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Abstract

In cosmic ray experiments the arrival directions, among other properties, of cosmic ray

particles from detected air shower events are reconstructed. The question of uniformi-

ty in the distribution of arrival directions is of large importance for models that try to

explain cosmic radiation. In this thesis, methods for the reconstruction of parameters of

a dipole-like flux distribution of cosmic rays from a set of recorded air shower events

are studied. Different methods are presented and examined by means of detailed Monte

Carlo simulations. Particular focus is put on the implications of spurious experimen-

tal effects. Modifications of existing methods and new methods are proposed. The main

goal of this thesis is the development of the horizontal Rayleigh analysis method. Unlike

other methods, this method is based on the analysis of local viewing directions instead

of global sidereal directions. As a result, the symmetries of the experimental setup can

be better utilised. The calculation of the sky coverage (exposure function) is not ne-

cessary in this analysis. The performance of the method is tested by means of further

Monte Carlo simulations. The new method performs similarly good or only marginally

worse than established methods in case of ideal measurement conditions. However, the

simulation of certain experimental effects can cause substantial misestimations of the

dipole parameters by the established methods, whereas the new method produces no

systematic deviations. The invulnerability to certain effects offers additional advantages,

as certain data selection cuts become dispensable.

Zusammenfassung

In Experimenten zur kosmischen Strahlung werden, neben anderen Eigenschaften,

die Ankunftsrichtungen von Teilchen der kosmischen Strahlung von detektierten

Luftschauer-Ereignissen rekonstruiert. Die Frage der Gleichverteilung der Ankunftsrich-

tungen ist von entscheidender Bedeutung für die Modelle zur Erklärung kosmischer

Strahlung. Gegenstand dieser Arbeit sind Methoden zur Rekonstruktion von Parametern

einer dipolartigen Flussverteilung kosmischer Strahlung aus einem Satz aufgezeichneter

Luftschauer-Ereignisse. Verschiedene Methoden werden vorgestellt und mittels detai-

lierter Monte Carlo Simulationsstudien untersucht. Besonderes Augenmerk wird auf die

Auswirkungen störender experimenteller Effekte gerichtet. Es werden Modifikationen

der existierenden Methoden und neue Methoden vorgeschlagen. Das Hauptziel dieser

Arbeit ist die Entwicklung der horizontalen Rayleigh Analysemethode. Im Gegensatz

zu anderen Methoden basiert diese Methode auf der Analyse lokaler Blickrichtungen

anstatt globaler siderischer Richtungen. Dadurch können die Symmetrien des Experi-

mentaufbaus besser ausgenutzt werden. Eine Berechnung der Himmelsabdeckung ist

zur Durchführung dieser Analyse nicht erforderlich. Anhand weiterer Monte Carlo Si-

mulationen wird die Leistungsfähigkeit der neuen Methode erprobt. Im Falle idealer

Messbedingungen ist die neue Methode ähnlich gut oder nur unwesentlich schlech-

ter als etablierte Analysemethoden. Die Simulation bestimmter experimenteller Effekte

kann jedoch massive Fehler bei der Einschätzung der Dipolparameter durch die eta-

blierten Methoden hervorrufen, wohingegen die neue Methode keine systematischen

Abweichungen hervorruft. Die fehlende Anfälligkeit für bestimmte Effekte bringt wei-

tere Vorteile mit sich. So kann bei der Analyse auf bestimmte Datenschnitte verzichtet

werden.
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“And the more I see, the more I know.
The more I know, the less I understand.”

Paul Weller — The Changingman





Chapter 1

Introduction

Almost a century has passed since the experiments of Victor Hess in 1912, which marked the

beginnings of cosmic ray physics. At the time when Hess undertook his balloon flights to

measure the intensity of the ambient ionising radiation at higher altitudes, it was commonly

assumed that the origin of that radiation was the Earth’s crust with its natural radioactive

materials. However, Hess’ results suggested that the Earth is also hit by ionising radiation

from above, thus from the cosmos. Since then substantial advances have been made in the

field of cosmic ray physics, as well as in particle physics and cosmology. Many experiments

have been conducted, from the early coincidence measurements carried out by Kolhörster and

later by Pierre Auger, to the large area Pierre Auger Observatory in Argentina, that collects a

considerable amount of statistics even for the highest primary energies.

But still, many of the most essential questions have not been resolved yet. There is the

question of the origin of cosmic rays. What astronomical object or mechanism is able to

boost single atomic nuclei to macroscopic energies? Models exist that suggest answers: most

prominently the emission of particles by supernova remnants, and the acceleration in magnetic

shock fronts. Owing to their charged nature, the particles of the cosmic radiation are subject to

deflection in the magnetic fields in our Galaxy. As a result, the tracks of the particles through

our atmosphere do not point back to their sources. Since the emergence and the evolution of

what is detected as cosmic radiation on Earth cannot be observed directly, scientists can only

try to form a consistent model from measurements that can be obtained through experimental

observation. One of these measurements is the energy spectrum of cosmic rays, another one

is the elemental composition.

Last but not least, there is the issue of the isotropy of cosmic radiation. Current models

suggest that, despite the fact, that the particles have lost their individual directional infor-

mation, the cosmic rays collectively expose a large scale structure in the distribution of their

arrival directions. At low particle energies, the deflection radii are so small, that the cosmic

rays are diffusely contained in the Galaxy. With higher energies, the deflection radii become

larger and a certain fraction of the cosmic rays escapes from the Galaxy. This leakage effect

results in a non-uniformity of the distribution of arrival directions. The distribution has a

significant dipole moment, as cosmic rays are more likely to arrive from the direction of the

Galactic centre than from the opposite direction.

Extracting this large scale structure from experimental data is not a trivial task: cosmic

ray experiments only see a certain part of the sky at a time, which moves along as the Earth

rotates around its axis. The sought-after large scale structure would be revealed by a rather

small variation of the measurement rate between one side of the sky and the opposite side.

However, these two sides are never seen by the experiment at the same time, but half a day
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apart. Unfortunately, the experimental conditions are also subject to variations. For instance,

the atmospheric temperature is certainly not constant on a scale of twelve hours. The chang-

ing experimental conditions generally have greater impact on the measurement rate than the

anisotropy of the cosmic ray flux. This is a fundamental problem, that the analysis methods

have to tackle.

The aim of this thesis is to explain, discuss and test various methods for this analysis. The

thesis features established methods, but also proposes new ones. The central achievement shall

be the development of the “horizontal Rayleigh analysis method”, which will offer important

advantages compared with established methods.

Outline of this Thesis

Two additional introductory chapters will follow this chapter:

• Chapter 2 will cover the topic of cosmic rays, with a special focus on the question of

anisotropy, and the extensive air showers in the Earth’s atmosphere, that are induced by

cosmic rays, and

• Chapter 3 will contain explanations of the coordinate systems used in this thesis.

The next three chapters will feature an in-depth discussion of data analysis methods and con-

cepts regarding dipole anisotropies:

• in Chapter 4, several established methods for dipole reconstruction will be presented,

their properties will be explained and some of their implications discussed,

• Chapter 5 will contain the results of extensive Monte Carlo simulation studies for bench-

marking the performance of the various available methods, and

• in Chapter 6, new methods for dipole reconstruction will be proposed and their pon-

tential will be assessed by means of Monte Carlo simulations.

And finally,

• Chapter 7 will contain a summary of the findings and conclusions.



Chapter 2

Cosmic Rays

The term “cosmic rays” refers to the flux of high energy charged particles which constantly

hit the Earth’s atmosphere from the cosmos. More precisely, the term denotes the flux of

ionised nuclei, ranging from hydrogen to iron, but also electrons and positrons. Sometimes,

high energy photons are also considered part of what is referred to as cosmic rays. They are

uncharged, but the reactions they induce in the Earth’s atmosphere are very similar to those

induced by light charged particles.

The systematic investigation of cosmic rays dates back to the year 1912, when Victor Hess,

equipped with a gold leaf electroscope as radiation counter, undertook balloon flights and

observed that the amount of radiation increased as he reached higher altitudes. The conclusion

was, that the radiation was coming from outer space [Hes1912]. The energies of the cosmic

ray particles range from few GeV to at least 1011 GeV, thus spanning more than ten orders

of magnitude. The flux decreases with energy, from thousands of particles per square metre

and second in the GeV range to less than one particle per square kilometre and century at the

upper range of energies.

Direct measurements of cosmic rays by means of balloon and satellite experiments are

only feasible up to energies of about 1014 eV, as the sensitive area of such experiments is very

limited. For higher primary energies, the particle flux is too low to collect sufficient statistics

during the lifetime of an experiment. Ground based experiments can occupy large areas and

can be run for a long time, but they are unable to measure cosmic ray particles directly, because

the particles interact with the atoms of the Earth’s atmosphere. Through inelastic scattering,

secondary particles are created, which again interact with the atmosphere. The cascade of

particles created in this process is called an “extensive air shower”.

2.1 Energy Spectrum

The energy spectrum of cosmic rays is shown in Figure 2.1. It spans about ten orders of

magnitude in energy and 30 orders of magnitude in flux. With good precision, it can be

described by a power law:
dI

dE
∝ E−γ , (2.1)

where I is the flux (particles per time, area and solid angle), E denotes the energy, and γ

is the spectral index. The energy spectrum is almost featureless, except for changes of the

spectral index at certain energies. The spectral index γ is approximately 2.7 at low energies. A

steepening of the spectrum, thus an even more rapid decrease of flux with energy, comes into

effect at an energy of approximately 4×106 GeV. At this energy the spectral index changes from
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Figure 2.1: Energy

spectrum of cosmic
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2.7 to 3.1. This feature of the spectrum is called the “knee”. At energies around 4× 108 GeV,

there appears to be a further steepening of the spectrum, a “second knee”, with γ reaching a

value of about 3.3. At 4× 109 GeV, a flattening of the spectrum is observed, with the spectral

index decreasing to a value of about 2.7, which is commonly referred to as the “ankle” of the

cosmic ray energy spectrum [Blu09].

The interpretation of these features of the energy spectrum is still the subject of scientific

discussion. Experimental results of the KASCADE experiment [Ant03] suggest, that the knee

at 4× 106 GeV is caused by a decreasing contribution of the light elements [Ant05]. The mass

composition at higher energies above the knee has not yet been exhaustively determined. A

purely phenomenological model, that assumes a sequential decrease of heavier elements, at

energies proportional to their charge, seems to match experimental data well. In this model,

the second knee marks the end of the vanishing contributions by the stable elements [Hoe03].

Different kinds of explanations for the presence of the knee feature are discussed in litera-

ture [Hoe04]: the knee could mark the maximum energy achievable through the acceleration

mechanism in the Galaxy, it could be the effect of leakage of particles from the Galaxy, it could

be caused by interactions of the cosmic rays with background particles (photons, neutrinos), or

it could be not a feature of the cosmic radiation at all, but put forth by the shower development

in the Earth’s atmosphere instead, through the creation of heavy exotic particles.

There exist different ideas to explain the energy spectrum in the range above the knee. The

ankle could mark the transition from galactic to extra-galactic cosmic rays [Wib05]. The en-

ergy range up to the ankle would be attributed to acceleration in the shock waves of exploding

supernovae in the Galaxy. At the ankle energy, the flux of extra-galactic protons, originating

from powerful radio galaxies, would become dominant [Bie97]. However, the model of dif-

fusive shock acceleration alone yields too low fluxes at several times 108 GeV, as compared
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with the accurate measurements available in this range, when it is fitted with the KASCADE

results in the knee region [Hil05]. The additional flux would have to be the result of sources

or acceleration processes in the Galaxy, that have not been accounted for, or it would have to

be of extra-galactic origin. There are models that propose the latter, which implies, that the

transition from galactic to extra-galactic cosmic rays gradually takes place in the energy region

of the second knee [Ber06].

The energy spectrum of cosmic rays is expected to be suppressed above 6 × 1010 GeV.

The suppression, sometimes referred to as cut-off, is due to the interaction of the cosmic

ray particles with the photons of the cosmic microwave background. This effect was pre-

dicted by Greisen and independently by Zatsepin and Kuzmin in 1966, and hence it is called

the GZK limit [Gre66, Zat66]. At this energy, the center-of-mass energy of a background

photon and a cosmic ray nucleon exceeds the threshold for photo-pion production [Hil85].

Accidentally, photodisintegration of nuclei leads to a flux suppression with a similar energy

threshold [Ste99]. The predictions seem to be confirmed by data from the Fly’s Eye [Bir94],

HiRes [Abr08b] and Auger [Abb08a] experiments. The data of the AGASA experiment appear

to be in contradiction to the GZK cut-off hypothesis, as too many super-GZK particles were de-

tected [Shi06]. However, taking the systematic uncertainty of the primary energy estimation

into account, the discrepancy could indeed be insignificant [DM03] (see also the references

in [Blu09]).

In summary, the energy spectrum of cosmic rays has been determined by a variety of

experiments. At lower energies, up to the knee, the sources of cosmic rays are considered to

be in the local Galaxy. The model of diffusive shock acceleration can explain the overall shape

of the spectrum. For the highest energies, the sources are considered to be extra-galactic.

Evidence for the validity of the theoretical predictions concerning the interactions of cosmic

ray particles with the cosmic microwave background has been found recently. However, there

is no generally accepted model for the energy range between the knee and the ankle. It has not

yet been found out, at what energy the transition from galactic to extra-galactic sources takes

place. The determination of the elemental composition in this energy range can yield valuable

information. The flux of galactic cosmic rays is considered to be dominated by heavy elements,

whereas the extra-galactic particles are believed to be mainly protons. The knowledge of the

distribution of arrival directions may be equally revealing, which shall be the subject of the

next section.

2.2 Distribution of Arrival Directions

The question of the distribution of the cosmic rays’ arrival directions being isotropic or not

involves two different aspects. On the small scale, local variations of the cosmic ray intensity,

such as hot spots, would suggest the existence of distinct sources or acceleration regions. How-

ever, the nature of cosmic rays, being charged particles and hence being subject to deflection

by the magnetic fields in the Galaxy, renders the idea of cosmic ray astronomy difficult. Except

for the highest primary energies, the particles lose virtually all of their directional information

while travelling through the Galaxy. The second aspect is the large scale isotropy, raising the

question of whether the cosmic ray flux reveals structures spanning the whole of the sky, such

as a dipole.

The angular scale, down to which structures can be resolved in the cosmic ray flux, depends

on the energies of the cosmic rays and the distance to their origin. The deflection of cosmic

ray particles is characterised by the gyroradius, or Larmor radius, which can be calculated



16 Cosmic Rays

E[GeV]

r
L
[pc]

105 106 107 108 109 1010 1011

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

p

Fe

scale of irregular fields
thickness of the galactic disc

diameter of the galactic disc

knee 2nd knee
ankle

GZK cut-off

Figure 2.2: Gyroradii of protons and iron nuclei as a function of energy: magnetic fields of 3µG (solid

lines), 1.4µG (upper edges of shaded areas) or 6µG (lower edges) were assumed.

according to:

rL =
p⊥
|q| · B ≈ 1.08 pc ·

E/(106 GeV)

Z · B/µG
, (2.2)

with q denoting the charge of the particle, B denoting the magnetic field strength, and p⊥
denoting the component of the particle’s momentum perpendicular to the magnetic field. The

first equality can be easily derived by identifying the centripetal force, that keeps the particle

on a circular path, with the Lorentz force, that the particle is subjected to in the surrounding

magnetic field. The final approximation assumes the ultra-relativistic case, where p = E · c,

assuming the orientation of the magnetic field being perpendicular to the direction of the

particle motion. (E is the energy of the cosmic ray, Z is the charge in units of the elementary

charge, and c is the speed of light.) If the magnetic field happens to be perpendicular to

the particle’s momentum, the particle is deflected onto a circular path. Otherwise, the particle

follows a spiralling path, with a spiral radius smaller than the one given by the equation above,

as only the energy of the perpendicular motion has to be considered. Figure 2.2 illustrates the

relation between particle energy and Larmor radius.

In the majority of cases, the nature of the magnetic field is not known well enough to

precisely reconstruct the motion of the cosmic ray. Rather, the above equation shall give a scale

for the deflection of cosmic rays. If the Larmor radius at a given energy is of the same order

as the dimension of a region with constant magnetic field, then particles of that energy are

diffusely contained in that region. If high energy particles have a Larmor radius much larger

than the coherence length of the magnetic fields they traverse, their directional information is

maintained to a good degree.

To relate a particle energy to a Larmor radius, the magnitude of the magnetic field has to

be known. The magnetic fields in the Galaxy are still under debate. Among the techniques for

the determination of the galactic magnetic field are the measurement of starlight polarisation

by interstellar dust and the measurement of the Zeeman splitting of radio spectral lines. Either

method depends on model assumptions for the matter density, and so the conclusions drawn

from available methods have been subject to changes over the past years. While the best

estimation fifteen years ago suggested a local field strength of 1.4µG [Hei95] (a value often

found in literature), recent publications tend to report larger values around 6µG [Bec09]. The
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local field near the Sun is a superposition of a regular and turbulent (irregular) magnetic fields.

The regular component is reported to increase exponentially towards the galactic center. The

strength of this large scale field is currently estimated as 2.1µG in the vicinity of the Sun.

There is no consensus about the field strength in the galactic centre. It might reach the order

of mG, or only tens of µG [Han09]. The field lines are expected to follow the direction of the

spiral arms [Hei96, Sof86].

2.2.1 Small Scale Anisotropy

The resolution of small structures is only possible at high cosmic ray energies. The Larmor

radius of a cosmic ray particle at 1010 GeV is of the order of a few kilo parsec, which is much

larger than the scale length of the random component of the galactic magnetic field. Such a

particle would retain much of its directional information, and so the arrival direction, with

which it is observed on Earth, points approximately back to the source region. The effect

of deflection by the regular component of the galactic magnetic field cannot be completely

neglected. However, it may be possible to apply corrections to the observed arrival directions,

based on the knowledge of the large scale galactic magnetic field. On the other hand, the

galactic magnetic field could be probed with ultra-high energy cosmic rays, if their source can

be identified by correlation with known powerful astrophysical sources [Sta97].

One class of candidates as sources for ultra-high energy cosmic rays are active galactic

nuclei (AGNs). The Pierre Auger Collaboration has found evidence for this hypothesis [Aug07,

Abr08a]. Cosmic rays with and energy above 5.7 × 1010 GeV were found to be correlated

with a selection of AGN sources at 99% confidence level. However, the correlation could

not be confirmed by the HiRes collaboration using the parameters prescribed by the Pierre

Auger Collaboration [Abb08b]. It remains to be seen, whether the finding of the Pierre Auger

Collaboration was a random coincidence or a true correlation.

With more statistics becoming available at the highest energies, the search for point sources

has certainly become very promising. The identification of the sources of the highest energy

cosmic rays would be a breakthrough, and could mark the beginning of the new field of cosmic

ray astronomy. However, further discussion of this topic is beyond the scope of this thesis.

2.2.2 Large Scale Anisotropy

At the lower end of the energy spectrum, cosmic rays are highly isotropic. Interstellar mag-

netic fields, regular and stochastic, isotropise the distribution of arrival directions. The Larmor

radius of cosmic rays around the knee region is of the order of one parsec in the case of pro-

tons. Heavier nuclei have even smaller radii. Thus, the flux of cosmic rays in this energy

regime is diffusive. However, leakage from the Galaxy introduces a certain anisotropy, which

should generally become more pronounced with higher energy. This is a distinctive feature of

galactic cosmic rays. The anisotropy evolving at higher energies should favour arrival direc-

tions from the galactic plane, as long as these particles are of galactic origin. Particles from

extra-galactic sources should not have arrival directions that correlate with galactic features.

They are expected to be isotropic [Hil84].

The magnitude of the anisotropy of galactic cosmic rays is predicted by the models that

describe sources, acceleration and propagation of cosmic rays in the Galaxy. The current

standard model, based on diffusive shock acceleration, however, predicts notably too high

anisotropy amplitudes. These models assume, that galactic sources emit cosmic rays with an

energy spectrum proportional to E−2.1. However, the locally observed spectrum is proportional

to E−2.7. The large difference is accounted for in the model by a rapid outflow of particles
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from the Galaxy at very high energies [Hil05]. This would result in a noticeable large scale

anisotropy, which has not been observed until now. The reason for the remarkable isotropy of

galactic cosmic rays could be a small diffusion coefficient in the Local Bubble, where the Sun

is located. As a result, cosmic rays would be isotropised in the local vicinity of the Sun. Thus,

the observed low anisotropy does not necessarily rule out the diffusive shock acceleration

model [Zir05].

Another effect, that causes an anisotropic distribution of arrival directions, is the Compton-

Getting effect [Com1935]. It is caused by the motion of the Solar System around the galactic

centre, through the interstellar medium, which is considered to be the rest frame of galactic

cosmic rays. It yields a small excess in the direction of motion, and a deficit in the opposite

direction. The Compton-Getting effect produces a dipolar anisotropy with an amplitude of ca.

0.04% [Str07].

In the following, a brief overview of important experimental on large scale anisotropy

searches shall be given.

The Milagro Collaboration analysed seven years’ worth of data, comprising 95 billion

events with a median energy of 6× 103 GeV. The dominant feature is a deficit of about 0.25%

in the direction of the Galactic North Pole. In terms of the first harmonic in sidereal time, an

anisotropy amplitude of 0.04% was found, with a phase α = 104◦ [Abd09]. The data can be

interpreted as a dipole anisotropy, pointing to a well defined direction in the North Galactic

hemisphere. The deficit could also be caused by local magnetic fields [Bat09].

The Super-Kamiokande Collaboration analysed more than 250 million downward muon

events, taken from June 1996 until May 2001, induced by cosmic rays with a median energy

of 104 GeV. A variation of the cosmic ray flux along the right ascension coordinate with an

amplitude of (6.64± 0.98stat± 0.55syst)× 10−4 was found, with the excess at α = 33.2◦ ±
8.2◦stat± 5.1◦syst [Gui07].

The Tibet ASγ Collaboration analysed 30 billion events in the energy range between 103

and 105 GeV, taken from 1999 until 2003. The sidereal daily variation showed an excess

around 4–7 a.m. sidereal time and a deficit around 12 p.m.. In terms of the first harmonic,

a primary energy dependent phase between −20◦ and 24◦ was obtained, with amplitudes

between 0.054% and 0.113% [Ame05].

The Large Area Air Shower (LAAS) group collected about 12.5 million events in the energy

range between 5×104 GeV and 106 GeV. The first harmonic of the right ascension distribution

was found to have an amplitude of ca. 0.23%, the excess being located at α= 6◦ [Tad06].

The EAS-TOP collaboration performed an analysis of 1.3 billion events in the energy range

around 2× 105 GeV. The first harmonic in sidereal time showed an excess at α = 27◦ with an

amplitude of approximately 0.037% [Agl96].

The KASCADE Collaboration analysed a data set containing 100 million showers in the

energy range between 7× 105 GeV and 6 × 106 GeV. No evidence for anisotropy was seen:

neither in the complete data set, nor in subsets enriched with light or heavy primaries. Limits

for the right ascension variation amplitude were set. At the lower boundary of the energy

range the limit is 0.1%, at the upper boundary the limit is 1% [Ant04].

The KASCADE-Grande Collaboration performed an analysis of a data set with 2.8 million

events, in subsets with different ranges of estimated primary energy between 106.7 GeV and

108.3 GeV, using different methods. The amplitude of the variation in the right ascension

distribution was found to range between 0.1% at low energies and 10% at high energies. The

phases in the different energy bins showed no common tendency, which suggests, that the

anisotropy signals found are not significant. Methods for three-dimensional reconstruction of

the dipole mainly yielded dipole vectors pointing very close to the Earth’s North Pole. The
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results for the highest energy bins pointed less far towards North, but were derived from

relatively small data sets [Stu07].

The AGASA Collaboration found a 4% amplitude in the energy bin above 109 GeV, which

contained 27,600 events, with the excess at α = 293◦. In a three-dimensional analysis, a 4σ

excess near the galactic centre was found [Hay99].

The Pierre Auger Collaboration could not confirm the findings of the AGASA experiment.

About 70,000 events with primary energies above 109 GeV were analysed, and the results were

compatible with the isotropy hypothesis [Arm08].

To summarise, low, but very significant anisotropy amplitudes in the sub-percent range

could be found by experiments taking data at lower primary energies. With the exception of

the AGASA experiment, no significant hints for an anisotropy could be found in the higher

range of primary energies. Owing to the steeply falling energy spectrum, the decrease of

available statistics with energy is more rapid than the increase of the anisotropy. Additionally,

the transition from galactic to extra-galactic sources could lead to even smaller amplitudes

at high energies. At this point, the degree of isotropy of the distribution of arrival directions

cannot conclusively be determined in the energy range around and above the knee.

2.3 Detection Techniques at High Energy

Cosmic rays at energies above 105 GeV are measured indirectly through the detection of ex-

tensive air showers they initiate in the Earth’s atmosphere. An air shower consists of three

components: the electromagnetic, the hadronic and the muonic component. The primary par-

ticle, being a nucleus, establishes the hadronic component with the first interaction, which

typically takes place in an altitude between 15 km and 20 km above sea level. The hadronic

component consists of baryons, mesons and core fragments. Most of the particles created in

hadronic interactions are charged and neutral pions. Almost 100% of the charged pions at

low energy decay to muons and neutrinos and thereby feed the muonic component of the air

shower. Neutral pions decay in 98.8% of the cases to two photons, which initiate the elec-

tromagnetic component. Highly energetic photons from the decay of neutral pions initiate

electromagnetic cascades of pair production and bremsstrahlung processes. These processes

take place alternatingly and cause an exponential increase of the number of electrons and

photons with time, as long as the mean electron energy exceeds a critical energy (84.2 MeV

for electrons in air), at which the energy loss due to ionisation begins to dominate over the

radiation loss. The muons produced in decays of charged pions do almost not interact with

the atmosphere, as muons barely lose energy in bremsstrahlung processes due to their larger

mass.

The depth of the Earth’s atmosphere amounts to approximately 1,000 g/cm2. When com-

paring this number with the radiation length in air of 37.1 g/cm2, and with the atmospheric

attenuation lengths of hadrons (120 g/cm2 for nucleons, 160 g/cm2 for pions, 180 g/cm2 for

kaons), it is obvious that almost no primary cosmic ray particle reaches sea level. The pen-

etration depths of the avalanche of secondary particles depends on the primary energy. The

cascade processes induced by primary particles with energies lower than 104 GeV die out be-

fore reaching sea level in the majority of cases, whereas the extended air showers of primary

particles with energies above 107 GeV typically contain millions of secondary particles that

reach ground level. (For references, see e.g. [Gai90, Rao98, Gru00].)

The measurement of extensive air showers can make use of a variety of techniques: rel-

ativistic particles create Cherenkov photons in the atmosphere, or they excite atoms, which

then emit fluorescence light. Particles reaching ground level can be detected by means of scin-



20 Cosmic Rays
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tillators, Cherenkov detectors (e.g. employing water tanks), calorimeters or wire chambers.

Figure 2.3 illustrates the detection of an extensive air shower with a ground based array of de-

tector stations. The prolongation of the track of the primary particle is called the shower axis.

The position of the shower core, i.e. the intersection point of the shower axis and the ground

plane, can be reconstructed from recorded data through evaluation of the energy deposits in

the individual stations. The zenith angle ϑ, i.e. the shower inclination, and the azimuth an-

gle ϕ (corresponding to the compass direction, not shown in the figure) can be determined

through a geometrical reconstruction of the shower disc from the relative timings of the detec-

tor signals.

The typical angular resolution of the arrival direction reconstruction of air shower exper-

iments is in the range of a few or even below one degree. E.g. the Pierre Auger Oberva-

tory [Abr04] quotes its angular resolution as about 0.5◦ for air shower events that are jointly

reconstructed by the fluorescence detectors and the surface array, and as better than 2.2◦ for

events that are detected by only three surface detector stations. Events that trigger six or

more surface detectors can be reconstructed with an accuracy better than 1◦ [Bon09]. The

KASCADE experiment, with its dense placement of detector stations, provides an angular res-

olution of better than 0.8◦. Showers with more than 105 electrons at observation level can be

reconstructed with an angular resolution of ca. 0.2◦. The resolution depends only mildly on

the shower inclination [Mai04].

The experimental conditions are subject to continuous variations. Barometric pressure,

temperature and density can influence the shower development, the reconstruction of shower

properties and can shift trigger thresholds. This has only moderate consequences for the search

for small scale anisotropies. The potential sources are always seen together with their sur-

roundings. A significant excess in flux within a defined, small angular region results in higher

counting rates for that region as compared to its environment. Atmospheric variations will

effect the particular source candidate region as well as its surrounding region within the cur-

rent field of view. Large scale structures, on the other hand, span the whole sky, of which
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only a part can be seen at a time. Excess and deficit regions are never seen simultaneously.

An isotropy amplitude of the order of one percent is easily superimposed by variations of the

measurement rate due to experimental effects of the same or much higher order.

The Pierre Auger Collaboration has investigated the impact of changing atmospheric con-

ditions. On a seasonal scale, variations of the order of 10% were observed. Variations during a

day led to variations of 2% on average. The modulation can be related to atmospheric parame-

ters, so that the effects can partially be corrected for [Abr09]. However, atmospheric properties

can change in a variety of ways, and not all of them can be monitored. It is probably impossi-

ble to fully account for all kinds of experimental effects. The impact of these systematic effects

begin to outweigh the statistical uncertainties. As a consequence, the accuracy of anisotropy

analyses is limited by the knowledge of systematic effects, more than by the amount of statis-

tics avaliable. It is desirable to find analysis methods, that are insensitive to these systematic

uncertainties. The assessment of available methods for the analysis of large scale anisotropies,

and the development of new ones, shall be the subject of the following chapters.





Chapter 3

Coordinate Systems

3.1 Spherical Coordinates

A direction in three dimensional space, such as the arrival direction of a cosmic ray particle

at the location of an experiment, is mathematically represented by a three dimensional unit

vector. The vector reaches from the origin of the coordinate system to a point on the unit

sphere. While the vector generally extends in three dimensions, its length is fixed, which elim-

inates one degree of freedom. The remaining two degrees of freedom are usually specified by

means of two angles. Since the problem of describing a location on the unit sphere matches

the problem of describing a geographical location on Earth, it is practical to adopt the geo-

graphical terminology. Thus, the x-y-plane and the z-axis of the coordinate system are called

the equatorial plane and the polar axis, respectively. The aforementioned angles can be cho-

sen to correspond to latitude and longitude. The latitude is defined as the angle that a given

unit vector and its projection onto the equatorial plane enclose, while the longitude denotes

the angle between that projection and the positive x-axis. As a consequence of this definition,

latitude values are contained in the range between −π/2 and π/2, whereas longitude values

range between 0 and 2π. The following definition of a unit vector shall be consistently used

in this thesis:

ê(β ,λ) =






cosβ cosλ

cosβ sinλ

sinβ




 , (3.1)

with β being the latitude-like component and λ being the longitude-like component. The solid

angle element is then given by:

dΩ = cosβ dβ dλ . (3.2)

3.2 The Celestial Sphere

While the purpose of the geographical, or terrestrial, coordinate system with its latitude β and

longitude λ is to specify places on Earth, a coordinate systems for describing points in the sky

also needs be defined. When observing astronomical objects like stars or galaxies, there is no

apparent way to measure their distance from Earth. From this fact evolved the concept of the

celestial sphere. The celestial sphere is an imaginary sphere of infinite radius, with the Earth

at its centre point. Now, all astronomical objects are thought to lie on this imaginary sphere.

From this point, the distances of those objects are not taken into consideration anymore, but

only the directions from which they appear. In order to do so, a coordinate system on the
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Figure 3.1: Definition of the unit vector:
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celestial sphere is defined. In fact, there exist several such definitions. Some are bound to

an observer on Earth, providing constant coordinates for fixed viewing directions. Others are

bound to the sky and maintain constant coordinates for the fix stars.

Because of the celestial sphere’s arbitrary large radius, not only the Earth but the whole

solar system virtually concentrates in a single point in the centre of the sphere, which effec-

tively renders both the position of the observer on Earth and the seasonal motion of the Earth

around the Sun meaningless with regard to parallax effects. This obviously only holds true

for the observation of remote astronomical objects, for which the approximation of infinite

distances is valid. However, for close-by objects such as the Sun, the Moon and the planets

of our solar system, the situation is much more complicated. The calculation of neither their

actual positions nor their representations in celestial coordinates are trivial. However, such

nearby objects shall remain out of consideration, as they are not suitable sources of the high

energy cosmic rays that are subject of this thesis.

While parallax effects are irrelevant, the observer’s location on Earth does still enter the

calculation, as it determines the field of view. It is due to the Earth orbitting the Sun that the

Earth in fact performs 366.24 revolutions during one astronomical year of 365.24 days (more

precisely, solar days). Thus, the Earth’s rotation around the Sun adds up to the rotation around

its axis and results in one additional revolution every year. Therefore, one full revolution of

the Earth with respect to the celestial sphere lasts shorter than one solar day, namely only one

sidereal day, corresponding to 23 hours, 56 minutes and 4.1 seconds in solar time.
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3.3 Horizontal Coordinates

The horizontal coordinate system relates points on the celestial sphere with viewing directions

for an observer on Earth. The horizontal coordinates of a specific astronomical object therefore

depend on the location of the observer, as well as on the time of the observation. The local

horizon, i.e. a tangential plane touching Earth at the place of the observer, corresponds to

the equatorial plane of this spherical coordinate system. The latitude-like component is the

altitude a. Points with an altitude of 0 lie on the horizon, whereas an altitude of π/2 marks

the direction straight from above and is called the zenith (i.e. the North Pole of this spherical

coordinate system). The opposite direction, pointing down to the centre of the Earth, is called

the nadir and is characterised by an altitude value of −π/2. The longitude-like component

is the azimuth ϕ, with an azimuth of zero being defined as looking North, and then turning

clockwise, i.e. through East–South–West, as the azimuth ranges from 0 to 2π.

In cosmic ray experiments, horizontal coordinates are the natural choice for specifying

arrival directions of cosmic rays, as reconstructed from experimental data. It has become com-

mon practice to use the zenith distance ϑ = π/2− a instead of the altitude a, thus measuring

the latitude-like angle from the zenith instead of the horizon, as this corresponds to the inclina-

tion of the cosmic ray particle with respect to the Earth’s atmosphere. Systematic effects, of the

detector setup as well as of the reconstruction, depend on local viewing directions rather than

on the area of the sky that is being looked at. The most dominant effect emanates from the

zenith angle; the more inclined a shower is, the longer is its path through the atmosphere. The

shower reaches ground on average at a later stage of development when it is more inclined.

It is a delicate task to rid the shower reconstruction and analysis from zenith angle dependent

systematic effects, especially for experiments that solely comprise surface based detectors.

3.4 Equatorial Coordinates

The equatorial coordinate system aims to eliminate the dependence on the observer’s time and

location when describing a point on the celestial sphere. One defining feature of this system

is the celestial equatorial plane, which is the projection of the Earth’s equatorial plane onto

the celestial sphere. Likewise, the celestial North and South poles are the intersections of the

celestial sphere with the prolongation of the Earth’s polar axis. As for all spherical coordinate

systems, the definition of an equatorial plane alone yields the latitude-like coordinate, the dec-

lination δ. In addition to the usual geometric definition of the latitude-like coordinate, being

the angular distance between a given point and the equator, the declination of an astronomical

object can be thought of as the geographical latitude on Earth, at which the object can appear

in the zenith. E.g. all points with a declination of −30◦ will only ever appear in the zenith in

locations at 30◦ South latitude.
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The longitude-like component of the equatorial coordinates is called the right ascension α.

In order to have a time independent coordinate system, the grid of equatorial coordinates on

the celestial sphere does not corotate with the Earth. Thus, fixed astronomical objects retain

constant declination and right ascension. Further on, in equatorial coordinates, the path of

the Sun over the course of a year shapes a great-circle on the celestial sphere, which is called

the ecliptic. The Earth’s equator is inclined at an angle of approximately 23◦ to the plane of

the ecliptic, and so is the celestial equator. Therefore, the Sun’s path crosses the equator twice

a year. The intersection point that occurs in spring, when the Sun travels from the Southern

to the Northern celestial hemisphere, is called the vernal equinox. The right ascension of

the vernal equinox is defined to be zero, thereby completing the definition of the equatorial

coordinate system.

In cosmic ray experiments, equatorial coordinates are the natural choice for carrying out

statistical analyses of arrival direction distributions. This is mainly because of the simplicity

of the conversion from local viewing directions (horizontal coordinates) to equatorial coordi-

nates; given the place of the observer, any viewing direction corresponds to a constant dec-

lination and a right ascension that uniformly traverses the range of values, increasing by 2π

during one sidereal day.

3.5 Ecliptic Coordinates

Ecliptic coordinates are not used in this thesis, and are listed here only for completeness. The

ecliptic coordinate system is obtained by skewing the equatorial system such that the ecliptic

becomes the equatorial plane of the coordinate system. The components are called celestial

latitude and celestial longitude. The zero point of the celestial longitude is again the vernal

equinox.

3.6 Galactic Coordinates

The galactic coordinate system uses the projection of the plane of our Galaxy onto the celestial

sphere as its equatorial plane. Thus, points on the galactical plane have a galactical latitude b
of 0◦, with the galactic centre at a galactical longitude l of 0◦.

3.7 Precession, Nutation, Aberration and Refraction

The definitions of some of the coordinate systems given here, involve features such as the

obliquity of the ecliptic and the position of the vernal equinox. These are by no means con-

stant. Gravitational effects of the Sun and the Moon cause the precession of the Earth’s axis,

resulting in the equinox constantly moving Westward at a rate of about 50′′ per year. By def-

inition, such higher order effects do not affect the horizontal coordinate system, because its

definition is entirely geometric and does not involve any variable properties. The conversion

from horizontal coordinates to equatorial coordinates is a geometric transformation, that only

depends on the observer’s geographic location and the sidereal time of day. The resulting

equatorial coordinates declination and right ascension, however, must be put in context with

the time of the observation. Fixed astronomical objects have slowly changing equatorial coor-

dinates owing to higher order effects. Therefore the time of the observation has to be given

along with the equatorial coordinates, which is usually done by means of the astronomical

epoch. An epoch defines a reference time for the equatorial coordinate system used, and is
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defined as reference to the beginning of an Besselian or Julian year. Commonly used epochs

are e.g. B1950.0 (the beginning of the Besselian year 1950), or nowadays especially J2000.0

(the beginning of the Julian year 2000). Given the epoch, equatorial coordinates can be con-

verted to galactic coordinates. As the definition of the galactic coordinate system features no

properties of the Earth, galactic coordinates are meant to be constant for fixed astronomical

objects throughout time.

3.8 Conversion Between Coordinate Systems

The coordinates in different systems are converted into each other by means of rotations of the

coordinate system. The rotation can either be specified by the direction of the rotational axis

and the amount of rotation, or more commonly by a set of up to three angles for consecutive

rotations around a given sequence of coordinate system axes. The transformation from or to

the horizontal coordinate system also requires a change of sign of one of the components,

because of the longitudinal component (the azimuth) being defined as turning clockwise, i.e.

the mathematical negative sense.

