

DEVELOPMENT OF AUTONOMOUS FEATURES AND INDOOR

LOCALIZATION TECHNIQUES FOR CAR-LIKE

MOBILE ROBOTS

Dem Fachbereich Elektrotechnik und Informatik der

Universität Siegen

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation

von

M.Sc. Niramon Ruangpayoongsak

1. Gutachter: Prof. Dr.-Ing. Hubert Roth

2. Gutachter: Prof. Dr.-Ing. Rudolf Schwarte

Vorsitzender: Prof. Dr.-Ing. Robert Mayr

Tag der mündlichen Prüfung: 10.8.2006

urn:nbn:de:hbz:467-2447

Acknowledgements

I would gratefully like to thank my advisor Prof. Hubert Roth. I thank him for providing

the long period funding from the DAAD and giving me the opportunity to work in a

European commission project; Building Presence through Localization for Hybrid

Telematic Systems (PeLoTe). Also, I thank him for giving me a chance to work on the

new technology PMD camera and giving me the freedom to develop my own ideas. I

am grateful for his support and for the discussions we had.

I would like to thank my second supervisor Prof. Rudolf Schwarte for providing us the

16x16 pixel and the 48x64 pixel PMD camera. I thank him for his discussion,

contribution and comments for this thesis. Also, I thank him for providing me funding

during the last period of my dissertation work. I would like to thank Prof. Robert Mayr

for discussing the development of and contributing to the development of the nonlinear

dynamic car model, and for valuable feedback on our results.

I would like to give special thanks to our electronics man, Mr. Werner Utsch, and to a

PMD Technology GmbH member, Mr. Markus Grothof. I am grateful to both for their

support and for the discussions we had. I am most grateful for friendship and help from

Mr. Jörg Kuhle and all colleagues.

Lastly, I would like to thank my parents for always being there for me and supporting

me. I gratefully thank them and appreciate their love, sacrifice, patience, advice, and

help.

Contents
Contents……..…………………………………………………………………….

List of Figures……………………………………………………………………..

List of Tables………………………………………………………………………

i

v

viii

Abstract…..……………………………………………………………………….

Kurzfassung……………………………………………………………………….

ix

x

1. Introduction…….. ……………………………………………………………

2. A Survey of Related Works.…………………………………………………

3. The Mobile Experimental Robots for Locomotion and Intelligent

Navigation (MERLIN)…….………………………………………………….

3.1. Series of MERLIN prototypes…………………………………………….

3.1.1. The first MERLIN prototype……………………………………….

3.1.2. The development of MERLIN on the original chassis…………….

3.1.3. MERLIN#2 with a new chassis…………………………………….

3.2. MERLIN data communication structure……………………………….…

3.2.1. MERLINServer and MERLINClient……….………………..……

3.2.2. Data communication via radio transceiver…………………………

3.2.3. Data communication via wireless LAN (WLAN)…………….…..

3.3. Sensors for navigation………………………………………….…………

3.3.1. The Odometer………………………………………………………

3.3.1.1.Measurement of the driven distance………………………..

3.3.1.2.The detection of driving direction …………………………………

3.3.1.3.Measurement of the driving speed ………………………………..

3.3.2. The Gyroscope…………………………………………………….

3.3.2.1.Measurement of the angular velocity………………………….…..

3.3.2.2.The relative yaw angle measurement……………………………...

3.3.3. 3-axis magnetic Compass…………………………………………..

3.3.4. Ultrasonic sensors…………………………………………………..

3.3.5. Infrared sensors…………………………………………………….

3.3.6. The Photonic Mixer Device (PMD) camera………………………..

3.3.6.1.The PMD camera system…………………………...…………….…

3.3.6.2.The 16x16 pixel PMD camera …………………….…………….…

3.3.6.3.The 48x64 pixel PMD camera………………………..………….…

1

5

9

9

9

10

11

13

13

14

14

15

16

16

16

17

18

18

18

19

19

20

20

20

22

22

 i

3.4. Steering and propelling the car-like mobile robots ……………….……...

3.4.1. The steering control.. ………………………………..…………….

3.4.1.1.Steering control by using Joystick ………………………….……..

3.4.1.2.Steering control for autonomous path following…………….…

3.4.2. The speed control…………………………………………………..

4. Autonomous Features……….…………………………...…………………...

4.1. Obstacle detection and collision avoidance……………………………….

4.1.1. Obstacle collision avoidance……………………………………….

4.1.1.1.Fuzzy logic controller……………………………………………….

4.1.1.2.Controller design…………………………………………………….

4.1.1.3.If-then rule controller………………………………………………..

4.1.1.4.Test results in different scenarios……………………...……........

4.1.2. The PMD camera for obstacle detection…………..………………

4.1.3. Wall following………………………………...……………………

4.2. An autonomous 180 degree turn in A narrow corridor……………....……

4.3. Path following in an unknown environment……………….……………..

4.3.1. Trajectory generation………………………………………………

4.3.2. Basic path following control……………………………

4.3.3. Path following strategy…………………………………………….

4.3.4. The data communication for the path following strategy………….

4.3.5. Experimental results ………………………………………………

5. Relative Localization using Nonlinear Dynamic Model…………………....

5.1. Robot modelling…………………………………………………………..

5.1.1. The nonlinear dynamic model……………………………………..

5.1.2. Model realization… ………………………………………………..

5.2. The Discrete Extended Kalman Filter (EKF)……..……………..………...

5.2.1. A general discrete EKF………………………………………...…..

5.2.2. Calculating the discrete EKF ………………………………..……..

5.3. Calculating the robot's position and heading …………………….………..

5.3.1. Odometer position and heading calculation…..…………………...

5.3.2. Position and heading estimation using gyroscope and compass …..

5.4. Experimental results………………………………………..……………..

5.4.1. Description of exploited path types.……………………………….

22

23

23

23

24

26

26

27

27

28

29

29

31

32

33

34

35

36

37

39

39

41

41

41

44

44

44

46

47

48

48

49

50

 ii

5.4.2. Types of measurements………….…………………………………

5.4.3. Test results of several path types…………………………………..

5.4.4. Average errors…………………..…………………………………

6. Position Calibration using 3D Vision and Artificial

Landmark…………………………………………………………….………..

6.1. The Measurement characteristics of the 16x16 pixel PMD camera………

6.2. Design of artificial landmark…………………………………………………...

6.2.1. Lower part of landmark…………………………………………….

6.2.2. Upper part of landmark…………………………………………….

6.2.3. Several designs of 3D artificial landmark……………….….…..….

6.2.4. Landmarks for 16x16 pixel PMD camera…………………..……...

6.3. Landmark recognition……………………………….…………………….

6.3.1. Image filtering…………………..………………………………….

6.3.1.1.Conducting the Kalman filtering……………………………..…..

6.3.1.2.Uncertainty and convergence…………………………………..…..

6.3.2. Image smoothing………………………………………………….

6.3.3. Model Image generation……………………………………………

6.3.3.1.Model image generation for the lower part of the landmark..…

6.3.3.2.Model image generation for the upper part of the landmark..…

6.3.4. Edge detection…………………………………………………….

6.3.5. Line fitting…………………………………………………………

6.3.6. Model matching…………………………………………………..

6.3.6.1.Model matching for the lower part of the landmark image……

6.3.6.2.Classification of the landmark types using the upper pixel

 processing (Model matching for the upper part)…………..……

6.3.7. Test of landmark recognition………………………………………

6.3.7.1.A test of the lower part recognition strategy………..…………...

6.3.7.2.A test of the upper part recognition strategy………..…………...

6.4. Position calibration…………………..……………………………………

6.4.1. Position prediction and update…………………………………..…

6.4.2. The on-line position calibration experiment……………………….

7. Improvement for the Resolution of the Position Calibration….…………..

7.1. The measurement characteristics of the 48 x 64 pixel PMD camera……..

50

50

52

55

55

57

57

59

60

60

62

63

63

64

66

67

67

70

72

73

74

74

77

78

78

81

84

84

85

89

89

 iii

7.2. The 2D image processing for landmark recognition….…..…………..….….

7.2.1. The horizontal edge detection of 2D color images………..……….

7.2.2. The relationship of pixel positions of 2D and PMD images………

7.3. Recognition of the lower part of landmark by using 2D and PMD images

7.3.1. Model image generation ………………………………….………..

7.3.2. Image smoothing…………………………………………………...

7.4. Experimental results ……………………………………………………………..

7.4.1. The results of 2D horizontal edge detection …………………….....

7.4.2. The results of model matching……………………………….…….

8. Summary and Perspective………………………………..………………….

91

92

93

94

95

95

97

97

97

100

Appendix A: Microcontroller…………………………………..……….……

Appendix B: Graphic User Interface (GUI)……………………..……….…

Appendix C: PC104…….………….…………….…...………….……………

References……………………………………………………………………..

102

107

113

115

 iv

List of Figures

1.1

1.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

5.1

5.2

5.3

5.4

Different scenarios ………………………………………………………

The robot position from differential drive positioning…………………..

Sensors on board and their outputs………………………………………

MERLIN#2………………………………………………………………

1/8 scale chassis………………………………………………………….

Data communication structure via radio transceiver…………………….

Data Communication Structure via wireless LAN……………………….

Variable definition for speed calculation………………………………...

Schematic PMD TOF operation………………………………………….

A photograph of the 16x16 pixel PMD camera………………………….

A photograph of the 48 x 64 pixel PMD camera………………………...

The relationship between the PWM value and the diameter of the

curvature when driving…………………………………………………..

Positions of the ultrasonic and infrared sensors………………………….

The structure of the fuzzy controller……………………………………..

Membership functions for obstacle avoidance……………………….…..

The driven path of obstacle avoidance…………………………………...

The area of detection of PMD camera and ultrasonic sensors divided

into left, middle and right sections………………………………………

Membership functions for wall following……………………………….

Wall following……………………………………………………………

The experimental result for an autonomous 180 degree turn…………….

Autonomous 180 degree turning process………………………………...

Trajectory generation……………………………………………….……

Path following strategy…………………………………………….……..

Architecture of data communication……………………………………..

Result of the path following control……………………………………..

Dynamical variables of the vehicle………………………………………

Characteristic line Γ of the wheels and tires……………………………..

Architecture of the robot localization system……………………………

Variables based on odometer……………………………………………

2

3

12

12

12

15

15

17

21

22

22

24

27

27

28

30

31

33

33

34

35

37

38

39

40

42

43

48

49

 v

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

Rectangular path estimated positions……………………………………

Wall path estimated positions……………………………………………

Line path estimated positions…………………………………………….

The estimated headings of the line path…………………………………

The measured values of the 8th row pixel and at each column pixel ……

Mean and STD at the 8th row pixel and at the 1st to 4th column pixel……

An example of the filtered image and the generated model image………

The detected surface at various positions………………………………..

Landmark examples……………………………………………………...

The landmark recognition process of the lower part…………………….

The landmark recognition process of the upper part…………………….

Image frames consisting of state variables………………………………

The estimated value Kalman gain…………………………………….….

The estimated value xk from filtering and the measured value zk……...…

The filtered image before and after smoothing…………………………..

The PMD image smoothing of random measurement noise…………….

Camera and landmark coordinates……………………………………….

Model image generation of the lower part……………………………….

The model image at different angle positions……………………………

Model image generation of the upper part……………………………….

Generated model of landmark types……………………………………...

Model image generation of a cylinder……………………………………

A sample graph of line fitting result……………………………………...

Matching process of the lower part………………………………………

The tree diagram for landmark type classification……………………….

Matching results of the lower part using 16x16 pixel PMD camera…….

The filtered images of L1………………………………………………...

The filtered images of L2………………………………………………..

The filtered images of L3………………………………………………..

The filtered images of L4………………………………………………..

The reference coordinates and definition of related variables for position

calibration………………………………………………………………..

Sample PMD images plotted on Java platform………………………….

51

51

52

53

56

56

58

59

61

62

63

70

65

65

66

67

69

69

71

71

71

73

74

76

77

79

83

83

83

83

86

86

 vi

6.29

6.30

6.31

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

A.1

A.2

A.3

B.1

B.2

B.3

B.4

C.1

Filtered images and captured images……………………………………

The robot position and heading during on-line experiment……………...

The integration of relative and absolute localization on GUI……………

Measured distance values of the 48x64 pixel PMD camera at 2500 mm..

Mean of the measured values of the selected pixels……………………..

Standard deviation (STD) of the measured value of the selected pixels…

The first result of edge detection of 2D image…………………………..

The noise in edge detection of 2D image………………………………..

The horizontal edge detection of 2D image……………………………..

The detection area of 2D and PMD cameras…………………………….

Landmark recognition of the lower part using 2D and PMD images……

3072 pixel model images at 800 mm…………………………………….

Image smoothing…………………………………………………………

Results of edge detection of 2D image…………………………………..

Results of matching of the lower part using 2D and PMD images………

Infineon Minimodule C167 CR-LM……………………………………..

The main operations of the microcontroller……………………………..

Recognized path types……………………………………………………

The connection dialog frame of GUI……………….……………………

The joystick control panel……………………………………………….

Path following control panel……………………..………………………

The PMD camera control panel………………………………………….

The CPU-M1…………………………………………………………….

86

87

87

90

90

91

92

93

93

94

96

96

96

98

98

102

103

104

107

109

111

112

113

 vii

List of Tables

2.1

3.1

3.2

4.1

4.2

5.1

5.2

6.1

6.2

6.3

6.4

6.5a

6.5b

6.6

A.1

A.2

A.3

A.4

B.1

B.2

B.3

A summary of artificial landmarks and their recognition techniques……

Sensors on board and their outputs………………………………………

Parameters for the PI controller at the specified reference speed…….….

The fuzzy inference rules for obstacle avoidance…………………….….

If-then rules for obstacle avoidance……………………………………...

Average position errors…………………………………………………..

Average heading errors…………………………………………………..

Mean and standard deviation (STD) at 1.0, 0.5, and 0.2 meters…………

The four types of landmarks: names, shapes, types, and dimensions……

Images and edge detection in columns…………………………………..

Names of calibrating positions…………………………………………..

Matching result of the distance position…………………………………

Matched result of the angle position……………………………………..

The matching results of landmark type classifier…………………….…..

Sent and received data packets (on robot)……………………………….

Interrupt priority level settings…………………………………………...

Timer period setting……………………………………………………...

A/D converter and specified channels……………………………………

The functions of the buttons and checkboxes in the GUI for the joystick

The functions of the buttons and checkboxes for the path following

control commands………………………………………………………..

The functions of the buttons on the left command panel of the GUI for

the PMD camera………………………………………………………….

7

10

25

29

30

54

54

58

61

73

80

80

81

82

105

106

106

106

109

110

112

 viii

Abstract

Intelligent autonomous navigation in a large-scale and unknown indoor

environment is an important problem in mobile robotics. For a car-like mobile robot

with a racing car platform, the movement control concept is similar to that of a car.

The autonomous features enable robots to control own motion without human

interference. Three autonomous features are addressed in this thesis; obstacle

avoidance, doing 180° turns in a narrow corridor, and path following control. Since the

obstacle positions are not known beforehand, the strategy requires not only the obstacle

avoidance but also trajectory generation and robot localization.

The robot localization can be broken down into relative and absolute

localization. This thesis addresses the development of the model-based relative

localization technique and the landmark-based absolute localization technique.

The model-based relative localization is applied by the non-linear dynamic car

model to the Kalman filter. The study of integrating sensor data from odometer,

gyroscope and compass for the position and heading estimators provides a discussion of

the performance of three localization methods; differential drive, gyroscope estimator,

and compass estimator.

The landmark-based absolute localization is applied by using the 3D camera and

the 3D artificial landmark and is called the position calibration. Three parts of the

position calibration are developed: The design of landmarks, the landmark recognition,

and the robot position prediction and update. Lastly, the improvement for the resolution

of the position calibration by using 2D and 3D images is studied.

 ix

Kurzfassung

Intelligente autonome Navigation ist ein wesentliches Problem in der mobilen

Robotik. Für einen modellbasierten Fahrzeug-ähnlichen mobilen Roboter ist das

Steuerungskonzept ähnlich wie beim Auto.

Autonome Feature erlauben Robotern eigene Bewegungen zu kontrollieren ohne

menschliche Interaktion. Drei autonome Feature werden in diese Arbeit behandelt:

Hindernisvermeidung, 180° Drehung in einem schmalen Flur und Pfadverfolgung. Weil

die Hindernispositionen unbekannt sind, erfordert die Strategie nicht nur

Hindernisvermeidung, sondern auch Bahnplanung und Roboterlokalisierung.

Die Roboterlokalisierung kann in relative und absolute Lokalisierungen

unterteilt werden. In dieser Arbeit soll die Entwicklung der modellbasierten relativen

Lokalisierungstechnik und der absoluten Lokalisierung durch Landmarken untersucht

werden.

Die Entwicklung der modellbasierten relativen Lokalisierung wird durch ein

nichtlineares dynamisches Automodell mit nachfolgendem Kalman Filter erreicht. Die

Integration der Sensordaten des Entfernungsmessers, Trägheitsgyroskop-Sensors und

der Kompass-Sensoren durch den Kalman Filter ermöglicht die Analyse der Leistung

der drei Positionierungsmethoden; durch differentiellen Antrieb, Gyroskops- und

Kompass-Abschätzung.

Die absolute Lokalisierung wird durch den Einsatz einer 3D-Kamera und 3D-

Landmarken erreicht und wird im Folgen der Positionskalibrierung genant. Drei Teile

der Positionskalibrierung werden entwickelt: Das Design der Landmarken, die

Erkennung der Landmarken sowie die Voraussage und die Aktualisierung der

Roboterposition. Schließlich wird die Verbesserung der Auflösung der

Positionskalibrierungstechnik durch 2D und 3D Bilder untersucht.

 x

 1 Introduction

 Developed as an inexpensive self-design concept, the Mobile Experimental

Robot for Locomotion and Intelligent Navigation (MERLIN) was constructed and

exploited as a test bed for control algorithms and tele-operation for education [KLA 02]

[KUH 04]. MERLIN robots are robust for indoor, outdoor, also in rough terrains

environment. In this work, the autonomous features and robot localization techniques

for MERLIN are developed.

1.1 Problem Specification

This thesis addresses the problems of both the autonomous features and the

robot localization for a car-like mobile robot in a large scale and unknown indoor

environment.

1.1.1 Autonomous features

Two important factors for designing the algorithms for autonomous features are

robot motion and perception. Since robots have the same manoeuvring as a car and have

obstacle detection sensors on board. The problems of autonomous features are set as

follows:

• Avoiding obstacle collisions. Obstacle collision avoidance is an

important feature for preventing damage during navigation. By using the

range sensors for obstacle detection, the robot perception is shown in

Figure 1.1. The algorithm must be designed such that the robot

overcomes the obstacle without crashing and finally comes to a free area.

• Turning 180° in a narrow corridor. When the robot is driving along a

narrow corridor with a dead end as shown in Figure 1.1a, the robot

should try to turn 180° into the opposite direction. The designed

algorithm must provide robustness in the case of existence of unknown

obstacles.

• Path following. The autonomous path following problem in an unknown

environment is that the robot should follow a user-specified path and also

automatically avoid collision with obstacles. The situation is illustrated

in Figure 1.1b below, where the obstacle is on the desired path. The task

 1

of autonomous path following control is changing robot’s orientation to

avoid collision and to finally reach the destination.

 (a) (b)

Figure 1.1: Different scenarios: (a) narrow corridor with a dead end;

(b) obstacles on the desired path.

1.1.2 Localization techniques for mobile robots

 The robot localization can be classified into two main categories [GOE 99]:

• Relative (local) localization: The technique is to localize the robot

position and orientation by using various on board sensors such as

odometer, gyroscope, etc. The robot position and heading relative to its

start position. This is also called the self-localization.

• Absolute (global) localization: The technique is to obtain absolute

position using positioning system such as beacons, landmarks, GPS, etc.

The absolute robot position and heading is not relative to its start

position.

This thesis classifies the problem of robot localization in the same way as

described above.

1.1.2.1 The relative localization techniques. In a large area, when the structure

of the building is not known beforehand and the absolute positioning system is not

available, the robot needs to rely on its self-localization. Differential drive positioning is

the most basic type of the relative localization that uses only the distances information

from the odometers. However, slippage of the car's wheels cause accumulated errors.

An example of the error that occurs in differential drive positioning is shown in Figure

1.2. The estimated robot’s heading from the differential drive contains accumulated

errors that result in a large error in the estimated final position. The improvement is to

 2

use an exact relative localization technique, such as the model based localization.

Regarding the car-like motion, the nonlinear dynamic model of the car is selected as a

robot model and the discrete extended Kalman filter is applied as the robot position and

heading estimator. Therefore, this thesis addresses the problem of relative localization

for a car-like mobile robot by using the nonlinear dynamic model and discrete extended

Kalman filter.

Figure 1.2: The robot position from differential drive positioning.

1.1.2.2 The absolute localization techniques. There are many techniques for

absolute localization and one of them is landmark based localization [BOR 96]. Two

types of landmarks are:

• Natural landmark: These landmarks are existing objects in the environment.

Examples of natural landmarks in indoor environment are doors, tables and

chairs.

• Artificial landmark: These landmarks are designed, built, and placed in the

environment. The shape and color of landmark designs are usually depending on

the perception of robot.

The cameras are often applied with the vision-based localization technique using

artificial landmarks. The 2D camera captures color or gray images whereas the 3D

camera provides the depth or the range images. The Photonic Mixer Device (PMD)

camera is a 3D camera available in the market. This thesis addresses additionally the

problem of applying the 3D camera to solve the artificial landmark based localization

problem. It is challenging work to detect and recognize the landmarks. The questions of

 3

how to use the 3D camera to detect the landmark, what the landmark should look like,

and what information could be obtained from the landmark need to be answered. This

landmark based localization technique is called the position calibration.

1.3 An overview of the thesis

 This thesis is divided into five main chapters. The coming chapter provides a

survey of the related work in mobile robot localization techniques. Next, Chapter 3

provides an overview of the mobile robot and its user interface. The different robot

prototypes, sensor measurements, the wireless data communication, the graphic user

interfaces, the steering control and the speed control are explained. Chapter 4 describes

our solutions to the problems of autonomous features; obstacle avoidance, turning 180°

in a narrow corridor, and path following control. Chapter 5 then explains the use of the

nonlinear dynamic car model and the discrete extended Kalman filter for the relative

localization of the robot. Chapter 6 describes in detail the innovative use of a 3D 16x16

pixel PMD camera and 3D artificial landmark for mobile robot localization and presents

the results of the on-line experiment of the position calibration. Chapter 7 presents the

improvement for the resolution of the position calibration by using images from the 3D

48x64 pixel PMD camera and a web camera. The final chapter, Chapter 8, provides a

summary and perspective.

 4

2 A Survey of Related Works

The survey of related work focuses on the development of robot localization

techniques. The related works are divided into robot localization techniques in indoor

environment, applications of model-based techniques for car-like mobile robots and

absolute localization techniques based on artificial landmarks.

2.1 Robot localization techniques in indoor environment.

Several techniques using the simultaneous localization and mapping (SLAM)

exist for localization in an indoor environment [FOX 99] [CHO 01] [ROE 03] [TRE 04]

[SIM 05]. The SLAM techniques provide at the same time the robot position and the

generating map. This technique requires that the user prepares a part of the known map

before the robot starts navigation. During navigation, the robot finds its position on this

map by matching its perception data of the environment with the partially known map.

