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Introduction

X-ray diffraction is the major experimental tool for the investigation of the microscopic
structure of crystals. A highly redundant set of Bragg intensities can be collected almost
automatically with high precision and can be used to obtain accurate atomic positions,
atomic displacement parameters and electron-density distributions in crystals. In gen-
eral, these quantities describe a crystal at the static equilibrium, i.e. in the absence of
any external influences. However, probing the microscopic response of the crystal to an
external perturbation is still a challenge for modern X-ray structure analysis. The main
aim of such experiments is to understand how the specific features of the structural net-
work are responsible for the physical properties of a crystal and how the crystal structural
parameters can be tuned to control the property of interest.

The types of perturbations which are usually applied to a crystal in an X-ray diffraction
experiment are high pressure, high or low temperature, laser irradiation and external high
voltage [1, 2, 3, 4]. The specific response of the crystal to such perturbations defines
its intrinsic physical properties, e.g. the development of the macroscopic polarization
under the influence of an applied electric field is known as dielectricity, whereas the
formation of the mechanical strains is referred to as the converse piezoelectric effect [5, 6].
Although many technical applications are essentially based on both of these phenomena,
their microscopic nature is not yet well understood. Starting with the pioneering work
by Fujimoto (1978) [7] on LiNbO3, the atomistic origin of the piezoelectric effect has so
far been investigated for only a very narrow class of compounds, such as AgGaS2 [8],
KD2PO4 [9, 10], KH2PO4 [11], GaAs [4], ZnSe [4], α-SiO2 [12, 13] and α-GaPO4 [14]. In
this context, X-ray diffraction under an external electric perturbation has turned out to
be a promising experimental tool for obtaining an understanding of the piezoelectric effect
at the microscopic level. Nevertheless, till now the fundamental relationship between the
atomic arrangement, the electron density distribution and the piezoelectric properties of
a crystal could not be explained in full detail for any single structure [15]. The great
advantage of the X-ray diffraction technique is that the atomic redistribution within the
unit cell of a crystal caused by an applied electric field and the corresponding macroscopic
deformation (pure lattice strain keeping the atomic fractional coordinates constant) of the
crystal can be simultaneously and separately studied using one and the same sample. The
small displacements of the atomic positions (∆R ∼ 10−4 Å, [14]) may be evaluated from
Bragg intensity changes. At the same time, the lattice strain manifests itself as small
angular shifts of diffraction curves (∆ω ∼ 10−3◦, [16]).

The aim of this work consists of three parts: First of all, the investigations of the
bond-selective response of piezoelectric crystals ought to be extended on the Li2SO4·H2O,
Li2SeO4·H2O (is isostructural with Li2SO4·H2O) and BiB3O6 compounds. In particular,
the behavior of the LiO4, SO4, SeO4, BO4, BO3 and BiO6 structural units under an ex-
ternal electric field should be analyzed and compared with the results obtained for crystal
structures built up from similar atomic groups. Thus, the first part of this work represents
a continuation of the measurements that have proved to be successful in previous studies
on the microscopic response of a crystal to an external electric perturbation. Normally,
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the measurement of the time dependence of the processes initiated in a crystal by a fast
change of an applied electric field enables deeper insights into the nature of the physical
properties of the crystal. But from the beginning the experimental technique used for
switching the external electric fields was not designed to generated dynamic processes
in crystals, as the static (i.e. time-averaged) properties of the crystals were of interest
only. This disadvantage of the old field-switching technique is the origin of the second
subject of this thesis that deals with further developments of the experiment to the time-
resolved measurements of the dynamic processes in crystals. Finally, within the scope
of this work the time evolution of the piezoelectrically induced lattice strain and of the
atomic displacements in Li2SO4·H2O crystals should be investigated on the nanosecond
time scale.

The present work is structured as follows: In chapters 1 and 2 the basic theoretical
principles are discussed. Chapter 3 deals with the employed field-switching technique in
terms of the old four-step modulation-demodulation method and new FPGA-based data
acquisition system being suitable for the time-resolved measurements of the angular shifts
and intensity variations of diffraction curves under the influence of an external electric
field. The result obtained for the Li2SO4·H2O, Li2SeO4·H2O and BiB3O6 crystals from
the performed X-ray (neutron) diffraction experiments are presented in chapter 4. In
chapter 5 the time-resolved measurements of the piezoelectric response of rectangular
plane-parallel Li2SO4·H2O crystal plates are introduced.

All experiments were performed with crystals grown and prepared for measurements
in the form of thin plane-parallel plates by L. Bohatý and P. Becker who are from the
Institute of Crystallography belonging to the University of Cologne.
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1 Elastic, piezoelectric and dielectric
properties of crystals

In the next sections the macroscopic description of the physical properties of crystals
related to elasticity, electric polarization and piezoelectricity is briefly reviewed. The
treatment of these physical phenomena mainly follows the text books by Nye (1984) [5],
Haussühl (2007) [6] and Brandt & Dahmen (1997) [17] and is strongly reduced to the
subjects that are relevant for this work.

1.1 Elasticity

Within the limits of Hooke’s law each component, σij, of the homogeneous stress applied
to a non-piezoelectric crystal is linearly related to all components, εij, of the induced
homogeneous strain by

σij = cijklεkl, (1.1)

where cijkl are the elastic constants of the crystal and the Einstein summation convention
is used (i, j, k, l = 1, 2, 3). In contrast to the description of the static processes in crystals
by (1.1), the propagation of the elastic waves in a crystal is described by the theory of
elastodynamics. Provided that an excited elastic wave has a harmonic time dependence,
the corresponding wave equation is

ρω2ûi + cijkl
∂2ûk
∂xj∂xl

= 0. (1.2)

Here ûi refer to as the components of the displacement vector,

ûi(x, t) = ui(x) exp(iωt), (1.3)

and ρ is the mass density of the crystal. As the crystal is not in a static equilibrium, for
its kinetic energy density, KE, one has

KE =
1

2
ρ
∂ûi
∂t

∂ûi
∂t

=
1

2
ρω2ûiûi (1.4)

and its potential (strain) energy density, PE, is given by

PE =
1

2
cijklεijεkl =

1

2
cijkl

∂ûi
∂xj

∂ûk
∂xl

. (1.5)

The Lagrangian, L, of an arbitrary shaped crystal with the free-surface (free of external
stress) boundary conditions,

njσij = 0, (1.6)
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1 Elastic, piezoelectric and dielectric properties of crystals

and a volume V has the form [18]

L =

∫
V

(KE - PE) dV, (1.7)

in (1.6) n is a unit vector normal to the crystal surface, S. Usually, for an expansion of
the time-independent part, ui(x) (1.3), of the displacement vector a set of power functions
of the type

Φλ = xlymzn (1.8)

is employed [19]:

ui =
∑
λ

aiλΦλ, (1.9)

where x, y and z denote the Cartesian coordinates and l, m and n are positive integers
defining the function label, λ = (l,m, n). With expression (1.9) the Lagrangian (1.7)
becomes ([19, 20])

L =

(
1

2
ω2aT [E] a− 1

2
aT [Γ] a

)
exp(2iωt). (1.10)

Both matrices [E],

Eλiλ′i′ = δii′

∫
V

ΦλρΦλ′ dV, (1.11)

and [Γ],

Γλiλ′i′ = Ciji′j′

∫
V

∂Φλ

∂xj

∂Φλ′

∂x′j
dV, (1.12)

are symmetric, square and dependent on the shape of a crystal. The order, R, of [E] and
[Γ] arises from the truncation condition l+m+n ≤ N that is applied to limit the number
of basis functions (1.8):

R =
(N + 3)!

2N !
. (1.13)

According to Hamilton’s principle [18], in the case of the crystal vibrations that satisfy the
elastic wave equation (1.2) the Lagrangian (1.10) is stationary for any arbitrary variations
of the displacements ui (1.9) in V and on S of the crystal. This condition is equivalent
to ([20])

∂L

∂a
= ω2aT [E]− aT [Γ] = 0 (1.14)

and results in the eigenvalue problem

ω2 [E] a = [Γ] a. (1.15)

Using the program RUS [20] that is based on the introduced approach, the frequency
spectrum of the resonant normal-modes and the mode shapes (eigenvectors a) of the
vibrations of a plane-parallel crystal plate having free boundaries were calculated.

1.2 Electric polarization

An external electric field induces in a non-conducting crystal an electric polarization that
is associated with the rearrangement of charges within the crystal. In general, for the
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1.2 Electric polarization

characterization of the dielectric properties of a crystal one makes use of the electric
displacement, D:

D = ε0E + P, (1.16)

here E is the static electric field strength within the crystal and ε0 is the absolute dielectric
constant. The vector P denotes the electric polarization of the crystal and is defined as
the dipole moment per unit volume. The divergence of D is equal to the external charge
density, ρext, outside the crystal:

∇ ·D = ρext. (1.17)

The density ρext produces the external electric field, Eext, at the crystal. In contrast, the
divergence of E determines the total charge density, ρ, in the crystal. Thus, ρ is a sum
of ρext and the polarization charge density, ρP:

ε0(∇ · E) = ρ = ρext + ρP. (1.18)

Both ρext and ρP stand for the charge densities averaged over a microscopic distribution
of point charges in a sufficiently large crystal volume.

Macroscopically, the electric polarization of a crystal is described by the tensor equation

Pi = ε0(εij − δij)Ej = ε0χijEj, (1.19)

where [εij] is the symmetrical dielectric permittivity tensor and [χij] is the electric sus-
ceptibility tensor. The electric field created by ρP within the crystal is denoted as the
depolarization field, EP , the direction of which is opposite to P:

ε0EP = −P. (1.20)

Hence, according to expression (1.16) and with

D = ε0Eext (1.21)

the total electric field within the crystal is given by

E = Eext + EP. (1.22)

Assuming that the electric-field-induced atomic displacements, ∆Rµ, in a crystal pro-

vide the main contribution to the electric polarization, P̂, of the unit cell of the crystal,
one may express P̂ as

P̂ =
1

V

∑
µ

Qµ∆Rµ. (1.23)

Above, Qµ is the pseudoatomic charge (see section 2.2 in chapter 2 for definition) of the
µ-th atom within the unit cell and V is the unit-cell volume. On the other hand, the
macroscopic electric polarization (P) of the crystal is defined by its relative dielectric
constants (εij), as shown in equation (1.19). On the assumption that P is homogeneous
throughout a crystal, the microscopic approach (1.23) is equal to the macroscopic treat-
ment (1.19) of the electric polarization and therefore, one has [14]:

ε0 ([ε]− 1) E =
1

V

∑
µ

Qµ∆Rµ. (1.24)

Since the constants εij were known for the investigated Li2SO4·H2O, Li2SeO4·H2O and
BiB3O6 crystals, the above condition was used as an additional constraint in the refine-
ments of the atomic displacements. The charges of the pseudoatoms in the crystals were
either theoretically calculated or experimentally determined. Equation (1.24) is very im-
portant, as it links the microscopic structural changes of a crystal to its macroscopic
dielectric properties.
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1 Elastic, piezoelectric and dielectric properties of crystals

1.2.1 Pyroelectric and ferroelectric crystals

The tensor equation (1.19) represents a linear relation between the components of the
electric polarization and the components of the electric field within a crystal and is nor-
mally well applicable for not too large electric field strengths. In addition, in this section
pyroelectric and ferroelectric crystals are introduced, the dielectric properties of which
differ from those described by (1.19).

Pyroelectric crystals exhibit a change, ∆P, in the electric polarization when their tem-
perature is changed. In the case of uniform and sufficiently small temperature variations,
∆T , within a certain interval ∆P is given by

∆P = p∆T, (1.25)

where p is the pyroelectric vector of the crystal. Consequently, in comparison with ex-
pression (1.19), pyroelectric crystals may have an electric polarization in the absence of
an external electric field.

In ferroelectric crystals the dependence of the electric polarization on the applied electric
field is described by a hysteresis behavior. Thus, these crystals possess both a satura-
tion polarization and a remanent polarization. Therefore, by an application of an electric
field it is possible to polarize a ferroelectric crystal that has not had a permanent electric
polarization before or to reverse the direction of its polarization vector. Besides, to a fer-
roelectric crystal a transition temperature, so-called Curie temperature, may be assigned
above that the ferroelectric properties of the crystal vanish and the crystal takes on the
paraelectric phase.

1.3 Piezoelectricity

Under application of a mechanical stress piezoelectric crystals change their electric pola-
rization, P. This physical phenomenon is expressed by means of

∆Pi = dijkσjk + dijklmσjkσlm + .... (1.26)

and is denoted as the direct piezoelectric effect. Here [σjk] is the stress tensor, the
third-rank tensor [dijk] describes the linear piezoelectric effect and [dijklm] stands for the
quadratic piezoelectric effect etc. Due to the usually small contribution of the quadratic
piezoelectric effect, we considered in the analysis of experimental data the linear piezoelec-
tric effect only. Since [σjk] is symmetric, the piezoelectric tensor [dijk] has to be symmetric
in the indices j and k. Thus, for the components dijk one has: dijk = dikj. Furthermore,
owing to the transformation law for tensors, all crystals with an inversion center are not
piezoelectric, as this symmetry operation implies the vanishing of all components of odd-
rank tensors. Assuming that uniaxial stress is applied to a piezoelectric crystal in the
direction along a vector e, the induced change of the electric polarization of the crystal
parallel to e is referred to as the longitudinal piezoelectric effect and perpendicular to e
as the transverse piezoelectric effect.

The converse piezoelectric effect, also known as the first-order electrostriction, describes
the occurrence of a deformation of piezoelectric crystals when they are subjected to an
external electric field:

εij = d̂ijkEk. (1.27)
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1.3 Piezoelectricity

Accordingly, the components, Ek, of the applied electric field are linearly related to the
components, εij, of the strain tensor by the first-order electrostriction tensor, [d̂ijk]. As
[εij] represents the symmetric part of the displacement tensor, [eij], of a crystal,

εij =
1

2
(eij + eji) , (1.28)

[d̂ijk] is symmetric in the second and third index position. Based on a thermodynamical
approach to piezoelectricity, one can derive that the components of the piezoelectric and
electrostriction tensor are exactly equal:

dkij = d̂ijk. (1.29)

Consequently, as it was stated by Hansen et al. (2004) [15], one has:

Equation (1.29) implies that we may determine the piezoelectric constants
from different experiments but it does not mean that the same state may be
obtained, either from applying an electric field or from a mechanical stress. In
both cases, the final state depends on the piezoelectric properties but in the
former it also depends on the dielectric polarizability whereas it depends on
the elastic constants in the latter, and these two properties are not related in
any simple way.

Since Li2SO4·H2O, Li2SeO4·H2O and BiB3O6 crystallize in the point group 2, the piezo-
electric tensor of these crystals in total has eight independent components:

dij =

 0 0 0 d14 0 d16

d21 d22 d23 0 d25 0
0 0 0 d34 0 d36

 , (1.30)

where the Voigt notation of [dijk] is shown.
The description of the elastic and dielectric behavior of piezoelectric crystals requires

basic equations that differ from those introduced in sections 1.1 [see eq. (1.1)] and 1.2
[see eqs. (1.16) and (1.19)], as the piezoelectric coupling between propagating elastic and
electromagnetic waves has to be considered. This phenomenon results in the following
equations

σij = cEijklεkl − emijEm and (1.31)

Di = eiklεkl + εεimEm, (1.32)

where [σij] and
[
cEijkl

]
denote the stress tensor and the elastic tensor at constant electric

field, respectively. The quantities emij = −cijkldmkl stand for the components of the
piezoelectric e-tensor and εεim are the relative dielectric constants at constant mechanical
deformation. E is the internal electric field and D is the internal electric displacement
accompanying an acoustic wave in piezoelectric media. Thus, the wave equation describing
the propagation of a plane elastic wave along the direction g in a piezoelectric crystal is
given by (

−ρv2δik + cDijklgjgl
)
ui = 0 with (1.33)

cDijkl = cEijkl +
emijenkl
εεrsgrgs

gmgn. (1.34)

Here [δij] is the Kronecker symbol, u designates the mechanical displacement vector and
the superscript D means: at constant electric displacement. The form of (1.33) is identical
to that of equation (1.2) for non-piezoelectric crystals, merely the elastic tensor [cijkl] was
replaced by [cDijkl].
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2 X-ray diffraction by crystals under an
static external electric field

Firstly, in the context of this chapter it will be derived how the piezoelectric constants of
a crystal are related to the measured angular shifts of Bragg peak positions. Secondly, a
theoretical relation between the atomic displacements in a crystal induced by an applied
electric field and the simultaneously observed changes of the integrated intensities of Bragg
peaks will be reviewed (atomistic description of the electric polarization). But first of all,
this chapter begins with the X-ray diffraction by unperturbed crystals.

2.1 X-ray diffraction by unperturbed crystals

The main theories of the X-ray diffraction by crystals, such as kinematical and dynamical
diffraction, are described in detail in many text books, as for instance [21, 22, 23, 24],
whereas the concept of extinction is discussed in numerous scientific publications, e.g. in
the works by Zachariasen (1967) [25], Coppens & Hamilton (1970) [26], Becker & Coppens
(1974) [27] and Sabine (1988) [28]. Because of that, in the following discussion the most
important results that are necessary for understanding the motivation and the challenge
of this work and the data analysis will be introduced only.

The structure factor, F , of a crystal that is not subjected to an external perturbation
is given by

F (H) =
∑
µ

[
fµ(H) + f

′

µ(λ) + if
′′

µ (λ)
]
Tµ(H) exp(2πiHRµ), (2.1)

where H is a reciprocal-lattice vector, fµ is the scattering factor, f
′
µ and f

′′
µ are the

anomalous dispersion corrections, Tµ represents the temperature factor and Rµ denotes
the position of an atom µ. The sum is taken over all atoms within the unit cell of the
crystal. In the structure factor calculations for a H the scattering factor of an atom

f(H) =

∫
atom

ρ(r) exp(2πiHr) dr, (2.2)

which is the Fourier transform of the spherical electron density of the atom being in the
ground state, was taken from [29]. For f ′ and f ′′ numerically calculated values, based on
the relativistic second-order S-matrix approach [30], provided by [31] were used. Besides,
in order to describe the thermal motion of an atom in a crystal the anisotropic harmonic
temperature factor of the form

T (H) = exp
(
−βjkhjhk

)
(2.3)

was considered, here [βjk] is the thermal atomic displacement tensor.
The kinematical diffraction theory is based on the assumption that the interaction

of propagating electromagnetic waves with matter is very weak (weak-scattering limit).
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2 X-ray diffraction by crystals under an static external electric field

According to this theory the integrated intensity, I, of a crystal reflection is proportional
to the square of the absolute value of the structure factor:

I ∼ |F (H)|2. (2.4)

The exact expression for I depends, among other parameters, on the properties of the
incident beam, the shape of the crystal and the diffraction geometry. This approach
applies to so-called ideally imperfect crystals that are composed of widely misoriented
small mosaic blocks of perfect crystals.

The dynamical theory describes the X-ray diffraction by macroscopic perfect crystals.
In this theory multiple scattering effects of the electromagnetic waves in a crystal are taken
into account by allowing for the reflection and transmission of the waves at each lattice
plane that they pass through within the crystal. As a result, the integrated intensity of
an X-ray reflection of a perfect crystal is proportional to the absolute value of F (2.1):

I ∼ |F (H)|. (2.5)

In this context, the extinction depth (Λext) refers to the thickness of a crystal that reduces
the intensity of an incident X-ray beam (due to the scattering by planes of atoms) by the
factor 1/e, see Als-Nielsen (2000) [23]:

Λext =
V H

4r0|F (H)|
, (2.6)

whereat the beam attenuation arising from the absorption processes in the crystal was
neglected. In the expression presented above r0 is the Thomson scattering length, V is the
volume of the unit cell and H denotes the modulus of the scattering vector H. In general,
the longer the extinction depth for a reflection is compared to the absorption depth,

Λabs =
sin θ

2µ
, (2.7)

(this definition is only valid for symmetrical Bragg reflections, µ is the linear absorption
coefficient of a crystal) the better the approximation of the kinematical diffraction is. The
same conclusion may be drawn on the relation between Λext and the crystal thickness.

Normally, the diffraction by real imperfect macroscopic crystals does not agree with
the predictions of the kinematical approximation in terms of the F 2-dependence of the
measured integrated intensities that for few strong reflections are smaller than predicted
by the theory. This discrepancy between experiment and theory can be explained by the
mosaic structure of crystals. On the one hand, the diffraction intensity of a reflection
is reduced when the mosaic blocks in the crystal are not sufficiently small and therefore
scatter according to the dynamical theory. This effect leads to the model of the primary
extinction. On the other hand, if the disorientation of the blocks is not large enough it
may occur that several successive blocks have an identical orientation. In this case the
incident X-ray intensity is mostly reflected by the highest lying blocks in the crystal and
consequently, only much weaker intensity reaches the remaining underlying blocks. This
is the origin of the secondary extinction.

In the crystal structure study and determination of the electron density in a crystal the
recorded diffraction intensities are analyzed on the basis of the kinematical approximation
by means of a simultaneous correction of the experimental data for extinction effects. At
this, the extinction factor, y, is defined by

Iobs = yIkin, (2.8)
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2.2 Electron density distribution in crystals

where Iobs is the integrated intensity of a Bragg reflection observed in an experiment
and Ikin stands for the intensity calculated applying the kinematical theory. The intro-
duced quantity y depends on the Bragg angle, on the dimensions of the crystal and its
microstructure and on the average size and angular distribution of the mosaic blocks in
the crystal. Since analytical expressions for y can be derived (as shown in the theoreti-
cal approaches [25, 26, 27]), using experimental data it becomes possible to include the
primary and secondary extinction in the least-squares refinements of the structural and
charge density properties of a crystal.

2.2 Electron density distribution in crystals

In this work in order to analyze the properties of the chemical bonds and to calculate
the pseudoatomic charges in the crystals probed both experimentally determined and
theoretically calculated electron densities were considered.

2.2.1 Multipole refinement of the electron density

According to the formalism introduced by Hansen & Coppens (1978) [32] the nucleus-
centered aspherical electron density of an atom within a crystal is modeled as

ρ(r) = ρcore(r) + Pvalκ
′3ρval(κ

′r) +
lmax∑
l=0

κ′′3Rl(κ
′′r)

l∑
m=0

Plm±dlm±(r/r). (2.9)

Here the spherical core (ρcore) and valence (ρval) density of a pseudoatom are calculated
from non-relativistic ground state Hartree-Fock wave functions for isolated atoms [33].
Pval and Plm denote the multipole population coefficients. The radial expansion and
contraction of multipoles is described by the parameters κ′ and κ′′. Rl are the Slater-type
radial functions [22]

Rl(r) = κ′′3
ζnl+3

(nl + 2)!
(κ′′r)nl exp(−κ′′ζlr) (2.10)

and dlm± stand for the real spherical harmonics. In above expression ζl are the energy-
optimized single-ζ Slater values for the electron subshells of unperturbed atoms [22, 34].
The choice of the nl values in (2.10) (nl ≥ l) depends on the type of orbitals of an atom,
as discussed in [22, 32]. In the multipole refinement of the electron density (ED) in a
crystal Pval, Plm, κ′ and κ′′ represent the atomic ED parameters which are refined for
each of the symmetry-independent atoms within the crystal unit cell.

For instance, because of the phase problem that may occur for non-centrosymmetric
crystals [35], the analysis of the refined experimental electron densities with respect to
their physical significance is done by means of the difference ED maps [22],

∆ρ(r) = V −1
∑
H

(
|FOBS(H)|eiφMULT − |FIAM(H)|eiφIAM

)
e−2πiHr, (2.11)

that visualize the difference between the crystal ED (multipole density) determined in an
experiment and the ED calculated by a superposition of isolated atoms (IAM density).
In doing so, the ED accumulation in the chemical bonds and lone-pair regions become
visible. Another possibility to check whether the ED distribution in a crystal could be
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2 X-ray diffraction by crystals under an static external electric field

adequately described with the model of the aspherical-atom expansion of the ED represent
the residual ED maps [22],

∆ρ(r) = V −1
∑
H

(|FOBS(H)| − |FMULT(H)|) eiφMULTe−2πiHr. (2.12)

The features of the residual density maps give some indication of possible shortcomings
in modeling the ED of especially heavier atoms.

2.2.2 DFT calculations of the electron density

For all crystals investigated in this work ab initio calculations of the ED based on the
Density Functional Theory (DFT) [36, 37] were performed using the program package
WIEN2k [38].

The DFT provides a quantum mechanical approach for solving the many-electron prob-
lem of a crystal in the Born-Oppenheimer approximation, i.e. by neglecting the move-
ments of the nuclei. As specified by the theorem of Hohenberg & Kohn (1964) [39], the
ground-state energy, E, of a many-electron system

EVext [ρ] = FHK[ρ] +

∫
ρ(r)Vext(r) dr (2.13)

is a functional of the ground-state density, ρ. Here Vext is the external potential of the
nuclei, which are at fixed positions, in that the inhomogeneous electron gas in a crystal
moves and FHK denotes the Hohenberg-Kohn density functional. In general, the ED
resulting from the solution of the Kohn-Sham equation [40](

− ~2

2me

∇2
i +

e2

4πε0

∫
ρ(r′)

|r− r′|
dr′ + Vxc + Vext

)
φi(r) = εiφi(r) (2.14)

minimizes the energy functional EVext (2.13). Whereat Vxc is the ρ-dependent exchange-
correlation potential and ρ is defined by N single-electron wave functions, φi [37]:

ρ(r) =
N∑
i=1

φ∗i (r)φi(r). (2.15)

In order to solve the self-consistent problem (2.14) in the first step based on an approx-
imation of the ED, ρ0, the eigenfunctions φi are determined and then with (2.15) a new
ED, ρ1, is calculated. Finally, ρ0 and ρ1 are compared with each other and in the case
of disagreement within applied certain criteria ρ1 is used in the second iteration as the
starting ED. This procedure is repeated until there is a convergence to an ED, ρc, that
corresponds to the searched ground-state density in the crystal.

The functions φi from (2.15), which are employed to model the ED in a crystal, have
the form [37]

φi(r) =
∑
G

cn,kG exp[i(k + G)r] ≡ φnk(r) (2.16)

that satisfies the periodicity of the crystal lattice. Here k is the wave vector inside the
first Brillouin zone, G indicates a reciprocal lattice vector (G = 2π ×H) and n denotes
the band index. The Fourier expansion (2.16) of the functions φnk is due to the necessary
large number of the plane wave basis functions needed for an accurate description of the
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2.2 Electron density distribution in crystals

ED in crystals not efficient for computational methods. Therefore, a more optimized set
of basis functions is considered by taking into account that the inner electrons of an atom
may be modeled by atomic-like functions, whereas the outer electrons being not tightly
bound are described by plane waves. This adaption is realized by subdividing the unit cell
of a crystal into non-overlapping and nucleus-centered atomic spheres (so-called muffin tin
spheres) and interstitial regions. In this context, the APW+lo approach [38] provides the
most accurate and efficient method for calculating the ED in crystals. In this method the
basis functions used to expand the single-electron wave functions φnk (2.16) are given by

ψnk(r) =

{∑
lmA

nkG
lm (r)Ylm(k/r) inside a muffin thin sphere

1√
V

exp[i(k + G)r] outside a muffin thin sphere,
(2.17)

where V is the volume of the unit cell and Ylm are the spherical harmonics. The product
Kmax × Rmin consisting of the absolute value of the largest wave vector, Kmax, and the
smallest radius, Rmin, of all muffin tin spheres defines the accuracy of a basis set.

2.2.3 Topological analysis of the electron density

The formalism introduced by Bader (1990) [41] treats the ED in a crystal as being com-
posed of different nucleus-centered density fragments that are referred to as the atomic
basins. The boundary surface, Ω, (surface of zero flux) of the basins is defined by [22]

∇ρ(r) · n(r) = 0, (2.18)

where n(r) is the normal of Ω at a point r. The integration of the ED over the volume,
V (Ω), of a pseudoatom gives its Bader charge in the crystal

Q = e

(
Z −

∫
V (Ω)

ρ(r) dr

)
. (2.19)

The differences between the Bader approach and other space partitioning methods in
terms of the obtained values of the pseudoatomic charges in a crystal are discussed in
[22]. In this work the Bader method was used exclusively.