The conversion from equatorial coordinates (declination δ, right ascension α) to horizontal

coordinates (zenith ϑ, azimuth ϕ) can be implemented as follows: the unit vector in equatorial

coordinates (ê(δ,α)) is first mirrored at the xz-plane (yielding ê(δ,−α)), then rotated around

the z-axis by the angle of the local mean sidereal time plus 180◦ (yielding ê(δ, lmst−α+π)),
and then rotated around the y-axis by an amount of π/2− β , with β being the geographical

latitude of the observer. The result is the unit vector of the given direction in horizontal

coordinates (ê(π/2 − ϑ,ϕ)). The first of these three transformations is responsible for the

transition from a left-handed coordinate system (horizontal coordinates), to a right-handed

one (equatorial coordinates). The second transformation normalises the rotational state of the

Earth with respect to the fix stars. The third transformation shifts the zenith direction to the

North Pole of the coordinate system. The transformation can be written as:

~rH = ê(π
2
− ϑ,ϕ) = Ry(

π
2
−β) ê(δ,h+π)

h= local mean sidereal time−α= global mean sidereal time−λ−α ,
(3.3)

with Ry(ψ) being the matrix, that rotates the vector on the right hand side around the y-axis

by the angle ψ, and h being the hour angle. Accordingly, the conversion back from horizontal

to equatorial coordinates can be achieved by reversing the sequence of transformations.

The conversion from and to galactic coordinates involves a similar series of rotations. How-

ever, the angular values are not constant, but depend on the epoch, in which the equatorial

coordinates are acquired. The values can be found in astronomical tables, and are not given

here, as this conversion is not required in this thesis.





Chapter 4

Reconstruction of Large Scale

Anisotropies

The arrival direction of a primary cosmic ray particle is among the properties, that are recon-

structed from the data of extensive air shower experiments. The distribution of reconstructed

arrival directions is affected by two distinct effects. Firstly, there are the experimental circum-

stances, such as geographical location and measurement times, that affect the set of recorded

cosmic ray events. At any given time, cosmic ray air showers from different directions traverse

the Earth’s atmosphere with different inclinations. As a result, showers from certain directions

are more likely to remain undetected or be discarded during reconstruction or analysis than

showers from other directions, which clearly influences the resulting direction distributions.

Secondly, cosmic rays may reach the Earth with a non-uniform distribution. While the lat-

ter influence is much less pronounced in recorded data sets than the experimental effects, it

actually is the one of interest.

In mathematical terms, the recorded distribution is a convolution of the true distribution

with a set of experimental features (field of view, measurement times, experimental efficien-

cies, reconstruction errors). This chapter describes methods to perform the de-convolution,

thus deducing the flux distribution from the recorded arrival directions. Especially the limited

field of view of a typical experiment is a challenge for the analysis, as it causes the coverage of

the sky not only to be inhomogeneous, but also incomplete.

4.1 Flux Distributions

In order to describe a flux distribution, it is necessary to choose a parametrisation of the flux

as a function of the direction. In this context, directions are specified by equatorial coordinates

(declination δ and right ascension α). The flux shall generally be described by an isotropic

component and a direction dependend function representing the anisotropy:

Φ(δ,α) = Φ0 · ( 1
︸︷︷︸

isotropic
component

+ f (δ,α)
︸ ︷︷ ︸

anisotropic
component
≪ 1

) . (4.1)

The simplest of such functions is given by the isotropy hypothesis, thus assuming a constant

flux for all directions:

Φisotropy(δ,α) = Φ0 . (4.2)
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Figure 4.1: Example of a dipole distribution. The dipole vector points to 15◦ latitude and 60◦ lon-

gitude. The magnitude is 0.1. The Mollweide projection [Mol1805] has been used for

visualisation. As features of this projection technique, latitudes are straight horizontal

parallel lines, and equal solid angles are represented by equal areas in the projection.

While this model leaves apparently no room for the analysis of large scale anisotropies, it

is possible to examine local deviations from the otherwise constant flux and treat them as

candidates for point sources of cosmic rays. As a matter of fact, it is most common to assume

an isotropic background flux for the search for point sources, as those sources should outweigh

the large scale flux variations.

The most basic approach to a large scale variation of the cosmic ray flux is the assumption

of a dipole:

Φdipole(δ,α) = Φ0 ·
�

1+ ê(δ,α) · ~D
�

, ~D = D · ê(δdipole,αdipole) , (4.3)

with ~D being the dipole vector, defined by its magnitude D and its orientation δdipole,αdipole.

(ê denotes the unit vector.) The right hand side of this equation ranges from Φ0(1 − D) to

Φ0(1+D). It reaches its maximum value in the direction of the dipole, and its minimum in the

opposite direction. An example dipole distribution is shown in Figure 4.1.

The next step towards a more precise and general description of the flux map is to intro-

duce a quadrupole moment, then a sextupole, an octupole, and so forth. By including terms

of higher and higher order, the number of parameters increases as the model resembles the

recorded data set better and better, eventually leading to a full expansion in spherical har-

monics. However, while it is mathematically possible to reproduce the data set precisely with

such an expansion, it is questionable whether this expansion can yield valuable information

on the nature of the anisotropy. The data set itself suffers from experimental inaccuracies and,

much more severe, statistical fluctuations, rendering the higher order terms of the expansion

virtually meaningless. The flux distribution can be expressed by means of spherical harmonics

by

Φs.h.(δ,α) = Φ′0

∞∑

ℓ=0

ℓ∑

m=−ℓ
aℓmYℓm(δ,α) , (4.4)

with aℓm being the sought-after coefficients, and Yℓm being the spherical harmonic functions of

degree ℓ and order m. The spherical harmonic functions can be defined in different ways. The

classical spherical harmonics are complex functions, but by recombining the different degrees
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of one order, it is possible to obtain a modified set of spherical harmonics, that only comprises

real functions, and therefore only yields real coefficients, when the function being expanded is

purely real. For a full definition of the spherical harmonics used in this thesis, see Appendix A.

The choice of these functions simplifies the calculations substantially. Firstly, the absence of

complex numbers renders complex conjugation unnecessary. Secondly, the following identity

is valid:

ê(δ,α) =






cosδ cosα

cosδ sinα

sinδ




 =

1
p

3






Y11(δ,α)

Y1−1(δ,α)

Y10(δ,α)




 . (4.5)

Since Y00(δ,α) is identically equal to one, the flux distribution can be transformed to

Φs.h.(δ,α) = Φ′0 ·
 

a00 +

∞∑

ℓ=1

ℓ∑

m=−ℓ
aℓmYℓm(δ,α)

!

= Φ′0a00
︸ ︷︷ ︸

Φ0

·
 

1+

∞∑

ℓ=1

ℓ∑

m=−ℓ

aℓm
a00

Yℓm(δ,α)

!

, (4.6)

by which the original form is re-obtained.

The dipole distribution as given by Equation 4.3 can be expressed in terms of a spherical

harmonics expansion with non-zero coefficients only in degree one. Thus, a dipole distribution

can be described by means of the dipole vector, or equivalently by three coefficients a1m.

Applying Identity 4.5 to Equation 4.3 yields

Φdipole(δ,α) = Φ0 ·
�

1+ ê(δ,α) · ~D
�

= Φ0 ·




1+

1
p

3






Y11(δ,α)

Y1−1(δ,α)

Y10(δ,α)




 · ~D




 , (4.7)

which is identical to Equation 4.6, if the coefficients are chosen as follows:

a00 > 0 ,p
3/a00 · a11 = Dx = D cosδdipole cosαdipole ,p
3/a00 · a1−1 = Dy = D cosδdipole sinαdipole ,p
3/a00 · a10 = Dz = D sinδdipole ,

aℓm = 0 (ℓ > 1) .

(4.8)

4.2 Calculation of the Exposure

In order to interpret a set of recorded data in view of an assumed parametrisation, it is nec-

essary to know the sky coverage which underlies the experimental data. Depending on the

geographical location of the experiment, only certain parts of the sky are visible at all. De-

pending on the precise measurement periods, some parts of the sky have been seen more

often than others. This section covers the calculation of the exposure, which is a measure for

the sky coverage. The exposure is a function, that takes the experiment’s geometry and the ac-

tual measurement times into account. As a function of declination and right ascension, it yields

the product of the surface area, that has been exposed to the cosmic rays from this direction,

multiplied by the measurement time, during which the given direction has been visible. In

this context, the term “visible” refers to a field of view, that is defined by the maximum zenith

angle ϑmax, up to which the showers are considered well reconstructable, see Figure 4.2. The

exposure can be most generally calculated as follows:
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Figure 4.2: Field of view of an exper-

iment at 49◦ North latitude and with a

zenith limit of 42◦. As the Earth rotates

around the polar axis, so does the cone

that marks off the field of view. After

one revolution, i.e. after one sidereal

day, most of the Northern hemisphere

of the sky has been seen. Only the

part of the sky with declinations South

of +7◦ remains unseen. On the other

hand, a small area around the celestial

North Pole lies continually within the

experiment’s field of view.
celestial sphere

polar axis

Earth

ω(δ,α) =

∫

dt · A(ϑ,ϕ, t) · ǫ(ϑ,ϕ, t) , (4.9)

where the viewing direction (zenith ϑ, azimuth ϕ) is calculated from (and therefore mathe-

matically depends on) the celestial direction (δ,α) and time t. A(ϑ,ϕ, t) denotes the area that

is exposed to the particular viewing direction at the time t. ǫ(ϑ,ϕ, t) marks the efficiency for

detecting cosmic rays from the given viewing direction and at the given time. The integration

is carried out over the actual measurement periods in time.

Assuming a plane ground based experiment, and no bizarre geometrical features, the ef-

fectively exposed area only depends on the zenith angle ϑ. The more inclined a shower is, the

smaller is the projection of the experiment’s ground area onto the shower’s normal plane. That

is to say, the experiment looks “narrower” to a more inclined shower:

A(ϑ) = Asurf · cosϑ . (4.10)

In order get rid of the efficiency term in the exposure calculation, it is most common to apply

cuts to the data set ensuring full efficiency within the selected subset. With respect to the ar-

rival directions, this leads to an upper limit for the zenith angle (ϑmax). These two assumptions

simplify the former equation to

ω(δ,α) =

∫

dt · Asurf · cosϑ(δ,α, t) ·H(ϑmax − ϑ(δ,α, t)) , (4.11)

with H(x) being the Heaviside step function1. The presence of the step function term effec-

tively reduces the integration range to those parts of the measurement periods, for which the

given celestial direction corresponds to a zenith angle not greater than ϑmax.

Looking at the conversion from equatorial to horizontal coordinates, the zenith angle ϑ is

calculated from the equatorial coordinates (δ,α) and the time t as follows:

ϑ(δ,α, t) = arccos
�
sinδ sinβ + cosδ cosβ cosh(α, t)

�
, (4.12)

with β being the geographical latitude of the experiment, and h being the hour angle, which in

turn relates the right ascension α to the local (thus depending on the geographical longitude)

mean sidereal time. The geographical location of the experiment is considered static, which is

1H(x) is defined as an antiderivative of the Dirac function, H(x) =
∫ x

−∞ δ(x
′)dx ′, which leads to H(x) = 0 for

x < 0 and H(x) = 1 for x > 0.
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Figure 4.3: Exposure maps of an experiment at 49◦ North latitude with a detection area of one square

metre. For illustration purposes, a zenith limit of 60◦ was chosen. (a) shows a measure-

ment period of one sidereal minute, beginning from 12:00 a.m. local mean sidereal time.

A region around the North Pole (δ ≥ 71◦) is continually contained in the field of view. (b)

shows the exposure for one full sidereal day. Source directions with a declination less than

−11◦ have zero exposure.

why dependencies on latitude and longitude are not explicitly quoted in the formula. During

the course of one sidereal day, the zenith angle corresponding to any given celestial direction

changes, but the time dependency enters the calculation only via the hour angle:

cosϑ(t) = sinδ sinβ + cosδ cosβ cos h(α, t) . (4.13)

This function is illustrated in Figure 4.4. The value of the hour angle in fact sweeps out the

whole range of 0 to 2π during one sidereal day, making its cosine perform between −1 and 1.

This defines the range of possible values for cosϑ and, as a result, for the zenith angle ϑ: 2

sinδ sinβ − cosδ cosβ ≤ cosϑ(t) ≤ sinδ sinβ + cosδ cosβ . (4.14)

2As the ranges of values of both δ and β are [−π/2;π/2], their respective cosines are never negative.
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Figure 4.4: Variation of

the zenith angle ϑ (shown

here is its cosine) of a

fixed celestial direction

over the course of one

sidereal day. h[h]

cosϑ

0 6 12 18 24

0

1

sinδ sinβ

cosϑmax

cosδ cosβ

visible visibleout-of-sight

Applying angle sum and difference identities yields

− cos(δ+ β) = cos(δ+ β +π)≤ cosϑ(t) ≤ cos(δ− β) . (4.15)

With respect to the visibility of a celestial direction (δ,α) and depending on the declination

δ alone, three cases can be distinguished:

1. The direction never lies within the experiment’s field of view.

This is the case, if for all times t, ϑ > ϑmax (thus3 cosϑ < cosϑmax) holds, which is true

if the upper limit of cosϑ(t) is less than cosϑmax:

cosϑ(t) ≤ cos(δ− β)< cosϑmax 

�
�δ− β

�
� > ϑmax . (4.16)

Obviously, the exposure for such directions is zero.

2. The direction always lies within the experiment’s field of view.

This is the case, if for all times t, ϑ ≤ ϑmax (thus cosϑ ≥ cosϑmax) holds, which is true if

the lower limit of cosϑ(t) is greater than cosϑmax:

cosϑ(t) ≥ − cos(δ+ β)≥ cosϑmax 

�
�δ+ β

�
� ≥ π− ϑmax . (4.17)

3. The direction sometimes lies within the experiment’s field of view.

This is the case if neither of the previous two conditions is fulfilled:

�
�δ− β

�
�≤ ϑmax < π−

�
�δ+ β

�
� . (4.18)

Given the set of measurement periods, the exposure can finally be calculated as follows:

ω(δ,α) =

∫

dt · Asurf ·
�

sinδ sinβ + cosδ cosβ cos h(α, t)
�
·H(ϑmax − ϑ(δ,α, t)) . (4.19)

The Heaviside term turns out to be trivial for directions that continually lie outside (H = 0

and consequently ω = 0) or within (H = 1) the field of view. Otherwise, the integration

3The zenith angle is defined to range within [0;π]. Therefore ϑ ≤ ϑ′ is equivalent to cosϑ ≥ cosϑ′.
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has to be carried out over the intersection of measurement and visibility periods. Given the

geographical location of the experiment, the field of view (in terms of the maximum zenith

angle ϑmax), and the precise measurement periods, an exposure map can be generated by

performing this calculation for many different directions. Figure 4.3 shows an example of

such a map.

Given a carefully calculated exposure map and assuming a certain form of the flux distribu-

tion, it is possible to extract the parameters of the distribution from a set of measured arrival

directions. The following paragraphs describe different methods for the extraction.

4.3 Rayleigh Analysis

One very common approach, many times a first step in anisotropy considerations, is the

Rayleigh analysis. Often, it has been declared as a method for dipole reconstruction. However,

its main result—the Rayleigh amplitude—is only indirectly connected with the dipole ampli-

tude. Its value is not determined by the flux distribution alone, but also by features of the

experiment, namely geographical location and field of view. It will be shown later in more

detail, that the value of the Rayleigh amplitude has only limited meaning with regard to quan-

titative considerations. Nevertheless, the Rayleigh analysis is able to falsify the hypothesis of

an isotropic distribution. This, and the simplicity of the procedure, justify the deployment of

the Rayleigh analysis as a first step for anisotropy studies.

4.3.1 The Formalism

The Rayleigh analysis takes only the right ascension values of the arrival directions into ac-

count. Sines and cosines of the right ascensions are added separately:

C =
2

N

N∑

i=1

cosαi , S =
2

N

N∑

i=1

sinαi , (4.20)

with N being the number of observations. This step can be thought of as adding up the N two-

dimensional unit vectors representing the right ascension values, with C and S being the x and

y coordinates of the sum, divided by 2N for normalisation. The length and the orientation of

the resulting vector are called Rayleigh amplitude R and Rayleigh phase αR, respectively, and

are defined as:

R=
p

C2 + S2 , αR = arg(C + iS) . (4.21)

The right ascension, being the longitude-like component of the equatorial coordinate sys-

tem, is a periodic variable, that can take values in the range between 0 and 2π. If the set

of right ascension values αi favours certain directions over others, the resulting amplitude R
may differ from zero significantly, whereas for a perfectly homogeneous distribution of αi-

values the quantities S and C should only differ from zero owing to statistical fluctuations.

The probability to obtain an amplitude not less than R from an uniform distribution is given

by [Ray1880]4

p(R) = exp
�

−R2N/4
�

. (4.22)

This comparably simple formalism allows for a check of the isotropy hypothesis against a set

of observed right ascension values: First, the Rayleigh amplitude of the data set is computed.

4The equation is an approximation for N →∞, but has proven to work adequately for values of N as small as

three.
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Then, according to the previous equation, the probability, that a uniform distribution yields an

amplitude at least as high, is evaluated. Demanding that this probability falls below a value

that was set a priori, anisotropy is considered evident.

4.3.2 Exposure Based Weighting

A non-uniform distribution of right ascension values does not necessarily have to be caused

by an anisotropy of the cosmic ray flux. Instead, it can be the result of systematic effects.

Obviously, an exposure, that varies with the right ascension, will severely distort the data

set. There are two ways to deal with this problem: either force the exposure map to be

homogeneous in right ascension, or introduce weighting factors in the formulas above, that

account for the differences in exposure. The first approach can be realised by reducing the

data set to measurement periods of full sidereal days only: the measurement periods of the

data start at arbitrary times, but go uninterrupted for an integer number of sidereal days. This

produces an exposure map that is perfectly homogeneous along the right ascension like the

one shown in Figure 4.3(b), at the cost of a (typically large) amount of data being discarded.

The second approach does not restrain the analysis to full sidereal days, hence it uses the

full set of statistics. An exemplary exposure map for such a case is shown in Figure 4.5(a).

It requires a modification of the Rayleigh formalism, that was proposed by Mollerach and

Roulet [Mol05]. Based on the exposure previously computedω(δ,α), each addend in the sum

formulas of the Rayleigh formalism is furnished with a weighting factor, that solely depends on

the direction of the observation. The weighting factor could have been the inverse exposure

1/ω(δ,α), but Mollerach and Roulet decided to use

W (δ,α) =
ω̄(δ)

ω(δ,α)
, (4.23)

with ω̄(δ) being the average exposure of declination δ

ω̄(δ) =
1

2π

∫ 2π

0

dαω(δ,α) . (4.24)

Figure 4.5(b) depicts the weighting factors that correspond to the exposure map in Fig-

ure 4.5(a).

The inverse exposure as weighting factor would generally weight observations from direc-

tions of low exposure more strongly. Celestial directions, that only scratch the field of view

once each sidereal day for a short time (which then automatically happens with great incli-

nation), will receive dramatically high weights. This would, however, provide the exposure

effectively being the same for all directions. But with the Rayleigh analysis only taking the

right ascension into account, it is not necessary to level the exposure with weighting factors

in a way that it becomes constant over the whole field of view. Instead, Mollerach and Roulet

homogenise the exposure only in right ascension. While the reasons for two arbitrary celestial

directions having different exposures are the different zenith angles under which they appear

as well as a possibly different number of observations during the actual measurement periods,

only the latter of the two reasons applies if the two directions have the same declination and

only differ in right ascension. Therefore, the weighting factors needed for balancing the ex-

posure in right ascension only are of order unity, by which means the problem of introducing

large weighting factors and overpronouncing regions with small exposure is circumvented.

The refined Rayleigh analysis after Mollerach and Roulet uses the following formulas:

C =
2

Ñ

N∑

i=1

W (δi,αi) cosαi , S =
2

Ñ

N∑

i=1

W (δi,αi) sinαi , (4.25)
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Figure 4.5: (a) Exemplary exposure map for an experiment at 49◦ North latitude with a zenith limit of

36◦. Interruptions of the measurement cause the exposure to be inhomogeneous in right

ascension, too.

(b) Weighting factors corresponding to the above exposure map.

R=
p

C2 + S2 , αR = arg(C + iS) , (4.26)

with W (δ,α) being the direction dependent weighting factor, and Ñ being the sum of the

weighting factors for all observations, which should not differ very much from the number of

observations N :

W (δ,α) =
ω̄(δ)

ω(δ,α)
, Ñ =

N∑

i=0

W (δi,αi) . (4.27)

In the case of an already right ascension independent exposure, i.e. measurement periods of

full sidereal days, all weighting factors equal one and these equations conform to the previous

ones.
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4.3.3 Applying the Rayleigh Formalism to a Two-Dimensional Dipole Distribu-

tion

So far, the Rayleigh formalism has been introduced with no assumptions about the particular

form of the flux distribution. In order to identify the results of the Rayleigh analysis, the ampli-

tude R and the phase αR, with features of the distribution, it is necessary to analytically track

their calculation. As an intermediate first step, this shall be done for the two-dimensional case:

instead of examining distributions on the unit (or celestial) sphere, represented by declination

and right ascension coordinates, this section covers distributions on the unit circle, represented

by the periodic coordinate α alone.

The Rayleigh analysis takes a set of observation coordinates αi as input. For the purpose

of an analytic calculation, the set of observations is considered infinitely large and represented

by a continuous, dimensionless function I(α), which acts as observation density function. It

is proportional to both the flux Φ(α) and the exposure ω(α), as these are the quantities that

determine the expected numbers of observations from the given direction:

I(α) = I0ω(α)Φ(α) , (4.28)

where the constant I0 has the dimension needed to ensure I(α) is dimensionless. The absolute

value of I0 is meaningless for the following considerations. It is customary to set I0 = 1/(ω̄Φ0),

with ω̄ being the mean exposure and Φ0 an arbitrary constant flux.

Instead of summing over all observations, an integration is carried out over the coordinate

space, with the number of observations from that coordinate (I(α)dα) as additional factor:

C =
2

Ñ

2π∫

α=0

I(α)dαW (α) cosα , S =
2

Ñ

2π∫

α=0

I(α)dαW (α) sinα , (4.29)

W (α) =
ω̄

ω(α)
, Ñ =

2π∫

α=0

I(α)dαW (α) . (4.30)

With the definitions of I(α) and I0 given above, the exposure completely cancels out, which

proves, that the exposure correction of the refined Rayleigh formalism works: the results do

only depend on the real flux distribution, and not on the exposure. The equations can be

simplified to:

C =
2

N

2π∫

α=0

Φ(α)dα cosα , S =
2

N

2π∫

α=0

Φ(α)dα sinα , Ñ =

2π∫

α=0

Φ(α)dα . (4.31)

Applying to these equations a two-dimensional dipole distribution

Φdipole(α) = Φ0 ·
�

1+ D · cos
�

α−αdipole

��

, (4.32)

yields:

Ñ = 2πΦ0 , C = D · cosαdipole , S = D · sinαdipole , R= D , αR = αdipole . (4.33)

Thus, for the two-dimensional case and an infinite number of observations, the Rayleigh analy-

sis correctly reproduces the features of a dipole distribution. The Rayleigh amplitude amounts

to the dipole’s amplitude, and the Rayleigh phase reflects the dipole’s orientation.
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Figure 4.6: Probability density func-

tions of the Rayleigh amplitude for

isotropic data, for different numbers of

observations N . The markers denote the

respective mean values.

However, when working with a data set of finite extent, these quantities are subject to

statistical fluctuations. Given the number of observations N , a dipole of magnitude D would

yield a Rayleigh amplitude in the range between R and R+ dR with a probability of [Lin75]

p(R)dR=
RN

2
exp
�

−N(R2+ D2)/4
�

I0 (RDN/2)dR , (4.34)

where I0 is the modified Bessel function of order zero. Notably, the true dipole amplitude D is

neither the expectation value nor the most probable value of R, as the statistical fluctuations

tend to overpronounce the anisotropy. The most obvious example for this behaviour is a

perfectly isotropic distribution, thus a dipole amplitude of D = 0, for which the probability

density function is given by

p(R) =
RN

2
exp
�

−NR2/4
�

. (4.35)

Figure 4.6 shows the graphs of this function for different numbers of observations N . The

expectation value of R is
p

π/N . With N as big as 10,000, the expected Rayleigh amplitude

is no less than 1.5%, no matter what the underlying distribution is, as the lower limit for this

number is of course given by the case of perfect isotropy. The probability density function for

the Rayleigh phase is given by

p(ψ) =
1

2π
exp(−k)

�

1+
p

πk cosψexp
�

k cos2ψ
�

·
�

1+ erf

�p

k cosψ

���

, k = D2N/4 ,

(4.36)

with ψ being the Rayleigh phase relative to the true dipole direction, or the reconstruction

error, thus ψ= αR−αdipole. The distribution is symmetrical and peaks at zero, i.e. the expec-

tation value for the reconstructed phase is indeed the dipole direction. The more observations

taken into account, and the greater the dipole amplitude, the narrower the peak. For a zero

amplitude—the case of isotropic data—the phase is meaningless and so the distribution is

completely flat. See Figure 4.7 for an illustration.

4.3.4 The Rayleigh Analysis in Three Dimensions

In order to make use of these findings for the Rayleigh analysis in cosmic ray physics, which

processes the arrival directions of the cosmic ray particles coming from three-dimensional

space, the distribution of right ascension values, as used for the Rayleigh analyses, needs to
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Figure 4.7: Probability density functions

of the Rayleigh phase for different combi-

nations of dipole amplitude D and num-

ber of observations N (k = D2N/4). For

instance, for a dipole amplitude of 2%,

the curves (from wide to narrow) corre-

spond to 102, 103, 104, 105 and 106 events,

respectively. On the other hand, for a

given number of 10,000 observations, these

curves (again from wide to narrow) corre-

spond to dipole amplitudes of 0.2%, 0.63%,

2%, 6.3% and 20%, respectively.

ψ

p(ψ)

−π
−

3

4
π −

π

2
−
π

4

0 π

4

π

2

3

4
π

π

0.5

1

1.5

2

k=0.01k=0.1

k=1

k=10

k=100

(multiplied by 0.4)

be related to the original, thus three-dimensional, flux distribution. It will turn out, that the

results of the Rayleigh analysis will not be mere projections of the three-dimensional quantities

onto the equatorial plane. Given an arbitrary flux as function of declination and right ascension

Φ(δ,α), averaging over the declination yields the right ascension distribution Φ̄(α):

Φ̄(α) =

∫ π

δ=−π Φ(δ,α) cosδdδ
∫ π

δ=−π cosδdδ
=

1

2

π∫

δ=−π

Φ(δ,α) cosδdδ . (4.37)

While this calculation can be carried out for any kind of flux distribution, it only makes sense

to consider a dipole distribution at this point. Returning only one amplitude and one phase,

the Rayleigh analysis cannot produce information on higher orders. Substituting Φ(δ,α) with

the dipole distribution as given in Equation 4.3, and carrying out the integration leads to

Φ̄dipole(α) = Φ0 ·
�

1+
π

4
D cosδdipole cos(α−αdipole)

�

. (4.38)

The form of this equation is the one of a two-dimensional dipole, which means that the con-

siderations in the previous section are valuable in the three-dimensional situation, too. At

the first sight, it may look like the disregard of the third dimension leaves the original dipole

vector projected onto, or even skewed into the equatorial plane. However, while the resulting

direction of the two-dimensional dipole is indeed coincident with the right ascension of the

original dipole vector, the dipole amplitude is weakened by two effects. Firstly, the projection

effect: the z-component of the dipole vector has no influence on the two-dimensional distri-

bution. Projecting onto the x y-plane, i.e. the equatorial plane, adds the factor of cosδdipole in

the above equation. Secondly, the dimensional effect: Even when the dipole vector lies in the

equatorial plane, so that no further projection onto that plane is necessary (cosδdipole = 1),

the reduction to two-dimensions weakens the dipole. Looking at slices of the unit sphere of

constant declination δ, the two-dimensional distributions in all slices are dipole-like. But only

one slice—the equatorial plane (δ = 0)—carries a dipole that has an amplitude as great as

D. In all other slices, the respective dipole amplitudes are smaller, namely only D cosδ, see
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Figure 4.8: Dimensional weakening effect acting on a three-dimensional dipole distribution. Consid-

ering the case of the dipole vector lying in the equatorial plane, with dipole vector ~D,

as depicted in Figure (a), and in Figure (b) showing lines of equal intensity on the unit

sphere. Looking at the two-dimensional distributions in slices of constant declination, of

all the slices only the equatorial one (δ = 0) has a dipole identical to ~D. Figure (c) shows

the intensity distributions in three exemplary slices by means of line thickness. Off-equator

slices have less pronounced dipoles.

Figure 4.8. Averaging over all the slices introduces an additional factor of

∫ π

δ=−π

weakening factor
︷︸︸︷

cosδ

geometrical factor
(off-equator slices
contribute less)
︷︸︸︷

cosδ dδ
∫ π

δ=−π cosδdδ
︸ ︷︷ ︸

normalisation

=
π/2

2
=
π

4
. (4.39)

For reasons of clearness, this illustrative explanation has only dealt with the special case of

an equatorial dipole. However, the factor of π/4 turns out to be the same, regardless of the

dipole’s orientation.

A brief summary of the findings so far: Assuming a dipole-like intensity distribution, the

Rayleigh analysis can correctly reproduce the dipole vector’s right ascension, whereas it does

not provide the declination. The reconstructed dipole amplitude is suppressed by a factor of

π/4 · cosδdipole, which depends on the (unknown) declination of the dipole vector.

In fact, the situation is even worse. What has remained disregarded here is the is-

sue of inhomogeneous and incomplete sky coverage, i.e. the exposure. It has been shown,

that the Rayleigh analysis correctly reconstructs dipole amplitude and direction in two-

dimensions. The problem of unequal exposure has been dealt with by means of weighting

factors. When looking upon the three-dimensional dipole as superposition of slices containing

two-dimensional dipoles, for each of which the above considerations apply, the question is

how this superposition works. So far, no weighting factors have been used, implying that the

exposure is constant for all slices, i.e. over all declinations, which usually is not the case. There

are two ways for circumventing this problem: The first possibility is to introduce another set of

weighting factors, in order to make the contributions of each of the declination slices correctly

represented. The weighting for any of the declination slices would be 1/ω̄(δ). As a matter

of fact, the term ω̄(δ) appears in the numerator of the weighting factors that are already in

place for right ascension correction (see Equation 4.23), and therefore is cancelling out. As

a result, each observation would be weighted with the inverse exposure of its reconstructed
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arrival direction (1/ω(δ,α)). It has been discussed in Section 4.3.2 that this would be an un-

favourable choice owing to the fact that these factors are not of the order of one. In addition,

this idea requires coverage of the full sky, as zero-exposure in any direction would entail an

infinite weighting factor.5 However, following this approach would mean that the resulting

Rayleigh amplitude could be identified with the term π/4 cosδdipoleD.

The second possibilty is to keep the weighting as it is, avoiding the negative implications, at

the cost of changing the meaning of the Rayleigh amplitude. Not correcting for the declination

dependency of the exposure means that in the superposition of the declinations slices, some

slices have more impact than others. The right ascension distribution, i.e. the input of the

Rayleigh procedure, becomes:

Φ̄(α) =

∫ π

δ=−π Φ(δ,α) ω̄(δ) cosδdδ
∫ π

δ=−π ω̄(δ) cosδdδ
. (4.40)

Applying this to the dipole distribution Φdipole(δ,α) yields:

Φ̄dipole(α) = Φ
′
0 ·
�

1+ D′ cos(α−αdipole)
�

,

D′ =
D cosδdipole C20

1+ D sinδdipole C11

, Ci j =

∫ π/2

δ=−π/2 ω̄(δ) cosi δ sin j δdδ

∫ π/2

δ=−π/2 ω̄(δ) cosδdδ
,

(4.41)

which in turn is a two-dimensional dipole distribution.6 However, the relationship between

the original dipole amplitude D and the dipole amplitude in the resulting right ascension

distribution (D′) , on which the Rayleigh analysis works, is anything but trivial. Figure 4.9

illustrates that relationship.

4.3.5 Summary

The Rayleigh analysis extracts the amplitude and the phase of the first harmonic from the

distribution of right ascension values of a set of measured cosmic ray observations. It aims

at reconstructing features of a dipole anisotropy. However, since it completely disregards the

declination coordinates, it is unable to do a full reconstruction of the three-dimensional dipole.

It can only detect the equatorial component of the anisotropy. In order to retrieve meaningful

results from the Rayleigh analysis, either the data set has to be restricted to periods of full side-

real days with constant measurement conditions, or—if the exposure of the experiment can

be calculated—weighting factors have to be introduced, that account for the variations of the

exposure in right ascension. With either of these measures in place, the Rayleigh analysis can

correctly reproduce the right ascension of the dipole vector. On the other hand, the Rayleigh

amplitude relates only indirectly to the amplitude of the dipole. Generally, the dipole ampli-

tude is greater than the amplitude of the right ascension distribution. The Rayleigh amplitudes

computed in cosmic ray analyses are usually so small that they could be a product of statistical

fluctutations alone. From a statistical point of view, they serve as an upper limit for the true

right ascension amplitude, which in turn is a lower limit for the sought-after dipole amplitude.

Therefore, the meaning of the Rayleigh amplitude in view of the actual dipole amplitude is

5Although the actual calculation can be written in a way that these infinite weighting factors do not enter, it

will not give correct results in that case.
6This formula has a different flux constant Φ′

0
, which adds a constant factor to Φ0 that depends on δdipole and

integrals of ω̄(δ). The precise definition is not of importance, hence it shall be omitted here for reasons of clarity.
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Figure 4.9: Relationship between dipole amplitude and Rayleigh amplitude. Shown here are curves

for an ideal experiment with uniform exposure (solid lines), for the exposure depicted

in Figure 4.5(a) (dashed lines), and for an experiment on the Southern hemisphere (35◦

South latitude) with a zenith limit of 60◦ (dotted lines). (a) refers to a Rayleigh amplitude

of 10%. The actual dipole amplitude is plotted. It depends on the skew of the dipole

and cannot be determined by the Rayleigh analysis alone. However, a given Rayleigh

amplitude can set a lower limit for the dipole amplitude (about 12.7% in this example).

(b) refers to a dipole amplitude of 10%. The amplitude of the right ascension distribution

ranges from zero to approximately 7.9%, again depending on the skew of the dipole vector.

The experiment’s location and zenith limit have an influence, too: a 10% dipole with

δdipole = 45◦ would correspond to a Rayleigh amplitude of 4.5% and 5.7%, respectively,

for the two hypothetic experiments discussed here.

very limited. Much more than an estimate of the dipole amplitude, the Rayleigh amplitude

is a measure for the precision and the confidence of the determination of the Rayleigh phase.

Still, a Rayleigh amplitude, that does significantly exceed the statistical fluctuations, provides

clear evidence for anisotropy, although a quite significant anisotropy is needed to achieve this.

4.4 The SAP Method for Dipole Reconstruction

The previous section has made the need for a three-dimensional reconstruction algorithm

obvious. A more sophisticated analysis procedure should take the full available information

into account, and therefore not neglect the declination values altogether. Moreover it should

yield an absolute magnitude of the dipole. In 2001, Sommers published an article discussing

the possibilities of anisotropy analyses with an observatory with full sky coverage [Som01].

The method that he proposed for a dipole reconstruction was very much a generalisation of the

concept of the Rayleigh analysis to the three dimensions. While the Rayleigh amplitude works

on the sum of two-dimensional unit vectors of the measured right ascension values, Sommers’

method adds up the three-dimensional unit vectors of the reconstructed arrival directions:

~R=
3

Ñ

N∑

i=1

ê(δi ,αi)

ω(δi ,αi)
, Ñ =

N∑

i=1

1

ω(δi ,αi)
. (4.42)
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Every addend is divided by the direction’s exposure, thereby accounting for unequal sky cover-

age. It is obvious that, if the directions are drawn from an isotropic distribution, the expected

value of this quantity is zero, as the items of the summation cancel out. As for the Rayleigh

amplitude, a value significantly differing from zero would indicate an anisotropy. In case of

a dipole distribution, the vector ~R in fact reproduces the dipole vector. However, this method

entirely depends on a full sky coverage. With gaps in the exposure, the isotropic component

of the flux fails to cancel out in ~S, because the summation lacks the terms of those missing

directions.

Thus for a data set of an experiment with partial sky coverage, ~R as defined above cannot

be identified with the dipole vector. However, this quantity is still related to the properties

of the dipole distribution. In 2005, Aublin and Parizot published an article in which they

described a way to generalise Sommers’ method to work with partial sky coverage [Aub05].

This method is commonly known as the SAP method, named after its developers Sommers,

Aublin and Parizot. Like before, the unit vectors of the reconstructed arrival directions are

weighted with the direction’s inverse exposure and added up. The notation is chosen slightly

differently:

~S =
N∑

i=1

ê(δi ,αi)

ω(δi ,αi)
, S0 =

N∑

i=1

1

ω(δi ,αi)
. (4.43)

In case of full sky coverage, the term 3~S/S0 (which is equal to ~R in the previous definition)

reconstructs the dipole vector. In the more general case, that the field of view is limited to

declinations in the range between δmin and δmax, the relation between the computed quantities
~S and S0 and the dipole vector is much more complicated, but can be derived analytically. The

analogue for the two-dimensional case has been shown in Section 4.3.3, and this derivation

goes along the same lines: the quantities ~S and S0 are written as integrals of the flux and these

integrals are calculated under the assumption of a dipole-like flux distribution. The resulting

values for ~S and S0 depend on the features of the dipole distribution, as well as on the choice

of the integration range (δmin and δmax). Making the reconstructed dipole vector ~R the subject

of the system of equations leads to

Rx =
Sx

sSz − 2γS0

·
γ− p

γ− 1
,

R y =
Sy

sSz − 2γS0

·
γ− p

γ− 1
,

Rz =
sS0 − 2Sz

sSz − 2γS0

,

(4.44)

with

d = sinδmax − sinδmin , s = sinδmax + sinδmin , p = sinδmax · sinδmin , γ=
s2 − p

3
.

(4.45)

These equations attribute a reconstructed dipole vector to a data set, even when the data set

spans only a part of the sidereal sphere. The specific declination range can be chosen freely by

the analyser, as long as the exposure is greater than zero for all directions within this range.

The natural choice would be to take δmin and δmax as determined by the geographical loca-

tion and the zenith limit of the experiment, thereby making use of all visible parts of the sky.

However, it can be favourable to exclude the outward regions with low exposure. Disregarding

these regions reduces the number of observations only marginally, but can improve the stability
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of the result, as the events to be discarded have excessively high weightings. Artificially de-

creasing the declination range will change the specific values of ~S and S0, as it will also change

their meaning. However, the conversion formulas given here account for these changes. Math-

ematically, the correct dipole vector can be reconstructed from an arbitrarily small declination

range. Assuming that the real flux distribution indeed is a dipole distribution, the knowledge

of the true distribution in a small band of declination angle contains enough information for

the precise reconstruction of the dipole vector. However, these analytical considerations al-

ways imply unlimited statistics. In reality, the optimal choice of the declination range for this

analysis is a trade-off between maximising the amount of data by taking the full available

declination range, and getting rid of the fluctuations induced by individual observations with

excessively high weightings.

4.5 Multipole Reconstruction

A different and more general approach employs an expansion of the flux distribution in spher-

ical harmonics. The flux distribution can be written as linear combination of the spherical

harmonic functions Yℓm, with coefficients aℓm, as shown in Equation 4.4. The coefficients can

be easily obtained in the case of full and uniform sky coverage:

āℓm =
1

N

N∑

i=1

Yℓm(δi ,αi) , (4.46)

where āℓm stands for an estimator of the true coefficient aℓm. In the case of unlimited statistics,

these estimators will be identical to the true coefficients, whereas in real world situations the

estimators suffer from statistical fluctuations. While non-uniformities of the exposure can still

be dealt with by means of weighting factors, the method as it is does not work with partial sky

coverage. However, in 2008 Billoir and Deligny published an article on obtaining estimates for

the multipolar coefficients based on data sets acquired with non-uniform or even partial sky

coverage [Bil08].