In some applications, the map is not known beforehand, e.g. in search and rescue

mission. By using SLAM techniques, when the known map is not available, the

accuracy of the robot position and the quality of the map are therefore depending on the

quality of the robot localization technique.

Besides, Goel [GOE 99] succeeded in implementing the integration of the

relative and absolute localization techniques for both an indoor area and an outdoor

area. In an indoor environment, the odometer and gyroscope provide inertial

measurements for kinematic model based localization. Though this results in a much

improved estimated position compared to using only the well calibrated odometer, the

kinematic model in his work is specifically applicable only for two-wheel robots.

Though there are various localization techniques existing on the different robot

platforms. These developed techniques are depending not only on onboard sensor but

also a robot’s movement model and environments. The improvements of these

techniques are still under research.

2.2 Applications of model-based techniques for car-like mobile robots.

For car-like mobile robots, the kinematic model is often applied for solving

motion control problems. These research topics include a finite-dimensional iterative

learning controller for steering [FER 96], a path following lateral controller [MEL 02],

 5

and a switching controller for the position control [USH 02]. Though the kinematic

model provides exact representation of the robot's movement, the model does not

provide a representation of the non-linear characteristic of the car driving motion like

the dynamic model.

This thesis develops a non-linear dynamic car model for the car-like robot

localization. The discrete extended Kalman filter is applied as the robot position

estimators. Two estimations are obtained by using the yaw angle from the gyroscope

and from compass sensor and are compared with the existing differential drive

technique.

2.3 Absolute localization techniques based on artificial landmarks.

The PMD camera was built and developed at the University of Siegen [SCH 04].

The application of the emerging technology PMD camera to the MERLIN prototype

results in new application for mobile robotics. The following survey of the literature is

divided into two parts: the related work on vision-based localization and the artificial

landmark, and comparisons of the 3D camera to other existing range sensors in mobile

robotics.

2.3.1 Vision-based localization and the artificial landmark.

In the field of vision-based localization, the existing recognition techniques are

applied using a CCD camera and 2D artificial landmark. The different landmarks are

designed by using color and shape patterns as distinguishing criteria. The recognition

techniques to be exploited depend on the individual landmarks as summarized in Table

2.1. These recognition techniques rely on a clear definition of the landmark pattern

using contrasts in color. These landmarks are designed by using high contrast colors,

such as green and red or black and white. However, the contrast in color varies in

different light conditions. In a low visibility area, the brightness of the light is weak and

the contrast is insignificant. Therefore, different light sources such as neon light or

spotlights change the extent of the contrast between colors.

The PMD camera provides better results than the CCD camera in this problem

area, since the PMD camera is developed such that measurement is independent of light

conditions indoors, and even in low visibility light conditions. Moreover, depth

information can be obtained directly from the camera without any need for image

processing. This thesis therefore proposes a step forward in mobile robotics research

 6

using the 3D vision available through the PMD cameras for robot localization paired

with and 3D artificial landmarks.

Table 2.1: A summary of artificial landmarks and their recognition techniques.
Landmark
pictures Description of the landmark Recognition techniques

Made of color patterns that are
arranged in symmetrical and
repeating color patches.

Tracked using the color histogram
technique [YOO 02]

A simple shape pattern that pairs
colors

Tracked using the probability density in
the condensation algorithm [JAN 02]

Made of black and white colors in a
rectangle pattern

Tracked by using the stereo depth
information and the end point closed loop
system [HAN 02]

Made of black and white colors with
a pattern of symmetrical shapes.

Tracked using the Laplacian sign of the
Gaussian (SLOG) filters, fast Fourier
transformation (FFT) and a vector
quantization (VQ) neural net [FUC 04]

Made of contrasting colors in a
simple pattern

Tracked using the Retinex algorithm
[MAY 02]

Made of black and white colors with
a rectangular pattern.

Tracks the geometric transformation
[ZHA 04]

2.3.2 The PMD camera in comparison with other range sensors.

In mobile robotics, there are many types of range sensors that provide distance

measurements. They are listed as follows:

- Sonar (ultrasonic) sensors

- Infrared sensors

- LED range finders

- Laser range finders

- Stereo vision using CCD cameras

- 3D vision using a Laser range finder.

Sonar and infrared sensors measure a single distance value, but provide no depth

image output. The LED range finder and the laser range finder provide measurements

for one-dimensional scanned distances at the height level of the sensor mounting

position and the output is the distance value at each scan step within a vision range of 0-

180 degrees. However, these sensors do not provide 3D vision. When compared to the

 7

stereo vision that results from using CCD cameras, the PMD camera provides a more

convenient way of obtaining a ready-to-use depth image. The current method of

obtaining 3D vision is to use a laser range finder with an additional vertical scanning

mechanism [SUR 03]. This method requires a high speed image processor and

computational algorithms and additional mechanic for vertical scan of the laser range

finder. However, the laser range finder is much heavier and bigger than the PMD

camera.

Beyond its advantages when compared with these range sensors, the PMD

camera is a promising device for the range image application in mobile robotics because

it has compact size and light weight and it provides ready-to-use output.

 8

3 The Mobile Experimental Robots for Locomotion and

Intelligent Navigation (MERLIN)

The following sections present an overview of MERLIN. Section 3.1 introduces

the series of MERLIN prototypes. Sensors and devices are added to the first prototype,

which is later changed by introducing a new chassis. Section 3.2 explains MERLIN's

wireless data communication structures for tele-operated control. Section 3.3 explains

the characteristics and specification of onboard sensors and their data processing. The

final section explains the robot steering and speed control.

3.1 Series of MERLIN prototypes

The Mobile Experimental Robots for Locomotion and Intelligent Navigation

(MERLIN) series of micro-robots is designed for a broad spectrum of indoor and

outdoor tasks using standardized functional modules like sensors, actuators and

communication by radio link and wireless LAN. Several of the MERLIN prototypes are

constructed and adapted for experimental environments. The first prototype is designed

to test sensor data, wireless radio communication protocol, and control algorithms such

as speed control and steering control. A later prototype is adapted to use a 3D camera

and laser scanner, and the PC104 with wireless LAN. The later prototype requires a

bigger chassis to carry the heavier load and allows for more power consumption. This

section also discusses the problems encountered when changing the chassis and

provides the solutions found.

3.1.1 The first MERLIN prototype

MERLIN was first adapted from a 1/10 scale Compagnucci racing model car as

shown in Figure 3.1. The steering and propelling motors are already mounted by the

manufacturer. The platform was modified for the installation of the Infineon 80C167CR

microcontroller and sensors for navigation. Appendix A provides the specification and

developed software structure in the microcontroller.

The robot measures 40 cm x 50 cm x 20 cm and weighs 5 kg including batteries.

The sensors on board and their individual outputs are listed in Table 3.1. A magnetic 3-

axis compass sensor provides the absolute angle for roll, pitch, and yaw. Four ultrasonic

sensors are mounted to detect obstacle distance. They are located on the front left, on

 9

the front right, on the front middle and at the rear of the robot's body. A gyroscope is

mounted at the center of the robot's body for angular velocity measurement. Bumpers

are mounted behind the crash protection plate under the ultrasonic sensor position for

crash detection. Odometers on the front left and on the front right wheel are hall sensors

with 8 magnets for measurement of the driving distances. A radio transceiver is also

mounted on the top to enable wireless communication and control, and is set at the

transmission rate of 9600 Baud. The maximum length of its data packet is 27 bytes.

The radio transceiver covers an area of 30 meters indoors, and 120 meters on open

ground. Two motors are equipped as steering and driving motors: The steering motor is

a servomotor that steers the front wheels and the driving motor propels the rear wheels.

There are two battery sets attached, 12V for the electronics and steering motor and 7V

for the driving motor.

Table 3.1: Sensors on board and their outputs.
Sensors Outputs
3-axis Compass Sensors Yaw, Pitch and Roll angles
Ultrasonic sensors Distance to obstacles
Gyroscope Angular velocity
Bumper Crash detection
Odometer(Hall Sensors) Distance driven and speed

3.1.2 The development of MERLIN on the original chassis
MERLIN was further developed on its existing platform for hardware and

software interface with a 3D PMD camera. The camera measures the distances from the

target and provides distance value output on a 16x16 pixel image. Details of the PMD

camera are provided in section 3.3.6.

The PMD camera can be equipped as an on-line camera by using the PC104.

The PC104 is a single board embedded PC with the size of a floppy disk. The up to date

PC104 on the market provides high speed communication via wireless LAN and fast

computation. Our PC104 is the CPU-M1 from EEPD. Details of the CPU-M1 are

provided in Appendix C. The exploitation of the PC104 together with the existing

microcontroller on MERLIN has the following advantages:

• The microcontroller interfaces with the low level hardware layer such as pulse

width modulation (PWM) signal generation, A/D conversion, or the interruption

of routines. Therefore, the PC104 I/O is available for other extra devices, which

may come.

 10

• The microcontroller also interfaces with PC104 for high speed data transmission

via RS232. As the results, the bigger data packets are available and we can

therefore put more sensor data into the packets.

• PC104 passes the image and sensor data to a client PC via high speed wireless

LAN in real time.

• Image and sensor data can be saved on the PC104 hard disk and later used for

off-line data processing.

Figures 3.2a show MERLIN#2 after the installation of the devices on board. The

PC104, PMD camera, and the Orinoco Client Gold USB WLAN are mounted on the

first MERLIN prototype. The sensors and devices are shown in Figure 3.2b. All sensors

are fitted in the same place except the compass sensor. The compass is now mounted on

the top of the robot's body for reduction of the electromagnetic noise from the motor

and batteries. This enables better measurement. After the PC104 has been added, the

interfaces for keyboard, mouse, monitor, Ethernet are also present. The voltage

regulator is also mounted to provide the 5 V and the maximum of 8 A needed for the

operation of the PC104 and Harddisk. This new structure MERLIN measures 40 cm x

50 cm x 61 cm and weights 7 kg including batteries. The robot now weights much more

than earlier and this causes a problem in steering and propelling. The bigger robot

platform is therefore necessary.

3.1.3 MERLIN#2 with a new chassis
This new development of Merlin was constructed for semi-autonomous

navigation in a search and rescue mission as an experiment for the EU project under the

IST-Future and Emerging Technologies program, Building Presence through

Localization for Hybrid Telematic Systems (PELOTE) [DRI 04] [RUA 05a]. The robot

provides sensor data for mapping and video for a tele-operator. All devices are mounted

on the bigger chassis as shown in Figure 3.3a. Further, it is also equipped with a laser

scanner. The new chassis has a wheel diameter that is two times larger than the old

chassis and its platform is made on a scale of 1/8. There are also additional devices

onboard: infrared sensors, a web camera, laser scanner and small lamps. However, even

though the platform is big enough and flexible enough to carry all of the devices, the

prototype has difficulty in steering regarding the weight and friction on the wheels and

there are also difficulties in the installation of the hall sensors and magnets since the

free space on the wheel is not available.

 11

Figure 3.1: The first MERLIN prototype (MERLIN#1)

(a) (b)

Figure 3.2: MERLIN#2: (a) prototype; (b) devices on board of MERLIN#2.

(a) (b)

Figure 3.3: 1/8 scale chassis: (a) with the original wheels; (b) with the new wheels made

of plastic and rubber rings (MERLIN#3).

 12

 The solution for these problems is to build wheels from plastic and rubber rings

and to leave free space for mounting the hall sensors and magnet, instead of using the

original wheel from the manufacturer. The wheels' rubber rings have smaller contact

surface to the ground and thus less friction. The required steering force is much smaller

than that of the old wheels and the power consumption in propelling the robot is also

decreased. The odometers are mounted to the new plastic wheels, and magnets are glued

into the prepared holes on the self-built wheels. Figures 3.3b show the robot after

changing the wheels.

3.2 MERLIN Data Communication Structure

Wireless communication plays an important role in mobile robotics since it

provides flexibility for navigation in a large area. There are two types of data

communication systems on MERLIN: Data communication is possible via radio link

and via WLAN. The software is introduced below first, then data communication via

radio link and via WLAN, respectively.

3.2.1 MERLINServer and MERLINClient

 Two java socket programs were developed for the wireless communication

interface. The programs are MERLINServer and MERLINClient. MERLINServer

passes the data from the socket to the COM port and vice versa as shown in Figure 3.4.

Whenever MERLINServer receives a packet from the socket, it immediately passes the

data packet to the microcontroller (robot) via the COM port. Whenever the opposite

occurs, when MERLINServer receives data from the microcontroller via COM port, it

passes the data packet via socket to MERLINClient.

 MERLINClient exchanges the data from the socket to the graphic user interface

(GUI). Whenever MERLINClient receives a data packet from the internet socket, it

passes the data to the GUI and vice versa. MERLINClient and MERLINServer must

both be started and connected to each other and hold the connection during robot

operation. MERLINServer and MERLINClient share data via internet sockets. Note that

appendix B provides the pictures and functions of GUI in details.

 13

3.2.2 Data Communication via radio transceiver.

Two radio transceivers are exploited for data communication via radio link. One

transceiver is connected through the RS232 serial port to a server computer and another

transceiver is mounted directly on the robot. As shown above in Figure 3.4, the robot

communicates via a radiotransceiver with a PC that acts as a server. This PC runs the

java server program called MERLINServer. The client PC runs the MERLINClient

program and serves as an interface for the operator that is transmitted through GUI.

MERLINClient receives a command from the operator, such as a joystick command or

path command and sends these commands to the robot via MERLINServer.

 On the other side, the microcontroller translates the received control commands

and applies the PWM signal to the motors. When data is transmitted in the opposite

direction, such as the numerical sensor data from the wheel encoders, the gyroscope, the

3D compass, the ultrasonic sensors, and bumpers, they are sent as a packet to GUI via

MERLINServer and MERLINClient.

There are two modes of TCP/IP connections. One is the remote host and the

other is the local host. In the remote host mode, two PCs are connected via internet

socket. One is the client PC and another is the server PC. In the local host mode, one PC

runs both MERLINServer and MERLINClient as is depicted with a broken line in

Figure 3.4. This radio data communication is available on all MERLIN prototypes.

3.2.3 Data communication via wireless LAN (WLAN).

MERLIN permits fast wireless data transmission from the PC104 located on the

robot to a client PC. Therefore, WLAN communication is available only in MERLIN#2

and MERLIN#3. The WLAN communication functions such that the client PC runs

MERLINClient and connects to the PC104 that runs MERLINServer via WLAN and

the internet socket. The data transmission rate between the client PC and the PC104 can

be as high as 11 Mbps. Figure 3.5 depicts the process of data communication via

wireless LAN. The MERLINServer functions, as explained above, as an interface

between the MERLINClient and microcontroller. In the same way, the PMDServer

functions as a software interface for the PMD camera and the PMDGUI via the

PMDClient. The same IP address is used with different port numbers to enable parallel

communication between the two socket connections.

 14

Figure 3.4: Data communication structure via radio transceiver.

Figure 3.5: Data Communication Structure via wireless LAN.

3.3 Sensors for navigation

 The processing of sensor data is very important and must be carefully

performed. It involves converting measurement signal data into its numerical measured

value. Any errors during this process affect the outcome of the control algorithms and

their performance. Therefore, processing the data of each sensor is the first step for the

development of all other algorithms. The discussion which follows presents the onboard

sensor data acquisition.

 15

3.3.1 The Odometer

 The odometer provides information about the distance driven and speed. From

our experiences, the front wheels of the robot's body are less affected by slippage than

the rear wheels. Therefore, we mounted hall sensors and magnets on the front left and

on the front right wheels, instead of on the rear wheels. Figure 3.6a shows the position

of magnets and hall sensors that are mounted on the front wheel. When the robot is

driving, the magnets pass through hall sensors and hall sensor generates a pulse at that

moment.

 3.3.1.1 Measurement of the driven distance. The output pulse signal of hall

sensor is the input of the fast external interrupt on the microcontroller. That is, the

interrupt routine is activated whenever the hall sensor generates the pulse. For the 1/8

and 1/10 scale chassis, we selected 8 and 16 magnets, respectively. The distance

between two magnets should also be long enough for the microcontroller to clear the

interrupt level signal. Every time that the interrupt signal is evoked, the distance is

calculated. The distance driven is measured as the accumulated value after each reset.

The calculations for the distances driven are as follows:

magnet

odo
odo n

R
s

π2
= , (3.1)

odorodor snd ,= , (3.2)

odolodol snd ,= , (3.3)

where sodo is the distance between two magnets. Rodo is the radius of the wheel and

nmagnet is the number of magnets on the wheel. The dr and dl are the driving distance on

the right and on the left front wheels, respectively. The number of pulses for both the

right and the left front wheels is nodo,r and nodo,l, respectively. The number of pulses on

each wheel is counted by the interrupt counter. The pulses on the counter are added up

for the forward driving direction and deducted for the backward driving direction.

 3.3.1.2 The detection of the driving direction. Two hall sensors are mounted on

each wheel to determine the driving direction and the driving speed. The first hall

sensor is mounted over another one as shown in Figure 3.6a. One is called the upper

hall sensor and the other is called the lower hall sensor.

 16

 The generated pulse signals from the upper and lower hall sensors on each wheel

are connected into a 54LS74 Flip-Flop logic IC and the output of the flip-flop is the

logic state low or high that represent the directions forward and backward.

(a) (b)

Figure 3.6: Variable definition for speed calculation: (a) magnet and hall sensor

positions on a wheel; (b) output pulse signals from hall sensor.

 3.3.1.3 Measurement of the driving speed. The driving average speed vavg of the

robot is defined as the average speed of the front right and the front left wheels. The

general equation for the speed calculation of a wheel is

odotc
v Tn

sz
⋅

= , (3.4)

where zv is the wheel speed, s is the driven distance, ntc is the number of pulses, and Τodo

is the time constant of odometer’s interrupt. Τodo is specified in the Timer interrupt and

is set to 12.8 µs. The graphical definitions of these variables are shown in Figure 3.6b.

The wheel speed can be measured in several ways as follows:

 (a) by measuring the distance between the upper and the lower hall sensor (sa)

and the time interval that one magnet takes for passing from the upper to the lower hall

sensor (ntc,a),

 17

(b) by measuring the distance between two magnets (sodo) and the time interval

that two magnets require to pass through the upper hall sensor (ntc,b),

 (c) by measuring the distance between two magnets (sodo) and the time interval

that two magnets require to pass through the lower hall sensor sensor (ntc,c).

 When exploiting one of these alternatives, the distance s in (3.4) is replaced by

sa or sodo and ntc is replaced by ntc,a, ntc,b or ntc,c.

3.3.2 The Gyroscope

The gyroscope provides analog output voltage that is proportional to the angular

velocity, when the robot drives in a curvature. Two gyroscope sensors were tested on

MERLIN, the Gyrostar ENV-05DB and ENV-05F-03. First, we exploited the ENV-

05DB sensor which is capable of measuring an angular speed of up to ± 80

degrees/second. This sensor is no longer manufactured. Therefore, we switched to the

ENV-05F-03, which is capable of measuring ± 60 degrees/second angular speed. The

signal is amplified and is connected to the 10-Bits Analog to Digital (A/D) converter of

the microcontroller.

Before making the first measurement of the angular velocity, the calibration of

the offset value has to be performed. The offset value Od,offset is calculated from by

averaging 20 measured values. This is also called the calibration of the gyroscope. This

offset value is kept constant until recalibration is performed. The offset may change

regarding the drift in the gyroscope when recalibration becomes necessary.

3.3.2.1 Measurement of the angular velocity. The angular velocity ω is

calculated from the digitized value by using

)(,, averagedoffsetdgyro OOc −=ω , (3.5)

where the Od,average is the average value from 10 measurements and the cgyro is the scale

factor of the graph of the angular velocity and the digital value of the gyroscope output.

3.3.2.2 The relative yaw angle measurement. At every time period of Tgyro, the

current yaw angle is the accumulated yaw angle from the previous state. This relative

yaw angle is calculated as follows:

 18

 zψ,gyro = z’ψ,gyro + ω Tgyro , (3.6)

where zψ,gyro and z’ψ,gyro are the relative yaw angle at the current and the previous state,

respectively.

3.3.3 The 3-axis magnetic compass

The 3-axis compass is exploited for measurement of the absolute angle. The

Microstrain 3DM compass sensor is a magnetic compass sensor. The measurement

refers to the magnetic earth's pole and gravitation. A 3DM compass sensor is a 3-axis

orientation sensor capable of measuring: ± 180 degrees of yaw heading, ± 180 degrees

of pitch, and ± 70 degrees of roll. The sensor is calibrated and tested by using the test

software from the manufacturer. Since the magnetic compass sensor is very sensitive to

the magnetic field, the compass sensor is mounted at a height of 30 cm from the robot's

base. The data from the 3DM compass sensor is sent to the microcontroller via the

universal asynchronous receiver/transmitter (UART) at 9600 baud. The measurement is

evoked by an interrupt routine. The sensor sends out the raw measurement data after a

poll command is received. The raw data integer value is kept in the register of UART

and is converted to a degree unit by multiplying with a constant value of 0.0055.

3.3.4 Ultrasonic sensors

The 6500 sonar ranging module is exploited on the robot in combination with

the ultrasonic transducer for obstacle detection. This sensor provides accurate sonar

ranging in the range of 6 inches to 35 feet from the target. The measurement is based on

the principle of the time of flight; an ultrasonic impulse is sent out by a transducer,

reflects on a target, and returns to the same transducer. The counter timer starts when

the signal is sent out and stops when the reflected signal is received.

The range of the ultrasonic measurement is set to the maximum range of 7.14

meters to limit the cycle's measurement time. By using the counter timer with a time

period of Tultr = 25.6 µs, the operating time for each channel is 41.984 ms. The cycle

time for four sonar ranging channels on board is 168 ms. The time of flight of the sound

to the target equals half of the time for one trip. Therefore, the distance of the object is

calculated by

 19

2
ultrultrsound

ultr
Tnc

z = (3.7)

where csound is the speed of sound and is equal to 340 m/s, nultr is the counted number

and Tultr is the time period and zutlr is the measured distance.

3.3.5 Infrared sensors

The SHARP GP2D12 and GP2Y0A02YK infrared sensors are capable of

obstacle detection within a range of 10-80 cm and 20-150 cm, respectively. The sensors

provide analog output voltage that is proportional to the distance to the obstacle. The

output from each sensor feeds to the A/D converter of the microcontroller and the

measurement update is performed periodically. The infrared sensor is used for auxiliary

obstacle detection in combination with the ultrasonic sensor since the cycle time of the

infrared sensor measurement is shorter than that of the ultrasonic sensors.

3.3.6 The Photonic Mixer Device (PMD) camera

The PMD camera has emerged from the new PMD technology. At the

University of Siegen, the PMD camera has been researched and developed [HES 02]

[SCH 04]. The camera provides ready-to-use depth information. In an image frame,

each pixel of the image gives the distance value and also the 2D gray scale value. Each

of 16x16 pixel on the PMD image is the measured distance value to an obstacle and its

detection area not only covers altitude like a laser scanner does, but it covers a vertical

and horizontal detection area with its cone volume of vision.

