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Abstract

The following thesis addresses a new technology for active range estimation,
so-called time-of-flight (TOF) cameras. Based on the runtime principle, time-

of-flight cameras allow the parallel acquisition of multiple distance information
and thus enable, in contrast to other approaches, the acquisition of an entire scene
in real-time. Consequently, TOF cameras are most suitable for many real-time
systems in the area of automatization and interaction, where they are used for,
i.a., object or gesture recognition. Due to their novelty, however, the accuracy of
time-of-flight senors has been studied barely up to the present.

Experiments in the context of this thesis revealed error sources whose charac-
teristics result in distance deviations of several centimeters. Those error sources
therefore have significant impact onto the accuracy of acquired distance informa-
tion and the results of vision systems as well. In addition, current TOF cameras
are of low resolution compared to other range sensing approaches. Although
this circumstance does not represent a real error source, it might have negative
influence on the accuracy of automatization algorithms and therefore gives reasons
for appropriate pre-processing of the acquired information.

Dealing with basic research, the presented work covers the investigation of the
accuracy of current camera models as well as the basic processing steps that are
necessary for the enhancement of range images regarding further processing steps.

In the context of camera accuracy, the thesis primary focuses on the sys-
tematical error characteristics and discusses the design of phenomenological
calibration models covering demodulation- as well as intensity-related deviations.
Furthermore, it deals with the compensation of TOF-specific motion artifacts and
describes a compensation approach, which is based on optical motion estimation
as well as an theoretical axial motion model.

In the context of data processing, the present thesis deals with the reduction
of noise effects as well as the algorithmic refinement of distance information.
Regarding distance refinement, two approaches are discussed: explicitly surface
approximation using Moving Least Square surfaces as well as edge preservative
data upscaling in image space. Furthermore, it covers the fusion of range images
with supplementary information as provided by additional imaging sensors, in
order to provide multi-modal data for sophisticated vision systems.





Zusammenfassung

Die vorliegende Arbeit befasst sich mit einer neuartigen, kostengünstigen
Technologie zur aktiven Entfernungsmessung, sogenannten Time-of-Flight

(TOF) Kameras. Basierend auf dem Laufzeit-Prinzip, erlauben diese die parallele
Aufnahme mehrerer Tiefeninformationen und ermöglichen somit, im Gegensatz
zu bisherigen Technologien, die Akquisition einer kompletten Szene in Echtzeit.
Infolgedessen, eignen sich TOF Kameras besonders gut für vielerlei Echtzeit-
Systeme aus den Bereichen der Automatisierung und Interaktion, und finden dort
ihren Einsatz u.a. zur Objekt- und Gestenerkennung. Aufgrund ihrer Neuheit,
wurde die Genauigkeit von Time-of-Flight Kameras jedoch bisher kaum untersucht.

Durchgeführte Untersuchungen im Rahmen dieser Arbeit haben Fehlerquellen
aufgezeigt, die in ihrer Ausprägung zu signifikanten Abweichungen in den Tie-
feninformationen von mehreren Zentimetern führen. Diese haben somit relevante
Auswirkung auf die Ergebnisse von Vision-Systemen. Des Weiteren weisen aktuel-
le TOF Kameras, im Vergleich zu anderen Verfahren zur Entfernungsmessung,
eine geringere Bildauflösung auf. Auch wenn dieser Sachverhalt im eigentlichen
Sinn keine Fehlerquelle darstellt, kann er doch entscheidenden Einfluss auf die
Genauigkeit von Automatisierungs-Algorithmen haben und rechtfertigt somit die
algorithmische Verfeinerung von Tiefeninformationen.

Im Rahmen von Grundlagenforschung, umfasst die vorliegende Ausarbeitung
sowohl die Untersuchung potentieller Fehlerquellen von TOF Kameras und deren
Korrektur, als auch die grundlegenden Vorverarbeitungsschritte, die nötig sind um
aufgenommene Tiefeninformationen für die weitere Verarbeitung zu verbessern.

Im Kontext der Messgenauigkeit, werden primär die Charakteristiken sys-
tematisch auftretender Messfehler, sowie der Entwurf entsprechender, phäno-
menologischer Korrekturmodelle für Demodulations- und Intensitäts-abhängiger
Abweichungen betrachtet. Darüber hinaus wird die Reduktion TOF Kamera spe-
zifischer Bewegungsartefakte innerhalb dynamischer Szenen, basierend auf einer
optischen Bewegungsschätzungen, sowie eines theoretischen axialen Bewegungs-
models behandelt.

Im Bereich der Datenverarbeitung behandelt die vorgelegte Ausarbeitung
zunächst die Reduktion von Rauscheinflüssen sowie die algorithmischen Verfeine-
rung von Tiefeninformationen. In diesem Zusammenhang werden zwei Verfahren
zur Tiefenverfeinerung erörtert: explizite Oberflächen-Approximationen mittels
Moving Least Square Oberflächen und kantenerhaltendes Upsampling im Bildraum.
Ferner befasst sich die Ausarbeitung mit der grundlegenden Fragestellung zur
Fusion von Tiefenbildern mit weiteren Informationen zusätzlicher, bildgebender
Sensoren zur Erstellung multi-modaler Daten.
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Introduction

I
n the present days, a wide range of intelligent systems are used in the context of
manufacturing processes, the automotive industry, remote exploration, medical

settings as well as surveillance systems. Their functionality, for instance, cover
application areas like quality control, driver assistance or autonomous navigation.
With ongoing progress in technology, however, the demand for intelligent and au-
tonomous systems still increases. For this reason, many engineers and researchers
deal with the general challenge to build improved artificial systems that copy
human abilities, e.g., visual perception, to interact with their environment without
assistance or supervision.

Computer vision as complement to biological vision and essential part of most
intelligent systems generally deals with the basic concept how artificial systems
obtain and interpret visual information from images or image sequences of the
real world. Common applications, for example, are given by tasks like

– object and environment modeling for, e.g., automated object inspection,
topographical modeling or obstacle detection

– event detection for example in the context of visual surveillance

– data analysis like automated indexing and organization of images or video
sequences

– contact-free human-machine interaction

While the actual design of a computer vision system is highly application depen-
dent, most systems commonly deal with one or more aspects of

– object modeling and scene reconstruction,

– object recognition and tracking, or

– pose and motion estimation

and incorporate research topics from the field of artificial intelligence and machine
learning. Most of these problems are rather complex and while conventional sys-
tems work on two dimensional image data only, enhanced systems also incorporate
range information in order to increase accuracy and overcome ill-posed problems
in the two-dimensional image domain. Classical sensing techniques and devices
for range data acquisition, however, are rather time consuming, unhandy to use
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2 Introduction

and / or costs expensive. Consequently, they are usually inappropriate for most
real-time applications, common computer vision systems usually aim at.

In contrast to that, a new type of range-sensing devices – so-called time-of-
flight (TOF) cameras or range imaging sensors – has been developed recently
[XSH∗98, TBF∗05, JG01]. Unlike other systems, TOF cameras are very compact
and low-priced off-the-shelf alternatives, that are capable to acquire full scene
distance information in real-time. Hence, by now a broad variety of research
project already exist that investigate TOF cameras in the context of computer
vision and computer graphics related applications [KBKL10].

However, current time-of-flight cameras are affected by systematic error sources
as well as motion artifacts, which significantly influence the measuring accuracy.
Beside that, all available cameras are also of low resolution compared to classical
approaches, which also might have an considerable impact onto the recognition
and reconstruction results of vision systems.

Contribution The presented thesis investigates the fundamental question about
the accuracy of current TOF cameras and present adequate calibration models
and processing techniques for systematic error sources, including motion artifacts.
It also discusses refinement techniques for acquired range images as well as
their fusion with supplemental imaging sensors in order to obtain multi-modal
information for sophisticated vision systems. According to the outlined topics,
the specific contribution consists of

– phenomenological calibration models for systematic wiggling and in-
tensity-related sensing errors. All models basically consider a set of reference
data that covers the unambiguous range and serves as basis for the approxi-
mation of an error correction function. Regarding intensity-related errors,
actually two calibration models are presented, which either consider coupled
or decoupled input parameters [LK06, LK07a, LSKK10].

– the investigation of an alternate phase shift demodulation approach,
which is based on the observations that the detected input signal is actually
a mixture of a sinusoidal and rectangular modulation. The alternate de-
modulation approach finally leads to a lightweight calibration model, which
requires a significantly reduced number of reference data compared to the
phenomenological models [LKR08].

– a compensation approach for TOF camera specific motion artifacts that is
based on pixel-wise surface tracking and seletcs corresponding phase samples
in subsequent phase images. In addition, the theoretical impact of axial
motion along the viewing ray is deduced and discussed [LK09].

– the investigation of polygonal surface approximation for range data
upsampling using Moving Least Surfaces.
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– the extension of an edge preserving upscaling filter for image data in
the context of range data refinement. Main objective of the filter design was
the handling of flying pixels as well as the extrapolation of invalid distance
information along object contours [LLK08].

– the fusion of range images and supplemental image data in order to
obtain multi-modal range data. Unlike monocular hardware solutions, the
presented approach is designed for more general, binocular setups [LK07b].

Main objective of all approaches, has been the real-time capability of the particular
technique. Beside the presented work, investigations in the context of interactive
range data segmentation and classification finally contributed to the collaborated
work on parallel mesh clustering [CKCL09].

Overview The structure of the thesis consists of the following four chapters.

Chapter 1 provides necessary fundamentals about range sensing and TOF cameras
in the context of computer vision. It gives a short overview about common
range measurement techniques and explains the working principle of current TOF
cameras, which is based on phase shift determination. Furthermore, it summarizes
typical error sources for TOF cameras, that arise from both general time-of-flight
as well as hardware-related issues. Afterwards, a definition of the traditional
pinhole camera model is given along with an explanation of the classical camera
calibration task known from traditional vision systems. The chapter is completed
by a description of fundamental techniques for vision-based motion estimation
as well as an overview about current graphics hardware and its advantages with
respect to real-time capabilities.

Chapter 2 discusses the application of intrinsic calibration to TOF cameras, its
shortcomings as well as current solutions. It also covers the contributed calibration
models for systematic wiggling- and intensity-related distance deviations along
with related calibration models published at the same time. Furthermore, it
investigates an alternate phase shift demodulation approach and addresses a
compensation approach for TOF camera specific motion artifacts.

Chapter 3 focuses on essential range image processing tasks like denoising, re-
finement and multi-sensor fusion. It gives general information for range image
denoising and binocular data fusion, and introduces Moving Least Square Surfaces
as one possible refinement technique in the context of explicit surface approxi-
mation. Furthermore, it describes an edge preserving upsampling technique for
real-time range data refinement that works the image domain, and introduces a
general processing framework for mixed CPU/GPU computation.

Chapter 4 finally gives a summary and discussion of achieved results along with
an outlook of future work.





Chapter 1

Fundamentals

»All our knowledge has its origins in our perceptions.«

– Leonardo da Vinci

The following sections give a general introduction to the concept of range
sensing. It explains the basic idea behind time-of-flight sensing and describes

the working principle of recently developed time-of-flight cameras, their advantages
over existing techniques as well as common drawbacks. It further introduces the
theoretical camera model and mathematical notation used throughout the thesis
as well as basic techniques related to camera calibration and motion estimation.
Finally, in respect to real-time data processing, an overview about current graphics
hardware is given to complete the fundamental background.

1.1 Range Measurement Techniques

Over the years, a various number of range measuring techniques has been intro-
duced, covering contact (mechanical) as well as non-contact techniques. Both
techniques basically differ in accuracy and suitability/usability. While contact
scanners are most accurate but generally restricted to smaller distances, non-
contact approaches generally allow a wider distance range at the expense of
possible inaccuracy and computation effort. Due to their domain, most appli-
cations in computer vision and remote sensing therefore rely on non-contact
techniques, whose most important concepts can be classified into triangulation
and time-of-flight.

Triangulation In the context of triangulation, the location of a surface point
is estimated by measuring the angles between the lines of sight from either end of
a fixed baseline to the particular surface point. In doing so, the unknown point
can be interpreted as the third point of a triangle with one known side and two
known angles (cmp. Fig. 1.1).

The classic implementation of triangulation is the approach of stereo vision,
which copies the human vision system by using a camera rig of two cameras. The
main challenge in stereo vision is the complex task of finding point correspondences
within both images. Based on epipolar geometry and image rectification (trans-
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6 Fundamentals

Figure 1.1: Triangulation in stereo vision. The point X can be reconstructed via
the point correspondence x1 ∝ x2, i.e. by implicitly estimating both angles α and
β, and a given baseline length b [BF82].

formation), the two dimensional problem of finding correspondences is commonly
reduced to finding the best match along a given scan line [BF82, Fau93].

Several approaches for the match finding exist that, for example, use intensity
correlation [FP86], relaxation techniques [MP79, PMF85], dynamic program-
ming [OK85] or prediction methods [AF87]. In general, all methods exploit
constraints that preserve surface continuity (smoothness), match ordering or
forbidden zones (where possible matches definitively cannot be found). Problems
occur if homogeneous image regions do not provide enough textual information to
avoid ambiguities, i.e. to find an unique match.

In contrast to passive stereo vision, active systems like laser or structured
light scanners avoid the problematic task of finding point correspondences by
replacing one camera by a light source. By doing so, the triangulation angles
are well-defined through the exit angle of the emitted light and the column of
the detected signal within the image sensor. Problems arises if the light signal
is not reflected properly, which is the case if an object is either to far away to
get illuminated or its material properties result in over- or under-exposure in the
image detector.

In order to obtain range data for an entire scene, active systems either have
to scan the scene row-by-row, as it is the case for laser scanners, or have to use
temporal pattern sequences to binary encode the corresponding column of the
projector and allow parallel detection (structured light). Both methods can be
quite time consuming as lasers scanners typically involve mechanical setups to
control the laser beam, whereas the processing time of structured light scanners
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increases with the number of encoding patterns to project.

Regardless whether the system is active or passive, triangulation techniques
have a general disadvantage as wide distance ranges and high accuracy require-
ments commonly require a large baseline. Thus, for large distances, triangulation
might become completely impractical. Furthermore, due to the different viewing
positions, occlusion and shadowing effects may occur. In this case, triangulation
becomes impossible and yields incomplete range maps.

Time-of-Flight Another common concept to estimate range information is
defined by the principle of time-of-flight. Being an adequate alternative to trian-
gulation, time-of-flight (TOF) is already used by a wide range of automatization
and sensing applications to estimate the distance to a given surface point. The
main idea is described by the run time estimation between the emission of a given
optical, electro-magnetic or acoustical signal and its arrival at a provided detector.
If the signal’s propagation velocity is known, the distance to the surface can be
calculated from the time it took for the signal to travel between emitter and
detector.

Generally, two types of TOF estimation exist: pulse and continuous modulation.
In the context of pulse modulation, only a single light impulse is emitted, implying
high demands on the detection accuracy in order to determine the exact time
delay. Continues modulation, on the other hand, estimates the phase shift between
the emitted signal and its response. The system is therefore less demanding, but
the unambiguously range of the measurement gets limited due to the periodicity
of the emitted signal.

Time-of-flight systems are – unlike triangulation setups – less affected by
shadowing effects, but are mostly capable to treat only a single point at a time.
Thus, in order to provide full range information, classical TOF devices have
to mechanical sweep their signal across the scene for either a single row (2D
scanner) or line-by-line (3D scanner), which makes classic TOF systems rather
time consuming, expensive and/or unhandy to use.

Recently developed systems realize TOF sensing as an closed form, on-chip
design. Time-of-flight cameras build on these chips are not only compact and
cost-efficient, but also capable to estimate full scene range data in almost real-
time. Unlike classical techniques, they do not rely on mechanical setups (like
laser scanners) or expensive computations (as in stereo vision), making them very
attractive for interactive applications.

At present, TOF cameras are produced by four manufacturers (cmp. Fig. 1.2):
PMD Technologies/ifm electronics [PMD], MESA Imaging [MES], Canesta [CAN]
and 3DV Systems [3DV].

While 3DV Systems offers the only TOF camera based on pulse modulation and
realize a special on chip shutter technique to detect the light signal delay, all other
manufacturers use continues intensity modulation and exploit the same working
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Figure 1.2: Current TOF camera models: PMD CamCube (204× 204px), Mesa
SR400 (176× 144px), Canesta DP200 (64× 64px) and zCam (320× 240px).

principle, which is described next at the example of current PMD cameras.

1.2 Photonic Mixer Device

In the following, the working principle of continuous intensity modulation based
TOF cameras is explained for current Photonic Mixer Devices (PMD). In this
context, also a brief discussion of characteristical error sources for TOF cameras
is given.

1.2.1 Working Principle

According to the time-of-flight principle, Photonic Mixer Devices (PMD) consist
of two main components: a CMOS senor, which represents the detector for the
time-of-flight measurement, as well as one or more active illumination units,
emitting the optical signal to detect. Other than for classical systems like laser
scanners or interferometry systems, the light source of TOF cameras does not have
to be coherent or monochromatic. Therefore, during the measurement process, the
entire scene gets illuminated with incoherent, intensity modulated near-infrared
light (NIR), which is reflected at the observed surfaces and finally detected by
the photo gates of the corresponding sensor pixel (cmp. Fig. 1.3).

Given the internal modulation signal s and its detected response r, each sensor
pixel autonomously determines the corresponding cross correlation c(τ) for a fix
internal phase delay τ , i.e.

c(τ) = lim
T→∞

∫ T/2

−T/2
r(t) · s(t+ τ) dt. (1.1)

Assuming a sinusoidal signals [XSH∗98, Lan00, KFM∗04], i.e. s(t) = cos(ωt) and
r(t) = k + a cos(ωt− φ), the cross correlation sample is given by

c(τ) = a

2 cos(ωτ + φ) (1.2)
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Figure 1.3: The principle of continues modulation based TOF cameras.

where ω = 2πf represents the angular modulation frequency, a is the amplitude of
the incident optical signal and φ is the phase offset related to the object distance.

By sampling the correlation function, i.e. taking four subsequent phase images
Ii = c(τi) with an internal phase delay of τi = i · π/2ω, a pixel’s distance-related
phase shift φ ∈ [0, 2π] can be determined as1

φ = atan2 (I3 − I1, I0 − I2) + π. (1.3)

Consequently, the demodulation scheme assumes that a surface point is captured at
the same pixel location in all phase images. Using the speed of light c0 ≈ 3·108 m/s,
the distance information is finally given by d

d = c0
2ω · φ, (1.4)

where the factor 1/2 is given by the fact that the light travels twice the distance
between camera and surface point. Due to a commonly used modulation frequency
of 20MHz, distance information is typically clamped to an unambiguous distance
range of 7.5 m.

Beside the distance information, most TOF cameras provide an additional
intensity value h, which is comparable to a gray level image, as well as the signal’s
correlation amplitude a, giving information about the distance reliability. Both
informations are obtained from the correlations samples via

h = 1
4

3∑
i=0

Ii and a = 1
2

√
(I3 − I1)2 + (I0 − I2)2. (1.5)

1atan2(y, x), (y, x) 7→ [−π, π], computes the angle between the positive x-axis of a plane and
the point (x, y).
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Figure 1.4: Simplified PMD pixel design (left) and constant light versus modulated
light (right) [MKF∗05].

Analog results can be derived by signal theory based on Fourier transformation.

The actual hardware implementation of PMD sensors is realized based on the
CCD-principle as CMOS active pixel sensor [Lan00]. Each 2-tap sensor element
(semiconductor) consist of two light conductive and transparent modulation
electrodes as well as two readout diodes (commonly revered to as A and B) on
the left and right side (see Fig. 1.4). Due to the modulation gates, the movement
of generated charge carriers inside the semiconductor’s substrate layer can be
controlled by a reference signal to either the left or right side of the sensor element.

Assuming a rectangular reference signal, the generated charge carriers for
constant incident light move to the left and to the right equally, whereas for
modulated light all charge carriers will be moved to one of both readout diodes in
cases where no phase delay between the modulation of the incident light and the
detector is present. Other phase delays, however, will lead to a difference between
the two output voltages of the readout diodes corresponding to the correlation
of both signals (see Fig. 1.5). To be more precisely, both output voltages can be
interpreted as contrary correlation samples c(τi) and c(τi+2), which theoretically
reduces the number of necessary sample images by two. However, most PMD
cameras acquire the full quantity of phase images for τ0 − τ3, which is basically
motivated by the fact that possible offset-voltages a0 and b0 for individually
amplified phase samples

Ai = a1 · c(τi) + a0 and Bi = b1 · c(τi+2) + b0 (1.6)

get canceled during the demodulation as can be seen by substituting Ii = Ai −Bi
into (1.3). However, individual amplification terms a1 and b1 remain. In this
context, the demodulation as described in (1.3) has been shown to be insensitive
to linear or quadratic distortions of the gait linearity [Lan00].