The classification of the chemical bonds in crystals is based on several quantities, such
as ED, Laplacian of the ED (∇2ρ) and electronic energy density [eq. (2.22)], considered
at the bond critical points (rb) where the gradient vector of ρ vanishes [22, 36, 41]:

∇ρ(rb) = 0. (2.20)

At the so-called (3, −1) critical point (rc) that is located between two bonded atoms the
ED along the corresponding bond path takes its minimum value. Simultaneously, ρ attains
its maximum in the plane that is perpendicular to the bond path and goes through rc.
Consequently, the eigenvalues of the Hessian matrix, λ1, λ2 and λ3, defining the curvature
of ρ at rc have the following signs: According to the definition usually used, the third
principal axis of the ρ curvature lies along the bond path, therefore the eigenvalue λ3 is
positive while λ1 and λ2 are negative. Besides, the value of ∇2ρ at rc is equal to the sum
of the Hessian matrix eigenvalues:

∇2ρ(rc) = λ1 + λ2 + λ3. (2.21)
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2 X-ray diffraction by crystals under an static external electric field

The local energy density, h, of an electron distribution at a point r in a crystal is defined
as [22, 36]

h(r) = g(r) + v(r), (2.22)

where g is the electronic kinetic energy density and v is referred to as the potential energy
density. In addition, h is related to the Laplacian of ρ through the equation

h(r) =
1

2

[
v(r) + (~2/4m)∇2ρ(r)

]
. (2.23)

Thus, h is completely determined by the features of the ED, the Laplacian of the ED and
the external nuclear potential.

In general, one distinguishes three different types of chemical bonding [22, 42]. Firstly,
in the case of the closed-shell atomic interactions the values of ∇2ρ and h are both positive
at the (3, −1) bond critical points. Secondly, a positive ∇2ρ and a negative h at a rc
point indicate an intermediate atomic interaction that is neither a pure closed-shell nor a
shared interaction. Finally, negative values of ∇2ρ(rc) and h(rc) are typical for the shared
atomic interactions describing the covalent bonds. Furthermore, either the magnitude of
the ED or of the bond degree (BD) parameter,

BD = h(r)/ρ(r), (2.24)

at rc is regarded as a measure of the strength of a chemical bond [43]. Therefore, the
greater the value of ρ(rc) is the stronger the interaction is between two atoms.

2.3 External and internal strain of a crystal induced by
an applied electric field

An external electric field applied to a piezoelectric crystal induces both a change of the
crystal lattice parameters, denoted as the external strain, and a redistribution of the
atomic positions within the unit cell, referred to as the internal strain [44]. The first
phenomenon results in the macroscopic homogeneous deformation of the crystal under
an electric field and is known as the converse piezoelectric effect, see chapter 1. In an
X-ray diffraction experiment the external strain manifests itself in a change of the angular
positions of Bragg peaks, as shown in Fig. 2.1. In contrast, the internal strain describes
the response of a crystal to an external electric perturbation on the atomic scale and is
associated with the macroscopic electric polarization of the crystal media. The internal
strain leads to a variation of diffraction intensities (see Fig. 2.1), as the atomic fractional
coordinates change in the unit cell.

Employing a field-switching technique, which will be introduced in chapter 3, the an-
gular shift and the variation of the integrated intensity of a reflection can be measured
simultaneously, as demonstrated in Fig. 2.1 for the 2̄57̄ reflection of a Li2SO4·H2O (010)
crystal plate. Furthermore, the big advantage of such measurements is that one gets a
unique possibility to distinguish the effect of the internal strain on the crystal structure
from that of the external strain in a clear way. Consequently, from one and the same ex-
perimental data set both the piezoelectric constants of a crystal and the induced relative
atomic displacements within the unit cell can be deduced.

Besides, especially in the case of very strong Bragg reflections, which are the most
sensitive to the primary and secondary extinction effects (as described in section 2.1),
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2.3 External and internal strain of a crystal induced by an applied electric field

Figure 2.1: Change of the integrated intensity and angular shift of the peak position of the
2̄57̄ reflection of a Li2SO4·H2O (010) crystal plate induced by an external electric field of the
magnitude E = 5.9 kV mm−1, λ = 0.6 Å. The reflection profiles were recorded in the ω scan
mode, whereat the I0 curve corresponds to the zero-field state.

Figure 2.2: Extinction-affected huge change of the integrated intensity of the very strong 1̄4̄4
reflection of a Li2SO4·H2O (001) crystal plate measured under an external electric field of the
magnitude E = 5.0 kV mm−1, λ = 0.6 Å.

under an applied electric field the widths of the diffraction profiles may change as well as
the diffraction intensities. Both effects result in a huge variation of the integrated intensity
of a reflection, see Fig. 2.2. This phenomenon has its origin in the electric-field-caused
modification of the mosaic structure of a crystal and is not related to the rearrangement
of atoms in the unit cell. Since no theory exists allowing for a description of the influence
of an external electric field on the crystal mosaicity, all reflections for that the observed
change of diffraction intensities was affected by extinction effects have to be omitted
from the data analysis. As there is no unambiguous way to define extinction-affected
data, in order to reveal the atomic displacements in a crystal, it is essential that in an
X-ray diffraction experiment under an external electric perturbation weak reflections are
considered only.
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2 X-ray diffraction by crystals under an static external electric field

2.3.1 Determination of the piezoelectric constants of a crystal by
means of X-ray diffraction

Diffraction curves of a piezoelectric crystal measured in the ω scan mode using a four-circle
diffractometer in combination with an open X-ray point detector exhibit an angular shift
of the rocking curve positions under an external electric field, as displayed in Fig. 2.3.
Measurements of the effect for a large number of reflections allow for the determination
of all piezoelectric constants, dijk, of a crystal.

Figure 2.3: Angular shift of the ω rocking curve position of the BiB3O6 (010) crystal plate
087̄ reflection arising from the piezoelectric lattice deformation. In comparison with the black
curve the red one was recorded during the crystal was subjected to an external electric field of
the magnitude E = 3.8 kV mm−1, λ = 0.93 Å.

A theoretical equation relating the tensor coefficients dijk with the piezoelectrically
induced changes in the Bragg angle of X-ray reflections was derived for the first time
by Barsch [45]. However, Barsch did not consider the rotation of the lattice due to the
external electric perturbation and therefore, his equation can be used only if different series
of harmonic reflections are recorded. Such measurements were performed for example with
α-quartz [12, 13] and monoclinic (point group m) 2-methyl 4-nitroaniline [16]. Finally, it
was Graafsma [46] who introduced a more general approach for the X-ray determination
of all components of the piezoelectric tensor of a crystal with an arbitrary symmetry.

Following the ideas of Graafsma [46], the Ewald construction (see Fig. 2.4) is the best
method to visualize how the electric-field-induced deformation of a crystal affects the
angular position of the ω rocking curve of a reflection. As the piezoelectric deformation
is homogeneous throughout the crystal, it may be described in terms of the distortion of
the crystal lattice vectors:

ai(E) = ai(0) + ∆ai(E) and bi(E) = bi(0) + ∆bi(E). (2.25)

Here ai(E) and ∆ai(E) (i = 1, 2, 3) are the lattice basis vectors and their changes under
the influence of an applied electric field, respectively. The corresponding reciprocal basis
vectors and their changes are denoted as bi(E) and ∆bi(E), respectively. Normally, as
illustrated in Fig. 2.4, under E a reciprocal lattice vector (H = hb1 + kb2 + lb3) is
displaced from the Ewald sphere:

HE = H + ∆H, (2.26)
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2.3 External and internal strain of a crystal induced by an applied electric field

where HE and H are the positions of the reciprocal lattice point with and without the
external electric field, respectively. Besides, ∆H designates the change in H:

∆H = h∆b1 + k∆b2 + l∆b3. (2.27)

Assuming that H of a reflection lies exactly on the Ewald sphere, thus fulfills the Bragg
condition, in order to return HE back into the reflection position the crystal has to be
rotated around the main ω axis of the diffractometer by an angle ∆ω. Consequently,
the deformation of the crystal is visible as an angular shift of the rocking curve from its
field-free position. Usually, the aperture (∼ 0.5◦) of a point detector is wide enough with
respect to ∆ω (∆ω < 0.01◦) and therefore, during an ω scan it is not necessary to change
the 2θ angle of the detector.

Figure 2.4: Reciprocal space reconstruction of the piezoelectrically induced displacement of the
peak position of an ω rocking curve, as shown in Fig. 2.3. Due to the influence of an external
electric field, the reciprocal lattice point H is displaced from the reflection position to HE .

As stated in chapter 1 by equation (1.27), the pure piezoelectric deformation of a crystal
is described by a symmetric strain tensor, [εij]. But in general, an applied electric field
can also induce a rotation of the crystal, an effect that is captured by an antisymmetric
rotation tensor, [rij]. The tensor coefficients rij are related to those of the electric field
vector by the components of the third rank tensor [Rkij]:

rij = RkijEk, with Rkij = −Rkji. (2.28)

[Rkij] does not represent a pure intrinsic crystal property, because due to the individual
clamping conditions of a crystal sample on a diffractometer head, the values of the com-
ponents Rkij have their physical significance only for an individual sample with its own
characteristic experimental setup conditions. All tensor and vector quantities in (2.28)
are referred to the crystal Cartesian system.

In terms of the strain and rotation tensor the change of the unit cell basis vectors of a
crystal under E is given by

ai(E) = (1 + [ε] + [r]) ai(0). (2.29)
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2 X-ray diffraction by crystals under an static external electric field

Considering that the reciprocal lattice vectors are connected with the direct lattice through
aibj = δij, one can write

bi(E) =
(
1 + [ε]T + [r]T

)−1
bi(0) = (1 + [ε]− [r])−1 bi(0) = (1− [ε] + [r]) bi(0), (2.30)

where the relations [ε]T = [ε] and [r]T = −[r] were applied. In the last term is was
taken into account that within the approximation of the linear theory of elasticity the
displacements are small. Consequently, with

∆bi(E) = (−[ε] + [r]) bi(0) (2.31)

the shift of a reciprocal lattice point described by (2.27) can be expressed as

∆H = (−[ε] + [r]) H. (2.32)

Using equations (1.27) and (2.28), the components of ∆H referred to the crystal Cartesian
system are

∆Hi = (−dkij +Rkij)EkHj. (2.33)

A decomposition of the vector ∆H into a longitudinal, ∆H||, and transverse, ∆H⊥, com-
ponent (as demonstrated in Fig. 2.4) facilitates the derivation of a theoretical expression
for the induced angular shift of an ω rocking curve. At this, ∆H|| is associated with the
pure elongation of H and hence, its absolute value is given by

∆H|| =

(
∆H · H

H

)
= −dkijEkHiHj/H. (2.34)

In contrast, ∆H⊥ represents the pure rotation of H without changing its length plus the
additional rotation of the whole crystal. The absolute value of ∆H⊥ is equal to

∆H⊥ = (∆H ·Y) = −dkijEkYiHj +RkijEkYiHj, (2.35)

where Y = (H×ω̂)/H has unit length and is perpendicular to both H and the unit vector
ω̂ along the main ω rotation axis of the diffractometer. The components ωi in the crystal
Cartesian system depend on the diffractometer setting angles, the matrix B transforming
the crystal Cartesian system into the crystal reciprocal basic system and the orientation
matrix M of the crystal [47]. In the case of the axial system defined for the HUBER
4-circle diffractometer at the HASYLAB beamline D3 [48] ω̂ can be calculated from

ω̂ = (M ·B)−1

− sinχ cosφ
sinχ sinφ

cosχ

 . (2.36)

According to Fig. 2.4, the angular shift (∆ω||) of a rocking curve position owing to the
contribution of ∆H|| is equivalent to the change (∆θ) of the scattering angle. Together
with the Bragg equation

H = 2 sin θ/λ (2.37)

and (2.34) one gets

∆ω|| = ∆θ = tan θ∆H||/H = − tan θdkijEkHiHj/H
2. (2.38)
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2.3 External and internal strain of a crystal induced by an applied electric field

Whereas, the angle ∆ω⊥,

∆ω⊥ = ∆H⊥/H = −dkijEkYiHj/H +RkijEkYiHj/H, (2.39)

stems from the ∆H⊥ (2.35) contribution. Finally, adding the equations (2.38) and (2.39)
results in the total electric-field-induced angular displacement of the peak position of a
diffraction curve:

∆ω = ∆ω|| + ∆ω⊥ = − tan θdkijEkHiHj/H
2 − dkijEkYiHj/H +RkijEkYiHj/H, (2.40)

where Barsch derived in his work [45] the first term only. As depicted in Fig. 2.5, affirming
the theory (2.40), ∆ω exhibits a linear dependence on the external electric field applied
to the crystal.

Figure 2.5: Bragg peak shift of the BiB3O6 (010) crystal plate 7̄5̄10 reflection as a function of
E = E × e2. In agreement with the theory (2.40) the ∆ω values are linear dependent on E.

In the general approach introduced in this section the piezoelectric tensor of a crystal
is determined by the X-ray diffraction technique using equation (2.40) as the theoretical
basis. In detail, with the ∆ω values measured for a set of arbitrarily chosen reflections
one obtains a system of linear equations with the piezoelectric, dkij, and rotation, Rkij,
constants as unknown parameters. The advantage of the presented method is that in
an experiment one can concentrate on those reflections being the most sensitive to the
variation of the atomic structure of a crystal. In doing so, both the atomic rearrangement
in the unit cell and the dkij constants of the crystal can be determined simultaneously.

The individual ω diffraction curves, I(ω), of a reflection were fitted by the pseudo-Voigt
(PV) function [49],

PV(ω) =
IηΓ

2π(ω − ω0)2 + Γ2
+

2I(1− η)(ln 2)1/2

Γπ1/2
exp

[
−
(

2(ω − ω0)(ln 2)1/2

Γ

)2
]
, (2.41)

by taking account of a linear background, fb(ω) = bω + a. That way, the angular peak
position, ω0, of a I(ω) profile,

I(ω) = PV(ω) + bω + a, (2.42)

was extracted. In equation (2.41) the parameter I is the integrated intensity of a curve, Γ
corresponds to the full width of the curve at half-maximum (FWHM) and η is a parameter
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2 X-ray diffraction by crystals under an static external electric field

that mixes the Gaussian (η = 0) and Lorentzian (η = 1) functions. The profile fitting was
implemented in a MATLAB script based on the function nlinfit [50] from the statistic
toolbox. The number of counts (N) collected for each ω angle was weighted according to
the Poisson distribution with w = 1/σ2 = 1/N .

Figure 2.6: Rocking curves of the BiB3O6 (010) crystal plate 087̄ reflection compared with the
fitted profile functions (2.42). In contrast to this example, in Fig. 2.3 the complete measurement
of the reflection consisting of a sum of 14 single ω profiles recorded consecutively is presented.

Figure 2.6 displays the profile functions (2.42) fitted to the measured rocking curves
of the BiB3O6 (010) crystal plate 087̄ reflection. Almost all diffraction profiles could be
well described by the PV function (2.41) (as shown in Fig. 2.6), otherwise the rocking
curves were omitted from the data analysis. Normally, in order to achieve high counting
statistics, for a reflection much more than one single ω scan were performed. Therefore,
for each scan the recorded rocking curves were fitted by (2.42), then their angular shift,

∆ω = ω0(E)− ω0(E = 0), (2.43)

was determined and finally, all ∆ω values of a complete measurement were averaged.

2.3.2 Refinement of the electric-field-induced atomic displacements
in a crystal

The intensity of the X-ray diffraction by a crystal in the presence of an applied external
electric field has been analyzed by Tsirelson et al. (2003) [51] and Gorfman et al. (2005)
[52]. They showed that the change of the kinematical diffraction intensities, as illustrated
in Fig. 2.7, is mainly due to the electric-field-induced displacements of atoms within
the crystal unit cell. The contribution of the polarization of the electron subsystem was
estimated as 100 times smaller and therefore can be neglected. Accordingly, the structure
factor (2.1) of a crystal that is subjected to an external electric perturbation takes the
form

FE(H) =
∑
µ

[
fµ(H) + f

′

µ(λ) + if
′′

µ (λ)
]
Tµ(H) exp(2πiHRµ) exp [2πiH∆Rµ(E)]

≡
∑
µ

f a
µ(H) exp [2πiH∆Rµ(E)] , (2.44)
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where ∆Rµ are the atomic displacement vectors. In a linear approximation the vector
components ∆Ri

µ referred to the crystallographic coordinate system and marked with the
superscript i are described by

∆Ri
µ = aij(µ)Ej, (2.45)

here the Einstein summation convention is used. The displacement tensor [aij(µ)] of an
atom µ and its dependence on the microscopic parameters of the crystal, such as phonon
spectra and ED distribution, were discussed by Gorfman et al. (2006) [14]. Note that[
aij(µ

∗)
]

of an atom µ∗ that is related to the atom µ by the symmetry operation {S, d}
(S is a rotation matrix and d is a translation vector) is given by[

aij(µ
∗)
]

= S
[
aij(µ)

]
S−1. (2.46)

Figure 2.7: Electric-field-induced change of the diffraction intensity, IE curve, of the
1̄,0,10 reflection of a Li2SeO4·H2O (010) crystal plate measured at λ = 0.98 Å and under
E = 3.9 kV mm−1. The I0 curve represents the unperturbed diffraction intensity.

The relative intensity change,
∆I

I
=
IE − I0

I0

, (2.47)

of an X-ray reflection (IE denotes the integrated intensity measured under E and I0 is
the unperturbed intensity, see Fig. 2.7) under the influence of an electric perturbation
applied to the crystal can be modeled as

(∆I/I)MOD =
|FE|2 − |F0|2

|F0|2
. (2.48)

Consequently, the recorded diffraction intensities do not have to be corrected for polar-
ization and absorption effects. Besides, the time dependence of the incident beam flux
does not have to be considered in the data analysis. In expression (2.48) the tensor co-
efficients aij(µ) from (2.45) are the model parameters that are determined by fitting the
(∆I/I)MOD values to the observed X-ray ones, (∆I/I)OBS values. In detail, using the
MATLAB function fminunc [53] from the optimization toolbox, the aij(µ) constants were
refined by minimizing the error sum

χ2 =
∑
H

[
(∆I/I)OBS − (∆I/I)MOD

σ (∆I/I)

]2

. (2.49)
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Based on the agreement indices, such as R factor [14],

R =

∑
i |(∆I/I)iOBS − (∆I/I)iMOD|∑

i |(∆I/I)iOBS|
, (2.50)

and weighted Rw factor [14],

Rw =

[∑
iwi|(∆I/I)iOBS − (∆I/I)iMOD|2∑

iwi|(∆I/I)iOBS|2

]1/2

with wi =
1

σ2 (∆I/I)i
, (2.51)

the quality of the performed refinements was estimated. The better the model (2.48) fits
the experimental data the smaller the values of R and Rw are.

Normally, in an external electric field (E = E × ê) the displacement of an atom in a
piezoelectric crystal is of the order of |∆R| ∼ 10−3 − 10−4 Å [8-14]. Thus, |FE|2 defined
by (2.44) can be approximated as follows

|FE(H)|2 ≈ |
∑
µ

faµ(H) [1 + 2πiH∆Rµ(E)] |2 = |
∑
µ

faµ(H)[1 + 2πiH[a(µ)]E]|2

= |F0(H) + 2πi
∑
µ

faµ(H)H[a(µ)]E|2 = |F0(H)|2(1 + αE), (2.52)

with the introduced new quantity α,

α(H) = −4πIm

{
F0(H)∗

∑
µ

faµ(H)H[a(µ)]ê

}
/|F0(H)|2. (2.53)

Substituting |FE|2 in (2.48) by expression (2.52) results in

(∆I/I)MOD ≈ α(H)E (2.54)

and therefore, in good approximation the relative variation of the integrated intensity of
a reflection should be proportional to E. This behavior of ∆I/I was well confirmed by
experimental data, see the measurements of the Li2SeO4·H2O (010) crystal plate 2,3̄,10
reflection displayed in Fig. 2.8.

Because of the used four-step modulation-demodulation technique (see next chapter) in
an experiment ∆I/I is measured simultaneously for each crystal reflection as a function
of two opposite directions of an applied electric field: E = ±E × ê. For this reason
by verifying the linear requirement (2.54), one can quite easily check the quality of the
recorded data, which is another big advantage of the employed high-voltage modulation.
In particular, all reflections for that ∆I/I did not show a clear linear dependence on E
were discarded.

In general, in an experiment under an electric field only a limited number of reflections
of a crystal exhibit variations in the integrated intensity that are large enough to be
measured using the intense synchrotron radiation with a reasonable accuracy within a
few hours [52]. Thus, for the first-ever measurements with a new crystal it is absolutely
necessary to estimate those reflections that are the most sensitive to the electric-field-
induced rearrangement of atoms within the unit cell. As shown by Gorfman et al. (2005)
[52], such calculations may be done by applying a model of independent atomic vibrations.
According to this simplified model, the components, ∆Ri

µ, of the displacement vector of
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2.3 External and internal strain of a crystal induced by an applied electric field

Figure 2.8: Relative intensity change, ∆I/I [see equation (2.47)], of the 2,3̄,10 reflection of
a Li2SeO4·H2O (010) crystal plate measured at λ = 0.99 Å and as a function of the external
electric field E = E × e2. As shown in this example, within the considered electric field range
∆I/I is linear dependent on E.

an atom µ are related to its pseudoatomic charge, Qµ, its thermal displacement tensor,
[βikµ ], and the metric tensor coefficients, gkj = akaj, of the crystal lattice by

∆Ri
µ =

∑
j

Qµβ
ik
µ gkj

2π2kBT
Ej, (2.55)

where T denotes the temperature of the crystal and kB is the Boltzmann constant.
In order to make use of expression (2.55) for a priori estimations of the most promising

reflections of the Li2SO4·H2O, Li2SeO4·H2O and BiB3O6 crystals, the atomic Q values
were calculated with the program package WIEN2k [38]. The tensors components βik

for single atoms were known from previous X-ray structure studies of these crystals [54,
55, 56]. That way, in the case of the Li2SO4·H2O and Li2SeO4·H2O (010) crystal plate
during the first beamtime of a week at HASYLAB sufficiently many reflections could be
collected to refine on the basis of these experimental data a new better list of reflections.
For BiB3O6 the approach (2.55) has turned out to be less successful, because for this
crystal the observed change in the diffraction intensities was normally relatively small, as
it will be discussed in section 4.3.2.

The integrated intensity, I, of a reflection was extracted by adding up all counts recorded
at each ω angle of a scan:

I = Ns =
∑
steps

N(ω). (2.56)

Considering that the counting statistics of an X-ray scintillation counter follows the Pois-
son distribution, the experimental error, σ, of I amounts to

σ(I) =
√
I. (2.57)

Using (2.47) together with the approximation IE ≈ I0 and by taking account of above
expression, for the error σ(∆I/I) one has:

σ(∆I/I) =

√
3

2I0

, (2.58)
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2 X-ray diffraction by crystals under an static external electric field

where it was considered that I0 is measured twice in a four-step field-switching experiment,
see chapter 3. Thus, σ(I0) is equal to

σ(I0) =

√
I0

2
. (2.59)
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3 Description of the field-switching
X-ray diffraction experiments

Two different X-ray diffraction experiments, both based on the field-switching technique
[15], were performed to probe the response of the Li2SO4·H2O, Li2SeO4·H2O and BiB3O6

crystals to an external electric field. With the first experiment the induced macroscopic
and microscopic deformation of the crystals averaged over a period of 11 ms were inves-
tigated, while the second experiment allowed for measuring the time evolution of both
strains generated by a fast change of an applied electric field on the nanosecond scale.

For the X-ray diffraction investigations of the piezoelectric crystals under an external
electric perturbation thin crystal plates were prepared, see for example the BiB3O6 (010)
crystal plate shown in Fig. 3.1. Then each crystal sample had to be fixed with some wax
in the groove on top of a Plexiglas slab which in turn was attached to a goniometer head.
A homogeneous external electric field normal to the surface of a crystal plate was created
by supplying a high voltage (HV) to sputtered thin gold contacts lying exactly in line
with each other on opposite faces of the plate.

Figure 3.1: A BiB3O6 (010) crystal plate
fixed with some wax in the groove on top of
a Plexiglas slab which in turn was attached
to a goniometer head. In order to apply high
voltage to the crystal plate thin gold contacts
lying exactly in line with each other were
sputtered on opposite faces of the plate.

3.1 Setup of the static field-switching experiment

This experiment was performed exclusively with the synchrotron radiation of the HA-
SYLAB bending magnet D3 beamline [48] which is equipped with a HUBER four-circle
diffractometer. As an X-ray detector we used a relatively slow open NaI scintillation
counter with that in the range where the effect of the counting system dead-time is negli-
gible rates up to 5× 104 counts/s can be counted. Since usually weak reflections are the
most sensitive to the internal strain in a crystal, the “slow” X-ray detection system of
the beamline did not impair our measurements. At this beamline the wavelength of the
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3 Description of the field-switching X-ray diffraction experiments

incident X-ray beam can be tuned to a value in the range from 0.3 to 2.3 Å. All rocking
curves of reflections were recorded in the ω scan mode using the ω step width of 0.001◦.

The HV applied to crystals was modulated periodically with a frequency of 18 Hz, which
equals to a period length of 56 ms, through alternating positive (U+), zero (U0), negative
(U− = −U+), and zero (U0) HV step states, as depicted in Fig. 3.2. In this context, the
fast HV modulation employed in an experiment is essential to prevent charge migration
in crystals. For instance, after a couple of hours under a constant external electric field
both the Li2SO4·H2O and Li2SeO4·H2O (010) crystal plate became conducting, but under
an alternating electric field these pyroelectric crystals behaved at room temperature like
insulators, which is in agreement with the work [57]. Thus, the response of both crystals
to an electric field could be investigated on the atomic scale. In the experiments HV
up to ±3 kV was applied to crystal samples. Higher HV values were not accessible, as
they might destroy the electronics used for switching the HV. The digital pulses of the
point detector were distributed continuously over four counting channels that in turn
were synchronized with the HV modulation. This so-called modulation-demodulation
technique is based on the experimental method introduced for the first time by Puget &
Godefroy (1975) [58] and Fujimoto (1978) [7] for the study of the electric-field-induced
structural changes in crystals. Besides, because of the time required for charging and
especially discharging a crystal plate the first 3 ms of each of the four HV states were
excluded from the data collection, see Fig. 3.2. Therefore, the measurements for a single
HV state took 11 ms.

Figure 3.2: Schematic view of the used four-step modulation of the HV consisting of successive
U+, U0, U− = −U+ and U0 step states applied periodically to a crystal plate. The HV modu-
lated that way was employed for the quasi-simultaneous measurements of reflection profiles as a
function of U+, U0 and U−. As shown, the time needed for charging and especially discharging
a crystal plate is excluded from the data collection.

The measurement period chosen for each angular step of an ω scan determines the
number of repetitions of the basic HV period. Since the diffraction intensity was col-
lected for each ω position over more than 100 HV cycles, the experimental data was not
affected by short-term oscillations of the intensity of the incident X-ray beam. That way,
the rocking curves of a reflection could be measured quasi-simultaneously for each of the
three different electric field states, as illustrated in Fig. 3.3. Consequently, very small
relative changes in the diffraction intensity, ∆I/I < 1%, became measurable. Further-
more, particularly for the weakest reflections the profiles had to be remeasured in the
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3.2 Setup of the time-resolved experiment

worst case more than 20 and 30 times until reasonable counting statistics was achieved.
An experimental procedure that makes this experiment even at the synchrotron beam-
lines very time consuming, as normally at least 30 − 50 reflections of a crystal showing
a significantly large effect in ∆I/I have to be collected for a reliable refinement of the
induced atomic displacements in the crystal.

Figure 3.3: Three rocking curves, I+, I0 =
〈
I0+ , I0−

〉
and I−, of the Li2SO4·H2O (010) crystal

plate 0,1̄,12 reflection measured simultaneously in the ω scan mode using the four-step field-
switching technique, as shown in Fig. 3.2. The reflection profiles correspond to the U+, U0 and
U− HV states, |U±| = 3 kV, which result in E = 5.1 kV mm−1 applied to the crystal.

For further data analysis both rocking curves I0+ and I0− corresponding to the zero HV
states were averaged to a single curve I0 =

〈
I0+ , I0−

〉
. In addition, the observed angular

shifts and relative intensity variations of reflections were normalized to the values referred
to the positive direction (E+ = E × ê), with respect to the crystal Cartesian system, of
an applied electric field:

∆ωa =
〈
∆ωE+ ,−∆ωE−

〉
, (3.1)

(∆I/I)a =
〈

(∆I/I)E+
,− (∆I/I)E−

〉
. (3.2)

Finally, from the ∆ωa and (∆I/I)a data the piezoelectric constants of a crystal and the
displacements of atoms were refined, respectively (see chapter 4).

3.2 Setup of the time-resolved experiment

This experiment was conducted at the Swiss-Norwegian beamline (BM01A) of ESRF.
At this beamline a KUMA six-circle diffractometer, an area ONYX detector and a scin-
tillation counter are available. The CCD operation mode was used exclusively for the
determination of the crystal orientation, whereas all measurements of reflection profiles
were performed with the point detector. Additional measurements were carried out in
the home X-ray laboratory employing high-resolution diffraction.