3.3.6.1 The PMD camera system. The principle of a 3D TOF imaging system is

shown schematically in Figure 3.7. An object is illuminated by a high frequency

modulated light source. The reflected light signal is compared with an electric reference

signal. All systems presented are equal in the fundamental functions of photo-detection

and signal processing. The 3D TOF imaging system starts with the detection of light,

wideband amplifying, signal conversion and quantization. Each step has its own error

source e.g. noise, that is transferred through the whole system. However, the light

backscattered from the object is directly sensed and demodulated in the same area by

the PMD array. The depth information of the scene is therefore acquired in pixels using

 20

the correlation results of the received optical signal and the demodulation signal in

parallel for the complete matrix.

Figure 3.7: Schematic PMD TOF operation.

The principles of the camera system's structure are described here. Besides the

PMD-matrix, the camera consists of the light source, a micro-controller, programmable

logic and an analog/digital converter. The programmable logic generates two

modulation signals and controls the phase difference. The velocity of light is denoted

here by c. The following formula shows the relation between the frequency (f) and the

range of unambiguousness (lmax) in a continuous wave time-of-flight measurement

system:

(3.8)

Because the light signal has to run the distance between camera and object

twice, the range of unambiguousness is reduced by half. The first modulation signal is

used to control the light source. The second signal builds the push-pull voltage for the

photo gates of each of the 16x16 pixel PMD-arrays. The two supplied read out values A

and B of each pixel are multiplexed to the analog/digital converter. The digital data is

then processed in a micro-controller. This controller is the camera's main control and

evaluation tool. It shifts the phase between the modulation signals stepwise and collects

the delivered correlation values. Using a least-square algorithm, the controller evaluates

the phase delay of every single pixel. This phase difference ϕPixel is proportional to the

distance value dPixel that can be calculated by the following term:

 21

(3.9)

3.3.6.2 The 16x16 pixel PMD camera. Figure 3.8 shows the photograph of the

assembled camera. The camera's output is the distance information in each of the 16x16

pixels. The camera operates at the frame rate of 3 Hz and the half angle of the detection

area is 12 degrees. The maximum detection distance is 15 meters limited by the

modulated frequency.

Figure 3.8: A photograph of the 16x16 pixel PMD camera.

3.3.6.3 The 48x64 pixel PMD camera. This camera is manufactured by

PMDTec and the name of product is PMD[vision]® 3k-S. Figure 3.9 shows the

photograph of the camera. The camera's output is the distance information in each of the

3072 pixels. The camera operates at the frame rate of up to 25 fps and the half angle of

the detection area is 40 degrees with the lens focus of 12mm. The maximum detection

distance is 7.5 meters for the modulation frequency of 20 MHz. The modulation

frequency is adjustable and is inversely proportional to the maximum detection

distance.

Figure 3.9: A photograph of the 48 x 64 pixel PMD camera.

3.4 Steering and propelling the car-like mobile robots.

The steering and propelling methodology for the car-like mobile robot is similar

to that of a car. MERLIN turns its front wheels into the desired steering position and the

driving speed after receiving the command from the operator. The robot has two

 22

motors; one for steering and another for propelling. These motors are controlled

individually by using the pulse width modulation (PWM) that is generated by the

microcontroller onboard.

3.4.1 The steering control

The purpose of steering control is to control the steering angle of the front

wheels so that the robot drives in the desired orientation. Since the servo Futaba S3003

has internal position controller, assigning the proper PWM value is setting the steering

angle. The frequency of the steering PWM signal is set to 50 Hz. The control of the

steering angle is divided into two modes, the joystick control mode for manual driving

and the path control mode for autonomous driving.

3.4.1.1 Steering control by using Joystick. In its joystick control mode, the

robot calculates the PWM value from the joystick commands that are the integer scale

numbers in a range of 0 to 100. The PWM value is calculated by using

0,)50(2 steeringjssteering pwmnpwm +−= (3.10)

where pwmsteering is PWM value assigned related to the desired scale number, njs is the

scale number in a range of 0 to 100 and pwmsteering,0 is PWM value assigned related to

the zero degree (straight) steering position.

3.4.1.2 Steering control for autonomous path following. In the path control

mode, the orientation control is assigning the PWM to achieve the desired steering

position. The two main types of path commands used are the line path and arc path. For

a line path, the robot always sets its steering position to zero. For a curved path or arc

path, the robot sets its steering angle according to the path command, which contains of

the radius of curvature. The calculation of PWM value is explained here. Let x be the

diameter of the curvature.

When the robot drives in a clockwise direction, there are two mathematical

equations, which are formulated based on the robot's performance in experiments as

shown in Figure 3.10a:

 23

(a) (b)

Figure 3.10: The relationship between the PWM value and the diameter of the curvature

when driving: (a) in a clockwise direction; (b) in a counter-clockwise direction.

8) x (2 if;580318))5(5.0(<<+= −− x
steering epwm , (3.11)

8) x (if;578017))13(09.0(≥+= −− x
steering epwm , (3.12)

The experiments showed that, for each value of PWM, the robot drives with a constant

steering angle in a circle path, so the diameter of the circle is measured. Similarly, when

the robot drives in a counter-clockwise direction, the relation between PWM value and

diameter of curvature as shown in Figure 3.10b are

9) x (2 if;576428))5(355.0(<<+−= −− x
steering epwm , (3.13)

9) (x if;57801.17))12(1.0(≥+−= −− x
steering epwm . (3.14)

3.4.2 Speed control

We apply the well known proportional and integral (PI) control for motor closed

loop speed control. The continuous PI controller is derived into the digital controller as

in [FRA 98]. The control algorithm of the digital PI controller is

[])()1()()1()(keKkekeKkuku ipspcspc +−−+−= , (3.15)

max,min,)(spcspcspc ukuu ≤≤ , (3.16)

 24

where uspc(k) is the control input at the time step k, Kp and Ki are the proportional and

integral gain, e(k) and e(k−1) is the speed error at time step k and at the previous time

step k-1, respectively. The saturation of the control input is applied as in (3.16). The

minimum and maximum values of the control variables are uspc,min and uspc,max. The

speed error is the difference between the average velocity vavg and the reference velocity

vref.

)()(kvvke avgref −= . (3.17)

)()1()(kukpwmkpwm spcpropellingpropelling +−= , (3.18)

mbpropellingpropellingmfpropelling pwmkpwmpwm ,,)(≤≤ , (3.19)

where pwmpropelling(k) and pwmpropelling(k−1) are PWM values assigned to the propelling

motor at the time steps k and k−1,respectively. pwmpropelling(k) is constrained by the

maximum forward value pwmpropelling,mf and the maximum backward value

pwmpropelling,mb as in (3.19). These values have been set to limit the robot maximum

speed for safety. The frequency of the propelling PWM signal is set to 100 Hz.

The controller gains Kp and Ki are tuned by using the trial and error method. The

resolution of the hall sensors is 8 pulses /rev. Table 3.2 shows the reference table that

contains the tuned parameters Kp and Ki corresponding to various reference speeds.

These parameters are tuned according to trial and error on the real system.

Table 3.2: Parameters for the PI controller at the specified reference speed.
Desired speed (m/s) Kp Ki

0.5 0.080 0.009
0.4 0.070 0.009
0.3 0.050 0.008
0.2 0.030 0.006
-0.2 0.025 0.005
-0.3 0.035 0.006
-0.4 0.045 0.007
-0.5 0.060 0.008

Further from measurement of these on board sensors is how MERLIN navigates.

The next chapter explains autonomous features for navigation. Those are obstacle

avoidance, 180 degree turn, and path following control.

 25

4 Autonomous Features

Chapter 3 gave an overview of MERLIN, introduced the data communication,

sensors, sensor data processing, and robot steering and speed control. These sensor data

and motion controls are further exploited in the several autonomous features described

below in this chapter. Several obstacle avoidance techniques were designed and are

presented in Section 4.1. Section 4.2 describes the robot's capability to execute an

autonomous 180 degree turn in a narrow corridor. The last section explains the

development of an autonomous path following in an unknown environment.

4.1 Obstacle detection and collision avoidance.

In an unknown environment, the information about obstacles, such as walls or

objects, are not known beforehand. Various techniques for obstacle collision avoidance

can be implemented based on the perception capabilities of on-board sensors and

strategy. Two categories of obstacle collision avoidance are discussed here; obstacle

collision avoidance and wall following.

The goal of obstacle collision avoidance is to avoid collision without the

necessity of identifying what type of obstacles the robot encounters. When the robot

detects an obstacle, it tries to turn into another direction where the obstacle is not

detected. For the wall following, the robot avoids collision by following the obstacle’s

boundaries and keeps at a constant distance away from the obstacle.

The design of these obstacle avoidance algorithms is based on the perception

capabilities of the robot. Selected because of their light weight and compact size, four

ultrasonic and six infrared sensors were mounted onto the robot as shown in Figure 4.1.

The infrared sensor provides short distance obstacle detection up to 0.8 meters, whereas

the ultrasonic sensors provide long distance detection up to 7.0 meters. Among the

sensors located on the front and on the back of the robot, infrared sensors have higher

priority (compared to the ultrasonic sensors) regarding the fast measurement updates.

The ultrasonic sensors take a longer cycle time waiting for their reflected signal.

Therefore, the data from the infrared sensors only replace the ultrasonic measured data

when the obstacle lies within 0.8 meter from the robot.

 26

Figure 4.1: Positions of the ultrasonic and infrared sensors.

4.1.1 Obstacle collision avoidance

Without prior knowledge of the obstacles met, the robot relies on its ultrasonic

and infrared sensors to detect obstacles. When the obstacles detected lie within 1.5

meters, the obstacle collision avoidance controller is applied automatically. A car-like

mobile robot avoids collision by turning into other direction and driving forward when

the obstacle is far away, or by driving backwards when the obstacle is close by. The

steering control works using a fuzzy logic controller. However, in some situations, the

fuzzy logic controller has lower performance than the if-then rules. Therefore, the

designed controller consists of two options; the fuzzy logic controller and the if-then

rule controller.

4.1.1.1 Fuzzy logic controller. MERLIN was designed to avoid collision with

obstacles using a fuzzy logic controller [DRI 93]. The fuzzy logic controller is selected

because of its small memory requirement for computation. The structure of the fuzzy

logic controller is illustrated in Figure 4.2. The inputs of the controller are the distances

measured by the three ultrasonic ranging sensors and three infrared sensors, and the

output is a PWM signal used to control the steering motor.

Figure 4.2: The structure of the fuzzy controller.

 27

The fuzzy logic controller is mainly composed of three components,

fuzzification, rule evaluation and defuzzification. The Sugano-type inference system

known as the singleton output membership function was also selected for use, due to its

characteristic of enhancing the efficiency of the defuzzification process by weighting

the average of crisp outputs of inference rules.

4.1.1.2 Controller design. The fuzzy logic controller starts by converting the

obstacle measured distance into the fuzzy language according to gathered experiences.

As it does this, the crisp input is translated into a fuzzy value. The distinct (non-

fuzzified) variables that are the distances measured by those sensors are fuzzified based

on corresponding affiliation functions (with a value between 0 and 1). The specified

fuzzy subsets are shown in Figure 4.3. The input variables are “Left”, “Middle”, and

“Right”. The distance measurement is divided into three fuzzy subsets, Very near (VN),

Near (N) and Far (F). The steering angle is divided into five subsets that are Left,

Slightly left, Straight, Slightly right, and Right. After they have been fuzzified, the fuzzy

representations of the input are used to compute the fuzzy output truth values. These

values are based on a Max-Min inference.

(a)

(b)

(c) (d)

Figure 4.3: Membership functions for obstacle avoidance: (a) input variable “Left”;

(b) input variable “Middle”; (c) input variable “Right”; (d) output variable “Steering”.

To simplify the representation of the vehicle's activity, 18 fuzzy rules are applied

as shown in Table 4.1. The main idea behind the fuzzy control rules is described as

 28

follows: The process of control according to fuzzy rules is to translate the fuzzy output

to a crisp value. To do this, the singleton defuzzification method is used. The crisp

output of the fuzzy controller u* is calculated as

∑

∑

=

== N

i
i

N

i
ii

w

zw
u

1

1*
, (4.1)

where wi is the firing strength of the rule or the maximum membership function of rule i

and zi is the output level of rule i.

Table 4.1: The fuzzy inference rules for obstacle avoidance

Rule no. Left Middle Right Steering
1 F F Straight
2 N F Straight
3 VN F Straight
4 VN N Right
5 F N Slightly left
6 F VN Left
7 N N Left
8 N VN Left
9 VN VN Right

10 F F Straight
11 F N Straight
12 F VN Straight
13 N VN Left
14 N F Slightly right
15 VN F Right
16 N N Right
17 VN N Right
18 VN VN Left

4.1.1.3 If-then rule controller. When the robot is very near to the obstacle or at

the wall corner, the robot sometimes needs to drive backwards. This is when the if-then

rules come into effect. These if-then rules are necessary when the robot is near to a wall

corner and the front distances to the left and to the right are nearly equal. The if-then

rules are applied as the two concatenated steps of movement, driving backward

followed by driving forward, in which the robot steers the front wheel into the same

orientation as its previous move. In order to this, the priori orientation is recorded. For

the next move, the robot's heading remains in the same orientation but opposite

direction as the previous move. The if-then rules are shown in Table 4.2.

 4.1.1.4 Test results in different scenarios. Experiments were performed to test

the autonomous steering control using two types of scenarios: driving along an open-

 29

ended wall and into a dead-end. Figure 4.4a shows three obstacles that represent the

open-end wall and the driven path. The solid line shows the robot's driving path. The

robot started from position (0, 0). In front of the 1st obstacle, in the 1st marked circle, the

robot drove forward and backward and turned in another orientation many times before

getting free of the obstacle. Finally free of the obstacle, the robot's head was pointing

into the 2nd obstacle. It drove forward and stopped again in front of the 2nd obstacle. The

robot tried to change its orientation in the 2nd marked circle. At this position, the robot

moved straight on forward and backward several times since the measured distance

from the front left sensor and the front right sensor were almost identical. Also, the

distance form the side left and the side right sensors were identical. As shown in the

figure, the repetitions of movement are shown in the marked circles. After that robot

met the obstacle free direction, it moved forward. From this position, the robot found its

way out from in front of the obstacles and came out to the final position.

Table 4.2: If-then rules for obstacle avoidance.
Priori (if) Next (then) Rule

no. Orientation Direction Steering angle
position

Propelling
direction

1 Clockwise Forward Maximum left Backward
2 Clockwise Backward Maximum left Forward
3 Counter clockwise Forward Maximum right Backward
4 Counter clockwise Backward Maximum right Forward

(a) (b)

Figure 4.4: The driven path of obstacle avoidance; (a) in the open-end wall scenario;

(b) in the close-end wall scenario.

 30

Figure 4.4b shows the robot's driving path in the close-end wall scenario. The

robot started at position (0, 0) facing the wall and tried to move into an obstacle-free

area. Finally, the robot turned around away from the dead end. The robot changed its

orientation at each wall corner and only turned clockwise regarding the if-then rule

control as mentioned above.

4.1.2 The PMD camera for obstacle detection.

An application of the camera to mobile robots is to use the camera for obstacle

detection and collision avoidance in an indoor environment, where the obstacles can be

tables, chairs, people, wall, etc. The advantages of using a PMD camera over ultrasonic

sensors are that specula reflection phenomenon does not exist and the blind area is

covered. Figure 4.5 shows an obstacle lying in the blind area between the front middle

and the front right ultrasonic sensors and detection areas of each ultrasonic sensor and

of the PMD camera.

The first step in obstacle collision avoidance is to acquire the PMD data. In order

to do this, the 16x16 array is arranged into three groups, left, middle and right. That

means that the matrix is divided into 3 bands, 16x6, 16x4, and 16x6. Among the left,

middle and right bands of detection on the PMD camera, the shortest distance is chosen

as a representation of all pixels in the band. We take the representative shortest distance

in each band by using the following method. Since there is a lot interfering noise when

the 16x16 pixel takes measurements while the robot is driving, the robot stops before

the camera captures image and takes the average value from four images.

Figure 4.5: The area of detection of PMD camera and ultrasonic sensors divided into

left, middle and right sections.

 31

There are two ways to implement the PMD camera on MERLIN. The first way

is to use the PMD camera to replace the three ultrasonic sensors located at the front of

the robot. The advantage of using the PMD camera instead of the front ultrasonic

sensors is that the robot is able to detect small objects, such as the leg of a table, that

normally lie within the ultrasonic sensors' blind spot. However, only the camera has

narrow vision of detection. The second way is to use the camera along with the

ultrasonic sensors. This is more effective than the first method. The combination of the

ultrasonic sensors and the PMD camera vision as in Figure 4.5 (top view) provide the

superposition of obstacle detection. The ultrasonic sensors detect objects located far

away from the robot and located within detection areas of the most left and the most

right ultrasonic sensors, whereas the PMD camera detects objects close to the robot with

its fine pixel detection in the front area of the robot.

4.1.3 Wall following

Another technique to avoid obstacle collision is to let the robot follow a wall.

This is particularly appropriate for avoiding collision with large obstacles with a long

boundary. The robot tries to stay at a constant distance away from and parallel to the

wall, instead of only trying to avoid collision as described in section 4.1.1.4. The

infrared sensors mounted at the front of the robot's body are exploited in this technique

and the fuzzy logic algorithm and if-then rules are applied. The wall following

algorithm can be divided into two modes; wall following on the left hand side and wall

following on the right hand side. The fuzzy logic controller used here is identical to the

fuzzy logic controller described in section 4.2.1.1.

The input of the controller is the error between the desired reference dref and the

measured distance d from the front left (left hand side mode) or front right sensor (right

hand side mode). The input variable “error” is calculated by

 error = dref − d (4.2)

The fuzzy rules are evaluated as follows:
1. If error is neg, then steering is right,

2. If error is pos, then steering is left,

where neg and pos have an input membership function as shown in Figure 4.6a. The

output variable steering has two membership functions that are right and left as shown

 32

in Figure 4.6b.

As an auxiliary controller, the if-then control is also applied for the wall corner.

Figure 4.7a shows collision avoidance at the inner wall corner. The robot's position

numbers, 1 - 4, represent the movement steps. The robot takes the previous movement’s

orientation in to consideration. As in section 4.1.1.3, the if-then rule allows the robot to

move in the same orientation as the previous move. Moreover, at wall edges, when the

measured distance d is suddenly jumps to a large value as shown in Figure 4.7b, an

extra rule is to let the robot turn around the edge. The wall following controller is

exploited in testing for robot localization in Chapter 5. The experimental result of the

wall following autonomous function is presented below in Section 5.4.2, in Figure 5.6.

Figure 4.6: Membership functions for wall following: (a) input; (b) output.

Figure 4.7: Wall following; (a) at a corner; (b) along an edge.

4.2 An autonomous 180 degree turn in a narrow corridor.

The autonomous turning function is used at the dead end of a narrow corridor

where the robot has to turn its head into the direction from which it came. Regarding the

car-like characteristics, the robot manoeuvres itself around in this situation in a manner

similar to the path shown in Figure 4.8.

 33

At early stage, the autonomous function is basically developed with the

assumption that there would be no other obstacle in the dead-end corridor. Trial

experiments resulted in a best combination of paths which are stored in the robot's

memory. Whenever this manoeuvre is necessary, the movements are read and

performed step by step until the end, which is when the robot comes to the same

heading angle of +180° or -180°. When the obstacle avoidance is integrated, the

process becomes as shown in Figure 4.9.

Figure 4.8: The experimental result for an autonomous 180 degree turn.

On left hand side of the flow chart is the process explained above for a turn

without meeting any obstacle. When the robot does meet obstacles in its current driving

direction, it stops and does process A, on the right hand side of the flow chart. The robot

checks its record of previous move to determine whether it was moving forward or

backward, clockwise (cw) or counter clockwise (ccw), in order to assign the movement

command. The test result of for autonomous 180 degree turn is shown previously in

Figure 4.8. The final heading position of the robot is close to 180 degrees from its

original position. It is also important to make sure that the angle measurement during

the turning process is exact. The method for reaching an angle measurement was

explained above in Section 3.3.2.2.

4.3 Path following in an unknown environment.

In an unknown environment, the intelligent navigation requires the path

following control. The path following control for mobile robots is the automatic control

 34

of a robot along a specified path without human interference. The path following

strategy is the integration of the basic path following control, wall following, and

trajectory generation. The wall following control is explained above in section 4.1.3.

Here, the trajectory generation, the basic path following control and the path following

strategy are explained.

Figure 4.9: Autonomous 180 degree turning process.

4.4.1 Trajectory generation

When that robot has become free of any obstacles and is no longer on its original

path, the robot has to reach its desired final position. The trajectory generation strategy

provides the fittest trajectory between the robot's current position and the desired final

position based on the car body's manoeuvring characteristics. The sample trajectories

are shown in Figure 4.10. The trajectory consists of two non-symmetrical sub-paths

with a different curvature radius for each sub-path r1 ≠ r2. Also, the final heading angle

of each sub-path is unequal θ1 ≠ θ2.

 35

The distances to destinations dx and dy are the distances between the robot's

current position and the destinations in x and y directions. Note that the robot's heading

position is referred to as x-axis direction. The distances to the destinations are calculated

by

 dx = r1sinθ1 + r2sinθ2, (4.3)

 dy = r1cosθ1 + r2cosθ2, (4.4)

where θ1 = θ2 and r1 = r2. As a result, the sub-paths are symmetrical and the distances to

destination of the symmetrical sub-paths are

dxsym = 2r1sinθ1, (4.5)

 dysym = 2r1cosθ1. (4.6)

The symmetrical trajectories are shown in Figure 4.9b. The radius is fixed as r1

and the angles vary as θ1, α1, and β1 result in three different trajectories. Note that for

all trajectories, the current heading is also the final heading. In the iterative loop of the

trajectory generation, the angle θ1 and radius r1 are varied. The iterative loop searches

for the fittest trajectory using (4.5), (4.6), and

 xf = xfinal – xcurrent, (4.17)

 yf = yfinal – ycurrent, (4.18)

ex = xf – dxsym, (4.19)

 ey = |yf | – dysym, (4.20)

 esum = |ex |+ |ey |, (4.21)

where xfinal, yfinal, xcurrent, and ycurrent are the current and the final position coordinates,

repectively. The fittest path is the trajectory with the minimum value of esum. Note that

the minimum 1 meter radius is the shortest curvature radius and a 90 degree angle is the

maximum angle for each sub-path.

4.3.2 Basic path following control

The basic path following control is the path following control that functions

under the assumption that there is no obstacle along the path during the operation. The

robot moves along the specified path and stops at the destination without avoiding

 36

collision. The steering control as explained in section 3.4.1.2 is exploited here. Two

available path types are curve path and line path.

Figure 4.10: Trajectory generation

In a curve path command, the data packet consists of the radius of curvature and

the desired heading. Whenever the robot receives a curve path command, the radius is

converted into the PWM value using (3.9 - 3.12). Meanwhile, the desired heading is

kept as a reference value. Periodically, the desired heading has to be compared to the

current heading. The robot heading is also called the robot’s orientation. Therefore, the

measurement of robot heading is the relative yaw angle measurement in section 3.3.2.2.

