
Concept and Design of a Cooperative Robotic Assistant Surgery

System

Vom Fachbereich Elektrotechnik und Informatik der
Universität Siegen

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation

von

M.Sc. Raúl Armando Castillo Cruces

1. Gutachter: Prof. Dr.-Ing. Hubert Roth

2. Gutachter: Prof. Dr.-Ing. Heinz Wörn

Vorsitzender: Prof. Dr. Ing. Otmar Loffeld

Tag der mündlichen Prüfung: 28. Juli, 2008

Para mis padres

ACKNOWLEDGEMENT

Firstly, and most importantly, I want to thank God for introducing me to all the various

people I have encountered and who have contributed in many different way to make my

life so enjoyable during these last few years. I want to thank my family, from the bottom

of my heart, for giving me unconditional support in order for me to achieve my goals,

even with the big distance between us. They have shown me that, no matter what, my

family will always be together. This work would have not been possible without the

cooperative support from Mexico, through the National Counsel of Science and

Technology (CONACYT), and Germany, through the German Academic Exchange

Service (DAAD). I wish to thank all the people at the University of Siegen and the

Center for Sensor Systems (ZESS), in particular Prof. Otmar Loffeld, Dr. Stefan

Knedlik, Renate Szabó, to all IPP members and staff of the Institute. All of whom

created a very pleasant and supportive work environment and greatly helped in my

professional development. Thank you very much to Prof. Hubert Roth, the director of

the Institute of Control Engineer (RTS) at the University of Siegen, and Prof. Heinz

Wörn, the head of the Institute for Process Control and Robotics at the University of

Karlsruhe, for supervising me and giving me valuable advice right up to the competition

of my work. Special thanks must be made to Dr. Jürgen Wahrburg, the head of the

modiCAS project, a wonderful person who guided and helped me so many different

ways in order to achieve my objectives. To my colleges Peter Knappe, Sebastian Pieck,

Hans-Christian Schneider, Marc Schlimbach, Stephanie Sahm, Domink Scarpin, Steffen

Heuel, Jens Bernshausen and Hamza Hassan Shah, a big thank you, it was a pleasure

working with you all. I would also like to thank Katharina Selle, John O’Byrne and Petra

Nachtigäller for all the time they took to review my texts. In particular, I want to thank

Nina Claasen for giving me so much of her time and encouragement during the whole

dissertation. And last but not least, I want to express all my gratefulness to all the good

friends, Anja Reuter, Daniel Pfeiffer, Jürgen Sorg, Kerstin Bohr, Ricardo Bautista,

Hannah Müllners, Michaela Thiel, Meike Schmitz, Horacio Martinez, Manuela Franke,

Claudia Leonardi, Javier Kafie, Daniel Hunziker, Eduardo Azcué, Volkmar Böttger and

Julia Neuser, among a lot more who made me feel at home in Germany.

i

CONTENTS

ACKNOWLEDGEMENT.. i

CONTENTS .. ii

LIST OF TABLES.. vi

LIST OF FIGURES ... vii

ABBREVIATIONS .. xi

NOMENCLATURES.. xv

ABSTRACT .. xvii

1. Introduction.. 1

2. Motivation to design a cooperative robotic assistant surgery system.......................... 3

2.1 The modiCAS project .. 3

2.1.1 Combination of navigation and robotics .. 4

2.1.2 Human-robot interaction .. 5

2.2 System demands... 6

2.2.1 Controller software architecture... 7

2.2.2 Human-robot interaction .. 8

2.3 Technical challenges .. 9

2.3.1 Controller redesign... 9

2.3.2 Robot singularities ... 10

3. State of the art.. 12

3.1 Surgical robotic systems .. 12

3.1.1 Autonomous system... 14

3.1.2 Cooperative systems... 18

3.1.3 Teleoperative systems .. 23

3.2 Virtual fixtures ... 28

3.3 Singularity robustness .. 30

4. Design of a controller framework.. 33

ii

4.1 System architecture .. 33

4.2 Command interface .. 34

4.2.1 TCP/IP message protocol... 36

4.2.2 Command library ... 37

4.2.3 Command sender module... 40

4.2.4 Command parser module ... 41

4.2.5 Data transmitter module... 43

4.2.6 Data receiver module ... 44

4.3 Target computer ... 45

4.3.1 State machine ... 47

4.3.2 Task manager ... 49

4.3.3 Task-loops.. 50

4.3.4 State manager ... 52

4.4 Hardware interface selector.. 53

4.5 Target functions ... 54

4.5.1 Joint velocity controller.. 54

4.5.2 Cartesian velocity controller .. 55

4.5.3 Joint position controller.. 56

4.5.4 Cartesian position controller .. 57

4.5.5 Guidance virtual fixture controller... 58

4.5.6 Patient tracking controller .. 59

4.6 Host computer .. 61

4.6.1 GUI producer ... 61

4.6.2 External producer ... 62

4.6.3 Event consumer.. 62

4.6.4 GUI handler.. 62

4.7 Modular distribution .. 63

iii

4.8 Execution and task modules... 65

5. Human-robot cooperation.. 67

5.1 Hands-on interface ... 67

5.2 Virtual fixtures description .. 69

5.3 Admittance controller... 72

5.4 Deviation error ... 74

5.5 Boundary conditions .. 76

5.6 Manual error compensation ... 77

5.7 Autonomous error compensation ... 78

5.8 Virtual fixtures classes ... 79

5.8.1 Reference target ... 79

5.8.2 Move along an axis .. 80

5.8.3 Rotate around an axis ... 81

5.8.4 Move along a plane .. 82

5.8.5 Rotate around two axes .. 83

5.8.6 Extension to volume... 84

5.8.7 Reference trajectory ... 87

5.9 Experimental evaluation .. 89

5.9.1 Manual error compensation ... 89

5.9.2 Manual compensation vs. autonomous compensation 92

5.9.3 Moving along a trajectory .. 98

5.10 Discussion .. 101

6. Singularity robustness.. 103

6.1 PA10 kinematics .. 103

6.1.1 Forward position kinematics .. 104

6.1.2 Forward velocity kinematics .. 107

6.1.3 Singularities of PA10-6C ... 109

iv

6.2 Differential kinematics inversion... 113

6.3 Damped least squares approach ... 113

6.3.1 Singular value decomposition of the damped least squares............... 114

6.3.2 The damping factor .. 115

6.4 Adjoint Jacobian approach... 116

6.4.1 Relationship between adjoint Jacobian and the null vector 117

6.4.2 Velocity relations at singularity ... 119

6.4.3 Selection of scalar variable b ... 120

6.4.4 Selecting sign variable � .. 122

6.4.5 Wrist singularity... 122

6.5 Experimental results... 124

6.5.1 Passing through singularity .. 125

6.5.2 Escaping singularity along singular direction 129

6.5.3 Passing in the neighborhood of singularity.. 135

6.6 Discussion .. 139

7. Conclusions.. 140

References.. 142

A Quaternion ... 154

B Spline functions ... 156

C Quadratic minimization of a cubic spline function.. 159

D Singular value decomposition.. 161

v

LIST OF TABLES

Table 3.1. Complementary capabilities of human and surgical robots............................ 12

Table 3.2. Clinical application areas and representative robotic developments.............. 14

Table 4.1. List of commands for general purposes functions.. 38

Table 5.1. Mean value of position and orientation error of translational VF 94

Table 5.2. Mean value of position and orientation error of rotational VF....................... 97

Table 5.3. Mean error while following a reference trajectory... 98

Table 6.1. Maximum and mean error when passing through wrist singularity 127

Table 6.2. Maximum and mean error when passing in the neighborhood of wrist

singularity .. 135

vi

LIST OF FIGURES

Figure 2.1. Components of the navigated robotic system for surgical assistance 3

Figure 2.2. modiCAS system in the operating room ... 6

Figure 3.1. Autonomous System: The robot executes the procedure while surgeon

observes/supervises the operation [94].. 15

Figure 3.2. (a)ORTHODOC planning workstation, (b) ROBODOC milling implant

cavity for hip replacement surgery (courtesy of ISS, USA).................................... 16

Figure 3.3. CASPAR system in knee operation (courtesy of ortoMaquet) 17

Figure 3.4. CyberKnife robotic radiosurgery system (courtesy of Accuray, USA) 18

Figure 3.5. Neuromate courtesy of Integrated Surgical Systems 19

Figure 3.6. Cooperative: robot and surgeon remains jointly in control [94] 20

Figure 3.7. ACROBOT, special purpose Hands-On robot for knee surgery................... 20

Figure 3.8. JHU Steady Hand robot for microsurgery... 21

Figure 3.9. Free-wheel mechanism of PADyC.. 22

Figure 3.10. Telesurgery system: Surgeon controls the robot in real-time through the

haptic interface [94]... 23

Figure 3.11. (a) daVinci telesurgery system, (b) Endoscopic EndoWristTM Instrument

(courtesy of Intuitive Surgical).. 24

Figure 3.12. Zeus Telesurgery system from Computer Motion Inc.: (a) Console unit, (b)

Zeus robot arms ... 25

Figure 3.13. Setup of Zeus system at Lindbergh operation 2001 [102] 26

Figure 3.14. The telesurgical workstation for laparoscopy at Berkley [90] 26

Figure 3.15. The telerobotic system for mircrosurgery at KAIST 27

Figure 4.1. Command-based architecture of modiCAS framework 35

Figure 4.2. Example of MDL of commands with two instances of the same command. 37

Figure 4.3. Transmission Packet Format ... 37

Figure 4.4. Command internal structure .. 39

Figure 4.5 Interaction between command and command sender module 40

Figure 4.6. Command parser module: A PTP(q) command is received, but it is only

processed if the current state is comprises the command .. 42

Figure 4.7. Data distribution inside the data transmitter module 43

vii

Figure 4.8. Data receiver loop at a Host application ... 44

Figure 4.9. Task distribution among the different threads in RT-Target application...... 46

Figure 4.10. State machine of RT target.. 48

Figure 4.11 - Task loop flowchart ... 50

Figure 4.12. Flow diagram of Joint Velocity Controller (JVEL) 55

Figure 4.13. Flow diagram of Cartesian Velocity Controller (CVEL)............................ 56

Figure 4.14. Flow diagram of Point to Point joint position controller (PTP).................. 57

Figure 4.15. Flow diagram of linear trajectory Cartesian position controller (LIN)....... 58

Figure 4.16. Flow diagram of Guidance Virtual Fixture controller (GVF)..................... 59

Figure 4.17. Coordinate systems used for tracking controller... 60

Figure 4.18. Flow diagram of patient tracking controller (TRK) 60

Figure 4.19. Host application... 63

Figure 4.20. Graphical User Interface of the client running at host computer 65

Figure 5.1. Handle system with rapid tool-exchange mechanism. 67

Figure 5.2 Flowchart of High Priority Loop for Force Torque Sensor data acquisition

and processing (HPL-FTS) .. 68

Figure 5.3. Projection onto the subspaces of preferred directions U and of non-preferred

directions V .. 70

Figure 5.4. Control loop for cooperative robot system.. 71

Figure 5.5. System reference frames ... 73

Figure 5.6. Reference target... 79

Figure 5.7. Move along a line.. 81

Figure 5.8. Rotate around one axis .. 82

Figure 5.9. Extension to plane ... 83

Figure 5.10. Rotate around two axes ... 84

Figure 5.11. Virtual cylinder ... 85

Figure 5.12 Virtual Cone ... 87

Figure 5.13 Closest point of spline curve to pTCP and its tangent vector......................... 88

Figure 5.14. Influence of gain kd on manual error compensation of end-effector position

along Z-axis while moving it along Y-axis w.r.t. world coordinates. 90

viii

Figure 5.15. Influence of gain kd on manual error compensation of end-effector

orientation while moving it along Y-axis w.r.t. world coordinates. 91

Figure 5.16. Influence of gain kd on the error norm of manual compensation while

moving the end-effector along Y-axis w.r.t. world coordinates. 91

Figure 5.17. End-effector position while moving along the Y-axis w.r.t. world

coordinates... 92

Figure 5.18 End-effector orientation while moving along the Y-axis w.r.t. world

coordinates... 93

Figure 5.19. Error profile of manual and autonomous error compensation while moving

along the Y-axis w.r.t. world coordinates.. 93

Figure 5.20. Experimental setup for rotational case .. 95

Figure 5.21. Tool tip position in 3D while pivot rotation above Z axis 96

Figure 5.22. Tool tip position in 3D while pivot rotation above Z axis 96

Figure 5.23. End-effector error profile while pivot rotation above Z axis 97

Figure 5.24. End-effector position while following a sinusoidal trajectory 99

Figure 5.25. End-effector error profile while following a sinusoidal trajectory 99

Figure 5.26. End-effector position while following a circular trajectory 100

Figure 5.27. End-effector error profile while following a circular trajectory 100

Figure 6.1. (a) PA10-6C robot arm (courtesy of Mitsubishi Heavy Industries), (b)

Kinematic description of PA10-6C based on Featherstone [15] 103

Figure 6.2. Kinematics of first three joints of the 321 manipulator [15]....................... 104

Figure 6.3.Singular configurations: (a) arm-extended, (b) wrist-extended, (c) wrist-

above-shoulder [15] ... 110

Figure 6.4. Singular direction and its orthogonal plane at wrist singularity.................. 112

Figure 6.5. End-effector movement along (a) direction orthogonal to singular direction,

and (b) singular direction... 125

Figure 6.6. End-effector position while passing through singularity with virtual fixture

along Z-axis w.r.t. the base frame.. 126

Figure 6.7. End-effector orientation while passing through singularity with virtual fixture

along Z-axis w.r.t. the base frame.. 126

ix

Figure 6.8. End-effector error profile while passing through singularity with virtual

fixture along Z-axis w.r.t. the base frame.. 127

Figure 6.9. Position of joints �4, �5 and �6 while passing through singularity with virtual

fixture along Z-axis w.r.t. the base frame.. 128

Figure 6.10. Velocity of �4, �5 and �6 while passing through singularity with virtual

fixture along Z-axis w.r.t. the base frame.. 128

Figure 6.11. End-effector position while escaping from singularity with virtual fixture

along Y-axis w.r.t. the base frame ... 130

Figure 6.12. End-effector orientation while escaping from singularity with virtual fixture

along Y-axis w.r.t. the base frame ... 131

Figure 6.13. End-effector error profile while escaping from singularity with virtual

fixture along Y-axis w.r.t. the base frame ... 131

Figure 6.14. Position of robot joints while escaping from singularity with virtual fixture

along Y-axis w.r.t. the base frame ... 133

Figure 6.15. Velocity of joints �4, �5 and �6 while escaping from singularity with virtual

fixture along Y-axis w.r.t. the base frame ... 134

Figure 6.16. Position of joints �4, �5 and �6 while escaping from singularity with virtual

fixture along Y-axis w.r.t. the base frame ... 134

Figure 6.17. End-effector position while passing in the neighborhood of wrist singularity

with virtual fixture along Y-axis w.r.t. the base frame.. 136

Figure 6.18. End-effector orientation while passing in the neighborhood of wrist

singularity with virtual fixture along Y-axis w.r.t. the base frame........................ 136

Figure 6.19. End-effector error profile while passing in the neighborhood of wrist

singularity with virtual fixture along Y-axis w.r.t. the base frame........................ 137

Figure 6.20. Position of joints �4, �5 and �6 while passing near singularity with virtual

fixture along Y-axis w.r.t. the base frame ... 138

Figure 6.21. Velocity of joints �4, �5 and �6 while passing near singularity with virtual

fixture along Y-axis w.r.t. the base frame ... 138

Figure B.1. Segment wise parametric curve…………………………………………...156

Figure C.1. Closest point of spline curve to p0 and its tangent vector………………...159

x

ABBREVIATIONS

API Application Programming Interface: is a source code interface that an
operating system, library or service provides to support requests made
by a program.

C/C++ C is a high-level programming language, while C++ adds object-
oriented features to C.

CAS Computer Assisted Surgery used to help a surgeon in defining and
executing an optimal surgical strategy based on a variety of multimodal
data inputs.

CORBA Common Object Request Broker Architecture: is a standard defined by
the Object Management Group (OMG) that enables software
components written in multiple computer languages and running on
multiple computers to work together

CMD-DONE Command Done: Acknowledgment transmitted from target computer to
host computer after an incoming command is successfully processed.

CMD-FAIL Command Failed: Acknowledgment transmitted from target computer
to host computer each time an incoming command fails.

CPM Command Parser Module: One of four modules used in the command
interface within the modiCAS system designed for efficient host-target
communication. The CPM receives and process incoming commands at
the target computer.

CPU Central Processing Unit: also called processor, is the computing part of
a computer.

CSM Command Sender Module: One of four modules used in the command
interface within the modiCAS system designed for efficient host-target
communication. The CSM transmits commands to the target computer.

CT Computed Tomography is a medical imaging method employing
tomography. This procedure uses x-ray cross-sectional images of the
body to generate a three-dimensional image.

CVEL Cartesian velocity controller: is a control strategy that accepts velocity
commands in the Cartesian space to drive the robot arm. It is
implemented on the target computer and can be activated by the host
computer with the CVEL command.

CVT Continuously Variable Transmission: Special purpose variable
transmission applied on passive cooperative robots called COBOTS.

xi

DLS Damped Least Squares: a singularity robust method used to prevents
the robot joint velocities from becoming excessively high near singular
configurations by using a damping factor to control the norm of the
joint velocity vector.

DOF Degrees of Freedom: the set of independent displacements and/or
rotations that specify completely the displaced position and orientation
of a body or system.

DRM Data Receiver Module: One of four modules used in the command
interface within the modiCAS system designed for efficient host-target
communication. The DRM receives incoming data at the host computer.

DTM Data Transmitter Module: One of four modules used in the command
interface within the modiCAS system designed for efficient host-target
communication. The DTM sends data from target computer to the host
computer.

FT Sensor Force Torque Sensor mounted at the end-effector of the robot arm.

FVK Forward Velocity Kinematics: Transformation of joint velocities into
linear and angular velocities in the Cartesian space.

GUI Graphical User Interface: user interface that allows the user to interact
with a computer. It provides graphical icons, visual indicators or special
graphical elements called widgets.

GVF Guidance Virtual Fixture: is a control strategy to drive the robot’s end-
effector directly with the hands, where virtual constraints are applied to
delimit the working space. It is implemented on the target computer and
can be activated by the host computer with the GVF command.

HPL-FTS High Priority Loop running at the target computer for data acquisition
of the Force Torque Sensor.

HPL-NAV High Priority Loop running at the target computer for the interaction
with the Navigation system.

JVEL Joint Velocity controller: is a control strategy that accepts velocity
commands in the joint space to drive the robot arm. It is implemented
on the target computer and can be activated by the host computer with
the JVEL command.

LabVIEW Laboratory Virtual Instrumentation Engineering Workbench: is a
development environment for graphical programming language
developed by National Instruments.

LIN Linear Trajectory controller: is a control strategy to follows linear

xii

trajectories in the Cartesian space. It is implemented on the target
computer and can be activated by the host computer with the LIN
command.

MDL Meta Data List: A list of commands, each of which is associated with
an identifier (ID). The list is used within the communication protocol in
order to increase efficiency during data transmission between
computers.

modiCAS modular interactive Computer Assisted Surgery: A modular concept
developed at the University of Siegen to provide an integral solution for
different surgical problems by the combination of a navigation system
and a robot arm with hands-on capabilities.

MIS Minimal Invasive Surgery: a surgical technique that makes small
incisions on the body through which special instrumentation is used to
accomplish the operation. This technique significantly reduce trauma to
the body compared to traditional incisions.

MRI Magnetic Resonance Imaging used in medical imaging to visualize the
structure and function of the body. It provides detailed images of the
body in any plane.

OR Operating Room

PA10-6C Portable General Purpose Intelligent Arm with 6 degrees of freedom
manufactured by Mitsubishi Heavy Industries, LDT.

PTP Point to Point controller: is a control strategy to reach a target position
in the joint space following a synchronized velocity trapezoid profile
for each joint. It is implemented on the target computer and can be
activated by the host computer with the PTP command.

QNX A POSIX compliant UNIX like real time operating system.

Qt A cross-platform application development framework used for the
development of graphical user interfaces.

RB Rigid Body: is a reference body equipped with marks that can be
detected by a navigation system.

RT Real-Time: is a level of computer responsiveness that the user senses as
sufficiently immediate. High determinism is a characteristic of real-time
systems and guarantees that the calculations and operations occur in
time and on time.

xiii

TCL-ROB Time Critical Loop running at the target computer containing the main
controller to drive the robot arm.

TCP Tool Center Point

TCP/IP Transmission Control Protocol/Internet Protocol: set of
communications protocols that implements the protocol stack on which
the Internet and most commercial networks run.

TSK-DONE Task Done: Acknowledgment transmitter from target computer to host
computer each time a requested task is completed.

XML Extensible Markup Language: general purpose markup language that
allows its users to define their own tags. Its primary purpose is to
facilitate the sharing of structured data across different information
systems, particularly via the Internet.

SC-Inverse Singularity Consistent method solves the problem of singularities based
on the null space.

VF Virtual Fixtures are software-generated force and position signals
applied to human operators via robotic devices. These help humans
perform robot-assisted manipulation tasks by limiting movement into
restricted regions and/or influencing movement along desired paths.

w.r.t. With respect to

ZESS Zentrum für Sensorsysteme is the german name of the interdisciplinary
research Center for Sensor Systems at the University of Siegen.

xiv

NOMENCLATURES

General

� Joint positions vector

�� Joint velocities vector
B

AT (4) homogeneous Transformation matrix from frame {A}to frame {B} 4�

B
AR (3) Rotation matrix from frame {A}to frame {B} 3�

B
Ap Position vector of A with respect to frame B

()sp Parametric function

p� Cartesian linear velocity vector

� Cartesian angular velocity vector

x� Cartesian linear and angular velocity vector of the form []TT Tp ��

f Forces vector

� Moments vector
� Forces and moments vector of the form []T Tf � T

J Jacobian matrix
#J Pseudoinverse of Jacobian matrix

Virtual Fixtures and Admittance Controller

U

Subspace of preferred directions along which the robot’s end-effector is

allowed to move

V Subspace of non-preferred directions along which the robot’s end-effector

cannot move
lS Subset of comprising the linear independent set of vectors that span U

for position

3�

�S Subset of comprising the linear independent set of vectors that span U

for orientation

3�

UP Projection operator onto subspace U of preferred directions

VP Projection operator onto subspace V of non-preferred directions

c Compliance coefficient for admittance controller

xv

C Diagonal compliance matrix for admittance controller

e Deviation error vector

� Quaternion

Damped Least Squares approach
*J Singularity-Robust (SR) inverse of the Jacobian matrix

w Manipulability measure of Jacobian matrix

� Damping factor

� Diagonal matrix with singular values of a matrix resulting from singular

value decomposition

Adjoint Jacobian approach

adjJ Adjoint of Jacobian matrix

detJ Determinant of Jacobian matrix

fi Factorized detJ corresponding to one singularity of the robot, (1,..,)i k�

with k equal maximum number of possible singularities

v End-effector velocity magnitude

u End-effector motion direction unit vector

b Scalar variable of adjoint Jacobian expression

� Sign variable of adjoint Jacobian expression

H Column augmented Jacobian

Hn Vector existing in the null space of matrix H

xvi

ABSTRACT

Im Rahmen des modular interactive computer assisted surgery Projekts (modiCAS)

wurde eine Lösung zur Kombination eines Navigationssystems und eines manuell

steuerbaren Roboterarms zur Unterstützung verschiedenster chirurgischer Eingriffe

entwickelt [70]. Dieses Robotersystem kann als intelligentes Werkzeug betrachtet

werden, das die Fähigkeiten eines Chirurgen auf assistierende und kooperative Weise

ergänzt. Das System soll den Chirurgen während Operationen unterstützen, keinesfalls

jedoch ersetzen. Das Ziel dieser Arbeit liegt darin, die Interaktion zwischen Chirurg und

Roboter bei manueller Führung zu erweitern und einfach und sicher zu gestalten.

Der erste Teil dieser Arbeit beschreibt die Architektur eines software-frameworks,

das die Bedienung des modiCAS-Systems in verschiedenen chirurgischen Bereichen

zulässt. Hierbei ermöglicht eine modulare Struktur, in Verbindung mit einer

strategischen Verteilung der einzelnen Module, ausreichende Flexibilität um eine

Hardware Plattform an verschiedene Anwendungen anzupassen.

Im zweiten Teil wird, im Hinblick auf die kooperativen Fähigkeiten des modiCAS

Systems, das Vermeiden von Fehlsteuerungen mittels virtueller Beschränkungen (virtual

fixtures) durch den Admittance Controller behandelt. Diese dienen dazu die

Bewegungsmöglichkeiten des Roboterarms bei haptischer Führung so zu begrenzen,

dass er sich nur in vordefinierte und erlaubte Richtungen bewegen kann. Die

Kombination von gewünschten Richtungen erlaubt die Konstruktion verschiedener

virtueller Einschränkungen, die eindimensional (z.B. Linie), zweidimensional (z.B.

Oberfläche) oder dreidimensional (z.B. Kegel oder Zylinder) sein können. Außerdem

sind komplexe Kurven generierbar, die von dem Roboterarm bei manueller Führung

exakt durchlaufen werden.

Die Methoden Damped Least Squares und Adjoint Jacobian vermeiden hohe

Geschwindigkeiten, die während der haptischen Führung des Roboterarms bei

singulären Konfigurationen auftauchen können. Eben dies darf während einer

kooperativen Operation mittels virtueller Begrenzungen nicht geschehen.

Die in dieser Arbeit vorgestellten Methoden liefern einen Beitrag für eine sichere

und präzise Steuerung von manuell gesteuerten Roboterarmen. Sie erhöhen die

Funktionalitäten zur Assistenz und das Integrationsniveau von Roboterarmen bei

xvii

chirurgischen Einsätzen. Auf diese Weise wird die Interaktion zwischen Chirurg und

Roboter intuitiver und leichter in der Handhabung. Die Möglichkeit zur Festlegung

virtueller Begrenzungen verbessert die Sicherheit in der Anwendung erheblich, da der

Chirurg den Roboterarm nicht unbeabsichtigt in leicht verletzbare Bereiche führen kann.

xviii

1. Introduction

The modular interactive computer-assisted surgery (modiCAS) project, settled in the

Center for Sensor System (ZESS) at the University of Siegen, in Germany, is engaged to

develop an integral solution for different surgical problems by the combination of a

navigation system and a robot arm with hands-on capabilities [70]. The robotic system

may be thought of as a smart surgical tool that extends surgeon’s ability to treat patients,

giving him/her surgical assistant by working in cooperative fashion. However, a natural

and seamless integration of robotic systems in the operating room is still a big challenge

in robotic surgery. The interaction between surgeon and robotic system is a very

important issue. Autonomous systems have lost acceptance in the surgical community

because the surgeon wants to be in charge of the operation rather than acting only as an

observer. In such autonomous procedures, human experience, intuition, reacting

capability in front of unexpected situations are lost. Furthermore, assistance intends to

improve the performance of the surgeon rather than delimitating or obstructing him/her.

An alternative solution is to provide a cooperative system where benefits of both can be

combined. In this context, the surgeon gain complete control over the operation by

grabbing the tool mounted on the robot and commanding it with his/her own hands. But

the fact that a robot is to be used in clinical applications and in direct contact with human

beings, imposes some additional requirements in comparison with the well established

robotics technology applied in the industry. The most obvious is safety. On the one hand,

the surgeon must keep control of the surgical operation. On the other hand, the surgical

robots must assure a correctly usage by the surgeon in order to guarantee patient

safeness. Therefore, surgeon’s freedom of action has to be partially limited so that

forbidden regions become unattainable to prevent accidental injuries. For these reasons,

a seamless and safety integration of the system within the operating room is considered a

paramount issue for a successful assistance and represents an important requirement

within the modiCAS project.

The first contribution of this work is a proposal of software framework architecture

for the modiCAS system able to support medical interventions in several surgical

disciplines. A modular structure, together with a strategic distribution of the modules,

 1

provides flexibility for the adaptation of a common basic hardware platform to different

applications.

Secondly, concerning the cooperative capabilities of the modiCAS system, the issue

of mishandling is avoided with the introduction of virtual constraints, here called virtual

fixtures, which help guiding the tool within certain predefined permitted directions. The

combination of these preferred directions permits different kinds of virtual constraints,

which may be one dimensional (lines), two dimensional (planes), three dimensions

(tubes, cones, etc.) or even more complex trajectories (by means of parametric

functions).

A particularly issue to be considered when thinking about cooperative manipulation

of a robotic arm is the presence of singular configurations. In the neighborhood and at

singular configurations an exact solution of the robot inverse kinematic becomes ill

conditioned. Consequently, unfeasible joint velocities may be produced which yields

into acute behavior of the robotic system. During virtual constrained cooperative

operation, high velocities and position deviations are unacceptable. Therefore, another

important objective of this work is to assure that such cooperative guidance is robust and

accurate even in the presence of such singular robot configurations.

In chapter 2, the modiCAS system is introduced, together with the system demands

that motivate the contribution of this work. Chapter 3 presents the state of the art in

computer assisted surgery systems, virtual constraints and singularity robustness. The

proposed modular software framework is detailed explained in chapter 4. Chapter 5

introduces the concept of virtual fixtures together with the corresponding admittance

controller used to apply them to the robotic system. Two types of controllers are

compared; each of them differing from the other in the way the deviation error is

handled: manual error compensation and the proposed autonomous error compensation.

The former relies on the input forces applied by the user to compensate possible

deviation error, while the latter delegates this job to the robotic system. The technical

challenge of dealing with singularities is treated in chapter 6. Two approaches are

analyzed and compared: the Damped-Least-Squares and the adjoint Jacobian

approaches. Finally, chapter 7 presents the conclusions.

