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Zusammenfassung

Menschliche Experten verfügen über die Fähigkeit, ihr Entscheidungsverhalten
flexibel auf die jeweilige Situation abzustimmen. Diese Fähigkeit zahlt sich
insbesondere dann aus, wenn Entscheidungen unter beschränkten Ressourcen
wie Zeitrestriktionen getroffen werden müssen. In solchen Situationen ist es
besonders vorteilhaft, die Repräsentation des zugrunde liegenden Wissens an-
passen und Entscheidungsmodelle auf unterschiedlichen Abstraktionsebenen
verwenden zu können. Weiterhin zeichnen sich menschliche Experten durch die
Fähigkeit aus, neben unsicheren Informationen auch unscharfe Wahrnehmungen
in die Entscheidungsfindung einzubeziehen.
Klassische entscheidungstheoretische Modelle basieren auf dem Konzept der
Rationalität, wobei in jeder Situation die nutzenmaximale Entscheidung einer
Entscheidungsfunktion zugeordnet wird. Neuere graphbasierte Modelle wie
Bayes’sche Netze oder Entscheidungsnetze machen entscheidungstheoretische
Methoden unter dem Aspekt der Modellbildung interessant. Als Hauptnachteil
lässt sich die Komplexität nennen, wobei Inferenz in Entscheidungsnetzen NP-
hart ist. Zielsetzung dieser Dissertation ist die Transformation entscheidungs-
theoretischer Modelle in Fuzzy-Regelbasen als Zielsprache. Fuzzy-Regelbasen
lassen sich effizient auswerten, eignen sich zur Approximation nichtlinearer
funktionaler Beziehungen und garantieren die Interpretierbarkeit des resultieren-
den Handlungsmodells. Die Übersetzung eines Entscheidungsmodells in eine
Fuzzy-Regelbasis wird durch einen neuen Transformationsprozess unterstützt.
Ein Agent kann zunächst ein Bayes’sches Netz durch Anwendung eines in dieser
Arbeit neu vorgestellten parametrisierten Strukturlernalgorithmus generieren
lassen. Anschließend lässt sich durch Anwendung von Präferenzlernverfahren
und durch Präzisierung der Wahrscheinlichkeitsinformation ein entscheidungs-
theoretisches Modell erstellen. Ein Transformationsalgorithmus kompiliert da-
raus eine Regelbasis, wobei ein Approximationsmaß den erwarteten Nutzen-
verlust als Gütekriterium berechnet. Anhand eines Beispiels zur Zustands-
überwachung einer Rotationsspindel wird die Praxistauglichkeit des Konzeptes
gezeigt.
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1. Introduction

During recent years, several types of decision support systems have been pro-
posed in literature. Among these systems, decision-theoretic models and rule-
based systems have gained considerable attraction. Expert systems, for in-
stance, are often implemented as rule-based systems, since human expert knowl-
edge can generally be expressed quite well in terms of rules. Fuzzy rule-based
systems extend classical rule-based systems in a reasonable way, since expert
knowledge is usually involved with vagueness and imprecision.
Decision-theoretic models are based directly on concepts from mathematical
(statistical) decision theory. During recent years, these concepts have been de-
veloped further in artificial intelligence [RN03]. Particularly, the mathematical
framework has been extended by graphical models, notably Bayesian networks
and Decision networks ([Avo95], [CF01], [BL04], [Jen01]). In fact, the decision-
theoretic approach is now recognized as the most important formal foundation
of modeling rational behavior. Moreover, decision networks are widely accepted
as important tools for both, the design of intelligent agents ([San96],[Wei00])
as well as the realization of (decision-theoretic) expert systems ([FHMV95],
[FDS93]).
Our aim in this thesis is to combine the advantages of both approaches. More
precisely, we outline a knowledge transformation framework which allows one
to transform a decision theoretic model into a fuzzy rule base. Thus, we con-
sider fuzzy rule-based systems as a special type of condensed decision model
[DGL97]. The idea is to maintain a decision theoretic model offline, which
appears reasonable from a knowledge engineering point of view. For reasons of
efficiency, rule-based systems derived from that model are then used online, e.g.
for real-time decision making ([Kor90], [KD01]) like collaborative agent-based
knowledge support [FMS05]. This transformation framework support decision
making activities in a wide range of domains in which decisions are made.
Decision-theoretic models dispose of adequate concepts for the modeling of un-
certainty ([Pea88], [Pea00], [Hol04b]) and take the decision maker’s preferences
[FR94a] into account in an explicit way. Worth mentioning in this connection
is the declarative character of decision-theoretic models: What the approach re-
quires is only a description of the problem and the decision maker’s preferences.
Given this, the optimal decision behavior is already determined by means of
an underlying rationality principle [Joy99]. This way, the declarative approach
avoids systematic faults typically made by human experts in rule-based model-
ing [FH97], e.g. caused by an inconsistent handling of uncertainty [Ban98]. The
declarative approach also facilitates the adaptation and extension of a model,
e.g. the consideration of a new variable. One disadvantage of decision-theoretic
methods concerns the issue of complexity: Finding an optimal decision might
become very expensive. In fact, inference in Bayesian networks is known to

1



1. Introduction

be NP-hard [PP02]. Therefore, decision networks are not always suitable for
time-critical applications. Rule-based systems are much more efficient in this
respect. This is mainly due to the fact that decision knowledge is represented
in a very compressed form. For example, so called condition-action rules of the
form ’IF condition THEN action’ define a kind of action model that assigns
an action (a decision) to each situation in an immediate way. As opposed to
decision-theoretic models, the situation itself is actually not analyzed before a
decision is made. Particularly, aspects such as preference and uncertainty do
no longer appear explicitly.
One possibility to combine the advantages from both approaches is to provide
methods for transforming a decision-theoretic model into a rule-based system
[BK02]. Such a transformation can be seen as a special type of knowledge com-
pilation, that is the transformation of a formal representation of knowledge into
an alternative form which is more suitable for the purpose at hand.
Here, we are concerned with the representation of decision knowledge. A
decision-theoretic model is to be approximated by means of an efficient action
model in the form of a fuzzy rule base. Transformation can be approximate
in the sense that the input-output relation of the original model is not exactly
reproduced. We pursue as transformation framework a data-driven approach.
As decisive measure, a decision network is represented as set of situations with
optimal decisions as specification of an optimal decision function. The objective
is to approximate this function by means of a function induced by a fuzzy rule
base. In this connection, the idea of information granulation plays an important
role. Information granulation refers to the partitioning of an object into a set
of granules, where each granule is a collection of basic entities drawn together,
e.g., by indistinguishability, similarity, proximity, or functionality. More gen-
erally, granular computing [Yao00] is concerned with the systematic study of
abstracting information and of processing information at different levels of ab-
straction [Sme96]. Information granulation provides a tool for modulating the
level of abstraction and, hence, the complexity of a (decision) model. To sum
up, the research focus of this thesis provides a decision maker an instrument
to represent decision models on different levels of complexity, understandabil-
ity and efficiency. Using rule bases for representing decision functions allows a
decision maker to facilitate knowledge transfer based on the intelligible model
property. Hence, the transformation framework introduces an adaptable tool
to support reasonable decision making.

The thesis is structured in four parts. Part I gives a survey on Knowledge
Based Systems. Knowledge-based techniques and methods to facilitate and
support human behaviour in various disciplines like medicine or finance are
introduced and different solutions are provided. Further, the strong interac-
tion with uncertainty will be recapitulated. In Part II Graphical Models are
presented. Two approaches of graphical representations are discussed and the
underlying network technology, causal discovery, learning probabilities from
data along with examples of using these technologies to develop probabilistic
systems, and aggregation of models are presented. In Part III the transforma-
tion framework including a process schema and analysis criteria like granulation

2



is provided. In Part IV the concept realization and validation based on two in-
dustrial application fields are given. Part V closes this thesis with conclusions
and gives an outlook and suggestions for future work.

Figure 1.1.: Approach and structure of this thesis

Figure 1.1 above illustrates the approach and structure of the main parts of
this thesis.

In the first chapter of Part I, i.e. Chapter 2, we introduce what Knowledge
Based Systems are composed of and specify which fields of application are of
broad interest. In a nutshell, Knowledge Based Systems take over the role of
an expert to arrive at a solution in a problem-solving situation in a specific
domain. Further, the knowledge based process is explained in this Chapter.
The intersection with uncertainty is discussed in the second Chapter of Part I.
Humans as system users plan, act, or handle in situations where facts are often
partly missing, unknown or vague. Reasoning under uncertainty is associated
with the handling of uncertain knowledge. Probability notations and founda-
tions of the probability theory are given. One can see that different techniques
for dealing with uncertainty exist and various techniques to solve them. Several
of the most widely used approaches are sketched and classified.
Part II is about graphical models which are a special tool for handling un-
certainty in complex domains. The first Chapter of Part II, i.e. Chapter 4,
points out the strengths and weaknesses of Bayesian networks including the
network technology and probabilistic inference. Also their area of application
and methods for learning graphical models from data that aid a user in the task
to develop an appropriate model for the domain under consideration are given.
We have devised a new parameterized structure learning algorithm which is

3



1. Introduction

introduced and evaluated applying a benchmark case.
Chapter 5 is dedicated to Decision networks as extension of Bayesian networks
including decision and utility nodes based on the decision theoretic concept.
Sequential and dynamic decision making aspects point out situations in which
a decision maker has to select a sequence of action or a plan. This chapter also
describes the possibility to order consequences by preference by using utility
functions and methods for learning of preference models. Last, a method to
facilitate the decision making process by adding specified information which
enables to make a reasonable decision is presented.
Since Part III is about the transformation framework, in Chapter 6 the afore-
mentioned concept is introduced. The principle of compiling decision networks
is sketched and some optimization aspects are rendered. A strategy including
process steps of turning a decision network into a fuzzy rule base to derive the
latter directly from the formal specification of the network is presented as data-
driven solution.
In the next Part IV the transformation framework concept is utilized. In Chap-
ter 7, first, transformation results in the field of mechanical engineering are
given. A specialized product lifecycle management approach with operation
monitoring and maintenance of the product during its usage based on a condi-
tion monitoring method framework illustrates the applicability of this concept.
In general, the derived rule base application supports quality control and fault
management by quickly identifying problematic situations in order to prevent
faults from causing too much damage and to improve the product quality.
Finally, Chapter 8 concludes this thesis and points to future work, respectively.
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2. Knowledge Based Systems

Knowledge-Based Systems concentrate on system solutions that enable the us-
age and further development of knowledge based techniques and methods to
support human behaviour like decision making, learning, acting or planning.
Artificial Intelligence (AI) researchers recognized that general problem-solving
methods were insufficient to solve daily problems (i.e. medical diagnosis) ac-
curately and comprehensibly. It was necessary to make knowledge available
in specific well defined problem domains rather than general knowledge across
many domains. Knowledge-Based Systems (KBS) are appropriate to cooper-
ate with human users because quality and presentation issues are fundamental
for interacting with the system. KBS applications are broadly diversified in
many fields of applications like medical diagnosis (e.g. MYCIN1 [BS84]), finan-
cial services (e.g. AUTHORIZER’S2 as assistant system to support the credit
authorization staff determine the credit level for credit card users), car assis-
tant solutions or mechanical engineering (e.g. DELTA/CATS3 as rule-based
diagnostic system for troubleshooting electrical diesel locomotives, GENAID4

remotely monitors and diagnoses the status of large electrical generators in real
time). The construction of KBS can be subdivided in separate parts. Knowl-
edge acquisition plays a fundamental and therefore critical part. It covers the
activities of gathering, processing, and transforming knowledge into a form that
can be handled by hardware systems like personal computers. This acquisition
part is really time consuming and illustrates the bottleneck of construction and
development of KBS [GD93]. Research results show two common approaches
to resolve the acquisition problem. Acquire the knowledge directly from the
domain expert or through historical records, i.e. by rule induction. The do-
main expert has considerable expertise in a specific domain, while a knowledge
engineer is responsible for the construction of the system. KBS cover data and
logic derived from experts in a field or from various sources within a knowledge
base and applies this knowledge base to provide that kind of problem analysis
that the domain expert might provide. KBS take over the role of an expert to
arrive at a solution to a problem scenario from a specific domain. Distinguish
the fundamental concept of KBS from general search-based problems found in
the artificial intelligence researcher’s group in the early 1970s (e.g. searching
a problem space represented by a network or a tree). The first point is a sep-
aration of the knowledge from knowledgeable issues about the domain of the

1MYCIN was developed at Stanford University as medical diagnostic system which uses
expert medical knowledge to determine the infectious agent in a patient’s blood and pre-
scribes a treatment for this infection

2developed by the Inference Corporation and the American Express Company
3developed by the General Electric Company
4developed by Westinghouse Electrical Corporation with assistance from Texas Utilities Gen-

erating Company
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2. Knowledge Based Systems

problem and how to use this knowledge. Second, dismiss application domains
with a broad general knowledge by applying highly specific well defined do-
main knowledge and finally the heuristic rather than the algorithmic nature to
achieve a solution to a request.

2.1. KBS Structure

Humans try to solve problems in general by classifying the problem into partic-
ular domains (e.g. start car engine scenario with battery, starter problem as-
sumption). More specific knowledge about troubleshooting batteries or starters
deals with individual circumstances of a request (e.g. battery charged, battery
flat). A question is how to realize human problem solving with knowledge-based
systems. From the structural point of view they consist of a knowledge base con-
taining all necessary knowledge to solve a problem in a domain, an inference
engine that manipulates the knowledge represented in the knowledge base ac-
tivated when the user initiates the consultation session for the development of
a solution to the initial issue described by the information in the database (see
Figure 2.1). The inference engine responds to the question how to achieve the
solution whereas the knowledge base contains knowledge about the particular
problem describing how a car engine works or how to accomplish a diagnosis or
maintenance task. A user interface interacts and exchanges with the knowledge
base and inference engine of the KBS to produce and allocate the appropriate
information to the user.

Figure 2.1.: General structure of a knowledge-based system [GD93]

The separation effect in differentiating knowledge from it’s use allows to de-
velop different applications by having to create only a new knowledge base

8



2.2. KBS Processes

for each application. The generic reasoning technique is not modified (e.g.
troubleshooting in medical diagnosis is similar to the diagnosis of a fault in
a mechanical environment). Rule-based reasoning plays a fundamental role
in describing the reasoning process and also in understanding human thinking
and acting caused by their simplicity and similarity. Rules are an important
knowledge representation paradigm often using the IF-THEN format, where IF
stands for the premise as condition to test the trueness of a set of facts. In the
positive case the action or conclusion as THEN portion is inferred as a new set
of facts. Rules can be used to express many associations (e.g. IF ambient tem-
perature is above 36 degree THEN weather is hot) for situations and actions,
for premises and conclusions or for antecedents and their consequences. Rule-
based systems use the modus ponens rule of inference (X is true and X 7→ Y is
true, then Y is true, see for details also chapter 4) to handle and manipulate
rules in providing the logical progression from initial data to the desired con-
clusion. This approach causes new facts to be derived and leads to a solution
of the initial problem. A series of inference steps explains an inference chain
for the progression steps. The way to obtain a comprehensible solution can
differ and vary significantly. In the case of starting with all the known data and
progress to the conclusion little data is required and many possible solutions
are reachable. This data driven approach is well known as forward chaining.
The opposite case is goal driven and selects a possible conclusion first and tries
to prove its validity by looking for supporting evidence. This second inference
mechanism is typically known as backward chaining and works similar to the
depth-first search algorithm. Backward chaining decides if the existing facts
support the derivation of a value for this starting conclusion. Disadvantages
of such rule-based systems are the avoidance of infinite forward or backward
chaining, the case of handle with additional new knowledge which can cause a
contradiction and in the case of modifications to existing rules.

2.2. KBS Processes

2.2.1. Knowledge Acquisition

The knowledge acquisition process is the extraction of knowledge from sources
of expertise and its transfer to the knowledge base in a formalized structured
form. It is a difficult procedure to create the knowledge base which requires
knowledge to be captured from people’s heads [Mil07]. As possible systems for
knowledge sources come into consideration experts, reports, books, guidelines,
electronic information or end users. To overcome the knowledge acquisition
bottleneck different stages have to be fulfilled. After knowledge sources are
identified, conceptualization, formalization, implementation and test steps fol-
low to organize appropriate knowledge, to formulate rules and to validate them
accurately. Different applications were developed to support and facilitate the
knowledge acquisition process. One of the systems, KADS5 and the follower

5Knowledge Acquisition Documentation and Structuring Knowledge Analysis and Design
System
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2. Knowledge Based Systems

CommonKADS (KADS II) [Sch00], was a structured, model-based development
of KBS realized at the University of Amsterdam. It includes a methodology to
manage knowledge engineering projects, a methodology for performing knowl-
edge elicitation and an achievement perspective which includes a set of models
from different aspects of a KBS and their environment to adapt continuously
during life cycle. ACUDES6 was designed and developed to improve the qual-
ity of the services provided in intensive care units. ACUDES manages the
information regarding patient evolution in terms of the temporal sequence dis-
eases suffered. Functionalities are supported by an ontology which facilitates
knowledge acquisition while guaranteeing the semantic consistency of patient’s
evolution data [CPL+03].

Figure 2.2.: ACUDES general architecture [CPL+03]

Figure 2.2 illustrates the generic ACUDES architecture for decision support
systems in intensive care units. The knowledge acquisition tool CTKAT allows
physicians to browse, modify, and manage the temporal behaviour model which
is structured and integrated as causal network for the connection of each dis-
ease with abnormal manifestations and other diseases. In order to explain and
describe a specific disease in detail, CTKAT interacts with the ICU ontology
assuring the semantic consistency. The knowledge acquisition tool architecture
supports users and guides the model building process with a side effect in reduc-
ing expert cognitive load. The temporal and causal model of diseases is adapted
to the requirements imposed by the diagnosis agent. A fuzzy time component
is based on a three-layered architecture which allows separating the interface
for querying and updating temporal information from the layer where tempo-
ral entities and relations are managed, and from their low level representation.
The system architecture can benefit from the major features of the temporal
reasoner such as dealing with qualitative and quantitative temporal constraints
and the efficient query answering process. Guided knowledge acquisition tools

6Architecture of Intensive Care Units Decision Support
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offer more than only a knowledge editor to integrate the acquired knowledge
from an expert. Locating bugs and belief revision tasks to compare existing
knowledge with new knowledge should state more precision and exactness.

2.2.2. Knowledge Representation

Different representation techniques originate from human information process-
ing. The main reason is the representation of knowledge in a form to facili-
tate inference mechanisms. The main representation schemes are (predicate)
logic, rules, associative networks like semantic networks, frames, and object
structures. Each technique uses different types of reasoning techniques to un-
derstand, interpret, and apply its knowledge. It is also possible to differentiate
between declarative and procedural knowledge representations. In the first case
knowledge is presented and stored as facts that must be interpreted, accessible
for a variety of purposes but also inefficient for problem solving tasks. Proce-
dural knowledge gets stored as algorithms in the program code and is therefore
usable and efficient in specialized problem solving contexts.
The main representation schemes are illustrated and explained in the following:

• Logic: The role of logic based on the knowledge representation language,
the study of truth conditions, and rules of inference. A logic consists
of a formal system for describing states of affairs consisting of the syn-
tax and semantics of the language [RN03]. The syntax consisting how
to make sentences, the semantics determines the facts in the world from
which the sentences refer. Including semantics means that each sentence
makes a claim about the world. First-order logic constitutes a widespread
representation technique in terms of objects and predicates on objects de-
scribing properties of objects or relations between objects. Among objects
various relations hold (e.g. owner of, part of), partly realized as functions.
Based on an ontological commitment properties of real-world sceanrios
can be exemplified through causal (e.g. reflect the assumed direction of
causality) or diagnostic rules (to infer the presence of hidden properties).

• Rules: Rules in production systems are a simulation of the cognitive be-
haviour of human experts. A production system keeps an ongoing memory
of assertions as working memory. A production rule is a two-part struc-
ture comprising an antecedent set of conditions and a consequent set of
actions. In a recognition step we have to find the rules which are applica-
ble and satisfying the working memory. Among the rules partly conflict
sets can occur, which must be resolved before executing rules. The work-
ing memory is updated with the conclusions of executed rules which are
added as new facts.

• Semantic networks: Semantic networks are graphical notations for rep-
resenting knowledge in patterns of interconnected nodes and arcs as links
between nodes. A node stands for the representation of objects or con-
cepts, whereas links represent relations between nodes. Links are labeled
(e.g. is-a, has-a) and connected as a directed graph. In common sense

11
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a semantic network is a declarative graphic representation that can be
used either to represent knowledge or to support automated systems for
reasoning about knowledge. Brachman [Bra83] initialized definitional net-
works emphasize the subtype as is-a relation as concept type and newly
described subtype resulting in a general hierarchy with inheritance char-
acter for referring properties. The term associative networks is more pre-
cisely to express the understanding to represent physical and/or causal
associations between various concepts or objects. This representation
technique has the advantages to allow declarations of necessary and im-
portant associations explicitly and succinctly. A negative effect is the
missing interpretation standard for the knowledge expressed within net-
works.

• Objects and Frames: Grouping items is a very natural way to think
of knowledge itself not as a mere collection of sentences, but rather as
structured and organized in terms of what the knowledge is about, the
objects of the knowledge [BL04]. Conceptual objects deal to reify ab-
stractions like events or relations. Each of this objects have its own parts
constrained in different ways. The constraints between the parts might
be expressed procedurally (e.g. reserving an airline seat). Minsky7 sug-
gested the idea of using object-oriented groups of procedures to recognize
and deal with new situations. The idea adopts a rather more structured
approach in collecting together facts about particular object and event
types, and arranging the types into a large taxonomic hierarchy.

After introducing knowledge representation schemes the question of selecting
the appropriate paradigm occurs. The general differentiation comprised two
approaches. Rules have the opportunity causing inferences if the supporting
facts are present. Diagnostic, classification, and interpretative applications are
suited for this kind of paradigm. We pick rule-based techniques for characteristic
knowledge representations which are not essential to represent the structure and
relationships with concepts or objects. In contrast structure techniques have
the feasibility for representing deeper and more structurally related knowledge.
The selection decision depends on the necessity to provide inferential capability
and whether the relationship is between facts or between structured entities.

2.2.3. Knowledge Modeling

Before starting the implementation phase of the system a model must be for-
mulated and designed as simplification of the real task that bridges the gap
between knowledge acquisition and its use. In business and economics, a model
is a construct that represents business processes for process analyses by a set of
variables and a set of quantitative relationships between them. This economic
model represents a knowledge management strategy, and makes decision mak-
ing feasible based on the simplification of an abstraction from observed data.

7Marvin Minsky is an American cognitive scientist in the field of artificial intelligence and
co-founder of MIT’s AI laboratory
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Models are commonly used in scenarios where the expert is highly involved,
e.g. knowledge elicitation, validation or cross-validation with other experts or
knowledge publications. Pohlmann [Poh82] has introduced modeling steps for
technical objects including abstraction (e.g. 3D model), formalization by using
a model scheme (e.g. volumes, surfaces) and representation of the information
model as internal representation. Particular the type of abstraction and the
choice of a model scheme affects the modeling process. Kinds of geometric
modeling for three dimensional models are such as of trees or boundary repre-
sentations. The essential input to conceptual modeling is a knowledge intense
task separated in the stages knowledge identification (e.g. identify information
sources and key decision points), knowledge specification (e.g. choose task tem-
plate, construct domain schema), and knowledge refinement (e.g. validate the
model). Well-established knowledge modeling techniques are the concept lad-
der (shows classes of concepts and their sub-types), composition ladder (shows
the way a knowledge object is composed of its constituent parts), decision lad-
der (shows the alternative courses of action for a particular decision), attribute
ladder (shows attributes and values), and process ladder (shows processes con-
sisting of the parts tasks and activities useful for representing process knowl-
edge) [Reh06]. A concept of a map-based knowledge modeling approach is the
PreSERVe method refined in work at the NASA Glenn research center8, con-
taining an effective elicitation method and a useful representation scheme based
upon concept maps. A concept map is a type of diagram that shows knowl-
edge objects as nodes and the relationships between them as links or labeled
arrows. PreSERVe describes an iterative method of eliciting expert knowledge
based on the steps preparation, scoping, elicitation, rendering and verification
as a principle way to combine various knowledge elicitation strategies. Scoping
is necessary based on the potentially changing scope and direction, elicitation
can be categorized broadly into those that are direct or indirect, and rendering
separates resource rendering to create or edit elements that will be included in
the knowledge model from model rendering focuses on the assembly of these
elements themselves. Centralized knowledge modeling facilitates to bridge the
gap between knowledge acquisition and knowledge use based on simplification
and enabling reasoning within an idealized framework.

2.2.4. Dialogue System

A dialogue system is responsible for the communication with the user being
able to respond properly to a variety of requests. Such a system must facili-
tate the dialogue ability between the users and the system for different types
of interaction like text, speech, graphics, haptics, gestures and other modes. It
utilizes a variety of knowledge sources and models (e.g. knowledge of the dia-
logue, the task at hand, and the domain). The architecture contains different
processing modules necessary to understand various involved reasoning mecha-
nisms, for instance interpretation or dialogue management. The separation of
different processing modules facilitates the portability of the dialogue system

8J.W. Coffey, Institutional memory preservation at the NASA Glenn Research Center, 1999
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to new domains. Requests can be difficult to handle in the case of vagueness
or ambiguity or requests which are related to the structures and properties of
the application and also requests outside the scope of the application. It is a
challenge to be able to access, gather, and integrate knowledge from various
knowledge sources and application systems. From the users’ point of view it
is fundamental to use dialogue systems which are able to cognize the precise
meaning of a request and to generate an appropriate answer. Dialogue systems
have been optimized based on years of development and experience and numer-
ous proven installations in the fields of airline and railway information, weather
forecasts, ticket booking, help desk, multimedia services or routing systems.
An occurring question in each dialogue system solution is how different user
tasks can be performed. It is also important to handle factual information acts
beside dialogue control acts. The former is used for requests where the response
includes domain and task specific information or pointers to other information
sources.

Figure 2.3.: MALIN dialogue system architecture [FEJ00]

To assemble dialogue systems a modular architecture is preferred includ-
ing processing modules for interpretation, dialogue management, and domain
management. Processing modules utilize various knowledge sources, such as
grammar, dialogue model, domain model, and task model. The dialogue man-
agement is primarily responsible to control the flow of the dialogue by deciding
how the system should respond to a user request. In the case of mistakes or
missing information, clarification requests are formulated and posed to the sys-
tem user. A general description is indispensable to decide which action has to
be taken in a specific situation. A system task model deals with the information
required for complex requests where the response includes information on what
can be done with the system. The domain manager has an aligning function and
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is responsible for retrieving and coordinating knowledge from different domain
knowledge sources and application systems. The dialogue manager interacts
with the domain manager in delivering a request and expecting an answer from
the background system.
A representative for this kind of dialogue systems is MALIN9 (see Figure 2.3),
an application for time-table information for local bus traffic in a swedish town
[FEJ00]. MALIN uses a combination approach where the dialogue manager
is the central controller of the interaction and the domain knowledge manager
acts and is based on an agent-related architecture. A dialogue history used
for dialogue control, disambiguation of context dependent utterances, and con-
text sensitive interpretation is maintained by the dialogue manager. Domain
knowledge sources and application systems are implemented as (domain) agents,
which provide different services to retrieve and reason about some information
given some parameters. Agent communication and interaction is realized by
passing messages. A domain knowledge miner is functional applying a spatial
reasoner for the sub areas of the swedish town and also a temporal reasoner.
A timetable agent retrieves trip information from the current internet based
timetables.

2.3. KBS Review

To summarize, a knowledge-based system is capable of cooperating with hu-
man users to support decision making, learning, planning or acting. A KBS
reflects the problem solving abilities of a human expert within a highly specific
domain, separates the domain knowledge from how it is used, and comprises a
heuristic rather than algorithmic way of proceeding. With this in mind, a KBS
solves problems where algorithmic solutions either do not exist or are barely
adequate to implement. An advantage is the ability to reproduce the knowledge
and skills possessed by experts which allow wide distribution of expertise with
access at any time. The separation of domain knowledge from the reasoning
mechanism simplifies the modification of the knowledge base. The system user
gets uniform answers to requests capable of solving problems whereby incom-
plete or vague data exist. Tracking the knowledge used to generate a solution
assist the user by clarifying and justifying the results which serve as expla-
nation. Disadvantages of knowledge-based systems are their possible lack of
correctness and their limitation to a specific domain of expertise. They always
try to deduce a solution, regardless of whether or not the problem is within the
boundaries of expertise. Experts make mistakes which may be integrated in the
KBS. Proving errors may thereafter occasion consequential costs. As a result
of knowledge limited to specific domains, misleading or incorrect answers may
be generated. A human user knows his limitation of knowledge and is able to
qualify answers or does not attempt to solve problems related to other domains.
However, a KBS always endeavors to infer a solution regardless of the field of
expertise. A complex point of view of the KBS comes from the perspective

9MALIN: Multi-modal Application of LINLIN is a refinement of LINLIN to handle also
multi-modal interaction and more advanced application
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of the system developer. Developing a KBS includes the inference engine as
well as the development shell. Involved in this development effort are decisions
concerning how general the tool should be for the system user. A knowledge
gap is the missing personalization alignment. For instance, system users have
different degrees of prior domain knowledge, preferences or a partial order of
the outcomes which should be pre-processed by the system. It would be inter-
esting for research purposes to consider the problem of KBS decision parameter
determination. For this purpose, methods based on experts and methods based
on data are considerable. In the first case, one alternative is that the expert
directly supplies the required decision parameters knowing the system user’s
point of view or supplies relevant information that is later used for decision pa-
rameter determination. Another interesting approach is based on data, where
decision parameters are learned from examples almost automatically without
conducting an expert interview. One alternative consists in having preferences
or a partial order of the examples. Another alternative consists in having ex-
amples where each example is defined in terms of the inputs of the KBS as well
as the intended output for this inputs.
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3. Uncertainty Management

3.1. Introduction

Humans plan, act, or reason in situations where facts are often unknown or
uncertain [VH06]. They do not have access to the complete environment to
evaluate each scenario. Conditions and facts are unknown, incomplete or only
crudely summarized. Supposedly, for example, a situation in which a car driver
wants to drive a colleague to the next airport to catch a flight and consider-
ing the time leaving from home before the flight. In the case of planning 90
minutes leaving time before the estimated time of departure and a distance of
10 kilometers to the airport and an average rate of 60 kilometers/hour the car
driver can only act under uncertainty. He is not able to follow if he gets into
an accident, if a flat tire occurs or if he is caught up in a traffic jam during
the driving time. But the handling of uncertain knowledge is calculated and
well considered to avoid unproductive waiting time at the airport or speeding
tickets along the driving way. Another situation is the codification of knowl-
edge available in rules such as “dogs bark“ or “much alcohol suggests long-term
liver diseases“. These rules include many exceptions which are not common to
enumerate or ambiguously created or difficult to fulfill in real life situations.
Reasoning in realistic domains requires some kind of simplification or adaption
to deal with exceptions or to increase the degree of belief in decision making
situations [Nea90]. The car driver can calculate a longer leaving time but also
a longer waiting time at the airport, it depends on the importance of differ-
ent goals (e.g. relaxed journey, natural environment) the car driver wants to
achieve. Reasoning under uncertainty is interchangeably associated with the
handling of uncertain knowledge. The probability theory has an outstand-
ing position and serves as basis for human’s behaviour in decision situations
where they reason under uncertainty. Before introducing probability founda-
tions and formulas have a closer look at the nature of uncertain knowledge. In
many application fields like medicine uncertainty is all-embracing involved. If
a doctor tries to build a diagnosis (e.g. cardiac trouble) he might infer from a
symptom (e.g. pain in the left arm). But not all patients with a specific symp-
tom have cardiac problems (e.g. bronchia). The enumeration of exceptions is
the OR combination of several other problems with the same symptom as a
long list of possible causes. In the case of specifying a causal (rule) dependence
not all arm pains cause cardiac diseases. It is also possible that both disease
states are unconnected. In practice, it is impossible to list the complete set
of antecedents or consequents needed to ensure an exceptionless handling and
the complete medical domain is too capacious to process all these sets. For a
particular patient it would be necessary to make tests and analysis to avoid
the handling of uncertain knowledge. A decision maker bypasses the enumer-
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ation of exceptions by summarizing them in assigning each proposition to a
numerical measure of uncertainty. Connect these measures according to a uni-
form syntactic principle based on truth values combined in logic. Truth values
characterize formulas, uncertainty measures characterize the facts not visible or
not covered in the formulas. Logical visible interactions enable to calculate the
impact of each new fact in stages, propagate the impact of new facts on a set of
sentences. Justifying this advancement under uncertainty includes restrictive
assumptions of independence. But it is impossible to calculate impacts based
on the complete set of previous observations to the complete set of sentences
in a global step. Uncertainty solutions must solve occurring questions in how
to represent uncertain data, how to combine pieces of uncertain data and how
to draw inference with uncertain data. Artificial Intelligence researchers tackle
these problems in dealing with uncertainty using different techniques, mainly
separated in quantitative and symbolic approaches. Quantitative approaches us-
ing certainty factors [Voo96], fuzzy logic, belief functions, probabilities [Pea88]
and possibilities [DLP94]. Symbolic approaches dealing for instance with cir-
cumscriptions or default logic. In real-world decision scenarios, the best choice
is providing a degree of belief based on the probability theory assigning numer-
ical degrees in the interval [0,1]. A probability with a value of 0.7 represents a
70% chance that a specific symptom causes a disease, it summarized all cases in
which the factors needed a specific disease for a detailed symptom cause. The
remaining 30% stands for all other possible causes. Probability values corre-
spond with a degree of belief that facts do or do not hold. The probability of a
statement depends on the percepts a human has received to date. In uncertain
reasoning, probability statements must indicate the evidence with respect to
which the probability is being assigned. If a human receives new or updates
percepts, its probability assessments are updated to represent the new evidence.
Based on probability theory a foundation for non-monotonic reasoning is given,
whereas probabilistic networks allow the computation of quantified uncertainty.
Statements in the form IF X then Y are quantifiable using probabilities.
Fuzzy logic (FL) is dealing with degrees of truth representing vagueness. Ex-
press and specify how well an object satisfies a vague description based on the
fuzzy set theory. In the case of the statement “Henry is young“ it is difficult
to separate the true and false cases. Is it true, when Henry is 32 years old?
Uncertainty about the world state or missing information to conclude is not
the problem, the age of the evaluated person is well-known. In this case the
meaning of the term young is realized as fuzzy predicate with a degree of true
as number in [0,1]. In practice, FL is a truth-functional system in determining
its truth value as a function of the truth values of its components.
Another interesting question is how to act in “I don’t know?“ situations like
flipping a coin. In the fair case the probability for head (tail) is exactly 0.5. If
the coin is manipulated and we have no additional information, then 0.5 is only
a reasonable probability [RN03]. Probability theory can’t differentiate both
cases with the same probability value.
The Dempster-Shafer theory of evidence [Sha76] was developed as mathemat-
ical theory of evidence using interval-valued degrees of belief to represent the
decision maker’s knowledge of the probability of a proposition. Rather than

18



3.2. Basic Definitions

computing directly the probability of a proposition, it calculates the probabil-
ity that the evidence supports the proposition measuring as belief function. In
general, the belief value and the negation does not necessarily summarize to one
as in the probability theory. If no information is accessible or justifiable, both
values can also be zero (Bel(head)=0 and Bel(¬head)=0) and express the unde-
cidable situation. If we have tested with 90 per cent certainty that the coin is
fair, the believe value changes from Bel(head)=0.5 and Bel(¬head)=0.5 to 0.45
(0.9 · 0.5). Dempster-Shafer detects the gap not accounted by the evidence, but
for a decision maker there is no adequate definition to support his decision pro-
cess. The resulting probability interval can be a good aid in discussing about
the necessity to acquire more evidence.

3.2. Basic Definitions

This chapter presents basic probability notations and foundations of probabil-
ity theory which are essential for representing and reasoning with uncertain
knowledge. The meaning of probability based on the syntax and semantics
of probability theory provides everything to build an uncertain reasoning sys-
tem. The probability theory constitutes the formal language of uncertainty and
randomness. It also provides the basis for statistical inference. The basic prob-
lem studied in statistics is in inverse to the question considered in probability.
Given the outcomes, what can be said about the process that generated the
data? The axioms of probability including set theory, probability space and
conditional probability were introduced in detail as fundamentals to capture
uncertain knowledge in an efficient and natural way. Conditional independent
relationships among variables can simplify the calculation and computation of
query results used in a data structure to represent the dependence between
variables and to provide a concise specification. The following basic definitions
and notations of probability theory do not claim completeness. The interested
reader can engross the thoughts and achieve comprehensive background in-
formation of probability and random variables in Papoulis & Pillai [PP02],
Grimmett & Stirzaker [GS04], or [Ros00], where the presented material is
gathered from.

3.2.1. Set Theory

Many everyday statements take the form “the probability of A is p“, where A
is some event like “tomorrow is rainy weather“ and p is a number describing
quantity. The occurrence or non-occurrence of A depends upon the chain (e.g.
experiment) of involved circumstances. A set in general is a collection of well-
defined and well-distinguished objects considered as a single whole. The objects
are also called elements (e.g. car, pear, ballpen) and the set is also said to be the
aggregate of these elements. In a set the order of its elements has no significance
and multiplicity is generally also ignored. We think of the set Ω as a universal
set if every set we consider is a subset of Ω. The set of all possible outcomes
of an experiment is called the sample space denoted as Ω. A set containing no
elements is called an empty set, denoted by ∅, while a set whose elements are
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themselves sets is called a class. To indicate that ω is an element of the set Ω
(also called sample outcome) write ω ∈ Ω and ω /∈ Ω otherwise.

Example 3.1. A coin is tossed with two possible outcomes head (H) and tail
(T), so that Ω = {H,T}. The possible occurrences of the following events
would be interesting, where each example can be specified as a subset A of
the sample space Ω: outcome is a head (A = {H}), outcome is either head or
tail (A = {H} ∪ {T}), outcome is both head and tail (A = {H} ∩ {T}), and
outcome is not head (A = {H}c).

If A and B are sets and every element of A is likewise an element of B, then
A is called a subset of B, denoted by A ⊆ B. An axiom of set theory called
extensionality says that two sets are equal if and only if they contain exactly
the same elements. Then both A ⊆ B and B ⊆ A and we write A = B.

Definition 3.1. Let Ω be a universal set.

1. The union or sum of the sets Ai; i = 1, . . . , n is the set

A1 ∪A2 ∪ · · · ∪An =
n⋃
i=1

Ai = {ω ∈ Ω | ω ∈ Ai for at least one i}.

Similarly, the union of the infinite sequence of sets Ai; i = 1, . . . is the
set

A1 ∪A2 ∪ · · · =
∞⋃
i=1

Ai = {ω ∈ Ω | ω ∈ Ai for at least one i}.

2. The intersection of the sets Ai; i = 1, . . . , n is the set

A1 ∩A2 ∩ · · · ∩An =
n⋂
i=1

Ai = {ω ∈ Ω | ω ∈ Ai for every i}.

Similarly, the intersection of the infinite sequence of sets Ai; i = 1, . . . is
the set

A1 ∩A2 ∩ · · · =
∞⋂
i=1

Ai = {ω ∈ Ω | ω ∈ Ai for every i}.

Notice that two sets are disjoint if and only if A ∩B = ∅.

3. The difference A \B of two sets A and B is defined by

A \B = {ω ∈ Ω | ω ∈ A, ω /∈ B}.

Notice the definition of the complement

Ac = {ω ∈ Ω | ω /∈ A}

as special case of the difference.
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4. The symmetric difference A ∆ B of two sets A and B is defined by

A ∆ B = {ω ∈ Ω | (ω ∈ A) XOR (ω ∈ B), ω /∈ B}.

Union, intersection, difference, and symmetric difference are referred to as
set operations.

Definition 3.2. The collection A1, A2, . . . of sets is mutually (or pairwise) dis-
joint if Ai ∩ Aj = ∅ for every i 6= j. Then

⋃n
i=1Ai sometimes is written as∑n

i=1Ai, and similarly for infinite sums.

Lemma 3.1. For any sets A,B,C ∈ Ω the following identities hold:

1. Associative laws

A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C

2. Commutative laws

A ∪B = B ∪A, A ∩B = B ∩A

3. Distributive Laws

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

4. Idempotent laws and complement laws

A ∪A = A, A ∩A = A

A ∪Ac = Ω, A ∩Ac = ∅

5. Identity laws and domination laws

A ∪ ∅ = A, A ∩ Ω = A

A ∪ Ω = Ω, A ∩ ∅ = ∅

6. De Morgan’s laws

(A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc

Proof. We only proof 1 here. The other identities are derived similarly.

A ∪ (B ∪ C) = {ω ∈ Ω | ω ∈ A ∨ (ω ∈ B ∪ C)}
= {ω ∈ Ω | ω ∈ A ∨ (ω ∈ B ∨ ω ∈ C)}
= {ω ∈ Ω | (ω ∈ A ∨ ω ∈ B) ∨ ω ∈ C}
= {ω ∈ Ω | (ω ∈ A ∪B) ∨ ω ∈ C)}
= (A ∪B) ∪ C
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3.2.2. σ-Algebra and Measure Space

When thinking of a non-deterministic experiment it is intuitive to think of it
as an experiment with an uncertain outcome. The set Ω of all conceivable out-
comes associated with such an experiment is referred to as the sample space.
Often it is not appropriate to consider the universal set Ω with all possible
subsets on the whole. Instead, it is sufficient to think only of the collection of
sets as a subcollection A of the set of all subsets of Ω. This subcollection should
have certain properties in accordance with the earlier remarks.

Definition 3.3. Let Ω be a universal set. An algebra A is a nonempty collection
of subsets of Ω, satisfying the axioms:

(A1) A ∈ A ⇒ Ac ∈ A

(A2) A1, A2 ∈ A ⇒ A1 ∪A2 ∈ A

Example 3.2. Let Ω = {a, b, c, d}. Then A1 = {∅, {a, b, c}, {d},Ω} is an algebra
while A2 = {∅, {a}, {b, c},Ω} is not.