A data acquisition (DAQ) system based on a commercial Xilinx Virtex-4 FPGA (Field
Programmable Gate Array) board, which uses the ML405 evaluation platform [59], was
developed for the realization of the time-resolved X-ray measurements. This board is
equipped with a 100 MHz clock oscillator resulting in a single tact period of 10 ns. With
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3 Description of the field-switching X-ray diffraction experiments

this technique the following experimental requirements can be met: Firstly, it becomes
possible to adjust in an easy and flexible way the time resolution of an experiment to any
value in a broad time range only having 20 ns as bottom limit. Secondly, the FPGA board
enables us to process the incoming detector signals with respect to the time structure
and periodicity of the external perturbation applied to a crystal. Finally, compared to
the pump-probe experiments [60] we do not have to exploit the time structure of the
synchrotron radiation in order to reach a time resolution of 20 ns, we can do it in an
intrinsic way. All this makes our measurements, which we can run for days to collect
higher counting statistics, much faster.

Based on the software code written by Marc von Kozierowski within the scope of his
bachelor thesis, I implemented the control of an on-board SRAM (Static Random-Access
Memory) by the FPGA chip, see an extract of the relevant source code attached in the
appendix. Besides, by optimizing the internal processes running on the FPGA I could
increase the accessible time resolution of the DAQ system from 20 µs to 20 ns.

Figure 3.4: Flow chart of the data acquisition system developed for the time-resolved X-ray
diffraction studies of the response of a piezoelectric crystal to a fast periodic change of an applied
external electric field.

The time resolution of an experiment is defined by a fixed number of FPGA clock cycles.
To synchronize the DAQ system with the time structure of the HV applied periodically
to a crystal, digital signals modulated according to the respective active HV state are
generated. These signals are routed directly to the FPGA board, as depicted on the flow
chart in Fig. 3.4. The rising edge of the positive voltage (see Fig. 3.5) is used to trigger
the starting point of the fragmentation of the HV cycles into well-defined consecutive time
intervals. Employing a memory device, such as SRAM, to each of the time intervals one
single counter can be assigned in that the number of all pulses of an X-ray point detector
fed into the FPGA board in the respective time window is stored. Due to the periodicity
of the HV, it is only necessary to initiate the counters for the first HV cycle, so that for
the next cycles one has just to increment their values.
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3.2 Setup of the time-resolved experiment

In particular, because of the read and write timing of the synchronous pipelined on-
board SRAM in total 7 clock cycles are required to control a single write operation followed
by a read operation. A procedure that limits the smallest time resolution of this DAQ
system to 70 ns. At the same time the SRAM, having in total 18 address pins, can be
used as a counter with possible 218 channels of that each one has a memory width of 4
byte. The digital clock manager of the Xilinx ISE software [59] provides a simply tool
to generate several output clocks that have specific phase shifts (the phase of the SRAM
clock has to be shifted relative to that of the FPGA clock) and frequencies. But due to the
available speed grade of the SRAM, it does not run with a double frequency of 200 MHz.
In this mode the small memory of the FPGA chip with a depth of 14 bit and a width
of 2 byte can be addressed only, however in this manner a time resolution of 20 ns can
be reached. Concerning a fast X-ray detector, such as avalanche photo-diode (APD) [61]
(that can be adjusted to produce pulse widths of 30, 20, 10 and 5 ns), the clock frequency
of a FPGA is the crucial limiting parameter. With a 100 MHz clock pulses with a width
of 20 ns can be processed only. This limitation strongly affects the dead time of an APD
and thus, the saturation threshold of this detector decreases.

Figure 3.5: Representation of the 2-step modulated HV (U± = ±1 kV) applied periodically to
single crystal plates. In this example the HV frequency amounts to 1 kHz and the switching
time between U± and U∓ equals nearly to 200 ns. The HV spikes of the magnitudes up to ±6 kV
arise from the fast HV switching process.

In order to accomplish fast periodic back and forth switching of the HV special electron-
ics was developed by the electronic workshop of the University of Siegen. In detail, the
HV electronics is based on two cascades of high voltage MOSFETs which are potential-
separately gated. Both cascades are interconnected to a half bridge, that way using two
HV power supplies positive and negative HV up to ±3 kV can be switched within a few
10 ns. Optionally, by adding further cascades it becomes possible to realize zero HV
states, so that the two-step modulation of the HV can be easily changed to the four-
step mode, see Fig. 3.2 in section 3.1. In an experiment the HV is switched from U+ to
U− = −U+ and from U− to U+ within a period of about 200 ns, respectively. As illustrated
in Fig. 3.5, the short and high HV spikes of the magnitudes up to ±6 kV that accompany
the HV jumps could not be suppressed. But owing to the RC time constant of the sample
capacitor, the HV spikes do not reach the crystals and therefore are not reproduced by the
experimental data, see Figs. 3.6 and 3.7. Concerning the HV frequency, which is set with
an external digital pulse generator, charging and discharging current has to be taken into
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3 Description of the field-switching X-ray diffraction experiments

account. For the system introduced the highest possible current through the electronic
devices is limited to 2 mA, a value that for instance in the case of U± = ±1.5 kV results
in the upper HV frequency of 1.5 kHz.

Furthermore, in order to perform for each angle of an ω step scan independent time-
resolved measurements, additional feedback signals containing the information about the
movement status of the crystal referred to the ω angle rotation of the diffractometer are
needed. It has to be ensured that a DAQ run is started only if the diffractometer, thus the
crystal, is in a non-moving state. In this context, the big advantage of a programmable
FPGA chip becomes really visible in its function as the main interface where the reference
signals about the active HV state at the crystal and the diffractometer movement status
are analyzed synchronously in terms of the processing of the incoming detector pulses, as
demonstrated in Fig. 3.4.

The data processing described in this section was realized by transforming a VHDL
(Very High Speed Integrated Circuit Hardware Description Language) software code to
integrated circuits on the FPGA chip. A serial interface was implemented for the com-
munication between the FPGA board and a control computer that was used to transmit
the individual parameters of an experiment to the FPGA chip and to control the data
readout process.

Figure 3.6: Representation of the time-resolved measurements of the BiB3O6 (010) crystal
plate 392 reflection. The diffraction intensity was recorded with a time resolution of 100 ns.
These raw data correspond to the applied HV basic period displayed in Fig. 3.5.

In Fig. 3.6 the raw data of the time-resolved scanning of the diffraction intensity of
the BiB3O6 (010) crystal plate 392 reflection within the two-step modulated basic HV
period (see Fig. 3.5) applied to the crystal are shown. These measurements were carried
out with a time resolution of 100 ns, were repeated 5 times to increase the counting
statistics of the data and then merged together. The width of the ω steps was fixed to
2 × 10−3◦. First of all, the pronounced discontinuity of the angular peak position of the
392 reflection approximately at 500 µs within the basic HV period strikes the eyes. An
accurate analysis of the time evolution of ∆ω is displayed in Fig. 3.7. The distinctive
behavior of the function ∆ω(t) (jumps at 0 and 496 µs) exactly reflects the fast U−−U+

and U+−U− changes within the HV period. In addition, both HV jumps have induced the
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3.2 Setup of the time-resolved experiment

same dynamic response of the crystal plate comprising at least two different superimposed
oscillations of the Bragg peak position. In summary, the measurements of the BiB3O6

392 reflection present a good example of the capability of the introduced experimental
technique for probing the electric-field-induced dynamic processes in piezoelectric crystals.

Figure 3.7: Angular shift, ∆ω, of the Bragg peak position of the BiB3O6 (010) crystal plate
392 reflection as a function of the time within the two-step modulated basic HV period, see
Fig. 3.5. The function ∆ω(t) was extracted from the raw data shown in Fig. 3.6.

3.2.1 Physical origin of the Bragg peak oscillations

In general, a periodic square function, f(t), with f(t) = −f(t + π) and f(0) = 0 can be
represented by a Fourier series of the form

f(t) =
∞∑
k=1

4

(2k − 1)π
sin [(2k − 1)t] (3.3)

containing an infinite number of increasing frequencies, ν = (2k − 1)/2π (k = 1, 2, 3, ...).
Because of that, the used fast-modulated periodic HV (see Fig. 3.5) is describable by
equation (3.3) applying an appropriate normalization so that it becomes apparent that
the employed time-resolved experiment can be compared with the method of the resonant
ultrasound spectroscopy (RUS) [62, 63]. In this method a crystal of well-defined shape
is held almost freely between two piezoelectric transducers. One of the transducer acts
as a generator of an elastic wave of constant amplitude but of varying frequencies in the
specimen, while the another one serves as a detector of the induced mechanical resonances
[62]. From the measured spectrum of resonance frequencies all elastic and piezoelectric
constants of the sample can be deduced simultaneously [64]. In contrast to the RUS
technique, because the different HV states are changed fast within a basic HV period, we
generate an ultrasound signal consisting of a huge variety of discrete frequencies that are
applied to a crystal. For instance, in Fig. 3.8 the function f(t) (3.3) is plotted for k ≤ 10.
Accordingly, it is easily conceivable that in the large pool of the frequencies there are some
that are close to the resonance frequencies of the crystal and thus, different vibrational
modes of the sample may be exited in the experiment. If this assumption is true, then
the induced vibrations of a crystal should be strongly dependent on the one hand on the
used modulation frequency of the external HV and on the other hand on the switching
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3 Description of the field-switching X-ray diffraction experiments

time between single HV states.

Figure 3.8: Graphical representation of the Fourier series (3.3) for k ≤ 10.
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4 Electric-field-induced response of
Li2SO4·H2O, Li2SeO4·H2O and
BiB3O6 single crystals

4.1 Lithium sulfate monohydrate, Li2SO4·H2O

Li2SO4·H2O crystallizes in the space group P21 [unit-cell parameters are: a1 = 5.4553 (1) Å,
a2 = 4.8690 (1) Å, a3 = 8.1761 (1) Å and α2 = 107.337 (2)◦ (Karppinen et al., 1986 [65])].
The asymmetric part of the unit cell consists of ten atoms: two Li atoms (Li1, Li2), one
S atom (S), five O atoms (O1 to O5) and two H atoms (H1, H2). Each atom occupies
a general (2a) position. The crystal structure is formed by Li1O4, Li2O4 ≡ Li2O3(H2O)
and SO4 groups that are linked together by oxygen atoms to a three-dimensional tetra-
hedral framework, as shown in Fig. 4.1. All three structural units are basically regular
tetrahedra that are only slightly distorted (see Table 4.1).

Figure 4.1: Arrangement of the
Li1O4, Li2O3(H2O) and SO4

tetrahedra in the Li2SO4·H2O
crystal structure viewed along
the [100] crystallographic direc-
tion. The symmetry operation
[−x, y + 1/2, −z] relates atoms
with their symmetry equivalents,
which are marked by stars. In
addition, the direction of the
two-fold screw axis parallel to
[010], the monoclinic basis vectors
and the corresponding unit cell
are shown.

The piezoelectric Li2SO4·H2O is a polar crystal with interesting physical properties. It
has the highest pyroelectric coefficient of all non-ferroelectric crystals (p2 = 87 (2)× 10−6
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4 Electric-field-induced response of Li2SO4·H2O, Li2SeO4·H2O and BiB3O6 single crystals

C m−2 K−1 [57]). The highest piezoelectric constant of Li2SO4·H2O is the longitudinal
component (d222 = 15.8 (5) pC N−1 [66]) which is about seven times larger than that of
α-quartz (d111 = 2.3 pC N−1 [67]). Another reason why this crystal was chosen for the
present studies is the availability of large single crystals of excellent quality grown from
water solution [68].

Table 4.1: Selected geometric parameters of the tetrahedral structural units, Li1O4, Li2O4 and
SO4, of Li2SO4·H2O. The bond lengths (µ−O) and angles [^ (O− µ−O)] were calculated with
respect to the cations µ = {Li1, Li2, S} and Dtetr is defined by (4.1).

Tetrahedron 〈µ−O〉 (Å) 〈^ (O− µ−O)〉 (◦) |Dtetr| (Å)
Li1O4 1.96 (4) 109.2 (71) 0.158 (2)
Li2O4 1.93 (3) 109.4 (42) 0.084 (2)
SO4 1.47 (1) 109.5 (5) 0.014 (2)

The absolute value of the vector

Dtetr =
1

4

4∑
i=1

R(Oi)−R(µ) (4.1)

characterizing the degree of the deformation of a tetrahedron is small for each of the three
Li1O4, Li2O4 and SO4 groups, as given in Table 4.1.

4.1.1 Multipole-model refinement of the electron density and
properties of the chemical bonds

The experimental ED distribution in Li2SO4·H2O is required for the evaluation of the
chemical-bond properties. The crystal structure and thermal parameters of Li2SO4·H2O
have been reported in the works [54, 69, 70]. Although the ED in Li2SO4·H2O has already
been studied by [65], no quantitative analysis of the particular properties of the Li−O and
S−O chemical bonds has been made by means of modern tools, such as Bader topological
analysis (see section 2.2).

For the ED determination a spherical sample with a radius of 0.12 (1) mm was prepared.
The X-ray diffraction measurements were collected using an Enraf-Nonius CAD-4 diffrac-
tometer and Mo Kα radiation. The sample was cooled to a temperature of 90 (5) K by a
N2 jet. The intensities of Bragg reflections were recorded with a point detector in an ω-2θ
scan mode. The measurement period for each rocking curve was individually adjusted to
ensure that the uncertainty in the intensities was less than 1.0%. However, for weak reflec-
tions the period was restricted to 10 min. In total, over about three weeks 7853 reflections
up to sin θ/λ = 1.2 Å−1 fulfilling the condition I(H) > 3σ(I) were collected, as displayed
in Table 4.2. Using the software Jana2000 [71], the data were corrected for the decay,
Lorentz-polarization and absorption effects, then the intensities of symmetry-equivalent
reflections were merged and finally submitted to the refinement program MOLLYN [72].
For evaluating the quality of the data recorded the quantity Rsym defined according to
[73] as

Rsym =

∑
i

ni∑
j

|Īi − Ij|∑
i

ni∑
j

Ij

with Īi =
1

ni

ni∑
j

Ij (4.2)
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4.1 Lithium sulfate monohydrate, Li2SO4·H2O

Table 4.2: Data collection and multipole refinement of the ED in Li2SO4·H2O.

Experimental parameters
Radiation type Mo Kα
Detection type Point detector
Temperature (K) 90 (5)
Radius of crystal sphere (mm) 0.12 (1)
µ (mm−1) 0.68 (1)

Recorded data
(sin θ/λ)max (Å−1) 1.2
Observed/unique reflections 7853/3930
Redundancy 2
Rsym(I) [73] 0.014

Multipole refinement
Number of ED parameters 48
Omitted reflections 65
RIAM(F ) 0.0150
R(F )/Rw(F ) [eqs. (2.50)/(2.51)] 0.0143/0.0179
Goodness of fit 5.18

Table 4.3: Refined atomic positions of Li2SO4·H2O at 90 (5) K. The unit-cell parameters are:
a1 = 5.4484 (2) Å, a2 = 4.8339 (2) Å, a3 = 8.1407 (2) Å and α2 = 107.191 (2)◦.

x y z
S 0.29250 (1) 0 0.20806 (1)

Li1 0.30339 (16) 0.49641 (24) 0.99293 (11)
Li2 0.56016 (17) 0.48877 (24) 0.39517 (11)
O1 0.02096 (6) 0.07358 (8) 0.17099 (5)
O2 0.43702 (6) 0.11091 (6) 0.37855 (4)
O3 0.39822 (6) 0.12064 (6) 0.07650 (4)
O4 0.32514 (6) −0.30371 (6) 0.20988 (4)
O5 0.91357 (8) 0.46525 (8) 0.40340 (6)
H1 0.9627 (44) 0.4006 (57) 0.3268 (30)
H2 0.9961 (48) 0.6032 (57) 0.4377 (31)

was considered. Here the summation i is over all symmetry-independent reflections and
the index j runs over all to the i-th reflection symmetry-equivalent reflections. Īi stands
for the intensity of a reflection i averaged over the symmetry-related intensities and ni
denotes the number of reflections in a symmetry-equivalent group (multiplicity of the i-th
reflection). Thus, Rsym is dependent on the redundancy of an X-ray diffraction data set.
In the case of the measurements carried out the small value of Rsym = 1.4%, which is
distinctly smaller than 5%, indicates a good data quality, as reported in [73].

The initial values of the atomic positions and atomic displacement parameters (ADPs),
the ADPs of the H atoms were fixed at their 80 K neutron-diffraction values [54], were
taken from [65] and were further refined without any constraints, see the results presented
in Tables 4.3 and 4.4. The primary and secondary extinction were refined in the isotropic
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4 Electric-field-induced response of Li2SO4·H2O, Li2SeO4·H2O and BiB3O6 single crystals

Table 4.4: Anisotropic thermal parameters (10−5 Å2) of Li2SO4·H2O at 90 (5) K. Stars denote
neutron values that were taken from [54] and not refined.

U11 U22 U33 U12 U13 U23

S 396 (2) 293 (2) 316 (1) 20 (3) 114 (2) 8 (2)
Li1 883 (19) 834 (22) 831 (8) 60 (48) 287 (20) 129 (34)
Li2 875 (19) 825 (25) 824 (8) 40 (45) 196 (20) 55 (30)
O1 404 (7) 944 (9) 746 (3) 117 (13) 110 (8) −109 (9)
O2 756 (6) 560 (6) 415 (2) −1232 (10) 33 (6) −78 (7)
O3 863 (6) 590 (6) 636 (3) 109 (12) 462 (7) 178 (7)
O4 968 (7) 306 (6) 598 (3) 49 (10) 173 (7) 17 (6)
O5 862 (9) 1230 (12) 1352 (4) −78 (14) 545 (9) −228 (11)
H1∗ 2917 (38) 4547 (64) 2474 (34) 381 (41) 1481 (31) −648 (40)
H2∗ 2727 (37) 2459 (47) 4090 (45) −1091 (37) 944 (33) −593 (40)

Figure 4.2: Next-neighbor coordination of the atoms O2, O3 and O4 in the Li2SO4·H2O struc-
ture and the choice of their respective local Cartesian coordinate system, {ei}. The axis e2 is
directed from an O to the corresponding S atom. The axis e3 lies in the e2−v plane (v is a
vector between the Li atoms) and defines the normal to the local non-crystallographic mirror
plane. For the O2, O3 and O4 atom the angle between v and e3 is less than 5◦.

approximation according to Becker & Coppens (1974) [27]. In total, 65 outlier reflections,
those having |IOBS − IMOD|/σ(IOBS) > 10 and heavily affected by extinction [with an
extinction factor y < 0.85, see equation (2.8)], were omitted from the data set. Using the
scattering factors for isolated (non-bonded) atoms within the unit cell, the refinement of
the structural parameters resulted in the reliability factor RIAM = 1.50%. The quantity
“goodness of fit“ introduced in Table 4.2 is given by [72]

S =

√∑
iwi|FiOBS − FiMOD|2

n− p
with wi =

1

σ2 (FiOBS)
, (4.3)

where n is the number of used independent reflections (n = 3865) and p is the number
of parameters varied independently in the performed refinement of the aspherical-atom
model (p = 127). Since the value of S is with S = 5.18 small enough, the model considered
can be regarded as adequate for the description of the ED distribution in Li2SO4·H2O.
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Table 4.5: Summary of all refined atomic population coefficients (Pval, Plm) and radial param-
eters (κ′, κ′′) together with the nl and ζl values used in the radial functions Rl, see eq. (2.10).
The atomic Plm marked by “**” were not considered in the refinement of the ED distribution
in Li2SO4·H2O and those marked by “–” are forbidden according to the applied local symmetry
operations. The corresponding structure factor file is deposited with the published article.

S Li1/Li2 O1 O2, O3, O4 O5 H1/H2
Pval 5.2 (2) 1.1 (1) 6.11 (6) 6.07 (6) 6.22 (7) 1.06 (4)
P00 ** ** ** ** ** –
P11 – – 0.003 (20) −0.003 (9) 0.02 (2) –
P1−1 – – 0.06 (2) −0.09 (2) 0.11 (2) –
P10 – – −0.08 (2) – – –
P20 – – −0.04 (2) 0.07 (2) −0.09 (2) –
P21 – – 0.01 (2) – – –
P2−1 – – 0.01 (2) – – –
P22 – – −0.06 (2) 0.06 (1) −0.05 (2) –
P2−2 – – −0.04 (2) −0.03 (1) −0.03 (2) –
P30 – – 0.04 (2) – – –
P31 – – −0.01 (2) −0.001 (11) −0.11 (2) –
P3−1 – – 0.001 (20) −0.001 (11) −0.11 (2) –
P32 – – 0.01 (2) – – –
P3−2 −0.73 (6) −0.11 (8) −0.02 (2) – – –
P33 – – 0.002 (20) 0.01 (1) 0.02 (2) –
P3−3 – – −0.02 (2) −0.03 (1) 0.01 (2) –
P40 −0.34 (5) −0.10 (8) ** ** ** –
P41 – – ** – – –
P4−1 – – ** – – –
P42 – – ** ** ** –
P4−2 – – ** ** ** –
P43 – – ** – – –
P4−3 – – ** – – –
P44 −0.25 (4) −0.07 (7) ** ** ** –
P4−4 – – ** ** ** –
κ′ 0.972 (8) 0.81 (9) 0.995 (3) 0.995 (3) 0.995 (3) 1.00
κ′′ 1.14 (3) 1.00 0.89 (5) 0.89 (5) 0.89 (5) 1.00

n0/ζ0 4/3.851 2/1.279 2/4.466 2/4.466 2/4.466 0/0
n1/ζ1 4/3.851 2/1.279 2/4.466 2/4.466 2/4.466 0/0
n2/ζ2 4/3.851 2/1.279 2/4.466 2/4.466 2/4.466 0/0
n3/ζ3 6/3.851 3/1.279 4/4.466 4/4.466 4/4.466 0/0
n4/ζ4 8/3.851 4/1.279 4/4.466 4/4.466 4/4.466 0/0

In order to reduce the number of ED parameters, for the position of the Li1, Li2, S,
O2, O3, O4 and O5 atom non-crystallographic local symmetry elements were included. In
particular, since the S atom and both Li atoms occupy positions in the center of slightly
distorted oxygen tetrahedra, only the multipoles allowed by the tetrahedral symmetry
4̄3m (P3−2 and P40 = 1.36 × P44 [22]) were taken into account for these three atoms.
Furthermore, for Li1 and Li2 equal multipole populations and contraction coefficients
were used, but the refinement of κ′′ did not result in convergence, see Table 4.5. As
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the O atoms O2, O3 and O4 are almost equally coordinated by one S atom and two Li
atoms, they may be constrained to be chemically equivalent. Therefore, for these atoms
one and the same set of multipole population coefficients was refined and only those
(P11, P1−1, P20, P22, P2−2, P31, P3−1, P33 and P3−3 [22]) that are allowed under the local
non-crystallographic mirror plane introduced in Fig. 4.2. The local Cartesian coordinate
systems of the O2, O3 and O4 atoms were chosen in such a way that the Y axis (e2)
points from the respective O atom towards the corresponding S atom. The Z axis (e3) is
almost parallel to a line connection between the two next-neighbor Li atoms and normal
to the local mirror plane, see Fig. 4.2. Because O5 is linked to one Li atom and two
H atoms, it was treated in a similar way to O2, O3 and O4 with a non-crystallographic
mirror plane located between the H atoms. For all O atoms only the Plm up to l = 3
were included in the multipole-model refinement; the inclusion of hexadecapoles did not
improve the fit. For the two symmetry-independent H atoms only one (and the same)
single valence-shell population coefficient (Pval) was regarded. Since the total number of
valence electrons of an atom is equal to the sum Pval + P00 [32], for all atoms not the
monopole P00 but Pval was considered, as given in Table 4.5. With all these constraints
the number of ED parameters could be reduced to 48.

The results of the multipole refinement are presented in Figs. 4.3 and 4.4 that show
the difference ED maps containing the O1, S, O3 and O3, Li1, O4 atoms, respectively.
The density accumulation in the S−O chemical bonds indicates the mainly covalent char-
acter of these bonds. As expected for the ionic Li−O bonds, the O multipoles are not
oriented exactly along the direction of the Li−O bond paths. The pronounced features
of the residual ED, those > 0.1 e Å−3 (see Fig. 4.5), are localized near the S atom. This
particularity reflects the typical difficulties in the description of the inner-core electrons
of heavy atoms [22].

Figure 4.3: Difference ED within the O1−S−O3 plane. Contour intervals are at 0.05 e Å−3,
broken red lines represent negative contours, whereas the blue lines indicate positive contours.
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Figure 4.4: Difference ED within the O4−Li1−O3 plane. Contours are as in Fig. 4.3.

Figure 4.5: Residual ED map within the S−O2−Li2 plane (contours are as in Fig. 4.3).

The program WinXPRO [74] was used to perform the topological analysis of the exper-
imental ED in Li2SO4·H2O. The ED at the (3, −1) bond critical points (rc) of the SO4,
Li1O4 and Li2O4 groups (see Table 4.6) and the pseudoatomic charges (see Table 4.8) were
determined according to the Bader formalism, as introduced in section 2.2. In addition,
the Laplacian of the ED, the Hessian matrix eigenvalues (λ1, λ2 and λ3) and the electronic
energy density (h) were regarded at the rc points. All these features of the experimental
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ED were crosschecked by the theoretical DFT calculations performed with WIEN2k. As
shown in Tables 4.6, 4.7 and 4.8, the agreement between the theoretical and experimental
results is reasonable. However, in the case of the S−O bonds there is a big discrepancy
in the average value of λ3 and thus, the sign of the Laplacian (∇2ρ = λ1 + λ2 + λ3) is
different. For the second-row atoms, like S, such dominating influence of λ3 on the Lapla-
cian was also noted by Coppens (1997) [22]. The negative sign of h at the S−O critical
points indicates either covalent (∇2ρ < 0, as follows from the WIEN2k calculations) or
intermediate bond interactions [between closed-shell and shared interactions, as follows
from the multipolar refinement (∇2ρ > 0)]. A closed-shell type of interactions (h > 0 and
∇2ρ > 0) was deduced for the Li−O bonds.

Table 4.6: Experimental values of the ED (e Å−3), Laplacian (e Å−5), eigenvalues of the Hessian
matrix (e Å−5) and electronic energy density (a.u.) at the S−O, Li1−O, Li2−O bond critical
points (rc) averaged over the bonds within the SO4, Li1O4 and Li2O4 tetrahedra.

〈ρ(rc)〉 〈∇2ρ(rc)〉 〈λ1〉 〈λ2〉 〈λ3〉 〈h〉
SO4 1.90 (4) 8.5 (8) −13.0 (1) −12.8 (1) 34.3 (8) −0.318 (9)

Li1O4 0.15 (1) 4.5 (5) −1.0 (1) −0.9 (1) 6.4 (5) 0.011 (1)
Li2O4 0.17 (1) 5.1 (2) −1.2 (1) −1.1 (1) 7.4 (2) 0.012 (1)

Table 4.7: Theoretical values of the ED (e Å−3), Laplacian (e Å−5), eigenvalues of the Hessian
matrix (e Å−5) and electronic energy density (a.u.) at the S−O, Li1−O, Li2−O bond critical
points (rc) averaged over the bonds within the SO4, Li1O4 and Li2O4 tetrahedra.

〈ρ(rc)〉 〈∇2ρ(rc)〉 〈λ1〉 〈λ2〉 〈λ3〉 〈h〉
SO4 1.99 (2) −2.8 (6) −13.5 (1) −13.5 (1) 24.2 (6) −0.384 (9)

Li1O4 0.17 (1) 4.4 (16) −1.0 (1) −1.0 (1) 6.4 (16) 0.009 (5)
Li2O4 0.19 (1) 6.3 (6) −0.9 (1) −1.1 (1) 8.3 (6) 0.014 (2)

Table 4.8: Pseudoatomic charges in Li2SO4·H2O. The values shown were calculated according
to the Bader formalism (see section 2.2) on the basis of an experimental and theoretical ED.