 2

2. Motivation to design a cooperative robotic assistant surgery system

2.1 The modiCAS project

The basic concept of the modiCAS project is to integrate navigation system and robotic

arm into one system that appears a single unit, combining the specific advantages of

each other. A hands-on interface mounted at the robot end-effector provides highly

interactive operation. The system setup consists of an optical 3D “Polaris” digitizing

system (from NDI Inc., Canada), the PA10-6C robot arm (from Mitsubishi Heavy

Industries, Ltd., Japan), a light weight (35 kg) robotic arm with 6 degrees-of-freedom

(DOF), and a mini45 force-torque sensor (from ATI Industrial Automation, USA),

which is integrated in the surgical tool mechanism. Figure 2.1 shows the different

components of the navigated robotic system.

Figure 2.1. Components of the navigated robotic system for surgical assistance

 3

The control system consists of two computers: On the one hand, an embedded target

computer, which runs a real-time operating system, where all the fundamental

functionalities are implemented, and on the other hand, a host computer, with Microsoft

Windows operating system, where the graphical-user-interface (GUI) and the

application-oriented tasks are running. Both computers communicate through a

dedicated Ethernet connection.

The modiCAS software framework is divided in two main parts: The planning-

software and the controller-software. The former is used for preoperative planning,

registration and intra-operative visualization. This software provides all important

planning functionalities through a virtual toolbox and supports the common standards for

the different images modalities (X-Ray, CT, and MRI). The controller software is in

charge of the management and usage of the physical components of the system.

Although, these two parts work together to provide a complete solution, the development

of this work concerns only the controller-software. The reader interested in further

details related to the planning software is encouraged to consult [43].

2.1.1 Combination of navigation and robotics

The basic concept of modiCAS system is to integrate a navigation system and robotic

arm into one system that appears as a single unit, combining the specific advantages of

navigation and surgical robotics [70]. Patient registration is performed by using only the

navigation system, while the robot arm positions the surgical instrument during

intervention. Thus no unintentional deviations caused for example by tremor or slipping

can occur. Furthermore, the surgeon does not have to permanently change his eyes from

the operating area to the computer screen where he/she has to monitor the instrument

position, and he /she can fully concentrate on the operating area.

The tool adapter is equipped with a rigid body (RB), which can be detected by the

navigation system. During system initialization, a setup procedure is carried out to align

the coordinate systems of the robot arm and the navigation system. As a result, all

movements can be specified and executed with reference to the coordinate system of the

navigation system. This also provides redundant measurement of the surgical tool

position by two completely independent systems, (a) the navigation system detecting the

 4

RB element, and (b) the built-in encoders of the robot joints. This is an important feature

to meet the high safety requirements applicable to surgical robotics.

A special feature of the robotic arm is its ability to automatically track potential

movements of the patient in real-time, eliminating the need for rigid fixation of the

anatomic structure to be operated. Instead, a RB is attached to the patient operable

structure by a suitable fixation mechanism. After registration of the patient anatomy, the

operating area is well known by the system and can be tracked by the robot. If any

patient movement is detected during surgical intervention, the controller generates

corresponding motion commands that move the robot arm to follow the patient, keeping

the surgical instrument always in the pre-planned position and orientation with respect to

the patient anatomy.

Although the patient tracking capability of the system is of great relevance and

represents a key feature of the modiCAS project, a deep insight in this topic is actually

out of the scope of this work, which mostly concentrates on the controller framework

design and the cooperative capabilities of the system. More detailed information related

to the tracking mode can be found in [70].

2.1.2 Human-robot interaction

One important goal of the system is transparency i.e., the ability to move the tool freely

and dexterously. Therefore, the robot arm is equipped with a hands-on interface

consisting of a 6 DOF force-torque-sensor (FTS) mounted at the robot’s end-effector.

External applied forces to the tool can be detected by the system. The surgeon can thus

freely move the end-effector through the desired operating region just by grabbing the

handle mounted on the end-effector and guiding the arm towards the target area. This

hands-on capability integrates the robot seamlessly in the operating procedure, because

there is no need to use any input-device like mouse, touch screen or keyboard to

command the robot. An additional feature of the hands-on interface is that any

force/torque externally applied to the surgical tool can be monitored. Such information

can be used to enhance safety during surgical procedures. At the beginning of this work,

the hands-on interface was already available within the system, but non mechanism was

available to constrain the working area.

 5

Figure 2.2. modiCAS system in the operating room
In other words, the surgeon was able to move the robot anywhere in the robot’s working

area, which, for safety reasons, may not be always desired. Another limitation was the

fact that the cooperative mode was not singularity robust, i.e., passing through singular

configurations of the robot was not possible. Therefore, the hands-on interface could

only be used to coarsely positioning the tool by hand in the working area. After that, the

system was switched to automatic control and fine positioning was carried out under

computer control according to preoperative planning. Switching back to cooperative

mode is always possible whenever the surgeon wishes so. Figure 2.2 illustrates the

incorporation of the modiCAS system in the operating room (OR).

2.2 System demands

The objective of the modiCAS project is to consolidate a flexible robotic system that

provides both navigated assistance and cooperative capabilities to support different

Computer Assisted Surgery (CAS) disciplines. The robotic system should provide

assistance to the surgeon rather than substituting him/her. Assistance intends to improve

the performance of the surgeon instead of delimitate or obstruct him/her. In other words,

 6

the surgeon must keep control of the surgical operation all the time while the robotic

system simply becomes a tool at his/her disposition, which usage should be as intuitive

as possible. Nevertheless, the absence of human mistakes cannot be completely assured.

Therefore, surgeon freedom must be limited in a way that forbidden regions become

unattainable so that accidental injuries can be prevented. For these reasons, a seamless

and secure integration of the system within the OR is considered a paramount issue for a

successful assistance and represents an important requirement within the modiCAS

project.

System flexibility and safe human-robot interaction are then the two major aspects

treated in this work. On the one hand, a new controller software architecture specially

designed to improve flexibility of the modiCAS system has to be developed and

implemented. On the other hand, a virtual constraining mechanism has to be developed

to assure a safe human-robot interaction during cooperative tasks.

2.2.1 Controller software architecture

The spectrum of possible applications of a navigated cooperative robotic assistant

system is very broad [28]. However, each application presents particular problems,

which demands particular solutions, i.e. particular expectations about how the robotic

assistant system must behave. Therefore, the system architecture must be flexible

enough to adapt itself to the demands of various surgical scenarios without requiring

exhaustive changes in the internal structure. The modiCAS controller software bases its

design on the following concept of modularity to cope this requirement:

Modularity – A clear modularization of the different tasks as well as a strategic

distribution of them along the system framework, depending of their roll within the

system, are key issues to achieve enough system flexibility to cope various applications.

But modularity is not only restricted toward applications. Additionally, a modular

hardware-interface expands this flexibility towards the system itself. Some resulting

advantages are maintainability and scalability. In this way, thinking about upgrading,

replacing or even adding a new component must not affect the integrity of the system.

 7

2.2.2 Human-robot interaction

At the present state of the modiCAS system, the hands-on interface can be used to move

the tool about the working space with the surgeon’s hands. Returning the tool back to

exact operating position has to be done autonomously by the robot. The surgeon has

freedom to move the robot end-effector at any time in any direction. Nevertheless, there

exists no mechanism to assure that the cooperative motion keeps the tool inside a

predefined region or leads it towards a specific desired point. Under such circumstances,

no cooperative task can be applied, since no constraints exist that avoid the surgeon to

conduct the tool toward forbidden regions where injuries to the patient can occur.

The motivation of the second part of this work is the development of a cooperative

modality though which the surgeon is able to freely guide the robot’s end-effector with

his/her own hands inside some predefined constrained area, but assuring that any

movement outward this region becomes unfeasible. Therefore, the concept of virtual

fixtures is applied to the hands-on interface. Namely, any movement commanded by the

surgeon is virtually constrained along permitted directions. The constrained space can be

along a curve, a surface or even inside volumetric shapes. These virtual fixtures are

previously defined in the preoperative stage of the surgical intervention. The navigation

system makes possible to define such constraints in direct relation to the patient.

Besides, the system compliance against surgeons applied forces can vary depending of

the proximity to the patient.

In this context, applying virtual fixtures to the simple task of safely moving the tool

back and fort of the working area would look as follows: when trying to push the tool

out of the working space, first a simple linear movement on the negative direction

normal to the operating plane is applied in order to get out of the critical area nearby the

patient in a safety way. After certain distance, the virtual constraint is shifted to an

inverted conic form giving the possibility to locate the robot out of the way not to

obstruct any other activity of the surgeon. On the same way, once the robot is pulled

back to the working area, the virtual constraints procure that the final operating position

and orientation are safely achieved. In this case no autonomous movement of the robot is

required anymore. The virtual-fixtures provide a safety measurement that allows active

participation of the robotic system in cooperative tasks during surgical procedures.

 8

2.3 Technical challenges

2.3.1 Controller redesign

The actual stand of the project is the fruit of a combined effort of all member of the

modiCAS team along the past years [43], [70], [106], [136]. A lot of experience has been

collected through each contribution. Parallel development concerning planning-software,

controller-software, navigated patient tracking strategy and hands-on interface did great

advance during the first four years. A first prototype was developed and successfully

implemented. Even clinical trials were successfully achieved [136].

The controller software structure of this first prototype is shortly explained: The

modiCAS software is distributed on two computers. The first one, running a Windows

operating system, contains the GUI and all not deterministic tasks. The second computer

runs a real-time operating system and comprises all deterministic tasks, such as control

loops, data acquisition, and hardware interface. Originally, QNX operating system was

the platform used for the real-time computer. The software implementation was based on

C++ object oriented programming language. CORBA infrastructure was used for

computers interaction, which were connected over a local dedicated network. The GUI

of the controller software was developed using Qt framework.

At some point of the development, the modiCAS team realizes that the software

architecture based on the original design started to become very complex. Any

adaptations to cope new applications required a deep knowledge of the whole framework

and therefore implied a considerable extra effort to do small changes. Besides, this

turned out to be overwhelming for each new member of the team and considerably

slowed the development process. Consequently, a strategic decision came out, namely,

the redesign of the control software under a new real-time platform, with a new

communication mechanism and mostly important with the main requirement of

modularity.

The LabVIEW high level environment based on graphic programming language was

chosen for the development of the new controller software. Thanks to the LabVIEW

Real Time (RT) module [77], it is possible to develop real-time applications in a

conventional desktop personal computer (PC) running the Venturcom Phar Lap

 9

Embedded Tool Suit (ETS), a high-performance micro-kernel real-time operating system

[9].

Considering the fact that the modiCAS project has a tight relationship with the

University of Siegen, where student collaboration is a common and practicable case,

LabVIEW offers the following advantages:

� Easy understandable programming language

� Reduced learning curve

� Cut down considerably implementation time

� C-code can be very easily imported

� Professional technical support

� Desktop PC compatible

Under such circumstances, the modiCAS controller-software redesign implicates the

aggregated challenge of achieving a successfully implementation in a completely new

platform.

2.3.2 Robot singularities

Robot singularities are special configurations of the robot where its behavior becomes ill

conditioned. Near singular configurations some robot joints may present very high

velocities yielding into acute behavior. In a cooperative system, where human-machine

interaction is highly coupled, such behavior is unacceptable. Although the singularity

problem is well known in the field of robotics, commercial industrial robotic system do

not jet offer a build-in convincing solution. This situation becomes even worse in the

field of cooperative robotics, a field that until now has not been firmly settled for

commercial purposes. This means that an alternative strategy must be developed that

allows safely cooperative tasks nearby or at singularity configurations.

Two scenarios are supposed: the first case comprises unconstrained cooperative

motion of the end-effector. In such a case, slight position deviation when passing

through singular configuration are tolerated. High priority is given to the smoothness of

the motion rather than accuracy of end-effector’s position.

 10

The second case is exactly the opposite i.e., the end-effector motion is virtual

constrained. Here, position deviations could mean that the end-effector goes out of the

permitted area. Therefore, accuracy has highest priority when passing nearby or through

singularities.

 11

3. State of the art

3.1 Surgical robotic systems

The robots can be seen as a mechanism that have complementary capabilities to those of

humans, and may be used in a number of ways to augment a surgeon’s ability to carry

out procedures, either by making existing procedures more accurate, faster, or less

invasive or by making it possible to perform otherwise infeasible interventions. In these

cases, the advantages often come from exploiting the complementary strengths of human

and robotic device; Table 3.1 summarizes strengths and limitations of each of both,

humans and robots [125]:

Table 3.1. Complementary capabilities of human and surgical robots

 Strengths Limitations

H
um

an
s

Excellent judgment

Excellent hand-eye coordination

Excellent dexterity at natural human scale

Able to integrate and act on multiple

information sources

Easily trained

Versatile and able to improvise

Prone to fatigue and inattention

Tremor limits fine motion

Limited manipulation ability and

dexterity outside natural human scale

Cannot see through tissue

Bulk end-effector (hands)

Limited geometric accuracy

Hard to keep sterile

Affected by radiation infection

R
ob

ot
s

Excellent geometric accuracy

Untiring and stable

Immune to ionizing radiation

Can be designed to operate at many

different scales of motion and payload

Able to integrate multiple sources of

numerical & sensor data

Poor judgment

Hard to adapt to new situations

Limited dexterity

Limited hand-eye coordination

Limited haptic sensing (today)

Limited ability to integrate and

interpret complex information.

 12

Taylor classified the systems by the role they play in medical applications [122]. He

stresses the role of robots as tools that can work cooperatively with surgeons to carry out

surgical interventions and identifies five classes of systems:

1. Intern replacements – The system performs assistive tasks that are ancillary to

the main surgical procedure and that are frequently performed by surgical interns

and other people whose main job is to help the surgeon.

2. Telesurgical systems – The robot’s motions are specified directly by the surgeon

by means of a joystick, control handle, or similar device. The surgeon used the

robot as an extension of his own direct manipulation capabilities. Such systems

give the surgeon access to difficult to reach parts of the body or the ability to

perform delicate microsurgical tasks without tremor.

3. Navigational aids – The goal is simply to provide the surgeon with accurate

positional feedback about the location of surgical instruments relative to the

patient’s anatomy. These systems are often referred to as CAS, and typically

consist of a 3D localizing device such as an instrumented passive manipulator,

ultrasound detector, or 3D optical tracker, together with a computer graphics

workstation for displaying position relative to volumetric medical images.

4. Precise positioning systems – The robot is used to position a tool guide in the

desired position and orientation relative to the target anatomy. For safety reasons,

the robot is often turned off during the actual instrument insertion. Although this

reduces the chance of unwanted motion at critical times, it does not address the

potentially more crucial issue of misregistration.

5. Precise path systems – The robot is moved through a defined path to complete a

specific task. For example, a precise machining of bone either using the robot to

move the cutting tool or as a means of constraining the surgeon to keep the tool

within a predefined volume.

Other authors divide the field by clinical applications [28], [35], [124]. A list of seven

clinical areas where robotics has been applied is shown in Table 3.2. [28].

 13

Table 3.2. Clinical application areas and representative robotic developments
Clinical Area Country Institution/ Company System Reference

Neurosurgery Switzerland Univ. of Lausanne Minerva [16]

Neurosurgery USA ISS / Grenoble Univ.

Hospital

NeuroMate [79]

Neurosurgery Japan Univ. of Tokyo MRI compatible [91]

Orthopaedic USA ISS ROBODOC [120]

Orthopaedic USA Georgetown / Hopkins PAKY/RCM [27]

Orthopaedic USA Univ. of Tokyo / Hopkins PAKY/RCM [28]

Orthopaedic USA Marconi Kawasaki [28]

Orthopaedic UK Imperial College Acrobot [57]

Urology UK Imperial College Probot [129]

Urology USA Hopkins PAKY/RCM [117]

Maxillofacial Germany Charite Surgiscope [83]

Maxillofacial Germany Karlsruhe / Heidelberg RX 90 [57]

Radiosurgery USA Accuray CyberKnife [6]

Opthamology USA Hopkins Steady Hand [123]

Cardiac USA ISS da Vinci [45]

Cardiac USA Computer Motion Zeus [12]

Cardiac France Grenoble PADyC [113]

Since various systems in development pretend to cover various disciplines and

applications, the classification criterion on this work is rather based on their degree of

autonomy i.e. the type and level of interaction between robotic system and the surgeon,

distinguishing between three main categories: Autonomous systems, Cooperative

Systems and Teleoperative systems.

3.1.1 Autonomous system

An autonomous robotic surgery is the process whereby a robot actually carries out a

surgical procedure under the control of nothing other than its computer program.

Although surgeons almost certainly will be involved in the planning of the procedure to

be performed and will also observe the implementation of that plan, the execution of the

plan will not be accomplished by them, but by the robot. The surgeon has always the

 14

Figure 3.1. Autonomous System: The robot executes the procedure while surgeon
observes/supervises the operation [94]

possibility to stop the robotic system and continue manually the interrupted procedure

(see Figure 3.1).

The first autonomous surgical systems were designed for orthopaedic surgery. In the

U.S., Taylor and associates at IBM began developing the system later known as

ROBODOC [120]. This system was further developed clinically by Integrated Surgical

Systems (ISS) for total hip replacement procedures. The system consists of three mayor

components: a planning workstation (ORTHODOC), the robot itself that does the

cutting, and the workstation that guides and controls the robot. Since this system has a

number of features also found in other surgical systems, a typical procedure using the

system is described:

The surgeon selects an implant model and size based on an analysis of preoperative

CT images and interactively specifies the desired position of each component relative to

CT coordinates. In the operating room, the robot is moved up to the operating table, the

patient’s bones are attached rigidly to the robot’s base through a fixation device, and the

registration of the patient with the robot is done either by touching multiple points on the

surface of the patient’s bone or by touching pre-implanted fiducial markers whose CT

coordinates have been determined by image processing.

 15

(a)

(b)

Figure 3.2. (a)ORTHODOC planning workstation, (b) ROBODOC milling implant
cavity for hip replacement surgery (courtesy of ISS, USA)

The surgeon hand guides the robot to an approximate initial position using a force sensor

mounted at the robot’s end-effector. The robot then cuts the desired shape while

monitoring cutting forces, bone motion, and other safety sensors. The surgeon monitors

this process by watching a computer screen which shows the progress of the cutting

operation. The robot can also be stopped at any time. When the desired shape has been

cut, the robot is removed and the rest of the operation is completed by hand in the

conventional manner. A picture of the ORTHODOC planning software and ROBODOC

milling the cavity for the implant is shown in Figure 3.2.

A number of other robotic systems for use in joint replacement surgery were

subsequently proposed, such as the CASPAR system (from ortoMAQUET, Germany)

shown in Figure 3.3. The system is based on the industrial robot Stäubli [39], which was

very similar to ROBODOC. The system has been used for implantation of hip prosthesis

in total-hip-replacement (THR), as well as for anterior cruciate ligament reconstruction

[105].

Although these systems successfully achieve the goal of improved fit, there are a

number of common difficulties [52]. One very important issue is the complex method

for fixing the operating bone structure, which is time consuming to set up and can cause

postoperative pain. A related problem is motion of the bone within the fixation device

during cutting. Currently, a separate sensing system is required to check for motion; if

 16

bone shift is detected, cutting is interrupted and the registration process must be

repeated. Several incidents of femur motion can push the surgical time over the limit of

acceptability. An improved fixation technique or continuous registration method could

eliminate these problems.

Another completely different type of autonomous robotic systems is used for

radiosurgery. Stereotactic radiosurgery is a medical procedure that utilizes very

accurately targeted, large killing doses of radiation, which has proven to be an effective

alternative to surgery or conventional radiation for treating many small tumours and a

few other selected medical disorders. Standard stereotactic techniques rely on a rigid

metal frame fixed to a patient’s skull for head immobilization and target localization.

Adler and associates at Stanford University (U.S.) in conjunction with Accuray Inc.,

U.S., developed the CyberKnife for image-guided radiosurgery [6].

Figure 3.3. CASPAR system in knee operation (courtesy of ortoMaquet)

 17

The system consists of a linear accelerator

(used to produce a high energy killing beam

of radiation), a robot which can point the

linear accelerator from a wide variety of

angles, and several x-ray cameras to track

the patient position. Lightweight.

Figure 3.4. CyberKnife robotic
radiosurgery system (courtesy of
Accuray, USA)

The robot arm moves the beam through a

series of preset positions to maximize the

dose to the lesion while minimizing the

dose to the surrounding normal tissue. The

CyberKnife is shown in Figure 3.4. In

contrast with the systems presented until

this point, non direct contact is performed

with the patient. Nevertheless, the

application is not considered to imply less

risk than the others. If the goal position is

not precisely reached, healthy regions can

be damaged.

3.1.2 Cooperative systems

Robot systems operating in collaboration with humans has been an active topic of

research during the last two decades. Various control systems have been proposed by

Kazerooni et al. ([62], [63]) to generate the motion based on the intentional force.

Cooperative tasks for industrial applications such as cooperative manipulation ([72],

[73]), peg-in-hole tasks [132], has been proposed.

In surgical robotics also cooperative control has been a current topic of research. A

cooperative system allows performing surgical procedures interactively, meaning that

the surgeon and robot share control [127]. One of the first surgical applications with

robotic assistance was in stereotactic neurosurgery [107]. These systems can be included

at the border of cooperative system classification. In such systems the robot

autonomously positions and fixes a mechanical guide according to a pre-planned

 18

trajectory, and then the surgeon uses this guide to introduce the surgical tool (such as a

drill, probe, or electrode) while the robot acts as a mechanical guidance imposing a

simple and rigid linear constraint. Kwoh et al made the first attempt to use an industrial

PUMA 560 robot for the CT-guided brain tumour biopsies [75]. Lesion location was

determined from CT images and the robot positioned a biopsy needle using this data.

Benabid and colleagues developed in the late 1980s an early precursor to the stereotactic

robot marketed as NeuroMate [79]. The current version of NeuroMate (see Figure 3.5) is

a commercial product that has been licensed by Integrated Surgical Systems (ISS) and

approved by the Food and Drug Administration (FDA). The system has been used in

over 1600 procedures since 1989.

Early experiences with surgical robots, such like ROBODOC and other similar

systems, showed that surgeons found a form of hands-on control to be very convenient

and natural for surgical tasks. Under this type of control, the robot undergoes steady-

hand manipulations of the surgical instrument while the surgeon controls the whole

procedure. The surgeon and robot are jointly performing tasks.

Figure 3.5. Neuromate courtesy of Integrated Surgical Systems

 19

A number of groups have further

exploited the idea of creating

virtual constraints to help a surgeon

align a tool, follow a precise path,

maintain a desired force, prevent

entering into certain forbidden

regions of the workspace, or

perform other similar tasks [86],

[101], [80]. This concept is

normally known as virtual fixtures

(for further details refer to section

5.2). One example is the Active

Constraint ROBot (ACROBOT),

which is a small, low-powered,

special purpose robot for knee surgery developed by the Imperial College at London (see

Figure 3.7) [57]. This robot uses backdrivable motors and transmissions, so it has low

mechanical impedance in each axis, allowing the robot to be moved by the surgeon with

low force by pushing a handle mounted near the tip of the robot.

Figure 3.6. Cooperative: robot and surgeon
remains jointly in control [94]

Figure 3.7. ACROBOT, special purpose Hands-On robot for knee surgery

 20

Figure 3.8. JHU Steady Hand robot for microsurgery

The robot is force controlled by adjusting the torque of the motors depending on the

force applied by the surgeon, and the current position of the robot in relation to the

cutting boundaries. As the user approaches and then contacts a constraint surface defined

in the preoperative plan, varies the admittance, i.e. the relationship between the force

applied by the surgeon and the torque of the motors, until the edge of the permitted

region, where it prevents further motion outward the boundary [46]. Whilst the

ACROBOT is currently being used for knee surgery, the system is also suited to a range

of orthopedic and soft tissue procedures.

This concept of virtual fixtures has been more recently applied in the Johns Hopkins

University (JHU) Steady Hand robot system for micro-manipulation [123]. It is

composed of a Cartesian stage allowing three orthogonal translational DOF and a

Remote Center of Motion (RCM) stage allowing two orthogonal rotational DOF (see

Figure 3.8). This robot is developed to extend human’s ability to perform small-scale

(sub-millimeter) manipulation tasks requiring human judgment, sensory integration and

hand-eye coordination. The tool is held simultaneously both by the surgeon’s hand and

the robot arm. The robot’s controller senses forces exerted by the operator on the tool

 21

and by the tool on the environment, and uses this information in various control modes

to provide smooth, tremor-free precise positional control and force scaling. Applications

of this robot include eye surgery, microvascular surgery and neurosurgery [74].

There are other kinds of systems based on passive mechanisms that have been also

implemented, like Cobots (from Cooperative robot) [141], which use mechanical rolling

contacts to implement smooth constraint surfaces. The operating system is to use

computer-controlled CVTs (continuously variable transmissions) to produce high quality

rolling constraints. In some cases, the CVT is no more than a steered rolling wheel [36].

In other cases, the CVT may be a complex mechanism [37]. Although computer steering

determines the path of a cobot end point through the cobot’s workspace, the computer

has no authority over the speed of the endpoint along that path. The speed is determined

by the external forces, including those applied by the user and environment, e.g., gravity,

and the inherent dynamics of the cobot itself. This means that cobots are passive devices,

incapable of transmitting power to the user.

Other passive mechanism is the PADyC

(Passive Arm with Dynamic Constraints) [113].

It consists of two free-wheels mounted in

opposite directions in association with two

motors at each joint in order to provide the

different desired constraint effects. A freewheel

is very similar to a conventional roller bearing,

but it naturally provides the basic function of

unidirectional motion. Consider the free-wheel

mechanism of Figure 3.9, if the internal part of

the free-wheel is fixed (�i
+=0), the motion of

the external part is blocked on the positive direction, while it is free in the negative one.

If a motor is associated with the internal part of the free-wheel and rotates with velocity

�i
+, then both directions of motion are allowed but �user is bounded by �i

+ in the positive

direction. The combination of two free-wheels, with their corresponding motors, for

each joint gives the possibility to control velocity in both directions.

 Figure 3.9. Free-wheel mechanism
of PADyC

 22

The intrinsic safety of such a system is good. Indeed, the joint mechanical design

integrates another set of free-wheels and worm screws that respectively guarantee that

the arm cannot move autonomously, because the motors cannot drive the joints, and that

the user cannot back-drive the motors. Moreover, the joints are naturally locked when

unpowered. The operation principle of these passive devices is considered out of the

scope of this work and it will be not further discussed in this contribution. Interested

readers are encouraged to consult [36], [37], [112], [127], and [141].

3.1.3 Teleoperative systems

In teleoperative systems, well known as telesurgery systems, the surgical manipulator is

under direct control of the surgeon with the surgical tools in the form of a robotic

manipulator (see Figure 3.10). With an on-line input device that is typically a force

feedback joystick (master), the surgeon performs the surgical manipulations, and the

surgical manipulator (slave) faithfully follows the motions of the input device in a

master-slave control manner to perform the operation [94].

Teleoperation in surgery comes primarily from the need to increase dexterity of the

minimally invasive surgery (MIS) inside small body cavities. Telesurgery systems can

provide better ergonomics compared with conventional MIS. The robot motions are

Figure 3.10. Telesurgery system: Surgeon controls the robot in real-time through
the haptic interface [94]

 23

specified directly by the surgeon on the basis of intraoperative images taken by the

internal camera. In some cases, haptic feedback is also available, although limitations in

the ability of current slaves to sense tool-to-tissue forces can somewhat limit this ability.

Teleoperated robots have been used for close to 15 years to assist surgeons in MIS,

first, to assist laparoscopic surgery by holding an endoscope (e.g. [110], [121]) and later

to manipulate surgical instruments [45]. A notably example of telesurgery systems is the

daVinci system [45], by Intuitive Surgical, Inc., USA, which consists of the surgeon’s

viewing and control console, a control unit, and a three-arm surgical manipulator (see

Figure 3.11.a). Although many tools are available, the most salient feature is a three-axis

wrist (see Figure 3.11.b), which mimic the motion freedoms of the human wrist. Visual

guidance is provided to the surgeon through a stereo endoscope and a 3-D visual display.

The overall precision is improved by motion reduction scaling and by filtering

involuntary motions caused by tremor.

Figure 3.11. (a) daVinci telesurgery system, (b) Endoscopic EndoWristTM
Instrument (courtesy of Intuitive Surgical)

 24

(a)

(b)

Figure 3.12. Zeus Telesurgery system from Computer Motion Inc.: (a) Console
unit, (b) Zeus robot arms

A similar telesurgery system, called Zeus, has been developed by Computer Motion.

This system is composed of a surgeon control console and 3 table-mounted robotic arms

(see Figure 3.12). The right and left robotic arms replicate the arms of the surgeon, and

the third arm is an AESOP voice-controlled robotic endoscope for visualization. In the

Zeus system, the surgeon is seated comfortably upright with the video monitor and

instrument handles positioned ergonomically to maximize dexterity and allow complete

visualization of the OR environment. The system uses both straight shafted endoscopic

instruments similar to conventional endoscopic instruments and jointed instruments with

articulating end-effectors and seven degrees of freedom.

A notorious moment for the Zeus system was in February 2001, when a team of

surgeons performed a transatlantic laparoscopic operation on a woman in Strasbourg,

France, where the surgeon was operating from a hospital 6000 km in New York City,

USA. The 54 minute operation was completed without any complications and the patient

was discharged two days later [51]. The success of this operation as well as the

technological infrastructure set in place highlight major developments in the field of

telesurgery (see Figure 3.13).

