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Abstract

Estimating the frequency of a signal embedded in additive white Gaussian
noise is one of the classical problems in signal processing. It is of fundamen-
tal importance in various applications such as in communications, Doppler
radar, synthetic aperture radar (SAR), array processing, radio frequency
identification (RFID), resonance sensor, etc.

The requirement on the performance of the frequency estimator varies
with the application. The performance is often defined using four indexes:
i). estimation accuracy, ii). estimation range, iii). estimation threshold,
and iv). implementation complexity. These indexes may be in contrast with
each other. For example, achieving a low threshold usually implies a high
complexity. Likewise, good estimation accuracy is often obtained at the price
of a narrow estimation range. The estimation becomes even more difficult
in the presence of fading-induced multiplicative noise which is considered to
be the general case of the frequency estimation problem. There have been
a lot of efforts in deriving the estimator for the general case, however, a
generalized estimator that fulfills all indexes can be hardly obtained.

Focusing on communications and radar applications, this thesis proposes
a new generalized closed-form frequency estimator that compromises all per-
formance indexes. The derivation of the proposed estimator relies on the non-
linear least-squares principle in conjunction with the well known summation-
by-parts formula. In addition to this, several modified frequency estimators
suitable for non-fading or very slow fading scenarios, are also introduced in
this thesis.
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Kurzfassung

Eine der klassischen Problemstellungen in der Signalverarbeitung ist die
Schätzung der Frequenz eines Signals, das von weißem Rauschen additiv
überlagert ist. Diese bedeutende Aufgabe stellt sich in vielen verschiede-
nen Anwendungsbereichen wie der Kommunikationstechnik, beim Doppler-
Radar, beim Radar mit synthetischer Apertur (SAR), beim Array Processing,
bei Radio-Frequency-IDentification (RFID), bei Resonanz-Sensoren usw.

Die Anforderungen bezüglich der Leistungsfähigkeit des Frequenzschätzers
hängen von der Anwendung ab. Die Leistungsfähigkeit ist dabei oft unter
Berücksichtigung der folgenden 4 Punkte definiert: i) Genauigkeit, Richtigkeit
der Schätzung, ii) Arbeitsbereich (estimation range), iii) Grenzwerte der
Schätzung (im Vergleich zu einer theoretisch möglichen Schwelle) und iv)
Komplexität der Implementierung. Diese Anforderungen können nicht un-
abhängig voneinander betrachtet werden und stehen sich teilweise gegenüber.
Beispielsweise erfordert die Erzielung von Ergebnissen nahe an der theo-
retisch möglichen Schwelle eine hohe Komplexität. Ebenso kann ein Schätz-
ergebnis von hoher Genauigkeit oftmals nur für einen stark eingeschränkten
Arbeitsbereich erzielt werden. Die Frequenzschätzung ist im Falle von durch
Fading hervorgerufenem multiplikativem Rauschen noch herausfordernder.
Es handelt sich dann um den allgemeinen Fall der Frequenzschätzung. Bisher
hat man bereits viel Arbeit in die Ableitung eines Schätzers fr diesen allge-
meinen Fall investiert. Ein Schätzer, der optimal bezüglich aller oben genan-
nten Kriterien ist, dürfte allerdings nur schwer zu finden sein.

In dieser Dissertation wird mit Blick auf Kommunikationstechnik und
Radaranwendungen ein verallgemeinerter, in geschlossener Form vorliegen-
der, Frequenzschätzer eingeführt, der alle genannten Kriterien der Leistungs-
fähigkeit berücksichtigt. Die Herleitung des Schätzers beruht auf dem Prinzip
der kleinsten Fehlerquadrate für den nichtlinearen Fall in Verbindung mit der
Abelschen partiellen Summation. Zudem werden verschiedene modifizierte
Frequenzschätzer vorgestellt, die sich für Fälle in denen kein Fading oder nur
sehr geringes Fading auftritt, eignen.
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Chapter 1

Introduction

The subject of this thesis is frequency estimation of signals embedded in
additive white Gaussian noise for communication and radar related applica-
tions. These two applications may at the first glance seem rather different in
the goals they wish to accomplish. Communication systems transmit infor-
mation from one place to another, while radar systems are sensing devices.
Despite this difference of purpose, their similarities for certain aspects are
greater, and that is the reason they can be studied together in a unified
manner. Radar shares many common properties and technologies with com-
munication systems. Both systems use signals for transmission, so signal
theory becomes the common background. Both must convert this signal to
electromagnetic waves by using devices that operate in the same manner.
The waves travel through media that are similar in both cases. On the re-
ceiving side, both systems must receive a signal, usually contaminated by
noise, and the information that it carries must be extracted.

The estimation of the frequency of a signal embedded in additive white
Gaussian noise is one of the classical problems in signal processing. Frequency
estimation has been continuously explored for decades and still increasingly
gained attention in the recent years. One reason for this is that the problem is
relatively easy to understand, but difficult to solve. Another reason, certainly,
is the large number of applications that involves frequency estimation, e.g., in
communications, the frequency offset due to mismatch between the received
signal carrier and the local oscillator frequencies, shall be estimated and
compensated for; in Doppler radar, the Doppler frequency that contains the
information about the range/velocity of the target is of interest; in array
processing, the spatial frequency that is related to the direction of the arrival
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of the source is to be determined; in radio frequency identification (RFID)
systems, the frequency modulation is used in the communications link; and
in resonance sensor systems, the output signal is given by the frequency
displacement from a nominal frequency, etc.

The requirement on the performance of the frequency estimator varies
with the application. The performance is often defined using four indexes:
estimation accuracy, estimation range, estimation threshold, and implemen-
tation complexity. These indexes are often in contrast with each other. For
example, achieving a low threshold usually implies a high complexity. Like-
wise, good estimation accuracy is generally obtained at the price of a narrow
estimation range.

The fast evolving in the field of digital wireless communications, has
opened up several new challenges in frequency estimation (carrier frequency
offset estimation). Signal models that have been used as the air-interface
for each phase of the evolution are basically different e.g., GSM uses single-
carrier signals, UMTS uses spread-spectrum signals, and next generation
UMTS uses multiple-carrier OFDM signals. Therefore, new techniques and
algorithms have been developed to provide optimal performance. Most of
the existing accurate frequency estimators require either high computational
complexity, additional phase unwrapping, or information about the propa-
gation channel. These requirements make most of them unattractive.

This thesis focuses on the frequency estimation problems in wireless com-
munication and radar systems. The first part of this thesis is devoted to the
development of carrier frequency offset (CFO) estimators that can fulfill the
four performance indexes mentioned above. The CFO estimators are devel-
oped based upon the application in wireless communications. Later, it will
be also shown that the developed concepts are applicable for the radar re-
lated areas such as Doppler centroid estimation in Synthetic Aperture Radar
(SAR) and Direction-Of-Arrival (DOA) estimation in array processing.

The organization of this thesis is as follows:

• Chapter 2 describes the basic principle of signal transmission schemes
used in communication and radar systems. This includes single-carrier
and multiple-carrier signals. Single-carrier signals are often used in
radar and narrowband communications applications, while multiple-
carrier signals, i.e., orthogonal frequency division multiplexing (OFDM),
are employed in modern wireless communication systems. The effect
of carrier frequency synchronization errors of both type of signals are
also formulated. Antenna diversity combining techniques that can be
used to reduce the effect of multipath fading are introduced at the end
of this chapter.
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• Chapter 3 addresses the problem of CFO estimation for single-carrier
signals. The classical state of the art methods are first described with
the detailed derivations given in the appendix. CFO estimation for
constant and time-varying envelope models of the signals are treated
separately. In the constant envelope case, four new estimators have
been proposed. The first one has an improved threshold as well as
lower computational complexity as compared to Kay estimator. The
second estimator extends the estimation range of Fitz estimator to it’s
maximum without any additional phase unwrapping algorithm. The
third is an approximated maximum likelihood estimator based on the
absolute phase of the correlation estimates. The fourth is obtained by
applying the weight transformation formula to the third estimator as
done for the second estimator. For the time-varying envelope case, two
new estimators have been proposed. The first estimator relies on the
nonlinear least squares principle in conjunction with the summation-
by-parts formula which is simple and does not require the knowledge of
the form of the fading correlation as required for most of the existing
estimators. The second estimator is designed to track time-varying
CFO which is based on the Kalman filter. The contributions to this
chapter can be found in [1–5].

• Chapter 4 deals with the CFO problem for OFDM signals. The state
of the art techniques of time-domain (pre-FFT) CFO estimation are
briefly discussed. In this chapter, a new CFO estimator for single-
input single-output (SISO) OFDM, which is based on the nonlinear
least squares estimation concept in conjunction with the summation-
by-part formula, is developed. The proposed estimator has been ex-
tended to the case of single-input multiple-output (SIMO) in order to
resolve the error-floor of the estimation variance in the SISO case. The
contributions to this chapter can be found in [6].

• Chapter 5 formulates the problem of frequency estimation in the con-
text of Doppler centroid estimation in SAR system and DOA estimation
in array processing. Moreover, a new integrated GPS/INS for DOA es-
timation is also proposed. The contribution to this chapter can be
found in [7].

• In Chapter 6 conclusions are provided which summarize the major
results obtained in this thesis and outline possible future research work
in this field.

3



Chapter 2

Transmission Schemes

Digital bandpass modulation techniques can be broadly classified into two
categories. The first is single-carrier modulation, where data is transmitted
by using a single radio frequency carrier. The other is multi-carrier modula-
tion, where data is transmitted by simultaneously modulating multiple RF
carriers. The transmission of high data rates generally implies a small symbol
duration Ts. Due to multipath propagation in the radio channel, distortions
are observed in the received signal, which appear as inter-symbol-interference
(ISI) of the successive modulation symbols. This situation is technically very
critical when the maximum delay τmax is very large, compared to the symbol
duration Ts. In this case, the ISI affects many adjacent transmitted symbols.
The radio channel properties resulting from multipath propagation result in
a frequency-selective behavior of the channel transfer function.

For the demodulation of the received signal, the impulse response of the
channel has to be measured and the signal must be equalized. The complexity
of such a time-domain equalizer is at least proportional to the maximum
propagation delay, i = τmax

Ts
∝ Equalizer complexity. A narrowband channel

corresponds to a high symbol duration Ts ≫ τmax. Small ISI are generated
that affect only fractions of adjacent symbols. These distortions can be
compensated by a simple equalizer. In GSM, a maximum delay of τmax =
20µs is expected. With a symbol duration of Ts = 4µs, the processing cost
in an equalizer can be implemented by i = 5 coefficients. For high data
rate systems, a broadband channel with small symbol duration Ts ≪ τmax
is needed. Thus, ISI span many symbols. As a result, the time-domain
equalizer becomes complex or is even not realizable. As an example, in Digital
Audio Broadcasting (DAB) the maximum delay is typically τmax = 50µs
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and the symbol duration (for single-carrier system) would be Ts = 0.5µs,
consequently an equalizer with 100 coefficients would be required.

From this description, the concept of multi-carrier modulation in partic-
ular orthogonal frequency division multiplexing (OFDM) is derived. In the
frequency domain, a broadband channel is divided into many parallel nar-
rowband subchannels. Each subchannel will then be seen as a frequency flat-
fading rather than frequency selective-fading channel which significantly sim-
plifies the channel equalizer. In the time domain, the symbol duration of each
subchannel is increased and subsequently the ISI problem is reduced. OFDM,
however, suffers from RF impairments such as the high sensitivity of the car-
rier frequency offset and high peak-to-average power ratio (PAPR). These
disadvantages play a less important role in the single-carrier case. Moreover,
investigations also suggest that single-carrier systems with properly designed
frequency-domain equalizer have similar performance, efficiency, and low sig-
nal processing complexity advantages as OFDM.

This chapter introduces the fundamentals of single- and multi-carrier
modulations in wireless communications. The carrier frequency offset (CFO)
in both systems is also described. The receiving antenna diversity techniques
which can be used to reduce the effect of multipath fading in the received
signal are introduced.

2.1 Single-Carrier Transmission

In this section, the conventional baseband single-carrier transmission is de-
scribed. The complete transmission block diagram can be seen in Fig. 2.1.

2.1.1 Basic principle

The equivalent lowpass transmitted signal sT (t) has the following description

sT (t) =
∞∑

k=−∞
x(k) · eT (t− kTs), x(k) ∈ Ax ⊂ C, eT (t) ∈ C (2.1)

where Ax ∈ {Ai = ej(
2π
M
i+ϕM), i = 0, . . . ,M − 1} for any ϕM ∈ R, is the

transmitted symbol alphabet, taken for example from the M-PSK constel-
lation, and eT (t) is the basic waveform (e.g., rectangular or raised cosine
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shape). The bandpass transmitted signal can be obtained by lowpass-to-
bandpass (LP-BP) transform

s(t) = Re
{
sT (t)ej2πf0t

}
= Re

{ ∞∑

k=−∞
x(k) · eT (t− kTs)e

j2πf0t

}
(2.2)

where f0 is the carrier frequency. If x(k) = |x(k)|ejψ(k) with |x(k)| =
√

2

where ψ(k) is the phase of the transmitted symbol, and eT (t) = rect
(

t
Ts

)
is

the rectangular basic waveform1, the transmitted signal s(t) can be rewritten
as

s(t) =
√

2
∑

k

cos(2πf0t+ ψ(k))rect

(
t− kTs
Ts

)
. (2.3)

The received signal, g(t) = s(t) ∗ hc(t) + n(t), is converted into the equiva-
lent lowpass domain in the first part of the receiver, the bandpass-to-lowpass
(BP-LP) transform, to obtain the general complex-valued signal in the low-
pass domain, gT (t). The operator ∗ denotes the convolution. The channel
impulse response, hc(t), is assumed now to be time-invariant, and n(t) is the
additive white Gaussian noise. The mathematical expression for this BP-LP
transform is

gT (t) =
(
g(t)e−j2πf0t

)
∗ 2hLP (t) (2.4)

where hLP (t) is the impulse response of the ideal lowpass filter. The channel
impulse response in the equivalent lowpass domain, hcT (t), is introduced with
the relation

hc(t) = Re
{
hcT (t)ej2πf0t

}
. (2.5)

The following relation in the lowpass domain, equivalent to (2.4), can be
obtained by

gT (t) =
1

2
sT (t) ∗ hcT (t) + nT (t). (2.6)

1rect(t) =






0, if |t| > 1/2
1

2
, if |t| = 1

2

1, if |t| < 1/2.

6



The relation between n(t) and nT (t) is similar as for hc(t) and hcT (t). By
substituting (2.1) into (2.6), the following expression is obtained as

gT (t) =
1

2

∞∑

k=−∞
x(k) · eT (t− kTs) ∗ hcT (t) + nT (t)

=
1

2

∞∑

k=−∞
x(k) · hT (t− kTs) + nT (t)

(2.7)

where hT (t) , 1
2
eT (t) ∗ hcT (t) can be considered as the impulse response of

a transmission system, in the equivalent lowpass domain which includes also
influence of the channel. It is referred to as channel impulse response.

The first term in (2.7) can be considered as virtual transmitted signal
that is obtained in a transmission with linear modulation with hT (t) as basic
waveform. A straightforward approach on the receiver side consists of using
a correlation filter for hT (t) at the input of the receiver, a so-called channel
match filter (CMF), h∗T (−t) where (·)∗ is the complex conjugate operator.
The CMF corresponds to the matched filter for the basic waveform, eT (t)
in an AWGN channel. For AWGN channel hcT (t) = δT (t), using matched
filter of the basic waveform, e∗T (−t) followed by two-dimensional decision
device is known to be optimum. However, in general hT (t) does not fulfill
the first Nyquist criterion since hcT (t) differs from δT (t) and consequently
the ISI appears. Therefore, in this case, the CMF followed by an appropriate
equalizer is the suboptimal solution (see Fig. 2.2).

The sampling values x̃0(t) at the output of the CMF become

x̃0(k) = yT (t)|t=kTs
=

1

2
gT (t) ∗ h∗T (−t)|t=kTs

=
1

2

[ ∞∑

l=−∞
x(l)hT (t− l · Ts) + nT (t)

]
∗ h∗T (−t)|t=kTs

=
∞∑

l=−∞
x(l)ϕhT hT

((k − l) · Ts) + nTe(k)

(2.8)

where ϕhThT
(τ) = h∗T (−t) ∗ hT (t)|t=τ =

∫∞
−∞ h∗T (t)hT (t + τ)dt, is the auto-

correlation function (ACF) of the channel impulse response hT (t), and nTe(k) =
1
2
nT (t) ∗ h∗T (−t)|t=kTs

is the filtered noise.
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Figure 2.1: Digital transmission over a bandpass channel with AWGN.

According to the Wiener-Lee theorem it applies

ϕhThT
(t) =

1

2
ϕeT eT

(t) ∗ ϕhcT hcT
(t). (2.9)

For the ideal channel with nT (t) = 0, we have

ϕhcT hcT
(t) = K · 2 · δT (t), K ∈ R, K 6= 0. (2.10)

Eq. (2.8) reduces to

x̃0(k) =
∞∑

l=−∞
K · x(l)ϕeT eT

((k − l)Ts). (2.11)

If eT (t) fulfills the first Nyquist criterion, that is

ϕeT eT
(kTs) =

{
1, for k = 0;
0, otherwise.

(2.12)
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Figure 2.2: Receiver models for AWGN and linear distorting channels.

Then we would obtain
x̃0(k) = K · x(k). (2.13)

By this way, a simple symbol-by-symbol decision would be possible. However,
in general, the channel is not ideal. This means that (2.12) does not hold.
This causes ISI in the received signal, in other words x̃0(k) depends not only
on x(k), but also the previous and later symbols.

Eq. (2.8) can be rewritten as

x̃0(k) =
∞∑

l=−∞
ϕhThT

(lTs) · x(k − l) + nTe(k). (2.14)

By defining r(k) , ϕhT hT
(kTs), (2.14) becomes

x̃0(k) =
∞∑

l=−∞
r(l) · x(k − l) + nTe(k)

= r(k) ∗ x(k) + nTe(k)

(2.15)

where r(k) can be interpreted as the impulse response of a discrete-time filter.
From (2.15) a simple method for digital transmission over a linearly distorting
channel is obtained. In general, r(k) has a finite length, and therefore (2.15)
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can be rewritten as

x̃0(k) = r(0) · x(k)︸ ︷︷ ︸
desired present symbol

+
−1∑

l=−L
r(l) · x(k − l)

︸ ︷︷ ︸
ISI from future symbols

+
L∑

l=1

r(l) · x(k − l)

︸ ︷︷ ︸
ISI from previous symbols

+nTe(k).

(2.16)
The subsequent equalizer aims to minimize (or eliminate if possible) ISI with
suitable algorithms. To achieve this there exist different optimal (e.g., Viterbi
algorithm or VA) and suboptimal (e.g., Decision Feedback Equalizer or DFE)
solutions, see [8] for more details on equalizers.

2.1.2 Stochastic time-variant channel

This subsection considers a special case of the stochastic time-variant chan-
nel, known as Rayleigh fading channel. The model of such channel is given in
Fig. 2.3. The complex additive white Gaussian noise, nT (t), is defined as in
the previous section. The multiplicative noise, a(t) = |a(t)|ejϕa(t), is a real-
ization of a complex zero-mean Gaussian process (in the equivalent lowpass
domain). The absolute value |a(t)| has a Rayleigh probability distribution
function. The multiplicative noise can be seen as a stochastic amplitude and
phase modulation. The time-variant impulse response of the channel can be
written as

hcT (τ, t) = δT (τ) · a(t) = 2hLP (τ) · a(t). (2.17)

The time-variant transfer function is obtained by applying Fourier trans-
formation w.r.t. τ

HcT (f, t) =

∫ ∞

−∞
hcT (τ, t)ej2πfτdτ = 2a(t). (2.18)
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Figure 2.3: Channel model for the Rayleigh fading channel in the equivalent
lowpass domain.

The received signal, gT (t), can be written as

gT (t) =
1

2
sT (t) ∗ hcT (τ, t)

=
1

2

∫ ∞

−∞
hcT (τ, t) · sT (t− τ)dτ

= sT (t) · a(t) = sT (t) · |a(t)|ejϕa(t)

=
∑

k

x(k)eT (t− kTs) · |a(t)|ejϕa(t).

(2.19)

Typically, the time variation of a(t) is slow compared to the symbol du-
ration Ts. It can be assumed that a(t) is constant for (at least) one symbol
duration. With this assumption the received signal reduces to

gT (t) ≈
∑

k

x(k) · |a(k)| · ejϕa(k) · eT (t− kTs)

≈
∑

k

xa(k) · eT (t− kTs)
(2.20)

where xa(k) = x(k) · |a(k)| ·ejϕa(k), |a(k)| = |a(t = kTs)|, and ϕa(k) = ϕa(t =
kTs).

The output of the matched filter is

yT (t) ≈
∑

k

xa(k) · ϕeT eT
(t− kTs). (2.21)
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After the sampling device, the received symbol x̃0(k) is

x̃0(k) = yT (t)|t=kTs
≈
∑

l

xa(l) · ϕeT eT
((k − l)Ts). (2.22)

If the first Nyquist criterion is fulfilled, then

x̃0(k) = Ee · xa(k) = Ee · |a(k)| · x(k) · ejϕa(k). (2.23)

In Rayleigh fading channels, the transmitted symbol, x(k), is corrupted not
only by the additive noise, nT (t), but also by the multiplicative noise, a(k).

2.1.3 Doppler frequency

The frequency shift caused by the relative motion between the transmitter
and the receiver is known as Doppler frequency. The Doppler frequency
depends on the speed of the mobile station and the angle of the received
signal. The frequency shift will be maximum when the receiver moves directly
towards or away from the transmitter.

The occurrence of the Doppler frequency can be described with a model of
a real-valued signal with a single fixed carrier frequency f0 of the transmitted
signal. To simplify the analysis, it is assumed that there exists only a di-
rect line-of-sight (LOS) between transmitter and receiver without multipath
propagation. The bandpass transmitted signal may be defined as

s(t) = Re{sT (t)ej2πf0t} (2.24)

where sT (t) =
∑

n cng(t− nT ) is the equivalent lowpass or baseband signal.
The signal delay τ changes systematically with time due to the motion of the
mobile station. A linear motion with time is assumed so that the distance
R(t) and hence the signal delay τ(t) between transmitter and receiver can be
expressed as

R(t) = R0 − vr · t (2.25)

where R0 is the initial distance between transmitter and receiver at time
t = 0, which varies linearly and continuously with time. A linear motion
model is sufficient for a short period consideration. The radial velocity is
denoted by vr. Because of the relative motion, the signal delay τ(t) changes
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continuously

τ(t) =
R(t)

c
=

(R0 − vr · t)
c

. (2.26)

Consequently, the received bandpass signal (noiseless) is

g(t) = s(t− τ(t))

= Re
{
sT (t− τ(t))ej2πf0(t−τ(t))

}

= Re

{
sT (t− τ(t))e

j2πf0
(
t− (R0−vr ·t)

c

)}

= Re
{
sT (t− τ(t))ej(2πf0t− 2πf0R0

c
+

2πf0vr ·t

c )
}

= Re
{
sT (t− τ(t))ej(2π(f0+f0

vr
c

)t− 2πf0R0
c )

}
.

(2.27)

It can be observed that the received signal frequency is increased as com-
pared to the transmitted signal frequency if the mobile station moves to-
wards transmitter and is decreased if the mobile station moves away from
the transmitter.

The Doppler frequency is defined as the frequency difference between the
transmitted and the received signals

fD = f0 −
(
f0 + f0

vr
c

)
= −f0

vr
c

= −f0
v · cos(α)

c
. (2.28)

The absolute velocity v of the mobile station and the angle α of the arrival
signal determine the radial velocity as vr = v ·cos(α). The baseband received
signal gT (t) can be derived directly from the above equation. The baseband
transmitted signal sT (t) is delayed by τ(t) and in the case of moving mobile
station, a phase shift is additionally observed in the received signal constel-
lation diagram. The direction of rotation and the velocity are determined
by the Doppler frequency fD. The initial phase offset φ = 2πf0R0

c
is depen-

dent upon the distance R0 between transmitter and receiver at time t = 0
and has no impact on further analysis. The baseband received signal can be
expressed as

gT (t) = sT (t− τ(t)) · e−j(2πfDt+φ). (2.29)

The received signal gT (t) is shifted in frequency with respect to (w.r.t.) the
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transmitted signal, but its envelope remains constant

|gT (t)| = |sT (t− τ(t))| = const. (2.30)

Thus, the demodulation process in the receiver is disturbed by a frequency
shift due to the relative motion, even such ideal conditions are assumed.

2.1.4 Effect of CFO

Assume that there exists LOS with no multipath propagation and perfect
time synchronization2, the received signal at the matched filter input is

gT (t) =
∑

k

x(k)eT (t− kTs)e
j(ωDt+φ) + nT (t) (2.31)

where φ is the initial phase offset, and fD = ωD/2π is CFO normalized to
symbol rate 1/Ts. Before sampling, the matched filter output is

yT (t) = gT (t) ∗ e∗T (−t) =

∫
gT (λ)e∗T (λ− t)dλ

= ejφ
∑

l

x(l)

∫
eT (λ− lTs)e

∗
T (λ− t)ejωDλdλ+ nTe(t)

= ejφ
∑

l

x(l)ejωDlTs

∫
eT (ζ)e∗T (ζ − (t− lTs))e

jωDζdζ + nTe(t).

(2.32)

Assuming Nyquist pulses, we have

ϕeT eT
(t)|t=kTs

= eT (t) ∗ e∗T (−t)|t=kTs
=

{
1, k = 0
0, k 6= 0.

(2.33)

2Indeed, excellent timing information can be normally derived even with frequency
errors on the order of 10 − 20% of the symbol rate.
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where nTe(t) = nT (t) ∗ e∗T (−t) is the filtered noise waveform. The signal
sampled at the output of the matched filter is then

x̃0(k) = yT (t = kTs)

= ejφ
∑

l

x(l)ejωDlTs

∫
eT (ζ)e∗T (ζ − (k − l)Ts)e

jωDζdζ + nTe(k).

