
Statistical Models for

Exceedances with Applications to

Finance and Environmental

Statistics

Dissertation

zur Erlangung des Grades eines Doktors

der Naturwissenschaften

vorgelegt von

M.Sc. Ulf Cormann

geb. am 25.01.1982 in Menden

eingereicht beim Fachbereich Mathematik

der Universität Siegen

Siegen 2009





TAG DER MÜNDLICHEN PRÜFUNG:

28.04.2010

BETREUER UND GUTACHTER:

Prof. Dr. Reiss, Universität Siegen
Prof. Dr. Scheffler, Universität Siegen

iii



iv



Abstract

This thesis concerns statistical analysis for upper tails of distribution functions.
Firstly, we derive asymptotic distributions of exceedances under general monotone
transformations and analyze the pertaining domains of attraction. It turns out that
all possible limiting distributions satisfy a certain form of a generalized pot–stability.
We give a complete characterization of all strictly increasing, continuous limiting dis-
tributions. Further, we deduce the class of all limiting distributions under power–
normalization and characterize the pertaining domains of attraction. The limiting dis-
tributions are identified as generalized log–Pareto and negative generalized log–Pareto
distributions as well as a certain class of discrete distributions. Moreover, we intro-
duce and study an extended class of generalized log–Pareto distributions and provide a
hybrid Maximum–Likelihood estimator. These distributions can serve as a parametric
asymptotic model for super–heavy tailed distributions.

In the second part of this thesis statistical inference for the upper tail of the con-
ditional distribution of a response variable Y given a covariate X = x within the
framework of asymptotic distributions is considered as well. We propose to base the
inference on the conditional distribution of the point process of exceedances given the
point process of covariates. The results are valid within a model where the response
variables are conditionally independent given the covariates.

Both parts of the thesis are linked to each other by the fact that that a Pareto mod-
eling of the conditional distribution leads to super–heavy upper tailed unconditional
distributions.
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Kurzzusammenfassung

Diese Arbeit thematisiert die statistische Analyse der oberen Flanken einer Verteilungs-
funktion. Zuerst werden asymptotische Verteilungen von Exzedenten unter monotonen
Normalisierungen hergeleitet sowie die zugehörigen Anziehungsbereiche analysiert. Es
stellt sich heraus, dass alle stetigen Grenzverteilungen verallgemeinert pot–stabil sind.
Für den Fall, dass die Normalisierung einer zusätzlichen Bedingung genügt, gilt dies
für alle nicht–degenerierten Grenzverteilungen, einschließlich der diskreten. Die Fam-
ilie der streng monoton steigenden, stetigen Grenzverteilungen sowie die Familie der
Grenzverteilungen unter Power–Normalisierung werden vollständig charakterisiert. In
letzterem Fall treten verallgemeinerte log–Pareto Verteilungen, negative verallgemein-
erte log–Pareto Verteilungen sowie bestimmte p–pot stabile, diskrete Familien auf.
Weiterhin wird eine erweiterte Familie von verallgemeinerten log–Pareto Verteilungen
eingeführt und untersucht. Letztere können als asymptotisches Modell für Verteilungen
mit super–schweren Flanken dienen.

Im zweiten Teil der Arbeit wird die obere Flanke der bedingten Verteilung einer
Response–Variable Y gegeben einer Kovariablen X = x untersucht. Hierzu werden
die asymptotischen Ergebnisse für Exzedentenverteilungen aus dem ersten Teil der Ar-
beit herangezogen. In der vorliegenden Arbeit wird ein bedingtes Punktprozessmodell
eingeführt und für die statistische Analyse verwendet. Die zugehörigen Ergebnisse sind
gültig, falls die Response-Variablen bedingt unabhängig unter den Kovariablen sind.

Eine Verbindung der beiden Teile der Arbeit wird durch die Tatsache hergestellt,
dass eine Modellbildung mit Pareto–Verteilungen im bedingten Fall zu unbedingten
Verteilungen mit super–schweren Flanken führt.
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1 Introduction

1.1 Subject and Background

Starting with articles by Fisher and Tippett [34] in 1928 and Gnedenko [36] in 1943
extreme value theory (EVT) has become an important and active area of research in
the field of mathematical statistics as well as in many applications such as finance,
insurance, hydrology and other fields of environmental research. In many of these ap-
plications extreme events are of particular interest, especially if one is involved with
risk management.

If one is planning coast protection it is important to quantify the behavior of the
most severe storm floods rather than the mean sea level. For that purpose hydrologists
have introduced the t–year return level as a measure for the threat due to flooding in a
certain area. The t–year return level is the flood level which is expected to be exceeded
once in a t–year period. From a statistical point of view this is the 1 − 1/t quantile of
the distribution of the flood level. Since t is usually chosen as fifty or one hundred it is
obvious that the pertaining quantile, which has to be estimated from historical flood
data, is far in the upper tail and determined by the extremal behavior.

The recent financial crisis exhibited that also in the field of finance and insurance one
has to pay special attention to the quantification of the extremal behavior of financial
markets. In recent years the Value at Risk (VaR) has become the most important risk
measure to quantify the risk of a financial product as for example a portfolio of stocks
(see, e.g., [40]). Statistically speaking, the VaR is the analogue to the return level in
hydrology. A (small) probability α, usually 0.1%, 1% or 5%, is fixed and the Value at
Risk at the level α is the loss which is only exceeded with probability α in a given
period. A bank which invests in a speculative asset is committed to hold enough equity
to cover losses from this asset up to the amount of the pertaining VaR without going
bankrupt. As in the case of flood levels, the VaR is determined by the distribution of
extreme rather than average losses.

Many other applications call for a special statistical theory for extremes too, e.g.
insurance and in particular re–insurance or engineering.

The basic result of Fisher and Tippett [34] and Gnedenko [36] concerns linearly
normalized maxima of n independent and identically distributed (iid) random variables
(rvs). If the pertaining distribution function (df) converges weakly to a non–degenerate
distribution for n tending to infinity, then this limiting distribution is an extreme value
distribution (EVD). The family of EVDs is, except for location and scale shift, given
by

Gγ(x) = exp
(
−(1 + γx)−1/γ

)
, γ 6= 0, (1.1)

1



1. Introduction

and

G0(x) = exp
(
−e−x

)
.

If the maxima pertaining to a df F converge to an EVD G then F is said to belong to
the max–domain of attraction of G.

The normalizing constants can be included in the EVD model as location and scale
parameters. Therefore, one can assume a parametric statistical model with only three
parameters in case of maxima of iid random variables.

A crucial property of EVDs is the max–stability. The maximum of n iid random
variables, for which the common distribution is an EVD G has again an EVD with
identical shape parameter. Thus the maximum has again the df G, if appropriate lin-
early normalized. Max–stability is a characteristic property of EVDs, they are the only
non–degenerate max–stable distributions. Particularly, this entails that there exists no
non–degenerate discrete max–stable distributions.

The major shortcoming of using maxima to draw conclusions on the extremal be-
havior of a distribution is, that only a smaller part of the data can be utilized. A
new direction of EVT research started in the 1970s with articles by Balkema and de
Haan [3] and Pickands [53]. The major attention turned from maxima to exceedances
over high thresholds which also describe the extremal behavior of a distribution. These
authors derived in analogy to Fisher and Tippett [34] and Genedenko [36] limiting
distributions of linearly normalized exceedances over thresholds tending to the right
endpoint of the underlying distributions. As in the case of EVDs it turns out that the
non–degenerate limiting distributions constitute a parametric model, yet also discrete
limiting distributions occur. The continuous limiting distributions are closely related
to EVDs and form the family of generalized Pareto distributions (GPDs), namely,

Wγ(x) = 1 + log (Gγ(x)) , log (Gγ(x)) > −1.

Again, the unknown normalizing constants can be included in the statistical model as
location and scale parameters.

In analogy to max–domains of attraction one can define the pot–domain of attraction
of a GPD W by the family of distributions whose pertaining distribution of exceedances
converges linearly normalized to W . In fact, the pot–domains of attraction coincide
with the max–domains of attraction. More precisely, the pot–domain of attraction of
a GPD W is equal to the max–domain of attraction of the EVD W = 1 + log (G).

Therefore, for every df F in the domain of attraction of an EVD one may replace
the pertaining df of exceedances over a threshold u, F [u], by a GPD. This yields a
parametric/nonparametric model for F in the upper tail because

F (x) = F (u) + (1 − F (u))F [u](x), x > u.

This is of particular importance if we focus on the extreme upper tail of a distri-
bution, since we usually have only very few observations in this area making purely
non–parametric approaches less reliable or even impossible. EVT suggests a paramet-
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1.1. Subject and Background

ric/nonparametric approach by

• deriving a parametric estimation for the model of the exceedances using a GPD
modeling;

• replacing F (u) by an empirical estimate.

Piecing both components together we can derive an estimate for the upper tail of F and,
therefore, for high quantiles which are of particular importance for many applications
as already mentioned at the beginning.

A large number of articles are dealing with various aspects of extreme value theory
in statistics, for example the estimation of the underlying shape parameter (see e.g.
[20], [18], [39], [59]) or the choice of the threshold (see e.g. [5], [15], [16], [19], [24], [47],
[56]) as well as in probability theory, for example extensions of the limiting results to
the multivariate case (e.g. [27], [26], [28], [29], [31], [30], [32], [57], [64]).

The present thesis picks up two recent developments, namely,

• the characterization of limiting distributions of exceedances under non–linear
transformations;

• the investigation of extremes under covariate information.

Motivation for that endeavor may be gained by the following example. Consider the
conditional distribution of a random variable Y , subsequently addressed as response
variable, given another random variable X = x and assume that it is in the pot–
domain of attraction of a GPD with shape parameter 1/x. If the distribution of X, in
the following addressed as covariate, is a gamma distribution then the unconditional
distribution of Y is not in the pot–domain of attraction of any GPD, see Theorem
3.8. Roughly speaking, if the conditional response variable and the covariate are heavy
tailed, then the unconditional distribution of the response variable is ”super–heavy“
tailed. The latter term will be introduced in Chapter 4. This simple example has two
consequences.

• If the covariates cannot be observed, one has to take into account distributions
different from GPDs as a model for the pertaining exceedances. The use of other
distributions should be justified by asymptotic considerations as well.

• If the covariates are observable one can make inference for the upper tail of the
conditional distribution.

We will investigate the first problem in greater generality. We study asymptotic
distributions of exceedances under general monotone transformations. We identify these
limiting distributions as the class of general pot–stable distributions. This enables
us to derive a representation of such distributions and, furthermore, some important
properties of their domains of attraction. Yet it remains a difficult task to provide the
class of limiting distributions for a given transformation. We propose a certain method
using the theory of functional equations.

3



1. Introduction

Apart from the traditional linear normalization we study two further classes of nor-
malizations in detail, namely power–normalizations and exponential normalizations.
The resulting limiting model is constituted by the family of generalized log–Pareto
distributions (GLPDs) which was introduced in [14].

The second problem is dealt with using the concept of extremes under covariate
information. A wide range of statistical methods dealing with the tail of a conditional
distribution has been developed in recent years. For a comprehensive treatment we
refer to [11], [56], [60] and [61]. The main tool at this approach is the concept of point
processes. For more details we refer to Chapter 5. We introduce a unified point process
model and identify the recent estimation procedures proposed in [61] and [25] as a MLE
and, respectively, conditional MLE in our model. We demonstrate that the conditional
MLE exhibits a performance superior to the unconditional one.

1.2 Organization

In Chapter 2 we deduce asymptotic distributions of exceedances under certain mono-
tone transformations. We introduce the concept of general pot–domains of attraction
and derive some important properties. As in the linear case it turns out that general
max–domains of attraction are a subset of their peaks–over–threshold counterparts.
Our main focus aims at continuous limiting distributions, yet some results are also
derived in greater generality. We show how our general result can be used if a spe-
cial family of transformations is considered using the example of linear normalization.
Finally, we shortly indicate how these results can be extended to the multivariate case.

Chapter 3 concerns limiting distributions within the context of two special nor-
malizations, namely, power– and exponential normalizations. We derive the class of
limiting distributions of exceedances under power–normalization including the discrete
ones. Hereby we make use of a certain relationship of power– and linear normalizations
which was observed and used in a similar manner in the context of maxima in [10]. We
also include a section showing how these results can be obtained using the theory from
Chapter 2. In the case of exponential normalizations we confine ourselves to continuous
limiting distributions. We also present the relation of linear and power–normalization
in a more general framework and remark how one can use this relation to derive limit-
ing distributions for a large class of monotone transformations. This leads to the notion
of iterated heavy tails.

The limiting model which is related to power–normalization has certain drawbacks
when exceedances are modeled. A possible improvement is achieved by the model of
generalized log–Pareto distributions (GLPDs) which is introduced in Chapter 4. The
GLPD model contains the GPD model and can, therefore, be regarded as an extension
of the latter. For practical applications the GLPD family is a natural model for super–
heavy tailed distributions which have found an increasing interest in the statistical
literature in recent years, see e.g [14]. We propose a hybrid estimator within this model
and use it as initial estimate for the Maximum–Likelihood (ML) estimation. As in the
case of GPDs we have no closed form of the Maximum–Likelihood estimator (MLE).
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1.2. Organization

The numerical problems are more difficult in the GLPD case because of an additional
parameter. We also include the analysis of real data to study the relevance of the GLPD
model in applications.

In Chapter 5 we turn the focus of our analysis on upper tails of distributions in
more complex systems. We assume that we observe a covariate in addition to a re-
sponse variable and we are primarily interested in estimation of the upper tail of the
conditional distribution of the response variable given the covariate. We propose a con-
ditional approach within a new model. We do not require independent and identically
distributed observations to apply our estimation procedure. A considerably weaker con-
dition is formulated which is basically an extended form of conditional independence
of the response variables given the covariates. We also include some remarks concern-
ing the applicability of our condition and provide some real data examples. Technical
results concerning conditional distributions which are extensively used throughout this
chapter are postponed until the appendix.

The thesis is concluded by some remarks about open questions and future research
work in this area.
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2 Limiting Distributions of Exceedances

Under Monotone Transformations

In the stochastic theory as well as in many applied fields, limit theorems play a crucial
role. The general setting of this limit theorems is usually the following. One considers
a sequence of dfs Fn which satisfy a certain condition. This condition might be, for
example, that Fn is a linearly normalized df of the maximum or the sum of n indepen-
dent and identically distributed (iid) rvs. Usually these conditions are quite weak and
satisfied for a large, non–parametric class of distributions. In a next step it is assumed
that the sequence Fn converges weakly to a non–degenerate df L. Hereby, a df is called
degenerate if the pertaining probability measure is a Dirac measure. It is often possible
to prove that L has to satisfy a certain condition, such as a stability property.

Two special cases are extensively studied in the statistical literature.

• linearly normalized maxima: we have Fn(x) = Fn(an + bnx) for a df F and
sequences (an) and (bn) > 0. The class of limiting dfs L turns out to be max–
stable, there exists sequences (cn) and (dn) > 0 such that Ln(cn + dnx) = L(x).
As already indicated above, the class of max–stable dfs constitutes the parametric
family of EVDs.

• linearly normalized sums: Fn(x) = F ∗n(an + bnx) for a df F and sequences (an)
and (bn) > 0. Here, F ∗n denotes the n–fold convolution of the df F . Again, a
limiting df L satisfies the pertaining sum–stability property L∗n(cn+dnx) = L(x).
We do not have a closed parametric form of the family of sum–stable dfs, but one
can derive a parametric representation of the pertaining Fourier transformations.

Such results have very important implications. Assume that the random experiment
or the pertaining df, which is under investigation, can be interpreted as part of a
sequence (Fn) converging weakly to a df L. Within certain error bounds one may
assume that under weak assumptions on (Fn), for large enough n, Fn is close to L
of which a parametric form is known. Thus, a non–parametric statistical problem can
be approximated by a parametric one. The most prominent case of an approximate
distribution is the normal distribution. The error of a measurement may be assumed
to be normal as the sum of several errors.

In this thesis we will consider a related problem, namely limiting distributions of
exceedances over thresholds u tending to the right endpoint of the pertaining distribu-
tion under general monotone transformations. Our study will also work in two steps.
First we will derive a certain stability property which is then used to derive the form
of the limiting distribution.

7



2. Limiting Distributions Under Monotone Transformations

We denote for a rv X with df F by

F [u](x) = P (X ≤ x|X > u) (2.1)

the common df of the exceedances pertaining to F . We have

F [u](x) =





F (x)−F (u)
1−F (u) , x ≥ u, F (u) < 1;

if
0, x < u or F (u) = 1.

Throughout this thesis we use the notation

ω(F ) := sup {x : F (x) < 1} and α(F ) := inf {x : F (x) > 0} (2.2)

for the left and right endpoint of the support of a df F and

S̃(F ) := (α(F ), ω(F )) = {x : 0 < F (x) < 1} .

The aim of this chapter is to deduce limiting distributions of exceedances over high
thresholds under general monotone transformations. Subsequently, a function T : R

2 →
R will be addressed as monotone transformation if it is strictly increasing in the second
argument. We will also use the term normalization as a synonym for transformation.

We consider non–degenerate dfs F and L and a monotone transformation T such
that

lim
u→ω(F )

F [u](T (u, x)) = L(x). (2.3)

for all points of continuity of L. Well known are linear transformations T (u, x) =
a(u) + b(u)x, where a and b are real valued functions with b(u) > 0 for all u ∈ R. We
will also consider power transformations T (u, x) = sign(x)a(u)+|x|b(u) and exponential
transformations T (u, x) = a(u) exp (b(u)x).

Let us assume that, for a fixed family of transformations T , the limiting df L belongs
to a parametric family. In that case the meaning of a limit relation as given in (2.3)
is, that statistical inference for exceedances from a possibly complicated and only
partly known underlying model F can be based on a sufficiently simple and parametric
asymptotic model L.

The main results stated in this chapter are

• all continuous limiting dfs in (2.3) satisfy a certain form of pot–stability, subse-
quently labeled g–pot stability (cf. Theorem 2.3);

• we deduce an explicit representation of all strictly increasing, continuous g–pot–
stable dfs (cf. Theorem 2.7);

• if the transformation T satisfies an additional Condition (Condition 2.8) all lim-
iting dfs in (2.3), including the discrete ones, are g–pot–stbale (cf. Lemma 2.9).
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2.1 The Traditional POT–Approach

The remainder of this chapter can be outlined as follows. In Section 2.1 we deal with
the well known case that T belongs to the family of linear transformations. Section
2.2 contains a basic result concerning continuous limiting dfs in (2.3). It is proven that
these dfs satisfy a certain pot–stability property with respect to a certain function
g which is related to T . This property is subsequently labeled g–pot–stability. More
details about continuous g–pot stable dfs are given in Section 2.3. We include some
remarks concerning discrete g–pot stable dfs in Section 2.4. Relations to the asymptotic
theory of maxima under general monotone transformations are addressed in Section
2.5. We conclude this chapter by pointing out consequences of the general theory for
the case of linear transformations, see Section 2.6, and extensions to the multivariate
case, see Section 2.7.

2.1 The Traditional POT–Approach

The traditional peaks–over–threshold (pot) approach within extreme value theory
(EVT) started with the meanwhile classical results in Balkema and de Haan [3] and
Pickands [53]. These authors proved that, if for functions a(·) and b(·) > 0 and dfs F
and W

F [u](a(u) + b(u)x) −−−−−→
u→ω(F )

W (x),

holds, then W is pot–stable.
We recall some basic facts about pot–stability. A df F is pot–stable if for each

y ∈ C̃(F ) there are constants a(y) ∈ R and b(y) > 0 such that

F [y](a(y) + b(y)x) = F (x) (2.4)

for all x ∈ C̃(F ). A df F1 is said to be of the same linear type as the df F2 if there are
a ∈ R and b > 0 such that F1(x) = F2(a + bx). Within the class of dfs of the same
type one may select a standard version.

Due to a classical result in [3] one knows that a df W is pot–stable if, and only if,
it is of the linear type of one of the following dfs (with [x] denoting the integer part of
the real number x), namely, a continuous df

Wγ(x) = 1 − (1 + γx)−1/γ , γ ∈ R, (2.5)

and dicrete dfs

Πγ,α(x) = 1 − exp
(
−α

[
γ−1 log(1 + γx)

])
, γ ∈ R, α > 0, (2.6)

for 0 < x if γ ≥ 0 and 0 < x < 1/|γ| if γ > 0. For γ = 0 choose the limits for γ → 0,
getting

W0(x) = 1 − e−x, (2.7)

9



2. Limiting Distributions Under Monotone Transformations

and
Π0,α(x) = 1 − exp (−α [x]) . (2.8)

Thus, the family of standard pot–stable dfs consists of the generalized Pareto dfs (GPD)
Wγ and of certain discrete dfs Πγ,α.

In the linear setup, limiting distributions of exceedances are closely related to limiting
distributions of maxima. As already mentioned in the introduction, statistical extreme
value theory started with articles by Fisher and Tippett [34] and Gnedenko [36]. These
authors proved that if for a df F and a non–degenerate df G and suitably chosen
norming sequences an and bn > 0

Fn(an + bnx) −−−→
n→∞

G(x) (2.9)

holds, then G is necessarily an extreme value distribution (EVD), cf. (1.1).
Recall that

Wγ(x) = 1 − log (Gγ(x)) , log(Gγ(x)) > −1. (2.10)

It turns out that (2.10) is a kind of universal relation of limiting distribution of maxima
and exceedances, also if non–linear transformations are considered. Notice that in con-
trast to the existence of discrete limiting distributions of exceedances only continuous
distributions can appear in (2.9). This result carries over to more general transforma-
tions, too.

2.2 A Basic Result Concerning Limiting Distributions

In this section we extend the results concerning the linear pot–approach in the pot
method to a more general framework. Let g be a monotone transformation. A df F is
called pot–stable with respect to g if the pertaining exceedances df F [y] satisfies

F [y](g(y, x)) = F (x).

In terms of survivor functions F̄ = 1 − F this is

F̄ (g(y, x))

F̄ (y)
= F̄ (x).

It will be shown that every continuous limiting df L in (2.3) is pot–stable with respect
to a transformation g according to the following definition.

Definition 2.1 Let F be a df and g : R
2 → R. Then, F is said to be g–pot–stable if

F̄ (g(y, x)) = F̄ (x)F̄ (y)

10



2.2. A Basic Result Concerning Limiting Distributions

for all y, x ∈ S̃(F ), whereby

S̃(F ) := {x ∈ R : 0 < F (x) < 1} .

For that purpose we introduce some basic notation. The set of points of continuity of
a function f is denoted by C(f). For a monotone transformation T put Tu(x) := T (u, x)
and T (−1)(u, x) := T−1

u (x). Moreover, let

Su,y(x) := T (−1) (u, T (T (u, y), x)) . (2.11)

Notice that Su,y is also strictly increasing. It will turn out that Su,y is crucial for the
construction of the function g in Definition 2.1.

We start with an auxiliary result for the transformations T . It follows from (2.3)
that T (u, x) > u if x ∈ S̃(L) for u sufficiently close to ω(F ). Otherwise, we have

lim
u→ω(F )

F [u](T (u, x)) = 0 < L(x).

If T (u, x) > u, equation (2.3) is equivalent to

lim
u→ω(F )

F̄ (T (u, x))

F̄ (u)
= L̄(x).

Since T (u, x) > u for u sufficiently close to ω(F ) we necessarily have

T (u, x) −−−−−→
u→ω(F )

ω(F ),

and, therefore, T (u, x) > x for large u.
We require the following technical result concerning weak convergence.

Lemma 2.2 Let Hn, n ∈ N and H be non–increasing (non–decreasing) functions such
that

Hn(x) −−−→
n→∞

H(x), for all x ∈ C(H)

and let (xn) a sequence converging to some x ∈ R.
Then,

Hn(xn) −−−→
n→∞

H(x)

if x ∈ C(H).

Proof. The proof is merely carried out for non–increasing functions. The proof for
non–decreasing functions runs in a similar manner. First notice that C(H) is dense in
R since H is a monotone function. Therefore, we find for each ε > 0 some 0 < ε′ < ε
and 0 < ε′′ < ε such that x + ε′ and x − ε′′ both belong to C(H). Since xn → x we

11



2. Limiting Distributions Under Monotone Transformations

find some n0 ∈ N such that for all n > n0

x + ε′ > xn > x − ε′′.

Making use of the monotonicity of Hn one gets

Hn(x − ε′′) ≥ Hn(xn) ≥ Hn(x + ε′).

Letting n → ∞ yields

H(x − ε′′) ≥ lim sup
n→∞

Hn(xn) ≥ lim inf
n→∞

Hn(xn) ≥ H(x + ε′).

Now with ε → 0 (and, therefore, ε′ → 0 and ε′′ → 0) one gets the assertion since
x ∈ C(H). �

The following theorem essentially states that every continuous limiting distribution
of exceedances under a monotone transformation T is pot–stable with respect to a
transformation which can be deduced from T . To prove this theorem we need an aux-
iliary result stated in Lemma 2.4 below.

Theorem 2.3 Consider a monotone transformation T : I × R → R, where I ⊂ R is
an interval. Furthermore, let F be a df and L a continuous df such that

F̄ (T (u, x))

F̄ (u)

u→ω(F )−→ L̄(x) (2.12)

for all x ∈ R. Then L satisfies

L̄(g(y, x)) = L̄(x)L̄(x), x, y ∈ S̃(L)

where for each y ∈ S̃(L) there exists a sequence (un) such that

g(y, x) = lim
un→ω(F )

Sun,y(x).

Proof. Put g(y, x) := gy(x) where gy is given in Lemma 2.4 below. Then the asserted
g–pot–stability of L follows immediately from Lemma 2.4. �

The interval I in the preceding theorem may be chosen as I = R, yet is is not
necessary that T is defined for all u ∈ R if ω(F ) is finite.

Lemma 2.4 Suppose the assumptions in Theorem 2.3 hold. Then, for each y ∈ S̃(F )
and each sequence (un) with un −−−→

n→∞
ω(F ) there exists a subsequence (u∗

n) such that

gy(x) = lim
n→∞

Su∗
n,y(x)

12



2.2. A Basic Result Concerning Limiting Distributions

exists for all x ∈ S̃(L). Moreover, L̄ = 1 − L satisfies

L̄ (gy(x)) = L̄(x)L̄(y), x ∈ S̃(L). (2.13)

Proof. First observe that (2.12) yields

lim
u→ω(F )

F̄ (T (u, x))

F̄ (T (u, y))
= lim

u→ω(F )

F̄ (T (u, x))

F̄ (u)

F̄ (u)

F̄ (T (u, y))

=
L̄(x)

L̄(y)
. (2.14)

Let

Su,y(x) := T (−1) (u, T (T (u, y), x))

as in (2.11). Moreover, put

F̃ (u)
y (x) :=

F̄ (T (u, x))

F̄ (T (u, y))
.

We get from (2.14)

F̃ (u)
y (x) −−−−−→

u→ω(F )

L̄(x)

L̄(y)
.

We also have

F̃ (u)
y (Su,y(x)) =

F̄ (T (T (u, y), x))

F̄ (T (u, y))

u→ω(F )−→ L̄(x)

since T (u, y) → ω(F ) if u → ω(F ). Thus, (2.13) can be considered a convergence to
type theorem.

Let x, y ∈ S̃(L). Because L̄(y) < 1 and L̄(x) > 0 we have

lim
u→ω(F )

F̃ (u)
y (Su,y(x)) = L̄(x) <

L̄(x)

L̄(y)
= lim

u→ω(F )
F̃ (u)

y (x).

Because F̃
(u)
y is non–increasing for all u we get Su,y(x) > x for u sufficiently close to

ω(F ). Thus Su,y(x) is bounded from below by x.
Now choose an arbitrary sequence (un) with un → ω(F ) as n → ∞. Then, Sun,y(x)

is also bounded from above for x, y ∈ S̃(L), because, otherwise, we find a sub–sequence
(an) of (un) such that San,y(x) → ∞. Thus, for any m ∈ R we have for sufficiently
large n

F̃ (an)
y (San,y(x)) ≤ F̃ (an)

y (m) .
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2. Limiting Distributions Under Monotone Transformations

Moreover,

F̃ (an)
y (m) −−−→

n→∞
L̄(m)/L̄(y).

Letting m → ∞ one gets

F̃ (an)
y (San,y(x)) −−−→

n→∞
0

which contradicts the assumption that x ∈ S̃(L).
Now fix y ∈ S̃(L). The sequence Sun,y(x) is bounded for each x ∈ S̃(L). Fixing

some x ∈ S̃(L), we find a subsequence (u
(1)
n ) of (un) such that S

u
(1)
n ,y

(x) converges to

some real number. Next choose an arbitrary countable dense subset A of S̃(L). Using
a diagonal sequence we find a subsequence (u∗

n) of (un) such that

Su∗
n,y(x) −−−→

n→∞
g′y(x) for all x ∈ A. (2.15)

Now let x ∈ S̃(L)\A. Since A is dense we find a sequence (xn) ∈ A with xn ↓ x. Define

g′y(x) := lim
n→∞

g′y(xn). (2.16)

This limit exists since Su∗
n,y is strictly increasing and, therefore, g′y is non–decreasing

on A and (g′y(xn)) is a monotone sequence. Moreover, it is bounded. We find some
n0(x) ∈ N and x′, x′′ ∈ A such that x′ < xn < x′′ for n > n0(x) and, thus,

g′y(x
′) ≤ g′y(xn) ≤ g′y(x

′′), n > n0(x).

