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ABSTRACT 

Im Rahmen des modular interactive computer assisted surgery Projekts (modiCAS) 

wurde eine Lösung zur Kombination eines Navigationssystems und eines manuell 

steuerbaren Roboterarms zur Unterstützung verschiedenster chirurgischer Eingriffe 

entwickelt [70]. Dieses Robotersystem kann als intelligentes Werkzeug betrachtet 

werden, das die Fähigkeiten eines Chirurgen auf assistierende und kooperative Weise 

ergänzt. Das System soll den Chirurgen während Operationen unterstützen, keinesfalls 

jedoch ersetzen. Das Ziel dieser Arbeit liegt darin, die Interaktion zwischen Chirurg und 

Roboter bei manueller Führung zu erweitern und einfach und sicher zu gestalten. 

Der erste Teil dieser Arbeit beschreibt die Architektur eines software-frameworks, 

das die Bedienung des modiCAS-Systems in verschiedenen chirurgischen Bereichen 

zulässt. Hierbei ermöglicht eine modulare Struktur, in Verbindung mit einer 

strategischen Verteilung der einzelnen Module, ausreichende Flexibilität um eine 

Hardware Plattform an verschiedene Anwendungen anzupassen.  

Im zweiten Teil wird, im Hinblick auf die kooperativen Fähigkeiten des modiCAS 

Systems, das Vermeiden von Fehlsteuerungen mittels virtueller Beschränkungen (virtual 

fixtures) durch den Admittance Controller behandelt. Diese dienen dazu die 

Bewegungsmöglichkeiten des Roboterarms bei haptischer Führung so zu begrenzen, 

dass er sich nur in vordefinierte und erlaubte Richtungen bewegen kann. Die 

Kombination von gewünschten Richtungen erlaubt die Konstruktion verschiedener 

virtueller Einschränkungen, die eindimensional (z.B. Linie), zweidimensional (z.B. 

Oberfläche) oder dreidimensional (z.B. Kegel oder Zylinder) sein können. Außerdem 

sind komplexe Kurven generierbar, die von dem Roboterarm bei manueller Führung 

exakt durchlaufen werden. 

Die Methoden Damped Least Squares und Adjoint Jacobian vermeiden hohe 

Geschwindigkeiten, die während der haptischen Führung des Roboterarms bei 

singulären Konfigurationen auftauchen können. Eben dies darf während einer 

kooperativen Operation mittels virtueller Begrenzungen nicht geschehen. 

Die in dieser Arbeit vorgestellten Methoden liefern einen Beitrag für eine sichere 

und präzise Steuerung von manuell gesteuerten Roboterarmen. Sie erhöhen die 

Funktionalitäten zur Assistenz und das Integrationsniveau von Roboterarmen bei 
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chirurgischen Einsätzen. Auf diese Weise wird die Interaktion zwischen Chirurg und 

Roboter intuitiver und leichter in der Handhabung. Die Möglichkeit zur Festlegung 

virtueller Begrenzungen verbessert die Sicherheit in der Anwendung erheblich, da der 

Chirurg den Roboterarm nicht unbeabsichtigt in leicht verletzbare Bereiche führen kann. 
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1. Introduction 

The modular interactive computer-assisted surgery (modiCAS) project, settled in the 

Center for Sensor System (ZESS) at the University of Siegen, in Germany, is engaged to 

develop an integral solution for different surgical problems by the combination of a 

navigation system and a robot arm with hands-on capabilities [70]. The robotic system 

may be thought of as a smart surgical tool that extends surgeon’s ability to treat patients, 

giving him/her surgical assistant by working in cooperative fashion. However, a natural 

and seamless integration of robotic systems in the operating room is still a big challenge 

in robotic surgery. The interaction between surgeon and robotic system is a very 

important issue. Autonomous systems have lost acceptance in the surgical community 

because the surgeon wants to be in charge of the operation rather than acting only as an 

observer. In such autonomous procedures, human experience, intuition, reacting 

capability in front of unexpected situations are lost. Furthermore, assistance intends to 

improve the performance of the surgeon rather than delimitating or obstructing him/her. 

An alternative solution is to provide a cooperative system where benefits of both can be 

combined. In this context, the surgeon gain complete control over the operation by 

grabbing the tool mounted on the robot and commanding it with his/her own hands. But 

the fact that a robot is to be used in clinical applications and in direct contact with human 

beings, imposes some additional requirements in comparison with the well established 

robotics technology applied in the industry. The most obvious is safety. On the one hand, 

the surgeon must keep control of the surgical operation. On the other hand, the surgical 

robots must assure a correctly usage by the surgeon in order to guarantee patient 

safeness. Therefore, surgeon’s freedom of action has to be partially limited so that 

forbidden regions become unattainable to prevent accidental injuries. For these reasons, 

a seamless and safety integration of the system within the operating room is considered a 

paramount issue for a successful assistance and represents an important requirement 

within the modiCAS project. 

The first contribution of this work is a proposal of software framework architecture 

for the modiCAS system able to support medical interventions in several surgical 

disciplines. A modular structure, together with a strategic distribution of the modules, 
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provides flexibility for the adaptation of a common basic hardware platform to different 

applications. 

Secondly, concerning the cooperative capabilities of the modiCAS system, the issue 

of mishandling is avoided with the introduction of virtual constraints, here called virtual 

fixtures, which help guiding the tool within certain predefined permitted directions. The 

combination of these preferred directions permits different kinds of virtual constraints, 

which may be one dimensional (lines), two dimensional (planes), three dimensions 

(tubes, cones, etc.) or even more complex trajectories (by means of parametric 

functions).  

A particularly issue to be considered when thinking about cooperative manipulation 

of a robotic arm is the presence of singular configurations. In the neighborhood and at 

singular configurations an exact solution of the robot inverse kinematic becomes ill 

conditioned. Consequently, unfeasible joint velocities may be produced which yields 

into acute behavior of the robotic system. During virtual constrained cooperative 

operation, high velocities and position deviations are unacceptable. Therefore, another 

important objective of this work is to assure that such cooperative guidance is robust and 

accurate even in the presence of such singular robot configurations. 

In chapter 2, the modiCAS system is introduced, together with the system demands 

that motivate the contribution of this work. Chapter 3 presents the state of the art in 

computer assisted surgery systems, virtual constraints and singularity robustness. The 

proposed modular software framework is detailed explained in chapter 4. Chapter 5 

introduces the concept of virtual fixtures together with the corresponding admittance 

controller used to apply them to the robotic system. Two types of controllers are 

compared; each of them differing from the other in the way the deviation error is 

handled: manual error compensation and the proposed autonomous error compensation. 

The former relies on the input forces applied by the user to compensate possible 

deviation error, while the latter delegates this job to the robotic system. The technical 

challenge of dealing with singularities is treated in chapter 6. Two approaches are 

analyzed and compared: the Damped-Least-Squares and the adjoint Jacobian 

approaches. Finally, chapter 7 presents the conclusions. 
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2. Motivation to design a cooperative robotic assistant surgery system 

2.1 The modiCAS project 

The basic concept of the modiCAS project is to integrate navigation system and robotic 

arm into one system that appears a single unit, combining the specific advantages of 

each other. A hands-on interface mounted at the robot end-effector provides highly 

interactive operation. The system setup consists of an optical 3D “Polaris” digitizing 

system (from NDI Inc., Canada), the PA10-6C robot arm (from Mitsubishi Heavy 

Industries, Ltd., Japan), a light weight (35 kg) robotic arm with 6 degrees-of-freedom 

(DOF), and a mini45 force-torque sensor (from ATI Industrial Automation, USA), 

which is integrated in the surgical tool mechanism. Figure 2.1 shows the different 

components of the navigated robotic system. 

 

 

Figure 2.1. Components of the navigated robotic system for surgical assistance 
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The control system consists of two computers: On the one hand, an embedded target 

computer, which runs a real-time operating system, where all the fundamental 

functionalities are implemented, and on the other hand, a host computer, with Microsoft 

Windows operating system, where the graphical-user-interface (GUI) and the 

application-oriented tasks are running. Both computers communicate through a 

dedicated Ethernet connection.  

The modiCAS software framework is divided in two main parts: The planning- 

software and the controller-software. The former is used for preoperative planning, 

registration and intra-operative visualization. This software provides all important 

planning functionalities through a virtual toolbox and supports the common standards for 

the different images modalities (X-Ray, CT, and MRI). The controller software is in 

charge of the management and usage of the physical components of the system. 

Although, these two parts work together to provide a complete solution, the development 

of this work concerns only the controller-software. The reader interested in further 

details related to the planning software is encouraged to consult [43]. 

2.1.1 Combination of navigation and robotics  

The basic concept of modiCAS system is to integrate a navigation system and robotic 

arm into one system that appears as a single unit, combining the specific advantages of 

navigation and surgical robotics [70]. Patient registration is performed by using only the 

navigation system, while the robot arm positions the surgical instrument during 

intervention. Thus no unintentional deviations caused for example by tremor or slipping 

can occur. Furthermore, the surgeon does not have to permanently change his eyes from 

the operating area to the computer screen where he/she has to monitor the instrument 

position, and he /she can fully concentrate on the operating area. 

The tool adapter is equipped with a rigid body (RB), which can be detected by the 

navigation system. During system initialization, a setup procedure is carried out to align 

the coordinate systems of the robot arm and the navigation system. As a result, all 

movements can be specified and executed with reference to the coordinate system of the 

navigation system. This also provides redundant measurement of the surgical tool 

position by two completely independent systems, (a) the navigation system detecting the 

     4



 

RB element, and (b) the built-in encoders of the robot joints. This is an important feature 

to meet the high safety requirements applicable to surgical robotics. 

A special feature of the robotic arm is its ability to automatically track potential 

movements of the patient in real-time, eliminating the need for rigid fixation of the 

anatomic structure to be operated. Instead, a RB is attached to the patient operable 

structure by a suitable fixation mechanism. After registration of the patient anatomy, the 

operating area is well known by the system and can be tracked by the robot. If any 

patient movement is detected during surgical intervention, the controller generates 

corresponding motion commands that move the robot arm to follow the patient, keeping 

the surgical instrument always in the pre-planned position and orientation with respect to 

the patient anatomy. 

Although the patient tracking capability of the system is of great relevance and 

represents a key feature of the modiCAS project, a deep insight in this topic is actually 

out of the scope of this work, which mostly concentrates on the controller framework 

design and the cooperative capabilities of the system. More detailed information related 

to the tracking mode can be found in [70]. 

2.1.2 Human-robot interaction 

One important goal of the system is transparency i.e., the ability to move the tool freely 

and dexterously. Therefore, the robot arm is equipped with a hands-on interface 

consisting of a 6 DOF force-torque-sensor (FTS) mounted at the robot’s end-effector. 

External applied forces to the tool can be detected by the system. The surgeon can thus 

freely move the end-effector through the desired operating region just by grabbing the 

handle mounted on the end-effector and guiding the arm towards the target area. This 

hands-on capability integrates the robot seamlessly in the operating procedure, because 

there is no need to use any input-device like mouse, touch screen or keyboard to 

command the robot. An additional feature of the hands-on interface is that any 

force/torque externally applied to the surgical tool can be monitored. Such information 

can be used to enhance safety during surgical procedures. At the beginning of this work, 

the hands-on interface was already available within the system, but non mechanism was 

available to constrain the working area. 
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Figure 2.2. modiCAS system in the operating room 
In other words, the surgeon was able to move the robot anywhere in the robot’s working 

area, which, for safety reasons, may not be always desired. Another limitation was the 

fact that the cooperative mode was not singularity robust, i.e., passing through singular 

configurations of the robot was not possible. Therefore, the hands-on interface could 

only be used to coarsely positioning the tool by hand in the working area. After that, the 

system was switched to automatic control and fine positioning was carried out under 

computer control according to preoperative planning. Switching back to cooperative 

mode is always possible whenever the surgeon wishes so. Figure 2.2 illustrates the 

incorporation of the modiCAS system in the operating room (OR). 

2.2 System demands 

The objective of the modiCAS project is to consolidate a flexible robotic system that 

provides both navigated assistance and cooperative capabilities to support different 

Computer Assisted Surgery (CAS) disciplines. The robotic system should provide 

assistance to the surgeon rather than substituting him/her. Assistance intends to improve 

the performance of the surgeon instead of delimitate or obstruct him/her. In other words, 
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the surgeon must keep control of the surgical operation all the time while the robotic 

system simply becomes a tool at his/her disposition, which usage should be as intuitive 

as possible. Nevertheless, the absence of human mistakes cannot be completely assured. 

Therefore, surgeon freedom must be limited in a way that forbidden regions become 

unattainable so that accidental injuries can be prevented. For these reasons, a seamless 

and secure integration of the system within the OR is considered a paramount issue for a 

successful assistance and represents an important requirement within the modiCAS 

project.  

System flexibility and safe human-robot interaction are then the two major aspects 

treated in this work. On the one hand, a new controller software architecture specially 

designed to improve flexibility of the modiCAS system has to be developed and 

implemented. On the other hand, a virtual constraining mechanism has to be developed 

to assure a safe human-robot interaction during cooperative tasks. 

2.2.1 Controller software architecture 

The spectrum of possible applications of a navigated cooperative robotic assistant 

system is very broad [28]. However, each application presents particular problems, 

which demands particular solutions, i.e. particular expectations about how the robotic 

assistant system must behave. Therefore, the system architecture must be flexible 

enough to adapt itself to the demands of various surgical scenarios without requiring 

exhaustive changes in the internal structure. The modiCAS controller software bases its 

design on the following concept of modularity to cope this requirement: 

 

Modularity – A clear modularization of the different tasks as well as a strategic 

distribution of them along the system framework, depending of their roll within the 

system, are key issues to achieve enough system flexibility to cope various applications. 

But modularity is not only restricted toward applications. Additionally, a modular 

hardware-interface expands this flexibility towards the system itself. Some resulting 

advantages are maintainability and scalability. In this way, thinking about upgrading, 

replacing or even adding a new component must not affect the integrity of the system. 
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2.2.2 Human-robot interaction 

At the present state of the modiCAS system, the hands-on interface can be used to move 

the tool about the working space with the surgeon’s hands. Returning the tool back to 

exact operating position has to be done autonomously by the robot. The surgeon has 

freedom to move the robot end-effector at any time in any direction. Nevertheless, there 

exists no mechanism to assure that the cooperative motion keeps the tool inside a 

predefined region or leads it towards a specific desired point. Under such circumstances, 

no cooperative task can be applied, since no constraints exist that avoid the surgeon to 

conduct the tool toward forbidden regions where injuries to the patient can occur. 

The motivation of the second part of this work is the development of a cooperative 

modality though which the surgeon is able to freely guide the robot’s end-effector with 

his/her own hands inside some predefined constrained area, but assuring that any 

movement outward this region becomes unfeasible. Therefore, the concept of virtual 

fixtures is applied to the hands-on interface. Namely, any movement commanded by the 

surgeon is virtually constrained along permitted directions. The constrained space can be 

along a curve, a surface or even inside volumetric shapes. These virtual fixtures are 

previously defined in the preoperative stage of the surgical intervention. The navigation 

system makes possible to define such constraints in direct relation to the patient. 

Besides, the system compliance against surgeons applied forces can vary depending of 

the proximity to the patient. 

In this context, applying virtual fixtures to the simple task of safely moving the tool 

back and fort of the working area would look as follows: when trying to push the tool 

out of the working space, first a simple linear movement on the negative direction 

normal to the operating plane is applied in order to get out of the critical area nearby the 

patient in a safety way. After certain distance, the virtual constraint is shifted to an 

inverted conic form giving the possibility to locate the robot out of the way not to 

obstruct any other activity of the surgeon. On the same way, once the robot is pulled 

back to the working area, the virtual constraints procure that the final operating position 

and orientation are safely achieved. In this case no autonomous movement of the robot is 

required anymore. The virtual-fixtures provide a safety measurement that allows active 

participation of the robotic system in cooperative tasks during surgical procedures. 
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2.3 Technical challenges 

2.3.1 Controller redesign 

The actual stand of the project is the fruit of a combined effort of all member of the 

modiCAS team along the past years [43], [70], [106], [136]. A lot of experience has been 

collected through each contribution. Parallel development concerning planning-software, 

controller-software, navigated patient tracking strategy and hands-on interface did great 

advance during the first four years. A first prototype was developed and successfully 

implemented. Even clinical trials were successfully achieved [136]. 

The controller software structure of this first prototype is shortly explained: The 

modiCAS software is distributed on two computers. The first one, running a Windows 

operating system, contains the GUI and all not deterministic tasks. The second computer 

runs a real-time operating system and comprises all deterministic tasks, such as control 

loops, data acquisition, and hardware interface. Originally, QNX operating system was 

the platform used for the real-time computer. The software implementation was based on 

C++ object oriented programming language. CORBA infrastructure was used for 

computers interaction, which were connected over a local dedicated network. The GUI 

of the controller software was developed using Qt framework. 

At some point of the development, the modiCAS team realizes that the software 

architecture based on the original design started to become very complex. Any 

adaptations to cope new applications required a deep knowledge of the whole framework 

and therefore implied a considerable extra effort to do small changes. Besides, this 

turned out to be overwhelming for each new member of the team and considerably 

slowed the development process. Consequently, a strategic decision came out, namely, 

the redesign of the control software under a new real-time platform, with a new 

communication mechanism and mostly important with the main requirement of 

modularity. 

The LabVIEW high level environment based on graphic programming language was 

chosen for the development of the new controller software. Thanks to the LabVIEW 

Real Time (RT) module [77], it is possible to develop real-time applications in a 

conventional desktop personal computer (PC) running the Venturcom Phar Lap 
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Embedded Tool Suit (ETS), a high-performance micro-kernel real-time operating system 

[9].  

Considering the fact that the modiCAS project has a tight relationship with the 

University of Siegen, where student collaboration is a common and practicable case, 

LabVIEW offers the following advantages: 

 

� Easy understandable programming language 

� Reduced learning curve 

� Cut down considerably implementation time 

� C-code can be very easily imported 

� Professional technical support 

� Desktop PC compatible 

 

Under such circumstances, the modiCAS controller-software redesign implicates the 

aggregated challenge of achieving a successfully implementation in a completely new 

platform. 

2.3.2 Robot singularities 

Robot singularities are special configurations of the robot where its behavior becomes ill 

conditioned. Near singular configurations some robot joints may present very high 

velocities yielding into acute behavior. In a cooperative system, where human-machine 

interaction is highly coupled, such behavior is unacceptable. Although the singularity 

problem is well known in the field of robotics, commercial industrial robotic system do 

not jet offer a build-in convincing solution. This situation becomes even worse in the 

field of cooperative robotics, a field that until now has not been firmly settled for 

commercial purposes. This means that an alternative strategy must be developed that 

allows safely cooperative tasks nearby or at singularity configurations. 

Two scenarios are supposed: the first case comprises unconstrained cooperative 

motion of the end-effector. In such a case, slight position deviation when passing 

through singular configuration are tolerated. High priority is given to the smoothness of 

the motion rather than accuracy of end-effector’s position. 
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The second case is exactly the opposite i.e., the end-effector motion is virtual 

constrained. Here, position deviations could mean that the end-effector goes out of the 

permitted area. Therefore, accuracy has highest priority when passing nearby or through 

singularities. 

 

     11



 

3. State of the art  

3.1 Surgical robotic systems 

The robots can be seen as a mechanism that have complementary capabilities to those of 

humans, and may be used in a number of ways to augment a surgeon’s ability to carry 

out procedures, either by making existing procedures more accurate, faster, or less 

invasive or by making it possible to perform otherwise infeasible interventions. In these 

cases, the advantages often come from exploiting the complementary strengths of human 

and robotic device; Table 3.1 summarizes strengths and limitations of each of both, 

humans and robots [125]: 

 

Table 3.1. Complementary capabilities of human and surgical robots 

 Strengths Limitations 

H
um

an
s 

Excellent judgment 

Excellent hand-eye coordination 

Excellent dexterity at natural human scale 

Able to integrate and act on multiple 

information sources 

Easily trained 

Versatile and able to improvise 

Prone to fatigue and inattention 

Tremor limits fine motion 

Limited manipulation ability and 

dexterity outside natural human scale 

Cannot see through tissue  

Bulk end-effector (hands) 

Limited geometric accuracy 

Hard to keep sterile 

Affected by radiation infection 

R
ob

ot
s 

Excellent geometric accuracy 

Untiring and stable 

Immune to ionizing radiation 

Can be designed to operate at many 

different scales of motion and payload 

Able to integrate multiple sources of 

numerical & sensor data 

Poor judgment 

Hard to adapt to new situations 

Limited dexterity 

Limited hand-eye coordination 

Limited haptic sensing (today) 

Limited ability to integrate and 

interpret complex information. 
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Taylor classified the systems by the role they play in medical applications [122]. He 

stresses the role of robots as tools that can work cooperatively with surgeons to carry out 

surgical interventions and identifies five classes of systems: 

1. Intern replacements – The system performs assistive tasks that are ancillary to 

the main surgical procedure and that are frequently performed by surgical interns 

and other people whose main job is to help the surgeon. 

2. Telesurgical systems – The robot’s motions are specified directly by the surgeon 

by means of a joystick, control handle, or similar device. The surgeon used the 

robot as an extension of his own direct manipulation capabilities. Such systems 

give the surgeon access to difficult to reach parts of the body or the ability to 

perform delicate microsurgical tasks without tremor. 

3.  Navigational aids – The goal is simply to provide the surgeon with accurate 

positional feedback about the location of surgical instruments relative to the 

patient’s anatomy. These systems are often referred to as CAS, and typically 

consist of a 3D localizing device such as an instrumented passive manipulator, 

ultrasound detector, or 3D optical tracker, together with a computer graphics 

workstation for displaying position relative to volumetric medical images. 

4. Precise positioning systems – The robot is used to position a tool guide in the 

desired position and orientation relative to the target anatomy. For safety reasons, 

the robot is often turned off during the actual instrument insertion. Although this 

reduces the chance of unwanted motion at critical times, it does not address the 

potentially more crucial issue of misregistration. 

5. Precise path systems – The robot is moved through a defined path to complete a 

specific task. For example, a precise machining of bone either using the robot to 

move the cutting tool or as a means of constraining the surgeon to keep the tool 

within a predefined volume.  

 

Other authors divide the field by clinical applications [28], [35], [124]. A list of seven 

clinical areas where robotics has been applied is shown in Table 3.2. [28]. 

 

 

     13



 

Table 3.2. Clinical application areas and representative robotic developments 
Clinical Area Country Institution/ Company System Reference 

Neurosurgery Switzerland Univ. of Lausanne Minerva [16] 

Neurosurgery USA ISS / Grenoble Univ. 

