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Abstract

Inverse problems arise often in physical and technical processes. In this dissertation

we consider problems of Cauchy-type based on the application of hybrid insulation.

The experimental setup takes place at the NTNU Trondheim which placed at the

disposal the measurements for the calculation. In this case we search Dirichlet or

Neumann control for given Neumann measurements. After describing the problem

of hybrid insulation and introducing the basic principals of functional analysis we

analyse Nitsche’s method for dealing with Dirichlet boundary conditions. The er-

ror estimates will be deduced and verified. Subsequent we give an introduction

to inverse problems and their regularisation. We formulate three optimal control

problems on the unit square based on the application of hybrid insulation. For

given Neumann measurement we search Dirichlet or Neumann control and for given

Dirichlet measurement we search Dirichlet control. For the regularisation we draw

on three matrices. For all three problems we do numerical calculations with different

gridrefinements, different numbers of degrees of freedom on the boundary of control

and different regularisation parameters. After comparison of the results within each

problem we compare the results to each other. Based on these results, at the end

of this dissertation we do the numerical calculations for the application of hybrid

insulation for searched Neumann control and given Neumann measurements.
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Kurzfassung

Inverse Probleme sind häufig auftretende Probleme in Naturwissenschaft und Tech-

nik. In dieser Arbeit werden Probleme vom Cauchy-Typ basierend auf der elek-

trotechnischen Anwendung hybrider Isolierung betrachtet. Der Experimentaufbau

befindet sich an der NTNU Trondheim, die die Messdaten für die Berechnungen zur

Verfügung gestellt hat. In diesem Fall wird die Dirichlet- oder Neumann-Steuerung

für gegebene Neumann- Messdaten gesucht. Nachdem das Problem der hybriden Iso-

lierung beschrieben und die nötigen Grundlagen der Funktionalanalysis eingeführt

wurden, wird Nitsche’s Methode zur Behandlung von Dirichlet-Randdaten analy-

siert. Die L2- und H1-Fehlerabschätzungen werden hergeleitet und verifiziert. Im

Anschluß wird eine Einführung zu inversen Problemen und deren Regularisierung ge-

geben. Es werden drei optimale Steuerungsprobleme auf dem Einheitsquadrat formu-

liert, basierend auf der Anwendung der hybriden Isolierung. Zu gegebenen Neumann-

Messdaten werden Dirichlet- oder Neumann-Steuerung gesucht und zu gegebenen

Dirichlet-Messdaten die Dirichlet-Steuerung. Zur Regularisierung werden drei Ma-

trizen herangezogen. Für alle drei Probleme werden numerische Berechnungen für

verschiedene globale Verfeinerungen, verschiedene Anzahlen an Freiheitsgraden auf

dem Kontrollrand und verschiedene Regularisierungsparameter durchgeführt. Nach

einem Vergleich der Ergebnisse innerhalb eines Problems werden die Ergebnisse der

Probleme untereinander verglichen. Basierend auf diesen Ergebnissen werden für

das Problem der hybriden Isolierung nur die numerischen Berechnungen im Fall

gesuchter Neumann-Steuerung zu gegebenen Neumann-Messdaten durchgeführt.
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1 Introduction

In this dissertation we study inverse problems of Cauchy type based on the appli-

cation of hybrid insulation. Frank Mauseth from the NTNU Trondheim deals with

this problem in his PhD thesis [26]. The description of the application in Section 2

and the measurements we need for the calculations in Section 7 are from a private

correspondence with Frank Mauseth and his PhD thesis [26].

We reduce the three dimensional rotational

symmetric problem to a two dimensional prob-

lem to be solved. The details can be found

in Section 2. Then we have given conflicting

Dirichlet and Neumann boundary data on ΓO

(see Figure 1.1) and search Dirichlet or Neu-

mann control on ΓC . Ivan Cherlenyak deals

also with this problem in his PhD thesis [11].

He used the Laplace-equation in two dimen-

sions for his calculation instead of reducing

the three dimensional problem to a two dimen-

sional what we will do in this dissertation.
Figure 1.1: Underlying geometry

of the application.

Before we treat this problem we take a look on a model problem (based on the

application) with the unit square as underlying geometry (see Sections 5 and 6).

As we want to solve inverse problems we first want to introduce when to call a
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1 Introduction

problem an inverse problem. For given A : X → Y we call the calculation of Ax

with x ∈ X the direct problem. If we want to find x ∈ X for given y ∈ Y , so that

Ax = y, we call this an inverse problem.

Analysing inverse problems mostly leeds to the idea of ill-posed problems (see i.e.

Louis [25] or Rieder [30]):

Definition 1.1. Let A : X → Y be a mapping with the topologic spaces X, Y . The

problem (A,X, Y ) is called well-posed, when

• ∃ a solution to Af = g for all g ∈ Y ,

• the solution is well defined,

• the solution depends continuously on the data, i.e. A−1 is continuous.

If one of these conditions is not satisfied the problem is called ill-posed.

Following e.g. Louis [25] or Rieder [30] a prototypical example (Cauchy problem) in

classical notation reads

−∆u = 0 , on Ω = (0, 1)2 ,

∂nu = 0 , on ΓN = {x ∈ Ω | x2 = 0 or x2 = 1 } , (1.1)

∂nu = f ,

u = 0 ,
on ΓO = {x ∈ Ω | x1 = 1} .

The underlying solution operator cannot be continuous, because of the incompatible

prescription of ∂nu and u on ΓO. To show this, one chooses a sequence of boundary

data gk with ‖gk‖ → 0 for k → ∞ such that for the corresponding solutions uk there

holds |uk| → ∞ for k → ∞.

One possible choice for data and corresponding solution is

fk = k−1 cos(kπy), uk = k−2 cos(kπy) sinh(kπ(1 − x)) (1.2)

In Figure 1.2 we can see data (left) and solution (right) for the case k = 10 (scaled

for graphical output by dividing by 80.000) indicating the unstable development of

uk for small fk.
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So the inverse of the underlying solution operator cannot be continuous and the

problem is ill-posed. The problems we want to solve are of the same type as this

Cauchy problem.
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Figure 1.2: Data and solution (scaled by dividing by 80.000) for the case k = 10,

indicating the instable development of uk for small data fk.

We have already mentioned that we want to solve a model problem on the unit

square as underlying geometry before we solve the problem of the application. In this

dissertation we want to analyse (based on the application) which type of searched

control (Neumann or Dirichlet, respectively) for given Neumann measurement leads

to the better results. Additionally we want to take a look on the problem where we

have given Dirichlet measurement and Neumann boundary data in the underlying

PDE-constraint. Now we short want to describe these optimal control problems we

take care about (in detail see Sections 5 and 6).

In the following we have Ω = (0, 1)2 the unit square and Γ = ∂Ω divided into

ΓO = {x ∈ Γ | x1 = 1}, ΓN = {x ∈ Γ | x2 = 0 ∨ x2 = 1} and ΓC = {x ∈ Γ | x1 = 0}.
J(w, τ) defines a so-called cost functional and q denotes a control variable.

1. Find ∂nu = q on ΓC for given measurement ∂nu = f on ΓO

J(u, q) → min, J(w, τ) :=
1

2
‖∂nw − f‖2

ΓO
(1.3)
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1 Introduction

under the PDE-constraint

−∆u = g on Ω,

∂nu = 0 on ΓN ,

u = 0 on ΓO,

∂nu = q on ΓC .

(1.4)

2. Find u = q on ΓC for given measurement ∂nu = f on ΓO

J(u, q) → min, J(w, τ) :=
1

2
‖∂nw − f‖2

ΓO
(1.5)

under the PDE-constraint

−∆u = g on Ω ,

∂nu = 0 on ΓN ,

u = 0 on ΓO ,

u = q on ΓC .

(1.6)

3. Find u = q on ΓC for given measurement u = 0 on ΓO

J(u, q) → min, J(w, τ) :=
1

2
‖w‖2

ΓO
(1.7)

under the PDE-constraint

−∆u = g on Ω ,

∂nu = 0 on ΓN ,

∂nu = f on ΓO ,

u = q on ΓC .

(1.8)

We don’t take care about the possible fourth problem where we have to find ∂nu = q

on ΓC for given measurement u = 0 on ΓO such that

J(u, q) → min, J(w, τ) :=
1

2
‖w‖2

ΓO
(1.9)

under the PDE-constraint

−∆u = g on Ω ,

∂nu = 0 on ΓN ,

∂nu = f on ΓO ,

∂nu = q on ΓC .

(1.10)
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There the direct problem (1.10) is not uniquely solvable which makes problems in

solving the inverse problem.

For analysing the problems we first introduce in Section 3 basic principals of func-

tional analysis based on [2], [3], [14], [17] and [43] . There we introduce the spaces

Hk(Ω), Hs(Ω), Hs(Γ) with the corresponding inner products and norms.

Then we give a short introduction to the finite element method and analyse Nitsches

method for solving direct problems with Dirichlet boundary data. In order to prepare

an adequate mathematical formulation of the whole problem we first focus on a

suitable formulation of the “forward” problem itself (see Section 3.3).

For handling Dirichlet boundary conditions we cannot use the standard weak for-

mulation of the problem as described in the finite element theory (see e.g. Braess

[8] and Johnson [22]). There the Dirichlet boundary condition q we want to calcu-

late within the computation of the mentioned inverse problems (1.7) and (1.9) is

hidden in the underlying function space of the variational formulation. Because of

this we use the symmetric version of the weak formulation introduced by Nitsche

[29] instead of the standard weak formulation (see also Hansbo [19], or Arnold et al.

[4]).

For the given classical formulation we have to find u ∈ C2(Ω) ∩ C(Ω̄) for given

f, q ∈ C(Ω̄) such that

− ∆u = f in Ω (1.11)

u = q on Γ = ∂Ω.

Using Nitsche’s method we have to find uh ∈ Vh ⊂ H1(Ω) such that

ah(uh, v) = (f, v) + (ψ(h)q, v)∂Ω − (q, ∂nv)∂Ω (1.12)

with

ah(u, v) := (∇u,∇v)Ω − (∂nu, v)∂Ω − (u, ∂nv)∂Ω + (ψ(h)u, v)∂Ω. (1.13)
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1 Introduction

We show that ah(., .) is positive definite for ψ(h) = γh−1 for γ a positive constant

depending on the problem to be solved. After that we derive the error estimates

similar to that of the classical variational formulation:

‖e‖1,Ω ≤ ch‖u‖2,Ω (1.14)

‖e‖0,Ω ≤ ch2‖u‖2,Ω. (1.15)

For this method we obtain an additional error estimation:

‖e‖0,Γ ≤ ch3/2‖u‖2,Ω. (1.16)

As we are interested in solving an inverse problem we introduce in Section 4 the

basic theory of inverse problems (based on Louis [25] and Rieder [30]). There we

formulate among other things that f ∈ X minimzes the residuum ‖Af − g‖Y is

equivalent to f ∈ X solves the normal equation A∗Af = A∗g. In our application

(described in Section 2) we only have measuring data ∂nu|ΓO
= f or u|ΓO

= 0 and

we have already seen that the inverse of the underlying solution operator is not

continuous. This leads to errors in the calculation and we have to regularise the

problem. Here we employ the Tikhonov-Phillips-regularisation.

We have formulated the problems as optimal control problems. In general we can

write the three cases in the form (see Lions [24] and Tröltzsch [39]):

J(u, q) → min (1.17)

under the constraint Au = Bq.

As A is invertible we can write

u = A−1Bq. (1.18)

From this there follows that we have to minimise

J(u, q) = J(A−1Bq, q). (1.19)
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So after all we have to solve the regularised normal equation

(MT M + αRT R)q = MT f. (1.20)

With M depending on the optimal control problem to be solved (for details see

Section 5), α > 0 the regularisation parameter and R the regularisation matrix

from the Tikhonov-Phillips-regularisation.

For the implementation we use DEAL (Differential Equations Analysis Library [1],

see also [36]). As solution algorithm we use the preconditioned conjugate gradient

algorithm (pcg) and the multigrid method as preconditioner (see e.g. [9], [10],[31],

[41]). Both algorithms are described in Section 5.2.

In Section 6 we present the numerical results for our three problems. As a test-

example we use

− ∆u = 12xy2 − 12xy + 2x − 12y2 + 12y − 2. (1.21)

We do the calculations for the three problems with three regularisation matrices

(Id and approximations of the first and second derivative) under different aspects.

First we take a look on the results for the searched control on ΓC for different grid

refinements. The regularisation parameter α is choosen by trial and error. It is not

part of this dissertation to formulate algorithms for the best parameter choice. As

a consequence of this we do not present a detailed error analysis which is dependent

of the parameter choice.

After that we reduce the number of degrees of freedom (DOF) on ΓC as we know we

can regularise the problem by reducing the dimension. Again we do this analysis for

the three matrices R. At last we analyse the influence of the regularisation parameter

α on the solution with reduced number of DOF on ΓC . As a last aspect for each

problem we compare the results for the three regularisation matrices with reduced

number of DOF on ΓC and the corresponding optimal regularisation parameter.

After doing this analysis for each of the three problems (Section 6.1 to Section 6.3) we

compare the results of the three optimal control problems (Section 6.4). Therefore we
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1 Introduction

use the approximation of the second derivative as regularisation matrix, the reduced

number of DOF on ΓC and the corresponding optimal regularisation parameter we

estimated in the Sections 6.1 to 6.3.

In the following Figures we can see a few results of the calculations we will present

in detail in Section 6. Figure 1.3 shows the searched Dirichlet control q = uh|ΓC

for given Neumann measurement ∂nu|ΓO
and the results for ∂nuh|ΓC

calculated with

the searched control. We reach good results for the searched control but we achieve

oscillations in the calculation of ∂nuh|ΓC
if we regularise with the identity. For the

regularisation with an approximation of the first derivative we can only avoid the

oscillations with an enlarged number of DOF on ΓC (for details see Section 6.2).

Figure 1.4 shows the searched Dirichlet control (q = u|ΓC
) for given Dirichlet mea-

surements and ∂nuh|ΓC
calculated with the searched control. There we can see the

same effect as in the calculation with searched Dirichlet control and given Neu-

mann measurements. In the case of searched Neumann control and given Neumann

measurements we haven’t this effect. There we reach good approximations of all

boundary data for all regularisations without the need to enlarge the number of

DOF on ΓC . This can be seen in detail in Section 6.1.
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Figure 1.3: Results for searched Dirichlet control and given Neumann measurements:

u|ΓC
= y2(1 − y)2 and uh|ΓC

(left), ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

(right) for the three regularisations with reduced number of DOF on ΓC

and optimal regularisation parameter.
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Figure 1.4: Results for searched Dirichlet control and given Dirichlet measurements:

u|ΓC
= y2(1 − y)2 and uh|ΓC

(left), ∂nu|ΓC
and ∂nuh|ΓC

(right) for the

three regularisations with reduced number of DOF on ΓC and optimal

regularisation parameter.

For the model problem these results show that the case of searched Neumann control

and given Neumann measurements delivers the best results. As a conclusion we can

say, the more Dirichlet data (as searched control or/and given measurement) we

have the worse results.

At the end of this dissertation we present the numerical results for the application

of hybrid insulation based on the knowledge from the model problem, i.e. we only

present the results for searched Neumann control and given Neumann measurements

which delivered the best results for the model problem. Caused by the reduction

from three to two dimensions and the underlying geometry (see Figure 1.1) we have

to modify our calculations (for details see Section 7). Figure 1.5 shows the calculated

control q = ∂nuh|ΓC
, the given measurements and their approximation (∂nuh|ΓO

),

calculated with the computed control. In Figure 1.6 we can see a video image (from

F. Mauseth, NTNU Trondheim) and the calculated uh on the simplified geometry.

Both Figures show that we achieve good approximations of the given measurements

∂nu|ΓO
and also of u on the simplified geometry. More numerical results will be
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1 Introduction

presented in Section 7 and appendix B.
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Figure 1.5: The calculated control q = ∂nuh|ΓC
(left), the given measurements and

the calculated normal derivative ∂nuh|ΓO
(right).

Figure 1.6: Video image (left, from F. Mauseth NTNU Trondheim) and calculated

uh on Ω for the given measurements ∂nu|ΓO
(illustrated in Figure 1.5

right).
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2 Description of the application:

Hybrid insulation

Now we want to describe the application of hybrid insulation which we deal with

the NTNU Trondheim, where they do the measurements. The description is from

Frank Mauseth from the NTNU Trondheim who deals with the problem of hybrid

insulation in his PhD thesis ([26]). We only present the fundamental idea and the

resulting differential equation to be solved when we reduce the problem to a two

dimensional one.

The breakdown voltage of an air gap between two electrodes can be improved consid-

erably if one or both of the electrodes are covered with a thick (several millimeters)

dielectric coating. If free charges are available in the gap or in the air volume

surrounding the structure, charges accumulate in the dielectric surfaces due to elec-

trostatic attraction. As long as there is a driving field this accumulation process

continues.

The electrical field in the hybrid insulation system can be calculated as the vector

sum of the charge induced field and the applied field.

Etotal = Ecapacitive + Echarge induced

13



2 Description of the application: Hybrid insulation

Figure 2.1: The fundamental idea of hybrid insulation: A cutout of the experimental

setup.

The charge formation on the insulation surface builds up an electric field that reduces

the field Eg in the air gap and increases the field Ed in the solid insulation. The net

result is an overall increased insulation performance. This technique may be used in

design a construction of compact high voltage equipment in the future. The physics

of this phenomena is not yet fully understood.

In order to increase the knowledge of the phenomena, insight in the surface charge

distribution is vital. The surface charge densities, and thus the surface potential,

associated with this kind of insulation system is quite high necessitating a large dis-

tance between surface and measuring probe. Due to the large measurement distance

(about 20 mm) a direct reading of the surface charge density is not possible since

surrounding areas also will influence and give a contribution to the read out.

To get a better insight of the surface charge distribution on the insulating surface,

the electrical field along a cylinder around the rod was measured. After applying a

lightning impulse and grounding the rod, the cylinder with a field mill mounted on

it as shown in the following Figure was placed around the rod.

14



Figure 2.2: Cylinder with field mill.

This leads to a rotational symmetric geometry as shown in Figure 2.3 (left).

Figure 2.3: Rotational symmetric geometry of the application (left) and the simpli-

fied rotational symmetric geometry (right).

The surface charge distribution can be indirectly found as the solution of an inverse

problem. By finding the electrical field

(
du

dn

)

on the surface (ΓC), the surface charge

15



2 Description of the application: Hybrid insulation

distribution can be found by the capacitive distribution between the surface and the

electrodes.

Therefore we can simplify the problem. I.e. we solve the Laplace-equation on the

simplified geometry (without the boundary Γi) shown in Figure 2.3 (right).

Using a cylinder simplifies the electrical field calculations with FEM-software since

the problem is rotational symmetric. Introducing cylinder coordinates

x = r cos ϕ

y = r sin ϕ (2.1)

z = z

leads to:

∂2u(x, y, z)

∂x2
=

∂2u(r, ϕ, z)

∂r2
cos2 ϕ − 2

∂2u(r, ϕ, z)

∂r∂ϕ

sin ϕ cos ϕ

r
(2.2)

+2
∂u(r, ϕ, z)

∂ϕ

sin ϕ cos ϕ

r2
+

∂u(r, ϕ, z)

∂r

sin2 ϕ

r

+
∂2u(r, ϕ, z)

∂ϕ2

sin2 ϕ

r2
,

∂2u(x, y, z)

∂y2
=

∂2u(r, ϕ, z)

∂r2
sin2 ϕ + 2

∂2u(r, ϕ, z)

∂r∂ϕ

sin ϕ cos ϕ

r
(2.3)

−2
∂u(r, ϕ, z)

∂ϕ

sin ϕ cos ϕ

r2
+

∂u(r, ϕ, z)

∂r

cos2 ϕ

r

+
∂2u(r, ϕ, z)

∂ϕ2

cos2 ϕ

r2
,

∂2u(x, y, z)

∂z2
=

∂2u(r, ϕ, z)

∂z2
. (2.4)

After summation and eliminating one dimension we have to solve the Laplace equa-

tion in cylinder coordinates reduced to a two-dimensional problem:

− 1

r

∂u

∂r
− ∂2u

∂r2
− ∂2u

∂z2
= 0 (2.5)

with the boundary conditions

∂nu = 0 on ΓN ,

u = 0 on ΓO (2.6)
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given measurements ∂nu|ΓO
= f and the searched control q on ΓC on the simplified

geometry (Figure 2.3 right).

With equation (2.5) and equation (2.6) we have given the underlying PDE constraint

we need to solve the optimal control problem described later on (see Section 7).

Based on this application there are two possible cases we can solve within the inverse

problem (see Section 5 and Section 7): On the one hand we can calculate the control

q = u|ΓC
and on the other hand we can calculate the control q = ∂nu|ΓC

. First we

will do this for a model problem: The Laplace equation on the unit square. Before

we can do this we introduce in the next Section the basic principals of functional

analysis and Nitsche’s method for handling Dirichlet boundary conditions.
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2 Description of the application: Hybrid insulation
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3 A model problem

Before we treat the inverse problems mentioned in the introduction we want to take a

look on the direct problem. Therefore we need some principals of functional analysis.

In Section 3.1 we define the spaces Hk(Ω) (k ∈ N), Hs(Ω) and Hs(Γ) (s ∈ R
+) which

we need for the analysis of our problem. We also introduce the trace and embedding

theorem.

After that in Section 3.2 we take a short look on the abstract problem and the finite

element method.

In Section 3.3 we study the variational formulation of the forward problem with

Dirichlet boundary data. In the standard weak formulation q = u|Γ is hidden in

the underlying function space, but in view that we have to determine q within the

inverse problem we prefer q to appear more directly. Therefore we use a symmetric

variant of Nitsche´s method (see Nitsche [29], Hansbo [19]).

3.1 Basic principals of functional analysis

First we introduce some spaces we need for the variational formulation of our prob-

lem. This basic principals and their proofs can be found in the literature about

functional analysis (e.g. Hackbusch [17] and Dobrowolski [14]).

Let Ω be a bounded subset of R
d. Then L2(Ω) is defined as the space of functions

where the integral over the square is finite:
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3 A model problem

Definition 3.1.

L2(Ω) :=






v | v defined on Ω,

∫

Ω

v2 dx < ∞






(3.1)

L2(Ω) is a Hilbert space with the (L2-) inner product

(v, w)0 := (v, w)L2(Ω) =

∫

Ω

vw dx (3.2)

and the corresponding norm

‖v‖L2(Ω) =





∫

Ω

v2 dx





1

2

= (v, v)
1

2 . (3.3)

For the following weak derivative we need a multiindex α = (α1, . . . , αn)T with

αi ∈ N0, i = 1, . . . , n for which we have:

|α| =
n∑

i=1

αi, xα = xα1

1 . . . xαn

n , Dαu =
∂|α|

∂α1
x1 . . . ∂αn

xn

u. (3.4)

Definition 3.2. For u ∈ L2(Ω) exists a weak derivative v := Dαu ∈ L2(Ω) if for

v ∈ L2(Ω) holds:

(w, v)0 = (−1)|α|(Dαw, u)0 ∀ w ∈ C∞
0 (Ω). (3.5)

Now we define the Sobolev-spaces Hk(Ω) which we need for our variational formu-

lation of the problem.

