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Abstract 
 

Intelligent autonomous navigation in a large-scale and unknown indoor 

environment is an important problem in mobile robotics. For a car-like mobile robot 

with a racing car platform, the movement control concept is similar to that of a car.  

The autonomous features enable robots to control own motion without human 

interference. Three autonomous features are addressed in this thesis; obstacle 

avoidance, doing 180° turns in a narrow corridor, and path following control. Since the 

obstacle positions are not known beforehand, the strategy requires not only the obstacle 

avoidance but also trajectory generation and robot localization.  

The robot localization can be broken down into relative and absolute 

localization. This thesis addresses the development of the model-based relative 

localization technique and the landmark-based absolute localization technique.  

The model-based relative localization is applied by the non-linear dynamic car 

model to the Kalman filter. The study of integrating sensor data from odometer, 

gyroscope and compass for the position and heading estimators provides a discussion of 

the performance of three localization methods; differential drive, gyroscope estimator, 

and compass estimator.  

The landmark-based absolute localization is applied by using the 3D camera and 

the 3D artificial landmark and is called the position calibration. Three parts of the 

position calibration are developed: The design of landmarks, the landmark recognition, 

and the robot position prediction and update. Lastly, the improvement for the resolution 

of the position calibration by using 2D and 3D images is studied. 

 

 ix



Kurzfassung 
 

Intelligente autonome Navigation ist ein wesentliches Problem in der mobilen 

Robotik. Für einen modellbasierten Fahrzeug-ähnlichen mobilen Roboter ist das 

Steuerungskonzept ähnlich wie beim Auto.  

Autonome Feature erlauben Robotern eigene Bewegungen zu kontrollieren ohne 

menschliche Interaktion. Drei autonome Feature werden in diese Arbeit behandelt: 

Hindernisvermeidung, 180° Drehung in einem schmalen Flur und Pfadverfolgung. Weil 

die Hindernispositionen unbekannt sind, erfordert die Strategie nicht nur 

Hindernisvermeidung, sondern auch Bahnplanung und Roboterlokalisierung. 

Die Roboterlokalisierung kann in relative und absolute Lokalisierungen 

unterteilt werden. In dieser Arbeit soll die Entwicklung der modellbasierten relativen 

Lokalisierungstechnik und der absoluten Lokalisierung durch Landmarken untersucht 

werden.  

Die Entwicklung der modellbasierten relativen Lokalisierung wird durch ein 

nichtlineares dynamisches Automodell mit nachfolgendem Kalman Filter erreicht. Die 

Integration der Sensordaten des Entfernungsmessers, Trägheitsgyroskop-Sensors und 

der Kompass-Sensoren durch den Kalman Filter ermöglicht die Analyse der Leistung 

der drei Positionierungsmethoden; durch differentiellen Antrieb, Gyroskops- und 

Kompass-Abschätzung.  

Die absolute Lokalisierung wird durch den Einsatz einer 3D-Kamera und 3D-

Landmarken erreicht und wird im Folgen der Positionskalibrierung genant. Drei Teile 

der Positionskalibrierung werden entwickelt: Das Design der Landmarken, die 

Erkennung der Landmarken sowie die Voraussage und die Aktualisierung der 

Roboterposition. Schließlich wird die Verbesserung der Auflösung der 

Positionskalibrierungstechnik durch 2D und 3D Bilder untersucht. 

 x



  1 Introduction 

 

 Developed as an inexpensive self-design concept, the Mobile Experimental 

Robot for Locomotion and Intelligent Navigation (MERLIN) was constructed and 

exploited as a test bed for control algorithms and tele-operation for education [KLA 02] 

[KUH 04]. MERLIN robots are robust for indoor, outdoor, also in rough terrains 

environment. In this work, the autonomous features and robot localization techniques 

for MERLIN are developed.  

 

1.1  Problem Specification 

This thesis addresses the problems of both the autonomous features and the 

robot localization for a car-like mobile robot in a large scale and unknown indoor 

environment.  

 

1.1.1 Autonomous features  

Two important factors for designing the algorithms for autonomous features are 

robot motion and perception. Since robots have the same manoeuvring as a car and have 

obstacle detection sensors on board. The problems of autonomous features are set as 

follows: 

• Avoiding obstacle collisions. Obstacle collision avoidance is an 

important feature for preventing damage during navigation. By using the 

range sensors for obstacle detection, the robot perception is shown in 

Figure 1.1. The algorithm must be designed such that the robot 

overcomes the obstacle without crashing and finally comes to a free area. 

• Turning 180° in a narrow corridor. When the robot is driving along a 

narrow corridor with a dead end as shown in Figure 1.1a, the robot 

should try to turn 180° into the opposite direction. The designed 

algorithm must provide robustness in the case of existence of unknown 

obstacles. 

• Path following. The autonomous path following problem in an unknown 

environment is that the robot should follow a user-specified path and also 

automatically avoid collision with obstacles. The situation is illustrated 

in Figure 1.1b below, where the obstacle is on the desired path. The task 
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of autonomous path following control is changing robot’s orientation to 

avoid collision and to finally reach the destination.  

 

                  
   (a)        (b) 

Figure 1.1: Different scenarios: (a) narrow corridor with a dead end;  

(b) obstacles on the desired path. 

 

1.1.2 Localization techniques for mobile robots 

 The robot localization can be classified into two main categories [GOE 99]: 

• Relative (local) localization: The technique is to localize the robot 

position and orientation by using various on board sensors such as 

odometer, gyroscope, etc. The robot position and heading relative to its 

start position. This is also called the self-localization. 

• Absolute (global) localization: The technique is to obtain absolute 

position using positioning system such as beacons, landmarks, GPS, etc. 

The absolute robot position and heading is not relative to its start 

position. 

This thesis classifies the problem of robot localization in the same way as 

described above.  

 

1.1.2.1 The relative localization techniques. In a large area, when the structure 

of the building is not known beforehand and the absolute positioning system is not 

available, the robot needs to rely on its self-localization. Differential drive positioning is 

the most basic type of the relative localization that uses only the distances information 

from the odometers. However, slippage of the car's wheels cause accumulated errors. 

An example of the error that occurs in differential drive positioning is shown in Figure 

1.2. The estimated robot’s heading from the differential drive contains accumulated 

errors that result in a large error in the estimated final position. The improvement is to 
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use an exact relative localization technique, such as the model based localization. 

Regarding the car-like motion, the nonlinear dynamic model of the car is selected as a 

robot model and the discrete extended Kalman filter is applied as the robot position and 

heading estimator. Therefore, this thesis addresses the problem of relative localization 

for a car-like mobile robot by using the nonlinear dynamic model and discrete extended 

Kalman filter. 

 

 
Figure 1.2: The robot position from differential drive positioning. 

 

1.1.2.2 The absolute localization techniques. There are many techniques for 

absolute localization and one of them is landmark based localization [BOR 96]. Two 

types of landmarks are:  

• Natural landmark: These landmarks are existing objects in the environment. 

Examples of natural landmarks in indoor environment are doors, tables and 

chairs. 

• Artificial landmark: These landmarks are designed, built, and placed in the 

environment. The shape and color of landmark designs are usually depending on 

the perception of robot. 

The cameras are often applied with the vision-based localization technique using 

artificial landmarks. The 2D camera captures color or gray images whereas the 3D 

camera provides the depth or the range images. The Photonic Mixer Device (PMD) 

camera is a 3D camera available in the market. This thesis addresses additionally the 

problem of applying the 3D camera to solve the artificial landmark based localization 

problem. It is challenging work to detect and recognize the landmarks. The questions of 
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how to use the 3D camera to detect the landmark, what the landmark should look like, 

and what information could be obtained from the landmark need to be answered. This 

landmark based localization technique is called the position calibration. 

 

1.3 An overview of the thesis 

 This thesis is divided into five main chapters. The coming chapter provides a 

survey of the related work in mobile robot localization techniques. Next, Chapter 3 

provides an overview of the mobile robot and its user interface. The different robot 

prototypes, sensor measurements, the wireless data communication, the graphic user 

interfaces, the steering control and the speed control are explained. Chapter 4 describes 

our solutions to the problems of autonomous features; obstacle avoidance, turning 180° 

in a narrow corridor, and path following control. Chapter 5 then explains the use of the 

nonlinear dynamic car model and the discrete extended Kalman filter for the relative 

localization of the robot.  Chapter 6 describes in detail the innovative use of a 3D 16x16 

pixel PMD camera and 3D artificial landmark for mobile robot localization and presents 

the results of the on-line experiment of the position calibration. Chapter 7 presents the 

improvement for the resolution of the position calibration by using images from the 3D 

48x64 pixel PMD camera and a web camera. The final chapter, Chapter 8, provides a 

summary and perspective.  
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2 A Survey of  Related Works 

 

The survey of related work focuses on the development of robot localization 

techniques. The related works are divided into robot localization techniques in indoor 

environment, applications of model-based techniques for car-like mobile robots and 

absolute localization techniques based on artificial landmarks.  

 

2.1 Robot localization techniques in indoor environment. 

Several techniques using the simultaneous localization and mapping (SLAM) 

exist for localization in an indoor environment [FOX 99] [CHO 01] [ROE 03] [TRE 04] 

[SIM 05]. The SLAM techniques provide at the same time the robot position and the 

generating map. This technique requires that the user prepares a part of the known map 

before the robot starts navigation. During navigation, the robot finds its position on this 

map by matching its perception data of the environment with the partially known map. 

In some applications, the map is not known beforehand, e.g. in search and rescue 

mission. By using SLAM techniques, when the known map is not available, the 

accuracy of the robot position and the quality of the map are therefore depending on the 

quality of the robot localization technique.  

Besides, Goel [GOE 99] succeeded in implementing the integration of the 

relative and absolute localization techniques for both an indoor area and an outdoor 

area. In an indoor environment, the odometer and gyroscope provide inertial 

measurements for kinematic model based localization. Though this results in a much 

improved estimated position compared to using only the well calibrated odometer, the 

kinematic model in his work is specifically applicable only for two-wheel robots. 

Though there are various localization techniques existing on the different robot 

platforms. These developed techniques are depending not only on onboard sensor but 

also a robot’s movement model and environments. The improvements of these 

techniques are still under research. 

 

2.2 Applications of model-based techniques for car-like mobile robots. 

For car-like mobile robots, the kinematic model is often applied for solving 

motion control problems. These research topics include a finite-dimensional iterative 

learning controller for steering [FER 96], a path following lateral controller [MEL 02], 
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and a switching controller for the position control [USH 02]. Though the kinematic 

model provides exact representation of the robot's movement, the model does not 

provide a representation of the non-linear characteristic of the car driving motion like 

the dynamic model. 

This thesis develops a non-linear dynamic car model for the car-like robot 

localization. The discrete extended Kalman filter is applied as the robot position 

estimators. Two estimations are obtained by using the yaw angle from the gyroscope 

and from compass sensor and are compared with the existing differential drive 

technique. 

 

2.3 Absolute localization techniques based on artificial landmarks. 

The PMD camera was built and developed at the University of Siegen [SCH 04]. 

The application of the emerging technology PMD camera to the MERLIN prototype 

results in new application for mobile robotics. The following survey of the literature is 

divided into two parts: the related work on vision-based localization and the artificial 

landmark, and comparisons of the 3D camera to other existing range sensors in mobile 

robotics.  

 

2.3.1 Vision-based localization and the artificial landmark. 

In the field of vision-based localization, the existing recognition techniques are 

applied using a CCD camera and 2D artificial landmark. The different landmarks are 

designed by using color and shape patterns as distinguishing criteria.  The recognition 

techniques to be exploited depend on the individual landmarks as summarized in Table 

2.1. These recognition techniques rely on a clear definition of the landmark pattern 

using contrasts in color. These landmarks are designed by using high contrast colors, 

such as green and red or black and white. However, the contrast in color varies in 

different light conditions. In a low visibility area, the brightness of the light is weak and 

the contrast is insignificant. Therefore, different light sources such as neon light or 

spotlights change the extent of the contrast between colors.  

The PMD camera provides better results than the CCD camera in this problem 

area, since the PMD camera is developed such that measurement is independent of light 

conditions indoors, and even in low visibility light conditions. Moreover, depth 

information can be obtained directly from the camera without any need for image 

processing. This thesis therefore proposes a step forward in mobile robotics research 
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using the 3D vision available through the PMD cameras for robot localization paired 

with and 3D artificial landmarks. 

 

Table 2.1: A summary of artificial landmarks and their recognition techniques. 
Landmark 
pictures Description of the landmark Recognition techniques 

 

Made of color patterns that are 
arranged in symmetrical and 
repeating color patches.   
 

Tracked using the color histogram 
technique [YOO 02] 
 

 

A simple shape pattern that  pairs  
colors   

Tracked using the probability density in 
the condensation algorithm [JAN 02] 
 

 

Made of  black and white colors in a 
rectangle pattern 

Tracked by using the stereo depth 
information and the end point closed loop 
system [HAN 02]   
 

 

Made of black and white colors with 
a pattern of symmetrical shapes.  

Tracked using the  Laplacian sign of the 
Gaussian (SLOG) filters, fast Fourier 
transformation (FFT) and a vector 
quantization (VQ) neural net [FUC 04] 
 

 

Made of contrasting colors in a 
simple pattern 

Tracked using the Retinex algorithm 
[MAY 02] 

 

Made of black and white colors with 
a rectangular pattern. 

Tracks the geometric transformation 
[ZHA 04] 

 

2.3.2 The PMD camera in comparison with other range sensors. 

In mobile robotics, there are many types of range sensors that provide distance 

measurements. They are listed as follows: 

- Sonar (ultrasonic) sensors 

- Infrared sensors 

- LED range finders 

- Laser range finders   

- Stereo vision  using CCD cameras 

- 3D vision using a Laser range finder. 

Sonar and infrared sensors measure a single distance value, but provide no depth 

image output. The LED range finder and the laser range finder provide measurements 

for one-dimensional scanned distances at the height level of the sensor mounting 

position and the output is the distance value at each scan step within a vision range of 0-

180 degrees. However, these sensors do not provide 3D vision. When compared to the 
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stereo vision that results from using CCD cameras, the PMD camera provides a more 

convenient way of obtaining a ready-to-use depth image. The current method of 

obtaining 3D vision is to use a laser range finder with an additional vertical scanning 

mechanism [SUR 03]. This method requires a high speed image processor and 

computational algorithms and additional mechanic for vertical scan of the laser range 

finder. However, the laser range finder is much heavier and bigger than the PMD 

camera.  

Beyond its advantages when compared with these range sensors, the PMD 

camera is a promising device for the range image application in mobile robotics because 

it has compact size and light weight and it provides ready-to-use output. 
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3 The Mobile Experimental Robots for Locomotion and  

Intelligent Navigation (MERLIN) 
  

The following sections present an overview of MERLIN. Section 3.1 introduces 

the series of MERLIN prototypes. Sensors and devices are added to the first prototype, 

which is later changed by introducing a new chassis. Section 3.2 explains MERLIN's 

wireless data communication structures for tele-operated control. Section 3.3 explains 

the characteristics and specification of onboard sensors and their data processing.  The 

final section explains the robot steering and speed control.  

 

3.1 Series of MERLIN prototypes 

The Mobile Experimental Robots for Locomotion and Intelligent Navigation 

(MERLIN) series of micro-robots is designed for a broad spectrum of indoor and 

outdoor tasks using standardized functional modules like sensors, actuators and 

communication by radio link and wireless LAN. Several of the MERLIN prototypes are 

constructed and adapted for experimental environments. The first prototype is designed 

to test sensor data, wireless radio communication protocol, and control algorithms such 

as speed control and steering control. A later prototype is adapted to use a 3D camera 

and laser scanner, and the PC104 with wireless LAN. The later prototype requires a 

bigger chassis to carry the heavier load and allows for more power consumption. This 

section also discusses the problems encountered when changing the chassis and 

provides the solutions found.  

 

3.1.1 The first MERLIN prototype 

MERLIN was first adapted from a 1/10 scale Compagnucci racing model car as 

shown in Figure 3.1. The steering and propelling motors are already mounted by the 

manufacturer. The platform was modified for the installation of the Infineon 80C167CR 

microcontroller and sensors for navigation. Appendix A provides the specification and 

developed software structure in the microcontroller. 

The robot measures 40 cm x 50 cm x 20 cm and weighs 5 kg including batteries. 

The sensors on board and their individual outputs are listed in Table 3.1. A magnetic 3-

axis compass sensor provides the absolute angle for roll, pitch, and yaw. Four ultrasonic 

sensors are mounted to detect obstacle distance. They are located on the front left, on 
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the front right, on the front middle and at the rear of the robot's body. A gyroscope is 

mounted at the center of the robot's body for angular velocity measurement.  Bumpers 

are mounted behind the crash protection plate under the ultrasonic sensor position for 

crash detection. Odometers on the front left and on the front right wheel are hall sensors 

with 8 magnets for measurement of the driving distances. A radio transceiver is also 

mounted on the top to enable wireless communication and control, and is set at the 

transmission rate of 9600 Baud.  The maximum length of its data packet is 27 bytes. 

The radio transceiver covers an area of 30 meters indoors, and 120 meters on open 

ground. Two motors are equipped as steering and driving motors: The steering motor is 

a servomotor that steers the front wheels and the driving motor propels the rear wheels. 

There are two battery sets attached, 12V for the electronics and steering motor and 7V 

for the driving motor.  

Table 3.1: Sensors on board and their outputs. 
Sensors Outputs 
3-axis Compass Sensors Yaw, Pitch and Roll angles 
Ultrasonic sensors Distance to obstacles 
Gyroscope Angular velocity 
Bumper Crash detection 
Odometer(Hall Sensors) Distance driven and speed 

   

3.1.2 The development of MERLIN on the original chassis 
MERLIN was further developed on its existing platform for hardware and 

software interface with a 3D PMD camera. The camera measures the distances from the 

target and provides distance value output on a 16x16 pixel image. Details of the PMD 

camera are provided in section 3.3.6. 

The PMD camera can be equipped as an on-line camera by using the PC104. 

The PC104 is a single board embedded PC with the size of a floppy disk. The up to date 

PC104 on the market provides high speed communication via wireless LAN and fast 

computation. Our PC104 is the CPU-M1 from EEPD. Details of the CPU-M1 are 

provided in Appendix C. The exploitation of the PC104 together with the existing 

microcontroller on MERLIN has the following advantages: 

• The microcontroller interfaces with the low level hardware layer such as pulse 

width modulation (PWM) signal generation, A/D conversion, or the interruption 

of routines. Therefore, the PC104 I/O is available for other extra devices, which 

may come. 
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• The microcontroller also interfaces with PC104 for high speed data transmission 

via RS232. As the results, the bigger data packets are available and we can 

therefore put more sensor data into the packets. 

• PC104 passes the image and sensor data to a client PC via high speed wireless 

LAN in real time.  

• Image and sensor data can be saved on the PC104 hard disk and later used for 

off-line data processing. 

Figures 3.2a show MERLIN#2 after the installation of the devices on board. The 

PC104, PMD camera, and the Orinoco Client Gold USB WLAN are mounted on the 

first MERLIN prototype. The sensors and devices are shown in Figure 3.2b. All sensors 

are fitted in the same place except the compass sensor. The compass is now mounted on 

the top of the robot's body for reduction of the electromagnetic noise from the motor 

and batteries. This enables better measurement. After the PC104 has been added, the 

interfaces for keyboard, mouse, monitor, Ethernet are also present. The voltage 

regulator is also mounted to provide the 5 V and the maximum of 8 A needed for the 

operation of the PC104 and Harddisk. This new structure MERLIN measures 40 cm x 

50 cm x 61 cm and weights 7 kg including batteries. The robot now weights much more 

than earlier and this causes a problem in steering and propelling. The bigger robot 

platform is therefore necessary. 