Hospital 

NeuroMate [79] 

Neurosurgery Japan Univ. of Tokyo MRI compatible [91] 

Orthopaedic USA ISS ROBODOC [120] 

Orthopaedic USA Georgetown / Hopkins PAKY/RCM [27] 

Orthopaedic USA Univ. of Tokyo / Hopkins PAKY/RCM [28] 

Orthopaedic USA Marconi Kawasaki [28] 

Orthopaedic UK Imperial College Acrobot [57] 

Urology UK Imperial College Probot [129] 

Urology USA Hopkins PAKY/RCM [117] 

Maxillofacial Germany Charite Surgiscope [83] 

Maxillofacial Germany Karlsruhe / Heidelberg RX 90 [57] 

Radiosurgery USA Accuray CyberKnife [6] 

Opthamology USA Hopkins Steady Hand [123] 

Cardiac USA ISS da Vinci [45] 

Cardiac USA Computer Motion Zeus [12] 

Cardiac France Grenoble PADyC [113] 

 

Since various systems in development pretend to cover various disciplines and 

applications, the classification criterion on this work is rather based on their degree of 

autonomy i.e. the type and level of interaction between robotic system and the surgeon, 

distinguishing between three main categories: Autonomous systems, Cooperative 

Systems and Teleoperative systems. 

3.1.1  Autonomous system 

An autonomous robotic surgery is the process whereby a robot actually carries out a 

surgical procedure under the control of nothing other than its computer program. 

Although surgeons almost certainly will be involved in the planning of the procedure to 

be performed and will also observe the implementation of that plan, the execution of the 

plan will not  be  accomplished  by  them,  but  by  the robot. The surgeon has always the  
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Figure 3.1. Autonomous System: The robot executes the procedure while surgeon 
observes/supervises the operation [94] 

 

possibility to stop the robotic system and continue manually the interrupted procedure 

(see Figure 3.1).  

The first autonomous surgical systems were designed for orthopaedic surgery. In the 

U.S., Taylor and associates at IBM began developing the system later known as 

ROBODOC [120]. This system was further developed clinically by Integrated Surgical 

Systems (ISS) for total hip replacement procedures. The system consists of three mayor 

components: a planning workstation (ORTHODOC), the robot itself that does the 

cutting, and the workstation that guides and controls the robot. Since this system has a 

number of features also found in other surgical systems, a typical procedure using the 

system is described:  

The surgeon selects an implant model and size based on an analysis of preoperative 

CT images and interactively specifies the desired position of each component relative to 

CT coordinates. In the operating room, the robot is moved up to the operating table, the 

patient’s bones are attached rigidly to the robot’s base through a fixation device, and the 

registration of the patient with the robot is done either by touching multiple points on the 

surface of the patient’s bone or by touching pre-implanted fiducial markers whose CT 

coordinates have been determined by image processing. 
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(a) 

 
(b) 

Figure 3.2. (a)ORTHODOC planning workstation, (b) ROBODOC milling implant 
cavity for hip replacement surgery (courtesy of ISS, USA) 
 

The surgeon hand guides the robot to an approximate initial position using a force sensor 

mounted at the robot’s end-effector. The robot then cuts the desired shape while 

monitoring cutting forces, bone motion, and other safety sensors. The surgeon monitors 

this process by watching a computer screen which shows the progress of the cutting 

operation. The robot can also be stopped at any time. When the desired shape has been 

cut, the robot is removed and the rest of the operation is completed by hand in the 

conventional manner. A picture of the ORTHODOC planning software and ROBODOC 

milling the cavity for the implant is shown in Figure 3.2. 

A number of other robotic systems for use in joint replacement surgery were 

subsequently proposed, such as the CASPAR system (from ortoMAQUET, Germany) 

shown in Figure 3.3. The system is based on the industrial robot Stäubli [39], which was 

very similar to ROBODOC. The system has been used for implantation of hip prosthesis 

in total-hip-replacement (THR), as well as for anterior cruciate ligament reconstruction 

[105]. 

Although these systems successfully achieve the goal of improved fit, there are a 

number of common difficulties [52]. One very important issue is the complex method 

for fixing the operating bone structure, which is time consuming to set up and can cause 

postoperative pain. A related problem is motion of the bone within the fixation device 

during cutting. Currently, a separate sensing system is required to check for motion; if 
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bone shift is detected, cutting is interrupted and the registration process must be 

repeated. Several incidents of femur motion can push the surgical time over the limit of 

acceptability. An improved fixation technique or continuous registration method could 

eliminate these problems.  

Another completely different type of autonomous robotic systems is used for 

radiosurgery. Stereotactic radiosurgery is a medical procedure that utilizes very 

accurately targeted, large killing doses of radiation, which has proven to be an effective 

alternative to surgery or conventional radiation for treating many small tumours and a 

few other selected medical disorders. Standard stereotactic techniques rely on a rigid 

metal frame fixed to a patient’s skull for head immobilization and target localization. 

Adler and associates at Stanford University (U.S.) in conjunction with Accuray Inc., 

U.S., developed the CyberKnife for image-guided radiosurgery [6]. 

 

 

Figure 3.3. CASPAR system in knee operation (courtesy of ortoMaquet) 
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The system consists of a linear accelerator 

(used to produce a high energy killing beam 

of radiation), a robot which can point the 

linear accelerator from a wide variety of 

angles, and several x-ray cameras to track 

the patient position. Lightweight. 

 

Figure 3.4. CyberKnife robotic 
radiosurgery system (courtesy of 
Accuray, USA) 

The robot arm moves the beam through a 

series of preset positions to maximize the 

dose to the lesion while minimizing the 

dose to the surrounding normal tissue. The 

CyberKnife is shown in Figure 3.4. In 

contrast with the systems presented until 

this point, non direct contact is performed 

with the patient. Nevertheless, the 

application is not considered to imply less 

risk than the others. If the goal position is 

not precisely reached, healthy regions can 

be damaged.  

3.1.2 Cooperative systems 

Robot systems operating in collaboration with humans has been an active topic of 

research during the last two decades. Various control systems have been proposed by 

Kazerooni et al. ([62], [63]) to generate the motion based on the intentional force. 

Cooperative tasks for industrial applications such as cooperative manipulation ([72], 

[73]), peg-in-hole tasks [132], has been proposed.  

In surgical robotics also cooperative control has been a current topic of research. A 

cooperative system allows performing surgical procedures interactively, meaning that 

the surgeon and robot share control [127]. One of the first surgical applications with 

robotic assistance was in stereotactic neurosurgery [107]. These systems can be included 

at the border of cooperative system classification. In such systems the robot 

autonomously positions and fixes a mechanical guide according to a pre-planned 
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trajectory, and then the surgeon uses this guide to introduce the surgical tool (such as a 

drill, probe, or electrode) while the robot acts as a mechanical guidance imposing a 

simple and rigid linear constraint. Kwoh et al made the first attempt to use an industrial 

PUMA 560 robot for the CT-guided brain tumour biopsies [75]. Lesion location was 

determined from CT images and the robot positioned a biopsy needle using this data. 

Benabid and colleagues developed in the late 1980s an early precursor to the stereotactic 

robot marketed as NeuroMate [79]. The current version of NeuroMate (see Figure 3.5) is 

a commercial product that has been licensed by Integrated Surgical Systems (ISS) and 

approved by the Food and Drug Administration (FDA). The system has been used in 

over 1600 procedures since 1989.  

Early experiences with surgical robots, such like ROBODOC and other similar 

systems, showed that surgeons found a form of hands-on control to be very convenient 

and natural for surgical tasks. Under this type of control, the robot undergoes steady-

hand manipulations of the surgical instrument while the surgeon controls the whole 

procedure. The surgeon and robot are jointly performing tasks. 

 

  

Figure 3.5. Neuromate courtesy of Integrated Surgical Systems 
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A number of groups have further 

exploited the idea of creating 

virtual constraints to help a surgeon 

align a tool, follow a precise path, 

maintain a desired force, prevent 

entering into certain forbidden 

regions of the workspace, or 

perform other similar tasks [86], 

[101], [80]. This concept is 

normally known as virtual fixtures 

(for further details refer to section 

5.2). One example is the Active 

Constraint ROBot (ACROBOT), 

which is a small, low-powered, 

special purpose robot for knee surgery developed by the Imperial College at London (see 

Figure 3.7) [57]. This robot uses backdrivable motors and transmissions, so it has low 

mechanical impedance in each axis, allowing the robot to be moved by the surgeon with 

low force by pushing a handle mounted near the tip of the robot. 

Figure 3.6. Cooperative: robot and surgeon 
remains jointly in control [94] 

 

Figure 3.7. ACROBOT, special purpose Hands-On robot for knee surgery 
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Figure 3.8. JHU Steady Hand robot for microsurgery 
 

The robot is force controlled by adjusting the torque of the motors depending on the 

force applied by the surgeon, and the current position of the robot in relation to the 

cutting boundaries. As the user approaches and then contacts a constraint surface defined 

in the preoperative plan, varies the admittance, i.e. the relationship between the force 

applied by the surgeon and the torque of the motors, until the edge of the permitted 

region, where it prevents further motion outward the boundary [46]. Whilst the 

ACROBOT is currently being used for knee surgery, the system is also suited to a range 

of orthopedic and soft tissue procedures. 

This concept of virtual fixtures has been more recently applied in the Johns Hopkins 

University (JHU) Steady Hand robot system for micro-manipulation [123]. It is 

composed of a Cartesian stage allowing three orthogonal translational DOF and a 

Remote Center of Motion (RCM) stage allowing two orthogonal rotational DOF (see 

Figure 3.8). This robot is developed to extend human’s ability to perform small-scale 

(sub-millimeter) manipulation tasks requiring human judgment, sensory integration and 

hand-eye coordination. The tool is held simultaneously both by the surgeon’s hand and 

the robot arm. The robot’s controller senses forces exerted by the operator on the tool 
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and by the tool on the environment, and uses this information in various control modes 

to provide smooth, tremor-free precise positional control and force scaling. Applications 

of this robot include eye surgery, microvascular surgery and neurosurgery [74]. 

There are other kinds of systems based on passive mechanisms that have been also 

implemented, like Cobots (from Cooperative robot) [141], which use mechanical rolling 

contacts to implement smooth constraint surfaces. The operating system is to use 

computer-controlled CVTs (continuously variable transmissions) to produce high quality 

rolling constraints. In some cases, the CVT is no more than a steered rolling wheel [36]. 

In other cases, the CVT may be a complex mechanism [37]. Although computer steering 

determines the path of a cobot end point through the cobot’s workspace, the computer 

has no authority over the speed of the endpoint along that path. The speed is determined 

by the external forces, including those applied by the user and environment, e.g., gravity, 

and the inherent dynamics of the cobot itself. This means that cobots are passive devices, 

incapable of transmitting power to the user. 

Other passive mechanism is the PADyC 

(Passive Arm with Dynamic Constraints) [113]. 

It consists of two free-wheels mounted in 

opposite directions in association with two 

motors at each joint in order to provide the 

different desired constraint effects. A freewheel 

is very similar to a conventional roller bearing, 

but it naturally provides the basic function of 

unidirectional motion. Consider the free-wheel 

mechanism of Figure 3.9, if the internal part of 

the free-wheel is fixed (�i
+=0), the motion of 

the external part is blocked on the positive direction, while it is free in the negative one. 

If a motor is associated with the internal part of the free-wheel and rotates with velocity 

�i
+, then both directions of motion are allowed but �user is bounded by �i

+ in the positive 

direction. The combination of two free-wheels, with their corresponding motors, for 

each joint gives the possibility to control velocity in both directions. 

 

 Figure 3.9. Free-wheel mechanism 
of PADyC 
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The intrinsic safety of such a system is good. Indeed, the joint mechanical design 

integrates another set of free-wheels and worm screws that respectively guarantee that 

the arm cannot move autonomously, because the motors cannot drive the joints, and that 

the user cannot back-drive the motors. Moreover, the joints are naturally locked when 

unpowered. The operation principle of these passive devices is considered out of the 

scope of this work and it will be not further discussed in this contribution. Interested 

readers are encouraged to consult [36], [37], [112], [127], and [141]. 

3.1.3 Teleoperative systems 

In teleoperative systems, well known as telesurgery systems, the surgical manipulator is 

under direct control of the surgeon with the surgical tools in the form of a robotic 

manipulator (see Figure 3.10). With an on-line input device that is typically a force 

feedback joystick (master), the surgeon performs the surgical manipulations, and the 

surgical manipulator (slave) faithfully follows the motions of the input device in a 

master-slave control manner to perform the operation [94].  

Teleoperation in surgery comes primarily from the need to increase dexterity of the 

minimally invasive surgery (MIS) inside small body cavities. Telesurgery systems can 

provide better ergonomics compared with conventional MIS. The robot motions are 

 

Figure 3.10. Telesurgery system: Surgeon controls the robot in real-time through 
the haptic interface [94] 
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specified directly by the surgeon on the basis of intraoperative images taken by the 

internal camera. In some cases, haptic feedback is also available, although limitations in 

the ability of current slaves to sense tool-to-tissue forces can somewhat limit this ability. 

Teleoperated robots have been used for close to 15 years to assist surgeons in MIS, 

first, to assist laparoscopic surgery by holding an endoscope (e.g. [110], [121]) and later 

to manipulate surgical instruments [45]. A notably example of telesurgery systems is the 

daVinci system [45], by Intuitive Surgical, Inc., USA, which consists of the surgeon’s 

viewing and control console, a control unit, and a three-arm surgical manipulator (see 

Figure 3.11.a). Although many tools are available, the most salient feature is a three-axis 

wrist (see Figure 3.11.b), which mimic the motion freedoms of the human wrist. Visual 

guidance is provided to the surgeon through a stereo endoscope and a 3-D visual display. 

The overall precision is improved by motion reduction scaling and by filtering 

involuntary motions caused by tremor. 

 

 

Figure 3.11. (a) daVinci telesurgery system, (b) Endoscopic EndoWristTM 
Instrument (courtesy of Intuitive Surgical) 
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(a) 
 

(b) 

Figure 3.12. Zeus Telesurgery system from Computer Motion Inc.: (a) Console 
unit, (b) Zeus robot arms 
 

A similar telesurgery system, called Zeus, has been developed by Computer Motion. 

This system is composed of a surgeon control console and 3 table-mounted robotic arms 

(see Figure 3.12). The right and left robotic arms replicate the arms of the surgeon, and 

the third arm is an AESOP voice-controlled robotic endoscope for visualization. In the 

Zeus system, the surgeon is seated comfortably upright with the video monitor and 

instrument handles positioned ergonomically to maximize dexterity and allow complete 

visualization of the OR environment. The system uses both straight shafted endoscopic 

instruments similar to conventional endoscopic instruments and jointed instruments with 

articulating end-effectors and seven degrees of freedom. 

A notorious moment for the Zeus system was in February 2001, when a team of 

surgeons performed a transatlantic laparoscopic operation on a woman in Strasbourg, 

France, where the surgeon was operating from a hospital 6000 km in New York City, 

USA. The 54 minute operation was completed without any complications and the patient 

was discharged two days later [51]. The success of this operation as well as the 

technological infrastructure set in place highlight major developments in the field of 

telesurgery (see Figure 3.13). 
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Figure 3.13. Setup of Zeus system at Lindbergh operation 2001 [102] 
 

Technically, much remains to be done before robotic surgery’s full potential can be 

realized. Although these systems have greatly improved dexterity, they haven’t yet 

developed the full potential in instrumentation or incorporated the full range of sensory 

input. Beside the two commercially available systems, other research groups are working 

in order to further improve the capabilities of such systems. 

 

Figure 3.14. The telesurgical workstation for laparoscopy at Berkley [90] 
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Many future advancements are already being researched [78]. Mentioning some of them, 

the Berkley system, a joint project between the University of California, Berkeley and 

the Department of Surgery of the University of California San Francisco, USA is a 

telesurgical workstation for laparoscopy (see Figure 3.14). The slave is based on a 

modified Millirobot, while the masters are PHANToM devices. The design of the 

millirobot is dexterous enough to perform suturing and knot-tying tasks.  

The KAIST system at the Korea Advanced Institute of Science and Technology 

(KAIST) is a microsurgical telerobot system composed of a 6 DOF parallel 

micromanipulator attached to a macro-motion industrial robot and a 6 DOF force/torque-

reflective haptic master device. 

The Research Center of Karlsruhe has developed the ARTEMIS system (Advanced 

Robotic and Telemanipulator System for Minimal Invasive Surgery) [107]. This system 

consists of the Man Machine Interface with two haptic manipulators, a graphical user 

interface, 3D video imaging of the operating environment, speech input for controlling 

the laparoscope, foot pedals and a trackball. And the Work Station with tow 

telemanipulation units, the TISKA carrier system with surgical effectors and the 

ROBOX endoscope guidance system.  

Although this section is intended as a perspective on the field of medical robotics, it 

is no longer possible to produce a truly inclusive survey, and much excellent work has 

gone uncited. 

(a) Master 
 

(b) Industrial robot 
 

(c) Instrument 

Figure 3.15. The telerobotic system for mircrosurgery at KAIST 
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3.2 Virtual fixtures 

The Virtual fixtures (VFs), also found in the literature as synthetic fixtures [111], virtual 

mechanisms [87], virtual tools [71], are software-generated force and position signals 

applied to human operators via robotic devices. They help humans perform robot-

assisted manipulation tasks by limiting movement into restricted regions and/or 

influencing movement along desired paths [4]. 

The type of control strategy used to create virtual constraints may vary depending of 

the behavior of the physical systems. Along each DOF, instantaneous power flow 

between two or more physical systems (e.g., a robot and its environment) is always 

definable as the product of two conjugate variables, an effort (e.g., a force) and a flow 

(e.g., a velocity). An important physical constraint is that no one system may determine 

both variables. Thus, along any DOF a robot may impress a force on its environment or 

impose a displacement or velocity on it, but not both. Consequently, physical systems 

come in only two types: admittances, which accept effort (e.g., force) inputs and yield 

flow (e.g., motion) outputs; and impedances, which accept flow (e.g., motion) inputs and 

yield effort (e.g., force) output. Distinction between admittance and impedance is 

fundamental to apply the most adequate control strategy. In a dynamic interaction 

between two physical systems, one must physically complement the other: Along any 

DOF, if one is of impedance-type, the other must be of admittance-type and vice versa. 

Robots can then be considered of either the impedance or the admittance type [5]. 

Robots of the impedance type, such as typical haptic devices, are backdrivable with low 

friction and inertia (e.g., PHANToM device). This type of robot can be considered a 

force source, and is typically controlled using impedance control. An impedance 

controller outputs actuator forces that are a function of measured robot 

position/velocity/acceleration. On the other hand, robots of the admittance type, such as 

typical industrial robots, are non-backdrivable and have large inertia or joint friction 

(e.g. robots with high rate transmissions in servo-motors). This type of robot can be 

considered a velocity source and is usually controlled using admittance control. An 

admittance controller measures an input force, and controls the position (i.e. velocity) as 

a function of the input force. 
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Different control strategies for the application of virtual fixtures have been development 

for both types of robots. Ho et al. [50] distinguished between two approaches, which 

they called the implicit force control and the modified damping control. In the former, no 

force sensor is used, and the robot is of the impedance-type. The latter approach uses a 

force sensor to measure operator’s guiding force, which determines the robot’s velocity. 

In this case, the robot is of the admittance-type and the desired velocity of the robot is 

controlled based on the relative position of the robot, motion constraint, and the direction 

and magnitude of the guiding force. This is basically the concept of admittance control 

techniques and can be applied to robots of the admittance-type in a very natural way. 

Since these non-backdrivable robots move in a highly controlled fashion, one can 

passively restrict movement in any given direction by simply not commanding any 

movement in that direction. Based on JHU Steady-Hand Robot, Bettini et al. [13], [14] 

uses admittance control to develop guidance virtual fixtures to assist the surgeon to 

move the surgical instruments in a desired direction. Their work was focused on 2D 

geometric guidance motion of the tool tip based on vision information. Funda and Taylor 

[41] formulated desired motions as sets of task goals in any number of coordinate frames 

relevant to the task, and optionally subject to additional linear constraints in each of the 

frames for redundant and deficient robots. Li et al. [80] extended Funda’s work to 

generate virtual fixtures for real-time obstacle avoidance, and simultaneously assist the 

surgeon to perform desired tool motion to accomplish intended tasks by using an 

optimization-based approach.  

Virtual fixtures have also been widely applied to telemanipulators, where a human 

operator manipulates a master robotic device, and a remote slave robot manipulates an 

environment while following the commands of the master [109], [104], [1]. Rosenberg 

[109] implemented virtual fixtures as impedance surface on the master to assist in peg-

in-hole tasks. Joly et al. [58] simulate a virtual mechanism connected to the master and 

slave arms via springs and dampers to impose motion constraints to the system. Micaelli 

et al. [87] proposed a decoupled controller for telemanipulators to deal with virtually 

constrained and unconstrained directions defined by a virtual mechanism. Itoh et al. [56] 

proposes human-machine cooperative telemanipulation bases on the task-oriented virtual 

tool dynamics which assist a human operator semi-autonomously during a task. Turro et 
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al. [134] implemented virtual fixtures projecting the operator’s Cartesian position on the 

desired trajectory (called a Proxy) to which the master is bounded, and the slave then 

tracks either the master or the proxy, depending on the desired level of user control. The 

approaches just mentioned above were implemented with penalty-based or potential-

field methods. These are impedance-type virtual fixtures that act in an active way. 

Abbott et al. [3] implement an admittance controller on teleloperators where the master 

and slave are impedance-type devices. The virtual fixturing method involves controlling 

an impedance-type robot using techniques that mimic admittance control. Using this 

method, a teleoperator of the impedance type, designed to achieve a good sense of 

telepresence, can also implement virtual fixtures without the stability problems 

commonly associated with implementing virtual walls using impedance control 

techniques [2]. Unlike with potential fields, the admittance-type guidance virtual fixtures 

act in a very passive way, because they do not add energy to the system. 

3.3 Singularity robustness 

The singularity problem is a well known problem already identified at an early stage of 

robotics research [135], [140]. Various ways have been devised to handle the problem of 

singularity, starting from the simple approach of switching into joint space control [119]. 

Others developed techniques to avoid the singularities [53], [87]. However, avoidance is 

not always possible when the robot is not redundant with respect to the task. The scope 

of this work is restricted to real-time singularity robust control methods for the case in 

which the reference trajectory is not known a priori and the robot is non-redundant. A 

well-known approach is based on the so-called damped least-squares (DLS) method 

[92], [137]. This method prevents the joint velocities from becoming excessively high 

near singular configurations by using a damping factor to control the norm of the joint 

velocity vector. However, the exactness of the inverse kinematic solution is sacrificed in 

order to achieve feasibility. Although various methods to compute an appropriate 

damping factor have been proposed to minimize the deviation error [137], [92], [84], all 

these methods produce a deviation from the desired end-effector direction in the 

neighbourhood of the singularity. Moreover, Kircanski et al. [68] performed a stability 

analysis of the DLS method in terms of second-order differential motion and showed 

     30



 

that an algorithmic error exist along the singular direction. An overview of the methods 

for inverse kinematics based on DLS can be found in [34], [26]. 