Definition 3.3. Let k ∈ N ∪ {0}.

Hk(Ω) := {u ∈ L2(Ω) | ∃ Dαu ∈ L2(Ω) for |α| ≤ k}. (3.6)

Hk(Ω) is a Hilbert space with the inner product

(u, v)k := (u, v)Hk(Ω) :=
∑

|α|≤k

(Dαu,Dαv)0 (3.7)
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3.1 Basic principals of functional analysis

and the (Sobolev-) norm

‖u‖k := ‖u‖Hk(Ω) :=

√
∑

|α|≤k

‖Dαu‖2
0. (3.8)

|u|k :=

√
∑

α=k

‖Dαu‖2
0 (3.9)

is called semi norm of Hk.

We can also define Hk(Ω) as completion of X0 := {u ∈ C∞(Ω) | ‖u‖k < ∞} in L2(Ω)

with respect to ‖.‖Hk . Hk
0 (Ω) is the completion of C∞

0 (Ω) in L2(Ω) corresponding

to (3.8).

Now we define the inner product (., .)s with s ∈ R
+
0 and the so called Sobolev-

Slobodeckij-norm ‖.‖Hs(Ω). With the Sobolev-Slobodeckij-norm we can define Hs(Ω),

s ∈ R
+
0 in the same way as Hk(Ω) for k ∈ N0 as completion of X0 with respect to

‖.‖Hs .

Definition 3.4. Let Ω ⊂ R
n, s ≥ 0 with s = k + λ, k ∈ N ∪ {0} and 0 < λ < 1.

Then (u, v)s is defined as

(u, v)s := (u, v)k +
∑

|α|=k

(Dαu,Dαv)λ (3.10)

with the known (u, v)k from (3.7) and

(Dαu,Dαv)λ =

∫

Ω

∫

Ω

(Dαu(x) − Dαu(y))(Dαv(x) − Dαv(y))

|x − y|n+2λ
. (3.11)

With this inner product we get the Sobolev-Slobodeckij-norm

‖u‖s := ‖u‖Hs(Ω) :=
√

(u, u)s. (3.12)

With the Sobolev-Slobodeckij-norm Hs(Ω) is a Banach space. With the inner prod-

uct (., .)s Hs(Ω) is a Hilbert space.

For s ∈ N we have Hs = Hk from definition 3.3. Hs
0(Ω) is the completion of C∞

0 (Ω)

in L2(Ω) with respect to ‖.‖Hs(Ω). For these Sobolev-spaces we have the following

features (see Hackbusch [17]):
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3 A model problem

Theorem 3.1.

1. C∞
0 is dense in Hs

0(Ω).

2. {u ∈ C∞(Ω) | Tr(u) compact, ‖u‖s < ∞} is dense in Hs(Ω).

3. Hs(Ω) ⊂ H t(Ω), Hs
0(Ω) ⊂ H t

0(Ω) for s ≥ t.

4. aDα(bu) ∈ Hs−|α|, for |α| < s, u ∈ Hs(Ω), a ∈ Ct−|α|(Ω), b ∈ Ct(Ω) with

t = s ∈ N ∪ {0} or t > s.

We also need the space Hs(Γ), trace- and embedding operators because of the given

boundary values. Following Hackbusch [17] we first take a look on this function

space and operators with respect to Ω = R
n
+ := {(x1, . . . , xn) ∈ R

n | xn > 0} with

Γ = ∂Ω = R
n−1 × {0}.

Theorem 3.2. Let s ≥ 0. It exists an embedding operator φs ∈ L(Hs(Rn
+), Hs(Rn))

so that the embedding ū = φsu and u are equal on R
n
+ for all u ∈ Hs(Rn

+).

Now we have the embedding operator. The trace operator γ is first defined on

C∞
0 (Rn):

γ : C∞
0 (Rn) → C∞

0 (Γ) ⊂ L2(Rn−1), γu(x) := u(x) ∀x ∈ Γ = R
n−1 × {0}. (3.13)

Then we have the following theorem:

Theorem 3.3. Let s > 1/2. γ from equation (3.13) can be extended to γ ∈
L(Hs(Rn), Hs−1/2(Rn−1)). Specially : |γu|s−1/2 ≤ Cs|u|s, u ∈ Hs(Rn).

Corollary 3.1. Let s > 1/2. For γu := u(., 0) we have γ ∈ L(Hs(Rn
+), Hs−1/2(Rn−1)).

With the restriction xn = 0 we loose a half order of differentiability. On the other

side with the continuation of w ∈ Hs−1/2(Rn−1) on R
n we gain a half order of

differentiability:

Theorem 3.4. Let s > 1/2, w ∈ Hs−1/2(Rn−1). There exists u ∈ Hs(Rn) with

|u|s ≤ Cs|w|s−1/2 and γu = w, i.e. w = u(., 0).
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3.1 Basic principals of functional analysis

Until now we only took a look on Hs(Rn
+) and Hs(Rn−1), but we need Hs(Γ), Γ = ∂Ω

and Ω ⊂ R
n a general domain. Therefore we need the following definition:

Definition 3.5. Let 0 < t ∈ R ∪ {∞}. We call Ω ∈ Ct if for all x ∈ Γ := ∂Ω

there exists a surrounding area U ⊂ R
n, where we can define a bijective mapping

φ : U → K1(0) = {ξ ∈ R
n | |ξ| < 1} with

φ ∈ Ct(Ū), φ−1 ∈ Ct(K1(0)), (3.14)

φ(U ∩ Γ) = {ξ ∈ K1(0) | ξn = 0}, (3.15)

φ(U ∩ Ω) = {ξ ∈ K1(0) | ξn > 0}, (3.16)

φ(U ∩ (Rn\Ω)) = {ξ ∈ K1(0) | ξn < 0}. (3.17)

Lemma 3.1. Let Ω ∈ Ct be a bounded domain. There exists N ∈ N, U i (0 ≤ i ≤
N), Ui, αi (1 ≤ i ≤ N) with

U i open, bounded (0 ≤ i ≤ N), Ω̄ ⊂
N⋃

i=0

U i, U0 ⊂⊂ Ω, (3.18)

Ui := U i ∩ Γ (1 ≤ i ≤ N),
N⋃

i=1

Ui = Γ, (3.19)

αi : Ui → αi(Ui) ⊂ R
n−1 bijective for i = 1, . . . , N, (3.20)

αi ◦ α−1
j ∈ Ct(αj(Ui ∩ Uj)). (3.21)

On U i (1 ≤ i ≤ N) the mappings φi with the features (3.14)-(3.17) are defined.

Lemma 3.2. (Partition of unity)

{U i | 0 ≤ i ≤ N} satisfy (3.18). There exist functions σi ∈ C∞
0 (Rn), 0 ≤ i ≤ N

with

Tr(σi) ⊂ U i,
N∑

i=0

σ2
i (x) = 1 ∀x ∈ Ω̄. (3.22)

With αi and σi we are now able to define Hs(Γ).

Definition 3.6. Let Ω ∈ Ct. (Ui, αi) and σi satisfy (3.17)-(3.20). Let s ≤ t ∈ N

or s < t ∈ N, t > 1. The Sobolev-space Hs(Γ) is the set of all functions u : Γ → R

with (σiu) ◦ α−1
i ∈ Hs

0(R
n−1) (1 ≤ i ≤ N).
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3 A model problem

We can now formulate the trace and embedding theorems (3.2, 3.3) on a general

domain Ω:

Theorem 3.5. Let Ω ∈ Ct with 1/2 < s ≤ t ∈ N or 1/2 < s < t.

1. The trace γu of u ∈ Hs(Ω) is element of Hs−1/2(Γ) : γ ∈ L(Hs(Ω), Hs−1/2(Γ)).

2. For every w ∈ Hs−1/2(Γ) there exist an u ∈ Hs(Ω) with w = γu, ‖u‖s ≤
Cs‖w‖s−1/2.

3. For every w ∈ Hs(Ω) exists an extension E ∈ L(Hs(Ω), Hs(Rn)) with Ew ∈
Hs(Rn).

The dual space of Hs
0(Ω) is called H−s(Ω) or H−s

0 (Ω). The norm is then defined as

‖u‖−s := sup

{‖(u, v)‖L2(Ω)

‖v‖s

| 0 6= v ∈ Hs
0(Ω)

}

. (3.23)

These are the basics we need for this work. Now we take a look on the abstract

formulation of the problem with the finite element method.

3.2 The Finite Element Method (FEM)

As typical for numerical methods we want to solve the problem approximately. Here

we use the finite element method. Therefore we search the solution uh of the problem

in a finite dimensional subspace. But first we want to introduce the abstract problem

analog to Johnson [22] and Braess [8].

Let V a linear space, a : V × V → R a symmetric, positive definite bilinear form

and l : V → R a linear functional. Then we want to solve:

a(u, v) = (l, v) ∀ v ∈ V. (3.24)

As mentioned before, we don’t search the solution in V but in a finite dimensional

subspace Vh ⊂ V . I.e. we search the discrete solution uh ∈ Vh such that:

a(uh, v) = (l, v) ∀ v ∈ Vh. (3.25)
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3.3 Variational formulation

Now let {ϕ1, . . . , ϕn} be basis of Vh. Hence we can illustrate uh and v as linear

combination of ϕi, i = 1, . . . , n. This leads us to the following system of equations,

if uh =
n∑

k=1

xkϕk:

n∑

k=1

a(ϕk, ϕi)xk = (l, ϕi), i = 1, . . . , n (3.26)

or in matrix-vector-form:

Ax = b (3.27)

with Aik = a(ϕk, ϕi) and bi = (l, ϕi).

In practice we divide the domain Ω in (finite) subdomains and take a look on func-

tions which are polynoms on every subdomain. These subdomains are called ele-

ments. In this work we use bilinear elements on quadrilaterals.

Let Ω be a polygonal domain which can be divided in triangles or quadrilaterals.

We call the partition T = {T1, T2, . . . TN} of Ω in triangles or quadrilaterals allowed

if the following properties are fulfilled:

• Ω = ∪N
i=1Ti.

• Is Ti ∩ Tj one point, then this point is vertex of Ti and Tj.

• Is Ti ∩ Tj, i 6= j more than one point, then Ti ∩ Tj is edge of Ti and Tj.

If this is not fulfilled we have hanging nodes.

3.3 Variational formulation

Here we consider the variational formulation of the direct problem. As mentioned

before the Dirichlet boundary in the standard variational formulation is hidden in

the function space. In Section 5 (the inverse problem for a model problem) we want

to calculate the control u|ΓC
= q, where ΓC is a part of the boundary Γ. Therefore

we want to appear q in the variational formulation instead of being hidden in the

function space. For this we use a symmetric variant of Nitsche’s method.
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3 A model problem

Nitsche’s Method

For simplicity we introduce Nitsche’s method for Dirichlet boundary data on the

whole boundary instead of only on parts of it. We show consistency, stability and

reach the error estimates for ‖e‖0,Γ, ‖e‖0,Ω and ‖e‖1,Ω.

For generality we want to solve the potential equation on the unit square with

Dirichlet boundary data, i.e. we search u ∈ C2(Ω) ∩ C(Ω̄) such that

−∆u = g on Ω = (0, 1)2

u = q on Γ = ∂Ω.
(3.28)

In the standard variational formulation we have to find u ∈ V := {ϕ ∈ H1(Ω) | ϕ =

q on Γ} such that

(∇u,∇ϕ) = (g, ϕ) ∀ ϕ ∈ V. (3.29)

If we use this variational formulation the Dirichlet boundary data is hidden in the

function space V . In Section 5 we have the case that we want to calculate the control

q = u|ΓC
. So we want to appear q more directly.

This leads us to Nitsche´s method (see e.g. [29], [19]). Here we use a symmetric

form of it.

Nitsche’s method for (3.28) determines a solution uh ∈ Vh ⊂ H1(Ω) such that

ah(uh, ϕ) = (g, ϕ)0,Ω + (ψ(h)q, ϕ)0,Γ − (q, ∂nϕ)0,Γ ∀ϕ ∈ Vh (3.30)

with

ah(u, ϕ) := (∇u,∇ϕ)0,Ω − (∂nu, ϕ)0,Γ − (u, ∂nϕ)0,Γ + (ψ(h)u, ϕ)0,Γ. (3.31)

The second term of the bilinear form arises from Green’s formula, the third term is

for symmetry and ensures consistency and the penalize last term guarantees stability

which is shown later. Instead of −(u, ∂nϕ)Γ as third term we can also use +(u, ∂nϕ)Γ.

Then the bilinearform is positive definite for each choice of ψ(h) but we have an

unsymmetric problem to be solved (see [4]).
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3.3 Variational formulation

Now we want to analyse the symmetric version of Nitsche’s method used here ((3.30)

and (3.31)). Later we will show that ‖e‖1,Ω ∈ O(h) and ‖e‖0,Ω ∈ O(h2) as for the

classical variational formulation of problem (3.28). By (3.28) and using Green’s

formula we have consistency with the original problem:

ah(u, ϕ) − (g, ϕ)0,Ω − (ψ(h)q, ϕ)0,Γ + (q, ∂nϕ)0,Γ (3.32)

= (∇u,∇ϕ)0,Ω − (∂nu, ϕ)0,Γ − (g, ϕ)0,Ω ≡ 0.

Next we want to show, that the resulting bilinear form ah(., .) is positive definite.

The ideas are based on the results of Nitsche ([29]). Hansbo ([19]) uses a mesh

dependent norm for the convergence analysis caused by the continuity of ah(., .) in

this norm. In the following estimates c is a positive constant changing in every

estimation.

ah(uh, uh) = ‖∇uh‖2
0,Ω − (∂nuh, uh)0,Γ − (uh, ∂nuh)0,Γ + ψ(h)‖uh‖2

0,Γ

≥ |uh|21,Ω − 2‖∂nuh‖0,Γ‖uh‖0,Γ + ψ(h)‖uh‖2
0,Γ. (3.33)

Using the standard inverse estimate as in Hansbo ([19]) (proof: see Thomee [38]).

‖∂nv‖2
0,Γ ≤ c2

1h
−1|v|21,Ω ∀v ∈ Vh (3.34)

we have:

ah(uh, uh) ≥ |uh|21,Ω − 2c1h
−1/2|uh|1,Ω‖uh‖0,Γ + ψ(h)‖uh‖2

0,Γ. (3.35)

Now we want to estimate the product of norms (|uh|1,Ω‖uh‖0,Γ) with a sum of these

norms. Therefore we use for real numbers a, b,
√

ε 6= 0

ab ≤ ε

2
a2 +

1

2ε
b2 ⇔

(
b√
ε
− a

√
ε

)2

≥ 0. (3.36)

With ε = 2 we have in our case

c1h
−1/2|uh|1,Ω‖uh‖0,Γ ≤ 1

4
|uh|21,Ω + c2

1h
−1‖uh‖2

0,Γ. (3.37)

By this we can show that ah(., .) is positive definite depending on ψ(h):

ah(uh, uh) ≥ |uh|21,Ω − 1

2
|uh|21,Ω − 2c2

1h
−1‖uh‖2

0,Γ + ψ(h)‖uh‖2
0,Γ (3.38)

=
1

2
|uh|21,Ω + (ψ(h) − 2c2

1h
−1)‖uh‖2

0,Γ

≥ 0 for ψ(h) ≥ 2c2
1h

−1.
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3 A model problem

So we have stability in the sense that ah(., .) is a positive definite bilinear form if

ψ(h) ≥ 2c2
1h

−1. With (3.38) we can now choose ψ(h) = γh−1. With γ ≥ 2c2
1 we still

have a positive definite bilinear form ah(., .).

Now we have to solve: Find uh ∈ Vh ⊂ H1(Ω), so that:

ah(uh, ϕ) = (g, ϕ)0,Ω + (γh−1q, ϕ)0,Γ − (q, ∂nϕ)0,Γ (3.39)

with

ah(u, ϕ) := (∇u,∇ϕ)0,Ω − (∂nu, ϕ)0,Γ − (u, ∂nϕ)0,Γ + (γh−1u, ϕ)0,Γ. (3.40)

Next we want to do the error analysis. We will show, that

‖e‖0,Γ ≤ ch3/2‖u‖2,Ω and (3.41)

‖e‖1,Ω ≤ ch‖u‖2,Ω.

And later on we proove

‖e‖0,Ω ≤ ch2‖u‖2,Ω. (3.42)

First we take a look on (3.41). Therefore we need the linear interpolant Ihu of u

and the appropriate estimates for the differences u− Ihu on Ω and the boundary Γ:

‖u − Ihu‖k,Ω ≤ ch2−k‖u‖2,Ω (k = 0, 1), (3.43)

‖u − Ihu‖k,Γ ≤ ch3/2−k‖u‖2,Ω (k = 0, 1). (3.44)

Now we take a look on a(e, e). We can write this as:

a(e, e) = (∇e,∇e)0,Ω − (∂ne, e)0,Γ − (e, ∂ne)0,Γ + (γh−1e, e)0,Γ (3.45)

= ‖∇e‖2
0,Ω − (∂ne, e)0,Γ − (e, ∂ne)0,Γ + γh−1‖e‖2

0,Γ.

We estimate a(e, e) in both directions and can than evaluate |e|1,Ω and ‖e‖0,Γ. We

start with the lower bound. For this we have to estimate (∂ne, e)0,Γ. In the following

we write en instead of ∂ne.
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3.3 Variational formulation

By addition of Ihu − Ihu we can write
∫

Γ

een dΓ in the following sense:

∫

Γ

een dΓ =

∫

Γ

e(u − uh)n dΓ (3.46)

=

∫

Γ

e(u − Ihu + Ihu − uh)n dΓ

=

∫

Γ

(e(u − Ihu)n + e(Ihu − uh)n) dΓ.

We are now able to estimate |
∫

een dΓ| by using equation (3.34) and (3.43):
∣
∣
∣
∣
∣
∣

∫

Γ

een dΓ

∣
∣
∣
∣
∣
∣

≤ ‖e‖0,Γ

(
‖(u − Ihu)n‖0,Γ + ‖(Ihu − uh)n‖0,Γ

)
(3.47)

(3.34)

≤ c‖e‖0,Γ

(
h−1/2|u − Ihu|1,Ω + h−1/2|Ihu − uh|1,Ω

)

≤ c‖e‖0,Γ

(
h−1/2‖u − Ihu‖1,Ω + h−1/2|Ihu − uh|1,Ω

)

(3.43)

≤ c‖e‖0,Γ

(
h−1/2ch‖u‖2,Ω + h−1/2|Ihu − uh|1,Ω

)

≤ c‖e‖0,Γ

(
ch1/2‖u‖2,Ω + h−1/2|Ihu − uh|1,Ω

)
.

Using again (3.43) for the estimation of |Ihu − uh|1,Ω leads to:

|Ihu − uh|1,Ω = |Ihu − u + u − uh|1,Ω (3.48)

≤ |Ihu − u|1,Ω + |u − uh|1,Ω

≤ ‖Ihu − u‖1,Ω + |e|1,Ω

(3.43)

≤ ch‖u‖2,Ω + |e|1,Ω.

By (3.48) we then have for
∫

Γ

eendΓ:

∣
∣
∣
∣
∣
∣

∫

Γ

een dΓ

∣
∣
∣
∣
∣
∣

(3.48)

≤ c‖e‖0,Γ

(

h1/2‖u‖2,Ω + h−1/2
(
ch‖u‖2,Ω + |e|1,Ω

))

(3.49)

≤ c‖e‖0,Γ

(

(1 + c)h1/2‖u‖2,Ω + h−1/2|e|1,Ω

)

≤ ch1/2‖e‖0,Γ‖u‖2,Ω + ch−1/2‖e‖0,Γ|e|1,Ω

≤ ch−1/2‖e‖0,Γ h ‖u‖2,Ω + ch−1/2‖e‖0,Γ|e|1,Ω.
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3 A model problem

Using (3.36) with ε = 2 this results in:
∣
∣
∣
∣
∣
∣

∫

Γ

een dΓ

∣
∣
∣
∣
∣
∣

≤ 1

4
h−1‖e‖2

0,Γ + c2h2‖u‖2
2,Ω + ch−1‖e‖2

0,Γ +
1

4
|e|21,Ω (3.50)

≤ 1

4
|e|21,Ω + ch−1‖e‖2

0,Γ + ch2‖u‖2
2,Ω.

Afterall we have for a(e, e):

a(e, e) = ‖∇e‖2
0,Ω − 2(en, e)0,Γ + γh−1‖e‖2

0,Γ (3.51)

(3.50)

≥ |e|21,Ω − 2
(1

4
|e|21,Ω + ch−1‖e‖2

0,Γ + ch2‖u‖2
2,Ω

)

+ γh−1‖e‖2
0,Γ

≥ 1

2
|e|21,Ω + (γ − 2c)h−1‖e‖2

0,Γ − 2ch2‖u‖2
2,Ω.

So we have found a lower bound for a(e, e). Now we want to estimate a(e, e) in the

other direction. By addition of zero and Galerkin orthogonality we achieve:

a(e, e) = a(u − uh, u − uh) (3.52)

= a(u − uh, u − Ihu + Ihu − uh)

= a(u − uh, u − Ihu) + a(u − uh, Ihu − uh)
︸ ︷︷ ︸

=0

= a(u − uh, u − Ihu)

= (∇e,∇(u − Ihu))0,Ω − (∂ne, u − Ihu)0,Γ − (∂n(u − Ihu), e)0,Γ +

+(γh−1e, u − Ihu)0,Γ

≤ |e|1,Ω|u − Ihu|1,Ω + ‖en‖0,Γ‖u − Ihu‖0,Γ +

+‖(u − Ihu)n‖0,Γ‖e‖0,Γ + γh−1‖e‖0,Γ‖u − Ihu‖0,Γ.

We estimate every summand on its own. For this we will need (3.36), (3.43) and

(3.44).

• |e|1,Ω|u − Ihu|1,Ω: Using (3.43) and (3.36) leads to:

|e|1,Ω|u − Ihu|1,Ω ≤ |e|1,Ω‖u − Ihu‖1,Ω

(3.43)

≤ |e|1,Ω ch‖u‖2,Ω

(3.36)

≤ 1

2ε
|e|21,Ω +

ε

2
ch2‖u‖2

2,Ω

= c|e|21,Ω + ch2‖u‖2
2,Ω. (3.53)
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• ‖en‖0,Γ‖u − Ihu‖0,Γ: By (3.34) and (3.44) we have:

‖en‖0,Γ‖u − Ihu‖0,Γ = ‖(u − uh)n‖0,Γ‖u − Ihu‖0,Γ (3.54)

= ‖(u − Ihu + Ihu − uh)n‖0,Γ‖u − Ihu‖0,Γ

≤
(
‖(u − Ihu)n‖0,Γ + ‖(Ihu − uh)n‖0,Γ

)
‖u − Ihu‖0,Γ

= ‖(u − Ihu)n‖0,Γ‖u − Ihu‖0,Γ +

+‖(Ihu − uh)n‖0,Γ‖u − Ihu‖0,Γ

(3.34)

≤ ch−1/2|u − Ihu|1,Ω‖u − Ihu‖0,Γ +

+ch−1/2|Ihu − uh|1,Ω‖u − Ihu‖0,Γ

≤ ch−1/2‖u − Ihu‖1,Ω‖u − Ihu‖0,Γ +

+ch−1/2|Ihu − uh|1,Ω‖u − Ihu‖0,Γ

(3.44)

≤ ch1/2‖u‖2,Ω ch3/2‖u‖2,Ω +

+h−1/2|Ihu − uh|1,Ω ch3/2‖u‖2,Ω

≤ ch2‖u‖2
2,Ω + ch|Ihu − uh|1,Ω‖u‖2,Ω.