(2.34)

The noise samples in (2.34) are independent complex Gaussian random vari-
ables. The typical assumption to simplify (2.34) is that fD is small enough so
that the complex exponential term inside the integral can be simply equated
to one. Eq. (2.34), for l = k, becomes

x̃0(k) = x(k)ej(ωDkTs+φ) + nTe(k) (2.35)

which is an often used signal model for frequency estimation problem. For
large frequency offsets, the complex exponential term inside the integral in
(2.34) induces ISI. This can be shown by expanding ejωDζ in Taylor series as

ejωDζ =
∞∑

m=0

(jωDζ)
m

m!
= 1 + jωDζ −

1

2
ω2
Dζ

2 + . . . (2.36)

and by defining

pm(τ) =

∫
ζmg(ζ)g∗(ζ − τ)dζ. (2.37)

Eq. (2.34) can then be rewritten as

x̃0(k) = ejφejωDkTs

∑

l

x(k − l)hl(ωD) + nTe(k) (2.38)

where

hl(ωD) = e−jωDlTs

∞∑

m=0

(jωD)m

m!
pm(lTs) (2.39)

is the ISI coefficient. Eq. (2.38) and (2.39) show explicitly the frequency
offset dependent ISI. Note that frequency offset causes ISI even if a Nyquist
basic waveform is assumed.
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2.2 Multiple-Carrier Transmission

This section is concerned with a particular type of multi-carrier modulation,
known as orthogonal frequency multiplexing (OFDM). OFDM has gained
popularity in a number of applications including digital audio/video broad-
casting (DAB/DVB), high-speed digital subscriber line (DSL) modems or
wireless local area network (WLAN). It is also used in the new generation
mobile communication systems like Long Term Evolution (LTE) and World-
wide Inter-operability for Microwave Access (WiMAX). High data-rate is
desired in many applications. However, as the symbol duration reduces with
the increase of data-rate, the systems using single-carrier modulation suffer
from more severe ISI caused by the dispersive fading of wireless channels,
thereby needing more complex equalizers. OFDM modulation divides the
entire frequency selective fading channel into many narrow band flat fading
subchannels in which high-bit-rate data are transmitted in parallel and do
not undergo ISI due to the long symbol duration. The subcarriers have the
minimum frequency separation required to maintain orthogonality of their
corresponding time domain waveforms, with the signal spectrum correspond-
ing to the different subcarriers overlap in frequency. Hence the available
bandwidth is used very efficiently. If knowledge of the channel is available at
the transmitter, then the OFDM transmitter can adapt its signaling strategy
to match the channel. Due to the fact that OFDM uses a large collection
of narrowly spaced subchannels, these adaptive strategies can approach the
ideal water pouring3 capacity of a frequency-selective channel. In practice
this is achieved by using adaptive bit loading techniques, where different
sized signal constellations are transmitted on subcarriers.

Although OFDM has become widely used recently, the concept dates back
some 40 years. Chang’s work [9] published in 1966 shows that multi-carrier
modulation can solve the multipath problem without reducing data rate. His
work is generally considered as the first official publication on multi-carrier
modulation. Some early work was Holsinger’s 1964 MIT dissertation [10]
and some of Gallager’s early work on waterfalling [11]. In 1971, Weinstein
and Ebert [12] show that multi-carrier modulation can be accomplished us-
ing DFT. Cimini at Bell Labs identifies many of the key issues in OFDM
transmission and does proof-of-concept design [13].

3Water pouring or water filling is a power loading technique, which allocates more
power on the subcarriers with high SNR and less power on the subcarrier with low SNR.
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2.2.1 OFDM signal

In OFDM, data are transmitted blockwise. A sequence of complex data sym-
bols is split into blocks and allocated to different subcarriers. Let {xi,k}N−1

k=0

be the complex symbols belonging to the i-th OFDM block, the i-th block
of the OFDM signal can be expressed as

si(t) =
1√
N

N−1∑

k=0

xi,ke
j2πfkt =

1√
N

N−1∑

k=0

xi,kϕk(t), 0 ≤ t ≤ Ts (2.40)

where fk = fo + k∆f , 1√
N

is the normalizing factor, and

ϕk(t) =

{
ej2πfkt if 0 ≤ t ≤ Ts
0 otherwise

(2.41)

for k = 0, 1, · · · , N − 1. Ts and ∆f are the symbol duration and subcarrier
spacing of OFDM, respectively. For simplicity, the index i can be omitted.
Despite the spectrum of the OFDM subcarriers overlap, they do not interfere
after demodulated since they are orthogonal with each other, so that xk can
be extracted independently of each other in the receiver. The orthogonality
condition yields

〈ϕk(t), ϕl(t)〉 =
1

Ts

∫ Ts

0

ϕk(t)ϕ
∗
l (t)dt

=
1

Ts

∫ Ts

0

ej2π(fk−fl)tdt =
1

Ts

∫ Ts

0

ej2π(k−f)∆ftdt

=
1

j2π(k − l)∆fTs

[
ej2π(k−l)∆ft]Ts

t=0

=
1

j2π(k − l)

[
ej2π(k−l) − 1

]

=
sin[π(k − l)]

π(k − l)
ejπ(k−l) = δ(k − l)

(2.42)

where δ(·) is the discrete delta function.
Eq. (2.42) shows that {ϕk(t)}N−1

k=0 is a set of orthogonal functions. Using
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this property, the OFDM signal can be demodulated by

√
N〈s(t), ϕk(t)〉 =

√
N

Ts

∫ Ts

0

s(t)ϕ∗
k(t)dt

=

√
N

Ts

∫ Ts

0

(
1√
N

N−1∑

l=0

xlϕl(t)

)
ϕ∗
k(t)dt

=
N−1∑

l=0

xlδ(l − k) = xk.

(2.43)

By dividing the total bandwidth into narrow subbands, the symbol duration
is now N times larger than the original symbol duration. Therefore, the
condition that Ts ≫ τmax is fulfilled as in a narrowband channel. The ISI is
thus reduced considerably.

2.2.2 FFT implementation

From (2.43), an integral is used for demodulation of OFDM signals. Here we
describe the relationship between OFDM and DFT, which can be efficiently
implemented by low complexity fast Fourier transform (FFT). Recall the
OFDM signal model

s(t) =
1√
N

N−1∑

k=0

xke
j2πfkt. (2.44)

The sampling space of an OFDM signal of bandwidth B is

∆t =
1

B
=

1

N∆f
. (2.45)

The discrete-time transmit signal, sn , s(n∆t) for 0 ≤ n ≤ N − 1, is

sn =
1√
N

N−1∑

k=0

xke
j2πn∆tk∆f (2.46)
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which is known as the DFT of the sequence xk if ∆t∆f = 1
N

. Hence, the
IFFT of the data block is

sn =
1√
N

N−1∑

k=0

xk exp

{
j
2πnk

N

}
, n = 0, 1, · · · , N − 1 (2.47)

yielding the time-domain sequence sn. For the same reason, the receiver can
be also implemented using FFT.

2.2.3 Cyclic extension

To mitigate the effects of ISI caused by channel delay spread, each block of
N-IFFT coefficients is typically preceded by a cyclic prefix (CP) or a guard
interval consisting of Ng samples, such that the length of the CP is at least
equal to the channel length Nh in samples, where µ = Th

Ts
N , Th is the length

of (continuous) channel, and Ts is the duration of a OFDM block. The cyclic
prefix is simply a repetition of the last Ng IFFT coefficients. Alternatively, a
cyclic suffix can be appended to the end of the block of N IFFT coefficients,
that is a repetition of the first Ng IFFT coefficients. The guard interval of
length Ng is an overhead that results in a power and bandwidth penalty, since
it consists of redundant symbols. However, the guard interval is useful for
implementing time and frequency synchronization functions in the receiver,
since it contains repeated symbols at a known sample spacing. The time
duration of an OFDM symbol is N + Ng times larger than the modulated
symbol in a single-carrier system.

2.2.4 Generalized representation

Let xi,k = xk(i) represent the complex data symbols belonging to the i-th
OFDM symbol block. Eq. (2.47) can be rewritten as

sn(i) =
1√
N

Nu−1∑

k=0

xk(i) exp

{
j
2πnk

N

}
, n = 0, 1, · · · , N − 1 (2.48)

where Nu ≤ N are now the used subcarriers, N is the IFFT size, and xk(i)
is the k-th subcarrier of the i-th OFDM symbol. If Nu < N , the residual
N − Nu subcarriers referred to as null or virtual subcarriers are filled with
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zeros. The column vectors of sn(i) and xn(i) are defined as

x(i) = [x0(i), x1(i), · · · , xNu−1(i)]
T

s(i) = [s0(i), s1(i), · · · , sNu−1(i), · · · sN−1(i)]
T

(2.49)

and the IFFT matrix is

W =
1√
N




1 1 · · · 1

1 ej
2π
N · · · ej

2π
N

(Nu−1)

...
...

. . .
...

1 ej
2π
N

(N−1) · · · ej
2π
N

(N−1)(Nu−1)




N×Nu

(2.50)

the i-th OFDM block can be written in a more compact form as

s(i) = Wx(i). (2.51)

A cyclic prefix (CP) is preceded after the IFFT modulation and its length
Ng is assumed to be longer than the maximum delay spread of the channel
to completely avoid the ISI. This can be expressed as

scp(i) = [sN−Ng
(i), · · · , sN−1(i)︸ ︷︷ ︸
cyclic prefix

, s0(i), · · · , sN−1(i)]
T (2.52)

this operation can be realized by a matrix-vector multiplication

scp(i) = Gs(i) (2.53)

where G has the form of

G =

(
0Ng×(N−Ng) INg×Ng

IN×N

)
(2.54)

where 0 denotes a matrix with all zero entries, and I denotes the identity
matrix. After parallel to serial conversion, the Dirac-sampled time-domain
transmit symbols are filtered by he transmit filter hT (t), which is a bandlim-
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Figure 2.4: Equivalent lowpass domain OFDM transmission (SISO case).

ited low-pass filter with cutoff frequency of fg = 1
2∆t

. ∆t = Ts

N+Ng
, which

denotes also the single symbol duration T . The resulting signal s(t) can be
written as

s(t) =
∞∑

i=0

Ns−1∑

k=0

sk(i)hT (t− (iNs + k)T ) (2.55)

s(t) is then up-converted and transmitted over the time-invariant frequency-
selective channel with impulse response hK(t). In Fig. 2.4, hK(t) represents
the impulse response of the lowpass equivalence of the physical channel which
is generally complex-valued. The output of the physical channel is corrupted
by additive white Gaussian noise (AWGN) with two side power spectral den-
sity (PSD), N0

2
. For high frequency radio channel, bandpass filtering is ap-

plied at the receiver before down-conversion. The noise is therefore bandpass
white Gaussian. Letting n(t) denote the equivalent lowpass complex-valued
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noise with a PSD [8] of

Φnn(f) =

{
N0, for |f | ≤ 1

2
B

0, for |f | > 1
2
B

(2.56)

and its autocorrelation function is

φnn(τ) = N0
sin(πBτ)

πτ
= N0B

sin(πBτ)

πBτ
= N0Bsinc(πBτ) (2.57)

where B indicates the bandwidth of the bandpass filter, and sinc(x) ,
sin(x)
x

.
The limiting form of φnn(τ) as B approaches infinity is φnn(τ) = N0δ(τ).
The variance of n(t) is defined as σ2

n = φnn(0) = N0B.
Assuming that the receiver is perfectly synchronized with the transmitter,

the down-converted received signal g(t) at the input of the receiver can be
expressed as

g(t) = s(t) ∗ hK(t) + n(t)

=

∫ ∞

−∞
hK(τ)s(t− τ)dτ + n(t)

(2.58)

which is then filtered by the receiver filter hR(t) and sampled at t = (iNs +
k)T . It is assumed that hR(t) is an ideal lowpass filter having cutoff frequency
fg = 1

2T
. The discrete-time equivalent lowpass channel impulse response from

the concatenation of hT (t), hK(t), and hR(t) is

hl , h(l · T ) = hT (t) ∗ hK(t) ∗ hR(t)|t=l·T (2.59)

the time index i is ignored since the channel is assumed to be time-invariant.

We denote the channel with a vector h =
[
h0 h1 · · · hL−1

]T
. If L > 1,

the channel is time dispersive and thus frequency selective. Consequently,
the received time-domain discrete-time symbol yk(i) is obtained as

yk(i) =
L−1∑

l=0

hlsk,l(i) + n′
k(i) (2.60)
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where n′
k(i) = hR(t)∗n(t)|t=(iNs+k)T . Assume that B ≥ 1

2T
. Since hR(t) is an

ideal lowpass filter, n′
k(i) is therefore a complex-valued white Gaussian ran-

dom variable with variance σ2
n = N0B. The received symbol vector after se-

rial to parallel conversion is denoted by y(i) =
[
y0(i) y1(i) · · · yN+Ng−1(i)

]T
.

Eq. (2.60) can also be formulated as a matrix-vector convolution

y(i) =
∞∑

j=−∞
H(j)s(i− j) + n′(i) (2.61)

where H(i) is (N +Ng)× (N +Ng) matrix. If the length of h is not greater
than N + 1, the sequence of H(i) matrices consist of nonzero matrices for
i = 0 and i = 1:

H(0) =




h0 0 · · · 0 · · · 0
... h0

...

hL−1
...

. . . 0
...

0 hL−1 h0
...

. . . . . . . . . 0
0 · · · 0 hL−1 · · · h0




(2.62)

and

H(1) =




0 · · · 0 hL−1 · · · h1
...

... 0
. . .

...

0 · · · 0
... hL−1

0 · · · 0 0 · · · 0
...

. . .
...

...
0 · · · 0 0 · · · 0




. (2.63)

At the receiver, after the removal of the cyclic prefix for y(i) and FFT de-
modulation, the frequency-domain received symbol vector x̃(i) is given by

x̃(i) = WHGry(i) + n(i) (2.64)

with
Gr =

(
0N×Ng

IN×N
)

(2.65)

and n(i) = WHGrn
′(i), where (·)H is the conjugate transpose (or Hermitian
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transpose) operator. The noise sample nk(i) ∈ n(i) are also complex-valued
white Gaussian random variables with variance σ2

n. WH denotes the normal-

ized Fourier matrix with WH
mn = 1√

N
e−j

2π
N

(m−1)(n−1) and WHW = W−1W =

I, where I is the identity matrix. Substituting (2.51), (2.53) and (2.60) in
(2.64) yields

x̃(i) = WHGrH(i)GW ∗ x(i) + n(i). (2.66)

If L is not greater than Ng − 1, then GrH(1)G yields a zero matrix and

GrH(0)G =




h0 0 · · · 0 hL−1 · · · h1

h1 h0
...

. . .
...

... h1
. . . 0 hL−1

hL−1
...

. . . h0
. . . 0

0 hL−1 h1
. . . 0

...
...

. . .
... h0 0

0 · · · 0 hL−1 · · · h1 h0




(2.67)

is circular. According to the properties of a circular matrix, every circular
matrix can be diagonalized by the Fourier matrix W

GrH(0)G = WHWH (2.68)

where

H =
√
N · diag

{
W · [h0, h1, · · · , hL−1,01×N−L−1]

T
}

= diag {[H0, H1, · · · , HN−1]}
(2.69)

is a diagonal matrix. Clearly, the elements on the diagonal of H are the
discrete channel transfer functions over N subcarriers. Hence,

WHGrH(i)GW = H. (2.70)

Accordingly, (2.66) reduces to

x̃(i) = WHGrH(i)GW · δ(i) ∗ x(i) + n(i) = Hx(i) + n(i). (2.71)
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The diagonal channel transfer function matrix implies that each subcar-
rier undergoes frequency flat-fading. Data detection can be therefore, realized
by a bank of adaptive one-tap equalizers to combat the phase and amplitude
distortions resulting from fading. In such a case, the equalization matrix G

is also a diagonal matrix with the weighting factors of these equalizers on the
main diagonal. This can be seen in the case of the simple zero forcing (ZF)
equalizer. The symbol-by-symbol ZF equalizer applies the inverted channel
coefficients

gm =
H∗
m

|Hm|2
. (2.72)

The ZF equalizer totally recovers the desired symbols, excepted for the case
where |Hm| = 0. The covariance matrix of the equalized noise ñ has the form

Cññ = σ2
n ·




1
|H0|2 0

1
|H1|2

. . .

0 1
|HN−1|2


 (2.73)

and therefore the output SNR of the ZF is given by

SNR = |Hm|2
σ2
x

σ2
n

. (2.74)

Since H is a diagonal matrix, no noise enhancement occurs in this case.
However, it can be observed that the SNR is subcarrier dependent, provided
that the channel is frequency selective. Note that the energy loss due to the
insertion of the cyclic prefix has not been included in the SNR. As this energy
loss is a constant factor and will be reflected as horizontal shift of the BER
curve.

2.2.5 Effect of CFO

The CFO can be several times larger than the subcarrier spacing. It is
usually divided into an integer part and a fractional part. If the CFO is
an integer n multiple of subcarrier spacing ∆f , then the received frequency
domain subcarriers are shifted by n subcarrier positions. The subcarriers are
still mutually orthogonal but the received data symbols, which were mapped
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to the OFDM spectrum are now in the wrong position in the demodulated
spectrum, resulting in a BER of 0.5. If the CFO is a fraction of the subcarrier
spacing, then energy is spilling over between the subcarriers, resulting in loss
in their mutual orthogonality. The ICI is then observed which deteriorates
the BER of the system. The impact of ICI on the system performance of an
OFDM system can be evaluated by investigating the spectrum of the OFDM
symbol (see [14]).

For simplicity, the analysis of the effect of CFO will be carried out in
the absence of the multipath fading and the additive noise. Consider the
transmitted OFDM signal

sn =
1√
N

N−1∑

k=0

xke
j 2πnk

N , n = 0, 1, . . . , N − 1.

where xk is the transmitted symbol over the k-th subcarrier. If there is a
multiplicative time-varying distortion, γn , γ(nT ) = ej

2πυnT
N , that is caused

by frequency offset, the noiseless received signal is

rn = ej
2πǫn

N︸ ︷︷ ︸
γn

·sn, with ǫ , υT (2.75)

where a CFO ǫ is a fractional of the subcarrier spacing.
Taking DFT to obtain the OFDM symbol on the m-th subcarrier, gives

x̃m =
N−1∑

k=0

rk ·
1√
N
e−j

2πkm
N

=
1

N

N−1∑

k=0

ej
2πǫk

N

N−1∑

l=0

xle
j 2πkl

N e−j
2πkm

N

=
ejπǫ(

N−1
N )

N

sin(πǫ)

sin
(
πǫ
N

) · xm +
1

N

N−1∑

l=0, l 6=m
xl

N−1∑

k=0

ej
2πk(l−m+ǫ)

N

︸ ︷︷ ︸
ICI

= I0(ǫ) · xm +
N−1∑

l=0, l 6=m
xlIl−m(ǫ)

︸ ︷︷ ︸
ICI

(2.76)
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Figure 2.5: Equivalent lowpass domain OFDM reception with CFO.

where

Ip(ǫ) ,
1

N

N−1∑

k=0

ej
2πk(ǫ+p)

N = ej(π(
N−1

N )(ǫ+p)) sin (π(ǫ+ p))

N · sin
(
π
N

(ǫ+ p)
)

where p , l −m. It can be seen that a fractional CFO (|ǫ| < 0.5) causes a
reduction in signal amplitude and ICI.

2.3 Receive Diversity

Diversity combining devotes the entire resources of the array to service a sin-
gle user (see Fig. 2.6). Specifically, diversity schemes enhance reliability by
minimizing the channel fluctuations due to fading. The main idea in diver-
sity4 is that different antennas receive different versions of the same signal.
The probability that all these copies being in a deep fad is small. These
schemes therefore make most sense when the fading is independent from el-
ement to element and are limited use (beyond increasing SNR) if perfectly
correlated (such as in LOS conditions). Independent fading would arise in a
dense urban environment where several multipath components add up very
differently at each element. Diversity combining is specifically targeted to
counteract small scale fading. It is therefore suitable for the assumptions that
have been made in this thesis that the received signal experiences Rayleigh
slow flat-fading. The physical model assumes the fading to be independent
from one element to the next. Each element, therefore, acts as an indepen-
dent sample of the random fading process (e.g., Rayleigh), i.e., each element
of the array receives an independent copy of the transmitted signal. The
main of receive antenna diversity is to combine these independent samples

4Diversity arises in various forms - space, angle, frequency, time, polarization diversity.
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to achieve the desired goal of increasing the SNR and reducing the BER.
Diversity works because given N elements in the receiving antenna array we
receive N independent copies of the same signal. It is assumed here that the
received signal copies must be uncorrelated5 or weakly-correlated (i.e., corre-
lation coefficient ρ ≤ 0.5). The models developed in the following subsections
are for single user.

2.3.1 Signal model

Consider a single-user system wherein the received signal is a sum of the
desired signal and noise

x(t) = h(t)u(t) + n(t) (2.77)

where u(t) is the unit power signal transmitted, h(t) represents the channel
(including the signal power) and n(t) is the noise vector. The power in the

5For Gaussian fading (Rayleigh fading is complex Gaussian) uncorrelated fading implies
independent fading.
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signal over a single symbol period, Ts, at element n, is

Pn =
1

Ts

∫ Ts

0

|hn(t)|2|u(t)|2dt = |hn(t)|2
1

Ts

∫ Ts

0

|u(t)|2dt ≃ |hn(t)|2 (2.78)

where, if the channel is assumed to be slow fading, the term |hn(t)|2 remains
constant over a symbol period (hn(t) ≃ hn) and can be brought out of the
integral and u(t) is assumed to have unit power. Setting E{|nn(t)|2} = σ2,
the instantaneous SNR is obtained as

γn =
|hn|2
σ2

. (2.79)

The instantaneous SNR is a random variable with a specific realization given
the channel realization hn.

For Rayleigh fading, hn = |hn|ej∡hn , where ∡hn is uniform in [0, 2π) and
|hn| has a Rayleigh pdf, implying |hn(t)|2 (and γn) has an exponential pdf

|hn| ∼
2|hn|
P0

e|hn|2/P0

γn ∼ 1

Γ
e−γn/Γ

Γ = E{γn} =
E{|hn|2}

σ2
=
P0

σ2
.

(2.80)

The instantaneous SNR of each antenna element is an exponentially dis-
tributed random variable. Γ represents the average SNR at each element.
This is also the SNR of a single antenna, i.e., the SNR if there were no array,
Γ will therefore serve as a baseline for the improvement in SNR.

2.3.2 Selection combining

Selection combining (SC) is the simplest diversity technique. It is easy to
implement because all that is needed is a side monitoring station and an
antenna switch at the receiver. However, it is not an optimal diversity tech-
nique since it does not use all of the possible branches simultaneously. The
selection combining selects the signal from the element that has greatest SNR
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for further processing. The weights in SC is then

wk =

{
1, γk = maxn{γn}
0, otherwise

(2.81)

Since the element chosen is the one with the maximum SNR, the output
SNR of the selection diversity scheme is γ = maxn{γn}. Such scheme would
need only a measurement of signal power, phases and variable gains are
not required. The average output SNR is obtained as (see also [15] for the
analysis of E{γ} and the corresponding BER)

E{γ} ≈ Γ

(
C + lnNr +

1

2Nr

)
(2.82)

where the final approximation is valid for relatively large value of receive
antennas, Nr, and C is Euler’s constant. The improvement in SNR over that
of a single element is of order of lnNr.

2.3.3 Maximum ratio combining

Maximum ratio combining (MRC) uses each of the Nr branches in a co-
phased and weighted manner such that the highest achievable SNR is avail-
able in the receiver at all time. MRC obtains the weighting vector w that
maximizes the SNR of the output signal y(t), i.e., MRC uses linear coher-
ent combining of branch signals with such weights so that the ouput SNR is
maximized.

Writing a snapshot of the received signal at the array elements as a vector
x(t), and the output of MRC as a scalar y(t) which may be expressed as

y(t) = wHx(t)

= wHh(t)s(t) + wHn(t)
(2.83)

where h(t) = [h0(t), h1(t), · · · , hNr−1(t)]
T and n(t) = [n0(t), n1(t), · · · , nNr−1(t)]

T .
Since the signal s(t) has unit average power, the instantaneous output

SNR is

γ =
|wHh|2

E{|wHn|2} . (2.84)
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The noise power in the denominator is given by

Pn = E{|wHn|2} = E{|wHnnHw|} = wHE{nnH}w = σ2
nw

HIw

= σ2
nw

Hw = σ2
n‖w‖2.

(2.85)

Since constants do not matter, one could scale w such that ‖w‖ = 1. The
SNR is therefore given by γ = |wHh|2/σ2

n. By using Cauchy-Schwarz in-
equality, γ is maximized if w is linearly proportional to h, i.e.,

w , h,

⇒ γ =
|hHh|2
σ2
nh

Hh
=

hHh

σ2
n

=
Nr−1∑

n=0

γn.

(2.86)

The best that a diversity combiner can do, is to choose the weights to be
equal to the fading of each element. In some sense this answer is expected
since the solution is effectively the matched filter for fading signal. We know
that the matched filter is optimal in the single user case.

The expected value of the output SNR is therefore N times the average
SNR at each element, i.e.,

E{γ} = NrΓ (2.87)

which indicates that on average, the SNR improves by a factor of Nr. This
is significantly better than the factor of lnNr improvement in the case of
selection diversity case. The BER improvement analysis for MRC can be
found in [15].

Note that in order to perform MRC, the receiver has to know the fading
or has to have access to the channel state information (CSI). This is usually
achieved by sending known symbols (pilot) through the channel and mea-
suring the channel’s response. Clearly, such a procedure does not allow for
having perfect CSI, but rather approximate CSI which results in suboptimal
solutions, in practice.
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2.3.4 Equal gain combining

In certain cases, it is not convenient to provide for the variable weighting
capability required for true maximum ratio combining. In such cases, the
branch weights are all set to unity but the signals from all branches are
co-phased to provide equal gain combing (EGC) diversity. This allows the
receiver to exploit signals that are simultaneously received on each branch.
The possibility of producing an acceptable signal from a number of unac-
ceptable inputs is still retained, and performance is only marginally inferior
to MRC and superior to SC.

In equal gain combining, each signal branch weighted with the same fac-
tor, irrespective of the signal amplitude

wn = exp{j∡hn}
⇒ w∗

nhn = |hn|

⇒ wHh =
Nr−1∑

n=0

|hn|.
(2.88)

The noise and instantaneous SNR are given by

Pn = wHwσ2
n = Nrσ

2
n

γ =

(∑Nr−1
n=0 |hn|

)2

Nrσ2
n

.
(2.89)

The average output SNR is obtained as (see also [15] for the analysis of E{γ}
and the corresponding BER)

E{γ} = Γ
[
1 + (Nr − 1)

π

4

]
. (2.90)

Despite being much simpler to implement than MRC, the EGC results in an
improvement in SNR that is comparable to that of the optimal MRC. The
SNR of both combiners increases linearly with Nr.
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2.4 Summary

In this chapter, the basic principle of single-carrier transmission is introduced.
Doppler shift caused by relative motion, the effect of carrier frequency offset
caused by the non-synchronized oscillators between transmitter and receiver,
and fading-induced multiplicative noise are described. The analysis of CFO
effect shows that for large CFO errors, the inter-symbol-interference (ISI) is
induced. As a result, the simple and most frequently used signal model is
insufficient.

In the second part of this chapter, the concept of OFDM which is known
to be more sensitive to the frequency synchronization than the single-carrier
one, is introduced. The matrix notation is also used to describe the system in
a more compact way. The effect of CFO of the demodulated OFDM signal
is presented. The inter-carrier-interference (ICI) induced by CFO appears
after the signal demodulation.

Finally, three receiving diversity techniques, which can be used to reduce
the effect of multipath fading in the received signal, are introduced.

33



Chapter 3

Frequency Offset Estimation:

Single-Carrier Case

Estimation of the frequency of a single sinusoid embedded in additive white
Gaussian noise is one of the classical problems in signal processing. It is
of fundamental importance in many applications, i.e., wireless communica-
tions, radar/sonar, measurements, and geophysical exploration, among oth-
ers. Two signal models, namely constant envelope and time-varying envelope,
are often used in the frequency estimation problem. The latter is seen as the
more general case of the former. However, treating the constant envelope
separately has provided significant insights into the problem, moreover many
techniques including the analytical methods developed for the constant en-
velope case could be efficiently extended to the time-varying envelope model.

