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Testen des Standardmodells mit Präzisionsrechnungen
Semi-leptonischer B-Zerfälle

Zusammenfassung

Messungen im Flavour Sektor sind zum Test des Standardmodells sehr wichtig, da die
meisten der freien Parameter in Beziehung zur Flavour Physik stehen. Wir diskutieren
semileptonische B-Meson Zerfälle, aus denen ein wichtiger Parameter, |Vcb|, extrahiert
wird.

Zunächst diskutieren wir nicht-perturbative Korrekturen höherer Ordnung in in-
klusiven semileptonischen Zerfällen von B Mesonen. Wir identifizieren die relevanten
hadronischen Matrix Elemente bis zur Ordnung 1/m5

b und schätzen diese mit einem
Approximationsschema ab. Mit diesem Zugang wird der Effekt auf die integrierte Ra-
te und kinematische Momente abgeschätzt. Ähnliche Abschätzungen werden für den
B → Xs + γ Zerfall angegeben.

Weiterhin untersuchen wir in diesem Zerfall die Rolle von sogenannten
”
intrinsic-

charm“ Operatoren, die ab der Ordnung 1/m3
b in der schweren Quark Entwicklung

auftreten. Durch explizite Rechnung zeigen wir, dass – bei Skalen µ ≤ mc – die Bei-
träge von

”
intrinsic-charm“ Effekten in die kurzreichweiten Koeffizienten Funktionen

multipliziert z.B. mit dem Darwin Term, absorbiert werden können. Dann sind die
einzigen Reste dieser Beiträge Logarithmen der Form ln(m2

c/m
2
b), die mit Hilfe von Re-

normierungsgruppen Methoden resumiert werden können. Solange die Dynamik bei der
Charm Quark Skala perturbativ ist, αs(mc)� 1, impliziert dies, dass keine zusätzlichen
nicht-perturbativen Matrix Elemente, neben dem Darwin und Spin-Orbit Term, zur
Ordnung 1/m3

b auftreten. Allerdings erzeugt
”
intrinsic charm“ zur nächsten Ordnung

Terme proportional zu inversen Potenzen von der Charm Masse: 1/m3
b × 1/m2

c . Para-
metrisch komplettieren diese die Abschätzung des Einflusses der 1/m4

b Terme, die wir
untersuchen werden. In diesem Kontext ziehen wir semiquantitative Schlussfolgerungen
über die zu erwartende Größenordnung von

”
Weak Annihilation“ in semileptonischen

B Zerfällen, sowohl für die Valenz als auch nicht-Valenz Komponenten.
Der letzte Teil ist der komplementären Messung von |Vcb| durch exklusive B →

D(∗)`ν̄` Zerfälle gewidmet. Da diese Bestimmung eine kleine Inkonsistenz zu der inklu-
siven zeigt, untersuchen wir ob nicht Standardmodell Beiträge die Messung beeinflussen
können.

Testing the Standard Model with Precision Calculations of
Semileptonic B-Decays

Abstract

Measurements in the flavour sector are very important to test the Standard Model,
since most of the free parameters are related to flavour physics. We are discussing
semileptonic B-meson decays, from which an important parameter, |Vcb|, is extracted.
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First we discuss higher-order non-perturbative corrections in inclusive semileptonic
decays of B mesons. We identify the relevant hadronic matrix elements up to 1/m5

b

and estimate them using an approximation scheme. Within this approach the effects
on the integrated rate and on kinematic moments are estimated. Similar estimates are
presented for B → Xs + γ decays.

Furthermore we investigate the role of so-called “intrinsic-charm” operators in this
decay, which appear first at order 1/m3

b in the heavy-quark expansion. We show by ex-
plicit calculation that—at scales µ ≤ mc—the contributions from “intrinsic-charm” ef-
fects can be absorbed into short-distance coefficient functions multiplying, for instance,
the Darwin term. Then, the only remnant of “intrinsic charm” are logarithms of the
form ln(m2

c/m
2
b), which can be resummed by using renormalization-group techniques.

As long as the dynamics at the charm quark scale is perturbative, αs(mc) � 1, this
implies that no additional non-perturbative matrix elements aside from the Darwin and
the spin-orbit term have to be introduced at order 1/m3

b . However, “intrinsic charm”
leads at the next order to terms with inverse powers of the charm mass: 1/m3

b × 1/m2
c .

Parametrically they complement the estimate of the potential impact of 1/m4
b contribu-

tions, which we will explore. In this context, we draw semiquantitative conclusions for
the expected scale of weak annihilation in semileptonic B decays, both for its valence
and non-valence components.

The last part is dedicated to a complementary measurement of |Vcb| from exclusive
B → D(∗)`ν̄`. Since this determination shows a slight tension with respect to the
inclusive one, we investigate wether a non standard model contribution may distort the
extraction.
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1. Introduction

At all times mankind has tried to explore nature just from observing their environment.
In modern physics however, which starting is mostly linked with Galileo Galilei back in
the 16th and 17th century, scientist realized that an active research using experiments
widely improves their understanding. Nowadays the connection between theoretical
work and experiments is inevitable for the understanding of elementary characteristics
of the nature. Modern physics is basically nothing else than observing interactions
of all different kinds depending on the field of research and then describing them in
the best possible way. Interactions are the only way, how nature can be experienced
and things in everyday life can be used. Even if you look at a beautiful picture, it is
just the interaction of the photons with your eye. By forecasting different properties
of nature, scientist try to verify or falsify their theories in experiments. Because na-
ture has numerous phenomenon, their exist a lot of different physics research branches.
Exploring the elementary phenomena in our world is doing fundamental research. Of
course scientist pursue the goal to gain more and more knowledge about our environ-
ment where we all live in. It is one aspect where mankind should go for to advance in
experience, but all times people have profited from this research. A lot of applications
for our workaday life have only been possible due to knowledge gained from funda-
mental research. The major achievements of the last century were the development of
the theory of general relativity by A. Einstein, which describes the gravitational force
and interactions at large scales, e.g. the forces that stabilize our milky way and solar
system. One other achievement was the establishment of the Standard Model (SM),
which describes the fundamental interactions of the smallest particles that our world
consists of. Unfortunately nobody has succeeded to unify these two theories, yet. To
this end, more fundamental knowledge on both of these fields is necessary.

This thesis deals with an aspect of elementary particle physics. Particle physics is
one important field of physics research, describing the fundamental interaction of the
particles that our world consists of. It has already been widely explored in the 20th
century. All begun with the theoretical development of quantum mechanics, connected
with names like P.A.M. Dirac, W. Heisenberg, W. Pauli, E. Schrödinger, and even
A. Einstein1. Then it was achieved to unify special relativity with quantum mechan-
ics in quantum field theory. This was necessary to describe the observed properties.
With the theoretical progress in quantum field theory and the improving accelerator
technologies, it was possible to develop the so called Standard Model. Over the last ap-
proximately 40 years it has been widely tested and explored. Although it is checked to
an incredible precision, most physicists believe that it can only be understood as an ef-

1Of course there were a lot more physicist who contributed to.



1. Introduction

fective field theory, an approximation which we will explain in more detail later. To find
deviations from the SM there are basically two ansatzes: One is to push calculations
and also experimental efforts to an incredible precision in order to find inconsistencies
in different determinations of the same parameters. The other is to directly apply the-
oretical models auf physics beyond the Standard Model (BSM) to experimental data.

1.1. Symmetries and Nature

There are a lot of different symmetries realized in our world. For example crystals grow
in a specific way, and they look the same if one rotates them in a special way. Often
it is very useful to find such symmetries in the system to be described. This simplifies
the problem a lot: If the symmetry in the crystal is known there are less coordinates
necessary to describe the whole crystal. Maybe also the beauty of such crystals like
diamonds, guided the scientist to make use of symmetries.

In the theoretical description such symmetries manifest in mathematical descriptions
which do not change, if one implies such symmetry. This reduces the degrees of freedom.
In classical mechanics, for instance, the dynamics of a system is described by the
Lagrange function. Since the equations of motions (e.o.m.) are derived from this
function, all transformations that leave these e.o.m. invariant, are symmetries of the
system. Of course in my position to be a student at the Emmy-Noether campus I have
to mention the Noether theorem. This theorem states that for every symmetry of a
system there is a conserved quantity. For example the homogeneity of space, which
means a displacement does not change the system, leads to momentum conservation.
Therefore the system can be described by less degrees of freedom.

Today symmetry in physics is not only realized as a visual perception. As we have
shown in the last paragraph, it is also seen as a symmetry in the mathematical sense.
A nice illustrative example is electrodynamics. There a symmetry lies in the gauge
transformations. The potentials that generate the electric and magnetic field cannot
be observed. Nevertheless they can be calculated up to arbitrary gauge transforma-
tions. These transformations change the potentials but leave the physical observables
invariant. The correct mathematical description for the transformation is group theory.
Here the simplest group U(1) corresponds to the class of gauge transformations. In fact
we need to have a local symmetry, because it is not possible to form a Lorentz covariant
vector with the properties of a photon: Helicity ±1 and massless. One can only have a
four-vector which transforms under Lorentz transformation as

U(Λ)Aµ(x)U−1(Λ) = (Λ−1)µνA
ν(x) + ∂µθ(x) ,

which is a gauge transformation. So we need a Lagrangian which is also invariant under
this transformation. This will lead to an inner symmetry and the connected Noether
current jµ. This current in the end will describe the interaction of fermions with the
photon. We will later see, that this principle inspired the physicists to construct the
Standard Model in a similar manner.
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1.2. Particle Physics and its Goals

1.2. Particle Physics and its Goals

Particle physics deals with the elementary particles out of which our world is build.
These are the smallest particles we currently know and we believe that they are not
made of even smaller constituents. The particles have to undergo certain interactions
to build the matter we all know. To figure out the structure of the interactions is
necessary for the understanding of our world. If all these different particles would not
have exactly these properties, the world would look completely different. Besides we
want to understand why there is only matter and not antimatter within the universe.
By investigating these particles and establishing the correct theory, we can understand
more and more about our own origin. And should it not be a quest for mankind, to
find out their own dawn?

We have already seen, that electrodynamics is described by an U(1) symmetry. The
Standard Model bases upon a more complicated group structure. We will explain this on
the next pages. But first it is time for a few comments. There are basically two different
types of symmetries. One is to impose a global symmetry, so the gauge transformation is
the same at all space-time points. This clearly does not induce any interesting physics,
its just a phase which cannot be observed. But we have already seen, that we have to
impose a local symmetry. Then we have different transformations at each space-time
point. The symmetry principle, that the form of the corresponding Lagrangian density
is invariant, demands to introduce auxiliary gauge fields. These fields turn into gauge
forces. In other words imposing the requirement of a local gauge transformation leads
inevitably to the introduction of gauge forces. These gauge forces are nothing else than
the forces responsible for the interactions we observe. So we automatically introduce
the forces by imposing a certain symmetry. This is nicely illustrated in fig. 1.1. The
left picture shows the original system. For the picture in the middle a global gauge
transformation has been imposed, which results in a total rotation of the system. For
the picture on the right panel a local transformation has been performed, resulting
in a deformation of the lines. In all cases the surface stays the same, which is the

Figure 1.1.: The necessity of local force, picture taken from [1].

required symmetry. Nevertheless for the local symmetry a force is needed to account

3



1. Introduction

for the deformation. This fact is used in constructing the correct theory. Now the
interplay between experiment and theory is a crucial point. The task of the theorists
is to construct a consistent theory with a certain underlying symmetry2. Experiments
now test this theory and determine the parameters which cannot be computed by first
principles. If there are inconsistencies it is a hint, that the theory behind has to be
modified. This has already been done, and so the Standard Model has been constructed
in the last century. But nowadays this is seen as an approximate theory, valid only in
some limits. In the next section we will explain the SM in more detail.

1.3. The Standard Model

The Standard Model has to describe the different interactions we know: The strong
force, which binds the quarks inside the hadrons, the electromagnetic interaction as well
as the decays of particles. In nature we observe the usual particles, which are fermions
and the particles which mediate the forces. The latter ones follow the Bose statistic.
A further complication are the masses of particles. On the one hand it is known that
the particles are massive, on the other hand the range of the weak force is limited.
Therefore the corresponding gauge bosons are also massive. But to implement the
masses explicitly would break the symmetry of the Lagrangian. This leads to theoretical
problems like the violation of gauge invariance. But the symmetry principle is exactly
on what the theory bases. Furthermore gauge invariance requires, that the theory
remains renormalizable. It turns out, that the so-called Higgs mechanism provides a
very successful theoretical trick to achieve a consistent way of introducing masses for
both particles and gauge bosons. It can be shown, that this procedure maintains the
renormalizability of the theory.

1.3.1. Basic Ideas

To describe particles that obey different spin statistics, the corresponding Lagrangian
densities were constructed. We have in general spin-1/2 fermions with the according
Lagrangian density obeying the Dirac equation

LFermion = ψ̄
(
i/∂ −m

)
ψ . (1.1)

Additionally we need the Lagrangian density for a real scalar field, which describes a
neutral spin-0 boson. This particles conform to the Klein-Gordan equation

Lreal KG =
1

2
(∂µφ) (∂µφ)− 1

2
m2φ2 . (1.2)

The corresponding equation for a complex scalar field describes charged spin-0 bosons

Lcomplex KG = (∂µφ)† (∂µφ)−m2φ†φ . (1.3)

2At least if one does not have a brand-new concept. However this approach is too successful to be
completely wrong.
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1.3. The Standard Model

We have massless spin-1 bosons, which fullfil the Maxwell equations for massless
Bosons and the Proca equation with an additional term for massive ones

LProca-Maxwell = −1

4
FµνF

µν +
1

2
m2AµA

µ , (1.4)

where
Fµν = ∂µAν − ∂νAµ + ig [Aµ, Aν ] (1.5)

is the field-strength tensor.
It has been revealed, that the strong forces obey a SU(3)C symmetry, whereas the

electro-weak force are combined into a SU(2)W ⊗ U(1)Y symmetry. We start to write
down and explain the appropriate Lagrangian which satisfies these local symmetries in
turn.

This introduces directly all kind of interactions, by the principle of local gauge in-
teractions. The interaction terms are higher than bilinear terms with more than two
fields in the Lagrangian density. To compensate the additional term due to the lo-
cal symmetry in the kinetic term, we have to introduce a gauge field with the correct
(transformation) properties. This will be combined in the covariant derivative to render
the total Lagrangian gauge-invariant

i∂µ → iDµ = i(∂µ − igAaµT a) ,

where AaµT
a is the gauge field transforming under the adjoint transformation, thus T a

are the adjoint generators for the corresponding symmetry with a = 1, . . . ,N2 − 1. A
generator acting on a field is an eigenvalue equation with the quantum number of the
field as its eigenvalue. Using the covariant derivative we can write the field strength as

Fµν = F a
µνT

a = − i
g

[iDµ, iDν ] . (1.6)

The fields transform as

A′µ = U(x)Aµ(x)U †(x) +
i

g
U(x)(∂µU

†(x)) (1.7)

ψ′ = U(x)ψ(x) , (1.8)

where U ∈ SU(N) with U(x) = exp [iθa(x)T a] is a finite symmetry transformation.
Additionally we now have to put in the kinetic terms for the gauge bosons. From
eq. (1.5) we know the transformation properties for the field strength tensor

F ′µν(x) = U(x)FµνU
†(x) . (1.9)

From this we know, that the field strength transforms in the adjoint representation,
and so it is composed of the generators in the adjoint representation. Therefore the
simplest gauge invariant form for the kinetic term is

Lgauge = −1

2
Tr [FµνF

µν ] = −1

2
F a
µνF

b,µνTr
[
T aT b

]
= −1

4
F a
µνF

a,µν , (1.10)

5



1. Introduction

where the prefactor ensures the correct outcome of the Maxwell equation of motion.
In total this leads to the following Lagrangian density for a fermionic field with an
imposed local symmetry

L = ψ̄
(
i /D −m

)
ψ − 1

2
Tr [FµνF

µν ] .

It can be directly seen that this Lagrangian is invariant under the symmetry transfor-
mation and that the additional term through the derivative of the transformed field
is canceled by the transformation properties of this gauge field. For a U(1) symmetry
this is the Lagrangian density of QED.

1.3.2. The Electroweak Interaction

In experiment it was observed, that the interactions in quantum electrodynamics are
mediated through a vector current. For the charged current interaction it was noticed,
that this involves a vector minus axial vector coupling, only. Whereas for the neutral
current interaction there is a mixture between vector and axial vector.

The only way to combine this consistently is to impose a SU(2)W ⊗U(1)y symmetry,
where W is the weak isospin and Y is the hypercharge quantum number.

Now we have to introduce the masses for obvious reasons, but the masses for the
particles would destroy the SU(2) symmetry explicitly. Additionally we know from the
small range of the weak forces, that the mediating particles have to be massive. But
an explicit mass term would as it was mentioned destroy gauge invariance.

Higgs Mechanism

Therefore we make use of the so-called Higgs mechanism. The idea is, that we introduce
a spin-0 auxiliary field φ with the shortcut notation φφ† = ρ. By a certain choice of
a potential we give this field a non-vanishing vacuum expectation value (VEV). The
Lagrangian density is then given by

LHiggs = (∂µφ)† (∂µφ)− V (φφ†) . (1.11)

The interaction term of a field with this Higgs boson then leads to a mass term, if
the VEV is acquired. This mechanism will be explained in the next few steps in more
details. There are two alternatives for the ground states, which means the states with
lowest energy.

1. There exist only one unique ground state. That means it is invariant under all
symmetry transformations. This corresponds to the trivial case.

2. There can be a degenerate ground state which transforms under a subgroup of
the symmetry transformations, where all the different ground states are physi-
cally equivalent. But we can choose one of them to define a specific direction in
representation space. This choice of the ground state is then called spontaneous
breaking of the symmetry.

6



1.3. The Standard Model

In fact a degenerate ground state is typical for systems with infinitely many degrees of
freedom, only [2]. This is always the case for a quantum field theory, since we there
have a set of fields for every of the infinitely many space-time points.

In our case it means, the related potential is adjusted in such a way, that the energetic
minimum is displaced from the point, where the field vanishes. We will demonstrate
this with the so-called Goldstone model. Take the following potential as given

V (φφ†) = µ2ρ+ λρ2

= λ

(
ρ+

µ2

2λ

)2

− (µ2)2

4λ
.

The parameter λ has to be positive, because we need a lower bound for the energy. For
the parameter µ2, we have two possibilities3. Since ρ ≥ 0 we have a minimum at ρ ≡ 0
for µ2 > 0. This is the trivial case. For the other case µ2 < 0 we have a minimum at
ρ0 = v2 = −µ2

2λ
. This means the fields acquires its minimum at a non-zero point for

the field. So due to the specific choice of the potential the field gets a constant VEV
v, and we will make use of this to create the masses for the gauge bosons. The form of
this potential for µ2 < 0 is known as the Mexican-hat potential, and shown in fig. 1.2.

Figure 1.2.: 2D model of a Higgs potential with non-vanishing VEV.

Now we parameterize the complex field around the VEV with two real fields η and ξ

φ =

(
v +

1√
2
η(x)

)
exp

[
i

(
θ +

ξ(x)√
2v

)]
. (1.12)

θ is some arbitrary phase, which can be rotated away by the symmetry. Choosing a par-
ticular phase leads to spontaneous symmetry breaking. Plugging in the reparametrized
field in (1.11), we see that the field η becomes massive with mη = −2µ2 whereas ξ
stays massless. The latter field corresponds to the excitation along the minimal po-
tential line in fig 1.2, more precisely it is associated to the normal mode with zero

3Note, that we do not want to have absorption and thus require the potential to be purely real.
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1. Introduction

eigenfrequency. The η field is the radial excitation and becomes massive due to the
non-vanishing curvature of the potential.

We have seen, that by a specific choice of the potential the formally massless field
becomes massive. The next step is to extend this trick to give masses to the gauge
bosons. By imposing a local symmetry, the kinetic term has to be modified such, that
we replace the derivatives with a covariant derivate. In this manner we automatically
introduce the interaction of the gauge fields with the Higgs boson just by the require-
ment of gauge invariance. We achieve the mass terms for the gauge bosons due to
their coupling to the constant VEV. Nevertheless the imposed symmetry is broken,
but through a dynamical process and therefore it is spontaneously broken. In this toy
model we assume one gauge field Aµ with the coupling constant g, to illustrate the
general principle. The ξ field can be gauged away by a unitary gauge, and therefore
turns into the longitudinal polarization mode of the massive gauge boson

Bµ = Aµ −
1

gv
∂µη (1.13)

φ = v +
η√
2
, (1.14)

which simplifies the Lagrangian density a lot

LHiggs =
1

2
(∂µη) (∂µη) +

1

2
g2 (v + η)2BµB

µ− 1

2
Tr [FµνF

µν ]−V
(

(v +
η√
2

)2

)
. (1.15)

The mass and interaction terms can now be directly read off, as we have already seen
mη = −2µ2, and mB = v g.

Standard Model Gauge Part

In the special case of the Standard Model, where a non-Abelian symmetry with in total
four generators is at hand, we have to generalize the latter toy example. In general we
have to introduce for N generators in total N real scalar Higgs fields. In the SM we
make the therefore the special choice of a doublett with two complex scalar Higgs fields

φ =

(
φ+

φ−

)
(1.16)

to account for the 4 generators Aµ of U(1)Y with coupling g′ and Bi
µ with i = 1,2,3 and

coupling g for SU(2)W . The Higgs field has to transform under the adjoint representa-
tion with hypercharge Y = −1 and we write it in an exponential parameterization

Φ = e
i

2ρ0
τaξa(x)

(
0

1√
2
(η(x) + v)

)
. (1.17)

Now everything follows the same line as in the toy example, but now we have different
generators which connect the fields in the equations. Choosing the vacuum expectation

8



1.3. The Standard Model

value as

Φ0 =
1√
2

(
0

v

)
(1.18)

we find three broken generators, and one remains unbroken, which is identified with
the charge,

QΦ0 ≡ (τ3 + Y )Φ0 = 0 . (1.19)

Plugging everything into the Higgs part of the Lagrangian density, we compute a similar
result as in the toy model case

LHiggs =
1

2
(∂µη)(∂µη)− V

(
1

2
(η + v)2

)
+

1

8
g2(η + v)2

(
B1
µ − iB2

µ

) (
Bµ 1 − iBµ 2

)
+

1

8
(η + v)2

(
g′Aµ − gB3

µ

) (
g′Aµ − gBµ 3

)
. (1.20)

Thus we end up with three massive gauge bosons

W±
µ =

1√
2

(
B1
µ ∓B2

µ

)
with MW± =

1

2
g2v2 (1.21a)

Z0
µ = B3

µ cos θW − Aµ sin θW with MZ0 =
1

2
v2(g2 + g′2) , (1.21b)

where we have introduced the shortcut sin θW = g′/
√
g2 + g′2, and θW is the Cabbibo

Angle. The Higgs mass is obviously the same as in the toy model MH = −2µ2. The
orthogonal field combination to the neutral current

Aµ = B3
µ cos θW + Aµ sin θW (1.22)

is identified with the massless photon. The breaking is therefore organized in such a
way, that the theory is broken as SU(2)W ⊗ U(1)y → U(1)em. In the end we have for
the unbroken U(1) generator one massless gauge boson, which is identified with the
massless photon of the electromagnetic interaction.

Fermionic Part

The same arguments as for the gauge bosons hold true for the fermionic matter fields:
We cannot implement mass terms explicitly, since they destroy gauge invariance. There-
fore masses are created dynamically. For the particle masses we have to introduce
Yukawa couplings by hand in the following way.

First of all experimentally it was noticed, that the weak force violates parity. Thus
we treat left- and right-handed fields differently. The projector PR/L = 1/2(1 ± γ5)
projects onto the right(left)-handed component. We put the left-handed fermions in a

9



1. Introduction

left-handed doublett under SU(2)W , whereas the right-handed fields are singletts. For
the leptons we have

LA =

(
νAL
AL

)
, RA = (A) , with A = e, µ, τ , (1.23)

where we have no right handed neutrinos, for reasons we will see in a moment4. The left-
handed handed leptons have a hypercharge of Y = −1, for the right-handed singletts
we have Y = −2. For quarks we have for both “up-type” quarks u

Lu =

(
uL

dL

)
, Lc =

(
cL

sL

)
, Lt =

(
tL

bL

)
, (1.24)

as well as “down-type” quarks d a right-handed part

R(u) = (uR,cR, tR) , R(d) = (dR, sR, bR) . (1.25)

The corresponding hypercharges are given by Y Lu = 1/3Lu, Y R
(u) = 4/3R(u) and

Y R(d) = −2/3R(d).
First of all, the coupling between gauge bosons and fermionic fields are constructed

in the very same way as we have already seen. We have to introduce the covariant
derivatives which then couple the gauge bosons to the matter fields.

We begin with the generation of the mass terms for the leptons. Therefore we intro-
duce Yukawa couplings of the form

LYuk = λ ψ̄(x)Φ(x)ψ(x) (1.26)

with our scalar Higgs field Φ(x). The VEV leads to terms, which have the form of mass
terms for fermionic particles

LMass = λ 〈Φ〉ψ̄(x)ψ(x) . (1.27)

This kind of interaction term couples the right-handed fields to the left-handed ones.
Note, that these terms are gauge invariant and for sake of the notation we have grouped
the right-handed fields in the same doublett as the left-handed fields with a vanishing
upper-component,

LYuk = −
∑
A,B

GABLAΦRB + h.c. (1.28)

Thereby we sum over all leptons A,B = e,µ,τ and (GAB) is in general a complex 3× 3
matrix. In the next step we compute the diagonal mass matrix, which is always feasible
by a bi-unitary transformation according to Mdiag = UGV †, where we use the notation

Λ =

eLµL
τL

 Λ̂ =

νeLνµL
ντL

 R =

eRµR
τR

 . (1.29)

4We keep the neutrinos massless, although we know they are massive. However the SM was originally
constructed without neutrino masses. For their masses, different scenarios are discussed, which are
beyond the scope of this thesis.

10



1.3. The Standard Model

Then, in unitary gauge, the Yukawa term takes the following form

LYuk = − 1√
2

(η + v)Λ̄U †U︸︷︷︸
1

GV †V︸︷︷︸
1

R+ h.c.

= − 1√
2

(η + v)Λ̄′MdiagR′ + h.c. (1.30)

For obtaining the diagonal mass matrix we pay the price of a mismatch between mass
and weak eigenstates of the fermionic fields, which is defined as Λ′ = UΛ and R′ =
VR. In experiment, we detect the mass eigenstates, only. In case of the leptons,
we have a special situation. Since neutrinos are massless - there are no right-handed
neutrinos within the Standard Model - we can choose the same transformation rule
for the neutrinos as well as for the charged leptons Λ̂′ = U Λ̂. The kinetic terms are
not changed, because only fields with the same handedness are coupled and thus the
transformation cancels out. One direct consequence of the massless neutrinos is the
separate conservation of the lepton flavours ne, nµ, nτ .

Now turning to the quark system, we will point out the difference. Here both up-
types and down-types are charged and massive. Again we construct the mass terms
along the same line using the Higgs doublett Φ

L(d)
Yuk = −

∑
A,B

G′ABL̄AΦR
(d)
B + h.c. (1.31a)

L(u)
Yuk = −

∑
A,B

G′′ABL̄AΦ̃R
(u)
B + h.c. , (1.31b)

where we have to introduce in principle two different Higgs fields Φ and Φ̃, one for
the up-type right-handed fields and one for the down-type ones. Note that we have
again grouped the right-handed singletts into an appropriate doublett with a vanishing
component, in order to introduce a compact notation. Now we can make use of a special
phenomenon in SU(2), where the complex conjugate representation is equivalent to the
fundamental one. We notice that to render both terms invariant, the field Φ̃ has to
have again the hypercharge Y = −1. Then by using a SU(2) transformation, we can
represent the field Φ̃ through the Higgs field Φ itself, and write again in unitary gauge

Φ̃ =
1√
2

(
η + v

0

)
. (1.32)

Following the same line as in the case of leptons, we can determine the mass matrix
for the up-type quarks. But now we do not have the freedom, to choose the same
transformation for both up and down-type quarks, since now right-handed quarks exist
for both types. In general the matrices G′ and G′′ are not commutative [G′,G′′] 6= 0,
and therefore we cannot diagonalize both matrices at the same time.

11



1. Introduction

Therefore we resort the quarks in the following way

DL :=

dLsL
bL

 DR :=

dRsR
bR

 (1.33a)

UL :=

uLcL
tL

 UR :=

uRcR
tR

 , (1.33b)

such that now the Yukawa Lagrangian density is given by

LYuk = − 1√
2

(ρ+ ρ0)
[
D̄LG

′DR + ŪLG
′′UR

]
+ h.c. (1.34)

We can again diagonalize both matrices, but we pay the price to introduce two different
transformations

V (d)G′W (d) † := G′diag =

√
2

v
Diag (md,ms,mb) (1.35a)

V (u)G′′W (u) † := G′′diag =

√
2

v
Diag (mu,mc,mt) . (1.35b)

In the end we obtain the physical quark fields with the diagonal mass matrices. The
physical quark fields are thus defined as

D′L = V (d)DL D′R = W (d)DR (1.36a)

U ′L = V (u)UL U ′R = W (u)UR (1.36b)

The difference to the lepton case is now, that the kinetic term changes. As we have
seen before, the neutral current does not change. But in the case of charged currents
there are some implications, which allow for quark flavours transition similar to the
`↔ ν` process. The analogous process in the quark sector is the up-type↔ down-type
quark transition. Compared to the leptonic case, where both neutrinos and charged
leptons obey the same transformation, we have here a missmatch as explained above.
This leads to the Cabbibo Kobayashi Maskawa (CKM) matrix, which we will discuss
in more detail at the end of this section.

After having introduced the general principle of the theory construction, we will take
a closer look on the different forces in turn.

1.3.3. Quantum Chromo Dynamics

First we will give a few important facts on how Quantum Chromo Dynamics (QCD)
has been founded. Then we will give some more mathematical details.

QCD describes the strong interaction of quarks inside a hadron. The force is medi-
ated via the gluons. The gluons couple to quarks and have a self-coupling responsible
for the special properties. Historically in the late 60s it was suggested that hadrons are
built out of fundamental partons, namely the quarks [3]5. A further step was made by

5A more detailed historical introduction can be found in [4], we just give a brief overview here.
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1.3. The Standard Model

the discovery of asymptotic freedom in non-Abelian gauge theories [5,6], for which the
self coupling of the gauge bosons are important. This allows the perturbative treat-
ment at short-distances, as it was observed [7], and at the same time provides the strong
binding to hadrons at long-distances. In experiments it then turns out that an addi-
tional quantum number for the description of quarks was necessary: The color degree
of freedom. Furthermore no states with a non-vanishing colour quantum number were
observed. For that reason, the additional colour symmetry has to be exact and it was
proposed that this symmetry of the non-Abelian gauge theory has to be identified with
the color symmetry [8]. In experiment it was established, that there should be three
different colours. With the additional requirement, that anti-quarks should behave
as a complex conjugate representation from the quarks, the only simple non-Abelian
symmetry group left is SU(3). This group additionally contains the singlett pieces,
which describe the colour neutral hadrons. Therefore the symmetry group for QCD is
SU(3)C , which is also established experimentally very well. In agreement with exper-
imental data, hadrons can then be classified as mesons containing a quark-antiquark
pair, as well as baryons made up of three quarks. Both these states can be described
as singlett pieces of SU(3)C as required. The feature of SU(3) in contrast to U(3) is
that no singlett gluons appear. Thus there is no color neutral gluon, and the range is
limited to the size of the hadron6. The massless photons have infinite range, and the
range of the weak bosons is limited due to their mass.

The quark fields are put into a triplet under the colour symmetry

ψ1
q = ψq(x)

1

0

0

 , ψ2
q = ψq(x)

0

1

0

 , ψ3
q = ψq(x)

0

0

1

 , (1.37)

where {1,2,3} =̂ “red, green, blue” corresponds to the color quantum number and q is
the flavour of the quark field. The fields transforms as

ψ
′a
q = e−igsθ

b(x)T bψaq , (1.38)

where T b = λb/2 are the generators of SU(3)C and λb are the Gell-Mann matrices. The
generators fulfill the Lie algebra [

T a,T b
]

= ifabcT c , (1.39)

where fabc are the SU(3) structure constants.
As in the sections before, we construct a Lagrangian that fulfills the requirement of

the underlying gauge symmetry. The QCD Lagrangian is then given by

L = −1

4
F a
µνF

µν ,a +

Nf∑
q=1

3∑
a,b=1

ψ̄aq
(
i /Dab −mqδab

)
ψbq , (1.40)

6In fact due to polarization effects protons and neutrons are bound inside the atomic core.
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which has to be added to the Lagrangian from the electroweak sector to form the
complete description of the SM. However this part is completely independent from the
electroweak sector.

Nevertheless it is time for a few comments. The covariant derivative and the field-
strength tensor are defined as

Dµ
ab = ∂µδab − igsAcµT cab (1.41a)

F a
µνT

a =
i

gs
[Dµ, Dν ] =

(
∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
µ

)
T a , (1.41b)

from which the self interaction terms, three and four gluon vertices, can be read of
directly due to the kinetic gauge boson term. The gauge invariance of this term can be
directly seen, by using∑

a

F a
µνF

µν ,a =
∑
a,b

F a
µνF

µν ,bδab = 2
∑
a,b

F a
µνF

µν ,bTr
[
T aT b

]
≡ 2Tr [FµνF

µν ] (1.42)

Here the sum over q goes over all Nf = 6 quark flavours The sum over a is the sum
over all three colors a = 1,2,3 The strong coupling constant is denoted by gs.

1.3.4. Running Coupling and Renormalization

In general a quantum field theory cannot be solved exactly in four dimensions. But
it can be expanded in powers of the coupling constant α = g2

4π
. As long as α � 1

is given, the expansion is valid and applicable. This allows for an order by order
computation of the considered interaction. To have a consistent description therefore
these quantum corrections7 have to be computed. The first order is the tree-level and
describes in principle “classical” processes, this is also known as the Born level. Higher
order corrections are purely quantum effects; they are organized in a series of α

4π
, where

α is the coupling constant of the according QFT. Higher orders are called “loop-level”,
because here internal interactions occur, where the momentum is not fixed and we
therefore have to integrated over this loop-momenta.

In contrast to the electroweak sector, the coupling constant of the strong interaction
becomes stronger for lower energies. This results in the binding of quarks to hadrons. In
this regime the coupling constant is of order one, and therefore perturbative techniques
cannot be applied. To describe hadrons several non-perturbative methods have been
developed. We will use and explain Heavy Quark Effective Theory (HQET) in more
detail. This theory uses the fact, that the heavy b-quark mass is much larger than the
typical momentum transfer in weak decay processes.

In computing the loop diagrams we notice that divergences can appear. The integrals
are of the form ∫

d4k
ki

[k2 −m2]j
, (1.43)

We can immediately see, that we can have

7In principle this is also an expansion in ~ and therefore quantum effects play a role.
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1.3. The Standard Model

• Infrared divergences : If m→ 0 and 4 + i ≤ j we have a divergence in the vicinity
of small k.

• Ultraviolet divergences : If 4 + i ≥ j we have a divergence for large k.

In total we have to recognize that we have to deal with this divergences if we com-
pute quantum corrections. The reason for this is, that we treat the theory valid for
all momenta, which might not be correct. See for example the four-fermion effective
interaction [10]: Here we make use of the fact, that the momentum transfer is much
smaller than the mass of the mediating gauge boson. Nevertheless we integrate over
all momenta and therefore have to deal with these divergences. How this is done, and
how this is interpreted we will describe below.

Regularization

The basic idea behind regularization is to express the physical observables through
physical quantities and hide the divergences in unmeasurable parameters. This means
such unphysical parameters drop out at the end in observables. A variety of different
regularization schemes have been invented. Among these are Pauli-Villars and Cut-
off schemes. Nowadays mostly dimensional regularization is used. There the physical
dimension of Minkowskian space is analytically continued to D = 4 − 2ε dimensions,
and after performing the integration the singularity in ε → 0 can be identified. Each
scheme has its advantages. A cut-off scheme deals with the problem, that it violates
Lorentz invariance. Dimensional regularization however is rather “unnatural”. UV
and IR singularities are regulated along the same line, also stemming from different
divergent regions of the complex dimension D.

Nevertheless the physical result in the end has to be independent of the used scheme.
Also its common to all schemes, that an additional scale, the renormalization scale, is
introduced in the theory.

Renormalization

It may happen, that the regulator scales do not drop out of the physical observable. In
such cases, we have to reinterpret the actual physical observable. The quantity in the
Lagrangian is called bare-quantity. Additionally we introduce the physical renormalized
quantity. In this way we include the divergence in a renormalization factor. Commonly
a multiplicative renormalization prescription is used, as e.g. for the QCD fields and
parameters

ψq0 =
√
Zqψ

q (mq)0 = Zmmq (1.44a)

(Aaµ)0 =
√
ZAA

a
µ (gs)0 = µεZggs (1.44b)

Here the bare quantities are labeled by a subscript 0. We had to introduce the scale
µ in order to keep the coupling constant gs dimensionless. Now putting this physical
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1. Introduction

fields in the Lagrangian the usual choice is to express everything through the physical
fields and keep the known Feynman rules

L = ψ̄0(i/∂ −m0)ψ0 = ψ̄(i/∂ −m)ψ + (Zq − 1)ψ̄i/∂ψ − (Z2Zm − 1)ψ̄mψ . (1.45)

Since we evaluate the loop integrals order by order, the renormalization constants are
defined order by order as well.

In physical observables, by summing up to all orders, the renormalization scale should
drop out. However, since the expansion is only performed to a finite number of terms,
there is always a remnant dependence. The dependence is usually of the form log µ2/Q2,
where Q is the momentum transfer. Therefore the typical choice is to set the renormal-
ization scale around Q2 to keep these logarithms small. However one should keep in
mind to check the dependence on this scale, and that higher order computations should
fix the scale better.

Renormalization Group and Asymptotic Freedom

(a) Tree Level.

(b) Gluon Loop Insertion. (c) Quark Loop Insertion.

(d) Ghost Loop Insertion. (e) Counter Term.

Figure 1.3.: All necessary diagrams for computing the QCD β-function at the one loop
level in background field gauge.

The convergence of the higher-order calculations strongly depends on the magnitude
of the coupling constant. At the usual scales we observe, we have αem = 1/137 and αs ≈
0.2. Therefore considering QCD corrections is very important for the phenomenological
analysis of weak decays, whereas in most applications QED and weak corrections are
negligible. We explicitly have argued, that the bare quantities do not depend on µ.
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1.3. The Standard Model

Thus we can compute the behavior of the µ-dependence from eq.(1.44). This leads to
the renormalization group equations (RGE)8

d

d lnµ
gs(µ) = −εgs(µ)−gsZ−1

g

dZg
d lnµ︸ ︷︷ ︸

β(gs)

⇒ d

d lnµ
αs(µ) = 2β(µ) = −2β0

α2
s

4π
− 2β1

α3
s

(4π)2
(1.46)

This is a special RGE, called the beta-function. βi are the coefficients to loop order
i + 1, which can be computed from the coupling constant renormalization constant.
They have already been calculated and are given by

β0 =
11NC − 2Nf

3
, β1 =

34

3
N2
C −

10

3
NCNf − 2CFNf CF =

N2
C − 1

2NC

,

where Nf denotes the number of quark flavours9, and Nc is the number of colours. For
calculating this you need to consider the diagrams shown in Figure 1.3, and then extract
the corresponding renormalization constant Zg. We have only shown the diagrams for
the one loop contribution. The two gluon-ghost vertex is necessary to extract the
correct physical polarization of non-Abelian gauge fields in loop diagrams.

For a complete review on this topic, please refer to references [2, 4, 9–11].

1.3.5. The Standard Model Particles

Now we are in the position to give a complete summary over the particle content of
the SM. First we summarize the gauge bosons, mediating the four known forces of the
Standard Model. We also list their experimentally determined properties. Then we
will focus on the particles, leptons and quarks, which build the matter.

The Standard Model itself, as it has been constructed along the line which has been
described above, has in total 19 different parameters. These parameters arise from the
proposed structure and from the symmetry breaking sector.

3 Coupling constants: SU(3)C ⊗ SU(2)L ⊗ U(1)Y

1 Higgs Mass

1 Higgs vacuum expectation value (VEV)

6 Quark masses

3 Lepton masses

8Its called a group, because these differential equations link the different sets of quantities at different
values of µ.

9Please note, that the number of quark flavours depends on the scale at which we are computing the
diagrams: we have to take into account all quark flavours with mq . µ, the others are integrated
out of the theory and do not appear as dynamical degrees of freedom.
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3 Quark mixing angles

1 CP-violating phase

1 Strong CP violating phase (often assumed to be zero)

The Strong CP violating phase arises due to a total derivative term in the Lagrangian
of the form

Lθ = −θ
2
εµνρσF

µν
a F ρσ

a = −θ∂µkµ , kµ = 4εµνρσtr
[
Aν∂ρAσ −

2ig

3
AνAρAσ

]
. (1.47)

Due to the non-Abelian structure of QCD such a term can contribute, although in
classical mechanics such terms vanish in the equation of motion. Nevertheless θ is
measured to be extremely small, compatible with zero.

Furthermore the non-vanishing neutrino masses were established. Now incorporating
them into the Standard Model, which is just an extension, leads to nine additional
parameters

3 Neutrino masses

3 Neutrino mixing angles

1 CP violating phase

2 Majorana phases.

Thus depending on the point of view, we have at least 18, at maximum 28 parameters
in the Standard Model which have to be extracted from experiment. Please note, that
almost all of these parameters are related to flavour physics.

The Gauge Bosons

Altogether we have twelve different gauge bosons stemming from the Standard Model
gauge group

SU(3)C ⊗ SU(2)W ⊗ U(1)Y

with different properties, where eight different gluons exist. For completeness their
properties are listed in the table 1.1. The photon and gluon are massless due to the
exact remaining symmetry

SU(3)C ⊗ U(1)em

after the electroweak breaking. The massive weak bosons mediate the charged and
neutral currents, which range is limited due to their mass. As it was mentioned their
exist eight gluons, corresponding to the eight possible color charges: It transforms
under the adjoint representation

3⊗ 3̄ = 1⊕ 8 . (1.48)

The gluon singlett, which corresponds to the colorless symmetric admixture does not
exist, because we have SU(3) to conserve unitarity: It removes the U(1) singlett piece.
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1.3. The Standard Model

Boson Mass Coupling Theory

γ 0 e QED

W± 80.403± 0.029 GeV GF GWS

Z0 91.1876± 0.0021 GeV GF GWS

g 0 gs QCD

Table 1.1.: Fundamental Gauge Bosons of the Standard Model.

The Matter Particles and their Properties

The particles are divided into leptons, quarks and gauge bosons. Quarks are the only
particles that undergo strong interaction. For some reason nature duplicated the leptons
and quarks into three families, also called generations. Each family is divided into a
doublett, in each case an “up-type” quark with the electric charge +2/3e and a “down-
type” quark with the electric charge −1/3e. Here e denotes the elementary charge of
the electron, defined through −e. Additionally there is a charged lepton with charge
−e corresponding to the up-type quark, and a neutral lepton (neutrino) corresponding
to the “down-type” quark. The families are sorted according to their experimentally
determined mass; an overview is given in table 1.2, taken from [13].

Our usual matter consist of the first generation particles, only. The ones from the
second and third generation are produced in high energetic collisions. They obey the
usual principle that all systems tend to go to the most favourable energetic state,
and hence decay in a chain into the first generation. As we have seen this decays are
mediated through the weak bosons and this fact is most important for this thesis. Thus
we will discuss this in much more detail later.