 

3.1.3 MERLIN#2 with a new chassis 
This new development of Merlin was constructed for semi-autonomous 

navigation in a search and rescue mission as an experiment for the EU project under the 

IST-Future and Emerging Technologies program, Building Presence through 

Localization for Hybrid Telematic Systems (PELOTE) [DRI 04] [RUA 05a]. The robot 

provides sensor data for mapping and video for a tele-operator. All devices are mounted 

on the bigger chassis as shown in Figure 3.3a. Further, it is also equipped with a laser 

scanner. The new chassis has a wheel diameter that is two times larger than the old 

chassis and its platform is made on a scale of 1/8. There are also additional devices 

onboard: infrared sensors, a web camera, laser scanner and small lamps. However, even 

though the platform is big enough and flexible enough to carry all of the devices, the 

prototype has difficulty in steering regarding the weight and friction on the wheels and 

there are also difficulties in the installation of the hall sensors and magnets since the 

free space on the wheel is not available.  
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Figure 3.1: The first MERLIN prototype (MERLIN#1) 

 

 

(a) (b) 

Figure 3.2: MERLIN#2: (a) prototype; (b) devices on board of MERLIN#2. 
 

  
(a) (b) 

Figure 3.3: 1/8 scale chassis: (a) with the original wheels; (b) with the new wheels made 

of plastic and rubber rings (MERLIN#3). 
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 The solution for these problems is to build wheels from plastic and rubber rings 

and to leave free space for mounting the hall sensors and magnet, instead of using the 

original wheel from the manufacturer. The wheels' rubber rings have smaller contact 

surface to the ground and thus less friction. The required steering force is much smaller 

than that of the old wheels and the power consumption in propelling the robot is also 

decreased. The odometers are mounted to the new plastic wheels, and magnets are glued 

into the prepared holes on the self-built wheels. Figures 3.3b show the robot after 

changing the wheels. 

 

3.2 MERLIN Data Communication Structure 

Wireless communication plays an important role in mobile robotics since it 

provides flexibility for navigation in a large area. There are two types of data 

communication systems on MERLIN:  Data communication is possible via radio link 

and via WLAN. The software is introduced below first, then data communication via 

radio link and via WLAN, respectively. 

 

3.2.1 MERLINServer and MERLINClient 

 Two java socket programs were developed for the wireless communication 

interface. The programs are MERLINServer and MERLINClient. MERLINServer 

passes the data from the socket to the COM port and vice versa as shown in Figure 3.4. 

Whenever MERLINServer receives a packet from the socket, it immediately passes the 

data packet to the microcontroller (robot) via the COM port. Whenever the opposite 

occurs, when MERLINServer receives data from the microcontroller via COM port, it 

passes the data packet via socket to MERLINClient. 

 MERLINClient exchanges the data from the socket to the graphic user interface 

(GUI). Whenever MERLINClient receives a data packet from the internet socket, it 

passes the data to the GUI and vice versa. MERLINClient and MERLINServer must 

both be started and connected to each other and hold the connection during robot 

operation. MERLINServer and MERLINClient share data via internet sockets. Note that 

appendix B provides the pictures and functions of GUI in details. 
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3.2.2  Data Communication via radio transceiver. 

Two radio transceivers are exploited for data communication via radio link. One 

transceiver is connected through the RS232 serial port to a server computer and another 

transceiver is mounted directly on the robot. As shown above in Figure 3.4, the robot 

communicates via a radiotransceiver with a PC that acts as a server. This PC runs the 

java server program called MERLINServer. The client PC runs the MERLINClient 

program and serves as an interface for the operator that is transmitted through GUI. 

MERLINClient receives a command from the operator, such as a joystick command or 

path command and sends these commands to the robot via MERLINServer.  

 On the other side, the microcontroller translates the received control commands 

and applies the PWM signal to the motors. When data is transmitted in the opposite 

direction, such as the numerical sensor data from the wheel encoders, the gyroscope, the 

3D compass, the ultrasonic sensors, and bumpers, they are sent as a packet to GUI via 

MERLINServer and MERLINClient.  

There are two modes of TCP/IP connections. One is the remote host and the 

other is the local host. In the remote host mode, two PCs are connected via internet 

socket. One is the client PC and another is the server PC. In the local host mode, one PC 

runs both MERLINServer and MERLINClient as is depicted with a broken line in 

Figure 3.4. This radio data communication is available on all MERLIN prototypes. 

 

3.2.3 Data communication via wireless LAN (WLAN). 

MERLIN permits fast wireless data transmission from the PC104 located on the 

robot to a client PC. Therefore, WLAN communication is available only in MERLIN#2 

and MERLIN#3. The WLAN communication functions such that the client PC runs 

MERLINClient and connects to the PC104 that runs MERLINServer via WLAN and 

the internet socket. The data transmission rate between the client PC and the PC104 can 

be as high as 11 Mbps. Figure 3.5 depicts the process of data communication via 

wireless LAN. The MERLINServer functions, as explained above, as an interface 

between the MERLINClient and microcontroller. In the same way, the PMDServer 

functions as a software interface for the PMD camera and the PMDGUI via the 

PMDClient. The same IP address is used with different port numbers to enable parallel 

communication between the two socket connections. 
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Figure 3.4: Data communication structure via radio transceiver. 

 

 

Figure 3.5: Data Communication Structure via wireless LAN. 

 

3.3  Sensors for navigation 

 The processing of sensor data is very important and must be carefully 

performed. It involves converting measurement signal data into its numerical measured 

value. Any errors during this process affect the outcome of the control algorithms and 

their performance. Therefore, processing the data of each sensor is the first step for the 

development of all other algorithms. The discussion which follows presents the onboard 

sensor data acquisition.  
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3.3.1 The Odometer 

 The odometer provides information about the distance driven and speed. From 

our experiences, the front wheels of the robot's body are less affected by slippage than 

the rear wheels. Therefore, we mounted hall sensors and magnets on the front left and 

on the front right wheels, instead of on the rear wheels. Figure 3.6a shows the position 

of magnets and hall sensors that are mounted on the front wheel. When the robot is 

driving, the magnets pass through hall sensors and hall sensor generates a pulse at that 

moment.  

 3.3.1.1 Measurement of the driven distance. The output pulse signal of hall 

sensor is the input of the fast external interrupt on the microcontroller. That is, the 

interrupt routine is activated whenever the hall sensor generates the pulse. For the 1/8 

and 1/10 scale chassis, we selected 8 and 16 magnets, respectively. The distance 

between two magnets should also be long enough for the microcontroller to clear the 

interrupt level signal. Every time that the interrupt signal is evoked, the distance is 

calculated. The distance driven is measured as the accumulated value after each reset. 

The calculations for the distances driven are as follows: 

magnet

odo
odo n

R
s

π2
= ,    (3.1) 

odorodor snd ,= ,     (3.2) 

odolodol snd ,= ,      (3.3) 

 

where sodo is the distance between two magnets. Rodo is the radius of the wheel and 

nmagnet is the number of magnets on the wheel. The dr and dl are the driving distance on 

the right and on the left front wheels, respectively. The number of pulses for both the 

right and the left front wheels is nodo,r and nodo,l, respectively. The number of pulses on 

each wheel is counted by the interrupt counter. The pulses on the counter are added up 

for the forward driving direction and deducted for the backward driving direction.   

 

 3.3.1.2 The detection of the driving direction. Two hall sensors are mounted on 

each wheel to determine the driving direction and the driving speed. The first hall 

sensor is mounted over another one as shown in Figure 3.6a. One is called the upper 

hall sensor and the other is called the lower hall sensor.  
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 The generated pulse signals from the upper and lower hall sensors on each wheel 

are connected into a 54LS74 Flip-Flop logic IC and the output of the flip-flop is the 

logic state low or high that represent the directions forward and backward.  

 

 
(a)    (b) 

Figure 3.6: Variable definition for speed calculation: (a) magnet and hall sensor 

positions on a wheel; (b) output pulse signals from hall sensor. 

 

 3.3.1.3 Measurement of the driving speed. The driving average speed vavg of the 

robot is defined as the average speed of the front right and the front left wheels. The 

general equation for the speed calculation of a wheel is  

 

odotc
v Tn

sz
⋅

= ,      (3.4) 

 

where zv is the wheel speed, s is the driven distance, ntc is the number of pulses, and Τodo 

is the time constant of odometer’s interrupt. Τodo is specified in the Timer interrupt and 

is set to 12.8 µs. The graphical definitions of these variables are shown in Figure 3.6b. 

The wheel speed can be measured in several ways as follows: 

 (a) by measuring the distance between the upper and the lower hall sensor (sa) 

and the time interval that one magnet takes for passing from the upper to the lower hall 

sensor (ntc,a), 
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(b) by measuring the distance between two magnets (sodo) and the time interval 

that two magnets require to pass through the upper hall sensor (ntc,b), 

 (c) by measuring the distance between two magnets (sodo) and the time interval 

that two magnets require to pass through the lower hall sensor sensor (ntc,c). 

 When exploiting one of these alternatives, the distance s in (3.4) is replaced by 

sa or sodo and ntc is replaced by ntc,a, ntc,b or ntc,c.  

 

3.3.2 The Gyroscope 

The gyroscope provides analog output voltage that is proportional to the angular 

velocity, when the robot drives in a curvature. Two gyroscope sensors were tested on 

MERLIN, the Gyrostar ENV-05DB and ENV-05F-03. First, we exploited the ENV-

05DB sensor which is capable of measuring an angular speed of up to ± 80 

degrees/second. This sensor is no longer manufactured. Therefore, we switched to the 

ENV-05F-03, which is capable of measuring ± 60 degrees/second angular speed. The 

signal is amplified and is connected to the 10-Bits Analog to Digital (A/D) converter of 

the microcontroller. 

Before making the first measurement of the angular velocity, the calibration of 

the offset value has to be performed. The offset value Od,offset is calculated from by 

averaging  20 measured values. This is also called the calibration of the gyroscope. This 

offset value is kept constant until recalibration is performed. The offset may change 

regarding the drift in the gyroscope when recalibration becomes necessary. 

 

3.3.2.1 Measurement of the angular velocity. The angular velocity ω is 

calculated from the digitized value by using 

 

)( ,, averagedoffsetdgyro OOc −=ω ,    (3.5) 

 

where the Od,average is the average value from 10 measurements and the cgyro is the scale 

factor of the graph of the angular velocity and the digital value of the gyroscope output.  

 

3.3.2.2 The relative yaw angle measurement. At every time period of Tgyro, the 

current yaw angle is the accumulated yaw angle from the previous state. This relative 

yaw angle is calculated as follows: 
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 zψ,gyro = z’ψ,gyro +  ω Tgyro ,    (3.6) 

 

where zψ,gyro and z’ψ,gyro are the relative yaw angle at the current and the previous state, 

respectively.  

 

3.3.3 The 3-axis magnetic compass 

The 3-axis compass is exploited for measurement of the absolute angle. The 

Microstrain 3DM compass sensor is a magnetic compass sensor. The measurement 

refers to the magnetic earth's pole and gravitation. A 3DM compass sensor is a 3-axis 

orientation sensor capable of measuring: ± 180 degrees of yaw heading, ± 180 degrees 

of pitch, and ± 70 degrees of roll. The sensor is calibrated and tested by using the test 

software from the manufacturer. Since the magnetic compass sensor is very sensitive to 

the magnetic field, the compass sensor is mounted at a height of 30 cm from the robot's 

base. The data from the 3DM compass sensor is sent to the microcontroller via the 

universal asynchronous receiver/transmitter (UART) at 9600 baud. The measurement is 

evoked by an interrupt routine. The sensor sends out the raw measurement data after a 

poll command is received. The raw data integer value is kept in the register of UART 

and is converted to a degree unit by multiplying with a constant value of 0.0055.   

 

3.3.4 Ultrasonic sensors 

The 6500 sonar ranging module is exploited on the robot in combination with 

the ultrasonic transducer for obstacle detection. This sensor provides accurate sonar 

ranging in the range of 6 inches to 35 feet from the target. The measurement is based on 

the principle of the time of flight; an ultrasonic impulse is sent out by a transducer, 

reflects on a target, and returns to the same transducer. The counter timer starts when 

the signal is sent out and stops when the reflected signal is received.  

The range of the ultrasonic measurement is set to the maximum range of 7.14 

meters to limit the cycle's measurement time. By using the counter timer with a time 

period of Tultr = 25.6 µs, the operating time for each channel is 41.984 ms. The cycle 

time for four sonar ranging channels on board is 168 ms. The time of flight of the sound 

to the target equals  half of the time for one trip. Therefore, the distance of the object is 

calculated by  
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where csound is the speed of sound and is equal to 340 m/s, nultr is the counted number 

and Tultr is the time period and zutlr is the measured distance. 

 

3.3.5 Infrared sensors 

The SHARP GP2D12 and GP2Y0A02YK infrared sensors are capable of 

obstacle detection within a range of 10-80 cm and 20-150 cm, respectively. The sensors 

provide analog output voltage that is proportional to the distance to the obstacle. The 

output from each sensor feeds to the A/D converter of the microcontroller and the 

measurement update is performed periodically. The infrared sensor is used for auxiliary 

obstacle detection in combination with the ultrasonic sensor since the cycle time of the 

infrared sensor measurement is shorter than that of the ultrasonic sensors. 

 

3.3.6 The Photonic Mixer Device (PMD) camera 

The PMD camera has emerged from the new PMD technology. At the 

University of Siegen, the PMD camera has been researched and developed [HES 02] 

[SCH 04]. The camera provides ready-to-use depth information. In an image frame, 

each pixel of the image gives the distance value and also the 2D gray scale value. Each 

of 16x16 pixel on the PMD image is the measured distance value to an obstacle and its 

detection area not only covers altitude like a laser scanner does, but it covers a vertical 

and horizontal detection area with its cone volume of vision.  

 

3.3.6.1 The PMD camera system. The principle of a 3D TOF imaging system is 

shown schematically in Figure 3.7. An object is illuminated by a high frequency 

modulated light source. The reflected light signal is compared with an electric reference 

signal. All systems presented are equal in the fundamental functions of photo-detection 

and signal processing. The 3D TOF imaging system starts with the detection of light, 

wideband amplifying, signal conversion and quantization. Each step has its own error 

source e.g. noise, that is transferred through the whole system. However, the light 

backscattered from the object is directly sensed and demodulated in the same area by 

the PMD array. The depth information of the scene is therefore acquired in pixels using 
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the correlation results of the received optical signal and the demodulation signal in 

parallel for the complete matrix. 

 

 
Figure 3.7: Schematic PMD TOF operation. 

 

The principles of the camera system's structure are described here. Besides the 

PMD-matrix, the camera consists of the light source, a micro-controller, programmable 

logic and an analog/digital converter. The programmable logic generates two 

modulation signals and controls the phase difference. The velocity of light is denoted 

here by c. The following formula shows the relation between the frequency (f) and the 

range of unambiguousness (lmax) in a continuous wave time-of-flight measurement 

system:  

            
(3.8)

 

Because the light signal has to run the distance between camera and object 

twice, the range of unambiguousness is reduced by half. The first modulation signal is 

used to control the light source. The second signal builds the push-pull voltage for the 

photo gates of each of the 16x16 pixel PMD-arrays. The two supplied read out values A 

and B of each pixel are multiplexed to the analog/digital converter. The digital data is 

then processed in a micro-controller. This controller is the camera's main control and 

evaluation tool.  It shifts the phase between the modulation signals stepwise and collects 

the delivered correlation values. Using a least-square algorithm, the controller evaluates 

the phase delay of every single pixel. This phase difference ϕPixel is proportional to the 

distance value dPixel that can be calculated by the following term: 
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(3.9)

 

3.3.6.2  The 16x16 pixel PMD camera. Figure 3.8 shows the photograph of the 

assembled camera. The camera's output is the distance information in each of the 16x16 

pixels. The camera operates at the frame rate of 3 Hz and the half angle of the detection 

area is 12 degrees. The maximum detection distance is 15 meters limited by the 

modulated frequency. 

 

 
Figure 3.8: A photograph of the 16x16 pixel PMD camera. 

 

3.3.6.3 The 48x64 pixel PMD camera. This camera is manufactured by 

PMDTec and the name of product is PMD[vision]® 3k-S. Figure 3.9 shows the 

photograph of the camera. The camera's output is the distance information in each of the 

3072 pixels. The camera operates at the frame rate of up to 25 fps and the half angle of 

the detection area is 40 degrees with the lens focus of 12mm. The maximum detection 

distance is 7.5 meters for the modulation frequency of 20 MHz. The modulation 

frequency is adjustable and is inversely proportional to the maximum detection 

distance. 

 

 
Figure 3.9: A photograph of the 48 x 64 pixel PMD camera. 

 

3.4 Steering and propelling the car-like mobile robots. 

The steering and propelling methodology for the car-like mobile robot is similar 

to that of a car. MERLIN turns its front wheels into the desired steering position and the 

driving speed after receiving the command from the operator. The robot has two 
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motors; one for steering and another for propelling. These motors are controlled 

individually by using the pulse width modulation (PWM) that is generated by the 

microcontroller onboard.  

 

3.4.1 The steering control 

The purpose of steering control is to control the steering angle of the front 

wheels so that the robot drives in the desired orientation. Since the servo Futaba S3003 

has internal position controller, assigning the proper PWM value is setting the steering 

angle. The frequency of the steering PWM signal is set to 50 Hz. The control of the 

steering angle is divided into two modes, the joystick control mode for manual driving 

and the path control mode for autonomous driving.  

 

3.4.1.1 Steering control by using Joystick. In its joystick control mode, the 

robot calculates the PWM value from the joystick commands that are the integer scale 

numbers in a range of 0 to 100. The PWM value is calculated by using 

 

0,)50(2 steeringjssteering pwmnpwm +−=     (3.10) 

 

where pwmsteering is PWM value assigned related to the desired scale number, njs is the 

scale number in a range of 0 to 100 and pwmsteering,0 is PWM value assigned related to 

the zero degree (straight) steering position. 

 

3.4.1.2 Steering control for autonomous path following. In the path control 

mode, the orientation control is assigning the PWM to achieve the desired steering 

position. The two main types of path commands used are the line path and arc path. For 

a line path, the robot always sets its steering position to zero. For a curved path or arc 

path, the robot sets its steering angle according to the path command, which contains of 

the radius of curvature. The calculation of PWM value is explained here. Let x be the 

diameter of the curvature. 

When the robot drives in a clockwise direction, there are two mathematical 

equations, which are formulated based on the robot's performance in experiments as 

shown in Figure 3.10a:  
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(a) (b) 

Figure 3.10: The relationship between the PWM value and the diameter of the curvature 

when driving: (a) in a clockwise direction; (b) in a counter-clockwise direction. 

 

8)  x  (2 if;580318 ))5(5.0( <<+= −− x
steering epwm ,   (3.11) 

8)  x ( if;578017 ))13(09.0( ≥+= −− x
steering epwm ,   (3.12) 

 

The experiments showed that, for each value of PWM, the robot drives with a constant 

steering angle in a circle path, so the diameter of the circle is measured. Similarly, when 

the robot drives in a counter-clockwise direction, the relation between PWM value and 

diameter of curvature as shown in Figure 3.10b are 

 

9)  x  (2 if;576428 ))5(355.0( <<+−= −− x
steering epwm ,  (3.13) 

9) (x  if;57801.17 ))12(1.0( ≥+−= −− x
steering epwm .    (3.14) 

 

3.4.2 Speed control  

We apply the well known proportional and integral (PI) control for motor closed 

loop speed control. The continuous PI controller is derived into the digital controller as 

in [FRA 98]. The control algorithm of the digital PI controller is 

 

[ ] )()1()()1()( keKkekeKkuku ipspcspc +−−+−= ,   (3.15) 

max,min, )( spcspcspc ukuu ≤≤ ,     (3.16) 
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where uspc(k) is the control input at the time step k, Kp and Ki are the proportional and 

integral gain, e(k) and e(k−1) is the speed error at time step k and at the previous time 

step k-1, respectively. The saturation of the control input is applied as in (3.16). The 

minimum and maximum values of the control variables are uspc,min and uspc,max. The 

speed error is the difference between the average velocity vavg and the reference velocity 

vref.  

