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Abstract

Despite the tremendous success of the Stan-
dard Model, the arguments for the neces-
sity of an extension are compelling. The
corresponding energy scale is expected to
be 𝒪(TeV); it should lead therefore to vis-
ible effects in high-precision flavour obser-
vables. While no conclusive effect is seen
there up to now, the data reveal certain
puzzles when compared to Standard Model
expectations based on a global fit of the
CKM unitarity triangle and general the-
oretical expectations. The discussion of
these tensions in the channels 𝐵 → 𝐽/𝜓𝐾,
𝐵 → 𝜙𝐾, and 𝐵 → 𝜋𝐾, and the de-
duced constraints for New Physics oper-
ators of the class 𝑏 → 𝑠𝑞𝑞 form the first
project discussed in this thesis. On the
other hand, hadronic uncertainties within
the Standard Model are still not well un-
derstood. Therefore the opposite assump-
tion of large hadronic Standard Model ef-
fects in 𝐵 → 𝐽/𝜓𝐾 is made in the sec-
ond project, allowing in addition for a New
Physics phase in 𝐵−𝐵̄ mixing. Finally, the
necessity of reliable SM predictions is ad-
dressed by developing a framework for the
model-independent inclusion of corrections
to 𝑈 -spin symmetry predictions.

Zusammenfassung

Trotz des enormen Erfolgs des Standard-
modells ist die Notwendigkeit einer Erwei-
terung unbestritten. Es wird erwartet, dass
die zugehörige Energieskala im TeV-Bereich
liegt. Dies sollte zu sichtbaren Effekten in
Hochpräzisions-Observablen in der Flavour-
Physik führen. Während dort bis heute
kein eindeutiger Effekt beobachtet wurde,
gibt es doch zumindest gewisse Spannun-
gen, wenn man die Daten mit den Vorher-
sagen des Standardmodells vergleicht, die
aus dem globalen Fit an das Unitaritäts-
dreieck und allgemeinen theoretischen Er-
wägungen folgen. Die Diskussion dieser
Spannungen in den Kanälen 𝐵 → 𝐽/𝜓𝐾,
𝐵 → 𝜙𝐾 und 𝐵 → 𝜋𝐾, sowie die da-
raus abgeleiteten Einschränkungen an Op-
eratoren Neuer Physik der Form 𝑏 → 𝑠𝑞𝑞

bilden das erste Projekt, das in dieser Ar-
beit diskutiert wird. Auf der anderen Seite
sind die hadronischen Unsicherheiten im
Standardmodell nach wie vor nicht gut ver-
standen. Daher wird im zweiten Projekt
die entgegengesetzte Annahme gemacht, dass
große Standardmodellbeiträge in Kombina-
tion mit Neuer Physik in der 𝐵 − 𝐵̄ Mis-
chung für die Abweichungen verantwortlich
sind. Schließlich wird diskutiert, wie Ein-
beziehung von Modell-unabhängigen Kor-
rekturen zu 𝑈 -Spin-Relationen die Zuver-
lässigkeit einiger Standardmodell-Vorhersa-
gen erhöht werden kann.
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Chapter 1

Introduction

Particle Physics today is at a crossroad: on the one hand, the Standard Model
of Elementary Particle Physics (SM) is tremendously successful; there is still no
direct measurement in contradiction to it when neutrino masses are included. On
the other hand, there is the necessity of physics beyond the SM (New Physics
(NP)), preferably at the TeV-scale, associated for example with the hierarchy
problem, the question of dark matter and energy, as well as the baryon-antibaryon
asymmetry of the universe. In addition, some measurements performed lately,
prominently the so-called PAMELA anomaly and the ATIC data, showing both
excesses in the cosmic fluxes of electrons and positrons in the 𝒪(102 GeV) regime,
pose questions, which could not be addressed in the SM so far. Finally the SM is
unsatisfactory from a theoretical point of view, as it leaves open several questions
about e.g. the family structure or the pattern of masses.

On the theory side one has constructed various models in order to address
these questions. Ideas include extending the Lorentz symmetry by a symmetry
between bosons and fermions (Supersymmetry), adding a fourth family to the
spectrum (SM4), embedding the SM gauge symmetry groups in a single one
(Grand Unified Theories (GUT)), or treating the four space-time dimensions as
arising effectively from a higher dimensional space (Extra Dimensions). Exploring
experementally what kind of NP is realized in nature will be a main task in the
coming years.

One big step forward in that direction will be the next generation experiments,
currently under planning and construction, of which the most prominent one is the
Large Hadron Collider (LHC) at CERN. As part of that program, a huge number
of new measurements regarding Flavour Physics will be carried out, including
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1 Introduction

those at LHCb, especially dedicated to this field. Under the important topics in
that regime are the Flavour Problem, origin of the masses of and mixing between
the fermions, and a possible connection between the quark and lepton sector.

Flavour Physics has a tradition of identifying “NP” in various times: from
the postulate of the neutrino over the prediction of the charm quark (including
its mass) to the prediction of the third family and the mass of the top quark,
low-energy Flavour Physics has been an important complementary tool to the
high-energy particle accelerators in the last century.

In this regime lies the focus of this thesis. By now, an enormous amount of
data has been gathered regarding 𝐵 decays, dominated by the dedicated exper-
iments BaBar at SLAC and Belle and KEK, with important addition of several
measurements in the 𝐵𝑠 system in the D0 and CDF experiments at Tevatron.
However, despite the high precision reached there, and in contrast to many situ-
ations in the past, there is no striking experimental result at the moment which
clearly contradicts theory. It is more the other way around: theory calls for
experimental results to contradict the SM, in order to gain more specific infor-
mation on the structure of a possible extension. This implies, that one has to
watch out for emerging discrepancies between the data and the SM, called puz-
zles. Being usually formed by deviations with an approximate significance of
around two standard deviations, their interpretation is usually difficult and not
conclusive. Another difficulty, which in light of the expected statistics in future
experiments will soon become the main issue, is the control of hadronic uncer-
tainties. While in the last decade huge progress has been made in understanding
hadronic matrix elements of 𝐵 decays, the methods developed so far still suffer
from relatively large non-factorizable contributions, which prevent in many cases
reliable SM predictions to which the data can be compared.

The three projects discussed mainly in this work try to address these issues
from different perspectives:

∙ The first project deals with NP in 𝑏 → 𝑠 transitions. Starting from the
observation of different puzzles in this class of decays, the data are fit-
ted under the assumption that one NP operator dominates the effect, and
that the SM contributions in these decays are understood reasonably well.
In discussing several effects in the same regime within a single, model-
independent framework tries to address the issue of the low significance of
the single effects.

2



1 Introduction

∙ In the second project, the opposite assumption is made, namely that non-
factorizable SM contributions in 𝐵 → 𝐽/𝜓𝐾 are large, but additionally
allowing for a NP phase in mixing. This framework implies an approximate
symmetry relation to 𝐵 → 𝐽/𝜓𝜋, which is used to determine the suppressed
amplitude parameters, and can be used in the future to discriminate NP
from SM effects.

∙ Finally, the necessity of reliable SM predictions is addressed by developing
a framework for the model-independent inclusion of corrections to 𝑈 -spin
symmetry predictions. While this generally needs additional input due to a
large number of independent parameters, the additional assumptions now
mostly can be made for the subleading amplitudes, only, thereby leading to
a reduced systematic uncertainty from this method.

All of these analyses will profit enormously from the precision and the new mea-
surements expected from the LHC and a possible Super-𝐵 factory.

This work is structured in three main chapters. Chapter 2, “Fundamentals”,
collects some basic facts about the SM and CP violation, forming the basis of the
analysis methods developed in chapter 3. There, the effective field theory frame-
work is introduced, on which both, the QCD Factorization (QCDF) approach
and the symmetry based method discussed in the following, rely. In addition,
the statistical approach is described, which is used to deal with theoretical and
systematic uncertainties. The main part is then given by the “Applications”
(chapter 4), where basically the three projects described above are discussed ex-
tensively. Finally, conclusions are gathered in chapter 5.
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Chapter 2

Fundamentals

This chapter collects some basic facts, forming the basis of the analysis methods
discussed in chapter 3. As most of this is text book knowledge, the presentation
is rather short, mainly fixing notation. Accordingly, it is often referred to the
literature for further details.

In the first section, the Standard Model lagrangian is introduced and some
of the reasons are given why it is expected to find NP in general, and preferably
at the TeV scale. Due to the important role of CP violating quantities in the
rest of this work, section 2.2 gives a somewhat more detailed introduction to
that topic, and states the necessary expressions for the observables dealed with
in the applications. Finally, the last section of this chapter introduces the con-
cept of reparametrization invariance, which arises, because those expressions are
non-linear functions of the fundamental parameters, whose extraction becomes
therefore non-trivial.

2.1 The Standard Model

An exhaustive introduction to the SM [1–3] can clearly not be given here and
would be besides the topic of this work; it is referred to the vast amount of lit-
erature covering these topics. Examples for text books are given by [4–6], more
recent introducing articles are for example [7–10]. This section merely aims at
introducing the used notation and motivating why it it necessary to go beyond
the SM and search for NP.

The SM describes all known particles and their interactions, apart from grav-
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2.1 The Standard Model 2 Fundamentals

ity. It is formulated as a gauge theory with the product symmetry group

𝒢𝑆𝑀 = 𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 , (2.1)

where 𝑆𝑈(3)𝐶 represents the colour symmetry of the strong interactions, 𝑆𝑈(2)𝐿

the weak isospin relating left-handed up and down quarks, and the 𝑈(1)𝑌 sym-
metry under hypercharge transformations. Given the particle content in terms
of symmetry multiplets and one coupling constant for each of the three sym-
metry groups, the gauge symmetry fixes completely the interactions between the
fermions and gauge bosons, as well as those between the gauge bosons themselves.
The corresponding part of the lagrangian is given by

ℒ𝑘𝑖𝑛 + ℒ𝑔𝑎𝑢𝑔𝑒 = 𝑞𝐿𝑖 /𝒟𝑞𝐿 + 𝑢𝑅𝑖 /𝒟𝑢𝑅 + 𝑑𝑅𝑖 /𝒟𝑑𝑅 + ℓ𝐿𝑖 /𝒟ℓ𝐿 + 𝑒𝑅𝑖 /𝒟𝑒𝑅 +

−1

2
Tr{G𝜇𝜈G

𝜇𝜈} − 1

2
Tr{F𝜇𝜈F

𝜇𝜈} − 1

4
𝑓𝜇𝜈𝑓

𝜇𝜈 , (2.2)

with the following notation:

ℓ𝐿 =

(
𝜈𝐿

𝑒𝐿

)
and 𝑞𝐿 =

(
𝑢𝐿

𝑑𝐿

)
(2.3)

denote the left-handed lepton and quark doublet under 𝑆𝑈(2)𝐿 respectively, and
𝑒, 𝜈, 𝑑 and 𝑢 represent three generations each1:

𝑒𝐿.𝑅 =

⎛⎜⎝ 𝑒𝐿,𝑅

𝜇𝐿,𝑅

𝜏𝐿,𝑅

⎞⎟⎠ , 𝜈𝐿,𝑅 =

⎛⎜⎝ 𝜈𝑒,𝐿,𝑅

𝜈𝜇,𝐿,𝑅

𝜈𝜏,𝐿,𝑅

⎞⎟⎠ ,

𝑢𝐿,𝑅 =

⎛⎜⎝ 𝑢𝐿,𝑅

𝑐𝐿,𝑅

𝑡𝐿,𝑅

⎞⎟⎠ , 𝑑𝐿,𝑅 =

⎛⎜⎝ 𝑑𝐿,𝑅

𝑠𝐿,𝑅

𝑏𝐿,𝑅

⎞⎟⎠ . (2.4)

In addition, the quark fields are triplets under 𝑆𝑈(3)𝐶 , but the corresponding
indices are suppressed in the following, unless explicitly stated. G𝜇𝜈 , F𝜇𝜈 and 𝑓𝜇𝜈

denote the field strength tensors for 𝑆𝑈(3)𝐶 , 𝑆𝑈(2)𝐿 and 𝑈(1)𝑌 respectively. The
covariant derivatives differ for each field, depending on the quantum numbers, and
contain the corresponding gauge field terms. The hypercharge and weak isospin
quantum numbers are listed in table 2.1.

1The same symbols are used for the first generation fields, but the differentiation is always
obvious from context.
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2 Fundamentals 2.1 The Standard Model

Field 𝐼𝑊 𝐼𝑊3 𝑌

𝑢𝐿 1/2 1/2 1/3
𝑑𝐿 1/2 -1/2 1/3
𝑢𝑅 0 0 4/3
𝑑𝑅 0 0 -2/3
𝜈𝐿 1/2 1/2 -1
𝑒𝐿 1/2 -1/2 -1
𝑒𝑅 0 0 -2

Table 2.1: Quantum numbers under hypercharge and weak isospin transformations of
the SM matter fields.

However, in this setup masses are not allowed: the gauge bosons have to be
massless, because a corresponding mass term is not invariant under the symmetry
transformations, leading to a breaking of gauge symmetry. In case of the fermions,
𝑆𝑈(2)𝐿 being chiral leads to left- and right-handed parts belonging to different
multiplets, therefore the symmetry again forbids a mass term.

For these reasons, the gauge symmetry has to be broken, and in order to keep
the properties of the gauge symmetry, this breaking has to be spontaneous. In
the SM, it proceeds by the Higgs-mechanism [11–14], in which a doublet of scalar
fields is introduced,

𝛷 =

(
𝜙+

𝜙0

)
, (2.5)

which leads to the corresponding potential and kinetic term in the lagrangian,

ℒ𝛷 = (𝒟𝜇𝛷)†(𝒟𝜇𝛷) + 𝜇2𝛷†𝛷+
𝜆

4
(𝛷†𝛷)2 . (2.6)

The mass parameter 𝜇2 and the self coupling 𝜆 have to be real to assure the
hermitecity of the lagrangian. In addition, this allows Yukawa couplings for the
fermions,

ℒYuk = −ℓ̄𝐿𝑌𝑒𝛷𝑒𝑅 − 𝑞𝐿𝑌𝑑𝛷𝑑𝑅 − 𝑞𝐿𝑌𝑢𝛷𝑢𝑅 + ℎ.𝑐. , (2.7)

where

𝛷 = 𝑖𝜎2𝛷
∗ =

(
𝜙∗
0

−𝜙−

)
. (2.8)

transforms again as an 𝑆𝑈(2) doublet, which allows to give mass to up and down
quarks with only one Higgs doublet. The corresponding coupling constants 𝑌𝑢,𝑑,𝑒

7



2.1 The Standard Model 2 Fundamentals

are discussed in 2.2 in some detail. For 𝜇2 < 0 this Higgs potential leads to a
non-vanishing vacuum expectation value (VEV),

∣⟨𝛷0⟩∣ =:
𝑣√
2
=

√
−2𝜇2
𝜆

> 0 , (2.9)

around which the field is expanded in terms of

𝛷 = exp

(
𝑖 𝜉 ⋅ 𝜏𝜉 ⋅ 𝜏𝜉 ⋅ 𝜏
2𝑣

)(
0

(𝑣 +𝐻)/
√
2

)
. (2.10)

This breaks the gauge symmetry spontaneously, 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 → 𝑈(1)em,
leading to one physical Higgs boson 𝐻 and to masses for the weak gauge bosons
as well as the fermions (apart from the neutrinos, which are left massless here,
as noted before). The Yukawa couplings allow for flavour-changing interactions
and CP violation; these matters will be discussed in section 2.2.

Leaving neutrino phenomenology aside, the SM in this form is capable of acco-
modating virtually every measurement made so far, although some measurements
performed lately, specifically in astrophysical experiments (see e.g. [15,16]), pose
questions which could not be addressed in the SM yet. However, there are several
reasons why an extension of this model is necessary in any case:

∙ Dark matter: The evidence for dark matter is by now compelling, see
e.g. [17]. Within the SM, while for example neutrinos may contribute,
there is no known way to accomodate for the measured value of the dark
matter contribution to the energy density of the universe, Ω𝑀 ≈ 25%.

∙ Vacuum energy: Recent observations determine the cosmological con-
stant to be rather small, but non-vanishing [17–19]:

𝜌vac ≲ 10−46 GeV4 ≈ (few meV)4 . (2.11)

However, the contribution from the Higgs VEV would naively be given by
𝜌𝐻 :=

𝑀2
𝐻𝑣

2

8
≳ 108 GeV4, and would be even larger for many extensions

of the SM with heavy Higgs bosons. In addition, there are vacuum exci-
tations of all fields, which are not relevant in particle physics, but should
play a role in cosmological considerations. Therefore, there seems a huge
effect or important principle to be missing, which leads to cancellations be-
tween different huge contributions. However, as the only force sensitive to
this constant term is gravity, it is extremely difficult to clarify these issues
experimentally. For examples of reviews, see [20,21].

8



2 Fundamentals 2.1 The Standard Model

∙ Hierarchy problem(s): While in the SM the fermion and gauge boson
masses are protected by the gauge symmetry from becoming huge, because
they arise only from symmetry breaking, the mass of the Higgs boson itself
is not. In fact, even if it is set to a small value at the Planck or GUT scale,
it is driven by renormalization group running to huge values again, due to
quadraticly divergent one-loop diagrams. This is called the (large) hierarchy
problem. For this problem to be solved, some form of NP has to show up at
the TeV scale. In fact, already the circumstance that electroweak precision
observable data prefer a light higgs boson [22], but generic NP contributions
are favoured to lie above ∼ 5 TeV, poses a puzzle: the evolution from 5 TeV
down to the electroweak scale already induces corrections to the Higgs mass
which are larger than its preferred value. This observation is known as the
LEP paradox [23].

In addition, the Higgs mechanism leads to masses of the order of 𝒪(𝑣),
but only the top quark and the gauge bosons have masses of that order.
Leaving neutrinos again aside, the fermion masses cover a range of five
orders of magnitude, as can be seen from the ratio 𝑚𝑒/𝑚𝑡 ≲ 10−5, which
again is not explained in the SM.

∙ Gravity: Gravity is not described by the SM, and general relativity and
the SM are in conflict with each other at the Planck scale. A more complete
theory should include all known fundamental forces.

∙ Ignorance: While masses, mixing angles and CP violation are accomodated
for in the SM, they are not explained. A more complete theory could give
reasons for the values of these parameters, the number of families, etc. This,
however, is only an aesthetical argument.

∙ Baryon asymmetry, strong CP violation: These issues are discussed
in the next section.

While these are general problems that need to be addressed by a model beyond the
SM, in this work the focus lies on possible influences of NP on flavour observables,
without referring to a concrete model. CP violating observables turn out to be
especially sensitive; the framework to discuss them is introduced in the next
section.

9



2.2 CP Violation 2 Fundamentals

2.2 CP Violation

Since its discovery in 𝐾𝐿 → 𝜋+𝜋− decays in the famous experiment in 1964
[24], CP violation stayed one of the most interesting and active fields in particle
physics. Being found in the 𝐵 meson system in 2001 [25, 26], the impressive
performance of mainly the B factories (BaBar at SLAC, and Belle at KEK),
and the experiments D0 and CDF at Fermilab lead to precise measurements of
several independent CP violating quantities. From this, a remarkably consistent
picture emerges (see figure 2.1), which establishes that the Cabibbo-Kobayashi-
Maskawa (CKM) mechanism of CP violation [27,28], as implemented in the SM
(see section 2.2.1), is indeed the main source of low energy CP violation. This
prediction by Kobayashi and Maskawa has been rewarded in 2008 with the nobel
price.

Actually, the observed consistency comes rather surprising, because of several
reasons:

∙ Within the SM, nonperturbative QCD effects lead to the appearance of a
CP violating term in the lagrangian,

ℒ𝜃𝑄𝐶𝐷 =
𝜃𝑄𝐶𝐷
32𝜋2

𝐹 𝑎
𝜇𝜈𝐹

𝜇𝜈 𝑎 , 𝐹 𝑎
𝜇𝜈 = 𝜖𝜇𝜈𝜌𝜎𝐹

𝜌𝜎 𝑎 , (2.12)

where 𝐹 𝜌𝜎 𝑎 denotes the gluon field strength tensor. Because this term
would lead to an electric dipole moment of the neutron, for which

𝑑𝑛 < 3× 10−26 e cm (2.13)

has been measured [30], this parameter is constrained to be (see [31] and
references therein)

𝜃𝑄𝐶𝐷 < 10−9 , (2.14)

while from theory 𝜃𝑄𝐶𝐷 ∼ 𝒪(1) is expected. This fact is known as the
strong CP problem. A possible dynamical explanation is given by the
Peccei-Quinn-mechanism [32, 33], where an additional axial symmetry is
spontaneously broken, leading to a Goldstone boson, called axion, which
gives a dynamical contribution to the angle 𝜃𝑄𝐶𝐷. The minimization of the
axion potential then ensures 𝜃𝑄𝐶𝐷 ∼ 0. However, the axion has not been
found so far, despite considerable efforts (see e.g. [34] in [35]). For more
details and references to possible alternative explanations, see e.g. [31]. In
the following, 𝜃𝑄𝐶𝐷 = 0 will be assumed.

10



2 Fundamentals 2.2 CP Violation
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Figure 2.1: The global fit to the unitarity triangle, taken from [29]. Shown are var-
ious constraints, explained e.g. in [29], in the 𝜌 − 𝜂-plane, introduced
in equation (2.32). The consistency of the CKM mechanism with data
is demonstrated by the fact that all constraints have a common overlap,
shown in yellow with a red border.

∙ The baryon-antibaryon asymmetry in the universe requires CP violation [36]
and is known to be too large for the CKM mechanism to be the only source
of CP violation [37–39]. While this does not necessarily mean that it will
be possible to observe CP violation from another source, this fact implies
that the SM needs an extension at some energy.

∙ In addition, most NP models have generically a variety of sources for CP
violation (including flavour changing neutral currents), so from the afore-
mentioned arguments for NP at a not too high scale (see section 2.1) one

11



2.2 CP Violation 2 Fundamentals

would expect some visible effects at low energies.

As several reviews and textbooks on CP violation are available (e.g. [40–44]),
the following description will again only collect the basic facts and expressions
which are needed later on in the analysis. After a sketch of the CKM mechanism
in the next section, different unitarity triangle fits in the presence of NP are dis-
cussed in section 2.2.2. The observables for non-leptonic B decays are introduced
in section 2.2.3, and finally a few comments on models beyond the SM are made.

2.2.1 CP Violation in the Standard Model

In addition to being gauge and Lorentz invariant, the strong and electromagnetic
parts of the SM possess also three discrete symmetries:

∙ Charge conjugation 𝐶, transforming a particle into its antiparticle,

∙ parity transformation 𝑃 , defined by 𝑥 = (𝑥0,x)→ 𝑥𝑃 = (𝑥0,−x), and

∙ time reversal 𝑇 , implemented by 𝑥 = (𝑥0,x)→ 𝑥𝑇 = (−𝑥0,x).

The weak sector however is only invariant under the combination CPT. The im-
plementation of these symmetries in terms of spinor fields can be deduced by
demanding the well known transformation properties of the corresponding cur-
rents, and results in unitary representations for 𝑃 and 𝐶, while 𝑇 is implemented
as an antiunitary operator. These operators have the following transformation
properties2:

𝑃𝜓(𝑥)𝑃−1 = 𝛾0𝜓(𝑥𝑃 ) ,

𝐶𝜓(𝑥)𝐶−1 = 𝑖𝛾2𝛾0𝜓𝑇 (𝑥) , and

𝑇𝜓(𝑥)𝑇−1 = 𝑖𝛾1𝛾3𝜓(𝑥𝑇 ) . (2.15)

Leaving the strong CP violation aside, the only source remaining for CP
violation in the Standard Model is the CKM matrix: Given the SM lagrangian
including the quark fields,

ℒ𝑞 = ℒ𝑘𝑖𝑛𝑞 + ℒ𝑌 𝑢𝑘𝑞

= 𝑞𝐿𝑖 /𝒟𝑞𝐿 + 𝑑𝑅𝑖 /𝒟𝑑𝑅 + 𝑢̄𝑅𝑖 /𝒟𝑢𝑅 +

𝑞𝐿𝜙𝑌𝑑𝑑𝑅 + 𝑞𝐿𝜙𝑌𝑢𝑢𝑅 + ℎ.𝑐. , (2.16)
2The expressions are given for the Dirac matrices in the Dirac representation.
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2 Fundamentals 2.2 CP Violation

one uses biunitary transformations in order to find the mass eigenstates of the
theory:

𝑢𝐿,𝑅 → 𝑈𝐿,𝑅
𝑢 𝑢𝐿,𝑅 and 𝑑𝐿,𝑅 → 𝑈𝐿,𝑅

𝑑 𝑑𝐿,𝑅 , (2.17)

satisfying

𝑈𝐿
𝑑 𝑌𝑑𝑈

𝑅 †
𝑑 = diag(𝑦𝑑, 𝑦𝑠, 𝑦𝑏) and 𝑈𝐿

𝑢 𝑌𝑢𝑈
𝑅 †
𝑢 = diag(𝑦𝑢, 𝑦𝑐, 𝑦𝑡) , (2.18)

with real entries 𝑦𝑖 ∼ 𝑚𝑖. This leaves the kinetic terms for the right-handed
particles invariant and diagonalizes the Yukawa matrices as well as the mass
matrices proportional to them. The neutral current interactions do neither mix
left- and right-handed fields, nor up- and down-quarks. This implies, that there
are no flavour changing neutral currents at tree level (this is usually referred to
as GIM-mechanism [45], presented here in a modern language); the only point
where an effect is observable is the charged current interaction, where the —
again unitary — combination

𝑈𝐿
𝑢 𝑈

𝐿 †
𝑑 =: 𝑉𝐶𝐾𝑀 (2.19)

appears, which is called the CKM matrix :

ℒ𝑐𝑐 = 𝑔2√
2
𝐽+𝜇 𝑊

𝜇+ + ℎ.𝑐., with 𝐽+𝜇 = 𝑉 𝑖𝑗
𝐶𝐾𝑀 𝑢̄𝐿,𝑖𝛾𝜇𝑑𝐿,𝑗 . (2.20)

Here 𝑊 𝜇+ denotes the gauge boson field. The element 𝑉 𝑖𝑗
𝐶𝐾𝑀 gives the coupling

constant for the transition 𝑑𝑗 → 𝑢𝑖. The transformation property of this part of
the lagrangian reads, using equations (2.15),

ℒ𝑐𝑐 = 𝑊+
𝜇 𝑢̄𝐿𝛾

𝜇𝑉𝐶𝐾𝑀𝑑𝐿 +𝑊−
𝜇 𝑑𝐿𝑉

†
𝐶𝐾𝑀𝛾

𝜇𝑢𝐿
CP→ 𝑊+

𝜇 𝑢̄𝐿𝛾
𝜇𝑉 ∗

𝐶𝐾𝑀𝑑𝐿 +𝑊−
𝜇 𝑑𝐿𝑉

𝑇
𝐶𝐾𝑀𝛾

𝜇𝑢𝐿 (2.21)

In order for this matrix to lead to CP violation, in terms of the Yukawa matrices
the necessary and sufficient condition is the following [46,47]:

Im
(
det
[
𝑌𝑑𝑌

†
𝑑 , 𝑌𝑢𝑌

†
𝑢

])
∕= 0 . (2.22)

One implication of that is, that the CKM matrix has to carry a (non-trivial,
in the sense explained in the following) complex phase, as can be seen from
expressions (2.21). For this to be the case, at least three generations are necessary,

13



2.2 CP Violation 2 Fundamentals

because for 𝑁 generations, one has 2𝑁 − 1 unobservable relative phases between
the quark fields, and 𝑁(𝑁 − 1)/2 (real) mixing angles, leaving

𝑁𝑝ℎ𝑎𝑠𝑒 = 𝑁2 − (2𝑁 − 1)−𝑁(𝑁 − 1)/2 = (𝑁 − 1)(𝑁 − 2)/2 (2.23)

observable complex phases. This implies, in addition to the existence of at least
three generations, that CP violation can only occur in processes in which all three
generations take part. For underlying strange or charm decays, this requires at
least one loop in the process. Expressing relation (2.22) in terms of low-energy
parameters of the theory with aid of (Δ𝑚2

𝑖𝑗 = (𝑚2
𝑖 −𝑚2

𝑗))

Im det
[
𝑌𝑑𝑌

†
𝑑 , 𝑌𝑢𝑌

†
𝑢

]
= Δ𝑚2

𝑡𝑐Δ𝑚
2
𝑡𝑢Δ𝑚

2
𝑐𝑢Δ𝑚

2
𝑏𝑠Δ𝑚

2
𝑏𝑑Δ𝑚

2
𝑠𝑑 𝐽 , (2.24)

the corresponding conditions are that (a) the Jarlskog determinant 𝐽 defined by

ImΔ := Im
[
𝑉𝛼𝑗𝑉𝛽𝑘𝑉

∗
𝛼𝑘𝑉

∗
𝛽𝑗

]
=: 𝐽

∑
𝛾,𝑙

𝜖𝛼𝛽𝛾𝜖𝑗𝑘𝑙 (2.25)

does not vanish (that is, all four parameters in the CKM matrix have to be non-
trivial, for the explicit expression see below), and that (b) within up type and
down type quarks separately no degeneracies occur.

Because of equation (2.23), the CKM matrix is parametrized in terms of four
real parameters, which are the three mixing angles and one phase in case of the
standard parametrization advocated by the PDG (𝑠/𝑐𝑖𝑗 denote sin / cos 𝜃𝑖𝑗),

𝑉𝐶𝐾𝑀 =

⎛⎜⎝ 𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏

𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏

𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

⎞⎟⎠ (2.26)

=

⎛⎜⎝ 𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒
−𝑖𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒
𝑖𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒

𝑖𝛿 𝑠23𝑐13

𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒
𝑖𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒

𝑖𝛿 𝑐23𝑐13

⎞⎟⎠ ,

leading to
𝐽 = 𝑐12𝑐23𝑐

2
13𝑠12𝑠23𝑠13 sin 𝛿 . (2.27)

From this the (generalized) Wolfenstein parametrization [48,49] can be obtained
by the following definitions:

𝑠12 =: 𝜆 ,

𝑠23 =: 𝐴𝜆2 , (2.28)

𝑠13𝑒
−𝑖𝛿 =: 𝐴𝜆3(𝜌− 𝑖𝜂) .
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2 Fundamentals 2.2 CP Violation

Expanding in the small parameter 𝜆 = sin 𝜃𝐶 ≃ 0.22 leads to an approximate
parametrization in which the hierarchical structure of the matrix becomes obvi-
ous, preserving unitarity at every order. The expansion up to order 𝜆3 reads

𝑉𝐶𝐾𝑀 =

⎛⎜⎝ 1− 𝜆2

2
𝜆 𝐴𝜆3(𝜌− 𝑖𝜂)

−𝜆 1− 𝜆2

2
𝐴𝜆2

𝐴𝜆3(1− 𝜌− 𝑖𝜂) −𝐴𝜆2 1

⎞⎟⎠+𝒪(𝜆4) . (2.29)

A visualisation of the CKM matrix parameters 𝜌, 𝜂 can be done using the
unitarity triangle (UT): The off-diagonal relations from the equation

𝑉 †
𝐶𝐾𝑀𝑉𝐶𝐾𝑀 = 𝑉𝐶𝐾𝑀𝑉

†
𝐶𝐾𝑀 = 1 (2.30)

represent triangles in the complex plane, two of which are distinguished by having
three sides similar in size. The one usually referred to as the UT stems from
rescaling the relation

𝑉 ∗
𝑢𝑏𝑉𝑢𝑑 + 𝑉 ∗

𝑐𝑏𝑉𝑐𝑑 + 𝑉 ∗
𝑡𝑏𝑉𝑡𝑑 = 0 , (2.31)

and is shown in figure 2.2. The area of this triangle is proportional to the Jarlskog
determinant. Its apex is given by

−𝑉𝑢𝑑𝑉
∗
𝑢𝑏

𝑉𝑐𝑏𝑉 ∗
𝑐𝑑

=: 𝜌+ 𝑖𝜂 =

(
1− 𝜆2

2

)
(𝜌− 𝑖𝜂) +𝒪(𝜆4) , (2.32)

and the side lengths and angles by

𝑅𝑢 : =

∣∣∣∣𝑉𝑢𝑑𝑉 ∗
𝑢𝑏

𝑉𝑐𝑏𝑉 ∗
𝑐𝑑

∣∣∣∣ , 𝑅𝑡 : =

∣∣∣∣𝑉𝑡𝑑𝑉 ∗
𝑡𝑏

𝑉𝑐𝑏𝑉 ∗
𝑐𝑑

∣∣∣∣ ,
cos 𝛾 = 𝜌/𝑅𝑢 , sin 𝛾 = 𝜂/𝑅𝑢 , (2.33)

cos 𝛽 = (1− 𝜌)/𝑅𝑡 , sin 𝛽 = 𝜂/𝑅𝑡 .