Let I(δ,α) be the density of observations from a given direction. This quantity is not

identical to the cosmic ray flux from the given direction, as it also involves the exposure. In

fact, it is proportional to both the flux and the exposure:

I(δ,α) = I0ω(δ,α)Φ(δ,α) . (4.47)

If the data set covers the whole of the sky, the exposure is greater than zero for all directions.

In this case, the flux Φ can be obtained by dividing the number of observations from any given

direction by the exposure towards that direction. A multipole expansion can be performed in

a straight forward way. However, for partial sky coverage, the exposure for some directions is

zero. The flux for these directions is undefined, as it cannot be extracted from the data with

the above equation.

In their article, Billoir and Deligny describe two different methods to deal with that situa-

tion. The first method is based on a multipolar expansion of the function I(δ,α). This function

is well defined for all directions. For regions of the sky that are not seen by the experiment,

I(δ,α) simply amounts to zero. Let bℓm be the set of coefficients to the spherical harmonic

functions that describe the function I(δ,α), then its estimators can be obtained by

b̄ℓm =
1

N

N∑

i=1

Yℓm(δi,αi) . (4.48)
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These coefficients are related to the sought-after coefficients aℓm through a kernel [K]mm′

ℓℓ′ , that

can be computed from the exposure function ω(δ,α):

[K]mm′

ℓℓ′ =

∫

cosδdδdαYℓm(δ,α)ω(δ,α)Yℓ′m′(δ,α) . (4.49)

The kernel [K]mm′

ℓℓ′ has to be inverted in order to finally calculate estimators for the multipolar

coefficients aℓm of the cosmic ray flux Φ(δ,α):

āℓm =
∑

ℓ′,m′
[K−1]mm′

ℓℓ′ b̄ℓ′m′ . (4.50)

The second method is based on developing a set of orthogonal functions Zℓm, that incorpo-

rate the exposure functionω(δ,α) in such a way, that expanding I(δ,α) over the Zℓm functions

directly yields estimators for the sought-after coefficients aℓm:

āℓm =
1

N

N∑

i=1

Zℓm(δi ,αi) . (4.51)

The derivation of the functions Zℓm is considerably more complex than the first method, es-

pecially when the exposure function does not solely depend on declination but also on right

ascension. It shall not be shown here.

The results, that these two methods produce, are not identical. However, the differences

are typically much smaller than the statistical uncertainty. Both methods can return the multi-

polar coefficients up to an arbitrary order, but the maximum order L has to be set a priori. The

choice of L also influences the results for lower orders. As for the first of the two methods, the

maximum order L determines the range of ℓ′ in the sum formula 4.50, which means that, for

example, even the dipole coefficients depend on whether the expansion is carried out up to

the quadrupole or sextupole order. While this may be irritating at the first sight, it turns out

to be logical and in fact not circumventable: Firstly, owing to the fact that parts of the sky are

not visible at all to the experiment, the information contained in any data set is not sufficient

to reconstruct the true flux distribution up to order infinity. It is mathematically possible to

construct a hypothetic flux distribution that resembles well a dipole distribution in a part of

the sky (which could be the part visible to the experiment), but which has an overall shape

that considerably differs from a dipole. Such an intentionally misleading distribution would

involve contributions in many orders, which could obviously not be reconstructed from mea-

sured data. Without setting a bound on the number of orders involved to construct the flux

distribution, it is impossible to determine any coefficients for the flux distribution, when it is

not defined for all directions. Secondly, any measurement suffers from statistical fluctuations

owing to which even an isotropic flux distribution, or a plain dipolar one, will have non-zero

contributions of higher order in the data set. The question is whether to interpret these higher

orders as true contributions or statistical artefacts. The value of L defines the highest order

that is still regarded as true contribution. By setting L = 1 the multipole reconstruction is

reduced to a dipole reconstruction, and is based on the assumption that the true flux distri-

bution has a dipolar shape. When this assumption is correct, the methods presented here are

able to reconstruct the dipole vector. However, when this assumption is false, the dipole vector

returned may not correctly reflect the dipolar component of the flux distribution.
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4.6 The East-West Method

A new method, that has recently been proposed, is the East-West method [Arm08, Ghi07,

Bon07]. It utilises only the information from each reconstructed air shower event, whether its

arrival direction lies within the Eastern or the Western half of the field of view. The observed

frequency of air shower events in either of the two halves varies during a sidereal day. The

variation may be caused by changes of measurement conditions during data taking, such as

temperature changes, and by different cosmic ray fluxes from the different parts of the sky,

that can be seen by the experiment as the field of view follows the Earth’s rotational motion.

While the latter is the effect of the anisotropy, the former is an interfering experimental effect.

It can be reduced by carrying out the measurement for a long time and throughout the year, so

that it eventually averages out to a certain degree. The East-West method has been developed

with the hope to get rid of these effects by solely using the difference of the counting rates

of the Eastern and Western hemispheres. This difference is subject to oscillations, and its first

harmonic relates to a dipole anisotropy. As the Earth rotates Eastwards, the Eastern sky is

closer to the dipole excess region for half a day each day. After the field of view has traversed

the excess region, the Western sky is now closer to the excess and therefore bears higher

counting rates than the Eastern sky.

The following considerations do not originate from the citations given above, but reflect

the author’s views. The counting rates at a time t for the two halves of the sky can be computed

from the cosmic ray flux as:

E(t) =

∫ π

ϕ=0

∫ ϑmax

ϑ=0

dϕ sinϑdϑ cosϑ η(ϑ, t) A Φ(ϑ,ϕ, t) ,

W (t) =

∫ 2π

ϕ=π

∫ ϑmax

ϑ=0

dϕ sinϑdϑ
︸ ︷︷ ︸

solid angle

element
7

cosϑ
︸︷︷︸

geometrical
acceptance

η(ϑ, t)
︸ ︷︷ ︸

experimental
effects

A
︸︷︷︸

surface
area

Φ(ϑ,ϕ, t)
︸ ︷︷ ︸

flux

.
(4.52)

The experimental effects are represented in the efficiency function η(ϑ, t). In the ideal case

this function equals one at all times within the considered range of ϑ, thus for ϑ < ϑmax.

This reflects the assumption of having full efficiency in the chosen zenith angle range, and

having no variation of the measurement rate other than that caused by the actual anisotropy.

Experimental effects, however, may lead to a different function η, which may depend on

either or both zenith angle ϑ and time t. Metereological variations, for instance, may add

a time dependent component to η, whereas efficiency shortcomings are likely to depend on

the zenith angle. Generally, η may depend on ϑ and t simultaneously. Azimuthal symmetry

is assumed, so that η is independent from the azimuth angle ϕ. The function η is meant to

represent the true impact of experimental effects. Most of the time, this impact cannot be

quantified. Therefore η(ϑ, t) is treated as an unknown quantity, and the aim is to get rid of

this quantity in the equations.

Since the integration is carried out over horizontal coordinates, the flux function Φ depends

on those coordinates, and also on the time t. Of course, the flux distribution itself is meant to

be time-independent. However, the conversion between celestial and horizontal coordinates

is time-dependent. Consequently, the flux from a specific viewing direction (ϑ,ϕ) depends

on the time t. A dipolar cosmic ray flux distribution shall again be assumed. The direction

7The zenith angle ϑ is measured from the zenith, i.e. the North Pole of the coordinate system, not from the

horizontal plane. Hence, the solid angle element contains a sine instead of a cosine.
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of the dipole vector is constant in equatorial coordinates (δdipole,αdipole), and therefore time-

dependent in horizontal coordinates (ϑdipole(t),ϕdipole(t)):

Φ(ϑ,ϕ, t) = Φ0 ·
�

1+ ê
�π

2
− ϑ,ϕ

�

· ~DH(t)
�

, (4.53)

with ~DH(t) being the dipole vector in horizontal coordinates:

~DH(t) =






DH
x (t)

DH
y (t)

DH
z (t)




 = D ·






sinϑdipole(t) cosϕdipole(t)
sinϑdipole(t) sinϕdipole(t)

cosϑdipole(t)




 . (4.54)

On the other hand, ~DH(t) can also be defined via transforming the dipole vector from equa-

torial coordinates (~D) to horizontal coordinates. With ~D being defined as D · ê(δdipole,αdipole),

the transformation reads:

~DH(t) = Ry(
π
2
− β)D · ê(δdipole,hdipole(t) +π)

= D ·






cosβ sinδdipole − sinβ cosδdipole coshdipole(t)
− cosδdipole sin hdipole(t)

sinβ sinδdipole + cosβ cosδdipole coshdipole(t)




 ,

hdipole(t) = local mean sidereal time(t)−αdipole ,

(4.55)

with hdipole(t) being the hour angle of the dipole vector at the location of the experiment and

at the time t, and Ry(ψ) being the matrix that rotates the vector on the right hand side around

the y-axis by the angle ψ. β denotes the geographical latitude of the experiment.

Plugging the dipole distribution into the definitions of E(t) and W (t), as given above,

yields:

E(t) =

∫ π

ϕ=0

∫ ϑmax

ϑ=0

dϕ sinϑdϑ cosϑη(ϑ, t) · A ·Φ0·
�

1+ DH
x (t) sinϑ cosϕ+ DH

y (t) sinϑ sinϕ+ DH
z (t) cosϑ

�

,

(4.56)

and analogously for W (t) with the ϕ integration ranging from π to 2π. For the ϑ integration,

it is convenient to introduce the following set of functions:

Ei j(t) =

∫ ϑmax

ϑ=0

sini ϑ cos j ϑη(ϑ, t)dϑ . (4.57)

At any given time t, these Ei j are constants, that reflect the ϑ-dependence of the experiment’s

efficiency. If the efficiency function η(ϑ, t) actually depends on the time t, the Ei j terms are

not constant but also time dependent. The ϑ-integration in the above definition of E(t) yields:

E(t) = A ·Φ0 ·
�

E11(t)
∫

dϕ+ DH
x (t)E21(t)

∫

cosϕ dϕ+

DH
y (t)E21(t)

∫

sinϕ dϕ+ DH
z (t)E12(t)

∫

dϕ
�

,
(4.58)

with all integrals over ϕ ranging from 0 to π. The function W (t) is identical, except for the

different integration range for ϕ from π to 2π. The DH
x -contribution vanishes in both E(t)
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and W (t), whereas the DH
y -contribution stays in both functions, but with different signs. The

integrations over ϕ yields:

E(t) = A ·Φ0 ·
�

πE11(t) + 2DH
y (t)E21(t) +πDH

z (t)E12(t)
�

,

W (t) = A ·Φ0 ·
�

πE11(t)− 2DH
y (t)E21(t) +πDH

z (t)E12(t)
�

.
(4.59)

These functions relate to the original dipole parameters in rather complex ways. However,

most of these dependencies vanish, when W (t) is subtracted from E(t):

E(t)−W (t) = 4A ·Φ0 · DH
y (t)E21(t) . (4.60)

Thus, the difference of the event rates in the Western and Eastern halves of the sky is propor-

tional to the total average flux Φ0, the surface area of the experiment A, and last but not least

to the y-component of the dipole vector in local horizontal coordinates, which in fact is the

East-West component. Replacing DH
y (t) with the definition stated above leads to:

E(t)−W (t) = −4A ·Φ0 · D cosδdipole sin hdipole(t)E21(t) . (4.61)

Neglecting the potential time dependency of E21(t) for a moment, the function E(t)−W (t)
performs a harmonic oscillation with a period of one sidereal day, induced by the term

sin hdipole(t). The amplitude of that oscillation is proportional to D cosδdipole, which denotes

the equatorial component of the dipole vector. But it is also still proportional to E21(t), which

generally is time-dependent, and possibly not exactly known for the experiment. Assuming the

ideal case of constant and full efficiency, E21(t) can be computed and amounts to sin3ϑmax/3.

Using that value, the equatorial component of the dipole amplitude can be extracted from the

amplitude of E(t)−W (t). However, by making this assumption, the advantages of the East-

West method disappear, as it now relies on the same kind of assumption as the other analysis

methods. Variations of the efficiency with time, e.g. caused by changing weather conditions,

can have the same hazardous effect on this method as on others. If a sudden change of weather

conditions leads to a reduction of the total event rate, the same reduction does not only apply

to the rates of events from the Eastern and from the Western sky, but also to the difference of

the rates.

4.7 Summary

The reconstruction of large scale anisotropies, i.e. the deduction of a directional distribution

of the cosmic ray flux from a set of measured data, faces several obstacles. The non-uniform

coverage of the sky, especially when parts of the sky are not visible at all, which is always

the case for a single, ground-based cosmic ray experiment, demands special methods. These

methods cannot extract the nature of a possible anisotropy from the data alone. Instead, they

imply assumptions on the overall shape of the anisotropy and then reconstruct specific features

of it from the data. The most basic assumption, that can be made, apart from the flux being

perfectly isotropic, is a dipolar anisotropy. Methods to detect and reconstruct such a dipole

have been presented: The Rayleigh analysis is a simple, well understood procedure, that can

yield evidence for anisotropy, although it can hardly produce quantitative information. The

SAP method is a procedure dedicated to the reconstruction of a dipolar anisotropy. A multipo-

lar expansion of experimental data is possible, although with certain limitations. If an infinite

amount of statistics were available, the methods presented here would yield correct results,

when applied to flux distributions that suit the assumptions contained therein. However, all
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of these methods suffer from the limited availability of statistics. The examination of their

potential, in terms of reconstruction accuracy under realistic conditions, shall be the subject of

the next chapter.



Chapter 5

Monte Carlo Simulation Studies

Several methods for estimating the anisotropy, that is contained in a set of recorded cosmic

ray air shower observations, have been described in the preceding chapter. The results are

always influenced by the shortcomings of the recorded data, many of which are inevitable.

The amount of data available is limited, so that statistical fluctuations distort the results. Even

the development of individual air showers in the atmosphere and their detection are influenced

by statistical fluctuations, which is one of the reasons, why the arrival directions of the cosmic

ray particles can only be determined with finite precision. Shortcomings are not only in the

measured data, but also in the methods, as assumptions are made about the shape of the flux

distribution, that may or may not meet reality. While it has been shown, that the methods work

well under ideal circumstances, more realistic checks are necessary to assess the potential of

these methods and interpreting their results.

One way of checking is the creation of sets of simulated data, that reflect a given flux

distribution and incorporate effects that would be caused by the experimental circumstances

in a real measurement. The creation of such simulated data sets and their application to the

reconstruction procedures is the subject of this chapter.

5.1 Display of Data Sets

In this chapter and the rest of the thesis, the data on the unit sphere, such as sets of arrival

directions, are shown as histograms. It has to be pointed out, that histogramming is only

utilised for the presentation of the data sets. The analyses are always carried out with the

original list of simulated (or measured) directions, not with the histogrammed data. Dealing

with a spherical parameter space has some implications: unlike any Euclidian parameter space,

it is impossible to divide the sphere into bins of the same size and shape. The arrangement of

bins on the unit sphere used in this thesis is illustrated in Figure 5.1. This method achieves

that every bin covers approximately the same solid angle on the sphere. Deviations are of the

order of one percent. In addition, the shape of the area of any bin is approximately quadratic

(perfectly circular in the case of the top and bottom cap bins). The display of the histograms

is based on the Mollweide projection, see the caption of Figure 4.1 for details. Whenever

extensive quantities (i.e. quantities that vary with bin sizing, e.g. number of events per bin)

are plotted, the colour coding is corrected for the slightly different solid angle coverage of the

bins. Not performing this correction would sometimes lead to visible patterns in the plots,

that would merely be effected by the binning and have no scientific meaning. For reasons of

clarity and readability, the scales printed next to the histograms quote uncorrected (average)

numbers, instead of giving values in units of quantity per steradian (solid angle). While the
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Figure 5.1: Binning of the unit sphere.

The sphere is divided into a number of

slices of equal size along the declination

axis. At the top and the bottom of the

sphere two caps remain. Their diame-

ter equals the width of declination slices.

Each of the caps forms one bin. Each

of the slices inbetween the caps is di-

vided into a variable number of bins, the

boundaries being lines of constant right

ascension. The number of bins inside one

declination slice is chosen such, that the

solid angle covered by any of the bins ap-

proximates the solid angle of one of the

cap bins.

latter would technically be more precise, the former provides the reader with more descriptive

indications such as “1,000 events inside one bin” instead of “23.7 events per steradian”, and

facilitates judging the effect of statistical fluctuations.

5.2 The Monte Carlo Generator

The software for producing the sets of simulated data, i.e. the Monte Carlo generator, was

developed as a part of this thesis. It is based on the usage of pseudo random numbers, for

the creation of which standard library routines are available. These pseudo random numbers

are the outcome of an iterative chain of non-linear calculations, which are deterministic and

therefore the sequence of random numbers is reproducible. Calling the generator will modify

its internal state and return a number that is regarded as being random. The initial state of

the generator is called the seed. Each time the Monte Carlo generator software is run, the

seed has to be set to a different value at the beginning, since otherwise the generator would

produce exactly the same data set again and again. The feature of reproducibility can be

very helpful during the development of the Monte Carlo generator software, as along with the

random numbers also errors and crashes become reproducible, enabling the developer to test

modifications of the source code, that should prevent such errors. The numbers returned by

the random number generator are then normalised to lie in the range between 0 and 1. It is

inevitable that the distribution of the random floating point numbers has a certain granularity,

owed to the fact that these numbers are stored with finite precision. Apart from that, the

random numbers are considered equally distributed.

Let X be a random variable with the said characteristics. Let pX (X
′) denote the probability

that the value of X is less than X ′. The uniformity of the distribution is then expressed through

dpX

dX ′
= const. , 0≤ X ′ < 1 . (5.1)

Normalisation of the probability function demands that

1∫

X ′=0

dpX

dX ′
dX ′ = 1 

dpX

dX ′
= 1 . (5.2)
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Random variables with different distributions will be used below. To obtain values for those

from the random number generator, mapping functions need to be found, that convert the

standard random numbers. That means, for a random variable Y whose behaviour is defined

by the integral probability distribution pY (Y
′), the function Y (X ) has to be found. Another

possibility to obtain random variables with an arbitrary probability distribution is to employ

the rejection technique. Each number retrieved from the random number generator is dis-

carded (i.e. rejected) with a probability that depends upon its value. By choosing the rejection

probability appropriately, the resulting set of output random numbers will reflect the desired

probability distribution. Although the former method cannot always be applied, as it may

be impossible to find a suitable mapping function, it should be used whenever possible. The

latter method is generally more CPU time consuming, as more random numbers have to be

generated and rejection tests have to be performed. It can be very unfavourable, when the

fraction of rejected numbers is large. These two methods can be combined, by using mapping

functions, which do not effect the intended probability distribution themselves, but allow for

the usage of more efficient rejection functions.

The Monte Carlo needs to draw points on the unit sphere (representing the arrival direc-

tions) with a given distribution. The points are described by means of two variables: latitude

β and longitude λ. Therefore, obtaining one direction requires to obtain two random numbers

X1 and X2, which are then transformed to a pair of coordinates:

(X1, X2) 7→ (β ,λ) . (5.3)

The transformation is done with a mapping function that shall reproduce the desired distribu-

tion. If no mapping function can be found, that fully achieves this, a mapping will be used that

produces a distribution which resembles the wanted distribution as closely as possible, and

additionally a rejection function Rej(β ,λ) is applied: a third random number X3 determines

whether the obtained coordinates are accepted. This is the case when the value of X3 is larger

than the rejection probability Rej(β ,λ). The higher the value of Rej(β ,λ), the smaller the

probability that X3 exceeds that value and the obtained coordinates are accepted. Rejection

of the coordinates means that the procedure is repeated as many times as necessary with new

sets of random variables X1, X2, X3.

5.2.1 Isotropic Distribution

The isotropic distribution is characterised by the probability of a point lying within a given

area being proportional to that area’s solid angle:

dpβλ

dΩ
= const. . (5.4)

Owing to the symmetry, the probability for a pair of coordinates can be factorised into inde-

pendent probabilities for latitude and longitude (pβλ = pβ pλ). Plugging in the correct term

for the solid angle element yields:

dpβλ

dΩ
=

dpβ

dβ cosβ
·

dpλ
dλ
= const. . (5.5)

The following ansatz satisfies this condition:

X1 =
1

2
(sinβ + 1) , X2 =

λ

2π
, (5.6)
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with X1 and X2 being standard random numbers (dX1 = dpβ , dX2 = dpλ). Therefore:

dpβ
dβ cosβ

=
1

cosβ
·

dX1

dβ
=

1

cosβ
·
�

1

2
cosβ

�

=
1

2
= const. ,

dpλ
dλ

=
dX2

dλ
=

1

2π
= const. , q.e.d. .

(5.7)

Because so far only the derivatives have been considered, the boundary values of this mapping

have to be checked separately:

X1 = 0⇔ β = −
π

2
, X1 = 1⇔ β =

π

2
, X2 = 0⇔ λ= 0 , X2 = 1⇔ λ= 2π .

(5.8)

The range of values of X1 and X2 are therefore correctly mapped to those of β and λ. Con-

verting the definitions of X1 and X2 to definitions of β and λ leads to:

β = arcsin(2X1− 1) , λ= 2πX2 . (5.9)

5.2.2 Dipole Distribution

While the probability per solid angle is constant for the isotropic distribution, it depends on

the direction for any anisotropic distribution. It is proportional to the flux distribution, but

normalised such, that the integral of the probability over the whole unit sphere amounts to

one. For the dipole distribution follows:

dpβλ

dΩ
=

1

4π
·
�

1+ ~D · ê(β ,λ)
�

∝ Φdipole(β ,λ) . (5.10)

A dipole distribution is characterised by its dipole vector ~D, the length of which corresponds to

the dipole magnitude. The distribution has its maximum in the direction of the dipole vector,

where it takes the value (1+ |~D|)/4π. The probability distribution’s mean value is 1/4π. To

obtain random directions with a dipolar distribution, the isotropic mapping function can be

used together with the rejection technique. The rejection function needed would be:

Rej(β ,λ) = 1−

dpβλ

dΩ

�
�
�
�
β ,λ

max

¨
dpβλ

dΩ

« = 1−
1+ ~D · ê(β ,λ)

1+ |~D|
. (5.11)

The efficiency of the procedure is the mean acceptance (1− Rej), the reciprocal of which is

the mean number of additional iterations. It turns out, that for a dipole amplitude D, D is

also the exact amount of the computational overhead. E.g. generating a 30% dipole will need

130% as many sets of random numbers as for the isotropic distribution. Since employing the

rejection technique also requires one additional random number X3 (the rejection probability)

per iteration, the computational overhead introduced by the increased demand of random

numbers amounts to a total of 95%. Therefore it is worthwhile to seek a suitable mapping

function, such that dipole-like distributed random directions can be drawn without employing

the rejection technique.

Generally, the dipole distribution function depends on both latitude and longitude. It can-

not be split into two factors, each of which only depending on latitude or longitude. However,
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the situation can be substantially simplified by choosing the dipole vector to be parallel to the

z-axis, thus perpendicular to the equatorial plane of the coordinate system. This approach

does not entail a loss of generality, as the coordinate system used can always be rotated such,

that the dipole vector coincides with the z-axis. The probability distribution is then given by:

dpβλ

dΩ
=

dpβ

dβ cosβ
·

dpλ
dλ
=

1

4π
·
�
1+ D sinβ

�
. (5.12)

It does not depend on the longitude λ at all. The following ansatz is made:

dpβ
dβ cosβ

=
1

2

�
1+ D sinβ

�
,

dpλ
dλ
=

1

2π
. (5.13)

Two standard random numbers X1, X2 (dX1 = dpβ , dX2 = dpλ) shall be drawn and mapped

onto spherical coordinates. Integration of the above ansatz yields:

X1∫

X ′1=0

dX ′1 = X1 =

β∫

β ′=−π/2

1

2

�
1+ D sinβ ′

�
cosβ ′ dβ ′ =

D

4
sin2 β +

1

2
sinβ −

D

4
+

1

2
(5.14)

X2∫

X ′2=0

dX ′2 = X2 =

λ∫

λ′=0

1

2π
dλ′ =

λ

2π
. (5.15)

Rewriting these equations for β and λ yields:

β = arcsin

p

D2 + 2D(2X1− 1)+ 1− 1

D
, λ= 2πX2 . (5.16)

The boundary conditions are the same as for the isotropic distribution. They are fulfilled by

this mapping function.

In order to generate dipoles pointing to an arbitrary direction (βdipole,λdipole), the coor-

dinates obtained through the above mapping have to be rotated by an angle of βdipole − π/2
around the y-axis and subsequently rotated by the angle λdipole around the z-axis.

In order to test the dipole generator, a series of dipole distributions was simulated, see

Figure 5.2. When performing simulations with identical parameters, the obtained data sets

are by no means identical. The finite amount of simulated directions in a data set leads to sta-

tistical fluctuations. Also, the input parameters cannot be reconstructed from the data set with

arbitrary precision. This is shown in the histograms in Figures 5.2(e) and 5.2(f). For these

histograms, 20,000 data sets with identical input parameters (3% dipole amplitude, 15◦ dec-

lination, 75◦ right ascension) were generated and underwent a Rayleigh analysis. According

to Equation 4.38, the right ascension distribution of the simulated dipole has dipolar shape,

pointing to 75◦ right ascension. The amplitude is less than the one of the original three-

dimensional dipole because of the inclination of the dipole and the dimensional weakening

effect, and amounts to 3% · cos15◦ ·π/4≈ 2.3%. As can be seen in the histograms, the results

of the Rayleigh analyses scatter around their expected values of 2.3% and 75◦. The probability

density functions for the outcome of the Rayleigh analysis, as given by Equations 4.34 and

4.36, are plotted as black curves. It has to be emphasised, that those black curves are not the

result of a fit. They are theoretical predictions, based on the input parameters of the simula-

tion alone. The good agreement of the histogrammed data and the plotted probability density

functions is a strong argument in favour of the correctness of the whole simulation procedure.



56 Monte Carlo Simulation Studies

−60
◦

−30
◦

0
◦

30
◦

60
◦

−
1
2
0 ◦

−
6
0 ◦ 0

◦

6
0
◦

1
2
0
◦

180 ◦

50

60

70

80

90

100

e
n

tr
ie

s
/
b
in

(a)

−60
◦

−30
◦

0
◦

30
◦

60
◦

−
1
2
0 ◦

−
6
0 ◦ 0

◦

6
0
◦

1
2
0
◦

180 ◦

600

620

640

660

680

700

720

740

760

780

e
n

tr
ie

s
/
b
in

(b)

−60
◦

−30
◦

0
◦

30
◦

60
◦

−
1
2
0 ◦

−
6
0 ◦ 0

◦

6
0
◦

1
2
0
◦

180 ◦

6500

6600

6700

6800

6900

7000

7100

7200

7300

e
n

tr
ie

s
/
b
in

(c)

−60
◦

−30
◦

0
◦

30
◦

60
◦

−
1
2
0 ◦

−
6
0 ◦ 0

◦

6
0
◦

1
2
0
◦

180 ◦

66000

66500

67000

67500

68000

68500

69000

69500

70000

70500

71000

e
n

tr
ie

s
/
b
in

(d)

R

entries

0 0.01 0.02 0.03 0.04

0

200

400

600

800

1000

1200

1400

1600
Entries 20000

χ2/d.o.f. 1.12

(e)

α
R

entries

45
◦

55
◦

65
◦

75
◦

85
◦

95
◦

105
◦

100

200

300

400

500

600

700

800 Entries 20000

χ2/d.o.f. 0.87

(f)

Figure 5.2: Monte Carlo simulation of a dipole: four data sets, containing 105 (a), 106 (b), 107 (c) and

108 (d) simulated observations. The entries were drawn from a dipole distribution with an

amplitude of 3%. The dipole points towards 15◦ declination, 75◦ right ascension (white

circles). While the statistical fluctuations outweigh the effect of the dipole in figure (a),

the latter becomes more pronounced the larger the data set. The excess in direction of the

dipole vector and the deficit in the opposite direction (black circles) are clearly visible in

figure (d).

20,000 data sets with 100,000 events each, like the one depicted in Figure (a), were gen-

erated. The histograms show the distributions of the obtained Rayleigh amplitudes (e)

and Rayleigh phases (f). The black curves are theoretical predictions, according to Equa-

tions 4.38, 4.34 and 4.36.

5.2.3 Higher Order Multipoles

Multipoles of higher order can generally only be simulated with the rejection technique. The

probability is distributed according to

dpβλ

dΩ
=

1

4πa00

ℓmax∑

ℓ=0

ℓ∑

m=−ℓ
aℓm Yℓm(β ,λ)∝ Φs.h.(β ,λ) . (5.17)

The strategy for obtaining a mapping function, that has been used above for deriving the map-

ping functions of the isotropic and dipolar distributions, does not work in the more general
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case here, as the probability distribution cannot be factorised to separate the β and λ depen-

dencies. The dipole along the z-axis is one of the few special cases in which this approach does

work. However, the higher order components usually have small coefficients. Therefore the

computing overhead introduced by employing the rejection technique should not significantly

exceed the value of 50%, which is inevitable owing to the demand of an additional random

number to test against the rejection probability.

5.2.4 Generation of Experiment-Like Data Sets

The distributions, that have been looked at so far, are meant to reflect the direction depen-

dent cosmic ray intensity. At this point, experimental circumstances have not yet entered the

calculations. The most influential experimental property is the inhomogeneous sky coverage,

entailed by the limited field of view. The actual sky coverage of an experiment can be cal-

culated and expressed as the direction dependent exposure function ω(δ,α). The expected

number of observations from any direction is proportional to a function I(δ,α), which is de-

fined as the product of the exposure function and the assumed flux distribution:

I(δ,α) =ω(δ,α)Φ(δ,α) . (5.18)

This observation density function could be used as a probability distribution function for the

Monte Carlo generator. This would require an estimate of the upper limit for the values of

I(δ,α), Imax. Drawing directions from an isotropic distribution and employing Rej(δ,α) =

1− I(δ,α)/Imax as rejection function would reliably produce a simulated data set, which by

construction would reflect the assumed flux and exposure functions. However, the capabilities

of this approach are very limited as it is based on the assumption that all experimental effects

are exhaustively described by the exposure function. The outcome of the simulation procedure

is prescribed by the input probability density function. Actually carrying out the simulation

only adds the effect of statistical fluctuations.

The Monte Carlo generator, that was developed for this thesis, follows a different approach.

It is modelled on the operation of a cosmic ray experiment. When recording data with an

experiment, the set of measured arrival directions (in equatorial coordinates) is influenced

by the geographical location of the experiment, by the precise measurement times, by the

efficiencies of the detector components, by the reconstruction performance and by the cuts

applied to the data set. A calculated exposure map does not enter in the process of data taking

and reconstruction at any point. It ought not to enter in the process of simulating a data

set, either. Instead, the exposure function is a consequence of the aforementioned aspects.

The Monte Carlo programme reproduces those aspects. The analysis routines that work on

the data set (either simulated or measured) to reconstruct the properties of the anisotropy,

however, take the exposure map into account.

The procedure is divided into six steps. Step 1: an arrival direction (in equatorial coor-

dinates) is drawn from the assumed flux distribution. This direction is considered the true

arrival direction δtrue, αtrue, since it has been drawn from the distribution that stands for the

true flux distribution of cosmic rays within the framework of this simulation. In addition to

the arrival direction, a sidereal time of the day t is chosen randomly, either from a flat dis-

tribution, or from a distribution that represents the measurement periods of the experiment.

The former alternative assumes, that the measurement is conducted in periods of full sidereal

days, whereas the latter allows, that the experiment is operated during arbitrary periods. The

idea behind this first step is, that the Earth is constantly being hit by cosmic ray particles,

and that the arrival directions of those comply with the given distribution. In this first part of



58 Monte Carlo Simulation Studies

the simulation chain, the arrival times and directions of particles hitting the Earth (and not

necessarily the experiment) are drawn. The flux has implicitly been assumed as constant in

time.

Step 2: the equatorial coordinates δtrue, αtrue are transformed into local viewing directions

(horizontal coordinates) ϑtrue (zenith angle), ϕtrue (azimuth angle). This transformation de-

pends on the sidereal time of the day, which is also the reason why it is generated in Step 1,

as well as on the geographical location of the experiment. Since the directions are generated

in Step 1 from the true flux distribution, they are by no means confined to the field of view of

the experiment. Therefore, many of the viewing directions computed here lie outside the field

of view or even below the horizon.

Step 3: directions, that lie way outside the field of view, are discarded. The field of view is

defined by an upper limit of the zenith angle ϑ, ϑmax.

Step 4: the true arrival direction ϑtrue, ϕtrue is reconstructed by the experiment as ϑrec,

ϕrec. The limited accuracies of measurement and reconstruction are simulated in this step.

The reconstructed coordinates are chosen from a Gaussian distribution around the true coor-

dinates. For a realistic emulation of the experiment, the width of the Gaussian distribution (i.e.

the angular resolution) has to be assessed by means of full air shower and detector simulations

beforehand. Taking into account, that the reconstruction error could shift observations from

outside to inside the defined field of view, only those events must be discarded in Step 3, that

practically cannot be misreconstructed into the field of view.

Step 5: applying the detector, reconstruction and analysis efficiency. The simplest approach

is, that the efficiency is considered to be 100% for all events with zenith angles smaller than

ϑmax. More inclined events are discarded in the analysis, which is due to a cut on the zenith

angle, and therefore are also discarded here. Basically, this is a strict cut on zenith angle, but

in contrast to Step 3, this cut is on the reconstructed zenith angle, not the true one. However,

it is possible to simulate more complicated scenarios, e.g. a small efficiency defect for highly

inclined showers.

Step 6: transformation back to equatorial coordinates (δrec,αrec). These constitute the

final result of the simulation chain and enter the data set.

A great share of the simulated particles is discarded in Steps 3 and 5, most often because

the particle in question cannot be seen by the experiment. It is vital, that the simulation

restarts at Step 1, so that a new direction and a new time are drawn from their corresponding

distributions, once a particle gets rejected. Keeping the direction of the discarded event and

only reassigning the time, or vice versa, would lead to distortions in the resulting data set.

E.g., if the Monte Carlo generator did reuse the chosen time across rejections until the particle

finally got accepted, the output distribution of incident times would equal the distribution

the times were drawn from. This, however, is not intended. While the cosmic ray flux is

assumed to be constant in time, this does not necessarily apply to the observation rate of the

experiment. While the experiment is facing regions of the sky that expose an excess or deficit in

flux, the event rate of the experiment experiences modulation. The procedure described above

implicitly takes account of this modulation, as it is reproduced by the rejection of events in

Steps 3 and 5. The assumption that lies in the approach taken here is, that not the experiment

but the Earth is hit by cosmic rays with a constant rate.

Data sets of arbitrary size can be generated by repeating this simulation chain. The distri-

butions of arrival directions in the so obtained data sets should resemble the function I(δ,α),

that has been defined earlier. However, when experimental effects are simulated, that are not

considered in the calculation of the exposure function, the outcome of this more sophisticated

simulation procedure may differ from the analytically obtained function I(δ,α).
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Figure 5.3: Reconstructed Rayleigh amplitudes (a) and phases (b) for simulated data sets. Subject of

the simulations is a hypothetic experiment located at 49◦ North latitude with a zenith limit

of 20◦, which is exposed to a dipole flux distribution with an amplitude of 3%, pointing

towards 75◦ right ascension at 15◦ declination. Each of the 20,000 simulated data sets

comprises 100,000 observations. One such data set is depicted in Figure (c), in which

the upper and lower circles mark the excess and deficit regions of the dipole, respectively.

Figures (d), (e) and (f) show the corresponding plots for a zenith limit of 60◦.
The black curves are theoretical predictions, according to Equations 4.41, 4.34 and 4.36.

5.2.5 Tests of the Monte Carlo Generator

In addition to the checks of the dipole generator discussed above and illustrated in Figure 5.2,

the Monte Carlo generator can be tested for those cases which can also be explained analyt-

ically. There is an analytical description for the result of a Rayleigh analysis in the case of

partial sky coverage, provided that the exposure does not depend on the right ascension coor-

dinate. Given a dipole-like flux distribution, the geographical location of the experiment and

its opening angle, and assuming precise reconstruction and full efficiency for all observations

within the defined field of view, the distribution of recorded right-ascension values is also dipo-

lar and can be predicted according to Equation 4.41. When perfoming a series of Monte Carlo

simulations, the sample of reconstructed amplitudes and phases shall be distributed according

to Equations 4.34 and 4.36.
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Such a test was carried out and the results are shown in Figure 5.3. The configuration

of the simulated dipole was the same as in the test of the dipole generator in Section 5.2.2:

amplitude 3%, declination 15◦, right ascension 75◦. The expected Rayleigh amplitude depends

on experimental features. The geographic location of the experiment used in the Monte Carlo

simulations is 49◦ North latitude. Assuming a very narrow field of view, with a maximum

zenith angle of only 20◦, the sky coverage of the experiment is characterised by the following

values of the Ci j constants, as outlined in Section 4.3.4:

C20 ≈ 0.658 , C11 ≈ 0.733 .

These values have been obtained by numerical integration of the exposure function of this

scenario. Accordingly, the Rayleigh amplitude of the right ascension distribution is expected

to be approximately 1.90% (see Equation 4.41). The black curve in Figure 5.3(a) describes

the distribution of obtained Rayleigh amplitudes when working with data sets with finite size,

here 100,000 events, according to Equation 4.34. In total, 20,000 of such simulated data sets

were produced. The histogram in the same figure shows the outcome of the Monte Carlo

simulations. It is practically coincident with the theoretical prediction. So is the distribution

of the phase values, as shown in Figure 5.3(b).

A second set of Monte Carlo simulations was carried out with identical parameters, except

for the zenith limit, which was set to 60◦. Even though the underlying flux distribution is the

same as for the former set, the expected Rayleigh amplitude is different. The broader field of

view results in a different sky coverage, this time characterised by:

C20 ≈ 0.706 , C11 ≈ 0.588 .

The correct Rayleigh amplitude in this scenario amounts to approximately 2.04%, which is

slightly higher than in the former case. Along with these quantities, the distributions of the

individual results of Rayleigh analyses have changed. These are depicted in Figure 5.3(d) and

Figure 5.3(e). Again, the obtained samples conform perfectly with the analytical predictions.

The conclusion to be drawn from these tests is, that the Monte Carlo generator correctly

reproduces the effect of a constrained field of view. Not all of the six steps of the event

simulation, that have been described in the previous section, could be reviewed in this test.

The reconstruction has been treated as perfectly accurate (thus Step 4 was bypassed), and

no efficiency defects have been simulated (in Step 5), as there is no way to incorporate these

effects into the analytical predictions. For the same reason, this test has been restricted to the

case of data taking during full sidereal days with constant measurement conditions. However,

where comparisons to analytical considerations are possible, the Monte Carlo generator has

been proven to work. In the following sections, more situations will be studied, that cannot

be handled analytically: either because the experimental effects are too complex, or because

reconstruction algorithms other than the Rayleigh analysis will be used, for which the output

distributions are not known. These situations can only be accessed by means of Monte Carlo

simulations.

5.3 Tests of Reconstruction Methods

In this section, data sets created with the Monte Carlo generator, that has been introduced

above, are analysed with different methods. The aim is to evaluate the potential of the methods

in terms of correctness and accuracy. The data sets all reflect the ideal experimental case: the

exposure function does not vary with right ascension, the reconstruction of arrival directions
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is perfectly accurate, and the detection takes place with full efficiency. These are the ideal

circumstances, that are implicitly assumed by the reconstruction methods.