Using (3.48) and (3.36) leads to:

‖en‖0,Γ‖u − Ihu‖0,Γ

(3.48)

≤ ch2‖u‖2
2,Ω + ch2‖u‖2

2,Ω + ch‖u‖2,Ω|e|1,Ω

(3.36)

≤ ch2‖u‖2
2,Ω +

ε

2
ch2‖u‖2

2,Ω +
1

2ε
|e|21,Ω

≤ ch2‖u‖2
2,Ω + c|e|21,Ω. (3.55)

• ‖(u − Ihu)n‖0,Γ‖e‖0,Γ: For this estimation we use (3.34),(3.44) and (3.36).

‖(u − Ihu)n‖0,Γ‖e‖0,Γ

(3.34)

≤ ch−1/2|u − Ihu|1,Ω‖e‖0,Γ (3.56)
(3.44)

≤ ch1/2‖u‖2,Ω‖e‖0,Γ

= ch‖u‖2,Ω h−1/2‖e‖0,Γ

(3.36)

≤ 1

2ε
h−1‖e‖2

0,Γ +
ε

2
ch2‖u‖2

2,Ω

= ch−1‖e‖2
0,Γ + ch2‖u‖2

2,Ω.
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• γh−1‖e‖0,Γ‖u − Ihu‖0,Γ: Here we use again (3.44) and (3.36).

γh−1‖e‖0,Γ‖u − Ihu‖0,Γ

(3.44)

≤ γh−1‖e‖0,Γ ch3/2‖u‖2,Ω (3.57)

≤ γh−1/2‖e‖0,Γ ch‖u‖2,Ω

(3.36)

≤ 1

2ε
γh−1‖e‖2

0,Γ +
ε

2
ch2‖u‖2

2,Ω

≤ cγh−1‖e‖2
0,Γ + ch2‖u‖2

2,Ω.

By these four inequalities (3.53), (3.55)- (3.57) we are now able to estimate a(e, e):

a(e, e)
(3.52)

≤ |e|1,Ω|u − Ihu|1,Ω + ‖en‖0,Γ‖u − Ihu‖0,Γ (3.58)

+‖(u − Ihu)n‖0,Γ‖e‖0,Γ + γh−1‖e‖0,Γ‖u − Ihu‖0,Γ

≤ c|e|21,Ω + ch2‖u‖2
2,Ω + ch2‖u‖2

2,Ω + c|e|21,Ω + ch−1‖e‖2
0,Γ

+ch2‖u‖2
2,Ω + cγh−1‖e‖2

0,Γ + ch2‖u‖2
2,Ω

≤ c|e|21,Ω + ch2‖u‖2
2,Ω + cγh−1‖e‖2

0,Γ.

The upper bound from (3.58) together with the lower bound from (3.51) results in

c|e|21,Ω + ch2‖u‖2
2,Ω + cγh−1‖e‖2

0,Γ ≥ a(e, e) (3.59)

≥ 1

2
|e|21,Ω + (γ − 2c̃)h−1‖e‖2

0,Γ − 2c̃h2‖u‖2
2,Ω.

By (3.59) we can now estimate the sum of the error e in the H1-seminorm over Ω

and e in the L2-norm over Γ with u in the H2-norm over Ω:

ch2‖u‖2
2,Ω ≥ c2|e|21,Ω + c3(γ)h−1‖e‖2

0,Γ. (3.60)

For c2 > 0 and c3 > 0, we achieve the following inequalities:

|e|21,Ω ≤ ch2‖u‖2
2,Ω, (3.61)

‖e‖2
0,Γ ≤ ch3‖u‖2

2,Ω (3.62)

and so

‖e‖0,Γ ≤ ch3/2‖u‖2,Ω. (3.63)
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3.3 Variational formulation

In (3.61) we only have the error in the H1-seminorm but we want to have it in the

H1-norm. For this we have by the inequalities for |e|21,Ω and ‖e‖2
0,Γ (h ≤ 1):

‖e‖2
1,Ω = |e|21,Ω + ‖e‖2

0,Ω (3.64)

≤ |e|21,Ω + c
(

|e|1,Ω + ‖e‖0,Γ

)2

≤ |e|21,Ω + c|e|21,Ω + c|e|1,Ω‖e‖0,Γ + c‖e‖2
0,Γ

(3.61)−(3.63)

≤ ch2‖u‖2
2,Ω + ch‖u‖2,Ω ch3/2‖u‖2,Ω + ch3‖u‖2

2,Ω

≤ ch2‖u‖2
2,Ω.

This results in:

‖e‖1,Ω ≤ ch‖u‖2,Ω. (3.65)

I.e. we have for Nitsche’s method the same order of convergence for the error with

respect to the H1-norm as for the classical variational formulation. For the L2-

error we expect a better result than for the H1- error. Now we want to prove this.

Therefore we take a look at the dual problem to (3.39).

For v ∈ Vh we have:

(∇e,∇v)0,Ω − (∂ne, v)0,Γ − (e, ∂nv)0,Γ + γh−1(e, v)0,Γ = 0. (3.66)

We choose v = Ihw with w from:

− ∆w = e on Ω, (3.67)

w = 0 on Γ. (3.68)

Because of w ∈ H2(Ω) we have: ‖w‖2,Ω ≤ c‖e‖0,Ω. Using equation (3.67) and

Green’s formula we are able to estimate ‖e‖0,Ω.
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‖e‖2
0,Ω = −(e, ∆w)0,Ω (3.69)

= (∇e,∇w)0,Ω − (e, ∂nw)0,Γ

−(3.66)
= (∇e,∇w)0,Ω − (e, ∂nw)0,Γ − (∇e,∇Ihw)0,Ω + (e, ∂nIhw)0,Γ

+(∂ne, Ihw)0,Γ − γh−1(e, Ihw)0,Γ

= (∇e,∇(w − Ihw))0,Ω − (e, ∂n(w − Ihw))0,Γ + (∂ne, Ihw)0,Γ

−γh−1(e, Ihw)0,Γ

w=0 on Γ
= (∇e,∇(w − Ihw))0,Ω − (e, ∂n(w − Ihw))0,Γ − (∂ne, w − Ihw)0,Γ

+γh−1(e, w − Ihw)0,Γ.

By equations (3.63), (3.65) and equations (3.43), (3.44) we can estimate every term

on its own:

• (∇e,∇(w − Ihw))0,Ω

(∇e,∇(w − Ihw))0,Ω ≤ ‖e‖1,Ω‖w − Ihw‖1,Ω (3.70)
(3.65),(3.43)

≤ ch‖u‖2,Ω ch‖w‖2,Ω

≤ ch2‖u‖2,Ω‖e‖0,Ω

• (e, ∂n(w − Ihw))0,Γ

(e, ∂n(w − Ihw))0,Γ ≤ ‖e‖0,Γ‖(w − Ihw)n‖0,Γ (3.71)
(3.34)

≤ ‖e‖0,Γ ch−1/2|w − Ihw|1,Ω

(3.63),(3.43)

≤ ch3/2‖u‖2,Ω ch1/2‖w‖2,Ω

≤ ch2‖u‖2,Ω‖e‖0,Ω

• γh−1(e, w − Ihw)0,Γ

γh−1(e, w − Ihw)0,Γ ≤ γh−1‖e‖0,Γ‖w − Ihw‖0,Γ (3.72)
(3.63),(3.43)

≤ γh−1ch3/2‖u‖2,Ω ch3/2‖w‖2,Ω

≤ ch2‖u‖2,Ω‖e‖0,Ω
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3.3 Variational formulation

• (∂ne, w − Ihw)0,Γ

(∂ne, w − Ihw)0,Γ ≤ ‖en‖0,Γ‖w − Ihw‖0,Γ.

First we write e as e = u − Ihu + Ihu − uh and estimate ‖e‖0,Γ:

‖en‖0,Γ ≤ ‖(u − Ihu)n‖0,Γ + ‖(Ihu − uh)n‖0,Γ (3.73)
(3.34)

≤ ch−1/2|u − Ihu|1,Ω + ch−1/2|Ihu − uh|1,Ω

(3.43)

≤ ch−1/2ch‖u‖2,Ω + ch−1/2|Ihu − uh|1,Ω

(3.48)

≤ ch1/2‖u‖2,Ω + ch−1/2(ch‖u‖2,Ω + |e|1,Ω)

≤ ch1/2‖u‖2,Ω + ch−1/2ch‖u‖2,Ω + ch−1/2‖e‖1,Ω

≤ ch1/2‖u‖2,Ω + ch−1/2‖e‖1,Ω

(3.65)

≤ ch1/2‖u‖2,Ω + ch−1/2h‖u‖2,Ω

≤ ch1/2‖u‖2,Ω.

So, afterall we have:

(∂ne, w − Ihw)0,Γ ≤ ‖en‖0,Γ‖w − Ihw‖0,Γ (3.74)
(3.73),(3.43)

≤ ch1/2‖u‖2,Ω ch3/2‖w‖2,Ω

≤ ch2‖u‖2,Ω‖e‖0,Ω

and for ‖e‖2
0,Ω we reach by the equations (3.70), (3.71),(3.72) and (3.74):

‖e‖2
0,Ω ≤ ‖e‖1,Ω‖‖w − Ihw‖1,Ω + ‖e‖0,Γ‖(w − Ihw)n‖0,Γ (3.75)

+γh−1‖e‖0,Γ‖w − Ihw‖0,Γ + ‖en‖0,Γ‖w − Ihw‖0,Γ

≤ ch2‖u‖2,Ω‖e‖0,Ω.

After division by ‖e‖0,Ω we reach the expected result:

‖e‖0,Ω ≤ ch2‖u‖2,Ω. (3.76)

Compared to the classical variational formulation we have the same order of con-

vergence for the L2-error. We have another function space because the Dirichlet
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3 A model problem

boundary condition isn’t hidden in the function space but the more complex prob-

lem to be solved. Also we have used a constant γ which we haven’t determined

yet.

From inequality (3.34)

‖∂nu‖2
0,Γ ≤ c2

1h
−1|u|21,Ω

and (3.38) (stability) we know, that γ ≥ 2c2
1 must be fulfilled. Therefore we have

to determine the constant c2
1. Following Hansbo [19] we have to calculate c2

1 as the

largest eigenvalue in the problem of finding uh ∈ Vh and λ ∈ R such that

(h1/2∂nuh, ∂nϕ)0,E = λ(∇uh,∇ϕ)0,T ∀ϕ ∈ Vh. (3.77)

Where T is an element of the triangulation and E = ∂T ∩ Γ. We can see that c2
1

depends on the geometry of the element and the degree of the polynomials we choose

for the approximation. If we choose linear elements, we know that ∇ϕ is constant

on each element. If we call meas(F ) the length, area or volume of the set F we have

according to Hansbo [19]:

‖h1/2∂nϕ‖2
0,E ≤ h meas(E)

meas(T )
‖∇ϕ‖2

0,T . (3.78)

If we define h we can determine c2
1. If we choose triangles T and h as the distance

from the interior node to the boundary E we have

meas(T ) =
h meas(E)

2
(3.79)

and by equation (3.78) follows:

‖h1/2∂nϕ‖2
0,E ≤ h meas(E)

h meas(E)

2

‖∇ϕ‖2
0,T = 2‖∇ϕ‖2

0,T (3.80)

By equation (3.34) we have c2
1 = 2. Because we need γ ≥ 2c2

1 we have γ ≥ 4.

3.3.1 Numerical Results

Now we want to verify the theoretical results. We do the calculations for a test

example and choose γ = 1 and γ = 10. For the two cases of γ we take a look on
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3.3 Variational formulation

‖e‖0,Ω and ‖e‖1,Ω. We will see that γ = 1 is too small, the H1-error increases. But

for γ = 10 we ratify the theoretical results. If we choose γ too big, the penalty term

γh−1(uh, ϕ)Γ has too much importance.

As a test example we choose

−∆u = x − x2 + y − y2 on Ω = (0, 1)2

u = 0 on Γ.
(3.81)

For this problem we know the analytical solution:

u(x, y) =
1

2
x y (1 − x) (1 − y).

From the theory we know that ‖e‖1,Ω ∈ O(h) and ‖e‖0,Ω ∈ O(h2) if we choose the

constant γ adequate. We want to verify this by the example.

For the discretisation we choose quadrilaterals. For the parameter γ we analyse two

cases. First in table 3.1 we present the results for the L2- and H1- error calculated

with γ = 10. There we see that the decrease of the L2- error is quadratic and that

of the H1-error is linear which verifies the theoretical results.

In the second case we do the calculation with γ = 1. The results in table 3.2 show,

that this parameter is too small. The L2- error decreases, but is not in O(h2) and

the H1-error increases while getting smaller with h.

These results are graphically presented in the Figures 3.1 and 3.2. In Figure 3.1

we see the L2-error depending on h for γ = 1 and γ = 10. For γ = 10 we see

the quadratic decreasing and for γ = 1 that the error decrease, but not quadratic.

Figure 3.2 shows the linear decreasing of the H1-error for γ = 10 and the increasing

for γ = 1 depending on h.
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h ‖e‖0,Ω ratio ‖e‖1,Ω ratio

1/2 3.744433 ∗ 10−3 3.942599 ∗ 10−2

1/4 1.04092 ∗ 10−3 0.2779 1.899091 ∗ 10−2 0.4816

1/8 2.752370 ∗ 10−4 0.2644 9.378373 ∗ 10−3 0.4938

1/16 7.117707 ∗ 10−5 0.2586 4.671045 ∗ 10−3 0.498

1/32 1.813167 ∗ 10−5 0.2547 2.332117 ∗ 10−3 0.4993

1/64 4.578049 ∗ 10−6 0.2525 1.165313 ∗ 10−3 0.4997

1/128 1.150350 ∗ 10−6 0.2513 5.824802 ∗ 10−4 0.4998

1/256 2.8833 ∗ 10−7 0.2506 2.911971 ∗ 10−4 0.4999

1/512 7.217610 ∗ 10−8 0.2503 1.455879 ∗ 10−4 0.4999

Table 3.1: L2- and H1-error for the test example using Nitsche’s method with γ = 10.

h ‖e‖0,Ω ratio ‖e‖1,Ω ratio

1/2 5.370479 ∗ 10−2 1.925762 ∗ 10−1

1/4 3.923868 ∗ 10−2 0.73 3.709428 ∗ 10−1 1.9262

1/8 2.227989 ∗ 10−2 0.5678 2.202936 ∗ 10−1 0.5939

1/16 1.576394 ∗ 10−2 0.7075 4.483295 ∗ 10−1 2.0351

1/32 1.119507 ∗ 10−2 0.7102 6.247318 ∗ 10−1 1.3935

1/64 7.951525 ∗ 10−3 0.7103 8.829628 ∗ 10−1 1.4133

1/128 5.639546 ∗ 10−3 0.7092 1.250846 1.4166

1/256 3.994662 ∗ 10−3 0.7083 1.771445 1.4162

1/512 2.8277263 ∗ 10−3 0.7079 2.507313 1.4154

Table 3.2: L2- and H1-error for the test example using Nitsche’s method with γ = 1.
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Figure 3.1: L2-error for the test example with γ = 1 (left) and γ = 10 (right).
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Figure 3.2: H1-error for the test example with γ = 1 (left) and γ = 10 (right).

In this Section we have introduced a symmetric variant of Nitsches method to handle

Dirichlet boundary data in variational formulation without hide them in the function

space. We have shown that the error estimates are of the same order as in the

classical variational formulation if we choose γ large enough. For this formulation we

have in contrast to the classical variational formulation another underlying function

space but we have the comnplexer problem to solve and we have to estimate the

constant γ which is important for the convergence of the method.
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4 Inverse Problems

As described in the introduction we want to solve inverse problems. Before we do

this in Section 5 we need some theoretical results about solving inverse problems.

Here we only want to present the basics. For proofs and more information see the

literature, e.g. Louis [25] and Rieder [30] on which this Section is based.

4.1 The theory of inverse problems

In this Section we define what is an inverse problem and when to call it ill-posed.

We reduce solving the inverse problem to solving the normal equation A∗Af = A∗g,

introduce the Moore-Penrose inverse A+ and the singular system which we need in

the next Section for the regularisation methods.

At first we want to recapitulate from the introduction what is an inverse problem

and when we call a problem ill-posed.

For given A : X → Y we call the calculation of Ax with x ∈ X the direct

problem. If we want to find x ∈ X for given y ∈ Y , so that Ax = y, we

call this an inverse problem.

Definition 4.1. Let A : X → Y be a mapping between the topologic spaces X, Y .

The problem (A,X, Y ) is called well-posed, if

• ∀ g ∈ Y ∃ a solution to Af = g.

• The solution is well defined.
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4 Inverse Problems

• The solution depends continuously on the data, i.e. A−1 is continuous.

If one of these conditions is not satisfied the problem is called ill-posed.

If g /∈ R(A) there doesn’t exist a solution to Af = g. So we have to define a new

solution idea. In the following X and Y are Hilbert spaces. We call f ∈ X solution

to Af = g with g /∈ R(A) if f minimizes the residual

‖Af − g‖Y ≤ ‖Aφ − g‖Y ∀φ ∈ X. (4.1)

For g ∈ R(A) this definition is also valid and results in the solution f .

In theorem 4.1 we formulate equivalent results for reaching this f . Therefore we

need the adjoint operator to A ∈ L(X,Y ) A∗ ∈ L(Y,X) which is characterised by

∀ x ∈ X : (Ax, y)Y = (x,A∗y)X (4.2)

and the orthogonal projector PM ∈ L(Z) from the Hilbert space Z onto a subset

M ⊂ Z. By the following theorem we are able to find f ∈ X which minimizes the

residual by solving the normal equation.

Theorem 4.1. Let g ∈ Y and A ∈ L(X,Y ). Then the following declarations are

equivalent

a) f ∈ X satisfies Af = PR(A)g.

b) f ∈ X minimizes the residual:

‖Af − g‖Y ≤ ‖Aφ − g‖Y ∀φ ∈ X. (4.3)

c) f ∈ X solves the normal equation

A∗Af = A∗g. (4.4)

If we call L(g) := {ϕ ∈ X | A∗Aϕ = A∗g} the set of solutions of the normal equation,

we can formulate the following properties of the set L(g):
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Lemma 4.1. Let g ∈ Y . Then

• L(g) 6= ∅ ⇔ g ∈ R(A) ⊕ R(A)⊥.

• L(g) is closed and convex.

As we are interested in only one solution of the normal equation, we need a distin-

guished solution in the set L(g). We choose the element with minimal norm.

Lemma 4.2. For g ∈ R(A)⊕R(A)⊥ L(g) contains a well defined f+ with minimal

norm:

‖f+‖X < ‖φ‖X ∀φ ∈ L(g)\{f+}. (4.5)

By this lemma we have the existence of a unique solution of the normal equation if

g ∈ R(A) ⊕ R(A)⊥.

Definition 4.2. The mapping A+ : D(A+) ⊂ Y → X with D(A+) = R(A)⊕R(A)⊥

which assign every g ∈ D(A+) the well defined element f+ ∈ L(g) with minimal

norm, is called Moore-Penrose-Inverse of A ∈ L(X,Y ).

The element f+ = A+g is called minimum-norm-solution of Af = g.

It can be shown, that f+ = A+g is the unique solution of the normal equation in

N(A)⊥ if g ∈ D(A+). The properties of A+ are listed in the following theorem.

Theorem 4.2. The Moore-Penrose-Inverse A+ for A ∈ L(X,Y ) has the following

qualities:

• A+ is defined on the whole space Y iff R(A) is closed.

• R(A+) = N(A)⊥.

• A+ is linear.

• A+ is continuous iff R(A) = R(A).
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4 Inverse Problems

A+ is uniquely characterised by the four Moore-Penrose-Axioms:

AA+A = A, A+AA+ = A+,

A+A = PR(A∗), AA+ = PR(A).
(4.6)

By A+ and f+ we have a well defined solution to our problem. So the ill-posedness

of the problem is caused by A−1 which is not continuous. This leads us to a new

definition of ill-posedness in the sense of Nashed.

Definition 4.3. We call a problem (A,X, Y ) ill-posed in the sense of Nashed when

R(A) is not closed in Y . Otherwise the problem is called well-posed in the sense of

Nashed.

A typical example for ill-posed problems are problems with compact operators which

have infinite dimensional range. For analytical results we need the singular value

decomposition. Let A ∈ L(X) with X a normed space. A is called self-adjoint if

A∗ = A. σ(A) = {λ ∈ C | λI − A is not invertible} is called spectrum of A. λ ∈ C

is eigenvalue of A, if there exist x 6= 0 with Ax = λx.

Theorem 4.3. Let X be a Hilbert space and A ∈ K(X) a self-adjoint compact

operator with eigenvalues λn ∈ R and orthonormal eigenvectors vn ∈ X. For every

x ∈ X we have:

Ax =
∞∑

n=1

λn〈x, vn〉vn. (4.7)

Now, let A ∈ K(X,Y ) with X,Y Hilbert spaces. Then T = A∗A ∈ K(X) is self-

adjoint. The corresponding eigenvalues λn of T have been arranged according to

size:

λ1 ≥ λ2 ≥ . . . > 0.

With σn := +
√

λn and un := σ−1
n Avn, n ∈ N we have

Avn = σnun, A∗un = σnvn (4.8)

where {un} is an orthonormal system for R(A) = N(A∗)⊥ because

〈uj, uk〉Y =
1

σjσk

〈Avj, Avk〉Y =
1

σjσk

〈A∗Avj, vk〉X =
σj

σk

〈vj, vk〉X = δj,k (4.9)
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4.1 The theory of inverse problems

and {vn} for R(A∗) = N(A)⊥. With these we are able to define the singular system

of A.

Definition 4.4. {vn, un; σn}n≥0 ⊂ X × Y × (0,∞) is called singular system of A.

Af =
∞∑

n=1

σn〈f, vn〉Xun. (4.10)

is called singular value decomposition.

We can also describe A∗g and A+g as a series with coefficients of the singular system

of A.

If A ∈ K(X,Y ) with singular system {vn, un; σn} then

A∗g =
∞∑

n=1

σn〈g, un〉Y vn (4.11)

A+g =
∞∑

n=1

σ−1
n 〈g, un〉Y vn for g ∈ D(A+). (4.12)

If R(A) is finite dimensional, A+ is continuous.