Eliminating the component of motion along singular direction to avoid large joint 

velocity generation has been proposed [24], [25]. Together with the introduction of an 

operational space formulation, Khatib proposed as solution for kinematic singularities to 

treat the robot as a redundant mechanism with respect to the motion of the end-effector 

in the subspace of operational space orthogonal to the singular direction [69]. Control in 

this subspace is based on operational forces, while null space joint torques are used to 

deal with the control in the singular directions. Later on, Chang and Khatib [22] 

introduced the dynamically consistent generalized inverse and compared its performance 

with the one of the pseudoinverse when performing motions in the null space. Using the 

dynamically consistent pseudoinverse, the task and null space motion and forces are 

decoupled. Oetom and Ang [100] eliminate the singular components of the Jacobian, 

becoming redundant with respect to the task, and used the dynamically consistent 

inverse to invert the Jacobian. Null space was also used to escape from singularity. 

Experimental results were obtained with the PUMA 560. A certain trade off between 

exactness and achievability was necessary in moving out of a singular configuration into 

a non-feasible path. The dynamically consistent generalized inverse has been 

successfully used for controlling the null space of redundant manipulators [23]. 

Kieffer [66] showed that using a higher order approximation, paths passing 

arbitrarily close to the singularity can be tracked when the end-effector path parameter 

variable is included as a dependent variable in the formulation. An alternative to 

Kieffer’s path tracking formulations has been proposed by Nenchev et al. ([95], [99]), 

known as the singularity-consistent (SC) path tracking method, which is based on the 

null-space technique commonly used for redundant manipulators [93]. This method 

guarantees path tracking at and around a singularity without deviating from the desired 

direction. The deterioration of motion ability at the singularity reflects on velocity only. 

Later, the same author proposed a reformulation of the null space based path-tracking 

method in terms of instantaneous motion, thus avoiding the requirement for path 

parameterization [97].  
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Finally, the Adjoint Jacobian approach is an alternative to the SC null space based 

approach. It was first considered by Senft and Hirzinger [114]. In this method, one splits 

the inverse of the Jacobian into the adjoint and the determinant of the Jacobian. One 

important assumption is that the determinant can be factorized. Tsumaki et al. [131] 

have shown that the SC null-space and adjoint Jacobian formulations are directly related 

with each other [96]. There is certain limitation of these two methods, since they can be 

applied to a single singularity. In [130] the approach is successfully applied to a 6 DOF 

robot arm. Motion in a uniform way was possible everywhere in workspace, except at 

double singularities, e.g. simultaneous shoulder and wrist singularities. A comparative 

study between SC and DLS [98] show that the DSL may destabilize the system along a 

degenerated singular direction, while the SC does not. 
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4. Design of a controller framework 

Robotic assistant surgery systems are complex systems that involve many interacting 

components, including the software, sensors, human-system interfaces and so on. As 

such, they share the same underlying needs for good system design and engineering 

practice like modularity, well-defined interfaces, etc. 

According to chapter 2 the modiCAS system requires the design and 

implementation of a modular software framework to provide a flexible usage of the 

different functionalities to cope different surgical application. Further requirements are 

software maintainability, scalability, reusability and a robust and flexible hardware 

interface. The remaining of this chapter describes a modiCAS controller software 

architecture designed to fulfil these requirements. 

4.1 System architecture 

The concepts of simplicity, flexibility and scalability represent key concepts so that the 

development of suitable solutions for various applications becomes feasible in a 

pragmatic way. A clear modularization of the different implicated tasks and a strategic 

distribution of them along the system framework, depending on their role within the 

system, are paramount issues to fit these requirements. 

In this context, let us now distinguish between two types of tasks. The first are the 

application-tasks, which, as suggested by the name, are application specific tasks that 

belong to a high level implementation. These make use of lower level tasks to attain 

their goals. The application-tasks may be a sequence of steps required to complete a 

surgical procedure, or may represent a state-machine with interchangeable modalities 

that become available to the surgeon during operation. 

The functional-tasks are the second kind of task and comprise all fundamental 

services that the system is able to provide. They are the low level tasks that the 

application-tasks use to complete their objective. The functional-tasks may be 

configurable but they are essentially fixed within the system and have an explicit aim, 

e.g. commanding the robot to reach a desired position in the Cartesian space. Some 

functions may look more like an operating mode, such like the virtual constrained 

cooperative mode or the tracking mode (see section 4.5). 
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The modiCAS controller software framework consists of a client-server architecture 

which literally separates the system physically into two parts: on the one side a multi-

purposes server mounted on a real-time embedded target computer that contains all the 

available functional-tasks used for a proper interaction with the different components of 

the system, i.e. hardware interface, data acquisition, robot controller, trajectory 

generation, kinematics transformations, etc. These tasks may have a single execution or 

run periodically in an independent loop which here is referred to as task-loop. A priority 

level is associated with each task-loop so that the most time critical tasks can always 

take control of the processor when needed. The modiCAS system makes use of 

LabVIEW Real-Time (RT) Module to guarantee real-time behaviour [77]. The 

embedded target consists of a normal PC running the Venturcom Phar Lap Embedded 

Tool Suit, a real-time operating system [9]. 

The other main part of the system is the client, which runs on a host computer and 

communicates with the RT target through an Ethernet connection. This contains the GUI 

together with application oriented high level routines (application-tasks). These routines 

make use of the basic functionalities provided by the server (functional-tasks) to achieve 

a specific goal. The server is headless, so any action must be commanded by the client. 

Furthermore, the client is also responsible for receiving data coming from the server for 

display, storage or other processing. Thus, client and server interact with each other 

using a command-based network communication here referred to as the command 

interface. Figure 4.1 illustrates the different framework modules of the modiCAS system 

and their interrelationship. Each module is detailed explained in the remaining sections 

of this chapter. 

4.2 Command interface 

The Command Interface is an Application Programming Interface (API) used to get 

access to all functionalities available in the RT-Target of the modiCAS framework. It 

consists of four separate modules, two at each side of the communication: the Command 

Sender Module (CSM) and Data Receiver Module (DRM) at the client, and the 

Command Parser Module (CPM) and Data Transmitter Module (DTM) at the server. 
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Figure 4.1. Command-based architecture of modiCAS framework 
 

Additionally, a command library comprises all available commands that can easily be 

called by any routine of in the application-tasks. This abstraction provides a very clear 

interface for the application developer at the moment of implementing a new application. 

The explanation of the command interface begins with the message protocol used for the 

communication. This provides the basic knowledge needed to understand requirements 

for the construction and usage of the different commands available in the commands 

library. The further explanation of CSM and CPM as well as their interaction between 

each other is illustrated by tracking the data flow which occurs each time a command is 
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executed. Finally, DTM and DRM are easier to understand, since they use the same 

principle of communication as CSM and CPM. 

4.2.1 TCP/IP message protocol 

The command-based communication is grounded on a simple TCP/IP Messaging 

Protocol, whereby the TCP/IP protocol is the most common method for sharing 

information between computers through a network. The communication protocol has the 

following characteristics: 

 

� Easily packages and parses data 

� Hides the TCP/IP implementation details 

� Minimizes network traffic by sending data only when it is needed 

� Minimizes impact on the overall overhead and throughput 

� Ability to send and receive  many data types 

 

In every messaging protocol there is some data overhead associated with parsing the data 

stream on the receiving side. Sending a complete set of meta information with every 

package adds significant overhead. In order to minimize the communication overhead 

while sending essential information with each packet, the server creates a separated Meta 

Data List (MDL) containing one identification tag for each command associated to a 

command ID (created with the index of the command in the list). Each tag of the list 

corresponds to a unique and predefined type definition1 used to parse the transmitted 

data. Figure 4.2 shows an MDL with only one command having two different instances, 

each of which corresponds to a different set of input parameters and has its own type 

definition. Notice however that both entries execute the same task. 

                                                 
1 Type definition is LabVIEW-specific mechanism to identify the correct data type for each instance of a 

custom data structure. 
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Figure 4.2. Example of MDL of commands with two instances of the same 
command 
 

The server sends the MDL to the client once at the very beginning of communication. 

Then, each time a command is transmitted, a packet is constructed using the format 

presented in Figure 4.3. Every packet includes 48 bits of overhead corresponding to the 

data size and command ID. These are concatenated to the command data. The 

transmission packet is converted into a flattened data string of binary values, adequate 

for TCP/IP network communication. The incoming package at the receiving side is then 

unflattened using the type definition corresponding to the specific command ID. This 

protocol is more efficient and has higher throughput when transmitting large data 

payloads.  

4.2.2 Command library 

The command interface provides an easy-to-use command library that can be used by the 

different applications in the host computer to transmit a command to the target. This 

permits the programmer to implement its final application using the available functions 

of the system without taking care of the complicated systematic details implicit in each 

task. Table 4.1 shows a list of the some general purposes commands available for their 

usage within the modiCAS system. 

 

 
Figure 4.3. Transmission Packet Format 
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Table 4.1. List of commands for general purposes functions 

Command Description 

ABORT Cancel any running operation 

CVEL Moves the robot in Cartesian space with velocity commands 

EXIT Finishes any running operation 

GET2
 Gets the value of a specified variable from the RT-Target 

GVF Enters in Guidance Virtual Fixture mode 

INIT Initializes the command interface with the RT-Target 

JVEL Moves the robot in joint space with velocity commands 

LIN2 Moves the robot in Cartesian space with position commands 

PTP2 Moves the robot in joint space with position commands 

RESET Clean any error message present in the RT-Target 

SET2 Sets the value of a specified variable from the RT-Target 

START Sets the RT-Target into one of the different running modes 

STOP Stops the actual running mode 

TRK Enters in tracking mode 

UNLOCK Set/Release the brakes of the robot 

 

The INIT command opens the TCP/IP network connection between host and RT-target. 

It has to be executed before any other commands can be used. 

4.2.2.1 Command implementation 

Normally, the main operation of every command (except INIT) consists of gathering the 

input data, converting it to string format and forwarding it to the CSM. It is the 

responsibility of each command to use the correct type definition according to the 

command tag to convert the input data into the right string format. If the string does not 

match with the type definition at the receiving computer, the command does not proceed. 

Figure 4.4 shows the typical internal structure of a command. 

                                                 
2 Multiple instances available. 
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Figure 4.4. Command internal structure 

 

Each command may have multiple instances, each of them with different number and 

type of arguments. As illustrative example, suppose that one application moves the robot 

using Point to Point (PTP) command. Desired joint position, maximum velocity and 

maximum acceleration can be given as input arguments of one command instance to 

define the movement profile. Then, if subsequent movements having the same profile 

are required, a different instance of the PTP command, with only desired joint position 

as input parameter, can be used and the last movement profile used is maintained by the 

server. Multiple instances can also be useful when different notations of an input 

argument are possible. For example, when moving the robot in Cartesian space to a 

target pose (position and orientation) with the LIN command, the desired orientation 

may be given either in the form of rotation matrix or any other notation, such as roll-

pitch-yaw. A different instance of LIN could be implemented for each case. 

The completion of some tasks at the target computer requires a certain not 

predefined time. For example, a PTP command requires the robot to reach the target 

pose before the command is considered to be completed. Depending on the application, 

an application-task may have to wait until completion of the commanded task before 

continuing with the next step or may continue doing other operations afterwards 

independent of whether the functional-task has been completed or not. The wait until 

done feature is included within the commands for such cases. If it is active, the CSM 

blocks until the corresponding completion-acknowledge is transmitted back by the 

server. A similar procedure occurs when feedback information is expected by the 

command. The CSM blocks until the data is transmitted back and then forward it to the 

command, which gives it as output. 
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4.2.3 Command sender module 

The command sender module (CSM) executes the low level operations required to set 

the transmission packet in the correct format (see Figure 4.3). It is executed once each 

time a command is called. The tag of the command, together with the input flattened 

data string (if applicable), are given as input parameters. If the command name does not 

match with any of the MDL, this is ignored; otherwise, the data packet is constructed 

and then transmitted through the network connection. 

 
Figure 4.5 Interaction between command and command sender module 
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Once the packet is sent, the CSM waits for acknowledgment coming from the server. 

Three types of acknowledgment are possible: 

 

� CMD-DONE – command successfully received and processed. 

� CMD_FAIL – command failed. 

� TSK-DONE – task successfully finished. 

 

The CSM is unblocked only after a command execution (CMD-DONE) or a command 

fail (CMD-FAIL) is confirmed by the server. If the feature wait until done is active, the 

CSM blocks once again until the task completion (TSK-DONE) is also confirmed. If the 

command expects feedback data from server, such as in GET command, after the 

notification is received, the CSM looks for the data in the corresponding shared variables 

and forward it to the command function. The received data at this point is still in string 

format. The command function is responsible for decoding the data to the corresponding 

format. 

4.2.4 Command parser module 

The command parser module (CPM) is a key element for the safe performance of the 

system. It consists of an internal asynchronous loop running in the RT-target with 

normal priority. It sleeps until a new command needs processing. This assures an 

efficient performance since the CPM will consume very little CPU time if there are no 

incoming commands and it will not interrupt any other task with higher priority when a 

command has to be processed. Figure 4.6 shows the command parser module 

construction. 

The TCP/IP message protocol explained in chapter 4.2.1 is used to retrieve the 

command name from every incoming data package. The feasibility of the command in 

consistence with the actual state of the system must be assured before this is processed. 

The selection of the handler for the incoming command is implemented as a case 

selector with a separate case for each command. Such architecture is very scalable, 

because the incorporation of a new command simply requires adding a new case 
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matching with the tag of the command. Inside each case, the corresponding type 

definition is used to decode the incoming data. 

Additional plausibility tests may also be required, e.g. joint limits, maximal desired 

joint velocity exceed, target position out of working space, and so on. The specific 

plausibility test depends on the type of command. 

If any of these inspection procedures fails, the command is not executed and a warning 

message is transmitted back to the Host, otherwise, the CPM handles the command. 

Finally, it informs the Host of the successfulness/unsuccessfulness of the command 

execution. (CMD-DONE / CMD-FAIL). Notice that the commands where wait until 

done is active also expect the task execution acknowledgment (TSK-DONE) which may 

be produced by the corresponding task-loop. 

 

 

Figure 4.6. Command parser module: A PTP(q) command is received, but it is only 
processed if the current state is comprises the command 
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Figure 4.7. Data distribution inside the data transmitter module 
 

The main purpose of the command parser loop is to manage available functional-tasks 

and distribute incoming data to the various task-loops3 of the target application. In 

general, no other actions should be done inside the CPM. Restricting this loop only to 

task management and data distribution makes the target application very responsive to 

host commands. 

4.2.5 Data transmitter module 

The data transmitter module (DTM) is a normal priority loop running periodically in the 

target computer. This continuously sends important information to the host computer, 

such as current status of the different components of the system, error information, etc. 

The DTM retrieves data from other higher priority task-loops and forwards it to the 

client. The data processing and transfer occurs only when new data are available. This 

allows managing data coming from different asynchronous loops without sending 

repeated data to the host. 

The conversion of data into flattened data strings for TCP/IP communication 

follows the same message protocol already explained in chapter 4.2.1. The separate 

transmission of a significant number of individual data values would decrease the 

efficiency of the communication due to the overhead included in each package. 
                                                 
3 Communication with these tasks is implemented via real-time shared variables. 
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Therefore, all data values contained in each task-loop are gathered together into a type 

definition. Thus, one packet per loop is transmitted with a specific command name. 

4.2.6 Data receiver module 

The data receiver module (DRM) is responsible for receiving and eventually processing 

each incoming packet from the server. Its implementation is very similar to the one at 

the CPM. This module is driven at the rate of incoming data. This guarantees that no 

data is lost and no CPU time is wasted polling for incoming data. The execution 

frequency usually is much higher than in the CPM, since the data stream generated by 

the DTM at the server is transmitted periodically, as opposed to the sporadic sending of 

commands from the client. 

In this situation, the host application must receive and process packets at high rates. 

Processing may involve logging to disk, performing some analysis, etc. Ideally, packet 

processing should always be completed in time to go back and retrieve the next packet. 

Therefore, normally the processing inside the DRM is limited to writing into shared 

variables and eventually some notation conversions. If additionally processing is 

required, it may be necessary to send the data to asynchronous task-loops that handle 

each particular operation. The data distribution to the different task-loops is done 

through functional variables4 available for all running loops. Figure 4.8 shows the 

implementation of the DRM. 

 

 

Figure 4.8. Data receiver loop at a Host application 

                                                 
4 Communication mechanism in LabVIEW that allow controlled access to data or resources. 
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4.3 Target computer 

The Real-Time (RT) Embedded Target acts as a server which provides all system 

fundamental tasks that require a real time behavior, such as hardware interface, data 

acquisition and processing, control loops, among others. High determinism is a 

characteristic of real-time systems and guarantees that the calculations and operations 

occur in time and on time. Deterministic applications are valuable not so much for their 

speed, but rather for their reliability in consistently responding to inputs and supplying 

outputs with very little jitter. 

Now, it is important to differentiate between deterministic tasks and non-

deterministic tasks. Therefore, each task has to be evaluated to define whether it is time 

critical or not. For instances, a control loop and safety monitoring are considered time 

critical because both need to execute on time every time to ensure accuracy. 

Communication between computers is not time critical because a computer may not 

respond on time every time. Likewise, data logging is not time critical because an 

accurate time stamp can identify when the data is collected or calculated. 

The server program comprises different tasks with different execution priorities 

depending on how deterministic each task has to be. The concept of multithreading is 

required in order to apply these priority levels to the different tasks. Multithreading 

expands the idea of multitasking. The latter refers to the ability of the operating system 

to quickly switch between tasks, each of them be an entire application, giving the 

appearance of simultaneous execution of those tasks. Each application runs for a small 

time slice before yielding to the next application. Multithreading extends this idea into 

the applications, so that specific operations within a single application can be subdivided 

into individual threads, each of which can run in parallel. Thus, in a multithreaded 

program, the application might be divided into various threads, each of which has a 

priority level. This is useful in the case where some of the tasks must behave 

deterministically while others do not.  
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Figure 4.9. Task distribution among the different threads in RT-Target application 
 

The real-time operating system of the LabVIEW Real-Time Module implements a 

combination of two methods for scheduling threads [77]: 

 

� Round-robin scheduling – Applied to threads of equal priority. Equal shares 

of CPU time are allocated between the equal priority threads. 

� Preemptive scheduling – Any higher priority thread that needs to execute 

immediately suspends execution of all lower priority threads and begins to 

execute. 

 

Figure 4.9 shows the task distribution among the different threads depending on its 

priority level. One thread runs for each priority level. All tasks of the same priority are 

executed in the corresponding thread. The modiCAS framework uses three different 

priority levels: 

 

� Normal Priority Thread: The tasks included here are non-deterministic and only 

execute while the deterministic tasks are sleeping. Basically, the command 
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interface modules (CPM and DTM) belong to this category. Additional tasks, 

such as data logging, may also have this priority. 

� High Priority Thread: This thread includes multiple tasks requiring a 

deterministic behavior. Although multiple tasks are running in the same thread, 

these can be executed in asynchronous loops, each of which having different 

cycle time. Examples of tasks running with this priority are the data acquisition 

and signal processing of the FT-sensor and the navigation system. 

� Time Critical Priority Thread: In general, a deterministic application has a 

primary deterministic task that preempts all others. The time critical priority 

thread contains this task, with the particular characteristic that if any task running 

in here goes to sleep, the entire thread would sleep too. Hence, other tasks 

running on the thread would be forced to sleep and cease execution until the 

original loop wakes up. Therefore, only one task, namely the most critical one, 

runs with this priority. This task is the control loop of the robotic system. 

4.3.1 State machine 

The execution flow of the different states of the modiCAS system is controlled by the 

state machine (see Figure 4.10). The possible active tasks at a given time vary depending 

on the actual state of the system and the demands of the running application. A 

description of each state is given below. 

 

Initialization-state: This state executes only once, directly after launching the main 

process. Hardware initialization and default internal variables setup happens in this state. 

After successful initialization, the process changes to configuration state. 

 

Configuration-state: After entering the configuration-state, the process sleeps and waits 

for client’s attempt of connection. Once this occurs, the MDL is transmitted to the client 

and application-dependent configuration parameters coming from the client are loaded. 

Some of these parameters describe which task-loops are to be used by the particular 

application at running-state, tool parameters (tool center point, center of mass, weight, 

etc.), assignation of RBs for the navigation system to recognize, among others. 
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Figure 4.10. State machine of RT target 
 

Finally, the command interface is initialized, i.e. the connection ID for the TCP/IP 

communication is forwarded to the CPM and the DTM. After successful initialization, 

an INIT-DONE acknowledgment is transmitted to the client and the process is sent to 

wait-state. If some error occurs in between, the connection is closed and the process is 

directly sent to exit-state where it is properly terminated. 

 

Wait state: The wait-state is the previous state before getting the system into operation. 

At this point, only a limited number of special tasks can be executed: 

 

� Reconfiguration of the system – At any point of a procedure, the host may 

require changing the settings of the system (e.g. when changing tool) in order to 

fit the demands of the particular application. 
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� System reset after error – If some recoverable error occurs during operation, the 

system automatically changes to wait-state and notifies the host about the source 

of the error. Leaving this state is only possible after the system is reset to normal 

status, i.e. each component of the system (robot, navigation system, etc.) must 

work properly. Only then, the system can enter the running-state. If the error is 

unrecoverable, the system switches to exit-state where all resources are closed 

and the process is terminated. 

� Emergency mode – A special mode is available during wait-state that permits to 

unlock the robot joint brakes without starting the servo-motors. This may be 

required for emergency situations where the joints have to be unlocked and 

moved by hand. 

 

Running-state: All system functions become available at running-state. The client 

application accesses them by means of the command library. Basically, when entering 

running-state, the server runs the task-loops required to provide the different functions 

(see section 4.5 for a description of available functions). A task manager is used to 

administrate the different active task-loops during this state. The task manager is further 

explained in the following section. 

4.3.2 Task manager 

The task manager is a task container which, depending on the demands of the actual 

client application, takes care of the setup, starting and termination of the required task-

loops. Further configuration parameters are forwarded to the respective task-loops. This 

means, if the client application requires specific components of the system, this is simply 

specified within the configuration parameters either at client-server connection (during 

configuration-state) or later on in the wait-state. Once the running-state becomes active, 

the task manager immediately launches the required task-loops, distributing the 

configuration parameters to each of them in the form of input arguments. Each loop then 

executes cyclically, with the cycle time specified within the configuration parameters. If 

one of the task-loops is terminated, either due to error occurrence or commanded by the 

     49



 

client, the task manager notifies the remaining task-loops in order to terminate each of 

them and finally conclude the running-state.  

