemma 3.3.1 Feasible solution (x∗, I∗) is optimal for the instance I, if and only if ex-

actly one of the components x∗1t, . . . , x
∗
mt is nonzero for any t ∈ [1, n] and a schedule
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C∗ = (C∗1 , . . . , C
∗
n) with job completion times

C∗t =
t−1∑

j=1

(x∗kj + I∗kj) + x∗kt, ∀t ∈ [1, n],

where AC∗(t) = k and x∗kt > 0, is optimal for instance I#.

Proof. Prove the if-part. Let C∗ = (C∗1 , . . . , C
∗
n) be an optimal schedule for I#. Construct

a feasible solution for instance I as follows. Set x∗kt := pt, and x
∗
it := 0 for all i ∈ [1,m] \ {k}

where k is a number of a machine executing job Jt. Identify idle times I∗kt through equations

I∗kt = C∗t′ − pt′ − C∗t

if job Jt is executed by machine Mk and t′ is executed next by Mk in the optimal schedule.

In other cases set

I∗kt := 0.

Show that the obtained feasible solution is optimal for I. Its objective value evaluates as

n(Ũ + 1) +OPT (I#) ≤ n(Ũ + 1) + Ũ .

In any optimal solution (x∗, I∗) of the instance I, exactly one of the components x∗1t, . . . , x
∗
mt

is nonzero for any t ∈ [1, n]. (Otherwise, an objective value would be not less than (n+1)(Ũ+

1) and therefore be greater than n(Ũ + 1) + Ũ which is an upper bound on OPT (I).) This

means that for any optimal solution the schedule C∗ is defined correctly in the formulation

of the lemma since there is no confusion with the machine assignment AC∗(·). Every solution

(x, I) to the instance I where only one of the components x1t, . . . , xmt is nonzero for every

t ∈ [1, n] can be easily transformed to a feasible schedule via equations

Ct =
m∑

k=1

(
t−1∑

j=1

sign(xkj)(xkj + Ikj) + sign(xkt)xkt

)

where t ∈ [1, n] and xkt > 0 (this nonzero component equals pt). An objective value of (x, I)

is n(Ũ+1) plus the objective value of the constructed schedule C = (C1, . . . , Cn). Hence, the

objective value of (x, I) is not less than n(Ũ + 1) +OPT (I#). Therefore (x∗, I∗) is optimal

for I.
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The only-if-part is symmetric to the if-part. The proof is complete.

The lemma immediately implies the following corollary.

Corollary 3.3.1 OPT (I) = n(Ũ + 1) +OPT (I#).

The next lemma shows that a slight transformation of the set of feasible solutions of instance

I leads to slight changes of the optimal value.

Lemma 3.3.2 Let (x0, I0) be a feasible solution for instance I having the lowest objective

value among feasible solutions (x, I) satisfying

m∑

i=1

t∑

j=1

(xij + Iij) ≥
t∑

j=1

(pj + bρpjc)− t

for all t belonging to some set S ⊆ [1, n]. Then

F (x0, I0) ≤ n(Ũ + 1) + (1 + ρ)µOPT (I#).

Proof. Let (x, I) be an optimal solution for instance I of Parallel Machine Schedul-

ing. Set Îij = Iij + bρxijc and x̂ = x. Solution (x̂, Î) is feasible for instance I and, since in

the optimal solution exactly one of components x1j, . . . , xmj is nonzero for every j ∈ [1, n],

satisfies

m∑

i=1

t∑

j=1

(x̂ij + Îij) ≥
m∑

i=1

t∑

j=1

(xij + Iij + ρxij)− t ≥
t∑

j=1

(pj + ρpj)− t ≥
t∑

j=1

(pj + bρpjc)− t

for all t ∈ S. We have

∑m
k=1

∑n
t=1 Fkt(

∑t−1
j=1(Îkj + x̂kj) + x̂kt) sign(x̂kt) ≤

∑m
k=1

∑n
t=1 Fkt((

∑t−1
j=1(Ikj + xkj) + xkt)(1 + ρ)) sign(xkt) ≤ (1 + ρ)µOPT (I#)

which implies the lemma. The last inequality of the above chain uses Assumption 3.3.1.

Let L be a positive lower bound on OPT (I#) and δ =
⌊
ρL
n

⌋
. Set V := bŨ/δc. Consider

a function

f(x, I) =
m∑

k=1

n∑

t=1

[
sign(xkt)

(
V + 1 + fkt

(
t−1∑

j=1

(xkj + Ikj) + xkt

))]
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where

fkt

(
t−1∑

j=1

(xkj + Ikj) + xkt

)
=

⌊
Fkt(

∑t−1
j=1(xkj + Ikj) + xkt)

δ

⌋
.

The following rounded instance denoted as IR(S) is obtained from instance I by replacing

the objective function F (·, ·) by f(·, ·) and imposing additional restrictions for all t from some

set S ⊆ [1, n] :

min f(x, I)

s.t. (3.21)− (3.22)

∑m
i=1

∑t
j=1(xij + Iij) ≥

∑t
j=1(pj + bρpjc)− t, ∀t ∈ S. (3.23)

Lemma 3.3.3 Let (x′, I ′) be an optimal solution of IR(S). Then

F (x′, I ′) ≤ n(Ũ + 1) + (1 + ρ)µOPT (I#) + ρOPT (I#).