Notice that Definition (2.16) ensures that g′y is also non–decreasing on S̃(L). Now

the convergence in (2.15) also holds for all x ∈ S̃(L) ∩ C(g′y). To see this let x ∈
(S̃(L)∩C(g′y))\A. Since A is dense we find for each positive ε sufficiently small ε′, ε′′ < ε
such that x + ε′ and x − ε′′ are both in A. From (2.15) and the monotonicity of Su∗

n,y

and g′y one gets for n ≥ n0(x, ε),

g′y(x − ε) − ε ≤ g′y(x − ε′′) − ε ≤ Su∗
n
(x − ε′′) ≤ Su∗

n,y(x)

≤ Su∗
n,y(x + ε′) ≤ g′y(x + ε′) + ε ≤ g′y(x + ε) + ε.

Now letting ε → 0 the convergence in (2.15) is immediate since x is assumed to be a
point of continuity of g′y.

We are now going to construct a function gy such that convergence in (2.15) holds
for all x ∈ S̃(L). Notice that g′y is a monotone function and, therefore, has at most
countable many points of discontinuity. Now let B be the set of all such points. Since
B is countable we find again by the boundedness of Su∗

n,y(x) and a diagonal sequence
argument a subsequence (u∗∗

n ) of (u∗
n) such that

Su∗∗
n ,y(x) −−−→

n→∞
g′′y (x) for all x ∈ B.
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2.3 Continuous g–POT–Stable Distributions

Put

gy(x) :=





g′y(x), x ∈ S̃(L)\B,

if
g′′y (x), x ∈ B.

We get

Su∗∗
n ,y(x) −−−→

n→∞
gy(x) for all x ∈ S̃(L). (2.17)

Since L is continuous we immediately get from Lemma 2.2 that

L̄(gy(x)) = L̄(x)L̄(y) for all x ∈ S̃(L),

which is the desired equation. �

Let L be a continuous g–pot stable df with g as given in Theorem 2.3. Then, appar-
ently

g : S̃(L) × S̃(L) → S̃(L).

According to Theorem 2.3 the class of g–pot–stable dfs plays a central role in the theory
of exceedances under general monotone transformations. In the following sections these
dfs will investigated more closely.

2.3 Continuous g–POT–Stable Distributions

We now turn our attention to the limiting distribution L. The results of the foregoing
section yield that the class of limiting distributions under a transformation T consists
of certain g–pot–stable distributions. We completely characterize the class of strictly
increasing, continuous limiting distributions. These distributions are the most relevant
for applications. Let g(y, x) be as in the foregoing section, and let L be a df which is
g–pot–stable. If the limiting df L is strictly increasing we get immediately the following
sharper version of Lemma 2.4.

Corollary 2.5 Let T , F and L be as in Theorem 2.3. In addition assume that L is
strictly increasing on S̃(L). Then,

L̄(g(y, x)) = L̄(x)L̄(y)

for all x, y ∈ S̃(L) where

g(y, x) = lim
u→ω(F )

Su,y(x).
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2. Limiting Distributions Under Monotone Transformations

Proof. With L, g and Su,y as in Lemma 2.4 and Theorem 2.3 we get

g(y, x) = L̄−1(L̄(x)L̄(y))

since L is strictly increasing. Therefore, g is uniquely determined for all x, y ∈ S̃(L). It
remains to prove that Sun,y converges pointwise on S̃(L) for all sequences un → ω(F )
and y ∈ S̃(L). Fix some y ∈ S̃(L). Let (un) be an arbitrary sequence converging to
ω(F ). From Lemma 2.4 we know that there exists a subsequence (u∗∗

n ) such that

Su∗∗
n ,y(x) −−−−−→

u→ω(F )
gy(x) for all x ∈ S̃(L)

and

L̄(gy(x)) = L̄(x)L̄(y).

Now let x ∈ S̃(L) and (an) be a subsequence of (un) such that

San,y(x) −−−→
n→∞

a.

Using Lemma 2.2 and Lemma 2.4 we get

L̄(a)

L̄(y)
= lim

n→∞
F̃ (an)

y (San,y(x)) = L̄(x).

Thus, we have

L̄(a) = L̄(x)L̄(y) = L̄(gy(x)).

Since L is strictly increasing we get a = gy(x).
Therefore, gy(x) is the limit of each converging subsequence of Sun,y(x). Recall that

Sun,y(x) is bounded for all x, y ∈ S̃(L). Hence, all accumulation points of Sun,y coincide.
Consequently, Sun,y(x) converges to gy(x) for all sequences un → ω(F ) .

�

So far we established a relationship of the limiting df L and the pertaining transfor-
mation T via the g–pot–stability of L. This result raises further questions:

• is it possible to get further insight in the structure of g, or in other words, can
any monotone transformation g appear in Corollary 2.5?

• suppose g is known, can L be derived from g?

We provide an answer to both questions, under the condition that the limiting df L
is strictly increasing. The first question is solved in the subsequent lemma, which also
gives a special representation of g.
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2.3. Continuous g–pot–stable Distributions

Lemma 2.6 Let L, F and T be as in Corollary 2.5. Then the function g satisfies

g (g(x, y), z) = g (x, g(y, z)) , x, y ∈ S̃(L). (2.18)

Moreover, g is of the form

g(y, x) = h−1 (h(x) + h(y))

for some continuous and strictly increasing function h.

Proof. First observe that S̃(L) is an interval. Moreover, for x, y, z ∈ S̃(L) one gets

L̄ (g (x, g(y, z))) = L̄(x)L̄ (g(y, x))

= L̄(x)L̄(y)L̄(z)

= L̄ (g(x, y)) L̄(z)

= L̄ (g (g(x, y), z)) .

Because L̄ is strictly increasing this yields the associativity equation

g (g(x, y), z) = g (x, g(y, z)) .

Furthermore, we get

g(x, y) = L̄−1
(
L̄(x)L̄(y)

)

and, thus, g is continuous and strictly increasing in both components. Consequently,
g(y1, x) = g(y2, x) or g(x, y1) = g(x, y1) for any x ∈ S̃(L) implies y1 = y2. Hence g is
cancellative in the sense of [1], Section 7, Theorem 1. Therefore,

g(x, y) = h−1 (h(x) + h(y))

for some continuous and strictly increasing function h : I → J , where I, J ⊂ R are
appropriate intervals. �

Equation (2.18) is also known as associativity equation. It is closely investigated in
[1], Section 7. Apparently, Lemma 2.6 implies that g is also commutative, that is,

g(y, x) = g(x, y), x, y ∈ S̃(L). (2.19)

This property may as well be deduced from the equality

L̄(g(x, y)) = L̄(x)L̄(y) = L̄(y)L̄(x) = L̄(g(y, x))

if L is strictly increasing.
The next theorem gives the answer to the second of the questions above. We provide

a representation of g–pot–stable dfs, where g is as given in Lemma 2.6.
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2. Limiting Distributions Under Monotone Transformations

Theorem 2.7 Let L be a df, pot–stable with respect to g with

g(y, x) := h−1 (h(x) + h(y))

for h : S̃(L) → S̃(L) continuous and strictly increasing. Then

L(x) = 1 − exp(−βh(x))

for β > 0.

Proof. Because L is g–pot–stable one gets

L̄ (g(y, x)) = L̄(x)L̄(y) ⇔ L̄
(
h−1(h(x) + h(y))

)
= L̄(x)L̄(y)

Define V := L̄ ◦ h−1, then the above equation becomes

V (h(x) + h(y)) = V (h(x))V (h(y)).

Because V is decreasing and positive it can only be of he form

V (x) = exp(−βx), β > 0.

Therefore,

L(x) = 1 − V ◦ h(x) = 1 − exp(−βh(x))

which is the desired representation. �

Notice that the function h in the proceeding lemma might be replaced with h̃(x) :=
ah(x) for some a > 0 without changing g. In addition there exists a ∈ [−∞,∞) and
b ∈ (−∞,∞] such that h(x) → 0 if x → a and h(x) → ∞ if x → b.

If a special transformation T (for example linear, power transformations or expo-
nential transformations, cf. Chapter 3) is given and the pertaining strictly increasing,
continuous limiting dfs of exceedances are to be determined the previous results can
be utilized. If L is not strictly increasing we can merely deduce g–pot–stability.

2.4 Some Remarks on Discrete POT-Stable Dfs

We include some remarks concerning discrete pot–stable distribution, which may also
occur as limiting distributions of exceedances under monotone transformations. We
first prove an extension of Lemma 2.4 to discontinuous limiting dfs. To obtain the
pertaining result we have to impose an additional condition on the transformation T .

Condition 2.8 We assume that if Sun,y (cf. (2.11)) converges pointwise to some func-
tion gy for some sequence (un) → U ∈ (−∞,∞] then gy is strictly increasing.
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Condition 2.8 seems a little bit technical and restrictive at first sight, yet it will turn
out that it is quite easy to verify for a lot of transformations T .

The role of the interior of the support of the limiting df L, S̃(L) will be played by
the set of points of continuity of L in the interior of its support

C̃(L) := {x ∈ C(L) : 0 < L(x) < 1}

if L is discontinuous.

Lemma 2.9 Consider a monotone transformation T : I × R → R, where I ⊂ R

is an interval. Assume that Condition 2.8 is satisfied. Furthermore, let F and L be
non–degenerate dfs such that

F̄ (T (u, x))

F̄ (u)

u→ω(F )−→ L̄(x) (2.20)

for all x ∈ C(L).
Then, for each y ∈ C̃(L) and each sequence (un) with un −−−→

n→∞
ω(F ) there exists a

subsequence (u∗∗
n ) such that

gy(x) = lim
n→∞

Su∗∗
n ,y(x)

exists for all x ∈ C̃(L). Moreover, L̄ = 1 − L satisfies

L̄ (gy(x)) = L̄(x)L̄(y), x ∈ C̃(L). (2.21)

Proof. First notice that the proof of Lemma 2.4 can be repeated up to equation (2.17)
with S̃(L) replaced by C̃(L) and R replaced with C(L). It remains to prove that

L̄(gy(x)) = L̄(x)L̄(y) for all x ∈ C̃(L).

If Condition 2.8 holds gy is strictly increasing. Let x ∈ C̃(L). Hence, for each ε > 0

we find ε′, ε′′ < ε and some δ0 > 0 such that x − ε′′ and x + ε′ are in C̃(L) and for all
0 < δ ≤ δ0 it holds that

gy(x − ε′′) < gy(x) − δ < gy(x) < gy(x) + δ < gy(x + ε′).

Therefore, we have for n > n(x, ε) and (u∗∗
n ) as in the proof of Lemma 2.4

Su∗∗
n ,y(x − ε′′) < Su∗∗

n ,y(x) − δ < Su∗∗
n ,y(x) < Su∗∗

n ,y(x) + δ < Su∗∗
n ,y(x + ε′).

Applying the monotonicity of F̃
(u∗∗

n )
y to the preceding inequalities one receives

F̃ (u∗∗
n )

y

(
Su∗∗

n ,y(x − ε′′)
)
≥ F̃ (u∗∗

n )
y

(
Su∗∗

n ,y(x) − δ
)
≥ F̃ (u∗∗

n )
y

(
Su∗∗

n ,y(x)
)

≥ F̃ (u∗∗
n )

y

(
Su∗∗

n ,y(x) + δ
)
≥ F̃ (u∗∗

n )
y

(
Su∗∗

n ,y(x + ε′)
)
.
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Now choose δ′ and δ′′ both smaller than δ0 such that gy(x)+δ′ and gy(x)−δ′′ are both
in C̃(L). Letting n → ∞ and applying Lemma 2.2 one gets

L̄(x − ε′′) ≥ L̄(gy(x) − δ′′)

L̄(y)
≥ L̄(x) ≥ L̄(gy(x) + δ′)

L̄(y)
≥ L̄(x + ε′).

Fix some arbitrary ε > 0. Since C̃(L) is a dense subset of an open interval in R and the
above inequality holds for all δ′, δ′′ < δ0 satisfying the above condition we might let
δ′, δ′′ → 0 in the above inequality. If ε > 0 is sufficiently small we, thus, find ε′, ε′′ < ε
such that

L̄(x − ε′′) ≥ lim
δ′′→0

L̄(gy(x) − δ′′)

L̄(y)
≥ L̄(x) ≥ lim

δ′→0

L̄(gy(x) + δ′)

L̄(y)
≥ L̄(x + ε′).

Notice that both limits exist since they concern bounded and monotone sequences.
Because L̄ is continuous from the right we have in addition

L̄(x − ε′′) ≥ lim
δ′′→0

L̄(gy(x) − δ′′)

L̄(y)
≥ L̄(x) ≥ L̄(gy(x))

L̄(y)
≥ L̄(x + ε′).

Since this holds for all ε > 0 and x is a point of continuity of L we get

L̄(x) =
L̄(gy(x))

L̄(y)

which proves the assertion. �

The last lines of the proof of the foregoing lemma also entail that for all x, y ∈ C̃(L)
gy(x) is a point of continuity of L.

An important class of such discrete distributions is closely related to the class of pot–
stable distributions introduced in the foregoing section. Consider the transformation

g(y, x) = h−1 (h(x) + [h(y)]) , (2.22)

where h denotes, as in the foregoing sections, a positive and strictly increasing function
with h(x) → 0 for x → a ∈ [−∞,∞) and h(x) → ∞ for x → b ∈ (−∞,∞]. Then we
may define the discrete df

L(x) = 1 − exp (−c[h(x)]) , c > 0.

Check that

L̄(g(y, x)) = exp(−(c[h(x)] + c[h(y)])) = L̄(x)L̄(y).
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2.5 Relations to the Limit Theory of Maxima

It is an open question whether transformations as in (2.22) are the only possible ones
in the relation

L̄(g(y, x)) = L̄(x)L̄(y), x, y ∈ C̃(L),

where L denotes a discontinuous df. Notice that g is associative (cf. 2.18) but not
commutative (cf. 2.19).

2.5 Relations to the Limit Theory of Maxima

In this section we study the relation of limiting dfs of maxima of iid rvs under monotone
transformations as introduced in [49] and limiting distributions of exceedances. In the
linear setup it is well known that a continuous limiting dfs of exceedances W can be
derived from an EVD G by the relation

W (x) = 1 + log (G(x)) , log (G(x)) > −1.

We will derive the analog relation for limiting dfs under general monotone transforma-
tions.

Moreover, we recall the concept of general max–domains of attraction (see, e.g.,
[49]) and introduce general pot–domains of attraction. Again, it turns out that both
concepts are closely related to each other.

2.5.1 Some Remarks on Limiting Dfs of Maxima

Assume for dfs F and H the relation

Fn (∆n(x)) −−−→
n→∞

H(x), x ∈ C(H) (2.23)

holds, where (∆n) is a sequence of strictly increasing functions. Due to a result in [49]
we know that for sequences (mn) with mn/n −−−→

n→∞
λ > 0 one gets

∆n

(
∆−1

mn
(x)
)
−−−→
n→∞

k(λ, x). (2.24)

If, in addition, k is invertible as a function of λ, that is, e.g., strictly increasing in the
first component, then

k(λ, x) = h−1 (h(x) + c log(λ))

for some positive, strictly increasing function h and c > 0. Moreover, H is generalized
max–stable with respect to k, that is, we have

Hλ (k(λ, x)) = H(x), λ > 0. (2.25)
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2. Limiting Distributions Under Monotone Transformations

From this one may deduce the representation

H(x) = exp
(
−e−c̃h(x)

)
(2.26)

for c̃ > 0 (see, e.g., [49]). In [62] the relations (2.25) and (2.26) are utilized to deduce
the function h directly from k under some additional conditions. This is important in
practical applications since it is often straightforward to derive k from the sequence of
functions (∆n), but it is usually a difficult task to derive h.

2.5.2 Domains of Attraction

If (2.3) holds for F , L and some monotone transformation T , then F is said to be in
the T–pot–domain of attraction of the df L. In the following definition we distinguish
between three different forms of domains of attraction.

Definition 2.10 Let F and L be dfs and T : R
2 → R a monotone transformation.

(i) F is in the T–pot–domain of attraction of L (F ∈ DT–pot(L)) if (2.3) holds for
all x ∈ C(L).

(ii) Let T be a family of transformations T : R
2 → R. We say that F is in the T –

pot–domain of attraction of L (F ∈ DT –pot(L)) if there exists some T ∈ T such
that F ∈ DT–pot(L).

(iii) F is in the general pot–domain of attraction of L if F ∈ DT–pot(L) for some
monotone transformation T .

In the classical EVT literature (see e.g. [3] and [36]) the term domain of attraction
is assigned to the second case of the preceding definition, and a special family of
transformation, namely linear transformations, is considered. In [49] the third meaning
of a domain of attraction is used in conjunction with limiting dfs of maxima of iid rvs.

For statistical applications domains of attraction play a crucial role. If F ∈ DT–pot(L)
we have

F [u] (T (u, x)) ≈ L(x)

or, equivalently,

F [u] (x) ≈ L(T (−1)(u, x)) (2.27)

for u sufficiently close to ω(F ). If nothing is known about the transformation T the
estimation of F [u] via L ◦ T (−1)(u, ·) remains a non–parametric problem and not much
is gained. But if T belongs to a known parametric family T we may utilize (2.27) to
derive a parametric estimation of F [u] and, therefore, the upper tail of F . This approach
reflects the spirit of traditional EVT, namely replacing a non–parametric model by a
parametric one which is justified by asymptotic relations.
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2.5. Relations to the Limit Theory of Maxima

We get from the results in Sections 2.2 and 2.3 that the limiting df L is g–pot–stable.
It will become apparent from the subsequent section that it is often possible to derive
the transformation g from T , yet it remains a difficult task to compute all possible
functions h in Lemma 2.6 for a given transformation g.

It is not within the scope of this thesis to derive characterizations of all T–pot–
domains of attraction, but we will establish relationships to max–domains of attraction.
We start with some remarks concerning general max–domains of attraction. There has
been some confusion about the concrete form of general T–max–domains of attraction
introduced in [49]. In this article the author claimed that there exists a sequence of
monotone functions (∆n) such that

Fn (∆n(x)) −−−→
n→∞

H(x) = exp
(
−e−h(x)

)
(2.28)

if, and only if, the df F satisfies

1 − F (x) ∼ U (h(x)) exp (−h(x)) (2.29)

as x → ω(F ), where U is a regularly varying function. The sequence of functions (∆n)
can be chosen as

∆n = h−1

(
h(x) + log

(
n log (U(log(n)))

))
,

see [49] and [62]. Notice that these considerations concern the third meaning of the
term domain of attraction as given in Definition 2.10. It is shown in Examples 1 and
2 of [62] that this result is not correct. In fact, the stated condition (2.29) is sufficient
but not necessary for (2.28). A correct necessary and sufficient condition for (2.29) is
stated in Theorem 4.1 of [62]. We give the result without proof.

Theorem 2.11 (Sreehari 2009) Let F be a non–degenerate df such that (2.28) holds
for some general max–stable df H = exp(−e−h(x)) and a sequence of monotone func-
tions (∆n)n∈N

, then there exists a sequence of positive functions (∆∗
n)n∈N

such that

K (h(x)) + log (n∆∗
n(x))

∆∗
n(x)

−−−→
n→∞

1 (2.30)

for all x ∈ (α(F ), ω(F )), where

K(x) =
(
1 − F

(
h−1(x)

))
exp(x).

Conversely, if (2.30) holds for some strictly increasing continuous function h and se-
quences of positive function (∆∗

n), then there exists a sequence of monotone increasing
functions (∆n) such that (2.28 ) holds with H(x) = exp

(
−e−h(x)

)
. The sequence of

functions can be chosen as

∆n(x) = h−1 (h(x) + log (∆∗
n(x))) .
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2. Limiting Distributions Under Monotone Transformations

The incorrect characterization of general max–domains of attraction given in [49] still
yields a sufficient condition for a df F such that (2.28) holds for some (∆n), namely if
F has the representation

F (x) = 1 − (1 + O(1))R (h(x)) exp (−h(x)) , x → ω(F )

where R is a regularly varying function. We now turn again to general pot–domains of
attraction and their relations to general max–domains of attraction.

Lemma 2.12 Let F, H,∆ and h be as in (2.28). Then, there exists a mapping n∗ :
R → N such that T (u, x) := ∆n∗(u)(x) is a monotone transformation, and

(i)

F (T (u, x))

F̄ (u)
−−−−−→
u→ω(F )

L̄(x), x ∈ C(L),

(ii)

L(x) = 1 + log(H(x)) = 1 − e−h(x), h(x) > 0,

(iii)

Su,y(x) −−−−−→
u→ω(F )

h−1 (h(x) + h(y))

where Su,y is defined as in Lemma 2.9.

Proof. We get from [49] that (2.23) is equivalent to

nF̄ (∆n(x)) −−−→
n→∞

− log (H(x)) , x ∈ C(H), (2.31)

and this convergence necessarily entails ∆n(x) −−−→
n→∞

ω(F ). Define n∗(u) such that

n∗(u) = min
n∈N

{
1

n + 1
≤ F̄ (u) <

1

n

}
.

Obviously, n∗(u) −−−−−→
u→ω(F )

∞ and

n∗(u) <
1

F̄ (u)
≤ n∗(u) + 1. (2.32)

Using the last relation we get

n∗(u)F̄
(
∆n∗(u)(x)

)
<

F̄
(
∆n∗(u)(x)

)

F̄ (u)
≤ (n∗(u) + 1)F̄

(
∆n∗(u)(x)

)
. (2.33)

24



2.5. Relations to the Limit Theory of Maxima

Furthermore, since n∗(u) → ∞ as u → ω(F ) (2.33) together with (2.31) yields

F̄
(
∆n∗(u)(x)

)

F̄ (u)
−−−−−→
u→ω(F )

− log(H(x)), x ∈ C(H), (2.34)

notice that F̄
(
∆n∗(u)(x)

)
−−−−−→
u→ω(F )

0. Put T (u, x) := ∆n∗(u)(x) and

L(x) :=





1 + log(H(x)) = 1 − e−h(x) − log(H(x)) > −1;
if

0, − log(H(x)) ≤ −1.

Then we may rewrite (2.34) by

F̄ (T (u, x))

F̄ (u)
−−−−−→
u→ω(F )

L̄(x), x ∈ C̃(L).

Consequently (i) and (ii) hold. It remains to prove part (iii). First observe that

Su,y(x) = T (−1) (u, T (T (u, y), x)) = ∆−1
n∗(u)

(
∆n(T (u,y))

)
.

Using a result in [49], see also (2.24), one gets

Su,y(x) −−−−−→
u→ω(F )

h−1 (h(x) + c log(λ))

for some c > 0, if

lim
u→ω(F )

n∗(u)

n∗ (T (u, y))
= λ > 0. (2.35)

It follows from (2.32) that

1

F̄ (u)
− 1 ≤ n∗(u) ≤ 1

F̄ (u)

and

F̄ (T (u, y)) ≤ 1

n∗ (T (u, y))
≤ 1

1/F̄ (T (u, y)) − 1
.

Thus, we get

F̄ (T (u, y))

(
1

F̄ (u)
− 1

)
≤ n∗(u)

n∗ (T (u, y))
≤
(

F̄ (u)

F̄ (T (u, y))
− F̄ (u)

)−1

. (2.36)

Check that the right hand as well as the left hand side of (2.36) tend to e−h(y) for
u → ω(F ). Therefore, (2.35) holds with λ = e−h(y) and c = 1 for all y ∈ C̃(L). �
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2. Limiting Distributions Under Monotone Transformations

Basically, Lemma 2.12 yields that the relation F ∈ Dmax(H) ⇒ F ∈ Dpot(1 +
log(H)), which is well known from the linear case, is still valid in a more general
context. The transformation T (u, ·), which is used to derive the limiting distribution of
exceedances, is in some sense of the same type as the transformations for the maxima.
The converse implication is not proven in the framework of this thesis. Nevertheless,
one may conjecture that it is also true. The max–domain of attraction of H under the
function ∆n is a subset of the pot–domain of attraction of L = 1 + log(H) under the
transformation T .

2.6 Deriving the Result of Balkema and de Haan

In this section we use the results of the foregoing sections to derive some of the famous
result of Balkema and de Haan [3] and Pickands [53]. We deduce that GPDs are the
only strictly increasing, continuous limiting distributions of exceedances under linear
transformations. Assume that

F̄ (T (u, x))

F̄ (u)
−−−−−→
u→ω(F )

L̄(x)

for

T (u, x) = a(u) + b(u)x, a(u) ∈ R, b(u) > 0.

One immediately gets

T (−1)(u, x) =
x − a(u)

b(u)

and

Su,y(x) =
a(T (u, y)) − a(u)

b(u)
+

b(T (u, y))

b(u)
x.

Let y ∈ S̃(L) be arbitrary but fixed. We get from Lemma 2.4 that there exists a
sequence (un), un → ω(F ) such that Sun,y converges for all x ∈ S̃(L), thus

a(T (un, y)) − a(un)

b(un)
−−−→
n→∞

A(y) ∈ R

and

b(T (un, y))

b(un)
−−−→
n→∞

B(y) ≥ 0.

The first convergence follows from the fact that one can assume without loss of gener-
ality that 0 ∈ S̃(L), since, otherwise, we just change T (u, x) by an additive constant.
The second convergence is then a direct consequence of the first one. Since we find
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2.6. Deriving the result of Balkema and de Haan

such a sequence (un) for each y ∈ S̃(L) one may conclude that L is g–pot–stable with

g(y, x) = A(y) + B(y)x.

We now determine the functions A(y) and B(y) if L is strictly increasing and con-
tinuous. We may choose T such that 0, 1 ∈ S̃(L). Changing T by an additive and a
multiplicative constant does only change the limiting df by a location and scale shift.
Furthermore, we know that

g(y, x) = h−1 (h(x) + h(y)) (2.37)

for some continuous and strictly increasing function h. Thus, g is commutative accord-
ing to (2.19) and, therefore,

A(y) = g(y, 0) = g(0, y) = A(0) + B(0)y. (2.38)

We get from (2.38) and again by the commutativity of g that for x, y1 and y2 all in
S̃(L)

g(x, y1 + y2) = A(x) + B(x)(y1 + y2)

= g(x, y1) + g(x, y2) − A(x)

= g(y1, x) + g(y2, x) − A(x)

= A(y1) + B(y1)x + A(y2) + B(y2)x − A(0) − B(0)x

= A(0) + B(0)(y1 + y2) + B(y1) + B(y2) − B(0)x (2.39)

and also

g(x, y1 + y2) = g(y1 + y2, x)

= A(y1 + y2) + B(y1 + y2)x

= A(0) + B(0)(y1 + y2) + B(y1 + y2)x. (2.40)

Now combining (2.39) and (2.40) and plugging in x = 1 we receive

B(y1 + y2) = B(y1) + B(y2) − B(0). (2.41)

Since (2.41) holds for all y1, y2 ∈ S̃(L) and S̃(L) contains an interval we get

B(y) = α + βy, α ∈ R, β ∈ R.

We now use the representation (2.37) to determine the function h and the limiting df
L(x) = 1 − exp(−h(x)). We have

g(y, x) = h(−1)(h(x) + h(y))

= A(0) + αx + αy + βyx,
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2. Limiting Distributions Under Monotone Transformations

and, therefore,

h(x) + h(y) = h (A(0) + αx + αy + βyx) .

If β = 0, this immediately yields

h(x) =
x − µ

σ
,

where µ = −A(0) and σ > 0 and, thus, L is an exponential distribution

W0,µ,σ

with location ans scale parameters µ and σ.
If β > 0 it is more difficult to determine h. Put y = x, we get

2h(x) = h
(
A(0) + 2αx + βx2

)
.

Notice that a solution of this functional equation is given by

h(x) = a log (b + cx)

for adequate a, b, c ∈ R. Due to [3] we know that this is the only solution which yields
a df. Nevertheless, it should be possible to prove this without relying on results in [3],
but to use the theory of functional equations. Notice that similar problems occur in
the context of Archimedian copulas. We may also parametrize h in a different form,
namely by

h(x) =
1

γ
log

(
1 + γ

x − µ

σ

)
, γ, µ ∈ R , σ > 0

and, thus, the limiting df is a GPD Wγ,µ,σ as in (2.5).

2.7 The Multivariate Case

We shortly mention extensions of the foregoing results to the multivariate case.
Traditionally multivariate EVT has concentrated on limiting distributions of com-

ponentwise taken maxima. We refer to [27], Chapter 4, for a broad discussion of this
topic. A systematic treatment of multivariate exceedances started not until the last
decade with a PhD–thesis by Tajvidi [64] and a pertaining article [57] as well as a
series of articles by Reiss and Falk ([26], [28], [29], [31], [30], [32]) and Kaufmann and
Reiss [43]. A summarized overview may be found in [27], Chapters 5 and 6.

All these investigations rely on the above mentioned well developed theory for mul-
tivariate maxima. The basic result of the latter theory is, that if for non–degenerate
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2.7. The Multivariate Case

multivariate dfs F and G and adequate vectors of constants an, bn ∈ R
d

Fn (an + bn · x) −−−→
n→∞

G (x) (2.42)

holds, then G is a multivariate extreme value distribution. Here the operations “+”
and “ ·” are meant componentwise. If (2.42) holds we say, as in the univariate case, that
F is in the max–domain of attraction of the EVD G under linear transformation.

Furthermore, (2.42) entails in particular, that G is max–stable. For each n ∈ N there
exists some an, bn ∈ R

d such that

Gn (an + bn · x) = G(x).