When the current heading reaches the desired heading, the curve path following is over.

The first sub-path in Figure 4.10a is an example of two concatenated curve paths. In this

figure, the first curve path consists of the radius of curvature is r1 and the desired

heading is θ1. The second curve path consists of r2 and θ2, respectively.

For a line path rather than a curve path, the command packet consists of the path

length and the movement direction. The robot sets the front wheels to drive straight on

and the desired final heading is zero radian. The path length is kept as a reference value

and is compared to the distance already driven, measured by the odometers on the front

wheels as explained in section 3.3.1.1. When the driven distance reaches the path

length, the line path following is over.

 37

4.3.3 Path following strategy

The path following strategy integrates the wall following and trajectory

generation with the basic path following control. Figure 4.11 shows the original path

command as a broken line through the obstacle. Initially, the robot receives a path

command from its user and begins by recording its current position and heading. When

the robot detects the obstacle, it stops in front of the obstacle at position 1. The wall

following algorithm determines the orientation of the robot for the next move by

considering not only the obstacle's position, but also the robot's current position and its

desired final position. The robot performs wall following until the robot meets no other

obstacles in front of it. After the robot is free from obstacle, at position 2, it stops and

calculates the difference between its current heading and its desired final heading. Then

the robot adjusts its heading by turning into the direction of the final heading and stops

when the robot heading reaches the final heading as shown at position 3.

At this moment, the robot checks the distance to the final position yf. The robot

sends a request for the trajectory generation to the client PC. At this stage, since the

robot heading is pointing to the desired final heading, the trajectory generation is

performed by using (4.7) - (4.11) on the client PC. The robot waits for the generated

trajectory from the client PC. After the robot receives the trajectory, the robot moves

along the trajectory path and stops at the destination, where the robot heading points in

the direction of the desired final heading and the robot position is at the desired final

position. If the robot finds obstacles before it reaches the destination, it repeats the

process again from position 1. Please note that we call the operation from position 3 to

the destination as trajectory following.

Figure 4.11: Path following strategy

 38

4.3.4 The data communication for the path following strategy.

Figure 4.11 shows the data exchange between the robot and client PC during the

real-time path following operation. The basic path following controller and wall

following controller are located on the microcontroller. The client PC runs the robot

localization, trajectory generation, and GUI. The localization technique is explained in

detail below in Chapter 5 and details of GUI are provided in Appendix B. As explained

in section 3.2, the robot transmits sensor data to and receives control commands from

the client PC continuously. Whenever the robot desires a trajectory generation, the robot

sends a request command to the client PC. After the client PC generates the trajectories,

it sends the generated trajectory commands to the robot. On the client PC, the estimated

current robot positions xcurrent and ycurrent are obtained from robot localization and the

distances to the destinations xf and yf are updated by using (4.7) and (4.8) and are sent

from the client PC to the robot periodically at every 0.2 seconds.

Figure 4.12: Architecture of data communication.

4.3.5 Experimental results

The experiment was performed on-line. The operator assigned a 7 meters line

path to the robot. Since the path command is a line path, the desired heading is zero

radian and the robot's desired final position is at 7 meters facing forward, the original

path as shown as a dashed line in Figure 4.13a. The solid line represents the robot

driven path and the position numbers are indicated as defined in Figure 4.11.

The robot started at (0, 0), meets the 1st obstacle at position 1 (0, 2.4), did wall

following, stopped at position 2 (-0.5, 2.4), and started the trajectory following at

position 3 (-0.9, 3.1) but it met the 2nd obstacle at position 1 (0.2, 4.4). There, the robot

restarted the process from position 1 and it finally reaches the destination.

 39

As shown in the figure, the final positions are classified into three types: the

desired position, the actual position, and the estimated position. The desired final

position is belonging to the original path. The actual position is the real position

measured on the ground but the estimated position is obtained from the robot

localization. According to the robot localization, the robot stopped at the estimated final

position (-0.3, 7.0). In fact, the actual final position was at (-0.4, 6.8). The difference

between the actual and estimated position occurred from the accumulated errors in robot

localization. However, both the estimated and actual positions lied within the radius of

0.5 meters around the desired final position. During the process, the robot was two

times at the position 3. Therefore, the robot heading was adjusted two times into the

final desired heading as shown in Figure 4.13b. At the destination, the error in final

heading was 0.13 radians only.

In the next chapter, the relative robot localization technique exploited in this

section is explained and also the experimental result of the autonomous wall following

from section 4.1.3 is presented.

(a) (b)

Figure 4.13: Result of the path following control: robot position; (b) robot heading.

 40

5 Relative Localization using a Nonlinear Dynamic Model

As mentioned in section 4.3, the path following strategy exploits robot

localization. Here, the chapter explains the robot's localization which uses a nonlinear

dynamic model and the discrete extended Kalman filter. The robot's nonlinear dynamic

model and the discrete extended Kalman filter are described in Sections 5.1 and 5.2,

respectively. Section 5.3 explains the calculation of the robot's real position and heading

errors by using its odometer, its gyroscope, and compass sensors. The final section

presents and discusses the experimental results.

5.1 Robot modelling

The first step in model based localization is to develop a suitable mathematical

model for the robot. This robot is a four wheel vehicle with the driving principle of a

car, where the front wheels do the steering and the rear wheels propel the car forward.

The nonlinear dynamic model represents the robot's dynamic movement, including its

nonlinear characteristics which come from the side force at the wheels. This property,

the side force at the wheels, comes most into effect when the car moves along a curved

path. The following section introduces the nonlinear dynamic model and the application

of the model for the mobile robot subsequently.

5.1.1 The nonlinear dynamic model

The nonlinear dynamic mathematical model for a four wheel vehicle was

conceived of as a single track model describing transverse and longitudinal dynamics,

neglecting roll and pitch angles and comprising front and rear wheels to one fictitious

wheel [RIE 40] [MAY 91].

Figure 5.1 shows the dynamic variables of such a vehicle as follows:

• the yaw angle ψ, vehicle orientation,

• the yaw velocity ψ’, the first derivative of the yaw angle,

• the longitudinal velocity v,

• the sideslip angle β,

• the actual position X and Y of the center of gravity in Cartesian coordinates,

• the front side force Sv and the rear side force Sh,

• the rear longitudinal forces H resulting from the driving motor,

 41

• the steering angle δv.

In addition, the model has the following constants: vehicle mass m, moment of

inertia θ and the distances lv (lh) between the front (rear) wheels and the longitudinal

axes of the car.

Figure 5.1: Dynamical variables of the vehicle.

By using on the balance of the forces acting on the vehicle in the longitudinal

and lateral directions, the torques and the kinematic conditions, the nonlinear dynamic

vehicle model is presented as follows:

 (){ }ββψβ cossin1
hSTH

mv
+−−= && (){ }δβ +− cos1

vS
mv

 (5.1)

 ψψ ′=& (5.2)

 ()hhvv lSlS −= δ
θ

ψ cos1
&& (5.3)

 (){ }ββ sincos1
hSTH

m
v −−=& (){ }δβ +− sin1

vS
m

 (5.4)

The front and rear side forces Sv and Sh of the vehicle depend on the slip angles αv and

αh, while αv depends itself also on the steering angle δv. The nonlinear functions Γv and

Γh determine the dynamics in the tires as follows:

)(vvvS αΓ= (5.5)

)(hhhS αΓ= (5.6)

 42

The behavior of the wheels and the tires has been taken into consideration to

represent a characteristic line, by applying these functions. This characteristic line

includes limitations and descending behavior for high values in the argument. As shown

in Figure 5.2, the functions are approximated by three straight lines describing the

dependence of side force values S on their argument α. For low arguments, a nearly

proportional ascending of the side force can be recognized, while beyond the value αmax

the side force is descending. At αmax the value for the corresponding side force reaches

its maximum. The area below αmax is called the ascending part, while the area where the

side force descends is called the descending part of the characteristic line. As a

consequence of the gradual inverse dynamics, the car begins to skid when driving along

the descending part. During a normal maneuver without skidding, every wheel of the

vehicle is working in the ascending area of the characteristic line. This nonlinear

characteristic coming from automotive technology is also applicable to a car-like mobile

robot in an indoor environment over dry, flat floors.

As here, high absolute values for αv and αh will never come up, and the

functions Γv and Γh can be simplified to the amplification factors cv and ch. When this is

true, then (5.5) and (5.6) result in

 ⎟
⎠
⎞

⎜
⎝
⎛ +−== δψβα &

v
lccS v

vvvv (5.7)

 ⎟
⎠
⎞

⎜
⎝
⎛ +== ψβα &

v
lccS h

hhhh (5.8)

Figure 5.2: Characteristic line Γ of the wheels and tires.

 43

5.1.2 Model realization

According to the calculations, the moment of inertia is equal to 0.169167 kg·m2.

The side force constants cv and ch are set from experiments. When the steering angle δv

is constant and the driving motor force H is also constant, the robot drives on a circular

path with a constant speed and the robot's position could be externally recorded by a V-

scopeTM positioning sensor. The data were exploited with the model equations and

MATLAB Simulink to obtain the side force constant. The results are cv = 168450 and ch

= 152290. The length from the center of gravity to the front wheels is lv = 0.15 meter

and to the rear wheels lh = 0.15 meter. The mass of the robot is m = 7 kg, including the

batteries. Because the surface of the robot is small, and as the robot drives with low

speed, it was not necessary to calculate the air resistance, which is negligible. The

process of model identification is explained in detail in [TIM 04].

5.2 The Discrete Extended Kalman Filter (EKF)

The Kalman filter (KF) is a model-based sensor fusion technique used in many

applications. The KF is also exploited for the measured data of PMD camera in the next

chapter. Here, we explain how EKF is implemented. The discrete EKF [BRO 83] [WEL

02] is derived from the KF for application of discrete system. The details are explained

in the following subsections.

5.2.1 A general discrete EKF

First, it must be assumed that a nonlinear process has a state vector and is

governed by the non-linear stochastic differential equation

nx ℜ∈

 xk = f (xk-1,uk-1,wk-1), (5.9)

with a measurement that is mz ℜ∈

 zk = h(xk, vk), (5.10)

where wk and vk represent the process and measurement noise. The linearized model

equations from (5.9) and (5.10) are

 111)ˆ(~
−−− +−+≈ kkkkk wxxAxx , (5.11)

 kkkkk vxxHzz +−+≈)~(~ , (5.12)

 44

where xk and zk are the actual state and measurement vectors, kx~ and kz~ are the

approximated state and measurement vectors, and is an a posteriori estimate of the

state at step k. Note that noises are neglected for state and measurement vectors due to

the fact that the individual values of w

kx̂

k and vk at each time step are unknown. Thus, the

linearized state transition matrix is represented without noises. The Jacobian matrix of

the partial derivatives of f with respect to x is

 []
[]

[]
)0,,ˆ(1, kk

j

i
ji ux

x
f

A −∂

∂
= , (5.13)

where the state vector x is

 , Tvx][ψψβ ′= (5.14)

and the Jacobian matrix of partial derivatives of h with respect to x is

 []
[]

[]
)0,~(, k

j

i
ji x

x
h

H
∂

∂
= , (5.15)

where h is
Txxxxh][4321= . (5.16)

The filtering process starts with the initialization of all state variables and

matrices. It is assumed that the process and measurement noises are Gaussian with a

mean of zero and are constant throughout the process. The a priori estimate state

variable and the a priori estimate error covariance are as follows at time step k, −
kx̂ −

kP

 ,)0,,ˆ(ˆ 1 kkk uxfx −
− = (5.17)

 , QAPAP T
kkkk += −

−
1 (5.18)

where Q is the process noise constant matrix. After that the Kalman gain Kk, the a

posteriori estimate state variable , and the a posteriori estimate error covariance Pkx̂ k are

calculated as follows:

 , 1)(−−− += RHPHHPK T
kkk

T
kkk (5.19)

 ,))0,ˆ((ˆˆ −− −+= kkkkk xhzKxx (5.20)

 45

 , −−= kkkk PHKIP)((5.21)

where R is the measurement noise covariance.

5.2.2 Calculating the discrete EKF.

The inputs needed from the robot model are the steering angle δ and the driving

motor force H. For the discrete EKF, let the input vector at time step k be

 uk = [δk Ηk]T, (5.22)

and let the measurement vector be

 zk = [zβ,k zψ,k zψ’,k zv,k]T, (5.23)

where zβ,k, zψ,k, zψ’,k, and zv,k are the measured values of the state variables at time step k.

As the robot drives very slowly and, thus, the sideslip angle, which is difficult to

identify, is of minor importance, the measurement value of the sideslip angle is set to

zero for all time steps k. As for the system model in (5.1–5.4), the discrete system is

first obtained using Euler’s method [FRA 98]. After that the linearized model equations

are derived for the Jacobian matrix by using (5.13) and (5.14) as follows:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

′∂
∂

′∂
∂

′∂
∂

′∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

v
f

v
f

v
f

v
f

ffff

ffff

ffff

A

4321

4321

4321

4321

ψψψψ

ψψψψ

ββββ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44434241

34333231

24232221

14131211

aaaa
aaaa
aaaa
aaaa

where

(5.24)

(){ }kkvkhk
k

ccH
mv
sta δβββ +++−= coscoscos111

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ k

k

h
kkh

k v
lc

mv
st ψββ &sin

 ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−++ kk

k

v
kkkv

k v
lc

mv
st δψβδβ &sin ,

()
⎭
⎬
⎫

⎩
⎨
⎧ +

−−=
k

kkvv

k

khh

k v
lc

v
lc

mv
hsta

δββ coscos
13 ,

(){ }kkkvkkhk
k

ccH
mv
sta δβββββ +++= coscossin214 (){ }kkvk

k

c
mv
st δβδ ++ cos2

 46

 () ((){ }kkkvvkkhh
k

lclc
mv
st δβψβψ +−+ coscos3

&&) ,

122 =a ,

sta =23 ,

()hhkvv lclcsta −= δ
θ

cos31 ,

⎥
⎦

⎤
⎢
⎣

⎡
−−+=

k

hh
k

k

vv

v
lc

v
lcsta

22

33 cos1 δ
θ

,

⎥
⎦

⎤
⎢
⎣

⎡
+= 2

2

2

2

34 cos
k

khh
k

k

kvv

v
lc

v
lcsta ψδψ

θ
&&

,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= k

k

h
kkhk v

lcH
m
sta ψβββ &cossin41 ()

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+− kk

k

v
kkkv v

lc
m
st δψββδ &cos

 (){ }khkkv cc
m
st ββδ sinsin ++− ,

()⎥
⎦

⎤
⎢
⎣

⎡
++−= kk

k

vv
k

k

hh

v
lc

v
lc

m
sta βδβ sinsin43 ,

()⎥
⎦

⎤
⎢
⎣

⎡
+−+= kkk

k

vv
kk

k

hh

v
lc

v
lc

m
sta βδψβψ sinsin1 2244 && ,

04232242112 ===== aaaaa .

Similarly, derived from (5.15) and (5.16), the Jacobian matrix of measurement H

is a diagonal matrix with the element value of 1. The process and measurement noise

covariance matrices Q and R are tuned off-line in the simulation of the appropriate value

and kept constant during the iterative process. The selected values are 1x10-6 for all

diagonal matrix elements. These parameters represent the uncertainty of the process and

measurement. The improper value of these matrix elements result in a wrong estimated

value and rapid divergence from the true measurement.

5.3 Calculating the robot's position and heading.

As shown in Figure 5.3, three different paths are implemented by using

measurement data from the odometer, the gyroscope, and the compass. The robot's

position and heading based on the odometer's data gives the non-model based path

explained in section 5.3.1, whereas the other two path estimations are derived by using

 47

the Kalman filter and the nonlinear dynamic model explained in section 5.3.2.

Figure 5.3: Architecture of the robot localization system.

5.3.1 Odometer position and heading calculation.

The position xodo,k, yodo,k and heading ψodo,k at step k are calculated from

 kodo
kLkR

kodokodo

dd
xx ,

,,
1,, cos

2
ψ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∆+∆
+= − ,

(5.25)

 kodo
kLkR

kodokodo

dd
yy ,

,,
1,, sin

2
ψ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∆+∆
+= − ,

(5.26)

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆−∆
+= −

− W
dd kLkR

kodokodo
,,1

1,, tanψψ ,
(5.27)

 1,,, −−=∆ kRkRkR ddd , (5.28)

 1,,, −−=∆ kLkLkL ddd (5.29)

where ∆dR,k is the difference between the distances driven by the right wheel between

the time steps k and k-1 as shown in Figure 5.4. Note that a similar calculation is applied

to the difference between the distances left ∆dL,k. Here, dL,k represents the distance

already driven by the left wheel at time step k, while dR,k is the distance driven by the

right wheel. These distances driven from the beginning of the ride can be computed

from the amount of pulses from the odometer on each wheel. The wheel base W is the

distance between the center of the left wheel to the center of the right wheel and is equal

to 23.5 cm.

5.3.2 Position and heading estimation using gyroscope and compass.

We calculate the robot xk and yk positions at time step k of gyroscope and

 48

compass by using the estimated state variables from discrete EKF. The gyroscope

estimation uses the relative yaw angle of the gyroscope whereas the compass estimation

uses absolute yaw angle of the compass as ψk in

 () 1cos −+−⋅= kkkkk xvstx βψ , (5.30)

 () 1sin −+−⋅= kkkkk yvsty βψ , (5.31)

where vk, ψk, and βk are posterior estimated state variables as in (5.20). The estimated

robot heading is ψk and st is the time step.

Figure 5.4: Variables based on odometer.

5.4 Experimental results

The localization experiments were performed in an indoor environment and the

sensor data was collected for off-line plots using MATLAB. All of the graph scales

have units in meter and a data sampling rate of 0.2 sec. Though only the experimental

results of the off-line positioning were presented in this chapter, the on-line experiment

was already presented for the path following control described in section 4.3. Here, the

experiments are designed to test the performance of localization when the robot moves

straight on, in a curve path, and a combination of both. Several path types are exploited.

 49

5.4.1 Description of exploited path types.

Rectangular path: By manually tele-operated joystick control, the robot begins

from 0 heading, drives straight on, turns at corners, and ends up at final heading of 2π.

Line path: By manually tele-operated joystick control, the robot drives straight

forward, stops at 15 meters, and drives backward to its original position.

Wall path: The robot drives autonomously along the wall by using the wall

following controller explained in section 4.1.3. The wall has a 15 meter by 15 meter

square-shape.

5.4.2 Types of measurements.

As already mentioned, in order to improve the quality of the measurement

signals, the data coming from the gyroscope as well as the data from the compass was

subsequently processed by the Kalman filter using the measured velocity signal from

the odometer. With respect to Figure 5.3, three cases of measurement including the

signal estimation by the Kalman filters are compared as follows:

Odometer: Here, the data coming from the odometer is not updated by the

Kalman filter. By using (5.25) - (5.27), the relevant odometer data not only contains

the average of the wheel movements but also the difference between the movements of

the left and right wheels in order to get information about the robot's changed

orientation. The dot line represents this Odometer’s path.

Gyroscope: The yaw angles measured by the gyroscope are applied as inputs for

Kalman filter measurement updates. The positions are obtained from (5.30) and (5.31)

and are shown as solid line. Please note that here the odometer only provides the

measurement value for the velocity.

Compass: Similarly to the gyroscope measurements, the compass yaw angle

measured by the compass is applied as an input for the Kalman filter, such that the

position estimation from (5.30) and (5.31) can be represented by a dash-dot line. Please

note that here as well the odometer only provides the measurement value for the

velocity.

5.4.3 Test results of several path types.

Rectangular path: Due to section 5.4.2, Figure 5.5 presents the three kinds of

results for the rectangular path. The robot drives from position (0, 0) with a 0 radian

heading in a clockwise direction and stops at a 2π radians heading. Regarding the path

 50

measured only by the odometer measurement (dotted line), suddenly at (6,-3), a

slippage in the wheels occurs. The estimated path using the gyroscope estimation (solid

line) is described by the solid line. Its final position is very close to the real final

position. The estimated position using the compass estimation (dash-dotted line) shows

a deviation in the robot's heading along the path. This deviation results in the big error

of the final heading obtained from the compass.

Wall path: Figure 5.6 shows the wall-path. Here, the measured final position

using only the odometer measurement (dotted line) has a large error.

Figure 5.5: Rectangular path estimated positions.

Figure 5.6: Wall path estimated positions.

 51

Improvement using the gyroscope estimation (solid line) estimation shows a drift in

some trials, whereas improvement using the compass estimation (dash-dotted line)

estimator provides quite constant results for all trials.

Line path: As shown in Figure 5.7, the expected final position of this path is the

same as the starting position. Regarding the odometer measurement (dotted line), both,

the results for the path and for the final position are not satisfying. The estimated path

using the gyroscope estimation (solid line) is in the lateral direction quite good;

however, the final position is not that close to the actual final position. Regarding the

compass estimation (dash-dotted line), the final position is very exact whereas the

trajectory of the path is estimated with certain errors, especially at the coordinates (4, 1).

Due to this problem, the robot's heading is also shown in Figure 5.8. The measured

values of the yaw angle derived from data from the compass sensor are extremely large

at the 55th and at the 250th sampling steps. However, as mentioned, the final compass

estimation for the robot's position is in the end close to the actual final position.

It must be noted that this phenomenon doesn’t occur in every test. It must be

assumed that this error is caused probably from the magnetic field of a power cable in

the building.

Figure 5.7: Line path estimated positions.

5.4.3 Average errors

Several driving tests were performed for every path type. The real final position

determined for each driving test was compared to the position value measured by the

 52

on-board sensors to calculate the resulting errors. The average error values result from

the averages of the respective errors of all similar driving tests.

Figure 5.8: The estimated headings of the line path.

The average errors in position and heading are summarized in Tables 5.1 and

5.2, respectively. Several tests were performed for each path type. The position error

epos is the error in measurement between the actual final position and the estimated final

position. Based on the actual and estimated values for the yaw angle, the heading error

eheading is the error of robot heading at the final position. These errors are calculated by

 22
yxpos eee += ,

(5.32)

()

n

xx
e

n

i
iactualiestimate

x

∑
=

−
= 1

,,

 (5.33)

()

n

yy
e

n

i
iactualiestimate

y

∑
=

−
= 1

,,

 (5.34)

()

n
e

n

i
iactualiestimate

heading

∑
=

−
= 1

,, ψψ
, (5.35)

where xestimate,i , yestimate,i and ψestimate,i are the estimated final position and heading of test

number i. xactual,i , yactual,i and ψactual,i are the real final values for the actual position and

 53

heading of test number i, respectively. xe and ye are the mean of error in x and y

direction, n is the total number of tests. Note that the units are meter for position errors

and degree for the heading errors.

In Table 5.1, the average of the gyroscope estimation final position errors are not

the largest in all of the trajectories. It can be seen that the gyroscope estimation for the

final position value is in most cases not as good as the compass estimation. However,

due to section 5.4.3, it is stated that the gyroscope estimation provides the most exact

path.

As Table 5.2 shows, the gyroscope estimation combined with discrete EKF

provides very good results. Especially, for the line path, the pure odometer

measurement is slightly better. However, a large error in the odometer's position is

found, when using the wall path as an example. This large error occurs due to the

slippage in the wheels and does not always occur in all driving tests.