)()( kvvke avgref −= .     (3.17) 

)()1()( kukpwmkpwm spcpropellingpropelling +−= ,   (3.18) 

mbpropellingpropellingmfpropelling pwmkpwmpwm ,, )( ≤≤ ,   (3.19) 

 

where pwmpropelling(k) and pwmpropelling(k−1) are PWM values assigned to the propelling 

motor at the time steps k and k−1,respectively. pwmpropelling(k) is constrained by the 

maximum forward value pwmpropelling,mf and the maximum backward value 

pwmpropelling,mb as in (3.19). These values have been set to limit the robot maximum 

speed for safety. The frequency of the propelling PWM signal is set to 100 Hz. 

The controller gains Kp and Ki are tuned by using the trial and error method. The 

resolution of the hall sensors is 8 pulses /rev. Table 3.2 shows the reference table that 

contains the tuned parameters Kp and Ki corresponding to various reference speeds. 

These parameters are tuned according to trial and error on the real system.  

 

Table 3.2: Parameters for the PI controller at the specified reference speed.
Desired speed (m/s) Kp Ki

0.5 0.080 0.009 
0.4 0.070 0.009 
0.3 0.050 0.008 
0.2 0.030 0.006 
-0.2 0.025 0.005 
-0.3 0.035 0.006 
-0.4 0.045 0.007 
-0.5 0.060 0.008 

 

Further from measurement of these on board sensors is how MERLIN navigates. 

The next chapter explains autonomous features for navigation. Those are obstacle 

avoidance, 180 degree turn, and path following control.  

 

 25



4 Autonomous Features 
 

Chapter 3 gave an overview of MERLIN, introduced the data communication, 

sensors, sensor data processing, and robot steering and speed control. These sensor data 

and motion controls are further exploited in the several autonomous features described 

below in this chapter. Several obstacle avoidance techniques were designed and are 

presented in Section 4.1. Section 4.2 describes the robot's capability to execute an 

autonomous 180 degree turn in a narrow corridor. The last section explains the 

development of an autonomous path following in an unknown environment.  

 

4.1 Obstacle detection and collision avoidance. 

In an unknown environment, the information about obstacles, such as walls or 

objects, are not known beforehand. Various techniques for obstacle collision avoidance 

can be implemented based on the perception capabilities of on-board sensors and 

strategy. Two categories of obstacle collision avoidance are discussed here; obstacle 

collision avoidance and wall following.  

The goal of obstacle collision avoidance is to avoid collision without the 

necessity of identifying what type of obstacles the robot encounters. When the robot 

detects an obstacle, it tries to turn into another direction where the obstacle is not 

detected. For the wall following, the robot avoids collision by following the obstacle’s 

boundaries and keeps at a constant distance away from the obstacle. 

The design of these obstacle avoidance algorithms is based on the perception 

capabilities of the robot. Selected because of their light weight and compact size, four 

ultrasonic and six infrared sensors were mounted onto the robot as shown in Figure 4.1. 

The infrared sensor provides short distance obstacle detection up to 0.8 meters, whereas 

the ultrasonic sensors provide long distance detection up to 7.0 meters. Among the 

sensors located on the front and on the back of the robot, infrared sensors have higher 

priority (compared to the ultrasonic sensors) regarding the fast measurement updates. 

The ultrasonic sensors take a longer cycle time waiting for their reflected signal. 

Therefore, the data from the infrared sensors only replace the ultrasonic measured data 

when the obstacle lies within 0.8 meter from the robot.  
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Figure 4.1: Positions of the ultrasonic and infrared sensors. 

 

4.1.1  Obstacle collision avoidance  

Without prior knowledge of the obstacles met, the robot relies on its ultrasonic 

and infrared sensors to detect obstacles. When the obstacles detected lie within 1.5 

meters, the obstacle collision avoidance controller is applied automatically. A car-like 

mobile robot avoids collision by turning into other direction and driving forward when 

the obstacle is far away, or by driving backwards when the obstacle is close by. The 

steering control works using a fuzzy logic controller. However, in some situations, the 

fuzzy logic controller has lower performance than the if-then rules. Therefore, the 

designed controller consists of two options; the fuzzy logic controller and the if-then 

rule controller.  

4.1.1.1 Fuzzy logic controller. MERLIN was designed to avoid collision with 

obstacles using a fuzzy logic controller [DRI 93]. The fuzzy logic controller is selected 

because of its small memory requirement for computation. The structure of the fuzzy 

logic controller is illustrated in Figure 4.2. The inputs of the controller are the distances 

measured by the three ultrasonic ranging sensors and three infrared sensors, and the 

output is a PWM signal used to control the steering motor.  

 

 
Figure 4.2: The structure of the fuzzy controller. 
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The fuzzy logic controller is mainly composed of three components, 

fuzzification, rule evaluation and defuzzification. The Sugano-type inference system 

known as the singleton output membership function was also selected for use, due to its 

characteristic of enhancing the efficiency of the defuzzification process by weighting 

the average of crisp outputs of inference rules. 

 

4.1.1.2 Controller design. The fuzzy logic controller starts by converting the 

obstacle measured distance into the fuzzy language according to gathered experiences. 

As it does this, the crisp input is translated into a fuzzy value. The distinct (non-

fuzzified) variables that are the distances measured by those sensors are fuzzified based 

on corresponding affiliation functions (with a value between 0 and 1). The specified 

fuzzy subsets are shown in Figure 4.3. The input variables are “Left”, “Middle”, and 

“Right”. The distance measurement is divided into three fuzzy subsets, Very near (VN), 

Near (N) and Far (F).  The steering angle is divided into five subsets that are Left, 

Slightly left, Straight, Slightly right, and Right. After they have been fuzzified, the fuzzy 

representations of the input are used to compute the fuzzy output truth values. These 

values are based on a Max-Min inference. 

 

 
(a) 

 
(b) 

 
(c) (d) 

Figure 4.3: Membership functions for obstacle avoidance: (a) input variable “Left”;  

(b) input variable “Middle”; (c) input variable “Right”; (d) output variable “Steering”. 

 

To simplify the representation of the vehicle's activity, 18 fuzzy rules are applied 

as shown in Table 4.1. The main idea behind the fuzzy control rules is described as 
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follows: The process of control according to fuzzy rules is to translate the fuzzy output 

to a crisp value. To do this, the singleton defuzzification method is used. The crisp 

output of the fuzzy controller u* is calculated as  

∑

∑

=

== N

i
i

N

i
ii

w

zw
u

1

1*
,     (4.1) 

where wi is the firing strength of the rule or the maximum membership function of rule i 

and zi is the output level of rule i.  

Table 4.1: The fuzzy inference rules for obstacle avoidance 

Rule no. Left Middle Right Steering 
1 F F  Straight 
2 N F  Straight 
3 VN F  Straight 
4 VN N  Right 
5 F N  Slightly left 
6 F VN  Left 
7 N N  Left 
8 N VN  Left 
9 VN VN  Right 

10  F F Straight 
11  F N Straight 
12  F VN Straight 
13  N VN Left 
14  N F Slightly right 
15  VN F Right 
16  N N Right 
17  VN N Right 
18  VN VN Left 

 

4.1.1.3 If-then rule controller. When the robot is very near to the obstacle or at 

the wall corner, the robot sometimes needs to drive backwards. This is when the if-then 

rules come into effect. These if-then rules are necessary when the robot is near to a wall 

corner and the front distances to the left and to the right are nearly equal. The if-then 

rules are applied as the two concatenated steps of movement, driving backward 

followed by driving forward, in which the robot steers the front wheel into the same 

orientation as its previous move. In order to this, the priori orientation is recorded. For 

the next move, the robot's heading remains in the same orientation but opposite 

direction as the previous move. The if-then rules are shown in Table 4.2. 

 

 4.1.1.4 Test results in different scenarios. Experiments were performed to test 

the autonomous steering control using two types of scenarios: driving along an open-
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ended wall and into a dead-end. Figure 4.4a shows three obstacles that represent the 

open-end wall and the driven path. The solid line shows the robot's driving path. The 

robot started from position (0, 0). In front of the 1st obstacle, in the 1st marked circle, the 

robot drove forward and backward and turned in another orientation many times before 

getting free of the obstacle. Finally free of the obstacle, the robot's head was pointing 

into the 2nd obstacle. It drove forward and stopped again in front of the 2nd obstacle. The 

robot tried to change its orientation in the 2nd marked circle. At this position, the robot 

moved straight on forward and backward several times since the measured distance 

from the front left sensor and the front right sensor were almost identical. Also, the 

distance form the side left and the side right sensors were identical. As shown in the 

figure, the repetitions of movement are shown in the marked circles. After that robot 

met the obstacle free direction, it moved forward. From this position, the robot found its 

way out from in front of the obstacles and came out to the final position. 

 

Table 4.2: If-then rules for obstacle avoidance. 
Priori (if) Next (then) Rule 

no. Orientation Direction Steering angle 
position 

Propelling 
direction 

1 Clockwise Forward Maximum left Backward 
2 Clockwise Backward Maximum left Forward 
3 Counter clockwise Forward Maximum right Backward 
4 Counter clockwise Backward Maximum right Forward 

 

 

(a)        (b) 

Figure 4.4: The driven path of obstacle avoidance; (a) in the open-end wall scenario;  

(b) in the close-end wall scenario. 
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Figure 4.4b shows the robot's driving path in the close-end wall scenario. The 

robot started at position (0, 0) facing the wall and tried to move into an obstacle-free 

area. Finally, the robot turned around away from the dead end. The robot changed its 

orientation at each wall corner and only turned clockwise regarding the if-then rule 

control as mentioned above.  

 

4.1.2 The PMD camera for obstacle detection. 

An application of the camera to mobile robots is to use the camera for obstacle 

detection and collision avoidance in an indoor environment, where the obstacles can be 

tables, chairs, people, wall, etc. The advantages of using a PMD camera over ultrasonic 

sensors are that specula reflection phenomenon does not exist and the blind area is 

covered. Figure 4.5 shows an obstacle lying in the blind area between the front middle 

and the front right ultrasonic sensors and detection areas of each ultrasonic sensor and 

of the PMD camera.  

The first step in obstacle collision avoidance is to acquire the PMD data. In order 

to do this, the 16x16 array is arranged into three groups, left, middle and right. That 

means that the matrix is divided into 3 bands, 16x6, 16x4, and 16x6. Among the left, 

middle and right bands of detection on the PMD camera, the shortest distance is chosen 

as a representation of all pixels in the band. We take the representative shortest distance 

in each band by using the following method. Since there is a lot interfering noise when 

the 16x16 pixel takes measurements while the robot is driving, the robot stops before 

the camera captures image and takes the average value from four images.  

 

 
Figure 4.5: The area of detection of PMD camera and ultrasonic sensors divided into 

left, middle and right sections. 
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There are two ways to implement the PMD camera on MERLIN. The first way 

is to use the PMD camera to replace the three ultrasonic sensors located at the front of 

the robot. The advantage of using the PMD camera instead of the front ultrasonic 

sensors is that the robot is able to detect small objects, such as the leg of a table, that 

normally lie within the ultrasonic sensors' blind spot. However, only the camera has 

narrow vision of detection. The second way is to use the camera along with the 

ultrasonic sensors. This is more effective than the first method. The combination of the 

ultrasonic sensors and the PMD camera vision as in Figure 4.5 (top view) provide the 

superposition of obstacle detection. The ultrasonic sensors detect objects located far 

away from the robot and located within detection areas of the most left and the most 

right ultrasonic sensors, whereas the PMD camera detects objects close to the robot with 

its fine pixel detection in the front area of the robot.  

 

4.1.3 Wall following 

Another technique to avoid obstacle collision is to let the robot follow a wall. 

This is particularly appropriate for avoiding collision with large obstacles with a long 

boundary. The robot tries to stay at a constant distance away from and parallel to the 

wall, instead of only trying to avoid collision as described in section 4.1.1.4. The 

infrared sensors mounted at the front of the robot's body are exploited in this technique 

and the fuzzy logic algorithm and if-then rules are applied. The wall following 

algorithm can be divided into two modes; wall following on the left hand side and wall 

following on the right hand side. The fuzzy logic controller used here is identical to the 

fuzzy logic controller described in section 4.2.1.1. 

The input of the controller is the error between the desired reference dref and the 

measured distance d from the front left (left hand side mode) or front right sensor (right 

hand side mode). The input variable “error” is calculated by 

 

      error =  dref  − d             (4.2) 

 

The fuzzy rules are evaluated as follows: 
1. If  error  is  neg, then  steering  is right, 

2. If  error  is  pos, then  steering  is left, 

where neg and pos have an input membership function as shown in Figure 4.6a. The 

output variable steering has two membership functions that are right and left as shown 
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in Figure 4.6b.  

As an auxiliary controller, the if-then control is also applied for the wall corner. 

Figure 4.7a shows collision avoidance at the inner wall corner. The robot's position 

numbers, 1 - 4, represent the movement steps. The robot takes the previous movement’s 

orientation in to consideration. As in section 4.1.1.3, the if-then rule allows the robot to 

move in the same orientation as the previous move. Moreover, at wall edges, when the 

measured distance d is suddenly jumps to a large value as shown in Figure 4.7b, an 

extra rule is to let the robot turn around the edge. The wall following controller is 

exploited in testing for robot localization in Chapter 5. The experimental result of the 

wall following autonomous function is presented below in Section 5.4.2, in Figure 5.6. 

 

 
 

Figure 4.6: Membership functions for wall following: (a) input; (b) output. 
 

 

 
Figure 4.7: Wall following; (a) at a corner; (b) along an edge. 

 

4.2 An autonomous 180 degree turn in a narrow corridor. 

The autonomous turning function is used at the dead end of a narrow corridor 

where the robot has to turn its head into the direction from which it came. Regarding the 

car-like characteristics, the robot manoeuvres itself around in this situation in a manner 

similar to the path shown in Figure 4.8.  
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At early stage, the autonomous function is basically developed with the 

assumption that there would be no other obstacle in the dead-end corridor. Trial 

experiments resulted in a best combination of paths which are stored in the robot's 

memory. Whenever this manoeuvre is necessary, the movements are read and 

performed step by step until the end, which is when the robot comes to the same 

heading angle of +180° or -180°.  When the obstacle avoidance is integrated, the 

process becomes as shown in Figure 4.9. 

 

 
Figure 4.8: The experimental result for an autonomous 180 degree turn. 

 

On left hand side of the flow chart is the process explained above for a turn 

without meeting any obstacle. When the robot does meet obstacles in its current driving 

direction, it stops and does process A, on the right hand side of the flow chart. The robot 

checks its record of previous move to determine whether it was moving forward or 

backward, clockwise (cw) or counter clockwise (ccw), in order to assign the movement 

command. The test result of for autonomous 180 degree turn is shown previously in 

Figure 4.8. The final heading position of the robot is close to 180 degrees from its 

original position. It is also important to make sure that the angle measurement during 

the turning process is exact. The method for reaching an angle measurement was 

explained above in Section 3.3.2.2. 

 

4.3 Path following in an unknown environment. 

In an unknown environment, the intelligent navigation requires the path 

following control. The path following control for mobile robots is the automatic control 
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of a robot along a specified path without human interference. The path following 

strategy is the integration of the basic path following control, wall following, and 

trajectory generation. The wall following control is explained above in section 4.1.3. 

Here, the trajectory generation, the basic path following control and the path following 

strategy are explained. 

 

 
Figure 4.9: Autonomous 180 degree turning process. 

 

4.4.1 Trajectory generation 

When that robot has become free of any obstacles and is no longer on its original 

path, the robot has to reach its desired final position. The trajectory generation strategy 

provides the fittest trajectory between the robot's current position and the desired final 

position based on the car body's manoeuvring characteristics. The sample trajectories 

are shown in Figure 4.10. The trajectory consists of two non-symmetrical sub-paths 

with a different curvature radius for each sub-path r1 ≠  r2. Also, the final heading angle 

of each sub-path is unequal θ1 ≠ θ2.  
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The distances to destinations dx and dy are the distances between the robot's 

current position and the destinations in x and y directions. Note that the robot's heading 

position is referred to as x-axis direction. The distances to the destinations are calculated 

by 

  dx = r1sinθ1 + r2sinθ2,         (4.3) 

  dy = r1cosθ1 + r2cosθ2,         (4.4) 

 

where θ1 = θ2 and r1 = r2. As a result, the sub-paths are symmetrical and the distances to 

destination of the symmetrical sub-paths are  

dxsym = 2r1sinθ1,    (4.5) 

  dysym = 2r1cosθ1.    (4.6) 

 

The symmetrical trajectories are shown in Figure 4.9b. The radius is fixed as r1 

and the angles vary as θ1, α1, and β1 result in three different trajectories. Note that for 

all trajectories, the current heading is also the final heading. In the iterative loop of the 

trajectory generation, the angle θ1 and radius r1 are varied. The iterative loop searches 

for the fittest trajectory using (4.5), (4.6), and 

 

  xf = xfinal – xcurrent,        (4.17) 

   yf = yfinal – ycurrent,         (4.18) 

ex = xf – dxsym,             (4.19) 

        ey = |yf | – dysym,           (4.20) 

   esum = |ex |+ |ey |,       (4.21) 

 

where xfinal, yfinal, xcurrent,  and ycurrent are the current and the final position coordinates, 

repectively. The fittest path is the trajectory with the minimum value of esum. Note that 

the minimum 1 meter radius is the shortest curvature radius and a 90 degree angle is the 

maximum angle for each sub-path. 

 

4.3.2 Basic path following control 

The basic path following control is the path following control that functions 

under the assumption that there is no obstacle along the path during the operation. The 

robot moves along the specified path and stops at the destination without avoiding 
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collision. The steering control as explained in section 3.4.1.2 is exploited here. Two 

available path types are curve path and line path. 

 

 
Figure 4.10: Trajectory generation 

 

In a curve path command, the data packet consists of the radius of curvature and 

the desired heading. Whenever the robot receives a curve path command, the radius is 

converted into the PWM value using (3.9 - 3.12). Meanwhile, the desired heading is 

kept as a reference value. Periodically, the desired heading has to be compared to the 

current heading. The robot heading is also called the robot’s orientation. Therefore, the 

measurement of robot heading is the relative yaw angle measurement in section 3.3.2.2. 

When the current heading reaches the desired heading, the curve path following is over. 

The first sub-path in Figure 4.10a is an example of two concatenated curve paths. In this 

figure, the first curve path consists of the radius of curvature is r1 and the desired 

heading is θ1. The second curve path consists of r2 and θ2, respectively. 

For a line path rather than a curve path, the command packet consists of the path 

length and the movement direction. The robot sets the front wheels to drive straight on 

and the desired final heading is zero radian. The path length is kept as a reference value 

and is compared to the distance already driven, measured by the odometers on the front 

wheels as explained in section 3.3.1.1. When the driven distance reaches the path 

length, the line path following is over.  
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4.3.3 Path following strategy 

The path following strategy integrates the wall following and trajectory 

generation with the basic path following control. Figure 4.11 shows the original path 

command as a broken line through the obstacle. Initially, the robot receives a path 

command from its user and begins by recording its current position and heading. When 

the robot detects the obstacle, it stops in front of the obstacle at position 1. The wall 

following algorithm determines the orientation of the robot for the next move by 

considering not only the obstacle's position, but also the robot's current position and its 

desired final position. The robot performs wall following until the robot meets no other 

obstacles in front of it. After the robot is free from obstacle, at position 2, it stops and 

calculates the difference between its current heading and its desired final heading. Then 

the robot adjusts its heading by turning into the direction of the final heading and stops 

when the robot heading reaches the final heading as shown at position 3. 

At this moment, the robot checks the distance to the final position yf. The robot 

sends a request for the trajectory generation to the client PC. At this stage, since the 

robot heading is pointing to the desired final heading, the trajectory generation is 

performed by using (4.7) - (4.11) on the client PC. The robot waits for the generated 

trajectory from the client PC. After the robot receives the trajectory, the robot moves 

along the trajectory path and stops at the destination, where the robot heading points in 

the direction of the desired final heading and the robot position is at the desired final 

position. If the robot finds obstacles before it reaches the destination, it repeats the 

process again from position 1. Please note that we call the operation from position 3 to 

the destination as trajectory following. 