Later 𝛽 and 𝛾 instead of 𝜂 and 𝜌 will be used as inputs, because they are almost
uncorrelated (in contrast to the latter). The above relations then lead to

𝑅𝑢 =
sin 𝛽

sin(𝛾 + 𝛽)
, (2.34)

which is valid for 𝛽 + 𝛾 < 𝜋 and 𝛽, 𝛾 > 0; these conditions are trivially fulfilled.
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Re

Im

𝛾 𝛽

𝛼

1

𝑉 ∗
𝑡𝑏 𝑉𝑡𝑑

𝑉 ∗
𝑐𝑏 𝑉𝑐𝑑

𝑉 ∗
𝑢𝑏 𝑉𝑢𝑑
𝑉 ∗
𝑐𝑏 𝑉𝑐𝑑

𝜌 + 𝑖𝜂

Figure 2.2: The unitarity triangle, as explained in the text

Using the unitarity of the CKM matrix, in charmless non-leptonic B decays
only the following combinations of CKM elements appear 3:

𝜆𝑐𝑠 := 𝑉𝑐𝑏𝑉
∗
𝑐𝑠 = 𝐴𝜆2

(
1− 𝜆2

2

)
+𝒪(𝜆6) , (2.35)

𝜆𝑐𝑑 := 𝑉𝑐𝑏𝑉
∗
𝑐𝑑 = −𝐴𝜆3 +𝒪(𝜆7) , (2.36)

𝜆𝑢𝑠 := 𝑉𝑢𝑏𝑉
∗
𝑢𝑠 = 𝐴𝜆4(𝜌− 𝑖𝜂) +𝒪(𝜆6) , (2.37)

𝜆𝑢𝑑 := 𝑉𝑢𝑏𝑉
∗
𝑢𝑑 = 𝐴𝜆3(𝜌− 𝑖𝜂) +𝒪(𝜆7) . (2.38)

Of these, 𝜆𝑢𝑑 and 𝜆𝑐𝑑, appearing in 𝑏→ 𝑑 transitions, are similar in size,

∣𝜆𝑢𝑑/𝜆𝑐𝑑∣ = 𝑅𝑢 ∼ 0.37 , (2.39)

while 𝜆𝑢𝑠, 𝜆𝑐𝑠, appearing in 𝑏→ 𝑠 transitions, exhibit a strong hierarchy:

∣𝜆𝑢𝑠/𝜆𝑐𝑠∣ ≈ 𝜆2/(1− 𝜆2)𝑅𝑢 ∼ 2% . (2.40)

For transitions with ∣Δ𝐶∣ = 1, the combinations

𝑉𝑐𝑏𝑉
∗
𝑢𝑑 = 𝐴𝜆2

(
1− 𝜆2

2

)
+𝒪(𝜆6) , (2.41)

𝑉𝑢𝑏𝑉
∗
𝑐𝑑 = −𝐴𝜆4𝑅𝑢𝑒

−𝑖𝛾 +𝒪(𝜆6) , (2.42)

𝑉𝑐𝑏𝑉
∗
𝑢𝑠 = 𝐴𝜆3 +𝒪(𝜆9) , (2.43)

𝑉𝑢𝑏𝑉
∗
𝑐𝑠 = 𝐴𝜆3𝑅𝑢𝑒

−𝑖𝛾 +𝒪(𝜆7) (2.44)

are relevant, showing again once a pronounced hierarchy and the other time
(almost) none. However, in each decay with defined flavour quantum numbers
only one of these factors appears anyway. The hierarchy becomes only relevant
when discussing decays to CP eigentstates.

3Note that in the literature sometimes also the complex conjugated combinations are denoted
as 𝜆𝑖𝑗 .
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2.2.2 Different Unitarity Triangle Fits

When considering NP, some or all of the constraints shown in figure 2.1 are
modified, often rendering the corresponding constraint useless in determining
𝜌, 𝜂. However, in order to separate the SM and NP contributions, one has to find
a way to determine them without being affected by the NP contributions.

Observables which are considered unaffected by NP, essentially independently
of the scenario, are tree level observables, because any NP contribution compa-
rable to the SM tree level one clearly would have been found by now. Therefore
these processes are dominated by the SM contribution. From that, the parame-
ter 𝜆 in the CKM matrix can be determined via superallowed beta decays and
semileptonic 𝐾 decays (mainly). In addition, ∣𝑉𝑢𝑏/𝑉𝑐𝑏∣ stays one key ingredient
even in the presence of NP. The combination of the different measurements for
these observables turns out to be non-trivial. The values used in the analyses in
sections 4.1.1 and 4.3 are the averages performed by the CKMfitter group [29],
as presented on the conference in Moriond 2009:

∣𝑉𝑢𝑏∣ = (3.87±0.09±0.46)×10−3 , ∣𝑉𝑐𝑏∣ = (40.59±0.38±0.58)×10−3 . (2.45)

∣𝑉𝑢𝑏∣ is also accessible through the leptonic decay 𝐵 → 𝜏𝜈. However, in order to
turn that measurement into a constraint on 𝑉𝑢𝑏, one has to know the 𝐵 meson
decay constant 𝑓𝐵, which introduces a large theoretical uncertainty of approxi-
mately 10%. For that reason this constraint is not used here4. However, from
the present world average [29]

BR(𝐵− → 𝜏−𝜈) = (1.73± 0.35)× 10−4 (2.46)

emerges a tension of more than two standard deviations, which depends on the
correlation between 𝛼, 𝛾, sin 2𝛽, Δ𝑚𝑑, and BR(𝐵 → 𝜏𝜈). Taking this additional
tension into account in the indirect determination of 𝛽, 𝛾 would strongly enhance
some of the discrepancies discussed later. While the measurement does not enter
the determination directly, it is seen as an additional motivation to take the
appearing tensions seriously.

There are no other tree-level constraints in this context, apart from the de-
termination of 𝛾, which is, however, not very restrictive at the moment, as can
be seen in figure 2.1.

4The CKMfitter collaboration proposes to use the ratio BR(𝐵 → 𝜏𝜈)/Δ𝑚𝑑, which shifts
the theoretical input from 𝑓𝐵 to the bag parameter 𝐵𝐵𝑑

. However, in that case one has to rely
heavily on the corresponding lattice determinations.
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2.2 CP Violation 2 Fundamentals

Turning to further constraints, one has first to define the model of NP in order
to determine the corresponding dependencies. One possible scenario, discussed
in section 4.1, is the appearance of NP in decay amplitudes only, leaving the
mixing unaffected. In that case the constraint from 𝐵𝑑,𝑠-mixing still can be used.
The corresponding constraint is shown together with the one from ∣𝑉𝑢𝑏/𝑉𝑐𝑏∣ in
figure 2.3. From that fit, values for 𝛾 and sin 2𝛽 are extracted, given in table 2.3,
which are used as inputs in the fits performed in section 4.1 within this NP
scenario.
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f i t t e r

package

Quantity Value
sin 2𝛽 0.746+0.014−0.020 ± 0.081

𝛾 (65.7+1.8−1.7 ± 5.5)∘

Figure 2.3: Global fit to CKM parameters from Δ𝑚𝑑, Δ𝑚𝑠 and ∣𝑉𝑢𝑏/𝑉𝑐𝑏∣excl.+incl..
Left: Confidence levels in the 𝜂 − 𝜌 plane. Right: Fitted values for CKM
parameters, where the first error is treated as Gaussian, and the sec-
ond error, stemming mainly from systematic uncertainties in ∣𝑉𝑢𝑏/𝑉𝑐𝑏∣, is
treated as flat.

If one allows for NP in the mixing, things get more complicated because
the constraint from Δ𝑚𝑑,𝑠 cannot be used any longer easily. In the future, this
problem will be solved due to the precise tree level measurements of 𝛾 in𝐵 → 𝐷𝐾

decays expected from LHCb in particular. For the analysis in section 4.2, this
kind of CKM analysis is needed. However, in addition to the constraint from
∣𝑉𝑢𝑏/𝑉𝑐𝑏∣, as an estimate for the angle 𝛾 here simply 𝛾 = (65 ± 10)∘ is used,
which is well in accordance with the analyses of the UT in references [29,50] and
the information from 𝐵𝑑,𝑠 → 𝜋𝜋, 𝜋𝐾,𝐾𝐾 decays [51]. As mentioned above, this
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2 Fundamentals 2.2 CP Violation

angle will be determined with only a tiny uncertainty thanks to CP violation
measurements in pure tree decays at LHCb. As the analysis in section 4.2 aims
at exploiting future precision data, and the extracted value for the angle 𝛽 is
essentially independent of the exact choice of 𝛾, the choice above is considered
reasonable. The values used as inputs for that analysis are given in table 2.2.

Input Value
𝑅𝑢 0.423+0.015−0.022 ± 0.029

𝜆 0.22521± 0.00083

𝛾 (65± 10)∘

Table 2.2: Input values for the UT analysis depicted in figure 2.4, see also text.

In figure 2.4, the corresponding tension for these inputs can be seen that is
also present in more refined fits of the UT for a couple of years [29,50].

Figure 2.4: Constraints in the 𝜌–𝜂 plane (1 and 2𝜎 ranges: note that this does not
correspond to the 95% CL zones shown usually by CKMfitter).

This fit results in a “true” value for 𝛽, 𝛽true = (24.9+1.0−1.5 ± 1.9)∘, which is, as
mentioned above, essentially independent of the error on 𝛾 for a central value
around 65∘, and yields (sin 2𝛽)true = 0.76+0.02−0.04

+0.04
−0.05.

Another possibility would be to transform the measurement of the angle 𝛼

from 𝐵 → 𝜋𝜋(𝜌𝜋, 𝜌𝜌) decays into one on 𝛾 by taking the mixing phase explic-
itly into account instead of identifying it with 2𝛽. However, this would need the
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mixing phase 𝜙𝑑 as an input. This can be extracted from 𝐵 → 𝐽/𝜓𝐾, if the com-
mon assumption is made that the mixing induced CP asymmetry in that channel
equals 𝜙𝑑. If one wants to avoid that assumption as well, as in the analysis in
section 4.2, or to consider models with large contributions to the decay amplitude
and mixing, one needs to do a combined fit, which would be quite demanding.

2.2.3 CP Violating Observables in B Meson Decays

Obviously, the parameters of interest described in the last section can only be
measured indirectly. Therefore in the following the connection between them
and the observables measured in experiments is described. This section mostly
follows [42,44].

For a meson 𝐵, the amplitudes for decaying into a final state 𝑓 or its CP
conjugate state 𝑓 are denoted as

𝒜𝑓 := ⟨𝑓 ∣ℋ∣𝐵⟩ , 𝒜𝑓 := ⟨𝑓 ∣ℋ∣𝐵⟩ , 𝒜𝑓 := ⟨𝑓 ∣ℋ∣𝐵̄⟩ , 𝒜𝑓 := ⟨𝑓 ∣ℋ∣𝐵̄⟩ .
(2.47)

If CP was conserved, the relations 𝒜𝑓 = 𝒜𝑓 and 𝒜𝑓 = 𝒜𝑓 were valid up to
non-observable arbitrary phases. For charged decays, the amplitudes 𝒜𝑓 ,𝒜𝑓 are
obviously zero due to charge conservation. Neutral mesons have the property that
they can mix with their anti-particles, so all four amplitudes are non-vanishing.
While mixing is abesent on tree level in the SM, because flavour changing neutral
currents are forbidden, it proceeds via box diagrams as shown in figure 2.5. At this

𝑞 𝑊 𝑏

𝑏 𝑊 𝑞

𝑢, 𝑐, 𝑡 𝑢, 𝑐, 𝑡

𝑞 𝑏

𝑏 𝑞

𝑢, 𝑐, 𝑡

𝑢, 𝑐, 𝑡

𝑊 𝑊

Figure 2.5: Box diagrams contributing to 𝐵0
𝑞–𝐵̄0

𝑞 mixing (𝑞 ∈ {𝑑, 𝑠}). Figure taken
from [42].

point, the GIM mechanism becomes relevant again: the corresponding diagrams
can be written without calculation in the following form (taking 𝐵𝑑 mixing as an
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example):
𝐴𝑚𝑖𝑥 ∼

∑
𝑞,𝑞

′
=𝑢,𝑐,𝑡

𝑉 ∗
𝑞𝑏𝑉𝑞𝑑𝑓(𝑞)𝑉

∗
𝑞′𝑏𝑉𝑞′𝑑𝑓(𝑞

′
) . (2.48)

Since 𝑉𝐶𝐾𝑀 is unitary, every contribution common to all intermediate states
(𝑓(𝑞) → 𝑓) vanishes by

∑
𝑞=𝑢,𝑐,𝑡 𝑉

∗
𝑞𝑏𝑉𝑞𝑑 = (𝑉 †𝑉 )31 = 0. The only contribution,

for which this is not the case, is the one containing the quark masses. This
implies for example a strong suppression of 𝐷- with respect to 𝐾- and 𝐵-mixing,
due to the smaller mass differences in the down quark sector. In general the
order of magnitude of mixing effects can be derived from this and the CKM
structure of the corresponding mixing amplitude, while quantitative statements
need non-perturbative input.

In order to describe the mixing only, one can employ the Wigner-Weisskopf-
formalism [52,53], as long as the characteristic time interval relevant to the pro-
cess is much larger than the one relevant for strong interactions, which is the case
here. In that formalism, the time-evolution can be described by a Schrödinger
equation with the effective 2× 2-hamiltonian

ℋ = 𝑀 − 𝑖

2
Γ (𝑀 † = 𝑀,Γ† = Γ) , (2.49)

with the decay width Γ leading to the decay of the system and therefore to a
non-hermitian hamiltonian. Assuming CPT symmetry, 𝑀11 = 𝑀22 =: 𝑀0 and
Γ11 = Γ22 =: Γ0 hold. Solving the corresponding eigensystem leads to eigentstates

∣𝐵𝐿,𝐻⟩ = 𝑝∣𝐵0⟩ ± 𝑞∣𝐵̄0⟩ , (2.50)

for which the mass and width difference are given by

Δ𝑀 := 𝑀𝐻 −𝑀𝐿 = 2∣𝑀12∣ > 0 , ΔΓ := Γ𝐻 − Γ𝐿 =
4Re(𝑀12Γ

∗
12)

Δ𝑀
. (2.51)

Restricting oneself to CP eigenstates as final states (CP∣𝑓⟩ = 𝜂CP∣𝑓⟩) leads to
the following expressions for the time-dependent CP asymmetry:

𝑎CP(𝑡) :=
Γ(𝐵̄(𝑡)→ 𝑓)− Γ(𝐵(𝑡)→ 𝑓)

Γ(𝐵̄(𝑡)→ 𝑓) + Γ(𝐵(𝑡)→ 𝑓)
(2.52)

=

[
𝐴𝑑𝑖𝑟
CP(𝐵 → 𝑓) cos(Δ𝑀 𝑡) + 𝑆CP(𝐵 → 𝑓) sin(Δ𝑀 𝑡)

cosh (ΔΓ 𝑡/2)− 𝐴ΔΓ (𝐵 → 𝑓) sinh (ΔΓ 𝑡/2)

]
,

where the coefficients usually referred to as direct and indirect CP violation are
given by

𝐴𝑑𝑖𝑟
CP(𝐵 → 𝑓) := −1− ∣𝜉∣2

1 + ∣𝜉∣2 , 𝑆CP(𝐵 → 𝑓) =
2Im 𝜉

1 + ∣𝜉∣2 , (2.53)
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with

𝜉 :=
𝑞

𝑝

𝒜𝑓

𝒜𝑓

. (2.54)

Finally the remaining coefficient is given by

𝐴ΔΓ (𝐵 → 𝑓) =
2Re𝜉

1 + ∣𝜉∣2 , (2.55)

but is not an independent observable due to

𝐴𝑑𝑖𝑟
CP(𝐵 → 𝑓)2 + 𝑆CP(𝐵 → 𝑓)2 + 𝐴ΔΓ(𝐵 → 𝑓)2 = 1 . (2.56)

Regarding the classification of CP violating effects, one usually distinguishes
three effects:

∙ CP violation in mixing : Defined by ∣𝑞/𝑝∣ ∕= 1, this implies different rates
for 𝐵 → 𝐵̄ and vice versa. In the SM, ∣𝑞/𝑝∣ ∼ 1 holds to very good
approximation; experimentally the upper limit for a deviation is of the
order of a few per mille [54]:

∣𝑞/𝑝∣𝑑 = 1.0024± 0.0023 , ∣𝑞/𝑝∣𝑠 = 0.9992± 0.0042 , (2.57)

so ∣𝑞/𝑝∣ = 1 will be assumed in the following.

∙ CP violation in decay : Independent of mixing, this is the only form of CP
violation that can occur for charged particles. It is defined by ∣𝒜𝑓/𝒜𝑓 ∣ ∕= 1,
and is therefore equivalent to a non-vanishing coefficient 𝐴𝑑𝑖𝑟

CP in equation
(2.53). For ∣𝑞/𝑝∣ = 1, it is equal to the direct CP asymmetry. As 𝒜𝑓 and 𝒜𝑓

differ only in the signs for the weak phases, the corresponding amplitude
has to have two parts with a strong and weak phase difference for this
coefficient to be non-vanishing.

∙ CP violation in the interference of mixing and decay : For this effect, it is
sufficient to haveIm 𝜉 ∕= 0. It occurs with a non-trivial mixing phase, even if
the strong phases in the decay amplitude vanish, and is usually expressed in
terms of the coefficient 𝑆CP in equation (2.53). The corresponding strong
phase difference is generated by the time-evolution of the system. One
important application is the case, in which one amplitude dominates the
process, e.g. 𝐵 → 𝐽/𝜓𝐾𝑆, which will be discussed in detail later. In this
case, the simple relation

𝑆CP = −𝜂𝐶𝑃 sin𝜙 (2.58)

22



2 Fundamentals 2.2 CP Violation

holds, where 𝜙 denotes the mixing phase and equals 𝜙𝑑 = 2𝛽 in 𝐵𝑑 decays
in the SM.

2.2.4 Beyond the SM

As mentioned in the introduction to this section, one major puzzle in flavour
physics today may be stated as the question, why the description of CP violation
by the CKM mechanism works so well. Given the high precision in several flavour
observables, for any generic extension of the SM at the TeV scale one would have
expected a signal by now. This issue has to be adressed by any NP model in
order for it to be viable. In most cases this is achieved by imposing additional
symmetries, which forbid the “dangerous” operators leading to large observable
effects, especially those inducing flavour changing neutral currents. One principle
emerging from the apparent absence of new sources of flavour violation is called
minimal flavour violation [55, 56]. It describes a class of models, in which the
Yukawa matrices are in fact the only source of flavour violation, and govern the
higher-dimensional interactions arising from NP as well, leading to a predictive
framework. The possible operators are obtained by a spurion analysis, demanding
formally the invariance of the hamiltonian under the flavour symmetry group5

𝐺𝐹 = 𝑆𝑈(3)𝑄𝐿 × 𝑆𝑈(3)𝑈𝑅 × 𝑆𝑈(3)𝐷𝑅
. (2.59)

Basically, this suppresses all NP contributions to processes which are suppressed
in the SM, especially flavour changing neutral currents. In addition, all weak
phases can be expressed by the one in the SM.

Matrix elements of NP operators are usually parametrized by their absolute
value, and an unknown strong and weak phase. However, in general for each
process several such contributions will occur, whose combination does not trans-
form as a single contribution with respect to CP. However, as shown in [57], they
can always be combined into two contributions with definite weak phases. As
in many cases the experimental information does not suffice to include two un-
known contributions, further assumptions are necessary. One option, used below,
consists of assuming the dominance of contributions with one weak phase, corre-
sponding either to the dominance of one NP operator or of several operators with
the same weak phase. Another option, advocated in [58], consists of neglecting
all strong phases in matrix elements of NP operators. This results in a combined

5Additional 𝑈(1) symmetries are omitted here.
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contribution with one effective weak phase and a strong phase difference to the
SM contributions. The resulting parametrization is the same, but the interpre-
tation of the results is different. One connected problem regarding possible new
weak phases in general is the impossibility of identifying the new phase whithout
fixing the hadronic matrix elements in the SM. This issue is discussed in the next
section.

2.3 Reparametrization Invariance

As can be seen in section 2.2.3, the measurable observables are non-linear func-
tions of the fundamental parameters one is interested in. Therefore the extraction
of these parameters exhibits complications, even when the observables are known
with good precision. One of the most obvious examples is the extraction of the
angle 𝛽 from the time-dependent CP asymmetry in 𝐵 → 𝐽/𝜓𝐾. Even in an
idealized scenario, where 𝑆CP = − sin 2𝛽 holds and vanishing experimental un-
certainty is assumed, there is a fourfold ambiguity resulting from the fact that
the whole set 𝜙 = {𝛽, 𝜋+𝛽, 𝜋/2−𝛽, 3𝜋/2−𝛽} leads to the same value of sin 2𝜙.
The measurement of cos 2𝛽, for example using 𝐵 → 𝐽/𝜓𝐾∗ [59], excludes two
of the solutions, but only theoretical input on strong phases can resolve the last
one [60]. While this is an example of a discrete invariance, there are also con-
tinuous transformations which leave all observables invariant. This observation
is called reparametrization invariance (see e.g. [57,61,62]). Explicitly, as soon as
a given isospin amplitude has contributions with two different phases, it can be
written as

𝒜 = 𝒜0(1 + 𝑟𝑒𝑖Δ𝜙𝑠𝑒𝑖Δ𝜃𝑊 ) , (2.60)

where 𝐴0 can be chosen to be real, and 𝑟𝑒𝑖𝜙𝑠𝑒𝑖Δ𝜃𝑊 parametrizes the second part
of the amplitude, with the corresponding relative strong and weak phase. This
expression is, however, invariant under the following reparametrization6:

𝒜′
0 = 𝒜0

(
1 + 𝜉 𝑟0 𝑒

𝑖Δ𝜙𝑠
)
,

𝑒𝑖Δ𝜃
′
𝑊 =

𝑒𝑖Δ𝜃𝑊 − 𝜉√
1− 2 𝜉 cosΔ𝜃𝑊 + 𝜉2

, (2.61)

𝑟
′
𝑒𝑖Δ𝜙

′
𝑠 = 𝑟𝑒𝑖Δ𝜙𝑠

√
1− 2 𝜉 cosΔ𝜃𝑊 + 𝜉2

1 + 𝜉𝑟𝑒𝑖Δ𝜙𝑠
,

6There is no standard convention how to express this transformation. The expressions given
here are the ones from [63].
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with 𝜉 being an arbitrary real number.
The most important consequence of these equations is that the weak phase

difference Δ𝜃𝑊 is in fact not an observable in these kinds of processes, as long
as none of the other parameters is fixed in another way, for example calculated
in QCDF. The points Δ𝜃𝑊 = 0, 𝜋 cannot be reached with the transformation
above, however. This reflects the obvious fact, that an amplitude with a single
weak phase cannot be equivalent to one with two different phases.

When considering the SM or a specific NP scenario, the phase difference is
obviously fixed from theory (e.g. in the SM to be 𝛾), so other processes can
be used in order to determine it, which, when used as an input, breaks the
invariance. Therefore the hadronic matrix elements can be determined in this
case. In addition, if one can find a process where the same quantities enter with
a different weight, the invariance is broken as well. This is for example the case
when considering amplitudes with different CKM structures, related by 𝑈 -spin
or 𝑆𝑈(3).
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Chapter 3

Methods

This chapter introduces the tools which are used later in the different analyses.
All of the analayses are carried out in an effective theory framework, therefore an
introduction to effective field theories is given first. That section ends with intro-
ducing the SM weak effective hamiltonian and giving an idea of how to include
NP effects. This framework leaves us with the necessity to find a method for
determining the matrix elements of the effective operators. Two complementary
methods are introduced, starting with QCDF, which uses the fact that 𝐵 meson
decay amplitudes factorize in the heavy-quark limit to reduce these amplitudes to
a set of basic non-perturbative objects, namely form factors, light-cone distribu-
tion amplitudes and decay constants. Large non-factorizable contributions render
precise predictions in this framework difficult. Section 3.3 introduces therefore an
alternative framework, which relates matrix elements using symmetry arguments.
Here, the focus lies on 𝑈 -spin related decays, whose precision in turn is severely
limited by the relatively large strange quark mass. A framework is introduced, in
which these effects are taken into account, performing an expansion in the stange
quark mass over the chiral symmetry breaking scale. Finally, in section 3.4 the
statistical approach RFit is introduced, which is used later for the quantitative
analysis of present data.

3.1 Effective Field Theory for Weak Decays

Effective field theories (EFT) are a basic tool in theoretical physics. They are
applicable whenever there are largely different scales Λ1,2 with Λ2/Λ1 ≪ 1 in
a problem. In particle physics, these scales are typically expressed in terms of
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energy1. Examples for applications are given in table 3.1.

EFT Λ1 Λ2

Chiral perturbation theory 4𝜋𝑓𝜋 ∼ 𝑚𝜌 𝐸

Non-relativistic QCD (NRQCD) 𝑚𝑄 𝑣2𝑚𝑄, 𝑣𝑚𝑄

Effective weak interactions 𝑀𝑊 𝑚𝑏,𝑐

Table 3.1: Examples for effective field theories and the relevant scales.

With a few exceptions, one of which is to be mentioned later, the decoupling
theorem [64] ensures that the effects of the large scale vanish as Λ1 → ∞, i.e.
that the corresponding series in Λ2/Λ1 converges. This reflects essentially the
fact known from every-day experience, that in order to solve a problem at a
certain level of detail, information of other detail levels are often not necessary.
For example, in order for a chemist to make successful predictions for atomic
reactions, he neither needs to know the quark structure of the nucleons nor the
movement of the earth around the sun.

The advantages of the formalism developed in the present section are mainly
the following:

∙ The computation in the effective theory is usually simpler than in the full
theory, and sometimes even only feasible in the effective theory framework.

∙ Through the separation of the scales, the problem is divided in different
parts, which can be worked at separately. In addition, usually different low
energy problems are to be solved in a specific framework. Then the high-
energy part can be calculated once and for all, leaving only the low-energy
part to be calculated for each problem.

∙ If the high-energy theory or the transition to low energies is unknown,
one might still identify possible low-energy operators using the known low-
energy particle content, symmetries, and other known properties of that
theory, treating the corresponding coefficients as unknowns to be deter-
mined by experiment (as done e.g. in chiral perturbation theory).

1Conventionally ℏ = 𝑐 = 1, which implies [𝐸] = [𝑝] = [𝑚] = [𝑥−1] = [𝑡−1].
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∙ In some cases, in the effective theory new symmetries appear, which were
not there or not apparent in the full theory, and which allow additional
predictions and calculations. A well-known expample are the two additional
symmetries appearing in heavy-quark effective theory (HQET), namely the
heavy flavour symmetry and the heavy-quark spin symmetry, both of which
are absent in full QCD and help making model-independent predictions for
heavy-quark systems.

∙ Still, at least for a known high-energy theory, using the effective theory
framework seems not to be necessary at first sight. Actually, it is necessary
when choosing a mass independent regularization scheme, and doing other-
wise results in complications more severe than performing the calculation
as described below. The reason, as explained in more detail in section 3.1.2,

lies in the appearance of large logarithms of the form log
(
Λ1

Λ2

)2
, which spoil

the power-counting in the perturbative series: 𝛼𝑠 log
(
Λ1

Λ2

)2
∼ 1. These ef-

fects can be treated by means of the renormalization group, which allows to

sum up at a given order 𝑛 all terms of the form 𝛼𝑛𝑠

[∑∞
𝑚=0

(
𝛼𝑠 log

(
Λ1

Λ2

)2)𝑚]
.

Hand in hand with the development of effective field theories went a paradigm
shift: while for some time only renormalizable theories were considered “good”
theories in the sense of predictive ones, the picture now is that of a chain of
effective theories, e.g.

Fermi’s theory — Standard Model — SUSY (?) — String Theory (??)

— M theory (???) — (????) ,

and it is a question of the desired precision of the calculation if higher dimensional
operators are relevant. Each effective theory in that chain is predictive, because in
the effective theory framework at each step in the expansion only a finite number
of operators appear, and a finite number of insertions of them is necessary. As
mentioned above, it is one of the strengths of this method, that in order to discuss
one chain link it is not necessary to know the whole chain.

This section proceeds as follows: the first part consists of a description of
the operator product expansion, the mathematical framework used in effective
field theories. This is followed by introducing the concept of renormalization
group improved perturbation theory in section 3.1.2. Finally, in section 3.1.3,
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the framework is presented which forms the basis of all applications discussed
later, namely the weak effective hamiltonian.

Again the following treatment is rather schematical; for a comprehensive
overview see [65], where also all citations to the original literature can be found
which are mostly omitted here. An introductory lecture on these topics is [66],
and a text book treatment of these issues can be found in [67].

3.1.1 Operator Product Expansion in Weak Decays

Within the operator product expansion one performs an expansion of non-local
operators containing the heavy degrees of freedom in terms of the small ratio
Λ2/Λ1. This results in local operators of higher dimension, in which the heavy
degrees of freedom have been removed. The expansion becomes possible, because
the non-local lagrangian is analytic in the whole range of Λ2/Λ1 < 1. This is the
mathematical expression for the intuitive fact that for a process which probes
a theory at a certain energy — that is, with a certain resolution — effects of
distances much smaller than the probed one are not visible and effects with much
larger wavelenghts are constant.

To see how this works in some more detail, consider now the part of the
generating functional containing the 𝑊 boson,

𝑍𝑊 ∼
∫

[𝑑𝑊+][𝑑𝑊−] exp
[
𝑖

∫
𝑑4𝑥ℒ𝑊

]
. (3.1)

Here ℒ𝑊 is the corresponding part of the SM lagrangian,

ℒ𝑊 = −1

2

(
∂𝜇𝑊

+
𝜈 − ∂𝜈𝑊

+
𝜇

) (
∂𝜇𝑊− 𝜈 − ∂𝜈𝑊−𝜇

)
+𝑀2

𝑊𝑊+
𝜇 𝑊

−𝜇 + ℒ𝑐𝑐 , (3.2)

with ℒ𝑐𝑐, already appearing in equation (2.20), including the interaction with
the quark fields. As the aim is to deal with 𝐵 meson decays, no 𝑊 bosons are
appearing in the initial or final state, so a corresponding source is not necessary2.
After “quadratic enhancement” in the exponent, this functional integral takes a
gaussian form and can be explicitly performed, resulting in

𝑍𝑊 ∼ exp

[
−𝑖
∫
𝑑4𝑥𝑑4𝑦

{
𝑔22
2
𝐽−
𝜇 (𝑥)Δ

𝜇𝜈(𝑥, 𝑦)𝐽+𝜈 (𝑦)

}]
, (3.3)

2This is to be contrasted with the situation in HQET, where the heavy quark, which is to
be integrated out there, is part of at least the initial state and remains in the theory as a static
source of flavour.
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where Δ𝜇𝜈(𝑥, 𝑦) denotes the 𝑊 propagator. The action for the quarks including
one 𝑊 boson exchange becomes therefore

𝒮𝑞 =
∫
𝑑4𝑥

{
ℒ𝑘𝑖𝑛 − 𝑔22

2

∫
𝑑4𝑦
[
𝐽−
𝜇 (𝑥)Δ

𝜇𝜈(𝑥, 𝑦)𝐽+𝜈 (𝑦)
]}

, (3.4)

with a non-local interaction term. The key observation is now, that, up to this
point, the expression is exact (with only one insertion considered and no ex-
ternal 𝑊 fields) — therefore the expansion of this expression in 𝑘2/𝑀2

𝑊 to all
orders is equivalent to the full theory. Truncating the series yields a systematic
approximation to it, with the first term reading

Δ𝜇𝜈(𝑥, 𝑦) =
𝑔𝜇𝜈

𝑀2
𝑊

𝛿(4)(𝑥− 𝑦) +𝒪
(

𝑘2

𝑀4
𝑊

)
. (3.5)

This removes the 𝑊 boson as dynamical degree of freedom, giving the well known
local interaction term (𝑉 = 𝑉𝐶𝐾𝑀 in the following)

ℒ𝑖𝑛𝑡 = −4𝐺𝐹√
2
𝑉 ∗
𝑖𝑗𝑉𝑖′𝑗′(𝑑

𝑗
𝐿𝑢

𝑖
𝐿)(𝑢̄

𝑖′
𝐿𝑑

𝑗′
𝐿) =: −4𝐺𝐹√

2
𝑉 ∗
𝑖𝑗𝑉𝑖′𝑗′𝒪𝑖𝑗𝑖′𝑗′

2 , (3.6)

which is the gerneralized version of Fermi’s four fermion interaction in a modern
language. This is the desired result concerning the expansion in the inverse 𝑊

boson mass, because the corresponding expansion parameter is exceedingly small.
However, strong interaction corrections from above the scale 𝜇 need to be taken
into account for a reasonable precision. As the relevant scale is at least of the
order of the 𝑏 quark mass, this can be done in a perturbative framework, thanks
to asymptotic freedom.