Family Electric Charge

I II III (e)

Leptons

(
e

νe

) (
µ

νµ

) (
τ

ντ

)
−1

0

Quarks

(
u

d

) (
c

s

) (
t

b

)
2
3

−1
3

Table 1.2.: Elementary particles sorted after families.

We have already learned that there exist no free quarks10, so only bound hadronic
states, baryons and mesons, can be experimentally measured.

10The top quark is an exception, because it is heavy enough to radiate a real W -boson, responsible
for the decay. Therefore it decays faster than the time it takes to form a bound hadronic state.

19



1. Introduction

Hence the quark masses are only parameters in the theory, but not physical observ-
ables. They have to be defined in certain schemes, which can be translated into each
other. Besides the masses also the coupling constants are such scheme dependent pa-
rameters. All these parameters depend on a scale parameter, usually called µ. In the
end physical observables have to be independent of this parameter. Therefore this scale
just shifts contributions from one piece to the other, depending on how one looks at the
process. It is known that below approximately µH ≈ 1 GeV the strong force becomes
too strong to be treated perturbatively. This sets a reference point. All quarks that are
lighter than than µH are light quarks, the other heavy quarks. Typically the masses of
the quarks are given in the MS scheme of the “running” mass. The light quarks with
masses below 1 GeV are up down and strange. They are quoted at the reference scale
µ = 2 GeV. The heavy quarks charm and bottom are listed at the scale of their own
mass, whereas the heavy top quark is defined in the pole scheme.

Sometimes people quote the so called 1s mass of 4,63−4,77 GeV for the b-quark. This
is approximately half of the physical Υ(1S) resonance mass. Υ(1S) is a bound state of
bb̄, and due to the properties of the b-quark, this meson can be treated perturbatively
very well.

The determination of the physical lepton masses can be done pretty well, with very
small experimental errors.

I II III

Leptons

(
511keV

< 2 eV

) (
106MeV

< 0.19 MeV

) (
1777 MeV

< 18.2 MeV

)

Quarks

(
1.5− 3.3MeV

3.5− 6.0 MeV

) (
1.16− 1.34 GeV

70− 130 MeV

) (
169.7− 172.9 GeV

4.13− 4.37 GeV

)

Table 1.3.: Masses of the Elementary Particles

It is a challenge to measure the neutrino masses. These particles can only be seen
indirectly, since the neutrinos just interact weakly. Therefore at the moment it is only
possible to give upper bounds.

1.3.6. Cabbibo-Kobayashi-Maskawa Matrix

As we have seen before, we diagonalize the Yukawa coupling terms in order to identify
the mass terms in the Standard Model Lagrangian. This can always be done by a
bi-unitary transformation, with one rotation matrix for up-type and one for down-
type quarks. Plugging this transformation into the charged current, we are left with
terms that couple up-type quarks and down-type quarks. With the rotated fields the
Lagrangian density of the charged current reads

Lcc = − 1√
2
g2

[
Ū ′LV

(u) /W
+
W (d) †D′L + D̄′LW

(d) /W
−
V (u) †U ′L

]
. (1.49)
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From this we define the Cabbibo-Kobayashi-Maskawa (CKM) matrix as

VCKM = V (u)W (d) † =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (1.50)

which is a 3 × 3 unitary matrix. Hence in principle it has nine parameters, but as
we will explain below, due to constraints we are left with 3 mixing angles of the three
families and one complex phase, responsible for CP violation.

In case of the neutral current, there are no transitions between different quark flavours
at tree level, because there are no transitions between up- and down-type quarks.
Therefore the rotation matrices cancel out.

This concept is different to the lepton sector. There we have only one rotation due
to the massless neutrinos, because we have argued that in this case the same rotation
for both charged and neutral leptons can be chosen. Therefore the charged current
mediates only transitions between charged leptons and neutrinos of the same family,
because in the analogous equation (1.49) of the lepton sector, W (d) can be chosen as
V (u) and therefore (1.50) becomes unity.

Parameterization of the CKM Matrix

In general we have for n generations a n× n complex matrix with a priori

N = 2n2

parameters, from which n2 can be eliminated by the unitarity condition. Furthermore
have Nunob. = 2n− 1 relative unobservable phases. Thus in total we have

NPhases =
(n− 1)(n− 2)

2
NAngles =

n(n− 1)

2
, (1.51)

where the number of rotation angles is known from the n-dimensional rotation in real
Euclidean space. This makes in total

NParameter = NPhases +NAngles = (n− 1)2 (1.52)

physical parameters. Therefore in case of four quarks, corresponding to n = 2 gen-
erations, we are left with one physical parameter: The Cabbibo angle. This was also
assumed phenomenological in the beginning, and used to forecast the charm quark [21].

In the real physical situation, we have three families11 and hence three rotation angles
and one CP violating complex phase. The most common parameterization of the CKM
matrix is given by the Particle Data Group (PDG) [13] by the means of Euler rotations
among the three families plus a CP violating phase put to the 1−3 transition

VCKM =

 c12c13 c13s12 e−iδs13

−c23s12 − eiδc12s13s23 c12c23 − eiδs12s13s23 c13s23

s12s23 − eiδc12c23s13 −eiδc23s12s13 − c12s23 c13c23

 .

11We do not assume a fourth generation here, also this is discussed in the literature.
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1. Introduction

Here sij ≡ sin θij and cij ≡ cos θij. To visualize the strength, often the so-called
Wolfenstein parameterization is adopted with

s12 = λ , s23 = Aλ2 , s13e
iδ = Aλ3(ρ+ iη) ,

where λ ≈ 0.22. This allows to expand the CKM matrix in powers of λ

Vckm ≈

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 . (1.53)

Hierarchical Structure of the CKM Matrix

Plugging in the numbers, we can immediately see the hierarchical structure of the CKM
matrix, where we restrict ourselves to the absolute values

|Vckm| ≈

0.97425± 0.00022 0.2252± 0.0009 (3.89± 0.44) · 10−3

0.230± 0.011 1.023± 0.036 (41.5± 0.7) · 10−3

(8.4± 0.6) · 10−3 (38.7± 2.1) · 10−3 0.88± 0.07



≈

.

In fact the more you go away from the main diagonal, the smaller the values are. This
basically means, that transitions within the same family are enhanced and transitions
from the third family to the other ones are suppressed, where the transition from the
third to the first family has the smallest value.

The values are taken from [13] in the one sigma interval. But this values have to be
taken with some care, because in all determinations subtleties are hidden. Especially the
determination of |Vcb|, where most parts of this thesis deals with, has some discrepancy
for two different methods, today. The values are taken from the determination from
inclusive measurements. The exclusive experiment shows slight deviations, namely

|Vcb|incl. = (41.5± 0.7) · 10−3

|Vcb|excl. = (38.7± 1.1) · 10−3 .

Measurements and the Unitary Triangle

The CKM mechanism is a very important part of the Standard Model. It is therefore
natural to investigate this sector carefully in order to test the SM. All measurements
are combined in the so-called unitary triangle. For this we use the unitarity condition
of the CKM matrix and keep in mind, that a sum of three complex numbers equal to

22



1.3. The Standard Model

zero, corresponds to a closed triangle in the complex plane. It can be shown, that all
six unitary triangles (and their complex conjugate ones) are equivalent. The area A
of the unitary triangles, proportional to the CP violation, are given by the Jarlskog
invariant J = 2A, defined by

J
∑
m,n

εikmεjln = Im
[
VijVklV

∗
ilV
∗
kj

]
. (1.54)

Therefore we choose one particular triangle, which has the property of all sides of the
same order of magnitude in length

.

This triangle is then visualized in the ρ−η plane, see Figure 1.4, where we have used
the slightly better converging definition of ρ̄ and η̄ with

s12 = λ =
|Vus√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣VcbVus

∣∣∣∣ ,
s13e

iδ = V ∗ub = Aλ3(ρ+ iη) = Aλ3(ρ̄+ iη̄)

√
1− A2λ4

√
1− λ2 [1− A2λ4(ρ̄+ iη̄]

. (1.55)

In this convention the triangle condition takes the form

1− (ρ̄+ iη̄)− (1− ρ̄− iη̄) = 0 . (1.56)

Additionally this convention ensures, that the tip of the triangle

ρ̄+ iη̄ = −VudV
∗
ub

VcdV ∗cb
(1.57)

is independent of the phase-convention, because all possible transitions between the
families are accounted for. Now different measurements lead to different constraints

Figure 1.4.: Sketch of the Unitary Triangle.
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1. Introduction

for the triangle. The sides are measured from CP-conserving quantities, whereas the
angles are extracted from CP-violating processes. All measurements are then combined
in a fit, where the latest result from the CKM-Fitter group [14] is displayed in fig. 1.5.
We see, that all measurements agree very well within their errors until now. There is
not much space for deviations. The values as presented in [13] are given by

Figure 1.5.: Fit to the Unitary Triangle from the ICHEP conference 2010.

λ = 0.2253± 0.0007 , A = 0.808+0.022
0.015

ρ̄ = 0.132+0.022
−0.014 , η̄ = 0.341± 0.013 . (1.58)

The Jarlskog invariant is given by

J =
(
2.91+0.19

−0.11

)
· 10−5 . (1.59)

The calculations within this thesis provides the tools to extract |Vcb|, which is an impor-
tant input for the so-called “unitary-clock”—the dark green circle around the origin—as
well as εk. The “unitary-clock” is mainly driven by |Vub/Vcb|. Nevertheless |Vcb| is also
an important ingredient for the determination of εK from Kaon physics, which is rep-
resented by the bright green hyperbolic function in fig. 1.5. There |Vcb| is used as an
input with the fourth power and contributes roughly one third to the total uncertainty
for this parameter.

We do not want to go in detail to all different measurements, which are implemented
in the plot. This is beyond the scope of this thesis, and can be read in references [13,14].
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1.3. The Standard Model

1.3.7. Problems of the Standard Model

The development of the SM has begun over 40 years ago, and a tremendous effort lead to
a very successful description of the elementary particles. Improving measurements over
decades have shown no large deviations from the predictions of the Standard Model.
Therefore nobody doubts the validance of this theory, at least at the energy scales we
currently can observe. Nevertheless some theoretical problems arise, which in principle
have to be solved. The experiments now running at LHC and the forthcoming super
flavour factories should deliver the needed data to search for the new physics (NP)
beyond the Standard Model. The problems of the Standard Model, in which people
believe, are addressed below. Most of these problems arise due to the comparison
with cosmological experiments. In cosmology the relevant force is gravity. Until now
there is no consistently quantized theory known for general relativity and therefore if
and how the unification with the Standard Model forces can be possible, is unknown.
Nevertheless observations from cosmology can be compared with particles physics and
some of them lead to theoretical problems.

• CP Violation

Within the SM CP is violated through a complex phase in the CKM matrix12.
Additionally due to non vanishing neutrino masses we have CP violation in the
lepton sector. From cosmological observations it is known, that the galaxies
consist of matter, and not anti-matter. Therefore a mechanism after the big bang
is responsible for the mismatch between particle and anti-particle. In the process
of baryo(lepto)-genesis this could be due to CP violation. However the size of CP
violation is too small, to account for that.

• Number of Generations

Experimentally it is well established, that there should be three generations of
particles, using the width13 of the Z0. This assumptions is essential for the
theoretical construction of the SM, but no deeper reason behind this is known.

• Dark Matter

Again from cosmological observations we know the approximate composition
of the universe. From the expansion an estimated “dark energy” accounts for
roughly 70%, whereas ordinary known matter plays a little role with roughly 2-
3%. Additionally from gravitational effects, there should be some matter content
in the order of 20-25%, where ordinary matter nor massive neutrinos can be ac-
counted for. This unknown matter is called “dark matter”. Many new physics
models try to explain this with new heavy particles which have not been dis-
covered, yet. This explanation however needs new physics beyond the Standard
Model. Many scientists believe in good reasons, that this has to happen at the
TeV scale.

12We do not want go into details of strong CP-violation and all that.
13Assuming, that there is no fourth generation heavy neutrino with mν > MZ/2.
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1. Introduction

• Vacuum Energy

The Higgs has a non-zero ground state energy, leading to a vacuum energy. This
vacuum energy can be calculated to be ρHiggs = M2

Hv
2/8 & 108 GeV4. On the

other hand in general relativity the cosmological constant has to be introduced.
This is also a kind of vacuum energy responsible for an accelerated expansion
of the universe, and turns out to be ρVac. . 10−46 GeV4. In comparison with
the vacuum density from particles physics this covers more than 50 orders of
magnitude, which cannot be explained. Usually to explain such a difference of
orders of magnitude a mechanism is needed, which cancel out huge contributions.

• Hierarchy Problem

In our case the relevant scale for defining hierarchical structures is the energy (or
mass) scale. Please note that the masses of the particles differ from the lightest
(even if we neglect the neutrinos) to the heaviest by several orders of magnitude,
which can be seen by the ratio me/mt . 10−5. But the masses are all created by
the same mechanism, and therefore the SM itself does not provide a statement
about this fact.

And even stronger problem is the Higgs mass itself. All particles masses with the
exception of the Higgs are created by symmetry breaking. Therefore their size is
protected by the symmetry. The mass of the Higgs itself, however, does not have
this feature. Even, if we put the value at the GUT scale to a very low value, it
would be large at the scales we are observing at the experiments: The Higgs mass
has a quadratic divergence with respect to renormalization effects.

• The Parameters

To describe the particles within the Standard Model a lot of parameters are
necessary. Additionally it works only, because they take their special values. The
model just explains, why the parameters are existing, but now their exact size
and number. So the model does not explain any deeper reasons behind it, and
from some perspective this might look rather unnatural.

However the Standard Model has been tested to an incredible precision up to know and
up to the energies we can measure it. That is the reason, why the SM should at least
be seen as an effective theory.

1.4. Motivation and Task

We have learned that the Standard Model exhibits an incredible precision in testing it,
yet it has several problems. Basically nowadays there are in principle two approaches
to further investigate the structure in the theoritical side.

• We can push computations to its limits, in order to probe the SM in an indirect
way. In combination with the increasing and advancing experiments all measured
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1.4. Motivation and Task

data becomes extremely precise. This allows to search for deviations and tensions
and in the end gives hints to physics beyond the Standard Model. Besides that,
of course, a precise knowledge on the natural parameters is always desired.

• Besides we can directly look if new physics (NP) shows up in certain processes.
We can either choose a particular model, which may describe the real physical
situation, and see if this is applicable. Or we allow for operators, respecting the
gauge symmetry of the Standard Model, to see if they contribute. This is an
effective theory ansatz and very general. This is very efficient in investigating a
structure and also model-independent. Concrete models can be compared to this
effective theory by using the renormalization group.

Within this thesis we will pursue both ansatzes in order to clarify the value of |Vcb|
with respect to the tension between inclusive and exclusive determination.

We will first investigate the non-perturbative structure of the inclusive decay B̄ →
Xc`ν̄`. It will be shown, that the mathematical tools show the expected behaviour.
First we push the computation to higher orders and additionally we treat the charm-
quark in different scenarios (different power-counting for the charm mass), and show
how the calculation has to be performed in case of light final states, e.g. B̄ → Xu`ν̄`.
This also gives a deeper theoretical insight into the structure of the expansion, which
is not only an expansion in 1/mb but rather in 1/mb× 1/mc. An estimate of occurring
parameters is done in order to perform the numerical estimate of the moments. We
show that the theoretical error due to the non-perturbative expansion is at the order
of O(1%).

In the second part we make some calculations for a model-independent analysis of
exclusive B → D(∗)`ν̄` decays. First we use an effective field theory ansatz, to show
which operators besides the Standard Model ones can appear to mediate this decay.
The conditions that these operators have to fulfill are gauge and Lorentz invariance.
In order to perform a solid analysis later on, we first compute the O(αs) corrections to
all operators and reproduce the known Standard Model result. This will be used later
on as an input in the analysis.
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2. Phenomenology

The aim of phenomenology is to investigate the structure of the Standard Model with
the help of decay or production processes. Using this we can extract the unknown and
not calculable parameters of the SM and investigate if the underlying symmetry and
principle is assumed correctly. In other words the flavour sector including all parameters
related to the different flavours is tested.

Here we pursue two different goals. One is to pinpoint an important parameter, the
CKM matrix element |Vcb| to a better precision by an improved theory calculation. The
other goal is to perform a bottom-up approach to search for deviations of the SM by
general assumptions. In doing so we can get a handle of the structure of possible new
physics effects, which will give indications how the theory beyond the SM may work.
But we do not restrict ourselves to a specific BSM model.

Out of the total 27 parameters in the Standard Model, almost all are related to
flavour physics. Therefore it is crucial to test the flavour sector in order to verify or
falsify the SM. We will investigate the phenomenology of a bottom quark decaying into
a charm quark. This process is a weak decay, and therefore directly related to the CKM
matrix element |Vcb|. As we have already mentioned, this piece itself is required for one
side of the unitary triangle. Furthermore it goes in the determination of εK of Kaon
mixing with the fourth power. Therefore we need to have a very precise determination
of |Vcb|.

On the other hand we also try to Figure out the structure behind such processes.
Due to the hadronic uncertainty an admixture of different currents for the exclusive
transition is not ruled out, yet. If we incorrectly assume only the SM left-handed current
this would influence the extraction of |Vcb| and may explain the small tension between
inclusive and exclusive determination. The same analysis has been performed in the
inclusive case, where no sensitivity to right-handed currents has been found [15,16].

Finally we derive formulae for the different experimental observables. From fits to
these formulae it is possible to extract the parameters: |Vcb| and quark masses. The
necessary theoretical foundations to perform the analysis are described below.

2.1. Particle Decays

We leave out all subtle details, like the quantization of the fields, and mention only
some relevant facts. These things are discussed in textbooks [9, 12, 17, 18]. A more
elaborate and different approach, but also more difficult, are path integrals. A very
good introduction is given by [19].

The decay of particles is in theory always mediated by the appropriate term in the



2.1. Particle Decays

Lagrangian density. For the description of interactions we need to have higher than
bilinear terms, coupling the different Fourier modes of particles to each other. For
preserving causality we insist on having local interactions only.

2.1.1. Operators and Scattering Matrix

The operators relevant for the decays have to be read off from the Standard Model
Lagrangian, in general we denote them by Lint. The terms in Lint specify the allowed
interactions of the theory. The interaction then is a change of a state in the past to the
state in the future. By labeling the “out” states with momenta pi and the “in” states
with ki. The transition probability is then given by the time-evolution operator of the
interaction term, which defines the scattering matrix S

out〈p1p2 . . . |k1k2 . . .〉in ≡ 〈p1p2 . . . |S|k1k2 . . .〉 (2.1a)

S = lim
xin

0 →−∞
xout

0 →∞

T exp

i x
out
0∫

xin
0

d4xLint

 . (2.1b)

The S-matrix contains both, all kinds of interactions, and also the probability of no
interaction. Therefore it is natural to split the scattering matrix into the unity part
and the interaction part, denoted by the matrix T ,

S = 1 + iT . (2.2)

The invariant matrix element1 M is deduced from this by requiring momentum con-
servation

〈p1p2 . . . |iT |k1k2 . . .〉 = (2π)4δ(4)
( ∑

initial

ki −
∑
final

pi
)
· iM(k1,k2, . . .→ p1,p2, . . .) . (2.3)

2.1.2. Matrix Element

As we have seen before, the task is to evaluate the invariant matrix element. Since the
time-ordered product contains an infinite series of terms with the interaction terms of
increasing power, we usually keep only a finite number of terms. This is valid, as long
as the coupling constant, seen as an expansion parameter, is small. This is known as
“perturbation theory”, which we have encountered already before. Then we are left
with matrix elements of the form

〈Final State|O|Initial State〉 (2.4)

which have to be computed. O is a general operator, which is related to the interaction
term. In general this is a complicated procedure. However, this can be generalized and
for each theory so-called “Feynman rules” can be derived. These are building blocks
for those matrix elements, to compute the whole process. The blocks are divided into
the parts

1It is the analogous part of the scattering amplitude known from quantum mechanics.
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2. Phenomenology

• Propagators

• Vertex (interaction of particles)

• External lines.

The rules for the Standard Model are listed in every textbook [9, 12].
In QCD the procedure is a bit more complicated. The matrix element states are

bound states of quarks themselves. The coupling constants in this case is no longer in
the perturbative regime and therefore the expansion is not applicable any more. We
are therefore stuck with a non-perturbative matrix element. We encounter different
examples of these within this thesis and explain a way how to deal with them.

2.1.3. Decay Probability

The differential decay probability is in general proportional to the matrix element
squared

dΓ =
1

2MA

(∏
f

d3pf
(2π)3

1

2Ef

)
|M(MA → p1, . . . ,pn)|2 (2π)4δ4(pA −

∑
pf ) . (2.5)

1/2MA is a normalization factor, which defines the reference frame: The decaying
particle is assumed to be at rest. Therefore the decay rate is not Lorentz invariant,
because all parts but the normalization factor are. Since the momenta of the outgoing
particles are not fixed in general, we have to weight the probability by the appropriate
phase space.

The total decay rate (or width) is, if summed over all possible final states, inversely
proportional to the life time. In case of a specific final state, it is also called partial
branching fraction. The total decay rate now by performing the momentum integrals.
Furthermore usually one considers decay spectra, which leaves one of the kinematical
variables unintegrated, or moments of kinematical variables. The moments Mn, defined
as the weighted integral of a kinematical variable p

Mn =

∫
dp pn

dΓ

dp
, with Γ ≡M0 (2.6)

have the advantage, that they are fully integrated, which is required for certain sym-
metry assumptions.

2.1.4. Application to B Meson Decays

In the full Standard Model the interaction Hamiltonian, which mediates the semilep-
tonic b→ c transition is given by

HW =

(
g2√

2

)2

Vcb

(
c̄γµ

1

2
(1− γ5)b

)(
ēγν

1

2
(1− γ5)ν`

)
× 1

M2
W − (pb − pc)2

[
gµν − (pb − pc)µ(pb − pc)ν

M2
W

]
, (2.7)
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Figure 2.1.: Tree Level Feynman diagrams for a B meson decay.

where only the left-handed fields take part in the process. In Figure 2.1 the process is
visualized in a Feynman diagram; the panel on the right shows the interaction at parton
level, as described by the operator, and on the left indicates the physical process of
colour singlet particles, where the initial and final state quarks are bound into mesons.
Since the typical momentum transfer of the interaction is of the order (pb − pc)

2 <
p2
b = m2

b � M2
W , we can integrate out the heavy W -Boson. Thus we are stuck with

an effective Fermi theory with a local weak interaction. This corresponds to a Taylor
expansion of the propagator according to

1

M2
W − (pb − pc)2

=
1

M2
W

[
1 +

(pb − pc)2

M2
W

+ . . .

]
. (2.8)

The rapid convergence is good enough that we keep the first term only. The non-locality
would be reproduced if we summed up the infinite number of local terms. Therefore
the full interaction in eq. (2.7) turns into the simpler term

HW =
4GF√

2
Vcb(c̄γµPLb)(ēγ

µPLν`) , (2.9)

where we have defined the Fermi constant as 4GF/
√

2 = g2
2/(2M

2
W ), and introduced

the abbreviation for the left-handed projector PL = 1/2(1 − γ5). (c̄γµPLb)(ēγ
µPLν`)

corresponds to the operator O in eq. (2.4).
The next step is to compute the transition amplitude relevant for the physical process

of a meson decay, which is mediated by the operator at parton level. In quantum field
theoretical notation, we derive the invariant matrix element

M(B̄ → Xc`
−ν̄`) = 〈Xc`ν̄`|Hw|B̄〉

=
4GF√

2
Vcb〈Xc`ν̄`|Jq,µJµ` |B̄〉 , (2.10)

and introduce the leptonic Jµ` = ¯̀γµPLν` and hadronic current Jq,µ = c̄γµPLb. From
this we compute the necessary squared matrix element. Please note, that to leading
order in electroweak corrections the hadronic and leptonic current factorizes.∣∣M(B̄ → Xc`

−ν̄`)
∣∣2 = 8G2

F |Vcb|2
∣∣〈Xc`ν̄`|Jq,µJµ` |B̄〉

∣∣2
= 8G2

F |Vcb|2 〈B̄|J†q,ν |Xc〉〈Xc|Jq,µ|B̄〉〈0|Jν †` |`ν̄`〉〈`ν̄`|J
µ
` |0〉. (2.11)
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In the following we will specify the final hadronic state, and distinguish two different
cases:

1. Inclusive case: We sum over all kinematically possible final state hadrons labeled
by Xc, which carry one charm quantum number. This has advantages in theory,
as we will explain below. Furthermore the experimental analysis is more precise
with respect to statistics.

2. Exclusive case: We assume the decay of the pseudo-scalar B meson into either
a pseudo-scalar D meson (Xc ≡ D), or the vector meson D∗ (Xc ≡ D∗). Here
the decay is totally fixed. In experiment it can be detected very well, but of
course with a lower statistic than in the inclusive case. We will later see, that the
hadronic uncertainty in theory is more problematic than in the inclusive case.

2.2. Inclusive Decays

We put everything together and use equation (2.5) to compute the differential rate.
Please note, that the phase-space integration of the hadronic final state is contained
in the sum over the final state hadrons. We sum over the final state spins. Then the
differential decay rate is given by

dΓ =
∑
Xc

∑
Spins

leptons

1

2MB

(
d3p`
(2π)3

1

2E`

)(
d3pν`
(2π)3

1

2Eν`

)∣∣M(B̄ → Xc`
−ν̄`)

∣∣2
× (2π)4δ4(pB − (p` + pν` + pXc)) . (2.12)

Defining the leptonic tensor Lµν and the hadronic tensor Wµν as

Lµν =
∑
Spins

leptons

〈0|Jµ †` |`ν̄`〉〈`ν̄`|J
ν
` |0〉 (2.13)

Wµν =
1

2MB

∑
Xc

〈B̄|J†q,ν |Xc〉〈Xc|Jq,µ|B̄〉(2π)3δ4(pB − (p` + pν` + pXc)) . (2.14)

we end up with

dΓ = 16πG2
F |Vcb|2

(
d3p`
(2π)3

1

2E`

)(
d3pν`
(2π)3

1

2Eν`

)
WµνL

µν . (2.15)

Depending on the observables we want to analyze, we can calculate the appropriate
differential decay rate. Please note, that the non-perturbative input and all quark
dynamics is contained in the hadronic tensor. For this we will first apply the optical
theorem. Physically this means, that we consider a forward transition amplitude of the
form B̄ → B̄ via the inclusive charm intermediate state. By using the optical theorem

32



2.3. Exclusive Decays

we can relate the absorbative part, meaning the discontinuity, of this transition ampli-
tude to the desired hadronic tensor. The forward matrix element can then be treated
within heavy quark effective theory to parameterize the non-perturbative effects. This
allows us to relate the binding effects of QCD to a set of basis parameters. We will
pursue this ansatz in chapter 4.

2.3. Exclusive Decays

We now turn to a specific hadronic finale state. There we cannot use the optical
theorem trick, since this only works for an “inclusive enough” quantity, meaning that
we need to sum over enough final states, that are allowed by phase-space and quantum
numbers. This guarantees then that enough parts of the phase-space are covered for the
validance of the optical theorem. Otherwise we would miss important parts. Here the
phase-space is clearly defined since the final state particles are specified. We consider
the decays

B̄ → D(∗)`ν̄` ,

where D is a pseudo-scalar meson containing a charm quark, and D∗ is the correspond-
ing vector meson. Therefore the leptonic tensor remains the same, but the hadronic
part now turns into,

Wµν =
1

2MB

∫
d3pD(∗)

(2π)3

1

2ED(∗)
〈B|b̄γν

1− γ5

2
c|D(∗)〉〈D(∗)|c̄γµ

1− γ5

2
b|B̄〉

× (2π)3δ4(pB − (p` + pν` + pD(∗)))

=
1

2MB

∫
d3pD(∗)

(2π)3

1

2ED(∗)
(2π)3δ4(pB − (p` + pν` + pD(∗)))W̃µν . (2.16)

It is convenient to express the hadronic tensor in terms of Lorentz invariant amplitudes,
which are called form factors. These form factors are non-perturbative objects describ-
ing the binding effects inside the hadron. They correspond to the non-perturbative
parameters we encountered in the inclusive case. The Lorentz structure has to be
parameterized, obeying the parity and time-reversal invariance of the strong interac-
tion, using the four vectors pµB, pµ

D(∗) and occasionally the polarization vector εµ. The
polarization vector satisfies the constraint pD(∗) · ε = 0. The Lorentz invariant ampli-
tudes can only depend on p2

B = M2
B, p2

D(∗) = M2
D(∗) and the invariant scalar product

pB · pD(∗) . Since the masses are fixed, we choose the momentum transfer to the leptons
q2 = (pB − pD(∗))2 as the only independent variable. Within the Standard Model the
decomposition is then commonly done as

〈D|c̄γµb|B̄〉 = f+(q2)(pB + pD)µ + f−(q2)(pB − pD)µ (2.17a)

〈D∗|c̄γµb|B̄〉 = g(q2)εµαβγε∗α(pB + pD∗)β(pB − pD∗)γ (2.17b)

〈D∗|c̄γµγ5b|B̄〉 = −if(q2)ε∗µ − ipB · ε∗
[
a+(q2)(pB + pD∗)

µ + a−(q2)(pB − pD∗)µ
]
.

(2.17c)
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2. Phenomenology

The differential decay rate in q2 then reads

dΓ

dq2
(B̄ → D(∗)`ν̄`) =

1

2MB

4G2
F |Vcb|2

∫
d3pD(∗)

(2π)3

1

2ED(∗)

∫
d3p`
(2π)3

1

2E`

∫
d3pν`
(2π)3

1

2Eν`
× W̃µνL

µν δ(q2 − (pB − pD(∗))2)(2π)4δ4(pB − pD(∗) − q)) (2.18)

where we have to integrate over the appropriate phase-space and the hadronic tensor
has to be expressed in terms of the appropriate tensor decomposition (2.17).

Clearly the advantage is, that the decay is fully specified and we can investigate the
structure of this specific transition in more detail. It can be extracted more reliably
from experiment, although the statistics limit the experimental accuracy. Furthermore
the appearing form factors, which depend on kinematical variables, cannot be measured
since only the combination with |Vcb| appears in the formulae and the total rate cannot
be obtained, because the functional dependence is unknown due to its non-perturbative
structure. There basically exist two methods to compute the form factor at a specific
kinematical point, usually the zero-recoil point defined by q2 = (mb −mc)

2. One are
QCD sum-rules, and the other is to use lattice QCD

Therefore in total the extraction of |Vcb| is less precise compared to the inclusive case.
But the form factors are more sensitive to the Dirac structure, and therefore an analysis
complementary to [15, 16] seems to be promising in the search of physics beyond the
Standard Model. To this end we will extend the Standard Model current in an effective
theory model to allow for more Dirac structures. Details will be given in chapter 5.

2.4. Relation to CKM Parameters

A great advantage of such a phenomenological analysis is, besides probing the structure
of a quark transition, the access to the CKM matrix element. Therefore most of the
Standard Model parameters are related to the flavour sector, which can be accessed and
probed through such a phenomenological analysis. Although we deal almost exclusively
with |Vcb|, it is time for a short comment on CP violation. It is manifested in the
Standard Model, as we have explained in section 1.3.6, that the only source of CP
violation is the phase in the Cabbibo-Kobayashi-Maskawa matrix. CP is the symmetry,
which relates particles with their anti-particles. Thus if CP is conserved, for all possible
initial states A final states B and the corresponding anti-particle states Ā and B̄

Γ(A→ B) = Γ(Ā→ B̄) (2.19)

would hold true. It was however noted, that CP is not conserved in nature. Note
that the decay time, which is inversly proportional to the total branching fraction, is
the same for particle and antiparticle, since CPT is conserved. Thus CP violation in
one mode has to be compensated by an additional CP violation in another mode of
the partial branching fraction with the opposite sign. Since we measure the absolute
values, it can only occur in interference terms of two different amplitudes. There are
three different processes, where such CP violation can be observed.
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2.4. Relation to CKM Parameters

1. Direct CP violation in a decay. This is the case when two decay amplitudes
interfere. It is defined as the absolute value of the transition matrix element ratio
from the process and the decay of the antiparticle in the anti final state, and can
be measured via the ratio ∣∣〈f̄ |H|M̄〉/〈f |H|M〉∣∣ 6= 1 .

2. Indirect CP violation can occur in neutral meson mixing M0 ↔ M̄0, and is
induced by the interference of the absorbative and dispersive mixing amplitude.
The mixing and its time-evolution is given by a non-hermitian Hamilton operator,
which can be diagonalized in terms of a “light” HL and “heavy” HH , leading to

H = M − i

2
Γ ,

|ML〉 ∝ p|M0〉+ q|M̄0〉 , |MH〉 ∝ p|M0〉 − q|M̄0〉 , |p|2 + |q|2 = 1 ,(
q

p

)2

=
M∗

12 − (i/2)Γ∗12

M12 − (i/2)Γ12

,

where for a CP conserving quantity (q/p)2 = exp(2iξM) is a phase. The physical
observable mesons and anti-mesons are then given as a mixing of these quantities

|M0
phys(t)〉 = g+(t)|M0〉 − q

p
g−(t)|M̄0〉 , |M̄0

phys(t)〉 = g+(t)|M̄0〉 − p

q
g−(t)|M0〉 ,

g±(t) ≡ 1

2

(
e−iMH t− 1

2
ΓH t ± e−iMLt− 1

2
ΓLt
)
.

The CP violation is measured in the time-dependent asymmetry, defined by

ASL ≡
Γ[M̄0

phys(t)→ l+X]− Γ[M0
phys(t)→ l−X]

Γ[M̄0
phys(t)→ l+X] + Γ[M0

phys(t)→ l−X]
=

1 + |q/p|4

1− |q/p|4
. (2.20)

In fact a deviation from zero indicates CP violation, because (q/p)2 is not only a
phase in this case. Note that, also it is build out of time-dependent decay rates,
this asymmetry is time-independent.

3. Furthermore CP violation can appear due to the mixing of both cases from above:
The interference between a decay with and without mixing: M0 → f and M0 →
M̄0 → f , where the final state f has to be common to both M0 and M̄0, including
all CP eigenstates. It can be measured via the same asymmetry as in eq. (2.20),
but the final state has to be replaced by a CP eigenstate. A prominent example
for this is the decay of the neutral Kaon.

Accordingly a lot of phenomenological processes related to the different quark flavours
can be used to analyze this important parameters with different quark flavours. Among
these are processes related to physics with a strange quark in K mesons, charm quarks
in D mesons and bottom quarks in B mesons.
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3. Effective Field Theories

Usually a theory has lots of degrees of freedom (d.o.f.), which are not relevant for
specific considerations. Therefore reducing the number of d.o.f. to the relevant ones
simplifies a problem. A first example of an effective theory (ET) is the Lagrangian in
classical mechanics, where some of the coordinates are eliminated by constraints. Then
the problem and its equation of motion can be described be generalized coordinates,
which are less then the full set of Cartesian coordinates. As a second example we should
mention special relativity (SRT) and the low velocity limit, classical mechanics, of it.
Here a scale, the velocity, is a kind of separator, which tells if the effective classical
theory is applicable. For SRT the relevant scale is the speed of light c and we have to
use Lorentz transformation. However if the velocity fulfills v � c we can use classical
mechanics and the corresponding, much simpler, Galilei transformation. In effective
theories often new symmetries arise and these lead to a reduced number of parameters
to be fitted by experiment.

In elementary particle physics we use (quantum) field theories. An effective field
theory (EFT) is a field theory, which describes the physical problem with only the
relevant d.o.f.. These are the relevant particles only. The information on non-relevant
particles or modes is absorbed into coefficient functions, which do not contribute to
the dynamics of the system. Therefore it is much easier to handle the EFT. A typical
distinctive feature is the energy scale at which a process happens. Then only particles
with masses below this scale are relevant.

There are basically two different approaches to EFT in phenomenology: On the one
hand we can assume, that an underlying and more fundamental theory is known. Then
we can “integrate out” the degrees of freedom which are not dynamical for the pro-
cesses we consider. The coefficient functions, “Wilson coefficients”, can be computed
explicitly. These techniques, which we will explain below, improve the results. This
direct approach is called a “top-down” approach. On the other hand we assume no
knowledge about the fundamental theory, we require only a symmetry at the low en-
ergy scale, which is usually reasonable. This approach is known as a “bottom-up“
approach. For such cases, we can make a general Ansatz by just requiring this underly-
ing symmetry. The integrated out d.o.f. are then hidden in the Wilson coefficients. An
advantage of this approach is, that by a matching procedure every full theory, which
respects this symmetry at low energies, can be compared to the effective theory and
the corresponding Wilson coefficients can be calculated. Therefore results retrieved by
this EFT can be directly used to be compared to a more fundamental theory.

Now we will explain this in more detail with some examples, which are mainly used
in this thesis. First we give some general remarks.



3.1. Operator Product Expansion and Perturbative Computations

3.1. Operator Product Expansion and Perturbative
Computations

In this section, the general procedure is briefly outlined, more details can be found in
the literature [9, 17, 19, 20]. Therefore an extensive review is out of the scope of this
thesis. Generically we are aiming for a separation of scales. Which means the low energy
phenomena do not depend on the details of the short-distance physics and therefore
the short-distance physics is put into effective couplings. Short-distance corresponds
to high energy.

For example the muon decay takes place at the mass of the muon. The intermediate
W boson is much heavier mµ �MW , and therefore the details of the non-local interac-
tion is not probed and we can effectively consider a local four-fermion interaction. The
dependence on the high energy scale is separated in non-analytical coefficients of the
form logmµ/MW . As we will see in a moment, by resumming these effects we actually
can improve the perturbation theory series.

The relevant d.o.f. are given by the particles or modes, which can appear in initial
and final state of the process. Then we compute the amplitude to a given order in the
perturbative expansion and rewrite it in terms of operators with only these dynamical
d.o.f.. The matching between these two steps leads to the result

〈f |Leff.|i〉 =
∑
i

Ci〈f |Oi|i〉 . (3.1)

We now separate the effects by a scale “factorization scale”1 µ, which discriminates
the short- and long-distance effects. Therefore both the Wilson coefficient C and the
operator O depend on this scale

Ci → Cren
i (µ)

〈Oi〉 → 〈Oi〉ren.(µ) .

This procedure is also called Operator Product Expansion (OPE), since we effectively
expand the Lagrangian in terms of different operators with increasing dimension. The
Lagrangian has to have mass dimension four, and therefore the operator expansion in
terms of the scale Λ, having the dimension of a mass, takes the form

〈f |Leff.|i〉 =
∞∑
k=0

1

Λk

∑
i

ck,i(Λ/µ)〈f |Oi|i〉
∣∣
µ
. (3.2)

This is a generalization of Equation (2.8), where Λ takes the role of MW . This is the
scale, up to which the EFT is assumed to be valid. Here the Wilson coefficients ck,i are
dimensionless and contain the short-distance contribution, meaning the physics above
the scale µ. The matrix elements 〈f |Oi|i〉

∣∣
µ

contain the long-distance physics below

1Actually this is a renormalization scale, since we usually do not apply a cut-off scheme, where the
factorization is performed at a hard scale.
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3. Effective Field Theories

this scale. Therefore varying the scale µ corresponds to shifting contributions from the
operator to the coefficient and vice versa. In fact no power corrections of the form
1/µ can appear here, because of the renormalizability of the dimension-four part of
the effective theory. Furthermore the higher order terms are non renormalizable. The
predictive power, however, is ensured since only a finite number of counter terms is
needed. The only requirement is that the ratio µ/Λ has to be sufficiently small. The
matrix element in eq. (3.2) should be µ-independent, however in keeping only a finite
number of terms on the right-hand side, a remnant µ-dependence is left over.

3.1.1. Loop Level

As mentioned before, interactions are created by terms of the form

T

[
ψ̄ψ exp

[
i

∫
d4xLint

]]
and since this is not solvable analytically in four dimensions2, we have to expand the
exponential in terms of a small parameter. Usually this small parameter is given by the
coupling constant α = g2

4π
, where αs denotes the strong coupling constant and αem the

electromagnetic one. As long, as the coupling constant is small, α � 1, we can do a
perturbative expansion. This leads to an increasing number of fields, where we integrate
over the coordinates. In momentum space (Feynman diagrams) this is reflected as an
integration over an internal momentum, symbolized by loops. Therefore higher order
corrections are called loop corrections, whereas the leading order is (usually) a tree-level
diagram with no integration over internal momenta.

3.1.2. Renormalization Group and Anomalous Dimension

This loop diagrams lead to the divergence effects that we have already encountered in
section 1. Therefore we have to regularize and renormalize additionally the operators
within the effective theories. In fact the divergences in effective theories arise due
to the integration over all values of the loop momenta, although formally its only
valid for small momenta. Thus these additional divergences have to be renormalized by
appropriate counter-terms, which then appear in the Lagrangian by rewriting operators
in terms of the physical observables. The ultraviolet (UV) region of the full theory has
to be reproduced by corrections to the Wilson coefficients, since this is independent of
the low-energy parameters. The infrared regime (IR) is obviously the same for both
cases.

These additional counter-terms lead to renormalization constants for both the oper-
ators and the Wilson coefficients, thus we define the renormalized quantities as

O = ZOOren. (3.3a)

C = ZcC
ren . (3.3b)

2In fact in the two-dimensional ’t Hooft model it is exactly solvable and may sometimes give hints
to our four dimensional real world.
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3.1. Operator Product Expansion and Perturbative Computations

Furthermore the fact that the un-renormalized bare quantities from the Lagrangian are
µ-independent lead to the renormalization group equation for the physical observables.
If we have more than one operator the formulae are generalized by introducing the
vectors C and O. Then the renormalization constants become matrices, which lead to
the renormalization group equation (RGE)

d

d lnµ
Oren(µ) =

[
Z−1
O

d

d lnµ
ZO

]
︸ ︷︷ ︸

γ(µ)

Oren(µ) , (3.4)

where γ is the anomalous dimension matrix (ADM). From the fact, that the product
is again µ-independent, we can read off

Zc = Z−1
O (3.5a)

⇒ d

d lnµ
Cren. = γTCren. . (3.5b)

From this two RGE equations for the operator (3.4) as well as for the Wilson coefficient
(3.5b) we have to mention three important facts:

1. Changing the scale µ corresponds to shift contributions from the operator into the
Wilson coefficient and vice versa. This is plausible, because µ acts as a separation
scale.

2. For off-diagonal entries in the ADM, furthermore contributions between different
operators are shifted by varying the scale.

3. In case of this non-diagonal γ, the reshuffling of contributions between the differ-
ent operators is compensated by an appropriate shift in the Wilson coefficients,
thus the first item is not distorted by the second one.

The anomalous dimension matrix γ also has an expansion in the coupling α

γ =
α

4π
γ(1) +

α2

(4π)2
γ(2) + . . . (3.6)

As we have seen, this matrix describes the “running” of the operators by changing µ.
Naturally this means we look with different magnification into this process and the
differential equation connects the set of operators with different µ. For that reason,
equations of the type (3.4) are called “renormalization group equation” (RGE).

The power of this “group”, which relates the set of operators at different µ, can be
seen explicitly, if we diagonalize (3.5b). Then with the help of the beta-function (1.46)
we get with the eigenvectors C̃

C̃i(µ) = C̃i(µ0) exp

 α(µ)∫
α(µ0)

dα′
γ(α′)

2β(α′)

 (3.7)

⇒ C̃i(µ) ≈ C̃i(µ0)

(
α(µ)

α(µ0)

)− γ(1)

2β0

, (3.8)
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3. Effective Field Theories

where the initial condition at µ0 is calculated from the matching condition to the full
theory at the scale, where the heavy particles are integrated out. We see, that this

procedure actually resumms the leading logarithms
(
α ln µ

µ0

)n
. By Taylor expanding

this result, we reproduce the computed term to order α

α(µ)

α(µ0)
≈

(1.46)

1

1− 2β0

4π
α(µ0) ln µ0

µ

geom.
=

series

∞∑
n=0

(
2β0

4π
α(µ0) ln

µ0

µ

)n
. (3.9)

In the next section we will give the set of effective operators of the weak interaction,
that we will investigate here.