 

 
 

Figure 4.11: Path following strategy 
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4.3.4 The data communication for the path following strategy. 

Figure 4.11 shows the data exchange between the robot and client PC during the 

real-time path following operation. The basic path following controller and wall 

following controller are located on the microcontroller. The client PC runs the robot 

localization, trajectory generation, and GUI. The localization technique is explained in 

detail below in Chapter 5 and details of GUI are provided in Appendix B. As explained 

in section 3.2, the robot transmits sensor data to and receives control commands from 

the client PC continuously. Whenever the robot desires a trajectory generation, the robot 

sends a request command to the client PC. After the client PC generates the trajectories, 

it sends the generated trajectory commands to the robot. On the client PC, the estimated 

current robot positions xcurrent and ycurrent are obtained from robot localization and the 

distances to the destinations xf and yf are updated by using (4.7) and (4.8) and are sent 

from the client PC to the robot periodically at every 0.2 seconds.  

  

 
 

Figure 4.12: Architecture of data communication. 

 

4.3.5 Experimental results 

The experiment was performed on-line. The operator assigned a 7 meters line 

path to the robot. Since the path command is a line path, the desired heading is zero 

radian and the robot's desired final position is at 7 meters facing forward, the original 

path as shown as a dashed line in Figure 4.13a. The solid line represents the robot 

driven path and the position numbers are indicated as defined in Figure 4.11.  

The robot started at (0, 0), meets the 1st obstacle at position 1 (0, 2.4), did wall 

following, stopped at position 2 (-0.5, 2.4), and started the trajectory following at 

position 3 (-0.9, 3.1) but it met the 2nd obstacle at position 1 (0.2, 4.4). There, the robot 

restarted the process from position 1 and it finally reaches the destination.  
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As shown in the figure, the final positions are classified into three types: the 

desired position, the actual position, and the estimated position. The desired final 

position is belonging to the original path. The actual position is the real position 

measured on the ground but the estimated position is obtained from the robot 

localization. According to the robot localization, the robot stopped at the estimated final 

position (-0.3, 7.0). In fact, the actual final position was at (-0.4, 6.8). The difference 

between the actual and estimated position occurred from the accumulated errors in robot 

localization. However, both the estimated and actual positions lied within the radius of 

0.5 meters around the desired final position. During the process, the robot was two 

times at the position 3. Therefore, the robot heading was adjusted two times into the 

final desired heading as shown in Figure 4.13b. At the destination, the error in final 

heading was 0.13 radians only.  

In the next chapter, the relative robot localization technique exploited in this 

section is explained and also the experimental result of the autonomous wall following 

from section 4.1.3 is presented.  

 

(a) (b) 

Figure 4.13: Result of the path following control: robot position; (b) robot heading. 
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5 Relative Localization using a Nonlinear Dynamic Model 
 

As mentioned in section 4.3, the path following strategy exploits robot 

localization. Here, the chapter explains the robot's localization which uses a nonlinear 

dynamic model and the discrete extended Kalman filter. The robot's nonlinear dynamic 

model and the discrete extended Kalman filter are described in Sections 5.1 and 5.2, 

respectively. Section 5.3 explains the calculation of the robot's real position and heading 

errors by using its odometer, its gyroscope, and compass sensors. The final section 

presents and discusses the experimental results. 

 

5.1 Robot modelling 

The first step in model based localization is to develop a suitable mathematical 

model for the robot. This robot is a four wheel vehicle with the driving principle of a 

car, where the front wheels do the steering and the rear wheels propel the car forward. 

The nonlinear dynamic model represents the robot's dynamic movement, including its 

nonlinear characteristics which come from the side force at the wheels. This property, 

the side force at the wheels, comes most into effect when the car moves along a curved 

path. The following section introduces the nonlinear dynamic model and the application 

of the model for the mobile robot subsequently. 

 

5.1.1 The nonlinear dynamic model 

The nonlinear dynamic mathematical model for a four wheel vehicle was 

conceived of as a single track model describing transverse and longitudinal dynamics, 

neglecting roll and pitch angles and comprising front and rear wheels to one fictitious 

wheel [RIE 40] [MAY 91]. 

Figure 5.1 shows the dynamic variables of such a vehicle as follows:  

• the yaw angle ψ, vehicle orientation,  

• the yaw velocity ψ’, the first derivative of the yaw angle,  

• the longitudinal velocity v,  

• the sideslip angle β,  

• the actual position X and Y of the center of gravity in Cartesian coordinates, 

• the front side force Sv and the rear side force Sh,  

• the rear longitudinal forces H resulting from the driving motor, 
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• the steering angle δv. 

In addition, the model has the following constants: vehicle mass m, moment of 

inertia θ and the distances lv (lh) between the front (rear) wheels and the longitudinal 

axes of the car.  

 
 

Figure 5.1: Dynamical variables of the vehicle. 

 

By using on the balance of the forces acting on the vehicle in the longitudinal 

and lateral directions, the torques and the kinematic conditions, the nonlinear dynamic 

vehicle model is presented as follows: 
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           ψψ ′=&  (5.2)
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The front and rear side forces Sv and Sh of the vehicle depend on the slip angles αv and 

αh, while αv depends itself also on the steering angle δv. The nonlinear functions Γv and 

Γh determine the dynamics in the tires as follows: 

 

            )( vvvS αΓ=  (5.5)

           )( hhhS αΓ=  (5.6)
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The behavior of the wheels and the tires has been taken into consideration to 

represent a characteristic line, by applying these functions. This characteristic line 

includes limitations and descending behavior for high values in the argument. As shown 

in Figure 5.2, the functions are approximated by three straight lines describing the 

dependence of side force values S on their argument α. For low arguments, a nearly 

proportional ascending of the side force can be recognized, while beyond the value αmax 

the side force is descending. At αmax the value for the corresponding side force reaches 

its maximum. The area below αmax is called the ascending part, while the area where the 

side force descends is called the descending part of the characteristic line. As a 

consequence of the gradual inverse dynamics, the car begins to skid when driving along 

the descending part. During a normal maneuver without skidding, every wheel of the 

vehicle is working in the ascending area of the characteristic line. This nonlinear 

characteristic coming from automotive technology is also applicable to a car-like mobile 

robot in an indoor environment over dry, flat floors.  

As here, high absolute values for αv and αh will never come up, and the 

functions Γv and Γh can be simplified to the amplification factors cv and ch. When this is 

true, then (5.5) and (5.6) result in  
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Figure 5.2: Characteristic line Γ of the wheels and tires. 
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5.1.2 Model realization 

According to the calculations, the moment of inertia is equal to 0.169167 kg·m2. 

The side force constants cv and ch are set from experiments. When the steering angle δv 

is constant and the driving motor force H is also constant, the robot drives on a circular 

path with a constant speed and the robot's position could be externally recorded by a V-

scopeTM positioning sensor. The data were exploited with the model equations and 

MATLAB Simulink to obtain the side force constant. The results are cv = 168450 and ch 

= 152290. The length from the center of gravity to the front wheels is lv = 0.15 meter 

and to the rear wheels lh = 0.15 meter. The mass of the robot is m = 7 kg, including the 

batteries. Because the surface of the robot is small, and as the robot drives with low 

speed, it was not necessary to calculate the air resistance, which is negligible.  The 

process of model identification is explained in detail in [TIM 04]. 

 

5.2 The Discrete Extended Kalman Filter (EKF) 

The Kalman filter (KF) is a model-based sensor fusion technique used in many 

applications. The KF is also exploited for the measured data of PMD camera in the next 

chapter. Here, we explain how EKF is implemented. The discrete EKF [BRO 83] [WEL 

02] is derived from the KF for application of discrete system. The details are explained 

in the following subsections. 

 

5.2.1 A general discrete EKF 

First, it must be assumed that a nonlinear process has a state vector and is 

governed by the non-linear stochastic differential equation 

nx ℜ∈

 

          xk = f (xk-1,uk-1,wk-1), (5.9)

with a measurement  that is mz ℜ∈

          zk = h(xk, vk), (5.10)

 

where wk and vk represent the process and measurement noise. The linearized model 

equations from (5.9) and (5.10) are 

          111 )ˆ(~
−−− +−+≈ kkkkk wxxAxx , (5.11)

          kkkkk vxxHzz +−+≈ )~(~ , (5.12)
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where xk and zk are the actual state and measurement vectors, kx~  and kz~  are the 

approximated state and measurement vectors, and  is an a posteriori estimate of the 

state at step k. Note that  noises are neglected for state and measurement vectors due to 

the fact that the individual values of w

kx̂

k and vk at each time step are unknown. Thus, the 

linearized state transition matrix is represented without noises. The Jacobian matrix of 

the partial derivatives of f with respect to x is 
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where the state vector x is 

          , Tvx ][ ψψβ ′= (5.14)

 

and the Jacobian matrix of partial derivatives of h with respect to x is 
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where h is  
Txxxxh ][ 4321= . (5.16)

 

The filtering process starts with the initialization of all state variables and 

matrices. It is assumed that the process and measurement noises are Gaussian with a 

mean of zero and are constant throughout the process. The a priori estimate state 

variable  and the a priori estimate error covariance  are as follows at time step k, −
kx̂ −

kP

          , )0,,ˆ(ˆ 1 kkk uxfx −
− = (5.17)

          , QAPAP T
kkkk += −

−
1 (5.18)

 

where Q is the process noise constant matrix. After that the Kalman gain Kk, the a 

posteriori estimate state variable , and the a posteriori estimate error covariance Pkx̂ k are 

calculated as follows: 

          , 1)( −−− += RHPHHPK T
kkk

T
kkk (5.19)

          , ))0,ˆ((ˆˆ −− −+= kkkkk xhzKxx (5.20)
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          , −−= kkkk PHKIP )( (5.21)

where R is the measurement noise covariance. 

 

5.2.2 Calculating the discrete EKF. 

The inputs needed from the robot model are the steering angle δ and the driving 

motor force H. For the discrete EKF, let the input vector at time step k be 

 

          uk = [δk   Ηk ]T, (5.22)

and let the measurement vector be 

           zk = [zβ,k   zψ,k    zψ’,k    zv,k]T, (5.23)

 

where zβ,k, zψ,k, zψ’,k, and zv,k are the measured values of the state variables at time step k. 

As the robot drives very slowly and, thus, the sideslip angle, which is difficult to 

identify, is of minor importance, the measurement value of the sideslip angle is set to 

zero for all time steps k. As for the system model in (5.1–5.4), the discrete system is 

first obtained using Euler’s method [FRA 98]. After that the linearized model equations 

are derived for the Jacobian matrix by using (5.13) and (5.14) as follows: 
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(5.24)
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Similarly, derived from (5.15) and (5.16), the Jacobian matrix of measurement H 

is a diagonal matrix with the element value of 1. The process and measurement noise 

covariance matrices Q and R are tuned off-line in the simulation of the appropriate value 

and kept constant during the iterative process. The selected values are 1x10-6 for all 

diagonal matrix elements. These parameters represent the uncertainty of the process and 

measurement. The improper value of these matrix elements result in a wrong estimated 

value and rapid divergence from the true measurement. 

 

5.3 Calculating the robot's position and heading.  

As shown in Figure 5.3, three different paths are implemented by using 

measurement data from the odometer, the gyroscope, and the compass. The robot's 

position and heading based on the odometer's data gives the non-model based path 

explained in section 5.3.1, whereas the other two path estimations are derived by using 
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the Kalman filter and the nonlinear dynamic model explained in section 5.3.2. 

 

 
 

Figure 5.3: Architecture of the robot localization system. 
 

5.3.1 Odometer position and heading calculation. 

The position xodo,k, yodo,k and heading ψodo,k at step k are calculated from 
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           1,,, −−=∆ kRkRkR ddd , (5.28)

           1,,, −−=∆ kLkLkL ddd (5.29)

 

where ∆dR,k is the difference between the distances driven by the right wheel between 

the time steps k and k-1 as shown in Figure 5.4. Note that a similar calculation is applied 

to the difference between the distances left ∆dL,k. Here, dL,k represents the distance 

already driven by the left wheel at time step k, while dR,k is the distance driven by the 

right wheel. These distances driven from the beginning of the ride can be computed 

from the amount of pulses from the odometer on each wheel. The wheel base W is the 

distance between the center of the left wheel to the center of the right wheel and is equal 

to 23.5 cm. 

 

5.3.2 Position and heading estimation using gyroscope and compass. 

We calculate the robot xk and yk positions at time step k of gyroscope and 
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compass by using the estimated state variables from discrete EKF. The gyroscope 

estimation uses the relative yaw angle of the gyroscope whereas the compass estimation 

uses absolute yaw angle of the compass as ψk in 

 

          ( ) 1cos −+−⋅= kkkkk xvstx βψ , (5.30)

          ( ) 1sin −+−⋅= kkkkk yvsty βψ , (5.31)

 

where vk, ψk, and βk are posterior estimated state variables as in (5.20). The estimated 

robot heading is ψk and st is the time step.  

 

 

 
Figure 5.4: Variables based on odometer. 

 

5.4 Experimental results 

The localization experiments were performed in an indoor environment and the 

sensor data was collected for off-line plots using MATLAB. All of the graph scales 

have units in meter and a data sampling rate of 0.2 sec. Though only the experimental 

results of the off-line positioning were presented in this chapter, the on-line experiment 

was already presented for the path following control described in section 4.3. Here, the 

experiments are designed to test the performance of localization when the robot moves 

straight on, in a curve path, and a combination of both. Several path types are exploited. 
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5.4.1 Description of exploited path types. 

Rectangular path: By manually tele-operated joystick control, the robot begins 

from 0 heading, drives straight on, turns at corners, and ends up at final heading of 2π. 

Line path: By manually tele-operated joystick control, the robot drives straight 

forward, stops at 15 meters, and drives backward to its original position.  

Wall path: The robot drives autonomously along the wall by using the wall 

following controller explained in section 4.1.3. The wall has a 15 meter by 15 meter 

square-shape. 

 

5.4.2 Types of measurements. 

As already mentioned, in order to improve the quality of the measurement 

signals, the data coming from the gyroscope as well as the data from the compass was 

subsequently processed by the Kalman filter using the measured velocity signal from 

the odometer. With respect to Figure 5.3, three cases of measurement including the 

signal estimation by the Kalman filters are compared as follows: 

Odometer: Here, the data coming from the odometer is not updated by the 

Kalman filter. By using  (5.25) - (5.27), the relevant odometer data  not only contains 

the average of the wheel movements but also the difference between the movements of 

the left and right wheels in order to get information about the robot's changed 

orientation. The dot line represents this Odometer’s path. 

Gyroscope: The yaw angles measured by the gyroscope are applied as inputs for 

Kalman filter measurement updates. The positions are obtained from (5.30) and (5.31) 

and are shown as solid line. Please note that here the odometer only provides the 

measurement value for the velocity.  

Compass: Similarly to the gyroscope measurements, the compass yaw angle 

measured by the compass is applied as an input for the Kalman filter, such that the 

position estimation from (5.30) and (5.31) can be represented by a dash-dot line. Please 

note that here as well the odometer only provides the measurement value for the 

velocity. 

 

5.4.3 Test results of several path types. 

Rectangular path: Due to section 5.4.2, Figure 5.5 presents the three kinds of 

results for the rectangular path. The robot drives from position (0, 0) with a 0 radian 

heading in a clockwise direction and stops at a 2π  radians heading. Regarding the path 
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measured only by the odometer measurement (dotted line), suddenly at (6,-3), a 

slippage in the wheels occurs. The estimated path using the gyroscope estimation (solid 

line) is described by the solid line. Its final position is very close to the real final 

position. The estimated position using the compass estimation (dash-dotted line) shows 

a deviation in the robot's heading along the path. This deviation results in the big error 

of the final heading obtained from the compass.  

Wall path: Figure 5.6 shows the wall-path. Here, the measured final position 

using only the odometer measurement (dotted line) has a large error.  

 

 

Figure 5.5: Rectangular path estimated positions. 

 

 
Figure 5.6: Wall path estimated positions. 
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Improvement using the gyroscope estimation (solid line) estimation shows a drift in 

some trials, whereas improvement using the compass estimation (dash-dotted line) 

estimator provides quite constant results for all trials. 

Line path: As shown in Figure 5.7, the expected final position of this path is the 

same as the starting position. Regarding the odometer measurement (dotted line), both, 

the results for the path and for the final position are not satisfying. The estimated path 

using the gyroscope estimation (solid line) is in the lateral direction quite good; 

however, the final position is not that close to the actual final position. Regarding the 

compass estimation (dash-dotted line), the final position is very exact whereas the 

trajectory of the path is estimated with certain errors, especially at the coordinates (4, 1). 

Due to this problem, the robot's heading is also shown in Figure 5.8. The measured 

values of the yaw angle derived from data from the compass sensor are extremely large 

at the 55th and at the 250th sampling steps. However, as mentioned, the final compass 

estimation for the robot's position is in the end close to the actual final position.  

It must be noted that this phenomenon doesn’t occur in every test. It must be 

assumed that this error is caused probably from the magnetic field of a power cable in 

the building.  

 

 
Figure 5.7: Line path estimated positions. 

 

5.4.3 Average errors 

Several driving tests were performed for every path type. The real final position 

determined for each driving test was compared to the position value measured by the 
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on-board sensors to calculate the resulting errors.  The average error values result from 

the averages of the respective errors of all similar driving tests. 

 

 
Figure 5.8: The estimated headings of the line path. 

 

The average errors in position and heading are summarized in Tables 5.1 and 

5.2, respectively. Several tests were performed for each path type. The position error 

epos is the error in measurement between the actual final position and the estimated final 

position. Based on the actual and estimated values for the yaw angle, the heading error 

eheading is the error of robot heading at the final position. These errors are calculated by 
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where xestimate,i , yestimate,i  and ψestimate,i are the estimated final position and heading of test 

number i. xactual,i , yactual,i  and ψactual,i are the real final values for the actual position and 

 53



heading of test number i, respectively. xe and ye  are the mean of error in x and y 

direction, n is the total number of tests. Note that the units are meter for position errors 

and degree for the heading errors.  

In Table 5.1, the average of the gyroscope estimation final position errors are not 

the largest in all of the trajectories. It can be seen that the gyroscope estimation for the 

final position value is in most cases not as good as the compass estimation. However, 

due to section 5.4.3, it is stated that the gyroscope estimation provides the most exact 

path.  

As Table 5.2 shows, the gyroscope estimation combined with discrete EKF 

provides very good results. Especially, for the line path, the pure odometer 

measurement is slightly better. However, a large error in the odometer's position is 

found, when using the wall path as an example. This large error occurs due to the 

slippage in the wheels and does not always occur in all driving tests.  

On top of that, it must be stated that once in a while drift problems can come up, 

when using the gyroscope. It is assumed that these problems can especially sometimes 

accumulate, when the ride takes a long time or when many bends are located along the 

path.  

An improvement of accumulated errors in relative localization is to exploit the 

vision-based absolute localization technique since this technique gives directly absolute 

robot position and heading without referring to the start position. The next chapter 

presents a localization technique called the position calibration.   

 

Table 5.1: Average position errors (epos). 

Path types Odometer Gyroscope Compass 
Rectangular path 0.71 0.17 0.33 

Wall path 15.09 5.44 3.35 
Line path 0.53 1.02 0.27 

 

Table 5.2: Average heading errors (eheading). 

Path types Odometer Gyroscope Compass 
Rectangular path -23 -1 14 

Wall path -58 -10 -52 
Line path 5 6 61 
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6 Position Calibration using 3D Vision and Artificial Landmark 
 

As in the previous chapter, the robot relative localization contains accumulated 

errors. As to correct these errors, this chapter presents the position calibration technique 

using 3D vision and artificial landmark. This technique can be broken down into three 

sequential procedures: design of the artificial landmark introduced in Section 6.2, 

landmark recognition, described in Section 6.3, the position prediction and update, 

described in Section 6.4. The on-line experiment of using combination of the relative 

and absolute localization techniques is also presented. The first section of this chapter 

begins by providing an investigation of the characteristics of the measurement of the 

16x16 pixel PMD camera. 