In order to include these effects, first thing to note is that loop effects induce
new operator structures, due to (a) colour exchange by gluons, (b) the fact that
the gluon does not distinguish the (𝑉 − 𝐴) from (𝑉 + 𝐴) structure, and (c)
the difference of the 𝑍, 𝛾 couplings to the gluon ones. The good news is, that
all these effects are calculable. The calculation, which again is only sketched
in the following, results in the following structure: the effective hamiltonian is
represented as

ℋeff =
∑
𝑖

𝐶𝑖(𝜇)𝒪𝑖 , (3.7)

whith the effective operators 𝒪𝑖 forming the extended operator basis, and the
Wilson coefficients 𝐶𝑖(𝜇) as effective coupling constants. The information on the
high-energy behaviour of the theory is encoded in the Wilson coefficients, which

31



3.1 Effective Field Theory for Weak Decays 3 Methods

are therefore in general non-trivial functions of the corresponding parameters,
i.e. 𝑀𝑊,𝑍 ,𝑚𝑡 in case of the SM. In addition, they depend on 𝛼𝑠 and 𝜇. For the
hadronic amplitudes of interest follows

𝐴 ∼
∑
𝑖

𝐶𝑖(𝜇)⟨𝒪𝑖⟩(𝜇) , (3.8)

where the matrix elements of the effective operators depend only on the prop-
erties of the theory below 𝜇 — the problem has been factorized in a high- and
low-energy part. Importantly, as indicated in the formula, these matrix elements
depend on the scale 𝜇; because this scale is arbitrary, the physical amplitudes
cannot depend on it, so the dependence of the matrix elements has to cancel
that of the Wilson coefficients. As the series is truncated in 𝛼𝑠, a residual scale
dependence of the neglected order remains, which is often taken as an estimate of
the uncertainty introduced by the truncation. These issues are discussed further
in section 3.1.2.

When the high-energy theory is known, as is the case in the present calcula-
tion, one is able to determine the operator basis and calculate the corresponding
Wilson coefficients explicitly. This is done by requiring that at each scale where a
heavy degree of freedom is removed, the amplitudes in the full and effective the-
ory are equal. This procedure is called matching the full theory on the effective
theory (or one effective theory on another for the chain picture). Importantly,
as this procedure involves only the high-energy part of the theory, it is univer-
sal, that is, especially independent of the hadronic initial and final states. For
that reason, this calculation can be performed by considering artificial amputated
Green functions, which involve only the corresponding quark transition instead
of a transition between hadrons.

As the simplest example, consider the one loop diagrams of the current-current
diagram depicted in figure 3.1: while the corresponding tree diagram is matched
on the operator 𝒪2 as described above, diagrams (b) and (c) introduce a new
colour structure. Therefore the operator basis is enhanced to

ℋ𝑐𝑐
eff(𝑑

𝑗
𝐿 → 𝑢̄𝑖𝐿𝑢

𝑖′
𝐿𝑑

𝑗′
𝐿) ∼ 𝐶1(𝜇)𝒪𝑖𝑗𝑖′𝑗′

1 + 𝐶2(𝜇)𝒪𝑖𝑗𝑖′𝑗′
2 , (3.9)

with the operator 𝒪𝑖𝑗𝑖′𝑗′
1 = (𝑑𝑗𝐿,𝑎𝑢

𝑖
𝐿,𝑏)(𝑢̄

𝑖′
𝐿,𝑏𝑑

𝑗′
𝐿,𝑎), where 𝑎, 𝑏 are colour indices, as-

sumed to be equal within brackets before. For the matching, one has to compute
the corresponding one loop diagrams in the effective theory, as shown in figure 3.2.
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Figure 3.1: Examples for one loop diagrams in the SM, i.e. the full theory, making
the extension of the operator basis necessary. Figure taken from [65].

+ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅=𝑄2

++

+++ 𝑄2𝑄2𝑄2𝑄2

𝛿𝑄1𝛿𝑄2 = (𝑑𝑢)𝑉−𝐴(𝑢′𝑑′)𝑉−𝐴 at 𝑠 = −𝜇2

Figure 3.2: Contributions to the renormalization of the operator 𝒪2 in the effective
theory. The divergencies of the full theory cancel in the first line. For
the new divergencies both the counterterms for 𝒪1,2 are needed, as a
consequence of operator mixing. Figure taken from [68].

However, after using renormalized fields and couplings, these diagrams still con-
tain divergencies. This leads to the necessity to renormalize the couplings 𝐶𝑖,
which allows to remove the infinite parts; this is also known as operator renor-
malization. As a new aspect, the renormalization of e.g. the operator 𝒪2 involves
also counterterms proportional to 𝒪1 (and vice versa) — the operators mix with
each other, that is, their scale dependence becomes correlated. Explicitly, the
calculation yields [65]

𝐶1(𝜇) = −3𝛼𝑠(𝜇)
4𝜋

ln
𝑀2

𝑊

𝜇2
+𝒪(𝛼2𝑠) ,

𝐶2(𝜇) = 1 + 3
𝛼𝑠(𝜇)

4𝜋
ln
𝑀2

𝑊

𝜇2
+𝒪(𝛼2𝑠) . (3.10)
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Figure 3.3: Example for a penguin diagram, possible for 𝑖 = 𝑖′, as explained in the
text. Figure taken from [65].

While equation (3.9) gives the full hamiltonian for 𝑖 ∕= 𝑖′, the operator basis is
larger for 𝑖 = 𝑖′, especially when including electroweak corrections. The additional
operators, 𝒪3...6 and 𝒪7...10, are called penguin and electroweak penguin operators
respectively; they originate from diagrams as depicted in figure 3.3.

When including the full basis, the calculation becomes a lot more involved,
but the calculation does not change in principle. The results of the correspond-
ing calculations, performed at next to leading order (NLO) with corresponding
additional complications, are collected in [65] and its results are given in the last
subsection. Before turning to that, the concept of renormalization group (RG)
improved perturbation theory is introduced in this context.

3.1.2 RG improved Perturbation Theory

In equation (3.10) one problem becomes obvious which was mentioned before:
the expansion parameter is multiplied by large logarithmic terms, spoiling the
perturbative expansion. Therefore the expansion has to be reorganized, counting
𝛼𝑠(𝜇)
𝜋
∼ 0.1, while 𝛼𝑠(𝜇)

𝜋
ln

𝑀2
𝑊

𝜇2 ∼ 1, leading to an expansion of the form

LL (𝒪(𝛼0𝑠)) :
∑
𝑛

𝑘(0)𝑛

(
𝛼𝑠(𝜇)

𝜋
ln
𝑀2

𝑊

𝜇2

)𝑛
NLL (𝒪(𝛼1𝑠)) :

𝛼𝑠
𝜋

∑
𝑛

𝑘(1)𝑛

(
𝛼𝑠(𝜇)

𝜋
ln
𝑀2

𝑊

𝜇2

)𝑛
NNLL (𝒪(𝛼2𝑠)) :

(𝛼𝑠
𝜋

)2∑
𝑛

𝑘(2)𝑛

(
𝛼𝑠(𝜇)

𝜋
ln
𝑀2

𝑊

𝜇2

)𝑛
. . . . . . (3.11)
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extending the sums to all orders. The orders are denoted as “leading logarithmic
approximation” (LL), “next-to-leading logarithmic approximation” (NLL) and so
on. The resummation of these terms is achieved by using the renormalization
group. This is shown below, following the presentation given in [66].

Starting point is the observation, that because the scale 𝜇 is unphysical, the
physical amplitudes cannot depend on it. Given a set of linearly independent
operators {𝒪𝑖} which closes under renormalization (that is, it forms a basis for
the problem given), this implies

𝑑

𝑑 ln𝜇

∑
𝑖

𝐶𝑖(𝜇)⟨𝒪𝑖⟩(𝜇) = 0 , (3.12)

where the logarithmic derivative has been chosen for convenience. {𝒪𝑖} forming
a basis,

𝑑

𝑑 ln𝜇
⟨𝒪𝑖⟩(𝜇) = −

∑
𝑗

𝛾𝑖𝑗(𝜇)⟨𝒪𝑗⟩(𝜇) (3.13)

holds, where the anomalous dimension 𝛾 has been introduced. Without operator
mixing, 𝛾𝑖𝑗 = 𝛾𝑖𝛿𝑖𝑗, while in general 𝛾 represents a non-diagonal matrix. For the
case discussed before with only 𝒪1,2 present it is at one-loop order given by

𝛾(𝛼𝑠) =
𝛼𝑠
4𝜋

(
−6/𝑁 6

6 −6/𝑁

)
. (3.14)

Inserting equation (3.13) in (3.12) yields∑
𝑖

{
𝑑

𝑑 ln𝜇
𝐶𝑖(𝜇)−

∑
𝑗

𝐶𝑗(𝜇)𝛾𝑗𝑖(𝜇)

}
⟨𝒪𝑖⟩(𝜇) = 0 , (3.15)

which, because of the assumed independence of the 𝒪𝑖 , translates into

𝑑

𝑑 ln𝜇
𝐶𝑖(𝜇)−

∑
𝑗

𝐶𝑗(𝜇)𝛾𝑗𝑖(𝜇) = 0 . (3.16)

Observing finally that 𝛾(𝜇) = 𝛾(𝛼𝑠(𝜇)), i.e. that the anomalous dimension de-
pends on the scale only through the coupling constant, and collecting the Wilson
coefficients in the vector C yields

𝑑

𝑑𝛼𝑠(𝜇)
C(𝜇)− 𝛾𝑇 (𝛼𝑠(𝜇))

𝛽(𝛼𝑠(𝜇))
C(𝜇) = 0 , (3.17)

where 𝛽(𝛼𝑠(𝜇)) denotes the usual QCD beta function, defined by

𝑑

𝑑 ln𝜇
𝛼𝑠(𝜇) = 𝛽(𝛼𝑠(𝜇)) . (3.18)
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The equation can be integrated, with a possible complication arising due to
[𝛾(𝜇), 𝛾(𝜇′)] ∕= 0.

To see that this sums the large logarithms, consider the simplest case, where
only one operator is present: Expanding all terms in the equation to leading order
in 𝛼𝑠,

𝛾(𝛼𝑠) ≈ 𝛾0
𝛼𝑠
4𝜋

, 𝛽(𝛼𝑠) ≈ −2𝛼𝑠𝛽0𝛼𝑠
4𝜋

, 𝐶(𝑀𝑊 ) ≈ 1 , (3.19)

yields

𝐶𝐿𝐿(𝜇) =

(
𝛼𝑠(𝜇)

𝛼𝑠(𝑀𝑊 )

)− 𝛾0
2𝛽0

. (3.20)

Using then

𝛼𝑠(𝜇)

𝛼𝑠(𝑀𝑊 )
≈ 1 + 𝛽0

𝛼𝑠(𝑀𝑊 )

4𝜋
ln
𝑀2

𝑊

𝜇2
(3.21)

results in

𝐶𝐿𝐿(𝜇) = 1− 𝛾0
2

𝛼𝑠(𝑀𝑊 )

4𝜋
ln
𝑀2

𝑊

𝜇2
+𝒪

(
𝛼2𝑠
𝜋2

ln2
𝑀2

𝑊

𝜇2

)
, (3.22)

showing the structure (3.11). However, in this case obviously also the resummed
result for 𝛼𝑠 should be used, which is (again at one-loop order)

𝛼𝑠(𝜇)

𝛼𝑠(𝑀𝑊 )
=

1

1− 𝛽0
𝛼𝑠(𝑀𝑊 )

4𝜋
ln

𝑀2
𝑊

𝜇2

. (3.23)

Including operator mixing, the solution is obtained by diagonalizing 𝛾 at the
matching scale, evolving the eigenvectors C̃(𝜇), whose renormalization is just
multiplicatively, and changing back to the basis C(𝜇). Again, all details can be
found in [65].

3.1.3 The SM Weak Effective Hamiltonian

The last subsections introduced the necessary ingredients for the calculation of
the effective hamiltonian relevant for 𝐵 decays. In the following, it is referred to
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𝑏→ 𝐷 transitions, with 𝐷 = 𝑑, 𝑠 and Δ𝐶 = 0. The operator basis is chosen as3

𝒪𝑞
1 = (𝑞𝑖𝑏𝑗)𝑉−𝐴(𝐷̄𝑖𝑞𝑗)𝑉−𝐴 , 𝒪𝑞

2 = (𝑞𝑖𝑏𝑖)𝑉−𝐴(𝐷̄𝑗𝑞𝑗)𝑉−𝐴 ,

𝒪3 = (𝐷̄𝑖𝑏𝑖)𝑉−𝐴
∑
𝑞

(𝑞𝑖𝑞𝑖)𝑉−𝐴 , 𝒪4 = (𝐷̄𝑖𝑏𝑗)𝑉−𝐴
∑
𝑞

(𝑞𝑗𝑞𝑖)𝑉−𝐴 ,

𝒪5 = (𝐷̄𝑖𝑏𝑖)𝑉−𝐴
∑
𝑞

(𝑞𝑖𝑞𝑖)𝑉+𝐴 , 𝒪6 = (𝐷̄𝑖𝑏𝑗)𝑉−𝐴
∑
𝑞

(𝑞𝑗𝑞𝑖)𝑉+𝐴 ,

𝒪7 =
3

2
(𝐷̄𝑖𝑏𝑖)𝑉−𝐴

∑
𝑞

𝑒𝑞(𝑞𝑖𝑞𝑖)𝑉+𝐴 , 𝒪8 =
3

2
(𝐷̄𝑖𝑏𝑗)𝑉−𝐴

∑
𝑞

𝑒𝑞(𝑞𝑗𝑞𝑖)𝑉+𝐴 ,

𝒪9 =
3

2
(𝐷̄𝑖𝑏𝑖)𝑉−𝐴

∑
𝑞

𝑒𝑞(𝑞𝑖𝑞𝑖)𝑉−𝐴 , 𝒪10 =
3

2
(𝐷̄𝑖𝑏𝑗)𝑉−𝐴

∑
𝑞

𝑒𝑞(𝑞𝑗𝑞𝑖)𝑉−𝐴 ,

(3.24)

where 𝑖, 𝑗 are colour indices, and 𝑉 ±𝐴 refer to the projectors (1± 𝛾5)/2. Using
the input values listed in table 3.2, and the powercounting for the evolution as
described in [69], the result for the coefficients at one exemplary scale is given in
table 3.3. For this work, however, mainly the corresponding orders of magnitude
are relevant, which are taken to be

𝐶1,2 ∼ 1 , 𝐶3...6 ∼ 𝜆 , and 𝐶7...10 ∼ 𝜆2 . (3.25)

Quantity Value
𝑀𝑊 (80.403± 0.029) GeV
𝑀𝑍 (91.1876± 0.0021) GeV

𝑚̄𝑡(𝑚𝑡) (164.6± 2.7) GeV
sin2(𝜃𝑊 ) 0.23122

𝛼 1/129

𝛼𝑠(𝑀𝑍) 0.1176

𝜇𝑏 4.2 GeV

Table 3.2: Input quantities from [35] for the reevaluation of the Wilson coefficients.

3Note that [66,69,70] use another notation, with 𝒪1,2 exchanged. In addition, the operators
differ by a factor of 4 to those in [65,69,70], because there the subscripts 𝑉 ∓𝐴 refer to 1∓ 𝛾5.
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𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6

-0.189 1.081 0.014 -0.035 0.010 -0.042
𝐶7/𝛼 𝐶8/𝛼 𝐶9/𝛼 𝐶10/𝛼

−0.015 0.058 −1.225 0.203

Table 3.3: Wilson coefficients at 𝜇 = 4.2 GeV, evaluated at NLO, using the inputs
from table 3.2.

Putting now all ingredients together, the effective hamiltonian for charmless
B decays (𝑏→ 𝐷,𝐷 ∈ {𝑑, 𝑠}) is given as

ℋ𝑏→𝐷
eff =

4𝐺𝐹√
2

[∑
𝑖=1,2

∑
𝑞=𝑢,𝑐

𝜆𝑞𝐷𝐶𝑖𝒪𝑞
𝑖 −

10∑
𝑖=3

𝜆𝑡𝐷𝐶𝑖𝒪𝑖

]
. (3.26)

Note that usually the unitarity relation∑
𝑞

𝜆𝑞𝐷 = 0 (3.27)

is used, in order to eliminate one of the CKM factors. In the applications below,
𝜆𝑡𝐷 is replaced.

One interesting point to note concerns the matching conditions for the penguin
operators. Exemplarily,

𝐶4(𝑀𝑊 ) = 𝐶6(𝑀𝑊 ) =
1

2
𝐸̃0(𝑥)

𝛼𝑠(𝑀𝑊 )

4𝜋
, 𝐶7(𝑀𝑊 ) =

3

2
𝑓(𝑥)

𝛼𝑠(𝑀𝑊 )

4𝜋
, (3.28)

where

𝑥 =
𝑚2
𝑡

𝑀2
𝑊

, 𝐸̃0(𝑥) = − 7

12
+𝒪(1/𝑥) , and 𝑓(𝑥) =

𝑥

2
+

3

3
ln 𝑥+𝒪(1/𝑥) . (3.29)

Contrary to the expectation from the decoupling theorem, they do not vanish
in the limit 𝑚𝑡 → ∞, and in case of the electroweak penguins they even grow
with growing top mass. The reason is that removing the top quark from the
theory violates gauge symmetry, which in turn spoils renormalizability — which
is a condition for the theorem to hold. This in turn implies, that electroweak
penguins are phenomenologically relevant in some decays (e.g. 𝐵 → 𝜋𝐾), despite
their tiny couplings.
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Given the picture developed above of the SM as the renormalizable part of
an effective theory, the question arises how to go beyond the SM in a model-
independent way. As noted above already, in principle it is obvious how to do
this: analogously to 𝜒𝑃𝑇 , one has to identify the possible operators compati-
ble with the SM symmetries, multiply them with unknown coupling constants
and determine these using experimental information. The operators have been
identified some time ago [71], however, it turns out that the number of coupling
constants is huge, even when considering only those operators relevant for quark
flavour changing processes. This renders a completely general analysis impossi-
ble. One possible assumption leading to a predictive framework has already been
sketched in section 2.2.4, namely minimal flavour violation. Another possibility
is to use family symmetries (for basic papers, see e.g. [72–74]), which explain the
hierarchies observed in the fermion masses and mixings as a result of symmetry
breaking. These issues are not discussed further in the following, instead the
assumption described in section 2.2.4 is used.

The formalism presented in this section forms the basis of the applications
given in chapter 4. This chapter proceeds by introducing some more concepts
relevant in this context and used later, beginning with the method of QCDF.

3.2 QCD Factorization

An open problem remains the calculation of the matrix elements of the effective
operators. One step in that direction has been the observation that the matrix
elements factorize in the heavy-quark limit. The physical picture beyond this
statement is the following: Consider for example the decay 𝐵− → 𝐷0𝐾− in the
𝐵 meson rest frame. The 𝑐 quark produced in the decay is relatively heavy and
therefore slow, and will combine easily with the slow spectator quark to form the
𝐷 meson. The light quark pair, on the other hand, is energetic and in a colour
singlet mode, so it will leave the interaction region fast and probably without a
strong interaction. Therefore, the process factorizes into a 𝐵 → 𝐷 subprocess and
the emission of the kaon. This is Bjorken’s argument of colour-transperancy [75].
This picture led in a first step to an approach known as naive factorization, where
hadronic matrix elements of products of currents are expressed schematically as

⟨𝑀1𝑀2∣(𝑏𝑞1)(𝑞2𝑞3)∣𝐵⟩ → ⟨𝑀1∣(𝑏𝑞1)∣𝐵⟩⟨𝑀2∣(𝑞2𝑞3)∣0⟩ ∼ 𝐹𝐵→𝑀1𝑓𝑀2 , (3.30)

39



3.2 QCD Factorization 3 Methods

possibly plus (𝑀1 ↔𝑀2) and Fierz transformed operator combinations.
However, it is easily seen that this cannot be correct: in this form, the ma-

trix element is expressed in terms of observable quantities and therefore does
not contain any scale nor renormalization scheme dependence. This, however,
is necessary to cancel those from the Wilson coefficients, as mentioned before.
Therefore the above equation cannot hold beyond tree level. In addition, it is not
obvious why the argument should hold for charmless decays, where all emitted
quarks are enegeretic, or for colour octet intermediate states. A solution for these
problems has been provided with the QCDF approach [69,70,76], where the phys-
ical picture described above enters a systematic expansion in 𝛼𝑠 and Λ𝑄𝐶𝐷/𝑚𝑏,
to be described in the following.

The central statement in QCDF can be expressed through two formulas, il-
lustrated in figure 3.4. Representing the final state meson which contains the 𝐵
meson spectator quark as 𝑀1, they read

⟨𝑀1𝑀2∣𝒪𝑖∣𝐵̄⟩ =
∑
𝑗

𝐹𝐵→𝑀1
𝑗 (𝑚2

2)

∫ 1

0

𝑑𝑢 𝑇 𝐼
𝑖𝑗(𝑢) Φ𝑀2(𝑢) , (3.31)

for the case where 𝑀1 is a heavy meson and

⟨𝑀1𝑀2∣𝒪𝑖∣𝐵̄⟩ =
∑
𝑗

𝐹𝐵→𝑀1
𝑗 (𝑚2

2)

∫ 1

0

𝑑𝑢 𝑇 𝐼
𝑖𝑗(𝑢) Φ𝑀2(𝑢) + (𝑀1 ↔𝑀2) +∫ 1

0

𝑑𝜉𝑑𝑢𝑑𝑣 𝑇 𝐼𝐼
𝑖 (𝜉, 𝑢, 𝑣) Φ𝐵(𝜉) Φ𝑀1(𝑣) Φ𝑀2(𝑢) (3.32)

if 𝑀1,2 are both light. Here 𝑇 𝐼,𝐼𝐼
𝑖𝑗 (𝑢(, 𝜉, 𝑣)) denote hard-scattering functions which

are perturbatively calculable, the Φ𝑀(𝑢) are light-cone distribution amplitudes
(LCDA), and 𝑢, 𝑣, 𝜉 are longitudinal momentum fractions. These equations hold
to leading order in Λ𝑄𝐶𝐷/𝑚𝑏, but to all orders in 𝛼𝑠. In [69, 70, 76] the hard-
scattering kernels are calculated at NLO; recently NNLO accuracy has been
achieved [77–83].

In the case of a heavy-light final state, equation (3.31) mainly reflects the phys-
ical picture described above, taking into account possible hard gluon exchanges
and describing with the LCDA the probability of hadronization of the given quark
pair for a certain momentum configuration. In this case, the second process de-
picted in figure 3.4 is power-suppressed. If the final state consists of two light
mesons, it becomes relevant: it describes processes where the spectator quark
participates, as in hard spectator scattering and annihilation processes (which
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Figure 3.4: Illustration of the factorization formulas (3.31,3.32), as described in the
text. Figure taken from [69].

are formally power-suppressed, see below); this leads to the explicit appearance
of the 𝐵 meson LCDA. For factorization to hold, these processes must be suf-
ficiently suppressed when soft gluons are involved. This is indeed the case [69],
as the leading soft contributions cancel due to colour-transperancy and the sub-
leading contributions are power-suppressed due to the behaviour of the LCDAs
for these momentum configurations. Several more comments are in order:

∙ In the heavy-quark limit, factorization achieves a reduction of the full
hadronic amplitude to a few, still non-perturbative objects, which have
to be calculated by means of non-perturbative methods, such as light-cone
sum rules or lattice QCD, or taken from experiment. However, the progress
afforded by this method is nevertheless enormous: The remaining objects,
namely LCDAs, form factors and decay constants, have a much simpler
structure, depending on at most two mesons. For these, the calculation
with non-perturbative methods is gernerally possible, in contrast to the full
matrix elements. In addition, they are universal, so even if they could not
be calculated, they can be determined by independent measurements.

∙ The LCDAs describe the distribution of quarks within hadrons, depend-
ing on the longitudinal momentum fraction and the renormalization scale.
For the relatively simple case of the lowest Fock state for a meson (i.e.
(𝑞𝑞′)) they can be defined using the following bi-local matrix element (for
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definiteness, the pion is chosen):

⟨𝜋(𝑝)∣𝑢̄(𝑥)𝛾𝜇𝛾5[𝑥,−𝑥]𝑑(−𝑥)∣0⟩∣𝑥2=0 =: −𝑖𝑝𝜇𝑓𝜋
∫ 1

0

𝑑𝑢 𝑒𝑖𝑝𝑥(𝑢−𝑢̄)Φ𝜋(𝑢, 𝜇) ,

(3.33)
where [−𝑥, 𝑥] represents a path-ordered gauge factor to render the expres-
sion gauge invariant, and 𝑢̄ = 1− 𝑢. This definition corresponds to

Φ𝜋(𝑢, 𝜇) =

∫
𝑑2𝑘⊥
16𝜋3

Ψ
(𝜇)
𝑞𝑞,𝜋(𝑢,k⊥) , (3.34)

that is, the LCDA equals the corresponding wave function integrated over
the transverse momentum components. The leading twist amplitude in the
asymptotic limit, corresponding to the renormalization scale set to infinity,
then is given by

Φasym
𝑀 (𝑢) = 6𝑢𝑢̄ , (3.35)

leading to the normalization
∫ 1
0
𝑑𝑢Φasym

𝑀 (𝑢) = 1. For finite values of the
renormalization scale, LCDAs are expanded in terms of Gegenbauer mo-
ments,

Φ𝑀(𝑢, 𝜇) = 6𝑢𝑢̄

[
1 +

∞∑
𝑖=1

𝛼𝑀𝑖 (𝜇)𝐶
(3/2)
𝑖 (𝑢− 𝑢̄)

]
, (3.36)

with 𝐶
(3/2)
𝑖 (𝑢) denoting the Gegenbauer polynomials and 𝛼𝑀𝑖 (𝜇) the Gegen-

bauer moments. This expansion is usually truncated after the second term
in the sum. Higher Fock states are power-suppressed in the heavy-quark
limit, and so are higher twist contributions. However, chirally enhanced
two-particle twist-3 contributions are taken into account, see below.

∙ At leading order (𝛼0𝑠), 𝑇 𝐼𝐼
𝑖𝑗 (𝜉, 𝑢, 𝑣) vanishes, and 𝑇 𝐼

𝑖𝑗(𝑢) = 𝑇 𝐼
𝑖𝑗 becomes inde-

pendent of 𝑢. The integrals are then evaluated trivially to give the corre-
sponding decay constants, so in this limit naive factorization is recovered.

∙ Factorization does not hold if the emitted meson is heavy, as for example
in 𝐵− → 𝜋0𝐷−. For quarkonia, it does hold formally, because quarko-
nia are relatively small. “Formally”, because this holds only in the formal
heavy-quark limit 𝑚𝑏,𝑚𝑐 → ∞: the size of charmonium is actually pro-
portional to 1/(𝛼𝑠𝑚𝑐), which clearly does not allow for the approximation
𝑟𝑐𝑐 ≪ 1/Λ𝑄𝐶𝐷. Therefore, in practice QCDF is not expected to work well
in this case. In addition, power-suppressed corrections are expected to be
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larger (𝒪(Λ𝑄𝐶𝐷/(𝛼𝑠𝑚𝑏)). Finally, in the important case of 𝐵 → 𝐽/𝜓𝐾,
the leading order amplitude is colour suppressed, therefore the relative im-
portance of the power-suppressed terms is increased additionally. For these
reasons, the results for 𝐵 → 𝐽/𝜓𝐾 in QCDF will not be used in this work.

∙ Even if factorization is applicable, problems appear with some chirally en-
hanced terms: these are terms, which are formally of order Λ𝑄𝐶𝐷/𝑚𝑏, but
are numerically large. This results from the large value of the quark con-
densate, as appearing in

2𝜇𝜋 :=
2𝑚2

𝜋

𝑚𝑑 +𝑚𝑑

= −4⟨𝑞𝑞⟩
𝑓 2𝜋

∼ 3 GeV ≫ Λ𝑄𝐶𝐷 . (3.37)

As they are formally power-suppressed, factorization no longer holds, which
is signalled by appearing divergencies related to the fact that the asymptotic
twist-3 LCDAs do not vanish at the endpoints. At the moment, there is no
known method for calculating these divergencies model-independently. The
model-dependent treatment advertised in [69,70,76] leads in many cases to
relatively large uncertainties.

In the following, the resulting structure for the hadronic amplitudes is dis-
cussed in some more detail, however, the discussion remains qualitative. For
details of the calculation and references, see again [69,70,76].

Relevant NLO contributions are shown in figure 3.5. They are usually cate-
gorized as vertex corrections, penguin diagrams and hard spectator interactions.
While the first two categories contribute to 𝑇 𝐼

𝑖𝑗(𝑢), the last one is the only con-
tribution to 𝑇 𝐼𝐼

𝑖𝑗 (𝑢) which is not formally power-suppressed. They all include
chirally enhanced contributions. Additionally, enhanced annihilation diagrams
arise which are not shown. Qualitatively, the following picture emerges:

∙ Vertex corrections: These corrections are one source for imaginary parts
at 𝒪(𝛼𝑠). There exist chirally enhanced contributions which are finite. The
factorizable diagrams contributing to the form factor are not shown.

∙ Penguin diagrams: Again the diagrams contain no divergencies, even
the formally power-suppressed parts are finite. The imaginary parts aris-
ing from these contributions correspond basically to the Bander-Silverman-
Soni-mechanism [84], and lead again to strong phases of 𝒪(𝛼𝑠).
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Figure 3.5: Calculable NLO (“non-factorizable”) diagrams in QCDF: Vertex correc-
tions (first line and first diagram in the second row), penguin diagrams
(rest of the second row) and hard spectator interactions (third row). Fig-
ure taken from [70].

∙ Hard spectator interactions: Also here only the relevant diagrams are
shown, i.e. those which are not included in the form factor. As mentioned
above, while the leading twist contributions result in a finite part for 𝑇 𝐼𝐼

𝑖𝑗 (𝑢),
the diagrams containing the twist-3 LCDA lead to divergencies of the form

𝑋𝑀
𝐻 :=

∫ 1

0

𝑑𝑦

1− 𝑦
Φ𝑀
𝑝 (𝑦) , (3.38)

where the asymptotic form for Φ𝑀
𝑝 (𝑦) has to be used, that is, Φ𝑀

𝑝 (𝑦) ≡ 1.
In [69, 70, 76], these terms are estimated to be 𝒪(ln𝑚𝑏/Λ𝑄𝐶𝐷) and are
treated using the parametrization

𝑋𝐻 =
(
1 + 𝜌𝐻𝑒

𝑖𝜙𝐻
)
ln

𝑚𝐵√
Λ𝑄𝐶𝐷𝑚𝑏

, with 𝜌𝐻 ∈ [0, 1] , 𝜙𝐻 ∈ [0, 2𝜋] , (3.39)

which is clearly model-dependent. In particular, the parameter 𝑋𝐻 is taken
to be universal, which introduces correlations between different isospin am-
plitudes.

∙ Annihilation contributions: These contributions are proportional to the
𝐵 meson wave function at the origin (the quarks have to “meet” to annihi-
late), and therefore are power-suppressed. The chirally enhanced contribu-
tions again exhibit divergent behaviour. In [69, 70, 76], the corresponding
divergencies are treated completely analogously to those in the hard spec-
tator interactions, leading to another phenomenological parameter 𝑋𝐴.
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The fact that imaginary parts only arise at 𝒪(𝛼𝑠) or 𝒪(Λ𝑄𝐶𝐷/𝑚𝑏) implies that
the strong phases generated this way are small, unless the leading contribution is
suppressed. However, there are several mechanisms which lead to such suppres-
sion, e.g. CKM suppression, colour suppression, or penguin suppression, so the
statement “strong phases are small in QCDF” has to be taken with care. The
picture arising in QCDF for imaginary parts differs from the one obtained by
considering hadronic intermediate states: while each intermediate state may lead
to a sizable imaginary part, QCDF predicts that there are cancellations, which
cannot be traced due to the large number of possible states. A similar cancel-
lation occurs in the two hard spectator scattering diagrams in figure 3.5: both
are infrared divergent and have therefore important soft contributions, however,
their sum is infrared finite and gives a perturbatively calculable contribution to
the hard scattering kernel.

Concluding this section, it should be emphasized again that QCDF con-
tributed a lot to the present understanding of non-leptonic decays. However,
power corrections render precise predictions problematic. Soft collinear effective
theory (SCET) [85–88] is a rigorous effective theory framework similar to HQET,
designed to deal with situations in which light degrees of freedom have large en-
ergies. In SCET, different fields are introduced for one meson, in order to take
the different scaling behaviour of the different degrees of freedom into account. It
was hoped to solve the problem of divergencies in power-suppressed terms within
this framework, but as of today this goal has not been achieved, at least not for
exclusive decays.

3.3 Symmetry based Methods

Another option for determining matrix elements is to use symmetries which re-
late them. If the symmetry-related decays have a larger number of independent
observables than the resulting parametrization of the reduced matrix elements
has parameters, one can perform a fit to determine the matrix elements. While
this results in a model-independent, data driven method to determine hadronic
matrix elements, there are several problems which need to be addressed:

∙ The method is not applicable to all decays, because the number of param-
eters needed to describe a set of decays varies.
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∙ The analytical dependence on fundamental parameters within the reduced
amplitudes is lost in the process.