 25

Figure 3.13. Setup of Zeus system at Lindbergh operation 2001 [102]

Technically, much remains to be done before robotic surgery’s full potential can be

realized. Although these systems have greatly improved dexterity, they haven’t yet

developed the full potential in instrumentation or incorporated the full range of sensory

input. Beside the two commercially available systems, other research groups are working

in order to further improve the capabilities of such systems.

Figure 3.14. The telesurgical workstation for laparoscopy at Berkley [90]

 26

Many future advancements are already being researched [78]. Mentioning some of them,

the Berkley system, a joint project between the University of California, Berkeley and

the Department of Surgery of the University of California San Francisco, USA is a

telesurgical workstation for laparoscopy (see Figure 3.14). The slave is based on a

modified Millirobot, while the masters are PHANToM devices. The design of the

millirobot is dexterous enough to perform suturing and knot-tying tasks.

The KAIST system at the Korea Advanced Institute of Science and Technology

(KAIST) is a microsurgical telerobot system composed of a 6 DOF parallel

micromanipulator attached to a macro-motion industrial robot and a 6 DOF force/torque-

reflective haptic master device.

The Research Center of Karlsruhe has developed the ARTEMIS system (Advanced

Robotic and Telemanipulator System for Minimal Invasive Surgery) [107]. This system

consists of the Man Machine Interface with two haptic manipulators, a graphical user

interface, 3D video imaging of the operating environment, speech input for controlling

the laparoscope, foot pedals and a trackball. And the Work Station with tow

telemanipulation units, the TISKA carrier system with surgical effectors and the

ROBOX endoscope guidance system.

Although this section is intended as a perspective on the field of medical robotics, it

is no longer possible to produce a truly inclusive survey, and much excellent work has

gone uncited.

(a) Master

(b) Industrial robot

(c) Instrument

Figure 3.15. The telerobotic system for mircrosurgery at KAIST

 27

3.2 Virtual fixtures

The Virtual fixtures (VFs), also found in the literature as synthetic fixtures [111], virtual

mechanisms [87], virtual tools [71], are software-generated force and position signals

applied to human operators via robotic devices. They help humans perform robot-

assisted manipulation tasks by limiting movement into restricted regions and/or

influencing movement along desired paths [4].

The type of control strategy used to create virtual constraints may vary depending of

the behavior of the physical systems. Along each DOF, instantaneous power flow

between two or more physical systems (e.g., a robot and its environment) is always

definable as the product of two conjugate variables, an effort (e.g., a force) and a flow

(e.g., a velocity). An important physical constraint is that no one system may determine

both variables. Thus, along any DOF a robot may impress a force on its environment or

impose a displacement or velocity on it, but not both. Consequently, physical systems

come in only two types: admittances, which accept effort (e.g., force) inputs and yield

flow (e.g., motion) outputs; and impedances, which accept flow (e.g., motion) inputs and

yield effort (e.g., force) output. Distinction between admittance and impedance is

fundamental to apply the most adequate control strategy. In a dynamic interaction

between two physical systems, one must physically complement the other: Along any

DOF, if one is of impedance-type, the other must be of admittance-type and vice versa.

Robots can then be considered of either the impedance or the admittance type [5].

Robots of the impedance type, such as typical haptic devices, are backdrivable with low

friction and inertia (e.g., PHANToM device). This type of robot can be considered a

force source, and is typically controlled using impedance control. An impedance

controller outputs actuator forces that are a function of measured robot

position/velocity/acceleration. On the other hand, robots of the admittance type, such as

typical industrial robots, are non-backdrivable and have large inertia or joint friction

(e.g. robots with high rate transmissions in servo-motors). This type of robot can be

considered a velocity source and is usually controlled using admittance control. An

admittance controller measures an input force, and controls the position (i.e. velocity) as

a function of the input force.

 28

Different control strategies for the application of virtual fixtures have been development

for both types of robots. Ho et al. [50] distinguished between two approaches, which

they called the implicit force control and the modified damping control. In the former, no

force sensor is used, and the robot is of the impedance-type. The latter approach uses a

force sensor to measure operator’s guiding force, which determines the robot’s velocity.

In this case, the robot is of the admittance-type and the desired velocity of the robot is

controlled based on the relative position of the robot, motion constraint, and the direction

and magnitude of the guiding force. This is basically the concept of admittance control

techniques and can be applied to robots of the admittance-type in a very natural way.

Since these non-backdrivable robots move in a highly controlled fashion, one can

passively restrict movement in any given direction by simply not commanding any

movement in that direction. Based on JHU Steady-Hand Robot, Bettini et al. [13], [14]

uses admittance control to develop guidance virtual fixtures to assist the surgeon to

move the surgical instruments in a desired direction. Their work was focused on 2D

geometric guidance motion of the tool tip based on vision information. Funda and Taylor

[41] formulated desired motions as sets of task goals in any number of coordinate frames

relevant to the task, and optionally subject to additional linear constraints in each of the

frames for redundant and deficient robots. Li et al. [80] extended Funda’s work to

generate virtual fixtures for real-time obstacle avoidance, and simultaneously assist the

surgeon to perform desired tool motion to accomplish intended tasks by using an

optimization-based approach.

Virtual fixtures have also been widely applied to telemanipulators, where a human

operator manipulates a master robotic device, and a remote slave robot manipulates an

environment while following the commands of the master [109], [104], [1]. Rosenberg

[109] implemented virtual fixtures as impedance surface on the master to assist in peg-

in-hole tasks. Joly et al. [58] simulate a virtual mechanism connected to the master and

slave arms via springs and dampers to impose motion constraints to the system. Micaelli

et al. [87] proposed a decoupled controller for telemanipulators to deal with virtually

constrained and unconstrained directions defined by a virtual mechanism. Itoh et al. [56]

proposes human-machine cooperative telemanipulation bases on the task-oriented virtual

tool dynamics which assist a human operator semi-autonomously during a task. Turro et

 29

al. [134] implemented virtual fixtures projecting the operator’s Cartesian position on the

desired trajectory (called a Proxy) to which the master is bounded, and the slave then

tracks either the master or the proxy, depending on the desired level of user control. The

approaches just mentioned above were implemented with penalty-based or potential-

field methods. These are impedance-type virtual fixtures that act in an active way.

Abbott et al. [3] implement an admittance controller on teleloperators where the master

and slave are impedance-type devices. The virtual fixturing method involves controlling

an impedance-type robot using techniques that mimic admittance control. Using this

method, a teleoperator of the impedance type, designed to achieve a good sense of

telepresence, can also implement virtual fixtures without the stability problems

commonly associated with implementing virtual walls using impedance control

techniques [2]. Unlike with potential fields, the admittance-type guidance virtual fixtures

act in a very passive way, because they do not add energy to the system.

3.3 Singularity robustness

The singularity problem is a well known problem already identified at an early stage of

robotics research [135], [140]. Various ways have been devised to handle the problem of

singularity, starting from the simple approach of switching into joint space control [119].

Others developed techniques to avoid the singularities [53], [87]. However, avoidance is

not always possible when the robot is not redundant with respect to the task. The scope

of this work is restricted to real-time singularity robust control methods for the case in

which the reference trajectory is not known a priori and the robot is non-redundant. A

well-known approach is based on the so-called damped least-squares (DLS) method

[92], [137]. This method prevents the joint velocities from becoming excessively high

near singular configurations by using a damping factor to control the norm of the joint

velocity vector. However, the exactness of the inverse kinematic solution is sacrificed in

order to achieve feasibility. Although various methods to compute an appropriate

damping factor have been proposed to minimize the deviation error [137], [92], [84], all

these methods produce a deviation from the desired end-effector direction in the

neighbourhood of the singularity. Moreover, Kircanski et al. [68] performed a stability

analysis of the DLS method in terms of second-order differential motion and showed

 30

that an algorithmic error exist along the singular direction. An overview of the methods

for inverse kinematics based on DLS can be found in [34], [26].

Eliminating the component of motion along singular direction to avoid large joint

velocity generation has been proposed [24], [25]. Together with the introduction of an

operational space formulation, Khatib proposed as solution for kinematic singularities to

treat the robot as a redundant mechanism with respect to the motion of the end-effector

in the subspace of operational space orthogonal to the singular direction [69]. Control in

this subspace is based on operational forces, while null space joint torques are used to

deal with the control in the singular directions. Later on, Chang and Khatib [22]

introduced the dynamically consistent generalized inverse and compared its performance

with the one of the pseudoinverse when performing motions in the null space. Using the

dynamically consistent pseudoinverse, the task and null space motion and forces are

decoupled. Oetom and Ang [100] eliminate the singular components of the Jacobian,

becoming redundant with respect to the task, and used the dynamically consistent

inverse to invert the Jacobian. Null space was also used to escape from singularity.

Experimental results were obtained with the PUMA 560. A certain trade off between

exactness and achievability was necessary in moving out of a singular configuration into

a non-feasible path. The dynamically consistent generalized inverse has been

successfully used for controlling the null space of redundant manipulators [23].

Kieffer [66] showed that using a higher order approximation, paths passing

arbitrarily close to the singularity can be tracked when the end-effector path parameter

variable is included as a dependent variable in the formulation. An alternative to

Kieffer’s path tracking formulations has been proposed by Nenchev et al. ([95], [99]),

known as the singularity-consistent (SC) path tracking method, which is based on the

null-space technique commonly used for redundant manipulators [93]. This method

guarantees path tracking at and around a singularity without deviating from the desired

direction. The deterioration of motion ability at the singularity reflects on velocity only.

Later, the same author proposed a reformulation of the null space based path-tracking

method in terms of instantaneous motion, thus avoiding the requirement for path

parameterization [97].

 31

Finally, the Adjoint Jacobian approach is an alternative to the SC null space based

approach. It was first considered by Senft and Hirzinger [114]. In this method, one splits

the inverse of the Jacobian into the adjoint and the determinant of the Jacobian. One

important assumption is that the determinant can be factorized. Tsumaki et al. [131]

have shown that the SC null-space and adjoint Jacobian formulations are directly related

with each other [96]. There is certain limitation of these two methods, since they can be

applied to a single singularity. In [130] the approach is successfully applied to a 6 DOF

robot arm. Motion in a uniform way was possible everywhere in workspace, except at

double singularities, e.g. simultaneous shoulder and wrist singularities. A comparative

study between SC and DLS [98] show that the DSL may destabilize the system along a

degenerated singular direction, while the SC does not.

 32

4. Design of a controller framework

Robotic assistant surgery systems are complex systems that involve many interacting

components, including the software, sensors, human-system interfaces and so on. As

such, they share the same underlying needs for good system design and engineering

practice like modularity, well-defined interfaces, etc.

According to chapter 2 the modiCAS system requires the design and

implementation of a modular software framework to provide a flexible usage of the

different functionalities to cope different surgical application. Further requirements are

software maintainability, scalability, reusability and a robust and flexible hardware

interface. The remaining of this chapter describes a modiCAS controller software

architecture designed to fulfil these requirements.

4.1 System architecture

The concepts of simplicity, flexibility and scalability represent key concepts so that the

development of suitable solutions for various applications becomes feasible in a

pragmatic way. A clear modularization of the different implicated tasks and a strategic

distribution of them along the system framework, depending on their role within the

system, are paramount issues to fit these requirements.

In this context, let us now distinguish between two types of tasks. The first are the

application-tasks, which, as suggested by the name, are application specific tasks that

belong to a high level implementation. These make use of lower level tasks to attain

their goals. The application-tasks may be a sequence of steps required to complete a

surgical procedure, or may represent a state-machine with interchangeable modalities

that become available to the surgeon during operation.

The functional-tasks are the second kind of task and comprise all fundamental

services that the system is able to provide. They are the low level tasks that the

application-tasks use to complete their objective. The functional-tasks may be

configurable but they are essentially fixed within the system and have an explicit aim,

e.g. commanding the robot to reach a desired position in the Cartesian space. Some

functions may look more like an operating mode, such like the virtual constrained

cooperative mode or the tracking mode (see section 4.5).

 33

The modiCAS controller software framework consists of a client-server architecture

which literally separates the system physically into two parts: on the one side a multi-

purposes server mounted on a real-time embedded target computer that contains all the

available functional-tasks used for a proper interaction with the different components of

the system, i.e. hardware interface, data acquisition, robot controller, trajectory

generation, kinematics transformations, etc. These tasks may have a single execution or

run periodically in an independent loop which here is referred to as task-loop. A priority

level is associated with each task-loop so that the most time critical tasks can always

take control of the processor when needed. The modiCAS system makes use of

LabVIEW Real-Time (RT) Module to guarantee real-time behaviour [77]. The

embedded target consists of a normal PC running the Venturcom Phar Lap Embedded

Tool Suit, a real-time operating system [9].

The other main part of the system is the client, which runs on a host computer and

communicates with the RT target through an Ethernet connection. This contains the GUI

together with application oriented high level routines (application-tasks). These routines

make use of the basic functionalities provided by the server (functional-tasks) to achieve

a specific goal. The server is headless, so any action must be commanded by the client.

Furthermore, the client is also responsible for receiving data coming from the server for

display, storage or other processing. Thus, client and server interact with each other

using a command-based network communication here referred to as the command

interface. Figure 4.1 illustrates the different framework modules of the modiCAS system

and their interrelationship. Each module is detailed explained in the remaining sections

of this chapter.

4.2 Command interface

The Command Interface is an Application Programming Interface (API) used to get

access to all functionalities available in the RT-Target of the modiCAS framework. It

consists of four separate modules, two at each side of the communication: the Command

Sender Module (CSM) and Data Receiver Module (DRM) at the client, and the

Command Parser Module (CPM) and Data Transmitter Module (DTM) at the server.

 34

Figure 4.1. Command-based architecture of modiCAS framework

Additionally, a command library comprises all available commands that can easily be

called by any routine of in the application-tasks. This abstraction provides a very clear

interface for the application developer at the moment of implementing a new application.

The explanation of the command interface begins with the message protocol used for the

communication. This provides the basic knowledge needed to understand requirements

for the construction and usage of the different commands available in the commands

library. The further explanation of CSM and CPM as well as their interaction between

each other is illustrated by tracking the data flow which occurs each time a command is

 35

executed. Finally, DTM and DRM are easier to understand, since they use the same

principle of communication as CSM and CPM.

4.2.1 TCP/IP message protocol

The command-based communication is grounded on a simple TCP/IP Messaging

Protocol, whereby the TCP/IP protocol is the most common method for sharing

information between computers through a network. The communication protocol has the

following characteristics:

� Easily packages and parses data

� Hides the TCP/IP implementation details

� Minimizes network traffic by sending data only when it is needed

� Minimizes impact on the overall overhead and throughput

� Ability to send and receive many data types

In every messaging protocol there is some data overhead associated with parsing the data

stream on the receiving side. Sending a complete set of meta information with every

package adds significant overhead. In order to minimize the communication overhead

while sending essential information with each packet, the server creates a separated Meta

Data List (MDL) containing one identification tag for each command associated to a

command ID (created with the index of the command in the list). Each tag of the list

corresponds to a unique and predefined type definition1 used to parse the transmitted

data. Figure 4.2 shows an MDL with only one command having two different instances,

each of which corresponds to a different set of input parameters and has its own type

definition. Notice however that both entries execute the same task.

1 Type definition is LabVIEW-specific mechanism to identify the correct data type for each instance of a

custom data structure.

 36

Figure 4.2. Example of MDL of commands with two instances of the same
command

The server sends the MDL to the client once at the very beginning of communication.

Then, each time a command is transmitted, a packet is constructed using the format

presented in Figure 4.3. Every packet includes 48 bits of overhead corresponding to the

data size and command ID. These are concatenated to the command data. The

transmission packet is converted into a flattened data string of binary values, adequate

for TCP/IP network communication. The incoming package at the receiving side is then

unflattened using the type definition corresponding to the specific command ID. This

protocol is more efficient and has higher throughput when transmitting large data

payloads.

4.2.2 Command library

The command interface provides an easy-to-use command library that can be used by the

different applications in the host computer to transmit a command to the target. This

permits the programmer to implement its final application using the available functions

of the system without taking care of the complicated systematic details implicit in each

task. Table 4.1 shows a list of the some general purposes commands available for their

usage within the modiCAS system.

Figure 4.3. Transmission Packet Format

 37

Table 4.1. List of commands for general purposes functions

Command Description

ABORT Cancel any running operation

CVEL Moves the robot in Cartesian space with velocity commands

EXIT Finishes any running operation

GET2
 Gets the value of a specified variable from the RT-Target

GVF Enters in Guidance Virtual Fixture mode

INIT Initializes the command interface with the RT-Target

JVEL Moves the robot in joint space with velocity commands

LIN2 Moves the robot in Cartesian space with position commands

PTP2 Moves the robot in joint space with position commands

RESET Clean any error message present in the RT-Target

SET2 Sets the value of a specified variable from the RT-Target

START Sets the RT-Target into one of the different running modes

STOP Stops the actual running mode

TRK Enters in tracking mode

UNLOCK Set/Release the brakes of the robot

The INIT command opens the TCP/IP network connection between host and RT-target.

It has to be executed before any other commands can be used.

4.2.2.1 Command implementation

Normally, the main operation of every command (except INIT) consists of gathering the

input data, converting it to string format and forwarding it to the CSM. It is the

responsibility of each command to use the correct type definition according to the

command tag to convert the input data into the right string format. If the string does not

match with the type definition at the receiving computer, the command does not proceed.

Figure 4.4 shows the typical internal structure of a command.

2 Multiple instances available.

 38

Figure 4.4. Command internal structure

Each command may have multiple instances, each of them with different number and

type of arguments. As illustrative example, suppose that one application moves the robot

using Point to Point (PTP) command. Desired joint position, maximum velocity and

maximum acceleration can be given as input arguments of one command instance to

define the movement profile. Then, if subsequent movements having the same profile

are required, a different instance of the PTP command, with only desired joint position

as input parameter, can be used and the last movement profile used is maintained by the

server. Multiple instances can also be useful when different notations of an input

argument are possible. For example, when moving the robot in Cartesian space to a

target pose (position and orientation) with the LIN command, the desired orientation

may be given either in the form of rotation matrix or any other notation, such as roll-

pitch-yaw. A different instance of LIN could be implemented for each case.

The completion of some tasks at the target computer requires a certain not

predefined time. For example, a PTP command requires the robot to reach the target

pose before the command is considered to be completed. Depending on the application,

an application-task may have to wait until completion of the commanded task before

continuing with the next step or may continue doing other operations afterwards

independent of whether the functional-task has been completed or not. The wait until

done feature is included within the commands for such cases. If it is active, the CSM

blocks until the corresponding completion-acknowledge is transmitted back by the

server. A similar procedure occurs when feedback information is expected by the

command. The CSM blocks until the data is transmitted back and then forward it to the

command, which gives it as output.

 39

4.2.3 Command sender module

The command sender module (CSM) executes the low level operations required to set

the transmission packet in the correct format (see Figure 4.3). It is executed once each

time a command is called. The tag of the command, together with the input flattened

data string (if applicable), are given as input parameters. If the command name does not

match with any of the MDL, this is ignored; otherwise, the data packet is constructed

and then transmitted through the network connection.

Figure 4.5 Interaction between command and command sender module

 40

Once the packet is sent, the CSM waits for acknowledgment coming from the server.

Three types of acknowledgment are possible:

� CMD-DONE – command successfully received and processed.

� CMD_FAIL – command failed.

� TSK-DONE – task successfully finished.

The CSM is unblocked only after a command execution (CMD-DONE) or a command

fail (CMD-FAIL) is confirmed by the server. If the feature wait until done is active, the

CSM blocks once again until the task completion (TSK-DONE) is also confirmed. If the

command expects feedback data from server, such as in GET command, after the

notification is received, the CSM looks for the data in the corresponding shared variables

and forward it to the command function. The received data at this point is still in string

format. The command function is responsible for decoding the data to the corresponding

format.

4.2.4 Command parser module

The command parser module (CPM) is a key element for the safe performance of the

system. It consists of an internal asynchronous loop running in the RT-target with

normal priority. It sleeps until a new command needs processing. This assures an

efficient performance since the CPM will consume very little CPU time if there are no

incoming commands and it will not interrupt any other task with higher priority when a

command has to be processed. Figure 4.6 shows the command parser module

construction.

The TCP/IP message protocol explained in chapter 4.2.1 is used to retrieve the

command name from every incoming data package. The feasibility of the command in

consistence with the actual state of the system must be assured before this is processed.

The selection of the handler for the incoming command is implemented as a case

selector with a separate case for each command. Such architecture is very scalable,

because the incorporation of a new command simply requires adding a new case

 41

matching with the tag of the command. Inside each case, the corresponding type

definition is used to decode the incoming data.

Additional plausibility tests may also be required, e.g. joint limits, maximal desired

joint velocity exceed, target position out of working space, and so on. The specific

plausibility test depends on the type of command.

If any of these inspection procedures fails, the command is not executed and a warning

message is transmitted back to the Host, otherwise, the CPM handles the command.

Finally, it informs the Host of the successfulness/unsuccessfulness of the command

execution. (CMD-DONE / CMD-FAIL). Notice that the commands where wait until

done is active also expect the task execution acknowledgment (TSK-DONE) which may

be produced by the corresponding task-loop.

Figure 4.6. Command parser module: A PTP(q) command is received, but it is only
processed if the current state is comprises the command

 42

Figure 4.7. Data distribution inside the data transmitter module

The main purpose of the command parser loop is to manage available functional-tasks

and distribute incoming data to the various task-loops3 of the target application. In

general, no other actions should be done inside the CPM. Restricting this loop only to

task management and data distribution makes the target application very responsive to

host commands.

4.2.5 Data transmitter module

The data transmitter module (DTM) is a normal priority loop running periodically in the

target computer. This continuously sends important information to the host computer,

such as current status of the different components of the system, error information, etc.

The DTM retrieves data from other higher priority task-loops and forwards it to the

client. The data processing and transfer occurs only when new data are available. This

allows managing data coming from different asynchronous loops without sending

repeated data to the host.

The conversion of data into flattened data strings for TCP/IP communication

follows the same message protocol already explained in chapter 4.2.1. The separate

transmission of a significant number of individual data values would decrease the

efficiency of the communication due to the overhead included in each package.

3 Communication with these tasks is implemented via real-time shared variables.

 43

Therefore, all data values contained in each task-loop are gathered together into a type

definition. Thus, one packet per loop is transmitted with a specific command name.

4.2.6 Data receiver module

The data receiver module (DRM) is responsible for receiving and eventually processing

each incoming packet from the server. Its implementation is very similar to the one at

the CPM. This module is driven at the rate of incoming data. This guarantees that no

data is lost and no CPU time is wasted polling for incoming data. The execution

frequency usually is much higher than in the CPM, since the data stream generated by

the DTM at the server is transmitted periodically, as opposed to the sporadic sending of

commands from the client.

In this situation, the host application must receive and process packets at high rates.

Processing may involve logging to disk, performing some analysis, etc. Ideally, packet

processing should always be completed in time to go back and retrieve the next packet.

Therefore, normally the processing inside the DRM is limited to writing into shared

variables and eventually some notation conversions. If additionally processing is

required, it may be necessary to send the data to asynchronous task-loops that handle

each particular operation. The data distribution to the different task-loops is done

through functional variables4 available for all running loops. Figure 4.8 shows the

implementation of the DRM.

Figure 4.8. Data receiver loop at a Host application

4 Communication mechanism in LabVIEW that allow controlled access to data or resources.

 44

4.3 Target computer

The Real-Time (RT) Embedded Target acts as a server which provides all system

fundamental tasks that require a real time behavior, such as hardware interface, data

acquisition and processing, control loops, among others. High determinism is a

characteristic of real-time systems and guarantees that the calculations and operations

occur in time and on time. Deterministic applications are valuable not so much for their

speed, but rather for their reliability in consistently responding to inputs and supplying

outputs with very little jitter.

Now, it is important to differentiate between deterministic tasks and non-

deterministic tasks. Therefore, each task has to be evaluated to define whether it is time

critical or not. For instances, a control loop and safety monitoring are considered time

critical because both need to execute on time every time to ensure accuracy.

Communication between computers is not time critical because a computer may not

respond on time every time. Likewise, data logging is not time critical because an

accurate time stamp can identify when the data is collected or calculated.

The server program comprises different tasks with different execution priorities

depending on how deterministic each task has to be. The concept of multithreading is

required in order to apply these priority levels to the different tasks. Multithreading

expands the idea of multitasking. The latter refers to the ability of the operating system

to quickly switch between tasks, each of them be an entire application, giving the

appearance of simultaneous execution of those tasks. Each application runs for a small

time slice before yielding to the next application. Multithreading extends this idea into

the applications, so that specific operations within a single application can be subdivided

into individual threads, each of which can run in parallel. Thus, in a multithreaded

program, the application might be divided into various threads, each of which has a

priority level. This is useful in the case where some of the tasks must behave

deterministically while others do not.

 45

Figure 4.9. Task distribution among the different threads in RT-Target application

The real-time operating system of the LabVIEW Real-Time Module implements a

combination of two methods for scheduling threads [77]:

� Round-robin scheduling – Applied to threads of equal priority. Equal shares

of CPU time are allocated between the equal priority threads.

� Preemptive scheduling – Any higher priority thread that needs to execute

immediately suspends execution of all lower priority threads and begins to

execute.

Figure 4.9 shows the task distribution among the different threads depending on its

priority level. One thread runs for each priority level. All tasks of the same priority are

executed in the corresponding thread. The modiCAS framework uses three different

priority levels:

� Normal Priority Thread: The tasks included here are non-deterministic and only

execute while the deterministic tasks are sleeping. Basically, the command

 46

interface modules (CPM and DTM) belong to this category. Additional tasks,

such as data logging, may also have this priority.

� High Priority Thread: This thread includes multiple tasks requiring a

deterministic behavior. Although multiple tasks are running in the same thread,

these can be executed in asynchronous loops, each of which having different

cycle time. Examples of tasks running with this priority are the data acquisition

and signal processing of the FT-sensor and the navigation system.

� Time Critical Priority Thread: In general, a deterministic application has a

primary deterministic task that preempts all others. The time critical priority

thread contains this task, with the particular characteristic that if any task running

in here goes to sleep, the entire thread would sleep too. Hence, other tasks

running on the thread would be forced to sleep and cease execution until the

original loop wakes up. Therefore, only one task, namely the most critical one,

runs with this priority. This task is the control loop of the robotic system.

4.3.1 State machine

The execution flow of the different states of the modiCAS system is controlled by the

state machine (see Figure 4.10). The possible active tasks at a given time vary depending

on the actual state of the system and the demands of the running application. A

description of each state is given below.

Initialization-state: This state executes only once, directly after launching the main

process. Hardware initialization and default internal variables setup happens in this state.

After successful initialization, the process changes to configuration state.

Configuration-state: After entering the configuration-state, the process sleeps and waits

for client’s attempt of connection. Once this occurs, the MDL is transmitted to the client

and application-dependent configuration parameters coming from the client are loaded.

Some of these parameters describe which task-loops are to be used by the particular

application at running-state, tool parameters (tool center point, center of mass, weight,

etc.), assignation of RBs for the navigation system to recognize, among others.

 47

Figure 4.10. State machine of RT target

Finally, the command interface is initialized, i.e. the connection ID for the TCP/IP

communication is forwarded to the CPM and the DTM. After successful initialization,

an INIT-DONE acknowledgment is transmitted to the client and the process is sent to

wait-state. If some error occurs in between, the connection is closed and the process is

directly sent to exit-state where it is properly terminated.

Wait state: The wait-state is the previous state before getting the system into operation.

At this point, only a limited number of special tasks can be executed:

� Reconfiguration of the system – At any point of a procedure, the host may

require changing the settings of the system (e.g. when changing tool) in order to

fit the demands of the particular application.

 48

� System reset after error – If some recoverable error occurs during operation, the

system automatically changes to wait-state and notifies the host about the source

of the error. Leaving this state is only possible after the system is reset to normal

status, i.e. each component of the system (robot, navigation system, etc.) must

work properly. Only then, the system can enter the running-state. If the error is

unrecoverable, the system switches to exit-state where all resources are closed

and the process is terminated.

� Emergency mode – A special mode is available during wait-state that permits to

unlock the robot joint brakes without starting the servo-motors. This may be

required for emergency situations where the joints have to be unlocked and

moved by hand.

Running-state: All system functions become available at running-state. The client

application accesses them by means of the command library. Basically, when entering

running-state, the server runs the task-loops required to provide the different functions

(see section 4.5 for a description of available functions). A task manager is used to

administrate the different active task-loops during this state. The task manager is further

explained in the following section.

4.3.2 Task manager

The task manager is a task container which, depending on the demands of the actual

client application, takes care of the setup, starting and termination of the required task-

loops. Further configuration parameters are forwarded to the respective task-loops. This

means, if the client application requires specific components of the system, this is simply

specified within the configuration parameters either at client-server connection (during

configuration-state) or later on in the wait-state. Once the running-state becomes active,

the task manager immediately launches the required task-loops, distributing the

configuration parameters to each of them in the form of input arguments. Each loop then

executes cyclically, with the cycle time specified within the configuration parameters. If

one of the task-loops is terminated, either due to error occurrence or commanded by the

 49

client, the task manager notifies the remaining task-loops in order to terminate each of

them and finally conclude the running-state.

4.3.3 Task-loops

A task-loop is a piece of code that executes cyclically inside a loop once it is started by

the task manager. Its purpose is to carry out one or more specific tasks. The task-loop is

divided into three main stages:

� Initialization stage: This stage executes only once at the very beginning when the

task-loop is started. Any kind of operation required for the correct execution of

the task is performed here. Depending on the specific task, such operation could

comprise variable initialization, hardware initialization and task configuration

among others.