S Li1 Li2 O1 O2 O3 O4 O5 H1 H2
QEXP (e) 4.40 0.91 0.90 −1.34 −1.36 −1.42 −1.38 −1.59 0.45 0.48

QWIEN2k (e) 4.13 0.86 0.86 −1.43 −1.46 −1.46 −1.45 −1.35 0.67 0.67

4.1.2 X-ray diffraction study of Li2SO4·H2O under the influence of
an applied external electric field

The field-switching experiment, as described in section 3.1 of chapter 3, was conducted
using a 0.590 (2) mm thick Li2SO4·H2O (010) crystal plate (1.5 × 1.7 cm surface area)
cut from a large right-handed single crystal. The crystal morphology allows the distinc-
tion between the left and right forms, and physically the handedness can be recognized
from the sign of the longitudinal piezoelectric constant d222, see e.g. [75]. That way,
it was ensured that the crystal investigated by X-ray diffraction under an external elec-
tric field had the same handedness as the crystal used for the ED studies in the previ-
ous section 4.1.1. All measurements, except those shown in Fig. 4.7, were carried out
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with the maximum accessible HV values U± = ±3 kV resulting in the external electric
fields E± = ±5.1 × e2 kV mm−1 applied to the crystal sample. The relative variations
of diffraction intensities were recorded solely at the wavelength λ = 0.6 Å. In general,
the measurement of a reflection was repeated until the total number of counts was high
enough to provide σ(∆I/I) (see eq. 2.58) of the order of 0.1%.

Figure 4.6: Three ω rocking curves, I+, I0 and I−, of the 506̄ reflection corresponding to the
U+, U0 and U− states of the HV, E = ±5.1 × e2 kV mm−1. The structure factor of this reflection
is unusually highly sensitive to the small displacements of the atomic positions in Li2SO4·H2O
induced by an external electric field applied parallel to the [010] direction.

Figure 4.7: Relative intensity change, ∆I/I, of the 506̄ reflection measured as a function of the
magnitude of the applied electric field E = E×e2. These measurements confirm the assumption
that the microscopic response of the crystal is linear with E within the range considered.

The intensities of selected Bragg reflections of the Li2SO4·H2O (010) crystal plate were
particularly sensitive to the electric-field-generated internal strain. For example, the re-
flection 506̄ exhibited an effect of ∆I/I ' 8% (see Fig. 4.6) which is remarkably high for
this kind of experiment (usually the measured relative intensity variations are of the order
of 1%). Furthermore, the ∆I/I values of this reflection showed a good linear dependence
on the magnitude of the external electric field E = E × e2, as displayed in Fig. 4.7. Note
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that in this range of the electric field strength a linear behavior of ∆I/I under E was
observed in almost all previous experiments [12, 14].

During the initial measurement period at HASYLAB based on a priori estimations of
the sensitive reflections (applying equation (2.55) from section 2.3.2) 43 reflections showing
a measurable effect in ∆I/I could be collected. The average relative change, 〈|(∆I/I)a|〉
(eq. 3.2), of Bragg intensities was about 1.0%. These data of the first beamtime were
exploited for a preliminary refinement of the atomic structural changes in Li2SO4·H2O.
Using the roughly refined atomic displacements, a new list of reflections was created and
in this way, 71 additional (∆I/I)a values were collected (as summarized in Fig. 4.8;
〈|(∆I/I)a|〉 ' 2.1%). Finally, both sets were merged to a single data pool which was
submitted to the final model refinement.

Figure 4.8: All (∆I/I)a values (see eq. 3.2) that were recorded during the second measurement
period at HASYLAB plotted against sin θ/λ.

4.1.3 Model used for the description of the electric-field-induced
atomic displacements

In the case of Li2SO4·H2O the only symmetry operation that is not just a pure lattice
translation is a 21 screw axis parallel to the lattice basis vector a2. Therefore, the com-
ponents of the displacement tensor

[
aij(µ

∗)
]

(as defined by eq. (2.46) in section 2.3.2) in
the crystallographic coordinate system are given by

[
aij(µ

∗)
]

=

 a1
1 −a1

2 a1
3

−a2
1 a2

2 −a2
3

a3
1 −a3

2 a3
3

 with
[
aij(µ)

]
=

a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

 . (4.4)

Since in the experiments E was applied only in the [010] crystallographic direction, ac-
cording to eq. (2.45) the parameters for a symmetry-independent atom that have to be
refined are the elements of the second column, ai2(µ), of equation (4.4). Consequently, an
unconstrained model should contain in total 30 independent parameters (three for each
of the 10 atoms in the asymmetric unit of Li2SO4·H2O).

The displacements of the H atoms were not refined (∆RH1 = ∆RH2 = 0), as their
scattering power is too small to yield any significant results. The shifts of both Li atoms
were constrained to be equal to each other and parallel to the external electric field:

∆RLi1 = ∆RLi2 = aLiE with ∆RLi || E || a2. (4.5)
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The reason behind the above assumption originates from the weak ionic Li−O bonds.
The displacements (2.45) of the O atoms O2, O3 and O4 were restrained according to the
local non-crystallographic mirror planes [m(µ) ⊥ e3(µ)] related to the atomic positions,
as illustrated in Fig. 4.2 in section 4.1.1:

[
aij(µ)

]
= S

[
aij(µ)

]
S−1 with Sm⊥e3 =

1 0 0
0 1 0
0 0 −1

 . (4.6)

In addition, the chemical-equivalence condition was imposed on these atoms. Thus, the
components of the displacement tensors [aij(O2)], [aij(O3)] and [aij(O4)] are in the respec-
tive atomic local Cartesian coordinate system equal to each other and take the form

[aij(O)] =

 α11 α12 0
α21 α22 0
0 0 α33

 . (4.7)

The special form of equation (4.7) arises from the constraint (4.6) applied to the ten-
sor components aij(µ) of O2, O3 and O4. To express the coefficients of [aij(O)] in the
crystallographic coordinate system, the matrix of transformation, A(Oµ), from the lo-
cal Cartesian coordinate system of an atom Oµ to the global crystallographic coordinate
system, {ai}, was introduced:[

aij(Oµ)
]

= A(Oµ) [aij(O)] A−1(Oµ). (4.8)

The five elements α11, α12, α21, α22 and α33 from (4.7) are the only parameters in the
refinement. Therefore, the number of variables describing the displacements of O2, O3
and O4 could be reduced from 9 to 5.

Furthermore, the fact that a translation of all atoms in the unit cell of a crystal by a
lattice vector does not have effect on the absolute value of the structure factor FE (2.44)
was taken into account. To exclude this ambiguity in the results, an additional constraint
was put on the quantities ∆Rµ [14]:∑

µ

∆Rµ = 0. (4.9)

Here the sum runs over all atoms within the unit cell. As follows from equation (4.4),
the first and third components of the vector sum (4.9) (relative to the crystallographic
coordinate system) automatically cancel for the displacements of a pair of symmetry-
equivalent atoms, because for an electric field that is parallel to a2 one has:

∆R1∗ = −∆R1, ∆R2∗ = ∆R2 and ∆R3∗ = −∆R3. (4.10)

Hence, the condition given in (4.9) is relevant for the second components of ∆Rµ only
and effectively reduces the number of free model parameters by one.

For calculating the right-hand side of equation (1.24), by means of which the dielectric
constants of Li2SO4·H2O are incorporated into the refinement, both H atoms were as-
sumed to be rigidly shifted with the water oxygen O5. In total, including all constraints
the electric-field-induced atomic displacements in Li2SO4·H2O could be described by 13
parameters.
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4.1.4 Refinement of the piezoelectric constants d2jk and atomic
displacements

As illustrated in Fig. 4.9, not more than 20 different reflections had to be submitted
into the refinement procedure in order to get reliable values for the four piezoelectric con-
stants d2jk (d211, d222, d233 and d213) of Li2SO4·H2O. Adding further data did not change
the refined values of the constants much. The piezoelectric constants d2jk were refined
separately for each of the two beamtimes at HASYLAB. The results are summarized in
Table 4.9: In the first two rows the d211, d222, d233 and d213 values determined from the
first and second set of measurements are presented, while in the third row the averaged
values are displayed. In all, concerning the experimental conditions, both beamtimes can
be regarded as equivalent to each other. In the last row of Table 4.9 the four independent
constants d2jk measured macroscopically using a dynamic pressure cell are given [66].
This data set is in quantitative agreement with the data obtained by the applied X-ray
diffraction technique.

Figure 4.9: Four symmetry-allowed piezoelectric constants d2jk (d211, d222, d233 and d213) of
Li2SO4·H2O refined as a function of the number of linear equations (2.40) used at the same time
in the refinement. In this example the data of the second set of measurements is analyzed.

Table 4.9: Piezoelectric constants (pC N−1) of Li2SO4·H2O determined in this work and macro-
scopically measured by means of a dynamic pressure cell [76] are compared.

d211 d222 d233 d213

First data set −3.26 (1) 15.17 (1) 1.16 (1) −2.59 (1)
Second data set −3.57 (1) 15.48 (1) 1.68 (1) −2.29 (1)〈
1st set, 2nd set

〉
−3.4 (3) 15.3 (2) 1.4 (3) −2.4 (2)

Ochrombel (2007) [66] −3.3 (2) 15.8 (5) 1.7 (1) −2.2 (1)

In Fig. 4.10 the convergence behavior of the three non-vanishing components R212,
R213 and R233 of the rotation tensor [R2jk] [see third term in equation (2.40)], calculated
simultaneously with the piezoelectric constants d211, d222, d233 and d213, is demonstrated.
The coefficients R212, R213 and R233 (Table 4.10) as well as the d2jk constants (Table 4.9)
were obtained by averaging over all refined values starting with the 20th linear equation,
see Figs. 4.9 and 4.10. As shown in Table 4.10, the R212, R213 and R233 values are small
and do not differ much between the first and second experiment.
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Figure 4.10: Rotation tensor coefficients R212, R213 and R233 calculated in dependence on the
number of linear equations (2.40), here the second data set was used. With the four piezoelectric
constants (see Fig. 4.9) there are in total seven parameters in the considered over-determined
system of linear equations.

Table 4.10: Three independent components R212, R213 and R233 (pC N−1) of the rotation
tensor [R2jk] refined simultaneously with the piezoelectric constants d211, d222, d233 and d213

using the approach (2.40).

R212 R213 R233

First data set 0.28 (1) −1.07 (1) 0.09 (1)
Second data set 0.04 (1) −0.81 (1) −0.22 (2)

The performed final refinement of the redistribution of atoms within the unit cell of
Li2SO4·H2O is summarized in Table 4.11. The data-to-variables ratio reaches a value of 9,
which is quite high for such kind of experiment (see all considered symmetry-independent
reflections in Table A.1 in the appendix). The quality of the fitting procedure including
the model introduced in section 4.1.3 was characterized by means of the agreement factors
R (2.50) and Rw (2.51).

Table 4.11: Main parameters of the refinement of the atomic structural changes in Li2SO4·H2O:
No. (∆I/I)a denotes the number of the experimental data, R is the unweighted and Rw is the
weighted agreement factor, χ2 (eq. 2.49) is the error sum and 〈σ/|(∆I/I)a|〉 is the average
relative standard deviation of |(∆I/I)a|.

No. (∆I/I)a No. of variables R Rw χ2 〈σ/|(∆I/I)a|〉
113 13 0.28 0.27 3198 0.13

A schematic representation of the obtained atomic rearrangement in Li2SO4·H2O viewed
along the a1 axis is shown in Fig. 4.11. The determined true displacements of atoms are
by a factor of 1500 smaller than visualized in the crystal structure plot. Especially the
large shifts of the atoms Li1, Li2 and O5 catch the eye. As the Li+ ions having a very
light mass are weakly bonded and because O5 is part of the water molecule, it is quite
evident that the impact of an external electric field on these atoms is the largest in the
structure of Li2SO4·H2O. In contrast to the Li atoms, the O5 atom is displaced essentially
opposite to E+ (E+ || a2), which is in consistence with the expected response of a cation
and anion to an electric field, respectively.
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Table 4.12: Summary of the refined atomic displacements in Li2SO4·H2O induced by an applied
electric field E+ = 5.1 × e2 kV mm−1. The components of the displacement vectors, ∆Rµ, are
related to the crystallographic system.

Atom ∆R1 (10−5) ∆R2 (10−5) ∆R3 (10−5)
S 2.59 (2) −3.81 (14) 0.48 (2)

Li1 0 20.57 (13) 0
Li2 0 20.57 (13) 0
O1 1.12 (7) −8.45 (90) −3.72 (9)
O2 −1.70 (4) −2.77 (10) −0.54 (6)
O3 −1.65 (5) −3.27 (16) −1.33 (2)
O4 4.61 (13) −0.95 (15) 1.32 (3)
O5 −1.87 (22) −21.89 (37) −5.28 (22)

Figure 4.11: View of the in-
duced rearrangement of atoms in
Li2SO4·H2O, as presented in Table
4.12, along the a1 crystallographic
axis. In order to visualize the effect
observed the true atomic displace-
ments were multiplied by a factor
of 1500. Especially striking are the
large shifts of the atoms Li1, Li2
and O5 (O5 is a water oxygen) in
and opposite to the direction of the
applied electric field E+ (E+ || a2),
respectively.

The refined shifts of the symmetry-independent atoms of Li2SO4·H2O, as listed in
Table 4.12, were used to evaluate the deformation of the Li1−O, Li2−O and S−O bond
lengths. The variations of the individual bond lengths in the tetrahedral structural units
Li1O4, Li2O4 and SO4 are presented in Table 4.13. There are huge differences in the
effect observed within a tetrahedron, as the O atoms (O1, O2, O3 and O4, see Fig. 4.1)
connecting the structural groups to a tetrahedral framework cannot follow the differently
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large and differently oriented displacements of the cation atoms Li1, Li2 and S in a simple
way, as illustrated in Fig. 4.11. The first row of Table 4.14 displays the average abso-
lute values of the bond deformations [〈|∆(µ−O)|〉 values with µ = {Li1, Li2, S}] arising
from the change of the fractional atomic coordinates (internal strain). Since in a tetra-
hedral group the atomic shifts are correlated with each other, the standard deviation of
〈|∆(µ−O)|〉 was not regarded. Because of that, the errors presented in Table 4.14 reflect
the experimental uncertainty of the determined internal strain only. The second row of
Table 4.14 shows the 〈|∆(µ−O)|〉 values calculated by considering the contribution of the
converse piezoelectric effect (external strain) to the internal strain. It is obvious that the
major part of the deformation of the bond lengths in Li2SO4·H2O is the internal strain.
In conclusion, the ionic Li−O chemical bonds are significantly more strongly affected by
an external electric field than the covalent S−O bonds.

Table 4.13: Change of the individual bond lengths (10−5 Å) in the Li1O4, Li2O4 and SO4

tetrahedra induced by E+ = 5.1 × e2 kV mm−1. Symmetry codes are: (i) −x, 1
2 + y, 1 − z;

(ii) x, y, 1 + z; (iii) 1− x, 1
2 + y, 1− z; (iv) x, 1 + y, 1 + z; (v) 1− x, 1

2 + y, 1− z; (vi) x, 1− y, z.
Li1O4 Li2O4 SO4

∆(Li1−O1i) 34.7 (3) ∆(Li2−O2) −109.8 (2) ∆(S−O1) 0.5 (11)
∆(Li1−O3ii) −103.3 (2) ∆(Li2−O2v) 33.6 (4) ∆(S−O2) 10.3 (2)
∆(Li1−O3iii) 33.9 (2) ∆(Li2−O4vi) 72.0 (4) ∆(S−O3) 0.5 (6)
∆(Li1−O4iv) 47.5 (2) ∆(Li2−O5) −9.1 (6) ∆(S−O4) 12.6 (14)

Table 4.14: Electric-field-induced average variation of the cation-anion distances (10−5 Å) in
the three different structural units, Li1O4, Li2O4 and SO4, of Li2SO4·H2O. In the last row the
influence of the converse piezoelectric effect (external strain) was taken into account. The values
presented refer to the electric field E = 5.1 kV mm−1 being parallel to [010].

〈|∆(Li1−O)|〉 〈|∆(Li2−O)|〉 〈|∆(S−O)|〉
Internal strain 54.8 (1) 56.1 (2) 6.0 (5)

Int. & ext. strain 57.3 (1) 57.9 (2) 4.1 (8)

Figure 4.12: Using the displacements of atoms obtained for E+ = 5.1× e2 kV mm−1, see
Table 4.12, calculated distribution of the number of Li2SO4·H2O reflections as a function of
|∆I/I|. The calculations were based on the conditions: λ = 0.6 Å, θ < 67.5◦, |F | > 0.3 and
|F | < 2. Besides, the h̄kl̄ and hk̄l reflections were omitted from the analysis.
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Figure 4.12 displays a distribution of the number of Li2SO4·H2O reflections calcu-
lated as a function of |∆I/I| using the displacements of atoms obtained for the elec-
tric field E+ = 5.1 × e2 kV mm−1, see Table 4.12. These calculations were performed
for λ = 0.6 Å and all reflection with a Bragg angle 2θ ≥ 135◦ were omitted from the
analysis as well as very weak (|F | < 0.3) and relatively strong (|F | > 2) reflections. Be-
sides, the h̄kl̄ reflections, which are symmetry equivalent to the hkl reflections, and the
hk̄l reflections were not considered, as for λ = 0.6 Å in good approximation one has:
∆I/I(hkl) ≈ ∆I/I(hk̄l). As a result, it is well visible that there are not many reflections
that are highly sensitive, showing ∆I/I ≥ 1%, to the applied electric field. On the other
hand, the diffraction intensities of most reflections are less affected by the induced changes
in the atomic structure of Li2SO4·H2O.

4.1.5 Discussion

The distinctive bond-selective behavior of Li2SO4·H2O under an external electric pertur-
bation reflects the bond properties, characterized by means of the topological ED analysis
(see Tables 4.6, 4.7 and 4.8 in section 4.1.1 for details). In particular, the value of the Bader
charge of the S pseudoatom is by a factor of about 5 larger than that for the Li atoms.
For this reason, the effective force acting in an electric field on sulfur (i.e. the force on its
atomic nucleus plus its pseudoatomic fragment of the ED) is stronger by the same factor.
On the other hand, the average ED in the Li−O bond critical points is more than 10 times
smaller than the corresponding value for the S−O bonds. This enormous difference is in
qualitative agreement with the observed higher sensitivity of the LiO4 and LiO3(H2O)
tetrahedra to an applied external electric field. At the same time, in spite of the higher
charge of the S pseudoatom, the deformation of the SO4 group is quite small, so that SO4

remains almost rigid. This feature of the internal strain may originate from the nature
of the S−O and Li−O bonds. As follows from the signs of the electronic energy density
and Laplacian at the bond critical points, the interactions between the Li and O atoms
are of a closed-shell (ionic) type. In contrast, the S−O bonds are either of covalent (see
WIEN2k calculation in Table 4.7) or intermediate interactions (see multipolar refinement
in Table 4.6). Although the type of the S−O interactions cannot be established unam-
biguously, the ED for both cases is mostly (for the covalent case) or partly (for the inter-
mediate case) relocated to the bond regions. Thus, the effective external electric field force
on the isolated S pseudoatomic fragment becomes less dominant compared to the pure
closed-shell interactions, which results in the small distortion of the S−O bond lengths:
〈|∆(S−O)|〉 /E = 0.8 (2)×10−5 Å (kV mm−1)−1, whereas the variation of the Li−O bond
lengths is quite high: 〈|∆(Li−O)|〉 /E = 11.3 (2) × 10−5 Å (kV mm−1)−1. Note that in
the work on α-GaPO4 by Gorfman et al. (2006) [14] a similar magnitude of the average
Ga−O and P−O bond deformation under an external electric field, 〈|∆(Ga−O)|〉 /E =
1.5 (9)×10−5 Å (kV mm−1)−1 and 〈|∆(P−O)|〉 /E = 4.3 (7)× 10−5 Å (kV mm−1)−1, was
found.

4.2 Lithium selenate monohydrate, Li2SeO4·H2O

The compound Li2SeO4·H2O is isostructural with Li2SO4·H2O and possesses the lat-
tice parameters a1 = 5.5798 (3) Å, a2 = 5.0284 (3) Å, a3 = 8.4521 (5) Å and α2 =
107.634 (2)◦ (Johnston & Harrison (2003) [55]). Figure 4.18 illustrates the crystal struc-
ture of Li2SeO4·H2O projected into the a2−a3 plane and the atom labeling used. Selected

48



4.2 Lithium selenate monohydrate, Li2SeO4·H2O

geometric parameters of the Li1O4, Li2O4 ≡ Li2O3(H2O) and SeO4 groups are given in
Table 4.15. In good approximation all three structural units can be considered as regular
tetrahedra which do not deviate much from the perfect tetrahedral symmetry, as indicated
by small |Dtetr| values in Table 4.15.

Compared with the piezoelectric and pyroelectric properties of Li2SO4·H2O, the crystal
Li2SeO4·H2O exhibits a slightly smaller longitudinal piezoelectric effect along the two-fold
screw axis (d222 = 13.3 (9) pC N−1 [66]) as well as its pyroelectric coefficient p2 is with a
value of 55.6 (10)× 10−6 C m−2 K−1 [57] smaller. But nevertheless, the pyroelectric effect
of the non-ferroelectric Li2SeO4·H2O is remarkably high.

Table 4.15: Average bond lengths 〈µ−O〉 (with µ = {Li1, Li2, Se}) and bond angles
〈^ (O− µ−O)〉 plus |Dtetr| (4.1) of the tetrahedral structural units Li1O4, Li2O4 and SeO4.

Tetrahedron 〈µ−O〉 (Å) 〈^ (O− µ−O)〉 (◦) |Dtetr| (Å)
Li1O4 1.96 (3) 109.3 (57) 0.121 (8)
Li2O4 1.94 (2) 109.3 (48) 0.101 (9)
SeO4 1.63 (9) 109.5 (8) 0.021 (3)

4.2.1 Properties of the chemical bonds

The X-ray diffraction measurements with a 40 (2)×30 (2)×16 (2) µm small Li2SeO4·H2O
crystal plate were performed in the X-ray laboratory of the Max-Planck-Institut für
Kohlenforschung in Mülheim an der Ruhr using a diffractometer system composed of
a Mach3 goniometer, an APEX II CCD detector and a graded multilayer mirror. A sum-
mary of the main parameters of the carried out data collection and multipole refinement
of the ED in Li2SeO4·H2O is presented in Table 4.16.

Table 4.16: Data collection and multipole refinement of the ED in Li2SeO4·H2O.

Experimental parameters
Radiation type Mo Kα
Detection type APEX II CCD detector
Temperature (K) 100 (2)
Size of the crystal plate 40 (2)× 30 (2)× 16 (2) µm
µ (mm−1) 8.25 (1)

Recorded data
(sin θ/λ)max (Å−1) 1.04
Observed/unique reflections 39170/2250
Redundancy 17.4
Rsym(I) 0.016

Multipole refinement
Number of ED parameters 58
Omitted reflections 3
RIAM(F ) 0.0159
R(F )/Rw(F ) 0.0145/0.0179
Goodness of fit 1.093
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Table 4.17: Refined atomic positions of Li2SeO4·H2O at 100 (2) K. The unit-cell parameters
are: a1 = 5.5864 (6) Å, a2 = 5.0086 (5) Å, a3 = 8.4347 (9) Å and α2 = 107.582 (2)◦.

x y z
Se 0.28418 (2) 0.10066 (2) 0.70759 (2)
Li1 0.31565 (2) 0.59906 (6) 0.49703 (2)
Li2 0.56164 (2) 0.58972 (6) 0.89753 (2)
O1 0.32222 (2) −0.22513 (2) 0.71057 (2)
O2 0.39213 (2) 0.22833 (2) 0.56359 (2)
O3 0.44778 (2) 0.22146 (2) 0.88877 (2)
O4 −0.00962 (2) 0.18206 (2) 0.67308 (2)
O5 0.90861 (2) 0.55514 (2) 0.90801 (2)
H1 0.9370 (9) 0.4814 (3) 0.8273 (7)
H2 0.9851 (16) 0.6862 (2) 0.9335 (7)

Table 4.18: Anisotropic thermal parameters (10−5 Å2) of Li2SeO4·H2O at 100 (2) K. The
temperature coefficients of both H atoms could not be refined.

U11 U22 U33 U12 U13 U23

Se 602 (2) 410 (2) 433 (2) 20 (2) 160 (2) 7 (2)
Li1 1126 (2) 964 (2) 1015 (2) 10 (6) 360 (2) 32 (8)
Li2 1162 (2) 1002 (6) 978 (2) 116 (2) 295 (4) −22 (4)
O1 1236 (2) 427 (2) 737 (2) 47 (2) 210 (2) 14 (2)
O2 1138 (2) 707 (2) 783 (2) 148 (2) 555 (2) 208 (2)
O3 1057 (2) 701 (2) 501 (2) −158 (2) 59 (2) −38 (2)
O4 643 (4) 1220 (2) 927 (2) 69 (2) 161 (4) −213 (2)
O5 1113 (2) 1622 (2) 1620 (4) −93 (4) 591 (4) −336 (4)

The calculation of the diffraction intensity of measured reflections was done with the
Bruker-AXS SAINT v7.34a program [77]. The collected data set was corrected numer-
ically and empirically for anisotropic absorption with the program SADABS [77]. In
total, the experimental data were of excellent quality, which is reflected in the small
values of Rsym(I) = 0.016 and RIAM(F ) = 0.0159. Besides, only 3 reflections out of
39170 had to be omitted from the multipole refinement. In Tables 4.17 and 4.18 the
determined atomic positions [unit-cell parameters at 100 (2) K are: a1 = 5.5864 (6) Å,
a2 = 5.0086 (5) Å, a3 = 8.4347 (9) Å and α2 = 107.582 (2)◦] and anisotropic thermal pa-
rameters of Li2SeO4·H2O are displayed, whereat the temperature coefficients of the H
atoms could not be refined.

The multipole expansion of the ED in Li2SeO4·H2O was implemented for the most
part analogously to the approach applied in the case of Li2SO4·H2O. But, compared to
Li2SO4·H2O, for Li2SeO4·H2O it is essentially more difficult to model the density distri-
bution of the Se atom by means of the aspherical-atom formalism [32]. Therefore, all
multipoles of this atom were refined by ignoring its nearly tetrahedral symmetry. But
nevertheless, the features of the residual ED near Se in terms of the large peaks and holes
in its vicinity are still strongly pronounced, as shown in Fig. 4.13. In addition, for all
atoms the refinement of the radial parameter κ′′ (see equation (2.9) in section 2.2) did
not converge as well as for the Li and H atoms the variation of κ′ diverged. A summary
of the model used and the refined values of the atomic multipole parameters are given in
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Table 4.19: Summary of all refined atomic population coefficients (Pval, Plm) and radial pa-
rameters (κ′, κ′′) together with the nl and ζl values used in the functions Rl (2.10). The atomic
Plm marked by “**” were excluded from the refinement of the ED distribution in Li2SeO4·H2O
and those marked by “–” are forbidden due to the applied local symmetry operations.

Se Li1/Li2 O1, O2, O3 O4 O5 H1/H2
Pval 4.304 (6) 0.467 (1) 6.661 (6) 6.582 (5) 6.519 (4) 0.839 (1)
P00 ** ** ** ** ** –
P11 0.067 (3) – −0.011 (1) −0.026 (1) −0.033 (1) –
P1−1 −0.090 (1) – −0.006 (1) 0.003 (1) 0.083 (1) –
P10 −0.173 (8) – – −0.042 (1) – –
P20 0.032 (1) – 0.040 (1) −0.104 (3) −0.083 (2) –
P21 0.079 (1) – – 0.022 (1) – –
P2−1 −0.004 (1) – – 0.070 (2) – –
P22 0.008 (1) – 0.029 (1) −0.022 (1) 0.039 (2) –
P2−2 0.174 (1) – −0.016 (1) −0.049 (1) −0.104 (3) –
P30 −0.242 (3) – – 0.009 (1) – –
P31 −0.016 (2) – −0.018 (1) −0.005 (1) −0.007 (1) –
P3−1 0.001 (6) – −0.034 (1) −0.023 (1) −0.080 (2) –
P32 −0.115 (2) – – −0.037 (1) – –
P3−2 0.192 (6) −0.261 (6) – 0.017 (1) – –
P33 −0.059 (2) – −0.009 (1) 0.022 (1) −0.034 (1) –
P3−3 0.053 (1) – 0.026 (1) 0.004 (1) −0.024 (1) –
P40 −0.345 (10) −0.324 (16) ** ** ** –
P41 −0.008 (1) – – ** – –
P4−1 0.060 (2) – – ** – –
P42 0.137 (1) – ** ** ** –
P4−2 0.147 (2) – ** ** ** –
P43 0.208 (3) – – ** – –
P4−3 0.089 (4) – – ** – –
P44 −0.037 (6) −0.240 (12) ** ** ** –
P4−4 −0.085 (1) – ** ** ** –
κ′ 1.141 (1) 1.00 0.963 (1) 0.963 (1) 0.963 (1) 1.00
κ′′ 1.00 1.00 1.00 1.00 1.00 1.00

n0/ζ0 4/4.511 2/1.279 2/4.466 2/4.466 2/4.466 0/0
n1/ζ1 4/4.511 2/1.279 2/4.466 2/4.466 2/4.466 0/0
n2/ζ2 4/4.511 2/1.279 2/4.466 2/4.466 2/4.466 0/0
n3/ζ3 6/4.511 3/1.279 4/4.466 4/4.466 4/4.466 0/0
n4/ζ4 8/4.511 4/1.279 4/4.466 4/4.466 4/4.466 0/0

Table 4.19. The extinction was treated in the same way as for Li2SO4·H2O. Since for all
reflections the respective extinction factor was not smaller than 0.98 [y ≥ 0.98, eq. (2.8)],
the X-ray data have turned out to be only slightly affected by extinction effects.