∙ In many cases the corrections to the symmetry limit are not accessible. This
often re-introduces model-dependence. The possible model-independent in-
clusion of such subleading matrix elements is part of this thesis and dis-
cussed in sections 3.3.4 and 4.3.

However, given the difficulties in calculating hadronic matrix elements model-in-
dependently, determining them this way may simply be the only option at the
moment.

This section proceeds as follows: first the Wigner-Eckart-theorem [89, 90] is
briefly discussed, as it is the basic mathematical tool which this method relies on.
Then isospin is introduced in section 3.3.2, which was the first flavour symmetry
to be discovered, long before the underlying quark model was established. In
the following subsection 3.3.3, this symmetry is extended to include the strange
quark, which leads to the 𝑆𝑈(3) flavour symmetry. The 𝑆𝑈(3) includes in ad-
dition to isospin also 𝑈 -spin as a subgroup, on which the main focus lies in this
part of the work. It is discussed in the last subsection.

3.3.1 The Wigner-Eckart Theorem

The Wigner-Eckart theorem correlates matrix elements of irreducible tensor op-
erators with respect to angular momentum eigenstates. Let 𝑇 (𝑗)

𝑚 be such an oper-
ator and 𝛼𝑖,𝑓 additional quantum numbers not related to the considered angular
momentum, then

⟨𝑓 ; 𝑗𝑓 ,𝑚𝑓 , 𝛼𝑓 ∣𝑇 (𝑗)
𝑚 ∣𝑖; 𝑗𝑖,𝑚𝑖, 𝛼𝑖⟩ = ⟨𝑗𝑖, 𝑗,𝑚𝑖,𝑚∣𝑗𝑖, 𝑗, 𝑗𝑓 ,𝑚𝑗⟩⟨𝛼𝑓 , 𝑗𝑓 ∣∣𝑇

(𝑗)∣∣𝛼𝑖, 𝑗𝑖⟩√
2𝑗𝑓 + 1

,

(3.40)
where

⟨𝑗𝑖, 𝑗,𝑚𝑖,𝑚∣𝑗𝑖, 𝑗, 𝑗𝑓 ,𝑚𝑗⟩ = 𝐶
𝑗𝑓 ,𝑚𝑓

𝑗𝑚𝑗𝑖𝑚𝑖
(3.41)

represents the corresponding Clebsch-Gordan coefficient and ⟨𝛼𝑓 , 𝑗𝑓 ∣∣𝑇 (𝑗)∣∣𝛼𝑖, 𝑗𝑖⟩
is a reduced matrix element independent of 𝑚,𝑚𝑖 and 𝑚𝑓 . To see this, one uses
the tranformation properties of a tensor operator,[

𝐽𝑧, 𝑇
(𝑗)
𝑚

]
= 𝑚𝑇 (𝑗)

𝑚 and
[
𝐽±, 𝑇 (𝑗)

𝑚

]
=
√
𝑗(𝑗 + 1)−𝑚(𝑚± 1)𝑇

(𝑗)
𝑚±1 , (3.42)
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which imply for example√
𝑗𝑓 (𝑗𝑓 + 1)−𝑚𝑓 (𝑚𝑓 + 1)⟨𝑗𝑓 ,𝑚𝑓 + 1∣𝑇 (𝑗)

𝑚 ∣𝑗𝑖𝑚𝑖⟩ =√
𝑗𝑖(𝑗𝑖 + 1)−𝑚𝑖(𝑚𝑖 − 1)⟨𝑗𝑓 ,𝑚𝑓 ∣𝑇 (𝑗)

𝑚 ∣𝑗𝑖,𝑚𝑖 − 1⟩+ (3.43)√
𝑗(𝑗 + 1)−𝑚(𝑚− 1)⟨𝑗𝑓 ,𝑚𝑓 ∣𝑇 (𝑗)

𝑚−1∣𝑗𝑖,𝑚𝑖⟩ .

With this relation, one can use the highest-weight construction to arrive at equa-
tion (3.40). An example for the application of this theorem is given in the next
subsection.

3.3.2 Isospin

Historically Werner Heisenberg introduced the concept of neutron and proton
being different “spin” orientations (in the sense of mathematical representation)
of the same particle in order to explain the observation that the strong interaction
does not differentiate between the two. After the development of the quark model
the concept shifted to relate up and down quark; from this the original relation
can be deduced. Isospin symmetry expresses the fact, that the QCD lagrangian
exhibits an 𝑆𝑈(2) symmetry when up and down quark masses are set equal.
Correspondingly, up and down quark form a fundamental doublet under this
symmetry, [

∣𝑢⟩
∣𝑑⟩

]
=

[
∣1
2
+ 1

2
⟩

∣1
2
− 1

2
⟩

]
𝐼

,

[
∣𝑑⟩
∣𝑢̄⟩

]
=

[
∣1
2
+ 1

2
⟩

−∣1
2
− 1

2
⟩

]
𝐼

, (3.44)

where the sign for 𝑢̄ arises because the antiparticles are written as doublets instead
of anti-doublets.

Corrections to this limit arise at the percent level, 𝒪((𝑚𝑑−𝑚𝑢)/2Λ𝑄𝐶𝐷) and
𝒪(𝛼), the mass difference being one source and the different electric charge the
other.

One trivial example to be referred to later on consists of the two decays
𝐵0 → 𝐽/𝜓𝐾0 and 𝐵+ → 𝐽/𝜓𝐾+, when considering the leading transition oper-
ator (colour indices suppressed) 𝒪 = (𝑏̄𝑐)(𝑐𝑠), being obviously an isospin singlet.
(𝐾+, 𝐾0) and (𝐵+, 𝐵0) form doublets under isospin, and no other quantum num-
bers are involved, so the Wigner-Eckart theorem (3.40) implies

⟨𝐵0∣𝒪∣𝐽/𝜓𝐾0⟩ = ⟨𝐵+∣𝒪∣𝐽/𝜓𝐾+⟩ . (3.45)
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As the Wigner-Eckart theorem relates irreducible tensor operators, it is neces-
sary to express the effective hamiltonian (3.26) in these terms. As the operators
for 𝑏 → 𝑠 and 𝑏 → 𝑑 transitions form different representations, they may be
discussed separately. For 𝑏→ 𝑠 transitions, as mentioned above, the 𝒪𝑐

1,2 opera-
tors form singlets and so do the penguin operators, because only the combination
𝑢̄𝑢+𝑑𝑑 appears. Electroweak penguin operators and the remaining tree operators
𝒪𝑢
1,2 can be decomposed into operators with definite isospin by using

𝑢̄𝑢 =
1

2

[
(𝑢̄𝑢+ 𝑑𝑑) + (𝑢̄𝑢− 𝑑𝑑)

]
and 𝑑𝑑 =

1

2

[
(𝑢̄𝑢+ 𝑑𝑑)− (𝑢̄𝑢− 𝑑𝑑)

]
,

(3.46)
so both classes of operators are given as the sum of Δ𝐼 = 0 and Δ𝐼 = 1 terms.
While the matrix elements of the different operators with identical represen-
tations are in principle independent, there is no way to seperate them, unless
they are multiplied by different CKM factors. Concerning 𝑏 → 𝑑 transitions,
the additional down quark implies 𝒪𝑐

1,2 ∼ (1/2,+1/2) , 𝒪3−6 ∼ (1/2,+1/2) and
𝒪7−10,𝒪𝑢

1,2 ∼ (1/2,+1/2)⊕(3/2,+1/2). From these considerations, the following
decompositions arise:

ℋ𝑏→𝑠 ∼ 𝜆𝑐𝑠 [(1)𝑇,𝑃,𝐸𝑊𝑃 + (3)𝐸𝑊𝑃 ] + 𝜆𝑢𝑠 [(1)𝑇,𝑃,𝐸𝑊𝑃 + (3)𝑇,𝐸𝑊𝑃 ] ,

ℋ𝑏→𝑑 ∼ 𝜆𝑐𝑑 [(2)𝑇,𝑃,𝐸𝑊𝑃 + (4)𝐸𝑊𝑃 ] + 𝜆𝑢𝑑 [(2)𝑇,𝑃,𝐸𝑊𝑃 + (4)𝑇,𝐸𝑊𝑃 ] .(3.47)

These will be used implicitly when isospin decompositions are given in chapter 4.
In 𝑏→ 𝑑 transitions, the only operator combination proportional to 𝜆𝑐𝑑 con-

tibuting to the Δ𝐼 = 3/2 amplitude is the sum of electroweak penguin operators
containing up and down quarks. This fact can be used for the following approx-
imation: neglecting the contributions from the operators 𝒪7,8 which have tiny
Wilson coefficients (𝐶7,8 ≲ 5% × 𝐶9,10 ∼ 𝛼𝐶1,2), one can use Fierz identities in
combination with isospin to derive the relation [91,92]

ℋ𝐸𝑊
Δ𝐼=3/2 = −

3

2

𝜆𝑡𝑑
𝜆𝑢𝑑

𝐶9 + 𝐶10

𝐶1 + 𝐶2

ℋ𝑡𝑟𝑒𝑒
Δ𝐼=3/2 . (3.48)

As this relation relies only on the properties of the weak effective hamiltonian
and isospin, it is expected to hold again on the percent level and can be used to
relate two of the reduced matrix elements.
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3.3.3 SU(3)

The extension of isospin symmetry to include the third light quark is in principle
straight forward. In that case, the doublet above is extended to the fundamental
triplet ⎡⎢⎣ ∣𝑢⟩∣𝑑⟩

∣𝑠⟩

⎤⎥⎦ =

⎡⎢⎣ ∣1 +1⟩
∣1 0⟩
∣1 −1⟩

⎤⎥⎦ . (3.49)

However, some complications arise: first of all, the strange quark mass is not as
small as that of up and down quark, 𝑚𝑠 ∼ Λ𝑄𝐶𝐷. For that reason, corrections
of the order 30% are expected, so the use for precise predictions is questionable,
unless a reliable way to treat these corrections is found. In addition, the group
theoretical structure of these decays is more complicated, because for example in
decays into two (different) octets all representations in

8⊗ 8 = 1⊕ 8𝑆 ⊕ 8𝐴 ⊕ 10⊕ 1̄0⊕ 27 (3.50)

contribute, and the effective hamiltonian is complicated as well. For two-body
non-leptonic 𝐵 decays, the relations have been worked out in [93, 94]. However,
when aiming at including corrections to the symmetry limit, the expressions
become very cumbersome. More importantly, one would like to take into account
that isospin is unbroken to a very good approximation. Therefore it seems more
convenient and appropriate to discuss the different subgroups of the full flavour
𝑆𝑈(3) separately, taking isospin to be unbroken. The other two possibilities to
identify 𝑆𝑈(2) subgroups of flavour 𝑆𝑈(3) run under the names 𝑈 -spin and 𝑉 -
spin. Among these, the generators of 𝑈 -spin, under which the 𝑑 and the 𝑠 quark
form a fundamental doublet, commute with the charge operator, which makes
this subgroup particularly interesting with respect to electroweak interactions.
Therefore, this subgroup is discussed in the following.

3.3.4 U-spin and its breaking

Under 𝑈 -spin the down and strange quark form a doublet. A priori, it is as
badly broken as the full flavour 𝑆𝑈(3), since the masses of the two quarks are
substantially different, 𝑚𝑠 − 𝑚𝑑 ∼ 𝑚𝑠. This results in a breaking, since the
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relevant mass term in the lagrangian reads

ℒ𝑠mass = 𝑚𝑑𝑑𝑑+𝑚𝑠𝑠𝑠 =
1

2
(𝑚𝑠 +𝑚𝑑)(𝑑𝑑+ 𝑠𝑠) +

1

2
Δ𝑚(𝑠𝑠− 𝑑𝑑)

=
1

2
(𝑚𝑠 +𝑚𝑑)𝑞𝑞 +

1

2
Δ𝑚𝑞𝜏3𝑞 , (3.51)

where

𝑞 =

(
𝑑

𝑠

)
(3.52)

is the 𝑈 -Spin quark doublet. Thus the breaking term can be described as a triplet
spurion

ℋbreak =
1

2
Δ𝑚𝜏3 = 𝜖𝐵

(1)
0 , (3.53)

where 𝜖 ∼ Δ𝑚 and 𝐵
(1)
0 is an irreducible tensor-operator with 𝑗 = 1 and 𝑗3 = 0

of 𝑈 -spin.
When considering a matrix element of some operator 𝒪(𝑥) which can be de-

composed into irreducible tensor-operators of 𝑈 -spin, 𝑈 -spin breaking to leading
order can be considered by evaluating

⟨𝑓 ∣𝒪(0)∣̃𝑖⟩ = ⟨𝑓 ∣𝒪(0)∣𝑖⟩+ (−𝑖)
∫

𝑑4𝑥 ⟨𝑓 ∣𝑇 [𝒪(0)𝐻break(𝑥)]∣𝑖⟩+ . . . , (3.54)

where the states 𝑓 and 𝑖̃ include the breaking term, while the states 𝑓 and 𝑖

are the 𝑈 -spin-symmetric states. A general analysis of 𝑈 -spin breaking can be
perfomed by a group theoretical analysis of the breaking term, by decomposing
the 𝑇 product of the operator 𝒪 with 𝐻break into irreducible tensor operators 𝑇 (𝑗)

𝑗3

of 𝑈 -spin.
The simplest, non-trivial case emerges if the operator 𝒪 is an 𝑈 -spin doublet,

which is denoted by 𝒪(1/2)
𝑗3

. In this case, the last term in (3.54) decomposes into

(−𝑖)
∫

𝑑4𝑥𝑇
[
𝒪(1/2)

±1/2(0)𝐻break(𝑥)
]

= (−𝑖𝜖)
∫

𝑑4𝑥𝑇
[
𝒪1/2

±1/2(0)𝐵
(1)
0 (𝑥)

]
=

√
2

3

[
𝐾

(3/2)
±1/2 ∓

√
1

3
𝐾

(1/2)
±1/2

]
. (3.55)

Aside from the trivial example of the currents 𝑗 = 𝑢̄Γ𝑞, 𝑞 = 𝑑, 𝑠, also the
effective weak hamiltonian for 𝐵 decays is a pure 𝑈 -spin doublet, even if elec-
troweak penguins are included. The latter is true due to the fact that the 𝑠 and
the 𝑑 quark carry the same electroweak quantum numbers. Thus from the group
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theoretical point of view the weak effective hamiltonian may be decomposed into
its irreducible tensor components according to

𝐻Δ𝐶=±1
eff =

4𝐺𝐹√
2

[
𝑉𝑐𝑏𝑉

∗
𝑢𝑑𝑃

(1/2)
1/2 + 𝑉𝑐𝑏𝑉

∗
𝑢𝑠𝑃

(1/2)
−1/2

]
, (3.56)

𝐻Δ𝐶=0
eff =

4𝐺𝐹√
2

[
𝑉𝑐𝑏𝑉

∗
𝑐𝑑𝑄

(1/2)
1/2 + 𝑉𝑢𝑏𝑉

∗
𝑢𝑑𝑅

(1/2)
1/2 + 𝑉𝑐𝑏𝑉

∗
𝑐𝑠𝑄

(1/2)
−1/2 + 𝑉𝑢𝑏𝑉

∗
𝑢𝑠𝑅

(1/2)
−1/2

]
,

where the operators 𝑃 (1/2)
𝑗3

, 𝑄(1/2)
𝑗3

and 𝑅
(1/2)
𝑗3

are renormalization group invariant
combinations of four-quark operators. Their transformation properties under
isospin, relevant when combining both symmetries, are given in table 3.4.

In the following this group theoretical decomposition is used to discuss 𝑈 -spin
and its breaking in various 𝐵 decays. To this end, one has to identify the 𝑈 spin
multiplets of hadronic states. Starting from the definiton of the fundamental
quark doublets (using the same sign convention as in [95]),

[
∣𝑑⟩
∣𝑠⟩

]
=

[
∣1
2
+ 1

2
⟩

∣1
2
− 1

2
⟩

]
,

[
∣𝑠⟩
∣𝑑⟩

]
=

[
∣1
2
+ 1

2
⟩

−∣1
2
− 1

2
⟩

]
, (3.57)

the decaying 𝐵 mesons transform as

∣∣𝐵+
〉
=
∣∣𝑢𝑏̄ 〉 = ∣0, 0 ⟩ , [

∣𝐵0 ⟩ = ∣∣(𝑑𝑏̄) 〉
∣𝐵𝑠 ⟩ =

∣∣(𝑠𝑏̄) 〉
]
=

[ ∣∣1
2
,+1

2

〉∣∣1
2
,−1

2

〉 ] . (3.58)

The mesons in the final state are in terms of 𝑈 -spin[
∣𝐾+ ⟩ = ∣(𝑢𝑠) ⟩
∣𝜋+ ⟩ = ∣∣(𝑢𝑑) 〉

]
=

[ ∣∣1
2
,+1

2

〉
− ∣∣1

2
,−1

2

〉 ] ,[
∣𝜋− ⟩ = − ∣(𝑢̄𝑑) ⟩
∣𝐾− ⟩ = − ∣(𝑢̄𝑠) ⟩

]
=

[
− ∣∣1

2
,+1

2

〉
− ∣∣1

2
,−1

2

〉 ] ,⎡⎢⎣ ∣𝐾
0 ⟩ = ∣(𝑠𝑑) ⟩√
3/2 ∣𝜂8 ⟩ − 1/2 ∣𝜋0 ⟩ = ∣∣𝑠𝑠− 𝑑𝑑

〉∣∣𝐾̄0
〉
=
∣∣(𝑑𝑠) 〉

⎤⎥⎦ =

⎡⎢⎣ ∣1,+1 ⟩
∣1, 0 ⟩

− ∣1,−1 ⟩

⎤⎥⎦ ,

⎡⎢⎣ ∣𝐾
∗0 ⟩ = ∣(𝑠𝑑) ⟩

1/
√
2 ∣𝜙 ⟩ − 1/2 ∣𝜌0 ⟩ − 1/2 ∣𝜔 ⟩ = ∣∣𝑠𝑠− 𝑑𝑑

〉∣∣𝐾̄∗0 〉 = ∣∣(𝑑𝑠) 〉
⎤⎥⎦ =

⎡⎢⎣ ∣1,+1 ⟩
∣1, 0 ⟩

− ∣1,−1 ⟩

⎤⎥⎦ .(3.59)
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From this the decomposition of the neutral states is derived as

∣∣𝜋0 〉 = − 1

2
∣1, 0 ⟩+

√
3

2
∣0, 0 ⟩8 ,

∣𝜂 ⟩ =

√
2

3
∣1, 0 ⟩+

√
2

3
∣0, 0 ⟩8 −

1

3
∣0, 0 ⟩1 ,

∣𝜂′ ⟩ =
1

2
√
3
∣1, 0 ⟩+ 1

6
∣0, 0 ⟩8 +

2
√
2

3
∣0, 0 ⟩1 ,∣∣𝜌0 〉 = − 1

2
∣1, 0 ⟩+

√
3

2
∣0, 0 ⟩8 ,

∣𝜔 ⟩ = − 1

2
∣1, 0 ⟩ −

√
3

6
∣0, 0 ⟩8 +

√
2

3
∣0, 0 ⟩1 ,

∣𝜙 ⟩ =
1√
2
∣1, 0 ⟩+ 1√

6
∣0, 0 ⟩8 +

1√
3
∣0, 0 ⟩1 , (3.60)

where the subscript 1, 8 on the two 𝑈 -spin singlet states refers to the 𝑆𝑈(3)

transformation properties of the corresponding state. Frome these definitions, the
relations discussed in section 4.3 can be derived, simply using Clebsch-Gordan
tables.

Operator (Δ𝐼,Δ𝐼𝑧)

Δ𝐶 = 1 :

𝑃
(1/2)
+1/2 (1,−1)

𝑃
(1/2)
−1/2 (1/2,−1/2)

Δ𝐶 = 0, 𝑏→ 𝑑

𝑄
(1/2)
+1/2 (1/2,−1/2)⊕ (3/2,−1/2)

𝑅
(1/2)
+1/2 (1/2,−1/2)⊕ (3/2,−1/2)

Δ𝐶 = 0, 𝑏→ 𝑠

𝑄
(1/2)
−1/2 (0, 0)⊕ (1, 0)

𝑅
(1/2)
−1/2 (0, 0)⊕ (1, 0)

Table 3.4: Classification of irreducible 𝑈 -spin operators in terms of isospin.

In the 𝑈 -spin limit, there is one additional relation between observables which
can be derived [96,97]: The key observation is that due to CKM unitarity all CP
violation in the standard model is proportional to the Jarlskog invariant, see
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equation (2.25). In particular, all CP violating rate differences,

ΔΓ = Γ(𝐵 → 𝑓)− Γ(𝐵 → 𝑓) (3.61)

are proportional to ImΔ. Exchanging the roles of the 𝑑 and the 𝑠 quark will
flip the sign of ImΔ in ΔΓ as can be seen in (2.25). This relation may be
combined with the group theory of 𝑈 -spin using the transformation properties
of tensor operators given in equation (3.42) or using the Wigner-Eckart theorem
directly. Then for two processes #1,#2, related by exchanging all down and
strange quarks, the relation

𝐴CP(#1)

𝐴CP(#2)
= − Γ̄(#2)

Γ̄(#1)
(3.62)

holds, where Γ̄ denotes the CP-averaged rate. This implies that in the 𝑈 -spin
limit there is one independent observable less for every pair related in the way
described above.

3.4 Statistical Approach

Hadronic uncertainties play an important role in determining fundamental SM
parameters as well as in discovering NP. The translation of measurements into
fundamental parameters is usually only possible with theoretical input on the
hadronic physics (e.g. the bag parameter 𝐵𝐾 , or the 𝐵 meson decay constant
𝑓𝐵), taken from non-perturbative methods as lattice QCD or light-cone sumrule
calculations. The treatment of the uncertainties of these kinds of calculations as
well as experimental systematic uncertainties is not straight forward. In fact, it is
not even well-defined. For that reason, there exist different approaches for hand-
ling them, prominently represented by the UTfit collaboration [50], advertising
an approach with bayesian treatment of these uncertainties, and the CKMfitter
group [29], which has developed the frequentist approach RFit [98]. For a recent
discussion about the two approaches, see [99–102]. In this work, the RFit scheme
is used, as described in the following. The presentation follows [98], where a more
complete discussion and references to the original literature can be found.

3.4.1 The RFit Approach

The goal of the analysis is to quantify the agreement between a theory and a
set of given measurements. Furthermore, if the theory turns out to be viable in
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that step, the fundamental parameters entering that theory are to be determined.
Dealing with a strongly interacting theory like QCD, this requires input on quan-
tities, which were in principle determined by the theory, but are in practice hard
or even impossible to calculate. In the following a framework for this analysis is
described, as it is implemented in the software package CKMfitter.

Given are 𝑁𝑒𝑥𝑝 measurements {𝑥𝑖𝑒𝑥𝑝} with corresponding theoretical expres-
sions {𝑥𝑖𝑡ℎ𝑒𝑜(𝑦𝑚𝑜𝑑)}, depending on 𝑁𝑚𝑜𝑑 model parameters {𝑦𝑗𝑚𝑜𝑑}. These param-
eters are divided in two subgroups:

∙ There are 𝑁𝑡ℎ𝑒𝑜 parameters which are fundamental parameters of the theory,
e.g. 𝛽,𝑚𝑞, denoted as {𝑦𝑖𝑡ℎ𝑒𝑜}, which to determine is the primary goal;

∙ The remaining 𝑁𝑄𝐶𝐷 = 𝑁𝑚𝑜𝑑−𝑁𝑡ℎ𝑒𝑜 parameters are not fundamental, but
appear because solving QCD is extremely difficult if not impossible.

There are two different steps in the analysis:

∙ Quantifying the agreement between the measurements and the theory under
consideration as a whole, i.e. asking the question if the theory is capable of
explaining the measurements.

∙ Estimating the parameters 𝑦𝑡ℎ𝑒𝑜 of the considered theory, assuming the
theory is correct; This is called model dependent metrology. In this step
only the relative 𝜒2 is relevant.

In any case the basic quantity to be considered is the likelihood function or
the 𝜒2-function respectively:

ℒ(𝑦𝑚𝑜𝑑) = ℒ𝑒𝑥𝑝 (𝑥𝑒𝑥𝑝 − 𝑥𝑡ℎ𝑒𝑜(𝑦𝑚𝑜𝑑))ℒ𝑡ℎ𝑒𝑜(𝑦𝑄𝐶𝐷) , (3.63)

𝜒2(𝑦𝑚𝑜𝑑) = −2 ln(ℒ(𝑦𝑚𝑜𝑑)) . (3.64)

Here the experimental likelihood ℒ𝑒𝑥𝑝 expresses the agreement between the mea-
sured observables and their theoretical expressions, while the theoretical likeli-
hood encodes the information about the QCD parameters.

Because of the non-gaussian structure of ℒ𝑡ℎ𝑒𝑜 (and to a lesser extend of ℒ𝑒𝑥𝑝,
due to experimental systematics), it is in general not possible to infer a confidence
level using the common function Prob(𝜒2(𝑦𝑚𝑜𝑑), 𝑁𝑑𝑜𝑓 ), defined in equation (3.72).
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Likelihood definitions

Given independent measurements, the experimental likelihood is given as

ℒ𝑒𝑥𝑝 (𝑥𝑒𝑥𝑝 − 𝑥𝑡ℎ𝑒𝑜(𝑦𝑚𝑜𝑑)) =

𝑁𝑒𝑥𝑝∏
𝑖=1

ℒ𝑖𝑒𝑥𝑝 , (3.65)

where the individual components were ideally given as pure gaussians4,

ℒ𝑖𝑒𝑥𝑝 =
1√

2𝜋𝜎𝑖𝑒𝑥𝑝
exp

[
−1

2

(
𝑥𝑖𝑒𝑥𝑝 − 𝑥𝑖𝑡ℎ𝑒𝑜

𝜎𝑖𝑒𝑥𝑝

)2]
. (3.66)

However, in many cases there are systematical errors in the measurements as
well. For systematical errors, one cannot assume a gaussian distribution, which
would lead to the procedure of adding the statistical and systematical errors in
quadrature. They might rather be assumed to take the form of an unknown offset
𝑥0. For this offset the range [−𝜎0, 𝜎0] is defined: the 𝜒2 contribution of the offset
is set to zero if 𝑥0 lies within this range and it set to infinity if it lies outside.
Minimizing 𝜒2 with respect to 𝑥0 then leads to the following prescription:

𝜒2𝑚𝑖𝑛,𝑥0 =

⎧⎨⎩ 0(
∣𝑥𝑒𝑥𝑝−𝑥𝑡ℎ𝑒𝑜∣−𝜎0

𝜎𝑒𝑥𝑝

)2 if
∣𝑥𝑒𝑥𝑝 − 𝑥𝑡ℎ𝑒𝑜∣ ≤ 𝜎0

∣𝑥𝑒𝑥𝑝 − 𝑥𝑡ℎ𝑒𝑜∣ > 𝜎0
, (3.67)

for which an example distribution is depicted in figure 3.6.
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Figure 3.6: 𝜒2-distribution corresponding to equation (3.67) for 𝑥𝑒𝑥𝑝 = 0± 1± 1

4The normalization factor is not used in the implementation, so if the fit is in best possible
agreement with the measurement, it does not contribute to 𝜒2.
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Considering errors of theoretical quantities the situation is similar to that
of experimental systematics, but the problem is more severe, because often the
uncertainties involve large effects. In many cases, the knowledge on theoretical
parameters is educated guesswork, that is, one might be able to exclude some
ranges for the parameter values, but a large range still survives, in which no
particular value is preferred. An example for such an unknown quantity is given
by the first inverse moment of the 𝐵 meson distribution amplitude, 𝜆𝐵. The way
this situation is treated in the RFit scheme (and implemented in CKMfitter) is to
define allowed ranges for these parameters, in the same way described before for
the experimental systematics: the 𝜒2 for the corresponding parameter is set to
zero within the allowed range and infinity outside5. Here lies the one assumption
one needs in order to deal with this ill-defined problem: One assumes that the
theoretical parameters take values inside their ranges. Therefore, if one uses too
small ranges one might get simply false results. On the other hand, one might
miss a discovery if one uses too large ranges. Obviously choosing the right ranges
is a delicate subject, and should be documented in detail.

Metrology

As stated above, in metrology one assumes the theory to be correct and wants to
find the best fit values of the parameters under consideration. For that purpose,
one uses the offset-corrected 𝜒2,

Δ𝜒2(𝑦𝑚𝑜𝑑) = 𝜒2(𝑦𝑚𝑜𝑑)− 𝜒2𝑚𝑖𝑛;𝑦𝑚𝑜𝑑 , (3.68)

where 𝜒2𝑚𝑖𝑛;𝑦𝑚𝑜𝑑 denotes the minmal 𝜒2-value when all 𝑦𝑚𝑜𝑑 parameters are allowed
to vary.

In most cases, one is not interested in all of the 𝑦𝑚𝑜𝑑 parameters the same
way: For example, in a CKM-analysis, the interesting parameters are {𝜌, 𝜂},
while 𝜆 and 𝐴 are less relevant. Denoting the parameters under consideration 𝑎

and the less relevant ones 𝜇, the aim is to set confidence levels in the 𝑎 space,
irrespective of the 𝜇 values [98]. In the RFit scheme, this is done by scanning the
𝑎 space, and finding for every point there the point in 𝜇 space which maximises
the agreement between theory and data. The confidence level of that point is set

5This does not correspond to a uniform PDF for the parameter. For example, an allowed
range in 𝜙 of [0, 𝜋/2] leads to an allowed range of sin𝜙 of [0, 1], every value of sin𝜙 treated
equally - which is not true if one assumes a uniform PDF for 𝜙.
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to this maximum, that is

𝐶𝐿(𝑎) = Max𝜇{𝐶𝐿(𝑎, 𝜇)} . (3.69)

A given point is excluded only, if this maximal confidence level is beneath a given
cut, e.g. 𝐶𝐿𝑐𝑢𝑡 = 0.05. In that way one receives the most conservative estimate
for a given 𝑎 point. The extracted distribution is therefore

Δ𝜒2(𝑎) = 𝜒2𝑚𝑖𝑛;𝜇(𝑎)− 𝜒2𝑚𝑖𝑛;𝑦𝑚𝑜𝑑 . (3.70)

If there were neither a component from ℒ𝑡ℎ𝑒𝑜 in the combined likelihood nor
significant experimental systematic errors, one would obtain the confidence level
as

𝒫(𝑎) = Prob(Δ𝜒2(𝑎), 𝑁𝑑𝑜𝑓 ) , (3.71)

using

CL = Prob(𝜒2(𝑦𝑚𝑜𝑑), 𝑁𝑑𝑜𝑓 ) =
1√

2𝑁𝑑𝑜𝑓Γ(𝑁𝑑𝑜𝑓/2)

∫ ∞

𝜒2(𝑦𝑚𝑜𝑑)

𝑑𝑡
{
𝑒−𝑡/2 𝑡𝑁𝑑𝑜𝑓/2−1

}
.

(3.72)
Actually, for the sake of simplicity, this expression is used in the present work, as
it is in CKMfitter generally, which is clearly an approximation. The correct treat-
ment were to use a Monte Carlo simulation to obtain the expected distribution
of Δ𝜒2(𝑎), which is however beyond the scope of this work.
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Chapter 4

Applications

In this chapter, the methods developed in the last sections are applied to non-
leptonic 𝐵 decays. The first two sections deal with NP in 𝑏 → 𝑠 transitions,
discussing separately the possiblility of NP in the decay amplitude (section 4.1)
and NP in mixing (section 4.2) by considering prominent example decays, in
which the data seem to deviate from the SM expectations. In the last section,
the formalism of 𝑈 -spin including breaking corrections is applied to a couple of
decays which already have been measured, and strategies are proposed how to
exploit with aid of this method the expected precision from future experiments,
prominently LHCb and a Super-𝐵 factory.

4.1 New Physics in b→ s Transition Amplitudes

𝑏→ 𝑠 transitions tend to be a good ground for NP searches, because due to the
hierarchy in the relevant CKM matrix elements part of the amplitude structure
can be understood without having to deal with non-perturbative effects. In this
section, three groups of decays are discussed:

∙ 𝐵 → 𝐽/𝜓𝐾,

∙ 𝐵 → 𝜙𝐾, and

∙ 𝐵 → 𝜋𝐾.

They are related by three observations:

∙ They all involve a 𝑏→ 𝑠 transition.
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∙ All of them are “puzzling”, i.e. tensions with the SM expectations are found.

∙ The data for these decays are relatively precise.