� Execution stage: This stage runs periodically until it is terminated either because

of internal error or by the task manager. This stage comprises the operations

required to perform the tasks. If multiple tasks are available, these are separated

in sub-states that can be alternatively switched. Common operations for all tasks

can be included before and after the sub-state execution (see Figure 4.11).

� Termination stage: This stage executes only once before the task-loop is

completely terminated. All hardware and software resources can be safely closed

before leaving the task-loop.

Figure 4.11 - Task loop flowchart

 50

One single task-loop dedicated to each active component of the system is recommended

but not mandatory. The incorporation of new components to the system would imply the

implementation of its corresponding dedicated task-loop. All tasks related to this

component are included in the form of sub-states.

A task-loop containing multiple states has to have one transition sub-state (Init)

which has to be executed once each time the loop goes from one state to the other. The

Init sub-state executes any procedure required to assure a safety transition from one sub-

state to the other. A state manager (see section 4.3.4) is used to safety switch between

the different sub-states going through the Init sub-state in between.

Three main components are available in the actual stand of the modiCAS system,

each of them having one dedicated task-loop:

� TCL-ROB Task-loop: The Time Critical Loop of the ROBot arm (TCL-ROB)

contains the main control loop. Several sub-states are internally available, each of

them having an adequate control strategy to execute a specific task. Thus, it is

possible to fulfill various demands coming from the different applications. An

explanation of each sub-state is given in Section 4.5, where the available

functions of the system are explained.

� HPL-FTS Task-loop: The High Priority Loop for the data acquisition of the

Force/Torque Sensor (HPL-FTS) has a priority level lower than the TCL-ROB,

i.e. the former is preempted each time the latter executes. In the same way, the

HPL-FTS will preempt all tasks with lower priority, such as the CPM, the DTM

and all existing normal priority tasks. All other task-loops with the same priority

level (high priority level) are scheduled using the Round-Robin method. The

HPL-FTS takes care of the data acquisition and signal conditioning of the F/T

sensor mounted at the end-effector of the robot arm. The signal conditioning

steps comprise: voltage-to-force transformation, mean value calculation, drift

compensation, filtering and gravity compensation. Notice, however, that the task-

loop contains only one sub-state (i.e. non state manager is required), since each

calculation is performed sequentially one after the other every cycle time.

 51

� HPL-NAV Task loop: The High Priority Loop for the NAVigation system (HPL-

NAV) has the same scheduling behavior as the HPL-FTS task-loop. This task-

loop is responsible for the acquisition and processing of data coming from the

navigation system. The resulting data is written to the corresponding shared

variables so that these can be retrieved by other task-loops. A detailed description

related to the navigation system is out of the scope of this work. The interested

reader may consult [106].

Notice that additional task-loops can be incorporated for other aims, such as analysis or

data logging.

4.3.4 State manager

A state manager is an interface module used to remotely switch between the different

sub-states of a specific task-loop. It assures a safe transition from one sub-state to the

other passing first through the Init sub-state (see Section 4.3.3). There exists one state

manager per each multi-states task-loop. If a task-loop only has one sub-state, it requires

no state manager at all.

In the actual status of the modiCAS framework, only the TCL-ROB task-loop

provides multiple tasks. Hence, only one state manager is available. However, the

concept can be applied to any further task-loop with multiple sub-states if required.

On the one side, the state manager can be called from any running loop intending to

change the actual sub-state of the associated task-loop. The CPM illustrates a very

common case where the state manager is called any time a new command coming from

Host demands the TCL-ROB to switch between sub-states. On the other side, the

associated task-loop also calls the state manager internally at every cycle time to identify

the actual sub-state.

The usage of this module inside the time-critical priority loop simultaneously with

another lower-priority-loop without a synchronization mechanism could compromise

determinisms, since if one loop accesses the module, no other loop can access it until the

first loop releases it. When the access of the time-critical loop to its state manager

module is blocked, forcing the loop to wait, this introduces jitter to the application and

 52

compromises its determinism. In order to avoid this behavior, the time-critical loop skips

the module if another loop is using it, and the output value obtained the last cycle is used

instead. This mechanism is not needed in lower priority loops; these can wait until the

module is released.

4.4 Hardware interface selector

Keeping the framework flexible for expansion and maintenance is a major objective of

this work. This counts also for the hardware interface. Thinking about upgrading or even

replacing any component of the system (whether it is a data acquisition board, the

navigation system or even the robot) must not affect the integrity of the software

framework. Therefore, the interface to each main component of the system (robot,

navigation system and force/torque sensor) is encapsulated into a selector object. This

object may contain multiple instances of the same component, each of which contains a

technical variation of the specific hardware. But all instances inside a selector represent

the same component.

For example, the hardware interface of the FT sensor depends on different factors,

such as sensor manufacturer and model, sensor calibration, data acquisition board type

and so on. If several FT sensors are at disposition, the system should be able to work

properly with all of them; moreover, the system should not notice the difference when

using any of them. Each instance of the FT Sensor Selector corresponds to each of these

available variants and contains the respective implementation details. If a new sensor

becomes available, a new instance with the particular implementation is simply

introduced to the FT Sensor selector.

Each instance of a selector has a singular name through which it can be identified

dynamically and selected during program execution. The selector object comprises a set

of services common to all instances. The task-loops utilize such services for interaction

with the component. Number and type of services depend on the system component.

Providing that some instances support more services than others, if a service is called

which is not supported by the running instance, the selector notifies it with a warning

message.

 53

Notice that this abstraction also gives the possibility to completely substitute any

component by a virtual analogy. In other words, it is possible to simulate each

component of the system without making it notable for the rest of the program. This may

be useful for different purposes at different levels. For instance, at the development level

simulation may help for performance analysis of some components of the system. At the

application level, a plausibility analysis of some trajectories inside the working area can

be done with a simulated robot before these are applied to the real robot.

Interfaces for the robot arm, the navigation system as well as for the force torque

sensor are implemented within the modiCAS system using the interface selector concept

just described in this section. However, detailed explanation of the interface with each

component of the system is out of the scope of this work

4.5 Target functions

The modiCAS framework design as explained so far has the main objective of making a

set of diverse functionalities available to a higher level of development, namely, the

application layer, where these can be used to support different surgical applications. It

has already been pointed out that the application layer is located at the host computer

and uses a set of commands to get access to these functionalities. In the following sub-

sections, some control strategies are presented which are directly related to some of

these commands. This means, each time that a command is called, the corresponding

control strategy is activated. TCL-ROB, HPL-NAV and HPL-FTS task-loops contain the

implementation of the various strategies. Some of them require only one task-loop while

others need the collaboration of more than one.

4.5.1 Joint velocity controller

The joint velocity (JVEL) controller is the most simple control strategy implemented

within the modiCAS framework. It practically forwards the desired velocity value to the

robot servo driver. This value is expected to be in the joint space. The controller checks

position and velocity limits before it forwards the velocity set point. The reference signal

applied in this state can have different sources, such as the GUI at the host, or other

 54

Figure 4.12. Flow diagram of Joint Velocity Controller (JVEL)

peripheral device, like space mouse or joystick. Figure 4.12 shows the flow diagram of

the joint velocity controller, which is activated any time the JVEL command is used.

4.5.2 Cartesian velocity controller

The Cartesian velocity (CVEL) controller responds to the CVEL command. It accepts

velocity set points in the Cartesian space, those that are transformed to the corresponding

joint space. The Singularity Robust (SR) inverse velocity kinematics further explained in

chapter 0 makes possible to pass through singular robot configurations without

producing extremely high velocity values that could lead acute movements of the robot.

Notice also that the command velocity can be applied to different reference frames that

may correspond to the Tool Center Point (TCP) of any given tool mounted at the end-

effector. Figure 4.13 shows the corresponding flow diagram of the implementation.

This control strategy may be useful in such applications where teleoperative

manipulation of the robot arm is planned, where the robot represents a slave mechanism

been remotely controlled by a master device, such as a Phantom device. Notice that the

concept of virtual constraints can be included easily to delimitate the workspace and

avoid entering in forbidden regions.

 55

Figure 4.13. Flow diagram of Cartesian Velocity Controller (CVEL)

4.5.3 Joint position controller

The robot is intended to reach a desired position by following a position reference in the

joint space. Therefore, a synchronous minimal traveling time Point to Point (PTP)

trajectory in the joint space with trapeze velocity profile is generated [65]. Then a

controller in the joint space is applied to follow such trajectory. Each time the host

submits a new desired set of joints position, the controller resets the parameters of the

interpolator so that it starts to deliver the interpolated trajectory on-line during the next

cycles until the goal position is reached. A position controller (only proportional action)

takes care of calculating the velocity command needed to follow the reference position

which is finally transmitted to the servo driver. Once the robot reaches its aim, an

acknowledgment signal (TSK-DONE) is generated and transmitted to the client (see

Figure 4.14).

 56

Figure 4.14. Flow diagram of Point to Point joint position controller (PTP)

4.5.4 Cartesian position controller

The Cartesian position controller, activated with the LIN command, is implemented to

follow linear trajectories defined in the Cartesian space. Therefore, a trajectory

interpolator generates a minimal traveling time cubic polynomial trajectory for both

position and orientation of the end effector in the Cartesian space [65]. The orientation

interpolation is based on a quaternion representation which, contrary to other notations

such as the Euler angles, is numerically stable and free of singularities [89]. The

resulting trajectory represents the set-point of a quaternion based feedback controller

[40] that yields into linear and angular velocities in Cartesian space. These are then

transformed to the joint space by using the SR inverse kinematics of chapter 0. The

execution proceeds in a similar way as the one just explained for the PTP controller

starting from the submission of the desired pose and finishing with the acknowledgment

from the server when the aim is achieved (see Figure 4.15).

 57

Figure 4.15. Flow diagram of linear trajectory Cartesian position controller (LIN)

4.5.5 Guidance virtual fixture controller

The guidance virtual fixture (GVF) controller is intended for cooperative tasks where the

surgeon can move the robot directly with the hand. This control strategy is the first

example of a task requiring more than one task-loop, i.e. the HPL-FTS and TCL-ROB

task-loop. The former acquires the applied forces at the end-effector, processes them and

finally passes them to the time critical loop. The applied forces/moments are converted

to linear/angular velocities and then separated into two complementary subspaces of

preferred and non-preferred directions depending of the virtual constraints previously

defined by the user. If non constraints are specified, the robot can be freely moved along

the 3D space; otherwise, the allowed movements will depend on the virtual definition.

The resulting velocities are then transformed to the joint space and transmitted to the

robot. The purpose of this section is only to present a general overview of the

cooperative mode. A detailed explanation of the virtual constrained guidance controller

using virtual fixtures and the singular robust strategies are presented in chapters 5 and 0,

respectively.

 58

Figure 4.16. Flow diagram of Guidance Virtual Fixture controller (GVF)

4.5.6 Patient tracking controller

The patient tracking (TRK) controller automatically tracks possible movements of the

patient and drives the robot to compensate them. It makes use of the navigation system

task-loop (HPL-NAV) together with the TRK sub-state of the robot task-loop (TCL-

ROB). This mode requires that RBs are mounted on both, robot arm and patient, and that

the position and orientation of the RB related to the robot end-effector is well-known5.

The position of the TCP with respect to the robot end-effector is also well known. All

this information together with the measurements provided by the navigation system

make possible to calculate required transformations that give a fixed relationship

between patient and tool (see Figure 4.17), which is calculated only once when starting

the tracking controller.

Then, the main objective of TRK controller is to keep this relationship constant at

real-time during the surgical intervention. A patient movement causes a deviation which

is automatically compensated. That makes the robot able to maintain the optimal tool

position all the time during the operation. Although the patient tracking is a special

5 This is computed by performing well defined calibration movements during the initialization process of

the system [70].

 59

Figure 4.17. Coordinate systems used for tracking controller

feature of the modiCAS system, a deep insight in its development is considered beyond

the scope of this work. Further related information can be consulted in [136], [70], [106].

Figure 4.18 shows the flow diagram of the TRK controller.

Figure 4.18. Flow diagram of patient tracking controller (TRK)

 60

4.6 Host computer

The client skeleton is based on an event-based producer/consumer design [76], which

allows creating efficient and flexible applications. An event is an asynchronous

notification that something has occurred. Events can originate from the user interface,

external I/O, or can be generated programmatically, e.g. acknowledgments coming from

the server generate events signals that are handled in a similar way as the rest of events

occurred within the client.

The host-target communication, i.e. the command interface, has already been

presented in section 4.2. In this section, the command interface is contemplated only as a

library of commands that can be used at any time to request services from the server.

Feedback information coming from the server is stored directly in internal variables that

are available to the whole client.

Besides the command interface, four modules are distinguished within the basic client

skeleton, which work together to manage the whole execution at the client. These are

described in the following sub-sections.

4.6.1 GUI producer

The GUI Producer is responsible for detecting any user request coming from the GUI,

i.e. when a user changes the values of a control, moves or clicks the mouse or presses a

key. Each of such actions produces a particular event. The GUI Producer wakes up when

an event occurs and sleeps in between. This minimizes processor usage without

sacrificing interactivity. When a GUI event occurs, this is identified and a new

programmatically generated message event is directly produced to further notify the

event consumer to handle the event. Notice that this construction allows having different

sources to produce the same message event. This may be useful when the GUI allows

multimodal interaction, for example, in cases where the same action can be generated by

clicking on a tool bar button or through the menu bar or a running-time menu appearing

after clicking on the right mouse button over a graphic (just to mention some of them).

 61

4.6.2 External producer

The External Producer is responsible for detecting any user request coming from an

external source, such as the modiCAS planning software. Notice, however, that any

other source that complies with the communication protocol could produce events. The

communication is based on TCP/IP protocol and uses XML language in order to provide

a universal interface which is flexible enough for further expansion.

The External Producer opens a communication channel and sleeps until external

program request connection. In a similar way as in the GUI-producer, the request can be

either forwarded to the event consumer or directly to the target computer.

4.6.3 Event consumer

The Event Consumer is responsible for managing the application-tasks upon request. But

it does not execute any task by itself; it rather delegates the work to independent

application-tasks by dynamically starting and stopping them. The amount of application-

tasks and their appearance depends on the application. These may have a GUI or not,

depending on whether user interaction is required or not.

The event consumer may realize additional operations in order to keep a consistent

behavior along the whole application. Some of these may imply sending direct

commands to the target, actualization of the toolbar menu, requests to GUI-handler (see

next section) among others. It is important to avoid long time executions inside the loop.

4.6.4 GUI handler.

The GUI Handler updates the appearance of the GUI every time it is remotely

commanded by another loop. For example, let us suppose that the main window contains

a section with controls to move the robot to a specific desired position. and that certain

calibration procedure is started by the execution-loop. For safety reasons, the GUI-loop

is requested to blind out this section during calibration so that no movement can be

commanded. Figure 4.19 shows the basic modules contained in a client application.

Additionally, the various application-tasks may run parallel to these modules. More

details are presented in the next section.

 62

Figure 4.19. Host application

4.7 Modular distribution

The main skeleton discussed in section 4.6 gives the possibility to manage different

applications, but their execution actually occurs in separate loops. It is important,

however, to have control over the number of tasks running at the same time. The design

of an optimal ergonomic GUI for surgical applications is out of the scope of this work.

Nevertheless, a first proposal is presented, which has been implemented to exemplify the

usability of the client structure. Notice, however, that a deeper analysis of this issue is

recommended for further design.

The GUI comprises components normally found in conventional software

applications. It consists of one main window divided into four sub-sections (see Figure

4.20):

� System Status Section: The System Status Section is the only one with fixed

elements that appear all the time giving feedback information about the status of

the target computer and the system components. The other three sections are

actually sub panels being able to contain different kinds of widgets which

appearance depends on the running application task. Each sub-panel has a task

 63

execution module used by the event consumer to load and unload tasks on each

of them. More details about execution modules are given in section 4.8. Which

task runs in which sub-panel depends on the purpose of the task.

� General Purpose Section: The General Purpose Section is a sub-panel containing

widgets that directly get access to general functions, such like PTP, LIN, CVEL,

and JVEL. There exists one widget per functionality, each of which has its own

GUI with a particular appearance adjusted to cover the specific demands. All

these are dynamically interchangeable.

� Application Section: The Application Section is a sub-panel containing widgets

with the main task, the contest of which depends of the application. As

illustrative example, Figure 4.20 shows the Teach Mode application, where a list

of multiple positions of the robot can be managed (saved, loaded, deleted, etc.),

and actual execution of the sequence of positions can be commanded to the

robot.

� Visualization Section: The system feedback visualization is contained in this

section. Any kind of visualization can be shown here, whether it is the robot’s

position in joint space, or Cartesian space, in the form of graphics or 3D-

representation, all kind of visualization is executed within the Visualization sub-

panel. Just to give an example, a widget can contain a 3D-representation of the

robot arm together with the position of RB detected by the navigation system that

can be updated on-line with the feedback information coming from the target

(see Figure 4.20).

The management of the whole sub-panels is possible through both, the menu bar and a

toolbar.

 64

Figure 4.20. Graphical User Interface of the client running at host computer

4.8 Execution and task modules

An execution module is the interface used by the event consumer to dynamically starting

and terminating application tasks. There exist two types of execution modules depending

on the type of task they manage:

� Independent tasks: These tasks run either in an independent window or they do

not have GUI at all. The execution module can run multiple tasks

simultaneously, executing them in parallel loops. It keeps a reference to every

launched task so it can be terminated properly.

� Sub-panel tasks: These tasks have a GUI executing within one of the sub-panels

previously presented. Each sub-panel has its own execution module. Only one

task per sub-panel is able to run at any time. This means, when a new task is

launched inside a specific sub-panel, any task running inside is first terminated.

 65

All tasks are designed in an individual widget as a separate task module independent of

the execution module. The GUI contained inside each task module has to be locally

controlled. This means that the main GUI Handler has only influence on the controls and

indicators belonging to the main window. It can change properties of the sub-panel as a

whole, but not of each control and indicator contained inside the sub-panel. Notice that

even the hidden task modules are contained in a widget, but they are never shown to the

user.

 66

5. Human-robot cooperation

5.1 Hands-on interface

The Hands-on Interface is activated only when the surgeon presses one of the two

switches available in the ergonomic handle mounted at the tip of the robot. This is

especially designed to provide easy access to any of both hands. The force applied to the

grab is measured by the FT-sensor mounted just behind the holding mechanism. Figure

5.1 shows the whole end effector mechanism comprising tool holder, handler and force-

torque-sensor.

The specific tool is mounted just after the handle mechanisms, therefore it will also

influence on the applied forces measured by the FT-sensor. This load depends of the

orientation of the tip due to gravitational forces. Then, erroneous values would be

acquired once the orientation of the tool is changed. Hence, online gravity compensation

must be done during the cooperative mode in order to obtain only the forces applied by

the surgeon. This is achieved by doing an off-line calibration for each tool to determine

its dead load parameters (mass and centre of mass). This has to be done only once for

each tool, and then it is automatically loaded each time the tool is changed. Both off-line

calibration and on-line compensation are based on J. Heindl approach [48].

Figure 5.1. Handle system with rapid tool-exchange mechanism.

 67

At software level, the High Priority Loop for the data acquisition of the Force/Torque

Sensor (HPL-FTS), presented in section 4.3.3, takes care of the data acquisition and

processing of the signals coming from the F/T sensor. The data processing steps

comprise: voltage-to-force transformation, mean value calculation, drift compensation,

filtering, and gravity compensation. Each calculation is performed sequentially one after

the other (see Figure 5.2).

Figure 5.2 Flowchart of High Priority Loop for Force Torque Sensor data
acquisition and processing (HPL-FTS)

 68

5.2 Virtual fixtures description

Virtual Fixtures (VF) are essentially the separation of the 3D working space into two

complementary subspaces, one containing all the preferred directions, and the other

containing the non-preferred ones. A VF can be composed of one or more directions, the

combination of which permits different anisotropic movements. Each of these directions

is hereby defined as single virtual unit.

Let us distinguish between two types of virtual units, namely the linear virtual unit l

and the angular virtual unit �. The former is a vector in 3� that defines a specific

direction in the Cartesian space along which the displacement of the robot’s end-effector

is permitted. The latter, also a vector in� 3� , specifies an arbitrary axis in the Cartesian

space, about which a rotation of the end-effector is possible. Now let us define a

subspace U of containing all preferred directions for both translation and rotation.

Let Sl and S� be two subsets of

6�
3� comprising the linear independent set of vectors that

span U for position and orientation respectively:

	

	

1

1

,..., ,

,..., ,

l
p

k
�

�

�

l l

� �

S

S

(5.1)

where p,k�3. Now, let D denotes the 6� (p+k) instantaneous preferred direction matrix

comprising the elements of Sl and S�,

� �
� �

1 33

3 3 1

| ... |

| ... |

l
p kk

p p k
�

��

� �

 �
 �
� � �� � �

� �� �� � � �

l l

� �

0S 0
D

0 S 0

(5.2)

such that:

1() ()T T
U Ran �� �P D D D D D (5.3)

The orthogonal projection PU acts as the identity of U, i.e. any vector x in this subspaces

has . The subspace U is the exact range of this projection. Furthermore, there

exists an orthogonal complementary subspace V that contains all the non-preferred

directions. Every vector x in V has

U �x xP

0U �xP . This is the null space also called kernel of

the projection. Its corresponding projection operator is given by

()V UKer� � �P D I P (5.4)

 69

Figure 5.3. Projection onto the subspaces of preferred directions U and of non-
preferred directions V

Operators (5.3) and (5.4) have the following properties [116]:

� symmetry: () ()TRan Ran�D D

� idempotence: () () ()Ran Ran Ran�D D D

� scale invariance: () ()Ran Ran k�D D , where 0k �

� orthogonality: () () 0TKer Ran �D D

� completeness: � �() ()rank Ker Ran n� �� �D D , where D is n m� and , 0� � �

� equivalence of projection: (()) ()Ran Ker f f Ker f�D D

 70

The above statements are also valid if Ran(D) and Ker(D) are exchanged. Also the

following equivalence may be useful:

�)Ran(()) (Ran Ran �D D

�)Ran(()) (Ker Ker �D D

Ran Ker Ker Ran r� �

�)Ke(()) (()) (D D D

The resulting PU and PV create a mechanism which can be used within the system

control law in order to determine whether the applied forces at the end-effector are

pointing in a preferred direction or not. These measured forces are expressed directly in

the robot’s end-effector coordinate system. This means, the virtual units in D must be

also defined with respect to this frame. Nevertheless, if the robot kinematic is well

known, as well as the relationship of the different possible reference frames with respect

to the robot base frame, it is then possible to define each virtual unit with respect to one

of the different coordinate systems. This implies, however, that the calculation of D must

be executed every cycle time.

Figure 5.4. Control loop for cooperative robot system

 71

5.3 Admittance controller

The control strategy for the cooperative mode essentially consists of two control loops:

an inner velocity control loop at the joint level, and an outer admittance controller that

modulates the end-effectors linear and angular velocities as a function of the applied

forces. These velocities are then mapped to the joint space and further forwarded to the

inner loop (see Figure 5.4). The general form of an admittance controller is:

c�x �� (5.5)

where represents the linear and angular velocity of the end-effector. The

scalar admittance gain c�[0,1] establishes the compliance level of the system. The

vector

[]TT�x p ��� T

T[]T T�� f � contains the forces/moments applied at the end-effector.

In equation (5.5), the robot compliance has an isotropic behaviour, since the

coefficient c affects all directions in the task space in the same way. The objective of the

virtual fixtures is to provoke an anisotropic behaviour with different level of compliance

on the preferred directions and the non-preferred ones. Therefore, the projection

operators expressed in equations. (5.3) and (5.4) are incorporated into equation (5.5)

together with an additional coefficients , [0,1]U Vc c � leading into the following

expression:

() (U U V V U U V Vc c c c� � � �x)� � �P P P P� (5.6)

The coefficient regulates the amount of compliance on V. The resulting effect is a

guidance virtual fixture that helps the user to move the end-effector along a desired path

or surface defined by U. Different values of will influence the level of guidance. If

, the subspace V is completely eliminated, i.e. a hard guidance level along U is

present. At the other extreme, with

Vc

Vc

0Vc �

1Vc � , there is no distinction between preferred and

non-preferred directions, i.e. no guidance at all is present. Values in between will create

the effect of soft guidance. The global compliance of the system against applied force

can be regulated by means of . This is useful when defining boundaries along

preferred directions.

Uc

 72

Figure 5.5. System reference frames

The compliance coefficients () are scalars that affect all the Cartesian components

of the end-effector in the same manner. If these coefficients are substituted by a matrix

form (), where each matrix is a

,U Vc c

,U VC C 66� diagonal matrix, then the different Cartesian

components can be separately controlled.

0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x

y

z

c
c

c
c

c
c

�

�

0

�

 �
� �
� �
� �

� � �
� �
� �
� �
� �� �

C

(5.7)

 73

Where , ,x y zc c c and , ,c c c� � � are position and orientation components, respectively.

This is useful, for instance, when the compliance behaviour of the translational and

rotational components have to be controlled completely independent from each other.

5.4 Deviation error

Expression (5.6) allows the user to move the end-effector in preferred directions despite

its actual position and orientation. However, there is normally a desired reference pose

(position and orientation) to which the virtual fixture is referred. Any deviation of the

end-effector from the reference along the non-preferred directions is considered an error,

and it has to be compensated. This error compensation is regarded as a reaching target

problem acting on V. The reference target pose defines the position and orientation that

is to be reached and maintained. This pose is also the center reference point of virtual

fixture definition. Then, if the target pose varies upon the time, the virtual fixture moves

with it.

Let ep and er be the position- and orientation-error vectors, respectively. These

vectors quantify the deviation of the actual Tool Centre Point (TCP) pose from

the desired target pose 6

Base
TCPT

Base
TART . Each of both homogenous transformations having the

form:

3×3

1 3 1�

 �
� � �
� �� �

pR
T

0

(5.8)

where R is the rotation matrix and ()Tx y z�p is the position vector. It is assumed

that target pose TTAR is already defined with respect to the base frame, and using the

robot kinematics the TTCP can be straightforward calculated as follows (see Figure 5.5):

EE
TCP EE TCP�T T T (5.9)

6 In the remaining of this document, for the sake of notation simplicity, when the reference frame is the

base of the robot, the upper prefix of the transformation is omitted, e.g. TEE =BaseTEE. The same applies for

rotation matrices R and position vectors p.

 74

where is the constant homogeneous transformation matrix from the TCP to the

robot’s end-effector, TEE defines the end-effector with respect to the robot base frame

and is calculated using the forward kinematics relationship of the robot arm.

EE
TCPT

The translational-error ep is calculated by subtracting the translational vector of the

homogenous transformations TTCP and TTAR as follows:

p TAR TCP� �e p p (5.10)

In the case of orientation-error, er represents the axis of rotation in which the error is to

be compensated and its norm represents the angle of rotation. This can be calculated

using quaternions theory (see Appendix A). The error in terms of rotation matrices is

defined as:

1 T
ERR TAR TCP TAR TCP

�� �R R R R R (5.11)

Applying quaternion representation, the orientation error can be expressed as:

� �3 3

ERR TAR TCP

T
TCPTAR TAR

TCPTAR r TAR

� � �

��
� �

�

 �
 �
� � � � �� � � �� �

�
�� �I S

(5.12)

Since (5.12) is expressed with unit quaternions, an axis of rotation and angle of

rotation

��

� can be derived by using the expression � �cos sin T� �� �� � . Finally the

orientation error er is calculated as follows:

r �� �e � (5.13)

The orientation error er indicates the axis of rotation, and describes the magnitude

of the rotation about this axis.

|||| re

Any deviation from TTAR within the subspace U is not considered an error, since it

occurs along a preferred direction. However, deviations along V do represent an error.

Thus, only the error along non-preferred direction is calculated using the projection

operator PV.

Vpp
V V

Vrr

 �
 �
� � � �� �

� � � �

ee
e

ee
P

(5.14)

 75

5.5 Boundary conditions

Any deviation along non-preferred direction is considered an error; on the contrary,

deviations along preferred directions are permitted. However, it might be the case that a

specific limit must not be crossed over. Thus, boundary conditions are defined in a

similar manner as in equation (5.14), but now considering only the projection on the

preferred subspace U.

Upp
U U

Urr

 �
 �
� � � �� �

� � � �

�e
�

�e
P ,

(5.15)

Expression (5.15) gives a measure of how far the TCP is from the target pose inside

the subspace U. This value is considered a distance measurement rather than an error.

Thus, the value of in equation

TART

Uc (5.6) can be subjected to some boundary conditions

based on the vector : U�

, 0
|| ||() , || ||

0, otherwise

U U

U
U U U U U

U

c

c r �
�

� �
!
!� �"
!
!#

� �
�� �� $

(5.16)

where is the boundary magnitude along preferred directions, and Ur U� is a threshold so

that 0 U rU�% % defines a transition region that smoothes the compliance response of the

robot toward the boundary.

A similar treatment can be given to the compliance coefficient of the admittance

control law expressed in equation

Vc

(5.6) to control the compliance behaviour of the TCP

on the subspace of non-preferred directions. It has been previously explained in Section

5.3 how this coefficient can influence in the level of guidance of the TCP. In this

Section, its usage is further extended to achieve the volumetric virtual fixture. Thus,

independently of the virtual shape, a new coefficient is conditioned by the error

magnitude as follows:

()V Vpc e�

|||| Vpe

 76

, || ||

(|| |||| ||
() (1),

and (0)

1, otherwise

V Vp
n

V Vp V VV Vp
V Vp V V

VpV

c

r rr
c c c

�

�

 �
!