All univariate margins of G are max–stable and, therefore, univariate EVDs. If the
marginal distributions Gi, i = 1, . . . , d, of G are transformed to standard reverse ex-
ponential margins

Gi(x) = ex, x < 0

then G has the Pickands representation

G(x) = exp

(
D(z)

d∑

i=1

xi

)

where D is a Pickands dependence function and

z =
1

∑d
i=1 xi

(x1, . . . , xd−1) .

For more details we refer to [27], Section 4.3.
In [27] the authors introduce a multivariate generalized Pareto (GP) function defined

by

W (x) = 1 + log (G (x)) , log (G(x)) > −1 (2.43)

extending this well–known relationship from the univariate case to higher dimensions.
In the bivariate case a GP function is a df, this is not necessarily the case in higher
dimensions. Yet there exists dfs which coincide with a GP function in the upper tail. If
the EVD G has reverse exponential margins the pertaining GP function is the upper
tail of the uniform distribution on [−1, 0].

It is shown that a GP function is an adequate model for multivariate distribution
tails as it is in the univariate case. A first important property of a GP function in
connection with multivariate exceedances is stated in the following lemma (part (iii)
of Lemma 5.1.3 in [27]).

Lemma 2.13 (Falk and Reiss (2004)) Let X be a random vector distributed ac-
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2. Limiting Distributions Under Monotone Transformations

cording to a multivariate EVD with reverse exponential margins. Then for x, t ≤ 0

lim
r↓0

P (X ≤ rx |X ∈ (−∞, rt]c ) = Ft(x)

where Ft is a df satisfying

Ft(x) = W (x), a < x < 0

for some a ∈ R
d and some GP function W .

In the foregoing lemma a vector x is considered as an exceedance over the threshold
u = rt if at least one component of x exceeds the pertaining component of u. The
appropriate limit distribution coincides with a GP function for all such x where all
components of x exceed the pertaining component of u. In addition a GP function
satisfies various versions of multivariate pot–stability (see [27], Section 5.2).

In [57] the authors generalize the above result. They study multivariate generalized
Pareto distributions of the form

W̃ (x) =
1

− log (G (0))
log

(
G (x)

G (x ∧ 0)

)
, 0 < G (0) < 1

where ∧ denotes the componentwise taken minimum. Notice that G cannot be taken
as an EVD with reverse exponential margins since otherwise we have G (0) = 1. Yet
we get for

W̃ (x) = 1 − log (G(x))

log (G(0))
, x > 0, (2.44)

that

W̃ (x) = W (x), x > 0,

if G is normalized such that G (0) = e−1. In particular, G does not possess reverse
exponential margins.

When dealing with limiting distributions of exceedances one has to determine how
the multivariate threshold u approaches the right endpoint of a given distribution.
In Lemma 2.13 the authors choose some direction t and then let u approach zero
along this direction. In general one may define (cf. [57]) a R

d–valued threshold curve
{u(t)|t ∈ [1,∞)} such that F (u(t)) → 1 if t → ∞. It is proven in [57] that, if X is a
R

d–valued random vector with df F and

• there exists a threshold curve u(t)

• a function b : R
d → R

d

• and a df L with non–degenerate margins
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2.7. The Multivariate Case

such that

P

(
X − u(t)

b (u(t))
≤ x

∣∣∣∣X ∈ (−∞,u(t)]c
)

−−−→
t→∞

L(x),

then L is a multivariate GPD W̃ as defined in (2.44). Because only a scale transfor-
mation is used and the shift is confined to be equal to the threshold, only continuous
pot–stable marginal distributions, thus GPDs, occur in the above limit relation. The
question whether different dependence structures appear in the limit if an arbitrary
shift function a is considered is still unsolved.

A natural question arises in this context. Consider a general monotone transforma-
tion and the pertaining limiting distribution in the multivariate case where the per-
taining margins are uniform distributions on [−1, 0]. Do other dependence structures
different from that induced by the Pickands dependence function arise?

We will confine us to transformations T : R
d → R

d which apply to each component
separately, that is

T (x) = (T1(x1), . . . , Td(xd)) , x = (x1, . . . , xd), (2.45)

where the marginal transformations Ti are as in Condition 2.8. We only consider the
construction (2.43). Thus, the question is reduced to multivariate max–stable distri-
butions under general, yet componentwise monotone transformations. Max–stable dis-
tributions in greater generality are studied in [62], [50] and [51]. The following lemma
shows that there are no other dependence structures than in the case of linear trans-
formations.

Lemma 2.14 Let K : (0,∞) × R
d → R

d, K(x) = (K1(r, x1), . . . , Kd(r, xd)) be a
transformations where Ki : (0,∞) × R → R is strictly increasing in both components
for, i = 1, . . . , d. Furthermore, let H be a df satisfying

Hr (K(r,x)) = H (x) , x ∈ R
d, r > 0. (2.46)

Then there exists a transformation K∗ : R
d → R

d, K∗(x) = (K∗
1 (x1), . . . , K

∗(xd))
where K∗

i : R → R is strictly increasing for i = 1, . . . , d such that

H (K∗(x)) = G(x)

where G is an EVD with reverse exponential margins. In particular H and G have the
same copula.

Proof. First observe that (2.46) yields that the margins Hi of H are generalized max–
stable with respect to Ki. This entails in particular that there exists strictly monotone
functions hi and some ci > 0 (see again [51] and [62]) such that

Ki(r, x) = h−1
i (hi(x) + ci log(r)) .

31



2. Limiting Distributions Under Monotone Transformations

We get

Hn
(
h−1

1 (h1(x1) + c1 log(n)) , . . . , h−1
d (hd(xd) + cd log(n))

)
= H (x1, . . . , xd)

for all n ∈ N. Now choose y such that xi = h−1
i (yi), i = 1, . . . , d. It follows that

Hn
(
h−1

1 (y1 + c1 log(n)) , . . . , h−1
d (yd + cd log(n))

)

= H
(
h−1

1 (y1), . . . , h
−1
d (yd)

)
.

Putting

H̃(x1, . . . , xd) := H
(
h−1

1 (x1), . . . , h
−1
d (xd)

)
,

one gets

H̃n (x1 + c1 log(n), . . . , xd + cd log(n)) = H̃(x1, . . . , xd)

and, thus, H̃ = G for some EVD G. Apparently, this yields that the copulas of H and
G coincide. �

It is not in the scope of this thesis to investigate whether limiting distributions of
exceedances appear in the multivariate framework which are not derived from a max–
stable distribution G. If one also considers transformations which mix the marginal
distributions, thus not being of the form given in (2.45), one has to develop a new
theory. First attempts into this direction are made in [4] where matrix–transformations
are applied to the exceedances.
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3 Limiting Distributions Under Special

Monotone Transformations

In this chapter we will study some special non–linear normalizations in detail, namely
power–normalizations and exponential normalizations.

Our main focus lies on power–normalizations. The concept of power–normalization
was first introduced in [49] in conjunction with limiting distributions of maxima of
independent rvs. In contrast to linear normalizations T (u, x) = a(u) + b(u)x the term
power–normalization denotes transformations of the type

T (u, x) = sign(x)α(u) |x|β(u) . (3.1)

In [49] all possible limiting distributions of maxima of iid rvs under power normalization
are derived. These limiting dfs constitute the class of p–max stable laws. More details
about p–max stable laws are indicated in Section 3.3. P–max stable laws and their
pertaining p–max–domains of attraction are thoroughly studied in [46] and [63] using
the general result of maxima under monotone transformations in [49] which are also
summarized in Section 2.5. Finally, these results are derived in [10] without relying
on the results in [49] but using relations to the limit theory for maxima under linear
normalization. It turns out that all results concerning limiting dfs and domains of
attraction of maxima under power normalization can be derived from traditional EVT.
The basic result is, that every p–max stable df H can be represented in the form

H(x) = G(log(x)), x > 0 (3.2)

or

H(x) = G (− log(−x)) , x < 0, (3.3)

where G denotes an EVD. An analog result holds for the p–max–domains of attraction,
that is, roughly speaking, a df F belongs to the p–max–domain of attraction of H(x) =
G (log(x)) if F ◦ exp belongs to the max–domain of attraction of G. A similar result
holds for H as in (3.3). We will derive the analog result for limiting distributions of
exceedances under linear and power normalization. An interesting but until recently
rarely studied aspect of limit theory for maxima under power normalization is that it
yields approximate distributions for maxima of certain distributions which have slowly
varying distribution tails and are, therefore, not in the max–domain of attraction of
any EVD. This result carries over to exceedances. Models for distributions with slowly
varying tails are also studied in Chapter 4.
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3. Special Monotone Transformations

As already indicated in Theorem 2.3 limiting dfs of exceedances under certain trans-
formations are closely related to the pertaining pot–stable dfs.

One may speak of p–pot stability if for a df F and all u ∈ C̃(F ) there exist positive
functions α and β such that

F [u](sign(x)α(u)|x|β(u)) = F (x)

for all x ∈ S̃(F ). In the following section we characterize all p–pot–stable dfs. Special
attention is paid to the family of continuous p–pot–stable dfs which coincides with the
parametric family of generalized log–Pareto dfs (GLPDs). In Chapter 4 we introduce a
different form of a generalized Pareto distribution which can be deduced from the one
used in this chapter by an additional scale shift.

An outline of this chapter is as follows. We deduce the class of p–pot–stable dfs in
Section 3.1. In Section 3.2 we derive all limiting distributions of exceedances in the sense
of the foregoing chapter, if the transformations T are chosen as power–transformations
as given in (3.1). Section 3.4 is concerned with the pertaining domains of attractions,
in Section 3.5 we deal with a particular subset of these domains of attraction which
is established by mixtures of regularly varying dfs. We discuss an extension of power
normalization in Section 3.6. This chapter is concluded by some remarks concerning a
different normalization, namely exponential transformations, in Section 3.7.

3.1 P–POT Stable Distributions

As in [46] we call a df F1 a p–type of F2, if F1(x) = F2

(
sign(x)α|x|β

)
for positive

constants α and β. Check that F1 is p–pot–stable if, and only if, F2 is p–pot–stable.
In the subsequent lines we note standard versions of p–pot–stable dfs. The pertaining

proof is given in Theorem 3.1 (Theorem 1 of [14]). The first family of p–pot–stable laws
consists of generalized log–Pareto dfs

L̃γ(x) = Wγ(log(x)) = 1 − (1 + γ log(x))−1/γ , γ ∈ R, (3.4)

for 1 < x if γ ≥ 0, and 1 < x < exp(1/|γ|) if γ < 0. Every df which is a p–type of L̃γ

has its total mass on the positive half–line. Specifically, for γ → 0 one gets

L̃0(x) = 1 − 1/x, x ≥ 1,

which is the unique standard Pareto df (under power normalization).
All continuous p–pot–stable dfs with mass on the negative half–line are p–types of

the negative log–Pareto df

Vγ(x) = Wγ(− log(−x)) = 1 − (1 − γ log(−x))−1/γ (3.5)

for −1 < x < 0 if γ ≥ 0 and −1 < x < − exp(1/γ) if γ < 0. Notice that V0 is the
uniform distribution on the interval [−1, 0].
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3.1. P–POT Stable Distributions

The discrete p–pot–stable laws are given by

Ψγ,α(x) = Πγ,α(log(x))

and

Υγ,α(x) = Πγ,α(− log(−x)),

cf. also (2.6).

Theorem 3.1 Let F be a df such that for each y ∈ C̃(F ) there exist functions α(·) > 0
and β(·) > 0 such that

F [y]
(
sign(x)α(y)|x|β(y)

)
= F (x) (3.6)

for all x ∈ C̃(F ). Then,
F (x) = W (log(x)) ,

or
F (x) = W (− log(−x)) ,

where W denotes a pot–stable df.

Proof. Let y ∈ C̃(F ). Apparently, (3.6) is equivalent to

F̄ (sign(x)α(y)|x|β(y))

F̄ (y)
= F̄ (x).

Let F (0) > 0. Then,
F̄ (0)

F̄ (y)
= F̄ (0)

and F (0) = 1 because 0 < F (y) < 1. Thus, we have F (0) = 0 or F (0) = 1 and,
consequently, F has all mass either on the positive or negative half–line.

(a) Let F (0) = 0 and, therefore, F (x) = 0 for all x < 0. It suffices to consider
x, y > 0. Let x > 0, x, y ∈ C̃(F ). Then, (3.6) yields

F̄
(
α(y)xβ(y)

)

F̄ (y)
= F̄ (x).

It follows that

F̄
(
α(exp(y)) exp(x)β(exp(y))

)

F̄ (exp(y))
= F̄ (exp(x))
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3. Special Monotone Transformations

for all x, y ∈ C̃ (F ◦ exp). Furthermore,

F̄
(
α(exp(y)) exp(x)β(exp(y))

)

F̄ (exp(y))
= F̄ (exp(x))

⇔ F̄ (exp (log(α(exp(y))) + β(exp(y))x))

F̄ (exp(y))
= F̄ (exp(x)) .

Put F ∗ := F (exp(·)). The above computations yield

1 − F ∗
(
α̃(y) + β̃(y)x

)

1 − F ∗(y)
= 1 − F ∗(x)

with α̃(y) = log (α(exp(y))) and β̃(y) = β(exp(y)). Consequently, F ∗ = W for some
pot–stable df W and F (·) = W (log(·)).

(b) Next assume that F (0) = 1. Let x ≤ 0 and x, y ∈ C̃(F ). Then similar arguments
as in part (a) yield that (3.6) is equivalent to

F̄∗(α̃(y) + β̃(y)x)

F̄∗(y)
= F̄∗(x)

with F∗(x) := F (− exp(−x)) for x < 0 and F∗(x) = 1 for x ≥ 0, where α̃(y) can be
chosen as α (− exp(−y)) and β̃(y) = β (− exp(−y)). Thus, F∗ is a pot–stable df W and
F (x) = W (− log(−x)). �

The class of pot–stable dfs W is well known due to [3] and [53]. If W is continuous,
then W is a GPD

Wγ,β,µ := 1 −
(

1 + γ
x − µ

σ

)−1/γ

thus a linear type of the GPD given in (2.5) with additional scale and location param-
eter σ > 0 and µ. In addition there are two classes of discrete pot–stable dfs and thus,
the mentioned p–pot–stable dfs.

In Section 3.2 we identify the p–pot–stable dfs as the only possible limiting dfs of
exceedances under power–normalization.

3.2 Limiting Distributions

Next we study limiting dfs L of exceedances above high thresholds under power nor-
malization, that is, for some df F we have

F [u]
(
sign(x)α(u) |x|β(u)

)
−−−−−→
u→ω(F )

L(x). (3.7)
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3.2. Limiting Distributions

Notice that (3.7) is equivalent to

F̄
(
sign(x)α(u) |x|β(u)

)/
F̄ (u) −−−−−→

u→ω(F )
L̄(x), (3.8)

where, again, F̄ := 1 − F is the survivor function of F .
We use two approaches for the derivation of our results. The first one uses results

from traditional extreme value theory, the second one utilizes the results from Chapter
2.

3.2.1 Derivation from Traditional EVT

Given a df F we define auxiliary dfs F ∗ and F∗ by

F ∗(x) =
F (exp(x)) − F (0)

1 − F (0)
, x ∈ R,

if ω(F ) > 0, and

F∗(x) = F (− exp(−x)), x ∈ R,

if ω(F ) ≤ 0. We start with a technical lemma concerning F ∗ and F∗.

Lemma 3.2 Let L be a non–degenerate limiting df in (3.7) for some df F . Then,

(i) there are functions a(·) and b(·) > 0 such that

F̄ ∗(a(u) + b(u)x)
/
F̄ ∗(u) −−−−−−→

u→ω(F ∗)
L̄∗(x)

if ω(F ) > 0, and

F̄∗(a(u) + b(u)x)
/
F̄∗(u) −−−−−−→

u→ω(F∗)
L̄∗(x)

if ω(F ) ≤ 0.

(ii) L∗ and, respectively, L∗ are pot–stable dfs.

Proof. First we prove that the total mass of L is either concentrated on the positive
or negative half–line and, therefore,

L(exp(x)) = L∗(x), x ∈ R,

if ω(L) > 0, and

L(− exp(−x)) = L∗(x), x ∈ R,

if ω(L) < 0.
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3. Special Monotone Transformations

The remainder of the proof is merely outlined for ω(F ) > 0. The case of ω(F ) ≤ 0
follows by similar arguments. If x < 0, we have

F [u]
(
sign(x)α(u) |x|β(u)

)
≤ F [u](0) −−−−−→

u→ω(F )
0

because ω(F ) > 0. This implies L(x) = 0 for all x ≤ 0.
Next consider x > 0. From (3.8) one gets

F̄
(
α(u)xβ(u)

)/
F̄ (u) −−−−−→

u→ω(F )
L̄(x).

Moreover, by straightforward computations,

F̄ (exp (a(u) + b(u)x))

F̄ (exp(u))
−−−−−−−−→
exp(u)→ω(F )

L̄(exp(x)) (3.9)

for all x ∈ R with a(u) = log(α (exp(u))) ∈ R and b(u) = β (exp(u)) > 0. Therefore,

F̄ ∗(a(u) + b(u)x)

F̄ ∗(u)
−−−−−−→
u→ω(F ∗)

L̄(exp(x)) = L̄∗(x), (3.10)

and assertion (i) is verified. This also implies (ii) because limiting dfs under linear
normalization are pot–stable. �

Lemma 3.2 now offers the prerequisites to prove the main result of this section.

Theorem 3.3 Every non–degenerate limiting df L in (3.7) is p–pot–stable.

Proof. Again, we merely prove the case ω(F ) > 0. From Lemma 3.2(ii) we know that
L∗ is pot–stable. Thus, there are a(y) ∈ R and b(y) > 0 such that

L̄∗(a(y) + b(y)x)
/
L̄∗(u) = L̄∗(x)

for all x, y ∈ C̃(L∗). This yields for x, y > 0,

L̄∗(a(y) + b(y) log(x))
/
L̄∗(log(y)) = L̄∗(log(x)).

Choosing α(y) and β(y) as in the proof of Lemma 3.2 one gets from the equation
L̄∗(a(y) + b(y) log(x)) = L̄∗ (log

(
α(y)xβ(y)

))
that

L̄
(
α(y)xβ(y)

)/
L̄(y) = L̄(x)

for all x, y ∈ C̃ (L∗ ◦ log). Notice that L(x) = L∗(log(x)) if x > 0, and L(x) = 0 if
x ≤ 0. This yields the p–pot stability of L according to the preceding equation. �

It is evident that the converse implication is also true, that is, every p–pot–stable df
L is a limiting df in (3.7) by choosing F = L. Summarizing the previous results we get
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3.2. Limiting Distributions

that L is a limiting df of exceedances pertaining to a df F under power-normalization
if, and only if, L∗ (if ω(F ) > 0) or L∗ (if ω(F ) ≤ 0) are pot–stable.

3.2.2 Derivation Using the General Result

In the case of continuous, strictly increasing limit dfs, the results of the foregoing lines
can also be obtained by using the general result of Chapter 2. We merely consider
continuous limiting dfs. We have

F̄ (T (u, x))

F̄ (u)
−−−−−→
u→ω(F )

L̄(x), x ∈ S(L),

where

T (u, x) = sign(x)α(u) |x|β(u)

and α and β are functions with values in the positive real numbers. We have

T (−1)(u, x) = sign(x)

( |x|
α(u)

)1/β(u)

and, therefore,

Su,y(x) = sign(x)

(
α (T (u, y))

α(u)

)1/β(u)

|x|β(T (u,y))/β(u).

In the following lines we will use arguments similar to those in Section 2.6. As in Section
2.6 we know from Lemma 2.4 that for each y ∈ S̃(L) there exists a sequence (un),
un −−−→

n→∞
ω(F ) such that Sun,y(·) converges for all x ∈ S̃(L). Obviously convergence

of Sun,y(x) is equivalent to

(
α (T (un, y))

α(un)

)1/β(un)

−−−→
n→∞

A(y)

and

β (T (un, y)) /β(un) −−−→
n→∞

B(y)

since we may assume, without loss of generality, that 1 ∈ S̃(L). Thus

Sun,y(x) −−−→
n→∞

gy(x) = sign(x)A(y)|x|B(y), for all x ∈ S̃(L)

and also by Lemma 2.4

L̄
(
sign(x)A(y)|x|B(y)

)
= L̄(x)L̄(y), for all x ∈ S̃(L).
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3. Special Monotone Transformations

In the next step we prove that gy is strictly increasing for all y ∈ S̃(L). First notice
that A(y), B(y) ≥ 0 for all y ∈ S̃(L) because they are limits of non–negative sequences.
If A(y) = 0 then gy(x) = 0 for all x ∈ S̃(L) and, therefore,

L̄(0) = L̄(y)L̄(x)

for all x ∈ S̃(L) and, therefore, L̄ is constant. Correspondingly, B(y) = 0 yields

L̄(sign(x)A(y)) = L̄(y)L̄(x)

for all x ∈ S̃(L)\ {0}. Therefore we get A(y), B(y) > 0 for all y ∈ S̃(L) and, thus, gy

is strictly increasing.
Now we merely consider those limiting dfs L which are strictly increasing on S̃(L).

It remains to determine the concrete form of the functions A and B to derive g and the
strictly increasing function h which then gives L. First note that S̃(L) is necessarily
either a subset of the positive or negative real line. This can be easily seen using
arguments as in the proof of Lemma 3.2. Therefore, we have to determine g(y, x) for
the cases x, y > 0 and x, y < 0. We only consider the case where S̃(L) is contained
in the positive real numbers. Therefore, let x, y > 0. First note that, since g(y, x) =
h−1(h(x) + h(y)), we have that g(y, x) = g(x, y). Secondly we may change A and B
by multiplicative constants because this only leads to a power–transformation of the
limiting distribution. Since we have two free parameters we may assume 1 ∈ S̃(L) and
exp(1) ∈ S̃(L). This yields

A(y) = g(y, 1) = g(1, y) = A(1)yB(1) (3.11)

and furthermore for x, y1, y2 > 0

g(x, y1y2) = A(1)xB(1)(y1y2)
B(x) =

(
xB(1)A(1)

)−1
g(y1, x)g(y2, x). (3.12)

From the commutativity of g (cf. (2.19)) we also get

g(x, y1y2) = g(y1y2, x) = A(y1y2)x
B(y1y2). (3.13)

Combining equations (3.11) to (3.13), plugging in exp(1) for x, and again using the
commutativity of g one gets

(
xB(1)A(1)

)−1
g(y1, x)g(y2, x) = A(y1y2)x

B(y1y2)

⇔ B(y1) + B(y2) − B(1) = B(y1y2). (3.14)

Since we know that, in addition, B is positive on S̃(L) the only solution of equation
(3.14) is

B(y) = a + b log(y), a, b > 0, (3.15)
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3.3 Relations to P–Max Stable Laws

which gives

g(y, x) = exp (log (A(1)) + a log(y) + a log(x) + b log(x) log(y)) .

From this we get the following functional equation for h (and x, y > 0)

h(x) + h(y) = h (exp (log (A(1)) + a log(y) + a log(x) + b log(x) log(y))) ,

with h̃(x) := h (exp(x)). Plugging in y = exp(y′) and x = exp(x′) this yields

h̃(x′) + h̃(y′) = h̃
(
c + ax′ + ay′ + bx′y′

)

for some constant c ∈ R. Thus, h̃ is some function as derived in Section 2.6.
If b = 0 we have h(x) = α log (βx) for α ∈ R, β > 0. If b > 0 the solution of this

functional equation is given by

h(x) = a log (b log (cx)) , a ∈ R, b, c > 0.

Now it is an immediate consequence of this equation that L is a log–Pareto df as given
in (3.4). Similar arguments yield the corresponding result for negative log–Pareto dfs
if the support of L is contained in the negative half–line.

3.3 Relations to P–Max Stable Laws

We start with a representation of log–Pareto dfs by means of p–max–stable dfs. Recall
that a df F is p–max–stable if there exist sequences αn, βn > 0 such that

Fn(sign(x)αn|x|βn) = F (x), x ∈ R,

and all positive integers n, cf. [49] or [27], Section 2.6.
For the special p–max stable df

H1,γ(x) = exp(−(log x)−γ), x ≥ 1,

with γ > 0, define

Fγ(x) = 1 + log H1,γ(x)

= 1 − (log x)−γ , x ≥ exp(1), (3.16)

which is a log–Pareto df with shape parameter 1/γ.
In analogy to (3.16), the whole family of distributions in (3.4) can be deduced from

p–max stable laws Hi,γ,β,σ(x) = Hi,γ((x/σ)β), for i = 1, 2, 3 (for the definition of
general p–max stable laws see [27], 2nd edition, Section 2.6). This relationship makes
the theory of p–max dfs applicable to log–Pareto dfs to some extent (cf. also Theorem
2.12).
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3. Special Monotone Transformations

3.4 Domains of Attraction of P–POT Stable Distributions

Within the linear framework, a df F belongs to the pot–domain of attraction of a df
W , denoted by F ∈ Dpot(W ), if there are functions a(·) and b(·) > 0 such that

F [u](a(u) + b(u)x) −−−−−→
u→ω(F )

W (x).

Correspondingly, if relation (3.7) holds for dfs F and L, then F belongs to the p–
pot–domain of attraction of L denoted by F ∈ Dp−pot(L). Note that this refers to the
second notion of a domain of attraction in Definition 2.10.

3.4.1 A General Result

We characterize p–pot–domains of attraction of a p–pot–stable df L by means of pot–
domains of attraction of L∗ or L∗ which are pot–stable according to Theorem 3.3. As
a direct consequence of Lemma 3.2(i) one gets the following theorem.

Theorem 3.4 For the p–pot–domain of attraction Dp−pot(L) of a p–pot stable law L
we have

Dp−pot(L) = {F : F ∗ ∈ Dpot(L
∗)} ,

if ω(L) > 0, and
Dp−pot(L) = {F : F∗ ∈ Dpot(L∗)}

if ω(L) ≤ 0.

P–pot–domains of attraction of continuous p–pot–stable laws can be deduced from
p–max–domains of attractions, given for example in [27], due to the identity of pot–
and max–domains of attraction in the linear setup. The domains of attraction of the
discrete p–pot–stable laws have no counterpart in the framework of max-stable dfs.
Their domains of attraction can be derived from the preceding theorem and Section 3
of [3].

3.4.2 Special Conditions in the Log-Pareto Case

We make use of a parametrization of log–Pareto dfs which is different from that in
(3.4). Let

L̂γ(x) = 1 − (log(x))−1/γ , γ > 0, x ≥ exp(1). (3.17)

It is apparent that L̂γ is a p–type of L̃γ in (3.4). Such dfs can be regarded as prototypes
of p–pot–stable dfs with slowly varying tails.

Corollary 3.5 We have F ∈ Dp−pot(L̂γ) if, and only if, there is a slowly varying
function U and some a > 1 such that

F (x) = 1 − (log(x))−1/γ U (log(x)) , x > a. (3.18)
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3.4. Domains of Attraction of P–POT Stable Distributions

Proof. This is a direct consequence of Theorem 3.4. We have for x > 0 that F̄ (x) =
F̄ (0)F̄ ∗(log(x)) for the df F ∗ which is in the pot-domain of attraction of a Pareto df
and, therefore, F̄ ∗ is regularly varying at infinity. �

The p–pot–domain of attraction of a log–Pareto df L̂γ can as well be characterized by
a property with is deduced from regular variation which characterizes the pot–domain
of attraction of Pareto dfs under linear transformation. Observe that

¯̂
Lγ

(
xlog(y)

)/ ¯̂
Lγ(y) = (log(x))−1/γ

which is the p–pot stability of L̂γ . For the domain of attraction this relation holds in
the limit and, furthermore, this yields a characterization of the domain attraction.

Corollary 3.6 We have F ∈ Dp−pot(L̂γ) if, and only if,

F̄
(
xlog(u)

)/
F̄ (u) −−−→

u→∞
(log(x))−1/γ , x > 1. (3.19)

Proof. If F ∈ Dp−pot(L̂γ) we have

F̄ (x) = (log(x))−1/γ U (log(x)) , x > a

for some slowly varying function U and some a > 1. Therefore,

F̄
(
xlog(u)

)

F̄ (u)
=

(
log
(
xlog(u)

))−1/γ
U
(
log
(
xlog(u)

))

(log(u))−1/γ U (log(u))

= (log(x))−1/γ U (log(u) log(x))

U (log(u))

→ (log(x))−1/γ for u → ∞.

Conversely, let
lim

u→∞
F̄ (xlog(u))

/
F̄ (u) = (log(x))−1/γ

for x > 1. It follows that

lim
u→∞

F̄ (exp(uy))
/
F̄ (exp(u)) = y−1/γ

for all y > 0. Thus, F ∗ ∈ Dpot (Wγ) and, consequently, F ∈ Dp−pot

(
L̂γ

)
. �

We include a result about the invariance of Dp−pot

(
L̂γ

)
under shift and power

transformations.

Corollary 3.7 The following equivalences hold true for µ ∈ R and β, σ > 0:

F (·) ∈ Dp−pot

(
L̂γ

)
⇔ F ((· − µ)) ∈ Dp−pot

(
L̂γ

)
,
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3. Special Monotone Transformations

and
F (·) ∈ Dp−pot

(
L̂γ

)
⇔ F

(
σ(·)β

)
∈ Dp−pot

(
L̂γ

)
.