The first two points motivate to introduce NP contributions by operators of the
form 𝒪𝑏→𝑠

𝑞 = (𝑠𝑏)(𝑞𝑞); the alternative possibility of NP in mixing, together with
large non-factorizable SM effects will be discussed in the next section. The last
point explains the absence of several other possible decay modes in the analysis,
in which in principle effects should be seen as well. As discussed before, even
when only considering operators of the type 𝒪𝑏→𝑠

𝑞 , there could be several of these
operators with in general different weak phases. In the following the assumption
will be made, that one operator dominates the NP contributions, leading to a
single weak phase for the corresponding matrix elements. In the whole analysis,
colour and Dirac structure of the operators will not be specified, considering only
their flavour structure. The different options regarding the quark pair (𝑞𝑞) are
then discussed separately for each class of decays. Therefore, always the hamilto-
nian ℋ = ℋ𝑆𝑀+𝒪𝑏→𝑠

𝑞 is considered, and the corresponding isospin analysis leads
to matrix elements which can be parametrized in an obvious way as modulus,
strong phase, and weak phase.

While the operator under consideration is expected to contribute to all the
decays discussed below, it is generally not possible to relate the contributions
directly, as the final states are not connected by flavour symmetry. More impor-
tantly, two of the final states consist of one pseudoscalar and one vector meson,
while in 𝐵 → 𝜋𝐾 both final state particles are pseudoscalar. However, one might
speculate that the matrix elements for 𝜙𝐾 and 𝐽/𝜓𝐾 are in some way similar, as
they have the same quantum numbers. However, this is considered only a crude
estimate.

The analysis presented in this section has been published in [63]. However,
some of the data changed significantly since then, therefore here an update of
that analysis is presented. The differences are pointed out correspondingly.

As the prerequisites for this analysis have already presented in the previous
chapters, this section proceeds directly by discussing the three considered classes
of decays separately in some detail. Finally some concluding remarks are given.
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4.1.1 B→ J/𝝍K

This decay, often referred to as the Golden Mode, plays a special role in the
SM, because it is dominated to very good approximation by only one isospin
amplitude. The reason for that is twofold:

∙ Cabibbo suppression: As noted in section 2.2, the relevant CKM parameter
combinations in 𝑏→ 𝑠 transitions exhibit a strong hierarchy:

∣𝜆𝑢𝑠/𝜆𝑐𝑠∣ ∼ 𝜆2 ∼ 2%≪ 1 . (4.1)

∙ Penguin suppression: (i) The operators 𝑂(𝑢)
1,2 do not contain charm quarks,

therefore the hadronic matrix elements ⟨𝐽/𝜓𝐾∣𝑂(𝑢)
1,2 ∣𝐵⟩ are suppressed.

(ii) The coefficients of the loop-induced penguin operators 𝐶3−6 are small
with respect to those of the operators 𝐶1,2.

Furthermore, the electroweak penguin operators have even smaller Wilson coeffi-
cients. Those with the potentially largest effect — that is, the ones proportional
to the large CKM element combination and including charm quarks — are in-
cluded in the leading amplitude. Consequently, in the SM the 𝐵 → 𝐽/𝜓𝐾 decay
amplitude is expected to be completely dominated by

𝒜0(𝐵̄ → 𝐽/𝜓𝐾̄) =
𝐺𝐹√
2
𝑉𝑐𝑏𝑉

∗
𝑐𝑠 ⟨𝐽/𝜓𝐾̄∣𝐶1,2𝒪(𝑐)

1,2 +
10∑
𝑖=3

𝐶𝑖𝒪(𝑐)
𝑖 ∣𝐵̄⟩ , (4.2)

where 𝐵̄ = {𝐵̄0
𝑑 , 𝐵

−}, and the leading [𝑠𝑏𝑐𝑐] component in every operator has
been projected out, denoted by 𝒪𝑖 → 𝒪(𝑐)

𝑖 . In particular, the amplitude is domi-
nated by a single weak phase, and consequently the time-dependent CP asymme-
try in 𝐵0 → 𝐽/𝜓𝐾𝑆 is completely determined by the 𝐵0− 𝐵̄0 mixing amplitude,
involving the CKM angle 𝛽. Corrections from the subleading operators have
been estimated by perturbative methods at the 𝑏-quark scale, and found to give
only effects of the order of 10−3 [103, 104]. However, purely perturbative meth-
ods are clearly not suited for this kind of computation and tend to underestimate
hadronic effects per construction. Long-distance penguin contributions have been
estimated on the basis of experimental data to be not larger than 10−2 [105]. This
ansatz will be used in the next section as well with the present data, in order to
(i) estimate the influence of subleading SM amplitudes and (ii) to determine the
influence of a possible NP weak phase in these decays.
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Taking in a first step the SM picture seriously implies the following pattern
of observables:

𝑆(𝐵̄0 → 𝐽/𝜓𝐾𝑆) = sin 2𝛽 ,

Γ̄(𝐵̄0 → 𝐽/𝜓𝐾̄0) = Γ̄(𝐵− → 𝐽/𝜓𝐾−) and

𝐴CP(𝐵̄
0 → 𝐽/𝜓𝐾𝑆) = 𝐴CP(𝐵

− → 𝐽/𝜓𝐾−) = 0 . (4.3)

From the data, the following small deviations from this pattern are observed, see
table 4.1:

∙ The direct CP asymmetry in the charged decay is measured different from
zero, 𝐴CP(𝐵

− → 𝐽/𝜓𝐾−) ∕= 0@ ∼ 1𝜎.

∙ The rate difference is non-vanishing,

Γ̄(𝐵̄0 → 𝐽/𝜓𝐾̄0) ∕= Γ̄(𝐵− → 𝐽/𝜓𝐾−)@ ∼ 1𝜎 . (4.4)

∙ Finally, depending on the interpretation of 𝐵 → 𝜏𝜈, there is a deviation in
𝑆(𝐵̄0 → 𝐽/𝜓𝐾𝑆) from sin 2𝛽:

𝜂CP𝑆(𝐵 → 𝐽/𝜓𝐾𝑆) + sin 2𝛽𝐵→𝜏𝜈 = 0.16+0.04−0.06 , (4.5)

which includes an enhanced error for sin 2𝛽𝐵→𝜏𝜈 due to the non-gaussian
behaviour of the extracted value from [29], which stems from the global fit
excluding sin 2𝛽𝑏→𝑠𝑐𝑐. As noted in secion 2.2.2, this value will not be used
in the fits.

Neither of these tensions is conclusive. But having all three of them in the Golden
Mode is at least curious.

Decay BR/10−4 𝐴CP 𝑆CP

𝐵− → 𝐽/𝜓𝐾− 10.07± 0.35 [35] 0.017± 0.016(∗) [35] –
𝐵̄0 → 𝐽/𝜓𝐾̄0 8.71± 0.32 [35] 0.002± 0.020(∗∗) [54] 0.657± 0.025 [54]

Table 4.1: Measurements for 𝐵 → 𝐽/𝜓𝐾 observables. (∗): Error enhanced by the
PDG, due to inconsistent measurements. (∗∗): Error enhanced according
to the PDG prescription, for the same reason.
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Turning now to the hypothesis of NP in the decay amplitudes as described
above, the general parametrization reads

𝒜(𝐵− → 𝐽/𝜓𝐾−) = 𝒜0(𝐵̄ → 𝐽/𝜓𝐾̄)
[
1 + 𝑟0 𝑒

𝑖𝜃𝑊 𝑒𝑖𝜙0 − 𝑟1 𝑒
𝑖𝜃𝑊 𝑒𝑖𝜙1

]
,

𝒜(𝐵̄𝑑 → 𝐽/𝜓𝐾̄0) = 𝒜0(𝐵̄ → 𝐽/𝜓𝐾̄)
[
1 + 𝑟0 𝑒

𝑖𝜃𝑊 𝑒𝑖𝜙0 + 𝑟1 𝑒
𝑖𝜃𝑊 𝑒𝑖𝜙1

]
,(4.6)

with 𝑟0,1 denoting the moduli of NP amplitudes with Δ𝐼 = 0, 1 respectively, 𝜙0,1
the corresponding strong phases, and 𝜃𝑊 the NP weak phase.

It is convenient to discuss the following critical observables [106], which help
discriminating the different contributions. All of them vanish in the limit of
negligable subleading contributions, and are given here for small values of the
parameters 𝑟0,1, while in the fit the exact expressions are used:

𝐴avg
CP ≡ 𝐴CP(𝐵̄

0 → 𝐽/𝜓𝐾̄0) + 𝐴CP(𝐵
− → 𝐽/𝜓𝐾−)

2≃ −2 𝑟0 sin𝜙0 sin 𝜃𝑊 ,

Δ𝐴CP ≡ 𝐴CP(𝐵̄
0 → 𝐽/𝜓𝐾̄0) + 𝐴CP(𝐵

− → 𝐽/𝜓𝐾−)
2≃ −2 𝑟1 sin𝜙1 sin 𝜃𝑊 ,

𝐴𝐼 ≡ Γ̄[𝐵𝑑 → 𝐽/𝜓𝐾0]− Γ̄[𝐵± → 𝐽/𝜓𝐾±]
Γ̄[𝐵𝑑 → 𝐽/𝜓𝐾0] + Γ̄[𝐵± → 𝐽/𝜓𝐾±]

≃ 2 𝑟1 cos𝜙1 cos 𝜃𝑊 , and

𝜂CP 𝑆 + sin 2𝛽 ≃ 2 (𝑟0 cos𝜙0 + 𝑟1 cos𝜙1) sin 𝜃𝑊 cos 2𝛽 . (4.7)

The following limits, which can be read off from equations (4.7), hold also for
arbitrary values of 𝑟0,1:

𝐴avg
CP

𝑟0→0−→ 0 , (4.8)

Δ𝐴CP
𝑟1→0−→ 0 , (4.9)

𝐴𝐼
𝑟1→0−→ 0 . (4.10)

In addition, equations (4.7) are manifestly invariant under the approximate reparametriza-
tions, following from equations (2.61), as long as the power-counting leading to
these approximations is not violated, that is, in the limit 𝜉 = 𝒪(𝑟0,1)≪ 1:

sin 𝜃𝑊 → sin 𝜃𝑊
(
1 + 𝜉 cos 𝜃𝑊 +𝒪(𝜉2)

)
,

cos 𝜃𝑊 → cos 𝜃𝑊 − 𝜉 sin2 𝜃𝑊 +𝒪(𝜉2) ,
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𝑟0 cos𝜙0 + 𝑟1 cos𝜙1 → (𝑟0 cos𝜙0 + 𝑟1 cos𝜙1)
(
1− 𝜉 cos 𝜃𝑊 +𝒪(𝜉2)

)
,

𝑟1 cos𝜙1 → 𝑟1 cos𝜙1
(
1 + 𝜉 sin 𝜃𝑊 tan 𝜃𝑊 +𝒪(𝜉2)

)
,

𝑟0,1 sin𝜙0,1 → 𝑟0,1 sin𝜙0,1
(
1− 𝜉 cos 𝜃𝑊 +𝒪(𝜉2)

)
. (4.11)

The values for the critical observables, as following from the data in table 4.1,
are given in table 4.2.

Observable 𝐵 → 𝐽/𝜓𝐾

𝜂CP𝑆CP + sin 2𝛽 0.089+0.029−0.032 ± 0.081

𝐴avg
CP 0.010± 0.013(∗)

Δ𝐴CP −0.008± 0.013(∗)
𝐴𝐼 −0.038± 0.025

Table 4.2: The critical observables in 𝐵 → 𝐽/𝜓𝐾, computed from the data in
table 4.1.

Fit with ΔI = 0 only (New Physics in b→ scc̄)

Among the different possible operators, the 𝑏 → 𝑠𝑐𝑐 term is expected to give
the dominating contributions to 𝐵 → 𝐽/𝜓𝐾 decays, because it has unsuppressed
tree-level matrix elements with the hadronic final state, leading to a Δ𝐼 = 0

contribution. Therefore, in the first fit it is assumed that 𝑏→ 𝑠𝑐𝑐 gives the only
relevant NP contribution in (4.6), which amounts to setting 𝑟1 to zero. In order to
keep track of the different effects determining the order of magnitude for different
contributions, the following power-counting is introduced1 [106–108]:

∙ The CKM elements are counted in the obvious manner, corresponding to
their Wolfenstein hierarchy, with 𝑅𝑢 ∼ 1.

∙ Matrix elements stemming from penguin operators and penguin matrix
elements of tree operators are counted with an additional factor of 𝜆.

∙ Matrix elements stemming from electroweak penguin operators are assigned
a factor of 𝜆2.

1Obviously the power-counting parameter 𝜆 is not the same as the Wolfenstein parameter.
However, it is taken to be of the same order, and for simplicity the two are not differentiated
in the following.
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∙ The relative “generic size” of NP contributions is estimated to be

𝒜NP ∼𝑀2
𝑊/Λ2

NP⟨𝒪NP⟩ ∼ 𝜆×𝒜0(𝐵̄ → 𝐽/𝜓𝐾̄) . (4.12)

While these are rough order of magnitude estimates, for the following consider-
ations it is usually sufficient that the NP contribution is expected to be smaller
than the leading, but larger than the suppressed SM contributions.

The isospin breaking between charged and neutral 𝐵 decays is not affected
by this operator, and should not be part of the fit. Thus one is left with the
time-dependent CP asymmetries in 𝐵̄0 → 𝐽/𝜓𝐾̄0 and the direct CP asymmetry
in 𝐵− → 𝐽/𝜓𝐾−. Including the contribution from 𝑟0 in equations (4.6), the
explicit expressions for the CP asymmetries read

𝐶𝐽/𝜓𝐾𝑆
= −𝐴dir

CP(𝐵
− → 𝐽/𝜓𝐾−)

=
2𝑟0 sin𝜙0 sin 𝜃𝑊

1 + 2𝑟0 cos𝜙0 cos 𝜃𝑊 + 𝑟20
, (4.13)

𝜂CP 𝑆𝐽/𝜓𝐾𝑆
= − sin(2𝛽) +

2𝑟0 sin 𝜃𝑊 (cos(2𝛽) cos𝜙0 + 𝑟0 cos(2𝛽 − 𝜃𝑊 ))

1 + 2𝑟0 cos𝜙0 cos 𝜃𝑊 + 𝑟20
.

(4.14)

The NP amplitudes are expected to provide small corrections to the SM, 𝑟0 ≪ 1,
and thus the expansion

𝜂CP 𝑆𝐽/𝜓𝐾𝑆
+ sin(2𝛽) ≃ 2𝑟0 sin 𝜃𝑊 cos𝜙0 cos(2𝛽) ,

𝐶𝐽/𝜓𝐾𝑆
≃ 2𝑟0 sin 𝜃𝑊 sin𝜙0 (4.15)

should be a valid approximation for the full expressions. From this the following
interesting parameter combinations are read off:

∣𝑟0 sin 𝜃𝑊 ∣ ≃
√

(𝜂CP 𝑆𝐽/𝜓𝐾𝑆
+ sin 2𝛽)2 + (𝐶𝐽/𝜓𝐾𝑆

cos 2𝛽)2

2 cos 2𝛽
, (4.16)

determining the overall size of the deviations from the SM limit, and

tan𝜙0 ≃ 𝐶𝐽/𝜓𝐾𝑆
cos 2𝛽

𝜂CP 𝑆𝐽/𝜓𝐾𝑆
+ sin 2𝛽

, (4.17)

determining the relative size of the two effects. Given in terms of observables,
these combinations should be reparametrization-invariant. This is indeed the
case, as shown in figure 4.1, where 𝑟0 sin 𝜃𝑊 (𝜉) (left) and tan𝜙0(𝜉) (right) are
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𝑟 0
si
n
𝜃 𝑊

cos 𝜃𝑊

ta
n
𝜙
0

cos 𝜃𝑊

Figure 4.1: Illustration of approximate reparametrization invariance, as ex-
plained in the text.

plotted vs. cos 𝜃𝑊 (𝜉) for 𝜉 ∈ [−10, 10]. As a reference point, the values of
∣𝑟0 sin 𝜃𝑊 ∣ ≈ 0.07 and tan𝜙0 ≈ −0.07 are taken, as calculated from equations
(4.16),(4.17), with the data given in table 4.1. As can be seen, the approximate
invariance holds. It is limited by two factors: it breaks down if the reparametriza-
tion leads to 𝑟0 ∼ 1, thereby violating the power-counting leading to the expres-
sions (4.16),(4.17), and if 𝜃𝑊 ∼ 0, 𝜋, because at these points the CP asymmetries
vanish for all values of 𝑟0, 𝜙0.

As a consequence of the reparametrization invariance, the fit to the experi-
mental data will generally allow for “unphysical” solutions, where the strong and
weak phases are tuned in such a way that the absolute size of the NP contribution
𝑟0 can be unreasonably large. In order to suppress such effects, additional con-
straints are implemented in different scenarios: (i) For small NP contributions,
the fit should not depend on the parameter combination ∣𝑟0 cos 𝜃𝑊 ∣; constraining
∣𝑟0 cos 𝜃𝑊 ∣ < 0.4 should therefore only affect the unphysical solutions. (ii) If the
phase 𝜃𝑊 of the NP operator is close to the one from the leading contribution
in the SM, it is not expected to be sensitive to NP in CP asymmetries in any
case; therefore one may concentrate on 30∘ ≤ 𝜃𝑊 ≤ 150∘. (iii) For 𝜃𝑊 = 𝜋− 𝛾SM

the fit can also be interpreted as a determination of the size of subleading SM
contributions from Cabibbo- and penguin-suppressed amplitudes, which possibly
may have been underestimated in [103,104].

Using the experimental values for the CP asymmetries together with the value
for sin 2𝛽 from the indirect determination in figure 2.3, it is fitted for the preferred
ranges for the NP parameters, applying the different constraints as discussed
above. The results are shown in table 4.3 and figure 4.2. Note that there is
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no degree of freedom left, having two independent measurements and the same
or even larger number of parameters. Therefore, there is no measure for the
quality of the fit, apart from the question if the resulting parameter ranges are
theoretically acceptable or not.

-3

-2

-1

0

1

2

3

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CKM
f i t t e r

package -3

-2

-1

0

1

2

3

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CKM
f i t t e r

package

Figure 4.2: Fit results 𝜙0 vs. 𝑟0 sin 𝜃𝑊 for different scenarios, see also table 4.3. In
the plot on the left only the constraint ∣𝑟0 cos 𝜃𝑊 ∣ ≤ 0.4 is imposed. The
plot on the right is for fixed 𝜃𝑊 = 𝜋 − 𝛾SM.

Since the value for 𝑆CP in 𝐵 → 𝐽/𝜓𝐾𝑆 is close to the indirect determination
of sin 2𝛽 as long as 𝐵 → 𝜏𝜈 is not taken into account, the fitted range for
𝑟0 sin 𝜃𝑊 is consistent with zero, and the related strong phase 𝜙0 is unconstrained.
Still, for sufficiently small strong phases, NP contributions of the order 20% are
not excluded either. Inclusion of 𝐵 → 𝜏𝜈 in the indirect determination would
obviously exclude 𝑟0 = 0 significantly; the small value for 𝐴avg

CP then implies
a relatively small strong phase. Notice that small strong phases are generally
expected within QCDF, as explained in detail in section 3.2, together with the
limitations of this statement. Compared to the estimate of SM corrections in
[103,104], the typical order of magnitude for 𝑟0 is significantly larger, taking into
account that 𝑟0 includes a factor of ∣𝜆𝑢𝑠/𝜆𝑐𝑠∣ in the SM. Although the present
experimental situation is not conclusive, the analysis shows that an improvement
of the experimental precision for 𝐵 → 𝐽/𝜓𝐾 observables on the one hand, or the
theoretical precision in the ∣𝑉𝑢𝑏/𝑉𝑐𝑏∣ determination on the other, may still lead to
interesting conclusions. Furthermore, a reliable determination of 𝑓𝐵 would imply
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Scenario ∣𝑟0 sin 𝜃𝑊 ∣
𝜃𝑊 free ∣𝑟0 cos 𝜃𝑊 ∣ ≤ 0.4 [0 to 0.28]
30∘ ≤ 𝜃𝑊 ≤ 150∘ ∣𝑟0 cos 𝜃𝑊 ∣ free [0 to 0.20]
30∘ ≤ 𝜃𝑊 ≤ 150∘ ∣𝑟0 cos 𝜃𝑊 ∣ ≤ 0.4 [0 to 0.20]
𝜃𝑊 = 𝜋 − 𝛾SM ∣𝑟0 cos 𝜃𝑊 ∣ free [0 to 0.14]

Table 4.3: Fit to direct and mixing-induced CP asymmetries in 𝐵 → 𝐽/𝜓𝐾, using the
indirect determination of sin 2𝛽 and including the Δ𝐼 = 0 NP contribution
𝑟0, only. Shown are the ranges for the relevant parameter combination
∣𝑟0 sin 𝜃𝑊 ∣, using different additional constraints to suppress ”unphysical”
solutions (see text). As 𝑟0 = 0 is allowed in all cases, the strong phase is
unconstrained.

an interesting additional constraint, especially in the light of the high precision
expected from LHCb and a possible Super-𝐵 factory.

Fit with ΔI = 0,1 (New Physics in b→ sūu or b→ sd̄d)

While the contributions from operators (𝑠𝑏)(𝑢̄𝑢) or (𝑠𝑏)(𝑑𝑑) are expected to be
suppressed in 𝐵 → 𝐽/𝜓𝐾 with respect to those from (𝑠𝑏)(𝑐𝑐), they induce a
Δ𝐼 = 1 amplitude, which contributes to 𝐴𝐼 and Δ𝐴CP in equations (4.7). Tak-
ing the data at face value, the observed 𝐴𝐼 ∕= 0 implies a Δ𝐼 = 1 amplitude,
which has to have a different weak and strong phase because of Δ𝐴CP ∕= 0, too.
This to be accomodated for in the SM would require a large penguin matrix
element of the doubly Cabibbo-suppressed tree operators 𝒪𝑢

1,2 (or a gigantic con-
tribution from electroweak penguins). In the following, the weak phase is set to
𝜋 − 𝛾 for simplicity, the solutions for other values of 𝜃𝑊 can be obtained from
equations (4.11).

Including a NP operator (𝑠𝑏)(𝑢̄𝑢)/(𝑑𝑑), one can again trivially fit all observ-
ables. The fit result is plotted in figure 4.3. The 1𝜎 parameter ranges are given
by

𝑟0 cos𝜙0 = [−0.074 to 0.118] , 𝑟0 sin𝜙0 = [−0.015 to 0.003] ,

𝑟1 cos𝜙1 = [ 0.014 to 0.089] , 𝑟1 sin𝜙1 = [−0.002 to 0.013] .(4.18)

Notice that again the preferred values for the strong phases turn out to be small.
As a result, the small deviations from the SM expectations in 𝐵 → 𝐽/𝜓𝐾

can be explained by NP in either 𝑏 → 𝑠𝑢𝑢̄ or 𝑏 → 𝑠𝑑𝑑, alone. However, as
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Figure 4.3: The result for 𝑟0 𝑒𝑖𝜙0 (left) and 𝑟1 𝑒
𝑖𝜙1 (right) in the complex plane from the

fit to 𝐽/𝜓𝐾 observables, with isospin-breaking NP contributions 𝑏→ 𝑠𝑢𝑢̄

or 𝑏→ 𝑠𝑑𝑑. The NP weak phase has been fixed to 𝜃𝑊 = 𝜋 − 𝛾SM.

noted above, one has to keep in mind that, compared to the contributions from
𝑏→ 𝑠𝑐𝑐, the 𝑏→ 𝑠𝑢𝑢̄ or 𝑏→ 𝑠𝑑𝑑 only contribute via penguin (𝑟0) or annihilation
(𝑟1) diagrams to hadronic matrix elements. Thus, an additional suppression with
respect to the tree-level matrix elements fitted in the last section (see table 4.3) is
expected for the isospin breaking part, while in the isospin conserving amplitude
contributions from the different operators cannot be separated. Notice that,
depending on the actual size of these suppression factors, the result for 𝑟0 and 𝑟1

may also be interpreted as due to unexpectedly large effects from subleading SM
operators.

4.1.2 B→ 𝝓K

The analysis of this decay proceeds in many respects along the same lines as
that for 𝐵 → 𝐽/𝜓𝐾. The main difference is the fact that, as a tree-operator
(𝑠𝑏)(𝑠𝑠) is absent in the SM, the tree operators contribute only via penguin matrix
elements in the SM. Therefore the leading amplitude consists of tree level matrix
elements of penguin operators and penguin matrix elements of tree operators,
which is why this kind of mode is called penguin dominated. As a consequence,
the subleading contributions in the SM are suppressed only by the a relative factor
of 𝜆2 in the power-counting described above, stemming either from the Cabibbo
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suppression factor or the smallness of the Wilson coefficients for electroweak
penguin operators. Estimates within the SM of these subleading contributions
usually give small effects [109–112]. However, the relative importance of the NP
contributions is increasing as well, as they may include a matching tree operator.
Therefore one expects from the power-counting analogous to the one described
for 𝐵 → 𝐽/𝜓𝐾 (see for instance [113]):

𝐴NP(Δ𝐼 = 0)

𝜆𝑐𝑠𝐴0
𝑐

≲ 𝒪(1) ,
𝐴NP(Δ𝐼 = 1)

𝜆𝑐𝑠𝐴0
𝑐

≲ 𝒪(𝜆) . (4.19)

The parametrization is completely analogous to the one of 𝐵 → 𝐽/𝜓𝐾. Note
that for simplicity the same symbols are used:

𝒜(𝐵̄ → 𝜙𝐾̄) = 𝒜0(𝐵̄ → 𝜙𝐾̄)
[
1 + 𝑟0 𝑒

𝑖𝜃𝑊 𝑒𝑖𝜙0 ∓ 𝑟1 𝑒
𝑖𝜃𝑊 𝑒𝑖𝜙1

]
. (4.20)

Correspondingly, the expressions for the observables are the same; their experi-
mental values are given in table 4.4. However, the matrix elements are indepen-
dent, as both, the strong dynamics and the NP operators involved, are different.
The corresponding critical observables can be found in table 4.5. Again, tensions
with the naive SM expectations are found, much larger in magnitude of the cen-
tral values than for 𝐽/𝜓𝐾, but with larger uncertainties as well, which results
in only a slightly higher significance. While this increase is expected within the
scenario considered here, it is expected for subleading SM contributions as well.

Decay BR/10−6 𝐴CP 𝑆CP

𝐵− → 𝜙𝐾− 8.3± 0.65 0.034± 0.044 –
𝐵̄0 → 𝜙𝐾̄0 8.3+1.2−1.0 0.23 ± 0.15 −(0.44+0.17−0.18)

Table 4.4: Measurements for observables in 𝐵 → 𝜙𝐾, averaged by the HFAG [54].

Fit with ΔI = 0 (New Physics in b→ ss̄s)

Using the experimental values for the direct and mixing-induced CP asymmetries
in 𝐵 → 𝜙𝐾 together with the value for sin 2𝛽 from the indirect determination
in figure 2.3, the preferred ranges for the NP parameters are fitted as shown in
figure 4.4 and table 4.6. Again, only the result for a particular value for the NP
weak phase, 𝜃𝑊 = 𝜋 − 𝛾SM, is quoted. Other solutions follow from the same
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Observable 𝐵 → 𝜙𝐾

𝜂CP𝑆CP + sin 2𝛽 0.31+0.18−0.17 ± 0.08

𝐴avg
CP 0.13± 0.08

Δ𝐴CP 0.10± 0.08

𝐴𝐼 0.04+0.08−0.07

Table 4.5: The critical observables in 𝐵 → 𝜙𝐾, computed from the data in table 4.4.

reparametrization invariance as given in equations (4.11). Comparison with the
𝐵 → 𝐽/𝜓𝐾 case in figure. 4.2 shows:

∙ The effect is more pronounced, the shape of the allowed region similar to
the one in 𝐽/𝜓𝐾.

∙ Again, the fit tends to prefer small strong phases 𝜙0.

∙ The preferred value for 𝑟0 in 𝐵 → 𝜙𝐾 is by a factor of 2-3 larger than
the one in the corresponding fit in 𝐵 → 𝐽/𝜓𝐾. After correcting for the
penguin suppression factor, phase space and normalization, this implies
that the coefficients of the involved NP operators in both cases may be of
similar size.

Quantity Value
∣𝑟0 sin 𝜃𝑊 ∣ [ 0.03 to 0.32 ] (1𝜎)

𝜙0 [-0.76 to -0.01 ] (1𝜎)

Table 4.6: Results for the fit to the CP asymmetries in 𝐵 → 𝜙𝐾, allowing for a NP
contribution with Δ𝐼 = 0, only.

It should be emphasized, that the latter observation also implies that unusually
large hadronic penguin matrix elements in the SM could simultaneously explain
the 𝐵 → 𝐽/𝜓𝐾 and 𝐵 → 𝜙𝐾 discrepancies.

Including ΔI = 1 operators

Since the publication [63], the data of the time-dependent CP asymmetries changed
significantly. At that time there were no signs for isospin breaking effects, there-
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Figure 4.4: Fit to CP asymmetries in 𝐵 → 𝜙𝐾, using the indirect determination
of sin 2𝛽 and including the contribution of a NP operator with Δ𝐼 = 0,
i.e. (𝑠𝑏)(𝑠𝑠). The NP weak phase is set to 𝜃𝑊 = 𝜋 − 𝛾SM. Shown are
confidence levels in the plane of the two relevant parameter combinations
∣𝑟0 sin 𝜃𝑊 ∣ and 𝜙0.

fore instead of performing a fit, we roughly estimated the ranges, in which the
critical observables in 𝐵 → 𝜙𝐾 should lie, by scaling the results from 𝐵 → 𝐽/𝜓𝐾,
yielding

Δ𝐴CP(𝐵 → 𝜙𝐾)
?∼ (0 to 0.14) ,

𝐴𝐼(𝐵 → 𝜙𝐾)
?∼ −(0.17 to 0.01) . (4.21)

The data in table 4.2 now shows a non-vanishing Δ𝐴CP in the estimated range,
while the data for the branching ratios has not been updated since then. While
the tension is again only at the level of 1−2𝜎 and therefore far from conclusive, it
is interesting to note that the prediction is now confirmed by data. However, as
there are now signs for an isospin breaking amplitude in the critical observables
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Figure 4.5: The result for 𝑟0 𝑒
𝑖𝜙0 (left) and 𝑟1 𝑒

𝑖𝜙1 (right) in the complex plane from
the fit to 𝜙𝐾 observables, with isospin-breaking NP contributions (𝑠𝑏)(𝑢̄𝑢)
or (𝑠𝑏)(𝑑𝑑). The new weak phase has been fixed to 𝜙𝑊 = 𝜋 − 𝛾SM.

for Δ𝐼 = 0 and Δ𝐼 = 1, the corresponding fit is performed. The results are
shown in figure 4.5, yielding the 1𝜎-ranges

𝑟0 cos𝜙0 = [ 0.03 to 0.48] , 𝑟0 sin𝜙0 = [−0.11 to − 0.03] ,

𝑟1 cos𝜙1 = [−0.35 to 0.10] , 𝑟1 sin𝜙1 = [−0.09 to − 0.01] . (4.22)

Also in this case small phases are preferred. In addition, the fit yields non-
vanishing values for both contributions, with the contribution to Δ𝐼 = 0 tending
to be larger.

Again, there are signs for contributions considerably larger than those ex-
pected from the SM, and an increased experimental precision would render this ef-
fect even more interesting. Especially an update on the branching fractions would
be desirable. Importantly, also here an operator with the structure (𝑠𝑏)(𝑢̄𝑢/𝑑𝑑) is
needed to explain all deviations, and the relative size of the effects in 𝐵 → 𝐽/𝜓𝐾

and 𝐵 → 𝜙𝐾 corresponds to naive expectations, when assigning the deviations
to the same source.

4.1.3 B→ 𝝅K

𝐵 → 𝜋𝐾 decays are also penguin dominated, similarly to 𝐵 → 𝜙𝐾. While in
contrast to 𝐵 → 𝜙𝐾 in this case a tree level operator with tree level matrix
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elements exists, it is doubly Cabibbo suppressed and contributes therefore with
a relative magnitude of 𝜆 when using again the power-counting discussed before.
Interestingly at this order also electroweak penguin operators contribute, to which
this class of decays therefore is sensitive. Apart from decays containing 𝜂′, whose
treatment is difficult theoretically, these decays have the largest branching ratios
under the charmless 𝐵 decays, and are therefore known with the highest precision.
Specifically, in the decay 𝐵 → 𝜋+𝐾− direct CP violation has been observed for
the first time in the 𝐵 system.