� % &�
 �!� � �" � � � � �!
!
#

e

ee
e

� e
�

)
Vr

(5.17)

where is the boundary along non-preferred directions, and Vr V� is a threshold so that

0 V rV�% % defines a transition region that smoothes the compliance response of the

robot toward the boundary. Basically, if the TCP is located outside the virtual shape

(), than , which is not necessarily equal to zero. This means that

the guidance level can still be regulated for the region outside of the volumetric virtual

fixture. Inside the virtual shape, the TCP can be freely moved, except when a motion

directed outward while been in the transition region. In such case, the compliance is

gradually reduced until the boundary is reached, where the first condition applies.

Finally, equation

VVp r |||| e ()V Vp Vc �e� c

(5.6) is rewritten as:

()U U V Vc c� �x �P P� � � (5.18)

5.6 Manual error compensation

The manual compensation is based on the previous work by Bettini et al. [13], it relies

on the input forces applied by the user to compensate for the deviation errors. Basically,

in the presence of an error the virtual preferred directions are redefined to consider such

error, creating a new virtual fixture that make possible to compensate for the error. Thus,

a new instantaneous preferred direction De is defined, which considers the directions

required to compensate any translational and rotational deviation from U:

(1) , 0 1e d U d V dk k k� � � % %� � eD P (5.19)

The combination of the applied foces � pointing at preferred direction (obtained by

means of the projection operator PU) and the error vector eV yields into a virtual direction

that returns the TCP to the subspace U. The constant kd regulates how strong is the

influence of the error vector eV in the new virtual preferred direction, i.e. how quickly

the error is compensated. When the TCP lies within the subspace U, the second term of

equation (5.19) vanishes. Now, using the new preferred direction De to recalculate the

 77

projection operators (5.3) and (5.4) and introducing them in the control law of equation

(5.6) results in a control law equivalent to a pure subspace motion constraint [60]:

()U Ue V Vec c ,� �x �P P� � � (5.20)

where

()
()

Ue e

Ve e

Ran
Ker

�
�

P D
P D

,

Notice however, that the definition of the new preferred direction to compensate the

error is not sufficient to guarantee that the error is minimised, i.e. the surgeon is still able

to apply a force in the negative error direction, which would increase the error.

Therefore, the applied forces pointing toward the negative error direction are filtered out

by using the following condition:

0U V

e
otherwise

%�!� "
!#

� e �
�

�

P �

(5.21)

Substituting ' with 'e in equation (5.20) guaranties that only applied toward the error

compensation are effective without affecting the forces pointing in the preferred

directions.

5.7 Autonomous error compensation

The error compensation presented in equation (5.20) depends on the applied forces '.

This means, the error is compensated for only if the user applies a force in the eV

direction; otherwise, the error remains present. For some cases, this compensation occurs

intuitively, for example, in translation movements along a predefined direction, the user

automatically corrects any possible error by pushing in the path direction. However,

there may be cases where non compensation is induced at all, such as when making

pivot rotations about the TCP at a constant target position, ideally the position remains

fixed, but in reality slight deviations in the position occurs. Although the error is

detected by the system and the De is defined, the compensation takes place only after the

proper force is applied, though the act of rotating demands rather applied moments than

forces. Consequently, the error remains present and even increases before the user can

observe it and apply a compensation force.

 78

Nevertheless, by adding one term to equation into (5.18), an automatic compensation of

the deviation error can be achieved independently of the applied forces without affecting

the virtual fixtures. The new expression looks as follows:

()U U V V V Vc c k� � �x � eP P� � � (5.22)

The error term in equation (5.22) does not depend on the input forces ' anymore.

Notice that rather than combining the error vector with the virtual definition D as in

manual compensation (equation (5.19)), it is compensated with a simple linear control

law (kVeV). The gain kV modulates the rate of response of the compensation. With this

approach, the surgeon has still complete control inside U, while the robot assures that the

reference target pose is maintained.

5.8 Virtual fixtures classes

5.8.1 Reference target

Given the TCP Cartesian position, both position and orientations components are

intended only to reach a target . Therefore, TART 	
0l �� �S S , i.e. only the error-related

term in De in equation (5.19) is needed to reach the desired target pose. The behaviour of

this virtual fixture is illustrated in Figure 5.6.

Figure 5.6. Reference target

 79

Notice that if only either TCP position or orientation is intended to reach a desired goal

during the execution of a cooperative task within a predefined virtual fixture, the only

required condition is that the corresponding subset (lS or �S for position or orientation,

respectively) becomes empty subsets {0}. A transition region can be defined when ||er||

approaches zero in order to smooth the gain discontinuity when reaching the target.

Then, is defined as: Uc�

|| || , || ||
()

1

V
V E

EU Vc
otherwise

�
�

� &!� "
!#

e e
e�

(5.23)

Position and orientation can be independently controlled if, instead of , the matrix

notation of the compliance coefficient (as explained in section

Uc�

UC� 5.3) with different

parameter values of conditions (5.23) for each component is used. For instance, two

different transition region thresholds �Ep and �Ev can be separately defined for position

and orientation components, respectively (see Figure 5.6). Once the target pose is

reached, the condition (5.21) assures that this is maintained.

Note that the autonomous compensation cannot be applied to this purpose due to

safety reasons. The main idea of autonomous compensation is to avoid leaving the

preferred subspace rather than commanding the TCP to a specific target, which would

mean that the robot executes large movements by its own.

5.8.2 Move along an axis

This virtual fixture class limits the TCP movements along a reference line in 3D space

(see Figure 5.7). First, a virtual unit vector � �Tzyx lll�1l is defined. This indicates

the direction of the preferred axis with respect to the TCP coordinate system. If this is

given with respect to other reference frame, a suitable transformation is required.

Besides, the reference frame , defined with respect to the base frame, has to be

specified, since it is here where ll has its origin. The subset

TART

	
1l � lS together with the

admittance control law expressed either in equation (5.20) or (5.22) (for manual or

autonomous compensation, respectively) yield into a constrained movement along a line.

 80

Figure 5.7. Move along a line

pointing at and passing through the origin of . If the actual position of the TCP is

off the path, the control law drives it back to the line. Concerning orientation, if

1l TART

	
0� �S , then the orientation of the TCP reach the one defined by and remains

constant, otherwise, the possible rotations depend on its contents.

TART

Starting from the origin defined by TTAR, the TCP can move along the axis ll a

distance of U r&� U in either positive or negative direction.

5.8.3 Rotate around an axis

In the rotate around an axis class, the TCP is forced reach to a predefined pose and

constrained to rotate only around the axis defined by a virtual unit vector while

keeping its orientation perpendicular to the line (see

TART

1�

Figure 5.8). In a similar way as in

move along a line, the subset 	
1� � �S is defined. This virtual fixture can

simultaneously constraint TCP movements together with a translational virtual fixture if

	
0l �S . In such a case, both type of VFs would share a common target pose . TART

 81

Figure 5.8. Rotate around one axis

5.8.4 Move along a plane

The move along an axis translational class can be easily extended to confine the TCP to

move on a plane (see Figure 5.9). Let us define the subset 	
1 2,l � l lS , where and

are two non-zero linear independent vectors. Then

1l

2l ()lRan�P S is the plane passing

through the origin and the vectors l1 and l2 in which the TCP is constrained. The

reference pose represents the origin of this plane. It is important to observe that the

orientation of is not directly related with the orientation of the plane but rather with

the desired orientation of the TCP. Plane’s orientation is given with respect to the TCP

coordinate system, since it results from l1 and l2 which are expressed with respect to the

TCP frame.

TART

TART

 82

Figure 5.9. Extension to plane

The boundary conditions (5.16) will affect at any direction along the plane in the same

manner. This means, under such conditions, the limits of the plane are defined by a

circumference of radius , which boundary cannot be crossed over. At distance Ur

U Ur U�$ �� from the origin inside this circumference the robot compliance gradually

decreases until the boundary is reached where the robot compliance becomes zero. Other

kind of boundaries may demand different condition definitions, e.g. projection of � onto

the virtual unit vectors l1 and l2 would make possible to establish two condition

parameters for the definition of independent boundaries at each direction, thus having

square shaped limits instead of a circumference.

5.8.5 Rotate around two axes

One can define more than one axis of rotation simultaneously (see Figure 5.10). Notice

however that, in the same way as in translation, three linear independent vectors

	
1 2 3, ,� � � � �S are enough to span the whole 3� . In other words, a rotation in all

directions would be then possible.

 83

Figure 5.10. Rotate around two axes

5.8.6 Extension to volume

The virtual fixtures discussed until now constraint the motion into or basically

hinge upon the definition subsets

1� 2�
lS and �S . However, extension of constrained

motions in using only the subspace of preferred directions becomes rather limiting.

More flexibility is achieved if the non-preferred directions are also considered during the

design of the different possible virtual fixtures. It has been pointed out in Section

3�

5.5 that

manipulation of makes possible to extend the concept to volumetric fixtures since it

defines the compliance behaviour of the TCP on the subspace of non-preferred

directions. The idea of a volumetric fixture is to confine the motion to a closed

volumetric region without been able to leave it.

Vc�

 84

Figure 5.11. Virtual cylinder

The concept of volume fits very well for virtual fixture of the translational type, but not

so for rotational ones. In the second case, one may wonder whether it make any sense at

all to apply the concept or not. If the answer is no, then the compliance of the rotational

components of the end effector can be controlled independently with a matrix notation,

as stated in section 5.3. Hence, the first three elements of the diagonal matrix are

subjected to conditions (5.17) while the last three elements may be subjected to a

different conditioning criterion. Furthermore, the shape of the volumetric fixture

strongly depends on the content of the translational subset lS . The geometrical

interpretation is obtained in a natural way for each set of linear virtual vectors.

5.8.6.1 Virtual tube

The virtual cylinder is the direct extension of the virtual line explained in Section 5.8.2.

Practically, the definition of lS and remains the same. But now, the conditions

given in

TART

(5.17) are additionally considered for the compliance coefficient influencing the

non-preferred directions. In this way, deviations in the directions perpendicular to the

line smaller than become also possible. Notice however that the magnitude of Vr Vpe

 85

does not increase for deviations from along preferred directions. This gives finally

the impression of having a virtual cylinder of diameter equal to and length equal to

. The thresholds for the transition region near the borders are defined with

TART

Vr2

Ur2 V(and

U(for the cylinder periphery and circular bases, respectively. The virtual cylinder

shaped fixture around a reference line in the 3D space is illustrated in Figure 5.11.

5.8.6.2 Virtual cone

The virtual cone is a special case of virtual fixture that permits to reach or leave a point

in the 3D space while keeping the TCP inside a virtual cone. The direction of the cone

axis is given by , and the cone’s apex is taken from the reference position contained in

. First, the subspace U along the line is calculated

1l

TART 	
1l � lS as usual. Then,

deviations of the actual position from the target position and are obtained for

both preferred and non-preferred directions, respectively. A new boundary condition is

then defined. Its value depends on in which size of the reference point the TCP is

located. The virtual cone can only be projected at the positive side.

Up� Vpe

#
"
� $�

�
otherwise0

0),tan(|||| 1l�� UpUp
Vr

�

(5.24)

where � is the cone opening half-angle with respect to (see 1l Figure 5.12). The

compliance conditions (5.17) are then applied. The subspace U just defined is useful for

the calculation of the error components, but no so for driving the TCP. If this is

introduced to the admittance controller, free movement inside the cone is successfully

achieved, but at the boundaries discontinuity behaviour appears when trying to move the

TCP along the periphery of the cone toward to its apex. Therefore, a new subspaces

and using UP� VP� 	
l
p� eS are calculated, which project onto a vector pointing always

directly to the apex. This still provide free motion inside the cone but now permits a

fluent motion along the periphery toward cone’s apex. The control law for this special

case is:

()U U V Vc c� �x �P P� �� � � (5.25)

 86

Figure 5.12 Virtual Cone

5.8.7 Reference trajectory

All virtual fixtures are defined with respect to a reference target . It has been shown

that depending of the virtual definition, moving the TCP along or above one or more

directions starting from this Cartesian reference pose is possible. Any deviation along

non-preferred directions is considered an error and thus compensated. Now, if the target

 varies along the 3D space, more complex virtual constrained trajectories can be

generated. In this section, the reference target position is described by a parametric

function which permits to dynamically change the current target position as a function of

the actual end-effector position. Therefore, a trajectory is generated using parametric

spline functions together with arc-length parameterization (see Appendix

TART

TART

TARp

B). A detailed

description of the generation of such parametric functions is out of the scope of this

work. Its main focus is the performance for the error minimization with respect to the

virtual fixtures rather than the generation of the reference target. Nevertheless, the usage

 87

of such parametric functions expands the potentiality of the virtual fixture tremendously,

since it make possible to define virtual constrained environments which are more

complex than the ones presented in this work. A basic explanation of the working

principle is given below. The reader interested in more detailed information is

encouraged to consult [7], [8], [49], [138] and [139].

Let p(s) being a parametric spline curve describing the reference trajectory:

� �() () () () , 0 ,T
TAR s x s y s z s s L� &p & (5.26)

where s denotes arc-length, L is the arc-length of the whole trajectory, and x(s), y(s), and

z(s) are Catmull-Rom spline functions with equidistant knots with 0 1{ , ,..., }ns s s 0 0s �

and (see Appendix ns � L]B). If is the actual position of the

TCP, and the closest point of trajectory to (

[T
EE TCP TCP TCPx y z�p

ˆ()TAR sp EEp Figure 5.13). Finding

can be seen as an optimization problem

ˆ()TAR sp

[139]:

[0,]
ˆ() min (())

s L
s s))

�
� , (5.27)

where

2 2() (()) (()) (())TCP TCP TCPs x s x y s y z s z) � � � � � � 2 . (5.28)

The quadratic minimization method is used to this aim (see Appendix C).

Figure 5.13 Closest point of spline curve to pTCP and its tangent vector.

 88

Movements of the TCP along are possible by defining the normalized tangent

direction ltan of the trajectory at the actual reference position as the virtual

preferred direction, i.e. . The tangent direction

()TAR sp

ˆ()TAR sp

{ }l
tan� lS ˆ()TAR s�p can be easily obtained

once is known (see Appendix ˆ()TAR sp B), so finally:

ˆ()
ˆ()

TAR
tan

TAR

s
s

�
�

�
pl
p

(5.29)

The difference between actual position of TCP and is considered a

Cartesian position error:

TCPp ˆ()TAR sp

ˆ() ()TCP TAR TCPs� �pe p p p (5.30)

5.9 Experimental evaluation

The experimental evaluation of the virtual fixtures presented below was tested using the

modiCAS system. All tests were executed with the 6 degrees-of-freedom (DOF) PA10-

6C robot arm, form Mitsubishi, Japan, and the mini45 force-torque sensor from ATI

Industrial Automation, USA, mounted on the robot’s end-effector. The inner velocity

control loop is included in the servo driver of the robot system and runs with a frequency

1538 Hz. The outer admittance control loop, running at 200 Hz, was implemented on the

RT-target running the LabVIEW-RT module. Position and orientation errors are

calculated independently as follows:

2 2

2 2

p xpV ypV zp

r xrV yrV zrV

� � �

� � �

e e e e

e e e e

2

2

V

(5.31)

5.9.1 Manual error compensation

The following experiment analyses the behavior of manual compensation (expression

(5.20)) in the presence of position deviation. A target position was defined at

 (mm), and (deg), where rpy denotes

the roll-pitch-yaw notation of the orientation of the TCP

TART

[621 0 548]T
TAR �p [90 0 90]T

TAR � � �rpy

[29]. The TCP was defined

exactly at the end-effector of the robot, i.e. contains an identity rotation matrix EE
TCPT

 89

and position coordinates equal to zero. The robot’s end-effector was located at

 and [621 0 554]T
EE �p EE TAR�rpy rpy , which represents a deviation of 6 mm along

Z-axis from . A VF was created to move the end-effector along Y-axis with respect

to the base frame while keeping the orientation constant, i.e. and

, where . The experiment consists of moving the end-effector

back and forth by hand along the preferred direction. Several tries were executed with

different values of gain kd�[0,1]. Figure

TART

1{l T
TCPS � lR }

{0}S� � 1 [0 1 0]T�l

(5.14) shows the influence of kd onto equation

(5.20). No error compensation occurs when 0dk � , which can be observed in the

behavior of the end-effector along the X-axis. It can be seem in the Z-axis that

increasing the value of kd yields into a faster compensation of the position error. Notice

however that the end-effector orientation deviates considerable from the desired one

despite the value of kd (see Figure 5.15). Finally, notice in Figure 5.16 that, although the

orientation components are not influenced by kd during translational movements, the

position error is reduced when incrementing the value of kd. A notable performance

enhancement occurs for values up to 0.9dk � , while higher values produce no a

significant improvement.

Figure 5.14. Influence of gain kd on manual error compensation of end-effector
position along Z-axis while moving it along Y-axis w.r.t. world coordinates.

 90

Figure 5.15. Influence of gain kd on manual error compensation of end-effector
orientation while moving it along Y-axis w.r.t. world coordinates.

Figure 5.16. Influence of gain kd on the error norm of manual compensation while
moving the end-effector along Y-axis w.r.t. world coordinates.

 91

5.9.2 Manual compensation vs. autonomous compensation

The following two experiments compare the behavior of both manual and autonomous

compensation. In the first case, a translational VF is setup while the second case

concerns a rotational VF.

5.9.2.1 Translational case

The setup of this experiment is similar to that explained above, the only difference being

that the initial TCP position is equal the target position, i.e. TCP TAR�T T . The objective is

to analyze the efficiency of manual and autonomous controllers (expressed in equations

(5.20) and (5.22), respectively) to keep the error at minimum along the non-preferred

directions while moving along a preferred one. Therefore a translational VF is defined as

follows: and , where . The gain values of the

controllers are for the manual controller and

1{ }l T
TCPS � lR {0}S� � 1 [0 1 0]T�l

0.9dk � 5vk � for the autonomous one.

Additionally, an attempt with no error compensation is included to provide an additional

benchmark for the results comparison.

Figure 5.17. End-effector position while moving along the Y-axis w.r.t. world
coordinates.

 92

Figure 5.18 End-effector orientation while moving along the Y-axis w.r.t. world
coordinates.

Figure 5.19. Error profile of manual and autonomous error compensation while
moving along the Y-axis w.r.t. world coordinates.

 93

The position behavior, orientation behavior and instantaneous quadratic error norm are

presented in Figure 5.17, Figure 5.18 and Figure 5.19, respectively. Both controllers

present a similar behavior concerning the position, both having a position error of the

same order. However, it is in the orientation error where a great difference arises. While

the orientation error behavior of the manual compensation looks very similar to the case

where no compensation at all occurs, the error is strongly reduced when applying

autonomous error compensation. Table 5.1 shows the mean position and orientation

error for the three cases: no compensation, manual compensation and autonomous

compensation.

Table 5.1. Mean value of position and orientation error of translational VF

Control Mean Position error (mm) Mean Orientation error
(deg)

None 6.4582 0.3044

Manual 0.1006 0.3492

Autonomous 0.1012 0.0831

5.9.2.2 Rotational case

This experiment evaluates the error compensation when a rotational VF is applied. Three

responses are compared: no compensation, manual compensation (equations (5.20)) and

autonomous compensation (equation (5.22)). The rotational VF consists of a pivot

rotation of the end-effector 360° back and forth about a rotation axis parallel to the Z-

axis of the robot base frame (see Figure 5.20) and positioned at a specific point in the

space, while keeping a constant inclination (45� � *)of the tool with respect to the

rotation axis. In this case, the TCP is not more equal to end-effector position. The

transformation from TCP to end-effector is: EE
TCPT

0.998 0.06 0.016 3
0.017 0.011 1 219

0.06 0.998 0.012 129
0 0 0 1

EE
TCP

� � �
 �
� �
� ��
� �� �
� �
� �

T

 94

The initial pose of TCP, also used as reference target pose is: TART

0.0476 0.5816 0.8122 486.4
0.998 0.0601 0.015 3.2
0.04 0.8111 0.5835 260.3

0 0 0 1

TAR TCP

� � � �
 �
� ��� ��
� �� �
� �
� �

0T = T

A VF was created in order to rotate the tool around Z-axis with respect to the base

frame while keeping the relative angle relationship � constant, i.e. and

, where . Contrary to the experiment of sections

{0}lS �

1{ T
TARS� � �R } 1 [0 0 1]T�� 5.9.1 and

5.9.2.1, TARR is used instead of TCPR to define the rotational VF. The latter rotation

matrix would mean that the VF would stay constant with respect to the tool coordinates,

while this experiment requires a VF that stays constant with respect to the base

coordinates. Depending on the application it may be desired the virtual fixture to come

along with the tool or to define it with respect to the tool and afterward keep it constant.

In the first case is used while is applied to the second one. TCPT TART

Figure 5.20. Experimental setup for rotational case

 95

Figure 5.21. Tool tip position in 3D while pivot rotation above Z axis

Figure 5.22. Tool tip position in 3D while pivot rotation above Z axis

 96

Figure 5.23. End-effector error profile while pivot rotation above Z axis

The results of this experiment reveal that the decoupling of position and orientation

during manual compensation occurs in a similar way as in the translational case. Now,

orientation movements are executed and the position should be kept constant. Figure

5.21 shows that the position of the TCP presents strong deviations from the reference

pivot point in the cases of no compensation and manual compensation, having both of

them the same patron. Autonomous compensation, on the contrary, reduces the position

error. The orientation error is reduced in a similar manner with both manual and

autonomous compensation, while the error continuously increases when no

compensation is executed (see Figure 5.22). The deviations on the end-effector trajectory

during manual compensation, easily observed in Figure 5.22, are more because of

position deviation rather than orientation deviation. Finally, the quadratic error norm

plotted in Figure 5.23 corroborates the behavior just explained above. The corresponding

mean errors are presented in Table 5.2.

Table 5.2. Mean value of position and orientation error of rotational VF

Control Mean Position error
(mm)

Mean Orientation error
(deg)

None 3.1758 2.4977

Manual 3.4864 0.0440

Autonomous 0.435 0.0495

 97

5.9.3 Moving along a trajectory

The previous experiments evaluate performance of manual and autonomous error

compensation in a virtual constrained subspace which was defined with respect to a

static . In the following experiments a parametric function is used to specify the

reference target curve along which the VF is to be applied. The is calculated on-line

as the closest point of the curve to the TCP (see Appendix

TART

TART

B). The virtual fixture is a

translational virtual unit pointing always along the tangential direction of the curve while

the orientation is maintained constant. Both manual and autonomous error compensation

were tested with two different trajectories: (a) a sinusoidal trajectory on the ZX-plane

with respect to the base frame, and (b) a circular trajectory on the XY-plane also with

respect to the base frame. During the experiments the user has to follow the reference

paths two times back and forth until the boundaries are reached.

Figure 5.24 and Figure 5.26 show the TCP Cartesian position during sinus and

circle experiments, respectively. Notice that the plots are not homogenous scaled, the

axis along which end-effector position remains constant has a very small scale in

comparison with the other two axes, so that the error difference between manual and

autonomous compensation can be observed. The norm of the error during sinusoidal

trajectory and circular trajectory are presented in Figure 5.25 and Figure 5.27,

respectively. Finally, the resulting mean error during both trajectories can be consulted

in Table 5.3. In both trajectories the error is smaller during autonomous compensation.

Table 5.3. Mean error while following a reference trajectory

 Sinus Circle

Control Mean
Position

error (mm)

Mean
Orientation
error (deg)

Mean
Position

error (mm)

Mean
Orientation
error (deg)

Manual 0.6123 0.1186 0.8978 0.0719

Autonomous 0.2618 0.0478 0.2998 0.0477

 98

Figure 5.24. End-effector position while following a sinusoidal trajectory

Figure 5.25. End-effector error profile while following a sinusoidal trajectory

 99

Figure 5.26. End-effector position while following a circular trajectory

Figure 5.27. End-effector error profile while following a circular trajectory

 100

5.10 Discussion

The two methods presented in this section were compared for error compensation during

cooperative manipulation of the tool along virtually constrained subspaces: the manual

compensation and autonomous compensation. The philosophy behind manual

compensation states that the user is the only one been able to generate any kind of

motion, while the robotic system is more like a passive system with the sole job of

constraining the possible movements into an allowed subspace. This is done by means of

the so called virtual fixtures. In the presence of a deviation error, the manual controller

redefines such VFs to include the direction needed in order to compensate for such an

error, having then one new direction that guarantees the error compensation. The

experiments presented above have shown that the compensation takes place as long as an

input force induced by the user is applied. Unfortunately, the translational and rotational

movements are not directly coupled between each other. This means that when

performing one of these two types of movements, any deviation error appearing on the

other type of movement may not be necessarily compensated. The reason is that, due to

the nature of the movement, despite the error being detected by the controller, and a new

VF being redefined to compensate for the error, the user may not realize that the

generation of such motions is required. Thus, if no movement is induced by the user in

such direction, the compensation does not occur.

The concept of virtual fixtures with autonomous error compensation is then

proposed to deal with this drawback of manual compensation. The main idea is to give

the robotic system the responsibility of error compensation while the user keeps

complete control inside the allowed subspace. This has the disadvantage that the robot

itself is able to generate motion which may be undesired for the sake of safeness. For

instance, suppose that a virtual fixture is defined by mistake on a target pose which

is far away from the current position of the end-effector and the autonomous

compensation is active. At the moment that the user activates the cooperative mode, the

robot would automatically begin to compensate the error, producing an unexpected and

even more undesirable movement which could lead serious consequences. This is not the

case if manual compensation is active. In such a case, the controller redefines the VF and

the robot waits until the user compensates the error by his/her own, which is intrinsically

TART

 101

safer than with the autonomous controller. The combination of both controllers is

proposed as a solution to this safety issue by establishing an error threshold above which

the manual compensator becomes active while autonomous compensation can only run

below this value. This means that the main objective of autonomous compensation is to

keep the TCP inside the preferred subspace rather than getting the TCP into it. Once the

preferred subspace is reached, i.e. the error is below the threshold, autonomous

compensation becomes active.

The main advantage of autonomous compensation in comparison to manual

compensation is that the decoupling nature of translation and rotation is not more a

problem since while doing movements of the one type, possible deviation error of the

other type is automatically compensated.

 102

6. Singularity robustness

6.1 PA10 kinematics

The kinematic description of the PA10-6C robot arm used in this work is based on the

Featherstone convention [38]. Its frames are shown in Figure 6.1, having only four

parameters, i.e. link lengths , and , while the wrist link lengths and are

zero. A detailed description of the Featherstone convention is out of the scope of this

work and only final results of the symbolic calculation of the forward position and

velocity kinematics are presented, since these are imperative for further implementation

of the singularity robust strategies treated here. For further details, the reader can consult

the following literature

1l 2l 3l 6l 4l 5l

[20], [38], [81].

(a)

(b).

Figure 6.1. (a) PA10-6C robot arm (courtesy of Mitsubishi Heavy Industries), (b)
Kinematic description of PA10-6C based on Featherstone [15]

 103

Figure 6.2. Kinematics of first three joints of the 321 manipulator [15]

6.1.1 Forward position kinematics

The forward position kinematics (FPK) is intended to find the end-effector pose from a

given set of joints position � �1 2 6
T+ + +�� � . The solution is always unique, that

means, one given joint position vector always corresponds to only one single end-

effector pose.

The forward mapping to obtain the relative orientation of the end-effector frame

{EE} with respect to the frame {4} is obtained by the calculation of the relative

orientation of {EE} with respect to {6}, {6} with respect to {5}, and {5} with respect to

{4} as follows:

� � � � � �4 5 6

4 4 6 6

4 4 5 5 6 6

5 5

6 4 6 5 4 6 4 6 5 4 5 4

6 4 6 5 4 6 4 6 5 4 5 4

6 5 6 5 5

, , ,

0 1 0 0 0
0 0 0

0 0 1 0 0 0 1

Z X Z

c s c s
s c c s s c

s c

c c s c s s c c c s s s
c s s c c s s c c c s c

s s c s c

+ + +� �

� �
 �
 �

� � � � �� � � � � �
� � � � ��� � � � �

� � � �
 �
� �� � � �� �
� �� �� �

3
6R R R R

�
�
�
��

(6.1)

 104

where stands for 4c � �4cos + and so on. The resulting homogeneous transformation

matrix from {6} to {4} is presented below:

3
3 6 3 1

6
1 3 1

�

�

 �
� � �
� �

R 0
T

0

(6.2)

The determination of the pose of the wrist reference frame {4} with respect to the base

reference frame {0} = { bs } of the robot is:

1 1 1 1 23 1 23
0 0 1

3 1 3 1 1 23 23 1 1 23 1 23

23 23 23 23

0 1 0 0
0 0

0 0 1 0 0

c s c s c s s
s c c s s c c c s

s c s c

� �
 �
 �

� � � � �� � �� � � � �
� � � � �� �� � � � �

R R R
� �

�
�
��

(6.3)

for the orientation of the wrist with respect to the base frame, and

1
0

1

1

,

h

h
wr wr

v

s d
c d

l d

 ��
� �� � � �
� ��� �

p p

(6.4)

with

2 2 23 3

2 2 23 3

v

h

d c l c l

d s l s l

� �

� �
,

(6.5)

for the position of the wrist with respect to the base.