The sets of an algebra A are called events. Mutually disjoint sets in A are
called mutually exclusive events. Thus an algebra A can be thought of as a
collection of events associated with an experiment whose sample space is Ω. It
follows that algebras are closed under unions, intersections, and differences.

Lemma 3.2. Let A be an algebra and A1, A2, . . . , An ∈ A. Then the following
holds:

1. ∅,Ω ∈ A

2. A1 ∩A2 ∈ A

3. A1 \A2 ∈ A

4.
n⋃
i=1

Ai ∈ A,
n⋂
i=1

Ai ∈ A

Proof.

1. Because A is not empty, an A ∈ A exists, with A ⊂ Ω. It then follows
from (A1) that Ac ∈ A, from (A2) that A ∪ Ac = Ω ∈ A, and last from
(A1) that Ωc = ∅ ∈ A.

2. A1 ∩A2 = (Ac1 ∪Ac2)c ∈ A

3. A1 \A2 = A1 ∩Ac2 = (Ac1 ∪A2)c ∈ A

4. By induction.
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To investigate limits it is necessary that the system of sets A is not only closed
under unions and intersections of finite many sets but also under unions and
intersections of countably infinite many sets. This can be reached by adding
the following axiom.

Definition 3.4. A σ-algebra is an algebra satisfying the additional axiom

(A3) A1, A2, . . . ∈ A ⇒
∞⋃
i=1

Ai ∈ A.

Definition 3.5. The pair or tuple (Ω,A) is called a measurable space, if A is a
σ-algebra or σ-field relative to Ω. The elements of A are called measurable sets.

The smallest σ-algebra associated with Ω is the collection A = {∅,Ω}. If A
is any subset of Ω then A = {∅, A,Ac,Ω} is a σ-algebra. For every Ω the power
set P is always also a σ-algebra. If Ω is finite or countably infinite, A = P can
be chosen. If Ω is uncountably (e.g. Ω = R or Ω = [0, 1]), a smaller σ-algebra
has to be chosen.

To sum it up, with any experiment a pair is associated (Ω,A), where Ω is the
set of all possible outcomes or elementary events and A is a σ-algebra of subsets
of Ω which contains all the events in whose occurrences we are interested in.

3.2.3. Probability

Repeating an experiment with a large number N of times and keeping the initial
conditions as equal as possible, and also suppose that A is some event which
may or may not occur on each repetition. Most scientific experiments show
that the proportion of times in which A occurs settles down to some value as N
becomes larger and larger. Consider the value of the ratio N(A)/N with N(A)
for the number of occurrences of A in N trials as probability that A occurs on
any particular trial.

Definition 3.6 (Kolmogorov Axioms of Probability). Let (Ω,A) be a measurable
space. A probability function (or probability measure) on Ω is a function P :
A → [0, 1] such that

(P1) P is non-negative: P (A) ≥ 0 for each A ∈ A

(P2) P is normed: P (Ω) = 1

(P3) P is σ-additive: P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) for pairwise disjoint A1, A2, . . . ∈ A

P (A) is termed probability of the event A ∈ A. Let (Ω,A) be a measurable
space and P be a measure on A. Then the triple (Ω,A, P ) is called a measure
space. If P (Ω) = 1, then it is called a probability space. Note that in the case
of countable Ω, assume A = 2Ω without loss of generality, and the probability
of an event A is the sum of the probabilities of its elements:

P (A) =
∑
ω∈A

P ({ω})
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A probability P (A) can be interpreted in the two main ways as frequencies
and degrees of belief. Frequency interpretation estimates P (A) as long as run
proportion of times that A is true in repetitions. The degree of belief P (A) is
the strength of belief of an individuum in the truth of A. In economic sense,
it is the price that a person is willing to pay for a bet in which this person
wins 1 monetary unit in case A is true and zero otherwise [Sor00]. In statistical
inference, the two interpretations lead to different attitudes, the Frequentist and
the Bayesianist.

Theorem 3.1. Let (Ω,A, P ) be a probability space and the event A ∈ A, then
the following properties are verified:

1. P (∅) = 0

2. P (A) ≤ 1

3. P (Ac) = 1− P (A)

Proof.

1. Since Ω and ∅ are pairwise disjoint, by axiom (P3) then P (Ω) = P (Ω∪∅) =
P (Ω) + P (∅). Also, P (Ω) = 1 by (P1), hence 1 = 1 + P (∅), so that
P (∅) = 0.

2. 1 = P (Ω) = P (A ∪ Ac) = P (A) + P (Ac) by (P2) and (P3). Since P (A)
and P (Ac) are non-negative by P(1), then P (A) ≤ 1.

3. This follows immediately from 1 = P (Ω) = P (A) + P (Ac).

Theorem 3.2. Let (Ω,A, P ) be a probability space and A,B ∈ A be two events,
then

1. A ⊆ B ⇒ P (A) ≤ P (B)

2. P (A ∪B) = P (A) + P (B)− P (A ∩B)

3. P (A ∪B) ≤ P (A) + P (B)

Proof.

1. P (B) = P (A∪ (B \A)) = P (A) +P (B \A). Since P (B \A) ≥ 0 by (P1),
then P (B) ≥ P (A).

2. Since P (A \B) = P (A)− P (B) for A,B ∈ A with A ⊃ B and

A ∪B = (A \ (A ∩B)) ∪ (A ∩B) ∪ (B \ (A ∩B))

it holds

P (A ∪B) = P (A \ (A ∩B)) + P (A ∩B) + P (B \ (A ∩B))
= P (A)− P (A ∩B) + P (A ∩B) + P (B)− P (A ∩B)
= P (A) + P (B)− P (A ∩B).
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3. This follows immediately from 2.

With Theorem 3.2 immediately further properties of probability measures fol-
low:

1. P is finitely additive:

P (
n⋃
i=1

Ai) =
n∑
i=1

P (Ai) (3.1)

for every finite sequence {Ai}ni=1 of mutually disjoint events in A.

2. Subadditivity of P:

P (
n⋃
i=1

Ai) ≤
n∑
i=1

P (Ai) (3.2)

for every collection {Ai} of events in A.

As a generalization of the second part of Theorem 3.2, also Poincaré-
Sylvester’s inclusion-exclusion formula arises.

Corollary 3.1. For every n = 1, 2, . . . and every sequence A1, . . . , An ∈ A holds

P
( n⋃
i=1

Ai
)

=
n∑
i=1

(−1)i−1
∑

1≤k1<...<ki≤n
P (Ak1 ∩ . . . ∩Aki

) . (3.3)

Proof. By induction.
Furthermore, it is possible to show with Theorem 3.2 that probability mea-

sures are continuous with respect to the monotone convergence of sets.

Corollary 3.2. Let A1, A2, . . . ∈ A. Then it holds

P
( ∞⋃
i=1

Ai
)

= lim
i→∞

P (Ai), if A1 ⊂ A2 ⊂ . . . , (3.4)

and

P
( ∞⋂
i=1

Ai
)

= lim
i→∞

P (Ai), if A1 ⊃ A2 ⊃ . . . . (3.5)

Proof. Omitted.
The subadditivity of probability measures is not only valid for two events as

discussed in part 3 of Theorem 3.2 or for finite many events as shown in (3.2).
It is also valid for infinite collections.

Theorem 3.3. Let (Ω,A, P ) be a probability space and {Ai}∞i=1 be a sequence
of events from A. Then it holds

P (
∞⋃
i=1

Ai) ≤
∞∑
i=1

P (Ai). (3.6)
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Proof. Instead of the sequence {Ai}∞i=1, define the sequence {A′i}∞i=1 as

A′1 = A1, A′i = Ai \
i−1⋃
k=1

Ak.

Now A′i ∩ A′j = ∅ for i < j so {A′i}∞i=1 is a sequence of disjoint sets. Since⋃∞
i=1A

′
i =

⋃∞
i=1Ai, and since A′i ⊂ Ai, it holds

P (
∞⋃
i=1

Ai) = P (
∞⋃
i=1

A′i) =
∞∑
i=1

P (A′i) ≤
∞∑
i=1

P (Ai),

and the claim follows.

3.2.4. Conditional Probability

Statements about changes take the form “if B occurs, then the probability of
A is p“, where A and B are events. Considering an experiment repeated N
times, and on each occasion we observe whether or not the two events A and
B occur. Suppose only an interest in cases with outcomes for which B occurs
and all other experiments are disregarded. Given that an event B occurs in the
case that A occurs if and only if A ∩B occurs.

Definition 3.7 (Conditional Probability). For two events A,B ⊆ Ω such that
P (B) > 0, the conditional probability of A given B is defined by

P (A | B) =
P (A ∩B)
P (B)

.

Example 3.3. Two fair dice are thrown. Given that the first shows 3, what is
the probability that the total exceeds 6? The answer is 1/2, since the second
shows 4, 5, or 6 (A ∩B = {(3, 4), (3, 5), (3, 6)}).

Example 3.4. A family has two children. What is the probability that both
are boys, given that at least one is a boy? Represent the sample space as Ω =
{GG,GB,BG,BB} with P (BB) = 1/4. Applying the definition of conditional
probability, it follows P (BB | one boy at least) = P (BB) / P (GB ∪ BG ∪
BB) = 1/3.

Theorem 3.4 (Total Probability). Let A1, ..., Ak be a partition of Ω, i.e., A1 ∪
... ∪ Ak = Ω and Ai ∩ Aj = ∅ for 1 ≤ i 6= j ≤ k. Then for any arbitrary event
B holds

P (B) =
k∑
i=1

P (B | Ai)P (Ai). (3.7)

Proof. Obvious B = BΩ = B(A1 ∪ ...∪Ak) = BA1 ∪ ...∪BAk. But the events
BAi and BAj are mutually exclusive because the events Ai and Aj are as well
mutually exclusive. Hence P (B) = P (BA1) + ... + P (BAk) and (3.7) follows
based on the conditional probability.
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Since P (BAi) = P (Ai | B)P (B) conclude that

P (Ai | B) = P (B | Ai)
P (Ai)
P (B)

.

and obtain with (3.7) the Bayes theorem.

Theorem 3.5 (Bayes’ Theorem or Bayes’ Rule). Let A1, ..., Ak be a partition of Ω
such that P (Ai) > 0, i = 1, ..., k. Furthermore let B ⊆ Ω such that P (B) > 0.
Then

P (Ai | B) =
P (B | Ai)P (Ai)

P (B)
=

P (B | Ai)P (Ai)∑k
j=1 P (B | Aj)P (Aj)

(3.8)

for all i = 1, ..., k. The terms a priori and a posteriori are often used for the
probabilities P (Ai) and P (Ai | B).

Proof. Definition 3.7 can be rewritten as P (A ∩ B) = P (A | B)P (B) which is
also called product rule. The conjunction can also be expressed as P (B ∩A) =
P (B | A)P (A). Equating the two right-hand sides and dividing by P (B) we
get (3.8).

The Bayes’ Rule is a suitable means by updating uncertain belief, represented
in terms of a probability measure P (·) in the view of new information. Given
this information, which is represented by the event B, the measure P (·) is
replaced by the measure PB(· | B). Bayesian inference provides the basis of
probabilistic expert systems in the field of artificial intelligence.

Example 3.5. The Bayes’ rule is very useful in practical fields like medical diag-
nostics because there are many cases where we have good probability estimates
to compute the missing conditional probability. A doctor knows for instance
that the disease meningitis causes the patient to have a stiff neck in 50% of the
time [RN03]. The doctor also knows the prior probability of a patient having
meningitis is 1/50000, and the prior probability of any patient having a stiff
neck is 1/20. Calculating with this required three terms the missing probability
of meningitis given a stiff neck.

P (M | S) =
P (S |M)P (M)

P (S)
=

0.5× 1/50000
1/20

= 0.0002. (3.9)

The doctor expects only one in 5000 patients with a stiff neck having meningitis,
even though a stiff neck is strongly indicated by meningitis in 50% of the cases.
We come in a tenuous situation with crop up epidemic of meningitis. This has
a direct influence to the unconditional probability of P (M). Fortunately, the
causal information P (S |M) is unaffected by the epidemic, it compiles the way
how meningitis works. This kind of causal knowledge provides the robustness
needed to make probabilistic systems feasible in real world scenarios.

3.2.5. Independence

The occurrence of some event B changes the probability that another event A
occurs in general by replacing P (A) by P (A | B). If the probability remains
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unchanged (P (A | B) = P (A), then we call A and B independent.

Definition 3.8 (Independent Events). Two events A,B ⊆ Ω are called indepen-
dent if

P (A | B) =
P (A ∩B)
P (B)

.

More generally, a set of events {Ai} : i ∈ I} is called independent if

P (
⋂
i∈J

Ai) =
∏
i∈J

P (Ai).

for all finite subsets J of I.

For a given probability measure, the independence of events can be checked
by verifying the definition in (3.8). Independence is often assumed in order to
construct a probability measure. For example, in order to construct a proba-
bility measure for the experiment “tossing two dice“, the outcome of the two
dice is usually considered as independent.
Conditional independence is used in the multi-valued case. To say that A and B
are independent with a given C can be expressed as P (A | B,C) = P (A | C).
The corresponding simplification of Bayes’ rule for multiple events is P (C |
A,B) = αP (C)P (A | C)P (B | C), where α is a normalized constant such that
the entries in P (C | A,B) sum to one.

3.2.6. Random Variables

The quantities governed by randomness are corresponding with functions on
the probability space. In practice, it is often interesting to achieve some conse-
quence of an experiment’s random outcome. For instance, a fair coin is tossed
twice. Many gamblers are more concerned with their losses than with the
games which give rise to them. Such consequences, when really valued, may be
thought of as functions which map Ω into the real line R, and these functions
are called random variables. The value taken by a random variable is subject
to chance, and the associated likelihoods are described by a function called the
distribution function.

Definition 3.9. Let (Ω,A, P ) be a probability space. A random variable is a
mapping X : Ω→ R such that

{ω | ω ∈ Ω, X(ω) ≤ x} ∈ A, ∀x ∈ R . (3.10)

The regularity condition (3.10) is called measurability of the mapping X with
respect to the σ-algebra A. Such a function is also said to be A-measurable.
Often we are not only interested in the probability that the values X(ω) of
a random variable X do not exceed a given threshold x, i.e. take values in
the interval B = (−∞, x]. Rather we are interested in the probability that X
takes values in a more general subset B ⊂ R, where B might be the union of
disjoint intervals. Therefore not only in the sample space, but also in the event
space a system of subsets is considered that is closed under the set operations
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∪,∩, and \. Usually the Borel σ-algebra B(R) is considered, that is defined as
the minimal σ-algebra of subsets of R containing all open sets (a, b), with −∞ <
a < b < ∞. Hence, B(R) = σ ({(a, b), −∞ < a < b <∞}) is a generating
system. In particular, B(R) also contains all half-open resp. closed intervals,
since e.g. (a, b] =

⋂∞
n=1(a, b+ n−1) ∈ B(R) holds.

Thus, we can give an equivalent to the regularity condition (3.10) as follows:

Theorem 3.6. Let (Ω,A, P ) be a probability space. A mapping X : Ω→ R is a
random variable if

{ω | ω ∈ Ω, X(ω) ∈ B} ∈ A, ∀B ∈ B(R) (3.11)

where B is the Borel σ-algebra over R.

Proof. Omitted.

Example 3.6. When rolling two dice, the sample space is given by Ω = {ω =
(ω1;ω2), ωi ∈ {1, . . . , 6}}. If we are interested in the sum of the two dice, then
ω → X(ω) = ω1+ω2. The event that we get a sum of 4, for example, is given by
A = {ω | X(ω) = 4} = {(1, 3), (2, 2), (3, 1)}, or in general A = {ω | X(ω) = k}
with k ∈ {2, . . . , 12}. Questionable is the probability P (A), thus it is necessary
that A ∈ A. It has to hold {ω | ω ∈ Ω, X(ω) = k} ∈ A for every k = 2, . . . , 12.
In this example this is equivalent to {ω | ω ∈ Ω, X(ω) ≤ x} ∈ A for every x ∈ R.

Note that a random variable X induces a probability measure PX(·) on the
measurable space, defined by PX(B) = P (B(−1)), for all B ∈ B, where B(−1)

= {ω | X(ω) ∈ B}.
A random variable can be considered as connection between sample spaces
and data. The data that can be observed corresponds to realizations of a
random variable X, the probability law governing the data generating process
is characterized by an underlying probability space. In practical situations, the
underlying space is often not mentioned explicitly, rather we work with the
random variable and its distribution directly.

3.2.7. Cumulative Distribution Function

Theorem 3.6 leads to the definition of the distribution and the cumulative dis-
tribution function of a random variable X.

Definition 3.10. Let (Ω,A, P ) be a probability space and X : Ω → R an
arbitarily random variable. The distribution of X is the set function PX :
B(R)→ [0, 1] with

PX(B) = P ({ω | ω ∈ Ω, X(ω) ∈ B}) , ∀B ∈ B(R). (3.12)

The set function defined in (3.12) is a probability measure over the measure
space (R,B(R)), since PX is σ-additive and normed due to PX(R) = P (Ω) = 1.
Usually, (3.12) is written in its abbreviated form,

P (X ∈ B) = P ({ω | ω ∈ Ω, X(ω) ∈ B}) , ∀B ∈ B(R)
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and especially

P (X ≤ x) = P ({ω | ω ∈ Ω, X(ω) ≤ x}) , ∀x ∈ R.

With the definition of the distribution (3.12), the cumulative distribution func-
tion of a random variable X can be defined.

Definition 3.11. The function FX : R → [0, 1] with FX(x) = P (X ≤ x) is
called cumulative distribution function (cdf) of the random variable X.

Next, some properties of cdfs are discussed.

Theorem 3.7. Let X : Ω → R be an arbitrary random variable and FX : R →
[0, 1] its cdf. Then it holds

1. Asymptotic behavior at infinity:

FX(−∞) := lim
x→−∞

FX(x) = 0, FX(∞) := lim
x→∞

FX(x) = 1, (3.13)

2. Monotony:
FX(x) ≤ FX(x+ h), ∀x ∈ R and h ≥ 0, (3.14)

3. Continuity from the right: FX(x) is continuous from the right, i.e. for
every sequence {hn} with hn ≥ 0 and lim

n→∞
hn = 0 it holds

lim
n→∞

FX(x+ hn) = FX(x), ∀x ∈ R . (3.15)

Proof.

1. Only the first part of (3.13) is shown. Since FX is monotone we can
w.l.o.g. assume that x converges monotone against −∞. With Corollary
3.2 then follows

lim
x→−∞

FX(x) = lim
x→−∞

PX((−∞, x]) = PX
(⋂
x≤0

(−∞, x]
)

= PX(∅) = 0.

The proof of the second part of (3.13) is analogical.

2. Since (−∞, x] ⊂ (−∞, x + h], it follows from the first part of Theorem
3.2 that

FX(x) = PX((−∞, x]) ≤ PX((−∞, x+ h]) = FX(x+ h).

3. Analogue to the proof of the first part, from Corollary 3.2 follows that

lim
n→∞

FX(x+ hn) = lim
n→∞

PX((−∞, x+ hn])

= PX
(⋂
n≥1

(−∞, x+ hn]
)

= PX((−∞, x])
= FX(x).
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With the distribution function FX also the following probabilities can be de-
scribed

P (a ≤ X ≤ b), P (a < X ≤ b), P (a < X < b), P (a ≤ X < b),

because for example

P (a ≤ X ≤ b) = P ({X ≤ b} \ {X < a})
= P (X ≤ b)− P (X < a)
= FX(b)− lim

h→0
FX(a− h).

However, in general FX(a) = lim
h→0

FX(a− h) does not hold, but

FX(a) = lim
h→0

FX(a− h) + P (X = a). (3.16)

In Theorem 3.7 it is shown that distribution functions are monotone and
bounded. Hence, they can have for every ε > 0 only countably many jump
discontinuities with jumps higher then ε; and thus only countably many jump
discontinuities can exist.

Theorem 3.8. Let X : Ω → R be an arbitrarily random variable. Then the
distribution PX of X is uniquely determined by the cdf FX of X.

Proof. Omitted.
The cdf of a random variable completely determines the distribution of that
random variable. More specifically, if two random variables X and Y have
the same cdf, then PX(A) = PY (A) for all measurable events A. A mapping
FX : R → [0, 1] is a cdf for some probability P (·) if and only if F satisfies the
following three properties:

• F is non-decreasing, i.e., F (x1) ≤ F (x2) for x1, x2,

• F is normalized, i.e., limx→−∞ = 0 and limx→+∞ = 1,

• F is right continuous, i.e., limy↘x F (y) = F (x) for all x.

3.2.8. Discrete and Continuous Variables

Much of study in random variables is devoted to distribution functions. The
general theory of distribution functions and their applications is quite difficult
and abstract relying on a treatment of the construction of the Lebesque integral.
Consider certain subclasses of random variables in depth, here the collection of
discrete and continuous random variables.

Definition 3.12. A random variable X is discrete if it takes countably many
values x1, x2, .... In this case, the (probability) mass function for X is defined
by

fX(x) = P ({x}) = P (X = x), (3.17)
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and the cdf is simply given by

FX(x) = P (X ≤ x) =
∑
i:xi≤x

fX(xi). (3.18)

Lemma 3.3. The (probability) mass function f : R→ [0, 1] satisfies

1. the set of x such that f(x) 6= 0 is countable,

2.
∑

i f(xi) = 1, where x1, x2, ... are the values of x such that f(x) 6= 0.

Proof. Omitted.

Example 3.7. A coin is tossed n times, and head turns up each time with
probability p = 1 − q. Then Ω = {H,T}n. The total number X of heads
takes values in the set {0, 1, 2, ..., n} and is a discrete random variable. Its
(probability) mass function satisfies f(x) = 0 if x 6∈ {0, 1, 2, ..., n}. Let 0 ≤ x ≤
n, and consider f(x). Exactly

(
n
x

)
points in Ω give a total of k heads, each of

these points occurs with probability pkqn−k, and so

f(x) =
(
n

x

)
px(1− p)n−x. (3.19)

The random variable X is said to have the binomial distribution with parame-
ters n and p.

Definition 3.13. The random variable X : Ω → R (resp. its distribution) is
called absolutely continuous, if the cdf FX of X has the following integral rep-
resentation

FX(x) =

x∫
−∞

fX(y)dy, ∀x ∈ R (3.20)

where fX : R → [0,∞) is a non-negative (Lebesgue-integrable) function, re-
ferred to as probability density function (pdf) or density of X.

The integral in (3.20) is usually regarded as Lebesgue integral.
The cdf FX (and thus also the distribution PX) of an absolutely continuous

random variable X is in the following sense completely determined by a pdf
fX .

Theorem 3.9.

1. The random variable X : Ω→ R is absolutely continuous, if the distribu-
tion PX of X can be written in the following form:

PX(B) =
∫
B

fX(y) dy, ∀B ∈ B(R) (3.21)
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2. Let X,Y : Ω→ R be absolutely continuous random variables. Then PX =
PY , if and only if

fX(x) = fY (x) (3.22)

for almost all x ∈ R, i.e. (3.22) holds for all x ∈ R \ B, where the set of
exceptions B ⊂ R has Lebesgue measure zero.

Proof. Omitted.
Often the density fX is an (at least piecewise) absolutely continuous function.

If X is absolutely continuous, then the cdf FX has no jumps. With (3.16) follows
especially

P (X = x) = 0, ∀x ∈ R. (3.23)

To describe an absolutely continuous random variable X it is sufficient to regard
its pdf fX , since fX uniquely determines the cdf FX and with this also the
distribution PX of X. Some examples of pdfs are given in the next definition.

Definition 3.14. Let X be a continuous random variable. It is said to possess

(a) uniform distribution, U(a, b), with support (a, b) if the pdf is

fX(x; a, b) =

{
1
b−a if a < x < b

0, otherwise
∀x ∈ R, (3.24)

(b) normal (gaussian) distribution, N (µ, σ2), with parameters µ ∈ R and
σ > 0 if the pdf is

fX(x;µ, σ) =
1√
2π σ

exp
(
−(x− µ)2

2σ2

)
, ∀x ∈ R. (3.25)

Many interesting probabilistic statements about a pair X,Y of variables con-
cern the way X and Y vary together as functions on the same domain Ω.

Definition 3.15. The joint distribution function of X and Y is the function
F : R2 → [0, 1] given by

FX,Y (x, y) = P (X ≤ x, Y ≤ y). (3.26)

Their joint mass function f : R2 → [0, 1] is given by

fX,Y (x, y) = P (X = x, Y = y). (3.27)

If X and Y are continuous, it is essential to use another density function
called probability density function for the random variables X and Y .

Definition 3.16. The random variables X and Y are jointly continuous with
joint (probability) density function f : R2 → [0,∞) if

F (x, y) =

y∫
v=−∞

x∫
u=−∞

f(u, v) du dv, ∀x ∈ R. (3.28)
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Definition 3.17. If (X,Y ) have a joint distribution with a mass function fX,Y ,
then the marginal mass function for X is defined by

fX(x) = P (X = x) =
∑
y

P (X = x, Y = y) =
∑
y

fX,Y (x, y) (3.29)

and the marginal mass function for Y by

fY (x) = P (Y = y) =
∑
x

P (X = x, Y = y) =
∑
x

fX,Y (x, y). (3.30)

For continuous random variables, the marginal density is

fX(x) =
∫
f(x, y) dy and fY (y) =

∫
f(x, y) dx (3.31)

Definition 3.18. Two random variables X and Y are independent if, for every
A and B,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B). (3.32)

Random variables with joint pdf fX,Y are independent if and only if

fX,Y = fX(x)fY (y) ∀x, y. (3.33)

IfX1, ..., Xn are independent random variables and each has the same marginal
distribution with cdf F , we say that X1, ..., Xn are independent and identically
distributed: X1, ..., Xn ∼ F .
X1, ..., Xn are called a random sample of size n from F . It holds that

P (X1 ∈ A1, ..., Xn ∈ An) =
n∏
i=1

P (Xi ∈ Ai)

and

f(x1, ..., xn) =
n∏
i=1

fXi(xi).

3.3. Dempster-Shafer Theory of Evidence

The Dempster-Shafer theory is a mathematical theory of evidence based on be-
lief functions and plausible reasoning, which is deployed to combine pieces of
information to calculate the probability of an event. In a first step, Dempster
generalized a method for computing probabilities for statistical parameters from
observations by a rule of combination explained later in detail. Shafer’s most in-
fluential contributions were simplifications as mathematical theory of evidence
[Sha76] based on non-Bayesian weights of evidence. Dempster-Shafer theory is
well-known as mass theory to model imperfect data. Smets [Sme96] introduces
the perception of imperfection, if imprecision, uncertainty and inconsistency
are existent. To consider the different meanings of imprecision and uncertainty
regard the following situation. The information “Peter has at least one or two
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children“ contains that the number of children is imprecise but certain. In the
case “Peter has two children, but its not sure“ the number of children is precise
but uncertain. Inconsistency means conflicting or contradictory information.
Several mathematical models have been proposed to model degrees of belief. If
there exists a probability measure with known values, the Bayesian approach
finds favour. If there exists a probability measure but with some unknown
values, the usage of belief models based on other premises and belief func-
tions is necessary. If the existence of a probability measure is not known, use
the transferable belief model that sets out to represent someone’s beliefs. In
such representation, it uses a belief function where bel(A) is true. In probabil-
ity theory, the component consists of the assessment of a probability density
p on the elements of Ω in a way that p : Ω → [0, 1] with

∑
ω∈Ω p(ω) = 1.

Probability-based evidential reasoning represent the certainty in an attribute
value as a point probability. In Dempster Shafer (DS), the relevant characteris-
tics of the world are represented as a finite set of mutually exclusive statements
or propositions called the frame of discernment (Θ). In other words, each piece
of evidence leads to the allocation of parts of some initial amount of belief to
subsets of the universe of discourse. If all these parts were allocated only to the
singletons of Θ, the resulting model will correspond directly to the Bayesian
approach. In general, parts may be allocated to subsets (X ⊆ Θ) representing
that part of our belief that supports some subset of the frame of discernment.
Because of the lack of information, it does not support any more specific sub-
sets. DS assigns a belief mass to each subset of the power set called basic belief
assignment. A basic belief assignment m on the universe Θ is a function

m : 2Θ → [0, 1]

with
m(∅) = 0 and

∑
X⊆Θ

m(X) = 1.

In contrast to the probability theory with point probabilities P (X) ∈ [0, 1] DS
allocates interval valued degrees [Bel(X), P l(X)] ⊆ [0, 1]. The degree of belief
Bel(X) given to the set X of Θ is defined as the sum of all masses that support
the set X

Bel(X) =
∑
Y⊆X

m(Y ).

The degree of plausibility Pl(X) quantifies the total amount of belief that might
support X:

Pl(X) = 1−Bel(¬X) = 1−
∑
Y⊆¬X

m(Y ) =
∑

X∩Y 6=∅

m(Y ).

In any modeling of uncertain situations, it is necessary that a method is in-
troduced and provided for making decisions used as a decision support tool.
In the case where we must bet on the elements of Ω, build on Ω a probability
distribution as Bet P derived from the belief function that describes the creedal
state. For all elements x ∈ Ω follows Bet P (x) =

∑
x∈A⊆Ωm(A)|A|, where |A|
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is the number of elements of Ω in A.
Sugeno has introduced a confidence measure [Sug77] and proposed a set of
axioms to interpret a degree of confidence in decision situations. A function
g : 2Ω → [0, 1] is a sugeno measure, if the conditions (1.)-(3.) hold:

1. boundary: g(∅) = 0 and g(Ω) = 1

2. monotony: X,Y ∈ 2Θ and X ⊆ Y ⇒ g(X) ≤ g(Y )

3. continuity: if Xi ∈ 2Θ either X1 ⊆ X2 ⊆ ... or X1 ⊇ X2 ⊇ ... then
limi→∞ g(Ai) = g(limi→∞ Ai)

Interpret A as degree of confidence in a decision scenario to follow A as correct
answer for considered questions. The boundary settings cover the complete ig-
norance (g = 0) and certainty cases (g = 1).
In DS, a belief or plausibility measure becomes a probability measure P , when
each set A ∈ 2Θ with focal elements m(A) 6= 0 is represented as singletons. If
this case occurs, it follows P (A) = Bel(A) = Pl(A), which follows from the
Bel and Pl equations and we obtain the additivity property of probability mea-
sures. Determine any probability measure P on a finite set X by a probability
distribution function p : X → [0, 1] via the formula P (A) =

∑
x∈A p(x). From

the point of DS theory[KF88], the function p is equivalent to the function m
restricted to singletons.

Example 3.8. Suppose a doctor who suspects pneumonia in a specific patient
in the medical practice. The doctor takes an accurate medical history and per-
forms a physical examination. Bacterial pneumonias often break out suddenly
by creating a cough that produces mucous, fever, and pain along the chest wall.
Some of the bacteria that can cause pneumonia are legionella (L), pneumo-
coccus (P), mycoplasma (M), chlamydia (C), and klebsiella (K). The frame of
discernment consists of Θ = {P,L,K,C,M}. The basic probability assignment
m as degree of evidential support is given as m({P}) = 0.3, m({L}) = 0.2,
m({P,L}) = 0.4, m({P,K,C}) = 0.1, and m = 0 in all other cases. The calcu-
lation for the belief measure of the pair {P,L} follows in applying the Bel(P,L)
equation.

Bel({P,L}) =
∑

B⊆(P,L)

m(B) =

m({P}) +m({L}) +m({P,L}) = 0.3 + 0.4 + 0.2 = 0.9

The quantification of the total amount of belief that might support the pair
{P,L} results as follows:

Pl({P,L}) =
∑

B∩(P,L) 6=∅

m(B) =

m({P}) +m({L}) +m({P,L}) +m({P,K,C}) =
0.3 + 0.2 + 0.4 + 0.1 = 1.0.
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Dempster’s rule allows the combination of different basic probability assign-
ments by aggregation of two different bodies of evidence (F1,m1) and (F2,m2)
on the same reference set. F denotes the set of all focal elements of m within
the body of evidence. Dempster’s rule of combination provides a function for
combining evidential information provided by different sources. The addressed
problem concerns how to combine two independent sets of mass assignments.
The information provided by two evidential sources, represented as basic prob-
ability assignments m1 and m2 over a common universe Θ may be combined
to a joint basic probability assignment bpa over the same universe denoted by
m1 ⊗m2.
The product of two bpa’s m1,m2 : 2Θ → [0, 1] over the same universe Θ is
defined as follows:

(m1 ⊗m2)(X) :
∑

Y ∩Z=X

m1(Y )m2(Z)

It is clear to verify that this scheme yields a basic probability assignment due
to the fact that it may assign a non-zero weight to the empty set. Therefore,
the weight of the empty set is explicitly set to zero, and the rest of the weights
is normalized by a factor of K−1, where

K =
∑

Y ∩Z=∅

m1(Y )m2(Z)

K is a measure of the amount of conflict between the two mass sets as (m1⊗m2).
The normalization factor 1−K has the effect of completely ignoring conflict and
attributing any mass associated with conflict to the null set. The combination

Figure 3.1.: Measure of the amount of conflict between the two mass sets m1

and m2

m of the bpa’s m1 and m2 is defined as

m(X) =
(m1 ⊗m2)(X)

1− (m1 ⊗m2)(∅)
∀X 6= ∅,m(∅) = 0.
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The appliance of Dempster’s rule is problematical in the case of high conflict
measure between m1 and m2, and also caused by the implicit bpa’s indepen-
dence based on the rule definition.

Example 3.9. Suppose now two doctors who suspect pneumonia in a specific
patient in the medical practice. Include the bacteria that can cause pneumonia
as in the previous example: legionella (L), pneumococcus (P), mycoplasma
(M), chlamydia (C), and klebsiella (K). The frame of discernment consists of
Θ = {P,L,K,C,M}. The basic probability assignments m1 and m2 are given
as m1({P}) = 0.1, m1({L}) = 0.2, m1({P,L}) = 0.4, m1({P,K,C}) = 0.1,
m2({L}) = 0.5, m2({P,C}) = 0.3, m2({P,L,K}) = 0.2, m2({P,L,K,C}) =
0.1, and m1,m2 = 0 in all other cases. The calculation of the measure of the
amount of conflict between m1 and m2 delivers

∑
Y ∩Z=∅m1(Y )m2(Z) :

m1({P})m2({L}) +m1({L})m2({P,C}) +m1({P,K,C})m2({L}) = 0.24.

The following intersections of m1 and m2 are non-empty subsets of Θ:
{P}, {L}, {P,L}, {P,C}, {P,K}, {P,K,C}. Exemplify the determination of
Dempster’s rule of combination for m12({L}) :

m12(L) =
(m1 ⊗m2)(L)

1− (m1 ⊗m2)(∅)
=

(m1 ⊗m2)(L)
0.76

.

(m1 ⊗m2)(L) = m1({L})m2({L}) +m1({L})m2({P,L,K})+
m1({L})m2({P,L,K,C}) +m1({P,L})m2({L}) = 0.36.

Substitute the numerator and calculate the final bpa as m12(L) = 0.4737.

Condensed DS is an extension of the Bayesian theory. It allows a decision
maker to propagate probabilities through logical links and it combines items
of evidence by using Dempster’s rule as generalization of the Bayes’ rule. In
practice, it allows to derive beliefs for a question of interest from probabilities
for a related demand. In the classical decision theory under uncertainty, an
agent has only access to the set S of possible environment states (in the risk
case represented as probability distribution π : S → [0, 1]). Typify the agent’s
behaviour through the belief function Bel specifies as Bel(S) = 1 and Bel(X) =
0 for all X ⊂ S as completely vacuous belief function. Modeling the knowledge
of an agent as belief function Bel : 2S → [0, 1] in place of π : S → [0, 1] omit
the distinction between risk and uncertainty decision scenarios based on the
generalization character of the evidence theory.

3.4. Possibility Theory

An agent deals with imprecise knowledge and uncertainty, which concerns the
state of knowledge of an agent about the relation between the world and the
statement about the world. In a certain case, the agent has full knowledge of
the true value of the available data. Uncertainty in a problem scenario emerges
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whenever information pertaining to the situation is deficient in some depen-
dency. Uncertainty is partial knowledge and results in ignorance or not know-
ing situations, where it may be incomplete, imprecise, contradictory, vague,
unreliable, or deficient in some other form and way. These various informa-
tion inadequacies result in different types of uncertainties an agent has to deal
with. When an appropriate amount of uncertainty is allowed in dealing with a
specific request, the associated complexity may often be substantially reduced
while the reliability of the solution obtained is increased. It is an important
aspect to have the capability to quantify the uncertainty involved in a problem-
solving situation. This requires to measure in an adequate justified way the
amount of uncertainty involved in each possible characterization of uncertainty
within a mathematical theory. Given a specific measurement unit, the value of
uncertainty in each situation should be unique. L.A. Zadeh [Zad78] has intro-
duced in connection with the fuzzy set theory the possibility theory to establish
a reasoning to be carried out on imprecise or vague knowledge, and making it
possible to deal with uncertainties on this knowledge. Only possible situations
can be probable. The possibility theory concerns the ability of the situation to
occur. In other words, it is necessary to develop a method to formalize non-
probabilistic uncertainties of situations. This provides a means of assessing to
what extent the occurrence of a situation is possible and to what extent a deci-
sion maker is certain regarding its occurrence without knowing the evaluation
of the probability of this occurrence. This situation occurs, if no similar or
comparable situation is available to refer. The possibility theory can be applied
in situations to concern the ability of a proposition to be true. For instance,
the question “Will Mary be at the railway station on Monday 25th February?“
comprises additional subsequent questions to be taken into account, e.g., what
Mary did every previous Monday. The uncertainty within this question is de-
scribed by the degree of possibility and also the degree of necessity as dual or
impossibility of the contrary question. The statement “Mary’s height is larger
than 1.65 meters“ implies that any height above 1.65 meters is possible, all
other cases are impossible. The possibility value equal to 1 implies, that an
event is completely possible, and impossible if it is equal to zero.
Possibility allows the quantification of uncertainty through a possibility mea-
sure Π determined by a possibility distribution function

π : Ω→ [0, 1]

with a possibility measure

Π : 2Ω → [0, 1], π(x) = Π({X}) ∀x ∈ Ω.

The possibility measure Π is defined on the universe of discourse Ω with Π(A)
for A ⊆ Ω being the degree of possibility that A is true. An important axiom
corresponds to the additivity axiom of probability concerning the possibility
Π(A ∪ B) of the disjunction of two propositions A and B as the maximum of
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the possibility of the individual propositions Π(A) and Π(B)

Π(A ∪B) = max(Π(A),Π(B)).

It follows with Π(Ω) = 1 and Π(∅) = 0 that the possibility measure on finite
set is determined as

Π(A) = maxx∈A π(x) ∀A ∈ Ω.

The necessity of a proposition is the negation of the possibility of its nega-
tion case. Define the necessity measure Nec(A) to a given proposition A by
Nec(A) = 1 − Π(¬A). In that case, express the intersection of Nec(A) and
Nec(B) as

Nec(A ∩B) = min(Nec(A), Nec(B)).

It follows for the possibility intersection operator and necessity union operator

Π(A ∩B) ≤ min(Π(A),Π(B))

and
Nec(A ∪B) ≥ max(Nec(A), Nec(B)).

Possibility and necessity are dual, so that the occurrence of an event is certain,
if and only if the occurrence of its complement is impossible. Π(A) measures
the degree to which the event A is likely to happen, whereas N(A) indicates
the degree of certainty which can be assigned to this occurrence.

Example 3.10. Considering the distinction of possibility measure versus prob-
ability measure the number of eggs X that Mary eats at breakfast and is going
to order for tomorrow morning (see Figure 3.2). Consider the case where Mary

Figure 3.2.: Possibility and probability distributions associated with X

eats 3 eggs. The possibility value is equal to one, the probability is quite small,
e.g., 0.1. A high degree of possibility does not imply a high degree of prob-
ability, nor in the opposite case. If an event is impossible, it is bound to be
improbable. This heuristic connection may be called consistency principle.

From the epistemic point of view, possibility is related to our state of knowl-
edge and must not deal with actual abilities independently of our knowledge
about them. Epistemic possibility says something about a statement and our
knowledge about the actual world. A statement is epistemically possible if it
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may be true for all we know and impossible, if it can’t be true given what we
know. In the exact same manner a statement is epistemically necessary if it is
certain given what we know.
Summarized possibility and probability are prescriptions to represent uncer-
tainties. Possibility measures reflect vague, but coherent knowledge, whereas
probability measures summarize more precise and varying knowledge. The re-
lation between probability and possibility can be described in the subjective
context. Subjective properties of uncertainty are linked to the individual opin-
ion about the true value of the data as derived from the available information.
Possibility and necessity are the epistemic properties that reflect the individual
opinion about the truth statement. Only possible statements can be believed.