 

6.1 The measurement characteristics of the 16x16 pixel PMD camera. 

 The characteristics of measurement data is a factor for selection of an 

appropriate technique for landmark recognition. Therefore, our work began with the 

investigation of the data and its noise characteristics using a statistic approach. We used 

a flat whiteboard for calibration at a distance of 1 meter and set the integration time of 

the PMD camera to 5000 us. 

 Figure 6.1 shows the plot of 100 measured values of the 8th row pixel and of the 

1st to the 16th column pixel (c1 - c16). The measured values at each pixel have random 

noises. It is interesting to observe the mean and standard deviation (STD) of distance 

values since these values represent the accuracy and uncertainty of measurements of the 

camera. Therefore, we place this whiteboard at other distance positions and select 4 

pixels out of 256 pixels as sample pixels. Let the rth row pixel and the cth column pixel 

be called pixel (r, c). These selected pixels are (8, 1), (8, 2), (8, 3), and (8, 4).  

 The mean of distance values at 0.5 - 2.4 meters are plotted as in Figure 6.2a. At 

the distance of 0.5 to 1.6 meters, the mean values are close to or smaller than the actual 

distance value. At the distance farer than 1.6 meter, the difference between the mean 

values and the actual distance values are larger. Figure 6.2b shows the STD values. At 

1.6 meters, the STD values are smaller than 50 mm. At a longer distance, the STD 

values are larger. At 2.4 meters, the maximum STD value among these pixels is 170 

mm. At this distance, the difference between the maximum and minimum STD values is 

70 mm. 
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Figure 6.1: The measured values of the 8th row pixel and at  

each column pixel (c1 – c16). 

  

 
(a) (b) 

Figure 6.2: Mean and STD at the 8th row pixel and at the 1st to 4th column pixel:  

(a) mean values; (b) standard deviation (STD) values. 

 

 Once the distance increases beyond 1.0 meter, the standard deviation increases, 

as mentioned earlier. Here, the distribution of the measured value at close range, a 

distance of 0.2 up to 1.0 meter is further investigated. Table 6.1 presents the 3D images 

plotted by using the mean and standard deviation of all 256 pixels at distances of 1.0, 

0.50, and 0.20 meters, respectively. Note that colors represent the distance values. The 

smooth surface in an image of mean values means that the measured values among 256 

pixels are the same and the smooth surface in an image of the STD values means that 

there is equally distribution of measured values among 256 pixels.   
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 When we look at the mean and STD images at 0.5 meter, the distribution of 

mean values is random and the surface is non-smooth, whereas the image of STD values 

is very smooth. At 1.0 meter, middle pixels have smaller STD values than outer pixels. 

In the opposite, at 0.2 meter, middle pixels have larger STD and mean values than outer 

pixels. These are the focus property of the optical objective. The infrared light reflects 

more strongly among the focused pixels than in the pixels around the focus area, which 

can be detected to be a circular area. Due to this property, measurements taken when the 

object is too near to the camera cannot be used. It should be noted, however, that the 

measurement results can be different in terms of integration time, object colour and type 

of material.  

 

6.2 The design of the artificial landmark. 

In mobile robot applications, artificial landmark recognition is designed 

according to its purpose and according to what is most convenient for the user. The 

problem of object recognition is simplified by simultaneously designing a landmark 

suited to the object recognition strategy.  

In order that this be possible, the landmark is divided into two parts, an upper 

part and a lower part. The upper part is always symmetrical in shape, such as the 

cylinder shown in Figure 6.3. This part must be mounted on top of the lower part 

according to its own centre of gravity in order that the image taken of this upper part is 

view invariance. The lower part of the landmark is always rectangular in shape so that it 

is possible to calculate its distance from the robot and rotational angle position. Note 

that the background is the pixels that contain the measured distance value of the object 

behind the landmark. Details of how we get filtered image and how model image are 

generated are explained later. Here, we continue with the landmark design. 

 

6.2.1 Lower part of the landmark. 

When the rectangular box is rotated, the angle of rotation is detectable by using 

the slope of the box boundary and the box width and length. Varying the angle position 

changes the detected area, as shown in Figure 6.4a. 

The measured value and slope are shown as thick solid lines at the landmark’s 

boundary. One edge exist in the camera’s range of vision at only some angle positions, 

e.g. 11.25°, 22.5° and 33.75°. At other angle positions, no edge exists within the 
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camera's range of vision but slopes have changed visibly, e.g. 0°, 45°, 56.25°, 67.5°, 

76.75°, and 90°.  

 

Table 6.1: Mean and standard deviation (STD) at 1.0, 0.5, and 0.2 meters. 
Distance Mean Standard deviation (STD) 

1.0 m 
 

  

0.50 m 
 

  

 
0.20 m 

 

  

 

 
Figure 6.3: An example of the filtered image and the generated model image. 
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The difference in slope is distinguishable at each angle position and can 

therefore be set as a criterion for landmark recognition. As shown in the figure, between 

0° and 90°, slopes are not differentiable but distance values are differentiable since the 

width and the length of the rectangular box are not equal. The distance value is 

therefore another criterion for landmark recognition. Note that the square box is not 

applicable as a landmark since its width and length are equal.  

The reason why we use both the slope value and distance value as criterions is 

that it is more effective than using only the measured distance value. This advantage can 

be seen in Figure 6.4b, where two landmarks are at different distance positions but at 

the same angle position, 11.25°. The slopes of both landmarks are exactly the same no 

matter the distance position is far away, close, or even there is sideward translation. 

 

  
(a) (b) 

Figure 6.4: The detected surface at various positions: (a) various angle positions;  

(b) different distance positions. 

 

6.2.2 Upper part of the landmark. 

  In practice, many landmarks are set within the navigation area. The robot 

therefore needs to recognize each landmark. Therefore, the upper part of the landmark is 

designed to have an identity of each landmark. The upper part should have symmetry in 

shape in order that we get the same view of the object image no matter what angle the 
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whole landmark is set at. In words, the image of the upper part is view invariance. The 

geometry of the upper part is also required for convenience in landmark recognition. 

The design of the artificial landmarks also takes the choice of material, the 

landmark's colour and its size into consideration. The material used must reflect enough 

infrared light to produce a good image and thus it should not be black in colour. White 

paper was selected as the landmark surface material because it reflects well. The 

landmark should not be too big or too small in order that the objects lie within the 

detection area of the camera.  

  

6.2.3 Several designs of 3D artificial landmark. 

Examples of the various possible designs in landmark shape are shown in Figure 

6.5a. The classes I and II are rectangular boxes which are different in size. They are 

used as the lower part of the landmark and are called landmark class. There are several 

symmetrical and geometrical shapes that are applicable for the upper part of the 

landmark, which distinguishes the landmark type. The figures A to L are sample 

landmark types. Types A to I are consist of one geometrical part; whereas, types J to L 

are the combination of two geometrical parts. Figure 6.5b shows two combinations of 

landmark classes and types. When there are more classes and types available, there is 

also more variety in landmarks. Further designs as follows can be used: 

• Size variation: Landmark types of the same shape in different sizes result in 

different types, e.g. type I with smaller or bigger radius length. 

• Shape variation: The variation of the landmark type is possible by combining 

symmetrical shapes, e.g. the combination of type F and I. 

 

6.2.4 Landmarks for 16x16 pixel PMD camera. 

For the 16x16 pixel camera, three landmark types are selected. The first 

landmark type has a rectangular shape as upper part. That is, the landmark is a tall box. 

In the opposite, the second landmark type has a short box and is called null shape since 

the upper part does not exist. The third landmark type is a cylinder. 

 Table 6.2 shows four designed landmark types called L1, L2, L3 and L4. L1 is a 

rectangular landmark and L2 is null-type landmark. In fact, L1 and L2 are different only 

in the height. L3 and L4 are cylinder-type landmarks and are different in the diameter of 

cylinder. Table 6.2 gives the shapes of the landmarks in diagram form, types of the 

landmarks, lists the landmarks' sizes. As mentioned earlier, the lower part of the 

 60



landmark is used for the recognition of distance position and angle position. If the width 

of the box is not distinguishable from its length, the distance position cannot be read. 

The appropriate length and width are about 31 cm and 57 cm, respectively. Note that all 

four landmark types are in the same class. Therefore, they have the same the lower part. 

The methodologies used for landmark recognition of the upper and lower part are 

explained below in the coming sections. 

 

 
(a) 

(b) 

Figure 6.5: Landmark examples (a) various classes and types of landmark designs (b) 

landmark examples from the combinations of the designed landmark classes and types. 

 

Table 6.2: The four types of landmarks: names, shapes, types, and dimensions. 

Name Shape Type Dimension: 
w x l x h x d, (cm) 

L1 
 Rectangular 31 x 57 x 73 

L2 
  

Null 31 x 57 x 52.5 

L3 
 Cylinder 31 x 57 x 52.5 x 12.5 

L4 
 

 
Cylinder 31 x 57 x 52.5 x 6.5 
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6.3 Landmark recognition 

When the robot is at any positions referred to the fixed position landmark, by 

recognizing the distance position and the angle position of landmark, the robot position 

can be directly calculated as explained later in Section 6.4.1. The landmark recognition 

problem is to determine the distance position, the angle position and the type of 

landmark. Landmark recognition is divided into recognition of the upper and lower 

parts regarding landmark designs. Recognition of the upper part serves to classify 

landmark types; whereas, recognition of the lower part provides the distance position 

and angle position of the landmark. These processes start after the image filtering 

(Section 6.3.1). 

The core process in landmark recognition of lower part is shown in Figure 6.6. 

First, the filtered image is smoothed (Section 6.3.2). After that the smoothed image is 

further processed for matching preparation: The representative distance values of each 

column pixel is fitted into a line by using linear regression as described in Section 6.3.5. 

Meanwhile, the model images are obtained from the model image generation (Section 

6.3.3.1) and this image is process by line fitting and matching of upper part (Section 

6.3.6.1). The matching results are the distance and angle positions. 

The landmark recognition of the upper part is as shown in Figure 6.7. The model 

image and the smoothed image are detected for edges and matched later. The model 

image generation and the edge detection are explained in Section 6.3.3.2 and Section 

6.3.4, respectively. The method for matching the upper part of smoothed image with the 

model image is explained in Section 6.3.6.2. The output of the matching process is the 

landmark type. First of all, the following section explains image filtering. 

 

 
 

Figure 6.6: The landmark recognition process of the lower part. 
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Figure 6.7: The landmark recognition process of the upper part. 

 

6.3.1 Image filtering 

The PMD camera used here has 16x16 pixel resolution. The measurement 

characteristics in Section 6.1 show the PMD measurement data to be noisy, so that this 

data is a signal that needs to be filtered. We choose the powerful Kalman filtering 

model to filter the PMD images because Kalman filtering is well known for its high 

performance. Process noises, measurement noises, and the result from recursive 

computation yield the convergence of the self-adaptive Kalman gain and estimated state 

variable [WEL 02].  

 

6.3.1.1 Conducting the Kalman filtering. Two steps of the Kalman filter 

algorithm are implemented here for estimation and update by using the equations (6.1 - 

6.2) and (6.3 - 6.5), respectively. 

 

 xek
- = Axek-1 +Buk-1                                        (6.1) 

 
 Pk

- = APk-1AT + Q                              (6.2) 
 

 Kk = Pk
- HT(HPk

-HT+ R)-1                       (6.3) 
 

xek
  = xek

-  + Kk (zk - H xek
-)                 (6.4) 

 
Pk = (I - KkH)Pk

-                                     (6.5) 
 

At the first iteration k = 1, the values of xek-1 and Pk-1 were initialized previously. 

At state k, the a priori estimate state variable xek
- is calculated from the transition 

matrices A and B, the previous estimate state variable xek-1 and previous control variable 
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uk-1. Then, the a priori estimate error Pk
- is predicted from the previous estimate error  

Pk-1 and process noise covariance matrix Q. After that the update process is continually 

performed by calculating Kalman gain Kk from Pk
-, the output matrix H and 

measurement noise covariance matrix R. The Kalman gain is immediately used again 

for the calculation of the estimate state variable at the current iteration, xek, which is 

based on the measurement value zk, and the predicted state variable xek
-. Last, the 

estimate error Pk is updated and the process is repeated again until the last specified 

number of iteration is reached. 

In order that the PMD image can be filtered, the picture is taken when the 

camera position is static. Since there is a lot of noise due to the camera's movement in 

this 16x16 pixel camera, the camera has to be at a stand still during the filtering process. 

The filtering is done at each individual pixel over the sampling period (frames) as 

shown in Figure 6.8. The sample data of each pixel and each frame are gathered as state 

variables. Regarding that the camera is standstill, the transition matrix A is a scalar 

number equal to 1 and matrix B is zero. This transition matrix A represents no 

movement of the camera. If filtering were to be done while the camera was moving, the 

matrices A and B would have to be replaced by the proper movement model. As the 

following, Q and R are also scalar number. 

 

 
Figure 6.8: Image frames consisting of state variables. 

 

6.3.1.2 Uncertainty and convergence. The process noise covariance Q in (6.2) 

and the measurement noise covariance R in (6.3) need to be adjusted for obtaining the 

proper filter since these parameters represent the uncertainty of the process and 

measurement, respectively. Furthermore, the convergence rate of the Kalman gain is 

also dependent on these parameters. With the proper adjustment, the convergence rate 

and the oscillation of the estimated value xek
 at a steady state can be traded off.  
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According to section 6.1, the outer pixel shows larger noise than the middle 

pixel, the measurement noise covariance is therefore tuned by using the measured data 

from pixel (16, 16). The value of q is 50 and r is varied from 500 to 2500. As shown in 

Figures 6.9a and 6.9b, the larger r value results in a smoother estimated value and slow 

convergence of Kalman gain. The trade off between the oscillation amplitude of the 

estimated distance value and convergence time of Kalman gain results in selection of    

q = 50 and r = 1000. Note that Q = q2 and R = r2. The convergence time can be 

shortened by further tuning of q. The selected value of q is 100 since the deviation lies 

within 2 cm and the convergence requires at least 30 frames. Figure 6.10 shows the 

measured value and estimated value after filtering. Note that the value xek is initialized 

by using the average value of the first 10 frames. 
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Figure 6.9: The estimated value Kalman gain: (a) The estimated value; q = 50 and 
various values of r; (b) The Kalman gain; q = 50 and various values of r. 
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Figure 6.10: The estimated value xk from filtering and the measured value zk . 
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6.3.2 Image smoothing 

With regard to the flat surface of rectangular box (the lower part of the 

landmark), the PMD captured image of this shape should have the same measured value 

in each column pixel. In practice, there is deviation among pixels in a frame as 

mentioned in section 6.1. Therefore, the image smoothing gives the image a 

representative distance value of each column pixel for further use in line fitting and 

lower part recognition. 

The filtered image of 256 pixels is shown in Figure 6.11a. The image is 

smoothened by using the average of the column neighbourhood pixel value within the 

same row: 

n

x
x

n

i
ji

repj

∑
== 1

,

,     (6.6) 

where xj,rep, is the representative distance value at column j, xi, j is the distance value at 

the row i and the column j and n is the number of rows that contains the lower part of 

the landmark. Smoothing is not performed in the upper part of the image (representing 

the upper part of the landmark) to protect edge destruction. The smoothed image is 

shown in Figure 6.11b.  
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(a) (b) 

Figure 6.11: The filtered image before and after smoothing: (a) before; (b) after. 

  

 Another function of image smoothing is to discard the unexpected background 

noises as shown in Figure 6.12a. The noise caused by the background light has very 

large distance value. Noise can be caused by objects whose surfaces are not flat or by 

objects with a small surface area since the light scatters away. These measured distance 

values are undesirable and hinder landmark recognition. Therefore, they are eliminated 
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out by using the detection of discontinuity of the distance value among neighbour pixel. 

The pre-defined background value replaces the measured value at the pixel that contains 

large measured value. After smoothing, the image is as shown in Figure 6.12b. 
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(a) (b) 

Figure 6.12: The PMD image smoothing of random measurement noise:  

(a) before; (b) after. 

 

6.3.3 Model image generation 

 Due to the differences in the design of the upper and lower parts of the landmark 

as described in Section 6.2, the model image is also generated separately for the 

different parts. The image of the lower part is generated first, followed by that of the 

upper part. The following sections explain the methodologies used for generation of the 

model images and show the sample model images.  

 

6.3.3.1 Model image generation for the lower part of the landmark. The model 

image is generated by simplifying the 3D space into 2D space. The landmark and 

camera positions are first defined on the xyz coordinate. As shown in Figure 6.13, the 

coordinates of the camera and the landmark are defined as  and 

, respectively. To generate the model, the 3D space is simplified into 2D 

space by considering the top view of camera vision and landmark.  

),,( ccc zyxP

)',','( zyxP

In Figure 6.13, the z-axis of both the camera and landmark coordinates is 

identical. It must be assumed that the translation in z-direction is neglected. These 

coordinates are transformed onto the P(xc, yc, zc) coordinate by  rotation with angle δ, 

and translation with distance d. The sideward translation distance ds is 
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When considering the object corners 1 to 4 on the camera coordinate the 

landmark consists of 4 boundary equations:  

2
wx = ; 

22
lyl

≤≤
− , (6.8)
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− , (6.9)
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− . (6.11)

Four boundary equations are constructed from the relationship of coordinates at 

each corner as  
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ii

ii
io xx

yya , 
(6.12)

bo,i = yi – ao,i xi , (6.13)

  

where ao,i, and bo,i are linear equation coefficients of the landmark of the boundary i. 

The boundary equations are shown again in Figure 6.14. This figure shows how we 

calculate the distance value for each column pixel of the model image. The camera 

vision consists of 16 column pixel linear equations. At each column pixel p, the 

equation is  

y = ac,pc x + bc,pc , (6.14)

ac,pc x = tan(pc.αpc), (6.15)

 

where ac,pc and bc,pc are linear equation coefficients of the camera at the column pixel pc. 

The integer value of pc is the defined pixel position from -8 to 8. The angle between two 

column pixels is αpc.  

This figure also shows the intersection points of the camera equation and the 

object equation. There are 5 pixels in the middle that have the distance value of the 

landmark. The other pixels have the background value. The generated model image is 
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an image of distance position obtained from the intersection of an object and camera 

equations. By rearranging the equation from (6.13) we have, 

io

io

a
by

x
,

,−
= . 

(6.16)

 

 
Figure 6.13: Camera and landmark coordinates. 

 

 
Figure 6.14: Model image generation of the lower part. 
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The distance value y at the intersection of the camera and the landmark 

equations is obtained by replacing (6.16) in (6.14), 
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(6.17)

  

In Figure 6.13, when the angle position δ is varied, the upper part remains at the 

same pixel position since the upper part of image is view invariance as mentioned 

earlier in the landmark designs. As shown in Figures 6.15a and 6.15b, the upper part 

remains the same, whereas the lower part is rotated, the edge is shifted and the slope 

presents clearly. 

 

6.3.3.2 Model image generation for the upper part of the landmark. 

Sequentially, the upper part of the model image is generated after the image of the 

lower part has successfully been generated. Since the generated model image is the 

image of the distance position obtained from the intersection of landmark’s boundary 

equations and camera equations. The intersection points are calculated from the known 

value of distance d as shown in Figure 6.16. The intersection point is found by replacing 

d as x in the row pixel equation of the camera. The general camera equation at each row 

pixel pr is  

z = ar,prx + br,pr (6.18)

ar,prx = tan(pr.γpr). (6.19)
 

where ao,i, and bo,i are linear equation coefficients of the landmark boundary i. ar,pr and 

br,pr are linear equation coefficients of the camera at pixel pr. The camera equations are 

generated by using the angle γpr, which is obtained from the angle between two row 

pixels. Note that d is inherited from the model generation of lower part. 