For outdoor applications, unfortunately, a huge amount of the sensor dynamics
is occupied by uncorrelated sunlight. In order to avoid saturation effects due to
excessive background light, latest PMD cameras exhibit a special suppression of
background illumination (SBI) circuit that additionally adjusts the charge level in
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Figure 1.5: PMD output voltages (UA, UB) assuming a rectangular modulation.

both readout diodes in order to instantaneously reduce the unwanted background
component. By doing so, the dynamic range of the PMD device can be essentially
improved for correlated signal information. However, the scene’s true intensity
information (A+B) is significantly altered and therefore can not be recovered.
An alternative NIR gray level image can be retrieved by considering the amplitude
information, as both signals correlate and therefore are mostly interchangeable.

Current camera models already provide an enhanced resolution of 204×204 px.
Basis for this thesis, however, has been a 19k PMD prototype without SBI circuit
that provides a 160× 120 px resolution.

1.2.2 Error Characteristics

Like almost every sensing device, the PMD as well is affected by several error
sources that influence the accuracy of measured distance information. Basically,
errors can be grouped into general TOF- as well as implementation-specific
impacts.

Signal Quality Due to the underlying time-of-flight principle, accurate distance
information highly depends on a correct detection of the emitted signal. For this
reason, TOF cameras are generally quite sensitive to external influences affecting
the emitted signal either in shape or intensity. Especially the IR-reflectivity of
observed surfaces has strong impact on the estimation result and often leads
to under- or overexposed pixels. While underexposed pixels suffer from bad
signal-to-noise ratios, i.e. noise, overexposed pixels are not capable to provide
any distance information at all. Both are generally detectable via the amplitude
information. Over-exposed pixel, however, sometimes provide a misleading good
amplitude value. A more reliable technique to detect oversaturation therefore is
to check the individual phase samples Ii for saturation [Rap07].
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Superposition Signal-related errors may also occur due to interferences with
other existing NIR light sources as well as multiple reflections within the scene,
e.g. within corners [GAL07]. In both cases, superimposed signals affect the
phase demodulation, yielding falsified distance information. A special case of
superposition is basically related to the solid angle of a PMD pixel. Analog to
multi-reflections, distance jumps inside a solid angle result in superimposed signals
leading to a false phase estimate, often referred to as flying pixel. Usually, the
distance information of flying pixels lie in-between fore- and background (see
Fig. 1.6), but can also tend towards the camera depending on the surface’s true
distance [KK09]. A simple segmentation of flying pixels using a pixel’s amplitude
is not possible, for which reason more sophisticated processing techniques are
necessary, that for example consider a pixel’s neighborhood relation.

Noise A general problem in the context of range sensing, especially for under-
exposed pixel, is given by noise affecting the accuracy of the measured distance
information. With respect to the underlying CMOS design, PMD-related noise
can be generally classified into three categories [Lan00]: time variant and time
invariant noise as well as signal noise.

Time Variant Noise covers thermal noise, reset noise, 1/f noise and dark
current shot noise. All these error sources are signal independent and increase with
rising temperature. Time variant noise can be significantly reduced or eliminated
by proper cooling and signal processing techniques like correlated double sampling
(CDS) [Tem96].

Time Invariant Noise, i.e. constant fixed pattern noise, can be classified into
defect pixel (noticeable as static white or black pixel) and leaker (which are
significant brighter than the neighborhood) as well as varying pixel offsets due to
variations in oxide thickness, size of gate area and doping concentrations over the
sensor.

Fixed pattern noise, including defect pixels, can be determined by taking a black
image, i.e. keeping the optics shut while averaging over an sufficient amount of
images. Beside techniques like CDS, time invariant noise can be mostly reduced
by subtracting the black image from the camera output. Note that in the case of
current PMD sensors, where each PMD pixel subtracts the number of generated
electrons from an initial budget, an inverse subtraction has to be performed, i.e.
the raw image has to be subtracted from the black image.

Signal Noise, emerging from photon shot noise, is the most dominant noise and
has a great impact onto the effective signal-to-noise ratio. It cannot be suppressed
and (more significantly) increases with the amount of incoming photons.

Shot noise is commonly modeled by Poisson-distributed arrival processes of
independent events with occurrence rate λ, where V ar(X) = E(X) = λ. However,
for a high number of accumulated charges (which is the case for reasonable
exposure times), the raw values distribution of both readout diodes A and B
can be sufficiently approximated by a normal distribution. As a result, the
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Figure 1.6: Flying pixel effect along object contours due to a superimposed signal,
i.e. multiple distances, inside a single PMD pixel.

Figure 1.7: Quantization effects for low signal amplitudes. Here, a planar surface
is captured with a short integration time.
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standard deviation of distance information was found to be reciprocal to the
modulation signal’s amplitude a, i.e. V ar(φ) ∝ 1/a2 [FPR∗09]. The signals
amplitude therefore is not only a measure for the distance reliability, but can also
be considered for noise reduction as discussed more in detail in Sec. 3.1.

Quantization Effects During the acquisition of subsequent phase images, an
analog-digital conversion maps all phase samples In to integral values before
(1.3), p. 9, is applied. Theoretical investigations and experiments by Frank et al.
[FPR∗09] show, that the corresponding quantization has a great impact on the
phase demodulation for low amplitudes, i.e. large distances, and results in a sparse
distribution of distance information as depicted in Fig. 1.7.

Systematic Errors

Beside their general dependencies to the signal quality, current PMD cameras
are also affected by system specific error sources that additionally influence the
distance accuracy in a negative way. In the following, a first overview about
systematic errors will be given, that mainly describes their characteristics as well
as their origins. In Chapter 2, a calibration model for each error source will be
discussed as part of this thesis’ contribution.

Demodulation Error Concerning modulation-based TOF cameras, a charac-
teristical error is caused by the underlying demodulation scheme and its basic
assumption of sinusoidal signals, which in practice is not met due to hardware and
cost limitations. Current PMD cameras, for example, actually use a rectangular
internal modulation which is altered by the LED’s response time to a mixture
between a sinusoidal and a rectangular shape. The result is a systematic wiggling
that significantly alters the measured distance by shifting the distance information
either towards or away from the camera depending on the surface’s true distance
(see Fig. 1.8). The exact shape depends on the additional harmonics included
in the modulated signal, which is mainly influenced by the current-voltage char-
acteristics of the LEDs used for illumination. However, only odd harmonics are
proven to have a negative influence on the demodulation scheme stated in (1.3)
on page 9 [Lan00].

In order to avoid wiggling artifacts, a more accurate demodulation scheme
for non-harmonic signals has been frequently discussed [FPR∗09, Rap07, Lua01].
Here, the main idea is based on a more precise representation of the correlation
function that incorporates higher Fourier modes. Actually, by modeling the
correlation function via a finite sum of superimposed cosine waves

c(τ) =
l∑

k=0
ck cos(k(ωτ + φ) + θk),
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Figure 1.8: Systematic wiggling error for distance measurements between 1.0−
7.5m. A fitted error function is shown in black. Extreme outliers are explained
by oversaturation in the near range.

a least square optimization over N ≥ 2l + 1 samples leads to following phase
demodulation scheme:

kφ+ θk = arg
(
N−1∑
n=0

Ine
−2πik n

N

)

where In = c(2π
ω ·

n
N ). The distance-related phase-shift φ can be finally obtained

by using a look-up table (LUT) for the fixed offsets θk of the additional modes.

However, extending the demodulation scheme for non-harmonically signals is
rather impracticable as the number of required sample images In as well as the
calculation effort for the demodulation increases. Especially the higher number of
samples leads to further problems in respect to dynamic scenes and related motion
artifacts (see below). For this reason, the simpler sinusoidal-based demodulation
scheme is commonly used further on, which requires falsified distance information
to be adjusted as described in Sec. 2.2.2.
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Integration Time Depended Error The previously described demodulation
error is additionally shifted by a constant, monotone increasing offset according
to the integration time.

Intensity-Related Error Beside the systematic wiggling error, distance infor-
mation is additionally altered by an intensity-related error inducing non-linear
distance shifts (see Fig 1.9). The reason for the intensity-related false measure-
ment is still unknown, but considered to be related to the semiconductor and the
camera electronics. So far only a few phenomenological calibration approaches
exist, which will be discussed further in Sec. 2.2.4.

Motion Artifacts Motion Artifacts as noticeable in Fig. 1.10 typically occur
where objects or the camera itself moves, while consecutive phase images are taken.
They arise from unmatching phase values during the demodulation process in cases
where the sampling assumption is not satisfied (cmp. (1.3), p. 9). Motion artifacts
are more extensive the faster the object moves or the longer the integration time
is. In general, it can be distinguished between three error sources:

Lateral Motion which primary results in the mixture of foreground and background
phase values at the boundary of moving objects.

Axial Motion which describes motion along the viewing direction and introduces
additional phase changes due to non-constant object distance.

Texture Changes which occur for objects of varying reflectivity and result in
unmatching phase values, even if the object distance does not change for a given
pixel.

A theoretical investigation of discontinuity and texture-related motion artifacts
has been published by Schmidt [Sch08]. He assumes that both even as well as
odd correlation samples are taken at the same time, i.e. are related to the same
reflectivity, and describes the theoretical impact of varying intensity onto the
resultant distance information. A concret compensation model will be described
in Sec. 2.3 as part of the thesis’ contribution.
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Figure 1.9: Intensity-related distance deviations due to varying object reflectivity,
i.e. active light incident to the sensor. Original panel (left) and PMD image
(right).

Figure 1.10: Motion artifacts (colored regions) for a textured box that moves from
right to left in front of a wall.
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1.3 Perspective Camera Model

As the scope of this work focuses on the calibration and processing of range
images, the following sections will describe how 3D points and their according
points on the image plane are basically related. Camera specific parameters will
be introduced, which are part of the mapping process and thus are related to the
correct back project of image points into 3D space.

The most common camera model in computer graphics and computer vision is
the simple pinhole model [MSKS04] in which light, reflected from object surfaces,
is passing through a tiny hole (the optical center) forming an image representation
on a given image plane (see Fig. 1.11). The distance between the optical center
and the image plane is commonly referred to as the focal length of the pinhole
camera. The point where the perpendicular viewing ray (optical axis) intersects
the image plane is referred to as principal point.

Following the theorem on intersecting lines, the projection of a 3D point with
X = (X,Y, Z) onto the image plane is described in homogeneous coordinates by

λ

xy
1

 =

f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 ⇔ x = ΠfX (1.7)

yielding the image coordinate x = (x, y) for a given focal length f and a commonly
unknown positive scalar λ ∈ R+ (the vertices distance value Z). By introducing
a global world coordinate frame and incorporating the camera position and
orientation into the mapping process, (1.7) extends to

x = Πf

[
R t
0 1

]
X = ΠfMX (1.8)

where R ∈ R3×3 represents the corresponding camera rotation and t ∈ R3 the
translation vector between the camera position and the origin of the world
coordinate frame.

1.3.1 Intrinsic Parameters

According to (1.8), resulting image coordinates are still specified in units of the
world coordinate frame relative to the principal point. Images, however, are
generally specified as pixel arrays with their origin in the upper-left corner. Thus,
an additional mapping is required that reflects camera specific characteristics,
i.e. the pixel size s = (sx, sy) as well as the pixel position of the principal point
c = (cx, cy) relative to the upper-left corner.
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Figure 1.11: Image formation in a pinhole camera.

By defining the standard perspective projection as Π1 =
[
I, 0

]T
and splitting

the projection matrix Πf into Πf = KfΠ1, we are able to combine all camera-
related parameters (including the focal length) into the intrinsic parameter matrix

K = KsKf =

s−1
x 0 cx
0 s−1

y cy
0 0 1


f 0 0

0 f 0
0 0 1

 =

fx 0 cx
0 fy cy
0 0 1

 (1.9)

where fx and fy correspond to the focal length in pixel units along the x- or
y-axis. Consequently, (1.8) can be extended to

p = KΠ1MX = Kx (1.10)

yielding the final pixel coordinate p = (u, v) in pixel units. The intrinsic matrix
K is commonly obtained through the process of camera calibration as described
in Sec. 1.3.3.

1.3.2 Image Distortion

In practice, cameras differ from the pinhole model insofar as they use lenses
to gather more light on the image plane. Thus, light rays do not pass straight
through a tiny hole, but get bended and focused. Rays farther from the center of
the lens thereby are bent more than those closer to the center.

Due to imperfections regarding today’s lens systems, however, images taken
by real cameras are often affected by nonlinear aberrations. These distortions are
mainly characterized by a symmetric displacement along the radial direction from
the principal point. Depending on the direction, the radial distortion causes either
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an inward or outward displacement of image points (see Fig 1.12 left). Especially
for cameras with a large field of view, the influence of the radial distortion becomes
strongly noticeable. Thus, for computer vision systems, the correction of lens
distortion is significant for accurate scene reconstruction.

In order to overcome limitations of the pinhole model, more sophisticated
camera models like the thin lens or thick lens model exist, but mostly account
to simulate depth of field effects [BW99]. Like the pinhole model, both yield
perfectly undistorted image. Geometric lens models regarding the complete
geometric description like the one published by Heidrich et al. [HSS97], on the
other hand, are too complex to be used for interactive applications.

For most applications, therefore, the pinhole model is commonly extended
by an additional distortion model, which is mainly based on the polynomial
formulation

rd = r · δ(r) = r ·
(
1 + k1r

2 + k2r
4 + k3r

6 + · · ·
)

(1.11)

first introduced in the context of photogrammetry by Slama in 1980 [Sla80]. Here,
r = |x| equals the undistorted distance between the principal point and the
normalized coordinate x = K−1p. As (1.11) is basically dominated by the first
term, radial distortion is commonly modeled by

xd = x ·
(
1 + k1r

2 + k2r
4
)

= x + L(x,k). (1.12)

to avoid numerical instability [Zha00, Tsa87, WM94]. According to (1.10), the
equivalent formulation in pixel coordinates is given by

pd = p + (p− c) ·
(
k1r

2 + k2r
4
)

(1.13)

where r = |p− c|.

To overcome the drawback of a missing analytical inverse, other models have
been introduced, which are e.g. based on Taylor expansion or rational formula-
tions [MCM04]. Nevertheless, polynomial models are still the most commonly
used due to their accuracy and physical background. If necessary, the inverse
of (1.12) can be obtained either by an iterative numerical scheme or recursively
approximated by

x ≈ xd − L(x,k) ≈ xd − L(xd − L(x,k),k)
≈ xd − L(xd − L(xd − L(x,k),k),k) ≈ . . .

(1.14)

where, in the first recursion step, x is approximated by xd [Hei00]. Here, the
distortion coefficients are typically small causing the model to be almost linear.
Accordingly, the divergence between x and xd in (1.14) gets smaller with every
iteration. For strong lens distortions, at least three or four iterations are required.
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Figure 1.12: Left: Effect of radial distortions: undistorted view (solid line), nega-
tive displacement / barrel distortion (a) and positive displacement / pincushion
distortion (b). Right: Effect of tangential distortion (dashed lines) consisting of
radial (dr) and tangential (dt) displacements [WCH92].

In addition to radial distortion, optical systems often are affected by an
asymmetric tangential distortions caused by decentering problems within multi-
lens systems [Bro66]. The result is a supplemental geometric shift along and
tangential to the radial direction (see Fig 1.12 right). In respect to (1.12),
tangential distortion is commonly modeled by

xd = x + L(x,k) +
[
2t1xy + t2

(
r2 + 2x2) , 2t2xy + t1

(
r2 + 2y2)]T . (1.15)

In this case, the distortion coefficients k = (k1, k2) and t = (t1, t2) define the
tangential profile along the axis of maximum tangential distortion.

1.3.3 Camera Calibration

Once the intrinsic parameters and distortion coefficients are known, 3D information
can be inferred from 2D information and vice versa. Therefore, the calibration of
intrinsic and extrinsic parameter is a necessary step in computer vision, which
has great influence on the accuracy of the results.

Beside a few exceptions, camera calibration can be grouped into two categories:
photogrammetric calibration and self-calibration.

For photogrammetric calibration, calibration is performed by observing a
calibration object (rig) whose 3D geometry is a priori known – usually two or three
planes orthogonal to each other [Fau93]. This way, the desired mapping parameters
can be estimated by taking advantage of the distinctive correspondences between
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predefined surface points and their counterparts on the image plane. Commonly
checkerboard or circular patterns are used to provide easy detectable feature
points.

For self-calibration no special calibration objects are used. Just by moving a
camera in a static scene, the rigidity of the scene provides the correspondences
necessary for intrinsic calibration [FLM92]. The concept behind self-calibration
is basically motivated by the idea to overcome limitations of special calibration
rigs and, meanwhile, to allow varying intrinsics of zooming/focusing cameras.
Unlike photogrammetric methods, it cannot be applied as a single step, but has
to be part of the image processing. Therefore, self-calibration always requires a
complete series of images, taken from different viewpoints.

In our case, since current TOF cameras have a fixed focal length, i.e. have no
auto-focus or zoom functionality, the simpler photogrammetric approach has been
considered for calibration. The decision is based on the complexity of finding
precise feature points in the low resolution TOF image as well as the fact that
TOF cameras are often used to observe a steady scene providing an insufficient
amount of camera poses for self-calibration.

A very popular approach for photogrammetric calibration has been published
by Zhang [Zha00]. Its popularity is mainly founded on the fact, that it is
based on a simple plane instead of a complex, three-dimensional calibration
rig. It thus reduces the calibration requirements onto a minimum. An open-
source implementation can be found in the Open Computer Vision Library
(OpenCV) [OCV].

Zhang first approximates an initial guess for K and M by estimating the
homography H between known 2D and 3D points, i.e.

p = HX = KΠ1MX (1.16)

disregarding any distortion effects at first (cmp. (1.10), p.19). Assuming Z = 0,
(1.16) can be simplified and provides linear constrains for an initial closed-form
solution. After the mapping parameter has been determined, an initial solution
for the radial and tangential distortion can be estimated, which together with
the first results on intrinsic parameters serve as an initial guess for an overall,
non-linear optimization.

Theoretically three views of a plane checkerboard of varying orientation (that
avoid pure translation) are sufficient to estimate the camera’s intrinsic parameters.
However, due to noise, at least 10 images of a 7-by-8 checkerboard are recommend
for a robustness estimation.

1.3.4 Undistortion and Back-Projection

In contrast to standard 2D imaging devices, where the mapping parameter λ = Z
of (1.7) on page 18 is generally unknown, TOF cameras allow a simple inversion
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Figure 1.13: Forward (left) vs. Backward Mapping (right). While forward
mapping results in a non-uniform data alignment, backward mapping requires
data interpolation to obtain subpixel information.

of the perspective mapping process if the intrinsic parameters as well as the
distortion coefficients are known. According to the inversion of the mapping
process, the lens distortion has to be treated first.

Here, generally two types of image undistortion or image transformations can
be considered, commonly referred to as forward and backward mapping (cmp.
Fig. 1.13).

During forward mapping, given image data is relocated to new (undistorted)
positions defined by the inverse of (1.15). Forward mapping therefore breaks up
the original image structure and results in a non-uniform alignment of unmodified
pixel values, i.e. an unstructured point cloud. This kind of undistortion has the
advantage, that no interpolation is involved as the existing image data is only
rearranged. However, if a regular image structure is desired, forward mapping
leads to pixel snapping, i.e. multiple values per pixel and / or holes.

Backward mapping, in contrast, maintains the original data alignment by
looking up corresponding image information in the distorted image, i.e. for each
pixel of the undistorted image, the corresponding image coordinate in the distorted
image is determined with respect to (1.15). As distorted sample positions most
properly do not align with image pixels, according subpixel information is finally
obtained by e.g. bilinear interpolation.

Due to the lack of an analytical inverse and in order to preserve the structure of
uniformly sampled image data, the undistortion of TOF images is commonly done
via backward mapping. Once the distortion coefficients are known, a distortion
map can be precomputed to increase the overall performance. For vision systems
that use more general spatial data structures to represent the scene, forward
mapping may give the better alternative as no data interpolation is involved.

After lens distortion has been corrected, the corresponding 3D information can
be reconstructed from the given depth image by projecting each pixel back into
space. Again, by following the theorem of intersecting lines, the world coordinate
for a given pixel p = (u, v) holding a radial distance information d can be obtain
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by

X = d

|x| · x (1.17)

where x = K−1p represents the pixel’s world coordinate on the normalized image
plane with f = 1 and |x| =

√
x2 + y2 + 1 equals the according radial distance to

the projection center.

1.4 Optical Flow Estimation

Motion artifacts as described in Sec. 1.2.2 directly result from either object or
camera motion during the acquisition of subsequent phase images. In consequence,
many artifacts can be reduced by compensating for object displacements and
deformations if the scene dynamics are known (see Sec. 2.3). However, for most
scenes a detailed motion information is unfortunately unknown and therefore has
to be estimated during runtime.