4.3.3 Task-loops 

A task-loop is a piece of code that executes cyclically inside a loop once it is started by 

the task manager. Its purpose is to carry out one or more specific tasks. The task-loop is 

divided into three main stages:  

� Initialization stage: This stage executes only once at the very beginning when the 

task-loop is started. Any kind of operation required for the correct execution of 

the task is performed here. Depending on the specific task, such operation could 

comprise variable initialization, hardware initialization and task configuration 

among others. 

� Execution stage: This stage runs periodically until it is terminated either because 

of internal error or by the task manager. This stage comprises the operations 

required to perform the tasks. If multiple tasks are available, these are separated 

in sub-states that can be alternatively switched. Common operations for all tasks 

can be included before and after the sub-state execution (see Figure 4.11). 

� Termination stage: This stage executes only once before the task-loop is 

completely terminated. All hardware and software resources can be safely closed 

before leaving the task-loop. 

 

 

Figure 4.11 - Task loop flowchart 
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One single task-loop dedicated to each active component of the system is recommended 

but not mandatory. The incorporation of new components to the system would imply the 

implementation of its corresponding dedicated task-loop. All tasks related to this 

component are included in the form of sub-states.  

A task-loop containing multiple states has to have one transition sub-state (Init) 

which has to be executed once each time the loop goes from one state to the other. The 

Init sub-state executes any procedure required to assure a safety transition from one sub-

state to the other. A state manager (see section 4.3.4) is used to safety switch between 

the different sub-states going through the Init sub-state in between. 

Three main components are available in the actual stand of the modiCAS system, 

each of them having one dedicated task-loop: 

 

� TCL-ROB Task-loop: The Time Critical Loop of the ROBot arm (TCL-ROB) 

contains the main control loop. Several sub-states are internally available, each of 

them having an adequate control strategy to execute a specific task. Thus, it is 

possible to fulfill various demands coming from the different applications. An 

explanation of each sub-state is given in Section 4.5, where the available 

functions of the system are explained. 

� HPL-FTS Task-loop: The High Priority Loop for the data acquisition of the 

Force/Torque Sensor (HPL-FTS) has a priority level lower than the TCL-ROB, 

i.e. the former is preempted each time the latter executes. In the same way, the 

HPL-FTS will preempt all tasks with lower priority, such as the CPM, the DTM 

and all existing normal priority tasks. All other task-loops with the same priority 

level (high priority level) are scheduled using the Round-Robin method. The 

HPL-FTS takes care of the data acquisition and signal conditioning of the F/T 

sensor mounted at the end-effector of the robot arm. The signal conditioning 

steps comprise: voltage-to-force transformation, mean value calculation, drift 

compensation, filtering and gravity compensation. Notice, however, that the task-

loop contains only one sub-state (i.e. non state manager is required), since each 

calculation is performed sequentially one after the other every cycle time. 
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� HPL-NAV Task loop: The High Priority Loop for the NAVigation system (HPL-

NAV) has the same scheduling behavior as the HPL-FTS task-loop. This task-

loop is responsible for the acquisition and processing of data coming from the 

navigation system. The resulting data is written to the corresponding shared 

variables so that these can be retrieved by other task-loops. A detailed description 

related to the navigation system is out of the scope of this work. The interested 

reader may consult [106].  

 

Notice that additional task-loops can be incorporated for other aims, such as analysis or 

data logging. 

4.3.4 State manager 

A state manager is an interface module used to remotely switch between the different 

sub-states of a specific task-loop. It assures a safe transition from one sub-state to the 

other passing first through the Init sub-state (see Section 4.3.3). There exists one state 

manager per each multi-states task-loop. If a task-loop only has one sub-state, it requires 

no state manager at all. 

In the actual status of the modiCAS framework, only the TCL-ROB task-loop 

provides multiple tasks. Hence, only one state manager is available. However, the 

concept can be applied to any further task-loop with multiple sub-states if required. 

On the one side, the state manager can be called from any running loop intending to 

change the actual sub-state of the associated task-loop. The CPM illustrates a very 

common case where the state manager is called any time a new command coming from 

Host demands the TCL-ROB to switch between sub-states. On the other side, the 

associated task-loop also calls the state manager internally at every cycle time to identify 

the actual sub-state. 

The usage of this module inside the time-critical priority loop simultaneously with 

another lower-priority-loop without a synchronization mechanism could compromise 

determinisms, since if one loop accesses the module, no other loop can access it until the 

first loop releases it. When the access of the time-critical loop to its state manager 

module is blocked, forcing the loop to wait, this introduces jitter to the application and 
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compromises its determinism. In order to avoid this behavior, the time-critical loop skips 

the module if another loop is using it, and the output value obtained the last cycle is used 

instead. This mechanism is not needed in lower priority loops; these can wait until the 

module is released. 

4.4 Hardware interface selector 

Keeping the framework flexible for expansion and maintenance is a major objective of 

this work. This counts also for the hardware interface. Thinking about upgrading or even 

replacing any component of the system (whether it is a data acquisition board, the 

navigation system or even the robot) must not affect the integrity of the software 

framework. Therefore, the interface to each main component of the system (robot, 

navigation system and force/torque sensor) is encapsulated into a selector object. This 

object may contain multiple instances of the same component, each of which contains a 

technical variation of the specific hardware. But all instances inside a selector represent 

the same component.  

For example, the hardware interface of the FT sensor depends on different factors, 

such as sensor manufacturer and model, sensor calibration, data acquisition board type 

and so on. If several FT sensors are at disposition, the system should be able to work 

properly with all of them; moreover, the system should not notice the difference when 

using any of them. Each instance of the FT Sensor Selector corresponds to each of these 

available variants and contains the respective implementation details. If a new sensor 

becomes available, a new instance with the particular implementation is simply 

introduced to the FT Sensor selector. 

Each instance of a selector has a singular name through which it can be identified 

dynamically and selected during program execution. The selector object comprises a set 

of services common to all instances. The task-loops utilize such services for interaction 

with the component. Number and type of services depend on the system component. 

Providing that some instances support more services than others, if a service is called 

which is not supported by the running instance, the selector notifies it with a warning 

message. 
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Notice that this abstraction also gives the possibility to completely substitute any 

component by a virtual analogy. In other words, it is possible to simulate each 

component of the system without making it notable for the rest of the program. This may 

be useful for different purposes at different levels. For instance, at the development level 

simulation may help for performance analysis of some components of the system. At the 

application level, a plausibility analysis of some trajectories inside the working area can 

be done with a simulated robot before these are applied to the real robot. 

Interfaces for the robot arm, the navigation system as well as for the force torque 

sensor are implemented within the modiCAS system using the interface selector concept 

just described in this section. However, detailed explanation of the interface with each 

component of the system is out of the scope of this work 

4.5 Target functions 

The modiCAS framework design as explained so far has the main objective of making a 

set of diverse functionalities available to a higher level of development, namely, the 

application layer, where these can be used to support different surgical applications. It 

has already been pointed out that the application layer is located at the host computer 

and uses a set of commands to get access to these functionalities. In the following sub-

sections, some control strategies are presented which are directly related to some of 

these commands. This means, each time that a command is called, the corresponding 

control strategy is activated. TCL-ROB, HPL-NAV and HPL-FTS task-loops contain the 

implementation of the various strategies. Some of them require only one task-loop while 

others need the collaboration of more than one. 

4.5.1 Joint velocity controller  

The joint velocity (JVEL) controller is the most simple control strategy implemented 

within the modiCAS framework. It practically forwards the desired velocity value to the 

robot servo driver. This value is expected to be in the joint space. The controller checks 

position and velocity limits before it forwards the velocity set point. The reference signal 

applied in  this  state  can  have  different  sources,  such  as  the GUI at the host, or other  
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Figure 4.12. Flow diagram of Joint Velocity Controller (JVEL) 
 

peripheral device, like space mouse or joystick. Figure 4.12 shows the flow diagram of 

the joint velocity controller, which is activated any time the JVEL command is used. 

4.5.2 Cartesian velocity controller 

The Cartesian velocity (CVEL) controller responds to the CVEL command. It accepts 

velocity set points in the Cartesian space, those that are transformed to the corresponding 

joint space. The Singularity Robust (SR) inverse velocity kinematics further explained in 

chapter 0 makes possible to pass through singular robot configurations without 

producing extremely high velocity values that could lead acute movements of the robot. 

Notice also that the command velocity can be applied to different reference frames that 

may correspond to the Tool Center Point (TCP) of any given tool mounted at the end-

effector. Figure 4.13 shows the corresponding flow diagram of the implementation. 

This control strategy may be useful in such applications where teleoperative 

manipulation of the robot arm is planned, where the robot represents a slave mechanism 

been remotely controlled by a master device, such as a Phantom device. Notice that the 

concept of virtual constraints can be included easily to delimitate the workspace and 

avoid entering in forbidden regions. 
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Figure 4.13. Flow diagram of Cartesian Velocity Controller (CVEL) 
 

4.5.3 Joint position controller 

The robot is intended to reach a desired position by following a position reference in the 

joint space. Therefore, a synchronous minimal traveling time Point to Point (PTP) 

trajectory in the joint space with trapeze velocity profile is generated [65]. Then a 

controller in the joint space is applied to follow such trajectory. Each time the host 

submits a new desired set of joints position, the controller resets the parameters of the 

interpolator so that it starts to deliver the interpolated trajectory on-line during the next 

cycles until the goal position is reached. A position controller (only proportional action) 

takes care of calculating the velocity command needed to follow the reference position 

which is finally transmitted to the servo driver. Once the robot reaches its aim, an 

acknowledgment signal (TSK-DONE) is generated and transmitted to the client (see 

Figure 4.14). 
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Figure 4.14. Flow diagram of Point to Point joint position controller (PTP) 
 

4.5.4 Cartesian position controller 

The Cartesian position controller, activated with the LIN command, is implemented to 

follow linear trajectories defined in the Cartesian space. Therefore, a trajectory 

interpolator generates a minimal traveling time cubic polynomial trajectory for both 

position and orientation of the end effector in the Cartesian space [65]. The orientation 

interpolation is based on a quaternion representation which, contrary to other notations 

such as the Euler angles, is numerically stable and free of singularities [89]. The 

resulting trajectory represents the set-point of a quaternion based feedback controller 

[40] that yields into linear and angular velocities in Cartesian space. These are then 

transformed to the joint space by using the SR inverse kinematics of chapter 0. The 

execution proceeds in a similar way as the one just explained for the PTP controller 

starting from the submission of the desired pose and finishing with the acknowledgment 

from the server when the aim is achieved (see Figure 4.15). 

     57



 

 

Figure 4.15. Flow diagram of linear trajectory Cartesian position controller (LIN) 
 

4.5.5 Guidance virtual fixture controller  

The guidance virtual fixture (GVF) controller is intended for cooperative tasks where the 

surgeon can move the robot directly with the hand. This control strategy is the first 

example of a task requiring more than one task-loop, i.e. the HPL-FTS and TCL-ROB 

task-loop. The former acquires the applied forces at the end-effector, processes them and 

finally passes them to the time critical loop. The applied forces/moments are converted 

to linear/angular velocities and then separated into two complementary subspaces of 

preferred and non-preferred directions depending of the virtual constraints previously 

defined by the user. If non constraints are specified, the robot can be freely moved along 

the 3D space; otherwise, the allowed movements will depend on the virtual definition. 

The resulting velocities are then transformed to the joint space and transmitted to the 

robot. The purpose of this section is only to present a general overview of the 

cooperative mode. A detailed explanation of the virtual constrained guidance controller 

using virtual fixtures and the singular robust strategies are presented in chapters 5 and 0, 

respectively. 
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Figure 4.16. Flow diagram of Guidance Virtual Fixture controller (GVF) 
 

4.5.6 Patient tracking controller 

The patient tracking (TRK) controller automatically tracks possible movements of the 

patient and drives the robot to compensate them. It makes use of the navigation system 

task-loop (HPL-NAV) together with the TRK sub-state of the robot task-loop (TCL-

ROB). This mode requires that RBs are mounted on both, robot arm and patient, and that 

the position and orientation of the RB related to the robot end-effector is well-known5. 

The position of the TCP with respect to the robot end-effector is also well known. All 

this information together with the measurements provided by the navigation system 

make possible to calculate required transformations that give a fixed relationship 

between patient and tool (see Figure 4.17), which is calculated only once when starting 

the tracking controller.  

Then, the main objective of TRK controller is to keep this relationship constant at 

real-time during the surgical intervention. A patient movement causes a deviation which 

is automatically compensated. That makes the robot able to maintain the optimal tool 

position  all  the  time  during  the  operation.  Although  the  patient tracking is a special  
                                                 
5 This is computed by performing well defined calibration movements during the initialization process of 

the system [70]. 
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Figure 4.17. Coordinate systems used for tracking controller 
 

feature of the modiCAS system, a deep insight in its development is considered beyond 

the scope of this work. Further related information can be consulted in [136], [70], [106]. 

Figure 4.18 shows the flow diagram of the TRK controller. 

 

 

Figure 4.18. Flow diagram of patient tracking controller (TRK) 
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4.6 Host computer 

The client skeleton is based on an event-based producer/consumer design [76], which 

allows creating efficient and flexible applications. An event is an asynchronous 

notification that something has occurred. Events can originate from the user interface, 

external I/O, or can be generated programmatically, e.g. acknowledgments coming from 

the server generate events signals that are handled in a similar way as the rest of events 

occurred within the client. 

The host-target communication, i.e. the command interface, has already been 

presented in section 4.2. In this section, the command interface is contemplated only as a 

library of commands that can be used at any time to request services from the server. 

Feedback information coming from the server is stored directly in internal variables that 

are available to the whole client. 

Besides the command interface, four modules are distinguished within the basic client 

skeleton, which work together to manage the whole execution at the client. These are 

described in the following sub-sections. 

4.6.1 GUI producer 

The GUI Producer is responsible for detecting any user request coming from the GUI, 

i.e. when a user changes the values of a control, moves or clicks the mouse or presses a 

key. Each of such actions produces a particular event. The GUI Producer wakes up when 

an event occurs and sleeps in between. This minimizes processor usage without 

sacrificing interactivity. When a GUI event occurs, this is identified and a new 

programmatically generated message event is directly produced to further notify the 

event consumer to handle the event. Notice that this construction allows having different 

sources to produce the same message event. This may be useful when the GUI allows 

multimodal interaction, for example, in cases where the same action can be generated by 

clicking on a tool bar button or through the menu bar or a running-time menu appearing 

after clicking on the right mouse button over a graphic (just to mention some of them). 
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4.6.2 External producer 

The External Producer is responsible for detecting any user request coming from an 

external source, such as the modiCAS planning software. Notice, however, that any 

other source that complies with the communication protocol could produce events. The 

communication is based on TCP/IP protocol and uses XML language in order to provide 

a universal interface which is flexible enough for further expansion. 

The External Producer opens a communication channel and sleeps until external 

program request connection. In a similar way as in the GUI-producer, the request can be 

either forwarded to the event consumer or directly to the target computer. 

4.6.3 Event consumer 

The Event Consumer is responsible for managing the application-tasks upon request. But 

it does not execute any task by itself; it rather delegates the work to independent 

application-tasks by dynamically starting and stopping them. The amount of application-

tasks and their appearance depends on the application. These may have a GUI or not, 

depending on whether user interaction is required or not. 

The event consumer may realize additional operations in order to keep a consistent 

behavior along the whole application. Some of these may imply sending direct 

commands to the target, actualization of the toolbar menu, requests to GUI-handler (see 

next section) among others. It is important to avoid long time executions inside the loop. 

4.6.4 GUI handler. 

The GUI Handler updates the appearance of the GUI every time it is remotely 

commanded by another loop. For example, let us suppose that the main window contains 

a section with controls to move the robot to a specific desired position. and that certain 

calibration procedure is started by the execution-loop. For safety reasons, the GUI-loop 

is requested to blind out this section during calibration so that no movement can be 

commanded. Figure 4.19 shows the basic modules contained in a client application. 

Additionally, the various application-tasks may run parallel to these modules. More 

details are presented in the next section. 
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Figure 4.19. Host application 

4.7 Modular distribution 

The main skeleton discussed in section 4.6 gives the possibility to manage different 

applications, but their execution actually occurs in separate loops. It is important, 

however, to have control over the number of tasks running at the same time. The design 

of an optimal ergonomic GUI for surgical applications is out of the scope of this work. 

Nevertheless, a first proposal is presented, which has been implemented to exemplify the 

usability of the client structure. Notice, however, that a deeper analysis of this issue is 

recommended for further design.  

The GUI comprises components normally found in conventional software 

applications. It consists of one main window divided into four sub-sections (see Figure 

4.20): 

� System Status Section: The System Status Section is the only one with fixed 

elements that appear all the time giving feedback information about the status of 

the target computer and the system components. The other three sections are 

actually sub panels being able to contain different kinds of widgets which 

appearance depends on the running application task. Each sub-panel has a task 

     63



 

execution module used by the event consumer to load and unload tasks on each 

of them. More details about execution modules are given in section 4.8. Which 

task runs in which sub-panel depends on the purpose of the task.  

� General Purpose Section: The General Purpose Section is a sub-panel containing 

widgets that directly get access to general functions, such like PTP, LIN, CVEL, 

and JVEL. There exists one widget per functionality, each of which has its own 

GUI with a particular appearance adjusted to cover the specific demands. All 

these are dynamically interchangeable. 

� Application Section: The Application Section is a sub-panel containing widgets 

with the main task, the contest of which depends of the application. As 

illustrative example, Figure 4.20 shows the Teach Mode application, where a list 

of multiple positions of the robot can be managed (saved, loaded, deleted, etc.), 

and actual execution of the sequence of positions can be commanded to the 

robot. 

� Visualization Section: The system feedback visualization is contained in this 

section. Any kind of visualization can be shown here, whether it is the robot’s 

position in joint space, or Cartesian space, in the form of graphics or 3D-

representation, all kind of visualization is executed within the Visualization sub-

panel. Just to give an example, a widget can contain a 3D-representation of the 

robot arm together with the position of RB detected by the navigation system that 

can be updated on-line with the feedback information coming from the target 

(see Figure 4.20).  

 

The management of the whole sub-panels is possible through both, the menu bar and a 

toolbar. 
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Figure 4.20. Graphical User Interface of the client running at host computer 
 

4.8 Execution and task modules 

An execution module is the interface used by the event consumer to dynamically starting 

and terminating application tasks. There exist two types of execution modules depending 

on the type of task they manage: 

 

� Independent tasks: These tasks run either in an independent window or they do 

not have GUI at all. The execution module can run multiple tasks 

simultaneously, executing them in parallel loops. It keeps a reference to every 

launched task so it can be terminated properly. 

� Sub-panel tasks: These tasks have a GUI executing within one of the sub-panels 

previously presented. Each sub-panel has its own execution module. Only one 

task per sub-panel is able to run at any time. This means, when a new task is 

launched inside a specific sub-panel, any task running inside is first terminated. 
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All tasks are designed in an individual widget as a separate task module independent of 

the execution module. The GUI contained inside each task module has to be locally 

controlled. This means that the main GUI Handler has only influence on the controls and 

indicators belonging to the main window. It can change properties of the sub-panel as a 

whole, but not of each control and indicator contained inside the sub-panel. Notice that 

even the hidden task modules are contained in a widget, but they are never shown to the 

user. 
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5. Human-robot cooperation 

5.1 Hands-on interface 

The Hands-on Interface is activated only when the surgeon presses one of the two 

switches available in the ergonomic handle mounted at the tip of the robot. This is 

especially designed to provide easy access to any of both hands. The force applied to the 

grab is measured by the FT-sensor mounted just behind the holding mechanism. Figure 

5.1 shows the whole end effector mechanism comprising tool holder, handler and force-

torque-sensor. 

The specific tool is mounted just after the handle mechanisms, therefore it will also 

influence on the applied forces measured by the FT-sensor. This load depends of the 

orientation of the tip due to gravitational forces. Then, erroneous values would be 

acquired once the orientation of the tool is changed. Hence, online gravity compensation 

must be done during the cooperative mode in order to obtain only the forces applied by 

the surgeon. This is achieved by doing an off-line calibration for each tool to determine 

its dead load parameters (mass and centre of mass). This has to be done only once for 

each tool, and then it is automatically loaded each time the tool is changed. Both off-line 

calibration and on-line compensation are based on J. Heindl approach [48]. 

 

Figure 5.1. Handle system with rapid tool-exchange mechanism. 
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At software level, the High Priority Loop for the data acquisition of the Force/Torque 

Sensor (HPL-FTS), presented in section 4.3.3, takes care of the data acquisition and 

processing of the signals coming from the F/T sensor. The data processing steps 

comprise: voltage-to-force transformation, mean value calculation, drift compensation, 

filtering, and gravity compensation. Each calculation is performed sequentially one after 

the other (see Figure 5.2). 

 

 

Figure 5.2 Flowchart of High Priority Loop for Force Torque Sensor data 
acquisition and processing (HPL-FTS) 
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5.2 Virtual fixtures description 

Virtual Fixtures (VF) are essentially the separation of the 3D working space into two 

complementary subspaces, one containing all the preferred directions, and the other 

containing the non-preferred ones. A VF can be composed of one or more directions, the 

combination of which permits different anisotropic movements. Each of these directions 

is hereby defined as single virtual unit. 

Let us distinguish between two types of virtual units, namely the linear virtual unit l 

and the angular virtual unit �. The former is a vector in 3� that defines a specific 

direction in the Cartesian space along which the displacement of the robot’s end-effector 

is permitted. The latter, also a vector in� 3� , specifies an arbitrary axis in the Cartesian 

space, about which a rotation of the end-effector is possible. Now let us define a 

subspace U of  containing all preferred directions for both translation and rotation. 