Now, let A ∈ K(X,Y ) with singular system {vn, un; σn} and φ : [0,∞) → R a

piecewise continuous function with jump discontinuity. Therefore we define:

φ(A∗A)x :=
∞∑

n=1

φ(σ2
n)〈x, vn〉Xvn + φ(0)PN (A)x. (4.13)

For φ(t) = +
√

t we call φ(A∗A) absolute value of A:

|A|x := (A∗A)1/2x =
∞∑

n=1

σn〈x, vn〉Xvn. (4.14)

For |A∗| we get:

|A∗|y = (AA∗)1/2y =
∞∑

n=1

σn〈y, un〉Y un. (4.15)

By this we can represent the range of A∗ as the range of |A| and the range of A as

the range of |A∗|:
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4 Inverse Problems

Theorem 4.4. Let A ∈ L(X,Y ) with X,Y Hilbert spaces. Then:

R(A∗) = R(|A|) = R((AA∗)1/2).

R(A) = R(|A∗|) = R((A∗A)1/2).
(4.16)

For later use we generalise equation (4.14):

|A|2νx := (A∗A)νx =
∞∑

n=1

σ2ν
n 〈x, vn〉Xvn. (4.17)

We need this for the following theory of regularisation.

4.2 Regularisation

In this Section we define a regularisation method, introduce the worst case error and

how to reach a regularisation method by using the singular system. As a special

regularisation which we use for the calculation in the next Section, we introduce the

Tikhonov-Phillips-regularisation.

If R(A) is not closed, the generalized inverse A+ is not continuous. For this problem

we need the regularisation of inverse problems, i.e. an approximation of A+ with

a family of continuous operators {Rt}t>0 defined on Y . With a suitable choice of t

this leads us to

Definition 4.5. Let A ∈ L(X,Y ) and {Rt}t>0 a family of continuous (maybe not

linear) operators from Y to X with Rt0 = 0. If there exists a mapping γ : (0,∞) ×
Y → (0,∞) so that for all g ∈ R(A)

sup
{

‖A+g − Rγ(ǫ,gǫ)g
ǫ‖X

∣
∣
∣ gǫ ∈ Y, ‖g − gǫ‖Y ≤ ǫ

}

→ 0 (ǫ → 0) (4.18)

is satisfied, the pair ({Rt}t>0, γ) is called regularisation or regularisation method for

A+. If all Rt are linear, the regularisation is linear. The mapping γ is a parameter

choice with

lim
ǫ→0

sup{γ(ǫ, gǫ) | gǫ ∈ Y, ‖g − gǫ‖Y ≤ ǫ} = 0. (4.19)

The value γ(ǫ, gǫ) is the regularisation parameter. If it depends only on ǫ it is called

a-priori, else a-posteriori parameter choice.
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4.2 Regularisation

From equation (4.18) we have the convergence:

lim
ǫ→0

‖Rγ(ǫ,g)g − A+g‖X = 0 ∀ g ∈ R(A). (4.20)

The reconstruction error ‖A+g − Rγg
ǫ‖X for a linear regularisation is bounded by

the sum of approximation error and data error:

‖A+g − Rγg
ǫ‖X ≤ ‖A+g − Rγg‖X

︸ ︷︷ ︸

approximation error

+ ‖Rγ(g − gǫ)‖X
︸ ︷︷ ︸

data error

(4.21)

For information about the convergence rate of regularisation methods we need ad-

ditional assumptions to the general solution. Therefore we need the spaces Xν ⊂ X

with

Xν := R(|A|ν) = {|A|νz | z ∈ N (A)⊥}, ν ≥ 0. (4.22)

For these we have Xν ⊂ Xµ for ν ≥ µ and X0 = N (A)⊥. Due to this definition we

can illustrate x ∈ Xν as sum with coefficients of the singular system. For x ∈ Xν

exists z ∈ N (A)⊥ with x = |A|νz =
∞∑

k=1

σν
k〈z, vk〉Xvk. Now we can define a norm

‖.‖ν :

‖x‖2
ν := ‖z‖2

X =
∞∑

k=1

σ−2ν
k |〈x, vk〉X |2, (4.23)

by which we can give an alternative characterisation of the space Xν :

Xν = {x ∈ N (A)⊥ | ‖x‖ν < ∞}. (4.24)

We call a continuous mapping T : Y → X with T0 = 0 reconstruction method for

solving the operator equation with operator A ∈ L(X,Y ). The question is now,

what is the worst reconstruction error for a smooth solution with noisy data. The

answer is delivered by the following supremum under the assumption f ∈ Xν with

‖f‖ν ≤ ρ:

Eν(ǫ, ρ, T ) := sup{‖Tgǫ − A+g‖X | g ∈ R(A), gǫ ∈ Y,

‖g − gǫ‖Y ≤ ǫ, ‖A+g‖ν ≤ ρ} (4.25)

= sup{‖Tgǫ − x‖X | x ∈ Xν , gǫ ∈ Y, ‖Ax − gǫ‖Y ≤ ǫ, ‖x‖ν ≤ ρ}.
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4 Inverse Problems

The adequate reconstruction method is the method with smallest error Eν(ǫ, ρ, T ).

So we are interested in the error

Eν(ǫ, ρ) := inf{Eν(ǫ, ρ, T ) | T : Y → X continuous, T0 = 0}. (4.26)

For A ∈ L(X,Y ) has been shown (see e.g. Louis [25])

Eν(ǫ, ρ) = eν(ǫ, ρ) := sup{‖x‖X | x ∈ Xν , ‖Ax‖Y ≤ ǫ, ‖x‖ν ≤ ρ}. (4.27)

By eν(ǫ, ρ) we are able to declare the worst case error of the best reconstruction-

method without knowing the reconstruction method if we know the noise level ǫ,

f ∈ Xν and ‖f‖ν is bounded by ρ.

Theorem 4.5. Let A ∈ L(X,Y ) and ν > 0. Then

eν(ǫ, ρ) ≤ ρ1/(ν+1)ǫν/(ν+1). (4.28)

Moreover there exists {ǫk}k∈N with ǫk → 0 for k → ∞, for which we have

eν(ǫk, ρ) = ρ1/(ν+1)ǫ
ν/(ν+1)
k . (4.29)

For a proof see Rieder [30].

By equation (4.28) we are able to establish the new notations optimal and of optimal

order.

Definition 4.6. Let A ∈ L(X,Y ) with an open range. The family of reconstruction

methods {Tǫ}ǫ>0 is called of optimal order concerning Xν if there exists a constant

Cν > 1 so that for all ǫ > 0 sufficiently small and ρ ≥ 0:

Eν(ǫ, ρ, Tǫ) ≤ Cνρ
1/(ν+1)ǫν/(ν+1). (4.30)

If this estimation is fulfilled with Cν = 1, the reconstruction method is called optimal.

Regularisation methods are reconstruction methods. Due to this the above definition

is also valid for regularisation methods.
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4.2 Regularisation

Theorem 4.6. Let A ∈ L(X,Y ) with open range. There exists a family of continu-

ous operators {Rt}t≥0 , Rt : Y → X,Rt0 = 0 and a mapping γ : (0,∞)×Y → (0,∞),

so that {Rγ(ǫ,.).}ǫ>0 is of optimal order concerning Xν. For b > 1 γb is defined as

γb(ǫ, .) := γ(bǫ, .). Then ({Rt}t>0, γb) is a regularisation method for A+ which is of

optimal order concerning Xµ for all µ ∈ (0, ν].

Till now we only define regularisation. Now we want to construct some. The follow-

ing notations and definitions are based on Rieder [30] where A+ = (A∗A)−1A∗ and

the series description of A∗ is used to construct regularisation methods. In Louis

[25] the series description of A+ is used for the construction. The resulting methods

are equal because of choosing different filter functions.

For injective A ∈ K(X,Y ) we can illustrate A+ as A+ = (A∗A)−1A∗. For stabilising

(A∗A)−1 (which is not continuous) we use a family of piecewise continuous functions

Fγ : [0, ‖A‖2] → R with jump discontinuity. These functions satisfy

lim
γ→0

Fγ(λ) =
1

λ
∀ λ ∈ (0, ‖A‖2]. (4.31)

By this we have a continuous operator Fγ(A
∗A) which converges pointwise to (A∗A)−1

for γ → 0. We call {Fγ}γ>0 filter and define:

Rγg := Fγ(A
∗A)A∗g. (4.32)

By the singular system {vn, un; σn} of A and using equation (4.13) we have

Fγ(A
∗A)A∗g =

∞∑

n=1

Fγ(σ
2
n)σn〈g, un〉Y vn + Fγ(0) PN (A)A

∗g
︸ ︷︷ ︸

=0 (R(A∗)=N(A)⊥)

. (4.33)

In the following we need another description of A+g − Rγg. Therefore we use, that

A+g solves the normal equation A∗Af = A∗g:

A+g − Rγg = A+g − Fγ(A
∗A)A∗g (4.34)

= A+g − Fγ(A
∗A)A∗AA+g

= pγ(A
∗A)A+g
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4 Inverse Problems

with

pγ(t) := 1 − tFγ(t). (4.35)

Theorem 4.7. Let A ∈ K(X,Y ). The filter {Fγ}γ>0 satisfies (4.31) and

λ|Fγ(λ)| ≤ CF ∀ λ ∈ [0, ‖A‖2], γ > 0. (4.36)

Then

lim
γ→0

Fγ(A
∗A)A∗g =







A+g g ∈ D(A+)

∞ g /∈ D(A+).

(4.37)

Theorem 4.8. The filter {Fγ}γ>0 satisfies in equation (4.36). Set fγ := Rγg =

Fγ(A
∗A)A∗g and f ǫ

γ := Rγg
ǫ with g, gǫ ∈ Y and ‖g − gǫ‖ ≤ ǫ. Then:

‖Afγ − Af ǫ
γ‖Y ≤ CF ǫ (4.38)

and

‖fγ − f ǫ
γ‖X ≤ ǫ

√

CF M(γ) (4.39)

with

M(γ) := sup{Fγ(λ) | λ ∈ [0, ‖A‖2]}. (4.40)

As mentioned in equation (4.21) we can split the total error in approximation error

and data error. By theorem 4.8 we are able to estimate the data error:

‖A+g − Rγg
ǫ‖X ≤ ‖A+g − Rγg‖X + ‖Rγ(g − gǫ)‖X (4.41)

≤ ‖A+g − Rγg‖X + ǫ
√

CF M(γ). (4.42)

By theorem 4.7 we have lim
γ→0

‖A+g − Rγg‖X = 0 but by equation (4.31) we have

divergence for M(γ). As a consequence the total error grows for γ → 0. If we

connect γ and ǫ we can enforce convergence.

Corollary 4.1. The filter {Fγ}γ>0 satisfies equation (4.31) and in equation (4.36).

If we choose γ : (0,∞) → (0,∞) such, that

γ(ǫ) → 0 and ǫ
√

M(γ(ǫ)) → 0, for ǫ → 0 (4.43)

then ({Rt}t>0, γ) is a regularisation method for A+.
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4.2 Regularisation

This leads us to the definition of a regularising filter:

Definition 4.7. For A ∈ L(X,Y ) we call a family {Fγ}γ>0 of piecewise continuous

functions with jump discontinuity regularising filter if (4.31) and (4.36) are satisfied.

Lemma 4.3. Let the filter {Ft}t>0 be regularising for A ∈ L(X,Y ). For pt(λ) =

1 − λFt(λ) and µ > 0 exist t0 > 0 and ωµ : (0, t0] → R such that

sup
0≤λ≤‖A‖2

λµ/2|pt(λ)| ≤ ωµ(t) ∀ t ∈ (0, t0]. (4.44)

Let g ∈ R(A) and f+ = A+g ∈ Xµ with ‖f+‖µ ≤ ρ. For ft = Rtg and 0 < t ≤ t0 we

then have:

‖f+ − ft‖X ≤ ωµ(t)ρ (4.45)

and

‖Af+ − Aft‖Y ≤ ωµ+1(t)ρ. (4.46)

This leads us to an a-priori parameter choice which results in an regularisation

method of optimal order.

Theorem 4.9. Let {Ft}t>0 a regularising filter for A ∈ L(X,Y ). For pt(λ) and

µ > 0 exist t0 > 0 and ωµ : (0, t0] → R such that

sup
0≤λ≤‖A‖2

λµ/2|pt(λ)| ≤ ωµ(t) ∀ t ∈ (0, t0].

Farther we have

ωµ(t) ≤ Cpt
µ/2 for t → 0 (4.47)

and

M(t) ≤ CM t−1 for t → 0 (4.48)

with Cp , CM = const > 0. The a-priori parameter choice γ : (0,∞) → (0,∞)

satisfies

Cγ

(
ǫ

ρ

) 2

µ+1

≤ γ(ǫ) ≤ CΓ

(
ǫ

ρ

) 2

µ+1

for ǫ → 0 (4.49)

with Cγ, CΓ = const > 0.

Then ({Rt}t>0, γ) is a regularisation method of optimal order for A+ corresponding

Xµ.
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4 Inverse Problems

We want to define the qualification of a filter before we want to present the idea of

the Tikhonov-Phillips-regularisation.

Definition 4.8. Let {Ft}t>0 a regularising filter for A ∈ L(X,Y ) with M(t) ≤
CM t−1, t → 0. The maximal µ0 so that there exists a constant Cp = Cp(µ) for every

µ ∈ (0, µ0] with

sup
0≤λ≤‖A‖2

λµ/2|pt(λ)| ≤ Cpt
µ/2, t → 0 (4.50)

is called qualification of the filter.

Now we want to present the idea of the Tikhonov-Phillips-regularisation, starting

with the classical method. There the filter

Fγ(λ) =
1

λ + γ
, γ > 0 (4.51)

is used. By this filter the regularisation is

Rγy = Fγ(A
∗A)A∗y, y ∈ Y (4.52)

and Rγy is the unique solution of the regularised normal equation

(A∗A + γI)Rγy = A∗y. (4.53)

It can be shown that the classical Tikhonov-Phillips-regularisation has the qualifi-

cation µ0 = 2 and is of optimal order corresponding to Xµ with 0 < µ ≤ 2 and the

a-priori parameter choice (4.49). By γ(ǫ) = µ−1(ǫ/ρ)2/(µ+1) the Tikhonov-Phillips-

regularisation is optimal for 0 < µ ≤ 2. (see Rieder [30]).

Instead of the classical we want to use the general method of Tikhonov-Phillips

where we replace the identity I by a general operator B.

Let A ∈ L(X,Y ) and B : X → Z a linear, continuous operator where Z is a banach

space. Additionally exists β > 0 with

β‖f‖X ≤ ‖Bf‖Z ∀f ∈ X. (4.54)
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Under these constraints exists a unique solution fγ ∈ X to

(A∗A + γB∗B)f = A∗y (4.55)

where fγ depends continuously on y ∈ Y for γ > 0.

We can characterise the solution fγ of equation (4.55) as minimising argument of

the Tikhonov-Phillips-functional

Jγ,yx := ‖Ax − y‖2
Y + γ‖Bx‖2

Z , (4.56)

where ‖Bx‖2
Z is called penalty term. So, if fγ is the unique solution to equation

(4.55), fγ is the unique minimum of Jγ,y and contrary. By this we can define {Rγ}γ>0

as:

Rγy := fγ = (A∗A + γB∗B)−1A∗y = argmin{Jγ,y(f) | f ∈ Y }. (4.57)
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5 The inverse model problem

In this Section we want to describe the problems to be solved. As underlying PDE-

constraint we have the potential equation on the unit square with different boundary

conditions. After introducing the resulting variational equations to be solved, we

shortly describe the preconditioned cg-method (pcg) and the multigrid method,

which we use for the computation of the solutions.

5.1 Description of the problems

For generality we regard the differential equation −∆u = g on Ω = (0, 1)2 instead

of −∆u = 0, which is the underlying differential equation for the application. Also

we take a look on different boundary conditions and given measurements on ΓO.

This leads us to the following problems with Ω = (0, 1)2, Γ = ∂Ω and Γ divided into

ΓO = {x ∈ ∂Ω | x1 = 1}, ΓN = {x ∈ ∂Ω | x2 = 0 ∨ x2 = 1}, ΓC = {x ∈ ∂Ω | x1 = 0}.

Figure 5.1: The unit square as underlying geometry for the poisson equation with

the boundaries ΓO, ΓC and ΓN .
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5 The inverse model problem

We have four possible problems to solve on this geometry. We can search Neumann

or Dirichlet control on ΓC for given Neumann measurement or Dirichlet measure-

ment on ΓO. In the following we will introduce the four cases which we formulate

as optimal control problems, i.e. we search the control q on ΓC to minimise the

difference between the calculated solution and the given measurements on ΓO.

1. Find ∂nu = q on ΓC , for given measurement ∂nu = f on ΓO such that

J(u, q) → min, J(w, τ) :=
1

2
‖∂nw − f‖2

ΓO
(5.1)

under the PDE-constraint

−∆u = g on Ω ,

∂nu = 0 on ΓN ,

u = 0 on ΓO ,

∂nu = q on ΓC .

(5.2)

Where J(w, τ) defines a so-called cost functional and q denotes a control vari-

able.

2. Find u = q on ΓC for given measurement ∂nu = f on ΓO such that

J(u, q) → min, J(w, τ) :=
1

2
‖∂nw − f‖2

ΓO
(5.3)

under the PDE-constraint

−∆u = g on Ω ,

∂nu = 0 on ΓN ,

u = 0 on ΓO ,

u = q on ΓC .

(5.4)

These are the two problems based on the application where we have given Neumann

measurements on ΓO. As another two cases we want to formulate the problems

where we search the control q on ΓC (q = u|ΓC
or q = ∂nu|ΓC

) for given Dirichlet

measurements u|ΓO
= 0:
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3. Find u = q on ΓC for given measurement u = 0 on ΓO such that

J(u, q) → min, J(w, τ) :=
1

2
‖w‖2

ΓO
(5.5)

under the PDE-constraint

−∆u = g on Ω ,

∂nu = 0 on ΓN ,

∂nu = f on ΓO ,

u = q on ΓC .

(5.6)

Following Lions [24] these problems are uniquely solvable.

4. Find ∂nu = q on ΓC for given measurement u = 0 on ΓO such that

J(u, q) → min, J(w, τ) :=
1

2
‖w‖2

ΓO
(5.7)

under the PDE-constraint

−∆u = g on Ω ,

∂nu = 0 on ΓN ,

∂nu = f on ΓO ,

∂nu = q on ΓC .

(5.8)

In the fourth case we have the problem that the direct problem (5.8) with Neumann

boundary conditions is not uniquely solvable. If exist a solution u of the problem

we know that u + const is also a solution. Because of this we only take care of the

problems 1. to 3.. For the moment we want to take a look on a general problem.

After discretisation and using Nitsche’s method we can write all three problems as

(see e.g. [24] or [39])

J(uh, q) → min (5.9)

Auh = g + Bq. (5.10)

A, B, g and q depending on the problem to be solved with uh and q are unknown.

If A is regular we can write:

uh = A−1g + A−1Bq. (5.11)
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5 The inverse model problem

We want to solve minimisation problems. From Section 4.1 we know that solving

the minimisation problem is equivalent in solving the normal equation. Following

Louis [25] we can introduce a positive definite matrix C so that we can write

‖Du − f‖2
1 = (Du − f)∗C(Du − f). (5.12)

In our case D is the identity. Using equations (5.11), (5.12) and the fact we want

to solve a minimisation problem we have:

BT A−T CA−1Bq + BT A−T CA−1g − BT A−T Cf = 0 (5.13)

By the Tikhonov-Phillips regularisation we have to solve in matrix vector notation

(BT A−T CA−1B + α Reg) q = BT A−T (Cf − CA−1g). (5.14)

with α the regularisation parameter and Reg the regularisation matrix from the

Tikhonov-Philips regularisation.

For the determination of A, B and g we take again a look on the direct problems

we have to solve, using Nitsche’s method. If we call n the number of vertices in Ω

and Nq the number of degrees of freedom (DOF) on ΓC we have:

1. In the first case, where we search ∂nu|ΓC
= q for given ∂nu|ΓO

= f , we have to

solve for the direct problem in variational formulation ∀ ϕ ∈ Vh:

(∇uh,∇ϕ)0,Ω − (∂nuh, ϕ)0,Γ − (uh, ∂nϕ)0,ΓO
+ γh−1(uh, ϕ)0,ΓO

(5.15)

= (gh, ϕ)0,Ω + γh−1(0, ϕ)0,ΓO
− (0, ∂nϕ)0,ΓO

In the matrix-vector-notation Auh = g + Bq we have here:

A is a (n × n)-matrix corresponding to (ψ ∈ Vh):

(∇ψ,∇ϕ)0,Ω − (∂nψ, ϕ)0,ΓO
− (ψ, ∂nϕ)0,ΓO

+ γh−1(ψ, ϕ)0,ΓO

g is a vector with n rows corresponding to:

(gh, ϕ)0,Ω
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and B is a (n × Nq)-matrix with entries from:

(ψ, ϕ)0,ΓC

The terms (∂nuh, ϕ)0,ΓN
and γh−1(0, ϕ)0,ΓO

− (0, ∂nϕ)0,ΓO
are zero so they are

ignored in the formulation.

In the calculation of the inverse problem we have in the regularised normal

equation (5.14) resulting from the minimisation problem:

Cf is a vector with n rows and entries from

(∂nψ, ∂nϕ)0,ΓO

and for the (n × n)-matrix C we have the entries from:

(∂nψ, ∂nϕ)0,ΓO
.

2. In the second case, where we search u|ΓC
= q for given ∂nu|ΓO

= f , we have

to solve in the direct problem using Nitsche’s method:

(∇uh,∇ϕ)0,Ω − (∂nuh, ϕ)0,Γ − (uh, ∂nϕ)0,ΓO∪ΓC
+ γh−1(uh, ϕ)0,ΓO∪ΓC

= (gh, ϕ)0,Ω − (0, ∂nϕ)ΓO
+ γh−1(0, ϕ)ΓO

(5.16)

+(q, ∂nuϕ)ΓC
+ γh−1(q, ϕ)ΓC

In the matrix-vector-notation we have here:

A the (n × n)-matrix corresponding to (ψ ∈ Vh):

(∇ψ,∇ϕ)0,Ω − (∂nψ, ϕ)0,Γ − (ψ, ∂nϕ)0,ΓO∪ΓC
+ γh−1(ψ, ϕ)0,ΓO∪ΓC

g the vector with n rows corresponding to:

(gh, ϕ)0,Ω

and B the (n × Nq)-matrix with entries from:

γh−1(ψ, ϕ)0,ΓC
− (ψ, ∂nϕ)0,ΓC

.
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5 The inverse model problem

Again we have caused by the boundary conditions (∂nuh, ϕ)0,ΓN
= 0 which is

ignored in the formulation.

In the calculation of the inverse problem we have

Cf the vector with n rows and entries from

(∂nψ, ∂nϕ)0,ΓO

and for the (n × n)-matrix C we use again the entries:

(∂nψ, ∂nϕ)0,ΓO
.