The estimation of motion from image sequences is a long studied key problem
in computer vision. Due to the lack of depth information, motion estimation in
computer vision classically focuses on the estimation of the displacement field
between two image frames, i.e. the projected, two-dimensional path on the image
plane. The estimation of such a motion fields is commonly referred to as optical
flow estimation.

Unfortunately, motion estimation is a highly ill-posed problem and various
approaches have been proposed differing in accuracy and time-complexity – most
of them inapplicable for real-time tasks. Despite phase- or correlation-based meth-
ods [BB95], variational methods are still the most popular estimation techniques
yielding the best results in terms of error measures [BFB94].

Neglecting principle problems like transparency, occlusion and shadowing, the
basic principle behind all variational methods is based on the minimization of an
energy functional that incorporates invariant image features, i.e. features that stay
constant over time and are unaffected by the motion itself. The most prominent
example is the classical assumption of constant grey values, i.e.

I(x+ δx, y + δy, t+ 1)− I(x, y, t) = 0 (1.18)

where δy = (δx, δy) states the displacement at image position x = (x, y) between
time steps the t an d t+ 1. Other variants incorporate higher image derivatives
like the gradient or Hessian, scalar values such as the norm of the gradient, the
Laplacian or the determinant of the Hessian, as well as combination of those
features [PBB∗06].

By applying a Taylor extension to (1.18) and dropping the high order parts
to get a linear system, i.e. convex problem, we obtain the well known optical flow
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constraint
Ixδx + Iyδy + It = 0 (1.19)

as formulated in the classical algorithms of Horn and Schunck [HS81] and Lucas
and Kanade [LK81], where subscripts denote partial derivatives and δx(x, y, t)
and δy(x, y, t) represents the unknown displacement field.

Unfortunately, (1.19) yields a single local constraint in two unknowns and
thus yields no unique solution. This problem of motion ambiguity, the so-called
aperture problem, is known in many disciplines and also applies to the human
vision system. To overcome ambiguities, all optical flow approaches typically
incorporate some kind of regularization, i.e. structural information, to derive
additional constraints either locally or globally.

In the classical approach of Lukas and Kanade [LK81] regularization is based
on the assumption of a constant flow inside a small neighborhood around the
considered pixel. This way not only a sufficient number of constraints are given
for a least square optimization, the flow estimation is also less vulnerable to
noise. However, due to the local estimation and missing structural information
inside homogeneous regions, local techniques are only capable to retrieve motion
information at intensity boundaries. Furthermore, they tend to give poor results
in presence of multiple motions violating the local constancy assumption.

For this reason, most flow estimation approaches nowadays apply a global
regularization as introduced by the classical approach of Horn and Schunck [HS81].
Originally, they incorporate a homogeneous smoothness of the motion field by
adding the regularization functional

Ereg =
∫

Ω
|∇δx|2 + |∇δy|2 dx dy (1.20)

This regularization term, however, has the disadvantage that it does not account
for discontinuities in the motion field. Thus, in the last decades more sophis-
ticated approaches has been introduced that can be classified into four basic
strategies [BWKS06]:

– Image-Driven, Isotropic Regularization

Ereg =
∫

Ω
ω
(
|∇I|2

) (
|∇δx|2 + |∇δy|2

)
dx dy (1.21)

downweightes the smoothness term at image location where intensity changes
are high, assuming object contours to be coincident with changes in bright-
ness.

– Image-Driven, Anisotropic Regularization

Ereg =
∫

Ω
∇δTxD(∇I)∇δx +∇δTy D(∇I)∇δy dx dy (1.22)
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smooths only orthogonally along the local image gradient, i.e. D(∇I) is an
anisotropic projection matrix perpendicular to the image gradient.

– Flow-Driven, Isotropic Regularization

Ereg =
∫

Ω
ΨS

(
|∇δx|2 + |∇δy|2

)
dx dy (1.23)

with ΨS(x2) is a positive increasing function with the property to increase
less severely than a quadratic function, i.e. Ψ(x2) =

√
x2 + ε2 corresponding

to a total variation (TV) regularization [ZPB07]. Flow-driven, isotropic
regularization reduces smoothing at those locations where edges in the flow
field occur, i.e. penalizes deviations from smoothness less severely than in
the quadratic setting.

– Flow-Driven, Anisotropic Regularization

Ereg =
∫

Ω
tr
(
ΨT

(
∇δx∇δTx +∇δy∇δTy

))
dx dy (1.24)

Here, ΨT (V), V ∈ R2×2 is applied to the local flow tensor, which contains
additional directional information [WS01].

By comparing the results of the different regularization terms, it can be observed
that anisotropic regularization generally give slightly better results than the
isotropic ones. Furthermore, nonlinear (flow driven) methods are able to overcome
the problem of over segmentation that typically arises for image-driven techniques
in the presence of textured scenes.

Flow estimation generally is a highly non-linear problem that is often linearized
as in (1.19) in order to get a simplified, convex system. However, such a lineariza-
tion generally holds only for displacements that account for at most one pixel.
For this reason, optical flow estimation is commonly applied in a coarse-to-fine
way. Here, an image pyramid is computed for which the optical flow of the coarser
level serves as initial solution for the finer level (see Fig. 1.14). On each level
the current image is pre-warped according to the scaled flow information of the
subjacent level. The upscaled flow field is then refined by another optical flow
estimation between the pre-warped and the reference image.

Generally, coarse-to-fine estimation offers two advantages: For convex (lin-
earized) energy functionals, they allow to speed up the computation significantly
[BWS05]. For nonconvex energy functionals they allow to improve the quality of
the results significantly as local minima of the energy functionals disappear at
sufficiently coarse resolutions [BWKS06]. A problem of coarser-to-fine techniques,
however, is the possible propagation of estimation errors from coarser levels to
finer levels.

The actual time-complexity of optical flow estimation varies with the underlying
estimation technique, but has often been considered to be too slow for real-time
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Figure 1.14: Coarse-to-fine Flow Estimation. The estimated flow field (middle)
on level i serves as initial estimation for level i− 1.

purposes. Fortunately, deeper understanding of applied methods and parameters
effect recently inspires the design of advanced and highly effective models.

A first accurate, real-time implementation has been published by Bruhn
et al. [BWKS06], whose implementation of a flow-driven isotropic regularization
achieves approximately 12 fps for an image resolution of 160× 120 px. The basic
idea of Bruhn’s approach is the multi-grid (coarse-to-fine) solver for a linearized
Euler-Lagrange equation system of the unlinearized regularization functional.

Zach et al. [ZPB07] later published a dual formulation of an isotropic TV
regularization. Due to the dual formulation, the global optimization problem can
be rewritten as iterative local statement, whose parallelized implementation on
modern graphics hardware achieves 30 fps for an image resolution of 256× 256 px.
According to the Middlebury testbench [MDB], both implementations are currently
among the best estimators for optical flow with respect to remaining angular and
end-point errors.

1.5 Graphics Hardware

A various number of image and data processing techniques, like filters, are based
on local restricted calculations and allow a high degree of parallelization. This
parallelization, however, cannot be addressed by the main processing unit (CPU)
of personal computers as it sequentially applies a single instruction to a single data
element at a time. However, beside the main processing unit, modern systems
nowadays also take advantage of specialized graphics hardware.
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While first graphic cards in the 90s has been developed to accelerate parts
of the so-called fixed graphics pipeline2, modern hardware provides application
developers with more flexible graphical processing units (GPU) that allow massive
parallel processing of input data in terms of stream processing. Regarding memory
bandwidth and the number of operation per seconds, the performance of such
GPUs already outperforms that of comparable CPUs, while recent developments
of graphics hardware towards a more generalized architecture provides computing
capabilities for a wide range of applications. At present, a variate of complex
problems like particle systems, optical flow computation already benefit from
hardware acceleration and parallelization speed-ups [OLG∗07].

The Graphics Pipeline Regarding modern graphics hardware, the classical
graphics pipeline has been more and more replaced by a set of shader programs,
where each shader program is assigned to one of three processing stages forming
a single renderpass (cmp. Fig. 1.15):

In the first stage a so-called vertex shader takes over the modeling and viewing
transformation as well as (perspective) projection of vertex data, yielding data
in normalized, clipping coordinates with respect to the viewing frustum. Before
the projection, a per-vertex lighting model like Blinn-Phong shading can be
applied [Bli77].

With shader model 4.0, the vertex processing stage has been extended by a
geometry shader that is applied after primitive assembly and allows stream
alterations, i.e. the generation and removal of vertex data, based on a given input
primitives (point, line or triangle).

After clipping and rasterization of the final primitives, the fragment shader is used
to compute the final color of each affected pixel and allows per pixel processing
like lighting, bump mapping or shadowing.

While first shader programs has been restricted to a limited number of instructions,
recent graphic cards allow an unrestricted number of instructions.

In all three stages additional input data can be provided in form of uniform
shader variables as well as a number of multi-dimensional image data (textures).
Processing results can be stored and used as input data for a subsequent renderpass,
i.e. rasterized fragments can be read back to serve as new texture data, while
vertices processed in the geometry shader can be fed back into the pipeline
via transform feedback. This way, iterative algorithms can be realized applying
multiple renderpasses.

While early graphics hardware consisted of dedicated computing units, current
graphics hardware draws advantages from an unified shading architecture allowing
any of the several computing units to run any type of the three shader programs.
This way, a dynamic workload balancing can be applied to avoid bottle necks,

2Synonym for a fixed sequence of basic processing steps for the image generation from a
polygonal scene description.
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Figure 1.15: Modern render pipeline: A single renderpass from vertex data to
rasterized screen information consists of three processing stages.

i.e. in situations of heavy geometry workload the balancing unit can allocate
most computing units for vertex and geometry shader while in situations of heavy
fragment computations most units are assigned to run the fragment program.

Programming Frameworks Modern shader programs are written using a
specialized shading language. Currently three shader languages exist:

– OpenGL Shading Language (Open GLSL), which extends the open graphics
library (OpenGL)

– High Level Shading Language as part of Microsoft’s graphic framework
DirectX

– Cg provided by the hardware manufacturer Nvidia

All languages are inspired by a C-like syntax and provide a subset of C function-
ality that allows loops and conditional branches, but generally excludes pointer
arithmetic, dynamic memory allocation as well as text support. Furthermore,
shader languages support hardware accelerated matrix and vector arithmetic as
well as graphics-related functionality like texture access.

Beside graphic-related languages, the usage of the GPU as a more general
purpose processing unit recently caused the development of more generalized
computing languages that are not related to the original graphics pipeline concept.
Compared to shader languages, these languages provide more generalized memory
access as well as a synchronization mechanisms between the distinct processing
units and remove the general pipeline restriction that a single stream unit is bound
to write to a given output position only. This way, also graphic inexperienced
developers are able to use the GPU as a parallel processor for their applications,
avoiding limitations that basically emerge from the pipeline idea. Currently, two
languages with similar structure exist:
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– Nividia’s Compute Unified Device Architecture (CUDA) as counterpart to
Cg

– Open Computing Language (OpenCL) as counterpart the OpenGL frame-
work

No matter which processing framework is finally used, utilizing the GPU always
implies the adherence of the stream processing programming paradigm, which in
turn makes strict demands on the program structure and data / memory layout.
Therefore, the main challenge in utilizing the GPU is given by the appropriate
design of effective algorithms. Here, range images already exhibits considerable
advantages, as they innately comply with the data layout demands for parallel
stream processing, i.e. satisfy an uniform, grid-like data alignment.

Thus, in order to archive real-time performance and preserve the original appli-
cation area that distinguishes TOF cameras from other range sensing techniques,
all contributions of this thesis are designed to run on the GPU.



Chapter 2

Calibration

»Accuracy of observation is the equivalent of accuracy of thinking.«

– Wallace Stevens

The following sections cover the accuracy of current TOF range cameras, and
discusses the individual steps that are necessary to obtain accurate scene

information in the specific case of PMD cameras. However, due to the same
working principle, most techniques are also applicable to modulation-based TOF
cameras of other vendors.

The first part of the chapter deals with the estimation of intrinsic and extrinsic
camera parameters. This step is essential for all computer vision systems and
guarantees a correct back projection of the provided distance information as
described in Sec. 1.3.4. It further provides important pose estimates for, e.g.,
multi-sensor setups and image-based reference data acquisition as used in our
distance calibration models.

The main part addresses the distance accuracy of TOF cameras with respect
to systematic error sources (cmp Sec. 1.2.2). While the first sections cover the
handling of systematic wiggling errors, the remaining sections are dedicated to
the calibration of intensity-related errors. For each error source, a calibration
model is presented that allows to significantly increase the distance accuracy.

The remaining section finally explains a compensation approach for TOF
camera specific motion artifacts, whose characteristics have been outlined in
Sec. 1.2.2.

Publications The intrinsic parameter estimation as well as the correction of demodulation errors
has been presented in [LK06], while the correction of intensity-related errors are subject of
[LK07a, LSKK10]. The alternative demodulation approach has been published in [LKR08]. The
compensation of TOF camera-specific motion artifacts together with the simple axial motion
model is discussed in [LK09].

2.1 Camera Parameter and Pose Estimation

The estimation of camera parameters is an essential task for all computer vision
systems (cmp. Sec. 1.3.3). Here, most calibration approaches are typically based on
one-to-one correspondences between a known calibration target and its projection

31
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on the two dimensional image plane [Fau93, MSKS04, Zha00]. In order to avoid a
manual processing of the input images, commonly patterns like checkerboards are
used. By doing so, pattern features can be automatically detected, which allows a
more accurate sub-pixel mapping. The latter is of great importance in order to
reduce quantization errors that are introduced by the uniform pixel grid.

Compared to typical vision systems, however, TOF cameras currently provide
only a low resolution along with a narrow opening angle. Both properties might
have negative effects on a correct parameter estimation. In a first instance, we
therefore investigated the general applicability of a conventional camera calibration
to TOF range images. Here, we choose the calibration module of the Open
Computer Vision Library (OpenCV) [OCV] to estimate the camera parameters
of a PMD 19k camera model. The module is a straight forward implementation
of Zhang’s calibration approach as outlined in Sec. 1.3.3. Applied correctly, the
module yields the intrinsic camera parameters as well as a pose estimate for each
input image of a planar checkerboard.

In most of our tests, the calibration module estimated satisfying results for the
camera intrinsics (see Tab. 2.1) as well as suitable rough pose estimates concerning
the distance and orientation of the checkerboard. In addition to that, also the
slight barrel distortions of the checkerboard has been adjusted correctly as can be
seen in Fig. 2.1. Regarding the estimation results, tangential distortion can be
mostly neglected, which can be ascribed to the simple camera optics.

In all tests, however, the main complexity of the parameter estimation turns
out to be the accurate detection of checkerboard corners. Especially the pose
estimation is strongly affected by noise and pixel quantization effects. Due to the
low resolution, a minimum projection size of the checkerboard fields is required to
achieve a correct corner detection inside the pixel grid. Especially large rotation
angles between the camera and the checkerboard cause detection problems and
therefore should be avoided. This and the necessity to acquire the complete
pattern in each view, limits the number of possible input poses that are generally
important for a robust parameter estimation.

For sensors smaller than the 19k model, the problem of accurate corner

Pass 1 Pass 2 Pass 3
Focal Length (fx, fy) [mm] 12.39, 12.36 12.29, 12.28 12.30, 12.29
Image Center (cx, cy) [px] 77.49, 66.20 76.27, 68.75 78.93, 63.34

Radial Distortion (k1, k2) -0.487, 1.131 -0.470, 1.284 -0.482, 1.701
Tangential Distortion (t1, t2) 0.001, 0.001 0.000, 0.005 0.002, 0.001

Table 2.1: Calibration results for a 160×120 px PMD camera using a conventional
calibration framework. According to the camera specifications, the camera has a
focal length of 12 mm.
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Figure 2.1: Example of an PMD range image before (left) and after an image
undistortion (right).

detection even increases. Here, in most cases a manual selection is required that
negatively affects the sub-pixel accuracy and the parameter estimation respectively.
Consequently, either an alternative calibration target or calibration method must
be considered, that allows a more accurate TOF camera calibration for low
resolution input images.

Two alternative calibration patterns have been tested by Kahlmann et al.,
comprising circular features as well as a special calibration target consisting of
NIR LEDs [KRI06]. While circular targets occupy too many pixels in the small
image and limit the number of correspondence points, the best solution (according
to Kahlmann et al.) is given by the calibration target made of NIR LEDs, as the
reference points can be detected via simple thresholding. However, in contrast to
a plotted pattern, this kind of target requires an accurate assembly of electronic
components and also implies a certain target size.

A novel calibration approach has been published by Beder and
Koch [BK08], who utilizes the available range information to synthesize an image
of the according view. The camera parameters (including distortion coefficients)
are iteratively optimized until the synthesized checkerboard matches the given ref-
erence image. By doing so, a highly accurate sub-pixel accuracy can be achieved.
In contrast to other calibration models, a single reference image of the TOF
camera (consisting of range and intensity information) is sufficient to estimate
all parameters including intrinsic as well as extrinsic values. Furthermore and
more importantly, the problem of correspondence detection is avoided by the
synthesis process, which considers all pixels inside the projected checkerboard as
reference points. However, in order to generate the synthesized view, the distance
information is assumed to be accurate, which is a priori not the case due to
systematic deviation errors (see Sec. 1.2.2). Also a strong correlation between
rotation and translation of the checkerboard, caused by the narrow opening angle
of the camera, has been reported.

For this reason, Schiller et al. [SBK08] proposed an extension of the calibration
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Figure 2.2: Vision-based reference data acquisition. The reference plane (blue) is
calculated with respect to the extrinsic parameters of the checkerboard.

model that considers multiple images and incorporates an additional distance
calibration to adjust false distance information (see Sec. 2.2). In contrast to
the original approach, the new approach uses a multi-camera rig of at least one
TOF and one CCD camera to reduce the correlation between the TOF camera’s
extrinsic parameters. Accordingly, the rig pose is estimated based on the high
resolution CCD camera images, allowing high accurate results, whereas the TOF
camera pose is estimated relative to the additional CCD sensor, using multiple
pose images to stabilizes the whole estimation process.

While classical calibration techniques will gain in precision with increasing
sensor resolution, Schiller’s multi-cam approach currently gives the best results for
an overall parameter estimation. Especially the high accurate pose estimates are
of great importance for sensor fusion as discussed in Sec. 3.3. It also is the only
high-precision calibration model that is currently able to handle TOF cameras
with less resolution than the 19k model.

2.2 Distance Correction

Knowing the intrinsic parameters of a TOF camera, each pixel of the range image
can be back projected by (1.17), p. 24, to provide a three dimensional point cloud
of the acquired scene. The reconstruction results, thereby, mainly depend on
the accuracy of the acquired distance information. Unfortunately, as stated in
Sec. 1.2.2, the distance information of continues modulation-based TOF cameras
is negatively affected by systematic error sources. In order to increase the distance
accuracy and thus the reliability of the reconstruction result as well, a calibration
of the systematic distance deviations is of great importance.

In the last three years, a number of calibration models have been introduced
that cover the systematic demodulation error either alone or in combination with
intensity-related deviations. The following sections will discuss the contributed
calibration models for both, systematic demodulation (Sec. 2.2.2) as well as
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intensity-related distance deviations (Sec. 2.2.4). They also depict similarities and
differences to related models, which has been published during the same period.

Sec. 2.2.2 first describes a global adjustment approach, which is then further
extended by a pixel-wise pre-adjustment in order to account for pixel inequalities.
Furthermore, an alternative demodulation approach is investigated, which is based
on a rectangular signal shape and accounts for the fact that the the true signal
shape differs from the theoretical assumption of a cosine function.

Sec. 2.2.4 first describes an simple extension of the previous described wiggling
model to handle the intensity-related error using a bivariate approach. Finally, a
decoupled approach is presented that significantly reduces the number of required
reference data.

2.2.1 Vision-Based Reference Data Acquisition

Considering a TOF camera to be a closed system, all discussed distance calibration
models basically investigate potential deviations between measured and a priori
known reference distances, commonly provided by, e.g., a track line [LK06, KRI06]
or robots [FH08]. In addition, we suggest a vision-based alternative that utilizes
the extrinsic parameter estimation from the previous section to avoid expensive
equipment (see Fig. 2.2).