3.2. Effective Weak Operators

We are dealing with decays of bottom quarks particularly into charm and also the
strange quark. This is a weak process mediated by the heavy W -boson. The two
very different scales - MW and mb, the latter being relevant for the decay, suggest to
construct an effective field theory for energies much smaller than the W mass. Therefore
we assume that the mass of the exchange boson is much larger than the typical momenta
q which are transferred. So we can expand in q/MW and stop at the constant term.
This yields already an amazing precision. Effectively this means we are not able to
resolve the non-locality of this interaction and look at the processes as if they were
local four-fermion interactions. This means we perform an operator product expansion
into local operators, which are responsible for the decays.

In the next two subsections we will derive the effective operators for the two relevant
cases within this thesis.

3.2.1. Bottom into Charm Decay: Tree Level

(a) Tree Level Standard Model. (b) Tree Level effective theory.

Figure 3.1.: Feynman diagrams for semi-leptonic b→ c transition.

At tree level this is in the full standard model theory displayed in Feynman diagram
3.1(a). In the effective interaction we are left with the operator

O = c̄γµ
1− γ5

2
b¯̀γµ

1− γ5

2
ν` , (3.10)
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3.2. Effective Weak Operators

where the left-handedness of this decay is reflected in the projector PL = 1−γ5

2
. This

local interaction is visualized in diagram 3.1(b).

In the section about exclusive decays we will extend the current from V-A Standard
Model to arbitrary Dirac structure. However, the diagrams look the same but with a
slightly modified vertex Dirac structure.

3.2.2. Bottom into Strange Decay: Loop Level

(a) Full diagram leading to the ef-
fective operator Ou,c1 . For b →
s + γ the up-type quark loop has
to get closed.

(b) Full diagram leading to the ef-
fective operator Ou,c2 . For b →
s + γ the up-type quark loop has
to get closed.

Figure 3.2.: Current-current Feynman diagrams for b→ s transition ∝ V ∗qsVqb.

Now turning to the decay b → s we notice, that this is a flavour changing neutral
current, for which there is no direct (i.e. tree level) transition in the SM. Such transi-
tions can occur only at the loop level, so it is a purely quantum theoretical effect and
therefore it is suppressed, see e.g. Figures 3.3: Here the matching between one diagram
in full Standard Model and the corresponding effective operator is displayed on the
level of a Feynman diagram. Such rare decays are often used for new physics searches,
because effects from physics beyond the Standard Model can occur only at loop level
in these decays. To this end NP effects are not suppressed a priori with respect to SM
contributions. Nevertheless a very good understanding of the SM process is required in
order to distinguish such effects. Also the process B → Xsγ is used to pin down some
parameters in the B → Xc`ν̄` decay. The process can only occur if we have an up-type
quark running in a loop.

In Figure 3.2 we display the Feynman diagrams relevant for the effective operators
Ou,c1 and Ou,c2 . In Figure 3.4(a) we show one example Feynman diagram leading to the
operators O3−6. We have not shown the distinction of the colour indices, nor the V −A
and V + A structure. The latter arises trough the fact, that a gluonic interaction is
purely V and therefore we have this admixture in the interaction with the weak V −A
structure. Note, that the corresponding quark loop for the operators O1−6 has to be
closed, in order to have a contribution to b → s + γ, as indicated in Figure 3.4(b).
Furthermore we have the magnetic penguins in Figure 3.4, where either a photon or a
gluon can couple to the loop particle.
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3. Effective Field Theories

(a) Full diagram leading to the effective op-
erators O7γ .

(b) Effective operator O7γ .

Figure 3.3.: One of the full SM diagrams and its corresponding effective operator O7γ

contributing to b→ s+ γ transition..

The list of all effective operators relevant for b→ sγ is then given by3

Oc1 = (s̄iγµ
1− γ5

2
cj)(c̄iγ

µ1− γ5

2
bj) Ou1 = (s̄iγµ

1− γ5

2
uj)(ūiγ

µ1− γ5

2
bj)

(3.11a)

Oc2 = (s̄iγµ
1− γ5

2
ci)(c̄jγ

µ1− γ5

2
bj) Ou2 = (s̄iγµ

1− γ5

2
ui)(ūjγ

µ1− γ5

2
bj)

(3.11b)

O3 = (s̄iγµ
1− γ5

2
bi)
∑

q=u,d,s
c,b

(q̄jγ
µ1− γ5

2
qj) O4 = (s̄iγµ

1− γ5

2
bj)

∑
q=u,d,s

c,b

(q̄jγ
µ1− γ5

2
qi)

(3.11c)

O5 = (s̄iγµ
1− γ5

2
bi)
∑

q=u,d,s
c,b

(q̄jγ
µ1 + γ5

2
qj) O6 = (s̄iγµ

1− γ5

2
bj)

∑
q=u,d,s

c,b

(q̄jγ
µ1 + γ5

2
qi)

(3.11d)

Ob7γ =
e

16π2
mb(s̄iσµν

1 + γ5

2
bi)F

µν Os7γ =
e

16π2
ms(s̄iσµν

1− γ5

2
bi)F

µν

(3.11e)

Ob8G =
gs

16π2
mb(s̄iσ

µν 1 + γ5

2
bi)Fµν Os7γ =

e

16π2
ms(s̄iσ

µν 1− γ5

2
T aijbj)G

a
µν

(3.11f)

Here i,j are colour indices. Now we have to sum over all operators with the correct
CKM prefactors, where in O3−6 have to consider the sum of all intermediate quarks.
as indicated by the sum. Furthermore we impose the unitarity condition

V ∗tsVtb + V ∗csVcb + V ∗usVub = 0 (3.12)

3Please note, that the top-quark is integrated out together with the W and Z-boson and therefore it
cannot appear in the operators.

42



3.3. Non-Perturbative Corrections

and neglect in the end terms containing the u-quark since |V ∗usVub/V ∗tsVtb| ≤ 0.025 such
that the effective Hamiltonian is proportional to |V ∗tsVtb|, only. Of course for precision
calculations we should include all terms.

The amplitude in the effective theory for this transition can be written as

A(b→ sγ) = C
∑
i=1,2,3

VUibV
∗
Uis

f
(mUi

MW

)
= C

[
V ∗csVcb

(
f
( mc

MW

)
− f

( mu

MW

)
)

+ V ∗tsVtb

(
f
( mt

MW

)
− f

( mu

MW

)
)]

, (3.13)

where in the last step the unitarity condition (3.12) has been used. Note that this does
not vanish, because the masses of the quarks are not equal. But it leads to an additional
suppression and is called GIM mechanism [21], the strength of this suppression (CKM
matrix elements, as well as quark mass differences) depends on the process considered.
Neglecting also the terms proportional to ms we end up with the effective Hamiltonian,
where we leave out the superscript b and c,

Heff(b→ sγ) = −4GF√
2
V ∗tsVtb

[
6∑
i=1

Ci(µ)Oi(µ) + C7γ(µ)O7γ(µ) + C8G(µ)O8G(µ)

]
.

(3.14)
The typical scale, where this process takes place is µ = O(mb). Numerically it turns
out, that the combination C7γ ·Ob7γ is the most important one, and therefore we compute
later on the corrections to Ob7γ, only.

(a) Full diagram leading to the
effective operators O3−6.

(b) Full diagram leading to the
effective operators O7γ,8G.

Figure 3.4.: Penguin Feynman diagrams for b→ s transition in the full theory propor-
tional to V ∗UsVUb.

3.3. Non-Perturbative Corrections

At small energies, at which quarks bind to hadrons, the coupling constant of QCD
becomes such large, that a perturbative expansion does not make any sense. Then we
are in the non-perturbative regime. The QCD scale ΛQCD can be defined, if we equal
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(3.9) to

αs(µ) =
4π

β0 ln µ2

Λ2
QCD

(3.15)

⇒ ΛQCD = µ0e
− 4π

2β0αs(µ0) . (3.16)

Now computing this to three loops [22] we get ΛQCD = 245+20
−17 MeV. ΛQCD is the scale

at which the coupling constant diverges, which is called the Landau pole. At energies
below one GeV QCD gets non-perturbative, because αs(1 GeV) ≈ 1 and an expansion
in αs is not possible anymore. On the other hand for higher energies we get αs(µ) →

µ→∞
0

and therefore QCD is asymptotically free and we can treat it in the known perturbation
theory.

Therefore we have to have methods how to deal with the non-perturbative objects.
In the next subsections we will explain how to derive effective theories for hadrons with
a heavy quark.

3.3.1. Heavy Quark Expansion

Now in our case we consider b-quarks in B-mesons. The mass of the bottom quark
is mb ≈ 4.2 GeV and therefore much larger than the typical hadronic binding scale
ΛQCD. This allows us to expand in the ratio ΛQCD/mb, and we are left with effective
operators describing the interaction of the quark inside the meson. With the help of this
procedure we get a handle on the hadronic matrix element. The disadvantage is, that
for an increasing precision we need to expand to operators of higher order. Therefore we
get more and more non-perturbative parameters in each step of the expansion, which
have to be extracted from experiment. These subtle details will be discussed later.

We first derive the Lagrangian for the heavy quark effective theory (HQET). The
basic idea is that the b quark is bound inside the B hadron. The momentum of the
B meson is given by P µ

B = MBv
µ, where the four-velocity vµ fulfills v2 = 1. Then the

b-quark inside is slightly off-shell

pµb = mbv
µ + kµ , (3.17)

where kµ is a residual momentum describing the off-shellness. To allow the b-quark the
binding with a light spectator quark to the hadron, the momentum has to fullfil

|kµ|
mb

∼ ΛQCD

mb

� 1 , (3.18)

and therefore it gives reason to expand in this ratio. To realize it in a QFT, we
notice that vµ is the only relevant four vector scale. Therefore we project out the large
momentum piece of the heavy quark field

Q(x) = e−imbv·xQv(x) (3.19)
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3.3. Non-Perturbative Corrections

and project onto a “small” and “large” component by the projector P± = 1/2(1 ± /v).
This defines the two fields

hv(x) =
1 + /v

2
Qv(x) (3.20a)

Hv(x) =
1− /v

2
Qv(x) . (3.20b)

The Dirac field Lagrangian then transforms to

LQ = Q̄(x)(i /D −mQ)Q(x) (3.21a)

= Q̄v(x)(i /D −mQ +mQ/v)Qv(x) (3.21b)

= h̄viv ·Dhv + H̄v(iv ·D + 2mQ)Hv + H̄vi /D⊥hv + h̄vi /D⊥Hv . (3.21c)

Here we have introduced the perpendicular component to vµ, defined for any four-vector
Aµ by

Aµ⊥ = (gµν − vµvν)Aν
with v · A⊥ = 0. We find, that the field Hv corresponds to the heavy component with
mass 2mQ and hv corresponds to the light field. Due to the coupling terms, we can
eliminate the heavy field by its equation of motion

Hv =
1

iv ·D + 2mQ

i /D⊥hv (3.22)

and end up with the HQET Lagrangian

LHQET = h̄v

(
iv ·D + i /D⊥

1

2mQ + iv ·D
i /D⊥

)
hv . (3.23)

This Lagrangian has two symmetries

1. Heavy Quark Symmetry (HQS): In the limit mQ → ∞ the Lagrangian does
not distinguish the different quark flavours. Thus charm and bottom quark are
treated on equal footings, as long as no corrections to this limit are considered.

2. Heavy Quark Spin Symmetry (HQSS): In the limit of HQS the Lagrangian is
additionally independent of the spin of the particle. Therefore the multiplet of
mesons, containing the heavy quark, with different spin is degenerate.

Nevertheless, these symmetries are only exact in the limit of infinitely heavy quark
masses, and this symmetry is broken by the second term of the Lagrangian. The
covariant derivative takes the role of the residual momentum and therefore we can
expand in the quantity iv·D

2mQ
. The first term of this expansion can be rewritten into the

form

i /D⊥
1

2mQ

i /D⊥ =
(iD⊥)2

2mQ︸ ︷︷ ︸
NR kinetic energy

+
g

4mQ

σµνG
µν︸ ︷︷ ︸

chromo-magnetic energy

(3.24)
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Please note, that this terms are also known from the non-relativistic reduction of the
quantum mechanical hydrogen atom! From these two terms, the breaking of the sym-
metry becomes obvious. The first term explictly involves the heavy-quark mass, and
thus distinguishes between the different heavy-quark flavours. From special interest is
the second term, which involves the spin of the particle. This term explains the lifetime
difference of a B and B∗ meson, due to their different spin.

Heavy quark effective theory introduces a further symmetry of the heavy quark spin
symmetry. But in contrast to the usual case integrating out the heavy degree of freedom
leaves us with a static b-quark as a remnant source of colour. The first term in the
expansion, which describes the spin coupling of the quarks inside the meson explain the
life-time difference between B and B∗ mesons. For more details, the reader is referred
to [20,23,24]. A more elaborate access is possible with path integrals, see e.g. [20].

We will now go into more detail for semi-leptonic B-Decays and introduce the tech-
niques we will use later on.

3.3.2. Special Features of Inclusive Decays

We have seen, that in the inclusive case we can relate the decay rate to forward matrix
elements of the incoming B-meson. Therefore we are left with matrix elements depend-
ing on the HQET fields and a number of covariant derivatives. Now there are several
possibilities to define these operators. We can use the HQET fields and expand also
the B-meson states into HQET states [25]. The great disadvantage is that we need to
compute non-local correlation functions in higher order terms. Therefore using the full
states has been proven to be more useful [26].

Within this thesis we will pursue a further slightly modified possibility. We will
keep the states as well as the quark fields in full QCD, but rephase the field by the
large momentum factor. By the equation of motion for this field it can be seen, that
it basically differs from the methods above in higher order corrections. Therefore in
principle these operators, including their renormalization, can be transformed into each
other. This procedure allows us to perform the 1/mQ expansion in a very systematic
way.

3.3.3. Isgur Wise Function and Exclusive Decays

We are dealing with exclusive heavy-to-heavy transitions, in our case b → c. The
current mediating this transition is of the form c̄Γb in full QCD, equivalent to c̄v′Γbv in
leading order 1/mc,b and αs. The matrix element relevant for these processes are then
of the form

〈H(c)(p′)|c̄Γb|H(b)(p)〉 . (3.25)

In the next steps we want to represent this in the most general case through HQET
operators. Now if the Gamma matrix transforms with the heavy quark spin matrices as
D(R)cΓD(R)−1

b , this current is invariant under heavy quark spin symmetry. The most

general operators then have to contain the two HQET fields H
(c)
v′ and H

(b)
v . Finally by
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3.3. Non-Perturbative Corrections

demanding also Lorentz covariance we end up with

c̄v′Γbv = Tr
[
XH

(c)
v′ ΓH(b)

v

]
. (3.26)

X has to be build out of the most general Dirac matrices depending on the available
four vectors: v and v′. Furthermore it has to obey the correct parity and time-reversal
properties. Therefore it can be generically parameterized as

X = X0 +X1/v +X2 /v
′ +X3/v /v

′ . (3.27)

Defining w = v ·v′ and using the equations of motions /vH
(b)
v = H

(b)
v and /v′H̄

(c)
v = −H̄(c)

v

we can express everything through the Isgur-Wise function [27] ξ(w)

c̄v′Γbv = −ξ(w)Tr
[
H

(c)
v′ ΓH(b)

v

]
. (3.28)

The heavy quark fields for the different possible quantum numbers of mesons are given
by

Hv =

{
H(v) = 1

2

√
MH(/v − 1) Pseudo-scalar

H(v,ε) = 1
2

√
MH/ε(/v − 1) Vector

(3.29)

Heavy quark flavour symmetry implies the normalization condition at the zero-recoil
point v · v′ = 1

ξ(1) = 1 . (3.30)

In fact in experiment the deviations from unity are measured by the ratio of B → D and
B → D∗, where the CKM matrix element drops out, and the result is proportional to
the form-factors squared. To leading order, both form factors coincide with the Isgur-
Wise function. Therefore heavy quark symmetry is not realized exactly in nature. Of
course this is expected, and there are mainly two corrections to the function

• Non-perturbative corrections to the heavy quark limit → QCD sum rules.

• Radiative corrections to the operator.

The latter we will investigate for a general new physics ansatz.
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4. The Inclusive Decay B → Xc`ν̄`

The inclusive process B → Xc`ν̄` has very good properties in theory as well as in
experiment to study the CKM matrix element |Vcb|. It has a clean experimental signal,
and due to its large branching fraction a low background. Theoretically it is also a
clean environment. In this section we investigate the non-perturbative structure in
more detail. The aims are to establish the validity of the heavy-quark expansion,
improve the uncertainties and to get a better handle on the uncertainties stemming
from the non-perturbative input. This will eventually help to better constrain the
CKM unitary triangle. To this end, we will first explain the basic setup and determine
the operator basis. For the numerical analysis, which we will perform in the following,
we give a recipe to estimate the new operators. After we have discussed some details of
the formal expansion, we give some comments on a related decay mode, which is also
used in the experimental analysis, using the methods presented here.

4.1. The Decay Rate

The interaction is driven by the interaction term of the Lagrangian density. At tree-level
the effective interaction for the semileptonic process b→ c`ν̄` is given by

Lint = −Hint = −4GF√
2
Vcb

(
c̄
γµ(1− γ5)

2
b

) (
ē
γµ(1− γ5)

2
ν`

)
. (4.1)

Here we have already integrated out the heavy W boson to treat this decay within an
effective interaction at scales much lower than the W mass. The effective coupling,
which is the Fermi constant GF , is related to the weak isospin coupling via 4GF/

√
2 =

g2/(2M2
W ). From this term we can calculate the matrix element for the inclusive process

B → Xc`ν̄` to be

M(B̄ → Xc`
−ν̄`) = 〈Xc`ν̄`|Hint|B̄〉

=
4GF√

2
Vcb〈Xc`ν̄`|Jq,µ(0)Jµ` (0)|B̄〉 . (4.2)

Since we integrate out the W-boson, the interaction is local. Therefore we leave out
the position argument in the following equations. Unless we point out, all operators
are taken at x = 0. In the matrix element we have also owed the fact, that in nature
we observe only quarks bound into hadrons and no free quarks. Thus the initial state
is given by the B meson and the final state by some hadron state with a charm-quark
quantum number. The non-perturbative information on the binding is hidden in the



4.1. The Decay Rate

meson matrix element, which we will investigate in more detail below. Note, that we
treat the leptons as massless in the final that and thus ` = e, µ.

In the last step we have introduced the leptonic and hadronic current, since these
two parts do not interfere and can therefore be separated, which can be read off from
eq. (4.1)

Jµ` = ¯̀γ
µ(1− γ5)

2
ν` , (4.3a)

Jq,µ = c̄
γµ(1− γ5)

2
b . (4.3b)

Finally we obtain the differential decay rate out of the general formulae, see e.g. [9]

dΓ =
1

2MA

(∏
f

d3pf
(2π)3

1

2Ef

)
|M(MA → p1, . . . ,pn)|2 (2π)4δ4(pA −

∑
pf ) . (4.4)

In the experiment the spins of the initial and final state are not measured. Thus we
have to average over the incoming and sum over the outgoing spin states. The initial
particle is a (pseudo) scalar and has therefore only one spin direction. Furthermore
the phase space integration of the final hadronic state includes a sum over all possible
states

dΓ =
∑
Xc

∑
lepton
spins

1

2MB

(
d3p`
(2π)3

1

2E`

)(
d3pν`
(2π)3

1

2Eν`

) ∣∣M(B̄ → Xc`
−ν̄`)

∣∣2
× (2π)4δ4(pB − (p` + pν` + pXc)) . (4.5)

For the computation of the necessary squared matrix element, we start from eq. (4.2)
and use the definition of the leptonic and hadronic tensor

Lµν =
∑
lepton
spins

〈0|Jµ †` |`ν̄`〉〈`ν̄`|J
ν
` |0〉 (4.6)

Wµν =
1

2MB

∑
Xc

〈B̄|J†q,ν |Xc〉〈Xc|Jq,µ|B̄〉(2π)3δ4(pB − (p` + pν` + pXc)) . (4.7)

The phase space integration over the hadronic states is included in the sum over all
possible final states Xc. This leads to the intermediate result∣∣M(B̄ → Xc`

−ν̄`)
∣∣2 = 8G2

F |Vcb|2
∣∣〈Xc`ν̄`|Jq,µJµ` |B̄〉

∣∣2
= 8G2

F |Vcb|2 〈B̄|J†q,ν |Xc〉〈Xc|Jq,µ|B̄〉〈0|Jν †` |`ν̄`〉〈`ν̄`|J
µ
` |0〉 . (4.8)

In total we end up with

dΓ = 16πG2
F |Vcb|2

(
d3p`
(2π)3

1

2E`

)(
d3pν`
(2π)3

1

2Eν`

)
WµνL

µν , (4.9)

where we will have a closer look on the different parts in turn.
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4. The Inclusive Decay B → Xc`ν̄`

4.1.1. Leptonic Part

As we have seen, the leptonic and hadronic part factorizes. Since there is no confinement
for the leptons, we can compute the leptonic tensor easily starting from

Lµν =
∑
spins

〈0|J†ν` |`ν̄`〉〈`ν̄`|J
µ
` |0〉 . (4.10)

With the definition of the V-A weak current (4.3a) this transforms to

Lµν =
∑
spins

(
ū`

1

2
γµ
(
1− γ5

)
vν̄`

)(
v̄ν̄`

1

2
γν
(
1− γ5

)
u`

)
=

1

4
Tr
∑
spins

(
γµ
(
1− γ5

)
vν̄` v̄ν̄`γ

ν
(
1− γ5

)
u`ū`

)
=

1

4
Tr
(
γµ
(
1− γ5

)
/pν̄`
γν
(
1− γ5

)
/p`

)
, (4.11)

where we treated the electrons as massless and ū, respectively v are the spinors for
outgoing particle (antiparticle). Calculating the trace in the usual way, as presented in
textbooks [9], we finally obtain the leptonic tensor

Lµν = 2
(
pµ` p

ν
ν̄`

+ pν`p
µ
ν̄` − g

µνp` · pν̄` − iεηνλµp` ,ηpν̄` ,λ
)
, (4.12)

where we have used the convention, that ε0123 = −ε0123 = +1.

4.1.2. Hadronic Part

The hadronic tensor contains all information on the non-perturbative binding of the
quarks inside the B Meson, which cannot be calculated1. The tensor is defined as

Wµν =
1

2MB

∑
Xc

〈B̄|J†q,µ|Xc〉〈Xc|Jq,ν |B̄〉(2π)3δ4(pB − q − pXc) , (4.13)

where qµ = (p` + pν`)
µ is the momentum transfer to the leptons. We will treat this

hadronic tensor in an effective field theory, in order to approximate it to a very high
accuracy. To do so, we will transform this matrix element into an expandable and
calculable quantity in the sense of heavy-quark expansion. To this end we use the op-
tical theorem, which states that the imaginary part of a forward transition amplitude
is related to the production of the intermediate states2. We will see later, that the ex-
pansions produces higher powers of the intermediate state propagator. Mathematically
the optical theorem states, that a propagator is put on-shell and we can use Cauchy’s
theorem

− 1

π
Im

1

(x− x′ + iε)n+1
=

(−1)n

n!
δ(n)(x− x′) . (4.14)

1Although such objects can in principle be numerically simulated using lattice-QCD methods.
2More precisely it is related to the discontinuity of the branch cut of the propagator, but this can be

transformed into the imaginary part, which is more useful here.
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4.1. The Decay Rate

We already see, that higher orders of a propagator shift the value of the delta distribu-
tion by their higher derivatives. This reflects the fact, that the mass of hadrons differ
from the mass of their constituent quarks. Yet the higher order terms in the expansion
remain local, unless we sum up to infinity. While having in the considered decay some
intermediate state with a charm quark inside, we start with a non-local forward matrix
element of the form

Tµν = − i

2MB

∫
d4xe−iqx〈B̄|T

[
J†q,µ(x),Jq,ν(0)

]
|B̄〉 . (4.15)

This can be visualized by the Feynman diagram in Fig. 4.1. The double line denotes

Figure 4.1.: Background field propagator.

the charm quark that propagates in the soft background field of the binding gluons.
Now by using the optical theorem, we can reproduce the hadronic tensor

− 1

π
ImTµν =

1

2MB

∑
Xc

〈B̄|J†q,µ|Xc〉〈Xc|Jq,ν |B̄〉(2π)3δ4(pB − q − pXc) . (4.16)

To show this, we have to write out the time ordered product and insert the appropriate
sum over complete states, which is unity in the according subspace. The time ordering
prescription describes the correct expression for the hadronic tensor, since the additional
Xbb̄c intermediate state cannot become on-shell due to energy conservation. Therefore
we notice that

− 1

π
ImTµν = Wµν . (4.17)

Turning now to the time-ordered product again, where we use the rephased, yet in full
QCD, bv-quark field according to (3.19)

Tµν =
1

2MB

〈B̄|b̄vΓ†νSΓµbv|B̄〉 , (4.18)

where the charm-quark propagator S is given by

S =
1

/pb − /q −mc

. (4.19)

The b quark momentum is now parameterized by the four-velocity of the B meson
P µ
B = MBv

µ according to heavy-quark effective theory

pµb = mbv
µ + kµ . (4.20)
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4. The Inclusive Decay B → Xc`ν̄`

There kµ describes the small off-shell momentum of the b quark that contributes to the
binding with soft-gluons to the spectator quark and denotes the relative movement of
the quark with respect to the meson. By replacing the momentum k by the covariant
derivative, containing the soft background field gluons, this propagator becomes the
background-field (BGF) propagator

SBGF =
1

mb/v + i /D − /q −mc

. (4.21)

This quantity describes the charm-quark propagating in the forward matrix element
of the B meson with all the binding gluons and therefore accounts for the difference
between quarks and mesons.

In the section on heavy-quark expansion (HQE) we will show, how to deal with this
non-perturbative matrix element and how to treat the subtleties. First we will calculate
the more trivial part of phase space for the different observables.

4.1.3. Phase Space

In this section we integrate over the phase space, to retrieve the desired differential decay
rate. The phase space weights the transition probability with the allowed kinematics of
the final state particles. The hadronic and leptonic part do only depend on the scalar
products of the kinematic variables, which we keep in mind for computing the phase
space integrals. We are interested in different physical observables: The charged lepton
energy spectrum, as well as in the kinematical distributions for the partonic final state
variables: Energy and invariant mass. The latter ones can only be used for computing
moments and not spectra, since we have to integrate over all possible hadronic momenta
to accommodate for the assumptions of the heavy-quark expansion. For beeing able to
perform cross checks, we consider two different decay rates with different phase space
integrations.

Phase-Space for the Lepton Energy Spectrum

First of all we consider the case for the lepton energy spectrum with the triple dif-
ferential rate in the kinematical variables E`, Eν̄` and q2, where again qµ = pν` + pνν̄`
and E` ,ν̄` is the energy of the lepton (neutrino). By differentiating (4.9) we obtain the

triple differential rate, where we have defined
∣∣M̃∣∣2, which contains the momentum

conservation and sum over all Xc states,

dΓ

dq2dE`dEν̄`
=

1

2MB

∣∣M̃∣∣2( d3p`
(2π)3

1

2E`

)(
d3pν`
(2π)3

1

2Eν`

)
× δ

(
E` − p0

`

)
δ
(
Eν̄` − p0

ν̄`

)
δ
(
q2 − (p` + pν̄`)

2
)
. (4.22)

The phase-space integral operators are Lorentz invariant

dp̃ =
d4p

(2π)4 (2π) δ
(
p2 −m2

)
θ
(
p0
)

=
d3p

(2π)3 2E
. (4.23)
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4.1. The Decay Rate

The integration is purely over the leptonic variables, since the integration over partonic
variables is contained in the hadronic tensor. We compute the phase-space in the limit
of massless leptons, therefore the kinematics simplifies to

p2
` = 0 ⇒ |p`|

2 = E2
` (4.24a)

p2
ν̄`

= 0 ⇒
∣∣pν̄`∣∣2 = E2

ν̄`
. (4.24b)

In the first step, we use the three-dimensional integration operators (4.23) in the mass-
less limit (4.24a) and (4.24b) to perform the phase-space integral. Since the integrand
is symmetric we transform to spherical coordinates

∫
dΩ =

∫
d cos θdϕ = 4π. The only

non-trivial angle is the angle between the two leptons. Thus we align the coordinate
system in such a way, that the integration over the independent angles leads to∫

d cos θν̄`dϕν̄`dϕ]e,ν̄`
= 2 · 2π · 2π = 8π2 . (4.25)

Using the abbreviation θ = θ]e,ν̄` we finally compute the phase-space integral to be

dφ =

∫
d3p`

(2π)3

d3pν̄`
(2π)3

1

4E`Eν̄`
δ (E` − |p`|) δ

(
Eν̄` −

∣∣pν̄`∣∣) δ (q2 − (p` + pν̄`)
2
)

=
4.25

∫
|p`|

2 d |p`|
∣∣pν̄`∣∣2 d

∣∣pν̄`∣∣ d cos θ
8π2

4 (2π)6E`Eν̄`
δ (E` − |p`|) δ

(
Eν̄` −

∣∣pν̄`∣∣)
× δ

(
q2 − 2E`Eν̄` + 2|p`||pν̄` | cos θ

)
=

1

(2π)4

1∫
−1

d cos θ
E2
`E

2
ν̄`

2E`Eν̄`
δ
(
q2 − 2E`Eν̄`(1− cos θ)

)

=
1

(2π)4

∞∫
−∞

d cos θ
E`Eν̄`

2

1

2E`Eν̄`
δ

(
cos θ − (1− q2

2E`Eν̄`
)

)
θ (1− cos θ) θ (1 + cos θ)

=
1

4

1

(2π)4 θ

(
q2

2E`Eν̄`

)
θ

(
2− q2

2E`Eν̄`

)
. (4.26)

The unit-step θ functions are important, since they depend on a kinematical variable.
While having higher derivatives of delta distributions, we have to integrate by parts and
then this unit step functions have to be differentiated as well. We have to keep in mind,
that the matrix element (4.8) depends on kinematical variables as |M|2 (q2,v · q, E`).

Phase-Space Integration for Partonic Observables

We consider additionally the decay in the kinematical variables of the quarks and
not the mesons. This has to be done, because we are using HQET. Our aim is to
obtain expressions, usually denoted as “building blocks”, for computing moments in the
invariant mass of the final state hadrons. The differential decay rate is now computed
in the kinematical variables Q2 and v · Q, where Qµ = pµb − qµ ≡ pµc . Therefore these
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4. The Inclusive Decay B → Xc`ν̄`

variables correspond to the partonic invariant mass and partonic energy of the final
state quark. In experiment only hadronic variables can be detected, in contrast to
theory. The hadronic variables are related to the partonic ones via the binding energy
λ = (MB −mb) +O(1/mb) and HQE parameters. Therefore we can write

P µ
x = (PB − pb)µ + pµc (4.27a)

⇒ M2
x = p2

c + (MB −mb)
2 + 2(MB −mb)v · pc +O(1/mb) (4.27b)

⇒ M2
x = λ2 + p2

c + 2(MB −mb)v · pc , (4.27c)

and the decomposition of hadronic moments into partonic ones is straightforward. To
this end we redefine the leptonic tensor to include the integration over the leptonic mo-
menta. Then we can also implement a lower cut on the charged lepton energy, which
is trivial for the latter case of the lepton energy spectrum. This is required in experi-
ment, since a lower cut should be set there to suppress indistinguishable background.
Please note in the following, that we insert unity by the integration over the momen-
tum transfer including the corresponding delta distribution for momentum conservation∫

d4q
(2π)4 (2π)4δ(4)(q − p` − pν) = 1. Therefore we end up with

dΓ = 16πG2
F |Vcb|2

∫
d4q

(2π)4

[∫
d3p` d3pν

(2π)6 2E` 2Eν
Lµν(2π)4δ4(q − p` − pν)

]
︸ ︷︷ ︸

L̃µν

W µν (4.28)

L̃µν =

(
−gµν +

qµqν

q2

)
L1 +

(
vµvν +

qµqν(v · q)2

q4
− v · q(vµqν + qµvν)

q2

)
L2

− iεµναβvαqβ L3 . (4.29)

The structure functions Li can be calculated explicitely and are given by

L1 =
q2

24π[(v · q)2 − q2]3/2

[
4(v · q)3 − 3q2v · q + 4[(v · q)2 − q2]3/2 + 6Ecutq

2

− 12Ecut(v · q)2 + 12E2
cutv · q − 8E3

cut

]
, (4.30a)

L2 =
q4

8π[(v · q)2 − q2]5/2
(2Ecut − v · q)(q2 − 4Ecutv · q + 4E2

cut) , (4.30b)

L3 =
q2

8π[(v · q)2 − q2]3/2
(q2 − 4Ecutv · q + 4E2

cut) . (4.30c)

For the limit of vanishing3 Ecut = 1/2
(
v · q −

√
mb v · q − q2

)
the structure functions

simplify to

L1 =
q2

3π
, (4.31a)

L2 = 0 , (4.31b)

L3 = 0 . (4.31c)

3Please note, that v · q depends on the electron energy, and therefore the limit is non trivial.
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Therefore we can write the differential decay rate as

dΓ = 16πG2
F |Vcb|2

∫
ds

2π

d4q

(2π)4
2πδ(s− q2)L̃µνW

µν (4.32)

= 16πG2
F |Vcb|2

∫
ds

2π

d3q

(2π)3
L̃µνW

µν (4.33)

=
4G2

F |Vcb|2

π2

∫
ds
|q|2d|q|
2E(q)

L̃µνW
µν
∣∣∣
E(q)=v·q=

√
|q|2+s , s=q2

(4.34)

=
2G2

F |Vcb|2

π2

∫
dq2dv · q

√
(v · q)2 − q2 L̃µνW

µν (4.35)

⇒ dΓ

dQ2dv ·Q
=

2G2
F |Vcb|2

π2

√
(v ·Q)2 −Q2L̃µνW

µν , (4.36)

where we have used the abbreviation Qµ = mbvµ − qµ. For later use, please note that
Qµ is identified with the charm quark momentum.

4.2. Heavy Quark Expansion

In this section we will present the tools to derive an approximation for the non-trivial
hadronic tensor. Therefore we will perform an operator product expansion in a specific
way to expand it into operators of different dimension to the cost of introducing non-
perturbative parameters. First we notice, that the actual b quark inside the meson has
a small momentum component kµ relative to the B meson momentum P µ

B = MBv
µ.

Thus we can parameterize the b quark momentum with pµb = mbv
µ + kµ. This residual

momentum describes the motion of the b quark within the background field that binds
the quarks together. Its magnitude is in the order of the binding energy O(ΛQCD) and
therefore the condition kµ � mb holds. For this reason we can expand in this quantity
which corresponds precisely to heavy quark effective theory (HQET). In contrast to the
standard method, we keep the full QCD field, but rephase it according to

bv(x) = eimbv·xb(x) , (4.37)

such that it only depends on the residual momentum kµ. The phase redefinition in
the time ordered product combines then to the background field propagator (4.21). To
circumvent the problem of the ordering of the momenta in the expansion, we replace
the momentum kµ by its covariant derivative iDµ. This automatically takes care of
the ordering of the covariant derivatives and we do not have to take care about x-
gluon matrix elements, they are automatically contained in the local expansion. The
background field propagator reads with Qµ = mbvµ − qµ:

SBGF =
1

/Q+ i /D −mc

. (4.38)
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4. The Inclusive Decay B → Xc`ν̄`

This can be written as a geometric series, to yield an expansion4 in kµ/mb

SBGF =

[
∞∑
n=0

(−1)n
[
(/Q−mc)

−1 (i /D)
]n]

(/Q−mc)
−1 (4.39)

and the operator product expansion can be cut off at some mass dimension m. Then
the expansion reads explicitely

SBGF =
1

/Q−mc

− 1

/Q−mc

(i /D)
1

/Q−mc

+
1

/Q−mc

(i /D)
1

/Q−mc

(i /D)
1

/Q−mc

+· · · (4.40)

Thus we end up with an operator product expansion with operators of the form

〈B̄|On+3
µ1···µn|B̄〉 = 〈B̄|b̄v(iDµ1) · · · (iDµn)bv|B̄〉 (4.41)

in dimension n + 3. The remaining task is to evaluate these matrix elements, which
contain the non-trivial non-perturbative operators of the OPE. These cannot be cal-
culated from first principles and have to be extracted from experiment. Later on we
will give a method, how we estimate higher-order matrix elements. In turn we will
explain how to evaluate the expressions, which are called “trace formulae”. Therefore,
in general, the time-ordered product can be written in the form

Tµν =
m∑
n=0

Cµ1···µn
n, µν (mb,vµ)〈B̄|On+3

µ1···µn|B̄〉 , (4.42)

where in each dimension n of the non-perturbative expansion the Wilson coefficient
Cµ1···µm
µν (mb,vµ) has a perturbative expansion in the strong coupling αs.

4.2.1. Non-Perturbative Corrections

We have to compute the time-ordered product in the form (4.42). The steps we will
present in detail are basically first to determine the fully contracted basis parameters. In
other words we have to choose the basis of all independent non-perturbative parameters
and then from this we derive the general tensor decomposition in order to calculate the
Wilson coefficients Cµ1···µn

n,µν (mb,vµ).
We derive the equations of motions for the rephased b-field, where P± = 1/2(1± /v)

is the projector onto the “large” and “small” components of the full four-component
spinor. Using the Dirac equation

(i /D −mb)b(x) = 0 (4.43)

(i /D +mb)(i /D −mb)b(x) = 0 (4.44)

with the rephased field (4.37) and keeping track on the ordering of the gamma matrices

iDµbv(x) = eimbv·x (−mbvµ + iDµ) b(x) . (4.45)

4Actually one sees, that it is only an expansion in the momentum release Qµ/mb, only valid if we
integrate over all partonic variables.
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4.2. Heavy Quark Expansion

we get the useful relations

/vbv = bv −
1

mb

i /Dbv (4.46a)

P+bv = − 1

2mb

i /Dbv + bv (4.46b)

P−bv =
1

2mb

i /Dbv (4.46c)

(iv ·D)bv = − 1

2mb

i /Di /Dbv . (4.46d)

From this special feature it is clear, that depending on the definition of the basis
parameters, they contain different pieces which depend non-trivially on mb. The next
step is to define the basis for the tensor decomposition of (4.41).

The Non-Perturbative Matrix Elements

By keeping the full QCD field in the OPE we have only local operators and no non-
local pieces from expanding the state as well as the field. To coincide with the usually
defined parameters in dimension 5, which is equal to expanding up to 1/m2

b , we define
the operators to be

2MB µ
2
π = −〈B̄|b̄v iDρiDσ bv|B̄〉 Πρσ (4.47a)

2MB µ
2
G =

1

2
〈B̄|b̄v

[
iDρ, iDσ

](
− iσαβ

)
bv|B̄〉 ΠαρΠβσ . (4.47b)

Here Πµν ≡ vµvν−gµν is the projector onto the spatial components. Commonly one can
give these parameters a physical interpretation. Clearly µ2

π is linked to the expectation
value of the spatial momentum squared, therefore it is referred to as the kinetic term.
Using [iDµ, iDν ] = igsGµν and the relation

γµγ5 → P+γµγ5P+ = sµ (4.48)

σµν → P+σµνP+ = vαεαµνβs
β , (4.49)

where sµ is the spin vector, we can identify µ2
G to leading order in 1/mb as the chromo-

magnetic moment s ·B. In dimension 6, corresponding to 1/m3
b we define the Darwin

term ρ3
D and the spin-orbit term ρ3

LS as

2MB ρ
3
D =

1

2
〈B̄|b̄v

[
iDρ,

[
iDσ, iDλ

]]
bv|B̄〉 Πρλvσ (4.50a)

2MB ρ
3
LS =

1

2
〈B̄|b̄v

{
iDρ,

[
iDσ, iDλ

]}(
− iσµν

)
bv|B̄〉 ΠαρΠβλvσ . (4.50b)

The Darwin term is related to the divergence of the chromo-electric field ∇·E, and the
spin-orbit term to the curl of the chromo-electric field s · ∇ ×E. These terms are also
known from the hydrogen atom, but there we have the commutative QED fields instead
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4. The Inclusive Decay B → Xc`ν̄`

of QCD. This non-commutativity plays a role in the higher order matrix elements as
we will see in a moment.

Now turning to the next term in the expansion: Dimension seven (1/m4
b). The

operators have already been identified and the corresponding coefficients have been
computed in [28, 29], but some of the basis operators were dismissed. Therefore we
repeat the derivation of the complete basis.

First we write down all possible combinations of the four covariant derivatives. They
can be contracted via the metric tensor gµν or the momentum direction of the B meson
vµ. For the spin triplet we additionally have the spin matrix

(
− iσαβ

)
. From the

equations of motions (4.46) we see, that a time derivative iv · D ≡ iD0 cannot be
at the most left or right position, since this can be rewritten into a pure higher order
correction. see eq. (4.46d). The four velocity contracted with the spin-matrix is directly
related to a higher order correction via the e.o.m. This can be easily seen by rewriting

vα(−iσαβ) =
1

2
(/vγβ − γβ/v) (4.51)

and using equation (4.46a). For an even (odd) number of covariant derivatives there can
only be an even (odd) number of time derivatives, because we need a fully contracted
Lorentz scalar: Besides the four-velocity vα with one index we can only contract the
matrix element with an even number of indices gαβ and

(
− iσαβ

)
. Thus we are at first

glance sticking to eleven non-perturbative parameters out of which four are spin-singlets
(4.52a-4.52d) and the others are spin-tripletts.

2MB m̃1 = 〈B̄|b̄v iDρiDσiDλiDδ bv|B̄〉
1

3

(
ΠρσΠλδ + ΠρλΠσδ + ΠρδΠσλ

)
(4.52a)

2MB m̃2 = 〈B̄|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

]
bv|B̄〉 Πρδvσvλ (4.52b)

2MB m̃3 = 〈B̄|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

]
bv|B̄〉 ΠρλΠσδ (4.52c)

2MB m̃4 = 〈B̄|b̄v
{
iDρ,

[
iDσ,

[
iDλ, iDδ

]]}
bv|B̄〉 ΠσλΠρδ (4.52d)

2MB m̃5 = 〈B̄|b̄v
{
iDρ, Dσ

}[
iDλ, iDδ

](
− iσαβ

)
bv|B̄〉 ΠσλΠαρΠβδ (4.52e)

2MB m̃6 = 〈B̄|b̄v
{
iDρ, iDσ

}[
iDλ, iDδ

](
− iσαβ

)
bv|B̄〉 ΠρσΠαλΠβδ (4.52f)

2MB m̃7 = 〈B̄|b̄v
[
iDρ, iDσ

]{
iDλ, iDδ

}(
− iσαβ

)
bv|B̄〉 ΠσλΠαρΠβδ (4.52g)

2MB m̃8 = 〈B̄|b̄v
[
iDρ, iDσ

]{
iDλ, iDδ

}(
− iσαβ

)
bv|B̄〉 ΠλδΠαρΠβσ (4.52h)

2MB m̃9 = 〈B̄|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

](
− iσαβ

)
bv|B〉 ΠασΠβλΠρδ (4.52i)

2MB m̃10 = 〈B̄|b̄v
[
iDρ,

[
iDσ,

[
iDλ, iDδ

]]](
− iσαβ

)
bv|B̄〉 ΠρβΠλαΠσδ (4.52j)

2MB m̃11 = 〈B̄|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

](
− iσαβ

)
bv|B̄〉 ΠαρΠβδvσvλ . (4.52k)

We reduce the number of independent matrix elements: Please note, that we are deal-
ing with forward matrix elements, where final and initial state have the same mo-
mentum. Thus they are invariant under time transformation. Furthermore these
non-perturbative parameters should be real, from which follows that the appearing
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4.2. Heavy Quark Expansion

operators can only be hermitian combinations. These conditions reduce the number of
independent parameters according to

〈A1|O|A2〉
!