5.3.1 A Quantitative Measure of the Reconstruction Quality

In order to assess the quality of the reconstruction techniques, that are applied in the sections

below, it is necessary to have a quantitative measure of the reconstruction quality, that can be

obtained through Monte Carlo simulations. The accuracy of the reconstruction of properties

of the original flux distribution is affected by the amount of statistics available, but may vary

subject to the reconstruction method used. In the realisitic case of the amount of available

statistics being limited, the reconstruction results are subject to fluctuations. Therefore, the

production and analysis of a single data set cannot give conclusive information on the general

accuracy of the method used. Instead, a series of Monte Carlo data sets with common input

parameters has to be produced. The individual analyses will yield different results. The values

obtained for any of the properties will behave according to a certain (usually unknown) dis-

tribution, of which the series of Monte Carlo simulations reveals a sample. From this sample,

the distribution’s mean value and scatter can be estimated. The mean value should comply

within its errors with the true value, i.e. the input value to the Monte Carlo simulation, of the

considered property. Otherwise, the reconstruction method introduces a systematic deviation,

or bias. The width of the distribution is desired to be as small as possible, as it corresponds

to the statistical error of the reconstruction of a single data set. A reconstruction method can

generally be regarded as good, when the mean reconstructed value matches the true value,

and the scatter around this mean value is small. A suitable measure to quantify the combina-

tion of these two aspects is the second algebraic moment of the distribution x − xtrue, with x
representing the property being reconstructed (e.g. dipole amplitude) and xtrue being its cor-

responding true value. The second algebraic moment µ′2 shall henceforth be called the quality

measure q2 and is defined as

q2 = µ′2 = (x − xtrue)
2 , (5.19)

thus being the mean square deviation of the reconstructed values of x with respect to the true

value xtrue. In the ideal case of an unbiased reconstruction, the mean value of x matches

xtrue, so that the x − xtrue-distribution has a mean value very close to zero. If so, the quality

parameter q2 is the same as the variance σ2 of the x − xtrue-distribution, which is identical

to the variance of the x -distribution itself. However, when the reconstructed values x show a

systematic deviation from the true value, the quality parameter q2 combines the scatter of the

distribution and its deviation from the true value:

σ2 = V
�

x − xtrue

�
= (x − xtrue)

2 − (x − xtrue)
2
= q2 − (x − xtrue)

2

⇒ q2 = σ2 + (x − xtrue)
2 .

(5.20)

It turns out, that q2 is the squared sum of the standard deviation and the offset of the mean

value with respect to the true value.

The quality of a reconstruction method shall be estimated from a series of Monte Carlo

simulations. Such a series has to consist of Monte Carlo simulations that have been carried

out with identical input parameters. For each of the reconstructed properties, the quality

measure q2 shall be estimated. Therefore, the obtained values of q2 are only valid for the

input parameters used. Repeating this procedure with varying input parameters may reveal

a systematic relationship between input parameters and reconstruction quality. To give an

example, the reconstruction quality of the dipole amplitude might depend on the inclination
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of the dipole with respect to the equatorial plane. However, in order to investigate such

relationships, it is crucial that not only the quality measure q2 can be estimated from a series of

Monte Carlo simulations, but also that the statistical error of this estimation can be quantified.

An unbiased estimator for q2 can be calculated from a sample of N reconstructed values x i

as follows:

q2
est = m′2 =

1

N

N∑

i=1

(x i − xtrue)
2 . (5.21)

The statistical error of this estimator is given by the square root of its variance. An unbiased

estimator of the variance is given by:

V
�

m′2
�

est
=

1

N − 1
·
�

m′4 −m′2
2
�

, m′4 =
1

N

N∑

i=1

(x i − xtrue)
4 . (5.22)

While this expression estimates the variance correctly, its square root is not an unbiased esti-

mator for the distribution’s standard deviation. However, it is not possible to formulate an un-

biased estimator for the standard deviation without making assumptions on the precise shape

of the underlying distribution. For a normal distribution, which the samples encountered here

closely resemble, and for N greater than 10, the term 1

4
/(N − 1) is a good approximation of

the necessary relative correction [Joh94]. The magnitude of the underestimation turns out to

be negligible for the sample sizes used here. Hence, q2 can finally be estimated as

q2
est = m′2 ±

r

1

N − 1
·
�

m′4 −m′2
2
�

. (5.23)

For the full derivation of these estimators, see Appendix B. It is convenient to quote the square

root of q2, thus q, as the final result, because it is dimensionally consistent with the quantity

in question. The corresponding error can be derived by error propagation from the former

expression, leading to the final formula:

qest =
p

m′
2
±

1

2

s

1

N − 1
·

m′4 −m′2
2

m′
2

, m′r =
1

N

N∑

i=1

(x i − xtrue)
r . (5.24)

Again, the square root of m′2 is not an unbiased estimator for q =
p

µ′2. The same considera-

tions as above apply.

To summarise, the quality estimator q is a quantity that evaluates the quality of the recon-

struction of a parameter x , on the basis of a series of N Monte Carlo simulated data sets. The

parameter x is reconstructed from each of the N data sets with a given method, yielding N
individual results x i (i = 1, . . . , n). The quality estimator q can be computed from the obtained

sample of x i-values and the true value of x (xtrue), which is an input parameter to the Monte

Carlo simulation. The meaning of q is closely related to that of the standard deviation σ. In

fact, if the reconstruction of the x -parameter is completely unbiased, i.e. its mean value coin-

cides with the true value, q and σ are identical. In case of a systematic deviation called forth

by the reconstruction procedure, the offset between mean reconstructed value and true value

contributes to q as an additional penalty. Therefore, q reflects the reconstruction accuracy of

any one individual data set: the inaccuracy may stem from either or both systematic deviation

and statistical fluctuation.

By definition, the quality value q can never be smaller than the standard deviation σ.

However, when estimating q and σ from the available samples, the estimation of q can yield
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slightly smaller values than that of σ. For a sample of N values, the calculation of the standard

deviation σ features a factor N/(N − 1), which accounts for the fact, that σ is calculated with

respect to the sample mean instead of the true mean value of the distribution. This penalty

does not occur in the calculation of q, which is done with respect to the true parameter value,

which is a given, error-free number.

5.3.2 The Standard Parameters for Simulated Data Sets

The following sections will present the results obtained from many thousand simulated data

sets. The standard configuration, with which the sets were created, are the following:

• a dipole distribution with an amplitude of 3%, with the dipole excess located at δdipole =

30◦ and αdipole = 75◦,

• an experiment located at β = 49◦ Northern latitude,

• a field of view spanning from the vertical to a maximum inclination of ϑmax = 60◦,

• an uninterrupted measurement, thus constant coverage of the sidereal day,

• no spurious experimental effects, i.e. full efficiency for all arrival directions, and constant

measurement conditions,

• and a data set size of 1 million events.

First, the reconstruction results obtained for 1,000 data sets, that were generated with this con-

figuration, shall be presented for the different reconstruction methods. Then, single properties

of this configuration shall be varied and the effect on the reconstruction quality examined.

5.3.3 Rayleigh Analysis

The Rayleigh analysis reconstructs the Rayleigh amplitude and phase from a data set. While

the latter directly estimates the right ascension coordinate of the dipole vector, the former

quantity is only indirectly related to the dipole amplitude. The reconstruction quality of the

Rayleigh amplitude therefore is of minor interest, as the quantity itself can only be interpreted

with the knowledge of the dipole vector’s declination coordinate, which cannot be determined

through a Rayleigh analysis. However, the reconstruction quality of the right ascension is

indeed of interest, as other reconstruction methods compete with the Rayleigh analysis in this

field. The distributions of the Rayleigh amplitudes and phases obtained for the 1,000 simulated

data sets with the standard parameters are shown in Figure 5.4. Both amplitude and phase

values scatter around their true values. In both distributions, the mean values are compatible

with the corresponding true value. Therefore, the values of the standard deviations, that are

computed from each of the samples, are practically identical to the corresponding values of

the quality measure q. For the given standard dipole configuration, the Rayleigh procedure

estimates the Rayleigh amplitude with an error of ca. 0.14% and the phase with an error of

ca. 4.4◦.

5.3.4 The SAP Method

The SAP method yields estimates for both dipole amplitude and three-dimensional direction.

Figure 5.5 shows the distributions of obtained dipole amplitudes, declinations and right as-

censions. Again, all quantities scatter around their true values, which are compatible with the
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Figure 5.4: Rayleigh analysis applied to simulated data sets: 1,000 data sets with 1 million events

each were simulated and analysed. Figure (a) displays the obtained Rayleigh amplitudes,

which scatter around the expected value, which amounts to approximately 1.82% for the

chosen configuration (see Section 5.3.2). The distribution of obtained Rayleigh phases is

shown in Figure (b).

statistical means of the samples. In case of the standard dipole configuration used here, the

amplitude is estimated by the SAP method with an error of about 0.30%. The error of the

declination and right ascension estimates are 8.5◦ and 5.4◦. The reconstruction of the right

ascension value works slightly less precisely than with the Rayleigh analysis, which produced

an error of only 4.4◦.
Figure 5.5(d) shows the distribution of the angles between true and reconstructed dipole

directions, thus combining declination and right ascension reconstruction. The reconstructed

direction is off by ca. 8◦ on average. The quality measure q is computed with respect to 0 as

true value, because a fully correct reconstruction returns the true direction and corresponds

to an angular difference of 0◦ (being the “true” value of this quantity). The resulting quality

measure, thus the error of the reconstructed direction, amounts to 9.4◦.

5.3.5 Multipole Expansion For Dipole Reconstruction

Like the SAP method, the multipole expansion method reconstructs both amplitude and three-

dimensional direction of the dipole. The reconstruction results for the present series of 1,000

simulated data sets with standard configuration are depicted in Figure 5.6. In this configu-

ration, the multipole expansion method outperforms the SAP method in all categories. The

error of the dipole amplitude reconstruction amounts to ca. 0.24%, as opposed to 0.32% for

the SAP method, which is a statistically significant difference of more than 9σ. It should be

noted, that the better performance of the multipole expansion method is characterised by the

information that its error of the amplitude reconstruction, in the case of the specific configura-

tion used here, is smaller than that of the SAP method by about one third. The statement that

the difference corresponds to a statistical significance of 9σ is to underline the safety of this

conclusion only. The value of 9σ is not a property of the reconstruction methods, as it can be

raised further by carrying out more Monte Carlo simulations. However, the number of 1,000

Monte Carlo data sets is sufficient to conclude safely, that the multipole expansion yields more

precise results for the dipole amplitude than the SAP method.
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Figure 5.5: SAP method applied to simulated data sets: 1,000 data sets comprising 1 million events

each were simulated with standard configuration (see Section 5.3.2). The obtained dipole

amplitudes are displayed in Figure (a), declination values are shown Figure (b), and right

ascension values are shown in Figure (c). Figure (d) displays the distribution of angular

distances between the reconstructed dipole direction and the true one.

The error of the declination reconstruction amounts to 5.6◦ (SAP method: 8.1◦, difference

> 10σ), and the error of the right ascension reconstruction amounts to 4.1◦ (SAP method:

5.4◦, difference > 8σ). The overall error of the dipole direction is 6.6◦ (SAP method: 9.4◦,
difference > 10σ).

5.4 The Influence of Configuration Parameters

The results, that have been presented in the previous section, have been obtained with the

standard configuration for Monte Carlo production, as given in Section 5.3.2. That configura-

tion fully defines the simulation scenario, including a number of experimental properties and

the shape of the simulated cosmic ray flux distribution. The experimental properties include

geographical location of the experiment and the boundary of the field of view, represented by

the maximum shower inclination ϑmax. Another experimental property is the measurement
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Figure 5.6: Multipole expansion method applied to simulated data sets: 1,000 data sets comprising

1 million events each were simulated with standard configuration (see Section 5.3.2) and

analysed. The obtained dipole amplitudes are displayed in Figure (a), declination values

are shown Figure (b), and right ascension values are shown in Figure (c). Figure (d)

displays the distribution of angular distances between the reconstructed dipole direction

and the true one.

time, which is represented here by the size of a single data set, thus the number of events each

data set comprises. While these properties are input parameters to and being accounted for by

the SAP and multipole expansion method, the Rayleigh analysis ignores them. As a result, SAP

and multipole expansion method produce results which do not depend on these properties

(their precision, however, may), whereas the amplitude value returned by the Rayleigh proce-

dure varies for different experimental configurations. In the following sections, the simulation

parameters are varied one at a time, and the impact on the reconstruction accuracies of dipole

amplitude and declination (as provided by the SAP and the multipole expansion method) as

well as the dipole right ascension (as provided by all three methods) are investigated. Further-

more, the configuration parameters of the simulated dipole distribution are varied as well. For

each individual set of configuration parameters, a series of 1,000 Monte Carlo data sets was

simulated and analysed with the SAP and multipole expansion method, and with the Rayleigh
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Figure 5.7: Reconstruction quality subject to number of simulated events

analysis where applicable. The dependency on each of the configuration parameters is illus-

trated by plots showing the values of the quality measure q for dipole amplitude, declination,

right ascension and direction (combined declination and right ascension) for a series of differ-

ent values for the respective parameter on the x-axis. For every one of these values, another

series of 1,000 Monte Carlo data sets was generated. Both (or all three) methods act on the

same data sets: the differently coloured points inside the same column of the plots are highly

correlated. The error bars shown represent statistical errors of the determination of the value

of q from the sample of 1,000 reconstruction results with respect to the true value.

5.4.1 Number of Simulated Events

Figure 5.7 depicts the relation between reconstruction quality and the number of simulated

events per data set. Data set sizes range from 103 to 107 events. The amplitude reconstruction,

the quality of which is displayed on a double-logarithmic scale in Figure 5.7(a), follows a

power law for both SAP and multipole expansion method: the quality improves by a factor

of ten as the statistics increases by a factor of 100. Thus, the amplitude error is proportional

to one over the square root of the number of events. The multipole expansion method keeps

being the favourable method over the whole range, with errors approximately 25% lower than

those of the SAP method.

Declination, right ascension and combined direction reveal a similar power law behaviour.

Owing to the directional nature of these quantities, their errors cannot be infinitely large.

Going to very small data set sizes, the error saturates at a maximum value as the results

become virtually arbitrary. The power law behaviour sets in at a size of about 30,000 events.

Again, the SAP method is constantly outperformed by the multipole expansion method, except
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Figure 5.8: Reconstruction quality subject to zenith angle limit

for the reconstruction of the right ascension coordinate with very small data sets of less than

30,000 events, where SAP and multipole expansion method deliver comparable results. For

such small data sets, the Rayleigh analysis yields slightly more precise results. However, with

that little statistics available, none of the methods can narrow down the direction of the dipole

vector very well. With larger data sets, the right ascension precision of the Rayleigh analysis is

equal to that of the multipole expansion method.

In case of the simulation parameters used here, most importantly with a dipole amplitude

of 3%, a data set with at least 100,000 events is necessary to determine the dipole amplitude

at a percent level. One million events are needed to identify the dipole direction with an error

better than 10◦.

5.4.2 Zenith Angle Limit

Figure 5.8 illustrates the influence of the extent of the field of view towards inclined directions.

The overall trend is that the reconstruction of each of the dipole parameters improves the

larger the field of view. Zenith angle limits below 30◦ are strongly disfavoured. Above 40◦, the

additional gain in quality is less substantial. There might even be the effect that the quality of

the SAP method degrades with very large zenith angle limits. However, the error bars suggest

that the indication of this effect is not very significant. It might be a case of a random statistical

artefact.

All data sets, that were simulated for Figure 5.8, contain one million events. It should be

noted, that for a given experiment the choice of a larger field of view automatically results

in a larger amount of statistics being available for analysis. The number of events scales

with sin2ϑmax, taking into account the geometric circumstances only. Experimental effects
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Figure 5.9: Reconstruction quality subject to zenith angle limit with the corresponding reduction of

statistics taken into account

and a possible anisotropy of the flux are neglected. However, for the purpose of these plots,

a misestimation of the data set sizes in the percent range is irrelevant. Figure 5.9 displays

the relations between reconstruction qualities and the choice of the zenith angle limit. With

ϑmax = 60◦, each simulated data set contains one million events. The numbers of events in

other data sets range from 40,205 (ϑmax = 10◦) to approximately 1.3 millions (ϑmax = 80◦). It

should be noticed, that unlike in Figure 5.8, where all data sets contain one million events, the

axes in Figure 5.9 are logarithmic. The influence of the choice of the maximum zenith angle

is indeed dominated by the decrease of statistics for narrower fields of view.

5.4.3 Geographical Latitude

The plots in Figure 5.10 suggest, that all of the methods investigated here prefer an exper-

iment located close to the Earth’s equator. The advantage of a equatorial location is that a

larger fraction (in terms of covered solid angle) of the sky can be seen by the experiment. The

reconstruction qualities vary with factors between two and three over the range of geograph-

ical latitudes: this effect is certainly less severe than other effects discussed here. Despite the

fact, that the dipole vector points to the Northern hemisphere of the sky, there seems to be

no significant difference between experiments located on the Northern and Southern hemi-

spheres.
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Figure 5.10: Reconstruction quality subject to experiment’s geographical latitude

5.4.4 Dipole Amplitude

The previous sections have dealt with parameters that can be chosen by the experimenter.

Finally, two properties of the cosmic ray flux shall be varied and examined. Firstly the dipole

amplitude, and secondly the dipole declination. Varying the right ascension of the dipole

vector cannot lead to systematical effects, given the longitudinal symmetry of the situation.

Figure 5.11 depicts the reconstruction qualities for dipole amplitudes between 0.1% and

30%. Generally, the reconstruction is more precise the higher the dipole amplitude. The abso-

lute error of the estimated amplitude increases with higher amplitudes for amplitudes larger

than 1%. However, the relative error (amplitude error over amplitude) keeps decreasing with

higher amplitude. For a data set with one million events, a dipole amplitude of at least about

3% is needed to achieve a precision better than 10◦ for the determination of the dipole direc-

tion. For amplitudes below 1%, the error of the amplitude estimate is not or not considerably

lower than the amplitude value itself. Therefore, the dipole signal cannot reliably be discrimi-

nated from the isotropy hypothesis.
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Figure 5.11: Reconstruction quality subject to dipole amplitude

5.4.5 Dipole Declination

As can be seen in Figure 5.12, the dipole vector’s declination influences the accuracies of

the amplitude and the direction estimates quite differently. For the estimation of the dipole

amplitude, a dipole vector near the equatorial plane would be beneficial. The same applies to

the estimation of the dipole vector’s right ascension, which works best if the dipole vector lies

in the equatorial plane. The quality declines drastically for dipole vectors pointing closer to the

poles. However, this is mainly a geometric effect, as the longitude circles are denser near the

poles. The reconstruction of the dipole declination performs best when the true declination

value is in the medium range between the equator and either of the poles. The precision of the

reconstruction of the overall dipole direction, however, is better for dipole vectors that point

towards polar regions: the direction of a dipole vector parallel to the Earth’s polar axis can be

identified with ca. 5◦ precision by means of the multipole expansion method. An equatorial

dipole leads to a precision of only 7◦.

5.5 The Impact of Experimental Effects

So far, the performances of the reconstruction methods have been examined with respect to

quantities that the reconstruction procedures account for. The number of recorded events and

the geographical location of the experiment are known values. The zenith angle, up to which

detected air shower events are recorded and analysed, can be set by the experimenter. The

dipole amplitude and declination are sought-after quantities, for the determination of which

the reconstruction methods are designed. However, there may be additional experimental
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Figure 5.12: Reconstruction quality subject to dipole declination

effects that affect the data taking.

So far, an ideal case has been assumed, where all periods of the sidereal day are equally

well covered by the data set. This is the case of an right ascension independent exposure

function: ω(δ,α) ≡ ω̄(δ). In a more realistic scenario, the measurement is interrupted from

time to time, e.g. for maintenance of the detector hardware. Another experimental effect, that

has not yet been considered, is the variability of temperature, barometric pressure and further

atmospheric conditions. Variations of the event rate would only occur on a small scale and due

to the change of the visible cosmic ray flux as the field of view follows the Earth’s rotational

motion and covers different parts of the anisotropic sky. As a matter of fact, rate variations do

occur much more pronounced and are mostly due to variations of the measurement conditions,

such as caused by the weather and the day-night cycle. In addition, the individual air shower

arrival directions can only be reconstructed from the recorded data with a certain precision.

Introducing a finite angular resolution in the Monte Carlo simulation may have an effect on

the dipole reconstruction quality. Another assumption, that has implicitly been made, is that of

full, or at least constant, efficiency for the complete field of view of the experiment. If, however,

certain parts of the visible sky are not seen with full efficiency, the corresponding regions are

underrepresented in the data set, leading to a distortion of the dipole reconstruction. These
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Figure 5.13: Temporal coverage of the sidereal day: occasional interruptions of the experiment’s op-

eration lead to an irregular coverage of the sidereal day.

effects shall be the subject of the following sections.

5.5.1 Interruptions of the Measurements

Occasional interruptions of the measurements lead to an irregular temporal coverage of the

sidereal day by the recorded data set. A coverage, that could have been achieved by an ex-

periment, is shown in Figure 5.13. It is meant to be an example with a typical extent of

fragmentation of the measurement periods. In this example, the measurement periods cover

any given moment of the sidereal day between 46 and 65 times. The coverage variation is

roughly of the order of 10%. Experiments record the duration of their measurement periods,

so that the equivalent of the histogram in Figure 5.13 is known for any experimental data set

at the time it is analysed. The exposure function ω(δ,α) is computed from this information.

Inhomogeneous coverage of the sidereal day results in an exposure function that actually de-

pends on the right ascension. Rayleigh analysis, SAP method and multipole expansion method

all account for the effect of the measurement interruptions: either by means of weighting fac-

tors, that are derived from the exposure function (Rayleigh and SAP), or through incorporating

the exposure function into the procedure (multipole expansion). Therefore, these methods do

not report fake dipole signals induced by this effect. However, the additional weighting may

change the statistical properties in the sense, that the effect of fluctuations may get more pro-

nounced. Figure 5.14 compares the reconstruction quality for data sets of different sizes with

and without the effect of measurement interruptions. The open symbols present the same data

as displayed in Figure 5.7. The filled symbols mark the reconstruction accuracies for data sets

with interrupted measurements. The coverage of the sidereal day used for the simulation is

the one depicted in Figure 5.13. The effect does not give rise to any noticeable change of the

reconstruction qualities, not even for very small data sets.

The effect described here breaks the right ascension symmetry of the exposure function.

Hence, the simulated scenario is no longer fully symmetric with respect to right ascension, and

so the reconstruction accuracy could possibly depend on the right ascension component of the

dipole vector. Figure 5.15 displays the reconstruction qualities for different right ascension

values of the dipole vector. All simulations were carried out with the time coverage shown

in Figure 5.13. Again, no noticeable effect can be seen, which underlines the point, that this

variation has no impact on reconstruction qualities. These plots also exclude the possibility,

that no effect was seen in the previous plots because by chance the chosen right ascension

coordinate of the dipole vector (αdipole = 75◦, according to the standard configuration as given

in Section 5.3.2) matches the time coverage histogram in a favourable way.
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Figure 5.14: Reconstruction quality with measurement interruptions, subject to the data set size (filled

symbols). The open symbols display the same data as in Figure 5.7. For better visibility,

the open symbols are displaced to the left and the filled symbols are displaced to the

right.

5.5.2 Rate Variations Due To Metereological Effects

Even when performing an uninterrupted measurement, that lasts exactly one sidereal day, the

actual sky coverage may be inhomogeneous along the right ascension coordinate. Variations

of temperature and barometric pressure can have an effect on the frequency of detected air

shower events. The lower temperatures during the night could result in different intensities,

with which the day sky and the night sky are observed. With a measurement of only one side-

real day, the day-night cycle would probably create a fake dipole in the data set. Conducting

measurements over a longer period of time, one or more years, is a means of lowering the

effect, as it should average out over time to a large degree. The night sky in summer is seen at

day during winter, and vice versa. Changes of the weather conditions are unlikely to happen

coherently with respect to sidereal time. On the other hand, the intensity of the day-night

effect may vary with season, so that it never fully cancels out.

The reconstruction methods, as they have been described, do not account for a potential

variation of the observation intensity. Additional mechanisms can be introduced to correct for

this shortcoming. Temperature and air pressure can be recorded during the operation of the



5.5 The Impact of Experimental Effects 75

αdipole

q
R

0◦ 45◦ 90◦ 135◦180◦225◦270◦315◦

0.22%

0.24%

0.26%

0.28%

0.3%

0.32%

0.34%

0.36%

0.38%

β = 49◦, ϑmax = 60◦, N = 106,

D = 3%, δdipole = 30◦

SAP
Multipole expansion

(a)

αdipole

qδ

0◦ 45◦ 90◦ 135◦180◦225◦270◦315◦

5.5◦
6◦

6.5◦
7◦

7.5◦
8◦

8.5◦
9◦

9.5◦
10◦

10.5◦
β = 49◦, ϑmax = 60◦, N = 106,

D = 3%, δdipole = 30◦

SAP
Multipole expansion

(b)

αdipole

qα

0◦ 45◦ 90◦ 135◦180◦225◦270◦315◦

4◦

4.5◦

5◦

5.5◦

6◦

6.5◦

β = 49◦, ϑmax = 60◦, N = 106,

D = 3%, δdipole = 30◦

Rayleigh
SAP
Multipole expansion

(c)

αdipole

q(δ,α)

0◦ 45◦ 90◦ 135◦180◦225◦270◦315◦

6.5◦
7◦

7.5◦
8◦

8.5◦
9◦

9.5◦
10◦

10.5◦
11◦

11.5◦
β = 49◦, ϑmax = 60◦, N = 106,

D = 3%, δdipole = 30◦

SAP
Multipole expansion

(d)

Figure 5.15: Reconstruction quality subject to dipole right ascension

experiment. Additional weights can be applied to the individual air shower events in the data

set, in order to compensate for metereological effects: events recorded during periods with

e.g. high barometric pressure can be weighted up to compensate for the higher attenuation of

the atmosphere during such periods. Weighting factors can be obtained by studying the mean

event rates subject to temperature, barometric pressure and whatever atmospheric informa-

tion is available. However, there is the risk of worsening the quality of the data set: firstly, the

atmospheric conditions cannot be fully described by means of a few atmospheric observables.

Typically, temperature and barometric pressure are measured at ground, but the conditions in

the higher atmosphere may vary independently. Consequently, the weighting factors applied

do not match the atmospheric conditions correctly, and the original problem subsists. Sec-

ondly, the determination of the weighting factors could interfere with the actual cosmic ray

anisotropy. If so, the weighting factors would also compensate for the anisotropy to a certain

degree, thereby weakening the signal of the true anisotropy in the data set.

Compensating for weather effects is a delicate issue. Even when applying corrections, a

certain variation of the effective observation intensity may remain. The variation may average

out to a certain degree if the data taking is performed over a long period of time. However,

a fraction of the variation may persist and cause that parts of the sidereal day are overrepre-

sented in the data set, whilst others are underrepresented. For the simulation of this effect, a

simple model of the variation is used: a harmonic variation of the observation intensity in side-

real time. The strength of the effect is characterised by the amplitude Aweather of the variation.

The variation as a function of sidereal time has the shape of a sine function. The event rate at

6 a.m. sidereal time is enhanced by a factor 1+ Aweather, whereas the rate at 6 p.m. sidereal

time is multiplied with 1−Aweather, thus decreased. It should be noted, that a typical variation
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Figure 5.16: Reconstruction quality subject to the amplitude of a spurious rate variation

of the measurement rate during the operation of the experiment of the order of 10% does not

necessarily result in an amplitude Aweather of 10%. The weather effects mostly correlate to

solar time, or are completely random. Therefore they tend to average out when looking at the

net effect as a function of sidereal time. What remains in sidereal time (after metereological

corrections, if such are applied) is denoted by Aweather.

Figure 5.16 illustrates the influence of this effect on the reconstruction accuracies. The

simulations were carried out with the standard configuration (see Section 5.3.2) and with

an additional harmonic variation of the event rates in sidereal time with amplitude Aweather,

that was not accounted for by the reconstruction procedures. Several of such amplitudes

in the range between 0.1% and 10% were simulated. In the case of the standard simulation

configuration, spurious rate variations up to 0.3% have no or only little effect on the accuracies.

However, with larger variations the reconstruction qualities drastically degrade. In contrast to

any of the simulation sets, that have been shown before, this effect can cause the SAP method

and multipole expansion method to perform with the same accuracy. For values of 1% or

greater for Aweather, the amplitude reconstruction of those two methods is equally accurate

with an error of about the value of Aweather. The multipole expansion method continues to

provide better precision of the dipole reconstruction until Aweather reaches 10%. Summarising

briefly, the presence of weather effects can badly diminish the reconstruction quality. Reducing

these variations to the lowest possible level is very important.

5.5.3 Angular Resolution

The effect of limited resolution of the arrival direction reconstruction can be simulated as de-

scribed as Step 4 in the simulation procedure (see Section 5.2.4). A Gaussian point spread
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Figure 5.17: Reconstruction quality subject to the experiment’s angular resolution

function is applied to the true arrival direction of each individual event to obtain the recon-

structed arrival direction, which is input to the dipole reconstruction methods. The angular

resolution ∆ denotes the standard deviation σ of the Gaussian point spread function. Thus,

68% of the recorded events are reconstructed with an angular error less than ∆. The angu-

lar resolution of a cosmic ray experiment is typically better than 1◦. Figure 5.17 displays the

reconstruction accuracies for data sets generated with angular resolutions between 0.1◦ and

3◦. Every quality value obtained in these simulations is statistically compatible with the case

of perfect angular resolution (∆ = 0◦). Thus, the effect of limited angular resolution is irrel-

evant, at least with the standard Monte Carlo configuration used here, and for a resolution

better than 3◦.

5.5.4 Inclination Dependent Efficiency Defect

The final experimental effect, that shall be discussed here, concerns the assumption of full

efficiency over the whole field of view. When calculating the exposure function ω(δ,α), the

field of view of the experiment is usually characterised by the maximum zenith angle ϑmax up to

which recorded data are used for analysis. Typical values for ϑmax are 40◦ or 60◦. A value must

be chosen, up to which the reconstruction of the arrival direction is known to work properly.

The calculation of the exposure implies, that no events with inclination greater than ϑmax are

contained in the data set (a data selection cut is applied to ensure this), and that incident

cosmic ray particles with inclinations less than ϑmax are recorded and properly reconstructed.

Thus, full detection and reconstruction efficiency is assumed for the whole field of view. This

requirement is not trivial to accomplish: inclined particles traverse the Earth’s atmosphere

on a longer path than vertically moving particles. Owing to the atmospheric attenuation, the
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Figure 5.18: Shape of simu-

lated efficiency deficits

detection efficiency for particles of a given primary energy and element depends on the shower

inclination. Full efficiency is reached at a certain energy threshold. Additional cuts have to be

applied to the data set to ensure that the analysis is restricted to particles above that energy

threshold. The energy can only be estimated through observable quantities, which are subject

to statistical fluctuations. Should the energy estimator be sensitive to the inclination angle,

then the cut on the energy estimator may introduce different energy thresholds for different

shower inclinations. Since the energy spectrum of the cosmic radiation is a steeply falling

power law, a small change of the energy threshold can have a substantial influence on the

resulting population of the data set.

For the simulation of the effect of misestimated efficiency, a simple model was chosen to

describe the efficiency as a function of the zenith angle: the Earth’s atmosphere is considered

to be 10 interaction lengths thick. Since inclined air showers travel on a longer path through

the atmosphere, the number of interaction lengths, that an air shower has to overcome, de-

pends on the zenith angle ϑ, and amounts to 10 secϑ. Up to a maximum zenith angle of ϑf.e.

showers are detected with full efficiency. In the context of this simple model, this means that

10 secϑf.e. interaction lengths can be traversed with full detection efficiency being ensured. For

showers even more inclined, the efficiency drops by a factor of 1/e as the path length gains

one additional interaction length. The efficiency function can then be written as:

efficiency(ϑ) =min
�
100%; exp(10 secϑf.e. − 10 secϑ)

�
. (5.25)

The function is displayed in Figure 5.18 for different values of ϑf.e. between 30◦ and 58◦. The

zenith angle cut is applied at ϑmax = 60◦. Data sets were simulated with the given values for

ϑf.e.. The severity of the effect depends strongly on the choice of ϑf.e.. Full efficiency only up

to 30◦ entails that virtually no showers are recorded with inclinations above 50◦, which would

certainly not go unnoticed. On the other hand, with ϑmax = 58◦, there is only a deficit within

the last 2◦ of the field of view.

The reconstruction accuracies subject to ϑf.e. are displayed in Figure 5.19. The reconstruc-

tion qualities of dipole amplitude and declination undergo a substantial degradation when an

efficiency defect is present. A lack of efficiency between 58◦ and 60◦ zenith angle alone gives
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Figure 5.19: Reconstruction quality subject to the extent of the efficiency defect: the rightmost data

point in each of the plots refers to the case of full efficiency for the whole field of view,

thus for the absence of the efficiency defect.

rise to a worsening of the amplitude reconstruction accuracy from 0.3% to 3% in case of the

multipole expansion method. The declination accuracy decreases similarly. If the efficiency

drop sets in at 55◦, the reconstruction basically yields no valid information on the dipole am-

plitude and declination.

The right ascension reconstruction, however, is almost unaffected by this effect. On the

contrary, the SAP method seems to profit from the lack of highly inclined events in the data

set. Since each of the simulated data sets contains the same number of events, a lack of highly

inclined events results in a surplus of less inclined events provided by the simulation. As a

consequence, the data set contains fewer events that receive very high weighting factors by the

SAP method. With a more homogeneous weighting, the SAP method delivers more accurate

results for the dipole right ascension. It must be noted, that apart from the added efficiency

defect the standard configuration was used for the creation of the data sets shown here. As one

point of the specification of the standard configuration, an uninterrupted measurement was

simulated, i.e. the exposure is independent from right ascension. If the effect of interrupted

measurement cycles, as discussed in Section 5.5.1, is added, the right ascension reconstruction

degrades as well, as a cause of the fact, that the calculated exposure map does not correctly

reflect the circumstances. The efficiency defect leads to an effective exposure map that differs

from the assumed and calculated one. This has no effect in the case of homogeneous coverage

of the sidereal day, because both the assumed and the effective exposure function do not

depend on the right ascension coordinate. This symmetry is broken, when the measurement

periods cover the sidereal day unevenly. A plot illustrating the right ascension reconstruction

quality under these conditions is shown in the next Chapter, see Figure 6.3(b).
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Figure 5.20 shows the distributions of reconstructed amplitudes and declinations, obtained

with both the SAP and the multipole expansion method, for two series of Monte Carlo simu-

lations. The first series was generated with ϑmax = 58◦ (Figures 5.20(a) to (d)), the second

with ϑmax = 50◦ (Figures 5.20(e) to (h)). As can be seen in these plots, the cause of the bad

reconstruction qualities is not a widening of the distributions, but a systematic deviation. The

width of the distributions is not larger than in the case of a correctly working reconstruction.

Instead, both amplitude and declination values are systematically reconstructed too large: the

dipole vector is dragged towards the North Pole. The effect is more pronounced for the SAP

method than for the multipole method, and increases with the severity of the efficiency defect.

Apparently, the actual anisotropy signal is overshadowed by an artificial dipole induced by the

efficiency deficit. The artificial dipole points towards the North and its amplitude depends on

the extent of the efficiency deficit. The more dominant it is, the further the resulting dipole

points towards North. Since the simulated experiment is located on the Northern hemisphere

at β = 49◦ and records air shower events with inclinations up to 60◦, the sky coverage reaches

from the North Pole down to δ = 49◦ − 60◦ = −11◦. Those regions of the sky close to the

Southern boundary are only ever seen at high inclinations. The lack of highly inclined events

leads to too few events at the Southern boundary in the data set. This North-South divide

creates the said artificial dipole. Since the SAP method equips observations at the Southern

boundary of the visible sky with much higher weightings than the multipole expansion method

(owing to the low exposure of that region), the impact on the SAP method is worse than on

the multipole expansion method.

5.6 Summary

In this chapter, the performances of the SAP method and the multipole expansion method have

been evaluated by means of Monte Carlo simulation studies. The Monte Carlo generator used

for the creation of data sets has been described in detail. This generator allows to simulate the

acquisition of data sets with different parameters, including the emulation of certain experi-

mental effects. As a result of these studies, parameters and effects have been identified, that

have significant impact on the accuracy and the functioning of the reconstruction methods.

Generally, the multipole expansion method tends to be more precise than the SAP method.

It is also less prone to spurious effects than the SAP method. A geographical position close

to the equator is beneficial with respect to the dipole reconstruction accuracy. The accuracy

does also depend on the true values of the dipole parameters. The reconstruction of the dipole

amplitude works better if the dipole points to equatorial directions. On the other hand, the

reconstruction of the dipole direction works better if the dipole points somewhere near the

North or South Pole.

Of the experimental effects, two have turned out to have no significant impact on the

dipole reconstruction. Neither the resolution with which the air showers’ arrival directions can

be reconstructed (relevant values assumed), nor occasional interruptions of the measurement

(provided they are monitored and accounted for during analysis) have a noticeable effect. Two

other effects have been investigated, and those have substantial meaning for the functioning

of the dipole reconstruction. Firstly, variable measurement conditions, which may be caused

by the weather for instance, can degrade the reconstruction quality. Accounting for the chang-

ing atmospheric conditions is delicate, and a remaining disturbance of 1% in the data set is

enough to increase the reconstruction errors substantially. As a side effect, the reconstruction

quality of the multipole method is no longer superior to the SAP method. Secondly, a mis-

estimation of the detection efficiency can severely distort the dipole reconstruction. A zenith
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angle dependent detection efficiency was simulated. It has been shown, that a lack of highly

inclined events in the data set can lead to a considerable misestimation of dipole parameters.

The effect may cause the finding of large dipole anisotropies, pointing very close to one of the

Earth’s poles.

It would be desirable to have reconstruction methods at hand, that are less prone to such

effects. The improvement of the available methods, and the development of new ones, will be

the subject of the next chapter.
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Figure 5.20: SAP and multipole expansion method applied to data sets with efficiency defects



Chapter 6

New Methods for Dipole

Reconstruction

Several methods for the reconstruction of large scale anisotropies in data sets of cosmic ray

experiments have been presented and evaluated in the previous two chapters. Those methods

mostly concentrate on large scale structures of the first order only: they reconstruct the param-

eters of a dipole shaped cosmic ray flux. It has been shown, that the methods generally deliver

correct results in “ideal world scenarios”. With only limited amounts of statistics available,

the results are subject to statistical fluctuations and therefore only offer a certain degree of

precision. An optimisation of the statistical treatment of the data sets may help to improve this

precision. However, systematic effects have proven to be much more severe, as they can lead

to large measurement uncertainties of the dipole parameters. It is desirable to find methods

that are resistant to such experimental effects. This chapter aims at modifying and thereby

improving existing methods and proposing new ones.

6.1 Time Based Weighting

Both the Rayleigh analysis, when applied to data sets taken with right ascension dependent

exposure, and the SAP method use weighting techniques in order to account for the underlying

inhomogeneous sky coverage. While the SAP method uses a weighting that levels the share of

all directions of the visible part of the sky in the data set, the weighting used for the Rayleigh

analysis only aims at balancing the difference between directions of the same declination. In

both cases, the weighting factors depend on the reconstructed arrival directions of the showers.