Proof. Let (x0, I0) have a lowest objective value among feasible solutions (x, I) of I satis-

fying
m∑

i=1

t∑

j=1

(xij + Iij) ≥
t∑

j=1

(pj + bρpjc)− t

for all t ∈ S. Taking into account Lemma 3.3.2, we have the following inequality chain:

F (x′, I ′) ≤ δf(x′, I ′) + nδ ≤ δf(x0, I0) + nδ ≤ F (x0, I0) + nδ ≤

≤ n(Ũ + 1) + (1 + ρ)µOPT (I#) + ρOPT (I#).

Theorem 3.3.1 If (x0, I0) is an optimal solution for the instance IR(S), then

1. For any t ∈ [1, n] there exists exactly one machine index k ∈ [1,m] such that x0
kt > 0.

2. A schedule with job completion times

Ct =
t−1∑

j=1

(x0
kj + I0

kj) + x0
kt, ∀t ∈ [1, n],
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and machine assignment AC(·) such that AC(t) = k whenever xkt > 0 is feasible for

I# and satisfies
n∑

t=1

FAC(t)t(Ct) ≤ ((1 + ρ)µ + ρ)OPT (I#)

Proof. To prove the theorem one can use Lemma 3.3.3 and arguments similar to those in

the proof of Lemma 3.3.1.

The above theorem implies that if (x0, I0) is an optimal solution of IR(S), then

m∑

k=1

n∑

t=1

Fkt

(
t−1∑

j=1

(x0
kj + I0

kj) + x0
kt

)
≤ Ũ .

Therefore

Fkt

(
t−1∑

j=1

(x0
kj + I0

kj) + x0
kt

)
≤ Ũ

and thus the following assumption may be accepted without changing the set of optimal

solutions.

Assumption 3.3.2 Every cost function Fkt(·) satisfies Fkt(a) ≤ Ũ + 1 for any nonnegative

integer a.

Assumption 3.3.2 implies that each function fkt(·) is upper bounded by O(V ) on all

nonnegative integers.

The properties discussed in this subsection allow us to concentrate only on solving the

instance IR(S). An appropriate choice of ρ gives us a possibility to find an ε−approximate

schedule for I# by approximately solving the instance I.

3.3.1 Recursive function and its properties

In this section, we study a dynamic programming formulation of an instance IR(S) where

S = {t ∈ [1, n]|
∑t

j=1 pj ≥ 3n/ρ}. Note that S is either empty or S = [τ, n] for some τ ∈ [1, n].

A recursive function that we consider is defined as an optimal value of a reduced instance

It,q, where t ∈ [1, n] and q ∈ Zm
+ , obtained from instance IR(S) by means of considering
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only the first t job indices, relaxing constraints (3.23), and imposing an additional constraint
∑t

j=1(xkj + Ikj) = qk for every k ∈ [1,m]. Let

Bτ =
τ∑

j=1

(pj +
1

n
bρpjc)− τ.

Define Bl for all l ∈ [τ + 1, n] as

Bl = Bl−1 +
1

n

l∑

j=1

bρpjc+ pl − 1

Instance It,q is formulated as

min f t(x, I)

s.t.
∑t

j=1(xkj + Ikj) = qk, ∀k ∈ [1,m], (3.24)

∑m
k=1 xkt = pt, ∀t ∈ [1, n], (3.25)

∑m
k=1

∑l
j=1(xkj + Ikj) ≥ Bl, ∀l ∈ [τ, t], (3.26)

xkj, Ikj ∈ Z+, ∀k ∈ [1,m], j ∈ [1, t]. (3.27)

where

f t(x, I) =
m∑

k=1

t∑

j=1

[
sign(xkj)

(
V + 1 + fkj

(
j−1∑

i=1

(xki + Iki) + xkj

))]
.

One can see that (3.26) is a relaxation of constraints (3.23). Therefore,

OPT (IR(S)) ≥ min
q
{OPT (In,q)}

where the minimum is taken over all feasible q.

Define a function φt(·) at every feasible point q through the equation

φt(q) = OPT (It,q).

According to the formulation of instance It,q, the set of feasible solutions of this instance

is nonempty if and only if
∑m

i=1 qi ≥ Bt. Let (x, I) be an optimal solution of instance It,q. If
∑m

k=1

∑t
j=1(xkj+ Ikj) > Bt, then there are components Iij that can be decreased so that the

equation
∑m

k=1

∑t
j=1(xkj + Ikj) = Bt holds and solution (x, I) remains optimal for instance
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It,q. This means that it is sufficient to consider only those vectors q which satisfy qk ≤ Bn for

every k ∈ [1,m]. Therefore further we suppose the feasible domain dom(φt) of the function

φt(·) to be defined as

dom(φt) = {y ∈ Zm|
m∑

i=1

yi ≥ Bt, yi ≤ Bn}

in case t ∈ [τ, n] and as

dom(φt) = {y ∈ Zm|
m∑

i=1

yi ≥
t∑

j=1

pj, yi ≤ Bn},

otherwise. Let φ0(0) = 0 and dom(φ0) = {0}. At any point q ∈ dom(φt) the value φt(q) is

evaluated recursively by the formula

φt(q) = min
q′,xkt,Ikt

{
φt−1(q

′) +
m∑

k=1

sign(xkt)(V + 1 + fkt(q
′ + xkt))

}
(3.28)

where the minimum is taken over all q′ ∈ dom(φt−1) and all xkt ∈ Z+ and Ikt ∈ Z+, k ∈ [1,m],

satisfying

q′k + xkt + Ikt = qk, ∀k ∈ [1,m],

and
m∑

k=1

xkt = pt.