Tables 4.20, 4.21 and 4.22 present the results of the topological analysis of the ED
in Li2SeO4·H2O based on the density distributions that were on the one hand theoret-
ically calculated with WIEN2k and on the other hand experimentally determined. On
the whole, both data sets are consistent with each other. Due to the occurred model
inadequacies related to the ED of the heavy Se atom (as depicted in Fig. 4.13), the
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Figure 4.13: Residual ED map within the Se−O3−Li2 plane. Contour intervals are at
0.05 e Å−3, broken red lines represent negative contours, whereas the blue lines indicate positive
contours.

Table 4.20: Theoretical values of the ED (e Å−3), Laplacian (e Å−5), eigenvalues of the Hessian
matrix (e Å−5) and electronic energy density (a.u.) at the Se−O, Li1−O, Li2−O bond critical
points (rc) averaged over the bonds within the SeO4, Li1O4 and Li2O4 tetrahedra.

〈ρ(rc)〉 〈∇2ρ(rc)〉 〈λ1〉 〈λ2〉 〈λ3〉 〈h〉
SeO4 1.56 (1) 1.7 (1) −8.0 (1) −8.0 (1) 17.7 (1) −0.244 (3)
Li1O4 0.16 (1) 5.2 (8) −0.9 (2) −0.9 (1) 6.9 (7) 0.012 (2)
Li2O4 0.17 (2) 5.7 (8) −0.9 (1) −1.0 (1) 7.6 (8) 0.014 (2)

Table 4.21: Experimental values of the ED (e Å−3), Laplacian (e Å−5), eigenvalues of the
Hessian matrix (e Å−5) and electronic energy density (a.u.) at the Se−O, Li1−O, Li2−O bond
critical points (rc) averaged over the bonds within the SeO4, Li1O4 and Li2O4 tetrahedra.

〈ρ(rc)〉 〈∇2ρ(rc)〉 〈λ1〉 〈λ2〉 〈λ3〉 〈h〉
SeO4 1.58 (13) 9.4 (30) −11.2 (19) −9.1 (14) 29.7 (19) −0.223 (25)
Li1O4 0.24 (2) 3.6 (7) −1.3 (1) −1.2 (1) 6.0 (6) 0.001 (1)
Li2O4 0.24 (2) 3.7 (5) −1.3 (1) −1.2 (1) 6.2 (5) 0.002 (1)

theoretical DFT calculations are regarded as more reliable for further discussion and data
treatment. Accordingly, the Se−O chemical bonds are of intermediate interactions, be-
cause: 〈∇2ρ(rc)〉 > 0 and 〈h〉 < 0 at the Se−O bond critical points, see Table 4.20. The
calculated charges (first row of Table 4.22) of the individual pseudoatoms of Li2SeO4·H2O
have all meaningful values. Figures 4.14 and 4.15 illustrate the difference ED sections in
a plane containing the O2, Se and O3 atoms and the O5, Li2 and O3 atoms, respectively.
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As visible in Fig. 4.15, the theoretical DFT density clearly reveals an ED redistribution
within the O5−H1 bond of the water molecule of Li2SeO4·H2O, which indicates a good
quality of the performed DFT calculations.

Figure 4.14: Theoretically calculated difference ED within the O2−Se−O3 plane. Contours
are as in Fig. 4.13.

Figure 4.15: Theoretically calculated difference ED within the O5−Li2−O3 plane (contours
are as in Fig. 4.13).
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Table 4.22: Theoretical and experimental pseudoatomic charges of Li2SeO4·H2O.

Se Li1 Li2 O1 O2 O3 O4 O5 H1 H2
QWIEN2k (e) 3.36 0.86 0.87 −1.27 −1.28 −1.29 −1.24 −1.34 0.66 0.66
QEXP (e) 2.44 0.95 0.95 −1.00 −1.00 −1.00 −0.92 −1.25 0.42 0.42

4.2.2 Electric-field-induced atomic rearrangement

For the electric field experiment a 0.778 (2) mm thick plane-parallel Li2SeO4·H2O crys-
tal plate of a (010) orientation was available. Applying the HV values U± = ±3 kV
a maximum external electric field up to E = 3.9 (1) kV mm−1 could be generated in
the crystal. An attempt to use a thinner sample failed, as under the applied four-step
modulated HV a 0.685 (2) mm thick plate became conducting after some hours and even-
tually was completely destroyed. This occurrence observed also indicates that in the case
of the thicker plate the measurements were conducted extremely near to the electrical
breakdown condition of Li2SeO4·H2O.

The four piezoelectric constants d211, d222, d233 and d213 of Li2SeO4·H2O calculated
from the measured angular shifts of rocking curve positions agree well with the values
that were macroscopically obtained employing a dynamic pressure cell [66], see Table
4.23. Consequently, it can be assumed that the electric field created in the sample was
homogeneous and constant throughout the crystal volume confined by the gold contacts
as well as the crystal plate used for the measurements was of good quality.

Table 4.23: Piezoelectric constants d211, d222, d233 and d213 (pC N−1) of Li2SeO4·H2O measured
by means of the X-ray diffraction technique (see section 2.3.1) and employing a dynamical
pressure cell [66, 76] are presented.

X-ray diffraction Dynamic pressure cell [66]
d211 −1.8 (2) −3.6 (2)
d222 14.8 (3) 13.3 (9)
d233 0.2 (1) 0.8 (2)
d213 −1.5 (1) −2.8 (2)

The K absorption edge of Se has an X-ray wavelength of 0.98 Å [78], see Fig. 4.16. In
order to diminish the scattering contribution of the Se atoms to the diffraction intensities
of Li2SeO4·H2O, all measurements were performed above the Se K edge, i.e. mainly at
λ = 0.99 Å. In this context, Figure 4.17 demonstrates for the 040 reflection the depen-
dence of |F |2 (2.1) on the X-ray wavelengths in the vicinity of the Se K edge. Thus, by
reducing the scattering amplitude of Se to a minimum value, it became also possible to
probe the displacements of the light Li and O atoms in Li2SeO4·H2O. Near below the
Se K edge the X-ray absorption by the crystal plate was too strong to allow reasonable
measurements especially of the reflections in the transmission geometry that are normally
the most sensitive to the induced structural changes.

In total, the refinement of the electric-field-induced atomic displacements in Li2SeO4·H2O
was based on the relative intensity variations measured for 53 non-symmetry-equivalent
reflections, as given in Table A.2 in the appendix. Compared with the Li2SO4·H2O data
(Table A.1), the Li2SeO4·H2O data set is by a factor of two smaller and therefore, a more
general approach for modeling the rearrangement of atoms in Li2SeO4·H2O under an ex-
ternal electric field had to be considered. In particular, deviating from the discussion
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Figure 4.16: X-ray linear attenuation coefficient of Li2SeO4·H2O in the vicinity of the K
absorption edge of Se, λ(K) = 0.98 Å [78].

Figure 4.17: |F [(040)]|2 (2.1) calculated as a function of the X-ray wavelength in the range
from 0.5 to 1.2 Å which includes the Se K absorption edge, see Fig. 4.16.

Table 4.24: Main parameters of the refinement of the atomic displacements in Li2SeO4·H2O
under an external electric field.

No. (∆I/I)a No. of variables R Rw χ2 〈σ/|(∆I/I)a|〉
53 19 0.31 0.38 564 0.23

in section 4.1.3, the displacements of all five O atoms were refined independently from
each other and without an application of any constraints. The behavior of the two crys-
tallographically different Li atoms was constrained to be the same. But the assumption
that the Li shifts are exactly parallel to E+ = 3.9 × e2 kV mm−1 (E+ || a2) had to be
abandoned. As a result, the number of variables required for an adequate description of
the microscopic structural changes in Li2SeO4·H2O increased from 13 to 19. As displayed
in Table 4.24, the R and Rw values are small but at the same time they are too high for an
introduction of additional constraints beyond the model used. In Table 4.25 for all atoms
regarded the refined components, ∆Ri, of the displacement vectors are summarized. Ac-
cording to the values presented, the Li atoms are the most affected by the applied electric
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Table 4.25: In Li2SeO4·H2O determined displacements of atoms induced by an applied electric
field of the magnitude E+ = 3.9 × e2 kV mm−1, E+ || a2. The components of the displacement
vectors, ∆Rµ, are related to the crystallographic system.

Atom ∆R1 (10−5) ∆R2 (10−5) ∆R3 (10−5)
Se −3.3 (2) −111 (3) −3.0 (2)
Li1 −85 (3) 227 (2) 111 (3)
Li2 −85 (3) 227 (2) 111 (3)
O1 48 (2) −48 (11) 39 (1)
O2 2 (2) −79 (3) −12 (1)
O3 13 (1) −86 (2) 19 (2)
O4 −0.4 (8) −72 (2) 28 (1)
O5 −26 (2) −58 (4) 73 (2)

Figure 4.18: Schematic repre-
sentation of the crystal structure
of Li2SeO4·H2O [55] together
with the determined electric-field-
induced atomic displacements
(see Table 4.25) viewed along
the a1 axis. Due to the reasons
relating to a better illustration
of the effect observed, the values
presented in Table 4.25 were
multiplied by a factor of 100.
Expectedly, compared to the O
and Se atoms the shifts of the Li
atoms are by far the largest and
mainly oriented in the direction
of the applied electric field. As
shown in the plot, the Li1O4,
Li2O3(H2O) and SeO4 groups are
arranged to tetrahedral three-
rings.

perturbation of the crystal and exhibit the largest component of ∆R along E+, while the
Se atom is mainly displaced in the opposite direction. Figure 4.18 illustrates the absolute
values and directions of the atomic ∆Rµ vectors projected into the plane spanned by a2

and a3. Note that the true lengths of ∆Rµ are by a factor of 100 smaller than depicted
in Fig. 4.18. In comparison with the Li2SO4·H2O results (see Table 4.12) the atomic
structure of Li2SeO4·H2O is more strongly deformed, although the external electric field
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was considerably weaker: E+(S) = 5.1 kV mm−1 and E+(Se) = 3.9 kV mm−1.
A detailed analysis of the determined variations of the individual bond lengths in the

structural units, Li1O4, Li2O4 and SeO4, of Li2SeO4·H2O induced by E+ = 3.9 × e2

kV mm−1 is demonstrated in Tables 4.26 and 4.27. Accordingly, the change of the Li−O
distances is on average about five times larger than in the case of the Se−O bonds. Besides,
since the internal strain is strongly pronounced in Li2SeO4·H2O, the external strain has
less effect on the deformation of the atomic bonds under an electric perturbation, as shown
in the last row of Table 4.27.

Table 4.26: Electric-field-induced variation of the individual bond lengths (10−5 Å) in the
Li1O4, Li2O4 and SeO4 tetrahedra, E+ = 3.9 × e2 kV mm−1. Symmetry codes are: (i) −x,
1
2 + y, 1− z; (ii) x, 1 + y, 1; (iii) 1− x, 1

2 + y, 1− z; (iv) x, 1 + y, z; (v) 1− x, 1
2 + y, 2− z.

Li1O4 Li2O4 SeO4

∆(Li1−O2) −1300 (10) ∆(Li2−O3) −1270 (7) ∆(Se−O1) 281 (42)
∆(Li1−O4i) 39 (32) ∆(Li2−O5) −520 (6) ∆(Se−O2) −143 (3)
∆(Li1−O1ii) 1331 (11) ∆(Li2−O1iv) 619 (38) ∆(Se−O3) −213 (10)
∆(Li1−O2iii) −367 (6) ∆(Li2−O3v) 1693 (33) ∆(Se−O4) −61 (4)

Table 4.27: Average change of the cation-anion distances (10−5 Å) in the three different struc-
tural units, Li1O4, Li2O4 and SeO4, of Li2SeO4·H2O referred to E+ = 1 kV mm−1. The
values given in the last row were calculated by taking account of the influence of the converse
piezoelectric effect.

〈|∆(Li1−O)|〉 〈|∆(Li2−O)|〉 〈|∆(Se−O)|〉
Internal strain 195 (3) 263 (3) 45 (3)

Int. & ext. strain 195 (3) 263 (3) 44 (3)

4.2.3 Comparison of the bond-selective response strength of
different piezoelectric crystals

In agreement with the pure ionic Li−O interactions the average deformation of the Li−O
bonds in Li2SeO4·H2O (see Table 4.27) is about five times greater than the variation of the
Se−O bonds, which exhibit intermediate interactions. Compared with the Li2SO4·H2O
results, the electric-field-induced change of the Li−O bond lengths is by a factor of about
20 larger, as given in Table 4.28. Furthermore, the distortion of the Se−O bonds is
more than 50 times greater than that obtained for the S−O bonds. Indeed, the average
Se−O interaction strength [〈ρ(rc)〉 (Se−O) = 1.66 (9) e Å−3] is smaller compared to that
of the S−O bonds [〈ρ(rc)〉 (S−O) = 1.95 (5) e Å−3], but this difference is not such wide
to give a lucid explanation about the effect observed, even if the pseudoatomic charges
of S and Se are taken into account. As Q(S) = 4.3 (1) e is larger than the charge of Se
[Q(Se) = 2.9 (5) e] one would expect a lower electric force acting on Se in an external field,
which would be in direct contradiction to the experimental results. All in all, it becomes
obvious that the properties of the static electron density, such as pseudoatomic charges and
strength of chemical bonds, can be well used to explain the behavior of different structural
units in a crystal under an external electric perturbation. But at the same time, within
this approach one cannot understand why in Li2SO4·H2O, Li2SeO4·H2O and LiH2PO4
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Table 4.28: Electric-field-induced average change of the cation-anion distances in the LiO4 and
SO4 groups of Li2SO4·H2O, in the LiO4 and SeO4 groups of Li2SeO4·H2O, in the LiO4 and PO4

groups of LiH2PO4 [79], in the PO4 and GaO4 groups of α-GaPO4 [14], in the PO4 group of
KH2PO4 [11] (measured at 167 K) and KD2PO4 [9, 10] and in the SiO4 group of α-SiO2 [13]
normalized to the electric field E = 1 kV mm−1.

Crystal Tetrahedron 〈|∆(µ−O)|〉 (10−5 Å)
Li2SO4·H2O LiO4 11.3 (2)

SO4 0.8 (2)
Li2SeO4·H2O LiO4 229 (34)

SeO4 44 (3)
LiH2PO4 LiO4 5.2 (2)

PO4 3.0 (8)
α-GaPO4 PO4 4.3 (7)

GaO4 1.5 (9)
KH2PO4 PO4 43 (2)
KD2PO4 PO4 74 (4)
α-SiO2 SiO4 331 (160)

[79] the Li−O bonds differ such strongly in their response, as shown in Table 4.28. The
LiO4 structural units are in each of the three crystal structures of a nearly identical
size and small degree of tetrahedral distortion: See Tables 4.1 and 4.15 for Li2SO4·H2O
and Li2SeO4·H2O, respectively and for LiH2PO4 one has [80]: 〈Li−O〉 = 1.96 (2) Å and
|Dtetr| = 0.034 (2) Å [see eq. (4.1)]. All these crystals are Li-ion conductors and therefore,
the magnitude of the Li displacements induced by an external electric field depends on the
strength of the hydrogen bonds in the crystals and on how compact their crystal structure
is [81]. As the SO4 tetrahedra [〈S−O〉 = 1.47 (1) Å] are smaller than the SeO4 groups
[〈Se−O〉 = 1.63 (1) Å] there are greater vacancies in the structure of Li2SeO4·H2O, thus
the Li ions can much easier move within the crystal. On the other hand, in the case of
LiH2PO4 with 〈P−O〉 = 1.54 (1) Å the detected effect seems to originate mainly from
the major differences in the hydrogen-bonding scheme within LiH2PO4 and Li2SO4·H2O.
Finally, the average P−O bond deformation measured in KD2PO4 [9, 10] is almost equal
to that determined for the Se−O bonds, but it is at the same time by one order of
magnitude larger than for the P−O bonds in α-GaPO4 and LiH2PO4. This is another
indication that under an electric perturbation the distortion of similar tetrahedral groups
is strongly dependent on the specific properties of their chemical environment in contrast
to the findings reported in hydrostatic high-pressure studies [82]. In this context, it is
quite evident that the electric-field-induced average change of the P−O bond lengths
in KH2PO4 (studied at 167 K) [11] is different from the results obtained for KD2PO4,
see Table 4.28. Besides, as the dielectric and piezoelectric properties of a crystal are
normally anisotropic, the direction of an external electric field with respect to the crystal
structure also has a large influence on the distortion of the chemical bonds in the crystal.
This aspect will be treated in more detail in the next section where the properties of
the internal strain in BiB3O6 are studied as a function of the electric field direction.
Neglecting the experimental value of the Si−O bond deformation in α-SiO2 (displayed in
the last row of Table 4.28), which does not seem to be very reliable, the deduced average
distortion of the ionic Li−O bonds in Li2SeO4·H2O is the largest among the essentially
covalent P−O, S−O, Ga−O and Se−O bonds.
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4.3 Bismuth triborate, BiB3O6

The X-ray determination of the piezoelectric constants of BiB3O6 was the main part of my
diploma thesis [83]. Therefore, this subject will be briefly outlined in this work only. In
contrast, the analysis of the internal strain induced in differently oriented BiB3O6 crystal
plates has been completely revised and strongly extended. All remaining sections deal
with topics that bear no relation to my diploma thesis.

The crystal structure of BiB3O6 (space group C2, a1 = 7.116 (2) Å, a2 = 4.993 (2) Å,
a3 = 6.508 (3) Å and α2 = 105.62 (3)◦) consists of alternating borate and Bi sheets
arranged parallel to the (001) Miller plane [56]. The borate sheets are intersected by
layers of Bi atoms and are built up by corner-sharing tetrahedral, BO4, and trigonal,
BO3, structural units, as shown in Figs. 4.19 and 4.21. Bismuth has a six-fold oxygen
coordination of a strongly irregular shape. The unit cell of BiB3O6 contains 6 symmetry-
independent atoms (Bi, B1, B2, O1, O2 and O3), where two of them occupy special
positions with the point group symmetry 2: Bi at the site 2a and B1 at the site 2b [56].

Figure 4.19: Crystal structure of
BiB3O6 viewed along the two-fold axis,
a2. The alternating borate sheets,
which consist of two-dimensional net-
works of the BO4 and BO3 groups, and
the Bi layers are well visible in this
schematic representation.

BiB3O6 is a non-linear optical crystal [84] known for its exceptional physical proper-
ties. Among non-ferroelectric polar materials it ranges as a crystal that exhibits one
of the highest piezoelectric effect [85]. The absolute value of the piezoelectric constant
d222 = −39.5 (10) pC N−1, which describes the maximum longitudinal piezoelectric effect
along the two-fold axis, is more than 17 times larger than d111 = 2.3 pC N−1 [67] of α-
quartz. In addition, the piezoelectric tensor of BiB3O6 is strongly anisotropic as well as the
elastic [85] and thermal expansion [86] behavior of this crystal. The extreme anisotropy of
these macroscopic physical properties correlates well with the sheet structure of BiB3O6,
the mutual interconnection of the BiO6, B1O4 and B2O3 groups and the orientation of
the lone-pair electrons at the Bi ion [85, 87].

Large single crystals of BiB3O6 were grown by P. Becker using the top-seeding technique
[88]. The measurements were performed with crystals of the morphology illustrated in
Fig. 4.20 [88], where additionally the face indices of BiB3O6 and the mutual relation of the
crystallographic system, {ai}, the Cartesian coordinate system, {ei}, and the reciprocal
system, {bi} are presented (e2 || a2 || b2, e3 || a3 and e1 = e2 × e3 || b1). In the
case of these left-handed crystals the sing of the longitudinal piezoelectric constant d222

is negative. For the X-ray diffraction experiments three crystal plates (see Table 4.29)
were cut from a crystal parallel to the (100), (010) and (001) Miller plane. Since the
boron isotope 10B is a strong neutron absorber, for the neutron diffraction studies two
additional plane-parallel (010) plates of different thickness (as shown in Table 4.29) were
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Figure 4.20: Typical morphology of a left-
handed BiB3O6 crystal [88] together with the
face indices, the crystallographic system (a1,
a2 and a3), the Cartesian system (e1, e2 and
e3) and the reciprocal system (b1, b2 and b3).

Figure 4.21: In this plot of the crystal struc-
ture of BiB3O6 viewed along the a2 axis the
directions of the electric field vectors E(100),
E(010) and E(001) are displayed with respect
to the orientation of the ai and bi axes and
the B1O4 and B2O3 groups.

prepared from BiB3O6 crystals containing the element 11B exclusively. The opposite faces
(0 ±1 0) of these two samples were fully sputtered with gold. That way, it was possible
to illuminate the plates completely with a maximum beamsize, which made a maximum
neutron flux at the specimens available in the experiments. In Table 4.29 for each plate
the thickness (d) and the maximum absolute value of an applied external electric field
(|E|max) are given. Figure 4.21 shows the directions of the electric field vectors E(100),
E(010) and E(001) with respect to the orientation of the ai and bi axes.

Table 4.29: Summary of the BiB3O6 crystal plates used in the X-ray and neutron diffraction
experiments: The orientation of the plates, their thickness (d) and the respective maximum
absolute value of an applied electric field (|E|max) are presented.

10B/11B plates 11B plates
Orientation (100) (010) (001) (010) (010)
d (mm) 0.570 (2) 0.533 (2) 0.295 (2) 0.718 (2) 0.218 (2)

|E|max (kV mm−1) 4.4 (1) 3.8 (1) 5.1 (1) 4.2 (1) 6.9 (2)

4.3.1 X-ray determination of the piezoelectric constants

All eight independent piezoelectric tensor components (1.30) of BiB3O6 were determined
on the basis of expression (2.40). Using the (100) plate, from measured Bragg peak shifts
with E100 || e1 the piezoelectric constants d123 and d112 were refined. From the (010) plate
data the four constants d211, d222, d233 and d213 were experimentally accessible, E010 || e2.
In the case of the (001) plate the vector E001 is parallel to e = 0.27 × e1 + 0.96 × e3,
thus the measurements performed with this sample enabled the determination of the last
two missing constants d312 and d323, which were in this approach also dependent on d123
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and d112. Figures 4.22 and 4.23 demonstrate how the piezoelectric constants d211, d222,
d233, d213 and the independent coefficients R212, R213, R223 of the rotation tensor [R2jk]
converge with an increasing number of linear equations of the over-determined system
(2.40), respectively.

Figure 4.22: Four piezoelectric constants d211, d222, d233 and d213 of BiB3O6 calculated as a
function of the number of linear equations (2.40) forming an over-determined system. The stan-
dard deviation of the parameters d2jk decreases with an increasing number of linear equations.

Figure 4.23: Three independent components R212, R213 and R223 of the rotation tensor [R2jk]
refined together with the piezoelectric constants d211, d222, d233 and d213 (see Fig. 4.22). With
an increasing number of linear equations (2.40) all seven constants start to converge.

The piezoelectric constants of BiB3O6 refined from the X-ray diffraction data and those
obtained by means of the Michelson interferometer [85] are shown in Table 4.30, both
data sets are in good agreement. The components of the rotation tensor for each of the
three samples are presented in Table 4.31. As discussed in section 2.3.1 of chapter 2, the
tensor [Rijk] has its physical significance only for the given individual setup conditions
of a crystal plate. In the case of the (001) plate the tensor coefficients R∗3jk = 0.27 ×
R1jk + 0.96× R3jk were considered. Especially, both coefficients R112 = 16.8 (1) pC N−1

and R∗323 = −16.2 (13) pC N−1 are relatively large, which indicates that the rotation con-
tribution of the (100) and (001) plate to the angular shift of a Bragg peak position is of a
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significant order and therefore cannot be neglected in the refinement of the piezoelectric
constants.

Table 4.30: Piezoelectric constants dijk (pC N−1) of BiB3O6 obtained in the X-ray diffraction
experiment (second column) and by means of the Michelson interferometer in [85] (third colomn).

X-ray diffraction Michelson interferometer
d123 −6.3 (4) −6.8 (6)
d112 −9.2 (7) −8.4 (15)
d211 13.7 (5) 15.6 (6)
d222 −35.8 (8) −39.5 (10)
d233 −2.9 (2) −3.8 (4)
d213 2.9 (2) 5.1 (3)
d312 −5.4 (3) −6.2 (6)
d313 −14.2 (12) −16.3 (20)

Table 4.31: Independent components Rijk (pC N−1) of the rotation tensor refined for each of
the three crystal plates together with the according piezoelectric constants. In the case of the
(001) plate the tensor coefficients R∗3jk = 0.27×R1jk + 0.96×R3jk were determined.

(100) plate (010) plate (001) plate
R112 16.8 (1) R212 −2.7 (1) R∗312 −0.9 (2)
R113 −3.3 (1) R213 −2.7 (1) R∗312 −3.4 (11)
R123 1.1 (1) R223 −3.3 (2) R∗323 −16.2 (13)

In general, in comparison with the Michelson interferometry method the X-ray diffrac-
tion technique has on the one hand the advantage of making measurements at much
smaller samples. On the other hand, it provides the possibility to study the spatial ho-
mogeneity of the piezoelectric properties of a crystal.

4.3.2 Internal strain induced in BiB3O6 by external electric fields
applied in different crystallographic directions

The performed X-ray diffraction studies of the electric-field-induced atomic displacements
in three differently oriented BiB3O6 crystal plates (see 10B/11B plates in Table 4.29) were
severely complicated by the presence of the heavy element Bi with the atomic number
83. The first main problem occurred in the experiments was related to the high X-ray
attenuation by the crystal, as illustrated in Fig. 4.24. Thus, even with the high intense
synchrotron radiation we had access only to the reflections in the Bragg geometry, al-
though the samples used were relatively thin. Secondly, the scattering amplitude of Bi
is significantly larger compared to that of B and O. Therefore, the biggest contribution
to the diffraction intensity of a reflection stems from the Bi sublattice, see red curve in
Fig. 4.25. The best way to overcome this drawback is to focus on those reflections for
that the structure factor is the most sensitive to the small displacements of the B and
O atoms with respect to the Bi sublattice. Furthermore, for some reflections it was pos-
sible to exploit the effect of anomalous dispersion to the form factor of the Bi atom in
choosing the X-ray wavelength near to its LI, LII and LIII absorption edges (λI = 0.76 Å,
λII = 0.79 Å and λIII = 0.92 Å). This procedure reduces the scattering power of Bi in
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Figure 4.24: X-ray linear attenuation coefficient of BiB3O6 in the X-ray wavelength range from
0.45 to 12.5 Å [78]. The three L absorption edges of Bi are located at λI = 0.76 Å, λII = 0.79 Å
and λIII = 0.92 Å.

Figure 4.25: |F |2 (2.1) of BiB3O6 and |FBi|2 of the Bi sublattice calculated for the 9̄1̄11 reflec-
tion as a function of the X-ray wavelength. According to the red curve, the major contribution
to the diffraction intensity comes from the Bi atoms.

Table 4.32: Main experimental parameters: Maximum absolute value of the applied electric
fields, |E|max; measured average relative change of diffraction intensities, 〈|(∆I/I)a|〉; their aver-
age relative uncertainty, 〈σ/|(∆I/I)a|〉; total number of independent observations, No. (∆I/I)a,
i.e. those with different values of hkl or λ (see Table A.3).

Plate |E|max (kV mm−1) 〈|(∆I/I)a|〉 (%) 〈σ/|(∆I/I)a|〉 No. (∆I/I)a

(100) 4.4 (1) 0.22 0.25 19
(010) 3.8 (1) 0.33 0.20 22
(001) 5.1 (2) 0.37 0.23 17

relation to that of the remaining atoms within the unit cell, as demonstrated in Fig. 4.25
for the 9̄1̄11 reflection (close to LIII f

′
(Bi) reaches a value of −10 [31]). However, even

for the most promising reflections the relative change of diffraction intensities has never
exceeded 1.2%, see Fig. 4.26 presenting the biggest effect observed. Considering the rea-
sons mentioned above, for all three BiB3O6 crystal plates the total number of the Bragg
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reflections that showed a measurable effect in ∆I/I was not more than 48, as given in
Table A.3 in the appendix. Where for 10 reflections the measurements were conducted
at two different wavelengths. Figure 4.27 displays as a function of sin θ/λ the complete
experimental data [i.e. all (∆I/I)a values, as defined by equation (3.2)]. In Fig. 4.28 a
stereographic projection of the directions of the respective scattering vectors is illustrated.
Accordingly, the reflections collected are equally spread over the whole half-angular space
and not biased by certain crystallographic directions.