Proof. We only prove part (i) because (ii) concerns a power–normalization and, there-

fore, it is straightforward. Putting Fµ(x) = F (x − µ) for F ∈ Dp−pot

(
L̂γ

)
we get

1 − (Fµ)∗ (tx)

1 − (Fµ)∗ (t)
=

F̄ (exp(tx) − µ)

F̄ (exp(t) − µ)

=
F̄
(

exp(tx)−µ
exp(tx) exp(tx)

)

F̄
(

exp(t)−µ
exp(t) exp(t)

)

=
F̄
(
exp

(
tx + log

(
exp(tx)−µ

exp(tx)

)))

F̄
(
exp

(
t + log

(
exp(t)−µ

exp(t)

)))

=
F ∗ (tx + at)

F ∗(t + bt)

with

at = log

(
exp(tx) − µ

exp(tx)

)
and bt = log

(
exp(t) − µ

exp(t)

)
.

Obviously at → 0 and bt → 0. Since F̄ ∗ is regularly varying at infinity the convergence

F̄ ∗(tx)

F̄ ∗(t)
−−−→
t→∞

x−1/γ

holds uniformly, hence
F̄ ∗ (tx + at)

F̄ ∗(t + bt)
−−−→
t→∞

x−1/γ

and, thus, F (· − µ) ∈ Dp−pot. �

The previous result yields that

Dp−pot(L) = Dp−pot(L̂γ)

for all p-types L of L̂γ . It is easily seen that this result is valid for a p–pot–domain
of attraction of an arbitrary p–pot–stable law. The result concerning location shifts
cannot be extended to p–pot–stable laws with finite right endpoints.
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3.5 Mixtures of Regularly Varying Distribution Functions

3.5 Mixtures of Regularly Varying

Distribution Functions

We start with a result in [56] concerning a relation of log–Pareto dfs

L̂γ(x) = 1 − (log(x))−1/γ

and Pareto dfs

W̃γ,σ(x) = 1 − (x/σ)−1/γ

which corresponds to the example for super–heavy tailed dfs already addressed in the
introduction. Log–Pareto dfs can be represented as mixtures of certain Pareto dfs with
respect to gamma densities. We have

L̂γ(x) =

∫ ∞

0
W̃1/z,e(x)h1/γ(z)dz (3.20)

where hα is the gamma density

hα(x) =
1

Γ(α)
exp(−x)xα−1, (3.21)

with e = exp(1).
We prove that this result can be extended to dfs in the domains of attraction of

log–Pareto and Pareto dfs under power and, respectively, linear normalization.

Theorem 3.8 The following properties hold for the p–pot domain of attraction of a
log–Pareto df L̂γ:

(i) Let F ∈ Dp−pot(L̂γ) for some γ > 0. Then there is a family of dfs Gz, with
Gz ∈ Dpot(W̃1/z), such that

F (x) =

∫ ∞

0
Gz(x)p(z)dz,

where p is a density which is ultimately monotone (monotone on [x0,∞) for some
x0 > 0) and regularly varying at zero with index 1/γ − 1.

(ii) Let Gz be a family of dfs with Gz ∈ D(W1/z) with representation

Gz(x) = 1 − x−zU (log(x)) , x > a1,

for some slowly varying function U and some a1 > 0. Then the mixture

F (x) :=

∫ ∞

0
Gz(x)p(z)dz,
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3. Special Monotone Transformations

where p is a density as in (i), has the representation

F (x) = 1 − (log(x))−1/γ V (log(x)) , x > a2

for some slowly varying function V and some a2 > 1, thus, F ∈ Dp−pot(L̂γ).

Proof. To prove (i) observe that the gamma density h1/γ in (3.21) satisfies the condi-
tions imposed on p. Therefore, (i) is a direct consequence of (3.20) and Corollary 3.5.
Therefore the statement is still true with p replaced by h1/γ .

Assertion (ii) is a modification and extension of Lemma 1 in [45] by Meerschaert and
Scheffler. Notice that

1 − F (x) =

∫ ∞

0
e−z log(x)p(z)dzU (log(x)) .

The integral is now a function p̂(log(·)) where p̂ denotes the Laplace transform of p.
Since p is assumed to be ultimately monotone and regularly varying at zero with index
1/γ − 1 one can apply Theorem 4 on page 446 of [33] getting

∫ ∞

0
e−z log(x)p(z)dz = log(x)−1/γ Ṽ (log(x)), x > a3

for some slowly varying function Ṽ and a3 > 1. Now V (x) := U(x)Ṽ (x) is again slowly
varying which completes the proof. �

3.6 The Iterated Case

The concepts of linear and power normalization can be generalized as follows. For k =
0, 1, 2, . . . let T (k) be a family of monotone transformations T (k) such that T (k)(u, 0) = 0
for all u and k ∈ N and there is some T (k−1) ∈ T (k−1) such that

T (k)(u, x) = sign(x) exp
(
T (k−1) (sign(u) log(|u|), log(|x|))

)
. (3.22)

A df L is called k–th order T –pot–stable if there is a T (k) ∈ T (k) such that

L̄
(
T (k)(y, x)

)
= L̄(x)L̄(y) (3.23)

for all x, y ∈ C̃(L). We call L T –pot–stable if the latter relation holds for k = 0.
We impose the following condition for a family of monotone transformations T =

T (0).

Condition 3.9 For a df F there exists T (0) ∈ T (0) and a non–degenerate df L such
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3.6. The Iterated Case

that

F [u](T (0)(u, x)) −−−−−→
u→ω(F )

L(x) (3.24)

for all x if, and only if, L is T –pot–stable.

The following theorem extends the results of previous sections to a more general
setting.

Theorem 3.10 Let T (0) be a family of monotone transformations. Define T (k), k ∈ N,
as above.

(i) A df L is k-th order T –pot–stable if, and only if,

L(x) =





K(log(x)) x > 0,
if

0 x ≤ 0,

or

L(x) =





1 x > 0,
if

K(− log(−x)) x ≤ 0,

for a (k − 1)–th order T –Pot–stable df K.

(ii) In addition, assume that Condition 3.9 holds. Let F and L be non–degenerate dfs
such that

F [u](T (k)(u, x)) −−−−−→
u→ω(F )

L(x) (3.25)

for all x and a monotone transformations T (k) ∈ T (k). Then, L is k–th order T –
pot–stable. Furthermore, (3.25) holds if, and only if, this relation is also true for
some T (k−1) ∈ T (k−1) and F ∗ and L∗ if ω(F ) > 0, and F∗ and L∗ if ω(F ) ≤ 0.

Proof. (i) Observe that (3.23) is equivalent to

L̄
(
T (k)(y, x)

)/
L̄(y) = L̄(x) (3.26)

if x, y ∈ C̃(L). Let L(0) > 0. This yields

L̄(0)
/
L̄(y) = L̄(0),

and, therefore, L̄(0) = 0 and consequently L(0) = 1. Thus, L has all mass either on
the positive or negative half–line.
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3. Special Monotone Transformations

We only consider ω(L) > 0, the proof is similar for ω(L) ≤ 0. We have L(x) = 0 for
x < 0. Now let x > 0, one gets from (3.26)

L̄
(
exp

(
T (k−1) (log(y), log(x))

))

L̄(y)
= L̄(x), x, y ∈ C̃ (L) .

Now straightforward computations yield

L̄∗ (T (k−1)(y, x)
)

L̄∗(y)
= L̄∗(x), x, y ∈ C̃ (L∗) .

Thus, L∗ = L◦exp is (k−1)–th order T –pot–stable and we get the stated representation
of L. The converse implication, that the stated representation yields a k–th order T –
pot–stable df, can be verified by straightforward computations.
(ii) The proof can be carried out in analogy to the proofs of Lemma 3.2 and Theorem
3.3. �

The results in the previous section fit into this context. Let T (0) be the family of
linear transformations T

(0)
µ,σ(u, x) = µ(u) + σ(u)x with µ ∈ R and σ > 0. Apparently

Condition 3.9 holds for this choice of T (0). It follows that T (1) is the family of power–
normalizations. From relation (3.22) we may define a second order power–normalization
by

T (2)(u, x) = sign(x) exp
(
sign (log(|x|)) α(u) |log (|x|)|β(u)

)
α, β > 0,

and by iterating this procedure we derive a k-th order power–normalization by T (k).
The results about the relation of domains of attraction of linear and power transfor-
mations analogously apply to the relation of domains of attraction under k–th and
(k + 1)-th order iterated power–normalizations.

A special case of the previous considerations concerns dfs with iterated heavy tails.
Let again T (0)(x) = T

(0)
µ,σ(u, x) = µ(u) + σ(u)x. We only consider continuous dfs with

ω(F ) = ∞ which are in some sense the most heavy tailed dfs in each class of k-th order
T –pot–stable dfs. It is well known that in the case of heavy tailed dfs relation (3.24)
holds with T (0)(u, x) = ux and L = Wγ for some γ > 0, that is that F̄ is regularly
varying at infinity. Using (3.22) we define for x > 0

T (1)(u, x) = exp
(
T (0) (log(u), log(x))

)
= xlog(u).

Then (3.24) becomes (3.19) which is a necessary and sufficient condition for a df F
to belong to the p–pot–domain of attraction of a log–Pareto df Lγ and is, therefore,
super–heavy tailed. A df F is said to be third order iterated heavy tailed if, and only
if,

F̄
(
T (2)(u, x)

)

F̄ (u)
−−−→
u→∞

(log log(x))−1/γ , x > exp(1)
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3.7 Exponential Normalization

with
T (2)(u, x) = exp

(
log(x)log log(u)

)
.

Iterating this procedure one may use

T (k)(u, x) = exp
(
T (k−1) (log(u), log(x))

)

to define k–th order iterated heavy tailed dfs. Apparently the results about mixtures
of certain heavy tailed dfs can be extended to iterated heavy tailed dfs. This is also
valid for representations in terms of regularly varying functions as given in Corollary
3.6.

3.7 Exponential Normalization

In this section we will study a transformation which is different from linear and power–
normalizations. It turns out that the classes of GPDs and GLPDs which are the (con-
tinuous) limiting distributions of exceedances under linear and power–normalization,
respectively, can also appear as limiting distributions under exponential normalization.
Until now we have only studied classes of transformations which form a group and as
a consequence Su,y and, therefore, g have been of the same type as T , that is, they
are also members of the group. In this section we will study a normalization for which
such a relation is not valid.

We will consider continuous limiting distributions of exceedances under exponential
normalizations

F̄ (T (u, x))

F̄ (u)
−−−−−→
u→ω(F )

L̄(x), x ∈ C̃(L) (3.27)

with

T (u, x) = a(u) exp (b(u)x) ,

a(u), b(u) > 0. We use the same strategy as applied in Section 3.2.2. We have

T (−1)(u, x) =
1

b(u)
log (x/a(u)) , x > 0

and, therefore,

Su,y(x) =
1

b(u)
log (a (T (u, y)) /a(u)) +

b (T (u, y))

b(u)
x, x ∈ R.

We know from Lemma 2.4 that Su,y(x) converges to some g(y, x) for u → ω(F ) and,
therefore, g has the representation

g(y, x) = A(y) + B(y)x, A(y) ∈ R, B(y) > 0.
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3. Special Monotone Transformations

To see that B(y) > 0 holds, repeat the arguments in Section 2.6. Hence L has to be
pot–stable under linear transformations and we know from [3] that L is a GPD Wγ .

For statistical purposes the upper tail of a df F which is in the pot–domain of
attraction of some GPD Wγ under exponential transformations can be approximated
by a p–type of a GLPD L̂γ as introduced in (3.4) since we have for u sufficiently close
to ω(F ) (see also (2.27))

F [u](x) ≈ Wγ

(
T (−1)(u, x)

)
= L̂γ (βxα) , x > 0.

The domains of attraction under exponential normalizations are closely related to a
certain subclass of the domains of attraction under power–normalization. First note
that we necessarily have ω(F ) > 0 in (3.27) since, otherwise, we have F̄ (0) = 0 and,
thus,

F̄ (a(u) exp(b(u)x))

F̄ (u)
≤ F̄ (0)

F̄ (u)
= 0

for all x ∈ R. The domain of attraction of a GPD Wγ under exponential normalization
coincides with that of a GLPD Lγ = Wγ ◦ log since we have, by setting x = log(y),

F̄ (a(u) exp (b(u)x))

F̄ (u)
−−−−−→
u→ω(F )

Wγ(x), x ∈ (α(Wγ), ω(Wγ))

⇔ F̄
(
a(u)yb(u)

)

F̄ (u)
−−−−−→
u→ω(F )

Wγ (log(y)) , y ∈ (α(Wγ ◦ log), ω(Wγ ◦ log)) .

Hence, considering exponential transformations does not offer additional statistical
models. Moreover, the domains of attractions are contained in the domains of attrac-
tions under power–normalization.
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4 The Log–Pareto Distribution

Recall the results stated in Theorem 3.8. These entail that certain mixtures of heavy–
tailed distributions are not in the pot–domain of attraction of GPDs under linear
normalization, and, therefore, not in the scope of the linear pot–approach. Yet these
distributions might also occur in other contexts. Their main property is that they have
more mass in the extreme upper tail than heavy–tailed distributions, thus distributions
with regularly varying tails.

In this chapter we introduce statistical models for such distributions with represen-
tation

F (x) = 1 − (log(x))−1/γ U (log(x)) , γ > 0, x > a, (4.1)

for sufficiently large a > 0, where U is a slowly varying function. Note the following
properties of F . First, the tail of F is slowly varying, that is,

1 − F (tx)

1 − F (t)
−−−→
t→∞

1.

All moments of F are infinite, the log moments exist only up to the order of 1/γ so
one may label F as super–heavy tailed.

It is an open question if such distribution occur in contexts of real life data, but treat-
ing data from a super–heavy tailed distribution as if they were only heavy tailed may
lead to serious misjudgements, for example the underestimation of extreme quantiles
which play an important role in risk management in financial as well as in environ-
mental applications. Until recently super–heavy tailed distribution have been rarely
studied in the statistical literature, but one can recognize an increasing interest. No-
table references are [21], [22], [23] and [67].

In [35] the authors use the term super–heavy tailed distribution for distributions
with slowly varying tails. They study a certain sub–class of such distributions in detail,
namely distributions with survivor functions in the class Π. By definition a survivor
function F̄ belongs to the class Π if there exists a function a : R

+ → R
+ such that

lim
t→∞

F̄ (tx) − F̄ (t)

a(t)
= log(x), x > 0.

We refer to [6] for a broad theoretical treatment of such functions and to [17] for a
description in the framework of probability theory.

A test procedure is derived in [35] to distinguish between distributions which tail
functions belong to the class Π (thus a subclass of super–heavy tailed distributions)
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4. The log–Pareto Distribution

and distributions with regularly varying tails (thus heavy tailed distribution). These
authors also apply this test to a real data set of certain internet traffic data. In [48]
additional real data sets are tested for super–heavy tails. More details will be presented
at the end of this chapter.

While the above mentioned literature deals with testing whether super–heavy tails
are present in a certain data set, we are primarily concerned with statistical models
for such data. The result in Corollary 3.5 suggests log–Pareto distributions as given
in (3.17) with an additional scale parameter and shape parameter β as an adequate
asymptotic model for the tail of the df F in (4.1). For convenience we include a scale
parameter of the form σ̃ = σ exp (β) which leads to a log–Pareto df

L̃γ,β,σ(x) = 1 −
(

1 +
1

β
log (x/σ)

)−1/γ

, x > σ. (4.2)

The introduction of a scale parameter is necessary for finite sample considerations since
the unknown constants of the power–normalization (see (3.1)) have to be accounted
for. For a further explanation in a more general framework see also the lines around
equation (2.27).

Yet the use of this model for the modeling of exceedances has certain drawbacks.
The scale parameter σ is also the left endpoint of L̃γ,β,σ(x) and, therefore, necessarily
equal to u if exceedances over a threshold u are to be modeled. Thus the model L̂γ,β,σ

lacks a free scale parameter but includes only two shape parameters. For a df F in the
p–pot–domain of attraction of a log–Pareto df L̂γ we may assume that

F [u](x) ≈ L̂γ

(
(x/u)β

)
, x > u,

for a sufficiently high threshold u. This yields for the df of the pertaining excesses

F [u](x + u) ≈ 1 − (1 + β log(1 + x/u))−1/γ , x > 0,

a df with two shape parameters γ and β and a scale parameter u which is determined
by the threshold. In this chapter we introduce and study a slight generalization of this
model by adding a free scale parameter σ. On the one hand this model is more flexible
when applied to real data especially for moderate sample sizes. On the other hand it
is also possible to treat a data set of excesses in its own right without knowing the
pertaining threshold in the broader model.

The generalized log–Pareto model introduced in the subsequent sections is an ex-
tension of the model in (4.2) which corrects its described disadvantages. Moreover,
this model exhibits several interesting relations to the GPD model. For the statisti-
cal considerations we concentrate on its properties as a model for super–heavy tailed
distributions, yet it includes also heavy and even short tailed distributions.

In contrast to the previous chapters, this chapter is of a statistical nature. In Section
4.1 we recall the main steps which generally lead to a log–family of dfs, introduce log–
Pareto dfs, and show in which manner Pareto dfs can be regained from log–Pareto dfs.
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4.1 The Log–Pareto Model as an Extension of the Pareto Model

Certain generalized log–Pareto dfs are discussed in Section 4.2. Section 4.3 concerns
the statistical inference within the 3–parameter model of log–Pareto dfs. We propose a
hybrid estimator which is a combination of a quick estimator and a maximum likelihood
estimator (MLE) in some 1–dimensional submodel. This estimator is adopted as an
initial estimator for the MLE in the full log–Pareto model and its performance is
illustrated in simulation studies. Visual tools and test procedures are shortly addressed.
Applications to real data are added in Section 4.4. Sections 4.1 and 4.2 as well as Section
4.3.1 are mainly taken from [14].

4.1 The Log–Pareto Model as an Extension

of the Pareto Model

We start with some general remarks about the construction of log–families of dfs. Let
X be a rv with df Hϑ where ϑ is a shape parameter. Assume that the left endpoint
of the support of Hϑ is equal to zero. Notice that βX — with β > 0 — has the df
Hϑ,β(x) = Hϑ(x/β) with shape and scale parameters ϑ and β. Then, the transformed

rv exp(βX) − 1 has the df Hϑ

(
1
β log(1 + x)

)
, x > 0, with shape parameters ϑ and β

and left endpoint of the support equal to zero. Adding a scale parameter σ > 0 one
gets the df

Fϑ,β,σ(x) = Hϑ

(
1

β
log(1 + x/σ)

)
, x > 0. (4.3)

Putting σ = η/β and letting β → 0, one gets

Fϑ,β,η/β(x) → Hϑ,η(x). (4.4)

Therefore, the original dfs can be regained from the family of log–dfs.
A first example for this approach is provided by the exponential df Hγ(x) = 1 −

exp(−x/γ), x > 0, with scale parameter γ > 0. In this case, we have an initial df
without a shape parameter. The log–exponential df corresponding to (4.3) is given by

W̃γ,β(x) = 1 − (1 + x/β)−1/γ , x > 0, (4.5)

which is a Pareto df with shape and scale parameters γ and β.
The second example concerns log–Pareto dfs. The initial dfs are those in (4.5). One

obtains log–Pareto dfs

L̃γ,β,σ(x) = 1 −
(

1 +
1

β
log
(
1 +

x

σ

))−1/γ

, x > 0, (4.6)

with shape parameters γ, β > 0 and scale parameter σ > 0. Notice that all moments
are infinite. The log–moments

∫
(log(1 + x))zdLγ,β,σ(x) are infinite if z ≥ 1/γ; that is,

log–Pareto dfs possess super–heavy upper tails. Note that only the shape parameter γ
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4. The log–Pareto Distribution

is crucial for the existence of finite log–moments.
According to (4.4),

L̃γ,β,η/β(x) → W̃γ,η(x), β → 0, (4.7)

and, thus, one gets Pareto dfs in the limit.
If the transformation (exp(ξX) − 1)ϑ is applied to a log–Pareto rv X with df L̃γ,β,1

in (4.6) one receives a second order log–Pareto df with three shape and one scale
parameter, namely

L̃
(2)
γ,β,ξ,ϑ(x) = 1 −

(
1 +

1

β
log

(
1 +

1

ξ
log (1 + x/ϑ)

))−1/γ

, x > 0. (4.8)

The log–transformation of such dfs leads to dfs with super–heavy tails, hence one may
speak of second–order super–heavy tails. Apparently, this procedure can be iterated
further on leading to dfs with more and more shape–parameters and higher order
iterated super–heavy tails.

4.2 Generalized Log–Pareto Families

The preceding considerations can be extended to generalized Pareto dfs (GPDs) and
generalized log–Pareto dfs (GLPDs). Recall that Pareto, exponential and certain beta
dfs constitute the family of GPDs which is the basic family of dfs in the pot–approach
within extreme value theory. For that purpose, a slightly different parametrization was
introduced in (2.5).

Changing the parametrization of the Pareto df in (4.5) into the form

Wγ,β(x) = W̃γ,β/γ(x) = 1 −
(

1 + x
γ

β

)−1/γ

, x > 0, (4.9)

one gets the standard form of the GPD family (in the von Mises representation) which
is valid for all real γ, if for negative γ the additional restriction 0 < x < β/ |γ| is
included (see also (2.5)). The case γ = 0 is taken as the limit for γ → 0 which yields
exponential dfs

W0,β(x) = 1 − exp(−x/β), x > 0.

The parametrization in (4.5) is preferable to that in (4.9) in certain statistical appli-
cations, see e.g. Section 4.3 of this thesis, [7] or the Bayesian inference in Section 5.1
of [56], 3rd edition.

Applying the slightly modified exponential transformation

x → exp(σ/βx) − 1
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to the GPD Wγ,β one receives a different form of the log–Pareto df, namely,

Lγ,β,σ(x) = 1 −
(

1 +
γ

β
log

(
1 +

β

σ
x

))−1/γ

, x > 0. (4.10)

It is easy to verify that

Lγ,β,σ(x) −−−→
γ→0

Wβ,σ(x) = L0,β,σ(x) (4.11)

and as in (4.7)

Lγ,β,σ(x) −−−→
β→0

Wγ,σ(x) = Lγ,0,σ(x). (4.12)

Thus we get that one GPD Wγ,σ is limit of two different sequences of GLPDs with
considerably different properties. Note that for none of the GLPDs in (4.12) the log–
moments of larger order than 1/γ exists while in the case of (4.11) log–moments of the
order 1/γ exist when β gets smaller then γ. This causes some problems if one wants to
estimate the parameters of a GLPD which is close to a GPD as will be seen in Section
4.3.

Notice that the case γ < 0 yields finite right endpoints. More precisely, we have a
right endpoint equal to (exp(β/ |γ|) − 1)σ/β for γ < 0. GLPDs form a unified model
for dfs of excesses over high thresholds if the underlying df F has a right endpoint
larger than zero. GPDs with negative shape parameter can also be obtained in the
limit for β → 0 in (4.12) if the parameter γ is negative. Thus, GPDs are included in
the model of GLPDs in the limit.

4.3 Statistical Inference Within the Log–Pareto Model

If we restrict ourselves to the case γ > 0, thus super–heavy tailed distributions, the
parametrization in form of the family L̃γ,β,σ is easier to handle for statistical applica-
tions. It is obviously an easy exercise to transfer this parametrization into the GLPD
family. For the log–Pareto family consisting of dfs L̃γ,β,σ in (4.6) (and, therefore, for
the GLPD family) we do not find closed form estimators of the parameters γ, β and
σ. Especially, we do not achieve a closed form of the MLE . Therefore, MLEs have
to be numerically computed and an initial estimator is required as a starting value
for an iteration procedure. Our primary aim is to find an initial estimator where the
computational work can be reduced to some extent.

The performance of an initial (hybrid) estimator and the MLE will be illustrated by
means of simulations. We also include applications of the MLE to two real data sets.
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4. The log–Pareto Distribution

4.3.1 Quick Estimators and MLEs

We proceed in analogy to [55], where a modified Pickands estimator for the Pareto
model is introduced. Replacing theoretical quantiles by appropriate order statistics,
one gets estimators of σ and γ by solving certain equations. Estimators of this type
may be classified as quick or systematic estimators.

In the case of the log–Pareto family one gets from L̃γ,β,σ(L̃−1
γ,β,σ(q)) = q, 0 < q < 1,

the equations

log

(
1 +

1

β
log
(
1 + L̃−1

γ,β,σ(q)/σ
))

= −γ log(1 − q). (4.13)

Plugging in the special values q1 = 1 − a and q2 = 1 − a2, 0 < a < 1, it is possible
to solve this system of equations in γ and β.

Replacing the quantiles L̃−1
γ,β,σ(q1) and L̃−1

γ,β,σ(q2) by appropriate order statistics
xj(a,k):k and xi(a,k):k one receives estimators

β̂a (σ) =

(
log(1 + xi(a,k):k/σ)

)2

log
(
1 + xj(a,k):k/σ

)
− 2 log

(
1 + xi(a,k):k/σ

) (4.14)

and

γ̂a (σ) = log

(
log
(
1 + xj(a,k):k/σ

)
− log

(
1 + xi(a,k):k/σ

)

log
(
1 + xi(a,k):k/σ

)
)

/ log (1/a) , (4.15)

of γ and β for each 0 < a < 1 where i(a, k) = [k(1 − a)] and j(a, k) = [k(1 − a2)], if σ
is known.

If σ is unknown one can make use of an additional equation

L̃γ̂a(σ),β̂a(σ),σ (xl:k) = q3, (4.16)

with l = [q3k]. This equation must be solved numerically in σ. One gets an estimator
σ̂a,l for the scale parameter. Plugging in σ̂a,l in (4.14) and (4.15) one gets estimators
γ̂a,l and β̂a,l for the shape parameters.

This procedure yields quick estimators γ̂a,l, β̂a,l, σ̂a,l of γ, β, σ for each pair (a, l)
with l 6= i(a, k) and l 6= j(a, k). The quality of the estimators can be improved by
using medians of several quick estimators (as it was done in [7]). Regrettably, these
modified, quick estimators still have a less favorable performance in the present case.

We suggest to replace the quick estimator σ̂a,l in (4.16) by a MLE σ̂a in the 1–
parameter model

{L̃γ̂a(σ),β̂a(σ),σ : σ > 0} (4.17)

of log–Pareto dfs. Consequently, combining quick estimators and the MLE in the 1–
parameter model one gets the hybrid estimators γ̂hyp, β̂hyp, σ̂hyp of γ, β, σ.
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4.3. Statistical Inference Within the Log–Pareto Model

Finally, the hybrid estimators may be used as initial estimators in the numerical
calculations of MLEs γ̂ML, β̂ML, σ̂ML in the full 3–parameter log–Pareto model.

4.3.2 Visual Tools for Data Analysis

We will shortly address some visual tools to examine whether the log–Pareto model
is appropriate for given data. Our main is emphasis laid on the question whether the
given data can be modeled rather by a GPD or by a GLPD. A simple visual tool to
get a first insight if some data stems rather from a Pareto or log–Pareto model is the
median excess function,

mF (u) :=
(
F [u]

)−1
(1/2) − u.

The Pareto model yields a linear function while one gets a convex function in the log–
Pareto model if the shape parameter γ is larger than zero and a concave shape if γ is
smaller than zero. To be more precise, the median–excess function in the log–Pareto
model is given by

mγ,β,σ(u) = (u + σ/β)2
γ

exp ((2γ − 1)(β/γ − log(σ/β))) − (u + σ/β)

if γ 6= 0 and

m0,β,σ(u) = (u + σ/β)
(
2β − 1

)
.

If the GLPD model is close to a GPD, that is that the GLPD shape–parameters γ
and/or β are close to zero it is difficult to distinguish between the models as can be
seen in Figure 4.1.
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Figure 4.1: Median excess functions: Theoretical (left) and sample version based on
10000 simulations (right) for γ = 0.1 (dotted), γ = 0 (solid) and γ = −0.1 (dashed–
dotted) for β = 0.5 and σ = 1.
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4. The log–Pareto Distribution

More general one may use the q–excess function at level q ∈ (0, 1) defined by

Qq,F (u) =
(
F [u]

)−1
(q) − u

for a df F . In the case of the GLPD family we get

Qq,γ,β,σ(u) = (u + σ/β)(1−q)−γ

(
exp

(
β

γ
+
(
(1 − q)−γ − 1

) σ

β

)
− 1

)

if γ 6= 0 and

Qq,0,β,σ(u) = (u + σ/β)
(
(1 − q)−β − 1

)

in the GPD case. For q tending to one we have an increasing difference of the q–excess
function if γ = 0, where we still have a linear shape, and the cases where γ < 0 and
γ > 0. In the latter case we have an increasing steepness for q tending to one.
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Figure 4.2: Q–excess functions at level 95%: theoretical (left) and sample version based
on 10000 simulations (right) for γ = 0.1 (dotted), γ = 0 (solid) and γ = −0.1 (dashed–
dotted) for β = 0.5 and σ = 1.

Figure 4.2 indicates that it is still not easy to decide visually based on a sample
q–excess function whether the pertaining data comes rather from a GPD or a GLPD
with shape parameter γ 6= 0. If we choose a high level for q we have a larger difference
of the shapes of the theoretical q–excess functions but on the other hand the sample
versions are less reliable.