For every t ∈ [τ, n] define an auxiliary function Φt(·) on the set

dom(Φt) =

{
y ∈ Zm|

m∑

k=1

yk ≥ Bt−1 + pt, yk ≤ Bn ∀k ∈ [1,m]

}

by the same formula as φt(·). (Note that φt−1 is not replaced by Φt−1, but only φt is changed by

Φt in that formula.) The set dom(Φt) contains the set dom(φt). By definition, Φt(q) = φt(q)

for all q ∈ dom(φt).

Replace the condition
m∑

k=1

qk ≥ Bt

in the formulation of instance It,q by a weaker condition

m∑

k=1

qk ≥ Bt−1 + pt.



An FPTAS for a nonlinear scheduling problem 142

Figure 3.11: Integer Box.

Denote the obtained instance by Ĩt,q. Any function value Φt(q) is the optimal value of the

instance Ĩt,q. The feasible set of instance Ĩt,q is not empty for every q ∈ dom(Φt).

For every t ∈ [1, τ − 1] we consider Φt(·) to be identical to φt(·).

Observation 3.3.1 The function Φt(·) is nonincreasing in each variable.

Proof. Let (x, I) be an optimal solution for Ĩt,q. For any k ∈ [1,m] the idle time Ikt can

be increased by 1 without increasing the objective function. Therefore, function Φt(·) is

nonincreasing in each variable.

We call a set B = {y ∈ Zm|u ≤ y ≤ v} an integer box defined by real vectors u and v.

Vector

due = (du1e, . . . , dume)

will be called a lower corner of the integer box B, and vector

bvc = (bv1c, . . . , bvmc)

will be called an upper corner of B. An integer box of the form B = {y ∈ Z2|u ≤ y ≤ v} is

illustrated in Figure 3.11. The circles correspond to integer points.
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Lemma 3.3.4 For any q contained in an integer box

B = {y ∈ Zm|u ≤ y ≤ v} ⊆ dom(Φt),

there is q′ ∈ B satisfying q′ ≤ q, Φt(q
′) = Φt(q), and qk = duke for some k ∈ [1,m].

Proof. Let (x, I) be an optimal solution for instance Ĩt,q. The objective value of (x, I) equals

to Φt(q). If qi = duie for some i ∈ [1,m], then we are done. Therefore we assume qi > duie

for all i ∈ [1,m]. Assume Iij = 0 for all i ∈ [1,m] and j ∈ [1, t]. Then
∑m

i=1 qi =
∑t

i=1 pi and

thus, since B ⊂ dom(Φt), equation qi = duie holds for all i ∈ [1,m]. We have a contradiction

since previously we have assumed that qi > duie for all i ∈ [1,m]. Hence, there exists Iij > 0

for some i ∈ [1,m] and j ∈ [1, t]. Let ∆ = min{Iij, qi−duie}. Set Iij := Iij−∆. The objective

value of the obtained solution does not exceed OPT (Ĩt,q). This solution is feasible for It,q̂,

where q̂ is obtained from q by decreasing component qi by ∆, and therefore

OPT (Ĩt,q̂) ≤ OPT (Ĩt,q)

or equivalently

Φt(q̂) ≤ Φt(q).

Set q := q̂. We proceed transforming (x, I) until qi = duie for some i ∈ [1,m]. After a finite

number of iterations we have q′ ∈ B such that Φt(q
′) ≤ Φt(q) and q

′ ≤ q. Taking into account

Observation 3.3.1, we conclude that Φt(q
′) = Φt(q). The proof is complete.

The above lemma is illustrated for m = 2 in Figure 3.12. Since Φt(q) = Φt(q
′) and

function Φt(·) is nonincreasing in each of its arguments, this function is constant over the

integer box with corners q′ and q. The points belonging to this box are depicted by black

filled circles in the picture.

The theorem below indicates that function Φt(·) possesses a simple structure on any

integer box lying completely in dom(Φt). Later we will use such boxes to cover the set

dom(φt). Then, since Φt(·) and φt(·) are identical on dom(φt), we will have a complete

description of φt(·).

Theorem 3.3.2 If m = 2, then any integer box B ⊂ dom(Φt) is a union of at most O(nmV )

pairwise disjoint integer boxes B̂ ⊂ dom(Φt) over each of which function Φt(·) is constant.
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Figure 3.12: Function Φt takes the same value at each point belonging to the integer box

with corners q′ and q.

Proof. Let

B = {y ∈ Z2|u ≤ y ≤ v} ⊂ dom(Φt)

where u = (u1, u2) and v = (v1, v2) are integer vectors.