3. In the third case where we search u|ΓC
= q for given u|ΓO

= 0 we have to solve

in the direct problem in variational formulation:

(∇uh,∇ϕ)0,Ω − (∂nuh, ϕ)0,Γ − (uh, ∂nϕ)0,ΓC
+ γh−1(uh, ϕ)0,ΓC

(5.17)

= (gh, ϕ)0,Ω − (qh, ∂nϕ)0,ΓC
+ γh−1(qh, ϕ)0,ΓC

A is the (n × n)-matrix corresponding to (ψ ∈ Vh):

(∇ψ,∇ϕ)0,Ω − (∂nψ, ϕ)0,ΓC
− (ψ, ∂nϕ)0,ΓC

+ γh−1(ψ, ϕ)0,ΓC

g is the vector with n rows corresponding to:

(gh, ϕ)0,Ω + (∂nψ, ϕ)0,ΓO

and B the (n × Nq)-matrix with the entries:

γh−1(ψ, ϕ)0,ΓC
− (ψ, ∂nϕ)0,ΓC

As in the previous cases we have zero Neumann conditions on ΓN and this

term doesn’t appear in the formulation.

In the calculation of the inverse problem we have here

Cf the n-vector with the entries

(∂nψ, ϕ)0,ΓO

and for the (n × n)-matrix C we have here the entries from:

(ψ, ϕ)0,ΓO
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5.2 Numerical methods

We have introduced A, B, C, f and g depending on the problem to be solved. In

the following we describe how to solve the regularised normal equation

(BT A−T CA−1B + α Reg) q = BT A−T (Cf − CA−1g)

with general given A, B, C, f and g for searched control q.

After initializing and assembling the matrices and vectors we have to do the following

steps:

1. Calculate G := A−1B by using the pcg-method.

2. Compute M := GT CG = BT A−T CA−1B.

3. Calculate A−1g by using the pcg-method.

4. Estimate MtF := GT (Cfh − CA−1g).

5. Use the Gauß-Jordan algorithm for (M + α · Reg) and

6. compute with this q from (M + α · Reg) q = MtF .

7. At last compute uh = A−1(g + Bq) with the calculated q by using the pcg-

method.

The calculation of A−1 occures by the pcg-method where the multigrid method (see

Section 5.2) is used as preconditioner. We want to describe briefly the pcg method

and the multigrid method in the next Section.

5.2 Numerical methods

In this Section we want to present the pcg algorithm and the basics of the multigrid

method the twogrid method respectively. We use the multigrid method as precon-

ditioner in the pcg-method for solving the inverse problem. For more information

see the literature (e.g. [8], [9], [18], [10], [31], [41]).

We start the description of the numerical methods with the preconditioned cg-

method (pcg) (see Braess [8]).
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5 The inverse model problem

Let us assume we know a positive definite matrix C which is an approximation of

A from the equation Ax = b to be solved. For x0 ∈ R
n we consider

x1 = x0 − αC−1g0 (5.18)

with g0 = Ax0 − b. If we have C = A we have solved the problem in the first step.

This leads us to the pcg-algorithm.

Algorithm 5.1. (PCG)

i) Let x0 ∈ R
n. Set g0 = Ax0 − b, d0 = −h0 = −C−1g0

ii) Calculate for k ≥ 0:

• αk =
gT

k hk

dT
k Adk

• xk+1 = xk + αkdk

• gk+1 = gk + αkAdk

• hk+1 = C−1gk+1

• βk =
gT

k+1hk+1

gT
k hk

• dk+1 = −hk+1 + βkdk

The matrix C is the preconditioner, i.e. the approximation of A calculated in our

case by the multigrid method. With C positive definite we have the following prop-

erties:

If we have gk−1 6= 0 holds:

• dk−1 6= 0

• Vk := span[g0, AC−1g0, . . . , (AC−1)k−1g0] = span[g0, g1, . . . , gk−1] and

span[d0, d1, . . . , dk−1] = C−1span[g0, g1, . . . , gk−1]

• The vectors d0, d1, . . . , dk−1 are conjugate.

• f(xk) = min
z∈Vk

f(x0 + C−1z).
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5.2 Numerical methods

Now we want to present the basics of the multigrid method. For more details see

the literature (e.g. [9], [10], [41]) We start the description with the twogrid method

where the multigrid method is based on. We want to solve the problem

Ax = b. (5.19)

As an example we use here the Laplace equation with Dirichlet boundary.

We discretise equidistant so that we have h =
1

N + 1
where N is the number of

inner points of the discretisation. We call l the level of discretisation for which we

have

h0 > h1 > . . . > hl > . . . , lim
l→∞

hl = 0. (5.20)

For each level l we have to solve the system

Alxl = bl. (5.21)

The idea of the twogrid method is to combine two levels for solving the system.

Therefore we do some smoothing steps Sl for the calculation of xl on level l and

evaluate the defect dl = Alxl − bl. Sl damps the oscillatory part of the error and

we obtain a smooth function which we can approximate well by a function on the

coarse grid (level l − 1). I.e. we restrict the defect dl to level l − 1 and calculate

there the error el−1. Now we have el−1 as approximation of el on level l − 1. We

need a map (called prolongation) which displays el−1 to el on level l. By the error el

we are able to calculate xl. The following diagram illustrates this idea again. There

we use for simplicity only a presmoothing procedure.

initial value x0
l

↓
level l xν

l = Sν
l x0

l → dl = bl − Alx
ν
l xl = xν

l − el

↓ ↑
restriction/ prolongation dl−1 = Rdl el = Pel−1

↓ ր
level l − 1 Al−1el−1 = dl−1
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5 The inverse model problem

Now we want to take a short look on the different steps.

The smoothing procedure Sl is an iterative solver for the problem (5.21) e.g. as in

Hackbusch [18] the Richardson method.

The problem is now, that el and el−1 are elements of different spaces Xl and Xl−1.

Because of this we need the prolongation and restriction operators. The prolongation

P : Xl−1 → Xl is a linear, injective mapping from the coarse grid to the fine grid.

As a simple prolongation the linear interpolant can be chosen.

The restriction R : Xl → Xl−1 is a linear, surjective mapping from the fine grid

to the coarse grid. The simplest restriction is the trivial restriction where we omit

the needless gridpoints but the literature gives the advise not to use this simple

restriction. One alternative is, to choose the restriction as the adjungate of the

prolongation.

By smoothing procedure Sl, prolongation P and restriction R we are able to describe

the two grid algorithm. In the general version we use ν1 presmoothing operations Sl

and ν2 postsmoothing operations S̃l. It’s not essential that the presmoothing and

postsmoothing operations are identical.

Algorithm 5.2. (Two grid-algorithm)

0) Choose x0,0
l as initial value

i) for k = 0, 1, 2, . . .

for i = 0, . . . , ν1 − 1

xk,i+1
l := Slx

k,i
l

end

el−1 := A−1
l−1R(bl − Alx

k,ν1

l )

xk+1,0
l := xk,ν−1

l − Pel−1

for i = 0, . . . , ν2 − 1

xk+1,i+1
l := S̃lx

k+1,i
l
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5.2 Numerical methods

end

xk+1,0
l := xk+1,ν2

l

end

In the two grid algorithm we have now to solve on level l − 1

Al−1el−1 = R(bl − Alx
k,ν−1
l ) (5.22)

which has the same structure as the original problem Alxl = bl on level l. We want

to solve equation (5.22) iterative, by solving it again with the two grid algorithm.

This method is called multigrid method.

We call the multigrid method ΦM with wich we can formulate the multigrid algo-

rithm:

Algorithm 5.3. (Multigrid-algorithm ΦM(xl, bl))

0) if l = 0:

x0 = A−1
0 b0

else

i) for k = 0, 1, 2, . . .

for i = 0, . . . , ν1 − 1

xk,i+1
l := Slx

k,i
l

end

dl−1 := R(bl − Al(x
k,ν1

l ))

e
(0)
l−1 := 0

for i = 1, . . . , γ

e
(i)
l−1 := ΦM

l−1(e
(i−1)
l−1 , dl−1)

end

xk+1,0
l := xk,ν1

l − Pe
(γ)
l−1
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5 The inverse model problem

for i = 0, . . . , ν2 − 1

xk+1,i+1
l = Slx

k+1,i
l

end

xk+1,0
l := xk+1,ν2

l

end

In step i) we have a loop over i = 1, . . . , γ which is unknown till now. Following the

literature γ is choosen as 1 or 2. Then we speak of a V-cycle (γ = 1) or a W-cycle

(γ = 2), respectively.

These are the basics of the numerical methods we use for solving the model problems

on the unit square. For convergence analysis and more details see the literature

already cited. In the next Section we want to present the numerical results for the

model problems using a test example.
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6 Numerical results for the model

problem

In this Section we present the numerical results for the calculation of the model

problem. We set γ = 10 in the terms resulting from Nitsche’s method (Section 3.3).

The special focus lies on the calculation of the searched control q on ΓC . With this

calculated control we compute u on Ω and so we can also analyse how good is the

approximation of the given boundary values u and ∂nu on ΓO and of u|ΓC
and ∂nu|ΓC

respectively (which we know from our analytic solution).

As underlying model problem we have

− ∆u = g. (6.1)

with g = 12xy2 − 12xy + 2x− 12y2 + 12y − 2. We know the corresponding analytic

solution of this problem is

u(x, y) = y2(1 − y)2(1 − x). (6.2)

with the outward pointing normals

∂nu|ΓC
= y2(1 − y)2, ∂nu|ΓO

= −y2(1 − y)2. (6.3)

We use bilinear elements on quadrilaterals. If we say, we refine three times, we

divide the unit square into (23)2 = 64 cells, i.e we have 23 + 1 vertices on each

boundary. We present the results of calculation for different global grid refinements,
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6 Numerical results for the model problem

different degrees of freedom on ΓC and different regularisation parameters. For the

calculation we use the three regularisation matrices:

R := Id, R1 :=
1

h
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We start the analysis of the results for given Neumann measurement on ΓO and

searched Neumann control on ΓC .

6.1 Neumann measurements on ΓO and Neumann

control on ΓC

In this Section we want to find the Neumann control q = ∂nu|ΓC
for given Neumann

measurements f = ∂nu|ΓO
such that

J(u, q) → min, J(w, τ) =
1

2
‖∂nw − f‖2

ΓO
(6.4)

under the PDE-constraint

−∆u = g on Ω ,

∂nu = 0 on ΓN ,

u = 0 on ΓO ,

∂nu = q on ΓC .

(6.5)

First we analyse the results for the searched control ∂nu|ΓC
= q for different grid

refinements and the different regularisation matrices. As regularisation parameter

we choose α = 1.e − 13 and discretise Ω up to eight times (65536 cells). On every

boundary, especially on ΓC we have 2i +1 degrees of freedom (DOF), if we discretise

i times. From the analytic solution (equation (6.2)) we know ∂nu|ΓC
= y2(1 − y)2.
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6.1 Neumann measurements on ΓO and Neumann control on ΓC

In Figure 6.1 we have illustrated the analytic ∂nu|ΓC
= y2(1−y)2 and the computed

∂nuh|ΓC
for different grid refinements and different regularisation matrices. Caused

by the scale we don’t present the results for small grid refinements in all Figures.
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Figure 6.1: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different grid refinements with

regularisation parameter α = 1.e − 13 calculated for searched ∂nu|ΓC

and given ∂nu|ΓO
= −y2(1−y)2. Results for seven and eight refinements

with Reg = RT R (top left), for five to eight grid refinements with Reg =

RT
1 R1 (top right) and for three to eight refinements with Reg = RT

2 R2

(bottom).
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6 Numerical results for the model problem

We can see in all three cases that we get better results for finer grids. The un-

symmetric approximation of ∂nu|ΓC
in the case of regularising with Reg = RT

1 R1 is

caused by the unsymmetric matrix R1. For the regularisation with Reg = RT
2 R2 we

can see that in the surrounding of y = 0.5 we get the best result for six refinements

but near y = 0 and y = 1 we get the better results for finer grids.

For the moment we don’t want to care about the error calculation because this is

also dependent on the regularisation parameter as we will see later. We have seen

that we have to discretise fine enough to get good results for the approximation of

the control ∂nu|ΓC
. The disadvantage of this result is, if we discretise i times we

have 2i + 1 DOF on ΓC which is decisive for the runtime of the calculation. The

question is now can we reduce the number of DOF on ΓC for a fine grid on Ω without

loosing quality of the approximation. We will analyse this for the calculation of the

searched control ∂nu|ΓC
for given Neumann measurement ∂nu|ΓO

= −y2(1 − y)2.

For the calculation of ∂nuh|ΓC
we will refine the grid eight times and set α = 1.e−13.

In Figure 6.2 we see the calculations for the different regularisation matrices with

different number of DOF on ΓC . In all graphics we present the results for 257 DOF

on ΓC which is the number of DOF for refining the grid eight times without special

choice of particular DOFs.

We can see that for the regularisation with RT R (Figure 6.2 top left) and RT
2 R2

(Figure 6.2 bottom) we reach good results if we reduce the number of DOF on ΓC

to 41 31 respectively. Only for the regularisation with Reg = RT
1 R1 (Figure 6.2 top

right) we have to use 91 DOF on ΓC .

We have seen that we can reduce the number of DOF on ΓC without loosing much

quality of the approximation. Again we have only presented the graphical results and

dispense with the error calculation caused by the dependence on the regularisation

parameter. Now we will take a look on the influence of the regularisation parameter

on the results of the calculation. Therefore we will discretise Ω eight times and

use the reduced number of DOF on ΓC for the calculation. Depending on the

regularisation matrix we choose different regularisation parameters. In Figure 6.3
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6.1 Neumann measurements on ΓO and Neumann control on ΓC

where we present the results for ∂nuh|ΓC
calculated with Reg = RT R and 41 DOF

on ΓC , we use regularisation parameters from 1.e − 11 to 1.e − 07.
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Figure 6.2: ∂nu|ΓC
= y2(1−y)2 and ∂nuh|ΓC

for different number of DOF on ΓC with

regularisation parameter α = 1.e−13 and refining eight times calculated

for searched ∂nu|ΓC
and given ∂nu|ΓO

= −y2(1 − y)2. Results for 11, 41

and 257 DOF with Reg = RT R (top left), for 11, 31, 91 and 257 DOF

on ΓC with Reg = RT
1 R1 (top right) and for 11, 31 and 257 DOF with

Reg = RT
2 R2 (bottom).

We can see that α = 1.e − 07 is too big and we don’t get a good approximation

of ∂nu|ΓC
= y2(1 − y)2. In the surrounding of y = 0.5 we get the best result for

α = 1.e − 08 but near y = 0 and y = 1 we get the better results for α = 1.e − 09
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6 Numerical results for the model problem

and α = 1.e − 10. The error calculation (table 6.1) shows that with refining the

grid eight times and using 41 DOF on ΓC the optimal regularisation parameter is

α = 1.e − 09. This can also be seen in the graphical illustration (Figure 6.4).
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Figure 6.3: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different regularisation parameters

using Reg = RT R, refining the grid eight times, use 41 DOF on ΓC

calculated for the searched ∂nu|ΓC
and given ∂nu|ΓO

= −y2(1 − y)2.

Regularisationparameter ‖∂nu − ∂nuh‖L2(ΓC)

1.e-07 4.983396e-03

1.e-08 1.455746e-03

1.e-09 1.319901e-03

1.e-10 1.387488e-03

1.e-11 2.023033e-03

Table 6.1: ‖∂nu − ∂nuh‖L2(ΓC) for different regularisation parameters using Reg =

RT R, refining the grid eight times and use 41 DOF on ΓC calculated in

the case of searched ∂nu|ΓC
for given ∂nu|ΓO

= −y2(1 − y)2.
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Figure 6.4: ‖∂nu − ∂nuh‖L2(ΓC) for different regularisation parameters, using Reg =

RT R, refining the grid eight times, using 41 DOF on ΓC calculated in

the case of searched ∂nu|ΓC
for given ∂nu|ΓO

= −y2(1 − y)2.

After doing this analysis for the calculation with Reg = RT
1 R1 and Reg = RT

2 R2 we

will analyse how good is the approximation of the other boundary data (specially

of the given measurement on ΓO) calculated with the computed control ∂nuh|ΓC
.

Now we will analyse the influence of the regularisation parameter α on the results of

the calculation of ∂nu|ΓC
using Reg = RT

1 R1. Therefore we discretise Ω eight times

(66536 cells) and use 91 DOF on ΓC . The regularisation parameter α is chosen

between α = 1.e − 14 and α = 1.e − 10.

In table 6.2 we see the error developing of ∂nuh|ΓC
in dependence of the regularisation

parameter α. There we can see that in this case α = 1.e − 12 is the optimal pa-

rameter. This can also be seen in the graphical illustration of the error development

in Figure 6.6. Again as in the calculation with Reg = RT R we can see the typical

development of the error and the optimal regularisation parameter α = 1.e − 12 if

we refine the grid eight times, use 91 DOF on ΓC and Reg = RT
1 R1.
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Figure 6.5: ∂nu|ΓC
= y2(1− y)2 and ∂nuh|ΓC

for different regularisation parameters,

refining the grid eight times and 91 DOF on ΓC calculated in the case of

searched ∂nu|ΓC
= q for given ∂nu|ΓO

= −y2(1 − y)2 with Reg = RT
1 R1.

Regularisationparameter ‖∂nu − ∂nuh‖L2(ΓC)

1.e-10 1.322397e-03

1.e-11 1.137367e-03

1.e-12 1.037549e-03

1.e-13 1.176700e-03

1.e-14 2.544116e-03

Table 6.2: ‖∂nu− ∂nuh‖L2(ΓC) for different regularisation parameters, using 91 DOF

on ΓC and refining the grid eight times with Reg = RT
1 R1 calculated in

the case of searched ∂nu|ΓC
for given ∂nu|ΓO

= −y2(1 − y)2.
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Figure 6.6: ‖∂nu−∂nuh‖L2(ΓC) in dependence of the regularisation parameter refining

the grid eight times, using 91 DOF on ΓC calculated in the of searched

∂nu|ΓC
for given ∂nu|ΓO

= −y2(1 − y)2 with Reg = RT
1 R1.

At last we present the influence of the regularisation parameter α on the results of

the calculation of ∂nuh|ΓC
for refining the grid eight times using 31 DOF on ΓC and

Reg = RT
2 R2. In this case we choose α between 1.e − 15 and 1.e − 10.

In Figure 6.7 we can see that α = 1.e−10 is too big for reaching a good approximation

of ∂nu|ΓC
= y2(1 − y)2. In the surrounding of y = 0.5 we get the best results for

α = 1.e − 11 and α = 1.e − 15 but near y = 0 and y = 1 we get the better results

for parameters between these two. Table 6.3 shows that the optimal parameter is

again, as in the calculation with Reg = RT
1 R1 α = 1.e−12. This can also be seen in

Figure 6.8 where we illustrate ‖∂nu−∂nuh‖L2(ΓC) in dependence of the regularisation

parameter.

We have seen that we have to discretise the grid fine enough to get a good approxi-

mation of the searched control ∂nu|ΓC
but we can reduce the number of DOF on ΓC

without loosing quality of the approximation. Also we have determined the optimal

regularisation parameters for the three regularisation matrices. For the calculation

with Reg = RT R we can reduce the number of DOF on ΓC to 41 and set α = 1.e−09.

If we regularise by Reg = RT
1 R1 we use 91 DOF on ΓC and set α = 1.e− 12 and for
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6 Numerical results for the model problem

Reg = RT
2 R2 we use 31 DOF and set α = 1.e − 12.
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Figure 6.7: ∂nu|ΓC
= y2(1− y)2 and ∂nuh|ΓC

for different regularisation parameters,

refining the grid eight times and 31 DOF on ΓC calculated in the case of

searched ∂nu|ΓC
= q for given ∂nu|ΓO

= −y2(1 − y)2 with Reg = RT
2 R2.

Regularisationparameter ‖∂nu − ∂nuh‖L2(ΓC)

1.e-10 4.768183e-03

1.e-11 1.535472e-03

1.e-12 1.403576e-03

1.e-13 1.435991e-03

1.e-14 1.455051e-03

1.e-15 1.632803e-03

1.e-16 3.043793e-03

Table 6.3: ‖∂nu − ∂nuh‖L2(ΓC) for different regularisation parameters using 31 DOF

on ΓC and refining the grid eight times with Reg = RT
2 R2 calculated in

the case of searched ∂nu|ΓC
for given ∂nu|ΓO

= −y2(1 − y)2.
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Figure 6.8: ‖∂nu − ∂nuh‖L2(ΓC) in dependence of the regularisation parameter, re-

fining the grid eight times using 101 DOF on ΓC calculated with the

searched ∂nu|ΓC
and given ∂nu|ΓO

= −y2(1 − y)2 with Reg = RT
2 R2.

Now we want to compare the results for the three regularisation matrices and want to

analyse how good is the approximation of the given Neumann data on ΓO (∂nu|ΓO
=

−y2(1−y)2), the Dirichlet data on ΓO we know from the underlying PDE constraint

(u|ΓO
= 0) and u|ΓC

= y2(1−y)2 we know from our analytic solution computed with

the calculated ∂nuh|ΓC
.

In Figure 6.9 we can see that near y = 0 we reach the best approximation of the

control ∂nu|ΓC
= y2(1− y)2 with Reg = RT

1 R1 but in the surrounding of y = 0.5 we

get the best results with Reg = RT
2 R2.

Table 6.4 shows the error ‖∂nu − ∂nuh‖L2(ΓC) for the three regularisation matrices

calculated with the reduced number of DOF on ΓC and the optimal regularisation

parameters. There can be seen that the approximation of ∂nu|ΓC
calculated with

Reg = RT
1 R1, 91 DOF on ΓC and α = 1.e − 12 devoted the best result.
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Figure 6.9: ∂nu|ΓC
= y2(1− y)2 and ∂nuh|ΓC

refining the grid eight times calculated

with Reg = RT R (Id), 41 DOF on ΓC and α = 1.e − 09, Reg = RT
1 R1

(1), 91 DOF on ΓC and α = 1.e − 12 and Reg = RT
2 R2 (2), 31 DOF on

ΓC and α = 1.e − 12.

Regularisation / DOF / α ‖∂nu − ∂nuh‖L2(ΓC)

RT R / 41 / 1.e − 09 1.319901e-03

RT
1 R1 / 91 / 1.e − 12 1.037549e-03

RT
2 R2 / 31 / 1.e − 12 1.403576e-03

Table 6.4: ‖∂nu − ∂nuh‖L2(ΓC) for the different regularisation matrices, refining the

grid eight times with reduced number of DOF on ΓC and the optimal

regularisation parameters.

Now we want to analyse how good is the approximation of the other sets of boundary

data: We have given measurements ∂nu|ΓO
= −y2(1 − y)2 from our optimal control

problem, we know u|ΓO
= 0 from the underlying PDE-constraint and from the

analytic solution (Equation (6.2)) we know u|ΓC
= y2(1 − y)2.
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6.1 Neumann measurements on ΓO and Neumann control on ΓC

We start with the presentation of the results for the given measurements ∂nu|ΓO
. In

Figure 6.10 (left) we can see the results of calculation for the three regularisation

matrices with reduced number of DOF on ΓC and optimal regularisation parame-

ters. The results of calculation for different grid refinements, different number of

DOF on ΓC and different regularisation parameters calculated with the computed

control ∂nuh|ΓC
for the three regularisations can be seen in appendix A. We can see

that there is graphically no obvious difference between the approximations for the

different calculations and the analytic solution ∂nu|ΓO
= −y2(1 − y)2.