On top of that, it must be stated that once in a while drift problems can come up,

when using the gyroscope. It is assumed that these problems can especially sometimes

accumulate, when the ride takes a long time or when many bends are located along the

path.

An improvement of accumulated errors in relative localization is to exploit the

vision-based absolute localization technique since this technique gives directly absolute

robot position and heading without referring to the start position. The next chapter

presents a localization technique called the position calibration.

Table 5.1: Average position errors (epos).

Path types Odometer Gyroscope Compass
Rectangular path 0.71 0.17 0.33

Wall path 15.09 5.44 3.35
Line path 0.53 1.02 0.27

Table 5.2: Average heading errors (eheading).

Path types Odometer Gyroscope Compass
Rectangular path -23 -1 14

Wall path -58 -10 -52
Line path 5 6 61

 54

6 Position Calibration using 3D Vision and Artificial Landmark

As in the previous chapter, the robot relative localization contains accumulated

errors. As to correct these errors, this chapter presents the position calibration technique

using 3D vision and artificial landmark. This technique can be broken down into three

sequential procedures: design of the artificial landmark introduced in Section 6.2,

landmark recognition, described in Section 6.3, the position prediction and update,

described in Section 6.4. The on-line experiment of using combination of the relative

and absolute localization techniques is also presented. The first section of this chapter

begins by providing an investigation of the characteristics of the measurement of the

16x16 pixel PMD camera.

6.1 The measurement characteristics of the 16x16 pixel PMD camera.

 The characteristics of measurement data is a factor for selection of an

appropriate technique for landmark recognition. Therefore, our work began with the

investigation of the data and its noise characteristics using a statistic approach. We used

a flat whiteboard for calibration at a distance of 1 meter and set the integration time of

the PMD camera to 5000 us.

 Figure 6.1 shows the plot of 100 measured values of the 8th row pixel and of the

1st to the 16th column pixel (c1 - c16). The measured values at each pixel have random

noises. It is interesting to observe the mean and standard deviation (STD) of distance

values since these values represent the accuracy and uncertainty of measurements of the

camera. Therefore, we place this whiteboard at other distance positions and select 4

pixels out of 256 pixels as sample pixels. Let the rth row pixel and the cth column pixel

be called pixel (r, c). These selected pixels are (8, 1), (8, 2), (8, 3), and (8, 4).

 The mean of distance values at 0.5 - 2.4 meters are plotted as in Figure 6.2a. At

the distance of 0.5 to 1.6 meters, the mean values are close to or smaller than the actual

distance value. At the distance farer than 1.6 meter, the difference between the mean

values and the actual distance values are larger. Figure 6.2b shows the STD values. At

1.6 meters, the STD values are smaller than 50 mm. At a longer distance, the STD

values are larger. At 2.4 meters, the maximum STD value among these pixels is 170

mm. At this distance, the difference between the maximum and minimum STD values is

70 mm.

 55

0 10 20 30 40 50 60 70 80 90 100
550

600

650

700

D
is

ta
nc

e
va

lu
e

(m
m

)

Sampling steps

0 10 20 30 40 50 60 70 80 90 100
580

600

620

640

D
is

ta
nc

e
va

lu
e

(m
m

)

Sampling steps

c1
c2
c3
c4

c5
c6
c7
c8

0 10 20 30 40 50 60 70 80 90 100
550

600

650

D
is

ta
nc

e
va

lu
e

(m
m

)

Sampling steps

c9
c10
c11
c12

0 10 20 30 40 50 60 70 80 90 100
580

600

620

640

660

D
is

ta
nc

e
va

lu
e

(m
m

)

Sampling steps

c13
c14
c15
c16

Figure 6.1: The measured values of the 8th row pixel and at

each column pixel (c1 – c16).

(a) (b)

Figure 6.2: Mean and STD at the 8th row pixel and at the 1st to 4th column pixel:

(a) mean values; (b) standard deviation (STD) values.

 Once the distance increases beyond 1.0 meter, the standard deviation increases,

as mentioned earlier. Here, the distribution of the measured value at close range, a

distance of 0.2 up to 1.0 meter is further investigated. Table 6.1 presents the 3D images

plotted by using the mean and standard deviation of all 256 pixels at distances of 1.0,

0.50, and 0.20 meters, respectively. Note that colors represent the distance values. The

smooth surface in an image of mean values means that the measured values among 256

pixels are the same and the smooth surface in an image of the STD values means that

there is equally distribution of measured values among 256 pixels.

 56

 When we look at the mean and STD images at 0.5 meter, the distribution of

mean values is random and the surface is non-smooth, whereas the image of STD values

is very smooth. At 1.0 meter, middle pixels have smaller STD values than outer pixels.

In the opposite, at 0.2 meter, middle pixels have larger STD and mean values than outer

pixels. These are the focus property of the optical objective. The infrared light reflects

more strongly among the focused pixels than in the pixels around the focus area, which

can be detected to be a circular area. Due to this property, measurements taken when the

object is too near to the camera cannot be used. It should be noted, however, that the

measurement results can be different in terms of integration time, object colour and type

of material.

6.2 The design of the artificial landmark.

In mobile robot applications, artificial landmark recognition is designed

according to its purpose and according to what is most convenient for the user. The

problem of object recognition is simplified by simultaneously designing a landmark

suited to the object recognition strategy.

In order that this be possible, the landmark is divided into two parts, an upper

part and a lower part. The upper part is always symmetrical in shape, such as the

cylinder shown in Figure 6.3. This part must be mounted on top of the lower part

according to its own centre of gravity in order that the image taken of this upper part is

view invariance. The lower part of the landmark is always rectangular in shape so that it

is possible to calculate its distance from the robot and rotational angle position. Note

that the background is the pixels that contain the measured distance value of the object

behind the landmark. Details of how we get filtered image and how model image are

generated are explained later. Here, we continue with the landmark design.

6.2.1 Lower part of the landmark.

When the rectangular box is rotated, the angle of rotation is detectable by using

the slope of the box boundary and the box width and length. Varying the angle position

changes the detected area, as shown in Figure 6.4a.

The measured value and slope are shown as thick solid lines at the landmark’s

boundary. One edge exist in the camera’s range of vision at only some angle positions,

e.g. 11.25°, 22.5° and 33.75°. At other angle positions, no edge exists within the

 57

camera's range of vision but slopes have changed visibly, e.g. 0°, 45°, 56.25°, 67.5°,

76.75°, and 90°.

Table 6.1: Mean and standard deviation (STD) at 1.0, 0.5, and 0.2 meters.
Distance Mean Standard deviation (STD)

1.0 m

0.50 m

0.20 m

Figure 6.3: An example of the filtered image and the generated model image.

 58

The difference in slope is distinguishable at each angle position and can

therefore be set as a criterion for landmark recognition. As shown in the figure, between

0° and 90°, slopes are not differentiable but distance values are differentiable since the

width and the length of the rectangular box are not equal. The distance value is

therefore another criterion for landmark recognition. Note that the square box is not

applicable as a landmark since its width and length are equal.

The reason why we use both the slope value and distance value as criterions is

that it is more effective than using only the measured distance value. This advantage can

be seen in Figure 6.4b, where two landmarks are at different distance positions but at

the same angle position, 11.25°. The slopes of both landmarks are exactly the same no

matter the distance position is far away, close, or even there is sideward translation.

(a) (b)

Figure 6.4: The detected surface at various positions: (a) various angle positions;

(b) different distance positions.

6.2.2 Upper part of the landmark.

 In practice, many landmarks are set within the navigation area. The robot

therefore needs to recognize each landmark. Therefore, the upper part of the landmark is

designed to have an identity of each landmark. The upper part should have symmetry in

shape in order that we get the same view of the object image no matter what angle the

 59

whole landmark is set at. In words, the image of the upper part is view invariance. The

geometry of the upper part is also required for convenience in landmark recognition.

The design of the artificial landmarks also takes the choice of material, the

landmark's colour and its size into consideration. The material used must reflect enough

infrared light to produce a good image and thus it should not be black in colour. White

paper was selected as the landmark surface material because it reflects well. The

landmark should not be too big or too small in order that the objects lie within the

detection area of the camera.

6.2.3 Several designs of 3D artificial landmark.

Examples of the various possible designs in landmark shape are shown in Figure

6.5a. The classes I and II are rectangular boxes which are different in size. They are

used as the lower part of the landmark and are called landmark class. There are several

symmetrical and geometrical shapes that are applicable for the upper part of the

landmark, which distinguishes the landmark type. The figures A to L are sample

landmark types. Types A to I are consist of one geometrical part; whereas, types J to L

are the combination of two geometrical parts. Figure 6.5b shows two combinations of

landmark classes and types. When there are more classes and types available, there is

also more variety in landmarks. Further designs as follows can be used:

• Size variation: Landmark types of the same shape in different sizes result in

different types, e.g. type I with smaller or bigger radius length.

• Shape variation: The variation of the landmark type is possible by combining

symmetrical shapes, e.g. the combination of type F and I.

6.2.4 Landmarks for 16x16 pixel PMD camera.

For the 16x16 pixel camera, three landmark types are selected. The first

landmark type has a rectangular shape as upper part. That is, the landmark is a tall box.

In the opposite, the second landmark type has a short box and is called null shape since

the upper part does not exist. The third landmark type is a cylinder.

 Table 6.2 shows four designed landmark types called L1, L2, L3 and L4. L1 is a

rectangular landmark and L2 is null-type landmark. In fact, L1 and L2 are different only

in the height. L3 and L4 are cylinder-type landmarks and are different in the diameter of

cylinder. Table 6.2 gives the shapes of the landmarks in diagram form, types of the

landmarks, lists the landmarks' sizes. As mentioned earlier, the lower part of the

 60

landmark is used for the recognition of distance position and angle position. If the width

of the box is not distinguishable from its length, the distance position cannot be read.

The appropriate length and width are about 31 cm and 57 cm, respectively. Note that all

four landmark types are in the same class. Therefore, they have the same the lower part.

The methodologies used for landmark recognition of the upper and lower part are

explained below in the coming sections.

(a)

(b)

Figure 6.5: Landmark examples (a) various classes and types of landmark designs (b)

landmark examples from the combinations of the designed landmark classes and types.

Table 6.2: The four types of landmarks: names, shapes, types, and dimensions.

Name Shape Type Dimension:
w x l x h x d, (cm)

L1
 Rectangular 31 x 57 x 73

L2

Null 31 x 57 x 52.5

L3
 Cylinder 31 x 57 x 52.5 x 12.5

L4

Cylinder 31 x 57 x 52.5 x 6.5

 61

6.3 Landmark recognition

When the robot is at any positions referred to the fixed position landmark, by

recognizing the distance position and the angle position of landmark, the robot position

can be directly calculated as explained later in Section 6.4.1. The landmark recognition

problem is to determine the distance position, the angle position and the type of

landmark. Landmark recognition is divided into recognition of the upper and lower

parts regarding landmark designs. Recognition of the upper part serves to classify

landmark types; whereas, recognition of the lower part provides the distance position

and angle position of the landmark. These processes start after the image filtering

(Section 6.3.1).

The core process in landmark recognition of lower part is shown in Figure 6.6.

First, the filtered image is smoothed (Section 6.3.2). After that the smoothed image is

further processed for matching preparation: The representative distance values of each

column pixel is fitted into a line by using linear regression as described in Section 6.3.5.

Meanwhile, the model images are obtained from the model image generation (Section

6.3.3.1) and this image is process by line fitting and matching of upper part (Section

6.3.6.1). The matching results are the distance and angle positions.

The landmark recognition of the upper part is as shown in Figure 6.7. The model

image and the smoothed image are detected for edges and matched later. The model

image generation and the edge detection are explained in Section 6.3.3.2 and Section

6.3.4, respectively. The method for matching the upper part of smoothed image with the

model image is explained in Section 6.3.6.2. The output of the matching process is the

landmark type. First of all, the following section explains image filtering.

Figure 6.6: The landmark recognition process of the lower part.

 62

Figure 6.7: The landmark recognition process of the upper part.

6.3.1 Image filtering

The PMD camera used here has 16x16 pixel resolution. The measurement

characteristics in Section 6.1 show the PMD measurement data to be noisy, so that this

data is a signal that needs to be filtered. We choose the powerful Kalman filtering

model to filter the PMD images because Kalman filtering is well known for its high

performance. Process noises, measurement noises, and the result from recursive

computation yield the convergence of the self-adaptive Kalman gain and estimated state

variable [WEL 02].

6.3.1.1 Conducting the Kalman filtering. Two steps of the Kalman filter

algorithm are implemented here for estimation and update by using the equations (6.1 -

6.2) and (6.3 - 6.5), respectively.

 xek
- = Axek-1 +Buk-1 (6.1)

 Pk

- = APk-1AT + Q (6.2)

 Kk = Pk
- HT(HPk

-HT+ R)-1 (6.3)

xek
 = xek

- + Kk (zk - H xek
-) (6.4)

Pk = (I - KkH)Pk

- (6.5)

At the first iteration k = 1, the values of xek-1 and Pk-1 were initialized previously.

At state k, the a priori estimate state variable xek
- is calculated from the transition

matrices A and B, the previous estimate state variable xek-1 and previous control variable

 63

uk-1. Then, the a priori estimate error Pk
- is predicted from the previous estimate error

Pk-1 and process noise covariance matrix Q. After that the update process is continually

performed by calculating Kalman gain Kk from Pk
-, the output matrix H and

measurement noise covariance matrix R. The Kalman gain is immediately used again

for the calculation of the estimate state variable at the current iteration, xek, which is

based on the measurement value zk, and the predicted state variable xek
-. Last, the

estimate error Pk is updated and the process is repeated again until the last specified

number of iteration is reached.

In order that the PMD image can be filtered, the picture is taken when the

camera position is static. Since there is a lot of noise due to the camera's movement in

this 16x16 pixel camera, the camera has to be at a stand still during the filtering process.

The filtering is done at each individual pixel over the sampling period (frames) as

shown in Figure 6.8. The sample data of each pixel and each frame are gathered as state

variables. Regarding that the camera is standstill, the transition matrix A is a scalar

number equal to 1 and matrix B is zero. This transition matrix A represents no

movement of the camera. If filtering were to be done while the camera was moving, the

matrices A and B would have to be replaced by the proper movement model. As the

following, Q and R are also scalar number.

Figure 6.8: Image frames consisting of state variables.

6.3.1.2 Uncertainty and convergence. The process noise covariance Q in (6.2)

and the measurement noise covariance R in (6.3) need to be adjusted for obtaining the

proper filter since these parameters represent the uncertainty of the process and

measurement, respectively. Furthermore, the convergence rate of the Kalman gain is

also dependent on these parameters. With the proper adjustment, the convergence rate

and the oscillation of the estimated value xek
 at a steady state can be traded off.

 64

According to section 6.1, the outer pixel shows larger noise than the middle

pixel, the measurement noise covariance is therefore tuned by using the measured data

from pixel (16, 16). The value of q is 50 and r is varied from 500 to 2500. As shown in

Figures 6.9a and 6.9b, the larger r value results in a smoother estimated value and slow

convergence of Kalman gain. The trade off between the oscillation amplitude of the

estimated distance value and convergence time of Kalman gain results in selection of

q = 50 and r = 1000. Note that Q = q2 and R = r2. The convergence time can be

shortened by further tuning of q. The selected value of q is 100 since the deviation lies

within 2 cm and the convergence requires at least 30 frames. Figure 6.10 shows the

measured value and estimated value after filtering. Note that the value xek is initialized

by using the average value of the first 10 frames.

0 20 40 60 80 100 120
1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

Frame numbers

E
st

im
at

ed
 d

is
ta

nc
e

va
lu

e
(m

m
)

q = 50, r = 500
q = 50, r = 1000
q = 50, r = 1500
q = 50, r = 2000
q = 50, r = 2500

(a)

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Frame numbers

K
al

m
an

 g
ai

n

q = 50, r = 500
q = 50, r = 1000
q = 50, r = 1500
q = 50, r = 2000
q = 50, r = 2500

(b)
Figure 6.9: The estimated value Kalman gain: (a) The estimated value; q = 50 and
various values of r; (b) The Kalman gain; q = 50 and various values of r.

0 20 40 60 80 100 120
570

575

580

585

590

595

600

605

610

615

620

Frame numbers k

E
st

im
at

ed
 v

al
ue

 a
nd

 m
ea

su
re

d
va

lu
e

(m
m

)

Estimated value
Measured value

Figure 6.10: The estimated value xk from filtering and the measured value zk .

 65

6.3.2 Image smoothing

With regard to the flat surface of rectangular box (the lower part of the

landmark), the PMD captured image of this shape should have the same measured value

in each column pixel. In practice, there is deviation among pixels in a frame as

mentioned in section 6.1. Therefore, the image smoothing gives the image a

representative distance value of each column pixel for further use in line fitting and

lower part recognition.

The filtered image of 256 pixels is shown in Figure 6.11a. The image is

smoothened by using the average of the column neighbourhood pixel value within the

same row:

n

x
x

n

i
ji

repj

∑
== 1

,

, (6.6)

where xj,rep, is the representative distance value at column j, xi, j is the distance value at

the row i and the column j and n is the number of rows that contains the lower part of

the landmark. Smoothing is not performed in the upper part of the image (representing

the upper part of the landmark) to protect edge destruction. The smoothed image is

shown in Figure 6.11b.

0

5

10

15

20 0

5

10

15

20

500

600

700

800

row pixels

column pixels

D
is

ta
nc

e
va

lu
e

(m
m

)

0
5

10
15

20 0

5

10

15

20

500

600

700

800

row pixels

column pixels

D
is

ta
nc

e
va

lu
e

(m
m

)

(a) (b)

Figure 6.11: The filtered image before and after smoothing: (a) before; (b) after.

 Another function of image smoothing is to discard the unexpected background

noises as shown in Figure 6.12a. The noise caused by the background light has very

large distance value. Noise can be caused by objects whose surfaces are not flat or by

objects with a small surface area since the light scatters away. These measured distance

values are undesirable and hinder landmark recognition. Therefore, they are eliminated

 66

out by using the detection of discontinuity of the distance value among neighbour pixel.

The pre-defined background value replaces the measured value at the pixel that contains

large measured value. After smoothing, the image is as shown in Figure 6.12b.

0

5

10

15

20

0
5

10
15

20
0

1000

2000

0

5

10

15

20

0
5

10
15

20
0

1000

2000

(a) (b)

Figure 6.12: The PMD image smoothing of random measurement noise:

(a) before; (b) after.

6.3.3 Model image generation

 Due to the differences in the design of the upper and lower parts of the landmark

as described in Section 6.2, the model image is also generated separately for the

different parts. The image of the lower part is generated first, followed by that of the

upper part. The following sections explain the methodologies used for generation of the

model images and show the sample model images.

6.3.3.1 Model image generation for the lower part of the landmark. The model

image is generated by simplifying the 3D space into 2D space. The landmark and

camera positions are first defined on the xyz coordinate. As shown in Figure 6.13, the

coordinates of the camera and the landmark are defined as and

, respectively. To generate the model, the 3D space is simplified into 2D

space by considering the top view of camera vision and landmark.

),,(ccc zyxP

)',','(zyxP

In Figure 6.13, the z-axis of both the camera and landmark coordinates is

identical. It must be assumed that the translation in z-direction is neglected. These

coordinates are transformed onto the P(xc, yc, zc) coordinate by rotation with angle δ,

and translation with distance d. The sideward translation distance ds is

 67

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0'
'
'

100
0cossin
0sincos

s

c

c

c

d
d

z
y
x

z
y
x

δδ
δδ

.

(6.7)

When considering the object corners 1 to 4 on the camera coordinate the

landmark consists of 4 boundary equations:

2
wx = ;

22
lyl

≤≤
− , (6.8)

2
wx −

= ;
22
lyl

≤≤
− , (6.9)

2
ly = ;

22
wxw

≤≤
− , (6.10)

2
ly −

= ;
22
wxw

≤≤
− . (6.11)

Four boundary equations are constructed from the relationship of coordinates at

each corner as

()
()1

1
,

+

+

−
−

=
ii

ii
io xx

yya ,
(6.12)

bo,i = yi – ao,i xi , (6.13)

where ao,i, and bo,i are linear equation coefficients of the landmark of the boundary i.

The boundary equations are shown again in Figure 6.14. This figure shows how we

calculate the distance value for each column pixel of the model image. The camera

vision consists of 16 column pixel linear equations. At each column pixel p, the

equation is

y = ac,pc x + bc,pc , (6.14)

ac,pc x = tan(pc.αpc), (6.15)

where ac,pc and bc,pc are linear equation coefficients of the camera at the column pixel pc.

The integer value of pc is the defined pixel position from -8 to 8. The angle between two

column pixels is αpc.

This figure also shows the intersection points of the camera equation and the

object equation. There are 5 pixels in the middle that have the distance value of the

landmark. The other pixels have the background value. The generated model image is

 68

an image of distance position obtained from the intersection of an object and camera

equations. By rearranging the equation from (6.13) we have,

io

io

a
by

x
,

,−
= .

(6.16)

Figure 6.13: Camera and landmark coordinates.

Figure 6.14: Model image generation of the lower part.

 69

The distance value y at the intersection of the camera and the landmark

equations is obtained by replacing (6.16) in (6.14),

()
()pccio

iopccpccio

aa
baba

y
,,

,,,,

−

−
= .

(6.17)

In Figure 6.13, when the angle position δ is varied, the upper part remains at the

same pixel position since the upper part of image is view invariance as mentioned

earlier in the landmark designs. As shown in Figures 6.15a and 6.15b, the upper part

remains the same, whereas the lower part is rotated, the edge is shifted and the slope

presents clearly.

6.3.3.2 Model image generation for the upper part of the landmark.

Sequentially, the upper part of the model image is generated after the image of the

lower part has successfully been generated. Since the generated model image is the

image of the distance position obtained from the intersection of landmark’s boundary

equations and camera equations. The intersection points are calculated from the known

value of distance d as shown in Figure 6.16. The intersection point is found by replacing

d as x in the row pixel equation of the camera. The general camera equation at each row

pixel pr is

z = ar,prx + br,pr (6.18)

ar,prx = tan(pr.γpr). (6.19)

where ao,i, and bo,i are linear equation coefficients of the landmark boundary i. ar,pr and

br,pr are linear equation coefficients of the camera at pixel pr. The camera equations are

generated by using the angle γpr, which is obtained from the angle between two row

pixels. Note that d is inherited from the model generation of lower part.

 The generated model images of the rectangular type landmark, null type, and

cylinder type are shown in Figure 6.17. Since the upper part of the rectangular type has

the same shape as the lower part, the model image is a plane as shown in Figure 6.17a.

For the null type, the upper part is the background as shown in Figure 6.17b. In fact, the

rectangular type and the null type have the same shape, just with a different height

measurement for the lower part. The height of the null type landmark is less than that of

 70

the rectangular type. By using (6.18) and (6.19), we generate the rectangular and null

type landmark. Next, the model image generation of the upper part of the cylinder type

as shown in Figure 6.17c can be explained.

0

5

10

15

20 0

5

10

15

20

0

200

400

600

800

0

5
10

15
20

0

5

10

15

20

0

200

400

600

800

(a) (b)

Figure 6.15: The model image at different angle positions: (a) 0°; (b) 45°.