We propose to use a fraction of two q–excess functions of different levels as the most
adequate tool to discriminate the cases γ = 0 and γ 6= 0. For q1, q2 ∈ (0, 1) we have

Qq1,0,β,σ(u)

Qq2,0,β,σ(u)
=

(1 − q1)
−β − 1

(1 − q2)−β − 1
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4.3. Statistical Inference Within the Log–Pareto Model

and thus the fraction does not depend on the threshold u anymore. On the other hand,
if γ 6= 0 we still have an increasing or decreasing shape of the fraction as a function of
the threshold u

Qq1,γ,β,σ(u)

Qq2,γ,β,σ(u)
= (u + σ/β)(1−q1)−γ−(1−q2)−γ

exp
(

β
γ + ((1 − q1)

−γ − 1) σ
β

)
− 1

exp
(

β
γ + ((1 − q2)−γ − 1) σ

β

)
− 1

.

We propose to use a relatively high quantile for q1 (about 90% if the available sample
size allows) and a low value for q2 (such as 20%) resulting in the functions given in
Figure 4.3.

0 5 10 15 20

15
20

25
30

u

fra
ct

io
n 

q−
ex

ce
ss

 fu
nc

tio
n

0 5 10 15 20

10
20

30
40

50
60

u

fra
ct

io
n 

q−
ex

ce
ss

 fu
nc

tio
n

Figure 4.3: Fraction of q–excess functions at levels q1 = 90% and q2 = 20%: Theoretical
(left) and sample version based on 10000 simulations (right) for γ = 0.1 (dotted), γ = 0
(solid) and γ = −0.1 (dashed–dotted) for β = 0.5 and σ = 1.

4.3.3 Testing GLPDs versus GPDs

We include some remarks concerning testing the GPD against the GLPD model. Based
on a dataset x1, . . . , xn the Neyman–Pearson test statistic for testing a GPD L0,β,γ

against a GLPD Lγ,β,σ with positive shape parameter γ, is given by

Tγ,β,σ(x1, . . . , xn) =

n∏

i=1

lγ,β,σ(xi)

l0,β,σ(xi)
.

Fix β and σ and put

gx,β,σ(γ) = lγ,β,σ(x), x > 0.
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4. The log–Pareto Distribution

Provided that g is twice differentiable in a neighborhood of 0 and applying Taylors
expansions at γ = 0 we receive

log (Tγ,β,σ(x1, . . . , xn)) ≈
n∑

i=1

γ
g′xi,β,σ(γ)

gxi,β,σ(γ)
=: T̄γ,β,σ(x1, . . . , xn). (4.18)

Unfortunately gx,β,σ is not twice differentiable in 0, but nevertheless (4.18) still yields
a reasonable approximation. We will construct a simple test statistic for testing γ = 0
against γ > 0, which is close to the Neyman–Pearson statistic based on the above
extension. Let

cβ,σ(x) := − log (1 − L0,β,σ(x)) , x > 0.

The first derivative of g satisfies

g′x,β,σ(γ) = gx,β,σ(γ)

(
log (1 + cβ,σ(x)γ)

γ2
− cβ,σ(x)

γ + cβ,σ(x)γ2
− cβ,σ(x)

1 + cβ,σ(x)γ

)

if γ 6= 0, and

g′x,β,σ(0) = gx,β,σ(0)
(
cβ,σ(x)2/2 − cβ,σ(x)

)
.

Note that g′ is continuous in 0. In what follows we consequently use the test statistic

T̃β,σ(x1, . . . , xn) :=
n∑

i=1

(
1 + log

(
L̄0,β,σ(xi)

))2

Notice that one gets for γ > 0

T̃β,σ(x1, . . . , xn) =
1

2γ
T̄γ,β,σ(x1, . . . , xn) − n.

Asymptotic normality of T̃ under the null–hypothesis γ = 0 is easily established.

Lemma 4.1 If X1, . . . , Xn are iid with common df L0,β,σ, then

1√
8n

(T̃β,σ(X1, . . . , Xn) − n)
d→ X

where X ∼ N0,1.

Proof. Notice that L̄0,β,σ(Xi) is uniformly distributed on [0, 1] and, therefore, we get
from Lemma A.10

E
((

1 + log
(
L̄0,β,σ(Xi)

))2)
= 1 and Var

((
1 + log

(
L̄0,β,σ(Xi)

))2)
= 8,

i = 1, . . . , n. Consequently, the central limit theorem applies to T̃β,σ(X1, . . . , Xn). �
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4.3. Statistical Inference Within the Log–Pareto Model

The following test now suggests itself, we reject the null–hypothesis γ = 0 if

1√
8n

(T̃β,σ(X1, . . . , Xn) − n) > Φ−1(1 − α), 0 < α < 1 (4.19)

where Φ−1 is the qf pertaining the the standard normal distribution and α is the test
level. Notice that if β and σ are known the performance of the test does not depend
on these parameters in the null–hypothesis. Figure 4.4 indicates that the power of the
test is quite good, but it heavily depends on the sample size (see also Figure 4.5).
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Figure 4.4: Power of the test (4.19) (with test level α = 0.01) for varying γ for a sample
of size 100 (left) and 1000 (right), based on 4000 simulation runs.
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Figure 4.5: Power of the test (4.19) (with test level α = 0.01) for varying sample size
for shape parameters γ = 0.05 (left) and γ = 0.1 (right), based on 1000 simulation
runs.
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4. The log–Pareto Distribution

In this thesis we merely use the above test to exemplify the difficulty to recognize
a super–tailed behavior in small to moderate samples. Roughly speaking the results
illustrated in Figur 4.5 show that a small log–Pareto sample still looks like a Pareto
sample.

Obviously the test (4.19) is not applicable in practical applications because one has
to the fix the parameters β and σ of the null–hypothesis.

If one intends to test for an iid sample whether it stems rather from a GPD or GLPD
we suggest to divide the sample into two disjoint sub–samples. The first one is then
used to estimate the underlying GPD parameters for example by the ML–method.
Then the test is applied to the second sub–sample where β and σ are replaced with
the pertaining MLEs. Nevertheless, this will end in an increasing variance of the test
statistic and, therefore, adulterate the test level.

4.3.4 Simulations

We shortly summarize the results of some simulation studies which were carried out
using the statistical software R. The range of parameters γ employed in the simulations
was restricted to the interval (0, 0.3) due the occurrence of large data which could not
be handled by R.

First, we illustrate the performance of MLEs of γ in the log–Pareto model and
the Pareto model. Consider an iid sample x1, . . . , xk from a log–Pareto df L̃γ,β,σ and
the transformed sample y1, . . . , yk with yi = log(1 + xi). The chosen parameters are
γ = 0.2, β = 0.5 and σ = 1, 5. If σ = 1, then y1, . . . , yk is an iid sample from a Pareto
df W̃γ,β . The MLEs in the log–Pareto and Pareto models are applied to x1, . . . , xk

and, respectively, to y1, . . . , yk The illustrations in Figure 1 show the pertaining kernel
densities of the MLEs of γ based on x1, . . . , xk and respectively, on y1, . . . , yk based on
100 estimates, each taken for samples size k = 1000.
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Figure 4.6: Kernel densities of the MLEs of γ based on xi (solid) and yi (dashed) for
σ = 1 (left) and σ = 5 (right).
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4.4 Applications to Real Data

The MLE in the Pareto model exhibits a better performance than the MLE in the
log–Pareto model if the former one is applied within the correct model, that is, if the
scale parameter σ is equal to one. If this parameter differs from one, then the Pareto
MLE is strongly biased.

Secondly, we compare the performance of the hybrid estimator and the MLE of
γ in the log–Pareto model. The corresponding kernel densities, based on simulated
estimates, are displayed in Figure 4.7.
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Figure 4.7: kernel densities of the hybrid estimator (dashed) and the MLE (solid) for
σ = 1 (left) and σ = 5 (right)

The hybrid estimator exhibits a certain bias which is corrected by the MLE. This
might be due to the fact, that the hybrid estimator is the median of several MLEs
in different submodels. On the other hand, one observes a slightly higher variation
of the MLE. The latter property can be influenced by numerical problems in the 3–
dimensional maximization procedure.

4.4 Applications to Real Data

We present two data sets and apply the log–Pareto model Lγ,β,σ as well as the Pareto
model Wγ,σ to the pertaining excesses. Initial estimates are obtained in the log–Pareto
model L̃γ,β,σ. Recall from (4.11) and (4.12) that Lγ,β,σ is close to Wβ,σ or Wγ,σ if γ or
β is small.

Case Study 1. [Plankton species data.] The first example concerns long term copepod
data first studied in [58] and also analyzed in [55].

The data are deduced from weekly measurements of the abundance of a plankton species (a
copepod called Centropages typicus) from January 1967 to December 1997 in the Villefranche
Bay near Nice, France. Countings were separately made for females and males. The data set
mentioned above concerns the product of the countings for females and males. This product is
an index for the mating encounter rate which is regarded as a critical issue in plankton ecology.
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4. The log–Pareto Distribution

The range of the data reaches from 0 to 908.782, the sample size is n = 1353. The models
are adopted to the normalized data exceeding the threshold u = 34000. This choice of u
yields a number of k = 100 exceedances x1, ..., x100. The normalization is done by means of
yi = xi/34.000 − 1.

We obtained 0.78 as estimate for γ and 1.43 for σ in the Pareto model as well as γ̂ = 0.24,
β̂ = 0.69 and σ̂ = 5.07 in the log–Pareto model (4.6) as initial estimates the pertaining ML–

estimates are γ̂ML = 0.69, β̂ML = 0.43 and σ̂ML = 6.36. This correponds to γ̂ML = 0.69,
β̂ML = 0.0014 and σ̂ML = 1.43 in the GLPD model. Since the estimate of β in GLPD model
is small, the pertaining GLPD model is close to a GPD model.

As expected the difference between the q–q–plots is minute. Both plots show approximately
a straight line, see Figure 4.8, so that both models can be adopted to the data.

The fraction of the q–excess function in Figure 4.9 shows an increasing form for smaller
thresholds, so one may argue that the sample median excess function supports rather the
log–Pareto than the Pareto model.

0 5 10 15 20 25 30

0
5

10
15

20
25

estimated quantiles

em
pi

ric
al

 q
ua

nt
ile

s

0 5 10 15 20 25 30

0
5

10
15

20
25

estimated quantiles

em
pi

ric
al

 q
ua

nt
ile

s

Figure 4.8: Plankton species data: q–q–plot, estimated log–Pareto df (left) and esti-
mated Pareto df (right)
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Figure 4.9: Plankton species data: fraction of q–excess functions.

We also include a list of some higher quantiles of the estimated Pareto and log–Pareto df.

Pareto model log–Pareto model
90% 5.57 5.59
95% 9.87 9.93
99% 32.87 33.46

99.9% 166.58 181.24
99.99% 821.45 1263.56

99.999% 4028.86 51815.42

Table 4.1: Plankton species data: Estimated extreme quantiles in the Pareto and log–
Pareto model.

For moderately high quantiles the deduced values are nearly identical. Yet extreme quantiles

are significantly larger in the log–Pareto approach.

As indicated in Table 4.1, the consequences of adopting the Pareto model or, alter-
natively, the extended model can be drastic, also, e.g., with respect to the existence of
moments or log–moments.

Case Study 2. [Internet traffic data.] As a second example we consider internet traffic
data (file lengths in bytes) included in the Internet Traffic Archive
(http://ita.ee.lbl.gov/index.html) already studied in [48] in view of the presence of super–heavy
tails. In this article the authors apply a test procedure introduced in [35] to this data set and
reject the presence of super–heavy tails in their sense, that is, that the underlying df belongs
to the class Π, cf. for example [35]. All log–Pareto dfs introduced in this article are members
of the class Π, thus, among others, the family of log–Pareto dfs is rejected for this data set.

However, applying the log–Pareto model to normalized exceedances y1, ..., y51 over the
threshold 994 143, where the normalization is this time done by yi = xi/994 143 − 1, where
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4. The log–Pareto Distribution

x1, ..., x51 denote the original exceedances, yields a reasonable fit as Figure 4.10 indicates. The
plateau which is noticeable in both plots is due to the multiple occurrence of some values in the
data set. The pertaining ML–estimates in the log–Pareto model are γ̂ML = 0.04, β̂ML = 6.29
and σ̂ML = 1.75. Using the parametrization of the GLPD family these estimates correspond
to a GLPD L0.04,0.25,0.44. Applying the generalized Pareto model yields 0.30 as estimate for
γ and 0.43 for σ. According to the limit relation (4.11) and the small value of the MLE
γ̂ML both estimated models are close to each other. This becomes also obvious by the hardly
distinguishable q–q–plots, see Figure 4.10.
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Figure 4.10: Internet traffic data: q–q–plot, estimated log–Pareto df (left) and estimated
Pareto df (right)

Case Study 3. [Negative log–returns of the Altana stock.] The data set considered in
this case study consists of negative log–returns of the closing prices of the Altana stock recorded
from January 2nd 1990 to June 26th 2009 which yields a total sample size of 5062 observations.
It is well known that log–returns are likely to be dependent which is also supported by Figure
4.11 but often one can assume an ergodic structure and thus treat the data as independent
and distributed according to the pertaining stationary distribution. We chose the threshold
u = 0.0274 which yields a number of 254 exceedances (about 5% of the data). The threshold
was chosen by trial and error.
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Figure 4.11: Log returns of the Altana stock (left) and pertaining exceedances of the
negative log–returns over the threshold u = 0.0274 (right).

A notable feature of this data set is the very large loss which resulted in a log–return of
about −8.5 which is far outside the range of the remaining observations. This indicates that
the GLPD model might be a reasonable model for this data set. The received ML–estimates are
γ̂ML = 0.17, β̂ML = 0.12 and σ̂ML = 0.013 which indicates a significant tail weight because the
estimated GLPD model is not close to the GPD model. The estimates of the shape parameters
differ significantly from zero.
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Figure 4.12: fraction of q–excess functions of the Altana negative log–returns data (left)
and pertaining GLPD q–q-plot (right).

The q–q–plot in Figure 4.12 indicates that we have a good fit of the model if the largest
observation is omitted. This is an unsatisfactory result since the GLPD model was constructed
to account for exactly such extra ordinary large observations in a sample. But nevertheless the
GPD model yields a worse fit, so we have at least an improvement compared to the standard
model.
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4. The log–Pareto Distribution

In [48] another data set of seismic data consisting of seismic moments for California
seismicity recorded from 1800 to 1999 is studied. For this data super–heavy tails are not
rejected. Adopting the log–Pareto model to this data set yields no reasonable result, at
least using the proposed estimation procedure, so the results are omitted. This result
might be caused by the fact, that this data set has a discrete structure, most included
values appear several times.

Nevertheless, all considered data sets show a significant tail weight and a clear deci-
sion whether modeling with log–Pareto or Pareto dfs is preferable cannot be made.

Additional work is needed to derive tests which are tailored to distinguish between
the Pareto and log–Pareto model. Special emphasis has to be laid on the cases where
both models are close to each other, that is, if we have small values of γ and/or β in
the log–Pareto model.
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5 Conditional Exceedance Point

Processes under Covariate

Information

In this chapter we turn the focus of our analysis to the upper tails of conditional
distributions. As the main technical tool we will use the theory of point processes. We
consider a random vector (X, Y ), Y : (Ω,A) → (R, B (R)) and X : (Ω,A) → (S,B)
where S ⊂ R

d. In the following X will be addressed as vector of covariates or short
covariate while Y is the variable in which we are primarily interested in the following
denoted as response. The aim of our subsequent analysis is statistical inference for the
upper tail of the conditional distribution of Y given the covariate X = x. This topic
is extensively studied in the statistical literature because of its relevance for a lot of
applications, see for example [61] and [42] in the field of environmental statistics or
[66] for applications to financial markets.

The general situation which is studied may be summarized as follows. Suppose we
observe a response variable Y of interest (for example (log)–returns of prices, damages
from insurance treaties, wave heights, precipitation amounts,...) and some covariate
X which influences the distribution of the studied variable. Suppose further that the
covariate can be observed before Y or we have at least some good prediction. Thus we
may use the conditional distribution of Y given X = x to predict, for example, certain
conditional quantiles which correspond to the Value at Risk of a financial asset or a
t–year return level of certain environmental variables.

Statistical analysis for the upper tail of a distribution is closely related to the per-
taining distribution of exceedances. Recall the well–known formula which relates the
upper tail of a df F and the pertaining df of exceedances above the threshold u, F [u].
We have

F (y) = F (u) + (1 − F (u))F [u](y), y > u. (5.1)

In terms of the conditional df

F (y|x) = P (Y ≤ y |X = x)

this becomes

F (y|x) = F (u|x) + (1 − F (u|x))F [u](y|x), y > u. (5.2)

Therefore, we have to deal with two components
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5. Conditional Exceedance Point Processes under covariate Information

• the (conditional) distribution of exceedances

• the (conditional) probability that the threshold is exceeded.

In certain applications it is possible to treat both components separately. More details
will be given in Section 5.4.1. Alternatively, one may use the theory of point processes
which allows a simultaneous treatment of both components in a Maximum–Likelihood
framework. Several likelihood based estimators are proposed in the statistical literature,
which are based on different point process models.

We will present a unified point process model and identify the most established
estimators [61] and [25] as an unconditional and, respectively, conditional Maximum–
Likelihood estimator within this model. The underlying point process model is studied
in detail with special emphasis laid on the inherent conditional densities. In contrast to
the modeling in [61] and [25] all computations are carried out in a closed point process
environment.

We give a short outline of the subsequent sections. The first part is of a probabilistic
nature whereas the second part consists of remarks about the statistical inference.
Section 5.1 gives a short overview of the theory of point processes and its applications
to the framework of EVT. Section 5.2 contains the main result of this chapter. We
derive the conditional density of the distribution of the process of exceedances and
their pertaining exceedance covariates given the process of the original covariates. We
formulate a basic Condition 5.8 for the process N of original rvs. In particular, it is
possible to deal with dependencies between the initial random vectors (Xi, Yi). We
verify that the considered conditional distribution in is identical for all processes N
satisfying this condition. This particularly yields that results obtained for Poisson
processes are still valid within the general framework. Some technical auxiliary results
are moved to Section 5.3. Section 5.4 concerns the statistical inference within the point
process model. An overview of the pertaining statistical literature is also included.
Applications and simulations are added in Section 5.5. We conclude with some remarks
concerning further extensions in Section 5.6.

5.1 A Short Introduction to Point Processes

We give a short introduction into the concept of point processes and introduce the
notation which is used throughout this chapter. Moreover, we present an application
of the theory of point processes to EVT.

Let (S,B) be a measurable space and for x ∈ S let εx be the Dirac–measure at x,
thus

εx(A) =





1, x ∈ A;
if

0, otherwise
for all A ∈ B.
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5.1. A Short Introduction to Point Processes

Moreover, let M (S) be the set of all point measures

µ =
n∑

i=1

εxi
, xi ∈ S, n ∈ N0

on S and M(S) the smallest σ–field on M(S) such that the projection mappings
πB : M(S) → N0 with

πB(µ) = µ(B)

are measurable for all B ∈ B. A point process N on M(S) is a measurable mapping
ω 7→ Nω from some probability space (Ω,A, P ) into the space (M(S),M(S)). Thus N
is a random point measure. A basic example for a point process is the mixed empirical
point process

N =

β∑

i=1

εYi

where the Yi, i = 1, 2, . . . are independent S–valued rvs and β is a N0–valued rv
independent of the Yi. For a subset {B1, . . . , Bk} ⊂ B the N

k
0–valued random vectors

(N(B1), . . . , N(Bk))

are called finite dimensional marginals of N . It can be shown that the distribution of a
point process is uniquely determined by the distribution of some of its finite dimensional
marginals. Two point processes N1 and N2 are equal in distribution if, and only if,

(N1(B1), . . . , N1(Bk))
d
= (N2(B1), . . . , N2(Bk))

for all k ∈ N and pairwise disjoint B1, . . . , Bk ∈ B.
Point processes offer a framework to study data with random sample sizes and are,

therefore, useful for the theory of exceedances. Let S = R and Y1, . . . , Yn be iid rvs
and

Nn =

n∑

i=1

εYi

the pertaining point process. Nn is called empirical point process. Let N
[u]
n be the

truncated empirical process

N [u]
n = Nn (· ∩ (u,∞]) .

Then N
[u]
n only counts the exceedances over the threshold u among the Yi. Obviously

N
[u]
n carries information of the exceedances as well as the probability that the threshold

u is exceeded. The latter is captured in the random sample size. It is an easy exercise
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5. Conditional Exceedance Point Processes under covariate Information

to prove that

N [u]
n

d
=

βu∑

i=1

ε
Y

[u]
i

(5.3)

where βu and Y
[u]
i , i = 1, 2, . . . are independent and βu is a binomial rv with parameters

n and pu = P {Y1 > u} and the Y
[u]
i are iid with distribution

P
{

Y
[u]
1 ≤ x

}
= P (Y1 ≤ x |Y1 > u) .

Using the point process framework one can, thus, study the distribution of exceedances
and the probability that the threshold is exceeded simultaneously. This is of particular
interest for the development of the theory of extremes, see for example [52], but also for
a lot of statistical applications, especially if non–homogeneous exceedances are studied.

If the threshold u is chosen high enough the distribution of Y
[u]
1 can be approximated

by a general pot–stable distribution L. Furthermore the exceedance probability pu gets
small for large thresholds, thus the binomial rv βu might be replaced by a Poisson rv
τ with parameter λ = npu. The resulting point process

N∗ =
τ∑

i=1

Y ∗
i ,

where the Y ∗
i are iid with df L is called a Poisson (point) process. It can be shown

that N∗ is an accurate approximation of N
[u]
n for high enough thresholds u in the sense

that the Hellinger distance between L
(
N

[u]
n

)
and L (N∗) gets small for increasing

thresholds if the distribution of Y1 is in some general pot–domain of attraction of L
and satisfies a certain additional condition which is related to δ–neighborhoods of a
GPD, see e.g [54] and [27].

It turns out that the class of Poisson processes is of particular interest within the
class of point processes. In the subsequent lines we give a short overview of the theory
of Poisson (point) processes.

5.1.1 Poisson Processes

A point process on (M(S),M(S)) is a Poisson (point) process if the following conditions
hold

1. For all k ∈ N and all pairwise disjoint B1, . . . , Bk ∈ B the rvs N(B1), . . . , N(Bn)
are independent,

2. N(B) is a Poisson rv for all B ∈ B .

It turns out that the intensity measure ν of a point process N defined by

ν(B) = E (N(B)) , B ∈ B,
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5.1. A Short Introduction to Point Processes

plays a crucial role for the theory of Poisson point processes. This is due to the following
result, for a proof we refer to Theorem 1.2.1 in [54].

Lemma 5.1 Let N1 and N2 be Poisson point processes with finite intensity measures
ν1 and ν2, then

N1
d
= N2

if, and only if, ν1 = ν2.

Thus the distribution of a Poisson point process is characterized by its intensity mea-
sure. A mixed empirical process

N =
τ∑

i=1

εYi

is a Poisson process if Y1, Y2, . . . are iid and independent of the Poisson rv τ .

5.1.2 Estimating Upper Tails Using a Point Process Approach

If one intends to estimate the upper tail of an unconditional df F based on iid observa-
tions Y1, . . . , Yn with df F , then the ad hoc approach is to use the decomposition (5.1)
and estimate both components separately.

1. Estimate F (u) by the pertaining empirical version

F̂ (u) =
1

n

n∑

i=1

1(−∞,u](Yi),

2. replace F [u] with a proper family of general pot–stable distribution Lξ, ξ = Ξ,
with densities lξ and estimate ξ by an ordinary ML–method using those obser-
vations among the Yi exceeding the threshold u.

Nevertheless, we might as well approach this problem in a point process framework.
For convenience let p := F (u), then we might rewrite (5.1) as

F (y) = p + (1 − p)Lξ(y), y > u.

Define the truncated empirical point process N
[u]
n pertaining to the rvs Y1, . . . , Yn as in

(5.3). Since N
[u]
n is a binomial process a pertaining likelihood function can be derived

using Example 3.1.2 in [54]. One receives

L(ξ, p) ∝
(

k∏

i=1

lξ(yi)

)
(1 − p)kpn−k

if y1, . . . , yk are the exceedances over the threshold u out of a total sample with size
n. The likelihood functions factorizes into two parts L(ξ, p) = L1(ξ)L2(p) thus both
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5. Conditional Exceedance Point Processes under covariate Information

parameters may be estimated by separately maximizing both likelihood functions. The
pertaining MLE for p, p̂ML = (n−k)/n and ξ̂ML are the same as in the ad hoc approach
described above.

5.2 The Basic Point Process Model

We now give a point process formulation of our initial problem, namely statistical
inference for the upper tail of a conditional distribution. We have seen in Section 5.1.2
that this is a proper approach to tackle the proposed estimation problem in the case
of upper tails of unconditional distributions. We first give a precise formulation of the
underlying mathematical model.

Let N be the point process

N =

β∑

i=1

ε(Xi,Yi),

where β is a N0–valued rv independent of (Xi, Yi), i ∈ N. Subsequently we will make
use of the projection mappings πi, i = 1, 2,

π1(η) =
n∑

i=1

εxi
and π2(η) =

n∑

i=1

εyi

where η =
∑n

i=1 ε(xi,yi).
Moreover, let

N1 = π1(N)

be the marginal point process of covariates pertaining to N . Conditions for the distri-
bution of the points (Xi, Yi) will be formulated in the subsequent sections. In a first
step we will assume that the points are iid and then weaken this condition considerably.

Denote by N [S,u] the truncation of N outside S × (u,∞], thus

N [S,u] = N (· ∩ S × (u,∞]) =

β∑

i=1

1(u,∞)(Yi)ε(Xi,Yi)

and let

N
[S,u]
1 = π1

(
N [S,u]

)
.

be the pertaining marginal point process of covariates belonging to the exceedances.
Finally, let

N1,u = π1 (N(· ∩ S × (−∞, u])) (5.4)
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5.2. The Basic Point Process Model

the process of covariates pertaining to the Yi not exceeding the threshold u. This yields

N1 = N
[S,u]
1 + N1,u.

In the remainder of this section we will deduce a density of the conditional distribu-
tion

P
(
N [S,u] ∈ · |N1 = µ

)
. (5.5)

Our results are valid under a condition (Condition 5.8) which is basically an extended
form of conditional independence of the response variables given the covariates. As
a first step we will assume N to be a Poisson point process. Later we generalize the
results to the more general framework.

5.2.1 Two Important Examples

As a first important example we will study the Poisson process case. We replace the
random sample size β by a Poisson rv τ with parameter λ > 0 and require the pertaining
points (Xi, Yi) to be iid copies of a random vector (X, Y ). This model has been studied

in detail in [13]. Obviously, N [S,u] as well as N
[S,u]
1 and N1,u are also Poisson processes

in that case. Furthermore, see Lemma A.9

N [S,u] d
=

τ∗∑

i=1

ε(X∗

i ,Y ∗

i ) (5.6)

where (X∗
i , Y

∗
i ), i ∈ N are iid copies of a random vector (X∗, Y ∗), independent of the

Poisson rv τ∗ with parameter λ∗ = λP {Y > u},

P (Y ∗ ≤ y |X∗ = x) = F [u] (u|x)

and

P {X∗ ∈ B} = P (X ∈ B |Y > u) .

Let ν[S,u] be the intensity measure of N [S,u], we have for B ∈ B,

ν[S,u](B × (u, y]) = λP {X∗ ∈ B, Y ∗ ∈ C}

= λ

∫

B
F [u](y|x)dL (X∗) (x)

= λ

∫

B

∫ y

u
f [u](z|x)dzdL (X∗) (x). (5.7)

Now let Q be an arbitrary probability measure on (R, B(R)) with density q which is
positive everywhere. Furthermore, we define the probability measure Q∗ = L(X∗)×Q
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5. Conditional Exceedance Point Processes under covariate Information

on (S × R,B × B(R)). One gets

ν[S,u](B × (u, y]) =

∫

B×(u,y]

f [u](z|x)

q(z)
λdQ∗(x, z).

An immediate consequence of the latter representation is, that the distribution of
N [S,u] has a density with respect to the distribution of a Poisson process with intensity
measure λ · Q∗ which is given by

h(η) =

(
k∏

i=1

f [u](yi|x∗
i )

q(yi)

)
exp

(
λ

∫
F (u|x)dL(X)(x)

)
(5.8)

for a point measure η =
∑k

i=1 ε(x∗

i ,yi). If the conditional distribution F (·|x) is in the

domain of attraction of some general pot–stable distribution Lϑ(x) we may replace
f [u](·|x) by the pertaining density lϑ(x). Given a point measure η we may use h to esti-
mate the unknown functions ϑ and F (u|·) via the Maximum–Likelihood (ML) method.
An obvious shortcoming of this approach is, that the density h and, therefore, the per-
taining likelihood function contains a term which depends on the distribution of the
covariate X. If we want to avoid any distributional assumption for the covariates except
independence we have to replace L (X) with a non–parametric estimate for example a
kernel estimate or an empirical distribution.

We include some remarks concerning another important special case, namely empir-
ical and binomial processes. If we start with a fixed sample size n instead of a Poisson
distributed one, thus

N =
n∑

i=1

ε(Xi,Yi)

where (Xi, Yi) are again independent copies of (X, Y ). The pertaining truncated pro-
cess N [S,u] is a binomial process satisfying

N [S,u] d
=

βu∑

i=1

ε(X∗

i ,Y ∗

i ).

Hereby (X∗
i , Yi) are as in the Poisson process case and βu is a binomial rv with pa-

rameters n and

pu =

∫
1 − F (u|x)dL(X)(x).