3.1 Constant Envelope

In communications context, the constant envelope model is often used in the
data-aided approach carrier frequency offset (CFO) estimation problem. The
channel is assumed to be a time-invariant AWGN channel with perfect time
synchronization. The discrete time constant envelope signal model is often
defined as

y(k) = a exp{j2πf0k} + n(k), 0 ≤ k ≤ N − 1 (3.1)
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where a = |a| exp{jφ} is a constant complex envelope, f0 = F0T is the
normalized frequency to be estimated, n(k) = nI(k) + jnQ(k) is a zero-mean
complex-valued white Gaussian process with variance σ2. The SNR is defined
as |a|2/σ2. Note that |a|, φ, f0 are deterministic, but unknown.

The theoretical Cramer-Rao lower bound (CRLB) for the estimation vari-
ance is derived in the Appendix A, and is given as

CRLB(f̂0) =
6 · SNR−1

(2π)2N(N2 − 1)
. (3.2)

3.1.1 Maximum likelihood estimator

It is well known that in most applications, excellent estimates of sought fre-
quencies are easily obtained by peak-picking the periodogram of the data, ie.,
the magnitude square of the discrete-time Fourier transform, [16]. Besides
the fact that the periodogram is an excellent frequency estimator, it can be
efficiently implemented using the fast Fourier transform (FFT) of the obser-
vation followed by a search, or interpolation, for the spectral maxima. The
Maximum Likelihood Estimator (MLE) for f0 has the form of (see Appendix
A.1.2)

f̂0 = arg max
f̃0

1

N

∣∣∣∣∣

N−1∑

k=0

y(k) exp{−j2πf̃0k}
∣∣∣∣∣

2

= arg max
f̃0

Py(f̃0)

(3.3)

where Py(·) is known as the periodogram of y(k), f̃0 is the tentative value of
f0. The MLE produces the estimate of f0 which is consistent and asymptot-
ically efficient (as N → ∞, its variance equals to the CRLB) [17].

In practice, (3.3) can be realized by means of Fast Fourier Transform
(FFT) followed by a search for spectral maxima. The frequency variable is
sampled f̃0 , n

N
, n = 0, · · · , N−1. If N is a power of 2, the N -point radix-2

FFT implementation can be directly used. The computation of the N -point
radix-2 FFT requires about 1

2
N log2N flops (1 flop = 1 complex multiplica-

tion plus 1 complex addition). If not, the length may be increased by means
of zeros padding until the length is a power of 2. Zero padding provides a
better representation of the continuous-frequency estimated spectrum when
the frequency sampling is too sparse. Applying the FFT to the data sequence
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with zero padding reveals finer details in the spectrum which were not vis-
ible without zero padding. It must be, however, noted that zero padding
can not improve the spectral resolution. A method to further improve the
peak localization involves fitting the peak of the periodogram and its two
nearest neighbors (see Fig. 3.1) to the quadratic function. A closed-form fine
estimate is then obtained as (see Appendix A.1.3)

f̂fine = −1

2

(f 2
3 − f 2

2 )p1 + (f 2
1 − f 2

3 )p2 + (f 2
2 − f 2

1 )p3

(f2 − f3)p1 + (f3 − f1)p2 + (f1 − f2)p3

(3.4)

where (f1, p1), (f2, p2), (f3, p3) are the point left to the peak, the peak, and
the point right to the peak, respectively.
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Figure 3.1: A typical periodogram and its peak’s vicinity points for SNR =
0 dB and N = 64.
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3.1.2 Approximated maximum likelihood estimators

The MLE is known to provide the optimal estimate of f0, however, it is
prohibited from several applications because of it’s high computational re-
quirement. In the past years, there are many significant contributions in
approximated MLE which yield simpler form of estimators. The approxi-
mated maximum likelihood estimators presented here represent the state-of-
the-art in frequency estimation. The main ideas and useful derivations for
each estimator are therefore summarized in Appendix A.

Tretter estimator

Tretter [18] proposed an approach that provides the significant insightful
result that frequency and phase estimation can be equivalently seen as the
linear regression of the phase data. Tretter first proved that for a sufficiently
high SNR, the complex noise, n(k), can be transformed to the phase noise,
vQ(k), with the variance reduced by factor of 2 (see Appendix A.1.5)

arg {y(k)} ≈ [2πkf0 + φ+ vQ(k)]π−π (3.5)

where y(k) is the received signal defined in (3.1) with arg{x} representing
the angle of x, vQ(k) is a real-valued zero-mean white Gaussian noise with
variance σ2

n/(2|a|2), and [x]π−π is the modulo-2π operation.
He further suggested estimating f0 and φ by linear regression on the signal

phase. Tretter estimator has the form of (see Appendix A.1.6)

f̂0 =
12

2πN(N2 − 1)

N−1∑

k=0

[
k − (N − 1)

2

]
arg {y(k)} . (3.6)

Note that a phase unwrapping procedure is needed for arg {y(k)}.
A simple one-dimension phase unwrapping procedure based on Itoh’s

analysis [19] is summarized in the following steps. This procedure unwraps
the phase in the array ψ(i) ∈ (−π, π] for 0 ≤ i < M − 1. In this case
ψ(i) , arg{y(i)}.

• Compute phase differences: D(i) = ψ(i+1)−ψ(i) for i = 0, . . . ,M−2.

• Compute the wrapped phase differences: ∆wp(i) = arctan{ sinD(i)
cosD(i)

} for
i = 0, . . . ,M − 2.

• Initialize the first unwrapped value: φ̂(0) = ψ(0).
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• Unwrap by summing the wrapped phase differences: φ̂(i) = φ̂(i− 1) +
∆wp(i− 1) for i = 1, . . . ,M − 1.

Kay estimator

The only difficulty with Tretter estimator is that the phase needs to be
unwrapped in computing f0 and φ. This phase unwrapping, besides adding
to the computation, may prove to be difficult at lower SNR’s. To avoid phase
unwrapping, Kay [20] derived an estimator based on the phase differences
between two consecutive samples. The phase differences take the form of

∆ϕ(k) = arg {y(k)y∗(k − 1)}
≈ 2πf0 + vQ(k) − vQ(k − 1)

(3.7)

provided that |2πf0| < π and vQ(k) is sufficiently small. It is clear from (3.7)
that the problem now is to estimate the mean f0 of a colored Gaussian noise
The maximum-likelihood estimate of f0 is found as (see Appendix A.1.7)

f̂0 =
1

2π

N−1∑

k=1

6k(N − k)

N(N2 − 1)
∆ϕ(k). (3.8)

The estimation variance of Kay estimator is shown to attain the CRLB at
high SNR. Kay also suggested to interchange the summation and the argu-
ment operations in (3.8), however resulting in an inferior alternative to his
original one. The analysis of this comment from Kay has been carried out
in [21]. The generalized Kay estimator with arbitrary lag greater than one,
is derived in [22].

Fitz estimator

A promising approach for single frequency estimation relying on calculating
or approximating the autocorrelation of the received signal, is known to pro-
vide a good threshold. This concept was first introduced by Fitz [23] [24]
and later improved by Luise and Reggiannini (L&R estimator) [25]. Fitz
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estimator has the form of (see Appendix A.1.8)

f̂0 =
1

2π

L∑

m=1

6m

N(N + 1)(2N + 1)
arg {r̂(m)} . (3.9)

where r̂(m) is the estimated autocorrelation of the samples, y(k), defined as

r̂(m) =
1

N −m

N−1∑

k=m

y(k)y∗(k −m), 1 ≤ m ≤ L (3.10)

where L is the design parameter not greater than N
2
. Note that the estimation

range of Fitz estimator is limited to |f0| ≤ 1
2L

. To enlarge the range, phase
unwrapping algorithm such as the one presented previously can be used. The
optimal value of L is found to be ∼ 17N/20.

Mengali estimator

Though Fitz estimator is accurate (the estimation variance attains the CRLB)
even at low SNR, it suffers from the relatively small estimation range. Men-
gali and Morelli [26] derived an estimator based on the phase differences of
sample correlations which is conceptually similar to Kay’s approach. The
estimation range of the Mengali estimator is about ±50% of the symbol rate
at high SNR. Mengali estimator has the form of (see Appendix A.1.9)

f̂0 =
3

2π

L∑

m=1

(N −m)(N −m+ 1) − L(N − L)

L(4L2 − 6LN + 3N2 − 1)
∆ϕ(m) (3.11)

where ∆ϕ(m) = arg {r̂(m)r̂∗(m− 1)} and r̂(m) is similar to (3.10). The
estimation variance of Mengali estimator attains the CRLB when L = N/2.

3.1.3 Proposed estimators

In comparing the estimators, the following four performance figures are fre-
quently referred to: Accuracy : estimation error variance, Estimation range:
unambiguous estimation region, Threshold : the SNR below which large es-
timation errors begin to occur, and Implementation complexity : number of
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operations.
These figures are usually contradicting each other. For example, achiev-

ing a low threshold implies a high complexity. Likewise, good estimation
accuracy is often paid at the price of a narrow estimation range. So a trade
off is called for between various options which can only be made by carefully
specifying the actual operation conditions.

Modified Kay estimator

To reduce the threshold of Kay estimator, an estimator based on averaging
noise over samples is developed [1]. The idea is to equally divide the observa-
tion vector y = [y(0), · · · , y(N − 1)]T into segments, each segment contains
M samples. The samples within the same segment are added together to
produce a new sample z(k) which can be expressed as (see Fig. 3.2)

z(k) =
1

M

M−1∑

m=0

y(kM +m), 0 ≤ k ≤ P − 1 (3.12)

where P = N
M

, and y(k) is defined as in (3.1).

M

N

M M M M

(0)z ( 1)z P(1)z

M

( 2)z P

1

M

1

M

1

M

1

M

1

M

Figure 3.2: Producing new observation sequence by segmenting and adding.
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Substituting (3.1) into (3.12), one obtains

z(k) =
|a|
M

M−1∑

m=0

exp{j[2πf0(kM +m) + φ]} + n(kM +m)

= exp{j[2πf0kM + φ]} · |a|
M

M−1∑

m=0

exp{j2πf0m} +
|a|
M

M−1∑

m=0

n(kM +m)

= exp{j2πf0kM + φ} ·
(
|a|
M

M−1∑

m=0

exp{j2πf0m} + v(k)

)

(3.13)

where

v(k) = − exp{j[2πf0kM + φ]}|a|
M

M−1∑

m=0

n(kM +m) (3.14)

are independent zero mean couple Gaussian random variables with variance

σ2
v = 1

M
σ2

n

|a|2 = (SNR)−1

M
.

To simplify the derivation, f0 is assumed to be sufficiently small so that
exp{j2πf0m} ≈ 1. As a result, (3.13) becomes

z(k) = exp{j[2πf0kM + φ]}(|a| + v(k)) (3.15)

as shown in [18] for high SNRs, the complex noise v(k) can be transformed
into the phase noise

z(k) = |a| exp{j[2πf0kM + φ+ vQ(k)]} (3.16)

where vQ(k) is the imaginary part of v(k) with σ2
vQ

= σ2
v

2
.

We define the angular frequency offset as ω∆ = 2π∆f and the instan-
taneous phase of z(k) as ϕ(k) , arg{z(k)} = [ω∆k + φ + vQ(k)]π−π. To
estimate the frequency offset, as suggested in [20], the phase differences of
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two consecutive samples are considered

∆(k) = arg{z(k)z∗(k − 1)}, 1 ≤ k ≤ P − 1

= [ϕ(k) − ϕ(k − 1)]π−π
= ω∆M + vQ(k) − vQ(k − 1) − 2πm(k)

(3.17)

where m(k) is an integer representing the modulo operation. For high SNR,
m(k) = 0 but for small SNR, m(k) 6= 0 which leads to an ambiguity in the
estimation of ∆f . However, by adding up the samples, the noise variance in
(3.17) reduces by factor of 1

M
as compared to the original approach without

adding. The reduced noise variance makes the estimation of ∆f possible in
the lower SNR regions since the chances that m(k) 6= 0 decrease.

In (3.17), ∆f and ∆(k) are related in a linear fashion and the problem
is to estimate a constant, ω∆, from noisy observations, ∆(k). By perform-
ing the maximum-likelihood estimation over ∆(k), the maximum-likelihood
estimator is found by minimizing the log-likelihood function

J = (∆ − ω∆M l)TC−1(∆ − ω∆M l) (3.18)

where ∆ = [∆(1),∆(2), · · · ,∆(P − 1)]T , l = [1, 1, · · · , 1]T , and C is (P −
1)×(P−1) covariance matrix of ∆(k). The solution is obtained by d

dω∆
J = 0

which results in

ω̂∆ =
1

M

lTC−1∆

lTC−1l
. (3.19)

The covariance matrix C is found to be

C =
(SNR)−1

2M




2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 −1 2


 . (3.20)

The inverse of (3.20) with the (i, j) element is given by

[
C−1

]
ij

=
2M

(SNR)−1

[
min(i, j) − ij

P

]
, i ≥ 1, j ≤ P − 1 (3.21)
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where min(i, j) denotes the minimum between i and j.
Performing some algebra based on (3.21), a closed-form estimator can be

obtained. The explicit form of C−1 is

C−1 =
2M

(SNR)−1
·




1 − 1
P

1 − 2
P

1 − 3
P

· · · 1 − 1(P−1)
P

1 − 2
P

2 − 4
P

2 − 6
P

· · · 2 − 2(P−1)
P

1 − 3
P

2 − 6
P

3 − 9
P

· · · 3 − 3(P−1)
P

... · · · · · · · · · ...

1 − 1(P−1)
P

2 − 2(P−1)
P

3 − 3(P−1)
P

· · · (P − 1) − (P−1)2

P



.

(3.22)

First, lTC−1l is calculated as follows:

lTC−1 =
2M

(SNR)−1
· [1s− 0, 2s− 1, 3s− 3, 4s− 6, · · · ] (3.23)

where s =
∑P−1

i=1

(
1 − i

P

)
= (P−1)

2
. The result yields

lTC−1l =
2M

(SNR)−1

P−1∑

k=1

(
sk − k

2
(k − 1)

)

=
2M

(SNR)−1

((
s+

1

2

) P−1∑

k=1

k − 1

2

P−1∑

k=1

k2

)

=
2M

(SNR)−1
· P (P 2 − 1)

12
.

(3.24)

Using (3.23), lTC−1∆ can then be calculated

lTC−1∆ =
2M

(SNR)−1

P−1∑

k=1

(
sk − k

2
(k − 1)

)
∆(k)

=
2M

(SNR)−1
· 1

2

P−1∑

k=1

k(P − k)∆(k).

(3.25)
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Substituting (3.24) and (3.25) into (3.19), results in a closed-form estimator

ω̂∆ =
1

M
· lTC−1∆

lTC−1l

=
1

M
·
P−1∑

k=1

6k(P − k)

P (P 2 − 1)
∆(k).

(3.26)

The corresponding estimation variance is

var(ω̂∆) =
1

M2
· 1

lTC−1l

=
1

M2
· 6

P (P 2 − 1)
· (SNR)−1

M

=
6

N(N2 −M2)
· (SNR)−1.

(3.27)

If M = 1, the estimation variance attains the CRLB and the proposed esti-
mator is identical to the original Kay estimator.

Improved Fitz estimator

Fitz frequency estimator [23,24] relies on the estimated sample autocorrela-
tion and is known to provide efficient estimates even at low SNR. However, it
suffers from the narrow estimation range mainly caused by the phase ambigu-
ities of the estimated sample autocorrelation. Kay [20] showed that the esti-
mation range of an estimator which is based only on the phase of the received
signal can be extended if the phase difference, arg{y(m)y∗(m − 1)}, is ex-
ploited, instead of the single phase, arg{y(k)}. Mengali and Morelli [26] used
the same concept, but with the autocorrelation estimates, arg{r̂(m)r̂∗(m −
1)}, of the received signal sample rather than the received signal itself. The
weighting function for such a phase difference based estimator is derived
using maximum likelihood estimation.

To explain the benefit of using the phase difference of the estimated cor-
relation, the noiseless condition is assumed. The phase of r̂(m) then reads

φ(m) = arg{r̂(m)} = [2πf0m]π−π (3.28)
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where [x]π−π means that x is confined within the interval (−π, π]. As m varies
from 1 to N −1, eq. (3.28) establishes a linear relation between f0 and r̂(m),
only when f0 lies within the interval about ± 1

2N
. If f0 lies outside the interval,

eq. (3.28) becomes a highly nonlinear function and introduces ambiguities.
On the other hand, the phase difference of one lag reads

∆φ(m) = arg{r̂(m)r̂∗(m− 1)} = [2πf0]
π
−π . (3.29)

Eq. (3.29) is independent from m which means that, as long as f0 lies within
±1

2
, φ(m) keeps equal to 2πf0 for 1 ≤ m ≤ N − 1. Clearly, (3.29) relates

f0 and φ(m) in a linear fashion and the problem is to estimate a constant,
f0, from the noisy measurements, φ(m). It can be seen that the estimation
range is enlarged roughly by a factor of N using phase differences as the
observations.

The objective is to transform Fitz estimator (3.9) of the form

f̂0 =
1

2π

L∑

m=1

wm arg{r̂(m)} (3.30)

into the the estimator of the following form

f̂0 =
1

2π

L∑

m=1

w̃m arg{r̂(m)r̂∗(m− 1)}. (3.31)

The direct derivation as considered by Mengali and Morelli is promising,
but it can be lengthy. Alternatively, the well known summation-by-parts
formula can be used for this purpose [6, 7]. This method assumes that the
weighting function wm is not a constant and w0 = 0. Consider the following
summation-by-parts formula

L∑

m=0

∆bmam = bLaL − b−1a0 −
L∑

m=1

bm−1∆am (3.32)

where ∆bm = bm − bm−1 and ∆am = am − am−1. Inspecting (3.32), and the
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summation terms in (3.30) and (3.31) yields

L∑

m=1

wm︸︷︷︸
∆bm

· arg{r̂(m)}︸ ︷︷ ︸
am

= bL arg{r(L)} −
L∑

m=1

bm−1∆φ(m)

=
L∑

m=1

(bL − bm−1)︸ ︷︷ ︸
w̃m

∆φ(m)

(3.33)

where ∆b0 = 0, b−1 = 0, ∆φ(m) = arg{r̂(m)r̂∗(m − 1)}, arg{r(N − 1)} =∑N−1
m=1 ∆φ(m). Since b−1 = 0 and ∆b0 = 0, one obtains

bm =
m∑

k=1

∆bk. (3.34)

Inserting (3.34) into (3.33), the new weighting function w̃m can be calculated
from wm by

w̃m =
L∑

k=1

∆bk −
m−1∑

k=1

∆bk (3.35)

where ∆bk = {wm}m=k. Therefore, given wm and r(m), one can transform
(3.30) to the new estimator, having the form of (3.31):

f̂0 =
1

2π

L∑

m=1

[
L∑

k=1

wk −
m−1∑

k=1

wk

]
∆φ(m)

=
1

2π

L∑

m=1

[
L−m+1∑

k=1

wL+m−1

]

︸ ︷︷ ︸
w̃m

∆φ(m)
(3.36)

The expression (3.36) can be used to transform a given estimator with the
form of (3.30) to an estimator of the form (3.31).

46



The transformed Fitz estimator with the extended estimation range is

f̂0 =
1

2π

L∑

m=1

3
N(N + 1) −m(m− 1)

N(N + 1)(2N + 1)︸ ︷︷ ︸
w̃m

arg {r̂(m)r̂∗(m− 1)} . (3.37)

Note that by comparing w̃m in (3.37) with wm in (3.9) it can be noticed that

wm = w̃m − w̃m+1 (3.38)

as a result, for a given w̃m, one can also reversely obtain wm.

Approximated ML estimators

Two correlation-based estimators are derived in this subsection. First, the
absolute phase-based estimator is derived, then the weight transformation
formula (3.36) is used to transform the weighting function of the proposed
absolute phase based into differential phase based estimator.

An approximated ML estimator may be derived from a periodogram of
the form

J(ωo) =
N−1∑

n=0

N−1∑

m=0

y(n)y∗(m)e−jωo(n−m). (3.39)

The derivative of (3.39) with respect to ωo equated to zero may be rearranged
in the following form

Im

{
N−1∑

m=1

m(N −m)|r̂(m)|ej(ϕ(m)−ωom)

}
= 0. (3.40)

By assuming that the accurate phase estimates of r̂(m) are available, and
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|r̂(m)| is a constant, (3.40) reduces to

ω̂o =

∑L
m=1m(N −m)|r̂(m)|φ(m)
∑L

m=1m
2(N −m)|r̂(m)|

=
L∑

m=1

12m(N −m)

L(L+ 1)(4LN + 2N − 3L2 − 3L)︸ ︷︷ ︸
wm

φ(m)
(3.41)

where L < N is a design parameter.
To extend the estimation range of (3.41), eq. (3.36) is then applied to wm

in (3.41) resulting in the following transformed weighting function

w̃m =
12
∑L−m+1

k=1 (k +m− 1)(N − k −m+ 1)

L(L+ 1)(4LN + 2N − 3L2 − 3L)

= 2
L(L+ 1)(3N − 2L− 1) −m(m− 1)(3N − 2m+ 1)

L(L+ 1)(4LN + 2N − 3L2 − 3L)
.

(3.42)

Estimation variance of correlation-based estimators

Absolute phase The absolute phase based estimator reads

ω̂o =
L∑

m=1

wmφ(m)

≈ ωo

L∑

m=1

mwm +
L∑

m=1

wmγI(m)

(3.43)

where wm is the weighting function. This class of estimators is unbiased
when

∑L
m=1mwm = 1 and ωo ∈ [− π

L
, π
L
). Thus, its estimation range is

approximately ±π/L. Outside this range, (3.43) becomes highly nonlinear
and awkward to handle. To transform the nonlinearity into a linear equation
over the entire range an additional phase unwrapping procedure is needed,
however this would be difficult at low SNR.
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The estimation variance, var(ω̂o) , E {(ω̂o − ωo)
2}, of (3.43) reads

var(ω̂o) =
L∑

m=1

L∑

n=1

wmwnE {γI(m)γI(n)}︸ ︷︷ ︸
µ(m,n)

(3.44)

where

µ(m,n) =
min(m,n,N −m,N − n)

SNR(N −m)(N − n)
+

δm,n

2SNR2(N − n)
. (3.45)

The exact expression of γI(m) and the derivation of (3.45) can be found
in Appendix A.1.10.

Differential phase The differential phase-based estimator reads

ω̂o =
L∑

m=1

w̃m∆φ(m)

≈ ωo

L∑

m=1

w̃m +
L∑

m=1

w̃m(γI(m) − γI(m− 1))

(3.46)

where w̃m is the weighting function. This class of estimators is unbiased
when

∑L
m=1 w̃m = 1 and ωo lies within [−π, π). Thus, its estimation range

is about ±π or L times larger than that of (3.43) without additional phase
unwrapping algorithm.

The estimation variance of (3.46) is

var(ω̂o) =
L∑

m=1

L∑

n=1

w̃mw̃nE {[γI(m) − γI(m− 1)][γI(n) − γI(n− 1)]}︸ ︷︷ ︸
ρ(m,n)

(3.47)

where ρ(m,n) = µ(m,n) + µ(m− 1, n− 1) − µ(m− 1, n) − µ(m,n− 1).
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Efficiency at high SNR The statistical efficiency at high SNR is

eff , lim
SNR→∞

var(ω̂o)

CRLB
≥ 1. (3.48)

Substituting (3.44) and (3.47) in (3.48) yield the efficiency measures which
depend on L and N . The minimization of the (3.48) with respect to L seems
not to be analytically tractable. Thus the numerical minimization is carried
out to find the optimum values of L that minimize (3.48).

As a result of the numerical minimization of (3.48) for differential phase
based estimators, the efficiencies at high SNR of Mengali and Morelli, trans-
formed proposed approximated ML, and modified Fitz estimators are shown
in Fig. 3.3. The corresponding optimal number of lags of these estimators
are also identified. It is found that the optimal number of lags (Mopt) for
M&M is N/2, for modified Fitz is 0.86N , and for proposed approximated
ML estimator is N − 1. It shall be noted that for complexity reason, the lag
values in the vicinity of the second optimum (local optimum) may be used
which will significantly reduce the implementation cost.
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Figure 3.3: Efficiencies at high SNR of M&M, transformed proposed approx-
imated ML, modified Fitz estimators for N=64, and 128.

3.2 Time-Varying Envelope

The traditional methods used in analysis and development of frequency es-
timators employ an additive white Gaussian noise (AWGN) model with the
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signal. However, the additive noise model is not a sufficiently realistic rep-
resentative in most of the practical applications. In practice, the received
signal is likely to exhibit fading behavior caused by time-varying multipath
propagation or the amplifier’s nonlinearity. This fading characteristic can
be observed in the form of random time-varying envelope (also known as
the multiplicative noise). For radar applications, a real-valued time-varying
envelope is frequently defined [27–29]. In wireless communications, on the
other hand, the complex-valued time-varying envelope is usually considered
which can be subdivided into two categories i.e., frequency flat fading [30–34]
and frequency selective fading [35–38]. In this thesis, the only frequency flat
fading case is considered. An example of such a flat fading is in global satel-
lite communication systems employing low and medium earth orbit satellites.
In these systems, the Doppler shift of the carrier frequency varies randomly
and should be estimated and compensated for.

A general complex sinusoid that has been corrupted by fading and addi-
tive noise may be modeled as

y(k) = a(k) exp{j[2πνk + θ]} + n(k), 0 ≤ k ≤ N − 1 (3.49)

where the multiplicative noise a(k) = |a(k)| exp{jφ(k)} is, in general, defined
as a complex-valued Gaussian process, circular symmetric around its mean
µ exp{jϕ} with µ ≥ 0 and ϕ ∈ [−π, π). ν is the normalized frequency
offset to be estimated. The correlation function of the multiplicative noise,
ra(m) = E{a(k)a∗(k − m)}, is parameterized by a real-valued1 parameter
vector α = [α0, · · · , αM−1]

T . Let σ2
a , ra(0). Additive noise n(k) is a zero-

mean circular complex white Gaussian process with variance σ2
n. a(k) and

n(k) are mutually independent. The SNR is defined as σ2
a/σ

2
n.

The correlation of the multiplicative noise, ra(m), is often modelled by
the following functions (see Fig. 3.4):

• Jakes model: ra(m) = σ2
aJ0(2πBDT |m|)

• Sinc model: ra(m) = σ2
asinc(2πBDT |m|)

• Exponential model: ra(m) = σ2
a exp{−2πBDT |m|}

• Gaussian model: ra(m) = σ2
a exp{−2π(BDT )2m2/4}

1This assumption has been made implicitly by many authors to ensure a consistent
frequency estimate via the correlation-based estimation approach. Otherwise, the phase
of ra(m) has to be estimated prior to the frequency estimation.
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where BD is the Doppler bandwidth, T is the sampling time, J0(·) is the 0-th
order Bessel function of the first kind, and BDT is the normalized Doppler
spread2. For mobile cellular communications [30,31,39,40], it is customary to
follow Jakes and Sinc models. In Doppler-radar and ionospheric communica-
tions [34,41], the correlation function with Exponential and Gaussian shapes
are often assumed. However, it is widely recognized that the actual spec-
trum of ra(m) has little impact on the overall system performance. The sole
influential parameter is the Doppler spread, BD. The correlation function
of the multiplicative noise reflects the variability of the channel over time.
This second-order statistic generally depends on the propagation geometry,
velocity of the platform, and the antenna characteristics.
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Figure 3.4: Four correlation models of the multiplicative noise with slow
(BDT = 0.001), intermediate (BDT = 0.01), and fast fading (BDT = 0.1).