3.5. Fuzzy Logic

Fuzzy logic is derived from fuzzy set theory dealing with approximate reasoning
for the quantification of imprecision. It provides an approximate and effective
means of describing the behaviour of linguistic declarations, complex systems
and applications, that are incompletely defined, not easy described precisely, or
not easy analyzed mathematically. Fuzzy logic simplifies the way human beings
reason in supporting graded statements rather than ones that are strictly true
or false and therefore less error-prone to noisy information sources. Fuzzy logic
techniques have been successfully applied in a number of application fields like
medical diagnosis, controller systems or decision making systems. Fuzzy logic
controllers are capable of making intelligent control decisions in often volatile
and rapidly changing problem environments.
The following example characterizes the need for a modified understanding in
defining a set as collection of objects. If the age of a man is close to 25 and we
declare this man as being young, the question is, it is more or less correct for a
man with the age of 22 and another man with the age of 28. The decidability
of being young is decreasing with this kind of information pieces. Applying the
classical set theory causes a sharp age value for describing the exact meaning
of the linguistic expression young. The assignment of fuzzy logic allows dealing
with degrees of truth represented as membership in vaguely defined sets. L.A.
Zadeh has introduced 1965[Zad65] the idea of non-crisp sets as fuzzy sets. Set
membership values range between zero and one as real number related to the
use of vague predicates like “James is young“ or “Mary is tall“. For instance,
the predicate tall is vague, imprecise and not clear defined. But humans have an
idea what the expression means and agree that there occurs no sharp cutoff be-
tween tall and not tall without using a folding rule. For a fuzzy set tall we may
define a degree of membership 0.8, if Mary stands 1.72 meters high. Belonging
to a set admits here a degree that is not necessarily just one or zero as in the
classical set theory case. Dealing with linguistic forms and declarations, it is
often impossible to say that some elements of the universe of discourse belong
to the set or not. In probability, define a scalar variable for the example tall and
also describe a conditional distribution for the tall level. Partial membership
in a set can express as degree of membership µA(x) of the element x to a fuzzy

41



3. Uncertainty Management

set A. Zadeh replaces the range in the classical indicator function (IA(x) with
1, if x ∈ A and 0, if x 6∈ A) from {0, 1} to the real-valued interval [0, 1] as
generalization. In the classical case, a subset A of a set X can be defined as
mapping from the elements of X to the elements of {0, 1} to represent truth or
falsity of a statement. A fuzzy set extends the binary membership to a spec-
trum in the interval of [0, 1]. All elements of the universal set X are members of
a given set A and for each element x ∈ X 0 ≤ µA ≤ 1 hold. The mathematical
fuzzy set theory generalizes the concept of sets and can be used wherever sets
can be used, and therefore is not restricted to any particular form of imperfect
data. One domain of application is the modeling of imprecision and vagueness.
Fuzziness creates an order among the possible values in which the actual value is
known to belong. New concepts like fuzzy probability (likely), fuzzy quantifiers
(most), fuzzy predicated (small), or the impact of linguistic hedges (very) are
explained in detail in [And96]. The fuzzy logic approach is able to distinguish
between ambiguity of the knowledge and uncertainty in generating errors and
lack of complete knowledge. Compared to probabilistic reasoning the fuzzy set
approach concerns the belonging of a well defined individual to an imprecisely
defined set. Probability deals with uncertainty, probabilistic reasoning offers
a mechanism to evaluate the outcome of a system concerned by probabilistic
uncertainty and using conditioning to update the probability values and per-
form probabilistic inference. The advantages of fuzzy logic come into operation,
when the evidence is uncertain and it is unusual for human reasoning to follow
the probability axioms. A tolerance to imprecision is given, however, fuzzy logic
is not useful for the development of systems where we have not enough a priori
knowledge about the system. Next outline the relation between fuzzy sets and
possibility theory. Zadeh has introduced both concepts and proposed an idea
how to interpret a membership function in some cases as a possibility distri-
bution. The possibility theory has been widely used in real-world scenarios of
modeling, control and decision making for which the measurements don’t allow
precise structured information or in other cases the information is obtained from
a human expert. Possibility allows therefore both, the modeling of imprecision
and qualitative characterization of uncertainty. It is essential to differentiate
between imprecise and uncertain information. Imprecision belongs to the con-
text of the considered information and uncertainty belongs to the truth level
at which it corresponds to reality. The representation of imprecise information
can be combined with methods of qualitative description of imprecision, when
possibility distributions are built on fuzzy sets [DP93]. For instance, µyoung(y)
quantifies the membership of a person with age y to the set of young men and
πyoung(y) quantifies the possibility that the age of a person belongs to the set of
young men. Explain this relationship as equality µyoung(y) = πyoung(y) for all
y ∈ Y , where Y is the set of age. Possibility distribution functions can there-
fore be interpreted as a membership function of the fuzzy set. The degree of
truth of a proposition “Peter is young“ knowing that Peter’s age is y is equated
numerically to the grade of membership of a person with age y to the set of
young men and therefore to the possibility that the age of a young person is y.

The strengths of fuzzy sets are the plausibility of fuzzy sets, their easy in-
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terpretability and plausibility and ability for approximate reasoning. We know
from human reasoning, that it is approximate in most cases and involves dif-
ferent uncertainties. As an example remember the vague predicate tall. Given
that Mary is tall and Evelyn is a little bit shorter than Mary leads to the con-
clusion that Evelyn is tall as well. For the development of a production machine
dealing with such propositions we need a set of rules and an inference engine for
the interpretation of the rules. The inference engine generates new inferences
as reasoning mechanism. Different forms of fuzzy reasoning with single and
multiple antecedent clauses will be discussed in Chapter 6.

3.6. Uncertainty Management Review

Uncertainty management plays a critical role in the development of knowledge-
based systems. Human tasks require intelligent behaviour with some degree of
uncertainty. A knowledge-based system exhibits such intelligent behaviour by
modeling the empirical associations and heuristic relationships that (domain)
experts have built over time. Types of uncertainty that can occur may be
caused by different problems with the data, which might be missing, imprecise,
inconsistent or unavailable. Uncertainty may also be caused by the represented
knowledge since it might not be appropriate in all situations. This chapter
has presented different numerically oriented methods which have been devel-
oped to deal with uncertainty. They answer different questions such as how
to represent, how to combine pieces or how to draw inference using uncertain
data. The probability theory is the most mature of all uncertainty reasoning
methods based on the mathematical and theoretical foundation. The probabil-
ity approach requires a significant amount of probability data to construct a
knowledge base. Certainty factor values relying on values obtained from domain
experts are able to compensate for this disadvantage. Dempster-Shafer theory
of evidence is able to represent a decision maker’s certainty about certainty.
In other words, the commitment to a belief in some fact does not imply that
the remaining belief holds for the fact’s complement. A decision maker has the
advantage to express and compute the degree of ignorance concerning to some
fact. The major difficulty with Dempster-Shafer is its complexity requiring an
exhaustive enumeration of all possible subsets in the frame of discernment in
nearly all cases. Additionally, it offers no guidance on how the mass probability
assignments should be calculated or how a decision maker takes a decision from
the result. Fuzzy methods have been applied across a range of domains includ-
ing medical diagnosis, process control or fault detection. Fuzzy logic is able to
deal with numerous vague and imprecise concepts and terms which are used,
but the development of the membership functions is nontrivial and needs expert
guidance. The selected method which is able to mimic the heuristic knowledge
of a problem domain will likely depend on the nature and complexity of the
problem domain, the nature of that uncertainty, and the amount of data avail-
able to support the uncertainty probabilities. In the case of probability theory it
is desirable to install a graphical component to facilitate causal relationship un-
derstanding. Competing goals exist when building the graphical structure. On
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the one hand, we would like to minimize the number of parameters to make the
probability elicitation task easier and to simplify belief updating. Otherwise,
we would like to maximize the feasibility of the model, which sometimes re-
quires more nodes, arcs, and states. A tradeoff must be made between building
a more accurate graphical model and the cost of additional modeling.
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4. Bayesian Networks

Bayesian networks have become increasingly popular for reasoning under uncer-
tainty practiced in many fields of application such as diagnosis, prediction, de-
cision making, or data mining [HE04]. Many real-life situations can be modeled
as a domain of entities represented as random variables in a network structure
[FH00]. A Bayesian network is a proper graphical representation of dependence
and independence relations between such random variables. This chapter in-
troduces the key concepts of (conditional) dependence and independence in a
network structure, the different varieties of Bayesian networks, methods for
making inference, algorithms for learning network structures from data, aggre-
gation methods to gather and fuse models from different and distributed sources
and a hierarchical specification of such networks allowing a knowledge engineer
to work on different levels of abstraction based on the underlying object-oriented
programming paradigm. We have conceptualized and developed a new struc-
ture learning algorithm named LAGD, which offers a new class of parameterized
algorithms. In the meanwhile, the algorithmic implementation is integrated in
the well-known WEKA environment. The LAGD derivation and concept de-
scription is also given in this chapter.

4.1. Introduction

Knowledge representation applications need a powerful instrument as formal
graphical language requiring reasoning under uncertainty [LGS07]. Bayesian
networks (BN) are graphical models to represent knowledge under conditions of
uncertainty, where nodes represent discrete or continuous variables and arcs rep-
resent direct connections between them. BNs model the quantitative strength
of the connections between variables allowing probabilistic beliefs about them
to be updated automatically as new information becomes available. Contend-
ing views about how to understand probability derive from the physical and
Bayesian interpretation. Physical probability is referred to some definite phys-
ical process, whereas the traditional alternative is to think of probabilities as
reporting our subjective degrees of belief. Thomas Bayes [Bay58] has expressed
this view as more general account of probability in that we have subjective belief
in a huge variety of propositions. The Bayes’ Theorem ( see equation 3.8) serves
as basis of the probability calculus, which is applied in BNs signifying graphical
structures that allow to represent uncertain domains and to reason about them.
BNs have been used successfully in many fields like logistic applications ([Hol03]
[Hol04a]), expert systems [Kle92] or classification systems as powerful tools for
the knowledge representation and inference under uncertainty. A reason for this
broad field of applications is the notion of modularity, where a complex system
is built by combining simpler parts. Probability theory ensures that the system
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as a whole is consistent, and provides ways to interface models to data. The
graph theoretic side provides an intuitively appealing interface by which knowl-
edge engineers can model highly interacting sets of variables. The following
Figure 4.1 motivates the use of probabilistic graphical models in which nodes
represent random variables, and arcs represent conditional dependence assump-
tions. Consider a BN for diagnosing faults in a car [PW02] like VW Golf IV.

Figure 4.1.: Diagnosing faults in a car

Figure 4.1 represents the fact that the age of the battery, which is represented
by the node Battery old, has a probabilistic influence on how good the battery
status is. This in turn has an influence on whether the battery is operational
(node Battery ok), which is also affected by whether the alternator is working
(node Alternator ok) and, as a result, whether the battery is recharged (node
Battery charging) when the Golf IV moves. The operational state of the battery
(node Battery ok) affects whether the radio and lights will work (nodes Radio
ok and Lights ok). It is expected in this BN that the observations that can be
carried out are those relating to the lights, the radio and possibly the age of
the battery. The result of these observations can be propagated through the
network to establish the probability of the alternator being in the status okay
and the battery being good. These latter variables are the ones a car mechanic
employee is interested in since they relate to fixing the car.
BNs and the use of probabilistic models is based on directed acyclic graphs
(DAG) with a probability table associated with each node. The nodes in a
Bayesian network represent propositional variables in a domain, the edges be-
tween the nodes represent the dependency relationship among the variables.
Assuming discrete variables, the strength of the relationship between variables
is quantified by conditional probability distributions associated with the nodes.
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Each node has a conditional probability table (CPT) P (X|X1, . . . , Xn) attached
that quantifies the effects that the parents X1, . . . , Xn have on the node. We
can say that the conditional probabilities encode the strength of dependencies
among the variables. For each variable a conditional probability distribution is
defined that specifies the probability of node X being in a certain state given
the values of the parents of X.
A decision maker makes decisions by combining his own knowledge, experience
and intuition with that available from other sources. Given a learned network
structure like BNs the decision maker can derive additional information by
applying an inference algorithm. Use the learned BN to calculate new prob-
abilities when particular information is achieved. For instance let A have n
states with P (A) = (x1, ..., xn) and assume that we get the information e that
A can only be in state i or j. This statement expresses that all states except
for i and j are impossible, so next illustrate the probability distribution as
P (A, e) = (0, ..., 0, xi, 0, ..., 0, xj , 0, ..., 0) [Jen01]. Note that P (e) is the sum of
P (a, e). Assume a joint probability table P (U) where e is the preceding finding
(n-dimensional table of zeros and ones). Using the chain rule for a BN [RN03]
over the universe U and let ei be findings express the following

P (U, e) =
∏
A∈U

P (A|pa(A)) ·
∑
i

ei

and for all A ∈ U we have

P (A, e) =

∑
U\{A} P (U, e)

P (e)
.

A knowledge engineer must undertake different steps when building a BN. First
have a closer look at the following medical diagnosis problem [KN04].

Example 4.1. Lung cancer: A forty-some years old man visits his doctor
suffering from shortness of breath called dyspnoea. The doctor knows that
different diseases such as tuberculosis, bronchitis, and lung cancer are possible
causes. The doctor also knows that other relevant information should receive
attention, whether or not the patient is a smoker and what sort of air pollution
he has been exposed to. A positive X-ray can indicate either tuberculosis or
lung cancer. The question is the calculation of the probability of the lung cancer
disease.

A knowledge engineer has to identify the variables of interest for the building
of the structure of the appropriate BN. This involves answering the question to
identify the nodes to represent and what values they can take. Consider only
nodes that take discrete values, which should be both mutually exclusive and
exhaustive, which means that the variable must take on exactly one of these
values at a time. Common types of discrete nodes include boolean nodes (e.g.
represent proposition has cancer by taking binary values), ordered nodes (e.g.
represent patient’s pollution exposure with the values low, medium, high), and
integer values (e.g. represent age of a patient) in an interval from 1 to 100. It
is important to choose values that represent the domain efficiently with enough

49



4. Bayesian Networks

level of detail.

Table 4.1.: Preliminary choices of nodes and values for lung cancer

Node name Type Values

Pollution Binary low,high
Smoker Boolean T,F
Cancer Boolean T,F
Dyspnoea Boolean T,F
X-ray Binary pos,neg

The structure of the network should capture qualitative relationships be-
tween the variables. Two nodes are connected directly if one affects or causes
the other, with the edge indicating the direction of effect. In the introduced
lung cancer example we might ask what factors affect the patient’s chance of
having cancer? If pollution and smoking are the answer, then two edges from
Pollution and Smoker to Cancer should be added to the network structure (see
Figure 4.2). If the topology of a BN is specified, it is essential to quantify the re-
lationships between the connected nodes by specifying a conditional probability
distribution for each node. For each node look at all the possible combinations
of values of those parent nodes. Each of such combination is an instantiation
of the parent set. For each distinct instantiation of parent node values specify
the probability that the child will take each of its values. Consider the Cancer

Figure 4.2.: Typical Bayesian network for the lung cancer scenario

node in Figure 4.2. Its parent nodes Pollution and Smoking take the possible
joint values {< H,T >,< H,F >,< L, T >,< L, F >}. The CPT specifies the
probability of cancer for each of these cases to be < 0.05, 0.02, 0.03, 0.001 >.
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These probabilities must sum to the value one over all possible states of the
Cancer variable, so that the probability of the opposite case no cancer is im-
plicitly given as < 0.95, 0.98, 0.97, 0.999 >. Calculate the probability of the
event that the disease is lung cancer but neither pollution nor smoking patient
is existent, and both X-ray and dyspnoea is positive. Use single letter names
for the variables:

P (¬P ∧ ¬S ∧ C ∧X ∧D)
= P (¬P )P (¬S)P (C|¬P ∧ ¬S)P (X|C)P (D|C)
= 0.70× 0.60× 0.001× 0.90× 0.65 = 0.0002457 (∼ 0.025%).

The calculation of the probability of the discussed event is based on the BN
property in providing a complete description of the problem domain. A generic
entry in the joint probability distribution is the probability of a conjunction of
particular assignments to each variable given by the formula

P (x1, ..., xn) =
n∏
i=1

P (Xi|Parents(Xi)). (4.1)

Equation 4.1 implies certain conditional independence relationships that can
be used efficiently to guide a knowledge engineer in constructing the network
topology. The specification of the joint probability distribution is equivalent to
the general assertion that

P (Xi|Xi−1, ..., X1) = P (Xi|Parents(Xi)) (4.2)

provided that Parents(Xi) ⊆ {xi−1, ..., x1}. The last condition allows to con-
struct a network from a given ordering of nodes using an algorithm for con-
structing BNs ([RN03],[Pea88]). The construction method processes each node
in order, adding it to the existing network and adding arcs from a minimal set of
parents such that the parent set renders the current node conditionally indepen-
dent of every other node preceding it. The incremental network construction is
in detail as follows:

1. Choose the set of relevant variables Xi that describe the problem domain
D.

2. Choose an ordering for the variables X1, ..., Xn.

3. For i = 1 to n
(a) Pick the next variable Xi and add a node to the network.
(b) Set Parents(Xi) to some minimal set of nodes already in the net such
that the conditional independence property ( 4.2) is satisfied.
(c) Define the CPT for Xi.

The acyclic network property is fulfilled because each node is only connected to
earlier nodes. The knowledge engineer creates a BN without redundant prob-
ability values, except perhaps for one entry in each row of each conditional
probability table. It is obvious that the construction method with a different
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node order may result in a different network structure even so representing the
same joint probability distribution. There are domains in which each variable
can be influenced directly by all the others, so that the network is then fully
connected. Then specifying the CPTs requires the same amount of information
as specifying the joint. In a locally structured domain constructing a BN is to
rise to a challenge. It is required that each variable is directly influenced by a
few others and that the network topology reflects those direct influences with
the appropriate set of parents. The correct order to add nodes is to add root
causes at first and then the variables they influence until reaching the leave
nodes. The question now is what happens if the wrong order is chosen? Con-
sider the cancer BN scenario and suppose we decide to add the nodes in the
order Dyspnoea,X − ray, Cancer, Pollution, Smoker. Dyspnoea is the root
cause node having no parents. When adding X − ray it is crucial to consider
if X − ray is independent of Dyspnoea? Since they have a common cause in
Cancer, they will be dependent, exemplify as P (X|D) 6= P (X). When adding
the next nodes, the knowledge engineer must respond to the conditional in-
dependence request as illustrated in Table 4.2. The resulting network has two

Table 4.2.: Conditional independence given the node order < D,X,C, P, S >

Conditional independence Satisfied

P (X|D) = P (X)? No
P (C|X,D) = P (C|X)? P (C|X,D) = P (C)? No

P (P |C,X,D) = P (P |C)? Yes
P (P |C,X,D) = P (P )? No

P (S|P,C,X,D) = P (S|C)? No
P (S|P,C,X,D) = P (S|C,P )? Yes

additional arcs and three new probability values associated with them. It is gen-
erally desirable to build the most compact BN possible in reducing probability
values requiring specification and in representing independencies explicitly or
representing the causal dependencies in the considered problem domain.
To design inference algorithms it is essential to identify conditional indepen-
dencies given a BN. Is a set of nodes X independent of another set Y given a
set of evidence nodes E? As introduced in Section 3.2.5 a variable X is inde-
pendent of another variable Y with respect to a probability distribution P if
P (x|y) = P (x),∀x ∈ dom(X), ∀y ∈ dom(Y ). It is feasible to express this prop-
erty symbolically as X ⊥ Y . A variable X is conditionally independent of Y
given Z with respect to a probability distribution P if P (x|y, z) = P (x|z), ∀x ∈
dom(X),∀y ∈ dom(Y ),∀z ∈ dom(Z) (symbolically X ⊥ Y |Z).
Let X, Y and Z be three variables for which X ⊥ Y |Z is essential. Following
the ordering (X,Y, Z) this can be simplified to

P (X,Y, Z) = P (X|Z)P (Y |Z)P (Z).
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Similarly, following the ordering (X,Z, Y ) we get

P (X,Y, Z) = P (X|Z)P (Z|Y )P (Y )

and following the ordering (Y, Z,X) we get

P (X,Y, Z) = P (Y |Z)P (Z|X)P (X).

Consider three significant scenarios causal chain, common cause and common

Figure 4.3.: Conditional independence with graphical representations of X ⊥
Y |Z

effect. Causal chains (see Figure 4.3 (b)-(c)) give rise to conditional indepen-
dence. This means, that the probability of X given Z in (b) is exactly the same
as the probability of X given both Z and Y . Knowing that Y has occurred does
not make any difference to the belief about X if we already know that Z has
occurred. In the common cause case (a) X and Y have a common cause Z, e.g.
if a disease like cancer is a common cause of the two symptoms of a positive
X-ray and dyspnoea. If a doctor has no evidential information about a specific
disease, then learning that one symptom is present will increase the chances of
this disease which in turn will increase the probability of the other symptom.
Common effects are represented as v-structure. An effect node has two causes.
If the doctor observes the effect of a disease and then finds out that one of the
causes is absent, then this raises the probability of the other cause [WS06].
How BNs represent conditional independence and how these independencies af-
fect belief change during an updating step is declared. If a BN is given, is it
possible to identify whether a set of nodes X is independent of another set Y
given evidence nodes E? Direction dependent separation or d-separation can
solve this occurring problem. Given X ⊥ Y |Z, follow that knowing the value
of Z blocks information about Y being relevant to X and vice versa. If every
undirected path as path through the BN regardless of the direction of the arcs
from a node in X to a node in Y is d-separated by E, then X and Y are condi-
tionally independent given E. A path is blocked given a set of nodes E if there
is a node Z on the path for which one of three conditions holds [RN03]:

1. Z is in E and Z has one arc on the path leading in and one arc out.

2. Z is in E and Z has both path arcs leading out.
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3. Neither Z nor any descendent of Z is in E, and both path arcs lead into
Z.

Recapitulating a set of nodes E d-separates two other sets of nodes X and Y
if every path from a node in X to a node in Y is blocked given E.
Consider the introduced lung cancer scenario of Figure 4.2. With the blocking
condition Pollution is d-separated from X − ray and Dyspnoea. In the same
way, Smoker is d-separated from X−ray and Dyspnoea. In the common cause
X− ray is d-separated from Dyspnoea. If Cancer has not been observed, then
Smoker is d-separated from Pollution in the common effect case.

Figure 4.4.: Types of situations in which a path from X to Y can be blocked,
given the evidence E

This introduction shows tellingly, that graphical structures provide a power-
ful instrument for expressing and reasoning about causal relationships among
variables. The ability to perform inter-causal reasoning between causes of a
common effect is unique for such models. The qualitative reasoning advantage
lies in the fact that a DAG is a very compact representation of dependence
and independence statements among a set of variables. Since the concept of
causality though debatable from a philosophical point of view appears to be
quite natural to human experts, BNs are indeed very attractive from a knowl-
edge engineering point of view. The aforementioned independence relations are
utilized in order to make probabilistic calculations more efficient. Particularly,
the joint distribution of all variables in V is given by∏

V ∈V
ρV (V |pa(V )) (4.3)
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where pa(V ) denotes the set of parents of the variable V . Note that the complete
number of probabilities to be specified is now given by∑

V ∈V

∏
W∈pa(V )

card(DW ), (4.4)

which is generally much smaller than the size∏
V ∈V

card(DV ) (4.5)

of the complete joint distribution. It is clear, that the sum of each variable
V ∈ V ( 4.4) might still be prohibitively large.
DAGs are also very intuitive and intelligible maps of causal and correlation in-
teractions, and thus provide a powerful instrument for conceptualizing, formu-
lating, communicating, and discussing qualitative interaction models in prob-
lem domains where causal or correlation mechanisms are at least partly known
and also in domains where such mechanisms are really unknown but can be
revealed through learning techniques of model structures from data (see also
Section 4.3). The concept of probabilistic independence and advertise is seen,
whenever a probabilistic model is specified in terms of a product of lower-
dimensional conditional distributions. Probabilistic graphical models are al-
most descriptions of local causal phenomena, where a domain expert provides
assessment of cause-effect relations and their associated conditional probability
distributions standing for the strengths of the relations. From a philosophic
point of view, differentiate the Bayesian and frequentist view. The Bayesian
view of probabilities considers probabilities as expressing subjective assessments
of belief rather than objective measures of frequencies of events. The use of
mechanisms of causality on the one hand and subjective assessment of proba-
bilities on the other hand to express strengths of causal relationships provides
a strong paradigm for formulating models for reasoning under uncertainty. In
Chapter 5 it is explained in detail, how such models can be augmented with
decision variables and utility functions for specific representation and solution
of sequential decision problems.

4.2. Inference in Bayesian Networks

After the BN representation of a knowledge domain and its uncertainty is given,
we can discuss about different types of reasoning. The question is how to use
a BN to reason about the domain. When observing the value of some variable,
we would like to condition upon the new information [KN04]. The conditioning
or belief updating process is performed as information flow through the net-
work. This information flow is not limited to the direction of the arcs. This
becomes the task of computing the posterior probability distribution for a set
of query nodes given values for some evidence or observation nodes. In the
case of probabilistic networks, there is a clear distinction between the under-
lying knowledge base and the inference engine. The knowledge base is the
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BN, whereas the inference engine is a set of generic methods that applies the
knowledge formulated in the knowledge base on task specific data sets known
as evidence variables to compute solutions to queries against the knowledge
base. It is therefore fundamental to compute the posterior probability distribu-
tion for a set of query nodes given values for some evidence nodes. The belief
updating process is flexible, because evidence can be entered about any node
while beliefs in any other nodes are updated. BNs can be conditioned upon any

Figure 4.5.: Diagnostic reasoning in a Bayesian network

subset of their variables supporting any directions of reasoning based on the
comprehensive representation of probability distributions over the variables of
a BN. In diagnostic reasoning a doctor reasons from symptoms to causes, when
he observes X-ray and then updates his belief about Cancer and whether the
patient is a smoker (see Figure 4.5).
Predictive reasoning traces the opposite direction from new information about
causes to new beliefs about effects in following the direction of the network arcs.

Figure 4.6.: Predictive reasoning in a Bayesian network

The patient informs the doctor about his current smoker characteristic even
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before any symptoms have been assessed. This information piece changes the
doctor’s expectations that the patient might have cancer or a positive X-ray
result (see Figure 4.6).
Another form of reasoning involves reasoning about the mutual causes of com-
mon effects as inter-causal reasoning. There are two or more possible causes
of a particular effect represented as v-structure in a BN. Initially, these causes
are independent of each other, but with knowledge of the effect the presence
of one explanatory cause renders an alternative cause less likely. Combine the
introduced reasoning types in different varieties of reasoning as illustrated using
the cancer BN scenario. Besides calculating beliefs in query variables given def-
inite values for evidence variables, BNs can also be used for a decision making
process based on probabilities in the network and on agent’s utilities (see Chap-
ter 5) or for performing sensitivity analysis to understand which aspects of the
BN have the greatest impact on the probabilities of the query variables. It is
also fundamental to explain, describe, and illustrate the results of probabilistic
inference to the system user applying probabilistic mechanisms.
Different inference algorithms are suited for different network structures and
performance requirements. In BNs where nodes are connected by multiple paths
inference algorithms become very complex, where exact inference mechanisms
become computationally complex and in which approximate inference must be
used. Under performance circumstances, the speed of inference depends on the
structure of the network including the connection degree and the locations of
evidence and query nodes. In general, (approximate) probabilistic inference is
NP-hard [DL93]. For certain classes of BNs the complexity of probabilistic in-
ference is polynomial or even linear in the number of variables in the network.
The complexity is polynomial, if the graph of the BN is a polytree and linear in
the case of a tree.
It is possible to derive an algorithm that works efficiently on single connected
networks also known as polytrees. They have at most one undirected path be-
tween any two nodes in the network [RN03]. Assume X is a query node, and
there is some set of evidence nodes E excluding X. The aim is to compute
P (X|E) and update Bel(X). Denote Bel(X) in a two node network W → X
with evidence W = w as posterior probability or belief of X, which can be
extracted from the CPT as P (X|W = w). In the case of evidence about the
child node X = x, the inference task of updating the belief for W is done by
using the Bayes Theorem 3.8 obtaining Bel(W = w) = αP (w)λ(w) with α
as normalization constant, P (w) as prior and λ(w) = P (X = x|W = w) as
likelihood.
Figure 4.7 shows a polytree and how local belief updating of node X is achieved
through incorporation of evidence through its parents Ui and children Yj . Ev-
idence can be divided into predictive (from evidence nodes connected to X
through its parents Ui as E+

X) and diagnostic (from evidence nodes connected
to X through its children Yj as E−X) support for X. X d-separates E+

X from E−X
in the network, so use conditional independence to simplify the calculation of
P (X|E) = αP (E−X |X)P (X|E+

X). The derivation of the major steps to compute
P (X|E) can be found in detail in [RN03], [Pea88], [Nea04].
More general, the BN structure is a DAG, in which two nodes are connected by
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more than one path. Multiply connected networks occur when some variable can
influence another through more than one causal mechanism. There are three
basic classes of algorithms for evaluating multiply connected networks. The first
clustering inference algorithm transforms the polytree into a probabilistically
equivalent polytree by merging nodes, removing multiple paths between two
nodes along which evidence may travel. It is possible, that all non-leaf nodes
be merged into a single compound node.

Figure 4.7.: A generic singly connected network partitioned according to the
parents and children of the query variable X

It is easier to handle smaller clusters, since the CPT size for the cluster grows
exponentially in the number of nodes merged into it. Highly connected original
networks enclosed the requirement of rather larger clusters. Another approach
of probabilistic inference operates on a structure known as junction tree or join
tree. A junction tree representation is efficient when solving the inference task
for multiple sets of different evidence and target variables. A junction tree
representation T of a BN is a pair T = (C,S), where C is the set of cliques and
S is the set of separators [NPP06]. A clique of an undirected graph is defined as
a set of nodes that are all pairwise linked. This means, for every pair of nodes
in the set there is an arc between them. A maximal clique cannot be increased
by adding any node. Each clique C ∈ C represents a maximal complete subset
of pairwise connected variables of X, C ⊆ X, of an undirected graph. The
separators S annotate the links of the tree. The process of creating a junction
tree representation of a DAG is beyond the scope of this work and is engrossed
in [CDL07]. Details of the inference process can be found in [Jen01].
In practice, for most small to medium sized networks, clustering mechanisms are
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good enough. For larger or densely connected networks, approximate algorithms
should be used. Stochastic simulation uses the network to generate a large
number of cases from the network distribution. As more cases are generated,
the estimate converges on the exact probability by the law of large numbers from
statistics. As with exact inference, there is a computational complexity [DL93],
but in practice, if the evidence being conditioned upon is not too unlikely, these
approaches converge quickly enough. A popular sampling algorithm is logic
sampling [Hen88]. The aim is to compute P ′(X|E = e) as an estimate of the
posterior probability for node X given the evidential information E = e. The
algorithm generates a case by randomly selecting values for each node, weighted
by the probability of that value occurring. The nodes are traversed from the root
node down to the leaves to ensure at each step the weighting probability is either
the prior or the CPT entry for the sampled parent values. To estimate P (X|E)
with a sample value P ′(X|E), compute the ratio of cases where both X and E
are true to the number of cases where just E is true. After a generation of each
case, these combinations are counted as appropriate. For instance, someone will
calculate P (Pollution|X − ray ∧ ¬Cancer). With logic sampling, we generate
random samples and count the following: NC as samples with X − ray=true
and Cancer=false, NS as samples with Pollution=true and X − ray=true and
Cancer=false, and N as number of samples. If N was chosen large enough,
NC/N is a good estimation for P (X−ray = true∧Cancer = false), and NS/N
is a good estimation for P (Pollution = true∧X−ray = true∧Cancer = false).
As combined, NS/NC is a good estimation for P (Pollution|X−ray∧¬Cancer).
A modification of logic sampling is the likelihood weighting algorithm, which
overcomes the problem with unlikely evidence. Instead of adding one to the
run count, the CPTs for the evidence node(s) are used to determine how likely
that evidence combination is. That fractional likelihood is the number added
to the run count [GH02].

4.3. Learning Bayesian Networks

The problem of learning graphical models like Bayesian networks using struc-
ture learning algorithms plays a decisive role for the aggregation and fusion
of expert knowledge [HHG02]. In the following a new parameterized structure
learning approach is presented. A competing fusion mechanism to aggregate
expert knowledge stored in distributed knowledge bases or probability distribu-
tions is also described. Experimental results of a medical case study show that
the approach can improve the quality of the learned graphical model.
The Bayesian learning problem comes in general in four varieties. The struc-
ture of the Bayesian network can be known or unknown, and the variables in
the network can be observable or hidden. Figure 4.8 illustrates the Bayesian
learning varieties. In the simplest case, the structure is known and all variables
are observable. The learning part consists of setting the conditional probability
tables based on the given structure. These can be estimated directly applying
the statistics of the set of examples. In the case of a known network structure
with incomplete training sets (Ti ⊂ T ) there is an algorithm well-known as
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Expected-Maximization algorithm (EM) [Bea03] which assumes missing data or
hidden variables. EM is used for finding maximum likelihood estimates. For in-
stance, P (D|Hi) represents the probability that a particular data set D would
have been observed given Hi as underlying model. With a uniform prior, we
can choose a Hi that maximizes P (D|Hi). Inverted, we are interested in using
a most probable hypothesis, for clarification, an Hi that maximizes P (Hi|D).
This is called maximum a posterior or MAP hypothesis. In the case where
the network structure is unknown, we have to reconstruct the topology of the
network.

Figure 4.8.: Bayesian network learning situations with known or unknown struc-
ture and observable or hidden variables

Assume first the case of observable variables. This can be interpreted as a
search through the space of structures, guided by the ability of each structure
to model the data correctly. Fitting the data to a given structure reduces the
problem to the previous fixed structure problem, and the MAP or maximum
likelihood value can be used as heuristic for gradient-based hill climbing or
simulated annealing search (see also Chapter 4.3.1 and Chapter 4.3.2). When
some variables are unobservable, use an approximate solution as extension of
the EM algorithm. The Structural EM algorithm [Fri98] only does an expensive
computation each time the model is changed. The algorithm starts with some
initial DAG G by computing the MAP value of f(G) relative to the data.
Condensed, structure learning algorithms for Bayesian networks play a key role
when conditional probability information is missing or imperfect. A parame-
terized approach describe for instance a complete class of algorithms including
standard hill climbing [RN03] as special case. Knowledge fusion is an important
field of artificial intelligence [JM99], knowledge science and engineering ([Rq03]
[HM04]), which can transform and integrate distributed knowledge resources to
generate new knowledge representations or visualizations [PH00]. Experimental
results of a medical case study concerning a logical alarm reduction mechanism
for intensive care patients show that the approach is very applicable for knowl-
edge fusion to improve the efficiency of working in (distributed) groups.
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On constructing BNs from data which arise out of an application area use
nodes to represent database attributes. Different BN structure learning al-
gorithms have been developed. A good overview demonstrating general ap-
proaches to graphical probabilistic model learning from data is introduced by
[Hec95], [Kra96] and [BK02]. It is common to distinguish between search and
score methods and the dependency analysis approach [Tor03].
In the first case the algorithm views the learning problem as searching for a
structure that best fits the data. The methods start as graphical represen-
tation without any edges, using some search method to add an edge to the
representation. In the next step they can use score methods to compare the
new one with the older structure. The main problem to learn BNs using search
and scoring methods is the NP-hard complexity. Representative algorithms be-
longing to the search and scoring method are polytree construction algorithms,
the K2 algorithm applying a Bayesian scoring method or the Lam-Bacchus al-
gorithm applying the minimal description length principle. Using the second
dependency analysis method is a different approach. These algorithms try to
discover the dependencies from the data and next use these dependencies to
infer the structure. The approach introduced in the following section belongs
to the first family of algorithms. Based on the complexity examination count
the number of independent network parameters as

|θm| =
∑
i

(|Xi| − 1) · |pa(Xi)|

with |pa(Xi)| as number of (joint) states of all parent nodes of Xi to obtain a
complexity boundary as model complexity.
To determine and measure the complete quality of the underlying network struc-
ture an additional measure is necessary to evaluate the fitness of the network
which calculates how the structure m goes with data set D. The scoring func-
tion f(m,D) illustrates the counteract behaviour of model fitness and model
complexity:

f(m,D) = model fitness(m,D)− β ·model complexity(m,D).

The only measurement of the fitness as target value for the determination of the
network quality would lead to a complete adjunctive structure with the highest
complexity which also increases the memory capacity. Another problem is well-
known in machine learning as overfitting. Overfitting is generally recognized to
be a violation of Occam’s razor. When the degrees of freedom in parameter
selection exceed the information content of the data, this leads to arbitrariness
in the final (fitted) model parameters which reduces or destroys the ability of
the model to generalize beyond the fitting data.
The revelation of conditional independence relationships plays a fundamental
role within the medical diagnostic and information processing. When for in-
stance learning network structures from application data, apply information
theoretic measures to detect conditional independence relations and afterwards
use the well known d-separation concept [Pea88] to infer the structures of net-
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works [Jen01]. Measure the volume of the information flow between two nodes
to conclude whether a group of valves corresponding to a condition set can
reduce and eventually block the information flow. In BNs information can be
determined [Arn01] about the value of a node knowing the value of the other
node when both nodes are dependent. The mutual information between two
nodes can therefore provide information in the case of two nodes dependency.
The degree of their relationship is also important. The mutual information of
two nodes Xi and Xj is defined as

Inf(Xi, Xj) =
∑
xi,xj

P (xi, xj)log2
P (xi, xj)
P (xi)P (xj)

and the conditional mutual information is defined as

Inf(Xi, Xj |C) =
∑
xi,xj ,c

P (xi, xj , c)log2
P (xi, xj |c)

P (xi|c)P (xj |c)
.

Based on model complexity and evaluation measures built up parameterized
scoring functions as follows:

f1(m,D) =

(
∑
i

∑
xi∈dom(Xi)

∑
Yj∈pa(Xi)

∑
yj∈dom(Yj)

P (Xi = xi, Yj = yj)

log2
P (Xi = xi, Yj = yj)

P (Xi = xi) · P (Yj = yj)
)− β ·

∑
i

(|Xi| − 1) ·
∏

X∈pa(xi)

|X|.

This function takes the following form applying maximum likelihood:

f2(m,D) = (N ·
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk

N
log2

Nijk

Nij
)− β · |θm|

where m represents the network structure, D the training data, N the total
number of cases, ri(1 ≤ i ≤ n) the cardinality of the random variable Xi,
qi(1 ≤ i ≤ n) the number of joint states of all parent nodes of Xi and |θm|
stands for the number of independent network parameters, expressed also as∑n

i=1(ri − 1) · qi. In special cases regarding the scoring function well known
quality measures can be present for specific β allocations like β = 1 (AIC -
Akaike Information Criterion), or β = 1

2 log2N (MDL - minimum description
length metric). The MDL principle frames model learning in terms of data
compression. The MDL objective is to determine the model that provides the
shortest description of the data set. The MDL scoring criterion is the additive
inverse of the Bayesian information criterion (BIC). Different additional quality
measure instances are discussed in detail in [Bor00] and [GS04].
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4.3.1. Searching Strategies

In several well known searching problems the property that the state description
itself contains all the information needed to find a solution is given. The path
by which the solution is reached is in this case irrelevant. The calculation
of the optimal BN structure includes browsing through the complete network
search space. The naive approach is to measure for any search order each graph
structure and give back the best valued DAG. The main problem is the huge
number of different directed acyclic graphs, which depends on the node number
n:

g(n) =
n∑
i

(−1)i+1

(
n

i

)
2i(n−i).

The following table 4.3 gives an impression of the growing number of directed
acyclic graphs depending on the number of network nodes n. If n exceeds the
value seven machine learning applications need further searching strategies like
heuristic strategies.

Table 4.3.: Number of DAGs g(n) depending on the number of nodes n

n 5 6 7 8 10

g(n) 29281 3.78 · 106 2.46 · 108 7.84 · 1011 4.18 · 1018

Iterative improvement algorithms often provide the most practical approach.
Consider all states laid out on the surface of a landscape. The height of any
point on the landscape corresponds to the evaluation function of the state at
that point. The idea is to move around the landscape by trying to find the
highest peaks which stand for the optimal solutions [RN03].
Hill Climbing algorithms always try to make changes that improve the current
state. They continually move into the direction of increasing values. Hill Climb-
ing does not maintain a search tree, so the node data structure need only record
the state and its evaluation by value. When there is more than one best succes-
sor to choose from, the algorithm can select among them via random. Instead
of starting randomly in the case of stuck in a local minimum, it is also allowed
for the search to take some downhill steps to escape the local minimum. This
is the idea of simulated annealing. Instead of picking the best move, it picks
a random move. If the move actually improves the situation, it is always exe-
cuted. Otherwise, the algorithm makes the move with some probability degree
less than one. The probability decreases exponentially with the badness value
of the move. A second parameter T is also used to determine the probability.
At higher values of T, bad moves are more likely to be allowed. As T tends to
zero, they become more and more unlikely, until the simulated annealing algo-
rithm behaves more or less like Hill Climbing. Hill Climbing search contains
useful optimization potential which leads to a new class of structure learning
algorithms which we have invented and developed as described in detail in the
following Section.
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4.3.2. LAGD Hill Climbing

Based on appropriate scoring functions like [Hec95] or [Kra96] a local search
strategy using greedy hill climbing can be executed to compare the directed
acyclic graphs mold and mnew using ∆f(mnew)− f(mold). Look ahead in good
directions (LAGD) hill climbing represents a new structure learning algorithm
as generalization approach which calculates in advance k steps in regard to the
chosen scoring function. Another parameter l stands for the number of best
evaluated network structures per look ahead step. LAGD Hill Climbing offers
a new class of parameterized algorithms including the parameters:

• number of look ahead steps k

• number of calculated good operations l per each look ahead step

The LAGD hill climbing algorithm using local search is illustrated as sequence
diagram and can be expressed in pseudo code as illustrated in Figure 4.9.
As test bed for the implementation we use the WEKA environment (Waikato
Environment for Knowledge Analysis), a collection of machine learning algo-
rithms for data mining and knowledge discovery tasks [WF05]. We were able
to integrate the developed LAGD hill climbing in the Waikato Environment
and today LAGD is an integral part of WEKA.

The LAGD Hill Climbing algorithm spans a whole class of structure learning
algorithms parameterized by the number of good operations l, the number
of look ahead steps k, the maximal number of parents per node, the score
type as instance of quality measures like Bayes, entropy, Akaike Information
Criterion or Minimum Description Length, the initiation possibility as naive
Bayes classifier [CG01] and the final application of a Markov blanket correction
(compare Figure 4.10).

The special case k = 1 (nrOfLookAheadSteps = 1) results in standard
greedy hill climbing. To reduce the calculating time adjust the parameter l
to regard only the l best valued operations per look ahead step. The lower
bound concerning the network structure quality agrees with standard greedy
hill climbing results based on greedy k-step operation sequences. The computa-
tional complexity per iteration step (k-step sequence) with n Bayesian network
nodes, k look ahead steps and l good operations per look ahead step can be
determined as

O(
k−1∑
i=0

li · n2).

This term may be assessed by O(lk−1 · n2), as can be seen from the following
induction.
We show that

k−1∑
i=0

li · n2 ≤ 2 · lk−1 · n2.
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Figure 4.9.: LAGD hill climbing algorithm using local search as pseudo code
sequence
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Figure 4.10.: LAGD hill climbing algorithm spans a whole class of structure
learning algorithms

Initial induction step k = 1:

Proof.