Also for the approximations of u|ΓC
= y2(1 − y)2 (Figure 6.10 right) and u|ΓO

= 0

(Figure 6.11) there are graphically no obvious discrepancies.

We have seen, that we get the best approximation of the control ∂nu|ΓC
for given

∂nu|ΓO
= −y2(1 − y)2 and reduced number of DOF with Reg = RT

1 R1 using α =

1.e−12. For the calculation of the other boundary data (∂nu|ΓO
, u|ΓC

and u|ΓO
) there

is graphically no obvious discrepancy between the calculations with the different

regularisation matrices.
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Figure 6.10: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left), u|ΓC
= y2(1 − y)2 and uh|ΓC

(right) for the three regularisation matrices with reduced number of

DOF on ΓC and optimal regularisation parameters refining the grid

eight times.
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Figure 6.11: u|ΓO
= 0 and uh|ΓO

for the three regularisation matrices with reduced

number of DOF on ΓC and optimal regularisation parameters refining

the grid eight times.

As can also be seen in appendix A, we have to discretise fine enough to get good

approximations of the control ∂nu|ΓC
. If we have a good approximation of the

control the choice of the number of DOF on ΓC and the regularisation parameter is

not decisive for the approximation of the other boundary data.

6.2 Neumann measurements on ΓO and Dirichlet

control on ΓC

Now we take a look on the results for the second problem to be solved, i.e. we search

the Dirichlet control q = u|ΓC
for given Neumann measurements ∂nu|ΓO

such that

J(u, q) → min, J(w, τ) =
1

2
‖∂nw − f‖2

ΓO
(6.6)
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6.2 Neumann measurements on ΓO and Dirichlet control on ΓC

under the PDE-constraint

−∆u = g on Ω ,

∂nu = 0 on ΓN ,

u = 0 on ΓO ,

u = q on ΓC .

(6.7)

As for Neumann control and Neumann measurements in the last Section we present

the results of calculation for the control u|ΓC
for different grid refinements, different

DOF on ΓC and different regularisation parameters for the three regularisation ma-

trices (RT R, RT
1 R1 and RT

2 R2 ). As in the previous Section we reduce the number

of DOF and determine for this calculations the optimal regularisation parameter.

After that we compare the results for the three regularisations and analyse how good

the approximation of the other boundary conditions is, given from measurements,

the PDE-constraint and the analytic solution.

First we analyse the results for the searched control u|ΓC
for different grid refinements

and the three regularisation matrices. We discretise Ω up to eight (65536 cells) times

and have 2i + 1 DOF on each boundary if we discretise Ω i times.

In Figure 6.12 (top left) we see the numerical results if we discretise Ω six to eight

times with Reg = RT R and α = 1.e − 10. As in the previous Section we can see

that we get better results for finer grids. Again we don’t make an error analysis at

this point caused by the dependence on the regularisation parameter.

Figure 6.12 (top right) shows the development of ∂nuh|ΓC
calculated with Reg =

RT
1 R1 as regularisation matrix and α = 1.e − 13. We can see that the results are

unsymmetric caused by the unsymmetric R1 and that we get the better results for

finer grids.

If we regularise by Reg = RT
2 R2 (Figure 6.12 bottom), we see that we get earlier

better results and the discrepancy between the calculations for seven and eight grid

refinements is smaller than for the other regularisation matrices. This can also be

caused by the regularisation parameter which we choose here as α = 1.e − 13.
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6 Numerical results for the model problem

In general we get the better results for finer grids in all three cases. As in the previous

Section this is bad for the runtime of the program. A reduction of the number of

DOF on ΓC will have a positive effect on the runtime. Now we want to analyse if we

can reduce the number of DOF on ΓC for this problem (Dirichlet control for given

Neumann measurement) without loosing quality of the approximation.
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Figure 6.12: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different grid refinements calculated

for searched control u|ΓC
and given ∂nu|ΓO

= −y2(1 − y)2. Results

calculated with Reg = RT R and regularisationparameter α = 1.e − 10

(top left) with Reg = RT
1 R1 and α = 1.e − 13 (top right) with Reg =

RT
2 R2 and α = 1.e − 13 (bottom).
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6.2 Neumann measurements on ΓO and Dirichlet control on ΓC

In Figure 6.13 (left) we see the results for 11, 41 and 257 DOF on ΓC if we refine the

grid eight times, using Reg = RT R and α = 1.e − 10. Here we can see that we get

better results if we reduce the number of DOF on ΓC . As for the calculation in the

case of searched Neumann control on ΓC (Section 6.1) we get good approximations

if we reduce the number of DOF on ΓC to 41.
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Figure 6.13: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different number of DOFs on ΓC for

refining the grid eight times calculated for searched u|ΓC
and given

∂nu|ΓO
= −y2(1− y)2. Result for 11, 41 and 257 DOF with regularisa-

tion parameter α = 1.e− 10 and Reg = RT R (left), for 11, 31, 101 and

257 DOF, α = 1.e − 13 and Reg = RT
1 R1 (right).

We have the same effect if we use Reg = RT
1 R1 as regularisation matrix (see Figure

6.13 (right)). 11 DOF on ΓC is a too small but for 31 DOF we reach good results.

In this case we can reduce the number of DOF more than in the calculation for

searched Neumann control (Section 6.1) where we reduce the number of DOF on ΓC

to 91. Anyway we do the calculations in the following for 101 DOF on ΓC . This is

caused by the calculation of the other boundary data computed with this calculated

control uh|ΓC
. We will analyse this later.

Also for Reg = RT
2 R2 as regularisation matrix we can see, that we can reduce the

number of DOF on ΓC without loosing much quality of the results (Figure 6.14).
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6 Numerical results for the model problem

There we choose 11, 31, 91 and 257 DOF on ΓC . As for Reg = RT
1 R1 we enlarge

the number of DOF in the following calculations to 91 although we get good results

for 31 DOF again caused by the other boundary conditions.
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Figure 6.14: u|ΓC
= y2(1 − y)2 and uh|ΓC

for 11, 31, 91 and 257 DOF on ΓC using

α = 1.e − 13 and refining the grid eight times calculated for searched

u|ΓC
and given ∂nu|ΓO

= −y2(1 − y)2 with Reg = RT
2 R2.

Now we want to analyse the influence of the regularisation parameter on the results of

the calculation of the searched control u|ΓC
. For the regularisation with Reg = RT R

we choose parameters between α = 1.e − 13 and α = 1.e − 10. We can see (Figure

6.15) that α = 1.e − 13 is too small and α = 1.e − 10 is too big. For 1.e − 11 and

1.e − 12 there are only small differences.

The error calculation (table 6.5) where we additionally calculate the error for α =

1.e − 09 to α = 1.e − 07 shows that α = 1.e − 11 is the optimal regularisation

parameter if we discretise eight times, use 41 DOF on ΓC and regularise by Reg =

RT R. This can also be seen in Figure 6.16.

In comparison with the results for searched Neumann control where we have for the

calculation with Reg = RT R α = 1.e − 09 as optimal parameter (see Section 6.1)

we can choose a smaller parameter if we search Dirichlet control on ΓC .
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Figure 6.15: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different regularisation parameters

with Reg = RT R for refining the grid eight times and 41 DOF on ΓC

calculated for the searched u|ΓC
and given ∂nu|ΓO

= −y2(1 − y)2.

Regularisationparameter ‖u − uh‖L2(ΓC)

1.e-07 1.348695e-03

1.e-08 1.331564e-03

1.e-09 1.245377e-03

1.e-10 9.388004e-04

1.e-11 7.602756e-04

1.e-12 7.971643e-04

1.e-13 1.858937e-03

Table 6.5: ‖u − uh‖L2(ΓC) for different regularisation parameters with Reg = RT R

using 41 DOF on ΓC and refining the grid eight times.
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Figure 6.16: ‖u − uh‖L2(ΓC) in dependence of the regularisation parameter, refining

the grid eight times using 41 DOF on ΓC calculated with the searched

u|ΓC
and given ∂nu|ΓO

= −y2(1 − y)2 and Reg = RT R.

In the case where we regularise by Reg = RT
1 R1 refining the grid eight times and

using 101 DOF on ΓC we choose parameters between α = 1.e − 16 and α = 1.e −
10. The error calculation (table 6.6) and Figure 6.18, which illustrates the error

development in dependence of the regularisation parameter shows clearly that the

optimal regularisation parameter for regularising with Reg = RT
1 R1 refining the grid

eight times and using 101 DOF is α = 1.e − 14.

In this case, where we regularise by Reg = RT
1 R1, we have a smaller optimal regu-

larisation parameter as in the calculation for searched Neumann control.

At last we want to analyse the influence of the regularisation parameter on the

calculation with Reg = RT
2 R2 as regularisation matrix. For this case we choose the

parameters between α = 1.e − 19 and α = 1.e − 11, refine the grid eight times and

use 91 DOF on ΓC . For the sake of clarity in Figure 6.19 we can see only five of

these parameters. Graphically α = 1.e − 17 seems to be the optimal parameter.

This is verified in table 6.7 and Figure 6.20 where we illustrate the development of

‖u − uh‖L2(ΓC) in dependence of the regularisation parameter.
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6.2 Neumann measurements on ΓO and Dirichlet control on ΓC
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Figure 6.17: u|ΓC
and uh|ΓC

for different regularisation parameters for refining eight

times and 101 DOF on ΓC calculated for the searched u|ΓC
and given

∂nu|ΓO
= −y2(1 − y)2 with Reg = RT

1 R1.

Regularisationparameter ‖u − uh‖L2(ΓC)

1.e-10 1.061429e-03

1.e-11 1.013701e-03

1.e-12 9.391228e-04

1.e-13 7.864336e-04

1.e-14 7.383610e-04

1.e-15 7.938105e-04

1.e-16 1.845287e-03

Table 6.6: ‖u−uh‖L2(ΓC) in dependence of the regularisation parameter, refining the

grid eight times using 101 DOF on ΓC calculated for the searched u|ΓC

and given ∂nu|ΓO
= −y2(1 − y)2 with Reg = RT

1 R1.
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Figure 6.18: ‖u − uh‖L2(ΓC) in dependence of the regularisation parameter refining

the grid eight times using 101 DOF on ΓC calculated with the searched

u|ΓC
and given ∂nu|ΓO

= −y2(1 − y)2 with Reg = RT
1 R1.

If we compare the results for searched Dirichlet control and searched Neumann

control (from the previous Section) we have seen, that in both cases we can choose

31 DOF on ΓC to get good approximations. In the case of the Dirichlet control we

set the number of DOF to 91 caused by the calculation of the other boundary data

which we will analyse in the following. But therefore we can set α = 1.e−17 instead

of α = 1.e − 12 in the case of searched Neumann control.

Regularisation- ‖u − uh‖L2(ΓC) Regularisation ‖u − uh‖L2(ΓC)

parameter parameter

1.e-10 3.169159e-04 1.e-15 1.957752e-04

1.e-11 2.711583e-04 1.e-16 1.489964e-04

1.e-12 2.768743e-04 1.e-17 1.434415e-04

1.e-13 2.756781e-04 1.e-18 1.687428e-04

1.e-14 2.602671e-04 1.e-19 5.699224e-04

Table 6.7: ‖u − uh‖L2(ΓC) for different regularisation parameters refining the grid

eight times using 91 DOF on ΓC calculated for the searched u|ΓC
and

given ∂nu|ΓO
= −y2(1 − y)2 with Reg = RT

2 R2.
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Figure 6.19: u|ΓC
= y2(1−y)2 and uh|ΓC

for different regularisation parameters using

91 DOF on ΓC and refining eight times calculated for searched u|ΓC
and

given ∂nu|ΓO
= −y2(1 − y)2 with Reg = RT

2 R2.
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Figure 6.20: ‖u − uh‖L2(ΓC) in dependence of the regularisation parameter refining

the grid eight times using 91 DOF on ΓC calculated with the searched

u|ΓC
and given ∂nu|ΓO

= −y2(1 − y)2 with Reg = RT
2 R2.
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6 Numerical results for the model problem

As in the previous Section we have seen that we have to discretise fine enough on

the domain Ω to get a good approximation of the searched control u|ΓC
for given

∂nu|ΓO
= −y2(1− y)2. But we can reduce the number of DOF on ΓC (depending on

the regularisation matrix) for saving runtime. And we have estimated the optimal

regularisation parameters for refining the grid eight times and the number of DOF

on ΓC depending on the used regularisation matrix. Now we want to compare the

results for the three regularisation matrices and want to analyse how good is the

approximation of the given measured data ∂nu|ΓO
= −y2(1− y)2, of u|ΓO

= 0 which

we know from the underlying PDE-constraint and of ∂nu|ΓC
= y2(1 − y)2 which we

know from our analytic solution (Equation (6.2)). We start with the comparison of

the searched control u|ΓC
(Figure 6.21).
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Figure 6.21: u|ΓC
= y2(1− y)2 and uh|ΓC

refining eight times calculated with Reg =

RT R, 41 DOF on ΓC and α = 1.e − 11; Reg = RT
1 R1 (1), 101 DOF

on ΓC and α = 1.e − 14 and Reg = RT
2 R2 (2), 91 DOF on ΓC and

α = 1.e − 17.
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6.2 Neumann measurements on ΓO and Dirichlet control on ΓC

Therefore we discretise eight times. For the calculation with Reg = RT R we choose

41 DOF on ΓC and set α = 1.e−11. In the case where we regularise by Reg = RT
1 R1

we choose 101 DOF on ΓC and set α = 1.e − 14 and for the regularisation with

Reg = RT
2 R2 we choose 91 DOF on ΓC and set α = 1.e− 17. We can see that there

are small discrepancies between the calculations specially near y = 0 and y = 1.

Table 6.8 shows that we get the best results for the calculation with Reg = RT
2 R2,

α = 1.e−17 and 91 DOF on ΓC . For the calculation of the searched Neumann control

(previous Section) we get the best results for the regularisation with Reg = RT
1 R1.

Regularisation / DOF / α ‖u − uh‖L2(ΓC)

RT R / 41 / 1.e-11 7.602756e-04

RT
1 R1 / 101 / 1.e-14 7.383610e-04

RT
2 R2 / 91 / 1.e-17 1.434415e-04

Table 6.8: ‖u − uh‖L2(ΓC) for the different regularisation matrices, refining the grid

eight times with reduced number of DOF on ΓC and the optimal regular-

isation parameters.

Now we want to analyse how good the approximation of the other boundary data is,

calculated with the computed control uh|ΓC
. We start with the given measurement

∂nu|ΓO
= −y2(1 − y)2 (see Figure 6.22 left).

As in the case of searched Neumann control there is graphically no obvious difference

between the three calculations. This is also the case for the calculation of the given

boundary constraint u|ΓO
= 0 (Figure 6.22 right). For the calculation of ∂nu|ΓC

we have differences between the calculations (Figure 6.23), which is very obvious.

We get oscillations in the calculation with Reg = RT R as regularisation matrix.

Also without reducing the number of DOF on ΓC we are not able to eliminate this

oscillations (see appendix A.2). In the cases where we regularise by Reg = RT
1 R1

and Reg = RT
2 R2 we have seen that we can reduce the number of DOF to 31 to

get a good approximation of the searched control u|ΓC
but we have chosen 101 91
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6 Numerical results for the model problem

respectively DOF in the following calculations. This is caused in the results of the

calculation for ∂nu|ΓC
with the computed control uh|ΓC

. If we set the number of

DOF on ΓC to 31, we also get oscillations in the calculation of ∂nuh|ΓC
(see Figure

6.24) if we regularise by Reg = RT
1 R1 or RT

2 R2.
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Figure 6.22: ∂nu|ΓO
= −y2(1−y)2 and ∂nuh|ΓO

(left), u|ΓO
= 0 and uh|ΓO

(right) for

the three regularisation matrices with reduced number of DOF on ΓC

and optimal regularisation parameters for refining the grid eight times.

In the case of the searched Neumann control we get good approximations of ∂nu|ΓC

but with this we also get good approximations of the other boundary data (u|ΓC
,

∂nu|ΓO
, u|ΓO

). If we search u|ΓC
and calculate with this ∂nu|ΓC

, ∂nu|ΓO
and u|ΓO

now we get good approximations of the boundary data on ΓO but for ∂nu|ΓC
we

can see a great discrepancy between the approximations and the analytic solution

∂nu|ΓC
= y2(1 − y)2 even if we avoid oscillations. We will compare the results in

detail later on.
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6.2 Neumann measurements on ΓO and Dirichlet control on ΓC
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Figure 6.23: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for the three regularisation matrices

with reduced number of DOF on ΓC and optimal regularisation param-

eter for refining the grid eight times.
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Figure 6.24: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for eight gridrefinements, 31 DOF on

ΓC for Reg = RT
1 R1 (1) and Reg = RT

2 R2 (2).
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6 Numerical results for the model problem

6.3 Dirichlet measurements on ΓO and Dirichlet

control on ΓC

In this Section we want to find the Dirichlet control u|ΓC
= q for given Dirichlet

measurements u|ΓO
= 0 such that

J(u, q) → min, J(w, τ) =
1

2
‖w‖2

ΓO
(6.8)

under the PDE-constraint

−∆u = g on Ω ,

∂nu = 0 on ΓN ,

∂nu = f on ΓO ,

u = q on ΓC .

(6.9)

As before we first want to analyse the results for the searched control u|ΓC
= q for

different grid refinements calculated with different regularisation matrices. As in

the previous Sections we use for Reg RT R, RT
1 R1 and RT

2 R2. We discretise Ω up

to eight times (65536 cells) and have 2i + 1 DOF on every boundary if we refine Ω

i times.

In Figure 6.25 (top left) we see the results for six to eight gridrefinements in the case

where we regularise by RT R and set α = 1.e− 11. We can see, that six refinements

are not sufficient and we get the best results for seven refinements. That the result

for eight refinements is worse is caused by the regularisation parameter. We will see

later that we get also good results for the calculation on 65536 cells.
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6.3 Dirichlet measurements on ΓO and Dirichlet control on ΓC
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Figure 6.25: u|ΓC
= y2(1 − y)2 and uh|ΓC

for refining the grid six to eight times

calculated for searched u|ΓC
and given u|ΓO

= 0 with Reg = RT R with

regularisation parameter α = 1.e − 11 (top left), Reg = RT
1 R1 with

α = 1.e− 13 (top right) and Reg = RT
2 R2 with α = 1.e− 13 (bottom).

For the unsymmetric regularisation with Reg = RT
1 R1 (Figure 6.25 top right) we

reach an unsymmetric result of the searched control uh|ΓC
but we can see that we

get better results for fine grids. As for Reg = RT R the better results for seven

refinements than for eight are caused by the regularisation parameter. We will

correct this result later with the reduction of the number of DOF on ΓC and the

choice of the regularisation parameter. As before we can see for the results with

Reg = RT
2 R2 (Figure 6.25 bottom) as regularisation matrix, that we get better
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6 Numerical results for the model problem

results for finer grids. As in the previous Sections we reach the better results for

finer grids for all three regularisation matrices.

Now we want to analyse if we can reduce the number of DOF on ΓC without loosing

the quality of the approximation as in the calculations for searched Neumann control

or if we have the effect as in the calculations for searched Dirichlet control and given

Neumann measurements that we get oscillations if we choose the number of DOF

too small. We start again with the calculation where we set Reg = RT R (Figure

6.26 top left). As number of DOF we choose 11, 31 , 101 and 257, we discretise

eight times and set α = 1.e − 11. Here we have the effect that we reach a better

approximation for reducing the number of DOF to 31 instead of 257 DOF. For 101

DOF on ΓC we get oscillations in the calculation of the searched control u|ΓC
what

may be caused by the regularisation parameter. I.e. as in the previous Section we

can reduce the number of DOF for the calculation with Reg = RT R.

As in the previous case we choose 11, 31 101 and 257 DOF on ΓC for the calculation

of u|ΓC
with Reg = RT

1 R1 as regularisation matrix and α = 1.e−13 (see Figure 6.26

top right). Even though we reach a good approximation of u|ΓC
with 31 DOF we

will use in the following 101 DOF on ΓC for avoiding oscillations in the calculation

of ∂nuh|ΓC
. (Compare the results for searched Dirichlet control and given Neumann

measurements.)

For the calculation with Reg = RT
2 R2 as regularisation matrix we discretise Ω eight

times, set α = 1.e − 13 and do the calculation for 11, 31, 101 and 257 DOF on ΓC .

We can see (Figure 6.26 bottom) that there are only small differences between the

computations and that we get a good approximation for 31 DOF on ΓC . Caused by

the calculation of the other boundary conditions we have to enlarge the number of

DOF a bit and use in the following 101 DOF on ΓC .

As in the previous Section where we searched Dirichlet control for given Neumann

measurement we can reduce the number of DOF on ΓC . Caused by the calculation

of the other boundary data with the computed control uh|ΓC
we have to enlarge the

number of DOF for the calculation with Reg = RT
1 R1 and RT

2 R2.
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6.3 Dirichlet measurements on ΓO and Dirichlet control on ΓC
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Figure 6.26: u|ΓC
and uh|ΓC

for different DOF on ΓC and refining the grid eight times

calculated for searched u|ΓC
and given u|ΓO

= 0. Results calculated

with Reg = RT R and α = 1.e − 11 (top left), with Reg = RT
1 R1 and

α = 1.e − 13 (top right) and with Reg = RT
2 R2 and α = 1.e − 13

(bottom).

Before we want to analyse how good the approximation of the other boundary

conditions with the computed control u|ΓC
is and what problems appear we want

to estimate the optimal regularisation parameter. First we do the calculations with

Reg = RT R if we refine the grid eight times and use 31 DOF on ΓC (see Figure

6.27). We do the calculation for α = 1.e − 13 to α = 1.e − 10. It is obvious that

we get the best result for α = 1.e − 11. This is verified in table 6.9 and Figure 6.28
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6 Numerical results for the model problem

where we can see ‖u− uh‖L2(ΓC) in dependence of the regularisation parameter. It’s

the same parameter if we regularise by RT R and search Dirichlet control on ΓC for

given Neumann measurements on ΓO.
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Figure 6.27: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different regularisation parameters,

Reg = RT R, refining the grid eight times using 31 DOF on ΓC calcu-

lated for searched u|ΓC
and given u|ΓO

= 0.
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Figure 6.28: ‖u − uh‖L2(ΓC) in dependence of the regularisation parameter with

Reg = RT R for refining the grid eight times and use 31 DOF on ΓC .
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6.3 Dirichlet measurements on ΓO and Dirichlet control on ΓC

Regularisationparameter ‖u − uh‖L2(ΓC)

1.e-10 1.427001e-03

1.e-11 1.150256e-03

1.e-12 1.266659e-03

1.e-13 5.002099e-03

Table 6.9: ‖u − uh‖L2(ΓC) for different regularisation parameters refining the grid

eight times, Reg = RT R and 31 DOF on ΓC .