Figure 6.16: Model image generation of the upper part.

0
5

10
15

20

0
5

10

15
20

639

639.5

640

640.5

641

 0

5

10

15

20
0

5

10

15

20

0

500

1000

0

5

10

15

20 0

5

10

15

20

0

200

400

600

800

(a) (b) (c)

Figure 6.17: Generated model of landmark types: (a) Rectangular; (b) Null;

(c) Cylinder.

 71

 Figure 6.18 shows the top view of the column pixel positions and the cylinder.

Following the same approach as for the model image generation of the lower part, the

intersection points between the 16 column pixel equations form a circle equation to give

the distance value. The translation d and ds is applied, whereas rotation is not present,

δ = 0. In this case, rotation is not considered, regarding view invariance as mentioned

earlier in Section 6.2. In Figure 6.18, the circular equation represents the top view of the

landmark:

(x-d)2 + (y-ds)2 = r2. (6.20)

The distance value is equal to the value of x at the intersection points between

the camera column pixel equation (6.14) and the circular equation (6.20). Replacing

(6.14) in (6.20) results in:

() () 0221 2
,

22
,

2
,,,

22
, =−−++++−−+ rdbdbdxdabadxa spcspcspcpcpcpc (6.21)

By solving this equation, we get the distance value of each column pixel of the upper

part.

6.3.4 Edge detection

 The edge detection of PMD images is detecting a sudden change in distance

value among column pixel neighbourhoods. The difference of distance value in columns

diff_c at the column i and in rows diff_r at the row j are calculated by

diff_c(i) = xe(i) – xe (i +1), (6.22)

diff_r(j) = xe (j) – xe (j +1), (6.23)

where xe(i) and xe(i+1) are the distance values at the ith column and (i+1)th column. xe(j)

and xe(j+1) are the distance values at the jth column and (j+1)th row.

 Table 6.3 shows the detected edges of a model image and a smoothed image.

The model image has two clear edges but the smoothed image has sub edges. The edge

detection is exploited later to classify the landmark according to type. For landmark

recognition in Section 6.3.6.2, the column edge width Wc is defined as the width of the

image in columns and the row edge width Wr is defined as the width of the edge width

 72

in rows. For example, the model image has a rising edge at the 5th column and a falling

edge at the 10th column. The column edge width is 5 (Wc = 5).

Figure 6.18: Model image generation of a cylinder.

Table 6.3: Images and edge detection in columns.
Type Images Edges (diff_c versus column pixels)

Model
image

0

5

10

15

20

0

5

10

15

20
0

500

1000

1500

 0 5 10 15
-1500

-1000

-500

0

500

1000

1500

Smoothed
image

0

5

10

15

20

0

5

10

15

20
0

1000

2000

 0 5 10 15
-1000

-500

0

500

1000

1500

6.3.5 Line fitting

Line fitting is exploited to determine the slope of the lower part as shown in

Figure 6.4. The slopes of the lower part of the model images and smoothed images are

both calculated by using linear regression. When a representative distance value from

each of the column's pixels is taken, there is a result of 16 distance values for each

image. These representative values can be taken from any row in the lower part since

 73

the image was smoothed and thus has the same distance value for all rows in the same

column of the lower part. These values are arranged into the vector matrix for solving

the slope and constant of the linear equation. Let As and Bs be matrices that contain the

column numbers xs,1, xs,2, …, xs,max and the distance values ys,1, ys,2, …, ys,max,

respectively.

 (6.24)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

max,

2,

1,

max,

2,

1,

,

1

1
1

s

s

s

s

s

s

s

s

y

y
y

B

x

x
x

A
MMM

s
T
ss

T
s

s

s BAAA
m
c

))((1−=⎥
⎦

⎤
⎢
⎣

⎡
 (6.25)

where cs is the constant value of the linear equation and ms is the slope value. A sample

graph of the result from line fitting, ysf = msx+cs, and the raw data ys are shown in Figure

6.19.

0 2 4 6 8 10 12 14 16
690

700

710

720

730

740

750

760

770

D
is

ta
nc

e
va

lu
e

(m
m

)

column pixels

ys

ysf

Figure 6.19: A sample graph of line fitting result.

6.3.6 Model matching

Model matching is processed in concatenation with the image smoothing, model

image generation, edge detection and line fitting. Model matching consists of two sub-

processes, matching the upper part and the lower part.

6.3.6.1 Model matching for the lower part of the landmark image. To match

the lower part of the landmark image, the matched distance position D and the matched

 74

angle position P have to be found. The matching process is as follows: The model

images are generated by varying D and P from the minimum to the maximum value in

the iterative loop. For each model image, the slope value and distance value of the lower

part needs to be calculated and compared to those of the smoothed image. The model

that has the smallest slope error and distance error among the other model images can

best be fitted to the smoothed image and D and P of that model image are taken as the

result of the matching process.

As already explained in section 6.2.1, the slope value and the distance value are

criterions for recognizing the distance position and angle position. These criterions are

applied as the slope error and the distance error. The slope error ES (D, P) is the square

of the different value between the slope value of the smoothed image xs and the slope

value of the model image at distance position D and at angle position P, ms (D, P). The

slope error is calculated by using

 . 2)),((),(PDmsxsPDES −= (6.26)

The xs and ms(D, P) are obtained by using (6.24) and (6.25). The distance error

ED (D, P) is the summation of the distance error from 16 column pixels. This error is

calculated by

 , ∑
=

−=
16

1

2
,,)),((),(

j
jiji PDmdxdPDED

(6.27)

where xdi,j is the distance value taken from the lower pixel image of the smoothed

image at row pixel i and at column pixel j. md(D, P)i,j is the generated distance value

from the model image at row pixel i and at column pixel j of the distance position D and

angle position P. As shown in Figure 6.20, the process starts obtaining xs and

calculating ms (D, P) for each position D and P. The minimum error minED is

initialized as a large value and D is set to the first step that is 1. The iterative loop starts

at D = 1 and stops at D = Dmax. At each step D, the error is calculated by using)(DED

 , ∑
=

=
P

P

PDEDDED
max_

1

),()(
(6.28)

 75

Figure 6.20: Matching process of the lower part.

where is the maximum angle position. When ED(D) is smaller than the

minimum error minED, minED is updated and at the last step D

Pmax_

max, the best distance

step Dbest is further used for searching for the best angle position Pbest.

The right hand side of the flowchart shows the process by which the best fit

angle position can be found. It is started by the initialization of the minES to a large

value and then setting P = 1. The angle position P is varied until the maximum position

Pmax. If the error ES(Dbest,P) is less than minES and ED(P) is less than or equal to

ED(Pbest), the new solution Pbest is updated. Here, the first decision-making step is

checking whether the error ES(Dbest,P) is less than minES and the second decision-

making step is checking whether ED(P) is less than or equal ED(Pbest). The second

decision-making step should also involve because the slope error is sometimes

 76

insufficient as mentioned in section 6.2.1, the slopes of the images of 0° and 90° are the

same. Finally, at Pmax, the outputs of the process Dbest and Pbest are obtained.

6.3.6.2 Classification of the landmark types using the upper pixel processing (Model

matching for the upper part). In this process, upper pixel processing is used for

recognizing the type of landmark. The landmark was designed as described in Section

6.2, such that it is divided into four different types of landmark, L1- L4.

 The process to distinguish the landmark types by using tree search and edge

detection is as is shown in the diagram in Figure 6.21. It must be assumed that the

landmarks L1 - L4 are belong to class A. In class A, there are three groups of landmark

types: rectangular, null shape, and cylinder. The landmark types are recognizable by

using the edge detection described above in Section 6.4.3.

Figure 6.21: The tree diagram for landmark type classification.

 The criteria for distinguishing between landmark types are the edge widths that

are the column edge width Wc and the row edge width Wr of the smoothed image and of

the generated model image. The characteristics of the edges of four landmark types L1 -

L4 have to be investigated first (below) in order to define the distinguishing classifiers.

The criteria for determining a classifier for landmark type are:

• If there is no column edge present (Wc = 0), check the row edges in order to

distinguish between L1 and L2. If there is no row edge (Wr = 0), the match is L1.

Otherwise, the match is L2.

• If there are column edges (Wc ≠ 0) present but no row edge (Wr = 0), check for

the column edge widths for L3 and L4. By defining the two errors as ErrorWc3

 77

and ErrorWc4, the minimum error for each type is matched to L3 and L4,

respectively. These errors are calculated by

ErrorWc3 = Wc – Wc3,model, (6.29)

ErrorWc4 = Wc – Wc4,model, (6.30)

where Wc3,model and Wc4,model are the column edge widths of the model images of L3 and

L4, respectively. Note that when the resolution of PMD camera is higher, landmarks

can have more complicated shapes and the object recognition of range images [BES 88]

[JAI 90] [FAN 90] [SUK 92] can be exploited for upper part recognition.

6.3.7 Tests of landmark recognition

 Since landmark recognition is divided into two parts, recognition of the upper

part and the lower part, the experiments are set up to test the two parts of landmark

recognition separately by using off-line image data. In section 6.3.7.1, the first test is to

check the performance of the lower part recognition strategy that was explained earlier

in Section 6.3.6.1. A landmark was placed in front of the robot and in varying positions.

In section 6.3.7.2, the second test is to check the performance of the upper part

recognition strategy. The images of four different landmark types were tested using the

method described above in Section 6.3.6.2.

6.3.7.1 A test of the lower part recognition strategy. The landmark recognition

strategy was tested off-line with the 16x16 pixel camera. In practice, we want to use the

result from landmark recognition for the position calibration as explained later in

Section 6.4. Here, the actual positions of robot for the position calibration are marked

on the ground as shown in Figure 6.22a. The centre of rotation represents the landmark's

centre of gravity.

In fact, we do the experiment in the inverse way. We put the landmark on a

rotary stage and fix the camera in order that we can set the distance positions and angle

positions as we want exactly. Then, we start the first experiment with course angle step

of 11.25°. The tested angle positions are at 0° to 90° with 11.25° step and the distance

positions are at 80 cm, 100 cm, and 120 cm. In total, we are matching 10 angle positions

x 3 distance positions = 30 calibrating positions. Note that since the rotation of

 78

landmark occurs around its centre of gravity, the sideward translation of the coordinate

could be neglected.

Figure 6.22b shows symbols of the main distance and angle positions as

rectangles, circles, and triangles. The results obtained from the landmark recognition

processes can be explained as follows: At a radius of 80 cm, at 0°, the matching result is

0° angle position shown as a circle. At 11.25° and 22.5°, the arrows point from the

angle positions 11.25° to 0° position and from 22.5° to 0° position since the matching

result of 11.25° and 22.5° angle positions are both 0°. In the same way, the matching

result of 34.75°, 45°, and 56.25° angle positions are 45°. Also, the matching results of

67.5°, 78.75°, and 90° angle positions are 90°. For 100 cm and 120 cm, the rectangles

and triangles represent the matching results and the results have similar matching errors.

These errors are from the undistinguishable of neighbourhood positions regarding the

resolution of image and uncertainty in measurement of the 16x16 pixel PMD camera.

However, at the main distance and angle positions marked as symbols, we get correct

matching results.

(a) (b)

 Figure 6.22: Matching results of the lower part using 16x16 pixel PMD camera:

(a) actual positions; (b) symbolic representation of the results.

Up to this point, we conclude that the recognition of smoothed images are

qualified at 0°, 45°, and 90° angle positions of 80 cm, 100 cm, and 120 cm distance

positions. For other angle positions, the matching results are not satisfied.

 79

Next, we do a new test by using courser angle step of 45°, instead of 11.25°. We

do matching for only 9 positions, Pos1 to Pos9 defined in Table 6.4. Since these

positions are the positions where robot perform the landmark recognition and the

position calibration, they are called calibrating positions. We investigate further for the

numerical results of the matching process at these calibrating positions. The process is

as explained above. Matching according distance position was performed first, in

keeping with the matching process described above in Section 6.3.6.1. The summations

of distance errors ED(D) in (6.28) are shown in Table 6.5a. Let the wildcard ‘*’, ‘#’, and

‘x’ represents the candidate distance positions 80cm, 100cm, and 120cm, respectively.

As shown in the table, at 80 cm distance position, the summation of error ED (*), is

smaller than ED (#) and ED (x). Therefore, the matched distance position Dbest of Pos1 is

80 cm. For Pos2 – Pos9, the bold numbers are the minimum errors. The matching

results of all 9 positions are correct. These results Dbest will be used further for matching

the angle positions in Table 6.5b.

The second step in the matching process is to find a match for the angle position

Pbest. Table 6.5b consists of the slope error ES(Dbest, P) and distance error ED(Dbest, P)

at each candidates for Pbest; 0°, 45°, and 90°. The matched angle position is the position

that has the minimum error for both ES (Dbest, P) from (6.26) and ED (Dbest, P) from

(6.27).

Table 6.4 Names of calibrating positions.

Positions 80 cm 100 cm 120 cm
0° Pos1 Pos4 Pos7

45° Pos2 Pos5 Pos8
90° Pos3 Pos6 Pos9

Table 6.5a: Matching result of the distance position.
Candidates for DbestPosition ED (*) ED (#) ED (x)

Matching result:
Dbest

Pos1 19.95 105.11 482.84 80cm
Pos2 30.91 271.83 807.01 80cm
Pos3 57.69 364.81 965.95 80cm
Pos4 287.76 36.35 75.29 100cm
Pos5 135.20 18.82 194.30 100cm
Pos6 63.80 39.99 307.99 100cm
Pos7 889.12 324.27 47.72 120cm
Pos8 633.62 182.01 19.96 120cm
Pos9 428.64 86.30 33.31 120cm

 80

Table 6.5b: Matched result of the angle position.
Candidates for PbestPosition ES(,0°) ED(,0°) ES(,45°) ED(,45°) ES(,90°) ED(,90°)

Matching result:
Pbest

Pos1 0.25* 5.95* 203.04* 49.68* 0.25* 143.84* 0°
Pos2 166.11* 226.87* 0.75* 58.07* 166.11* 24.11* 45°
Pos3 0.33* 366.53* 205.16* 185.72* 0.33* 24.63* 90°
Pos4 0.72# 2.53# 375.14# 117.01# 0.72# 244.01# 0°
Pos5 243.75# 117.70# 8.44# 8.11# 243.75# 62.42# 45°
Pos6 0.55# 253.89# 370.92# 142.59# 0.55# 3.39# 90°
Pos7 0.72x 11.15 x 493.99 x 159.87 x 0.72 x 306.17 x 0°
Pos8 294.91 x 75.88 x 17.68 x 3.03 x 294.91 x 120.71 x 45°
Pos9 6.83 x 187.78 x 575.57 x 143.03 x 6.83 x 2.30 x 90°

As shown in Table 6.5b, at Pos1, when comparing ES(*, 0°) with ES (*, 90°),

they have equal slope errors of 0.25 but their distance errors are different. Since, the

distance error ED (*, 90°) is larger than ED (*, 0°), the matching result Pbest of Pos1 is

0°. This double decision-making step was mentioned in section 6.3.6.1. For Pos3, Pos4,

Pos5, Pos7, and Pos9, the distance errors at 0° and at 90° are compared since the slope

errors are equal.

All matching results are correct. Therefore, we call the resolution of position

calibration is of 45° step and 9 calibrating positions. Next, we proceed with the

experimental results of matching of the upper part.

6.3.7.2 A test of the upper part recognition strategy. This test makes use of the

classification categories for the landmark types described in Section 6.3.6.2. Eight

filtered images, two images of each of landmark L1 – L4, are taken for test purposes.

These images in Figure 6.23-6.26 are named I1 - I8, respectively.

As shown in Figure 6.23a and 6.23b, the filtered image of L1 is a flat plane

across all pixel rows, since L1 is a rectangular type landmark. Figure 6.24a and 6.24b

shows landmark L2, which has null shape. The distance values present in the upper part

of the image reflect the background distance. Figure 6.25a is a filtered image of L3,

which is a cylinder type landmark. The upper part image shows the convex of the

cylinder, instead of the concave as in the model image since the light scattering at the

edge of the cylinder causes small reflected light and therefore smaller distance value

than the actual distance. Figure 6.25b is also an image of L3, but the cylinder part

appears smaller since the image was taken from farther away. Figure 6.26a depicts L4,

also a cylinder type landmark in a different size. The image shows the upper part of L4

as a small cylinder tab which is farther away than the lower part of the landmark.

 81

Similarly, in Figure 6.26b, the upper part is almost not detectable since the cylinder is

even farther away from the camera. The light is scattered away from the landmark due

to the curved shape of the cylinder's surface.

 The matched type results are shown in Table 6.7. In I1 and I2, the column edge

width Wc is zero and the row edge width Wr is zero. There are no edges present in the

image. From this information, the matching strategy deduces that the landmark type is

rectangular that is L1. I3 and I4 show the column edges to be zero and the row edge

widths as 8. These are the measurements for the null type landmark and so the matched

result is L2. In I5 and I6, the row edge widths are also zero but unlike the two previous

examples there is a detectable column edge width. It must then be determined whether

or not this edge width matches the measurements of the generated model for L3 or L4.

As the diameters of the cylinders are different for the two landmarks, the column edge

widths are also different.

 The difference in edge widths is the criterion for matching and these differences

are called ErrorWc3 and ErrorWc4 as in (6.29 – 6.30). In I5, ErrorWc3 is less than

ErrorWc4. Therefore, the matched type is L3. The same criterion is applied for I6, I7,

and I8. We obtain the correct landmark types for all images. The matching tests are

therefore successful. Further, during the real-time matching process, the Dbest, Pbest and

landmark types are exploited in the position calibration explained in the coming section.

Table 6.6: The matching results of landmark type classifier.

Image name Wc Wr ErrorWc3 ErrorWc4
Matching result:
Landmark type

I 1 0 0 0 0 L1
I 2 0 0 0 0 L1
I 3 0 8 0 0 L2
I 4 0 8 0 0 L2
I 5 8 0 1 3 L3
I 6 5 0 0 2 L3
I 7 4 0 3 1 L4
I 8 3 0 2 0 L4

 82

0

5

10

15

20

0
5

10
15

20

0

200

400

600

800

1000

(a)

0

5

10

15

20

0
5

10
15

20

500

1000

1500

(b)

Figure 6.23: The filtered images of L1: (a) I1; (b) I2

0

5

10

15

20

0
5

10
15

20

0

500

1000

1500

(a)

0
5

10
15

20

0

5

10

15

20

0

500

1000

1500

2000

(b)

Figure 6.24: The filtered images of L2: (a) I3; (b) I4

0

5

10
15

20

0

5

10

15

20

0

500

1000

1500

(a)

0
5

10
15

20

0

5

10

15

20

0

500

1000

1500

2000

(b)

Figure 6.25: The filtered images of L3: (a) I5; (b) I6

0
5

10
15

20

0

5

10

15

20

400

600

800

1000

1200

(a)

0
5

10
15

20

0

5

10

15

20

500

1000

1500

2000

(b)

Figure 6.26: The filtered images of L4: (a) I7; (b) I8

 83

6.4 Position calibration

The idea behind doing position calibration is to reduce the accumulated errors of

relative localization that are the position and heading errors. A position calibration is an

absolute localization technique. This technique corrects the robot position and heading

by using the artificial landmark and 3D vision. In practice, the artificial landmark is

placed in the environment before the robot starts its navigation. Since the landmark

position is known already and the relative position of the robot to the landmark is

obtained from the landmark recognition, the robot position is directly calculable. This

section explains the process of calculation of the robot's position and heading using the

output of landmark recognition process from the previous section.

6.4.1 Position prediction and update

 As shown in Figure 6.27, the vector for robot position Vr is calculated by

Vr = Vo + Vd , (6.31)

where Vo is known from the a priori known landmark position P(Xo, Yo) and Vd is

calculated from the rotational angles δ, the camera heading β, and the radius D. Let us

define the related variables here.

In the figure, the global coordinates, camera coordinates, and robot coordinates

are denoted by (Xg, Yg), (Xc, Yc), and (Xr, Yr), respectively. δ is the rotational angle

between the camera and the object coordinates assumed to be the global coordinates.

The camera heading angle β is the angle between the robot and the camera headings.

The radius D has centre at the landmark coordinate P(Xo, Yo). α is the angle of the

robot's heading referred to by the global y axis Yg. β is already known from the

orientation and positioning of the camera motor, which is mounted on the robot. If β

equals -90°, the camera heading is the same as the robot heading.

With the a priori known object position P(Xo, Yo) on the global coordinate and

the rotational angles δ and radius D obtained from the previous section, the robot

position P(Xr, Yr) using the relationship in equation (6.31), can be calculated by

⎥
⎦

⎤
⎢
⎣

⎡
+
+

+⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
)180sin(
)180cos(

δ
δ

D
D

Y
X

Y
X

o

o

r

r (6.32)

 84

The robot's heading α, the robot's angle position, and the landmark angle position, to

which the global coordinate refers, are obtained from

α = δ - β. (6.33)

where Xr, Yr, Xo and Yo are the position coordinates of the robot and landmark on the

global coordinates, respectively. Finally, the position can be updated by replacing the

robot position P(Xr, Yr) with the current estimated robot position on the positioning

system.

6.4.2 The on-line position calibration experiment.

The on-line position calibration starts with landmark recognition and outputs

from landmark recognition are further exploited as inputs for the position prediction and

update processes.

Sample of landmark image taken with the PMD camera are shown in Figure

6.21. The black pixels in the images represent a large distance value (far away). White

pixels represent the surface area of the landmark, which is closer than the background

wall (black pixels). The blue pixels represent a distance value between white and black.

There are some pixels on the edges and corners which are a mixture of white and blue.

This shows light reflected at the edges: some of it scatters away and some returns to the

camera. Note that a sample L1 image is not shown here since it is an overall white

image.

 In the tele-operated mode, the robot is controllable by using joystick or arrow

keys. In this experiment, we drive the robot to the landmark and stop there. Then, we

start image filtering and do the position calibration. Using the PMD camera's GUI, the

operator can command the robot to do the position calibration. Appendix B provides

details of PMD camera’s GUI. The on-line experimental results are presented here.

 The result from different phases of image filtering is shown in Figure 6.29. The

top middle panel shows the filtered image and the bottom middle panel shows the

captured image from PMD camera. At the beginning, in Figure 6.29a, the top panel is

empty. Later, in Figures 6.29b and 6.29c, the filtered images are similar to the captured

images. Since the position calibration is integrated into the tele-operated control, after

the image filtering, the robot position calibration is performed on-line.

 85

Figure 6.27: The reference coordinates and definition of related variables for position

calibration.

(a)

(b)

(c)

Figure 6.28: Sample PMD images plotted on Java platform: (a) L2; (b) L3; (c) L4.

(a) (b) (c)

Figure 6.29: Filtered images (upper) and captured images (lower): (a) Initial; (b) after

some time; (c) finish filtering.