As (3.49) represents a general signal model for CFO estimation problem
in single-carrier systems, three special cases can be categorized as follows:

2Typical values for practical systems [33] range from BDT = 0.001 (very slow fading)
to BDT = 0.1 (very fast fading).
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Rayleigh fading: the amplitude of the fading process will have a Rayleigh
distribution if µ = 0 and σ2

a 6= 0.

Rician fading: the amplitude of the fading process will have a Rician (dom-
inant+Rayleigh) distribution if µ 6= 0 and σ2

a 6= 0.

Non-fading: or the classical constant-amplitude with only additive Gaus-
sian noise (discussed in the previous section) is obtained when µ 6= 0
and σ2

a = 0.

The theoretical Cramer-Rao lower bound (CRLB) is derived in the Appendix
A.2.1 and is given as the corresponding diagonal element of the inverse of
the Fisher information matrix (FIM), J−1

ωo,ωo
. The CRLB is then

CRLB(ω̂o) = J−1
ωo,ωo

(3.50)

where ω̂o = 2πν̂. The Jωo,ωo
is found to be

Jωo,ωo
= 2µ21TDR−1D1 + 2tr{R−1DRD − D2} (3.51)

where tr is the matrix trace, R = Ra + σ2
nI, 1 is a (N × 1) vector of one,

Ra(i, j) = ra(|i− j|) with i, j = 1, · · · , N , and D = diag{0, · · · , N − 1}. For
the correlated Rayleigh channel µ = 0, and Jωo,ωo

= 2tr{R−1DRD − D2}.
For high SNR or σ2

n → 0,

Jσ
2
n→0

ωo,ωo
= 2tr{R−1

a DRaD − D2} (3.52)

is a constant which leads to the so called error floor effect.

3.2.1 Proposed estimator for complex-valued envelope

The CFO estimators proposed in the past [30–32,34] are associated with one
or more of the following limitations/drawbacks: 1). Require a priori knowl-
edge on the form of the fading correlation [30, 31], 2). High computational
complexity [32], and 3). Short estimation range [34].

Kuo and Fitz [30] proposed to estimate the normalized (angular) fre-
quency as

ω̂o = αT θ̂ (3.53)
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where θ̂ = [θ̂(1), . . . , θ̂(M)]T , and θ̂(m) = m−1 arg{r̂(m)}, r̂(m) is the m-th
lag correlation estimate defined in (3.56). The optimal weight vector, α, is
chosen to minimize the variance of (3.53) and is given by

α =
C−1
θ (BDT, SNR)1

1TC−1
θ (BDT, SNR)1

(3.54)

where Cθ(BDT, SNR) = E{(θ̂ − θ)(θ̂ − θ)T}, and 1 = [1, . . . , 1]T . It shall
be noted that Cθ(BDT, SNR) depends on BDT and SNR. This covariance
matrix of phase estimation errors is assumed to be known in the work of
Kuo and Fitz in [30] which is seldom available in practical situations. More-
over, phase unwrapping is required which may be delicate in small samples
or in low SNR environments. To circumvent these problems, [31] proposed
a similar scheme based on the difference between the phases of the correla-
tion, arg{r̂(m)r̂∗(m − 1)}. Additionally, the covariance matrix of the phase
estimation errors was estimated in [31] prior to performing weighted linear
regression. However, this covariance matrix estimate strongly relies on an
assumed form for the correlation of the fading process. Therefore methods
in [30, 31] are sensitive to mismodeling of the fading correlation. A low-
complexity CFO estimator, which does not assume nor estimate the channel
parameter, was proposed in [34]. Its estimation range is, however, limited.
The nonlinear least-squares estimator proposed in [32], is robust to the lack of
information on the form of the correlation of the fading process and is able to
operate at the maximum estimation range but at the price of computational
complexity.

The complexity of the estimator proposed in [32] can be reduced, but
at the cost of a decreased estimation range [3]. However, It will be shown
in the following sections that by using the summation-by-parts formula the
computational complexity can be reduced without shortening the estimation
range.

Observation model

The true correlation sequence corresponding to the data model (3.49) is

r(m) = E{y(k)y∗(k −m)}
= ra(m)ej2πmν + σ2

nδ(m).
(3.55)
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The estimated correlation sequence can be calculated by two standard ways,
the first is

r̂1(m) =
1

N −m

N−1∑

k=m

y(k)y∗(k −m), m = 0, 1, . . . ,M − 1 (3.56)

and the second is

r̂2(m) =
1

N

N−1∑

k=m

y(k)y∗(k −m) (3.57)

where the former is known as the unbiased estimate of r(m) since E{r̂1(m)} =
r(m), and the latter is known as the biased estimate of r(m), since E{r̂2(m)} =
(1 − |m|/N) · r(m). The statistical properties of these two approaches are
given in Appendix A.2.2.

Correlation-based nonlinear least-squares estimator

The NLS estimates of σ2
n, d(m) , ra(m), and ν are obtained by solving the

following minimization problem

{σ̂2
n, d̂, ν̂} = arg min

σ2
n,d,ν

1

M

M∑

m=0

|r̂(m) − d(m)ej2πmν − σ2
nδ(m)|2

︸ ︷︷ ︸
J(σ2

n,ν,d)

. (3.58)

where r̂(m) can be chosen from either (3.56) or (3.57), d(m) , ra(m), and
d = [d(0), · · · , d(M)]T . Setting the derivative of the criterion J(σ2

n, ν,d)
w.r.t. σ2

n to zero, we obtain

σ̂2
n = r̂(0) − d(0). (3.59)

Substitute this solution into J(σ2
n, ν,d), yields the reduced criterion

{d̂, ν̂} = arg min
d, ν

1

M

M∑

m=1

|r̂(m) − d(m)ej2πmν |2

︸ ︷︷ ︸
J(ν,d)

. (3.60)
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Since (3.56) is a consistent estimate of (3.55), it follows that J∞(ν,d) ,

limN→∞ J(ν,d) achieves a global minimum at the true parameters [32, 34].
Consequently, ν̂ is a consistent estimate of ν whatever form of d(m). It will
be shown that the criterion in (3.60) can be concentrated w.r.t. d so as to
leave one-dimensional search over ν only. Using the fact that d(m) ∈ R,
J(ν,d) can be rewritten as

M∑

m=1

{
|r̂(m)|2 − 2d(m)Re

{
r̂(m)e−j2πmν

}
+ d2(m)

}
. (3.61)

Taking the derivative of (3.61) w.r.t. d and equating the result to zero, yields

d̂(m) = Re
{
r̂(m)e−j2πmν

}
(3.62)

where the estimate of the frequency offset has yet to be determined. Inserting
(3.62) into (3.61), the NLS estimate of the parameter ν is obtained as

ν̂NLS = arg max
ν

Re

{
M∑

m=1

r̂2(m)e−j4πmν

}
(3.63)

which can be efficiently realized by means of Fast Fourier Transform (FFT)
with zero padding. This can be done by O(Nf log2Nf ) operations, where
Nf is the Fourier bins. A better localization of the peak can be obtained by
using the quadratic interpolation as introduced in (3.4).

However, a much simpler form of (3.63) is obtained by assuming the
availability of the phase of the correlation estimate, φm = arg{r̂(m)}. The
NLS criterion (3.63) can be rewritten as

M∑

m=1

|r̂(m)|2 cos(2φm − 4πmν). (3.64)

Setting the derivative of (3.64) w.r.t. ν to zero, we obtain

M∑

m=1

m|r̂(m)|2 sin(2φm − 4πmν) = 0. (3.65)
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Under the small error approximation, i.e., sin(2φm−4πmν) ≃ (2φm−4πmν),
the simplified NLS (SNLS) estimator is obtained as

ν̂SNLS =
1

2π

∑M
m=1m|r̂(m)|2φm∑M
m=1m

2|r̂(m)|2

=
M∑

m=1

αmφm

(3.66)

where αm is the weighting function of the absolute phase-based estimator.
Note that without an additional phase unwrapping algorithm, e.g., [19],

the estimation range of the SNLS is limited to about ±1/2M the symbol
rate.

Weight transformation formula

Using Am =
∑m

k=0 αk, φM =
∑M

m=1(φm − φm−1), and A−1 = 0, the relation-
ship between the absolute phase based and phase difference based estimators
is derived as

M∑

m=0

αmφm =
M∑

m=0

(Am − Am−1)φm

=
M∑

m=0

Amφm −
M−1∑

m=−1

Amφm+1

=AMφM − A−1φ−1 +
M−1∑

m=0

Am(φm − φm+1)

=AMφM −
M∑

m=1

Am−1(φm − φm−1)

=
M∑

m=1

(AM − Am−1)(φm − φm−1)

=
M∑

m=1

(
M∑

k=1

αk −
m−1∑

k=1

αk

)

︸ ︷︷ ︸
βm

∆φm.

(3.67)
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Thus, the weight transformation formula reads

βm =
M−m+1∑

k=1

αk+m−1 (3.68)

or reversely αm = βm − βm+1.
It can be shown that if

∑M
m=1mαm = 1, then

∑M
m=1

∑M−m+1
k=1 αk+m−1 = 1.

Thus, if original estimator is unbiased, the transformed estimator is also
unbiased.

Note that the weight transformation formula (3.68) can also be obtained
using the summation-by-parts formula introduced in the previous chapter.

Estimation range extension by weight transformation formula

To avoid an additional phase unwrapping procedure, the phase difference of
the estimated correlation, ∆φm = arg{r̂(m)r̂∗(m − 1)}, shall be exploited
instead of φm = arg{r̂(m)}. For this purpose, the weight transformation
formula (3.68) is applied to (3.66) to properly transform the SNLS estimator
into a new phase-difference-based estimator with a proper weighting function.
Thus, the transformed SNLS (or approximated NLS, ANLS) is

ν̂ANLS =
1

2π
·
∑M

k=1 k|r̂(k)|2
∑M

m=1 ∆φm −∑M
m=2

∑m−1
k=1 k|r̂(k)|2∆φm∑M

m=1m
2|r̂(m)|2

. (3.69)

For an AWGN channel, or |r̂(k)| is a constant, (3.69) reduces to

ν̂AWGN =
3

2π

M∑

m=1

(M + 1)M − (m− 1)m

M(2M + 1)(M + 1)
∆φm (3.70)

which has a similar form as the modified Fitz estimator (3.37) in the constant
envelope case.

The implementation complexities of different versions of NLS estimators
are presented in Table 3.1.
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Estimators Number of complex multiplications

FFT-based NLS Nf log2Nf + M(2N−M−1)
2

SNLS M(2N−M−1)
2

+ Phase unwrapping

ANLS M(2N−M−1)
2

+ (M − 2)

AWGN M(2N−M−1)
2

+ (M − 2)

Table 3.1: Complexity of different versions of NLS estimators.

3.2.2 Proposed EKF for real-valued envelope

As a special case of the complex-valued envelope, the real-valued envelope is
also frequently used in radar applications, e.g., [27–29]. The signal envelope,
a(t), is real-valued and can be modelled as random (multiplicative noise) or
deterministic but time varying. If the batch processing is considered, good
examples can be found in [27, 42]. This model has been applied to a real
application in estimating particle’s velocity in the vicinity of an aircraft by
means of a laser velocimeter [43, 44]. In the following, a recursive frequency
tracker known as Kalman filter, is proposed. The signal envelope is assumed
to be real-valued and deterministic. Since the frequency to be estimated
is governed by the nonlinear complex exponential function, therefore the
extended Kalman filter (EKF) shall be formulated [4, 45].

Extended Kalman filter

In this subsection, the system state and observation models are formulated.
The Kalman filtering algorithm is given. The stochastic observability and
the alternative of the Kalman filter are briefly discussed.

System state model

The continuous system state is defined by

x(t) = [a(t) ȧ(t) ψ(t) ψ̇(t)]T (3.71)

where ψ(t) is the instantaneous phase of y(k) with ψ̇(t) as its derivative. ȧ(t)
is the derivative of a(t).

The discrete system state is obtained by letting xk = x(t)|t=kT

xk = [x1,a(k) x2,a(k) x1,p(k) x2,p(k)]
T . (3.72)
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The difference equations of the time-varying amplitude are defined as

x1,a(k + 1) = x1,a(k) + x2,a(k)

x2,a(k + 1) = x2,a(k) + wa(k).
(3.73)

The time-varying instantaneous phase can also be modelled in the same way

x1,p(k + 1) = x1,p(k) + 2π · x2,p(k)

x2,p(k + 1) = x2,p(k) + wp(k).
(3.74)

The corresponding discrete time state-space model can then be expressed as

xk+1 =




1 1 0 0
0 1 0 0
0 0 1 2π
0 0 0 1


 · xk +




0
wa(k)

0
wp(k)




= A · xk + wk

(3.75)

where A is the state transition matrix, E{wk} = 0 and E{wkw
T
j } = Q(k) ·

δ(k, j).

Observation model

We define the first two elements of the observation vector from the inphase
and quadrature component of (3.49)

yI(k) = a(k) cos (2πνk + θ) + vI(k)

yQ(k) = a(k) sin (2πνk + θ) + vQ(k).
(3.76)

We introduce a further observation, yp(k) = arg{r(k)}, which can be approx-
imated at high SNR [18] as

yp(k) ≈ 2πνk + ϕk + vp(k)|mod2π (3.77)

vI(k), vQ(k) and vp(k) are regarded as the components of a vectorial zero
mean white Gaussian measurement noise vector vk with diagonal covariance
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matrix R(k) = E{vkvTk } = σ2diag{1, 1, 1
E{a2(k)}}. Summarizing we have a

vectorial nonlinear observation model

yk = h(xk) + vk


yI(k)
yQ(k)
yp(k)



 =




a(k) cos(ψ(k))
a(k) sin(ψ(k))

ψ(k)



+




vI(k)
vQ(k)
vp(k)



 (3.78)

where ψ(k) = 2πνk+ θ, xk is the state vector, h(·) is the nonlinear mapping
between yk and xk.

Note that on the first sight yp(k) appears redundant, as one might argue
that any deterministic combination of the existing measurements does not
provide any new (innovating) information. This would be true if we were
dealing with linear models but for this nonlinear case, the linearizations ig-
nore the information that would be present if higher order approximations
of the nonlinear observation model were used. Hence the additional formula-
tion of a nonlinear relationship will provide a different aspect of information
contained in the other observations and thus make the filter operation more
stable. Therefore, we can expect to improve the observability by introducing
such an additional observation [46].

Kalman filtering algorithm

Once having found the state and observation model, the Kalman filter is
readily formulated [46, 47]. The specific points of interest arise from the
given nonlinear observation model. A simple but effective solution is the
extended linearized Kalman filter which linearizes the nonlinear observation
mapping around the prediction estimate, x̂−

k . The filtering algorithm is

• Initialization

x̂+
0 = E{x̂0} = x̄0

P+(0) = E{(x0 − x̄0)(x0 − x̄0)
T} = P(0)

• Prediction

x̂−
k+1 = Ax̂+

k+1

P−(k + 1) = AP+(k)AT + Q
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• Correction

K(k + 1) = P−(k + 1)HT (k + 1)

·[H(k + 1)P−(k + 1)HT (k + 1) + R]−1

resk+1 = yk+1 − h(x̂−
k+1)

Do while |resk+1| > π :

{res3,k+1 = res3,k+1 − sing(res3,k+1) · 2π}
x̂+
k+1 = x̂−

k+1 + K(k + 1) · resk+1

P+(k + 1) = [I − K(k + 1)H(k + 1)]P−(k + 1)

The linearized observation matrix (Jacobian matrix) is given by

H(k) =
∂

∂xk
h(xk)|xk=x̂

−

k
=




∂yI(k)
∂x1,a

∂yI(k)
∂x2,a

∂yI(k)
∂x1,p

∂yI(k)
∂x2,p

∂yQ(k)

∂x1,a

∂yQ(k)

∂x2,a

∂yQ(k)

∂x1,p

∂yQ(k)

∂x2,p

∂yp(k)

∂x1,a

∂yp(k)

∂x2,a

∂yp(k)

∂x1,p

∂yp(k)

∂x2,p




xk=x̂
−

k

.
(3.79)

Stochastic observability

It is useful to consider stochastic observability of the modeling since it is
closely related to the stability of the filter. Stochastic observability can be
proven by considering Fisher’s Information [47] defined as

F(k, k − L+ 1) =
k∑

i=k−L+1

AT (i, k)HT (i)R−1H(i)A(i, k). (3.80)

The parameter is said to be stochastically observable if the diagonal element
of (3.80) increases monotonically. It is numerically shown in Fig. 3.5 that
the EKF in which the instantaneous phase is incorporated as an additional
measurement, acquires more information than the one without incorporating.
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Figure 3.5: Accumulative information about ν at SNR = 10 dB, N = 100.

Alternatives of Kalman filters

Although EKF is a frequently used filtering technique, there exists other
improved versions such as Unscented Kalman filter (UKF) [48] (see also in
Appendix B). The UKF propagates a set of carefully chosen sample points
(complectly capture the true mean and covariance of a Gaussian random
variable) through the true nonlinear system in which the posterior mean and
covariance are captured accurately to the 3rd order (Taylor series expansion)
for any given nonlinearity. The EKF, in contrast, only achieves first-order
accuracy. To summarize, the UKF effectively evaluates both Jacobian and
Hessian3 precisely through its sigma point propagation, without the need to
perform any analytic differentiation. However, it has been observed in [49]
that as the state-transition function is linear, the improvement is not obvious.

Frequency estimation examples of EKF-based CFO estimator

Two examples are chosen to show the capability of the proposed EKF fre-
quency estimator. The proposed EKF-based CFO estimator is run in fast
and slow fading scenarios over N = 100 samples of the received signal. A
moderate SNR of 10 dB is assumed. The time-varying envelopes of the fast
and slow fading are shown in Fig. 3.6 and Fig. 3.7, respectively. In both

3Hessian matrix is the square matrix of second-order partial derivatives of a function;
that is, it describes the local curvature of a function of many variables. Hessian matrices
are the coefficient of the quadratic term of a local Taylor expansion of a function. The full
Hessian matrix is generally difficult to compute in practice.
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cases, the phase can be successfully unwrapped via EKF algorithm. The
corresponding frequency estimates in fast and slow fading are also presented
in Fig. 3.6 and Fig. 3.7. However, the main attraction of EKF-based estima-
tor is that it can be easily extended to track time-varying frequencies which
would be relatively difficult in the case of batch processing.
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Figure 3.6: Frequency estimates in fast fading real-valued amplitude.

3.3 Simulation Results

3.3.1 Non-fading channel

In the non-fading channels, the estimation ranges and the mean-squares er-
ror (MSE) of the ML, Kay, Modified Kay, Fitz, Modified Fitz, proposed
approximated ML, and Mengali estimators are shown. The advantages and
disadvantages of these estimators can be seen from the simulation results
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Figure 3.7: Frequency estimates in slow fading real-valued amplitude.

presented in Fig. 3.8 and Fig. 3.9. The data model of (3.1) with N = 128 is
used in all simulations.

Although the ML estimator is attractive as it attains the CRLB even at
a very low SNR and has the maximum estimation range of ±0.5 the symbol
rate, it’s complexity is prohibitive. This can be observed in Fig. 3.9 that the
required number of Fourier bin (Nf ) followed by the interpolation isNf = 512
for ML estimator to attain the CRLB. Without at additional interpolation
method, the ML estimator requires at least Nf = 220 = 1048576.

Kay estimator is much simpler than the ML estimator and has also the
maximum estimation range of about ±0.5 the symbol rate but its threshold is
much higher than that of the ML estimator. This problem has been reduced
by the modified Kay estimator in which the threshold can be improved as the
length of the segment is increased. The accuracy of the modified Kay esti-
mator reduces, but insignificantly. Moreover, the complexity of the modified
Kay estimator reduces as the size of the segment increases.

Fitz estimator (with the optimal lag of N/2) attains the CRLB even at
SNR as low as zero dB. However, it’s estimation range with the optimal lag
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Figure 3.8: Estimation ranges of different CFO estimators for single carrier
signal with constant amplitude, with N = 128, SNR = 20 dB.

(L = N/2) is very small and limited to about 1/2L = 1/N . To solve the phase
ambiguity problem directly, an additional phase unwrapping algorithm [19]
is required.

With the use of the summation-by-parts formula, the modified Fitz es-
timator is able to maintain a similar accuracy as Fitz estimator, but the
estimation range is extended to about ±0.5 the symbol rate. The accuracy
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Figure 3.9: MSE versus SNR of different CFO estimators for single carrier
signal with constant amplitude, with N = 128, f0 = 0.0.

and the estimation range of the modified Fitz are comparable to the Men-
gali estimator, however the derivation of the modified Fitz is somewhat less
complicated than the Mengali estimator.

Fig. 3.10 (left) compares the ratio between the estimation variance and
the CRLB of Mengali, modified Fitz, transformed proposed estimators versus
SNR, with N = 64, M = Mopt, and ωo = 0.1 × 2π. It can be seen that the
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efficiency of Mengali is better than that of the modified Fitz at high SNR
but worse in lower SNR regions. The transformed proposed approximated
ML estimator performs better than Mengali, and modified Fitz estimators
especially at moderate/low SNRs.

Fig. 3.10 (right) compares the MSEs of the transformed proposed approx-
imated ML and Mengali estimators versus SNRs with N = 64, M = 4, 8, 16,
and ωo = 0.1 × 2π. This is to show the performances when the complexity
is more important and the accuracy can be relaxed. In all cases, the trans-
formed proposed approximated ML performs better than Mengali estimator
at moderate/low SNRs.
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Figure 3.10: Performance comparisons of Mengali, transformed proposed
approximated ML, modified Fitz estimators.

3.3.2 Fading channel

For simulation purposes, a reliable and widely accepted autoregressive-based
method proposed in [40] is used to generate the realizations of the complex-
valued multiplicative noise, a(k), for any arbitrarily given autocorrelation
model, ra(m), (e.g., Jakes, Sinc, Exponential, or Gaussian models).

The data sequence of length N = 128 were generated according to (3.49)
with the correlation of the multiplicative noise that obeys an exponential-
shaped correlation, i.e., ra(m) = σ2

a exp{−2π|m|BDT}. The performance of
the proposed estimator is compared to an efficient estimator proposed in [50]
[41] which is known as the Single-Lag (SL) estimator and given as ν̂SL =
arg{r̂(mopt)}/mopt, for mopt 6= 1 the ambiguities of the frequency estimates
are introduced and if not resolved the estimation range is limited to about
±1/2mopt. We also compare our proposed ANLS estimator with the well
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known CFO estimator introduced by Mengali and Morelli [26] (MMAWGN)
which was originally designed to be optimum for the AWGN channel. The
mean-square-error (MSE) is obtained by 20000 Monte Carlo trials. In all
simulations, the performances between ANLS and SNLS are similar, but the
estimation range of SNLS is limited to ±1/2M the symbol rate while ANLS
can operate at the maximum possible range of about ±0.5 the symbol rate.

Fig. 3.11 shows that in the non-fading channels the performances of the
proposed ANLS and MMAWGN estimators using M = 127 attain the CRLB
even at SNR as low as zero dB, while the SL estimator, with the optimal lag
of mopt = 2N/3 (see [50] [41]) is only close to the CRLB. Moreover with the
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Figure 3.11: MSE versus SNR of the ANLS, MMAWGN, SNLS and SL es-
timators for ν = 0, BDT = 0 (non-fading channel) with the optimal lag
values.

optimal lag, the estimation range of SL estimator is limited to only about
±1/2M the symbol rate as can be seen in Fig. 3.12. On the other hand, the
estimation ranges of ANLS and MMAWGN are shown to be independent of
the lag number and covers about ±0.5 the symbol rate.

Fig. 3.13 compares the proposed ANLS and MMAWGN estimators in a
slow fading channel (BDT = 0.0001). The lag values (M) are set to 16 and
32 for both estimators. For both lag values, the proposed ANLS estimator
performs better than the MMAWGN estimator, especially in the low SNR
region. However, their performances in the AWGN channel are similar as
can be seen in Fig. 3.11.
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Fig. 3.14 shows the optimal choice of the correlation lag for the SL, SNLS,
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and ANLS estimators in fast and moderate fading. In moderate fading, the
same optimal lag of 5 is observed for SL, SNLS, and ANLS. In fast fading,
the optimal lag for SL is 2 and for SNLS and ANLS is 3. It is seen that
the proposed ANLS estimator is less sensitive to the wrong choice of the lag
numbers than the SL estimator.
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Figure 3.14: MSE versus correlation lag in fast (BDT = 0.01) and moderate
fading (BDT = 0.001), with SNR = 10 dB, ν = 0.01, N = 128.

Fig. 3.15 shows the estimation ranges of the SL, SNLS, ANLS estimators
in moderate fading, however, we observed the same results also in fast fading.
It is confirmed again that the estimation range of the proposed ANLS is
independent of number of lag and covers the maximum possible range of
about 50% the symbol rate, which is not achievable for SL, and SNLS without
applying the additional phase unwrapping procedure.

Fig. 3.16 shows the performances of the SL, SNLS, and ANLS estimators
in moderate and fast fading. The performances of ANLS and SNLS are
slightly better than that of the SL for both scenarios. All attain the CRLB
at high SNR. It can be observed that the estimation variance does not vanish
as σ2

n → 0. This behavior is known as the error floor effect which can be
explained by (3.52). As the exponential model for the autocorrelation of the
multiplicative noise is adopted, the closed-form expression of CRLB at high
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Figure 3.15: Estimation ranges of SL, SNLS, ANLS estimators for BDT =
0.001 with M = 5, SNR = 10 dB, N = 128.

SNR [34] can be expressed as

CRLB(ω̂o)σ2
n→0 =

1 − exp{−2πBDT}
2(N − 1) exp{−4πBDT}

. (3.81)

Thus the potential accuracy of frequency estimation decreases with increasing
Doppler spread.

3.4 Summary

For constant amplitude case, the modified Kay estimator is shown to be sim-
pler and more robust than the original Kay estimator. The modified Fitz
estimator uses the well known summation-by-parts formula (weight transfor-
mation formula) to overcome the phase ambiguity problem in Fitz estimator.
At low SNRs, the performance of the modified Fitz estimator is slightly bet-
ter than that of the Mengali estimator but worse at higher SNR regions.
However, the modified Fitz estimator was derived with somewhat less effort
than Mengali estimator. The proposed approximated ML estimator is trans-
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Figure 3.16: MSE versus SNR of ANLS and SL estimators for BDT = 0.01
and BDT = 0.001 with the optimal lag values.

formed using the weight transformation formula to obtain its phase difference
version. The performance of the transformed proposed approximated ML es-
timator with optimal lag is better than that of Mengali estimator. Even
using the same lags for low complexity, the transformed proposed approxi-
mated ML estimator exhibits better performance at intermediate/low SNRs.