 The generated model images of the rectangular type landmark, null type, and 

cylinder type are shown in Figure 6.17. Since the upper part of the rectangular type has 

the same shape as the lower part, the model image is a plane as shown in Figure 6.17a. 

For the null type, the upper part is the background as shown in Figure 6.17b. In fact, the 

rectangular type and the null type have the same shape, just with a different height 

measurement for the lower part. The height of the null type landmark is less than that of 
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the rectangular type. By using (6.18) and (6.19), we generate the rectangular and null 

type landmark. Next, the model image generation of the upper part of the cylinder type 

as shown in Figure 6.17c can be explained. 
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Figure 6.15: The model image at different angle positions: (a) 0°; (b) 45°. 

 

 
Figure 6.16: Model image generation of the upper part. 
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Figure 6.17: Generated model of landmark types: (a) Rectangular; (b) Null; 

(c) Cylinder. 

 71



 Figure 6.18 shows the top view of the column pixel positions and the cylinder. 

Following the same approach as for the model image generation of the lower part, the 

intersection points between the 16 column pixel equations form a circle equation to give 

the distance value. The translation d and ds is applied, whereas rotation is not present,   

δ = 0. In this case, rotation is not considered, regarding view invariance as mentioned 

earlier in Section 6.2. In Figure 6.18, the circular equation represents the top view of the 

landmark: 

(x-d)2 + (y-ds)2 = r2. (6.20)

 

The distance value is equal to the value of x at the intersection points between 

the camera column pixel equation (6.14) and the circular equation (6.20). Replacing 

(6.14) in (6.20) results in: 

 

( ) ( ) 0221 2
,

22
,

2
,,,

22
, =−−++++−−+ rdbdbdxdabadxa spcspcspcpcpcpc  (6.21)

 

By solving this equation, we get the distance value of each column pixel of the upper 

part. 

 

6.3.4 Edge detection 

 The edge detection of PMD images is detecting a sudden change in distance 

value among column pixel neighbourhoods. The difference of distance value in columns 

diff_c at the column i and in rows diff_r at the row j are calculated by 

diff_c(i) = xe(i) – xe (i +1), (6.22)

diff_r(j) = xe (j) – xe (j +1), (6.23)

 

where xe(i) and xe(i+1) are the distance values at the ith column and (i+1)th column. xe(j) 

and xe(j+1) are the distance values at the jth column and (j+1)th row. 

 Table 6.3 shows the detected edges of a model image and a smoothed image. 

The model image has two clear edges but the smoothed image has sub edges. The edge 

detection is exploited later to classify the landmark according to type. For landmark 

recognition in Section 6.3.6.2, the column edge width Wc is defined as the width of the 

image in columns and the row edge width Wr is defined as the width of the edge width 
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in rows.  For example, the model image has a rising edge at the 5th column and a falling 

edge at the 10th column. The column edge width is 5 (Wc = 5).  

 
Figure 6.18: Model image generation of a cylinder. 

 

Table 6.3: Images and edge detection in columns.  
Type Images Edges (diff_c versus column pixels) 
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6.3.5 Line fitting 

Line fitting is exploited to determine the slope of the lower part as shown in 

Figure 6.4. The slopes of the lower part of the model images and smoothed images are 

both calculated by using linear regression. When a representative distance value from 

each of the column's pixels is taken, there is a result of 16 distance values for each 

image. These representative values can be taken from any row in the lower part since 
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the image was smoothed and thus has the same distance value for all rows in the same 

column of the lower part. These values are arranged into the vector matrix for solving 

the slope and constant of the linear equation. Let As and Bs be matrices that contain the 

column numbers xs,1, xs,2, …, xs,max and the distance values ys,1, ys,2, …, ys,max, 

respectively.  
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where cs is the constant value of the linear equation and ms is the slope value. A sample 

graph of the result from line fitting, ysf = msx+cs, and the raw data ys are shown in Figure 

6.19. 
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Figure 6.19: A sample graph of line fitting result. 

 

6.3.6 Model matching  

Model matching is processed in concatenation with the image smoothing, model 

image generation, edge detection and line fitting. Model matching consists of two sub- 

processes, matching the upper part and the lower part. 

 

6.3.6.1 Model matching for the lower part of the landmark image. To match 

the lower part of the landmark image, the matched distance position D and the matched 
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angle position P have to be found. The matching process is as follows: The model 

images are generated by varying D and P from the minimum to the maximum value in 

the iterative loop. For each model image, the slope value and distance value of the lower 

part needs to be calculated and compared to those of the smoothed image. The model 

that has the smallest slope error and distance error among the other model images can 

best be fitted to the smoothed image and D and P of that model image are taken as the 

result of the matching process. 

As already explained in section 6.2.1, the slope value and the distance value are 

criterions for recognizing the distance position and angle position. These criterions are 

applied as the slope error and the distance error. The slope error ES (D, P) is the square 

of the different value between the slope value of the smoothed image xs and the slope 

value of the model image at distance position D and at angle position P, ms (D, P).  The 

slope error is calculated by using  

       . 2)),((),( PDmsxsPDES −= (6.26)

 

The xs and ms(D, P) are obtained by using (6.24) and (6.25). The distance error 

ED (D, P) is the summation of the distance error from 16 column pixels. This error is 

calculated by 
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where xdi,j is the distance value taken from the lower pixel image of the smoothed 

image at row pixel i and at column pixel j. md(D, P)i,j is the generated distance value 

from the model image at row pixel i and at column pixel j of the distance position D and 

angle position P. As shown in Figure 6.20, the process starts obtaining xs and 

calculating ms (D, P) for each position D and P. The minimum error minED is 

initialized as a large value and D is set to the first step that is 1. The iterative loop starts 

at D = 1 and stops at D = Dmax. At each step D, the error  is calculated by using )(DED
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Figure 6.20: Matching process of the lower part. 

 

where is the maximum angle position. When ED(D) is smaller than the 

minimum error minED, minED is updated and at the last step D

Pmax_

max, the best distance 

step Dbest is further used for searching for the best angle position Pbest.  

The right hand side of the flowchart shows the process by which the best fit 

angle position can be found. It is started by the initialization of the minES to a large 

value and then setting P = 1. The angle position P is varied until the maximum position 

Pmax. If the error ES(Dbest,P) is less than minES and ED(P) is less than or equal to 

ED(Pbest), the new solution Pbest is updated. Here, the first decision-making step is 

checking whether the error ES(Dbest,P) is less than minES and the second decision-

making step is checking whether ED(P) is less than or equal ED(Pbest). The second 

decision-making step should also involve because the slope error is sometimes 
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insufficient as mentioned in section 6.2.1, the slopes of the images of 0° and 90° are the 

same. Finally, at Pmax, the outputs of the process Dbest and Pbest are obtained. 

 

6.3.6.2 Classification of the landmark types using the upper pixel processing (Model 

matching for the upper part). In this process, upper pixel processing is used for 

recognizing the type of landmark. The landmark was designed as described in Section 

6.2, such that it is divided into four different types of landmark, L1- L4.  

 The process to distinguish the landmark types by using tree search and edge 

detection is as is shown in the diagram in Figure 6.21. It must be assumed that the 

landmarks L1 - L4 are belong to class A. In class A, there are three groups of landmark 

types:  rectangular, null shape, and cylinder. The landmark types are recognizable by 

using the edge detection described above in Section 6.4.3. 

 

 
Figure 6.21: The tree diagram for landmark type classification. 

  

 The criteria for distinguishing between landmark types are the edge widths that 

are the column edge width Wc and the row edge width Wr of the smoothed image and of 

the generated model image. The characteristics of the edges of four landmark types L1 - 

L4 have to be investigated first (below) in order to define the distinguishing classifiers. 

The criteria for determining a classifier for landmark type are: 

• If there is no column edge present (Wc = 0), check the row edges in order to 

distinguish between L1 and L2. If there is no row edge (Wr = 0), the match is L1. 

Otherwise, the match is L2.  

• If there are column edges (Wc ≠  0) present but no row edge (Wr = 0), check for 

the column edge widths for L3 and L4. By defining the two errors as ErrorWc3 
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and ErrorWc4, the minimum error for each type is matched to L3 and L4, 

respectively. These errors are calculated by  

 

ErrorWc3 = Wc – Wc3,model, (6.29)

ErrorWc4 = Wc – Wc4,model, (6.30)

 

where Wc3,model and Wc4,model are the column edge widths of the model images of L3 and 

L4, respectively. Note that when the resolution of PMD camera is higher, landmarks 

can have more complicated shapes and the object recognition of range images [BES 88] 

[JAI 90] [FAN 90] [SUK 92] can be exploited for upper part recognition. 

 

6.3.7 Tests of landmark recognition 

 Since landmark recognition is divided into two parts, recognition of the upper 

part and the lower part, the experiments are set up to test the two parts of landmark 

recognition separately by using off-line image data. In section 6.3.7.1, the first test is to 

check the performance of the lower part recognition strategy that was explained earlier 

in Section 6.3.6.1. A landmark was placed in front of the robot and in varying positions.  

In section 6.3.7.2, the second test is to check the performance of the upper part 

recognition strategy. The images of four different landmark types were tested using the 

method described above in Section 6.3.6.2.  

 

6.3.7.1 A test of the lower part recognition strategy. The landmark recognition 

strategy was tested off-line with the 16x16 pixel camera. In practice, we want to use the 

result from landmark recognition for the position calibration as explained later in 

Section 6.4. Here, the actual positions of robot for the position calibration are marked 

on the ground as shown in Figure 6.22a. The centre of rotation represents the landmark's 

centre of gravity.  

In fact, we do the experiment in the inverse way. We put the landmark on a 

rotary stage and fix the camera in order that we can set the distance positions and angle 

positions as we want exactly. Then, we start the first experiment with course angle step 

of 11.25°. The tested angle positions are at 0° to 90° with 11.25° step and the distance 

positions are at 80 cm, 100 cm, and 120 cm. In total, we are matching 10 angle positions 

x 3 distance positions = 30 calibrating positions. Note that since the rotation of 
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landmark occurs around its centre of gravity, the sideward translation of the coordinate 

could be neglected.  

Figure 6.22b shows symbols of the main distance and angle positions as 

rectangles, circles, and triangles. The results obtained from the landmark recognition 

processes can be explained as follows: At a radius of 80 cm, at 0°, the matching result is 

0° angle position shown as a circle. At 11.25° and 22.5°, the arrows point from the 

angle positions 11.25° to 0° position and from 22.5° to 0° position since the matching 

result of 11.25° and 22.5° angle positions are both 0°. In the same way, the matching 

result of 34.75°, 45°, and 56.25° angle positions are 45°. Also, the matching results of 

67.5°, 78.75°, and 90° angle positions are 90°. For 100 cm and 120 cm, the rectangles 

and triangles represent the matching results and the results have similar matching errors. 

These errors are from the undistinguishable of neighbourhood positions regarding the 

resolution of image and uncertainty in measurement of the 16x16 pixel PMD camera. 

However, at the main distance and angle positions marked as symbols, we get correct 

matching results. 

 

 

 
(a) (b) 

       

 Figure 6.22: Matching results of the lower part using 16x16 pixel PMD camera:  

(a) actual positions; (b) symbolic representation of the results. 

 

Up to this point, we conclude that the recognition of smoothed images are 

qualified at 0°, 45°, and 90° angle positions of 80 cm, 100 cm, and 120 cm distance 

positions. For other angle positions, the matching results are not satisfied. 
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Next, we do a new test by using courser angle step of 45°, instead of 11.25°. We 

do matching for only 9 positions, Pos1 to Pos9 defined in Table 6.4. Since these 

positions are the positions where robot perform the landmark recognition and the 

position calibration, they are called calibrating positions. We investigate further for the 

numerical results of the matching process at these calibrating positions. The process is 

as explained above. Matching according distance position was performed first, in 

keeping with the matching process described above in Section 6.3.6.1. The summations 

of distance errors ED(D) in (6.28) are shown in Table 6.5a. Let the wildcard ‘*’, ‘#’, and 

‘x’ represents the candidate distance positions 80cm, 100cm, and 120cm, respectively. 

As shown in the table, at 80 cm distance position, the summation of error ED (*), is 

smaller than ED (#) and ED (x). Therefore, the matched distance position Dbest of Pos1 is 

80 cm. For Pos2 – Pos9, the bold numbers are the minimum errors. The matching 

results of all 9 positions are correct. These results Dbest will be used further for matching 

the angle positions in Table 6.5b.  

The second step in the matching process is to find a match for the angle position 

Pbest. Table 6.5b consists of the slope error ES(Dbest, P) and distance error ED(Dbest, P) 

at each candidates for Pbest; 0°, 45°, and 90°. The matched angle position is the position 

that has the minimum error for both ES (Dbest, P) from (6.26) and ED (Dbest, P) from 

(6.27).  

 

Table 6.4 Names of calibrating positions. 

Positions 80 cm 100 cm 120 cm 
0° Pos1 Pos4 Pos7 

45° Pos2 Pos5 Pos8 
90° Pos3 Pos6 Pos9 

 

Table 6.5a: Matching result of the distance position. 
Candidates for DbestPosition ED (*) ED (#) ED (x) 

Matching result: 
Dbest

Pos1 19.95 105.11 482.84 80cm 
Pos2 30.91 271.83 807.01 80cm 
Pos3 57.69 364.81 965.95 80cm 
Pos4 287.76 36.35 75.29 100cm 
Pos5 135.20 18.82 194.30 100cm 
Pos6 63.80 39.99 307.99 100cm 
Pos7 889.12 324.27 47.72 120cm 
Pos8 633.62 182.01 19.96 120cm 
Pos9 428.64 86.30 33.31 120cm 
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Table 6.5b: Matched result of the angle position. 
Candidates for PbestPosition ES(  ,0°) ED(  ,0°) ES(  ,45°) ED(  ,45°) ES(  ,90°) ED(  ,90°) 

Matching result: 
Pbest

Pos1 0.25* 5.95* 203.04* 49.68* 0.25* 143.84* 0° 
Pos2 166.11* 226.87* 0.75* 58.07* 166.11* 24.11* 45° 
Pos3 0.33* 366.53* 205.16* 185.72* 0.33* 24.63* 90° 
Pos4 0.72# 2.53# 375.14# 117.01# 0.72# 244.01# 0° 
Pos5 243.75# 117.70# 8.44# 8.11# 243.75# 62.42# 45° 
Pos6 0.55# 253.89# 370.92# 142.59# 0.55# 3.39# 90° 
Pos7 0.72x 11.15 x 493.99 x 159.87 x 0.72 x 306.17 x 0° 
Pos8 294.91 x 75.88 x 17.68 x 3.03 x 294.91 x 120.71 x 45° 
Pos9 6.83 x 187.78 x 575.57 x 143.03 x 6.83 x 2.30 x 90° 

 

As shown in Table 6.5b, at Pos1, when comparing ES(*, 0°) with ES (*, 90°), 

they have equal slope errors of 0.25 but their distance errors are different. Since, the 

distance error ED (*, 90°) is larger than ED (*, 0°), the matching result Pbest of Pos1 is 

0°. This double decision-making step was mentioned in section 6.3.6.1. For Pos3, Pos4, 

Pos5, Pos7, and Pos9, the distance errors at 0° and at 90° are compared since the slope 

errors are equal.  

All matching results are correct. Therefore, we call the resolution of position 

calibration is of 45° step and 9 calibrating positions. Next, we proceed with the 

experimental results of matching of the upper part. 

 

6.3.7.2 A test of the upper part recognition strategy. This test makes use of the 

classification categories for the landmark types described in Section 6.3.6.2. Eight 

filtered images, two images of each of landmark L1 – L4, are taken for test purposes. 

These images in Figure 6.23-6.26 are named I1 - I8, respectively.  

As shown in Figure 6.23a and 6.23b, the filtered image of L1 is a flat plane 

across all pixel rows, since L1 is a rectangular type landmark. Figure 6.24a and 6.24b 

shows landmark L2, which has null shape. The distance values present in the upper part 

of the image reflect the background distance. Figure 6.25a is a filtered image of L3, 

which is a cylinder type landmark. The upper part image shows the convex of the 

cylinder, instead of the concave as in the model image since the light scattering at the 

edge of the cylinder causes small reflected light and therefore smaller distance value 

than the actual distance. Figure 6.25b is also an image of L3, but the cylinder part 

appears smaller since the image was taken from farther away. Figure 6.26a depicts L4, 

also a cylinder type landmark in a different size. The image shows the upper part of L4 

as a small cylinder tab which is farther away than the lower part of the landmark. 
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Similarly, in Figure 6.26b, the upper part is almost not detectable since the cylinder is 

even farther away from the camera. The light is scattered away from the landmark due 

to the curved shape of the cylinder's surface.  

 The matched type results are shown in Table 6.7.  In I1 and I2, the column edge 

width Wc is zero and the row edge width Wr is zero. There are no edges present in the 

image. From this information, the matching strategy deduces that the landmark type is 

rectangular that is L1. I3 and I4 show the column edges to be zero and the row edge 

widths as 8. These are the measurements for the null type landmark and so the matched 

result is L2. In I5 and I6, the row edge widths are also zero but unlike the two previous 

examples there is a detectable column edge width.  It must then be determined whether 

or not this edge width matches the measurements of the generated model for L3 or L4. 

As the diameters of the cylinders are different for the two landmarks, the column edge 

widths are also different. 

 The difference in edge widths is the criterion for matching and these differences 

are called ErrorWc3 and ErrorWc4 as in (6.29 – 6.30). In I5, ErrorWc3 is less than 

ErrorWc4. Therefore, the matched type is L3. The same criterion is applied for I6, I7, 

and I8. We obtain the correct landmark types for all images. The matching tests are 

therefore successful. Further, during the real-time matching process, the Dbest, Pbest and 

landmark types are exploited in the position calibration explained in the coming section. 

 

Table 6.6: The matching results of landmark type classifier. 

Image name Wc Wr ErrorWc3 ErrorWc4
Matching result: 
Landmark type 

I 1 0 0 0 0 L1 
I 2 0 0 0 0 L1 
I 3 0 8 0 0 L2 
I 4 0 8 0 0 L2 
I 5 8 0 1 3 L3 
I 6 5 0 0 2 L3 
I 7 4 0 3 1 L4 
I 8 3 0 2 0 L4 
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Figure 6.23: The filtered images of L1: (a) I1; (b) I2 
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Figure 6.24: The filtered images of L2: (a) I3; (b) I4 
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Figure 6.25: The filtered images of L3: (a) I5; (b) I6 

0
5

10
15

20

0

5

10

15

20

400

600

800

1000

1200

 
(a) 

0
5

10
15

20

0

5

10

15

20

500

1000

1500

2000

 
(b) 

Figure 6.26: The filtered images of L4: (a) I7; (b) I8 
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6.4 Position calibration 

The idea behind doing position calibration is to reduce the accumulated errors of 

relative localization that are the position and heading errors. A position calibration is an 

absolute localization technique. This technique corrects the robot position and heading 

by using the artificial landmark and 3D vision. In practice, the artificial landmark is 

placed in the environment before the robot starts its navigation. Since the landmark 

position is known already and the relative position of the robot to the landmark is 

obtained from the landmark recognition, the robot position is directly calculable. This 

section explains the process of calculation of the robot's position and heading using the 

output of landmark recognition process from the previous section.  

 

6.4.1 Position prediction and update 

 As shown in Figure 6.27, the vector for robot position Vr is calculated by  

 

Vr = Vo + Vd ,                             (6.31) 

where Vo is known from the a priori known landmark position P(Xo, Yo) and Vd is 

calculated from the rotational angles δ, the camera heading β, and the radius D. Let us 

define the related variables here. 

In the figure, the global coordinates, camera coordinates, and robot coordinates 

are denoted by (Xg, Yg), (Xc, Yc), and (Xr, Yr), respectively. δ is the rotational angle 

between the camera and the object coordinates assumed to be the global coordinates. 

The camera heading angle β is the angle between the robot and the camera headings. 

The radius D has centre at the landmark coordinate P(Xo, Yo). α is the angle of the 

robot's heading referred to by the global y axis Yg. β is already known from the 

orientation and positioning of the camera motor, which is mounted on the robot. If β 

equals -90°, the camera heading is the same as the robot heading.  