The following iterative process shows how to find integer boxes B̂ mentioned in the

formulation of the theorem. Each of such boxes obtained at iteration k of the iterative

process will be denoted by B̂(k).

Set k := 0. Assume B(k) = B. Let z = (z1, z2) be the upper corner of this integer

box. (Initially point (v1, v2) is the upper corner.) Lemma 3.3.4 and the fact that Φt is

nonincreasing in each variable imply that either

Φt(z1, u2) = Φt(z1, z2) (3.29)

or

Φt(u1, z2) = Φt(z1, z2). (3.30)

In the case (3.29), let

∆ = max{a ∈ Z+|(z1 − a, u2) ∈ B,Φt(z1 − a, u2) = Φt(z1, z2)}.
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In the case (3.30), calculate ∆ as

∆ = max{a ∈ Z+|(u1, z2 − a) ∈ B,Φt(u1, z2 − a) = Φt(z1, z2)}.

If (3.29) holds, then define

B̂(k) = {y ∈ Z2|(z1 −∆, u2) ≤ y ≤ (z1, z2)}.

Otherwise, let the integer box B̂(k) be defined as

B̂(k) = {y ∈ Z2|(u1, z2 −∆) ≤ y ≤ (z1, z2)}.

Since Φt(·) is nonincreasing in each variable, Φt(·) is constant over the constructed box B̂(k).

By construction, the set B(k) \ B̂(k) is an integer box. If this set is empty, then we stop.

Otherwise, we set B(k+1) := B(k) \ B̂(k) and k := k + 1 and perform kth iteration.

Let

bmin
1 = min

a∈Z+

{Φt(z1 − a, z2)|(z1 − a, z2) ∈ B
(k)}

and

bmin
2 = min

a∈Z+

{Φt(z1, z2 − a)|(z1, z2 − a) ∈ B(k)}.

Since Φt(q) ≤ 2nm(V + 1) for any q ∈ dom(Φt) owing to the fact that functions fij(·) are

upper bounded by V + 1, the inequality

bmin
1 + bmin

2 ≤ 2nm(V + 1)

must hold at each iteration. Function Φt(·) is nonincreasing in each variable. Therefore, due

to the choice of ∆ and to the fact that Φt(·) is integer-valued, every iteration, except the last

one, reduces the value bmin
1 + bmin

2 by at least 1. This entails that we need at most O(nmV )

iterations.

Figure 3.13 illustrates the iterative process described in the proof of the above theorem.

The numbers inside boxes reflect the order in which these boxes were found. It is seen from

the picture that at every iteration the iterative process puts a box so that either a horizontal

or vertical bound of the currently uncovered area is shifted.
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Figure 3.13: Subdividing into boxes on each of which the function is constant.

Theorem 3.3.3 For any t ∈ [τ, n] there exists a family F of integer boxes B ⊂ dom(Φt)

covering the set dom(φt) and having cardinality |F| upper bounded by

O

(
m2

(
2n

ρ

) 1
logm−log(m−1)

)
.

At the same time, this is a running time estimation of an algorithm finding family F.

Proof. Using bisection arguments, we will show how to construct a family F.

Notice that the set

dom(φt) \ {y ∈ Zm
+ |

m∑

k=1

yk ≥ Bt, yk ≤ Bt ∀k ∈ [1,m]}

may be covered with m integer boxes

{
y ∈ Zm

+ | 0 ≤ yk ≤ Bt−1 + pt, Bt−1 + pt + 1 ≤ yi ≤ Bn, ∀i ∈ [1,m] \ {k}
}

where k ∈ [1,m] and an integer box

{
y ∈ Zm

+ | Bt−1 + pt + 1 ≤ yi ≤ Bn, ∀i ∈ [1,m]
}
.

Initialize F with these m+ 1 sets. Consider a set

T =

{
y ∈ Zm

+ |
m∑

k=1

yk ≥ Bt, yk ≤ Bt−1 + pt ∀k ∈ [1,m]

}
.
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We will iteratively expand the family F by adding integer boxes until we are sure that the

set of integer points of T is completely covered by these boxes.

In T find all vectors v being non-dominated by vectors from T in respect to the relation

≤ . (At the first iteration there exists a single such vector.) For every vector v construct the

integer box Bv = {y ∈ Zm|u ≤ y ≤ v} ⊂ dom(Φt) such that values vi − ui, i ∈ [1,m], are all

equal and u belongs to the hyperplane

H = {y ∈ Rm|
m∑

i=1

yi = Bt−1 + pt}

and add this box to the family F. This means that the lower corner u ∈ Rm is identified as

uk = vk −
1

m

(
m∑

i=1

vi −Bt−1 − pt

)

for all k ∈ [1,m]. Add all integer boxes Bv to the family F. Subtract boxes Bv from the set

T .

Proceed the described iterative process until T is empty. Notice that at an iteration r

there are mr vectors in the set T being non-dominated by other vectors from this set.