For the Rayleigh analysis, the weighting factors have been given in Equation 4.23:

W (δ,α) =
ω̄(δ)

ω(δ,α)
, (6.1)

with ω(δ,α) being the exposure function and ω̄(δ) denoting the average exposure of decli-

nation δ (see Section 4.3.2 for details). In case of a right ascension independent exposure,

all weights are identically equal 1, since W (δ,α) = ω̄(δ). See Figure 4.5 for a graphical rep-

resentation of an example exposure function and the corresponding weighting factors. The

weighting factors result from the exposure function alone, which is computed from the list of

measurement periods of the experiment. It can be computed very efficiently from a histogram

like the one shown in Figure 5.13, which displays for every minute of the sidereal day the

number of times that the measurement was active at the given minute. Like the exposure map
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shows the coverage of the regions of the sky, and thereby the amount of representation of the

regions in the data set, such a histogram reveals the coverage by time of the sidereal day in

the data set. In order to reflect the data set correctly, very small amounts of data have to be

discarded from the data set at the start and end of every measurement period, so that every

measurement period effectively starts and ends at the boundary of a sidereal minute. The

amount of data being discarded can be reduced by chosing an even finer binning of the side-

real day. However, with single measurements typically lasting hours or days, the gain will be

marginal. Apart from the histogrammed sidereal day coverage, only the geographical location

of the experiment and the shape of its field of view is needed to compute the exposure map.

The latter is usually specified by the zenith angle limit ϑmax.

Instead of deriving the weighting factors from the exposure map, they can be taken from

the sidereal day coverage histogram directly. Let m(t) denote the number of measurements,

that were active during the same sidereal time of day as the time t. m(t) is a functional

representation of the data in the sidereal day coverage histogram shown in Figure 5.13. The

directional weightings can be replaced with time based ones according to:

W (δ,α) =
ω̄(δ)

ω(δ,α)
−→W (t) =

m̄

m(t)
, (6.2)

where m̄ stands for the average number of measurement:

m̄=

∫

1
sidereal

day

m(t)dt

1 sidereal day
. (6.3)

Using these weighting factors, the sidereal day is evenly represented in the data set. Therefore,

the effective sky coverage is homogeneous in right ascension, as well. While the weightings

for individual events can differ from those obtained with direction dependent weighting, the

overall effects on the data set are the same with both variants. A conceptual advantage of time

based weighting is, that weighting factors do not depend on reconstructed observables like the

arrival direction, which are subject to reconstruction inaccuracies. The event time is recorded

by the data acquisition software, without need for considerable precision, since the weighting

only depends on the sidereal minute an event belongs to.

The following section will test the performance of the time based weighting by means of

Monte Carlo simulations. A noteworthy improvement as a result of the time based weighting

is not expected. On the contrary, in the specific scenario simulated, the time based weight-

ing factors range between 0.905 and 1.279, whereas the direction based weighting factors are

contained in the range between 0.916 and 1.181. With the weighting factors spanning a larger

range, the weighting is probably more inhomogeneous and might lead to larger statistical fluc-

tuations. Whether this effect is noticeable and significant, remains to be seen. The advantage

of the time based weighting lies in the simplicity of the procedure, as it allows to perform a

Rayleigh analysis without calculating an exposure map at all. It also allows to create a method

for three-dimensional dipole reconstruction, that is completely independent of the exposure

function, which will be discussed below in Section 6.3.

6.1.1 Monte Carlo Simulations

Figure 6.1 displays the reconstruction qualities of the Rayleigh amplitude and phase for

Rayleigh analyses with weightings based on direction and on time. The simulated param-
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Figure 6.1: Reconstruction quality of the Rayleigh analysis with time based weighting (t.b.w.), op-

posed to conventional, direction based weighting (d.b.w.), subject to angular resolution:

the quality measure q is displayed, as introduced in Section 5.3.1. The true value of the

Rayleigh amplitude in this scenario amounts to 1.82%. For reasons of clarity, the open

symbols are displaced to the left and the solid symbols are displaced to the right.

eters are those of the standard configuration, as introduced in Section 5.3.2, except that a

measurement was simulated with occasional interruptions. The sidereal day coverage used is

the one depicted in Figure 5.13. The effect of an interrupted measurement has been discussed

and examined in Section 5.5.1. Without this effect, the exposure function is independent from

the right ascension, and both direction and time based weighting factors are all identically

equal 1. Because one of the weighting methods utilises the reconstructed arrival directions of

individual air showers, the resolution of the arrival direction reconstruction may influence the

results here. However, as it turns out, it does not. The results obtained for resolutions between

0.1◦ and 3◦, as well as for perfectly precise reconstruction, are all identical within their errors.

For each configuration, thus for each angular resolution value shown, one series of 1,000 data

sets was simulated. The same data were used for the analysis with the two different methods,

which is why the solid and the corresponding open data points in the plot are highly correlated.

The difference between the analysis of the data sets with time based weighting and direction

based weighting is smaller than the statistical precision with which the qualities can be deter-

mined with 1,000 data sets. Apparently, weighting with individual, slightly misreconstructed

arrival directions has no negative impact on the overall reconstruction quality. Neither does

the slightly wider range of values of the time based weights, as opposed to direction based

ones, lead to noticeably larger statistical fluctuations. In case of the simulation configuration

used here, it does not matter whether direction based or time based weightings are used.

However, other experimental effects may have an impact. Of the various effects discussed

in Chapter 5, two can be regarded as a misestimation of the experiment’s exposure function:

firstly, metereological effects can lead to spurious variations of the event rate. Owing to chang-

ing atmospheric conditions, the sky is not seen with constant intensity. As an effect, the data in

the sidereal day coverage histogram, which only counts the number of observations at a side-

real time of day, may not reflect the correct experimental circumstances. Consequently, the

exposure computed from that histogram is erroneous, and so are the direction based weight-

ing factors derived from it. However, the time based weighting factors are calculated from the

same histogram, and therefore should expose the same problems. The results of the corre-

sponding Monte Carlo simulations are depicted in Figure 6.2. The plots correspond to those
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Figure 6.2: Reconstruction quality of the Rayleigh analysis with direction and time based weighting

subject to the amplitude of a spurious rate variation
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Figure 6.3: Reconstruction quality of the Rayleigh analysis with direction and time based weighting

subject to the extent of the efficiency defect: the rightmost data points in both plots refer

to the case of full efficiency for the whole field of view.

shown in Figure 5.16 and discussed in Section 5.5.2, except that the simulations shown here

were generated with occasional measurement interruptions. The impact of the metereological

effects is basically the same here as in Section 5.5.2. The reconstruction quality degrades,

leading to a considerable decrease for rate variation amplitudes of 1% or more. For the high-

est simulated amplitude, the reconstruction of the dipole right ascension is even slightly worse

with time base weighting compared with direction based weighting. While the gap between

the two methods is indeed statistically significant, the difference is so small that is not re-

ally relevant. It could well be the consequence of a random interference within the example

sidereal day coverage histogram. However, it is safe to say, that with both conventional, di-

rection based weighting and time based weighting, the Rayleigh analysis is similarly prone to

metereological effects.

Secondly, the simulation of an efficiency deficit for highly inclined showers has lead to sys-

tematic measurement uncertainties of the dipole parameters. See Section 5.5.4 for an in-depth

discussion of this effect. While the sidereal day coverage histogram can still be considered cor-

rect, when this effect is active, the calculation of the exposure map from the histogram is per-
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formed under the incorrect assumption of full efficiency. Hence, the calculated exposure map

does not reflect the actual experimental circumstances. A weighting based on the (erroneous)

exposure map is not favourable in comparison with a weighting based on the (correct) sidereal

day coverage histogram. This case is the subject of another series of Monte Carlo simulations,

the results of which are depicted in Figure 6.3. The reconstruction quality of the dipole vector’s

right ascension is not influenced by this effect at all, when time based weighting is utilised.

However, with direction based weighting, the accuracy of the reconstruction degrades badly.

The reason for the bad values of q is not an increase of statistical fluctuations, but a strong

bias. As can be seen in Table C.14, the distributions of the reconstructed right ascension values

have all the same width (in terms of their standard deviations), but their mean values begin

to differ substantially from the true value. In the discussion of the effect of the zenith angle

dependent efficiency defect in Section 5.5.4, the reconstruction of the right ascension variable

has been found to be insensitive to the efficiency effect. The simulations shown here were

carried out with an inhomogeneous coverage of the sidereal day, as it is caused by occasional

interruptions of the measurement. On the other hand, the plots in Section 5.5.4 are based on

the simulation of a measurement that runs uninterruptedly for an integer number of sidereal

days and with constant measurement conditions, in which case all weighting factors are 1, no

matter which weighting method is used.

The plot shown in Figure 6.3(a) displays the reconstruction accuracy of the Rayleigh am-

plitude. As can be seen, with time based weighting, the accuracy decreases gradually while

going towards larger efficiency deficits, thus going towards lower values of the full efficiency

threshold zenith angle ϑf.e.. The behaviour of the solid data points in this plot, illustrating

the performance of the Rayleigh analysis with conventional, direction based weighting, looks

self-contradictory. Going towards lower values of ϑf.e., the inaccuracy increases, with one ex-

ception: at ϑf.e. = 40◦ the quality is remarkably good, even outperforming the time based

weighting. This behaviour can only be explained with some additional information on the dis-

tributions, from which the data points were extracted. Table C.14 lists not only the q-values but

also mean values and standard deviations of the distributions represented by each of the data

points. According to these data, the widths of all distributions (all ϑf.e. values, with both time

and direction based weighting) are the same. The different q-values result from mismatches

between the distributions’ mean values and the true value. For the chosen simulation configu-

ration, the true value of the Rayleigh amplitude amounts to approximately 1.82%. However,

the Rayleigh amplitude is not a universal quantity in the sense that it only depends on prop-

erties of the cosmic ray flux. Instead, it is also influenced by the experiment’s geographical

location and the shape of its field of view. The calculation of the true value incorporates the

declination behaviour of the exposure function, as it composes the result from the amplitudes

within the different declination slices. In this sense, even the calculation of the true value,

which assumes a homogeneous field of view up to ϑ = 60◦, does not match the experimental

conditions, when the zenith efficiency defect is included in the simulation. The shift of the

sample mean values for time and direction based weighting can be interpreted as follows: it

is evident from the right ascension reconstruction, that the direction based weighting method

has problems in the case of right ascension dependent exposure functions that falsely rely on

the assumption of full efficiency. The larger the extent of the efficiency deficit, the further

the reconstructed dipole right ascension is dragged towards a false value. The direction, it is

dragged to, is a property of the specific sidereal day coverage histogram used. The structures

therein determine the extent of the misreconstruction and the direction towards which the

reconstruction tends to deviate. The sidereal day coverage histogram used here (depicted in

Figure 5.13) is an arbitrary example. Rather than drawing quantitative conclusions from it,
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it should only be noted, that a non-flat sidereal day coverage indeed has an effect. It also

affects the reconstruction of the Rayleigh amplitude: the interference of the specific sidereal

day coverage histogram with the efficiency defect leads to a underestimation of the Rayleigh

amplitude as the full efficiency threshold goes from ϑf.e. = 60◦ (full efficiency) to 50◦. At

ϑf.e. = 30◦, it turns into an overestimation. In the intermediate range at ϑf.e. = 40◦, the re-

constructed amplitude happens to be very close to the expected value. The resulting bias at

ϑf.e. = 40◦ is very small, which is the reason for the unexpectedly low position of this data point

in the plot in Figure 6.3(a). On the other hand, the performance of the time based weighting

can be interpreted as following: the right ascension reconstruction is equally accurate, and

unaffected by the effectively incorrect exposure map. This is plausible, because the Rayleigh

analysis is carried out without the exposure function entering the calculation. The mean value

of obtained Rayleigh amplitudes shifts towards lower values with smaller ranges of zenith an-

gle with full efficiency. Rather than a misreconstruction, this reflects the changing declination

composition of the data set, caused by the increasing lack of highly inclined events.

It does not make sense to investigate the reconstruction quality of the Rayleigh amplitude.

The Rayleigh amplitude is not a property of the cosmic ray flux alone. It also depends on

experimental features. Moreover, it depends on the position of the dipole vector relative to the

equatorial plane. Since the Rayleigh analysis cannot determine the position, it cannot provide

conclusive information on the anisotropy. Rather than being a quantitative measure of the

strength of the anisotropy, a positive Rayleigh amplitude can yield evidence for anisotropy.

The evidence can be judged on the basis of the absolute value of the Rayleigh amplitude and

the number of the events in the data set. However, a significantly non-zero Rayleigh ampli-

tude is a sufficient condition for anisotropy, but not a necessary one. In that sense, even the

concept of a “true value” for the Rayleigh amplitude is of limited use. There certainly is an

expected value for the Rayleigh amplitude for a given simulation configuration. However, the

calculation of the expected value requires precise knowledge of the simulation configuration.

In contrast, three-dimensional reconstruction methods aim to extract estimates for dipole am-

plitude, declination and right ascension. These are universal quantities, of which the accuracy

can easily be judged by comparison with the true values, which are defined unambiguously.

This is the reason, why the Rayleigh amplitude was not considered in the extensive simulation

studies, which have been described in Chapter 5.

6.1.2 Summary

An alternative way of weighting the individual events in a data set for performing a Rayleigh

analysis has been presented. The alternative offers certain conceptual advantages over the

conventional weighting method. While the latter determines the weighting factors from re-

constructed quantities (the arrival directions), the new method proposed here only relies on

a quantity that can be measured directly, namely the event time. In case of ideal measure-

ment conditions, both methods perform equally well. However, experimental effects can cause

problems for the conventional weighting method, that the new, time based weighting avoids.

The conventional, direction based weighting relies on the correctness of the sky exposure map,

which is calculated from the coverage histogram of the sidereal day, taking into account the

experiment’s geographical location and field of view. The time based weighting, on the other

hand, only relies on the correctness of the sidereal day coverage. Hence, it avoids one potential

point of failure: if the field of view is assumed incorrectly, the calculated exposure map does

not reflect the experimental conditions properly. While the conventional weighting method is

prone to this kind of error, the time based weighting is not.

The time based weighting method is meant to be an additional alternative, not a replace-
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ment for the direction based weighting. The analysis of actual data should be carried out

with both methods in parallel. In case, that the experimental conditions under which the

data set was acquired, are fully understood, both method should yield similar results. How-

ever, substantial differences between the results delivered by the two methods would indicate

incomplete understanding of the characteristics of the recorded data.

In the following section, a modified version of the SAP method will be developed, which

uses the same weighting mechanism as the Rayleigh analysis. Consequently, the modified

method can be operated with either direction or time based weighting as well.

6.2 A Modified SAP Method

The SAP method for dipole reconstruction has been introduced in Section 4.4. The basic idea

of this method is to derive the dipole’s amplitude and direction from the sum of the unit vectors

of the reconstructed arrival directions. The relation between the sum of unit vectors (~S) and

the estimated dipole vector (~R) in the simplest case of complete and uniform sky coverage can

be written as:

~R= 3
~S

N
, ~S =

N∑

i=1

ê(δi ,αi) , (6.4)

with N being the number of air shower observations. In this case, the estimator for the dipole

vector is the arithmetic mean of the unit vectors representing the arrival directions, multiplied

by 3 for normalisation. When applying this procedure on a set of isotropically distributed

directions, the addends will essentially cancel out. The result will only differ from zero owing

to statistical fluctuations.

The formula above is very similar to the Rayleigh formalism. The Rayleigh formalism

reconstructs a dipole-like anisotropy in a distribution of right ascension values. In the special

case of full and uniform sky coverage, the equatorial component of the dipole vector can be

identified with the arithmetic mean of the two-dimensional unit vectors representing the right

ascension values, multiplied by π/2 for normalisation:

~Req. =
π

2
·
~Sr.a.

N
, ~Sr.a. =

N∑

i=1

ê(αi) . (6.5)

Both methods, two and three-dimensional, can be generalised to non-uniform sky coverages

by means of weighting factors [Som01]. By weighting each air shower event with the inverse

of the exposure function at the arrival direction, all regions of the sky give an equally large

contribution to the sum:

~R= 3
~S

S0

, ~S =
N∑

i=1

ê(δi,αi)

ω(δi,αi)
, S0 =

N∑

i=1

1

ω(δi,αi)
. (6.6)

In the case of full, but non-uniform sky coverage, the dipole vector is estimated by the weighted

mean of the individual unit vectors, again multiplied by 3. Apart from the arithmetic mean

having been replaced by a weighted mean, the form the original equation has been preserved.

The same weighting factors can be applied to the Rayleigh formalism. However, it has

become customary to use different weighting factors. Instead of the inverse exposure at the

arrival direction, the ratio of the average exposure at the arrival direction’s declination and the

exposure at the arrival direction serves as weighting factor:

~Sr.a. =

N∑

i=1

ω̄(δi)

ω(δi,αi)
ê(αi) , S0r.a. =

N∑

i=1

ω̄(δi)

ω(δi ,αi)
. (6.7)
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Figure 6.4: Figure (a) shows the exposure map of an experiment at 49◦ North latitude with a zenith

limit of 40◦. The field of view spans declinations from 9◦ to 89◦. A typical extent of varia-

tion of the exposure with right ascension has been simulated. In Figure (b), the averaged

exposure function ω̄(δ) is plotted. This function is multiplied with cosδ to account for

the solid angle coverage of the declination, and depicted in Figure (c). This curve repre-

sents the distribution of declination values in the data set, that would be expected under

ideal measurement conditions, if the flux were perfectly isotropic. The total declination

range from δmin = 9◦ to δmax = 89◦ is divided into ten sections of equal solid angle. The

first of the sections (shaded area) covers approximately 2.8% of the area under the curve,

which means that about 2.8% (statistical fluctuations and possible variations due to actual

anisotropy aside) of the data set falls into this declination range. The original SAP method

weights the data in a way, that this first section constitutes 10% of the eventual result, in

compliance with its fraction of the solid angle. The modified SAP method presented here,

uses different weighting factors and thereby achieves, that the first section composes only

2.8% of the final result, compliant with its share of the data set.

These weighting factors do not balance the contributions of all directions in the sky. Instead,

they only equalise the contributions of different directions with the same declination. Thus,

the strength of the contribution of a direction is not constant for all directions, but it does only

depend on the declination, not on the right ascension. A detailed discussion of the choice of the

weighting factors is given in Section 4.3.4. The conceptual difference of these two weightings
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is illustrated in Figure 6.4.

Three aspects of that discussion shall be revisited here. Firstly, owing to the rotation of the

Earth around its axis, the exposure depends much more on the declination than on the right

ascension. While the inverse exposure can span several orders of magnitude, the weighting

factors are of the order of one, typically in the range between 0.8 and 1.2. This prevents

that few observations from regions with low exposure introduce large statistical fluctuations

due to their huge weights. Secondly, the weighted mean (~S/S0) of the directions’ unit vectors

(multiplied by a constant factor) can no longer be identified as an estimator for the equatorial

component of the dipole vector. There is a functional relation between the dipole vector and

the weighted mean, which depends on ω̄(δ) (Eq. 4.41). Thirdly, this procedure can handle

cases where the exposure is zero for certain declination ranges. The absence of contributions

from such regions is correctly considered in the formalism. The procedure is therefore appli-

cable to data sets of experiments with non-uniform and partial sky coverage.

The last aspect is taken into account by the SAP method [Aub05]. Since each air shower

observation is weighted with the inverse of the exposure at its direction, all regions of the

sky with declinations between δmin and δmax are equally represented. Regions outside the

declination range do not contribute at all. However, the dipole vector is not estimated by

the term 3~S/S0, but by more complex formulas (Eq. 4.44), that account for the incomplete

coverage of the sky. This relation does solely depend on the field of view of the experiment, in

terms of the declination range, expressed by δmin and δmax. As the weighting factors do fully

account for the possibly inhomogeneous sky coverage between δmin and δmax, the exposure

function does not enter in the transformation of the weighted mean into a dipole estimator.

It is desirable to realise also the first of the three aforementioned aspects for the three-

dimensional reconstruction. The usage of weighting factors of order one would reduce the

effect of statistical fluctuations. Using the same weighting factors as for the Rayleigh formal-

ism, the weighted sum (~S) of the three-dimensional unit vectors representing the reconstructed

cosmic ray arrival directions, and the sum of the weights (S0) is given by:

~S =
N∑

i=1

ω̄(δi)

ω(δi,αi)
ê(δi,αi) , S0 =

N∑

i=1

ω̄(δi)

ω(δi ,αi)
. (6.8)

In the following section, formulas for calculating a dipole estimator from the modified versions

of ~S and S0 will be derived.

6.2.1 Derivation of a Dipole Estimator

In order to find the functional relation between the dipole vector and the expectation values

for ~S and S0, an analytic calculation of ~S and S0 is carried out, for which the sum over all

observations is replaced by an integral over the directions:

~S =

∫

dΩ I(δ,α)
ω̄(δ)

ω(δ,α)
ê(δ,α) , S0 =

∫

dΩ I(δ,α)
ω̄(δ)

ω(δ,α)
. (6.9)

The set of reconstructed arrival directions is represented by a continiuous function I(δ,α), that

corresponds to the density of observations from the given direction. It is given by the product

of the flux and the exposure:

I(δ,α) =ω(δ,α)Φ(δ,α) . (6.10)

The flux is assumed to have dipolar shape:

Φdipole(δ,α) = Φ0 ·
�

1+ ê(δ,α) · ~D
�

, ~D = D · ê(δdipole,αdipole) . (6.11)
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Using the definitions of Φ(δ,α) and I(δ,α) yields:

~S =

∫

dΩω(δ,α)Φ0 ·
�

1+ ê(δ,α) · ~D
� ω̄(δ)

ω(δ,α)
ê(δ,α) ,

S0 =

∫

dΩω(δ,α)Φ0 ·
�

1+ ê(δ,α) · ~D
� ω̄(δ)

ω(δ,α)
.

(6.12)

In both these equations, the exposure function ω(δ,α) appears twice: once it stems from

I(δ,α) and represents the dependency of the frequency of observations from a certain direction

on the exposure. The higher the exposure towards a direction, the more observations from

that direction are contained in the data set. The second occurence of the exposure function

is in the denominator of the weighting factor, which is designed to compensate for the former

dependency. These two terms cancel out, so that the values of ~S and S0 will not depend on

the specific shape of the exposure function. However, both equations contain the averaged

exposure function ω̄(δ), and consequently the result will depend on it. In fact, the presence

of ω̄(δ) is one of two differences to the conventional SAP method. The other difference is

the integration range: while the SAP method integrates over declinations from δmin to δmax,

the integration in this modified version can generally be carried out over the whole sky (δ

ranging from −π/2 to π/2), as the term ω̄(δ) effectively narrows down the integration range

to declinations with non-zero exposure. The right ascension α is always integrated over its

range of values from 0 to 2π. For improved readability, these integration ranges are not

written in the following calculations. Expanding and using the definition of the solid angle

element gives:

~S = Φ0

∫∫

cosδdδdαω̄(δ) ê(δ,α)

︸ ︷︷ ︸

~Si

+Φ0

∫∫

cosδdδdα
�

ê(δ,α) · ~D
�

ω̄(δ) ê(δ,α)

︸ ︷︷ ︸

~Sa

,

S0 = Φ0

∫∫

cosδdδdαω̄(δ)

︸ ︷︷ ︸

Si
0

+Φ0

∫∫

cosδdδdα
�

ê(δ,α) · ~D
�

ω̄(δ)

︸ ︷︷ ︸

Sa
0

.

(6.13)

The terms ~S i and S i
0 describe the contributions of the isotropic component (the background)

of the flux to ~S and S0, respectively. Accordingly, the anisotropic component (the signal) is

reflected in ~Sa and Sa
0 . In the special case of complete and uniform sky coverage, the isotropic

contribution to the sum of unit vectors fully cancels out. Therefore, ~S i equals zero and ~Sa

corresponds to the dipole vector (apart from a constant normalisation factor). In that case,

S0, which is defined as the sum of all weighting factors, can be identified with the number of

recorded events. Because the excess of events in one direction and the deficit in the opposite

direction cancel each other out perfectly, the anisotropic component does not influence the

number of recorded events. Thus Sa
0 is zero, and the number of events S0 equals S i

0.

Even in the case of an arbitrary sky coverage, the x and y-components of ~S i always van-

ish, because their integrands of the α-integration are cosα and sinα, respectively. This is no

surprise, as these quantities correspond to the equatorial component of the weighted sum of

the arrival directions. Bearing in mind that ~S i only comprises the isotropic component of the

flux, and that differences of the exposure in right ascension are levelled out by the weight-

ing factors, the equatorial component (S i
x and S i

y) is expected to cancel out completely. The

z-component does generally not cancel out and is given by:

S i
z = 2πΦ0

∫

cosδdδ ω̄(δ) sinδ = 2πΦ0C∗11 . (6.14)
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Integrals of the averaged exposure function ω̄(δ) multiplied by powers of the cosine and sine

functions will repeatedly occur in the following calculations. The values of these integrals are

properties of the exposure function. Hence they are constants for the analysis of a given data

set, generically defined by:

C∗i j =

π/2∫

δ=−π/2

ω̄(δ) cosi δ sin j δdδ . (6.15)

Based on these, a second set of constants Ci j is defined, which is normalised to C∗10:

Ci j =
C∗i j

C∗10

. (6.16)

In contrast to C∗i j, the Ci j constants are dimensionless. By definition of Ci j, the following

identities are true:

C10 = 1 ,
C∗i j

C∗i′ j′
=

Ci j

Ci′ j′
. (6.17)

In the final result of the following derivation, the C∗i j constants only appear in ratios, so that

the result can be given with the dimensionless constants Ci j alone. This is preferable, because

unlike the unnormalised constants, the Ci j constants do not depend on the amount of mea-

surement time of the experiment. The averaged exposure function ω̄(δ) is proportional to the

amount of measurement time, and so are the C∗i j constants. However, this dependency cancels

out through the normalisation. The number of constants used in the formulas can be reduced

by means of the following identity:

cosi δ sin j δ = cosi−2 δ sin j δ · (1− sin2 δ)
︸ ︷︷ ︸

cos2 δ

= cosi−2 δ sin j δ− cosi−2 δ sin j+2 δ , (6.18)

which can be applied to the integrand in the above definition and thus yields:

C∗i j = C∗i−2; j − C∗i−2; j+2 , Ci j = Ci−2; j − Ci−2; j+2 . (6.19)

Specifically, the identity C∗30 = C∗10 − C∗12, which can also be written as C30 = 1− C12, will be

used.

The vector ~Sa corresponds to the anisotropy signal in the data set. However, it cannot be

identified with the dipole vector directly, because it may be distorted due to the inhomoge-

neous sky coverage. Its definition contains the scalar product ê(δ,α) · ~D, for the calculation of

which it is most convenient to express the dipole vector through its Cartesian components Dx ,

Dy and Dz:

ê(δ,α) · ~D = Dx cosδ cosα+ Dy cosδ sinα+ Dz sinδ . (6.20)

This scalar quantity is one of the factors in the integrand of ~Sa. It enters the calculations

of Sa
x and Sa

y as well as Sa
z . However, the integration over α entails, that each of the three

components of the dipole vector eventually only appears in the corresponding components of
~Sa. In the scalar product, the α-dependent part is cosα in the Dx -term, sinα in the Dy -term

and 1 in the Dz-term. The same α-dependencies appear in the three components of the unit

vector, which is the only other term in the integrand that depends on α. For integration over
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α from 0 to 2π, these three functions form an orthogonal system. Hence there are no mixed

terms in the result. The integrations yields:

Sx = 0 + πΦ0C∗30Dx = πΦ0 · (C∗10 − C∗12)Dx ,

Sy = 0 + πΦ0C∗30Dy = πΦ0 · (C∗10 − C∗12)Dy ,

Sz = 2πΦ0C∗11
︸ ︷︷ ︸

~Si

+ 2πΦ0C∗12Dz
︸ ︷︷ ︸

~Sa

= 2πΦ0 · (C∗11 + C∗12Dz) .
(6.21)

The quantity S0 stands for the sum of the weights of all observations. Since the weights

are of the order of one, S0 should be approximately the number of observations. The formula

given above breaks S0 down into an isotropic and an anisotropic part. The isotropic part (S i
0)

corresponds to the number of events that would be recorded if there were no anisotropy effect.

The anisotropic part (Sa
0 ) denotes the (possibly negative) number of events, that the anisotropy

effect adds to the data set. In case of full and uniform sky coverage, the latter is zero. However,

with non-uniform sky coverage, the experiment can have more or less exposure towards the

excess region as compared to the deficit region. Carrying out the integration of S0 gives:

S0 = 2πΦ0C∗10
︸ ︷︷ ︸

Si
0

+2πΦ0C∗11Dz
︸ ︷︷ ︸

Sa
0

= 2πΦ0 · (C∗10 + C∗11Dz) . (6.22)

A brief summary of the procedure so far: a set of variables (~S, S0) has been defined.

These variables can be computed for any set of arrival directions, provided that the underlying

exposure function is known. Based on a flux of dipolar shape, characterised by a dipole vector

(~D), the quantities ~S and S0 have been analytically calculated. The results depend on the

properties of the dipole distribution. At this point, there is a system of four equations (those

defining Sx , Sy , Sz and S0) and a total of four unknown variables (Dx , Dy , Dz and Φ0).

The derivation, as it has been carried out so far, could be accomplished with any arbitrary

definition of the variables ~S and S0. Different weightings could be used, or the definitions

could have a completely different form. However, there are two more requirements, that have

to be met. Firstly, the obtained system of equations must be solvable, i.e. it must be possible

to extract solutions for the three components of ~D from the computed values of ~S and S0. If

this condition is fulfilled, it is ensured, that the obtained analytic formulas, when applied to

a dipole-like flux distribution, would correctly reconstruct the dipole vector, if infite statistics

were available. This leads to the second requirement to be fulfilled: the procedure has to

perform well with a limited amount of statistics.

The set of variables chosen here fulfills the first of the requirements: the equation system

can be solved. However, when this analysis is applied to a real data set, i.e. one of finite size,

it cannot deliver the true dipole vector ~D, but only an estimate ~R. Therefore, the final result of

the derivation shall be given as a set of equations that defines ~R:

Rx =
2Sx

1− C12

·
C12 − C2

11

C12S0 − C11Sz
,

R y =
2Sy

1− C12

·
C12 − C2

11

C12S0 − C11Sz
,

Rz =
C11S0− Sz

C11Sz − C12S0

.

(6.23)

The validation of the second requirement is subject to tests by means of Monte Carlo simu-

lations. These were performed, and the results will be presented below. First, however, the

correctness of the above formulas shall be reassessed by plausibility considerations.
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6.2.2 Plausibility Checks

The formulas obtained in the previous section correspond to the very general case of inhomo-

geneous, and possibly incomplete sky coverage. When applied to special cases, they can be re-

duced to simpler formulas. Particularly the formulas of [Som01] and the SAP method [Aub05]

can be extracted from the ones above.

Assuming a complete and uniform sky coverage (ω(δ,α) = ω0), the Ci j constants can be

calculated in the following way:

Ci j =
C∗i j

C∗10

=

∫ π/2

δ=−π/2 ω̄(δ) cosi δ sin j δdδ

∫ π/2

δ=−π/2 ω̄(δ) cosδdδ
=
ω0

∫ π/2

δ=−π/2 cosi δ sin j δdδ

ω0

∫ π/2

δ=−π/2 cosδdδ

=
ω0

∫ π/2

δ=−π/2 cosi δ sin j δdδ

2ω0

=
1

2

π/2∫

δ=−π/2

cosi δ sin j δdδ .

(6.24)

The constants have the following values:

C11 = 0 , C12 =
1

3
. (6.25)

When plugging these values into Equation 6.23, the formulas become much simpler:

~R= 3
~S

S0

. (6.26)

Thus, in the special case of complete and homogeneous sky coverage, the modified SAP

method yields the same dipole estimator as in [Som01]. This is the expected behaviour, as in

that special case these two approaches are equivalent. Each single event is weighted equally.

The weighting factor in [Som01] takes the constant value 1/ω0, whereas in the modified SAP

method ω0 cancels out and the weighting factor is 1. The specific values of ~S and S0 are not

identical with both methods (in [Som01], both carry an additional factor of 1/ω0). However,

their ratio, which appears in the formula for the dipole estimator, is the same. When gener-

alising towards the case of full, but inhomogeneous sky coverage, the two methods take on

different ways, regarding both the calculation of ~S and S0 and their interpretation as dipole

estimator.

An incomplete and homogeneous sky coverage is defined by

ω(δ,α) =

(

ω0 δmin < δ < δmax

0 otherwise .
(6.27)

In this case, the modified SAP method is expected to be equivalent to the original SAP

method [Aub05]. The considerations regarding the weighting factors are the same as in the

previous case. The calculation of the Ci j constants goes along the same lines, only with the

integration range being reduced to δmin to δmax, finally leading to the following results:

C11 =
sinδmax + sinδmin

2
, C12 =

sin2 δmax + sin2 δmin+ sinδmax sinδmin

3
. (6.28)

Comparing these with the constants used in the original SAP method (Eq. 4.44) leads to:

s = 2C11 , γ=
s2 − p

3
=
(sinδmax + sinδmin)

2− sinδmax sinδmin

3
= C12 ,

p = s2 − 3γ= 4C2
11 − 3C12 .

(6.29)
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With these identities, the formulas for the dipole estimator of the original SAP method

(Eq. 4.44) and the modified SAP method (Eq. 6.23) are equivalent.

6.2.3 Time Based Weighting

The time based weighting factors, introduced in Section 6.1, can also be used with the modified

SAP method. The change only regards the summations of the quantities ~S and S0 (Eq. 6.8).

With time based weighting in place, the modified formulas read:

~S =
N∑

i=1

m̄

m(t)
ê(δi ,αi) , S0 =

N∑

i=1

m̄

m(t)
, (6.30)

where m(t) is the function describing the coverage of the sidereal day, as defined in Sec-

tion 6.1, and m̄ is its average value. The formulas for calculating the dipole vector estimate ~R
from ~S and S0 stay unchanged. The section below on Monte Carlo simulations with the modi-

fied SAP method will feature results obtained with both direction and time based weighting.

6.2.4 Comparison of the Modified SAP Method and the Multipole Expansion

Method

The advantage of the modified SAP method over the original SAP method lies in the reduction

of statistical fluctuations due to the more regular weighting of events within the data set. If the

data set spans only full sidereal days and invariant measurement conditions can be assumed,

the exposure function ω(δ,α) does not depend on the right ascension α, so that

ω(δ,α) = ω̄(δ)⇒
ω̄(δ)

ω(δ,α)
= 1 . (6.31)

In this special case, all events are evenly weighted. The formulas for ~S and S0 can then be

simplified to:

~S =
N∑

i=1

ê(δi,αi) , S0 =

N∑

i=1

1= N . (6.32)

On the other hand, the multipole expansion method, as described in Section 4.5, can be used

as a pure dipole reconstruction method. In this case, the maximum number for the order ℓ

amounts to one, and the summation can be written as:

b̄00 =
1

N

N∑

i=1

Y00(δi ,αi) =
1

N

N∑

i=1

1= 1 , (6.33)






b̄11

b̄1−1

b̄10




 =

1

N

N∑

i=1






Y11(δi,αi)

Y1−1(δi,αi)

Y10(δi,αi)




 =

1

N

N∑

i=1

p
3 ê(δi,αi) =

p
3

N
~S =

p
3

S0

~S . (6.34)

Thus, the three multipole coefficients b1m, that represent the dipole moment of the data set,

equal (apart from a constant factor
p

3/N) the components of the vector ~S, that is used in the

modified SAP method. In the same way as the vector ~S is transformed into a dipole estimator,

the set of bℓm coefficients is subject to a transformation that yields a set of estimators for the

aℓm coefficients, which are meant to describe the cosmic ray flux distribution. With ℓmax set

to one, the set of bℓm coefficients forms a dipole estimator. The question is, how the dipole
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estimators, that are retrieved with these two methods, the modified SAP method and the

multipole expansion method, relate to each other.

The inverse of the kernel [K]mm′

ℓℓ′ transforms the b̄ℓm coefficients (from the summation

of the arrival directions’ unit vectors) into the āℓm coefficients (the dipole estimator). The

kernel’s definition is given in Equation 4.49. Dealing with the special case of right ascension

independent exposure, the definition can be slightly simplified and written as:

[K]mm′

ℓℓ′ =

∫

cosδdδdαYℓm(δ,α) ω̄(δ)Yℓ′m′(δ,α) . (6.35)

The Yℓm functions consist of sine and cosine terms of δ and α. The precise definitions are given

in Appendix A. Since ℓ only ranges between zero and one, the kernel consists of 16 elements,

many of which amount to zero due to the integration over α. The remaining terms are:

[K]00
00 =

∫

cosδdδdαω̄(δ) = C∗10 ,

[K]11
11 =

∫

cosδdδdαω̄(δ)3 cos2 δ cos2α = 3πC∗30 ,

[K]−1−1
11

=
∫

cosδdδdαω̄(δ)3 cos2 δ sin2α = 3πC∗30 ,

[K]00
11 =

∫

cosδdδdαω̄(δ)3 sin2 δ = 6πC∗12 ,

[K]00
01 = [K]00

10 =
∫

cosδdδdαω̄(δ)
p

3 sinδ = 2π
p

3C∗11 .

(6.36)

Inverting the kernel and applying it to the set of b̄ℓm coefficients leads to the set of estimators

for the aℓm coefficients:

ā00 =
3C∗12 b̄00 −

p
3 C∗11 b̄10

6π ·
�

C∗10C∗12 − C∗11
2
� , ā1−1 =

b̄1−1

3πC∗30

,

ā10 =

p
3 C∗11 b̄00 − C∗10 b̄10

6π ·
�

C∗10C∗12 − C∗11
2
� , ā11 =

b̄11

3πC∗30

,

(6.37)

from which the dipole estimator can be constructed according to Equation 4.81. Its compo-

nents are given by:

Rx =

p
3

ā00

ā11 =
2 b̄11

1− C12

·
C12 − C2

11p
3 C12 b̄00 − b̄10C11

,

R y =

p
3

ā00

ā1−1 =
2 b̄1−1

1− C12

·
C12 − C2

11p
3 C12 b̄00 − b̄10C11

,

Rz =

p
3

ā00

ā10 =

p
3 C11 b̄00 − b̄10

C11 b̄10 −
p

3 C12 b̄00

.

(6.38)

The b̄ℓm terms can be expressed by means of ~S and S0, as described above in Equations 6.33

and 6.34. The resulting formulas are identical to those of the modified SAP method (Eq. 6.23).

Thus, in the case of an exposure function that is independent from the right ascension, the

modified SAP method is identical to the multipole expansion up to dipole order (ℓmax = 1).

The two methods, however, do differ in the way that they handle exposure functions, that

do depend on right ascension. While the modified SAP methods applies different weightings

to the events in order to account for the irregularities, the multipole expansion incorporates

1Equation 4.8 relates the true dipole vector ~D to the true multipole coefficients aℓm. The dipole estimator ~R can

be derived from the estimated multipole coefficients āℓm in the same way.
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Figure 6.5: Reconstruction quality of the modified SAP method subject to the extent of the efficiency

defect: the rightmost data points in each of the plots refer to the case of full efficiency for

the whole field of view, thus for the absence of the efficiency defect.

the precise exposure function into the transformation [K] between the coefficients describ-

ing the dipole in the cosmic ray flux (aℓm) and that in the data set (bℓm). In the same sense

that the modified SAP method is preferable over the original SAP method from the statistics

point of view, the multipole expansion method is even more favourable for dipole reconstruc-

tion. However, after changing the weighting from using arbitrarily high values (original SAP

method) to values of the order of one (modified SAP method), the additional benefit of aban-

doning weighting factors completely (multipole expansion method) is far less significant. On

the other hand, the implementation of the modified SAP method can be simpler compared to

that of the multipole expansion, as it can do without calculation of the precise exposure func-

tion: when using time based weightings, only the averaged exposure function ω̄(δ) needs be

computed, for which an analytic expression can be used. Carrying out the multipole expansion

method in the general case involves the numerical computation of two-dimensional integrals

of the exposure function.