= T (〈A1|O|A2〉)

⇒ 〈A2|O|A1〉
!

= 〈A1|O|A2〉∗ = 〈A2|O†|A1〉

⇒ O !
= O† for |A1〉 ≡ |A2〉 . (4.53)

From this follows, with A1 ≡ A2, that

2MB m̃5 = 2MB m̃7 (4.54a)

2MB m̃6 = 2MB m̃8 . (4.54b)

Thus we redefine the complete basis, where the unchanged four spin singlet parameters
are still given by

2MBm1 = 〈B̄|b̄v iDρiDσiDλiDδ bv|B̄〉
1

3

(
ΠρσΠλδ + ΠρλΠσδ + ΠρδΠσλ

)
(4.55a)

2MBm2 = 〈B̄|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

]
bv|B̄〉 Πρδvσvλ (4.55b)

2MBm3 = 〈B̄|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

]
bv|B〉 ΠρλΠσδ (4.55c)

2MBm4 = 〈B̄|b̄v
{
iDρ,

[
iDσ,

[
iDλ, iDδ

]]}
bv|B̄〉ΠσλΠρδ , (4.55d)

whereas the spin-triplett definitions changes. The number of spin dependent matrix
elements reduces from seven to five. We therefore have to redefine the basis. As a
hermitian basis for the corresponding 5 spin-triplet matrix elements we choose

2MBm5 = 〈B̄|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

](
− iσαβ

)
bv|B̄〉 ΠαρΠβδvσvλ (4.56a)

2MBm6 = 〈B̄|b̄v
[
iDρ, iDσ

][
iDλ, iDδ

](
− iσαβ

)
bv|B̄〉 ΠασΠβλΠρδ (4.56b)

2MBm7 = 〈B̄|b̄v
{{
iDρ, iDσ

}
,
[
iDλ, iDδ

]}(
− iσαβ

)
bv|B̄〉 ΠσλΠαρΠβδ (4.56c)

2MBm8 = 〈B̄|b̄v
{{
iDρ, iDσ

}
,
[
iDλ, iDδ

]}(
− iσαβ

)
bv|B̄〉ΠρσΠαλΠβδ (4.56d)

2MBm9 = 〈B̄|b̄v
[
iDρ,

[
iDσ,

[
iDλ, iDδ

]]](
− iσαβ

)
bv|B̄〉 ΠρβΠλαΠσδ , (4.56e)

where m5 = m̃11,m6 = m̃9,m9 = m̃10 and the hermitian combinations m7 = m̃5 + m̃7

as well as m8 = m̃6 + m̃8. Of course these parameters can also be related to physical
quantities. But from this point on it is not trivial anymore. The QCD fields are
non commutative and therefore in this dimension the physical interpretations are not
straightforward. Naively you can assign the expectation value 〈p4〉 to m1. We will see
later, that this is important for the reparametrization-invariance argument. Using the
fact, that the commutator of the covariant derivatives is proportional to the gluon field
strength, and the scalar product with vµ gives the time component, we notice that in
analogy to electrodynamics the matrix element m2 is proportional to 〈E2〉. Likewise
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4. The Inclusive Decay B → Xc`ν̄`

m3 is proportional to 〈B2〉, where E and B are again the chromo-electric and chromo-
magnetic field operators. The matrix element m4 has to be interpreted as 〈p · ∇×B〉,
where ∇× is the covariant version of the curl as in the case of the Darwin term.

The spin dependent operators can be interpreted along the same lines5. We find that
m5 ∝ 〈s ·E×E〉 and m6 ∝ 〈s ·B×B〉. For the other three ones we derive the relations
m7 ∝ 〈(s · p)(p ·E)〉, m8 ∝ 〈(s ·B)(p)2〉 and m9 ∝ 〈∆(s ·B)〉.

In the previous version [28, 29], four out of the nine parameters were omitted. In
comparison with the physical interpretation we notice, that the commutativity was
neglected as well as the derivative terms.

But in fact we have to be careful, since depending on the exact definition, there
might actually be linear combinations. The next step is to identify the new parameters
in dimension 8, which means expanding up to 1/m5

b . Here we naively have in total 29
parameters, out of which 10 are spin singlets and 19 spin tripletts. Using the above
mentioned T-invariance argument, we reduce them to 18 parameters in total, 7 spin
singlet and 11 spin triplet ones. Here we stick to the definition with keeping all four
Lorentz components and introducing no commutators, since it is beyond any use to
go further in the expansion. Redefining the parameters would only make a difference
of higher order terms in 1/mb. The basis after imposing the T-invariance argument is
given by

2MBr1 = 〈B̄|b̄v iDρ (iv ·D)3 iDρ bv|B̄〉 (4.57a)

2MBr2 = 〈B̄|b̄v iDρ (iv ·D) iDρ iDσ iD
σ bv|B̄〉 (4.57b)

2MBr3 = 〈B̄|b̄v iDρ (iv ·D) iDσ iD
ρ iDσ bv|B̄〉 (4.57c)

2MBr4 = 〈B̄|b̄v iDρ (iv ·D) iDσ iD
σ iDρ bv|B̄〉 (4.57d)

2MBr5 = 〈B̄|b̄v iDρ iD
ρ (iv ·D) iDσ iD

σ bv|B̄〉 (4.57e)

2MBr6 = 〈B̄|b̄v iDρ iDσ (iv ·D) iDσ iDρ bv|B̄〉 (4.57f)

2MBr7 = 〈B̄|b̄v iDρ iDσ (iv ·D) iDρ iDσ bv|B̄〉 (4.57g)

2MBr8 = 〈B̄|b̄v iDµ (iv ·D)3 iDν (−iσµν) bv|B̄〉 (4.57h)

2MBr9 = 〈B̄|b̄v iDµ (iv ·D) iDν iDρ iD
ρ (−iσµν) bv|B̄〉 (4.57i)

2MBr10 = 〈B̄|b̄v iDρ (iv ·D) iDρ iDµ iDν (−iσµν) bv|B̄〉 (4.57j)

2MBr11 = 〈B̄|b̄v iDρ (iv ·D) iDµ iD
ρ iDν (−iσµν) bv|B̄〉 (4.57k)

2MBr12 = 〈B̄|b̄v iDµ (iv ·D) iDρ iDν iD
ρ (−iσµν) bv|B̄〉 (4.57l)

2MBr13 = 〈B̄|b̄v iDρ (iv ·D) iDµ iDν iD
ρ (−iσµν) bv|B̄〉 (4.57m)

2MBr14 = 〈B̄|b̄v iDµ (iv ·D) iDρ iD
ρ iDν (−iσµν) bv|B̄〉 (4.57n)

2MBr15 = 〈B̄|b̄v iDµ iDν (iv ·D) iDρ iD
ρ (−iσµν) bv|B̄〉 (4.57o)

2MBr16 = 〈B̄|b̄v iDρ iDµ (iv ·D) iDν iD
ρ (−iσµν) bv|B̄〉 (4.57p)

2MBr17 = 〈B̄|b̄v iDµ iDρ (iv ·D) iDρ iDν (−iσµν) bv|B̄〉 (4.57q)

2MBr18 = 〈B̄|b̄v iDρ iDµ (iv ·D) iDρ iDν (−iσµν) bv|B̄〉 . (4.57r)

5Please note that the components of the chromo-electric and chromo-magnetic fields do not commute.
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4.2. Heavy Quark Expansion

Computational Strategy

We express the matrix element through the basis of all 16 gamma matrices. Then we
make an usual tensor decomposition for each of the gamma matrix prefactors. Please
note, that we have to keep parity conservation in mind! In order to determine the
actual prefactors we make use of the orthogonality of the basis gamma matrices.

The decomposition is organized in such a way, that we start with the highest di-
mension. Then we may neglect all higher order corrections, which makes the matrix
element static. Therefore we can pull the P+ projector out of the fields, which then
simplifies the necessary gamma matrix structure. The decomposition for the highest
dimension then reads6, where the spinor indices explicitely read α,,β

〈B̄|b̄v α(iDρ)(iDσ)(iDλ)(iDδ)(iDγ)bv β|B̄〉 = A
(1)
ρσλδγ [P+]αβ+A

(4)
ρσλδγζη

[
P+(−iσζη)P+

]
αβ
.

(4.58)

Using symmetry arguments, we can write down the tensor coefficients A
(1)
ρσλδγ and

A
(4)
ρσλδγζη. By considering the trace properties we can relate these coefficients to the

basis parameters defined in (4.57). With this, some arbitrary B meson forward matrix-
element with the appropriate number of background field covariant derivatives and
some tensor combination of gamma matrices Γ̃ρσλδ can be calculated by

〈B̄|b̄v(iDρ)(iDσ)(iDλ)(iDδ)(iDγ)Γ̃
ρσλδγbv|B̄〉 =

∑
i

Tr
{

Γ̃ρσλδγΓ̂(i)
}
A

(i)
ρσλδγ , (4.59)

where Γ̂(i) = 1,γµ,γ
5,γµγ

5, (−iσµν) and A
(i)
ρσλδ is the corresponding tensor structure.

The next step is to consider the next lower matrix elements recursively. These obtain
higher order corrections from the equation of motions, therefore we have to consider all
16 gamma matrices as the basis

〈B̄|b̄v,α(iDρ)(iDσ)(iDλ)(iDδ)bv,β|B̄〉 = A
(1)
ρσλδ1αβ + A

(2)
ρσλδζγ

ζ
αβ + A

(3)
ρσλδζ

[
γζγ5

]
αβ

+ A
(4)
ρσλδζη

(
− iσζη

)
αβ

+ A
(5)
ρσλδγ

5
αβ . (4.60)

We will basically do the same steps as in the previous case. But now by determining
the tensor coefficients we get additional terms to the basis parameters, which may
have higher order corrections by the equation of motions. Here the strength of this
formalism becomes obvious. These corrections can easily be calculated, because we
already have the general matrix element for the higher dimensions. Therefore the
structure obtained by the e.o.m. is multiplied into (4.58) and after the trace has been
taken, we immediately have the result.

In this manner we continue until we have computed the lowest dimension of 3. There
the matrix element is fixed by the normalization condition

2MB = 〈B̄|b̄v/vbv|B̄〉 . (4.61)

6This corresponds to the static limit in HQET.
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This method is implemented in a MATHEMATICA program. The only thing to put
in by hand is the ansatz for the tensor functions A(i) and the definition of the basis
parameters. The structure of the higher order terms has to be calculated by hand, by
using the e.o.m (4.46).

In this way, implementing new higher orders is straightforward. First step is to
determine the basis parameters. Then we have to calculate the static trace formulae
for the new highest dimension. The last step is to modify the second-highest term from
the static limit to the general case.

Finally we put everything together to compute the forward matrix element

Tµν = 〈B̄|b̄vΓ†νiSBGFΓµbv|B̄〉 =
∑
i

Tr

{
Γ†ν

1

/Q−mc

Γµ Γ̂(i)

}
A(i,0)

−
∑
i

Tr

{
Γ†µ

1

/Q−mc

γµ1
1

/Q−mc

Γµ Γ̂(i)

}
A(i,1)
µ1

+
∑
i

Tr

{
Γ†ν

1

/Q−mc

γµ1
1

/Q−mc

γµ2
1

/Q−mc

Γµ Γ̂(i)

}
A(i,2)
µ1µ2
∓ · · · (4.62)

For simplicity here the sum denotes i = 1,γµ,γ
5,γµγ

5, (−iσµν). The imaginary part is
then given by Cauchy’s theorem, namely

− 1

π
Im

(
1

∆0

)n+1

=
(−1)n

n!
δ(n)

(
(mbv − q)2 −m2

c

)
, (4.63)

where we have introduced ∆0 = (mbv − q)2 −m2
c + iε. In this way. we finally obtain

the hadronic tensor in HQE:

Wµν = − 1

π
Im〈B(p)|b̄vΓ†νiSBGFΓµbv|B(p)〉

=
∑
i

Tr
{

Γ†ν(/Q+mc)Γµ Γ̂(i)
}
A(i,0)δ

(
(mbv − q)2 −m2

c

)
+
∑
i

Tr
{

Γ†ν(/Q+mc)γ
µ1(/Q+mc)Γµ Γ̂(i)

}
A(i,1)
µ1

δ(1)
(
(mbv − q)2 −m2

c

)
+
∑
i

Tr
{

Γ†ν(/Q+mc)γ
µ1(/Q+mc)γ

µ2(/Q+mc)ΓµΓ̂(i)
}
A(i,2)
µ1µ2

δ(2)((mbv − q)2 −m2
c)

2

+ · · ·

+
∑
i

Tr
{

Γ†ν(/Q+mc)γ
µ1(/Q+mc) · . . . · (/Q+mc)γ

µm(/Q+mc)Γµ Γ̂(i)
}
A(i,m)
µ1µ2...µm

× δ(m)((mbv − q)2 −m2
c)

m!
. (4.64)

The bottleneck of this method are the proliferating non-perturbative parameters. The
computation up to 1/m5

b has been done explicitely, and to include even higher terms is
possible. However, it is not realistic to think of extracting even the 1/m4

b parameters

62



4.2. Heavy Quark Expansion

out of the experiment. The situation is even worse, because we will see that a few
terms in the total rate of 1/m5

b are enhanced and have to be accounted for already at
O(1/m4

b). These terms have been dubbed “intrinsic charm”. But we can give a quite
good estimate on these new parameters in terms of the already known µ2

π, µ2
G and ρ3

D,
ρ3
LS as well as some excitation energy ε̄. We use this later on, to validate the HQE

and to proof the convergence explicitely. From this we can infer the uncertainty on the
extraction of |Vcb| due to dismissing higher orders in the HQE. One might think also
to include some bias of the moments, which can be computed from more elaborated
estimates of the parameters, in the fit. This could in principle improve the extraction
of the lower-dimensional parameters and reduce the error of the fit.

4.2.2. Perturbative Corrections

So far we have only considered non-perturbative corrections which stem from the fact,
that we do not observe free quarks in nature. Additionally, we have to take care about
the perturbative corrections, which arise due to the expansion in the strong coupling
constant αs.

It is beyond the scope of this thesis, to deal with such corrections. Nevertheless some
comments on this are useful.

The computations of the perturbative corrections to the partonic rate, which means
the part that is proportional to 1/m0

b in the non-perturbative expansion, is “straight-
forward”, yet complicated. Within this calculation one computes the usual loop di-
agrams and solves the renormalization group equation. For the higher orders it gets
more complicated. Each Wilson coefficient for a specific non-perturbative higher-order
parameter has an expansion in αs. To compute these Wilson coefficients, the loop
diagrams including the expansion of the propagator have to be taken into account.
Unfortunately the trick to overcome the ordering of the momentum expansion at tree-
level does not work at the loop level. Therefore the x-gluon matrix elements have to be
considered as well. These calculations are very involving, so only the αs correction to
µ2
π has been calculated,yet. In the case of this kinetic energy operator the advantage

is, that this operator is completely symmetric and therefore no gluon matrix element
appears, which simplifies the problem.

This total symmetric combination allows for an additional trick, which has also been
pursuit. By boosting the total rate in some moving frame, we can reparametrize the
momentum, which replaces the rest mass, according to the heavy-quark expansion. It
has been shown, that with this trick, one can reproduce the non-perturbative expansion
for the specific totally symmetric pieces. Now this is not restricted to tree-level only, it
works the same way for the αs corrections on the parton level, since this just modifies
the Wilson coefficient. The symmetry guarantees that to all orders in αs the coefficient
in front of the totally symmetric non-perturbative parameters is the same as the parton-
level coefficient. This has been used to cross-check the perturbative corrections to µ2

π.
From this argument it is obvious, that there can only be one totally symmetric

combination for an even expansion in 1/mb. Therefore in principle the αs correction
to the parameter m1 is known, as well as the numerical results for α2

s for µ2
π and m1.
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With a little modification this holds also true for the moments and spectra.

4.2.3. Current Status

As we have seen before, the heavy-quark expansion is both an expansion in 1/mb, but
also a perturbative expansion in the strong coupling for each Wilson coefficient. There-
fore we have the usual αs expansion for the parton level 1/m0

b . For the higher-order
terms the computation is more difficult. There each non-perturbative parameter gets
renormalized and we have to compute the loop diagrams including the non-perturbative
operators. Unfortunately it is not possible to use the same method as described above.
Therefore only the correction to µ2

π is known completely. The different terms, which
have been calculated, are summarized in table 4.1. The filled bullets indicate, that

1/mn
b

n 0 2 3 4 5

αns

0 • • • • [28] • [30]

1 • ◦ [31] – – –

2 • [32, 33] – – – –

3 ◦ [34] – – – –

Table 4.1.: Current status of the calculation of inclusive semileptonic b→ c decays.

these corrections have been computed completely, while for the circle ones some parts
are missing.

Additionally we will see, that the expansion is actually a combined one in 1/mk
bm

l
c,

where l > 0 starts with k = 3, such that

Γ3+n ∝
n∑
i=0

1

m3+n−i
b

(
1

m2
c

)i
· NP(i) , (4.65)

where NP(i) are non-perturbative parameters. Without additional gluons, there can be
only a even power of mc. Numerically the power counting mc ∼

√
ΛQCDmb suggests to

sum up the different contributions for a fixed calculation up to 1/mk
b according to table

4.2. Again all contributions with a filled bullet have been computed, while the other

Table 4.2.: Current status of the non-perturbative inclusive semi-leptonic calculation
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ones have not. To have a consistent expansion, one should include all terms along the
same color and line. The argument for only even powers of 1/mc appearing is valid for
tree-level calculations, only.

From this status it is obvious, that the non-perturbative corrections are well un-
derstood and under control. In this thesis we explain the subtle details and results,
which came out of this calculations. Furthermore it is not even necessary to compute
higher orders, from the reasons we state, than calculated here. It is clear, that a further
improvement can only be gained from perturbative corrections. The correction to µ2

G

should be completed. Furthermore the Darwin term ρ3
D plays an important role, so the

correction to it would be desirable.
In the next section we will first derive an approximation scheme for the higher-order

non-perturbative parameters. This is essential, in order to discuss the role of these
corrections—the values of the parameters have not been measured, which might not
even be possible. Then we will use this, to argue about the influence on the extraction
of |Vcb|. Therefore we specify the numerical impact of the higher order terms on all
observables in experiment. Then we discuss the special role of the charm quark inside
this expansion in more detail and how the subtleties we have mentioned here emerge.
We also give some results about weak annihilation matrix elements, which can be
extracted from this analysis. Finally we give a short comment on non-perturbative
b→ sγ, since some information from this transition is used in actual fits for extracting
the value of |Vcb| from inclusive decays.

4.3. Estimate of the Non-Perturbative Matrix Elements

As we have seen in the previous section, the independent hadronic matrix elements—the
basic parameters—start to proliferate at order 1/m4

b . This would make their complete
extraction from data by a fit difficult if not impossible. However, not all the corrections
may be expected equally important, and neglecting numerically insignificant effects
reduces the number of new parameters, possibly even to a manageable level. Yet this
requires estimating the scale of the emerging expectation values well beyond naive
dimensional guessing. Furthermore such a “guesstimate” provides a useful basis to
judge the convergence behaviour of the series. Nevertheless for including the higher
order parameters in the fit, using this factorization ansatz as a basis, we suggest to go
beyond the leading-order approximation presented here.

In this chapter we are dealing with the heavy-quark expectation values at tree level
appearing up to dimension 8, and in the following we present a method for estimating
them based on the saturation by intermediate states.

In our approach we begin with the expectation value containing the full number of
derivatives. We insert a sum over the full set of zero-recoil intermediate single-heavy-
quark states to divide the composite operator into two ones with less derivatives each.
Therefore we can express higher order matrix elements through the lower ones, which
have already been determined. The approximation scheme we employ, is to retain the
lowest allowed and contributing multiplet intermediate state, only. The accuracy of
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4. The Inclusive Decay B → Xc`ν̄`

this approximation relies on how strong the lowest state is already saturated. The
uncertainty due to this approximation may be estimated and by including the next
higher term it may be refined. In the following pages we will restrict ourselves to the
lowest state.

4.3.1. Intermediate State Representation for the Matrix Elements

Our goal is to estimate forward matrix elements of the form

〈B̄|b̄iDµ1iDµ2 . . . iDµnΓ b|B̄〉 , (4.66)

where Γ denotes an arbitrary Dirac matrix. The representation is obtained by splitting
the full chain iDµ1iDµ2 . . . iDµn into two ones, labeled by Ak1 and Cn

k

Ak1 = iDµ1iDµ2 . . . iDµk (4.67)

Cn
k = iDµk+1

iDµk+2
. . . iDµn . (4.68)

Inserting a full set of intermediate states, we get

〈B̄|b̄Ak1 Cn
k Γ b|B̄〉 =

1

2MB

∑
n

〈B̄|b̄ Ak1 b(0)|n〉 · 〈n|b̄(0)Cn
k Γ b|B̄〉 , (4.69)

where we have assumed the B mesons to be static and at rest which means |B̄〉 =
|B̄(p = (MB,0))〉, and |n〉 are hadronic states with vanishing spatial momentum with
a single b-quark content.

Now we will present an OPE-based proof7 of equation (4.69). Therefore we intro-
duce a ficticious heavy-quark Q which will be treated as static (i.e., mQ → ∞ and
normalization point is much lower than mQ), and consider a correlator of the form

TAC(q0) = −i
∫

d4x eiq0x0〈B̄|T
[
b̄Ak1Q(x) Q̄Cn

kΓb(0)
]
|B̄〉 . (4.70)

Note that the spatial momentum transfer q has been explicitly set to vanish and thus
v · q ≡ q0 holds.

We shall use the static limit for both b and Q, and hence introduce the ‘rephased’
fields Q̃(x) = eimQq0x0Q(x) and likewise for b, and omit the tilde in what follows. Thus
the b-quark field coincides with the previously defined bv field. The form of the resulting
exponent in eq. (4.70) suggests to define ω = q0 −mb +mQ as the natural variable for
TAC , and 1

2MB
TAC(ω) is assumed to have a heavy-quark limit.

We can perform the OPE for TAC(ω) at reasonably large mQ and |ω| � ΛQCD. We
can still assume that |ω| � mQ and thereby neglect all power corrections in 1/mQ. In
this approximation the propagator of the Q field becomes static, which results in

T
[
Q(x)Q̄(0)

]
= i

1 + /v

2
δ3(x) θ(x0)P exp

(
− i

x0∫
0

A0(x̃0) dx̃0

)
, (4.71)

7A similar proof based on effective-field-theory results in the same formula.
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where A0 is the time-component of the background field. Plugging this back into (4.70)
we can perform the integration

TAC(ω) =

∫
d4x eiωx0〈B̄|b̄Ak1

1 + /v

2
δ3(x) θ(x0)P exp

(
−i

x0∫
0

A0dx̃0

)Cn
kΓb(0)|B̄〉

=

∫
dx0 e

iωx0〈B̄|b̄Ak1 θ(x0)P exp

(
−i

x0∫
0

A0dx̃0

)
Cn
k

1 + /v

2
Γ b|B̄〉

= 〈B̄|b̄ Ak1
1

−ω − π0 − iε
Cn
k

1 + /v

2
Γ b|B̄〉 , (4.72)

where π0 = iD0 is the time component of the covariant derivative of the background
field and P denotes the path ordering symbol. In the last step the integration over the
zero component leads to the propagator with energy ω in the background field. This
representation allows an immediate expansion of iTAC(ω) in a series in 1/ω at large |ω|:

TAC(ω) = −
∞∑
j=0

〈B̄|b̄ Ak1
(−π0)j

ωj+1
Cn
k

1 + /v

2
Γ b|B̄〉 . (4.73)

On the other hand we can derive the correlator using its dispersion relation to be
able to insert a full set of intermediate states

TAC(ω) = − 1

π

∞∫
0

dν
1

ν − ω + iε
ImTAC(ν) (4.74)

where the imaginary part is directly connected to the discontinuity due to the known
causality prescription. To actually verify, that we cut across the correct branch cut, we
state here that in the static limit the scattering amplitude has only one “physical” cut,
which corresponds to positive ω.

The imaginary part is given by

ImTAC(ν) = −1

2

∫
d4xeiνx0〈B̄|b̄Ak1Q(x) Q̄Cn

kΓb(0)|B̄〉

= −1

2

∑
nQ

∫
d4x e−ipn·xei(ν−En)x0〈B̄|b̄Ak1Q(0)|nQ〉〈nQ|Q̄Cn

kΓb(0)|B̄〉 ,

(4.75)

where we have inserted a complete set of states in the last step. The first line can be
computed from equation (4.70) by inserting the time-ordering in an integral form. The
sum runs over the complete set of the intermediate states |nQ〉. Their overall spatial
momentum is denoted by pn and the corresponding energy by En. Please note, that
the last relation is nothing else than the optical theorem for TAC(ω), which we have
already encountered before.
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Since all operators do not depend on x we can directly perform the integration,
which simply yields a delta distribution. For the spatial integration over d3x we get
(2π)3δ3(pn) and for the integration over time dx0 the result is 2π δ(En−ν), respectively.
Therefore only the states with vanishing spatial momentum are projected out, and we
denote them as |n〉 to be consistent with the representation we used before

ImTAC(ν) = −π
∑
n

δ(ν − En) 〈B̄|b̄Ak1Q(0)|n〉 〈n|Q̄Cn
kΓb(0)|B̄〉 . (4.76)

The normalization to zero spatial moment (2π)3δ3(pn) is put in the corresponding states
with vanishing spatial momentum. Inserting the optical theorem relation (4.76) into
the dispersion integral (4.74) yields

TAC(ω) =
∑
n

〈B̄|b̄Ak1Q(0)|n〉 〈n|Q̄Cn
kΓb(0)|B̄〉

En − ω + iε
, (4.77)

where the ν integration is trivial due to the delta distribution. The large-ω expansion
takes the form

TAC(ω) = −
∞∑
j=0

1

ωj+1

∑
n

Ej
n 〈B̄|b̄Ak1Q(0)|n〉 〈n|Q̄Cn

kΓb(0)|B̄〉 . (4.78)

Now we put together these two results by equating the leading power in 1/ω of
TAC(ω) in the equations (4.73) and (4.78). We obtain the relation

〈B̄|b̄Ak1 Cn
k

1 + /v

2
Γ b(0)|B̄〉 =

∑
n

〈B̄|b̄ Ak1 Q(0)|n〉 · 〈n|Q̄ Cn
k Γ b(0)|B̄〉 , (4.79)

which is the intermediate state representation (4.69), we wanted to proof. Note that
the projector (1 + /v)/2 on the left-hand side can be omitted since the static b̄ field
satisfies b̄ = b̄(1 + /v)/2.

Considering higher values of j in equations (4.73) and (4.78), which describe the
sub-leading parts in 1/ω of TAC(ω), we immediately generalize the saturation relation
(4.69)

〈B̄|b̄Ak1 πk0 Cn
k

1 + /v

2
Γ

1 + /v

2
b(0)|B̄〉 =

∑
n

(EB − En)k 〈B̄|b̄ Ak1 Q(0)|n〉

×〈n|Q̄ Cn
k

1 + /v

2
Γ

1 + /v

2
b(0)|B̄〉 . (4.80)

Thus each insertion of the operator (−π0), which is translated into iv · D, inside a
composite operator acts as a factor of the intermediate state excitation energy.

This is also expected, if we look at the equations of motions. On the one hand, for
any colour singlet and the static quark field Q, the relation

i∂0Q̄Cb(x) = Q̄(x)
(
i
←−
D 0C + CiD0

)
b(x))

= Q̄π0Cb(x)
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holds. On the other hand, the time-derivative is connected to the energy of the system.
Taking the matrix element of the operator, we end up with

i∂0 〈n|Q̄Cb(x)|B̄〉 = 〈n|Q̄
(
i
←−
∂ 0C + Ci∂0

)
b(x)|B̄〉

= −(En −MB) 〈n|Q̄Cb(x)|B̄〉 .

A couple of comments are in order before closing this subsection. Although we have
phrased this consideration for the case of expectation values in B mesons at rest, these
assumptions are not mandatory. The very same saturation by complete set of heavy-
quark intermediate states of a given spatial momentum holds for matrix elements where
initial and final states may be different, and may have non-vanishing momenta. But
they do not have to be the ground pseudo-scalar states, but with arbitrary spin flavor
content.

Likewise, it is worth noting that even the static approximation for b quarks is actually
superfluous. The saturation by physical intermediate states relies solely upon large
mass of the Q quarks which belong to this intermediate state. The only modification
required for finite mb is taking care of the static projectors 1+/v

2
introduced by the Q-

quark propagator. Remember: The very same argument holds true in determining the
“trace-formulae”. Using the identity

1 =
1 + /v

2
+ γ5

1 + /v

2
γ5

we arrive at the following generalization:

〈B̄|b̄ Ak1 Cn
k Γ b(0)|B̄〉 =∑

n

(
〈B̄|b̄ Ak1 Q(0)|n〉 · 〈n|Q̄ Cn

k Γ b(0)|B̄〉+ 〈B̄|b̄ Ak1 γ5Q(0)|n〉 · 〈n|Q̄ Cn
k γ5Γ b(0)|B̄〉

)
.

(4.81)

The similar relation between π0 and the excitation energy is only modified by the mass
shift of the finite-mass B meson:

〈B̄|b̄ Ak1π
j
0C

n
k Γ b(0)|B̄〉 =

∑
n

[(MB −mb)− (Mn −mQ)]j×(
〈B̄|b̄ Ak1 Q(0)|n〉 · 〈n|Q̄ Cn

k Γ b(0)|B̄〉+ 〈B̄|b̄ Ak1 γ5Q(0)|n〉 · 〈n|Q̄ Cn
k γ5Γ b(0)|B̄〉

)
.

(4.82)

We assume in the following practical application a generic excitation energy −ε̄ ≡
[(MB − mb) − (Mn − mQ)], which has been averaged over the different contributing
intermediate states. It is defined such, that ε̄ > 0.
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4.3.2. Lowest State Saturation Ansatz

So far the only approximation in our intermediate state representation (4.69), we have
assumed, is the static limit for the b quark. It may be used to apply a dynamic QCD
approximation. In the following we want to use the dimension 5 and 6 B meson heavy-
quark expectation values of equation (4.66) as an input. Concretely they are given by
µ2
π, µ2

G, ρ3
D and ρ3

LS.
All operators with four and more derivatives, meaning dimension 7 and higher, must

have an even number of spatial derivatives due to rotational invariance. Thus the
operators with four derivatives have either four spatial derivatives, or two time and two
spatial derivatives. Likewise, the D = 8 operators with five derivatives may have four
spatial and a single derivative, or two spatial and three time derivatives.

We start with the D = 7 operators with four spatial derivatives, and apply (4.79).
Now for convenience we label the “rephased” b-quark field again with bv to be consistent
with the definition of the basis matrix elements

〈B̄|b̄v iDjiDkiDliDmΓ bv|B̄〉 =
∑
n

〈B̄|b̄viDjiDkbv|n〉 〈n|b̄v iDliDmΓ bv|B̄〉 . (4.83)

The intermediate states |n〉 contributing are either the ground-state multiplet B,B∗,
or excited states with the same content of light degrees of freedom. The ground-state
factorization approximation assumes that the sum in (4.83) is to a large extent saturated
by the ground-state spin-symmetry doublet. Hence we retain only the contribution of
the ground state and discard the contribution of higher excitations. In the case of
dimension seven operators the result is expressed in terms of the expectation values
with two derivatives, i.e. µ2

π and µ2
G. Matrix elements involving B∗ are related to

them by spin symmetry. We illustrate below the compact result of summation over the
multiplet of states. The method we use is most economic and turns out particularly
transparent when generalizing the ground-state approximation.

4.3.3. Scheme

Here we derive the concrete expressions for the sum over ground-state heavy-quark
symmetry multiplet of meson states, encountered in the factorization approximation
for the D = 7 and D = 8 expectation values (4.83). The trace formalism has been de-
veloped in particular to describe the heavy-quark spin multiplets at different velocities,
e.g. in exclusive decays.

With the spin of the heavy-quark dynamically decoupled in the heavy-quark limit,
the B and B∗ meson wavefunctions at rest, M and M

(∗)
λ , can be represented as matrices

as we have already seen for the derivation of the Isgur-Wise function

M =
√
MB

1 + γ0

2
iγ5 M

(∗)
λ =

√
MB

1 + γ0

2
(γελ), (4.84)

where we have equated the B and B∗ masses in the heavy-quark limit. One of the
indices in these matrices corresponds to the heavy-quark spin and another to that of
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the light degrees of freedom. Spin symmetry yields the well known trace formula for
the matrix elements:

〈H ′|b̄iDµiDνΓ b|H〉 = −Tr
[
M̄H′ΓMHΛlight

µν

]
(4.85)

where H and H ′ are either B or B∗, MH,H′ are the corresponding meson wavefunc-
tions (4.84) and Λlight

µν encodes dynamics associated with light degrees of freedom, e.g.
the information on the non-perturbative parameters. While a complicated unknown
hadronic tensor in the general situation, Λlight

µν takes a simple form for mesons at rest,
already known from the dimension 5 trace formula

Λlight
µν

∣∣
v·v′=1

= −µ
2
π

3
Πµν +

µ2
G

6
iσµν . (4.86)

The time components vanish due to the applied heavy-quark limit.
In order to evaluate the ground-state contribution for the matrix element of dimension

seven operators, containing four derivatives, we must sum over the states of the (B,B∗)
spin-symmetry doublet. To do this we employ the relation valid for arbitrary R

− 1

2MB

Tr
[
RM̄

]
M −

∑
λ

1

2MB

Tr
[
RM̄

(∗)
λ

]
M

(∗)
λ =

1 + γ0

2
R

1− γ0

2
(4.87)

expressing the completeness of the B,B∗ states in spin space. Note, that we project
into the upper component and therefore the basis is reduced to four matrices instead
of 16. In the next step we evaluate the right-hand side of (4.83) in the ground-state
saturation, where we rely only on the first two states B and B∗. For the first excited
state B∗ we have to sum over the polarizations. With the trace formula (4.85) we
express the two product matrix elements and use the relation (4.87) to simplify the
expression

1

2MB

[
〈B|b̄ iDjiDkb|B〉 〈B|b̄ iDliDmΓ b|B〉+

∑
λ

〈B|b̄ iDjiDkb|B∗λ〉 〈B∗λ|b̄ iDliDmΓ b|B〉
]

=
1

2MB

[
Tr
[
M̄MΛlight

jk

]
Tr
[
M̄ΓMΛlight

lm

]
+
∑
λ

Tr
[
M̄M

(∗)
λ Λlight

jk

]
Tr
[
M̄

(∗)
λ ΓMΛlight

lm

] ]
= −Tr

[
M̄

1 + γ0

2
ΓMΛlight

lm

1− γ0

2
Λlight
jk

]
= −Tr

[
M̄ΓMΛlight

lm Λlight
jk

]
. (4.88)

The result can be verified by defining R = ΓMΛlight
lm and noticing, that we can write

the trace into components Tr
[
M̄M (∗)Λlight

jk

]
≡ M̄αα′M

(∗)
α′κ(Λ

light
jk )κα, where we assume

summation over repeated indices. In the last step the static projectors have been re-
absorbed, which is valid in our approximation. The product of the two hadronic tensors
Λlight in (4.86) can be decomposed into

Λlight
lm Λlight

jk =
(µ2

π)2

9
gjkglm −

µ2
πµ

2
G

18
(gjkiσlm + iσjkglm)+

(µ2
G)2

36
(gjmgkl − gjlgkm + gjmiσkl − gjliσkm + iσjmgkl − iσjlgkm) . (4.89)
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In the static limit we therefore obtain for spin-singlet and spin-triplet B expectation
values

1

2MB

〈B|b̄ iDjiDkiDliDm b|B〉 =
(µ2

π)2

9
gjkglm +

(µ2
G)2

36
(gjmgkl − gjlgkm) (4.90)

1

2MB

〈B|b̄ iDjiDkiDliDm (−iσab) b|B〉 = −µ
2
πµ

2
G

18

(
gjkglagmb − gjkglbgma +

glmgjagkb − glmgjbgka
)

+
(µ2

G)2

36

[
gjm(glbgka − glagkb)− gjl(gkagmb − gkbgma) +

gkl(gjagmb − gjbgma)− gkm(gjaglb − gjbgla)
]
,

(4.91)

from which we can compute the factorization estimate of the dimension seven matrix
elements.

For the D = 8 operators with four spatial and one time derivative we follow the same
route, yet one of the two Λlight now describes the operator of the form b̄iDjiD0iDkΓb.
Denoting the corresponding hadronic tensor of light degrees of freedom by Rlight

µν , we
express it through the Darwin and Spin-Orbit expectation values:

Rlight
µν

∣∣
v·v′=1

=
ρ3
D

3
Πµν +

ρ3
LS

6
iσµν . (4.92)

Please note, that it is fully symmetric with respect to which Λlight we exchange. This
reflects the fact, that the observable matrix elements obey T -parity. Repeating the
same steps we end up with

1

2MB

〈B|b̄ iDjiD0iDkiDliDm b|B〉 = −ρ
3
Dµ

2
π

9
gjkglm +

ρ3
LSµ

2
G

36
(gjmgkl − gjlgkm)

(4.93)

1

2MB

〈B|b̄ iDjiD0iDkiDliDm(−iσab) b|B〉 =
ρ3
Dµ

2
G

18
gjk(glagmb − glbgma)−

ρ3
LSµ

2
π

18
glm(gjagkb − gjbgka) +

µ2
Gρ

3
LS

36

[
gjm(glbgka − glagkb)− gjl(gkagmb − gkbgma) +

gkl(gjagmb − gjbgma)− gkm(gjaglb − gjbgla)
]
.

(4.94)

We are now able to obtain all required factorization results in the following section,
using the input values in Table 4.3.

Parameter µ2
π µ2

G ρ3
D ρ3

LS ε̄

Value 0.45 GeV2 0.35 GeV2 0.15 GeV3 −0.15 GeV3 0.4 GeV

Table 4.3.: Input values for the factorization estimate.
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4.3. Estimate of the Non-Perturbative Matrix Elements

4.3.4. Summary for O(Λ4
QCD) and O(Λ5

QCD) Expectation Values

Combining the above relations we can evaluate all the required non-perturbative pa-
rameters at order 1/m4

b and 1/m5
b in terms of a few parameters µ2

π, µ2
G, ρ3

D, ρ3
LS and ε̄

taken as an input. The input values are listed in table 4.3. Table 4.4 lists the result-
ing expressions for the expectation values in dimension 7, and give the corresponding
numerical estimates. Tables 4.5 and 4.6 list the according numbers and expressions for
the dimension 8 singlet and triplet parameters.

Singlet parameter m1 m2 m3 m4

Fact. estimate 5
9

(µ2
π) 2 −ε̄ρ3

D −2
3

(µ2
G)

2
(µ2

G)
2

+ 4
3

(µ2
π)

2

Value / GeV4 0.113 -0.06 -0.82 0.393

Triplet parameter m5 m6 m7 m8 m9

Fact. estimate −ε̄ρ3
LS

2
3

(µ2
G)

2 −8
3
µ2
Gµ

2
π −8µ2

Gµ
2
π (µ2

G)
2 − 10

3
µ2
Gµ

2
π

Value / GeV4 0.060 0.082 -0.420 -1.260 -0.403

Table 4.4.: Estimate for the dimension 7 parameters.

The tabulated values are of course no precision predictions. We now point out the
limitations of accuracy. First, the expressions depend on µ2

π, µ2
G, ρ3

D, ρ3
LS which are

themselves only known with limited precision. The same holds true for the value of
ε̄, which should be seen as an effective averaged parameter in our case. This aspect,
however, is easy to quantify using the expression in the tables 4.4, 4.5 and 4.6.

Parameter r1 r2 r3 r4

Fact. estimate ε̄20ρ
3
D −µ2

πρ
3
D −1

3
µ2
πρ

3
D − 1

6
µ2
Gρ

3
LS ρ3

D ε̄
2
0 − 1

3
µ2
πρ

3
D + 1

6
µ2
Gρ

3
LS

Value / GeV4 0.024 -0.068 -0.014 -0.007

Parameter r5 r6 r7 r8

Fact. estimate 0 ε̄2ρ3
D 0 ε̄2ρ3

LS

Value / GeV4 0 0.024 0 -0.024

Table 4.5.: Estimate for the dimension 8 singlet parameters.

Secondly, we are using heavy-quark effective theory, which means we treat the b
quarks as well as the “intermediate” b quarks in the infinite mass limit, while the
definition of the parameters in the HQE include the full QCD fields, meaning the
full mass dependence. Generically such finite-mass corrections are governed by the
parameter µhadr/2mb and can be sizable up to 15% in B hadrons [35]. However, there
is a specific suppression of such pre-asymptotic correction in the ground-state pseudo-
scalar mesons related to the observed proximity of these states to the so-called ‘BPS’
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4. The Inclusive Decay B → Xc`ν̄`

regime [36]. Since we deal here exclusively with the pseudo-scalar ground state, we
expect the finite mass corrections to be substantially smaller.

Parameter r9 r10

Fact. estimate −µ2
πρ

3
LS µ2

Gρ
3
D

Value / GeV4 0.068 0.053

Parameter r11 r12

Fact. estimate 1
3
µ2
Gρ

3
D − 1

6
(µ2

G + 2µ2
π) ρ3

LS −1
3
µ2
Gρ

3
D − 1

6
(µ2

G − 2µ2
π) ρ3

LS

Value / GeV4 0.004 0.014

Parameter r13 r14

Fact. estimate −1
3
µ2
Gρ

3
D + 1

6
(µ2

G + 2µ2
π) ρ3

LS ρ3
LSε

2
0 + 1

3
µ2
Gρ

3
D + 1

6
µ2
Gρ

3
LS − 1

3
µ2
πρ LS3

Value / GeV4 -0.049 0.007

Parameter r15 r16

Fact. estimate 0 0

Value / GeV4 0 0

Parameter r17 r18

Fact. estimate ε20ρ
3
LS 0

Value / GeV4 -0.024 0

Table 4.6.: Estimate for the dimension 8 triplet parameters.

In all the following numerical results of terms with dimension higher or equal seven,
we will use the estimated for the non-perturbative parameters above. For the lower
dimensional terms, we use the values quoted in Table 4.3

Some Comments on the Validity of this Approximation

The major issue is thus the validity of the employed approximation for the matrix
elements. In particular the question should be raised, if retaining only to the relevant
lowest states, is valid for these operators. The degree to which this ansatz is applicable,
depends on the operator in question. It is expected to deteriorate when the number of
derivatives, or in other words the dimension of the operator increases.

We now present some argumentation to estimate the relative accuracy for the expec-
tation values. Please note, that in general one would expect these expectation values
to scale like [ΛQCD]n, which is indeed correct up to the measured ones in dimension 6.
However, the definition of the higher order matrix elements is not physically meaningful
per se. Since we include multiple commutators, we had to put the correct normaliza-
tion factors in front. Because we did not, some of the parameters seem to have an
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4.3. Estimate of the Non-Perturbative Matrix Elements

unnaturally large value. Thus the choice of the basis directly influences the shifting
of the strength between Wilson coefficient and operator, as it is expected for obvious
reasons. More over the sign of a parameter cannot be guessed. The significance, both
of the operators themselves and of the uncertainties in their evaluation, must therefore
be gauged by the effect on the moments.