In the SM, the general isospin decomposition for 𝐵 → 𝐾𝜋 decays can be
parametrized as [69,114]

𝒜(𝐵− → 𝜋−𝐾̄0) = 𝑃
(
1 + 𝜖𝑎 𝑒

𝑖𝜙𝑎 𝑒−𝑖𝛾
)
, (4.23)

−
√
2𝒜(𝐵− → 𝜋0𝐾−) = 𝑃

(
1 + 𝜖𝑎 𝑒

𝑖𝜙𝑎 𝑒−𝑖𝛾 − 𝜖3/2 𝑒
𝑖𝜙3/2

(
𝑒−𝑖𝛾 − 𝑞𝑒𝑖𝜔

))
,

−𝒜(𝐵̄𝑑 → 𝜋+𝐾−) = 𝑃
(
1 + 𝜖𝑎 𝑒

𝑖𝜙𝑎 𝑒−𝑖𝛾 − 𝜖𝑇 𝑒
𝑖𝜙𝑇
(
𝑒−𝑖𝛾 − 𝑞𝐶𝑒

𝑖𝜔𝐶
))

and
√
2𝒜(𝐵̄𝑑 → 𝜋0𝐾̄0) = 𝒜(𝐵− → 𝜋−𝐾̄0) +

√
2𝒜(𝐵− → 𝜋0𝐾−)−𝒜(𝐵̄𝑑 → 𝜋+𝐾−)

(4.24)
fixed by isospin symmetry (i.e. neglecting QED and light quark-mass corrections
in the hadronic matrix elements). Here 𝑃 is the dominating penguin amplitude,
whereas the quantities 𝜖𝑇,3/2𝑒𝑖𝜙𝑇,3/2 contain contributions from tree-operators but
are doubly CKM-suppressed, and 𝑞𝑒𝑖𝜔 and 𝑞𝐶𝑒

𝑖𝜔𝐶 parametrize contributions from
electroweak penguin operators relative to those from the tree operators. 𝜖𝑎𝑒𝑖𝜙𝑎 fi-
nally is doubly CKM-suppressed and receives only contributions from penguin op-
erators. Without any assumptions on strong interaction dynamics, in the isospin
limit one is left with 11 independent hadronic parameters for 9 observables.

The experimental data is given in table 4.7. Compared with the situation
in [63], most of the data is essentially unchanged, but the uncertainties slightly
decreased. This leads to

Δ𝐴𝜋𝐾
CP = 𝐴CP(𝐵̄

0 → 𝜙𝐾̄0)− 𝐴CP(𝐵̄
0 → 𝜋+𝐾−) ∕= 0@ ≳ 5𝜎 , (4.25)

which is widely discussed in the literature and to be commented on later. The
only significant shift has taken place in the time-dependent CP asymmetries,
which shifted by ∼ 1𝜎 each, due to new results from both 𝐵 factories.

In order to test the SM against possible NP effects in these decays, one needs
additional dynamical input. This of course implies a stronger model dependence
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than before, therefore results of this kind of analysis have to be taken with care.
Qualitative results from QCDF [70] include:

∙ The 𝑆𝑈(3)𝐹 symmetry prediction [91]

𝑞 𝑒𝑖𝜔 ≃ −3

2

∣𝑉𝑐𝑏𝑉 ∗
𝑐𝑠∣

∣𝑉𝑢𝑏𝑉 ∗
𝑢𝑠∣

𝐶9 + 𝐶10

𝐶1 + 𝐶2

(4.26)

only receives small corrections. This relation is the 𝑏 → 𝑠 equivalent of
equation (3.48), related to it by 𝑆𝑈(3) symmetry.

∙ The parameter 𝜖𝑎 𝑒𝑖𝜙𝑎 is negligible in QCDF. Consequently the direct CP
asymmetry in 𝐵− → 𝜋−𝐾0 is tiny (in accord with experiment).

∙ The parameter 𝑞𝐶 𝑒𝑖𝜔𝐶 is of minor numerical importance. This is true for
QCDF as well as the diagrammatic analysis, as used for example in [115]2,
where this parameter corresponds to the strength of the colour suppressed
electroweak penguin amplitude relative to the tree amplitude. There exists
an 𝑆𝑈(3) relation similar to relation (4.26) for this contribution. However,
this is known to receive large corrections already in QCDF from annihilation
processes.

∙ The parameters 𝜖𝑇 and 𝜖3/2 are expected to be of the order 20-30%, with
the related strong phases of the order 10∘. Furthermore, at least at NLO
accuracy, the difference between 𝜖𝑇 𝑒

𝑖𝜙𝑇 and 𝜖3/2 𝑒
𝑖𝜙3/2 is a subleading effect

proportional to the small coefficients 𝑎2,7,9 in QCDF. In the diagrammatical
approach the difference is corresponding to the ratio 𝐶/𝑃 .

In the subsequent fits, 𝜖𝑎 is set to zero and the values from [69],

𝑞 = 0.59± 0.12± 0.07 , 𝜔 = − 0.044± 0.049 , (4.27)

𝑞𝐶 = 0.083± 0.017± 0.045 , 𝜔𝐶 = − 1.05± 0.86 , (4.28)

are used in order to reduce the number of independent hadronic parameters within
the SM to 5. Notice that the overall penguin amplitude parameter 𝑃 in equations
(4.24) will not be constrained from theory, but will essentially be fixed by the
experimental data for the 𝐵± → 𝜋±𝐾0 branching fractions. Tensions in the fit,
or incompatible values for the parameters 𝜖𝑇,3/2 and 𝜙𝑇,3/2 then may be taken as
indication for possible NP contributions.

2This parametrization and its relation to the one used here is given in the appendix 6.1.
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Observable HFAG [54] SM fit NP (𝐼 = 0, 1)

BR(𝜋0𝐾−) ⋅ 106 12.9± 0.6 12.4 12.8

BR(𝜋−𝐾̄0) ⋅ 106 23.1± 1.0 23.7 23.3

BR(𝜋+𝐾−) ⋅ 106 19.4± 0.6 19.7 19.5

BR(𝜋0𝐾̄0) ⋅ 106 9.8± 0.6 9.3 9.7

𝒜CP(𝜋
−𝐾̄0) 0.009± 0.025 0∗ 0∗

𝒜CP(𝜋
0𝐾−) 0.050± 0.025 0.043 0.047

𝒜CP(𝜋
+𝐾−) −0.098+0.012−0.011 −0.098 −0.092

𝜂CP 𝑆𝜋0𝐾𝑆
−0.57± 0.17 −0.62 −0.78

𝐶𝜋0𝐾𝑆
0.01± 0.10 0.14 0.10

𝑅𝑐 1.12± 0.07 1.05 1.09

𝑅𝑛 0.99± 0.07 1.06 1.01

Δ𝐴 0.148± 0.028 0.141 0.141

Table 4.7: Experimental data for 𝐵 → 𝜋𝐾 decays vs. various best fit results. The third
column shows the SM fit with Δ𝜖 ∕= 0, which corresponds to 𝜒2/d.o.f. =

3.8/3. The fourth column shows the best fit result for Δ𝜖 = 0 (with
𝜖𝑇 𝑒𝑖𝜙𝑇 = 𝜖3/2 𝑒

𝑖𝜙3/2 varied according to their QCDF ranges, see text) and
a NP contribution from (essentially) 𝑏→ 𝑠𝑢̄𝑢 and 𝜃𝑊 = 𝜋 − 𝛾SM, yielding
𝜒2/d.o.f. = 2.6/3.

New Physics in B→ 𝝅K?

The critical observables in 𝐵 → 𝜋𝐾 transitions are [116]:

𝑅𝑐 = 2

[
BR(𝐵− → 𝜋0𝐾−) + BR(𝐵+ → 𝜋0𝐾+)

BR(𝐵− → 𝜋−𝐾̄0) + BR(𝐵+ → 𝜋+𝐾0)

]
= 1.12± 0.07 ,

𝑅𝑛 =
1

2

[
BR(𝐵̄𝑑 → 𝜋+𝐾−) + BR(𝐵𝑑 → 𝜋−𝐾+)

BR(𝐵̄𝑑 → 𝜋0𝐾̄0) + BR(𝐵𝑑 → 𝜋0𝐾0)

]
= 0.99± 0.07 ,

Δ𝐴 = 𝐴dir
CP(𝐵

± → 𝜋0𝐾±)− 𝐴dir
CP(𝐵𝑑 → 𝜋∓𝐾±) = 0.148± 0.028 ,

𝐶𝜋0𝐾𝑆
= 0.01± 0.10 , 𝜂CP 𝑆𝜋0𝐾𝑆

= −0.57± 0.17 , (4.29)

where in the limit of vanishing corrections to the leading penguin amplitude
𝑅𝑐 = 𝑅𝑛 = 1,Δ𝐴 = 𝐶𝜋0𝐾𝑆

= 0, and 𝜂CP𝑆𝜋0𝐾𝑆
= − sin 2𝛽 holds. Within the SM
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𝜖𝑇 𝜙𝑇 𝜖3/2 𝜙3/2 ReΔ𝜖 ImΔ𝜖

Best: 0.18 0.25 0.14 -0.18 0.04 0.07
1𝜎: [0.11,0.28] [0.13,0.44] [0.04,0.31] [-0.67,-0.06] [-0.12,0.16] [0.05,0.08]
2𝜎: [0.06,0.50] [0.04,0.90] [0.01,0.59] [-2.72, 0.05] [-0.30,0.25] [0.04,0.10]

𝑟 𝛿 𝑟𝑐 𝛿𝑐 −𝜌𝑛 cos 𝜃𝑛 −𝜌𝑛 sin 𝜃𝑛

[118] 0.12 0.44 0.20 0.02 −0.10 0.04

Table 4.8: SM fit results for 𝜖𝑇 , 𝜙𝑇 , 𝜖3/2, 𝜙3/2, with 𝜖𝑎 = 0 and 𝑞 𝑒𝑖𝜔 and 𝑞𝐶 𝑒𝑖𝜔𝐶

varied according to (4.27),(4.28) from [70]. The best fit values for the latter
parameter are obtained as 𝑞 = 0.51, 𝜔 = 0.005, 𝑞𝐶 = 0.13, 𝜔𝐶 = −1.91.
For comparison, in the last line estimates for the corresponding hadronic
parameters from [118] are shown, which have been obtained by relating
𝐵 → 𝜋𝐾 to 𝐵 → 𝜋𝜋 via 𝑆𝑈(3) relations and dynamical assumptions,
using the strategy developed in [119] (central values only).

approximation given above, the following relations are expected to hold [117]:

𝑅𝑐 −𝑅𝑛 ≃ −2 𝜖3/2
(
𝜖𝑇 − 𝜖3/2

(
1− 𝑞2

))
+𝒪(𝜆3) , (4.30)

𝜂CP 𝑆𝜋0𝐾𝑆
≃ − sin 2𝛽 + 2 cos 2𝛽

(
𝜖𝑇 − 𝜖3/2

)
+𝒪(𝜆2) , (4.31)

Δ𝐴 ≃ 𝐶𝜋0𝐾𝑆
≃ 2

(
𝜖𝑇 sin𝜙𝑇 − 𝜖3/2 sin𝜙3/2

)
+𝒪(𝜆3) , (4.32)

where it has been used that 𝜖𝑇,3/2 ∼ 𝜆, 𝜙𝑇,3/2 ∼ 𝜆, 𝑞𝑐 ≃ 0, 𝜔 ≃ 0, and cos 𝛾 ∼ 𝜆

in the SM. Considering the recent experimental data, now the first two relations
turn out to be well fulfilled within experimental uncertainties, whereas the third
relation shows a tension. Note that the mentioned shift of the data on the time-
dependent CP asymmetries moved both coefficients towards the SM expectations,
thereby reducing the tensions present before. However, note also that the small
value for 𝐶𝜋0𝐾𝑆

is a result of two measurements with opposite signs from BaBar
and Belle. The precisely measured value for Δ𝐴 still requires a sizeable difference
between 𝜖𝑇 𝑒

𝑖𝜙𝑇 and 𝜖3/2 𝑒
𝑖𝜙3/2 , which is at odds with the expection from QCDF

as noted above.
To quantify these observations, this scenario (𝜖𝑎 ≡ 0, 𝑞, 𝑞𝐶 taken from QCDF)

is fitted to the data, leaving 𝜖𝑇 and 𝜖3/2 uncorrelated. The results, given in ta-
ble 4.8, show clearly the reduction of 𝐵 → 𝜋𝐾 puzzle for the new data. Especially
the key parameter Δ𝜖 is estimated to be smaller; it corresponds to

∣𝐶/𝑇 ∣ = ∣Δ𝜖/𝜖𝑇 ∣ = 0.43 , [0.22, 1.00](1𝜎) , (4.33)
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which does not seem unreasonable. This led the authors of [120] to the conclusion
that the 𝐵 → 𝜋𝐾 data now is compatible with the SM. On the other hand, in
another paper [121] it has been concluded that the pattern of the measured
time-dependent CP asymmetries shows a tension with the values predicted from
𝐵− → 𝜋−𝜋0 with aid of 𝑆𝑈(3) arguments (fixing mainly 𝜖3/2). As a result they
have 𝑆𝜋0𝐾𝑆

∼ 1 and essentially 𝐶𝜋0𝐾𝑆
= Δ𝐴 as above, and they point out that

a modified electroweak penguin sector with a large weak phase could resolve this
tension. In [122] an analysis along similar lines was performed, pointing out that
(i) 𝐶𝜋0𝐾𝑆

≃ Δ𝐴 is an approximate result of a model-independent sumrule [123],
holding at the percent level, namely

Δ(𝐾+𝜋−) + Δ(𝐾0𝜋+) = 2Δ(𝐾+𝜋0) + 2Δ(𝐾0𝜋0) , (4.34)

where
Δ(𝑓) = Γ(𝐵̄ → 𝑓)− Γ(𝐵 → 𝑓) , (4.35)

and (ii) that 𝑆𝜋0𝐾𝑆
∼ 1 is extremely sensitive to BR(𝐵 → 𝜋0𝐾0). Finally, the

authors of [115] find a reduced puzzle, using relation (4.26) and its counterpart
for colour-suppressed penguins. They find the tension not significantly relaxed
by introducing modified electroweak penguins. Obviously the interpretation of
this data stays difficult within the SM. These different results show a model-
dependence, which clearly has to be clarified before any reliable conclusions are
possible. The value for Δ𝐴 still implies large non-factorizable contributions, when
interpreted in SM terms. In addition, as shown above, the fits for 𝐵 → 𝐽/𝜓𝐾

and 𝐵 → 𝜙𝐾 data prefer the presence of an operator (𝑠𝑏)(𝑢̄𝑢/𝑑𝑑), which should
have an even more pronounced effect in 𝐵 → 𝜋𝐾. This motivates the inclusion
of NP operators along similar lines as in 𝐵 → 𝐽/𝜓𝐾 and 𝐵 → 𝜙𝐾, despite the
unclear situation in the SM. This is discussed in the following.

New Physics contributions with ΔI = 0 only

The presence of a NP contribution with Δ𝐼 = 0 (this includes the ”charming
penguin” 𝑏→ 𝑠𝑐𝑐, as well as 𝑏→ 𝑠𝑠𝑠 and 𝑏→ 𝑠(𝑢𝑢̄ + 𝑑𝑑)) has the same impact
as the SM parameter 𝜖𝑎 in equations (4.24), except for a possibly different weak
phase. Within the adopted approximation one thus obtains

−𝒜(𝐵̄𝑑 → 𝜋+𝐾−) ≃ 𝑃
(
1 + 𝑟0 𝑒

𝑖𝜙0 𝑒𝑖𝜃𝑊 − 𝜖𝑇 𝑒
𝑖𝜙𝑇
(
𝑒−𝑖𝛾 − 𝑞𝐶 𝑒

𝑖𝜔𝐶
))

,

−
√
2𝒜(𝐵− → 𝜋0𝐾−) ≃ 𝑃

(
1 + 𝑟0 𝑒

𝑖𝜙0 𝑒𝑖𝜃𝑊 − 𝜖3/2 𝑒
𝑖𝜙3/2

(
𝑒−𝑖𝛾 − 𝑞𝑒𝑖𝜔

))
,

𝒜(𝐵− → 𝜋−𝐾̄0) ≃ 𝑃
(
1 + 𝑟0 𝑒

𝑖𝜙0 𝑒𝑖𝜃𝑊
)
, (4.36)
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where 𝑟0 𝑒𝑖𝜙0 𝑒𝑖𝜃𝑊 parametrizes the NP amplitude. As explained above, the QCDF
approach predicts small values Δ𝜖 ≈ 0. In the following NP fits to 𝐵 → 𝜋𝐾

decays, therefore Δ𝜖 = 0 will be fixed for simplicity, and the common values
varied in the ranges

𝜖𝑇 = 𝜖3/2 = 0.23± 0.06flat ± 0.05gauss , 𝜙𝑇 = 𝜙3/2 = −0.13± 0.11flat , (4.37)

which have been determined by combining the errors from QCDF [70] on the
individual parameters (flat errors are combined linearly, and the larger of the
Gaussian errors is chosen). As in the 𝐵 → 𝜙𝐾 example, since the leading SM am-
plitudes are already penguin-suppressed, 𝑟0 ≲ 𝒪(1) and 𝜙0 ≲ 𝒪(𝜆) is expected.
Generically, this implies a sizeable direct CP asymmetry in 𝐵− → 𝜋−𝐾̄0 of the
order 𝜆. The experimental value for that asymmetry should therefore be included
in the fit and will essentially constrain the parameter combination 𝑟0 sin𝜙0. On
the other hand, using the power-counting 𝜖𝑖, 𝑞𝐶 , 𝜔, 𝜙𝑖 ∼ 𝜆, a Δ𝐼 = 0 NP operator
does not contribute to the critical observable Δ𝐴CP in equation (4.29) at order
𝜆, either. As explained in [118] and references therein, these observables are
sensitive to Δ𝐼 = 1 operators which, in the SM, are represented by electroweak
penguin and tree operators which contain light quarks.

As a result, the NP fit with Δ𝐼 = 0 contributions generally leads to a bad
description of the experimental data3, 𝜒2/d.o.f. = 12.4/5. It is thus confirmed
on a quantitative level that Δ𝐼 = 0 NP contributions alone cannot resolve the
𝐵 → 𝐾𝜋 puzzles.

New Physics with ΔI = 0,1 (b→ sūu or b→ sd̄d)

Considering now isospin changing operators, the fit becomes more complicated
than in the previous cases, because NP contributions with Δ𝐼 = 1 induce two
new isospin amplitudes

𝑟
(1/2)
1 𝑒𝑖𝜃𝑊 𝑒𝑖𝜙

(1/2)
1 𝑃 and 𝑟

(3/2)
1 𝑒𝑖𝜃𝑊 𝑒𝑖𝜙

(3/2)
1 𝑃 ,

corresponding to final ∣𝐾𝜋⟩ states with 𝐼 = 1/2 or 𝐼 = 3/2. Using the connection
between equations (4.24) and isospin amplitudes (see e.g. [124]), this leads —

3Notice, that contrary to the 𝐵 → 𝜙𝐾 and 𝐵 → 𝐽/𝜓𝐾 analyses, reparameterization invari-
ance cannot be exploited here, because certain hadronic input values from QCDF are used. As
a consequence, the fit results will explicitly depend on the value of the NP weak phase. Given
is the minimum for 𝜒2.
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again within the adopted approximation — to

𝒜(𝐵− → 𝜋−𝐾̄0) ≃ 𝑃
(
1 +

[
𝑟0 𝑒

𝑖𝜙0 + 𝑟
(1/2)
1 𝑒𝑖𝜙

(1/2)
1 + 𝑟

(3/2)
1 𝑒𝑖𝜙

(3/2)
1

]
𝑒𝑖𝜃𝑊

)
,

−
√
2𝒜(𝐵− → 𝜋0𝐾−) ≃ 𝑃

(
1 + 𝑟0 𝑒

𝑖𝜙0 𝑒𝑖𝜃𝑊 − 𝜖3/2 𝑒
𝑖𝜙3/2

(
𝑒−𝑖𝛾 − 𝑞 𝑒𝑖𝜔

)
+
[
𝑟
(1/2)
1 𝑒𝑖𝜙

(1/2)
1 − 2𝑟

(3/2)
1 𝑒𝑖𝜙

(3/2)
1

]
𝑒𝑖𝜃𝑊

)
,

−𝒜(𝐵̄𝑑 → 𝜋+𝐾−) ≃ 𝑃
(
1 + 𝑟0 𝑒

𝑖𝜙0 𝑒𝑖𝜃𝑊 − 𝜖𝑇 𝑒
𝑖𝜙𝑇
(
𝑒−𝑖𝛾 − 𝑞𝐶 𝑒

𝑖𝜔𝐶
)

−
[
𝑟
(1/2)
1 𝑒𝑖𝜙

(1/2)
1 + 𝑟

(3/2)
1 𝑒𝑖𝜙

(3/2)
1

]
𝑒𝑖𝜃𝑊

)
. (4.38)

Note that in this case, the contributions with Δ𝐼 = 1 are not expected to be sup-
pressed with respect to the isospin conserving ones, because the final states con-
tain up quarks. In order to reduce the number of free parameters in the fit, and to
avoid unphysical solutions, the following additional assumptions/approximations
are applied:

∙ Following the experimental observation, the direct CP asymmetry in the
decay 𝐵− → 𝜋−𝐾̄0 is forced to vanish identically, which yields the relation

𝑟0 𝑒
𝑖𝜙0 + 𝑟

(1/2)
1 𝑒𝑖𝜙

(1/2)
1 + 𝑟

(3/2)
1 𝑒𝑖𝜙

(3/2)
1 = 0 .

This is used to eliminate the parameters 𝑟0 and 𝜙0 and effectively implies
dealing with a 𝑏→ 𝑠𝑢̄𝑢 operator which does not contribute to 𝐵− → 𝜋−𝐾̄0

in the naive factorization approximation.

∙ Again, the amplitude parameters 𝜖𝑇,3/2 and 𝜙𝑇,3/2 are chosen to be equal
and lie within the QCDF ranges, see equation (4.37).

Figure 4.6 displays the results for the NP parameters 𝑟(1/2)1 𝑒𝑖𝜙
(1/2)
1 and 𝑟(3/2)1 𝑒𝑖𝜙

(3/2)
1

in the complex plane, for different values of the NP weak phase 𝜃𝑊 . The corre-
sponding 1𝜎 ranges are collected in Table 4.9. The resulting central values for the
observables in the case 𝜃𝑊 = 𝜋 − 𝛾SM are listed in the last column of Table 4.7.

One observes that the fit depends on the value of the NP weak phase 𝜃𝑊 in an
essential way. In particular, depending on whether 𝜃𝑊 is less or greater than 𝜋/2,
disjunct regions in parameter space are encountered. One of the regions always
corresponds to relatively small values of 𝑟(1/2,3/2)1 ≲ 10%, whereas for values of 𝜃𝑊
closer to 0 or 𝜋 solutions with 𝑟

(1/2,3/2)
1 as large 50% are possible. Notably, also

in this scenario the measured values for the time-dependent CP asymmetry in
𝐵 → 𝜋0𝐾𝑆 are difficult to accomodate, as can be seen in table 4.7. With a phase
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Figure 4.6: Fit results for Δ𝐼 = 1 NP contributions 𝑟
1/2
1 𝑒𝑖𝜙

1/2
1 (left) and 𝑟

3/2
1 𝑒𝑖𝜙

3/2
1

(right), with 𝜖𝑎 = 0, Δ𝜖 = 0 and 𝒜dirCP(𝜋−𝐾̄0) = 0, see also text. The
plots in the upper row refer to a weak phase 𝜃𝑊 = 5𝜋/6, the ones in the
middle row to 𝜃𝑊 = 𝜋 − 𝛾SM, and the lower ones to 𝜃𝑊 = 𝜋/6.
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𝜃𝑊 𝑟
(1/2)
1 𝜙

(1/2)
1 𝑟

(3/2)
1 𝜙

(3/2)
1 𝜒2/d.o.f.

5𝜋/6 [0.03 to 0.09]∨ [-2.05 to -0.42] [0.00 to 0.08]∨ unconstr. 2.4/3
[0.12 to 0.17] [0.47 to 0.52]

𝜋 − 𝛾SM [0.02 to 0.08] [-2.84 to -0.52] [0.00 to 0.23] unconstr. 2.6/3
𝜋/2 [0.03 to 0.09] [-2.74 to -0.65] [0.08 to 0.21] [-0.35 to 3.04] 1.5/3
𝜋/3 [0.15 to 0.21] [-0.25 to -0.07] [0.41 to 0.51] [-0.04 to 0.02] 0.4/3
𝜋/6 [0.20 to 0.26] [-0.24 to 0.13] [0.66 to 0.72] [ 0.03 to 0.15] 2.5/3

Table 4.9: Results for the NP parameters in the fit with a Δ𝐼 = 0, 1 NP contribution
in 𝐵 → 𝜋𝐾, for different values of the NP weak phase 𝜃𝑊 . Given are the
1𝜎 ranges.

differing strongly from the SM one that is possible (for example with 𝜃𝑊 ∼ 𝜋/3),
however only with rather large NP contributions. While this is a first hint on a
genuine NP phase, it is paid by the model-dependence mentioned before.

4.1.4 Conclusions

While within concrete NP models the chiral, flavour and colour structure of new
operators could be completely specified, the work presented in this section pursues
a model-independent approach. Assuming the dominance of an individual NP
operator, the analysis of 𝐵 → 𝐽/𝜓𝐾, 𝐵 → 𝜙𝐾 and 𝐵 → 𝐾𝜋 observables
allows for infering semi-quantitative information about the relative size of NP
contributions to 𝑏→ 𝑠 𝑐𝑐, 𝑏→ 𝑠 𝑠𝑠, 𝑏→ 𝑠 𝑑𝑑, and 𝑏→ 𝑠 𝑢𝑢̄ operators. The main
conclusions to be drawn are:

∙ All three modes discussed above prefer the inclusion of an operator trans-
forming non-trivial under isospin, namely an operator with the structure
𝒪NP ∼ (𝑠𝑏)(𝑢̄𝑢) provides a solution for all observed tensions. Contributions
from (𝑠𝑏)(𝑠𝑠)/(𝑐𝑐) might however contribute as well in the fitted contribu-
tions, because only isospin amplitudes can be identified. However, Δ𝐼 = 0-
contributions alone do not explain the observed pattern of observables,
unless most of the observed tensions are statistical fluctuations.

∙ From the comparison of isospin-averaged 𝐵 → 𝐽/𝜓𝐾 and 𝐵 → 𝜙𝐾 observ-
ables it is found that — after correcting for relative penguin, phase-space
and normalization factors — NP contributions to 𝑏 → 𝑠𝑐𝑐 and 𝑏 → 𝑠𝑠𝑠

82



4 Applications 4.2 NP in Mixing: the Golden Mode revisited

operators may be of similar size (order 10% relative to a SM tree operator).

∙ In a scenario, where 𝑏 → 𝑠𝑑𝑑 is the only source for NP contributions in
𝐵 → 𝜋𝐾 observables, while the SM contributions are estimated in QCDF,
one cannot simultaneously explain the individual CP asymmetries. In par-
ticular, the experimental value for 𝐴CP(𝜋

+𝐾−), which does not receive
leading NP contributions from 𝑏 → 𝑠𝑑𝑑, cannot be reproduced in a sce-
nario with negative strong phase 𝜙𝑇 .

Moreover, the small direct CP asymmetry for 𝐵− → 𝜋−𝐾̄0 requires the
matrix element of a 𝑏→ 𝑠𝑑𝑑 NP operator to have either a small coefficient
or a small phase.

In all cases, in order to explain the tensions with SM expectations for CP
asymmetries without fine-tuning of hadronic parameters, one has to require non-
trivial weak phases (𝜃𝑊 ∕= 0, 𝜋), which could be due to NP, albeit the case
𝜃𝑊 = 𝜋 − 𝛾SM is always allowed, too. A different weak phase is only preferred
in 𝐵 → 𝜋𝐾, which is however only a very weak indication of a genuine NP
phase. Consequently, these findings are still compatible with a SM scenario where
non-factorizable QCD dynamics in matrix elements of subleading operators is
unexpectedly large.

In the future, an improvement of experimental accuracy, in particular on the
isospin-violating observables, could lead to even more interesting constraints on
the relative importance of different 𝑏 → 𝑠𝑞𝑞 operators and their interpretation
within particular NP models. Interestingly, already an update for the branching
ratios in the various decays might change the picture.

4.2 NP in Mixing: the Golden Mode revisited

Up to now only NP contributions in the decay amplitude have been considered.
In the following the opposite assumption will be made, namely that NP affects
only the mixing amplitude, while the decay amplitudes stay unaffected. This can
be simply parametrized by

𝜙𝑑 = 2𝛽 + 𝜙NP . (4.39)

On the other hand, the suppressed SM amplitudes have been neglected in the
last section. However, it has been noted that the NP contributions fitted for
could also represent SM contributions which are larger than expected. If this
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interpretation holds, the effects examined in 𝑏→ 𝑠 transitions should show up in
𝑏→ 𝑑 decays as well, as they are related by 𝑆𝑈(3) symmetry. Importantly, they
should be even more pronounced there, as the Cabibbo suppression is absent —
which in most cases renders these decays less useful for NP searches, since the
large SM contributions are difficult to disentangle from possible NP ones.

Concentrating on the modes discussed in the last section, the situation is as
follows:

∙ For 𝐵 → 𝜋𝐾, numerous studies exist, which use 𝑆𝑈(3) to relate these
decays to 𝐵 → 𝜋𝜋. For recent analyses along these lines, see [118,121,122].
In addition, first measurements of 𝐵𝑠 → 𝜋𝐾 observables allow by now for
an analysis of another set of 𝑆𝑈(3) relations [125]. The results are not
conclusive, but point to a tension between 𝐵 → 𝜋𝐾 and 𝐵 → 𝜋𝜋. This
kind of analysis will not be repeated here.

∙ For 𝐵 → 𝜙𝐾, no simple 𝑆𝑈(3) relation exists, as 𝜙 transforms as a sum of
𝑆𝑈(3)-singlet and -octet, which is why it is not discussed in the following
as well.

∙ The remaining decay, 𝐵0 → 𝐽/𝜓𝐾0, is, as pointed out before, also the
most interesting, because of its important role in determining sin 2𝛽. In
light of the discussion in section 4.3, the obvious partner with a 𝑏 → 𝑑

transition would be 𝐵𝑠 → 𝐽/𝜓𝐾̄0. This process has not been measured
so far. However, 𝐵̄0 → 𝐽/𝜓𝐾̄0 is also approximately related to the decay
𝐵̄0 → 𝐽/𝜓𝜋0 [126]; this relation will be discussed in the following.

The work presented below has been published in [127]. Since then, the data
mainly for ∣𝑉𝑢𝑏/𝑉𝑐𝑏∣ changed slightly. This results in 𝜂CP𝑆 + sin 2𝛽 now being
compatible with zero as discussd already in section 2.2.2. However, as also noted
before, 𝐵 → 𝜏𝜈 points towards a discrepancy even larger than the one discussed
here. Therefore, the analysis with the old values is presented below, and the
results are considered to be still valid. In addition, the inclusion of the updated
value for sin 2𝛽 would only change the extracted range for 𝜙NP, as will be seen
from the analysis below, which is compatible with zero anyway. The other observ-
ables are given explicitly, where they differ, otherwise they are listed in tables 4.1
and 4.4.

84



4 Applications 4.2 NP in Mixing: the Golden Mode revisited

Starting point of the analysis is again the extraction of the CKM parameters
𝛽, 𝛾 independent from NP in mixing, as discussed in section 2.2.2. From that fit,

(𝜙𝑑)𝐽/𝜓𝐾0 − 2𝛽true = −(8.7+2.6−3.6 ± 3.8)∘ (4.40)

is obtained.
The amplitude for 𝐵 → 𝐽/𝜓𝐾 is written similarly to equation (4.2) as

𝐴(𝐵0 → 𝐽/𝜓𝐾0) =
(
1− 𝜆2/2

)𝒜 [1 + 𝜖𝑎𝑒𝑖𝜃𝑒𝑖𝛾
]
, (4.41)

where
𝒜 ≡ 𝜆2𝐴

[
𝐴
(𝑐)
T + 𝐴

(𝑐)
P − 𝐴

(𝑡)
P

]
(4.42)

and

𝑎𝑒𝑖𝜃 ≡ 𝑅𝑢

[
𝐴
(𝑢)
P − 𝐴

(𝑡)
P

𝐴
(𝑐)
T + 𝐴

(𝑐)
P − 𝐴

(𝑡)
P

]
(4.43)

are CP-conserving parameters, with𝐴(𝑐)
T and𝐴(𝑗)

P denoting strong amplitudes that
are related to tree-diagram-like and penguin topologies (with internal 𝑗 ∈ {𝑢, 𝑐, 𝑡}
quarks), respectively. As the charged counterparts of the decays will not be used
in the analysis below, the isospin classification discussed in previous chapters is
not relevant here.