6.2.5 Monte Carlo Simulations

The modified SAP method is identical to the multipole expansion method in the case of a right

ascension independent exposure function. Only in the case of data sets with inhomogeneous

sidereal day coverage, the modified SAP method constitutes an additional option for analysis.

The following Monte Carlo studies are based on the standard configuration for simulations, as

introduced in 5.3.2, with the exception that the coverage of the sidereal day simulated is the

one depicted in Figure 5.13. Additionally, efficiency deficits of various extents were simulated.
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These deficits entail that the computed exposure maps, on which the analyses are based, do

not correctly reflect the experimental situation. This may reveal different performances of

the direction and time based weighting mechanism, as it has been the case in Section 6.1.

Figure 6.5 shows the reconstruction accuracies for the various methods subject to the zenith

angle up to which full efficiency is given. The rightmost data points in each of the plots refers

to the standard configuration, with full efficiency for the complete field of view.

The accuracies of amplitude and declination reconstructions of both variants of the mod-

ified SAP method equal those of the multipole expansion method exactly. The impact of the

simulated efficiency defect on amplitude and declination reconstructions is also identical for

these two methods. Although the modified SAP method still uses a weighting technique to ac-

count for the right ascension dependency of the exposure function, it does not perform worse

than the multipole expansion method, which assigns the same weight to all recorded events.

Using weights of the order of one seems to have no effect on the strength of statistical fluctu-

ations, whereas the weights of arbitrary magnitudes, that are used by the SAP method, result

in a considerable penalty.

The situation is different for the reconstruction of the dipole’s right ascension value. Here,

the original SAP method performs even better than the multipole method. The zenith efficiency

effect, combined with the uneven coverage of the sidereal day, leads to irregularities in the

distribution of the air showers’ reconstructed right ascensions. These irregularities concentrate

in the medium declination range, as those regions of the sky are seen with different inclinations

over the course of time. They do not affect the edges of the visible declination range, as those

parts of the sky are only seen once per sidereal day and at high inclination. Since the SAP

method weights the regions at the edge of the visible sky higher than other regions, owing

to their low exposure, the SAP method is less obstructed by the combination of experimental

effects simulated here.

A considerably better performance for right ascension reconstruction is achieved with the

methods that utilise time based weightings. The weighting factors are not affected by any

of the experimental effects simulated here, and so the reconstruction of the dipole vector’s

right ascension component works flawlessly. However, this advantage is practically irrelevant:

the efficiency defect causes the declination value to be falsely reconstructed as very close to

the North Pole. Being a longitudinal coordinate, the specific value of the right ascension

coordinate is almost meaningless near the poles. Consequently, the better reconstruction of

the right ascension by the time based weighting variants has almost no positive effect on the

combined error of the dipole direction reconstruction.

6.2.6 Summary

A modification of the established SAP method has been proposed, which performs a more

homogeneous weighting of the recorded events and therefore can reduce the statistical fluctu-

ations of the reconstruction results. However, it has been shown that the modified SAP method

is very similar to the multipole expansion method. In fact, these two methods are mathemat-

ically equivalent, thus identical, in the special case of right ascension independent exposure

functions. In the more general case of right ascension dependent exposure functions, the mod-

ified SAP methods accounts for this dependency by weighting the individual events, whereas

the multipole expansion method incorporates this dependency into the transformation of the

summation variables to the dipole estimator. The latter demands are more sophisticated im-

plementation, as it involves the numerical computation of several two-dimensional integral

formulas. The reconstruction accuracy of the modified SAP method is as good as that of the

multipole expansion method. By employing time based weightings, the modified SAP method
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can avoid problems with the right ascension reconstruction introduced by the combination of

two effects, namely occasional interruptions of the measurement and zenith angle dependent

efficiency. I.e. the modified SAP method performs the right ascension reconstruction even

better than the multipole expansion method.

6.3 The Slice Method for Dipole Reconstruction

The methods discussed in this chapter so far aimed at optimising the statistical properties of

the dipole reconstruction. However, as the simulation studies in the previous chapter have

shown, experimental, thus systematic, effects can have a much bigger impact on the results

of the analyses. One of those effects is a zenith angle dependent experimental inefficiency.

It has been shown, that all the methods presented so far are vulnerable to this effect. The

problem emerges from the fact, that all those methods rely on the correctness of the exposure

function ω(δ,α), which is computed with full efficiency up to a given zenith angle limit ϑmax.

If the actual exposure function, that influences the data set, differs from the assumed one, the

analysis methods fail to reconstruct the correct dipole configuration. It would be particularly

advantageous to have an analysis method that does not rely on the correctness of the exposure

function. This is specifically the case, if the exposure function does not enter the calculations

at all. The Slice method, which shall be introduced in this section, achieves this. It does not

depend on the exposure function, but uses the time based weightings that have been intro-

duced in this chapter. Therefore, it is not prone to problems caused by a direction dependent

efficiency. However, the method does assume constant measurement conditions. Care has to

be taken to compensate for e.g. metereological effects, that affect the event rate.

The basic idea behind the Slice method is to divide the data set into subsets of events with

(nearly) identical declination values. In each of these narrow stripes in declination, or slices,

the right ascension distribution is investigated by means of a Rayleigh analysis. Assuming

that the cosmic ray flux distribution has a dipolar shape, each of the slices contains a dipolar

distribution of events as well. While the excess regions in all of the slices coincide, within

the limits of statistical fluctuations, with the right ascension of the global dipole vector, the

reconstructed Rayleigh amplitudes in the slices will differ. The set of Rayleigh amplitudes,

that are reconstructed in different declination slices, can be used to determine the amplitude

and declination of the global dipole.

As usual, weighting factors are used in the Rayleigh analyses to eliminate the right ascen-

sion dependency of the exposure. By using the time based weighting factors, as introduced

in Section 6.1, this can be done without explicitly calculating the exposure function. On the

other hand, the declination dependency of the exposure turns out to be irrelevant for this tech-

nique. The actual amount of the exposure for any declination range influences the amount of

statistics that enters the Rayleigh analysis in the corresponding slice, but does not influence

the expectation values of the results of the particular Rayleigh analysis.

Let the data set be divided into S subsets with indices i = 0, . . . ,S − 1. Each slice covers

an infinitesimally small declination range around the declination δi . The outcome of the

Rayleigh analysis can be predicted using Equation 4.41 by defining the exposure function as

ω̄(δ) =ωiδ(δ− δi), with δ(x) denoting the Dirac delta function. According to the definition

(Eq. 4.41), the Ci j constants become C11 = sinδi and C20 = cosδi . The Rayleigh amplitude,

that is expected in slice i, is then given by:

D′i =
D cosδdipole cosδi

1+ D sinδdipole sinδi
, (6.39)
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where D is the amplitude of the global dipole, and δdipole is the declination of its excess region.

The Rayleigh phase in each of the slices is expected to match the right ascension of the dipole’s

excess region αdipole. This formula complies with the above considerations in the sense that it

contains no reference to any specific values or properties of the exposure function ω̄(δ).

For a given dipole configuration (D,δdipole,αdipole), the expected Rayleigh amplitudes can

be calculated for all slices. These can be compared with the values obtained from the data

set. Since the behaviours of the Rayleigh amplitude and phase as random variables, i.e. their

probability density functions, are known, the likelihood of the obtained results in a slice can be

calculated, assuming a certain dipole configuration. The dipole configuration, that is contained

in the data set, can be estimated by finding the configuration that maximises the combined

likelihood in all slices, thus by performing a log-likelihood fit.

The probability to obtain in slice i a Rayleigh amplitude between Ri and Ri + dRi, and a

Rayleigh phase between αi and αi + dαi , is given by [Lin75]:

p(Ri ,αi)dRi dαi =
RiNi

4π
· exp

h

−Ni ·
�

R2
i + D′i

2 − 2RiD
′
i cos(αi −αdipole)

�

/4
i

dRi dαi . (6.40)

The product of the likelihoods has to be maximised. For practical reasons, the negative natural

logarithm of the likelihood is taken. That quantity is summed over all slices, and the result is

minimised by varying the assumed dipole’s parameters. The implementation uses the Simplex

algorithm of Nelder and Mead for minimising the log-likelihood quantity, as provided by thenmsimplex function of the GNU Scientific Library [Gal03].

6.3.1 Monte Carlo Simulations

In this section, the Slice method shall be evaluated by means of Monte Carlo simulations. First,

the analysis of a single data set is illustrated with several plots. Then, a number of simulated

data sets are analysed to judge the statistical significance of the results.

For the first part, a data set was simulated with 10 million events. The dipole amplitude

is chosen as 10%, which should be suitably large for illustration purposes. The dipole vector

points to δdipole = 40◦, αdipole = 75◦, while the experiment is located at 49◦ North latitude and

records air shower events up to a maximum zenith angle of 60◦. For the analysis, the data set

is subdivided into declination slices with a width of 1◦/10. Figure 6.6(a) and (b) show the re-

constructed Rayleigh phases and amplitudes. The dots represent the individual results for the

different slices, whereas solid curves indicate the expected behaviours. In case of the recon-

structed Rayleigh phase, the expectation value corresponds to the true right ascension value of

the dipole vector in all slices. Because of the statistical fluctuations, the reconstructed phases

scatter symmetrically around this expectation value. The width of the scatter is determined by

the strength of the anisotropy and the number of events within the slices. The reconstructed

amplitudes scatter asymmetrically around their expected behaviour, which is marked by the

curve, the shape of which is determined by the dipole amplitude and declination. The width

of the scatter is again influenced by the amount of statistics available in the slices. The latter

is depicted in Figure 6.6(c).

Figure 6.7 contains three additional plots for the same data set. The Slice method de-

termines its estimate of the dipole configuration through a log-likelihood maximation. These

figures show three cross sections of the three-dimensional parameter space (D, δdipole, αdipole).

Figure 6.7(a) shows the log-likelihood values for all possible dipole directions assuming the

correct dipole amplitude of 10%. In Figure 6.7(b), the correct right ascension value (75◦)
is assumed and log-likelihood values are plotted against the range of amplitude and declina-

tion values. These two plots reveal a massive problem of the Slice method: the log-likelihood



102 New Methods for Dipole Reconstruction

δ

α
R

0
◦

15
◦

30
◦

45
◦

60
◦

75
◦

90
◦

270
◦

315
◦

0
◦

45
◦

90
◦

135
◦

180
◦

225
◦

270
◦

(a)

δ

D
′

0
◦

15
◦

30
◦

45
◦

60
◦

75
◦

90
◦

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b)

δ

events
per slice

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦
0

2000

4000

6000

8000

10000

12000

(c)

Figure 6.6: Example plots illustrating the slice

method: A data set of 10 million events was sim-

ulated with a dipole flux distribution (D = 10%,

δdipole = 40◦, αdipole = 75◦). The experiment is

placed at 49◦ North latitude and uses air shower

events up to an inclination of ϑdipole = 60◦. The data

set is subdivided into declination slices of 1◦/10

width. Figure (a) shows the reconstructed Rayleigh

phases in the slices, which scatter around the true

right ascension value of 75◦. Figure (b) shows

the reconstructed Rayleigh amplitudes. The solid

curve marks the expected behaviour of the ampli-

tude, around which the reconstructed values scat-

ter. The width of scatter is influenced by the amount

of statistics available in the slices, which is shown in

Figure (c).

values do not seem to peak clearly at or near the true parameter values. Especially in the

amplitude/declination plane of the parameter space (Fig. 6.7(b)), the method fails to deliver

unambiguous results, as log-likelihood values, that are comparably good, span a large area

in this section of the parameter space. The fit results for this specific data set match the

true values rather well, with an estimated dipole amplitude of 9.7% and direction δ = 37.4◦,
α = 74.8%. However, with 10 million events and an amplitude of 10%, this data set repre-

sents a very favourable case for the dipole reconstruction. Statistical fluctuations get worse

both with smaller amplitudes and smaller data sets. Especially small amplitudes are a chal-

lenge for the three-dimensional dipole reconstruction with the Slice method: for very small

amplitudes D, the shape of the function D′(δ) can hardly characterise both dipole amplitude

and declination, as the dependency of D′ on amplitude D and declination δdipole exists in good

approximation only in the form of a proportionality to the product of D and cosδdipole:

D′i =
D cosδdipole cosδi

1+ D sinδdipole sinδi
≈ D cosδdipole cosδi . (6.41)

Thus, the function D′(δ), shown as the solid curve in Figure 6.6(b), looks practically the same

for many different combinations of D and δdipole. The method often tends to produce large
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Figure 6.7: Log-likelihood maps for the slice method: three cross-sections of the three-dimensional

parameter space are shown. In Figure (a), log-likelihood values are plotted for dipole

configurations with the true amplitude value of 10%. Figure (b) shows the ampli-

tude/declination plane of the parameter space with the true right ascension value (75◦).
Figure (c) depicts the amplitude/right ascension plane of the parameter space with the

true declination value (40◦). The fit fails to deliver unambiguous results.

amplitude values with declinations near the North Pole or South Pole. It only performs fairly

stably when both the simulated amplitude and the amount of available statistics are large.

6.3.2 Summary

A new method for the reconstruction of the dipole parameters has been discussed. It has been

designed to be insensitive to zenith angle dependent efficiency defects. The Slice method di-

vides the set of recorded data into many declination slices, i.e. subsets of data with almost

equal declination values. It then performs an individual Rayleigh analysis in each of these dec-

lination slices. The dipole parameters are obtained through a log-likelihood fit of the Rayleigh

amplitudes and phases. However, as it turns out, the approach chosen here has not lead to

a workable reconstruction method. The maximum likelihood hardly identifies a single dipole

configuration. Instead, there are extended regions in the parameter space with similarly high
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likelihood values. The fit implementation will randomly report any configuration inside that

region as the result.

Results of Monte Carlo series are not shown here, because the dipole reconstruction with

the Slice method often fails completely, in the sense, that the dipole amplitude parameter

diverge during the fit procedure. Therefore the idea of the Slice method shall not be pursued

any further in this thesis.

6.4 Rayleigh Analysis in Horizontal Coordinates

In this section, a better reconstruction method for a dipole anisotropy shall be proposed, that

combines ideas of the Slice method and the East-West method, which has been introduced

in Section 4.6. Like the East-West method, the horizontal Rayleigh analysis processes local

viewing directions of the air shower events. Like the Slice method, the final result is obtained

through a log-likelihood fit, taking advantage of the availability of the precise probability den-

sity functions for the Rayleigh analysis procedure. The horizontal Rayleigh analysis provides

an estimate of all three dipole parameters, thus it performs a three-dimensional reconstruc-

tion. It shall be shown, that this method is insensitive to many common experimental effects,

that have been discussed earlier.

Starting point is Equation 4.60, which shall be revisited here:

E(t)−W (t) = 4A ·Φ0 · DH
y (t)E21(t) . (6.42)

E(t) and W (t) are the air shower event counting rates of an experiment at time t for the West-

ern and Eastern halves of the field of view. Apart from being proportional to the mean cosmic

ray flux Φ0 and the size of the fiducial area of the experiment A, this expression depends on

properties of the field of view, which are contained in E21(t). Eventually, the expression is also

proportional to the y-component of the dipole vector in local viewing coordinates (horizontal

coordinates). The latter is the object of interest. To obtain it from data, the difference of

East and West counting rates must be divided by the other factors. Difficulties arise with the

determination of E21(t), which is defined according to:

Ei j(t) =

∫ ϑmax

ϑ=0

sini ϑ cos j ϑη(ϑ, t)dϑ , (6.43)

where ϑmax is the zenith angle limit up to which the data are used for analysis. The function

η(ϑ, t) represents experimental effects and can be understood as the efficiency, with which

cosmic ray particles hitting the experiment at time t with an inclination angle ϑ are detected.

Ideally, the function η(ϑ, t) is identically equal to one at all times and for the whole zenith

angle range. However, this is exactly the same assumption, that is incorporated in other recon-

struction methods, like the SAP method or the multipole expansion. Usually, this assumption

is implicitly made, so that η(ϑ, t) does not even appear in the formulas. The assumption may

not reflect the true experimental conditions, which may even be not exactly known or anyway

hard to quantify. In this sense, η(ϑ, t) is an unknown quantity. It is desirable to find functional

relations that yield information on the dipole configuration, but do not contain instances of

the efficiency function η(ϑ, t), and therefore are not based on any such assumptions.

One obvious approach for ridding the quantity E(t) −W (t) of the features determined

by the experimental circumstances, would be to normalise it with E(t) +W (t), i.e. the total

counting rate. However, as can be seen from the calculations in Section 4.6, the expression for

the total counting rate is even more complex:

I(t) = E(t) +W (t) = 2πA ·Φ0 ·
�

E11(t) + DH
z (t)E12(t)

�

, (6.44)
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so that the Ei j terms do not cancel out, when the normalisation is performed:

E(t)−W (t)

E(t) +W (t)
=

2

π
·

DH
y (t)E21(t)

E11(t) + DH
z (t)E12(t)

. (6.45)

Hence, normalising with the total counting rate is not an option for acquiring a quantity that

is independent of the experimental effects.

Along the lines of the calculation of the E(t) and W (t) functions, which have been derived

in Section 4.6 by integrating a dipole-like flux distribution over the respective parts of the field

of view, the counting rates for the North and the South halves of the sky can be constructed.

N(t) = A ·Φ0 ·
�

E11(t)
∫

dϕ+ DH
x (t)E21(t)

∫

cosϕdϕ+

DH
y (t)E21(t)

∫

sinϕdϕ+ DH
z (t)E12(t)

∫

dϕ
�

,
(6.46)

with all integrals over ϕ ranging from −π/2 to π/2. The function S(t) is defined identically,

but with the ϕ-integration ranging from π/2 to 3π/2. Unlike for the E(t) and W (t) functions,

the DH
y terms vanish, whereas the DH

x terms remain. Executing the ϕ-integrations yields:

N(t) = A ·Φ0 ·
�

πE11(t) + 2DH
x (t)E21(t) +πDH

z (t)E12(t)
�

,

S(t) = A ·Φ0 ·
�

πE11(t)− 2DH
x (t)E21(t) +πDH

z (t)E12(t)
�

.
(6.47)

As for the two former functions, most of the terms cancel each other when the difference of

these two functions is computed:

N(t)− S(t) = 4A ·Φ0 · DH
x (t)E21(t) . (6.48)

In fact, this difference is identical to E(t)−W (t), except that the occurence of DH
y (t) is replaced

with DH
x (t), which is the North-South component of the dipole vector. In order to get rid of

the disturbing terms, the two differences can be divided by each other:

E(t)−W (t)

N(t)− S(t)
=

4A ·Φ0 · DH
y (t)E21(t)

4A ·Φ0 · DH
x (t)E21(t)

=
DH

y (t)

DH
x (t)

. (6.49)

However, not only the disturbing terms are cancelled. When dividing the y-component of

the dipole vector by its x -component, the amplitude of the dipole cancels out as well. The

result comprises information only on the direction of the dipole vector, more precisely on

the projection of the dipole vector into the x y-plane of the horizontal coordinate system,

i.e. the horizontal plane. In Section 4.6, two different notations for the definition of the
~DH(t) vector have been given: firstly, Equation 4.54 uses the dipole direction in horizontal

coordinates (ϑdipole(t), ϕdipole(t)). Secondly, Equation 4.55 defines ~DH(t) by means of the

constant equatorial coordinates of the dipole vector. Both notations yield different insights:

the first on the meaning, the second on the temporal development of the ratio in question.

According to Equation 4.54: 2

DH
y (t)

DH
x (t)

=
D · sinϑdipole(t) sinϕdipole(t)

D · sinϑdipole(t) cosϕdipole(t)
⇒ ϕdipole(t) = arg(DH

x (t) + iDH
y (t)) . (6.50)

This means, that the ratio of E(t) −W (t) and N(t) − S(t) determines the azimuth angle

2It has been checked, that the resulting azimuth angle always lies within the correct sector. The signs of

numerator and denominator are correctly preserved. All terms cancelling out are positive definite. The zenith

angle can principally range between 0 and π. Hence, its sine (as in sinϑdipole) is never negative. Provided that no

events appearing from below the ground are recorded, the field of view contains only zenith angles less than π/2,

which is needed to ensure that all Ei j -terms are positive definite.
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Figure 6.8: Variation of the azimuth angle ϕdipole

of dipole vectors with different declinations dur-

ing one sidereal day for an observer located at 49◦

North latitude. (a): δdipole > 49◦, (b): δdipole ≈ 49◦,
(c): 49◦ < δdipole < −49◦, (d): δdipole ≈ −49◦,
(e): δdipole <−49◦.

of the dipole vector at time t. It should be noticed, that this relation is not based on any

assumptions about the efficiency or the absence of spurious variations of the measurement

rate. The only assumption, that lies in the given formula, is the symmetry of the experiment

and the measurement conditions with respect to the azimuth angle.

The second notation of the dipole vector in horizontal coordinates is given in Equa-
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tion 4.55, according to which:

DH
y (t) = −D · cosδdipole sin hdipole(t) ,

DH
x (t) = D ·

�

cosβ sinδdipole − sinβ cosδdipole coshdipole(t)
�

,

which leads to:

ϕdipole(t) = arg(cosβ sinδdipole − sinβ cosδdipole coshdipole(t)− i cosδdipole sin hdipole(t)) .
(6.51)

This notation includes the dipole configuration in equatorial coordinates. The only term, that

depends on the time t, is the hour angle of the dipole vector hdipole, which equals the difference

of local mean sidereal time and the dipole vector’s right ascension. The function is shown in

Figure 6.8 for different values of δdipole. The horizontal axes in those plots show the hour angle

hdipole, which equals the local mean sidereal time at the experiment, if the dipole vector points

to right ascension 0◦, and is shifted accordingly otherwise. In Figure 6.8, the experiment

is located at 49◦ North latitude. The different graphs show qualitative differences. If the

declination of the dipole vector is further North than 49◦, its azimuth varies around the North

direction. This is generally the case when δdipole >
�
�β
�
�, where β is the geographical latitude of

the experiment’s location: the North-South component of the dipole vector DH
x (t) is constantly

positive, thus pointing Northwards. On the other hand, the dipole vector’s azimuth varies

around the South direction, if its declination is further South than −49◦ in this example, or

generally if δdipole < −
�
�β
�
�, as DH

x (t) is constantly negative then. If neither is the case, thus

if −
�
�β
�
� < δdipole <

�
�β
�
�, the azimuth angle covers the whole range of directions during one

sidereal day, turning clockwise (S, W, N, E, S) if the experiment is situated on the Northern

Hemisphere, or anti-clockwise (N, W, S, E, N) if the experiment is located on the Southern

Hemisphere. It should be possible to discriminate between those qualitatively different cases

when analysing a data set.

The actual analysis of data, of course, cannot draw on the event rates as continuous func-

tions, but can only estimate event rates for discrete time intervals by dividing the number of

recorded events by the duration of the time interval. These estimators shall be called Ē, W̄ ,

N̄ and S̄, respectively. For a time interval lasting from t until t +∆t, those quantities can be

written as a sum over selected events:

Ē(t,∆t) =
1

∆t

∑

i
t<ti<t+∆t

0<ϕi<π

1 , W̄ (t,∆t) =
1

∆t

∑

i
t<ti<t+∆t
π<ϕi<2π

1 , (6.52)

where t i denotes the point of time of the event i, and ϕi its reconstructed azimuth angle, and

analogously for N̄ and S̄ with corresponding ranges for ϕi. The differences Ē − W̄ and N̄ − S̄
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can then also be written as:

Ē(t,∆t)− W̄ (t,∆t) =
1

∆t

∑

i
t<ti<t+∆t

¨

1 (if 0 < ϕi < π)

−1 (if π < ϕi < 2π)

=
1

∆t

∑

i
t<ti<t+∆t

sign(sinϕi) ,

N̄(t,∆t)− S̄(t,∆t) =
1

∆t

∑

i
t<ti<t+∆t

¨

1 (if ϕi < π/2∨ϕi > 3π/2)

−1 (if π/2< ϕi < 3π/2)

=
1

∆t

∑

i
t<ti<t+∆t

sign(cosϕi) .

(6.53)

The length of the time interval ∆t eventually cancels out, when calculating the ratio of those

two differences. However, the choice of ∆t, thus the duration of the time bins, within which

the analysis is carried out, does effect the analysis. From a statistical point of view, it is

favourable to choose long time intervals, in order to maximise event numbers and therefore

minimise the effect of statistical fluctuations. On the other hand, the longer the time interval

the worse the approximation of assuming a constant dipole vector in horizontal coordinates.

This reconstruction method looks at the ratio of “Eastness” and “Northness” of the data set

taken during a short period of time. Each event is categorised as either West or East, depending

on the sign of the sine of the event’s reconstructed azimuth angle, and as either North or South,

depending on the sign of the cosine. Eastness and Northness of a single event could also be

defined as continuous quantities, namely directly as the sine and cosine of the azimuth angle,

respectively. These functions shall be called Y (t) (Eastness) and X (t) (Northness). Unlike the

counting rates previously used, they shall be normalised by the total counting rate I(t). They

can be analytically calculated as integrals over the experiment’s field of view:

Y (t) =
2

I(t)

∫ 2π

ϕ=0

∫ ϑmax

ϑ=0

dϕ sinϑdϑ cosϑ η(ϑ, t) A Φ(ϑ,ϕ, t) sinϕ ,

X (t) =
2

I(t)

∫ 2π

ϕ=0

∫ ϑmax

ϑ=0

dϕ sinϑdϑ cosϑ η(ϑ, t) A Φ(ϑ,ϕ, t) cosϕ ,

I(t) =

∫ 2π

ϕ=0

∫ ϑmax

ϑ=0

dϕ sinϑdϑ
︸ ︷︷ ︸

solid angle
element

cosϑ
︸︷︷︸

geometrical
acceptance

η(ϑ, t)
︸ ︷︷ ︸

experimental
effects

A
︸︷︷︸

surface
area

Φ(ϑ,ϕ, t)
︸ ︷︷ ︸

flux

.

(6.54)

The further calculations go along the same lines as for the East-West method, as shown in

Section 4.6. However, the ϕ-integration is always carried out over the whole range from 0 to

2π. Assuming a dipole distribution for Φ(ϑ,ϕ, t) (Eq. 4.53) leads to:

Y (t) =
2

I(t)

∫ 2π

ϕ=0

∫ ϑmax

ϑ=0

dϕ sinϑdϑ cosϑη(ϑ, t) · A ·Φ0·
�

1+ DH
x (t) sinϑ cosϕ+ DH

y (t) sinϑ sinϕ+ DH
z (t) cosϑ

�

· sinϕ ,

(6.55)

and analogously for X (t), except for the factor sinϕ being replaced by cosϕ. The ϑ-integration
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yields:

Y (t) =
2

I(t)
·A ·Φ0 ·

�

E11(t)
∫

sinϕ dϕ+ DH
x (t)E21(t)

∫

cosϕ sinϕ dϕ+

DH
y (t)E21(t)

∫

sin2ϕdϕ+ DH
z (t)E12(t)

∫

sinϕ dϕ
�

,

X (t) =
2

I(t)
·A ·Φ0 ·

�

E11(t)
∫

cosϕ dϕ+ DH
x (t)E21(t)

∫

cos2ϕ dϕ+

DH
y (t)E21(t)

∫

sinϕ cosϕ dϕ+ DH
z (t)E12(t)

∫

cosϕ dϕ
�

,

(6.56)

and after the ϕ-integration:

Y (t) =
2π

I(t)
· A ·Φ0 · DH

y (t)E21(t) ,

X (t) =
2π

I(t)
· A ·Φ0 · DH

x (t)E21(t) .

(6.57)

Apart from the normalisation, these functions are identical to the formerly used differences

E(t)−W (t) and N(t)−S(t). The ratio of Y (t) and X (t) determines the current dipole azimuth,

in the same way as said differences do:

Y (t)

X (t)
=

DH
y (t)

DH
x (t)

= tanϕdipole(t) . (6.58)

The advantage of the new set of functions becomes apparent when looking at the formulas of

their estimators from measured data:

Ȳ (t,∆t) =
1

∆t
·

2

Ī(t,∆t)

∑

i
t<ti<t+∆t

sinϕi ,

X̄ (t,∆t) =
1

∆t
·

2

Ī(t,∆t)

∑

i
t<ti<t+∆t

cosϕi ,

Ī(t,∆t) =
1

∆t

∑

i
t<ti<t+∆t

1 =
N

∆t
.

(6.59)

For a set of N air shower observations with reconstructed azimuth angles ϕi, the functions

Y (t) and X (t) can be estimated as:

Ȳ =
2

N

N∑

i=1

sinϕi , X̄ =
2

N

N∑

i=1

cosϕi . (6.60)

These two formulas are identical to those of the Rayleigh formalism (Eq. 4.20), with the

exception that the original Rayleigh formalism works on right ascension values, whereas these

formulas process azimuth values. However, both right ascension and azimuth are longitudinal

coordinates. Provided that the complete set of events was taken during a short period of

sidereal time of day (although not necessarily all on the same sidereal day), the variation of

the flux distribution in horizontal coordinates with time can be neglected. Thus, the full set is

drawn from the dipolar flux distribution Φ(ϑ,ϕ, t) at a practically fixed time t. The distribution
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of azimuth angles in the data set can be calculated from the flux as follows:

Φ̄(ϕ, t) =

∫ ϑmax

ϑ=0
Φ(ϑ,ϕ, t)η(ϑ, t) cosϑ sinϑdϑ

∫ ϑmax

ϑ=0
η(ϑ, t)
︸ ︷︷ ︸

experimental
effects

cosϑ
︸︷︷︸

geometrical
acceptance

sinϑdϑ
︸ ︷︷ ︸

solid angle
element

. (6.61)

After plugging in the flux distribution, as given in Equation 4.53, the ϑ-integration can be

executed, which yields the following result:

Φ̄(ϕ, t) = Φ0 ·
�

1+
E12(t)

E11(t)
D cosϑdipole(t)

�

︸ ︷︷ ︸

Φ′0(t)

·
�

1+ D′(t) cos(ϕ−ϕdipole(t))
�

,

D′(t) =
D sinϑdipole(t)E21(t)

E11(t) + D cosϑdipole(t)E12(t)
.

(6.62)

Therefore, at any time t, the distribution of azimuth values has a dipolar shape, too. Its excess

coincides with the azimuth of the dipole vector at that time. The amplitude is described by the

function D′(t) and depends on the dipole amplitude D, the zenith angle of the dipole vector at

time t, but also on the Ei j-functions, that describe the field of view, the efficiency and possible

experimental effects. The dipole’s current azimuth angle can be estimated from the data subset

by the Rayleigh phase ϕR. The Rayleigh ampltide RH is an estimator for the amplitude of the

azimuth variation D′(t):

RH =
p

X̄ 2 + Ȳ 2 , ϕR = arg(X̄ + iȲ ) . (6.63)

The advantage of using the Rayleigh formalism compared to using the ratio of East-West and

North-South differences lies in the knowledge of the precise statistical behaviour of the result-

ing quantities. Probability density functions are available, that describe the Rayleigh amplitude

and phase, both seperately and simultaneously [Lin75]. Thus, the complete data set can be

subdivided into short bins of local mean sidereal time of day, the horizontal Rayleigh phases

can be computed for each bin, and the direction of the dipole vector in sidereal coordinates

can be obtained through a log-likelihood fit of the Rayleigh phases with the function given in

Equation 6.51. While the fit function itself does not depend on the strength of the dipole, the

probability density function does (in terms of D′):

p(ϕR) =
1

2π
· exp(−k) ·

�

1+
p
πk cosψ exp

�

k cos2ψ
�

·
�

1+ erf
�p

k cosψ
���

,

ψ= ϕR −ϕdipole , k = D′2N/4 .

(6.64)

The shape of this function is depicted in Figure 5.2(f). The maximum probability is always at

ψ = 0, so where ϕR = ϕdipole. However, the width of the peak depends on the dipole’s am-

plitude. The stronger the dipole, the sharper the probability density function is concentrated

around the peak value. This is true for each of the time bins, so that the set of Rayleigh phases

obtained from the data, generally scatter wider around the function ϕdipole(t) the weaker the

dipole. In turn, this means that the amount of scatter characterises the strength of the actual

dipole. The dipole amplitude therefore is treated as a free parameter in the log-likelihood fit,

along with the direction (declination and right ascension) of the dipole. These three parame-

ters influence the probability density function of the Rayleigh phase in each sidereal time bin.
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The fit procedure maximises the combined likelihood of the obtained Rayleigh phases by vary-

ing the dipole configuration. The dipole’s declination determines the shape of the fit function

ϕdipole(t). The dipole’s right ascension determines the offset between the hour angle (which

is shown on the x -axes in Figure 6.8) and the local mean sidereal time. Thus, it shifts the fit

function along the time axis. The dipole amplitude determines the amount of variance of the

individual data points (the computed Rayleigh phases) around the fit function. If, during the

fit procedure, the amplitude is assumed too high, the Rayleigh phase is outside the peak region

of the probability density function in many of the sidereal time bins. On the other hand, when

assuming too small an amplitude, the phase will be inside the peak region in most of the time

bins, but the probability density functions are so wide, and therefore low, that the resulting

likelihood can be further maximised by increasing the amplitude parameter.

Although the method only extracts azimuth directions from the data set, the exact knowl-

edge of the statistics involved allows to extract eventually both direction and strength of the

dipole from the data set. However, this benefit comes at a price. In each iteration of the fit

procedure, the expected amplitudes of the azimuth distributions D′(t) need be computed for

the currently assumed dipole configuration for all time bins, as they appear in the likelihood

function. The relation between the global dipole configuration (D, δdipole, αdipole) and the az-

imuthal amplitude at a time t (D′(t)) is given in Equation 6.62. It has been stated above, that

this relation is affected by experimental effects, because it contains the Ei j-functions. There-

fore, it is not completely true, that the described method is insensitive to those experimental

effects described by a time and zenith angle dependent efficiency function η(ϑ, t). However,

possible variations with time are indeed irrelevant: if the experiment is at certain times gen-

erally more efficient than at other times, which is typically caused by changing metereological

conditions, this affects the amount of statistics, that enters the corresponding time bins. Other

than that, it does not influence the results. A zenith angle dependency of the efficiency, on the

other hand, would render the calculation of the Ei j-functions incorrect, which assumed, for

the lack of better knowledge, full efficiency up to the zenith angle limit ϑmax. Therefore the

expected Rayleigh amplitudes are not calculated correctly, which leads to a slight misinterpre-

tation of the scatter. While this should not affect the estimation of the dipole vector’s direction,

the dipole amplitude may be misestimated. The actual impact of this effect can be evaluated

by means of Monte Carlo simulations.

It is desirable, however, to ultimately get rid of the dependency on the efficiency func-

tion η(ϑ, t). In the derivation of the horizontal Rayleigh method, as it has been shown, that

function appears first in the calculations of the Eastness and Northness weighted counting

rates (Y (t) and X (t)), but those instances of η(ϑ, t) fully cancel out, because only the ratio of

Y (t) and X (t) is used for the analysis. The efficiency function η(ϑ, t) appears again in Equa-

tion 6.61, where the azimuth angle distribution at time t, Φ̄(ϕ, t) is computed from the cosmic

ray flux distribution Φ(ϑ,ϕ, t) by integrating over the zenith angle ϑ. The result is shown as

Equation 6.62, according to which the azimuth distribution always has dipolar shape. The

peak azimuth angle, i.e. the phase, coincides with the dipole vector’s azimuth angle ϕdipole(t).
The amplitude of the azimuth distribution D′(t) closely relates to the dipole’s amplitude D.

However, the specific values of D′(t) depend on the shape of the experiment’s field of view.

An alternative way of calculating D′(t) shall be given, which can eventually be freed from

the dependency on experimental features. The amplitude of the azimuthal flux variation inside

a slice of the sky with a discrete zenith angle ϑ can be calculated from the flux distribution as
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follows:

Φ(ϑ,ϕ, t) = Φ0 ·
�

1+ ê(π/2− ϑ,ϕ) · ~DH(t)
�

= Φ0 ·
�

1+ D cosϑdipole(t) cosϑ+ D sinϑdipole(t) sinϑ cos(ϕ−ϕdipole(t))
�

= Φ0 · (1+ D cosϑdipole(t) cosϑ) ·
�

1+
D sinϑdipole(t) sinϑ

1+ D cosϑdipole(t) cosϑ
cos(ϕ−ϕdipole(t))

�

.

(6.65)

At any time t, the amplitude of the slice with zenith angle ϑ therefore is given by:

A(ϑ, t) =
D sinϑdipole(t) sinϑ

1+ D cosϑdipole(t) cosϑ
. (6.66)

The total azimuth distribution, as given as Φ̄(ϕ, t) in Equation 6.62, is a linear combination

of the fluxes inside the zenith slices, all of which are dipole distributions with identical phase.

Accordingly, the total azimuth amplitude D′(t) is a weighted mean of the amplitudes inside

the slices A(ϑ, t). The weighting depends on the intensity, with which the different slices enter

the data set, which can be quantified as follows:

n(ϑ, t) =

∫ 2π

ϕ=0

dϕ Φ(ϑ,ϕ, t)
︸ ︷︷ ︸

flux

η(ϑ, t)
︸ ︷︷ ︸

experimental
effects

cosϑ
︸︷︷︸

geometrical
acceptance

sinϑ
︸︷︷︸

solid angle
element

= 2π Φ0 · (1+ D cosϑdipole(t) cosϑ) η(ϑ, t) cosϑ sinϑ .

(6.67)

The azimuthal amplitude D′(t) can now be computed as:

D′(t) =

∫ π/2

ϑ=0

A(ϑ, t)n(ϑ, t)dϑ

∫ π/2

ϑ=0

n(ϑ, t)dϑ

. (6.68)

Unlike previously, the upper limit of the ϑ-integrations is set to π/2 instead of ϑmax. The

integration therefore covers the whole upward sky. The efficiency function η(ϑ, t) shall by

convention be defined in such a way, that it equals zero for ϑ > ϑmax. Thus, the integration is

effectively carried out over the same integration range as before. It is beneficial not to include

the variable ϑmax in the formula, in order not to have such a dependency in the final result.

Using the definitions of A(ϑ, t) and n(ϑ, t) and integrating yields:

D′(t) =

∫ π/2

ϑ=0

D sinϑdipole(t) sinϑ · 2πΦ0η(ϑ, t) cosϑ sinϑdϑ

∫ π/2

ϑ=0

2πΦ0 · (1+ D cosϑdipole(t) cosϑ) ·η(ϑ, t) cosϑ sinϑdϑ

=
D sinϑdipole(t)E21(t)

E11(t) + D cosϑdipole(t)E12(t)
,

(6.69)

which is identical to the result obtained in Equation 6.62. However, defining D′(t) in this way

offers the possibility to remove the dependency on the generally unknown efficiency function
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η(ϑ, t). The function n(ϑ, t) is meant to reflect the rate of air shower events at a time t, that

arrive with a zenith angle of ϑ, including the effect of the dipole anisotropy as well as the

geometry and the experimental effects that are expressed by the function η(ϑ, t). Instead of

analytically calculating n(ϑ, t) by making assumptions on the experimental effects (essentially

by assuming their absence), it can be taken from the experimental data. Let ϑi be the zenith

angles of the N air shower observations in one of the time bins. The following replacement

can be applied:

n(ϑ, t) −→ n0

N∑

i=1

δ(ϑ−ϑi) , (6.70)

where δ(x) is the Dirac delta function. The integrations in Equation 6.68 now yield:

D′(t) =

n0

N∑

i=1

A(ϑi, t)

n0

N∑

i=1

1

=
1

N

N∑

i=1

A(ϑi, t) =
1

N

N∑

i=1

D sinϑdipole(t) sinϑi

1+ D cosϑdipole(t) cosϑi
. (6.71)

The computational effort for calculating D′(t) this way is considerably higher, as a summation

over all air shower events has to be carried out. This summation has to be repeated for each

iteration of the fit procedure, as different values for ϑdipole(t) and D are assumed. Strictly

speaking, the D′(t) computed here is only an estimate for the true azimuthal amplitude, as

it is computed from a limited number of events. It is again subject to statistical fluctuations.