The dominance of the lowest state and suppression of transitions into highly excited
states typically holds for the bound states with a smooth potential. In field theory
for heavy-light mesons this question was studied [37] in two-dimensional QCD, the
so called ’t Hooft model, which is exactly solvable in the limit of a large number of
colors. In particular, the ground-state expectation values for operators with two spatial
derivatives were found to be saturated by the first ‘P -wave’ state to an amazing degree
of accuracy. We should remind that there is no spin in 1 + 1 dimensions, therefore only
one, not two P -wave families. In case this also applies to real QCD we would expect
a good accuracy of the employed factorization ansatz for the operators containing two
spatial derivatives m2 and m5 at order 1/m4

b and a reasonable one for r1, r6, r8, r17

at order 1/m5
b , which have three spatial derivatives. It might apply also to some other

related combinations.

The situation is a priori less clear with the other operators in dimension seven,
containing four spatial derivatives. In the ’t Hooft model the effects related to deviations
from the ground-state factorization were studied and were found to be nearly saturated,
again to a very good degree, by the first ‘radial’ excitation [37].8 For some of the
expectation values at order 1/m4

b they can be estimated following the reasoning of
Refs. [35, 38]. The non-factorizable contributions taken at face value appear to be
about 50% of the ground-state one [39].

Additionally we have to think about renormalization and corrections to this opera-
tors. In reality, the effective interaction in full QCD is singular at short distances due to
perturbative physics. Hard gluon corrections lead to a slow decrease of the transitions
to the highly excited states—yet they are dual to perturbation theory. This is taken
care of in the Wilsonian renormalization procedure, which is assumed in the kinetic
scheme and adopted for the common analysis of these decays. From this perspective,
one can say that the factorization ansatz yields the expectation values at a low nor-
malization point µ < εrad ≈ 0.6 GeV, before the channels to radially excited states
open up; the excitation energy εrad for such lowest resonance states is probably around
600− 700 MeV. Of course, the actual µ-dependence at such low scale does not coincide
with the one derived from perturbation theory. At intermediate excitation energies it
must be in some respect dual to the perturbative one.

Keeping this in mind it should be appreciated that even for definitely positive cor-
relators, or those expectation values where all intermediate states contribute with the
same sign, simply adding the first excitation to the ground state contribution may al-
ready constitute some overshooting. Indeed, we may consider the excitation energy

8The contribution itself turned out quite significant if normalized literally to (µ2
π)2, apparently since

µ2
π is anomalously small in this case, due to a factor of 3, which is the number of space dimensions.

If normalized to Λ
4

it was about 3/4. In actual B mesons µ2
π is close to Λ

2
.

75



4. The Inclusive Decay B → Xc`ν̄`

of the i-th radially excited state ε
(i)
rad and compare it to perturbative contributions. A

resonance state residing at mass ε
(1)
rad may be dual to the perturbative contribution over

the domain of masses
ε

(1)
rad

2
< ε <

ε
(1)
rad + ε

(2)
rad

2
(4.95)

and likewise for higher resonances. Then a better approximation for the expectation
value normalized at µ = ε

(1)
rad would be to add only half of the first excitation contribu-

tion. In practical terms, as long as the power mixing in the perturbative corrections to
the conventional Wilson coefficients, most notably of the unit operator, has not been
extended to order 1/m4

b and 1/m5
b , the effective non-factorizable piece may turn out

even less.
An additional feature of actual QCD is the existence of the low-mass continuum

contribution beyond pure resonances, most notably states like B(∗)π and their SU(3)
siblings. Their contribution is typically 1/Nc suppressed and usually does not produce
a prominent effect in quantities which are finite in the chiral limit. This is true for
the corrections to factorization for higher-dimension expectation values. They can be
expected to contribute up to 25% of the ground state, yet this may be partially offset
once the actual QCD conventional expectation values are used in the factorization
ansatz, that likewise incorporate such states [38].

Considering all these arguments, we tentatively assign the uncertainty in the factor-
ization estimate to be at the scale of 50%. Yet this should be understood to apply to the
“positive” operators where the lowest-state contribution does not vanish and the ex-
cited state multiplets yield the same-sign contribution. The corrections to factorization
will be addressed in more detail in the forthcoming paper [39].

4.4. Higher Order Corrections in the Rate and
Moments

Armed with the numerical estimates of all the required expectation values we are in
the position to evaluate the higher-order power corrections to inclusive B decays. The
primary quantity of interest is the total semileptonic width Γsl(b → c`ν̄`) used for the
precision extraction of |Vcb|. The lepton energy spectrum and the lepton energy mo-
ments, as well as the hadronic invariant mass moments, which are normalized and thus
|Vcb| drops out, are used to pin point the non-perturbative parameters and the quark
masses. Additionally information from B → Xsγ is used, because these parameters do
not depend on the final state [40]. We will apply these corrections also to this decay in
a separate section 4.6.

4.4.1. Γ(B → Xc `ν)

Assuming the fixed values of mb, mc and the non-perturbative parameters as tabulated
in the last section, we find the following power corrections at different orders in 1/mb.
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4.4. Higher Order Corrections in the Rate and Moments

We define δΓ1/mk as all terms in the total rate contributing only at the specific order
1/mk, including the non-perturbative parameters, in the expansion. The shifts induced
by the already known terms, which are included in experiment are given by:

δΓ1/m2

Γparton

= −0.043
δΓ1/m3

Γparton

= −0.030 . (4.96)

We estimate the contributions from higher-order terms in the expansion to be

δΓ1/m4

Γparton

= 0.0075
δΓIC

Γparton

= 0.007
δΓ1/m5

Γparton

= 0.006 , (4.97)

where Γparton includes the phase space suppression factor (1−8ρ+ . . .) of approximately
0.63. We will show separately how the contribution scaling like 1/m3

bm
2
c arise, which is

here denoted by δΓIC in section 4.5. As anticipated [41], it dominates the higher-order
effects and may even exceed the 1/m4

b correction, yet it is to some extent offset by the
regular 1/m5

b terms.
The numerical results (4.97) suggest that the power series for Γsl(b → c`ν̄`) is well

behaved, and is under good numerical control, provided the non-perturbative expec-
tation values are known or at least estimated at a reasonable precision. Higher-order
terms induce decreasing corrections except where anticipated on theoretical grounds.
The estimated overall shift due to higher-order terms

δΓ1/m4 + δΓ1/m5

Γparton

' 0.013 (4.98)

is well within the interval assessed in [41] and, taken at face value, would yield a 0.65%
direct reduction in |Vcb|.

But this is not to be the whole story however, because the quark masses, which
determine the partonic width, are not known beforehand with an accuracy required to
extract |Vcb| with the percent precision. Rather, as we have mentioned earlier, their
relevant combination is extracted from the fit to the data on kinematic moments of the
B → Xc `ν̄` decay distributions, that are also affected by power corrections9. Therefore
we investigate these moments in turn.

4.4.2. Moments

The key in the OPE evaluation of Γsl(b→ c`ν̄`) and, therefore, in the extraction of |Vcb|
are the first moments of lepton energy 〈E`〉 and of hadron invariant mass squared 〈M2

X〉,
which pinpoint the precision value of the combination of mb and mc, that drives the
total decay probability. Moreover, analyzed through order 1/m3

b , these two moments
turned out to depend on nearly the same combination of the heavy-quark parameters.
This allowed for a non-trivial cross check of the OPE-based theory prediction [42]:
Essentially, 〈M2

X〉 could be predicted in terms of 〈E`〉 and vice versa, once the heavy-
quark parameters were allowed to vary within theoretically acceptable range.

9In fact higher moments are more affected by these higher order power-corrections
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4. The Inclusive Decay B → Xc`ν̄`

Therefore, besides the practical question about the shift in the fitted heavy-quark
parameters, another important issue emerges of whether the consistency between mea-
sured values of 〈E`〉 and of 〈M2

X〉 persists once higher-order corrections are accounted
for. Numerically we find

δ〈E`〉 = 0.013 GeV, δ〈M2
X〉 = −0.086 GeV2 (4.99)

where the changes shown are a combined contribution of corrections to order 1/m4
b and

1/m5
b . In our analysis we follow Ref. [43] and evaluate the moments M as the ratios∫

dE` dv · q dq2K(E`,v · q,q2)C(E`,v · q,q2) d3Γsl

dE`dv·qdq2∫
dE` dv · q dq2C(E`, v · q,q2) d3Γsl

dE`dv·qdq2

(4.100)

without prior expanding the ratio itself in 1/mb. Here K is the corresponding kinematic
observable in question, meaning powers of E` or M2

X and C is an explicit kinematic
cut if imposed. The integrals both in denominator and in numerator are taken di-
rectly as obtained in the OPE through the corresponding terms in 1/mb. In particular,
powers of (MB −mb) for hadronic mass moments effectively are not treated as power
suppressed. Throughout this analysis we perform numeric evaluation of higher-order–
induced changes in observables discarding perturbative corrections altogether. This
turned out to be a good approximation in the kinetic scheme.

To assess the practical significance of the numerical changes in the moments, we
compare the result including all higher order terms with the result obtained with the
values of “conventional” heavy-quark parameters used in the OPE so far, only. Thereby
we analyze the size of the shift in the heavy quark parameters, that would accommodate
for this new effects, if we consider the expansion only up to dimension six.

Specifically, we choose to consider the variations in mb, µ
2
π and ρ3

D for this purpose,
since these turn out to be most relevant in the analysis so far. We assume changes
of the order |δmb| & 10 MeV, |δµ2

π| & 0.1 GeV2 and |δρ3
D| & 0.1 GeV3 as significant,

bearing in mind the estimated accuracy of the existing OPE predictions [43]. We do not
include mc here10 for the following reason: The quark mass dependence of the moments
is essentially given by the combination mb − 0.7mc. The interval allowed by the fits
on individual values of mb and mc separately, is much wider than 10 MeV. Therefore
in practice the required variation in mc is not independent and is derived from the
corresponding variation in mb. The stated significance of δmb ∼ 10 MeV refers, in fact,
to the above combination of masses.

In the actual fits, the effect of newly implemented higher-order corrections has to be
compensated by a simultaneous change in all heavy-quark parameters, to accomodate
the experimental values. To visualise this, we quote for each moment M(k), which is
computed up to 1/mk−3

b and δM(j) =M(j)−M(6) denotes the shift due to higher-order
terms of dimension 7 to j, the separate values

δmb = −δM
(8)

∂M(6)

∂mb

, δµ2
π = −δM

(8)

∂M(6)

∂µ2
π

, δρ3
D = −δM

(8)

∂M(6)

∂ρ3
D

. (4.101)

10This implies we keep it fixed throughout the analysis
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This assumes the extreme situation, as if only one of the HQE parameters were respon-
sible for the adjustment and if the higher-order effect had been made up for, completely.
These ad hoc assumption shall just indicate the influence of the terms. Clearly, if a
particular shift in a heavy-quark parameter comes out abnormally large, it should sim-
ply be discarded: This only signals that the moment in question is insensitive to this
parameter and the moment rather constrains other OPE parameters. On the contrary,
if a shift is small, this generally means that the parameter is well-constrained and, typ-
ically, should not be adjusted. In a sense, the values in equation (4.101) would assume
that the quality of the fit before including the calculated corrections has been perfect,
and this clearly is oversimplification. Yet this is suitable to gauge the significance of
the corrections we study.

The dependence of the considered moments upon heavy-quark parameters, which
enter the denominators in equation (4.101) is given in a ready-to-use form in Ref. [43],
or can be deduced from the analytical results of our calculation. From that we obtain
the relative shifts

〈E`〉 : δmb = −33 MeV , δµ2
π = −0.39 GeV2 , δρ3

D = 0.15 GeV3

⇒ δ|Vcb|
|Vcb|

= 0.022 ⇒ δ|Vcb|
|Vcb|

= −0.005 ⇒ δ|Vcb|
|Vcb|

= 0.014 (4.102a)

〈M2
X〉 : δmb = −17 MeV , δµ2

π = −0.12 GeV2 , δρ3
D = 0.086 GeV3

⇒ δ|Vcb|
|Vcb|

= 0.011 ⇒ δ|Vcb|
|Vcb|

= −0.0015 ⇒ δ|Vcb|
|Vcb|

= 0.008 . (4.102b)

The dependence of Γsl(B) on heavy-quark parameters has also been carefully studied
[41, 43, 44]. We have supplemented the corresponding relative shift in |Vcb| by the
variation of the heavy-quark parameters according to

δ|Vcb|
|Vcb|

= −1

2

1

Γsl

∂Γsl

∂ HQP
δHQP ,

1

Γsl

∂Γsl

∂ HQP
=


0.0013 MeV−1 HQP = mb

−0.026 GeV−2 HQP = µ2
π

−0.18 GeV−3 HQP = ρ3
D

.

(4.103)
The equations (4.102) suggest that one of the possible ‘solutions’ is an increase in

ρ3
D by about 0.1 GeV3. This value may additionally be affected by a variation in µ2

π of
the scale of 0.05 GeV2 or in mb about 10 MeV. The relevance of this solution essen-
tially depends on how precisely the presently fitted standard heavy-quark parameters
accommodate both 〈E`〉 and 〈M2

X〉.
In actuality, the most precise measurements coming from the threshold production

of B mesons at B-factories require a lower cut on the lepton energy. Therefore, the
proper analysis of the moments should include a E` cut around 1 GeV.

Fig. 4.2 a–f show the size of the non-perturbative OPE terms for the first three central
lepton energy and hadron mass squared moments, depending on the lower cut Ecut

` on
the charged lepton energy. Different orders in 1/mb have distinct colours.11

11As before, the explicit factorMB−mb in hadronic mass moments does not count as power suppressed.
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Figure 4.2.: Power corrections to the first three (central) moments of charged lepton energy

(upper row) and hadron invariant mass squared (lower row), at different orders

in the 1/mQ expansion, in units of GeV in the corresponding power. Blue is the

effect of µ2
π and µ2

G (order 1/m2
b), green at order 1/m3

b , red at 1/m4
b and magenta

finally shows the shift upon including D = 8 expectation values at order 1/m5
b

Keeping in mind that higher moments must generally be sensitive to higher-order
OPE expectation values, we conclude that at moderate cuts Ecut

` . 1.5 GeV preserving
sufficient “hardness” of the inclusive probability, the power expansion is well behaved.
The 1/m5

b effects are small compared to the 1/m4
b corrections. This is expected since

the intrinsic charm (IC) effects are not parametrically enhanced in the higher moments
[41,45–47], as we will also see in a moment.

At the same time, it is clear that the estimated effects from higher powers in the
1/mb expansion are not negligible, in particular in the second and higher moments.
Those are sensitive to µ2

π and ρ3
D, and high-order terms may produce their sizable shift.

Figure 4.3.: Changes in mb, µ
2
π and in ρ3

D, respectively required alone to literally offset the

effect of higher-order power terms in 〈E`〉 (blue) and in 〈M2
X〉 (magenta), at a

given Ecut
` . In units of GeV in the corresponding power.
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To visualize the potential effect, we have plotted the analogies of the shifts in equa-
tions (4.102), δmb(E

cut
` ), δµ2

π(Ecut
` ) and δρ3

D(Ecut
` ) for all six moments as functions of

the lower cut Ecut
` and the corresponding δ|Vcb|/|Vcb|. Here we present these depen-

dences only for 〈E`〉 and for 〈M2
X〉, on single plots, separately for δmb, δµ

2
π and δρ3

D,
see Figures 4.3 a–c. The special roles of these two moments have been mentioned earlier
in this subsection. The corresponding values (4.101) for all six moments at a repre-
sentative mild cut Ecut

` = 1 GeV are shown in Tables 4.7 and 4.8 together with the
corresponding relative shift δ|Vcb|/|Vcb|. The latter is easily estimated using Ref. [41],
cf. equation (4.103)

δ|Vcb|
|Vcb|

'


−0.0066 at δmb = 10 MeV

0.0013 at δµ2
π = 0.1 GeV2

0.009 at δρ3
D = 0.1 GeV3

. (4.104)

As seen from the plots in figs. 4.2, the cut-dependence of higher-order corrections shows
a generally expected behavior which qualitatively follows the behavior already found
in the 1/m2

b and 1/m3
b effects. The new corrections likewise show mild cut dependence

at Ecut
` . 1 GeV and, typically, sharply change above Ecut

` ≈ 1.5 GeV, in line with the
overall deterioration of the process hardness with raising cut on E`.

〈E`〉 〈(E` − 〈E`〉)2〉 〈(E` − 〈E`〉)3〉

δmb /MeV −39 −60
—

(δ|Vcb|/|Vcb|) (0.026) (0.040)

δµ2
π /GeV2 −0.30 −0.12 −0.04

(δ|Vcb|/|Vcb|) (−0.004) (−0.0016) (−0.0005)

δρ3
D / GeV3 0.16 0.09 0.02

(δ|Vcb|/|Vcb|) (0.014) (0.008) (0.020)

Table 4.7.: Higher order power corrections to the charged lepton energy moments with
Ecut
` = 1 GeV translated into the required conventional heavy-quark pa-

rameter shifts to offset them. Also shown are relative shifts in |Vcb|, which
would be induced through them, assuming the fixed value of Γsl(B). Entries
where δmb would exceed 100 MeV were left blank

Based on the numeric pattern of the corrections to the moments we anticipate, that
the inclusion of higher-order power-suppressed effects will mostly amount to increase
the fitted value of ρ3

D by about 0.1 GeV3 compared to the fit where only D = 5 and
D = 6 non-perturbative expectation values are retained. It could be accompanied
with a possible shift in µ2

π by about ±0.05 GeV2. Figures 4.4 a–f illustrate this asser-
tion, showing the combined effect of the new power corrections for the six moments
together with the effect of decreasing ρ3

D by 0.12 GeV3. The similarity of the shifts
suggests that the lack of higher-power corrections in the theoretical expressions used
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so far could be to some extent faked by a lower value of the Darwin expectation value.
The third lepton moment is highly sensitive to the Darwin expectation value, and un-
calculated αs-corrections to the latter may be blamed for the mismatch apparent in the
plot Figs. 4.4 c. Besides, lepton energy moments are to a large extent saturated by the
parton expressions. Therefore their high precision allows to discuss non-perturbative ef-
fects, and their value relies on a high degree of cancellation of conventional perturbative
corrections. The extent of such cancellation at higher loops is not known beforehand,
which warrants a cautious attitude towards theoretical precision of higher lepton mo-
ments at the required level, and places more emphasis in this respect on higher moments
of the hadronic mass.

〈M2
X〉 〈(M2

X − 〈M2
X〉)2〉 〈(M2

X − 〈M2
X〉)3〉

δmb /MeV −21
— —

(δ|Vcb|/|Vcb|) (0.014)

δµ2
π /GeV2 −0.13 −0.08 0.33

(δ|Vcb|/|Vcb|) (−0.0017) (−0.0010) (0.0043)

δρ3
D / GeV3 0.09 0.05 0.10

(δ|Vcb|/|Vcb|) (0.008) (0.005) (0.009)

Table 4.8.: The corresponding Table to 4.7 for the hadronic invariant mass moments.

Figure 4.4.: Effect of including higher-order power corrections (blue) to the first three mo-

ments of charged lepton energy, upper row, and of hadron invariant mass

squared, lower row, and effect of decreasing the Darwin expectation value by

0.12 GeV3 (green), in GeV to the corresponding power
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A good way to experimentally extract information on the Darwin expectation value is
the third central hadronic mass squared moment. So far B-factories did not attempt to
measure it. It has been extracted with an informative accuracy in the DELPHI analysis
[48], however for unspecified reasons this moment was not included into the global fit,
according to HFAG. We find that the higher-order power corrections (predominantly
1/m4

b) tend to shift this moment by about twice the DELPHI error bar.

Combining the increase in ρ3
D with the direct effect on Γsl, Eq. (4.98), we expect an

overall increase in |Vcb| by something like 0.4 percent

δ|Vcb|
|Vcb|

≈ +(0.003÷ 0.005) .

This estimate is based on the expectation values in the ground-state factorization ap-
proximation and would scale with their magnitude. The actual number may be up to
a factor of 1.5 larger. We emphasize that this would remain only an educated expecta-
tion, since the result strongly depends on the details of the existing fit to the data, on
the precision of different data points and on their correlations. The final conclusions
should be drawn through incorporating the new corrections in the actual fit to the data.

4.5. Intrinsic Charm

In this section we investigate the behaviour of the charm quark for different scenarios.
In the standard calculation, presented above, we have noticed that infrared sensitive
(in the vicinity of mc → 0) terms to the charm quark mass arise in the total rate. The
structure of them looks like

m2
c logm2

c +
m2
c

m2
b

logm2
c +

1

m3
b

(
logm2

c +
1

m2
c

+ . . .

)
+ . . . , (4.105)

from which we infer, that the infrared sensitivity gets stronger in higher orders. But the
charm is besides the bottom quark also a heavy-quark and therefore its scale appears
within the heavy-quark expansion and no infrared problem occur numerically. However
one might assume to investigate the light up quark instead of the charm quark. We
will show, how to treat this case properly. In Figure 4.5 we see that in the heavy-quark
expansions the bottom quark is integrated out of the theory at the scale of its mass. It
is still remnant as a static source of color, since in QCD no quark can decay. In other
words we integrate out the hard quantum fluctuations, only. Nevertheless the charm
quark, as it is lighter than the bottom quark, still appears as a dynamical quark at
that point. To treat this, we may take different points of view, which we will discuss
in turn.

Our starting point is again the hadronic tensor (4.7) with PL = 1/2(1 − γ5) being
the left-handed projector, where the delta distribution of momentum conservation is
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4. The Inclusive Decay B → Xc`ν̄`

Figure 4.5.: Renormalization group viewpoint of the charm quark.

rewritten into an integral form. Now we transform this using translational invariance

2MBWµν =

∫
d4x

2π

∑
Xc

ei(mbv−px−q)·x〈B̄|b̄(0)γνPLc(0)|Xc〉〈Xc|c̄(0)γµPLb(0)|B̄〉 (4.106)

=

∫
d4x

2π
e−iq·x

∑
Xc

〈B̄|b̄(x) γνPL c(x)|Xc〉〈Xc|c̄(0) γµPL b(0)|B̄〉 (4.107)

=

∫
d4x

2π
e−iq·x 〈B̄|b̄(x) γνPL c(x)c̄(0) γµPL b(0)|B̄〉 (4.108)

=
1

2π

∫
d4x ei(mbv−q)·x 〈B̄|b̄v(x) γνPL c(x)c̄(0) γµPL bv(0)|B̄〉 . (4.109)

Please note that the hadronic tensor in this form is non-local and it does not contain
the sum over all different intermediate states. Additionally it is explicitely clear, that
the hadronic tensor does not only contain the terms we have presented, but additionally
four-quark operators with charm-quark content. These operators have to be considered,
but in a safe way, such that double counting is avoided. If we now perform the OPE
for the hadronic tensor, this product of the two b→ c currents is matched onto the set
of local operators, namely four-fermion operators with charm-quark content and the
non-perturbative parameters, at the scale µ ∼ mb. See also again Fig. 4.5. Now, as far
as the charm-quark mass is concerned, we may take different points of view. We will
explain the general assumptions in the next few abstracts, and then discuss them in
detail.

1. First we may assume the standard case, which states that mb ∼ mc � ΛQCD.
This means that the short-distance matching coefficients, the Wilson coefficients,
and the phase space integrals are functions of the fixed ratio ρ = m2

c/m
2
b . In

other words we integrate out all (hard) quantum fluctuations with virtualities of
order m2

b,c. Thus we integrate out both the bottom quark, as well as the charm
quark at the same time. In the end we are left with light degrees of freedom,
only: Light quarks and gluons, together with the quasi-static b-quark field in
HQET. In a standard renormalization scheme like MS, operators that contain
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4.5. Intrinsic Charm

charm quark fields do not appear at scales below µ < mc. More precisely, such
operators would correspond to quasi-static charm quarks, as in the case of the
bottom quark. The difference here is, that the bottom quark is the initial state,
but the charm quark would be some quasi-static virtual state. Thus it cannot
contribute to the considered forward matrix elements

〈B̄|b̄v . . . cstatic c̄static . . . bv|B̄〉
∣∣
µ<mc

≡ 0 , (4.110)

because of energy conservation: mb + 2mc + ∆Esoft > mB. This case corresponds
to have in Fig. 4.5 the upper two lines at one scale and no running in between.

That is in fact the point of view, which is usually considered in the precision
determination of |Vcb|.

2. As a second case we consider the power counting mb � mc � ΛQCD, and in-
tegrate out hard b-quark fluctuations at a different scale than the charm quark.
This is exactly shown in Fig. 4.5. In this case, for the first matching at the
high scale µh ∼ mb we still keep the charm quark dynamical, and the corre-
sponding “intrinsic-charm” operators appear in the OPE12. We will derive and
use the renormalization-group for these operators, to scale down to the semi-
hard scale µsh ∼ mc, where we finally integrate out the charm-quark. As before,
the “intrinsic-charm” operators then match onto local operators built from light
fields. Obviously, the main difference compared to case 1 is, that logarithmic
terms ln(mc/mb) are created by the RGE and thus they can be resumed into
short-distance coefficient functions [51], while the analytic terms should now be
expanded in powers of mc/mb ∼

√
ΛQCD/mb ∼ 0.3.

3. Finally, we may assume that mb � mc & ΛQCD. This corresponds to have
in Fig. 4.5 the lower two lines at the same scale and therefore no running in
between. Furthermore we cannot integrate out the charm-quark effects pertur-
batively in this case, and we are thus left with genuine intrinsic-charm operators,
whose hadronic matrix elements have to be defined at a sufficiently high scale µ0,
satisfying mb ≥ µ0 � mc. Notice that the matrix elements of the intrinsic-charm
operators contain the non-analytic dependence on the charm-quark mass mc, and
consequently the partonic phase-space integration for the calculation of various
moments of the differential rate has to be modified accordingly, in order to avoid
double counting. This case would correspond to consider the decay b→ u prop-
erly. We show, that in this case the HQE is safely defined for all orders, although
from the standard calculation in case 1 infrared sensitive terms appear, which on
first glance indicate some breakdown of the expansion. In discussing this scenario,
we show how to setup the HQE properly to high orders.

12More precisely, the “intrinsic-charm” operators correspond to local operators for semi-hard charm
quarks, i.e. quarks with all momentum components of order mc. This is to be distinguished from
the hard-collinear (jet) modes for the charm-quark which appear in non-local operators describing
the shape-function region [49,50] for b→ c`ν.
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4. The Inclusive Decay B → Xc`ν̄`

In the following we shall discuss the different cases in turn. In each of the scenarios
we have to distinguish two cases. For the rise of the non-analytic logarithmic terms,
we consider everything in a dimensional regularization scheme. There the logarithms
are created by the RGE running. For the power-like infrared sensitivities it is more
intuitive to impose a cut-off scheme.

4.5.1. mb ∼ mc � ΛQCD

Origin of the logarithmic terms

As explained above, we first integrate out both, the hard bottom quark fluctuations
and the charm quark, at a common scale µ ∼ mb. Thus we are left with operators
built from soft fields, only. At order 1/m3

b the only matrix elements appearing are
the Darwin term ρ3

D and the spin-orbit term ρ3
LS defined previously in eq. (4.50). We

slightly modify this definition, but the only difference is due to higher orders in 1/mb.
Here we are interested in leading effects, only. Therefore these two non-perturbative
parameters are given within this section by

2MB ρ
3
D = 〈B̄|b̄v (iDµ)(iv ·D)(iDµ) bv|B̄〉 (4.111a)

2MB ρ
3
LS = 〈B̄|b̄v (iDµ)(iv ·D)(iDν)(−iσµν) bv|B̄〉 . (4.111b)

We will restrict ourselves to the charged-lepton energy spectrum and the related
moments in this special analysis. In its spectrum, the rise and treatment of the infrared
terms is traced easily. The same arguments hold true for the partonic observables,
however the strategy has to be slightly modified in this case. We present the analysis
with the dimensionless variables

ρ =
m2
c

m2
b

(4.112a)

y =
2E`
mb

, 0 ≤ y ≤ 1− ρ . (4.112b)

In the charged-lepton energy spectrum, which is presented completely in the ap-
pendix, we obtain a contribution, among others, of the form

dΓ

dy

∣∣∣
ρ3
D

=
G2
Fm

5
b

192π3
|Vcb|2

ρ3
D

m3
b

{
− 8 θ(1− y − ρ)

1− y
+ . . .

}
. (4.113)

For later use, we have only quoted the most singular term in the limit ρ → 0, and
therefore y → 1. Upon integration it yields a logarithmically enhanced contribution to
the total rate

Γ
∣∣∣
ρ3
D

=
G2
Fm

5
b

192π3
|Vcb|2

ρ3
D

m3
b

{8 ln ρ+ . . .} , (4.114)

where the ellipses denote the contributions from the sub-leading terms in (4.113) which
are of order ρ ln ρ. Similarly, we identify the leading terms in the moments (see also
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appendix)

〈(y − y0)n〉
∣∣∣
ρ3
D

=
G2
Fm

5
b

192π3
|Vcb|2

ρ3
D

m3
b

{8 (1− y0)n ln ρ+ . . .} . (4.115)

Note that for mb ∼ mc the logarithm is actually of order one and represents a regular
contribution to the Wilson coefficient. Therefore the remaining terms in curly brackets
enter on the same level for the assumed power counting. The phase space boundary
for y is given by 0 < y < 1 − ρ. Since we treat ρ ∼ O(1) the boundary is away from
y = 1, which is the sensitive part13, by an amount of order one.

As we have mentioned before, a similar logarithmically enhanced term also appears
in the partonic rate,

Γ
∣∣∣
partonic

=
G2
Fm

5
b

192π3
|Vcb|2

{
1− 12 ρ2 ln ρ+ . . .

}
, (4.116)

and in the related moment,

〈1− y〉
∣∣∣
partonic

=
G2
Fm

5
b

192π3
|Vcb|2

{
6 ρ2 ln ρ+ . . .

}
. (4.117)

In contrast to the Darwin-term contribution, the logarithmic term vanishes in the limit
ρ→ 0. Nevertheless, as has been shown in [51], such “phase-space logs” can be resumed
into short-distance coefficients, as we are going to discuss in scenario two.

Power-like infrared sensitive terms

Here we scrutinize the standard way of setting up the OPE, treating both bottom and
charm quark as equally heavy, and show how the power-like infrared sensitive terms
emerge. Thereby we restrict ourselves to the partonic observables, in contrast to the
lepton energy observable for the logarithms. However, the argumentation is valid for
both cases, and will go along the same line. As explained in the higher orders section
before, only operators with non-relativistic b quarks and their (covariant) derivatives
appear.14

The OPE is constructed in the standard way, described before and it yields the HQE
parameters. We start by considering the doubly differential rate for B → Xc `ν̄`

d2Γ

d(v ·Q)dQ2
=
G2
F |Vcb|2

24π3

√
(v ·Q)2 −Q2θ

(
(v ·Q)2 −Q2

)
θ (mb − v ·Q)

θ
(
m2
b +Q2 − 2mbv ·Q

)
LµνW

µν(Q) , (4.118)

13The kinematical relevant region of the infrared sensitive corresponds to a soft collinear charm,
therefore it amounts to the case of an electron with maximal energy.

14We do not discuss here operators involving light quarks appearing additionally at O(αs) level, their
contribution is small.
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4. The Inclusive Decay B → Xc`ν̄`

where Q = mbv − q with q denoting the momentum transfer to the lepton pair and v
the B-meson velocity as before. Lµν is the leptonic tensor and contains the phase-space
integration with

Lµν(Q) = −m2
b [gµν − vµvν ] +mb[2gµν(v ·Q)− vµQν −Qµvν ]− [gµνQ

2−QµQν ] (4.119)

and W µν is the hadronic counter-part defined as above. The expansion of the hadronic
tensor is done by external field methods, which is particularly economical at tree level,
see e.g. [28] and above in this thesis. This yields

2MBWµν(Q) = 〈B̄|b̄vΓν(/Q+mc)Γµbv|B̄〉 δ(Q2 −m2
c)

+ 〈B̄|b̄vΓν(/Q+mc)(i /D)(/Q+mc)Γµbv|B̄〉 δ′(Q2 −m2
c)

+
1

2
〈B̄|b̄vΓν(/Q+mc)(i /D)(/Q+mc)(i /D)(/Q+mc)Γµbv|B̄〉 δ′′(Q2 −m2

c)

+ · · ·

=
∞∑
n=0

1

n!
〈B̄|b̄vΓν

[
(/Q+mc)(i /D)

]n
(/Q+mc)Γµbv|B̄〉 δ(n)(Q2 −m2

c) .

(4.120)

The main challenge in evaluating higher order contributions lies in identifying the
independent hadronic parameters controlling the “string” of matrix elements

〈B̄|b̄v(iDµ1)(iDµ2) · · · (iDµn)bv|B̄〉 (4.121)

entering at order n. The general procedure has been shown before. It should be noted
that these quantities do not depend on Q.

Contracting the hadronic and leptonic tensors for the pseudo-scalar B mesons and
integrating over phase-space leads to function of (v ·Q) and Q2 with the general form

LµνW
µν =

∞∑
n=0

√
(v ·Q)2 −Q2Pn(v ·Q,Q2)δ(n)(Q2 −m2

c) (4.122)

with Pn(v ·Q,Q2) denoting a polynomial in v ·Q and Q2. The analysis so far referred
to a fully differential distribution in general kinematics. To proceed to the inverse mass
expansion we need to consider partially integrated probabilities.

The integration over the variable v ·Q has the limits
√
Q2 ≤ v ·Q ≤ (m2

b+Q2)/(2mb),
which yields terms logarithmic in Q2 from the lower end of integration. Focusing on
these logarithms we get for l = 0, 1, ...∫
√
Q2

d(v ·Q)
√

(v ·Q)2 −Q2(v ·Q)2l = Cl (Q2)l+1 ln
Q2

m2
b

+ · · · , Cl =
Γ(l+1

2
)

4
√
π Γ(l + 2)∫

√
Q2

d(v ·Q)
√

(v ·Q)2 −Q2 (v ·Q)2l+1 = 0 + · · · (4.123)

88



4.5. Intrinsic Charm

where the ellipses denote polynomial terms in Q2, and the coefficients Cl are simple
fractions: C0 = 1/4, C1 = 1/16, C2 = 1/32, C3 = 5/256 ...

These logarithms are the source of the IR sensitivity of the coefficient functions to
the charm mass in this approach. This becomes manifest when they are combined with
the derivatives of the δ-function in Eq.(4.122):

(Q2)k lnQ2 δ(k)(Q2−m2
c) = (−1)k k! lnm2

c δ(Q
2−m2

c) + · · · (4.124)

(Q2)k lnQ2 δ(n)(Q2 −m2
c) = (−1)n−k−1 k!(n−k−1)!

(
1

m2
c

)n−k
δ(Q2−m2

c) for n > k

(4.125)

where k is some integer power and the ellipses point to less singular terms as mc → 0.
Note that at the lower limit of integration in Eq. (4.123) we have Q2

0 = Q2, i.e. Q→ 0.
This is the infrared regime for the charm quark in the final state.

For this analysis it is therefore useful to write the leptonic tensor, neglecting here
the lepton energy cut, as

Lµν = Llead
µν + Lsub

µν + Lsubsub
µν , (4.126)

where we sort it after powers of Q.
The leading IR sensitive terms in the integrated rates arise from the leading term in

the leptonic tensor
Llead
µν = −m2

b [gµν − vµvν ] (4.127)

already in the expression for the differential rate. The sub-leading parts of the leptonic
tensor, containing the vector Q, would lead to additional powers of v · Q and Q2 and
hence do not contribute to the leading infrared sensitivities. To obtain non-leading in
1/mb terms, we consider this sub-leading terms

Lsub
µν = mb[2gµν(v ·Q)− vµQν −Qµvν ] (4.128)

Lsubsub
µν = −[gµνQ

2 −QµQν ] . (4.129)

On the other hand, the nth term in the sum (4.120) for the hadronic tensor contains

Pn ∝ Γν(/Q+mc)γµ1(/Q+mc)γµ2 · · · (/Q+mc)γµn(/Q+mc)Γµ (4.130)

which yields upon contraction with the leptonic tensor (4.127) and with the non-pertur-
bative matrix elements (4.121) a contribution of the form (see (4.122))

Pn =
∑
ijl

aijl (v ·Q)i(Q2)j(m2
c)
l with i+ 2j + 2l = n+ 1 . (4.131)

Note that due to the purely left-handed structure of the current Γ, we can have only
even powers of mc here. Furthermore to allow for a fully contracted Lorentz scalar
it is necessary, that if n is even, i necessarily is odd (and vice versa). Hence from
(4.123) we conclude that IR sensitive terms can appear only if n is odd, which means
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that the number of covariant derivatives in the hadronic matrix element has to be
odd as well15. Therefore all operators which contribute to intrinsic charm have to
match onto partonic matrix elements with at least one gluon. In turn, it implies that
there is no intrinsic charm contribution to operators of the form 〈(k2)n〉 where k are
the spatial components of the residual b-quark momentum. This is also ensured by
reparametrization invariance.

Now we can trace how singular terms actually emerge in leading order. Putting
everything together with i = 2m (remember we need to have an even power in v ·Q!)∫

d(v ·Q)
√

(v ·Q)2 −Q2Pn((v ·Q), Q2)δ(n)(Q2 −m2
c) (4.132)

=
∑
ijl

aijl

∫
d(v ·Q)

√
(v ·Q)2 −Q2

[
(v ·Q)i(Q2)j(m2

c)
l
]
δ(n)(Q2 −m2

c) (4.133)

=⇒
∑
ijl

Cl aijl (Q2)m+j+1(m2
c)
l ln

(
Q2

m2
b

)
δ(n)(Q2 −m2

c) . (4.134)

Terms with odd i, on the other hand, do not contain a logarithm. Note that we have
2m+ 2j + 2l = n+ 1, which can be satisfied at any odd n. Thus we arrive at∫

d(v ·Q)
√

(v ·Q)2 −Q2Pn((v ·Q), Q2)δ(n)(Q2 −m2
c) (4.135)

sing
=
∑
ijl

Cl aijl (Q2)(n+3−2l)/2(m2
c)
l ln

(
Q2

m2
b

)
δ(n)(Q2 −m2

c) . (4.136)

Hence IR sensitive terms can appear starting at n = 3 with the logarithmic dependence
on mc of the Darwin term, as we have shown in the last section. For n > 3 we obtain
from these terms a tree-level contribution to the total rate of the form

Γn ∝
1

m3
b

(
1

m2
c

)(n−3)/2

with n = 5,7,9... , (4.137)

i.e., even a power-like singularity for mc → 0.
Now we are in a position to present the leading polynoms to identify the IR sensi-

tivities.
For n = 0 the leading term reads

P lead
0 =

3

2
m2
b(v ·Q) (4.138)

which is an odd power of v · Q and hence does not lead to IR sensitive terms as just
explained. One should note that the sub-leading contribution to the leptonic tensor
Lµν yields—upon contraction with the partonic hadronic tensor—a (sub-leading) term
of the form

P sub
0 = −2mb(v ·Q)2 −Q2mb . (4.139)

15This argument is valid for tree level and leading IR sensitive terms, only.
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It leads to a contribution of the form m4
c ln(m2

c) in the phase-space factor of the partonic
total rate. To low orders in Λ/mb it is easy to keep as well the terms stemming from
the sub-leading pieces in Lµν , which we present in turn. We will then focus on those
novel terms ∝ 1/mk

c that arise in leading order in 1/mb.
The next term with n = 1 is given by

P1 =
µ2
G − µ2

π

12mb

(
5Q4 + 7m2

cQ
2 − 20(v ·Q)2Q2 − 10m2

c(v ·Q)2
)
, (4.140)

where the hadronic tensor is contracted with the subsub-leading part of the leptonic
tensor Lsubsub

µν . This yields again an m4
c ln(m2

c) term upon integration over the phase
space.

For n = 2 the leading term of the leptonic tensor again contains only odd powers of
(v ·Q) which do not generate any logarithms.

At n = 3 the IR sensitive contribution is the Darwin term. Explicitly, we have

〈B̄|b̄v(iDα)(iDγ)(iDβ)bv|B̄〉 =
1

6
MBρ

3
D(gαβ − vαvβ)vγ(/v + 1) + · · · (4.141)

from which we obtain

PDar
3 = −ρ

3
D

12
m2
b

(
3(Q2 −m2

c)
2 + 8(v ·Q)4 − 8Q2(v ·Q)2

)
. (4.142)

Upon integration over (v ·Q) we arrive at terms with three types of prefactors:

(Q2)3 ln

(
Q2

m2
b

)
, m2

c(Q
2)2 ln

(
Q2

m2
b

)
, m4

cQ
2 ln

(
Q2

m2
b

)
. (4.143)

They have three derivatives with respect to Q2 from the δ(3)-function, and hence the
first term yields a ln(m2

c) factor which is the first infrared sensitive contribution. In the
other two terms explicit factors of m2

c kill the infrared singularity and thus they remain
finite for mc → 0. It is straightforward to check that in this way we end up with the
correct prefactor for the infrared log in the Darwin contribution.

The terms with n = 4 create again only odd powers of (v · Q) and would yield
infrared singularity for the 1/mb-sub-leading piece. Finally at n = 5 the following nine
structures arise

P5 ∝ (v ·Q)6 , (v ·Q)4Q2 , (v ·Q)4m2
c , (v ·Q)2(Q2)2 , (v ·Q)2m4

c ,

(v ·Q)2Q2m2
c , (Q2)3 , (Q2)2m2

c , Q2m4
c . (4.144)

Upon integration over (v ·Q) we obtain terms of the form

(Q2)4 ln

(
Q2

m2
b

)
, (Q2)3m2

c ln

(
Q2

m2
b

)
, (Q2)2m4

c ln

(
Q2

m2
b

)
, Q2m6

c ln

(
Q2

m2
b

)
(4.145)

coming with five derivatives of the δ-function. All, on contrast to the Darwin case, thus
yield contributions of order 1/m2

c in the total rate. They will be addressed in detail for
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the case mb � mc � ΛQCD. A similar consideration extends in a straightforward way to
higher orders where n > 5 emerge. These would generate terms inversely proportional
to even larger powers of inverse charm mass.

As a first resumé we state that IR sensitive contributions—i.e., those singular for
mc → 0—unequivocally arise from the lower end of the integration over v·Q (i.e.Q→ 0)
due to the presence of the non-analytic factor

√
(v ·Q)2 −Q2 = |Q | in the integrand.

For the dimension-six Darwin term they are of the form ln (m2
c/m

2
b). Higher-dimension

contributions exhibit an even stronger singularity, viz. powers of 1/mc. Without extra
gluon loops this happens first for dimension eight.

The discussion above showed that such IC effects emerge for the fully integrated
width. The same arguments apply for the moments of the decay distributions. As an
example, the partonic energy spectrum related to dΓ/d(v·Q) likewise exhibits a singular
behaviour at (v ·Q)→ 0, it yields the IC terms in the total rate upon integration over
the variable (v · Q), see Eq. (4.123). In the partonic energy moments 〈(v · Q)n〉 the
additional powers of (v ·Q) delay the emergence of singular IC terms to higher orders,
see (4.136). For a moment with a given n IC terms always appear at sufficiently high
orders in the OPE. It therefore depends on the kinematical variable at which order IC
terms emerge.