1−1∑
i=0

li · n2 = n2 ≤ 2 · l1−1 · n2 = 2 · n2.

Induction step k → k = 1:

Proof.

(k+1)−1∑
i=0

li · n2 = (
k−1∑
i=0

li · n2) + lk · n2 ≤

2 · lk−1 · n2 + lk · n2 ≤ l · lk−1 · n2 + lk

·n2 = 2 · lk · n2 = 2 · l(k+1)−1 · n2.

Obviously
∑k−1

i=0 l
i · n2 can be assessed by 2 · lk−1 · n2. The argument follows

when neglecting the multiplier two according to Bachmann-Landau notation.
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4.3.3. Experimental Results for Medical Data Using LAGD Hill
Climbing

Here a medical test dataset was chosen to compare the introduced LAGD Hill
Climbing algorithm with other classical well known algorithms like simulated
annealing or standard greedy hill climbing used for different metrics as instances
of quality measures (i.e. AIC, MDL). The ALARM network [BSCC96] is a com-
monly used network which is a representative of a real life Bayesian network.
It was originally described by Beinlich as a network for online-monitoring of
patients in intensive care units. The ALARM network structure consists of
37 nodes and 46 edges with 8 diagnosis, 16 medical findings and 13 temporary
variables (see Figure 4.11). A Monte Carlo technique named Probabilistic Logic
Sampling was used to generate case databases consisting of 10.000 test cases
based on the ALARM network. Probabilistic Logic Sampling generates each
case or sample by orienting to the weak node order induced by the underly-
ing directed acyclic graph [Hen88]. The criterion to compare the quality or
performance of different BNs learned according to different structure learning
algorithms is the so called LogScore, which is based on the appropriate local
score metric. When applying for instance the Akaike Information Criterion
(AIC with β = 1) the LogScore AIC derives as follows:

LogScoreAIC(m,D) = −h2(m,D) = (N ·
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk

N
log2

Nijk

Nij
)− β · |θm|.

I. e. derive the LogScore AIC by simply multiplying the AIC metric by minus
one. It follows from the formula above the equation LogScoreAIC(m,D) =
−h2(m,D) = f2(m,D).

Figure 4.12 illustrates the learning curve for the dataset ALARM using the
parameter values maxNrOfParents = 5, nrOfLookAheadSteps = 2 and nrOf-
GoodOperations = 5 with LogScore AIC (β = 1). The quotient Nijk

Nij
is always

within the interval (0, 1], i. e. the resulting logarithm of this quotient is obvi-
ously less than or equal to zero.

The LogScore starts strongly negative and rises successively in finding better
valued neighbour graphs. With increasing the number of iteration steps the
model-complexity function reduces the total LogScore by the summand β · |θm|.
The experimental results evaluate different structure learning algorithms like
simulated annealing, greedy hill climbing and LAGD based on LogScore metrics
Bayes, AIC and MDL (see Figure 4.13). Figure 4.14 displays in detail the
dependency between the quality of the calculated network structure and the
number of look ahead steps with fixed parameter value l = 2. Here choose the
minimum description length as local score metric for an exemplary comparison
of greedy hill climbing and LAGD since results were very similar using the other
metrics AIC and Bayes. It is obvious that increasing LAGD look ahead steps
causes a better network quality. The startling bending down of the curve when
increasing the look ahead parameter from 5 to 6 may be explained as follows.
With look ahead parameter k = 5 LAGD finds a good local optimum, while
with parameter k = 6 LAGD falls in a trap, when seeing a better evaluated
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Figure 4.11.: ALARM monitoring network prepared with GeNIe for structure
modeling
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Figure 4.12.: ALARM LAGD hill climbing learning curve with LogScore AIC

Figure 4.13.: Structure learning results comparing different Bayesian network
structure learning algorithms with LogScore metrics AIC, Bayes
and MDL
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Figure 4.14.: Comparison of greedy Hill Climbing and LAGD with varied look
ahead steps using LogScore MDL

graph structure in the beginning. LAGD follows this ”false” path, that finally
results in a local optimum, which is unfortunately worse than in the case k = 5.
The first steps are executed independent of the chosen search depth based on
greedy behaviour. The algorithm starts with an empty network structure in
filling step by step at first those edges, which perform the maximized score
value. In a growing connected structure with increasing complexity acyclic
effects influence directly the next edges have to integrate in the model.

4.4. Competing Fusion of Distributed Knowledge

The development of knowledge-based systems involves knowledge acquisition
from a diversity of sources often geographically distributed. It is obviously dif-
ficult to bring together information from different knowledge sources [Mah07]
about a subject of common interest. The sources include for instance written
documents, interviews, and application data stored in distributed knowledge
bases disposed from different experts often specialized in fields like mechani-
cal engineering, computer science or medicine (for instance experts in intensive
care, ophthalmology or internal medicine [Luc01]).
Intuitively merging knowledge bases is to find a knowledge base that has at
least as much information as each component knowledge base and is the small-
est such medical knowledge base. Different experts working together are not
in a position to generate the complete Bayesian network structure including
conditional probability tables and all necessary random variables. An medical
expert Ei with (i = 1, ..., n) working in a specific hospital division has only
access to specific medical data or medical knowledge to build a substructure
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of a complete Bayesian network structure. The main problem occurs when all
included experts compose their individual knowledge to build up the Bayesian
network structure representing the domain knowledge [HB06]. Integrate knowl-
edge stored in different Bayesian networks BNi through techniques of knowledge
fusion. Researchers differentiate the aspects competing, complementary and co-
operative knowledge fusion. Aggregating expert beliefs is in this sense the task
of performing an expert group consensus probability distribution by combining
the beliefs of the individual experts of the group in some fashion [PW05].
Competing fusion techniques have been compared and applied by the author
of this thesis [HFAN08a], which focus on the unification of expert knowledge
often realized in one problem domain with different involved experts. A new
sequence diagram (see Figure 4.16) is given for sampling aggregation, which
explains how to deal with different Bayesian models within the same problem
domain to calculate an aggregated output model. The author has also compared
the sampling aggregation technique with linear opinion pool as used method
of aggregating the likelihood assessments of different experts in the case of the
ALARM network as benchmark. The achieved consolidation process based on
diverse network structures and CPT entries founded of multiple expert domain
knowledge. The challenge in the complementary case consists of the integration
of (partly) disjoint network structures. Obviously, this fusion type solves the
problem of individual incompleteness of expert domain knowledge. Coopera-
tion fusion relates to the fact, that a developed network structure with CPT
parameters of an expert depends on the model of another expert in the same
problem domain.
To merge different Bayesian networks (for example BN1 and BN2) it is neces-
sary to determine a measure for the approximation quality. A suitable measure
is the Kullback-Leibler divergence between Bayesian network structures like
BN1 and BN2. The Kullback-Leibler divergence [vdGR01] expresses the differ-
ence or distance between two probability distributions. Given the probability
distributions p and q define KL(p, q) as follows:

KL(p, q) =
∑
x

p(x)log
p(x)
q(x)

.

The Kullback-Leibler divergence is obviously not symmetric and can also be
verbalized using the cross entropy H(p, q) as follows:

KL(p, q) = −
∑
x

p(x) log q(x) +
∑
x

p(x) log p(x) = H(p, q)−H(p).

The cross entropy between two probability distributions measures in informa-
tion theory the average number of bits needed to identify an event from a set
of possibilities, if a coding scheme is used based on a given probability distri-
bution q, rather than the true distribution p. The KL divergence values are
not negative with KL(p, q) = 0 if and only if p = q. Competing fusion in-
cludes combined expert knowledge from different fields like medical, financial
or engineering problem scenarios. Each expert can generate a case database
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with embedded and not obvious inferable conditional probability table settings
and network structures. The Bayesian network learning algorithm introduced
in Section 4.3 delivers Bayesian networks for each expert to fuse via sampling
or via LinOP aggregation.

Competing fusion via sampling contains the following steps:

1. Synthesize for each expert network a case database using a Monte Carlo
technique.

2. Aggregate the expert case databases.

3. Learn the aggregated Bayesian network structure based on the case database
determined in 2. using an automatic learning algorithm.

Figure 4.15.: Sampling aggregation results with Kullback-Leibler divergence

The ALARM network [BSCC96] was split in two disjoint case databases based
on a Monte Carlo technique named Probabilistic Logic Sampling. The respec-
tive Bayesian networks BN1 and BN2 were learned with LAGD. According to
the described sampling algorithm the Bayesian network Sampl.-Aggr. was gen-
erated. The number of samples was varied between 200 and 20000. Results are
illustrated in Figure 4.15.

The sampling aggregation sequence diagram in Figure 4.16 explains how to
aggregate for instance two models of the same problem domain obtaining an
aggregated model as aggr BN.net. There are many systems for academic use
free of charge. A BN Converter transforms an extensible markup language file
in a Hugin and GeNIe readable ∗.net file type. GeNIe is a graphical network
interface to SMILE (Structural Modeling, Inference, and Learning Engine) as
portable Bayesian inference engine. A graphical editor to create and modify
network models is given. It is also possible to allocate cross compatibility with
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other software like Hugin and the Hugin graphical user interface which is an
interactive tool enabling to use the facilities of the Hugin Decision Engine. The
Hugin Decision Engine performs reasoning on a knowledge base represented as
a Bayesian network or a Decision network. The engine performs all data pro-
cessing and storage maintenance associated with the reasoning process. Given
an original BN.net file representing the original network structure, generate
examples applying for instance logic sampling and splitting the output in two
commensurate parts. The split sample files deal as basis for the WEKA tool to
put into action the LAGD hill climbing algorithm (step 3). Simultaneously, the
split network files split BN1.xml and split BN2.xml are converted in a Hugin and
GeNIe readable ∗.net file format. In this step 4, generate additional samples
appropriate for the aggregation step 5 with a considerable sample size (factor
m with m ≥ 1). The aggregated sampled file serves as basis to learn the aggre-
gated output model aggr BN based on the previous sampling steps on the split
parts.

Figure 4.16.: Sampling aggregation sequence diagram
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The use of Monte Carlo techniques and the hereby induced noise may be
avoided by applying an aggregation operator for a common unified probability
distribution. The aggregation of L expert probability distributions p1, . . . , pL
using the LinOP operator [Pra97] leads to the following algorithm:
1. Aggregate the probability distributions p1, . . . , pL of L Bayesian networks
using the LinOP operator for a common probability distribution

p∗ =
L∑
i=1

αi∑L
j=1 αj

pi

with LinOP

LinOP (α1, p1, ..., αL, pL) =
L∑
i=1

αipi.

2. Learn the aggregated Bayesian network with a local score metric based
learning algorithm using p*.

The ALARM network results using competing fusion via LinOP aggregation
[CKO01] demonstrates the following Figure 4.17:

Figure 4.17.: LinOP aggregation results with Kullback-Leibler divergence

When comparing sampling aggregation to LinOP aggregation in the case of
small sample sizes (less than 2000) the results show that LinOP aggregation
clearly outperforms sampling aggregation. Due to the introduced noise the
aggregated network Sampling-Aggregation has an even higher Kullback-Leibler
divergence compared to the original Bayesian networks BN1 and BN2. Increas-
ing successively sample sizes causes in both cases an asymptotical alignment of
Kullback-Leibler divergence of the aggregated network structure to the opti-
mum.
Recapitulating a new local score metric based structure learning approach called
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LAGD Hill Climbing was presented here. The number of look ahead steps and
the number of operations considered for look ahead are configurable, which
spans a whole class of structure learning algorithms. Both the time taken for
computing and the quality of the calculated Bayesian network structure may
be tuned by adjusting these parameters. The test result for the ALARM net-
work using quality measures like LogScore AIC, Bayes and MDL clarifies the
advantages of LAGD in regard to the achievable network quality. LAGD is
in the meantime fully integrated in the Waikato Environment for Knowledge
Analysis and may be downloaded via the WEKA website. The usage of a
generalized structure learning approach including dynamic interdependencies
between look ahead steps and number of good operations is intended for the
next steps. LAGD hill climbing may be applied in the field of mechanical en-
gineering and especially product lifecycle management to learn from existing
condition monitoring data and reveal relationships between sensor data, envi-
ronmental parameters and failure events (see Chapter 7). In this context com-
peting fusion improves the quality of aggregated knowledge models based on
distributed knowledge sources. Aggregation and fusion methods like sampling
aggregation and LinOP aggregation make the generated condition monitoring
knowledge collected in the product use phase from various customers within a
feedback cycle usable for further product development and help to improve the
usability and quality of the next generation of a given product, which is topic
in [AFHN08a].

4.5. Object-Oriented Bayesian Networks

Large and complex systems are often composed of collections of identical or
similar components. Models of such systems will naturally contain repetitive
patterns. Typical for complex systems is their composition containing a large
number of similar or even identical components, which should be reflected in
models of the system to support model construction, maintenance, and recon-
figuration. For instance, a diagnosis model for diagnosing machine downtimes
could reflect the natural decomposition of a machine into its engine, electri-
cal components, fuel system and so on. Object orientation is a modeling and
programming technique that makes use of classes and objects as fundamental
building blocks [NFN00]. Objects are used as a generic term for an instance
of a class. Classes are arranged in a parent-child hierarchy, where a subclass
as child may be allowed to inherit variables and methods of its parent. The
basic object-oriented Bayesian network (OOBN) mechanisms support object-
oriented specifications of BNs, which makes it simple or easier to reuse models,
to encapsulate sub-models, and to perform model construction in a top-down
fashion, a bottom-up fashion, or a mixture of both allowing repeated changes
of level of abstraction. This comes from the human thinking about systems in
terms of hierarchies of abstractions and due to the lack of ability to mentally
capture all details of a complex system simultaneously. Hierarchical fashion
makes graphical models often less cluttered, which facilitates the communica-
tion between knowledge engineers, domain experts, and end users. An OOBN

75



4. Bayesian Networks

is a network that, in addition to the usual nodes, contains instance nodes. An
instance node represents an instance of another network encapsulated in the
model. Nodes that are not an instance of a network class represent a basic vari-
able. An instance itself represents an instantiation of a network class within
another network class. A network class is a named and self-contained descrip-
tion of a BN and can be characterized by its name, interface, and hidden part.
Instances can be nested, so an object-oriented network can be realized as a
hierarchical description of a specific problem domain. Figure 4.18 illustrates an
instance of a network class within another network class. An instance connects
to other variables via some of its basic variables. These variables are known as
interface variables. The interface nodes usually comprise a strict subset of the
nodes of the instance. Interface nodes are subdivided into input and output
nodes demonstrated in Figure 4.18. In general, a network class C is a DAG
over three pairwise disjoint sets of input nodes I(C), hidden nodes H(C), and
output nodes O(C) of C. The scope S(C) of a network class C is the set of
variables and instances which can be referred to by their names inside C. The
scope of the network CN in Figure 4.18 is S(CN ) = {C1, C3, C2,M}. The class
instance M of the network class CM is instantiated within another network
class CN . The network class CN has input variable C1, hidden variables C3

and M , and output variable C2. The network class CM has input variables C1

and C2, output variable C3, and hidden input variables. The input variable C1

of instance M is bound to C1 of CN , whereas C2 is unbound. When referring to
C1 ∈ I(CM ) inside CM , we are in fact referring to C1 ∈ I(CN ) as C1 ∈ I(CM )
in instance M as placeholder for C1 ∈ I(CN ).

Figure 4.18.: M is an instance of a network class CM within another network
class CN

OOBNs are also appropriate to model temporal relationships amongst vari-
ables. As discussed so far, a BN represents only the probabilistic relationship
among a set of variables at some point in time. It includes no information
how the value of some variable may be related to its value and the values of
other variables at previous points in time. In many real-world situations it is
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fundamental to have the ability to model temporal relationships. In medicine
it is important to represent and reason about time in tasks such as diagnosis
or for processing diagnosis in plant operation and maintenance. Interpret a
dynamic BN as extension of BNs to model temporal processes [Gha98]. As-
sume, that changes occur between discrete time points t with 0 ≤ t ≤ T . Let
{X1, ..., Xn} be the set of features whose values change over time, and let Xi[t]
be a random variable representing the value of Xi at time t. For all t, each
Xi[t] has the same space depending on i. A dynamic BN contains the variables
that constitute the T random vectors X[t] [Nea04]. An important case comes
into consideration between variables at successive time steps by temporal arcs.
Relationships between the same variable over time or different variables over
time come into consideration. For instance, the temperature of an engine or
specific measurable disease values of a patient may change over time. One must
consider that a fully temporally connected network structure or short intervals
between time slices would lead to complexity problems [SY07].

Example 4.2. Belt Conveyor: The production of high quality products in
manufacturing systems engineering sometimes shows an undesired behaviour.
Since it is a significantly concern to further improve the quality of high quality
products, a lot of effort is dedicated to find the causes of these faults in order to
be able to prevent similar faults from occurring in the future. In a database for
belt conveyor production its configuration (product line, engine type, special
equipment etc.) and any faults detected during production or maintenance are
recorded.

Figure 4.19.: Belt conveyor and its configuration components [AFHN07]

Leading manufacturers in belt conveyor production offer their customers the
possibility to configure their final product individually. As a consequence there
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are many different configurations, each of which is bought only very few times
(the average number of exactly identical conveyors).
Therefore it is not possible to monitor the behaviour of individual configura-
tions, there are too few example cases for each of them. Unfortunately, it is
not uncommon that a propulsion fails only when installed in combination with
specific other components. Therefore a simple check whether individual propul-
sions show an unusually high frequency of failure cannot uncover all weaknesses.
Their normal behaviour in other configurations may hide the problem. A con-
dition monitoring approach (see also Chapter 7 based on Bayesian networks
from sensor data during the production phase) was installed in order to de-
tect dependencies between faults and belt conveyor properties. The underlying
idea is to exploit the search methods and evaluation measures developed for
realizing such graphical networks from sensor data to search automatically for
sets of attributes that are strongly dependent on each other. The belt conveyor
configuration and attributes during its usage over time t produces the following
dynamic Bayesian network structure specified as object-oriented representation.

Figure 4.20 illustrates a DBN for the introduced belt conveyor scenario. It
shows the progress from torque, block part, and non-return device over time.
For instance, modifications of torque sensor values depend at the next point of
time on the torque value at the current point of time.

Figure 4.20.: Belt conveyor scenario as dynamic Bayesian network representa-
tion with points of time t0 and t1

Assume that the structures and the tables of the points of time are identical,
and that the transition probabilities are identical for all points of time, the con-
struction of temporal models using instance nodes is very efficient and makes
the structure less cluttered.
Figure 4.21 takes as input the component nodes of the previous point of time,
where the belt conveyor component nodes act as output nodes, since they should

78



4.5. Object-Oriented Bayesian Networks

be bound to the input nodes of the next point of time. To construct two points
of time, create two instances of the belt conveyor network and bind the outputs
of point of time 1 to the inputs of point of time 2.

To summarize, object-oriented constructs incorporate encapsulation, inheri-
tance, and hierarchy. Its common purpose is efficient modeling and simulation,
and providing a convenient language for reuse and exchange of models. OOBNs
support a type of object-oriented specification of networks, which takes over
characteristics and makes it simple to reuse models, to encapsulate sub-models,
and to perform model construction at different levels of abstraction. The use of
OOBN models facilitates the construction of rather large and complex domains
allowing modifications of BN fragments.

Figure 4.21.: Belt conveyor scenario as dynamic Bayesian network specified as
object-oriented network

In practice, OOBN is deployed to model systems and processes, which often
are composed of collections of almost identical components. Models of such
systems often contain repetitive pattern structures like models of sensors, envi-
ronment variables, or process assets. Use OOBNs to model signal uncertainties
and signal level-trend classifications as small standardized model classes within
the problem domain. Weidl [Wei02] use OOBNs for top-down and bottom-up
root cause analysis of industrial systems in order to facilitate the construction
and usage of models. Repeated changes in the plant and process hierarchy are
needed due to the fact that process engineers, operators, service providers, and
maintenance staff discuss and argue about systems in terms of process hier-
archies. They are often overloaded with detailed facts and details of complex
systems in simultaneous causal analysis of disturbances. It also proves to be
useful for explanation and visualization of analysis conclusions [WMD03]. The
usage of dynamic BNs in this context is recommendable for prediction and risk
assessment of events in the process operation chain. Instance nodes are often
representing network classes for predicted development of process variables.
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4.6. Bayesian Networks Review

Bayesian networks are graphical structures for representing the probabilistic
relationships among a frequently large number of variables and for executing
probabilistic inference with those variables. BNs have become an increasingly
popular paradigm for reasoning under uncertainty addressing many tasks such
as diagnosis, decision making or data mining. The graphical nature of BNs gives
a decision maker a much better intuitive grasp of the relationships among the
nodes, which represent propositional variables in a problem domain. The visu-
alization aspect provides also an instrument for formulating, communicating,
sharing, transferring and discussing qualitative interaction models in problem
domains. The dependency relationships among the variables are expressed by
the arcs between the nodes. The DAG of a BN is encapsulated in a compact
graphical representation of the dependence and independence properties of the
joint probability distribution represented by the model. With this, DAGs pro-
vide a powerful language for expressing and reasoning about causal relation-
ships among variables. In detail, such graphical models provide an inherent
mechanism for realizing causal, diagnostic, as well as inter-causal reasoning.
The last-mentioned inter-causal reasoning is unique for graphical models and is
one of the key differences between automatic reasoning based on probabilistic
networks and system solutions based on production rules. We can distinguish
between problem domains where causal mechanisms are known and where such
mechanisms are unknown but can be revealed through learning of the model
structure from data. In the first case, the DAG in a BN is hand-constructed by
a domain expert. Then the conditional probabilities are assessed by the expert,
learned from data, or obtained using a combination of both techniques. In the
second case, a Bayesian structure learning algorithm is used assuming that we
have a set of random variables with an unknown relative frequency distribution.
BN structure learning algorithms have been developed in most instances for the
case of discrete variables. When a single structure is not found to be most prob-
able, averaging over structures is sometimes more appropriate. Another point
deals with learning structure when there are missing data items or hidden vari-
ables. We have developed and explained in more detail in this chapter a new
parameterized structure learning algorithm named LAGD, which is validated
with a benchmark case. Finally, consider the situation where application data
is stored in distributed knowledge bases representing different experts working
in the same problem domain. Knowledge fusion techniques are necessary to ag-
gregate this individual accessible expert knowledge to obtain the complete BN
structure including conditional probability tables and random variables. Fusion
techniques are used to reduce some type of noise, increase accuracy, summarize
information or extract information. Knowledge fusion is a process of combining
different expert data into one single datum, which improves the understand-
ing of the application domain. In this context, the author of this thesis has
introduced a new sampling aggregation workflow for competing fusion of BNs.
With this, a knowledge engineer has the possibility to apply an aggregation
mechanism on the basis of stochastic sampling. A graphical editor is available
to handle and follow up the obtained aggregated model.
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Decision networks or influence diagrams can be interpreted as extension of
Bayesian networks augmenting them with decision variables and utility func-
tions. They provide a language for sequential decision problems for a decision
maker, where there is a clear order among the decisions. A decision network
provides a natural representation for capturing the semantics of decision mak-
ing with a minimum of interferences for the decision maker [Paw04]. This
chapter introduces the semantics of decision networks in detail and describes
an extension to support decision making processes [YK03]. Adding an explicit
representation of the actions under consideration and the value of utility of the
outcomes gives decision networks a basis. Based on utilities a description of how
they are represented together with probabilities in decision networks is given.
With planning, it is possible to determine the best sequences of decisions or ac-
tions. A generalization of decision networks allows the construction of dynamic
decision networks [Yos01], which model temporal aspects of decision making or
planning under uncertainty [Bly98]. In many real-life decision situations the
available preference information of the decision maker is often vague, imprecise
or uncertain. Among the appropriate tools to overcome these difficulties is fuzzy
logic. This chapter describes preference models that extend the reliability and
flexibility of classical decision models. Concluding different examples illustrate
the use of decision networks for decision making under uncertainty.

5.1. Introduction

Decision-theoretic models are declarative in nature. The basic ingredients of a
model are a description of the decision maker’s environment and the possible
actions, including information about the effect of actions to the environment,
the decision maker’s preferences, and the decision maker’s beliefs. Apart from
that, a decision model includes a principle of rationality [EW03]. Probably the
best known rationality principle is the expected utility theory [Aug02]. The
environment is characterized by a set of possible world states, the effect of an
action depends on the true but unknown world state, and the decision maker’s
preferences and beliefs are modeled, respectively, by means of utility function
and a probability measure.
In general, decision theory is a means of analyzing which of a series of options
should be taken when it is uncertain exactly what the result of taking the option
will be [Rai68]. Decision theory is focused on identifying the best decision op-
tion, where the notion of best is allowed to have a number of different meanings,
of which the most common one is that which maximizes the expected utility of
the decision maker. This theory provides a powerful tool to analyze scenarios in
which a decision maker must make decisions in an unpredictable environment
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[HR92]. Solving a decision problem [Rao07] amounts to first determining an
optimal strategy that maximizes the expected utility for the decision maker or
agent and second computing the maximal expected utility of adhering to this
strategy.
The classical decision theory is a set of mathematical techniques for making
decisions about what action to take when the outcomes of the various actions
are not known [Lau05]. Consider an agent who operates in a complex envi-
ronment typical in real-life situations. The agent is inherently uncertain about
that environment, it simply does not have enough information about the envi-
ronment to know either the precise current state of the environment, or how
that environment will evolve. For every variable Si which captures some aspect
of the current state of the environment, all the agent typically knows is that
each possible value si of each Si has some probability P (Si) of being the current
value of Si. Consider the following settings of Bayesian decision theory. The
decision model consists of several ingredients which is described next in more
detail. Let A denote the set of possible actions the decision maker can perform
in the environment and which are available to him. S is the set of possible
world states or states of nature, with ξ being a probability measure defined on
some σ-field T ⊆ 2S : ξ(ϑ) = ξ({ϑ}) is the (prior) probability (density) of the
world state ϑ ∈ S. We employ the same notation for a probability measure and
its associated probability function. A consequence function c maps any pair
(a, s) ∈ A × S consisting of an action a ∈ A and a state s ∈ S to the corre-
sponding outcome c(a, s). The utility of the decision maker’s action depends
on the world state and is determined by means of a real-valued utility function
U : A × S → R. Any outcome c(a, s) with (a, s) ∈ A × S is mapped to a real
number U(c(a, s)) ∈ R as utility of the outcome c(a, s). U(a, ϑ) is the utility
experienced by the decision maker if he performs action a in world state ϑ. The
decision maker cannot observe the world state directly. However, he has access
to some information represented by a random variable

X : (Ω,O, ν[ϑ])→ (Rn,Bn),

where Bn denotes the class of Borel subsets of Rn. The distribution of X
depends on the world state. For each ϑ ∈ S, X = Xϑ is a random variable with
distribution µ = µ[ϑ] = X(ν[ϑ]). Let DX

.= X(Ω).
Utilities provide a convenient means of encoding the preferences of an agent. It
is possible to define utility functions that faithfully encode preferences such that
a state Si is preferred to Sj , if and only if it has a higher utility for the agent.
Consider the decision making problem in different distinguishable situations.
Under certainty the rational agent knows the state of the world s∗ ∈ S and
should choose an action a ∈ A that maximizes the utility U(c(a, s∗)) of the
certain outcome. The problem becomes difficult when the agent does not know
the state s∗. We distinguish between

• Decision making under risk: The agent can represent his knowledge
by a maybe subjective probability distribution π : S → [0, 1]. It has
been proven, that under risk any rational agent should choose that action
a ∈ A, which maximizes the expected utility [Vau97]. Prerequisite for
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the determination of the result is that the agent agrees with some ax-
ioms of rational choice [Lui07] and that the utility function U is defined
accordingly.

• Decision making under ignorance: The agent only knows the set of
possible states S but has no further information. In this context, it is gen-
erally impossible to determine an action a that any rational agent should
choose. However, it is sometimes possible to eliminate certain actions
from the state of actions to consider actions that no rational agent should
ever choose. Besides, various heuristics (e.g. maxmin rule) have been
proposed which can be regarded as methods for making good decisions in
many situations. Again, the agent knows only the set of states S. This
corresponds to the completely vacuous belief function Bel on the universe
S which is defined by Bel(S) = 1 and Bel(X ) = 0 for each X ⊂ S.

By making decisions, the probabilities of the configurations of the network are
influenced. To identify the decision option with the highest expected utility,
calculate the expected utility of each decision alternative. If A is a decision
variable with options ai, the decision behaviour prescribed by the principle
of maximum expected utility is determined by some optimal decision function
∆∗ : DX → A. For each observation x ∈ DX , this function prescribes an action
that maximizes the expected utility whenever such an action exists:

∆∗(x) ∈ arg maxa∈A EU(a|x),

where EU(a|x) is the expected utility of action a given the information X = x.
It is also possible to illustrate the expected utility EU(ai) of performing action
ai as

EU(ai) =
∑
j

U(aj , hj)P (hj |ε),

where P (·) represents the belief of the decision maker in H as hypothesis with
states hi given ε as set of observations in the form of evidence. The utility func-
tion U(·) encodes the preferences of the decision maker on a numerical scale.
Choose the alternative with the highest expected utility.
It is here important to distinguish between observations and actions. An ob-
servation of an event is passive in the understanding that we can assume an
observation that does not effect the state of the world whereas the decision on
an action is active in the sense that an action enforces a certain event. The
event affected by a decision may or may not be included in the model depend-
ing on whether or not the event is relevant for the reasoning process. If the
event enforced by an action A is represented in the decision model, then A is
referred to as an intervening action, in the other case it is referred to as a non
intervening action.
Based on the decision theoretic foundation follows a description of Decision
networks that can be considered as extension of Bayesian networks [Paw04].
A decision network consists of chance nodes, action nodes and utility nodes.
Chance nodes represent random variables as introduced for BNs. Each chance
node has an associated CPT, giving the probability of the variable. Parent
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nodes can be action nodes as well as other chance nodes. Action nodes repre-
sent the decision being made at a particular point in time. An action node is
associated with the set A of possible actions, so that the values are the actions
that the decision maker must choose between. The parents of the node are evi-
dence variables or information variables. These variables are known and can be
observed by the decision maker before acting. In a decision network represent-
ing a single decision, only one action node for an isolated decision is required.
In a sequential decision process, the action nodes can have other action nodes
as parents indicating the order of decision. Utility nodes also known as value
nodes are associated with a utility function U : pa(U) → R, where pa(U) de-
notes the parents of U describing the outcome state that directly affect the
utility and may include action nodes. A utility node has an associated util-
ity table concerning a single entry for each possible instantiation of its parents
without having children nodes.

Figure 5.1.: Decision network as extension of Bayesian networks

Figure 5.1 shows a decision network with six involved random variables, two of
which are evidence variables as E1 and E2. The utility depends on the decision
and the value of the variable V2 which cannot be observed directly. As can be
seen, the evidence variables play the role of the information in the context of
expected utility theory, and the other random variables correspond to the world
state s ∈ S. In order to compute the expected utility of an action a ∈ A, the
action node is instantiated with that action. Moreover, the evidence variables
are instantiated with the corresponding observations. Then, algorithms for
BNs are used in order to compute a probability distribution over the random
variables which are parents of the utility node. The expected utility EU(a)
can be derived on the basis of this distribution. After having performed this
procedure for all a ∈ A, an optimal action is chosen according to the maximum
expected utility criterion.

Example 5.1. Bet Agriculture Certificate: Agriculture warrants are in-
tended to capture the performance of certain commodities in the agriculture
sector via a notional investment in future contracts. Future markets in this
context are amongst others corn, wheat or soybean. An investor Axan offers
an investor Bknow a friendly bet. Both will invest a fix sum in an agriculture
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index commodity constructed by taking exposure in its market to a future mar-
ket in a given tenor. The investor with less profit must invite the other out
to dinner limited to 85,- EUR. When deciding whether to accept Axan′s bet,
Bknow will have to assess his chances of winning which will vary according to
the weather for agriculture investments. Under utility aspects, Bknow will be
happy in the case of winning and be profitable regardless of the bet.

Figure 5.2.: Decision network for the agriculture bet example

The decision network in Figure 5.2 shows the agriculture bet situation. The
Result node represents whether investorBknow wins or loses, the nodeWeather
represents whether it rains or not when the bet is running. The decision node
AcceptBet is binary, the utility node U measures the investor’s level of satis-
faction. Note, that the decision node does not affect any of the variables being
modeled. Separate the general process to evaluate a decision network for single
decisions as follows:

1. Add any available evidence.

2. For each possible value of the action node set the action node to that
value, calculate the posterior probabilities for the parent nodes of the
utility node as for BNs using probabilistic inference and calculate the
resulting expected utility for the action.

3. Return the maximum action associated with the highest expected utility
value.

The expected utility whether or not the investor Bknow bets in the agriculture
scenario can be calculated as

EU(AB = T ) = P (R = B wins)× U(R = B wins|AB = T )+
P (R = A wins)× U(R = A wins|AB = T ) =
(0.25× 0.67 + 0.75× 0.31)× 120 + (0.25× 0.33 + 0.75× 0.69)×−100 = −12
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and

EU(AB = F ) = P (R = B wins)× U(R = B wins|AB = F )+
P (R = A wins)× U(R = A wins|AB = F ) =
(0.25× 0.67 + 0.75× 0.31)× 60 + (0.25× 0.33 + 0.75× 0.69)×−15 = 15.

The probability of the outcome of investor Bknow to make profit with the
agriculture investment is independent of the betting decision. Investor Bknow
will not accept the bet without additional available information. Expand the
previous example in dealing with observations. Arcs from chance nodes to
action nodes are information links that indicate, that a chance node needs to
be observed before a decision D is made after any decision before this decision
D. Calculate explicitly what decision could be made given different values for
that chance node. The previous example network can be extended by a Forecast
node representing the current weather forecast and act as parent node of the
action node AcceptBet. The expected utility can be calculated by evaluating
the network for each evidence case. The calculation for one action and a state s,
a decision D, utility functions Ui over domains Xi with i = 1, ..., n and evidence
e can generally be declared as

EU(D|e) =
∑
X1

U1(X1)P (X1|D, e) + · · ·+
∑
Xn

U1(Xn)P (Xn|D, e).

Maximizing EU(D|e) is chosen as an optimal solution for an agent dealing with
a single decision problem.

5.2. Sequential Decision Making

In planning situations it is essential to construct a plan to achieve a goal.
A problem solver should appoint the representation of actions, states, goals
and plans. Actions generate successor state descriptions, which are used for
successor generation, heuristic function evaluation, and goal testing [RN03]. As
extension of single decision problems sequences of decisions must be handled by
a decision maker in real-life situations. Making an observation or running a test
will provide useful information before deciding what further action to take. In
a planning situation, the set of discrete random variables and decision variables
are subjected to a partial ordering. The random variables are partitioned into
disjoint information sets I0, ..., In with Ii ∩ Ij = ∅ for i 6= j relative to the
decision variables specifying the precedence order. The partition includes a
partial ordering � on the random variables X. The set of variables observed
between decisions Di and Di+1 precedes Di+1 and succeeds Di in the ordering
I0 � D1 � I1 � · · ·Dn � In, where I0 is the set of random variables observed
before the first decision, Ii is the set of random variables observed after making
decision Di before making decision Di+1 for all i = 1, ..., n − 1, and In is the
set of random variables never observed or observed after the last decision has
been made.
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Example 5.2. Purchase a used car : A family in Frankfurt is thinking about
buying a second middle class car. While the envisaged car looks fine at first
glance, they know that there may be problems with the engine, actuator or
hidden not immediately obvious rust. They estimate that there is a 80% chance
purchasing a car in good condition with a 20% chance that it could be a dud.
They plan to resell the car after doing minor repairs. In the case that the car
is in a good condition, they should make 1000,- EUR profit, elsewise, they will
lose 500,- EUR. They know a surveyor for which they should pay 250,- EUR.
The family cannot be sure, that the report from the surveyor is accurate and
have to decide whether it is worth to have the inspection done and then decide
to buy the middle class car.

Figure 5.3.: Decision network for the used middle class car example

The used car scenario illustrated in Figure 5.3 induces the following partial
order: {} � Inspection � Report � BuyCar � CarCondition. No observa-
tions are made prior to the decision on whether or not to fulfill the Inspection.
After the Inspection and before deciding whether or not to purchase the car,
the family will make an observation of the Report, i.e. the Report is available
before the decision to purchase the car. After buying the car the real condition
is observed.
We could see more than one decision variable in the previous example. In gen-
eral, with decision variables XD we have to identify an optimal strategy ∆opt

over XD to maximize the expected utility MEU(∆opt) of ∆opt. A strategy ∆ is
an ordered set of decision policies including one decision policy for each deci-
sion D ∈ XD. An optimal strategy ∆opt maximizes the expected utility over
all possible strategies, if it satisfies EU(∆opt) ≥ EU(∆) for all strategies ∆.
A policy for a specific decision D specifies the optimal action for the decision
maker for all possible observations made prior to making decision D.
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To sum up, a discrete decision network was introduced in this Chapter as model
for reasoning and decision making under uncertainty. As component summary
a decision network is a BN augmented with decision variables, action variables,
and preference relations. The question is how to determine and learn prefer-
ences.

5.3. Modeling and Learning of Preferences

Preference modeling is a fundamental step of multi-criteria decision making,
operations research, social choice and voting procedures. The preferences of
an individual, for instance a user of an operating system [HBH98], a customer
of an electronic store [Rie00], or a patient requiring medical care [Cou98], can
be expressed in various ways, either explicitly, e.g. in the form of preference
statements or implicitly via revealed preferences, e.g. through choices made
in different situations. The problem of finding out about an individual’s pref-
erences, or about those of a group of individuals, is referred to as preference
elicitation. This requires both models for the formal representation of prefer-
ences and methods for the automatic data-driven acquisition of such models.
Subsequently, discuss two main fields for preference structures, namely prefer-
ence modeling and preference learning.
These are based on the possibilities for expressing preferences by evaluating
individual alternatives or by comparing pairs of competing alternatives. The
most basic concept of preference modeling is that of preference structures. Con-
sider a set of alternatives A and suppose that a decision maker wants to judge
them by pairwise comparison. Given two alternatives, the decision maker can
act in one of the following three ways:

• the decision maker prefers one to the other

• the two alternatives are indifferent for the decision maker

• the decision maker is unable to compare the two alternatives

According to these cases, three binary relations can be defined in A: the strict
preference relation P, the indifference relation I and the incomparability re-
lation J . The basic relation, often denoted a � b or R(a, b), is usually in-
terpreted as alternative a is at least as good as alternative b. The reflexive
relation R ⊆ A × A, where A is the set of alternatives, induces a strict pref-
erence relation P, an indifference relation I and an incomparability relation J
in a straightforward way. A triple (P, I,J ) with an asymmetric relation P, a
reflexive and symmetric relation I and a symmetric relation J is referred to
as a preference structure. Formally, the triple (P, I,J ) must also satisfy the
following:

• P ∩ I = ∅

• P ∩ J = ∅

• I ∩ J = ∅
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• P ∪ I ∪ J = A×A

In this context, binary relations R ⊆ A×A are considered and may be repre-
sented as functions R : A×A → {0, 1}. A triplet (P, I,J ) of binary relations
in A is a preference structure on A if and only if [dBvdWK97]:

• (a) I is reflexive or J is irreflexive

• (b) I is symmetrical or J is symmetrical

• (c) (∀(a, b) ∈ A2)(P(a, b) + P(b, a) + I(a, b) + J (a, b) = 1).