Finally, the pose of the end-effector reference frame {7} = {EE} with respect to the

last wrist reference frame {6} (i.e.,) corresponds to a translation along 6
7T 6Z over a

distance : 6l

� �6
6 7 6

7
61 3

1 0 0 0
0 1 0 00 0
0 0 11
0 0 0 1

Tl
l

�

 �
� �
 � � �� �� � � �� �� � � �
� �

RT
0

(6.6)

Hence, the total orientation Base
EER follows from equations (6.1), (6.3), and (6.6):

0 0 3 6
7 3 6EE � � 7R R R R R (6.7)

 105

The position of the wrist centre (i.e., the origin of {4}) with respect to the base {0} is

1
0

1

1

,

h

h
wr wr

v

s d
c d

l d

 ��
� �� � � �
� ��� �

p p

(6.8)

and the position of the end-effector (i.e., the origin of {EE} with respect to the base {0})

is

� �60 0 .T
EE wr EE l� �p p R (6.9)

Finally, equations (6.7) and (6.9) yield into the homogeneous transformation matrix

from the end-effector frame {EE} to the base frame {Base}:

1 3

.
1

EE EE
EE

�

 �
� � �
� �

pR
T

0

(6.10)

with

11 1 23 4 5 6 4 6 1 4 5 6 4 6 1 23 5 6

21 1 23 4 5 6 4 6 1 4 5 6 4 6 1 23 5 6

31 23 4 5 6 4 6 23 5 6

12 1 23 4 5 6 4 6 1 4 5 6 4 6 1 23 5 6

22 1 23 4 5 6 4 6 1

() ()
() ()
()

() ()
()

r s c c c s s c c s c s c c s s s s
r c c c c s s c s s c s c c c s s s
r s c c s s c c s s
r s c c c c s s c s c c c s s s s
r c c c c c s s s

� � � � � �

� � � � �

� � � �

� � � � � �

� � � 4 5 6 4 6 1 23 5 6

32 23 4 5 6 4 6 23 5 6

13 1 23 4 5 1 4 5 1 23 5

23 1 23 4 5 1 4 5 1 23 5

33 23 4 5 23 5

()
()

s c c c s c s s c
r s c c c s s c s c
r s c c s c s s s s c
r c c c s s s s c s c
r s c s c c

� �

� � � �
� � � �

� � �

� � �

c

and

13 6 1

23 6 1

33 6 1

h

h
EE

v

r l s d
r l c d

r l l d

 �� �
� �� � �� �
� �� � �� �

p

where rij denotes the element of the ith row and jth column of REE. The homogeneous

transformation matrix express the position and orientation of the end-effector with

respect to the base {Base} in function of the joint variables �

EET

[15].

 106

6.1.2 Forward velocity kinematics

The forward velocity kinematics (FVK) calculates the resulting end-effector linear

velocity and angular velocity �. given the joint position � and joint velocity . The

FVK is always unique and the relationship between the joint velocities and the linear and

angular velocity of the end effector is linear, i.e., if joint velocity is incremented by a

factor of two, the end-effector velocity will increment by a factor of two too. This

velocity relationship is then determined by means of the Jacobian matrix as follows:

p� ��

� ��x � �J �� , (6.11)

where J(�) is the manipulator Jacobian matrix with dimensions m , which relates

joint velocities to the end-effector velocity x . For non-redundant manipulators,

n�

�� � m n�

while for redundant manipulators m n% . In the case of PA10-6C, which is a non-

redundant robot, J is a square matrix. As a physical interpretation, the ith column of

J can be thought of as the end-effector linear and angular velocities generated by a unit

velocity applied at the ith joint, and zero velocities at the others. Notice that the matrix

itself depends non-linearly on the joint position vector �.

6 6�

In general terms, the methodology for the calculation of the end-effector velocities,

suggest the sum of the joint velocities successively starting at the base frame {Base}.

But by taking advantage of the robot kinematic structure and using the results of the

FPK, this procedure is made more efficient.

First of all, the angular velocity of the end-effector with respect to the wrist expressed in

the frame {4} is deduced by inspection of Figure 6.1. This yields into:

4 4 5 4

4 4 5 5

5 6

0
0
1 0

wr
xEE

wr
y EE

wr
z EE

c s s
s c s

c

, +
, +
, +

 �
 � � �
 �
� �� � � �� � � �� � � �
� �� � � �� �� � � �

�
�
�

(6.12)

The angular velocities of the remaining joints are then added. Again, by inspection it is

easily inferable that the angular velocity of end-effector with respect to link 1 expressed

in the frame {1} looks like

 107

2 3
1

23 23

23 23

wr
xEE

wr wr
y EE z EE

wr wr
z EE y EE

c s
c s

, + +
, ,
, ,

 �� �
� �� �� �
� ��� �

�

� �

(6.13)

It is only matter of adding the last pendent joint angular velocity 1+� and express the

whole expression with respect to the base frame { }: bs

1 1
1 1

1 1
1 1

1
1

x y

EE y x

z

c s
c s

, ,
, ,
, +

 ��
� �� �� �
� ��� �

�
�

(6.14)

Now, the linear velocity can be calculated, conveniently, as the sum of the linear

velocity of the end-effector with respect to the wrist and the linear velocity of the

wrist with respect to the base frame . Thereto, both velocities must be represented in

the same coordinate system, in this case the base frame {bs }.

wr
EEp�

wrp�

EE wr� �p p p� � � (6.15)

where

� �60 0 T
EE EE l� �p � R� , (6.16)

and

1
1 1 1

1
1 1 1

1

() ()
() (

xwr ywr

wr xwr ywr

zwr

c p s p
s p c p

p
)

 ��
� �� �� �
� �� �

p
� �

� � �
�

,

(6.17)

with

1
1

2 3 23 3

2 3 23 3

h

v
wr

h

d
d l c
d l s

+
+ +
+ +

 ��
� �� �� �
� �� �� �

p

�
� ��
� �

.

(6.18)

Since the angular velocity � and the linear velocity are calculated in function of �

and � , the Jacobian can be factored out. Resulting the final expression

p�

�

 108

11 12 13 14 15 16 1

21 22 23 24 25 26 2

31 32 33 34 35 36 3

41 42 43 44 45 46 4

51 52 53 54 55 56 5

61 62 63 64 65 66 6

x

y

z

x

y

z

j j j j j jp
j j j j j jp
j j j j j jp
j j j j j j
j j j j j j
j j j j j j

+
+
+

, +
, +
, +

 �
 �
�� �� �
�� �� �
�� �� �
 �

� � � � �� �� �
� � � �� �

� �� �
� �� �

� � � �� � � � �

p
x

�

��
��
�� �

� �
�
�

� �

�
�
�
�
�� �

� �
� �
� �
� ��

� �J �

(6.19)

with

11 1 6

12 1 1 6

13 1 23 3 1 6

14 54 6 64 6

15 55 6 65 6

16 56 6 66 6

h
y

v
z

z

z y

z y

z y

j c d l

j s d s l
j s c l s l
j j l j l
j j l j l
j j l j l

� � �

� � �

� � �

� �

� �

� �

21 1 6

22 1 1 6

23 1 23 3 1 6

24 64 6 44 6

25 65 6 45 6

26 66 6 46 6

h
x

v
z

z

x z

x z

x z

j s d l

j c d c l
j c c l c l
j j l j l
j j l j l
j j l j l

� �

� �

� �

� �
� �

� �

31

32 1 6 1 6

33 23 3 1 6 1 6

34 44 6 54 6

35 45 6 55 6

36 46 6 56 6

0
h

y x

y x

y x

y x

y x

j

j d c l s l
j s l c l s l
j j l j l
j j l j l
j j l j l

�

� � � �

� � � �

� �

� �

� �

41

42 1

43 1

44 1 23

45 1 23 4 1 4

46 1 4 5 1 23 4 5 1 23 5

0j
j c
j c
j s s
j s c s c c
j c s s s c c s s s c

�
� �
� �
� �

� �

� � � �

51

52 1

53 1

54 1 23

55 1 4 1 23 4

56 1 4 5 1 23 4 5 1 23 5

0j
j s
j s
j c s
j s c c c s
j s s s c c c s c s c

�

� �

� �

�

� � �

� � �

61

62

63

64 23

65 23 4

66 23 5 23 4 5

1
0
0

j
j
j
j c
j s s
j c c s c s

�

�

�

�

�

� �

where jpk denotes the element of the pth row and kth column of J. Notice that some

elements of J dependent on some of the others, due to the influence of the angular

velocity with respect to the wrist over the whole linear velocity. Hence, the order of

calculation must be taken in consideration.

6.1.3 Singularities of PA10-6C

The inverse kinematic relationship, mapping the end-effector velocities given in the

working space (Cartesian space) into the corresponding joint velocities � , is written as:

x�
�

1()��� � xJ� � (6.20)

 109

A singular configuration, also known as singularity, is a configuration of the robot’s

joints at which the end-effector mobility – defined as the rank of the Jacobian matrix –

locally decreases, i.e., it is then not possible to move or exert force in certain directions

in the Cartesian space. In the neighborhood of singularity, small velocities in the

operational space may cause excessive high velocities in the joint space, thus producing

an acute behavior of the robot. In the PA10-6C robot manipulator, three types of

singularities are possible (see Figure 6.3):

� Arm-extended singularity (�3=0): The robot reaches the end of its regional

workspace, i.e., the position that the wrist centre point can reach by moving the

first three joints. As the name suggests, this occurs when the elbow of the robot is

fully extended.

� Wrist-extended singularity (�5=0): Joints �4 and �6 are collinear, so they span the

same motion freedom. Hence, the angular velocity about the common normal of

the three wrist joints is lost.

� Wrist-above-shoulder singularity (dh=0): The wrist centre point intersects 1Z

axis. Infinitely solutions of �1exist for the inverse kinematics.

 (a) (b) (c)

Figure 6.3.Singular configurations: (a) arm-extended, (b) wrist-extended, (c) wrist-
above-shoulder [15]

 110

A singular configuration is easily detectable, since in such a case det 0�J . The

decoupling condition of the kinematic structure of the PA10-6C robot can be taken in

advantage the determination of singularities. From the fact that the determinant of the

Jacobian is independent of the reference frame with respect to which it is calculated, it

results convenient to calculate the Jacobian with respect to wrist centre, frame {4}.

When expressed in this frame, the spherical wrist does not generate translational

components. Consequently, the lower right most block of the Jacobian corresponding to

the linear velocity influence of the last three joints is equal to zero. Getting a Jacobian

matrix of the form:

11 124

21 3 3�

 �
� � �
� �

J J
J

J 0

(6.21)

This situation make possible to decouple the singularity problem into two simpler

problems: the wrist singularity problem (detJ12 = 0), and the arm singularity problem,

(detJ21 = 0). Hence, the PA10-6C robot arm presents any singular configurations if and

only if:

12 21det det det�J J J (6.22)

From equation (6.12), the angular velocity generated by the last three joints with respect

to the wrist centre, frame {4}, is already known. The angular velocity of the first three

joints with respect to the frame {4} is easily deduced by inspection of Figure 6.2, and the

linear velocity of the wrist with respect to the base expressed in the frame {4} is

obtained by premultiplying 3
1R to the equation (6.18). Finally, the expression for the 4J

states as follows:

4 5 4

23 4 5 4

23 54

2 3 3 3

2 3

0 1 1 0
0 0 0
0 0 1 0
0 0 0 0 0

0 0 0
0 0 0 0

h

c s s
s s

c c
J

d
l c l l

l s

� �
 �
� �� �� �
� �

� � ��� �
� ��
� �
� �� �

0
0

s c

(6.23)

 111

Hence,

4 5 4
4

2 3 3 3 4 5 4

2 3 5

2 3 3 5

0 0 0
det det 0 det 0

0 0 1 0

h

h

d
J l c l l s

l s c

d l l s s

- .
 � -� �c s s
s c

.�
 �
/ 0� � / 0� �� � �/ 0� � / 0� �
/ 0 / 0� � � �� �1 2� �1 2

� �

(6.24)

It can be concluded from equation (6.24) that the geometry of the PA10-6C robot brings

a lot of simplicity in the determination of singularities.

It is important to notice that at singular configuration, there exists a singular

direction in which movement of the end-effector becomes unfeasible. The singular

direction at wrist singularity is illustrated in Figure 6.4. Any attempt to move the end-

effector along this direction is physically impossible. On the contrary, the end-effector

can freely move along the plane orthogonal to it. Thus, in order to escape from

singularity in a specific direction, the singular direction must be orthogonal to it. If not

the case, this can be forced by considering the robot as a redundant mechanism in the

subspace orthogonal to the singular direction of the end-effector and creating a null

space motion- movement of some joints of the robot such that the position and

orientation of the end-effector is not affected (see Figure 6.4).

Figure 6.4. Singular direction and its orthogonal plane at wrist singularity

 112

6.2 Differential kinematics inversion

For most manipulators, a closed-form inverse kinematic function does not exist at the

position level. As a result, inverse kinematics is usually carried out at the velocity or

acceleration level. The remaining of this chapter presents two different strategies to

solve the differential kinematics inversion which are robust at singular configuration: the

Damped Least Squares and the adjoint Jacobian inversion approach. The two methods

are compared between each other. Finally, their utilization within the modiCAS system

for cooperative tasks is discussed based on the experimental results.

6.3 Damped least squares approach

The most common method for handling singularities is the Damped-Least-Squares

(DLS) method, proposed independently in [92] and [140]. This method is a local

optimization method that makes a trade-off between the accuracy and feasibility of the

inverse kinematics solution to prevent excessively high joint velocities by using a

damping factor. However, at singular configuration and its neighborhood the accuracy of

the inverses kinematic solution has to be sacrificed in order to achieve feasibility. [34],

especially when the command velocity vector points along the singular direction.

Concerning the cooperative mode, this would mean that if a force is applied in the

singular direction, the corresponding joint motion would degenerate having a deviation

error in the end-effector movement.

This method uses an instantaneous trade-off between the accuracy and feasibility of

the inverse kinematic solution to prevent the joint velocities from becoming excessively

high. The trade-off is quantified by a factor known as the damping factor. The DLS

method can be theoretically justified as follows [18]. Instead of just finding the

minimum vector � that gives the best solution, the DLS find the value of � that

minimizes the expression

� �

2 2
�� �� x �J � �� (6.25)

where ��� is a non-zero damping constant. This can be equivalent rewritten as:

� �T T�� �� xJ J I J� � (6.26)

 113

where � �T ��J J I is non-singular. Finally, the damped least squares solution states as:

* 1()T T� �� � �� x xJ J J I J� � � (6.27)

where is denote as the SR-inverse of J. The damping factor *J � renders the inversion

better conditioned from a numerical viewpoint. Note that

. Thus, expression � � �1T T T T�
�

� � �J J I J J JJ I � 1
�

�

n

(6.27) can be reformulated as:

* 1()T T � �� � �� x xJ J J J I� � � (6.28)

Expression (6.29) has the advantage over equation (6.28) that its computation is less

expensive, since � � 1T n�
� �� ��J J I while � � 1T m m�

� �� ��JJ I m n&

#

, and . Also note

in equation (6.28) that when rank of J is m,

* 10 ()T T� �� 3 � �J J J J J (6.29)

i.e. when there is no damping, the DLS reduces to the pseudoinverse.

6.3.1 Singular value decomposition of the damped least squares

The singular value decomposition (SVD) can be used to analyses the DLS solution (see

Appendix D). From equation (6.28), the matrix T ��JJ I expressed with SVD leads:

()()
()

T T T T

T T

� �

�

� � �

�

JJ I U�V V� U I
= U �� I U

(6.30)

where T ���� I is a non-singular diagonal matrix with its diagonal entries as 2
i4 �� ,

where i4 denotes the singular values if J. Then the SR-inverse expressed using SVD

is equal to

*J

*

1

()
(()

T T

T T T

T

�

� �

� �

� �
*

J J JJ I
V)� �� I U

= V� U

(6.31)

 114

where

1
2

1

2
2

2

2

0

0 n

n

4
4 �

4
4 �

4
4 �

� ��� �
� �
� ��� � �
� �
� �
� �
� ��� �

*�
�

�

(6.32)

6.3.2 The damping factor

The DLS presents a continuous and feasible solution at singularities and their

neighborhood. However, away from the singularity an exact solution is still desired i.e.

0� 3 . A number of methods to determine the damping factor have been proposed in

the literature [34], which compute the damping factor � based on some Jacobian-

dependent measure such as the manipulability measure, condition number or the

minimum singular value which indicates the closeness of the manipulator to a singular

configuration. Nakamura [93] suggested adjusting the damping factor according to the

value of the manipulability measure w:

det()Tw JJ� (6.33)

Using a threshold value wt. w is a nonnegative measure which becomes zero at a singular

configuration. Thus, � is computed as [93]:
2

0 1 ,

0,

t
t

w w w
w

otherwise

�
�

� - .
! � %/ 0� " 1 2
!
#

(6.34)

where 0� is the scale factor at singular points. So, no damping is applied when the value

of w is greater than wt until it reaches its maximum value �0 at w=0.

 115

6.4 Adjoint Jacobian approach

The adjoint Jacobian approach permits to move the robot at and in the neighborhood of

singularities without any position or orientation error. The deterioration of motion ability

at the singularity reflects on velocity only. Let us denote the end-effector as

v�x u� , (6.35)

where the unit vector u��n denotes the end-effector instantaneous motion direction,

while the scalar variable v (v 0) stands for end-effector velocity. Substitution of

equation

$

(6.35) into (6.20) yields into

1vJ ��� u� (6.36)

Furthermore, the inverse Jacobian can be calculated by use of the adjoint Jacobian:

1 1
det

J adj� � J
J

 (6.37)

where detJ and adjJ denote the determinant and the adjoint matrix of the Jacobian,

respectively.

11 1

1

()

(1) det

T
n

ij

n n

i j
ij ij

adj J

�

5 5

n

 �
� �� 5� �
� �5 5� �

5 � �

�
� �

�

J

(6.38)

The term Jij represents the Jacobian sub-matrix obtained by deleting the ith row and jth

column of J. By combining expression (6.36) and (6.37), the following expression is

obtained:

()
det

v adj�� u� J
J

 (6.39)

Notice that in equation (6.39), the determinant of the Jacobian represents a scalar factor

related to the magnitude of motion in the joint space, while (adjJ)vu determines the

velocity relationship between the individual joints. At singularity, J-1 does not exist,

since detJ=0. Moreover, in the neighborhood of singularity the determinant is almost

zero, which considerably influences yielding into excessive joint velocities.

 116

The adjoint Jacobian approach consists in modifying equation (6.39) as follows:

� �b adj6�� u� J (6.40)

In equation (6.40) the system is decoupled in terms of velocity, represented by the scalar

variable b (b$0), and direction of motion, represented by �(adjJ)u, where � is a sign

variable (� =7 1). With a proper design of � and b, it is possible to control the non-

redundant robot arm at and around a singularity, without any error in the direction, and

with feasible joint velocity.

6.4.1 Relationship between adjoint Jacobian and the null vector

The velocity equation (6.36) can be rewritten as

0J v� �� u� , (6.41)

which can be considered as an instantaneous-motion closure equation for the kinematic

chain. A compact notation is obtained by augmenting the joint space with the trajectory

variable u. Denote by

� �,
TT v�	 � (6.42)

any point in the n+1 dimensional augmented joint space. Equation (6.41) can be then

rewritten as:

� � 0�	 	�H , (6.43)

where � � (1)n nJ � �� � ��uH is called the column augmented Jacobian. The vector u is

in accordance with the forces/moments at the end-effector applied by the user. Then, one

can in general assume that vector u is an n-dimensional parameter. The augmented

Jacobian H is regarded as a nonlinear function of the joint variables � and the n-

dimensional parameter u and equation (6.43) represents a nonlinear parameterized

system of autonomous differential equations [44]. A general solution to equation (6.43)

can be written as:

()Hb�	 n 	� (6.44)

where b has the same meaning as in equation (6.40) and Hn represents a vector existing

in the null space of H. Instead of derive it as a function of the pseudoinverse H+, e.g. as a

 117

vector from the null-space projection ()��I H H , the null vector is directly determined

based on Bedrossian’s methodology [11]:

� �1 2 1

1

()

(1) det ,

(1, 2, , 1),

T
H n

p
p p

C C C

C

p n

�

�

8 �

� �

� �

n �

�

H

(6.45)

where, Hp stands for matrix H with column p removed. The determinant of a matrix can

be expanded in cofactors of one of the columns. Thus, Cp can be expanded in cofactors

of column u:

1 1 2 2

1

(1) ()

(1, 2, ,)

(1) det

n
p p p

n
n

C u a u a u

p n

C �

� � � � �

�

� �

�

�

J

n npa

(6.46)

Notice that Hn is a (n+1)-dimensional vector. It can be expressed in the following form:

()
()

det

H

H

8
 �
� � �
� �� �

n
n 	

J

(6.47)

where

� �1 2

111 11 11

111 11 11

11 11 11

()

(1)

(1) ()

T
H n

n

n

n

C C C

ua a a
ua a a

ua a a

adj

�

 �
 �
� �� �
� �� �� �
� �� �
� �� �

� � � �

� �

n 	

u

�

�
�

��
�

J

(6.48)

The vector Hn can be regarded as a map:

1() : :n n
H

�� 3�n 	 	 	 � (6.49)

Equation (6.44) can be split into two parts to obtain joint differential motion

()Hb�� n 	� , (6.50)

 118

and path parameter differential

detv b� J (6.51)

Equation (6.50) shows that the adjoint Jacobian approach expressed in equation (6.40)

and the null vector yield the same result in terms of direction of motion in joint space.

6.4.2 Velocity relations at singularity

The kinematic singularities can be associated with an important type of solutions of

the autonomous type differential equations known as equilibria or fixed points, where

the null space function Hn vanishes: { , : () 0}H �� u n 	 [44]. There are generally two

types of equilibria [97]:

� Equilibrium I: : () 0� H9 �u u n 	

� Equilibrium II: : () 0H: �u n 	

Equilibrium I may occur at a codimension one kinematic singularity (() 1rank n� �J),

while Equilibrium II occurs with a codimension larger than one (), where

self-motion vanishes for all velocity vectors u. Further discussion concentrates on the

type Equilibrium I. This means that two singularities (e.g. shoulder and elbow

singularities) occurring simultaneously are not considered within the scope of this

analysis and non solution to this special case is not given. However, for robots where

their position and orientation sub-chains can be regarded as separate mechanisms, the

singularities can be treated separately. Moreover, Tsumaki et al.

() 1rank n% �J

[130] have shown that

the adjoint Jacobian approach can be applied even to a 6 DOF robot arm with non-

spherical wrist.

Nenchev et al. [99] distinguish between two types of velocity relations at kinematic

singularity depending on the direction u. In terms of the adjoint formulation they are:

� Type-A: {detJ�0, (adjJ)u� 0)}

� Type-B: {adjJ)u�0}

Velocity relations of type A are not equilibria, some joint angles are being affected by

the Cartesian space velocity vector u. This represents the self-motion condition where

the end-effector velocity is zero while some of the intermittent links are moving. On the

other hand, in Type-B relationship, all components of adj vanish and motion would J

 119

stop entirely. This relation represents equilibrium of the first type of equation (6.40).

Notice that the velocity relation can generally be of either type-A or type-B, depending

on the direction of the velocity vector u, and the codimension of the singularity. Since in

this work only codimension one singularity is assumed, the type of relation will depend

entirely of the velocity vector u. Distinguishing between type-A and type-B velocity

relations can be easily achieved. The detJ is used to detect the type-A velocity relation,

whereas the norm of the null space function (6.48) is used to detect the type-B relation.

A thoroughly analysis of kinematic singularities in the context of the relationship

between differentials of motion and kinematic singularities can be found in [67], [11],

[10], [96] and [114].

6.4.3 Selection of scalar variable b

At singularity, the determinant of the Jacobian become zero, and for the calculation of

joint velocities using equation (6.40), is divided by zero. Also near singularities,

division by an almost zero number results in excessive joint velocities. To overcome this

problem, the joint velocity can be restricted by using the norm of the joint velocity

vector together with the following condition:

adjJ

max
max

max

max

det

()

v v
v

b
v otherwise

v adj

+

+

� &!
!� "
!
!
#

�

u

J

J

� �

�
,

(6.52)

where max+� and vmax are user defined restriction on the joint velocity and the end-effector

velocity, respectively. This condition is used to smoothly change between two possible

values of b from equation (6.40). Notices that when the joint velocity norm is smaller as

the condition threshold, the following expression is obtained:

1

()
det

v adj6

�

�

�

� u

x

J
J

J

�

�

(6.53)

 120

Equation (6.53) is the same solution as the one expressed in equation (6.39). On the

other hand, if the norm value is larger than the boundary condition, equation (6.40)

becomes:

max

max

()
()
adjv

v adj
+6� u�

u
J
J

��
(6.54)

Calculating the scalar variable b in this way is useful when approaching any singularity,

and when having velocity relation of type A at singularity, i.e. when doing self-motion at

singularity, since () even if . However, with velocity relation of

type B, det and , i.e. equation

0 0

0 0

adj �uJ det 3J

3J ()adj 3uJ (6.40) becomes indefinite at the

singularity. Thus, this particular case must be treated separately. An important

assumption for this case is that the determinant of the Jacobian is factorized. Thus, it can

be expressed as a product of terms,

1 2det kf f f� � �J � , (6.55)

where each term corresponds to one of the different singularities of the robot. The

subscript k is the number of possible singularities. Using expression (6.55), the joint

velocity equation (6.39) can be represented as

1

() ()i i i

i k

f adj adj
f f f

�
�

x x� J J� ��
� �

,
(6.56)

where contains all the elements of the adjoint Jacobian that are affected by fi, and

the rest of it entries are zero. The

iadj J

iadj J contains all terms that are not included into

. Notice that in case of velocity type B relation, iadj J iadj J becomes zero. Then, the

inverse Jacobian may be reformulated as follows:

1

1

()

()

i i

i k

i

k

f adj
f f f
adj v
f f

�

�

x�

u

J

J

��
� �

�

(6.57)

 121

Equation (6.57) can be rewritten in the same context as of equation (6.40) as:

1

()i

k

b adj
vb

f f

6�

�

� uJ�

�

(6.58)

In equation (6.58), the singular component is factorized out from the numerator and

canceled out with the one from denominator, thus no division by zero will occur and

there will be no effect of the singular configuration. The robot can then move out of the

singular configuration without any position or orientation error.

6.4.4 Selecting sign variable

The sign variable � will affect the final direction of the joint velocity command. Out of

singularities, � agrees with the sign of the determinant of the Jacobian:

sgn(det)6 � J (6.59)

Note that when moving through a singularity, the sign of the determinant changes.

Furthermore, at singularity, equation (6.59) is undefined, since detJ=0, i.e. there is no

possibility to directly determinate the value of �. Therefore, special care must be taken

in order to preserve the correct joint velocity direction and agree with the direction of the

applied forces at the hands-on interface.

6.4.5 Wrist singularity

The wrist singularity is of our main concern under the assumption that the virtual

constraints limit the working area. Thus, elbow and overhead are practically eluded. On

the other hand, the wrist singularity can occur at any time within the working area.

The wrist singularity can be simple analyzed by regarding the orientation kinematic

sub-chain as an independent subsystem. Therefore, the differential kinematic

relationship stated in equation (6.12) is used:

4 4 5 4

4 4 5 5

5 6

0
0
1 0

x

y

z

c s s
s c s

c

, +
, +
, +

 �� �
 �
 �
� �� � � �� � � �� � � �
� �� � � �� � � � � �

�
�
�

(6.60)

 122

Notice that the Jacobian matrix of equation (6.60) is equal to J12 (see section 6.1.3),

which is the one degenerating at wrist singularity. The determinant and the adjoint

Jacobian are derived as

12 5det s� �J , (6.61)

and

4 5 4 5 5

12 4 5 4 5

4 4

0
0

s c c c s
adj c s s s

s c

� �
 �
� �� � �
� ��� �

J ,

(6.62)

respectively. At wrist singularity s5 = 0. The above expression can be split according to

expression (6.56) as:

12 5 4 4

0 0 1
0

0 0 0
i if adj s c s

�
 �
� �� � �
� �� �

J

(6.63)

and

4 5 4 5

12

4 4

0
0 0

0
i

s c c c
adj

s c

�
0

 �
� �� � �
� ��� �

J

(6.64)

Substituting equation (6.62) into equation (6.40) and assuming that and s5 = 0,

yields into:

12 0adj �J

4 5 4 4

5

6 4 4

12 5

()
0

det

x y

x y

c s u c u
b

s u c u

v vb
s

+
+ 6
+

 �
 �� �
� � � ��� � � �
� � � ��� �� �

� �
J

�
�
� ,

(6.65)

which corresponds to the behavior of the system at wrist singularity with velocity

relation of type-A. The above expression produces the so called self-motion.

 123

During a velocity relation of type-B, 12 0adj �J , which implies that 12 0iadj �J . If the

determinant factor fi is canceled out and using only, as stated in equation 12iadj J (6.58),

the final expression becomes:

4

5 5 4 4

6

12 5

0

det

z

x y

u
b s c u s u

v vb
s

+
+ 6
+

 � �
 �
� � � �� � �� � � �
� � � �� �� �

� �
J

�
�
�

(6.66)

Two types of motions can be observed in equation (6.66) depending on u:

Escape/through motion (0zu �), and boundary motion (0, 0x yu u� �). The former will

take the wrist out of singularity, while the latter rotates the whole wrist maintaining the

singularity configuration.

Calculation of the sign variable � when crossing singularity with velocity relation of

type-B is done by comparing the direction of the applied force in relation with the

direction orthogonal to singular direction.

6.5 Experimental results

The main objective of this section is to analyze the behavior of both DLS and adjoint

Jacobian approach in the context of human-robot cooperation using virtual fixtures when

dealing with singular configurations. Only the wrist singularity is studied, since, as it has

already been pointed out, contrary to shoulder and boundary singularities, the wrist

singularity may appear inside a virtual constrained working space during cooperative

operation. Three different situations are distinguished: (a) Passing through singularity,

(b) Escaping from singularity along singular direction, and (c) Passing near singularities.

During the experiments, the path is virtual constrained to allow applied forces only in the

desired direction. The evaluation criterion is basically based on the Cartesian deviation

from the subspace of preferred directions U.