4.5.2. mb � mc � ΛQCD

Now we investigate the case, where we can treat the charm as a second heavy scale.
Therefore we have to integrate out the charm at a different scale than the bottom
quark. This demonstrates how to treat the light final state quark properly. First of all
we show how to treat the logarithmic sensitive terms in the lepton energy spectrum.
For this we can restrict ourselves up to the dimension 6 operators. Then we extend
this to the power-like IR-sensitive terms and the partonic kinematical variables. There
we have to include everything up to 1/m5

b .

Treatment of the logarithmic terms in the lepton-energy spectrum

When we integrate out the b quark first at a scale µh ∼ mb and still keep the charm
quark dynamical, we have to take into account operators with explicit charm quarks
until those are finally integrated out at the semi-hard scale µsh ∼ mc. In addition to
the dimension-5 and dimension-6 operators, defining µ2

π, µ
2
G and ρ3

D, ρ
3
LS, one thus finds

(at tree level) matrix elements of the local “intrinsic-charm” operators by expanding
(4.109) into local four-fermion operators

2MBW
IC
µν = (2π)3 δ4(q −mbv) 〈B̄|(b̄v γνPL c) (c̄ γµPL bv)|B̄〉

+ (2π)3

(
∂

∂qα
δ4(q −mbv)

)
〈B̄|i∂α b̄v γνPL c) (c̄ γµPL bv)|B̄〉

+ . . . , (4.146)

which can be interpreted as the probability to find semi-hard (i.e. off-shell) charm
quarks inside the heavy B̄-meson.
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4.5. Intrinsic Charm

Notice, that the power-counting for the semi-hard charm fields [c] = (mc)
3/2 is now

different from the ones for soft HQET fields [bv] = Λ3/2, and therefore it may be
convenient to use a notation as in [50], where the “intrinsic-charm” operators in the
first line of (4.146) are suppressed by λ3 ≡ (mc/mb)

3, the ones in the second line by
λ4, the kinetic and chromo-magnetic operators by λ4 ≡ (Λ/mb)

2, and the Darwin and
spin-orbit term by λ6. Due to chiral symmetry, only the λ4 “intrinsic-charm” operators
contribute to the partonic rate for b → c`ν, related to the ρ2 ln ρ term in (4.116).
Additional soft-gluon couplings to semi-hard charm quarks are further suppressed, and
this will give rise to the λ6 suppressed terms ρ3

D ln ρ in (4.114), descending from the λ3

“intrinsic-charm” operators.
Let us consider first the matrix elements of the operator in the first line of (4.146).

They may be decomposed in terms of two hadronic parameters, T1(µ) and T2(µ),

(4π)2 〈B̄|b̄v γνPL c c̄ γµPL bv|B̄〉 = 2MB (T1(µ) gµν + T2(µ) vµvν) . (4.147)

The contribution to the rate of the matrix element of the local “intrinsic-charm”
operators is concentrated at small hadronic mass mX and in the endpoint of the lepton
energy spectrum, the infrared space-space regime of the charm quark. Performing the
tree-level matching at µ = mb, we have

d2ΓIC

dm2
X dy

= δ(m2
X) δ(1− y) ΓIC and

dΓIC

dy
= δ(1− y) ΓIC , (4.148)

with

ΓIC = −G
2
Fm

5
b

24π3
|Vcb|2

3T1(mb)

m3
b

. (4.149)

On the other hand, the calculation of the matching coefficients for the contribution
of ρ3

D and ρ3
LS to the total rate now has to be performed in the limit mc � mb. Notice,

that the naive limit ρ → 0 in (4.113) would give ill-defined expressions. In particular,
the integral over

dy
θ(1− y)

1− y
would be infrared divergent in the lepton-energy endpoint. As we will see, the new IR
divergence in the phase-space integration, appearing in the limit ρ→ 0, is related to the
UV renormalization of the “intrinsic-charm” operators (4.147). Defining the hadronic
parameters T1,2(µ) in the MS scheme, we also have to perform the phase-space integral
in D = 4−2ε dimensions. As a result, the contribution of the Darwin term to the total
rate is regularized by plus-distributions,

θ(1− y)

1− y
→
[
θ(1− y)

1− y

]
+

− δ(1− y) ln

(
µ2

m2
b

)
, (4.150)

which exactly subtracts the effects of semi-hard charm quarks, that would otherwise be
double-counted when adding (4.149) to the decay rate. The plus-distribution is defined
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4. The Inclusive Decay B → Xc`ν̄`

(a) (b)

Figure 4.6.: Leading diagrams determining the mixing of four-quark into two-quark
operators.

as
1∫

0

dx
f(x)

[1− x]+
=

1∫
0

dx
f(x)− f(1)

1− x
,

such that the divergence is canceled out and the integral remains finite.
The final expression for the combined contributions of the Darwin term and the

“intrinsic-charm” operators to the lepton-energy spectrum at order 1/m3
b can be written

as

dΓ(3)

dy

∣∣∣
ρ3
D+IC

=
G2
Fm

5
b

24π3
|Vcb|2

{
CρD(y,µ) ρ3

D(µ)

m3
b

+
CT1(y,µ)T1(µ)

m3
b

}
, (4.151)

which should be used for mc ≤ µ ≤ mb. The matching conditions for the short-distance
coefficient functions—including the limit ρ→ 0 for the sub-leading terms in (4.113) as
given in the appendix—are given by

CρD(y,mb) = −
[
y2(9− 5y + 2y2) θ(1− y)

6(1− y)

]
+

+
17

12
δ(y − 1)

+
5

24
δ′(y − 1)− 1

72
δ′′(y − 1) +O(αs) ,

CT1(y,mb) = −3 δ(y − 1) +O(αs) ,

CT2(y,mb) = O(αs) . (4.152)

In appendix A.2, we derive the leading terms in the anomalous-dimension matrix that
describe the mixing of the “intrinsic-charm” operators {T1(µ), T2(µ)} into the Darwin
term ρD(µ), see also Fig. 4.6(b),

d

d lnµ

ρD(µ)

T1(µ)

T2(µ)

 = −


 0 0 0

−2/3 0 0

4/3 0 0

+O(αs)


ρD(µ)

T1(µ)

T2(µ)

 . (4.153)
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4.5. Intrinsic Charm

Neglecting the O(αs) contributions to the anomalous-dimension matrix, we only deter-
mine the leading-logarithmic terms,16 which are generated by the renormalization-group
equation for the short-distance coefficients

CTi(y,µ) ' CTi(y,mb) ,

CρD(y,µ) ' CρD(y,mb)−
1

3
ln
µ2

m2
b

(CT1(y,mb)− 2CT2(y,mb)) . (4.154)

Now, integrating out the semi-hard charm quarks at µsh = mc implies that due to
energy conservation no charm quark can appear in any occurring operator. Therefore
this is equivalent to setting

Ti(µ ≤ mc) = 0 . (4.155)

In this case, the expression for the lepton-energy spectrum (4.151) simplifies to

dΓ(3)

dy

∣∣∣
ρ3
D+IC

=
G2
Fm

5
b

24π3
|Vcb|2

CρD(y,mc) ρ
3
D(mc)

m3
b

, (4.156)

and the information on “intrinsic charm”, i.e. the non-analytic dependence on the
charm-quark mass, has been completely absorbed into the short-distance function
CρD(y,mc). This can be made explicit by inserting the leading-order matching con-
ditions (4.152) for CTi(y,mb), which results in

CρD(y,mc) ' CρD(y,mb) + ln
m2
c

m2
b

δ(y − 1) . (4.157)

In this way (4.156) reproduces the logarithmic term in the lepton-energy moments
in (4.115) as well as the finite terms (given by the limit ρ → 0 of Eq. (A.6) in the
Appendix).

Similar considerations can be made for the ρ2 ln ρ term in the partonic rate. To this
end we decompose the matrix elements of the operators in the second line of (4.146) as

(4π)2 〈B̄|(i∂α b̄v γνPL c) (c̄ γµPL bv)|B̄〉
= 2MB

(
T3(µ) gµν vα + T4(µ) gµα vν + T5(µ) gνα vµ + T6(µ) vµvνvα − T7(µ) iεµναβv

β
)
.

(4.158)

Note that in unpolarized observables, only the sum T4(µ)+T5(µ) appears. Generalizing
the results for the total rate in [51] to the lepton-energy spectrum, and concentrating
again on the leading logarithmic terms, we find

dΓ

dy

∣∣∣
partonic + IC

=
G2
Fm

5
b

192π3
|Vcb|2

{
C0(y,µ) + ρC1(y,µ) + ρ2C2(y,µ)

+

∑7
i=3 CTi(y,µ)Ti(µ)

m4
b

}
, (4.159)

16Strictly speaking, these are N−1LL. To resum the leading-logarithms of the order αns × lnn ρ, we
would need the O(αs) mixing of the Darwin term into itself and the complete set of “intrinsic-
charm” operators into themselves, which goes beyond the scope of this work (see however [51] for
a complete leading-log analysis for the dimension-7 contributions to the total rate).
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with

C0(y,mb) =
(
6y2 − 4y3

)
θ(1− y) +O(αs) ,

C1(y,mb) = −6y2 θ(1− y)− 6 δ(y − 1) +O(αs) ,

C2(y,mb) =

[
12 θ(1− y)

1− y

]
+

−
[

6 θ(1− y)

(1− y)2

]
++

− 6 θ(1− y) + 6 δ(y − 1) + 3 δ′(y − 1) +O(αs) , (4.160)

and

CT3(y,mb) = −24 δ′(y − 1) + 48 δ(y − 1) +O(αs) ,

CT4,T5(y,mb) = −24 δ(y − 1) +O(αs) ,

CT6(y,mb) = O(αs) ,

CT7(y,mb) = 24 δ′(y − 1) +O(αs) . (4.161)

Again, the “intrinsic-charm” operators T3−7 mix into the 2-particle operator, namely
m4
c b̄ /v b (see appendix), and consequently, the coefficient C2(y,µ) evolves as

C2(y,mc) ' C2(y,mb)−
1

8
ln
µ2

m2
b

(CT3(y,mb)− CT4(y,mb)− CT5(y,mb)− CT7(y,mb)) .

(4.162)
Inserting the leading-order matching conditions, one has

−1

8
(CT3(y,mb)− CT4(y,mb)− CT5(y,mb)− CT7(y,mb)) = 6 δ′(y − 1)− 12 δ(y − 1) ,

(4.163)

and one reproduces the logarithmic terms −12ρ2 ln ρ in Γpart and 6ρ2 ln ρ in 〈1− y〉part,
respectively, see (4.116, 4.117).

The power-like terms

Now turning to an alternative way to describe IC effects. We now choose to integrate
out the ‘heavy’ degrees of freedom only above the scale mc and concentrate on the
partonic kinematical variables. As in the last section this leaves the charm quark as
a dynamical entity, much in the same way as would be required for light quarks in
QCD, e.g. in b→ u `ν. Again we have now to include four-quark operators containing
charm-quark fields explicitly.

The charm quarks in b decay can act as both a hard and a soft degree of freedom.
The hard component is treated the same way as described in the previous section. The
additional matrix elements of the four-quark operators contain the “soft” part of the
still dynamical quarks, which for now we treat non-perturbatively. Accordingly, we
have to write the original QCD product of currents as

〈B̄|b̄(x)Γνc(x) c̄(0)Γµb(0)|B̄〉
= 〈B̄|b̄(x)Γν 〈c(x)c̄(0)〉Γµb(0)|B̄〉>µ + 〈B̄|b̄(x)Γνc(x) c̄(0)Γµb(0)|B̄〉<µ . (4.164)
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The product c(x)c̄(0) can be viewed as the Green’s function of the charm quark inside
the external gluon field in the B meson, averaged over the field configurations present
in the meson. This is an exact relation as long as the bottom meson has no charm
content. This applies to the l.h.s. as well as to each of the two terms on the r.h.s.
The decomposition on the r.h.s. merely reflects the different treatment used to describe
these terms.

The first term with “large” µ corresponds to the “perturbative” (in 1/mc) standard
calculation. The second term has to be added now, since the charm quark is still a
dynamic quark controlled by non-perturbative dynamics. The role of the intermediate
scale µ is to draw the demarcation between the two dynamical regimes. Possibly
integrating out the charm corresponds to matching the second term to zero, as in
the previous section.

Even though the first term in equation (4.164) is evaluated in the “direct” way
depicted in detail in the beginning of this chapter, the result differs due to the intro-
duction of the cutoff µ. The precise form of how µ enters depends on the concrete way
the (hard) separation is implemented. Let us mention that for tree-level calculations
without extra perturbative loops it is sufficient and convenient to simply integrate the
distribution with the constraint

0 ≤ q2 < (mb − µ)2 , (4.165)

where the charm mass is replaced by the cut-off µ. The upper bound above effectively
introduces the separation scale in eq. (4.164) when the correlator is integrated over the
phase space to obtain the inclusive width or its moments.

Evaluating the first term in equation (4.164) gave contributions that are IR sensitive
to the charm mass. Taking the formal limit mc → 0 separately term by term in the
expansion would have yielded divergent expressions. With a nonzero µ � ΛQCD this
changes: All individual terms remain regular by themselves at mc → 0. The role of the
infrared regulator, which previously the physical large charm mass has played, is now
taken over by the Wilsonian cutoff.

This is evident on general grounds: The terms IR-singular for mc → 0 came only from
the soft charm configuration with momentum Q . mc—the domain now excluded by
introducing the cut-off. Alternatively, this can be traced explicitly in the formalism of
Sect. 4.5.1. For instance, with the constraint of eq. (4.165) the lower limit of integration

in (v · Q) rises from
√
Q2 to Q2+2mbµ−µ2

2mb
' µ. Therefore the infrared sensitive term

in the Q2 spectrum, log Q2

m2
b

in eq. (4.124), turns into log µ2

m2
b
. All the integrals become

analytic functions of mc at mc � µ and the logs and inverse powers of mc are replaced
by those of the cutoff scale µ, playing the role of a mass.

The second term in the r.h.s. of equation (4.164) has a smooth mc → 0 limit. Al-
though it may have soft “chiral” singularities when both mc and one of the light quarks
become massless, the expectation values should remain finite; only higher derivatives
with respect to the charm mass may have singularities if mu or md vanish. We note
that this expectation value, being regularized in the ultraviolet, is well-defined and
these conclusions hold with no reservations.
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We have already seen, that as long as mc � ΛQCD holds, we have non-analytic non-

perturbative terms at order 1/m3
b scaling like

Λ3
QCD

m3
b

ln
m2
b

m2
c

and
Λ3

QCD

m3
b

(
Λ2

QCD

m2
c

)k
with k > 0:

In general, odd powers of mc also emerge if perturbative corrections are considered.
Each of these terms separately are singular at mc → 0. The leading term is driven
by the Darwin expectation value, it represents an IR singularity in mc/mb which, in
principle, is observable, at least at large mb and sufficient accuracy. This we have
analyzed in the last section considering the lepton energy spectrum.

The expansion in ΛQCD/mc makes, however, sense only as long as charm remains
heavy on the scale of QCD dynamics. At lower mc the successive terms with higher
k would formally dominate. The whole function of mc, which is then to be seen as a
non-perturbative quantity, stabilizes at mc . ΛQCD and approaches a finite value at
mc → 0. A model for such a behavior can be given, for instance, by

ρ3
D

m3
b

ln
m2
b

m2
c + Λ2

. (4.166)

Here Λ is a strong interaction mass scale parameter of the order of ΛQCD which, ex-
panded in 1/m2

c , would yield the whole series in 1/m2
c . The actual coefficients for the

1/m2k
c terms may, of course, be different, and they can be calculated in the OPE along

either road. We will give a brief numerical discussion on this, at the end of the section.
Returning to the OPE analysis proper, we can bridge the two ways of accounting for

the non-perturbative charm effects by looking at the µ-dependence of both terms in
eq. (4.164). More accurately we have to integrate over the phase space to obtain the
inclusive probability. Their sum must be µ independent which provides useful relations.
The following note should be kept in mind.

The form of the µ-dependence is determined by the regularization scheme. In the
Wilsonian procedure with a hard cutoff the leading log dependence is accompanied by
power terms. The resulting dependence is qualitatively different for µ � mc and for
µ� mc. The first assumption corresponds to a heavy charm quark, whereas the second
to a light charm quark. We will discuss these two cases in turn.

1. When µ is taken small compared to mc, it enters only as a small power correction,
∼ (µ/mc)

l in the first term of equation (4.164). In the formally possible limit
µ→ 0 (mc � ΛQCD fixed) the last term would vanish. Then the whole correction
to the width is given by the first term. Raising µ up to mc and above moves
the correction to the width from the first term to the second. The calculation of
Sect. 4.5.1 represents the evaluation of the first term contribution in the ΛQCD/mc-
expansion for µ � mc in the limit µ → 0. Such a calculation makes sense only
as long as charm is sufficiently heavy. The matching of the second term to zero,
as in the case of dimensional regularization, is therefore reproduced.

2. At µ � mc the situation is different. Beyond the leading term OD ln µ2

m2
c

the µ

dependence is suppressed by powers of m2
c/µ

2 in the first term. In the second
term in equation (4.164) these appear as a residual dependence of the higher-
dimensional terms on the ultraviolet cutoff for integrals intrinsically convergent
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at the scale mc. In the first term it shows now up as small coefficient functions
of higher-dimension operators—which would normally be saturated at soft charm
configurations Q ∼ mc—proportional to 1/m3

b 1/µ2k, instead of 1/m3
b 1/m2k

c with-
out a cutoff. It is then convenient to assume a large renormalization point µ� mc

and neglect these terms altogether. We will focus on this on the next pages, to
investigate the behaviour in the case mb � mc � ΛQCD. This scenario can also
be applied for the case mc ∼ ΛQCD.

A short comment is in order on how the separation would look like in the often
adopted dimensional regularization scheme (DR), where no power-like dependence on
the renormalization scale ever arises. For small mc the only µ-dependence within DR
enters through lnµ in the Darwin operator, as we have seen before. In such a scheme,
however, charm quarks must be treated as massless. The dynamic four-quark operators
have to be renormalized in the UV likewise in the way of DR. The requirement to
set mc = 0 then is rather clear. Keeping mc finite would destroy naive DR in a
direct calculation: it yields a finite result for the first term around D = 4 because
the potential IR singularity at D = 4 dimensions is regularized by a non-zero charm
mass. As a result, this requires an additional matching procedure, usually order by
order in mc if the charm mass dependence is important. This has been used to show
how the ρ2 log ρ term in the total rate arises and has to be extended for the power-like
IR sensitivities. This is a rather typical feature of dimensional regularization.

In logarithmic terms, as for the Darwin operator in the integrated width, the charm
mass plays the role of a renormalization point, especially seen in DR. Therefore, as
discussed in Ref. [46], the infrared dependence on mc in the ‘conventional’ calculation
along the ‘first’ road must match the ultraviolet (UV) dependence of the corresponding

four-quark expectation value given by ρ3
D ln

Λ2
UV

m2
c

. A similarly dual description applies
also for the terms scaling like inverse powers of mc. They can be calculated conven-
tionally assuming charm to be heavy following the route of Sect. 4.2.1. Alternatively,
they can be obtained as the corresponding pieces of the four-quark expectation value,
normalized at µ� mc,ΛQCD. The results over either road must be identical, whenever
one is in the domain where the expansion can be applied. The first road, without
implementing a cutoff is, of course, justified only for mc � ΛQCD. The second route
is formally valid for an arbitrary hierarchy between mc and ΛQCD. However, we do
not have the means to calculate the expectation value through gluon operators without
charm fields, when charm becomes light.

In order to make the above mentioned correspondence explicit, we will address the
1/m3

b 1/mn
c terms where at tree level only even n emerge. To this end, we consider

the contribution of the second term in eq. (4.164) involving the explicit charm quark
operators. Inserting it into the hadronic tensor we get as in eq. (4.146)

2MBW
IC
µν = (2π)3δ4(Q) 〈B̄|b̄vΓνc c̄Γµbv|B̄〉µ

+ (2π)3

(
−i ∂

∂Qα

)
δ4(Q)〈B̄|∂αb̄vΓνc c̄Γµb|B̄〉µ + . . . (4.167)
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and we retain only the first term. The extra derivative for (renormalized) expectation
values can bring in a factor of mc or µ at most, it can be traced that powers of xα
translate into powers of 1/mb. As we have seen before, this term therefore matches in
dimensional regularization into the term proportional to the mass operator. Therefore,
the higher terms in this expansion yield higher powers in the 1/mb expansion with
additional powers of mc. We then can focus in this analysis on the first term which is
the conventional D = 6 four-quark operator. Note that the δ-function projects out the
leading term of the leptonic tensor (4.127). Furthermore, this contribution is localized
at Q = 0—hence at Q2 = 0 and v · Q = 0, in agreement with the findings of the last
section. As a consequence, step-functions in equation (4.118) become superfluous. The
last relation completing the arithmetic part is∫

d(v ·Q)dQ2
√

(v ·Q)2 −Q2δ4(Q) =
1

2π
. (4.168)

Omitting QCD corrections, the relevant diagrams for calculating W IC
µν in eq. (4.167)

are the one loop diagrams involving the charm-quark loop with an arbitrary number
of external gluons. These diagrams have been considered already in [45]. Examples of
the Feynman diagrams are shown in Figure 4.7. It is advantageous to first perform a
Fierz rearrangement of the four quark operator according to

b̄Γνc c̄Γµb = −1

2
b̄αΓρbβ c̄βΓσcα [−iεµνρσ + gσµgρν + gσνgρµ − gρσgµν ] , (4.169)

where α, β are color indices, and the minus sign comes from anti-commutativity of the
quark fermion fields.

Figure 4.7.: Diagrams illustrating calculation of the charm loop in the external field.
The curly lines generically reflect insertions of the external gluon field.

We may construct the charm mass expansion of this charm loop in the external
gauge field and take the average over the B meson state. There are a few subtleties
related to this procedure, since the two charm-quark operators are taken at coinciding
space-time points. As in [45] we may start from the time-ordered product of two charm-
quark operators at displaced points, which amounts to consider the conventional charm
propagator in an external field. This propagator is generally gauge dependent, yet
in the end this is compensated by the same displacement in the b-quark fields. For
constructing the short-distance expansion of the Green’s function the fixed-point gauge
is convenient.
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The limit of coinciding points in the charm Green’s function is formally divergent,
yet gauge independent. Subtracting the free Green’s function, this piece is accounted
for in the purely partonic width, we end up with a mild log divergence present in the
vector current, proportional to [Dµ, Gµν ]:

〈c̄αγνcβ〉A =
2

3

1

(4π)2
ln

(
Λ2

UV

m2
c

)
[Dκ , Gκν ]βα + · · · (4.170)

where Gµν is the QCD gauge-field strength tensor. In this context ΛUV should be
identified with µ, and the ellipses denote finite terms to be considered below. As
discussed before, this ultraviolet-singular log matches onto the infrared piece of the
conventionally calculated Darwin coefficient function. The contributions from the axial-
vector c̄γνγ

5c current are convergent ab initio.
Now we turn to the finite terms, which—in cut-off scheme—account for the power-

like infrared sensitive terms. The lowest finite terms yield 1/m3
b 1/m2

c contributions
given by

〈c̄αγνγ5cβ〉A =
1

48π2m2
c

(
2
{[
Dκ, G

κλ
]
, G̃νλ

}
+
{[
Dκ, G̃νλ

]
, Gκλ

})
βα

+ · · · (4.171)

〈c̄αγνcβ〉A =
i

240π2m2
c

(
13
[
Dκ,

[
Gλν , G

λκ
]]

+ 8i
[
Dκ,

[
Dλ, [Dλ, Gκν ]

]]
−4i

[
Dλ, [Dκ, [Dλ, Gκν ]]

])
βα

+ · · · (4.172)

The computation assumes µ� mc and neglects power terms ∼ (mc/µ)k, according to
the scenarios we have presented. Inserting this into (4.169) we end up with dimension-
eight b̄v . . . bv operators with soft-gluon fields. Their coefficient functions compared to
the partonic D = 3 operator b̄v bv are proportional to 1/m3

b 1/m2
c .

A closer look into the calculations of the charm loop in the external field reveals that
the resulting expressions exactly parallel those in section 4.5.1 once the leading-order
approximation for the leptonic tensor (4.127) is adopted and only non-analytic terms ac-
cording to eq. (4.123) are retained. This occurs before the full integration is performed,
when one takes the integral over the time-like component of the loop momentum by
the residues at Q2 = m2

c , for each power term in the expanded propagator.
In fact, the technique of the loop calculation in the external field itself allows to derive

a number of relations which strongly constrain the form of the operators, which can
appear in such an expansion. It has been presented in detail in the first part of Ref. [52].
These relations ensure that the result has always the form of multiple commutators.
This sharpens one observation made already in Sec. 4.5.1. There we noted that the
partonic matrix elements of IC contributions necessarily have to be at least one-gluon
matrix elements. From the arguments given in this section we conclude that intrinsic
charm contributions involve only gluon fields and their derivatives. There will be no
derivatives acting on the bottom quark fields that would generate a dependence on the
‘residual momentum’ of the decaying b-quark.

We have verified through explicit calculations of the 1/m3
b 1/m2

c terms that these two
ways to calculate 1/mc-singular terms yield the same result for the operator expansion.
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4. The Inclusive Decay B → Xc`ν̄`

At order 1/m3
b 1/m2

c the result can thus be expressed through five operators, which
are determined by two contributions to the axial vector current and three contributions
to the vector current:

2MB r̃1 = 〈B|b̄v
[
iDκ,

[
iDλ, [iD

λ,iGκα]
]]
bv|B〉 vα (4.173a)

2MB r̃2 = 〈B|b̄v
[
iDλ,

[
iDκ, [iD

λ,iGκα]
]]
bv|B〉 vα (4.173b)

2MB r̃3 = 〈B|b̄v
[
iDκ,

[
iGλα, iG

λκ
]]
bv|B〉 vα (4.173c)

2MB r̃4 = 〈B|b̄v
{[
iDρ, iGρλ

]
, iGδγ

}
(−iσαβ)bv|B〉

× 1

2

(
gλαgδβvγ − gλαgγβvδ + gδαgγβvλ

)
(4.173d)

2MB r̃5 = 〈B|b̄v
{[
iDρ, iGσλ

]
, iGργ

}
(−iσαβ)bv|B〉

× 1

2

(
gσαgλβvγ − gσαgγβvλ + gλαgγβvσ

)
. (4.173e)

The contributions originating from the axial current yield spin-triplet operators, while
those of the vector current yield spin singlet operators. These operators are in fact
related to a linear-combination of the basis parameters (4.57).

4.5.3. mb � mc ∼ ΛQCD

Now we consider the case of a very light charm-quark. This corresponds to the b→ u
transition. In one respect we should be careful: The B meson containing bū has to be
treated differently from bd̄, since in the first case there is a spectator quark contribution.

Treatment of the Darwin Term

If we consider the dynamics at the charm-quark mass scale to be in the non-perturbative
regime, we cannot exploit the condition (4.155) and are left with the general formula
for the leptonic-energy spectrum in (4.151), which should be evaluated at a scale µ0

that satisfies mc � µ0 ≤ mb. Moreover, we have to take seriously the new power
counting. In dimensional regularization terms proportional to ρ have to be considered
as operators with mass insertion, as we have seen before. Therefore this power counting
implies that terms of order ρ2 now count as (Λ/mb)

4 and should be neglected to the
order that we are considering, we are thus left with

dΓ

dy

∣∣∣
partonic

=
G2
Fm

5
b

192π3
|Vcb|2

{
C0(y,µ0) + ρC1(y,µ0) +O(ρ2)

}
, (4.174a)

dΓ(3)

dy

∣∣∣
ρ3
D+IC

=
G2
Fm

5
b

24π3
|Vcb|2

{
CρD(y,µ0) ρ3

D(µ0)

m3
b

+
CT1(y,µ0)T1(µ0)

m3
b

}
, (4.174b)

together with the contributions to the lepton-energy spectrum from µ2
π,µ

2
G and ρ3

LS (see
e.g. [28]), where the limit ρ → 0 to the considered order (1/m3

b) is trivial. Due to the
power-counting we therefore have to consider O(ρ) terms in the partonic rate, only.
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In that order, the genuinely intrinsic-charm contribution comes together with the
Darwin term, only. In particular, to leading logarithmic accuracy (4.154), the contri-
butions to the total rate, and the moments 〈y〉 and 〈y2〉 can be obtained, exactly, as

Γ(3)
∣∣∣
ρ3
D+IC

=
G2
Fm

5
b

24π3
|Vcb|2

{
X(µ0) +

ρ3
D(µ0)

m3
b

[
17

12

]}
, (4.175a)

〈y〉
∣∣∣
ρ3
D+IC

=
G2
Fm

5
b

24π3
|Vcb|2

{
X(µ0) +

ρ3
D(µ0)

m3
b

[
47

30

]}
, (4.175b)

〈y2〉
∣∣∣
ρ3
D+IC

=
G2
Fm

5
b

24π3
|Vcb|2

{
X(µ0) +

ρ3
D(µ0)

m3
b

[
287

180

]}
, (4.175c)

where we defined the parameter combination

X(µ0) = −3T1(µ0)

m3
b

+ ln
µ2

0

m2
b

ρ3
D(µ0)

m3
b

. (4.176)

In this case, inevitably the “new” hadronic parameter T1 has to be introduced in con-
trast to the heavy charm quark. Nevertheless some statements can be made at this
point. Considering a sizeable value for T1(µ0) at small hadronic scales µ0, in contrast
to the perturbative situation considered in the previous subsection, and taking into
account that the ρ3

D contribution in X(µ0) is formally enhanced by lnµ2
0/m

2
b , we may

ignore the (small) differences between the individual moments induced by the numbers
in square brackets in (4.175), to first approximation. Therefore, even in this genuine
intrinsic-charm scenario, the inclusion of a large non-perturbative intrinsic-charm effect,
basically amounts to treating the Darwin term ρ3

D for the effective parameter X. In
any case, one may consider the limit mc ∼ ΛQCD rather academic, and would prefer the
scenario with semi-hard charm-quarks as in the previous subsection for the discussion
of “intrinsic-charm” effects in inclusive semi-leptonic B decays.

We should also mention that (4.174a) and (4.174b) provide the appropriate formulas
for the massless limit, relevant to b→ u`ν decays, after appropriate changes Vcb → Vub
and re-interpretation of the intrinsic-charm operators as so-called weak annihilation
operators [53–55]. Notice that the (local) annihilation operators enter at order 1/m3

b

in the standard OPE, whereas their non-local counterparts, necessary to describe the
shape-function region, already enter at (relative) order Λ/mb [56–59].

Treatment of the Power-like Infrared Sensitive Terms

Our preceding discussion can suggest a dual description of IR charm effects that allows
insights into a higher-order OPE calculation of the heavy-to-light case B → Xu`ν̄`.
More specifically the limiting case mc → 0 is of relevance when treating the heavy-to-
light case beyond order 1/m2

b . The inherent IR divergence of the standard calculation
for mc/mb → 0 underlies the importance of the four quark operator matrix element in
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4. The Inclusive Decay B → Xc`ν̄`

the heavy-to-light case, which is usually called weak-annihilation (WA) contribution.
More precisely, here it corresponds to its valence-quark insensitive piece which affects
semileptonic B+ and B0 decays equally. We refer to it as non-valence WA. This we
already have seen for the logarithmic dependence of the Darwin term.

In the next few pages, we want to give an estimate of the size of this contribution.
Therefore we will investigate the power-like terms in the total rate, in order to make
use of the model (4.166). Then we will argue, on how the order of magnitude of weak
annihilation can be inferred from experimental data. In the end, we will compare these
two approaches for the size of these effects.

In fact, the total rate, expressed in terms of the operators given in (4.173) reads as

m3
bm

2
c

Γ0

Γ
∣∣∣

1

m2
c

= −3

2

2

15
(−8r̃1 + 4r̃2 − 13r̃3) +

1

2

2

3
(−2r̃4 − r̃5) . (4.177)

With the given numerical estimates of the non-perturbative parameters from tables 4.5
and 4.5 we find the intrinsic-charm operators17 numerically to be

r̃1 ≈ 0.20 GeV5, r̃2 ≈ 0.25 GeV5, r̃3 ≈ 0.14 GeV5, (4.178a)

r̃4 ≈ −0.30 GeV5, r̃5 ≈ 0.29 GeV5 . (4.178b)

which lead to a shift for the total rate of 18

δΓ
∣∣∣

1

m2
c

≈ (0.75%)× ΓParton . (4.179)

This numerical estimate should not be considered bullet-proof. While the individual
matrix elements are predicted with reasonable confidence in their signs and magnitudes,
we are faced with a set of terms with different signs. Thus cancellations will in general
occur among them. Their degree may depend on the numerical accuracy of the ap-
plied ground-state factorization, as well as on the precise values of the lower-dimension
expectation values µ2

π, ρ3
D and ρ3

LS.

Finally we note that for the moments the situation is different. Contributions that
introduce an IR sensitivity to the charm quark mass in the total rate may become
regular for the moments. This becomes evident if we consider moments of the partonic
invariant mass such as 〈(p2 −m2

c)
n〉 which remain regular as mc → 0 till higher orders

in ΛQCD. We have given a numerical analysis on this in section 4.4.

Having at hand the numerical estimates of the higher-dimension expectation values
allows us to refine the model (4.166) for the charm-mass dependence in the IR regime.
Since the 1/(m3

bm
2
c) corrections calculated in this ansatz are fixed in terms of a non-

perturbative parameter Λ, we assign the latter the value which would reproduce these

17We have found a discrepancy with Ref. [45] in the overall factor for one of the expectation values.
It does not produce a noticeable numerical change for the correction to the width, however.

18Ref. [45] included an additional phase-space suppression factor for the IC kinematic of (1−mc/mb)
2.

Based on the operator analysis we can show that actually it is absent in the case at hand.
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leading corrections. This yields by expanding the model in mc and comparing it to the
direct calculation

Λ2 ≡M2
∗ =

f̃1

5ρ3
D

− f̃2

10ρ3
D

+
13f̃3

40ρ3
D

− f̃4

12ρ3
D

− f̃5

24ρ3
D

' (0.7 GeV)2 , (4.180)

and thus the model predicts

(−δαβ + vαvβ)
1

2MB

〈B̄|b̄γα(1− γ5)c c̄γβ(1− γ5)b|B̄〉
∣∣∣∣
µ

' − ρ
3
D

4π2
ln

m2
b

m2
c +M2

∗
, (4.181)

see also in plot 4.8. In this case the correction to the width at m2
c � m2

b takes the form

δ Γsl

Γsl

' −8ρ3
D

m3
b

(
ln

m2
b

m2
c +M2

∗
− 77

48

)
, (4.182)

where the constant term accounts for the explicit UV contribution in this limit. This
model illustrates to which extent the charm quark may be considered heavy in this
context.

Figure 4.8.: The WA expectation value 1
2MB
〈B|b̄γk(1− γ5)c c̄γk(1− γ5)b|B〉µ as a func-

tion of the charm mass: The leading logarithmic contribution in mc (blue
dashed), including additionally the 1/m2

c power correction (orange dot-
ted), and the complete behavior according to ansatz (4.181) (red solid).
We assume the value ρ3

D = 0.15 GeV3 and mb is 4.59 GeV.

It should be acknowledged that the equations (4.166), (4.180) and (4.182) are only
a reasonable model for the effects at intermediate to small mc. In fact, the size of the
effective mass scale M∗ as determined by matching the leading charm power corrections
may not be fully universal: It depends on the particular Lorentz structure of the weak
vertices. It would likewise differ, say, in weak B∗ decays—although numerically such a
variation in M∗ would be insignificant.

The important question here is the potential scale of the non-valence WA contribu-
tions, once the effect of the Darwin operator has been separated out, which we have
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4. The Inclusive Decay B → Xc`ν̄`

presented before19. These effects are directly related to the pieces with 1/mc contri-
bution. A direct computation based on the method discussed above is not possible.
Yet one may try to estimate the natural scale expected for WA by approaching the
massless case from the heavy-quark side, as it was done for the Darwin expectation
value using dimensional regularization. For this purpose we use the model suggested
above. In spite of its admitted oversimplification, we can be sure that the difference
between this ansatz and the actual QCD contribution remains finite at any mc includ-
ing the limit mc → 0. The model has the advantage of being sufficiently accurate when
extrapolating down from the side of intermediately heavy charm quarks.

It is therefore plausible that setting mc = 0 and applying this model we do not stray
far away from the leading effect of the non-valence component of WA in b→ u `ν decays
(which is its only contribution in Bd decays);20 this “guesstimate”, though, cannot be
validated in the context of the 1/mc expansion examined here. In some sense such an
assumption implies that no ‘phase transition’ occurs when going down in mass from
heavy to light quarks. We know such a phase transition takes place in the QCD vacuum,
yet it may not necessarily be important for the expectation values over B-meson states.
One may a priori expect larger WA effects in b → u `ν coming from its flavor-specific
piece manifesting itself in the decays of charged B-mesons.

Using the model as presented above, we interpolate between the regimes of heavy
and light charm we get an estimate

1

2MB

〈Bd|b̄γ(1− γ5)u ūγ(1− γ5)b|Bd〉 ' −
ρ3
D

4π2
ln

m2
b

µ2 +M2
∗
≈ −0.01 GeV3 , (4.183)

with µ ≈ 0.5 GeV denoting the normalization scale, which replaces the charm mass,
and M∗ is the hadronic scale parameterizing the non-perturbative effect. This is an
educated guess and cannot guarantee to yield even the correct sign of the effect at
µ ∼ 1 GeV. The negative sign physically means that the propagation of the soft u
quark (projected onto the spin state specified by the Lorentz structure in question) is
suppressed compared to free propagation. Taken at face value, the WA expectation
value in Eq. (4.183) would yield the iso-scalar shift in the semileptonic B decay width

δΓWA
sl (b→ u)

Γsl(b→ u)
' −8ρ3

D

m3
b

ln
m2
b

µ2 +M2
∗
≈ −0.038 . (4.184)

19The difference due to the valence part of WA in b→ u `ν can be experimentally probed by analyzing
the difference in the semileptonic spectra spectra of charged and neutral B decays.

20Reference [53] which first analyzed the effects of generalized WA in semileptonic decays, focused
on the differences between mesons with different spectators and therefore explicitly subtracted
the b̄u ūb expectation value in Bd from that in B−. Following an earlier classification of the pre-
asymptotic power corrections to the inclusive widths it referred to this as the spectator-dependent
correction, a terminology continued to a number of later publications. The valence and non-
valence effects separately were considered in Ref. [60] where valence effects were sometimes also
called ‘spectator’ contributions. The importance of the non-valence WA for light quarks, although
conjectured already back in 1994, was emphasized in Ref. [61]. There the “singlet” and the WA
proper pieces referred to the average and the difference of the valence and non-valence components.
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A more refined way to assess non-valence WA for b → u `ν would be to consider
the real massless case for the final-state quark, mu = 0, thereby introduce an IR
cutoff via the kinematic restriction equation (4.165). The first term in equation (4.164)
representing the “UV” piece of the b̄u ūb expectation value from the domain of quark
momenta above µ is then calculated in the direct way of section 4.2.1 with the limit
mc → 0. The result is expressed in terms of the same five expectation values, with
the coefficients scaling as 1/µ2. Yet they would combine to yield in general a different
combination of the operators and, consequently, a different number. Evaluating the
result with µ ≈ 0.6 GeV would provide an estimate of the minimal natural scale of
non-valence WA.

Even such an estimate would be admittedly incomplete. Beyond its lack of precision
in evolving the µ dependence to as low a value as 0.6 GeV, the total WA should also
include 〈B|b̄u ūb|B〉<0.6 GeV, which is the last term in Eq. (4.164). The contribution
from the low momenta plausibly exceeds the numerical estimate above, and may even
change the overall sign. However, it would be unnatural to allow the contributions from
physically distinct domains of low and high momenta to show significant cancellations.
Therefore, we would view the thus obtained estimate as a firmer lower bound on the
scale of non-valence WA in b→ u `ν̄`.

One may anticipate a potentially more significant effect for the “valence” part of WA
which describes this effect in Γ(B+ → Xu `ν̄`). On physical grounds we expect this
contribution to contain a piece independent of the non-valence WA and not related
to something that can be traced from the b → c `ν decays in the limit of small charm
mass. In the formal derivation of relating c(x)c̄(0) in equation (4.164) to charm Green’s
functions it would be associated with an additional term. That term appears through
the contraction of the quark fields with those of the same flavor whose presence is
required in the interpolating currents to produce the initial and to annihilate the final
B meson state.

On the other hand, as pointed out in Refs. [53, 62] and exploited later in the publi-
cations [60] and [61], one may infer certain information about WA, and in particular
about valence WA from the D-meson decays. The charm quark is marginally heavy
enough to apply precision heavy-quark expansions to its decays. Extrapolation from
charm to bottom may thus be semi-quantitative at best, yet it should provide some
constraint on the expected scale of WA’s physical implementation. In particular, the
recent CLEO-c [63] data on the semileptonic branching fraction of Ds indicate the pres-
ence of a destructive spectator-related WA contribution of around 20%; it must be the
result of non-factorizable four-quark expectation values. In interpreting this observa-
tion one has to address the question of SU(3)-breaking in the leading non-perturbative
corrections described by the kinetic and chromo-magnetic operators and, possibly, in
the Darwin expectation value.

The situation for D mesons is different, than in the case of B mesons with respect
to the spectator quarks. The charm quark is an up-type quark, and therefore tree level
transitions in weak annihilation processes can occur with a down quark, only. While
semileptonic “valence” WA cannot occur at all in D0 decays, it can contribute in D+

and Ds decays on the Cabbibo suppressed and Cabbibo allowed levels, respectively.
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Assuming possible SU(3) breaking to be under control properly in WA, we conclude
that the observed difference of the total semileptonic widths for Ds and D0

Γsl(Ds)

Γsl(D0)
=

Brsl(Ds)

Brsl(D0)

τD0

τDs
' 0.83 (4.185)

must be dominated by valence WA effects in Ds. To describe the pattern on the WA
effects in D mesons we may adopt the nomenclature for the generalized “annihilation”
correction following reference [53]: The valence weak annihilation WAval

q for a particular
transition c → q `ν, where q = s or d, refers to the difference in the matrix elements
between Dq and D0. The non-valence WAn val

d is directly the expectation value in the
(non-strange) state D0, containing no valence d quark. To allow for SU(3) asymmetry

we also have to distinguish WAn val
d from WA

n val (s)
d where it is considered in the strange

Ds state. The WA operators above may be general products like c̄q q̄c, either local or
nonlocal. For the decaying quark being heavy enough, like in B mesons, it would be
sufficient to include only the leading local four-quark operators. With this convention,
we in general have in D mesons

Γsl(D
+)− Γsl(D

0) = sin2 θc ·WAval
d (4.186a)

Γsl(Ds)− Γsl(D
0) = cos2 θc ·WAval

s − sin2 θc

[
WAn val

d −WA
n val (s)
d

]
+ ∆SU(3) .

(4.186b)

By introducing the subscript marking the d or s flavor, we have explicitly allowed
for the SU(3) breaking in the expectation values due to the different spectator in a
meson or in the light quark field flavor in the corresponding operator. We have still
neglected the explicit short-distance SU(3)-breaking ∝ m2

s in the coefficient functions
emerging due to the larger strange mass in the hard quark Green’s functions. It is
expected to be strongly suppressed. ∆SU(3) in Eq. (4.186) therefore denotes only the
shift related to the SU(3) violation in the (flavor-singlet) non-perturbative expectation
values between the strange and non-strange heavy-meson states. The analysis suggests
that these effects are numerically suppressed for the kinetic and the chromo-magnetic
operators and should not exceed 5% level in the widths. Then the bulk of the difference
in equation (4.185) should be equated with the valence component of WA, at least if
SU(3) violation in it is not too strong.