The second approach is more inclined to numerical representations of prefer-
ences via utility or value functions. A utility function u assigns an abstract
utility degree to each alternative under consideration and thus induces a pref-
erence relation � by virtue of R(a, b)⇔ u(a) ≥ u(b). The relationship between
the two approaches is a focus of research in the field of multi-attribute utility
theory. A question of interest concerns, e.g., the characterization of preference
structures that can be represented by utility functions have a certain mathemat-
ical structure. Of special interest are utility functions that can be decomposed
into additive sub-utility functions.
Obviously, the numerical approach provides stronger information than the re-
lational one but is also more restrictive and more demanding from a modeling
point of view. In fact, it is usually much easier for people to provide relative or
comparative preference information of the form “I prefer A to B“ than absolute
information of the type “I like A to the degree 0.86“, requiring the specification
of a utility degree (score) for each product. Moreover, revealed preferences are
usually of the relational type. Consider, for instance, a person in a situation
where a choice between two products A and B must be made. If that per-
son chooses A and not B, it is at least likely that the person prefers A to B.
Formally, this gives rise to the information R(a, b), whereas nothing is known
about the absolute utility degree from products A and B.
Advances in both approaches to preference modeling are possible through con-
cepts and tools from fuzzy set theory [Zad65]. The main contribution of fuzzy
sets is a unifying framework for handling different types of incomplete and im-
precise knowledge, a point of particular importance in preference modeling.
Subsequently, a presentation of two types of fuzzy preference models will be
presented which appears to be very interesting in the context of personalization
and recommendation, namely fuzzy preference structures and prioritized fuzzy
constraints.
People are often inconsistent in their judgments: a person may at one time
say (a, b) ∈ R, and at another time (b, a) ∈ R. Although a person might be
inconsistent in this sense, it is rather acceptable that the person might be prob-
abilistically consistent in the following sense. Let Q be an A2 → [0, 1] mapping
such that Q(a, b) is the proportion of times when a person prefers a to b. Proba-
bilistic consistency means that Q(a, b)+Q(b, a) = 1 for any a 6= b. In that case,
(A,Q) is called a pair comparison system. With the advent of fuzzy set theory,
and the immense impact of it, the whole theory of (binary) fuzzy relations has
become available [dBK94]. Because of the above mentioned inconsistency and
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the fact that fuzzy relations allow to express degrees of preference, indifference
or incomparability, it is very natural that fuzzy relations have been strongly
involved in preference models.
Fuzzy preference structures extend the classical approach by replacing the bi-
nary relation R with a fuzzy relation. In that case, R(a, b) is no longer forced
to be either 0 (which means that a � b) or 1 (which means that a � b) but
can take any value in the unit interval [0, 1] or, more generally, some linearly
ordered scale. The value R(a, b) can be interpreted in different ways, e.g. as the
strength of the at least as good relation between a and b or as a degree of un-
certainty. An associated fuzzy preference structure is a triple (P, I,J ) of fuzzy
relations having certain mathematical properties which are generalizations of
the properties required in the non-fuzzy case. Fuzzy preference structures and
their axiomatic construction is studied for the interested reader in Perny & Roy
[PR92] or Fodor & Roubens [FR94b]. Fuzzy preference structures help to over-
come several limitations of the classical approach, especially observability and
informational problems. In fact, more often than not knowledge about the pref-
erences of an individual will be incomplete, imprecise or uncertain. Especially,
this will be true if such preferences are induced indirectly, through observing
an individual’s choice behaviour. But even direct statements about preferences,
expressed in terms of natural language, will often be ambiguous. In fact, people
usually tend to qualify their preference statements, rather than simply saying
“yes“ or “no“. In all these cases, the fuzzy approach will help to make formal
models more adequate and realistic. We might even go one step further by val-
uating a preference through intervals [Bil98] or probability distributions rather
than using a single number.
Fuzzy constraints share important similarities with the numerical approach to
preference modeling. In much the same way as utility functions, such con-
straints can be used for expressing degrees of preference or satisfaction. The
fuzzy approach allows for a purely qualitative setting, where the underlying
preference scale consists of an ordered set of labels such as “good“ or “very
good“. In the multi-criteria case, individual degrees of preference are then
combined through aggregation functions more generally than arithmetic oper-
ations [BM03]. The qualitative setting appears advantageous from an applica-
tion point of view, since expressing preferences on a finite natural language scale
will usually be much simpler for people than providing precise numbers. Prior-
itized fuzzy constraints extend fuzzy constraints by the possibility of assigning
a degree of priority or importance to individual constraints. In the common
constraint satisfaction framework, the individual constraints which can pertain
to different aspects of an alternative are combined by means of a conjunction
operator. The overall degree of satisfaction can in principle be increased by
increasing the satisfaction of any individual constraint. In the prioritized set-
ting, the increase of a constraint with a relatively low priority is helpful only if
the constraints with a high priority are already sufficiently satisfied [LLLJ03].
The topic of preferences has also attracted considerable attention in artificial
intelligence, especially in fields such as non-monotonic reasoning, constraint
satisfaction, planning and qualitative decision making [BDS04]. Artificial Intel-
ligence offers qualitative and symbolic methods for treating preferences that can
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complement or even improve already existing approaches reasonably. Thus, ev-
ery expressive preference representation might be developed based on concepts
from logic or constraints, as well as tools for reasoning and decision making
with preferences.
Consider for instance an ignorance situation in which the decision maker must
apply a strategy to handle missing values. Assume indifference values in the
missing values, because an expert does not provide information on an alter-
native relating it to the rest of alternatives. Model this situation as a total
indifference one and therefore each missing value for the ignored alternative
can be replaced by 0.5. We have to solve a decision making problem to find
the best of four different alternatives X = {x1, x2, x3, x4}. An expert gives the
incomplete fuzzy preference relation being indifferent with respect to x3 (see
Figure 5.4). If an incomplete fuzzy preference relation has an ignored alterna-

Figure 5.4.: Strategy to manage an incomplete fuzzy preference relation

tive xi, this strategy computes all its associated missing values with p = 0.5.
Another strategy estimates the missing values for an ignored alternative as ran-
dom values within the range of preference values provided by the expert. An
unknown preference value will be calculated randomly between the minimum
and maximum preference degrees of its corresponding column and row (e.g.
p13 ∈ [0.68, 0.7]).

The term preference elicitation usually refers to the problem of finding out
about the preferences of a single individual. As a simple example consider ap-
proximating the utility function of a person by asking for several utility degrees
and then interpolating between them. Such problems are considered e.g. in eco-
nomic utility theory. Another goal is to predict the preferences of an individual
on the basis of certain properties of that individual and known preferences
of other individuals. Consider a salesman who knows from experience that
“middle-aged, working, childless men usually prefer product A to product B to
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product C“. The salesman has learned from experience to predict preferences
of clients on the basis of these clients’ features. The example can be seen as an
extension of supervised machine learning, with the known preferences playing
the role of examples. This type of problem involves the prediction of prefer-
ence structures in the relational approach or value functions in the utility-based
approach. There exist two approaches that closely fit the aforementioned idea
of inducing a preference function mapping individuals to preference structures.
Distinguish a model-based approach and a case-based strategy. A framework of
constraint classification as extension of standard classification problems is illus-
trated in [HPRZ02]. More specifically, constraint classification means learning
a function which maps an instance space X into the class of partial orders on
a set of labels L. With c-constraint classification, the output is restricted to
partial orders R ⊆ L × L of size |R| ≤ c. Ha and Haddawy [HH03] devel-
oped a similarity measure for (partial) preference structures. This probabilistic
distance allows to deal with partially missing preference information (see also
Figure 5.4). Moreover, it can be extended to the case of uncertainty, where in-
dividuals must choose among probability distributions over alternatives rather
than over alternatives directly. It is possible to use a case-based approach
[VR93], where the partially known preferences of a user are extended by ascrib-
ing to him the preferences of the most similar one among all other users.
It is also interesting to rank-order objects on the basis of preference informa-
tion of different type. Consider an approach for ranking a set of objects given
feedback in the form of preference judgments from different sources (e.g. rank-
ing of documents from different search engines). An approximation of a binary
preference relation over the objects can be induced, whereas a heuristic opti-
mization procedure can be used in order to find a ranking of the objects that is
maximally compatible with the preference relation. Given training data avail-
able in the form of pairwise comparisons of objects, it is possible to train an
artificial neural network that takes as input two objects and returns either 0
or 1, depending on whether or not the first object is preferred to the second
one. It is also interesting to analyze click-through data in the context of rank-
ing documents retrieved by a search engine according to their relevance. Using
this kind of indirect preference information, learning of a retrieval function is
accomplished by training a support vector machine.

As concerns the utility-based approach, learning a value or utility function
comes down to inducing a mapping A1 × · · · × An → R if alternatives are
specified in terms of attribute values ai ∈ Ai, 1 ≤ i ≤ n, and if the utility
of such alternatives is measured on the real number line. This problem can be
approached by means of techniques from statistical regression analysis and func-
tion approximation. As an aside, note that in decision theory a utility function
is usually not defined on the set A = A1 × · · · ×An of alternatives directly but
rather on the set of probability distributions as lotteries over A. The problem
of learning eliciting real-valued utility functions has been investigated in fields
such as decision theory and economics for a long time and has become a topic of
research in AI and machine learning as well [CKO01]. If utility is measured on
an ordinal scale, the problem of inducing a value function comes down to one of
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ordinal regression. Methods for learning ordinal regression functions have been
proposed in [PB00]. Here, the value functions are implemented as classification
trees whose leaf nodes are labeled with utility degrees.
The development of learning methods for fuzzy preference models and priori-
tized fuzzy constraints can close a gap in this research field. Reasons for fo-
cussing on fuzzy preference models are motivated by the fact that preference
information is usually vague, imprecise or uncertain. Moreover, fuzzy mod-
els subsume classical models as a special case. The restriction on prioritized
fuzzy constraints is justified by the fact that these models appear particularly
suitable for applications in personalization. A preference learning framework
should distinguish between the representation of individuals, the representa-
tion of alternatives, the underlying type of preference structure, the preference
information and the preference model to be learned. The framework should
comprise a kind of taxonomy for preference learning problems, which is neces-
sary for developing learning methods in a systematic way. It is also important
to have a criteria catalogue for measuring the performance of preference learn-
ing methods. Methods for the learning of preference models should extend
the pairwise preference learning more general than rankings. Another research
topic is to develop an instance-based approach to preference learning to derive
an overall ranking from the rankings suggested by the given examples. Finally,
since preference information is derived from statements or actions of humans,
the aspect of imperfect data becomes particularly relevant in the context of
preference learning. Addressed questions include how to model different types
of imperfect information and how to extend the learning methods to make them
approachable to imperfect data.
To classify preferences and preference structures consider in general a decision
problem which consists of the parts of values representing symptoms or observa-
tions, actions and possible consequences. It is possible to order the consequences
by preference by using a utility function U(·). Hence we can choose the action
that will lead to the preferred result based on some decision criteria such as least
risk or optimistic estimation. As demonstration for the practical relevance of
preferences the decision problem represented in Figure 5.5 is employed. The
possible actions are performing experiments, the values are the results of these,
and the consequences are the relative utilities of the experiment. The problem
is how to learn a causal BN as DN from a mixture of observational and exper-
imental data [MC04]. The directed edges are representing autonomous causal
relations among the corresponding variables, while in a BN the directed edges
represent a probabilistic dependency and not necessarily a causal one.
In order to find the causal relation between two variables X and Y we have to
check whether randomizing X by holding all other variables fixed at a certain
value induces a variation in Y or vice versa. Performing an experiment at X
will give us information on the directionality of all undirected edges connected
to X [MLM06]. On the basis of a decision theoretic approach the DN is learned.
Assume that the values (e.g. symptoms), actions and possible consequences are
given in advance. By using a utility function it is possible to order the con-
sequences by preference. The decision problem is illustrated in Figure 5.5, in

93



5. Decision Networks

Figure 5.5.: Decision problem of learning a causal Bayesian network

which the possible actions are performing experiments, the values stand for the
results of these, and the consequences are the relative utilities of the experi-
ment. Since the problem is iterative, a decision can be dependent on the choice
of a previous one.
A utility function U(·) will be a function with three variables gain(exp), cost(exp),
cost(measure), respectively the gained information, the cost of performing
an experiment and the cost of measuring other variables. Denote perform-
ing an action as experiment at Xi by AXi , and measuring the neighboring
variables by MXi , then the utility function can be declared as U(AXi) =
f(gain(AXi), cost(AXi), cost(MXi)). Assume that we perform an experiment
on Xi and measure all neighboring variables Ne(Xi). In this case connect all
links Xi and Ne(Xi) directly as a result of the experiment. In this case the gain
(AXi) is based entirely on the number of variables that are connected to Xi by
an undirected arc. It is possible that directing one arc infers direction of other
arcs and to take into account the possibility of inferred edges in gain(AXi).
The amount of edges of which the direction can be inferred after performing an
experiment is entirely based on the instantiation of the undirected edges con-
nected to the one being experimented on. It is crucial to choose the appropriate
decision criteria for the introduced learning problem. Depending on the type
of situation in which to perform the experiments it might be advantageous to
choose a specific criterion. The maximax decision criterion is an optimistic one,
which means to choose the action that could give the best result, i.e. the one
that might direct the most arrows. Using the Laplace criterion means that the
decision maker assumes that all directions of edges are equally probable. The
expected utility is based on a distribution of the directions of the links. Based
on this distribution it is possible to calculate the probability of any instantia-
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tion of directions that might occur. As summary, allow the possibility to add
newly discovered knowledge due to the experiments during the learning phase.
Since the experiments are performed, we gain information on the direction of
certain links. This information may remove the need to perform certain other
experiments. Learning DNs is possible with adaptive approaches, in which it is
allowed to actively add results of experiments by using any decision criteria or
utility function representative to order consequences by preference. This sec-
tion provides a decision maker preference modeling fundamental notations as
well as their applicability in a variety of fields like economy or medicine. The
description includes the determination and evaluation of preferences reflecting
the behaviour of a decision maker by establishing decision variables and utility
functions in a DN. The result is the ability to compare alternatives in different
decision situations with incomplete, uncertain or ambiguous information.

5.4. Information Gathering to Facilitate Reasonable
Decision Making

The problem of information overload has been a topic of concern in science in
recent years. The huge amount of information makes it necessary to expose
users to the most appropriate and interesting items by applying personaliza-
tion techniques. To solve the described problem so-called recommendation or
recommender systems aim at predicting topics, items, or products a specific
person as active user of the system might like [Uch08]. An increasing amount
of applications can be found in electronic commerce and information access,
with systems recommending web pages, movies, music and so on. As con-
cerns methodological aspects, different information filtering techniques of vary-
ing degree of sophistication have been developed, ranging from simple keyword
matches over similarity-based filtering to machine learning on heterogeneous
information sources. The techniques used mainly depend on the type of in-
formation available: features as demographic information of users, features of
items, information about user preferences such as ratings of selected items or
complete utility functions. This type of surface data can further be completed
by deep domain knowledge, consider for example how items can meet a user’s
needs or interests. The three main types of techniques mostly used for recom-
mender systems are demographic, content-based and collaborative methods. In
the first case, personal data of people are used in order to establish a relationship
between the type of people and the items they like or dislike. In this connec-
tion, clustering methods are often employed in order to create homogeneous
groups of people. Moreover, rule induction methods can be used in order to
learn rules whose condition part is a logical characterization of people in terms
of demographic attributes and whose conclusion part is a recommended item.
Content-based methods make use of textual descriptions of items to be rec-
ommended and employ methods from both information retrieval and machine
learning [ADF02]. Usually, content-based systems analyze the available ratings
of an individual user in order to infer a profile of that user. New items are then
recommended on the basis of that profile, using some profile-item matching
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technique. Roughly, content-based filtering methods recommend items that are
similar to other items known to be liked by the user.
Collaborative systems recommend items based on aggregated user ratings. They
exploit experience with other users, being available in the form of a database
about user actions, votes, or preference patterns. The basic idea of collabo-
rative filtering (CF) is to recommend items that have been chosen by those
users whose preferences are likely to coincide at least to some extent with the
active user’s preferences [GNOT92]. Thus, the principle problem is to pre-
dict the active user’s preferences on the basis of known preferences of other
users. This can be considered as a learning problem that can be approached
by methods from machine learning [BP98]. Most commonly applied in CF are
memory-based (case-based, instance-based) approaches, a special class of ma-
chine learning methods based upon the nearest neighbour estimation principle.
The basic idea is to ascribe to the active user the preferences of those users
that appear to be similar, where similarity can refer, e.g., to known properties
of users or to already revealed preferences. For instance, relying on the assump-
tion that people with similar preferences in the past will have similar interests
in the future, a popular measure of similarity between two users is the Pearson
correlation coefficient of these users’ prior ratings of objects. Alternative mea-
sures include the Spearman rank correlation, vector similarity, entropy-based
uncertainty measures and the mean squared difference [HKBR99]. Apart from
finding similar users, a central problem in case-based recommendation concerns
the combination of those users’ preferences into a prediction for the active user.
As opposed to memory-based approaches, model-based methods aim at induc-
ing a model from the data which is then used for making predictions and recom-
mendations. Once a model has been established, such predictions can usually
be derived more efficiently than with the memory-based approach. However,
learning a model might of course be computationally complex, even though it
can be done offline. Apart from that, passing from the complete data to a
model usually brings about a loss of information. Examples for model-based
CF methods include the use of BNs [BDK98] or methods based on cluster anal-
ysis. Klahold [Kla06] has introduced in his PhD thesis a new procedure for
a recommender system different from similar procedures by, first, employing
heuristics that link a TF-IDF (term frequency - inverse document frequency)
derivate with the properties of the text structure and, second, generating an
asymmetrical pre-calculated distance matrix that is independent of any partic-
ular language. Any unstructured text may be used as the underlying basis, and
no meta-data, thesauri or corpora are required. Further, different premises like
user acceptance, fast response time, or omission of manual intervention by the
author or user are applied.
All the aforementioned recommendation techniques have particular merits and
problems, and their performance will strongly depend on the application at
hand. For example, collaborative filtering works best for problems where the
user interest is focused on a small and static set of items. This technique usu-
ally fails, when the space of ratings is sparse. It is often useful to combine
demographic, content-based, and collaborative filtering techniques into hybrid
recommenders [Bur02]. This way, the limitations of each individual approach
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can be compensated, at least to some extent.
A knowledge engineer dealing with Decision networks needs a framework to
gather step by step information that facilitates the decision making process in
a specific problem domain by disregarding non-efficient and redundant infor-
mation [Pre02]. This will lead to a condensed DN, which includes only decision
relevant nodes. The basic idea is that the decision making process starts with
complete ignorance and moves towards a probability measure until the specified
information enables the framework to make a reasonable decision. The decision
maker starts with a decision making problem under ignorance and by adding
more and more information eventually comes to a decision making problem un-
der risk. A framework supports the decision maker on this way by providing
some hints on which information should be supplied and to what precision this
information is needed. It is a both crucial and obvious observation that the
path does matter. If the decision maker always supplies the wrong piece of
information, the path could become extremely long. The approach maintains
a belief function Bel which stands for the knowledge of the decision maker or
agent. Refer to this belief function by Bel(i) where i denotes the i-th iteration
of the main loop of the approach. Starting with an empty set representing no
knowledge at all which is represented by the completely empty belief function

Bel(0)(X) =
{

1 ifX = Θ
0 otherwise.

Since P(Bel(0)) = {Pr| Pr is a probability measure on the set of states S}, the
belief function Bel(0) really represents complete ignorance. By adding more
and more information, the size of the set P(Bel(i)) should be reduced over time.
In the i-th iteration of the main loop make the following. First determine the
set A(i) ⊆ A of actions that might be optimal given the knowledge Bel(i). For
any action a ∈ A compute the upper expected utility

E∗(a) = maxPr∈P(Bel(i))

∑
s∈S

Pr({s})U(c(a, s))

as well as the lower expected utility E∗(a) which is defined analogously. Remem-
ber that U(c(a, s)) ∈ R is the utility of the outcome c(a, s), where (a, s) ∈ A×S.
Then, Ai is defined to be the set of actions a ∈ A such that there is no action
a′ ∈ A satisfying E∗(a′) > E∗(a). Since there is such an action a′ it would be
irrational to chose action a.
Next determine a best action abesti ∈ Ai using some decision rule for evidence-
based decision making based on the knowledge Bel(i). For example, choose abesti

as proposal for the agent to be the action a ∈ Ai that maximizes

ρE∗(a) + (1− ρ)E∗(a)

where the parameter ρ ∈ [0, 1] has to be chosen by the agent. In addition, the
approach computes some data that is used to assist the agent. For example,
consider the computation of an upper bounds loss for the lost utility, which
originates when the agent chooses the action abesti instead of the optimal but
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unknown action a∗. Calculate the loss value based on the agent’s knowledge
Bel(i) as

loss = maxPr∈P(Bel(i)),a∈A(i)

∑
s∈S

Pr({s})∆(a, s)

where
∆(a, s) = (U(c(a, s))− U(c(abesti , s))).

If the loss value is small enough, the agent can choose the proposed action abesti .
Remember, that only the agent might have an idea of what this value means.
The concrete meaning depends on the definition of the utility function.
Another question is how to find the right pieces of information to supply
next. The agent can either stop when the loss value is small enough and
then choose the proposed action abesti or he can add new information. The
newly entered information should reduce the amount of ignorance, that is,
P(Bel(i+1)) ⊆ P(Bel(i)) should hold, where Bel(i+1) is the belief function which
represents the updated knowledge. If the agent has not stopped the algorithm,
the next iteration step (i+ 1) of the main loop starts.
An idea to guide the agent in selecting the right pieces of information is based
on the basic probability assignment mi which corresponds to the belief function
Bel(i) (see also Section 3.3). Let X ⊆ S be an arbitrary set satisfying |X| ≥ 2
and m(i)(X) > 0. If there is no such set X then Bel(i) = Pl(i) holds and thus we
are facing a decision problem under risk. This means that the weight m(i)(X)
assigned to the set X has not yet been distributed to the elements of X. Adding
more information leads to distributing the weight m(i)(X) among X ′s elements.
In general, there are many sets X satisfying |X| ≥ 2 and m(i)(X) > 0. Thus the
question arises which of these sets X is of particular interest for differentiating
between the actions. An approach to cope with this question is to calculate the
difference for any set X:

diff(X) = m(X) maxa∈A(i),s∈X (U(c(a, s))− U(c(abesti , s))).

The diff value is an upper bound for the effect that distributing m(X) among
X ′s elements could have on differentiating between the proposed action abesti

and the remaining actions a ∈ A(i). It is reasonable to choose a set X with a
high diff value and then try to distribute m(X) among the elements or among
the subsets of X.
The algorithm introduced by Presser [Pre02] solves the question in how to find
the right path. Given a decision problem (A,W) ∈ E a decision maker chooses
an alternative a ∈ A. It exists a true probability distribution ρ ∈ W inaccessible
for the decision maker with an optimal alternative a∗, which maximizes the
expected utility a∗ ∈ argmaxa∈AEU(a). The decision maker’s loss value loss
represents a quality mass to estimate the made decision a related to the decision
problem (A,W) ∈ E. The linear probability information W ⊆ S(n) with

S(n) = {p = (p1, ..., pn) ∈ [0, 1]n|
n∑
i=1

pi = 1}
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can be expressed as
W = {p ∈ Rn|Cp ≤ b}.

For instance, W1 = {(1, 0)} and W2 = {(0, 1)} are linear probability informa-
tion. A decision maker should state more precisely such constraint with highest
influence to the loss value. Starting point of the algorithm is a decision prob-

Figure 5.6.: Decision making algorithm to specify the standard information W

lem (A0,W0) ∈ E with partial probability information. The set of actions A
and probability information represented as standard form are inquired by the
agent. The decision problem specification occurs in the 4th step. We elimi-
nate all not-(Ai,Wi) efficient actions. Action a′ is called (Ai,Wi)-efficient, if
∀a ∈ A ¬(a �W a′). There exists by definition an action a which dominates
action a′. The agent prefers action a′ in this situation. The resulting set A′i
represents all (Ai,Wi) efficient actions. In the following step, eliminate all dis-
pensable actions, which are also (Ai,Wi) efficient actions, but there exists just
as well another preferable action. Action a′ is called (Ai,Wi)-dispensable, if
∃a ∈ A\{a′} (a �W a′). The agent determines another action a in such a
way that action a′ is not preferable. The elimination of action a′ does not limit
the alternatives of the decision problem (Ai,Wi). A decision maker has to be
able to reduce the number of actions which are conceivable as solution. Next,
a proposal is submitted on the basis of a heuristic like MaxEmin. In this step,

99



5. Decision Networks

a proposal a∗i ∈ H(A∗i ,Wi) is calculated concerning the current probability in-
formation Wi and the loss-value. The agent can accept action a∗i and leave the
loop or follows up. In the latter case further specification regarding the proba-
bility information is necessary. The agent adds further constraints and specifies
the representation (Ci, bi). If a specification is fulfilled, we obtain (Ci+1, bi+1)
with Wi+1 ⊆ Wi and the next iteration step follows. To sum up, an agent who
applies the algorithm which is illustrated in Figure 5.6, generates a sequence
of decision problems (A0,W0), ..., (AM ,WM ) ∈ E with W0 ⊇ W1 ⊇ ... ⊇ WM .
Finally, as a suggestion take action a∗M including the most precise problem
specification.

Example 5.3. Lazy Decision Making: It is often unnecessary to declare the
exact probability distribution in a specific decision situation. Abundant infor-
mation is added in decision situations under risk. Consider the decision scenario
(A,W) ∈ E with A = {a1, a2, a3}, whereby a1 = (5, 5, 5), a2 = (10, 5, 0), a3 =
(3, 3, 10). First of all, a decision scenario under risk is discussed with W = {p}
and p = (p1, p2, p3) = (0.6, 0.2, 0.2). Taking action a2 delivers the highest ex-
pected utility EU(a2) = 7.0. Giving exact probability values is unnecessary
from the agent’s point of view. The expected utility concerning a1 is com-
pletely independent of W. Calculate EU(a2) with 10p1 + 5p2. Awareness of
p1 ≥ 0.5 is sufficient to exclude a1 as optimal action an agent has to choose.
The information p3 ≤ 0.25 results immediately in a2 as optimal choice. The
imprecise information of p1 and p3 covers everything in this decision situation
(A,W) ∈ E.

An agent starts in a decision situation with completely empty belief and there-
fore cannot add non-trivial information as specification. Successive addition of
broad constraints leads to purposeful specification of probability information
an agent declares as conditional probability. For instance, an agent describes
the initial probability information as Pr({1, 2}|{1, 2, 3, 4, 5}) ≤ 0.3. We obtain
Pr({1, 2}|{1, 2, 3, 4, 5}) = (p1 + p2)/(p1 + p2 + p3 + p4 + p5) and due to this
p1 + p2 ≤ 0.3(p1 + p2 + p3 + p4 + p5) as linear inequation. The agent chooses
an appropriate representation for a clearer understanding and accentuation of
the constraints.
Consolidated, there are many application fields in which agents cooperate and
the precision of many pieces of information can be improved, but the price for
this improvement can be rather high.
Consider a knowledge engineer who has to combine diverse techniques to gen-
erate Bayesian networks and their extension augmented with decision variables
and utility functions. A Knowledge engineering process allows first the con-
struction of Bayesian models under a variety of circumstances named Knowl-
edge Engineering with Bayesian Networks (KEBN). Korb and Nicholson [KN04]
explain the KEBN process as lifecycle model including the network building
process, validation, testing, industrial usage and refinement (see Figure 5.7).
The author of this thesis has separately marked all new research approaches in
Figure 5.7 as violet boxes. In the first network construction phase, the major
components and parameters must be determined through elicitation from ex-
perts or by learning the structure given fully or partially observable data. In
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the validation phase a sensitivity analysis looks at how sensitive the network
is to changes in dedicated input and parameter values, which can be useful for
validating that the network is correct and second for understanding how best
to use the network in practice in the field. Testing puts the network into ac-
tual use allowing its usability and performance to be gauged. Model experts,
structure experts and system end-users are appropriate and deployed in early
release phases to detect hidden bugs.

Figure 5.7.: Bayesian and Decision network knowledge engineering process

From the knowledge transfer point of view it is required to achieve the end
users’ acceptance that the graphical model solution meets their criteria in the
defined problem domain for usage and to come into operation contemporarily.
The industrial use sees the graphical system in regular use in the field and
requires that procedures be put in place for the continued use. Statistics mon-
itoring in the application domain can help to further validate and refine the
network. The refinement process step requires some kind of change manage-
ment to deal with requests for enhancements or fixing bugs. Regression tests
confirm that any changes do not cause a deterioration of prior performance.
Condensed, the initial process step in building the network is a crucial point.
When attempting to model large and complex domains it is important to limit
the number of variables representing evidence, hidden or query nodes. For the
incorporation of actions and utilities it is important to combine beliefs and de-
sires under uncertainty. The preferences captured by utility functions can be
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learned from data based on constraints on rational preferences. By evidence-
based decision making it is possible to move from an ignorance decision situation
towards a probability measure until the specified information enables to make
a reasonable decision.

5.5. Decision Networks Review

We have introduced probabilistic networks for reasoning and decision making
under uncertainty. A probabilistic network represents and processes probabilis-
tic knowledge which is distinguishable by a qualitative and quantitative com-
ponent. The qualitative component encodes a set of (conditional) dependence
and independence statements among a set of random variables, informational
precedence and preference relations. The quantitative component specifies the
strengths of dependence relations using probability theory and preference rela-
tions using utility theory. A DN is a BN augmented with decision variables,
informational precedence relations and preference relations. We focussed our
attention on discrete decision networks, which support the use of discrete ran-
dom and decision variables with an additively decomposing utility function.
By adding a temporal dimension to BNs, we get dynamic DNs which allow us
explicitly to model and reason about changes over time. DNs provide a lan-
guage for sequential decision problems for a decision maker, where there is a
fixed order among the decisions. Solving a decision problem amounts to de-
termine a strategy that maximizes the expected utility for the decision maker
and compute the maximal expected utility. Decision making under uncertainty
is the task of identifying the optimal decision strategy for the decision maker
given observations. We must be able to take into account preferences between
different outcomes. Utility theory provides a way to represent and reason with
preferences. A rational decision maker should make choices that maximize the
expected utility. Preference elicitation refers to the problem of finding out
about the preferences of individuals. To predict the preferences of an individ-
ual it is indispensable to gain certain properties of that individual and known
preferences of other individuals. Preference learning requires methods for the
automatic, data-driven acquisition of preference models. For machine learning,
this type of problem is particularly challenging as it goes beyond the prediction
of single values. Instead, it involves the prediction of preference structures in
the relational approach or value functions in the utility-based approach. With
modeling and learning of preferences, a knowledge engineer is able to describe,
calculate and estimate the behaviour of a decision maker by influencing action
and utility nodes in a DN. Under the cost aspect, the provision of information
is expensive. It seems reasonable to use a piece of information in a decision
making process only when it is really needed. From a decision maker’s point
of view, information should be used only when it is needed and then only to
the precision that is necessary. We have discussed an approach which considers
this message and thus makes decisions based on some interaction with the agent
or user. This framework disregards stepwise all non-efficient and dispensable
actions to obtain the most precise problem specification.
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We outline a transformation framework for approximating decision networks by
fuzzy rule-based systems. The usage of fuzzy IF-THEN rules for representing
decision functions has multiple advantages like efficient implementation from a
computational point of view, approximation of non-linear functional dependen-
cies, information granulation facility and comprehensibility. Rule-based models
are intelligible at least if the involved membership functions are restricted to
semantically meaningful ones. This chapter introduces the key concepts of
fuzzy rule bases, the transformation process of a decision network in a rule base
representation including a transformation framework, algorithm AGoRuB for
automatic generating a rule base structure on the base of the transformation
framework, a generalization on fuzzy rule bases and evaluation measures for
calculating the granulation criteria based on partition fundamentals.

6.1. Fuzzy Rule Bases

Consider a set of variables Xi with domains DXi (1 ≤ i ≤ n) and a variable Y
with domain DY . Moreover, let Fi be a fuzzy partition of DXi , that is a finite
set of fuzzy subsets F ∈ F(DXi) such that∑

F∈Fi

F (x) > 0

for all x ∈ DXi . Likewise, let F be a fuzzy partition of DY .

A fuzzy rule base R is a finite set of fuzzy rules of the form “IF X1 is in
F1 and X2 is in F2 and ... and Xn is in Fn then Y is in F“, formally written as

< F1, F2, ..., Fn|F > .

Consider that a variable Xi can formally be omitted in the antecedent of the
rule by means of a proper definition of the fuzzy set Fi. There are different
types of fuzzy inference schemes. Formally, an inference scheme identifies a
function φR to a fuzzy rule base R, such that:

φR : DX1 × ...×DXn → F(DY ),

where F(DY ) is the class of fuzzy subsets of DY . If a defuzzification operator
F(DY ) → DY is applied to the output of this function, the fuzzy rule base R
induces a function

ϕR : DX1 × ...×DXn → DY . (6.1)
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Here, we do neither stick to a particular inference scheme nor to a special
defuzzification operator. The important point to realize is simply the following:
Once an inference scheme and a defuzzification operator have been determined,
each fuzzy rule base R can be associated with a function (see 6.1).

6.2. Transforming Decision Networks

Our point of departure is a decision network with a set V of variables. Let E =
{E1, ..., En} ⊆ V denote the set of evidence (information) variables. Moreover,
let A be the set of actions available to the decision maker. The decision maker’s
preferences are modeled by means of the utility function

U : V ×A → R.

Of course, utility will generally not depend on all variables V ∈ V. Thus, the
domain of U might be reduced correspondingly.
Note that S = DE1 ×DE2 × ...×DEn can be considered as the set of potential
decision problems or situations: Each situation is specified by a vector

(e1, e2, ..., en) ∈ S.

Given this information, the decision maker has to choose an appropriate action.
Let

∆∗ : S → A (6.2)

denote some optimal decision function induced by the decision network.
We are now interested in approximating the decision network, that is the opti-
mal decision function ( 6.2), by means of a fuzzy rule base R. In this connec-
tion, the evidence variables E1, ..., En play the role of the variables X1, ..., Xn

in ( 6.1), and the action variable A corresponds to the variable Y . Moreover, Fi
is a fuzzy partition of DEi , and F is a fuzzy partition of A. Thus, the function
( 6.1) induced by a fuzzy rule base R can be considered as an approximation

∆R : S → A (6.3)

to the optimal decision function ( 6.2).
Note that the transformed decision model ( 6.3) will generally involve much less
variables than the original model ( 6.2). In fact, the function ( 6.3) has n =
card(E) arguments, whereas the decision network involves card(V) variables.
Apart from that, the domain of the variables Ei is reduced by passing from
DEi to the fuzzy partition Fi. In fact, the maximal number of rules in a rule
base R is given by

n∏
i=1

card(Fi). (6.4)
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That is, a fuzzy rule base can be considered as a table with at most ( 6.4)
entries. A granulation G specifies a set of fuzzy partitions

G = {F1,F2, ...,Fn,F},

i.e. a fuzzy partition for each evidence variable Ei as well as for the action
variable A. Let G denote the class of allowed granulations. The class G might be
restricted, for instance, to fuzzy partitions composed of triangular membership
functions, or to (Ruspini) partitions Fi satisfying∑

F∈Fi

F (e) = 1 (6.5)

for all e ∈ DEi .
Moreover, letM =MG denote the class of fuzzy rule bases that can be defined
using granulations G ∈ G. Note, that several rule bases can be defined for one
granulation G.

6.3. Transformation as Optimization

The quality of a fuzzy rule base R as a decision function depends on several
factors, notably its approximation quality and its complexity. A natural mea-
sure of the approximation quality of a rule base R is the expected utility loss:
The expected utility of a decision maker using the decision network for choosing
actions is given by

EU(∆∗) =
∑
e∈S

EU(∆∗(e)|e) · Pr(E = e),

where Pr(E = e) is the probability of observing the situation e. Now, the
expected utility loss experienced by a decision maker choosing actions according
to the mapping ( 6.3) is given by

α(R) = EU(∆∗)− EU(∆R).

The complexity of a rule base A can be defined in different ways. For example,
a reasonable measure of complexity is the number of rules, or the sum of the
lengths of the rules in A. Subsequently, assume a complexity measure

κ :M→ R

to be given that assigns a real number to each rule base R ∈ M. The overall
quality of a rule base is a function

Q(κ(R), α(R))

of the approximation quality (expected utility loss) and the complexity. Typi-
cally, the decision maker faces an upper complexity bound κmax, i.e.

107



6. Transformation of Graphical Models

Q(κ(R), α(R)) =

{
−α(R) if κ(R) ≤ κmax
−∞ if κ(R) > κmax

. (6.6)

The compilation problem can now be formalized as an optimization problem:
Find a rule base R∗ ∈M such that

R∗ ∈ arg maxR∈M Q(κ(R), α(R)). (6.7)

6.4. Transformation Framework

It is needless to say that the above optimization problem will generally be
difficult to solve. Apart from that, the suitability of a particular optimization
method will strongly depend on the structure of the search space M. In most
cases, it will be reasonable to apply heuristic methods, such as evolutionary
algorithms.
A strategy of turning a decision network into a fuzzy rule base is to derive the
latter directly from the formal specification of the network. Here we pursue
a data-driven approach. That is, the decision network is represented in an
extensional form as the set

{(e,∆∗(e))|e ∈ S}

of situations with optimal decisions, i.e. as the pointwise specification of an
optimal decision function ( 6.2 ). The objective, then, is to approximate this
function by means of a function ∆R such that R does not exceed an upper
complexity bound.
Of course, the class S of situations will generally be large. Therefore, it might
not be possible to compute ∆∗(e) for all e ∈ S. Rather, optimal solutions will
only be derived for a sample S0 ⊆ S. Therefore, the problem of compilation is
also closely related to (machine) learning. Recall that classical machine learning
frameworks usually assume the sample to be generated at random [Bis08]. As
opposed to this, the sample S0 can be chosen freely in this context. That is to
say, the decision maker can select a set of exemplary decision problems he wants
to solve in order to gain in experience. In machine learning, this type of setting
is discussed under the name active learning [PZ06]. Within this setting, the
success of learning can be increased considerably by means of a proper choice
of training examples.
The following algorithm abbreviated TF is a frame for the transformation of
decision models:

1. Specify a class G of granulations (e.g. range of values, probability infor-
mation, condense attributes) and a class M of rule bases. Let S0 = ∅.

2. Sampling: Extend the current set S0 of examples by selecting further
decision problems e ∈ S. Employ the decision network in order to derive
optimal solutions ∆∗(e) for these problems.
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3. Search: Derive a fuzzy rule base R∗ ∈ M which is (approximately)
optimal in the sense of ( 6.7), with the expected utility loss replaced by
the empirical utility loss

α(R) =
1

card(S0)

∑
e∈S0

EU(∆∗(e)|e)− EU(∆R(e)|e).

The expected utility EU(∆R(e)|e) is derived on the basis of the decision
network by incrementally adding rules, which improve the overall quality
of the rule base by calculating each situation.

4. Evaluation: Evaluate the current rule base, e.g. by means of some kind
of cross validation (which requires a further sample). Decide whether
the current rule base R∗ is good enough. If not, proceed with step 5,
otherwise exit.

5. Model Adaption: Adapt the current class G of granulations and the
class M of rule bases.

The objective of the above transformation scheme is to find a rule base which
guarantees a certain approximation quality with a certain probability.

Example 6.1. Transformation Scenario: Here, we present a short example
to illustrate the basic idea of knowledge compilation. This example cannot
reveal the advantages of knowledge compilation, since the underlying decision
network is not complex enough.
Suppose that a decision maker has to estimate the number of black balls m in
an urn containing n = 20 balls altogether. That is, an action A of the decision
maker corresponds to an estimation of the number m. Action a yields a loss of
|a−m| if a ≤ m and of (a−m)2 if a > m, i.e. overestimation is more punished
than underestimation. The information available to the decision maker is the
number of black balls in a sample with replacement of size 6, i.e. the set of
situations is given by S = {0, 1, ..., 6}.
Fuzzy partitions have to be defined for the evidence variable E, i.e. the number
of black balls in the sample, and the action variable A. Suppose that only granu-
lations F1 and F with card(F1) = card(mathcalF ) = 3 are allowed. Moreover,
only triangular membership functions are allowed, and property ( 6.5) must
be satisfied. Consequently, a fuzzy partition is actually determined by only
one number. In fact, a fuzzy rule base R is obtained by assigning to each
of the antecedents (0, 0, α), (0, α, 1), (α, 1, 1) one of the consequences (0, 0, β),
(0, β, 1), (β, 1, 1), where (a, b, c) denotes the triangular membership function
with support (a, c) and core {β}. As can be seen, the class M of rule bases is
small enough and can be searched completely. Since the class S of situations
is very small as well, some difficult aspects of the above transformation frame-
work simply disappear in this example, namely sampling, evaluation and model
adaption.
We interpret a rule base {< F11|F1 >,< F12|F2 >,< F13|F3 >} by the additive
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fuzzy inference

φ : x 7→
( 3∑
i=1

F1i(x) · Fi
)( 3∑

i=1

F1i(x)
)−1

with subsequent center of gravity defuzzification (plus rounding of the result to
the closest integer). It turns out that the optimal rule base then consists of the
following rules:

〈(0, 0, 3)|(0, 0, 3)〉
〈(0, 3, 6)|(0, 3, 20)〉
〈(3, 6, 6)|(3, 20, 20)〉.

The expected loss induced by this rule base is 8.633, which is quite close to
the expected loss 8.244 associated with the optimal decision function ∆∗.

6.5. Automatic Generation of a Rule Base by Means of
a Decision Network (AGoRuB)

On the base of the framework for the transformation of decision networks in
fuzzy rule bases, presented in the preceding sections, an algorithm has been
implemented, which is taking up the essential ideas from the rough algorithm
AGoRuB. For this, an especially fitting environment for the development has
been searched. Since actually only few software support is granted, which fur-
thermore supports the main operations for decision networks, practically only
HUGIN Expert as specific program came into consideration. HUGIN Expert
is a commercial software system with its roots in Denmark, which provides
all necessary functions for the creation of -, and the inference inside Bayesian
networks and decision networks as well. Because of the fact that it is a commer-
cial product, there was no possibility to attain the source code. Nevertheless,
HUGIN Expert’s homepage [HUG08] provides a special version for research-
and demonstrational purposes, whereby, after a cost - free registration, the
download is free as well. This version also contains an API (Application Pro-
gramming Interface), which enables the user for certain important methods like
load, save, set and propagation of evidence in decision networks. Hence, a dis-
advantage is that merely small decision networks (to a maximum of 25 nodes)
can be handled, thus nevertheless being enough for the demonstration of the
algorithm in the case of a small example.
On this base a JAVA-program named DNCompiler.java has been written by
the author of this thesis, which the HUGIN Expert API integrates in the form
of the two data files hapi67.jar and hapi67.dll (also compare HUGIN API refer-
ence manual with version 6.7 [HA08]). The AGoRuB algorithm is exemplified
as sequence diagram and can be expressed in pseudo code as illustrated in Fig-
ure 6.1. The algorithm is roughly separated in five parts [HBF06]. As input,
a decision network which is compatible with HUGIN Expert is given as ∗.hkb
file. We are able to use the COM.hugin.HAPI package which is integrated in
the HUGIN Java API and provide us access to all HUGIN classes and methods.
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After compiling the DNCompiler file via ”c : \j2sdk\bin\javac DNCompiler”
the DNCompiler class-file is generated and availabe. Next start the Java-
program with ”java DNCompile” and load the decision network which is given
as ∗.hkb file, for instance appointed as test.hkb file.