The Cabibbo suppressed part of the amplitude is usually neglected as dis-
cussed in the last section. However, 𝑎𝑒𝑖𝜃 suffers from large hadronic uncertain-
ties, and may be enhanced through long-distance effects. The generalization of
equations (4.3) to take also the penguin effects into account can be written as

−𝜂S,L𝑆(𝐽/𝜓𝐾S,L)√
1− 𝐶(𝐽/𝜓𝐾S,L)2

= sin(𝜙𝑑 +Δ𝜙𝑑), (4.44)

where

sinΔ𝜙𝑑 =
2𝜖𝑎 cos 𝜃 sin 𝛾 + 𝜖2𝑎2 sin 2𝛾

𝑁
√

1− 𝐶(𝐽/𝜓𝐾S,L)2
, (4.45)

cosΔ𝜙𝑑 =
1 + 2𝜖𝑎 cos 𝜃 cos 𝛾 + 𝜖2𝑎2 cos 2𝛾

𝑁
√

1− 𝐶(𝐽/𝜓𝐾S,L)2
, (4.46)

with 𝑁 ≡ 1 + 2𝜖𝑎 cos 𝜃 cos 𝛾 + 𝜖2𝑎2, so that

tanΔ𝜙𝑑 =
2𝜖𝑎 cos 𝜃 sin 𝛾 + 𝜖2𝑎2 sin 2𝛾

1 + 2𝜖𝑎 cos 𝜃 cos 𝛾 + 𝜖2𝑎2 cos 2𝛾
. (4.47)
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Concerning direct CP violation, the present measurement reads

𝐶(𝐽/𝜓𝐾0) = −0.003± 0.019, (4.48)

which is again an average over the 𝐽/𝜓𝐾S and 𝐽/𝜓𝐾L final states [128, 129].
Consequently, the deviation of the terms

√
1− 𝐶(𝐽/𝜓𝐾S,L)2 from one is at most

at the level of 0.0002, and is hence completely negligible.
In the following, the decay 𝐵0 → 𝐽/𝜓𝜋0 will be used to constrain the penguin

contributions from data. As can be seen in [130], it is related to 𝐵0 → 𝐽/𝜓𝐾0 via
𝑆𝑈(3) in the approximation that isospin symmetry holds and that the emission-
annihilation parameter 𝐸𝐴2 can be neglected. This can be checked from data
by considering the decay 𝐵 → 𝐷̄0𝜙 [130], which proceeds only via this diagram.
This decay has not been measured yet, the upper limit is given by [35]

BR(𝐵0 → 𝐷̄0𝜙) ≤ 1.16× 10−5 . (4.49)

However, in this decay the amplitude enters with the CKM parameter combi-
nation 𝑉 ∗

𝑐𝑏𝑉𝑢𝑑, i.e. it is enhanced by a factor of 1/𝜆 in the amplitude with re-
spect to 𝐵0 → 𝐽/𝜓𝜋0. In light of this and BR(𝐵0 → 𝐽/𝜓𝜋0) = 2 × 10−5 the
assumption 𝐸𝐴2 → 0 therefore seems justified, even if this is only an order-of-
magnitude estimate, because the hadronization will obviously differ in the two
channels. A combination of the neglected amplitudes can also be measured via
𝐵𝑠 → 𝐽/𝜓𝜋0, but the corresponding upper limit is not restrictive at the mo-
ment [35]: BR(𝐵𝑠 → 𝐽/𝜓𝜋0) ≤ 1.2× 10−3.

In reference [126], this ansatz was used to constrain the penguin effects in
the golden mode. However, the quality of the data has improved such that it is
possible to go beyond this paper by allowing for 𝜙NP𝑑 ∕= 0∘. Moreover, as will be
seen below, the current 𝐵 factory data point already towards a negative value
of Δ𝜙𝑑, where mixing-induced CP violation in 𝐵0 → 𝐽/𝜓𝜋0 is the driving force,
thereby reducing the tension (4.40) in the fit of the UT.

In the SM, the amplitude for 𝐵 → 𝐽/𝜓𝜋0 is given by

√
2𝐴(𝐵0 → 𝐽/𝜓𝜋0) = 𝜆𝒜′

[
1− 𝑎′𝑒𝑖𝜃

′
𝑒𝑖𝛾
]
, (4.50)

where the
√
2 factor is associated with the 𝜋0 wavefunction, while 𝒜′ and 𝑎′𝑒𝑖𝜃

′

are the counterparts of the parameters defined in equations (4.42) and (4.43),
respectively. The CP asymmetry 𝑎CP(𝑡; 𝐽/𝜓𝜋

0) (see equation (2.52)) has recently
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been measured by the BaBar [131] and Belle [132] collaborations, yielding the
following averages [54]:

𝐶(𝐽/𝜓𝜋0) = −0.10± 0.13, (4.51)

𝑆(𝐽/𝜓𝜋0) = −0.93± 0.15 . (4.52)

Note that the error of 𝑆(𝐽/𝜓𝜋0) is that of the HFAG, which is not inflated due
to the inconsistency of the data.

These measurements allow for calculating 𝑎′ as functions of 𝜃′. The follow-
ing two relations are obtained from 𝐶(𝐽/𝜓𝜋0) and 𝑆(𝐽/𝜓𝜋0) (𝒪 = 𝐶 and 𝑆,
respectively):

𝑎′ = 𝑈𝒪 ±
√
𝑈2
𝒪 − 𝑉𝒪, (4.53)

where
𝑈𝐶 ≡ cos 𝜃′ cos 𝛾 +

sin 𝜃′ sin 𝛾
𝐶(𝐽/𝜓𝜋0)

, 𝑉𝐶 ≡ 1, (4.54)

and

𝑈𝑆 ≡
[
sin(𝜙𝑑 + 𝛾) + 𝑆(𝐽/𝜓𝜋0) cos 𝛾

sin(𝜙𝑑 + 2𝛾) + 𝑆(𝐽/𝜓𝜋0)

]
cos 𝜃′ , (4.55)

𝑉𝑆 ≡ sin𝜙𝑑 + 𝑆(𝐽/𝜓𝜋0)

sin(𝜙𝑑 + 2𝛾) + 𝑆(𝐽/𝜓𝜋0)
. (4.56)

The intersection of the 𝐶(𝐽/𝜓𝜋0) and 𝑆(𝐽/𝜓𝜋0) contours fixes then the hadronic
parameters 𝑎′ and 𝜃′ in the SM; when allowing for an additional NP phase, one
has to take into account 𝑆(𝐽/𝜓𝐾0) together with 𝑆(𝐽/𝜓𝜋0) in order to have a
constraint in the 𝑎′–𝜃′ plane. From 𝐶(𝐽/𝜓𝐾0) comes another constraint, which is
also of the form (4.53) with the replacements 𝑎′ → 𝜖𝑎 and 𝜃′ → 180∘+𝜃. It should
be stressed that equations (4.53)–(4.55) are valid exactly as these expressions
follow from the SM structure of 𝐵0 → 𝐽/𝜓𝜋0.

Within the approximation discussed above, the 𝑆𝑈(3) limit now leads to

𝑎′ = 𝑎, 𝜃′ = 𝜃 . (4.57)

Thanks to these relations, the shift Δ𝜙𝑑 can be determined by means of equa-
tions (4.44)–(4.48) from the data. They are subject to 𝑆𝑈(3) breaking correc-
tions, due to sizable non-factorizable effects expected in these decays. Their
impact on the determination of Δ𝜙𝑑 can be easily inferred from equation (4.47).
Neglecting terms of order 𝜖2, there is a linear dependence on 𝑎 cos 𝜃. Conse-
quently, corrections to the left-hand side of equation (4.57) propagate linearly,
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while 𝑆𝑈(3)-breaking effects in the strong phases will generally lead to an asym-
metric uncertainty for Δ𝜙𝑑.

There is another constraint, which follows from the CP-averaged branching
ratios. It is introduced by

𝐻 ≡ 2

𝜖

[
BR(𝐵𝑑 → 𝐽/𝜓𝜋0)

BR(𝐵𝑑 → 𝐽/𝜓𝐾0)

] ∣∣∣∣𝒜𝒜′

∣∣∣∣2 Φ𝐽/𝜓𝐾0

Φ𝐽/𝜓𝜋0

=
1− 2𝑎′ cos 𝜃′ cos 𝛾 + 𝑎′2

1 + 2𝜖𝑎 cos 𝜃 cos 𝛾 + 𝜖2𝑎2
, (4.58)

where the Φ𝐽/𝜓𝑃 ≡ Φ(𝑀𝐽/𝜓/𝑀𝐵0 ,𝑀𝑃/𝑀𝐵0) are phase-space factors [133]. In
order to extract 𝐻 from the data, one has to analyze the 𝑆𝑈(3)-breaking correc-
tions to ∣𝒜/𝒜′∣. Assuming them to be naively factorizable, they are given by the
ratio of two form factors, evaluated at 𝑞2 = 𝑀2

𝐽/𝜓. This ratio has been studied
in detail using QCD light-cone sum rules (LCSR) [134]. Here, the result for the
form factor ratio at 𝑞2 = 0 from [135,136],

𝑓+𝐵→𝐾(0)

𝑓+𝐵→𝜋(0)
= 1.38+0.11−0.10, (4.59)

is used and the extrapolation to 𝑞2 = 𝑀2
𝐽/𝜓 by using a simple BK parametrization

[137],

𝑓+(𝑞2) = 𝑓+(0)

[
𝑀2

𝐵𝑀
2
∗

(𝑀2∗ − 𝑞2)(𝑀2
𝐵 − 𝛼𝑞2)

]
, (4.60)

is performed. Here 𝑀∗ denotes the mass of the ground state vector meson in
the relevant channel and the pole at 𝑞2 = 𝑀2/𝛼 models the contribution of the
hadronic continuum for 𝑞2 > 𝑀2

∗ . The BK parameter 𝛼 has been fitted to the
𝐵 → 𝜋 lattice data to be 𝛼𝜋 = 0.53±0.06. Nothing is known about the value of 𝛼
for the 𝐵 → 𝐾 form factor and the simple assumption will be used that the main
𝑆𝑈(3) breaking effect is due to the shift of the continuous part of the spectral
function from the 𝐵𝜋 to the 𝐵𝐾 threshold. This leads to 𝛼𝐾 = 0.49± 0.05 , and
– extrapolating in this way to 𝑞2 = 𝑀2

𝐽/𝜓 – finally to

𝑓+𝐵→𝐾(𝑀
2
𝐽/𝜓)

𝑓+𝐵→𝜋(𝑀
2
𝐽/𝜓)

= 1.34± 0.12. (4.61)

Using [54]
BR(𝐵0 → 𝐽/𝜓𝐾0) = (8.63± 0.35)× 10−4 (4.62)

and
BR(𝐵0 → 𝐽/𝜓𝜋0) = (0.20± 0.02)× 10−4 , (4.63)
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the obtained value is
𝐻 = 1.53± 0.16BR ± 0.27FF , (4.64)

where the errors given are induced by the branching ratios and the form-factor
ratio respectively.

Using the 𝑆𝑈(3)-assumption (4.57), the following relation [133]

𝐶(𝐽/𝜓𝐾0) = −𝜖𝐻𝐶(𝐽/𝜓𝜋0), (4.65)

can be obtained, which corresponds to equation (3.62) for this case. This would
in principle offer an interesting probe for 𝑆𝑈(3) breaking, however, the value of
𝐻 given above yields 𝐶(𝐽/𝜓𝐾0) = 0.01 ± 0.01, which is consistent with (4.48),
but obviously too small for a powerful test. For such a test to be effective, at least
one of the CP asymmetries has be measured significantly different from zero.

Figure 4.7: The 1𝜎 ranges (corresponding to 39% CL) in the 𝜃′–𝑎′ plane with current
data.

Applying once more equation (4.53) with

𝑈𝐻 =

(
1 + 𝜖𝐻

1− 𝜖2𝐻

)
cos 𝜃′ cos 𝛾 , (4.66)

𝑉𝐻 = (1−𝐻)/(1− 𝜖2𝐻), (4.67)

i.e. 𝒪 = 𝐻, results in another constraint in the 𝑎′ − 𝜃′ plane. In contrast to the

89



4.2 NP in Mixing: the Golden Mode revisited 4 Applications

Figure 4.8: Δ𝜙𝑑 for the constraints shown in figure 4.7.

CP asymmetries of 𝐵0 → 𝐽/𝜓𝜋0, here 𝑆𝑈(3) breaking effects enter implicitly
through the determination of 𝐻.

In figure 4.7, 1𝜎 ranges for the fits in the 𝜃′–𝑎′ plane are shown for the cur-
rent data. The major implication of 𝑆(𝐽/𝜓𝜋0) is 𝜃′ ∈ [90∘, 270∘]. Looking at
equation (4.44), applied to 𝐵 → 𝐽/𝜓𝜋, this is actually expected. 𝑆(𝐽/𝜓𝐾0) fixes
the NP phase essentially to (𝜙𝑑)𝐽/𝜓𝐾0 − 2𝛽true, as the NP phase is an 𝒪(1) ef-
fect in 𝑆(𝐽/𝜓𝐾0), while the additional SM contribution is suppressed by 𝜖. The
negative central value of 𝐶(𝐽/𝜓𝜋0) prefers 𝜃′ > 180∘. The intersection of the
𝐶(𝐽/𝜓𝜋0) and 𝐻 bands, which falls well into the 𝑆(𝐽/𝜓𝜋0, 𝐽/𝜓𝐾0) as well as the
𝐶(𝐽/𝜓𝐾0) region, gives then

𝑎′ ∈ [0.15, 0.67] and 𝜃′ ∈ [174, 213]∘ (1𝜎) . (4.68)

Note that all three constraints give finally an unambiguous solution for these
parameters.

In figure 4.8 the constraints shown in figure 4.7 are converted into the 𝜃–Δ𝜙𝑑
plane with the help of equations (4.57) and (4.45)–(4.47). A negative value of
Δ𝜙𝑑 emerges; the global fit to all observables yields

Δ𝜙𝑑 ∈ [−3.9,−0.8]∘ , (4.69)

mainly due to the constraints from 𝐻 and 𝐶(𝐽/𝜓𝜋0), corresponding to a SM
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mixing phase of 𝜙𝑑 = (42.4+3.4−1.7)
∘. Furthermore, the fit gives

𝜙NP𝑑 ∈ [−13.8, 1.1]∘ , (4.70)

which includes the SM value 𝜙NP𝑑 = 0∘. Consequently, the negative sign of the
SM correction Δ𝜙𝑑 softens the tension in the fit of the UT. Performing the fit in
a SM scenario, where 𝜙NP ≡ 0, yields

Δ𝜙SM𝑑 ∈ [−4.1,−0.6]∘ , (4.71)

where only 𝐵 → 𝐽/𝜓𝜋 data and BR(𝐵 → 𝐽/𝜓𝐾) have been used.
The impact of 𝑆𝑈(3)-breaking corrections has been studied by setting 𝑎 = 𝜉𝑎′

in relation (4.57) and uncorrelating 𝜃 and 𝜃′. Even when allowing for 𝜉 ∈ [0.5, 1.5]

and 𝜃, 𝜃′ ∈ [90, 270]∘ in the fit, and using a 50% increased error for the form-
factor ratio in view of non-factorizable contributions to ∣𝒜/𝒜′∣, the global fit
yields Δ𝜙𝑑 ∈ [−6.7, 0.0]∘ and 𝜙NP𝑑 ∈ [−14.9, 4.0]∘, determined now mostly by
𝐶(𝐽/𝜓𝐾0) and 𝐻. Consequently, these 𝑆𝑈(3)-breaking effects do not alter the
conclusions from this analysis. It should be emphasized that the novel feature
of this determination of 𝜙NP𝑑 in comparison with other analyses in the literature
is, that the doubly Cabibbo-suppressed SM contributions are included, which is
crucial in order to eventually detect or exclude such a NP effect.

In view of the relatively large experimental errors in 𝐵 → 𝐽/𝜓𝜋, again final
conclusions cannot be drawn. However, the increasing experimental precision will
further constrain the hadronic parameters. The final reach for a NP contribution
to the 𝐵0

𝑑–𝐵̄0
𝑑 mixing phase will strongly depend on the measured values of the

CP asymmetries of 𝐵0 → 𝐽/𝜓𝜋0, which are challenging for LHCb because of the
neutral pions (where, as noted above, a similar analysis could be performed with
𝐵0
𝑠 → 𝐽/𝜓𝐾S [133]), but can be measured at future Super-𝐵 factories.

The possible impact is illustrated through two benchmark scenarios, assuming
a future reduction of the experimental uncertainties of the CP asymmetries of
𝐵0 → 𝐽/𝜓𝐾0 by a factor of 2, and errors of the branching ratios and 𝛾 that
are five times smaller; the scenarios agree in 𝐶(𝐽/𝜓𝜋0) = −0.10 ± 0.03, but
differ in 𝑆(𝐽/𝜓𝜋0). In the high-𝑆 scenario (a), 𝑆 = −0.98 ± 0.03 is assumed.
As can be seen in figure 4.9, Δ𝜙𝑑 ∈ [−3.1,−1.8]∘ (with 𝑎′ ∼ 0.42, 𝜃′ ∼ 191∘)
would then come from the lower value of 𝑆 and 𝐻, which is assumed to be
𝐻 = 1.53± 0.03± 0.27. In the low-𝑆 scenario (b), 𝑆 = −0.85± 0.03 is assumed.
In this case, Δ𝜙𝑑 ∈ [−1.2,−0.8]∘ (with 𝑎′ ∼ 0.18, 𝜃′ ∼ 201∘) would be determined
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by 𝑆 and 𝐶 alone, while 𝐻 would only be used to rule out the second solution. By
the time the accuracies of these benchmark scenarios can be achieved, hopefully
also a much better picture of 𝑆𝑈(3) breaking effects through data about 𝐵𝑠,𝑑,𝑢

decays will have been emerged. A step in that direction will be discussed in the
following section.

Figure 4.9: Future benchmark scenarios, as discussed in the text.

Since the experimental uncertainty of (𝜙𝑑)𝐽/𝜓𝐾0 could be reduced to ∼ 0.3∘

at an upgrade of LHCb and an 𝑒+𝑒− Super-𝐵 factory, these corrections will
be essential. It is interesting to note that the quality of the data in flavour
physics will soon reach a level, where subleading effects, i.e. doubly Cabibbo-
suppressed penguin contributions, have to be taken into account. In particular, in
the analyses of CP violation in the golden𝐵0 → 𝐽/𝜓𝐾S,L modes this is mandatory
in order to fully exploit the physics potential for NP searches.

Obviously, this analysis does not rule out NP effects in the amplitude as
the reason for the observed shift. It merely states that the relation between
𝐵 → 𝐽/𝜓𝐾 and 𝐵 → 𝐽/𝜓𝜋 seems to be SM-like, and that large hadronic SM
effects therefore could be the explanation. Recently, in [138] the subleading effects
in the SM have been re-estimated to be small, of order 𝒪(10−3), based of a non-
perturbative estimation of rescattering effects. This estimate again relies on some
assumptions, importantly in the expression for the matrix element of an operator
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𝑇 𝑐 (proportional to 𝜆𝑐𝑠, leading to Δ𝐶 = 0 and ∣Δ𝐵∣ = ∣Δ𝑆∣ = 1) the sum over
all possible hadronic intermediate states 𝑘 appears,

⟨𝑓 ∣𝑇 𝑐∣𝐵0⟩ =
∑
𝑘

⟨𝑓 ∣𝑆0∣𝑘⟩⟨𝑘∣𝑇 𝑐∣𝐵0⟩ , (4.72)

where each term in the sum is assumed to be smaller than the left hand side.
There is no obvious justification for that assumption. However, this estimate
renders the analysis of the last section even more relevant, since the option of large
SM effects would be ruled out. In that case, the analysis presented here confirms
that a NP contribution in the amplitude is sufficient to explain the data, and that
that contribution shows a SM-like transformation behaviour under 𝑆𝑈(3). In any
case, this discussion shows that to finally identify NP in non-leptonic decays, the
combination of several decay modes has to be taken into account, and that a
better understanding of SM hadronic effects is necessary.

4.3 U-spin and its breaking

As seen in the previous section, 𝑆𝑈(3) and its breaking play an important role in
distinguishing NP effects from SM ones. In this section, the formalism developed
in section 3.3.4 will be applied to non-leptonic two-body 𝐵 decays. First, some
general comments will be given regarding the decays of charged 𝐵 mesons in
section 4.3.1, and two sample applications will be discussed in some detail, namely
𝐵 → 𝐽/𝜓(𝐾 or 𝜋) and 𝐵 → 𝐷(𝐾 or 𝜋), in order to check how far one can
get with present data without any restrictive ad-hoc assumptions. The decays
of neutral 𝐵 mesons will then be discussed in section 4.3.2, fitting the present
𝐵 → 𝑃+𝑃− data in the 𝑈 -spin limit to check for 𝑈 -spin violations, and discussing
decays to CP eigenstates in some detail. Finally, some concluding remarks are
given.

Part of the work presented in this section has been published in [139], and
most of it is included in [140].

4.3.1 Decays of charged B mesons

As mentioned in section 3.3.4, the charged 𝐵 mesons are 𝑈 -spin singlets and
hence — due to the simple 𝑈 -spin structure of the effective Hamiltonian — the
final state has to be a doublet or, when including 𝑈 -spin breaking, a quadruplet.
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Considering two-body decays, this corresponds to having one final-state meson in
a 𝑈 -spin doublet, while the second one has to be either 𝑈 -spin singlet or -triplet.

Clearly the case of Δ𝐶 = ±1 is the simplest one, since only a single CKM
factor arises. This leads to a considerable reduction of parameters, but of course
also of observables. An example will be discussed below.

In the case where one of the final state mesons is part of a triplet, there is
another complication. Since 𝑈 -spin breaking is not that small, the mass eigen-
states are quite different from the 𝑈 -spin eigenstates, i.e. there is not even an
approximate mass eigenstate corresponding to an 𝑠𝑠 − 𝑑𝑑 𝑈 -spin state. As al-
ready described in section 3.3.4 (see equations (3.59) ff.), there are three mass
eigenstates contributing to 𝑈𝑧 = 0, which all have to be taken into account. Due
to that and the fact that in charged decays no time-dependent measurements
are available, it is generally difficult to include breaking corrections without in-
troducing too many parameters. Below two examples are discussed, where the
neutral meson is chosen to be a 𝑈 -spin singlet, thereby circumventing part of the
complications described above.

The decays 𝑩 → 𝑱/𝝍 (𝑲 or 𝝅)

As a first application, the decays 𝐵 → 𝐽/𝜓 (𝐾 or 𝜋) are considered, which are
under the simplest cases of Δ𝐶 = 0 from the group-theoretical point of view,
because of 𝐵− and 𝐽/𝜓 being 𝑈 -spin singlets. This results in the simple structure〈

𝐵−∣ℋeff ∣𝐽/𝜓𝐾− (𝜋−)
〉
=
∑
𝑞=𝑢,𝑐

𝜆𝑞 𝑠/𝑑
(
𝐴𝑞,1/2 ± 𝐴𝜖

𝑞,1/2

)
. (4.73)

The analysis is based on the data shown in tables 4.10 and 4.11.

Decay BR/10−4 𝐴CP

𝐵− → 𝐽/𝜓𝐾− 10.07± 0.035 0.017± 0.016(∗)
𝐵− → 𝐽/𝜓𝜋− 0.49± 0.06(∗) 0.09± 0.08

Table 4.10: Measurements for the decays 𝐵− → 𝐽/𝜓(𝐾 or 𝜋), data taken from the
PDG [35]. (∗): Error enhanced by PDG because of inconsistent measure-
ments.

As a first step, it is checked for 𝑈 -spin violation by testing relation (3.62).
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Inserting the data from table 4.10 and neglecting tiny phase space differences
results in

(𝐴CP × 𝐵𝑅)𝐵−→𝐽/𝜓𝐾− + (𝐴CP × 𝐵𝑅)𝐵−→𝐽/𝜓𝜋− = 0.22± 0.17 , (4.74)

adding errors simply in quadrature. This result is not significant and a real test
may only be performed, if at least one of the asymmetries is measured significantly
different from zero.

In many applications naive factorization has been applied, which allows to
include at least the factorizable part of 𝑈 -spin breaking. In this picture one
expects the ratio of branching ratios to be given only in terms of CKM factors
and the ratio of form factors. One gets the theoretical prediction

𝐵𝑅(𝐵− → 𝐽/𝜓𝐾−)
𝐵𝑅(𝐵− → 𝐽/𝜓𝜋−)

∼
(
𝐹𝐵→𝐾(𝑀2

𝐽/𝜓)

𝐹𝐵→𝜋(𝑀2
𝐽/𝜓)

)2 ∣∣∣∣𝑉 ∗
𝑐𝑏𝑉𝑐𝑠

𝑉 ∗
𝑐𝑏𝑉𝑐𝑑

∣∣∣∣2 = 33.9± 6.1 , (4.75)

where the form factor ratio is evaluated as described in the last section (see
equation (4.59) ff.). This has to be contrasted with the experimental number

𝐵𝑅(𝐵− → 𝐽/𝜓𝐾−)
𝐵𝑅(𝐵− → 𝐽/𝜓𝜋−)

=

{
19.2± 1.5 (measurement of the ratio)
21.4± 1.9 (combined single measurements).

(4.76)
The sizable discrepancy indicates the well known fact that these decays have large
non-factorizable contributions.

Decay BR/10−4 𝐴CP 𝑆CP

𝐵̄0 → 𝐽/𝜓𝐾̄0 8.71± 0.32 −0.002± 0.020(∗) 0.657± 0.025

𝐵̄0 → 𝐽/𝜓𝜋0 0.205± 0.024 0.10± 0.13 −0.93± 0.29(∗∗)

Table 4.11: Measurements for the decays 𝐵̄ → 𝐽/𝜓(𝐾 or 𝜋). Time-dependent mea-
surements are taken from the HFAG [54], other data from the PDG [35].
(∗): Error enhanced by the PDG due to inconsistent measurements. (∗∗):
Error enhanced according to the PDG prescription for the same reason.

On the other hand, the data in table 4.10 are not sufficient to allow a fit
to the general group-theoretical expressions. Hence additional assumptions are
necessary, which will be taken to be the following:
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∙ The amplitude proportional to 𝜆𝑢𝑑/𝑠 = 𝑉𝑢𝑏𝑉
∗
𝑢𝑑/𝑠 is expected to be small

compared to the one proportional to 𝜆𝑐𝑑/𝑠 = 𝑉𝑐𝑏𝑉
∗
𝑐𝑑/𝑠, because its tree con-

tribution has only penguin matrix elements. Hence the breaking corrections
to this amplitude will not be taken into account.

∙ In addition, isospin symmetry will be used. This means that also the decays
of the neutral 𝐵 modes have to be taken into account, since they are the
isospin partners of the charged 𝐵 mesons. When making use of isospin,
the matrix elements identified in the 𝑈 -spin analysis are splitted into their
two isospin components as shown in table 3.4. Here the contribution with
Δ𝐼 = 1, 3/2 proportional to 𝜆𝑐𝑠/𝑑 is neglected, which receives contribu-
tions from penguin matrix elements of electroweak penguin operators only;
hence the corresponding penguin contributions are assumed to be a pure
Δ𝐼 = 0(1/2) amplitude for both the 𝑏→ 𝑠 and 𝑏→ 𝑑 transition.

For the neutral 𝐵 mesons the data shown in table 4.11 are included. Using the
above assumptions leads to the following parametrization:

< 𝐵−∣ℋeff ∣𝐽/𝜓𝐾− > = 𝑁𝐽/𝜓𝐾

(
1 + 𝑥𝜖 + 𝜖 𝑒−𝑖𝛾 𝑟0 𝑒𝑖𝜙0

)
, (4.77)

< 𝐵−∣ℋeff ∣𝐽/𝜓𝜋− > =
𝜆

1− 𝜆2/2
𝑁𝐽/𝜓𝐾

(−1 + 𝑥𝜖 + 𝑒−𝑖𝛾 𝑟0 𝑒𝑖𝜙0
)
,

< 𝐵̄0∣ℋeff ∣𝐽/𝜓𝐾̄0 > = 𝑁𝐽/𝜓𝐾

[
1 + 𝑥𝜖 + 𝜖 𝑒−𝑖𝛾

(
𝑟0 𝑒

𝑖𝜙0 − 2𝑟𝐾1 𝑒𝑖𝜙
𝐾
1

)]
,

< 𝐵̄0∣ℋeff ∣𝐽/𝜓𝜋0 > =
𝜆

1− 𝜆2/2
𝑁𝐽/𝜓𝐾

[
−1 + 𝑥𝜖 + 𝑒−𝑖𝛾

(
𝑟0 𝑒

𝑖𝜙0 − 2𝑟𝜋3/2 𝑒
𝑖𝜙𝜋

3/2

)]
,

where the normalization factor 𝑁𝐽/𝜓𝐾 is chosen in such a way that its square
fulfills 𝑁2

𝐽/𝜓𝐾 = BR(𝐵− → 𝐽/𝜓𝐾−) in absence of 𝑈 -spin breaking and pen-
guin effects. As a consequence, the corresponding ratios of lifetimes and phase
space factors have to be taken into account when computing the branching ratios
from the parametrization (4.77) for the other decays. Furthermore, the ratios
𝑟0, 𝑟𝐾1 and 𝑟𝜋3/2 denote the penguin and 𝑢 quark tree contributions (normalized
to 𝑁𝐽/𝜓𝐾), which are defined to contain a factor 𝑅𝑢. Finally, the complex pa-
rameter 𝑥𝜖 represents the 𝑈 -spin breaking part in the leading contribution, again
normalized to 𝑁𝐽/𝜓𝐾 .

As inputs from the CKM fit, in addition to the ones described above, those
from table 4.12 are used, taken from [29], where the data from 𝐵 → 𝐽/𝜓𝐾 is not
part of the fit4.

4In fact, the value obtained for the angle 𝛾 is determined including the input of 𝐵 → 𝐽/𝜓𝐾.
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Parameter Global fit value
𝜆 0.2252± 0.0008

𝛾
(
66.8+5.4−3.8

)∘
𝛽𝑤/𝑜𝐽/𝜓 0.48+0.02−0.04

Table 4.12: CKM parameters taken from [29], results as of summer 08. The lower
uncertainty of 𝛾 and 𝛽w/o𝐽/𝜓, which refers to the fit to 𝛽 excluding the
measurement of sin(2𝛽), has been slightly enhanced to reflect the non-
gaussian behaviour of the distribution in a conservative way.

𝛿0 ∈ [−𝜋/2, 𝜋/2]
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Figure 4.10: The fit results for the 𝑈 -spin breaking parameter 𝑥𝜖 in 𝐵 → 𝐽/𝜓𝐾 and
𝐵 → 𝐽/𝜓𝜋 in the complex plane.

The results of the fit are given in table 4.13, and the results for the 𝑈 -spin
breaking parameters are additionally shown shown in figure 4.10. The fit shows
three distinct solutions, two of which have 𝜙0 ∼ 0 while the third one has 𝜙0 ∼ 𝜋.
As the solutions interfere in the fit and make it unstable, two separate fits are
performed with the restrictons 𝜙0 ∈ [−𝜋/2, 𝜋/2] and 𝜙0 ∈ [𝜋/2, 3𝜋/2], covering
the whole parameter space.

The sizable difference between the branching ratios of the charged and the
neutral 𝐵 → 𝐽/𝜓𝐾 modes is somewhat surprising. The isospin analysis discussed
in section 4.1.1 shows that it is driven by the Δ𝐼 = 1 contribution of the effective

However, for the preferred value of 𝛾, this input has a negligible influence.
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𝜙0 ∈ [−𝜋/2, 𝜋/2] (𝜒2 = 0.51)
Parameter best fit value 1𝜎 range 2𝜎 range

Re(𝑥𝜖) 0.08 [ 0.02, 0.41] [−0.03, 0.63]

Im(𝑥𝜖) -0.14 [−0.28,−0.04] ∨ ≤ −0.6 unconstrained
𝑁2
𝐽/𝜓𝐾 8.39 [ 4.60, 9.38] [ 3.65, 10.17]

𝑟0 0.88 [ 0.07, 0.26] ∨ [ 0.56, 1.47] [ 0.00, 1.72]

𝜙0 0.09 [−0.22, 0.61] unconstrained
𝑟𝐾1 1.60 [ 1.18, 2.37] [ 0.66, 2.85]

𝜙𝐾1 -0.07 [−0.75,−0.50] ∨ [−0.17, 0.04] [−0.90, 0.88]

𝑟𝜋3/2 0.49 [ 0.00, 0.09] ∨ [ 0.24, 1.18] [ 0.00, 1.46]

𝜙𝜋3/2 (0.16) unconstrained unconstrained

𝜙0 ∈ [𝜋/2, 3𝜋/2] (𝜒2 = 0.01)
Parameter best fit value 1𝜎 range 2𝜎 range

Re(𝑥𝜖) 0.13 [0.06, 0.45] [ 0.01, 0.66]

Im(𝑥𝜖) (0.59) ≥ 0.06 unconstrained
𝑁2
𝐽/𝜓𝐾 6.27 [3.76, 8.60] [ 2.96, 9.93]

𝑟0 0.29 [0.09, 1.03] [ 0.00, 1.38]

𝜙0 2.78 [2.28, 3.25] unconstrained
𝑟𝐾1 1.40 [0.78, 2.14] [ 0.31, 2.58]

𝜙𝐾1 0.57 [0.05, 0.91] [−0.87, 1.11]
𝑟𝜋3/2 0.06 [0.00, 0.18] [ 0.00, 0.31]

𝜙𝜋3/2 (2.55) unconstrained unconstrained

Table 4.13: Results for the fit to 𝐽/𝜓(𝐾 or 𝜋) data, as explained in the text. The
values in brackets indicate that due to a broad allowed range the central
value is not significant.

hamiltonian, which is doubly CKM suppressed. Hence the ratio between these
branching ratios should be given by the ratio of lifetimes which is close to unity,
modified only by a doubly Cabbibo suppressed tree contribution and electroweak
penguins. In the fit, the measured difference results in 𝑟𝐾1 ∼ 1(≥ 0.78@1𝜎),
which is quite large, but on the other hand not yet conclusive. Furthermore, the
non-vanishing central values for the CP asymmetries imply a non-vanishing value
for 𝑟0, 𝑟0 ≥ 0.06@1𝜎, in combination with a non-trivial phase. However, as is
obvious from the significance of the data, the allowed range at two standard devi-
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ations includes zero. Concerning 𝑈 -spin breaking, the fit prefers a non-vanishing
imaginary part of the 𝑈 -spin breaking parameter 𝑥𝜖, while it is not bounded
from above. The first observation is due to relation (4.74) showing a deviation
from zero and especially preferring equal signs for the CP asymmetries, while the
branching ratios, as seen above, are compatible with no breaking at all. This is
again a hint to non-factorizable 𝑈 -spin breaking. The reason for the second ob-
servation lies in the fact, that no observable depends in leading order on Im(𝑥𝜖),
when assuming a power-counting 𝑥𝜖, 𝑟𝑖 ∼ 𝜆. The other parameters lie within
relatively large ranges, whithin or including the expected order of magnitude.