Initially, the maximum euclidian distance between a vector of set T and the hyperplane

H is equal to
√
m
m

(Bt−1 + pt). By construction, every iteration, except maybe the last one,

reduces the maximum euclidian distance between this hyperplane and a vector from of the

set T by at lest the factor of m
m−1

. Notice that t ∈ [τ, n] by the conditions of the theorem

and thus all z ∈ dom(φt) satisfy
∑m

i=1 zi ≥ Bt. I.e., a euclidian distance between every such

z and the hyperplane H is greater than or equal to
√
m
m

(Bt −Bt−1 − pt) . Therefore at most

O

(
log m

m−1

√
m
m

(Bt−1 + pt)
√
m
m

(Bt −Bt−1 − pt)

)

iterations are needed to meet the stoping criterion of the iterative process. Taking into

account that
Bt−1 + pt

Bt −Bt−1 − pt
≤

2n

ρ

we may conclude that the iteration number is upper bounded by O(log m
m−1

2n
ρ
). Then the

number of integer boxes in the family F after the last iteration is upper bounded by

O
(
m

log m
m−1

2n
ρ

)
≤ O

(
m2

(
2n

ρ

) 1
logm−log(m−1)

)
.
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Figure 3.14: Iterative process.

The proof is complete.

Figure 3.14 illustrates the iterative process in the proof of Theorem 3.3.3 for m = 2. In

this picture, inside each box there is a number of iteration at which this box was put in

family F in the iterative process. The feasible domain lies above the upper inclined line.

3.3.2 Algorithm

In this section, we discuss a simple dynamic programming algorithm for m = 2 which is

based on the recursive function properties.

For every t ∈ [1, n], let us consider a family Pt of integer boxes B̂ such that

dom(φt) ⊇
⋃

B̂∈Pt

B̂ (3.31)

and Φt(·) is constant on every box of family Pt. If for each box a corresponding function

value is given, then, using the fact that φt(q) = Φt(q) for all q ∈ dom(φt), we may calculate

function φt(·) at any point of its feasible domain.

Lemma 3.3.5 If Pt−1 with related values of function Φt−1(·) for every integer box in Pt−1

are given, then for any q ∈ dom(Φt) the function value Φt(q) can be found in O(|Pt−1|V
m)

time.
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Proof. Calculate uk = max{a ∈ [0, Bn]|fkt(a) ≤ V }. This can be done in O(logBn) time

since fkt(·) is nondecreasing. The monotony of fkt also implies that there exists a partition

Uk =
⋃

[s1,s2]∈Uk

[s1, s2]

of the interval [0, Bn] into at most V intervals [s1, s2] on which the multiple of functions

sign(·) and V + 1 + fkt(·) is constant, i.e.,

sign(a)(V + 1 + fkt(a)) = sign(b)(V + 1 + fkt(b))

for all a, b ∈ [s1, s2] and for any [s1, s2] ∈ Uk. Let [s1
1, s

1
2], . . . , [s

m
1 , s

m
2 ] be intervals from the

families U1, . . . ,Um, respectively. Then the value

φt−1(q
′) +

m∑

k=1

(V + 1 + fkt(xkt)) (3.32)

is the same for any nonnegative vector

(x1t, . . . , xkt) ∈ [s1
1, s

1
2]× . . .× [sm1 , s

m
2 ],

nonnegative vector (I1t, . . . , Imt), and vector q′ ∈ B̂ ∪ dom(φt−1), B̂ ∈ Pt−1, satisfying

m∑

k=1

xkt = pt

and

q′k + xkt + Ikt = qk

for any k ∈ [1,m]. For each combination of intervals [s1
1, s

1
2], . . . , [s

m
1 , s

m
2 ] and any box B̂ such

three vectors can be easily found in constant time if they exist. All possible combinations

of the mentioned intervals and boxes yield an enumeration algorithm to find the vectors

(x1t, . . . , xkt), (I1t, . . . , Imt), and q′ minimizing (3.32). This enumeration algorithm runs in

O(|Pt−1|V
m) time.

Further we assume that m = 2 and discuss how to find a partition Pt satisfying property

(3.31). The following algorithm performs the partitioning.

Algorithm 3.3.1
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for t = 1 to τ − 1 do

Pt := ∪y∈dom(φt){y}.

(I.e., every point y in dom(φt) form a box {y} of the partition Pt.)

end do

for t = τ to n do

Run the iterative process in the proof of Theorem 3.3.3

to construct the family F covering dom(φt).

Run the iterative process in the proof of Theorem 3.3.2,

to partition each box B in F into boxes B̂ on each of which φt(·) is constant.

Thereby partition Pt is constructed.

end do

At every iteration of the iterative process in the proof of Theorem 3.3.3 one can maintain

a list of currently non-dominated points of the set T . Using a point taken from the head

of this list, we may construct a box in the way suggested by the iterative process, delete

this point, and add at most m = 2 new points into the list. We need constant time to

generate each of these m = 2 points. Each point is added to the list only once. The whole

number of points added to the list and considered by the iterative process is upper bounded

by O
(

1
ρ
+ 1
)

according to Theorem 3.3.3. Thus at the same time this upper bound is a

time complexity estimation of the the iterative process in the proof of Theorem 3.3.3.