With the a priori known object position P(Xo, Yo) on the global coordinate and 

the rotational angles δ and radius D obtained from the previous section, the robot 

position P(Xr, Yr) using the relationship in equation (6.31), can be calculated by 
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The robot's heading α, the robot's angle position, and the landmark angle position, to 

which the global coordinate refers, are obtained from  

α = δ - β.                                      (6.33) 

 

where Xr, Yr, Xo and Yo are the position coordinates of the robot and landmark on the 

global coordinates, respectively. Finally, the position can be updated by replacing the 

robot position P(Xr, Yr) with the current estimated robot position on the positioning 

system. 

 

6.4.2 The on-line position calibration experiment. 

The on-line position calibration starts with landmark recognition and outputs 

from landmark recognition are further exploited as inputs for the position prediction and 

update processes. 

Sample of landmark image taken with the PMD camera are shown in Figure 

6.21. The black pixels in the images represent a large distance value (far away). White 

pixels represent the surface area of the landmark, which is closer than the background 

wall (black pixels). The blue pixels represent a distance value between white and black. 

There are some pixels on the edges and corners which are a mixture of white and blue. 

This shows light reflected at the edges: some of it scatters away and some returns to the 

camera. Note that a sample L1 image is not shown here since it is an overall white 

image.  

 In the tele-operated mode, the robot is controllable by using joystick or arrow 

keys. In this experiment, we drive the robot to the landmark and stop there. Then, we 

start image filtering and do the position calibration. Using the PMD camera's GUI, the 

operator can command the robot to do the position calibration. Appendix B provides 

details of PMD camera’s GUI. The on-line experimental results are presented here. 

 The result from different phases of image filtering is shown in Figure 6.29. The 

top middle panel shows the filtered image and the bottom middle panel shows the 

captured image from PMD camera. At the beginning, in Figure 6.29a, the top panel is 

empty. Later, in Figures 6.29b and 6.29c, the filtered images are similar to the captured 

images. Since the position calibration is integrated into the tele-operated control, after 

the image filtering, the robot position calibration is performed on-line. 
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Figure 6.27: The reference coordinates and definition of related variables for position 

calibration. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6.28: Sample PMD images plotted on Java platform: (a) L2; (b) L3; (c) L4. 

 

(a)  (b) (c) 

Figure 6.29: Filtered images (upper) and captured images (lower): (a) Initial; (b) after 

some time; (c) finish filtering. 
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 Here, we also present the results of the integration of relative and absolute 

localization on-line. On GUI, the robot driven path is shown as solid line. This driven 

path is obtained from the relative localization. Figure 6.30a shows the robot position 

and heading. Before the position calibration has been done, the robot position has not 

yet been correctly deduced. After the position calibration, in Figure 6.30b, the estimated 

robot heading and pose are the same as the actual position. The absolute localization 

was processed and the robot absolute position and heading replaces the relative position 

and heading. After the robot calibrates its position, in Figure 6.31, the driven path is 

shown. When compared to the position and heading before calibration, the error is 

suddenly eliminated at the calibration point. The position calibration can be activated 

manually according to the wish of the user.  

  

  
(a)      (b) 

Figure 6.30: The robot driven path, position and heading during on-line experiment: (a) 
before calibrating position; (b) after calibrating position. 

 

  
Figure 6.31: The integration of relative and absolute localization on GUI. 
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 At present, the camera is fixed to the robot with no axis to allow for rotation. 

When the camera was rigged such that it could rotate horizontally, the robot would be 

more flexible to perform position calibrations since the robot heading would not 

necessarily have to face the landmark. The robot would only need to stop somewhere 

near the landmark and the PMD camera could then scan for the landmark in the area 

around the robot. Further developments should be made so that the robot can distinguish 

a landmark from other obstacles. If the object found is recognized as a landmark, the 

robot calibrates its position automatically; otherwise, the robot tries to avoid those 

objects by getting out of the way. 

 Besides, the improvement for resolution of the position calibration is necessary 

since the 16x16 pixel camera provides only 45° angle step and 9 calibrating positions. 

The robot can only calibrate its position at the calibrating positions as in Table 6.4. The 

higher resolution for position calibration can be achieved by using the higher resolution 

camera. In the next chapter, we present the improvement for the resolution of the 

position calibration. 
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7        Improvement for the Resolution of the Position Calibration 
 

The previous chapter explained the position calibration by using the 16x16 pixel 

PMD camera. Since the resolution of the 3D image limits the performance of the 

landmark recognition, this chapter focuses on the improving the resolution of the 

position calibration. With the 48x64 pixel PMD camera, we propose a new technique 

for landmark recognition by using both 3D image and also 2D image. The following 

sections give a short introduction about the measurement of the 48x64 pixel PMD 

camera and explain the usage of 2D and 3D images for landmark recognition.  

 

7.1 The measurement characteristics of 48x64 pixel PMD camera. 

We start with the investigation of characteristics of measurement data of this 

PMD camera. We set the integration time to 1000us. Since the deviation of measured 

value is also depended on the integration time, throughout this chapter we let the 

integration time be constant. At 2500 mm, the distance value from 100 frames of the 

centre pixel is shown in Figure 7.1. The largest deviation is 35 mm and the mean value 

is 2409 mm.  

As mentioned in section 6.1, the camera measures the distance to a flat white 

board but each pixel has different mean values regarding uncertainty of measurement. It 

is interesting to see how large the different among these mean values is. We take 9 

pixels out of 3072 pixels. Figure 7.2 and 7.3 present how the mean and the standard 

deviation of the distance value are. These pixels are the centre pixel (24, 32), the outer 

pixels (8, 8), (8, 54), (40, 8), and (40, 54), and the inner pixels (12, 16), (12, 48), (36, 

16), and (36, 48). 

In Figure 7.2, the mean value at each distances from 500 mm to 2500 mm of all 

selected pixels are closed to the actual distance. Between 500-1800 mm, the measured 

values are exact. The mean of the measured distance values farer than 1800mm are 

shorter than actual distances. At the 2500 mm distance, the different between the 

measured distance value and the actual distance is in the range of 100 – 130 mm. These 

mean values present the higher accuracy in measurements, when compared to those of 

the 16x16 pixel camera. 

In Figure 7.3, the STD values of all pixels are proportional to the distances. 

When the distance is farer, the STD value is also larger. The STD represents the 
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uncertainty in measurement. At 500 mm, the maximum STD is 2.5mm only. When 

comparing to the 16x16 pixel camera, this value is much smaller. Moreover, at 2400 

mm, the maximum STD is approximately 30 mm whereas that of the 16x16 pixel 

camera is 170 mm. Therefore, the 48x64 pixel camera has not only higher resolution 

and faster frame rate than the 16x16 pixel camera, but it also provides smaller 

uncertainty and higher accuracy in measurement. 

 

 
Figure 7.1: Measured distance values of the 48x64 pixel PMD camera at 2500 mm. 
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Figure 7.2: Mean of the measured values of the selected pixels. 
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Figure 7.3: Standard deviation (STD) of the measured value of the selected pixels. 

 

For the landmark recognition, we work in the near distance range of up to 1.5 

meter, where the maximum STD is about 7 mm only. Therefore, when the camera is 

standstill, no filtering is required and only one frame of the scene is sufficient for 

landmark recognition. We also obtain a profit in time consumption since we do not 

loose time in filtering process. The landmark recognition process for the 48x64 pixel 

camera is slightly different from that of the 16x16 pixel camera. The process will be 

later explained in section 7.3. Here, we proceed with the 2D image processing for 

landmark recognition.  

 

7.2 The 2D image processing for landmark recognition. 

Here, we present the idea of exploitation both 2D and 3D images for improving 

the resolution of position calibration. We apply the horizontal edge of 2D image in 

image smoothing of the landmark recognition. Previously, we can do edge detection 

from the PMD image by using the differential value among neighbour pixel but the 

detected edges are sometimes not satisfied since it causes error in smoothed image 

explained later in section 7.3.2. Therefore, the edge from 2D image is exploited as an 

auxiliary edge for smoothing of PMD image since the 2D image has higher resolution 

than the PMD image. As to this purpose, what we need are the proper method for 2D 

edge detection and the relationship of pixel positions of the 2D and 3D images. 
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7.2.1 The horizontal edge detection of 2D color images. 

The Logitech Quickcam® Pro 4000 web camera provides 240x320 pixel 

resolutions with the captured half angle of 17° vertically and 22.5° horizontally. We use 

the image processing toolbox in MATLAB to detect edges of the landmark in the 2D 

image as shown in Figure 7.4a. The image is first converted from RGB into the standard 

L*a*b* color space created by the international commission of illumination (CIE). 

After that K-means clustering classifies the color, we perform both horizontal and 

vertical edge detection as shown in Figure 7.4b. After noise elimination, we get sharp 

edges as shown Figure 7.4c. Since the vision of the PMD camera is narrower than the 

web camera, the rectangle frame in Figure 7.4a indicates the detection area of the PMD 

camera, in which the PMD image is shown in Figure 7.4d. This method of edge 

detection does not perform well, when the color of landmark is closed to that of the wall 

in the background, since there is much noise in edge detection. 

 

(a) (b) (c) (d) 

Figure 7.4: The first result of edge detection of 2D image: (a) original image; (b) edges;  

(c) edges after noise elimination; (d) 3D PMD image. 

 

Since the contrast of the color is not clearly distinguishable, the white poster on 

the wall and the door behind the landmark are classified in the same color class as 

landmark and the detected edges are noisy as shown in Figure 7.5b. When we adjust the 

threshold value for noise elimination, the edges are as shown in Figure 7.5c. The noises 

are not easily taken out since when we further remove noises by adjusting the threshold 

value, the edges are also missing.  

Regarding the above mentioned problem in noise elimination, a new approach is 

to detect the horizontal edge of the landmark by scanning for the specified RGB 

threshold value. We select an appropriate threshold value for white color that is 

obviously distinguishable from the background wall. The result image of Figure 7.6a is 

shown in Figure 7.6b. Here, the image contains only the landmark. After that the color 
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image is converted into gray scale image and the noise elimination is performed. The 

final gray image is shown in Figure 7.6c. The edge detection from this image is 

qualified since the noises in the background are all eliminated. Next, we take only the 

horizontal edge that is the border line of lower part of the landmark and place this 

horizontal edge in the 3D image for the image smoothing described later in section 7.3.3. 

Here, we explain how the pixel positions of the PMD image are related to those of the 

2D image.  

 

  
(a) (b) (c) 

Figure 7.5: The noise in edge detection of 2D image: (a) original 2D image; (b) edges;  

(c) edges after noise reduction. 

 

   
(a) (b) (c) 

Figure 7.6: The horizontal edge detection of 2D image; (a) original 2D image; (b) gray 

scale image; (c) the noise eliminated image. 

 

7.2.2 The relationship of pixel positions of 2D and PMD images. 

Our aim is to locate the 2D horizontal edges on the 3D image. Therefore, we 

need to find out the relationship between 2D and 3D row pixels. The relationships of 

pixel positions depend on camera positions. The first version of camera position is as 

shown in Figure 7.7a. Though cameras have superposition of the detection area but the 

altitude level is differed by Hd and the horizontal pixel position are not linearly 

proportional. 
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Instead of solving the relationship of pixel position in Figure 7.7a, we found a 

better solution. An innovative idea is to combine 2D and PMD camera and this new 

camera is called a Combi 2D/3D camera [PRU 05]. As shown in Figure 7.7b, since the 

different in altitude is zero (Hd = 0), the 3D detection area lies in the middle of 2D 

detection area. The pixel positions of the 2D and PMD images are linearly proportional. 

Since the Combi camera is in production, this work is performed by using the concept 

of Combi camera. In the experiment, we place the Logitech camera and PMD camera at 

the same position, one at a time, in order that the optical axis of both cameras is 

identical. As a result, the relationship between row pixels of the Logitech camera and 

PMD camera are as following: 

 
                                             

2 120.5 24.5
3.5

D
pmd

RPRP −⎛ ⎞= +⎜ ⎟
⎝ ⎠

 
(7.1)

 

where RP2D and RPpmd are the row pixel of the Logitech camera and PMD camera,  

respectively. The exploitation of this relationship is explained in the coming sections.  

 

 
   (a)       (b) 

Figure 7.7: The detection area of 2D and PMD cameras: (a) 2D and PMD camera;  

(b) Combi 2D/3D camera. 

 

7.3 Recognition of the lower part of landmark by using 2D and PMD images. 

The recognition of lower part of landmark by using 2D and 3D images is shown 

in Figure 7.8. First, the 2D captured image is processed for horizontal edge detection as 

explained earlier in section 7.2.1. This horizontal edge is an input for image smoothing. 

The 3D captured image is smoothed by using the horizontal edges of 2D image and 

(7.1). Meanwhile, the model image is generated.  

After that the line fitting of both smoothed image and generated model image are 

processed and are furthered used for matching process. The edge detection and model 

matching are identical to section 6.3.4 and 6.3.6.1, respectively. Therefore, here, we 
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explain only the different processes. The model image generation is slightly different 

from what was explained earlier. For the image smoothing, an additional process is the 

replacement of horizontal edge of 2D image on the PMD image. 

 

7.3.1 Model image generation 

As explain in section 6.3.3, the model image is generated by knowing the half 

angle of the camera and the landmark dimension. The 48x64 pixel camera has 6.4x4.8 

mm2 chip with 16 mm focus. Therefore, the horizontal and vertical half angle is 11.31° 

and 8.53°, respectively. The sample of the model images at several angle positions are 

shown in Figure 7.9. When compared to the generated model image from 16x16 pixel 

camera, the edge or corner of the lower part of the 48x64 pixel is clearer and the corner 

of the lower part is easier to recognize. Besides, the surface of image is much smoother 

regarding less uncertainty in measurement. In Figure 7.9a, the slope value is zero 

regarding 0° angle position. When the landmark is rotated to 50° angle position, the 

slope of lower part exists but the edge of corner doesn’t exist as shown in Figure 7.9b. 

When the landmark is further rotated to 60° angle position, a corner exists as shown in 

Figure 7.9c. 

 

7.3.2 Image smoothing 

For this 48x64 PMD camera, the method is identical to as explained in section 

6.3.2. The sample captured image before smoothing is shown in Figure 7.10a. In this 

figure, the background values are those large distance values on the left upper corner 

and on the right upper corner.  

When we detect edges by using the differences of measured distance value 

among neighbourhood pixels, we get sometimes improper horizontal edges and we 

obtain the smoothed image as shown in Figure 7.10b, instead of Figure 7.10c. The 

problem is that the number of row n in equation (6.6) is not proper. Therefore, the 

average value is wrong since it consists of the large distance values in the upper corners 

of background values in Figure 7.10a.  

A solution for this problem is replacing the detected horizontal edge from 2D 

image to the horizontal edge of PMD image. After the 2D edge detection as explained 

in section 7.2.1 and (7.1) are applied. The proper smoothed image is shown in Figure 

7.10c.  This smoothed image is qualified and is further processed for the landmark 
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recognition. The next section presents the experimental results from landmark 

recognition of the lower part. 

 

 
Figure 7.8: Landmark recognition of the lower part using 2D and PMD images. 

 

 

(a) (b) (c) 

Figure 7.9: 3072 pixel model images at 800 mm; (a) 0°; (b) 50°; (c) 60°.  

 

(a) (b) (c) 

Figure 7.10: Image smoothing; (a) before; (b) after; (c) after. 
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7.4 Experimental results 

Since we want to compare the experimental results with those of the 16x16 pixel 

camera in Chapter 6, we set up the same experiment. The landmark is again on a rotary 

stage and the cameras are standstill. The only different is that we turn the landmark with 

finer angle position of 5° step, instead of 11.25° step. We capture 2D and 3D images 

from the Logitech web camera and the PMD camera in the range of from 0° to 90° 

angle position. The distance position is the same as previously; 800 mm, 1000 mm, and 

1200 mm. The test results are broken down into two parts; the horizontal edge detection 

of 2D image and the model matching.  

 

7.4.1 The results of 2D horizontal edge detection. 

Figure 7.11a shows the landmark photos at several angle positions. From the 

edge detection as explained in section 7.2.1, we find the horizontal edge and the row 

pixel number of the edge for image smoothing. Here, we present the detected row pixel 

numbers at each angle position and at 800 mm, 1000 mm, and 1200 mm distance 

position as shown in Figure 7.11b.  

At the 800 mm distance position, edges of all angle positions lie between the 

179th and the 186th row pixel. As expected, the row pixel numbers at various rotation 

angles are closed to each other but they are not exactly equal. Similarly, at 1000 mm, 

the horizontal edges lie between the 176th and the 181th row pixel. At 1200 mm, the 

horizontal edges lie between the 175th and the 178th row pixel. These 2D row pixel 

numbers are converted into the 3D row pixel number using (7.1). By using these results 

for the image smoothing, we get the matching result as presented in the section below. 

 

7.4.2 The results of model matching. 

The model matching result in this section should be compared with that of 

section 6.3.7.1. In the experiment, the model images are generated at fine steps, at every 

1° rotation angle for fine searching. According to the recognition process in section 7.3, 

the matching result is as shown in Figure 7.12.  

The smoothed image of 0°, 5°, 10°, …, 90°,  are matched to the generated model 

image. In total, we have 19x3 = 57 calibrating positions. The matched angles are closed 

to the reference (actual) angle for all angle positions. At the distance of 800 mm, among 

0° to 90°, the largest error is 7° at the angle position of 80° and the STD of the error 
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among all angle positions is 2.7°. At 1000 mm and 1200 mm, the maximum matching 

errors is 5° and the STDs of error are only 1.3° and 1.5°, respectively.  

 

(a) (b) 

Figure 7.11: Results of edge detection of 2D image: (a) 2D captured image at various 

positions; (b) the row pixel number from edge detection of each angle position and 

distance position. 

 

 
Figure 7.12: Results of matching of the lower part using 2D and PMD images. 
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These results from 48x64 pixel PMD camera outperform the matching results of 

the 16x16 pixel camera in the previous chapter since the matched result of 5° step was 

not possible for the 16x16 pixel camera due to resolution of the camera. Further, the 

resolution of position calibration was 9 calibrating positions with 45° step as described 

in section 6.3.7.1. By using the 48x64 pixel PMD image and a 2D image, the resolution 

is improved from 9 to 57 calibrating positions with the angle positions of 5° step, 

instead of 45°. The idea of usage of the 2D and 3D images to improve the resolution of 

the position calibration is therefore successfully implemented.  
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8 Summary and Perspective 
 

 This research was done using various prototypes of the car-like mobile robot 

platforms and its tele-operated control mechanisms. The developments were made to 

the robot hardware of several prototypes and robot's autonomous features and robot 

localization techniques.  

 Autonomous features: Autonomous features are obstacle avoidance, the 180° 

turning system for narrow corridors, and the path following control. Obstacle avoidance 

is categorized as the obstacle collision avoidance and the wall following control. The 

fuzzy controller and the if-then controller are applied for these obstacle avoidance 

strategies using four ultrasonic sensors and six infrared sensors. The performance of the 

algorithms was tested in several different scenarios. The obstacle collision avoidance 

algorithm is suitable for environments with obstacles that have short boundaries, 

whereas the wall following algorithm is suitable for long continuous boundary obstacles 

such as the wall of a building. The obstacle collision avoidance is further exploited for 

the 180° turn in a narrow corridor and the wall following algorithm is further exploited 

for the path following control function.  

 By integrating the obstacle avoidance into the turning process, the robot was 

able to turn into 180°, when there are unknown obstacles during the operation. The 

results show that the robot heading is 180° as expected. The path following control for 

the car-like mobile robot in an unknown environment integrates the basic path 

following control, and implements both the wall following and the trajectory generation 

function. The on-line experimental results show that the robot performs the designed 

path following process successfully and can reach a final desired position and heading.  