For time-varying amplitude especially in the case of complex multiplica-
tive noise, a new closed-form correlation-based frequency estimator for signals
with fading-induced multiplicative noise is presented. It is shown that the
proposed estimator can operate at the maximum estimation range of about
±0.5 the symbol rate without sacrificing its accuracy and does not rely on
any assumed form of the fading correlation as needed for most of the existing
estimators. The features of the proposed ANLS estimator, as compared to
the previously proposed estimators, are summarized in Table 3.2.

For real-valued time-varying amplitude, the extended Kalman filter-based
recursive CFO estimator is proposed which can be easily extended for fre-
quency tracking problems.
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Estimator Corr. form Doppler spread Unwrapping Complexity

K&F [30] required assumed required high
M&M [31] required estimated not needed high

SL [50] not needed not needed required low
BS [32] not needed not needed not needed high
ANLS not needed not needed not needed low

Table 3.2: Features of different CFO estimators for flat fading channels.
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Chapter 4

Frequency Offset Estimation:

OFDM Case

OFDM systems are known to be very sensitive to the carrier frequency syn-
chronization errors which lead to ICI and severely degrade the overall sys-
tem performance [14]. Frequency offset estimation for OFDM systems may
be classified as time-domain (pre-FFT) or frequency domain (post-FFT) ap-
proaches. The latter are usually used to estimate the integer part (coarse
synchronization) of the carrier frequency offset after the fractional part has
been identified and corrected. Time-domain methods are used to estimate
the fractional part (fine synchronization), although some of these techniques
can also estimate the integer part, this thesis focuses on the time-domain
methods.

In literature on synchronization and channel estimation, it is typical to
classify algorithms as pilot-based (or data-aided), blind, and semiblind meth-
ods. In pilot-based methods, a known pilot symbol is transmitted and chan-
nel parameters are estimated given the channel model and the known input.
In blind techniques, the input is unknown, but some statistical properties
such as independent and identically distributed (iid) inputs, may be known.
The semiblind algorithms refer both to those that use both pilots and sta-
tistical properties of the unknown data and those that exploit additional
features (such as finite alphabet) of the unknown symbol stream.

Some CFO estimation methods are classified as being data aided, al-
though they do not use the known pilot block. This is the case for some
estimation methods that are based on structuring the OFDM symbol as a
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repetition of L ≥ 2 identical slots [51–53]. These methods, in fact, belong
to Null Subcarrier (NSC)-based techniques [54] since a repetitive of L ≥ 2
identical slots can be generated by nulling all subcarriers whose frequencies
are not multiples of L∆f . In [55], two identical OFDM symbols were used to
estimate CFO. Even though this method is not NSC based, it can be mathe-
matically described as such by considering the two symbols as a double-size
OFDM symbol (i.e., 2M subcarriers) generated by setting the subcarriers
with odd frequencies to zeros. These repetitive slots-based techniques re-
quire the number of NSCs to be larger than or equal to half the total number
of subcarriers. Since the number of training zeros is large, these methods have
been called data-aided, although no data are transmitted on those carriers.

In this chapter, the correlation-based with repetitive slots techniques for
fine CFO estimation are discussed. In OFDM systems, pilots blocks are
usually transmitted prior to the information frame. For instance, the IEEE
802.11 standard for WLANs employs series of identical slots in time do-
main as a preamble. Moose’s [55], Schmidl and Cox’s [51], and Morelli and
Mengali’s [52] estimators as well as numerous variants rely on repetitive pi-
lot structure (see Fig. 4.1). These estimators are either limited in their
estimation range or difficult to derive. The proposed estimator makes use
of the nonlinear least-squares principle in conjunction with the well known
summation-by-parts formula to obtain a new simple estimator with the max-
imum possible estimation range. With single receive and transmit antenna
pair, the estimation variance exhibits the error floor effect which can be re-
duced by employing the receive antenna diversity concept.

4.1 OFDM Signal Model

As defined in the previous chapters, an OFDM signal is generated by taking
the inverse FFT (IFFT) of a block of complex symbols {cn} belonging to a
QAM or PSK constellation. The useful part of each block lasts T seconds and
is preceded by a cyclic prefix, longer than the length of the channel impulse
response, in order to avoid intersymbol interference (ISI). At the receiver,
the baseband output of the matched filter after sampled at Ts = T/N where
N is the size of the IFFT, may be expressed as

y(k) = ej2πνk/Ns(k) + n(k) (4.1)
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Figure 4.1: Three classical OFDM pilot structures proposed for frequency es-
timation, a). Moose’s pilot structure, b). Schmidl and Cox’s pilot structure,
and c). Morelli and Mengali’s pilot structure.

where s(k) is the signal component, n(k) is a zero-mean complex white Gaus-
sian noise process with variance σ2

n = E{|n(k)|2}, and ν is the frequency offset
normalized to 1/T . Also assuming 2Nu+1 modulated subcarriers, the signal
component is in the form

s(k) =
1√
T

Nu∑

n=−Nu

cnHne
j2πfnkTs , 0 ≤ k ≤ N − 1 (4.2)

where cn is the pilot symbol, fn is the frequency of the nth subcarrier and
Hn is the complex channel response at f = fn. The signal-to-noise ratio is
defined as SNR , σ2

s/σ
2
n with σ2

s , E{|s(k)|2}.
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4.2 Estimators with Repetitive Structure

4.2.1 Moose estimator

The seminal work by Moose [55] proposed to use two identical OFDM sym-
bols without guard interval in between to perform CFO estimation. Moose
estimator was originally derived in the frequency domain as

ν̂Moose =
1

2π
arg

{
∑

n∈K
Y ∗

1,nY2,n

}
(4.3)

where K is the index of the used subcarriers, Y1,n and Y2,n are the FFT
outputs of the first and second N samples, respectively. It can be shown
that Eq. (4.3) is equivalent to

ν̂Moose =
1

2π
arg

{
N−1∑

k=0

y∗(k)y(k +N)

}
. (4.4)

When there is no timing offset,

y∗(k)y(k +N) =
[
s(k)∗e−j

2πνk
N + n∗(k)

] [
s(k +N)ej

2πν(k+N)
N + n(k +N)

]

= |s(k)|2ej 2πν
N + η(k)

(4.5)

where

η(k) = s(k)∗n(k +N)e−j
2πνk

N + s(k +N)n(k)∗ej
2πν(k+N)

N + n(k)∗n(k +N)

is the noise term.
Eq. (4.4) resolves the normalized CFO without any ambiguity in the range

±1/2, i.e., half of the subcarrier spacing of the repeated symbol. Otherwise,
ambiguities are encountered by the arg{·} exceeds ±π. A straightforward
solution to enlarge the estimation range is to use the shorter OFDM symbols,
this is because the subcarrier distance is increased and thus the estimation
range is extended. However, shortening the symbol interval results in the
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reduced estimation accuracy.
It is shown in [55] that both time-domain (4.4) and frequency-domain

(4.3) estimators form a ML estimator for AWGN channels. It should be
noted that Eq. (4.4) is similar to the one proposed by Schmidl and Cox [51]
explained in the next subsection.

4.2.2 Schmidl and Cox estimator

Two OFDM pilot symbols are also employed by Schmidl and Cox [51]. The
first has two identical halves (N/2 samples each) and serves to measure the
frequency offset with an ambiguity equal to the subcarrier spacing. The sec-
ond symbol contains a pseudonoise (PN) sequence that and is used to resolve
the ambiguity. The OFDM symbol with two identical halves is generated by
transmitting PN sequence on the even subcarriers, while the odd ones are
set to zeros.

Since the first and the second half of the pilot symbol are identical, y(k)
and y(k +N/2) are ideally the same in that part. This facilitates the set up
of two quantities, first quantity is defined as

P(τ) =

N/2−1∑

k=0

y∗(τ + k)y(τ + k +N/2)

= P(τ − 1) + y∗(τ +N/2 − 1)y(τ +N − 1) − y∗(τ − 1)y(τ − 1 +N/2)

(4.6)

where τ ∈ N is the time index corresponding to the first sample in an ob-
servation window of N samples. This sum will be maximized for τ = τopt

corresponding to the first sample of the first OFDM pilot symbol since all
elements will line up in-phase. If there exists a guard interval, it will also be
maximized for all positions within the guard interval that are not effected by
the time diversity of the channel. The received energy R(τ) of the second
half is also calculated. This quantity is defined as

R(τ) =

N/2−1∑

k=0

|y(τ + k +N/2)|2

= R(τ − 1) + |y(τ +N − 1)|2 − |y(τ − 1 +N/2)|2 .
(4.7)
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The observation window slides over time as the receiver searches for the pilot
block by looking for the two identical halves in the time-domain. The method
proceeds in two steps. The timing offset is first determined as

τopt = arg max
τ

M(τ), M(τ) =
|P(τ)|2
(R(τ))2

(4.8)

where M(τ) is the timing criterion. Then assuming the timing offset τopt

has been correctly estimated, there exists the phase difference of πν between
two symbol halves. Consequently, the CFO is estimated as

ǫ̂ =
1

π
arg{P(τopt)}. (4.9)

Symbol timing and carrier frequency synchronization are often performed
jointly in the literature. With repetitive slots (REP) based estimation, the
CFO is usually obtained as the argument of the timing criterion taken at
the optimal timing instant. The estimation range of the Schmidl and Cox’s
algorithm (SCA) is ±1 the subcarrier spacing. This range is doubled as
compared to Moose’s estimator, and allows estimating the fractional CFO.

However, there might remain an uncompensated frequency shift of 2g/Ts
[Hz], where g ∈ G = {−W,−W + 1, . . . ,−1, 0, 1, . . . ,W − 2,W − 1} with
Wmax = N/4, is an integer. To resolve the integer shift kν = 2g, another pilot
block is required. First, the fractional CFO is corrected before calculating
the FFT for both symbols resulting in the frequency domain representations
Y1 and Y2. The even subcarriers of OFDM symbols Y1 and Y2 are then
element-wise differentially demodulated. The result is compared to the pre-
calculated PN sequence

Vn =
√

2·X2,n

X1,n

, n ∈
{
−N

2
,−N

2
+ 2, . . . ,−2, 2, . . . ,

N

2
− 4,

N

2
− 2

}
(4.10)

resulting from the corresponding transmitted symbols X1 and X2. From
these values a correlation

k̂ν = 2 arg max
g

B(g), B(g) =
|∑n Y

∗
1,n+2g · V ∗

n · Y2,n+2g|2
2(
∑

n |Y2,n|2)2
(4.11)
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that also partially eliminates possible influences from transmission channel, is
calculated. The ĝ that maximizes B(g) delivers the integer frequency offset,
so that the total estimated frequency offset is k̂ν + ǫ̂.

4.2.3 Morelli and Mengali estimator

Morelli and Mengali [52] proposed an extension of Schmidl and Cox algo-
rithm (SCA) with a pilot symbol composed of L > 2 identical parts in the
time domain. They are generated by transmitting a pilot sequence on the fre-
quency multiples of L/T and setting zeros for the remaining frequencies (see
Fig. 4.2). In the sequel, it is referred to as M&M estimator. The main ben-
efit over the conventional SCA is an increase of the estimation range which
becomes ±L/2 the subcarrier spacing. The M&M exploits the correlation
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Figure 4.2: Frequency domain of the transmitted and received pilot symbol.
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between identical slots of the pilot symbol defined as

r(m) =
1

N −mM

N−1∑

k=mM

y(k)y∗(k −mM), 0 ≤ m ≤ P − 1 (4.12)

where M = N/L is the length in sampling interval of each section of the
training block and P ∈ N is a design parameter. Substituting (4.1) into
(4.12) yields

r(m) = ej2πmν/Ld(m) + γ(m) (4.13)

where d(m) , 1
N−mM

∑N−1
k=mM |s(k)|2 is the real-valued random envelope, and

γ(m) is the noise term defined in [52].
By considering the phase differences of the correlation estimate

ϕ(m) = arg{r(m)r∗(m− 1)}, 1 ≤ m ≤ P − 1

≈ 2πν/L+ γI(m) − γI(m− 1)
(4.14)

where γI(m) is the imaginary part of γ(m), the best linear unbias estimator
(BLUE) of the CFO can be expressed as

ν̂M&M =
L

2π

P−1∑

m=1

ωM&M(m)ϕ(m) (4.15)

where the weighting function ωM&M(m) is given by

ωM&M(m) = 3
(L−m)(L−m+ 1) − P (L− P )

P (4P 2 − 6PL+ 3L2 − 1)
. (4.16)

The direct derivation of ωM&M(m) using BLUE principle can be found in [35].
The weighting function (4.16) is channel independent. Thus the M&M is the
BLUE for any channel. It is shown in [52] that the variance of the M&M
estimator achieves its minimum when P = L/2. It is interesting to notice
that M&M estimator reduces to SCA for L = 2 and P = 1. The M&M
estimates have slightly lower variance than those of SCA. The price to be
paid is an increase in computational complexity, as P angles have to be
computed instead of one for the SCA.
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4.2.4 Proposed nonlinear least-squares estimator

In the derivation of the proposed NLS estimator, we adopt the pilot symbol
having a repetitive structure similar to that proposed in [52]. While [52] ap-
plies the BLUE concept to the phase differences of the estimated correlation
samples, we use a different approach [6] that relies on the NLS principle in
conjunction with the summation-by-parts formula. As a result, we obtain
two new estimators, the first is the general form for fading channels and the
other is its special case for AWGN channel.

Derivation of the generalized NLS estimator

The NLS estimates of {d(m)}P−1
m=0 and ν are obtained by solving the following

minimization problem

{d̂, ν̂} = arg min
d, ν

1

P

P−1∑

m=0

|r(m) − d(m)ej2πmν/L|2. (4.17)

Let

r = [r(0), · · · , r(P − 1)]T

d = [d(0), · · · , d(P − 1)]T

W = diag
(
1, ej2πν/L, · · · , ej2π(P−1)ν/L

)
(4.18)

so that the inner term of (4.17) can be formulated as

J(d, ν) =
1

P
‖r − Wd‖2 (4.19)

where ‖z‖2 , zHz. Taking the derivative of J(d, ν) with respect to d, yields

∂

∂d
J(d, ν) =

1

P

(
−Wr∗ − WHr + 2d

)
(4.20)

where (·)T and (·)H denote transpose and complex conjugate transpose, re-
spectively. Hence, for any given value of ν, the vector d that minimizes
∂
∂d
J(d, ν) is d = 1

2
{Wr∗ + WHr}, where (·)∗ denotes complex conjugate.

83



Substituting d into J(d, ν), we need to minimize

J̃(ν) =
1

P
‖r − 1

2
W2r∗ − 1

2
r‖2

=
1

2P
rHr − 1

2P
Re{rTW2∗r}

(4.21)

or, equivalently, to maximize the last term of (4.21). Hence, the NLS estimate
of the parameter ν can be expressed as

ν̂NLS = arg max
ν

Re

{
P−1∑

m=0

r2(m)e−j4πmν/L

}
(4.22)

which can be efficiently realized by means of Fast Fourier Transform (FFT)
with zero padding. This can be done by O(Nf log2Nf ) operations, where Nf

is the number of Fourier bins.

Simplified NLS estimator

A simpler form of (4.22) is obtained by assuming the availability of the phase
of the estimated correlation samples. Let φm = arg{r(m)} denotes the phase
of the correlation estimate. The NLS criterion (4.22) can then be rewritten
as

P−1∑

m=0

|r(m)|2 cos(2φm − 4πmν/L). (4.23)

Setting the derivative of this criterion with respect to ν to zero, we obtain∑P−1
m=0m|r(m)|2 sin(2φm − 4πmν/L) = 0. Under the small error approxima-

tion, i.e., sin(2φm−4πmν/L) ≃ (2φm−4πmν/L), the simplified NLS (SNLS)
estimator is obtained as

ν̂SNLS =
L

2π

∑P−1
m=1m|r(m)|2φm∑P−1
m=1m

2|r(m)|2
. (4.24)

Note that without applying a proper phase unwrapping algorithm, the esti-
mation range of the SNLS is limited to ±L/2P .
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Approximated NLS estimator using summation-by-parts

To make the SNLS independent of any phase unwrapping procedure, the
phase increments of the estimated correlation, ∆φm = arg{r̂(m)r̂∗(m− 1)},
shall be exploited instead of φm. For this purpose, the summation-by-parts
formula is proposed. Consider the well known summation-by-parts formula

P−1∑

m=0

∆bmam = bP−1aP−1 − b−1a0 −
P−1∑

m=1

bm−1∆am (4.25)

where ∆bm = bm − bm−1 and ∆am = am − am−1. Inspecting (4.25), and the
nominator term in (4.24) yields

P−1∑

m=1

m|r(m)|2︸ ︷︷ ︸
∆bm

· arg{r(m)}︸ ︷︷ ︸
am

= bP−1 arg{r(P − 1)} −
P−1∑

m=1

bm−1∆φm

=
P−1∑

m=1

(bP−1 − bm−1)∆φm

(4.26)

where ∆b0 = 0, b−1 = 0, arg{r(P − 1)} =
∑P−1

m=1 ∆φm. Since b−1 = 0 and
∆b0 = 0, one obtains:

bm =
m∑

k=1

∆bk =
m∑

k=1

k|r(k)|2. (4.27)

Inserting (4.27) into (4.26), and then into (4.24), yields

ν̂ANLS =
L

2π
·
∑P−1

k=1 k|r(k)|2
∑P−1

m=1 ∆φm −∑P−1
m=2

∑m−1
k=1 k|r(k)|2∆φm∑P−1

m=1m
2|r(m)|2

. (4.28)

Eq. (4.28) can be seen as an approximated version of the NLS (ANLS), which
does not require any phase unwrapping procedure as needed for the SNLS.
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Interesting enough, for the AWGN channel, (4.28) reduces to

ν̂AWGN =
3L

2π

P−1∑

m=1

(P − 1)P − (m− 1)m

P (2P − 1)(P − 1)
∆φm. (4.29)

Remark I : For the AWGN channel case, the SNLS estimator (4.24) is
equivalent to the well known estimator proposed by Fitz [24] and if the
summation-by-parts formula is applied to it, the resulting estimator yields a
similar form as (4.29).

Remark II : Although the ANLS estimator (4.28) is derived based on a
single pilot symbol with L identical parts, the ANLS (with few modifications)
can also be used in the case where the multiple identical pilot symbols are
employed.

4.3 Enhancement with Multiple Antennas

Recently, CFO estimation with multiple antennas has increasingly gained
attention since the spatial diversity can be exploited in order to enhance
the estimation performance [56–59]. The diversity combining techniques
for the time-domain CFO problem (pre-FFT) have been explored in [56]
for single-input multiple-output (SIMO) systems using the repeated OFDM
symbols [55]. To utilize the information from all branches, [56] proposed to
perform a nonlinear operation before summing up all the signals (see Fig.
4.3). This method was also used in the work of [57] and [58]. The accuracy
of the CFO estimators using such a combining technique can be consider-
ably enhanced. However, these estimators rely on the absolute phase of
the correlation sum, φm = arg {rs(m)}, and not on the phase difference,
∆φm = arg {rs(m)r∗s(m− 1)}, thus they have a limited estimation range.
This range can be simply widened using shorter symbols but at the cost
of reduced estimation accuracy. In this section, it will be shown that the
performance of the ANLS estimator derived in the previous section can be
enhanced with antenna diversity combining strategy proposed by [56].

4.3.1 Correlation sum observation

The estimated correlation of the i-th receive antenna is calculated as in (4.12).
As the observation, the sum of ri(m) from all receive antennas can be ex-
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pressed as
Nr∑

i=1

ri(m)

︸ ︷︷ ︸
rs(m)

= ej
2πmν

L

Nr∑

i=1

di(m)

︸ ︷︷ ︸
ds(m)

+
Nr∑

i=1

γi(m)

︸ ︷︷ ︸
γs(m)

(4.30)

where Nr is the number of receive antennas, and rs(m) = |rs(m)|ej arg{rs(m)}

is the sum of the estimated correlation. Without considering the probability
density functions of ds(m) and γs(m), two simple and straightforward esti-
mators can be obtained either by performing the simple average (SAV) on
φm = arg{rs(m)}

ν̂SAV =
L

2πP

P−1∑

m=1

arg{rs(m)}
m

(4.31)

or applying the unweighted average (UAV) on ∆φm = arg{rs(m)r∗s(m− 1)}

ν̂UAV =
L

2π(P − 1)

P−1∑

m=1

arg{rs(m)r∗s(m− 1)}. (4.32)

The SAV estimator has an estimation range limited to ±L/2P . This range
can be extended by increasing L (or reducing M), but at the cost of the
reduced accuracy. On the other hand, if the UAV is used the range can be
enlarged. However, there is no guarantee regarding its estimation accuracy
since the ∆φm are not properly weighted.
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The ANLS (4.28) and AWGN (4.29) estimators derived in the previous
section, can be used in this context (see [6]) by simply replacing the |r(m)|
with |rs(m)| and the arg{r(m)r∗m− 1} with arg{rs(m)r∗sm− 1}.

4.4 Simulation Results

We evaluate the proposed estimator in the frequency-selective channels and
assume that time synchronization is perfectly achieved. The simulations
are divided into two parts. The first set of simulations are carried out for
OFDM with single transmit and single receive antenna in both quasi-static
(static over one OFDM symbol) and time-varying channels. The second set
of simulations is performed for single transmit and multiple receive antennas.
In both set of simulations, the following common conditions are used:

1. Only one single OFDM pilot symbol, with repetitive slots (L > 2), is
used.

2. The pilot symbols are taken from a QPSK complex constellation.

3. The useful part of an OFDM symbol contains 256 samples (N=256).

4. A cyclic prefix of 30 samples is used (chosen to be longer than the
channel impulse response).

5. A channel bandwidth of 5 MHz and a carrier frequency of 1 GHz are
assumed. The sampling interval Ts = T/N is 0.2 µs.

4.4.1 SISO-OFDM

The frequency-selective channels for SISO-OFDM are set up such that the
channel has 15 paths, with path delays of 0, 1, 2, . . . , 14 samples. The am-
plitude Ai of the i-th path varies independently of the others according to
a Rayleigh distribution with exponential power delay profile, i.e., E{A2

i } =
exp{−i/5}. The phase of each path is uniformly distributed on the interval
[0, 2π).

Fig. 4.4 illustrates the average estimate E{ν̂} of different estimators as
a function of the true offset ν for SNR = 20 dB. The parameters P = 16
and L = 15 are used. The ideal curve is given as a reference. The channel
is static (BDT = 0). It can be seen that the estimation range of the ANLS
is about ±L/2 the subcarrier spacing which is similar to that of the M&M
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and NLS estimators. On the other hand, without phase unwrapping, the
estimation range of SNLS is limited to ±1. Similar results are obtained with
time-varying channel BDT = 0.01.
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Figure 4.4: Average estimate E{ν̂} vs. ν of the ANLS, SNLS, M&M esti-
mators, SISO case, with L = 16, P = 15, SNR = 20 dB.

Fig. 4.5 shows the mean square estimation error (MSE) as a function of
SNR. The carrier frequency offset is set to ν = 0.01 such that it falls within
the estimation range of SNLS which is limited to only ±L/2P . L varies from
8, 16, and 32. The design parameter P is set to P = L/2 and P = L− 1 for
each value of L. The CRLB for SISO case is given as

CRLB(ν̂) =
1

2π2

3 · SNR−1

N(1 − 1/N2)
(4.33)

for comparison. It can be seen that with the static channels the performances
of the ANLS and M&M estimators are similar and close to the CRLB. The
performance of both estimators increase as P and L increase. In time-varying
scenarios, the curves exhibit floors due to the coherence loss between the
segments of the pilot symbol. The performances tend to become worse as m
increases. This implies that optimal value of m should be decreased with the
Doppler spread of the fading channel.
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Figure 4.5: MSE vs. SNR of the ANLS, SNLS, M&M estimators, L = 16
and 32, with P = L/2 and L−1, for ν = 0.01.

4.4.2 SIMO-OFDM

Fig. 4.6 illustrates the average estimate E{ν̂} of different estimators as a
function of the true offset ν for SNR = 20 dB and BDT = 0 (static channel).
The ideal curve is given as a reference. It is confirmed that the estimation
ranges of those approaches which exploit the phase difference (ANLS, AWGN,
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UAV) are of about ±L/2 the subcarrier spacing. On the other hand, the
estimation ranges of SNLS and SAV which use only the absolute phase,
are limited to ±L/2P . Similar results are also obtained for time-varying
channels, BDT = 0.01.
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Figure 4.6: Average estimate E{ν̂} vs. ν of ANLS, SNLS, AWGN, UAV,
SAV estimators with Nr = 4, L = 16, P = 15, SNR = 20 dB.

The performances of the ANLS estimator with Nr = 1 to 4, for large
CFO (ν = 7.3 the subcarrier spacing) and BDT = 0, are shown in Fig. 4.7.
It can be seen that the performance is enhanced as the number of receive
antennas is increased. Even for the high CFO value, the ANLS estimator
attains the CRLB at an SNR as low as 0 dB. The performance in low SNR
can be considerably improved by using a longer pilot sequence L = 32 and
P = 31 (see Fig. 4.8).

In Fig. 4.9, the performances of the ANLS, SNLS, UAV, and SAV es-
timators with Nr = 1 and 4 for small CFO, ν = 0.01 and BDT = 0, are
compared. Clearly in both cases, the UAV estimator which is not properly
weighted, has the highest estimation variance. Because ν = 0.01 is in the
estimation range of SNLS, the ANLS and SNLS perform similarly. It is also
shown that the performance of the ANLS estimator is better than that of the
SAV, especially at low SNR. However, it should be noted that the estimation
ranges of SNLS and SAV are limited to about ±L/2P , while ANLS has the
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maximum range of ±L/2.
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Fig. 4.10 shows the error floor effect caused by the Doppler spread of the
ANLS and UAV estimators withNr = 1 and 4 for ν = 7.3. It can be observed
that the error floor effect reduces as the number of receive antennas increases.
However, the unweighted UAV still performs poorer than the proposed ANLS
estimator. For Nr = 4, the estimation variance of the ANLS estimator is
already close to the CRLB.

Fig. 4.11 compares the performances of the ANLS, SNLS, and SAV esti-
mators in time-varying channel for small CFO, ν = 0.01. Since |ν| < L/2P ,
it can be seen that the performances of the ANLS and SNLS are similar and
better than that of the SAV estimator especially at low SNR. Similar to the
large CFO case (see Fig. 4.10), the error floor effect reduces as the number
of receive antennas increases.
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4.5 Summary

The classical CFO estimators for OFDM signals have been discussed. The
proposed estimator, which relies on the nonlinear least-squares principle in
conjunction with the summation-by-parts formula, has shown to be much
simpler to derive (as compared to M&M estimator) and has the maximum
possible estimation range of about ±L/2 without an additional phase un-
wrapping algorithm which is needed for most of the classical estimators. The
estimation variance of the proposed estimator however suffers from the error
floor effect caused mainly by Doppler spread. This effect can be reduced by
introducing the receive antenna diversity concept.
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Chapter 5

Frequency Estimation: Radar

and Array Processing

This chapter relates the problem of frequency estimation in the synthetic
aperture radar (SAR) and array processing contexts to the problem of car-
rier frequency offset estimation introduced in the previous chapters. It will
be seen that the signal models for Doppler centroid estimation in SAR and
the direction-of-arrival (DOA) estimation in array processing applications
are similar to that of the classical one, hence most of the already existing in-
cluding the proposed frequency estimation algorithms can be applied. A new
concept of the integrated GPS/INS for DOA estimation is also introduced in
this chapter.