Step 1: Load the decision network and initialize the new domain as ”deci-
sionNetwork = new Domain(test.hkb)”. The compiled decision network with
domain myNet contains the chance nodes associated with CPTs and decision
nodes representing the decisions being made at a particular point of time.
Step 2: Generate a node list and get all nodes from the new domain myNet.
The program distinguish between chance nodes and decision nodes. Chance
nodes are successively added to the chanceNodeList after the domain affiliation
is proven. We support in this algorithm discrete decision nodes which are ini-
tially set as output zero expressed as decision=null. A system printout displays
the number of nodes and their corresponding node names at that time.
Step 3: Allocate the chance nodes with valid data and initialize a situation
based on the chance node list. It follows the initialization of the rules and the
rule base RB. The algorithm starts without observations in the domain myNet
and set the evidence to zero. By now, the rule base is given and all chance
notes are allocated.
Step 4: The calculation of the optimal rule base plays a key part in this algo-
rithm. The rule base initialized in the previous step calls the method getOpti-

Table 6.1.: Methods getOptimalRuleBase and getOptimalRuletoAdd of the de-
cision network myNet in step 4

Method and Description

protected static RuleBase getOptimalRuleBase
(RuleBase ruleBase, int [] rule, int[] situation, Domain myNet,
NodeList chanceNodeList, DiscreteDecisionNode decision)
Serves the compilation of the decision network myNet and provides
an (approximately) optimal rule-base of the RuleBase-type.

protected static int [] getOptimalRuleToAdd(RuleBase ruleBase,
int [] rule, int[] situation, Domain myNet,
NodeList chanceNodeList, DiscreteDecisionNode decision)
Auxiliary method for the determination of an (approximately) optimal
rule that, in the further consideration, is adopted into the rule-base.

malRuleBase to calculate an optimal rule base compared to the original decision
network (see Table 6.1). The method getOptimalRuleBase backfills the rule-base
“ruleBase“ step by step with respective best-fitting rules. The backfilling of the
rule-base terminates when the addition of a further rule does not increase the
quality of the rule-base any further:
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Figure 6.1.: AGoRuB algorithm which determines the quality and complexity
of ruleBase
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if (bestRuleBaseQuality >= oldBestRuleBaseQuality) {
return(null);}
else {
return(bestRuleToAdd);}

In this case the subordinated method getOptimalRuleToAdd provides null
back and the calculated rule-base, refilled with rules, is given back.
Just like the name already tells, the method getOptimalRuleToAdd is determin-
ing a rule that improves the quality of hitherto generated rule-bases in the best
way. The method getOptimalRuleToAdd calls the method getQualityofRuleBase
(see Table 6.3) and prints out the temporary rule base quality consisting of the
expected utility loss on the basis of the decision of the decision network myNet
and the complexity in RB.
As a measure for the complexity of a rule-base the sum of lenght’s off all rule-
bases has been chosen. Accordingly clear the code is configured in two interlaced
loops, whereby the exterior loop runs about the number of involved rules and
the inner loop about the certain length of a rule.
For the determination of the quality of approximation of a rule-base, accord-
ing to the achievements of the preceding Section 6.3, the loss of utility, which
occurs, if instead of the decision-network (getDecisionOfDecisionNetwork), the
rule-base for the determination of the decision for a certain given situation is
used (getDecisionOfRuleBase), has to be calculated. The methods getDeci-
sionOfRuleBase and getDecisionOfDecisionNetwork are hereby used as aided
methods to select situations, in which the resulting decision differs and the loss
of utilization respectively has to be actualised. Inside the while-loop thereby it

Table 6.2.: Auxiliary methods for decision making

Method and Description

protected static int getDecisionOfDecisionNetwork (int[] situation,
Domain myNet, NodeList chanceNodeList, DiscreteDecisionNode d)
Auxiliary method for the determination of a decision of the
decision-network with a given situation “situation“.

protected static int getDecisionOfRuleBase
(int[] situation, RuleBase ruleBase)
Auxiliary method for the determination of a decision of the
actual rule-base with a given situation “situation“.

gets iterated about all considered situations (see Table 6.3). Depending on a
certain implementation of the auxiliary method getNextSituation we can oper-
ate in this place, which situations are viewed as exemplarily and therefore are
included in the calculation of the ExpectedUtilityLoss. After the ExpectedUtil-
ityLoss is summed up over all exemplary situations, the return-part grips and
provides the quality of the rule-base “ruleBase“.

This quality contains the sum of all successively summed up losses of utility
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Table 6.3.: Method getQualityOfRuleBase for the determination of the quality
of a rule base

Method getQualityOfRuleBase

Step 1:
Initialize new Domain myNet and load Decision network DecNet
as HUGIN file “DecNet.hkb“.

Step 2:
Get detected ChangeNodes CN and set node list chanceNodeList= {CN1, ...CNn}.
Get detected discrete DecisionNode DN and set with decision=null.

Step 3:
Start with an empty RuleBase RB = {}.
Initialize variable β ∈ [0, 1] as influencing factor, which represents the complexity
of the RuleBase. The quality of the RuleBase is composed of the calculated
expectedUtilityLoss and complexity. Set β := 1.
Set expectedUtilityLoss := 0. Set ComplexityofRuleBase := 0.

Step 4:
4.1.: Determine the expected utility of the Decision Network.
Calculate for each situation (cn1, ...cnn) ∈ CN and action in DN
the local utility based on utility values. Get the
maximal ExpectedUtility with action a ∈ domain(DN).
Set QualityOfRuleBase := ExpectedUtility(decisionDecisionNetwork).
4.2.: Determine the expected utility of the RuleBase.
Pass through all combinations of situations and actions of all rules.
Start with situation[i] = -1. Get decision d of RuleBase.
Calculate ExpectedUtility of RuleBase based on d.
Add rule to the RuleBase.

LOOP
4.3.: Calculate QualityOfRuleBase
Compute ComplexityOfRuleBase as sum of number of rules plus rule length.
Calculate ExpectedUtilityLoss :=
ExpectedUtility(decisionDecisionNetwork)-ExpectedUtility(decisionRuleBase).
4.4.: Find new minimum
Find next rule which increases the expected utility of the RuleBase
(mark as new minimum).
Add rule to the RuleBase if RuleBaseQuality > tempRuleBaseQuality.
Calculate QualityOfRuleBase :=
ExpectedUtilityLoss+ β· ComplexityOfRuleBase.
GOTO 4.3. UNTIL QualityOfRuleBaseold ≥ QualityOfRuleBasenew.

Step 5: Final RuleBase Quality Output
Get QualityOfRuleBase and printout the final report including
the quality of the calculated RuleBase, the expected utility loss,
the complexity of the calculated RuleBase and all calculated rules.
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of all considered situations and further of the complexity of the rule-base, just
like it has been discussed on a more general level in the preceding Section 6.3.
The beta parameter weights in this context the single values for complexity and
complexity of approximation of the respective rule-base.
Step 5: The final report contains the total quality of the calculated rule base
on the basis of the return value from getQualityOfRuleBase, the complexity of
the calculated rule base on the basis of the return value from getComplexity-
OfRuleBase, the number of rules and the rule base including the chance node
list and decision.

The AGoRuB algorithm for the compilation is tensely connected to the frame
for the transformation of decision models presented in Section 6.4. However
certain simplifications are made on two different places. At first, following
algorithm TF, it is necessary to accomplish a sampling, which serves for the
construction of a set S0 of exemplary decision situations. In this cohesion it is
absolutely uncertain, which decision situation has to be included into the set
S0, and also which not. For this reason all possible situations are considered
and weighted with the certain possibility of their appearance. This is resulting
in the fact that the sampling of the first step is reduced to the inclusion of
all possible situations inside the set S0. An alternative possibility might be to
identify certain standard-cases with the aid of experts knowledge and to build
the set S0 correspondingly, thus being very time- and cost-consuming. Even a
random assortment of standard situations would be conceivable in this context,
however, by this, important exemplary situations are neglected. A further sim-
plification of the algorithm is in the fact that the output does not contain fuzzy
rules, but rather is represented by a rule-base comprising exact IF THEN- rules.
With this, the problem of model adaption, implied in the preceding section, gets
eluded and step 5 of algorithm TF therefore can be economized without substi-
tution. Because of the modular structure of the algorithm it is easily possible in
future implementations to hurdle both of these problems. Furthermore it has to
be noticed that the inclusion of all possible decision situations (weighted with
the respective possibility of their appearance) does not solely imply disadvan-
tages at all, but, considering the quality of the resulting rule base, quite positive
consequences can occur, since rather seldom appearing decision situations are
also considered in the calculation of the rule base. As the heuristic search strat-
egy in the rule-base space a Greedy Hill Climbing algorithm is adopted.
Referring finally to the general remarks in Section 6.4, two factors are con-
clusive in this coherence. On the one hand, the complexity of the rule-base,
which is determined by the method getComplexityOfRuleBase, and on the other
hand the quality of approximation of the rule-base, which is determined by the
method getQualityOfRuleBase.

To sum it up the process of transformation comprises the following steps:

1. Learn a Bayesian network with the aid of a database (for example with
LAGD Hill Climbing) or construct the Bayesian network together with
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conditional probability tables manually (for example with experts’ inter-
views).

2. Amplify the Bayesian network with the aid of HUGIN Expert with utilization-
and decision-nodes to represent the users preferences.

3. Use the DecisionNetworkCompiler to compile the decision network, con-
structed in 2., into a IF-THEN rule-base.

To test the algorithm a “crop problem“ is used.

Example 6.2. Crop Problem: Consider the working farm from Mr. Spyers
who is located in Oklahoma. Mr. Spyers tries to yield a large crop with his
corn field. Someday he observes that different ears of corn bend down in most
cases caused by long periods of dryness or specific disease (for instance attacked
by mildew). Mr. Spyers considers either to invest in a treatment or to wait for
the next pluvial. To model the temporal aspect a dynamic BN is constructed
and augmented with the decision variable treatment and the utility functions
cost and crop as illustrated in Figure 6.2.

Figure 6.2.: The complete qualitative representation of the crop problem as a
decision network

Since the crop network is a complete Decision network, all preferences of
a user are already declared inside the network, so that step 3 of the previous
process of compilation, the execution of DecisionNetworkCompilers, can be used
as the starting point.

Here all occurring random and decision nodes are being automatically de-
tected and the initialization of a blank rule-base, which gets filled step by step
in the course of the further compilation with exact rules, is done on this base.
Right here, the output of the DNCompiler for the Decision network “crop prob-
lem“ is presented in Table 6.4 and Table 6.5.

The condition “-1“ here shows that for the respective node no evidence is
existent, while “0“ refers to the condition “false“ and “1“ represents “true“.
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Table 6.4.: Output of the DecisionNetworkCompiler for the “crop problem“

Final report

Quality of calculated RuleBase: 230.07820364277225
Expected Utility Loss: 209.07820364277225
Complexity of calculated RuleBase: 21

# Rules in calculated RuleBase: 11

Rules 1-6:

IF (drought=-1) AND (disease=-1) AND (bend down=-1) AND
(drought 1=-1) AND (disease 1=-1) AND (bend down 1=-1)
THEN (treatment=1)

IF (drought=-1) AND (disease=-1) AND (bend down=-1) AND
(drought 1=-1) AND (disease 1=0) AND (bend down 1=-1)
THEN (treatment=0)

IF (drought=-1) AND (disease=0) AND (bend down=-1) AND
(drought 1=-1) AND (disease 1=-1) AND (bend down 1=-1)
THEN (treatment=0)

IF (drought=-1) AND (disease=-1) AND (bend down=-1) AND
(drought 1=0) AND (disease 1=-1) AND (bend down 1=-1)
THEN (treatment=0)

IF (drought=0) AND (disease=-1) AND (bend down=-1) AND
(drought 1=-1) AND (disease 1=-1) AND (bend down 1=-1)
THEN (treatment=0)

IF (drought=-1) AND (disease=-1) AND (bend down=0) AND
(drought 1=-1) AND (disease 1=-1) AND (bend down 1=-1)
THEN (treatment=0)
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Table 6.5.: Output of the DecisionNetworkCompiler for the “crop problem“

Final report

Quality of calculated RuleBase: 230.07820364277225
Expected Utility Loss: 209.07820364277225
Complexity of calculated RuleBase: 21

# Rules in calculated RuleBase: 11

Rules 7-11:

IF (drought=-1) AND (disease=-1) AND (bend down=-1) AND
(drought 1=-1) AND (disease 1=-1) AND (bend down 1=0)
THEN (treatment=0)

IF (drought=-1) AND (disease=-1) AND (bend down=-1) AND
(drought 1=-1) AND (disease 1=-1) AND (bend down 1=1)
THEN (treatment=0)

IF (drought=-1) AND (disease=-1) AND (bend down=-1) AND
(drought 1=-1) AND (disease 1=1) AND (bend down 1=-1)
THEN (treatment=0)

IF (drought=1) AND (disease=-1) AND (bend down=-1) AND
(drought 1=-1) AND (disease 1=-1) AND (bend down 1=-1)
THEN (treatment=0)

IF (drought=-1) AND (disease=-1) AND (bend down=-1) AND
(drought 1=1) AND (disease 1=-1) AND (bend down 1=-1)
THEN (treatment=0)
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Figure 6.3.: HUGIN Expert crop decision network with node list

Furthermore it has to be noticed that in the case of multiple firing rules the
respective rule will be taken, which is last listed in the rule-base for the de-
termination of the decision. Apparently the compilation leads to an assessable
rule base consisting of 11 rules. The accuracy of approximation is, despite mi-
nor complexity of the rule base, relatively high, because the Expected Utility
Loss is roughly about 209 (compared with the underlying decision network).
The optimum would of course be an Expected Utility Loss of zero. Consider
the fact that an empty rule base has an approximate value of 18563. The rule
base is very compact and can therefore be efficiently evaluated. It becomes
obvious that the calculated rule base has found a good compromise between
the accuracy of approximation and the complexity. The rules themselves are
quite feasible: If nothing is known about the conditions of every single random
node or if no other rule fires, the rule base provides the conclusion treatment=1.
Therefore the treatment of the grain is recommended to prevent a disease. If,
from the first, the condition of the random node disease 1, that is anyway the
state of the grain at the temporary point of harvesting, is already known, the
rule base provides the answer treatment=0. This also makes sense, because the
treatment, or the neglect of any action does not affect the condition of the ran-
dom node disease 1 any more. Because of the tense connection between disease
and disease 1 it is also applicable that: If no disease is existent at the actual
point of time, then do not make any treatment (compare with rule 3).
The two last rules in Table 6.5 represent a prime example for the phenomenon
”Explaining away” [WH93]. Explaining away can be interpreted as common
pattern of reasoning in which the confirmation of one cause of an observed or
believed event reduces the need to invoke alternative causes. The opposite case
occurs, where the confirmation of one cause increases belief in another.
First consider rule 11:

IF (drought=-1) AND (disease=-1) AND (bend down=-1) AND
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Figure 6.4.: DNCompiler output of the crop decision network

120



6.5. AGoRuB

Figure 6.5.: DNCompiler final report of the crop decision network

(drought 1=1) AND (disease 1=-1) AND (bend down 1=-1)
THEN (treatment=0).

Apparently the situation, in which solely the evidence drought 1=1 (that
declares the aridity at the date of harvesting) is available, the best decision
would be not to conduct any treatment for the grain, in order to save costs.
A closer look at the structure of the underlying decision-network in Figure 6.2
reveals why this is the case. There are two competing causes for the deviation
of the ears at the date of harvesting (bend down 1=1): On the one hand it is
drought 1=1 and on the other hand disease 1=1. The observation drought 1=1
(from the requisite part of the rule) creates another possible cause, that is to say
disease 1=1, quite less possible. In other words: drought 1 explains disease 1
away (hence the term explaining away). Due to the lowered probability for
disease 1=1 the decision is made in favour of the non-treatment of the grain,
since it is most likely healthy. In statistics this phenomenon is well known as
Berkson’s Paradoxon (compare [DR82] and [Edw00]). For instance, two diseases
may be found to be correlated amongst patients but be unrelated in the general
population. Probably the same phenomenon is also behind the other rules.
Rule 10:

IF (drought=1) AND (disease=-1) AND (bend down=-1) AND
(drought 1=-1) AND (disease 1=-1) AND (bend down 1=-1)
THEN (treatment=0).

Here with rule 10 evidence for aridity is existent at the actual point of time
drought=1. By means of the structure of the Decision network (compare 6.2)
and the occupancy of the connected conditional probability tables (see table
6.2.5) we can see that the decision network is almost modeling the implication
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drought → drought 1, whereby again the situation discussed beforehand is
arising, and because of Berkson’s Paradoxon the decision will be made in favour
of the non-treatment of the grain.
In a second test a stock exchange situation is used. First, on the base of
an acquired database, a Bayesian network inside the domain stock exchanges
and economic situation has been learned. For this, 1314 data sets have been
gathered in a data base for the period from 14.02.2003 to 14.09.2007 and been
processed for the WEKA-internal ARFF-format.

Example 6.3. Stock Exchange: Consider the stock exchange situation in
which the single variables comprise the price for crude oil, the market price of
the Dax, the market price of the EuroStoxx50, the exchange rate for EUR/US-
Dollar, the unemployment rate (in Germany), the capacity utilization and the
Ifo Business Climate Index as illustrated in Figure 6.6.

Figure 6.6.: The complete qualitative representation of the stock exchange prob-
lem as a decision network

By applying the newly presented LAGD Hill Climbing structure-learning al-
gorithm a Bayesian network has been calculated, which models the interde-
pendencies and interactions between every single variable. Following this, the
ready-learned Bayesian network could be improved to the state of a decision net-
work by firstly integrating two additional random variables (”Unemployment
Rate 1” and ”Order Situation 1”), which are modeling the temporal aspect.
Furthermore the decision node ”E-CM” as employment-creation measure and
three utility nodes (”Cost”, ”Consumption” and ”Investment”), which represent
the user’s preferences, have been integrated into the actual dynamic bayesian
network (see Figure 6.6).
Apparently, many different dependencies exist between the price of crude oil,
the market price of the DAX, the market price of the EuroStoxx50 and the ex-
change rate for EUR/US-Dollar. Nevertheless, these variables are, on the base
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of the currently available data, not directly connected with the unemployment
rate, the capacity utilization and the Ifo Business Climate Index, so that the
result is a partially disconnected network. The decision node E-CM represents
the decision ”Is a E-CM procedure necessary?” and can therefore contain the
values false and true. Of course, such a measure causes several costs, therefore a
straight connection to the utility node Cost has been established. On the other
hand, such a decision also effects the unemployment rate in a future point in
time (Unemployment Rate 1). The future unemployment rate again effects the
consumption, while the Ifo Business Climate Index on the actual state effects
the future order situation (Order Situation 1). This future order situation on
the other side is tensely connected with corporate investments, thus being the
reason for the direct linkage to the benefit node ”Investment”. A further result
of the learning process is the dependency of the unemployment rate as well as
the Ifo Business Climate Index on the capacity utilization. In analogue causes
to the crop problem the DecisionNetworkCompiler has been used to compile
the decision network into an efficiently evaluable rule base. Here, the output
of DNCompiler concerning the decision network stock exchanges and economic
situation is given as illustrated in Table 6.6 and Table 6.7.
Just like the compilation of the Decision Network ”crop problem” has already
shown, the situation ”-1” here represents the state, that the respective node
has no evidence. ”0” refers to the situation ”low”, ”1” to the situation ”nor-
mal” and finally ”2” to the situation ”high”. As can be seen, decision making
here only requires the situations of the random nodes Order situation 1, Un-
employment Rate 1, Unemployment, ifo-business climate index and Capacity
Utilization. Just 11 rules are sufficient to decrease the actual Expected Utility
Loss from about 25308 (empty rule-base) to about 177. The rules themselves
seem to be plausible, but with one exception. As soon as the situation of the
random node Unemployment Rate 1 is known, it is recommended not to do
any E-CM procedure (compare rules 3,4,5,6 and 7 in Table 6.6 and Table 6.7).
The simple reason for this is that the accomplishment of an E-CM procedure
(E-CM=1) has not an influence on the situation of the node Unemployment
Rate 1 any more, and therefore the costs for this measure can be saved. In
practise, any access to the situation of the node Unemployment Rate 1 (unem-
ployment in the future is not very realistic, so that the other rules might be
more interesting to handle. So it is advisable, unbeknownst to the situations
of the involved variables, to arrange a job creation measure (compare rule 1).
This also counts for the case, if no other listed rule might fit later on. If actu-
ally the employment rate is low (Unemployment Rate=0), it is advisable not to
enforce any E-CM measure (compare rule 2). The last rule on the other side
seems to be a bit strange: If it is already known that the employment level in
future will be low (Unemployment Rate 1=0), but the actual level is still high
(Unemployment Rate=2), the arrangement of an E-CM measure is advisable in
any case. The addition of this rule nevertheless decreases the Expected Utility
Loss, so that the decision behaviour of the underlying decision network can be
approximated in a better way by the resulting rule base, than without this rule.
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Table 6.6.: Output of the DecisionNetworkCompiler for the “stock exchange
problem“

Final report

Quality of calculated RuleBase: 205.76167039852027
Expected Utility Loss: 176.76167039852027
Complexity of calculated RuleBase: 29

# Rules in calculated RuleBase: 11

Rules 1-6:

IF (Order Situation 1=-1) AND (Unemployment Rate 1=-1)
AND (Unemployment Rate=-1) AND (ifo-business climate=-1)
AND (Capacity Utilization=-1) THEN (E-CM=1)

IF (Order Situation 1=-1) AND (Unemployment Rate 1=-1)
AND (Unemployment Rate=0) AND (ifo-business climate=-1)
AND (Capacity Utilization=-1) THEN (E-CM=0)

IF (Order Situation 1=-1) AND (Unemployment Rate 1=1)
AND (Unemployment Rate=-1) AND (ifo-business climate=-1)
AND (Capacity Utilization=-1) THEN (E-CM=0)

IF (Order Situation 1=-1) AND (Unemployment Rate 1=2)
AND (Unemployment Rate=-1) AND (ifo-business climate=-1)
AND (Capacity Utilization=-1) THEN (E-CM=0)

IF (Order Situation 1=-1) AND (Unemployment Rate 1=0)
AND (Unemployment Rate=1) AND (ifo-business climate=-1)
AND (Capacity Utilization=-1) THEN (E-CM=0)

IF (Order Situation 1=-1) AND (Unemployment Rate 1=0)
AND (Unemployment Rate=-1) AND (ifo-business climate=1)
AND (Capacity Utilization=-1) THEN (E-CM=0)
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Table 6.7.: Output of the DecisionNetworkCompiler for the “stock exchange
problem“

Final report

Quality of calculated RuleBase: 205.76167039852027
Expected Utility Loss: 176.76167039852027
Complexity of calculated RuleBase: 29

# Rules in calculated RuleBase: 11

Rules 7-11:

IF (Order Situation 1=-1) AND (Unemployment Rate 1=0)
AND (Unemployment Rate=2) AND (ifo-business climate=-1)
AND (Capacity Utilization=-1) THEN (E-CM=1)

IF (Order Situation 1=-1) AND (Unemployment Rate 1=0)
AND (Unemployment Rate=-1) AND (ifo-business climate=0)
AND (Capacity Utilization=-1) THEN (E-CM=0)

IF (Order Situation 1=-1) AND (Unemployment Rate 1=0)
AND (Unemployment Rate=2) AND (ifo-business climate=-1)
AND (Capacity Utilization=-1) THEN (E-CM=1)

IF (Order Situation 1=-1) AND (Unemployment Rate 1=0)
AND (Unemployment Rate=-1) AND (ifo-business climate=2)
AND (Capacity Utilization=1) THEN (E-CM=0)

IF (Order Situation 1=-1) AND (Unemployment Rate 1=0)
AND (Unemployment Rate=2) AND (ifo-business climate=-1)
AND (Capacity Utilization=-1) THEN (E-CM=1)
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Altogether it can be declared that the tradeoff between a high accuracy for
approximation on one side and a low complexity of the rule base on the other
side in both executed tests is already working well. With another weighting
of the complexity of the rule base (by adjusting the parameter ”beta” inside
method getQualityOfRuleBase (compare Table 6.3)) the algorithm can be oper-
ated into the direction of higher accuracy of approximation or lower complexity
of the entire rule base.

6.6. Generalization on Fuzzy Rule Bases

Although the algorithm presented in the preceding chapter automatically solves
the problem of compiling into an evaluable rule base it would still be desirable
to attain the result of a fuzzy rule base, instead of a rule base consisting of
sharp rules. The advantages are obvious:

• Fuzzy rule bases are efficiently evaluable.

• Fuzzy rule bases can approximate non-linear functional dependencies.

• Fuzzy rule bases are easily interpretable.

• The integration of fuzzy enables the rule base to include vague observa-
tions into the decision making process.

Especially the second and last point clarify the dominance compared with rule
bases consisting of sharp rules. Furthermore, with the integration of fuzzy, the
possibilities of the underlying decision network are improved, which is merely
working with clearly specified values for all involved variables.
For the implementation, a structure similar to the structure of DNCompiler,
presented in the preceding section, is applied. Since DNCompiler is working
with sharp rules, all methods, accessing the constructive rule base, have been
adapted. Fuzzy structures and mechanisms of inference have been embedded
in the program FuzzIT of department 1 (department for informatics, University
of Dortmund). FuzzIT stands for the term Fuzzy Inference Tool and enables
to design a Fuzzy Controller with an editor or textually, to further use it for
inference. The problem concerning the initialization and adaption of fuzzy rule
bases, discussed in Section 6.2, has been avoided by the distinction of the fuzzy
controller by the user himself. This controller aligns, besides the linguistic terms
of the linguistic variables, a fuzzy controller and therefore determines methods,
which are used for fuzzyfication, inference, aggregation and defuzzification. The
result is a strict dependence of the quality of the calculated rule base and the
design of the Fuzzy Controller.
Since, at the actual stage of development, it still is not clear, how a concrete
model adaptation can be performed (compare Section 6.2) the initial definition
of the user seems actually to be the best solution. In summary the process of
transformation is composed of the following steps:

1. Learn a Bayesian network with a database (for example with LADG hill
climbing) or construct the Bayesian network including conditional prob-
ability tables manually (for example with the aid of experts’ interviews).
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2. Amplify the Bayesian network with the aid of HUGIN Expert with utility
and decision nodes for the representation of the user’s preferences.

3. Determine the fuzzy controller’s design with the aid of FuzzIT.

4. Use the DecisionNetworkCompiler to compile the decision network con-
structed in 2 on the base of the Fuzzy Controller determined in 3 into a
rule base.

To test the algorithm the “crop problem“, presented in detail in Section III,
is applied. Since this is a complete decision network, all user’s preferences are
declared in the network and so step 3 can be started, the determination of the
fuzzy controller’s design. Figure 6.7 presents the, for the process of compilation,

Figure 6.7.: Design and settings of the fuzzy controller for the crop problem

underlying design of the fuzzy controller, whereby its rough structure has al-
ready been determined by the utility and decision nodes of the decision network.
Figure 6.8 presents the linguistic terms that can be aligned to the variable bend
down. The blue line belongs to the linguistic term ”false”, the green line to the
term ”a bit” and the red line finally to the term ”true”. Similar to this, the
remaining linguistic variables have been designed. A fuzzy logic system which
uses fuzzy uncertainties consists of three main blocks: fuzzification, inference
mechanism, and defuzzification [BD97]. Furthermore the following design de-
cisions have been made inside the fuzzy controller (compare Figure 6.7):

• Fuzzyfication: Fuzzification is a mapping from the observed numerical
input space to the fuzzy sets defined in the corresponding universes of
discourse. The fuzzifier maps a numerical value into fuzzy sets repre-
sented by membership functions in the universe U [EVW05]. We have to
determine the degree of membership for each term in an input variable
as illustrated top left in Figure 6.9. On the left border of Figure 6.7 six
orange-coloured fuzzyficators can be seen applying FuzzIT, which com-
ply with the random nodes of the underlying decision network for the
transformation. Though, while the decision network only works with the
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Figure 6.8.: Defined linguistic terms on the sample of the linguistic variable
bend down with FuzzIT

values ”false” and ”true” for the situation of a respective node, the de-
signed fuzzy controller enables the decision network to work with any
value inside the interval [0,1]. As the respective method for fuzzification
Fuzzy Sinlgetons have been chosen. The reason why Fuzzy Singletons
have been chosen and not triangular functions for affiliation is that for
the evaluation of the rule base the situations declared inside the program
are to be pulled up. These situations are nevertheless nothing more than
fixed allocations of certain states to respective variables. Therefore no
uncertainty is existing and Fuzzy Singletons have to be preferred. The
problem that in certain situations some variables are without a value has
been solved the way that the Fuzzy Output of the respective fuzzificator
in this specific case has been set blank.

• Inference: Inference mechanism is the fuzzy logic reasoning process that
determines the outputs corresponding to fuzzified inputs. Each IT-THEN
rule defines a fuzzy implication between condition and conclusion rule
parts. The implication operator used here is the minimum operator. In
other words, for each rule the firing strength is applied to modify the its
consequent fuzzy set resulting in a new fuzzy set as the response of the
rule. The fuzzy implication is a mapping from the antecedent linguistic
terms to the rule conclusion linguistic term.

• Aggregation: Aggregation combines responses of individual rules to
yield an overall output fuzzy set using the max-operator for union. For the
aggregation of the premises referring to the logical AND the minimum-
method has been chosen. This assures that the strength of a rule is
determined by the weakest part of the 6 involved input variables while,
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as an operator for implication, the maximum was applied. Since the con-
troller fits with the FITA principle, inference follows on the aggregation
of rules. As an operator for aggregation the maximum has been chosen,
because this emulates the logical ”OR”. The strength of the result of the
aggregation therefore is best dominated in this context by the best fitting
rule.

• Defuzzification: Defuzzification maps output fuzzy sets defined over
an output universe of discourse to crisp outputs as valve in Figure 6.9.
It is employed because in many practical applications a crisp output is
required. A defuzzification strategy is aimed at producing the non-fuzzy
output that best represents the possible distribution of an inferred fuzzy
output. On the right side of Figure 6.7 the orange-coloured defuzzificator
”treatment” can be noticed. This defuzzificator converts the fuzzy output
of the inference engine into a crisp value from the output membership
inside the interval [0,1]. As the method for defuzzification the Center of
Gravity method has been applied. Another well-known methods are the
max criterion method or the mean of maximum method [KGK95].

Figure 6.9.: Fuzzification of the linguistic variable temperature

Consider the example from fuzzy control, where we use a fuzzy rule based
system to approximate the behaviour of a complex process. To facilitate the
understanding of the main blocks which are described before, a simple exam-
ple is illustrated in Figure 6.9. On the basis of a measured temperature at a
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machine in a factory, we have to set a valve which is determined as crisp value
from the defuzzification step.

On the basis of this fuzzy controller the process of transformation with an
empty rule base has been started. DecisionNetworkCompiler provided the fol-
lowing output:

Table 6.8.: Fuzzy rule base output of the DecisionNetworkCompiler for the
“crop problem“

Final report

Quality of calculated RuleBase: 230.07820364277225
Expected Utility Loss: 209.07820364277225
Complexity of calculated RuleBase: 21

# Rules in calculated RuleBase: 11

calculated Fuzzy RuleBase: RB ”RuleBase”,”RB”,359,157,{
premiseLVs={
”drought”, ”disease”, ”bend down”, ”drought 1”,
”disease 1”, ”bend down 1”
}
conclusionLVs={
”treatment”
}
Rule ”...”&”...”&”...”&”...”&”...”&”...” → ”true”
Rule ”...”&”...”&”...”&”...”&”false”&”...” → ”false”
Rule ”...”&”false”&”...”&”...”&”...”&”...” → ”false”
Rule ”...”&”...”&”...”&”false”&”...”&”...” → ”false”
Rule ”false”&”...”&”...”&”...”&”...”&”...” → ”false”
Rule ”...”&”...”&”false”&”...”&”...”&”...” → ”false”
Rule ”...”&”...”&”...”&”...”&”...”&”false” → ”false”
Rule ”...”&”...”&”...”&”...”&”...”&”true” → ”false”
Rule ”...”&”...”&”...”&”...”&”true”&”...” → ”false”
Rule ”true”&”...”&”...”&”...”&”...”&”...” → ”false”
Rule ”...”&”...”&”...”&”true”&”...”&”...” → ”false”
};

The rule base itself in Table 6.8 can be interpreted in the following way:
Every line starting with ”Rule” represents a rule. Following this there are the
assumptions connected with the logical ”AND” and finally the conclusion. The
order of the single linguistic variables is the same as defined under premiseLVs,
respectively conclusionLVs. ”. . . ” shows in this context here that for the re-
spective random node no evidence is existent, while ”true”, ”false” and ”a bit”
refer to the respective linguistic term of the certain random node. Surprisingly
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the transformation of the decision network ”crop problem” led to the same rule
base as the sharp version of the algorithm. This version, of course, provides the
same quality as the rule base, consisting of sharp rules, that has been deter-
mined in the preceding section. Possibly the stagnation among the quality of the
calculated rule base is caused by the low complexity of the decision network.
Another reason could be found in the chosen design of the fuzzy controller,
thus underlining the great relevance of initialization and adaptation steps in
algorithm TF. However, the advantage that the calculated fuzzy rule base, con-
nected with the user-customized fuzzy controller, can also handle vague inputs
and therefore provides more possibilities for the underlying decision network, is
still persistent.

6.7. Evaluation Measures

Analysis criteria for fuzzy rule bases were discussed under various aspects in
the past. [Kos92] has introduced probabilistic concepts and definitions useful
for comparing fuzzy sets. It is possible to make a point to which degree a fuzzy
set is a subset of another fuzzy set. Inconsistency aspects like self reference of
rules or loops within the rule base are explained in [LS93]. An affinity measure
calculates the consistence of terms, whereas a probability measure identifies the
degree of term overlapping. [SMMSPY95] compares different similarity degrees
for fuzzy sets based on a geometrical distance model, a theoretical fuzzy set ap-
proach, and matching functions. The interested reader can engross the thoughts
and achieve comprehensive background information of measures for analyzing
fuzzy rule bases in Chih-Tien [CT93] or Karacapilidis & Pappis [KP93].
We have developed new evaluation measures for analyzing fuzzy rule bases ob-
tained by the transformation process, which are not yet published. Granulation
plays a key role in directly influencing the complexity of the transformed model
through partition of the input- and output universe.
Granulation Criteria: At the beginning of the criteria description basic terms
are introduced. Given a fuzzy set F characterized by the mapping

F : U →< 0, 1 >

from the universe U in the real-valued interval < 0, 1 >. All elements of the
universal set are members of a given fuzzy set, therefore, two fuzzy sets may have
an overlap in the boundary definitions. The domain DEV (LV ) of a linguistic
variable is given as

DEV (LV ) ⊆ {F |F : U →< 0, 1 >}.

Elements of DEV (LV ) are labeled with names also well-known as linguistic
terms (LT). Consider the temperature of a production machine in a factory.
Corresponding fuzzy sets to the LT low temp, medium temp, high temp allows
any temperature in the interval [0, 150] representing the working temperature of
the production machine (e.g. milling machine). As a specific instance, the tem-
perature 94 is a member of all the fuzzy sets but the membership of temperature
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(=94) to belong to the sets low temp, medium temp, high temp respectively are
for instance 0.02, 0.63 and 0.87. The relative grading of the memberships can be
easily understood from the usual meaning of the three terms introduced above.
A fuzzy rule base R, which contains j linguistic variables, assigns LT (Vj) to
LVj . In other words, LT (Vj) represents the set of linguistic terms assigned to
LVj . The granulation concept is often introduced as resolution mass to describe
and understand input- and output domains [DHR07]. A high resolution is given
in the case of minor rule variations, where LT (Vj) with shortened support are
chosen in consequence. In the opposite case a large support is given. This clas-
sification is not sufficient to differentiate the granulation understanding. It is
more advantageous if a general structuring is achieved. Implement a standard
partition with the numerical value one as standard granulation. Comparable
granulations should numerically lie in < 0, 1 >. We understand the granulation
term as partition of input- and output universe by use of LT (LV ) to structure
input- and output domains.
At first formal standard granulation assumptions must be fulfilled. The gran-
ulation represents the standard form and takes the value one in the standard
case. Suppose that margin sets are trapezoids and all other fuzzy sets of a
LV are triangles. The parameters (xai , xbi , xci , xdi

) are defined as illustrated
in Figure 6.10 for trapezoid membership function positions. For triangles, it is
obvious that xbi = xci holds. Fuzzy sets represented as singletons are ignored
and out of the scope of this thesis.

Figure 6.10.: trapezoid fuzzy set of an arbitrary LV

Determine membership functions with support, core and co-core conceptually
for LTi

Core(LTi) = {x| x ∈ U ∧ LTi(x) = 1}
CCore(LTi) = {x | x ∈ U ∧ LTi(x) = 0}
supp(LTi) = {x | x ∈ U ∧ LTi(x) > 0} .

The assumptions for the standard granulation are as follows:
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(1)

(
Core(1) ∩ CCore(2)

) n−1⋂
i=2

(
Core(i) ∩ CCore(i− 1) (6.8)

∩CCore(i+ 1)
)
∩
(
Core(n) ∩ CCore(n− 1)

)
6= ∅

Core(LTi) ∪ CCore(LTi) = U ∀i ∈ {1, ..., n} (6.9)

(2)

xbi = xci ∀i ∈ {2, ..., n− 1} (6.10)
xbi < xci ∀i ∈ {1, n}
xc1 = xai+1 for i=1 and xbi = xdi+1

for i=n
xbi = xci = xdi−1

= xai+1 ∀i ∈ {2, ..., n− 1}
xa1 = xb1 = Umin with U = [Umin, Umax]
xcn = xdn = Umax with U = [Umin, Umax]
xai = xbi < xci < xdi

for i=1
xai < xbi = xci < xdi

∀i ∈ {2, ..., n− 1}
xai < xbi < xci = xdi

for i=n

Next core cardinality and core position definitions are given
(3)

Card(Core(LTi)) = 1 ∀i ∈ {2, ..., n− 1} (6.11)
Card(Core(LTi)) > 1 ∀i ∈ {1, n}

Core(LTi) = xdi
−
(xdi

− xai

2

)
= xbi = xci ∀i ∈ {2, ..., n− 1}

Core(LT1) = {x | x ∈ [Umin, xc1 ] ∧ LT1(x) = 1}
Core(LTn) = {x | x ∈ [xbn , Umax] ∧ LTn(x) = 1}
CCore(LTi) = {x | x ∈ [Umin, xai ] ∧ x ∈ [xdi

, Umax] ∧ LT1(x) = 0}
∀i ∈ {2, ..., n− 1}

CCore(LT1) = {x | x ∈ [xd1 , Umax] ∧ LT1(x) = 0}
CCore(LTn) = {x | x ∈ [Umin, xan ] ∧ LTn(x) = 0}

The distance of the core position from the margin cores can be described as
(4)

Max(Core(LT1))−Min(Core(LTn)) = (n− 1) ·
(Umax − Umin

n+ 1

)
.

We determine the x-axis position of linguistic terms with intervals. It follows

LTi : Ui −→]0, 1] ∀i ∈ {1, ..., n}
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with
Ui =

]
(i− 1) · Umax − Umin

n+ 1
, (i+ 1) · Umax − Umin

n+ 1

[
.

Next consider the support of each linguistic term in the standard case. The
following relations hold:
(5)

sup{supp(LTi)} = Umax−
(

(i−1)·Umax − Umin
n+ 1

)
∀i ∈ {1, ..., n} with U = [xa1 , xdn ]

inf{supp(LTi)} = Umin+
(

(i+1)·Umax − Umin
n+ 1

)
∀i ∈ {1, ..., n} with U = [xa1 , xdn ]

sup{supp(LTi)} = inf{supp(LTi+2) ∀i ∈ {1, ..., n− 2}

Two adjacent linguistic terms LTi and LTi+1 overlap the x-range of U :

sup{supp(LTi+1)}−inf{supp(LTi) =
(3(Umax − Umin)

n+ 1

)
∀i ∈ {1, ..., n−1}

Consider G as class of fuzzy partitions composed to Ruspini partitions (see also
6.5) satisfying ∑

F∈F
F (X) = 1 ∀x ∈ U

and ∑
x∈U

F (X) > 0 ∀F ∈ F .

The complete membership degree µcomplete(LV ) of a linguistic variable LV con-
taining n linguistic terms for all sharp values over U are calculated as

µcomplete(LV ) = Min{Max(Fi(x)) | x ∈ U ∧ i ∈ {1, ..., n}} = 0.5.

In diverse applications it is necessary to fulfill the following condition

µcomplete(LV ) = Min{Max(Fi(x)) | x ∈ U ∧ i ∈ {1, ..., n}} > 0.5.

Specific sharp x-values in U take for LTi the same membership degrees LTi(x).
Compare the membership degrees of x for the linguistic terms LTi with their
left and right neighbour terms:

LTi

(xdi
− xci
2

)
= LTi+1

(xbi−1
− xai−1

2

)
= 0.5 ∀i ∈ {1, ..., n− 1}

respectively

LTi

(xbi − xai

2

)
= LTi−1

(xdi−1
− xci−1

2

)
= 0.5 ∀i ∈ {2, ..., n}.

The substracted membership degrees at the neighbouring positions are calcu-
lated as zero.
Trapezoid membership functions of the margin fuzzy sets LT1 and LTn are rep-
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resented as flanks of an isosceles triangle. The inner fuzzy sets LT2, ..., LTn−1

are also isosceles triangles. We determine a γ-value to calculate specific mem-
bership degrees at concrete x-positions in U . Start at the core position of the
inner linguistic terms Core(LTi) and add or substract γ. We obtain the same
membership degrees on the x-axis. Broad this calculation step by step to the
other inlying and margin fuzzy sets. The γ-values are calculated as follows:

γi ∈
[
0,
xdi
− xai

2

]
with i ∈ {1, ..., n}.

Fuzzy margin sets contain designated x-values where the same membership
degrees are allocated.

LT1

((
xdi
− (

xdi
− xai

2
)
)

+ γi

)
= LTn

(
xdi
− (

xdi−1
− xai−1

2
)
)
− γi

)
.

The determination of the same membership degrees for x ∈ U is also discussed
in [KGK95]. A horizontal and vertical view on fuzzy sets is given. Specific level
sets Ai with i ∈ {0, ..., 1} are declared and collateral to the x-axis for each (0, i)
represented. A decision maker is now able to specify γi which facilitates the
calculation of membership degrees for designated x ∈ U .
Now an instrument is given to apply the granulation determination based on
partition of input- and output universe. The granulation criteria is refined in
integrating the following analysis topics:

• Support of the linguistic terms in relation to the standard granulation
demands

• Evaluation of the LTi cores

– Core size for LTi with i ∈ {1, n}
– Core size for LTi with i ∈ {2, ..., n− 1}
– Core position for LTi with i ∈ {1, n}
– Core position for LTi with i ∈ {2, ..., n− 1}

• Position of the LTi for linguistic variables LV

The results of support, core and position calculation are presented separately.
After that, the user runs a chance to weight this intermediate values for com-
pleting the granularity estimation.
Support of the linguistic terms:
The author of this thesis has developed a formula to calculate the covering of
the linguistic terms in comparison with the standard partition case. We proceed
on the assumption that maximal doubling of the support of each LTi is valid.
That is, with each doubling of the support the receiving value of fLT for this
LTi is equal to zero. All LTi count as equal with 1

n in fLT :

fLT = 1−
n∑
i=1

1
n

[ |(xdi
− xai)−

2(Umax−Umin)
n+1 |

2(Umax−Umin)
n+1

]
.
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Consider the situation, in which each LT can possibly cover the complete uni-
verse, we have to calculate fLT :

fLT = 1−
n∑
i=1

1
n

[ |(xdi
− xai)−

2(Umax−Umin)
n+1 |

(Umax − Umin)− 2(Umax−Umin)
n+1

]
.