Figure 4.26: Three ω rocking curves I+, I0 and I− of the BiB3O6 (001) crystal plate 9̄1̄11 reflec-
tion (λ = 0.95 Å) measured simultaneously employing the four-step modulation-demodulation
technique, described in section 3.1. The curves correspond to the U+, U0 and U− states of the
applied HV, |U±| = 1.5 kV.

Figure 4.27: Overview of all (∆I/I)a values [see eq. (3.2)] that were used in the refinements
of the atomic rearrangement in the BiB3O6 (100), (010) and (001) crystal plate. The data are
plotted as a function of sin θ/λ.

In the case of BiB3O6 the only non-translational symmetry operation is presented by
a 2-fold rotation axis parallel to a2. Consequently, for an atom µ∗ that is related to an
atom µ by the 2-fold rotation axis the displacement tensor,

[
aij(µ

∗)
]
, referred to the tensor[

aij(µ)
]

has according to equation (2.46) the following coefficients in the crystallographic
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Figure 4.28: Stereographic projection
of the directions of all in the refine-
ments of the atomic structural changes
in BiB3O6 considered X-ray reflections.
Here a2 is the main axis of the projec-
tion.

coordinate system:

[
aij(µ

∗)
]

=

 a1
1 −a1

2 a1
3

−a2
1 a2

2 −a2
3

a3
1 −a3

2 a3
3

 , with
[
aij(µ)

]
=

a1
1 a1

2 a1
3

a2
1 a2

2 a2
3

a3
1 a3

2 a3
3

 . (4.11)

Since in the crystal structure of BiB3O6 the atoms Bi and B1 occupy sites of symmetry
2,
[
aij(Bi)

]
and

[
aij(B1)

]
only have five non-vanishing components (µSP = µ∗ = µ):

[
aij(µSP)

]
=

a1
1 0 a1

3

0 a2
2 0

a3
1 0 a3

3

 , (4.12)

as both tensors
[
aij(µ

∗)
]

and
[
aij(µ)

]
defined by (4.11) have to be equal. Furthermore,

because FE (2.44) does not change under a translation of the whole unit cell, in the
refinements of the displacements of the six symmetry-independent atoms of BiB3O6 the
Bi atom was fixed at its original position:

∆Ri
Bi = aij(Bi)Ej = 0. (4.13)

Thus, the model parameters to be refined were reduced to the shifts of the B and O atoms
relative to the Bi sublattice. In Table 4.33 the independent vector components ∆Ri

µ of
the individual atoms within the unit cell are given in dependence on the direction of the
applied external electric fields.

Table 4.33: Displacement vectors of the atoms µ, µ∗ and µSP (here B1 atom at the site 2b) in
the unit cell of BiB3O6 for the cases when the external electric field is parallel or perpendicular
to the 2-fold rotation axis. The model parameters are the non-zero vector components ∆Ri of
the five symmetry-independent B and O atoms, with ∆RBi = 0.

E [a(µ)]E [a(µ∗)]E [a(µSP)]E
E || a2

[
∆R1

µ,∆R
2
µ,∆R

3
µ

] [
−∆R1

µ,∆R
2
µ,−∆R3

µ

] [
0,∆R2

µSP
, 0
]

E ⊥ a2

[
∆R1

µ,∆R
2
µ,∆R

3
µ

] [
∆R1

µ,−∆R2
µ,∆R

3
µ

] [
∆R1

µSP
, 0,∆R3

µSP

]
In order to apply in the refinements the constraint (1.24) (which relates the dielectric

constants of a crystal to the induced atomic structural changes) on the ∆Ri
µ coefficients,
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Table 4.34: Pseudoatomic charges of the symmetry-independent atoms of BiB3O6.

Bi B1 B2 O1 O2 O3
Q (e) 1.92 2.53 2.46 −1.66 −1.59 −1.44

the necessary pseudoatomic charges were estimated on the basis of the topological analysis
of the static ED distribution in BiB3O6, see Table 4.34. Considering the relativistic effects
in Bi due to the spin-orbit coupling, the ED was calculated with the program WIEN2k.
In these calculations the radii of the atomic muffin-tin spheres were chosen as:

R(Bi) = 1.81 a0, R(O) = 1.26 a0, and R(B) = 1.26 a0, (4.14)

where a0 = 0.53 Å is the Bohr radius. As specified by P. Blaha’s instructions in the
WIEN2k-FAQ: How to select RMT radii? [89], it is not recommended to make the
muffin-tin radii too different, especially in the case of the atoms with d and f states.
Therefore, with R(Bi) = 1.81 a0 for Bi the smallest possible value, with that the WIEN2k
software run stable, was taken. On the other hand, the radii of the O and B spheres
could not be increased further, as with R(O, B) = 1.26 a0 the limit of almost touching
spheres was reached. The cut-off energy E = −8.31 Ry was used for the separation of
the core and valence states of the Bi, O, and B atoms. That way, by adding the Bi-5P
states to the valence states the leakage of the core charge out of the Bi sphere could
be significantly reduced to N ≈ 0.006 e. The Generalized Gradien Approximation by
Perdew, Burke and Ernzerhof (1996) [90] was selected as approximation of the exchange-
correlation functional, see section 2.2.2. Besides, inside the first Brillouin zone 200 k-
points were chosen together with Kmax × Rmin = 4.5. Since with WIEN2k it is not
possible to perform relativistic calculations and structural optimizations simultaneously,
the structural relaxation (determination of the theoretical equilibrium positions of the
atoms in the unit cell) was done by neglecting the spin-orbit interactions in Bi. Afterwards
fully relativistic calculations, which converged according to the total energy convergence
criteria of 10−4 Ry, were carried out.

Table 4.35: Summary of the model refinements of the atomic displacements in the three dif-
ferently oriented BiB3O6 crystal plates together with the corresponding agreement indices.

Plate No. (∆I/I)a No. of parameters R Rw χ2

(100) 19 12 0.19 0.20 19
(010) 22 12 0.30 0.33 202
(001) 17 12 0.26 0.16 34

Table 4.35 summarizes the main parameters of the conducted refinements of the atomic
redistribution in BiB3O6 induced by an external electric field applied to crystal plates
of three different orientations. As displayed in Table 4.35, for each of the three crystal
plates not more than about 20 different reflections showing a change in the integrated
intensities could be collected. But the obtained R and Rw values are not too high, thus
the quality of the refined atomic ∆R vectors may be considered as reliable. Because
of these reasons, we restricted the analysis of the determined internal strain in BiB3O6

to the average deformation of the Bi−O, B1−O and B2−O bond lengths and average
displacement,

rBO =
unit cell∑
µ=B,O

∆Rµ, (4.15)
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(a) Measurements with the (100) crystal plate (b) Measurements with the (001) crystal plate

Figure 4.29: Direction of the applied electric field strength E(100) and E(001) compared to the
direction of the induced average displacement (rBO vector) of the B3O6 sublattice with respect
to the Bi layers.

of the boron-oxygen (B3O6) sublattice relative to the Bi one.

In the case of the (100) plate the orientation of the vector rBO (4.15) is illustrated in
Fig. 4.29 (a). The angle between the [100] crystallographic direction and rBO is 100± 2◦.
Hence, the average shift of the B3O6 sublattice takes place almost perpendicular to the
Bi (001) layers. In the case of the (001) plate, see Fig. 4.29 (b), rBO has an angle of
141±23◦ with respect to [100] and shows approximately in the direction of the B2−O−B1
connection of the B1O4 and B2O3 groups (bonding angle is 133◦). The sensitivity of the
crystal structure of BiB3O6 for structural deformation in the directions where the corner-
sharing B1O4 and B2O3 polyhedra are arranged was also reported in the work by Haussühl
et al. (2006) [85] for the direction of the maximum positive transverse piezoelectric effect,
the maximum negative transverse elastic compliance, a local positive maximum of the
longitudinal elastic compliance and in the work by Becker & Bohatý (2001) [86] for the
direction of the maximum negative thermal expansion. Due to the crystal symmetry (see
Table 4.33), for the (010) plate the corresponding vector rBO is oriented parallel to [010].

The average distortions of the different cation-anion bond lengths in BiB3O6 under the
external electric perturbations exerted are given in Table 4.36. It is clearly visible that
the atomic structural changes are dependent on the direction of an applied electric field
vector. In particular, the BiO6 group is the most affected by the electric field when E
shows along the a2 axis, which is the direction of the maximum longitudinal piezoelectric
effect. The application of E in the b1 or b3 direction results in the biggest deformation of
the B1O4 group. On the other hand, the B2O3 triangles are stronger deformed for E(100)

and E(010). Besides, as expected, in all three experiments the B2O3 structural unit is
revealed to be the most electric-field-deformed, thus the weakest one, as displayed in the
last column of Table 4.36. In contrast to the studies of the crystal structure of BiB3O6

under high pressure [1] and at different temperatures [87], both B1O4 and B2O3 borate
groups change under an applied electric field their shape and therefore do not behave as
rigid structural units. Since we do not know the electric-field-affected ED distribution in

67



4 Electric-field-induced response of Li2SO4·H2O, Li2SeO4·H2O and BiB3O6 single crystals

BiB3O6, the analysis of the induced response of the lone electron pair localized at the Bi
ion in the BiO6 polyhedron is not of a tenable significance.

Table 4.36: Average deformation of the Bi−O, B1−O and B2−O bond lengths in BiB3O6

determined for three different directions of an applied external electric field. All values are
normalized to an electric field of the magnitude |E| = 1 kV mm−1.

Plate 〈|∆(Bi−O)|〉
(
10−5 Å

)
〈|∆(B1−O)|〉

(
10−5 Å

)
〈|∆(B2−O)|〉

(
10−5 Å

)
(100) 69 (1) 99 (1) 126 (1)
(010) 127 (1) 53 (2) 162 (1)
(001) 70 (9) 100 (3) 105 (4)

4.3.3 Neutron diffraction study of the internal strain

As previously discussed, the investigations of the internal strain in BiB3O6 by means of
X-ray diffraction suffered a lot from the large difference in the number of electrons of the
Bi atom compared to that of the B and O atom. Therefore, the diffraction intensities
of most reflections were not affected at all by an applied electric field and if, then the
measured effect in ∆I/I was rarely greater than 1%, see Fig. 4.27.

In the case of neutron diffraction the incident neutrons interact with atomic nuclei that
act as point scatterers [22]. Since the neutron scattering length, b, of an atomic nucleus
is independent of the scattering vector, H, the structure factor of a neutron reflection has
the form [22]

F (H) =
∑
j

bjTj(H) exp (2πiHrj) . (4.16)

The respective b values of the elements 10B, 11B, 16O and 209Bi are [91]:

b(10B) = (−0.1− i1.07) fm, b(11B) = 6.65 fm,

b(16O) = 5.80 fm and b(209Bi) = 8.53 fm. (4.17)

Thus, in contrast to 11B the isotope 10B of boron is a strong neutron absorber and that
is why for the neutron diffraction measurements BiB3O6 crystals were required that ex-
clusively contained the element 11B. According to the b values given above, the neutron
scattering power of 11B and 16O is comparable to that of 209Bi. Consequently, a neutron
diffraction experiment should provide a much better method for the study of the electric-
field-induced displacements especially of the B and O atoms in BiB3O6, unlike the X-ray
diffraction experiment.

All measurements with neutrons were conducted at the 5C-2 beamline of LLB (Labo-
ratoire Léon Brillouin) equipped with a four-circle diffractometer [92]. At LLB a fission
reactor is used to produce beams of hot and cold neutrons [93]. The experiment was carried
out with a hot incident neutron beam of the wavelength λ = 0.83 Å. For this wavelength
the maximum neutron flux at a specimen amounts to 4.5 × 106 neutrons/cm2/sec. Be-
sides, the size of the neutron beam was adjusted to 1.5 cm, which represents a maximum
possible value.

In BiB3O6 the intensity of an incident neutron beam is attenuated by a factor of 1/e
after a path length of about L1/e = 2.15 cm, as calculated from the atomic coherent/in-
coherent scattering cross sections and absorption cross sections with the scattering length
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density calculator [94]. Because of the relatively weak neutron flux available and small
scattering volume of the 0.718 thick (010) crystal plate (which was of excellent quality)
even for the strongest reflections about 3 to 4 hours of data collection were needed to
reach sufficiently high counting statistics. Therefore, in the experiment strong reflections
could be considered only. The extinction depth, Λext (2.6), of such BiB3O6 reflections
has an order of magnitude of 10 µm and thus is about a factor of 103 smaller than the
L1/e length (2.15 cm). Even for the weakest reflections Λext is not larger than 1 cm.
Hence, the collected diffraction intensities were heavily influenced by primary extinction
effects. Consequently, the small contribution of the atomic rearrangement to the mea-
sured change in the integrated intensities of strong reflections was completely masked by
the much greater impact of an external electric field on the mosaic block structure of the
crystal. In the work by Stein (2007) [95] (dealing with a temperature-dependent neutron
diffraction study of the crystal structure of BiB3O6) the extinction of the neutron data
could be significantly reduced by using bad quality crystals with optically visible defects.
But for an electric field experiment such crystals do not represent an adequate option, be-
cause they cannot be treated anymore as homogeneous with respect to their piezoelectric
and dielectric properties.

Figure 4.30: Three rocking curves, I+, I0 and I−, of the 602̄ reflection measured with
the four-step field-switching technique as a function of the applied electric field strengths
E± = ±4.2× e2 kV mm−1.

As shown in Fig. 4.30, the observed response of the 602̄ reflection in terms of ∆I/I to
the applied electric fields E± = ±4.2×e2 kV mm−1 is well pronounced and is almost linear
with E. But on the other hand, there is a small variation of the width of the rocking curve
in dependence on the external electric field, which indicates some induced changes in the
crystal mosaic structure. In this context, Figures 4.31 and 4.32 demonstrate the effect of
extinction on the collected neutron data. In particular, in Fig. 4.31 the recoded profiles of
the 202̄ reflection are illustrated. In this case the (∆I/I)± values are asymmetric with the
fields E±. The ψ angle of this reflection, which defines the rotation about the scattering
vector, amounted to 0◦. In order to vary the beam propagation direction with respect to
the plate geometry and the beam path length through the crystal, in a further experiment
the crystal plate was rotated about the scattering vector H = [202̄] by the angle ψ = 90◦.
As a result, a completely reverse effect in ∆I/I of the 202̄ reflection was recorded as a

69



4 Electric-field-induced response of Li2SO4·H2O, Li2SeO4·H2O and BiB3O6 single crystals

Figure 4.31: I+, I0 and I− profiles of the 202̄ reflection recorded at the ψ angle 0◦ applying
E± = ±4.2× e2 kV mm−1.

Figure 4.32: Compared to Fig. 4.31, in the case presented the crystal plate was rotated by the
angle ψ = 90◦ about the scattering vector H = [202̄]. Then for the new plate orientation with
respect to the incident beam the rocking curves were measured in dependence on the applied
electric field strengths E± = ±4.2× e2 kV mm−1.

function of the applied electric fields, as displayed in Fig. 4.32. Many reflections showed
this behavior, e.g. the diffraction geometry of the 602̄ and 202̄ (ψ = 0◦) reflection was
not much different and therefore, the signs of the (∆I/I)± values are the same for both
reflections, compare Fig. 4.30 with Fig. 4.31.

According to the effects measured, one may conclude that there is a strong anisotropy in
the response of the mosaic structure of BiB3O6 to an external electric perturbation, which
represents a distinctive feature of all reported physical properties of this crystal [85, 86].
Due to the high divergence of the neutron beam, it was not possible to resolve the electric-
field-induced angular shifts (∆ω < 0.01◦) of the rocking curve positions. Normally, in a
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scan the width of an ω step was either 0.02◦ or 0.03◦ depending on the Bragg angle.
The second electric field experiment with neutrons was performed with a 0.218 mm

thick (010) plate (see Table 4.29) employing the experimental technique developed for
the time-resolved measurements. All measurements of diffraction curves were conducted
with a time resolution of 100 ns. In order to increase the counting statistics, we applied
the four-step modulated HV (red curve in Fig. 4.34) with a frequency of 1.5 kHz. As
the charging and discharging current through the HV electronics has to be kept small,
the maximum HV values were limited to U± = ±1.5 kV. Nevertheless, since the plate
was extremely thin, a relatively high external electric field E = 6.9 kV mm−1 could be
generated within the crystal.

Figure 4.33: Raw data of a time-resolved scanning of the 602̄ reflection measured within the
basic HV period consisting of the four-step HV modulation, see red curve in Fig. 4.34.

Figure 4.33 shows the raw data of a time-resolved scanning of the 602̄ reflection. The
time evolution of ∆I/I (see Fig. 4.34) within the basic HV period reveals two major
effects accompanied by the application of an electric field: Firstly, by comparing the time
behavior of ∆I/I with the time structure of the HV within the basic period (as done in
Fig. 4.34), one sees that there is a one to one correlation between the HV spikes and the
spikes in ∆I/I as well as the jumps of the HV to the zero states also coincide with small
spikes in ∆I/I. Secondly, there is a retardation of about 90 µs between the HV and the
corresponding crystal response in terms of ∆I/I. Because no aluminum dome was used
to shield the environment from the electromagnetic dipole radiation of the crystal linked
to the fast HV switching processes, the first phenomenon may be most likely explained
by a caused electromagnetic strong influence of the neutron 3He detector. In contrast,
the second phenomenon is related to the finite velocity

v =
h

λmn

= 4.8× 103 m s−1 (4.18)

of the diffracted hot neutrons and the distance (d ' 0.4 m) that they have to cover from
the specimen to the detector. For this distance the neutrons available need a time of
about 84 µs. Taking into account that the detection process of a neutron in the detector
itself takes some time to produce an electric signal, one finally gets the observed time
shift in ∆I/I of 90 µs.
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Figure 4.34: Basic period of the four-step modulation of the HV (applied with a frequency of
1.5 kHz, |U±| = 1.5 kV) together with the time evolution of the relative intensity change of the
602̄ reflection extracted from the ω rocking curves shown in Fig. 4.33.

As depicted in Fig. 4.34, in the case of the 602̄ reflection ∆I/I detected for the U+

HV state is approximately equal to ∆I/I obtained for the U− state. Accordingly, the
measured effect is independent of the electric field direction and thus, it is obvious that
it cannot originate from the induced atomic displacements in the crystal. In summary,
by reducing the thickness of a BiB3O6 crystal plate from 0.7 to 0.2 mm the extinction
problem could not be solved. In fact, it seems that with a thickness of 0.2 mm the crystal
plate is still far too thick to diminish the dynamical diffraction by the crystal.
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of the dynamic piezoelectric response
of crystals

In general, as stated in section 3.2, the 200 ns jumps between different HV states within
a HV basic period applied to a piezoelectric crystal are sufficiently fast to excite several
superimposed vibrational modes of the crystal. Therefore, in the case of the crystal
vibrations, such as thickness vibrations, changing the lattice spacings the time-resolved
measurements of diffraction intensities as a function of the specially modulated external
electric field enable a simultaneous and separate study of the atomic displacements within
the unit cell that were induced on the one hand by the applied electric perturbation and on
the other hand by the stress accompanied by the vibrational deformations of the crystal.
Consequently, in one and the same experiment one has a unique possibility to combine
piezoelectric measurements with those under external pressure exerted to the crystal. In
the following, this novel experimental access to the atomistic origin of the macroscopic
properties of a crystal will be analyzed in terms of its physical significance by considering
Li2SO4·H2O and BiB3O6 single crystals.

The investigations of the Li2SO4·H2O response to a fast change of an applied elec-
tric field were based mainly on two rectangular (010) crystal plates of slightly different
dimensions, as shown in Figs. 5.1 and 5.2. All edges of the plane-parallel plates are
oriented parallel to the axes of the crystal physical basic system, {ei}. In this context,
the longest edge of the first plate lies along the e3 axis (see Fig. 5.1) and in the case
of the second plate the e1 direction represents the largest dimension (see Fig. 5.2). The
well-defined geometry of the crystal plates allows for the calculation of their respective
resonance frequency spectrum in a relatively easy way, which makes an analysis of the
observed electric-field-induced dynamic processes in the crystals possible.

Figure 5.1: First rectangular Li2SO4·H2O
(010) crystal plate with the dimensions
8.5× 0.64× 13.5 mm.

Figure 5.2: Second rectangular Li2SO4·H2O
(010) crystal plate with the dimensions
9.1× 0.59× 7.5 mm.
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5.1 Measurements with the first rectangular Li2SO4·H2O
(010) crystal plate

The study of the macroscopic and microscopic strains induced in the first Li2SO4·H2O
(010) crystal plate (Fig. 5.1) by a fast change of an external electric field state was carried
out at the BM01A beamline of ESRF. All measurements were performed using a four-step
modulated HV, as illustrated in Fig. 5.3. During the experiment the HV frequency was
kept constant at 1 kHz and the HV states U+ and U− were of the order of ±1.5 kV.
In comparison with the HV jumps from U0∓ to the U± states, which took place within
200 ns, the switching process in the opposite direction from U± to U0± took with 1 µs
a little longer. In Fig. 5.4 the time behavior of the rocking curve of the 1201 reflection
within the applied HV basic period is presented. The time resolution used amounted to
100 ns and the width of the ω steps was 0.001◦. The raw data displayed in Fig. 5.4 were
collected continuously during the course of a whole day resulting in 29 successive ω scans.

Figure 5.3: Four-step modulation of the HV applied in the experiment to the first Li2SO4·H2O
(010) crystal plate (see Fig. 5.1). The HV states U+ and U− were of the order of ±1.5 kV and
the frequency of the basic HV period amounted to 1 kHz.

Figure 5.4: Time-resolved behavior of the rocking curve of the 1201 reflection measured as a
function of the four-step modulated HV (see Fig. 5.3) with a time-resolution of 100 ns.
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The angular shift (∆ω) of the peak position of an ω rocking curve is dependent on
the time (t) within the basic HV period and the X-ray beam position (r) on the crystal.
Normally, as depicted in Figs. 5.5 and 5.7, ∆ω consists of a piezoelectric contribution,
∆ωpiezo, and a vibrational contribution, ∆ωvibr:

∆ω(t, r) = ∆ωpiezo[HV(t), r] + ∆ωvibr(t, r)

= ∆ωpiezo[HV(t), r]− εij(t, r)

(
tan θ

HiHj

H2
+ Yi

Hj

H

)
+ rij(t, r)Yi

Hj

H
, (5.1)

here ∆ωpiezo is defined by equation (2.40). In all, ∆ωpiezo reflects the time structure of
the HV and vanishes outside the crystal volume not confined by the contacts, where
the external electric field is zero within the crystal. In contrast, the second term ∆ωvibr

describes the displacements of a reciprocal lattice vector, H, from its exact diffraction
position due to the elastic vibrations of the crystal volume illuminated by the incident
X-ray beam. In this context, [εij] stands for the strain tensor that deforms H and thus
changes the spacing of the corresponding lattice planes, see discussion in section 2.3.1. On
the other hand, the tensor [rij] describes a pure rotation of H arising from the rotation of
the whole crystal volume that diffracts the incident X-rays. Note that in this special case
∆ωvibr is not related to any deformations of the crystal lattice. In summary, by extracting
the frequencies of the ∆ω oscillations of a reflection one gets the possibility to qualify the
excited vibrational modes of a crystal plate.

Below, the time behavior of ∆ω (see Figs. 5.5 and 5.7) and of ∆I/I (see Figs. 5.6
and 5.8) is analyzed as a function of the time within the period of the four U+, U0+, U−
and U0− HV states for the 1201 and 6̄56 reflection, respectively. As shown in the plots,
these two reflections were considered, because they are sensitive to the internal strain as
well as to the external strain, so that both phenomena could be simultaneously probed.
Concerning the time dependence of the relative change of the integrated intensity, the ob-
tained counting statistics was for both not really weak reflections by far not good enough,
as visible in Figs. 5.6 and 5.8 by the broad distribution of ∆I/I. However, all attempts
of a significant improvement of the statistics would definitely go beyond the scope of a
typical beamtime, as the measurements of the 1201 and 6̄56 reflection have been already
performed for one day, respectively.

Figure 5.5: Angular shift of the Bragg peak position of the 1201 reflection within the basic
HV period (see Fig. 5.3) applied to the crystal. The black curve (∆ω− and ∆ω0− values) was
referred to t = 0 µs instead of t = 497 µs to visualize the symmetry of the effect. Using the
approach (5.2), the blue curves were fitted to the experimental data.
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Figure 5.6: Relative intensity change of the 1201 reflection together with the time dependence
of the four U+, U0+, U− and U0− HV states within the basic HV period.

Figure 5.7: Angular shift of the Bragg peak position of the 6̄56 reflection within the basic HV
period shown in Fig. 5.3. Analogous to Fig. 5.5, the black curve (∆ω− and ∆ω0− values) was
referred to t = 0 µs and the blue curves represent fits of the model (5.2) to the recorded data.

Figure 5.8: Relative intensity change of the 6̄56 reflection together with the time dependence
of the U+, U0+, U− and U0− HV states within the basic HV period.
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In the absence of an electric perturbation the piezoelectric offset, ∆ωpiezo, in an extracted
response function ∆ω of the crystal is zero and thus, according to equation (5.1), ∆ω is
completely defined by ∆ωvibr. Consequently, the ∆ω0+ and ∆ω0− values (see time interval
between 250 and 500 µs in Figs. 5.5 and 5.7) oscillate around ∆ω = 0◦, as measured dur-
ing U0+ and U0−, respectively. In addition, both Figures 5.5 and 5.7 reveal that depending
on whether U± or zero HV states are applied ∆ωvibr varies significantly in the amplitude
of the oscillations, compare, for instance, the time range 0− 50 µs with that between 250
and 300 µs. Obviously, the slower changes from U± to U0± result in a smaller amplitude
of especially fast ∆ωvibr oscillations during the period of the U0± states. This is a good
example how the switching time between different HV states affects the crystal response
induced. For further data analysis the measured ∆ω curves are interpreted by means
of a model describing several superimposed harmonic and damped vibrational modes of
crystal plates excited each time when the HV is changed. In order to extract all different
modes of the plate vibrations, the experimental data are fitted by

n∑
i=1

Ai exp(−γit) cos(ωit− δi) + a, (5.2)

where a (piezoelectric offset, ∆ωpiezo), δ (phase), ω (angular frequency), γ (damping
factor) and A (amplitude) are the model parameters that are simultaneously refined.
Besides, with n the number of independent vibrational modes is adjusted in a refinement.

Table 5.1: Oscillation frequencies determined from the ∆ω curve of the 1201 reflection. The
analysis of the experimental data was done separately for each of the four different HV states.

ν1 (kHz) ν2 (kHz) ν3 (kHz) ν4 (kHz)
U+ 7.01 (1) 16.84 (3) 159.5 (3) 183.2 (3)
U0+ 7.12 (1) 16.64 (3) – 178.6 (3)
U− 7.11 (2) 16.95 (3) 159.7 (3) 182.8 (3)
U0− 7.04 (1) 16.75 (3) – 178.6 (3)

Table 5.2: Oscillation frequencies determined from the ∆ω curve of the 6̄56 reflection as a
function of the respective HV state.

ν1 (kHz) ν2 (kHz) ν3 (kHz)
U+ 7.03 (2) 162.6 (8) 263.9 (7)
U0+ 6.87 (1) 160.5 (10) –
U− 7.20 (1) 162.9 (5) 264.6 (7)
U0− 7.09 (1) 161.8 (10) –

As summarized in Tables 5.1 and 5.2, five different modes of the piezoelectrically excited
plate vibrations could be extracted from the recorded ∆ω curves of the 1201 and 6̄56
reflection. There are in total the following effects that can be deduced from the data given:
Firstly, the measurements of the two reflections reveal both same and different vibrational
modes. This observation is associated with the completely different orientation of the
respective lattice planes with respect to E, so that the electric-field-induced in general
anisotropic crystal response is probed as a function of certain crystal directions. Therefore,
there is a difference in the observed amplitude of the same modes, as different projections
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of the crystal vibrations are regarded in the performed X-ray diffraction experiments.
Secondly, the oscillation frequencies determined for the zero HV states are by tendency
a little bit smaller than for U+ and U−. The origin of this effect may be accounted for
by the absence of a piezoelectric deformation of the crystal in the case of the U0± states.
Thirdly, in consequence of the slower switching process to U0± some modes are missing
or could not be resolved for the zero HV states.