Knowing the pose estimate M =
[
r1 r2 r3 t

]
of the calibration panel, the

reference distance d of a pixel p can be easily computed by intersecting the pixel’s
viewing ray r(α) = α · K−1p with the reference plane 〈X, ~n〉 = ζ. Both plane
parameters are given by ~n = M

[
0, 0, 1, 0

]T
= r̂3 and ζ = 〈t, ~n〉 = 〈t, r̂3〉. The

reference distance d, i.e. the plane intersection point, is given by

d(p) =
∥∥∥∥ 〈t, r̂3〉
〈X, r̂3〉

·X
∥∥∥∥ , with X = K−1p. (2.1)

However, according to the stated dependency between extrinsic parameters for
narrow opening angles in Sec. 2.1, we recommend the utilization of a camera rig
to improve the required pose estimate. This way, the panel’s transformation can
be estimated more accurately via the additional, high resolution CCD camera
and transformed into the TOF camera’s coordinate system by using relative pose
estimates between both sensors. Using the TOF camera for pose estimation alone,
generally results in an unsteady reference plane, as sensor noise and missing
sub-pixel accuracy affects the transformation results.

Tab. 2.2 shows the accuracy of a vision-based pose estimation using a high
resolution CCD camera. Here, the true reference distance and rotation angle is
compared to the estimated value. The experiment shows that both, the displace-
ment error as well as the angular error, are less than two millimeters / degrees
and therefore yield a suitable pose estimation. Regarding the distance accuracy,
the constant offset in all measurements can be explained by the choice of the
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Reference Distance [cm] 220.0 160.0 140.0 120.0
Estimated Distance [cm] 219.1 158.7 138.2 118.1

Reference Angle [deg] 0.0 15.0 30.0 45.0
Estimated Angle [deg] 1.5 16.8 30.0 46.5

Table 2.2: Pose estimation results regarding the displacement and rotation of the
reference checkerboard. The experiment yields that both, the displacement error
as well as the angular error, are less than two millimeters / degrees.

reference point that represents the camera position and differs from the sensor’s
true position.

2.2.2 Systematic Demodulation Error

Concerning the distance accuracy of current TOF cameras, the most significant
error source is caused by the camera’s phase shift demodulation itself (cmp.
Sec. 1.2.2). By regarding the distance deviations between reference and measured
distances, it gets obvious that the modulation mismatch with respect to the
theoretical and real emitted signal results in a systematic error that can be best
described as a sinusoidal wiggling (see Fig. 1.8, p. 15).

In order to improve the phase estimation, a modification of the demodulation
scheme incorporating higher Fourier modes has been proposed, that has been
already discussed in Sec. 1.2.2. In practice, however, the modification is rather
impractical as the number of required sample images as well as the calculation
effort for the demodulation significantly increases. Especially the number of sample
images is crucial with respect to the real-time capability and the occurrence of
motion artifacts (see Sec. 2.3). For this reason, the simpler sinusoidal-based
demodulation is still preferred. Whereas, at the same time, an adequate error
correction is mandatory to allow accurate range sensing in return.

In the following section we describe a phenomenological calibration approach,
that is based on a mathematical approximation of the demodulation error. A
comparable approach based on a look-up table (LUT) has been published simulta-
neous by Kahlmann et al. [KRI06]. In contrast to former models, which tried to
describe the distance deviation by a linear approximation [SK06], both approaches
are capable to express the wiggling error in a high accurate way. Due to their
phenomenological nature, the input data for both models is given by a proper
set of distance measurements covering the camera range as well as the according
ground-truth data as, for example, determined by our vision-based acquisition
system (see Sec. 2.2.1). While Kahlman’s approach relies on one or more well
chosen pixels in the image center, our model takes all reliable pixels into account.

In the case of Kahlmann et al., a LUT is build up for a well-chosen center pixel,
yielding the distance deviation as a function of measured distance. If necessary,
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Figure 2.3: The calibration process for the correction of demodulation errors.

two table entries are linear interpolated to provide results for intermediated
distance values. In addition to that, individual pixel offsets are handled by a fixed
pattern noise matrix, which is obtained for a fixed distance by regarding each
pixel’s deviation with respect to the given reference pixel. The approach, however,
has major drawbacks as it requires a dense sampling of the camera range to avoid
interpolation errors – especially near inflection points of the wiggling error.

For this reason, we follow a different approach and approximate the demodula-
tion error by a compact functional representation that finally serves as a correction
function. In doing so, only a few fitting coefficients have to be stored, keeping the
memory footprint low. Furthermore, it generally requires less input data compared
to LUTs as the underlying B-spline estimation provides a smoother interpolation
and thus is less vulnerable to interpolation errors. Similar to Kahlmann et al.,
the distance calibration is done in two distinguished steps (see Fig. 2.3):

1. Fitting a global deviation approximation for the entire image that represents
the actual wiggling adjustment.

2. An additional estimation of a local per pixel pre- and (optional) post-adjust-
ment to compensate pixel inequalities.

Here, the main idea behind the separation is to use a function of higher complexity
for the global adjustment, whereas the per-pixel calibration uses simpler, i.e.
constant or linear adjustment, thus being storage-efficient concerning the overall
number of calibration parameters. The following sections will give more detailed
information about each step.

Global Distance Adjustment Given the periodicity of the demodulation error
(see Fig. 1.8, p. 15), a first attempt to approximate the distance deviations would
be to use a superposition of sinusoidal base functions. However, the selection of a
minimal set of proper base functions is rather complex. Thus, in order to reduce
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complexity and to provide a more universal approach, an uniform, cubic B-spline

B(u) =
n∑
i=0

ci ·N3
i (u) where u3 ≤ u ≤ un (2.2)

is used instead, where n is the number of control points, N3
i represents the

uniform cubic B-spline basis functions and [u0, . . . , un+4] is the underlying knot
vector. Compared to other possible approximations, B-splines exhibit a better
local control and can be efficiently expressed by a simple matrix multiplication
for uniformly distributed knot vectors. In the case of cubic B-splines with ui = i,
for example, the evaluation is alternatively defined by

B(t+ j + 3) = 1
6
[
1 t t2 t3

] 
1 4 1 0
−3 0 3 0

3 −6 3 0
−1 3 −3 1



cj
cj+1
cj+2
cj+3

 (2.3)

with 0 ≤ t < 1 and 0 ≤ j < n − 3, j ∈ Z. The distance adjustment, therefore,
can be implement quite efficiently on modern graphics hardware by using build-in
data types for matrices and vectors.

Given a set of appropriate input images, the control points ci for the desired
B-spline correction B() 7→ d can be found via a least square fit, i.e. minimizing
‖Ac− b‖2 with

A =
[
B3
i (mJ)

]J=(p,k)

i=0,...,n
, c = [ci]i=0,...,n , b = [dJ ]J=(p,k) (2.4)

where mJ stands for the measured distance information at a pixel p of the k-th
input image and dJ stands for the corresponding reference distance. The system
of linear equations described by (2.4) can be finally solved using a pseudo inverse
approach

c =
(
ATA

)−1
ATb. (2.5)

Given the set of optimal B-spline control points and a measured distance m(p),
the global adjusted distance value mc(p) is simply given by

mc(p) = B(m(p)). (2.6)

As the B-spline can only handle distance information that lies inside the calibration
range, values outside the range have to be either clamped or leaved untouched –
depending on the system requirements. In both cases, a special pixel flag might
avoid that the system uses possibly invalid information.

The optimal number of control points strongly depends on the calibration
range and has to be adjusted to the individual case. Insufficient control points
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lead to inaccurate (even incorrect) correction results, where as too many might
cause over fitting between individual input images. Beside manual adjustment, a
possible solution is to apply an iterative fitting and increase the number of control
points until a given fitting threshold is reached. In our case, where the periodicity
of the demodulation error covers approximately two meters (see Fig. 2.4 and
Fig. 1.8, p. 15), 12 control points are usually sufficient to cover the whole camera
range of 7.5 m.

Figure 2.4 top, shows first results of the global correction for randomly selected
pixels before and after the correction has been applied.

Per-Pixel Distance Adjustment Due to the applied optimization, the re-
sulting B-spline actually yields the global correction for an optimized average
pixel p� with respect to a given set of input images. Due to individual pixel
characteristics, however, the B-spline gets evaluated at slightly shifted locations,
which in turn negatively affects the global correction result.

Instead of fitting a B-spline for each sensor pixel, a pixel-wise pre-adjustment
can be applied that additionally adjust each sensor pixel towards to the optimized
average pixel, i.e. maps m(p, k) to m(p�, k), and is comparable to the fixed
pattern noise matrix mentioned by Kahlmann et al. Assuming that individual
pixel offsets are linear, the pre-adjustment is determined by pixel-wise fitting a
line lp into the image sequence minimizing

∑
k

‖m(p, k)−m(p�, k)‖2. (2.7)

In contrast to the noise matrix, where the LUT’s reference pixel is known, m� =
m(p�, k) is a priori unknown, but can be determined by solving the inverse
mapping B(m�) = d(p, k), i.e. searching the root of

B(m�)− d(p, k) = 0 (2.8)

via, e.g., Newton’s method or bisection. In both cases, the initial solution should
be as close to the reference distance as possible, i.e. m� = d(p, k), to avoid local
minima. Applying the additional pre-adjustment, the overall distance calibration
is given by

mc(p) = B(m�) with m� = lp(m(p)). (2.9)

In order to eliminate remaining distance deviations a second line fitting analog to
the pre-adjustment can be performed. This time for the differences between the
corrected distances mc(p, k) and the reference distance d(p, k).

A final example for a wiggling adjustment is shown in the second plot in
Fig. 2.4. By separating the calibration into two steps, a high accurate distance
calibration can be achieved, reducing the amount of distance deviation to an
average value less than 1 cm (cmp. Tab. 2.3).
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However, as can be seen in the results, it turns out that an additional post-
adjustment can be neglected as it leads to no significant improvements. Fur-
thermore, it basically makes no difference whether a pre- or post-adjustment is
applied, as both techniques lead to the same results. A pre-adjustment, however,
is technically more sound.

Our experiments also show, that most coefficients of the pre-adjustment
describe constant offsets, i.e. have a slope close to one. Consequently, the number
of coefficients necessary for the pixel-wise adjustment can be reduced to one,
which is comparable to a fixed pattern noise matrix.

2.2.3 Alternative Demodulation Approach

Phenomenological calibration models as well as enhanced demodulation schemes
generally imply special effort by means of hardware modifications or reference
data acquisition. Both methods are consequently either limited or rather time
consuming with respect to their realizations. A more desirable approach, therefore,
would use the standard four sample values, but leads to more accurate results.

The main reason for demodulation errors is the mismatch between theoretical
and real signal modulation. Experiments show, that the reference signal for
current PMD cameras actually correspond to a mixture between a rectangular
and a sinusoidal signal [Rap07]. Consequently, we investigate an alternative
demodulation approach that uses the standard four correlation samples, but
considers a rectangular signal.

Assuming an ideal rectangular signal, the resulting cross correlation function
c(τ) is triangular with its valley points displaced by the phase shift φ (see Fig. 2.5).
Thus, for a shift smaller than π

2 as in Fig. 2.5a left, the phase shift φ can be
obtained by fitting two intersecting lines

l1,2(θ) = m1,2 · (θ − φ) + t (2.10)

with contrary slopes m1 = −m2 and identical offset t through the sample points
Ii. Here, l1 is fitted through I0 and I1, whereas l2 is fitted through I2 and I3 The
equivalent least square optimization based on the resulting linear system


0 −1 1
π/2 −1 1
−π 1 1
−3π/2 1 1

 ·
 mφm
t

 =


I0
I1
I2
I3

 (2.11)

leads to

φ = π − π

2 ·
(I3 − I1)

(I0 − I2) + (I3 − I1) . (2.12)
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Figure 2.4: Original (light gray) and adjusted deviation (dashed, dark gray)
between the measured and the expected reference distance for distances between
3.5− 7.5 m (top: global correction only, bottom: additional pre-adjustment).

Correction Global + Pre + Pre /Post + Post
Image 1 0.880074 0.277263 0.285939 0.316298
Image 2 0.842202 0.242508 0.237220 0.238037
Image 3 0.854546 0.369220 0.364661 0.376175
Image 4 0.824755 0.461143 0.463916 0.464283
Image 5 1.037930 0.556160 0.562826 0.554429

Pixel (80, 60) 1.277160 0.253993 0.253471 0.303678
Overall 0.928622 0.434910 0.434879 0.437099

Table 2.3: Calibration results for the demodulation adjustment using the global
adjustment only (global) and together with a pixel-wise pre-adjustment (pre), pre-
and post-adjustment (pre / post) or post-adjustment. The table states the mean
deviation error in [cm] for selected reference images (row 1 - 5), for the center
pixel over all reference images (row 6) as well as the overall mean error covering
all pixels in all images (row 7).
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Considering an additional shift for cases where I0 < I1 and I2 > I3, the real,
distance-related phase shift φtri = π − φ finally can be obtained by

φtri = π

2 ·
(I3 − I1)

(I0 − I2) + (I3 − I1) +
{
π I0<I1 ∧ I2>I3

0 else
(2.13)

whereas the signal amplitude a is given by

a =
∣∣∣∣∣14

3∑
i=0

Ii − t
∣∣∣∣∣ . (2.14)

Special care must be taken for phase shifts where the valley points are located
between the first two and the last two sample points (see Fig. 2.5b). In this case,
the last sample point must be moved to the front in order to establish the correct
fitting situation. This means that Ii becomes I(i+1) mod 4 whereas the intersection
point φ is shifted by an additional amount of π/2.

Applying the new demodulation approach, the distance error unfortunately can
not be reduced compared to the sinusoidal case as can be seen in Fig. 2.6. However,
as the error trend turns out to be inverse to the systematic demodulation error for
sinusoidal modulation, the new sampling approach can be used to attenuate the
distance error by mixing the results of both demodulation schemes, i.e. a linear
combination

φ = k1 · φsin + k2 · φtri + k3 (2.15)

seems to be suitable to compute a new phase offset with higher accuracy than
the one provided by either demodulation schemes alone. Analog to previously
described calibration models, the optimal linear combination can be found by a
least square optimization with respect to known reference data. In order to keep
the number of calibration parameters as small as possible, we decided to let k3 be
a constant per-pixel offset comparable to fixed pattern noise (or pre-adjustment),
whereas k1 and k2 correspond to global calibration parameters for the entire
image.

Fig. 2.7 depicts the remaining derivations for the new alternative demodulation
approach in comparison to results of the corresponding B-spline adjustment. As
expected, experiments show that the combined demodulation approach actually
can not keep up with the B-spline adjustment, but in contrast is fairly independent
to the number of required reference images, as two reference images are already
adequate to archive good results. The combined demodulation, therefore, is very
effective in means of required reference data.

Compared to a constant or linear per-pixel adjustment of the original demod-
ulation scheme (see Fig. 2.8), the combined demodulation model gives clearly the
best results as these techniques are unable to cope with the systematic demodula-
tion error. Improved results can be achieved by high-order combinations of φsin
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Figure 2.5: Sampling positions for a triangular correlation function and their
corresponding phase offset. Special care must be taken for the gray shaded cases.
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Figure 2.6: Mean distance error for the original (dashed) as well as the alternative,
triangle-based demodulation (solid).

and φtri like

φ =
2∑

i,j=0
kij · φisinφ

j
tri. (2.16)

Unfortunately, this way the number of parameters and therefore the number of
necessary reference images would increase again, which in result brings no real
advantages compared to the B-spline approach.

2.2.4 Intensity-Related Error

By adjusting distance information according to the compensation models discussed
in Sec. 2.2.2, range images already provide increased accuracy with respect to both,
systematic wiggling as well as integration time dependent errors. However, as all
described models consider distance data only – and thus assume a single, fixed
reflectivity during calibration –, intensity-related errors as described in Sec. 1.2.2
can not be handled in an adequate way and therefore remain.

While the actual origin of intensity-related errors are unknown, they are
assumed to be caused by non-linearities of the semiconductor and pixel gains, and
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therefore apply before the demodulation induced wiggling error, i.e.

m = wiggling ⊕ intensity⊕ d (2.17)

In all our experiments, low reflective regions tend to drift towards the camera,
while the overall effect decreases with larger distance. Particularly the fade of
the effect indicates that the error impact is strongly related to the absolute
amount of the incident light. However, as the intensity error is additionally
overlayed with wiggling deviations, a separate treatment is rather difficult. Recent
calibration models therefore are commonly straight forward extensions of the
phenomenological wiggling correction presented in Sec. 2.2.2.

In practice, the absolute amount of incident light can not be measured directly.
The only information available instead is the intensity information h as well as the
signal’s amplitude a, which are additionally provided by the camera. Assuming
homogeneous depth information, both values correlate and therefore are mostly
interchangeable in practice. By considering one of both quantities as additional
parameter, the deviation impact on the distance accuracy can be modeled with
respect to the measured distance and intensity by considering different reflective
reference targets at various distances.

In the following, two different calibration models will be discussed. While the
first one incorporates the intensity information in a coupled distance-intensity
model by using a two-dimensional error approximation, the second one aims for a
more sophisticated, decoupled approach in order to reduce the large amount of
necessary reference data. Two similar approaches have been recently published by
Fuchs and Hirzinger [FH08] as well as Radmer et al. [RFSK08].

Analog to the coupled model, Fuchs and Hirzinger exploit a multiple B-spline
approach by fitting a set of one-dimensional B-splines for a given number of
intensities. The final adjustment is determined by linear interpolation between
the two adjacent B-splines that enclose the pixels intensity. Again a dense set of
intensity samples is necessary to avoid interpolation inaccuracies.

Radmer et al., in contrast, describe a decoupled approach that uses an addi-
tional three-dimensional LUT to further improve the already wiggling adjusted
distance information with respect to the intensity value h and the camera’s current
integration time as well as the given distance itself. Like the wiggling adjustment
by Kahlmann, Radmer uses linear interpolation between table entries, which again
requires a dense set of reference data to avoid interpolation (linearization) errors.
Apart from that, a lot of memory is wasted as the complete intensity range is not
fully present for all distances due to the light attenuation.

Coupled Model

In the coupled approach, demodulation and intensity impacts are covered in
combination, i.e. the measured distance information m and the intensity value h
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form a bivariate domain for a combined distance adjustment mc(p) = f(mp, hp).
It therefore can be considered as a straight forward extension of the demodulation
model presented in the previous section. Accordingly, the distance correction is
modeled by a bi-variate B-spline patch

P (u, v) =
p∑
i=1

q∑
j=1

N3
i (u) ·N3

j (v) · cij (2.18)

analog to Sec. 2.2.2, where N3
i (u) and N3

j (v) represent the uniform cubic B-spline
basis functions over a set of control points of size p · q.

Given a set of input data Ω = {(m,h, d)}, where each element consists of
a measured distance m, the incident light h as well as the according reference
distance d, a linear equation system can be derived that includes a fitting constraint

p∑
i=1

q∑
j=1

N3
i (mk) ·N3

j (hk) · cij = dk (2.19)

for each pixel k ∈ Ω, where mk and hk represent the measured distance and
intensity information.

By arranging the fitting constraints such that the unknown coefficients cij
form a vector c = (c11, c12, . . . , c1m, c21, . . . , cpq)T , the complete equation system
can be expressed as Ac = b with b = (d1, . . . , d|Ω|)T and

A =
[
N3
i (mk) ·N3

j (hk)
]

(i,j) =(1,1),...,(p,q)

k =1,...,|Ω|

(2.20)

Due to the local support of the B-spline patch and the distance dependent light
attenuation, however, Ac = b is generally under constrained, and cannot be
solved a priori as it has been the case for the systematic wiggling approximation.
Especially for larger distances, no samples for high incident light exist. In order to
avoid numerical instabilities and to guarantee a smooth extrapolation, additional
smoothing constraints must be added. For this we apply the Laplace operator to
form the following smoothing constrains

∇P (u, v) = ∇∂
2P

∂u2 (u, v) + ∂2P

∂v2 (u, v) = 0. (2.21)

Applying the derivation rules for B-splines and the fact, that B-splines form a
function basis, (2.21) is equivalent to

4cij − (ci−1,j + ci,j−1 + ci+1,j + ci,j+1) = 0 (2.22)
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Figure 2.9: Distance deviation due to varying object reflectivity, i.e. active light
incident to the sensor; front and side view (left), after a distance / intensity
calibration (right).

for (i, j) = (2, 2), . . . , (p − 1, q − 1). Extending matrix A by this smoothing
constraints, we get

A∇ · c =
[

A
λL

]
· c =

[
b
0

]
(2.23)

where the sub-matrix L contains the Laplace-constraints described in (2.22) and
λ > 0 controls the amount of smoothing. The extended linear equation system can
be solved using a least square optimization, finally yielding a desired correction
function for our coupled calibration model.