 86

 Here, we also present the results of the integration of relative and absolute

localization on-line. On GUI, the robot driven path is shown as solid line. This driven

path is obtained from the relative localization. Figure 6.30a shows the robot position

and heading. Before the position calibration has been done, the robot position has not

yet been correctly deduced. After the position calibration, in Figure 6.30b, the estimated

robot heading and pose are the same as the actual position. The absolute localization

was processed and the robot absolute position and heading replaces the relative position

and heading. After the robot calibrates its position, in Figure 6.31, the driven path is

shown. When compared to the position and heading before calibration, the error is

suddenly eliminated at the calibration point. The position calibration can be activated

manually according to the wish of the user.

(a) (b)

Figure 6.30: The robot driven path, position and heading during on-line experiment: (a)
before calibrating position; (b) after calibrating position.

Figure 6.31: The integration of relative and absolute localization on GUI.

 87

 At present, the camera is fixed to the robot with no axis to allow for rotation.

When the camera was rigged such that it could rotate horizontally, the robot would be

more flexible to perform position calibrations since the robot heading would not

necessarily have to face the landmark. The robot would only need to stop somewhere

near the landmark and the PMD camera could then scan for the landmark in the area

around the robot. Further developments should be made so that the robot can distinguish

a landmark from other obstacles. If the object found is recognized as a landmark, the

robot calibrates its position automatically; otherwise, the robot tries to avoid those

objects by getting out of the way.

 Besides, the improvement for resolution of the position calibration is necessary

since the 16x16 pixel camera provides only 45° angle step and 9 calibrating positions.

The robot can only calibrate its position at the calibrating positions as in Table 6.4. The

higher resolution for position calibration can be achieved by using the higher resolution

camera. In the next chapter, we present the improvement for the resolution of the

position calibration.

 88

7 Improvement for the Resolution of the Position Calibration

The previous chapter explained the position calibration by using the 16x16 pixel

PMD camera. Since the resolution of the 3D image limits the performance of the

landmark recognition, this chapter focuses on the improving the resolution of the

position calibration. With the 48x64 pixel PMD camera, we propose a new technique

for landmark recognition by using both 3D image and also 2D image. The following

sections give a short introduction about the measurement of the 48x64 pixel PMD

camera and explain the usage of 2D and 3D images for landmark recognition.

7.1 The measurement characteristics of 48x64 pixel PMD camera.

We start with the investigation of characteristics of measurement data of this

PMD camera. We set the integration time to 1000us. Since the deviation of measured

value is also depended on the integration time, throughout this chapter we let the

integration time be constant. At 2500 mm, the distance value from 100 frames of the

centre pixel is shown in Figure 7.1. The largest deviation is 35 mm and the mean value

is 2409 mm.

As mentioned in section 6.1, the camera measures the distance to a flat white

board but each pixel has different mean values regarding uncertainty of measurement. It

is interesting to see how large the different among these mean values is. We take 9

pixels out of 3072 pixels. Figure 7.2 and 7.3 present how the mean and the standard

deviation of the distance value are. These pixels are the centre pixel (24, 32), the outer

pixels (8, 8), (8, 54), (40, 8), and (40, 54), and the inner pixels (12, 16), (12, 48), (36,

16), and (36, 48).

In Figure 7.2, the mean value at each distances from 500 mm to 2500 mm of all

selected pixels are closed to the actual distance. Between 500-1800 mm, the measured

values are exact. The mean of the measured distance values farer than 1800mm are

shorter than actual distances. At the 2500 mm distance, the different between the

measured distance value and the actual distance is in the range of 100 – 130 mm. These

mean values present the higher accuracy in measurements, when compared to those of

the 16x16 pixel camera.

In Figure 7.3, the STD values of all pixels are proportional to the distances.

When the distance is farer, the STD value is also larger. The STD represents the

 89

uncertainty in measurement. At 500 mm, the maximum STD is 2.5mm only. When

comparing to the 16x16 pixel camera, this value is much smaller. Moreover, at 2400

mm, the maximum STD is approximately 30 mm whereas that of the 16x16 pixel

camera is 170 mm. Therefore, the 48x64 pixel camera has not only higher resolution

and faster frame rate than the 16x16 pixel camera, but it also provides smaller

uncertainty and higher accuracy in measurement.

Figure 7.1: Measured distance values of the 48x64 pixel PMD camera at 2500 mm.

500 1000 1500 2000 2500
500

1000

1500

2000

2500

Distance away from camera (mm)

M
ea

n
of

 m
ea

su
re

d
va

lu
e

fro
m

 5
0

sa
m

pl
es

 (m
m

)

500 1000 1500 2000 2500
500

1000

1500

2000

2500

Distance away from camera (mm)

M
ea

n
of

 m
ea

su
re

d
va

lu
e

fro
m

 5
0

sa
m

pl
es

 (m
m

)

pixel(8,8)
pixel(8,54)
pixel(40,8)
pixel(40,54)
real Distance

pixel(12,16)
pixel(12,48)
pixel(36,16)
pixel(36,48)
pixel(24,32)
real Distance

Figure 7.2: Mean of the measured values of the selected pixels.

 90

500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Distance away from camera (mm)

S
TD

 o
f m

ea
su

re
d

va
lu

e
fro

m
 5

0
sa

m
pl

es
 (m

m
)

500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

Distance away from camera (mm)
S

TD
 o

f m
ea

su
re

d
va

lu
e

fro
m

 5
0

sa
m

pl
es

 (m
m

)

pixel(12,16)
pixel(12,48)
pixel(36,16)
pixel(36,48)
pixel(24,32)

pixel(8,8)
pixel(8,54)
pixel(40,8)
pixel(40,54)

Figure 7.3: Standard deviation (STD) of the measured value of the selected pixels.

For the landmark recognition, we work in the near distance range of up to 1.5

meter, where the maximum STD is about 7 mm only. Therefore, when the camera is

standstill, no filtering is required and only one frame of the scene is sufficient for

landmark recognition. We also obtain a profit in time consumption since we do not

loose time in filtering process. The landmark recognition process for the 48x64 pixel

camera is slightly different from that of the 16x16 pixel camera. The process will be

later explained in section 7.3. Here, we proceed with the 2D image processing for

landmark recognition.

7.2 The 2D image processing for landmark recognition.

Here, we present the idea of exploitation both 2D and 3D images for improving

the resolution of position calibration. We apply the horizontal edge of 2D image in

image smoothing of the landmark recognition. Previously, we can do edge detection

from the PMD image by using the differential value among neighbour pixel but the

detected edges are sometimes not satisfied since it causes error in smoothed image

explained later in section 7.3.2. Therefore, the edge from 2D image is exploited as an

auxiliary edge for smoothing of PMD image since the 2D image has higher resolution

than the PMD image. As to this purpose, what we need are the proper method for 2D

edge detection and the relationship of pixel positions of the 2D and 3D images.

 91

7.2.1 The horizontal edge detection of 2D color images.

The Logitech Quickcam® Pro 4000 web camera provides 240x320 pixel

resolutions with the captured half angle of 17° vertically and 22.5° horizontally. We use

the image processing toolbox in MATLAB to detect edges of the landmark in the 2D

image as shown in Figure 7.4a. The image is first converted from RGB into the standard

L*a*b* color space created by the international commission of illumination (CIE).

After that K-means clustering classifies the color, we perform both horizontal and

vertical edge detection as shown in Figure 7.4b. After noise elimination, we get sharp

edges as shown Figure 7.4c. Since the vision of the PMD camera is narrower than the

web camera, the rectangle frame in Figure 7.4a indicates the detection area of the PMD

camera, in which the PMD image is shown in Figure 7.4d. This method of edge

detection does not perform well, when the color of landmark is closed to that of the wall

in the background, since there is much noise in edge detection.

(a) (b) (c) (d)

Figure 7.4: The first result of edge detection of 2D image: (a) original image; (b) edges;

(c) edges after noise elimination; (d) 3D PMD image.

Since the contrast of the color is not clearly distinguishable, the white poster on

the wall and the door behind the landmark are classified in the same color class as

landmark and the detected edges are noisy as shown in Figure 7.5b. When we adjust the

threshold value for noise elimination, the edges are as shown in Figure 7.5c. The noises

are not easily taken out since when we further remove noises by adjusting the threshold

value, the edges are also missing.

Regarding the above mentioned problem in noise elimination, a new approach is

to detect the horizontal edge of the landmark by scanning for the specified RGB

threshold value. We select an appropriate threshold value for white color that is

obviously distinguishable from the background wall. The result image of Figure 7.6a is

shown in Figure 7.6b. Here, the image contains only the landmark. After that the color

 92

image is converted into gray scale image and the noise elimination is performed. The

final gray image is shown in Figure 7.6c. The edge detection from this image is

qualified since the noises in the background are all eliminated. Next, we take only the

horizontal edge that is the border line of lower part of the landmark and place this

horizontal edge in the 3D image for the image smoothing described later in section 7.3.3.

Here, we explain how the pixel positions of the PMD image are related to those of the

2D image.

(a) (b) (c)

Figure 7.5: The noise in edge detection of 2D image: (a) original 2D image; (b) edges;

(c) edges after noise reduction.

(a) (b) (c)

Figure 7.6: The horizontal edge detection of 2D image; (a) original 2D image; (b) gray

scale image; (c) the noise eliminated image.

7.2.2 The relationship of pixel positions of 2D and PMD images.

Our aim is to locate the 2D horizontal edges on the 3D image. Therefore, we

need to find out the relationship between 2D and 3D row pixels. The relationships of

pixel positions depend on camera positions. The first version of camera position is as

shown in Figure 7.7a. Though cameras have superposition of the detection area but the

altitude level is differed by Hd and the horizontal pixel position are not linearly

proportional.

 93

Instead of solving the relationship of pixel position in Figure 7.7a, we found a

better solution. An innovative idea is to combine 2D and PMD camera and this new

camera is called a Combi 2D/3D camera [PRU 05]. As shown in Figure 7.7b, since the

different in altitude is zero (Hd = 0), the 3D detection area lies in the middle of 2D

detection area. The pixel positions of the 2D and PMD images are linearly proportional.

Since the Combi camera is in production, this work is performed by using the concept

of Combi camera. In the experiment, we place the Logitech camera and PMD camera at

the same position, one at a time, in order that the optical axis of both cameras is

identical. As a result, the relationship between row pixels of the Logitech camera and

PMD camera are as following:

2 120.5 24.5
3.5

D
pmd

RPRP −⎛ ⎞= +⎜ ⎟
⎝ ⎠

(7.1)

where RP2D and RPpmd are the row pixel of the Logitech camera and PMD camera,

respectively. The exploitation of this relationship is explained in the coming sections.

 (a) (b)

Figure 7.7: The detection area of 2D and PMD cameras: (a) 2D and PMD camera;

(b) Combi 2D/3D camera.

7.3 Recognition of the lower part of landmark by using 2D and PMD images.

The recognition of lower part of landmark by using 2D and 3D images is shown

in Figure 7.8. First, the 2D captured image is processed for horizontal edge detection as

explained earlier in section 7.2.1. This horizontal edge is an input for image smoothing.

The 3D captured image is smoothed by using the horizontal edges of 2D image and

(7.1). Meanwhile, the model image is generated.

After that the line fitting of both smoothed image and generated model image are

processed and are furthered used for matching process. The edge detection and model

matching are identical to section 6.3.4 and 6.3.6.1, respectively. Therefore, here, we

 94

explain only the different processes. The model image generation is slightly different

from what was explained earlier. For the image smoothing, an additional process is the

replacement of horizontal edge of 2D image on the PMD image.

7.3.1 Model image generation

As explain in section 6.3.3, the model image is generated by knowing the half

angle of the camera and the landmark dimension. The 48x64 pixel camera has 6.4x4.8

mm2 chip with 16 mm focus. Therefore, the horizontal and vertical half angle is 11.31°

and 8.53°, respectively. The sample of the model images at several angle positions are

shown in Figure 7.9. When compared to the generated model image from 16x16 pixel

camera, the edge or corner of the lower part of the 48x64 pixel is clearer and the corner

of the lower part is easier to recognize. Besides, the surface of image is much smoother

regarding less uncertainty in measurement. In Figure 7.9a, the slope value is zero

regarding 0° angle position. When the landmark is rotated to 50° angle position, the

slope of lower part exists but the edge of corner doesn’t exist as shown in Figure 7.9b.

When the landmark is further rotated to 60° angle position, a corner exists as shown in

Figure 7.9c.

7.3.2 Image smoothing

For this 48x64 PMD camera, the method is identical to as explained in section

6.3.2. The sample captured image before smoothing is shown in Figure 7.10a. In this

figure, the background values are those large distance values on the left upper corner

and on the right upper corner.

When we detect edges by using the differences of measured distance value

among neighbourhood pixels, we get sometimes improper horizontal edges and we

obtain the smoothed image as shown in Figure 7.10b, instead of Figure 7.10c. The

problem is that the number of row n in equation (6.6) is not proper. Therefore, the

average value is wrong since it consists of the large distance values in the upper corners

of background values in Figure 7.10a.

A solution for this problem is replacing the detected horizontal edge from 2D

image to the horizontal edge of PMD image. After the 2D edge detection as explained

in section 7.2.1 and (7.1) are applied. The proper smoothed image is shown in Figure

7.10c. This smoothed image is qualified and is further processed for the landmark

 95

recognition. The next section presents the experimental results from landmark

recognition of the lower part.

Figure 7.8: Landmark recognition of the lower part using 2D and PMD images.

(a) (b) (c)

Figure 7.9: 3072 pixel model images at 800 mm; (a) 0°; (b) 50°; (c) 60°.

(a) (b) (c)

Figure 7.10: Image smoothing; (a) before; (b) after; (c) after.

 96

7.4 Experimental results

Since we want to compare the experimental results with those of the 16x16 pixel

camera in Chapter 6, we set up the same experiment. The landmark is again on a rotary

stage and the cameras are standstill. The only different is that we turn the landmark with

finer angle position of 5° step, instead of 11.25° step. We capture 2D and 3D images

from the Logitech web camera and the PMD camera in the range of from 0° to 90°

angle position. The distance position is the same as previously; 800 mm, 1000 mm, and

1200 mm. The test results are broken down into two parts; the horizontal edge detection

of 2D image and the model matching.

7.4.1 The results of 2D horizontal edge detection.

Figure 7.11a shows the landmark photos at several angle positions. From the

edge detection as explained in section 7.2.1, we find the horizontal edge and the row

pixel number of the edge for image smoothing. Here, we present the detected row pixel

numbers at each angle position and at 800 mm, 1000 mm, and 1200 mm distance

position as shown in Figure 7.11b.

At the 800 mm distance position, edges of all angle positions lie between the

179th and the 186th row pixel. As expected, the row pixel numbers at various rotation

angles are closed to each other but they are not exactly equal. Similarly, at 1000 mm,

the horizontal edges lie between the 176th and the 181th row pixel. At 1200 mm, the

horizontal edges lie between the 175th and the 178th row pixel. These 2D row pixel

numbers are converted into the 3D row pixel number using (7.1). By using these results

for the image smoothing, we get the matching result as presented in the section below.

7.4.2 The results of model matching.

The model matching result in this section should be compared with that of

section 6.3.7.1. In the experiment, the model images are generated at fine steps, at every

1° rotation angle for fine searching. According to the recognition process in section 7.3,

the matching result is as shown in Figure 7.12.

The smoothed image of 0°, 5°, 10°, …, 90°, are matched to the generated model

image. In total, we have 19x3 = 57 calibrating positions. The matched angles are closed

to the reference (actual) angle for all angle positions. At the distance of 800 mm, among

0° to 90°, the largest error is 7° at the angle position of 80° and the STD of the error

 97

among all angle positions is 2.7°. At 1000 mm and 1200 mm, the maximum matching

errors is 5° and the STDs of error are only 1.3° and 1.5°, respectively.

(a) (b)

Figure 7.11: Results of edge detection of 2D image: (a) 2D captured image at various

positions; (b) the row pixel number from edge detection of each angle position and

distance position.

Figure 7.12: Results of matching of the lower part using 2D and PMD images.

 98

These results from 48x64 pixel PMD camera outperform the matching results of

the 16x16 pixel camera in the previous chapter since the matched result of 5° step was

not possible for the 16x16 pixel camera due to resolution of the camera. Further, the

resolution of position calibration was 9 calibrating positions with 45° step as described

in section 6.3.7.1. By using the 48x64 pixel PMD image and a 2D image, the resolution

is improved from 9 to 57 calibrating positions with the angle positions of 5° step,

instead of 45°. The idea of usage of the 2D and 3D images to improve the resolution of

the position calibration is therefore successfully implemented.

 99

8 Summary and Perspective

 This research was done using various prototypes of the car-like mobile robot

platforms and its tele-operated control mechanisms. The developments were made to

the robot hardware of several prototypes and robot's autonomous features and robot

localization techniques.

 Autonomous features: Autonomous features are obstacle avoidance, the 180°

turning system for narrow corridors, and the path following control. Obstacle avoidance

is categorized as the obstacle collision avoidance and the wall following control. The

fuzzy controller and the if-then controller are applied for these obstacle avoidance

strategies using four ultrasonic sensors and six infrared sensors. The performance of the

algorithms was tested in several different scenarios. The obstacle collision avoidance

algorithm is suitable for environments with obstacles that have short boundaries,

whereas the wall following algorithm is suitable for long continuous boundary obstacles

such as the wall of a building. The obstacle collision avoidance is further exploited for

the 180° turn in a narrow corridor and the wall following algorithm is further exploited

for the path following control function.

 By integrating the obstacle avoidance into the turning process, the robot was

able to turn into 180°, when there are unknown obstacles during the operation. The

results show that the robot heading is 180° as expected. The path following control for

the car-like mobile robot in an unknown environment integrates the basic path

following control, and implements both the wall following and the trajectory generation

function. The on-line experimental results show that the robot performs the designed

path following process successfully and can reach a final desired position and heading.

Robot localization techniques: The robot localization is classified into two types;

relative and absolute localization. For the relative localization, we used the discrete

extended Kalman filter along with the nonlinear dynamic model as the robot position

estimator. We performed experiments on several path types and compared the final

position errors and final heading errors, when using odometer, gyroscope, or compass

data. The gyroscope estimation provides minority performance in robot final position

for the line path. For the other path types, the gyroscope estimation position errors are at

least smaller than those of the odometer measurement. The performance in final heading

of the gyroscope estimation dominates in most cases the compass estimation and

 100

odometer measurement. As here the gyroscope provides also very good estimation of

the whole path, it is considered as the best method to be used for relative robot

localization in indoor environment.

 For the absolute localization, we exploited the PMD camera's 3D vision and

built artificial landmarks for the robot's position calibration. This involved the design

and implementation of artificial landmarks, and the development of strategies for

landmark recognition and position calibration. The results show that the landmark

design and the developed landmark recognition can be applied under the restraints of

16x16 pixels resolution and the time consumption is mainly due to the process of

filtering the images. We tested the on-line position calibration and the results show the

integrated relative localization with the absolute localization techniques successfully.

Nevertheless, the improvement for resolution of the position calibration is necessary.

 The resolution of the position calibration is improved by using the 48x64 pixels

PMD camera and a 2D camera. We investigate how to do edge detection on the 2D

image and to place this edge on the 3D image such that the smoothing process is

efficient. Regarding the high resolution of PMD camera, the results show much

improvement in the position calibration and also convince that the designed landmark

recognition is applicable for higher resolution PMD camera.

 The application of the position calibration using 3D artificial landmarks is not

restricted to use by the car-like mobile robots but also applicable for other mobile

robots. The 3D artificial landmark and the proposed recognition technique would also

function with PMD camera with higher resolution and also with other types of 3D

vision range sensors.

 101

Appendix A: Microcontroller

 The microcontroller specification and its

developed software structure are described here in

details. As shown in Figure A.1, the minimodule of the

16-bit microcontroller 80C167 CR-LM is manufactured

by Infineon and is programmable using C programming

language. For our purposes, we exploited the compiler

“Keil” from µvision and the code downloader

“Flashtool”.

Figure A.1: Infineon
Minimodule C167 CR-LM

A.1 Hardware specification

The features on the microcontroller are listed as

follows:

• 20MHz CPU Clock

• 4 channels of pulse width modulation (PWM) generator

• General Purpose Timer (GPT) and Universal Asynchronous Receiver

Transmitter (UART)

• 32 CAPTURE and COMPARE channels for real-time signal processing

and generationocessng

• Four additional 2.5MHz 16-bit timers

• A sixteen channel 10-bit AD convertor

• 11/29-bit part 2.0B controller area network (CAN) peripheral

• 111 total pins of input/output (I/O)

• 256kb off-chip flash erasable programmable read only memory

(EPROM)

• 64kb SRAM

A.2 Software structure

One of the problems with the control software we designed is the question of

how to deal with interrupt routines. During the main loop functions, the interrupt

routines have higher priority and are run immediately, when they are called. Therefore,

the management of the main loop functions, the appropriate interrupt priority level, and

 102

the frequency of the interrupt routines must be well coordinated. When functions are not

organized properly to operate compatibly the microcontroller gets too busy with the

interrupt routines and has no time for its main operations. When this is the case, the

function on the main operation is delayed. We organized the interrupt settings for

solving this problem.

A.2.1 Main loop function

A flow chart showing MERLIN's main operations when under tele-operated

joystick and a path control function is shown in Figure A.2. First, the robot initializes all

variables, flags, interrupts settings, and PWM settings, and calibrates the gyroscope

measurement. After that the robot waits for a command from MerlinClient telling it

which operation mode is to be activated the joystick or path control. In the path control

mode, the robot performs either its basic path following routine or the path following

with obstacle avoidance. In the joystick control mode, the robot performs left hand side

or right hand side wall following, or its obstacle collision avoidance routine. After each

process is done, the process in question is repeated until the operation mode is changed

or until the reset command is issued.

Figure A.2: The main operations of the microcontroller.

 103

A.2.2 Path following control functions

The path control function has two main task categories, line path control and arc

path control. Figure A.3 shows which types of paths are recognizable and which

commands can be given.

Figure A.3: Recognized path types.

A.2.3 Data packets

The data packet is defined as in Table A.1. There are several types of commands

that can be issued from the client PC, such as the path control commands, or the

joystick control commands. Conversely, there is only one data packet which can be sent

from the robot to MerlinClient.

A.2.4 Interrupt timers and A/D converter

As mentioned earlier, the handling of the interrupt routine is important to ensure

the smooth functioning of the main operations. The details of the interrupt priority

settings and timer settings of MERLIN are given here. There are 0 to 15 interrupt

priority levels for the microcontroller, where 15 is the highest priority level and 0 the

lowest. On each priority level, there is also a group priority level ranging from the

lowest possible level of 0 the highest possible level with priority 3. The interrupt

priority settings are shown in Table A.2 and the timer period settings are shown in

Table A.3. The seven channels of the analog to digital (A/D) converter are exploited to

 104

transmit the gyroscope and the infrared signals. Table A.4 presents the channel numbers

and their corresponding sensor signals.

Table A.1: Sent and received data packets (on robot).

Type
Flow
direction

Length
(bytes)

Description Details

‘s’ robot 10 Start joystick control To reset the variables, calibrate gyro
measurement, and start the joystick
control.

‘S’ robot 10 Start path control To reset the variables, calibrate gyro
measurement, and start the path
control..

‘p’ robot 10 Path begin packet This is the first part of the path
command, which specifies the
number of total line and arc paths.

‘e’ robot 10 Path end packer This is the last part of the path
command packet.