5.1 Doppler Centroid Estimation: SAR

Estimation of the Doppler frequency is a fundamental operation in radar
data processing. Weather radar and moving-target indication radar exploit
the Doppler shift of each radar return to measure the velocity of scatterers.
In the image formation algorithm for SAR, two-dimensional matched filter-
ing (the range compression and azimuth compression) is the fundamental
operation. This can be done either by two one-dimensional processing steps,
Range-Doppler approach, or implementing a truly two-dimensional process-
ing step usually implemented in frequency domain, where the matched fil-
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tering performs the azimuth compression as well as the range migration cor-
rection.

For the range-Doppler approach, during the azimuth compression the
range compressed data is correlated with the replica of the azimuth chirp,
which depends on the phase history of the SAR sensor relative to the terrain
being imaged during the interval of observation. The phase history can be
approximated by a truncated Taylor series expansion which contains the first
and second order derivatives of phase at the center of the synthetic aperture.
For many applications, especially when the SAR carrier platform exhibits
time varying attitude errors, the first order derivative, known as Doppler
centroid frequency, fDC must be estimated from the measurement data.

The Doppler centroid can also be seen as a measure of the effective an-
tenna squint angle. It is used to adjust the bandpass characteristic of the
azimuth compression filter to the location of the signal spectrum. An in-
accurate Doppler centroid not only affects resolution and the signal-to-noise
ratio, but also allows aliased azimuth frequency components to fall within the
passband of the compression filter, and thus reduces the signal-to-ambiguity
ratio [60,61].

The Doppler centroid (the Doppler shift of a target positioned in the
antenna boresight direction) is an important parameter in relation to azimuth
(along track) SAR processing. For an airborne radar where the antenna is
pointed perpendicular to the flight line, the Doppler centroid is ideally zero.
However, if the antenna is off-set in angle (squinted), which might be due
to desired or undesired yaw or if a satellite SAR orbiting a rotating earth is
considered, then fDC will be different from zero [62].

In principle, it is possible to calculate the Doppler centroid from orbit and
attitude data, but measurement uncertainties on these parameters (primar-
ily attitude) will limit the accuracy. These errors will eventually degrade the
performance of the processing, especially w.r.t. signal-to-noise ratio, side-
lobe, and ambiguity levels. Alternatively, Doppler centroid can be estimated
from the received complex echo data. This has been done in the along-track
dimension [61–63]. The time domain correlation-based Doppler centroid esti-
mator has been used by Madsen [62] which was originally applied to spectral
estimation in other field [64]. In [65, 66], various type of Kalman filters and
smoothers were used to improve the Doppler centroid estimates which can
be determined by correlation-based techniques.

If the azimuth data y(k) = y(kT ) is a stochastic process, its correlation
function of two samples separated by m-lag is given by

ry(m) = E{y(k)y∗(k −m)} (5.1)
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and the power spectrum is given by

Sy(f) = F{ry(m)} =
∞∑

m=−∞
r(m)e−j2πmTf (5.2)

or

ry(m) = F−1{Sy(f)} = T

∫ 1/2T

−1/2T

S(f)ej2πmTfdf. (5.3)

If the azimuth power spectrum is shifted by fDC , we have

S(f) = Sy(f − fDC). (5.4)

For frequency domain approaches, this shift is estimated directly in the az-
imuth frequency domain from an estimated azimuth power spectrum. How-
ever, for the time domain interpretation the corresponding correlation func-
tion can be written as

r(m) = ej2πmTfDC · ry(m). (5.5)

This result is the basis of the time-domain estimation of the Doppler centroid.
It is seen that the phase of the correlation function is directly related to
the Doppler centroid. Therefore, one can by estimation of the correlation
function r(m), arrive at an estimate of the Doppler centroid, which can be
calculated using either unbiased (3.56) or biased (3.57) form of the correlation
estimates. Madsen used azimuth window size of m = 1 as the primary
Doppler centroid estimator.

Notice that (5.5) has a similar form as (3.55), and hence the nonlinear
least-squares concept (4.17)-(4.24) followed by the summation-by-parts for-
mula can be again directly applied. This yields an estimator of a similar
form as (3.69). The CRLB can be obtained in the same way as derived in
the Appendix (A.2.1).

5.2 DOA Estimation: Array Processing

Consider the array ofM identical sensors uniformly spaced on a line, depicted
in Fig. 5.1. Such an array is commonly referred as a uniform linear array
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Figure 5.1: Basic geometry of a uniform linear array (ULA) of a single source.

(ULA). Let d denote the distance between two consecutive sensors, and let θ
denotes the direction of arrival (DOA) of the narrowband signal illuminating
the array, as measured with respect to the normal line of sensors. Then under
the planar wave hypothesis (far-field), no angular spread, and the assumption
that the first sensor in the array is chosen as the reference point, the array’s
output vector may be written as

x(t) = a(θ)s(t) + n(t) (5.6)

where x(t) = [x1(t), · · · , xM(t)]T , a(θ) = [1, e−jωcτ2 , · · · , e−jωcτM ]T , and n(t) =
[n1(t), · · · , nM(t)]T . The delay of the wavefront to the m-th sensor is

τm = (m− 1)
d sin θ

c
, for θ ∈

[
−π

2
,
π

2

]
(5.7)

where c is the speed of light, and m is the sensor’s index. Inserting (5.7) into
a(θ) results in

a(θ) =
[
1, e−jωcd sin θ/c, · · · , e−j(M−1)ωcd sin θ/c

]T
. (5.8)

The restriction of θ to lie in the interval [−π/2, π/2] is a limitation of ULAs:
two sources at locations symmetric with respect to the array line yield iden-
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tical sets of delays and hence cannot be distinguished from another. In
practice, this ambiguity is eliminated by using sensors that only pass signals
whose DOAs are in [−π/2, π/2] .

Let λ denote the signal wavelength

λ = c/fc, fc = ωc/2π. (5.9)

By defining

fs = fc
d sin θ

c
=
d sin θ

λ
(5.10)

and

ωs = 2πfs = ωc
d sin θ

c
(5.11)

yields

a(θ) =
[
1, e−jωs , · · · , e−j(M−1)ωs

]T
(5.12)

where ωs is known as the spatial frequency. Note that a(θ) is a Vandermonde
vector which is completely analogous with the vector made from the uniform
samples of the sinusoidal signal {e−jωst}. The vector a(θ) can be uniquely
defined (i.e., there is no spatial aliasing) if and only if ωs is constrained as

|ωs| ≤ π or |fs| ≤
1

2
⇔ d| sin θ| ≤ λ

2
. (5.13)

This condition is satisfied if d ≤ λ/2, which implies that the spatial sampling
period d should be smaller than half of the signal wavelength.

The extension of (5.6) to the case of multiple sources is straightforward.
Since the sensors in the array were assumed to be linear elements, a direct
application of the superposition principle leads to the following model of the
array

x(t) = As(t) + n(t)

= [a(θ1), · · · , a(θK)]



s1(t)

...
sK(t)


+ n(t)

(5.14)

where θk is the DOA of the k-th source, and sk(t) is the signal corresponding
to the k-th source.
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Eq. (5.6) and (5.14) are similar to the models used in the non-fading
sinusoidal signal cases, therefore most of the (temporal) frequency estimation
methods for sinusoidal signals can be used for the DOA estimation problem.

In practice, estimating the DOA in the presence of local scattering is more
complicated. This is often seen in wireless mobile communications since the
sources may appear to be spatially distributed due to local scattering around
the mobile unit. Local scattering at the source causes signals from a single
source to arrive via different paths and at different angles. The point source
is now said to exhibit angular spread. Angular spread manifests itself via
loss of spatial coherence of the signal across the receiver array. Hence, this
scenario is also referred to as imperfect spatial coherence [67]. Imperfect
spatial coherence is also encountered in sonar systems when the propagation
medium is randomly inhomogeneous [67].

Model formulation

In this section, a single scattered source model for DOA estimation problem is
developed. The earlier works for single scattered source can be found in [68–
70] and [71] for multiple scattered sources. In order to obtain a proper model,
it is assumed that the delay spread caused by the multipath propagation is
small compared to the inverse bandwidth of the signal so that the narrowband
assumption still holds even in the presence of scattering. The noise free
narrowband signal arriving at the m-th sensor of an M -element ULA can be
written as

xm(t) =
s(t)√
L(t)

L(t)∑

i=1

gi(t) exp {−j2π∆(m− 1) sin(θ + φi(t))} (5.15)

where L(t) is the number of scattered rays, ∆ is the sensor spacing in wave-
lengths, θ is the angle to be estimated, gi(t) is the complex amplitude of
the i-th arrival, and φi(t) is its angular spread. If the angular spread is
small (the scattering occurs near the source and the array is in the far-field),
sin(θ + φi(t)) ≈ sin(θ) + cos(θ)φi(t). Hence, the noisy array output can be
approximated by

xm(t) = s(t)um(t) exp {−j2π∆(m− 1) sin θ} + nm(t) (5.16)
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where nm(t) is the additive noise at the k-th sensor, and um(t) models the
perturbations due to the spatial scattering, and is given by

um(t) = µ+
∑

n

gn(t) exp{j2π∆(m− 1) cos(θ)φn(t)} (5.17)

where µ denotes the complex gain of the dominant path (at the nominal
angle), if it is exist. The following assumptions are made in order to obtain
a proper model

AS1) The amplitudes, gn(t), and the angular deviation, φn(t), are iid in
both n and t, i.e., spatially and temporally white, zero-mean and mutually
independent.

AS2) The angular deviations are stationary and symmetrically distributed
around zero.

AS3) The narrowband signal s(t) is deterministic and unknown.
AS4) Additive noise is temporally and spatially iid, zero-mean complex

Gaussian and circular.
Under assumptions AS1)-AS2) and assuming that the number of rays,

L(t), is large, [u1(t), · · · , uM(t)] can be modeled (using central limit theorem)
as a Gaussian M -variate process. The spatial correlation is given by

Ru(k, l) = E{uk(t)u∗l (t)} = |µ|2 + σ2
gRφ(k, l) (5.18)

where σ2
g is the power of the scattered paths and

Rφ(k, l) = E{exp(j2π∆(k − l) cos(θ)φ)}. (5.19)

The covariance of the array outputs is stationary in space but not in time
(since s(t) is not assumed to be a constant modulus), and is given by

Rx(k, l; t) = E{xk(t)x∗l (t)}
= |s(t)|2[|µ|2 + σ2

gRφ(k, l)]e
jωo(k−l) + σ2

nδ(k − l)
(5.20)

where ωo = 2π∆ sin θ is the nominal frequency, and σ2
n is the variance of the

additive noise. Under AS2), Rφ(k, l) is real-valued.
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For a Rayleigh channel (µ = 0), the correlation model reduces to

Rx(k, l; t) = |s(t)|2σ2
gRφ(k, l)e

jωo(k−l) + σ2
nδ(k − l). (5.21)

If φ is uniformly distributed, then Rφ(k, l) = sinc(2π∆(k − l) cos θ), if φ has
Gaussian distribution, then Rφ(k, l) = exp(−[2π∆(k − l) cos(θ)σφ]

2/2).
The averaged (over N the snapshots) spatial correlation matrix is esti-

mated as

R̂x(k, l) =
1

N

N∑

t=1

xk(t)x
∗
l (t), k, l = 1, . . . ,M. (5.22)

Using the following statistic yields

r̂(m) =
1

M −m

M−m∑

k=1

R̂x(k +m, k), m = 0, . . . ,M − 1. (5.23)

These correlation coefficients are thus obtained after applying the so-called
redundancy averaging technique to the covariance matrix estimate. It has
been shown in [71] that r̂(m) converges in mean-square to

r(m) = P · ru(m)︸ ︷︷ ︸
d(m)

ejωom + σ2
nδ(m) (5.24)

where P = 1
N

∑N
t=1 |s(t)|2, and ru(m) , ru(k, l).

Notice that (5.24) has a similar form as (3.55), and hence the nonlinear
least-squares concept (4.17)-(4.24) followed by the summation-by-parts for-
mula can be again directly applied. This yields an estimator of a similar
form as (3.69). The CRLB can be obtained in the same way as derived in
the Appendix (A.2.1).

5.3 DOA Tracker: GPS/INS Integration

In this section, a new concept for DOA tracking via GPS/INS integration is
introduced. Typically, algorithms for tracking of the DOA for a particular
satellite shall properly handle the interferences from other satellites, which
can be complicated. Ignoring these interferences will lead to a significant
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DOA estimation error. The proposed concept however, can cope with this
problem by incorporating the additional DOA information obtained from the
inertial-based navigation unit. This concept can either be seen as a deeply-
integration since the inphase and quadrature phase (I,Q) are processed, or
as a loosely-integration since it has a decentralized integration architecture
(see Fig. 5.2).
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Figure 5.2: A simple GPS/INS integration architecture for DOA tracking.

5.3.1 Signal model

Consider a uniform linear array (ULA) with an M -element array with half-
wavelength (d = λ/2) spaced antenna elements. Thus, the received signal at
the m-th antenna may be expressed as

ym(t) =
K∑

k=1

sk(t) exp{j(m− 1)π sin θk(t) + φk} + nm(t) (5.25)
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where K is the number of sources (satellites), θk(t) is the azimuthal DOA
of the k-th sources, φk is the carrier phase which is uniformly distributed in
[0, 2π], sk(t) =

∑∞
i=−∞ dk(i)ck(t−iT−τk), dk(t) is the transmitted data, ck(t)

denotes the spreading sequence waveform, nk(t) is the additive white Gaus-
sian noise, τ and T are the time delay and the symbol interval, respectively.
The received signal may be written in a vector form as

y(t) = A(θ(t))S(t) + n(t) (5.26)

where

• y(t) = [y1(t), y2(t), · · · , yM(t)]T is an M × 1 vector of the received
signals at time t.

• θ(t) = [θ1(t), θ2(t), · · · , θK ]T is the source DOA parameter vector.

• A(θ(t)) is the array response matrix which is determined by the DOA
of signals. The k-th column of A(θ(t)) is defined as the array re-
sponse vector associated with the k-th source and is given by a(θk(t)) =
[1, e−jπ sin θk(t), · · · , e−jπ(M−1) sin θk(t)]T .

• S(t) = diag[s1(t)e
jφ1 , s2(t)e

jφ2 , · · · , sK(t)ejφK ].

• n(t) = [n1(t), n2(t), · · · , nM(t)]T is an M × 1 additive noise vector,
which is assumed to be spatially and temporally white Gaussian.

The received signals are despread by the users’ own spreading sequences
for each of the antenna elements. Therefore, the k-th users’ despread and
sampled array vector signal, xk(i) may be expressed as

yk(i) = dk(i)a(θk(i))e
jφk +

K∑

l=1, l 6=k
ψkldl(i)a(θl(i))e

jφl + nk(i) (5.27)

where the cross-correlation of the spread sequence, ψkl may be defined as
ψkl ,

∫ T
0
ck(t)cl(t)dt when the time delay of all users are zero and nk(i) is

the despread noise signal vector whose covariance matrix is σ2
nI. The outputs

are then multiplied by a conjugate of the transmitted data estimate d̂∗k(i) and

carrier phase estimate e−jφ̂k to remove the effect of dk(i) and φk. With the

assumption that d̂∗k(i) = dk(i) and φ̂k = φk, yk(i)d̂
∗
k(i)e

−jφ̂k can be written
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as

ỹk(i) = yk(i)d̂
∗
k(i)e

−jφ̂k

= a(θk(i)) + d̂∗k(i)e
−jφ̂k

K∑

l=1, l 6=k
ψkldl(i)a(θl(i))e

jφl + d̂∗k(i)e
−jφ̂knk(i)

= a(θk(i)) + αk(i) + ñk(i)

(5.28)

where αk(i) is a vector containing the interference of the despread signal of
the k-th satellite, and ñk(i) represents the noise vector with the unchanged
statistical properties (see Appendix A.1.4).

5.3.2 GPS DOA tracking via extended Kalman filter

In order to track the DOA of the k-th satellite, θk(i), an extended Kalman
filter (EKF) is used. The Kalman filtering algorithm is readily formulated in
Appendix B.

State space model

For simplicity, the index k indicating the satellite number is omitted. The
θ(i) is modeled as a random walk process.

xi+1 = Axi + wi[
θgps(i+ 1)

θ̇gps(i+ 1)

]
=

[
1 1
0 1

] [
θgps(i)

θ̇gps(i)

]
+

[
0

wθgps
(i)

]
.

(5.29)

Observation model

The cross-correlation (interference) term, αk(i), contributed to the despread
signal is ignored and only the measurement noise is considered. A simple
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observation model can be written as

yi = h(xi) + vi



Re{ỹ1(i)}
Re{ỹ2(i)}

...
Re{ỹM(i)}
Im{ỹ1(i)}
Im{ỹ2(i)}

...
Im{ỹM(i)}




=




cos(0)
cos(−1π sin θgps(i))

...
cos(−(M − 1)π sin θgps(i))

sin(0)
sin(−1π sin θgps(i))

...
sin(−(M − 1) sin θgps(i))




+




Re{ñ1(i)}
Re{ñ2(i)}

...
Re{ñM(i)}
Im{ñ1(i)}
Im{ñ2(i)}

...
Im{ñM(i)}




(5.30)

where Re{ỹm(i)} and Im{ỹm(i)} are respectively the real and imaginary part
of ỹm(i) at the m-th antenna. Re{ñm(i)} and Im{ñm(i)} are respectively the
real and imaginary part of ñm(i) at the m-th antenna. h(·) is the nonlinear
mapping between yi and xi.

The EKF requires the linearized observation matrix (Jacobian matrix)
which can be obtained by

H(i) =
∂

∂xi
h(xi)|xi=x̂

−

i

=




0 0

1π cos θ̂−gps(i) sin(−1π sin θ̂−gps(i)) 0
...

...

(M − 1)π cos θ̂−gps(i) sin(−(M − 1)π sin θ̂−gps(i)) 0
0 0

−1π cos θ̂−gps(i) cos(−1π sin θ̂−gps(i)) 0
...

...

−(M − 1)π cos θ̂−gps(i) cos(−(M − 1)π sin θ̂−gps(i)) 0




.

(5.31)

The linearized observation model is then

yi = H(i)xi + vi. (5.32)

Since the cross-correlation matrix is unknown and ignored, therefore, one can
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expect bias errors embedded in the output estimates, θ̂(i).

5.3.3 GPS/INS integration for DOA tracking

The outputs from the array-GPS DOA tracker, θ̂gps(i), will be fused with

the DOA estimates obtained from the INS unit, θ̂ins(iR), via an additional
Kalman filter. This approach may be comparable to the well known loosely-
coupled GPS/INS integration [72,73]. Assuming that the INS provides accu-
rate position estimates for a sufficiently long period of time and the satellites’
positions are available to the INS so that the INS can use this information to
transform its position into the DOA. The array-GPS DOA tracker outputs
the DOA estimates at a much higher rate than that of the INS (∼ 100− 200
Hz), therefore, the integration filter (Kalman filter) will complete the whole
iteration (prediction and correction loops) only when the DOA from INS is
available otherwise it will only run in the prediction loop. The outputs of
the array-GPS DOA tracker are erroneous since the cross-correlations are not
considered. However, by fusing the erroneous estimates with the DOA from
a high grade INS unit, the error can be significantly reduced.

The state space model is defined as

xi+1 = Axi + wi[
∆θ(i+ 1)

∆θ̇(i+ 1)

]
=

[
1 1
0 1

] [
∆θ(i)

∆θ̇(i)

]
+

[
0

w∆θ(i)

]
.

(5.33)

Since the difference between the reliable DOA obtained from INS and DOA
estimates obtained from the array-GPS, is used as the measurement. The
simple linear observation model can be obtained as

yi = Hxi + vi
[
θins(i) − θgps(i)

]
=
[

1 0
] [ ∆θ(i)

∆θ̇(i)

]
+
[
v(i)

]
.

(5.34)

The integrated DOA estimate, θ̂(i), is obtained by (see also Fig. 5.3)

θ̂(i) = θgps(i) + ∆θ̂(i). (5.35)
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Figure 5.3: GPS/INS integration scheme.

5.3.4 Simulation results

For simulation purpose, the direction-of-arrivals of the GPS signals are gen-
erated randomly following the sinusoidal functions. The PN-sequences are
used to generate the transmitted and received GPS signals. The following
assumptions are also assumed in the simulations.

• 8 GPS linear array antennas are used.

• The data bits are known and can be removed from the received signal.

• Maximum of 12 GPS satellites are seen by all antennas.

• The array-GPS outputs DOA estimates 100 times faster than INS.

• High quality INS is available.

• Calibration and synchronization are assumed to be perfect.

Fig. 5.4 shows the DOA tracking ability of the array-GPS based DOA tracker
with and without INS aiding. It can be seen that if the cross-correlation or
interference term is ignored and not compensated for, the DOA estimation
error is large. However, by using the proposed GPS/INS integration concept
for DOA tracking, this error can be significantly reduced. The quality of the
INS will of course play an important roll in reducing the estimation error.
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Figure 5.4: DOA tracking via GPS/INS integration.
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5.4 Summary

This chapter shows that the problem of frequency estimation can also be seen
from SAR (Doppler centroid estimation) and array processing (direction-of-
arrival estimation) point of view. The formulations of the problem in both
cases present finally similar expression as obtained from the carrier frequency
offset estimation problem in communication systems.

The integrated GPS/INS DOA estimation problem is also considered in
this chapter. It is shown that an additional DOA information can be used to
reduce the GPS-alone DOA estimation errors caused by the uncompensated
cross-correlation of GPS signals arriving from other directions.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

The performance of communication systems for both single-carrier and multi-
carrier (i.e., OFDM) transmission schemes, depend on the signal quality seen
by the receiver. The ideal signal integrity is only obtained when the system
impairment such as CFO is eliminated from the system. On the other hand,
the performance of Doppler radar systems depend on how accurately and
precisely the Doppler frequency is extracted from the echo’s signal. These
requirements demand properly designed frequency estimation algorithms. In
this thesis, issues related to frequency estimation are addressed. In particu-
lar, after introduction of the single-carrier, multi-carrier OFDM systems, and
the analysis of the effects of CFO errors, new data-aided frequency estimation
algorithms have been derived and analyzed. It has been shown in the later
chapter that these proposed algorithms can be easily extended to use in the
Doppler radar and array processing applications. The main contributions of
this thesis include:

Single-carrier case

• Closed-form quadratic interpolation function for the frequency estima-
tion using periodogram has been derived. It significantly reduces the
amount of zero-padding required by the FFT-periodogram in order to
attain the CRLB.
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• The modified Kay’s estimator, which solves the problem of high thresh-
old behavior in the original Kay’s estimator, has been proposed. This
comes at the price of a narrower estimation range, however, for a given
estimation range the modified Kay’s estimator can provide a much
lower threshold than the original one.

• The summation-by-parts formula (weight transformation formula) is
applied to extend the estimation range of the original Fitz’s estima-
tor which leads to the modified Fitz’s estimator. The original Fitz’s
estimator has a very narrow estimation range when operated in the
optimal mode. This problem is usually overcome by applying a proper
phase unwrapping algorithm, however at the price of high computa-
tional complexity.

• An approximated maximum likelihood frequency estimator based on
the absolute phase information of the autocorrelation estimates, is pro-
posed. The weight transformation formula is applied to the proposed
estimator resulting in the transformed proposed estimator which has a
similar performance as the original one but with the estimation range
extended to the maximum. The performance of the transformed pro-
posed estimator is also shown to be better than that of the well known
M&M estimator.

• By using the nonlinear least-squares principle in conjunction with the
summation-by-parts formula, a new closed-form frequency estimator
which can be used to estimate the frequency of signals with fading-
induced multiplicative noise has been derived. The estimator requires
neither phase unwrapping algorithm nor additional information about
the channel as needed for most of the existing estimators.

• Designed a Kalman filter for frequency estimation of signals with real-
valued time-varying amplitude. It can be easily extended for frequency
tracking problem.

OFDM case

• The nonlinear least-squares estimator derived for the single-carrier case
has been applied to multi-carrier OFDM signal. The improvement can
be obtained using multiple receive antennas. The error floor effect of
the estimation variance introduced by the non-delta function of the
channel correlation function can be reduced by using an array of un-
correlated receive antennas.
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Array processing

• The integrated GPS/INS DOA tracker has been proposed. By using the
additional DOA information obtained from INS, the DOA estimation
errors of the GPS-alone tracker can be reduced.

6.2 Future Works

In this work, the problem of frequency estimation in communication and
radar related applications has been addressed. Several improved frequency
estimators including a novel closed-form NLS-based frequency estimator have
been proposed. For future works, a closed-form estimator for the MIMO case
may be derived in the same manner as in the case of SISO and SIMO. The
performance analysis of these estimators could also be carried out. More-
over, for frequency tracking purposes, various types of Kalman filters and
smoothers can be applied on the correlation estimates of the received sig-
nals.

Since the proposed NLS-based estimator can also be applied to the Doppler
centroid estimation problem in SAR applications, therefore a justification of
the proposed estimator by the real SAR data could be of interest.
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Appendix A

Derivations

A.1 Constant Envelope

A.1.1 Cramer-Rao lower bound

The complex Gaussian pdf is defined as

p(x; ξ) =
1

πN det(Cx(ξ))
exp

[
−(x − µ(ξ))HC−1

x (ξ)(x − µ(ξ))
]

(A.1)

where the parameter vector ξ is to be estimated based on the complex data
x = [x[0], x[1], . . . , x[N−1]]T and may have components that are real and/or
complex. However, in this thesis only the real-valued case is considered.

The Cramer-Rao lower bound (CRLB) for a complex Gaussian pdf is
obtained from the inverse of the Fisher information matrix defined as (see
eq.(15.52) in [74])

[I(ξ)]ij = tr

{
C−1
x (ξ)

∂Cx(ξ)

∂ξi
C−1
x (ξ)

∂Cx(ξ)

∂ξj

}
+2Re

{
∂µH(ξ)

∂ξi
C−1
x (ξ)

∂µ(ξ)

∂ξj

}

(A.2)
for i, j = 1, 2, . . . , p. The derivatives are defined as the matrix or vector of
partial derivatives, where we differentiate each complex element g = gR+ jgI
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as
∂g

∂ξi
=
∂gR
∂ξi

+ j
∂gI
∂ξi

.