Analog to the original calibration model in Sec. 2.2.2, the distance adjustment
can be further improved by likewise taking individual pixel characteristics into
account. Originally, the reference distance has been used to calculate the deviation
between each PMD pixel and the optimized average pixel p�. However, as no
reference value for the intensity parameter is known, no canonically extension of
the pre-adjustment for the intensity values exists. For this reason, an asymmetric
pixel-wise pre-adjustment similar to the original approach is performed that takes
distance information into account only, i.e.

mc(p) = P (m�, h) with m� = lp(m(p)). (2.24)

In order to determine the improvement of the enhanced calibration model, both
methods (distance only and coupled) have been used to adjust a set of distance
information of the same set of input data. In the case of pure distance adjustment,
the B-spline has been fitted to the deviation data of the high reflective panel,
which possess the lowest noise interferences. This correction is applied to the
complete input data, independent of the actual light incident to a sensor pixel.
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Tab. 2.4 shows the mean deviation error for both methods with respect to
different reference distances. For the coupled approach 10, respectively 5, control
points for the distance and the intensity component as well as a smoothing factor
of λ = 1 has been used. It can be seen, that the original calibration model, which
handles distance information only, still adjusts the high reflective images correctly,
but fail on the images with low reflectivity. In contrast, the enhanced calibration
model, which takes distance and intensity into account, is able to correct all
images independent from the incident light (cmp. Fig. 2.9).

Distance [m] 0.9 1.1 1.3 1.7 2.1 2.5 3.0 3.5 4.0

Unadj. � 15.77 15.76 13.14 8.88 6.53 11.02 10.64 3.08 3.54

Wiggling
� 1.94 2.82 2.10 2.89 1.35 1.73 1.59 2.18 2.67

100% 0.10 0.21 0.30 0.21 – – – – –
30% 2.53 3.50 3.24 3.72 – – – – –

Coupled
Model

� 0.35 0.38 0.64 0.97 1.00 1.52 1.13 1.18 1.73
100% 0.28 0.23 0.31 0.42 – – – – –
30% 0.32 0.32 0.40 1.13 – – – – –

Table 2.4: Average distance deviation in [cm] for a number of reference distances
before (Unadj.) and after a distance adjustment has been performed. In the near
range, the distance error for 100 % and 30% IR reflectivity are additionally listed.
In the uncorrected distance data, the systematic error due to the demodulation is
clearly noticeable.

Decoupled Model

Coupled calibration models as previously discussed, generally require a large set
of reference data with respect to intensity-distance pairs. In practice, however,
the acquisition of such data is rather time consuming and impractical. In order to
reduce the number of required reference images, a better solution therefore seems
to be a separation of both calibration parameters, i.e. an individual treatment of
systematic- and intensity-related deviations.

Regarding (2.17), the theoretical correct order of a separated distance correc-
tion is given by

d = intensity−1 ⊕ wiggling−1 ⊕m
= intensity−1 ⊕mw

(2.25)

Due to the distance dependent light attenuation, however, the reference data for the



50 Calibration

-4

-2

 0

 2

 4

 6

8

 0  200  400  600  800  1000  1200  1400

2.0m
2.5m
3.0m
3.5m
δ(h)

Measured Intensity

R
e

m
a

in
in

g
 D

e
v
ia

ti
o

n
 [

c
m

]

∆3.5

hwig(3.5m)

Figure 2.10: Remaining distance deviations after a wiggling adjustment has been
applied. The plot is based on six different calibration targets, which has been
captured at four distances.

wiggling correction undergoes intensity changes as well. For this reason, intensity-
related deviations get already partially corrected by the wiggling adjustment, which
becomes obvious by plotting the remaining distance deviations (see Fig. 2.10).
Here, all deviations basically exhibit the same characteristics, but are vertically
displaced by a offset ∆d, reducing the deviation of the most reflective target to
zero.

In the case that the offsets are known, the remaining intensity-related devia-
tions can be generally corrected by an overall, one-dimensional correction term
δ(h) that depends on the given intensity only. Fortunately, the same correction
term also provides the required offsets, as for a given reference distance d, ∆d

is given by δ(h) regarding the intensity value hwig(d) that has been used for the
wiggling calibration (cmp. Fig 2.10). The error adjustment is therefore finally
given by

mc(p) = mw
p + δ

(
hwig

(
mw

p

))
− δ(hp). (2.26)

where δ(hwig(mw
p )) accounts for the vertical pre-adjustment and δ(hp) for the

actual intensity-related deviations.

By pre-adjusting the according offsets, both error sources (wiggling- and
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intensity-related) can be treated independently in a two step approach, which
significantly reduces the number of required reference images: For the intensity-
related distance adjustment term δ(h) it is sufficient to acquire the full intensity
range only once for a fixed distance, whereas for the distance dependent offsets
only the brightest intensity are required and has been already acquired for the
wiggling adjustment. Note, that in order to cover a large intensity range, the
chosen distance for the maximum intensity function hwig(d) should be preferably
close to the camera.

Altogether, the decoupled calibration model for intensity-related deviations
can be summarized as follows:

1. Determination of the distance-dependent intensity function
hwig(d). For this purpose, it is important that the same reference data
as for the demodulation adjustment is used.

2. Determination of the actual intensity-related distance adjustment δ(h) =
mw − d regarding a given set of reflectivities at a close range.

In our case, both functions , hwig(d) as well as δ(h), are modeled by polynomials
of degree 2, i.e.

hwig(d) =
2∑

k=0
awig
k · dk, δ(h) =

2∑
k=0

aδk · hk. (2.27)

Light attenuation In practice, the PMD image (and therefore the intensity
image as well) is unfortunately affected by a radial light attenuation caused by
the optics, for which reason the maximum intensity function as stated in (2.27)
cannot be determined globally.

Instead of determining the according function for each pixel individually, the
intensity mapping can also be extended by an additional radial attenuation, i.e.

hwig(d, r) =
n∑
k=0

awig
k dk

m∑
l=0

bwig
l rl =

n∑
k=0

m∑
l=0

(
cwig
kl d

krl
)

(2.28)

where r is the euclidian distance to the projection center c on the image plane.
Analogously, (2.26) extends to

mc(p) = mw
p + δ

(
hwig

(
mw

p , ‖p− c‖
))
− δ(hp, ‖p− c‖). (2.29)

By doing so, both intensity mapping (pre-adjustment) as well as intensity-related
distance adjustment can be expressed by a global set of coefficients, which finally
reduces the overall number of internal calibration parameters.



52 Calibration

Results Tab. 2.5 shows the average deviation error for the decoupled model with
respect to different reference distances and reflectivities. As expected, the average
deviation for the wiggling corrected data noticeably increases with decreasing
reflectivity. Range data which, in contrast, has been adjusted by the decouple
model, archives a much smaller average deviation in all cases.

Regarding the parameter coupling, the decoupled model achieves similar results
as the coupled model. Only for low reflective targets at larger distances, the
coupled model is able to adjust the distance information more accurate. In the
near range, on the other hand, the coupled model performs less well due to the
additional smoothing constraint.

100% 80% 60% 40% 20% 0%

1.0m
Wiggling 0.1073 0.8905 1.6932 2.4432 2.7929 2.7218
Coupled 0.1973 0.1918 0.2714 0.2838 0.3498 0.7179
Decoupled 0.1325 0.1239 0.1470 0.2032 0.3627 0.7572

1.4m
Wiggling 0.1088 0.7991 1.4507 1.6025 2.0964 2.5058
Coupled 0.3619 0.3220 0.3809 0.3715 0.6800 1.4711
Decoupled 0.1095 0.1974 0.3848 0.4257 0.8659 1.7188

1.8m
Wiggling 0.2170 0.5018 0.7423 1.12713 2.1967 3.5027
Coupled 0.6699 0.5972 0.6131 0.7908 1.5728 3.4599
Decoupled 0.2483 0.3338 0.4809 0.9292 1.8140 3.3225

2.2m
Wiggling 0.2438 0.6284 1.1121 1.7288 2.9523 5.0360
Coupled 0.9506 0.9824 0.8875 1.2031 2.0513 3.3471
Decoupled 0.2257 0.5347 0.9104 1.5165 2.8597 4.9302

Table 2.5: Mean distance deviation in [cm] for a different number of reference
distances and reflectivities regarding pure wiggling correction (� 1.62 cm), coupled
(� 0.97 cm) as well as decoupled (� 0.98 cm) intensity-related adjustment.

2.3 Motion Compensation

Regarding common vision systems, a large number of interactive applications
deal with dynamic scenes consisting of moving objects or camera movements.
However, due to the cameras’ working principle based on subsequent phase images,
fast motion during the acquisition typically leads to artifacts as classified in
Sec. 1.2.2. Beside varying phase samples along the viewing ray, the most dominant
impact can be ascribed to lateral motion and the fixed per-pixel sampling scheme,
which assumes a steady scene during the integration process. For this reason,
a compensation approach is discussed in the following section that breaks up



2.3 Motion Compensation 53

the fixed sample scheme and realigns corresponding phase images. By doing so,
most motion artifacts due to lateral motion as well as texture changes can be
reduced. The realignment is achieved by applying optical flow estimations to each
individual phase image, i.e. by tracking individual surface points between phase
images over time.

In addition, as pixel tracking is unable to deal with axial motion along the
viewing direction, the impact of axial motion is discussed. Accordingly, based on
the standard phase shift demodulation, a theoretical model for additional motion
dependent offsets is proposed.

2.3.1 Optical Flow-Based Phase Image Registration

The problem of motion artifacts basically arises from unmatching phase images
due to the demodulation of unrelated phase samples of different object or textual
changes and the corresponding change in incident light. The main idea behind
the proposed compensation approach therefore is to virtually discard the fixed
per-pixel sampling and select correct phase samples by realigning corresponding
phase images.

For the image realignment, a various number of registration approaches exist,
which mainly consist of two basic steps [Zit03]:

– feature detection and mapping

– estimation of the according image transformation.

Both steps are crucial for the registration results and have to be adapted to the
individual case.

Regarding the first step, registration methods can be classified into intensity-
based or feature-based algorithms. Intensity-based approaches compare intensity
patterns with respect to a given correlation metrics, while feature-based methods
are designed to identify and map significant points, lines and / or contours in both
images.

In the context of image transformation, registration approaches differ in global
linear transformations models (like translation, rotation, scaling or other affine
transformations) or local nonrigid transformations like radial basis functions
(thin-plate or surface splines) and elastic deformation models including fluid- and
optical-flow-based registration. As we want to archive an accurate pixel-wise
mapping that is able to deal with object deformation and multiple motion, the
most suitable approach in this context is given by optical-flow-based registration
as it provides the most adequate results without explicit feature detection. An
overview of optical flow techniques is given in Sec. 1.4.

Applying optical flow to range images in combination with variable sampling
positions, however, requires the two following conditions to be fulfilled:
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– As mentioned in Sec. 1.4, most variational optical flow implementations
assume that corresponding surface points appear with the same intensity in
subsequent images. This means, that moving objects have to appear with
the same intensity in each phase image (Brightness Constraint).

– Applying the demodulation at different pixel locations requires unbiased
phase samples, i.e. a homogeneous sensor behavior, in order to get the
correct phase shift (Pixel Homogeneity).

Both conditions are a priori not met by standard phase images due to the sampling
of a harmonical function itself as well as illumination and sensor inhomogeneities.
In the following, we discuss how both pre-conditions can be satisfied.

Brightness Constraint An important precondition of optical flow is the as-
sumption of constant intensity values between consecutive images. Unfortunately,
by taking a look at the phase images Ii, it becomes obvious that objects appear
differently in each phase image due to the internal phase shift and the applied
convolution (see Fig. 2.11, top). However, as mentioned in Sec. 1.2, 2-tap PMD
sensors actually measure two phase samples at a time

– the shifted reference signal yielding Ai = c(τi) as well as

– the inverted signal yielding Bi = c(τi+2).

Commonly, both raw images are internally subtracted to form the actual phase
image Ii = Ai −Bi in order to reduce production-specific pixel behavior, whereas
the pixel intensity is given analog to (1.5), p. 9, by

h = 1/8 ·
3∑
i=0

(Ai +Bi). (2.30)

As both signals are inverse to each other, the absolute amount of incident light –
and thus the total intensity – for a phase image I+

i can be computed by the sum
of its raw images (see Fig. 2.11, bottom), making optical flow estimation generally
applicable.

Pixel Homogeneity In practice, pixel gain differences as well as a radial light
attenuation towards the image border affects the phase values (see Fig. 2.12, left
column). Regarding the fixed sampling scheme, these individual pixel charac-
teristics are simply ignored, as they have no impact on the local demodulation.
For the realigned demodulation, however, the inhomogeneity not only influences
the optical flow estimation in a negative way by violating the constant inten-
sity assumption, it also leads to non-matching raw values during the realigned
demodulation since differently biased pixel values are combined.
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Figure 2.11: Visual difference between the original phase image Ii = Ai −Bi (top
row) and the phase image intensity I+

i = Ai +Bi (bottom row).

In order to adjust pixel inhomogeneities and consequently improve the motion
compensation, an intensity normalization published by Stürmer et al. [SPH08]
has been adapted. Basis for the adjustment is a set of reference images that covers
varying reflectivity at different distances. Analog to Stürmer’s approach, which
compares the intensity values of arbitrary image pixels with a reference pixel in
the center of the image, our raw value adjustment is obtained by a pixel-wise fit of

fA(Ai) = A′i, fB(Bi) = B′i with i = 0 . . . 3 (2.31)

minimizing
3∑
i=0

(A′i +B′i)
!= href, (2.32)

where the reference intensity href is given by the brightest pixel in the according
reference image, i.e. the pixel concerning to the brightest pixel in the most reflective
reference image. In presence of noise, the reference intensity should be determined
over a small neighborhood.

Assuming a continuous behavior of the sensor gates, the correction term
fX(Xi) should be smooth and monotonically increasing. This assumption has
been confirmed by our experiments as shown in Fig 2.14. We therefore decided to
fit a function of logarithmic form, i.e. fX(Xi) = c1

√
Xi + c2 + c3Xi + c4, yielding

the homogenization results as shown on the right side of Fig. 2.12.

Results The lateral motion compensation via flow estimation has been finally re-
alized using the isotropic, flow-driven optical flow estimation of Zach et al. [ZPB07].
Zach’s GPU-based implementation allows discontinuity preserving TV-L1 flow
estimation in real time and currently holds the second place of the Middlebury’s
optical flow ranking [MDB]. As the quality of the motion compensation relies on
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Figure 2.12: PMD intensity image before (left) and after (right) a pixel homo-
geneity adjustment. Note the strongly varying intensity towards the image border
without correction.

the underlying flow estimation, our choice should give the best results in respect
to the required accuracy and runtime currently possible.

The lateral compensation is actually done by estimating the optical flow
between the phase intensity images I+

1 , I
+
2 , I

+
3 and I+

0 and an according resam-
pling of the corresponding phase images. Before, all raw images are adjusted to
eliminate brightness and pixel inhomogeneities. The resampled phase images are
then further processed by the fixed standard demodulation scheme in order to
calculate the final distance information. A complete system overview, including
an optional axial motion compensation step (described in the next section), is
given in Fig. 2.13.

The motion compensation has been tested on two exemplary scenes and
achieved a frame rate of 10 fps on a Nvidia GeForce 8800 GTX. Whereas Scene
1 consists of a simple moving box yielding only lateral motion artifacts (see
Fig. 2.15), Scene 2 consist of a more complex moving soft toy, allowing additional
deformation (see Fig. 2.11 and 2.16). In both cases, motion artifacts occurred due
to contour or texture changes and their corresponding phase mismatch.

By applying the lateral compensation approach, most of the arising artifacts
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has been satisfactorily removed. Especially the comparison with the static scene,
shows that the re-sampled box for example matches the reference scene very well
in distance information and object size.

A statistical evaluation of the box scene is given in Tab. 2.6. The detection of
box and background pixels (wall) is done using a clustering approach with respect
to a region growing based on plane fitting. It can be seen, that the number of
detected pixels is extremely close to the static situation. The variance in the data
decreases by applying the motion compensation. No shift in the average distance
for the detected box or background pixels occur. Note, that the texture-related
errors in the object region are not captured by the variation, since these pixels
are classified as outliers.

Optical Flow
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Data
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lateral

Adjustment

axial

IntensityRAW

Images
A − B

A + B

RAW Image

Resampling

Optical Flow

Estimation

Image

Depth
Demodulation

Motion

Estimation

Axial Motion

Compensation

Figure 2.13: System Overview. The motion compensation consists of two consecu-
tive modules: the lateral motion and an optional axial motion compensation. Note,
that an additional systematic error correction is necessary to adjust demodulation
errors before a correct velocity estimation can be performed.
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Static Motion Adjusted

Pixel Count
Background 7326 6904 7213

Object 8521 6609 8458
Outliers 3033 5367 3209

Mean Dist. [mm]
Background 2404 2405 2405

Object 1271 1272 1272

Variance [mm]
Background 13.6 14.6 14.0

Object 8.5 9.6 7.9

Table 2.6: Statistical analysis of Scene 1 stating the number of object and
background pixel as well as the corresponding average distance and its variance.
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Figure 2.15: Scene 1 before (top) and after motion compensation (middle) as well
as the static reference scene (bottom). Note the motion artifacts due to texture
changes of the box surface.
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Figure 2.16: Scene 2 before (top) and after motion compensation (middle) with
additional outlier removal and bilateral filtering (bottom). Note the reduction of
artifacts as well as the sharpened object features.
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2.3.2 Axial Motion Impact

While optical flow is able to handle motion artifacts caused by lateral object shifts,
it is unable to reduce the impact of axial motion along the viewing ray. Unlike
lateral motion, which simply results in a displacement of corresponding phase
values, axial motion introduces additional phase changes due to the varying object
distance. The following section addresses the theoretical impact of axial motion
onto the demodulation results. It first deals with a simple axial motion model
that assumes a constant displacement between two phase images. The simple
model is then further extended to account for an uniform, continuous motion
during the integration series.

Assuming an uniform axial motion with an axial displacement ∆ between the
first and last phase image I0 and I3, the theoretical correlation samples are given
analog to (1.2), p. 8, by

Ii = a

2 cos
(
i · π2 + φd + i · φ∆

3

)
(2.33)

where φd represents the initial distance at the start of the range image acquisition.
Applying the demodulation scheme from (1.3) yields the phase offset

φm = atan2
sin(φd + φ∆) + sin

(
φd + 1

3φ∆
)

cos(φd) + cos
(
φd + 2

3φ∆
)

= atan2
sin
(
φd + 2

3φ∆
)

cos
(
φd + 1

3φ∆
) .

(2.34)

Consequently, if ∆ and φm are known, the true phase offset φd can be calculated
by

φd = atan2
sin(φm) cos

(
1
3φ∆

)
− cos(φm) sin

(
2
3φ∆

)
sin(φm) sin

(
1
3φ∆

)
+ cos(φm) cos

(
2
3φ∆

) . (2.35)

However, instead of integrating over one period, current PMD cameras repetitively
accumulated short-time integrated samples with an integration time of T/2, where
T = 1/f . Accordingly, several distance shifts are summed up during the overall
long-time integration.

For a more accurate model, the short-time integrated sample Ai,j for τi of an
incident signal with additional offset K and amplitude a can be formulated by

Ai,j =
∫ T/2

0
K + a sin

(
ωt−

(
φd + i

φ∆
3 + κj

)
− iπ2

)
dt

= a

πf
cos

(
φd + i

φ∆
3 + κj + i

π

2

)
+ K

2f

(2.36)
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where i ·∆/3 accounts for the distance offset at the beginning of each phase image
analog to (2.34) and κj = j · φ∆/3N represents the additional offset for each
short-time integration. Note that during each short-time integration, the distance
is approximated to be constant. By accumulation all N short-time integrated
sample Ai,j we get the final phase sample

Ai =
N−1∑
j=0

Ai,j = a

πf

N−1∑
j=0

cos
(
φd + i

φ∆
3 + κj + i

π

2

)
+ NK

2f (2.37)

Regarding the final phase demodulation, all constant quantities (NK/2f and
a/πf) are of no relevance and thus can be neglected for further calculations,
yielding

Ai =
N−1∑
j=0

cos
(
φd + i

φ∆
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Finally, by applying the demodulation stated in (1.3), p. 9, we obtain:
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and
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yielding the finally measured phase offset

φm = A3 −A1
A0 −A2

=
c1 sin

(
φ+ 2

3φ∆
)

+ c2 cos
(
φ+ 2

3φ∆
)

c1 cos
(
φ+ 1

3φ∆
)
− c2 sin

(
φ+ 1

3φ∆
) (2.41)

whose characteristics are similar to (2.34) but comprises an additional translation
(see Fig. 2.17). Analog to (2.35), the inverse of (2.41) can be obtained applying
the addition theorem.

Results By taking a look on the deviation between the theoretically measured
distance d(φm) and its ground truth distance d, it becomes obvious that the
deviation smoothly fluctuates about ∆/2 with an amplitude of ∆/6 not causing
any serious distance jumps up to ∆ = 3.75, i.e. half the unambiguousness range.
The measured distance information therefore lies more or less half way between
the initial and end distance of the integration process. Furthermore, regarding a
common integration time of 15 ms per phase image, the displacements in Fig. 2.17
already imply a rather high velocity of 8 km/h, respectively 24 km/h. For most
scenarios, axial motion consequently has less significant impact on the distance
accuracy than lateral motion and therefore might be neglected, as the more
critical resizing of object contours is already handled by the optical-flow-based
pixel alignment.