However, computing this quantity from experimental data avoids the systematic bias, that a

calculation based on false assumptions implicates.

The horizontal Rayleigh analysis, as it has been presented here, does not rely on assump-

tions about experimental properties, other than azimuthal symmetry of the experiment. A

variation of the sensitivity of the experiment with zenith angle and/or time does not influence

the results. Unlike many other analysis methods, measurement conditions are not assumed to

be invariable. Therefore changing metereological conditions, even if the variations are repet-

itive (e.g. the day-night cycle), are without effect, which renders compensating for metereo-

logically induced rate changes, e.g. by means of weighting factors, unneccessary. In the same

way, zenith angle correlated effects are irrelevant. Cuts on the zenith angle do not need to

assure full efficiency within their bounds. A cut on the zenith angle should still be performed,

to restrict the analysis to shower inclinations at which the arrival direction reconstruction is

known to work properly.

One more modification of the horizontal Rayleigh analysis method shall be suggested here.

So far, the log-likelihood fit only uses the Rayleigh phases that are calculated for each time

bin. Since the probability distribution as a function of both Rayleigh amplitude and phase

is available as well, the fit can also be performed using phase and amplitude information

simultaneously. To do so, the probability density function shown in Equation 6.64 has to be

replaced with [Lin75]:

p(RH ,ϕR) =
RH N

4π
· exp

h

−N ·
�

RH2
+ D′2 − 2RH D′ cos(ϕR −ϕdipole)

�

/4
i

. (6.72)

Using both the Rayleigh phase and amplitude could enhance the precision of the results, since

more of the available information is used. Originally, the pure phase fit was chosen in order to

reduce the dependency on amplitude values, as only the obtained phases were fully indepen-

dent from all zenith angle related experimental effects. However, as an estimator for D′ has
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become available, that is equally independent from those effects, fitting both the phase and

amplitude values is a viable option.

Altogether there are four variants of the horizontal Rayleigh analysis method. The fit can

either be performed with the phase values alone (probability density function according to

Eq. 6.64), or with both phase and amplitude information (Eq. 6.72). Additionally, there are

two different ways of estimating the azimuthal amplitudes: either by means of an analytical

function, that assumes a certain shape of the field of view, and of the efficiency function

(Eq. 6.62), or by the distribution of zenith angles in the data set (Eq. 6.71). The two kinds of

fitting can be combined with either of the amplitude estimation methods, leading to a total of

four possible variants of the analysis method:

• phase fit, combined with an analytical description of the field of view (abbreviated ‘p’),

• combined phase and amplitude fit, combined with an analytical description of the field

of view (abbreviated ‘p&a’),

• phase fit, combined with the evaluation of zenith angles (abbreviated ‘p+ϑ’),

• combined phase and amplitude fit, combined with the evaluation of zenith angles (ab-

breviated ‘p&a+ϑ’).

Implementations of these four variants need different input data for the analysis. All of them

need to know about the geographical location of the experiment. Additionally, implementa-

tions of the variants ‘p’ and ‘p&a’ need information on the shape of the field of view (usually

specified by the maximum zenith angle ϑmax). They process a list of air shower observations,

of which only the reconstructed azimuth angles and the event times (in the form of local mean

sidereal time) are considered. On the other hand, the variants ‘p+ϑ’ and ‘p&a+ϑ’ need both

azimuth and zenith angle of the reconstructed arrival directions, together with the local side-

real time. However, these variants need no externally provided information on the extent and

the shape of the field of view.

6.4.1 Monte Carlo Simulations

The capabilities of the new method can be assessed with the help of Monte Carlo simulations.

First, however, the mode of operation of the horizontal Rayleigh analysis shall be illustrated

with some simulated example data sets. Each of these data sets comprises 10 million simulated

air shower events. For illustration purposes, a strong dipole was simulated, with an amplitude

of 10%. The geographical latitude of the experiment (β) was set to 49◦ North. The zenith

angle limit was chosen to amount to 60◦. Figure 6.9 shows three different plots for each of

the four different dipole declinations. Figures 6.9(a) to (c) correspond to a dipole declination

δdipole of 40◦, whereas δdipole is set to −40◦ in Figures 6.9(d) to (f). Both of those values

for δdipole lie within the range between +β and −β , so that the azimuth angle of the dipole

vector in local viewing coordinates keeps progressing clockwise all day, thus sweeping out the

full range of azimuth values. The remaining two declination values are 75◦ (Figures 6.9(g)

to (i)) and −75◦ (Figures 6.9(j) to (l)). These illustrate the cases where δdipole is greater than

|β |, so that the azimuth angle of the dipole oscillates around the North direction, and where

δdipole is less than −|β |, causing the dipole’s azimuth angle to oscillate around South. These

different classes of behaviour can clearly be distinguished when looking at the simulated data.

All of these four data sets are divided into 1,440 time bins. Each bin therefore corresponds

to a period of one sidereal minute. The first of the three plots, which are shown for each of



6.4 Rayleigh Analysis in Horizontal Coordinates 115

t [h]

ϕdipole

0 4 8 12 16 20 24

0◦ N

45◦ NE

90◦ E

135◦ SE

180◦ S

225◦ SW

270◦ W

315◦ NW

360◦ N

(a)

t [h]

ϕdipole

0 4 8 12 16 20 24

0◦ N

45◦ NE

90◦ E

135◦ SE

180◦ S

225◦ SW

270◦ W

315◦ NW

360◦ N

(d)

t [h]

R
H

0 4 8 12 16 20 24

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(b)

t [h]

R
H

0 4 8 12 16 20 24

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(e)

t [h]

D
′

0 4 8 12 16 20 24

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(c)

t [h]

D
′

0 4 8 12 16 20 24

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(f)

Figure 6.9: Example plots illustrating the horizontal Rayleigh analysis: data sets of 10 million simu-

lated events were generated for an experiment at 49◦ North latitude, with a 10% dipole pointing to

δdipole = 40◦ and αdipole = 75◦. Constant measurement conditions and full efficiency over the full zenith

angle range up to ϑmax = 60◦ were simulated. The time axes show the local mean sidereal time. At

5 a.m. sidereal time the dipole excess is situated above the experiment’s meridian. The data sets are

divided into time bins of one sidereal minute. Figures (a) and (b) show the reconstructed horizontal

Rayleigh phases and amplitudes, respectively, in each time bin. The solid curves represent the expected

values for these quantities. Figure (c) shows the estimated azimuth amplitudes D′(t), calculated from

the events’ zenith angles assuming the true dipole configuration. The curve from Figure (b) is also

shown in Figure (c) for comparison. Figures (d), (e) and (f) present the same plots for a different data

set, which was generated with δdipole = −40◦ and otherwise identical parameters.
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Figure 6.9: (cont’d) Two more dipole declination values were simulated. Figures (g), (h) and (i) were

generated with δdipole = 75◦. Figures (j), (k) and (l) were generated with δdipole =−75◦.

the four example dipole configurations, features the extracted Rayleigh phases, i.e. dipole az-

imuths. The solid curve illustrates the true development of the dipole vector’s azimuth angle.

Due to the large dipole amplitude and the large number of events chosen for the simulation,

it is clearly discernible that the data points scatter around that curve. The second of the three

plots features the reconstructed horizontal Rayleigh amplitudes RH . Again, the solid curve

represents the theoretical prediction around which the data points scatter. The prediction,
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Figure 6.10: Impact of an efficiency deficit at high zenith angles on the horizontal Rayleigh analysis:

Figures (a), (b) and (c) correspond to Figures 6.9(a), (b) and (c) (δdipole = 40◦). However, reduced

efficiency was simulated in the zenith angle range between 40◦ and 60◦. The upper curves in Figures (b)

and (c) reflect the assumption of full efficiency. Figures (d), (e) and (f) were generated with δdipole =

−40◦, 75◦ and −75◦, respectively.

however, is based on the assumption of constant efficiency within the whole range of zenith

angles up to ϑmax. In the case of these simulated sets, this assumption is fulfilled, because no

efficiency deficit was simulated. The third in each series of plots compares the predicted az-
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Figure 6.11: Horizontal Rayleigh analysis (‘p’): log-likelihood map, illustrating the fit of the data

displayed in Figures 6.9(a) to 6.9(c). Figure (a) displays log-likelihood values subject

to dipole direction, for the true amplitude value (10%). The white circle marks the

true dipole direction. Figure (b) displays log-likelihood values subject to amplitude and

declination, for the true dipole right ascension (75◦). Likewise, Figure (c) shows the

amplitude/right ascension plane of the parameter space at δ = 40◦, which is the true

declination value. The dotted lines mark the respective true values.

imuthal amplitudes (the curve is the same as in the second plot) with the expected amplitudes

as calculated from the time bins’ zenith angle distributions according to Equation 6.71. In this

case, the data points generally agree with the theoretically predicted amplitudes.

Figure 6.10 shows results of the simulations of four example data sets that suffer from

an efficiency defect for zenith angles between 40◦ and 60◦. For the first data set (with

δdipole = 40◦) the series of the three plots is shown in Figures 6.10(a) to 6.10(c). For the

other three sets (again with δdipole = −40◦, 75◦ and −75◦) only the third plot is shown in

Figures 6.10(d) to 6.10(f). The underrepresentation of more inclined showers in the data set

leads to smaller horizontal Rayleigh amplitudes than expected for these dipole configurations.

As a result, the fit algorithm yields too low values for the dipole amplitude if the assumption

of full efficiency is made. As can be seen in Figure 6.10(a), the smaller azimuthal ampli-

tudes cause the data points to scatter slightly wider around the curve than in Figure 6.9(a),
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Figure 6.12: Horizontal Rayleigh analysis (‘p’) applied to simulated data sets: 1,000 data sets of the

kind displayed in Figures 6.9(a) to (c) were simulated. The obtained dipole amplitudes

are displayed in Figure (a), declination values are shown Figure (b), and right ascension

values are shown in Figure (c). Figure (d) displays the distribution of angular distances

between the reconstructed dipole direction and the true one. These plots correspond to

1,000 realisations of the fit illustrated in Figure 6.11.

where full efficiency is correctly assumed. The tendency of the data points to underestimate

the expected degree of azimuthal anisotropy can be seen in Figure 6.10(b), especially when

compared to Figure 6.9(b). The effect becomes even clearer in Figure 6.10(c), in which the

predicted azimuthal amplitudes (solid curve, based on the assumption of full efficiency) are

put in contrast with the expected amplitudes as calculated from the zenith angle distribution

(dots, reflecting the actual efficiency situation). The horizontal Rayleigh analysis can be per-

formed with either the full efficiency assumption (variants ‘p’ and ‘p&a’) or with the zenith

distributions from data (variants ‘p+ϑ’ and ‘p&a+ϑ’).

The functioning of the horizontal Rayleigh analysis, and of the log-likelihood fit in partic-

ular, shall be illustrated by Figures 6.11 to 6.18. These figures feature log-likelihood displays

and reconstruction result distributions for four different scenarios, with different combinations

of variants of the method and simulation configurations. The first scenario is based on the data
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Figure 6.13: Horizontal Rayleigh analysis (‘p&a’): log-likelihood map, illustrating the fit of the data

displayed in Figures 6.9(a) to 6.9(c). Figure (a) displays log-likelihood values subject

to dipole direction, for the true amplitude value (10%). The white circle marks the

true dipole direction. Figure (b) displays log-likelihood values subject to amplitude and

declination, for the true dipole right ascension (75◦). Likewise, Figure (c) shows the

amplitude/right ascension plane of the parameter space at δ = 40◦, which is the true

declination value. The dotted lines mark the respective true values.

set displayed in Figures 6.9(a) to (c). It is depicted in Figures 6.11 and 6.12, the former of

which displays log-likelihood values in sections through the parameter space spanned by the

amplitude, declination and right ascension parameters. The absolute log-likelihood values

do not have a meaning on their own. However, these plots suggest, that the true dipole pa-

rameters clearly stand out inside the parameter space. A fit algorithm, that maximises the

log-likelihood value through the choice of appropriate dipole parameters, localises the true

parameter values with good accuracy. There are no pronounced secondary maxima, neither in

the vicinity of the true values, nor at distant places in the parameter space. The log-likelihood

values shown are based on the evaluation of the obtained horizontal Rayleigh phases in the

various time bins alone (variant ‘p’, see page 114 for an explanation of the four variants of the

horizontal Rayleigh method). The same kind of simulation and analysis was repeated 1,000

times. In Figure 6.12, the outcome of the analyses is shown in the form of four histograms.



6.4 Rayleigh Analysis in Horizontal Coordinates 121

R [%]

entries

9.6 9.8 10 10.2

0

20

40

60

80

100

Entries 1000

Sample mean 10.004± 0.0035

Sample std. dev. 0.110± 0.0025

q 0.110± 0.0025

(a)

δ [◦]

entries

38 38.5 39 39.5 40 40.5 41 41.5

0

20

40

60

80

Entries 1000

Sample mean 40.01± 0.021

Sample std. dev. 0.655± 0.015

q 0.655± 0.014

(b)

α [◦]

entries

73 74 75 76 77

0

20

40

60

80

Entries 1000

Sample mean 75.14± 0.022

Sample std. dev. 0.690± 0.015

q 0.704± 0.016

(c)

∆(δ,α) [◦]

entries

0 0.5 1 1.5

0

20

40

60

80

Entries 1000

Sample mean 0.750± 0.013

Sample std. dev. 0.397± 0.0089

q 0.848± 0.013

(d)

Figure 6.14: Horizontal Rayleigh analysis (‘p&a’) applied to simulated data sets: the same data sets as

used for Figure 6.12 were analysed. Instead of the phase fit, the phase and amplitude fit

was used. These plots correspond to 1,000 realisations of the fit illustrated in Figure 6.13.

The distributions of reconstructed dipole amplitudes, declinations and right ascensions sug-

gest that the method works stably. The mean values of all three obtained distributions match

the respective true values. Furthermore, there are no outliers. The accuracy of the amplitude

reconstruction is better than a quarter percent. The error of both declination and right ascen-

sion values reconstruction are better than 0.8◦. The dipole direction is off the correct direction

by ca. 0.8◦ on average. While these numbers sound very positive, it should be noted that the

configuration of this simulation (10 million events and a dipole amplitude of 10%) is very

benevolent to any analysis method. The accuracies must be evaluated through comparison

with other methods, which will be discussed below.

The second scenario is depicted in Figures 6.13 (log-likelihood maps) and 6.14 (distribu-

tions). The same data sets were used as in the former scenario, but the ‘p&a’ variant of the

horizontal Rayleigh analysis was used. This variant uses both the reconstructed horizontal

Rayleigh phase and amplitude of each time bin for the calculation of the likelihood of a poten-

tial dipole configuration. The structures of the log-likelihood maps look slightly different than

before, especially those of the declination/amplitude and right ascension/amplitude plots. As
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a result, the accuracy is improved: the error of the amplitude reconstruction is halved, and the

directional reconstruction performs slightly better. The fundamental reason for this improve-

ment lies in the fact that the ‘p&a’ variant uses more information than the ‘p’ variant, which

results in a benefit in accuracy.

The third scenario, illustrated in Figures 6.15 (log-likelihood maps) and 6.16 (distribu-

tions), uses the ‘p&a’ variant as well. However, unlike the first two scenarios, it is based on

the data set displayed in Figures 6.10(a) to (c). This data set was simulated with reduced effi-

ciency for showers with inclinations above ϑ = 40◦. It has been discussed in Section 5.5.4, that

such an effect can have a substantial negative impact on the reconstruction quality of other

methods. Even though the extent of the efficiency lack in the data set discussed here is drastic,

it has only a mild effect on the reconstruction results. It can be seen in both the log-likelihood

map in Figure 6.15(a) and the distributions in Figures 6.16(b) to 6.16(d), that there is no

considerable effect on the reconstruction of the dipole direction. However, the dipole ampli-

tude is systematically underestimated, with a mean value of 8% instead of the correct 10%

(Fig. 6.16(a)). The log-likelihood maps in Figures 6.15(b) and 6.15(c) reveal this effect as

well, as the region of maximum likelihood is slightly below the 10% mark. The efficiency mis-

estimation still has an effect on the dipole reconstruction with the horizontal Rayleigh method

(at least with the ‘p&a’ variant), although it is far from being as severe as for the SAP and mul-

tipole expansion method (see Section 5.5.4). The reason for this is, that full efficiency is still

assumed, although not in such a central part as in other methods: the assumption does only

effect the interpretation of azimuthal anisotropies in terms of the assumed dipole amplitude.

The issue of possible misestimation of the efficiency (usually in the sense, that constantly

full efficiency is falsely assumed) is addressed by the variants ‘p+ϑ’ and ‘p&a+ϑ‘ of the hor-

izontal Rayleigh analysis. By extracting the zenith angle distributions for each time bin from

the data, assumptions about the shape of the field of view and the efficiency are avoided. The

final of the four scenarios uses the ‘p&a+ϑ‘ variant to analyse the same data sets as in the pre-

vious scenario. Figures 6.17 (log-likelihood maps) and 6.18 (distributions) show the results.

As a consequence, the dipole amplitude is no more underestimated. The reconstruction error

of dipole amplitude and direction are not as good as in the case of full efficiency, but this effect

is of purely statistical origin: as can be seen in Figure 6.10(c), the efficiency deficit (the data

points form the lower curve) leads to smaller azimuthal anisotropies in the separate time bins

than in the case of full efficiency (upper curve), so that in each of the time bins, the distri-

bution of reconstructed azimuth angles is generally less anisotropic. With lower amplitudes,

the Rayleigh phases (the dipole vector’s azimuth in this context) can only be determined less

precise.

6.4.2 The Influence of Configuration Parameters and Experimental Effects

Following the approach in Section 5.3, the investigations below will be based upon a set of

standard configuration parameters, as described in Section 5.3.2. First, the reconstruction

accuracies in the case of that standard configuration are presented, in the same way as for the

SAP method (Section 5.3.4) and the multipole expansion method (Section 5.3.5). Then, single

configuration items will be varied in order to test the influence of these parameters.

6.4.2.1 Standard configuration data sets

Figure 6.19 shows the distributions of amplitude, dipole declination and right ascension re-

sults, as well as the distribution of angular deviations, obtained with the horizontal Rayleigh

method (‘p&a+ϑ’) for 1,000 simulated data sets with the standard configuration, as described
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Figure 6.15: Horizontal Rayleigh analysis (‘p&a’) of a data set with an efficiency deficit at high incli-

nations: log-likelihood map, illustrating the fit of the data displayed in Figures 6.10(a)

to 6.10(c). Figure (a) displays log-likelihood values subject to dipole direction, for the

true amplitude value (10%). The white circle marks the true dipole direction. Figure (b)

displays log-likelihood values subject to amplitude and declination, for the true dipole

right ascension (75◦). Likewise, Figure (c) shows the amplitude/right ascension plane

of the parameter space at δ = 40◦, which is the true declination value. The dotted lines

mark the respective true values.

in Section 5.3.2. The plots in this figure can directly be compared with those in Figure 5.5

(SAP method) and Figure 5.6 (multipole expansion method). Table 6.1 lists the properties

of the distributions for all analysis methods discussed here. The reconstruction accuracy of

the horizontal Rayleigh method is basically of the same order of magnitude than those of the

SAP method and the multipole expansion method. The variants, that make use a combined fit

of phase and amplitude values, are generally performing better than those using only phase

information. This is indeed plausible, taking into account, that the pure phase fit variants basi-

cally ignore valid information, that the other variants include. Because more valid information

is used, the results are more precise. In case of the standard configuration for simulations, full

efficiency is simulated for the complete field of view. As a consequence, there is no difference

between a variant using an analytical description of the field of view, based on the said assump-
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Figure 6.16: Horizontal Rayleigh analysis (‘p&a’) applied to simulated data sets with zenith efficiency

defect: 1,000 data sets of the kind displayed in Figures 6.10(a) to (c) were simulated.

Owing to the efficiency deficit at high inclinations, the reconstruction underestimates the

dipole amplitude. These plots correspond to 1,000 realisations of the fit illustrated in

Figure 6.15.

tion, and the corresponding variant that evaluates the events’ reconstructed zenith angles to

understand the properties of the field of view.

In the following, the results for the variant ‘p&a+ϑ’ are discussed, because it is the most

advanced of the four variants. For the specific configuration simulated here, the error of

the amplitude reconstruction (true value is 3%) amounts to approximately 0.32%, which is

slightly worse than the value of the SAP method (0.30%), although these two values are

still statistically compatible with each other: the difference corresponds to only 1.2σ. The

multipole expansion performs significantly better, with an error of only 0.24%. The error of

the declination reconstruction is approximately 6.9◦, which is better as compared with the SAP

method (8.5◦), but not as good as the multipole expansion method (5.6◦). Finally, the dipole

vector’s right ascension is reconstructed with an error of 6.3◦, which is slightly worse than

SAP method (5.4◦) and multipole expansion method (4.1◦). The overall error of the direction

reconstruction amounts to 8.8◦, which is again in the range between SAP method (9.7◦) and
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Figure 6.17: Horizontal Rayleigh analysis (‘p&a+ϑ’) applied to a simulated data set with efficiency

defect: log-likelihood map, illustrating the fit of the data displayed in Figures 6.10(a)

to 6.10(c). Figure (a) displays log-likelihood values subject to dipole direction, for the

true amplitude value (10%). The white circle marks the true dipole direction. Figure (b)

displays log-likelihood values subject to amplitude and declination, for the true dipole

right ascension (75◦). Likewise, Figure (c) shows the amplitude/right ascension plane

of the parameter space at δ = 40◦, which is the true declination value. The dotted lines

mark the respective true values.

multipole expansion method (6.9◦).

To summarise, the accuracies of the horizontal Rayleigh method compete well with those

of the SAP method. However, the multipole method outperforms its competitors. While the

difference in accuracy between SAP method and multipole method can be justified with the

unfavourable weighting that the SAP method utilises, which overpronounces statistical fluc-

tuations, this argument cannot serve as an explanation for the inferiority of the horizontal

Rayleigh method, which, like the multipole expansion method, does not utilise weighting at

all. It is difficult to give an exhaustive explanation for the different performances of these

two methods, since the ways these methods work are very different. They do not use exactly

the same parts of the data available. What they both use, they use in different ways: both

methods can work with a list of arrival direction in horizontal coordinates and correspond-
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Figure 6.18: Horizontal Rayleigh analysis (‘p&a+ϑ’) applied to simulated data sets with zenith effi-

ciency defect: the same data sets as used for Figure 6.16 were analysed. The air showers’

zenith angles were included in the analysis. The dipole amplitude is no longer underesti-

mated as in Figure 6.16. These plots correspond to 1,000 realisations of the fit illustrated

in Figure 6.17.

ing event time. The multipole expansion method, like the SAP method, needs the event time

only for the conversion of the arrival direction from horizontal to equatorial coordinates. It

does not make use of the information contained in the distribution of event times in sidereal

time, which could provide knowledge about the change of the event rate, e.g. induced by

metereological effects. Instead, it assumes constant measurement conditions in the same way

as it assumes a well-formed field of view, i.e. constant efficiency for all arrival directions. In

this sense, the multipole method can make use of additional information, that is not given to

the horizontal Rayleigh method, this information being the assumptions incorporated into the

method. How valuable or how harmful the utilisation of these assumptions is, depends on

the specific parameters of the dipole, as well as on the presence of experimental effects. In

case of simulations with the standard configuration, the assumptions do apply well. However,

certain experimental effects can render the assumptions false. Based on false assumptions, the

methods produce considerably wrong results.
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Figure 6.19: Horizontal Rayleigh analysis (‘p&a+ϑ’ variant) applied to simulated data sets with stan-

dard configuration (see Section 5.3.2)

The behaviour of the four variants of the horizontal Rayleigh method related to dipole

configuration and experimental parameters and effects shall be investigated with a series of

Monte Carlo simulations, along the lines of Sections 5.4 and 5.5.

6.4.2.2 Number of Simulated Events

Figure 6.20 shows the reconstruction qualities for differently sized data sets. The grey data

points for the Rayleigh, SAP and multipole expansion methods equal those in Figure 5.7 in the

previous chapter and are shown here again to allow for comparison with the new horizontal

Rayleigh method. The data points at log10 N = 6 correspond to the distributions shown in

Figure 6.19. The situation for data sets of larger or smaller sizes is not substantially different:

the amplitude reconstruction is about as good as that of the SAP method, the quality of the

declination reconstruction ranges between those of the SAP and multipole expansion method,

and the reconstruction of the right ascension works slightly worse than with the other methods.

Again, the variants of the horizontal method utilising amplitude information perform slightly

better, while there is no noticeable difference between those variants that use the air shower’s
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R (true value: 3%)

Method Sample mean Sample std. dev. q

SAP 3.016± 0.0096 0.304± 0.0068 0.304± 0.0066

MP 3.008± 0.0075 0.237± 0.0053 0.237± 0.0053

HR (p) 3.031± 0.011 0.352± 0.0079 0.353± 0.0083

HR (p&a) 3.020± 0.010 0.316± 0.0071 0.316± 0.0071

HR (p+ϑ) 3.031± 0.011 0.351± 0.0079 0.352± 0.0083

HR (p&a+ϑ) 3.020± 0.010 0.315± 0.0071 0.316± 0.0071

δ (true value: 30◦)
Method Sample mean Sample std. dev. q

SAP 28.5± 0.27 8.40± 0.19 8.5± 0.20

MP 29.51± 0.18 5.81± 0.13 5.83± 0.14

HR (p) 29.4± 0.24 7.65± 0.17 7.67± 0.19

HR (p&a) 29.6± 0.22 6.86± 0.15 6.87± 0.16

HR (p+ϑ) 29.4± 0.24 7.64± 0.17 7.66± 0.19

HR (p&a+ϑ) 29.6± 0.22 6.86± 0.15 6.87± 0.16

α (true value: 75◦)
Method Sample mean Sample std. dev. q

Rayl. 74.78± 0.14 4.45± 0.099 4.45± 0.096

SAP 74.75± 0.17 5.38± 0.12 5.38± 0.12

MP 74.78± 0.13 4.17± 0.093 4.18± 0.090

HR (p) 74.9± 0.22 6.99± 0.16 6.99± 0.15

HR (p&a) 74.8± 0.20 6.27± 0.14 6.27± 0.14

HR (p+ϑ) 74.9± 0.22 6.99± 0.16 6.99± 0.15

HR (p&a+ϑ) 74.7± 0.20 6.27± 0.14 6.28± 0.14

∆(δ,α) (true value: 0◦)
Method Sample mean Sample std. dev. q

SAP 8.43± 0.15 4.88± 0.11 9.74± 0.18

MP 6.02± 0.10 3.29± 0.074 6.86± 0.12

HR (p) 8.60± 0.15 4.65± 0.10 9.77± 0.17

HR (p&a) 7.76± 0.13 4.05± 0.091 8.75± 0.15

HR (p+ϑ) 8.60± 0.15 4.63± 0.10 9.76± 0.17

HR (p&a+ϑ) 7.76± 0.13 4.05± 0.091 8.76± 0.15

Table 6.1: Reconstruction quality for simulated data set with standard configuration: 1,000 simulated

data sets with standard configuration were analysed. Because the same data sets were used,

the results for the different analysis methods are correlated.

reconstructed zenith angles and those that do not. There is, however, a marginal change

of the conditions going to very small data sets. For data sets with 10,000 events or fewer,

all four variants of the horizontal Rayleigh method are able to perform the reconstruction

of both dipole declination and right ascension as well as the multipole expansion method.

However, the direction reconstruction for data sets of such small sizes is generally poor, as the

inaccuracies almost reach their maximum values as limited by geometry.

To summarise, the impact of the size of the data set is for the horizontal Rayleigh analysis

about the same as for the other methods. There is no minimal size of the data set below which

the horizontal Rayleigh method fails to work, at least not within the inspected range of data
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Figure 6.20: Horizontal Rayleigh analysis: reconstruction quality subject to number of simulated

events

set sizes, starting at a size of 1,000 events.

6.4.2.3 Zenith Angle Limit

The relationship between reconstruction qualities and the experiment’s zenith angle limit is

depicted in Figure 6.21. The grey data points have already been shown in Figure 5.8. For

each of the zenith limits, data sets with 1 million events each were simulated. The fact,

that the choice of the zenith angle limit also influences the amount of statistics available for

analysis is not taken into account. As it has been shown for the SAP and multipole methods

in Section 5.4.2, a larger field of view is generally preferable, even without considering the

gain in statistics. The effect is even more pronounced for the horizontal Rayleigh method,

which apparently strongly disfavours a narrow field of view. A small opening angle poses a

special problem for the horizontal Rayleigh method, as it is based on the analysis of azimuthal

anisotropies. A low value of the zenith limit ϑmax implies, that only a small region of the

sky close to the zenith is seen. Azimuthal anisotropies cannot be very pronounced within

such a small region. Therefore, the azimuthal amplitudes are generally much smaller, and

consequently both phases and amplitudes cannot be determined with good accuracy and so

they scatter widely around their expected values. As a result, all parameters of the dipole

configuration can only be vaguely estimated by the fit routine.

The other analysis methods follow a completely different mode of operation, with different

implications of a small opening angle: Rayleigh, SAP and multipole expansion method all work

with the equatorial coordinates of the showers’ arrival directions. In equatorial coordinates, a

low zenith limit ϑmax means, that only a narrow band of the sky with declinations in the range
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Figure 6.21: Horizontal Rayleigh analysis: reconstruction quality subject to zenith angle limit

between β±ϑmax can be seen. (β denotes the experiment’s geographical latitude.) Due to the

fact that the visible sky only spans a small region along the North-South dimension, the North-

South component of the dipole vector can only be reconstructed with large inaccuracy, which

limits the accuracy of both dipole amplitude and declination reconstruction. However, it does

not affect the right ascension reconstruction: the experiment practically scans the complete

right ascension range during a sidereal day. The correct dipole right ascension can easily be

identified through the excess that is seen at the corresponding time of the sidereal day.

To summarise, the horizontal Rayleigh method performs best with a large field of view.

The influence of the zenith angle limit on the reconstruction quality is similar to the influence

on other methods, with the exception of the right ascension reconstruction, which is degraded

by a narrow field of view only in the case of the horizontal Rayleigh method.

6.4.2.4 Geographical Latitude

For the discussion of the influence of the experiment’s geographical latitude on the reconstruc-

tion quality, a series of simulated data sets was generated for a selection of locations. The

performances of the established analysis methods have been discussed in Section 5.4.3 and

depicted in Figure 5.10. The plots illustrating the reconstruction accuracies of the horizontal

Rayleigh methods are displayed in Figure 6.22. These plots contain no data points for the

horizontal Rayleigh analysis for simulations of experiments located at one of the Earth’s poles,

since the method is not applicable to experiments at the Earth’s North or South Pole. The

horizontal Rayleigh method extracts the dipole vector’s direction, both declination and right

ascension, from the time development of the azimuth angle of the dipole vector in horizontal

coordinates (Eq. 6.51) by means of a log-likelihood fit. For an experiment located at either
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Figure 6.22: Horizontal Rayleigh analysis: reconstruction quality subject to experiment’s geographical

latitude

North or South Pole (β = ±90◦), Equation 6.51 can be simplified by setting cosβ = 0 and

sinβ = ±1:

ϕdipole(t) = arg(∓ cosδdipole coshdipole(t)− i cosδdipole sin hdipole(t))

=

¨

π+ hdipole(t) = π+ local mean sidereal time(t)−αdipole (North Pole)

−hdipole(t) = −local mean sidereal time(t) +αdipole (South Pole) .

(6.73)

Thus, the fit function does not depend on the dipole vector’s declination in this case. An

experiment set up at one of the Earth’s poles will always see the dipole vector turn continously

and uniformly clockwise (North Pole) or anti-clockwise (South Pole). Care has to be taken
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to have consistent definitions of the azimuth angle and the local mean sidereal time, as the

concepts of both compass direction and local time are not directly applicable to polar locations,

but can be defined by convention. The Rayleigh amplitudes extracted from the individual time

bins do still relate to the dipole declination (shown here is the analytical description of the

azimuthal amplitude as a function of time, the upper sign corresponds to the North Pole):

D′(t) =
D cosδdipole E21(t)

E11(t)± D sinδdipole E12(t)
. (6.74)

However, at polar locations, the constant declination of the dipole vector translates into a

constant zenith angle. Apart from possible variations of the Ei j-functions, the above expression

is a constant in time. Hence, it is not possible to obtain the two unknown quantities D and

δdipole from this relation.

The dipole vector’s right ascension can be extracted from the Rayleigh phases, as it deter-

mines the offset between local time and reconstructed dipole azimuth angle. However, the

implementation of the horizontal Rayleigh method used here cannot achieve this, because the

fit routine often fails, owing to diverging fit parameters. A special implementation on the basis

of the idea presented here could be crafted for dipole right ascension reconstruction with data

from experiments located at one of the Earth’s poles. However, this shall not be the subject of

the discussion presented here.

Simulations were also carried out with experiment locations on latitudes between 60◦

South and 60◦ North. The results of the analyses of these sets with the horizontal Rayleigh

analysis are depicted in Figure 6.22. Unlike for other methods, the choice of the geographical

location of the experiment has no significant effect on the dipole amplitude reconstruction

for the horizontal Rayleigh method. For the latitude values simulated, the error of the ampli-

tude reconstruction ranges between 0.30◦ and 0.34◦ (numbers given here are for the ‘p&a+ϑ’

variant, the true value is 3%). The reconstruction of the dipole vector’s declination performs

better at location closer to the equator. The closer the experiment is located to the equator,

the smaller is the range of declination values for which the dipole vector’s azimuth performs

a clockwise or anti-clockwise movement throughout the sidereal day (Fig. 6.8(c)), as this is

the case if |δdipole| < |β |. Outside this range, the azimuth value continuously oscillates around

either the North or South direction (Fig. 6.8(a) and 6.8(e)). In the former case, the specific

value of the declination influences the shape of the azimuth as a function of time. In the latter

case, the range of the azimuth oscillation characterises the declination. For the standard con-

figuration with δdipole = 30◦, which was used here, the latter is the case when the latitude β is

between −30◦ and 30◦. The plots in Figure 6.22(b) show, that the fit algorithm can determine

the declination with better precision in the latter of the two cases, thus when |β | < |δdipole|.
The opposite is the case for the reconstruction of the dipole vector’s right ascension, which

determines the offset of the specific azimuth function (shown in Figure 6.8) with respect to

the time axis. The strictly monotonic shapes of the function allow for better determination of

this offset than the oscillating ones.

As a result of the combination of these opposite behaviours, the precision of the combined

direction reconstruction varies only mildly in the range between 8.6◦ and 9.9◦.

6.4.2.5 Dipole Amplitude

The influence of the true value of the dipole amplitude on the reconstruction accuracies is

shown in Figure 6.23. The corresponding plots for the established reconstruction methods

have been discussed in Section 5.4.4 and displayed in Figure 5.11. As for the other methods,
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Figure 6.23: Horizontal Rayleigh analysis: reconstruction quality subject to dipole amplitude

a larger dipole amplitude results in a greater anisotropy signal and therefore allows for more

precise reconstruction of the dipole parameters. The data points at D = 3% relate to the stan-

dard simulation configuration, for which the performance of the various methods has already

been discussed. The situation for the various other dipole amplitudes is essentially the same:

the horizontal Rayleigh method (‘p&a+ϑ’) performs the amplitude reconstruction similarly

well as the SAP method, is slightly better than the SAP method for declination reconstruction,

but slightly worse for right ascension reconstruction. The dependency of the accuracies on the

strength of the dipole is for the horizontal Rayleigh analysis very much the same as for the

other methods, for which it has been discussed in Section 5.4.4. The saturation effect for the

errors of the two directional parameters in case of very low anisotropy signals causes not only

SAP and multipole expansion method to achieve the same accuracy, but also the horizontal

Rayleigh method with all its variants. However, this is not really a remarkable outcome, as

the errors are indeed so large that the results delivered by the methods are basically arbitrary.

Only those simulations with dipole amplitudes of at least 1% (other parameters are given by

the standard configuration, notably the number of events amounts to 1 million) yielded errors

for the amplitude reconstruction, that are considerably lower than the true amplitude value.

One peculiarity of the ‘p’ and ‘p+ϑ’ variants can be observed in Figure 6.23(a): these extract

the dipole amplitude from the amount of scatter in the reconstructed Ralyeigh phases per time

bin (as in Figure 6.9(a)). In case of very large dipole amplitudes, the scatter is very narrow

and the resulting absolute error of the amplitude determination is larger than for smaller am-

plitudes. The two variants, that do not utilise the reconstructed Rayleigh amplitudes in the
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Figure 6.24: Horizontal Rayleigh analysis: reconstruction quality subject to dipole declination

individual time bins, perform here considerably worse. A similar effect is seen for the lowest

dipole amplitude, but it is not statistically significant.

To summarise, the impact of the true dipole amplitude on the reconstruction accuracies is

very similar for the horizontal Rayleigh method as compared to the established methods.

6.4.2.6 Dipole Declination

Figure 6.24 shows the results of the simulations with various values of the dipole declination.

The behaviour of the Rayleigh, SAP and multipole expansion methods has been discussed in

Section 5.4.5 and depicted in Figure 5.12. The influence of the dipole declination on the hori-

zontal Rayleigh method is largely the same as on the other methods: the reconstruction of the
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Figure 6.25: Horizontal Rayleigh analysis: reconstruction quality subject to spurious rate variation

dipole amplitude works best for equatorial dipoles, whereas the reconstruction of the dipole

direction performs best with polar dipoles. However, the differences are generally not very

large, and the horizontal Rayleigh method appears to be even more balanced. Over the full

declination range from South to North Pole, the reconstruction error of the dipole amplitude

(with the ‘p&a+ϑ’ variant) varies only between 0.28% and 0.39% (the true value is 3%). The

overall error of the direction determination ranges between 7.4◦ for polar dipoles and 9.0◦

for equatorial dipoles. Over the whole range of declination values, the horizontal Rayleigh

analysis performs slightly worse than the multipole expansion method. It delivers results com-

parably good as those of the SAP method: of these two methods each one outperforms the

other for certain ranges of the dipole declination.

To summarise, the impact of the dipole vector’s declination value on the reconstruction

quality is very similar for all methods involved. The general tendency that the horizontal

Rayleigh method performs similarly well as the SAP method, and hence slightly worse than

the multipole expansion method, is also valid here.

6.4.2.7 Rate Variations Due To Metereological Effects

The effects of spurious variations of the measurement rate, induced e.g. by metereological

effects, have been investigated in Section 5.5.2. For a precise description of the nature of

these effects and the way they are simulated, see the discussion there. The results for the
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Rayleigh, SAP and multipole expansion methods have been presented in Figure 5.16. The

same data sets were also analysed with the four variants of the horizontal Rayleigh method.