‘g’ robot 10 Path line forward The data packet consists of the
length (cm) and the direction
(forward).

‘h’ robot 10 Path line backward The data packet consists of the
length (cm) and the direction
(backward).

‘k’ robot 10 Path arc forward The data packet consists of the
angle, radius, the arc direction (cw or
ccw), and movement direction
(forward).

‘l’ robot 10 Path arc backward The data packet consists of the
angle, radius, the arc direction (cw or
ccw), and movement direction
(backward).

‘j’ robot 10 Joystick control
command

To set the steering and the speed of
the robot, to enable/disable the
ultrasonic sensors, to enable wall
following, and
to enable obstacle collision
avoidance.

‘i’ robot 10 Path control
command

To enable path control with obstacle
avoidance, to enable/disable the
ultrasonic sensors, and to send robot
to position xf, yf or to set the
generated trajectory for the path
following process.

‘d’ robot 26 or 42 Sensor data via radio
link or via serial port

To update the sensor data that are
the driven distance on the left and
on the right wheels, the angle
position, the velocity of the robot, the
angular velocity, the roll, pitch, and
yaw angle, and the detected
distances to the obstacle. It is also
used to update the flags for human-
robot operation, to update the robot
position, and to request trajectory
generation.

 105

Table A.2: Interrupt priority level settings.
Interrupt
Vector

Description
Interrupt routine name

Priority

level
Group
priority

0x26 Sending timer task T6 SendSensorData() 1 0
0x36 Receiving from transceiver receive() 3 0
0x23 Main timer task T3 Time_interval() 7 0
0x1C Left-up hall sensor hallsensor_left_upper() 8 1
0x1D Right-down hall sensor hallsensor_right_lower() 8 3
0x1E Left-down hall sensor hallsensor_left_upper() 9 0
0x1F Right-up hall sensor hallsensor_right_lower() 9 1
0x22 Hall sensor counter T2

timeout
car_not_moving() 10 0

0x15 Ultrasonic sensor triggered Echo_signal() 11 0
0x1A Bumper triggered Bumper() 15 3

Table A.3: Timer period setting.
Timer Mode Functions Time period settings

T2 Timer Measuring time between
hall-sensor interrupts.

Counting forward. T2 increases by 1
every 12.8us. Overflow interrupt 0x22
happens if the time is longer than
12.8us*65535=0.84s.

T3 Reload-mode
timer

Main timer task.
Gyroscope, ultrasonic, and
infrared measurement
updates.
Speed control, robot
direction update, check
obstacle, check stop
position, set relays on/off for
ultrasonic sensors.

Counting downward. T3 decreases
by 1 every 0.4us.
Underflow causes 0x23 interrupt
every 2ms. Reload value from T4 is
4999.

T4 Reload
register for T3

T3 reloads the value of T4
after T3 underflows.

T4 = 4999

T5 Timer Measuring time for ultrasonic
sensors.

Counting forward. T5 increases by 1
every 25.6us.

T6 Reload-mode
timer

Sending sensor data through
transceiver.

Counting downward. T6 decreases
by 1 every 0.2us. Underflow causes
0x26 interrupt every 5ms. Reload
value from CARPEL is 24999.

Table A.4: A/D converter and specified channels.

Channel Sensors

1 Gyroscope
2 Infrared front right
3 Infrared front middle
4 Infrared front left
5 Infrared front behind
6 Infrared side right
7 Infrared side left

 106

Appendix B: Graphic User Interface (GUI)

 The first step in using the graphic user interface (GUI) is to run the

MERLINServer and then start MERLINClient. A connection dialog frame then pops as

shown in Figure B.1. The user has to activate a default option enables to show the

graphic user interface (GUI). The user clicks on the “Connect” button to have

MERLINClient establish a connection to the MERLINServer. The IP address and port

number for MERLINServer is shown in the text fields. The dialog tab shows the how

the connection attempt is progressing. A full dialog tab indicates that the connection has

been successfully established. The joystick control mode can then be initiated. The

operator can disconnect when finished by clicking on the “Exit” button. The GUI has is

needed for joystick control, path control and for the functions of the PMD camera. The

role of GUI in each of these three areas is explained in the following sections.

Figure B.1: The connection dialog frame of GUI.

B.1 The GUI for the joystick control function.

In an unknown environment, where the robot has no prior information about the

characteristics of its navigation area, the semi-autonomous operation can be used and is

a reliable navigation method. Semi-autonomous operation means that the robot is

mainly controlled manually with the joystick as the method of human interface control.

Joysticks are well-known plug and play devices, and are readily available on the market.

We chose the Microsoft Sidewinder Joystick for the tele-operated control of MERLIN.

In the tele-operated control mode, the user's movement of the joystick is translated sent

via MERLINClient as x and y direction coordinates. MERLINClient sends the joystick

command to the robot and, at the same time, receives continuous sensor data from the

robot. Because the robot is in semi-autonomous operation mode, and its movements are

being controlled manually by the operator, the automatic obstacle avoidance function is

not on. The robot follows the joystick command without the obstacle detection function.

 107

This can sometimes be dangerous for the robot when the user doesn't recognize

obstacles but and keeps moving the joystick. The user can cause the robot to crash into

an obstacle and destroy itself. An alternative is to activate the automatic obstacle

avoidance function while the joystick is being used. The robot then obeys the joystick

command and also avoids collision by using the automatic obstacle avoidance until it is

free from obstacles. Once the robot has gotten out of the way of the obstacle, it

continues following the joystick command afterwards.

MERLIN can also be used with a sensing or force feedback joystick. The haptic

interface enables the user to feel what the robot feels. When the robot drives fast, it feels

air resistance to its body. The force feedback joystick emulates the aerodynamic force

by generating resistance in the joystick that is proportional to the speed of the robot.

The users can than feel this resistance when he or she tries to drive the robot forward

fast. As a result, the user has to push the joystick to make the robot go faster. The

haptic interface feature is implemented on MERLIN using the Immersion Studio java

library. The measurements we made show the maximum joystick torque to be –0.165

N*m. In accordance with the concept of aerodynamic force, the generated force within

the joystick is proportional to the feedback measured velocity of the robot. The

generated feedback force is calculated by using

 2

2
1 vfactorFgenerated ××= (B.1)

This factor was tuned in experiments and set to 0.3. Figure B.2 shows the GUI for the

joystick control mode. The operator can make adjustments to animation screen and

command the robot by clicking at the buttons and checkboxes. The functions of the

buttons and checkboxes are summarized in Table B.1.

The data panel on the right hand side of the GUI shows the numerical values

from the following measurements:

• the ultrasonic sensors at the right, middle, left, and rear of the robot,

• the distances driven by both the left and the right wheels, and robot speed,

• angle position (heading),

• the roll, pitch, and yaw angles from the 3 DM compass,

 108

Figure B.2: The joystick control panel.

Table B.1: The functions of the buttons and checkboxes in the GUI for the

joystick.

Name Function

Translate To translate the scene into the directions: up, down, left and right.
Zoom To zoom in and zoom out by clicking on the scene and dragging the mouse.

Rotate To rotate the scene by clicking on its image and dragging the mouse either
in a clockwise or counter clockwise direction.

Default To change the scene back to the original scene.
Reset To stop the robot and clear all robot data.

Automatic

To have the robot perform automatic obstacle avoidance using its ultrasonic
sensors and infrared sensors. The robot follows the joystick commands
completely until it comes across an obstacle. When there is an obstacle
present, the robot obeys the joystick command but uses its fuzzy logic
controller to avoid collision. The fuzzy logic controller is deactivated when
there are no more obstacles present. The car then continues to follow the
joystick commands. However, the robot obeys the joystick except when the
user wants to move the robot backward movement.

Wall following To have the robot perform automatic wall following in the left hand or right
hand side mode.

PMD Frame To open the panels for the PMD camera.
Lock Robot To have the robot image shown always in the middle of the scene.
Back & Side To show the back view and side view tilting and rolling positions.
Real Path To show the estimated path that the robot has driven.
Animation To show the robot animation.
US Enable To enable the ultrasonic sensors.
FFB Enable To enable the force feedback interface.

Key Command

To use the arrow cursors on keyboard instead of the joystick, “up” increases
the speed in the forward direction, “down” increases the robot speed in the
backward direction, “left” turns the left front wheels, and “right” turns the
right front wheels.

 109

• the estimated position X, Y, and estimated robot heading from the Kalman filter

and the nonlinear dynamic model.

Note that there are also warning and status messages available, such as “Merlin

is crashing into objects” or “Gyro is calibrating”.

B.2 The GUI for the path control function.

The operator can switch between the joystick control mode and the path control

mode by clicking at the tabbed panel. In the path control mode, the robot stands still

until it receives the path commands. The operator starts by drawing the desired path on

the panel and then clicks "send" to transmit the data to the robot. After that

MERLINServer sends the path commands to the robot and the robot starts moving

under the path following control. The path control panel is shown in Figure B.3.

There are four types of path commands: line forward, line backward, arc

forward, and arc backward. The obstacle collision avoidance function is also an option

for the path following mode. The operator can click on the checkbox “Collision

Avoidance” for automatic obstacle avoidance during the path following mode. The

functions of the buttons and checkboxes on the left panel are summarized in Table B.2.

B.3 The GUI for the PMD camera.

 The graphic user interface for the PMD camera consists of three parts, the left

command panel, the graphics panel, and the right command panel, as shown in Figure

B.4.

Table B.2: The functions of the buttons and checkboxes for the path following

control commands.

Name Function

Line forward To specify the start and end of the line path in a forward direction.
Line backward To specify the start and end of the line path in a backward direction.

Arc forward To specify the start and end of the arc path in a forward direction.
Arc backward To specify the start and end of the arc path in a backward direction.
Clear Line-Arc To delete the paths drawn.

RealPath To show the estimated driven path.
Clear RealPath To delete the estimated driven path from the scene.

Send To send the paths to the robot and start the path following function.
Reset To stop the robot and clear the robot data.

Collision Avoidance To enable the automatic obstacle collision avoidance during the path
following.

US Enable To enable the ultrasonic sensors.

 110

Figure B.3: Path following control panel.

 The operator establishes a connection to the camera by clicking on “PMD

Connect” on the left hand panel. The PMD server must already be running for this to

function. After the connection is established, the operator has to calibrate the PMD

camera by clicking “PMD Calibrate” and wait until the current image is updated on the

panel. As of this moment, the camera is ready and the operator can choose to take

measurements by clicking on “PMD Image” or “PMD Video”. The filtered image

number is counted automatically after each measurement.

 The operator can calibrate the robot's position by starting the Kalman filter and

waiting until the filtered image looks like the current measured image. At this point the

filtered image is ready for use. The operator can click “Calibrate Position” and wait

until the robot position is updated on the GUI of the joystick control panel. At the same

time as the position update is given on the joystick control panel, the matched results

will appear on the PMD panel. Please note that the position calibration is available only

for the joystick control mode. It is not recommended that a position calibration be done

when the filtered image is not yet ready. This would cause an error in the position

calibration. The functions of the buttons and message boxes on the control command

panel are described in Table B.3.

 111

The middle panel plots two images. The upper image is the generated model

image and the lower image is the actual image from the measurement. Before the

measurement starts, the lower image is empty. On the right command panel, the user

can specify the distance, side distance, and angle of translation for generating the model

image. When the user clicks the “Plot” button, the generated model image is plotted in

the upper part of the graphics panel. The slide bar are also provides for convenience in

fast and rough observation of the various measurement values, the distance, side

distance, and angle positions.

Figure B.4: The PMD camera control panel.

Table B.3: The functions of the buttons on the left command panel of the GUI for the

PMD camera.

Name Function

PMD Connect To connect the PMDClient to PMDServer.
PMD Calibrate To calibrate the PMD camera.

PMD Image To measure and plot on the graphic panel.
PMD Video To measure continuously as video.

Filtered image nr. To show the number of filtered images.
Start KF Filter To start the Kalman filtering.

Calibrate Position To calibrate the robot position.
matched Distance The distance position as determined by the landmark recognition

function.
matched Angle The angle position derived from the result of landmark .
matched Type The landmark type result determined by the landmark matching

function of the landmark recognition process.

 112

Appendix C: PC104

 The specification of the selected PC104 and technical notes are given here. The

CPU-M1 has the following features:

• CPU: Pentium III 933 MHz

• IDE: PCI-IDE, 2 drives

• Memory: 384 MB

Figure C.1: The CPU-M1

• Video: Intel 815E integrated 3D

graphic controller

• Ethernet: 10/100 Mbit

• PS/2 keyboard and mouse port

• 3 ½” floppy support

• 2 serial ports RS-232 compatible

• 1 parallel port

• 2 USB ports

• PC/104-plus compatible

• Size: 96 x 90 mm

• Linux Operating System

When Redhat 9.0 OS is used, it is necessary to install the Javax Comm for java

serial port interface software, the Orinoco Linux driver for Orinoco Gold USB WLAN

adapter, and the java runtime environment. The two com ports located on the PC104 are

for the microcontroller and the PMD camera. The USB is expanded into 2xUSB and

2xRS232 by using the Edgeport/22c from Digi International. The Linux driver of this

device is installed. Note that after connectin Edgeport/22c the names of the COM ports

under the Linux system are also changed from “/dev/ttyS0” to “/dev/ttyUSB0” and from

“/dev/ttyS1” to “/dev/ttyUSB1”. An RXTX library for javax comm is also required.

 113

References

[BES 88] Besl P.J. (1988), Surfaces in range image understanding, Springer-Verlag,

chapter 2, p. 34, ISBN: 0-387-96773-7.

[BOR 96] Borenstein, J., Everett, H.R., Feng, L., and Wehe, D. (1996), Mobile Robot
Positioning: Sensors and Techniques, Invited paper for the Journal of
Robotic Systems, Special Issue on Mobile Robots. Vol. 14, No. 4, April
1997, pp. 231-249.

[BRO 83] Brown, R.G. (1983), Introduction to random signal analysis and Kalman
filtering, John Wiley & Sons, USA, p. 300, ISBN: 0-471-08732-7.

[CHO 01] Choset,H., Nagatani, K. (2001), Topological Simultaneous Localization
and Mapping, (SLAM): Toward Exact Localization Without Explicit
Localization, IEEE Trans. on robotics and automation, 17(2), APRIL 2001,
pp. 125 – 137.

[DRI 04] Driewer, F., Baier, H., Schilling, K., Pavlicek, J., Preucil, L.,
Ruangpayoongsak, N., Roth, H., Saarinen, J., Suomela, J. , Halme, A. ,
Kulich, M., Kout, J. (2004), Hybrid Telematic Teams for Search and
Rescue Operations, IEEE International Workshop on Safety, Security and
Rescue Robotics, Gustav Stresemann Institut, Bonn, Germany, May 24-26,
2004, ISBN: 3-8167-6556-4.

[DRI 93] Driankov, D., Hellendoorn, H., Reinfrank, M.(1993), An Introduction to
Fuzzy Control, Springer-Verlag, ISBN: 0-387-56362-8.

[FAN 90] Fan T. J. (1990), Describing and recognizing 3-D objects using surface
properties, Springer-Verlag, chapter 4, p. 55, ISBN: 0-387-97179-3.

[FER 96] Ferretti, E., Oriolo, G., Panzieri, S., Ulivi, G. (1996), Learning Nice Robust
Trajectories for a Car-Like Robot, Int. Symp on Intelligent Robotic
Systems, Lisbon, PT, July 22-26.

[FOX 99] Fox, D., Burgard, W., Thrun, S. (1999), Markov Localization for Mobile
Robots in Dynamic Environments, Journal of Artificial Intelligence
Research 11 (1999), pp. 391-427.

[FRA 98] Franklin, G. F., Powell, J. D., Workman, M. (1998), Digital Control of
Dynamic Systems, 3rd edition, Addison Wesley Longman, p. 59, ISBN: 0-
201-82054-4.

[FUC 04] Fuchikawa, Y., Kurogi, S., Matsuo, K., Miyamoto, S., Nishida, T. (2004),
A Vision-Based Navigation System Using Guideposts for Mobile Robot,
The 8th World Multiconference on Systemics, Cybernetics and
Informatics, July 18 - 21, 2004 Orlando, Florida, USA.

[GOE 99] Goel, P., Roumeliotis, S. I., Sukhatme, G. S. (1999), Robot Localization
Using Relative and Absolute Position Estimates In Proc. 1999 IEEE/RSJ

 114

International Conference on Intelligent Robots and Systems, Kyongju,
Korea, Oct. 17-21, pp. 1134-1140.

[HAN 02] Han, M., Lee, S., Park, S.K., Kim, M. (2002), A New Landmark-Based
Visual Servoing with Stereo Camera for Door Opening, International
Conference on Control, Automation and Systems, pp. 1892-1896.

[HES 02] Hess, H., Albrecht, M., Schwarte, R. (2002), PMD – New detector for
flourescence lifetime measurement, Opto 2002.

[JAI 90] Jain, R. C., Jain, A. K. (1990), Analysis and interpretation of range images,
Springer-Verlag, chapter 5, page 225, ISBN: 0-387-97200-5.

[JAN 02] Jang, G., Kim, S., Lee, W., Kweon, I. (2002), Color Landmark Based Self-
Localization for Indoor Mobile Robots, International Conference on
Robotics & Automation, May 11-15, 2002, Washington, DC, USA,
pp1032-1042.

[KLA 02] K. Schilling, H. Roth, O. Rösch (2002), Mobile Mini-Robots for
Engineering Education, Global Journal of Engineering Education 6 (2002),
p. 79–84.

[KUH 04] Kuhle, J., Roth, H., Ruangpayoongsak, N. (2004), Mobile Robots and
airships in a multi-robot team. The 1st IFAC Symposium on Telematics
Applications in Automation and Robotics, Helsinki University of
Technology, Finland, pp. 67-72.

[MAY 02] Mayer, G., Utz, H., Kraetzschmar, G.K. (2002), Towards Autonomous
Vision Self-Calibration for Soccer Robots, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS-2002).

[MAY 91] Mayr, R. (1991), Verfahren zur Bahnfolgeregelung für ein automatisch
geführtes Fahrzeug, Dissertation, University of Dortmund, Dortmund,
Germany.

[MEL 02] Mellodge, P. (2002), Feedback Control for a Path Following Robotic Car,
Master Thesis, Virginia Polytechnic Institute and State University.

[PRU 05] Prusak, A., Roth, H., Schwarte, R. (2005), Application of 3D-PMD Video
Cameras for Tasks in the Autonomous Mobile Robotics, 16th IFAC World
Congress, July 4-8, Prague, Czech Republic.

[RIE 40] Riekert, P. and Schunck, T.E. (1940), Zur Fahrmechanik des
gummibereiften Kraftfahrzeugs. Ing. Arch., Vol. XI, pp. 210-224.

[ROE 03] Roefer, T., Jüngel, M. (2003). Vision-Based Fast and Reactive Monte-
Carlo Localization. In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA-2003), Taipei, Taiwan. pp. 856-861.

[RUA 05a] Ruangpayoongsak, N., Roth, H., Chudoba, J. (2005), Mobile Robots for

 115

Search and Rescue, IEEE International Workshop on Safety, Security and
Rescue Robotics, International Rescue System Institute, Kobe, Japan, June
6-9, 2005.

[SIM 05] Sim, R., Roy, N.(2005), Global A-Optimal Robot Exploration in SLAM,
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Barcelona, Spain.

[SUK 92] Suk, M., Bhandarkar, S.M. (1992), Three-Dimensional Object Recognition
from Range Images, Springer-Verlag, Chapter 5, p. 103, ISBN: 4-431-
70107-9.

[SUR 03] Surmann, H., Nüchter, A., Hertzberg, J. (2003), An autonomous mobile
robot with a 3D laser range finder for 3D exploration and digitalization of
indoor environments, Robotics and Autonomous Systems 45, pp. 181–198.

[SCH 04] Schwarte, R. (2004), Breakthrough in Fast 3D-Imaging Using PMD- and
OEP-Technology, Duisburg, 2004, IMS Workshop in Duisburg, May 25-
26 2004.

[TIM 04] Timmer, F. (2004), Der Entwurf eines mathematischen
Fahrzeugdynamikmodells für einen autonomen mobilen Roboter und die
Regelung seines Kurswinkels seiner Geschwindigkeit und seiner
Schwerpunktposition im Ruam, Master Thesis, University of Siegen.

[TRE 04] Trevai, C., Ueda, R., Moriya, T., Arai, T. (2004), Integration of Uniform
Monte Carlo Localization Method for Mobile Robot with Sonar Array,
Intelligent Autonomous Systems 8, IOS, ISBN 1-58603-414-6.

[USH 02] Usher, K., Ridley, P., Corke, P. (2002), Visual Servoing of a car-like
vehicle – An application of omnidirectional vision, Proc. 2002 Australian
conference on Robotics and Automation, Auckland, 27-29 November
2002, pp. 37-42.

[WEL 02] Welch, G., and Bishop, G. (2002), An Introduction to the Kalman Filter,
UNC-Chapel Hill, USA, TR 95-041.

[YOO 02] Yoon, K.J. , Kweon, I.S. (2002), Landmark Design and Real-Time
Landmark Tracking using Color Histogram for Mobile Robot Localization,
Mobile Robots XVI, Douglas W. Gage, Howie M. Choset, Editors,
Proceedings of SPIE Vol. 4573 pp. 219- 226.

[ZHA 04] Zhang, P., Milios, E.E., Gu, J. (2004), Underwater Robot Localization
using Artificial Visual Landmarks, IEEE International Conference on
Robotics and Biomimetics, Shenyang, China, 2004, Aug. 22-26. Paper no
67.

 116

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abstract
	Kurzfassung
	1 Introduction
	1.1 Problem Specification
	1.3 An overview of the thesis

	2 A Survey of Related Works
	2.1 Robot localization techniques in indoor environment.
	2.2 Applications of model-based techniques for car-like mobile robots.
	2.3 Absolute localization techniques based on artificial landmarks.

	3 The Mobile Experimental Robots for Locomotion andIntelligent Navigation (MERLIN)
	3.1 Series of MERLIN prototypes
	3.2 MERLIN Data Communication Structure
	3.3 Sensors for navigation
	3.4 Steering and propelling the car-like mobile robots.

	4 Autonomous Features
	4.1 Obstacle detection and collision avoidance
	4.2 An autonomous 180 degree turn in a narrow corridor
	4.3 Path following in an unknown environment.

	5 Relative Localization using a Nonlinear Dynamic Model
	5.1 Robot modelling
	5.2 The Discrete Extended Kalman Filter (EKF)
	5.3 Calculating the robot's position and heading.
	5.4 Experimental results

	6 Position Calibration using 3D Vision and Artificial Landmark
	6.1 The measurement characteristics of the 16x16 pixel PMD camera.
	6.2 The design of the artificial landmark
	6.3 Landmark recognition
	6.4 Position calibration

	7 Improvement for the Resolution of the Position Calibration
	7.1 The measurement characteristics of 48x64 pixel PMD camera.
	7.2 The 2D image processing for landmark recognition.
	7.3 Recognition of the lower part of landmark by using 2D and PMD images.
	7.4 Experimental results

	8 Summary and Perspective
	Appendix A: Microcontroller
	Appendix B: Graphic User Interface (GUI)
	Appendix C: PC104
	References