Translating these relations for WA from charm to bottom is associated with signifi-
cant uncertainties due to a potentially poor representation of the contributions to the
inclusive width for charm by the (truncated) OPE. The charm mass is manifestly not
large enough for a precision treatment. Relating WA for B decays to the expectation
values of the D = 6 operators can be done with acceptable theoretical accuracy. Yet
expressing the WA contributions in (4.186) through the analogous local expectation
values in D mesons is expected to have large corrections – first of all from the corre-
sponding higher-dimension operators with additional derivatives. Related to this is the
short-distance “hybrid” [64–66] renormalization of the operators in question from the
scale of charm to bottom. In this case it may be even not fully perturbative.
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Bearing in mind these potential caveats, we nevertheless use this line of reasoning
to estimate the expected size of the valence WA in the semileptonic b → u width of
charged B meson:

Γ(B+ → Xlight `ν̄`)− Γ(B0 → Xlight `ν̄`)

Γ(B → Xlight `ν)
≈ −(0.005÷ 0.01) (4.187)

which is similar in magnitude, yet still below our estimates for the minimal scale of the
non-valence WA.

4.6. Power Corrections in b→ s+ γ

As another application of the technique described in section 4.2.1 we have considered
higher-order power corrections to the decay rate and to the photon energy moments
in radiative b → s + γ decays. They have been treated in the approximation of the
local weak vertex, derived in section 3.2.2, where no operators with charm quarks
or chromo-magnetic b → s vertex were considered. The analysis parallels that of the
semileptonic case, except that the simplicity of the kinematics (corresponding to q2 = 0
in the latter) leads to reasonably compact analytic expressions, even in higher orders.
We have performed the calculations for an arbitrary mass ratio ms/mb, however quote
here the results only at ms = 0.

Therefore, we assume the b→ s+ γ transition to be mediated by the effective vertex

λ

2
s̄σµν(1− γ5)b F µν , (4.188)

which is the electromagnetic penguin contribution and due to the large Wilson coef-
ficient the leading part in the decay. In this approximation power corrections to the
integrated decay rate become

Γbsg(B) =
λ2m3

b

4π

[
1− µ2

π + 3µ2
G

2m2
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− 11ρ3
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+
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24
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.

(4.189)

Next we consider the important moments of the observable photon energy, which are
normalized to the rate itself, in order to let the prefactors, e.g. the CKM factors, drop
out. Therefore we have expanded the normalization denominator, in order to have
the non-perturbative parameters in the numerator, only. Noticing, that we expand up
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to 1/m5
b , we will therefore have products of dimension five and six non-perturbative

parameters. The first moment of the average photon energy in the decay is given by

2〈Eγ〉 = mb +
µ2
π − µ2
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. (4.190)

For the second and third moments we quote for simplicity the corrections to the mo-
ments with respect to mb/2 rather than for the usually considered central moments

3〈(2Eγ −mb)
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r6 −

23

4
r7 −

13

4
r9 +

9

4
r10

+
25

4
r11 +

21

4
r12 − 8r13 + r14 +

1

4
r15 +

9

2
r16 +

27

4
r17 −

37

4
r18

+
5

6
µ2
πρ

3
D − 3µ2

Gρ
3
D − µ2

πρ
3
LS +

3

2
µ2
Gρ

3
LS

)
, (4.191)

3〈(2Eγ −mb)
3〉 = −ρ3

D +
1

mb

(3

2
m1 − 2m2 +

1

4
m3 +

8

5
m5

+
1

10
m6 −

9

20
m7 +

27

80
m8 +

1

10
m9

)
+

1

m2
b

(
− 16

5
r1 +

51

10
r2 +

9

10
r3 −

17

5
r4 −

27

10
r5 +

63

10
r6 −

8

5
r7 + 4r8

− 11

5
r9 +

71

10
r10 +

9

10
r11 +

13

5
r12 −

7

5
r13 −

11

5
r14 +

23

5
r15

+
27

10
r16 +

9

10
r17 −

37

10
r18 −

1

2
(µ2

π + 3µ2
G)ρ3

D

)
. (4.192)

The terms through D = 6 in equations (4.190) and (4.191) coincide with the known
ones, cf. Ref. [67].

Numerical aspects have been analyzed similarly to the semileptonic moments, em-
ploying the factorization approximation of section 4.3 for the expectation values. The
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4.6. Power corrections in b→ s+ γ

corrections turn out to be rather small, not only in the integrated width and in the aver-
age photon energy, but also in the second and even in the third moments corresponding,
in the heavy-quark limit, to the kinetic and Darwin expectation values, respectively.
Moreover, accounting for the D = 8 expectation values yields small effect compared to
the D = 7 one, except for the second moment where both are quite suppressed. Direct
evaluation results in

δΓ(B → Xs + γ)

Γ(B → Xs + γ)
= −0.0361/m2

b
− 0.00531/m3

b
+ 0.000641/m4

b
+ 0.000151/m5

b
(4.193a)

δ〈2Eγ〉 = 11 MeV1/m2
b
− 14 MeV1/m3

b
+ 3 MeV1/m4

b
+ 0.7 MeV1/m5

b

(4.193b)

12δ〈(Eγ − 〈Eγ〉)2〉 = −0.106 GeV2
1/m3

b
+ 0.002 GeV2

1/m4
b

+ 0.0025 GeV2
1/m5

b
(4.193c)

24δ〈(Eγ − 〈Eγ〉)3〉 = 0.02 GeV3
1/m4

b
− 0.0025 GeV3

1/m5
b
. (4.193d)

The shifts in the second, third and fourth line here may be interpreted as an apparent
change, up to the sign, in mb, µ

2
π and −ρ3

D, according to the similar analysis in the case
of b→ c`ν̄` transitions.

The small effect on µ2
π and ρ3

D, far below the level anticipated in reference [67], is
somewhat surprising. The above numbers probably are smaller than the corrections
due to the non-valence four-quark operators of the form b̄s s̄b appearing at order O(αs).
They were discussed in reference [67], section 4. It is conceivable that the numerical
suppression we obtain, is partially accidental or is an artifact of the factorization ap-
proximation for the expectation values. We do not dwell further on this here and plan
to look into the issue in the subsequent studies.
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5. The Exclusive Decay B → D(∗)`ν̄`
As we have explained in the introductory chapters, the second option to extract the
CKM matrix element |Vcb| is to consider the exclusive process related to the quark
transition b→ c, namely B → D`ν̄` and B → D∗`ν̄`. Different final states are sensitive
to other combination of form factors, describing the non-perturbative input. In exper-
iment only the combination form factor times CKM matrix element is measured, while
the form factor is computed by theoretical methods. Therefore contributions from new
physics operators to the form factor may influence the extraction of the CKM matrix
element, and may explain the small tension between the inclusive and exclusive mea-
surement. It has already been pointed out, that allowing right handed quark currents
in inclusive processes can lead to a 30% admixture of right handed quark currents [16].
But the error is huge, such that it is also compatible with the Standard Model. There-
fore the inclusive analysis turns out to be insensitive to decide weather new physics
contribution can enter. We will present in the next sections some parts of the calcula-
tion to repeat the analysis for the case of exclusive final states. With the distinction of
a pseudo-scalar D and vector D∗ meson, the analysis is more promising.

5.1. The Decay Rate

At first we start with the same interaction Hamiltonian (4.1) as in the case of inclusive
decays. On parton level, the same process takes place. The only difference lies in
the non-perturbative hadronic matrix element, which defines the final state. Now we
cannot apply the optical theorem and therefore the non-perturbative input depends on
the final state. In the Standard Model the underlying interaction for the semileptonic
bottom to charm quark decay b→ c`ν̄` is given by

Hint = −4GF√
2
Vcb

(
c̄
γµ(1− γ5)

2
b

) (
¯̀γ

µ(1− γ5)

2
ν`

)
, (5.1)

but for the new physics analysis, we will slightly modify this to allow for non Standard
Model currents, e.g. extending the V-A structure. Furthermore the phase space has a
slightly modified form, since now the final state is completely defined, and not indirectly
computed by the optical theorem. Neglecting again higher-order electroweak correc-
tions, the matrix element for B → D(∗)eν̄e factorizes into a leptonic and a hadronic
part

M(B̄ → D(∗)e−ν̄e) = 〈D(∗)eν̄e|Hint|B̄〉

=
4GF√

2
Vcb〈D(∗)eν̄e|Jq,µ(0)Jµe (0)|B̄〉 , (5.2)



5.1. The Decay Rate

where the leptonic current is defined as in (4.3a). The kinematical variables for the
differential rate is given by the velocities of the initial P µ

B = MBv
µ and final state

P µ

D(∗) = M
(∗)
D v′µ. From this we define the only independent kinematical quantity

w = v · v′ =
M2

B +M2
D(∗) − q2

2MBMD(∗)
. (5.3)

This variable is directly related to the momentum transfer qν = pνe + pνν̄e = P ν
B − P ν

D(∗)

to the leptons. The differential decay rate is then given by

dΓ =
1

2MB

∑
Spins

|M(B̄ → D(∗)e−ν̄e)|2dφ(2π)4δ(4)(PB − PD(∗) − pe − pν̄e) , (5.4)

where the squared matrix element reads∑
Spins

|M(B̄ → D(∗)e−ν̄e)|2 = 8G2
F |Vcb|2

∑
Spins

〈0|J†νe |eν̄e〉〈eν̄e|Jµe |0〉︸ ︷︷ ︸
=Lµν

×
∑
Spins
Pols.

〈B̄|J†q,ν |D(∗)〉〈D(∗)|Jq,µ|B̄〉

︸ ︷︷ ︸
=Wµν

. (5.5)

For the comparison with the experimental measurement, we have to average over the
incoming B̄ spins, but since this is a pseudo-scalar particle the normalization factor is
unity. For the final states we have to sum over all spins, and possibly polarizations of
a final state vector meson.

First we will compute the calculable parts in the next subsections, and then para-
metrize the hadronic part W µν in order to obtain the differential decay rate in w.

5.1.1. Leptonic Part

The leptonic tensor is defined as in (4.12), to remind the reader literally it is given by

Lµν = 2
(
pµep

ν
ν̄e + pνep

µ
ν̄e − g

µνpe · pν̄e − iεηνλµpeηpν̄eλ
)
. (5.6)

In the next step we combine it with the phase space integration over the leptons.

5.1.2. Phase Space

Introducing the momentum transfer qµ, we have to integrate over electron and anti-
neutrino momenta

L̃µν =

∫
d3pe

(2π)32p0
e

∫
d3pν̄e

(2π)32p0
ν̄e

Lµν(2π)4δ4 [q − (pe + pν̄e)] .
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5. The Exclusive Decay B → D(∗)`ν̄`

Obviously this integration is (i) symmetric in the momenta pµe and pµν̄e , and (ii) it
depends on the momentum transfer qµ, only. Therefore we can parameterize the result
as

L̃µν = L̃1g
µν + L̃2q

µqν .

Using momentum conservation and the on-shell condition of the final state leptons, we
can express the relevant scalar products through the momentum transferred squared
to the leptons q2, namely

p2
e = 0 , p2

ν̄e = 0 , (5.7a)

q2 = 2pν̄e · pe , (5.7b)

pe · q =
q2

2
, pν̄e · q =

q2

2
. (5.7c)

Now using the result for the scalar integration, and keeping in mind that all tensor
reductions

gµνLµν = 4L1 + q2L2 , qµqνLµν = L1q
2 + L2q

4 (5.8a)

⇒ L1 = −2

3
q2L̃ , L2 =

2

3
L̃ , (5.8b)

do not depend on the integration momenta1 and using Lorentz invariance we get

L̃ =

∫
d3pe

(2π)32p0
e

∫
d3pν̄e

(2π)32p0
ν̄e

(2π)4δ4 [q − (pe + pν̄e ]

=

∫
d3pe

(2π)32p0
e

2πδ
[
(q − pe)2

]
=

1

2π

∫
d|pe|

|pe|2

|pe|
δ
[
q2

0 − 2q0|pe|
]
q rest system

(5.9)

=
1

4

1

2π
. (5.10)

Finally we can combine these results to the phase-space integrated lepton tensor

L̃µν =
1

4

1

3π

[
qµqν − gµνq2

]
. (5.11)

The next step is to compute the integration over the hadronic variables to establish
the differential decay rate, first in the invariant lepton momentum transfer q2. Then
we can easily transform this result in the desired form

dw = − 1

2MBMD

dq2 , 1 ≤ w ≤ 0 . (5.12)

Usually the minus sign is absorbed, such that the integration condition

0 ≤ w ≤ 1 (5.13)

1Note, that due to the massless leptons, the current conservation qµL
µν = 0 is automatically fulfilled.

114



5.2. Effective Theory Ansatz for New Physics

holds true, and w = 1 corresponds to the case of zero-recoil, whereas w = 0 is the case
for maximal transfer of momentum to the lepton system.

Therefore we have for the hadronic phase-space integral in terms of the momentum
transfer squared∫

d3PD
(2π)32P 0

D

δ
[
q2 − (PB − PD)2

]
=

1

4π2

∫
d|pD|

|pD|2√
M2

D + |pD|2
δ

[
q2 −M2

B −M2
D + 2MB

√
M2

D + |pD|2
] ∣∣∣∣

x=|pD|2

=
1

4π2

∫
dx

2

√
x√

M2
D + x

√
M2

D + x

MB

δ

[
x− (q2 −M2

B −M2
D)2 − 4M2

BM
2
D

4M2
B

]
=

√
(q2 −M2

B −M2
D)2 − 4M2

BM
2
D

16π2M2
B

=
1

8π2

MD

MB

√
w2 − 1 . (5.14)

Note that the result for the D∗ meson phase space is the same with MD → MD∗ . We
left out the superscript for a better readability.

5.1.3. Differential Decay Rate

Now we have to combine everything, where the hadronic part is not specified yet. For
the differential decay rate with respect to the invariant mass of the leptonic system and
respectively to w we have

dΓ

dq2
=
G2
F |Vcb|2

48π3M3
B

√
(q2 −M2

B −M2
D∗)

2 − 4M2
BM

2
D∗Wµν

[
qµqν − gµνq2

]
,

dΓ

dw
=
G2
F |Vcb|2

12π3

M2
D∗

MB

√
w2 − 1Wµν

[
qµqν − gµνq2

] ∣∣∣∣v·q=MB−wMD∗ ,v
′·q=MBw−MD∗

q2=M2
B+M2

D∗−2MBMD∗w

. (5.15)

In the next section we derive a general basis, which respects the gauge symmetry of the
SM, for the hadronic tensor Wµν . In the end we present the differential rate in terms
of the different hadronic contributions.

5.2. Effective Theory Ansatz for New Physics

As we have already mentioned earlier, we can treat the SM as an effective field theory
at low scales, where low scale is at the order of the b-quark mass. Therefore any
new physics effects can be expanded into higher dimensional operators, which respect
the Standard Model gauge symmetry. Since these effects are stemming from higher
scales, they have been integrated out and therefore cannot appear as parts of the low
energy effective operators. They contribute to the coefficient function in front of the
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5. The Exclusive Decay B → D(∗)`ν̄`

operator - which is the “coupling constant” of the operator term in the Lagrangian.
The corresponding Wilson coefficient for any new physic models can in principle be
matched to it. The expansion parameter is then naturally given by the scale ΛNP , at
which the effects are integrated out

L = LSM +
1

ΛNP

L5 +
1

Λ2
NP

L6 + . . . (5.16)

The next step is to construct the allowed operator structures, where the SM fields can
be grouped into doublets under the

SU(3)C ⊗ SU(2)W ⊗ U(1)Y (5.17)

symmetry. The QCD degree of freedom SU(3)C is not relevant in this case, such that

QL =

(
uL

dL

)
, Left-handed quark fields , (5.18a)

qR =

(
uR
dR

)
, Right-handed quark fields , (5.18b)

H =
1√
2

(
v + h0 + iχ0

√
2φ+

−
√

2φ− v + h0 − iχ0

)
, Higgs field matrix, (5.18c)

where the right-handed symmetry has been explicitly broken and the qR are singlets
under SU(2). The vacuum expectation value of the Higgs is denoted by v. Inserting
the appropriate number of Higgs and gauge fields from SU(2)W ⊗ U(1)Y , we will now
construct all possible gauge invariant operators. The possible - gauge invariant - com-
binations can be read off from the Lagrangian. But in the end we only need the part
responsible for the b → c`ν̄` transition. Therefore the Higgs field gets replaced by its
VEV, which can be absorbed into the generic coupling constant. From this a minimal
flavour violation analysis can be performed in order to estimate the suppression factor
of each term, as it was done e.g. in [15,16,68,69]. Please note, that we have to insert one
Higgs field for a possible (pseudo-)scalar term, and the tensor term. Therefore in this
case, the transition from a left- to a right-handed particle and vice versa is mediated.
We keep the leptonic tensor as in the Standard Model, since for this case a very precise
Michel parameter analysis showed, that it behaves as expected [70, 71]. However, in
case of mesons, we do not have a purely partonic interaction and then effects can arise,
which can distort this symmetry.

5.2.1. Operator Basis

We can restrict ourselves to the W -gauge boson coupling of a bottom and charm quark,
since we consider only the b → c transition. The W -boson then decays into a lepton
anti-neutrino pair. Without additional new physic operators or loop diagrams we can
have only a charged current transition for different flavour. While integrating out the
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5.2. Effective Theory Ansatz for New Physics

W -Boson, we derive the general quark current, where in SM we are left with a V-A
structure. The coupling to the leptons is very well measured and therefore we keep this
part Standard Model like

Jq,µ =cL c̄LγµbL + cR c̄RγµbR + gL c̄R
i
←→
Dµ

mb

bL + gR c̄L
i
←→
Dµ

mb

bR

+ dL
i∂ν

mb

c̄R(iσµν)bL + dR
i∂ν

mb

c̄L(iσµν)bR . (5.19)

PL/R = 1
2
(1 ∓ γ5) is the left/right handed projector and iDµ the covariant derivative.

Here we have put general coupling constants for the different appearing Dirac structure.
Another way of constructing the operator basis, is to simply write down all possible
Dirac structures and then insert appropriate derivatives in order to form gauge-invariant
objects. In principle we have two different possibilities to insert the derivative and we
have to form Lorentz vectors in order to couple it to the leptonic current.

The only possible way for a scalar operator is to insert a derivative. First of all please
note that c̄Γb is a colour singlet. Therefore the usual derivative of the complete term
is already gauge invariant. This derivative transforms into the momentum transfer to
the leptons. Therefore i∂µc̄b vanishes, if coupled to a pair of massless leptons. The
other possibility is to form the left-right derivative resulting in the sum of incoming
and outgoing momenta. Due to the additional minus sign of the Dirac equation the

partial derivative is equivalent to the covariant derivative. For that reason c̄i
←→
Dµb is the

only gauge invariant possible operator structure.
Turning to the tensor contribution c̄σµνb we need to contract one index with a Lorentz

vector, where again the only possible one is given by the derivative. Here in contrast
to the scalar case the partial derivative is not directly contracted to the leptonic tensor
and there does not vanish. But due to the commutator structure of c̄i∂ν(−iσµν)b =
1
2
c̄[γµ(i/∂) − (i/∂)γµ]b we cannot form a gauge invariant object in the same manner as

above. Therefore the only contribution is given by i∂ν c̄(−iσµν)b.
In the following we will define the form factors corresponding to this enhanced cur-

rent.

5.2.2. Hadronic Part

The relevant matrix elements of the hadronic currents can be described in terms of
hadronic form factors. For each operator we define a Lorentz tensor decomposition
with scalar form factors in the following. We do not distinguish between the left and
right-handed fields in here and the following, but rather refer to the basis of 16 Dirac
matrices. For example a vector current with left-handed fields is decomposed into a
vector form factor minus an axial-vector form factor. The external four vectors for the
decomposition are given by the four velocities of the incoming and outgoing mesons,
and additionally the polarization vector in case of the D∗ meson in the final state.
We have to obey the correct parity and charge conjugation properties of the matrix
elements for this decomposition.
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5. The Exclusive Decay B → D(∗)`ν̄`

In case of the pseudo-scalar to pseudo-scalar B → D ` ν̄ transition the appearing
matrix elements can be decomposed into

〈D(v′)|c̄b|B(v)〉√
MBMD

= s(w) , (5.20a)

〈D(v′)|c̄γµb|B(v)〉√
MBMD

= h+(w)(v + v′)µ + h−(w)(v − v′)µ , (5.20b)

〈D(v′)|c̄σµνb|B(v)〉〉√
MBMD

= i(v′µvν − v′νvµ) t(w) , (5.20c)

and for the for the B → D∗ ` ν̄ decays we have

〈D∗(v′,ε)|c̄γ5b|B(v)〉√
MBmD∗

= p+(w)ε∗α(v + v′)α + p−(w)ε∗α(v − v′)α , (5.21a)

〈D∗(v′,ε)|c̄γµb|B(v)〉√
MBmD∗

= ihV (w)εµναβε∗νv
′
αvβ , (5.21b)

〈D∗(v′,ε)|c̄γµγ5b|B(v)〉√
MBmD∗

= hA1(w)(w + 1)ε∗µ − [hA2(w)vµ + hA3(w)v′µ](v · ε∗) , (5.21c)

〈D∗(v′,ε)|c̄σµνb|B(v)〉√
MBmD∗

= εµνκτ [ε∗κ(v
′+v)τ t+(w) + ε∗κ(v

′−v)τ t−(w) + v′κvτ (vε
∗)t′(w)] .

(5.21d)

The matrix elements which we have not listed here vanish because of parity.

Standard Model Limit

In the Standard Model it was noticed, that the charged weak current, connects left-
handed fields only. Turning to the current in equation (5.19) therefore in this case the
coupling constants are given by cL = 1, and all others vanish. Furthermore the form
factors simplify to only three different matrix elements and are simply parameterized
by

〈D(v′)|c̄γµb|B(v)〉√
MBMD

= [h+(w)(v + v′)µ + h−(v − v′)µ] , (5.22a)

〈D∗(v′,ε)|c̄γµb|B(v)〉√
MBmD∗

= ihV (w)εµναβε∗νv
′
αvβ , (5.22b)

〈D∗(v′,ε)|c̄γµγ5b|B(v)〉√
MBmD∗

= hA1(w)(w + 1)ε∗µ − [hA2(w)vµ + hA3(w)v′µ] ε∗ · v . (5.22c)

Heavy Quark Limit

We will work in the heavy quark effective theory, where we assume the heavy quark
limit for both the bottom and the charm quark. Within this limit, we can derive the
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5.2. Effective Theory Ansatz for New Physics

current (5.19) in terms of the heavy quark field hv′,c with velocity v′ for the charm and
hv,b with velocity v for the bottom

Jh,µ = cLh̄v′,cγµPLhv,b + cRh̄v′,cγµPRhv,b + gL(mbvµ +mcv
′
µ)h̄v′,cPLhv,b

+ gR(mbvµ +mcv
′
µ)h̄v′,cPRhv,b + dL(mbv

ν −mcv
′ν)(h̄v′,ciσµνPLhv,b)

+ dR(mbv
ν −mcv

′ν)(h̄v′,ciσµνPRhv,b) . (5.23)

As we have seen in the introduction, in this heavy quark limit all form factors can be
reduced to the Isgur-Wise function [23,27]

h+(w) = hV (w) = hA1(w) = hA3(w) = ξ(w) ,

h−(w) = hA2(w) = 0 , (5.24)

which is normalized at zero-recoil to ξ(1) ≡ 1.

5.2.3. Differential Decay Rate

We can thus express the decay rate for the semileptonic B̄ → D(∗)`ν̄` decays in terms of
the Isgur-Wise function by putting together the previous results with equation (5.15)

dΓB→D`ν̄`

dw
= G0(w)|Vcb|2A(w)|ξ(w)|2 , (5.25a)

dΓB→D
∗
T `ν̄`

dw
= G∗0(w)|Vcb|2BT (w)|ξ(w)|2 , (5.25b)

dΓB→D
∗
L`ν̄`

dw
= G∗0(w)|Vcb|2BL(w)|ξ(w)|2 , (5.25c)

dΓB→D
∗`ν̄`

dw
= G∗0(w)|Vcb|2

[
BT (w) + BL(w)

]
|ξ(w)|2 , (5.25d)

where the kinematical and normalization prefactors are given by

G0(w) =
G2
FM

5
B

48π3
r3
√
w2 − 1(w + 1)2 , (5.26a)

G∗0(w) =
G2
FM

5
B

48π3
(r∗)3

√
w2 − 1(w + 1)2 . (5.26b)

The non-perturbative input is contained in the Isgur-Wise function, and the informa-
tion on the different vertex structure is encoded in the different coefficient functions.
Therefore we have for each decay one coefficient function depending on the kinematical
variable w. Additionally we have split the contribution of D∗ into the Longitudinal
and Transveral polarization, because these two do not interfere. These three functions
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are explicitly given by

A(w) =
w − 1

w + 1

[
c+(1 + r)−MBd+(r2 − 2rw + 1) + 2MBrg+(w + 1)

]2
, (5.27a)

BT (w) = 2 [1− 2r∗w + (r∗)2]
{

[c− + d−MB(r∗ − 1)]2

+
w − 1

w + 1
[c+ + d+MB(r∗ + 1)]2

}
, (5.27b)

BL(w) =
{
c−(r∗ − 1) + 2g−MBr

∗(w − 1) + d−MB[(r∗)2 − 2r∗w + 1]
}2

, (5.27c)

with r = MD/MB, r∗ = mD∗/MB. Please note that we have combined the left and right
handedness projectors from the current (5.19) into the coupling constants necessary for
the definition of the form factors (5.21) and (5.20) as

c± = (cL ± cR) , d± = (dL ± dR) and g± = (gL ± gR) . (5.28)

The expressions of the Standard Model are recovered by setting c± = 1 while all other
couplings are zero. Then the non-perturbative functions (5.27) become

ASM(w) =
w − 1

w + 1
(1 + r)2 , (5.29a)

BTSM(w) =
4w

w + 1
[1− 2r∗w + (r∗)2] , (5.29b)

BLSM(w) = (r∗ − 1)2 . (5.29c)

The branching ratio cannot be determined from this, because the analytical depen-
dence on w of the form factors is not known. Therefore the extrapolation of the slope
in the kinematical variable w is used in experiment to extract the product of CKM
matrix element times form factor. Therefore by defining the quantities

M(w) =
dΓB→D`ν̄`

dw

1

G0

1

A(w)
, (5.30a)

M∗(w) =
dΓB→D

∗`ν̄`

dw

1

G∗0

1

BL(w) + BT (w)
, (5.30b)

we can extract the product form factor times CKM matrix element from experiment.
Now at the specific kinematical point of non-recoil w = 1 the form factor can be
computed by lattice QCD or sum rules. Using these calculated values the extraction
of |Vcb| becomes possible by comparing the limit

lim
w→1

M (∗)(w) = |Vcb|2F(1)2 , (5.31)

where F(1) denotes the corresponding form factor, using the computed form factor at
this kinematical point with experiment. But the resulting |Vcb| strongly depends on the
value for the form factors. In the usual extraction only the Standard Model form factors
are considered and therefore possible new physics effects can influence the extraction
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5.3. Radiative Corrections to Decay Operators

of the value |Vcb| as it can be seen from (5.30). The aim of this work is to quantify this
potential effect.

In order to implement the effects of new form factors consistently we compute the
vertex corrections at the zero-recoil point to this new form factors in the next section.
This will give a numerical hint, on how the prefactor in front of the Isgur-Wise function
for the different structure behaves.

5.3. Radiative Corrections to Decay Operators

We compute the vertex corrections for every occurring current. To this end, we have
to consider the three diagrams in fig 5.1. In the end we will use this as an estimate
for the Isgur-Wise limit normalization. Therefore we consider the renormalization of
the vertex in the very special kinematic point of zero-recoil. The zero-recoil point is
defined, such that v ·v′ = 1, meaning the velocity of the hadron is conserved. Therefore
the momentum transfer to the leptons is fixed as qµ = (mb − mc)vµ. First of all we

Figure 5.1.: One loop diagrams for the renormalization of the different currents.

determine the renormalization constant of the mass and wave function, which we will
put together with the vertex renormalization on the end, to obtain the complete answer.
In all calculations we assume naive anti-commuting γ5 in D dimensions.

5.3.1. Wave Function Renormalization

The wave function renormalization, which is needed to calculate the appropriate counter
terms, is independent of the vertex current. So we have to compute this only once. Since
we express everything in the Lagrangian through the physical parameters, we have

L = ψ̄
(
i/∂ −m

)
ψ + (Z2 − 1)ψ̄i/∂ψ − (Z2Zm − 1)ψ̄mqψ (5.32)

with the new counter-term vertex, where the bare parameters have a subscript 0,

Lcounter = (Z2 − 1)ψ̄i/∂ψ − (Z2Zm − 1)ψ̄mqψ with Zmmq = m0 , Z
1
2
2 ψ = ψ0 .

(5.33)
For simplicity we have used a generic ψ-quark field with mass mq in the calculation,
which has to be replaced with a bottom-quark and a charm-quark and the corresponding
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5. The Exclusive Decay B → D(∗)`ν̄`

masses in the end. In order to calculate the renormalization constants for the wave
function and the mass, defined by the counter terms

i(Z2 − 1)/q − i(ZmZq − 1)mq , (5.34)

we first perform the loop integration for fig. 5.2(b). Thereby we restrict ourselves to
first order in 1/ε, because we perform only a one loop calculation

iΠ1 loop =

∫
d4k

(2π)4

(−igsγαT a)i
(
/q − /k −mq

)
(−igsγβT b)

(q − k)2 −m2
q + i0

−igαβδab

k2 + i0
(5.35)

→ (−g2
s)CFµ

4−D
∫

dDk

(2π)D
Dm+ (2−D)(/q − /k)

[(q − k)2 −m2
q]k

2 + i0
(5.36)

≈
ε→0

i
αsCF

4π

[ (
/q − 4mq

) 1

ε
+ 2mb

(
−

2m2
q

q2
log

m2
q − q2

m2
q

+ 2 log
m2
q − q2

µ2
− 3

)
(5.37)

+ /q

(
− log

m2
q − q2

µ2
+ 1 +

m2
q

q2
+
m4
q

q4
log

m2
q − q2

m2
q

)]
(5.38)

:= i(Π
(q)
1 loop(q2) /q + Π

(m)
1 loop(q2)mq) , (5.39)

where ε is in MS scheme and D = 4−2ε. In principle we have to be careful, we compute
these constants in the pole scheme for the mass definition in the propagator and kept
the divergent terms in ε, only. To first order in αs there is no difference. The complete
one-loop result is now received by summing up the three diagrams in fig. 5.2 The

(a) (b) (c)

Figure 5.2.: One loop wave-function renormalization diagrams.

counter-term vertex is simply the usual propagator times the renormalization constants,
which can be directly read off from eq. (5.33). Thus we end up with

iΠ̃1 loop = iΠ1 loop + i
[
(Z2 − 1)/q − (Z2Zm − 1)mq

]
. (5.40)

The renormalization constants to order αs are now determined by the requirement, that
the pole and residue of the summed one-particle irreducible diagrams at the special on-
shell point /q = mq,

iΠ =
i

/q −mq − Π̃1 loop + i0
, (5.41)
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5.3. Radiative Corrections to Decay Operators

are the same as for the free case. This leads to the two conditions, where in our case
q = b, c and mq = mb,mc,

Π
∣∣∣
/q=mq

!
= 0 , (5.42a)

Rq :=
d

d/q
Π
∣∣∣
/q=mq

!
= 0 . (5.42b)

From this we compute the renormalization constants to be

Zq = 1− 1

ε

αs
4π
CF ,

Zm = 1− 3

ε

αs
4π
CF .

In the end, we will need the correction part to the wave function, which is directly
given by the residue of the propagator Rq in eq. (5.42b).

5.3.2. Vertex Renormalization

Now we look at the vertex correction at the zero-recoil point, see fig 5.1. Here the
vertex is given by the different operators of the current, namely

• Scalar: pµb + pµc

• Pseudo-scalar: (pµb + pµc )γ5

• Vector: γµ

• Axial-vector: γµγ5

• Tensor: ((pb)ν − (pc)ν)(−iσµν)

whereas in the Standard Model we have only a vector γµ and axial-vector γµγ5 part.
At zero-recoil the loop integral is given by, middle diagram of fig 5.1,

iΓ1 loop =

∫
d4q

(2π)4

(−igsγαT a)i
(
/pc + /q +mc

)
Γi
(
/pb + /q +mb

)
(−igsγβT b)

[(pc + q)2 −m2
c ] [(pb + q)2 −m2

b ] + i0

−igαβδab

q2 + i0
.

(5.43)

We use the equation of motion 1
2
(1 +

/pq
mq

)q = q for q either a charm or bottom quark.

Furthermore after the integration we can use the zero-recoil condition, which states
that pb/mb = pc/mc. For this reason we can relate all vertex corrections in total to
four independent components instead of all sixteen, because we project onto the upper
component. Using the Dirac equation we derive the following relations

c̄pµq b = mq c̄γ
µb , (5.44a)

c̄pµqγ
5b = 0 (5.44b)
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5. The Exclusive Decay B → D(∗)`ν̄`

such that we can relate the different occuring vertices to the structures

c̄(mb +mc)γ
µb = c̄(mb +mc)v

µb , (5.45a)

c̄(mb −mc)γ
µγ5b = c̄(mb −mc)s

µb . (5.45b)

The four velocity has one component, and the spin vector sµ ≡ 1/2(1+/v)γµγ51/2(1+/v)
has three components [72], since v · s = 0.

Now we use the zero-recoil Passarino-Veltmann (PV) functions, to compute the loop
integral. To this end, we compute the master integrals for (1,lµ,lµlν) and l2lµ in terms
of the Passarino-Veltmann functions and put this into eq. (5.43). The decomposition
is given by

Bµ = b1p
µ
b + b2p

µ
c (5.46a)

Cµ = c1p
µ
b + c2p

µ
c (5.46b)

Cµν = C1g
µν + C2p

µ
b p

ν
b + C3p

µ
c p

ν
c + C4p

µ
b p

ν
c + C5p

µ
c p

ν
b . (5.46c)

The expressions for the scalar coefficients can be found in Appendix A.4. Finally we
obtain the results in terms of the PV functions for the different vertex structures at
zero-recoil. This we then have to combine with the wave function renormalization.

Quark-Quark-Gluon-Boson Vertex

(a) Quark-quark-gluon-boson vertex,
where the gluon is absorbed from the
bottom quark.

(b) Quark-quark-gluon-boson vertex,
where the gluon is absorbed from the
charm quark.

Figure 5.3.: Two additional Feynman diagrams, which are neccessary for the (pseudo-
)scalar vertex correction.

At order αs we have an additional term appearing for the (pseudo)-scalar current:
We can derive a quark-quark-gluon-boson vertex from the covariant derivative, which
is of order O(gs) and therefore not relevant at tree level. But it has to be computed
at O(αs) in order to render the (pseudo)-scalar correction gauge invariant. The vertex
constructed from eq. (5.19) reads

LQQGB =
gL/R
mb

c̄gsA
a
µT

aPL/Rb (5.47)

⇒ iΓQQGB =
gL/R
mb

gs gµνT
aPL/R , (5.48)

where µ is the index coupling to the W -boson, in this case it becomes the leptonic
current, and ν is the vector index of the outgoing gluon. Therefore we have to compute
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5.3. Radiative Corrections to Decay Operators

the two Feynman diagrams 5.3, where we restrict ourselves to the scalar and pseudo-
scalar case in stead of the left- or right-handed contribution in the current, since the
form factors are defined with this. We define the generic coupling constant gSC for the
scalar case and gPSC for the pseudo-scalar case, respectively.

We denote the corresponding integral of the left diagram 5.3(a) with the superscript
q = b, and of the right diagram 5.3(b) with q = c. For both diagrams 5.3, we addi-
tionally have two choices Γ = 1,γ5, depending on weather we consider the scalar or
(pseudo)-scalar case. Then the loop integrals become

iΓb(P)SC =

∫
d4l

(2π)4

[
gs g(P)SCgµνT

aΓ
i(/pb + /l +mb)

(pb + l)2 −m2
b

igsT
bγρ
−i
l2
gνρδab

]

= iCFg
2
sg(P)SC

∫
d4l

(2π)4
Γ

/pb + /l +mb

[(pb + l)2 −m2
b ][l

2]
γµ (5.49)

iΓc(P)SC =

∫
d4l

(2π)4
igsT

bγρ

[
i(/pc + /l +mc)

(pc + l)2 −m2
c

Γgs gSCgµνT
a−i
l2
gνρδab

]

= iCFg
2
sg(P)SC

∫
d4l

(2π)4
γµ

/pc + /l +mc

[(pc + l)2 −m2
c ][l

2]
Γ . (5.50)

Again we assume naive anti-commuting γ5 in the calculation. Furthermore we make use
of the equation of motion for the QCD quark fields /pbb = mbb, respectively c̄/pc = c̄mc,
and restrict ourselves to the non-recoil point. Using the same methods as before, we
can reduce the integrals above to two different types of master integrals∫

d4l

(2π)4

1

[(pq + l)2 −m2
q][l

2]
= B0(m2

q,0,m
2
q) (5.51a)∫

d4l

(2π)4

lα

[(pq + l)2 −m2
q][l

2]
= −

pαq
2m2

q

A0(m2
q) , (5.51b)

where we either have q = b or q = c, depending on the diagram to be calculated. In
total we then obtain the results quoted below.

Scalar Vertex with b-Quark

We reduce the D-dimensional Dirac algebra and use the master integrals (5.51). Then
the result in MS scheme, with the according definition of 1/ε is given by

iΓbSC = −3CFmbαs
8π

γµ

[
1

ε
− log

m2
b

µ2
+

7

3

]
. (5.52)

Scalar Vertex with c-Quark

Using the same definitions as above, the result is the same as above by replacing mb

with the charm mass mc

iΓcSC = −3CFmcαs
8π

γµ

[
1

ε
− log

m2
c

µ2
+

7

3

]
. (5.53)
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5. The Exclusive Decay B → D(∗)`ν̄`

This two results have to be added to the scalar vertex loop integral, to compute the
total vertex correction. Now turning to the pseudo-scalar case.

Pseudo-scalar Vertex with b-Quark

We perform the same steps as above, but now we have Γ = γ5, which we treat as
anti-commuting

iΓbPSC =
CFmbαs

8π
γµγ

5

[
1

ε
− log

m2
b

µ2
+ 1

]
. (5.54)

Pseudo-scalar Vertex with c-Quark

Due to the anti-commuting behaviour of the γ5 matrix, we cannot obtain the result
from the bottom quark case by just replacing mb with mc. Here we have two different
cases, one where we have to commutate the γ5 through a Dirac matrix, and therefore
picking up a sign in one term.

iΓcPSC = −CFmcαs
8π

γµγ
5

[
1

ε
− log

m2
b

µ2
+ 1

]
. (5.55)

We are in the position to present the total result for the vertex correction. In the
next section we will put together all individual results.

5.3.3. Result

We are now in the position to calculate the whole vertex correction by putting together
all the different ingredients: External leg contribution for the quarks, vertex correction
and for the (pseudo-)scalar case the additional vertex. For the external leg contribution
we have to obey the requirement, that the residue of the quark propagator remains one.
Therefore we have to add the residue of the one loop quark self-energy for the correct
result of the one loop vertex function, which we have already calculated by the wave
function renormalization. The residue (5.42b) can explicitly be computed by

iΠcounter
1 loop (m2) =

d

d /p
iΠ1 loop

∣∣∣
/p=m

= i
d

d /p
(Π

(p)
1 loop/p+ Π

(m)
1 loopm)

∣∣∣
/p=m

= i
[
Π

(p)
1 loop + /p

d

d /p
Π

(p)
1 loop +m

d

d /p
Π

(m)
1 loop

]
/p=m

= iΠ
(p)
1 loop

∣∣∣
p2=m2

+ /p
(
2/p

d

d p2

)
iΠ

(p)
1 loop +m

(
2/p

d

d p2

)
iΠ

(m)
1 loop

∣∣∣
/p=m

= iΠ
(p)
1 loop

∣∣∣
p2=m2

+ 2m2 d

d p2

(
iΠ

(p)
1 loop + iΠ

(m)
1 loop

)
p2=m2

. (5.56)
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5.3. Radiative Corrections to Decay Operators

Now we add up all terms including this residue, to get the full one loop vertex correction
result at zero-recoil. From this we can read off the corresponding renormalization
constant. We have to keep in mind, that the renormalization constant for the wave
function has a square root, because the field appears only in linear form in the vertex
correction. Therefore we have a factor of 1/2 for them. In total we therefore have

iΓΓ = Γ + ΓΓ
1 loop + Γ

1

2

(
iΠcounter

1 loop (m2
b) + iΠcounter

1 loop (m2
c)
)
. (5.57)

Plugging everything in, the results are

iΓ(1) = (mb +mc)γ
µ +

αs
4π

CF (mb +mc) γ
µ

2 (m2
b −m2

c)

[
− 3(m2

b −m2
c)

ε
− 3mcmb log

m2
c

m2
b

+

(
6 log

m2
b

µ2
− 3 log

m2
c

µ2
− 13

)
m2
b −

(
−3 log

m2
b

µ2
+ 6 log

m2
c

µ2
− 13

)
m2
c

]
,

(5.58a)

iΓ(γµ) = γµ +
αs
4π
CFγ

µ

[
−6− 3

mb +mc

mb −mc

log
mc

mb

]
, (5.58b)

iΓ(γµγ5) = γµγ5 +
αs
4π
CFγ

µγ5

[
−8− 3

mb +mc

mb −mc

log
mc

mb

]
, (5.58c)

iΓ(γ5) =
αs
4π

CFγ
µγ5

2

[
3 (mb −mc)

ε
+

(
−3 log

m2
b

µ2
+ 7

)
mb +

(
3 log

m2
c

µ2
− 7

)
mc

]
,

(5.58d)

iΓ(−iσµν) = 0 . (5.58e)

Please remember, that we work in the HQET limit and at the zero-recoil point, where
pb = mbv

µ and pc = mcv
µ. Therefore there are only 4 independent operator structures

possible, where

c̄γµb = c̄
1 + /v

2
γµ

1 + /v

2
b = c̄vµb (5.59a)

c̄γµγ5b = c̄
1 + /v

2
γµγ5 1 + /v

2
b := c̄sµb . (5.59b)

The four-velocity has one component, and the spin vector sµ has three independent
components, since v · s = 0 can be directly verified. Therefore we express the result in
terms of γµ and γµγ5. Please note, that the tensor structure vanishes at this specific
kinematical point. Furthermore we can derive a few relations, which are valid at the

non-recoil point using /v =
/pb
mb

=
/pb
mb

. Using the projector properties as in eq. (5.59) we

derive the relations, we already presented in (5.44) again

c̄pµb,cb = mb,cc̄γ
µb , (5.60a)

c̄pµb,cγ
5b = 0 . (5.60b)

These relations have already been used to derive (5.58). From the finite parts of (5.58)
we can compute the corrections ηΓ to the form factors near the zero-recoil point w = 1.
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Up to corrections suppressed by powers of mQ this ηΓ is a good approximation for the
form factors. Our result for the vector case reads

ηV = 1 +
αs
4π
CF

[
−6− 3

mb +mc

mb −mc

log
mc

mb

]
, (5.61)

and the corresponding axial-vector part reproduces the known analytical results [23],

ηA = 1 +
αs
4π
CF

[
−8− 3

mb +mc

mb −mc

log
mc

mb

]
. (5.62)

The same corrections factors for the other Dirac combinations, which are not present
in the Standard Model, can be read off analogously from Equation (5.58):

ηSC(µ) = 1 +
αs
4π

CF
2 (m2

b −m2
c)

[
− 3mcmb log

m2
c

m2
b

+

(
6 log

m2
b

µ2
− 3 log

m2
c

µ2
− 13

)
m2
b

−
(
−3 log

m2
b

µ2
+ 6 log

m2
c

µ2
− 13

)
m2
c

]
, (5.63a)

ηPS(µ) =
αs
4π

CF
2(mb +mc)

[(
−3 log

m2
b

µ2
+ 7

)
mb +

(
3 log

m2
c

µ2
− 7

)
mc

]
, (5.63b)

ηT(µ) = 0 . (5.63c)

In the following we will analyze the results numerically using mb = 4.2 GeV, mc =
1.3 GeV and CF = 4/3. Additionally we assume the scale to be at the bottom mass,
such that αs(mb) ≈ 0.22 and αs(mc) ≈ 0.30 [73]. We obtain

ηV ≈ 1.02 , (5.64a)

ηA ≈ 0.97 , (5.64b)

which is compatible with the lattice values [74,75] for

G2(1) = 1.074± 0.018± 0.016 (5.65a)

F2(1) = 0.927± 0.024 , (5.65b)

where the form factors are defined as

dΓB→D`ν̄`

dw
=
G2
F |V 2

cbM
5
B

48π3
(w2 − 1)3/2r3(1 + r)2G2(w) , (5.66a)

dΓB→D
∗`ν̄`

dw
=
G2
F |V 2

cbM
5
B

48π3
(w2 − 1)1/2(w + 1)2(r∗)3(1− r∗)2

×
[
1 +

4w

w + 1

1− 2wr∗ + (r∗)2

(1− r∗)2

]
F2(w) , (5.66b)

and coincide with the Isgur-Wise function in the infinite quark mass limit. As a short
comment it should be said, that using non lattice methods, e.g. sum rules the values
for these form factors seem to be too high [36, 38, 76, 77]. Lower values would prefer
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5.3. Radiative Corrections to Decay Operators

a higher value for the extracted |Vcb|, which then would reduce the tension with the
exclusive determination [13]

|Vcb|excl. = (38.7± 1.1) · 10−3 , (5.67a)

|Vcb|incl. = (41.5± 0.7) · 10−3 . (5.67b)

To get a handle on the new form factors, we define analougiously the scalar ηsc,
pseudo-scalar ηps and tensor ηt coefficient function. We take these factors dimensionless
and factor out the mb +mc structure in case of the scalar current, and mb−mc for the
tensor coefficient.