The obtained reconstruction accuracies (Fig. 6.25), reveal a major advantage of the horizon-

tal Rayleigh method: weather effects, as they have been defined here, do not influence the

dipole reconstruction at all. The Monte Carlo code simulates the weather effect in the form

of a harmonic variation of the event rate with sidereal time, of which Aweather denotes the

amplitude. When performing the analysis with any of the established methods, the effect is,

that parts of the right ascension range are overrepresented in the data set, while others are un-

derrepresented. While this is a purely experimental effect, the dipole reconstruction methods

hold the cosmic ray flux distribution responsible for the inequality. Consequently, an artificial

anisotropy is seen, which interferes with and superposes the actual cosmic ray flux distribu-

tion. For the horizontal Rayleigh method, on the other hand, any kind of variation of the

event rate, whether it is caused by spurious effects or by actual anisotropy, merely affects the

number of events entering the subset of data for the current sidereal time. Such variations do

not influence the horizontal Rayleigh amplitudes or phases obtained for the various subsets.

The number of events in a subset determines the spread of amplitude and phase in the subset.

However, the implementation of the horizontal Rayleigh method keeps track of the number of

events in each subset, and accounts correctly for the spread.

In summary, variations of the event rate, even if the cause of spurious metereological

effects, do not affect the performance of the horizontal Rayleigh analysis.

6.4.2.8 Angular Resolution

A series of Monte Carlo simulations was conducted in order to examine the effect of limited

angular resolution of the experiment. These have been the subject of Section 5.5.3, where the

results for the established methods have been discussed, as shown in Figure 5.17. The results

for the horizontal Rayleigh methods are depicted in Figure 6.26. As for the other methods,

the effect of limited accuracy for the reconstruction of individual air showers’ arrival directions

has no effect on the dipole reconstruction. The plots show the results for the standard con-

figuration (∆ = 0◦) and for four different values for the angular resolution ∆, in the relevant

range between 0.1◦ and 3◦. The reconstruction qualities, obtained from the Monte Carlo data

sets with simulated angular resolution effect, are always compatible with those of the standard

configuration, which assumes perfectly precise air shower reconstruction.

6.4.2.9 Inclination Dependent Efficiency Defect

The implications of an inclination dependent efficiency defect have been discussed in Sec-

tion 5.5.4 and illustrated in Figure 5.19. It has been shown, that such an effect can seriously

degrade the dipole reconstruction and introduce large biases. Figure 6.27 contains the cor-

responding plots for the horizontal Rayleigh analysis. As can be seen in that figure, such an

efficiency deficit only leads to a mild decrease of accuracy, when the analysis is carried out with

the horizontal Rayleigh method. The bad quality values for the other reconstruction methods

do not arise from large statistical fluctuations but from systematic deviations. These substan-

tial deviations do not occur in the case of the horizontal Rayleigh analysis. With one exception,

all parameters match their respective true values on average, when obtained with the horizon-

tal Rayleigh method. The mentioned exception is the amplitude reconstruction with the ‘p’

and ‘p&a’ variants. These variants assume full efficiency for the relation between azimuthal

anisotropy amplitudes and the global dipol amplitude. If this assumption is false, it may affect

the amplitude estimate. In case of lacking efficiency at high inclination, like it was simulated
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Figure 6.26: Horizontal Rayleigh analysis: reconstruction quality subject to the experiment’s angular

resolution

here, this circumstance leads to an underestimation of the amplitude: for ϑf.e. = 30◦, the mean

reconstructed amplitude amounts to 2.2%, instead of the true value of 3%. By utilising the

air showers’ reconstructed zenith angles, the remaining two variants (‘p+ϑ’ and ‘p&a+ϑ’) can

go without implicitly assuming full efficiency. As a result, these two variants do not underes-

timate the amplitude. They produce a negligible overestimation, with a maximum amplitude

of 3.09%. The deviation is much smaller than the statistical fluctuations of the amplitude

reconstruction. The reconstruction of the direction parameters is unbiased in case of each of

the four variants. Therefore, the limited accuracy of declination and right ascension recon-

structions are caused by the statistical fluctuations alone. As can be seen in the corresponding

plots, the efficiency defect leads to a very moderate increase of the declination error, but also

to a noticeable degradation of the right ascension reconstruction. The reason for this increase

of the width of statistical fluctuations can be explained by the effective narrowing of the field

of view: in the most drastic case of ϑf.e. = 30◦, for instance, there are very few events with

inclinations above 40◦ in the data set, and nearly none with ϑ > 50◦. It has been discussed

in Section 6.4.2.3, that a narrower field of view leads to worse reconstruction quality. The

decrease of quality observed here is another manifestation of that effect.

In the case of an experiment, that uses a zenith limit of 60◦, full efficiency thresholds at
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Figure 6.27: Horizontal Rayleigh analysis: reconstruction quality subject to the extent of the efficiency

defect: the rightmost data point in each of the plots refers to the case of full efficiency

for the whole field of view, thus for the absence of the efficiency defect.

zenith angles as low as 30◦ or 40◦ will not occur. An efficiency deficit of such an extent would

certainly be noticed in any data set. These values were simulated only to demonstrate the

robustness of the horizontal Rayleigh method. Less exaggerated cases, with ϑf.e. = 58◦ and

ϑf.e. = 50◦ have been discussed in Section 5.5.4 with the aid of plots showing the distributions

of reconstructed amplitude and declination values (Fig. 5.20). The corresponding plots for

the horizontal Rayleigh method are shown in Figure 6.28. The plots in both figures have

identical scales on the x-axes. Figures 6.28(a) to (d) illustrate the case of ϑf.e. = 58◦, whereas

ϑf.e. is set to 50◦ in Figures 6.28(e) to (h). The ‘p&a’ variant was used to produce the plots

in Figures 6.28(a), (b), (e) and (f). The remaining plots were produced with the ‘p&a+ϑ’

variant. As can be seen, all distributions are well-shaped. The horizontal Rayleigh method
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Figure 6.28: Horizontal Rayleigh method applied to data sets with efficiency defect
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yields practically unbiased results, except for the moderate underestimations of the amplitudes

produced by the variants not utilising zenith angle data, as the ‘p&a’ variant in Figures 6.28(e).

To summarise, the horizontal Rayleigh analysis provides an unbiased reconstruction of the

dipole direction, independent of possible efficiency deficits. The ‘p+ϑ’ and ‘p&a+ϑ’ variants

also provide an unbiased amplitude reconstruction, whereas the ‘p’ and ‘p&a’ may underesti-

mate the strength of the dipole as a consequence of the efficiency defect. An efficiency defect

may lead to larger statistical fluctuation, but that is a consequence of the effectively narrower

field of view.

6.4.3 Summary

In this section, a new method for the reconstruction of the parameters of a dipole-like cosmic

ray flux distribution has been proposed. The method divides the available data set into many

subsets, each covering a small period of the sidereal day, typically one sidereal minute or less.

Within these subsets, the Rayleigh analysis method is applied to the air showers’ reconstructed

azimuth angles. Amplitudes and phases of the first harmonic of the azimuthal anisotropy are

obtained for each of the subsets. The parameters of the dipole-like flux distribution can be

estimated by means of a log-likelihood fit, since the precise probability density functions are

available, that describe the statistics of the Rayleigh amplitudes and phases at any time of the

sidereal day on the basis of an assumed dipole configuration. The new method employs the

Rayleigh analysis procedure in the horizontal coordinate system. Hence, it has been referred

to as the “horizontal Rayleigh method”.

The method has been discussed and its performance has been evaluated by means of exten-

sive Monte Carlo simulation studies. It has been shown to work stably and to provide similar

accuracy as the established methods. The Monte Carlo simulations also revealed a central

advantage of the new method: the horizontal Rayeligh method appears to be vulnerable to

neither spurious variations of the event rate nor a dependency of the experiment’s sensitivity

on shower inclination. The horizontal Rayleigh method does not implicitly assume constant

measurement conditions or a precise shape of the field of view, other than demanding az-

imuthal symmetry. Corresponding effects have proven to be harmful to other reconstruction

methods. In case of the horizontal Rayleigh method, they may influence the extent of statistical

fluctuation, but they introduce no bias to the reconstruction.

6.5 Concluding Comparison of the Available Methods

Over the course of the last two chapters, a variety of experimental effects have been introduced

and discussed at length. Some of them led to severe problems, others turned out to be irrel-

evant. These effects were always studied one at a time, in order to understand the influence

of particular effects. It has also been shown, that combinations of different effects can cause

additional problems. It is almost impossible to examine every possible combination of effects,

experimental parameters and dipole configurations. In order to provide a concluding compar-

ison of the methods discussed in this thesis, another series of Monte Carlo simulations was

performed, the configuration of which was chosen to reflect a realistic scenario. The simulated

dipole configuration and the experimental setup equal those of the standard configuration:

• a dipole distribution with an amplitude of 3%,

• the dipole vector points to δdipole = 30◦, αdipole = 75◦,

• the experiment is located at β = 49◦ Northern latitude,
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• the field of view spans the zenith angle range up to a maximum value of ϑmax = 60◦,

• and data sets containing 1 million events each.

In contrast to the standard configuration, various experimental effects were taken into ac-

count. The severity of each of the effects is meant to reflect typical values for real data taking.

However, these values are only a rough estimate, and depending on the experimental setup

may differ substantially from the actual orders of magnitude:

• the simulated data taking was subject to occasional interruptions, and the sidereal day

coverage used was again the one depicted in Figure 5.13, of the simulated cosmic ray

flux,

• the resolution of the experiment’s arrival direction reconstruction was simulated to be

1◦,

• full efficiency was only provided for shower inclinations up to ϑf.e. = 58◦ (Fig. 5.18(e)

for an illustration of the efficiency function),

• spurious rate variations led to a harmonic variation of the experiment’s sensitivity with

an amplitude of Aweather = 1% in sidereal time.

1,000 data sets were generated with this configuration. The results are listed in Table 6.2.

The SAP method overestimates the dipole amplitude almost by a factor of five. It suspects

the dipole vector at declination 75◦ and right ascension 79.5◦. This adds up to an average

deviation of the reconstructed dipole direction of 45◦.
The Rayleigh analysis was used for right ascension reconstruction only. The mean of the

values obtained amounts to ca. 80◦, which is about half a degree worse than with the SAP

method.

The multipole expansion method and the modified SAP method, with both direction and

time based weighting, deliver practically identically results: the problems are the same as with

the SAP method, but they tend to be less severe. The amplitude is overestimated by only a

factor of two. The dipole declination is also shifted up North, but with a final value of 56◦

not as far as with the SAP method. The right ascension reconstructed by these methods is ap-

proximately the same as with the SAP method. The modified SAP method can gain one degree

towards the true value when using time based weighting. The angular distance between the

reconstructed dipole direction and the true one ends up at approximately 27◦.
While the mean values differ significantly from the true values, the amount of scatter in

all these distributions is moderate. For example, the multipole expansion method reconstructs

the dipole declination (true value is 30◦) on average as 56.4◦, with a standard deviation of

only 2.3◦. I.e. the methods give significantly wrong results.

The horizontal Rayleigh method, on the other hand, reveals no noteworthy bias. The four

variants yield a mean reconstructed amplitude between 3.02% and 3.06% (the true value is

3%). While this overestimation may be a statistically significant result of the Monte Carlo

simulations, as the uncertainty of said mean values is only about 0.01%, its magnitude is

too small to be relevant. The reconstructed dipole declination and right ascension values

match their respective true values similarly well. In the absence of systematic deviations,

the reconstruction quality is determined by the widths of the distributions of reconstructed

values. Of the four variants, those utilising amplitude information (i.e. ‘p&a’ and ‘p&a+ϑ’)

generally yield more precise results. With the configuration used here, there is no observable

difference between variants that do and do not use zenith angle data (as indicated by the ‘+ϑ’).
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The standard deviations of reconstructed amplitude values are in the range between 0.29%

and 0.33% (the true value is 3%). The distributions of reconstructed declination values have

standard deviations of either 7.7◦ (for those variants that do not utilise horizontal Rayleigh

amplitudes) or 6.9◦ (for those variants that do). Similarly, reconstructed dipole right ascension

values scatter with standard deviations of 6.2◦ or 7.0◦.
As a result, the horizontal Rayleigh methods is much more reliable (in terms of no bias)

than other available methods. As a consequence, it offers the best reconstruction for dipole am-

plitude and declination in case of the simulation configuration used here. However, the right

ascension reconstructions of the other methods outperform the horizontal Rayleigh method:

the results of SAP, modified SAP and the multipole expansion methods are systematically off

by about 5◦, but the extent of statistical fluctuations are lower than for the horizontal Rayleigh

method. The best right ascension reconstruction is achieved by the modified SAP method with

time based weighting, with an overall reconstruction error of 5◦.
However, all numbers quoted here do only apply to this specific series of Monte Carlo

simulations. Other configurations will lead to different numbers. Of course, the conditions in

real world experiments might differ substantially from the models and the assumptions made

here. Still, the discussion in this section, and also the extensive Monte Carlo studies presented

in this chapter and the previous chapter, should give the reader an impression of the strengths

and the weaknesses of the various available reconstruction methods.
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R (true value: 3%)

Method Sample mean Sample std. dev. q

SAP 14.686± 0.014 0.452± 0.010 11.695± 0.014

MP 6.451± 0.0094 0.297± 0.0066 3.464± 0.0094

mSAP (d.b.w.) 6.452± 0.0094 0.297± 0.0066 3.465± 0.0094

mSAP (t.b.w.) 6.455± 0.0094 0.297± 0.0066 3.468± 0.0094

HR (p) 3.031± 0.010 0.325± 0.0073 0.326± 0.0068

HR (p&a) 3.022± 0.0093 0.293± 0.0066 0.294± 0.0066

HR (p+ϑ) 3.056± 0.010 0.328± 0.0073 0.332± 0.0069

HR (p&a+ϑ) 3.047± 0.0093 0.295± 0.0066 0.299± 0.0067

δ (true value: 30◦)
Method Sample mean Sample std. dev. q

SAP 75.61± 0.032 1.02± 0.023 45.62± 0.032

MP 56.41± 0.072 2.26± 0.051 26.50± 0.071

mSAP (d.b.w.) 56.38± 0.072 2.27± 0.051 26.48± 0.071

mSAP (t.b.w.) 56.32± 0.072 2.27± 0.051 26.42± 0.071

HR (p) 29.6± 0.24 7.66± 0.17 7.67± 0.17

HR (p&a) 29.6± 0.22 6.90± 0.15 6.90± 0.15

HR (p+ϑ) 29.6± 0.24 7.66± 0.17 7.67± 0.17

HR (p&a+ϑ) 29.6± 0.22 6.90± 0.15 6.91± 0.15

α (true value: 75◦)
Method Sample mean Sample std. dev. q

Rayl. 79.97± 0.11 3.38± 0.076 6.01± 0.095

SAP 79.51± 0.12 3.89± 0.087 5.96± 0.11

MP 79.88± 0.10 3.18± 0.071 5.82± 0.090

mSAP (d.b.w.) 79.72± 0.10 3.18± 0.071 5.69± 0.089

mSAP (t.b.w.) 78.78± 0.10 3.17± 0.071 4.94± 0.086

HR (p) 74.8± 0.22 7.04± 0.16 7.03± 0.17

HR (p&a) 74.7± 0.20 6.17± 0.14 6.17± 0.14

HR (p+ϑ) 74.9± 0.22 7.04± 0.16 7.04± 0.17

HR (p&a+ϑ) 74.8± 0.20 6.18± 0.14 6.18± 0.14

∆(δ,α) (true value: 0◦)
Method Sample mean Sample std. dev. q

SAP 45.71± 0.033 1.03± 0.023 45.72± 0.033

MP 26.72± 0.072 2.26± 0.051 26.82± 0.071

mSAP (d.b.w.) 26.68± 0.072 2.27± 0.051 26.78± 0.071

mSAP (t.b.w.) 26.55± 0.072 2.27± 0.051 26.64± 0.071

HR (p) 8.61± 0.15 4.65± 0.10 9.78± 0.16

HR (p&a) 7.69± 0.13 4.11± 0.092 8.72± 0.14

HR (p+ϑ) 8.61± 0.15 4.65± 0.10 9.79± 0.16

HR (p&a+ϑ) 7.70± 0.13 4.11± 0.092 8.73± 0.14

Table 6.2: Reconstruction quality for simulated data sets with a typical extent of experimental effects

(for details see the text): 1,000 simulated data sets were analysed. Because the same data

sets were used, the results for the different analysis methods are correlated.





Chapter 7

Summary and Conclusions

In this thesis, several methods for the data analysis of cosmic ray experiments with regard

to large scale anisotropies, particularly to the reconstruction of dipole flux distributions, have

been discussed. Existing methods have been explained, and new methods have been proposed.

Both existing and new methods have been investigated and benchmarked by means of Monte

Carlo simulated data sets. Special attention has been paid to examining the influence of exper-

imental parameters. It has been shown, that certain effects, which are not unlikely to occur,

can have a negative impact on the performance of the established methods, whereas the newly

proposed methods have proven to be immune to these specific effects.

Anisotropy studies are generally based on the statistical evaluation of the arrival directions

of cosmic ray particles, as detected and reconstructed in cosmic ray air shower experiments.

The established methods discussed in this thesis—the Rayleigh analysis, the SAP method, and

the multipole expansion method—all convert the arrival directions from local viewing direc-

tions (horizontal coordinates, zenith and azimuth angles) to a celestial coordinate system

(equatorial coordinates, declination and right ascension angles). The frequency of observa-

tions from any given celestial direction is evaluated with respect to the exposure, which is the

time-integrated detection area exposed towards that direction. The exposure as a function of

declination and right ascension can be computed from the geometrical properties of the ex-

periment (location, field of view) and the measurement times. At the first sight, it seems to be

the natural choice to use the equatorial coordinate system, because the cosmic ray flux is fixed

to the celestial sphere, and can therefore be regarded as a function of equatorial coordinates.

On the other hand, the atmosphere and the experiment are part of an earthbound system of

reference. Experimental effects can be described best by horizontal coordinates.

Given the exposure function, and assuming that the cosmic ray flux distribution has dipolar

shape, the SAP method and the multipole expansion method (used as a dipole reconstruction

method, thus going to first multipole order only) can reconstruct the dipole parameters. The

Rayleigh method can only reconstruct the dipole vector’s right ascension and the Rayleigh am-

plitude. The Rayleigh amplitude is loosely connected to the dipole amplitude, but is rather a

measure for the evidence of the anisotropy. However, all these methods rely on the correctness

of the calculated exposure. The calculation of the exposure has to take the shape of the field of

view into account. Usually, a data selection cut—typically on some kind of estimated primary

energy—is applied to the data set, that assures full detection and reconstruction efficiency for

the whole field of view within the bounds of the cut. The calculation of the exposure is then

based on the assumption of full efficiency. Another assumption often made is that of constant

measurement conditions. Generally, measurement conditions are not constant, as e.g. the at-

mospheric conditions are subject to variations, most notably the day-night cycle. The hope is,
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that these variations average out over time, so that any moment of the sidereal day is effec-

tively equally well represented in the data set. The experimenter may also apply a correction,

using recorded atmospheric data (for instance temperature, barometric pressure). It is ques-

tionable, whether such corrections can indeed free the data set completely of these variations.

If either of these two assumptions—full efficiency and constant measurement conditions—is

false, the calculated exposure is not correct, in the sense, that it does not reflect the experi-

mental conditions properly.

A Monte Carlo generator has been developed for this thesis, which can produce simulated

data sets, that reflect a given flux distribution and an experimental set-up. The experimen-

tal parameters can be chosen freely, and several experimental effects can be simulated. The

available analysis methods have been thoroughly tested by means of Monte Carlo simulations.

Under ideal circumstances, thus in absence of special experimental effects, all available meth-

ods reproduce the dipole parameters correctly. The accuracy is limited by statistical fluctua-

tions. The choice of the dipole configuration (amplitude, orientation) and the experimental

parameters (amount of statistics, location, size of the field of view) influence the width of

the fluctuations. Generally, the multipole expansion method provides more accurate results

than the SAP method and the Rayleigh analysis (the latter only yields the dipole right as-

cension). The situation is much different, when either of the aforementioned experimental

effects (an efficiency deficit or varying sensitivity) are simulated: the tested methods produce

severely biased results. They see phantom dipoles, that arise from the comparison of the

data set with an exposure function, which does not correctly reflect the experimental circum-

stances. These artificial dipoles interfere with the real ones and—depending on the strength

of the effect—may dominate the results. A typical symptom of this problem is, that dipoles

are falsely reconstructed as pointing very close to either the North or the South Pole of the

equatorial coordinate system.

In this thesis, four new ideas concerning dipole reconstruction have been discussed: two

of them are modifications of the existing methods, the remaining two are completely new

methods.

Firstly, an alternative way for weighting individual events in the Rayleigh analysis has been

proposed. The weighting is needed to correct for different coverages of right ascension regions.

The conventional weighting is based on a function of the reconstructed arrival directions and

uses the calculated exposure functions. The proposed alternative uses weighting factors as a

function of the sidereal time of day. It has been shown, that the performance of both methods

is equally good. However, a false assumption of full efficiency for all shower inclinations

can lead to erroneous results with the conventional weighting, where the newly proposed

weighting yields correct results.

Secondly, a modification of the SAP method has been proposed. Once again, the modifi-

cation concerns the weighting of individual air shower events. The original SAP method uses

the inverse exposure function for weighting events, which means, that all directions within

the visible sky contribute equally much to the resulting dipole vector estimator. Events coming

from parts of the sky with very low exposure are drastically upweighted. As a consequence, the

weighting factors may span several orders of magnitude, which is statistically unfavourable.

The modification proposed uses the same weighting factors as for the Rayleigh analysis—either

conventional direction based weights, or the newly proposed time based weights—which are

of the order of one. As a result, the modified SAP method produces more accurate results. In

fact, the results’ widths of fluctuation have become identical to those of the multipole expan-

sion method, which is related to the fact, that the modified SAP method is mathematically very

similar to the multipole expansion method. It has been shown, that these two methods are the



147

same in the special case of an exposure function that does not vary with right ascension.

Thirdly, the Slice method has been introduced as a new method. It is based on dividing

the visible sky into slices along the declination axis. The data set is separated into subsets

accordingly, and the Rayleigh analysis is carried out for each of these subsets. The dipole

parameters are determined by means of a log-likelihood fit of the Rayleigh amplitudes and

phases obtained for the individual declination slices. However, it has been shown, that the

Slice method is practically unusable, because large regions in the parameter space of dipole

configurations yield almost identical likelihood values. The true configuration cannot reliably

be determined by the fit procedure. Often it returns unphysically high amplitudes with dipole

vectors pointing to the North or South Pole.

Fourthly, and most importantly, another new method has been proposed, that has been

referred to as the horizontal Rayleigh method. It is based on the Rayleigh analysis formalism,

but unlike the established Rayleigh analysis, it processes the arrival directions of recorded air

showers in horizontal coordinates, thus in the local viewing directions at the location of the

experiment. In doing so, it can take advantage of the symmetries in the local coordinate sys-

tem: experimental effects and atmospheric conditions may vary for air showers with different

inclinations. However, these influences should not discriminate between air showers arriving

from different compass directions. Thus, azimuthal symmetry is assumed. Analysis methods,

that convert the air showers’ arrival directions into a sidereal coordinate system, can hardly

profit from this symmetry. In order to see the dipole anisotropy in the horizontal coordinate

system, the available data set is divided into many subsets, each spanning a short period of

the sidereal day. Within each period, the dipole vector is constant even when represented in

horizontal coordinates. The Rayleigh analyses yield the amplitudes of azimuthal anisotropy,

and the phases, which can be identified with the dipole vector’s azimuth coordinate. A log-

likelihood fit is performed to obtain the dipole configuration from the results of the individual

Rayleigh analyses. It has been shown, that this method reliably reconstructs the correct dipole

parameters, except for experiments situated at the Earth’s North or South Poles for geometri-

cal reasons. The accuracy of the new method is similar to those of the established methods,

depending on the particular dipole configuration and experimental properties. Typically, it

performs comparably well with the SAP method.

The major advantage of the horizontal Rayleigh method is, that it even produces unbiased

results when either or both of the aforementioned experimental effects—incomplete efficiency

and varying sensitivity—is simulated. The new method is not influenced by these effects. This

is no random coincidence, but a consequence of the fact, that its design is not based on the

assumption of full efficiency or constant measurement conditions. The presence of such effects

can have a moderate influence on the width of the fluctuation of the analysis results, but they

introduce no systematic deviation.

As a consequence, the horizontal Rayleigh method can even be applied without any of

those data selection cuts that aim at assuring full efficiency across the complete field of view.

However, basic quality cuts need be applied, that can assure working reconstruction of show-

ers’ arrival directions and azimuthal symmetry. Still, without the demand of full efficiency up

to the zenith angle limit, the analysis can be expanded towards lower primary energies and

profit from larger statistics.

Four different variants of the horizontal Rayleigh method have been discussed. The one

referred to in the text as the ‘p&a+ϑ’ variant is the most advanced one, which has all the

features mentioned here. Three other variants are intermediate stages of the development,

which have been useful to trace back the impact of the design ideas.

Extensive Monte Carlo studies have been carried out to benchmark the new method and



148 Summary and Conclusions

compare its performance with those of the established methods. The horizontal Rayleigh

method performs similarly well as the established methods under ideal measurement circum-

stances. Depending on the specific parameters, the statistical precision can be worse than

that of other methods. However, the new method is not vulnerable to some relevant exper-

imental effects. If such effects affect the data taking, the horizontal Rayleigh method yields

substantially better results.

The horizontal Rayleigh method is a valuable new analysis method for the reconstruction

of the parameters of a dipole-like cosmic ray flux distribution from a set of reconstructed arrival

directions as recorded by a cosmic ray experiment. It is not meant to replace existing methods,

but to complement them. Obtaining results compatible with both the established methods

and the new horizontal Rayleigh method would be a strong indication that the properties of

the experiment and the data set have been fully understood. Contradicting results would be

evidence for the presence of experimental effects, that have not been considered correctly in

the data analysis.

An important next step would be the application of the horizontal Rayleigh method to real

experimental data, and the comparison of its results with those of other methods. Tracing back

the reasons and the origins for the differences, if there were any, would certainly improve the

understanding of the data. It might reveal shortcomings of the new method, and lead to its

further development.



Appendix A

Definition of Spherical Harmonic

Functions

The spherical harmonic functions as used in this thesis are constructed in a way to satisfy the

following demands:

• They comply with the spherical coordinate system as used in this thesis. The latitude-like

angle β is measured from the equatorial plane, not from the North Pole of the coordinate

system.

• They are purely real.

• They are normalised such that their square integrals equal 4π.

The unit vector of the spherical coordinate system is defined as

ê(β ,λ) =






cosβ cosλ

cosβ sinλ

sinβ




 ,

with the solid angle element given by

dΩ = cosβ dβ dλ .

The Legendre polynomials are defined as

Pn(x) =
1

2nn!

dn

dxn

�

(x2− 1)n
�

.

Based on these, the associated Legendre functions are given by

Pm
ℓ (x) = (1− x2)m/2

dm

dxm

�
Pℓ(x)

�
.

Finally, the spherical harmonic function of degree ℓ and order m is given by

Yℓm(β ,λ) =
















p
2ℓ+ 1 P0

ℓ
(sinβ) (m = 0)

r

2(2ℓ+ 1)(ℓ−m)!

(ℓ+m)!
cos(mλ) Pm

ℓ (sinβ) (m > 0)

−
r

2(2ℓ+ 1)(ℓ+m)!

(ℓ−m)!
sin(mλ) P−m

ℓ (sinβ) (m < 0)

.
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This set of functions forms a complete orthonormal system on the unit sphere. Since all func-

tions are purely real, complex conjugation needs not be taken into account in the following

calculation:



Yℓm, Yℓ′m′

�
=

∫

dΩYℓmYℓ′m′

=

∫ π/2

β=−π/2

∫ 2π

λ=0

cosβ dβ dλYℓm(β ,λ)Yℓ′m′(β ,λ)

= 4πδℓℓ′δmm′ .
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Appendix B

An Unbiased Estimator for the Quality

Measure

B.1 Derivation of the Estimators

The quality estimator q2 has been defined in Section 5.3.1 as the mean square deviation of a

reconstructed quantity x from its true value xtrue:

q2 = (x − xtrue)
2 .

It is identical to the second algebraic moment µ′2 of the random variable x − xtrue. The r-th

algebraic moment is defined as:

µ′r = (x − xtrue)
r = E

�
(x − xtrue)

r� .

The µ′r denote the algebraic moments of the true distribution. For a given sample of N obser-

vations x i, the sample moments can be computed numerically:

m′r =
1

N

N∑

i=1

(x − xtrue)
r .

The sample moments are unbiased estimators for the moments of the underlying distribution:

E
�

m′r
�

= E




1

N

N∑

i=1

(x − xtrue)
r



=
1

N
N · E

�
(x − xtrue)

r� = µ′r .

The expectation values of the squares of the sample moments can be calculated as follows:

E
h

m′r
2
i

= E






 

1

N

N∑

i=1

(x − xtrue)
r

!2



= E






1

N

N∑

i=1

1

N

N∑

j=1

(x i − xtrue)
r · (x i − xtrue)

r






=
1

N2
·




E





N∑

i=1

(x i − xtrue)
2r



+ E






N∑

i=1

∑

j 6=i

(x i − xtrue)
r · (x j − xtrue)

r











=
1

N2
·
�

N · E
�

(x − xtrue)
2r
�

+ N · (N − 1) · E
�
(x − xtrue)

r�2
�
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=
1

N2
·
�

N ·µ′2r + N · (N − 1) ·µ′r
2
�

=
1

N
µ′2r +

N − 1

N
µ′r

2
.

The variance of the estimator for q2, m′2, can be calculated as follows:

V
�

m′2
�

= E
h�

m′2 − E
�

m′2
��2
i

= E
�

(m′2 −µ′2)2
�

= E
h

m′2
2 − 2m′2µ

′
2 +µ

′
2

2
i

= E
h

m′2
2
i

− 2µ′2E
�

m′2
�

+µ′2
2
=

1

N
µ′4 +

N − 1

N
µ′2

2 − 2µ′2
2
+µ′2

2
=

1

N

�

µ′4 −µ
′
2

2
�

Thus, the variance of the estimator for q2 depends on the fourth and the second algebraic

moment of the underlying distribution. Since these moments are unknown, an estimator is

needed that can be computed from a sample. The sought-after estimator is given by (m′4 −
m′2

2
)/(N −1), as it can be shown that its expectation value turns out to be the variance of m′2:

E

�
1

N − 1
·
�

m′4 −m′2
2
��

=
1

N − 1
·
�

µ′4 − E
h

m′2
2
i�

=
1

N − 1
·
�

µ′4−
�

1

N
µ′4+

N − 1

N
µ′2

2

��

=
1

N

�

µ′4−µ′2
2
�

= V
�

m′2
�

.

B.2 Summary

An unbiased estimator for the quality measure q2 can be computed from a sample. The vari-

ance of the estimator yields the statistical error of the estimation, which is by definition the

square root of the variance. The final result can be given as:

q2
est = m′2 ±

r

1

N − 1
·
�

m′4 −m′
2

2
�

.



Appendix C

Tabulated Results of the Monte Carlo

Studies

Legend

Rayl. Rayleigh analysis

SAP SAP method

MP Multipole expansion method

HR (p) Horizontal Rayleigh analysis, phase fit

HR (p&a) Horizontal Rayleigh analysis, phase and amplitude fit

HR (p+ϑ) Horizontal Rayleigh analysis, phase fit, using reconstructed zenith

angles

HR (p&a+ϑ) Horizontal Rayleigh analysis, phase and amplitude fit, using re-

constructed zenith angles

Rayl. st. Rayleigh analysis, steady data taking

Rayl. int. Rayleigh analysis, occasionally interrupted data taking

SAP st. SAP method, steady data taking

SAP int. SAP method, occasionally interrupted data taking

MP st. Multipole expansion method, steady data taking

MP int. Multipole expansion method, occasionally interrupted data taking
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RRayl. α
Method ∆ True Sample mean Sample std. dev. q True Sample mean Sample std. dev. q

Rayl. t.b.w. 0◦ 1.81856% 1.828± 0.0044 0.139± 0.0031 0.139± 0.0030 75◦ 75.01± 0.15 4.61± 0.10 4.61± 0.11
Rayl. t.b.w. 0.1◦ 1.81856% 1.830± 0.0044 0.139± 0.0031 0.139± 0.0030 75◦ 75.11± 0.14 4.46± 0.10 4.46± 0.10
Rayl. t.b.w. 0.3◦ 1.81856% 1.820± 0.0045 0.142± 0.0032 0.142± 0.0032 75◦ 75.11± 0.14 4.39± 0.098 4.39± 0.093
Rayl. t.b.w. 1◦ 1.81856% 1.822± 0.0045 0.141± 0.0032 0.141± 0.0031 75◦ 74.98± 0.14 4.36± 0.098 4.36± 0.098
Rayl. t.b.w. 3◦ 1.81856% 1.826± 0.0043 0.135± 0.0030 0.136± 0.0031 75◦ 74.94± 0.15 4.64± 0.10 4.64± 0.10

Rayl. 0◦ 1.81856% 1.829± 0.0044 0.139± 0.0031 0.139± 0.0030 75◦ 75.02± 0.15 4.60± 0.10 4.59± 0.11
Rayl. 0.1◦ 1.81856% 1.829± 0.0044 0.139± 0.0031 0.139± 0.0029 75◦ 75.11± 0.14 4.46± 0.10 4.46± 0.10
Rayl. 0.3◦ 1.81856% 1.820± 0.0045 0.142± 0.0032 0.142± 0.0032 75◦ 75.10± 0.14 4.39± 0.098 4.39± 0.093
Rayl. 1◦ 1.81856% 1.822± 0.0045 0.141± 0.0032 0.141± 0.0031 75◦ 74.98± 0.14 4.36± 0.098 4.36± 0.099
Rayl. 3◦ 1.81856% 1.826± 0.0043 0.135± 0.0030 0.136± 0.0031 75◦ 74.95± 0.15 4.65± 0.10 4.64± 0.10

Table C.12: Tabulated data for Figure 6.1: β = 49◦, ϑmax = 60◦, N = 106, D = 3%, δdipole = 30◦,
αdipole = 75◦

RRayl. α
Method Awea. True Sample mean Sample std. dev. q True Sample mean Sample std. dev. q

Rayl. t.b.w. 0% 1.81856% 1.828± 0.0044 0.139± 0.0031 0.139± 0.0030 75◦ 75.01± 0.15 4.61± 0.10 4.61± 0.11
Rayl. t.b.w. 0.1% 1.81856% 1.889± 0.0046 0.146± 0.0033 0.162± 0.0036 75◦ 75.32± 0.14 4.52± 0.10 4.53± 0.099
Rayl. t.b.w. 0.3% 1.81856% 1.999± 0.0046 0.144± 0.0032 0.231± 0.0041 75◦ 76.56± 0.13 4.09± 0.091 4.37± 0.097
Rayl. t.b.w. 1% 1.81856% 2.444± 0.0045 0.143± 0.0032 0.641± 0.0045 75◦ 78.80± 0.11 3.39± 0.076 5.09± 0.096
Rayl. t.b.w. 3% 1.81856% 3.691± 0.0044 0.139± 0.0031 1.878± 0.0044 75◦ 82.63± 0.071 2.25± 0.050 7.95± 0.070
Rayl. t.b.w. 10% 1.81856% 8.115± 0.0044 0.139± 0.0031 6.298± 0.0044 75◦ 86.64± 0.031 0.98± 0.022 11.68± 0.031

Rayl. 0% 1.81856% 1.829± 0.0044 0.139± 0.0031 0.139± 0.0030 75◦ 75.02± 0.15 4.60± 0.10 4.59± 0.11
Rayl. 0.1% 1.81856% 1.889± 0.0046 0.146± 0.0033 0.162± 0.0036 75◦ 75.30± 0.14 4.50± 0.10 4.51± 0.099
Rayl. 0.3% 1.81856% 2.000± 0.0046 0.144± 0.0032 0.232± 0.0042 75◦ 76.52± 0.13 4.08± 0.091 4.35± 0.096
Rayl. 1% 1.81856% 2.447± 0.0045 0.143± 0.0032 0.644± 0.0045 75◦ 78.69± 0.11 3.39± 0.076 5.01± 0.096
Rayl. 3% 1.81856% 3.699± 0.0044 0.139± 0.0031 1.885± 0.0044 75◦ 82.41± 0.071 2.24± 0.050 7.74± 0.070
Rayl. 10% 1.81856% 8.136± 0.0044 0.139± 0.0031 6.319± 0.0044 75◦ 86.29± 0.031 0.98± 0.022 11.34± 0.031

Table C.13: Tabulated data for Figure 6.2: β = 49◦, ϑmax = 60◦, N = 106, D = 3%, δdipole = 30◦,
αdipole = 75◦

RRayl. α
Method ϑf.e. True Sample mean Sample std. dev. q True Sample mean Sample std. dev. q

Rayl. t.b.w. 30◦ 1.81856% 1.735± 0.0044 0.138± 0.0031 0.162± 0.0035 75◦ 74.99± 0.15 4.81± 0.11 4.81± 0.11
Rayl. t.b.w. 40◦ 1.81856% 1.749± 0.0045 0.142± 0.0032 0.158± 0.0033 75◦ 75.09± 0.15 4.71± 0.11 4.71± 0.10
Rayl. t.b.w. 50◦ 1.81856% 1.786± 0.0045 0.141± 0.0032 0.145± 0.0031 75◦ 75.11± 0.14 4.51± 0.10 4.51± 0.10
Rayl. t.b.w. 55◦ 1.81856% 1.804± 0.0044 0.139± 0.0031 0.140± 0.0033 75◦ 74.95± 0.14 4.55± 0.10 4.55± 0.10
Rayl. t.b.w. 58◦ 1.81856% 1.821± 0.0042 0.133± 0.0030 0.133± 0.0029 75◦ 74.92± 0.15 4.60± 0.10 4.60± 0.11
Rayl. t.b.w. 60◦ 1.81856% 1.828± 0.0044 0.139± 0.0031 0.139± 0.0030 75◦ 75.01± 0.15 4.61± 0.10 4.61± 0.11

Rayl. 30◦ 1.81856% 2.093± 0.0045 0.143± 0.0032 0.309± 0.0043 75◦ 125.98± 0.12 3.83± 0.086 51.12± 0.12
Rayl. 40◦ 1.81856% 1.866± 0.0045 0.141± 0.0032 0.149± 0.0033 75◦ 114.20± 0.14 4.43± 0.099 39.45± 0.14
Rayl. 50◦ 1.81856% 1.734± 0.0045 0.141± 0.0032 0.165± 0.0034 75◦ 92.79± 0.15 4.63± 0.10 18.38± 0.14
Rayl. 55◦ 1.81856% 1.763± 0.0044 0.139± 0.0031 0.150± 0.0034 75◦ 81.86± 0.15 4.65± 0.10 8.28± 0.14
Rayl. 58◦ 1.81856% 1.808± 0.0042 0.133± 0.0030 0.133± 0.0029 75◦ 76.60± 0.15 4.64± 0.10 4.90± 0.12
Rayl. 60◦ 1.81856% 1.829± 0.0044 0.139± 0.0031 0.139± 0.0030 75◦ 75.02± 0.15 4.60± 0.10 4.59± 0.11

Table C.14: Tabulated data for Figure 6.3: β = 49◦, ϑmax = 60◦, N = 106, D = 3%, δdipole = 30◦,
αdipole = 75◦
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