A density of N [S,u] can easily be derived using Example 3.1.2 in [54]. Let

N0 =

β0∑

i=1

ε(V i,Zi)
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be a binomial process where L(V 1, Z1) = Q∗ with Q∗ as above and β0 ∼ Bn,p0 . Then

h(η) =

(
k∏

i=1

f [u](yi|x∗
i )

q(yi)

)(
pu

p0

)k (1 − pu

1 − p0

)n−k

(5.9)

is a L(N0) density of L
(
N [S,u]

)
where again η =

∑k
i=1 ε(x∗

i ,yi). This entails the same

problem as in the Poisson process case since pu again depends on the function F (u|·)
which we want to estimate and the distribution of the covariates.

To overcome this problem we propose a conditional approach, based on a certain
conditional density of N [S,u] which does not depend on the distribution of the covariates
anymore.

5.2.2 Conditional Distributions in the Poisson Process Case

Recall our aim to estimate the upper tail of the conditional distribution of Y given X =
x. We derive a density of the conditional distribution (5.5). We start by studying the
case that N is a Poisson process. The pertaining conditional density will be computed
in three steps.

A crucial fact for the subsequent considerations is the conditional independence of
N1 and N

[S,u]
2 given N

[S,u]
1 = µ∗ which is stated in Lemma 5.2.

Lemma 5.2 Let µ∗ =
∑k

i=1 εxi
, xi ∈ S for i = 1, . . . , k then

P
((

N [S,u], N1

)
∈ A × B

∣∣∣N [S,u]
1 = µ∗

)

= P
(
N1 ∈ B

∣∣∣N [S,u]
1 = µ∗

)
P
(
N [S,u] ∈ A

∣∣∣N [S,u]
1 = µ∗

)
,

for all A ∈ M (S × R) and B ∈ M (S).

Proof. First observe that

P
(
N [S,u] ∈ A, N1 ∈ B

∣∣∣N [S,u]
1 = µ∗

)

= P
(
N [S,u] ∈ A, N

[S,u]
1 + N1,u ∈ B

∣∣∣N [S,u]
1 = µ∗

)

= P
(
N [S,u] ∈ A, µ∗ + N1,u ∈ B

∣∣∣N [S,u]
1 = µ∗

)
.

Moreover, (N [S,u], N
[S,u]
1 ) and N1,u are independent because N is a Poisson process.

Applying Lemma A.6 (cf. also [9], Corollary 7.3) with Y = N1,u, X = N
[S,u]
1 and
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5. Conditional Exceedance Point Processes under covariate Information

Z = N [S,u] one gets

P
(
N [S,u] ∈ A, µ∗ + N1,u ∈ B

∣∣∣N [S,u]
1 = µ∗

)

= P
(
µ∗ + N1,u ∈ B

∣∣∣N [S,u]
1 = µ∗

)
P
(
N [S,u] ∈ A

∣∣∣N [S,u]
1 = µ∗

)

= P
(
N1 ∈ A

∣∣∣N [S,u]
1 = µ∗

)
P
(
N [S,u] ∈ B

∣∣∣N [S,u]
1 = µ∗

)
.

�

Secondly, we derive a Chapman–Kolmogoroff representation of the conditional distri-
bution of N [S,u] given N1 = µ in Lemma 5.3. This representation is crucial to compute
an explicit representation of a pertaining density.

Lemma 5.3 For the conditional distribution of N [S,u] given N1 = µ holds

P
(
N [S,u] ∈ A |N1 = µ

)

=

∫ ∫
1A(η)dP

(
N [S,u] ∈ dη

∣∣∣N [S,u]
1 = µ∗

)
dP
(
N

[S,u]
1 ∈ dµ∗ |N1 = µ

)

for all A ∈ M(S × R).

Proof. Apply Lemma A.7 using the conditional independence of N1 and N [S,u] given
N

[S,u]
1 = µ∗. �

To simplify the notation we introduce the following definition.

Definition 5.4 For a point measure µ =
∑n

i=1 εxi
on S denote by

• Mµ(S) := {∑n
i=1 uiεxi

: (u1, . . . , un) ∈ {0, 1}n} the set of all point measures on
S which can be derived by thinning µ;

• ̟µ the counting measure on the finite set Mµ(S);

• υµ the counting measure on Sµ := {x1, . . . ,xn}

Notice that the distribution in (5.5) has all the mass on M(Sµ ×R). The pertaining
density will be specified with respect to the distribution of a mixed empirical point
process

Ñµ =

β̃∑

i=1

ε(Vi,Zi) (5.10)

on Sµ × R, where the (Vi, Zi) are iid random vectors with common vµ × λ–density
p such that p(v, z) > 0 for all (v, z) ∈ Sµ × R. Moreover, β̃ is an integer valued rv
independent of the (Vi, Zi) which has positive probability for each integer as, e.g., a
Poisson rv.
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Using the Chapman–Kolmogorov representation of (5.5) in Lemma 5.3 it remains
to derive densities of the two involved conditional distributions. We start with the
conditional distribution of N

[S,u]
1 given N1 = µ. Notice that the support of this con-

ditional distribution is the finite set Mµ(S). Therefore, we specify a counting density
with respect to the measure ̟µ.

Lemma 5.5 Let Sµ and ̟µ as in Definition 5.4. Then

g
[S,u]
1 (µ∗|µ) =

(
k∏

i=1

(1 − F (u|x∗
i ))

)
 ∏

x∈Sµ

F (u|x)µ{x}−µ∗{x}


 ,

where µ =
∑n

i=1 εxi
and µ∗ =

∑k
i=1 εx∗

i
, is a density of the conditional distribution of

N
[S,u]
1 given N1 = µ with respect to ̟µ.

Proof. Define gu : M(S × R) → M(S) by

gu(η) = π1 (η(· ∩ S × (u,∞))) .

Then, N
[S,u]
1 = gu(N), and, thus, we get from Lemma A.1 and Corollary 7.2.1 in [54](cf.

also Theorem 5.12)

P
(
N

[S,u]
1 ∈ · |N1 = µ

)
= P {gu(Nµ) ∈ ·}

where

Nµ =

n∑

i=1

ε
(xi,Ỹi)

with Ỹi being independent and distributed according to P (Y1 ∈ |X1 = xi ). Further-

more, notice that N
[S,u]
µ,1 := gu(Nµ) satisfies

N
[S,u]
µ,1 =

n∑

i=1

Ũiεxi

with the Ũi given by

Ũi = 1(S×(u,∞))(xi, Ỹi).

Apparently N
[S,u]
µ,1 takes values in the finite space Mµ(S). Let µ∗ ∈ Mµ(S),

µ∗ =
k∑

i=1

εx∗

i
=

n∑

i=1

uiεxi
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where ui ∈ {0, 1} for i = 1, . . . , n. Let In = {1, . . . , n} and J := {i ∈ In : ui = 1}. We
get

P
{

N
[S,u]
µ,1 = µ∗

}
= P

{
Ũi = 1, i ∈ J , Ũi = 0, i ∈ In\J

}

=

(
∏

i∈J

(1 − F (u|xi))

)
 ∏

i∈In\J
F (u|xi)


 .

Observe that µ∗ =
∑

i∈J εxi
. Therefore, the assertion follows. �

If some of the points of µ occur repeatedly and these points are also part of µ∗ one
has to add a constant which counts these multiple occurrences in the density g

[S,u]
1 .

This does not effect the pertaining likelihood function and, therefore, we neglect this
case to keep the notation as simple as possible.

It remains to deduce a density of the conditional distribution of N [S,u] given N
[S,u]
1 =

µ∗. Corollary 7.2.1 in [54] (cf. also Theorem 5.12) yields that this distribution of the
form

L
(

n∑

i=1

εZi

)

where the Zi are independent but not necessarily identically distributed (innid). A
density of a generalization of such a process is given in Theorem 5.15 in Section 5.3.

In the subsequent lemma we specifically apply Theorem 5.15 with

hi(z, y) = 1{xi}(z)g(y|z)/p(z, y). (5.11)

Because of the included indicator function most of the summands in (5.15) vanish.

Lemma 5.6 Let Ñµ as in (5.10). Then, P
(
N [S,u] ∈ ·

∣∣∣N [S,u]
1 = µ∗

)
has the L

(
Ñµ

)
–

density

g
[S,u]
2 (η|µ∗) =

1

P
{

β̃ = k
} cµ∗

k!

∏k
i=1 f [u](yi|x∗

i )∏k
i=1 p(yi, x∗

i )

where η =
∑k

i=1 ε(x∗

i ,yi), µ∗ = π1 (η) and cµ∗ is a constant which only depends on µ∗

and counts the multiple occurrences of points of µ∗.

Proof. Let µ∗ =
∑k

i=1 εx∗

i
. It follows from Corollary 7.2.1 in [54] (cf. also Theorem

5.12) that

P
(
N [S,u] ∈ ·

∣∣∣N [S,u]
1 = µ∗

)
= L




µ∗(S)∑

i=1

ε(x∗

i ,Ỹi)



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where N [S,u] =
∑τ∗

i=1 ε(X∗

i ,Y ∗

i ) (cf. (5.6)) and the Ỹi, i = 1, . . . , n are independent with

L
(
Ỹi

)
= P (Y ∗

i ∈ · |X∗ = x∗
i ) .

Apparently
(

x
∗
i , Ỹi

)
are independent with L((V, Z))–density

hi(z, y) = 1{x∗

i }(z)f [u](y|z)/p(z, y).

Now Theorem 5.15 yields that a L
(
Ñµ

)
–density of the conditional distribution of

N
[S,u]
2 given N

[S,u]
1 = µ∗ is given by

g
[S,u]
2 (η|µ∗) =

1

P
{

β̃ = k
} 1

k!

∑

π∈Pk

k∏

i=1

hπ(i)(zi, yi)

=
1

P
{

β̃ = k
} 1

k!

∑

π∈Pk

k∏

i=1

f [u](yi|zi)

p(zi, yi)
1{

x∗

π(i)

}(zi)

=





1
P{β̃=k}

cµ∗

k!

∏k
i=1

f [u](yi|x∗

i )
p(x∗

i ,yi)
, π1 (η) = µ∗;

if
0, otherwise

with η =
∑k

i=1 ε(zi,yi). Thus the assertion holds. �

It is important to note that the dominating measure L
(
Ñµ

)
in the previous lemma

does not depend on the condition µ∗ since it includes a random sample size. This
property will be crucial for the subsequent considerations.

Next we formulate and prove the main result of this section. Combining the foregoing
results yields a density of

P
(
N [S,u] ∈ · |N1 = µ

)

with respect to the measure L
(
Ñµ

)
. This density will be used in Section 5.4 to derive

MLEs for the parameters of the upper tail of the conditional distribution of Y given
X = x.
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Theorem 5.7 Let Ñµ be as in Lemma 5.6. Then P
(
N [S,u] ∈ · |N1 = µ

)
has a L

(
Ñµ

)

density

g[S,u](η|µ) =

(
k∏

i=1

(1 − F (u|x∗
i ))

)
 ∏

x∈Sµ

F (u|x)µ{x}−µ∗{x}




× 1

P
{

β̃ = k
} cµ∗

k!

∏k
i=1 f [u](yi|x∗

i )∏k
i=1 p(x∗

i , yi)
,

where η =
∑k

i=1 ε(x∗

i ,yi), µ =
∑n

i=1 εxi
, µ∗ = π1(η) ∈ Mµ(S) and cµ∗ as in Lemma

5.6.

Proof. According to Lemma 5.3 we have for A ∈ M(S × R)

P
(
N [S,u] ∈ A |N1 = µ

)

=

∫ ∫
1A(η)dP

(
N [S,u] ∈ dη

∣∣∣N [S,u] = ν
)

dP
(
N

[S,u]
1 ∈ dν |N1 = µ

)

=

∫ ∫
1A(η)g

[S,u]
2 (η|ν)dL

(
Ñµ

)
(η)dP

(
N

[S,u]
1 ∈ dν |N1 = µ

)

=

∫ ∫
1A(η)g

[S,u]
2 (η|ν)dP

(
N

[S,u]
1 ∈ dν |N1 = µ

)
dL
(
Ñµ

)
(η),

thus

g[S,u](η|µ) =

∫
g
[S,u]
2 (η|ν)dP

(
N

[S,u]
1 ∈ dν |N1 = µ

)

=
∑

ν∈Mµ(S)

g
[S,u]
2 (η|ν)g

[S,u]
1 (ν|µ)

=

(
k∏

i=1

(1 − F (u|x∗
i ))

)
 ∏

x∈Sµ

F (u|x)µ{x}−µ∗{x}




× 1

P
{

β̃ = k
} cµ∗

k!

∏k
i=1 f [u](yi|x∗i )∏k
i=1 p(yi, x

∗
i )

if µ∗ := π1(η) ∈ Mµ(S) and 0 otherwise is a L (Nµ)–density of the considered condi-
tional distribution. �

In some applications it is more convenient to use a slightly different representation
of g[S,u](·|µ). Recall that

f [u](y|x) =
f(y|x)

1 − F (u|x)
, y > u
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where f [u] is the truncated density pertaining to f . Using this relation yields

g[S,u](η|µ) =


 ∏

x∈Sµ

F (u|x)µ{x}−µ∗{x}


× 1

P
{

β̃ = k
} cµ∗

k!

∏k
i=1 f(yi|x∗

i )∏k
i=1 p(x∗

i , yi)
,

for η, µ and µ∗ as in Theorem 5.7.

5.2.3 Extensions to Dependent Covariates

In many applications the assumption of independence of the tuples (Xi, Yi) cannot be
justified. This is also the case in most of the case studies presented in Section 5.5.2.

In this section we will weaken the condition imposed on the (Xi, Yi). We will show
that the conditional density of N—and, consequently, that of N [S,u]–given N1 = µ, is
the same as in the Poisson process case under these weaker conditions. Henceforth we
will assume that the point process N =

∑β
i=1 ε(Xi,Yi) satisfies Condition 5.8 which is

stated below. For notational convenience we formulate the following results in a general
framework for rvs Xi and Yi with values in general measurable spaces. When applying
this results to our original framework the rvs Xi will be replaced by the vectors of
covariates Xi and Yi will be assumed to be the real valued response variable. The
following condition was considered in a similar form in [56], it is closely related to
conditions within the framework of regression analysis.

Condition 5.8 Consider the point process

N =

β∑

i=1

ε(Xi,Yi),

where the Xi and Yi are rvs with values in measurable spaces (S,B) and (T, C), respec-
tively. We assume that

(a) the random sample size β is independent of the (Xi, Yi);

(b) for all n ∈ N the rvs Y1, . . . , Yn are conditionally independent given the vector of
covariates X = (X1, . . . , Xn); the pertaining conditional distributions satisfy

P (Yi ∈ · |X = x) = P (Yi ∈ · |Xi = xi )

for all i = 1, . . . , n, x = (x1, . . . , xn) and all n ∈ N;

(c) finally, we assume that

P (Yi ∈ · |Xi = x) = P (Yj ∈ · |Xj = x)

for all x ∈ S and i, j ∈ N.
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5. Conditional Exceedance Point Processes under covariate Information

Notice that Condition 5.8 is satisfied if the (Xi, Yi) are iid and, therefore, it also holds
for Poisson processes. Another example of a point process satisfying this condition can
be constructed in the following manner.

Example 1. Let X1, X2, . . . be a sequence of arbitrary rvs and ξ1, ξ2, . . . a sequence
of iid rvs and define

Yi := h(Xi, ξi), i ∈ N

for some measurable function h. Then the pertaining point process

N =

β∑

i=1

ε(Xi,Yi)

with a rv β independent of the (Xi, Yi) satisfies Condition 5.8.

A further example of a point process satisfying the above condition will be given in
Section 5.4.5. For applications it is of particular importance that Condition 5.8 contains
no assumption on the distribution of the covariates.

The main tool for the derivation of the subsequent results will be a generalization of
Theorem 7.2.1 in [54]. We first prove an auxiliary result concerning exchangeable rvs.
Exchangeability of rvs is a crucial property when dealing with point processes because
this property allows to switch between the concept of point processes and ordinary
rvs, cf. also Theorem 5.15. Recall that rvs X1, . . . , Xn are exchangeable if for each
permutation π of the set {1, . . . , n} we have

(X1, . . . , Xn)
d
=
(
Xπ(1), . . . , Xπ(n)

)
.

For more details we refer to [9], Section 7.3, [2] and [54], page 83ff. For notational
convenience we introduce for each permutation π a mapping

π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)).

Notice that there is a one–to–one relation between π and π.
Henceforth we denote by Pn the set of all permutations of {1, . . . , n}, and by Ψ

a random permutation which is uniformly distributed on Pn, cf., e.g., [2], page 7.
Furthermore, we define in analogy to π a random element Ψ pertaining to Ψ which is
uniformly distributed on the set of all mappings π, in the following denoted by Pn.

If X1, . . . , Xn are arbitrary rvs then

Ψ(X1, . . . , Xn) := (XΨ(1), . . . , XΨ(n))

are exchangeable rvs, cf. [2], page 7. In the following lemma we will prove a special
property of such transformed rvs provided that Condition 5.8 is satisfied.
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5.2. The Basic Point Process Model

Lemma 5.9 Let (X1, Y1), . . . , (Xn, Yn) satisfy (b) and (c) in Condition 5.8. Then
YΨ(1), . . . , YΨ(n) are conditional independent given (XΨ(1), . . . , XΨ(n)) = (x1, . . . ,xn)
and

P
((

YΨ(1), . . . , YΨ(n)

)
∈ · | (XΨ(1), . . . , XΨ(n)) = (x1, . . . , xn)

)

= P ((Y1, . . . , Yn) ∈ · |(X1, . . . , Xn) = (x1, . . . , xn)) .

Proof. Define again X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) as well as

Ỹ =
(
YΨ(1), . . . , YΨ(n)

)
and X̃ =

(
XΨ(1), . . . , XΨ(n)

)
.

Let A = ×n

i=1
Ai and B = ×n

i=1
Bi for measurable sets Ai and Bi. We first prove

that for every π ∈ Pn holds

P (π (Y ) ∈ B |π (X) = (x1, . . . , xn)) =
n∏

i=1

P
(
Yπ(i) ∈ Bi

∣∣Xπ(i) = xi

)
(5.12)

For that purpose let

K(B|x) := P (Y1 ∈ A|X1 = x) .

One gets with Condition 5.8 (b) and (c)

P {π (X) ∈ A, π (Y ) ∈ B}
= P

{
X ∈ π−1 (A) , Y ∈ π−1 (B)

}

=

∫

π−1(A)

n∏

i=1

K
(
Bπ−1(i)|xi

)
dL (X) (x1, . . . , xn)

=

∫

π−1(A)

n∏

i=1

K
(
Bi|xπ(i)

)
dL (X) (x1, . . . , xn)

=

∫

A

n∏

i=1

K(Bi|xi)dL (π (X)) (x1, . . . , xn),

where the last equality follows from the transformation theorem for integrals. Thus
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equation (5.12) holds. Now notice that

P
{

X̃ ∈ A, Ỹ ∈ B
}

=

∫

Pn

P
(
X̃ ∈ A, Ỹ ∈ B |Ψ = π

)
dL (Ψ) (π)

=

∫

Pn

∫

A

n∏

i=1

K (Bi|xi) dL (π (X)) dL (Ψ) (π)

=

∫

A

n∏

i=1

K (Bi|xi) dL
(
X̃
)

(x1, . . . , xn),

where the second equality follows from equation (5.12) and the last from the Fubini
theorem for Markov kernels, see e.g. [37], page 45f. Thus, the assertion holds. �

We are now in a position to prove the announced generalization of Theorem 7.2.1 of
[54].

Theorem 5.10 Let N be a point process as given in Condition 5.8 and (N1, N2)
d
=

(π1(N), π2(N)). Consider the Markov kernel

K∗ (·|µ) = L
(

n∑

i=1

εZi

)

for a point measure µ =
∑n

i=1 εxi
where the Zi are independent with distributions

P {Zi ∈ ·} = P (Yi ∈ · |Xi = xi ).
Then,

L(N2) = K∗L(N1).

Proof.

As in [54] put

GX(·|n) := L
(

n∑

i=1

εXi

)

and

GY (·|n) := L
(

n∑

i=1

εYi

)
.

Define X̃ and Ỹ as in the preceding Lemma 5.9. Then the components of X̃ and Ỹ

are exchangeable. Therefore, we have (see also [54], page 84f)

GX(·|n) = ιnL(X̃) and GY (·|n) = ιnL
(
Ỹ
)

,
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5.2. The Basic Point Process Model

with the inclusion mapping

ιn(x1, . . . , xn) =

n∑

i=1

εxi
.

Notice that the Markov kernels GX(·|n) and GY (·|n) are not changed if the order of
their pertaining points is changed.

Finally, again as in [54] define the Markov kernel

Kn (· |x) =
n×

i=1

P (Y1 ∈ · |X1 = xi ) .

for x = (x1, . . . , xn).
Due to Lemma 5.9 we have that

L
(
Ỹ
)

= KnL(X̃).

Using this result the remainder of the prove is almost a verbatim repetition of the
proof of Theorem 7.2.1 in [54] with only slight modifications. For the sake of complete-
ness we give the proof in detail, nevertheless.

Because β is independent of Yi and Xi, i = 1, . . . , n we have

L(N1) = GXL(β) and L(N2) = GY L(β).

This representation of L(N1) together with the Fubini theorem for Markov kernels
immediately yields

K∗L(N1) = (K∗ ◦ GX)L(β),

where the composition of two Markov kernels K1 and K2 is defined by

(K1 ◦ K2)(B|x0) =

∫
K1(B|x)K2(dx|x0), (5.13)

cf. [54], page 172. Thus, it remains to prove that

K∗GX(·|n) = GY (·|n)

for all n ∈ N.
As in Lemma 7.2.2 of [54] we get for µ = ιn (x)

K∗ (· |µ) = ιn
(
Kn

(
·
∣∣ι−1

n (µ)
))

.
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This yields for M ∈ M(T )

K∗GX(·|n)(M)

=

∫
K∗(M |µ)GX(dµ|n)

=

∫
Kn

(
ι−1
n (M)

∣∣ι−1
n (µ)

)
d
(
ιnL

(
X̃
))

(µ)

=

∫
Kn

(
ι−1
n (M) |x

)
dL
(
X̃
)

(x)

= KnL
(
X̃
) (

ι−1
n (M)

)

= ιn

(
KnL

(
X̃
))

(M)

= ιnL
(
Ỹ
)

(M)

= GY (M |n) ,

and, thus, the assertion holds. �

To apply the forgoing result to the derivation of the conditional distribution of N
given N1 = µ we construct some auxiliary process N̄ and prove that Condition 5.8 is
satisfied. The subsequent theorem is now an immediate consequence of Theorem 5.10.

Lemma 5.11 Let N =
∑β

i=1 ε(Xi,Yi) be a point process as given in Condition 5.8. Put

N̄ =

β∑

i=1

ε(X̄i,Ȳi)

with X̄i = Xi and Ȳi = (Xi, Yi). Then, N̄ also satisfies Condition 5.8.

Proof. Put X = (X1, . . . , Xn). Check that (cf. Corollary A.2)

(i) (Xi, Yi) are conditional independent given X = x.

(ii) For the conditional distribution of (Xi, Yi) given X = x holds

P ((Xi, Yi) ∈ ·|X = x) = L ((xi, Yxi
))

where L(Yx) := P (Y1 ∈ ·|X1 = x).

Now the assertion follows immediately. �

The subsequent theorem is now an immediate consequence of Theorem 5.10 and
Lemma 5.11.
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Theorem 5.12 Let N =
∑τ

i=1 ε(Xi,Yi) be a point process as in Condition 5.8, N1 :=
π1(N). Then

P (N ∈ · |N1 = µ) = L(Nµ)

where

Nµ =

µ(S)∑

i=1

ε(xi,Zi)

with independent rvs Zi, i = 1, . . . ,µ(S) with distributions L(Zi) = P (Y1 ∈ ·|X1 = xi).

Proof. Define the mapping

g(N) = (N, π1(N)).

Observe that (N, π1(N)) = (π2(N̄), π1(N̄)) where N̄ is as defined in Lemma 5.11.
Applying Theorem 5.10 to the point process N̄ one gets

P {N ∈ A, N1 ∈ B} = P {g(N) ∈ A × B}

=

∫
P {g(Nµ) ∈ A × B} dL(N1)(µ)

=

∫
P {Nµ ∈ A, µ ∈ B} dL(N1)(µ)

=

∫

B
P {Nµ ∈ A} dL(N1)(µ).

�

Combining the foregoing results yields the main result of this section which is stated
in the subsequent theorem.

Theorem 5.13 If the point process N =
∑β

i=1 ε(Xi,Yi) satisfies Condition 5.8 where
Xi is replaced by Xi for i = 1, . . . , β the conditional distributions of the truncation of
N outside S × (u,∞) given the covariates

P
(
N [S,u] ∈ · |N1 = µ

)
, µ ∈ M(S)

has the density given in Theorem 5.7.

Proof. According to Theorem 5.12 the conditional distribution

P (N ∈ · |N1 = µ)

is given by the distribution of the point process Nµ as defined in Theorem 5.12. Define
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5. Conditional Exceedance Point Processes under covariate Information

the measurable truncation mapping tu : M(S × R) → M (S × (u,∞)) by

tu(η) = η(· ∩ (S × (u,∞))).

Thus, we may write N [S,u] = tu(N) and one gets A ∈ M(S × (u,∞))

P
(
N [S,u] ∈ A |N1 = µ

)
= P (tu(N) ∈ A |N1 = µ)

= P
(
N ∈ t−1

u (A) |N1 = µ
)

= P
{
Nµ ∈ t−1

u (A)
}

= P {tu(Nµ) ∈ A} .

Hence the conditional density of N [S,u] given N1 = µ depends only on the distribution
of Nµ. This distribution is the same under Condition 5.8 as in the case of Poisson
processes considered in Section 5.2.2. Consequently Theorem 5.7 is still valid under
weaker conditions. �

The following section contains the proofs of auxiliary results which have been used
to proof the preceding results.

5.3 Auxiliary Results

In this section we extend results stated in [54] to a more general setting. The main
results of this section is stated in Theorem 5.15, which gives the density of a mixed
empirical point process of independent, not necessary identically distributed (innid)
observations.

Lemma 5.14 Let X1, . . . , Xn be innid rvs and

N =
n∑

i=1

εXi

the pertaining point process. Furthermore let Pn the set of permutations of the set
{1, . . . , n} and Ψ uniformly distributed on Pn, independent of X1, . . . , Xn. Define

Zi = XΨ(i), i = 1, . . . , n

and let

N∗ =
n∑

i=1

εZi
.

Then

(N∗)ω = Nω for all ω ∈ Ω
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and, therefore, especially

L (N∗) = L (N) .

Proof. The assertion can easily be proven because

n∑

i=1

εxi
=

n∑

i=1

εxπ(i)

for all π ∈ Pn and xi ∈ S, i ∈ N. �

From Theorem 3.1.1 of [54] we know the density of distributions of Poisson point
processes as well as empirical point processes

N =
n∑

i=1

εXi

where Xi, i = 1, . . . , n, are iid rvs. In the following theorem we extent the results
concerning mixed empirical point processes to point processes of the form

N =

β∑

i=1

εZi
(5.14)

where Zi, i = 1, . . . , n are innid rvs independent of β.
Consider the random permutation Ψ introduced in the lines preceding Lemma 5.9.

This transformation will also play a crucial role in the proof of the subsequent theorem.
Recall that for arbitrary rvs X1, . . . , Xn the transformed rvs

XΨ(1), . . . , XΨ(n)

are exchangeable (cf. [2], page 7).

Theorem 5.15 Assume that

(a) Z1, Z2, . . . are innid rvs with values in a measurable space S independent of the
integer–valued rv β1 and put N =

∑β1
i=1 εZi

;

(b) hi is a density of Zi with respect to some dominating measure ν;

(c) furthermore, Z̃1, Z̃2, . . . are iid rvs, independent of the integer–valued rv β0 with
ν–density p, which is positive on S. Again, Ñ is the pertaining mixed empirical
point process;

(d) moreover, L (β0) dominates L (β1).
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Then, L (N) has a L
(
Ñ
)
–density

g(µ) =
1

n!

P {β1 = n}
P {β0 = n}

∑

π∈Pn

(
n∏

i=1

hπ(i)(xi)/p(xi)

)
(5.15)

where µ =
∑n

i=1 εxi
and Pn is the set of all permutations of the set {1, . . . , n}

Proof. First let k ∈ N

L(Nk) := P (N ∈ ·|β0 = k) (5.16)

and

Ñk =
k∑

i=1

εZ̃i
.

Let x1, . . . , xk ∈ S. We use again the inclusion mapping

ιk(x1, . . . , xk) =
k∑

i=1

εxi

(cf. [54], page 84) getting

Nk
d
=

k∑

i=1

εZΨ(i)

where Ψ is uniformly distributed on Pk, independent of Z1, . . . , Zk. Observe that for
Ai ∈ B the following equation holds

P
{
ZΨ(i) ∈ Ai, i = 1, . . . , k

}

=

∫

Pk

P
(
ZΨ(i) ∈ Ai, i = 1, . . . , k |Ψ = π

)
dL(Ψ)(π)

=

∫

Pk

P
{
Zπ(i) ∈ Ai, i = 1, . . . , k

}
dL(Ψ)(π)

=

∫

Pk

k∏

i=1

P
{
Zπ(i) ∈ Ak

}
dL(Ψ)(π)

=
1

k!

∑

π∈Pk

k∏

i=1

P
{
Zπ(i) ∈ Ai

}
.

Therefore,

h(x1, . . . , xk) =
1

k!