If we regularise by Reg = RT
1 R1, we use 101 DOF on ΓC and choose parameters

between α = 1.e − 15 and α = 1.e − 11 (Figure 6.29). Table 6.10 and Figure

6.30 shows, that α = 1.e − 14 is the optimal regularisation parameter for refining

the grid eight times and using 101 DOF on ΓC . This is the same parameter as in

the calculation of searched Dirichlet control for given Neumann measurements and

regularise by Reg = RT
1 R1 (see Section 6.2).
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Figure 6.29: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different regularisation parameters

refining the grid eight times using 101 DOF on ΓC and regularise by

Reg = RT
1 R1 calculated for searched u|ΓC

and given u|ΓO
= 0.
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6 Numerical results for the model problem

Regularisationparameter ‖u − uh‖L2(ΓC)

1.e-11 1.170204e-03

1.e-12 1.058646e-03

1.e-13 8.749769e-04

1.e-14 5.156368e-04

1.e-15 4.300165e-03

1.e-16 6.205671e-03

Table 6.10: ‖u − uh‖L2(ΓC) for different regularisation parameters refining the grid

eight times and use 101 DOF on ΓC regularise by Reg = RT
1 R1.
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Figure 6.30: ‖u−uh‖L2(ΓC) in dependence of the regularisation parameter refining the

grid eight times and using 101 DOF on ΓC regularise by Reg = RT
1 R1.

For the regularisation with Reg = RT
2 R2 we use 101 DOF on ΓC and choose param-

eters between α = 1.e−18 and α = 1.e−10. For the sake of clarity we see in Figure

6.31 the lines of only five of these parameters. It can be seen that α = 1.e − 10 is

too big and α = 1.e − 18 is too small. Table 6.11 where we listed all parameters

shows that the optimal parameter in this case is α = 1.e− 16. This can also be seen

in Figure 6.32.
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6.3 Dirichlet measurements on ΓO and Dirichlet control on ΓC
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Figure 6.31: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different regularisation parameters for

refining the grid eight times and 101 DOF on ΓC calculated for the

searched u|ΓC
and given u|ΓO

= 0 with Reg = RT
2 R2.
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Figure 6.32: ‖u−uh‖L2(ΓC) in dependence of the regularisation parameter for refining

the grid eight times, 101 DOF on ΓC and Reg = RT
2 R2.
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6 Numerical results for the model problem

Regularisationparameter ‖u − uh‖L2(ΓC)

1.e-10 6.027712e-03

1.e-11 2.643012e-03

1.e-12 1.309626e-03

1.e-13 1.430878e-03

1.e-14 1.443650e-03

1.e-15 1.390372e-03

1.e-16 9.057633e-04

1.e-17 2.370907e-03

1.e-18 6.082683e-03

Table 6.11: ‖u − uh‖L2(ΓC) for different regularisation parameters with 101 DOF on

ΓC and refining eight times (see Figure 6.31).

Now we want to compare the results with the optimal regularisation parameter for

the reduced number of DOF on ΓC for the three regularisation matrices. We start

with the searched control u|ΓC
for eight grid refinements in Figure 6.33. For the

regularisation with Reg = RT R we use 31 DOF on ΓC and set α = 1.e − 11. If we

regularise by Reg = RT
1 R1 we use 101 DOF on ΓC and set α = 1.e − 14 and with

Reg = RT
2 R2 we use 101 DOF on ΓC and set α = 1.e − 16.

For all three cases we get a good approximation of the searched control u|ΓC
. Small

differences are obvious in the surroundings of y = 0, y = 0.5 and y = 1. Table 6.12

shows, that we get the best result for the searched control u|ΓC
with Reg = RT

1 R1

as regularisation matrix, 101 DOF on ΓC and α = 1.e − 14.

102



6.3 Dirichlet measurements on ΓO and Dirichlet control on ΓC

Regularisation / DOF / α ‖u − uh‖L2(ΓC)

RT R / 31 / 1.e-11 1.150256e-03

RT
1 R1 / 101 / 1.e-14 5.156368e-04

RT
2 R2 / 101 / 1.e-16 9.057633e-04

Table 6.12: ‖u − uh‖L2(ΓC) for the different regularisation matrices refining the grid

eight times with reduced number of DOF on ΓC and the optimal regu-

larisation parameters.
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Figure 6.33: u|ΓC
= y2(1− y)2 and uh|ΓC

for refining the grid eight times calculated

with Reg = RT R, 31 DOF on ΓC and α = 1.e − 11; Reg = RT
1 R1 (1),

101 DOF on ΓC and α = 1.e − 14; Reg = RT
2 R2 (2), 101 DOF on ΓC

and α = 1.e − 16.

Now we want to know how good is the approximation of the other boundary data

calculated with the computed control uh|ΓC
. We start with the given measurement

u|ΓO
= 0. In Figure 6.34 (left) we illustrate the results for uh|ΓO

with Reg = RT R,

31 DOF on ΓC , α = 1.e−11; Reg = RT
1 R1, 101 DOF on ΓC , α = 1.e−14 and Reg =

RT
2 R2 with 101 DOF on ΓC and α = 1.e − 16. We can see obvious discrepancies

between the calculations but all three results are good approximations of u|ΓO
=

0. Lets stay on ΓO. We know ∂nu|ΓO
= −y2(1 − y)2 from the underlying PDE-
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6 Numerical results for the model problem

constraint. In Figure 6.34 (right) we can see that there is no graphical difference

between the calculations of ∂nuh|ΓO
for the three computations obvious. From the

analytic solution we know ∂nu|ΓC
= y2(1 − y)2 (see Figure 6.35). Again as in

the calculation for searched Dirichlet control and given Neumann measurements

(Section 6.2) we achieve oscillations in the calculation with Reg = RT R which we

also get when we choose more DOF on ΓC (see appendix A). If we regularise by

Reg = RT
1 R1 or Reg = RT

2 R2 we haven’t oscillations if we choose 101 DOF on ΓC but

the approximation of the analytic ∂nu|ΓC
= y2(1− y)2 isn’t very good. If we choose

fewer DOF on ΓC we also achieve oscillations if we regularise by an approximation

of the second derivative (Figure 6.36 with 31 DOF).
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Figure 6.34: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1−y)2 and ∂nuh|ΓO

(right) for

the three regularisation matrices with reduced number of DOF on ΓC

and optimal regularisation parameters for refining the grid eight times

calculated with the computed control uh|ΓC
.

We have seen this effect in the previous Section for the calculation of ∂nu|ΓC
with the

searched Dirichlet control for given Neumann measurement regularised by Reg =

RT
1 R1 and RT

2 R2. We have reached a good approximation of the searched control

u|ΓC
for a small number of DOF on ΓC but to avoid oscillations in the calculation

of ∂nu|ΓC
we have to enlarge the number of DOF.
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6.3 Dirichlet measurements on ΓO and Dirichlet control on ΓC
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Figure 6.35: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for the three regularisation matrices

with reduced number of DOF on ΓC and optimal regularisation pa-

rameters for refining the grid eight times calculated with the computed

control uh|ΓC
.
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Figure 6.36: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for 31 DOF, refining the grid eight

times and regularise by Reg = RT
1 R1 (1) and Reg = RT

2 R2 (2).

105



6 Numerical results for the model problem

6.4 Comparison of the results

Now we want to compare the results for the problems, we have solved in the last

three Sections. We will do this for uh|ΓC
, ∂nuh|ΓC

, uh|ΓO
and ∂nuh|ΓO

. In the

last Sections we have seen that with searched Neumann control for given Neumann

measurements we get good approximations for all boundary data. In the case,

we search Dirichlet control for given Neumann measurements, we have seen that

we reach oscillations in the calculation of ∂nu|ΓC
which we only can avoid if we

use enough DOF on ΓC and regularise by Reg = RT
1 R1 or RT

2 R2. For searched

Dirichlet control and given Dirichlet measurements we have assert the same effect.

But there we achieve discrepancies between the calculations for u|ΓO
too. For the

following graphical illustration of the comparison we want to introduce the shortcuts

nn for searched Neumann control and given Neumann measurements (results from

Section 6.1), nd for searched Dirichlet control and given Neumann measurements

(results from Section 6.2) and dd for searched Dirichlet control and given Dirichlet

measurements (results from Section 6.3). We start with the results on ΓC first

with u|ΓC
. For avoiding oscillations in the calculation of ∂nu|ΓC

we use in all cases

Reg = RT
2 R2 as regularisation matrix and refine Ω eight times. We use 31 DOF and

α = 1.e−12 for nn, 91 DOF and α = 1.e−17 for nd and 101 DOF and α = 1.e−16

for dd. In Figure 6.37 (left) we can see that we get the best approximation for

Neumann control and Neumann measurements. For this calculation we have used

the lowest number of DOF on ΓC which is positive for the runtime of the program.

We have seen in the previous Sections that we can use less DOF than we did now for

searched Dirichlet control and given Neumann Dirichlet measurements respectively.

In the case of the calculation of ∂nu|ΓC
we can see again, that we get the best

result for Neumann control and Neumann measurements (Figure 6.37 (right)) and

this is not only caused by the possible oscillations. For the calculation of u|ΓO
we

can see in Figure 6.38 (left) only that we get the worst result for Dirichlet control

and Dirichlet measurements. We put the results for Neumann measurements and

Dirichlet control Neumann control respectively in Figure 6.38 (right), but anyway
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6.4 Comparison of the results

there is no obvious discrepancy between the calculations. At last we have the results

for the computation of ∂nuh|ΓO
(Figure 6.39). For all three calculations we get good

approximations of the analytic ∂nu|ΓO
= −y2(1 − y)2 and there is no graphical

difference.
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Figure 6.37: u|ΓC
= y2(1 − y)2 and uh|ΓC

(left), ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

(right) calculated for nn, nd and dd with reduced number of DOF and

optimal regularisation parameter.
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Figure 6.38: u|ΓO
= 0 and uh|ΓO

calculated for nn, nd and dd with reduced number

of DOF and optimal regularisation parameters (left). And the results

only for the calculation for nn and nd (right).
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Figure 6.39: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

calculated for nn, nd and dd with

reduced number of DOF and optimal regularisation parameters.

We have seen that we get the best results for all boundary conditions for searched

Neumann control and given Neumann measurements. The more Dirichlet conditions

we use for our calculation the worse are the results. Another aspect is for searched

Dirichlet control we have to enlarge the number of DOF on ΓC in comparison to

the calculations with searched Neumann control. And we have to take care of the

regularisation matrix for avoiding oscillations.

More graphical results, calculated with the searched control for the three regular-

isation matrices with different grid refinements, different number of DOF on ΓC

and different regularisation matrices, can be seen in appendix A. There the results,

which we have presented here, are verified.
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7 Results for the Application

Now we want to present the numerical results for the application, hybrid insulation

described in Section 2. In contrast to the three (four respectively) cases we had

for our model problem (Section 5.1) due to technical conditions of the application

here we only have the two possible cases with given Neumann measurements and

searched Neumann control or given Neumann measurements and searched Dirichlet

control. As we have seen in the previous Section that we get the best results for

given Neumann data and searched Neumann control we consider only this case.

Instead of using the laplace equation in two dimensions for the application of hybrid

insulation as it is done by I. Cherlenyak in his PhD thesis [11] we use here the three

dimensional laplace equation reduced to two dimensions as described in Section 2.

We have to do some modifications compared to the calculations of the model problem

in the previous Sections, where we solved as direct problem the laplace equation on

the unit square.
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7 Results for the Application

Figure 7.1: Simplified geometry of the two dimensional rotational symmetric prob-

lem of hybrid insulation.

As described in Section 2 instead of −∆u = g we have

− 1

r

∂u

∂r
− ∂2u

∂r2
− ∂2u

∂z2
= 0. (7.1)

as underlying partial differential equation caused by the reduction from three to two

dimensions on the simplified geometry (see Figure 7.1) resulting from the experi-

mental setup (described in Section 2). This results in the following problem we want

to solve:

Find ∂nu|ΓC
= q for given measurement ∂nu|ΓO

= f such that

J(u, q) → min, J(w, τ) :=
1

2
‖∂nw − f‖2

ΓO
(7.2)
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under the PDE-constraint

−1

r

∂u

∂r
− ∂2u

∂r2
− ∂2u

∂z2
= 0 on Ω ,

∂nu = 0 on ΓN ,

u = 0 on ΓO ,

∂nu = q on ΓC .

(7.3)

As we only do the calculations for searched Neumann control we don’t need Nitsches

method and can use the classical variational formulation of the direct problem where

the Dirichlet boundary condition on ΓO is hidden in the function space i.e. we have

u ∈ V = {ϕ ∈ H1(Ω) | ϕ = 0 on ΓO}. Again we can write the direct problem (see

Section 5) after discretisation as

J(uh, q) → min (7.4)

Auh = Bq

With A regular this leads to

J(uh, q) = J(A−1Bq, q) → min (7.5)

Then we have to solve the regularised normal equation as for the model problem:

(BT A−T CA−1B + α Reg) q = BT A−T Cf. (7.6)

For the discretisation we use bilinear elements on quadrilaterals. In the case we have

n vertices on Ω and Nq vertices on ΓC we have:

B is the (n × Nq)- matrix corresponding to (ϕ, ψ ∈ Vh):

(ψ, ϕ)0,ΓO

C is the (n × n)-matrix corresponding to

(∂nψ, ∂nϕ)0,ΓO
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7 Results for the Application

and Cf corresponding to (f, ∂nϕ)ΓO
.

In contrast to the model problem we have here:

A is the (n × n)-matrix corresponding to:

(∇ψ,∇ϕ)0,Ω −
(

1

r
∂rψ, ϕ

)

0,Ω

.

As mentioned before we have another geometry (see Figure 7.1) as for the model

problem where we use the unit square as underlying geometry. We have given

measuring data f = ∂nu|ΓO
in equidistant measuring points which we interpolate

linear instead of a given function. From the reduction from three to two dimensions

we have the supplementary term −
(

1

r
∂rψ, ϕ

)

0,Ω

in the matrix A and we use the

classical variational formulation of the direct problem instead of Nitsche’s method.

Caused by the term −
(

1

r
∂rψ, ϕ

)

0,Γ

we have an unsymmetric problem to be solved.

For this we use the bicgstab-method (see e.g. [34], [15] or [31]) instead of the pcg-

method, described in the following with Ax = b as underlying problem :

Algorithm 7.1. (BICGstab)

Given x̄0 ∈ R
n with r̄0 := b − Ax̄0 6= 0. Choose r̂0 ∈ R

n such that (r̂0, r̄0) 6= 0,

set p̄0 := r̄0.

For k = 0, 1, . . .

1) ak :=
(r̂0, r̄k)

(r̂0, Ap̄k)

v := Ap̄k, t := As

2) ωk+1 :=
(s, t)

(t, t)

x̄k+1 := x̄k + akp̄k + ωk+1s

r̄k+1 := s − ωk+1

if

‖r̄k+1‖ is small enough stop

else
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bk :=
(r̂0, r̄k+1)

(r̂0, r̄k)

ak

ωk+1

p̄k+1 := r̄k+1 + bk(p̄k − ωk+1v)

We do the calculations for different cases of measuring data. The regularisation

parameter is chosen by tried and error as in the previous Sections, as regularisation

matrix we choose an approximation of the second derivative but we didn’t reduce

the number of DOF on ΓC .

In the first two cases we present we have given negative data on ΓO. Figure 7.2

shows the calculated control q = ∂nuh|ΓC
projected on the z-axis (left) for the given

data (f = ∂nu|ΓO
, right) and the computed normal derivative ∂nuh|ΓO

(right) for

refining the grid six times (24576 cells, 321 DOF on ΓC) and α = 1.e − 06.
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Figure 7.2: The calculated control q = ∂nuh|ΓC
(left), the given measurements and

the calculated normal derivative ∂nuh|ΓO
(right) for refining the grid six

times and α = 1.e − 06.

In Figure 7.3 we can see on the left a video image of the experiment and on the

right the calculated uh on Ω ( the simplified rotational symmetric geometry) for the

given measurements illustrated in Figure 7.2.

In both cases we reach a good approximation of the given measurements. We get

better results for this approximation for smaller regularisation parameters but we
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7 Results for the Application

have oscillations in the calculation of the control q = ∂nu|ΓC
. This can be seen in

appendix B.

Figure 7.3: Video image (left, from F. Mauseth NTNU Trondheim) and calculated

uh on Ω for the given measurements ∂nu|ΓO
(illustrated in Figure 7.2

right). The calculation is done for six grid refinements and α = 1.e−06.

In the following Figures we see the results for other negative measurements. Again

we refine the grid six times (24576 cells and 321 DOF on ΓC) and choose this time

α = 1.e − 07.

Figure 7.4 shows the calculated q = ∂nuh|ΓC
, the given measurements and the com-

puted normal derivative ∂nuh|ΓO
. In Figure 7.5 we can see on the left a video image

of the experiment and on the right the calculated uh on Ω (the simplified rotational

symmetric geoemtry).

Again we reach a better approximation of the given measurements by a smaller

regularisation parameter but this results as in the previous calculations in oscillations

in the calculation of the searched control. (see appendix B).
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Figure 7.4: The calculated control q = ∂nuh|ΓC
(left), the calculated ∂nuh|ΓO

and

the given measurements (right) for refining the grid six times and α =

1.e − 07.

Figure 7.5: Video image (left, from F. Mauseth NTNU Trondheim) and calculated

uh on Ω for the given measurements ∂nu|ΓO
(illustrated in Figure 7.4

right). The calculation is done for six grid refinements and α = 1.e−07.

Now we present the results for two cases with positive measurements. We again refine

Ω six times (24576 cells and 321 DOF on ΓC) but here we choose α = 1.e−08. Figure
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7 Results for the Application

7.6 shows the control q = ∂nuh|ΓC
, the given Neumann measurement and ∂nuh|ΓO

.

In Figure 7.7 we can see on the left a video image of the experiment and on the

right the calculated uh on Ω.
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Figure 7.6: The calculated q = ∂nuh|ΓC
(left), the calculated ∂nuh|ΓO

and the given

measurements (right).

Figure 7.7: Video image (left, from F. Mauseth NTNU Trondheim) and calculated uh

on Ω for the given measurement ∂nu|ΓO
illustrated in Figure 7.6 (right).
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At last we present the results for another positive measurement. We refine therefore

the grid six times and set α = 1.e − 07. In Figure 7.8 we can see the calculated

control q on ΓC , the given measurement and the computed ∂nuh|ΓO
. Figure 7.9

shows the video image of the experiment and the calculated uh on Ω for the given

data. More numerical results for this cases can be seen in appendix B.
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Figure 7.8: The calculated q = ∂nuh|ΓC
(left), the calculated ∂nuh|ΓO

and the given

measurements (right).

Figure 7.9: Video image (left, from F. Mauseth NTNU Trondheim) and calculated

uh on Ω for the given measurements ∂nu|ΓO
illustrated in Figure 7.8

(right).
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8 Conclusion and outlook

In this dissertation we have presented results for a Cauchy type problem in electrical

engineering. The experimental setup for the application of hybrid insulation takes

place at the NTNU Trondheim. Frank Mauseth who deals with this application in his

PhD thesis [26] provided us the description of the application and the measurements

we needed for solving the problem.

Caused by the rotational symmetry we have reduced the problem of hybrid insulation

from three to two dimensions. As for the application it is possible to search Dirichlet

or Neumann control we first presented Nitsche’s method for the calculation of direct

problems with Dirichlet boundary data. There the Dirichlet boundary data, achieved

in the variational formulation and weren’t hidden in the underlying function space.

We have shown stability, consistency and have done the error estimation. We have

seen that the errors in L2(Ω)- and H1(Ω)-norm are of the same order as in the

classical variational formulation.

After we have introduced the basic theory of inverse problems we presented three

optimal control problems, we solved on the unit square. Based on the application we

searched Dirichlet or Neumann control for given Neumann measurements. We also

wanted to know, what happened if we have given Dirichlet measurements and the

Neumann condition is part of the underlying PDE-constraint. We only took care of

the problem with searched Dirichlet control for given Dirichlet measurements. The

case of searched Neumann control isn’t uniquely solvable.

We have done the calculation for the three optimal control problems for three dif-

ferent regularisation matrices (the identity and approximations of first and second
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8 Conclusion and outlook

derivative). We have noticed that we have to discretise Ω fine enough to reach good

results. For saving runtime we have reduced the number of DOF on ΓC (the bound-

ary on which we searched the control) without loosing quality of the calculation. As

a last aspect we have done the calculation for different regularisation parameters to

estimate the optimal parameter in dependence of the regularisation matrix and the

number of DOF on ΓC .

In the case of searched Neumann control for given Neumann measurements we have

seen, that we achieved good results for the searched control for all of the regularisa-

tion matrices. We have also seen, that we can reduce the number of DOF on ΓC for

all regularisations (41 DOF for Reg = RT R, 31 DOF for Reg = RT
2 R2 and 91 DOF

for Reg = RT
1 R1). For the calculation of the other boundary data computed by the

searched control there was graphically no discrepancy obvious.

In the case of searched Dirichlet control for given Neumann measurements we also

achieved good results for the searched control for all three regularisations. But in

this case we had to enlarge the number of DOF (compared to the case of searched

Neumann control) in the case we regularised by an approximation of first (101 DOF)

or second (91 DOF) derivative caused by the calculation of the other boundary data,

especially of ∂nuh|ΓC
. There we achieved oscillations if we reduced the number of

DOF too much. If we regularised by the identity we weren’t able to avoid these

oscillations.

A similar effect we have seen in the last case of searched Dirichlet control for given

Dirichlet measurements. There again we achieved good results for the searched

control but we have to enlarge the number of DOF on ΓC compared to the results

for searched and given Neumann data. Again we weren’t able to avoid oscillations

in the calculation of ∂nuh, if we regularise by the identity. Also in the calculation of

uh|ΓO
we have seen discrepancies between the three regularisations.

In the comparison of the three problems, where we used the approximation of the

second derivative for all calculations we have seen, that we get the best results in the

case of searched Neumann control and given Neumann measurement. For this case
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we have used the smallest number of DOF on ΓC and we didn’t have the problem of

arising oscillations if we regularise by the identity or an approximation of the first

derivative. As a conclusion we can say the results are worse the more Dirichlet data

(as searched control or/and given measurement) we have.

At last we have presented the results for the application of hybrid insulation. Caused

by the results for the model problem, where we achieved the best results for searched

Neumann control and given Neumann measurements we considered only the case

of searched Neumann control. As we have no Dirichlet data to calculate, we used

the classical variational formulation of the direct problem where the Dirichlet data

are hidden in the function space. We have modified the geometry and the matrix A

caused by the rotational symmetry. We have presented the results for four cases of

given measurement. As we only know the measurement this was the only evidence

for the choice of the regularisation parameter.

For the future work one can take a look on the automation of the choice of the

regularisation parameter and, in connection with this, on the possible error analy-

sis. Perhaps the choice of number of DOF on ΓC can be optimised by doing the

calculation adaptivly in the sense of refining the grid without ΓC . Also the choice

of the constant γ for Nitsche’s method could be done by calculating the eigenvalue

as it is mentioned by Hansbo et al. ([19] and [6]).

As hybrid insulation is a problem in three dimensions another possibility is, to do

the calculation in three dimensions. But therefore we need other measurements.