Figure 6.11 illustrates top left the standard case with ideal support and maxi-

Figure 6.11.: Support of one linguistic term compared to the standard case

Figure 6.12.: Support of 3 linguistic terms compared to the standard case

mal fLT . Shifting this triangle LT to the right (or to the left) has no influence
on the calculated support output. At the top on the right we can see a linguistic
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term, which covers the complete universe U and the zero output is received. A
reduction of the support and simultaneously enlargement of the core is visu-
alized as fourth case at the bottom on the right. Figure 6.12 illustrates three
situations in each case with three linguistic terms we have to consider to deter-
mine the support value. Top left the standard case is visualized with expected
outcome fLT=1. The other cases clarify the effect when reducing the support
of all linguistic terms by 80%, 50% or 20%.
Core size and core position :
We will next study the core position and core size of the linguistic terms. The
core size examines the cardinality compared to the standard case. Consider
that a margin fuzzy set covers the support range halfway through. All other
fuzzy sets have cardinality one as Card(Ker(LTi)) = 1 ∀i ∈ {2, ..., n− 1}. By
now, we take no account of the core position.

Figure 6.13.: Core size of margin and inner linguistic terms compared to the
standard case

It is possible to weight the core size and core position differentially. We define
1
κ as standard mass for covering-over the support of a LT by the core, e.g. κ=2
for margin sets. The core size function is given as

f ic,size =
[ |(xci − xbi)− ((xdi

− xai) · 1
κ

)
|

(xdi
− xai)−

(
(xdi
− xai) · 1

κ

) ] for i ∈ {1, n}
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with κ ≥ 2 and respectively

f ic,size =
[ |(xci − xbi)− ((xdi

− xai) · 1
κ

)
|(

(xdi
− xai) · 1

κ

) ]
for i ∈ {1, n}

with 2 > κ ≥ 1 and

f ic,size =
xci − xbi
xdi
− xai

for i ∈ {2, ..., n− 1}.

Each f ic,size represents the core size in comparison to the standard-LTi case.
From this it follows from a holistic point of view

fc,size = 1−
n∑
i=1

1
n

[
f ic,size

]
.

A second important aspect measures the position of the core of LTi. Margin set
core positions correlate to 1

κ -fold of the support respectively. The left margin
set corresponds to the 1

κ of the left support and vice versa:

f ic,pos =
[(xbi − xai

xdi
− xai

+
|xci − (xai +

(
(xdi
− xai) · 1

κ)
)
|

(xdi
− xai)−

(
(xdi
− xai) · 1

κ

) ) · 1
2

]
for κ ≥ 2

and

f ic,pos =
[(xbi − xai

xdi
− xai

+
|xci − (xai +

(
(xdi
− xai) · 1

κ)
)
|

(xdi
− xai)−

(
(xdi
− xai) · 1

κ

) ) · 1
2

]
for 2 > κ ≥ 1.

The first addend compares the left core margin, the second addend the right
core margin with the standard case of the left margin fuzzy set. The weight is
cut into halves.
It follows for i = n

f ic,pos =
[( |(xdi

− (xdi
− xai) · 1

κ)− xbi |
(xdi
− xai)− ((xdi

− xai) · 1
κ)

+
xdi
− xci

xdi
− xai

)
· 1

2

]
for κ ≥ 2

and respectively

f ic,pos =
[( |(xdi

− (xdi
− xai) · 1

κ)− xbi |
((xdi

− xai) · 1
κ)

+
xdi
− xci

xdi
− xai

)
· 1

2

]
for 2 > κ ≥ 1.

The core position of the inner fuzzy sets should be in the middle of the support.
Shifting this position to the left or right direction directly influence f ic,pos. It
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follows for the calculation of the inner fuzzy sets i ∈ {2, ..., n− 1}

f ic,pos =
[ |xci − (xdi

− xdi
−xai

2

)
|+ |

(
xai +

xdi
−xai

2

)
− xbi |

xdi
− xai

]
.

To determine f ic,pos, we have to measure the difference values xbi and xci com-
pared to the standard position. It can happen, that for instance shifting the
core 25 percent to the left with kept cardinality one becomes more accountable
concerning the degree of variance with regard to the standard case than shifting
the core 25 percent to the left and simultaneously increasing the core cardinal-
ity (Card ≥ 1). In the former case, xbi and xci are located 25% away from
the standard value. In the latter case, the enhancement of the core cardinality
causes a xci-value, which is located nearer to the support center. This effect

Figure 6.14.: Core position of margin linguistic term LT1 compared to the stan-
dard case

is illustrated in Figure 6.15 at lower left (only shifting the core to the left) and
at the top on the right (shifting and simultaneously enlarging the core of the
inner linguistic terms). By now, we are able to integrate a weighting factor to
measure the core variance on the whole:

fcore = νsize

(
1−

n∑
i=1

1
n

[
f ic,size

])
+νcore

(
1−

n∑
i=1

1
n

[
f ic,pos

])
with νcore+νsize = 1.

Position of the linguistic terms:
We will next study the position of the linguistic terms, which depends on the
position of the support of each linguistic term LTi within the universe U . Either
we shift linguistic terms on the x-axis or enlarge or reduce the support area.
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Figure 6.15.: Core position of inner linguistic terms compared to the standard
case

In the former case it takes no effect to the standard case, in the latter case the
granularity value concerning the position of LTi decreases. At first, we have to
declare the valid covering degree of the linguistic terms. It should be allowed
to shift a linguistic term one position to the left or to the right or to differ
from the standard support by maximally doubling the support area. The error
boundary value is achieved at

2(Umax − Umin)
n+ 1

.

Note that Umax and Umin are valid within the following conditions:
Umax > 0 and Umin ≤ 0
Umax ≤ 0 and Umin < 0
Umax < 0 and Umin < 0

A maximum doubling of the support of LTi depending on the xai and xdi
stan-

dard position is allowed. In other words, xai and xdi
can differ from their

standard position maximal equal to their support value. Maximal shifting the
inner linguistic terms one position to the right from LTi to LTi+1 and respec-
tively to the left from LTi to LTi−1 for i ∈ {2, ..., n−1} is possible. Margin sets
can be shifted from LT1 to LT2 and LTn to LTn−1. The last important point
occurs in the case of maximal shifting LT and simultaneously modifying the
support area. We have to calculate an enlargement factor enlfac and reduction
factor redfac depending on the modification of the support area.
Case 1: Shift xai and xdi

to the right (∀i ∈ {1, ..., n − 1}) or to the left
(∀i ∈ {2, ..., n}). In this case we are able to maximal duplicating the modified

140



6.7. Evaluation Measures

support without violating the valid range. Else, the granularity value for the
LT position exceeds one.
Case 2: Shift xai to the right and xdi

to the opposite left direction (∀i ∈
{1, ..., n}). Take the multiplier for Umax−Umin

n+1 as γ value into account. We
are able to calculate the enlargement factor including γ as presented in Ta-
ble 6.9. The enlargement factor for the determination of the modified support

Table 6.9.: Maximal enlargement factor enlfac on the basis of modified xai and
xdi

Modification of xai and xdi
enlfac

3/4 · γ 8
1/2 · γ 4
1/3 · γ 3
1/4 · γ 8/3
1/5 · γ 5/2
1/n · γ 2

1− 1
n

of linguistic terms can be expressed as follows:

enlfac =
2

1− γ
∀i ∈ {1, ..., n}.

Case 3: Shift xai to the left and xdi
to the right (∀i ∈ {2, ..., n − 1}). The

calculation of enlfac for inner linguistic terms is given as

enlfac =
2

1 + γ
∀i ∈ {2, ..., n− 1}.

The determination of the modified values for xai and xdi
arises from the closed

interval
[
0, Umax−Umin

n+1

]
. It is conceivable to specify a reduction factor redfac

which in fact decrease the support area. The consideration of redfac is similar
to the enlargement case. The interested reader can engross the thoughts and
add up again the three cases mentioned before at this point for the reduction
factor determination. With the previous cogitations, we are able to declare a
function f iLT,pos which measures the variation of the standard case in shifting
the LTi one position to the left LTi−1 or one position to the right LTi+1. At
this, a modification of the support is only allowed within the predefined valid
boundary of maximal term shifting:

f iLT,pos =
(

1/
2(Umax − Umin)

n+ 1

)
· |xdi

−
(
Umin +

(Umax − Umin
n+ 1

· (i+ 1)
))
|+(

1/
2(Umax − Umin)

n+ 1

)
· |xai −

(
Umin +

(Umax − Umin
n+ 1

· (i− 1)
))
|.

It follows the total calculation of the position of linguistic terms with fLT,pos
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as

fLT,pos = 1−
n∑
i=1

1
n

[
f iLT,pos

]
.

If required, each linguistic term LTi can weight slip in the final calculation on
the basis of a weighting factor wLT,pos. Figure 6.16 illustrates three examples
regarding the left margin set, in which the enlargement of the core size with
simultaneously maintained position and the shifting process to the right is vi-
sualized. The holistic view concerning the granulation aspect includes analyze

Figure 6.16.: Position of margin linguistic term LT1 compared to the standard
case

the support

fgran = 1−
[
(fLT · wLT ) + (fcore · wcore) + (fLT,pos · wLT,pos)

]
with 0 ≤ wLT , wcore, wLT,pos ≤ 1 on condition that wtotal = wLT + wcore +
wLT,pos = 1. Finally, we are able to assess a special case (see Figure 6.17 on

Figure 6.17.: Position of margin linguistic term LT1 compared to the standard
case
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the right hand side), where the core of the inner set LT2 overlaps the complete
support area. The support of each linguistic term is equal to the universe
U . The core position of the margin sets are located at the opposite universe
margins. This case has opposed measuring characteristics compared to the
standard case and the granularity value results zero.

6.8. Transformation Process Flow

We will now introduce and run through the transformation process we have
used in this thesis to obtain a fuzzy rule base. The various techniques and algo-
rithms we have previously introduced for building Bayesian networks, Decision
networks and rule base representations are tied together. From the knowledge
engineering point of view, it is very important that the transformation pro-
cess be properly managed to achieve the desired representation. Participants
are mostly the knowledge engineer and domain expert. The former must learn
about the problem domain and the last-named must understand what differ-
ent model representations are and what they can do. Communication plays
a critical issue to be productive. The participants can start by constructing
simplified models to build mutual understanding. As knowledge engineering
proceeds, both the domain expert and the knowledge engineer’s understanding
of the problem domain deepen. For modeling decisions, it is important to ensure
that there is consistency across different parts of the model. The author of this
thesis has marked all new research approaches in Figure 6.18 as green-coloured
abstract process symbols. Each process step is described in detail next.

• Learn Bayesian network structure: Opening with the first trans-
formation process step, we are looking for methods for eliciting Bayesian
network structures. Here we presuppose only that we have a set of random
variables with an unknown distribution. Learning the network structure
from observations is a typical example. For instance, in the medical do-
main, a great deal of observational data is contained in collected electronic
medical records. In the case of missing data, sampling methods to ap-
proximate the probability of data containing missing items are available.
Apply the new LAGD structure learning algorithm, which is introduced
in Section 4.3.2, to obtain a Bayesian network structure which clarifies
the conditional (in)dependencies.

• Create Decision network: In the next process step, the participants
are able to extend Bayesian networks with two kinds of nodes, which
are ascertainable by preference elicitation and specification of the user’s
probability information about alternatives in a decision situation. These
two kinds of nodes are decision nodes representing decisions to be made
and utility nodes whose possible values are the utilities of the outcomes.
Utility nodes are closely linked to preferences of an individual. The term
preference elicitation refers to the problem of finding out about the pref-
erences of a single individual. Numerical representations of preferences
are given by utility or value functions. Specifying standard information
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Figure 6.18.: Transformation process flow from data acquisition to rule base
generation

W eliminates all non-efficient and redundant actions (see figure 5.6) in a
decision situation to obtain a shortened set of alternatives and finally con-
densed set of decision nodes. After this process step is fulfilled, a focussed
Decision network is arrived.

• Automatic generation of a rule base: The described algorithm for
automatic generation of a rule base by means of a decision network is
applied next. We are able to calculate outcomes on the basis of the
underlying decision network and simultaneously on the basis of the gen-
erated rule base. Quality and complexity measures are involved and deal
as explanation component for the expected utility loss.

• Determine linguistic variables and linguistic terms: At this point,
the available fuzzy inference tool named FuzzIT allows vague observations
to be included into the transformation and finally decision process. A
controller component aligns a fuzzy controller and provides methods for
fuzzification, inference and defuzzification.

• Evaluate fuzzy rule-base: The chosen set of linguistic variables and
linguistic terms is studied on the basis of new evaluation measures, which
compare selected sets to standard cases. Granularity measures are intro-
duced concerning the core, size and position of linguistic terms.

To sum up, there is interplay between structure representations and parame-
ters. To augment the classical KEBN process, which sketches a framework and

144



6.9. Transformation Review

describes in more detail methods to support at least some of knowledge engi-
neering tasks, a transformation process flow to model rule bases and to include
degrees of vagueness is given.

6.9. Transformation Review

A methodology for transforming Decision networks in an appropriate repre-
sentation form is described in this section. The transformation procedure is
applied to the problem of automatically generating rule-based models from
Decision networks. Models generated by this approach have much flexibility,
understandability and usability based on their ability to explain and represent
knowledge in an intelligible manner. A quality measure calculates the expected
utility loss and further the complexity of the rule base, which offers a decision
maker an instrument to comprehend the meaning of the best fitting rule base
output. In addition, a fuzzy inference tool is available and enables to design a
fuzzy controller to further use it for inference. This controller aligns linguistic
terms of the linguistic variables, which can be evaluated based on granularity
criteria. Granularity directly influences the complexity of IF-THEN rules of the
input- and output universe. An introduced transformation process assists a de-
cision maker from the first stage corresponds to gather data in the problem do-
main to the desired generation of fuzzy rule-based systems. The obtained fuzzy
rule-base provides an efficiently realization architecture and can be evaluated
for vague observations, whereas Decision networks requires evidence variables
to be precisely specified. The implementation of the transformation algorithm
is described and the approach is applied to the modeling of components of stock
exchange and crop problem in agriculture.

145



6. Transformation of Graphical Models

146



Part IV.

Studies and Applications

147





7. Product Lifecycle Management

With increasing competitive pressure, manufacturing systems are being driven
more and more aggressively. Manufacturing systems and processes are becom-
ing increasingly complex, making more rational decision making [EW03] in pro-
cess control a necessity. In current industrial practice, quality is ensured in the
product engineering cycle at the product design stage and the process control
methods at the inspection stage [ADEK05]. A third level of quality assurance
can be implemented during machining in process [GW06]. Product lifecycle
management (PLM) has become one of the key technological approaches and
enablers for the effective management of product development and product
creation processes [Abr06]. To achieve successful new and innovative products
PLM helps to improve the efficiency and quality by supporting every stage of
the product’s life from the company’s portfolio management to product devel-
opment, product manufacturing, ongoing maintenance and finally retirement
or recycling. Customers and users believe that PLM systems should especially
concentrate on the downstream phases of the product lifecycle. Integrating the
product use phase into the PLM concept represents a necessary enhancement
of the conventional product type PLM in view of managing product item data.
Future systems that are based on the exposed concept are to enable producers,
customers and service providers to derive new use models on the product type
and item level in a distributed knowledge network and to subsequently generate
scalable business models. These business models are to establish beside inno-
vative concepts for maintenance, servicing and availability efficiency feedback
mechanisms, incorporating condition monitoring results from the product use
phase of the last product generation in a target oriented fashion in the devel-
opment of the next product generation. Within the scope of a feedback cycle
this provides a basis for faster product improvements. A schematic of moni-
toring and control of machine processes including in-process quality control at
the machine stage is therefore a prerequisite to reduce production cost and to
automate many operations and functionalities. Enhanced solutions integrate
the product information from design and engineering step with sourcing, com-
pliance, suppliers, and complete supply chains to decrease product development
time, guarantee quality and therefore contribute sustained company profitabil-
ity and customer loyalty. Relationship management for identifying and linking
will be established on the basis of product information management on the
product item level. Users can access and process data on numerous granularity
and compression levels using a viewing and access concept.
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7.1. Basic Components of the PLM

In the past years product lifecycle management (PLM) has become one of the
technological and organizational key approaches that allow to effective manage
product development and manufacturing processes in design engineering and in
the industry. PLM is an integrated approach that is made up of a consistent set
of methods, models and IT tools for managing product information, construc-
tion processes and applications along the various phases of the product lifecycle
[SBM+05]. It is not only aimed at a single company, but at globally distributed,
interdisciplinary collaborations between manufacturers, suppliers, partner com-
panies and customers [ASI07, Mil03]. PLM developed from the 90’s product
management (PDM) approach [Sch99]. Whilst PDM has a restricted focus on
managing product data in the product development phase [ES08], PLM focuses
on incorporating all product data, processes and applications in the entire life
of a product (see Figure 7.1) [AS06]. PLM is more than administrating and
characterizing values and properties of a product through its development and
life. From the mechanical and business engineering point of view PLM helps
analyzing the product operations and uses in the market with respect to quality
and financial measures [HTB02] that facilitate the integration of new advanced
product development processes.

Figure 7.1.: Basic components of the product lifecycle management approach
[AS06]

The core of the PLM approach lies in the integrated data and process meta-
model, which is managed by a database management system and a central data
archive for saving all proprietary models and documents (e.g. CAD models
and text documents). Available PLM methods and tools can be split into the
following three groups [Abr07]:

• Information management: methods for identifying, structuring, classi-
fying, retrieving, splitting, spreading, visualizing and archiving product-,
process- and project-based data.
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• Process management: methods for structuring, planning, handling,
and controlling formal and semi-formal processes, such as releasing de-
signs and revision, change and notification processes [Bür01]. The close
connections between the various process steps and the resulting product
models are covered by so-called configuration management methods and
tools.

• Application integration: methods for defining and managing interfaces
between PLM and various source systems, such as CAD, CAM, CAE
and integrated company software, e.g. ERP, SCM, CMS, DMS or CRM
systems.

In addition to the basic PLM methods and tools, the PLM approach includes
a set of general complementary PLM methods and tools, e.g. engineering col-
laboration support, user access management and data analysis, reporting and
visualizing [MQB07]. The described PLM approach is conceptualized and de-
signed as a framework, which can be used as a reference for creating company-
specific PLM concepts and implementations. The focus of all available PLM
solutions currently lies on product development activities [AS04]. Generally
all current PLM solutions offer generic and preconfigured templates for data
models, processes and functions for specific domains and applications. The
strengths of available PLM solutions are in managing CAD models and techni-
cal documents; supporting construction releases and change processes and the
close integration with CAD and ERP systems. The main weaknesses of exist-
ing PLM solutions lie in the insufficient support of product lifecycle activities
beyond the development phase, as well as in the integration of service compo-
nents. A further problem is their high complexity and the necessary, very high
adaptation efforts. There are no generally acknowledged industrial standards
for PLM meta-data models and PLM processes, despite intense standardization
activities. Even though the PLM approach is not new and there are already a
number of PLM solutions available on the market, only 8 % of companies hav-
ing a clear-cut vision of PLM and implement wide ranging PDM/PLM systems.
Around 50 % of companies implementing PLM are still in the beginnings [AS04].
The existing, described PLM meta-models, methods and tools form a core plat-
form for continuing PLM improvements, enhancements and new developments.
It is necessary to classify the multi-dimensional development frame because
PLM is a very complex, distributed and interdisciplinary subject. These are
the development directions [Abr07]:

• a general instantiation approach for various industrial sectors or applica-
tion domains,

• considered PLM users or partners,

• covered product lifecycle phases,

• supported types of processes,

• covered types of products.
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This work focuses on the direction of development concerning the “covered
phases in the product lifecycle“. In contrast to existing PLM solutions that
are restricted to supporting the product development phase, the PLM models,
methods and tools currently being developed by the authors of this paper are
to support the management of downstream product lifecycle phases. Especially
the feedback of information from the product use phase to the product develop-
ment phase is to be established. The bidirectional flow of information between
the two phases forms the basis for faster product improvements and a more ef-
ficient service (e.g. more dependable maintenance forecasts, more efficient fault
analyses and thus higher availability). This is achieved through the target-
oriented integration of so far unused data from the product use phase. There
are numerous reasons for feeding back the so-called field data from the product
use phase in the product development. On the one hand, the underlying data
can essentially be seen to be realistic. On the other hand the obtained infor-
mation from the field comes directly from the relevant markets for the product
and therefore they mirror the customer’s “mood“. The use of field data in
product development is also a source for customer requirements, that has an
entirely different quality of information than, for example, market research or
cost and time-consuming customer questioning, because it based upon concrete
experiences related to the use and handling of existing products [Edl01].

Figure 7.2.: Development taxonomy for future PLM methods, models and tools
[Abr07]

Figure 7.2 illustrates a development taxonomy for future PLM methods,
models and tools including own coordinates for product lifecycle phases, prod-
uct types, process types, instantiation and considered users and actors, where
customer requirements can be represented very efficiently and fruitfully.
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Based on the development taxonomy and essential underlying information
and process management supposable and expected development directions are
derivable, which are also used as fundament for collaboration engineering.

7.2. Condition Monitoring

Today’s production machines are extremely cost-intense and cause high fixed
cost, whereby their efficient use is defined by low operating cost and low main-
tenance cost [Wan07]. It is possible to measure informative machine param-
eters for safety, efficiency and maintenance purposes using sensors to detect
component relationships by regularly acquiring the machine parameters during
operation [BKKL05] for condition monitoring. The sensors need to be capable
of delivering, alongside exact control variables, blurred, flawed, vague or inexact
data [Wan06] and representing this downstream.
Condition monitoring and diagnosis of machinery and processes [Dav98] have
become established by reducing sudden failure of machinery, reducing down-
times for repair and improving reliability [For05]. Maintenance work often
includes major machine replacements or upgrades, which are really capital in-
tensive work projects. Fundamental distinctions are the two types of mainte-
nance. Breakdown maintenance operates as repair at failure, whereas preven-
tive maintenance types take some actions with the aim of preventing failure
occurring or at least minimize the chance of failure. Reliability of a machine
measures whether it does what it is required to do whenever it is required to
do so [Mou01]. Reliability is the probability that a machine will remain online
producing as required for a desired time period in a statistical manner. The ap-
plication of quantified and qualified methodologies and techniques in condition
monitoring and diagnosis plays a leading role in the development of intelligent
manufacturing systems.
Although the technology and implementation of condition monitoring and di-
agnosis are continually developing, its fundamental principles can be traced
back to the usage of a priori information by using environmental parameters,
machine parameters and also human senses of machine experts to monitor the
state of machines and to find their failures. Monitoring processes (see Figure
7.3) are neither automatisms for parameter cause-effect relationships, nor do
they form models that predict incalculable or sudden events regarding the con-
sidered machine [Hol06b]. The usage of representations dealing with a priori
information allows quantifying the condition of industrial equipment. In that
case early diagnosis can be executed and corrected by suitable maintenance
steps before causing plant breakdown [CdC07].
Condition monitoring therefore involves designing and using sensing arrange-
ments of production machines, alongside with data acquisition, analysis and
decision making methods [WCC06] with the objective of implementing equip-
ment maintenance in a planned way using actual knowledge. This is the reason
why the application of a modern monitoring and diagnosis system for produc-
tion is becoming one of the urgent requirements that is necessary to improve
the level of system intelligence through the utilization of graphical models and
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systems. This enables the equipment to survive in an uncertain environment.
Conventional techniques for mechanical equipment monitoring usually involve
establishing certain kinds of quantified mathematical and statistical descrip-
tions about the detected symptoms and the possible problems, which tend to
be difficult and time consuming when the object’s behaviour and detected sig-
nals become complicated.

Figure 7.3.: Condition monitoring results and their coupling with integrated
PLM tools for decision making

The primary fields of application for preventing unplanned downtime and
diagnosing damage are, for example, pumps ([Bee04],[GZ06]), turbines [TK04],
clutches or gearboxes. Clutches suffer from abrasion, lack of lubricants, foul-
ing, corrosion or the consequences due to operating errors such as temperature
rises or increased friction. Further areas of application for condition monitor-
ing are wafer production ([GRFM06],[KKG+06],[MT06]) in the semiconduc-
tor industry ([CSHL05],[MGI06],[MS06]), casting processes, power machines
([Wol05],[HMS+06]), machine tools, engines or railcars [Guo05]. Microsystems
technology in industrial engineering makes it possible to acquire information in
real-time [LCZL07] and to make this available for application processes [LY05]
through IT-based networking. New services, such as remote diagnostics, sup-
plying spare parts or autonomous sensor network integration can be used to
increase availability, flexibility, accuracy or reliability which permit new lines of
business [SGGB07]. Several steps are required for implementing CM measures:

• significant production machine state variables and redundancies are to be
established,

• singular states need to be measured and documented,

• current states have to be matched with nominal values and thresholds,
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• methods and processes for diagnosing error sources precociously and de-
termining the causes [EJM06], to optimally control and carry out main-
tenance processes [Mai06] must be implemented.

The result of optimized maintenance processes based on machine parameter
analysis processes can reduce downtime as well as the following impact on fur-
ther intermediate and end products in downstream production stages [Wei06]
with the according follow-up costs regarding the product’s reliability [WP06].
Quantitative methods - based on mathematical statistics, probability theory
and qualitative methods based on a systematic, experimental localization of
weak spots and their following impacts - can be implemented for reliability
analyses [AFHN07].

7.2.1. Condition Monitoring Method Framework

In the past years, different effective monitoring techniques have been developed
[RJO05] for mechanical machinery, monitoring and diagnosis, such as visual in-
spection or surface defect detection. Condition monitoring techniques focused
on how to extract the pertinent signals of features from the equipment health
information. The main question is how to analyze and utilize this information
patterns in modern mechanical equipment. The main characteristics of modern
mechanical equipment are high working speed with complex and flexible struc-
tures and dynamic working environment. Explicit and reasonable monitoring
and diagnostics decisions are often required in real time, where the available
mechanical equipment information is incomplete, uncertain or conflicting in na-
ture. Under such situations, human decisions and the consideration of a priori
machinery and environmental information is a possible solution. The usage
of a priori information in Bayesian networks or other graphical models (e.g.
influence diagrams with action and utility nodes) is established [KN04]. In
recent years considerable progress has been made in the area of probabilistic
graphical models. They have become mainstream in the area of uncertainty in
artificial intelligence [RN03], where human decision is usually one of the best
solutions in the field of mechanical equipment health information. Experts can
initialize network structures with a priori information and learn from data and
probabilistic inference. This includes themes such as the characterization of
conditional independence in mechanical equipment and the sensitivity of the
underlying probability distribution of a Bayesian network to variation in its pa-
rameters. A new approach by the author of this thesis makes use of the learning
of graphical models with latent variables and extensions to the influence dia-
gram formalism [Hol06a]. The new condition monitoring framework consists of
analytical methods, statistical methods and graphical methods [HFAN07] for
detecting abnormal situations. Critical operating parameters occur as warn-
ings or alarms for the production machine. Advanced functions for diagnosis
are installed to test the truthfulness of alarming and warning signals to diagnose
prior to failure the causes of negative trends in the equipment and to provide
corrective actions to be taken. The condition monitoring framework consists of
the following components illustrated in Figure 7.4:
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Fault Tree Analysis: FTA methods were developed for system safety and
reliability as analytic approach. An undesired effect is taken as root top event
of a tree of logic. Each situation that could cause that effect is added to the tree
as a series of logic expressions [AD00]. In the case of a critical failure mode, all
possible ways that mode could occur must be discovered [ST07].
Failure Mode and Effect Analysis: A methodology for analyzing potential
reliability problems early in the development cycle where it is easier to take
actions to overcome these issues [TL06]. FMEA is used to identify potential
failure modes, determine their effect on the operation of the product and identify
actions to migrate the failures [Ise05].

Figure 7.4.: Condition monitoring and diagnosis techniques as framework dur-
ing product operation and usage

Markov Theory: A discrete time stochastic process with the Markov prop-
erty. A Markov chain is a sequence of random variables Xi with the prop-
erty, that given the present state, the future and past states are independent.
Hidden states [LHQB06] can be determined by observable output symbols
based on state-related probability distributions [JMS05]. Markovian systems
([GDX04],[KMM06]) appear so extensively in statistical mechanics as applica-
tion of probability theory for modeling and analyzing dynamic systems, with
which probabilities of future events are expressed.
Computational Intelligence: A rapidly growing area of fundamental and ap-
plied research in advanced information processing technology. The main com-
ponents of Computational Intelligence (CI) encompass a number of technologies
such as knowledge based systems, neural networks, fuzzy logic systems and ge-
netic algorithms. CI provides methods and techniques [SWR06] for analyzing,
constructing and developing intelligent systems [RN03]. The technologies have
their origins in biological or behavioral phenomena related to humans using
their senses (e.g. from seeing, touching). A neural network characterizes its
significant learning abilities by utilizing examples from data and organizing the
information into a useful form. This form composes a model that represents
the relationship between the input and output variables. This behaviour can be
interpreted as desired learning attribute to be applied in condition monitoring
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and diagnosis environment. Neural networks are suitable in the CM context
[Wan03] thanks to their ability to learn complex, non-linear functions, iden-
tify dynamic processes [XYZ97] that are tough to extract and thus model the
behaviour of complex production systems [Mor05]. Fuzzy logic deals with un-
certainty and ambiguity. Production monitoring tasks have often not the ability
to cope with accurate mathematical models [Jan06]. In such situations there is
the alternative to formalize a mapping between features and the machine status
with fuzzy logic [YE06], where imprecise information imitates human reason-
ing processes [JH03]. The input and output variables are encoded in insecure
representation [Pen04]. It is possible to deal with knowledge items on different
levels of complexity through aggregation and granulation techniques. Genetic
algorithms have the idea to evolve a generation of possible candidate solutions
to a problem using crossover and mutation operators based on the natural se-
lection and evolution theory.
Graphical Models: Graphical models [BK02] play an important role in rep-
resenting and processing applications with uncertainty [KN04] and for charac-
terizing conditional (in)dependencies [OC07]. Graphical models were developed
as means to build models of a problem domain (e.g. production machine) of
interest [Mit97]. It is necessary to decompose the available information in high-
dimensional domains [BK02]. In graphical modeling such a decomposition is
based on conditional dependence and independence relations between the ma-
chine attributes used to describe the domain under consideration [MKT07].
The structure of these relations is represented as a graphical network including
nodes for the attributes of the problem domain and edges representing a direct
dependence between two attributes. Using probabilities for giving an estima-
tion about a problem domain (e.g. machine domain) is an intuitive approach.
A knowledge expert gives an estimation about the domain knowledge on vari-
able Y by calculating the conditional probability that Y is known under the
condition evidence [HF06c], where evidence is the previously detected informa-
tion about this problem domain. An advantage of constructing and using such
network types for CM is the inference step on top of the complete knowledge
model of the machine application domain. This knowledge model contains all
necessary prerequisites (e.g. environmental knowledge, machine parameters)
for a particular knowledge item, model dependencies between knowledge items
and the ability to infer that prerequisite knowledge has already been acquired
[GH01]. Another advantage of using Bayesian networks as CM technique is the
management of uncertainty in the user’s observations [HF06b] by using every
degree of information on different abstraction levels about the user’s knowledge.
For CM applications machine parameter data can be modeled [CdC07], graph-
ical structures learned [Nea04] and probabilistic inference engines applied. In
this context Bayesian networks and influence diagrams [Jen01] can be found
in medical diagnoses, logistic applications [CdC07], financial applications or
expert systems ([Wit02],[CDL07]).
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7.2.2. Product Data and Condition Monitoring Architecture

A product data management and condition monitoring architecture (PDMCM)
is designed for gathering conventional PLM data and field data from the opera-
tion phase of the product instances which is gained by monitoring and diagnosis
of mechanical equipment. PDMCM can be made up of the parts sensor array,
signal processing, feature extraction and monitoring, meta data management
and data analytics & decision support for the aggregated machinery data.

Figure 7.5.: Product data management and condition monitoring architecture
[AFHN07]

Figure 7.5 shows the data and meta data flows in the overall PDMCM archi-
tecture including the condition monitoring components based on sensors, signal
processing and monitoring subsystems. The main advantage of current PLM-
solutions is the strong integration of the operation phase, which is neglected
in existing PLM-solutions. The condition monitoring and diagnosis compo-
nents allow the coupling [KSP05] between the integrated PLM meta model and
integrated PLM data vault and the condition monitoring output data (e.g. pro-
duction machine warning, alarm, performance evaluation) [SHRW05]. Sensor
arrays allow to convert physical quantities into electrical quantities for the sake
of computerized post processing [Bee04]. The selection of right production ma-
chine sensors is the key to effective condition monitoring and diagnosis because
without the ability to acquire accurate information the quantitative monitoring
and accurate diagnosis of equipment would be very difficult [GL06]. The signal
processing and feature extraction part is necessary to receive sensed measure-
ments and human observations and operating parameters from the controller
and process them on the basis of the signal nature and requirements from the
monitoring and diagnosis task [HMW+07]. Feature extraction is here funda-

158



7.2. Condition Monitoring

mental to map incoming signals into useable features ([JHRW02],[WLRH96]).
The monitoring system part should detect any forms of deviations from normal
situations and diagnose any potential problem. In order to manage data about
different product instances of a product type we have to distinguish between
classes (which are used in the early phases of the product lifecycle) and in-
stances of these classes (for which CM-data is collected and diagnosed during
the operation phase of the product). Therefore the PLM-system has to be ex-
tended in a way that it is not only able to manage data about conventional
product classes but also about instances of these classes. The condition mon-
itoring results (gained in the operation phase) may then be incorporated in
the development of the next generation of a given product using an advanced
PLM-system based on the described architecture.

7.2.3. Integration Concept for Capturing and Processing Feedback
Data

The traditional interpretation of PLM is the management of various products’
design and manufacturing data and their versions and variants. The product
lifecycle consists of the design/development, manufacturing and sales/market-
ing phases. In this case PLM is characterized by managing product information
regarding the product type, i.e. digital models (e.g. the BMW 3 series) of the
physical product, which is produced and used in later phases of the product
lifecycle.
This thesis, however, aims at integrating the product use phase into PLM. The
information in this phase no longer refers to the general product type, but to
its precise instances, called product items. The conventional PLM concept thus
needs to be expanded with respect to the management of product information
on the item level. The traditional product type PLM manages the manufac-
turer’s product information, as a large amount of the information is generated
here.
A great deal of information is generated during the product use phase, out-
side of the companies developing and manufacturing the product, and has to
be managed on the item level. Therefore gathering and utilizing this product
information poses a challenge to product item PLM. The problems identified
in product item PLM are as follows:

• Data holding backend systems are unavoidable due to the impracticality of
saving all product information on the product itself. Every product item
must be globally uniquely identifiable, to create a relationship between
the actual item and its product data on the backend system [FHB06].

• Product items generate information in the product use phase that have
to be passed on to the backend system. Depending on the product, its
location can regularly change, making concepts for synchronizing product
information in the item level necessary [FR06].

• Lack of an integration concept for product type and item PLM. Product
item information from product use has to be adequately combined and
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managed based on an extended meta-data model in the PLM system to
be useful for product development. This is done by means of aggregation
and fusion methods.

It can be seen from the above described integration of the product use phase
that it is mandatory to develop an extended PLM meta-data model. This model
is the basis for saving, managing and linking all product and process related
data in the product lifecycle. The proposed model was developed based on
the UML (Unified Modeling Language) object-oriented notation. Distinguish
between product type and item data as follows:

• The classical product meta-data objects for product information manage-
ment on the type level are described by the classes Product Type, Vir-
tual Part, Document (incl. associated File) as well as Virtual Structure.

• The additional classes Product Item, Real Structure, History Entry, Di-
agnosis Model and Condition Monitoring Data need to be introduced to
manage feedback information from the product use phase.

In Figure 7.6 the conventional classes for managing product type knowledge
are arranged on the left hand side and the new, additional classes for managing
product item knowledge on the right hand side.

Product Type and Product Item inherit from the super-class PLM Item, which
bundles and provides fundamental attributes from every element in the PLM
system. The main class for product information management on the item level,
Product Item, represents the real states of a physical product. The real prod-
uct is associated via the serial number. An instance of the Product Type class
can be associated with several instances of the Product Item class, while a
concrete product item must always be assigned to a certain product type. His-
tory Entrys offer the possibility of linking special maintenance incidents to the
corresponding product item. The Condition Monitoring Data class captures
concrete sensor data in the associated product item. Diagnosis models can
furthermore be associated to product items that, for example, can be used
to efficiently locate errors or to forecast upcoming maintenance work. These
models can either be constructed manually or automatically, based on suitable
learning algorithms due to CM data obtained in the product use phase [Nea04],
[LC06], [CRAMBMNF06]. They are structured recursively, making it possible
to assemble complex models from individual, hierarchically arranged, partial
models (such as certain generic modules, e.g. a specific type of bearing). Var-
ious diagnosis models, which are assigned to different product items, but the
same product type / module, can be united to increase model accuracy, thanks
to aggregation methods [CSK04], [RLNR06]. These aggregation models (com-
pare Aggregated Diagnosis Model class) are particularly interesting for product
development and can provide a basis for deriving future product improvements.
New product services optimizing the knowledge flow between customers, manu-
facturers and service providers, can be generated from the presented integration
concept. This concept can be used as a basis for a holistic product lifecycle con-
cept. While in the early phases of the product lifecycle (product development,
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Figure 7.6.: Basic extended meta-data model UML class diagram for the inte-
grated management of product type and item data [AFHN08a]
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manufacturing and distribution) PLM is distinguished by managing product
information related to the product type, information coming from the product
use phase is related to concrete instances of products developed in earlier phases
[TYJL06]. The PLM concept was extended so that the meta-data model could
serve as a basis for managing product type and item data. The three main par-
ticipants manufacturer, user and service provider access the data with different
views and rights (see Figure 7.7).

Figure 7.7.: Integration concept as a basis for new product services

New fields of business in service or in collaborating [VH05] with external ser-
vice providers open up to the manufacturer, who until now mainly generated
and managed product type knowledge [WTL07]. Furthermore the aggregated
product item knowledge may be incorporated into the development of follow-
ing generations in the scope of a feedback cycle to improve customer loyalty
and customer relationship management services. Future PLM approaches will
therefore integrate development and service partners as well as customers within
different stages of the product lifecycle [Mye05]. Customers can provide pref-
erences, wishes and requirements to the producer with prospective feedback.
During the product usage and operation phase the customer can also provide
feedback on his experiences, his satisfaction with the product use and more im-
provement proposals, which can be used by the producer for the development
of the next product generation as retrospective feedback. PLM models and
methods were extended in order to integrate this customer feedback into the
product development processes (e.g. change management processes), into the
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product structure and into the classical PLM configuration management. Spe-
cialized PLM models, methods and tools will better support the management of
other downstream product life phases like operation monitoring, optimization
and maintenance of the product during its usage [Qiu06]. CM acts as a major
component of predictive maintenance and as extension of the PLM approach
supports the development of new product generations. Customer feedback in-
formation and condition monitoring method framework results carry over in-
formation and experiences from the product operation phase of generation n to
the product development phase of the next product generation n+1.

Figure 7.8.: Feedback of information from the product use phase to the devel-
opment phase of the next product generation

It is imperative to represent and process data, compressed through aggrega-
tion and fusion methods [CSK04], in numerous granularity levels when integrat-
ing distributed data models. The integration is based on the diverse views and
access rights of the users. Advanced aggregation methods work with all avail-
able source information at aggregation time and allow extensions to take the
user’s prior knowledge into account [RLNR06]. The CM results, collected in the
product use phase from various customers are aggregated at original equipment
manufacturer (OEM) side (see Figure 7.8). In this context more complete and
exact knowledge representation models can be implemented for developing fol-
lowing product generations as well as for use in the manufacturer’s or external
service providers’ service departments.
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7.2.4. PLM Feedback Cycle as Enhancement of the Support
Knowledge Engineering Process

Supporting business processes with knowledge management technologies is one
of the key factors in today’s industry. The former technologically related or-
ganizations now have to turn to the business strategy of the company, which
they must support with their offered IT services. IT processes have to become
more transparent and better manageable. It is fundamental to visualize ser-
vice propositions to satisfy customer needs. Different business processes and
the potential of supporting them need knowledge management measures. The
illustration of applicability and possibility of IT service management and ap-
propriate support services in business processes especially in the field of PLM
require a novel feedback cycle for customers, service providers and OEM to
assist such service support processes.

Figure 7.9.: HP ITSM reference model structure including five different groups

New digital technology is improving business efficiency by radically increasing
the quality and quantity of information available to PLM knowledge workers.
Networks can be built if some sort of catalogue of knowledge (knowledge bank)
exists that can be used to connect people [RES+00]. Best practices were found
in the four main areas product support, product sales, workflow and project
management. This means in a condensed form a structured knowledge [All98]
and information creation process project for customer product related support.
The effective knowledge creation, maintenance and sharing becomes more and
more a crucial factor for support product organizations and especially for the
support business [Mai04]. IT Service Management (ITSM) helps delivering and
supporting IT services that are appropriate to the business requirements of
the product organization, and it achieves this by leveraging IT Infrastructure
Library (ITIL)-based best practices that promote business effectiveness and ef-
ficiency. The ultimate goal of ITSM is to provide quality services to customers.
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The IT company Hewlett Packard has organized IT processes into five different
groups that focus on different aspects of the service lifecycle. This approach
allows product users to follow a complete service lifecycle [Grü05]. HP ITSM
enables to consistently deliver product services in a way that balances perfor-
mance, quality and cost.
Starting at the upper left and proceeding clockwise around the model (see
Figure 7.9), users can follow the progress of an IT service from initial concep-
tion to delivery, eventual obsolescence, and updating or replacement by a new
service. A support knowledge engineering process within product service opera-
tions describes the call flow inside organizational structures and the knowledge
creation and retrieval action. Most of the standard product requests and feed-
back issues were solved by using support knowledge tools such as knowledge
databases, retrieval systems or knowledge trees implemented and realized in a
knowledge desk framework. A product domain architect (DAR) develops the
product knowledge tree structure and creates the knowledge content for a do-
main. Figure 7.10 illustrates two domains of a mobile phone manufacturer
who offers diagnosis trees for the problem domains SIM card and mobile phone
battery.