∑

π∈Pk

k∏

i=1

hπ(i)(xi)
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is a λk–density of L
(
ZΨ(1), . . . , ZΨ(k)

)
. Thus

f(x1, . . . , xk) =
h(x1, . . . , xk)∏k

i=1 p(xi)

is a L
(
Z̃1, . . . , Z̃k

)
–density of L

(
ZΨ(1), . . . , ZΨ(k)

)
. Check that f is symmetric, that

is,

f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)) for all π ∈ Pk.

Using the same arguments as in the proof of Theorem 3.1.1 of [54] one gets

f = gk ◦ ιk

where

gk(µ) =
1

k!

∑

π∈Pk

(
k∏

i=1

hπ(i)(xi)/p(xi)

)

and µ =
∑k

i=1 εxi
. Consequently, gk is a density of Nk with respect to L

(
Ñk

)
. Fur-

thermore, for A ∈ M(S) one gets

P {N ∈ A} =

∫
P {Nk ∈ A} dL(β1)(k)

=

∫ ∫

A
gk(µ)dL

(
Ñk

)
(µ)dL(β1)(k).

According to Theorem 3.1.2 of [54]

g̃k(µ) =





1
P{β0=k} , µ(S) = k and P {β0 = k} > 0

if
0, otherwise.

is a density of Ñk with respect to Ñ . Therefore,

P {N ∈ A} =

∫ ∫

A
gk(µ)g̃k(µ)dL

(
Ñ
)

(µ)dL(β1)(k)

=

∫

A

∑

k∈N

gk(µ)P {β1 = k} g̃k(µ)dL
(
Ñ
)

(µ)

=

∫

A
gn(µ)

P {β1 = n}
P {β0 = n}dL

(
Ñ
)

(µ)

if µ(S) = n. Now the assertion follows immediately. �
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In the following section we give an overview of likelihood based methods for estimat-
ing the tail of a conditional distribution.

5.4 Statistical Inference

The recent statistical literature offers a vast repertory of likelihood based methods
for estimating tails of conditional distributions. The concept of point processes and in
particular Poisson and binomial point processes has proven to be a powerful toolbox for
the solution of many of such statistical problems, especially when covariate information
is included in the analysis. These methods are used in a wide range of applications, for
example finance (e.g. [8] and Chapter 7 in [66]), insurance and environmental statistics
(e.g. [41], [42],[60],[61]) among others. All authors focus on the generalized Pareto
distribution as a model for distribution tails. A more mathematical overview of these
statistical models can be found in [11].

5.4.1 Modeling Upper Tails of Conditional Distributions

Recall our basic representation of the conditional distribution F (·|x) in the upper tail

F (y|x) = F (u|x) + (1 − F (u|x))Lϑ(x)(y), y > u. (5.17)

Basically we can choose between three approaches to the estimation of F (y|x), which
may be classified as non–parametric, parametric/nonparametric and parametric. Given
a data set (xi, yi), i = 1, ..., n the first approach requires to choose a neighborhood of
x and then use those data among the (xi, yi) where xi lies in this neighborhood.
Assuming that these data approximately behave as if they come from the df (5.17)
we can derive non–parametric estimations of F (u|x) and F [u](·|x) by replacing them
with the pertaining empirical versions.This approach yields reasonable results for the
conditional exceedance probability F (u|x) if a moderate high threshold u is chosen and
we have enough observations in the neighborhood of x. Yet the purely non–parametric
approach is not reliable as regards the conditional distribution of exceedances F [u](·|x),
because typically one has only few observations in this region and this problem gets
even worse because we can only use data within the chosen neighborhood of x.

A combined parametric/nonparametric approach suggests to estimate the condi-
tional exceedance probability using an empirical approach as described in the preceding
lines and replace F [u](·|x) with a parametric model. This approach is typically used
in the pot–approach for unconditional distributions and one may speak of a piecing–
together approach.

If the conditional distribution of Y given X = x is in the pot–domain of attraction of
some general pot–stable distributions L(·|x) we have (after a suitable transformation
see e.g. (2.27))

F [u](y|x) ≈ L(y|x), y > u. (5.18)
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5.4. Statistical Inference

Furthermore, we require for all x ∈ S that L(·|x) belongs to a parametric family Lξ,
ξ ∈ Ξ and that the dependence on x can be expressed as a functional relation of the
parameter and x, thus

L(y|x) = Lϑ(x)(y)

for some ϑ : S → Ξ. Therefore,

F (y|x) = F (u|x) + (1 − F (u|x))Lϑ(x)(y), y > u. (5.19)

A drawback of this approach is that the empirical estimation of F (u|x) is only reliable
if enough observations are available in the neighborhood of x. This is typically the case
if x is in the center of the support of the distribution of the covariate but not anymore
if x lies close to the boundaries.

In the latter case one can use a complete parametric approach by modeling the
function F (u|·) also in a parametric way. This method also allows the extrapolation
into the regions where no observations of the covariates are available. On the other hand
a misspecification of the parametric model may lead to serious misjudegments. Hence,
the model choice remains a delicate problem and this is also true for the function ϑ. In
contrast to the choice of the distribution family Lξ no asymptotic results are available
which suggests certain models.

The aim of the subsequent analysis is the estimation of the unknown functions ϑ :
S → Ξ and F (u|·) : S → (0, 1).

5.4.2 Estimation Using Unconditional Likelihoods

In what follows we use a fully parametric approach as regards the family of conditional
distributions. That is, we assume that the functions ϑ and F (u|·) belong to parametric
family (ϑθ, Fθ(u|·)), θ ∈ Θ while we avoid any parametric assumption for the distribu-
tion of the covariates. If the available observations are iid we might use the Poisson or
binomial process approach based on densities (5.8) or (5.9). If we set

pθ := 1 −
∫

Fθ(u|x)dL (X) (x)

the pertaining likelihood functions based on a point process η =
∑n

i=1 ε(x∗

i ,yi) satisfy

Lη(θ) ∝
(

k∏

i=1

lϑθ(x∗

i )(yi)

)
exp (λ(1 − pθ)) (5.20)

if N [S,u] is a Poisson process and

Lη(θ) ∝
(

k∏

i=1

lϑθ(x∗

i )(yi)

)
pk

θ(1 − pθ)
n−k (5.21)
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5. Conditional Exceedance Point Processes under covariate Information

if N [S,u] is a binomial process, where lϑθ(x) is the Lebesgue density pertaining to Lϑθ(x).
Notice that pθ includes the parameter θ which has to be estimated and the distribution
of the covariates. If we want to avoid any distributional assumption for the covariates
except independence we have to replace L (X) with a non–parametric estimate for
example a kernel estimate or an empirical distribution. In the latter case one may
substitute pθ with

p̂µ,θ = 1 − 1

n

n∑

i=1

Fϑθ
(u|xi)

if µ =
∑n

i=1 εxi
is again the point measure pertaining to all observed covariates and

maximize the approximate likelihood functions

L̂η,µ(θ) =

(
k∏

i=1

lϑθ(x∗

i )(yi)

)
exp (λ(1 − p̂µ,θ)) (5.22)

or

L̂η,µ(θ) =

(
k∏

i=1

lϑθ(x∗

i )(yi)

)
p̂k

µ,θ(1 − p̂µ,θ)
n−k. (5.23)

Obviously Lη and L̂η,µ do not necessarily attain their respective maxima for the same
value of θ as well in the Poisson as in the binomial process case. Simulations show
that the MLE based on this likelihoods exhibits a poor performance. This might be
due to the described approximation and/or identifiability problems of the parameters
in the integral term. It is especially sensitive to starting values used for the numerical
maximization. Furthermore, both models are only valid if the original observations
(Xi, Yi) are iid, which can not be justified for a lot of applications.

The likelihood function (5.22) is recently one of the benchmark approaches in the
statistical literature. For more details we refer to the review of likelihood based methods
in the statistical literature in Section 5.4.5.

5.4.3 Conditional Maximum–Likelihood Estimation

To overcome the problems described in the foregoing section one may use the condi-
tional density derived in Theorem 5.7. The conditional likelihood function pertaining
to the distribution of N [S,u] given N1 = µ satisfies

Lη|µ(θ) ∝
(

k∏

i=1

lϑθ(x∗

i )(yi)

)
 ∏

x∈Sµ

(Fθ(u|xi))
µ{x}−µ∗{x}



(

k∏

i=1

(1 − Fθ(u|x∗
i ))

)

for η =
∑n

i=1 ε(x∗

i ,yi) and µ =
∑n

i=1 εxi
.

The most simple, yet broadly used model is to assume L to be a generalized Pareto
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5.4. Statistical Inference

distribution,

Lθ = Wγ,u,σ

and

ϑ(x) = (γ(x), σ̃(x))

for some functions γ : S → R and σ̃ : S → R
>0 which are known up to some set of real

valued parameters. In this special case (5.19) can be rewritten as

F (y|x) = Wϑ(x)(y), y > u

where ϑ(x) = (γ(x), µ(x), σ(x)) and µ : S → R and σ : S → R are functions given by

µ(x) = u − F (u|x)γ(x) σ̃(x)

γ(x)

and

σ(x) = σ̃(x)(1 − F (u|x))γ(x).

We assume that all these functions are known up to a parameter θ ∈ Θ where Θ ⊂ R
k,

k ∈ N. Given realizations η and µ of the point process N [S,u] and N1, θ may be
estimated by maximizing the likelihood function

Lη|µ(θ) ∝


 ∏

x∈Sµ

(
Wϑθ(x)(u)

)µ{x}−µ∗{x}



(

k∏

i=1

wϑθ(x∗

i )(yi)

)
(5.24)

where η =
∑k

i=1 ε(x∗

i ,yi), µ =
∑n

i=1 εxi
and µ∗ = π1(η) ∈ Mµ(S). This is a likelihood

function also utilized in [25]. In the following simulations and case studies we will
concentrate on this model.

5.4.4 Model Checking

The model checking in the GPD case is mainly done using q–q–plots. We differ two
cases, whether the shape parameter γ is modeled depending on the covariate infor-
mation or not. In latter case the data (x∗

i , yi), i = 1, . . . , k are transformed using the
estimated functions σθ̂ and µθ̂ using the transformation

ỹi :=
yi − µθ̂ (x∗

i )

σθ̂ (x∗
i )

.

The resulting values are plotted against the pertaining quantiles of a GPD with param-
eters γ = γ̂, µ = 0 and σ = 1. If the shape parameter also depends on the covariates
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5. Conditional Exceedance Point Processes under covariate Information

we apply a different transformation given by

ỹi :=
1

γθ̂(x
∗
i )

log

(
1 + γθ̂(x

∗
i )

yi − µθ̂ (x∗
i )

σθ̂ (x∗
i )

)

and apply a standard exponential q–q–plot to the residuals ỹi.

5.4.5 Likelihood Based Methods in the Literature

A first attempt to use a combination of EVT and the theory of point processes to model
non–homogeneous extreme observation can be found in [60]. The author introduces a
likelihood function which corresponds to unconditional density of the point process
N in the Poisson process case as given in (5.22). The studied data consists of a time
series of exceedances among daily ground–level ozone concentration measurements over
a thirteen years period in Houston, Texas. The arrival times are treated similarly as
the covariates in the model proposed in Section 5.2.2, yet they are not random in this
context.

In [61] the authors introduce an extension of [60]. The purpose of this article is to
study whether changes in tropospheric ozone concentrations are due to a temporal
trend or also influenced by the fluctuation of certain meteorological variables such as
wind and temperature. The adopted model is similar to that of [60]. The observed data
consists of daily observations (Yi, Ti) where Yi is the measured ozone concentration and
Ti the pertaining day of observation counted from a fixed starting date. Since daily
measurements during a period [1, t∗] are considered we know that Ti takes values in
the finite set {1, . . . , t∗}.

In addition, observations of certain meteorological variables Xt are available for each
point in time t = 1, . . . , t∗. Let X = (X1, . . . ,Xt∗) the vector of all observed covariates.
For the further analysis only those values among the Yi are considered which exceed
the threshold u, let (Y ∗

i , T ∗
i ), i = 1, . . . , k denote these exceedances.

The resulting data are used for the modeling of the likelihood function. It is assumed
that, given the outcome x of the meteorological variables, the exceedance times T ∗

i

are arrival times of an inhomogeneous marked Poisson process on the observation
interval and the Y ∗

i are interpreted as pertaining marks. Estimations for the unknown
parameters are based on the (unconditioned) density of the Poisson process.

Another development direction based on multivariate point processes leads to to a
likelihood function which is proportional to the conditional likelihood function (5.24).
As a reference we refer to [25].

We present a further approach to constructing a model which satisfies Condition 5.8,
and later discuss a relation to the model applied in [61] for analyzing ozone data.

Example 2. Assume we observe random vectors (Xi, Yi), i = 1, . . . , n, where the Yi

are response variables and the Xi are covariates. Furthermore, we observe an additional
vector of covariates Z = (Z1, . . . , Zn). Assume that the (Xi, Yi) are conditionally iid
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given Z = z. Put

L(Xi,z, Yi,z) := P ((Xi, Yi) ∈ ·|Z = z) .

Apparently,

L (Yi,z) = P (Yi ∈ · |Z = z ) and L (Xi,z) = P (Xi ∈ · |Z = z ) .

Again we specify the parametric model in terms of the conditional distribution

P (Yi,z ≤ y |Xi,z = x) .

We assume again that

P (Yi,z ≤ y |Xi,z = x) = Lϑz (x)(y), y > u. (5.25)

According to Lemma A.4 we have

P (Yi,z ∈ · |Xi,z = x) = P (Yi ∈ ·|Xi = x,Z = z) (5.26)

In addition, assume that

P (Yi ∈ ·|Xi = x,Z = z) = P (Yi ∈ ·|Xi = x, Zi = zi).

Now with Ỹi = Yi and X̃i = (Xi, Zi) one gets the point process

N =
n∑

i=1

ε(X̃i,Ỹi)

which satisfies Condition 5.8. The conditional independence of the Ỹi given the X̃i

follows from (5.26) and the assumption that the (Xi, Yi) are conditionally iid given
Z = z.

Example 2 makes the Poisson process framework applicable in a non–iid case. Put

Nz =
n∑

i=1

ε(Xi,z ,Yi,z )

and let N
[S,u]
z the pertaining truncation outside of S× (u,∞). In addition assume that

N
[S,u]
z is a Poisson process, satisfying

N
[S,u]
z

d
=

τ∗
z∑

i=1

ε(X∗

i,z ,Y ∗

i,z)

with a Poisson rv τ∗
z . Then, the estimation of the unknown parameters can be carried
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5. Conditional Exceedance Point Processes under covariate Information

out within the likelihood framework based on a density of N
[S,u]
z in complete analogy

to the procedure described in the introduction.
Such a model was introduced in [61]. These authors use the truncated point process

N
[S,u]
z as the starting point for their modeling of exceedances for ozone concentrations

Y ∗
i,z given a set of further meteorological measurements Z. More precisely, we have

N
[S,u]
z

d
=

τ∗
z∑

i=1

ε(T ∗

i,z ,Y ∗

i,z)
,

where the role of the X∗
i,z is played by the exceedance times T ∗

i,z, which are assumed to
be uniformly distributed on an interval [0, t∗]. The random sample size τ∗

z is a Poisson
rv.

This model was later applied to several environmental data in [41] and used in [65]
and [66] to analyze financial time series.

5.5 Applications and Simulations

As already noted at the beginning of this chapter all described statistical procedures
have a common aim, namely statistical inference for the upper tail of a conditional
distribution

P (Y ∈ · |X = x)

based on observations (X1, Y1), . . . , (Xn, Yn). The statistical methodology has to be
adopted to the properties of the available data. The simplest case appears if iid copies
of (X, Y ) are available. In that case the statistical analysis can be carried out in the
Poisson process framework and ML–estimation can be based on (5.20) or (5.24). It
turns out that (5.24) yields superior results in the simulations studies presented in
this section. A possible explanation is that (5.20) still includes an integral term which
cannot be evaluated in a closed form and thus has to approximated.

If the iid assumption is not valid for our data we have to search for different ap-
proaches. It is shown in [44] that the Poisson process approximation of the process
of exceedances is still valid if not all exceedances but only maxima of clusters of ex-
ceedances are considered. A cluster occurs if the threshold is exceeded at several con-
secutive days. It is evident that this approach makes use only of a part of the data
which is a problem because usually one has already only few observations in the tail
and, therefore, wants to make efficient use of the available data.

The proposed estimators are valid under the basic Condition 5.8 and they work
without declustering of the data, yet it is of course necessary to verify the condition
for the considered data.

Nevertheless, Condition 5.8 is valid for a lot of statistical models which are broadly
used in financial mathematics. It can furthermore be assumed that it is also valid in
certain applications in the field of climate research. We include some remarks on the
applicability of our condition in the field of climate research.
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5.5.1 Some Remarks on the Basic Condition

In the field of environmental statistics one often faces dependent data. If for example
extreme precipitation amounts at different locations and days are analyzed, this data
often exhibits spatial and temporal dependencies. Extreme rainfalls at two location can
be caused by the same rainstorm, extreme rainfalls at several consecutive days may
occur because of the same low. Such effects are typically present if other climatologic
variables are studied, too. Nevertheless, one may often assume that a certain form of
conditional independence holds.

In the previous example one may for example argue that the precipitation amounts
at different locations are conditional independent given that a large scale rainstorm has
occurred, and we may have temporal conditional independence given that the rainfalls
occurred in a certain low pressure phase.

Generalizing this thought we may study local extreme weather events given large
scale observations and assuming conditional independence of the form introduced in
Condition 5.8. This approach has the additional advantage that large scale climate
phenomena are quite well understood and one is able to predict the influence of global
warming on these phenomena. On the other hand local climate extremes are still a
very active field of research, see for example [41], [42] and [12]. Thus one may use the
conditional distribution of a local climate phenomena such as extreme rainfall, given
a certain scenario for the large scale phenomena to predict for example the risk of
flooding at a certain location in a couple of years in consideration of climate change.

5.5.2 Simulations and Real Data Analysis

The following simulations illustrate the performance of the proposed conditional MLE
(5.24) in comparison to the MLE based on the likelihood function (5.22). As already
noted the latter is recently the most common estimation procedure in the statistical
literature.

Specifically, we study the performance of the estimators for the model introduced in
Example 1. We merely consider univariate covariates to reduce the computing time.

Choose the function h

h(x, ξ) = W−1
ϑθ(x)

(ξ)

in Example 1, whith W−1
ϑ denoting the quantile function pertaining to the GPD with

parameter vector ϑ. Put ϑθ(x) = (γθ(x), µθ(x), σθ(x)), γθ(x) ≡ θ1 ∈ R

σθ(x) = exp(θ2 + θ3x), θ1, θ2 ∈ R

as well as

µθ(x) = θ4 + θ5x, θ1, θ2 ∈ R.

The iid rvs ξ1, ξ2, ξ3, . . . (cf. Example 1) are uniformly distributed on the interval [0, 1].
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5. Conditional Exceedance Point Processes under covariate Information

The conditional distribution of the response variables given the covariate satisfies

F (y|x) = Wϑθ(x)(y), y > 0.

We apply the estimators to the full point process N in Condition 5.8, where β is a
Poisson distributed sample size τ with parameter λ.

For the maximization of the likelihood functions we use the Nelder–Mead algorithm
as implemented in the optim–routine of the statistical software R. This procedure
requires an initial estimator as starting value for the numerical optimization. Yet a
simple initial estomator for the model described above is not available besides of a
“kick and rush” approach which utilizes the moment estimates γ̂MM, µ̂MM and σ̂MM

based on the response variables neglecting the influence of the covariates. Thus the
initial values are chosen as θ̂1,init = γ̂MM, θ̂2,init = log (σ̂MM), θ̂3,init = 0, θ̂4,init = µ̂MM and
θ̂5,init = 0.

The insights gained from the simulations can be summarized as follows

(a) Using the initial estimates described in the preceding lines leads to inaccurate
results in most cases, because the global maximum of the likelihood is not de-
tected.

(b) Alternatively one may use a grid and start the iteration procedure for each grid
point. This procedure requires extensive computing time and is, therefore, not
adequate for comprehensive simulation studies.

(c) To reduce computing time we present a simulation study where the optimiza-
tion procedure is starts with the underlying parameters. Then, according to our
experience, the iteration procedure finds the global maximum of the likelihood
function. Notice that this can also be achieved using (b) with a sufficiently dense
grid.

The distribution of the MLE based on (5.22) and the conditional MLE based on 5.24
are simulated for different models of the form described above. The threshold is chosen
in a way that it is exceeded by 10% of the observations for all simulation runs, getting
200 exceedances on the avarage.

In Figure 5.1 we exemplary summarize the results for the simulated distributions of
the MLE and conditional MLE of θ1 using the kernel densities. The estimators for the
remaining parameters show similar characteristics.
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Figure 5.1: Kernel densities of the conditional MLE (solid) and the MLE (dashed) of θ1

based on 400 independent . The vertical lines indicate the value of the true parameter
θ1 = 0.6.

Figure 5.1a shows kernel densities of the conditional MLE and the MLE for θ1 with
the optimization procedure starting from a grid. The parameter values are chosen as
θ1 = 0.6, θ2 = −0.5, θ3 = 1, θ4 = 0.5 and θ5 = 1. The covariates are iid standard
Gaussian rvs. The conditional MLE is superior as far as the concentration about the
true parameter value is concerned.

The chosen parameters provide constellation where the MLE exhibits a comparably
good performance. If the values of θ3 and/or θ5 increase the performance of the MLE
deteriorates steadily. The performance of the conditional MLE is hardly affected.

In a second step we consider covariates which follow a non–stationary GARCH pro-
cess with standard Gaussian innovations. As a consequence the model for the MLE is
not valid anymore. We observe that the resulting likelihoods are much harder to handle
from a numerical point of view. The optimization requires considerable computing time
because one has to choose a very dense grid to obtain the global maximum. Recall that
in (c) we start the maximization from the given parameters. Now the parameters are
chosen as γ = 0.6, µ0 = 0.5, µ1 = 1, σ0 = −5 and σ1 = 1. It is necessary to consider a
small value for the parameter σ0 because the covariates tend to be much larger than
in the case of independent Gaussian variables leading to very large observations of the
response variables. The choice of σ0 accounts for this problems and keeps the values of
the response variable in a reasonable range.

As can be deduced from Figure 5.1b the conditional MLE exhibits a good perfor-
mance while the MLE fails to some extent.

A detailed discussion concerning some additional simulation studies is given in the
remainder of this section.
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Simulation Study 1. We start with a model described above where the distribution of
the covariates is chosen as independent standard Gaussian distribution. The threshold is as
u = 4. As a result it will be seen that the conditional MLE outperforms the common MLE.

The following plots (Figures 5.2, 5.3 and 5.4) compare the performance of the estimators
based on 1000 simulations of N with λ = 500. The vertical lines indicate the value of the
parameter which is to be estimated. The parameters are chosen as θ1 = 0.6, θ2 = 0.1, θ3 = 0.8,
θ4 = 0.5 and θ5 = 0.5, which leads to an average number of 500 observations thereof on average
109 exceedances. This choice of the underlying parameters means that the dependence of the
rvs Y on the covariate information is quite weak. Moreover, since the values of θ3 and θ5 are
small the initial estimates tend to be close to the real parameters. At first sight the kernel
densities of the different estimators seem to show a better performance of the MLE, since its
kernel density has more mass close to the underlying parameter. On the other hand the mode
of the conditional MLE is closer to the true parameter then the mode of the MLE. Another
fact that does not appear in the subsequent plots is the variance of the estimators. Here the
conditional MLE shows a significantly smaller variance than the MLE. This is because the MLE
has some values which depart strongly from the center of its distribution and these “outliers”
appear with a relatively high probability. Table 5.2 comprises some sample functionals of the
simulated estimators.

θ̂1 θ̂1 θ̂3 θ̂4 θ̂5

parameter value 0.6 0.1 0.8 0.5 0.5
mean conditional MLE 0.69 -0.06 0.89 0.15 0.65
mean MLE 1.76 -0.63 1.04 -0.67 1.50
median conditional MLE 0.55 0.21 0.78 0.10 0.56
median MLE 0.55 0.27 0.75 -0.32 0.74
variance conditional MLE 1.74 6.56 1.20 3.33 0.86
variance MLE 110.25 69.84 8.05 16.49 22.31

Table 5.2: Sample functionals of simulated MLE and conditional MLE (Simulation
Study 1).
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Figure 5.2: Kernel densities of the conditional MLE (solid) and the MLE (dashed) of
θ1.
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Figure 5.3: Kernel densities of the conditional MLE (solid) and the MLE (dashed) of
θ2 and θ3.
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Figure 5.4: Kernel densities of the conditional MLE (solid) and the MLE (dashed) for
θ4 and θ5.

Our second simulation study concerns the same model as above, but this time we
choose the parameters θ3 and θ5 which quantify the dependence of Y and X each
equal to 2. The initial estimates are obtained as before. This leads necessarily to a
larger deviation of the initial estimates from the parameters.

Simulation Study 2. We chose the same model and estimation procedure as in Simulation
Study 1, yet this time we made 400 runs and choose the parameters as λ = 500, u = 4, θ1 = 0.6,
θ2 = 0.1, θ3 = 2, θ4 = 0.5, θ5 = 2. This yields an average number of 129 exceedances. The
results are similar to those obtained in the foregoing study (see Figures 5.5, 5.6 and 5.7) in
so far, that the conditional MLE has a better performance in terms of bias and variance.
Moreover, the MLE exhibits a strong dependence on the initial estimates and its performance
is quite poor while the conditional MLE still works reasonably well if the initial estimates differ
significantly from the true parameters.
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Figure 5.5: Kernel densities of the conditional MLE (solid) and the MLE (dashed) of
θ1.
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Figure 5.6: Kernel densities of the conditional MLE (solid) and the MLE (dashed) of
θ2 and θ3.
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Figure 5.7: Kernel densities of the conditional MLE (solid) and the MLE (dashed) for
θ4 and θ5.

In the following we apply both estimators to real datasets from environmental statis-
tics. We start by studying daily precipitation amounts in Chico, California.

Case Study 4. [Precipitation Amounts, Chico, California.] The considered dataset
consists of January daily precipitation amounts recorded in Chico, California from 1913 to
1988. We consider only one covariate, the monthly mean pressure at sea level. We apply the
model from Simulation Study 1 to this data set choosing a threshold u = 40 which yields a
number of 49 exceedances out of a total sample size 2418. Choosing lower thresholds yields
no reasonable results. The data have also been analyzed in [56], Section 15.5 applying the
same model but using the unconditional ML–method. The resulting ML–estimates for the
parameters are given in Table 5.3. The q–q–plots clearly indicate that the conditional MLE
performs better than the MLE in that case.

θ̂1 θ̂1 θ̂3 θ̂4 θ̂5

conditional MLE 0.39 -1.47 0.002 42.16 -0.02
MLE 0.34 2.61 -0.0005 40.53 0.0005

Table 5.3: estimated parameters for Chico precipitation data
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Figure 5.8: Daily precipitation amount in Chico, California.

10 20 30 40 50 60

10
20

30
40

50

empirical quantiles

th
eo

re
tic

al
 q

ua
nt

ile
s

0 2 4 6 8 10 12

10
15

20
25

30
35

40

empirical quantiles

th
eo

re
tic

al
 q

ua
nt

ile
s

Figure 5.9: Q–Q-plots for the conditional MLE (left) and the MLE (right).

Case Study 5. [Daily Maximum Wind Speed, Aachen, Germany.] The considered
dataset contains daily measurements of the daily maximum temperature 2 meters over ground
(measured in degree Celsius) and the daily maximum wind speed (peak gust, measured in
m/sec) in Aachen, Germany from January 1st, 1991 to June 24th, 2008. The data are obtained
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from the homepage of the German meteorological service (DWD).
For our analysis we concentrate on the winter months December, January and February

where usually the severe winter storms appear in Germany. Most of the storms which caused
severe damage in Germany in the past two decades took place during this time of the year,
e.g. Kyrill (January 18th/19th 2007), Lothar (December 26th, 1999), Wiebke (February 28th
1990), Vivian (February, 25th 1990) and Daria (January 25th/26th, 1990). Because our data
starts in 1991, the latter three storms are not contained. Nevertheless, these storms mainly hit
the south–western part of Germany and not so much the region in western Germany where
our data where collected.

The concentration on the winter period allows us to omit the inclusion of an annual cycle
in our model. Figure 5.10 reveals a clear dependence of maximum wind speed and maximum
temperature at one day, high wind speeds occur more often when the pertaining temperature
is also high. This is due to the fact, that serious winter storms approach western Germany
usually from the west bringing also mild air from the Atlantic ocean. So one may argue that
high temperatures in the winter months are caused by western storms. Therefore, it might me
natural to consider the wind speed as a covariate for the temperature. On the other hand higher
temperatures reflect the fact that there is more energy in the climatic system which causes
heavy storms. From this point of view it would be desirable to have a covariate which describes
the large scale temperature developments in western Europe and over the Atlantic ocean, yet
the data at hand only contains daily measurements in Aachen. Daily temperatures in Aachen
are obviously closely related to large scale developments in the temperature of western Europe.
Thus, this data can be utilized to draw at least limited conclusions about the impact of global
warming on extreme storm events in western Germany.