Let Sl and S� be two subsets of 

6�
3�  comprising the linear independent set of vectors that 

span U for position and orientation respectively: 
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,..., ,

l
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�
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(5.1)

where p,k�3. Now, let D denotes the 6� (p+k) instantaneous preferred direction matrix 

comprising the elements of Sl and S�, 
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(5.2)

such that: 

1( ) ( )T T
U Ran �� �P D D D D D  (5.3)

The orthogonal projection PU acts as the identity of U, i.e. any vector x in this subspaces 

has . The subspace U is the exact range of this projection. Furthermore, there 

exists an orthogonal complementary subspace V that contains all the non-preferred 

directions. Every vector x in V has 

U �x xP

0U �xP . This is the null space also called kernel of 

the projection. Its corresponding projection operator is given by 

( )V UKer� � �P D I P  (5.4)
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Figure 5.3. Projection onto the subspaces of preferred directions U and of non-
preferred directions V  
 

Operators (5.3) and (5.4) have the following properties [116]: 

 

� symmetry: ( ) ( )TRan Ran�D D  

� idempotence: ( ) ( ) ( )Ran Ran Ran�D D D  

� scale invariance: ( ) ( )Ran Ran k�D D , where 0k �  

� orthogonality: ( ) ( ) 0TKer Ran �D D  

� completeness: � �( ) ( )rank Ker Ran n� �� �D D , where D is n m�  and , 0� � �  

� equivalence of projection: ( ( ) ) ( )Ran Ker f f Ker f�D D  
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The above statements are also valid if Ran(D) and Ker(D) are exchanged. Also the 

following equivalence may be useful: 

 

� )Ran( ( )) (Ran Ran �D D  

� )Ran( ( )) (Ker Ker �D D

Ran Ker Ker Ran r� �

 

� )Ke( ( )) ( ( )) (D D D  

 

The resulting PU and PV create a mechanism which can be used within the system 

control law in order to determine whether the applied forces at the end-effector are 

pointing in a preferred direction or not. These measured forces are expressed directly in 

the robot’s end-effector coordinate system. This means, the virtual units in D must be 

also defined with respect to this frame. Nevertheless, if the robot kinematic is well 

known, as well as the relationship of the different possible reference frames with respect 

to the robot base frame, it is then possible to define each virtual unit with respect to one 

of the different coordinate systems. This implies, however, that the calculation of D must 

be executed every cycle time. 

 

 

Figure 5.4. Control loop for cooperative robot system 
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5.3 Admittance controller 

The control strategy for the cooperative mode essentially consists of two control loops: 

an inner velocity control loop at the joint level, and an outer admittance controller that 

modulates the end-effectors linear and angular velocities as a function of the applied 

forces. These velocities are then mapped to the joint space and further forwarded to the 

inner loop (see Figure 5.4). The general form of an admittance controller is: 

c�x ��  (5.5)

where  represents the linear and angular velocity of the end-effector. The 

scalar admittance gain c�[0,1] establishes the compliance level of the system. The 

vector 

[ ]TT�x p ��� T

T[ ]T T�� f �  contains the forces/moments applied at the end-effector. 

In equation (5.5), the robot compliance has an isotropic behaviour, since the 

coefficient c affects all directions in the task space in the same way. The objective of the 

virtual fixtures is to provoke an anisotropic behaviour with different level of compliance 

on the preferred directions and the non-preferred ones. Therefore, the projection 

operators expressed in equations. (5.3) and (5.4) are incorporated into equation (5.5) 

together with an additional coefficients , [0,1]U Vc c �  leading into the following 

expression: 

( ) (U U V V U U V Vc c c c� � � �x )� � �P P P P�  (5.6)

The coefficient  regulates the amount of compliance on V. The resulting effect is a 

guidance virtual fixture that helps the user to move the end-effector along a desired path 

or surface defined by U. Different values of will influence the level of guidance. If 

, the subspace V is completely eliminated, i.e. a hard guidance level along U is 

present. At the other extreme, with 

Vc

Vc

0Vc �

1Vc � , there is no distinction between preferred and 

non-preferred directions, i.e. no guidance at all is present. Values in between will create 

the effect of soft guidance. The global compliance of the system against applied force 

can be regulated by means of . This is useful when defining boundaries along 

preferred directions. 

Uc
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Figure 5.5. System reference frames 
 

The compliance coefficients ( ) are scalars that affect all the Cartesian components 

of the end-effector in the same manner. If these coefficients are substituted by a matrix 

form ( ), where each matrix is a 

,U Vc c

,U VC C 66�  diagonal matrix, then the different Cartesian 

components can be separately controlled.  

0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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c
c

c
c

c
c

�

�
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�


 �
� �
� �
� �

� � �
� �
� �
� �
� �� �

C  

(5.7)
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Where , ,x y zc c c  and , ,c c c� � �  are position and orientation components, respectively. 

This is useful, for instance, when the compliance behaviour of the translational and 

rotational components have to be controlled completely independent from each other. 

5.4 Deviation error 

Expression (5.6) allows the user to move the end-effector in preferred directions despite 

its actual position and orientation. However, there is normally a desired reference pose 

(position and orientation) to which the virtual fixture is referred. Any deviation of the 

end-effector from the reference along the non-preferred directions is considered an error, 

and it has to be compensated. This error compensation is regarded as a reaching target 

problem acting on V. The reference target pose defines the position and orientation that 

is to be reached and maintained. This pose is also the center reference point of virtual 

fixture definition. Then, if the target pose varies upon the time, the virtual fixture moves 

with it. 

Let ep and er be the position- and orientation-error vectors, respectively. These 

vectors quantify the deviation of the actual Tool Centre Point (TCP) pose  from 

the desired target pose 6

Base
TCPT

Base
TART . Each of both homogenous transformations having the 

form: 

3×3

1 3 1�


 �
� � �
� �� �

pR
T

0
 

(5.8)

where R is the rotation matrix and ( )Tx y z�p  is the position vector. It is assumed 

that target pose TTAR is already defined with respect to the base frame, and using the 

robot kinematics the TTCP can be straightforward calculated as follows (see Figure 5.5): 

EE
TCP EE TCP�T T T  (5.9)

                                                 
6 In the remaining of this document, for the sake of notation simplicity, when the reference frame is the 

base of the robot, the upper prefix of the transformation is omitted, e.g. TEE =BaseTEE. The same applies for 

rotation matrices R and position vectors p. 
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where  is the constant homogeneous transformation matrix from the TCP to the 

robot’s end-effector, TEE defines the end-effector with respect to the robot base frame 

and is calculated using the forward kinematics relationship of the robot arm. 

EE
TCPT

The translational-error ep is calculated by subtracting the translational vector of the 

homogenous transformations TTCP and TTAR as follows: 

p TAR TCP� �e p p  (5.10)

In the case of orientation-error, er represents the axis of rotation in which the error is to 

be compensated and its norm represents the angle of rotation. This can be calculated 

using quaternions theory (see Appendix A). The error in terms of rotation matrices is 

defined as: 

1 T
ERR TAR TCP TAR TCP

�� �R R R R R  (5.11)

Applying quaternion representation, the orientation error can be expressed as: 

� �3 3

ERR TAR TCP

T
TCPTAR TAR

TCPTAR r TAR

� � �

��
� �

�


 � 
 �
� � � � �� � � �� �

�
�� �I S

 

(5.12)

Since (5.12) is expressed with unit quaternions, an axis of rotation and angle of 

rotation 

��

�  can be derived by using the expression � �cos sin T� �� �� � . Finally the 

orientation error er is calculated as follows: 

r �� �e �  (5.13)

The orientation error er indicates the axis of rotation, and  describes the magnitude 

of the rotation about this axis. 

|||| re

Any deviation from TTAR within the subspace U is not considered an error, since it 

occurs along a preferred direction. However, deviations along V do represent an error. 

Thus, only the error along non-preferred direction is calculated using the projection 

operator PV. 

Vpp
V V

Vrr


 �
 �
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� � � �

ee
e

ee
P  

(5.14)
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5.5 Boundary conditions 

Any deviation along non-preferred direction is considered an error; on the contrary, 

deviations along preferred directions are permitted. However, it might be the case that a 

specific limit must not be crossed over. Thus, boundary conditions are defined in a 

similar manner as in equation (5.14), but now considering only the projection on the 

preferred subspace U. 

Upp
U U

Urr


 �
 �
� � � �� �

� � � �

�e
�

�e
P , 

(5.15)

Expression (5.15) gives a measure of how far the TCP is from the target pose  inside 

the subspace U. This value is considered a distance measurement rather than an error. 

Thus, the value of  in equation 

TART

Uc (5.6) can be subjected to some boundary conditions 

based on the vector : U�

, 0
|| ||( ) , || ||

0, otherwise

U U

U
U U U U U

U

c

c r �
�

� �  
!
!� �"
!
!#

� �
�� �� $  

(5.16)

where  is the boundary magnitude along preferred directions, and Ur U�  is a threshold so 

that 0 U rU�% %  defines a transition region that smoothes the compliance response of the 

robot toward the boundary. 

A similar treatment can be given to the compliance coefficient  of the admittance 

control law expressed in equation 

Vc

(5.6) to control the compliance behaviour of the TCP 

on the subspace of non-preferred directions. It has been previously explained in Section 

5.3 how this coefficient can influence in the level of guidance of the TCP. In this 

Section, its usage is further extended to achieve the volumetric virtual fixture. Thus, 

independently of the virtual shape, a new coefficient  is conditioned by the error 

magnitude  as follows: 

( )V Vpc e�

|||| Vpe
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(5.17)

where  is the boundary along non-preferred directions, and Vr V�  is a threshold so that 

0 V rV�% %  defines a transition region that smoothes the compliance response of the 

robot toward the boundary. Basically, if the TCP is located outside the virtual shape 

( ), than , which is not necessarily equal to zero. This means that 

the guidance level can still be regulated for the region outside of the volumetric virtual 

fixture. Inside the virtual shape, the TCP can be freely moved, except when a motion 

directed outward while been in the transition region. In such case, the compliance is 

gradually reduced until the boundary is reached, where the first condition applies. 

Finally, equation 

VVp r |||| e ( )V Vp Vc �e� c

(5.6) is rewritten as: 

( )U U V Vc c� �x �P P� � �  (5.18)

5.6  Manual error compensation 

The manual compensation is based on the previous work by Bettini et al. [13], it relies 

on the input forces applied by the user to compensate for the deviation errors. Basically, 

in the presence of an error the virtual preferred directions are redefined to consider such 

error, creating a new virtual fixture that make possible to compensate for the error. Thus, 

a new instantaneous preferred direction De is defined, which considers the directions 

required to compensate any translational and rotational deviation from U: 

(1 ) , 0 1e d U d V dk k k� � � % %� � eD P  (5.19)

The combination of the applied foces � pointing at preferred direction (obtained by 

means of the projection operator PU) and the error vector eV yields into a virtual direction 

that returns the TCP to the subspace U. The constant kd regulates how strong is the 

influence of the error vector eV in the new virtual preferred direction, i.e. how quickly 

the error is compensated. When the TCP lies within the subspace U, the second term of 

equation (5.19) vanishes. Now, using the new preferred direction De to recalculate the 
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projection operators (5.3) and (5.4) and introducing them in the control law of equation 

(5.6) results in a control law equivalent to a pure subspace motion constraint [60]: 

( )U Ue V Vec c ,� �x �P P� � �  (5.20)

where 

( )
( )

Ue e

Ve e

Ran
Ker

�
�

P D
P D

, 

Notice however, that the definition of the new preferred direction to compensate the 

error is not sufficient to guarantee that the error is minimised, i.e. the surgeon is still able 

to apply a force in the negative error direction, which would increase the error. 

Therefore, the applied forces pointing toward the negative error direction are filtered out 

by using the following condition: 

0U V

e
otherwise

%�!� "
!#

� e �
�

�

P �
 

(5.21)

Substituting ' with 'e in equation (5.20) guaranties that only applied toward the error 

compensation are effective without affecting the forces pointing in the preferred 

directions. 

5.7 Autonomous error compensation 

The error compensation presented in equation (5.20) depends on the applied forces '. 

This means, the error is compensated for only if the user applies a force in the eV 

direction; otherwise, the error remains present. For some cases, this compensation occurs 

intuitively, for example, in translation movements along a predefined direction, the user 

automatically corrects any possible error by pushing in the path direction. However, 

there may be cases where non compensation is induced at all, such as when making 

pivot rotations about the TCP at a constant target position, ideally the position remains 

fixed, but in reality slight deviations in the position occurs. Although the error is 

detected by the system and the De is defined, the compensation takes place only after the 

proper force is applied, though the act of rotating demands rather applied moments than 

forces. Consequently, the error remains present and even increases before the user can 

observe it and apply a compensation force. 
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Nevertheless, by adding one term to equation into (5.18), an automatic compensation of 

the deviation error can be achieved independently of the applied forces without affecting 

the virtual fixtures. The new expression looks as follows: 

( )U U V V V Vc c k� � �x � eP P� � �  (5.22)

The error term in equation (5.22) does not depend on the input forces ' anymore. 

Notice that rather than combining the error vector with the virtual definition D as in 

manual compensation (equation (5.19)), it is compensated with a simple linear control 

law (kVeV). The gain kV modulates the rate of response of the compensation. With this 

approach, the surgeon has still complete control inside U, while the robot assures that the 

reference target pose is maintained. 

5.8 Virtual fixtures classes 

5.8.1 Reference target 

Given the TCP Cartesian position, both position and orientations components are 

intended only to reach a target . Therefore, TART 	 
0l �� �S S , i.e. only the error-related 

term in De in equation (5.19) is needed to reach the desired target pose. The behaviour of 

this virtual fixture is illustrated in Figure 5.6. 

 

Figure 5.6. Reference target 
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Notice that if only either TCP position or orientation is intended to reach a desired goal 

during the execution of a cooperative task within a predefined virtual fixture, the only 

required condition is that the corresponding subset ( lS or �S  for position or orientation, 

respectively) becomes empty subsets {0}. A transition region can be defined when ||er|| 

approaches zero in order to smooth the gain discontinuity when reaching the target. 

Then,  is defined as: Uc�

|| || , || ||
( )

1

V
V E

EU Vc
otherwise

�
�

� &!� "
!#

e e
e�  

(5.23)

Position and orientation can be independently controlled if, instead of , the matrix 

notation of the compliance coefficient  (as explained in section 

Uc�

UC� 5.3) with different 

parameter values of conditions (5.23) for each component is used. For instance, two 

different transition region thresholds �Ep and �Ev can be separately defined for position 

and orientation components, respectively (see Figure 5.6). Once the target pose is 

reached, the condition (5.21) assures that this is maintained.  

Note that the autonomous compensation cannot be applied to this purpose due to 

safety reasons. The main idea of autonomous compensation is to avoid leaving the 

preferred subspace rather than commanding the TCP to a specific target, which would 

mean that the robot executes large movements by its own. 

5.8.2 Move along an axis 

This virtual fixture class limits the TCP movements along a reference line in 3D space 

(see Figure 5.7). First, a virtual unit vector � �Tzyx lll�1l  is defined. This indicates 

the direction of the preferred axis with respect to the TCP coordinate system. If this is 

given with respect to other reference frame, a suitable transformation is required. 

Besides, the reference frame , defined with respect to the base frame, has to be 

specified, since it is here where ll has its origin. The subset 

TART

	 
1l � lS  together with the 

admittance control law expressed either in equation (5.20) or (5.22) (for manual or 

autonomous compensation, respectively) yield into a constrained movement along a line. 

     80



 

 

Figure 5.7. Move along a line 
 

pointing at  and passing through the origin of . If the actual position of the TCP is 

off the path, the control law drives it back to the line. Concerning orientation, if 

1l TART

	 
0� �S , then the orientation of the TCP reach the one defined by  and remains 

constant, otherwise, the possible rotations depend on its contents. 

TART

Starting from the origin defined by TTAR, the TCP can move along the axis ll a 

distance of U r&� U  in either positive or negative direction. 

5.8.3 Rotate around an axis 

In the rotate around an axis class, the TCP is forced reach to a predefined pose  and 

constrained to rotate only around the axis defined by a virtual unit vector  while 

keeping its orientation perpendicular to the line (see 

TART

1�

Figure 5.8). In a similar way as in 

move along a line, the subset 	 
1� � �S  is defined. This virtual fixture can 

simultaneously constraint TCP movements together with a translational virtual fixture if 

	 
0l �S . In such a case, both type of VFs would share a common target pose . TART

     81



 

 

Figure 5.8. Rotate around one axis 
 

5.8.4 Move along a plane 

The move along an axis translational class can be easily extended to confine the TCP to 

move on a plane (see Figure 5.9). Let us define the subset 	 
1 2,l � l lS , where  and 

are two non-zero linear independent vectors. Then 

1l

2l ( )lRan�P S  is the plane passing 

through the origin and the vectors l1 and l2 in which the TCP is constrained. The 

reference pose  represents the origin of this plane. It is important to observe that the 

orientation of  is not directly related with the orientation of the plane but rather with 

the desired orientation of the TCP. Plane’s orientation is given with respect to the TCP 

coordinate system, since it results from l1 and l2 which are expressed with respect to the 

TCP frame. 

TART

TART
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Figure 5.9. Extension to plane 
 

The boundary conditions (5.16) will affect at any direction along the plane in the same 

manner. This means, under such conditions, the limits of the plane are defined by a 

circumference of radius , which boundary cannot be crossed over. At distance Ur

U Ur U�$ ��  from the origin inside this circumference the robot compliance gradually 

decreases until the boundary is reached where the robot compliance becomes zero. Other 

kind of boundaries may demand different condition definitions, e.g. projection of � onto 

the virtual unit vectors l1 and l2 would make possible to establish two condition 

parameters for the definition of independent boundaries at each direction, thus having 

square shaped limits instead of a circumference. 

5.8.5 Rotate around two axes 

One can define more than one axis of rotation simultaneously (see Figure 5.10). Notice 

however that, in the same way as in translation, three linear independent vectors 

	 
1 2 3, ,� � � � �S  are enough to span the whole 3� . In other words, a rotation in all 

directions would be then possible. 
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Figure 5.10. Rotate around two axes 
 

5.8.6 Extension to volume 

The virtual fixtures discussed until now constraint the motion into  or  basically 

hinge upon the definition subsets 

1� 2�
lS  and �S . However, extension of constrained 

motions in  using only the subspace of preferred directions becomes rather limiting. 

More flexibility is achieved if the non-preferred directions are also considered during the 

design of the different possible virtual fixtures. It has been pointed out in Section 

3�

5.5 that 

manipulation of  makes possible to extend the concept to volumetric fixtures since it 

defines the compliance behaviour of the TCP on the subspace of non-preferred 

directions. The idea of a volumetric fixture is to confine the motion to a closed 

volumetric region without been able to leave it. 

Vc�
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Figure 5.11. Virtual cylinder 
 

The concept of volume fits very well for virtual fixture of the translational type, but not 

so for rotational ones. In the second case, one may wonder whether it make any sense at 

all to apply the concept or not. If the answer is no, then the compliance of the rotational 

components of the end effector can be controlled independently with a matrix notation, 

as stated in section 5.3. Hence, the first three elements of the diagonal matrix are 

subjected to conditions (5.17) while the last three elements may be subjected to a 

different conditioning criterion. Furthermore, the shape of the volumetric fixture 

strongly depends on the content of the translational subset lS . The geometrical 

interpretation is obtained in a natural way for each set of linear virtual vectors. 

5.8.6.1 Virtual tube 

The virtual cylinder is the direct extension of the virtual line explained in Section 5.8.2. 

Practically, the definition of lS  and  remains the same. But now, the conditions 

given in 

TART

(5.17) are additionally considered for the compliance coefficient influencing the 

non-preferred directions. In this way, deviations in the directions perpendicular to the 

line smaller than  become also possible. Notice however that the magnitude of  Vr Vpe
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does not increase for deviations from  along preferred directions. This gives finally 

the impression of having a virtual cylinder of diameter equal to  and length equal to 

. The thresholds for the transition region near the borders are defined with 

TART

Vr2

Ur2 V(  and 

U(  for the cylinder periphery and circular bases, respectively. The virtual cylinder 

shaped fixture around a reference line in the 3D space is illustrated in Figure 5.11. 

5.8.6.2 Virtual cone 

The virtual cone is a special case of virtual fixture that permits to reach or leave a point 

in the 3D space while keeping the TCP inside a virtual cone. The direction of the cone 

axis is given by , and the cone’s apex is taken from the reference position contained in 

. First, the subspace U along the line is calculated 

1l

TART 	 
1l � lS  as usual. Then, 

deviations of the actual position from the target position  and  are obtained for 

both preferred and non-preferred directions, respectively. A new boundary condition is 

then defined. Its value depends on in which size of the reference point the TCP is 

located. The virtual cone can only be projected at the positive side. 

Up� Vpe

#
"
� $�

�
otherwise0

0),tan(|||| 1l�� UpUp
Vr

�
 

(5.24)

where �  is the cone opening half-angle with respect to  (see 1l Figure 5.12). The 

compliance conditions (5.17) are then applied. The subspace U just defined is useful for 

the calculation of the error components, but no so for driving the TCP. If this is 

introduced to the admittance controller, free movement inside the cone is successfully 

achieved, but at the boundaries discontinuity behaviour appears when trying to move the 

TCP along the periphery of the cone toward to its apex. Therefore, a new subspaces 

and  using UP� VP� 	 
l
p� eS are calculated, which project onto a vector pointing always 

directly to the apex. This still provide free motion inside the cone but now permits a 

fluent motion along the periphery toward cone’s apex. The control law for this special 

case is: 

( )U U V Vc c� �x �P P� �� � �  (5.25)
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Figure 5.12 Virtual Cone 

5.8.7 Reference trajectory 

All virtual fixtures are defined with respect to a reference target . It has been shown 

that depending of the virtual definition, moving the TCP along or above one or more 

directions starting from this Cartesian reference pose is possible. Any deviation along 

non-preferred directions is considered an error and thus compensated. Now, if the target 

 varies along the 3D space, more complex virtual constrained trajectories can be 

generated. In this section, the reference target position  is described by a parametric 

function which permits to dynamically change the current target position as a function of 

the actual end-effector position. Therefore, a trajectory is generated using parametric 

spline functions together with arc-length parameterization (see Appendix 

TART

TART

TARp

B). A detailed 

description of the generation of such parametric functions is out of the scope of this 

work. Its main focus is the performance for the error minimization with respect to the 

virtual fixtures rather than the generation of the reference target. Nevertheless, the usage 
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of such parametric functions expands the potentiality of the virtual fixture tremendously, 

since it make possible to define virtual constrained environments which are more 

complex than the ones presented in this work. A basic explanation of the working 

principle is given below. The reader interested in more detailed information is 

encouraged to consult [7], [8], [49], [138] and [139]. 

Let p(s) being a parametric spline curve describing the reference trajectory: 

� �( ) ( ) ( ) ( ) , 0 ,T
TAR s x s y s z s s L� &p &  (5.26)

where s denotes arc-length, L is the arc-length of the whole trajectory, and x(s), y(s), and 

z(s) are Catmull-Rom spline functions with equidistant knots  with 0 1{ , ,..., }ns s s 0 0s �  

and  (see Appendix ns � L ]B). If  is the actual position of the 

TCP, and  the closest point of trajectory to  (

[ T
EE TCP TCP TCPx y z�p

ˆ( )TAR sp EEp Figure 5.13). Finding  

can be seen as an optimization problem 

ˆ( )TAR sp

[139]: 

[0, ]
ˆ( ) min ( ( ))

s L
s s) )

�
� , (5.27)

where 

2 2( ) ( ( ) ) ( ( ) ) ( ( ) )TCP TCP TCPs x s x y s y z s z) � � � � � � 2 . (5.28)

The quadratic minimization method is used to this aim (see Appendix C). 