Figure 7.10.: Knowledge desk decision tree structure including two domains of
the product mobile phone

A knowledge desk (KD) is technically a system portal solution that can create
inside product organizations a case-based reasoning and advisory system for
guided retrieval, maintenance and creation of knowledge [HF07a]. KDs are
aimed to enable and encourage structured, seamless integration of process and
solution information from a variety of data sources and legacy systems. It also
offers a fast linking and learning decision tree system integration to all users in
the online process of content and structure maintenance. KD users are able to
focus on handling the issues and feedback, while the knowledge tool takes care of
the complexity of the systems, networks and processes for them. It is more than
a knowledge tool. It is also a strategy for complete integration of the processes
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of knowledge retrieval and maintenance, and workflow management. It is an
instrument for a fast learning product organization as fast linking of knowledge
about people, organizations, products, problems, customers and processes is a
key to success. KD contains a powerful feedback process which transforms it
into learning and growing organism. Figure 7.11 illustrates a screenshot of the
knowledge desk. As can be seen top left, there is the tree structure with the
last questions that where asked for visualized. The first question, the entry
point is connected with the experience level of the questioner. There the user
has basically three different possibilities, high, medium and low. The user can
also visualize the tree structure using hyperbolic trees.

Figure 7.11.: Knowledge desk structure including the tree structure, user navi-
gation panel, hyperbolic tree and node search

A direct jump and link to a specific KD node is available via the syntax
product-domain-name/question.x. If the customer chooses a solution node he
will get detailed solution information concerning the initial request and also
several helpful links to other web pages or other tools. Figure 7.12 illustrates a
vision for the support knowledge chain including product support and feedback
processes to increase the benefit of involved groups based on their observations.

Next follows a description of the main tasks to implement the product feed-
back process. A feedback process is necessary to make a knowledge desk a
powerful tool [HF06d]. It also helps to grow together within a knowledge sup-
port community as support network. Furthermore, the feedback process has
to be easy and simple to handle because otherwise nobody will use it again
[JHS01]. A feedback process and its use have to be communicated to employees
to improve acceptance and to be daily business. The access to feedback has to
be more problem oriented [KHS03], otherwise support users experience feedback
as useless. A necessity is the common understanding of the various definitions,
a clear communication flow, a fast processing of the feedback and fast reaction
dependent on the request, obvious and clear structure of the feedback to sup-
port the easy handling, a well known owner of the feedback for further contact,
definition of priorities and a mechanism to easily analyze feedback. It should
also be possible to give general product-related feedback which is not related to
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Figure 7.12.: Vision for the knowledge chain with observations for the product
support

the KD. In this case, it makes sense to develop a feedback process within an or-
ganization collaboration involving the groups service provider, product expert,
OEM and customer as illustrated in Figure 7.13 in detail.

After the user submits a new feedback in the support queue (status assigned),
the product responsible takes over the case (status open) and follow up. An-
swered requests have a specific waiting time (based on the priority) before
closing. The user has the possibility to check the feedback status online at any
time. The content feedback influences the technical infrastructure to grow to an
underlying powerful support tool. After the feedback process was implemented
it had to be communicated [WC03] to the different groups and divisions to get
their commitment. The product domain responsible verifies the feedback, up-
dates content and makes status updates to aid feedback incorporation. Incident
Management’s goal is to minimize the adverse impact of technology problems
on business operations, ensuring that the highest levels of service quality and
availability are maintained [HFPS07]. A way that supports this process is by
bringing together management data from across the infrastructure and giving
IT [Thi05] a single place to find and fix problems [ZL05]. Next consider the qual-
ity and performance management of the product feedback process to assist the
support product management in generating business support measurements for
support innovation, risk and efficiency [HF07b]. Support innovation touch e.g.
growth in support market, percentage of revenue from new products and pro-
cesses, profits resulting from new business operations or percentage of research
and development in the support business field. Risk measures the number of
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Figure 7.13.: Product feedback flow with feedback states and the underlying
technical infrastructure framework

customer complaints, percentage of repeat customers as of total, the employee
turnover ratio or return on research and development spending [Hol04b]. Ef-
ficiency is an indicator for the profit per customer, value added per employee,
usage of support tools and knowledge bases, time to market of new products
and services or the revenues per customer. The quality and performance mea-
sures for the complete feedback cycle with embedded product support groups
and functionalities like service provider leads to a Quality & Performance Man-
agement (QPM) metric for knowledge creation and maintaining, management
and support knowledge tools.

Table 7.1.: QPMs for the product feedback

QPM

number of new cookbooks
number of unique knowledge trees

knowledge tree traffic
number of customer feedback

time to feedback response
customer satisfaction

product handling (e.g. menu navigation)
product design (e.g. size, weight)
product function (e.g. camera)

Table 7.1 specifies customer oriented product feedback helpful for the map-
ping onto new products and the integration into next product generations.
Customer feedback contains information about customer requirements, product
preferences, technical requirements and the product structure from a prospec-
tive and retrospective point of view [Sch07].
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7.3. Adaptive Condition Monitoring for a Rotation
Spindle

The prototypical implementation and validation of the introduced concept is
realized as integrated PLM suite. In this regard Siemens’ PLM system Team-
center Engineering serves as a test bed for the implementation. Teamcenter
Engineering provides a comprehensive, collaborative work environment opti-
mized for product development involving large project teams. In situations
where project team members may be widely distributed and a wide range of
tasks must be efficiently synchronized, this solution offers the tools and coordi-
nated workspace to support the required operations.
The Teamcenter Engineering solution may be seen as a core platform for contin-
uing PLM improvements, enhancements and new developments. Its strengths
are in managing CAD models and technical documents, supporting design re-
leases and change processes as well as the close integration with CAD and ERP
systems. However, the clear focus of the solution lies on product development
activities, whilst the integration of later phases in the product lifecycle, es-
pecially the product use phase are disregarded. This is the point where this
extension applies. By implementing the introduced concept, Teamcenter Engi-
neering’s functionality has been enhanced by the following aspects:

• Creating / editing product items: In order to manage product use
information, it is necessary to differentiate between product types and
product items. Information management at the product type level (release
management for CAD-models, change management for technical docu-
ments etc.) is already supported by Teamcenter Engineering. However,
the information from the product use phase (e.g. condition monitoring
data, diagnosis models and maintenance histories) do not refer to a gen-
eral product type, but to individual product items. By implementing a
product item class with adequate attributes (e.g. serial number, date as-
sembled, etc.) and appropriately designed forms for the data acquisition,
we are able to create and edit product items and attach development-
relevant product use information like CM data, diagnosis models and
maintenance histories to the appropriate product item. Figure 7.14 shows
a screenshot of the enhanced Teamcenter Engineering solution applying
a rotation spindle as use case. Product type data like CAD models of
the rotation spindle is tagged with red icons, while the newly-integrated
product item data is tagged with yellow icons.

• Linking maintenance events: In order to track the maintenance events
in the product use phase of a given machine, it was necessary to enhance
Teamcenter Engineering’s functionality with regard to the management of
maintenance histories and their association to product items. Therefore
appropriate classes and attributes were defined and linked with newly
designed forms for data acquisition.

• Linking condition monitoring data: Condition monitoring data col-
lected in the product use phase may be linked to an individual product
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item distinguished by its unique serial number. In Figure 7.14 an asso-
ciated ARFF file is shown. An ARFF (Attribute-Relation File Format)
file is an ASCII text file that describes a list of instances sharing a set of
attributes. ARFF files were developed by the Machine Learning Project
at the Department of Computer Science of the University of Waikato
[WF05]. In our case they store large amounts of condition monitoring
data previously recorded by observing an industrial machine through sen-
sors.

• Embedding individual and aggregated diagnosis models: The ex-
traction of useful information from CM data stored in databases or huge
case datasets like ARFF files is usually very difficult for humans. In this
regard data mining methods may be incorporated to reveal the knowl-
edge hidden in large case datasets and derive relevant interdependences
between sensor data, environmental parameters and product failures. We
have developed machine learning algorithms [HF06a], which transform the
data sets into Bayesian networks. Another paper highlights the topic of
learning Bayesian networks in detail [HFAN08a]. Coming back to Team-
center Engineering, we extended the functionality in terms of an inte-
grated creation and modification of Bayesian networks, their visualiza-
tion and the possibility of executing what-if-analyses on the basis of an
inference engine applying the currently most efficient method for exact
belief updating in Bayesian networks, the junction-tree method [JLO90].
However, the multiple individual diagnosis models on the product item
level [HFAN08b] in order to set up a representative knowledge model on
the product type level remains to be aggregated.

Figure 7.14.: Enhanced version of Teamcenter Engineering showing managed
product type and product item data of a rotation spindle
[AFHN08b]

170



7.3. Adaptive Condition Monitoring for a Rotation Spindle

The Teamcenter Engineering functionality was enhanced in regard to the
creation and modification of product items, their association to the appropri-
ate product type, the linking of maintenance events, CM data and diagnosis
models, including support for visualization and what-if-analyses. The strong
integration of the product use phase can be seen as an important step towards a
new generation of PLM systems, which integrate data from all lifecycle phases
in a holistic approach. It furthermore paves the way for new business models for
manufacturers as well as service providers. The product use phase examination
allows to bring product item, process, manufacturing, and service information
in a single source of product knowledge. The enhanced version enables to em-
ploy this knowledge in workflow driven processes to synchronize activities with
other team participants. Security settings enable to work with suppliers, part-
ners, and trusted customers in a collaborative framework on the product item
level to facilitate concept studies, program, design, and change reviews based on
product use experiences. It is also possible to plan and deliver maintenance and
repair tasks on the product item level. Exchanged experiences out of the prod-
uct use phase facilitate maintenance planning and enable service organizations
to define and plan activities for assets ranging in complexity from components
to entire engines. These advanced and detailed planning opportunities enable
to track and manage part and equipment inventories used to repair, main-
tain, or overhaul assets. The product item usage history facilitates in-service
and service event management including access to configuration knowledge that
comprehensively describes each service state and capture results from service
activities performed anywhere in the service value chain.

7.3.1. Classification of the Spark Erosion Process

After outlining and evaluating the product type and product item data system
integration using the example of Teamcenter, now an example for a monitoring
and its integration into the PLM is presented. As a monitoring system a wire-
electro discharge machine is used, thus being represented in a Bayesian network.
Beforehand a strict description of the electrical discharge machining is given, on
which the presented machine’s machining principle is actually based. Following
this the general construction of the wire-electro discharge machine is outlined
so that all relevant components are clear to see. On the basis of this informa-
tion the condition monitoring of the wire-electro discharge machine is described
afterwards and represented with a Bayesian network. This Bayesian network
shall be populated into the PLM software solution Teamcenter. The Bayesian
network is maintained as product-instance information for the product-model
of the wire-electro discharge machine.
In engineering a vast number of manufacturing methods is existing, which are
applied by several machine tools to handle a work piece. Before describing spark
erosion in detail, therefore an overview concerning the adapted procedures and
the classification of spark erosion is helpful. In general parts are formed fol-
lowing the DIN 8580 by archetyping, transforming, disconnecting, assembling,
coating or changing certain material properties (compare Figure 7.15).
The procedure of erosion belongs to the disconnecting procedures, since during
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the process of manufacturing a work piece its cohesion gets changed [WB05].
Within the disconnecting procedures a further breakdown is carried out so that
certain type of modification of cohesion is reflected. Thereby the spark erosion
is assigned to the erosive procedures, which are circumstantiated in DIN 8590.

Figure 7.15.: Classification of manufacturing procedures referring to DIN 8580

Erosive procedures are characterized by the way, that they do not perform any
mechanical action during the adaptation of the work piece, thus meaning that
they are contact-free removal. This enables a handling completely independent
from any attributes of the working piece, so for example without consideration
of a work piece’s hardness or benignity. This procedure is especially fitting for
constructing micro-structured work pieces [WB07] with the application of micro
spark erosion [UDP01]. Besides further erosive procedures the spark erosion,
applied in the wire-electro discharge machine, nevertheless has the limitation
that merely metallic work pieces can be adapted.

7.3.2. Principle of the Spark Erosion

The principle of spark erosion is based, as the name suggests, on sparks and their
thermal consequences on a work piece. Particles are separated by the sparks
while being in a solid, liquid or gaseous condition and afterwards removed by
mechanical and/or electro-magnetic power. This process is also called Electrical
Discharge Machining (EDM) [WB05]. Thereby, the sparks emerge by electrical
discharges between certain tools and the work piece and furthermore create a
high temperature at the point of working. Besides the material removal on
a work piece there is additionally a noticeable metal removal on the working
tool. For cooling purposes and for the removal of segregated material there is
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a dielectric fluid, thus consisting of carbon compound or deionised water. It
is characterized by an especially poor conductivity and so isolates the electric
wire (tool) and the work piece [Feu83].

Figure 7.16.: Spark erosive procedures

In addition to that, the dielectric has the task to provide a channel for dis-
charging. This merely happens by a temporal ionisation. Figure 7.16 presents
several spark erosive procedures, also comprising the Wire Electrical Discharge
Machining (WEDM). For instance, the micro die sinking EDM process enables
to machine complex cavities and inner structures with nearly sharp corners and
very tiny structure elements [BOM06]. In modern micro mechanical manufac-
turing technologies, we cannot pass on the die sinking process. The advantages
of the die sinking process with pre-shaped electrodes are mainly used to ma-
chine micro injection moulds. Complex 3D cavities can easily be realized with
high precision in e.g. hardened steel work pieces.

7.3.3. Structure of a Wire-Electro Discharge Machine

In the following, the general structure of a wire-electro discharge machine is
presented. In these machines, an implementing electrode in form of a wire is
used, thus contact-free consigning its image on a work piece. Since the wire
itself thereby gets certain material removal, it is continuously replenished by an
engine, to provide a constant material removal on the work piece. A generator
thereby supplies the working tool and the work piece with required voltage, so
that a discharge and the associated appearance of erosive sparks is possible at
all at the working point. The relative movement of wire guide and work piece
is taken over by a separate control. The dielectric is thereby continually fed to
fulfill the tasks mentioned above.
Figure 7.17 shows the structure of a wire-electro discharge machine from Pre-
cision Design Lab1. The monitored wire-electro discharge machine basically is
similar to the one presented above. Though, the work piece is not fixed on the
machine-unit, as presented in Figure 7.17, but rather fixed in a rotation spindle
(see Figure 7.18). The resulting piece is therefore always axially symmetric.

1Department of Mechanical Engineering, University of Utah
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The researched wire-electro discharge machine contains a rotation spindle from
the provider System 3R [SR08]. EDM machines, working with rotation spin-
dles, are commonly called Wire Electrical Discharge Grinding (WEDG). These
machines are mostly used in the manufacturing of micro-structured work pieces.
The erosion wire therefore has a cross section dimension of about 30µm. The
so called constancy in contour explains fluctuations in the working process and
is measured with 1µm.

Figure 7.17.: Precision machine design example wire electrical discharge
machine

With this, this procedure allows highest accuracy and surface quality for the
finally produced work pieces. The structure of the researched machine is drafted
in Figure 7.18. The rotation spindle is assembled on the machine base. This
spindle moves into gear by a drive motor with a driving belt. The electrode
(work piece) is fixed to the spindle with some kind of chuck and therefore
rotates with exactly the same speed. This speed is therefore specified by the
drive motor, which, by its own, is regulated by a control instance. During this,
the erosion wire continually runs by a wire guide. This represents the antipode
for the electrode. To enable the accruement of erosion sparks, the working
point continually is supplied with dielectrics. The electrode on the other side
gets its power by graphite brushes. With this, the current conduction inside the
ball bearing of the rotation spindle gets decreased. The drive motor’s electric
circuit is strictly disconnected from the electric circuit used for the erosion by
an insulating plate. Rotation spindle and drive motor are continually provided
with compressed air, so that any intrusion of liquids or removed material is
avoided.
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Figure 7.18.: Rotary spindle 3R and structure

7.3.4. Condition Monitoring of the Wire-Electro Discharge Machine

To provide the researched wire-electro discharge machine with a condition mon-
itoring and therefore enable knowledge representation in the PLM, the phases
data acquisition, data preparation, diagnostics and decision-making have to be
passed through.

Data Acquisition:
The actual machine state is determined by a set of meaningful parameters. For
this, different reading recorders are available, each one monitoring single com-
ponents (compare Figure 7.19). The following sensors are used in Condition
Monitoring in a wire-electro discharge machine:

• Vibration sensors are used in the controls of the trolley’s rotation inside
the rotation spindle. They are able to recognize the erosion of the trolley
at an early state, since a worn out trolley is causing higher vibrations
compared with an undamaged one. This parameter is measured in hertz.

• Deduce the state of the drive belt from two rotational speed sensors, which
compare the velocities of spindle and motor. If the velocities are different,
the impairment of the belt is the cause.

• A proximity switch allows the determination of the remaining coating of
the graphite brushes. If all brushes are used up, they are no longer able to
transfuse erosion electricity. This electricity then would unintentionally
flow across the trolley and there cause several unintended effects. The
remaining coating is measured in millimetres.

• The pressure inside the rotation spindle and inside the drive motor is de-
tected by a pressure sensor. If the pressure decreases, there is the danger
that the dielectric or even threadbare material might access machine com-
ponents and by this may cause several failures. The pressure is measured
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in bar.

• An insulation monitoring of the drive motor can be achieved by measur-
ing its insulating resistance. In the case of an insulating failure on the
insulating plate between drive motor and spindle this can be detected by
decreasing insulating resistance values. The unit of measurement is Ω/V .

Figure 7.19.: Sensors in a wire electrical discharge machine

The shown machine parameters can be measured continually as well as discre-
tionally. This difference, however, is not important for the following process of
knowledge representation in a Bayesian network. There, every random variable
obtains several states, thus comprising all gathered data inside a certain sector
in the actual state of time. A discretional research has ultimately the disad-
vantage that no short-time fluctuations can be measured and the measurement
might be done in a moment, when everything seems to be all right functionally,
though a failure is still occurring.

Besides the directly measured data in the machine, collected by several sensors,
also some external data have to be considered. So there are, for example, envi-
ronmental factors like temperature, wetness and quality of air as well as time
delays, engine speed or material condition of certain machine components.
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Data Preparation:
All gathered data now has to be brought into a certain structure, so that it is
available for further diagnostics. This happens by a strict allocation of measured
data to certain domains. So measured values like temperature can be divided
into the sections “low“, “ok“ and “high“. For every machine component two
differently noticed situations “normal“ and “faulty“ have to be distinguished.
In addition to that several components’ breakdown can be detected. Table 7.2
therefore presents the monitored parameters and their possible states.

Table 7.2.: Monitored WEDG parameters and possible states

Parameter State

Wetness on the Insulating plate high,low
Material attributes of the insulating plate ok,faulty
Function of the insulating plate normal,faulty
Short circuit on the insulating plate yes,no
Temperature of compressed air low,ok,high
Air quality of compressed air good,bad
Function of compressed air normal,abnormal
Speed to 4000 rpm,from 4000 rpm
Delay of the drive motor to 1000 h,from 1000 h
Function of the drive motor normal,abnormal
Damage on the drive motor yes,no
Idleness of the drive motor yes,no
Runtime of graphite brushes to 1000 h,from 1000 h
Function of graphite brushes normal,abnormal
Damage on graphite brushes yes,no
Runtime of trolleys to 1000 h,from 1000 h
Function of the trolley normal,abnormal
Break on the trolley yes,no
Function of spindle normal,abnormal
Idleness of spindle yes,no
Runtime of the drive belt to 1000 h,from 1000 h
Function of the drive belt normal,abnormal
Draft of the drive belt yes,no
Material attributes of the erosion wire ok,faulty
Function of the erosion wire normal,abnormal
Draft of the erosion wire yes,no
Quality of dielectric good,bad
Function of the electrode normal,abnormal
Failure in working process yes,no
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Diagnosis:
In the phase of diagnosis a Bayesian network is applied for knowledge rep-
resentation (compare Figure 7.21). To learn the Bayesian network structure,
the new conceptualized and aforementioned LAGD hill climbing algorithm has
been chosen, to visualize this learned Bayesian network representation the Ge-
NIe (Graphical Network Interface) software has been used. The figure referring
to the Root Cause Analysis (RCA) is applied using coloured identification of
the nodes. Green nodes represent causes and thereby the influence coefficients
inside the process. Turquoise nodes show the monitored state of the process
and orange-coloured nodes the possible resulting failures in components. The
feasibility of the single nodes is given as a priori probability and is put down
in the respective conditional probability table of the node. Every node has a
different number of entries referring to its parental node in its CPT. The node
Insulating plate for example has the two parent nodes Wetness I and Mate-
rial I. With this the connected CPT has eight entries (compare Figure 7.20).
To calculate the overall probability that node I of the Insulating plate has the

Figure 7.20.: CPT of the WEDG note insulating plate

state n (normal) the CPT of the Insulating plate and also the two parent nodes
are required (Wetness I high/low 0.02/0.98, Material I ok/faulty 0.997,0.003).
With this, now PI(n) can be calculated:

PI(n) = PI(WetnessI high,MaterialI ok) · PF (high) · PM (ok)
+ PI(WetnessI high,MaterialI faulty) · PF (high) · PM (faulty)
+ PI(WetnessI low,MaterialI ok) · PF (low) · PM (ok)
+ PI(WetnessI low,MaterialI faulty) · PF (low) · PM (faulty)
= 0.85 · 0.02 · 0.997 + 0.02 · 0.02 · 0.003

+0.9997 · 0.98 · 0.997 + 0.1 · 0.98 · 0.003 ≈ 0.994.

The probability that the insulating plate is operational therefore is 99,4%. In
the same way the probabilities for all other nodes are determined. With this
the probability for abnormal processing for all components can be calculated
against the parental nodes. Therefore the analysis of weak components inside
the system gets enabled, thus being possibly the cause for several failures in
processing.
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Figure 7.21.: Bayesian network of the wire-electro discharge machine
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Decision Making:
Compared with conventional condition monitoring, right here the determina-
tion of rest-delays of single machine components, that can be used for the
final planning for maintenance, is not of interest, but rather there is now the
possibility, to make use of gained product-instance-knowledge to attain conclu-
sions for technical product improvements. So, for example, the insulating plate
is affected by the environmental influences wetness and material consistence
(compare Figure 7.21). Assuming a failure in material of the insulating plate
with PM (faulty) = 1 and PM (ok) = 0, the result is the probability of a normal
function of the insulating plate as follows:

PI(n) = PI(WetnessI high,MaterialI faulty) · PF (high) · PM (faulty)
+ PI(WetnessI low,MaterialI faulty) · PF (low) · PM (faulty)
≈ 0.098.

If furthermore there is an additional failure in material with PF (high) = 1,
PF (low) = 0, PM (faulty) = 1 and PM (ok) = 0, the probability of a normal
function decreases again:

PI(n) = PI(WetnessI high,MaterialI faulty) · PF (high)
· PF (high) · PM (faulty) = 0.02.

Assuming on the other hand that the probability of a high wetness in the domain
of the insulating plate with PF (high) = 1 and PF (low) = 0, the probability of
a functional insulating plate is decreasing less strong.

PI(n) = PI(WetnessI high,MaterialI ok) · PF (high) · PM (ok)
+ PI(WetnessI high,MaterialI faulty) · PF (high) · PM (faulty)

0, 85 · 1 · 0.997 + 0.02 · 1 · 0, 003 ≈ 0.848.

The developer of the wire-electro discharge machine also has the possibility to
assume evidence values and then is able to apply the following calculation of
inference. Following this he is able to detect factors effecting machine compo-
nents. Respective components can then be improved in a way that they get
more resistant against changes of certain effecting factors. Optionally following
failures and misses of certain components can be avoided. In the case of the
insulating plate shown above it can be seen that the normal functionality espe-
cially depends on the certain state of the material. Here certain improvement
demands in materials’ quality can be noticed. The construction of the insulat-
ing plate can, in a further step, be changed in a way that it is less vulnerable
for wetness. Both improvements have the common target to increase the prob-
ability of a well working insulating plate and therefore antagonize a possible
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failure of a following short circuit.
The product changes done in this phase finally serve the fact to maximize the
availability of the machine, so that they fit the underlying target of Condition
Monitoring. Concerning the influence of component’s delays and the respective
probabilities of component failures a cost optimized planning of maintenance
dates can be attained. The created Bayesian network can also be used for
bug fixing. So if, for example, it is detected that the electrode does not work
correctly, the network provides the information that this, among other things,
is caused by a malfunction of the spindle. The spindle, on the other side, is
depending on several other components. So it can be concluded, starting with
a malfunction on the electrode, on all causes of this failure to be able to remove
the problem consequently in time.

Next consider the topic of analyzing the spindle in detail. For a variety of
products there is a need for rotation-symmetric units. Micro structured com-
ponents are used for example in process engineering as a piston of a micro pump
or in medical technology as a micro needle [UP05]. The assembly of rotation-
symmetric parts is primarily accomplished by means of turning or frictional
processes. These manufacturing processes have only limited use with further
miniaturization influenced by a great strain the production puts on the compo-
nents. The production of rotation-symmetric micro components poses special
problems for the manufacturing processes, as mechanical processing is mostly
excluded for the structuring of these components [Rat03]. A combination of
wire erosion and rotating movement is given for the production of rotation-
symmetric components [QSS02]. The quality of the component with respect to
geometric accuracy depends primarily on the quality of this equipment.
An interesting question for a knowledge engineer is the determination of the
influence of the process characteristics on the quality of the work piece by mon-
itoring the machining process. Therefore we made experiments in sensor-based
tool condition monitoring with the chair IT in Mechanical Engineering from the
University of Bochum. Diagnosing the root cause of process modifications when
multiple potential sources of variations exist plays a key role in determining the
influence of process characteristics. The intent is to explore the possibility of
using multiple sensors and data obtained from sequential machining operations
to diagnose the influence of process characteristics.
In a first step, a Bayesian network should visualize the measurement structure
for modeling and evaluating uncertainty. In a second step, the influence of the
rotation speed on the process can be augmented with utility and action nodes
to evaluate and measure the service and quality inspection influence for decision
making. The developed transformation framework produces sharp rule-based
outputs for representing decision functions. A fuzzy inference tool leads to a
fuzzy rule-based system which is generally intelligible. The machining process
and the measurement of the influence of the process characteristics is illustrated
in the flow chart in Figure 7.22. In the first step, appropriate measurements for
recording during the experiment are identified and evaluation measures are des-
ignated. For data analysis a training data set is given as basis for the calculation
of the underlying network structure. If available, additional a priori information
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about causal relationships between random variables are determined. Next fol-
lows the determination of whether a causal link between particular nodes exists
in the network. We apply the newly developed LAGD hill climbing algorithm
for determining and evaluating the network structure and conditional proba-
bility table settings, which is meanwhile completely integrated in the WEKA
environment. Once the network structure has been determined and values for

Figure 7.22.: BN evaluation representing the influence of the process
characteristics

the conditional probability tables have been initialized, the network is ready
for application. [DS05] have developed a process monitoring and diagnosis ap-
proach based on a Bayesian network for considering multiple process metrics
from multiple sensor sources in sequential machining operations to identify the
root cause of process variations and to provide with this a probabilistic confi-
dence level of the diagnosis. They use the violet labeled process steps illustrated
in Figure 7.22 for belief updating and belief propagation, when the evidence
that has been instantiated into the network representation is propagated to
the different nodes. It follows the updating of the beliefs of the evidence re-
ceived from parent and child nodes. This procedure carried out until saturation
is reached in the case, when there are no other nodes to propagate the evidence.

The electrical discharge machine under consideration is equipped with an
adaptive feed control that realizes the motion of the machine table by means
of impulse analysis of the discharge process. The determination of process pa-
rameters must be accomplished by research data [UP05]. Due to the fact that
the rotation spindle is an accessory, the control of the rotating movement is
not integrated into the machine control. The influence of rotation speed on
the quality of the component is very high [QSS02]. Therefore the specifica-
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tions for the rotation spindle must be in terms of a constant rotation speed
without variation. Wear and tear of components of the rotation spindle like
drive belt or bearings leads to such changes and therefore to the deterioration
of performance. For instance, the radial run-out is influenced by the rotation
speed and therefore, a varying rotation speed will lead to undesirable process
results. Measurements of the process characteristics depends strongly on the
condition of spindle components such as increased wear on the bearings or a
loss of belt tension. Apply condition monitoring aims at the recognition of
wear of mechanically stressed machine components. An interesting point of
view is studying interrelationships between process signals and the wear state
of machine components. For this purpose the dependence between the speed of
rotation and the results of the process is presented. The achieved experimental
results based on gathered rotation speed and process data received by the chair
IT in mechanical engineering.

Table 7.3.: Influence of the rotation speed on the process without service

rotation max. discharge discharge discharge off-load off-load
speed n current voltage duration voltage time
[1/min.] ie[A] Ue[V] te[ns] U0[V] td[µ,s]

none 15 16 342 93 2.0
30,90 0,0519 13,05 403,67 63,23 3,05
29,60 0,0497 13,18 379,45 64,08 3,05
38,80 0,0689 14,46 367,17 89,99 2,73
40,00 0,0704 15,03 395,24 87,00 2,69
50,10 0,1143 14,12 365,87 88,77 1,77
49,70 0,1122 14,43 361,12 94,51 1,83
101,70 0,0476 14,35 366,14 71,69 3,32
99,30 0,0505 14,55 395,25 66,59 3,06
298,80 0,0477 14,87 385,37 80,77 1,35
302,20 0,0516 14,67 389,67 80,53 1,26
502,20 0,0672 13,48 373,39 69,79 1,00
507,70 0,0680 12,69 399,87 69,68 1,02

For the analysis of the conditions of wire electrical discharge grinding mea-
surements of these values, the electrical values, current and voltage, and the
mechanical values, adaptive feed control and rotation speed, have been car-
ried out. In the case of value none concerning the rotation speed a static test
happens.

In this situation the work piece does not rotate. Two different types of
influences are tested. Figure 7.23 illustrates the state without the needed service
on the rotation spindle. In Figure 7.24 the service was done and the parameters
of different rotation speeds are also tested. Both states were tested with rotation
speed adjusted with 30 rpm, 40 rpm, 50 rpm, 100 rpm, 300 rpm and 500 rpm. As
equipment we have chosen a 3R-6.600-S rotation spindle from the manufacturer
System 3R International. [SR08]. The rotation speed is between 2 [1/min.]
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Table 7.4.: Influence of the rotation speed on the process after service

rotation max. discharge discharge discharge off-load off-load
speed n current voltage duration voltage time
[1/min.] ie[A] Ue[V] te[ns] U0[V] td[µ,s]

none 15 16 342 93 2.0
30,90 0,0704 13,04 296,76 87,43 1,83
29,60 0,0692 12,81 299,38 84,57 1,78
38,80 0,0707 12,96 345,44 76,42 3,60
40,00 0,0700 12,45 324,66 73,40 3,65
50,30 0,0820 12,84 379,44 81,45 1,75
49,60 0,0827 12,54 386,36 83,99 1,81
101,60 0,0811 11,68 364,79 79,27 4,11
99,80 0,0800 12,06 355,28 73,43 4,05
298,80 0,1000 11,43 359,14 74,91 2,18
302,80 0,0963 12,11 374,74 80,46 2,20
502,30 0,0886 12,13 394,34 78,08 1,54
508,90 0,0924 12,28 392,10 78,95 1,61

and 1800 [1/min.], whereas the spindle is powered with an electric motor that
is driven by an alternating current.

The rotation speed of the spindle is regulated with the support of the control
unit of the rotation spindle. The feed motion during the production of a circular
groove occurs in this erosion machine in y-direction. The axes are adjusted by
the adaptive feed control based on the process characteristics. The process
parameters current and voltage are evaluated for this purpose. In the case of
a short circuit discharge on account of the work piece and the tool electrode
coming into contact with each other, the axis drives the work piece away from
the erosion wire. If a greater gap occurs, the work piece is brought closer to
the electrode wire until discharges in accordance with the preadjust process
values are reached. The feed then accelerates. Periodic oscillation in the feed
movement can caused by the relative movement of the work piece and electrode
wire on account of the rotation and feed movement.

It is assumed that the process profile of the feed axis with known control
parameters can be used as a characteristic value for the estimation of the ro-
tation speed performance. Table 7.3 illustrates an extraction from the given
data set, which includes rotation speed and process data without service on the
rotation spindle. We have learned the Bayesian network structure as visualized
in Figure 7.23 based on the LAGD hill climbing algorithm. The average of
the electrical values in Table 7.3 and Table 7.4 are in the static case for the
discharge current 15 ampere, for the discharge voltage 16 volt and for the dis-
charge duration 342 nanoseconds. The open circuit voltage is 93 volt and the
off-load duration is roughly 2.0 µs. The variation of the open circuit voltage
and the off-load duration are minor. This is followed by the constant discharge
with the rotation of the work piece the electronic characteristics changes with
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Figure 7.23.: Bayesian network for the process of WEDG

Figure 7.24.: Discharge duration as a function of the rotation speed
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the rotation speed. The observed rotation speed has a strong influence on the
machining. Before servicing the discharge voltage sinks with a rising rotation
speed. The characteristics of the discharge duration and the discharge current
at lower rotation speed less than 100 [1/min.] are temporary. With increasing
rotation speed both variables rise (see Figure 7.24). After servicing similar char-
acteristics can be evaluated (see also Table 7.4). The discharge voltage sinks
with a rising speed and lies under the values of the discharge voltage before ser-
vice. The amount is less than the values before servicing. The influence of the
rotation speed can therefore said to be substantially less. Discharge duration
and discharge current rise with rotational speed. The off-load duration tends
to be longer with higher speeds and is longer in comparison to the values before
servicing.

It was shown that maintaining the spindle leads to more favourable process
conditions. The process efficiency increases. Correlations between revolutions
per minute and process parameters were experimentally determined for the
process of WEDG. Variations of the rotational speed have an impact on the
characteristics of process parameters. Amongst others wear and tear of the
rotation spindle may cause such effects.

7.4. Product Lifecycle Management Review

Today’s PLM systems focus on supporting the early phases of the product lifecy-
cle. Downstream phases, such as the product use phase, are only rudimentarily
flanked and supported. We have presented a new approach for integrating the
product use phase into the PLM concept. This concept stresses the possibility
of using condition monitoring results collected in the operation phase when de-
veloping the next generation of a product. In addition, it propagates expanding
the conventional product type PLM in view of managing product item data.
In this regard, an extended metadata model for the integrated management
of product type and item data in PLM systems was introduced and the re-
sulting potential benefits were shown. The observable shift of manufacturers
from selling only physical products to providing value added services is a factor
underlining the importance of the product use phase for product development.
With this in mind it gets more and more critical for product developers to
consider in additional to conventional design parameters also the requirements
of the later phases in the product lifecycle, e.g. in respect of efficient mainte-
nance in the product use phase. In order to reduce the maintenance costs of
an engine throughout its whole lifecycle, it is imperative for product develop-
ers to have instant access to maintenance histories and condition monitoring
data for identifying critical engine parts. In this context, the transformation
methodology applied to the problem of representing condition monitoring re-
sults for a rotation spindle using rules generated from a Decision network. For
this particular case study, the quality measure indices have shown its best per-
formance compared to two other Decision network representations discussed in
Section 6.5. Furthermore, a fuzzy rule base representation created by the fuzzy
inference tool FuzzIT is given and analyzed by the use of granularity measures
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evaluating the position, core and size of linguistic terms. It makes sense to
provide this rule-based representation for product developers easy accessible
within the PLM system they use regularly. Within the scope of a feedback cy-
cle product use information of the last product generation can be incorporated
in an oriented fashion in the development of the next product generation and
thus providing faster product improvements, lower development cost, increased
product quality and lower maintenance expenses in the use phase.
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8. Conclusions

This dissertation aimed at combining the advantages of decision-theoretic mod-
els with rule-based systems. The objective behind this is that serious drawbacks
of both existing approaches became evident.

Decision-theoretic models can mimic the decision making mechanism from a
declarative point of view based on an underlying rationality principle. Decision-
theoretic models are not always suitable in time critical situations. In this
case computational complexity becomes intractably large because of the fine
discretization of both the probability distributions and the time axis. Hence
we need another representation form which is more suitable for online-use and
which produces decision outcomes a decision maker is able to make use of. Fuzzy
logic provides a basis for representing uncertain and vague knowledge and forms
a basis for human reasoning. The linguistic approach characterizes the system
behaviour using rules of IF-THEN form with linguistic variables. We saw a need
for establishing a new transformation process to generate rule-based represen-
tations from decision models, which provide an efficient execution architecture
and represent knowledge in an explicit, intelligible way. This transformation
process guides knowledge engineers through the transformation. This includes
creating a rule-based system founded on a decision model which meets the aims
of the decision process.

As opposed to the process of knowledge engineering with Bayesian networks,
the new transformation process introduced in this thesis takes a step forward.
It integrates various techniques we have previously introduced for building de-
cision models that encompass decision making. The first transformation pro-
cess step deals with learning the structure of Bayesian networks, for which
we have developed a new parameterized structure learning algorithm named
LAGD (Look-ahead in Good Directions). In addition to the generated Bayesian
structure we need decision and utility nodes in order to be able to conceive a
Decision-theoretic model. Utility functions are often used for the modeling of
preferences. Procedures for modeling and learning preferences are useful for
generating the utility nodes which are to be assessed in the present decision
process. By specifying the problem-specific probability information we are able
to eliminate alternatives in advance via a virtual dialogue with the decision
maker and thus directly affect the number of decision nodes which have to be
taken into account. The use of existing learning approaches to determine pref-
erences and the specification of probability information subsequently enables
us to model decision and utility nodes and generate a consolidated Decision
network.

In the case of multiple decision nodes, we have to instantiate the first decision
node with the first choice followed by the second node and so on. Algorithms
which solve Decision networks convert the structure to decision trees or uses
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clustering for inference in multiply connected networks. Jensen [Jen01] devel-
oped an object-oriented computational scheme for clustering implemented in
the HUGIN system, an efficient and widely used tool for uncertain reasoning.

The availability of this cost free software package dealt as motivation for
us to ask for an alternative approach in dealing with Decision networks on
another level of abstraction. As a solution transforming decision networks in a
rule-based representation was suggested and subsequently realized as AGoRuB
algorithm. The idea here was to measure the utility loss, which occurs, if
instead of the decision network the rule base is used for the determination
of the decision. After the utility loss has been summed up over all relevant
decision situations, the rule base is returned along with evaluation measures,
which specify its overall quality.
The human-readable form of the achieved rule allows knowledge engineers to
easily exchanges knowledge and interaction. Finally, fuzzy controllers allow to
model uncertainty which can be evaluated with granulation measures that have
been introduced and explored in this thesis. It should be noted that it becomes
more challenging to determine the set of rules and membership functions to
describe system behaviour, as the system complexity increases. Additional
effort is needed to correctly tune membership functions and adjust rules.

All the previously mentioned techniques dealt with graphical models as basis.
But, as has already been hinted, with the transformation framework there exist
another, self-explanatory mechanism. After investigations into the innovative
principles of graphical structure learning and Decision network transformation,
both concepts were validated in the field of mechanical engineering. Today
product lifecycle management focuses on supporting the early phases of the
product lifecycle. Downstream phases, such as the product use phase, are cur-
rently not or only rudimentarily flanked and supported. Using data supplied
from the product use phase is useful to verify the described mechanism, which
enables us to extract product information and make decisions. In this context,
we have presented an extension of the conventional product type PLM with re-
gard to the management of product item data. The transformation process has
been successfully applied to the problem of representing condition monitoring
results for a rotation spindle in an intelligible form.
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In this thesis the development of a framework for approximating decision net-
works by fuzzy rule-based systems has been presented. The advantages that
arise from this representation include information granulation and direct hu-
man readability, at least if the involved membership functions are restricted to
semantically meaningful ones. Apart from aspects of efficiency, approximating
a decision network by a fuzzy rule base is interesting for another reasonable
point of view. Furthermore a fuzzy rule base can be evaluated for vague ob-
servations, whereas the decision network requires the evidence variables to be
precisely specified. Thus, the compilation of a decision network into a fuzzy
rule-base extends the applicability of a given decision model.

Naturally there remain several open questions some of which will be listed
here as topics for future work. Since the transformation process is clearly sup-
porting structure learning, automated reasoning, knowledge representation as
well as semantic understanding the considered domain, further attention will
have to focus on developing a general method for compiling Decision networks.

In order to further reduce the complexity of the rule base, a kind of feature
selection could be useful. Selecting a subset of relevant features for building
robust learning models is commonly used in data mining. Only the most im-
portant evidence variables are selected, whereas the other ones are ignored.

A next aspect to considerably improve the specification of probability infor-
mation is the presence of uncertainty. Interacting with the decision maker to
eliminate redundant actions can be achieved with fuzzy probability information
which should express the degree of confidence for each probability distribution.

Instead of measuring the granularity of fuzzy rule-bases on the basis of core,
size and position analysis, other criteria are of special interest for future work.
Robustness measures the capability of coping well with modifications of mem-
bership functions, whereas relevance picks out significant rules which guarantee
satisfactory solutions.

The use of the transformation process in product lifecycle management stressed
the possibility of making use of condition monitoring results when developing
the next generation of a product in view of managing product item data. The
high integration of the product use phase can be seen as an important step to-
wards a new generation of product lifecycle systems, which integrate data from
all lifecycle phases in a holistic approach. Based on this new business models
for manufacturers and service providers can be developed.

What remained undone are theoretical investigations into the complexity of a
rule base, which can be defined in different ways. A general reasonable measure
of complexity has to be determined and integrated in an overall quality function.
With this, the transformation problem can be formalized as a general problem.
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Formfüllung und die Werkzeugbelastungen beim Prägen von
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