We apply the model introduced in Simulation Study 1, where the temperature is treated as
the covariate. Choosing the threshold u = 22 yields 113 exceedances out of a total sample size
1684. Using the conditional MLE we obtain the estimates given in the subsequent table. The
pertaining q–q–plot is given in Figure 5.11. The q–q–plot shows a very good model fit for the
high quantiles yet the model seems to fail to describe the behavior of the smaller exceedances.
Figure 5.10 indicates that this might be due to the choice of a constant threshold. We refer to
Section 5.6 for a more thorough discussion of this topic. Nevertheless, the estimated conditional
q–quantiles are very close to the moving sample quantiles for moderate values of q say up to
95%, see Figure 5.11. The parametric estimate coincides quite well with the sample version,
even in the region where the estimated quantile is below the threshold u. Deviations of the
parametric estimates in the region for high temperatures might be due to the fact that we
have only very few observations in this region and thus the empirical conditional quantiles are
not reliable for this region.

Since no declustering is applied the daily wind speeds are likely to be dependent since high
wind speeds on two consecutive days might be caused by the same low. Nevertheless, given
the temperature at the pertaining days we may assume that the wind speed is conditional
independent because such effects are also captured in the temperature.

The estimate for the shape parameter θ̂1 indicates that the conditional distribution of the
wind speed has a finite upper tail. This is in line with results from climate research which
indicate that rainfall data exhibits heavy tails while almost all other meteorological variables
including wind speed seem to possess bounded upper tails (personal communication to R.W.
Katz). Moreover, the estimates show a significant impact of the daily maximum temperature
on the location parameter of the conditional wind speed distribution and also a slight impact
on the scale parameter. This indicates that global warming might lead to more severe storms
in the future which is also in line with the recent climate research (see e.g. [41]). Figure 5.11
indicates the impact of the daily maximum temperature on the conditional quantiles of the
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daily maximum wind speed. On a day with maximal temperature of 10◦C we have a 10%
probability of a storm with wind speeds of more than 22 m/s (79 km/h), if the daily maximum
temperature increases to 20◦C this wind speed increases to 30m/s (108 km/h). The pertaining
99% quantiles are 30 m/s (108 km/h) for 10◦C and 41 m/s (148 km/h) for 20◦C.

θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

-0.12 1.12 0.04 9.93 0.35

Table 5.5: Estimated parameters for Aachen wind speed data.
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Figure 5.10: Daily maximum wind speed in Aachen, Germany.
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Figure 5.11: q–q–plot for Daily maximum wind speed in Aachen, Germany (left) and
conditional 95% quantiles of maximum daily wind speed in Aachen, Germany (right),
parametric approach and moving sample quantiles.

5.6 Moving Thresholds and Multivariate Extensions

We conclude this chapter by some remarks on two further aspects, namely moving
thresholds and extensions to multivariate exceedances.

5.6.1 Moving Thresholds

When applying the proposed methods to real data sets the choice of the threshold u is
of central importance. If it is chosen too low, the limit theory does not yet apply and
we have a model bias which makes the results of the statistical inference doubtable.
If it is chosen too high, we have only few observation to base the statistical inference
on which usually leads to large variances. This topic is still a field of research in the
case of iid exceedances (see e.g. [5], [15], [16], [19], [24], [47], [56]) and it becomes
even more urgent if we include covariate information. In the foregoing sections we
just choose one threshold for each outcome of the covariates. It is highly probable
that we can improve the performance of the statistical procedures if we allow the
threshold to vary with the covariate information, thus we replace the fixed threshold
u with some threshold line given by a function u : S → R. The necessity of such
an approach becomes evident in Case Study 5. On a warm winters day a wind speed
of say 21m/s is not really an extreme observation while wind speeds of 15m/s on a
cold day can be considered extreme. This fact might also explain the shape of the
pertaining q–q–plot in Figure 5.11. One can recognize a very good fit for the high
quantiles of the residuals while we have some deviations from a straight line in the
area of low quantiles. The results from the theory of point processes are not affected
using a moving threshold but the choice of the exact form of the threshold function
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remains an unsolved problem. A straightforward approach is using empirical quantiles
or quantile regression for moderate high quantiles about 90% and truncate the data
below the estimated moving quantile. The drawback of such an approach is that the
choice of the quantile is arbitrary.

Another possibility would be some kind of goodness–of–fit test of the truncated
point process model and to choose the lowest threshold line which yields the required
confidence level. This approach requires most probably to choose a parametric form of
the threshold line.

5.6.2 Multivariate Extensions

A second possible extension is the use of multivariate EVT. Assume we have several
response variables contained in a random vector Y and again a vector of pertaining
covariates X. If we assume that the dependence structure of the components of Y

is not affected by the covariate we can apply the methods proposed in the foregoing
sections for each component of Y separately. If this assumption is not justified we
have to model a dependence structure which also depends on the covariate. In the
multivariate case we face several new problems which do not occur if we consider
only one–dimensional response variables. First of all the definition of the upper tail of
a multivariate distributions is not straightforward or unique. Because we will merely
give an outlook on this topic we do not discuss this problem in detail. A comprehensive
treatment can be found in [27].

In the following we use the term multivariate exceedance in the way used in [27].
A random vector Y exceeds the multivariate threshold u if each component of Y is
larger than the corresponding component of u. Given a point process

N =

β∑

i=1

ε(Xi,Y i)

we, thus, consider the truncated process

N [S,u] = N(· ∩ S × (u, ∞)).

In contrast to the univariate case the multivariate conditional df F (·|x) is, in the north–
east of u, not completely determined by the distribution of the truncated point–process.
Nevertheless, we can still derive important information about the multivariate tail of
F using the point process approach.

We suggest to use a two–step procedure in that case. First model the upper tails of
the margins of the conditional distribution of Y given X = x and derive an estimation
applying the approach proposed for the univariate case to each margin separately. Then
we transform all margins to the uniform distribution on the interval [−1, 0]. Denoting
the transformed response variables by Ỹ i we have (approximately) for y sufficiently
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close to 0

P
(
Ỹ i ≤ y|Xi = xi

)
= 1 +

d∑

i=1

yiDϑ(x)(z)

where again Dϑ(x) is a Pickands dependence function as in Section 2.7 which depends on
x in some parametric form and z is the radial component in the Pickands representation
of x. Finally, apply the proposed conditional point process approach starting with the
process

Ñ =

β∑

i=1

ε(Xi,Ỹ i).

A crucial aspect is the choice of the parametric family of Pickands dependence functions
because in general these dependence functions do not form a parametric family. We are
not going to workout the multivariate approach in more detail within the framework
of this thesis. Nevertheless, it might be an interesting field of future research as the
whole field of multivariate extreme value theory.
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This thesis presents new results in the field of extreme value theory where the empha-
sis is on asymptotic distributions of exceedances and the analysis of extremes under
covariate information.

Retrospective

The first part is of rather theoretical nature. It is shown that all continuous limiting
dfs under a general monotone transformation T : R

2 → R satisfy a certain form of
g–pot stability. If an additional technical condition (Condition 2.8) is satisfied this
result can be extended to all non–degenerate limiting dfs. Moreover, we derive an
explicit representation of all strictly increasing, continuous limiting distributions of
exceedances.

We provide three examples of special normalizations namely linear, power and ex-
ponential normalizations. In all cases Condition 2.8 is satisfied. We show that general
pot–domains of attraction contain the pertaining max–domains of attraction.

As in the well understood case of linear normalization, limiting distributions of max-
ima are necessarily continuous while in the framework of exceedances also discrete lim-
iting distributions occur. In the general case it is also possible to construct discrete
pot–stable distributions, which of course also occur as limiting distributions.

We also shortly address extensions to multivariate exceedances under general mono-
tone transformations, but this is still very much an open field. As in the case of linear
normalization a natural approach consists of decomposing the problem in the univari-
ate marginal distributions and the asymptotic dependence structure. If the multivariate
normalization is of the form as given in Lemma 2.14 the results in the univariate case
carry over to the marginal distributions.

Asymptotic distributions under power–normalization are studied in more detail. We
derive all limiting distributions, including the discrete ones, in this case and give a
complete characterization of the pertaining domains of attraction. This is possible
because we can use a close relation of linear and power–normalization which was first
observed in [10] in the case of maxima.

A particular interesting aspect of power–normalization is, that it is possible to derive
asymptotic models for distributions with super–heavy, thus slowly varying, survivor
functions. The pertaining asymptotic model is constituted by the family of GLPDs
which is an extension of the GPD family. The GLPD family has in comparison to
the GPD family an additional shape parameter which complicates the adaption of the
model to data. The MLE in the GLPD family has, as in the GPD family, no closed form
solution and exhibits a larger variance than in the GPD family, which is not surprising
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because the GPD family is just a constraint GLPD model. The numerical problems
increase because of the additional dimension in which the likelihood function has to be
maximised. This makes the estimation procedure also strongly depend on the starting
values for the numerical optimization. Therefore, we derive an initial estimator which
is based only on one–dimensional numerical optimization. Nevertheless, it is desirable
to have an initial estimator with a closed form.

In the last chapter we turn the focus on exceedances in more complex models. We
investigate upper tails of the conditional distribution of a response variable given a
covariate. As indicated in Section 5.4.5 this topic is extensively studied in the statistical
literature. We introduce a point process model which unifies the most common ML
approaches in the statistical literature. The results are valid under a certain condition
(Condition 5.8) which is basically the framework of ordinary regression analysis and
one may assume this condition to hold in a lot of applications.

Outlook

Lemma 2.14 indicates that the asymptotic dependence structure under certain compo-
nentwise, monotone transformations is the same as in the case of componentwise linear
normalization, although we only consider the case of general max–stable distributions.
It should be possible to carry over techniques used in [27] and [57] to extend this re-
sults to multivariate exceedances. In this case the multivariate GP–function has a kind
of universal meaning as asymptotic dependence structure for multivariate exceedances
under componentwise and monotone normalizations.

The question whether if a discrete distribution function is pot–stable with respect to
a transformation g, then g has to be of the form given in Section 2.4, remains unsolved.
To settle this question one likely has to apply or even develop an advanced theory of
functional equations. It has turned out that discrete limiting distributions in the linear
case, which have been completely characterized in [3], have not found much attention
neither in the statistical literature nor in applications. Therefore, one may argue that
this gap in the theory of the general case is not of particular importance.

An interesting field for further research work is constituted by super–heavy tailed
dfs and GLPDs. We apply the GLPD model to several data sets. In all cases a clear
decision whether the GPD model is sufficient or the GLPD model has to be used
cannot be made. In the framework of this thesis we were not successful to find a real
world data set which exhibits clearly rather a super–heavy than heavy tailed behavior.
Nevertheless, if one ignores a possible super–heavy tailed behavior in the data this
might lead to serious underestimation of extreme quantiles which are of particular
importance in many applications.

To discriminate between the GLPD and GPD model we have introduced up to now
only visual tools as introduced in Section 4.3.2. An applicable test procedure is not
derived but one can imagine to use a local Neyman–Pearson test based on a Taylor–
expansion of the quotient of densities at γ = 0 or β = 0 as indicated in Section 4.3.3. We
may concentrate on such a local testing procedure because it is likely that one will face
mostly real world data sets which, if they are really super–heavy tailed, are still close to

116



Retrospective, Outlook and Conclusions

the GPD model. If one has a data set where both shape parameters differ significantly
from zero such a local test procedure will likely have a power which will lead to the
rejection of the GPD model with a quite high probability. Another possibility is to use
discriminant analysis, where also a local version might be of particular interest.

The development of the field exceedances under covariate information is just at the
beginning and a lot of questions are still left open. An aspect which is of particular
importance is the choice of an adequate threshold, which should also depend on the
pertaining outcome of the covariate information. The most urgent task are the nu-
merical problems related to the maximization of the likelihood function. Because we
usually have at least five parameters even in the most simple model one cannot ignore
this problem and the resulting estimates have to be treated with caution. One pos-
sible improvement consists in deriving adequate initial estimators to assure that the
optimization procedure does not start too far away from the true parameters.

Conclusions

In summary one may say that this thesis gives some new results in two important fields
of extreme value theory, but we are far from studying all aspects of either field and
a lot of interesting questions are left open for further research. The results concern-
ing asymptotic distributions of exceedances under general monotone transformations
are of rather theoretical nature and it cannot be said today if they can be relevant
for applications. In the special case of power–normalization one can use the pertain-
ing asymptotic models to analyze data from super–heavy tailed distributions, yet it
is an open question if such distributions arise in applications. The conditional ML–
approach for exceedances under covariate information can be applied directly to a lot
of applications and if one considers the pertaining simulation results it is worthwhile
thinking about using this approach instead of the procedure based on unconditional
distributions of Poisson processes.
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A Auxiliary Results

We include some technical auxiliary results which are used throughout the thesis. Since
we use special formulations we give the pertaining proofs, too, although none of the
following results is a original contribution of this thesis.

First we state a well known result for conditional distribution of a random vector
vector given one of its components.

Lemma A.1 Let X, Y be arbitrary rvs, and consider a further rv Yx with distribution
P (Y ∈ · |X = x). Then

P ((X, Y ) ∈ · |X = x) = L ((x, Yx)) .

The right hand side may be represented as εx × P (Y ∈ · |X = x).

Proof. Observe that

L ((x, Yx)) = εx × P (Y ∈ · |X = x) .

Therefore, for measurable sets A, B, C one gets

P {X ∈ A, (X, Y ) ∈ B × C} = P {X ∈ A ∩ B, Y ∈ C}

=

∫

A∩B
P (Y ∈ C |X = x) dL(X)(x)

=

∫

A
εx(B)P (Y ∈ C |X = x) dL(X)(x)

=

∫

A
L ((x, Yx)) (B × C)dL(X)(x),

which is the asserted property. �

The following Corollary is a consequence of Lemma A.1.

Corollary A.2 Let (Xi, Yi) be as in Condition 5.8. Put X = (X1, . . . , Xn) Then

(i) (Xi, Yi) are conditional independent given X = x.

(ii) For the conditional distribution of (Xi, Yi) given X = x holds

P ((Xi, Yi) ∈ ·|X = x) = L ((xi, Yxi
))

where Yx is defined corresponding to Lemma A.1.
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Proof. Put Y = (Y1, . . . , Yn), A =×n

i=1
Ai and B =×n

i=1
Bi. Observe that Lemma

A.1 yields

P (Y ∈ B, X ∈ B |X = x) = εx(A)P {Y x ∈ B} , (A.1)

with

P {Y x ∈ B} = P (Y ∈ B |X = x) .

Moreover,

P (Y ∈ B |X = x) =

n∏

i=1

P (Yi ∈ Bi |X = x)

=
n∏

i=1

P (Yi ∈ Bi |Xi = xi ) .

Combining the latter equality with (A.1) yields the assertions. �

Another important tool when dealing with conditional distributions is the following
extension of the Fubini theorem for Markov kernels. We give a special version for three
rvs.

Lemma A.3 Let X, Y and Z be arbitrary random such that the following conditional
distributions exist. Then for measurable sets A, B and C we have

P {X ∈ A, Y ∈ B, Z ∈ C}

=

∫

C

∫

B
P (X ∈ A |Y = y, Z = z ) dP (Y ∈ dy |Z = z ) dL (Z) (z)

Proof. Notice that by Lemma A.1
∫

f(x, y)dL(X, Y )(x, y) =

∫ ∫
f(x, y)d (εv × P (Y ∈ dy|X = v)) (x, y)dL(X)(v).

Therefore, by Fubinis theorem

P {X ∈ A, Y ∈ B, Z ∈ C}

=

∫

A×B
P (Z ∈ C |Y = y, X = x) dL (Y, X) (y, x)

=

∫ ∫
εy(B)εx(A)P (Z ∈ C |Y = y, X = x)

d (εv × P (Y ∈ dy|X = v)) (x, y)dL(X)(v)
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=

∫ ∫ ∫
εy(B)εx(A)P (Z ∈ C |Y = y, X = x)

dεv(x)dP (Y ∈ dy|X = v) dL(X)(v)

=

∫ ∫
εy(B)εv(A)P (Z ∈ C |Y = y, X = v ) dP (Y ∈ dy|X = v) dL(X)(v)

which proofs the assertion. �

Lemma A.4 Let X, Y and Z be arbitrary rvs such that the following conditional
distributions exists:

L(Yx) := P (Y ∈ ·|X = x)

and

L(Zx) := P (Z ∈ ·|X = x).

Then

P (Yx ∈ ·|Zx = z) = P (Y ∈ ·|X = x, Z = z)

Proof. A Markov–Kernel Kx(·|·) is a conditional distribution of Yx given Zx = z if
for measurable sets A, B and C

P {X ∈ A, Y ∈ B, Z ∈ C} =

∫

A

∫

C
Kx(B|z)dL(Zx)(z)dL(X)(x)

because we have

P {X ∈ A, Y ∈ B, Z ∈ C} =

∫

A
P {Yx ∈ B, Zx ∈ C} dL(X)(x)

and

P {Yx ∈ B, Zx ∈ C} =

∫

C
P (Yx ∈ B|Zx = z) dL(Zx)(z).

This also entails that K̃(B|(z, x)) := Kx(B|z) is a Markov kernel. Define

Kx (B|z) = P (Y ∈ B|Z = z, X = x)

then by Lemma A.3

P {X ∈ A, Y ∈ B, Z ∈ C}

=

∫

A

∫

C
P (Y ∈ B|Z = z, X = x) dP (Z ∈ dz|X = x) dL(X)(x)

=

∫

A

∫

C
Kx(B|z)dL(Zx)(z)dL(X)(x)

121



Appendix

which proofs the assertion. �

A crucial concept for the considerations in Chapter 5 is the concept of conditional
independence (see e.g. [56], Section 8.1 or [9], Section 7.3). We first give a formal
definition.

Definition A.5 Let X, Y and Z be arbitrary rvs with values in measurable spaces
(S1,B1), (S2,B2) and (S3,B3). Y and Z are called conditional independent given X if
for each x ∈ S1, B ∈ B2 and C ∈ B3 holds

P (Y ∈ B, Z ∈ C |X = x) = P (Y ∈ B|X = x)P (Z ∈ C|X = x) .

Independence of two rvs Y and Z does not entail conditional independence of Y
and Z given a further rv X. We give a simple counter example: Let X1 and X2 be
independent N0,1–distributed rvs. It is a well known fact that the pertaining sample
mean

X̄ =
1

2
X1 +

1

2
X2

and sample variance

S = (X1 − X̄)2 + (X2 − X̄)2

are independent. Yet we have for
√

s ≤ x

P
(
X̄ ≤ x, S ≤ s|X2 = 0

)
= P

{
1

2
X1 ≤ x,

1

2
X2

1 ≤ s

}

= P
{
−
√

2s ≤ X1 ≤
√

2s
}

= 2Φ(
√

2s) − 1

and furthermore

P
(
X̄ ≤ x |X2 = 0

)
= P {X1 ≤ 2x} = Φ(2x)

as well as

P (S ≤ s |X2 = 0) = P
{
X2

1 ≤ 2s
}

= 2Φ
(√

2s
)
− 1.

Obviously conditional distributions are only determined outside a set of Lebesgue mea-
sure zero, thus the arguments in the above lines do not prove that X̄ and S are not
conditional independent, but one can repeat the arguments for X2 = x for arbitrary
x ∈ R which yields the assertion. For the sake of simplicity we confine arguments to
the case x = 0.

Nevertheless, if two rvs Y and Z are independent we can conclude conditional inde-
pendence if we impose an additional condition. This result is stated in the following
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lemma (see also [9], Section 7.3, Corollary 3).

Lemma A.6 Let X, Y and Z be rvs with values in measurable spaces (S1,B1), (S2,B2)
and (S3,B3) such that (X, Z) is independent of Y . Then Z and Y are conditional
independent given X.

Proof. Let A ∈ B1, B ∈ B2 and C ∈ B3 and define the Markov–Kernel

K(B × C|x) := P (Y ∈ B|X = x) P (Z ∈ C|X = x) .

This yields since Y and (Z, X) are independent
∫

A
K(B × C|x)dL(X)(x)

=

∫

A
P (Y ∈ B|X = x)P (Z ∈ C|X = x) dL(X)(x)

=

∫

A
P {Y ∈ B}P (Z ∈ C|X = x) dL(X)(x)

= P {Y ∈ B}
∫

A
P (Z ∈ C|X = x) dL(X)(x)

= P {Y ∈ B}P {X ∈ A, Z ∈ C}
= P {X ∈ A, Y ∈ B, Z ∈ C} ,

thus K(·|x) is a conditional distribution of (Y, Z) given X = x for each x ∈ S1 and
therefore Y and Z are conditional independent given X = x. �

Given rvs X, Y and Z the subsequent lemma yields a way to construct the conditional
distribution of Z given X = x from the conditional distributions of Z given Y = y and
Y given X = x, if certain conditions concerning the dependence structure of X, Y and
Z are satisfied.

Lemma A.7 Let X, Y , Z be arbitrary rvs with values in measurable spaces (Si,Bi),
i = 1, 2, 3, where X and Z are conditionally independent given Y = y. Then

P (Z ∈ C|X = x) =

∫
P (Z ∈ C|Y = y)dP (Y ∈ dy|X = x). (A.2)

Proof. We start by showing that a certain Markov property follows from conditional
independence, namely

P (Z ∈ ·|X = x, Y = y) = P (Z ∈ ·|Y = y), (A.3)

therefore observe for A ∈ B1, B ∈ B2 and C ∈ B3 by Fubinis Theorem for Markov
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kernels
∫

A×B
P (Z ∈ C|Y = y)dL((Y, X))(y, x)

=

∫
εx(A)εy(B)P (Z ∈ C|Y = y)dL((Y, X))(y, x)

=

∫ ∫
εx(A)εy(B)P (Z ∈ C|Y = y)d(εv × P (X ∈ ·|Y = v))(y, x)dL(Y )(v)

=

∫ ∫ ∫
εx(A)εy(B)P (Z ∈ C|Y = y)dεv(y)dP (X ∈ dx|Y = v)dL(Y )(v)

=

∫ ∫
εx(A)εv(B)P (Z ∈ C|Y = v)dP (X ∈ dx|Y = v)dL(Y )(v)

=

∫
εv(B)P (Z ∈ C|Y = v)

∫
εx(A)dP (X ∈ dx|Y = v)dL(Y )(v)

=

∫

B
P (Z ∈ C|Y = v)P (X ∈ A|Y = v)dL(Y )(v)

=

∫

B
P ((Z, X) ∈ C × A|Y = v)dL(Y )(v)

= P {X ∈ A, Y ∈ B, Z ∈ C}

which yields (A.3). We get from Lemma A.3

P {X ∈ A, Z ∈ C}
= P {X ∈ A, Y ∈ S2, Z ∈ C}

=

∫

A

∫
P (Z ∈ C|Y = y, X = x)dP (Y ∈ dy|X = x)dL(X)(x)

=

∫

A

∫
P (Z ∈ C|Y = y)dP (Y ∈ dy|X = x)dL(X)(x)

and therefore the assertion holds. �

Remark A.8 This result is closely related to the Chapman–Kolmogoroff equation, see
e.g. [38]. If one has a closer look on the proof of the forgoing lemma we have shown
the equivalence

P (X ∈ A, Z ∈ C|Y = y) = P (X ∈ A|Y = y)P (Z ∈ C|Y = y)

⇔ P (X ∈ A|Z = z, Y = y) = P (X ∈ A|Y = y)

⇔ P (Z ∈ C|X = x, Y = y) = P (Z ∈ C|Y = y) .

If we consider a Markov process (Xt)t≥0 with state space (S,B) and s < t < v we have
by definition for A ∈ B

P (Xv ∈ A|Xs = xs, Xt = xt) = P (Xv ∈ A|Xt = xt)
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which is equivalent to the conditional independence of Xv and Xs given Xt = xt. Setting
Z = Xv, Y = Xt and X = Xs in (A.2) one gets the Chapman–Kolmogoroff equation
which is known to hold for Markov processes (see for example [38], Satz 6.3).

We conclude this section concerning conditional distribution with a result concerning
the decomposition of the distribution of a random vector (X, Y ) given Y > u for some
threshold u.

Lemma A.9 Let (X, Y ) be a random vector with values in S×R. Define the pertaining
conditional distribution

F (y|x) := P (Y ≤ y|X = x)

and

F [u](y|x) =
F (y|x) − F (u|x)

1 − F (u|x)
, y > u.

Furthermore, let u ∈ R such that

P (Y > u|X = x) > 0, for all x ∈ S.

Define the distribution of the random vector (X∗, Y ∗) by

L(X∗) = P (X ∈ ·|Y > u)

and

P (Y ∗ ≤ y|X∗ = x) = F [u](y|x).

Then

L(X∗, Y ∗) = P ((X, Y ) ∈ ·|Y > u) ,

thus L(X∗, Y ∗) is the truncation of L(X, Y ) outside D := S × (u,∞).

Proof. First observe that for a measurable set B

P {X∗ ∈ B} =
P {X ∈ B, Y > u}

P {Y > u}

=

∫
P (Y > u|X = x)

P {Y > u} dL (X) (x)

and, therefore,

f(x) =
P (Y > u|X = x)

P {Y > u} =
1 − F (u|x)

P {Y > u}
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is a L (X) density of L (X∗). Let y > u and B a measurable set, observe that

P {X∗ ∈ B, Y ∗ ≤ y} =

∫

B
P (Y ∗ ≤ y|X∗ = x) dL(X∗)(x)

=

∫

B
F [u](y|x)dL(X∗)(x)

=

∫

B
F [u](y|x)f(x)dL(X)(x)

=

∫

B

F (y|x) − F (u|x)

1 − F (u|x)

1 − F (u|x)

P {Y > u}dL(X)(x)

=

∫

B

F (y|x) − F (u|x)

P {Y > u} dL(X)(x)

=

∫
B F (y|x) − F (u|x)dL(X)(x)

P {Y > u}

=
P {u < Y < y, X ∈ B}

P {Y > u}
= P ((X, Y ) ∈ B × (−∞, y]|Y > u) ,

which is the desired equality. �

Lemma A.10 Let Z ∼ U((0, 1)) and X := (1 + log(Z))2, then

E(X) = 1 and V ar(X) = 8

Proof. We first derive the df pertaining to X,

P {X ≤ x} = P
{
(1 + log(Z))2 ≤ x

}

= P
{
log(Z) ≥ −√

x − 1, log(Z) ≤ 1 −√
x
}

= P
{
Z ≤ exp

(√
x − 1

)}
− P

{
Z ≤ exp

(
−√

x − 1
)}

,

thus the df of X is given by

F (x) =





e
√

x−1 − e−
√

x−1 0 ≤ x ≤ 1;
if

1 − e−
√

x−1, x > 1.

We get immediately that

f(x) =





1
2
√

x

(
e
√

x−1 + e−
√

x−1
)

0 ≤ x ≤ 1;

if
1

2
√

x
e−

√
x−1, x > 1,
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is the pertaining density. Moreover,

E(X) =

∫ ∞

0
xf(x)dx

=
1

2

∫ 1

0

√
xe

√
x−1dx +

1

2

∫ 1

0

√
xe−

√
x−1dx +

1

2

∫ ∞

1

√
xe

√
x−1dx.

A substitution y =
√

x and repeated partial integration yields

1

2

∫ 1

0

√
xe

√
x−1dx = 1 − 2e−1

1

2

∫ 1

0

√
xe−

√
x−1dx = −5e−2 + 2e−1

1

2

∫ ∞

1

√
xe

√
x−1dx = 5e−2,

therefore, E(X) = 1. Similar computations yield Var(X) = 8. �
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B Documentation of R–Programs

fpp.cond

Description

Conditional Maximum–Likelihood estimation using the likelihood function (5.24). Pa-
rameters depending linear on the covariates in analogy to Simulation Study 1. Usage
in analogy to the fpp function of the ismev/extRemes package.

Usage

fpp.cond(xdat, threshold, ydat = NULL, mul = NULL,

sigl = NULL, shl = NULL, mulink = identity, siglink = identity,

shlink = identity, method = "Nelder-Mead",

maxit = 10000, maxtry=20, init=NULL,...)

Arguments

xdat (vector) matrix of covariates
threshold (real) threshold
ydat (vector) response variable
shlink, mulink, siglink (function) link functions for the parameters γ, µ, σ
shl, mul, sigl (function) number of covariates which influence γ, µ, σ
method (real) optimization method to be used
maxit (integer) maximal number of iterations
maxtry (integer) maximal number of optimizations starting

from different random initial values
init (vector) initial values for optimization
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Value

A list with components:

mle (vector) vector of ML estimates
try (integer) number of optimizations
conv (integer) does optimization converge (0: yes, 1:no)
nllh (real) value of Likelihhood at ML estimates
init (vector) starting values of successful optimization
pp.lik (function) Likelihood function

GLPD.ML

Description

Maximum–Likelihood estimator for the generalized Pareto distribution. Uses hybrid
estimator as initial estimator.

Usage

GLPD.ML(dat,vl,ru=0.9,plot1=FALSE,bw=2,init.manuel=FALSE,

init=c(0.1,1,1),plottype=1,maxtry=10)

Arguments

dat (vector) the data
vl (real) percentage of initial estimates from which

the median is taken
ru (real) order statistic to be taken as threshold
plot1 (boolean) should analyzing plots be displayed
bw (real) bandwidth for kernel densities in analyzing plots
init.manuel (boolean) should initial estimates be given by the user
init (vector) initial estimates
plottype (integer) form of analyzing plots
maxtry (integer) maximal number of optimizations starting

from different random initial values
with different optimization methods
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Value

A list with components:
nv (integer) number of optimizations
threshold (real) threshold
value (real) value of the Likelihood function
mle (vector) ML estimates
init (vector) initial estimates for successful optimization
nex (integer) number of exceedances
vmethod (vector) optimization method used to derive ML estimates
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