The equality condition for the CRLB to be efficient is,

∂ ln p(x; ξ)

∂ξ
= I(ξ)(g(x) − ξ)

where ξ̂ = g(x) is the efficient estimate of ξ.
Consider the signal model defined in (3.1)

y(k) = ã exp{j2πf0k} + n(k), 0 ≤ k ≤ N − 1 (A.3)

where ã = a exp{jφ} is a constant complex envelope, f0 = F0T is the nor-
malized frequency to be estimated, n(k) = nI(k) + jnQ(k) is a zero-mean
complex-valued white Gaussian process with variance σ2. The SNR is de-
fined as a2/σ2. Note that a, φ, f0 are deterministic but unknown.

From (A.2), we have

[I(ξ)]ij = 2Re

{
∂µH(ξ)

∂ξi

1

σ2
I
∂µ(ξ)

∂ξj

}

=
2

σ2
Re

{
N−1∑

k=0

∂s∗(k)

∂ξi

∂s(k)

∂ξj

} (A.4)

where s(k) = ã exp{j2πf0k} = a exp{j(2πf0k + φ)}. The partial derivatives
are now

∂s(k)

∂a
= exp{j(2πf0k + φ)}

∂s(k)

∂f0

= j2πka exp{j(2πf0k + φ)}

∂s(k)

∂φ
= ja exp{j(2πf0k + φ)}

(A.5)
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so that

I(ξ) =
2

σ2




N 0 0

0 a2
∑N−1

k=0 (2πk)2 a2
∑N−1

k=0 2πk

0 a2
∑N−1

k=0 2πk Na2



 . (A.6)

After inversion we have

CRLB(â) ≥ σ2

2N

CRLB(f̂0) ≥
6σ2

(2π)2a2N(N2 − 1)
=

6SNR−1

(2π)2N(N2 − 1)

CRLB(φ̂) ≥ σ2(2N − 1)

a2N(N + 1)
=

(2N − 1)SNR−1

N(N + 1)
.

(A.7)

A.1.2 Maximum likelihood estimator

The Maximum Likelihood Estimator (MLE) can be derived by maximizing

p(y;x) =
1

πN det(C)
exp

{
−[y − h(x)]HC−1[y − h(x)]

}

=
1

πN det(σ2I)
exp

{
− 1

σ2
[y − ae]H [y − ae]

} (A.8)

or equivalently, we must minimize the log-likelihood function

J(a, f0) = [y − ae]H [y − ae]

= yHy − yHea− aHeHy + aHeHea
(A.9)

where

y = [y(0), y(1), · · · , y(N − 1)]T

e = [1, exp{j2πf0}, · · · , exp{j2πf0(N − 1)}]T .
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Minimizing (A.9) with respect to a, provided that f0 is fixed, can be seen as
a complex linear least-squares problem. The derivative of (A.9) is

∂J

∂a
= 0 −

(
eHy

)∗ − 0 +
(
eHea

)∗

= −[eH(y − ea)]∗.
(A.10)

Setting it to zero and solving for a produces

â =
eHy

eHe
=

1

N

N−1∑

k=0

y(k) exp{−j2πf0k}. (A.11)

Substitute this back into J yields

J(â, f0) = yH(y − eâ)

= yHy − yHeeHy

eHe

= yHy − |eHy|2
eHe

.

(A.12)

To minimize J over f0 one needs to maximize |eHy|2
eHe

. The MLE for f0 reads

f̂0 = arg max
f̃0

1

N

∣∣∣∣∣

N−1∑

k=0

y(k) exp{−j2πf̃0k}
∣∣∣∣∣

2

(A.13)

where f̃0 is the tentative value of f0. The MLE produces the estimate of
f0 which is consistent and asymptotically efficient (as N → ∞, its variance
equals to the CRLB) [17]. The corresponding MLE of |a| and φ are found
from

ˆ̃a = |̂a| =

∣∣∣∣∣
1

N

N−1∑

k=0

y(k) exp{−j2πf̂0k}
∣∣∣∣∣ (A.14)
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φ̂ = arctan
Im
{

ˆ̃a
}

Re
{

ˆ̃a
} = arctan

Im
{∑N−1

k=0 y(k) exp{−j2πf̂0k}
}

Re
{∑N−1

k=0 y(k) exp{−j2πf̂0k}
} . (A.15)

A.1.3 Closed-form quadratic interpolation

It is assumed that the periodogram is approximately quadratic in the vicinity
of the peak, and thus can be written as

p(f) = c1f
2 + c2f + c3. (A.16)

Taking the peak (f2, p2) obtained from the coarse search and its left (f1, p1)
and right (f3, p3) nearest neighbors, the three coefficients can be found using
the following algebra




c1
c2
c3



 =




f 2

1 f1 1
f 2

2 f2 1
f 2

3 f3 1




−1


p1

p2

P3



 (A.17)

where pi ≡ p(fi). In order to obtain closed-forms for c1, c2, c3, (A.17) is
rewritten as




c1
c2
c3



 =
1

f 2
1 (f2 − f3) − f1(f 2

2 − f 2
3 ) + (f 2

2 f3 − f2f 2
3 )

·




f2 − f3 f3 − f1 f1 − f2

f3 − f2 f 2
1 − f 2

3 f 2
2 − f 2

1

f 2
2 f3 − f2f

2
3 f1f

2
3 − f 2

1 f3 f 2
1 f2 − f1f

2
2








p1

p2

p3



 .

(A.18)
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The closed-forms for c1, c2, c3 are then found to be

c1 =
(f2 − f3)p1 + (f3 − f1)p2 + (f1 − f2)p3

f 2
1 (f2 − f3) − f1(f 2

2 − f 2
3 ) + (f 2

2 f3 − f2f 2
3 )

c2 =
(f 2

3 − f 2
2 )p1 + (f 2

1 − f 2
3 )p2 + (f 2

2 − f 2
1 )p3

f 2
1 (f2 − f3) − f1(f 2

2 − f 2
3 ) + (f 2

2 f3 − f2f 2
3 )

c3 =
f2f3(f2 − f3)p1 + f3f1(f3 − f1)p2 + f1f2(f1 − f2)p3

f 2
1 (f2 − f3) − f1(f 2

2 − f 2
3 ) + (f 2

2 f3 − f2f 2
3 )

.

(A.19)

The estimated frequency is the frequency that maximizes (A.16) and can be
found by taking the derivative of (A.16) and setting to zero, or

f̂ = − c2
2c1

= −1

2

(f 2
3 − f 2

2 )p1 + (f 2
1 − f 2

3 )p2 + (f 2
2 − f 2

1 )p3

(f2 − f3)p1 + (f3 − f1)p2 + (f1 − f2)p3

. (A.20)

A.1.4 Statistically equivalent of a complex white Gaus-

sian noise

Let v(k) = n(k) · exp{jθ(k)} be a product of a complex white Gaussian
noise, n(k), and a complex exponential function, exp{jθ(k)}. The statistical
properties of v(k) will be shown to be equivalent to that of n(k). The quantity
v(k) may be written as

v(k) = [nI(k) + jnQ(k)] · [cos(θ(k)) + j sin(θ(k))]

where n(k) = nI(k) + jnQ(k) with E{nI(k)} = E{nQ(k)} = 0, E{n2
I(k)} =

E{n2
Q(k)} = σ2

n

2
, and E{nI(k)nQ(k + m)} = 0. In order to show that n(k)

and v(k) are statistically equivalent, we start with

vI(k) = nI(k) cos(θ(k)) + nQ(k) sin(θ(k))

vQ(k) = −nI(k) sin(θ(k)) + nQ(k) cos(θ(k)).

The means of vI(k) and vQ(k) are clearly zeros.
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The correlation of vI(k) is

E{vI(k)vI(k +m)} = E{nI(k)nI(k +m)} cos(θ(k)) cos(θ(k +m))

+ E{nQ(k)nQ(k +m)} sin(θ(k)) sin(θ(k +m))

where

E{nI(k)nI(k +m)} =
σ2
n

2
δ(m)

E{nQ(k)nQ(k +m)} =
σ2
n

2
δ(m).

From the relation cos(a− b) = cos(a) cos(b) + sin(a) sin(b), we have

E{vI(k)vI(k +m)} =
σ2
n

2
δ(m) cos(θ(k) − θ(k +m))

=

{
E{v2

I (k)} = σ2
n

2
, for m = 0 → δ(m) = 1, cos(·) = 1;

E{vI(k)vI(k +m)} = σ2
n

2
δ(m) = 0, for τ 6= 0 → δ(m 6= 0) = 0.

The correlation of vQ(k) can be obtained similarly

E{vQ(k)vQ(k +m)} = E{nI(k)nI(k +m)} sin(θ(k)) sin(θ(k +m))

+ E{nQ(k)nQ(k +m)} cos(θ(k)) cos(θ(k +m))

=
σ2
n

2
δ(m) cos(θ(k) − θ(k +m))

=
σ2
n

2
δ(m).

The cross-correlation, E{vI(k)vQ(k +m)}, is

E{vI(k)vQ(k +m)} = − E{nI(k)nI(k +m)} cos(θ(k)) sin(θ(k +m))

+ E{nQ(k)nQ(k +m)} sin(θ(k)) cos(θ(k +m))

=
σ2
n

2
δ(m) sin(θ(k) − θ(k +m))

= 0, ∀m.

121



This proofs that the first and second order statistics of n(k) and v(k) are
equivalent.

A.1.5 Complex noise to phase noise transformation

The observed signal may be expressed as

y(k) = |a| exp{j(ωok + φ)} + n(k)

= |a|[1 + v(k)] exp{j(ωok + φ)} (A.21)

where ωo = 2πfo, and

v(k) =
1

|a|n(k) exp{−j(ωok + φ)} (A.22)

is a complex white noise sequence with

var{v(k)} =
σ2
n

|a|2 =
1

SNR
. (A.23)

Let v(k) = vI(k) + jvQ(k), we have

1 + v(k) = |1 + v(k)| · exp{arg{1 + v(k)}}

=
√

[1 + vI(k)]2 + v2
Q(k) · exp

{
j tan−1 vQ(k)

1 + vI(k)

}
.

(A.24)

For high SNR or |a|2
σ2

n
≫ 1,

1 + v(k) ≈ exp{j tan−1 vQ(k)} ≈ exp{jvQ(k)} (A.25)

therefore, y(k) can be written as

y(k) = |a| exp{j(ωok + φ+ vQ(k))}. (A.26)
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The additive noise has been transformed into an equivalent phase noise vQ(k)
with

var{vQ(k)} =
1

2
var{v(k)} =

1

2

σ2
n

|a|2 . (A.27)

Note that this approximation holds true only for high SNR assumption.

A.1.6 Tretter estimator

For high SNR, Tretter showed that (3.1) can be approximated as

y(k) ≈ |a| exp{j(2πf0k + φ+ vQ(k))} (A.28)

where vQ(k) is the equivalent phase noise with variance 1
2
σ2

n

|a|2 and is defined

in Appendix A.1.5. The phase of y(k) is given by

arg{y(k)} ≈ [2πf0k + φ+ vQ(k)]π−π (A.29)

where [x]π−π is the value of x reduced to the interval [−π, π). This equation
relates f0 and φ to arg{y(k)}. Unfortunately, (A.29) is highly nonlinear and
awkward to handel. Therefore, phase unwrapping procedure [19] is needed
but this would be difficult at low SNR. Assume that phase unwrapping is
successfully applied, the unwrapped phase function

unwrap [arg{y(k)}] = ϕ(k) = 2πf0k + φ+ vQ(k) (A.30)

is a linear function. The parameters f0 and φ can be estimated by means of
least-squares or linear regression. In the case of Gaussian noise, least-squares
estimates are equivalent to maximum likelihood estimates. The minimization
criterion is the square error

J =
N−1∑

k=0

[
ϕ(k) − 2πf̂0k − φ̂

]2
. (A.31)
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The explicit least-squares solution of f̂0 is evaluated in [18] and obtained as

f̂0 =
12

2πN(N2 − 1)

N−1∑

k=0

k arg {y(k)} − 6

2πN(N + 1)

N−1∑

k=0

arg {y(k)}

=
12

2πN(N2 − 1)

N−1∑

k=0

[
k − (N − 1)

2

]
arg {y(k)}

=
1

2π

N−1∑

k=0

6(2k −N + 1)

N(N2 − 1)
arg {y(k)} .

(A.32)

It is also shown in [18] that f̂0 is unbias and the variance achieves the CRLB.

A.1.7 Kay estimator

To avoid phase unwrapping, Kay [20] derived an estimator based on the phase
differences between two consecutive samples. The phase differences take the
form of

∆ϕ(k) = arg {y(k)y∗(k − 1)}
= [2πf0 + vQ(k) − vQ(k − 1)]π−π

(A.33)

provided that |2πf0| < π and vQ(k) is sufficiently small, (A.33) can be ap-
proximated as

∆ϕ(k) ≈ 2πf0 + vQ(k) − vQ(k − 1). (A.34)

It is clear from (A.34) that the problem now is to estimate the mean f0 of
a colored Gaussian noise process. The maximum-likelihood estimate of f0 is
found by minimizing

J = (∆ − 2πf01)TC−1(∆ − 2πf01) (A.35)

where ∆ = [∆ϕ(1),∆ϕ(2), · · · ,∆ϕ(N − 1)]T , 1 = [1, 1, · · · , 1]T , and C is
the (N − 1) × (N − 1) covariance matrix of ∆ϕ(k), and can be explicitly
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expressed as

C =
σ2

2|a|2




2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 −1 2


 . (A.36)

The solution to this problem is well known and given by

f̂0 =
1

2π

1TC−1∆

1TC−11
. (A.37)

The estimation variance is

var(f̂0) =
1

1TC−11
. (A.38)

The inverse C−1 with the (i, j) element is well known [75] and given by

[C−1]ij =
2|a|2
σ2

[
min(i, j) − i · j

N

]
1 ≤ i, j ≤ N − 1. (A.39)

After some algebra, using (A.37) and (A.39), one obtains

f̂0 =
1

2π

N−1∑

k=1

6k(N − k)

N(N2 − 1)︸ ︷︷ ︸
wk

∆ϕ(k) (A.40)

where wk is Kay’s weighting function. The estimation variance of Kay esti-
mator is shown to be identical to the CRLB.
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A.1.8 Fitz estimator

The equivalent likelihood function or the periodogram is given as

P (f̃0) ,

∣∣∣∣∣

N−1∑

k=0

y(k) exp{−j2πf0k}
∣∣∣∣∣

2

=
N−1∑

k=1

N−1∑

n=1

y(k)y∗(n) exp{−j2πf0(k − n)}.
(A.41)

Taking the derivative of (A.41) with respect to f̃0 and equating it to zero
yields

N−1∑

k=1

N−1∑

n=1

(k − n)y(k)y∗(n) exp{−j2πf0(k − n)} = 0 (A.42)

after rearranging and grouping terms

Im

{
N−1∑

m=1

m(N −m)r̂(m) exp{−j2πf0m}
}

= 0 (A.43)

where r̂(m) is the estimated autocorrelation of the samples, y(k), defined as

r̂(m) =
1

N −m

N−1∑

k=m

y(k)y∗(k −m). (A.44)

The term in braces in (A.43) can be seen as the Fourier transformation of
the estimated autocorrelation, r̂(m), weighted by the parabolic windowing
function w(m) = m(N −m). This weighting function accounts for the fact
that, in the vicinity of m = 0, r̂(m) bears intrinsically little or no informa-
tion on the frequency offset because it is derived from closely spaced signal
samples. On the other hand, when m ≈ N , r̂(m) becomes a poor estimate of
the autocorrelation of y(k), since the number of terms in the summation in
(A.44) building up such an estimate is small. The estimated autocorrelation
can be expressed as

r̂(m) = A exp {j2πf0m} + γ(m). (A.45)
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where γ(m) = γI(m) + jγQ(m).

In combination with the phase increments concept of Kay’s approach, this
model was considered and used to derive the estimator in [26]. Since arg{E{r̂(m)}} =
2πf0m. For large N (e.g. small noise in (A.45))

Im {r̂(m) exp{−j2πf0m}} ≈ A sin (arg {r̂(m)} − 2πf0m)

≈ A (arg {r̂(m)} − 2πf0m) ,
(A.46)

then (A.43) is heuristically approximated for large N as

N−1∑

m=1

m (arg {r̂(m)} − 2πf0m) = 0 (A.47)

where
arg {r̂(m)} = [2πf0m+ γI(m)]2π. (A.48)

After some algebra, (A.47) reduces to

f̂0 =
1

2π

N−1∑

m=1

6m

N(N − 1)(2N − 1)
arg {r̂(m)} . (A.49)

If the summation in (A.49) is truncated at values less than N , a more prac-
tical estimator has the form

f̂0 =
1

2π

∑L
m=1m arg {r̂(m)}
∑L

m=1m
2

. (A.50)

Note that as m varies from 1 to L, eq. (A.48) will only establish a lin-
ear relation between f0 and arg {r̂(m)}, if f0 lies within the interval ± 1

2L
.

Otherwise, eq. (A.48) becomes highly nonlinear and introduces ambiguities.
Hence, phase unwrapping is required. The estimation range of Fitz estimator
is, therefore, |f0| ≤ 1

2L
.
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A.1.9 Mengali estimator

In deriving Mengali estimator, one shall start with the general signal model

y(k) = a(k) · exp{j2πkf0} + n(k), k = 0, 1, . . . , N − 1

= exp{j2πkf0} · [a(k) + ñ(k)]
(A.51)

where ñ(k) = n(k) exp{−j2πkf0}.
The estimated autocorrelation can be written as

r̂(m) =
1

N −m

N−1∑

k=m

y(k)y∗(k −m), m = 0, 1, . . . , L

= σ2
a exp {j2πf0m}[1 + γ(m)]

(A.52)

where L is a design parameter less than N − 1, σ2
a = 1

N

∑N−1
k=0 |a(k)|2, and

γ(m) = γR(m) + jγI(m)

=
1

σ2
a(N −m)

N−1∑

k=m

[a(k)ñ∗(k −m) + a∗(k)ñ(k) + ñ(k)ñ∗(k −m)]

≈ 1

σ2
a(N −m)

N−1∑

k=m

[a(k)ñ∗(k −m) + a∗(k)ñ(k)]

(A.53)

where γR(m) and γI(m) are real and imaginary part of γ(m). For SNR ≫ 1,
the amplitude of n(k) is less than unity with high probability and the term
ñ(k)ñ∗(k −m) can be neglected.

Using phase difference, (A.52), (A.53), and Tretter and Kay approaches
[18] [20], one obtains

∆(m) = arg {r̂(m)r̂∗(m− 1)} ≈ 2πf0 + γI(m) − γI(m− 1) (A.54)

provided that |2πf0| < π and the γI(m) are sufficient small. Clearly, (A.54)
relates f0 to ∆(m) in a linear fashion. The maximum likelihood estimate of
f0 is found by

f̂0 =
1

2π

1TC−1∆

1TC−11
(A.55)
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where

Cm,l = E {[γI(m) − γI(m− 1)][γI(l) − γI(l − 1)]}
= ρ(m, l) + ρ(m− 1, l − 1) − ρ(m− 1, l) − ρ(m, l − 1)

(A.56)

where
ρ(m, l) = E {γI(m)γI(l)} . (A.57)

Inserting (A.53) into (A.57), yields

ρ(m, l) =
(SNR)−1

(N −m)(N − l)
·[N−max(m, l)−(N−m−l)u(N−m−l)] (A.58)

where u(n) is the unit-step function 1. From (A.58) and (A.56), it can be
observed that C is singular for L > N/2. In fact, the angles, ∆(m), with
m > N/2 are linearly dependent on those with 1 ≤ m ≤ N/2. This means
that the information borne by ∆ is contained in its first N/2 components.
For this reason, it is meaningful to assume 1 ≤ L ≤ N/2.

For 1 ≤ L ≤ N/2, (A.58) reduces to

ρ(m, l) =
(SNR)−1

(N −m)(N − l)
min(m, l). (A.59)

Following [26] and using (A.59) and (A.56), the element-wise closed-form
expression of C−1 is

[C−1]ij =

{
(L−N) × SNR, i 6= j
(L−N + (N − i)(N − i+ 1)) × SNR, i = j

(A.60)

1The unit-step function is defined as: u(n) =

{
1, n ≥ 0
0, n < 0
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or in a matrix form

C−1 = SNR·



L+N2 − 2N L−N L−N · · · L−N
L−N L+N2 − 4N + 2 L−N · · · L−N
L−N L−N L+N2 − 6N + 6 · · · L−N

...
...

...
. . .

...
L−N L−N L−N · · ·




L×L

.

First explicitly computing 1TC−11, one obtains

1TC−11 = (a+ b) · SNR (A.61)

where

a =
L∑

m=1

L+N2 − 2mN +m(m− 1)

= L2 + LN2 − 2N
L∑

m=1

m+
L∑

m=1

m2 −
L∑

m=1

m

= (2L3 + 6L2 − 2L− 6L2N + 6LN2 − 6LN)/6

and
b = L(L− 1)(L−N) = L3 − L2 − LN2 + LN

therefore,

1TC−11 =
L

3
(4L2 − 6LN + 3N2 − 1) · SNR. (A.62)

Next 1TC−1∆ is computed as

1TC−1∆ =
L∑

m=1

[
L+N2 −m(2N + 1) +m2 + (L−N)(L− 1)

]
· ∆(m)

=
L∑

m=1

[(N −m)(N −m+ 1) − L(N − L)] · ∆(m).

(A.63)
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Then Mengali’s estimator reads as follows

f̂0 =
1

2π

L∑

m=1

3 [(N −m)(N −m+ 1) − L(N − L)]

L(4L2 − 6LN + 3N2 − 1)
· ∆(m). (A.64)

Its estimation variance can be obtained as

var(f̂0) =
1

1TC−11
=

3 · SNR−1

L(4L2 − 6LN + 3N2 − 1)
. (A.65)

For L = N/2, the estimation variance is equivalent to the CRLB.

A.1.10 Variance of correlation-based estimators

Recall the signal model of a constant amplitude

y(n) = aejωon + v(n), n = 0, . . . , N − 1 (A.66)

where a = |a|ejφ is a constant complex-valued amplitude, ωo ∈ [−π, π) is
the (angular) frequency to be estimated, and v(n) is a zero-mean complex-
valued circular white Gaussian noise with variance σ2

v . The signal-to-noise
ratio (SNR) is defined as |a|2/σ2

n. The Cramer-Rao Lower Bound (CRLB) is
CRLB(ω̂o) = 6/(SNR ·N(N2 − 1)).

The theoretical correlation sequence of (A.66) is given by

r(m) = E{y(n)y∗(n−m)} = |a|2ejωom + σ2
vδm,0 (A.67)

where E{·} denotes the expectation, δm,0 is the Kronecker delta, and (·)∗
denotes the complex conjugate.

The consistent and unbiased estimate of r(m) [76] is

r̂(m) =
1

N −m

N−1∑

n=m

y(n)y∗(n−m), m = 0, 1, . . . ,M (A.68)

where M is a design parameter not greater than N .
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To associate r̂(m) with ωo, (A.66) is re-written in the form

y(n) = ejωon[a+ ṽ(n)] (A.69)

where ṽ(n) = v(n)e−jωon, ṽ(n) and v(n) have the same statistical character-
istics. Inserting (A.69) into (A.68) yields

r̂(m) = |a|2ejωom[1 + γ(m)] (A.70)

with

γ(m) =
1

(N −m)

N−1∑

n=m

[
ṽ∗(n−m)

a∗
+
ṽ(n)

a
+
ṽ(n)ṽ∗(n−m)

|a|2
]

= K

N−1∑

n=m

[eR(n) + eR(n−m) + eR(n)eR(n−m) + eI(n)eI(n−m)]

+ jK
N−1∑

n=m

[eI(n) − eI(n−m) + eI(n)eR(n−m) − eR(n)eI(n−m)]

= γR(m) + jγI(m)

(A.71)

where K = 1/(N −m), e(n) = a−1ṽ(n) = eR(n) + jeI(n), and γR(m) and
γI(m) are zero-mean independent, identically distributed, real Gaussian ran-
dom variables.

By using the additive noise to phase noise conversion [18], the correlation
estimate is approximated, at high SNR, as

r̂(m) ≈ σ2
ae
j(ωom+γI(m)) (A.72)

where

γI(m) = K

N−1∑

n=m

[eI(n) − eI(n−m) + eI(n)eR(n−m) − eR(n)eI(n−m)]︸ ︷︷ ︸
g(n)

.

(A.73)
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From (A.72), one can relate ωo to r̂(m) either by using the absolute phase

ϕ(m) = arg{r̂(m)}
≈ [ωom+ γI(m)]π−π

(A.74)

or the phase difference

∆ϕ(m) = arg{r̂(m)r̂∗(m− 1)}
≈ [ωo + γI(m) − γI(m− 1)]π−π

(A.75)

where arg{·} is the complex argument, and [x]π−π ∈ [−π, π). Equation (A.74)
and (A.75) indicate that ϕ(m) and ∆ϕ(m) consist of deterministic compo-
nents (linearly proportional to ωo) and zero-mean random processes. Thus,
the sets {ϕ(m)} and {∆ϕ(m)} can be used to derive the estimators of ωo.

Absolute phase based estimator

The general form of the absolute phase based estimator reads

ω̂o =
M∑

m=1

α(m)ϕ(m)

≈ ωo

M∑

m=1

mα(m) +
M∑

m=1

α(m)γI(m)

(A.76)

where α(m) is the weighting function. This class of estimators is unbiased
when

∑M
m=1mα(m) = 1 and ωo ∈ [− π

M
, π
M

). Thus, its estimation range is
approximately ±π/M . Outside this range, (A.76) becomes highly nonlinear
and awkward to handle. To transform the nonlinearity into a linear equation
over the entire range an additional phase unwrapping procedure is needed,
however this would be difficult at low SNR.

The estimation variance, var(ω̂o) , E {(ω̂o − E{ω̂o})2}, of (A.76) for
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SNR ≫ 1 reads

var(ω̂o) =
M∑

m=1

M∑

n=1

α(m)α(n)E {γI(m)γI(n)}︸ ︷︷ ︸
µ(m,n)

≈
M∑

m=1

M∑

n=1

α(m)α(n) min(m,n,N −m,N − n)

SNR(N −m)(N − n)
.

(A.77)

where

µ(m,n) = E {γI(m)γI(n)}

=
1

(N −m)

1

(N − n)

M∑

k=m

M∑

l=n

E {g(k)g(l)}
(A.78)

with

E {g(k)g(l)} = E{ [eI(k) − eI(k −m) + eI(k)eR(k −m) − eR(k)eI(k −m)]

· [eI(l) − eI(l −m) + eI(l)eR(l −m) − eR(l)eI(l −m)]}

=
1

2SNR
(δk−m,l−n + δk−m,l + δk,l−n + δk,l)

+
1

4SNR2 (δk,lδk−m,l−n − δk,l−nδl,k−m − δk,l−nδl,k−m + δk,lδk−m,l−n)

=
1

2SNR
(δk−m,l−n + δk−m,l + δk,l−n + δk,l) +

1

2SNR2 (δk,lδk−m,l−n).