In comparison with the ∆ω oscillations, ∆I/I reflects within the statistical noise the
time dependence of the U+, U0+, U− and U0− states of the basic HV period, as illustrated
in Figs. 5.6 and 5.8. In this context, the corresponding static value of ∆I/I,

(∆I/I)a = [〈(∆I/I)+〉 − 〈(∆I/I)−〉] /2, (5.3)

is for the 1201 reflection equal to (∆I/I)dyn
a = −0.66 (11)% and for the 6̄56 reflection one

has (∆I/I)dyn
a = −1.13 (7)%. These results refer to E+ = −2.34× e2 kV mm−1 and were

measured using λ = 0.75 Å. The static measurements performed with a different crystal
plate under E+ = 5.08×e2 kV mm−1 and at λ = 0.60 Å yielded in the case of the symmetry
equivalent reflections 12,0,1 and 656̄ (∆I/I)stat

a = 1.61 (13)% and (∆I/I)stat
a = 2.52 (20)%,

respectively (see Table A.1 in the appendix). The normalization of the effect to the
absolute value of E+ results in |(∆I/I)dyn

a | = 0.28 (5)% and (∆I/I)stat
a = 0.32 (3)% for

the 12,0,1 reflection. In the case of the 656̄ reflection one gets |(∆I/I)dyn
a | = 0.48 (3)%

and (∆I/I)stat
a = 0.50 (4)%. The observed effect differs in the signs, because of the

defined positive direction of the electric fields. Accordingly, the time-resolved dynamic
measurements are in the static limit within the experimental errors absolutely comparable
with the experiment under a static external electric field concerning the induced changes
in the atomic structure of Li2SO4·H2O. Besides, neither in ∆ω nor in ∆I/I a measurable
delay with respect to the time structure of the HV jumps could be observed.

Next, for the evaluation of the time behavior of ∆I/I the mode shapes of the plate
vibrations are considered. The resonant mode frequencies calculated with the program
RUS, introduced in section 1.1, assuming free boundary conditions of the available crystal
plate were used to assign the measured frequencies to the corresponding vibrational mode
shapes, see Figs. 5.9 − 5.13. In the plots presented the colors on the plate surface indi-
cate the direction of the displacements normal to the surface. At this, red areas indicate
bulges, blue areas stand for indentations and non-deformed areas are green.

Figure 5.9: Resonant vibrational mode of the first crystal plate at 16 kHz, E || Y-axis.
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Figure 5.10: Resonant vibrational mode of the first crystal plate at 17 kHz, E || Y-axis.

Figure 5.11: Resonant vibrational mode of the first crystal plate at 167 kHz, E || Y-axis.

Figure 5.12: Resonant vibrational mode of the first crystal plate at 193 kHz, E || Y-axis.
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Figure 5.13: Resonant vibrational mode of the first crystal plate at 271 kHz, E || Y-axis.

In all, the vibration frequencies obtained by the theoretical calculations overestimate the
experimental values, see Table 5.3. That is because the plate was not free but rather one-
sided fixed with candle wax, as illustrated in Fig. 5.1. On the other hand, the smallest
frequency of the bending vibrations of a fixed crystal plate [96]

νn = an(2n+ 1)2 π

16
√

3

d

l2

√
c22

ρ
with n = 0, 1, 2 . . . , a0 ' 1.4 and an ' 1 (5.4)

is with 2.9 kHz too small compared to the corresponding experimental value (ν1 = 7 kHz).
In above equation ρ (2.053 g cm−3 [75]) denotes the density of Li2SO4·H2O, c22 (54.2 GPa
[75]) is an elastic constant of the crystal, d is the thickness and l is the length of the plate.
It seems that due to the soft mechanical properties of wax the crystal plate has more
degrees of freedom concerning its elastic deformations. Moreover, the mass of the 100 nm
thin gold contacts is with about 2.6 × 10−4 g by a factor of 577 smaller than the mass
of the crystal (0.15 g). Therefore, the effect of the gold mass on the resonant frequencies
of the plate can be neglected as well as the influence of the sputtered gold layers in the
case of coupled oscillations with the plate [97]. This is why, in good approximation on
may make use of the calculations for a free-vibrating plate to qualify the measured mode
frequencies. Besides, as Li2SO4·H2O exhibits a moderate piezoelectric response, according
to (1.34) the error due to neglecting any interactions between the elastic, piezoelectric and
dielectric properties of the crystal is negligibly small in the calculations performed.

Table 5.3: Comparison of the observed frequencies of resonant modes of the first crystal plate
(see Fig. 5.1) with those theoretically calculated assuming a free-vibrating crystal plate.

ν1 (kHz) ν2 (kHz) ν3 (kHz) ν4 (kHz) ν5 (kHz)
νEXP 7.1 (1) 16.8 (1) 161 (1) 181 (3) 264.3 (5)
νCALC 16 17 162/166/167 193 271/277

5.1.1 Discussion

From the determined time dependence of the relative change of diffraction intensities
(see Figs. 5.6 and 5.8) two main questions arise: Firstly, it has to be clarified why the
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induced elastic deformations of the crystal do not have a back influence on the fractional
atomic positions within the unit cell. If this would be the case ∆I/I would show an
oscillating behavior exactly correlated to the oscillations in ∆ω. Secondly, one has to
discuss why in addition to the elastic strain in the crystal no dynamic response could
be resolved associated with the eigenvibrations of the internal strain. The latter effect
does not occur, because the electric-field-induced displacements of atoms within the non-
elastically deformed unit cell of a crystal are related to the optical phonons, the vibration
periods of which lie commonly in the picosecond time range [44]. Therefore, with a 100 ns
time resolution of the experiment such fast processes in the atomic structure cannot be
detected. In contrast, the first issue is more difficult to deal with. First of all, the
performed theoretical calculations do not allow for an unambiguous assignment of the
observed ∆ω frequencies to the corresponding mode shapes, see ν3 and ν5 in the last
row of Table 5.3. Thus, due to this uncertainty, it is well conceivable that primarily
bending vibrations of the crystal plate are excited by a fast change of an applied electric
perturbation, as illustrated in Figs. 5.9 − 5.13. In all these cases the major contribution
to ∆ωvibr stems from the rotation tensor [rij], see equation (5.1). But on the other hand,
as displayed in Fig. 5.14, it cannot be excluded that vibrational modes changing the
dimensions of the crystal plate are generated as well. In theory, the first resonant mode
strongly influencing the lattice spacings in the crystal has a frequency of 123 kHz, whereas
in Fig. 5.14 the second mode having ν = 162 kHz is shown. In general, only in the case
of such mode shapes the introduced field-switching X-ray diffraction experiment can be
compared with measurements under high pressure.

Figure 5.14: Resonant vibrational mode of the first crystal plate at 162 kHz, E || Y-axis.

Assuming that the fast ∆ωvibr oscillations of the 1201 reflection (see first 20 µs in
Fig. 5.5) with a maximum amplitude of about 0.5 × 10−3◦ originate exclusively from a
specific thickness vibration of the crystal plate, one may estimate the induced elastic
impact on the atomic positions within the crystal. In this case according to (5.1) and
with rij = 0 the absolute value of ∆ωvibr is in good approximation given by

|∆ωvibr(t)| = |∆ω(t)−∆ωpiezo(t)| = |εij(t)
(

tan θ
HiHj

H2
+ Yi

Hj

H

)
|

≈ |εij(t) tan θ
HiHj

H2
| ≤ 5× 10−4◦. (5.5)
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5 Time-resolved X-ray diffraction study of the dynamic piezoelectric response of crystals

Therefore, for the 1201 reflection the maximum value of the constant ε13 is equal to

max(ε13) =
H2

2 tan θ|H1|H3

× 5
π

180
10−4 = 5× 10−5 (5.6)

and the maximum component of the corresponding stress, [σij], within the crystal is

max(σij) = σ13 = c1313ε13 = 1 MPa. (5.7)

This means that the stress created in the crystal is roughly four orders of magnitude
smaller than that normally accessible in modern high-pressure experiments [1]. For this
reason, the elastically induced internal redistribution of atoms within the unit cell of
Li2SO4·H2O is negligibly small. In this context, in a very rough model a simultaneous
variation of the relative x and z coordinates of the Li atoms by −max(ε13)/2 and those
of S by max(ε13)/20 within the unit cell yielded that the expected effect in ∆I/I is
smaller than the magnitude of the statistical noise in the data displayed in Figs. 5.6
and 5.8, ∆I/I < 0.1%. Consequently, even these assumed unrealistically large Li and S
displacements in Li2SO4·H2O compared to the change of the lattice parameters are too
small to be detected in an X-ray diffraction experiment.

Figure 5.15 shows a measurement carried out with a 0.533 mm thin BiB3O6 (010)
crystal plate. For the 060 reflection having θ = 67.72◦ till now the greatest oscillations of
∆ωvibr (|∆ωvibr| ≤ 1.7× 10−2◦) resulting in

max(ε22) =
1

tan θ
× 1.7

π

180
10−2 = 1× 10−4 (5.8)

and

max(σij) = σ11 = c1122ε22 = 7.4× 106 Pa (5.9)

could be observed, as the piezoelectric effect of BiB3O6 is much larger than that of
Li2SO4·H2O. But even in this case the maximum value of the stress components within
the BiB3O6 crystal lies in the range of MPa. Therefore, future experiments should be
performed with crystals possessing much greater piezoelectric constants.

Figure 5.15: Using a 0.533 mm thin BiB3O6 (010) crystal plate, for the BiB3O6 060 reflection
till now within the experimental limits detected maximum displacements of ∆ωvibr.
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5.2 Measurements with the second rectangular Li2SO4·H2O (010) crystal plate

5.2 Measurements with the second rectangular
Li2SO4·H2O (010) crystal plate

Applying a 100 ns time resolution the measurements with the second Li2SO4·H2O crystal
plate (see Fig. 5.2) subjected to fast periodic changes of an external electric field were
conducted using a high-resolution diffractometer of the home X-ray laboratory. Unlike
the experiment with the first plate, this time the applied basic HV period consisted solely
of a U+ and U− HV state, as depicted in Fig. 3.5. Because of the strong absorption
of the Cu Kα radiation by the crystal, the strongest reflections in the Bragg geometry,
such as 130, 031 and 020, were considered only. The curves ∆ω+ and ∆ω− measured
for the asymmetric reflections 130 and 031 are presented in Figs. 5.16 and 5.17. The
used frequency of the basic HV period was 1.5 kHz and the HV magnitudes amounted
to U± = ±1.5 kV. As demonstrated by the blue curves, the introduced model (5.2) is
well applicable for extracting all superimposed frequencies in the ∆ω data, although the
damping of the oscillations deviates from the assumed exponential behavior.

Figure 5.16: Angular shift of the Bragg peak position of the 130 reflection within the basic
HV period consisting of a U+ and U− state, as shown in Fig. 3.5. The red curve (∆ω− values)
was referred to t = 0 µs instead of t = 333 µs to visualize the symmetry of the effect. Using the
approach (5.2), the blue curves were fitted to the experimental data.

Table 5.4: Oscillation frequencies determined from the recorded ∆ω curves of the 130, 031 and
020 reflection. The experimental data were analyzed separately for the U+ and U− HV state.

Reflection HV state ν1 (kHz) ν2 (kHz) ν3 (kHz)
U+ 17.24 (3) 146.4 (2) 219.3 (5)

130
U− 17.27 (3) 146.4 (2) 218.8 (5)
U+ 17.00 (3) 145.6 (2) 220.5 (5)

031
U− 16.98 (3) 145.6 (2) 220.5 (5)
U+ 16.89 (3) 147.1 (2) 218.3 (5)

020
U− 16.91 (3) 147.3 (2) 219.3 (5)

In total, three different modes of the crystal plate vibrations could be determined,
see Table 5.4. Expectedly, the frequencies do not differ much either between the HV
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5 Time-resolved X-ray diffraction study of the dynamic piezoelectric response of crystals

Figure 5.17: Angular shift of the Bragg peak position of the 031 reflection within the 2-step
modulated basic HV period, see Fig. 3.5. Analogous to Fig. 5.16, the red curve (∆ω− values)
was referred to t = 0 µs and the blue curves represent fits of the model (5.2) to the recorded
experimental data.

states U+ and U− or between the reflections 130, 031 and 020. In Table 5.5 the observed
frequencies are compared with those of the resonant vibrational modes of a free-vibrating
plate. Again, also in the case of the second plate the theoretical values are by about
10 kHz larger. The shape of the first mode (ν1 = 17 kHz) is similar to that presented in
Fig. 5.10, the shape of the second mode (ν2 = 147 kHz) is comparable with the situation
shown in Fig. 5.12 and the shape of the third mode (ν3 = 220 kHz) is either of the
form plotted in Fig. 5.13 or in Fig. 5.14. Besides, due to the different dimensions of
both Li2SO4·H2O crystal plates the frequencies of their vibrational modes excited in the
experiments are similar but not the same, as shown in the last row of Table 5.5.

Table 5.5: Comparison of the observed frequencies of resonant modes of the second Li2SO4·H2O
crystal plate (Fig. 5.2) with those on the one hand theoretically calculated and on the other
hand measured in the case of the first plate (Fig. 5.1).

ν1 (kHz) ν2 (kHz) ν3 (kHz)
νEXP 17.0 (2) 146.6 (6) 219.5 (9)
νCALC 26 155 228/230

νEXP, 1st plate 7/17 161/181 264

5.3 X-ray diffraction investigations of the
piezoelectrically induced crystal vibrations

Using the second Li2SO4·H2O crystal plate, by means of the measurements of the 020
reflection the time behavior of ∆ω within the basic HV period was investigated as a
function of the magnitude of the U+ and U− state (see Fig. 5.18) and frequency of the
HV period (see Fig. 5.19). Furthermore, in order to probe the Bragg angle dependence of
∆ω, the reflections 020, 040 and 060 of the second plate were considered, as summarized
in Fig. 5.20.
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Figure 5.18: Angular shift of the Bragg peak position of the 020 reflection measured for
U± = ±0.5 kV and U± = ±1.0 kV. In this data representation the ∆ω+ curves of the U+ period
are shown only and the ∆ω+ values recorded under U+ = 1.0 kV were increased by 5× 10−4◦.

Figure 5.19: Angular shift of the Bragg peak position of the 020 reflection as a function of the
frequency of the HV applied to the crystal plate. Note that the ∆ω+ curves are displayed only.
In order to demonstrate the effect observed, the ∆ω+ values were appropriately increased.

The first measurements (Fig. 5.18) performed with a HV frequency of 1 kHz revealed
that the induced dynamic response of the crystal increases strongly with the U± values.
This behavior is logical as the external perturbation, applied strength of the piezoelectric
“punch” on the crystal plate, scales with the magnitude of the HV. The second mea-
surements (Fig. 5.19) showed that the 1 kHz HV frequency is the most favorable to an
excitation of the vibrational mode at 17 kHz (see Fig. 5.10) of the plate. This pronounced
resonant response of the crystal to individual HV frequencies confirms the approach in-
troduced in section 3.2.1. The analysis of the third measurements (shown in Fig. 5.20
and carried out applying ν(HV) = 2.5 kHz and U± = ±1.0 kV) presented in Fig. 5.21
explicitly illustrates that in the X-ray diffraction experiment conducted the piezoelectric
deformation of the crystal and the excited elastic vibrations are really detected as two dif-
ferent physical effects. While ∆ωpiezo is strongly dependent on tan θ, the tan θ dependence
of the max(|∆ωvibr|) values is much less pronounced, as the piezoelectric deformation of
the corresponding H vectors is normally not equal to their induced elastic variation.
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5 Time-resolved X-ray diffraction study of the dynamic piezoelectric response of crystals

Figure 5.20: Angular shifts (here the ∆ω+ data) of the Bragg peak position of the 020, 040
and 060 reflection are compared with each other.

Figure 5.21: From the ω+ curves displayed in Fig. 5.20 extracted contribution of ∆ωpiezo [see
eq. (5.1)] and maximum absolute value of ∆ωvibr plotted against tan θ.

Figure 5.22: Angular shift of the Bragg peak position of the 031 reflection within the basic
HV period modulated according to the red curve.
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Another measurement (Fig. 5.22) performed with a changed modulation of the basic
HV period makes clear that the fast switching time between different HV states is the
crucial parameter of the experiment described. In the example depicted in Fig. 5.22 the
frequency of the basic HV period was 0.75 kHz and the HV states U+ and U− were of
the magnitudes U± = ±1.0 kV. The switching time between U± and U∓ amounted to
very slow 0.3 ms and consequently, the ∆ω curve measured for the 031 reflection does not
possess an oscillatory behavior but rather exactly reflects the time structure of the HV.

5.3.1 Supplementary measurements performed with other
Li2SO4·H2O and BiB3O6 crystal plates

From a broad range of the time-resolved measurements conducted with other differently
shaped Li2SO4·H2O and BiB3O6 crystal plates the most interesting two will be discussed
in this section.

In Fig. 5.23 the ∆ω+ curves of the 020, 040 and 060 reflection measured using a
0.718 mm thin BiB3O6 (010) crystal plate are presented. Here the oscillations in ∆ω are
not only very pronounced but also strongly dependent on tan θ in comparison with the
results illustrated in Figs. 5.20 and 5.21. The maximum amplitude of ∆ωvibr is even
larger than the piezoelectric offset (|∆ωpiezo|) of the ∆ω+ curves, see Fig. 5.24. It is
quite amazing that the tan θ dependence of |∆ωpiezo| and max(|∆ωvibr|) is almost equal,
although both effects have a completely different physical background. Unfortunately,
due to the not well-defined dimensions of this plate, it was not possible to assign the
∆ωvibr oscillations to a vibrational mode of the crystal.

Figure 5.23: Angular shifts of the ω rocking curve position of the 020, 040 and 060 reflection
of a 0.718 mm thin BiB3O6 (010) crystal plate. Note that the ∆ω curves measured during the
U+ HV period are presented only.

In the second experiment by means of the 040 reflection of a 0.617 mm thin Li2SO4·H2O
(010) crystal plate ∆ω was recorded dependent on the X-ray spot position on the plate.
For that, outside the region of the gold contacts three different z positions at an interval
of 2 mm along the longest plate dimension were considered. As depicted in Fig. 5.25,
the ∆ω+ curve changes its phase and amplitude as a function of z. These observations
agree well with the spatial dependence of the mode shapes of the resonant plate vibrations
displayed in Figs. 5.9 − 5.12.
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5 Time-resolved X-ray diffraction study of the dynamic piezoelectric response of crystals

Figure 5.24: From the raw data shown in Fig. 5.23 extracted max(|∆ωvibr|) and |∆ωpiezo|
values plotted against tan θ.

Figure 5.25: ∆ω+ curve of the 040 reflection of a 0.617 mm thin Li2SO4·H2O crystal plate
recorded as a function of the X-ray spot position, z value, on the plate (ν(HV) = 1.5 kHz and
U± = ±1.5 kV). All three z positions were outside the region of the gold contacts, thus the
piezoelectric offset, ∆ωpiezo, is zero in the data.
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6 Summary

The work presented covers a broad range of modern research on the response of piezoelec-
tric crystals to a periodically applied external electric perturbation both on the macro-
scopic and microscopic scale. Apart from the X-ray diffraction technique as a standard
probe of the electric-field-induced atomic displacements in a crystal, an approach to the
internal strain by means of neutron diffraction was tested and analyzed in terms of its
feasibility. In addition, a novel concept of an X-ray diffraction experiment for the time-
resolved measurements of the external and internal strain in piezoelectric crystals based
on the detector pulse processing with a 100 MHz FPGA chip was realized in collabora-
tion with the electronic workshop of the University of Siegen. In particular, by reducing
the switching time between different HV states to fast 200 ns within the modulation of
the basic HV period applied to a crystal dynamic processes in the crystal were excited,
the properties of which could be successfully investigated by performing X-ray measure-
ments of diffraction curves with a time resolution of 100 ns. All measurements benefit
substantially from the X-ray (neutron) diffraction technique, as it enables a simultaneous
as well as a separate study of the electric-field-induced vibrational modes, piezoelectric
deformation, changes in the mosaic and atomic structure of a crystal.

In detail, the investigations of the Li2SO4·H2O, Li2SeO4·H2O and BiB3O6 piezoelectric
single crystals under an external electric field yielded three main results concerning the
nature of the internal strain in a crystal: Firstly, based on the measurements using three
differently oriented BiB3O6 crystal plates the induced deformation of the atomic polyhe-
dra was confirmed to be strongly dependent on the direction of an applied electric field
with respect to the crystal structure. Secondly, the measurements with Li2SO4·H2O and
Li2SeO4·H2O showed that the bond-selective distortion observed within these crystals de-
pends on the strength of a chemical bond and the charges of the respective pseudoatoms
bonded to each other, as extracted from a topological analysis of the static electron den-
sity. Thirdly, these two parameters have proved to be by far not sufficient for an adequate
explanation of the electric-field-induced much greater average Li−O bond deformation in
Li2SeO4·H2O compared to the magnitude of the effect measured in Li2SO4·H2O. These
findings were referred to the larger vacancies in the structure of the lithium ion conduct-
ing Li2SeO4·H2O that significantly facilitate the movement of the lithium ions within the
crystal under an applied electric field. Furthermore, one has also to consider the chemical
environment surrounding the structural units in a crystal, as derived from a compari-
son with other reported studies on piezoelectric compounds. In total, it seems that the
strength of hydrogen bonds has a huge influence on the electric-field-induced atomic re-
arrangement in a crystal. But the understanding of such complicated interdependences
in a crystal is still far beyond the scope of present theories.

Finally, the dynamic response of two rectangular-shaped and plane-parallel Li2SO4·H2O
crystal plates was deduced from the recorded time behavior of the peak position and
integrated intensity of X-ray reflections. It has turned out that mainly superimposed
vibrational modes of the crystals are excited by fast periodical changes between different
HV states applied. Besides, it was shown that the crystal vibrations have a strong de-
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6 Summary

pendence on the HV switching time and a pronounced resonance of one mode relating to
the HV frequency was proved. In contrast, the diffraction intensity and thus, the internal
strain did not exhibit as a function of time an oscillatory behavior but rather replicated
the time structure of the basic HV period analogous to the time-averaged static mea-
surements. The origin of this effect is related on the one hand to the 100 − 20 ns time
resolution of the experiment that does not enable the detection of the fast processes associ-
ated with the electric-field-excited resonant optical phonon modes within a non-elastically
deformed crystal. Moreover, on the other hand, the performed estimations revealed that
within the experimental limits even in the case of BiB3O6, the piezoelectric effect of which
is much stronger than that of Li2SO4·H2O, the pressure exerted on the atoms within the
crystal by its elastic deformations lies in the range of MPa only and therefore is about
three orders of magnitude smaller than that normally accessible in modern high-pressure
experiments. Consequently, for an X-ray diffraction experiment the elastically induced
internal redistribution of atoms in Li2SO4·H2O and BiB3O6 was negligibly small. In order
to overcome this drawback, future experiments should be conducted with crystals having
much greater piezoelectric constants. For instance, an interesting field-switching experi-
ment may be done with ferroelectric crystals that are cooled down or heated up to the
close vicinity of their respective Curie temperature. In total, the measurements carried
out well demonstrate the broad possible fields of application of the developed technique
for the time-resolved studies not only of the elastic, piezoelectric and dielectric properties
of a crystal under an external electric perturbation.
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A.4 All (∆I/I)a data observed and calculated for
Li2SO4·H2O, Li2SeO4·H2O and BiB3O6

Table A.1: Summary of all in the case of Li2SO4·H2O observed relative variations, (∆I/I)a, of
diffraction intensities together with the corresponding calculated model values.

h, k, l λ (Å) [(∆I/I)a]OBS (%) [(∆I/I)a]MOD (%) [(OBS−MOD)/σ]2

0,-1,12 0.60 −1.63 (11) −1.26 11.38
10,0,-6 0.60 −1.31 (10) −0.91 15.03
10,-4,-6 0.60 −1.93 (13) −2.26 6.58
10,-5,-2 0.60 −2.41 (14) −1.89 14.05
11,2,0 0.60 −0.75 (7) −0.9 4.73
11,4,0 0.60 −1.70 (9) −1.28 19.42

11,-1,-1 0.60 0.68 (7) 0.78 1.87
11,-1,-6 0.60 2.52 (11) 1.62 63.51
11,-2,-5 0.60 −1.28 (9) −0.96 12.8
12,0,-1 0.60 1.61 (13) 2.31 27.31
12,0,-6 0.60 1.57 (9) 1.17 18.22
12,-1,-5 0.60 −1.13 (10) −0.71 16.33

3,2,9 0.60 −0.96 (10) −0.54 17.17
4,0,12 0.60 −1.27 (8) −1.3 0.09
4,1,11 0.60 −3.75 (22) −2.62 26.98
5,-8,-1 0.60 −1.65 (14) −2.3 20.6
6,-2,0 0.60 −2.63 (12) −1.35 107.01
6,8,-5 0.60 −1.63 (10) −1.62 0.0
6,8,-7 0.60 −1.40 (11) −2.08 40.31
6,-8,-5 0.60 −1.84 (20) −1.64 0.93
8,1,-4 0.60 −1.72 (15) −1.61 0.62
9,0,-2 0.60 3.91 (22) 3.24 9.13
9,0,-4 0.60 −0.83 (9) −1.09 7.26
9,6,-2 0.60 1.86 (11) 1.29 27.72
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9,-7,-1 0.60 −1.84 (12) −1.19 27.58
-9,7,1 0.60 −2.01 (15) −1.18 29.01
-2,4,-8 0.60 1.89 (10) 1.93 0.21

-3,-3,-10 0.60 −1.52 (15) −2.09 13.98
-4,-1,-11 0.60 −3.50 (13) −2.72 36.44
-5,0,-8 0.60 −1.15 (8) −0.96 6.29
-5,-3,-7 0.60 −1.29 (11) −0.25 82.64
-6,0,-4 0.60 −1.66 (9) −0.72 113.9
-6,-4,-7 0.60 −2.59 (14) −3.43 37.12
-7,0,-3 0.60 −2.23 (11) −1.97 6.0
-7,1,-2 0.60 2.51 (12) 3.06 20.71
-7,3,-7 0.60 1.09 (14) 1.03 0.15
-7,-1,-2 0.60 2.94 (15) 3.12 1.44
-7,-2,-11 0.60 1.19 (8) 0.78 24.08
-7,-5,-5 0.60 0.97 (7) 1.09 3.03
-8,0,-9 0.60 −1.95 (17) −2.2 2.3
-8,1,-8 0.60 −1.22 (10) −1.04 3.66
-8,2,-7 0.60 2.16 (9) 1.22 103.3
-8,2,-9 0.60 −1.52 (9) −1.43 0.79
-8,3,-8 0.60 0.88 (11) 0.77 1.04
-8,-1,9 0.60 −1.42 (12) −0.99 12.42
-8,-1,-1 0.60 −1.26 (8) −0.77 34.84
-9,0,12 0.60 −1.37 (10) −1.8 16.83
-9,0,-1 0.60 1.99 (13) 0.93 69.29
-9,1,-4 0.60 −1.92 (19) −2.3 4.02
-9,-2,-3 0.60 1.67 (15) 1.13 14.0
6,5,-6 0.60 2.52 (20) 2.79 1.8
6,-5,-6 0.60 2.30 (10) 2.77 22.2
-3,3,-3 0.60 0.99 (11) 0.14 60.41
-7,4,-1 0.60 3.05 (15) 2.53 12.59
-2,8,-8 0.60 −1.64 (16) −0.66 39.63
7,-3,-8 0.60 −1.48 (13) −1.18 5.45
-8,0,-2 0.60 −2.42 (12) −3.43 73.45
0,-4,-1 0.60 0.81 (9) 1.67 91.17
0,9,1 0.60 −0.61 (10) −0.13 22.87
10,0,3 0.60 −0.24 (5) −0.24 0.0

-10,-1,0 0.60 −0.31 (10) −0.3 0.02
3,7,-4 0.60 0.57 (7) 0.53 0.39

5,-3,-12 0.60 0.68 (8) 1.18 39.68
6,0,5 0.60 0.56 (8) 0.36 6.42
-6,0,5 0.60 −0.80 (10) −0.99 3.8
-2,6,9 0.60 0.87 (10) 1.61 55.39
-4,8,4 0.60 0.54 (8) 0.51 0.16
0,8,2 0.60 0.22 (4) 0.22 0.0
0,-8,2 0.60 0.37 (4) 0.27 6.21
4,6,5 0.60 −0.14 (14) −1.13 50.1

-4,-6,-5 0.60 −0.48 (7) −1.12 83.93
0,-8,4 0.60 0.14 (4) 0.47 66.28
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-7,-5,0 0.60 0.22 (6) 0.35 4.72
7,7,0 0.60 1.20 (19) 1.57 3.89
3,5,1 0.60 0.40 (8) 0.69 13.34