Hybrid insulation isn’t the only application for this problem. Another application is

the control of forming processes illustrated in Figure 8.1. If we simplify this problem

to the unit square we have the model problem (see Section 5) with given Neumann

measurements (the designated martensite concentration).
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8 Conclusion and outlook

Figure 8.1: Illustration of a forming process.

For this processes the influencing values are e.g. geometry, temperature and stamp

speed. The control parameters are the down hold pressure and the sheet tracking.

In Figure 8.2 we could regard the down hold pressure or the sheet tracking at the

left boundary as control and the martensite concentration VM in the marked critical

deformed area as observation. Here we have VM as function of deformation ǫ(v).

This means we have to find the optimal derivative in the right subarea by presettings

on the left boundary.

Figure 8.2: For an optimal control the hold down pressure or the sheet tracking

at the left boundary could be regarded as control and the martensite

concentration VM in the marked critical deformed area as observation.
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A More numerical results for the

model problem

In this Section we want to present more numerical results. We will present graphical

results for searched Neumann control and given Neumann measurements, searched

Dirichlet control and given Neumann measurements and searched Dirichlet control

and given Dirichlet measurements. Furthermore we will differ between the results for

the different regularisation matrices, for different grid refinements, different number

of DOFs on ΓC and different regularisation parameters.

Later on we present more numerical results for the application of hybrid insula-

tion. There we do the calculations in the case of searched Neumann control and

given Neumann measurements for different regularisation parameters and present

the results for the searched control q = ∂nu|ΓC
and the approximation of the given

measurements ∂nuh|ΓO
.
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A More numerical results for the model problem

A.1 Results for given ∂nu|ΓO
and searched ∂nu|ΓC
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Figure A.1: ∂nuh|ΓC
with Reg = RT R, α = 1.e−13 and three to five grid refinements

(left) and ∂nuh|ΓC
with Reg = BT

1 B1, α = 1.e − 10 for three and four

grid refinements (right).

As mentiond in Section 6.1 here we present the graphics for the calculation of Neu-

mann control on ΓC for given Neumann measurements on ΓO. We can see in Figure

A.1 the results for regularising with Reg = RT R and Reg = RT
1 R1 for small grid

refinements. We can see that these refinements are too small to deliver good results.

Results for searched ∂nu|ΓC
and given ∂nu|ΓO

with Reg = RTR

Now we present the graphical results calculated with Reg = RT R for different grid

refinements and α = 1.e − 13 and without special choice of the number of DOF on

ΓC . The results for the searched control q = ∂nu|ΓC
can be seen in Section 6.1. In

the Figures (A.2 and A.3) we can see that we achieve better results for smaller grids.
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A.1 Results for given ∂nu|ΓO
and searched ∂nu|ΓC
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Figure A.2: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), u|ΓO
= −y2(1− y)2 and uh|ΓO

(right) for six to eight grid refinements calculated with the computed

control, Reg = RT R and α = 1.e − 13.
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Figure A.3: ∂nu|ΓC
= y2(1−y)2 and ∂nuh|ΓC

for different grid refinements calculated

with the computed control, Reg = RT R and α = 1.e − 13.

The following graphics illustrate the results for refining the grid eight times, Reg =

RT R, α = 1.e − 13 and a different number of DOF on ΓC . As for the calculated

control (see Section 6.1) we can see that we can reduce the number of DOF without

loosing quality of the calculation.
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Figure A.4: Results on ΓO: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left), u|ΓO
= 0

and uh|ΓO
(right) for different DOF on ΓC for eight grid refinements

calculated with the computed control with Reg = RT R and α = 1.e−13.
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Figure A.5: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different DOF on ΓC for eight grid

refinements calculated with the computed control, Reg = RT R and

α = 1.e − 13.

At last we present the results for different regularisation parameters. Therefore we

discretise Ω eight times and use 41 DOF on ΓC . We can see that the influence of

the regularisation parameter in this results is small.
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A.1 Results for given ∂nu|ΓO
and searched ∂nu|ΓC
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Figure A.6: Results on ΓO: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left), u|ΓO
= 0 and

uh|ΓO
(right) for different regularisation parameters refining the grid

eight times and 41 DOF on ΓC calculated with the computed control.
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Figure A.7: u|ΓC
= y2(1−y)2 and uh|ΓC

for different regularisation parameters refin-

ing the grid eight times and 41 DOF on ΓC calculated with the computed

control.

Results for searched ∂nu|ΓC
and given ∂nu|ΓO

with Reg = RT
1
R1

Now we take a look on the results for searched Neumann control and given Neumann

measurements calculated with Reg = RT
1 R1 for different grid refinements and the
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A More numerical results for the model problem

regularisation parameter α = 1.e − 13. The results for the searched control can be

seen in Section 6.1. As there we can see here the better results for smaller grids.
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Figure A.8: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different grid refinements with Reg =

RT
1 R1 and α = 1.e − 13 calculated with the computed control.
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Figure A.9: Results on ΓO: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left), u|ΓO
= 0

and uh|ΓO
(right) for different grid refinements with Reg = RT

1 R1 and

α = 1.e − 13 calculated with the computed control.
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A.1 Results for given ∂nu|ΓO
and searched ∂nu|ΓC

Now the results for different DOF on ΓC for Reg = RT
1 R1 and α = 1.e − 13.

Graphically there is no discrepancy obvious. For the results of the searched control

see Section 6.1.
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Figure A.10: Results on ΓO: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left),u|ΓO
= 0

and uh|ΓO
(right) for different DOF on ΓC with Reg = RT

1 R1 and

α = 1.e − 13 calculated with the computed control.
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Figure A.11: u|ΓC
= y2(1−y)2 and uh|ΓC

for different DOF on ΓC with Reg = RT
1 R1

and α = 1.e − 13 calculated with the computed control.
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A More numerical results for the model problem

In the following we illustrate the results for different regularisation parameters dis-

cretise Ω eight times and use 101 DOF on ΓC . Again we can see that the influence

of the regularisation parameter on these results is small.
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Figure A.12: Results on ΓO: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left), u|ΓO
= 0

and uh|ΓO
(right) for different regularisation parameters, refining eight

times and using 101 DOF on ΓC calculated with the computed control.
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Figure A.13: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different regularisation parameter

refining eight times and using 101 DOF on ΓC calculated with the

computed control.
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A.1 Results for given ∂nu|ΓO
and searched ∂nu|ΓC

Results for searched ∂nu|ΓC
and given ∂nu|ΓO

with Reg = RT
2
R2

In the following we present the results for different grid refinements regularise by

an approximation of the second derivative (RT
2 R2) and α = 1.e − 13. As for the

searched control (see Section 6.1) we get better results for smaller grids.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  0.2  0.4  0.6  0.8  1

y

y*y*(1-y)*(1-y)
3
4
5
6
7
8

Figure A.14: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different grid refinements calculated

with the computed control, Reg = RT
2 R2 and α = 1.e − 13.
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Figure A.15: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left),u|ΓO
= 0 and uh|ΓO

(right)

for different grid refinements calculated with the computed control,

Reg = RT
2 R2 and α = 1.e − 13.
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A More numerical results for the model problem

Now we present the graphical results for different DOF on ΓC refining Ω eight times

and α = 1.e − 13. Again we can see that we don’t loose quality of the results if we

reduce the number of DOF on ΓC . For the computed control see Section 6.1.
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Figure A.16: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different DOF on ΓC refining Ω eight

times calculated with the computed control, Reg = RT
2 R2 and α =

1.e − 13.
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Figure A.17: Results on ΓO: ∂nu|ΓO
= −y2(1− y)2 and ∂nuh|ΓO

(left), u|ΓO
= 0 and

uh|ΓO
(right) for different DOF on ΓC refining Ω eight times calculated

with the computed control, Reg = RT
2 R2 and α = 1.e − 13.
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A.1 Results for given ∂nu|ΓO
and searched ∂nu|ΓC

In the following Figures we see the results for different regularisation parameters

refining the grid eight times and use 31 DOF on ΓC . As for the previous calculations

we can see that the influence of the regularisation parameter on these results is very

small.
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Figure A.18: Results on ΓO: ∂nu|ΓO
= −y2(1− y)2 and ∂nuh|ΓO

(left), u|ΓO
= 0 and

uh|ΓO
(right) for different regularisation parameters refining Ω eight

times, 31 DOF on ΓC calculated with the computed control and Reg =

RT
2 R2.
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Figure A.19: u|ΓC
= y2(1 − y)2 and uh|ΓC

for different regularisation parameters

refining Ω eight times, 31 DOF on ΓC calculated with the computed

control and Reg = RT
2 R2 .
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A More numerical results for the model problem

A.2 Results for given ∂nu|ΓO
and searched u|ΓC

Results for searched u|ΓC
and given ∂nu|ΓO

with Reg = RTR

In the following we present the results for searched Dirichlet control and given Neu-

mann measurement calculated for different grid refinements with Reg = RT R and

α = 1.e − 10. As for the searched control (see Section 6.2) we reach better results

for smaller grids.
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Figure A.20: ∂nuh|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different grid refinements calcu-

lated with the computed control, Reg = RT R and α = 1.e − 10.

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0  0.2  0.4  0.6  0.8  1

y

-y*y*(1-y)*(1-y)
3
4
5
6
7
8

-1e-07

-5e-08

 0

 5e-08

 1e-07

 1.5e-07

 0  0.2  0.4  0.6  0.8  1

y

u=0
6
7
8

Figure A.21: ∂nuh|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left), u|ΓO
= 0 and uh|ΓO

(right)

for different grid refinements with Reg = RT R and α = 1.e − 10.
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A.2 Results for given ∂nu|ΓO
and searched u|ΓC

Now we reduce the number of DOF on ΓC . Therefore we refine eight times, use

α = 1.e − 10 and Reg = RT R. Specially in Figure A.23 we can see the problems if

we reduce the number of DOF on ΓC too much.

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0  0.2  0.4  0.6  0.8  1

y

-y*y*(1-y)*(1-y)
11
31

257

-1.5e-09

-1e-09

-5e-10

 0

 5e-10

 1e-09

 1.5e-09

 2e-09

 2.5e-09

 0  0.2  0.4  0.6  0.8  1

y

u=0
11
31

257

Figure A.22: Results on ΓO: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left), u|ΓO
= 0

and uh|ΓO
(right) for different DOF on ΓC refining the grid eight times

calculated with the computed control, Reg = RT R and α = 1.e − 10.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

y

y*y*(1-y)*(1-y)
11
31
41
91

257

Figure A.23: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different DOF on ΓC refining the

grid eight times calculated with the computed control, Reg = RT R

and α = 1.e − 10.

Now we use Reg = RT R, 41 DOF on ΓC and refine the grid eight times for different
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A More numerical results for the model problem

regularisation parameters. We can see that we weren’t able to avoid the oscillations

in the calculation of ∂nuh|ΓC
.
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Figure A.24: ∂nu|ΓC
= y2(1−y)2 and ∂nuh|ΓC

for different regularisation parameters

refining the grid eight times calculated with the computed control, 41

DOF on ΓC and Reg = RT R.
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Figure A.25: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left),∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
(right) for different regularisation parameters refining the grid

eight times calculated with the computed control, 41 DOF on ΓC and

Reg = RT R.
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A.2 Results for given ∂nu|ΓO
and searched u|ΓC

Results for searched u|ΓC
and given ∂nu|ΓO

with Reg = RT
1
R1
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Figure A.26: Results on ΓO: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left), u|ΓO
= 0

and uh|ΓO
(right) for different grid refinements calculated with the

computed control, Reg = RT
1 R1 and α = 1.e − 13.

Figures A.26 and A.27 show the results for searched u|ΓC
and given ∂nu|ΓO

for

different grid refinements regularise by Reg = RT
1 R1 with α = 1.e − 13. As before

we get the better results for smaller grids.
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Figure A.27: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different grid refinements calcu-

lated with the computed control, Reg = RT
1 R1 and α = 1.e − 13.
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A More numerical results for the model problem

Now we want to reduce the number of DOF on ΓC . Therefore we discretise eight

times, regularise by Reg = RT
1 R1 and set α = 1.e − 13. In Figure A.29 we can see

the oscillations if we reduce the number of DOF on ΓC too much.
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Figure A.28: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
(right) for different DOF on ΓC refining the grid eight times

calculated with the computed control, Reg = RT
1 R1 and α = 1.e − 13.
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Figure A.29: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different DOF on ΓC refining the

grid eight times calculated with the computed control, Reg = RT
1 R1

and α = 1.e − 13.
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A.2 Results for given ∂nu|ΓO
and searched u|ΓC

In the following we present the results for different regularisation parameters regu-

larise by Reg = RT
1 R1 refining the grid eight times and use 101 DOF on ΓC . There

are only discrepancies in the calculation of ∂nuh|ΓC
obvious.
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Figure A.30: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
(right) for different regularisation parameters calculated with

the computed control, Reg = RT
1 R1, 101 DOF on ΓC and refining the

grid eight times.
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Figure A.31: ∂nu|ΓC
= y2(1−y)2 and ∂nuh|ΓC

for different regularisation parameters

calculated with the computed control, Reg = RT
1 R1, 101 DOF on ΓC

and refining the grid eight times.
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A More numerical results for the model problem

Results for searched u|ΓC
and given ∂nu|ΓO

with Reg = RT
2
R2

At last we analyse the results for Reg = RT
2 R2. We start with different grid refine-

ments and α = 1.e − 13. Again we can see the better results for smaller grids.
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Figure A.32: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different grid refinements calcu-

lated with the computed control, α = 1.e − 13 and Reg = RT
2 R2.
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Figure A.33: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
(right) for different grid refinements calculated with the com-

puted control, α = 1.e − 13 and Reg = RT
2 R2.
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A.2 Results for given ∂nu|ΓO
and searched u|ΓC

Now we present the results for reduced number of DOF on ΓC . We discretise Ω

eight times and set α = 1.e − 13. As in the previous calculations we can see the

oscillations in the calculation of ∂nuh|ΓC
if we reduce the number of DOF on ΓC too

much.
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Figure A.34: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
(right) for different DOF on ΓC refining eight times calculated

with the computed control, Reg = RT
2 R2 and α = 1.e − 13.
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Figure A.35: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different DOF on ΓC refining the

grid eight times calculated with the computed control, Reg = RT
2 R2

and α = 1.e − 13.

141



A More numerical results for the model problem

At last we present the results for different regularisation parameters. We discretise

eight times and use 91 DOF on ΓC . We can see again that only for the calculation

of ∂nuh|ΓC
the influence of the regularisation parameter is obvious.
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Figure A.36: ∂nu|ΓC
= y2(1−y)2 and ∂nuh|ΓC

for different regularisation parameters,

refining the grid eight times calculated with the computed control, 91

DOF on ΓC and Reg = RT
2 R2.
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Figure A.37: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
(right) for different regularisation parameters refining the grid

eight times calculated with the computed control, 91 DOF on ΓC and

Reg = RT
2 R2.
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A.3 Results for given u|ΓO
and searched u|ΓC

A.3 Results for given u|ΓO
and searched u|ΓC

Results for searched u|ΓC
and given u|ΓO

with Reg = RTR

Now we present the results for searched Dirichlet control and given Dirichlet data

for different grid refinements regularise by Reg = RT R and α = 1.e − 11. Again we

can see the better results for smaller grids.
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Figure A.38: Results on ΓO: ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(left), u|ΓO
and

uh|ΓO
(right) for different grid refinements calculated with the com-

puted control, Reg = RT R and α = 1.e − 11.
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Figure A.39: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different grid refinements calcu-

lated with the computed control, Reg = RT R and α = 1.e − 11.
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A More numerical results for the model problem

In the following we reduce the number of DOF on ΓC refine the grid eight times and

set α = 1.e − 11. We can see the oscillations in the calculation of ∂nuh|ΓC
and also

in the results for uh|ΓO
we can see discrepancies.
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Figure A.40: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different DOF on ΓC refining the

grid eight times calculated with the computed control, Reg = RT R

and α = 1.e − 11.
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Figure A.41: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
for different DOF on ΓC refining the grid eight times calculated

with the computed control, Reg = RT R and α = 1.e − 11.
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A.3 Results for given u|ΓO
and searched u|ΓC

Now we use different regularisation parameters, discretise Ω eight times use 101

DOF on ΓC and regularise by Reg = RT R. We can see that we can’t avoid the

oscillations in the calculation of ∂nuh|ΓC
and again we have achieve discrepancies in

the calculation of uh|ΓO
.
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Figure A.42: ∂nu|ΓC
= y2(1−y)2 and ∂nuh|ΓC

for different regularisation parameters

calculated with the computed control, Reg = RT R, refining Ω eight

times and use 101 DOF on ΓC .
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Figure A.43: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
(right) for different regularisation parameters calculated with

the computed control, Reg = RT R, refining the grid eight times and

use 101 DOF on ΓC .
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A More numerical results for the model problem

Results for searched u|ΓC
and given u|ΓO

with Reg = RT
1
R1

For the regularisation with Reg = RT
1 R1 we set α = 1.e − 13 and start with the

results for different grid refinements. As in the previous Sections we reach the better

results for smaller grids.
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Figure A.44: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different grid refinements calcu-

lated with the computed control, Reg = RT
1 R1 and α = 1.e − 13.
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Figure A.45: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
for different grid refinements calculated with the computed

control, Reg = RT
1 R1 and α = 1.e − 13.
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A.3 Results for given u|ΓO
and searched u|ΓC

In the following Figures we reduce the number of DOF, refine the grid eight times

and regularise by Reg = RT
1 R1, α = 1.e− 13. Again we can see the problems in the

calculation of ∂nuh|ΓC
and the discrepancies in the results for uh|ΓO

.
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Figure A.46: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different DOF on ΓC refining the

grid eight times calculated with the computed control, Reg = RT
1 R1

and α = 1.e − 13.
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Figure A.47: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
for different DOF on ΓC refining the grid eight times calculated

with the computed control, Reg = RT
1 R1 and α = 1.e − 13.
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A More numerical results for the model problem

At last we present the results for different regularisation parameters using 101 DOF

on ΓC and refining the grid eight times. Here we can see the influence of the

regularisation parameter on the calculation of ∂nuh|ΓC
and uh|ΓO

.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.2  0.4  0.6  0.8  1

y

y*y*(1-y)*(1-y)
1.e-11
1.e-12
1.e-13
1.e-14
1.e-15

Figure A.48: ∂nu|ΓC
= y2(1−y)2 and ∂nuh|ΓC

for different regularisation parameters,

refining the grid eight times calculated with the computed control, 101

DOF on ΓC and Reg = RT
1 R1.
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Figure A.49: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
(right) for different regularisation parameters, refining the grid

eight times calculated with the computed control, 101 DOF on ΓC and

Reg = RT
1 R1.

148



A.3 Results for given u|ΓO
and searched u|ΓC

Results for searched u|ΓC
and given u|ΓO

with Reg = RT
2
R2

Again we start the presentation with the results for different grid refinements with

Reg = RT
2 R2 as regularisation matrix and α = 1.e− 13. As in the previous calcula-

tions we get better results for smaller grids.
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Figure A.50: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different grid refinements calcu-

lated with the computed control, Reg = RT
2 R2 and α = 1.e − 13.
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Figure A.51: Results on ΓO: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and

∂nuh|ΓO
(right) for different grid refinements calculated with the com-

puted control, Reg = RT
2 R2 and α = 1.e − 13.
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A More numerical results for the model problem

Now we reduce the number of DOF on ΓC refine the grid eight times and regularise

by Reg = RT
2 R2, α = 1.e − 13. As mentioned in Section 6.3 we achieve oscillations

in the calculation of ∂nuh|ΓC
if we reduce the number of DOF on ΓC too much.
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Figure A.52: ∂nu|ΓC
= y2(1 − y)2 and ∂nuh|ΓC

for different numbers of DOF on

ΓC , refining the grid eight times calculated with the computed control,

Reg = RT
2 R2 and α = 1.e − 13.
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Figure A.53: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(right)

for different numbers of DOF on ΓC , refining the grid eight times cal-

culated with the computed control, Reg = RT
2 R2 and α = 1.e − 13.
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A.3 Results for given u|ΓO
and searched u|ΓC

At last we refine the grid eight times use 101 DOF on ΓC regularise with Reg = RT
2 R2

and do the calculations for different regularisation parameters. As in the previous

calculations we can see the influence of the regularisation parameters on the results

for ∂nuh|ΓC
and uh|ΓO

.
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Figure A.54: ∂nu|ΓC
= y2(1−y)2 and ∂nuh|ΓC

for different regularisation parameters,

refining the grid eight times calculated with the computed control, 101

DOF on ΓC and Reg = RT
2 R2.
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Figure A.55: u|ΓO
= 0 and uh|ΓO

(left), ∂nu|ΓO
= −y2(1 − y)2 and ∂nuh|ΓO

(right)

for different regularisation parameters, refining the grid eight times

calculated with the computed control, 101 DOF on ΓC and Reg =

RT
2 R2.
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A More numerical results for the model problem
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B More numerical results for

hybrid insulation

In this Section we want to present more numerical results for the application of

hybrid insulation. Therefore we use the same four measurements as in Section 7 but

we present the results for different regularisation parameters. In all calculations we

refine Ω six times (24576 cells and 321 DOF on ΓC) and present only the results for

the searched control q = ∂nu|ΓC
and the approximation of the given measurements

∂nu|ΓO
.

We start with the first negative measurements as in Section 7 (see Figure B.1 right).

For these calculations we use regularisation parameters between 10−9 and 10−4 and

additionally 10−11. We can see that for smaller parameter we reach the better

approximations of the given measurement (see Figure B.1 (right)) but we achieve

oscillations in the calculation of the searched control q = ∂nu|ΓC
. Caused of this we

choose the regularisation parameter α = 1.e − 06 in the presentation of the results

in Section 7 (see Figure 7.2).
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B More numerical results for hybrid insulation
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Figure B.1: ∂nuh|ΓC
(left), ∂nuh|ΓO

and the given measurement (right) calculated for

different regularisation parameters and refining Ω six times.

Now we present the results for the other negative data. Here we use again regulari-

sations between 10−8 and 10−4and additionally 10−11. As in the previous calculation

we get a better approximation of the given measurements on ΓO for smaller param-

eters (Figure B.2 right) but again we achieve oscillations in the calculation of the

searched control q = ∂nu|ΓC
(Figure B.2 left).
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Figure B.2: ∂nuh|ΓC
(left), ∂nuh|ΓO

and the given measurement (right) calculated for

different regularisation parameters and refining Ω six times.

154



In the following we see the results for the positive measurements (see Section 7)

calculated for different regularisation parameters (Figure B.3 and Figure B.4). Here

we have the same effect as in the calculations with given negative measurements.

For smaller parameters we get the better approximation for the given measurements

but we have oscillations in the results for the searched control q = ∂nu|ΓC
. Caused

by these oscillations we have chosen the bigger parameters in the presentation of

the results in Section 7.
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Figure B.3: ∂nuh|ΓC
(top left and right), ∂nuh|ΓO

and the given measurements for

different regularisation parameters.

At last the results for the second given positive measurements calculated for different

regularisation parameters.
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B More numerical results for hybrid insulation
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Figure B.4: ∂nuh|ΓC
(left), ∂nuh|ΓO

and the given measurements for different regu-

larisation parameters.
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