(A.79)
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Inserting (A.79) into (A.78) yields

µ(m,n) =
1

2(N −m)(N − n)
×

1

SNR

M∑

k=m

M∑

l=n

(δk−m,l−n + δk−m,l + δk,l−n + δk,l)

︸ ︷︷ ︸
2min(m,n,N−m,N−n)

+
1

SNR2

M∑

k=m

M∑

l=n

(δk,lδk−m,l−n)

︸ ︷︷ ︸
(N−m)δm,n

=
SNR−1

2(N −m)(N − n)

{
2 min(m,n,N −m,N − n) +

1

SNR
(N −m)δm,n

}

≈ min(m,n,N −m,N − n)

SNR(N −m)(N − n)
, for SNR ≫ 1

=
min(m,n)

SNR(N −m)(N − n)
, if M ≤ N/2.

(A.80)

Phase difference based estimator

The general form of estimators derived from (A.75) can be written as

ω̂o =
M∑

m=1

β(m)∆ϕ(m)

≈ ωo

M∑

m=1

β(m) +
M∑

m=1

β(m)(γI(m) − γI(m− 1))

(A.81)

where β(m) is the weighting function. This class of estimators is unbiased
when

∑M
m=1 β(m) = 1 and ωo lies within [−π, π). Thus, its estimation range

is about ±π or M times larger than that of (A.76) without the need of phase
unwrapping algorithm.

The estimation variance of (A.81) is

var(ω̂o) =
M∑

m=1

M∑

n=1

β(m)β(n)×

E {[γI(m) − γI(m− 1)][γI(n) − γI(n− 1)]}︸ ︷︷ ︸
ρ(m,n)

(A.82)
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where ρ(m,n) = µ(m,n) + µ(m− 1, n− 1) − µ(m− 1, n) − µ(m,n− 1).

A.2 Complex-Valued Envelope

A.2.1 Generalized Cramer-Rao lower bound

In the Rician case, the unknown parameter vector is

θ = [ωo, φ, µ,α
T , σ2

v ]
T .

In the Rayleigh case, µ = 0, the parameter vector reduces to

θ = [ωo,α
T , σ2

v ]
T .

The covariance matrix of any unbiased estimate cannot be lower than the
CRLB which is given as the inverse of the Fisher information matrix (FIM)

E
{

(θ̂ − θ)(θ̂ − θ)T
}
≥ CRLB(θ) = J−1

θ,θ

where A ≥ B means that the matrix A−B is positive semi-definite.
For a finite-sample, the fading envelope and observed data vector may be

defined as

a = [a(0), . . . , a(N − 1)]T , y = [y(0), . . . , y(N − 1)]T .

The vector y is Gaussian with mean

my = µejϕΓ1

where 1 is a (N × 1) vector of one, and

Γ = diag{ejωon, n = 0, . . . , N − 1}.
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Let ỹ = y − my; since ỹ is zero-mean and complex Gaussian, its statistics
are completely characterized by the two correlation matrices

Ry , E{ỹỹH}; Uy , E{ỹỹT}.

Since a(k) and n(k) are mutually independent, these matrices are given
by

Ry = ΓRaΓ
H + σ2

nI, Uy = ΓUaΓ
H + σ2

nI

where Ra = E{ããH}, Ua = E{ããT}, and I is the (N × N) identity matrix.
under the assumption that a(k) is circular around its mean so that Ua van-
ishes, and the matrix Uy consists of then identically zeros. This implies that
ỹ is circularly symmetric.

Finite-sample CRLB

The FIM elements can be expressed as [74] (see also [34])

Jθi,θj
= tr

{
R−1
y

∂Ry

∂θi
R−1
y

∂Ry

∂θj

}
+ 2Re

{
∂mH

y

∂θi
R−1
y

∂my

∂θj

}

= JR(θi, θj) + Jm(θi, θj)

(A.83)

where Re{u} is the real part of u, and tr{·} is the trace operator.
The partial derivatives of my and Ry are given by

∂my

∂ωo
= j2µejϕDΓ1

∂my

∂µ
= ejϕΓ1

∂my

∂ϕ
= jµejϕΓ1

∂Ry

∂ωo
= j2[DΓRaΓ

H − ΓRaΓ
HD]

∂Ry

∂σ2
n

= I

∂Ry

∂αl
=
∂Ra

∂αl
ΓH , l = 1, . . . , p

(A.84)
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where D = diag{0, 1, . . . , N − 1}. Note that Ra is not a function of µ and
ϕ, and similarly my is not a function of α and σ2

n.

Computation of Jωo,ωo
: Using (A.84), Jm(ωo, ωo) can be written as

Jm(ωo, ωo) = 2µ21TDΓHR−1
y ΓD1

= 2µ21TD(Ra + σ2
nI)

−1D1

since ΓHΓ = I. Let R = Ra + σ2
nI, using (A.84) yields

JR(ωo, ωo) = tr{ΓR−1ΓH(jΓDRaΓ
H − jΓRaDΓH)

·ΓR−1ΓH(jΓDRaΓ
H − jΓRaDΓH)}.

Since RaR
−1 = R−1Ra and tr(AB) = tr(BA), we obtain

JR(ωo, ωo) = 2tr{R−1DRD} − 2tr{D2}.

Computation of Jωo,α: Since my is independent of α, Jm(ωo, αl) = 0,
and Jωo,αl

= JR(ωo, αl), l = 1, . . . , p. Using (A.84), we have

Jωo,αl
= jtr

{
R−1DRaR

−1∂Ra

∂αl

}
− jtr

{
R−1RaDR−1∂Ra

∂αl

}
, l = 1, . . . , p.

Since the trance operator is commutative, RaR
−1 = R−1Ra, and D is real-

valued, we obtain

Jωo,αl
= −2Im

{
tr

{
D
∂Ra

∂αl
R−1

}}
, l = 1, . . . , p.

The derivation of the other FIM entries is straightforward and, hence omitted.
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However, the results are summarized as follows

Jωo,ωo
= 2µ21TDR−1D1 + 2tr{R−1DRD − D2}

Jωo,ϕ = 2µ2Re
{
1TR−1D1

}

Jωo,αl
= −2Im

{
tr

{
D
∂Ra

∂αl
R−1

}}
, l = 1, . . . , p

Jϕ,ϕ = 2µ21TR−11

Jµ,µ = 21TR−11

Jαk,αl
= tr

{
R−1∂Ra

∂αk
R−1∂Ra

∂αl

}
, k, l = 1, . . . , p

Jαk,σ2
n

= tr

{
R−1∂Ra

∂αk
R−1

}
, k = 1, . . . , p

Jσ2
n,σ

2
n

= tr
{
R−2

}

where R = Ra + σ2
nI, D = diag{0, . . . , N − 1}, and Im{u} is the imaginary

part of u. The other elements are zeros.

Large-sample FIM

For large N , the first term of Jωo,ωo
is given by

Jm(ωo, ωo) = 2µ21TDR−1D1 ≈ 2µ2N3/3

Sa(0) + σ2
n

(A.85)

where Sa(ω) is the Power Spectral Density (PSD) of a(k). Since y(k) is
Gaussian and circular around its mean, the first term of the FIM expression
in (A.83) is given bz Whittle’s formula for large N

tr

{
R−1
y

∂Ry

∂θi
R−1
y

∂Ry

∂θj

}
≈ N

1

2π

∫ π

−π

∂Sy(ω)

∂θi

∂Sy(ω)

∂θj

S2
y(ω)

dω

where Sy(ω) = Sa(ω − ωo) + σ2
n is the PSD of y(k). Therefore, for large N ,

we have that

Jωo,ωo
=

2µ2N3/3

Sa(0) + σ2
n

+
N

2π

∫ π

−π

(
S ′
a(ω)

Sa(ω) + σ2
n

)2

dω
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where S ′
a(ω) = dSa(ω)

dω
. The other FIM entries are obtained similarly.

A.2.2 Estimates of Correlation Sequence

For a given finite record of a random signal x(k), this sequence may be
represented by

v(k) =

{
x(k) for 1 ≤ k ≤ N
0 otherwise.

(A.86)

Consider an estimate of the correlation sequence as

r̂(m) =
1

N
c(m) (A.87)

where, since c(−m) = c∗(m)

c(m) =
N∑

k=1

v∗(k)v(k +m)

=

{ ∑N−|m|
k=1 x∗(k)x(k + |m|), |m| ≤ N

0 otherwise

=

{ ∑N
k=1+|m| x(k)x

∗(k − |m|), |m| ≤ N

0 otherwise

(A.88)

corresponding to the aperiodic correlation of a rectangularly windowed seg-
ment of x(k).

To determine the properties of this estimate of the correlation sequence,
the mean and variance of the random variable r̂(m) are considered. From
the above equations, it follows that

E{r̂(m)} =
1

N

N∑

k=1+|m|
E{x(k)x∗(k − |m|)}

=
1

N

N∑

k=1+|m|
r(m)

(A.89)
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and since r(m) does not depend on k for a stationary random process, then

E{r̂(m)} =

{
N−|m|
N

r(m), |m| ≤ N
0, otherwise.

(A.90)

From (A.90), it can be seen that r̂(m) is a biased estimate of r(m), since
E{r̂(m)} 6= r(m), but the bias is small if |m| ≪ N . It can be directly seen
that an unbiased estimator of the correlation sequence for |m| ≤ N − 1 is

r̆(m) =
1

N − |m|c(m) (A.91)

i.e., the estimator is unbiased if we divide by the number of nonzero terms
in the sum of lagged products rather than by the total number of samples in
the data record.

The variance of the correlation function estimates is difficult to derive,
even if using simplifying assumptions. However, approximate formulas for the
variance of both biased and unbiased correlation estimates can be found in
[77] and are given here without proof. The variance of the unbiased estimate
is

var{r̂(m)} ≈ N

(N − |m|)2

∞∑

k=−∞
(r2(m) + r(k +m)r(k −m)) (A.92)

and the variance of the biased estimate is

var{r̆(m)} ≈ 1

N

∞∑

k=−∞
(r2(m) + r(k +m)r(k −m)). (A.93)

It can be seen that the variance of r̆(m) for larger lags does not increase
as much as the variance of r̂(m). The mean of both types of correlation
estimators are asymptotically unbiased (for fixed lags) but it was suggested in
several references that for many practical applications the biased correlation
estimator is more desirable because of the following reasons:

• For most stationary signals, the correlation function decays rather
rapidly, so that r(m) is quite small for larger lags m. Comparing the
definitions (A.87) and (A.91), it can be seen that r̂(m) will be smaller
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for large m (provided that N is reasonably large), whereas r̆(m) may
take large and erratic values for large m, as it is obtained by averaging
only few products in such a case (in particular, only one product for
m = N−1). This observation implies that the biased estimator r̂(m) is
likely to be a more accurate estimator of r(m), than r̆(m), for medium
and large values of m (compared to N). For small values of m, the two
estimators can be expected to behave in a similar manner.

• The biased correlation sequence {r̂(m), m = 0,±1,±2, . . . } is guar-
anteed to be positive semidefinite, while this is not the case for r̆(m).
This condition is particularly important for spectral estimation. The
non positive definiteness of a correlation sequence may lead to a nega-
tive spectral estimates which is undesirable in most applications.
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Appendix B

Kalman Filters

The Kalman filter in its various forms has become a fundamental tool for
analyzing and solving broad class of estimation problems. It was originally
derived for linear systems. The Kalman filter was developed by Rudolph
Kalman [78] in 1960, although Peter Swerling developed a similar algorithm
in 1958. The filter is named after Kalman because he published his results
in a more prestigious journal and his work was more general and complete.
The standard Kalman filter is limited to linear systems. Most of the real-
world systems are nonlinear in which linear Kalman filters cannot be directly
applied. However, early 1960s after the discovery of the Kalman filter, the
first attempt to extend the linear Kalman filter to the nonlinear problems was
successfully carried out at NASA during feasibility studies for circumlinear
navigation and control of the Apollo space capsule. The Kalman filter is also
referred to as the Kalman-Bucy filter because of Richard Bucy’s early work
on the topic, conducted jointly with Kalman. The roots of the Kalman filter
can be traced all the way back to the 18-year old Karl Gauss’s method of
least squares in 1795.

This section summarizes the use of the linear Kalman filter and its exten-
sions. To derive the Kalman filter, there is more than one way, each which
its own criteria of optimality. The derivation of the Kalman filter based
on the recursive Bayes estimation is one of the most classical ways. The
Bayesian approach attempts to construct the posterior probability function
of the state based on all available information, including the sequence of
measurements. Since the probability density function contains all available
statistical information, it may be regarded as the complete solution to the
estimation problem.
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B.1 Linear Kalman filter

B.1.1 State space model

The state evolves according to the following discrete-time stochastic model

xk = fk−1(xk−1,vk−1)

= Fk−1xk−1 + vk−1

(B.1)

where fk−1 is a known function (≡ Fk−1 if linear) of the state xk−1 and vk−1 is
regarded as a process noise sequence. The recursive filter estimates xk from
the measurements zk which are related to the state via the measurement
equations

yk = hk(xk,wk)

= Hkxk + wk

(B.2)

where hk is a known function (≡ Hk if linear) and wk is a measurement
noise. Random sequences vk−1 and wk are mutually independent zero-mean
white Gaussian, with covariances Qk−1 and Rk, respectively.

B.1.2 Recursive Bayes estimation

The recursive Bayes estimation considers the problem of estimating the state
xk of a system using observations yk of the systems, where the state evolves
in the presence of noise and the observation are made sequentially in the
presence of noise. The development of the recursive Bayes estimation is
based upon the assumptions that the state sequence xk is a Markov random
process of order one, that is

p(xk|xk−1, · · · ,x0) = p(xk|xk−1) (B.3)

and the observation yk depends upon xk and possibly also on random noise
that is independent1 from sample to sample, but conditionally independent
of prior observations, given xk; that is xk is a Markov random process of

1Not necessary, also correlated noise can be handled by introducing form filters ex-
pressed in state space and then including that noise state in the overall augmented state
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order one, that is

p(yk|xk,yk−1, · · · ,y0) = p(yk|xk). (B.4)

Using Bayes theorem and the above assumptions results in two useful recur-
sive equations. They are known as the predict and update equations of a
probability density function. The update equation is

p(xk|Υk)︸ ︷︷ ︸
posterior

=
p(yk|xk)
p(yk|Υk−1)

p(xk|Υk−1)︸ ︷︷ ︸
prior

(B.5)

where Υk = yk,yk−1, · · · ,y0. The computation of (B.5) requires finding
p(xk|Υk−1) which can be obtained from the prediction equation below

p(xk|Υk−1) =

∫
p(xk|xk−1)p(xk−1|Υk−1)dxk−1. (B.6)

In going from one stage to the next, the conditional p(xk|Υk−1) becomes the
prior to the next stage. To preserve the computational structure from one
stage to the next, it is expedient to have the conditional density be the same
type as the prior density.

The recurrence relations (B.5) and (B.6) form the basis for the optimal
Bayesian solutions. Knowledge of posterior density p(xk|Υk) enables one to
compute an optimal state estimate with respect to any criterion. For ex-
ample, the minimum mean-square error (MMSE) estimate is the conditional
mean of xk, while the maximum a posteriori (MAP) estimate is the maximum
of p(xk|Υk).

B.1.3 Linear Kalman filter algorithm

Deriving the Kalman filter from the Bayesian point of view [46] [47] which is
a natural outgrowth of the results in the above sections, yields the following
steps

Initialization:

x̂−
0 = E{x0}

P−
0 = E{(x0 − x̂0)(x0 − x̂0)

T}
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Time propagation (Prediction):

x̂−
k+1 = Fkx̂

+
k + uk

P−
k+1 = FkP

+
k FT

k + Qk

Measurement update (Correction):

Kk+1 = P−
k+1H

T
k+1[Rk+1 + Hk+1P

−
k+1H

T
k+1]

−1

x̂+
k+1 = x̂−

k+1 + Kk+1[yk+1 − Hk+1x̂
−
k+1]

P+
k+1 = [I − Kk+1Hk+1]P

−
k+1

The equivalent form of x̂+
k+1 and P+

k+1 can be written as

x̂+
k+1 = P+

k+1(P
−
k+1)

−1x̂−
k+1 + P+

k+1H
T
k+1(Rk+1)

−1yk+1

P+
k+1 =

[
(P−

k+1)
−1 + HT

k+1(Rk+1)
−1Hk+1

]−1
.

The above equations are useful for the initialization of the state vector and
state error covariance matrix when the a priori information is not available.
Let k = 0 and since there is information on (P−

1 )−1 = 0

P+
1 =

[
HT

1 (R1)
−1H1

]−1

x̂+
1 = P+

1 HT
1 (R1)

−1y1.

For initialization purpose x̂+
0 , x̂+

1 and P+
0 , P+

1 .

B.2 Nonlinear Kalman filters

The key element to nonlinear Kalman filtering is the expansion of the non-
linear terms of the system equation using a Taylor series expansion around
a nominal point x̄. A Taylor series expansion of a nonlinear function can be
written as

f(x) = f(x̄) + f ′(x̄)(x− x̄) + f ′′(x̄)
(x− x̄)2

2!
+ f ′′′(x̄)

(x− x̄)3

3!
+ · · · (B.7)
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Linearizing a function means expanding it in a first-order Taylor series around
some nominal point. In other words, the first-order approximation of a func-
tion f(x) is f(x) ≈ f(x̄) + f ′(x̄)(x− x̄). The first-order approximation holds
as long as (x− x̄) is small enough.

The nominal values may be derived from a predetermined trajectory or
from a prediction of the actual trajectory. The first method significantly re-
duces the computational requirements for real-time applications since most
of the influential matrices can be pre-computed prior to the mission. This
method is known as linearized Kalman filter (LKF). On the other hand, using
predicted state is typically closer to the actual state than using a predeter-
mined state as the nominal state. This method is referred to as extended
Kalman filter (EKF).

B.2.1 Linearized Kalman Filter

The idea of the linearized Kalman filter is to start with the nonlinear system
and then find a linear system whose states represent the deviations from a
nominal state (or trajectory) of the nonlinear system. The nominal trajectory
refers to some predetermined dynamics of the system and must be known in
advance. For some systems we might know a nominal trajectory ahead of
time (for example, an aircraft flight with a predetermined flight plan, or a
robot arm moving in a manufacturing environment). The actual trajectory
may differ from the nominal trajectory due to mismodeling, disturbances,
and other unforseen effects. Nevertheless, the actual trajectory should be
close to the nominal trajectory so that the Taylor series approximation is
reasonably accurate. The Taylor series linearization of the nonlinear system
and measurement equations are

xk+1 = f(xk,uk) + wk

≈ f(x̄k,uk) + f ′(x̄k,uk)δxk + wk

yk = h(xk) + vk

≈ h(x̄k) + h′(x̄k)δxk + vk
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The deviations from the nominal trajectory can be written as

δxk+1 = xk+1 − f(x̄k,uk)

= xk+1 − x̄k+1

δyk = yk − h(x̄k)

= yk − ȳk , zk

Combining the above equations with the previous equations results in the
following state space equations that are linear functions of δx, δy

δxk+1 = f ′(x̄k,uk)δxk + wk

δyk = h(x̄k)δxk + vk
(B.8)

Two important points need to be considered when using linearized Kalman
filter:

• After the Kalman filter is used to estimate δx, the nominal state vector
x̄ must be added to the state estimate of δx. This is because δx = x−x̄.

• If the true state x gets too far away from the nominal state x̄, then the
linearized Kalman filter will not provide good results. This is because
the Taylor approximation is inaccurate if the nominal and the true
states are too far apart.

B.2.2 Extended Kalman filter

For many applications, the knowledge about the nominal trajectory is not
available prior to the mission. It is therefore reasonable to use the predicted
state for the linearized process equations and the corrected state for the
linearized measurement equations. The EKF algorithm is summarized below

Initialization:

x̂−
0 = E{x0}

P−
0 = E{(x0 − x̂0)(x0 − x̂0)

T}
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Time propagation (Prediction):

x̂−
k+1 = f(x̂+

k ,uk)

P−
k+1 = ΦkP

+
k ΦT

k + Qk

Measurement update (Correction):

Kk+1 = P−
k+1H

T
k+1[Rk+1 + Hk+1P

−
k+1H

T
k+1]

−1

x̂+
k+1 = x̂−

k+1 + Kk+1[yk+1 − h(x̂−
k+1)]

P+
k+1 = [I − Kk+1Hk+1]P

−
k+1

Definitions:

Φk =
∂

∂xk
f(xk)|xk=x̂

+
k

= f ′(x̂+
k )

Hk =
∂

∂xk
h(xk)|xk=x̂

−

k
= h′(x̂−

k )

Typically, the estimated state (under good observability conditions) is closer
to the actual state than a predefined nominal trajectory. Hence, the EKF
usually produces a better performance than the LKF.

B.3 Unscented Kalman Filter

In the EKF the state distribution is approximated by a Gaussian random
variable (GRV) which is propagated analytically through the first-order lin-
earization of the nonlinear system. As such the EKF can be viewed as pro-
viding first-order approximations to the optimal terms (the second-order ver-
sions exist but with prohibitive complexity). These approximations, however,
can introduce large errors in the true posterior mean and covariance of the
transformed random variable, which leads to sub-optimal performance and
sometimes divergence of the filter.

The Unscented Kalman filter (UKF), developed by Julier and Uhlman
[79], addresses the approximation issues of the EKF. The state distribution
is again represented by a GRV, but is now specified using a minimal set of
carefully chosen sample points. These sample points completely capture the
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true mean and covariance of the GRV, and when propagated through the true
nonlinear system, captures the posterior mean and covariance accurately to
the 3rd order (Taylor series expansion) for any nonlinearity. The Unscented
transformation (UT) is, therefore, the core element to the UKF.

B.3.1 Unscented transformation

The Unscented transformation (UT) is a method for calculating the statistics
of a random variable which undergoes a nonlinear transformation. Consider
propagating a random variable x (dimension L) through a nonlinear function,
y = g(x). Assume x has mean x̄ and covariance Px. To calculate the
statistics of y, we form the matrix X of 2L + 1 sigma vectors Xi (with
corresponding weights Wi), according to the following:

X0 = x̄

Xi = x̄ +
(√

(L+ λ)Px

)

i
i = 1, . . . , L

Xi = x̄ −
(√

(L+ λ)Px

)

i−L
i = L+ 1, . . . , 2L

Wm
0 =

λ

L+ λ

W c
0 =

λ

L+ λ
+ (1 − α2 + β)

Wm
i = W c

i =
1

2(L+ λ)
i = 1, . . . , 2L

(B.9)

where λ = α2(L + κ) − L is a scaling parameter. α determines the spread
of the sigma points around x̄ and is usually set to a small positive value
(e.g., 0.001). κ is a secondary scaling parameter whic is usually set to 0,
and β is used to incorporate prior knowledge of the distribution of x (for

Gaussian distributions, β = 2 is optimal).
(√

(L+ λ)Px

)

i
is the ith row

of the matrix square root. These sigma vectors are propagated through the
nonlinear function,

Yi = h(Xi), i = 0, . . . , 2L (B.10)
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and the mean and covariance for y are approximated using a weighted sample
mean and covariance of the posterior sigma points

ȳ =
2L∑

i=0

Wm
i Yi

Py =
2L∑

i=0

W c
i [Yi − ȳ][Yi − ȳ]T

(B.11)

Note that this method differs substantially from general Monte-Carlo meth-
ods such as particle filters which require orders of magnitude more sample
points in an attempt to propagate an accurate (possibly non-Gaussian) dis-
tribution of the state. The deceptively simple approach taken with the UT
results in approximations that accurate to the third order for Gaussian inputs
for all nonlinearities. For non-Gaussian inputs, approximations are accurate
to at least second-order, with accuracy of third and higher order moments
determined by the choice of α and β (see [80] for more detail of the UT).

B.3.2 Unscented Kalman filter algorithm

Initialization:

x̂0 = E{x0}
P0 = E{(x0 − x̂0)(x0 − x̂0)

T}

Calculating sigma points:

Xk−1 =
[
x̂k−1 x̂k−1 +

√
(L+ λ)Pk−1 x̂k−1 −

√
(L+ λ)Pk−1

]
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Time update (Prediction):

X k|k−1 = f (X k−1,uk−1)

x̂−
k =

2L∑

i=0

Wm
i Xi,k|k−1

P−
k =

2L∑

i=0

W c
i [Xi,k|k−1 − x̂−

k ][Xi,k|k−1 − x̂−
k ]T + Rv

Yk|k−1 = h (X k−1)

ŷ−
k =

2L∑

i=0

Wm
i Yi,k|k−1

Measurement update (Correction):

Pykyk
=

2L∑

i=0

W c
i [Yi,k|k−1 − ŷ−

k ][Yi,k|k−1 − ŷ−
k ]T + Rn

Pxkyk
=

2L∑

i=0

W c
i [Xi,k|k−1 − x̂−

k ][Yi,k|k−1 − ŷ−
k ]T

Kk = Pxkyk
P−1

ykyk

x̂k = x̂−
k + Kk(yk − ŷk)

Pk = P−
k − KkPykyk

KT
k

where Rv is process noise covariance matrix, and Rn is measurement noise
covariance matrix.

B.3.3 Advantages over EKF

It is known that the advantages of the UKF over the EKF will not be obvi-
ous as the state-transition function is linear [49]. However, for the nonlinear
observation, the EKF effectively builds up an approximation to the expected
Hessian by taking outer products of the gradient. The UKF, however, may
provide a more accurate estimate through direct approximation of the expec-
tation of the Hessian. Another distinct advantage of the UKF occurs when
either the architecture or the error matric is such that differentiation with
respect to the parameters is not easily derived as necessary for EKF. The
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UKF effectively evaluates both the Jacobian and Hessian precisely through
its sigma point propagation, without the need to perform any analytic dif-
ferentiation.
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Appendix C

Some Useful Identities

C.1 Sums of Powers

N∑

n=1

n =
1

2
N(N + 1)

N∑

n=1

n2 =
1

6
N(N + 1)(2N + 1)

N∑

n=1

n3 =
1

4
N2(N + 1)2

N∑

n=1

n4 =
1

30
N(N + 1)(2N + 1)(3N2 + 3N − 1)

N∑

n=1

n5 =
1

12
N2(N + 1)2(2N2 + 2N − 1)

N∑

n=1

n6 =
1

42
N(N + 1)(2N + 1)(3N4 + 6N3 − 3N + 1)

N∑

n=1

n7 =
1

24
N2(N + 1)2(3N4 + 6N3 −N2 − 4N + 2)

(C.1)
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C.2 Trigonometry

cos x cos y =
1

2
cos(x+ y) +

1

2
cos(x− y)

sin x sin y = −1

2
cos(x+ y) +

1

2
cos(x− y)

sin x cos y =
1

2
sin(x+ y) +

1

2
sin(x− y)

cos x sin y =
1

2
sin(x+ y) − 1

2
sin(x− y)

sin(x± y) = sin x cos y ± cos x sin y

cos(x± y) = cosx cos y ± sin x sin y

cos2 x =
1

2
(1 + cos 2x)

sin2 x =
1

2
(1 − cos 2x)

sin x cos x =
1

2
sin 2x

sin x+ sin y = 2 sin
x+ y

2
cos

x− y

2

sin x− sin y = 2 cos
x+ y

2
sin

x− y

2

cos x+ cos y = 2 cos
x+ y

2
cos

x− y

2

cosx− cos y = −2 sin
x+ y

2
sin

x− y

2

sin x =
ejx − e−jx

2j

cos x =
ejx + e−jx

2

(C.2)
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