Using the fact that φt(·) is nonincreasing in each argument, the iterative process in the

proof of Theorem 3.3.2 can calculate ∆ in O(logBn) basic operations and computations of

φt(·) at each iteration. This iterative process performs at most O(mnV ) = O(nV ) iterations

for a box B ⊂ dom(φt). Therefore at every iteration t where
∑t

j=1 pj > 3n/ρ the algorithm

performs at most

O(nV |F| logBn) ≤ O

(
V n

(
1

ρ
+ 1

)
logBn

)

basic operations and calculations of function φt(·). This number dominates O(n/ρ) basic

operations needed to construct Pt such that |Pt| ≤ O(n/ρ) in case
∑t

j=1 pj ≤ 3n/ρ. Every
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calculation of the function φt(·) requires at most O(|Pt−1|V
2) basic operations. Since the

iterative process in the proof of Theorem 3.3.2 applied to every box B in the family F

constructs partition Pt−1 of the set dom(φt) so as |Pt−1| ≤ O(nV |F|), the overall time

complexity of the algorithm is upper bounded by

O

(
V 4n2

(
1

ρ
+ 1

)
logBn

)
. (3.33)

Further we assume that every partition Pt is represented as a list where each item corre-

sponds to an interval with the related value of the function φt(·). The following backtracking

algorithm finds an optimal solution to the instance IR(S). We assume that P0 consists of a

single box {0}.

Algorithm 3.3.2

Select B̂ ∈ Pn on which φn(·) is minimum.

Let v be the value taken by φn(·) on B̂.

Take arbitrary q ∈ B̂.

for t = n down to 1 do

Select k ∈ [1,m] and B̂′ ∈ Pt−1 so as

there exists Ikt ≥ 0 such that q′ := (q1, . . . , qk−1, qk − pt, qk+1, . . . , qm) ∈ B̂
′

and v − (V + 1)− Ftk(qk − Ikt) = v′

where v′ is the value taken by φt−1(·) on B̂
′.

Set v := v′ and q := q′.

Set I0
kt := Ikt and I

0
it := 0 for all i ∈ [1,m] \ {k}.

Set x0
kt := pt and x

0
it := 0 for all i ∈ [1,m] \ {k}.

end do

The algorithm relies on Theorem 3.3.1, item 1, which says that for any optimal solution

(x0, I0) of the instance IR(S) and for any job index t ∈ [1, n] there exists exactly one

machine index k ∈ [1,m] such that component x0
kt is positive. This means that this positive

x0
kt must be equal to pt. The algorithm constructs (x0, I0) in such a way that for any job
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index t ∈ [1, n] the component I0
kt may be positive only if x0

kt = pt. Here one uses the fact

that φt(·) is nonincreasing in each variable and thus other variants will not give a better

choice of q′.

The complexity of an iteration of the for-loop in Algorithm 3.3.2 is upper bounded by

O(|Pt−1|). (Only the quantity of boxes in the partition counts due to the fact that we consider

a constant number of machines.) Thus the overall time complexity of the backtracking

algorithm is dominated by the time complexity estimation of Algorithm 3.3.1. Thus we have

the following theorem:

Theorem 3.3.4 An optimal solution of the instance IR(S) can be found in time upper

bounded by (3.33).

If µ < 1 and ρ = ε/2, our algorithm finds an ε−approximate solution. Since it runs in

time (3.33), we have a fully polynomial time approximation scheme provided that the bound

improvement procedure is additionally used.

Consider now the case when µ ≥ 1. Given ε > 0, a rational value between (1+ε/2)
1
µ−1

2

and (1 + ε/2)
1
µ − 1 can be found in time polynomial of 1/ε. Therefore, due to our previous

discussion, we have an algorithm finding an ε−approximate solution in time (3.33) where ρ

is replaced by (1 + ε/2)
1
µ − 1. To obtain bounds U and L satisfying U/L = 3 in polynomial

time, we may use the bound improvement procedure. Thus, we have the following theorem:

Theorem 3.3.5 There exists an FPTAS for P2||
∑
Fij(Cj).

.

3.3.3 Time-varying machine speeds

We now address a case when the speed of each machine may vary over time. Let pj be

job processing times provided that the speed of a machine executing a job equals one. For

simplicity we assume that pj are integer values. Let a polynomially computable function

gi : R+ → R+
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Figure 3.15: Different constant machine speeds

for any time moment express a factor by which a speed of machine Mi differs from the unit

speed. (We call this function a speed function.) Let us explain it more precisely. Let some job

have a processing time p on a machine having unit speed. If machine Mi, during processing

this job, had the same speed as at some moment T, then this job would be completed in

gi(T )p time units. Therefore, if Cj is a completion time of job Jj at a machine having unit

speed, then

Gi(Cj) =

∫ Cj

0

gi(x)dx

is its completion time on machineMi whose speed is expressed by speed function gi(·). (Here

Gi(·) is an antiderivative of gi(·).) The value Gi(Cj − pj) in this case is a start time of job

Jj.

Note that a similar definition of the speed function was introduced in the thesis by Schulz

[51].

In Figure 3.15, it is shown how job processing and completion time depend on machine

speed. Two cases are illustrated. In the first one, a machine having the unit speed processes

jobs Jk and Jj with processing times pk = pj = 2. Idle time after processing job Jk is equal

to one. Completion times of jobs Jk and Jj are equal to Ck and Cj, respectively. Start time

of job Jj is equal to Cj−pj. In the second case, machine speed is also constant and expressed

by speed function g ≡ 2. In this case, the job processing times and idle time become two

times longer. Completion times of the jobs are equal to 2Ck and 2Cj now. The start time

of job Jj is two times larger now than it was at machine with unit speed.
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Further, just for the sake of simplicity, we interpret Gi(Cj) only as a cost we should

pay for execution of job Jj if its completion time is Cj. This implies that we consider unit

machine speeds.