One possibility to further constrain this fit would be the approximate 𝑆𝑈(3)

relation for 𝐵 → 𝐽/𝜓𝜋0 and 𝐵 → 𝐽/𝜓𝐾0 used in the last section, leading to
the identification 𝑟𝐾1 𝑒

𝑖𝜙𝐾1 = 𝑟𝜋3/2𝑒
𝑖𝜙𝜋

3/2 . But as the purpose of this formalism is to
avoid this kind of assumptions, it is not applied here. However, in table 4.13 it
can be seen that, because of the large value for 𝑟𝐾1 , this identification would be
problematic, thereby indicating a tension between charged and neutral modes in
that scenario.

𝑩± → 𝑫 (𝑲± or𝝅±) decays

As an example for Δ𝐶 = ±1 transtions the decays 𝐵± → 𝐷 (𝐾± or 𝜋±) are
considered. As can be seen in equation (3.56), these transitions are governed by
a single CKM factor, since there are four different quark flavours in the final state.
In particular, this leads to vanishing direct CP asymmetries in the corresponding
decays, so the number of parameters as well as the one of observables is less by
a factor of two.

However, it has been proposed a few years ago [141,142] to discuss observables
from decays, where the (neutral) 𝐷 meson in the final state is reconstructed in a
decay mode which is a CP eigenstate. This leads to interference between 𝐵 → 𝐷-
and 𝐵 → 𝐷̄-modes, where 𝐵− → 𝐷𝐾− is the “golden mode” to extract 𝛾 with
negligible theoretical error. The analysis can be transferred to 𝐵 → 𝐷𝜋 one
to one, however, in this case the second amplitude, 𝐵− → 𝐷̄0𝜋− is not only
colour-, but in addition doubly Cabibbo-suppressed, which leads to very small
interference effects.

Turning to 𝑈 -spin, the analysis is as in the 𝐵 → 𝐽/𝜓(𝐾 or 𝜋) modes, however,
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with only a single CKM factor. The parametrization in this case reads

⟨𝐵−∣ℋeff ∣𝐷0𝐾−⟩ = 𝜆𝐴1

(
1 + 𝑦1,𝜖𝑒

𝑖𝜃1
)
,

⟨𝐵−∣ℋeff ∣𝐷0𝜋−⟩ = (1− 𝜆2/2)𝐴1

(
1− 𝑦1,𝜖𝑒

𝑖𝜃1
)
,

⟨𝐵−∣ℋeff ∣𝐷̄0𝐾−⟩ = 𝜆𝑒−𝑖𝛾𝐴2𝑒
𝑖𝜃𝐴
(
1 + 𝑦2,𝜖𝑒

𝑖𝜃2
)
,

⟨𝐵−∣ℋeff ∣𝐷̄0𝜋−⟩ = −𝜆2𝑒−𝑖𝛾𝐴2𝑒
𝑖𝜃𝐴
(
1− 𝑦2,𝜖𝑒

𝑖𝜃2
)
, (4.78)

where a common factor 𝐴𝜆2 is absorbed into the definition of 𝐴1,2, and addition-
ally a factor of 𝑅𝑢 in 𝐴2. In the fit, the (to order 1%) common phase-space factor
Φ and the lifetime of the 𝐵 meson are included by the definition

𝐴1,2 =
√

Φ(𝑚𝐵,𝑚𝜋)𝜏𝐵− 𝐴1,2 . (4.79)

Note that 𝐴1 is chosen to be real, while for 𝐴2 one has to keep a phase, because
of the interference effects described below. Furthermore, the 𝑈 -spin breaking
quantities 𝑦1,𝜖 and 𝑦2,𝜖 are real and positive, since their phases are taken into
account explicitly.

Defining now the CP eigenstates5

∣𝐷0
±⟩ =

1√
2

(∣𝐷0⟩ ± ∣𝐷̄0⟩
)
, (4.80)

one has the additional eight observables

Γ̄(𝐵− → 𝐷0
±𝐾

−/𝜋−) =
1

2

[
Γ(𝐵− → 𝐷0

±𝐾
−/𝜋−) + Γ(𝐵+ → 𝐷0

±(𝐾
+/𝜋+)

]
,

(4.81)

𝒜CP(𝐵
− → 𝐷0

±𝐾
−/𝜋−) =

Γ(𝐵− → 𝐷0
±𝐾

−/𝜋−)− Γ(𝐵+ → 𝐷0
±𝐾

+/𝜋+)

Γ(𝐵− → 𝐷0±𝐾−/𝜋−) + Γ(𝐵+ → 𝐷0±𝐾+/𝜋+)
,

(4.82)

with the four relations

Γ̄(𝐵− → 𝐷0
+𝐾

−/𝜋−)𝒜CP(𝐵
− → 𝐷0

+𝐾
−/𝜋−) =

−Γ̄(𝐵− → 𝐷0
−𝐾

−/𝜋−)𝒜CP(𝐵
− → 𝐷0

−𝐾
−/𝜋−) , (4.83)

Γ̄(𝐵− → 𝐷0
+𝐾

−/𝜋−) + Γ̄(𝐵− → 𝐷0
−𝐾

−/𝜋−) =

Γ̄(𝐵− → 𝐷0𝐾−/𝜋−) + Γ̄(𝐵− → 𝐷̄0𝐾−/𝜋−) , (4.84)

5In the follwing any mixing in the 𝐷 system is neglected.
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where the first relation requires in particular opposite signs for the corresponding
CP asymmetries, leaving eight independent observables in total, which are chosen
to be both from BR(𝐵− → 𝐷0𝐾−/𝜋−), and six from BR(𝐵− → 𝐷0

±𝐾
−/𝜋−) and

𝒜CP(𝐵
− → 𝐷0

±𝐾
−/𝜋−).

These face 7 parameters appearing in the parametrization (4.78), if the weak
angle 𝛾 is treated as an input, otherwise one has to deal with 8 parameters.
However, one has to take into account parametric invariances: one observes one
discrete invariance6,

𝛾 → 𝜋 − 𝛾 , 𝜃𝐴 → 𝜋 − 𝜃𝐴 , 𝜃1,2 → −𝜃1,2 , (4.85)

which effectively replaces every phase by its negative value, leaving all observables
invariant. In the future, as long as 𝛾 does not lie near 90∘ (which is not the
case, according to all present data), this ambiguity is trivially resolved by the
observation of other 𝛾−dependent processes.

In addition, there is one continuous invariance: One has the freedom to rede-
fine the parametrization (4.78) in such a way, that

𝐴1,2(1 + 𝑦1,2𝑒
𝑖𝜃1,2) → 𝐴

′
1,2(1 + 𝑦

′
1,2,𝜖𝑒

𝑖𝜃
′
1,2) = 𝑒𝑖𝜃

1
𝜉𝐴1,2(1 + 𝑦1,2𝑒

𝑖𝜃1,2) , (4.86)

𝐴1,2(1− 𝑦1,2𝑒
𝑖𝜃1,2) → 𝐴

′
1,2(1− 𝑦

′
1,2,𝜖𝑒

𝑖𝜃
′
1,2) = 𝑒𝑖𝜃

2
𝜉𝐴1,2(1− 𝑦1,2𝑒

𝑖𝜃1,2) , (4.87)

which is always possible in a restricted range for 𝜃𝑖𝜉. The restriction is given by the
possible values of the corresponding parameter combinations, when considering
𝑟1,2 ∈ [0, 0.6] in the fit.

The experimental results for these decays are given in table 4.14. The two
colour suppressed decays have not been measured so far. The two CP asymme-
tries 𝐵 → 𝐷0𝐾−/𝜋− do not enter the fit, because they are zero by construction,
but are given mainly for completeness. Note that they are consistent with zero
within one and two standard deviations respectively. Also the data is roughly
consistent with relation (4.83). On the other hand, using relation (4.84), one
observes that the data in both cases prefer vanishing colour-suppressed ampli-
tudes by giving negative central values for both of them. While this is on one
hand sensible, because they are expected to be small, it is at odds with the non-
vanishing central values of the measured CP asymmetries. This is reflected in a
bad 𝜒2min-value in a global fit to the experimental data. Therefore the fit results
are not shown explicitly here.

6𝛾 has been restricted to lie in [0, 𝜋], which excludes additional solutions.
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Decay BR/10−4 𝒜CP

𝐵− → 𝐷0𝐾− 4.02± 0.21 0.07± 0.04

𝐵− → 𝐷0
+𝐾

− 1.81± 0.27 0.22± 0.14(∗)
𝐵− → 𝐷0

−𝐾
− 1.73± 0.23 −0.09± 0.10

𝐵− → 𝐷0𝜋− 48.4± 1.5 −0.008± 0.008

𝐵− → 𝐷0
+𝜋

− 19.6± 3.4 0.035± 0.024

𝐵− → 𝐷0
−𝜋

− 18 ± 4 0.017± 0.026

Table 4.14: Experimental data for 𝐵− → 𝐷𝐾−/𝜋− decays. Values are taken from
the PDG [35]. (∗): Errors rescaled by the PDG due to inconsistent mea-
surements.

It is interesting to note that for the colour allowed tree decays one may again
check naive factorization. In this case the 𝑈 -spin breaking is given by the ratio
of the decay constants, i.e.

⟨𝐵−∣ℋeff ∣𝐷0𝐾−⟩
⟨𝐵−∣ℋeff ∣𝐷0𝜋−⟩ =

𝜆

1− 𝜆2

2

(
1 + 𝑦1,𝜖𝑒

𝑖𝜃1

1− 𝑦1,𝜖𝑒𝑖𝜃1

)
≃ 𝜆

1− 𝜆2

2

𝑓𝐾
𝑓𝜋
∼ 0.28 . (4.88)

In this approach one obtains 𝜃1 = 0 and 𝑦1,𝜖 ∼ 0.1 from the ratio of the decay
constants. The comparison with experiment√
𝐵𝑅(𝐵− → 𝐷0𝐾−)
𝐵𝑅(𝐵− → 𝐷0𝜋−)

=

{
0.28± 0.02

0.281± 0.005

(from table 4.14) ,
(from direct measurement, see [54]) ,

(4.89)
shows excellent agreement, indicating the well known fact that naive factorization
works reasonably well in colour-allowed tree decays. This information could be
used to fix one parameter in the fit (either the modulus to the ratio of decay
constants or the corresponding phase to zero), which would break the continuous
invariance, leaving part of the 𝑈 -spin breaking in these decays and the one in the
colour-suppressed decays to be extracted from the analysis.

It will be interesting to see what this analysis yields, once the data are consis-
tent. Again, LHCb should clarify this situation, yielding a large sample for these
decays.

4.3.2 Decays of neutral B mesons

The two neutral 𝐵 mesons form a doublet under 𝑈 -spin. In the 𝑈 -spin limit,
the final states have to form either a singlet or a triplet, while there can also be
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admixtures of 𝑈 = 2 once 𝑈 -spin breaking is included. When considering two-
body decays, there are in total three possibilities: The decays into two charged
final states necessarily have either 𝑈 = 0 or 𝑈 = 1, since the charged mesons
form 𝑈 -spin doublets. The neutral mesons form either 𝑈 -spin singlets of triplets,
in which case the two-body final states can have 𝑈 = 0, 1 and 2. Clearly a final
state with 𝑈 = 2 can be reached only through 𝑈 -spin breaking.

When considering decays of neutral 𝐵 mesons into two neutral mesons, one
has again to deal with admixtures of 𝑈 -spin multiplets. Using the decomposition

ℋ𝑏→𝑑
eff

∣∣𝐵̄𝑑

〉
= − 1√

2
∣1, 0 ⟩𝑑,0 −

1√
3
∣1, 0 ⟩𝑑,𝜖(3/2) +

1√
6
∣1, 0 ⟩𝑑,𝜖(1/2)

− 1√
2
∣0, 0 ⟩𝑑,0 +

1√
6
∣0, 0 ⟩𝑑,𝜖 −

1√
3
∣2, 0 ⟩𝑑,𝜖 , (4.90)

ℋ𝑏→𝑠
eff

∣∣𝐵̄𝑠

〉
= +

1√
2
∣1, 0 ⟩𝑠,0 −

1√
3
∣1, 0 ⟩𝑠,𝜖(3/2) +

1√
6
∣1, 0 ⟩𝑠,𝜖(1/2)

− 1√
2
∣0, 0 ⟩𝑠,0 −

1√
6
∣0, 0 ⟩𝑠,𝜖 +

1√
3
∣2, 0 ⟩𝑠,𝜖 , (4.91)

ℋ𝑏→𝑑
eff

∣∣𝐵̄𝑠

〉
= + ∣1,+1 ⟩𝑑,0 −

1√
6
∣1,+1 ⟩𝑑,𝜖(3/2) −

1√
3
∣1,+1 ⟩𝑑,𝜖(1/2)

+
1√
2
∣2,+1 ⟩𝑑,𝜖 , (4.92)

ℋ𝑏→𝑠
eff

∣∣𝐵̄𝑑

〉
= − ∣1,−1 ⟩𝑠,0 −

1√
6
∣1,−1 ⟩𝑠,𝜖(3/2) −

1√
3
∣1,−1 ⟩𝑠,𝜖(1/2)

− 1√
2
∣2,−1 ⟩𝑠,𝜖 , (4.93)

one may express all the decay amplitudes in terms of 𝑈 -spin amplitudes. Doing
this in full generality leads to a large number of independent 𝑈 -spin ampliutdes
for 𝑈𝑧 = 0 final states already in the symmetry limit, and does in general not allow
for a determination of all breaking amplitudes. One very theoretical exception
is given by the class of decays 𝐵0 → 𝑃 0𝑃 0: when both final state particles
belong to the same multiplet, Bose symmetry forbids antisymmetric final states7,
leading to a reduction of possible amplitudes8. However, this possibility remains
a theoretical one, because in order to perform this fit, all decays of this class
would have to be measured time-dependently, which seems not possible in the
near future.

7This is true due to the 𝐵 and 𝑃 0 mesons being pseudoscalar.
8This fact has been overlooked in [95], the corrections to the corresponding decompositions

are straight forward. For completeness, the corresponding final states are given in appendix 6.2.
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Choosing the subset of decays formed by 𝑏 → 𝑠 transitions of 𝐵𝑑-mesons,
combined with 𝑏→ 𝑑 transitions of 𝐵𝑠-mesons [95], results in 19 parameters facing
up to 18 observables, therefore in this case one additional assumption is needed.
From that paper, it also appears as if one could use the corresponding class
of charmless 𝐵 → 𝑃 0𝑉 0 decays, which should result in a determinable system.
However, it has been overlooked there, that the states ∣1𝑉 08,𝑃 ⟩ and ∣1𝑃08,𝑉 ⟩ are
independent. As they receive also independent 𝑈 -spin corrections, this class of
decays has again not enough observables. The corrected decomposition of the
decay amplitudes including the 𝑈 -spin corrections is given in the appendix 6.2.

In any case, the current situation concerning the data is insufficient to perform
such an analysis, since the 𝐵𝑠 system has not been fully explored yet. Clearly
with the advent of LHC this situation will change once LHCb measures the decay
rates and the CP asymmetries of the corresponding 𝐵𝑠 transitions.

Regarding decays into two charged mesons, the situation is similar: the break-
ing analysis without any assumptions is not possible, and for a full analysis one
has to wait for LHCb data. However, some decays into charmless mesons have
been measured at the Tevatron recently, with which one might perform an analy-
sis in the 𝑈 -spin limit, getting an impression of the present precision and possible
hints of 𝑈 -spin breaking in these decays.

In the 𝑈 -spin limit, one has four amplitudes, leading to seven unknown param-
eters. Thanks to recent measurements at the CDF experiment at Tevatron [143],
there are in principle enough data points to fix the problem unambiguously, see ta-
ble 4.15. This remains true when taking into account relation (3.62), which leaves
nine independent observables. Charmless 𝐵𝑠 decays involving vector mesons have
not been measured yet, therefore no fit is possible at the moment for any other
class of charmless decays.

The following parametrization is used:

〈
𝐵̄𝑑∣ℋeff ∣𝜋+𝐾−〉 = −𝐴𝑐

1

(
1 + 𝜆2𝑒−𝑖𝛾 𝑟𝑢1 𝑒

𝑖𝜙𝑢1
)
,〈

𝐵̄𝑠∣ℋeff ∣𝜋−𝐾+
〉

= −𝜆𝐴𝑐
1

(−1 + 𝑒−𝑖𝛾 𝑟𝑢1 𝑒
𝑖𝜙𝑢1
)
,〈

𝐵̄𝑑∣ℋeff ∣𝜋+𝜋−〉 = −1

2
𝜆𝐴𝑐

1

[−1 + 𝑟𝑐0 𝑒
𝑖𝜙𝑐0 + 𝑒−𝑖𝛾

(
𝑟𝑢1 𝑒

𝑖𝜙𝑢1 − 𝑟𝑢0 𝑒
𝑖𝜙𝑢0
)]

,
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〈
𝐵̄𝑠∣ℋeff ∣𝐾+𝐾−〉 = −1

2
𝐴𝑐
1

[
1− 𝑟𝑐0 𝑒

𝑖𝜙𝑐0 + 𝜆2𝑒−𝑖𝛾
(
𝑟𝑢1 𝑒

𝑖𝜙𝑢1 − 𝑟𝑢0 𝑒
𝑖𝜙𝑢0
)]

,〈
𝐵̄𝑑∣ℋeff ∣𝐾+𝐾−〉 =

1

2
𝜆𝐴𝑐

1

[−1− 𝑟𝑐0 𝑒
𝑖𝜙𝑐0 + 𝑒−𝑖𝛾

(
𝑟𝑢1 𝑒

𝑖𝜙𝑢1 + 𝑟𝑢0 𝑒
𝑖𝜙𝑢0
)]

,〈
𝐵̄𝑠∣ℋeff ∣𝜋+𝜋−〉 =

1

2
𝐴𝑐
1

[
1 + 𝑟𝑐0 𝑒

𝑖𝜙𝑐0 + 𝜆2𝑒−𝑖𝛾
(
𝑟𝑢1 𝑒

𝑖𝜙𝑢1 + 𝑟𝑢0 𝑒
𝑖𝜙𝑢0
)]

, (4.94)

choosing 𝐴𝑐
0 to be real and positive and including again a factor of 𝑅𝑢 in the

definition of 𝑟𝑢0,1. In addition, 𝐴𝑐
0 is rescaled in such a way that it again contains

phase-space and lifetime, BR(𝐵̄𝑑 → 𝜋+𝐾−) = ∣ 〈𝐵̄𝑑∣ℋeff ∣𝜋+𝐾−〉 ∣2, implying that
the other branching ratios have to include correspondingly ratios of lifetimes and
phase space factors.

Decay BR/10−6 𝐴CP 𝑆CP

𝐵̄𝑑 → 𝜋+𝜋− 5.16± 0.22 0.38± 0.14(∗) −0.65± 0.07

𝐵̄𝑑 → 𝜋+𝐾− 19.4± 0.6 −0.098+0.012−0.011 –
𝐵̄𝑑 → 𝐾+𝐾− 0.15+0.11−0.10 no data no data
𝐵̄𝑠 → 𝜋+𝜋− 0.53± 0.51 no data no data
𝐵̄𝑠 → 𝜋+𝐾− 5.0± 1.25 0.39± 0.17 –
𝐵̄𝑠 → 𝐾+𝐾− 24.4± 4.8 no data no data

Table 4.15: HFAG [54] averages for 𝐵𝑑,𝑠 → 𝑃𝑃 decays. (∗): Error inflated according
to the PDG prescription, due to inconsistent measurements.

As additional input values in this fit 𝜆 (error neglected) and 𝛽 = (21.11+1.9−1.8)
∘

are used, where the latter value corresponds to the direct measurements in
𝐵 → 𝐽/𝜓𝐾 decays [54]. The fit results in

𝛾𝑈−𝑠𝑝𝑖𝑛 = (75.8+4.8−8.0)
∘ (𝜒2min/d.o.f. = 0.12/1) , (4.95)

in agreement with the determination 𝛾 = (66.8+5.4−3.8)
∘ by CKMfitter [29]. In addi-

tion, the fit results reflect the expectation, that the matrix elements proportional
to 𝜆𝑢𝑑/𝑠 are larger than the ones proportional to 𝜆𝑐𝑑/𝑠, because there is no sup-
pression for the tree contribution.

While the low 𝜒2 for this fit is somewhat surprising, because it implies that
the present data shows no sign of any 𝑈 -spin breaking, this result shows that
future analyses will be worthwile.
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Decays into CP eigenstates (or, more generally, states which are not flavour-
specific), play an exceptional role, because of the additional information coming
from time-dependent measurements. Each of these decays forms a subset with
its “𝑈 -spin partner” formed by exchanging all down and strange quarks in the
process, because they have effectively only one amplitude. These subsets can be
discussed separately from the rest of the corresponding class, which allows for
fits with a small number of parameters, even when other decays of that class
have not been measured yet. This feature has been extensively exploited in
the 𝑈 -spin limit, or including factorizable 𝑈 -spin breaking only (see e.g. [96,
97]). In that case, the two decays in question have five independent observables
(because of relation (3.62)), but only three parameters, so a fit for up to two
weak phases is possible. However, these determinations suffer again from the
systematic uncertainty related to 𝑈 -spin breaking.

Including the breaking corrections to first order for these subsets, one observes
that the breaking amplitudes form only one effective amplitude as well. However,
again this does not suffice for an analysis of the breaking which is completely free
from additional assumptions: the number of parameters increases by four, while
only one additional independent observable becomes available. In these cases, for
example the following two strategies may be used:

∙ If one amplitude is clearly dominating (∣𝐴1/𝐴2∣ ∼ 𝛿), one may consider
the 𝑈 -spin breaking for the leading ampliutde only, neglecting only terms
of order (𝒪(𝜖2),𝒪(𝜖𝛿)). This is for example the case in 𝐵𝑑,𝑠 → 𝐷+

𝑑,𝑠𝐷
−
𝑑,𝑠

decays, which are dominated by their colour allowed tree contribution.

∙ If one of the two parts in the leading amplitude is dominated by a colour
allowed tree contribution, one may use the factorization assumption for that
part only, as opposed to using it for the whole amplitude, and fit for the
breaking amplitude in the other part.

In both cases, the number of free parameters increases only by two, so in principle
a fit becomes possible; in addition, as one additional observable is available, one
may determine that way one of the weak phases with correspondingly smaller
systematic uncertainty. If for one class of decays the whole set is measured, these
strategies may be used with the whole set, so the decays into flavour-specific
modes can be included.
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4.3.3 Conclusions

As discussed in section 3.2 for the example of QCDF, these kinds of computations
of hadronic matrix elements suffer from large uncertainties due to non-factorizable
corrections. The method of flavour symmetries therefore looks more promising.
Clearly the latter will allow for performing precision calculations only if a rea-
sonable control over symmetry breaking is gained.

Using the full 𝑆𝑈(3) flavour symmetry becomes quite complicated once the
complete breaking is taken into account. However, the isospin subgroup of full
𝑆𝑈(3) may be assumed to be a reasonably good symmetry and hence only the
breaking along the “orthogonal” directions in 𝑆𝑈(3) space has to be considered.

In this section the 𝑈 -spin subgroup of 𝑆𝑈(3) has been studied, which has the
advantage that the charge operator commutes with the symmetry generators and
hence also the weak hamiltonian for 𝑏 decays has a simple structure under this
symmetry. The breaking term is due to the mass difference between the down-
and the strange quark mass and has a simple structure inferred from QCD.

Based on this the incorporation of 𝑈 -spin breaking on a purely group theo-
retical basis has been discussed, together with some first applications, in which
the 𝑈 -spin breaking tuns out roughly of the order implied by the difference in
the decay constants 𝑓𝜋 and 𝑓𝐾 .

However, the full strength of this approach can be exploited only in the future.
Since the 𝐵𝑑 and the 𝐵𝑠 form a 𝑈 -spin doublet, the approach requires information
on decay modes which will be gathered in the near future at the LHC. With a
sufficient amount of data there will be a chance to obtain control over flavour
𝑆𝑈(3) breaking and hence a possible road to precise predictions for non-leptonic
decay may be opened.
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Chapter 5

Conclusions

Flavour Physics represents a powerful tool in the search for NP. From precision
observables, its sensitivity reaches way beyond the scales that will be explored
with the LHC or any foreseeable high-energy experiment. In addition, they are
indispensable in order to determine the flavour structure of any model beyond the
SM. However, in order to perform this task, it is essential to achieve control over
the hadronic uncertainties in the SM, in order to be able to reliably differentiate
between NP and SM effects.

In this work, mainly three projects related to these issues have been discussed.
In order to receive quantitative results, the RFit approach has been used to treat
the statistical and systematic uncertainties appropriately. The projects have been
concluded separately in the corresponding sections. Main results are:

∙ The tensions observed in the 𝑏 → 𝑠 decays 𝐵 → 𝐽/𝜓𝐾, 𝐵 → 𝜙𝐾, and
𝐵 → 𝜋𝐾 can be fitted in a framework, which assumes dominance of one
NP operator of the form 𝒪 = (𝑠𝑏)(𝑞𝑞), leading to contributions with the
expected order of magnitude for NP. In each of these cases a contribution
with Δ𝐼 = 1 is preferred. While an explanation in terms of enhanced SM
contributions is always possible as well, the order of magnitude of these
contributions is larger than expected in the SM.

∙ For 𝐵 → 𝐽/𝜓𝐾, the contrary assumption of large SM effects in combination
with a NP phase has also been explored. In this case, an approximate 𝑆𝑈(3)

relation can be used to determine the subleading contributions with aid of
data for 𝐵 → 𝐽/𝜓𝜋 decays. The NP phase turns out to be compatible with
zero, while a large penguin amplitude could explain the data in both decays,
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leading to a shift in sin 2𝛽 of up to a few percent. While it has been argued
in [138], that this is too large for a SM effect, the fact that 𝐵 → 𝐽/𝜓𝜋 data
imply a shift in the observed direction is interesting, and should be taken
into account in future analyses. In addition, if that estimate of SM effects
is valid, it renders the previous analysis even more interesting.

∙ Finally, a framework for taking 𝑈 -spin breaking corrections into accout
model-independently has been developed. While in almost all cases this
analysis is not possible without further assumptions, the related systematic
uncertainties are still reduced, because it usually suffices to apply these
assumptions to the breaking terms. For these kinds of analyses several
proposals have been made. With respect to 𝐵 → 𝐽/𝜓(𝐾 or 𝜋), the analysis
shows that the breaking corrections deviate strongly from what is expected
in naive factorization. In addition, the isospin breaking amplitudes seem
to be different in the two decays, which, if confirmed with higher statistics,
could imply a NP source.

While the present data do not allow for conclusive statements, there are hints
for NP effects. However, as especially the present discussions regarding 𝐵 → 𝜋𝐾

show, a more rigorous understanding of SM hadronic effects is necessary in order
to meet the high precision expected from upcoming experiments, such as the
LHC and hopefully a future Super-𝐵 factory. In fact, lots of discoveries are to
be made in NP, but in the SM as well.
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Chapter 6

Appendix

6.1 Diagrammatic Parametrization in 𝐵 → 𝜋𝐾

The diagramatic expansion for 𝐵 → 𝜋𝐾, as used e.g. in [115], reads:

𝒜(𝐵− → 𝜋−𝐾̄0) = −𝑃 ′
𝑡𝑐 + 𝑃

′
𝑢𝑐𝑒

−𝑖𝛾 − 1

3
𝑃

′𝐶
𝐸𝑊 ,

√
2𝒜(𝐵− → 𝜋0𝐾−) = 𝑃

′
𝑡𝑐 − 𝑃

′
𝑢𝑐𝑒

−𝑖𝛾 − 2

3
𝑃

′𝐶
𝐸𝑊 − 𝑃

′
𝐸𝑊 − 𝐶

′
𝑒−𝑖𝛾 − 𝑇

′
𝑒−𝑖𝛾 ,

𝒜(𝐵̄𝑑 → 𝜋+𝐾−) = 𝑃
′
𝑡𝑐 − 𝑃

′
𝑢𝑐𝑒

−𝑖𝛾 − 2

3
𝑃

′𝐶
𝐸𝑊 − 𝑇

′
𝑒−𝑖𝛾 , (6.1)

and again
√
2𝒜(𝐵̄𝑑 → 𝜋0𝐾̄0) = 𝒜(𝐵− → 𝜋−𝐾̄0)+

√
2𝒜(𝐵− → 𝜋0𝐾−)−𝒜(𝐵̄𝑑 → 𝜋+𝐾−) .

(6.2)
The primes denote a 𝑏 → 𝑠 transition, 𝑃 ′

𝑢𝑡,𝑐𝑡 are called gluonic penguin ampli-
tudes, 𝑃

′(𝐶)
𝐸𝑊 the (colour-suppressed) electroweak amplitudes, and 𝑇

′
(𝐶

′
) denote

the (colour-suppressed) tree amplitudes. Expressed in terms of the parametriza-
tion used in this work, the amplitudes read

𝑃
′
𝑡𝑐 = −𝑃

(
1 +

1

3
𝑞𝐶𝑒

𝑖𝜔𝐶 𝜖𝑇 𝑒
𝑖𝜙𝑇

)
,

𝑃
′
𝑢𝑐 = 𝑃𝜖𝑎𝑒

𝑖𝜙𝑎 ,

𝑇
′

= −𝑃𝜖𝑇 𝑒𝑖𝜙𝑇 ,
𝐶

′
= 𝑃

(
𝜖𝑇 𝑒

𝑖𝜙𝑇 − 𝜖3/2𝑒
𝑖𝜙3/2

)
,

𝑃
′
𝐸𝑊 = 𝑃

(
𝜖3/2𝑒

𝑖𝜙3/2𝑞𝑒𝑖𝜔 − 𝑞𝐶𝑒
𝑖𝜔𝐶 𝜖𝑇 𝑒

𝑖𝜙𝑇
)
,

𝑃
′𝐶
𝐸𝑊 = 𝑃𝑞𝐶𝑒

𝑖𝜔𝐶 𝜖𝑇 𝑒
𝑖𝜙𝑇 . (6.3)
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6.2 U-spin decompositions in charmless decays

For completeness, two 𝑈 -spin decompositions are given explicitly, where the for-
mulas in [95] included minor errors. The final states for two decays into two
identical charmless pseudoscalar multiplets are listed in table 6.1. As discussed
in section 4.3, this class of decays has in principle sufficient observables to de-
termine the breaking parameters without further assumptions, but the necessary
measurements are unlikely to be performed in the next years. In table 6.2 the
amplitudes for 𝐵 → 𝑃0𝑉0 decays are listed, where the breaking amplitudes are
not determinable without further assumptions, due to ∣1𝑉 08,𝑃 ⟩ ∕= ∣1𝑃08,𝑉 ⟩.

𝑃0𝑃0 𝑈𝑧 ∣2𝑈𝑧⟩ ∣1𝑈𝑧⟩8 ∣1𝑈𝑧⟩1 ∣0 0⟩ ∣0 0⟩8 8 ∣0 0⟩1 8 ∣0 0⟩1 1
∣𝐾̄0𝜋0⟩ −1 +1

2
−

√
3
2

∣𝐾̄0𝜂⟩ −1 −
√
2√
3

−
√
2
3

+1
3

∣𝐾̄0𝜂′⟩ −1 − 1√
12

−1
6

−2
√
2

3

∣𝐾0𝜋0⟩ +1 −1
2

+
√
3
2

∣𝐾0𝜂⟩ +1 +
√
2√
3
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Table 6.1: 𝑈 -spin decomposition for the final states in 𝐵 → 𝑃0𝑃0. Note that for the
coupling of parts belonging to the same multiplet the symmetric combina-
tion has to be taken, and ∣00⟩18 = ∣00⟩81 holds. For identical particles, a
factor 1/

√
2 has to be applied.
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