-2,5,-7 0.60 −1.13 (7) −1.76 80.97
-1,-8 3 0.60 −0.56 (5) −0.27 34.34
10,0,-3 0.60 0.14 (7) 0.43 16.79
5,4,-3 0.60 0.17 (15) 0.43 2.89
2,-5,7 0.60 −3.10 (9) −2.33 72.49
4,8,-7 0.60 0.24 (10) 0.56 10.18
-7,7,-4 0.60 −1.95 (15) −1.02 41.86
3,8,2 0.60 0.34 (11) 0.47 1.48
3,-8,2 0.60 0.35 (6) 0.49 5.23
7,0,8 0.60 −2.84 (22) −4.51 58.74
11,0,0 0.60 −4.24 (21) −4.08 0.54
3,-8,9 0.60 3.27 (09) 2.02 184.91
0,5,1 0.60 0.54 (7) 0.22 20.48
0,8,4 0.60 0.27 (3) 0.4 21.13
0,-5,1 0.60 0.29 (6) 0.31 0.10
10,0,-8 0.60 1.20 (18) 0.66 8.63
7,5,0 0.60 0.35 (14) 0.35 0.0
9,0,3 0.60 1.20 (4) 1.59 84.5
-8,6,3 0.60 0.82 (13) 2.38 150.22
9,0,-2 0.60 3.04 (23) 3.24 0.73
5,0,-6 0.60 −7.91 (6) −7.97 1.08
6,0,0 0.60 −1.94 (5) −1.95 0.04
0,0,11 0.60 −2.83 (11) −2.8 0.07
-5,0,-6 0.60 −1.67 (6) −1.36 30.03
-6,0,-7 0.60 −2.13 (15) −1.86 3.31
1,7,-4 0.60 1.62 (18) 0.46 39.81
5,-5,-4 0.60 0.49 (5) 0.16 44.45
7,-5,-12 0.60 0.81 (13) 0.14 27.71
1,-4,-5 0.60 −0.90 (10) −1.82 91.72
5,7,-5 0.60 −1.55 (9) −0.69 99.6
8,7,-9 0.60 −1.08 (10) −1.06 0.03

-8,-7,-3 0.60 0.91 (11) 1.56 38.12
8,-1,-4 0.60 −2.32 (16) −2.13 1.48
-6,-8,7 0.60 −1.20 (16) −2.46 61.7
3,-8,-8 0.60 −0.51 (8) −0.22 13.26
-7,-7,0 0.60 1.72 (21) 1.5 1.11
7,5,-12 0.60 0.88 (10) 0.16 52.53
-8,2,-7 0.60 2.16 (9) 1.22 103.3
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Table A.2: Summary of all in the case of Li2SeO4·H2O observed relative variations, (∆I/I)a,
of diffraction intensities together with the corresponding calculated model values.

h, k, l λ (Å) [(∆I/I)a]OBS (%) [(∆I/I)a]MOD (%) [(OBS−MOD)/σ]2

2,-2,-11 0.99 −1.13 (6) −0.78 34.88
-2,2,11 0.99 −0.88 (7) −0.86 0.05
-2,3,10 0.99 −0.93 (10) −0.97 0.18
2,-3,-10 0.99 −1.02 (7) −0.91 2.43
3,0,-10 0.99 0.65 (4) 0.69 0.72
4,-3,-8 0.99 −1.17 (7) −1.13 0.36
10,-1,-7 0.99 0.72 (25) 0.47 1.01
3,0,-8 0.99 0.30 (7) 0.24 0.62
10,0,-9 0.99 0.23 (10) 0.19 0.2
3,-4,-3 0.99 −0.39 (11) −0.65 5.58
4,0,-2 0.99 −0.59 (10) −0.78 3.59
4,0,-7 0.99 0.36 (13) 0.28 0.35
4,0,-9 0.99 0.36 (7) 0.37 0.04
6,-2,-7 0.99 −0.69 (9) −0.54 2.67
-6,2,7 0.99 −0.70 (9) −0.57 2.02
-6,3,6 0.99 −0.74 (8) −0.44 13.82
7,-1,-5 0.99 −0.57 (10) −0.26 9.36
7,-1,-7 0.99 −0.89 (11) −0.95 0.28
4,2,3 0.99 −1.10 (9) −0.75 15.33

-4,-2,-3 0.99 −0.53 (9) −0.74 5.34
-5,-2,-4 0.99 −0.53 (7) −0.52 0.03
5,2,4 0.99 −0.67 (7) −0.6 1.11

3,-3,-9 0.99 −0.96 (17) −1.08 0.53
-3,3,9 0.99 −0.51 (31) −1.13 3.98

-6,-1,-1 0.99 −0.50 (7) −0.67 6.23
5,-4,-1 0.99 −0.34 (12) −0.36 0.02
-5,4,1 0.99 −0.49 (14) −0.45 0.07

-3,-5,-3 0.99 −0.29 (8) −0.24 0.32
4,-5,-3 0.99 −0.91 (21) −0.36 6.92
-4,5,3 0.99 −1.06 (25) −0.46 5.77
4,-4,-9 0.99 −0.29 (21) −0.25 0.04
-4,4,9 0.99 −0.60 (33) −0.55 0.02
-7,2,6 0.99 0.48 (13) 0.33 1.26
2,4,6 0.99 0.68 (7) 0.29 30.29

-2,-4,-3 0.99 0.22 (8) 0.78 49.08
-2,-4,-6 0.99 0.09 (7) 0.33 11.33
0,-2,-6 0.99 0.90 (26) 0.49 2.51
7,-7,-2 0.99 −0.28 (8) −0.47 5.77
4,3,-8 0.99 −1.21 (15) −1.33 0.62
10,0,-5 0.99 0.56 (8) 0.68 2.29
2,-4,-4 0.99 1.01 (19) 0.92 0.22
0,2,6 0.99 0.45 (24) 0.62 0.49

7,-2,-6 0.99 0.98 (13) 0.21 34.63
9,-4,-4 0.99 0.06 (5) 0.07 0.02
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6,3,1 0.99 −0.46 (8) −0.28 4.87
2,0,8 0.98 0.36 (4) 0.54 21.13
2,0,8 0.99 0.48 (4) 0.59 7.48
2,0,8 1.00 1.31 (6) 0.54 164.27
2,4,8 1.00 0.77 (4) 0.47 56.65
2,-4,8 1.00 0.27 (4) 0.44 18.51
4,2,3 0.99 −0.37 (9) −0.75 17.6

-6,-3,6 0.99 −0.31 (4) −0.44 10.86
-6,-3,6 1.00 −0.37 (5) −0.41 0.71

Table A.3: Summary of all in the case of BiB3O6 observed relative variations, (∆I/I)a, of
diffraction intensities together with the corresponding calculated model values. The data sets
of the crystal plates (100), (010) and (001) are separated by solid lines.

h, k, l λ (Å) [(∆I/I)a]OBS (%) [(∆I/I)a]MOD (%) [(OBS−MOD)/σ]2

8,4,-1 0.90 0.12 (3) 0.11 0.1
8,4,-1 0.92 0.17 (4) 0.19 0.36
7,3,2 0.90 0.13 (4) 0.15 0.3
7,-3,1 0.90 −0.15 (3) −0.16 0.1
9,3,0 0.90 0.13 (2) 0.11 0.98
11,3,3 0.92 −0.41 (5) −0.42 0.04
11,3,3 0.97 −0.32 (5) −0.31 0.01
3,-5,5 0.90 0.38 (4) 0.36 0.41
6,2,0 0.94 0.17 (8) 0.25 1.03
10,4,0 0.70 −0.24 (8) −0.13 1.96
10,4,0 0.80 −0.15 (3) −0.19 1.52
5,5,8 0.93 0.30 (4) 0.33 0.48
5,5,8 0.97 0.31 (6) 0.31 0.0
6,6,7 0.93 0.18 (5) 0.16 0.15
7,1,1 0.80 0.09 (3) 0.10 0.28
8,-2,4 0.70 −0.29 (5) −0.17 6.77
-9,-3,3 0.80 −0.20 (6) −0.11 2.51
-9,-3,3 0.90 −0.11 (4) −0.14 0.62
-11,5,0 0.70 −0.25 (11) −0.13 1.25

3,9,-4 0.92 0.39 (4) 0.11 40.9
4,-6,-8 0.92 0.24 (3) 0.13 13.93
-2,-8,-5 0.92 −0.35 (3) −0.37 0.48
-2,-8,-5 0.94 −0.64 (4) −0.39 29.96
-5,7,-4 0.92 0.25 (2) 0.27 1.28
-8,-6,-2 0.92 0.14 (4) 0.12 0.22
4,4,5 0.70 0.05 (3) 0.02 0.92
0,4,0 0.45 0.32 (5) 0.09 20.06
3,9,2 0.45 0.32 (8) 0.31 0.0
2,-6,4 0.92 0.22 (4) 0.41 29.88
2,-8,-4 0.50 0.28 (3) 0.22 4.23
7,-7,0 0.70 −0.39 (5) −0.35 0.49
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-3,7,9 0.92 0.23 (4) 0.29 2.59
-4,-8,7 0.94 −0.52 (4) −0.71 18.28
-4,-8,7 0.92 −0.91 (4) −0.84 3.68
-7,-7,8 0.92 −0.20 (3) −0.10 9.21
-10,-6,2 0.95 0.22 (3) 0.11 13.56
-7,-5,10 0.95 0.17 (3) 0.19 0.53
-7,-5,10 0.97 0.20 (7) 0.19 0.04
1,-9,2 0.924 −0.74 (16) −0.67 0.21
1,-9,-1 0.924 0.35 (13) 0.42 0.3
0,6,3 0.80 −0.10 (7) −0.32 11.49

0,-2,10 0.80 0.45 (13) 0.84 9.98
2,6,8 0.70 0.28 (7) 0.41 3.42
3,7,8 0.70 −0.40 (10) −0.24 2.86
5,7,7 0.80 −0.29 (13) −0.34 0.15
-1,7,6 0.80 −0.37 (4) −0.36 0.05
0,4,11 0.95 0.53 (6) 0.43 3.31
2,2,7 0.95 −0.43 (8) −0.27 4.13
2,2,7 1.00 −0.21 (7) −0.26 0.4
5,1,8 0.80 −0.58 (11) −0.63 0.21
6,4,9 0.92 −0.54 (17) −0.05 8.88
0,2,-8 0.90 −0.22 (3) −0.22 0.0
-6,6,-7 0.70 +0.11 (6) 0.15 0.3
-6,6,-7 0.91 +0.18 (4) 0.18 0.0
-7,-3,-8 0.95 +0.20 (3) 0.20 0.0
-9,-1,11 0.95 +1.05 (8) 1.07 0.21
-9,-1,-7 0.95 +0.32 (2) 0.32 0.0
-9,-3,10 0.90 −0.15 (3) −0.15 0.01
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A.5  VHDL source code 
 
Main part of the software that controls the time-resolved detector pulse processing by the FPGA 
board. This VHDL source code was written mainly by Marc von Kozierowski and Dr. Michael 
Ziolkowski. I have further improved and optimized the interplay between different processes 
running on the FPGA chip, so that the accessible time resolution of the developed data acquisition 
system could be increased to 20 ns.   
 
---------------------------------------------------------------------------------- 
-- Design Name:      EventBuilder 
-- Module Name:     EventBuilder - Behavioral   
---------------------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use ieee.numeric_std.all; 
  
entity EventBuilder is 
 GENERIC 
 ( 
  ADDRESS_WIDTH  : integer := 18; 
  DATA_WIDTH   : integer := 32; 
  us_in_perioden          : integer := 10; 
  ); 
     Port  
 (  
  PosIn    : in  STD_LOGIC := '0';     
              NPosIn    : in  STD_LOGIC := '0';     
              NegIn    : in  STD_LOGIC := '0'; 
              NNegIn    : in  STD_LOGIC := '0';   
  Adr1    : out STD_LOGIC_VECTOR (ADDRESS_WIDTH-1 downto 0);  
  Datenout1   : out STD_LOGIC_VECTOR (DATA_WIDTH-1 downto 0);  
  WE1    : out STD_LOGIC := '0';   
  CE1               : out STD_LOGIC := not '0';  
  read_adr   : out STD_LOGIC_VECTOR (ADDRESS_WIDTH-1 downto 0);  
  ram_data   : in STD_LOGIC_VECTOR (DATA_WIDTH-1 downto 0);    
  Ramfull    : inout STD_LOGIC := '0';  
  lesen             : out BOOLEAN := false;   
  Ramread   : in STD_LOGIC := '0';         
        Clock    : in STD_LOGIC; 
  DatenIn1  : INTEGER;                 
  DatenIn2   : INTEGER;        
  Reset1   : out  STD_LOGIC := '0';       
  Reset2   : out  STD_LOGIC := '0';       
  hand   : in STD_LOGIC; 
  handretard  : inout STD_LOGIC := '0'; 
  reading   : in BOOLEAN; 
  Nullunterd  : in BOOLEAN := true;       
  Sumup    : in BOOLEAN := false;       
  reset_clock                         : in Boolean := false;      
  periods_in  : in integer := 1;        
  period_size  : in integer; 
  );         

98



end EventBuilder; 
 
architecture Behavioral of EventBuilder is 
 
constant sync_shift    : integer := 1; 
        
signal s_timestamp, s_timestamp_1us : integer range -1 to 65534 := -1;  
signal s_time    : integer := 0; 
signal s_ergebnis, akt_ergebnis  : integer range 0 to 16383 := 0;   
signal takte_in_dieser_us   : integer range 0 to 20000 := 0;     
signal time_1us     : boolean := false;       
signal usesum1     : boolean := true;       
signal x      : integer := -1; 
signal s_hvzustand    : STD_LOGIC_VECTOR (0 to 3) := "0000"; 
signal s_hvzustand_1us    : STD_LOGIC_VECTOR (0 to 3) := "0000";    
signal tmp_adr1     : Integer range 0 to 2**ADDRESS_WIDTH := 1;         
signal output_buffer1    : STD_LOGIC_VECTOR (DATA_WIDTH-1 downto 0);  
signal s_posin_alt    : STD_LOGIC := '0'; 
signal header_gesetzt, header_gesetzt2 : STD_LOGIC := '0'; 
signal tail_gesetzt     : STD_LOGIC := '0'; 
signal tmp_sumup     : BOOLEAN := sumup; 
signal tmp_read_adr    : STD_LOGIC_VECTOR (ADDRESS_WIDTH-1 downto 0); 
signal neue_daten     : BOOLEAN := true; 
signal tmp_ramread, ramread_alt   : std_logic := '0'; 
signal k, u, u1     : integer := 0;   
signal neue_periode    : BOOLEAN := false; 
signal ram_deleted    : BOOLEAN := false;  
signal ready    : BOOLEAN := false;       
signal tmp_reset_clock    : boolean := false; 
 
begin 
 timing : process (clock)           
 begin 
 if rising_edge(clock) then 
  takte_in_dieser_us <= takte_in_dieser_us + 1; 
  if takte_in_dieser_us = us_in_perioden -1 then    
   time_1us <= true;         
   usesum1 <= (not usesum1);        
   takte_in_dieser_us <= 0 ;         
  else 
   time_1us <= false;        
  
  end if;        
 end if; 
 end process; 
 
 Resette_Summierer: process (clock)   
 begin 
 if rising_edge(clock) then 
  Reset1 <= '0'; 
  Reset2 <= '0';  
  if takte_in_dieser_us = us_in_perioden -1 then    
   if usesum1 then          
    Reset2 <= '1';         
   else 
    Reset1 <= '1'; 
   end if; 
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  end if; 
 end if; 
 end process; 
  
 Lese_Ergebnisse_aus : process (clock)  
 begin 
 if rising_edge(clock) then 
  if takte_in_dieser_us = sync_shift then    
   if usesum1 then           
    s_ergebnis <= DatenIn2;        
   else 
    s_ergebnis <= DatenIn1; 
   end if; 
   s_timestamp_1us <= s_timestamp; 
   s_hvzustand_1us <= s_hvzustand; 
  end if; 
  if takte_in_dieser_us = 2 then   
   s_timestamp <= s_timestamp+1;        
   s_hvzustand(3) <= posin; 
   s_hvzustand(2) <= nposin; 
   s_hvzustand(1) <= negin; 
   s_hvzustand(0) <= nnegin; 
   s_posin_alt <= posin; 
   neue_periode <= false; 
   if s_posin_alt /= posin and posin = '1' then    
    s_timestamp <= 0;       
  
    neue_periode <= true; 
   end if; 
  end if; 
  if time_1us then            
   if x=999 then 
    s_time <= s_time + 1; 
    x<=0; 
   else 
    x <= x+1; 
   end if; 
   if x=999 AND s_time = 3599999 then 
    s_time <= 0; 
    x<=0; 
   end if; 
  end if; 
  if reset_clock then 
   tmp_reset_clock <= true; 
  end if; 
  if s_timestamp_1us = 0 and tmp_reset_clock then 
   s_time <= 0; 
   x<=0; 
   tmp_reset_clock <= false; 
  end if;   
 end if; 
 end process; 
  
 write_data : process ( clock ) 
 variable sum   : integer := 0; 
 variable tmp_adr2  : Integer range 0 to 2**ADDRESS_WIDTH:= 1; 
 begin 
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 if rising_edge (clock) then 
  if ramread = '1' then 
   tmp_ramread <= '1'; 
  end if; 
  if hand = '1' AND reading = false then 
   handretard <= '1'; 
  end if; 
  if hand = '0' AND reading = true then 
   handretard <= '0'; 
  end if; 
  if hand = '1' AND reading = true then 
   handretard <= '0'; 
  end if; 
  if hand = '0' AND reading = false then 
   handretard <= '0'; 
  end if; 
  we1 <= '0'; 
  ce1 <= '1'; 
  if sumup then  
     if tmp_ramread = '1' AND ready = false then 
        if u < period_size*4+3 then 
     Ramfull <= '0';     
     if u1 = 0 then 
      adr1 <= CONV_STD_LOGIC_VECTOR(u, 
ADDRESS_WIDTH); 
      we1 <= not '1'; 
      ce1 <= not '1'; 
      u1 <= u1 + 1; 
     elsif u1 = 1 then 
      u1 <= u1 + 1; 
     end if; 
     if u1 = 2 then 
      Datenout1 <= (others => '0'); 
      u <= u + 1; 
      u1 <= 0; 
     end if; 
    else 
     u <= 0; 
     u1 <= 0; 
     ram_deleted <= true; 
     tmp_ramread <= '0'; 
    end if;    
   end if;  
   if ram_deleted AND handretard = '1' AND neue_periode AND takte_in_dieser_us = 
us_in_perioden-1 then 
    header_gesetzt <= '0'; 
    header_gesetzt2 <= '0'; 
    tail_gesetzt <= '0'; 
    ready <= true; 
   end if;    
   if ready then  
    if k = 0 then 
     if takte_in_dieser_us = 2 then 
      adr1 <= CONV_STD_LOGIC_VECTOR(0, 
ADDRESS_WIDTH);  
      we1 <= not '1'; 
      ce1 <= not '1'; 
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      header_gesetzt <= '1'; 
      output_buffer1 (7 downto 0) <= "01000010"; 
      output_buffer1 (15 downto 8) <= "10000001"; 
      output_buffer1 (23 downto 16) <= "10000001"; 
      output_buffer1 (31 downto 24) <= "10000001"; 
     end if; 
     if takte_in_dieser_us = 4 then   
      Datenout1 <= output_buffer1; 
      output_buffer1 <= (others => '0'); 
     end if; 
     if takte_in_dieser_us = 5 then 
      adr1 <= CONV_STD_LOGIC_VECTOR(1, 
ADDRESS_WIDTH); 
      we1 <= not '1'; 
      ce1 <= not '1'; 
     end if; 
     if takte_in_dieser_us = 6 then 
      output_buffer1 (11 downto 0) <= 
STD_LOGIC_VECTOR(to_unsigned(s_ergebnis, 12)); 
      output_buffer1 (15 downto 12) <= s_hvzustand_1us; 
      output_buffer1 (31 downto 16) <= 
STD_LOGIC_VECTOR(to_unsigned(s_timestamp_1us, 16)); 
     end if; 
     if takte_in_dieser_us = 7 then 
      tmp_adr1 <= s_timestamp_1us +2; 
      Datenout1 <= output_buffer1; 
      k <= k + 1; 
     end if; 
    end if;   
    if k = 1 then 
     if header_gesetzt = '1' then 
      if takte_in_dieser_us = 2 then 
       adr1 <= 
CONV_STD_LOGIC_VECTOR(period_size*4+1, ADDRESS_WIDTH); 
          output_buffer1 (7 downto 0) <= "01000010"; 
          output_buffer1 (15 downto 8) <= "01000010"; 
          output_buffer1 (23 downto 16) <= "01000010"; 
          output_buffer1 (31 downto 24) <= "01000010"; 
       we1 <= not '1'; 
       ce1 <= not '1'; 
      end if; 
      if takte_in_dieser_us = 4 then 
       Datenout1 <= output_buffer1; 
       output_buffer1 <= (others => '0');    
       header_gesetzt <= '0'; 
      end if; 
     end if; 
     if takte_in_dieser_us = 5 then 
      adr1 <= CONV_STD_LOGIC_VECTOR(tmp_adr1, 
ADDRESS_WIDTH); 
      we1 <= not '1'; 
      ce1 <= not '1'; 
     end if; 
     if takte_in_dieser_us = 6 then 
      output_buffer1 (11 downto 0) <= 
STD_LOGIC_VECTOR(to_unsigned(s_ergebnis, 12)); 
      output_buffer1 (15 downto 12) <= s_hvzustand_1us; 
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      output_buffer1 (31 downto 16) <= 
STD_LOGIC_VECTOR(to_unsigned(s_timestamp_1us, 16)); 
     end if; 
     if takte_in_dieser_us = 7 then 
      Datenout1 <= output_buffer1; 
      if neue_periode then 
       tmp_adr1 <= 1; 
       k <= k + 1; 
      else 
         tmp_adr1 <= s_timestamp_1us +2; 
      end if; 
     end if; 
     if takte_in_dieser_us = 8 then 
      if k > periods_in then 
       Ramfull <= '1'; 
       lesen <= true; 
       ram_deleted <= false; 
       ready <= false; 
       k <= 0; 
      end if; 
     end if; 
    end if;    
    if k > 1 then 
     if takte_in_dieser_us = 2 then 
      read_adr <= CONV_STD_LOGIC_VECTOR(tmp_adr1, 
ADDRESS_WIDTH); 
      tmp_read_adr <= CONV_STD_LOGIC_VECTOR(tmp_adr1, 
ADDRESS_WIDTH); 
      we1 <= not '0'; 
      ce1 <= not '1'; 
     end if; 
     if takte_in_dieser_us = 6 then 
      if neue_periode then 
       tmp_adr1 <= 1; 
       k <= k + 1; 
      else 
          tmp_adr1 <= s_timestamp_1us +2; 
      end if; 
      adr1 <= tmp_read_adr; 
      we1 <= not '1'; 
      ce1 <= not '1'; 
     end if; 
     if takte_in_dieser_us = 7 then 
      sum := s_ergebnis + CONV_INTEGER (ram_data(11 downto 
0)); 
        output_buffer1 (11 downto 0) <= 
STD_LOGIC_VECTOR(to_unsigned(sum, 12)); 
      output_buffer1 (15 downto 12) <= s_hvzustand_1us; 
      output_buffer1 (31 downto 16) <= 
STD_LOGIC_VECTOR(to_unsigned(s_timestamp_1us, 16)); 
     end if; 
     if takte_in_dieser_us = 8 then 
      Datenout1 <= output_buffer1; 
      if k > periods_in then 
       Ramfull <= '1'; 
       lesen <= true; 
       ram_deleted <= false; 
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       ready <= false; 
       k <= 0; 
      end if; 
     end if; 
    end if; 
   end if; 
  end if; 
 end if; 
 end process; 
end Behavioral; 
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A53 (1997), 749–762.

[30] Kissel, L. ; Zhou, B. ; Roy, S. C. ; Gupta, S. K. S. ; Pratt, R. H.: The Validity
of Form-Factor, Modified-Form-Factor and Anomalous-Scattering-Factor Approxi-
mations in Elastic Scattering Calculations. Acta Cryst. A51 (1995), 271–288.

[31] Anomalous Scattering Factors. Lawrence Livermore National Laboratory. –
http://adg.llnl.gov/Research/scattering/asf.html.

[32] Hansen, N. K. ; Coppens, P.: Testing Aspherical Atom Refinements on Small-
Molecule Data Sets. Acta Cryst. A34 (1978), 909–921.

[33] Clementi, E. ; Roetti, C.: Roothaan-Hartree-Fock Atomic Wavefunctions: Basis
Functions and Their Coefficients for Ground and Certain Excited States of Neutral
and Ionized Atoms, Z ≤ 54. Atomic Data and Nuclear Data Tables 14 (1974),
177–478.

[34] Clementi, E. ; Raimondi, D. L.: Atomic screening constants from SCF functions.
J. Chem. Phys. 38 (1963), 2686–2689.
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[86] Becker, P. ; Bohatý, L.: Thermal Expansion of Bismuth Triborate. Cryst. Res.
Technol. 36 (2001), 1175–1180.

[87] Stein, W.-D. ; Cousson, A. ; Becker, P. ; Bohatý, L. ; Braden, M.:
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Abstract

Within the scope of this work the piezoelectric response of the crystals Li2SO4·H2O,
Li2SeO4·H2O and BiB3O6 to a periodically applied external electric perturbation both on
the macroscopic and microscopic scale was investigated. It was shown that the bond-
selective distortion observed within these crystals is dependent on the strength of a
chemical bond and the charges of the respective pseudoatoms bonded to each other.
The electric-field-induced much greater average Li−O bond deformation in Li2SeO4·H2O
compared to that measured in Li2SO4·H2O was referred to the larger vacancies in the
structure of the lithium ion conducting Li2SeO4·H2O crystal. In addition, a novel con-
cept of an X-ray diffraction experiment for the time-resolved measurements of the strains
generated in piezoelectric crystals based on the detector pulse processing with a 100 MHz
FPGA chip was realized. By reducing the switching time between different HV states to
fast 200 ns within the modulation of the basic HV period applied to Li2SO4·H2O crystal
plates, superimposed vibrational modes of the plates could be excited, the properties of
which were studied by performing X-ray measurements of diffraction curves with a time
resolution of 100 ns. In contrast, the induced internal redistribution of atoms within
the unit cell of Li2SO4·H2O was negligibly small. This effect is accounted for by the
low pressure in the range of MPa exerted on the atoms within the crystal by its elastic
deformations.





Kurzzusammenfassung

Im Rahmen dieser Arbeit wurde das Verhalten der piezoelektrischen Kristalle Li2SO4·H2O,
Li2SeO4·H2O und BiB3O6 unter einer periodisch angelegten äußeren elektrischen Störung
sowohl auf der makroskopischen als auch der mikroskopischen Skala untersucht. Es kon-
nte gezeigt werden, dass innerhalb dieser Kristalle die beobachtete selektive Verzerrung
einer chemischen Bindung von der Stärke der Bindung und den Ladungen der jeweils
miteinander gebundenen Pseudoatome abhängig ist. Die durch das elektrische Feld in-
duzierte viel größere mittlere Deformation der Li−O-Bindungen in Li2SeO4·H2O im Ver-
gleich zu der gemessenen in Li2SO4·H2O wurde auf die größeren Lücken in der Struktur
des Lithium-Ionen-leitenden Li2SeO4·H2O-Kristalls zurückgeführt. Darüber hinaus wurde
ein neuartiges Konzept eines Röntgenbeugungsexperiments, das auf der Verarbeitung von
Detektorpulsen mit einem 100 MHz FPGA-Chip beruht, für zeitaufgelöste Messungen
der in einem piezoelektrischen Kristall generierten Verzerrungen realisiert. Durch die
Reduzierung der Schaltzeit zwischen verschiedenen Hochspannungszuständen innerhalb
der verwendeten Modulation der Grundperiode der Hochspannung auf schnelle 200 ns
konnten in Li2SO4·H2O-Kristallplatten überlagerte Schwingungsmoden angeregt werden,
deren Eigenschaften mit Hilfe von durchgeführten Messungen der Rockingkurven mit
einer zeitlichen Auflösung von 100 ns untersucht wurden. Im Gegensatz dazu war die
induzierte innere Umverteilung der Atome innerhalb der Einheitszelle von Li2SO4·H2O
vernachlässigbar klein. Dieser Effekt hat seinen Ursprung im niedrigen Druck im Bereich
von MPa, dem die Atome innerhalb des Kristalls aufgrund seiner elastischen Deformatio-
nen ausgesetzt waren.
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