 

Figure 5.13 Closest point of spline curve to pTCP and its tangent vector. 
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Movements of the TCP along are possible by defining the normalized tangent 

direction ltan of the trajectory at the actual reference position  as the virtual 

preferred direction, i.e. . The tangent direction 

( )TAR sp

ˆ( )TAR sp

{ }l
tan� lS ˆ( )TAR s�p  can be easily obtained 

once  is known (see Appendix ˆ( )TAR sp B), so finally: 

ˆ( )
ˆ( )

TAR
tan

TAR

s
s

�
�

�
pl
p

 
(5.29)

The difference between actual position of TCP  and  is considered a 

Cartesian position error: 

TCPp ˆ( )TAR sp

ˆ( ) ( )TCP TAR TCPs� �pe p p p  (5.30)

5.9 Experimental evaluation 

The experimental evaluation of the virtual fixtures presented below was tested using the 

modiCAS system. All tests were executed with the 6 degrees-of-freedom (DOF) PA10-

6C robot arm, form Mitsubishi, Japan, and the mini45 force-torque sensor from ATI 

Industrial Automation, USA, mounted on the robot’s end-effector. The inner velocity 

control loop is included in the servo driver of the robot system and runs with a frequency 

1538 Hz. The outer admittance control loop, running at 200 Hz, was implemented on the 

RT-target running the LabVIEW-RT module. Position and orientation errors are 

calculated independently as follows: 

2 2

2 2

p xpV ypV zp

r xrV yrV zrV

� � �

� � �

e e e e

e e e e

2

2

V
 

(5.31)

5.9.1 Manual error compensation 

The following experiment analyses the behavior of manual compensation (expression 

(5.20)) in the presence of position deviation. A target position  was defined at 

 (mm), and  (deg), where rpy denotes 

the roll-pitch-yaw notation of the orientation of the TCP 

TART

[621 0 548]T
TAR �p [ 90 0 90]T

TAR � � �rpy

[29]. The TCP was defined 

exactly at the end-effector of the robot, i.e. contains an identity rotation matrix EE
TCPT
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and position coordinates equal to zero. The robot’s end-effector was located at 

 and [621 0 554]T
EE �p EE TAR�rpy rpy , which represents a deviation of 6 mm along 

Z-axis from . A VF was created to move the end-effector along Y-axis with respect 

to the base frame while keeping the orientation constant, i.e.  and 

, where . The experiment consists of moving the end-effector 

back and forth by hand along the preferred direction. Several tries were executed with 

different values of gain kd�[0,1]. Figure 

TART

1{l T
TCPS � lR }

{0}S� � 1 [0 1 0]T�l

(5.14) shows the influence of kd onto equation 

(5.20). No error compensation occurs when 0dk � , which  can be observed in the 

behavior of the end-effector along the X-axis. It can be seem in the Z-axis that 

increasing the value of kd yields into a faster compensation of the position error. Notice 

however that the end-effector orientation deviates considerable from the desired one 

despite the value of kd (see Figure 5.15). Finally, notice in Figure 5.16 that, although the 

orientation components are not influenced by kd during translational movements, the 

position error is reduced when incrementing the value of kd. A notable performance 

enhancement occurs for values up to 0.9dk � , while higher values produce no a 

significant improvement.  

 

Figure 5.14. Influence of gain kd on manual error compensation of end-effector 
position along Z-axis while moving it along Y-axis w.r.t. world coordinates. 
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Figure 5.15. Influence of gain kd on manual error compensation of end-effector 
orientation while moving it along Y-axis w.r.t. world coordinates. 

 

Figure 5.16. Influence of gain kd on the error norm of manual compensation while 
moving the end-effector along Y-axis w.r.t. world coordinates. 
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5.9.2 Manual compensation vs. autonomous compensation 

The following two experiments compare the behavior of both manual and autonomous 

compensation. In the first case, a translational VF is setup while the second case 

concerns a rotational VF.  

5.9.2.1 Translational case 

The setup of this experiment is similar to that explained above, the only difference being 

that the initial TCP position is equal the target position, i.e. TCP TAR�T T . The objective is 

to analyze the efficiency of manual and autonomous controllers (expressed in equations 

(5.20) and (5.22), respectively) to keep the error at minimum along the non-preferred 

directions while moving along a preferred one. Therefore a translational VF is defined as 

follows:  and , where . The gain values of the 

controllers are  for the manual controller and 

1{ }l T
TCPS � lR {0}S� � 1 [0 1 0]T�l

0.9dk � 5vk �  for the autonomous one. 

Additionally, an attempt with no error compensation is included to provide an additional 

benchmark for the results comparison. 

 

Figure 5.17. End-effector position while moving along the Y-axis w.r.t. world 
coordinates. 
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Figure 5.18 End-effector orientation while moving along the Y-axis w.r.t. world 
coordinates. 

 

Figure 5.19. Error profile of manual and autonomous error compensation while 
moving along the Y-axis w.r.t. world coordinates. 
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The position behavior, orientation behavior and instantaneous quadratic error norm are 

presented in Figure 5.17, Figure 5.18 and Figure 5.19, respectively. Both controllers 

present a similar behavior concerning the position, both having a position error of the 

same order. However, it is in the orientation error where a great difference arises. While 

the orientation error behavior of the manual compensation looks very similar to the case 

where no compensation at all occurs, the error is strongly reduced when applying 

autonomous error compensation. Table 5.1 shows the mean position and orientation 

error for the three cases: no compensation, manual compensation and autonomous 

compensation. 

Table 5.1. Mean value of position and orientation error of translational VF 

Control Mean Position error (mm) Mean Orientation error 
(deg) 

None 6.4582 0.3044 

Manual 0.1006 0.3492 

Autonomous 0.1012 0.0831 

5.9.2.2 Rotational case 

This experiment evaluates the error compensation when a rotational VF is applied. Three 

responses are compared: no compensation, manual compensation (equations (5.20)) and 

autonomous compensation (equation (5.22)). The rotational VF consists of a pivot 

rotation of the end-effector 360° back and forth about a rotation axis parallel to the Z-

axis of the robot base frame (see Figure 5.20) and positioned at a specific point in the 

space, while keeping a constant inclination ( 45� � * )of the tool with respect to the 

rotation axis. In this case, the TCP is not more equal to end-effector position. The 

transformation  from TCP to end-effector is: EE
TCPT

 

0.998 0.06 0.016 3
0.017 0.011 1 219

0.06 0.998 0.012 129
0 0 0 1

EE
TCP

� � �
 �
� �
� ��
� �� �
� �
� �

T  
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The initial pose of TCP, also used as reference target pose  is: TART

 

0.0476 0.5816 0.8122 486.4
0.998 0.0601 0.015 3.2
0.04 0.8111 0.5835 260.3

0 0 0 1

TAR TCP

� � � �
 �
� ��� ��
� �� �
� �
� �

0T = T  

 

A VF was created in order  to rotate the tool around Z-axis with respect to the base 

frame while keeping the relative angle relationship �  constant, i.e.  and 

, where . Contrary to the experiment of sections 

{0}lS �

1{ T
TARS� � �R } 1 [0 0 1]T�� 5.9.1 and 

5.9.2.1, TARR  is used instead of TCPR  to define the rotational VF. The latter rotation 

matrix would mean that the VF would stay constant with respect to the tool coordinates, 

while this experiment requires a VF that stays constant with respect to the base 

coordinates. Depending on the application it may be desired the virtual fixture to come 

along with the tool or to define it with respect to the tool and afterward keep it constant. 

In the first case  is used while  is applied to the second one. TCPT TART

 

 

Figure 5.20. Experimental setup for rotational case 
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Figure 5.21. Tool tip position in 3D while pivot rotation above Z axis 

 

Figure 5.22. Tool tip position in 3D while pivot rotation above Z axis 
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Figure 5.23. End-effector error profile while pivot rotation above Z axis 
 

The results of this experiment reveal that the decoupling of position and orientation 

during manual compensation occurs in a similar way as in the translational case. Now, 

orientation movements are executed and the position should be kept constant. Figure 

5.21 shows that the position of the TCP presents strong deviations from the reference 

pivot point in the cases of no compensation and manual compensation, having both of 

them the same patron. Autonomous compensation, on the contrary, reduces the position 

error. The orientation error is reduced in a similar manner with both manual and 

autonomous compensation, while the error continuously increases when no 

compensation is executed (see Figure 5.22). The deviations on the end-effector trajectory 

during manual compensation, easily observed in Figure 5.22, are more because of 

position deviation rather than orientation deviation. Finally, the quadratic error norm 

plotted in Figure 5.23 corroborates the behavior just explained above. The corresponding 

mean errors are presented in Table 5.2. 

Table 5.2. Mean value of position and orientation error of rotational VF 

Control Mean Position error 
(mm) 

Mean Orientation error 
(deg) 

None 3.1758 2.4977 

Manual 3.4864 0.0440 

Autonomous 0.435 0.0495 
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5.9.3 Moving along a trajectory 

The previous experiments evaluate performance of manual and autonomous error 

compensation in a virtual constrained subspace which was defined with respect to a 

static . In the following experiments a parametric function is used to specify the 

reference target curve along which the VF is to be applied. The  is calculated on-line 

as the closest point of the curve to the TCP (see Appendix 

TART

TART

B). The virtual fixture is a 

translational virtual unit pointing always along the tangential direction of the curve while 

the orientation is maintained constant. Both manual and autonomous error compensation 

were tested with two different trajectories: (a) a sinusoidal trajectory on the ZX-plane 

with respect to the base frame, and (b) a circular trajectory on the XY-plane also with 

respect to the base frame. During the experiments the user has to follow the reference 

paths two times back and forth until the boundaries are reached. 

Figure 5.24 and Figure 5.26 show the TCP Cartesian position during sinus and 

circle experiments, respectively. Notice that the plots are not homogenous scaled, the 

axis along which end-effector position remains constant has a very small scale in 

comparison with the other two axes, so that the error difference between manual and 

autonomous compensation can be observed. The norm of the error during sinusoidal 

trajectory and circular trajectory are presented in Figure 5.25 and Figure 5.27, 

respectively. Finally, the resulting mean error during both trajectories can be consulted 

in Table 5.3. In both trajectories the error is smaller during autonomous compensation.  

Table 5.3. Mean error while following a reference trajectory 

 Sinus Circle 

Control Mean 
Position 

error (mm) 

Mean 
Orientation 
error (deg) 

Mean 
Position 

error (mm) 

Mean 
Orientation 
error (deg) 

Manual 0.6123 0.1186 0.8978 0.0719 

Autonomous 0.2618 0.0478 0.2998 0.0477 
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Figure 5.24. End-effector position while following a sinusoidal trajectory 
 

 

Figure 5.25. End-effector error profile while following a sinusoidal trajectory 
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Figure 5.26. End-effector position while following a circular trajectory 
 

 

Figure 5.27. End-effector error profile while following a circular trajectory 
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5.10 Discussion 

The two methods presented in this section were compared for error compensation during 

cooperative manipulation of the tool along virtually constrained subspaces: the manual 

compensation and autonomous compensation. The philosophy behind manual 

compensation states that the user is the only one been able to generate any kind of 

motion, while the robotic system is more like a passive system with the sole job of 

constraining the possible movements into an allowed subspace. This is done by means of 

the so called virtual fixtures. In the presence of a deviation error, the manual controller 

redefines such VFs to include the direction needed in order to compensate for such an 

error, having then one new direction that guarantees the error compensation. The 

experiments presented above have shown that the compensation takes place as long as an 

input force induced by the user is applied. Unfortunately, the translational and rotational 

movements are not directly coupled between each other. This means that when 

performing one of these two types of movements, any deviation error appearing on the 

other type of movement may not be necessarily compensated. The reason is that, due to 

the nature of the movement, despite the error being detected by the controller, and a new 

VF being redefined to compensate for the error, the user may not realize that the 

generation of such motions is required. Thus, if no movement is induced by the user in 

such direction, the compensation does not occur. 

The concept of virtual fixtures with autonomous error compensation is then 

proposed to deal with this drawback of manual compensation. The main idea is to give 

the robotic system the responsibility of error compensation while the user keeps 

complete control inside the allowed subspace. This has the disadvantage that the robot 

itself is able to generate motion which may be undesired for the sake of safeness. For 

instance, suppose that a virtual fixture is defined by mistake on a target pose  which 

is far away from the current position of the end-effector and the autonomous 

compensation is active. At the moment that the user activates the cooperative mode, the 

robot would automatically begin to compensate the error, producing an unexpected and 

even more undesirable movement which could lead serious consequences. This is not the 

case if manual compensation is active. In such a case, the controller redefines the VF and 

the robot waits until the user compensates the error by his/her own, which is intrinsically 

TART
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safer than with the autonomous controller. The combination of both controllers is 

proposed as a solution to this safety issue by establishing an error threshold above which 

the manual compensator becomes active while autonomous compensation can only run 

below this value. This means that the main objective of autonomous compensation is to 

keep the TCP inside the preferred subspace rather than getting the TCP into it. Once the 

preferred subspace is reached, i.e. the error is below the threshold, autonomous 

compensation becomes active. 

The main advantage of autonomous compensation in comparison to manual 

compensation is that the decoupling nature of translation and rotation is not more a 

problem since while doing movements of the one type, possible deviation error of the 

other type is automatically compensated. 
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6. Singularity robustness 

6.1 PA10 kinematics 

The kinematic description of the PA10-6C robot arm used in this work is based on the 

Featherstone convention [38]. Its frames are shown in Figure 6.1, having only four 

parameters, i.e. link lengths ,   and , while the wrist link lengths  and  are 

zero. A detailed description of the Featherstone convention is out of the scope of this 

work and only final results of the symbolic calculation of the forward position and 

velocity kinematics are presented, since these are imperative for further implementation 

of the singularity robust strategies treated here. For further details, the reader can consult 

the following literature 

1l 2l 3l 6l 4l 5l

[20], [38], [81]. 

 

 
(a) 

 
(b). 

Figure 6.1. (a) PA10-6C robot arm (courtesy of Mitsubishi Heavy Industries), (b) 
Kinematic description of PA10-6C based on Featherstone [15] 
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Figure 6.2. Kinematics of first three joints of the 321 manipulator [15] 
 

6.1.1 Forward position kinematics 

The forward position kinematics (FPK) is intended to find the end-effector pose from a 

given set of joints position � �1 2 6
T+ + +�� � . The solution is always unique, that 

means, one given joint position vector always corresponds to only one single end-

effector pose. 

The forward mapping to obtain the relative orientation of the end-effector frame 

{EE} with respect to the frame {4} is obtained by the calculation of the relative 

orientation of {EE} with respect to {6}, {6} with respect to {5}, and {5} with respect to 

{4} as follows: 

� � � � � �4 5 6

4 4 6 6

4 4 5 5 6 6

5 5

6 4 6 5 4 6 4 6 5 4 5 4

6 4 6 5 4 6 4 6 5 4 5 4

6 5 6 5 5

, , ,

0 1 0 0 0
0 0 0

0 0 1 0 0 0 1

Z X Z

c s c s
s c c s s c

s c

c c s c s s c c c s s s
c s s c c s s c c c s c

s s c s c

+ + +� �

� �
 � 
 � 

� � � � �� � � � � �
� � � � ��� � � � �

� � � �
 �
� �� � � �� �
� �� �� �

3
6R R R R

�
�
�
��

 

(6.1)
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where stands for 4c � �4cos +  and so on. The resulting homogeneous transformation 

matrix from {6} to {4} is presented below: 

3
3 6 3 1

6
1 3 1

�

�


 �
� � �
� �

R 0
T

0
 

(6.2)

The determination of the pose of the wrist reference frame {4} with respect to the base 

reference frame {0} = { bs } of the robot is: 

1 1 1 1 23 1 23
0 0 1

3 1 3 1 1 23 23 1 1 23 1 23

23 23 23 23

0 1 0 0
0 0

0 0 1 0 0

c s c s c s s
s c c s s c c c s

s c s c

� �
 � 
 � 

� � � � �� � �� � � � �
� � � � �� �� � � � �

R R R
� �

�
�
��

 

(6.3)

for the orientation of the wrist with respect to the base frame, and  

1
0

1

1

,

h

h
wr wr

v

s d
c d

l d


 ��
� �� � � �
� ��� �

p p  

(6.4)

with 

2 2 23 3

2 2 23 3

v

h

d c l c l

d s l s l

� �

� �
, 

(6.5)

for the position of the wrist with respect to the base. 

Finally, the pose of the end-effector reference frame {7} = {EE} with respect to the 

last wrist reference frame {6} (i.e., ) corresponds to a translation along 6
7T 6Z over a 

distance : 6l

� �6
6 7 6

7
61 3

1 0 0 0
0 1 0 00 0
0 0 11
0 0 0 1

Tl
l

�


 �
� �
 � � �� �� � � �� �� � � �
� �

RT
0

 

(6.6)

Hence, the total orientation Base
EER  follows from equations (6.1), (6.3), and (6.6): 

0 0 3 6
7 3 6EE � � 7R R R R R  (6.7)
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The position of the wrist centre (i.e., the origin of {4}) with respect to the base {0} is 

1
0

1

1

,

h

h
wr wr

v

s d
c d

l d


 ��
� �� � � �
� ��� �

p p  

(6.8)

and the position of the end-effector (i.e., the origin of {EE} with respect to the base {0}) 

is 

� �60 0 .T
EE wr EE l� �p p R  (6.9)

Finally, equations (6.7) and (6.9) yield into the homogeneous transformation matrix 

from the end-effector frame {EE} to the base frame {Base}: 

1 3

.
1

EE EE
EE

�


 �
� � �
� �

pR
T

0
 

(6.10)

with 

11 1 23 4 5 6 4 6 1 4 5 6 4 6 1 23 5 6
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13 6 1
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h

h
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r l s d
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 �� �
� �� � �� �
� �� � �� �

p  

where rij denotes the element of the ith row and jth column of REE. The homogeneous 

transformation matrix  express the position and orientation of the end-effector with 

respect to the base {Base} in function of the joint variables � 

EET

[15]. 
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6.1.2 Forward velocity kinematics 

The forward velocity kinematics (FVK) calculates the resulting end-effector linear 

velocity and angular velocity �. given the joint position �  and joint velocity . The 

FVK is always unique and the relationship between the joint velocities and the linear and 

angular velocity of the end effector is linear, i.e., if joint velocity is incremented by a 

factor of two, the end-effector velocity will increment by a factor of two too. This 

velocity relationship is then determined by means of the Jacobian matrix as follows: 

p� ��

� ��x � �J �� , (6.11)

where J(�) is the manipulator Jacobian matrix with dimensions m , which relates 

joint velocities  to the end-effector velocity x . For non-redundant manipulators, 

n�

�� � m n�  

while for redundant manipulators m n% . In the case of PA10-6C, which is a non-

redundant robot, J is a  square matrix. As a physical interpretation, the ith column of 

J can be thought of as the end-effector linear and angular velocities generated by a unit 

velocity applied at the ith joint, and zero velocities at the others. Notice that the matrix 

itself depends non-linearly on the joint position vector �. 

6 6�

In general terms, the methodology for the calculation of the end-effector velocities, 

suggest the sum of the joint velocities successively starting at the base frame {Base}. 

But by taking advantage of the robot kinematic structure and using the results of the 

FPK, this procedure is made more efficient. 

First of all, the angular velocity of the end-effector with respect to the wrist expressed in 

the frame {4} is deduced by inspection of Figure 6.1. This yields into: 

4 4 5 4

4 4 5 5

5 6
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�
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(6.12)

The angular velocities of the remaining joints are then added. Again, by inspection it is 

easily inferable that the angular velocity of end-effector with respect to link 1 expressed 

in the frame {1} looks like 

     107



 

2 3
1

23 23

23 23

wr
xEE

wr wr
y EE z EE

wr wr
z EE y EE

c s
c s

, + +
, ,
, ,


 �� �
� �� �� �
� ��� �

�

� �

 

(6.13)

It is only matter of adding the last pendent joint angular velocity 1+�  and express the 

whole expression with respect to the base frame { }: bs

1 1
1 1

1 1
1 1

1
1

x y

EE y x

z

c s
c s

, ,
, ,
, +
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� �� �� �
� ��� �

�
�

 

(6.14)

Now, the linear velocity can be calculated, conveniently, as the sum of the linear 

velocity of the end-effector with respect to the wrist  and the linear velocity of the 

wrist with respect to the base frame . Thereto, both velocities must be represented in 

the same coordinate system, in this case the base frame {bs }. 

wr
EEp�

wrp�

EE wr� �p p p� � �  (6.15)

where 

� �60 0 T
EE EE l� �p � R� , (6.16)

and  

1
1 1 1

1
1 1 1

1

( ) ( )
( ) (
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zwr

c p s p
s p c p

p
)


 ��
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� �� �

p
� �
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(6.17)

with 

1
1

2 3 23 3

2 3 23 3

h

v
wr

h

d
d l c
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 ��
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p

�
� ��
� �

. 

(6.18)

Since the angular velocity � and the linear velocity  are calculated in function of �  

and � , the Jacobian can be factored out. Resulting the final expression 

p�

�
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11 12 13 14 15 16 1

21 22 23 24 25 26 2
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(6.19)

with 

11 1 6
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where jpk denotes the element of the pth row and kth column of J. Notice that some 

elements of J dependent on some of the others, due to the influence of the angular 

velocity with respect to the wrist over the whole linear velocity. Hence, the order of 

calculation must be taken in consideration. 

6.1.3 Singularities of PA10-6C 

The inverse kinematic relationship, mapping the end-effector velocities  given in the 

working space (Cartesian space) into the corresponding joint velocities � , is written as: 

x�
�

1( )��� � xJ� �  (6.20)
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A singular configuration, also known as singularity, is a configuration of the robot’s 

joints at which the end-effector mobility – defined as the rank of the Jacobian matrix – 

locally decreases, i.e., it is then not possible to move or exert force in certain directions 

in the Cartesian space. In the neighborhood of singularity, small velocities in the 

operational space may cause excessive high velocities in the joint space, thus producing 

an acute behavior of the robot. In the PA10-6C robot manipulator, three types of 

singularities are possible (see Figure 6.3): 

 

� Arm-extended singularity (�3=0): The robot reaches the end of its regional 

workspace, i.e., the position that the wrist centre point can reach by moving the 

first three joints. As the name suggests, this occurs when the elbow of the robot is 

fully extended. 

� Wrist-extended singularity (�5=0): Joints �4 and �6 are collinear, so they span the 

same motion freedom. Hence, the angular velocity about the common normal of 

the three wrist joints is lost. 

� Wrist-above-shoulder singularity (dh=0): The wrist centre point intersects 1Z  

axis. Infinitely solutions of �1exist for the inverse kinematics. 
 