However, for depth image sequences an optional compensation of axial motion
errors based on the inverse of (2.41) can be applied if aspired. In this case, object
velocities are estimated via the previous two corrected depth images. Knowing
the velocity of a surface point, its theoretical deviation as well as its according
correction can be derived from (2.41). The velocity estimation is done by using
optical flow once more to track individual surface points between depth images.
Note, that for proper estimations, the camera’s systematic demodulation error
must be corrected first (see Sec. 2.2.2).

For a single depth image, e.g. when motion estimation is not possible, a
synthesized intensity image halfway between I+

1 and I+
2 rather than I+

0 should be
considered as optical flow reference. Otherwise, the object contour will not match
its distance information due to the theoretical distance shift of approximately
∆/2, causing the object to shrink or expand.
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Figure 2.17: Theoretical axial motion impact regarding (a) the simple and (b)
the advanced model.



Chapter 3

Data Processing

»One and one is two, and two and two is four, and five will get
you ten if you know how to work it.«

– Mae West

A
s mentioned in the Sec. 1.2.2, range images as acquired by current time-of-
flight cameras are quite noisy and of rather low resolution. The following

sections therefore covers essential processing techniques that can be used to
enhance distance informations with respect to further processing steps. The
overall structure is organized into three parts. The first two parts cover the
general task of image denoising and the algorithmical refinement of distance
information (Sec. 3.1 and Sec. 3.2). Part three deals with the fundamental process
of data fusion for multi-modal imaging systems, i.e. systems that use more than
one image sensor to acquire scene information / knowledge (Sec. 3.3).

All outlined algorithms has been implemented as part of a generic processing
framework for mixed CPU/GPU computations. Conceptional details of the
framework are given at the end of this chapter in Sec. 3.4.

Publications The edge preservative upsampling filter has been published in [LLK08], while the
sensor fusion approach first has been presented in [LK07b].

3.1 Denoising

In Sec. 1.2.2, different noise sources has been classified that affected the accuracy
of current TOF cameras. While most of these sources can be suppressed by
proper cooling and signal processing techniques, the most prominent noise source
depends on the number of incoming photons and can only be handled by adequate
post-processing.

Image denoising, as one of the classical problems in signal processing, has been
studied with intensive care. With introduction of range sensing techniques, most
of the two-dimensional algorithms have been adapted to mesh and range data
smoothing in the three-dimensional domain, but mostly really on supplemental
normal information. In addition, so-called projection-based approaches have
recently attracted the interest of many researchers. Here, range data denoising is
done by fitting either implicit (so-called level sets) or explicit (e.g. polynomial

65
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or B-spline-based) surface patches through the given, three dimensional point
cloud [CBM∗03, SBS05, LCLT07]. Unlike classical average filters projection-based
techniques however generally involve non-linear or iterative optimization schemes.
Furthermore, mostly all projection-based techniques suffer from over-smoothed
object features due to the non-trivial task of defining a proper neighborhood
relation.

Consequently, as the considered noise solely occures in viewing direction, range
images are commonly denoised in the two-dimensional image space using classical
noise filter (see below). The so far only sophisticated and in contrast non-averaging
approach for TOF range images has been published by Böhme et al. [BHMB08].
The presented approach exploits the fact that TOF cameras provide both distance
as well as intensity information that are not independent but linked by a shading
constraint. Based on the Lambertian reflectance model, their smoothing approach
iteratively optimizes the maximum likelihood estimate to observe a scene with
distance information R and reflectivity (albedo) properties A for a given range
image Xm and intensity values Xh, i.e. p(Xm, Xh|R,A)p(R)p(A). Required nor-
mals are maintained by triangulating the range image in each iteration step. Even
though the approach gives impressive results, it is generally computation intensive
requiring approximately two seconds per frame. Consequently, it is inappropriate
for real-time processing.

Considering the two-dimensional image space, range image denoising can be
split up into temporal and spatial filtering as discussed next.

Temporal Denoising For temporal denoising, a sequence of subsequent images
is processed by either linear averaging or non-linear median filtering. The according
expectation value of the noise component is assumed to be zero and normal
distributed.

Regarding the demodulation process of current TOF cameras, the temporal
denoising can be applied to either the intermediate phase or the final range
image. Compared to range image denoising, however, the processing of phase
values Ii brings a clear advantage [Rap07]: By processing phase values, erroneous
correlation samples have much less influence on the averaging process as they
would have by simply averaging the falsified distance information – especially
in the case of poorly exposed pixels. In addition, the computation effort is
strongly reduced as (1.2), p. 8, has to be evaluated only once after the average
determination instead of each frame.

While temporal denoising is well suited to obtain more accurate, static reference
data for, e.g., distance calibration and fixed pattern noise, it is mostly impractical
for dynamic scenes. Not only does the processing of image sequences reduce the
frame rate, it also introduces additional ghosting and blurring artifacts.

For this reason, distance information is usually denoised with respect to a
single image, while the averaging criteria is applied to a local neighborhood
assuming the underlying signal to be constant or smooth.
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Spatial Denoising As already mentioned, spatial denoising of image data
has been studied for several decades, leading to a variety of well-established
techniques, e.g., based on diffusion processes [Wei98], wavelet methods [RKN00]
or total variation [BKP10, ROF92] as well as adaptive linear and non-linear filters.
However, most of them are rather complex and consequently rather inapplicable
for real-time processing tasks.

A simple but popular smoothing technique, is the Gaussian low-pass filter

Gσ(p,q) = 1
2πσ2 · exp

(
−‖p− q‖2

2σ2

)
(3.1)

which, for efficiency, can be separated into two one-dimensional filters. However,
convolution with a Gaussian kernel incorporates spatial information only, disre-
garding any confidence information about the given data (which in our case, for
example, is given by the signal’s amplitude). Erroneous pixel therefore contribute
in the same way to the result as the rest of the neighborhood does.

For more accurate results, normalized convolution [KW93] can be used to
incorporated the signal reliability into the average process. Here, the image data
(distance information m) is additionally weighted by a supplemental confidence
measure w and re-normalized to preserve its energy, i.e.

m′ = Gσ ∗ (m · w)
Gσ ∗ w

(3.2)

where ∗ stands for the convolution and · represents a scalar multiplication. This
way, distance information that is more reliable maintains a greater influence to
the average distance, while unreliable pixels (including flying pixels) and marked
outliers have lower or no impact. Frank et al. [FPR∗09] recently showed, that the
appropriate confidence measure, i.e. distance deviation, is related to the inverse
square of the amplitude, that is w = a2.

Even though (3.2) gives already good results with respect to unreliable data
(see Fig. 3.2, p. 70), the involved Gaussian filter is known to blur image features, i.e.
distance discontinuities and contours in the range image. Furthermore, due to the
dependency between signal amplitude and object distance, normalized convolution
near distance discontinuities generally cause nearby object boundaries to grow,
while boundaries of objects further away simultaneously shrink. A behavior that
also has been marked out by Schmidt [Sch08]. For this reason, preferably edge
preserving filter techniques should be applied.

A quite popular edge preserving alternative to Gaussian kernel is the bilateral
filter [TM98], which extends (3.1) by an additional semantic/similarity term, i.e.

Bσ,ν(p,q) = exp
(
−‖p− q‖2

2σ2

)
· exp

(
−Ψ2(p,q)

2ν2

)
(3.3)
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Figure 3.1: Bilateral filtering (from left to right): input, smoothing kernel,
similarity measure, combined kernel, output [DD02].

where Ψ(p,q) is an appropriate similarity measure between both pixels p and
q. For range images, the pixel similarity can be defined, for example, via the
pixel’s intensity information and / or the distance information itself. Especially
the latter prevents distinctive pixels (especially outliers) to be combined (robust
estimation).

Compared to Gaussian filter, range features are much better preserved by
bilateral filtering as can be seen in Fig. 3.1. Actually, it has been shown that
bilateral filtering and the more sophisticated anisotropic diffusion are related
through adaptive smoothing [Bar02] and belong to the same family of robust
estimators [DD02]. However, in contrast to diffusion filtering, bilateral filtering is
not energy preserving due to the asymmetric normalization term.

In the context of multi-modal data (cmp. Sec. 3.3), bilateral filtering can
be further extended to cross-filtering, where the filter weights are based on the
similarity determined on one or multiple different data sources, e.g., additional
color information.

A more sophisticated extension of the bilateral filter is given by the non-
local means filter [BCM05], where the idea of pixel similarity is extended to an
according neighborhood similarity, i.e.

NLσ,ν(p,q) = exp

−∑
k∈Ω

Gσ(‖k‖) ·Ψ2(p + k,q + k)
ν

 (3.4)

where Ω defines a set of neighborhood pixels and Ψ(p,q) stats a similarity measure
analog to (3.3). Thus, only pixels with the same distribution contribute to the
smoothing result, i.e. for edge pixels only pixels along the edge are considered,
while similar pixels close to the boundary are discarded.

An application of the NL-Means filter to range images has been published by
Huhle et al. [HSJS08], who extended the original NL-Means filter by an iterative
outlier identification. Essential for the extension is the observation that the NL-
Means filter result equals the expectation value for an individual pixel given its
neighborhood, i.e. E(m(p) |Ωp). Based on this observation, Huhle et al. define an
inliner probability distribution with respect to the standard deviation σm inside
the given neighborhood. Pixel whose probability is below 50% are concerned to
be outliers. The classification process is iterated several times, while possible
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outliers are excluded from the particular calculations, leading to improved outlier
estimates with each iteration. Finally, a standard NL-Means average is performed,
that excludes identified outliers. However, even with GPU acceleration, the whole
filter process takes about two seconds for ten iterations.

Consequently, even though more sophisticated algorithms exist, iterative
bilateral filtering currently gives the best, feature preserving results for real-time
processing tasks. Nevertheless, as all averaging techniques are usually based on
a constancy assumption, it should be regarded that filtering of radial distance
information in image space generally introduces some small, mostly negligible
bias. This behavior can be explained by the fact, that even the acquisition of a
planar surface results in non-constant radial distance information.

Outlier and Flying Pixel Even though, most outliers and flying pixels are
generally covered by weighted averaging, it is not guaranteed that the amplitude
of these pixels always reflects their reliability in a proper way. Especially outliers
due to oversaturation sometimes tend to exhibit a misleading high amplitude.
Therefore, a special handling of oversaturated pixel as proposed by Rapp [Rap07]
should be additionally performed. Here, the raw values of the readout diodes are
considered to identify capacitor overflows. General outliers on the other hand can
be additionally discarded if they are too far away from their neighboring pixels in
terms of either absolute distances or relative measures regarding the neighborhood
mean and variance.

In addition, most flying pixels can be classified by the number of valid neighbor
pixels and discarded if the number of nearby pixels is below a given threshold.
Alternatively, edge preserving sampling techniques as used in the distance refine-
ment approach, presented in Sec. 3.2.2, can be used to avoid holes in the range
image.

According to the system requirements, holes in the range image due to an
outlier segmentation might be filled in by resampling techniques that use an explicit
or implicit surface representation (see Sec. 3.2.1). For tasks like obstacle detection,
however, hole filling is not a good choice as propagated distance information might
lead to false assumptions in critical situations.
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Figure 3.2: Comparison of denoising techniques: (a) unprocessed range image, (b)
Gaussian Filter, (c) normalized convolution (weighted Gaussian), (d) Bilateral
Filter (intensity-based), (e) and (f) Bilateral Filter (intensity- and distance-based)
regarding a threshold of 5 cm, respectively 10 cm.
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3.2 Distance Refinement

Even though TOF cameras are able to acquire full-scene information in an ade-
quate time, they are still of low resolution compared to other scanning techniques
and thus provide only a sparse point cloud of scene samples. Accordingly, fur-
ther processing tasks like sensor fusion and even simple visualization of the data
suffer from large gaps between the small number of disconnected points. Conse-
quently, many systems incorporate an algorithmical refinement of the provided
distance information by synthetically adding new surface points and fill in missing
information, i.e. by upsampling the range image.

Image upsampling is a well-understood problem to upscale discrete image
data. According to the Nyquist sampling theorem [Sha49] and assuming an ideal
sampling rate, the original (one-dimensional) continuous signal can be retrieved
from its discrete samples via convolution with the sinc function sinc(x) = sin(x)/x.
In practice, however, images usually exhibits an insufficient sample rate, leading to
ringing artifacts due to overlapping frequency spectra [MN88]. Therefore, due to
the undersampling and the infinite extend of the sinc function, image upsampling
is commonly done by local data interpolation.

In the simplest case, image upscaling is done by bilinear interpolation, which
equals a simple quadrilateral mesh reconstruction of the according point cloud.
Linear interpolation, however, is only a rough approximation and results in typical
diamond artifacts (see Fig. 3.7, p. 82). The following section therefore will discuss
two more advanced refinement techniques. At first, in Sec. 3.2.1, the application of
a more general, explicit surface fitting approach to range images will be discussed,
which is well-known from point-based rendering as Moving Least Square surfaces.
Secondly, in Sec. 3.2.2, an extension of an edge preserving, biquadratical upscaling
technique is introduced, which works in image space and takes advantage of the
underlying grid structure of range images.

In contrast to the more general, distance-only techniques, two additional up-
sampling approaches for TOF range images have been introduced by [DT05] and
[YYDN07] that use multi-modal data, i.e. incorporate additional, high-resolution
color information. Both techniques exploit the fact that color or brightness dis-
continuities often co-occur with depth discontinuities. The general idea, therefore,
is to split TOF pixel that span an edge in the color image, in order to allow
sub-pixel distance information.

Diebel and Thrun [DT05] improve the range image resolution by first re-
projecting distance information into the high resolution color image yielding
a sparse distance distribution for scattered color pixel. The missing distance
information is finally filled in by applying a Markov Random Field (MRF) to
propagate distances information with respect to a global smoothness constraint.
Here, the color information is used to add additional weights to the smoothness
constraint that allow discontinuities between differently textured regions.

A different approach has been published by Yang et al. [YYDN07]. Here the
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range image is first upscaled by a simple nearest neighbor interpolation to match
the color image resolution. The upscaled range image is then used to build up a
cost-volume with respect to a quadratical cost function and a number of uniquely
spaced reference distances (buckets) along the TOF camera range. The individual
volume layers are smoothed with a bilateral filter incorporating the additional
color information to preserve edges. Finally, for each pixel the layer with the
smallest error is selected to be the pixel’s new distance information. In order to
avoid quantization effects, the correct distance is determined by fitting the cost
function into the enclosing layer data. The whole process is iterated several times,
finally yielding colored, super-resolution range data.

Both approaches indeed give impressing results, but are too computation
intensive and therefore inapplicable for most real-time applications. Furthermore,
due to the absence of real sensor fusion (cmp. Sec. 3.3), both methods require
that the projection centers of both sensors are arranged close to each other in
order to reduce a false mapping between both sensors. Hence, the possibilities
to arrange both cameras in a camera rig are quite limited. Furthermore, both
approaches sometimes tend to produce distance clusters, i.e. preserve (sometimes
emphasis) nonexistent discontinuities, where the assumption of co-aligned color
and distance discontinuities is not met for highly textured regions.

3.2.1 Approximative Surface Reconstruction

Range images as provided by TOF cameras actually represent a set of surface
sample points. For this reason, it is quite reasonable to interpret range images
as point sets and apply well-established upsampling techniques for point-based
geometry.

The basic concept of most re-sampling techniques for point clouds is an ap-
proximative surface reconstruction that recovers a smooth surfaces from (possibly
noisy) point cloud data. The resultant surface representation is often re-sampled
to provide a new set of sample points according to given requirements. In praxis,
individual algorithms vary with respect to global or local approximation as well as
implicit or explicit representations. A very popular approach in this context, how-
ever, are moving least squares (MLS) surfaces, which have been already mentioned
in the context of range data denoising (see Sec. 3.1).

MLS surfaces have been originally proposed by Levin [Lev03, Lev98] and later
adopted by Alexa et al. [ABC∗03, ABCO∗01] for object reconstruction. Since then,
they have been widely used for modeling and rendering of point-based geometry.
The original definition is based on an projection operator P (see below), that
projects an arbitrary point x to a locally fitted polynomial. Given P, the entire
surface S for a given point cloud is implicitly given by the stationary points of
the projection operator, i.e. S = {x | P(x) = x}.
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MLS Surface Definition Regarding the original definition by Levin [Lev03],
the projection operator P(x) for a set of points pi ∈ R3, i = 1 . . . N , is defined in
two steps:

1. Estimate a local reference plane H(x) close to x that minimizes the weighted
square distance of all points to the approximated plane. Here, the weights
are given with respect to the projection of x onto H(x), i.e. q = x + t~n. The
reference plane is found by a moving least square (MLS) optimization of

min
~n,t

N∑
i=0
〈pi − q, ~n〉2w(‖pi − q‖) (3.5)

where w : R+ → R+ is a smooth and monotone decreasing function, i.e.
w(d) = exp

(
−d2/h2).

2. Given the local reference plane H(x), and thus an orthonormal coordinate
system with origin in q, a local bivariate polynomial is approximated. Let
qi = (xi, yi, zi) be the coordinates of pi in the local coordinate system. The
coefficients of a polynomial approximation g(x, y) are found by a weighted
least square (WLS) optimization of

min
g

N∑
i=0

(g(xi, yi)− zi)2w(‖pi − q‖). (3.6)

Knowing H(x) and g(x, y), P(x) is finally defined as P(x) = q + g(0, 0)~n.

Computing the projection P(x) for a given point x generally implies non-
linear optimization constraints, which will most likely have more than one local
minimum. For this reason usually an iterative (still non-linear) scheme is applied,
that descends toward the next local minimum by optimizing either ~n or t in turns.
Apart from that, an initial point x has to be a priori close enough to the surface,
as the domain of the projection operator P is generally limited by the weighting
term w.

An alternative definition of MLS surfaces has been given by Amenta et al.
[AK04a], which leads to the generalization of MLS surfaces to extremal surfaces
and proves that MLS surfaces are generally a subset of a manifold. The alternative
extremal definition, furthermore, gives a more detailed understanding of the general
domain of point set surfaces. It yields important insights into crucial shortcomings
of the original definition [AK04b], including the projection step as well as the
normal estimation by eigenvalue analysis. Here, both steps are shown to produce
false results for points that are located too far away from the underyling surface.

The first prove for the approximation quality of an implicit MLS definition was
given by Kolluri in the year 2005 [Kol05] by regarding uniform sampled surfaces.
Kolluri was able to prove that for the adherence of a particular sample density,
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the implicit MLS surface is a good approximation of the original surface and
reconstructs the surface geometrically and topologically correct. Dey and Sun
later extend this proof to non-uniform sampled data and introduced an adaptive
MLS approach for a varying feature size [DS05].

Both approaches, however, imply either a priori known surface normals or
incorporate an extensive normal and feature size approximation. Furthermore as
both approaches are based on an implicit surface definition (root finding), they are
generally more complicated to visualize than explicitly defined point set surfaces.

Ray Casting of MLS Surfaces Once the MLS surface is defined, new sample
points can be added by projecting additional points on the point set surface.
However, instead of inserting random sample points, the upsampling of TOF
range images can be basically regarded as ray casting the MLS surface, i.e.
explicitly adding sample points where the viewing ray through a pixel of the
output buffer intersects the surface. Here, basically any arbitrary viewing position
can be chosen, which beside image refinement also allows a resolution independent
and (in principle) interactive visualization of the acquired range image.

The first ray casting approach for MLS surfaces has been published by Adamson
and Alexa [AA03a, AA03b], which has been later ported to the GPU by Tejada
et al. [TGN∗06].

The main idea behind the ray casting of MLS surfaces is to converge towards
the surface by iteratively projecting points xi from the ray onto the surface S (see
Fig. 3.3). In each step the current local surface representation g is approximated
with respect to xi, and its intersection with the according ray xi+1 is determined.
The whole process is repeated until the distance between the current intersection
estimate xi and its projection P(xi) is below a given threshold. Regarding the
input domain of the projection operator P [AK04b], the initial intersection point
x0 is determined by using an enclosing union of spheres with radius h. By doing
so, x0 is assumed to be sufficiently close enough to the surface S.

As the polynomial g is only reliable within a sufficient proximity to P(xi), it
is necessary to restrict the validity intersection points to a specific region of trust
with radius rT around P(xi). Here, Adamson and Alexa argue that the deviation
between surface and approximation is naturally bounded by a sphere with radius
h and thus rT ≤ h is an adequate choice for a convergence criteria.

Otherwise, if |xi+1 − P(xi)| > rT , no valid intersection is found and the
iteration is proceeded using the next nearest intersection with the enclosing sphere
structure along the viewing ray.