Simple interchange arguments show that there exists an optimal schedule where every

machine processes jobs in nondecreasing order of their processing times. Indeed, let jobs Jl

and Jk are executed by the same machine in some schedule C. Assume that pl ≥ pk and the

job Jl is executed strictly before Jk (I.e, there are no intermediate jobs between Jl and Jk.)

Let Sl be a start time of job Jl in the schedule C. Exchange the order of job processing so

as Jk is executed strictly before Jl and the new start time of Jk is equal to Sl and the new

completion time of Jl equals to the completion time Ck of job Jk in the schedule C. Denote

the obtained schedule by C ′. In the new schedule completion times of all jobs excepting Jl

and Jk remain unchanged. The idle time between Jl and Jk also remains the same. The

difference ∆ between the objective value of new schedule and the objective value of the old

schedule is evaluated as

n∑

j=1

GAC(j)(C
′
j)−

n∑

j=1

GAC(j)(Cj) = GAC(l)(C
′
l) +GAC(k)(C

′
k)−GAC(l)(Cl)−GAC(k)(Ck).

By construction, C ′l = Ck and therefore, since Jl and Jk are executed by the same machine,

GAC(l)(C
′
l) = GAC(k)(Ck). Note that

C ′k = Sl + pk = Cl + pk − pl.

As a result we have

∆ = GAC(k)(C
′
k)−GAC(l)(Cl) = GAC(k)(Cl + pk − pl)−GAC(k)(Cl).

Since pk ≤ pl and functions Gi(·) are nondecreasing, inequality ∆ ≤ 0 holds which means

that by the job interchange we have obtained a schedule not worse than the original one.

In that way, if jobs are enumerated so that p1, . . . , pn, we may impose Restriction 3.3.1 on

feasible solutions without loss of an optimal one. If we assume that for any instance an

additional restriction

Gi=1(αβ) ≤ Gi=1(α)β
µ (3.34)
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is satisfied for some constant µ, then we have all necessary components to state, using the

previously obtained results, that there exists a fully polynomial time approximation scheme

for the scheduling problem P2||
∑
Gj(Cj) provided that functions Gj are polynomially com-

putable.

Note that we may also consider rational processing times pj. Then we can multiply

processing times by a common multiple to obtain integer values. To come to a problem

which is equivalent to the original one, it remains to modify functions Gj(·) by means of

dividing their arguments by the mentioned common multiple. This transformation preserves

property (3.34).

3.3.4 Conclusions

In this subsection, a multi-machine scheduling problem with a nonlinear objective has been

considered. A fully polynomial time approximation scheme has been derived for the two-

machine case. It remains unclear whether a similar approach works in the case of an arbitrary

fixed number of machines. To try to find an answer to this question, according the properties

obtained in this section, it is sufficient to find out if it is possible to describe the function

on a box in the same way as it has been done for two machines. (Remind that for two

machines the fact that domains of the recursive functions lay in the (two-dimensional) plane

essentially helped us.)



Summary

The present thesis summarizes a part of the recent research conducted by the author. Single-

item economic lot-sizing and some scheduling problems are the main focus of the thesis. This

of course does not mean that the obtained results are useless for other optimization problems.

For instance, the fully polynomial time approximation scheme for the CELS problem devel-

oped in Section 2.5 can be used as a local search procedure in large-scale neighborhoods for

problems that admit a formulation in the form of a nonlinear network problem. An FPTAS

in Section 3.3 is relevant for any problem possessing a recursive formulation with properties

similar to those considered in that section.

The idea of dynamic programming algorithms is to use optimal solutions of subproblems

to obtain an optimal solution of an original problem. Subproblems are constructed by means

of omitting certain restrictions and imposing new ones containing, as a rule, new parame-

ters. The main method used in this thesis is dynamic programming in combination with a

sensitivity analysis directed at investigating how optimal values of such subproblems behave

when values of these parameters are changed. In one form or another similar approaches

are already present in the literature (see for instance the paper by Woeginger [61]). In our

particular case, the aim of the sensitivity analysis is to reduce the amount of redundant

information in the data structures needed for representation of recursive functions on which

dynamic programming algorithms are based. Unlike many approaches suggesting to forbid

some points in feasible domains of the recursive functions, most of our approaches do not

assume throwing out feasible points. This allows us to avoid many difficulties that may arise

when a feasible domain of a problem is changed.

In most of the algorithms considered in the thesis, recursive functions are stored as lists of

156
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primitive items like integer intervals or integer boxes associated with corresponding function

values. In many cases the amount of these items depends on the structure of the objective

function which often allows to increase the efficiency of dynamic programming algorithms.

Another observation which also helps to improve dynamic programming algorithms is that

in many situations a corresponding recursive function repeats the structure of an objective

function. Namely, if an objective function is concave or linear, it makes sense to try to

investigate on which intervals the recursive function is concave or linear.