Robot localization techniques: The robot localization is classified into two types; 

relative and absolute localization. For the relative localization, we used the discrete 

extended Kalman filter along with the nonlinear dynamic model as the robot position 

estimator. We performed experiments on several path types and compared the final 

position errors and final heading errors, when using odometer, gyroscope, or compass 

data.  The gyroscope estimation provides minority performance in robot final position 

for the line path. For the other path types, the gyroscope estimation position errors are at 

least smaller than those of the odometer measurement. The performance in final heading 

of the gyroscope estimation dominates in most cases the compass estimation and 
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odometer measurement. As here the gyroscope provides also very good estimation of 

the whole path, it is considered as the best method to be used for relative robot 

localization in indoor environment.  

 For the absolute localization, we exploited the PMD camera's 3D vision and 

built artificial landmarks for the robot's position calibration. This involved the design 

and implementation of artificial landmarks, and the development of strategies for 

landmark recognition and position calibration.  The results show that the landmark 

design and the developed landmark recognition can be applied under the restraints of 

16x16 pixels resolution and the time consumption is mainly due to the process of 

filtering the images. We tested the on-line position calibration and the results show the 

integrated relative localization with the absolute localization techniques successfully. 

Nevertheless, the improvement for resolution of the position calibration is necessary.  

 The resolution of the position calibration is improved by using the 48x64 pixels 

PMD camera and a 2D camera. We investigate how to do edge detection on the 2D 

image and to place this edge on the 3D image such that the smoothing process is 

efficient. Regarding the high resolution of PMD camera, the results show much 

improvement in the position calibration and also convince that the designed landmark 

recognition is applicable for higher resolution PMD camera.  

 The application of the position calibration using 3D artificial landmarks is not 

restricted to use by the car-like mobile robots but also applicable for other mobile 

robots. The 3D artificial landmark and the proposed recognition technique would also 

function with PMD camera with higher resolution and also with other types of 3D 

vision range sensors. 
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Appendix A: Microcontroller 
 

 The microcontroller specification and its 

developed software structure are described here in 

details. As shown in Figure A.1, the minimodule of the 

16-bit microcontroller 80C167 CR-LM is manufactured 

by Infineon and is programmable using C programming 

language. For our purposes, we exploited the compiler 

“Keil” from µvision and the code downloader 

“Flashtool”.  

 
 

Figure A.1: Infineon  
Minimodule C167 CR-LM 

 

A.1 Hardware specification 

The features on the microcontroller are listed as 

follows: 

• 20MHz CPU Clock 

• 4 channels of pulse width modulation (PWM) generator 

• General Purpose Timer (GPT) and Universal Asynchronous Receiver 

Transmitter (UART) 

• 32 CAPTURE and COMPARE channels for real-time signal processing 

and generationocessng 

• Four additional 2.5MHz 16-bit timers 

• A sixteen channel 10-bit AD convertor 

• 11/29-bit part 2.0B controller area network (CAN) peripheral 

• 111 total pins of input/output (I/O) 

• 256kb off-chip flash erasable programmable read only memory 

(EPROM) 

• 64kb SRAM 

 

A.2 Software structure 

One of the problems with the control software we designed is the question of 

how to deal with interrupt routines. During the main loop functions, the interrupt 

routines have higher priority and are run immediately, when they are called. Therefore, 

the management of the main loop functions, the appropriate interrupt priority level, and 
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the frequency of the interrupt routines must be well coordinated. When functions are not 

organized properly to operate compatibly the microcontroller gets too busy with the 

interrupt routines and has no time for its main operations. When this is the case, the 

function on the main operation is delayed. We organized the interrupt settings for 

solving this problem. 

 

A.2.1 Main loop function 

A flow chart showing MERLIN's main operations when under tele-operated 

joystick and a path control function is shown in Figure A.2. First, the robot initializes all 

variables, flags, interrupts settings, and PWM settings, and calibrates the gyroscope 

measurement. After that the robot waits for a command from MerlinClient telling it 

which operation mode is to be activated the joystick or path control. In the path control 

mode, the robot performs either its basic path following routine or the path following 

with obstacle avoidance.  In the joystick control mode, the robot performs left hand side 

or right hand side wall following, or its obstacle collision avoidance routine. After each 

process is done, the process in question is repeated until the operation mode is changed 

or until the reset command is issued. 

 

 
Figure A.2: The main operations of the microcontroller. 
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A.2.2 Path following control functions 

The path control function has two main task categories, line path control and arc 

path control. Figure A.3 shows which types of paths are recognizable and which 

commands can be given.  

 

 
Figure A.3: Recognized path types. 

 

A.2.3 Data packets 

The data packet is defined as in Table A.1. There are several types of commands 

that can be issued from the client PC, such as the path control commands, or the 

joystick control commands. Conversely, there is only one data packet which can be sent 

from the robot to MerlinClient.  

 

A.2.4 Interrupt timers and A/D converter 

As mentioned earlier, the handling of the interrupt routine is important to ensure 

the smooth functioning of the main operations. The details of the interrupt priority 

settings and timer settings of MERLIN are given here. There are 0 to 15 interrupt 

priority levels for the microcontroller, where 15 is the highest priority level and 0 the 

lowest. On each priority level, there is also a group priority level ranging from the 

lowest possible level of 0 the highest possible level with priority 3. The interrupt 

priority settings are shown in Table A.2 and the timer period settings are shown in 

Table A.3. The seven channels of the analog to digital (A/D) converter are exploited to 
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transmit the gyroscope and the infrared signals. Table A.4 presents the channel numbers 

and their corresponding sensor signals. 

 

Table A.1: Sent and received data packets (on robot). 

Type 
Flow 
direction 

Length 
(bytes) 

Description Details 

‘s’ robot   10 Start joystick control To reset the variables, calibrate gyro 
measurement, and start the joystick 
control. 

‘S’ robot   10 Start path control To reset the variables, calibrate gyro 
measurement, and start the path 
control.. 

‘p’ robot   10 Path begin packet This is the first part of the path 
command, which specifies the 
number of total line and arc paths. 

‘e’ robot   10 Path end packer This is the last part of the path 
command packet. 

‘g’ robot   10 Path line forward The data packet consists of the 
length (cm) and the direction 
(forward). 

‘h’ robot   10 Path line backward The data packet consists of the 
length (cm) and the direction 
(backward). 

‘k’ robot   10 Path arc forward The data packet consists of the 
angle, radius, the arc direction (cw or 
ccw), and movement direction 
(forward). 

‘l’ robot   10 Path arc backward The data packet consists of the 
angle, radius, the arc direction (cw or 
ccw), and movement direction 
(backward). 

‘j’ robot   10 Joystick control 
command 

To set the steering and the speed of 
the robot, to enable/disable the 
ultrasonic sensors, to enable wall 
following, and 
to enable obstacle collision 
avoidance.  

‘i’ robot   10 Path control 
command 

To enable path control with obstacle 
avoidance, to enable/disable the 
ultrasonic sensors, and to send robot 
to position xf, yf or to set the 
generated trajectory for the path 
following process. 

‘d’ robot  26 or 42 Sensor data via radio 
link or via serial port  

To update the sensor data that are 
the driven distance on the left and 
on the right wheels, the angle 
position, the velocity of the robot, the 
angular velocity, the roll, pitch, and 
yaw angle, and the detected 
distances to the obstacle. It is also 
used to update the flags for human-
robot operation, to update the robot 
position, and to request trajectory 
generation. 
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Table A.2: Interrupt priority level settings. 
Interrupt 
Vector 

Description 
Interrupt routine name 

 
Priority 

level 
Group 
priority 

0x26 Sending timer task T6 SendSensorData() 1 0 
0x36 Receiving from transceiver receive() 3 0 
0x23 Main timer task T3 Time_interval() 7 0 
0x1C Left-up hall sensor hallsensor_left_upper() 8 1 
0x1D Right-down hall sensor hallsensor_right_lower() 8 3 
0x1E Left-down hall sensor hallsensor_left_upper() 9 0 
0x1F Right-up hall sensor hallsensor_right_lower() 9 1 
0x22 Hall sensor counter T2 

timeout  
car_not_moving() 10 0 

0x15 Ultrasonic sensor triggered  Echo_signal() 11 0 
0x1A Bumper triggered Bumper() 15 3 

 

Table A.3: Timer period setting. 
Timer Mode Functions Time period settings 

T2 Timer Measuring time between 
hall-sensor interrupts.  

Counting forward. T2 increases by 1 
every 12.8us. Overflow interrupt 0x22 
happens if the time is longer than 
12.8us*65535=0.84s. 

T3 Reload-mode 
timer 

Main timer task.  
Gyroscope, ultrasonic, and 
infrared measurement 
updates.  
Speed control, robot 
direction update, check 
obstacle, check stop 
position, set relays on/off for 
ultrasonic sensors. 

Counting downward. T3 decreases 
by 1 every 0.4us.  
Underflow causes 0x23 interrupt 
every 2ms. Reload value from T4 is 
4999.  

T4 Reload 
register for T3 

T3 reloads the value of T4 
after T3 underflows. 

T4 = 4999 

T5 Timer Measuring time for ultrasonic 
sensors. 

Counting forward. T5 increases by 1 
every 25.6us. 

T6 Reload-mode 
timer 

Sending sensor data through 
transceiver.  

Counting downward. T6 decreases 
by 1 every 0.2us. Underflow causes 
0x26 interrupt every 5ms. Reload 
value from CARPEL is 24999. 

 

Table A.4: A/D converter and specified channels. 

Channel Sensors 

1 Gyroscope 
2 Infrared front right  
3 Infrared front middle 
4 Infrared front left 
5 Infrared front behind 
6 Infrared side right 
7 Infrared side left 
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Appendix B: Graphic User Interface (GUI) 
 

 The first step in using the graphic user interface (GUI) is to run the 

MERLINServer and then start MERLINClient. A connection dialog frame then pops as 

shown in Figure B.1. The user has to activate a default option enables to show the 

graphic user interface (GUI). The user clicks on the “Connect” button to have 

MERLINClient establish a connection to the MERLINServer. The IP address and port 

number for MERLINServer is shown in the text fields. The dialog tab shows the how 

the connection attempt is progressing. A full dialog tab indicates that the connection has 

been successfully established. The joystick control mode can then be initiated. The 

operator can disconnect when finished by clicking on the “Exit” button. The GUI has is 

needed for joystick control, path control and for the functions of the PMD camera. The 

role of GUI in each of these three areas is explained in the following sections. 

 

 

Figure B.1: The connection dialog frame of GUI. 

 

B.1 The GUI for the joystick control function. 

In an unknown environment, where the robot has no prior information about the 

characteristics of its navigation area, the semi-autonomous operation can be used and is 

a reliable navigation method. Semi-autonomous operation means that the robot is 

mainly controlled manually with the joystick as the method of human interface control. 

Joysticks are well-known plug and play devices, and are readily available on the market. 

We chose the Microsoft Sidewinder Joystick for the tele-operated control of MERLIN. 

In the tele-operated control mode, the user's movement of the joystick is translated sent 

via MERLINClient as x and y direction coordinates. MERLINClient sends the joystick 

command to the robot and, at the same time, receives continuous sensor data from the 

robot. Because the robot is in semi-autonomous operation mode, and its movements are 

being controlled manually by the operator, the automatic obstacle avoidance function is 

not on. The robot follows the joystick command without the obstacle detection function. 
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This can sometimes be dangerous for the robot when the user doesn't recognize 

obstacles but and keeps moving the joystick.  The user can cause the robot to crash into 

an obstacle and destroy itself. An alternative is to activate the automatic obstacle 

avoidance function while the joystick is being used. The robot then obeys the joystick 

command and also avoids collision by using the automatic obstacle avoidance until it is 

free from obstacles. Once the robot has gotten out of the way of the obstacle, it 

continues following the joystick command afterwards.  

MERLIN can also be used with a sensing or force feedback joystick. The haptic 

interface enables the user to feel what the robot feels. When the robot drives fast, it feels 

air resistance to its body. The force feedback joystick emulates the aerodynamic force 

by generating resistance in the joystick that is proportional to the speed of the robot. 

The users can than feel this resistance when he or she tries to drive the robot forward 

fast. As a result, the user has to push the joystick to make the robot go faster.  The 

haptic interface feature is implemented on MERLIN using the Immersion Studio java 

library. The measurements we made show the maximum joystick torque to be –0.165 

N*m. In accordance with the concept of aerodynamic force, the generated force within 

the joystick is proportional to the feedback measured velocity of the robot. The 

generated feedback force is calculated by using 

 

            2

2
1 vfactorFgenerated ××=                  (B.1) 

 

This factor was tuned in experiments and set to 0.3. Figure B.2 shows the GUI for the 

joystick control mode. The operator can make adjustments to animation screen and 

command the robot by clicking at the buttons and checkboxes. The functions of the 

buttons and checkboxes are summarized in Table B.1. 

The data panel on the right hand side of the GUI shows the numerical values 

from the following measurements:   

• the ultrasonic sensors at the right, middle, left, and rear of the robot,  

• the distances driven by both the left and the right wheels, and robot speed,  

• angle position (heading),  

• the roll, pitch, and yaw angles from the 3 DM compass,  
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Figure B.2: The joystick control panel. 

 

Table B.1: The functions of the buttons and checkboxes in the GUI for the 

joystick. 

Name Function 

Translate To translate the scene into the directions: up, down, left and right.  
Zoom To zoom in and zoom out by clicking on the scene and dragging the mouse. 

Rotate To rotate the scene by clicking on its image and dragging the mouse either 
in a clockwise or counter clockwise direction. 

Default To change the scene back to the original scene. 
Reset To stop the robot and clear all robot data. 

Automatic 

To have the robot perform automatic obstacle avoidance using its ultrasonic 
sensors and infrared sensors. The robot follows the joystick commands 
completely until it comes across an obstacle. When there is an obstacle 
present, the robot obeys the joystick command but uses its fuzzy logic 
controller to avoid collision. The fuzzy logic controller is deactivated when 
there are no more obstacles present. The car then continues to follow the 
joystick commands. However, the robot obeys the joystick except when the 
user wants to move the robot backward movement. 

Wall following To have the robot perform automatic wall following in the left hand or right 
hand side mode. 

PMD Frame To open the panels for the PMD camera. 
Lock Robot To have the robot image shown always in the middle of the scene. 
Back & Side To show the back view and side view tilting and rolling positions. 
Real Path To show the estimated path that the robot has driven. 
Animation To show the robot animation. 
US Enable To enable the ultrasonic sensors. 
FFB Enable To enable the force feedback interface. 

Key Command 

To use the arrow cursors on keyboard instead of the joystick, “up” increases 
the speed in the forward direction, “down” increases the robot speed in the 
backward direction,  “left”  turns the left front wheels, and “right”  turns the 
right front wheels. 
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• the estimated position X, Y, and estimated robot heading from the Kalman filter 

and the nonlinear dynamic model.  

Note that there are also warning and status messages available, such as “Merlin 

is crashing into objects” or “Gyro is calibrating”. 

 

B.2 The GUI for the path control function. 

The operator can switch between the joystick control mode and the path control 

mode by clicking at the tabbed panel. In the path control mode, the robot stands still 

until it receives the path commands. The operator starts by drawing the desired path on 

the panel and then clicks "send" to transmit the data to the robot. After that 

MERLINServer sends the path commands to the robot and the robot starts moving 

under the path following control. The path control panel is shown in Figure B.3.  

There are four types of path commands:  line forward, line backward, arc 

forward, and arc backward. The obstacle collision avoidance function is also an option 

for the path following mode. The operator can click on the checkbox “Collision 

Avoidance” for automatic obstacle avoidance during the path following mode. The 

functions of the buttons and checkboxes on the left panel are summarized in Table B.2. 

 

B.3 The GUI for the PMD camera. 

 The graphic user interface for the PMD camera consists of three parts, the left 

command panel, the graphics panel, and the right command panel, as shown in Figure 

B.4.  

Table B.2: The functions of the buttons and checkboxes for the path following 

control commands. 

Name Function 

Line forward To specify the start and end of the line path in a forward direction. 
Line backward To specify the start and end of the line path in a backward direction. 

Arc forward To specify the start and end of the arc path in a forward direction. 
Arc backward To specify the start and end of the arc path in a backward direction. 
Clear Line-Arc To delete the paths drawn. 

RealPath To show the estimated driven path. 
Clear RealPath To delete the estimated driven path from the scene. 

Send To send the paths to the robot and start the path following function. 
Reset To stop the robot and clear the robot data. 

Collision Avoidance To enable the automatic obstacle collision avoidance during the path 
following. 

US Enable To enable the ultrasonic sensors. 
 

 110



 
Figure B.3: Path following control panel. 

 

 The operator establishes a connection to the camera by clicking on “PMD 

Connect” on the left hand panel. The PMD server must already be running for this to 

function. After the connection is established, the operator has to calibrate the PMD 

camera by clicking “PMD Calibrate” and wait until the current image is updated on the 

panel. As of this moment, the camera is ready and the operator can choose to take 

measurements by clicking on “PMD Image” or “PMD Video”. The filtered image 

number is counted automatically after each measurement.  

  The operator can calibrate the robot's position by starting the Kalman filter and 

waiting until the filtered image looks like the current measured image. At this point the 

filtered image is ready for use. The operator can click “Calibrate Position” and wait 

until the robot position is updated on the GUI of the joystick control panel. At the same 

time as the position update is given on the joystick control panel, the matched results 

will appear on the PMD panel. Please note that the position calibration is available only 

for the joystick control mode. It is not recommended that a position calibration be done 

when the filtered image is not yet ready. This would cause an error in the position 

calibration. The functions of the buttons and message boxes on the control command 

panel are described in Table B.3. 
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The middle panel plots two images. The upper image is the generated model 

image and the lower image is the actual image from the measurement. Before the 

measurement starts, the lower image is empty. On the right command panel, the user 

can specify the distance, side distance, and angle of translation for generating the model 

image. When the user clicks the “Plot” button, the generated model image is plotted in 

the upper part of the graphics panel. The slide bar are also provides for convenience in 

fast and rough observation of the various measurement values, the distance, side 

distance, and angle positions.  

 

 

Figure B.4: The PMD camera control panel. 

 

Table B.3: The functions of the buttons on the left command panel of the GUI for the 

PMD camera. 

Name Function 

PMD Connect To connect the PMDClient to PMDServer. 
PMD Calibrate To calibrate the PMD camera. 

PMD Image To measure and plot on the graphic panel. 
PMD Video To measure continuously as video. 

Filtered image nr. To show the number of filtered images. 
Start KF Filter To start the Kalman filtering. 

Calibrate Position To calibrate the robot position. 
matched Distance The distance position as determined by the landmark recognition 

function. 
matched Angle The angle position derived from the result of landmark . 
matched Type The landmark type result determined by the landmark matching 

function of the landmark recognition process. 
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Appendix C: PC104 
 

 The specification of the selected PC104 and technical notes are given here. The 

CPU-M1 has the following features:  

• CPU: Pentium III 933 MHz 

• IDE: PCI-IDE, 2 drives 

• Memory: 384 MB 

Figure C.1:  The CPU-M1 

• Video: Intel 815E integrated 3D 

graphic controller 

• Ethernet: 10/100 Mbit 

• PS/2 keyboard and mouse port 

• 3 ½” floppy support 

• 2 serial ports RS-232 compatible 

• 1 parallel port 

• 2 USB ports 

• PC/104-plus compatible 

• Size: 96 x 90 mm 

• Linux Operating System 

 

When Redhat 9.0 OS is used, it is necessary to install the Javax Comm for java 

serial port interface software, the Orinoco Linux driver for Orinoco Gold USB WLAN 

adapter, and the java runtime environment. The two com ports located on the PC104 are 

for the microcontroller and the PMD camera. The USB is expanded into 2xUSB and 

2xRS232 by using the Edgeport/22c from Digi International. The Linux driver of this 

device is installed. Note that after connectin Edgeport/22c the names of the COM ports 

under the Linux system are also changed from “/dev/ttyS0” to “/dev/ttyUSB0” and from 

“/dev/ttyS1” to “/dev/ttyUSB1”. An RXTX library for javax comm is also required. 
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