For the GPU implementation, the whole iteration process is decomposed into
several render passes [TGN∗06]:

1. Initialization In the initialization step a polynomial is approximated for
each point of the point set. Due to the implicit grid structure of range images,
the initialization is performed by rendering a quad in size of the input image,
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Figure 3.3: Iterative convergence of MLS ray casting by intersecting with the
local polynomial approximation for Xi [AA03a].

such that each pixel corresponds to a point of the point set. For each rendered
pixel p, the coefficients of the polynomial g(x, y) = ax2 + by2 + cxy + d are
estimated in means of the projection operator explained above. In contrast
to the general case, the initialization is strongly simplified, as explicit data
structures for neighborhood relationships are not required.
The type of the polynomial is generally restricted by the number of available
output (render) buffers, which are currently limited to eight buffers with at
most four channels. However, in order to exploit the hardware support for
matrices and vector, the number coefficients has been limited to four. By
doing so, the intersection computation between viewing ray r(α) = α~r + v
and locally fitted polynomial g(x, y) is reduced to a quadratic functional
with respect to the ray step parameter α, i.e.

α1,2 = −f ±
√
f2 − 4eg

2e (3.7)

with

e = a · r2
x + b · r2

y + c · rxry
f = 2(a · rxvx + b · ryvy) + c(rxvy + ryvx)− rz
g = av2

x + b · v2
y + c · vxvy + d− vz

(3.8)

Here, v represents the viewer position with respect to the local coordinate
system defined by H. For the case e = 0, (3.7) gets reduced to the linear
solution α = −g/f .
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Assuming that p is already close to S, i.e. t = 0, step 1 of the projection op-
erator degrades to a WLS normal estimation for the neighborhood Ωp (cmp.
(3.5), p. 73) using eigenvalue analysis. In our situation, the neighborhood
information is implicitly given by the range image structure. The normal
estimation can be improved by building up the covariance matrix with
respect to the average point of the neighbor points instead of the current
pixel p. Otherwise, if p is too far away from S, the eigenvalue analysis
might fail (see Fig. 3.4).

2. Find Intersection For each point xi of the point set a spherical point
sprites of radius h is rendered to emulate the enclosing sphere structure.
For each covered pixel p, an intersection test of the according viewing ray
with the local polynomial is performed. Due to the enabled z-buffer test,
the closest intersection point xp is finally selected.

3a. Form Covariance Matrix Again a spherical point sprite of radius h
is rendered for each point xi. For each covered pixel, the entries of the
covariance matrix (xi − xp)(xi − xp)Tw(‖xi − xp‖) are accumulated using
additive alpha blending and stored in two render buffers.

3b. Normal Estimation A full screen quad is rendered to perform a pixel-
wise eigenvalue analysis like the inverse power method for the previous
accumulated covariance matrix.

4a. Form Linear System for Polynomial Fitting Again a spherical point
sprite is rendered for each point xi. This time, for each covered pixel its
weighted contribution to the linear system, i.e. ATA and ziA with AT =
[x2
i y2

i
xiyi 1], is accumulated and stored. Here, xi represents the

coordinates of the point xi with respect to the local coordinates system
defined by (xp, ~n).

4b. Estimate Polynomial Coefficients Another render pass of a full screen
quad is used to calculate the solution (coefficients) of the previous accumu-
lated linear system.

5. Projection Each current intersection point xp is projected onto the local
approximated surface representation. If |P(xp)− xp| < ε, xp is supposed to
be the desired ray-surface intersection and the iteration process is terminated.
Otherwise xp is updated to the ray intersection with respect to the local
approximation, and the iteration is continued in step 3a.

If step 3b or 4b fails, xp is assumed to be false positive. In this case, step 5 is
skipped and the next nearest intersection with the enclosing sphere structure is
determined as new initial guess for the iteration process. Either way, according
to Adamson and Alexa, a total number of 3 iterations is sufficient for most
cases [AA03b].

Unlike general point sets, range images basically provide a varying sample
density due to the perspective projection and different object distances. Thus, in
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Figure 3.4: Planar surface estimation for the local neighborhood of x. The sum
of the distances of neighbor points to the plane parallel to the surface (left) are
larger than those for the plane perpendicular to the surface (right), [AK04b]. A
distance minimization leading to an eigenvalue decomposition therefore results in
a wrong surface approximation for x.

order to cope with sampling variations and avoid holes, the weighting parameter
h is initially defined with respect to the image plane – e.g. covering a pixel
neighborhood of 5× 5 px – and accordingly scaled by the distance ratio |xp| /f .

Results The described ray casting has been applied to refine and display range
images of 160× 120 px resolution. For medium screen resolutions of 774× 486 px,
we have been able to archive satisfying results (see Fig. 3.5) by a frame rate of
5− 7 fps on a Nvidia GeForce 8800 GTX. In all cases, the maximum number of
intersection calculations has been restricted to 5 iterations, which turns out to be
sufficient for most of our test scenes. The projection threshold has been varied
between 0.1− 1 cm

However, in all experiments, the small number of sample points as well as the
high noise level of range images turned out to have notable negative impact onto
to the normal approximation. Especially for small neighborhoods, the eigenvalue
analysis is most likely to fail. Larger neighborhoods, on the other hand, result in
undesired smoothing of object features, as the number of sample points compared
to the feature size of acquired objects is usually quite small for TOF-based range
images. Consequently, a pre-smoothing of the range image as described in Sec. 3.1
is absolutely vital.

Another problem arises from the typically non-closed surface structure of
acquired range images. In contrast to common input data for a MLS surface
reconstruction, featuring a single object, range images generally show multiple
objects from a single viewing position and thus exhibit certain distance disconti-
nuities. The locally fitted (unclipped) polynomials, however, are not capable to
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reflect these discontinuities in an according way and therefore lead to undesired
growing of object contours due to wrongly accepted ray-polynomial intersections
inside a region of trust (see Fig. 3.6).

Furthermore, by definition, basic MLS-based techniques can reconstruct
smooth surface only. For this reason, most approaches suffer the loss of sharp object
features, especially edges. More sophisticated approaches for surface approxima-
tion exist, but are primary based on point cloud segmentation [JWS08, SDK09],
robust statistics [OGG09, FCOS05] or complex implicit definitions, and therefore
are rather inappropriate for real-time purposes.

3.2.2 Edge-Preservative Image Upscaling

Due to the explicit surface fitting, MLS-based reconstruction as presented in
Sec. 3.2.1 generally implies noise reduction along the surface normal. For range
images, however, noise occurs along the viewing ray, which is not necessarily
orthogonal to a pixel’s according surface patch. This section therefore describes a
mono-modal refinement of distance information in image space. The presented
approach is based on an advanced image upsampling technique published by Kraus
et al. [KES07], which has been extended to range images in order to account for
invalid pixels as well as different occurrences of edges, i.e. object contours.

In the simplest case, image upscaling is done by bilinear interpolation, which
equals a simple quadrilateral mesh reconstruction of the provided point cloud.
Linear interpolation, however, is only a rough approximation and results in typical
diamond artifacts. For more accurate refinement, usually higher-order filters like
biquadratic or bicubic bspline interpolation are used, that guaranty a more precise
data interpolation at the expense of an increased amount of input pixels (cmp.
Fig. 3.7, p. 82).

High order schemes, however, are not directly supported by the current graph-
ics hardware and therefore must be implemented by means of special fragment
programs. Commonly, such programs imply a large number of texture fetches,
which significantly reduces the frame rate. For this purpose, Sigg and Had-
wiger [SH05] have introduced a sampling scheme that exploits hardware supported
bilateral interpolation to reduce texture fetches and enables fast bicubic bspline
filtering for real-time applications.

An alternative approach has been published by Strengert et al. [SKE06], whose
biquadratic b-spline interpolation is based on iterative pyramid-like upscaling, but
requires less texture fetches than the technique presented by Sigg and Hadwiger.
Later Kraus et al. [KES07] extended the pyramid upscaling scheme by an technique
to preserve edges in the upscaled result (see below).

In the following, we adopt the upscaling technique presented by Kraus et al.
for range images. We therefore adjust the sampling scheme to account for invalid
data and perform an (optional) extrapolation of distance information if possible.
Thus, during the distance refinement, two main processing steps are performed:
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(a) 1 Iteration (b) 3 Iterations

(c) 5 Iterations (d) 10 Iterations

Figure 3.5: MLS ray casting results for a different number of iterations. Note
that viewing rays close to object contours need about five iterations to converge.
After that the surface approximation does not change significantly.
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(a)

(b)

Figure 3.6: Comparison between (a) piecewise linear interpolation and (b) MLS
upsampling. Note the hole filling effect with regard to the soft toy’s eyes and the
undesired growing of object contours (e.g. regarding the cactus).
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1. An extrapolation of valid pixels to fill in missing data for the biquadratic
interpolation scheme and thus avoid shrinking of the valid pixel areas.

2. The upscaling of the valid regions incorporating edge preserving as well as
special treatment of still incomplete grid cells.

Generally, interpolation schemes of higher order are possible, but have been
discarded due to the size of their filter masks and the large number of special
cases with respect to invalid pixel configurations.

Biquadratic Interpolation In the context of pyramid-based upscaling, two
general possibilities for new samples positions exist (see Fig. 3.8):

– Primal Scheme: Add new samples between old sample locations while
preserving existing information.

– Dual Scheme: Place new samples symmetrically between old samples loca-
tions and discard existing information.

While the primal scheme is the more traditional scheme, image interpolation
according to the dual scheme, as depicted in Fig. 3.8, results in a C1-continuous
biquadratic bspline filtering [KES07]. By making use of the bilinear interpolation
capabilities of graphics hardware, the pyramid-based biquadratic filtering can be
implemented easily yielding linear time complexity.

Preserving Discontinuities Instead of applying the dual sampling scheme di-
rectly, Kraus et al. [KES07] suggest a gradient-based displacement of the sampling
position as follows.

Assuming an ideal edge Θ at x0 that has been blurred by applying a convolution
with the normal distribution N of standard deviation σ, i.e.

f(x) = (ymin + (ymax − ymin) ·Θ(x− x0))⊗N (x, σ2)

= ymin + ymax
2 + ymax − ymin

2 erf
(
x− x0√

2σ

)
,

(3.9)

the ideal edge transition x0 is related to the root of the scale invariant expression

d(x) def= −σ2f ′′(x)
f ′(x) = x− x0. (3.10)

Intending the blurred edge for the doubled resolution to be twice as sharp, i.e.
using σ/2 for the convolution in (3.9), the sharpened edge signal is alternatively

erf() stands for the Gaussian error function with N (x, σ2) = 0.5
(
1 + erf

(
x/
√

2
))
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(a) (b) (c) (d)

Figure 3.7: Overview of interpolation schemes: (a) piecewise constant, (b) piece-
wise bilinear interpolation (C0 continuous), (c) biquadratic B-splines (C1 continu-
ous), (d) bicubic B-splines (C2 continuous) [SKE06].

expressed by
f(2(x− x0) + x0), (3.11)

which can be rewritten as

f(2(x− x0) + x0) = f(x+ (x− x0)) = f(x+ d(x)). (3.12)

Thus, the sharpening of an ideal edge can be achieved be resampling the original
edge signal f(x) at the sample position displaced by d(x).

In the two-dimensional case, f ′′(x) is commonly approximated by the Laplacian
∆f(x), whereas f ′(x) is given by the gradient ∇f(x). Choosing the normalized
gradient for the direction of the second derivative, the coordinates of each sample
location are displaced by an offset vector

~d(x) = −σ
2 ·∆f(x)
|∇f(x)|2 ∇f(x). (3.13)

Accordingly, the parameter σ controls the maximum scale of edges that are
sharpened, i.e. for σ = 0 no edges are sharpened and the method is equivalent to
the original biquadratic interpolation.

As the displacement ~d(x) depends on the gradient ∇f(x) and the Laplacian
∆f(x), the input range image should be denoised before these values are estimated.
However, it is important that the final image interpolation at sample position
f(x + ~d(x)) accesses the unfiltered range image to avoid unintended blurring
of the magnified image. In the context of TOF range images, the gradient and
Laplacian are approximated based on valid depth values only. Invalid range values
were simply discarded from the respective filtering masks.

In order to avoid excessive sharpening due to numerical instabilities, ~d(x)
should be additionally clamped to an user-specified maximum td, i.e.

d̂(x) = min(td, |~d|) ·
~d
|~d|

(3.14)
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Figure 3.8: Left: Primal scheme reusing existing pixel; Right: Dual scheme based
on the subdivision of biquadratic B-spline patches [SKE06].

Regarding the sampling scheme, Kraus et al. suggest a value of td ≈ 0.25, which
worked fine in our experiments, but generally does not account for flying pixels.
Here, td must be large enough to sample the range data one or more pixels away.

Instead of considering a single sample displacement td > 0.25, which might
lead to a susceptibility to noise, the original edge-directed approach has been
further extended by applying the offset correction iteratively. Therefore, the
sampling position is iteratively displaced by d̂(x) until the displacement is smaller
than a given threshold tmd or the maximum number of iterations has been reached.
By doing so, the sample location is moved away from the edge center until a
position on the adjacent region has been reached. In contrast to the original
approach, which considers only a fixed smoothing magnitude σ for all edges, the
iterative approach is able to cope with differently smoothed edges (including flying
pixels), while an over-sharpening of smaller edges is avoided.

In order to reduce noise and edge sharpening in rather homogeneous regions,
an additional, second threshold tg is introduced, that allows the location correction
to be omitted if the length of the gradient ∇f(x) is smaller than tg.

Handling of Invalid Pixels In contrast to standard images, range images
usually comprise inaccurate distance information for outliers and pixels covering
depth inhomogeneity (flying pixels) as well as areas with insufficient incident
active light. During interpolation, it is very important to avoid the propagation
of data from both inaccurate as well as invalid pixels. In consequence, the
dual interpolation scheme should be applied to cells with four valid pixels only.
Unfortunately, skipping the interpolation of incomplete cells finally results in a
shrinking of valid regions.

For this reason, an extrapolation of the boundary depth values is performed in
order to expand the valid pixel region artificially. Note, that the extrapolation is
applied without changing the original validity of a pixel. The detailed extrapolation
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Figure 3.9: Extrapolation of invalid pixel (• valid, ◦ invalid and � extrapolated
pixel). Left: Extrapolation in case of one invalid sample: B = 2A − A′ or
B = 1

2 (2A−A′ + 2D −D′); Right: Extrapolation in case of two invalid samples:
B = 2A−A′, D = 2C − C ′. In the second case, no extrapolation is performed.

Figure 3.10: Left: Extrapolation in case of three invalid samples: B = 2A−A′,
C = 2A−A′′; Right: Interpolation using valid (•) and extrapolated (�) samples
only: (1) P = 1

4A+ 1
2C + 1

4D, (2) P = 1
4B + 3

4C, (3) P = 3
4A+ 1

4B. Dashed lines
indicate object boundaries.

schemes for one and two invalid pixels are depicted in Fig. 3.9, whereas the three
pixel case is shown in Fig. 3.10 left.

After extrapolation, the actual interpolation is additionally restricted to
meaningful sample locations with respect to the original object boundary. By
doing so, smooth object boundaries can be preserved while staircase artifacts are
avoided.

In cases where the extrapolation has failed, simpler interpolation schemes
like linear interpolation or barycentric coordinates are applied in order to obtain
smooth boundary contours (see Fig. 3.10 right).

Results The distance refinement has been tested with a range images of 160×
120 px resolution. Choosing a scaling factor of 16 and a maximal number of of
250 iterations, we have been able to achieve a frame rate of 60 fps on a Nvidia
GeForce 8800 GTX. The test results are shown in Fig. 3.11 - 3.13:
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Fig. 3.11 demonstrates the difference between general biquadratic upscaling
and our iterative, edge-directed approach. While biquadratic upsampling leads
to interpolated pixels along object contours, iterative edge-directed upsampling
provides a well defined separation of foreground and background.

Fig. 3.12 shows the impact of both, extrapolation of invalid pixels and reduced
interpolation of incomplete grid cells, on the upscaling results. As can be seen in
Fig. 3.12 a, biquadratic interpolation of complete grid cells only clearly results in
staircase and contour shrinking effects. While extrapolation already appreciable
improves the upscaling results (Fig. 3.12 b), additional reduced interpolation of
incomplete grid cells adds further details (see Fig. 3.12 c).

Fig. 3.13 demonstrates the difference between unrestricted and boundary strict
interpolation. While unrestricted interpolated leads to lacerated contours, strict
interpolation guarantees clean outlines.
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(a) Biquadratic interpolation.

(b) Iterative, edge-directed interpolation.

Figure 3.11: Comparison of standard biquadratic upsampling and the iterative,
edge-directed approach.
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(a) Original, edge-directed upsampling approach without
extrapolation.

(b) Extended, edge-directed upsampling with extrapolation
only.

(c) Extended, edge-directed upsampling with additional bi-
linear interpolation.

Figure 3.12: Comparison of the extended, edge-direted upsampling results with
respect to the original, edge-directed approach.
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(a) Original, edge-directed upsampling approach.

(b) Extended, edge-directed upsampling using non-strict in-
terpolation.

(c) Extended, edge-directed upsampling using strict interpo-
lation.

Figure 3.13: Comparison of interpolation results with respect to different boundary
handling.
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3.3 Image Sensor Fusion

In general, a given sensor provides only the specific type of information it has
been designed for, like for example range data, color information or near-infrared
samples. Depending on the complexity of a given task, the information of a single
sensor might not be sufficient to archive satisfying results.

For this reason, a wide range of vision systems usually consist of a variety
of distinct sensors to benefit from combined, multi-modal data. Range sensing
systems, for example, often incorporate additional high resolution image sensors
to provide supplemental (color) information for general processing tasks like range
image segmentation and refinement (see Sec. 3.2). Even in the simplest case, TOF
cameras already benefit from the additional color information, as it can be used
to enhance the visual quality by simply replacing the NIR intensity image with
corresponding color information.

Nevertheless, due to the varying viewing perspective between two or more image
sensors and the involved non-affine transformations, input data from different
devices cannot be simply overlaid to get multi-modal information. Instead, sensor
fusion is commonly achieved by hardware solutions, combining two or more sensors
in a monocular setup, or software solutions, implementing sophisticated mapping
algorithms.

A first hardware solution for combing a color and a TOF sensor has been
published by Lottner et al. [LHLW07]. Here, a monocular camera consisting of
two sensors is described, that uses a beam splitter to redirect the particular wave
bands to the according image respectively TOF sensor. By doing so, both image
sensors share the same perspective, which in this case allows a simple image
overlay yielding combined RGBZ data.

However, the suggested hardware solution generally limits the process of sensor
fusion as it disallows the incorporation of further sensor data without extensive
hardware modification. The complexity of hardware solutions thereby increases,
the more image sensors are supposed to be integrated. Especially the involved
beam splitter limits the number of maximal sensors as it reduces the power of the
incoming light signal.

Software-based data fusion, in contrast, usually allows a more flexible combi-
nation of image sensors (and sensing techniques) as each device a priori operates
independently and can be added or removed as required. In contrast to hardware
solutions, however, software approaches are commonly based on advanced mapping
algorithms, which sometimes can be quite complex.

In the following, we discuss a simple software-based mapping between a given
TOF and color image sensor and its extension to projective texture mapping. A
similar approach has been presented by Reulke [Reu06], where the data fusion
is done by an algorithm called orthophoto generation. Here, the 2D image is
distorted in order to eliminate the perspectivity of the image by taking the 3D
information into account. The result is an orthographic image, where the optical
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rays are parallel. After the image rectification, the data fusion is straight forward
applying a parallel mapping of the color information onto the appropriate distance
data.

Simple Color Fusion The simplest approach for software-based sensor fusion
that involves depth information, is commonly implemented by re-projecting each
pixel of the range image onto the image plane of the additional image sensor,
resulting in a single color value per pixel (see Fig. 3.16 a and 3.17 a, p. 94f).

In the first step, the observed scene is initially reconstructed through a back-
projection of each pixel of the range image p into the world coordinate frame
of the according image sensor (see Sec. 1.3.4). The resultant point cloud of 3D
sample points Xi is then transformed into the coordinate system of the color
camera and finally projected onto the color sensor frame to obtain the desired
image coordinates pB

i by
pB
i = KBΠ1MBXi (3.15)

where MB represents an affine viewing transformation determined by the sensor
registration step and KB consists of the intrinsic parameters of the color camera.

Undersampling As a re-projected pixel of a range image most certainly covers
a larger area than that of a color pixel, the simple selection of nearest (possibly
linear interpolated) neighbor information based on (3.15) generally leads to visible
undersampling artifacts.

A common approach to reduce undersampling has been invented in the year
1983 by Lance Williams and is called mip mapping [Wil83]. Here, a series of
downscaled (averaged) versions of the input image provides the most appropriate
sampling texture, whose texels in screen space cover at least one pixel of the
output buffer. Starting with the original input image at level 0, the mipmap
texture on level l is downscaled by a factor of two to half the size of the mipmap
texture on level l − 1.