One of the simplest problems to which our methods are applicable is the CELS prob-

lem with a linear objective function. This problem can easily be formulated in the terms

of polymatroids and solved by an efficient implementation of Edmond’s greedy algorithm

(see Girlich et al. [30]). An alternative algorithm of the same efficiency can be based on

a straightforward dynamic programming algorithm using the fact that the corresponding

recursive function is convex for any time period and, moreover, consists of at most n linear

pieces where n is the number of time periods. These properties are proven in Section 2.2 and

lead us to an O(n log n) algorithm provided that we additionally use a certain data struc-

ture for the sake of efficient implementation of our algorithm. A simple pseudopolynomial

dynamic programming algorithm is convertible to a polynomial one for the linear variant of

the CELS problem.

Enumerative algorithms is another area where our sensitivity analysis may be useful.

Such algorithms are often most straightforward and easily implementable. In many situations

they may perform however better than polynomial or pseudopolynomial algorithms. For

example, an instance of the knapsack problem with 10 items having integer weights ranging

from 1 to 10000 can be solved by some pseudopolynomial algorithm in at least 10000 basic

operations. In the same time a proper implementation of the complete enumeration of all

solutions allows to perform at most O(210) basic operations to find an optimal solution which

is much better than the pseudopolynomial estimate. For many problems there are techniques

intended to expand the range of applicability of the exhaustive search. For example, such

techniques are used in the algorithm of Horowitz and Sahni [34] running in O(n2n/2) time

for any instance of the knapsack problem with n items. This algorithm performs O(20 · 210)
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basic operations to find an optimal solution if n = 20. The exhaustive search algorithm needs

O(220) basic operations in this case. One can note that complexity estimates O(n2n/2) for

the algorithm of Horowitz and Sahni and O(2n) for the straightforward exhaustive search

algorithm differ by an exponential factor, i.e., the difference between these two algorithms

is similar to the difference between a polynomial algorithm and an exponential one. To

emphasize such difference, algorithms like one designed by Horowitz and Sahni are often

called subexponential algorithms. In this thesis we suggest an algorithm for the CELS

problem being subexponential and pseudopolynomial in the same time. This algorithm,

that is suggested in Section 2.3, relies upon a combination of two variants of recursion. One

of them uses enumeration of time periods in the increasing order, and another considers

time periods in the decreasing order. To avoid redundant computations, the algorithm,

using sensitivity properties of the problem, tries to distinguish intervals where the recursive

function is linear. As a result of this approach, we decrease the power in the complexity

estimation of the trivial enumerative procedure by the factor of two and obtain thereby

a subexponential algorithm from an exponential one. Such algorithm can be useful if the

number of periods is relatively small and coefficients in the input data are too large to

successfully apply a pseudopolynomial algorithm.

The CELS problem with piecewise concave cost functions is an example of a situation

when the complete information about a recursive function is not necessary to obtain an op-

timal solution by a dynamic programming algorithm. Using concavity properties, in Section

2.4 it is shown that one may compute a recursive function only at certain points without loss

of an optimal solution. The choice of these points depends on those where cost functions

are not concave. The algorithm presented in Section 2.4 runs in polynomial time for much

more general variants of the CELS problem with concavity properties of cost functions than

those for which polynomial algorithms were already devised and described in the literature.

Note that the variant of the CELS problem in Section 2.4 can be used to approximate less

structured instances of the CELS problem.

The algorithm developed in Section 2.5 is a fully polynomial time approximation scheme

(FPTAS) which is, by the definition, a polynomial algorithm for any desired precision of
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approximation. The FPTAS in Section 2.5 is applicable to a general case of cost functions

when only most reasonable monotone properties are assumed. The FPTAS is based on

solving a problem with the rounded objective function and uses an efficient description of a

recursion.

If we allow a more general dependence of the inventory on production than one in the

classical formulation of the CELS problem, then we come to a problem for which there is no

polynomial algorithm with a constant performance estimate unless P=NP. (This was shown

in Section 2.6.) There are however important special cases of that problem for which FPTASs

exist. For instance, there exists an FPTAS for the CELS problem where additionally product

losses are possible. This FPTAS follows from sensitivity properties of the problem.

Chapter 3 deals with multi-machine scheduling problems. In Section 3.2 local search

procedures in large-scale neighborhoods are considered. One of these procedures is a pseu-

dopolynomial dynamic programming algorithm which is convertible, if it is necessary, into

an FPTAS by means of using simple sensitivity analysis based on monotone properties of

a recursive function. Although the local search procedures have been developed for single-

stage scheduling problems, they are also applicable to multi-stage problems as it was shown

by an example of a three-stage multi-machine flow-shop problem of minimizing the average

flow time of jobs.

The FPTAS in Section 3.3 can be applied to two-machine scheduling problems with

nonlinear objective functions of a sufficiently wide class. This FPTAS is based on the

calculation of a recursive function whose two arguments may take pseudopolynomially many

different values on the feasible domain. As it has been shown, the FPTAS in Section 3.3 is

applicable to the case with time-varying speeds of machines.

A combination of a sensitivity analysis of the sort we consider may in that way be

successful method to improve running time of dynamic programming algorithms and even

change their complexity status.
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