 (a)  (b)  (c) 
 

Figure 6.3.Singular configurations: (a) arm-extended, (b) wrist-extended, (c) wrist-
above-shoulder [15] 
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A singular configuration is easily detectable, since in such a case det 0�J . The 

decoupling condition of the kinematic structure of the PA10-6C robot can be taken in 

advantage the determination of singularities. From the fact that the determinant of the 

Jacobian is independent of the reference frame with respect to which it is calculated, it 

results convenient to calculate the Jacobian with respect to wrist centre, frame {4}. 

When expressed in this frame, the spherical wrist does not generate translational 

components. Consequently, the lower right most block of the Jacobian corresponding to 

the linear velocity influence of the last three joints is equal to zero. Getting a Jacobian 

matrix of the form: 

11 124

21 3 3�


 �
� � �
� �

J J
J

J 0
 

(6.21)

This situation make possible to decouple the singularity problem into two simpler 

problems: the wrist singularity problem (detJ12 = 0), and the arm singularity problem, 

(detJ21 = 0). Hence, the PA10-6C robot arm presents any singular configurations if and 

only if: 

12 21det det det�J J J  (6.22)

From equation (6.12), the angular velocity generated by the last three joints with respect 

to the wrist centre, frame {4}, is already known. The angular velocity of the first three 

joints with respect to the frame {4} is easily deduced by inspection of Figure 6.2, and the 

linear velocity of the wrist with respect to the base expressed in the frame {4} is 

obtained by premultiplying 3
1R  to the equation (6.18). Finally, the expression for the 4J 

states as follows: 

4 5 4
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Hence,  
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(6.24)

It can be concluded from equation (6.24) that the geometry of the PA10-6C robot brings 

a lot of simplicity in the determination of singularities. 

It is important to notice that at singular configuration, there exists a singular 

direction in which movement of the end-effector becomes unfeasible. The singular 

direction at wrist singularity is illustrated in Figure 6.4. Any attempt to move the end-

effector along this direction is physically impossible. On the contrary, the end-effector 

can freely move along the plane orthogonal to it. Thus, in order to escape from 

singularity in a specific direction, the singular direction must be orthogonal to it. If not 

the case, this can be forced by considering the robot as a redundant mechanism in the 

subspace orthogonal to the singular direction of the end-effector and creating a null 

space motion- movement of some joints of the robot such that the position and 

orientation of the end-effector is not affected (see Figure 6.4). 

 

Figure 6.4. Singular direction and its orthogonal plane at wrist singularity 

     112



 

6.2 Differential kinematics inversion  

For most manipulators, a closed-form inverse kinematic function does not exist at the 

position level. As a result, inverse kinematics is usually carried out at the velocity or 

acceleration level. The remaining of this chapter presents two different strategies to 

solve the differential kinematics inversion which are robust at singular configuration: the 

Damped Least Squares and the adjoint Jacobian inversion approach. The two methods 

are compared between each other. Finally, their utilization within the modiCAS system 

for cooperative tasks is discussed based on the experimental results. 

6.3 Damped least squares approach 

The most common method for handling singularities is the Damped-Least-Squares 

(DLS) method, proposed independently in [92] and [140]. This method is a local 

optimization method that makes a trade-off between the accuracy and feasibility of the 

inverse kinematics solution to prevent excessively high joint velocities by using a 

damping factor. However, at singular configuration and its neighborhood the accuracy of 

the inverses kinematic solution has to be sacrificed in order to achieve feasibility. [34], 

especially when the command velocity vector points along the singular direction. 

Concerning the cooperative mode, this would mean that if a force is applied in the 

singular direction, the corresponding joint motion would degenerate having a deviation 

error in the end-effector movement. 

This method uses an instantaneous trade-off between the accuracy and feasibility of 

the inverse kinematic solution to prevent the joint velocities from becoming excessively 

high. The trade-off is quantified by a factor known as the damping factor. The DLS 

method can be theoretically justified as follows [18]. Instead of just finding the 

minimum vector �  that gives the best solution, the DLS find the value of �  that 

minimizes the expression 

� �

2 2
�� �� x �J � ��  (6.25)

where ���  is a non-zero damping constant.  This can be equivalent rewritten as: 

� �T T�� �� xJ J I J� �  (6.26)
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where � �T ��J J I  is non-singular. Finally, the damped least squares solution states as: 

* 1( )T T� �� � �� x xJ J J I J� � �  (6.27)

where  is denote as the SR-inverse of J. The damping factor *J �  renders the inversion 

better conditioned from a numerical viewpoint. Note that 

. Thus, expression � � �1T T T T�
�

� � �J J I J J JJ I � 1
�

�

n

(6.27) can be reformulated as:  

* 1( )T T � �� � �� x xJ J J J I� � �  (6.28)

Expression (6.29) has the advantage over equation (6.28) that its computation is less 

expensive, since � � 1T n�
� �� ��J J I  while � � 1T m m�

� �� ��JJ I m n&

#

, and . Also note 

in equation (6.28) that when rank of J is m, 

* 10 ( )T T� �� 3 � �J J J J J  (6.29)

i.e. when there is no damping, the DLS reduces to the pseudoinverse. 

6.3.1 Singular value decomposition of the damped least squares 

The singular value decomposition (SVD) can be used to analyses the DLS solution (see 

Appendix D). From equation (6.28), the matrix T ��JJ I  expressed with SVD leads: 

( )( )
( )

T T T T

T T

� �

�

� � �

�

JJ I U�V V� U I
= U �� I U

 
(6.30)

where T ���� I  is a non-singular diagonal matrix with its diagonal entries as 2
i4 �� , 

where i4  denotes the singular values if J. Then the SR-inverse  expressed using SVD 

is equal to 

*J

*

1

( )
( ( )

T T

T T T
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�
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J J JJ I
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(6.31)
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(6.32)

6.3.2 The damping factor 

The DLS presents a continuous and feasible solution at singularities and their 

neighborhood. However, away from the singularity an exact solution is still desired i.e. 

0� 3 . A number of methods to determine the damping factor have been proposed in 

the literature [34], which compute the damping factor � based on some Jacobian-

dependent measure such as the manipulability measure, condition number or the 

minimum singular value which indicates the closeness of the manipulator to a singular 

configuration. Nakamura [93] suggested adjusting the damping factor according to the 

value of the manipulability measure w: 

det( )Tw JJ�  (6.33)

Using a threshold value wt. w is a nonnegative measure which becomes zero at a singular 

configuration. Thus, � is computed as [93]: 
2

0 1 ,

0,

t
t

w w w
w

otherwise

�
�

� - .
! � %/ 0� " 1 2
!
#

 
(6.34)

where 0�  is the scale factor at singular points. So, no damping is applied when the value 

of w is greater than wt until it reaches its maximum value �0 at w=0. 
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6.4 Adjoint Jacobian approach 

The adjoint Jacobian approach permits to move the robot at and in the neighborhood of 

singularities without any position or orientation error. The deterioration of motion ability 

at the singularity reflects on velocity only. Let us denote the end-effector as 

v�x u� , (6.35)

where the unit vector u��n denotes the end-effector instantaneous motion direction, 

while the scalar variable v (v 0) stands for end-effector velocity. Substitution of 

equation 

$

(6.35) into (6.20) yields into 

1vJ ��� u�  (6.36)

Furthermore, the inverse Jacobian can be calculated by use of the adjoint Jacobian: 

1 1
det

J adj� � J
J

 (6.37)

where detJ and adjJ denote the determinant and the adjoint matrix of the Jacobian, 

respectively. 

11 1

1

( )
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ij

n n
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adj J

�

5 5

n


 �
� �� 5� �
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�

J

 

(6.38)

The term Jij represents the Jacobian sub-matrix obtained by deleting the ith row and jth 

column of J. By combining expression (6.36) and (6.37), the following expression is 

obtained: 

( )
det

v adj�� u� J
J

 (6.39)

Notice that in equation (6.39), the determinant of the Jacobian represents a scalar factor 

related to the magnitude of motion in the joint space, while (adjJ)vu determines the 

velocity relationship between the individual joints. At singularity, J-1 does not exist, 

since detJ=0. Moreover, in the neighborhood of singularity the determinant is almost 

zero, which considerably influences yielding into excessive joint velocities.  
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The adjoint Jacobian approach consists in modifying equation (6.39) as follows: 

� �b adj6�� u� J  (6.40)

In equation (6.40) the system is decoupled in terms of velocity, represented by the scalar 

variable b (b$0), and direction of motion, represented by �(adjJ)u, where � is a sign 

variable (� =7 1). With a proper design of � and b, it is possible to control the non-

redundant robot arm at and around a singularity, without any error in the direction, and 

with feasible joint velocity. 

6.4.1 Relationship between adjoint Jacobian and the null vector 

The velocity equation (6.36) can be rewritten as 

0J v� �� u� , (6.41)

which can be considered as an instantaneous-motion closure equation for the kinematic 

chain. A compact notation is obtained by augmenting the joint space with the trajectory 

variable u. Denote by 

� �,
TT v�	 �  (6.42)

any point in the n+1 dimensional augmented joint space. Equation (6.41) can be then 

rewritten as: 

� � 0�	 	�H , (6.43)

where � � ( 1)n nJ � �� � ��uH is called the column augmented Jacobian. The vector u is 

in accordance with the forces/moments at the end-effector applied by the user. Then, one 

can in general assume that vector u is an n-dimensional parameter. The augmented 

Jacobian H is regarded as a nonlinear function of the joint variables � and the n-

dimensional parameter u and equation (6.43) represents a nonlinear parameterized 

system of autonomous differential equations [44]. A general solution to equation (6.43) 

can be written as: 

( )Hb�	 n 	�  (6.44)

where b has the same meaning as in equation (6.40) and Hn  represents a vector existing 

in the null space of H. Instead of derive it as a function of the pseudoinverse H+, e.g. as a 

     117



 

vector from the null-space projection ( )��I H H , the null vector is directly determined 

based on Bedrossian’s methodology [11]: 

� �1 2 1

1

( )

( 1) det ,

( 1, 2, , 1),

T
H n

p
p p

C C C

C

p n

�

�

8 �

� �

� �

n �

�

H  

(6.45)

where, Hp stands for matrix H with column p removed. The determinant of a matrix can 

be expanded in cofactors of one of the columns. Thus, Cp can be expanded in cofactors 

of column u: 

1 1 2 2

1

( 1) ( )

( 1, 2, , )

( 1) det

n
p p p

n
n

C u a u a u

p n

C �

� � � � �

�

� �

�

�

J

n npa

 

(6.46)

Notice that Hn  is a (n+1)-dimensional vector. It can be expressed in the following form: 

( )
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H
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J
 

(6.47)

where 
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(6.48)

The vector Hn  can be regarded as a map: 

1( ) : :n n
H

�� 3�n 	 	 	 �  (6.49)

Equation (6.44) can be split into two parts to obtain joint differential motion  

( )Hb�� n 	� , (6.50)
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and path parameter differential 

detv b� J  (6.51)

Equation (6.50) shows that the adjoint Jacobian approach expressed in equation (6.40) 

and the null vector yield the same result in terms of direction of motion in joint space.  

6.4.2 Velocity relations at singularity 

The kinematic singularities can be associated with an important type of solutions of 

the autonomous type differential equations known as equilibria or fixed points, where 

the null space function Hn  vanishes: { , : ( ) 0}H �� u n 	 [44]. There are generally two 

types of equilibria [97]: 

� Equilibrium I: : ( ) 0�  H9 �u u n 	

� Equilibrium II: : ( ) 0H: �u n 	  

Equilibrium I may occur at a codimension one kinematic singularity ( ( ) 1rank n� �J ), 

while Equilibrium II occurs with a codimension larger than one ( ), where 

self-motion vanishes for all velocity vectors u. Further discussion concentrates on the 

type Equilibrium I. This means that two singularities (e.g. shoulder and elbow 

singularities) occurring simultaneously are not considered within the scope of this 

analysis and non solution to this special case is not given. However, for robots where 

their position and orientation sub-chains can be regarded as separate mechanisms, the 

singularities can be treated separately. Moreover, Tsumaki et al. 

( ) 1rank n% �J

[130] have shown that 

the adjoint Jacobian approach can be applied even to a 6 DOF robot arm with non-

spherical wrist.  

Nenchev et al. [99] distinguish between two types of velocity relations at kinematic 

singularity depending on the direction u. In terms of the adjoint formulation they are: 

� Type-A: {detJ�0, (adjJ)u� 0)} 

� Type-B: {adjJ)u�0} 

Velocity relations of type A are not equilibria, some joint angles are being affected by 

the Cartesian space velocity vector u. This represents the self-motion condition where 

the end-effector velocity is zero while some of the intermittent links are moving. On the 

other hand, in Type-B relationship, all components of adj  vanish and motion would J
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stop entirely. This relation represents equilibrium of the first type of equation (6.40). 

Notice that the velocity relation can generally be of either type-A or type-B, depending 

on the direction of the velocity vector u, and the codimension of the singularity. Since in 

this work only codimension one singularity is assumed, the type of relation will depend 

entirely of the velocity vector u. Distinguishing between type-A and type-B velocity 

relations can be easily achieved. The detJ is used to detect the type-A velocity relation, 

whereas the norm of the null space function (6.48) is used to detect the type-B relation. 

A thoroughly analysis of kinematic singularities in the context of the relationship 

between differentials of motion and kinematic singularities can be found in [67], [11], 

[10], [96] and [114]. 

6.4.3 Selection of scalar variable b 

At singularity, the determinant of the Jacobian become zero, and for the calculation of 

joint velocities using equation (6.40),  is divided by zero. Also near singularities, 

division by an almost zero number results in excessive joint velocities. To overcome this 

problem, the joint velocity can be restricted by using the norm of the joint velocity 

vector together with the following condition: 

adjJ

max
max

max

max

det

( )

v v
v

b
v otherwise

v adj

+

+

� &!
!� "
!
!
#

�

u

J

J

� �

�
, 

(6.52)

where max+�  and vmax are user defined restriction on the joint velocity and the end-effector 

velocity, respectively. This condition is used to smoothly change between two possible 

values of b from equation (6.40). Notices that when the joint velocity norm is smaller as 

the condition threshold, the following expression is obtained: 

1

( )
det

v adj6

�

�

�

� u

x

J
J

J

�

�
 

(6.53)
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Equation (6.53) is the same solution as the one expressed in equation (6.39). On the 

other hand, if the norm value is larger than the boundary condition, equation (6.40) 

becomes: 

max

max

( )
( )
adjv

v adj
+6� u�

u
J
J

��  
(6.54)

Calculating the scalar variable b in this way is useful when approaching any singularity, 

and when having velocity relation of type A at singularity, i.e. when doing self-motion at 

singularity, since ( )  even if . However, with velocity relation of 

type B, det  and , i.e. equation 

0 0

0 0

adj �uJ det 3J

3J ( )adj 3uJ (6.40) becomes indefinite at the 

singularity. Thus, this particular case must be treated separately. An important 

assumption for this case is that the determinant of the Jacobian is factorized. Thus, it can 

be expressed as a product of terms,  

1 2det kf f f� � �J � , (6.55)

where each term corresponds to one of the different singularities of the robot. The 

subscript k is the number of possible singularities. Using expression (6.55), the joint 

velocity equation (6.39) can be represented as 

1

( ) ( )i i i

i k

f adj adj
f f f

�
�

x x� J J� ��
� �

, 
(6.56)

where  contains all the elements of the adjoint Jacobian that are affected by fi, and 

the rest of it entries are zero. The 

iadj J

iadj J  contains all terms that are not included into 

. Notice that in case of velocity type B relation, iadj J iadj J  becomes zero. Then, the 

inverse Jacobian may be reformulated as follows: 
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(6.57)
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Equation (6.57) can be rewritten in the same context as of equation (6.40) as: 

1

( )i

k

b adj
vb

f f

6�

�

� uJ�

�
 

(6.58)

In equation (6.58), the singular component is factorized out from the numerator and 

canceled out with the one from denominator, thus no division by zero will occur and 

there will be no effect of the singular configuration. The robot can then move out of the 

singular configuration without any position or orientation error. 

6.4.4 Selecting sign variable 
 

The sign variable � will affect the final direction of the joint velocity command. Out of 

singularities, � agrees with the sign of the determinant of the Jacobian: 

sgn(det )6 � J  (6.59)

Note that when moving through a singularity, the sign of the determinant changes. 

Furthermore, at singularity, equation (6.59) is undefined, since detJ=0, i.e. there is no 

possibility to directly determinate the value of �. Therefore, special care must be taken 

in order to preserve the correct joint velocity direction and agree with the direction of the 

applied forces at the hands-on interface. 

6.4.5 Wrist singularity 

The wrist singularity is of our main concern under the assumption that the virtual 

constraints limit the working area. Thus, elbow and overhead are practically eluded. On 

the other hand, the wrist singularity can occur at any time within the working area. 

The wrist singularity can be simple analyzed by regarding the orientation kinematic 

sub-chain as an independent subsystem. Therefore, the differential kinematic 

relationship stated in equation (6.12) is used: 

4 4 5 4

4 4 5 5

5 6

0
0
1 0
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c s s
s c s
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, +
, +
, +


 �� �
 � 
 �
� �� � � �� � � �� � � �
� �� � � �� � � � � �

�
�
�

 

(6.60)
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Notice that the Jacobian matrix of equation (6.60) is equal to J12 (see section 6.1.3), 

which is the one degenerating at wrist singularity. The determinant and the adjoint 

Jacobian are derived as  

12 5det s� �J , (6.61)

and 

4 5 4 5 5

12 4 5 4 5

4 4

0
0

s c c c s
adj c s s s

s c

� �
 �
� �� � �
� ��� �

J , 

(6.62)

respectively. At wrist singularity s5 = 0. The above expression can be split according to 

expression (6.56) as: 

12 5 4 4

0 0 1
0

0 0 0
i if adj s c s

�
 �
� �� � �
� �� �

J  

(6.63)

and  

4 5 4 5
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4 4

0
0 0

0
i

s c c c
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 �
� �� � �
� ��� �

J  

(6.64)

Substituting equation (6.62) into equation (6.40) and assuming that and s5 = 0, 

yields into: 

12 0adj �J

4 5 4 4

5

6 4 4

12 5
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0
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x y

x y

c s u c u
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+ 6
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 �� �
� � � ��� � � �
� � � ��� �� �

� �
J

�
�
� , 

(6.65)

which corresponds to the behavior of the system at wrist singularity with velocity 

relation of type-A. The above expression produces the so called self-motion. 
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During a velocity relation of type-B, 12 0adj �J , which implies that 12 0iadj �J . If the 

determinant factor fi is canceled out and using  only, as stated in equation 12iadj J (6.58), 

the final expression becomes: 

4

5 5 4 4

6

12 5

0

det

z

x y

u
b s c u s u

v vb
s

+
+ 6
+


 � �
 �
� � � �� � �� � � �
� � � �� �� �

� �
J

�
�
�  

(6.66)

Two types of motions can be observed in equation (6.66) depending on u: 

Escape/through motion ( 0zu � ), and boundary motion ( 0, 0x yu u� � ). The former will 

take the wrist out of singularity, while the latter rotates the whole wrist maintaining the 

singularity configuration.  

Calculation of the sign variable � when crossing singularity with velocity relation of 

type-B is done by comparing the direction of the applied force in relation with the 

direction orthogonal to singular direction. 

6.5 Experimental results 

The main objective of this section is to analyze the behavior of both DLS and adjoint 

Jacobian approach in the context of human-robot cooperation using virtual fixtures when 

dealing with singular configurations. Only the wrist singularity is studied, since, as it has 

already been pointed out, contrary to shoulder and boundary singularities, the wrist 

singularity may appear inside a virtual constrained working space during cooperative 

operation. Three different situations are distinguished: (a) Passing through singularity, 

(b) Escaping from singularity along singular direction, and (c) Passing near singularities. 

During the experiments, the path is virtual constrained to allow applied forces only in the 

desired direction. The evaluation criterion is basically based on the Cartesian deviation 

from the subspace of preferred directions U. 
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Figure 6.5. End-effector movement along (a) direction orthogonal to singular 
direction, and (b) singular direction 

 

6.5.1 Passing through singularity 

The first experiment consists of movements of the end-effector along Z-axis with respect 

to the base reference frame in such a way that passing through singularity occurs. 

Therefore, the robot initial position, defined in the joint space, equal to 

(deg) is used. The corresponding Cartesian pose is defined as 

. Then, a translational VF along Z-axis is created, i.e.  and , 

where . The end-effector is commanded by hand up and down so long as 

necessary to pass through singular configuration, repeating this movement several times. 

0 {0,15,100,0, 25,0}� ��

TART 1{ }l T
TCPS � lR {0}S� �

1 [0 0 1]T�l

Even though, passing through singularity presents not complications singularity for 

any of both approaches, DLS and adjoint Jacobian, plots of the actual Cartesian position 

and orientation (Figure 6.6 and Figure 6.7, respectively) reveal that the DLS produces 

larger deviations from the constrained path than the adjoint Jacobian. 
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Figure 6.6. End-effector position while passing through singularity with virtual 
fixture along Z-axis w.r.t. the base frame 

 

Figure 6.7. End-effector orientation while passing through singularity with virtual 
fixture along Z-axis w.r.t. the base frame 
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Figure 6.8. End-effector error profile while passing through singularity with virtual 
fixture along Z-axis w.r.t. the base frame 
 

Figure 6.8 shows the instantaneous norm of the error for both position and orientation in 

the Cartesian space. In both approach, crossing through singularity represents a critical 

point affecting the error behavior. Nevertheless, the adjoint Jacobian reduces the 

produced error when compared with the DLS. Table 6.1 presents maximal and mean 

error produced during the experiments.  

 

Table 6.1. Maximum and mean error when passing through wrist singularity 

Singularity 
Robust 

approach 

Maximum 
Position 

error (mm) 

Mean Position 
error (mm) 

Maximum 
Orientation 
error (deg) 

Mean 
Orientation 
error (deg) 

DLS 2.1651 0.5029 0.3226 0.1386 

adjoint Jacobian 0.7864 0.3189 0.2263 0.0957 
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Figure 6.9. Position of joints �4, �5 and �6 while passing through singularity with 
virtual fixture along Z-axis w.r.t. the base frame 

 

Figure 6.10. Velocity of �4, �5 and �6 while passing through singularity with virtual 
fixture along Z-axis w.r.t. the base frame 
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It is worth to point out the behavior of the robot on the joint space under the influence of 

both strategies. Figure 6.9 and Figure 6.10 show the position and velocity, respectively, 

of the last three joints ( 4+ , 5+  and 6+ ) which are the critical ones when passing through 

wrist singularity. The joint perturbation at singularity is notably stronger under DLS as 

under adjoint Jacobian. On the other side, joint velocities present a discontinuity at 

singularity (see Figure 6.10). This occurs from switching between control strategy for 

velocity relations of Type-A and Type-B. Although the discontinuity can be notice by 

the user during cooperative operation, such discontinuity does not produce significant 

deviation in the Cartesian space, since this occurs in the null space. 