In the case of projective texturing, where the texture is not attached to the
geometry directly, the appropriate mipmap level for an output pixel (u, v) is given
by the scale factor dlog2 ρ(X(u, v))e, where ρ(X) states the pixel ratio between
the output buffer and the texture, regarding the according surface point X. Due
to possibly rectangular pixels, i.e. sx 6= sy, the pixel ratio ρ(X) is actually given
by

ρ(X) = max{ρx(X), ρy(X)} (3.16)
with

ρi(X) = Sv
i (X)

SB
i (X)

= Zv(X)
fv
i

· fB
i

ZB(X) = Zv(X)
ZB(X) ·

(
fB
i

fv
i

)
const

(3.17)

where fB
i , fv

i correspond to the particular focal length in pixel units and ZB(X),
Zv(X) represent the euclidean distance of the surface point to the projection
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center of the according camera. Through substitution, (3.16) can be rewritten as

ρ(X) = max
{
fB
x

fv
x

,
fB
y

fv
y

}
· Zv(X)
ZB(X) . (3.18)

For a fixed camera rig, also Zv(X)/ZB(X) can be considered to be constant. In this
case ρ(X), and therefore the according mipmap level as well, can be precomputed
in advance. Accordingly, only a single level of the mipmap pyramid has to be
calculated, resulting in a simple texture downscaling.

By applying averaging techniques like mipmapping, fusion artifacts can be
significantly reduced as notable in Fig. 3.16. Nevertheless, relevant details of the
color image might still get lost due to involved averaging of pixel information.
For some applications, however, this loss of information might be curcial for the
results of further processing steps.

Projective Mapping In order to maintain the full, unaltered information of
a secondary image sensor, it is quite insufficient to interpret a reconstructed
pixel of the range image as a single point in space. Thus, beside refined distance
information (see Sec. 3.2), it is rather necessary to store the information covered
by a range pixel and represent each pixel by an accordingly scaled, surface-oriented
quad. The orientation of the quad can be either determined explicitly by means
of an approximated surface normal (cmp. Sec. 3.2.1) or implicitly with respect
to the interpolated distance of the quad vertices. We recommend the second
technique in order to avoid extensive normal approximation as well as holes in
the reconstructed surface geometry.

Given the more sophisticated representation of the scene, the additional color
information for each quad can be retrieved by linear interpolation of the re-
projected color image coordinates stated in (3.15). However, due to the involved
perspective projections between TOF camera and the additional image senors,
simple linear interpolation leads to distorted mapping results (cmp. Fig. 3.14).
Instead, the general solution is to apply projective texture mapping as proposed
by Segal [SKvW∗92]. By doing so, the distortion of the color image inside each
quad can be totally avoided.

Given two points pA
1 = (u1, v1, w1)A and pA

2 = (u2, v2, w2)A with pA
i =

KvΠ1Xi in clip coordinates of the range camera (before normalization), the deter-
mination of any intermediate point on the image plane using linear interpolation

pA = (1− t) · pA
1 + t · pA

2 (3.19)

requires the proper computation of the associate location pB in the RGB image
plane (cmp. Fig. 3.14). According to Segal [SKvW∗92], the color image plane
coordinates pB are given by

pB = (1− t) · pB
1 /w

A
1 + t · pB

2 /w
A
2 (3.20)
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where pB
i = KBΠ1MBXi = (ui, vi, wi)B represent the corresponding clip coordi-

nates with respect to the color camera. Thus, perspective correct interpolated
color values can be achieved by a simple linear interpolation of uB/wA, vB/wA
and wB/wA and a subsequent normalization.

Final results for projective mapping are shown in Fig. 3.17 clearly stating the
improvement compared to simple mapping approach.

Occlusion Detection Due to the different viewing positions of both cameras,
an incorrect mapping of occluded surface regions, e.g. in concave object regions,
may occur (see Fig. 3.15). In this case, the additional color sensor is unable
to provide proper image information, as the interpolation of re-projected image
coordinates can only return false color information from the occluding surface.
For setups where the projection centers of both cameras are positioned close to
each other, occlusions effects predominantly occur in the near distance range.

In order to prevent a false mapping, we adopt a render approach comparable
to shadow maps [RSC87, SD02]. Here, the main idea is to store the closest
geometry with respect to the color sensor in a distance buffer. For this purpose,
the geometry representation (surface aligned quads) is first transformed into the
coordinate system of the color camera, using the transformation matrix MB, and
projected onto the image plane.

During the rasterization of the projected geometry, the distance of each
rasterized fragment with respect to the color camera’s origin is written in an off-
screen buffer B that stores the minimal per-pixel distance. Using the functionality
of modern graphics hardware, this can be easily achieved by storing the z-Buffer
usually used for hidden surface removal.

During the color mapping step, the currently transformed (and possibly
interpolated) distance information with respect to the color sensor z(pB) is
determined and compared to the corresponding z-Buffer entry B(uB, vB). In those
cases where the interpolated distance is farther away from the color sensor than
the distance information stored in the frame buffer, i.e.

z(pB) > B(uB, vB) + ε (3.21)

the surface point is hidden and the color assignment is omitted. Otherwise, the
color assignment is performed using either the simple or the projective approach
described in Sec. 3.3. The ε-offset is required to account for z-Buffer quantization
errors due to numerical inaccuracies and noise in the range data. Fig. 3.18 shows
the mapping with additional occlusion detection.
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Figure 3.14: Texture distortion introduced by linear interpolation. The midway
interpolated point pA on the image plane A corresponds to a division ratio of 1:2
in the second image plane B.

Figure 3.15: False color mapping in occluded regions with respect to the RGB
sensor.
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(a) Without Mip Mapping

(b) With Mip Mapping

Figure 3.16: Applied mipmapping fusion in order to avoid undersampling. The
noticeable blurring is introduced by linear interpolation and the mipmap-related
scale factor of 23, as the real sensor scale ratio is 6.4.
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(a)

(b)

Figure 3.17: Projective Mapping Results (b) versus simple mapping (a). Note the
additional pattern details on the shirt.
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Figure 3.18: Occlusion detection (bottom) versus false mapping (top).
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3.4 Generic Processing Framework

All algorithms discussed in this thesis have been implemented as part of a generic,
pipeline-based processing framework, that can be easily extended by new modules.
Due to its flexibility, it provides certain advantages compared to other solutions
of fixed structure and functionality. Beside automatic memory management, it
guarantees that only modified data is updated in order to avoid unnecessary
recalculations.

The concept of a pipeline framework is not new and similar implementations
can be found, for example, as part of:

– DirectShow (Microsoft)

– Quartz Composer (Apple)

– Insight Segmentation and Registration Toolkit (ITK, OpenSource)

– Visualization Toolkit (VTK, OpenSource)

The framework implementation described next features a graphical user interface
(GUI), which is completely detached from the logical layer and thus can be easily
adapted to particular requirements (e.g. replaced by a command line interface).

Similar to the underlying structure, the GUI provides the user with the three
different types of pipeline modules: sources, sinks and filters. All modules can
be interactively arranged and connected. Module parameters can be accessed via
dynamically configured setup dialogs, which use the individual module descriptors
to query information about parameter types as well as their according getter and
setter methods. Additional control panels are used to access internal module
states like e.g. the capture state of a camera source module.

Prototyping and Runtime Type Information The essential part for most
generic systems is given by a framework that allows the user to create new objects
by name or ID without modification and recompilation of the entire system.
Therefore, the framework has to encapsulate knowledge about which concrete
classes the system finally provides and how these classes are instantiated and
combined. Here, generally two approaches exist [GHJV03]:

– the usage of specialized factory objects implementing a common interface
(abstract factory)

– the creation of new instances by cloning a given prototype object (prototyp-
ing)

While the abstract factory pattern requires the implementation of additional
classes, prototyping only depends on the implementation of a clone operation,
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which means that factory and prototype are the same object. Beside reduced
subclassing, prototyping also benefit from specifying new objects by

– simply varying the initial prototype parameters or

– combining objects to a new composite prototype, which is instantiated using
deep copies.

Regardless of which pattern is used, either the factory object or the prototype
has to be registered by a manager instance that allows the system to access the
factory/prototype by an unique identifier. In the described processing framework,
therefore, a special runtime type information (RTTI) class has been designed.

Each public class of the framework owns a static RTTI object that provides an
unique ID as well as a user friendly name, e.g., the class name. While the ID can
be efficiently used for internal purposes, but might change between program starts,
the string constant is fix for each class and provides an identifier for purposes
like user interaction or serialization. Every time a class is dynamically loaded, its
static RTTI member is initialized, which registers itself at the factory passing the
associated prototype object.

Furthermore, with respect to dynamic type checking and sub-classing, each
RTTI object also provides information about the class hierarchy by storing a
pointer to the RTTI object of its base class. This way, it can be verified if certain
RTTI objects represent a subclass of a given base classed identifier.

Reference Counting and Smart-Pointer Regarding a generic program that
allows the interactive combination of modules, dynamically allocated objects are
often shared between several owners that do not necessarily know each other.
In such situations, it is sometimes difficult to decide if an object is no longer in
use and who is responsible for the deallocation. For this reason, modern object-
oriented runtime environments like Java or C# provide garbage collection where
the framework periodically checks the heap for unreferenced objects – so-called
tracing garbage collection.

In traditional programming languages like C or C++, where garbage collec-
tion is not a priori available, explicit reference counting (deterministic garbage
collection) can be used to recreate a similar automatic memory management.
Here, an attached counter is incremented or decremented every time an object
is referenced or dereferenced. In contrast to garbage collection, where objects
stay in memory until the next deallocation cycle is invoked, objects are reclaimed
as soon as their reference counter drops to zero. In object oriented languages,
incorrect reference counting can be avoided by encapsulating standard pointer
references into smart pointer structures that provide the necessary functionality,
i.e. a basic interface that increment a reference counter during creation and copy
operations, and decrement the counter as soon as the deconstructor is called.
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Unfortunately reference cycles can emerge if objects revere directly or indirectly
to themselves. In such situations, the reference counters of all involved object
will never be decremented to zero and the according objects remain on the heap.
Here, weak pointer (which do not increase the reference counter, but keep track
of the validity of the referred object) can be used to break up cyclic reference
structures. If such differentiation between strong and week pointer can not be
accomplished, the system can either prevent the user to create cycles completely
or apply cycle-collection techniques that are similar to garbage collection.

Special care should be taken to avoid an additional performance overhead
due to unnecessary assignments and deassignments of references regarding, e.g.,
frequent function calls or loops. Here, smart pointer references can be used to
avoid the invocation of the copy-constructor during function calls.

Implicit casting of smart pointers can be realized either based on the original
implicit casting functionality of the programming language, using a separate smart
pointer hierarchy or by defining template based casting operators between the
inherited class and the current base class.

Pipeline Concept The provided processing framework is based on a generic
pipeline concept that allows the interactive combination of processing algorithms
by means of filter modules. Accordingly, it provides basic programming interfaces
for pipeline objects like data sources, sinks (for example render modules or file
writer) and filters, and implements the underlying update mechanism.

Each pipeline module owns an input, respectively output, descriptor that
consists of a list of RTTI string identifiers. Beside internal runtime type checks,
these identifiers are primary used to provide the user with information about
the input and output types (channels) of each module. Furthermore, it can be
used by the framework to create output container for source and filter modules
automatically. An additional attribute descriptor allows the system to provide
the user with according getter/setter methods for available module parameters.

To improve the overall performance, the naive recalculation of intermediate
results is avoided by applying an automatic update mechanism. This mechanism
allows the systematic update of pipeline modules whose input data has changed.
The according update cycle is designed as a two-step approach:

– In the first step, all sources are sequentially checked for updates. If a
source provides new information, it passes a modification flag to those
modules whose input channel is connect to one of its output channels. The
modification flag is then recursively passed further through the pipeline
until a sink or already modified module is reached.

– In the second step all sinks are checked for a positive modification flag and
updated if necessary. In this case, a filter module passes the update call
further through the pipeline until a source is reached. After all necessary
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input data has been updated, the filter finally calculates the new output
results. A status flag is used to prevent loops in the recursive update calls.

Basically running on the CPU, the pipeline framework has been extended
to utilize the GPU for accelerated parallel computing if possible. In this case,
special modules upload the required data to the memory of the graphics hardware,
while GPU-based processing modules interchange intermediate results via texture
buffers by passing texture ID objects that additionally provide information about
texture size and type. During the execution, GPU processing results remain in
the memory of the graphics hardware, unless they are used as input for CPU
modules. In this case, the data has to be transfered back to a data container
stored in the PC’s main memory first.



Chapter 4

Discussion and Outlook

With the growing demand of user interactivity and autonomous systems, range
information and therefore range sensing technology itself gains more and more
in importance. During the last decades, different approaches and devices for
the acquisition of range information have been proposed, that vary in accuracy,
production costs and usability as well as real-time capability.

The list of sensing techniques recently has been extended by a new type of
acquisition device. While former approaches are either computation intensive or
have to sequentially scan a given scene, the newly developed time-of-flight cameras
allow to acquire the range information in parallel for a whole scene in real-time.
At the same time, the production costs are low due to their CMOS realization.
Altogether, TOF cameras present a promising alternative for real-time vision
application.

However, in comparison to classical techniques, current TOF cameras are still
of low resolution as well as affected by several error sources. As the acquisition of
distance information using TOF cameras is a rather new and unexplored technique,
the subject of this thesis has been the investigation of the range sensing accuracy
of current TOF cameras as well as the algorithmical improvement of distance
information focusing on noise reduction and range data upsampling.

The first part has addressed the classical task of intrinsic parameter estimation
and presented phenomenological calibration models for the two major error
sources that deal with demodulation- as well as intensity-related errors. In this
context, also an alternative demodulation approach has been investigated for error
reduction, which assumes a rectangular modulation. The chapter is concluded by
an outline of the compensation of TOF camera specific motion artifacts.

The second part has covered the general discussion of image noise reduction
and investigated Moving Least Square Surfaces as one possible solution for range
data upsampling. Furthermore, it contributed an edge preserving filter for range
data upsampling in the image domain. The chapter concludes with the discussion
of image sensor fusion in order to obtain multi-modal range information.

Discussion In the context of intrinsic calibration, we successfully applied the
intrinsic parameter estimation to TOF camera models with a sensor resolution
greater than 160× 120 px. The extrinsic pose estimation, however, is affected by
sub-pixel inaccuracy of detected feature points as well as a parameter correlation
due to a narrow opening angle. Classical pose estimation based on checkerboard
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detection therefore turned out to be useful for rough pose only. Schiller et al.
[SBK08], however, have shown that pose estimates can be significantly improved
by the utilization of multi-camera rigs including at least one high-resolution
standard imaging sensor. By doing so, the rigs absolute pose with respect to a
single input image can be estimated using the additional high-resolution sensor,
whereas the TOF camera’s pose is stabilized by using multiple input images for
an overall relative pose estimation.

Concerning the investigations of range sensing accuracy, experiments have
revealed that current TOF cameras are systematically affected by a phase shift
demodulation error as well as an intensity-related distance deviation. While the
former produces a wiggling like distance error, the later causes lower reflective
areas to significantly drift towards the camera. Compared to each other, the
demodulation error, however, turns out to be the more dominant and causes
distance deviations of several centimeters. For accurate range sensing, a proper
wiggling calibration therefore is absolutely vital. In this context, the presented
calibration model for wiggling adjustments is able to reduce wiggling errors to
deviations smaller than one centimeter, while individual pixel impacts can be
satisfactorily described by constant offsets. Regarding intensity-related deviations,
two models have been presented. While the coupled approach is a simple extension
to the wiggling model that leads to a bivariate approximation, further investigation
showed that the effects can be decoupled in order to reduce the number of necessary
reference data. However, the integration time dependent error remains due to the
change in incident light intensity. For accurate range sensing, therefore, also a
separate calibration of the integration time dependent offset is required.

Beside the two phenomenological calibration models, also an alternative phase
shift demodulation has been proposed, that assumes a rectangular signal mod-
ulation. Experiments have shown that the wiggling error remains, but exhibits
contrary wiggling behavior, which can be used to realize a light-weight calibration
based on 3-4 reference images only. However, compared to the B-spline-based
approach, results of the alternative demodulation approach are less accurate and
merely render advantages in the reduced number of required reference images.

Regarding motion compensation, an axial-motion model leads to the assump-
tion that, for moderate velocities, lateral displacement in form of mismatching
phase values and intensities has the most influence onto acquired distance in-
formation. Hence, artifacts have been significantly reduced by applying optical
flow-based image registration. The accuracy and computation speed of the motion
compensation thereby depends on the utilized optical flow algorithm.

In the context of range image refinement, two feasible upsamling techniques for
range images have been discussed – Moving Least Square Surfaces as an example
of an explicit surface approximation as well as an enhanced edge-directed upscaling
filter. Compared to each other, each approach has its individual advantages and
disadvantages.

MLS surfaces originate from point-based rendering and provide a high order
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reconstruction of surfaces defined by general point sets. Due to the interactive
ray casting of the reconstructed surface, range image upsampling/visualization
benefits from resolution and view independent insertion of visible surface points
only. Outlier and flying pixels are implicitly removed if the number of neighbor
pixels is below a given threshold. Small holes, in contrast, are automatically
filled in. However, due the underlying assumption of a smooth and continuous
surfaces, and the low sample-to-feature ratio of current TOF cameras, range
image reconstruction / upsampling generally suffers from contour bleeding and
undesirably smoothed features. More sophisticated approaches exist, but are
computationally more intensive and are therefore mostly applicable for post-
processing tasks.

Edge-directed upscaling on the other hand exploits the uniform sampling of
range images and applies two dimensional filtering in image space. By applying
a biquadratic upsampling scheme as well as an edge-directed adjustment of
the sampling position, it provides comparable high order upscaling results and
preserves sharp object contours. However, due to the pyramid-based upscaling,
only scaling factors to the power of two are possible. Thus, especially for scaling
factors greater than 23, the difference between desired and next possible scaling
factor might be too large – which in most cases might result in wasted computing
time.

The fusion technique outlined in the context of this thesis performs a re-projec-
tion of the reconstructed distance information. Unfortunately, due to the involved
viewing transformation, re-projection-based techniques highly rely on accurate
sensor registration as well as correct distance information, particularly with regard
to the distance calibration of the involved TOF camera. Thus, as long as correct
distance information cannot be assured, all sensors should be placed close to
each other in order to align corresponding viewing rays as good as possible and
avoid false mapping. A usual disadvantage of software-based sensor fusion arises
from occlusion artifacts due to the different viewing position of the individual
sensors. Here, software-based approaches are only capable to provide incomplete
multi-modal information, which has to be handled accordingly.

Future Directions While the next generation of TOF cameras will provide
higher resolutions and thus allow an automated and more precise estimation of
intrinsic parameters and camera pose, the extensive task of distance calibration
remains. Here, unfortunately no further improvements can be achieved without
possible hardware modifications.

However, concerning motion artifacts, the presented approach still allows
improvements as both, the lateral as well as axial motion compensation, do not
account for mismatching phase values due to both, the distance-related light
attenuation as well as the change of viewing rays.

In the context of accurate distance refinement, alternate approaches might
lead to even better results. Considering a point cloud representation, for example,
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fitting of basic geometrical primitives comprising planes, cylinders, cones and
spheres provides a more accurate surface representation than interpolation or
polynomials. Furthermore, primitive fitting allows a more accurate approximation
of surface normals, while missing range information (holes) can be easily filled
in. Secondly, primitive fitting typically involves range data segmentation and
classification, which in turn can be used for tasks like object tracking.

Regarding software-based data fusion, alternative approaches might further
improve fusion results by avoiding the error-prone geometry reconstructions and
considering more sophisticated data mapping in image space instead. However,
these approaches are rather complex and basically involve non-affine image de-
formations as well as adequate detection of multi-modal features between each
sensor.

One general solution for multi-modal feature estimation is the consideration
of mutual information and the according joined histogram between both images.
The actual image registration is performed by minimizing the dispersion of the
histogram, i.e. by aligning homogeneous regions, with respect to a given set
of possible image transformations. Other approaches detect significant image
features in all input images like points or edges, which accordingly have to be
mapped onto each other. The main problem of sensor fusion in the image domain,
however, is to find an adequate image transformation that handles view dependent
disparities and occlusion in a correct way. Unfortunately, currently established
image transformations are either inadequate or computational too intensive and
therefore rather suitable for post-processing tasks only.

The ideal solution to the mentioned processing steps would be an efficient, over-
all denoising-refinement-fusion approach for sensors with varying modality. Hence,
denoising and refinement can take advantage of the additional high resolution
data, while data fusion benefit from implicit distance correction.
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