 124

Figure 6.5. End-effector movement along (a) direction orthogonal to singular
direction, and (b) singular direction

6.5.1 Passing through singularity

The first experiment consists of movements of the end-effector along Z-axis with respect

to the base reference frame in such a way that passing through singularity occurs.

Therefore, the robot initial position, defined in the joint space, equal to

(deg) is used. The corresponding Cartesian pose is defined as

. Then, a translational VF along Z-axis is created, i.e. and ,

where . The end-effector is commanded by hand up and down so long as

necessary to pass through singular configuration, repeating this movement several times.

0 {0,15,100,0, 25,0}� ��

TART 1{ }l T
TCPS � lR {0}S� �

1 [0 0 1]T�l

Even though, passing through singularity presents not complications singularity for

any of both approaches, DLS and adjoint Jacobian, plots of the actual Cartesian position

and orientation (Figure 6.6 and Figure 6.7, respectively) reveal that the DLS produces

larger deviations from the constrained path than the adjoint Jacobian.

 125

Figure 6.6. End-effector position while passing through singularity with virtual
fixture along Z-axis w.r.t. the base frame

Figure 6.7. End-effector orientation while passing through singularity with virtual
fixture along Z-axis w.r.t. the base frame

 126

Figure 6.8. End-effector error profile while passing through singularity with virtual
fixture along Z-axis w.r.t. the base frame

Figure 6.8 shows the instantaneous norm of the error for both position and orientation in

the Cartesian space. In both approach, crossing through singularity represents a critical

point affecting the error behavior. Nevertheless, the adjoint Jacobian reduces the

produced error when compared with the DLS. Table 6.1 presents maximal and mean

error produced during the experiments.

Table 6.1. Maximum and mean error when passing through wrist singularity

Singularity
Robust

approach

Maximum
Position

error (mm)

Mean Position
error (mm)

Maximum
Orientation
error (deg)

Mean
Orientation
error (deg)

DLS 2.1651 0.5029 0.3226 0.1386

adjoint Jacobian 0.7864 0.3189 0.2263 0.0957

 127

Figure 6.9. Position of joints �4, �5 and �6 while passing through singularity with
virtual fixture along Z-axis w.r.t. the base frame

Figure 6.10. Velocity of �4, �5 and �6 while passing through singularity with virtual
fixture along Z-axis w.r.t. the base frame

 128

It is worth to point out the behavior of the robot on the joint space under the influence of

both strategies. Figure 6.9 and Figure 6.10 show the position and velocity, respectively,

of the last three joints (4+ , 5+ and 6+) which are the critical ones when passing through

wrist singularity. The joint perturbation at singularity is notably stronger under DLS as

under adjoint Jacobian. On the other side, joint velocities present a discontinuity at

singularity (see Figure 6.10). This occurs from switching between control strategy for

velocity relations of Type-A and Type-B. Although the discontinuity can be notice by

the user during cooperative operation, such discontinuity does not produce significant

deviation in the Cartesian space, since this occurs in the null space.

6.5.2 Escaping singularity along singular direction

It has already been pointed out that the singular direction at singularity is actually an

unfeasible direction along which it is physically impossible for the robot to exert a

movement. One possible solution is the so called null space motion to relocate the robot

joints in such a way that the singular direction becomes orthogonal to the desired

movement. The main objective of this experiment is to analyze the behavior of both

strategies when trying to escape singularity along singular direction. The initial joint

position is , which corresponds to the y0 of 0 {0,10,80,0,0,0}�� Figure 6.5.b, where the

singular direction is parallel to the Y-axis with respect to the base frame. A VF is

defined with equal to the Cartesian pose corresponding to and a translational VF

along Y-axis, i.e. and , where . Thus, movements

back and fort along the virtual constrained path require, first of all, that the robot escapes

from singularity and afterwards passes through singularity in a similar way as in the last

experiment.

TART 0�

1{ }l T
TCPS � lR {0}S� � 1 [0 1 0]T�l

The behavior of the end-effector in the Cartesian space during the experiment is plotted

in Figure 6.11 and Figure 6.12 for position and orientation, respectively. It can be

observed at the very beginning of the plots that the DLS presents a very large deviation

error in the attempt of escape from singularity. In Figure 6.13 the instantaneous error is

shown:
max

7.9p �e (mm) and
max

24r �e (deg). On the contrary, the response of the

adjoint Jacobian approach presents no significant deviations while escaping from

 129

singularity:
max

0.86p �e (mm) and
max

0.36r �e (deg). Notice too, that on the

subsequent attempts of passing through singularity the adjoint Jacobian slows its motion

while the DLS continuous with the same velocity profile.

Figure 6.11. End-effector position while escaping from singularity with virtual
fixture along Y-axis w.r.t. the base frame

 130

Figure 6.12. End-effector orientation while escaping from singularity with virtual
fixture along Y-axis w.r.t. the base frame

Figure 6.13. End-effector error profile while escaping from singularity with virtual
fixture along Y-axis w.r.t. the base frame

 131

The results observed in the Cartesian space become clearer when analyzing the robot

behavior in the joint space. Figure 6.14 shows the position of all joints. Notice that the

DLS does not attempt any motion of the critical joints (4+ , 5+ and 6+) when trying to

escape singularity, instead, the first joint 1+ moves until it becomes possible for the other

joints to start any kind of movement, producing of course a large error in the Cartesian

space. On the other hand, the adjoint Jacobian approach moves first joints 4+ and 5+

simultaneously and in opposite direction keeping the other joint constant in the

meanwhile. This movement represents the null space motion that rotates the robot joints

so that the singular directions becomes orthogonal to escaping direction, which occurs

when 4 90+ � � and 5 90+ � . The null motion is the result of a velocity relation of Type-

A at singularity, and only when the singular direction becomes orthogonal to the desired

motion, the velocity relation of Type-B occurs, which corresponds to the escape/through

motion described in section 6.4.5. In this way, the robot escapes singularity without

producing any position deviation.

Now, the reduction of velocity at singularity produced with the adjoint Jacobian

approach occurs due to the behavior of the robot in the joint space which is clearly

observed in Figure 6.15 and Figure 6.16. A velocity discontinuity occurs just like in the

last experiment, but this time the discontinuity is bigger, which can be explained from

the fact that the configuration of the robot when approaching to singularity is not as

straightforward as in the last experiment. Notice that joints 4+ and 6+ attempt to move

just before getting into the singularity in the same way it does when passing near

singularity, since a velocity relation of Type-A is present , but at singularity the attempt

of motion is stopped and the joint are driven back until the velocity relation becomes of

Type-B in order to pass through singularity. Joints 4+ , 5+ and 6+ are plotted once again

on Figure 6.16 in order to have a closer look to observe the effect of velocity on the joint

positions.

 132

Figure 6.14. Position of robot joints while escaping from singularity with virtual
fixture along Y-axis w.r.t. the base frame

 133

Figure 6.15. Velocity of joints �4, �5 and �6 while escaping from singularity with
virtual fixture along Y-axis w.r.t. the base frame

Figure 6.16. Position of joints �4, �5 and �6 while escaping from singularity with
virtual fixture along Y-axis w.r.t. the base frame

 134

6.5.3 Passing in the neighborhood of singularity

An exact solution to the inverse kinematics in the neighborhood of wrist singularity

yields into considerably high velocity of joints 4+ and 6+ . The closer to the singularity,

the higher is the resulting velocity. Both DLS and adjoint Jacobian reduce such

velocities, the former by applying the variable damping factor (equation (6.34)), while

the latter by velocity restriction using the norm of the joint velocity (equation (6.52)).

The purpose of this experiment is to analyze the behavior of both approaches when

passing in the neighborhood of singularity. Therefore, the initial joint position

 is used, which is almost the same as the one used in the last

experiment (escaping from singularity), but with a slight difference of the joint position

so that the robot configuration does not lay exactly at singularity. A VF is defined with

 at this position and a translational movement along Y-axis, i.e. and

, where . Back and fort movements of the end-effector are then

executed.

0 {0,11,81,0, 2,0}� ��

TART 1{ }l T
TCPS � lR

{0}S� � 1 [0 1 0]T�l

Figure 6.17 and Figure 6.18 show the behavior of end-effector position and

orientation, respectively, while the error profile is presented in Figure 6.19. Considerable

strong deviations for both position and orientation is observed for the case of DLS when

compared with the adjoint Jacobian approach, On the other hand observe that the adjoint

Jacobian approach reduces its motion rate when passing near singularity, therefore

remaining closer to the virtual constrained path. Maximum error and mean error are

given in Table 6.2.

Table 6.2. Maximum and mean error when passing in the neighborhood of wrist
singularity

Singularity
Robust

approach

Maximum
Position

error (mm)

Mean Position
error (mm)

Maximum
Orientation
error (deg)

Mean
Orientation
error (deg)

DLS 10.38 1.3835 9.4944 2.9962

adjoint Jacobian 0.6467 0.2412 1.101 0.5775

 135

Figure 6.17. End-effector position while passing in the neighborhood of wrist
singularity with virtual fixture along Y-axis w.r.t. the base frame

Figure 6.18. End-effector orientation while passing in the neighborhood of wrist
singularity with virtual fixture along Y-axis w.r.t. the base frame

 136

Figure 6.19. End-effector error profile while passing in the neighborhood of wrist
singularity with virtual fixture along Y-axis w.r.t. the base frame

The response of each approach in the neighborhood of singularities defers considerably

from each other and it can be corroborated when looking at the behavior of the robot in

the joint space (Figure 6.20 and Figure 6.21). While the adjoint Jacobian approach

reduces joint velocities in the neighborhood of singularity to avoid reconfiguration7 of

the robot, the DLS forces the robot to pass through singularity by damping the velocities.

(see Figure 6.20). In adjoint Jacobian method, 4+ and 6+ are constantly rotating in such a

way that 5+ does not cross through singular position, while in the case of DLS, 4+ and

6+ are kept almost constant and it is rather joint 5+ , which continuously rotates passing

through wrist singularity. Figure 6.21 shows the velocity response of both approaches.

The adjoint Jacobian reduces smoothly reduces joint velocities when approaching

singularities without producing any kind of discontinuity.

7 In the contest of singularities, reconfiguration means passing frome one side of the singular position to

the other.

 137

Figure 6.20. Position of joints �4, �5 and �6 while passing near singularity with
virtual fixture along Y-axis w.r.t. the base frame

Figure 6.21. Velocity of joints �4, �5 and �6 while passing near singularity with
virtual fixture along Y-axis w.r.t. the base frame

 138

6.6 Discussion

The problem of high joint velocities at wrist singularity is solved by both DLS and

adjoint Jacobian approaches. The response of DLS is smooth along the subspace

orthogonal to the singular direction, what turn out to be very comfortable when

commanding the end-effector by hand. Approaching to singularity with forces applied in

other directions would degenerate motion causing position deviations, while the velocity

behavior remains unchanged. One important objective of this work is to incorporate the

robotic system in the OR in such a way that its usage result as intuitive as possible.

Moving the robot freely in the space in a unconstrained fashion without been necessary

to care about the exactness of the movement may happen, for instance when moving the

end-effector apart from the operation scenario to change tool or simply to have more

available space for the surgeon to perform other tasks. In such cases, the priority is the

surgeon to comfortably move the robot. The DLS approach provides a convenient

solution for such scenarios since it avoids high joint velocities and allow crossing

singularity smoothly.

A virtual constrained environment, on the other hand, demands the end-effector

position to remain always within the allowed subspace. Any deviation out of the

permitted subspace could result in any kind of damage during operation, which is

unacceptable, especially considering that the robot has direct contact with human beings.

Therefore, the DLS cannot be considered for cooperative tasks where position accuracy

is demanded, since robot accuracy decreases in the neighborhood of singularity

especially along singular direction. The usage of the adjoint Jacobian approach to solve

the inverse kinematics of the robot is proposed as alternative for constrained cooperative

tasks, since its performance does not affect end-effector position accuracy, degeneration

of motion reflects rather in velocity. The null space motion feature of the adjoint

Jacobian inversion provides robustness against singular direction. Exactly at singular

position velocity discontinuities occur in the joint space. Nevertheless, these can be

reduced by reducing the applied force when crossing singularity, which turns out not to

be as comfortable for the user as the response of the DLS but assures position accuracy.

 139

7. Conclusions

A cooperative system for robotic assisted surgery is introduced. The combination of a

navigation system and a hands-on robotic arm form an integral solution for surgical

applications. A new command-based architecture is presented which provides a solid

foundation for building complex, robust and scalable applications. A clear

modularization of the different tasks as well as a strategic distribution of them along the

system framework, depending of their roll within the system, give enough flexibility to

cope various applications. Basic functions have been implemented within the new

proposed framework to cope different fundamental demands directly related to the

robotic arm, such as point to point motion in the joint space, linear motion in the

Cartesian space, velocity commanded motion in both joint and Cartesian space, and

cooperative motion through a hands-on interface mounted at the robot’s end-effector.

Special attention is focused on the interaction of the robotic system with the

surgeon, where a cooperative approach appears to be a good candidate to achieve a good

integration of the robot within surgical interventions. However such cooperation implies

extra safety measurements because direct contact with the human being takes place. The

concept of virtual constraints is used to assure safeness during operation by limiting the

allowed working space. This is realized in the form of virtual fixtures which guide the

tool along a predefined directions or paths. Previous work related to virtual fixtures

applies admittance control to create the virtually constrained subspace. This controller

relies on the user applied force to generate motion of the end-effector, where even

deviation error compensation depends on such applied forces (here known as manual

error compensation). In such approach, when deviation error occurs, the virtual preferred

directions are redefined to consider such error, creating a new virtual fixture that makes

it possible to compensate it. However, it has been shown that manual compensation does

not necessary compensate for all deviations, especially when the virtual fixture is

translational and the deviation error appears at orientation, or vice versa. In order to

solve this problem, the present work proposes another admittance controller with

autonomous error compensation, which has a clear division of responsibilities between

user and robotic system during cooperative tasks. While the user keeps complete control

on the movements along the preferred directions, the robotic system takes care of the

 140

error compensation independent of the applied forces. Such approach shows

considerable minimization of the error when compared to the manual compensation.

Additionally, the problem of robot singularities during cooperative tasks is treated, in

particular, the case of wrist singularity, which may appear at any moment within a

virtual constrained working area. The other two singularities are practically avoided.

Two solutions are compared: the Damped Least Square and the adjoint Jacobian. The

first one introduces a damping factor to the Jacobian inversion to prevent high velocities

in the neighborhood of singularities and at singularity. Although, smooth motion

becomes possible with this approach, position deviations of the end-effector appear,

especially when the commanded velocity points in the singular direction. In a virtual

constrained environment such deviations may mean getting out of the boundaries, which

cannot be permitted. An alternative solution is then considered to enhance position

accuracy; this is the so called adjoint Jacobian approach. Degeneration of the motion

appears only on velocity while the end-effector position is kept. During cooperative

tasks, rather slow motions are executed, and further reduction of the velocity of motion

in order to keep a correct position does not represent a problem. The adjoint Jacobian

approach produces null space motion to escape from singular directions avoiding the

degeneration of the movement in the Cartesian space. In the context of cooperative

manipulation, each of both methods can be favorable on particular scenarios. On the one

hand, the damped least-squares method can be used for unconstrained motions, where

position deviation is not critical, to provide a smooth transition through singularity

which may be comfortable for the user. On the other hand, the adjoint Jacobian approach

can be applied to virtual constrained motions, where the accuracy of the end-effector

position is relevant.

The presented methods significantly contribute in making manually guided robot

movements during cooperative tasks safer and more accurate. They increase the assistive

functionality of robotic systems and the level of integration within surgical interventions.

The interaction between surgeon and robot becomes more intuitive and friendlier.

Moreover, the concept of virtual fixtures improves safety measurements during such

cooperative tasks, while the surgeon maintains full control over the operation procedure.

 141

References

[1]. Aarno, D., Ekvall, S. and Kragic, D.: Adaptive Virtual Fixtures for Machine-
Assisted Teleoperation Tasks. Proceedings of the IEEE International Conference
on Robotics and Automation, pp. 1139-1144, April 2005.

[2]. Abbott, J. J., and Okamura, A. M.: Analysis of Virtual Fixture contact Stability
for Telemanipulation. Proceedings of the IEEE International conference on
Intelligent Robots and Systems, pp. 2699-2706, October 2003.

[3]. Abbot, J. J., Hager, G. D., and Okamura, A. M.: Steady-Hand Teleoperation with
Virtual Fixtures. Proceedings of the 12th IEEE Workshop on Robot and Human
Interactive Communication, pp. 145-151, 2003.

[4]. Abbott, J. J., Marayong, P. and Okamura, A. M.: Haptic Virtual Fixtures for
Robot-Assisted Manipulation. In S. Thrun, R. Brooks, and H. Durrant-Whyte,
editors, Robotics Research: Results of the 12th International Symposium ISRR,
pp. 49-64. Springer, 2007.

[5]. Adams, R. J. and Hannaford, B.: Stable Haptic Interaction with Virtual
Environments. IEEE Transactions on Robotics and automation, Vol. 15, No. 3,
pp. 465-474, June 1999.

[6]. Adler Jr., J. R., Murphy, M.J., Chang, S.D., Hancock, S.L.: Image-Guided
Robotic Radiosurgery. Neurosurgery, 44(6), p. 1299-306, June 1999.

[7]. Armstrong, J.: Catmull-Rom Splines, TechNote TN-06-001, January 2006,
http://www.algorithmist.net/media/catmullrom.pdf , last visited: 15th of April,
2007.

[8]. Armstrong, J.: Arc-Length Parameterization Part I, TechNote TN-06-004, May
2006, http://www.algorithmist.net/arclengthparam.html , last visited: 15th of
April, 2007.

[9]. Ardence/Venturcom, Inc., Phar Lap ETS.

[10]. Bedrossian, N.S.: Classification of Singular Configuration for Redundant
Manipulators, in Proceedings of the IEEE International conference on Robotics
and Automation, Vol. 2, pp. 818-823, 1990.

[11]. Bedrossian, N.S., Flueckiger, K.: Characterizing Spatial Redundant Manipulator
Singularities, in Proceedings of the IEEE International conference on robotics
and automation, pp. 714-719, April 1991.

[12]. Berkelman, P. and Ma, J.: A Compact, Modular, Teleoperated Robotic
Minimally Invasive Surgery System. International Conference on Biomedical
Robots and Mechatronics, Pisa, Italy, February 2006.

 142

[13]. Bettini, A., Lang, S., Okamura, A., and Hager, G.: Vision Assisted Control for
Manipulation Using Virtual Fixtures: Experiments at Macro and Micro Scales.
Proceedings of the IEEE International Conference on Robotics and automation,
pp. 3354-3361, May 2002.

[14]. Bettini, A., et al.: Vision-Assisted Control for Manipulation Using Virtual
Fixtures. IEEE Transactions on Robotics, Vol. 20, No. 6, pp. 953-966, December
2004.

[15]. Bruyninckx H. and De Schutter J.: Introduction to Intelligent Robotics. 7th
edition, K. U. Leuven, Belgium, 2001.

[16]. Burckhardt, C. W., Flury, P., Glauser, D.: Stereotactic Brain surgery, Integrated
MINERVA system meets demanding robotic requirements. In IEEE Engineering
in Medicine and Biology, Vol. 14, p. 314-317, 1995.

[17]. Burghart C., Krempien R., Redlich T., Pernozzoli A., Grabowski H.A.,
Münchenberg J., Albers J., Hassfeld S., Vahl C.: Robot assisted craniofacial
surgery; first clinical evaluation, Computer Assisted Radiology and Surgery,
828-833, Paris 1999.

[18]. Buss, S.R.: Introduction to Inverse Kinematics with Jacobian Transpose,
Pseudoinverse and Damped Least Squares methods, Department of Mathematics
University of California, San Diego La Jolla, CA 92093-0112, 2004.

[19]. Cai, M., Tianmiao, W., Wusheng; C., Yuru, Z.: A Neurosurgical Robotic System
under Image-Guidance. Proceedings of IEEE International conference on
Industrial Informatics, p.1245-1250, August, 2006.

[20]. Castillo-Cruces, R.A.: Development of efficient kinematics algorithms for
Cartesian control of a Mitsubishi PA10 robot, Master Thesis, Center for
Sensorsystems, University of Siegen, Siegen, Germany, 2004.

[21]. Cenk Cavosoglu, M. Tendick, F. Cohn, M. And Shankar Sastry, S.: A
Laparoscopic Telesurgical Workstation. IEEE Transactions on Robotics and
Automation, Vol. 15, No. 4, pp. 728-739, August 1999.

[22]. Chang, K.S. and Khatib, O.: Manipulator Control at Kinematic Singularities: A
Dynamically consistent Strategy, in Proceedings of IEEE International
Conference on Intelligent Robots and Systems, Vol. 3, pp. 84-88, 1995.

[23]. Chang, K.S. and Khatib, O.: Operational Space Dynamics: Efficient algorithms
for Modeling and control of Branching Mechanisms, in Proceedings of the IEEE
International Conference on Robotics and automation, pp. 850-856, April 2000.

[24]. Cheng, F.T., Hour, T.L., Sun, Y.Y. and Chen, T.H.: Study and Resolution of
Singularities for a 6-DOF PUMA Manipulator, in IEEE Transactions on
Systems, Man, and Cybernetics- Part B, Vol. 27, No. 2, pp. 332-343, April 1997.

 143

[25]. Chiaverini, S. and Egeland, O.: A solution to the singularity problem for six-joint
manipulators, in Proceedings of the IEEE International Conference on Robotics
and Automation, Vol. 1, pp. 644-649, May 1990.

[26]. Chiaverini, S., Siciliano, B., and Egeland, O.: Review of the Damped Least-
Squares Inverse Kinematics with Experiments on an Industrial Robot
Manipulator, in IEEE Transactions on Control, Systems Technology, Vol. 2, No.
2, pp. 123-134, June 1994.

[27]. Cleary, K., et al.: Robotically Assisted Spine Needle Placement: Program Plan
and Cadaver Study. IEEE Symposium on Computer-Based Medical Systems, p.
339-342, 2001.

[28]. Cleary, K., Nguyen, C.: State of the Art in Surgical Robotics: Clinical
Applications and Technology Challenges. Computer Aided Surgery, 6:312-328,
November 2001.

[29]. Craig, J.: Introduction to Robotics: Mechanics and Control, ISBN 0201095289,
Addison-Wesley Publishing, Inc., 1989.

[30]. Dam, E. B., Koch, M., Lillholm, M..: Quaternions, Interpolation and Animation.
Technical Report DIKU-TR-98/5, Department of Computer Science, University
of Copenhagen, Denmark, July 17, 1998.

[31]. Dario, P., Guglielmelli, E., Allotta, B. Carrozza, M. C.: Robotics for Medical
Applications, in IEEE Robotics & Automation Magazine, 3(3), p. 44-56, 1995.

[32]. Dario, P., Hannaford, B., Menciassi, A: Smart Surgical tools and Augmenting
Devices. IEEE Transactions on Robotics and Automation, Vol. 19, No. 5, pp.
782-792, October 2003.

[33]. Davies, B. L., et al.: Hands-On Robotic Surgery: Is This the Future?. G. Z. Yang
and T. Jiang Eds.: MIAR 2004, LNCS 3150, pp. 27-37, Springer-Verlag Berlin
Heidelberg 2004.

[34]. Deo, A.S., Walker, I.D.: Overview of Damped Least-Squares Methods for
Inverse Kinematics of Robot Manipulators, in Journal of Intelligent and Robotic
Systems, Vol 14, pp 43-68, 1995.

[35]. Dombre, E.: Introduction to Surgical Robotics, 2nd Summer School in Surgical
robotics, Montpellier, September 7-14, 2005.

[36]. Edward Colgate, J. Wannasuphoprasit, W. and Peshkin, M. A.: Cobots: Robots
for collaboration with human operators. Proceedings of the International
Mechanical Engineering Congress and Exhibition, Vol. 58, pp. 433-439, 1996.

 144

[37]. Faulring, E. L., Edward Colgate, J. and Peshkin, M. A.: A High Performance 6-
DOF Haptic Cobot. Proceedings of IEEE International Conference on Robotics
and Automation, pp. 1980-1985, New Orleans, April 2004.

[38]. Featherstone, R.: Position and Velocity transformations between robot end-
effector coordinates and joint angles. International Journal on Robotics Research,
2(2):35-45, 1983.

[39]. Federspil, P. A., Stallkamp, J. and Plinkert, P. K.: Robotic. Eine neue Dimension
in der HNO-Heilkunde?. HNO 2001, 49, pp. 505-5132001.

[40]. Fjellstad, Ola-Erik and Fossen, Thor O. (1994). Quaternion Feedback Regulation
of Underwater Vehicles, in Proceedings of the 3rd IEEE Conference on control
applications, Glasgow, August, p. 24-26, 1994.

[41]. Funda, J., et al.: Constrained Cartesian Motion Control for Teleoperated Surgical
Robots. IEEE Transactions on Robotics and Automation, Vol. 12, No. 3, pp. 453-
465, June 1996.

[42]. Ghdoussi, M., Butner, S. E., Wang, Y.: Robotic Surgery- The Transatlantic Case.
Proceedings of the IEEE International Conference on Robotics & Automation,
Washington, DC, pp. 1882-1888, May 2002.

[43]. Groß, I: Entwicklung eines Softwaresystems zur universellen Planung
chirurgischer Eingriffe an 2D- und 3D-Bildmodalitäten. Doctoral Thesis, Center
for Sensorsystems, University of Siegen, Siegen, Germany, 2005.

[44]. Guckenheimer, J. and Holmes, P.: Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields, ISBN 0387908196, Springer Verlag, 1983.

[45]. Guthart, G. S., Salisbury Jr., J. K.: The IntuitiveTM Telesurgery System:
Overview and Application. IEEE International Conference on Robotics &
Automation, p. 618-621, San Francisco, CA, USA, April 2000.

[46]. Harris, S. et al.: Interactive Pre-operative selection of Cutting Constraints, and
Interactive Force Controlled Knee Surgery by a Surgical Robot. W. M. Wells et
al. Eds.: MICCAI 1998, LNCS 1496, pp. 996-1006, Springer-Verlag Berlin
Heidelberg 1998.

[47]. Hashtrudi-Zaad, K., and Salcudean, S. E.: Analysis of control Architectures for
Teleoperation Systems with Impedance/Admittance Master and Slave
Manipulators. The International Journal of Robotics Research, Vol. 20, No. 6,
pp. 419-445, June 2001.

[48]. Heindl, J.: Statische Eigengewichtskompensation von Werkzeugen an der
sensorbestückten Roboterhand; Lehrgang R2.02 Roboter mit Sensor-
Rückführung; CCG Carl-Cranz-Gesellschaft e.V.; Oberpfaffenhofen; 1988.

 145

[49]. Heuel, S.: Planung und Generierung von Trajektorien für Roboter-Mensch
Iteraktion mit Hilfe von Spline Funktionen, Studienarbeit, University of Siegen,
2008.

[50]. Ho, S. C., Hibberd, R. D. and Davies, B. L.: Robot Assisted Knee Surgery. IEEE
Engineering in Medicine and Biology Magazine, Vol. 14, Issue 3, pp. 292-300,
May/June 1995.

[51]. Holt, D., Zaidi, A., Abramson, J., and Somogyi, R.: Telesurgery: Advances and
Trends. Technology Review, University of Toronto Medical Journal, pp. 52-54,
2004.

[52]. Howe, R. D. and Matsuoka, Y.: Robotics for Surgery. Annual Reviews Biomed.
Eng., pp. 211-240, 1999.

[53]. Hsu, P., Hauser, J. and Sastry, S.: Dynamic control of Redundant Manipulators,
Proceedings of the IEEE International conference on Robotics and Automation,
Vol. 1, pp. 183-187, April 1988.

[54]. Hu, T., Castellanos, A. E., Tholey, G. and Desai, J. P.: Real-Time Haptic
Feedback in Laparoscopic Tools for Use in Gastro-Intestinal Surgery. T. Dohi
and R. Kikinis (Eds.): MICCAI 2002, LNCS 2488, pp. 66-74, Springer-Verlag
Berlin Heidelberg 2002.

[55]. Ikeura, R., Monden, H. and Inooka, H.: Cooperative Motion Control of a Robot
and a Human. Proceedings of the 3rd IEEE International Workshop on Robot and
Human Communication, pp. 112-117, 1994.

[56]. Itoh, T., Kosuge, K., and Fukuda, T.: Human-Machine Cooperative
Telemanipulation with Motion and Force Scaling Using Task-Oriented Virtual
Tool Dynamics. IEEE Transactions on Robotics and Automation, Vol. 16, No. 5,
pp. 505-516, October 2000.

[57]. Jakopec, M., Rodriguez y Baena, F., Harris, S. J.: The Hands-On Orthopaedic
Robot “Arobot”: Early clinical Trials of Total Knee Replacement surgery, in
IEEE Transactions on Robotics and Automation, Vol. 19, No. 5, p. 902-911,
October 2003.

[58]. Joly, L. D. and andriot, C.: Imposing Motion Constraints to a Force Reflecting
Telerobot through Real-Time Simulation of a Virtual Mechanism. Proceedings of
the IEEE International Conference on Robotics and Automation, part 1, pp. 357-
362, 1995.

[59]. Kaiser, W.A.; Fischer, H.; Vagner, J. and Selig, M.: Robotic system for biopsy
and therapy of breast lesions in a high-field whole -body magnetic resonance
tomography unit, Invest Radiol,vol. 35, pp. 513-9., 2000.

 146

[60]. Kapoor, A., Li, M., Taylor, R. H.: Spatial Motion Constraints for Robot Assisted
Suturing Using Virtual Fixtures. IEEE International Conference on Robotics &
Automation, pp. 1954-1959, Taiwan, September , 2003.