Since the anomalous dimension does not vanish for the (pseudo-)scalar cases, we
choose µ =

√
mbmc and take the values for µ = mb and µ = mc as an indicator for the

error. Then we obtain the numerical values

ηSC = 1.03+0.06
−0.05 . (5.68)

ηPS = 0.002+0.021
−0.028 , (5.69)

ηT = 0 . (5.70)

Since the pseudo-scalar contribution vanishes at non-recoil it only receives a small
correction of the order of O(2%). However the scalar vertex does not vanish and gets
corrections in the order of O(10%). From our analysis the sign of the corrections
cannot be judged. Therefore the admixture of a scalar current can in principle lead
to measurable deviations, however, the handedness of this quark-current admixture
cannot be judged from this analysis.

The full and more elaborate analysis, which will answer all these subtle details, using
these computations and additionally experimental data as an input will be published
in a forthcoming paper [78].
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6. Discussion

We will summarize and comment on the results we have achieved. Basically we have
presented two different types of analysis, regarding the semi-leptonic bottom into charm
quark transition. We applied this underyling quark transition to the exclusive and in-
clusive B meson decay, which is the observable process at experiments. At the moment
from both decay measurements the CKM matrix element |Vcb| is extracted. There are
a few important things related to it, which should be stressed, again. First there is a
small tension between the exclusive and inclusive determination. The matrix element is
not only important for these decays, but also to pinpoint down the tip of the unitarity
triangle: |Vcb| goes into the εK parameter with the fourth power and therefore with 33%
it has the largest contribution to the total error budget of this parameter [81]. Thus a
very precise and also reliable extraction is mandatory.

6.1. Summary

The first three chapters are dedicated to an introduction of the theoretical foundations
and the techniques used within this thesis, and so set up the notation.

The first calculational part has been related to inclusive decays in chapter four. We
have computed the non-perturbative corrections to a high order, thereby defining the
new appearing operators (non-perturbative parameters). We have given a prescription,
on how these higher dimensional matrix elements can be factorized into known param-
eters on the basis of a ground-state factorization theorem. From these a numerical
estimate has been performed. With this, we analyzed the impact of the new computed
higher-order terms for the moments of kinemtical variables and the total rate. Fur-
thermore we had a closer look on the behaviour of the expansion related to the charm
quark. We have found, that infrared sensitive terms with respect to the charm quark
mass arise, which have been dubbed “intrinsic-charm”. Therefore the expansion ex-
pected purely in 1/mb actually is an expansion in both 1/mb and also 1/mc, starting
at 1/m3

b . There we investigated several scenarios with respect to the charm, and gave
some comments on so-called “weak-annihilaton”. The last part has been dedicated to
b → s + γ decays. These are used in the experimental fits to extract |Vcb| from inclu-
sive semileptonic b → c transitions. We repeated the numerical analysis with the new
computed higher-order matrix elements for the most relevant operator mediating this
decay.

In the sixth chapter we have investigated the corresponding quark transition, but
for the exclusive semi-leptonic decay B → D(∗)`ν̄` in more detail. Especially we have
allowed for physics beyond the Standard Model in an effective field theory approach



6.2. Inclusive Decay

for the quark transition. There we first have derived the new operators appearing
and parameterized them in terms of Lorentz scalar form factors. In order to estimate
the influence of a possible admixture to the exclusive determination in |Vcb|, we have
shown in which way the CKM matrix element is actually extracted. In order to re-
perform this analysis with real data and allowing for these new rising form factors in a
forthcoming publication, we have estimated the strength of these form factors at zero
recoil. Therefore we have computed the vertex corrections at this special kinematical
point, which has been a quite good estimate for the known vector and axial-vector form
factors.

6.2. Inclusive Decay

6.2.1. Higher Orders

We report a detailed study of higher-order power correction in inclusive weak decays of
heavy flavor hadrons, focused on the semileptonic B meson decays. The calculations
existed since the mid 1990s and included 1/m2

b and 1/m3
b corrections. We extended the

analysis to order 1/m4
b and 1/m5

b at tree level, without computing αs-corrections to the
power suppressed Wilson coefficients, thereby confirming the previous known result.

The computed structure functions for this decay are expressed through nine expecta-
tion values in dimension seven (1/m4

b) and 18 additional ones in dimension eight (1/m5
b).

More operators appear with O(αs) corrections, cf. Ref. [45,51]. The structure functions
allows to compute any differential distribution with arbitrary constraints on the lepton
kinematics. Since the expressions are pretty lengthy, especially to order 1/m5

b , we do
not quote them here. They are generated with MATHEMATICA and used to compute
the analytical results for the various moments of the distributions with and without a
cut on the charged lepton energy.

The operator basis of the new heavy quark parameters is growing very fast with
successive higher orders in 1/m. Therefore applying the formulae in experiment would
be of little practice. The proliferating number cannot be extracted reliably for various
and obvious reasons. Therefore we presented a derivation for an estimate of these
matrix elements. This has already been used earlier [45]. We deduce a factorization
theorem, which is still exact. The next step is to postulate a saturation of the ground-
state, such that we keep only the leading term of the factorization. Based on this, we
present the factorization result for all dimension seven and eight parameters in terms
of the dimension five, µ2

π and µ2
G as well as dimension six parameters, ρ3

D and ρ3
LS and

an excitation energy ε̄. This excitation energy can be traced back to time derivatives
in the operators.

The calculated structure functions with the factorization estimate input allows us,
to derive meaningful numerical estimates. We have analyzed the important question
on the accuracy of the OPE related to the truncation to a fixed order in 1/mb as well
as the numerical convergence of this series.

From the numerical values we have presented, we conclude that the power expansion
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in inclusive B̄-meson decays is numerically in a good shape, at least if the cut on the
leptony energy is small enough Ecut ≤ 1.5 GeV. Furthermore we find that the 1/m4

b

corrections are somewhat smaller than those at 1/m3
b and typically tend to partially

offset the latter. The 1/m5
b terms are again a bit less important than the 1/m4

b - as
expected - although the number of parameters is much higher. The notable exception is
the effect of ‘Intrinsic Charm’ (IC) on the total decay rate which had been argued in [41]
to be a potentially significant effect being driven, to higher orders, by an expansion in
1/mc rather than in 1/mb. The powerlike terms arise first in 1/m5

b with the power
1/m3

b × 1/m2
c , and we have dedicated a separate part of the analysis to this. The

situation is expected to be different for high moments of hadronic invariant mass. In
usually considered moments the effects turn out to be noticeably smaller and this
suggests that the truncation error at this order is largely negligible in practice.

We have also presented the analytic expressions for the corresponding higher-order
corrections in the B → Xs+γ decays. A pilot evaluation showed that here the effects are
numerically insignificant. A more reliable conclusion, however should include estimates
for a wider range of hadronic parameters and eventually for the complete operator
basis.

There are two different sources of changes of |Vcb| within the analysis. One is related
with the direct shift of it by the higher order terms in the total rate, which amounts
to −0.65%. The other source stems from the shift in the HQE parameters due to
the change in the moments. We expect this to be slightly larger, and in the opposite
direction. Alltogether we anticipate a moderate overall upward shift by about half a
percent.

The overall scale of the calculated higher-order power corrections shows, as a rule,
that they are not negligible at the attained level of precision and are in line with
the expectations laid down in Ref. [43]. Practically speaking, we expect the 1/m4

b

corrections to be of the same scale as the terms from not yet calculated αs-corrections
to the Wilson coefficients of the chromo-magnetic and of the Darwin operators.

We expect that the main effect of the estimated power corrections in the fit to the
semileptonic data will be an increase in the Darwin expectation value ρ3

D by about
0.1 GeV3, while µ2

π would not change significantly. Neither will the main combination
of quark masses mb−0.7mc, shaping the mass dependence, change essentially. However,
this does not apply to mb or mc separately. The residual dependence on the absolute
values is subtle and the changes in the central value of mb as large as 50 MeV may not
have real significance.

Extracting the sub-leading heavy quark parameters from the Ecut
` -dependence of the

moments, a procedure which is effectively introduced in the fits to the data by assuming
a strong correlation of theoretical uncertainties at different Ecut

` for a given moment,
looks as an unsafe option. The cut-dependence of the moments is rather mild until
the cut is placed relatively high, and there all corrections start to inflate degrading
the theoretical accuracy of the OPE predictions. This is seen in the power expansion,
and the similar behavior is expected from the uncalculated perturbative effects. The
correction begin to blow up apparently somewhere near Ecut

` & 1.65 GeV. To remain
on the safe side we suggest to rely on theory at Ecut

` ≤ 1.5 GeV.
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Of course this is only a numerical analysis based upon a ground-state factorization
theorem. This result should be taken as an estimate of the error in the |Vcb| determi-
nation stemming from the power corrections.

6.2.2. Intrinsic Charm Part

A furtherresult of this study is that the OPE for inclusive B → Xc `ν̄` contains terms
with an infrared sensitivity to the charm quark mass. Although this has been known,
a complete discussion of these so-called “intrinsic charm” contributions had not been
presented. We have given such a discussion here in the context of two theoretical frame-
works or ‘roads’ for removing charm quarks from the dynamical degrees of freedom,
that a priori appear different, yet in the end yield identical results.

Now turning to the systematic analysis of the expansion, where we have noticed that
the expansion is a combined expansion in both mb and mc starting at order 1/m3

b .
First we have shown how the “intrinsic-charm” contribution in semi-leptonic B-

meson decays is related to the renormalization of sub-leading operators (like m4
c b̄vbv and

the Darwin term) appearing in the operator product expansion for the lepton-energy
spectrum and the total rate. Within this analysis, we have distinguished three different
cases which correspond to different power counting for the charm-quark mass. In the
first case, one assumes mb ∼ mc, i.e. the charm-quark is already integrated out at the
hard scale, set by the large b-quark mass in the OPE. Consequently, all dependence on
the charm-quark dynamics is already encoded in the matching conditions for the hard
coefficient functions, and no “intrinsic-charm” operators should be introduced below
the hard scale. The only remnant of “intrinsic charm” is the non-analytic dependence
of the coefficient functions on the ratio ρ = m2

c/m
2
b .

A long this way, we have shown that starting at 1/m3
b the standard OPE for B →

Xc `ν̄` exhibits not only terms of the form 1/mm
b × logmc from the renormalization

mixing, but also 1/mm
b × 1/mn

c where at tree level only even n and m ≥ 3 appear. The
matrix elements of local operators, parameterizing their non-perturbative input, ap-
pearing with these mc infrared sensitive coefficients always contain gluon-field-strength
operators and their covariant derivatives. In turn the residual momentum of the b quark
does not enter here.

We have performed a detailed analysis of the contributions of the form 1/m3
b × 1/m2

c

at tree level, which is needed to complete the OPE calculation of B → Xc`ν̄` up to
order 1/m4

b , since parametrically 1/m3
b×ΛQCD/m

2
c is of the same order. The numerical

estimates, using the ground-state factorization theorem, confirm the results presented
in Ref. [45].

The conclusion for B → Xc `ν̄` is that a calculation to order 1/mn
b has to include also

the terms of order 1/mn−k
b × 1/(m2

c)
k with n ≥ 3 and k = 1, . . . , n − 2. Furthermore,

including radiative corrections one obtains also contributions of the order 1/mm
b ×

αs(mc)/m
k
c where k can also be odd. The lowest terms of this kind are of order 1/m3

b×
αs(mc)/mc and have been considered in Ref. [45].

These effects are of considerable theoretical interest with respect to subtleties that
can arise in non-perturbative dynamics, yet they go beyond it towards more pragmatic
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goals: They help to validate the goal of reducing the theoretical uncertainty in extract-
ing |Vcb| from B → Xc `ν̄` to the 1% level. It is not only an obvious goal to reach this
precision goal for the theoretical treatment of B decays, yet also for proper interpre-
tation in Kaon physics. It is required for the proper interpretation of the ultra-rare
decays K → π νν̄. Their amplitudes have been calculated with high accuracy in terms
of mc and V ∗tsVtd [79]. Their widths thus scale with V 4

cb, and the error on the latter is at
least a large component in the stated overall 2% uncertainty, recently more precisely
specified to be more than one third [81].

Another viable scenario treats the charm quark mass as intermediate between the
hard and the soft scale in the OPE, mb � mc � ΛQCD. In that case, four-quark
operators including soft b-quark fields and semi-hard charm quarks have to be included
in the OPE. At the same time, in order to avoid double counting, the semi-hard region
has to be subtracted from phase-space integrals by a suitable regularization of the
decay spectra in the limit mc � mb. We have shown by explicit calculation how the
mixing between the “intrinsic-charm” operators and the Darwin term generates the
logarithmically enhanced terms entering the OPE at order 1/m3

b . Similarly, extending
the results of [51], we could reproduce terms of order ρ2 ln ρ in the partonic rate.
After integrating out the charm quark at the semi-hard scale, the moments of the
lepton-energy spectrum can be entirely described in terms of the standard hadronic
input parameters, whereas – again – the complete charm-quark dependence enters via
(eventually renormalization-group improved) short-distance coefficients, multiplying,
for instance, the Darwin term.

The two approaches to the logarithmic and power-like sensitivities also show the
advantages and disadvantages of the different renormalization schemes. For the analysis
of this terms, we have used dimensional regularization, as well as a Wilsonian cut-off
approach. Within dimensional regularization, the mixing of the four-quark operator
into the Darwin term is computed easily. But the explicit appearing powers of the
charm quark have to be treated as separate operators with a mass insertion, since in
DR the charm mass is treated as vanishing. Within a cut-off scheme the charm mass
gets replaced by the clear separation scale µ, and therefore the phase-space integration
has to be modified. For treating the power-like terms this is clearly an advantage.
However, in the analysis with a charm-quark we can stick to the first road, where
charm and bottom are treated as equally heavy.

A somewhat more exotic approach would treat the charm quark as light, i.e. of
order ΛQCD. Only in this case genuine intrinsic-charm (i.e. non-perturbative) effects
have to be taken into account. Still, we have found that on the level of a few lepton-
energy moments, the experimental data basically constrain a particular combination
of the intrinsic-charm contribution and the Darwin term, such that to order 1/m3

b the
number of independent hadronic parameters effectively remains the same.

Therefore in b → u `ν̄` decays the straightforward calculation of the higher-order
power corrections to the total width beyond order 1/m3

b would yield terms which diverge
power-like in the infrared, but this does not mean that one cannot go beyond 1/m3

b

order here. The analysis shows that to calculate Γsl(b→ u) without extra αs-corrections
it is sufficient to introduce the corresponding WA four-quark operators. For practical
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reasons one should simply discard then all the terms, which formally have inverse powers
of mu. These terms stemming from the phase-space integration, which would have to
be modified, are negligable and therefore it is easier to discard them.

We have found in this process that the analysis of IC effects give hints about the pos-
sible impact of WA in the heavy-to-light transitions B → Xu `ν̄` – and the extraction
of |Vub| there – and on its relation to charm decays. The IC effects for the inclusive
distributions are conceptually similar to (generalized) WA corrections extensively dis-
cussed in connection to the lifetimes of heavy flavors since the late 1970s. Since in
this thesis the usual bottom mesons, which do not contain valence charm quarks, are
discussed, we deal here with the case of non-valence WA contributions first noted in
Ref. [53]. A profound difference with the conventional WA for light quarks is that
charm quarks, even soft ones, to the leading approximation can be viewed perturba-
tively. The non-trivial strong dynamics affect its propagation at the level of power
corrections (ΛQCD/mc)

k, while for light quarks this expansion would not be applicable.
Nevertheless, we approach the case of conventional WA with light flavours from the
heavy-mass side and use a model which naturally interpolates between the regimes of
heavy and light quark we get an estimate

δΓn val
sl (b→ u)

Γsl(b→ u)
≈ −0.032

∣∣∣
µ≈1 GeV

. (6.1)

This result should be viewed as an educated guess rather than a real evaluation, from
which we cannot count even on the firm prediction of the sign. It also leaves out the
more intuitive valence WA which, as a matter of fact, historically gave the phenomenon
its name. Yet, as clarified in Ref. [66], its interpretation in the presence of strong
interactions is more subtle and may include interference-type contributions, which allow
for the net correction to the width even to become negative.

We have used the recently reported [80] measurements of the Ds semileptonic fraction
to estimate the significance of spectator-related WA in the CKM-suppressed semilep-
tonic width of B+. Taken at face, the correction turns out to be somewhat smaller
then (6.1) but still destructive

δΓval
sl (b→ u)

Γsl(b→ u)
≈ −(0.005 to 0.01) . (6.2)

Since these contributions populate the kinematic domain of small hadronic invariant
mass and energy of the final hadron state, they could have an amplified impact on the
existing determinations of |Vub| from B → Xu `ν̄`.

Note added P. Gambino informed us about a pilot fit to the semileptonic data includ-
ing the higher-order corrections to the moments quoted here. The preliminary result
did not follow our expectation that the bulk of the effects reduces to the increase in ρ3

D,
although the suppression of the shift in the extracted value of |Vcb| was observed. We
note, however, that the reported outcome was largely dependent on the assumed strong
correlations in the theoretical uncertainties at different Ecut

` . More reliable conclusions
can be drawn once a more general fit analysis is performed.
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The main conclusion to be drawn is that, as long as the strong dynamics at the charm-
quark scale can be treated perturbatively, “intrinsic-charm” effects do not induce an
additional source of hadronic uncertainties at the level of 1/m3

b power corrections, apart
from the usually considered Darwin and spin-orbit terms. The same will be true for
higher orders in the 1/mb expansion as classified in [28]. The issue of whether to resum
logarithms ln(m2

c/m
2
b) by introducing the above 2-step matching procedure, or sticking

to the standard 1-step matching has to be decided by considering radiative corrections
to the 1/m3

b expressions which is beyond the scope of this work (see also [33]).

6.3. Exclusive Decay

In the SM the weak charged current is mediated by a left-handed interaction, which
was experimentally verified already in the late 50’s [71]. The situation in the hadronic
sector is more complicated, since we do not observe the direct quark transition, only the
decays of the bound objects. This might influence the structure of the underlying decay,
however up to now there is no evidence for a contribution from beyond the Standard
Model physics. In an analysis using inclusive semileptonic decays no sensitivity to
right-handed interaction has been found [16].

The difference in exclusive decays are the form factors, which are sensitive to the dif-
ferent appearing operator structures, whereas in inclusive decays the non-perturbative
parameters depend only on the incoming state. For this reasons a repeated analysis
using exclusive semileptonic decays is promissing.

We have defined the new occuring matrix elements and computed the necessary
differential rate in terms of these matrix elements, where we have used the heavy quark
limit. In order to prepare the analysis with real data, we have computed the radiative
corrections to the new vertices. These are used to estimate the deviation from the
heavy quark normalization of unity at the zero-recoil point. We computed for each
vertex Γ the corrections ηΓ analytically and confirmed the known result [23] for the
Standard Model contributions Γ = V,A. We found, that at this specific kinematical
point the vertex correction factors are numericaly given by

ηV ≈ 1.02 , (6.3a)

ηA ≈ 0.97 , (6.3b)

ηsc = 1.03+0.06
−0.05 , (6.3c)

ηps = 0.002+0.021
−0.028 , (6.3d)

ηt = 0 . (6.3e)

From the values it is obvious, that due to the special kinematical point a tensor does
not contribute and a pseudo-scalar one only to a little percentage - yet with a huge
relative error. Therefore we conclude that only an admixture of a scalar interaction
could be measured, in principle.

From (5.27) it can be seen, that B → D `ν̄` is sensitive to a scalar admixture.
Especially the w dependence is different from the one in front of the SM coefficient.
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Therefore a careful analysis of the mixing term between these two structures might
reveal the underlying structure.

In contrast the semileptonic decay into the vector meson D∗. Here only the longi-
tudinal polarization is sensitive to a possible scalar admixture. Therefore a polarized
analysis might even be more sensitive to new physics.

The analysis using real data from B-factories will be topic of a forthcomming publi-
cation [78].

6.4. Outlook

With the upcomming new experiments LHC(b) and the super flavour factories, the
experimental data becomes better and better. The experiments and accelerators in-
crease the luminosity and therefore statistics, but on the other hand also improve their
detectors and analytical methods. In order to improve the measurement of SM param-
eters along with these experiments, we also have to advance in theory to reduce the
theoretical errors together with the experimental one to about the same level.

As we have demonstrated the non-perturbative corrections for the inclusive determi-
nation on |Vcb| is in a very good shape. Therefore at the moment from the theoretical
point ov view, the largest uncertainties are stemming from the unknown perturbative
corrections to the Wilson coefficients of µ2

G and ρ3
D. These are - besides µ2

π, where the
corrections are already known [31] - the most relevant non-perturbative parameters.
These corrections should be, as we have argued at the level of the non-perturbative
corrections to order 1/m4

b . Hence it is worthwile to determine these αs corrections, but
to go beyond this seems to be not useful. From a combined fit, using the new theory
input and improved data, the matrix element |Vcb| could in principle be extracted with
an error at the level of O(1%).

Besides this, the matrix element |Vub| is from theoretical interest, too. It is extracted
from a similar process as, we have considered in this thesis, where the charm gets
replaced by an up quark. Therefore the inclusive analysis goes along the same line.
But in that case we have to be careful at order 1/m3

b and higher, as we have explained
in the context of intrinsic charm. On the other side since |Vcb/Vub| ≈ 10, the charm
background is presumably 100 times larger and thus prevents the clean extraction of
|Vub| from experiment. To circumvent this problem, the charm background is dismissed
by kinematical cuts. But this procedure introduces additional theoretical difficulties,
which make the extraction more challenging. Yet from the exclusive analysis with
B̄ → π`ν̄` the CKM matrix element is also determined. As in the case of a charm final
state quark, these two measurements show a slight tension. The exclusive measurement
central value is roughly three standard deviations below the inclusive measurement.

We can use the methods described here to improve the inclusive determination of
|Vub|. Especially the role of weak annihilation should be investigated more carefully.
Aside from this, the influence of the experimental cuts to the validity of the theoretical
tools should be checked.
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A. Appendix

A.1. Higher Order Trace Formulae

We have analytical results for the trace formulae

〈B̄|b̄v(iDj0) . . . (iDjn)bv|B̄〉 (A.1)

up to dimension eight, corresponding to n = 5 covariant derivatives. Using this, we
have obtained the hadronic tensor Wµν including all of the in total 31 non-perturbative
parameters. However, these terms are too lengthy to be diplayed literally here. These
expressions are stored in MATHEMATICA text files.

A.2. Lepton Energy Spectrum

The complete expression for the partonic contribution to the lepton-energy spectrum
with mb ∼ mc ≥ µ is given by [28]

dΓ

dy

∣∣∣
partonic

=
G2
Fm

5
b

192π3
|Vcb|2

{(
− 4ρ3

(y − 1)3
− 6 (ρ3 + ρ2)

(y − 1)2
− 12ρ2

y − 1

− 4y3 − 6(ρ− 1)y2 + 2(ρ− 3)ρ2
)
θ(1− y − ρ)

}
. (A.2)

From this one can obtain closed expressions for the (1− y)n moments,

〈(1− y)n〉
∣∣∣
partonic

=
G2
Fm

5
b

192π3
|Vcb|2

{
− 12 (ρn − 1) ρ2

n
− 4 (ρn − ρ2) ρ

n− 2
− 12 (ρn+2 − 1) ρ

n+ 2

+
6 (ρ2 + ρ) (ρn − ρ)

n− 1
− 2 (ρ3 − 3ρ2 − 3ρ+ 1) (ρn+1 − 1)

n+ 1

+
6(ρ+ 1) (ρn+3 − 1)

n+ 3
− 4 (ρn+4 − 1)

n+ 4

}
.

(A.3)

Expanding (A.3) in the small parameter ρ, the logarithmically enhanced terms at
order ρ2 appear only in the total rate and the first moment

〈(1− y)n〉
∣∣∣
partonic

=
G2
Fm

5
b

192π3
|Vcb|2

(
12 δn0 − 6 δn1

)
ρ2 ln ρ+ analytic/higher-order terms in ρ.

(A.4)



A.3. Operator Mixing

The first infrared singularity appears at O(1/m3
b) proportional to the Darwin term.

The full contribution related to the Darwin term in the lepton-energy spectrum for the
case mb ∼ mc ≥ µ is given by [28]

dΓ(3)

dy

∣∣∣∣
ρ3
D

=
G2
Fm

5
b

192π3
|Vcb|2

ρ3
D

m3
b

{
(

40ρ3

3(y − 1)6
+

8ρ2(3ρ+ 1)

(y − 1)5
+

6ρ2(3ρ+ 1)

(y − 1)4
+

16ρ (2ρ2 − ρ− 1)

3(y − 1)3

− 28ρ

3(y − 1)2
+

8

y − 1
+

2

3

(
5ρ3 − 5ρ2 + 10ρ+ 22

)
+

8

3
(ρ+ 3)(y − 1) + 4(y − 1)2 +

8

3
(y − 1)3

)
θ(1− y − ρ)

−
(

2(ρ− 1)4(ρ+ 1)2

3ρ2

)
δ(1− y − ρ)

}
. (A.5)

From this we obtain closed expressions for the moments,

〈(1− y)n〉
∣∣∣
ρ3
D

=
G2
Fm

5
b

192π3
|Vcb|2

ρ3
D

m3
b

{
8 (ρn − 1)

n
− 2

3
(ρ− 1)4(ρ+ 1)2ρn−2 +

28 (ρn − ρ)

3(n− 1)

− 2 (5ρ3 − 5ρ2 + 10ρ+ 22) (ρn+1 − 1)

3(n+ 1)
+

8(ρ+ 3) (ρn+2 − 1)

3(n+ 2)

− 4 (ρn+3 − 1)

n+ 3
+

8 (ρn+4 − 1)

3(n+ 4)
− 16 (2ρ2 − ρ− 1) (ρ2 − ρn)

3(n− 2)ρ

+
6(3ρ+ 1) (ρ3 − ρn)

(n− 3)ρ
− 8(3ρ+ 1) (ρ4 − ρn)

(n− 4)ρ2
+

40 (ρ5 − ρn)

3(n− 5)ρ2

}
.

(A.6)

It turns out, that the lepton-energy spectrum is a polynomial in 1/(1−y) and therefore
closed expressions for the moments in (1− y)n are obtained easily. Arbitrary moments
can then be derived via

〈(y − y0)n〉 =
n∑
k=0

(
n

k

)
(1− y0)n−k (−1)k 〈(1− y)k〉 . (A.7)

Taking the limit ρ→ 0 in (A.6), the logarithmically enhanced terms appear only in
the total rate

〈(1− y)n〉
∣∣∣
ρ3
D

=
G2
Fm

5
b

24π3
|Vcb|2

ρ3
D

m3
b

(
δn0 ln ρ+O(ρ ln ρ)

)
. (A.8)

A.3. Operator Mixing

A.3.1. Dimension-6

In the following we briefly sketch the derivation of the elements of the anomalous-
dimension matrix that govern the mixing of the four-quark (“intrinsic-charm”) oper-
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ators into the Darwin term. For simplicity, we do not construct the complete set of
independent operators that would be needed to describe the full one-loop anomalous-
dimension matrix, but rather focus on the effect of the charm-loop diagram in figure
4.6(a). For this purpose it is sufficient to consider the two operator structures which
enter the hadronic tensor at tree-level (4.146):

2MBT1(µ) =
(4π)2

3

(
〈B̄(p)|b̄v γµPLc c̄ γµPL bv|B̄(p)〉 − 〈B̄(p)|b̄v /vPL c c̄ /vPL bv|B̄(p)〉

)
,

(A.9a)

2MBT2(µ) =
(4π)2

3

(
4 〈B̄(p)|b̄v /vPL c c̄ /vPL bv|B̄(p)〉 − 〈B̄(p)|b̄v γµPL c c̄ γµPL bv|B̄(p)〉

)
.

(A.9b)

Together with the Darwin term they are used to define a simplified operator basis

OρD = b̄v (iDµ)(ivD)(iDµ) bv , (A.10a)

OT1 = (4π)2 µ2ε 1

3

(
b̄v γµPL c c̄ γ

µPL bv − b̄v /vPL c c̄ /vPL bv
)
, (A.10b)

OT2 = (4π)2 µ2ε 1

3

(
4 b̄v /vPL c c̄ /vPL bv − b̄v γµPL c c̄ γ

µPL bv
)
. (A.10c)

Notice that for convenience, we have extracted a factor (4π)2 µ2ε, in order to have a
simple, dimensionless anomalous-dimension matrix.1

Calculating the one-loop matrix elements of the operators OT1,2 for the partonic
transition b → b in the presence of a soft background field Aµ(k), see Fig. 4.6(a), and
comparing with the tree-level matrix element of the Darwin-term operator, we obtain
the following results in D = 4− 2ε dimensions,

〈b|OT1|b〉(0) = +
1

3

(
1

ε
+ ln

µ2

m2
c

)
〈b|OρD |b〉tree , (A.11a)

〈b|OT2|b〉(0) = −2

3

(
1

ε
+ ln

µ2

m2
c

)
〈b|OρD |b〉tree , (A.11b)

where the one-gluon matrix element of the Darwin-term operator on parton level is
given by

〈b|OρD |b〉tree =
1

2
〈b|b̄v [iDµ, [(iv ·D), iDµ]] bv|b〉tree +O(1/mb) (A.12a)

=
g

2

(
(v · k)(k · A)− k2 (v · A)

)
ūb ub + . . . (A.12b)

From (A.11b) we read off the desired elements of the anomalous dimension matrix

γ =

 0 0 0

−2/3 0 0

4/3 0 0

+O(αs) , (A.13)

1With this convention, the anomalous-dimension matrix is of order (αs)
0. In order to have it in the

standard form, one would have to extract a factor g2s = 4παs µ
2ε, instead.
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where the neglected higher-order terms describe the mixing of “intrinsic-charm” opera-
tors into themselves and of the Darwin term into itself, which are not explicitly needed
for the discussion in the body of the text.

A.3.2. Dimension-7

A similarly simplified analysis can be performed for the mixing of the dimension-7
“intrinsic-charm” operators into the dimension-7 two-quark operator m4

c b̄v /v bv. As
before, defining

O2 = m4
c b̄v /v bv , (A.14a)

OT3 = (4π)2 µ2ε 1

3

(
(iv · ∂ b̄v γµPL c) (c̄ γµPL bv)− (iv · ∂ b̄v /vPL c) (c̄ /vPL bv)

)
, (A.14b)

OT4 = (4π)2 µ2ε 1

3

(
(i∂α b̄v /vPL c) (c̄ γαPL bv)− (iv · ∂ b̄v /vPL c) (c̄ /vPL bv)

)
, (A.14c)

OT5 = (4π)2 µ2ε 1

3

(
(i∂α b̄v γ

αPL c) (c̄ /vPL bv)− (iv · ∂ b̄v /vPL c) (c̄ /vPL bv)
)
, (A.14d)

OT6 = (4π)2 µ2ε 1

3

(
6 (iv · ∂ b̄v /vPL c) (c̄ /vPL bv)− (iv · ∂ b̄v γµPL c) (c̄ γµPL bv)

)
(A.14e)

− (4π)2 µ2ε 1

3

(
(i∂α b̄v /vPL c) (c̄ γαPL bv) + (i∂α b̄v γ

αPL c) (c̄ /vPL bv)
)
, (A.14f)

OT7 = (4π)2 µ2ε 1

6
εµναβ vβ (i∂α b̄v γνPL c) (c̄ γµPL bv) , (A.14g)

we calculate the contributions to the 2-parton matrix elements from the tadpole dia-
gram in Fig. 4.6(b) as

〈b|OT3 |b〉(0) = +
1

8

(
1

ε
+ ln

µ2

m2
c

+ . . .

)
〈b|O2|b〉tree , (A.15a)

〈b|OT4|b〉(0) = 〈b|OT5 |b〉(0) = −1

8

(
1

ε
+ ln

µ2

m2
c

+ . . .

)
〈b|O2|b〉tree , (A.15b)

〈b|OT6|b〉(0) = 0 , (A.15c)

〈b|OT7|b〉(0) = −1

8

(
1

ε
+ ln

µ2

m2
c

+ . . .

)
〈b|O2|b〉tree , (A.15d)

from which we read off the elements of the anomalous dimension matrix entering
(4.162).
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A. Appendix

A.4. Zero Recoil Passarino-Veltmann functions

We calculate every diagram for arbitrary momenta pb and pc, but fixed the zero-recoil
point pb · pc = mbmc. The results are obtained and expressed in the MS-scheme with

D = 4− 2ε

1

ε
≡ 1

ε̄
=

1

ε
+ ln 4π − γE

First we derive the scalar integrals up to three denominators. The neccessary Passarino-
Veltmann functions are given explictely in the MS-scheme

A.4.1. One Point Function

For one denominator we have a simple integral with only one scale. The result can thus
be computed easily

AZR
0 (m) =

∫
d4q

(2π)4

1

q2 −m2 + i0
(A.16)

→ µ4−D dDq

(2π)D
1

q2 −m2 + i0
(A.17)

≈
ε→0

i

(4π)2
m2

(
1

ε
− log

m2

µ2
+ 1

)
. (A.18)

A.4.2. Two Point Function

In the case of two denominators we can have different kinematical regions at the zero
recoil point, and we have two different mass scales in solving this integral. The general
formula, where the integration over the Feynman parameters cannot be performed
explictly, is given by

B0(p2,m1,m2) =

∫
d4q

(2π)4

1

[(p+ q)2 −m2
2][q2 −m2

1] + i0
(A.19)

→ µ4−D dDq

(2π)D
1

[(p+ q)2 −m2
2][q2 −m2

1] + i0
(A.20)

≈
ε→0

i

(4π)2

1

ε
−

1∫
0

dx ln

[
(m2

2 + p2
1(x− 1))x−m2

1(x− 1)

µ2

] . (A.21)

The integration can be performed for either a special kinematic situation, or if a hierar-
chy between the mass scales is given. In the latter case the integrand can be expanded
in a Taylor series. From this intermediate result, we derive the needed special zero-recoil
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functions

BZR
0 (m2,0,m) =

1

ε
− log

m2

µ2
+ 2 ,

BZR
0 (0,0,m) =

1

ε
− log

m2

µ2
+ 1

= BZR
0 (m2,0,m)− 1 ,

BZR
0 (0,m,m) = BZR

0 (m2,0,m)− 2

= BZR
0 (0,0,m)− 1 ,

BZR
0 ((mb −mc)

2,mb,mc) =
1

ε
− 1

mb −mc

[
mb

(
ln
m2
b

µ2
− 1
)
−mc

(
ln
m2
c

µ2
− 1
)]
,

BZR
0 (0,mb,mc) =

1

ε
− m2

b

m2
b −m2

c

(
ln
m2
b

µ2
− 1
)

+
m2
c

m2
b −m2

c

(
ln
m2
c

µ2
− 1
)

=
1

mb −mc

(
mbB

ZR
0 (m2

b ,0,mb)−mcB
ZR
0 (m2

c ,0,mc)
)
.

A.4.3. Three Point Function

For the three point function, we need

C0(p2
1,p

2
2,m0,m1,m2) =

∫
d4q

(2π)4

1

[(p1 + q)2 −m2
1][(p2 + q)2 −m2

2][q2 −m2
0] + i0

(A.22)

→ µ4−D dDq

(2π)D
1

[(p1 + q)2 −m2
1][(p2 + q)2 −m2

2][q2 −m2
0] + i0

(A.23)

= − i

(4π)2
22−D(D − 4)(D − 2)π3−D

2 csc
Dπ

2

1∫
0

dx

1−x∫
0

dy

× [(1− x− y)m2
0 +m2

1x+ p2
1(x2 − x) + 2p1p2xy + ym2

2 + p2
2(y2 − y)]

D−6
2

µD−4 Γ
(
D
2

) .

(A.24)

But here we have to be carefull. Since the gluon is massless, we have to deal with
an infrared singularity. Therefore the expansion around D = 4 has to be done, after
the Feynman parameter integration. In the end we receive a simple function, which in
principle can be related to the one and two point functions

C0(m2
b ,m

2
c ,0,mb,mc) =

i

2(4π)2mbmc

1

ε
+

(
log

m2
b

µ2 + 2
)
mc −

(
log m2

c

µ2 + 2
)
mb

mb −mc

 .

(A.25)
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A.4.4. Tensor Functions

We need the results for tensor loop integrals up to three indices. But luckily the
integral with three positive powers of the loop integration momentum can be reduced
to a simpler one, because two of them are contracted and cancel the gluon propagator.
Therefore in total we have to compute

Bα(p2
1,p

2
2.m

2
1,m

2
2) =

∫
d4q

(2π)4

qα
[(p1 + q)2 −m2

1][(p2 + q)2 −m2
2] + i0

, (A.26a)

Cα(p2
1,p

2
2,0,m

2
1,m

2
2) =

∫
d4q

(2π)4

qα
[(p1 + q)2 −m2

1][(p2 + q)2 −m2
2][q2] + i0

, (A.26b)

Cαβ(p2
1,p

2
2,0,m

2
1,m

2
2) =

∫
d4q

(2π)4

qαqβ
[(p1 + q)2 −m2

1][(p2 + q)2 −m2
2][q2] + i0

. (A.26c)

In the next steps we will perform the tensor decomposition and give the results for the
scalar integrals.

A.4.5. Two Point Function with one Index

At a first step we compute an easier master integral of the form

Bα(p2
1,0,m

2
1,m

2
2) =

∫
d4q

(2π)4

qα
[(p1 + q)2 −m2

1][q2 −m2
2] + i0

. (A.27)

We can parametrize this by the external momentum (p1)α,

Bα(q2,0,m2
1,m

2
2) = B̃1 (q)α . (A.28)

Using the condition p1 · q = 1
2

[[
(p1 + q)2−m2

1

]
− [q2−m2

2]− [q2−m2
1 +m2

2]

]
we derive

the relation

B̃1 =
1

2q2

(
A0(m2

2)2 − A0(m2
1)2 + (m2

1 −m2
2 − q2)B0(q2,m2

1,m
2
2)
)
. (A.29)

Using this result we can reparametrize the momentum and derive additionally

Bα(p2
b ,p

2
c ,m

2
b ,m

2
c) =(pb − pc)α

1

2(mb −mc)2

[
A0(m2

c)
2 − A0(m2

b)
2

+ (m2
b −m2

c − (mb −mc)
2)B0((mb −mc)

2,m2
b ,m

2
c)
]

+ (pc)α B0((mb −mc)
2,m2

b ,m
2
c) . (A.30)

A.4.6. Three Point Function with one Index

We have additionally a three point tensor function with one index

Cα(p2
1,p

2
2,m0,m1,m2) =

∫
d4q

(2π)4

qα

[(p1 + q)2 −m2
1][(p2 + q)2 −m2

2][q2 −m2
0] + i0

= C1(p2
1,p

2
2,m0,m1,m2) pα1 + C2(p2

1,p
2
2,m0,m1,m2) pα2 . (A.31)

150



A.4. Zero Recoil Passarino-Veltmann functions

With the same methods as above, we can compute the coefficient functions, but in this
case we have to solve a system of equations, because the loop integration momentum
has to be parameterized by two different momenta. The scalar functions are given by

C1(p2
1,p

2
2,m0,m1,m2) =

B0 (m2
b ,0,m

2
b)−B0 ((mb −mc)

2,m2
b ,m

2
c)

4mbmc

, (A.32)

C2(p2
1,p

2
2,m0,m1,m2) =

B0 (m2
b ,0,m

2
b)−B0 ((mb −mc)

2,m2
b ,m

2
c)

4m2
c

. (A.33)

A.4.7. Three Point Function with two Indices

The last needed tensor functions is Cαβ. It can be parametrized as2

Cαβ(p2
1,p

2
2,m0,m1,m2) =

∫
d4q

(2π)4

qαqβ

[(p1 + q)2 −m2
1][(p2 + q)2 −m2

2][q2 −m2
0] + i0

(A.34)

= C0g
αβ + C1 p

α
b p

β
b + C2 p

α
c p

β
c + C3 p

α
b p

β
c + C4 p

β
b p

α
c . (A.35)

Using the same scalar product trick from above we get with a slightly more complicated
system of equations the results for the five scalar functions

C0 =
1

4

(
B0((mb −mc)

2,m2
b ,m

2
c) + 1

)
, (A.36a)

C1 =
1

8mb(mb −mc)2

[
mb

(
3B0(m2

b ,0,m
2
b)− 3B0((mb −mc)

2,m2
b ,m

2
c)− 1

)
+mc

(
B0((mb −mc)

2,m2
b ,m

2
c)−B0(m2

b ,0,m
2
b)
) ]
, (A.36b)

C2 =
1

8m2
c(mb −mc)2

[
mb(mb − 3mc)

(
B0((mb −mc)

2,m2
b ,m

2
c)−B0(m2

b ,0,m
2
b)
)
− 4m2

c

]
,

(A.36c)

C3 =
1

8mc(mb −mc)2

[
4mc + (mb +mc)

(
B0((mb −mc)

2,m2
b ,m

2
c)−B0(m2

b ,0,m
2
b)
) ]
,

(A.36d)

C4 =
1

8mc(mb −mc)2

[
4mc + (mb +mc)

(
B0((mb −mc)

2,m2
b ,m

2
c)−B0(m2

b ,0,m
2
b)
) ]
.

(A.36e)

2We leave out the momentum and mass dependence on the coefficients for readability reasons.
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