6.5.2 Escaping singularity along singular direction 

It has already been pointed out that the singular direction at singularity is actually an 

unfeasible direction along which it is physically impossible for the robot to exert a 

movement. One possible solution is the so called null space motion to relocate the robot 

joints in such a way that the singular direction becomes orthogonal to the desired 

movement. The main objective of this experiment is to analyze the behavior of both 

strategies when trying to escape singularity along singular direction. The initial joint 

position is , which corresponds to the y0 of 0 {0,10,80,0,0,0}�� Figure 6.5.b, where the 

singular direction is parallel to the Y-axis with respect to the base frame. A VF is 

defined with  equal to the Cartesian pose corresponding to  and a translational VF 

along Y-axis, i.e.  and , where . Thus, movements 

back and fort along the virtual constrained path require, first of all, that the robot escapes 

from singularity and afterwards passes through singularity in a similar way as in the last 

experiment.  

TART 0�

1{ }l T
TCPS � lR {0}S� � 1 [0 1 0]T�l

The behavior of the end-effector in the Cartesian space during the experiment is plotted 

in Figure 6.11 and Figure 6.12 for position and orientation, respectively. It can be 

observed at the very beginning of the plots that the DLS presents a very large deviation 

error in the attempt of escape from singularity. In Figure 6.13 the instantaneous error is 

shown: 
max

7.9p �e (mm) and 
max

24r �e (deg). On the contrary, the response of the 

adjoint Jacobian approach presents no significant deviations while escaping from 
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singularity: 
max

0.86p �e (mm) and 
max

0.36r �e (deg). Notice too, that on the 

subsequent attempts of passing through singularity the adjoint Jacobian slows its motion 

while the DLS continuous with the same velocity profile. 

 

 

Figure 6.11. End-effector position while escaping from singularity with virtual 
fixture along Y-axis w.r.t. the base frame 
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Figure 6.12. End-effector orientation while escaping from singularity with virtual 
fixture along Y-axis w.r.t. the base frame 

 

 

Figure 6.13. End-effector error profile while escaping from singularity with virtual 
fixture along Y-axis w.r.t. the base frame 
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The results observed in the Cartesian space become clearer when analyzing the robot 

behavior in the joint space. Figure 6.14 shows the position of all joints. Notice that the 

DLS does not attempt any motion of the critical joints ( 4+ , 5+  and 6+ ) when trying to 

escape singularity, instead, the first joint 1+  moves until it becomes possible for the other 

joints to start any kind of movement, producing of course a large error in the Cartesian 

space. On the other hand, the adjoint Jacobian approach moves first joints 4+  and 5+  

simultaneously and in opposite direction keeping the other joint constant in the 

meanwhile. This movement represents the null space motion that rotates the robot joints 

so that the singular directions becomes orthogonal to escaping direction, which occurs 

when 4 90+ � �  and 5 90+ � . The null motion is the result of a velocity relation of Type-

A at singularity, and only when the singular direction becomes orthogonal to the desired 

motion, the velocity relation of Type-B occurs, which corresponds to the escape/through 

motion described in section 6.4.5. In this way, the robot escapes singularity without 

producing any position deviation. 

Now, the reduction of velocity at singularity produced with the adjoint Jacobian 

approach occurs due to the behavior of the robot in the joint space which is clearly 

observed in Figure 6.15 and Figure 6.16. A velocity discontinuity occurs just like in the 

last experiment, but this time the discontinuity is bigger, which can be explained from 

the fact that the configuration of the robot when approaching to singularity is not as 

straightforward as in the last experiment. Notice that joints 4+  and 6+  attempt to move 

just before getting into the singularity in the same way it does when passing near 

singularity, since a velocity relation of Type-A is present , but at singularity the attempt 

of motion is stopped and the joint are driven back until the velocity relation becomes of 

Type-B in order to pass through singularity. Joints 4+ , 5+  and 6+  are plotted once again 

on Figure 6.16 in order to have a closer look to observe the effect of velocity on the joint 

positions.  
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Figure 6.14. Position of robot joints while escaping from singularity with virtual 
fixture along Y-axis w.r.t. the base frame 
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Figure 6.15. Velocity of joints �4, �5 and �6 while escaping from singularity with 
virtual fixture along Y-axis w.r.t. the base frame 

 

Figure 6.16. Position of joints �4, �5 and �6 while escaping from singularity with 
virtual fixture along Y-axis w.r.t. the base frame 
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6.5.3 Passing in the neighborhood of singularity 

An exact solution to the inverse kinematics in the neighborhood of wrist singularity 

yields into considerably high velocity of joints 4+  and 6+ . The closer to the singularity, 

the higher is the resulting velocity. Both DLS and adjoint Jacobian reduce such 

velocities, the former by applying the variable damping factor (equation (6.34)), while 

the latter by velocity restriction using the norm of the joint velocity (equation (6.52)). 

The purpose of this experiment is to analyze the behavior of both approaches when 

passing in the neighborhood of singularity. Therefore, the initial joint position 

 is used, which is almost the same as the one used in the last 

experiment (escaping from singularity), but with a slight difference of the joint position 

so that the robot configuration does not lay exactly at singularity. A VF is defined with 

 at this position and a translational movement along Y-axis, i.e.  and 

, where . Back and fort movements of the end-effector are then 

executed. 

0 {0,11,81,0, 2,0}� ��

TART 1{ }l T
TCPS � lR

{0}S� � 1 [0 1 0]T�l

Figure 6.17 and Figure 6.18 show the behavior of end-effector position and 

orientation, respectively, while the error profile is presented in Figure 6.19. Considerable 

strong deviations for both position and orientation is observed for the case of DLS when 

compared with the adjoint Jacobian approach, On the other hand observe that the adjoint 

Jacobian approach reduces its motion rate when passing near singularity, therefore 

remaining closer to the virtual constrained path. Maximum error and mean error are 

given in Table 6.2. 

Table 6.2. Maximum and mean error when passing in the neighborhood of wrist 
singularity 

Singularity 
Robust 

approach 

Maximum 
Position 

error (mm) 

Mean Position 
error (mm) 

Maximum 
Orientation 
error (deg) 

Mean 
Orientation 
error (deg) 

DLS 10.38 1.3835 9.4944 2.9962 

adjoint Jacobian 0.6467 0.2412 1.101 0.5775 
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Figure 6.17. End-effector position while passing in the neighborhood of wrist 
singularity with virtual fixture along Y-axis w.r.t. the base frame 

 

Figure 6.18. End-effector orientation while passing in the neighborhood of wrist 
singularity with virtual fixture along Y-axis w.r.t. the base frame 
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Figure 6.19. End-effector error profile while passing in the neighborhood of wrist 
singularity with virtual fixture along Y-axis w.r.t. the base frame 
 

The response of each approach in the neighborhood of singularities defers considerably 

from each other and it can be corroborated when looking at the behavior of the robot in 

the joint space (Figure 6.20 and Figure 6.21). While the adjoint Jacobian approach 

reduces joint velocities in the neighborhood of singularity to avoid reconfiguration7 of 

the robot, the DLS forces the robot to pass through singularity by damping the velocities. 

(see Figure 6.20). In adjoint Jacobian method, 4+  and 6+ are constantly rotating in such a 

way that 5+  does not cross through singular position, while in the case of DLS, 4+  and 

6+  are kept almost constant and it is rather joint 5+ , which continuously rotates passing 

through wrist singularity. Figure 6.21 shows the velocity response of both approaches. 

The adjoint Jacobian reduces smoothly reduces joint velocities when approaching 

singularities without producing any kind of discontinuity. 

 

                                                 
7 In the contest of singularities, reconfiguration means passing frome one side of the singular position to 

the other. 

     137



 

 

Figure 6.20. Position of joints �4, �5 and �6 while passing near singularity with 
virtual fixture along Y-axis w.r.t. the base frame 

 

Figure 6.21. Velocity of joints �4, �5 and �6 while passing near singularity with 
virtual fixture along Y-axis w.r.t. the base frame 
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6.6 Discussion 

The problem of high joint velocities at wrist singularity is solved by both DLS and 

adjoint Jacobian approaches. The response of DLS is smooth along the subspace 

orthogonal to the singular direction, what turn out to be very comfortable when 

commanding the end-effector by hand. Approaching to singularity with forces applied in 

other directions would degenerate motion causing position deviations, while the velocity 

behavior remains unchanged. One important objective of this work is to incorporate the 

robotic system in the OR in such a way that its usage result as intuitive as possible. 

Moving the robot freely in the space in a unconstrained fashion without been necessary 

to care about the exactness of the movement may happen, for instance when moving the 

end-effector apart from the operation scenario to change tool or simply to have more 

available space for the surgeon to perform other tasks. In such cases, the priority is the 

surgeon to comfortably move the robot. The DLS approach provides a convenient 

solution for such scenarios since it avoids high joint velocities and allow crossing 

singularity smoothly. 

A virtual constrained environment, on the other hand, demands the end-effector 

position to remain always within the allowed subspace. Any deviation out of the 

permitted subspace could result in any kind of damage during operation, which is 

unacceptable, especially considering that the robot has direct contact with human beings. 

Therefore, the DLS cannot be considered for cooperative tasks where position accuracy 

is demanded, since robot accuracy decreases in the neighborhood of singularity 

especially along singular direction. The usage of the adjoint Jacobian approach to solve 

the inverse kinematics of the robot is proposed as alternative for constrained cooperative 

tasks, since its performance does not affect end-effector position accuracy, degeneration 

of motion reflects rather in velocity. The null space motion feature of the adjoint 

Jacobian inversion provides robustness against singular direction. Exactly at singular 

position velocity discontinuities occur in the joint space. Nevertheless, these can be 

reduced by reducing the applied force when crossing singularity, which turns out not to 

be as comfortable for the user as the response of the DLS but assures position accuracy. 
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7. Conclusions 

A cooperative system for robotic assisted surgery is introduced. The combination of a 

navigation system and a hands-on robotic arm form an integral solution for surgical 

applications. A new command-based architecture is presented which provides a solid 

foundation for building complex, robust and scalable applications. A clear 

modularization of the different tasks as well as a strategic distribution of them along the 

system framework, depending of their roll within the system, give enough flexibility to 

cope various applications. Basic functions have been implemented within the new 

proposed framework to cope different fundamental demands directly related to the 

robotic arm, such as point to point motion in the joint space, linear motion in the 

Cartesian space, velocity commanded motion in both joint and Cartesian space, and 

cooperative motion through a hands-on interface mounted at the robot’s end-effector. 

Special attention is focused on the interaction of the robotic system with the 

surgeon, where a cooperative approach appears to be a good candidate to achieve a good 

integration of the robot within surgical interventions. However such cooperation implies 

extra safety measurements because direct contact with the human being takes place. The 

concept of virtual constraints is used to assure safeness during operation by limiting the 

allowed working space. This is realized in the form of virtual fixtures which guide the 

tool along a predefined directions or paths. Previous work related to virtual fixtures 

applies admittance control to create the virtually constrained subspace. This controller 

relies on the user applied force to generate motion of the end-effector, where even 

deviation error compensation depends on such applied forces (here known as manual 

error compensation). In such approach, when deviation error occurs, the virtual preferred 

directions are redefined to consider such error, creating a new virtual fixture that makes 

it possible to compensate it. However, it has been shown that manual compensation does 

not necessary compensate for all deviations, especially when the virtual fixture is 

translational and the deviation error appears at orientation, or vice versa. In order to 

solve this problem, the present work proposes another admittance controller with 

autonomous error compensation, which has a clear division of responsibilities between 

user and robotic system during cooperative tasks. While the user keeps complete control 

on the movements along the preferred directions, the robotic system takes care of the 
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error compensation independent of the applied forces. Such approach shows 

considerable minimization of the error when compared to the manual compensation. 

Additionally, the problem of robot singularities during cooperative tasks is treated, in 

particular, the case of wrist singularity, which may appear at any moment within a 

virtual constrained working area. The other two singularities are practically avoided. 

Two solutions are compared: the Damped Least Square and the adjoint Jacobian. The 

first one introduces a damping factor to the Jacobian inversion to prevent high velocities 

in the neighborhood of singularities and at singularity. Although, smooth motion 

becomes possible with this approach, position deviations of the end-effector appear, 

especially when the commanded velocity points in the singular direction. In a virtual 

constrained environment such deviations may mean getting out of the boundaries, which 

cannot be permitted. An alternative solution is then considered to enhance position 

accuracy; this is the so called adjoint Jacobian approach. Degeneration of the motion 

appears only on velocity while the end-effector position is kept. During cooperative 

tasks, rather slow motions are executed, and further reduction of the velocity of motion 

in order to keep a correct position does not represent a problem. The adjoint Jacobian 

approach produces null space motion to escape from singular directions avoiding the 

degeneration of the movement in the Cartesian space. In the context of cooperative 

manipulation, each of both methods can be favorable on particular scenarios. On the one 

hand, the damped least-squares method can be used for unconstrained motions, where 

position deviation is not critical, to provide a smooth transition through singularity 

which may be comfortable for the user. On the other hand, the adjoint Jacobian approach 

can be applied to virtual constrained motions, where the accuracy of the end-effector 

position is relevant. 

The presented methods significantly contribute in making manually guided robot 

movements during cooperative tasks safer and more accurate. They increase the assistive 

functionality of robotic systems and the level of integration within surgical interventions. 

The interaction between surgeon and robot becomes more intuitive and friendlier. 

Moreover, the concept of virtual fixtures improves safety measurements during such 

cooperative tasks, while the surgeon maintains full control over the operation procedure. 
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A Quaternion 
 
The quaternion representation consists of a scalar part � �
  and a vector 
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If 1� � , then � is know as the unit quaternion. The set of unit quaternions constitutes a 

unit sphere in four-dimensional space. For this special case, there exists a vector 

and 3( ��
 ,+ ; ;� �
� ��  such that � �cos sin T� + ( +�� , the unit quaternions play an 

important part in the relation to general rotation, i.e. it give a physical meaning to a 

quaternion, where  and � represent axis of rotation and angle of rotation, respectively ��
[30]. 

The quaternion �  can be interpreted as a complex number with �  being the real 

part and  the complex part � [40]. Hence, the complex conjugate of �  is defined as: 
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Thus, the inverse rotation matrix can be expressed as: 

� � � � � �1 T� � �� � �R R R  (A.3)

Since, successive rotations involve multiplication between two rotation matrices, and 

quaternion multiplication is equivalent to orthogonal matrix multiplication, it can be 

stated that: 

� � � � � �1 2 1 2 ,� � ���R R R  (A.4)

The quaternion multiplication is defined as: 

� �
21 1

1 2
21 1 3 3 1

T ��
��

� �


 �� 
 �
� � � � �� � �� �

�
�� �I S

 
(A.5)
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where I is the identity matrix and � �1�S  is the skew-symmetric matrix of , such that  1�

� �1 2 1S� �� � � �2  (A.6)

A.1 Unit quaternion to rotation matrix conversion 
A rotation matrix R in terms of unit quaternions is written as: 

� �
� � � �

� � �
� � � �

2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 2

x y z x y z x z y

x y z x y z y z x �
x z y y z x x y z

� ( ( ( ( ( �( ( ( �(

� ( ( �( � ( ( ( ( ( �(

( ( �( ( ( �( � ( ( (


 �� � � � �
� �
� �� � � � � �
� �
� �� � � � �� �

R  

(A.7)

A.2 Rotation matrix to unique quaternion conversion 
Conversion of rotation matrix R to the corresponding unit quaternion �  [30]:  

2 2 2
11 22 33 44

2

2

4 4( )

4 4(1 )
4

x y zr r r r ( ( (

�

�

� � � � � � �

� � �

�

, 

(A.8)

since , i.e. it s norm is equal to 1. This yields into: 2 2 2 2 1x y z� ( ( (� � � �

11 22 33 44

32 23

13 31

21 12

1
2

4

4

4

x

y

z

r r r r

r r

r r

r r

�

(
�

(
�

(
�

� 7 � � �

�
�

�
�

�
�

 

(A.9)

where is the element of ith row and jth column of R. The sign of ijr � cannot be defined. 

The signs of �  also depends of its choice. Both choices yield the same rotation, but this 

may not be trivial when using quaternions for interpolation. 
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B Spline functions 
 
B.1 Catmull-Rom splines 
Spline functions are functions defined piecewise by polynomials. These functions are 

most frequently used to describe parametric curve: 

( ) ( ( ), ( ), ( ))Q t x t y t z t�  (B.1)

The Catmull-Rom spline interpolates n data points (also called knots) with a piecewise 

cubic polynomial which produces a C1-continuous curve that passes through the knots 

and considers the tangent values at each knot to defines the shape of the curve [7].  

 

Figure B.1. Segment wise parametric curve 
 

A segment between two points (pi and pi+1) is considered a single curve P(t) with the 

condition that: 

1

(0)
(1)

i

i

P p
P p �

�
�

 
(B.2)

Additionally, two constraints are considered for the definition of the tangents at each 

knot by using the auxiliary points pi-1 and pi+2 (see Figure ): 

1 1

2

(0) ( )
(1) ( )

i i

i i

P p p
P p p

�
�

� �

�

� � �
� � �

 
(B.3)

where � is the tension parameter with values between 0 and 1. As � approaches 1, the 

bend at each knot reduces. Normally the Catmull-Rom spline uses a tension value of ½. 

The tangent at each knot is parallel to the chord between the adjacent points. The general 

expression of a cubic polynomial curve is: 
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3 2( )Q t at bt ct d� � � �  (B.4)

The derivative of equation (B.4) is: 

23 2Q at bt� c� � �  (B.5)

After applying the conditions (B.2) and (B.3) to equations (B.4) and(B.5), with 

�=½, and doing some mathematic, it yields 

1

3 2

1

2

1 3 3 1
2 5 4 1

( ) 1
1 0 1 0

0 2 0 0

i

i

i

i

p
p

Q t t t t
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�

�
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� � 
 �
 �
� �� �� � � �� �
 �� � � � �� ��
� �� �

� � � �

 

(B.6)

Equation (B.6) generates a cubic curve of the segment between pi and pi+1. Notice 

however that it can be applied to every segment of the curve. The tangent direction at 

Q(t) can be straightforward calculated using equation (B.5). A detailed deduction of the 

Catmull-Rom spline function can be found in [7]. 

 

B.2 Arc-length parameterization 
The arc-length parameterization of a parametric curve as expressed in equation (B.1) is a 

two steps process [138], [8]: 

� Calculation of arc-length s as a function of the parameter t: ( )s A t� . Since s 

is a strictly increasing function of t, there is a one to one relationship 

between s and t. 

� Calculation of t, as the inverse of the arc-length function: 1( ) . t A s��

The arc-length parameterization of the curve is obtained when substituting  

into Q(t): 

1( )t A s��

1 1 1( ) ( ( ( )), ( ( )), ( ( )))P s x A s y A s z A s� � ��  (B.7)

where  and L is the total length of the curve. [0, ]s� L
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The arc length s of a curve, denoting its total length, is calculated as a function of t by 

the integration formula 

0

2 2( ) ( ( )) ( ( )) ( ( ))
t

t

s A t x t y t z t dt� � �� � � �< 2  
(B.8)

In general, equation (B.8) cannot be calculated analytically, i.e. the arc-length 

parameterization must be solved numerically. The method used in this work compute the 

approximate arc-length parameterized curve in three steps: 

� Calculation and summation of arc-length of all the segments of the original 

spline curve Q(t) to determine the arc length L. 

� Find m+1 equally spaced knots located at  along Q(t), where 

/l L m��  equal the length of each segment of the parameterized curve. 

0, , 2 ,...,l l ml� � �

� Calculation of the parameter values  that divide the spline curve 

into equal arc-length segments. 

0 1, ,..., mt t t� � �

The final result is an approximately arc-length parameterized piecewise spline curve 

divided into m cubic segments. The complete algorithm for the arc-length 

parameterization can be found in [138]. 
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C Quadratic minimization of a cubic spline function 
 
Suppose that a parametric spline function p(s) is given and 0 0 0 0( , , )x y z�p  is a point in 

the space. The square of the distance from p(s) and p0 on a spline curve is 

2 2
0 0( ) ( ( ) ) ( ( ) ) ( ( ) )s x s x y s y z s z) � � � � � � 2

0 , (C.1)

Where x(s), y(s), and z(s) are cubic spline functions of the parameter s. The closest point 

to p0 on the spline curve 1 ˆ ˆ ˆ( ( ), ( ), ( ))x s y s z s�p  is determined by obtaining the  value 

that minimizes 

ŝ

) (s) [139].  

 

Figure C.1. Closest point of spline curve to p0 and its tangent vector 
 

The quadratic minimization technique is then used to obtain the  value that minimizes ŝ

) (s). Let ,  and  be three initial estimates of . The quadratic polynomial 

interpolating 

1̂s 2ŝ 3̂s ŝ

) (s) at ,  and  states as follows: 1̂s 2ŝ 3̂s
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(C.2)

The minimum of D(s) is obtained by calculating the minimum of P(s): 

2 2 2 2 2 2
2 3 1 3 1 2 1 2 3

2 3 1 3 1 2 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )1ˆ 1,2,3,...,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) ( ) ( ) ( ) ( ) ( )

k s s s s s s s s ss k
s s s s s s s s s

) ) )
) ) )

� � � � �
� � �

� � � � �
 

(C.3)

The value giving the largest P(s) among ,   and  is then eliminated. The 

expression (C.3) is then evaluated in a like manner with the remaining values until some 

error tolerance for P(s) is reached. It can be shown that with a good estimate of the initial 

estimates, the iteration has a superlinear converge rate to  

1̂s 2ŝ 3̂s ˆks

ŝ [82]. 
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D Singular value decomposition 
 
The singular value decomposition (SVD) is an important factorization of matrices. It 

provides a powerful method for examining of the characteristics of matrices. Some 

applications employing the SVD include computing the pseudoinverse, matrix 

approximation. The SVD is defined as follows [93]: 

 

If  and rank A=k, then there exist orthogonal matrices m n���A

1

1

( )

( )

m m
m

n n
m

U u u

V v v
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� �

�
�
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�
 

(D.1)

Such that A is represented by 
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(D.2)

where ( 1, , )i i p4 � �  are the singular values of A, 14  and p4  having the largest and 

smallest singular values respectively. The singular values are uniquely determined 

although U and V may not be. 

 

D.1 Relationship between pseudoinverse and SVD 
The pseudoinverse of A expressed with the SVD is represented by 

# #

#

1 2

min( , )

1 2

1 1 1( , , , ,0, ,0)

0

T

n m
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(D.3)

Where 1/ ( 1, , )i i k4 � �  and p-k zeros are the singular values of A#, among which 

1/ k4  is the largest. 
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