[61]. Kapoor, A., Li, M. and Taylor, R. H.: Spatial Motion Constraints for Robot
Assisted Suturing using Virtual Fixtures. Medical Image Computing and
Computer Assisted Intervention – MICCAI (2) 2005, pp. 89-96, Palm springs,
USA, October 2005.

[62]. Kazerooni, H.: Human/Robot Interaction via the Transfer of Power and
Information Signals Part I: Dynamics and Control Analysis. Proceedings of the
Annual International Conference of the IEEE Engineering I Medicine and
Biology society, Vol. 3, pp. 908-909, November 1986.

[63]. Kazerooni, H.: Human-Robot Interaction via the Transfer of Power and
Information Signals. IEEE Transactions on Systems, Man, and Cybernetics, Vol
20, No. 2., pp. 450-463, March/April 1990.

[64]. Kennedy, C. W., Hu, T. And Desai, J. P.: Combining Haptic and Visual Servoing
for Cardiothoracic Surgery. Proceedings of the IEEE International Conference on
Robotics & Automation, pp. 2106-2111, May 2002.

[65]. Khalil, W. and Dombre, E.: Modeling, Identification & Control of Robots,
Hermes Penton Science, ISBN 1903996139, Great Britain, 2002.

[66]. Kieffer, J.: Manipulatior Inverse Kinematics for Unitmed End-Effector
Trajectories With Ordinary Singularities, in International Journal of Robotics
Research, Vol. 11, No. 3, pp. 225-237, June 1992.

[67]. Kieffer, J.: Differential Analysis of Bifurcations and Isolated Singularities for
Robots and Mechanisms, in IEEE Transactions on Robotics and Automation,
Vol. 10, No. 1, February 1994.

[68]. Kircanski, M., Kircanski, N., Lekovic, D., Vukobratovic, M.: An experimental
study of resolved acceleration control in singularities: damped least-squares
approach, in IEEE International Conference on Robotics and Automation, Vol. 4,
pp. 2686-2691, 1994.

[69]. Khatib,O.: A Unified Approach for Motion and Force Control of Robot
Manipulators: The Operational Space Formulation, in IEEE Journal of Robotics
and Automation, Vol. RA-3, No. 1, pp. 43-53, February 1987.

[70]. Knappe, P., Gross, I., Pieck, S., Wahrburg, J.; Kuenzler, S.; Kerschbaumer; F.:
Position control of a surgical robot by a navigation system. International
Conference on Intelligent Robots and Systems, (IROS 2003). Proceedings.
IEEE/RSJ, Vol 4, Issue 27-31, p. 3350-3354, Las Vegas, Nevada, October 2003.

 147

[71]. Kosuge, K., Fujisawa, Y., and Fukunda T.: control of robot directly maneuvered
by operator. Proceedings of the IEEE International conference on Intelligent
Robots and Systems, pp. 49-54, July 1993.

[72]. Kosuge, K., Yoshida, H., Fukuda, T.: Dynamic Control for Robot-Human
Collaboration. Proceedings of 2nd IEEE International Workshop on Robot and
Human Communication, pp. 398-399, 1993.

[73]. Kosuge, K. and Kayamura, N.: Control of a Robot Handling an Object in
Cooperation with a Human. Proceedings of the 6th IEEE International Workshop
on Robot and Human Communication, pp. 142-147, 1997.

[74]. Kumar, R., Jensen, P., Taylor R. H.: Experiments with a Steady Hand Robot in
Constrained Compliant Motion and Path Following. Proceedings of the 8th IEEE
International Workshop on Robot and Human Interaction (RO-MAN), Pisa, Italy,
1999.

[75]. Kwoh, Y. S., Hou, J., Jonckheere, E. A., Hayati, S.,: A robot with Improved
Absolute Positioning, in IEEE Transactions on Biomedical Engineering, vol. 35,
No. 2, p. 153-160, February, 1988.

[76]. LabVIEW Intermediate I Successful Development Practices Course Manual.
National Instruments Corporation, Part Number 323756B-01, October 2006.

[77]. LabVIEW Real-Time Application Development Course Manual. National
Instruments Corporation, Part Number 323843B-01, March 2006.

[78]. Lanfranco, A. R. et al.: Robotic Surgery A Current Perspective. Annals of
Surgery, Vol. 239, No. 1, pp. 14-21, January 2004.

[79]. Lavallee, S., et al.: Image Guided Operating Robot: a Clinical Application in
Stereotactic Neurosurgery, in Proceedings of the 1992 IEEE International
Conference on Robotics and Automation, p. 618-624, Nice, France, May 1992.

[80]. Li, M., Kapoor, A. and Taylor, R. H.: A Constrained Optimization Approach to
Virtual Fixtures. Proceedings of the International Conference on Intelligent
Robots and Systems, pp. 2924-2929, Edmonton, Canada, August, 2005.

[81]. Low, K.H. and Dubey, R.N.: A comparative study of generalized coordinates for
solving the inverse kinematics problem of a 6R robot manipulator. International
Journal on Robotics Research, 5(4):69-88, 1986.

[82]. Luenberger, D.: Linear and Nonlinear Programming, Addison-Wesley, Reading,
MA, 1984.

[83]. Lueth, T.C.et al: A Surgical Robot System for Maxillofacial Surgery. IEEE Int.
Conf. on Industrial Electronics, Control, and Instrumentation (IECON), p. 2470-
2475, Aachen, Germany, September 1998.

 148

[84]. Maciejewski, A.A. and Klein, C.A.: Numerical filtering for the operation of
robotic manipulators through kinematically singular configurations, J. Robot.
Sys., 5, p. 527-552, 1988.

[85]. Marayong, P., Bettini, A. and Okamura, A.: Effect of Virtual Fixture Compliance
on Human-Machine Cooperative Manipulation. Proceedings of the 2002
IEEE/RSJ International Conference on Intelligent Robots and Systems EPFL, pp.
1089-1095, Lausanne, Switzerland, October 2002.

[86]. Mayer, H., Nagy, I. and Knoll, A.: Skill Transfer and Learning by Demonstration
in a Realistic Scenario of Laparoscopic Surgery. Humanoids, Munich, 2003.

[87]. Mayorga, R.V. and Wong, A.K.C.: A singularities avoidance approach for the
optimal local path generation of redundant manipulators, in Proceedings of the
IEEE International Conference on Robotics and Automation, Vol. 1, pp. 49-54,
1988.

[88]. Micaelli, A., Bidard, C., and Andriot, C.: Decoupling control Based on Virtual
Mechanisms for Telemanipulation. Proceedings of the IEEE International
Conference on Robotics & Automation, pp. 1924-1931, May 1998.

[89]. Mukundan, R.: Quaternions: From Classical Mechanics to Computer Graphics,
and Beyond, In Proceedings of the 7th Asian Technology conference in
Mathematics, pp. 97-106, 2002.

[90]. Nagy, I., Mayer, H. Knoll, M.: The Endo[PA]R System for minimally Invasive
Robotic Surgery. TUM-I0320 Institute für Informatik der Technische Universität
München, Dezember 2003.

[91]. Nakamura R, et al.: Development of a sterilizable MRI-compatible manipulator
for stereotactic neurosurgery; Proc of the 13th International Congress and
Exhibition of Computer Assisted Radiology and Surgery(CARS'99), p. 1019,
Paris, France, 1999.

[92]. Nakamura, Y., and Hanafusa, H.: Inverse kinematic solutions with singularity
robustness for robot manipulator control. ASME J. Dyn. Sys. Meas. Control
108(2): 163–171, 1986.

[93]. Nakamura, Y.: Advanced Robotics: Redundancy and Optimization, Addison-
Wesley Publishing Company, Inc., 1991, ISBN 0-201-15198-7, 1991.

[94]. Nathoo, N., et al. In Touch with Robotics:Neurosurgery for the Future.
Neurosurgery, Vol. 56, No. 3, pp. 421-433, March 2005.

[95]. Nenchev, D.N.: Tracking manipulator trajectories with ordinary singularities: A
null space based approach, IEE Control’94, The University of Warwick,
Coventry,UK, pp. 1145-1147,March 1994.

 149

[96]. Nenchev, D. N., Tsumaki, Y., Uchiyama, M., Senft, V., Hirzinger, G.: Two
Approaches to Singularity-Consistent Motion of Nonredundant Robotic
Mechanisms, Proceedings of the IEEE International Conference on Robotics and
Automation, Vol. 2, pp. 1883-1890, USA, 1996.

[97]. Nenchev, D. N., Tsumaki, Y., and Uchiyama, M.: Singularity-Consistent
Behavior of Telerobots: Theory and Experiments, The International Journal of
Robotics Research, Vol. 17, No. 2, pp. 138-152, 1998.

[98]. Nenchev, D.N., Tsumaki, Y., Uchiyama, M.: Real-Time Motion Control in the
Neighborhood of Singularities: A Comparative Study Between the SC and the
DLS Methods, Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 506-511, Detroit, Michigan, USA, 1999.

[99]. Nenchev, D.N.: Singularity-Consistent Parameterization of Robot Motion and
Control, International Journal of Robotics Research, Vol. 19, No. 2, pp. 159-182,
2000.

[100]. Oetomo, D., Ang, M. Jr. and Lim, S.Y.: Singularity Handling on Puma in
Operational Space Formulation, Lecture Notes in Control and Information
Sciences, Eds. Daniela Rus and Sanjiv Singh, Eds., Vol. 271, pp. 491-500,
Springer Verlag 2001.

[101]. Okamura, A. M., et al.: Human-Machine Collaborative Systems for
Microsurgical Applications. International Journal of Robotics Research, Vol. 24,
Issue 9, pp. 731-741, September 2005.

[102]. Operation Lindbergh, A World First in TeleSurgery: The Surgical Act Crosses
the Atlantic! New York - Strasbourg, Press Conference, Espace Multimedia,
Paris France, September 2001.

[103]. Park, S., Howe, R: D., Torchiana, D. F.: Virtual Fixtures for Robotic Cardiac
Surgery. In W. Niessen and M. Viergever (Eds.): MICCAI 2001, LNCS 2208,
pp. 1419-1420, 2001.

[104]. Payandeh, S., and Stanisic, Z.: On application of virtual Fixtures as an aid for
Telemanipulation and Training. Proceedings of Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems, pp. 18-23, 2002.

[105]. Petermann J, Kober R, Heinze R, Frölich JJ, Heeckt PF,Gotzen L.: Computer-
assisted planning and robot-assisted surgery in anterior cruciate ligament
reconstruction. Op Tech Orthop, Vol. 10, pp. 50–55, 2000.

[106]. Pieck, S: Leistungsanalyse ines optischen 3D/6D Lokalisiersystems und dessen
Integration in ein chirurgisches Assistenzsystem. Doctoral Thesis, Center for
Sensorsystems, University of Siegen, Siegen, Germany, 2006.

 150

[107]. Rininsland, H.: ARTEMIS. A telemanipulator for cardiac surgery. European
Journal of Cario-thoracic Surgery, Vol. 16, Supplement 2, pp. 106-111,
November 1999.

[108]. Rizun, P. R., McBeth, P. B., Louw D. F. and Sutherland, G. R.: Robot-Assisted
Neurosurgery, Surgical Innovation, Vol. 11, No. 2, pp. 99-106, 2004.

[109]. Rosenberg, L. B.: Virtual Fixtures: Perceptual Tools for Telerobotic
Manipulation. Proceedings of the IEEE Virtual Reality Annual International
Symposium, pp. 76-82, 1993.

[110]. Ruurda, J. P., et al.: Feasibility of Laparoscopic Surgery Assisted by a Robotic
Telemanipulation System. W. Niessen and M. Viergever (Eds.): MICCAI 2001,
LNCS 2208, pp. 1304-1305, Springer-Verlag Berlin Heidelberg 2001.

[111]. Sayers, C.: Remote Control Robotics. ISBN 0387985972, Springer-Verlag, New
York, 1999.

[112]. Schneider, O., Troccaz, J., Chavanon and Blin, D.: PADyC: a Synergistic Robot
for Cardiac Puncturing. Proceedings of the IEEE International Conference on
Robotics & Automation, pp. 2883-2888, April 2000.

[113]. Schneider, O., Troccaz, J.: A Six-Degree-of-Freedom Passive Arm with
Dynamic constraints (PADyC) for Cardiac Surgery Application: Preliminary
Experiments. Computer aided surgery, Vol. 6, No. 6, pp. 340-351, 2001.

[114]. Senft, V., and Hirzinger, G.: Redundant Motions of Non Redundant Robots- A
New Approach to singularity Treatment. IEEE International conference on
Robotics and Automation, Vol. 2, pp. 1553-1559, Nagoya, Japan, May 1995.

[115]. Sciavicco, L. and Siciliano, B.: Modelling and Control of Robot Manipulators.
Advanced Textbooks in Control and Signal Processing, 2nd. Edition, ISBN
1852332212, Springer 2005.

[116]. Strang, G., editor: Linear algebra and its Applications. Academic Press, New
York 1980.

[117]. Su, L. M., et al.: Robotic Percutaneous Access to the Kidney: Comparison with
Standard Manual Access, in Journal of Endourology, Vol, 16, No. 7, pp. 471-
475, September 2002.

[118]. Tabaie, H. A. et al.: Endoscopic Coronary Artery Bypass Graft (ECABG)
Procedure with Robotic Assistance. Heart Surgery Forum 1999-0552, 2 (4), pp.
310-317, 1999.

[119]. Taylor, R.H.: Planning and Execution of Straight Line Manipulator Trajectories,
MIT Press, pp. 265-286, Cambrige, Mass, 1982.

 151

[120]. Taylor, R. H. Mittelstadt, B. D., Williamson, B., Musits, B. L., Glassman E.,
Bargar, W. L.: An Image-Directed Robotic System for Precise Orthopaedic
surgery, in IEEE Transactions on Robotics and Automation, Vol. 10, No. 3, pp.
261-275, 1994.

[121]. Taylor, R. H., et al.: A Telerobotic Assistant for Laparoscopic Surgery. IEEE
Engineering in Medicine and Biology Magazine, Vol. 14, Issue 3, pp. 279-288,
1995.

[122]. Taylor, R. H.: Robots as surgical assistants: Where we are, wither we are
tending, and how to get there, in AIME 97, Sixth ed., pp. 3-11, Genoble, France,
1997.

[123]. Taylor, R. H., et al.: A Steady-Hand Robotic System for Microsurgical
Augmentation. International Journal of Robotic Research, Vol. 18, No. 2, pp.
1201-1210, December 1999.

[124]. Taylor, R. H. and Stoianovici, D.: Medical Robotics in Computer-Integrated
Surgery. IEEE Transactions on Robotics and Automation, Vol. 19, No. 5, pp.
765-781, October 2003.

[125]. Taylor, H.: A perspective on Medical robotics. Proceedings of the IEEE, Vol. 94,
No. 9, pp. 1652-1664, September 2006.

[126]. Trevelyan, J.P., Kovesi, P.D., Ong, M. and Elford, D.: ET: A Wrist Mechanism
without Singular Positions, The International Journal of Robotics Research, No.
4, pp. 71-85, 1986.

[127]. Troccaz, J., Peshkin, M., Daies, B.: The Use of Localizers, Robots and
Synergistic Devices in CAS. Proceedings of the First Joint Conference on
Computer Vision, Virtual Reality, and Robotics in Medicine and Medical
Robotics and Computer-Assisted surgery, pp. 727, Grenoble, France, 1997.

[128]. Troccaz, J.: Introduction to medical robotics. Summer European University on
Surgical Robotics, Montpellier, September. 2003.

[129]. Troccaz, J., et al.: Medical Image Computing and Computer Aided Medical
Interventions applied to soft tissues: Work in Progress in Urology. Proceedings
of the IEEE, Vol. 94, Issue 9, pp. 1665-1677, Sept. 2006.

[130]. Tsumaki, Y., Kotera, S., Nenchev, D. N. and Uchiyama, M.: Singularity-
Consistent Inverse Kinematics of a 6 D.O.F. Manipulator with a Non-Spherical
Wrist, in Proceedings of the 1997 IEEE International Conference on Robotics
and Automation, Albuquerque, New Mexico, USA, pp. 2980-2985, 1997.

[131]. Tsumaki, Y., Nenchev, D. N., Kotera, S. and Uchiyama, M.: Teleoperation based
on the adjoint Jacobian approach, in IEEE Control Systems Magazine, Vol. 17,
No. 1, pp. 53-62, February 1997.

 152

[132]. Tsumugiwa, T., Yokogawa, R. and Hara, K.: Variable Impedance Control with
Virtual stiffness for Human-Robot Cooperative Task. Proceedings of the 41st
SICE Annual Conference, Vol. 4, pp. 2329-2334, 2002.

[133]. Tsuniaki, Y., Nenchev D. N. and Uchiyama M.: Experimental Teleoperation of a
Nonredundant Slave Arm at and around Singularities, in Proceedings of the IEEE
International conference on Robotics and automation, pp. 385-392, April 1996.

[134]. Turro, N., Khatib, O., and Coste-Maniere, E.: Haptically Augmented
Teleoperation, Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 386-392, May 2001.

[135]. Uchiyama, M.: A study of Computer control of Motion of a Mechanical Arm (1st
Report, Calculation of Coordinative Motion Considering singular Points), in
Bulletin of the Japan society of Mechanical Engineers, Vol. 22, No. 173, pp.
1640-1647, November 1979.

[136]. Wahrburg, J., Pieck, S.,Gross, I., Knappe P, Kuenzler S., Kerschbaumer, F.. A
Navigated Mechatronic System with Haptic Features to Assist in Surgical
Interventions, Journal of Computer Aided Surgery, Vol. 8; pp. 292-299, 2003.

[137]. Wampler, C.W. II: Manipulator Inverse Kinematic solution Based on Vector
Formulations and Damped Least-Squares Methods, in IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-16, No. 1, January/February 1986.

[138]. Wang, H., Kearney, J., and Atkinson, K.: Arc-Length Parameterized Spline
Curves for Real-Time Simulation, in Proceedings of 5th International Conference
on Curves and Surfaces, pp. 387-396, June 2002.

[139]. Wang, H., Kearney, J., and Atkinson, K.: Robust and Efficient Computation of
the Closest Point on a Spline Curve, Proceedings of 5th International Conference
on Curves and Surfaces, pp.397-406, June 2002.

[140]. Whitney, D. E.: Resolved Motion Rate Control of Manipulators and human
Prostheses, in IEEE Transactions on Man-Machine Systems, Vol. MMS-10, No.
2, pp. 47-53, June 1969

[141]. Worsnopp, T. et al.: Controlling the Apparent Inertia of Passive Human-
Interactive Robots. Transactions of the ASME, Vol. 128, pp. 44-52, March 2006.

 153

A Quaternion

The quaternion representation consists of a scalar part � �
 and a vector

T

x y z(((
 �� � �� .

x

y

z

�
(�

�
(
(

 �
� �
 � � �� �� � � �� �
� �
� �

�

(A.1)

If 1� � , then � is know as the unit quaternion. The set of unit quaternions constitutes a

unit sphere in four-dimensional space. For this special case, there exists a vector

and 3(��
 ,+ ; ;� �
� �� such that � �cos sin T� + (+�� , the unit quaternions play an

important part in the relation to general rotation, i.e. it give a physical meaning to a

quaternion, where and � represent axis of rotation and angle of rotation, respectively ��
[30].

The quaternion � can be interpreted as a complex number with � being the real

part and the complex part � [40]. Hence, the complex conjugate of � is defined as:

�
�

 �
� � ��� ��

(A.2)

Thus, the inverse rotation matrix can be expressed as:

� � � � � �1 T� � �� � �R R R (A.3)

Since, successive rotations involve multiplication between two rotation matrices, and

quaternion multiplication is equivalent to orthogonal matrix multiplication, it can be

stated that:

� � � � � �1 2 1 2 ,� � ���R R R (A.4)

The quaternion multiplication is defined as:

� �
21 1

1 2
21 1 3 3 1

T ��
��

� �

 ��
 �
� � � � �� � �� �

�
�� �I S

(A.5)

 154

where I is the identity matrix and � �1�S is the skew-symmetric matrix of , such that 1�

� �1 2 1S� �� � � �2 (A.6)

A.1 Unit quaternion to rotation matrix conversion
A rotation matrix R in terms of unit quaternions is written as:

� �
� � � �

� � �
� � � �

2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 2

x y z x y z x z y

x y z x y z y z x �
x z y y z x x y z

� (((((�(((�(

� ((�(� (((((�(

((�(((�(� (((

 �� � � � �
� �
� �� � � � � �
� �
� �� � � � �� �

R

(A.7)

A.2 Rotation matrix to unique quaternion conversion
Conversion of rotation matrix R to the corresponding unit quaternion � [30]:

2 2 2
11 22 33 44

2

2

4 4()

4 4(1)
4

x y zr r r r (((

�

�

� � � � � � �

� � �

�

,

(A.8)

since , i.e. it s norm is equal to 1. This yields into: 2 2 2 2 1x y z� (((� � � �

11 22 33 44

32 23

13 31

21 12

1
2

4

4

4

x

y

z

r r r r

r r

r r

r r

�

(
�

(
�

(
�

� 7 � � �

�
�

�
�

�
�

(A.9)

where is the element of ith row and jth column of R. The sign of ijr � cannot be defined.

The signs of � also depends of its choice. Both choices yield the same rotation, but this

may not be trivial when using quaternions for interpolation.

 155

B Spline functions

B.1 Catmull-Rom splines
Spline functions are functions defined piecewise by polynomials. These functions are

most frequently used to describe parametric curve:

() ((), (), ())Q t x t y t z t� (B.1)

The Catmull-Rom spline interpolates n data points (also called knots) with a piecewise

cubic polynomial which produces a C1-continuous curve that passes through the knots

and considers the tangent values at each knot to defines the shape of the curve [7].

Figure B.1. Segment wise parametric curve

A segment between two points (pi and pi+1) is considered a single curve P(t) with the

condition that:

1

(0)
(1)

i

i

P p
P p �

�
�

(B.2)

Additionally, two constraints are considered for the definition of the tangents at each

knot by using the auxiliary points pi-1 and pi+2 (see Figure):

1 1

2

(0) ()
(1) ()

i i

i i

P p p
P p p

�
�

� �

�

� � �
� � �

(B.3)

where � is the tension parameter with values between 0 and 1. As � approaches 1, the

bend at each knot reduces. Normally the Catmull-Rom spline uses a tension value of ½.

The tangent at each knot is parallel to the chord between the adjacent points. The general

expression of a cubic polynomial curve is:

 156

3 2()Q t at bt ct d� � � � (B.4)

The derivative of equation (B.4) is:

23 2Q at bt� c� � � (B.5)

After applying the conditions (B.2) and (B.3) to equations (B.4) and(B.5), with

�=½, and doing some mathematic, it yields

1

3 2

1

2

1 3 3 1
2 5 4 1

() 1
1 0 1 0

0 2 0 0

i

i

i

i

p
p

Q t t t t
p
p

�

�

�

� �
 �
 �
� �� �� � � �� �
 �� � � � �� ��
� �� �

� � � �

(B.6)

Equation (B.6) generates a cubic curve of the segment between pi and pi+1. Notice

however that it can be applied to every segment of the curve. The tangent direction at

Q(t) can be straightforward calculated using equation (B.5). A detailed deduction of the

Catmull-Rom spline function can be found in [7].

B.2 Arc-length parameterization
The arc-length parameterization of a parametric curve as expressed in equation (B.1) is a

two steps process [138], [8]:

� Calculation of arc-length s as a function of the parameter t: ()s A t� . Since s

is a strictly increasing function of t, there is a one to one relationship

between s and t.

� Calculation of t, as the inverse of the arc-length function: 1() . t A s��

The arc-length parameterization of the curve is obtained when substituting

into Q(t):

1()t A s��

1 1 1() ((()), (()), (()))P s x A s y A s z A s� � �� (B.7)

where and L is the total length of the curve. [0,]s� L

 157

The arc length s of a curve, denoting its total length, is calculated as a function of t by

the integration formula

0

2 2() (()) (()) (())
t

t

s A t x t y t z t dt� � �� � � �< 2
(B.8)

In general, equation (B.8) cannot be calculated analytically, i.e. the arc-length

parameterization must be solved numerically. The method used in this work compute the

approximate arc-length parameterized curve in three steps:

� Calculation and summation of arc-length of all the segments of the original

spline curve Q(t) to determine the arc length L.

� Find m+1 equally spaced knots located at along Q(t), where

/l L m�� equal the length of each segment of the parameterized curve.

0, , 2 ,...,l l ml� � �

� Calculation of the parameter values that divide the spline curve

into equal arc-length segments.

0 1, ,..., mt t t� � �

The final result is an approximately arc-length parameterized piecewise spline curve

divided into m cubic segments. The complete algorithm for the arc-length

parameterization can be found in [138].

 158

C Quadratic minimization of a cubic spline function

Suppose that a parametric spline function p(s) is given and 0 0 0 0(, ,)x y z�p is a point in

the space. The square of the distance from p(s) and p0 on a spline curve is

2 2
0 0() (()) (()) (())s x s x y s y z s z) � � � � � � 2

0 , (C.1)

Where x(s), y(s), and z(s) are cubic spline functions of the parameter s. The closest point

to p0 on the spline curve 1 ˆ ˆ ˆ((), (), ())x s y s z s�p is determined by obtaining the value

that minimizes

ŝ

) (s) [139].

Figure C.1. Closest point of spline curve to p0 and its tangent vector

The quadratic minimization technique is then used to obtain the value that minimizes ŝ

) (s). Let , and be three initial estimates of . The quadratic polynomial

interpolating

1̂s 2ŝ 3̂s ŝ

) (s) at , and states as follows: 1̂s 2ŝ 3̂s

 159

2 3
1

1 2 1 3

1 3
1

2 2 2 3

1 2
3

3 1 3 2

ˆ ˆ()() ˆ() ()
ˆ ˆ ˆ ˆ()()

ˆ ˆ()() ˆ()
ˆ ˆ ˆ ˆ()()

ˆ ˆ()() ˆ().
ˆ ˆ ˆ ˆ()()

s s s sP s s
s s s s
s s s s s

s s s s
s s s s s

s s s s

)

)

)

� �
�

� �
� �

�
� �
� �

�
� �

(C.2)

The minimum of D(s) is obtained by calculating the minimum of P(s):

2 2 2 2 2 2
2 3 1 3 1 2 1 2 3

2 3 1 3 1 2 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ() () () () () ()1ˆ 1,2,3,...,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 () () () () () ()

k s s s s s s s s ss k
s s s s s s s s s

)))
)))

� � � � �
� � �

� � � � �

(C.3)

The value giving the largest P(s) among , and is then eliminated. The

expression (C.3) is then evaluated in a like manner with the remaining values until some

error tolerance for P(s) is reached. It can be shown that with a good estimate of the initial

estimates, the iteration has a superlinear converge rate to

1̂s 2ŝ 3̂s ˆks

ŝ [82].

 160

D Singular value decomposition

The singular value decomposition (SVD) is an important factorization of matrices. It

provides a powerful method for examining of the characteristics of matrices. Some

applications employing the SVD include computing the pseudoinverse, matrix

approximation. The SVD is defined as follows [93]:

If and rank A=k, then there exist orthogonal matrices m n���A

1

1

()

()

m m
m

n n
m

U u u

V v v

�

�

� �

� �

�
�

�

�

(D.1)

Such that A is represented by

1

1 2

1

(, ,)

min{ , }
0

0

T

m n
p

k

k p

diag
p m n

4 4

4 4 4
4 4

�

�

�

��

�
$ $ $

� � �

A U�V
� � �

�
�

(D.2)

where (1, ,)i i p4 � � are the singular values of A, 14 and p4 having the largest and

smallest singular values respectively. The singular values are uniquely determined

although U and V may not be.

D.1 Relationship between pseudoinverse and SVD
The pseudoinverse of A expressed with the SVD is represented by

#

#

1 2

min(,)

1 2

1 1 1(, , , ,0, ,0)

0

T

n m

k

p m n

k

diag
4 4 4

4 4 4

�

�

�

��

$ $ $

A V� U

� � � �
�

�

�

�

(D.3)

Where 1/ (1, ,)i i k4 � � and p-k zeros are the singular values of A#, among which

1/ k4 is the largest.

 161

	Titelblatt
	ACKNOWLEDGEMENT
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOMENCLATURES
	ABSTRACT
	1. Introduction
	2. Motivation to design a cooperative robotic assistant surgery system
	2.1 The modiCAS project
	2.2 System demands
	2.3 Technical challenges

	3. State of the art
	3.1 Surgical robotic systems
	3.2 Virtual fixtures
	3.3 Singularity robustness

	4. Design of a controller framework
	4.1 System architecture
	4.2 Command interface
	4.3 Target computer
	4.4 Hardware interface selector
	4.5 Target functions
	4.6 Host computer
	4.7 Modular distribution
	4.8 Execution and task modules

	5. Human-robot cooperation
	5.1 Hands-on interface
	5.2 Virtual fixtures description
	5.3 Admittance controller
	5.4 Deviation error
	5.5 Boundary conditions
	5.6 Manual error compensation
	5.7 Autonomous error compensation
	5.8 Virtual fixtures classes
	5.9 Experimental evaluation
	5.10 Discussion

	6. Singularity robustness
	6.1 PA10 kinematics
	6.2 Differential kinematics inversion
	6.3 Damped least squares approach
	6.4 Adjoint Jacobian approach
	6.5 Experimental results
	6.6 Discussion

	7. Conclusions
	References
	A Quaternion
	B Spline functions
	C Quadratic minimization of a cubic spline function
	D Singular value decomposition

